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Chapter 1

Context

1.1 Clinical trials

Before the market approval, a drug has to pass a series of stages, preclinical and clinical
ones. The purpose of clinical trials is to ensure the efficacy and safety of the patients to
whom the drug to be marketed may be prescribed. Clinical trials are a very controlled
practice: in the aftermath of the Second World War, the idea of carrying out experiments
on human beings took on a very different dimension from what it had been before. Ethical
issues took a decisive importance in the regulations that followed, notably on the consent
of patients in full knowledge of the facts and of the risks incurred during a clinical trial.
The french National Agency for the Safety of Medicines and Health Products (ANSM)
defines a clinical trial as an: "organised and conducted biomedical research on humans
with a view to develop biological or medical knowledge. The purpose of clinical trials on
drugs is, depending on the case, to establish or verify certain pharmacokinetic (modalities
of absorption, distribution, metabolism and excretion of the drug), pharmacodynamic
(the mechanism of action of the drug) and therapeutic (efficacy and tolerance) data for a
new drug or a new way of using a known treatment. The trial may be conducted on a
healthy or sick volunteer". Clinical trials are conducted in several phases:

Pre-clinical phase The molecule is first tested in vitro. This permits to study its
structure and potential effects on organs for example. Then the molecule is tested
on animals in vivo (mouses for instance), to test its efficacy and its effects on living
beings.

Phase I The drug (or treatment) is tested on humans being for the first time on a
small group of healthy volunteers, except in oncology and pediatrics, where the
drug is directly tested on patients. During this phase, the toxicity of the drug
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is evaluated. This phase corresponds, among other things, to the research of the
best dose to administer to the patients in subsequent trials. Such a dose could be
the maximum tolerated dose as in oncology or a recommended dose according to
some criteria. Moreover, this phase permits to collect efficacy, pharmacokinetic
and pharmacodynamic data. Pharmacokinetics focuses on how the body treats the
drug through four steps: administration, distribution, metabolism and excretion of
the drug, while pharmacodynamic focuses on the drug’s effects on the body.

Phase II The drug is tested on ill patients in order to confirm or evaluate its
efficacy while toxicity is still recorded.

Phase III The drug is tested on large group of patients. This phase, also called
confirmatory trial, is a randomised one. In order to establish its efficacy, its effect
is compared either to a reference treatment or to a placebo. This phase is the last
one that involves tests on humans, if the effectiveness is established, the drug can
be marketed.

Phase IV This phase involves watching the drug once it is on the market, to
control its related adverse events that would not have been detected during the
previous phases, especially for long-term effects. It also permits to watch if there
are potential commorbidities that might have gone undetected since the enrolled
patients respond to very specific criteria.

Clinical trials are all carried out with general recommendations and in accordance
with local legislations, such as the European medicines agency (EMA) for the European
Union, to which each country adds its own laws (in France, the ANSM controls the
conduct of clinical trials), or the food and drug administration (FDA) in the United
States. These legislations are systematically dedicated to ensure the proper conduct of
clinical trials, in order to guarantee patients’ safety.

1.2 Bridging studies

The International Council for Harmonisation of Technical Requirements for Pharmaceu-
ticals for Human Use (ICH) defines a bridging study as an additional study conducted in
a new population to provide pharmacodynamic or clinical data on efficacy, safety, dosage
and dose regimen in that new region that will possibly allow an extrapolation of clinical
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data accrued in a previous population to the new one.
The term "population" is used here to distinguish two ethnic groups. It could also be
applied to adult-to-child studies, but they are often called extrapolation studies. In this
manuscript, we will focus on studies that make links between different ethnic groups.
These bridging studies are necessary in clinical research: it is observed that the effects
of the same drug at the same dose does not have the same effects in different regions
of the world between different ethnic groups, and not only for cancer. Actually, ethnic
differences mechanically imply genetic and metabolic differences. We know, for example,
that the proportion of alleles of a gene could vary from one ethnic group to another.
A consequence of these differences is a different reaction to some molecules. A simple
example is the ADH genes, whose allele proportions vary according to ethnicity, and
plays a part in the metabolism of ethanol.
The case of the influence of ethnicity in the response to drug treatment has been high-
lighted in several ways, through differences in toxicity [39] or metabolism [93], and efficacy.
Moreover, inferring toxicity ([39]) basing on pharmacokinetic data only is also noted.
The issue of the transposition or validity of clinical data (e.g. efficacy and safety) from
one ethnic group to another is addressed in the ICH E5 recommendations from both
an ethical and a regulatory perspective [35]. The technical aspect of bridging studies
is specifically addressed in specialised articles according to the pathology in question.
Please refer to the book [47] for an overview of the issue.
In oncology clinical trials, significant differences in MTD between Caucasian and Japanese
populations have already been remarked by Maeda et al. [50] and Ogura et al.[64]. In the
context of our work, we highlight an essential aspect of these bridging studies: previous
information is available. So, if a drug is tested again in a new population, there is a trial
in an initial population, with data on toxicity, efficacy, pharmacokinetics, etc., and the
data are available before starting a trial in the new population. The natural question is:
how can this pre-existing information be best used statistically?

