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Titre : 

Optimisation couplée pour la forme, la topologie et l’orientation des matériaux
des structures construites par fabrication additive

Résumé : 

Des  recherches  sur  le  processus  de  fabrication  additive  montrent  que  ce
processus  produit  des  matériaux  ayant  des  comportements  localement
orthotropes anisotropes. De plus, les technologies de fabrication additive offrent
la possibilité de contrôler l’orientation de l’anisotropie locale en variant la vitesse
et la trajectoire de fabrication. En conséquence, l’optimisation de l’orientation de
l’anisotropie  locale  en  plus  de  la  forme  et  de  la  topologie  d’une  pièce  est
devenue  plus  intéressante.  À  cette  fin,  nous  avons  développé  plusieurs
algorithmes d’optimisation  de  topologie  et  d’orientation  couplés  en  2D et  3D
basés sur la méthode des lignes de niveau pour l’optimisation topologique. D’un
autre côté, l’optimisation de l’orientation a été effectuée différemment selon la
situation. Pour un simple problème de minimisation de compliance à chargement
unitaire, nous utilisons une méthode explicite bien connue qui consiste à aligner
l’axe du matériau le plus rigide avec la direction de la plus grande contrainte
principale. Pour des problèmes plus industriels et complexes, tels qu’un problème
d’optimisation à chargement multiple ou un problème d’optimisation non auto-
adjoint (par exemple, un problème de déplacement cible...), nous utilisons une
méthode de descente de gradient. Les aspects théoriques de chaque méthode
ont été étudiés et expliqués, et leurs algorithmes ont été bien testés en 2D, et en
3D pour un matériaux isotrope transverse.  Dans ce travail,  nous avons traité
divers exemples en 2D et 3D, principalement des exemples avec des problèmes
auto-adjoints à chargement unitaire comme les exemples de poutre en porte-à-
faux  et  de  poutre  en  L,  un  exemple  d’inverseur  de  déplacement  avec  un
problème d’optimisation non auto-adjoint de déplacement cible, et un exemple
de pont avec un problème d’optimisation à chargements multiples. Différentes
stratégies d’optimisation couplées ont été comparées en 2D, telles que la mise à
jour de l’orientation après chaque mise à jour de la forme, la réalisation d’un
certain  nombre  d’itérations  d’optimisation  de  l’orientation  après  un  certain
nombre  de  mises  à  jour  sur  la  topologie  ou  la  forme,  et  l’optimisation  de
l’orientation uniquement à la fin, après avoir complété l'optimisation de la forme.
Pour les deux méthodes d’optimisation de l’orientation décrites, des schémas de
régularisation de l’orientation dans la structure sont présentés. Finalement, nous
avons  également  contribué  au  domaine  de  l’optimisation  d’orientation  en
développant  une  méthode  qui  optimise  l’orientation  sous  une  contrainte
d'inégalité  à  l’aide  d’un  Lagrangien  augmenté  pour  les  cas  2D  et  3D,  et  en
développant  une  méthode  de  descente  de  gradient  basée  sur  l’approche  de
Ginzburg-Landau pour le cas 2D.

Mots clés :

Optimisation  de  forme,  optimisation  topologique,  anisotropie,  fabrication
additive, optimisation de l’orientation des matériaux, optimisation de compliance,
optimisation en multi-chargement, optimisation de déplacement cible, méthode
des lignes de niveau, méthode de Lagrangien augmenté.
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Title : 

Coupled optimization for shape, topology and material orientation of structures
built by additive manufacturing

Abstract : 

Research  on  the  additive  manufacturing  process  showcases  that  this  process
produces  materials  that  have  locally  orthotropic  anisotropic  behaviors.
Additionally, additive manufacturing technologies offer the ability to control the
local anisotropy orientation by varying the manufacturing speed and trajectory.
As a result, optimizing the local anisotropy orientation in addition to a part shape
and topology became more interesting. For this purpose, we developed several
coupled topology and orientation optimization algorithms in 2D and 3D that are
based on the level set method of topology optimization. On the other hand, the
orientation optimization was proceeded differently depending on the situation.
For a simple single load case minimal compliance problem, we use a well-known
explicit method of aligning the stiffest material axis to the direction of greatest
principal stress. For more industrial and complex problems, such as a multi-load
optimization  problem  or  a  non  self-adjoint  optimization  problem  (e.g.  target
displacement  problem...),  we use  a  gradient  descent  method.  The theoretical
aspects  of  each method were studied and explained, and its algorithms were
tested  and  were  proved  to  work  properly  in  2D,  and  in  3D  for  transversely
isotropic materials. In this work, we treated various 2D and 3D examples, which
are mainly the single-loaded self-adjoint problems of cantilever and L beam, a
target displacement problem of displacement inverter mechanism and a multi-
loaded  optimization  problem  of  a  bridge.  Various  strategies  of  coupled
optimization were compared in 2D, such as updating the orientation after each
update of the shape, performing a number of orientation optimization iterations
after a certain number of updates on the shape, and  optimizing the orientation
only after performing a shape optimization loop. For both described orientation
optimization methods, regularization schemes that smoothly vary the orientation
across the structure are presented. Finally, we also contributed to the field of
orientation  optimization  by  developing  a  method  that  optimizes  inequality-
constrained orientations  using an augmented Lagrangian for  both 2D and 3D
cases, and by developing a Ginzburg-Landau based gradient descent method that
works for a case of 2D orientation optimization.

Keywords :

Shape optimization,  topology optimization,  anisotropy,  additive manufacturing,
orientation  optimization,  compliance  optimization,  multi-loaded  optimization,
target displacement optimization, level-set method, augmented Lagrangian
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Introduction (en français)

La fabrication additive [52] est devenue aujourd’hui une méthode courante
de fabrication des pièces mécaniques grâce à ses nombreux avantages, tels
que la réduction des déchets de production, la réduction du temps global de
conception à la production, l’automatisation du processus de production, la
capacité à produire des géométries très complexes et la capacité à manipuler les
caractéristiques mécaniques des pièces produites (par exemple les métamatéri-
aux, les composites...). Avec l’aide des technologies de conception assistée
par ordinateur, des possibilités illimitées deviennent disponibles et les formes
optimisées en topologie (contenant des formes libres (Free forms), des trous et
des porosités) sont à la portée de chaque fabricant. La figure ci-dessous donne
des exemples de pièces optimisées fabriquées additivement pour l’aérospatiale.

(a) Support d’aile pour Airbus A350
XWB

(b) Charnière de porte en titane

Figure 1: Composants fabriqués par fabrication additive pour l’aérospatiale,
figures prises de [99, 59]

L’optimisation topologique des formes [1, 28] est la technique pour obtenir
une conception structurelle optimale en variant la disposition des frontières
et le nombre de trous et de porosités à l’intérieur du matériau pour améliorer
certaines performances physiques.
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En raison des limitations des méthodes de fabrication conventionnelles qui ne
pouvaient pas construire des formes optimisées en topologie sans modifier leur
formes résultantes, l’optimisation de la topologie a servi comme outil d’aide à
la pré-conception qui inspire les concepteurs mécaniques à concevoir des formes
relativement optimales. Depuis la fin des années 90, la méthode SIMP (ou Solid
Isotropic Microstructure with Penalization for intermediate densities [26, 96])
a connu un grand succès en raison de son efficacité malgré ses problèmes pour
pénaliser les densités intermédiaires dans certains cas et ainsi son incapacité
à donner une description exacte de la forme optimale sur les limites de la
structure.

Cependant, depuis le début des années 2000 et, en particulier, l’apparition
des technologies de fabrication additive, il est plus judicieux de passer à une
méthode d’optimisation de topologie capable de donner exactement la limite de
la structure, comme la méthode des lignes de niveaux [19]. Ce type d’algorithme
d’optimisation de topologie permet une automatisation complète de tout le
processus de conception à la fabrication en utilisant la fabrication additive. De
nombreuses technologies de fabrication additive existent aujourd’hui, telles que
les technologies de fusion par lit de poudre et les technologies de dépôt d’énergie
directe pour plusieurs types de matériaux (métaux, polymères, céramiques, ...).
La figure 2 donne un exemple d’une technologie de fusion par lit de poudre.

Figure 2: Fabrication additive utilisant la fusion sélective des métaux (une
technologie de fusion de lit de poudre), figure de [110] (une version modifié de
l’original qui est issue de [65])

Cette thèse fait partie du projet SoFIA ("SOlutions pour la Fabrication Indus-
trielle Additive métallique"), un programme de recherche appliquée français
sur la fabrication additive métallique regroupant les partenaires industriels
AddUp, Aubert & Duval, ESI Group, FusiA, Michelin, Safran, Volume et
Zodiac Aerospace, ainsi que les partenaires académiques représentés par le
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CNRS (Centre National de la Recherche Scientifique). Le travail de cette thèse
a été réalisé à la fois au Laboratoire Jacques-Louis Lions, avec l’Université Paris
Cité, et au Centre des Mathématiques Appliquées de l’École Polytechnique.

La recherche expérimentale sur la fabrication additive montre que les pièces
fabriquées avec cette méthode de production présentent un comportement
physique localement anisotrope (mécanique, thermique...). Cette anisotropie
est causée par plusieurs facteurs, tels que la direction de stratification, le chemin
de balayage de laser et la formation de grains colonnaires causée par le gradient
de chaleur à l’intérieur du matériau produit par le processus laser. L’anisotropie
produite est considérée comme étant orthotrope. Pour la fabrication additive
métallique, certains considèrent que l’utilisation d’un traitement HIP (Pression
Isostatique à Chaud) annulera l’anisotropie du matériau, mais ce n’est pas une
bonne idée si l’on souhaite atteindre une véritable automatisation complète du
processus de conception à la fabrication, car dans ce cas, un opérateur devra
intervenir pour exécuter le traitement HIP sur une autre machine différente de
la machine de fabrication.

Une autre idée intéressante est d’optimiser l’orientation de l’anisotropie locale
en plus de la forme ou de la topologie de la structure, ce qui fonctionnera
pour tout type de matériau anisotrope obtenu par un processus de fabrication
additive.

Le but principal et la nouveauté de cette thèse est le développement d’une
méthode d’optimisation de la forme basée sur la méthode des lignes de niveaux
couplée avec l’optimisation de l’orientation de l’anisotropie en élasticité or-
thotrope dans les cas 2D et 3D, à la fois pour une optimisation de l’orientation
explicitement résoluble (dans le cas d’un problème de compliance en chargement
unitaire) et pour des problèmes d’optimisation de l’orientation implicitement ré-
solubles (avec un algorithme d’optimisation numérique pour tous les autres cas).
Une autre nouveauté de ce travail est l’introduction de contraintes d’inégalité
au problème d’optimisation de l’orientation de l’anisotropie.

D’autres travaux qui traitent le problème de l’optimisation topologique de
forme couplée avec l’optimisation de l’orientation d’anisotropie que l’on peut
trouver dans la littérature sont les suivants: [89] en utilisant une méthode SIMP
pour l’optimisation de la topologie et le critère d’optimalité pour l’orientation,
[91] en utilisant une méthode SIMP pour l’optimisation de la topologie et
la descente de gradient pour l’orientation, et [27, 54, 8, 50] en utilisant une
méthode d’homogénéisation pour l’optimisation de la topologie et le critère
d’optimité pour l’orientation.

Le contenu de la présente thèse est le suivant. Dans le premier chapitre, nous
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présentons les éléments principaux qui constituent un problème d’optimisation
de forme et les différents types d’optimisation de forme avec leur cadre
théorique pour les matériaux anisotropes. Dans ce chapitre, nous présentons
l’optimisation de forme paramétrique, une partie essentielle dans l’optimisation
d’orientation d’anisotropie, et nous expliquons comment calculer la dérivée de
forme paramétrique à l’aide de la méthode de Lagrange. Puis, nous présentons
l’optimisation de forme géométrique et ses composants principaux (variation de
la frontière, dérivée de forme). Enfin, nous présentons l’optimisation de forme
topologique à l’aide de la méthode des lignes de niveaux et ses ingrédients;
advection de la fonction ligne de niveau, régularisation de la dérivée de forme
et prise en compte d’une contrainte de volume. Cette méthode d’optimisation
de forme topologique est résumée dans l’algorithme d’optimisation de topologie
2, que nous utilisons au chapitre 5.

Dans le deuxième chapitre, nous présentons le cadre physique de cette thèse en
deux parties. Dans la première partie, nous discutons en détail la fabrication
additive, son histoire et son développement, ainsi que ses différentes technologies
et avantages par rapport aux méthodes de fabrication conventionnelles. Nous
présentons également la technologie de fabrication SLM (Selective Laser Melting)
et ses étapes pour construire une pièce métallique. Dans la seconde partie, nous
présentons le formalisme d’anisotropie en élasticité en utilisant la notation de
Kelvin en 2D et 3D pour un matériau anisotrope général et un cas particulier
d’un matériau transversalement isotrope. Nous expliquons également le modèle
de rotation de l’anisotropie en 2D en utilisant un angle géométrique et en 3D
en utilisant les angles d’Euler (voir la figure 3). Cette seconde partie sert de
colonne vertébrale pour le modèle de matériau localement anisotrope utilisé
dans tous les chapitres suivants.

Dans le troisième chapitre, nous présentons plusieurs méthodes utilisées pour
l’optimisation de l’orientation anisotrope locale en 2D. La première méthode est
un résultat de critère d’optimalité classique établi par Pauli Pedersen [82, 83],
consistant à aligner l’orientation la plus rigide avec la direction de plus grande
valeur absolue des contraintes principales. Cette méthode est limitée aux
problèmes d’optimisation auto-adjoints à chargement unitaire, qui sont des
problèmes explicitement résolvables, tels que la minimisation de la compliance.
Une seconde méthode est une méthode de descente de gradient classique qui
utilise l’approche théorique d’optimisation de forme paramétrique du chapitre
1 pour optimiser l’angle d’orientation. Enfin, une troisième méthode est une
méthode de descente de gradient basée sur une approche de Ginzburg-Landau
consistant à optimiser le cosinus et le sinus de l’angle d’orientation, en éliminant
ainsi la contrainte sur la norme unitaire du vecteur d’orientation. Les deux
dernières méthodes peuvent optimiser n’importe quel problème d’optimisation
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(a) Rotation avec le premier angle
d’Euler par rapport à z′

(b) Rotation avec le deuxième an-
gle d’Euler angle par rapport à
x1

(c) Rotation avec le deuxième an-
gle d’Euler angle par rapport à
z2

Figure 3: Rotation du repère matériel en utilisant les angles d’Euler, le repère
x′y′z′ devient le repère x3y3z3 = xyz à la fin
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d’orientation, y compris des problèmes non auto-adjoints, tels qu’un déplace-
ment cible ou une minimisation de contraintes, et des problèmes contraints. Des
algorithmes pour chaque méthode d’optimisation décrite sont présentés et ex-
pliqués. Nous donnons également deux méthodes de régularisation d’orientation,
l’une qui fonctionne en régularisant le gradient pendant l’exécution d’un al-
gorithme d’optimisation, et l’autre qui a été développée à l’origine par Perle
Geoffroy-Donders [8, 50] et qui consiste à régulariser l’orientation séparément
du problème d’optimisation. Enfin, ce chapitre présente également les méthodes
de Lagrangien augmenté et de descente de gradient projeté pour prendre en
compte les contraintes d’inégalité dans l’optimisation de l’orientation locale.
Dans ce chapitre, plusieurs exemples ont été étudiés, tels qu’une poutre en
porte-à-faux, une poutre en L, un pont et un inverseur de déplacement (la figure
4 donne quelques résultats obtenus par la méthode de descente de gradient).

(a) Orientation optimisée d’une poutre
en L

(b) Orientation optimisée d’un in-
verseur de déplacement

Figure 4: Exemples d’orientations optimisées : tracé de la direction la plus
rigide de l’anisotropie locale

Dans le quatrième chapitre, nous traitons l’optimisation de l’orientation en
3D pour un matériau isotrope transverse et un matériau orthotrope général.
Tout d’abord, nous utilisons la méthode du critère d’optimalité de Pauli Ped-
ersen qui donne les formules exactes des valeurs d’angles d’Euler optimaux
qui sont déterminées géométriquement à partir des directions des contraintes
principales (dans les deux cas de matériau). Deuxièmement, nous présentons
la méthode d’optimisation de l’orientation basée sur un algorithme de descente
de gradient. Dans ce chapitre, nous présentons également la méthode de régu-
larisation de l’orientation en 3D et le traitement des contraintes d’inégalité en
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utilisant un Lagrangien augmenté. Les algorithmes de critère d’optimalité et
d’optimisation de l’orientation par descente de gradient développés dans ce
chapitre sont une partie essentielle des résultats en 3D du cinquième chapitre.
Finalement, nous donnons des résultats numériques uniquement pour les al-
gorithmes d’optimisation par descente de gradient soumis à des contraintes
d’inégalité pour un matériau isotrope transverse.

(a) Topologie et orientation optimisées
d’un porte-à-faux 2D: tracé de la di-
rection la plus rigide de l’anisotropie
locale (b) Topologie et orientation optimisées

d’un inverseur de déplacement 2D:
tracé de la direction la plus rigide de
l’anisotropie locale

Figure 5: Topologie et orientation d’anisotropie optimisées en couple en 2D
pour un matériau orthotrope

Dans le cinquième chapitre, nous présentons les méthodes d’optimisation cou-
plée de la forme avec l’orientation que nous avons établies. Ces algorithmes
sont mis en oeuvre en combinant l’algorithme d’optimisation de la forme avec
les algorithmes d’optimisation de l’orientation. Premièrement, pour la méthode
d’optimisation de l’orientation basée sur le critère d’optimalité, et deuxième-
ment, pour la méthode d’optimisation de l’orientation basée sur la descente
de gradient. Ce chapitre est divisé en deux parties. Dans la première partie,
nous présentons et traitons le problème d’optimisation couplé en 2D et nous
comparons diverses stratégies d’optimisation couplée. Dans la seconde partie,
nous traitons l’optimisation en 3D pour un matériau orthotrope général et
un matériau isotrope transverse. Mais, nous ne donnons que des résultats
numériques pour un matériau isotrope transverse. Dans les deux parties de ce
chapitre, nous étudions plusieurs exemples tels qu’une poutre en porte-à-faux
et une poutre en L pour l’optimisation de compliance en chargement unique,
un inverseur de déplacement pour le problème de déplacement cible, et un pont
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pour l’optimisation de compliance en chargement multiple (les figures 5 et 6
donnent certains exemples traités).

(a) Topologie et orientation optimisées
d’un porte-à-faux 3D: tracé de la direc-
tion la plus rigide de l’anisotropie locale

(b) Topologie et orientation optimisées
d’un inverseur de déplacement 3D:
tracé de la direction la plus raide de
l’anisotropie locale

(c) Topologie et orientation optimisées d’un pont 3D: tracé
de la direction la plus rigide de l’anisotropie locale

Figure 6: Topologie et orientation d’anisotropie optimisées en couple en 3D
pour un matériau isotrope transverse



Introduction (in english)

Additive manufacturing [52], or AM, has become today a mainstream method of
mechanical parts manufacturing thanks to its many advantages, reducing manu-
facturing wastes, reducing the overall design-to-manufacturing time, automation
of the manufacturing process, the ability to produce very complex geometries,
the ability to manipulate the mechanical characteristics of the produced parts
(e.g. meta-materials, composites..). With the help of computer-aided design
technologies, unlimited possibilities become available, and topology-optimized
shapes (containing free forms, holes and porosities) are within reach of ev-
ery manufacturer. The figure below gives examples of additive manufactured
optimized parts for aerospace.

(a) Airbus A350 XWB jet wing bracket (b) Titanium door hinge

Figure 7: Aerospace additive manufactured components, figures taken from
[99, 59]

Topology optimization of shapes [1, 28] is the technique for obtaining an optimal
structural design by varying the boundaries layout and the number of holes
and porosities inside the material to improve some physical performances.

Because of the limitations of conventional manufacturing methods that could
not build topology-optimized shapes without modifying their resulting layout,
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topology optimization served as a predesign-aiding tool that inspires mechanical
designers to design shapes that are relatively optimal. Since the late 90s,
the SIMP method (or Solid Isotropic Microstructure with Penalization for
intermediate densities [26, 96]) was successful thanks to its efficiency despite
its problems for penalizing intermediate densities in some cases and thus its
inability to give the exact optimal shape description on the structure boundaries.

However, since the early 2000s and, in particular, the appearance of additive
manufacturing technologies, it makes more sense to switch to a topology op-
timization method that is capable of exactly giving the structure boundary,
such as the level set method [19]. This type of topology optimization algorithm
makes it possible to fully automate all the design-to-manufacturing process
using additive manufacturing. Multiple technologies of additive manufacturing
exist nowadays such as the powder bed fusion technologies and direct energy de-
position technologies for multiple material types (metals, polymers, ceramics...).
Figure 8 gives an example of a powder bed fusion technology.

Figure 8: Additive manufacturing using selective metal melting (a powder bed
fusion technology), figure from [110] (an updated version of the original which
is from [65])

This thesis is part of the SoFIA project ("SOlutions pour la Fabrication In-
dustrielle Additive métallique" - Solutions for Industrial Metal Additive Man-
ufacturing), which is a French applied research program for metal additive
manufacturing that is put together by the following industrial partners, AddUp,
Aubert & Duval, ESI Group, FusiA, Michelin, Safran, Volume and Zodiac
Aerospace, as well as academic partners represented by the CNRS (Centre
National de la Recherche Scientifique). The work of this thesis was carried out
both at the Laboratoire Jacques-Louis Lions, with the Université Paris Cité,
and at the Centre des Mathématiques Appliquées of the École Polytechnique.

Experimental research of additive manufacturing showcases that the parts
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that are built with this manufacturing method are observed to have a locally
anisotropic physical behavior [61, 33, 85, 95, 56, 97] (mechanical, thermal...).
This anisotropy is caused by multiple factors; the layering direction, the laser
scanning path, and the columnar grains formations that is caused by the
heat gradient inside the material that is produced by the laser process. The
anisotropy that is produced is observed to be orthotropic. For metal AM, some
would argue that using HIP (Hot Isostatic Pressing) treatment will cancel the
material anisotropy, but this is not a good idea if one wants to achieve a truly
full automation of the whole design-to-manufacturing process, because in that
case an operator should interfere to execute the HIP treatment in another
machine that is different from the manufacturing machine.

One more interesting idea is to optimize the local anisotropy orientation in
addition to the structure shape or topology, which will work for any type of
anisotropic material that is obtained by an additive manufacturing process.

The main goal and novelty of this thesis is the development of a level set-based
shape optimization method that is coupled with the optimization of anisotropy
orientation in orthotropic elasticity in both 2D and 3D cases, for both explicitly
solvable orientation optimization (in a case of a single load compliance problem)
and implicitly solvable orientation optimization problems (with a numerical
optimization algorithm for all other cases). Another novelty of this work is the
introduction of inequality constraints to the anisotropy orientation optimization
problem.

Other works that treat the problem of coupled topological shape and anisotropy
orientation optimization that one can find in the literature are the following:
[89] using a SIMP method for topology optimization and the optimality crite-
rion for the orientation, [91] using a SIMP method for topology optimization
and the gradient descent for the orientation, and [27, 54, 8, 50] using a homog-
enization method for topology optimization and the optimality criterion for
the orientation.

The content of the present thesis is the following. In the first chapter, we
present the main elements that constitute a shape optimization problem and
the different types of shape optimization with their theoretical framework for
anisotropic materials. In this chapter, we present parametric shape optimization,
an essential part of anisotropy orientation optimization, and we explain how
to compute the parametric shape derivative using the Lagrangian method.
Then, we present geometrical shape optimization and its main components
(boundary variation, shape derivative). Lastly, we present topological shape
optimization using the level set method and its ingredients; advection of the
level set function, regularization of the shape derivative, and taking into account
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a volume constraint. This topological shape optimization method is summarized
in the topology optimization algorithm 2, that we use in chapter 5.

In the second chapter, we present the physical framework of this thesis in two
parts. In the first part, we discuss additive manufacturing in more detail, its
history and development, and its various technologies and advantages over
conventional manufacturing methods. We also present the SLM (Selective Laser
Melting) manufacturing technology and its steps for building a metallic part.
In the second part, we present the pointwise anisotropy formalism in elasticity
using the Kelvin notation in 2D and 3D for a general anisotropic material
and a particular case of a transversely isotropic material. We also explain the
rotation model of anisotropy in 2D using a geometrical angle and in 3D using
the Euler angles (see figure 9). This second part serves as the backbone of the
locally anisotropic material model used in all the following chapters.

(a) Rotation by the first Euler an-
gle about z′

(b) Rotation by the second Euler
angle about x1

(c) Rotation by the third Euler
angle about z2

Figure 9: Rotation of the material frame using Euler angles, x3y3z3 is equivalent
to x′y′z′

In the third chapter, we present several methods that we use for the local
anisotropy orientation optimization in 2D. The first method is a classical
optimality criterion result established by Pauli Pedersen [82, 83], and it consists
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of aligning the stiffest orientation with the major absolute principal stress
direction. This method is limited to single-load self-adjoint optimization
problems, which are explicitly solvable problems, such as the minimization of
compliance. A second method is a classical gradient descent method that uses
the parametric shape optimization theoretical approach of chapter 1 to optimize
the orientation angle. Finally, a third method is a gradient descent method
which is based on a Ginzburg Landau approach that consists of optimizing the
cosine and the sine of the orientation angle, thus removing the constraint of the
orientation vector being a unit vector. The latter two methods can optimize
whatever orientation optimization problem including non self-adjoint problems,
such as a target displacement or a stress minimization problem, and constrained
problems. Algorithms for each stated optimization method are presented and
explained. We also give two orientation regularization methods, one that works
by regularization of the gradient during an optimization algorithm execution,
and the other which was originally developed by Perle Geoffroy-Donders [8, 50]
and that consists in regularizing the orientation separately from the optimization
problem. Finally, this chapter also presents the augmented Lagrangian and the
projected gradient descent methods to take account of inequality constraints in
orientation optimization. In this chapter, several examples were studied such
as a cantilever, an L-beam, a bridge and a force inverter (figure 10 gives some
results obtained by the gradient descent method).

(a) Optimized orientation of an L-
beam

(b) Optimized orientation of a displace-
ment inverter

Figure 10: Examples of optimized orientations: plot of the stiffest direction of
the local anisotropy

In the fourth chapter, we treat the orientation optimization in 3D for a trans-



Introduction 14

versely isotropic material and a general orthotropic material. First, we use the
optimality criterion method of Pauli Pedersen which gives the exact formulas
for the optimal Euler angles values that are geometrically determined from the
directions of optimal stress (in both material cases). Second, we present the
orientation optimization method, based on a gradient descent algorithm. In
this chapter, we also present the 3D orientation regularization method and
the treatment of inequality constraints using an augmented Lagrangian. The
algorithms of optimality criterion and gradient descent orientation optimization
that were developed in this chapter are an essential part for the 3D results
of the fifth chapter. Finally, we give numerical results only for the inequality
constrained gradient descent optimization algorithms for a transversely isotropic
material.

(a) Optimized topology and orienta-
tion of a 2D cantilever: plot of the
stiffest direction of the local anisotropy (b) Optimized topology and orienta-

tion of a 2D displacement inverter:
plot of the stiffest direction of the local
anisotropy

Figure 11: Coupled optimized topology and anisotropy orientation in 2D for
an orthotropic material

In the fifth chapter, we present the coupled shape and orientation optimization
methods that we have established, which are algorithms that have been imple-
mented by combining the algorithm of shape optimization with the algorithms
of orientation optimization. First, for the optimality criterion orientation opti-
mization method and second, for the gradient descent orientation optimization
method. This chapter is divided into two parts. In the first part, we present
and treat the coupled optimization problem in 2D, and we compare various
coupled optimization strategies. In the second part, we treat the optimization
in 3D for a general orthotropic material and a transversally isotropic material,
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but we give numerical results only for a transversally isotropic material. In
both parts of this chapter, we study multiple examples such as a cantilever, an
L-beam, a displacement inverter and a multi-loaded bridge (figures 11 and 12
give some treated examples).

(a) Optimized topology and orientation
of a 3D cantilever: plot of the stiffest
direction of the local anisotropy

(b) Optimized topology and orientation
of a 3D displacement inverter: plot of the
stiffest direction of the local anisotropy

(c) Optimized topology and orientation of a 3D bridge:
plot of stiffest direction of the local anisotropy

Figure 12: Coupled optimized topology and anisotropy orientation in 3D for a
transverse isotropic material
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Â matrix that models the Hooke’s law tensor in

Kelvin formalism: stiffness constitutive matrix
(page 45)
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Chapter 1

Shape optimization

In structural design [2, 28] a shape optimization problem is defined by three
essential inputs:

1. a model, which is usually written as a partial derivative equation, that
evaluates the physical behavior of a structure.

2. an objective function; it is the cost function or the physical criterion
that is to be minimized or maximized. It can be for example the structure
compliance, volume or its maximal stress.

3. a set of admissible optimization variables (also called design vari-
ables) that model the structure’s shape and that take into account the
potential constraints that are imposed on the structure.

What distinguishes shape optimization from structural optimization is that
shape optimization is also applied in multiple other fields than structural
mechanics such as fluid mechanics [44] and magnetostatics [20].

Shape optimization problems fall into three main categories:

1. Parametric optimization: where the shape is parameterized by a
number of design variables such as thickness, truss configuration, radius,
geometric angles or dimensions. Examples of parametric optimization
can be found in [2, 28].

2. Geometrical shape optimization: where the boundaries of the struc-
ture are changed while the topology is fixed. Examples of geometric
optimization can be found in [64, 84, 75].

3. Topology optimization: where the boundaries and topology of the
structure are changed by the optimization. We say that the topology of
the structure has changed when the number of holes in 2D and 3D or the



Chapter 1. Shape optimization 20

number of handles in 3D has changed. Examples of topology optimization
can be found in [1, 3, 28, 96].

1.1 Parametric shape optimization

1.1.1 Setting of the problem

In this work, we mainly study the physical problem of linear elasticity, which
is a model that describes the displacements (or the deformations) and the
stresses that occur inside a solid material under some loading conditions and
the assumption of infinitesimal strains. The model of elasticity is a system of
partial differential equations.

Let Ω be an open subset of RN (with N = 2 or 3). The subset Ω is also called
domain, shape or structure and it models the volume that is occupied by a
solid material when there is no loading applied. It models a structure free of
any deformation.

The forces that are applied on the structure Ω can be either body forces or
surface forces. We denote by f a body force that is applied to Ω and by g
a surface force that is applied on ΓN , which is a part of the boundary of the
domain Ω. After the deformation, every point x of Ω is displaced to x+ u(x).
We denote by u the elastic displacement vector, which is the output of solving
the elasticity problem. We suppose that f, g ∈ H1(Ω) and u ∈ (H1(Ω))N ,
where H1(Ω) is given by Definition 1.

Definition 1 The Sobolev space H1(Ω) is defined by

H1(Ω) =
{
v ∈ L2(Ω) s.t. ,∀i ∈ {1, . . . , N}, ∂v

∂xi
∈ L2(Ω)

}
,

where ∂v
∂xi

is the partial derivative of v in a weak sense or in the sense of
distributions.

Using the displacement vector u, we can determine the strain tensor e(u), which
models the relative displacements within the deformed material.

e(u) = 1
2
(
∇u+ (∇u)t

)
= 1

2

(
∂ui
∂xj

+ ∂uj
∂xi

)
1≤i,j≤N

.
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The stress tensor σ, which gives the state of stress at a point x when the
material is deformed, is mapped linearly to e through the Hooke’s law:

σ = Ae(u),

where A is a fourth-order tensor that is called the elasticity tensor or the
stiffness tensor. A is an input to the elasticity model as it describes the
material characteristics, it contains the elastic moduli that are defined by the
type of used material (see chapter 2 for more details).

As a result, the entries of σ are written as:

σij =
N∑
k=1

N∑
l=1

Aijklekl,

the tensors e and σ are functions with values in the set of symmetric matrices.
The balance of forces in the solid and on its charged boundaries gives:− div σ = f in Ω

σn = g on ΓN .

By adding a Dirichlet condition on the border ΓD to model a fixed surface of
the structure Ω and by expressing the balance of forces using the displacement
u, the elasticity problem is summarized as a boundary value problem: find u
from Ω into RN such that

− div(Ae(u)) = f in Ω
u = 0 on ΓD
Ae(u)n = g on ΓN
Ae(u)n = 0 on Γ.

(1.1)

Note that the boundary of Ω is defined by

∂Ω = ΓD ∪ ΓN ∪ Γ,

with disjoints subsets ΓD,ΓN and Γ. Note also that Γ is called the free boundary
since it is where the shape can move without restriction. The variational
formulation (or weak form) of the partial derivative problem (1.1) is written:
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find u ∈ V such that, for any v ∈ V ,∫
Ω
Ae(u) · e(v)dx =

∫
Ω
fvdx +

∫
ΓN
gvds. (1.2)

where V is a real Hilbert space of test functions that is defined by :

V = {v ∈ (H1(Ω))N s.t. v = 0 on ΓD}, (1.3)

1.1.2 Existence and uniqueness of solution of the elas-
ticity problem

The linear form and the bilinear form of the variational formulation (1.2) are
both continuous. Additionally, for both isotropic and most anisotropic materials
the bilinear form is known to be coercive (or elliptic) [23, 109]. Using those
two pieces of information, the Lax-Milgram lemma ensures the existence and
uniqueness of the solution u.

1.1.3 Objective function and the Lagrangian

This section is devoted to parametric optimization. Therefore, the shape Ω is
fixed and not subject to optimization. However, this shape is assumed to be
filled with an non homogeneous material, parametrized by a scalar function
α defined in the shape Ω. For example it can be a thickness or an angle
that orients a laminated composite. The elastic linear tensor of the elasticity
problem is now explicitly dependent of the parameter α and we denote it by
A(α). Note that u is also implicitly dependent of α as it is the solution of the
elasticity problem with Hooke’s law A(α). The set of admissible optimization
variables is then defined by

Uad = {α ∈ L∞(Ω)} . (1.4)

As we have stated in this chapter’s introduction, in a shape optimization
problem, we need to define an objective function. This function is usually an
integral of a specific integrand j, a function of the displacement u inside the
domain Ω, and/or of another integrand l, function of the displacement u on a
border Γl ⊂ ∂Ω. In full generality, we have a cost function J that is the sum of
the two types of cost functions, i.e. written:
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J(α) =
∫

Ω
j(u)dx +

∫
Γl
l(u)ds, (1.5)

We consider an optimization problem, which is a minimization of J(α) over
the set Uad:

inf
α∈Uad

J(α). (1.6)

The existence of an optimal design α is dependent on the choice of the admissible
set Uad. Shape optimization problems are known to be generally non convex
and non compact problems with some exceptions (for example adding some
well chosen smoothness constraints to the admissible set could help). Basically,
the question of existence of optimal parameter is theoretically involved and
we shall not dwell into it (see section 5.2 of [2] for more details). In practice,
we are satisfied by determining local minima using numerical methods and by
improving the objective function to a certain degree that could respond to a
design engineer specifications.

The Lagrangian of problem (1.6) under the constraint of elasticity equation is
defined by

L(α, u, q) =
∫

Ω
j(u)dx+

∫
Γl
l(u)ds−

∫
Ω

(A(α)e(u)·e(q)−fq)dx+
∫

ΓN
gqds, (1.7)

where q is the Lagrange multiplier. Note that the constraint is written in a
variational form. To find the definition of the adjoint problem, we need to
differentiate the Lagrangian with respect to u. Then, the adjoint state p is
defined as the solution of the following variational formulation, for any test
function or direction of derivation β ∈ V (where V is defined by (1.3)):〈

∂L(α, u, p)
∂u

, β

〉
= 0,

This gives the following variational formulation: find p ∈ V such that, ∀β ∈ V :

∫
Ω

(
−A(α)e(β) · e(p) + dj(u)

du β

)
dx +

∫
Γl

dl(u)
du βds = 0. (1.8)

The solution p of (1.8) is called the adjoint displacement. Alternatively, the
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adjoint problem can be also written as a partial differential equation:



− div(Ae(p)) = dj(u)
du in Ω

p = 0 on ΓD
Ae(p)n = dl(u)

du on Γl
Ae(p)n = 0 on ∂Ω \ (ΓD ∪ Γl).

(1.9)

1.1.4 Derivation with respect to the optimization pa-
rameters

To find local minima for a parametric shape optimization minimization, we
usually use the gradient descent method. For this reason, we have to compute
the gradient of the objective function J(α), which is done using the following
theorem:

Theorem 1.1.1 The gradient of the cost function J(α) is

J ′(α) = −A′(α)e(u) · e(p).

If α ∈ Uad is a local minimum of J on Uad, then α satisfies the optimality
condition,

J ′(α) = 0.

Proof of Theorem 1.1.1

Recall that the set of optimal designs Uad is unconstrained. To compute the
derivative of the objective function J(α), we use the Lagrangian method which
resolves on taking the variational formulation of the elasticity problem as a
constraint on the optimization problem. The Lagrangian was given by (1.7). In
this definition the three variables α, u, q are independent, which makes it easy
to compute partial derivatives of the Lagrangian. We assume that u ≡ u(α) is
the solution of the elasticity system but q ∈ V is independent of α. The chain
rule for the derivative of the cost function in the direction β ∈ V gives:
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〈
dJ
dα, β

〉
=
〈
dL(α, u, q)

dα , β

〉
=
〈
∂L
∂α

, β

〉
+
〈
∂L
∂u

du
dα, β

〉

=
〈
∂L
∂α

, β

〉
+
〈
∂L
∂u

,
du
dαβ

〉
.

(1.10)

To avoid calculating the derivative of u with respect to the parameter α we
need to find q such that 〈∂L(α,u,q)

∂u
, du

dαβ〉 = 0. Thefore we choose q = p, where p
is the solution of the adjoint problem (1.9). Finally, the partial derivative ∂L

∂α
is

easily computed and is equal to −A′(α)e(u) · e(p), which yields the result.

1.1.4.1 Example: compliance

Let us take the example of compliance minimization. The compliance is the
deformation energy of the structure and it is equal to the work of the applied
forces. Thus, the specific functions of J(Ω) becomes written as j(u) = fu and
l(u) = gu. The surface type border Γl is then replaced by ΓN . The objective
function is written:

J(α) =
∫

Ω
fudx +

∫
ΓN
guds, (1.11)

and the adjoint problem is written: find p ∈ (H1(Ω))N such that
− div(Ae(p)) = f in Ω
p = 0 on ΓD
Ae(p)n = g on ΓN
Ae(p)n = 0 on Γ.

(1.12)

Notice that problem (1.12) is the same problem as the problem of elasticity
(1.1). The solution of (1.12) is then:

p = u, (1.13)

we say that the compliance minimization problem is a self adjoint problem.

1.1.4.2 Example: Target displacement field

A more involved example is the problem of target displacement optimization,
where one want the displacement u to be close to a target displacement u0 on
some region of the shape Ω. We suppose the region of the target displacement
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to be ΓN . In this case, we have j(u) = 0, and l(u) = 1
2 |u − u0|2 on Γl = ΓN .

The objective function for this target displacement problem then is written,

J(α) =
∫

ΓN

1
2 |u− u0|2ds. (1.14)

and the adjoint problem (1.9) becomes: find p ∈ (H1(Ω))N such that
− div(Ae(p)) = 0 in Ω
p = 0 on ΓD
Ae(p)n = u− u0 on ΓN
Ae(p)n = 0 on Γ.

(1.15)

The optimization problem now is a non self-adjoint problem because u is not
solution of the problem (1.15). The adjoint problem in this case is written in
the following variational form:

Find p ∈ V , such that ∀v ∈ V (where V is defined by (1.3))∫
Ω
Ae(p) · e(v)dx =

∫
ΓN

(u− u0)vds, (1.16)

which has to be solved numerically whenever one wants to compute J ′(α).

1.2 Geometric shape optimization

In this section, we introduce the fundamental elements of geometrical shape
optimization. We note that the work of this thesis do not focus on this type of
shape optimization. Nevertheless, the theoretical components of this section
are essential to understand the last chapter of the thesis.

1.2.1 Model problem

The main idea of geometrical shape optimization is to change the boundary
of the initial domain or structure Ω without changing its topology. We study
the same problem of elasticity (1.1) for an arbitrary Hooke’s law A and under
the same boundary conditions. Recall that the solution of elasticity is the
displacement vector u ∈ (H1(Ω))N . We suppose that the boundary ∂Ω of Ω is
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partitioned into three disjoints borders

∂Ω = Γ ∪ ΓN ∪ ΓD,

where Γ is the variable part of the boundary, ΓD is a fixed part of the design
boundary on which the displacement is fixed to zero (homogeneous Dirichlet
boundary condition), and ΓN is also a fixed part of the design boundary on
which the forces g are applied (Neumann boundary condition). It is assumed
that the variable part Γ of the border is free of any effort (homogeneous
Neumann boundary condition).

The objective function in this case also becomes a function of Ω and we generally
write it as:

J(Ω) =
∫

Ω
j(u)dx +

∫
Γl
l(u)ds, (1.17)

where j(u) is a body specific objective function and l(u) is a surface specific
objective function. The problem of geometrical shape optimization is written
as:

inf
Ω∈Uad

J(Ω). (1.18)

The material domain Ω is defined inside a fixed set D ⊂ RN , with N = 2
or 3, which models the design domain. The design domain is represented
numerically by a fixed mesh. In geometrical shape optimization, we suppose
that we optimize the material domain shape under a target volume constraint∫

Ω dx = VT , where VT is a given volume.

The set of admissible shapes is then:

Uad =
{

Ω ⊂ D s.t.
∫

Ω
dx = VT

}
, (1.19)

We note that the set of admissible shapes could be user defined and include
other constraints, which can be geometrical or physical. For the compliance
minimization problem case, it is mandatory to include the target volume
constraint. Without it, the stiffest design would be Ω = D. The existence
of an optimal shape is subject to the choice of Uad. For example, if we add
a perimeter constraint to the problem (1.18), we can show the existence of
a global minimum. But generally speaking, existence of optimal solution for



Chapter 1. Shape optimization 28

most of the applications of shape optimization cannot be proved (see section
5.3 of [2]). That is why we content ourself with local optima obtained using a
gradient method.

1.2.2 Derivation with respect to the shape

Numerical algorithms of geometrical shape optimization use gradient methods
such as the gradient descent method and the Newton method to obtain a local
minimum for a certain cost function. For this purpose, one has to compute a
shape derivative which is a derivative with respect to the domain. If Ω0 ⊂ RN

is an given bounded, Lipschitz open domain, we define its deformation by a
field θ as

Ωθ = (Id+ θ) (Ω0) ,

where Id is the identity mapping and θ ∈ W 1,∞
(
RN ,RN

)
the variation map-

ping, where the Sobolev space W 1,∞
(
RN ,RN

)
is defined by

W 1,∞
(
RN ,RN

)
=
{
θ ∈ L∞

(
RN

)N
, ∇θ ∈ L∞

(
RN

)N×N}
.

We note that when ‖θ‖W 1,∞(RN ,RN ) is sufficiently small, the mapping Id+ θ is
a diffeomorphism in RN . We can now introduce the definition of the shape
derivative of a function J(Ω).

Definition 2 The shape derivative of J(Ω) at Ω is defined as the Fréchet deriva-
tive in W 1,∞

(
RN ,RN

)
evaluated at 0 for the mapping θ 7→ J ((Id+ θ) (Ω))

i.e.,

J ((Id+ θ) (Ω)) = J(Ω) + J ′(Ω)(θ) + o(θ) with lim
θ→0

o(θ)
‖θ‖W 1,∞

= 0,

where J ′(Ω) is a continuous linear form on W 1,∞
(
RN ,RN

)
.

The expression of the shape derivative for the different possible cases of the
integral in a cost function J(Ω) is obtained by the following lemma.

Lemma 1 Let Ω be a smooth bounded open set and j, l, lF ∈ W 2,1(RN ). Define
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J1(Ω), J2(Ω) and J3(Ω) by:

J1(Ω) =
∫

Ω
j(x)dx, J2(Ω) =

∫
Γ
l(x)ds,

J2(Ω) =
∫

ΓF
lF (x)ds, s.t. Γ is varying and ΓF is fixed,

then the functions J1(Ω), J2(Ω) and J3(Ω) are differentiable at Ω in the direction
θ ∈ W 1,∞

(
RN ,RN

)
with the derivative

J ′1(Ω)(θ) =
∫

Γ
θnjds, J ′2(Ω)(θ) =

∫
Γ
θn

(
∂l

∂n
+Hl

)
ds, J ′3(Ω)(θ) = 0,

where H is the mean curvature of ∂Ω (assumed to be smooth).

Figure 1.1: Variation of the shape of an initial domain Ω0

In this thesis, we always do not allow Γl of (1.17) to move during the opti-
mization. Thus, the expression of the shape derivative of (1.17) will always be
expressed as

J ′(Ω)(θ) =
∫
∂Ω
j(Ω)θndx,

which means that, for a shape variation Id+ θ, J(Ω) is only sensitive to the
perturbations that are normal to the shape boundary. Note also that when we
set the direction of variation θ to −tj(Ω)n, where t ∈ R+ is a variation step.
We have

J((Id+ θ) (Ω)) = J(Ω)− t
∫
∂Ω
j(Ω)2ds+O

(
t2
)
,

where it is clear that, for a small step t, we have J((Id+ θ) (Ω)) ≤ J(Ω).
Consequently, we chose θ = −tj(Ω)n as a descent direction and we update the
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shape Ω iteratively with a gradient descent approach until the convergence to
a local minimum of the cost function .

1.2.3 Shape gradient in linear elasticity

To obtain the shape gradient with the linear elasticity model (1.1), we use
the same approach that we used for parametric optimization. We write the
Lagrangian equation of problem (1.6) under the constraint of elasticity, which
is the sum of objective function and variational form of the elasticity equations
multiplied by a Lagrange multiplier q. In the context of geometrical shape
optimization, this approach is known as the Céa’s method. The Lagrangian in
this case is written:

L(Ω, u, q) =
∫

Ω
j(u)dx+

∫
Γl
l(u)ds−

∫
Ω

(AΩe(u)·e(q)−fq)dx+
∫

ΓN
gqds. (1.20)

As usual, the adjoint solution p is defined as the precise value of the function q
which cancels the partial derivative with respect to the state u of the Lagrangian.
This means that p ∈ (H1(Ω))N satisfies the following optimality condition:〈

∂L(Ω, u, p)
∂u

, β

〉
= 0,

for any test function or direction of derivation β ∈ V (where V is defined by
(1.3)). In other words, p satisfies the following adjoint problem:



− div (Ae(p)) = dj(u)
du in Ω

p = 0 on ΓD
Ae(p)n = dl(u)

du on Γl
Ae(p)n = 0 on ∂Ω \ (ΓD ∪ Γl).

Finally, the shape gradient is given by the following theorem.

Theorem 1.2.1 Let Ω ⊂ RN be a smooth bounded open set. Let
f ∈

(
H1

(
RN

))N
, g ∈

(
H2

(
RN

))N
and u(Ω) ∈ V be the solution to
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(1.1) Then the shape derivative of J(Ω) along θ ∈ W 1,∞
(
RN ,RN

)
is given by:

J ′(Ω)(θ) =
∫

Γ
θn (j(u)− Ae(u) · e(p) + fp) ds,

where p(Ω) ∈ V is the solution to the adjoint problem.

Proof of Theorem 1.2.1
The Lagrangian of J(Ω) is given in (1.20) where q is an arbitrary function of V ,
which makes it independent of Ω. The chain rule derivative of the cost function
in a direction θ writes

J ′(Ω)(θ) = L′(Ω)(θ) = ∂L
∂Ω(θ) +

〈
∂L
∂u

, u′(Ω)(θ)
〉
,

where ∂L
∂Ω(θ) denotes the partial shape derivative of the Lagrangian that we

obtain by deriving L with respect to Ω while supposing that all the other
variables are fixed. To avoid calculating the derivative of u with respect to the
shape, we need to find q such that 〈∂L(Ω,u,q)

∂u
, u′(Ω)(θ)〉 = 0. We choose q = p,

which naturally satisfies the later optimality condition.

In the same spirit, when a volume constraint of the type λ (
∫

Ω dx− VT ) is added
to the Lagrangian, its the shape derivative becomes:

L′(Ω)(θ) =
∫

Γ
θn(j(u)− Ae(u) · e(p) + fp+ λ)ds. (1.21)

1.3 Topology optimization with the level set
method

Now that we have set the theoretical framework of geometrical shape
optimization, we introduce the level set topology optimization method
[12, 13, 7, 15, 11, 6] and we present its essential numerical elements.

The level set function

The level-set representation, introduced by Osher and Sethian [90, 79, 74,
80, 81, 78, 111, 94, 93, 92, 25, 60], consists of defining a continuous function
φ : D → R that takes the zero value on the boundary ∂Ω of a shape Ω, negative
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values inside Ω, and positive outside. We define the level set function for shape
and topology optimization by:


φ(x) < 0 if x ∈ Ω
φ(x) = 0 if x ∈ ∂Ω
φ(x) > 0 if x ∈ D\Ω̄.

The level set function purpose is to map Ω with a function that is numerically
easy to manipulate. The advantage of having the negative values of φ inside
the material is that the geometrical gradient of φ on ∂Ω directly gives the
direction of the normal vector n which is needed in the computation of the
shape derivative.

Transport of a level set function

Figure 1.2: Level set function convection

To vary the boundary of the shape, we convect the level set function using the
following transport equation:


∂φ

∂t
(t, x) + V(x)∇φ(t, x) = 0 on (0, T )×D,

φ(0, x) = φ0(x) on D.
(1.22)

where φ0 is the level set associated to the initial shape Ω0, V the local velocity
vector of the convection of the level set, which is normal to the level set outer
surface, and t ∈ R is the instant where the level set become φ(t). When
t = T ∈ R we obtain the final shape.
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When the velocity vector is parallel to the normal, meaning

V = VNn,

with a scalar normal velocity VN , the transport equation (1.22) becomes a
Hamilton Jacobi equation


∂φ

∂t
(t, x) + VN (x)|∇φ(t, x)| = 0 on (0, T )×D,

φ(0, x) = φ0(x) on D,

Finally, we choose VN = −(j(u)−AΩe(u) · e(p) + fp+ λ) to convect the shape
in the direction of the gradient descent.

1.3.1 Regularization of the shape derivative

Regularizing the shape derivative is important to avoid abrupt variations on
the shape boundary and topology that could lead to numerical instabilities.
This procedure is assured by projecting the shape gradient from the space L2(Γ)
with the inner product

∫
Γ uv dx, into the space H1(Ω) with the inner product

a(u, v) =
∫

Ω∇u∇v ds +
∫

Ω uv ds. This is achieved by solving the following
variational formulation: find j′r ∈ H1(Ω) such that∫

Ω

(
r2∇j′r(Ω)∇ϕ+ j′r(Ω)ϕ

)
dx =

∫
Γ
j′(Ω)ϕds ∀ϕ ∈ H1(Ω), (1.23)

where j′r is the new regularized gradient. The regularization parameter r is
homogeneous to a length-scale that indicates how far from the boundary ∂Ω
the regularized gradient is acting. [39]

Signed distance function

From a practical standpoint, we want φ to be not too steep to avoid inaccuracies
in the location of φ, but also not too flat to avoid instabilities that results
because of the division by zero in the evaluation of the normal vector. A good
method is to periodically restore φ to the signed distance function dΩ, which is
defined as:

∀x ∈ RN , dΩ(x) =


−d(x, ∂Ω) if x ∈ Ω,

0 if x ∈ ∂Ω,
d(x, ∂Ω) if x ∈ Rd\Ω̄.
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where d(x, ∂Ω) = minp∈∂Ω |x− p| is the Euclidean distance from a point x ∈ D
to the shape boundary ∂Ω. Notice that when we apply the signed distance
function, φ satisfies |∇φ(x)| = 1 on the boundary ∂Ω.

Ersatz material approximation

The ersatz material approximation consists of modeling the void in the design
domain D by a very soft material. This is obtained by multiplying the stiffness
tensor in the void D\Ω by a small parameter ε:

∀x ∈ D,AΩ(x) =
{

A if x ∈ Ω
εA if x ∈ D\Ω.

Note that the displacement u will depend on ε in this case. The value of ε is
typically chosen to be around 10−3.

Figure 1.3: A domain D composed by the material of the shape Ω and an
ersatz material in D\Ω.

1.3.2 Adding a constraint to topology optimization

In most cases of topology optimization problems and as with the case of
geometrical shape optimization, we optimize the structure Ω under a volume
constraint

∫
Ω dx = VT , where the constant input value VT represents the

target volume. The optimization problem is then also (1.18) with the same
set of admissible shapes (1.19). In the following, we explain the methods that
generally one could use to take into account the volume constraint, which are
the method of optimality criterion and the method of augmented Lagrangian.
Note that these methods can be used to take into account constraints on any
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other variables than the volume.

Classic Lagrangian method for the shape constraint

The constrained optimization using a classic Lagrangian method [16, 18] consists
of defining a Lagrangian function Lc(Ω, λ) as the sum of the objective function
J(Ω) and the constraint function C(Ω) =

∫
Ω dx− VT multiplied by a Lagrange

multiplier λ > 0:

Lc(Ω, λ) = J(Ω) + λC(Ω).