1.3 Dose-finding in oncology

Phase I are at up most important. On this phase, which must determine the maximum
tolerated dose or recommended dose according to certain criteria, will depend the possible
success of subsequent phases. Dose-finding studies are performed at this stage. The
particular difficulty for this phase is the few number of patients involved: up to fifty
patients in general, and no more than thirty most of the time. This small sample size
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raises several statistical issues.

Phase I trials in oncology respond to very specific criteria. First, because of the high
toxicity of anti-cancer drugs, it does not seem reasonable to test these drugs on healthy
subjects. In addition, there is an ethical reason to test these drugs directly on subjects
who are already ill: subjects included in an oncology clinical trial are those for whom
existing drugs have been shown to be inefficient and their inclusion in a Phase I trial
could save their life.
A fundamental assumption is often accepted in oncology for cytotoxic drugs: the higher
is the dose given to the patient, the higher is the probability of efficacy. Nevertheless, the
higher is the dose given, the higher is the probability of toxicity. The dilemma is therefore
to find a dose high enough to increase the probability of efficacy but low enough to be
considered safe. Dose-finding is the step which consists in finding the maximum tolerated
dose (MTD), that is, the maximum dose that can be administered to patients according
to a previously established probability of toxicity threshold. Doctors and clinicians define
dose-limiting toxicities (DLT), then the MTD will be the dose whose probability of DLT
equal to the established probability of toxicity threshold (e.g. 20%, see Figure 1.1). A
dose higher than the MTD has a probability of toxicity higher than the threshold. This
threshold is also called the "target toxicity", since we want to find the highest dose whose
probability of toxicity equal to this threshold. To do so, a discrete panel of doses is used.
In the case where none of the estimated probabilities of toxicity associated to each dose
of the panel is equal to the target toxicity, the estimate of the MTD is the highest dose
with probability of toxicity as close as possible to the threshold.

Ideally, most of the patients enrolled in the trial should be treated with a dose as close
as possible to the MTD. There are several possible dose allocation methods, which can
be random or sequential, but the sequential aspect of certain methods has the advantage
of gradually administering the best possible dose. However, a rigorous methodology in
the conduct of the clinical trial is not a guarantee of success. For instance, a comparative
study of several dose finding methods [32] shows that the MTD is not always selected
to a large extent, and moreover shows that the reference method ("3+3") gives very
poor results. A study which compare the MTD in several dose-finding trial showed that
this MTD is not always reached [50], or because sometimes the trial had to be stopped,
or because the dose-response relationship is not monotonous, or for any other reason.
Several explanations can be provided to explain this phenomenon. Since dose-finding
trials involve few subjects, the high inter-subject variability in the response to the drug
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Fig. 1.1 Example of dose-toxicity relationship. The threshold of probability of toxicity,
indicated by a red line, is 20%. The black curve represent the dose-toxicity relationship
and each blue point represent the probability of toxicity associated to a dose level in the
panel. The MTD is the third dose, since its probability of toxicity is equal to the target
probability.

makes the estimate of the dose-response relationship difficult. Furthermore, it can be
assumed that the dose panel (that is the set of doses tested on the patients) is not
correctly selected, and this does not allow the identification of the MTD. For example, if
the lowest dose of the panel has a probability of toxicity of thirty percent but the target
probability is twenty percent, the MTD will not be found in such a dose panel (figure
1.2).

1.4 Thesis objectives

In bridging studies setting, before starting a clinical trial in a new population, it is
important to notice that there is available information that can be used for the clinical
trial. Taking into account historical data in adaptive trials showed benefits in general,
as pointed by Harun et al.[28]. Moreover, in the context of clinical trials with small
sample size, due to the high variability in dose-response relationship, it is desirable
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Fig. 1.2 Example of dose-toxicity relationship where the MTD cannot be determined.
The threshold of probability of toxicity is 20%, and all doses have a probability of toxicity
higher than 20%