When λ is zero, the Lagrangian do not contain the constraint C(Ω). To make
sure that is C(Ω) is taken into account we have to find λ that maximizes
Lc(Ω, λ). The minimization problem (1.18) is then replaced by the following
min-max or saddle point problem:

min
Ω∈Uad0

max
λ∈R
Lc(Ω, λ),

where:
Uad0 = {Ω ⊂ D} .

Practically, we update the value of λn at each iteration n ∈ N in the direction
that maximizes the Lagrangian Lc(Ω, λ) using:

λn+1 = λn + tλC(Ω),

where tλ > 0 is a gradient ascending step of the update of λn. Note that the
Lagrange multiplier is increased if the current volume of the structure is greater
than the targeted volume and is decreased otherwise. Regardless of this, this
could lead to oscillations of the volume. Thus, we relax it with the value of
the Lagrange multiplier computed by assuming that the optimality condition
∂Lc(Ω,λ)

∂Ω = 0 is satisfied, the optimality condition is written as:

J ′(Ω) + λC ′(Ω) = 0,

which gives that:



Chapter 1. Shape optimization 36

λ = −

∫
∂Ω
j(Ω)ds∫
∂Ω
ds

.

Finally, the Lagrange multiplier is updated at each iteration by

λn+1 = (λn + λ) /2 + tλC(Ω) (1.24)

This simple method of optimization of constraints works correctly. How-
ever, it shows a rather slow and oscillatory convergence of the Lagrange
multiplier λ (equivalently the satisfaction of the constraints). This make
this method limited to examples that are featuring only one or a few constraints.

Augmented Lagrangian method

The idea of the augmented Lagrangian consists of adding a quadratic penalty
term on C(Ω) to the Lagrangian Lc(Ω, λ). This changes the constrained problem
into a sequence of unconstrained problems featuring two parameters λ ∈ R and
b ≥ 0:

min
Ω∈Uad

Lal (Ω, λn, bn) , where Lal(Ω, λ, b) := J(Ω) + λC(Ω) + b

2C(Ω)2. (1.25)

The augmented Lagrangian algorithm proceeds by alternating the resolution
of (1.25) for fixed values of the parameters λn and bn, and the update of the
latter according to the rule, for some αal > 1:

λn+1 = λn + bnC (Ωn) , and bn+1 =
{
αalb

n if bn < btarget ,
bn otherwise (1.26)

The value of λn is updated at each iteration n ∈ N in the direction that
maximizes the Lagrangian Lal(Ω, λ, b) while the constraint is gradually enforced,
more and more strictly by increasing the value of bn, until bn reaches a target
value btarget. We stop increasing the value of bn when btarget is reached to get a
smooth convergence of λn at the end.

The advantage of the augmented Lagrangian is that it is faster than the
optimality classic Lagrangian method which make it a better option to handle
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multiple industrial constraints. Another advantage is that it can be modified
easily to handle inequality constraints ([18, 76] also see section 4.4). The main
drawbacks of the augmented Lagrangian is that it is difficult to tune correctly
its parameters (λ0, b0 and α0

al), which are very case-dependent. The objective
and constraint functions usually have a lot of oscillations before convergence to
their final values. The augmented Lagrangian constrained shape optimization
algorithm is described in the following algorithm:

Algorithm 1: Constrained shape optimization augmented Lagrangian
algorithm [18]

1 Initialization: Initialize shape Ω0 and the values of the parameters λ0, b0.
2 for n = 1, ..., until convergence do
3 Find a descent direction θn for Ω 7→ L (Ω, λn, bn).
4 Obtain the new shape Ωn+1 := (Id + tnθn), where tn > 0 is chosen

sufficiently small so that L (Ωn+1, λn, bn) < L (Ωn, λn, bn).
5 Compute the new parameters λn+1, bn+1 using (1.26).
6 end

1.3.3 Topology optimization algorithm

Eventually, the algorithm of topology optimization with the level set method
is summarized in the algorithm 2. We start by fixing an initial shape Ω0 and
initializing a level set function for Ω0. A value for the target volume is chosen.
Recall that the initial shape needs to have some holes in it if one is considering
optimizing the topology (holes or porosities in a case of a 3D problem). We
then perform the optimization loop (from step 3 to 14) until the convergence
of the objective function. The result of the algorithm is a structure Ω that
has an optimal shape or topology. In general, and from a practical point of
view, the holes of the initialized shape are preferred to be small as this allows
the initial shape to converge to a broader range of topology options but not
too small to avoid falling into intermediate minima. As with a bigger number
of holes, the number of intermediate minima is multiplied. Also, the initial
volume value of the shape Ω should not be very distant from the target volume
Vt to avoid aggressive descent of the Lagrangian function, as this could lead to
the volume of the shape converging further from the targeted volume. Another
thing that one can do during the optimization from time to time to speed
up the optimization process is to eliminate the regions that are disconnected
entirely from the shape, as those regions can lead to significant errors in the
structure shape volume during the optimization. The topology optimization
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algorithms that we use in this work are written in FreeFem++ [17] for its high
computational speed but it is also possible to use any other partial differential
equations solving language as Matlab or FEniCSx. The convection of the level
set function is executed using the library advect [31], a library that solves
the linear transport equation (1.22) by the unconditionally stable method of
characteristics. Note that the level-set has to be a P1 function to use advect.
In the other hand, The redistancing of level set function is preformed using the
library mshdist [38].

Algorithm 2: Topology optimization algorithm for elasticity
1 Initialization: Initialize the level set function φ0 and deduce the shape Ω0.
2 for n = 0, ..., until convergence do
3 Compute the displacement un by solving the elasticity problem and the

adjoint displacement pn (if needed) using the adjoint problem, for the
shape Ωn

4 Compute the shape derivative θ 7→ J ′ (Ωn) (θ).
5 Deduce a descent direction VΩn for J from Ωn, i.e. a vector field

VΩn : Rd → Rd such that J ′ (Ωn) (VΩn) < 0.
6 Regularize the descent direction VΩn by solving the regularization

problem (1.23).
7 Advect the level set function with the velocity VN ,Ωntn to obtain φn+1

using the Hamilton-Jacobi equation, where tn > 0 is a small descent
step.

8 Redistance the level set function φn+1.
9 Deduce the updated shape Ωn+1 from φn+1

10 if J (Ωn+1) < J (Ωn) then
11 continue to the next iteration
12 else
13 reduce the step tn then get back to step 3.
14 end
15 end

1.3.4 Industrial applications with the level set topology
optimization method

Apart from compliance shape optimization of elastic materials, the level-set
method has a broad range of applications [73] that are important for industrial



Chapter 1. Shape optimization 39

purposes, such as the optimization of shape and topology for material damage
and fracture [14, 41], plasticity [42], constraints of mechanical linkages [86],
multi-material domains [103, 104, 5], structures with random uncertainties [4],
compliant mechanisms [68, 58], electric motors [47], stress minimization [10,
21, 22], vibration and multiple loads structural optimization [9], architectural
designs [37], robust designs [40], additive manufacturing technologies (topology
and trajectory of laser, topology of design and coupled with the building
supports [30]).
The level-set method also provides a wide range of physical applications, such as
fluid mechanics [34, 112, 44], thermic [44], thermoelasticity [30], magnetostatics
[20], flexoelectricity [51], and multiphysics [45, 44].
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Chapter 2

Mechanical problem and model

2.1 Additive manufacturing

Additive manufacturing [52, 46, 106, 55, 57, 43] (or AM) is a contemporary
method of manufacturing that allows obtaining industrial parts by adding
material layer by layer and/or fiber by fiber. This manufacturing method is an
essential part of what is known as the industrial revolution 4.0 and it made
possible to manufacture a geometric part directly from a computer-aided design
(a virtual design obtained through the use of a computing machine, abbreviated
CAD) in an automated process without caring about the manufacturing
limitations as the different positioning and the setups for the manufactured
part for the machining operations and the subtractive manufacturing tools
positions. This is different from classical subtractive manufacturing methods
such as milling and turning (or machining), where one removes material from a
raw material block to obtain the desired geometry.
The AM method was first used for prototyping, which is why it is also called
rapid prototyping, as it could not produce quality material and geometrical
characteristics. Nevertheless, AM technologies have evolved nowadays.
Moreover, the materials, accuracy, and overall output quality have improved.
AM became capable of producing high-edge industrial designs and gained
popularity by the name of 3D printing. AM includes a wide range of materials
such as polymers, metals, ceramic, concrete and glass. The advantages of
AM over conventional manufacturing are numerous. It allows to build rather
complex geometries that were not possible in conventional manufacturing.
Undercuts and draft angles are not limited by the dimensions of the tools.
Freeform surfaces became possible. Lattice structures and porous regions
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of the part also became possible to manufacture. Multipart mechanisms
could be built in the same time. The overall design-to-manufacturing time
and number of steps are reduced because of the elimination of the process
planning where one has to make a detailed analysis to determine the classical
conventional manufacturing operations, their operations orders, tools, and
fixtures, particularly when the parts have more complex geometries. Other
advantages of AM are that the process is fully automatic and that it gives the
ability to make changes to the design without changing the manufacturing
time. Finally, and very importantly, AM is a better ecological alternative
because it reduces conventional manufacturing wastes (chips, molds...). In
contrast, the disadvantages of AM are porosities that are formed within the
material and during the process and the generated anisotropic characteristics.
Those minor defects can be eliminated by applying a hip treatment in the case
of metallic design.
AM technologies for metals and polymers
For metallic design, technologies of additive manufacturing include powder
bed fusion (electron beam melting, selective laser melting...), direct energy
deposition and material jetting. For polymers design, fused material deposition
and vat polymerization.

Figure 2.1: Powder bed fusion AM (figure from [24])

SLM additive manufacturing
Selective laser melting [108, 107, 101, 62, 98] (also called SLM) is an additive
manufacturing powder bed fusion technology that consists of selectively
melting and fusing metal powders using a high-power-density laser as a heat
energy source to build a metallic part layer by layer. This technology started
developing in the late 1990s. Today, it is capable of producing net-shape
parts up to 99.9% relative density and of processing a wide range of metallic
materials, such as copper, aluminum, and tungsten, thanks to the recent
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Figure 2.2: Direct energy deposition AM (figure from [66])

developments of fiber optics and high-power lasers. The steps of building a
metallic geometry from a CAD file using SLM are seamless and automatic.
First, a STEP file (a file format that represents the part and that is obtained
from a CAD software) is converted to an STL file (STereoLithography), this
STL file is processed by a commercial software or an optimization algorithm
to create support structures for any overhanging regions and to prepare slice
layouts for all the layers and the laser scanning paths of each layer. Then,
the building process is conducted inside a machine building chamber that
is filled with an inert gas (nitrogen or argon) to protect the heated metal
against oxidation. The AM machine lays a thin layer of metal powder on a
substrate plate. Then a high energy density laser start scanning the powder
to form the first solid layer of the part by melting and fusing selected areas
according to the processed layer data. Once the laser scanning is completed,
the building platform is lowered and another metallic layer is built on top by
repeating the previous layer steps. This whole process of laying powder, laser
scanning and platform lowering is repeated successively until the wanted part
is completely built. Once the metallic part is built, the loose powders that are
inside the machine chamber are removed, and the built part is separated from
the substrate plate and from the supporting structures.

Anisotropy in AM
Parts that are built with an additive manufacturing technology, without
the addition of post-processing treatment, are observed to have a locally
anisotropic physical behavior (mechanical, thermal...), precisely an orthotropic
type of anisotropy. The resulted orthotropic anisotropy of the parts is usually
a sum of various orthotropic anisotropy. First, an orthotropic elastic and
resistance to fatigue anisotropy that is caused by the layering (see figure 2.3)
direction (in plane behavior different to normal to plan behavior) and by
the laser scanning path (parallel to fibers behavior is different to transversal
to fibers behavior). This anisotropy type is stronger in the case of polymer
materials AM. And second, a transverse isotropic elastic and plastic anisotropy
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that is caused by the columnar grains formations caused by the heat gradient
(see figure 2.4). This anisotropy type is stronger in metallic materials.

Figure 2.3: Layering and laser scanning in SLM (figure from [35])

Figure 2.4: Columnar grains formation in SLM (figure from [87])

2.2 Elastic anisotropy

2.2.1 Hooke’s law for anisotropic bodies

Consider a structure Ω composed by a linearly elastic anisotropic material [100]
with the Hooke’s tensor A; the model that we study is the same as the model
(1.1) with the same general boundary conditions.
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The Kelvin formalism [63, 69] consist of writing the stress and strain tensors
as vectors, in 3D they are written as:

{σ} =



σ1 = σ11
σ2 = σ22
σ3 = σ33
σ4 =

√
2σ23

σ5 =
√

2σ31
σ5 =

√
2σ12


, {e} =



e1 = e11
e2 = e22
e3 = e33
e4 =

√
2e23

e5 =
√

2e31
e6 =

√
2e12


.

Where the index notation of i in σi and ei is well known as the Voigt notation
[102] (11 → 1, 22 → 2, 33 → 3, 23 → 4, 31 → 5, 12 → 6). Which results in
a simpler and a rather efficient manipulation of the elasticity tensor. Note
that we add the cases {·} to differentiate the Kelvin vectorial notation of the
stress and strain from their tensorial notations. The Hooke’s law of elasticity
is expressed then with Kelvin formalism as follows:

σ1
σ2
σ3
σ4
σ5
σ6


=



A11 A12 A13
√

2A14
√

2A15
√

2A16
A12 A22 A23

√
2A24

√
2A25

√
2A26

A13 A23 A33
√

2A34
√

2A35
√

2A36√
2A14

√
2A24

√
2A34 2A44 2A45 2A46√

2A15
√

2A25
√

2A35 2A45 2A55 2A56√
2A15

√
2A26

√
2A35 2A46 2A56 2A66





e1
e2
e3
e4
e5
e6


,

where Aij are written using Voigt notations; for example A16 is the same as
A1112.

The Hooke’s law is then written:

{σ} = Â{e}.

Â is known as the stiffness constitutive matrix. Kelvin formalism switches the
algebra of the elasticity tensor from that of a fourth order tensor to that of a
6× 6 square symmetric matrix. The inverse of Â denoted Ŝ is known as the
compliance constitutive matrix. Â and Ŝ are two symmetric definite positive
matrices.

in 2D the Kelvin formalism is:

{σ} =


σ1 = σ11
σ2 = σ22
σ6 =

√
2σ12

 , {e} =


e1 = e11
e2 = e22
e6 =

√
2e12

 .
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Notice that we have the indexes 1, 2 and 6 as a result of Voigt notation. Hooke’s
law is then: 

σ1
σ2
σ6

 =

 A11 A12
√

2A16
A12 A22

√
2A26√

2A16
√

2A26 2A66



e1
e2
e6

 .

2.2.2 Examples of constitutive matrices

2.2.2.1 Orthotropy

A 3D orthotropic material [100] is defined by an orthogonal base, that we
denote ex′ey′ez′ , and by nine constants; three Young’s moduli E1, E2 and
E3 associated respectively to each direction of the material frame, it have
six Poisson’s ratios ν21, ν31, ν31, ν23, ν31 and ν12 but is defined by only three
considering the relations between the Poission ratios:

ν23

E2
= ν32

E3
,

ν31

E3
= ν13

E1
and ν12

E1
= ν21

E2
. (2.1)

The material also is defined by three shear moduli G12, G13 and G23.

The 3D orthotropic material compliance constitutive matrix [100] is symmetric
defined by 9 independent elastic components, it is written in the material base
as:

Ŝ =



1
E1

−ν21
E2
−ν31

E3
0 0 0

−ν12
E1

1
E2

−ν32
E3

0 0 0
−ν13

E1
−ν23

E2
1
E3

0 0 0
0 0 0 1

2G23
0 0

0 0 0 0 1
2G31

0
0 0 0 0 0 1

2G12


. (2.2)

The stiffness constitutive matrix which is the inverse of Ŝ is written:
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Â =



1−ν23ν32
E2E3∆

ν21+ν31ν23
E2E3∆

ν31+ν21ν32
E2E3∆ 0 0 0

ν12+ν13ν32
E3E1∆

1−ν31ν13
E3E1∆

ν32+ν31ν12
E3E1∆ 0 0 0

ν13+ν12ν23
E1E2∆

ν23+ν13ν21
E1E2∆

1−ν12ν21
E1E2∆ 0 0 0

0 0 0 2G23 0 0
0 0 0 0 2G31 0
0 0 0 0 0 2G12


, (2.3)

where
∆ = 1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν12ν23ν31

E1E2E3
.

2.2.2.2 Transverse isotropy

A transverse isotropic material is a special case of an orthotropic 3D material
where two of its base vectors ex′ey′ez′ form a plane of isotropy; a plane where
the material behavior is the same in all directions that are in the plane, we
chose the plane of isotropy ey′ez′ . The material behaves symmetrically about
the base vector ex′ which is orthogonal to the plane of isotropy.

A transverse isotropic material is defined by 5 independent constants; two
Young’s moduli E1 and Ep, and three Poisson’s ratios ν1p, νp1 and νp but
defined by only two considering the relation between the Poisson’s ratios ν1p
and νp1:

νp1
Ep

= ν1p

E1
. (2.4)

The material also is defined by one shear modulus G1p. The transverse isotropic
material compliance constitutive matrix then is symmetric defined by 5 inde-
pendent elastic components, it is written in the material base as:

Ŝ =



1
E1

−νp1
Ep
−νp1

Ep
0 0 0

−ν1p
E1

1
Ep

− νp
Ep

0 0 0
−ν1p

E1
− νp
Ep

1
Ep

0 0 0
0 0 0 1+νp

Ep
0 0

0 0 0 0 1
2G1p

0
0 0 0 0 0 1

2G1p


. (2.5)

Ŝ is obtained from (2.2) by replacing the indexes of the elastic moduli and
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ratios 2 and 3 by p due to the fact that E2 became equivalent to E3. ν23 then
became equal to ν32 (2.1), which we denote by a single symbol νp that plays
the role of an isotropic Poisson’s ratio in the plane of E2 and E3. Finaly, G23
is replaced by the isotropic shear modulus E2

2(1+v2) [53].

The stiffness constitutive matrix which is the inverse of Ŝ is written:

Â =



1−νpνp
E2
p∆

νp1+νp1νp
E2
p∆

νp1+νp1νp
E2
p∆ 0 0 0

ν1p+ν1pνp
EpE1∆

1−νp1ν1p
EpE1∆

νp+νp1ν1p
EpE1∆ 0 0 0

ν1p+ν1pνp
E1Ep∆

νp+ν1pνp1
E1Ep∆

1−ν1pνp1
E1Ep∆ 0 0 0

0 0 0 Ep
1+νp 0 0

0 0 0 0 2G1p 0
0 0 0 0 0 2G1p


, (2.6)

where
∆ = (1 + νp) (1− νp − 2νp1ν1p)

E2
pE1

.

2.2.2.3 Isotropy

The isotropic material compliance constitutive matrix is symmetric defined by
2 independent elastic components:

Ŝ =



1
E
− ν
E
− ν
E

0 0 0
1
E

− ν
E

0 0 0
1
E

0 0 0
1+ν
E

0 0
sym 1+ν

E
0

1+ν
E


.

Note that Ŝ can be obtained from the orthotropic compliance matrix by
replacing all the Young’s moduli by one Young’s modulus E, all the Poisson’s
ratios by only one Poisson’s ratio ν, and the Gij by the isotropic shear modulus
E

2(1+v) [53].
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The stiffness constitutive matrix which is the inverse of Ŝ is written:

Â =



(1−ν)E
(1−2ν)(1+ν)

νE
(1−2ν)(1+ν)

νE
(1−2ν)(1+ν) 0 0 0

(1−ν)E
(1−2ν)(1+ν)

νE
(1−2ν)(1+ν) 0 0 0

(1−ν)E
(1−2ν)(1+ν) 0 0 0

E
1+ν 0 0

E
1+ν 0

sym E
1+ν


.

2.2.2.4 2D orthotropy

A 2D orthotropic material is defined by two Young’s moduli; E1 in the axis of
A11 and E22 in the axis of A22. It has two Poisson’s ratios ν12 and ν21 but is
defined by only one considering the relations between the Poisson’s ratios:

ν12

E1
= ν21

E2
.

The material also is defined by one shear modulus G12.

A 2D orthotropic material constitutive tensor is symmetric defined by 4 inde-
pendent elastic constants:

Â =


E1

1−ν12ν21
ν21E1

1−ν12ν21
0

ν12E2
1−ν12ν21

E2
1−ν12ν21

0
0 0 2G12

 (2.7)

2.2.3 Orientation of an anisotropic material model in
elasticity

2.2.3.1 Orientation of elastic orthotropy

Euler angles

The local orientation of an orthotropic material in Ω can be described as the
orientation of a relative orthogonal right-handed frame x′y′z′ with respect to
a fixed system of frame xyz. The relative frame x′y′z′ is the frame where the
anisotropic constitutive matrix Â is defined. We chose x′ to be in the direction
of E1, y′ to be in the direction of E2 and z′ consequently in the direction
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of E3. The orientation of material in this case is obtained using consecutive
elementary rotations of x′y′z′ by three angles α1, α2 and α3 along the axes
of the material frame, note that every rotation axis should be different than
the one before. Those angles are called the Euler angles, and they are very
important in this work as they give the exact orientation of the anisotropic
material. We introduce three intermediate frames x1y1z1 x2y2z2 x3y3z3. In our
case, we chose to rotate with α1 about the axis z′, leading to the new frame
x1y1z1, then with α2 about x1, leading to the new frame x2y2z2 and then with
α3 about z2 leading to the new frame x3y3z3 which is exactly xyz (see figure
4.3). In material science this is called a zxz Euler type rotation.

(a) Rotation by the first Euler angle about
z′

(b) Rotation by the second Euler angle
about x1

(c) Rotation by the third Euler angle
about z2

Figure 2.5: Rotation of the material frame using Euler angles, x3y3z3 is equiva-
lent to x′y′z′
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Kelvin rotation matrix

We denote with Â∗(α1, α2, α3) the constitutive stiffness matrix for the ro-
tated anisotropic material (A∗ for the associated rotated Hooke’s tensor).
Â∗(α1, α2, α3) is expressed in terms of Â and the three Euler angles by:

Â∗(α1, α2, α3) = R(α1, α2, α3)ÂRt(α1, α2, α3). (2.8)

R is an orthogonal matrix that behaves as a global rotation 6×6 matrix for the
Kelvin formalism algebra (see [100] section 2.2.2 page 30). The orthogonality
of R is a big advantage of using the Kelvin formalism. R is expressed using
the components of the 3D rotation matrix Q as follows [71]:

R =


Q2

11 Q2
12 Q2

13
√

2Q12Q13
√

2Q13Q11
√

2Q11Q12
Q2

21 Q2
22 Q2

23
√

2Q22Q23
√

2Q23Q21
√

2Q21Q22
Q2

31 Q2
32 Q2

33
√

2Q32Q33
√

2Q33Q31
√

2Q31Q32√
2Q21Q31

√
2Q22Q32

√
2Q23Q33 Q23Q32 +Q22Q33 Q33Q21 +Q31Q23 Q31Q22 +Q32Q21√

2Q31Q11
√

2Q32Q12
√

2Q33Q13 Q32Q13 +Q33Q12 Q31Q13 +Q33Q11 Q31Q12 +Q32Q11√
2Q11Q21

√
2Q12Q22

√
2Q13Q23 Q12Q23 +Q13Q22 Q11Q23 +Q13Q21 Q11Q22 +Q12Q21

 ,
(2.9)

where Q is expressed in terms of the 3 elemental rotations matrices Q1, Q2 and
Q3, associated respectively to the angles α1, α2 and α3:

Q(α1, α2, α3) = Q1(α1)Q2(α2)Q3(α3).

Q1,Q2 and Q3 are given by:

Q1(α1) =

cos (α1) − sin (α1) 0
sin (α1) cos (α1) 0

0 0 1

 , (2.10)

Q2(α2) =

1 0 0
0 cos (α2) − sin (α2)
0 sin (α2) cos (α2)

 , (2.11)

Q3(α3) =

cos (α3) − sin (α3) 0
sin (α3) cos (α3) 0

0 0 1

 . (2.12)
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2.2.3.2 Orientation of elastic transverse isotropy

Euler angles

As with the case of orthotropic materials, the local orientation of a transversely
isotropic material in Ω can also be described as the orientation of a relative
orthogonal right-handed frame x′y′z′ with respect to a fixed system of frame
of reference xyz. The relative frame x′y′z′ is the frame where the anisotropic
constitutive matrix Â is defined by (2.6). This means, from a mechanical
experimental point of view, that if we measure Young’s modulus in the direction
of x′, the value of E1 is obtained, and if we measure Young’s modulus in all the
directions that are perpendicular to x′ (especially y′ and z′), the value of Ep is
then obtained. In this case the material orientation is defined using only two
Euler angles α1 and α2. As a result, we have two intermediate frames x1y1z1
and x2y2z2. We choose to rotate with α1 about the axis z′, leading to the new
frame x1y1z1, then with α2 about y1, leading to the new frame x2y2z2 which is
exactly xyz (see figure 2.6). In material science, this is called a zy Euler type
rotation.

Figure 2.6: Rotation of the transverse isotropic material frame using 2 Euler
angles, x2y2z2 is equivalent to x′y′z′

Kelvin rotation matrix

We denote with Â∗(α1, α2) the constitutive stiffness matrix for the rotated
transverse isotropic material (A∗ for the associated rotated Hooke’s tensor).
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Â∗(α1, α2) is expressed in terms of Â and the two Euler angles by:

Â∗(α1, α2) = R(α1, α2)ÂRt(α1, α2), (2.13)

where R is the Kelvin rotation matrix written as (2.9). Where Q now is
expressed in terms of the 2 elementary rotations matrices Q1 and Q2, associated
respectively to the angles α1 and α2:

Q(α1, α2) = Q1(α1)Q2(α2),

the matrix Q1 is given by (2.10) and Q2 by:

Q2(α2) =

 cos (α2) 0 sin (α2)
0 1 0

− sin (α2) 0 cos (α2)

 . (2.14)

Note that we have an expression of the matrix Q2 different than the expression
in (2.11) because of the fact that we are rotating about a different axis .