to take previous available information into account (as we will explain later, chapter
2.1). Different methods can be proposed to incorporate this information through the
prior distribution in Bayesian setting (these methods will be presented in the chapter 2).
However, the possibility that the two datasets may be in conflict is not impossible (the
so called "data-prior conflict" in Bayesian setting), and the amount of information in the
prior distribution must be carefully weighted.
This raises the issue of an adapted methodology to take this information into account
before, during and at the end of the new clinical trial. The Bayesian approach naturally
appears to be consistent with incorporating historical datasets. So, in a prospective
setting, we want to define an adapted Bayesian method to take into account some
previous information, which permits to better estimate the dose-response relationship,
to finally permit a better identification of the MTD. However, since the previous and
current datasets can be different, it is highly desirable to be able to detect a data-prior
conflict that could lead to biased estimation of the current dose-response relationship.
The natural question is, then, which method can be used to incorporate the previous
information? How to weight this information in the prior distribution? Is there a way to
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calibrate this amount of information taking into account the similarity between previous
and current data to avoid data-prior conflict?
Otherwise, bridging studies should help regulatory authorities to decide if an extrap-
olation from a population to another is possible. Therefore it can be interesting and
important to retrospectively be able to quantify this difference according to different
criteria.
The general issue is, in both prospective or retrospective setting, an objective quantifica-
tion of two dose-response relationships similarity through a Bayesian approach.
However, an inherent difficulty of Bayesian Statistics is the choice of the prior distribu-
tion. This choice can be more or less subjective and strongly influences the estimate
of the parameter of interest. For instance, let’s consider the extreme case of a discrete
distribution for which the prior distribution would be a Dirac in one point θ0. In such a
case, whatever the data could be, the posterior distribution always gives the point θ0.
Otherwise, a weakly informative prior distribution (with a very low variance for example)
has a lower influence on the estimate. However, we must keep in mind an important
property of Bayesian statistics that many prior distributions allow: in the continuous
case, Berstein Von Mises theorem ensures an asymptotic convergence of the posterior
distribution to a normal distribution centered on the maximum likelihood estimator,
under certain conditions. More generally, this theorem ensures that both the frequentist
and Bayesian methods have de facto asymptotically similar results.
Our issue is that we do not work in an asymptotic setting but, on the contrary, in the
context of small sample size: in such a context, the use of asymptotic results is excluded.
Our objectives are thus, in the context of dose-finding clinical trial, to construct some
Bayesian methods to properly weight and incorporate historical information for a current
trial, and to define some similarity criteria between several datsets to assess the similarity
between several dose-response curves for finished trials.





Chapter 2

Incorporation and quantification of
prior information in Bayesian
statistics

2.1 Introduction

Let x1, ..., xn denote a sample from n independent and identically distributed random
variables X1, ..., Xn from an assumed parametric density f(x|θ). To estimate the parame-
ter θ, frequentist statistics use the likelihood function L = ∏n

i=1. In Bayesian setting, the
parameter θ we try to estimate can be considered like a realisation of a random variable
with density π0 with support Θ, and that being given data realisations x = (x1, ..., xn)
of X1, ..., Xn, the conditional density of θ according to these realisations would be, by
Bayes’ theorem:

π(θ|x) = L(θ|x)π0(θ)∫
Θ L(θ|x)π0(θ)dθ

π(θ|x) is called the posterior distribution of θ. The Bayes’ theorem can be applied
sequentially: at each new observation, the posterior distribution is "updated", and instead
of working on the unknown θ density, we work on a conditional density based on a prior
density which represents some knowledge about θ. However, the choice of this prior
distribution could influences the posterior distribution.
In the approach referring to the decision theory, we notice that the posterior distribution
is the conditional density minimising the Bayesian risk associated with the π0 density,
this point is detailed in the appendix A.
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Bayesian approach permits to take into account some available information via the prior
distribution. There are many possible sources of information: a previous trial, expert
opinions like presented by Boulet et al. [7], and also pre-clinical data ([98],[99]). In
addition, information is also created during the trial itself, such as pharmacokinetic data,
efficacy data, toxicity data, etc. For each of these situations, the Bayesian paradigm
permits to incorporate external information. This particularity is precious in phase I
clinical trials context, where due to the small sample size, frequentist statistics give
imprecise results (for example in terms of confident intervals).
Our work is set in the context of bridging studies between different ethnic groups;
therefore there will be previous available information. The question that arises in our
case is: how to incorporate in practice the information from a previous trial into the
prior distribution? Regarding prior distributions, there is a dilemma between the need
for these distributions to be both "informative" but not to "overcome" the likelihood
data. For example, a prior distribution with a high variance does not attenuate the
data effect in the posterior distribution. However, it does not give much information
about the parameter, except that with a very high variance, the prior distribution gives
as small probability measure to an interval [a, b] as it does to [a + n, b + n]. On the
opposite, a distribution with a very low variance will require more data to "correct"
the posterior distribution if the prior distribution is badly calibrated (for example a
normal prior distribution with a very low variance but a mean far from what the data one).

2.2 Prior distribution’s choice

The choice of the prior distribution is a delicate question. It is important to understand
that prior distributions are highly dependent on the parameter nature (see for more
details Gelman et al. [24]). For example, for a variance parameter, truncated normal,
inverse-gamma and half Cauchy distributions are usually chosen as prior distribution.We
briefly present some usual prior distributions classification below.

2.2.1 Conjugate priors

Definition: A family F of probability distributions on Θ is said to be conjugate for a
likelihood function f(x|θ) if for every π ∈ F , the posterior distribution π(θ|x) is also in
F .
This approach has several advantages. Firstly, as indicated by Robert [74], conjugate
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f(x|θ) π(θ) π(θ|x)
N (θ, σ2) N (µ, τ 2) N (σ2µ+τ2x

σ2+τ2 , σ2τ2

σ2+τ2 )
N (µ, 1

θ
) Gam(α, β) Gam(α + 0.5, β + (µ− x)2/2)

Gam(ν, θ) Gam(α, β) Gam(α + ν, β + x)
Bin(n, θ) Beta(α, β) Beta(α + x, β + n− x)

Mult(θ1, ..., θk) Dir(α1, ..., αk) Dir(α1 + x1, ..., αk + xk)
Table 2.1 Examples of conjugate priors

priors have a structural coherence: since π(θ|x) is computed from π(θ) and x, it is
natural that both distributions are in the same "space". Secondly, this approach gives an
explicit formula of the posterior distribution, formula which is not obvious or explicit in
general. Some examples of conjugate prior distributions with likelihood functions from
the exponential family are given in table 2.1.

2.2.2 Maximum entropy priors

When some information about the prior distribution π are known or required as constraints
(on the moments for example),

Eπ[gk(θ)] = ωk, k = 1, ..., K (2.2.1)

a prior distribution can be chosen respecting those constraints and having a maximum
entropy under those constraints: this prior is called maximum entropy prior, developed
by Jaynes [38]. In the discrete case, the maximum entropy prior is

π(θi) =
exp

(∑K
k=1 λkgk(θi)

)
∑

i exp
(∑K

k=1 λkgk(θi)
)

where the λk are Lagrange multipliers associated to equation 2.2.1. In the continuous
case, the choice of a reference distribution of probability π0 is required and the entropy
is substituted to the relative entropy, which is called the Kullback-Leibler’s divergence
between π and π0. We therefore obtain the prior distribution:

π(θ) =
exp

(∑K
k=1 λkgk(θi)

)
π0(θ)∫

Θ exp
(∑K

k=1 λkgk(u)
)
π0(u)du
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2.2.3 Non-informative and weakly informative prior distribu-
tions

The notion of non-informative prior distribution is often used but poorly defined. Al-
though the aim of our work is to propose a method to incorporate information in the
prior distribution, we can cite the non-informative prior distributions the Laplace prior,
the Jeffreys prior, the matching priors and even the reference prior (see Robert [74]).
However, there is no method to determine which one of the previous priors would be
more informative than others, as explained by Robert [74]. In addition, several methods
exist to quantify the "information" in a prior distribution, one of these methods will be
precisely explained in chapter 2.4.
A weakly informative prior distribution is a prior with few information. They are used
to stabilise the inference on the parameter, introducing some "scale" information about
the parameter.

2.3 Practical use of historical information in a Bayesian
setting

In this section we focus on prior distributions built to incorporate a likelihood into the
prior distribution.

2.3.1 The power prior

When individual data are available, one possibility is to use the power prior, introduced by
Ibrahim and Chen [33]. This approach offers various applications, notably in biostatistics.
This prior distribution have already been used for logistic regressions ([11] for example).
The idea is the following one: given an "historical" dataset D0 and a current dataset
D with a common parameter θ, and thus a common "model" since they have the same
likelihood function, the power prior take into account the historical data incorporating
the historical likelihood and weighting it through a coefficient α0 ∈ [0, 1]:

πP P (θ|D0, α0) = L(θ|D0)α0π0(θ)∫
Θ L(θ|D0)α0π0(θ)dθ

(2.3.1)

where L(θ|D0) is the historical likelihood and π0 an initial prior on Θ, usually non-
informative (see Duan et al. [19] for instance) or even improper (see Ibrahim et al. [34]).
If α0 = 0, the prior distribution is only the initial prior π0 and the historical information
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is not taken into account. On the contrary, if α0 = 1, the prior distribution 2.3.1 coincides
with the posterior distribution of θ given data D0, and the historical data are fully taken
into account in the prior distribution. As an illustration, we consider the case where
the historical data D0 are independent identically distributed Gaussian observations
y0i ∼ N (θ, σ2), i = 1, ..., n0. The power prior is

πP P (θ|D0, α0) = L(θ|D0)α0π0(θ)∫
Θ L(θ|D0)α0π0(θ)dθ

∝ 1
(2σπ)

α0n0
2

exp
(

−α0

2

∑n0
i=1(y0i − θ)2

σ2

)
π0(θ)

∝ exp
−1

2

∑n0
i=1(y0i − θ)2

σ2

α0

 π0(θ) , for α0 ̸= 0

In this case, we observe that the parameter α0 directly influences the variance: the more
the parameter is low, the more the variance is high and the less historical data are taken
into account, and vice versa.