2.2.3.3 Orientation of 2D elastic orthotropy

In the case of a 2D orthotropic material, the material orientation is defined by a
single angle α (see figure 2.7). The constitutive stiffness matrix that is obtained
from the rotated material that is expressed on the frame xyz is denoted Â∗(α),
and written:

Â∗(α) = R(α)ÂRt(α), (2.15)

where R is the Kelvin 2D rotation matrix that is written as in (2.9) (without
the use the third, fourth and fifth row and line). While the matrix Q is given
by:

Q (α) =
[

cos (α) − sin (α)
sin (α) cos (α)

]
(2.16)
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Figure 2.7: Orientation angle α of the orthotropic material axes of a 2D
structure
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2D orientation optimization

3.1 Optimal direction using an optimality cri-
terion

We consider a structure in a 2D problem (hypothesis of plane stress or plane
strain) with a fixed shape Ω composed by a linearly elastic orthotropic material
with the Hooke’s law fourth order elasticity tensor A∗(α). Where α ∈ R is
the angle from an initial frame of reference to a material fixed frame where
the orthotropic elasticity Hooke’s law is known, fixed and denoted A. A is
defined by the following elasticity moduli; two Young’s moduli E1 and E2, one
Poisson’s ratio ν12 and one shear moduli G12. The relation between A in Kelvin
formalism and the elasticity moduli is given by (2.7) We suppose that E1 > E2.
α is defined from the x-axis to the direction where E1 is physically measured
(which is equivalent to the component Â11 of the stiffness constitutive tensor).

The model that we study is the same as (1.1). We want to find the material
local anisotropy orientation everywhere in the domain Ω that minimizes the
compliance of this structure. The compliance objective function is then written
as:

J(α) =
∫

Ω
fu dx +

∫
ΓN
gu ds =

∫
Ω
A∗(α)e(u) · e(u) dx .

The orientation is modeled by the angle α. Consequently, the set of admissible
designs is defined by:

Uad =
{
α ∈ L2(Ω)

}
. (3.1)
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The problem of optimization is then written as:

inf
α∈Uad

J(α) (3.2)

Using the theorem of complementary energy (see section 2.22 in [2]) that gives:

∫
Ω
fu dx +

∫
ΓN
gu ds = min

∫
Ω

(A∗(α))−1σ · σ dx,

σ ∈ L2(Ω;Ms)
− div σ = f in Ω

σn = g on ΓN
σn = 0 on ∂Ω \ (ΓD ∪ ΓN)

(3.3)

where σ is a statically admissible stress tensor and Ms is the space of sym-
metric matrices. We can rewrite the optimization problem (3.2) as a double
minimization

inf
α∈Uad

min
∫

Ω
(A∗(α))−1σ · σ dx,

σ ∈ L2(Ω;Ms)
− div σ = f in Ω

σn = g on ΓN
σn = 0 on ∂Ω \ (ΓD ∪ ΓN)

(3.4)

The order of the two minimizations is unimportant: they can be exchanged or
combined in a single minimization on the pair (α, σ) . We write (3.4) in the
form:

inf
α∈Uad

min
σ∈H

∫
Ω

(A∗(α))−1σ · σ dx, (3.5)

where H is given by:

H =
{
σ ∈ L2(Ω;Ms),− div σ = f in Ω, σn = g on ΓN , σn = 0 on ∂Ω \ (ΓD ∪ ΓN)

}
(3.6)

We note that Uad ×H is a non-empty convex closed set. The interest of (3.5)
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is to exchange the two minimizations, which does not change the problem, and
to optimize one and then the other.

Remark 1 Unfortunately, there is no information about the existence of solu-
tion of (3.5). However, if we want the existence of a solution, we can choose
the set of admissible designs as [2] (see theorem 5.12, page 88):

URad =
{
α ∈ L2(Ω), s.t. ||α||H1(Ω) < R

}

The primary idea of the optimality condition is to exchange the two minimiza-
tions in (3.5) to obtain

inf
σ∈H

min
α∈Uad

∫
Ω

(A∗(α))−1σ · σ dx, (3.7)

It turns out that at fixed σ, it is easy to perform the minimization in α in Uad.

Consequently, we have found optimality conditions for the optimization problem
(3.2) which are:

1. if we know the optimal σ, then an optimal α is given by solving:

min
α∈Uad

∫
Ω

(A∗(α))−1σ · σ dx (3.8)

Optimizing the integral of (3.8) is equivalent to optimizing (A∗(α))−1σ ·σ
at every point x ∈ Ω.

2. if we fix α, then the optimal σ is the unique point of minimum of (3.3)
(obtained by solving a simple partial differential equation).

3.1.1 Pointwise optimality criterion approach

The approach of a pointwise optimality criterion consist of reducing the global
minimization problem (3.8) to a local pointwise mechanical one (at the scale
of a node or a finite element). What makes such an approach possible is that
we suppose that the stress field σ is constant. The problem of compliance
minimization then becomes:

min
α
j(α) = (A∗(α))−1 σ · σ,
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which admits the following optimality condition

∂j(α)
∂α

= 0.

We then search for the values of α that nullify ∂j(α)
∂α

and satisfy ∂2j(α)
∂α2 > 0. Note

that ∂j(α)
∂α

and ∂2j(α)
∂α2 are obtained directly:

∂j(α)
∂α

= ((A∗(α))−1)′σ · σ and ∂2j(α)
∂α2 = ((A∗(α))−1)′′σ · σ.

The result of this analysis is established by Pedersen in [82, 83] where it was
found that that the optimal direction of an orthotropic material is when the
stiffest material direction takes the direction of the major principal stress, under
the condition of:

A1111 + A2222 − 2A1122 − A1212 ≥ 0, or
(A1111 + A2222 − 2A1122 − A1212)2

[
(σ11 − σ22)2 + 4σ2

12

]
≤ (A1111 − A2222)2 (σ11 + σ22)2 .

(3.9)

The otherwise case was reinvestigated by Gea and Luo in [48] were they
proved the existence of multiple global minima. Other works that explains
the optimality criterion approach are in [36, 67]. In this work, we only studies
examples that fall into the first case, which represent materials with relatively
low shear stiffness and some materials with relatively high shear stiffness.

3.1.2 Optimal orientation

We determine the principal stresses σI and σII by computing the eigenvalues
of the stress tensor:

σI = σ11 + σ22

2 +
√(

σ11 − σ22

2

)2
+ σ2

12,

σII = σ11 + σ22

2 −
√(

σ11 − σ22

2

)2
+ σ2

12.

We then choose the major absolute principal stress σmax as:
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σmax =

σI if |σI | > |σII | ,
σII otherwise.

The major absolute principal stress direction is the eigenvector eσmax = (σmax−
σ22, σ12) associated to σmax, it is obtained by solving (σ − σmaxI) eσmax = 0.

Finally, the expression of the angle αopt, the angle that gives the direction of
the vector eσmax , is obtained through geometric trigonometry:

αopt =




arccos

 σmax−σ22√
(σmax−σ22)2+σ2

12)

 if σ12 ≥ 0

− arccos
 σmax−σ22√

(σmax−σ22)2+σ2
12)

 if σ12 < 0
if σmax 6= σ22

π
2 if σmax = σ22

αold if σmax = 0.

(3.10)

The orientation is defined as a modulo π function; thus αopt obtained by the
equations of (3.10) is continuous on Z/πZ with π/2 being the same as −π/2.
Note also that when σmax = σ22, σ12 becomes zero since the tensor σ becomes
diagonal. The orientation takes, in this case, the same direction as the y-axis.
Lastly, when σmax is zero, there is no stress applied on the material point x. As
a result, there is no need to choose the anisotropy direction angle αopt different
from its original value αold for this do not have any effect on the objective
function.

3.1.3 Numerical algorithm

We deduce a minimization algorithm for (3.7), called alternate directions
algorithm, which consists in minimizing successively and alternately in α and in
σ. The angle α is updated using a principal stress-based method. The alternate
directions algorithm is described by the algorithm 3.

Note that minimizing (3.11) is equivalent to solving the elasticity equation
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Algorithm 3: 2D orientation optimization using an optimality criterion
1 Initialization of the angle α0 ∈ Uad.
2 for n = 0, .., until convergence do
3 Calculation of the state σn, unique solution of:

min
σ∈H

∫
Ω

(A∗(αn))−1σ · σ dx, (3.11)

4 Update the angle αn to αn+1; the angle corresponding to the major
principal stress obtained using the optimality formula (3.10).

5 end

(1.1), to get the displacement un, and to determining σn by

σn = A∗(αn)e(un)

This algorithm is interpreted as an alternate minimization in σ then in α of
the function (3.5). In particular, we deduce that the objective function always
decreases during the iterations

J (αn+1) =
∫

Ω
A∗(αn+1)−1σn+1 · σn+1dx

≤
∫

Ω
A∗(αn+1)−1σn · σndx

≤
∫

Ω
A∗(αn)−1σn · σndx = J (αn)

3.2 Optimal direction using a gradient descent
method

The application of orientation optimization using the optimality criterion is
limited to the problem of a single load compliance optimization. Wistfully,
industrial applications are unrestricted to this problem; e.g. multi-load objective
function, target displacement problem, stress optimization... That is why we
need to optimize the orientation with a numerical method such as the gradient
descent.

In this section, we will introduce the anisotropy orientation optimization with
a gradient descent method. We will consider the problem of compliance to
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compare this method with the optimality criterion method, then we will apply
the method to the optimization of the problem of target displacement and of a
multi-load compliance problem.

In these optimization problems, we study the same model of linear elasticity
(1.1) with the same set of admissible designs (3.1). We suppose a general
objective function J(α) that is the sum of a the integral of the function j
defined on Ω and of the integral of the function l defined on ΓJ , where ΓJ does
not intersect the Dirichlet boundary ΓD (see figure 3.1).

Figure 3.1: Boundaries of a shape Ω for a general objective function

J(α) =
∫

Ω
j(u)dx +

∫
ΓJ
l(u)ds. (3.12)

The orientation optimization problem is then written as:

inf
α∈Uad

J(α). (3.13)

Notice that the orientation optimization problem is expressed exactly in the
same way as a parametric shape optimization problem. Consequently, we use
theorem 1.1.1 to get the expression of the gradient of the objective function,
which gives:

J ′(α) = − (A∗(α))′ e(u) · e(p), (3.14)

where p is the adjoint displacement obtained by solving the adjoint problem
(1.9). Note that in the considered setting, the angle of anisotropy does not
have any relation to the shape of the structure, but rather to the intrinsic
properties of the elastic material.
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Objective function gradient alternative expression

In this part, we use the Kelvin notation, the derivative of Â∗ (i.e. A∗ in Kelvin
notation) with respect to the angle α is written as:

(
Â∗(α)

)′
=
(
R(α)

)′
Â∗Rt(α) +R(α)Â∗

(
Rt(α)

)′
. (3.15)

Mehrabadi & Al.[72] gives the expression of
(
R(α)

)′
in terms of R(α):

(
R(α)

)′
= PR(α), (3.16)

where P is a constant matrix defined as:

Pij = −ξijkmk,

where ξijk is Levi-Civita symbol defined by:

ξijk =


+1 if (i, j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2),
−1 if (i, j, k) is (3, 2, 1), (1, 3, 2), or (2, 1, 3),

0 if i = j, or j = k, or k = i.

and m is the unit vector of the axis of rotation by α (which is equal to the
base vector ez in the 2D case).

Using (3.16) and (2.8) in (3.15) we obtain the expression of
(
Â∗(α)

)′
in terms

of Â∗(α):

(
Â∗(α)

)′
= PÂ∗(α) + Â∗(α)P t. (3.17)

By writing (3.14) in the Kelvin formalism, then by replacing the derivative
(A∗(α))′ with the expression of (3.17), we obtain:

J ′(α) = −
{
e(u)

}(
PÂ∗(α) + Â∗(α)P t

){
e(p)

}
, (3.18)

where
{
e(u)

}
and

{
e(p)

}
are respectively the two Kelvin notation strain
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vectors for the displacement strain tensor e(u), and the adjoint displacement
strain tensor e(p) = 1

2 (∇p+ (∇p)t).

Numerical algorithm

The numerical algorithm of the orientation optimization using the gradient
descent method is presented in algorithm 4

Algorithm 4: 2D orientation optimization using the gradient descent
1 Initialize the angles α0.
2 Compute the displacement u0 by solving the elasticity problem.
3 Compute the objective function J(α0).
4 for n = 1, .., until convergence do
5 Compute the gradient J ′(αn) using (3.18).
6 αn = αn−1 − tnJ ′(αn), where tn > 0 is a small descent step.
7 Compute un.
8 Compute the objective function J(αn).
9 if J(αn) < J(αn−1) then

10 tn+1 = 1.2tn and continue to the next iteration.
11 else
12 tn+1 = tn/2 and return to step 5.
13 end
14 end

3.3 Optimal direction using a Ginzburg-
Landau based gradient descent method

Consider the linear elasticity model (1.1) defined on the structure Ω with the
same boundary conditions as in figure 3.1, where j is a function that is defined
in Ω and l is a function defined on ΓJ , a boundary of Ω that does not intersect
the Dirichlet boundary ΓD. Another variation of the gradient descent method,
is to optimize the vector (c, s) = (cosα, sinα) ∈ (L(Ω)2)2 instead of the angle
α. This is possible because A∗ is written as a function of the rotation matrix Q
which is expressed using cosα and sinα in (2.16). The objective function J(α)
in (3.12) is also a function of c and s, thus the optimization problem (3.13)
becomes:
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inf
(c,s)∈Uad

J(c, s), (3.19)

where the set of the admissible designs Uad is given by:

Uad = {(c, s) ∈ L(Ω)2 s.t. c2 + s2 = 1}. (3.20)

Note that c and s are assured to be a cosine and a sine function by means of
the constraint c2 + s2 = 1. To impose this constraint, we add a penalty term
to the objective function, and we obtain a new objective function:

Jp(c, s) = J(c, s)
J(c0, s0) + 1

εp

∫
Ω

(
c2 + s2 − 1

)2
dx,

where εp is a small positive penalty parameter. Note that we divide the
objective function J(c, s) by its initial value J(c0, s0), which is different to zero
by nature of the orientation optimization problems, to harmonize the new
objective function terms (c0 and s0 are the initial values of c and s). This
approach of optimizing the cosine and sine of the angle α under a penalty
function that ensures the constraint in (3.20) is called a Ginzburg-Landau
approach [29]. The optimization problem (3.19) becomes:

inf
c,s∈L2(Ω)

Jp(c, s).

The gradients of Jp(c, s) with respect to its parameters is obtained using the
theorem 1.1.1, which gives:

∂Jp(c, s)
∂c

= −∂A
∗(c, s)
∂c

e(u) · e(p) + 4
εp
c
(
c2 + s2 − 1

)
, (3.21)

and:

∂Jp(c, s)
∂s

= −∂A
∗(c, s)
∂s

e(u) · e(p) + 4
εp
s
(
c2 + s2 − 1

)
, (3.22)

where p is the adjoint displacement obtained by solving the adjoint problem
(1.9).
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Algorithm

We start with a big value of the penalization parameter εp, for example εp =
1000, and we decrease it linearly during the optimization. The orientation
optimization algorithm which relies on this Ginzburg-Landau approach is
written as algorithm 5:

Algorithm 5: 2D orientation optimization using a Ginzburg-Landau ap-
proach

1 Initialize the values of c0, s0 and ε0
p.

2 compute the gradients ∂Jp(cn,sn)
∂cn

and ∂Jp(cn,sn)
∂sn

using (3.21) and (3.22).
3 compute the displacement u0 by solving the elasticity problem, then

compute the objective function Jp (c0, s0).
4 for n = 1, .., until convergence do
5 compute cn = cn−1 − tn ∂Jp(cn,sn)

∂cn
, where tn is a small descent step.

6 compute sn = sn−1 − tn ∂Jp(cn,sn)
∂sn

.
7 compute un.
8 compute the objective function Jp(cn, sn).
9 if Jp(cn, sn) < Jp(cn−1, sn−1) then

10 tn+1 = 1.2tn, εn+1
p = βεnp , where 0 < β < 1, and then continue to

the next iteration.
11 else
12 tn+1 = tn/2 and return to step 5.
13 end
14 end

3.4 Regularization of orientation

The results of orientation optimization are not usually continuous or smooth.
However, in additive manufacturing, it is better to have smoothly continuous
orientations. As the discontinuity means interruption of the laser scanning
process, which is a more time consuming step. But also leads to structures
that have inferior fatigue resistance. For this purpose, we have implemented
two orientation regularization methods. The first one consist of regularizing
a given orientation [8, 49] and it only works for the compliance minimization
problem. Although this method was developed for regularizing the orientation of
laminated composites, it is also a method that works for any type of orthotropic
material. The second method is to regularize the orientation by regularization
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of the gradient field, this method works for any cost function but only with a
gradient based method.

3.4.1 Regularization of a given orientation field

We describe this regularization method without going into details (for more
details see section 4.5.3 of [49]), to regularize the orientation for the compliance
minimization problem, we make a small change on the cost function, we
express the compliance on function of the stress tensor σ and we add a small
regularization term: ∫

Ω

(
A(α)∗−1σ · σ + 1

4η
2|∇α|2

)
dx.

We define a vector b as:

b = (cos(2α), sin(2α))t.

The rotation matrix R(α) can be expressed with the parameter b instead of α;
R(α) = R̃(b). The advantage of using this new expression is that b → ˜R(b)
is a linear function, which makes the calculations of its derivative simple. We
then regularize β = 2α instead of α. The cost function becomes:∫

Ω

(
A∗−1R̃(b)σ · R̃(b)σ + η2|∇β|2

)
dx.

To solve this minimization problem we search for the δb and δβ that minimizes:∫
D
A∗−1R̃ (b + δb)σ · R̃ (b + δb)σdx + η2

∫
D
|∇ (β + δβ)|2 dx.

Note that the vector b verify:

∇β = b ∧∇b.

Therefore, we can write the optimality condition of the minimization problem
as the variational problem:

find δb such that ∀δc ∈ H1 (D;R2):
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2
∫
D
A∗−1R̃(b+δb)σ ·R̃′(δc)σdx+2η2

∫
D

(b∧∇(b+δb))(b∧∇δc)dx = 0. (3.23)

In the end, we update the vector b to the new value of bn−1+δbn
|bn−1+δbn| and we deduce

from it the new regular angle α.

(a) Orientations before the regulariza-
tion

(b) Orientations after the regulariza-
tion

Figure 3.2: Regularized optimal stiffest orientations of for an arch

The algorithm 6 resumes all the steps of this method of regularization. The
figure 3.2 gives an example of the orientations, before and after using this
algorithm.

Algorithm 6: 2D orientation regularization algorithm
1 Initialize the orientation α0 and compute vector b0.
2 Iterate until convergence, for n ≥ 0 :
3 for n = 1, .., until convergence do
4 Compute the strain tensor e (un) through the problem of linear

elasticity.
5 Compute the increment δbn by solving the variational problem (3.23).
6 Compute and normalize the vector bn by bn ← bn−1+δbn

|bn−1+δbn| .
7 Deduce αn.
8 end

3.4.2 Regularization while optimizing the orientation

This method resembles the regularization of the shape procedure in section 1.3.1.
The regularization of the orientation angle is performed by the regularization
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of the gradient, which is done by projecting the gradient j′(α) from the space
L2(Ω) with the inner product

∫
Ω uv dx, into the space H1(Ω) with the inner

product

a(u, v) =
∫

Ω
∇u · ∇v dx+

∫
Ω
uv dx. (3.24)

This is achieved by solving the following variational formulation:

find j′rα(α) ∈ L2(Ω) such that∫
Ω

(
r2
α∇j′rα(α) · ∇ϕ+ j′rα(α)ϕ

)
dx =

∫
Ω
j′(α)ϕdx ∀ϕ ∈ H1(Ω),

where j′rα(α) is the new regularized gradient that is now in H1(Ω). The
regularization parameter rα is a regularization length-scale that indicates how
much distance from the point x the regularized gradient is covering.

3.5 Constrained orientation optimization

3.5.1 Projected gradient descent

The goal is to project the new orientation angle αn+1, obtained by updating
α along the descent direction, into ᾱn+1 which belongs to a chosen interval
[αmin, αmax]. This is simply done by:

ᾱn = max(min(αn, αmax), αmin).

Remark 2 The projection of the angle in a projected gradient method should
not be applied to an optimality criterion method such as the method of directions
of principal strains, because the projection do not give necessarily an optimal
angle. The projection should be coupled with a gradient descent loop that ensures
that the algorithm will converge to an optimal solution at the end.

3.5.2 Augmented Lagrangian for inequality constraints

In industrial problems, we may have to add some inequality constraints to
the orientation. Suppose that we have one inequality constraint of the form
C(α) ≤ c, where c ∈ R is a given limit value. The optimization problem is
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then written:

inf
α∈Uad

J(α), (3.25)

with the set of admissible space:

Uad =
{
α ∈ L2(Ω), C(α) ≤ c

}
.

There are multiple ways to use the augmented Lagrangian method for an
inequality constraint. One way [76] is to define a new objective function
where we add a term that depends on the previous iteration to the standard
Lagrangian Lc(α, λ) = J(α) − λ(c − C(α)), where λ ∈ R+ is the Lagrange
multiplier. For instance, for the iteration n ∈ N, for b > 0 the new augmented
Lagrangian is written:

Lal (α, λ) = J(α)− λ (c− C(α))− b

2 (λ− λn−1)2 . (3.26)

Note that a quadratic penalty term on the constraint is not added since it can
generate instabilities (see [32] section 5.2.1). On the other hand, a quadratic
penalty is applied to any move of λ away from the previous estimate λn−1 ,
which encourages λ to stay close to the previous estimate λn−1 [76], and b ∈ R∗+
is the penalty parameter. Thus, the constrained problem (3.25) changes into
the following unconstrained problem:

min
α∈L2(Ω)

max
λ∈R+

Lal(α, λ) (3.27)

For an iteration n ∈ N, the augmented Lagrangian algorithm proceeds by
alternating the resolution of (3.27) for fixed values of the parameters λn and
bn, and the update of the latter according to:

λn+1 =

λn −
1
bn

(c− C(αn)) if λn − 1
bn

(c− C(αn)) ≥ 0
0 otherwise,

(3.28)

and:
bn+1 =

{
αalbn if bn < blimit
bn otherwise,

for αal > 1. Note that it is unnecessary to make b tend to infinity to satisfy
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the Lagrange multiplier move constraint. Thus we gradually increase the value
of b until it reaches a limit value that is initially defined.

The idea of the update of the Lagrange multiplier λn+1 using λn− 1
bn

(c−C(αn))
in (3.28) is that when C(αn) > c, the value of λ is increased to impose the
equality constraint of C(α) = c, which will reduce the value of C(α). The value
of λ keeps increasing until C(α) reaches a value equal to or lower than the
limit c. When C(αn) < c, the value of λ is decreased to alleviate the equality
constraint of C(α) = c from the augmented Lagrangian objective function.
Finally, because λn+1 has to be always positive, it is assigned to a null value
whenever λn − 1

bn
(c− C(αn)) gives a negative value.

Another method of augmented Lagrangian is to use a “gap variable” (also called
a “slack variable”) ξ ∈ R+ by replacing the problem (3.25) by the multivariable
optimization problem:

min
α∈L2(Ω),
ξ∈R+

J(α) s.t. C(α) + ξ = c.

The obtained problem is solved by using an equality augmented lagrangian
objective function:

Lal(α, λ, ξ) = J(α)− λ(C(α) + ξ − c) + 1
2b(C(α) + ξ − c)2,

which gives the problem

min
α∈L2(Ω),
ξ∈R+

max
λ∈R+

Lal (α, λ, ξ) .

By replacing ξ by its optimal expression, the above problem becomes:

min
α∈R+

Lal2 (α, λ) = J(α)− λmax(bλ, c− C(α)) + 1
2b(max(bλ, c− C(α)))2,

In this work, we prefer to use the first augmented Lagrangian formulation,
using (3.26) as the latter gives another variable ξ that has to be optimized.
Another thing that is preferred to do, is to work with the angle α defined in
the space H1(Ω) instead of L2(Ω), the inner product

∫
Ω uv dx, is then replaced

by the inner product:

a(u, v) =
∫

Ω
∇u∇v dx+

∫
Ω
uv dx,
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which is helpful for obtaining smooth variations of the angle α. Hence (3.27)
becomes:

min
α∈H1(Ω)

max
λ∈R+

Lal (α, λ) ,

for n ∈ N.

The inequality constraint augmented Lagrangian gradient descent algorithm
works by replacing the Lagrangian gradient ∂L(α,p)

∂α
in algorithm 4 by:

∂L(α, p, λ)
∂α

= − (A∗(α))′ e(u) · e(p) + λC ′(α), (3.29)

which is obtained using theorem 1.1.1, where p is the adjoint displacement that
is obtained by solving some adjoint problem.

3.5.3 Examples using an augmented Lagrangian for in-
equality constraint

In this section, we give some examples of constraints that we have applied to
the angle during the optimization using the inequality constraint augmented
Lagrangian.

3.5.3.1 Constrained angle’s geometrical gradient

This example consists of optimizing the orientation angle α under a constraint
C(α) ≤ c, where C(α) is given by the L2-norm of the geometrical gradient of
the angle:

C(α) =
∫

Ω
|∇α|2dx.

The optimization problem is then equivalent to (3.25) but with the set of
admissible designs:

Uad =
{
α ∈ H1(Ω), C(α) ≤ c

}
.

The augmented gradient objective function is then defined as:

Lal(α, λ) = J(α)− λ(c−
∫

Ω
|∇α|2dx)− 1

2b(λ− λn−1)2.
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To obtain the dual function gradient (3.29) we need to calculate C ′(α), which
can be obtained using a directional derivative. Thus, ∀β ∈ H1(Ω):

< C ′(α), β >=
∫

Ω
∇C ′(α)∇β + C ′(α)β dx = 2

∫
Ω
∇α∇β dx (3.30)

Consequently, C ′(α) is obtained by solving the variational problem: find
C ′(α) ∈ H1(Ω), such that ∀β ∈ H1(Ω),∫

Ω
∇C ′(α)∇β + C ′(α)β dx = 2

∫
Ω
∇α∇β dx.

Remark 3 If we had worked with the angle α defined in the space L2(Ω)
instead of H1(Ω), we would have

∫
ΩC

′(α)β dx = 2
∫

Ω∇α∇β dx, which is not
well defined for α in L2(Ω).

3.5.3.2 Constrained angle’s geometrical partial gradient

In this example, we add an inequality constraint of the type C(α) ≤ c on the
L2-norm of the geometrical partial gradient of the angle α with respect to a
chosen coordinate, let’s say, for example, the coordinate of y. Where the value
c ∈ R is a fixed upper bound and C(α) is given in this case by:

C(α) =
∫

Ω
|∂α
∂y
|2dx.

For α ∈ H1(Ω), using the method described in Section 3.5.3.1, we obtain the
gradient of C(α) by solving the following variational problem:

find C ′(α) ∈ H1(Ω), such that ∀β ∈ H1(Ω),∫
Ω
∇C ′(α)∇β + C ′(α)β dx = 2

∫
Ω

∂α

∂y

∂β

∂y
dx.

Remark 4 If we had worked with the angle α defined in the space L2(Ω)
instead of H1(Ω), we would have

∫
ΩC

′(α)β dx = 2
∫

Ω
∂α
∂y

∂β
∂y

dx, which is not
well defined for α in L2(Ω).
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3.5.3.3 Constraint on the angle difference to a fixed value

In this example, we add an inequality constraint of the type C(α) ≤ c on the
L2-norm of the difference of the angle α with respect to a chosen fixed value of
the angle αf . The value c ∈ R is a fixed upper bound and C(α) is given in this
case by:

C(α) =
∫

Ω
|α− αf |2dx.

For α ∈ H1(Ω), following Section 3.5.3.1, the gradient of C(α) is obtained by
solving the following variational problem:

find C ′(α) ∈ H1(Ω), such that ∀β ∈ H1(Ω),∫
Ω
∇C ′(α)∇β + C ′(α)β dx =

∫
Ω

2(α− αf )β.

Note that in the case of α ∈ L2(Ω), we will obtain C ′(α) = 2(α− αf ).

3.6 Numerical Results

3.6.1 2D orientation optimization using the optimality
criterion

We give the example of the optimization of the orientation of a cantilever
(figure 3.3) using the optimality criterion optimization algorithm to minimize
compliance. The elastic moduli of the material are set to E1 = 10, E2 = 1,
ν12 = 0.3 and G12 = 1 (the moduli satisfy A1111 + A2222 − 2A1122 − A1212 > 0).
The boundary conditions are represented in the figure 3.3a. And we initialized
with a horizontal direction of the material stiffest direction, which means that
α0 = 0 (the stiffest material direction is the direction along which the Young
modulus E1 is measured).

The convergence of the compliance with the optimality criterion (figure 3.3c)
is incredibly fast (~7 iterations). The compliance decrease significantly after
the first update of orientation, then continue a very smaller decrease at every
iteration. This is due to the stress field that is also converging to an appropriate
configuration according to the change on the anisotropy orientation. The
compliance converges when the stress field stabilizes.
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We observe that we obtained a globally symmetric orientation field, that
converges geometrically to the point where the force g is applied.

Note that the orientation is not symmetric on the right corners because the
stress field is infinitesimal on those regions. And the principal stress field is
unstable on those region. Note also that in regions where the stress field is
hydrostatic, the orientation gets a random direction.

(a) Cantilever boundary condition (b) Initial stiffest direction

(c) Evolution of the compliance (d) Optimized stiffest direction

Figure 3.3: Optimization of a cantilever
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The approach of optimality criterion supposed that the stress σ is constant
during the optimization, which is not the case practically because the stress
field σ is updated in each iteration, and it changes each time the orientation
is updated. Although the stress converges and stabilizes at the end of the
optimization loop, it’s possible for the stress field to converge to a slightly
different state according to the initialization of the stress field (that comes from
the initial orientation). This explains why we obtain a different orientation
field when we start with a different position of the orientation (figure 3.4). We
observed a small loss of the symmetry of the optimized orientation when we
started with a non symmetric initialization. (figures 3.4b and 3.4d)

Table 3.1: Initial and final compliances for the cantilever orientation optimiza-
tion with different initialization of α

α0 0 π/2 π/4 Random
Initial compliance 0.0736 0.4196 0.2099 0.1317
Final compliance 0.0526 0.0527 0.0527 0.0561

In the figure 3.5, We present the orientations that are obtained by the optimality
criterion for an L-beam and arch examples with their boundary conditions.
The elastic moduli that were used are the same as in the cantilever case, and
the initial orientation of the stiffest material direction is horizontal for both
examples.
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(a) Optimized stiffest direction for α0 =
π/2

(b) Optimized stiffest direction for α0 =
π/4

(c) Initial stiffest direction with random
α0

(d) Optimized stiffest direction with ran-
dom α0

Figure 3.4: Optimization of a cantilever orientation using different initializations
of the orientation
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(a) L-beam boundary conditions
(b) Optimized stiffest direction of an L-
beam

(c) Arch boundary conditions
(d) Optimized stiffest direction of an
arch

Figure 3.5: L-beam and arch optimal orientations with α0 = 0
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3.6.2 2D orientation optimization using the gradient de-
scent method

3.6.2.1 Gradient descent method for single-load compliance

The mechanical compliance is equal to the work of the forces that are applied
to the structure Ω. Suppose that we apply a single surface force on ΓN . Then,
the compliance is

J(α) =
∫

ΓN
guds.

Notice that this is a special case of (1.5) with l(u) = gu and Γl = ΓN . As
we have said in section 1.1.4.1 the compliance problem is self adjoint. The
derivative of J(α) is then written as:

J ′(α) = − (A∗(α))′ e(u) · e(u).

We study the example of cantilever of figure 3.3a with the elastic moduli set to
E1 = 10, E2 = 1, ν12 = 0.3 and G12 = 1. We set the applied force to gex = 1.

In figure 3.6, we present the results of the orientation optimization for three
different initializations of the orientation. Horizontal, vertical and a random
orientation.

We observe that the optimizations converge to different local minima (different
final orientations of the material) with different final values of compliance,
according to the orientation initialization. The convergence of the compliance
is smooth for the three optimizations. The smallest value of compliance is
obtained when we started with a horizontal orientation. We also observe that,
the smaller is the final compliance, the faster is the convergence. Another
thing that we observe, which is obvious, is the number of iterations for the
convergence of the descent gradient method, which is much larger than the
iteration number with optimality criterion method (80 iterations for α0 = 0
while only 7 iterations with the optimality criterion optimization).

We also observe that the final orientations have a very close configuration to
the orientations that were obtained by the optimality criterion in figure 3.4,
especially when we started with horizontal orientations.

The initialization with horizontal direction of the stiffest material direction
gave a globally symmetric and regular result. The final orientations resemble
the orientations that are obtained by the optimality criterion in figure 3.3. The
final objective function is slightly better (0.0524) than the one that is obtained
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(a) Optimized stiffest direction for α0 =
0

(b) Optimized stiffest direction for α0 =
π/2

(c) Initial stiffest direction for random
α0

(d) Optimized stiffest direction for ran-
dom α0

(e) Objective function evolution

Figure 3.6: Cantilever orientation optimization with a gradient descent
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with the optimality criterion (0.0526).

The initialization with vertical orientations gave an unsymmetrical less regular
result that globally resembles the result of the optimality criterion. The final
objective function is larger (0.0529) than the one that is obtained with the
optimality criterion (0.0527). Note that there exist some regions that have
a symmetry about the longitudinal middle axis of the beam and some larger
regions that are smoother.

Lastly, the random initialization of the rigid orientation gave an upper smooth
orientation region that has a symmetry about the longitudinal middle axis on
the bottom of the beam. The rest of the regions is irregular, non smooth and
less symmetrical.

The final objective function is better (0.0548) than the one that is obtained
with the optimality criterion (0.0561).

We observe that using a gradient method, one can obtain results that are very
close to the optimality criterion optimization and sometimes better (example
of horizontal and random orientation). We also observe that the initialization
with horizontal orientation gave the better optimized orientations. And that
the final orientation tend to be more regular when the initialization is regular.
We also observe that the final orientation field is smoother and more defined
in the regions where the deviatoric stress field is strong. This is because the
optimal orientations take the orientations of the absolute major principal stress
which is well defined on those regions. Finally, we observe that the regions that
are irregular are closer to the longitudinal midline of the beam and that this
irregular region becomes very big when we started with random iterations.

3.6.2.2 Gradient descent method for a target displacement

A target displacement optimization problem consists of minimizing a mean
squared error of the displacement to a target value on a chosen region or surface.

We chose the example of a displacement inverter: the idea behind this mecha-
nism is that when we pull the left surface ΓN of the mesh D with its lower and
upper parts fixed (see figure 3.7a), we want the opposite surface Γ0 to move in
the opposite direction, which is not possible with an isotropic material.

The objective function is written in this case as:

J(α) =
∫

Γ0

1
2 |u− u0|2 ds.
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We also do not want the left surface of the mesh to move dramatically when
we pull it: thus we add a null target displacement condition on the surface ΓN .

The objective function becomes:

J(α) =
∫

Γ0

1
2 |u− u0|2 ds +

∫
ΓN

1
2 |u|

2 ds.

In this case, the gradient of the objective function is written:

J ′(α) = − (A∗(α))′ e(u) · e(p),

where p is the adjoint displacement, solution of the elasticity adjoint problem
of the inverter example:

find p ∈ H1(Ω)2, such that ∀v ∈ H1(Ω)2:
− div(A∗e(p)) = 0 in Ω
p = 0 on ΓD
A∗e(p)n = u on Γ0 ∪ ΓN .

We chose E1 = 10, E2 = 1, ν12 = 0.3 and G12 = 1. We set the applied force to
g = −ex and the target displacement to u0 = ex.

Table 3.2: Initial and final data of the inverter target displacement optimization
with different initialization of α

α0 0 π/2 π/4
Initial cost function 0.0385 0.0416 0.0403
Final cost function 0.0366 0.0367 0.0367
Initial ux in the middle of Γ0 -0.0335 -0.0691 -0.0536
Final ux in the middle of Γ0 -0.0120 -0.0118 -0.0119

For the three different initializations, the objective function converges smoothly
to its final value. The horizontal initialization of the cantilever gave the least
value of the objective function.

The obtained orientations are regular and symmetric when we initialized with
symmetric orientation using a constant α0 (figure 3.7b and figure 3.7c). We
also observe that the optimal orientations are orientated in a way that when
we pull the left surface, the structure compress its upper and lower surfaces to
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(a) Inverter boundary con-
ditions

(b) Optimized stiffest direc-
tion for α0 = 0

(c) Optimized stiffest direc-
tion for α0 = π/2

(d) Optimized stiffest direc-
tion for α0 = π/4 (e) Objective function evolution

Figure 3.7: Displacement inverter orientation optimization
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push the surface Γ0 to the opposite direction.

While we could not move the surface Γ0 in the wanted direction, we were able
to reduce the movement of the surface Γ0 in the unwanted direction (Table 3.2).
The initialization with vertical orientations gave the best target displacement.
It can be explained by the fact that the opening that is created by the obtained
orientations close to the applied force is wider than the one that is in figure
3.7b, which will result in a greater compression of the structure and thus to a
more reach for the displacement of the surface Γ0.

We also observe that the regions that did not play a role in the compression
mechanism created by the optimal orientation conserved their initial orientations
(central region of the compressing area and the right corners regions of the
mesh).

Finally, we observe that we have lost the symmetry of the optimal orientation
when we started with a non symmetric orientations (figure 3.7d).

3.6.2.3 Gradient descent method for multi-load compliance

We study the example of a bridge under three vertical loading cases g1, g2
and g3 (see figure 3.8). Each loading case i generates a displacement field ui.
The applied forces can be interpreted as a car that crosses the bridge and that
changes its position, to a position i associated to the load case i.

The mesh D is fixed on the tip of its right bottom corner. We fix the movement
of the tip of its left bottom corner on the y-axis while we let it move freely on
the direction of the x-axis.

The objective function which is the total compliance is then written as the sum
of the compliance of each case

J(α) =
3∑
i=1

∫
Ω
uigidx.

The gradient of the objective function is the sum of the gradients of each case:

J ′(α) = −
3∑
i=1

(A∗(α))′ e(ui) · e(ui).

We choose equal values of the applied loadings; g1ey = g2ey = g3ey = −1 (ey is
the unit vector of the vertical axis).
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We initialize with a horizontal and a vertical orientation and we launch the
optimization loop.

(a) Bridge applied forces and boundary
conditions (b) Objective function evolution

(c) Optimized stiffest direction for α0 = 0

(d) Optimized stiffest direction for α0 = π/2

Figure 3.8: Multi-load bridge orientation optimization

We observe that the compliance converge smoothly for the two initialization
and that the two final values of the compliance are very close to each other.

The obtained orientations are globally symmetric. The regularity of both
examples is not typical especially for the initialization with α0 = π/2 on the
zones where orientation that diverge from the points of applied forces meet
with the perpendicular orientation of the superior area.

The optimal orientation gives a sketch of a suspension bridge where the rigid
orientations create a suspension network that connect to the points of applied
forces and that hangs the bottom surface of the bridge to the upper arch that
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is supporting the bridge.

3.6.3 2D orientation optimization using the Ginzburg-
Landau approach

Suppose the case of a single-load compliance optimization problem for the 2D
cantilever of figure 3.3a with the same anisotropic material and the same mesh
as in section 3.6.2.1. Using the Ginzburg-Landau approach, the new objective
function becomes, for both applied force g and initial displacement u0 non-nulls
on ΓN :

Jp(c, s) =
∫

ΓN gu ds∫
ΓN gu0 ds + 1

εp

∫
Ω

(
c2 + s2 − 1

)2
dx.

Starting with a horizontal orientation (α0 = 0), εp = 1000 and αGL = 0, 917.
We apply the Ginzburg-Landau orientation optimization algorithm 5, which
converges in 130 iterations. In the end, we obtain the figure of 3.9. The evolution
of the compliance, the Ginzburg-Landau penalty function

∫
Ω (c2 + s2 − 1)2

dx
and the penalization parameter εp are presented in the figures 3.10, 3.11 and
3.12.

We also solve the same optimization problem starting with a vertical orientation
(α0 = π/2), it also converges in 130 iterations, and we obtain the orientation
of the figure 3.13. The evolution of the compliance, the Ginzburg-Landau
penalty function and the penalization parameter εp of the vertically initialized
orientation are presented in the figures 3.14, 3.15 and 3.16. The obtained
orientations for both initialization are close to the ones that are obtained using
the classical gradient descent method of section 3.6.2.1. The final objective
functions are respectively 0,0573 and 0,0524.
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Figure 3.9: Optimized stiffest direction orientation with the Ginzburg-Landau
method for α0 = 0

Figure 3.10: Objective function evolution with the Ginzburg-Landau method
for α0 = 0
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Figure 3.11: Penalty function evolution with the Ginzburg-Landau method for
α0 = 0

Figure 3.12: Penalty parameter evolution with the Ginzburg-Landau method
for α0 = 0



Chapter 3. 2D orientation optimization 88

Figure 3.13: Optimized stiffest direction orientation with the Ginzburg-Landau
method for α0 = π/2

Figure 3.14: Objective function evolution with the Ginzburg-Landau method
for α0 = π/2
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Figure 3.15: Penalty function evolution with the Ginzburg-Landau method for
α0 = π/2

Figure 3.16: Penalty parameter evolution with the Ginzburg-Landau method
for α0 = π/2
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E11 E22 G12 ν12 α0

10 1 1 0.3 0

Table 3.4: Material characteristics for 2D augmented Lagrangian orientation
optimization for an inequality constraint

3.6.4 2D constrained orientation optimization

In all the examples of this section, we study a 2D cantilever of dimensions 2× 1
that have the same applied load and boundary conditions as the cantilever
of 3.6.1. The used mesh is a triangular mesh of 1891 nodes. The cantilever
structure is filled with an orthotropic material characterized by the mechanical
moduli given in table 3.3 (the Poisson’s ratio ν21 is given by ν21 = ν12

E2
E1
).

Recall that the material orientation is parameterized by one orientation angle
α. We apply the gradient descent orientation optimization algorithm 4 under a
generalized constraint that is written C(α) ≤ c, where C(α) is the constraint
function and c is a real constant that we fix before the optimization (see
section 3.5.2 for details on the inequality constraint method).

3.6.4.1 Constrained angle’s geometrical gradient

In this example, we apply a constraint on the L2-norm of the geometrical
gradient of the type C(α) =

∫
Ω |∇α|2dx ≤ c, for c = 30 (see section 3.5.3.1

for more details on the approach). The initial orientation is set horizontally
(α0 = 0). We initialize b to 105, blimit to 107, αal to 1.1 and λ0 to 0. The
algorithm converges in 55 iterations. The obtained orientation is given in
figure 3.17. We observe that the constraint C(α) ≤ 30 is verified by the
final orientation (see figure 3.18). Accordingly, we also observe that the final
orientation is well regularized in the domain Ω.
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Figure 3.17: Optimized stiffest direction orientation under a constraint on the
angle geometrical gradient

Figure 3.18: Evolution of the constraint function C(α) in the orientation
optimization under a constraint on the angle geometrical gradient
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Figure 3.19: Evolution of the compliance in the orientation optimization under
a constraint on the angle geometrical gradient

Figure 3.20: Evolution of the Lagrange multiplier in the orientation optimization
under a constraint on the angle geometrical gradient
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3.6.4.2 Constraint on the orientation angle difference to a fixed
angle

In this example, we apply constraint on the L2-norm of the geometrical partial
gradient of the type C(α) =

∫
Ω |∂α∂y |

2dx ≤ 15, for c = 15 (see section 3.5.3.2
for more details on the approach). The initial orientation is set horizontally
(α0 = 0). We initialize b to 100, blimit to 104, αal to 1.1 and λ0 to 0. The
algorithm converges in 90 iterations. The obtained orientation is given in
figure 3.17. We observe that the constraint C(α) ≤ 30 is verified by the final
orientation (see figure 3.18).

Figure 3.21: Optimized stiffest direction orientation under a constraint on the
angle partial gradient with respect to y
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Figure 3.22: Evolution of the constraint function C(α) in the orientation
optimization under a constraint on the angle partial gradient with respect to y

Figure 3.23: Evolution of the compliance in the orientation optimization under
a constraint on the angle partial gradient with respect to y
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Figure 3.24: Evolution of the Lagrange multiplier in the orientation optimization
under a constraint on the angle partial gradient with respect to y
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3.6.4.3 2D constrained orientation optimization: constraint 3

Example 1

In this example, we apply the gradient descent orientation optimization algo-
rithm under an upper bound constraint on the L2-norm of the difference of the
angle α and a fixed angle value αf = 0 (see section 3.5.3.3 for more details on
the approach). The initial orientation is set horizontally (α0 = 0). We initialize
b to 10, blimit to 104, αal to 1.1, c to 0.1 and λ0 to 0. The algorithm converges
in 70 iterations. The obtained orientation is given in figure 3.25. We observe
that the constraint C(α) ≤ 0.1 is verified by the final orientation (see figure
3.26). Accordingly, we also observe that the final orientation is symmetric and
well regularized in the domain Ω.

Figure 3.25: Optimized stiffest direction orientation under a constraint of
orientation angle difference to a fixed angle (Example 1)
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Figure 3.26: Evolution of the constraint function C(α) in the orientation
optimization under a constraint of orientation angle difference to a fixed angle
(Example 1)

Figure 3.27: Evolution of the compliance in the orientation optimization under
a constraint of orientation angle difference to a fixed angle (Example 1)
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Figure 3.28: Evolution of the Lagrange multiplier in the orientation optimization
a constraint of orientation angle difference to a fixed angle (Example 1)
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Example 2

We apply an upper bound constraint on the L2-norm of the difference of the
angle α and a fixed angle value αf that correspond to the orientation of figure
3.29. We set the initial orientation to the orientation of figure 3.29. We set b to
0.001, blimit to 10, αal to 1.3, c to 0.15 and λ0 to 0. The algorithm converges in
70 iterations. The obtained orientation is given in figure 3.30. We observe that
the constraint C(α) ≤ 0.15 is verified by the final orientation (see figure 3.31).

Figure 3.29: Initial stiffest direction orientation for the optimization under a
constraint of orientation angle difference to a fixed angle (Example 2)
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Figure 3.30: Optimized stiffest direction orientation under a constraint of
orientation angle difference to a fixed angle (Example 2)

Figure 3.31: Evolution of the constraint function C(α) in the orientation
optimization under a constraint of orientation angle difference to a fixed angle
(Example 2)
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Figure 3.32: Evolution of the compliance in the orientation optimization under
a constraint of orientation angle difference to a fixed angle (Example 2)

Figure 3.33: Evolution of the Lagrange multiplier in the orientation optimization
a constraint of orientation angle difference to a fixed angle (Example 2)
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Example 3

We apply an upper bound constraint on the L2-norm of the difference of the
angle α and a fixed angle value αf that correspond to the orientation of figure
3.34 (see section 3.5.3.3 for more details on the approach). We set the initial
orientation to the orientation of figure 3.34. We initialize b to 0.1, blimit to 104,
αal to 1.3, c to 0.5 and λ0 to 0. The algorithm converges in 70 iterations. The
obtained orientation is given in figure 3.35. We observe that the constraint
C(α) ≤ 0.5 is verified by the final orientation (see figure 3.36).

Figure 3.34: Initial stiffest direction orientation for the optimization under a
constraint of orientation angle difference to a fixed angle (Example 3)
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Figure 3.35: Optimized stiffest direction orientation under a constraint of
orientation angle difference to a fixed angle (Example 3)

Figure 3.36: Evolution of the constraint function C(α) in the orientation
optimization under a constraint of orientation angle difference to a fixed angle
(Example 3)
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Figure 3.37: Evolution of the compliance in the orientation optimization under
a constraint of orientation angle difference to a fixed angle (Example 3)

Figure 3.38: Evolution of the Lagrange multiplier in the orientation optimization
a constraint of orientation angle difference to a fixed angle (Example 3)



Chapter 4

3D orientation optimization

4.1 Optimal direction using an optimality cri-
terion

We consider a structure in a 3D problem with a fixed shape Ω filled by a linearly
elastic anisotropic material with the Hooke’s law fourth order elasticity tensor
A∗(α). Here α is a vector in RN (N = 2 or 3, depending on the material type)
that has the Euler angles, which define the orientation of the material in 3D,
as components. The anisotropic material can be a general orthotropic material
where we have α = (α1, α2, α3) ∈ R3 and the fixed Hooke’s law A is written as
(2.3), or a transverse isotropic material where we have α = (α1, α2) ∈ R2 and
where A is written as (2.6). In the case of a general orthotropic material, A is
defined by the following elasticity moduli: three Young’s moduli E1, E2 and
E3, six Poisson’s ratios ν12, ν13, ν23, ν21, ν31 and ν32, related with the three
relations ν21 = ν12

E2
E1

, ν31 = ν13
E3
E1

and ν32 = ν23
E3
E2

, and the three shear moduli
G23, G13 and G12. We suppose that E1 ≥ E2 ≥ E3. In the second case of
transverse isotropic material, A is defined by the following elasticity moduli:
two Young’s moduli E1 and Ep, three Poisson’s ratios ν1p, νp1 and νp, with the
relation νp1 = ν1p

Ep
E1
, and one shear modulus G1p. We suppose that E1 ≥ Ep.

The elasticity model that we study is the same as (1.1) (only the number of
material parameters has changed). We want to find the material local anisotropy
orientation everywhere in the domain Ω, that minimizes the compliance of this
structure. The compliance objective function is then written as:

J(α) =
∫

Ω
fu dx +

∫
ΓN
gu dx =

∫
Ω
A∗(α)e(u) · e(u) dx .
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The orientation is modeled by the Euler angles vector α. Consequently, the set
of admissible designs is defined by:

Uad =
{
α ∈ (L2(Ω))N , N = 2 or 3

}
, (4.1)

where N is equal to 2 when the material is transversely isotropic and to 3 for
the case of a general orthotropic material.

The optimization problem is then written as:

inf
α∈Uad

J(α) (4.2)

The approach of optimality criterion in 3D is the same as in 2D, the only
difference is that now we have two parameters α1 and α2 or three parameters
α1, α2 and α3 that should be optimized instead of only one parameter α in 2D.

Using the theorem of complementary energy (see section 2.22 in [2]) that gives:

∫
Ω
fu dx +

∫
ΓN
gu ds = min

∫
Ω

(A∗(α))−1σ · σ dx,

σ ∈ L2(Ω;Ms)
− div σ = f in Ω

σn = g on ΓN
σn = 0 on ∂Ω \ (ΓD ∪ ΓN)

(4.3)

where σ is a statically admissible stress tensor andMs is the space of symmetric
matrices. We can rewrite the optimization problem (4.2) as a double mini-
mization, one for the orientation (i.e. α) and the other one for the admissible
stress:

inf
α∈Uad

min
∫

Ω
(A∗(α))−1σ · σ dx,

σ ∈ L2(Ω;Ms)
− div σ = f in Ω

σn = g on ΓN
σn = 0 on ∂Ω \ (ΓD ∪ ΓN)

(4.4)

The order of the two minimizations is unimportant: they can be exchanged or
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combined in a single minimization on the pair (α, σ). We write (4.4) in the
form:

inf
α∈Uad

min
σ∈H3

∫
Ω

(A∗(α))−1σ · σ dx, (4.5)

where H3 is given by:

H3 = {σ ∈ L2(Ω;Ms), − div σ = f in Ω,
σn = g on ΓN , σn = 0 on ∂Ω \ (ΓD ∪ ΓN)}

(4.6)

We note that Uad ×H3 is a non-empty convex closed set. The interest of (4.5)
is to exchange the two minimizations, which does not change the problem, and
to optimize one and then the other. Note also that we have the same remark 1
in this 3D case.

By exchanging the two minimizations in (4.5), we obtain,

inf
σ∈H3

min
α∈Uad

∫
Ω

(A∗(α))−1σ · σ dx,

It turns out that at fixed σ, it is easy to perform the minimization in the
orientation angles vector α in Uad.

Consequently, we have found optimality conditions for the optimization problem
(4.2) which are:

1. if we know the optimal σ, then the optimal α is given by solving:

min
α∈Uad

∫
Ω

(A∗(α))−1σ · σ dx (4.7)

Optimizing the integral of (4.7) is equivalent to optimize (A∗(α))−1σ · σ
at every point x ∈ Ω.

2. if we know the optimal α, then the optimal σ is the unique point of mini-
mum of (4.3) (obtained by solving a simple partial differential equation).

4.1.1 Pointwise optimality criterion approach

Same as in 2D, the approach of a pointwise optimality criterion consists of
reducing the global minimization problem (4.7) to a local pointwise mechanic
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one (in the scale of a node or a finite element). To make such approach possible
we suppose that the stress field σ is constant.

The problem of compliance minimization then becomes:

min
α
j(α) = (A∗)−1 (α)σ · σ,

which is possible only if

∂j(αi)
∂αi

= 0 for i in 1, 2, 3.

One then has to search for the values of αi that nullify ∂j(αi)
∂αi

and then compare
the values of the compliance j(α) that one get with each combination of the
obtained zeros to determine the global minimum, which is the zero triplet that
have the lowest compliance value.

4.1.2 Result of the orientation optimality criterion ap-
proach

The analysis of this problem is presented in [88, 77]. The optimal orientations
are aligned with the directions of principal stresses [77] under certain conditions
on the anisotropic material characteristics, that we assume satisfied in this
work.