2.3.1.1 Variants

An issue raised by the power prior’s approach is the choice of the parameter α0. The
two possibilities are to choose a fixed α0 or to estimate it. To estimate this parameter, a
"fully Bayesian" method can be considered, choosing a prior distribution for α0 and then
estimate it through its posterior distribution. With this approach, the joint density of
(θ, α0) is

πP P (θ, α0|D0) = L(θ|D0)α0π0(θ)π(α0)∫ 1
0
∫

Θ L(θ|D0)α0π0(θ)π(α0)dθdα0
(2.3.2)

∝ L(θ|D0)α0π0(θ)π(α0) (2.3.3)

However, as explained by Neuenschwander et al. [59], this approach has several drawbacks.
Firstly, it does not allow to consider the conditional distribution of θ given α0. Secondly,
it has a severe computational difficulty: the α0 estimate from this method tends to be
very low, or even equal to zero. Finally, it is in contradiction with the likelihood principle
(as underlined by Duan et al. [19] for instance): multiplying the likelihood by a constant
δ modify the joint distribution, and so the posterior distribution:

πP P (θ, α0|D0) = (δL(θ|D0))α0π0(θ)π(α0)∫ 1
0
∫

Θ(δL(θ|D0))α0π0(θ)π(α0)dθdα0
∝ δα0L(θ|D0)α0π0(θ)π(α0)
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In this context and to overcome this issue, the modified power prior (MPP) was
proposed.

The modified power prior
A possibility to obtain a conditional distribution of θ given α0 is to "normalise" the

power prior "part" and than to add a prior distribution on α0, this results in the modified
power prior:

πMP P (θ, α0|D0) = L(θ|D0)α0π0(θ)∫
Θ L(θ|D0)α0π0(θ)dθ

π(α0) (2.3.4)

= f(θ|α0)π(α0) (2.3.5)

In equation 2.3.4, we have a conditional distribution of θ given α0: f(.|α0), as intended.
In addition, the likelihood principle is respected in this version.
However, as pointed out by Hobbs et al. [29], this approach does not permit to directly
parametrise the degree of similarity between both datasets D and D0. Then, the result-
ing estimate of α0 also tends to under evaluate the impact of historical data D0, which
should be offset by a too informative prior distribution for the parameter α0 (as a beta
distribution Beta(5, 1) for instance, giving strong weight to α0’s values near to 1) to
compensate.
The difficulty is to determine the degree of similarity between D and D0 to properly
calibrate the parameter α0 as a function of such a degree, which is still not evaluated yet.
In this context the commensurate priors were introduced by Hobbs et al. [29], and in
particular the location commensurate power prior (LCPP).

The use of power prior was also investigated to control type I error in the setting
of dynamic borrowing in clinical trials, notably by Nikolakopoulos et al.[63] through
the concept of prior-data conflict calibrated power prior based on the prior predictive
p-values.
The calibrated power prior proposed by Yuan et al.[96], introduced in the setting of
biosimilar clinical trials, also demonstrated good performances to control the type I error.
It is also possible to use the power prior for non-inferiority trials, as showed by Liu [46].
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2.3.2 The commensurate priors

These prior distributions were first presented by Hobbs et al. [29], and are defined as
follows:

π(θ|D0, θ0, τ) ∝ L(θ0|D0)π(θ|θ0, τ)π0(θ)

with the conditions:

π(θ|D0, θ0, τ) −→
τ→0

π0(θ)

π(θ|D0, θ0, τ) −→
τ→+∞

L(θ|D0)π0(θ)

where τ being the prior distribution precision. Again, τ estimation is challenging,as
discussed in article [30], where the authors proposed a fully Bayesian and an empirical
Bayesian approach for this estimation. Again, a fully Bayesian approach is proposed to
estimate τ .
Other variants are presented in a Gaussian setting, such as the location commensurate
prior or location scale commensurate prior.

The location commensurate power prior
Up to now, we have considered that both D and D0 had in common an identical

parameter θ to estimate. Hobbs et al. [29] assumed henceforth that both datasets have
the same structure, that is the same likelihood function, but have different parameters:
θ0 and θ for D0 and D, respectively. In this way, the aim is to define a degree of similarity
between D and D0 through a parameter τ which will be incorporated into α0’s prior
distribution. The example of a Gaussian distribution is considered:

πLCP P (θ, α0, τ |D0) ∝
∫
L(θ0|D0)α0N(θ|θ0, 1/τ)dθ0∫

L(θ0|D0)α0dθ0
Beta (α0|g(τ), 1) π(τ) (2.3.6)

∝ f(θ|α0, τ) ×Beta (α0|g(τ), 1) × π(τ) (2.3.7)

with N(θ|θ0, 1/τ) being the Gaussian distribution for θ, with mean θ0 and standard
deviation 1/τ , Beta (α0|g(τ), 1) being the beta distribution for α0 with parameters g(τ)
and 1 with g(.) a positive monotonous function, close to zero if τ is close to zero and
large if τ is large. Finally, f(.|α0, τ) is the conditional distribution of θ given α0 and τ .
In the formula 2.3.6, if τ is low, which means that the similarity is low, the variance for
θ is high and vice versa. This hierarchical method indeed permits to guide the choice of
α0 by the criterion τ .
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2.3.3 The robust meta-analytic-predictive prior (MAP prior)