4.1.3 Principal stresses in 3D

To get the optimal orientation of the local anisotropic material one needs to
determine the eigenvalues of σ by solving det(σ − zId) = 0 where Id is the
identity matrix. Which gives the cubic characteristic equation:

z3 − I1z
2 + I2z− I3 = 0, (4.8)

where I1, I2 and I3 are the invariants of the stress tensor that have the
expressions:

I1 = tr(σ),

I2 = 1
2
(
(tr(σ))2 − tr

(
σ2
))
,

I3 = det(σ),
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which gives:

I1 = σ11 + σ22 + σ33,

I2 = σ11σ22 + σ22σ33 + σ33σ11 − σ2
12 − σ2

13 − σ2
23,

I3 = σ11σ22σ33 − σ11σ
2
23 − σ22σ

2
13 − σ33σ

2
12 + 2σ12σ13σ23.

Since σ is symmetric, all of its eigenvalues have real values. The real roots of
(4.8) are written [105, 113, 70] as:

z1 = 2
√
−Q cos

(
θ

3

)
+ 1

3I1,

z2 = 2
√
−Q cos

(
θ + 2π

3

)
+ 1

3I1,

z3 = 2
√
−Q cos

(
θ + 4π

3

)
+ 1

3I1,

where θ and Q are intermediate variables defined by:

θ = cos−1
(

R√
−Q3

)
, Q = 3I2 − I2

1
9 ,

such that the intermediate variable R is written:

R = 2I3
1 − 9I1I2 + 27I3

54 .

We then order the principal stresses from the greatest to the smallest absolute
value and determine their associated eigenvectors eI , eII and eIII , which are
also the principal stresses directions. We also choose eI ,eII and eIII in a way
that makes it an orthonormal basis.

4.1.4 Optimal orthotropic orientation

Suppose that the material is a general orthotropic material defined by (2.3).
Let ex1ey1ez1 , ex2ey2ez2 and ex3ey3ez3 be respectively the vector bases of the
three frames x1y1z1, x2y2z2 and x3y3z3 obtained by the three Euler elementary
rotations (figure 4.3).

Let xyz be the canonical fixed frame and eIeIIeIII the direct basis of principal
stresses vectors. Recall that a 3D orthonormal basis orientation is determined
by 3 elementary rotations using 3 Euler angles. We want to determine those 3
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Euler angles for the basis eIeIIeIII geometrically (eIeIIeIII=ex3ey3ez3 in this
case).

The vector eIII is touched only by the second elementary rotation, thus α2 is
deduced by direct trigonometry to obtain:

αopt2 = arccos(eIIIz ). (4.9)

In formula (4.9) α2 is defined in the range [0, π], modulo π.

Denote by OH the projection of eIII on the plane xy. The vector ex1 is obtained
by rotating the vector ex of xyz by the angle α1 in the plane xy. If eIIIx > 0,
the angle α1 is counterclockwise (or positive). The vector OH is orthogonal to
ex1 because ex1 and eIII are orthogonal (ex1 = ex2 and eIII = ez2). Thus OH
make a counterclockwise angle α1 with the direction of −ey. As a result, we
obtain that cosα1 = −OHy

|OH| . We also have |OH| = sinα2 and OHy = eIIIy , then
the angle α1 is determined by cosα1 = −eIIIy

sinα2
= −eIIIy√

1−(eIIIz )2
. If eIIIx < 0, the angle

α1 is clockwise (or negative), then we have cos (−α1) = −eIIIy√
1−(eIIIz )2

. If eIIIx = 0,
only two possibilities for OH exist; either in the direction of ey, where α1 = π,
or of −ey, where α1 = 0. This analysis leads to the following formula of α1:

αopt1 =



arccos( −eIIIy√
1−(eIIIz )2

) if eIIIx > 0

− arccos( −eIIIy√
1−(eIIIz )2

) if eIIIx < 0

π if eIIIx = 0 and eIIIy > 0
0 otherwise

(4.10)

Denote byOM the projection of eII on the plane zx1. The vectors eII , ez and ez2
are in the same plane. If eIIex1 < 0, the vector eII make a counterclockwise angle
α3 with the vector e2 about ez2 . The vectors eII , ez and ez2 are in the same plane.
Thus OM also make a counterclockwise angle α3 with ez in the plane zx1. We
obtain then that cosα3 = OMz

|OM | . We also have |OM | = cos (π/2− α2) = sinα2

and OMz = eIIz , then the angle α3 is determined by cosα3 = eIIz
sinα2

= eIIz√
1−(eIIIz )2

.

If eIIex1 > 0, the angle α1 is clockwise, then we have cos (−α1) = eIIz√
1−(eIIIz )2

.
If eIIex1 = 0, only two possibilities for OM exist; either in the direction of ez,
where α3 = 0, or of −ez, where α3 = π. This analysis leads to the following
formula of α3:
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αopt3 =



arccos eIIz√
1−(eIIIz )2

if eIIex1 < 0

− arccos eIIz√
1−(eIIIz )2

if eIIex1 > 0

0 if eIIex1 = 0 and eIIz > 0
π otherwise

(4.11)

note that we also have:

eIIex1 = eIIx cos(αopt1 ) + eIIy sin(αopt1 )

In the singular case of eIIIz = ±1, the vector eIx stays in the plan xy. Conse-
quently, the third elementary rotation that has the job of pulling out eIx from
the plane xy is nonexistent, thus:

αopt3 = 0, (4.12)

and α1 is obtained by direct trigonometry; if eIy > 0, the angle α1 is coun-
terclockwise, then α1 = arccos(eIx). if eIy < 0, the angle α1 is clockwise, then
α1 = − arccos(eIx), and if eIy = 0, the vector eI can be either the same as ex or
as -ex (resp. α1 = 0 or α1 = π), which leads to:

αopt1 =


arccos(eIx) if eIy > 0
− arccos(eIx) if eIy < 0
0 if eIy = 0 and eIx > 0
π otherwise

(4.13)

In formulas (4.10) and (4.13), α1 is defined in the range [−π, π], modulo 2π. We
checked that passing from one regime to another, the result for α1 is continuous
at least modulo 2π. In formulas (4.11) and (4.12), α3 is defined in the range
[−π, π], modulo 2π. We checked that passing from one regime to another, the
result for α2 is continuous at least modulo 2π.

4.1.5 Optimal transverse isotropic orientation

Suppose that the material is a transverse isotropic material defined by (2.6)
Let ex1ey1ez1 and ex2ey2ez2 be respectively the vector bases of the two frames
x1y1z1 and x2y2z2 obtained by the two Euler elementary rotations (figure 4.3).



Chapter 4. 3D orientation optimization 112

Figure 4.1: Projection of eIII on xy

Figure 4.2: Projection of eII on zx1
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(a) Rotation by the first Euler angle about
z′

(b) Rotation by the second Euler angle
about x1

(c) Rotation by the third Euler angle
about z2

Figure 4.3: Rotation of the material frame using Euler angles, x3y3z3 takes the
orientation of x′y′z′



Chapter 4. 3D orientation optimization 114

Let xyz be the canonical fixed frame and eIeIIeIII the direct basis of principal
stresses vectors. In the case of E1 ≥ Ep, We orient the rigid material orientation
ex
′ = ex

2 in the direction of the vector eI . We determine the two Euler angles
α1 and α2 that gives this orientation geometrically.

The vector projection of eI on the z axis gives eIz = − sin(α2), thus α2 is deduced
directly by:

α2 = − arcsin(eIz). (4.14)

In formula (4.14) α2 is defined in the range [0, π], modulo π.

Denote by OH the projection of eI on the plane xy. The vector ex1 is obtained
by rotating the vector ex of xyz by the angle α1 in the plane xy. If eIy ≥ 0,
the angle α1 is counterclockwise (or positive), we also have |OH| = cosα2 and
OHx = eIx, then the angle α1 is determined by cosα1 = eIx

cosα2
. If eIy < 0 , the

angle α1 is clockwise (or negative), we then obtain cosα1 = −eIx
cosα2

α1 =

arccos( ex
cos(α2)) if ey ≥ 0

− arccos( ex
cos(α2)) ey < 0

(4.15)

In formula (4.15), α1 is defined in the range [0, π], modulo π. We checked that
passing from one regime to another, the result for α1 is continuous modulo π.

Figure 4.4: Projection of eI on xy
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4.1.6 Optimization algorithm

We deduce an alternate directions minimization algorithm for (4.2), which
consists in minimizing successively and alternately in α and in σ.

The alternate directions algorithm is described in algorithm 7.

Algorithm 7: 3D orientation optimization using the optimality criterion
1 Initialize the angles vector α.
2 for n = 1, .., until convergence do
3 Compute the state σn, unique solution of:

min
σ∈H

∫
Ω

(A∗(αn))−1σ · σ dx, (4.16)

4 Update the angles vector αn to αn+1; the angles vector corresponding
to the principal stresses directions obtained using the optimality
formulas (4.9), (4.10), (4.13), (4.11) and (4.12) in case of a general
orthotropic material, and the optimality formulas (4.14) and (4.15) in
case of transverse isotropic material.

5 end

Note that minimizing (4.16) is equivalent to solving the elasticity equation
(1.1) to get the displacement un and to determining σn by

σn = A∗(αn)e(un)

This algorithm is interpreted as an alternating minimization in σ then in the
orientation angles vector α of the functional (4.5). In particular, we deduce
that the objective function always decreases during the iterations

J
(
αn+1

)
=
∫

Ω
A∗(αn+1)−1σn+1 · σn+1dx

≤
∫

Ω
A∗(αn+1)−1σn · σndx

≤
∫

Ω
A∗(αn)−1σn · σndx = J (αn)
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4.2 Optimal direction using a gradient descent
method

We study the model of elasticity (1.1) with the set of admissible designs
(4.1), which means that the material that compose Ω can be either a general
orthotropic material with the orientation angles vector α = (α1, α2, α3) ∈ R3,
or a transverse isotropic material with the orientation angles vector α =
(α1, α3) ∈ R2. We suppose a general objective function J(α) that is the sum of
the integral of the function j defined on Ω and of the integral of the function l
defined on ΓJ , where ΓJ do not intersect the Dirichlet boundary ΓD (see figure
3.1).

J(α) =
∫

Ω
j(u)dx +

∫
ΓJ
l(u)ds. (4.17)

The orientation optimization problem is then written as:

inf
α∈Uad

J(α) (4.18)

As with 2D orientation optimization, we notice that the orientation optimization
problem is expressed in the same way of a parametrical shape optimization
problem. Consequently, we use the theorem 1.1.1 to get the expression of the
gradient of the objective function with respect to each angle αi, which gives:

∂J(α)
∂αi

= −∂A
∗(α)
∂αi

e(u) · e(p), (4.19)

where p is the adjoint displacement obtained by solving the adjoint problem
(1.9).

If we write (4.19) using the Kelvin notation, replacing the expression of the
derivative ∂Â∗(α)

∂αi
by the expression of (3.17) (which is also applicable in the

3D case, for each Euler orientation angle αi) gives:

∂J(α)
∂αi

= −
{
e(u)

}(
PαiÂ

∗(α) + Â∗(α)P t
αi

){
e(p)

}
, (4.20)

where
{
e(u)

}
and

{
e(p)

}
are respectively the two Kelvin notation strain vectors
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for the strain tensor e(u) and the adjoint strain tensor e(p) = 1
2 (∇p+ (∇p)t),

and where Pαi is the constant matrix of (3.16) for each Euler angle αi.

4.2.1 Algorithm

Algorithm 8: 3D orientation optimization using the gradient descent
1 Initialize the angles vector α0.
2 Compute the displacement u0 by solving the elasticity problem.
3 Compute the objective function J(α0).
4 for n = 1, .., until convergence do
5 for i = 1..N (N = 2 or 3) do
6 Compute the gradient ∂J(α)

∂αi
using (4.20).

7 αni = αn−1
i − tn ∂J(αn)

∂αni
, where t is a small descent step.

8 compute un.
9 end

10 Compute the objective function J(αn).
11 if J(αn) < J(αn−1) then
12 tn+1 = 1.2tn and continue to the next iteration.
13 else
14 tn+1 = tn/2 and return to step 5.
15 end
16 end

4.3 Regularization of orientation

4.3.1 Regularization of a given orientation field

The problem of regularization of the Euler angles in 3D is that we do not only
want to regularize the three orientation directions, but that we also want to
keep the three directions of the material orthogonal. For the regularization of a
given orientation field [50, 49] this can be achieved by regularizing a symmetric
matrix M that has Q(α), the rotation matrix associated to the Euler angles
α1, α2 and α3, as a transformation matrix to a basis where M becomes diagonal
and all the algebraic multiplicities of its eigenvalues are equal to one. The
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diagonal matrix denoted D is chosen arbitrary as :

D =

 1 0 0
0 −1 0
0 0 0

 ,
The matrix M is then expressed as:

M(α) = Q(α)

 1 0 0
0 −1 0
0 0 0

Q(α)T .

The regularized objective function thus is written:

Jreg(α) =
∫

Ω

(
A(α)−1σ · σ + η2‖∇M(α)‖2

)
dx. (4.21)

Where ‖ · ‖ denotes the Frobenius norm and η the regularization parameter (or
the penalty coefficient).

The method of regularization that we used is developed and explained in [50]
(and in [49] in section 7.4.3), it briefly consist of finding numerically the closest
directions to the unregularized material directions that minimize Jreg(α).

4.4 Constrained orientation optimization

The aim of this section is to present two constrained optimization methods for
different types of constraints. The first method is a projected gradient method
that we developed for transverse isotropic materials. The latter method is an
augmented Lagrangian method that deals with inequality constraints and that
handles both transverse isotropic and general orthotropic materials.

4.4.1 Projected gradient descent

We suppose that we work with a transverse isotropic material that has a
Hooke’s tensor A(α)∗ (defined in section 2.2.2.2) with the following mechanical
moduli; two Young’s moduli E1 and Ep, three Poisson’s ratios ν1p, νp1 and νp,
with the relation νp1 = ν1p

Ep
E1
, and one shear modulus G1p. The Euler angles

vector α = (α1, α2) ∈ L2(Ω) defines the orientation of the material frame x′y′z′
through two elementary rotations (see section 2.2.3.2).
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(a) Orientation of the frame xryryr
with respect to xyz

(b) Orientation of the vector ex′ with
respect to the frame xryryr

Figure 4.5: Frames of a 3D orientation projection for a transverse isotropic
material

The projected gradient descent in 3D consists of projecting the orientation into
a set of admissible orientations after each update of the angles vector during a
gradient descent optimization loop. We define the set of admissible orientations
as the set of orientations that make an angle, that we denote β2, with a fixed
axis ar, and where the angles β2 belong to a fixed interval [βmin

2 , βmax
2 ]. The set

of admissible designs is then expressed as:

Uad = {α ∈ L2(Ω) s.t β2(α) ∈ [βmin
2 , βmax

2 ]}.

Applying the Euler angles approach, we define a frame Rr = xryrzr that is
fixed, and that is obtained as a result of two elementary rotations of the frame
RG = xyz, using two Euler angles: first αr1 about z, then αr2 about yr (see
figure 4.5). We set the axis zr as the axis ar, and we define the angle β2 from
the vector −ez , that we denote ear , to the vector ex′ (see figure 4.5b).

The value of β2 is obtained directly using trigonometric geometry:

β2 = − arccos ex′zr , (4.22)

where ex′zr , obtained by projecting ex′ on axis zr, is the third component of ex′

in the frame Rr.
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Thus we obtain the projection β̄n2 , for n ∈ N by:

β̄n2 = max(min(βn2 , βmax
2 ), βmin

2 ).

We also introduce another angle β1 from ex to the vector OH, which is the
projection of the vector ex′ in the plane exreyr (see figure 4.5b).

The role of β1 and β2 is to orient the direction vector ex′ with respect to the
frame Rr. Once written in Rr, the direction vector can be expressed in RG

using the Euler rotations approach to determine the angle vector α after the
projection.

To determine β1, we use the projection vector OH, which is obtained by:

OH = ex
′ − ex′zre

zr .

If |OH| = 0, the value β1 can be anything, thus we set β1 to zero. If |OH| 6= 0,
then two cases are possible; the first is when the second component of ex′ on the
frame Rr, denoted ex

′
yr , is positive. In this case, β2 is obtained by arccos( ex

′
xr

|OH|).
The second case is when ex′yr is strictly negative, where β2 becomes therefore
equal to − arccos( ex

′
xr

|OH|). In a broad sense, when |OH| 6= 0, the angle β1 is
obtained by:

β1 =

arccos( ex
′
xr

|OH|) ex
′
yr ≥ 0

− arccos( ex
′
xr

|OH|) ex
′
yr < 0.

(4.23)

Note that β1 is defined in the range [−π
2 ,

π
2 ] modulo π and that passing from one

regime to another, the result (4.23) for β1 is continuous modulo π. The angle β2
is defined in the range [0, π] modulo π. Note also that for (4.22) and (4.23), the
pair (β1, β2) is supposed in the interval [0, π], [−π

2 ×
π
2 ]. If ex′ < 0, and before

computing (4.22) and (4.23) we flip the vector ex′ to get the angles (β1, β2)
in the interval [0, π]× [−π

2 ,
π
2 ]. Finally, we compute the material orientation

vectors ex′ey′ez′ in the reference Rr and we deduce the angles vector α similarly
to deducing it from the directions of principal stresses (in sections 4.1.4 and
4.1.5).
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4.4.2 Augmented Lagrangian for inequality constraint

Similarly to the case of 2D orientation optimization in Section 3.5.2, and quite
often, one has to include some inequality constraints to the 3D orientation of an
orthotropic material. Consider a general orthotropic material oriented by three
Euler angles or a transverse isotropic material oriented by two Euler angles.
Let α ∈ (L2(Ω))N be the Euler angles vector, where N = 2 for the transverse
isotropic material case and N = 3 for the general orthotropic material case.
Suppose that we have one inequality constraint of the form C(α) ≤ c, where
c ∈ R is a given limit value. The optimization problem is then written:

inf
α∈Uad

J(α), (4.24)

with the set of admissible variables:

Uad =
{
α ∈ (L2(Ω))N , C(α) ≤ c

}
.

To transform the problem (4.24) into an unconstrained problem, we use the
first method of augmented Lagrangian that we introduced in (3.26) [76]. For
the iteration n ∈ N, the new objective function of the augmented Lagrangian
is written:

Lal(α, λ) = J(α)− λ(c− C(α))− b

2 (λ− λn−1)2 , (4.25)

where λ ∈ R+ is the Lagrange multiplier, λn−1 is the previous estimate of
the Lagrange multiplier obtained from the previous iteration and b ∈ R∗+ is a
penalty parameter of the quadratic penalization in (4.25). Consequently, the
constrained problem (4.24) changes into the following unconstrained problem:

min
α∈(L2(Ω))N

max
λ∈R+

Lal(α, λ). (4.26)

For an iteration n ∈ N, the augmented Lagrangian algorithm proceeds by
alternating the resolution of (3.20) for fixed values of the parameters λn and
bn, and the update of the latter according to:

λn+1 =

λn −
1
bn

(c− C (αn)) if λn − 1
bn

(c− C (αn)) ≥ 0
0 otherwise,
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and:
bn+1 =

{
αalbn if bn < btarget
bn otherwise,

for αal > 1. Note that it is unnecessary to make bn tend to infinity to satisfy
the Lagrange multiplier move constraint. Thus we gradually increase the value
of b until it reaches the targeted value that is initially defined.

To obtain a smooth variation of the angles vector α, we chose to work with α
defined in H1(Ω) instead of L2(Ω), with the inner product:

a(u, v) =
∫

Ω
∇u∇v dx+

∫
Ω
uv dx,

instead of
∫

Ω uv dx. Hence (4.26) becomes:

min
α∈(H1(Ω))N

max
λ∈R+

Lal(α, λ).

The inequality constraint augmented Lagrangian gradient descent algorithm
works by replacing the partial gradient ∂L(α,p)

∂αi
with respect to each angle αi in

algorithm 8, for 0 ≤ i ≤ N , by the expression:

∂L(α, p, λ)
∂αi

= −∂A
∗(α)
∂αi

e(u) · e(p) + λ
∂C(α)
∂αi

,

which is also obtained by applying the theorem 1.1.1, where p is the adjoint
displacement that is obtained by solving some adjoint problem.

4.4.3 Examples using an augmented Lagrangian for in-
equality

In this section, we give some examples of constraints that we have applied to
the orientation angle vector α during the 3D optimization using the inequality
constraint augmented Lagrangian. The examples are the same examples as the
one studied in 2D case, but adapted to the 3D case.

4.4.3.1 Constraint on the angle’s gradient

This example consists of optimizing the orientation angle vector α under a
constraint C(α) ≤ c, where C(α) is given by the sum of the L2-norms of the
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geometrical gradients of each Euler angle:

C(α) =
∫

Ω

N∑
i=1
|∇αi|2dx.

The optimization problem is then equivalent to (4.24) but with the set of
admissible designs:

Uad =
{
α ∈ (H1(Ω))N , C(α) ≤ c

}
.

The augmented objective function is then defined as:

Lal(α, λ) = J(α)− λ
(
c−

∫
Ω

N∑
i=1
|∇αi|2dx

)
− 1

2b (λ− λn−1)2 .

To obtain the augmented Lagrangian function derivative with respect to each
Euler angle αi, for 0 ≤ i ≤ N , we need to calculate ∂C(α)

∂αi
, which can be

obtained using a directional derivative. Thus, ∀β ∈ H1(Ω):

<
∂C(α)
∂αi

, β >=
∫

Ω
∇∂C(α)

∂αi
∇β + ∂C(α)

∂αi
βdx = 2

∫
Ω
∇αi∇βdx.

Consequently, ∂C(α)
∂αi

is obtained by solving the variational problem:

find ∂C(α)
∂αi

, such that ∀β ∈ H1(Ω),

∫
Ω
∇∂C(α)

∂αi
∇β + ∂C(α)

∂αi
βdx = 2

∫
Ω
∇αi∇βdx.

Note that remark 3 page 72 done in the 2D context, still holds in 3D, which
means that if we had worked with each Euler angle αi defined in the space
L2(Ω) instead of H1(Ω), we would have:

∫
Ω

∂C(α)
∂αi

β dx = 2
∫

Ω
∇αi∇β dx, (4.27)

for each αi.
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4.4.3.2 Constraint on the angle’s partial gradient

In this example, we apply an inequality constraint of the type C(α) ≤ c on
the sum of the L2-norms of the geometrical partial derivatives of each angle
αi with respect to a chosen coordinate, let’s say, for example, the coordinate
y (with dx = (x, y, z)). The value c ∈ R is a fixed upper bound and C(α) is
given in this case by:

C(α) =
∫

Ω

N∑
i=1

∣∣∣∣∣∂αi∂y

∣∣∣∣∣
2

dx.

For α ∈ (H1(Ω))N , using the same method described in Section 4.4.3.1, the
gradient of C(α) with respect to each angle αi is obtained by solving the
following variational problem:

find ∂C(α)
∂αi

, such that ∀β ∈ H1(Ω),

∫
Ω
∇∂C(α)

∂αi
∇β + ∂C(α)

∂αi
βdx = 2

∫
Ω

∂αi
∂y

∂β

∂y
dx.

4.4.3.3 Constraint on the orientation difference to a mean fixed
orientation

In this example, we add an inequality constraint of the type C(α) ≤ c on the
L2-norm of the angle that the orientation ex′ makes with some fixed orientation
ef , or in another words, the scalar product of those two orientations. Where
the value c ∈ R is a fixed upper bound and C(α) is given in this case by:

C(α) =
∫

Ω
|1− ex′(α)ef |2dx.

For α ∈ (H1(Ω))N and by using the same reasoning of section 4.4.3.1, the
partial gradient of α with respect to one Euler angle αi is obtained by solving
the following variational problem:

find ∂C(α)
∂αi

, such that ∀β ∈ H1(Ω),

∫
Ω
∇∂C(α)

∂αi
∇β + ∂C(α)

∂αi
βdx = −2

∫
Ω

∂ex
′(α)ef
∂αi

ex
′(α)efβdx.
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4.5 Numerical results

4.5.1 3D constrained orientation optimization

In all the examples of this section , we study a 3D cantilever of dimensions
2× 1× 1 that have the same applied load and boundary conditions as section
5.2.4. We consider a tetrahedral mesh of 960 nodes. The cantilever structure is
filled with a transverse isotropic material whose mechanical moduli are given
in table 4.1 (the Poisson’s ratio νp1 is given by νp1 = ν1p

Ep
E1
). The material is

also parameterized by two Euler orientation angles that are modeled by the
vector α. We apply the gradient descent orientation optimization algorithm 8
under a generalized constraint that is written C(α) ≤ c, where C(α) is the
constraint function and c is a real constant that we fix before the optimization
(see section 4.4.2 for details on the inequality constraint method).

Example: case 1

E1 Ep G1p ν1p νp

10 1 1 0.3 0.3

Table 4.1: Material characteristics for 3D augmented Lagrangian orientation
optimization for an inequality constraint

In this example, we apply an upper bound constraint on the L2-norm of
geometrical gradient of the angle vector α, for c = 30 (see section 4.4.3.1).
We set the initial orientation horizontally along the x-axis. We initialize b
to 103, blimit to 107, αal to 1.2 and λ0 to 0. The algorithm converges in 120
iterations. The obtained orientation is given in the figure 4.6. We observe that
the constraint C(α) ≤ 30 is verified by the final orientation (see figure 4.7).
Accordingly, we also observe that the final orientation is well regularized in the
domain Ω.
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Figure 4.6: Optimized orientation in 3D under a constraint on the angles vector
geometrical gradient

Figure 4.7: Evolution of the constraint function C(α) in the 3D orientation
optimization under a constraint on the angles vector geometrical gradient
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Figure 4.8: Evolution of the compliance in the 3D orientation optimization
under a constraint on the angles vector geometrical gradient

Figure 4.9: Evolution of the Lagrange multiplier in the 3D orientation opti-
mization under a constraint on the angles vector geometrical gradient
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Example: case 2

In this example, we apply an upper bound constraint on the L2-norm of
geometrical partial gradient of the angle vector α with respect of y, for c = 15
(see section 4.4.3.2). We set the initial orientation horizontally along the x-axis.
We initialize b to 103, blimit to 107, αal to 1.2 and λ0 to 0. The algorithm
converges in 80 iterations. The obtained orientation is given in the figure 4.6.
We observe that the constraint C(α) ≤ 15 is verified by the final orientation
(see figure 4.7).

Figure 4.10: Optimized orientation in 3D under a constraint on the angle
partial gradient along y
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Figure 4.11: Evolution of the constraint function C(α) in the 3D orientation
optimization under a constraint on the angle partial gradient along y

Figure 4.12: Evolution of the compliance in the 3D orientation optimization
under a constraint on the angle partial gradient along y
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Figure 4.13: Evolution of the Lagrange multiplier in the 3D orientation opti-
mization under a constraint on the angle partial gradient along y



Chapter 5

Coupled optimization of
topology and orientation

5.1 Coupled optimization of topology and ori-
entation in 2D

5.1.1 Optimization problem

Consider a structure in a 2D problem (hypothesis of plane stress or plane strain)
with a shape Ω composed by a linearly elastic orthotropic material and defined
inside a design domain D. The orthotropic material has the Hooke’s law fourth
order elasticity tensor A∗(α), where α ∈ L2(D) is the angle from the x-axis of
the initial frame of reference xy to the x′-axis of a material fixed frame x′y′
where the orthotropic elasticity Hooke’s law is known, constant and denoted A.
The tensor A is defined by the following elasticity moduli; two Young’s moduli
E1 and E2, with E1 > E2, one Poisson’s ratio ν12 and one shear modulus G12.
The relation between A in Kelvin formalism and the elasticity moduli is given
by (2.7).

We also suppose that the boundary of Ω is divided into three disjoints borders

∂Ω = Γ ∪ ΓN ∪ ΓD,

where Γ is the variable part of the boundary, ΓD is a fixed part of the design
boundary on which the mechanical displacement is not allowed (Dirichlet
boundary condition), and ΓN is also a fixed part of the design boundary on
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which the force g is applied (Neumann boundary condition). It is assumed that
the variable part Γ of the border is free of any effort.

The model of elasticity that is studied is then written: Find u in (H1(Ω))2 such
that:


− div(A∗(α)e(u)) = f in Ω
u = 0 on ΓD
A∗(α)e(u)n = g on ΓN
A∗(α)e(u)n = 0 on Γ.

(5.1)

The aim of the coupled optimization in this section is to find a structure shape
Ω and an orientation angle α that optimize an objective function J(Ω, α) which
in the other hand represents some physical characteristic of the design.

We suppose a general objective function J(Ω, α) that is the sum of the integral
of the function j defined on Ω and of the integral of the function l defined on
ΓJ ⊂ ∂Ω, where ΓJ does not intersect the Dirichlet boundary ΓD;

J(Ω, α) =
∫

Ω
j(u)dx +

∫
ΓJ
l(u)ds. (5.2)

The optimization problem is then written:

inf
Ω∈UΩ

ad
α∈Uαad

J(Ω, α), (5.3)

where we have two sets of admissible designs:

UΩ
ad =

{
Ω ⊂ D s.t.

∫
Ω
dx = VT

}
, (5.4)

and
Uαad =

{
α ∈ L2(Ω)

}
. (5.5)

Note that the structure Ω is optimized under a volume constraint
∫

Ω dx = VT ,
where VT ∈ R∗+ is a fixed target volume for the structure.

In this work, we have implemented two methods of coupled optimization.
While both methods use the level set approach to optimize the topology, they
differ on the approach of orientation optimization. The first one consists of
using the optimality criterion, while the latter method consists of using the
gradient descent. The method that one has to use depends on the type of the
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optimization problem.

5.1.2 Topology optimization coupled with an optimality
criteria orientation optimization method

Suppose that we want to optimize the compliance of the structure Ω, or more
precisely, the work of all the applied forces under a single loading case, the
objective function (5.2) in this case is written:

J(Ω, α) =
∫

Ω
fudx +

∫
ΓN
guds =

∫
Ω
A∗(α)e(u) · e(u)dx. (5.6)

To take into account the volume constraint in (5.5), we write a Lagrangian
L(Ω, α, λ) as the sum of the objective function J(Ω, α) and the constraint
function C(Ω) =

∫
Ω dx− VT multiplied by a Lagrange multiplier λ ∈ R:

L(Ω, α, λ) = J(Ω, α) + λ(
∫

Ω
dx− VT )

=
∫

Ω
A∗(α)e(u) · e(u)dx + λ(

∫
Ω
dx− VT ).

(5.7)

The coupled optimization problem (5.3) becomes:

min
Ω∈D
α∈Uαad

max
λ∈R+

L(Ω, α, λ). (5.8)

In practice, we perform an alternate minimization with respect to the angle α
and to the shape Ω. Therefore, the angle is fixed when the shape is updated.
However, in this case, the structure shape Ωn+1 will contain some regions where
the angle is not defined if some boundary parts move outward from the domain
Ωn. To avoid this problem we use an ersatz material approximation (see section
1.3.1) and the orientation angle in this case is defined and optimized on the
whole domain D (including the void).

Finally, the algorithm (Algorithm 9) of topology optimization coupled with
optimality criterion method for the orientation consists of a topology optimiza-
tion loop where after each update of the shape Ωn to Ωn+1, the orientation
angle αn, at each iteration n, is updated to align the stiffest axis of the material
with the direction of the major principal stress. For this latter purpose, we
compute the stress σnΩn+1 unique solution of:
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min
σ∈H

∫
Ωn+1

(A∗ (αn))−1 σ · σdx, (5.9)

where the set H is given by (3.5). Then, we compute the angle αn+1 using the
optimality formula (3.10). Note that the update of the angle using an optimality
criterion corresponds to an alternate update (or alternate minimization) of
the stress and the orientation (see section 3.1 for more details about this and
about why we solve (5.9)). After each update on the angle, we regularize
the orientation using the regularization algorithm 6. We repeat this whole
procedure until the objective function is converged. In practice, the topology
converge to a stable shape, mostly because the descent step of the shape is
small. The final orientation that are obtained when the shape function is
converged are usually optimal. If it is not the case, one could add some more
iteration until the orientations also get into an optimal state.

Algorithm 9: 2D topology optimization coupled with the optimality crite-
rion method for orientation

1 Initialize the anisotropy angle α0 and the shape level set function φ0
2 for n = 0, .., until convergence do
3 Solve the elasticity problem (5.1) to get unΩn .
4 Compute the shape sensitivity θ 7→ ∂L(Ωn,αn,λn)

∂Ω (θ) using (1.21).
5 Update the level set function φn (and the shape Ωn) such that

L (Ωn+1, αn, λn) < L (Ωn, αn, λn) (see Algorithm 2)
6 Update the Lagrange multiplier λn to λn+1 using (1.24).
7 Compute the stress σnΩn+1 , unique solution of:

min
σ∈H

∫
Ωn+1

(A∗(αn))−1σ · σ dx, (5.10)

by solving the elasticity problem (by deducing σnΩn+1 from unΩn+1).
8 Update the angle αn to αn+1; the angle corresponding to the major

principal stress obtained using the optimality criterion formula (3.10).
9 Regularize the orientation using Algorithm 6.

10 end

Note that in each iteration n ∈ N, we solve the elasticity problem twice
to obtain two different displacements. The first time is before computing
the shape sensitivity before updating the shape from Ωn. We denote the
obtained displacement by unΩn . The second time that we solve the elasticity
problem is after the update of the shape to Ωn+1, before updating the
angle. We denote the displacement and the stress that are obtained from
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this later resolution of elasticity unΩn+1 and σnΩn+1 . Note also that, when λ
is converged, the algorithm 9 is interpreted as an alternate minimization
in the shape Ω then in the stress σ then in the angle α of the function L(Ω, α, λ).

5.1.3 Numerical results

Cantilever example

We study a classical example of a cantilever Ω in elasticity which is a subset
of a rectangular domain D of dimension 2 × 1. The left side of D is fixed
(Dirichlet boundary condition) and a vertical force g = −ey is applied on a
small boundary subset ΓN centered on the right side of the cantilever and
that has a length size of 0.1(see figure 5.1). The structure is filled with an
orthotropic material that is defined by the mechanical moduli of table 5.1 (the
Poisson’s ratio ν21 is given by ν21 = ν12

E2
E1
). We optimize the compliance:

J(Ω, α) =
∫

ΓN
guds, (5.11)

under a constraint of a target volume VT which is equal to 40% of the volume
of D. The Lagrangian of this problem is defined by:

L(Ω, α, λ) =
∫

ΓN
guds + λ

(∫
Ω
dx− VT

)
, (5.12)

and the two set of admissible designs are defined by (5.4) and (5.5).

E11 E22 G12 ν12 α0

10 5 2 0.3 0

Table 5.1: Material characteristics for the cantilever and the L-beam examples

We initialize the optimization with an horizontal orientation of the stiffer
direction of the material (α0 = 0) and with the shape of figure 5.1. Then we
apply the coupled topology and optimality criterion orientation optimization
algorithm (algorithm 9). Note that we use a mesh of 11626 triangular elements.

The coupled shape and topology optimization algorithm converges after 70
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Figure 5.1: Initialization of the cantilever: plot of stiffest direction of the local
anisotropy

iterations. When the optimization algorithm is converged, we obtain the
optimized structure of figure 5.2. We observe that the stiffer material direction
for the optimized orientation is uniformly parallel to the direction of the bars
of the optimal shape. We also observe that the orientation is well regularized
in the whole structure domain, except in the central zone, in the joint of the
four bars that form an X-shape. The small irregularity of this region is caused
by random local orientations that are obtained by the optimality criterion.
This randomness is due to the stress being hydrostatic in this region. Another
cause of irregularity is that we use a relatively small regularization radius
(see subsection 3.4.1), because we do not want to lose the parallelism of the
optimized orientation with the bars of the optimized shape. We also observe
that the orientation is well symmetric in the whole domain, except the same
irregular region. This is also another consequence of the stress being hydrostatic
in this region.

Figure 5.2: Optimized cantilever: plot of stiffest direction of the local anisotropy
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Cantilever example: comparison of different strategies

In the following, we consider the same previous model problem of cantilever with
the initial shape of figure 5.3 and with an horizontal orientation initialization
(α0 = 0). We also consider the material characteristics of table 5.2 and a
structured triangular mesh of 5151 nodes. In this study, we apply different
strategies of coupled optimizations of shape and orientation using an optimality
criterion: the first strategy consists of optimizing the orientation and the
shape simultaneously during each iteration. This means that the orientation is
updated after each update of the shape. The second strategy is the same as
the first strategy but we begin updating the orientation at iteration n = 25.
The third strategy is to optimize the orientation after each 50 updates of the
shape and the last strategy is to optimize the orientation only after when shape
and topology optimization is finished. The figures 5.4 to 5.7 give the obtained
structures with each optimization strategy. The objective function, Lagrangian
function and the volume evolution for each strategy are presented in the figures
5.8, 5.9 and 5.10.

Figure 5.3: Initial shape of the cantilever

E11 E22 G12 ν12 α0

10 1 1 0.3 0
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E11 E22 G12 ν12 α0

Table 5.2: Material characteristics for the cantilever

We observe that the four optimizations converge approximately after 65 iter-
ations and that the obtained results are different from each other. The best
compliance are obtained in the case of the simultaneous optimizations of the
shape and orientation (strategy 1 and 2). We also observe that the structure
that is obtained by the first strategy is not symmetric. This is because the
starting topology contains many bar joints regions, which means regions of
hydrostatic stress. This leads to some random values of local orientations on
those regions when one starts the optimization of orientation from the begin-
ning. Lastly, the strategy of optimizing the orientation after the optimization
of the shape gave the worst final compliance of all four strategies. This latter
obtained structure has the same topology as the results of strategy 3 and 5 but
a different shape.
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(a) Optimized cantilever: obtained shape

(b) Optimized cantilever: plot of stiffest direction of the
local anisotropy

Figure 5.4: Optimized cantilever using strategy 1: simultaneous optimization
of shape and orientation using the optimality criterion
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(a) Optimized cantilever: obtained shape

(b) Optimized cantilever: plot of stiffest direction of the
local anisotropy

Figure 5.5: Optimized cantilever using strategy 2: simultaneous optimization
of shape and orientation using the optimality criterion for n ≥ 25
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(a) Optimized cantilever: obtained shape

(b) Optimized cantilever: plot of stiffest direction of the
local anisotropy

Figure 5.6: Optimized cantilever using strategy 3: optimization of orientation
each 50 iterations of shape optimization using the optimality criterion
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(a) Optimized cantilever: obtained shape

(b) Optimized cantilever: plot of stiffest direction of the
local anisotropy

Figure 5.7: Optimized cantilever using strategy 4: optimization of shape then
optimization of orientation using the optimality criterion
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Figure 5.8: Compliance evolution for each strategy of the coupled shape and
orientation optimization using an optimality criterion for the 2D cantilever
example
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Figure 5.9: Lagrangian evolution for each strategy of the coupled shape and
orientation optimization using an optimality criterion for the 2D cantilever
example
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Figure 5.10: Volume evolution for each strategy of the coupled shape and
orientation optimization using an optimality criterion for the 2D cantilever
example
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L-beam example

We study an example of an L-beam Ω in elasticity which belongs to the L-
domain D of dimensions L = H = 2 and l = h = 1 shown on figure 5.11. The
upper side of D is fixed (Dirichlet boundary condition) and a vertical force
g = −ey is applied on a small boundary subset ΓN located on the extreme
left side and that have a length size of 0.1 (see figure 5.11). The structure
is filled with an orthotropic material with the mechanical moduli of table 5.1
(the Poisson’s ratio ν21 is given by ν21 = ν12

E2
E1
). We optimize the compliance

expressed by (5.11) under a volume constraint of 40% of the domain D. The
Lagrangian of this problem is defined by (5.12) and the two sets of admissible
designs are defined by (5.4) and (5.5). We initialize the optimization with
the shape of figure 5.12 and an horizontal orientation of the stiffer direction
of the material (α0 = 0). We use a mesh of 17468 triangular elements for
the domain D. Finally, we perform the coupled optimization by applying the
coupled topology and optimality criterion orientation optimization algorithm
(algorithm 9).

Figure 5.11: 2D L-beam load and boundary condition

The coupled shape and topology optimization algorithm converges after 60
iterations. When the optimization algorithm has converged, we obtain the
optimized structure of figure 5.13. We observe that the stiffer material direction
for the optimized orientation is uniformly parallel to the direction of the bars
of the obtained optimal shape. We also observe that the orientation is well
regularized on the whole structure, even in the structure joints.
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Figure 5.12: Initialization of the L-beam: plot of stiffest direction of the local
anisotropy

Figure 5.13: Optimized L-beam: plot of stiffest direction of the local anisotropy
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5.1.4 Topology optimization coupled with a gradient
descent orientation optimization method.

Because the optimization of the orientation with an optimality criterion is very
limited to the self-adjoint problem of single load compliance optimization, one
has to turn to the gradient descent method for the orientation optimization. It
is rather interesting when one wants to consider a further industrial problem
such as a multi-load optimization problem, a constrained orientation problem or
a non self-adjoint problem such as the target displacement or stress optimization
problem. For this reason. we present in this section the coupled optimization
of the topology with the orientation of the anisotropy using a gradient descent
method in 2D. We suppose a general objective function J(Ω, α) written as
(5.2), where ΓJ does not intersect the Dirichlet boundary ΓD (see figure 3.1).
The Lagrangian function, defined to take into account the volume constraint
(5.5), is written:

L(Ω, α, λ) = J(Ω, α) + λ
(∫

Ω
dx− VT

)
, (5.13)

where λ ∈ R is the Lagrange multiplier. The coupled optimization problem
(5.3) is then written:

min
Ω∈D
α∈Uαad

max
λ∈R
L(Ω, α, λ). (5.14)

While one has to use the sensitivity of the Lagrangian with respect to the
shape during the optimization, the optimization in the orientation is indifferent
to the constraint C(Ω) thus the sensitivity of the Lagrangian with respect to
the orientation angle is equivalent to the sensitivity of the objective function
also with respect to the orientation angle. Besides, in practice, we suppose
that the angle is fixed when the shape is updated. We use an ersatz material
approximation (see section 1.3.1) to avoid having regions in the shape Ωn+1
that do not have an orientation when some boundaries parts move outward
from the domain Ωn. As a result, the orientation angle in this case is defined
and optimized on the whole domain D (including the void).

The algorithm (Algorithm 10) of coupled optimization consists of a topology
optimization loop, where at each iteration n ∈ N, one adds a fixed number
M ∈ N of updates of the orientation angle using the gradient descent. Note
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that the update of the orientation is accepted only when:

J(Ωn, αn,m+1) < J(Ωn, αn,m). (5.15)

In the other case, the step is repeatedly decreased until the condition (5.15)
is verified. The whole steps on an iteration n are repeated until the objective
function is converged. In practice, we observe that the sequence of shapes Ωn

converges. In other words, the algorithm stops when the shape is converged.
The orientations that are obtained in the end are usually optimal. If it is not
the case, one could add some more iterations of orientation optimization by
repeating only the steps 9 to 17 in algorithm 10 until the orientation converge
to an optimal state.

Note that, when λ is converged, this algorithm is interpreted as an alternate
minimization in the shape Ω and in the angle α of the function L(Ω, α, λ).

Cantilever example: comparison of different strategies
In the following, we consider the same compliance optimization problem of
cantilever as in section 5.1.3 with the initial shape of figure 5.3 and with an
horizontal orientation initialization (α0 = 0). We also consider the material
characteristics of table 5.2 and a triangular mesh of 5151 nodes. Recall also that
we have a constraint of a target volume VT which is equal to 40% of the volume
of D. In this study, we apply different strategies of coupled optimizations of
shape and orientation using the gradient descent method and without applying
the orientation regularization: the first strategy consists of optimizing the
orientation and the shape simultaneously during each iteration. This means
that the orientation is updated after each update of the iteration. The second
strategy is the same as the first strategy but we begin updating the orientation
at iteration n = 20. The third strategy is also the same as the first strategy
but we begin updating the orientation at iteration n = 50. The fourth strategy
is to apply 60 iterations of gradient descent of the orientation optimization
after each 20 updates of the shape optimization. The fifth strategy is to apply
60 iterations of gradient descent of the orientation optimization after each 50
updates of the shape optimization. Lastly, the sixth strategy is to optimize
the orientation only after when the shape optimization loop has finished. The
figures 5.14 to 5.19 give the obtained structures with each optimization strategy.
The objective function, Lagrangian function and the volume evolution for each
strategy are presented in the figures 5.20, 5.21 and 5.22.

The shape converges approximately in 70 iterations, for all the six optimizations.
For the simultaneous optimization strategies (strategy 1 to 3). The obtained
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Algorithm 10: 2D topology optimization coupled with the gradient descent
method for orientation

1 Initialize the anisotropy angle α0 and the shape level set function φ0
2 for n = 1, .., until convergence do
3 Solve the elasticity problem, then solve the adjoint problem (in case of

a non self-adjoint problem).
4 Compute the shape sensitivity.
5 Update the level set function φn and the shape Ω
6 Update the Lagrange multiplier λn to λn+1 using (1.24)
7 if (n ≥ nor) and (n mod nper = 0) then
8 for m = 1, ..,M do
9 Solve the elasticity problem, then solve the adjoint problem (in

case of a non self-adjoint problem).
10 Compute the gradient ∂J(Ωn,αn,m)

∂αn,m
using (3.18).

11 Regularize the gradient ∂J(Ωn,αn,m)
∂αn,m

.
12 αn,m+1 = αn,m − tn,m ∂J(Ωn,αn,m)

∂αn,m
, where tn,m is a small descent

step.
13 if J(Ωn, αn,m) < J(Ωn, αn,m−1) then
14 tn,m+1 = 1.2tn,m and continue to the next iteration.
15 else
16 tn,m+1 = tn,m/2 and return to the step 9.
17 end
18 end
19 αn+1 = αn,M .
20 end
21 end
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shapes are different from each others even if both the shapes and orientations
are symmetric in the three obtained structures. The best compliance is obtained
for the second strategy, namely when we started optimizing the orientation at
iteration 20. This shows that starting the optimization of orientation from the
first shape optimization iteration is not a good strategy. This is because in the
beginning of the optimization the shape has a bad topology that would influence
the orientation result, which in turn will influence the result of the final shape.
However when we start from the orientation optimization after 20 iterations,
which means after the first changes of topology. The orientation would start
converging according to a better shape (parallel to the bars). On the other
hand, starting optimizing the orientation optimization latter did not make the
final compliance any better from the first strategy. This is because the shape
in this case missed the influence of the orientation optimization before the 50
iterations which lead it to converge to a worse shape than that of the second
strategy. The fourth strategy which consists of optimizing the orientation each
20 iterations gave the same result as the simultaneous optimization starting
from iteration 20, with the same final compliance. Also the fifth strategy which
consists of optimizing the orientation each 50 iterations gave the same result
as the simultaneous optimization starting from iteration 50, with the same
final compliance. Lastly, the strategy of optimizing the orientation after the
optimization of the shape gave the worst final compliance of all six strategies.
The obtained structure have the same topology as the results of strategy 3 and
5 but a different shape.
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(a) Optimized cantilever: obtained shape

(b) Optimized cantilever: plot of stiffest direction of the
local anisotropy

Figure 5.14: Optimized cantilever using strategy 1: simultaneous optimization
of shape and orientation using the gradient descent method
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(a) Optimized cantilever: obtained shape

(b) Optimized cantilever: plot of stiffest direction of the
local anisotropy

Figure 5.15: Optimized cantilever using strategy 2: simultaneous optimization
of shape and orientation using the gradient descent method for n ≥ 20
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(a) Optimized cantilever: obtained shape

(b) Optimized cantilever: plot of stiffest direction of the
local anisotropy

Figure 5.16: Optimized cantilever using strategy 3: simultaneous optimization
of shape and orientation using the gradient descent method for n ≥ 50
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(a) Optimized cantilever: obtained shape

(b) Optimized cantilever: plot of stiffest direction of the
local anisotropy

Figure 5.17: Optimized cantilever using strategy 4: optimization of orientation
the gradient descent method after each 20 iterations of shape optimization
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(a) Optimized cantilever: obtained shape

(b) Optimized cantilever: plot of stiffest direction of the
local anisotropy

Figure 5.18: Optimized cantilever using strategy 5: optimization of orientation
using the gradient descent method after each 50 iterations of shape optimization
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(a) Optimized cantilever: obtained shape

(b) Optimized cantilever: plot of stiffest direction of the
local anisotropy

Figure 5.19: Optimized cantilever using strategy 6: optimization of shape then
optimization of orientation using the gradient descent method
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Figure 5.20: Compliance evolution for each strategy of the coupled shape
and orientation optimization using the gradient descent method for the 2D
cantilever example
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Figure 5.21: Lagrangian evolution for each strategy of the coupled shape and
orientation optimization using the gradient descent method for the 2D cantilever
example
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Figure 5.22: Volume evolution for each strategy of the coupled shape and
orientation optimization using the gradient descent method for the 2D cantilever
example



Chapter 5. Coupled optimization of topology and orientation 161

Displacement inverter example

We study an example of a displacement inverter Ω in elasticity which belongs
to a square domain D of dimensions 1× 1. It is fixed on two small boundary
subsets ΓD, of a length size 0.04, located on the left side of D and a force
g = −ex is applied on a centered boundary subset ΓN , of a length size 0.1,
located on the left side of D (see figure 5.23a). The structure is filled with
an orthotropic material where the values of its mechanical moduli are given
in table 5.3 (the Poisson’s ratio ν21 is given by ν21 = ν12

E2
E1
). The material is

also parameterized by an orientation angle α. A displacement inverter function
is to move the subset Γ0, of a length size 0.1, to the opposite direction of
the pulling force g, applied on the subset ΓN that is also of the length size
0.1. This means that the x component of the displacement u on Γ0 should be
positive. Therefore, the objective function of this problem, which is minimized,
consists of the squared error between a target displacement u0 and the structure
displacement on the surface Γ0:

J(Ω, α) =
∫

Γ0

1
2 |u− u0|2dx. (5.16)

We do not want the left surface of the mesh to move dramatically when we pull
it, thus we add a null target displacement condition on the surface ΓN . The
objective function becomes:

J(Ω, α) =
∫

Γ0

1
2 |u− u0|2 ds +

∫
ΓN

1
2 |u|

2ds. (5.17)

We also have a constraint of a target volume that makes 40% of the whole
domain D. We define the Lagrangian of this problem by:

L(Ω, α, λ) =
∫

Γ0

1
2 |u− u0|2dx+

∫
ΓN

1
2 |u|

2ds + λ
(∫

Ω
dx− VT

)
, (5.18)

and the two sets of admissible designs are defined by (5.4) and (5.5). Wee
also added a constraint of symmetry of the material orientation about the
axis of the applied force, this constraint is taken into account by applying a
symmetrization of the orientation angle α whenever it is updated using the
angle gradient.

We initialize the optimization with an horizontal orientation of the stiffer
direction of the material (α0 = 0) and with the shape of figure 5.23b. We set
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the target displacement to u0 = ex. Then we apply the coupled topology and
gradient descent orientation optimization algorithm (algorithm 10) without
the orientation regularization step 11 for M = 60, nor = 50 and nper = 50.
Note that we use a mesh of 20000 triangular elements and that, before the
optimization, we have ux = −0.05630157 at the midpoint of Γ0. Note also that
because the optimization problem of this example is non self-adjoint, we have
to solve an adjoint problem and compute an adjoint state p before computing
either the shape or the orientation gradient, at each iteration n. The adjoint
problem is given by:
Find p ∈ (H1(Ω))2, such that:

− div(A∗(α)e(p)) = 0 in Ω
p = 0 on ΓD
A∗(α)e(p)n = u0 on Γ0

A∗(α)e(p)n = 0 on Γ.

E11 E22 G12 ν12 α0

10 1 1 0.3 0

Table 5.3: Material characteristics for the displacement inverter example
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(a) Model and boundary con-
ditions of the displacement in-
verter

(b) Initialization of the displacement inverter:
plot of stiffest direction of the local anisotropy

Figure 5.23: Displacement inverter optimization problem

Figure 5.24 presents the structure that was generated by the coupled optimiza-
tion algorithm 10. We observe that the optimization of the shape has removed
a significant amount of material from the central region of the structure to
create a compliant mechanism. The obtained compliant mechanism works in
a way that, when the force g is applied, the upper and bottom sides of the
structure are closed together to make the two bars, that are on the right, push
the surface Γ0 in the direction of ex. We also observe that the obtained optimal
orientation of the stiffer material direction is globally parallel to the bars of
the shape and that the obtained orientation is symmetric and well regularized,
even at the level of the joints of the bars. The value of the displacement in
the direction of ex at the midpoint of Γ0 gives ux = 0.302197. This value veri-
fies that the surface Γ0 is moving in the opposite direction of the applied force g.
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Figure 5.24: Optimized displacement inverter: plot of stiffest direction of the
local anisotropy
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Results: Comparison of the inverter results

In the following, we consider the same previous problem of inverter optimization
with the same initial shape of figure 5.23b. We also consider the same material
characteristics of table 5.3 and the same mesh. We apply two different strategies
of coupled optimizations of shape and orientation using the gradient descent
method without applying the orientation regularization: the first strategy
consists of applying 60 iterations of gradient descent optimization orientation
after each 50 iteration of shape optimization and the second strategy is to
optimize the orientation only after applying the topology optimization. The
figure 5.25 gives the results that are obtained with each optimization strategy
for two different initialization of the orientation; horizontally and vertically.