In randomised clinical trials where a control group and one or more treatment groups
are considered, the incorporation of historical control trial information was proposed by
Schmidli et al. [76]. We consider a new trial with X∗ and parameter ϕ∗ for the treatment
while the control data are Y∗ with parameter ψ∗. Several historical control datasets are
considered: YH = (Y1, ..., YH) with their respective parameters ψH = (ψ1, ..., ψH). Each
historical control data Yh contains nh patients. The robust MAP is based on the MAP
prior, presented by Spiegelhalter et al. [80] and Neuenschwander et al. [60]. Considering
n∗ patients in the control group and F being a distribution, the model is:

Y∗ ∼ F (ψ∗, n∗)
Yh ∼ F (ψh, nh)

θ∗, θ1, ..., θH ∼ N (µ, τ 2)
p(µ, τ) = p(µ)p(τ)

with θi = f(ψi) being an exchangeable parameter, τ the between-trial standard deviation
and p(µ) and p(τ) the prior distributions for the hyper-parameters. With such a model,
the MAP is pH(ψ∗) = p(ψ∗|Y1, ..., YH).
Schmidli et al. [76] focus on a two-steps approach: firstly, when designing the trial,
a MAP prior p(ψ∗|YH) is constructed using historical trials. Secondly, at the end of
the trial, both the MAP and current data Y∗ are used with the Bayes’s theorem to
perform estimation: p(ψ∗|Y∗, YH) ∝ p(Y∗|ψ∗)p(ψ∗|YH). There are two key points in the
robust MAP construction: (i) the MAP is not analytically available, so the authors
propose a process to estimate it through a mixture of conjugate distributions (ii) the
MAP robustness is improved by adding a non-informative distribution into the mixture,
which permits to deal with a data-prior possible conflict. The robust MAP also take into
account the between-trial heterogeneity since the MAP is built through a hierarchical
model that clearly considers this point, as explained before.

2.4 Quantity of information of a prior distribution

The question of the quantity of information in a prior distribution is also difficult, and
several methods may be proposed. For instance: the variance, the entropy or even
divergences can be considered. The variance and entropy are already well documented as
method to quantify the quantity of information of a prior distribution. It were shown by
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the fact that non-informative referred to a prior distribution with large variance and the
existence of maximum entropy families.
However, other possibilities offer a way to quantify information of a prior distribution.
Typically, a way to deal with information of prior distribution is to use information
geometry: the quantity of information is in this context more like a comparison method
between several distributions. As an example, the power prior theory can be approached
through the Kullback-Leibler divergence (which belongs to f-divergences’ family). This
approach establishes a distance between two distributions, and as Ibrahim et al. [34]
says, the point is that taking one of those distribution accepted as non-informative gives
a point of comparison. More technical details about information geometry theory can
be found in Amari’s book [2]. However, the interpretation of such criterion is not easy,
even for the most rudimentary, which is entropy or relative entropy (Kullback-Leibler
divergence). The notion of effective sample size, presented just after, is an easy notion
to interpret, for both statisticians and clinicians. The effective sample size notion here
refers to the notion introduced by Morita et al. [53]

The effective sample size (ESS)

The ESS is a tool which permits to judge to what extent a prior is informative or not.
It is defined for a vector parameter θ = (θ1, ..., θd). The construction is the following
one. Given a prior p(θ) and density function f(x/θ), we define a vague prior q0(θ) (that
is a prior with large variance), which gives posterior qm(θ/Ym) after m observations
Ym = (Y1, ..., Ym). With a distance, we will define which m permits to qm(θ/Ym) to be
the closest to p(θ). If m∗ minimises the distance, it means that p(θ) is as informative as
a vague prior after m∗ observations: the higher m∗ is, the more informative the prior
p(θ) is. This permits to have an easy interpretation of the "quantity of information":
it is equivalent to the number of observations in a posterior distribution obtained from
a prior distribution with a large variance. So there are two things to determine: the
vague prior q0 and a distance to calculate the ESS. Morita et al.[53] defined q0 as an
ϵ-information prior, that is a prior distribution which satisfies the conditions:


Eq0 [θ] = Ep[θ]

Corrq0(θj, θj′) = Corrp(θj, θj′), j ̸= j′

V arq0(θj) ≫ V arp(θj)

The two first conditions permit to keep the same mean for the two distributions q0 and p
with the same correlation structure, while the third ensure that the q0 distribution is less
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informative than p in term of variance. We denote θ̃ the vector of hyperparameter.
With the likelihood function fm(Y m/θ) and an ϵ-information prior q0(θ/θ̃0), with
notations of Morita et al. the posterior is

qm(θ/θ̃0,Y m) ∝ q0(θ/θ̃0)fm(Y m/θ)

and the marginal distribution under p(θ/θ̃) is

fm(Y m/θ̃) =
∫
fm(Y m/θ)p(θ/θ̃)dθ

denoted by fm(Y m) if θ̃ is fixed. Then we consider that either d = 1 and p(θ/θ̃) is an
univariate parametric distribution, or d ⩾ 2 and p(θ/θ̃) is a multiparametric distribution.
Then, we denote θ̄ = Ep[θ], and define


Dp,j(θ) = −∂2 log{p(θ/θ̃)}

∂θ2
j

Dq,j(m,θ,Y m) = −∂2 log{qm(θ/θ̃,Y m)}
∂θ2

j

(2.4.1)

for j = 1...d.
We also denote  Dp,+(θ) = ∑d

j=1 Dp,j(θ)
Dq,+(m,θ) = ∑d

j=1
∫
Dq,j(m,θ,Y m)fm(Y m)dY m

And we define the distance between p(θ/θ̃) and qm(θ/θ̃0,Y m) as the absolute value of
the two information matrices’ trace’s difference:

δ(m, θ̄, p, q0) = |Dp,+(θ̄ −Dq,+(m, θ̄)|

And finally,
ESS[p(θ/θ̃), fm(Y m)] = arg min

m
{δ(m, θ̄, p, q0)}

Some examples are given in Table 2.2.
As explained by Morita et al. [53], this definition is in many points quite arbitrary.

Several ways were investigated for the distance, and the previous one was the best for
interpretations and computation of the resulting ESS. Several algorithms are given by
Morita et al.[53] to compute the ESS.
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Prior p(θ/θ̃) Likelihood fm(Y m/θ) ESS
N (µ̃, σ̃2) N (θ, σ2) σ2

σ̃2

Be(α̃, β̃) Bin(n, θ) α̃ + β̃

G(α̃, β̃) E(θ) α̃
Invχ2(ν̃, σ̃2 N (0, σ2) ν̃

Table 2.2 Examples of ESS for some usual models

Applications of the ESS

The ESS has several applications [53]. First of all, the ESS gives a new formalism
to quantify the information incorporated into a prior distribution. In addition, is a
powerful tool when designing sensitivity analysis checking several prior information level.
Then, it can be used for prior adjustments: if a prior distribution’s ESS is higher that
the number of patients in a study, then the prior should be revised. This could be
particularly interesting for adaptive designs to ensure that data dominate more than the
prior distribution. Practical cases are investigated by Morita et al. [54].

2.4.1 Variants of the effective sample size

The ESS in conditionally independent hierarchical models (CIHM)

The ESS has been originally defined in the case of "one level Bayesian model", which
means that hyper-parameter were fixed. If it is not the case, then we are in the context
of hierarchical models, where hyper-prior must be considered, as explained by Morita et
al. [55]. For CIHM, the construction of the ESS is extended by considering K subgroups,
each having m observations. Then we denote Y k = (Yk,1, ..., Yk,m) for k ∈ {1, ..., K} and
YM the m×K matrix YM = (Y 1, ...,Y K). Then, θ = (θ1, ...,θK).
In the case of CIHM, two prior distributions can be considered as the prior of interest
for which an ESS should be calculated:

• the marginalised prior:

π12(θ/ϕ) =
∫
π1(θ/θ̃)π2(θ̃/ϕ)dθ̃

• the hyper-prior
π2(θ̃/ϕ)

A summary of all quantities used to calculate the ESS of both marginalised prior and
the hyper-prior is given in table 2.3. Each of those prior distributions has its specificity
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Marginalised prior Hyper-prior
Prior of interest π12(θ/ϕ) =

∫
π1(θ/θ̃)π2(θ̃/ϕ)dθ̃ π2(θ̃/ϕ)

ϵ-information prior π12,0(θ/ϕ) =
∫
π1,0(θ/θ̃)π2(θ̃/ϕ)dθ̃ π2,0(θ̃/ϕ0)

Considered likelihood f(YM |θ) = ∏K
k=1 f(Y k|θk) f1(YM |θ̃)

Posterior distribution π12,M(θ/ϕ,YM ) ∝ π12,0(θ/ϕ)f(YM/θ) π2,M(θ̃/ϕ0,YM )
Table 2.3 Quantities involved in CIHM’ ESS. The prior of interest is the one for which
the ESS should be calculated. Here, π1,0(θ/θ̃) is an ϵ-information prior for π1(θ/θ̃) and
f1(YM |θ̃) the marginal likelihood.

and related methods, to define the appropriate ϵ-information prior and then compute
the corresponding ESS. In particular, the final distance doesn’t consider the trace of
the information matrix anymore but the determinant of the variance-covariance matrix.
Several technical aspects and clinical uses are given by Morita et al. [55].