Figure 5.25: Obtained structures and objective functions for the two optimiza-
tion strategies and the two initializations of the inverter example. Optimization
1: orientation optimized only in the end with α0 = π/2. Optimization 2:
orientation optimized only in the end with α0 = 0. Optimization 3: concurrent
optimization with α0 = π/2. Optimization 4: concurrent optimization with
α0 = 0

The shape converges approximately after 70 iterations for the example 1.
For the remaining three examples, the convergence of the shape is after 210



Chapter 5. Coupled optimization of topology and orientation 166

iterations. We observe that four obtained results are different from each
other. The examples 3 and 4 results, where one optimized the shape and the
orientation concurrently, gave a lower objective function than the ones where
we have optimized the orientation only at the end. Also the optimizations
where we have initialized the orientations horizontally gave a lower objective
function than when they were initialized vertically. The best result, of objective
function and consequently of displacement on the surface Γ0 (see table 5.4),
is obtained when we optimized the orientation concurrently with the shape
(optimization number 4). Note that in the last iteration of each optimization,
the value of each objective function increases because of the regularization of
orientation that we do at the end.

Optimization 1 2 3 4
ux ux = 0.10011 ux = 0.12936 ux = 0.20876 ux = 0.30220

Table 5.4: The inverter example obtained displacement along ex, in the midpoint
of the subset Γ0 of each optimization

Results: 2D Bridge

We study a 2D bridge in elasticity, which is a subset of a rectangular domain
D of dimension 4× 1, under three vertical loading cases with the three forces
g1, g2 and g3, applied respectively on the three surface boundaries ΓN1 , ΓN2

and ΓN3 (see Fig. 5.39a). During each loading case i is applied a force gi and
generated is a displacement field ui. The applied forces can be interpreted as
a vehicle that crosses the bridge and that changes its position, to a position
xi associated to the force gi. The mesh D is fixed from the tips of its right
bottom corners. We fix the movement of the tip of its left bottom corner
along the y-axis while we let it moves freely along the direction of the x- axis.
The structure is filled with an orthotropic material where the values of its
mechanical moduli are given in table 5.3 (The Poisson’s ratio ν21 is given by
ν21 = ν12

E2
E1
). The objective function of this problem is written as the sum of

compliance of each loading case i:

J(Ω, α) =
3∑
i=1

∫
ΓNi

giuidx. (5.19)

We also have a constraint of a target volume that makes 30% of the whole
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volume of D. We define the Lagrangian then by:

L(Ω, α), λ) =
3∑
i=1

∫
ΓNi

giuidx+ λ
(∫

Ω
dx− VT

)
, (5.20)

and the two sets of admissible designs by (5.4) and (5.5).

We choose a structured and symmetric triangular mesh that is constituted by
6601 nodes. We run the coupled optimization using two strategies without
applying the orientation regularization; the first strategy consists of applying 60
iterations of gradient descent orientation optimization each 50 iterations of the
shape optimization. The second strategy consists of optimizing the orientation
using the gradient descent method when the shape optimization loop is finished.
We proceed with the two strategies using the initial shape of figure 5.27 and
using two different initializations of the orientation one horizontally and the
other vertically. In the end, the obtained structures are presented in the figures
5.28 to 5.30. The objective function, Lagrangian function and the volume
evolution for each strategy are presented in the figures 5.31, 5.32 and 5.33.

Note that in this problem we have three displacement. This means that one
needs to solve the elasticity problem three times, once for each displacement,
whenever we want to compute a shape gradient or an Euler angle partial
gradient in the two used algorithms. At the end of the optimization, we obtain
the structure in the figure 5.40.

Figure 5.26: 2D bridge loads and boundary conditions

We observe that obtained results are different from each other. The coupled
shape optimization where one optimize the shape and the orientation gave a
lower global compliance than the ones where the orientation is fixed. Also the
optimizations where we have initialized the orientations horizontally gave a lower
global compliance than when we they were initialized vertically. The best result,
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Figure 5.27: Initial 2D bridge shape

of global compliance is obtained when we optimized the orientation concurrently
with the shape starting with an horizontal orientation. The convergence of the
algorithm while the orientation is fixed horizontally (140 iterations) was faster
than the concurrent orientation. However, the convergence was the slowest of
the four optimizations when the orientation was fixed vertically (230 iterations).
In the other side, the concurrent optimization iterations was not influenced
by the initialization of orientation (160 iterations until convergence for both
initializations).
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(a) Optimized shape for the case of horizontal stiff orien-
tation (α = 0)

(b) Optimized shape for the case of vertical stiff orienta-
tion (α = π

2 )

Figure 5.28: Shape optimized anisotropic bridge with a fixed orientation
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(a) Optimized bridge: obtained shape

(b) Optimized bridge: plot of stiffest direction of the local
anisotropy

Figure 5.29: Optimized bridge using horizontal orientations initialization and
the strategy of optimizing the orientation using the gradient descent method
after each 50 iterations of shape optimization
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(a) Optimized bridge: obtained shape

(b) Optimized bridge: plot of stiffest direction of the local
anisotropy

Figure 5.30: Optimized bridge using vertical orientations initialization and the
strategy of optimizing the orientation using the gradient descent method after
each 50 iterations of shape optimization
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Figure 5.31: Compliance evolution for each optimization of the coupled shape
and orientation optimization using the gradient descent method for the 2D
bridge example
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Figure 5.32: Lagrangian evolution for each optimization of the coupled shape
and orientation optimization using the gradient descent method for the 2D
bridge example
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Figure 5.33: Volume evolution for each optimization of the coupled shape and
orientation optimization using the gradient descent method for the 2D bridge
example
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5.2 Coupled optimization of topology and ori-
entation in 3D

5.2.1 Optimization problem

Consider a structure in 3D with a shape Ω composed by a linearly elastic
orthotropic material and defined inside a design domain D. The orthotropic
material has the Hooke’s law fourth order elasticity tensor A∗(α), where
α ∈ (L2(D))N is the Euler angles vector that orient the material fixed frame
x′y′z′ with respect to the initial frame of reference xyz, where N = 2 in the case
of a transverse isotropic material and N = 3 in the case of a general orthotropic
material. In the material frame x′y′z′, the orthotropic elasticity Hooke’s law is
known, constant and denoted A. In the case of transverse isotropic material,
the tensor A is defined by the following elasticity moduli; two Young’s moduli
E1 and Ep, three Poisson’s ratios ν1p, νp1 and νp, with the relation νp1 = ν1p

Ep
E1

,
and one shear modulus G1p. We suppose that E1 ≥ Ep. In the case of a general
orthotropic material, A is defined by the following elasticity moduli; three
Young’s moduli E1, E2 and E3, six Poisson’s ratios ν12, ν13, ν23, ν21, ν31 and ν32,
related with the three relations ν21 = ν12

E2
E1
, ν31 = ν13

E3
E1

and ν32 = ν23
E3
E2
, and

the three shear moduli G23, G13 and G12. We suppose that E1 ≥ E2 ≥ E3. The
relation between A in Kelvin formalism and the elasticity moduli, in the two
cases, is given respectively by the formulas (2.6) and (2.3). We also suppose
that the boundary of Ω is divided into three disjoints borders

∂Ω = Γ ∪ ΓN ∪ ΓD,

where Γ is the variable part of the boundary, ΓD is a fixed part of the design
boundary on which the mechanical displacement is fixed (Dirichlet boundary
condition), and ΓN is also a fixed part of the design boundary on which the
force g is applied (Neumann boundary condition). It is assumed that the
variable part Γ of the border is free of any effort.

The model of elasticity that is studied is then written: Find u in (H1(Ω))3 such
that: 

− div(A∗(α)e(u)) = f in Ω
u = 0 on ΓD
A∗(α)e(u)n = g on ΓN
A∗(α)e(u)n = 0 on Γ.

The aim of the coupled optimization in this section is to find a structure shape Ω
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and an orientation angles vector α that optimize an objective function J(Ω,α)
which in the other hand represents some physical characteristic of the design.

We suppose a general objective function J(Ω,α) that is the sum of the integral
of the function j defined on Ω and of the integral of the function l defined on
ΓJ , where ΓJ does not intersect the

J(Ω,α) =
∫

Ω
j(u)dx +

∫
ΓJ
l(u)ds. (5.21)

The optimization problem is then written:

inf
Ω∈UΩ

ad
α∈Uα

ad

J(Ω,α), (5.22)

where we have two sets of admissible designs:

UΩ
ad =

{
Ω ⊂ D s.t.

∫
Ω
dx = VT

}
, (5.23)

and

Uαad =
{
α ∈ (L2(Ω))N

}
. (5.24)

Note that the structure Ω is optimized under a volume constraint
∫

Ω dx = VT ,
where VT ∈ R∗+ is a fixed target volume for the structure.

5.2.2 Topology optimization coupled with an optimality
criterion orientation optimization method

Similarly to 2D, this method in 3D is limited to the optimization problem of
a single load compliance minimization. The objective function, which is now
parameterized by the shape Ω and the angles vector α is written:

J(Ω,α) =
∫

Ω
fudx +

∫
ΓN
guds =

∫
Ω
A∗(Ω,α)e(u) · e(u)dx. (5.25)

The Lagrangian function that contains the volume constraint (5.23) is written,
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for λ ∈ R

L(Ω,α, λ) =
∫

Ω
A∗(Ω,α)e(u) · e(u)dx + λ

(∫
Ω
dx− VT

)
.

The coupled optimization problem (5.22) becomes written:

min
Ω∈D
α∈Uα

ad

max
λ∈R
L(Ω,α, λ). (5.26)

In practice, we suppose that the angle is fixed when the shape is updated. We
use an ersatz material approximation (see ersatz material approximation in
section 1.3.1) to avoid having regions in the shape Ωn+1 that do not have an
orientation when some boundaries parts move outward from the domain Ωn.
As a result, the orientation angle in this case is defined and optimized on the
whole domain D (including the void).

The algorithm (Algorithm 11) of topology optimization coupled with optimality
criterion method for the orientation consists of a topology optimization loop
where after each update of the shape Ωn to Ωn+1, the 3D anisotropy orientation,
at each iteration n, is updated to make the axis of the material coincide with
directions the principal stress. For this latter purpose, we compute the stress
σnΩn+1 unique solution of:

min
σ∈H3

∫
Ωn+1

(A∗ (αn))−1 σ · σdx, (5.27)

where the set H3 is given by (4.6). Note that in this section, the top right index
of an algorithm variable (e.g. αn) indicates the iteration number and not a
power exponent. The usual iteration index spot is taken by the angles vector
component number. After computing σnΩn+1 , we update the Euler angles vector
αn using the optimality formulas (4.9), (4.10), (4.13), (4.11) and (4.12) in case
of a general orthotropic material, and the optimality formulas (4.14) and (4.15)
in case of transverse isotropic material. We repeat this whole procedure until
the objective function is converged. Practically, because the descent step of
the shape is small. The final orientation that are obtained when the objective
function is converged are usually optimal. If it is not the case, one could add
some more iterations until the orientations also get into an optimal state. In
the end, we regularize the obtained orientation using the method of section
4.3.1.

Note that, when λ is converged, this algorithm is interpreted as an alternate
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Algorithm 11: 3D topology optimization coupled with the optimality
criterion method for orientation

1 Initialize the anisotropy angles vector α0 and the shape level set function
φ0

2 for n = 0, .., until convergence do
3 Solve the elasticity problem (5.1) to get unΩn .
4 Compute the shape sensitivity θ 7→ ∂L(Ωn,αn,λn)

∂Ω (θ) using (1.21).
5 Update the level set function φn (and the shape Ωn) such that
6 L (Ωn+1, αn, λn) < L (Ωn, αn, λn) (see Algorithm 2)
7 Update the Lagrange multiplier λn to λn+1 using (1.24)
8 Compute the stress σnΩn+1 , unique solution of:

min
σ∈H3

∫
Ωn+1

(A∗(αn))−1σ · σ dx, (5.28)

by solving the elasticity problem (by deducing σnΩn+1 from unΩn+1).
9 Update the angles vector αn to αn+1; the angles vector corresponding

to the principal stresses directions obtained using the optimality
formulas (4.9), (4.10), (4.13), (4.11) and (4.12) in case of a general
orthotropic material, and the optimality formulas (4.14) and (4.15) in
case of transverse isotropic material.

10 end
11 Regularize the orientation by optimizing the regularization objective

function (4.21).
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minimization in the shape Ω then in the angles vector α of the function
L(Ω,α, λ).

5.2.3 Topology optimization coupled with a gradient
descent orientation optimization method

For the resolution of industrial optimization problem such as a multi-load
optimization problem, a constrained orientation problem or a non self-adjoint
problem such as the target displacement or stress optimization problem. One
has to use a gradient descent method for the orientation optimization of an
anisotropic material instead of the optimality criterion method. In the same
way as the 3D case. In this section, we update the algorithm of coupled
optimization of the topology with the orientation of the anisotropy using a
gradient descent method in 2D to the 3D case. We consider a general objective
function J(Ω,α) written as (5.21), where ΓJ does not intersect the Dirichlet
boundary ΓD (see figure 3.1). The Lagrangian function, defined to take account
of the volume constraint (5.23), is written:

L(Ω,α, λ) = J(Ω,α) + λ
(∫

Ω
dx− VT

)
(5.29)

where λ ∈ R is the Lagrange multiplier. The coupled optimization problem
(5.22) is then written:

min
Ω∈D
α∈Uα

ad

max
λ∈R
L(Ω,α, λ) (5.30)

While one has to use the sensitivity of the Lagrangian with respect to the shape
during the optimization, the optimization in the orientation is indifferent to
the constraint C(Ω) thus the sensitivity of the Lagrangian with respect to each
orientation angle is equivalent to the sensitivity of the objective function also
with respect to each the orientation angle. Besides, In practice, we suppose
that the angle vector α is fixed when the shape is updated. We use an ersatz
material approximation (see ersatz material approximation in section 1.3.1) to
avoid having regions in the shape Ωn+1 that do not have an orientation when
some boundaries parts move outward from the domain Ωn. As a result, the
orientation angles vector in this case is defined and optimized on the whole
domain D (including the void).

The algorithm (Algorithm 12) of coupled optimization problem consists of a



Chapter 5. Coupled optimization of topology and orientation 180

topology optimization loop, where at each iteration n ∈ N, one adds a fixed
number M ∈ N of updates of the orientation angle using the gradient descent.
Note that the update of the orientation is accepted only when:

J
(
Ωn,αn,m+1

)
< J (Ωn,αn,m) . (5.31)

In the other case, the step is repeatedly decreased until the condition (5.31)
is verified (also note that in this section, the top right index of an algorithm
variable, e.g. αn, indicates the iteration number and not a power exponent.
The usual iteration index spot is taken by the angles vector component number).
The whole steps on an iteration n are repeated until the objective function is
converged. Consequently, we observe that the topology converges to a stable
shape. The algorithm end when the shape is converged. The orientations that
are obtained in the end should be optimal. If it is not the case, one could add
some more iterations of orientation optimization by repeating only the steps 9 to
21 in algorithm 12 until the orientation converge to an optimal state. Note that,
when λ is converged, this algorithm is interpreted as an alternate minimization
in the shape Ω then in the angle vector α of the function L(Ω,α, λ).
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Algorithm 12: 3D topology optimization coupled with the gradient descent
method for orientation

1 Initialize the angles vector α0 and the shape level set function φ0.
2 for n = 1, .., until convergence do
3 Solve the elasticity problem, then solve the adjoint problem (in case of

a non self-adjoint problem).
4 Compute the shape sensitivity.
5 Update the level set function φn and the shape Ω.
6 Update the Lagrange multiplier λn to λn+1 using (1.24).
7 if (n ≥ nor) and (n mod np = 0) then
8 for m = 2, ..,M do
9 for i = 1..N (N = 2 or 3) do

10 Solve the elasticity problem, then solve the adjoint problem
(in case of a non self-adjoint problem).

11 Compute the gradient ∂J(α)
∂αi

using (4.20).
12 Regularize the gradient ∂J(α)

∂αi
.

13 αni = αn−1
i − tn ∂J(αn)

∂αni
, where tn,m is a small descent step.

14 end
15 Solve the elasticity problem, then solve the adjoint problem (in

case of a non self-adjoint problem).
16 Compute the objective function J(αn).
17 if J(αn) < J(αn−1) then
18 tn,m+1 = 1.2tn,m and continue to the next iteration.
19 else
20 tn,m+1 = tn,m/2 and return to step 9.
21 end
22 end
23 αn+1 = αn,M .
24 end
25 end
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5.2.4 Numerical results

3D displacement inverter example

We study a 3D displacement inverter in elasticity which belongs to a cubic
domain D of dimensions 1× 1× 1 (see figure 5.34a). It is fixed on four small
surfaces ΓD in the corners of the left side of D, of size 0.02 × 0.02. A force
g = −ex is applied on a small surface ΓN , of size 0.1× 0.1, in the middle of the
left side of D. The structure is filled with a transverse isotropic material where
the values of its mechanical moduli are given in table 5.5 (the Poisson’s ratio
νp1 is given by νp1 = ν1p

Ep
E1
). The material is also parameterized by two Euler

orientation angles that are modeled by the vector α ∈ (L2(Ω))2. Similarly to
the 2D displacement inverter example, a 3D displacement inverter function is
to move the surface Γ0 (the blue surface of figure 5.34a), of size 0.1× 0.1, to
the opposite direction of the pulling force g applied on the surface ΓN . This
means that uex on Γ0 has to be positive. Therefore, we choose an objective
function, for a minimization optimization problem, that consists of the squared
error between a target displacement u0 = ex and the structure displacement on
the surface Γ0 :

J(Ω,α) =
∫

Γ0

1
2 |u− u0|2dx. (5.32)

We do not want the surface ΓN of the mesh to move dramatically when we
pull it: thus we add a null target displacement condition on ΓN . The objective
function becomes:

J(Ω,α) =
∫

Γ0

1
2 |u− u0|2 ds +

∫
ΓN

1
2 |u|

2ds. (5.33)

We also have a constraint of a target volume that make 15% of the whole
volume of D. We define the Lagrangian of this problem by:

L(Ω,α, λ) =
∫

Γ0

1
2 |u− u0|2dx+

∫
ΓN

1
2 |u|

2ds + λ
(∫

Ω
dx− VT

)
, (5.34)

and the two sets of admissible designs by (5.23) and (5.24).

We initialize the optimization with an horizontal orientation of the stiffer
direction of the material, that are parallel to the x-axis, and with the shape
of figure 5.34b. The domain D is meshed by a structured and symmetric
tetrahedral mesh which has 30000 nodes. We optimize the shape using the
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level set topology optimization algorithm (algorithm 2) then we optimize the
orientation of the anisotropy while the shape Ω is fixed using the gradient
descent algorithm (algorithm 8), without regularizing the orientation. Note
that because the optimization problem of this example is not self-adjoint,
we have to solve an adjoint problem and compute an adjoint state p before
computing either the shape or the orientation gradient, at each iteration n. The
topology optimization algorithm converges in 55 iterations and the orientation
optimization algorithm converges in 100 iterations.

The resulting optimized structure is shown in figure 5.35.

E1 Ep G1p ν1p νp

10 1 1 0.3 0.3

Table 5.5: Material characteristics for the 3D displacement inverter example

(a) Loads and boundary conditions of the
displacement inverter

(b) Initial shape of the displacement
inverter

Figure 5.34: 3D displacement inverter problem model
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(a) Optimized displacement inverter: obtained shape

(b) Optimized displacement inverter: plot of stiffest di-
rection of the local anisotropy

Figure 5.35: Optimized displacement inverter
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3D cantilever example

We study a 3D cantilever of dimensions 2× 1× 1.1 in elasticity that has a fixed
boundary (left surface of figure 5.36a) and an applied force g = −ey on a small
surface on the opposite surface boundary ΓN (the red surface of figure 5.36a),
of size 0.1 × 0.1. The structure is filled with a transverse isotropic material
where the values of its mechanical moduli are given in table 5.5 (The Poisson’s
ratio νp1 is given by νp1 = ν1p

Ep
E1
). The material is also parameterized by two

Euler orientation angles that are modeled by the vector α ∈ (L2(Ω))2. We
want minimize the compliance of the shape Ω, which is expressed as the work
of the applied force:

J(Ω,α) =
∫

ΓN
gudx. (5.35)

We also have a constraint of a target volume that makes 40% of the whole
mesh volume. We define the Lagrangian of this problem by:

L(Ω,α), λ) =
∫

ΓN
gudx+ λ

(∫
Ω
dx− VT

)
, (5.36)

and the two sets of admissible designs by (5.23) and (5.24).

We initialize with two different orientations of the anisotropy: one with an
horizontal orientation of the stiffer direction of the material, that are parallel
to the x-axis. and the other with a vertical orientation of the stiffer direction
of the material, that are parallel to the y-axis. The initial shape for the two
different problem is the same (figure 5.36b). We choose a structured and
symmetric tetrahedral mesh of 29613 nodes. We optimize the shape using
the level set topology optimization algorithm (algorithm 2) then we optimize
the orientation of the anisotropy while the shape Ω is fixed using the gradient
descent algorithm (algorithm 8), without regularizing the orientation. Note
that the Lagrange multiplier λ is always fixed to a value of 0.006 during the
optimizations. Both shape and orientation converge, for the two initialization,
approximately in 55 iterations. In the end of the two optimizations, we obtain
the structures of the figures 5.38 and 5.37.
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(a) Model and boundary conditions of the
cantilever (b) 3D cantilever shape initialization

Figure 5.36: 3D cantilever problem model
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(a) Optimized cantilever: obtained shape

(b) Optimized cantilever: plot of stiffest direction of the
local anisotropy

Figure 5.37: Optimized 3D cantilever structure for initialization using horizontal
orientation case
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(a) Optimized cantilever: obtained shape

(b) Optimized cantilever: plot of stiffest direction of the
local anisotropy

Figure 5.38: Optimized 3D cantilever structure for initialization using vertical
orientation case
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Multiple load 3D bridge example

We study a 3D bridge in elasticity, that have side plates of dimensions 4.5×
1.2× 0.1, under three vertical loading cases g1, g2 and g3, applied respectively
on the three surface boundaries ΓN1 , ΓN2 and ΓN3 (see Fig. 5.39a) of sizes
0.2 × 1. Each loading case i generates a displacement field ui. The applied
forces can be interpreted as a vehicle that crosses the bridge and that changes
its position, to a position i associated to the load case i. The gray region that
models a road then is not optimized in this problem, it have the dimensions of
4.5× 0.1× 0.8.

The mesh D is fixed from the tips of its right bottom corners on surfaces of
sizes 0.1× 0.1. We fix the movement of the tips of its left bottom corners along
the y-axis and the z-axis while we let them move freely along the direction
of the x- axis, on another surfaces of sizes 0.1 × 0.1. The structure is filled
with a transverse isotropic material where the values of its mechanical moduli
are given in table 5.5 (The Poisson’s ratio νp1 is given by νp1 = ν1p

Ep
E1
). The

material is also parameterized by two Euler orientation angles that are modeled
by the vector α ∈ (L2(Ω))2. The objective function written as the sum of
compliance of each loading case i:

J(Ω,α) =
3∑
i=1

∫
ΓNi

giuidx. (5.37)

We also have a constraint of a target volume that make 30% of the whole mesh
volume. We define the Lagrangian of this problem by:

L(Ω,α), λ) =
3∑
i=1

∫
ΓNi

giuidx+ λ
(∫

Ω
dx− VT

)
, (5.38)

and the two sets of admissible designs by (5.23) and (5.24). We initialize
the optimization with an horizontal orientation of the stiffer direction of the
material, that are parallel to the x-axis, and with the shape of figure 5.39b.
We choose a structured and symmetric tetrahedral mesh that is constituted by
40000 nodes. We optimize the shape using the level set topology optimization
algorithm (algorithm 2) then we optimize the orientation of the anisotropy
while the shape Ω is fixed using the gradient descent algorithm (algorithm 8),
without regularizing the orientation. Note that in this problem we have three
displacement. This means that one needs to solve the elasticity problem three
times, once for each displacement, whenever he wants to compute a shape
gradient or an Euler angle partial gradient in the two used algorithms. The
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shape optimization algorithm converges in 108 iterations and the orientation
optimization algorithm converges in 55 iterations. In the end of the two
optimizations, we obtain the structure in the figure 5.40.

(a) Model and boundary conditions of the
bridge (b) Initial shape of the bridge

Figure 5.39: 3D bridge optimization problem model
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(a) Optimized 3D bridge: obtained shape

(b) Optimized 3D bridge: plot of stiffest direction of the
local anisotropy

Figure 5.40: Optimized 3D multi-loaded bridge structure
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Conclusion

In this work, we presented the coupled topology and orthotropic anisotropy
orientation optimization methods, which are based on the level set topology
optimization and can be applied numerically to additive manufacturing tech-
nologies. The optimization of the orientation is based on two methods for
different types of problems. For single-load compliance problems, we used the
Pedersen optimality criterion. On the other hand, for other types of problems
such as multiple-loads and non self-adjoint problems, we used a gradient descent
method. We treated various examples, from a cantilever and an L-beam to a
displacement inverter and a multi-loaded bridge, in 2D and 3D. The variety of
the treated examples demonstrates the robustness of the algorithms that we
have implemented.

By observing the results that we have obtained, we conclude that the level
set method topology optimization works properly when coupled with the
optimization of the anisotropy orientation. We also conclude that the optimal
topology of a structure is heavily influenced by the anisotropy of the material
and that, in general, the stiffest direction of the material is parallel to the
direction of the bars of an optimized structure. Finally, we conclude that
optimizing the local orientation is very important in the case of an anisotropic
material as it further optimizes the objective function, but also improves the
quality of the topology that is obtained by the topology optimization algorithm.

After completion of this phd thesis, further research is still needed to improve
the applicability of coupled shape and orientation optimization. Considering an
orthotropic material that is not transversely isotropic is a work that has to be
done. In this case, the orientation is modelled using 3 Euler angles. Also, we still
need to adapt the Ginzburg-Landau approach of orientation optimization to 3D.
Including 3D printing manufacturing technological constraints to the coupled
optimization of shape and orientation, such as overhangs, supports and residual
stresses, also including a regularization scheme for the coupled 3D problem and
treating other types of physical problems such as stress minimization, fatigue,
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plasticity and damage minimization, thermic, fluids and thermo-elasticity, are
all problems which could be addressed in the future.

Another obvious possible work is to build the geometries that were obtained
using an additive manufacturing technology and to test their qualities experi-
mentally.
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