The expected local-information-ratio ESS (ESSelir)

An other definition of the ESS is given by Neuenschwander et al. [62]. The authors define
a "predictive consistency criterion", which is "for a sample size N , the expected posterior
ESS must be the sum of the prior ESS plus N ". After showing that other methods to
define the ESS do not respect this criterion, the authors define the ESSelir as

ESSelir = Eθ

[
i(p(θ))
iF (θ)

]

where

i(p(θ)) = −d2 log p(θ)
dθ2

iF (θ) = −EY1|θ

[
d2 log f(Y1|θ)

dθ2

]

i(p(θ)) being the information of the prior distribution and iF (θ) the observed Fisher
information for one observation Y1 with likelihood f(Y1|θ). The authors then show that
the ESSelir satisfies the consistency criterion, illustrating this point with the example of
normal data using a student prior distribution. For one-parameter exponential families,
ESS and ESSelir are very close, however, they could significantly differ with some
highly informative prior distributions. The ESSelir is defined only for one dimensional
parameter.
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The effective current sample size (ECSS)

The classic ESS is designed to assess the quantity of information of a prior distribution,
in a sense as if the prior of interest contains historical data. However, it does not deal
with the potential conflict between this prior of interest and the data with which it
would be used through the Bayes’ theorem. Basically, as explained by Wiesenfarth and
Calderazzo [92], two normal priors with same variance have the same ESS, whatever are
their respective means. However, their means influence the analysis with a potential bias.
Presented by Wiesenfarth and Calderazzo [92], the ECSS is built to take into account a
data-prior conflict. This ECSS quantifies the number of observations to be included to
the current likelihood for the posterior inference to be equivalent of a reference prior. We
denote y = (y1, ..., yk) the current hypothetical data with likelihood fk(y|θ), π(θ|θπ, σ

2
π)

the prior of interest with mean θπ and variance σ2
π, and πb(θ|θb, σ

2
πb

) the baseline prior with
mean |θb and variance σ2

πb
. Those two priors lead respectively to posterior distributions

π(θ|y) and πb(θ|y). The ECSS is then:

ECSS = arg min
m

|Dθ0
MSE{π(θ|y1:k−m)} −Dθ0

MSE{πb(θ|y1:k)}|

with Dθ0
MSE{π(θ|y)} = Ey|θ0{Eπ(θ|y) − θ0)2} and θ0 is either known or estimated by

θ̂0 = Eπb
(θ|y)

Consequently in some cases, this ECSS could even be negative, which means that the
data-prior conflict is strong. Even if the ECSS evaluates the quantity of information of
a prior distribution, its interpretation is thus different from the classic ESS one, since
the question is not the quantity of information in comparison to a vague prior, but in a
reference prior, with a particular interest on data-prior conflict.

2.5 Discussion

The the power prior approach and its variants were mainly investigated in the context of
Gaussian distribution or generalised linear mixed models. The possibility of incorporating
several historical data were also investigated by Ibrahim and Chen [33]. However, the
more complex the method (e.g. commensurate power prior or the robust meta-analytic-
predictive prior) the more challenging the parameters estimation. In the case of the
MAP prior, several approximation stages can be considered to deal with this issue. Then,
while MAP deals with the possible heterogeneity between populations, it was not taken
into account in the power prior approach.
The different ESS notions presented here have each there own characteristics. The Morita
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et al. ESS notion has the advantages of being intuitive, can be applied to multivariate
prior distributions and is particularly adapted for exponential families, as pointed out
by Neuenschwander et al. [62]. The ESSelir notion permits to consider a consistency
criterion, and can differs from Morita et al [53] for some distributions. It is adapted for
univariate prior. Finally, the ECSS is designed to detect a potential data-prior conflict.



Chapter 3

Dose-finding and bridging studies:
state of the art

3.1 Dose-finding

Our work is in the context of dose finding in oncology. In practice, with a limited sample
size, in dose finding study we try to estimate the dose-toxicity relationship (see for
example Figure 3.1). The dose-response relationship is what allows us to estimate the
dose that will be the MTD. In phase I, the primary response outcome is toxicity. The
main hypothesis in oncology is that the higher the dose, the more effective the drug is.
The issue, however, is that a higher dose increases toxicity for patients.

More precisely, phase I oncology trials are designed to estimate the MTD linked to a
pre-established toxicity threshold ν. The ν parameter, called target toxicity rate or target
probability, represents a threshold of probability of toxicity: a dose with a probability of
toxicity above this threshold is considered too dangerous for patients. In dose-finding
clinical trials, the toxicity notion is defined through dose limiting toxocity (DLT). These
DLTs are defined before the beginning of the clinical trial by doctors and clinicians, and
often correspond to high toxicity grades (e.g. greater than 3 on a five-grade scale of
adverse events: 1 being mild, 2 moderate, 3 severe, 4 life threatening, 5 fatal), with
specific criteria. Once these DLTs have been identified, what we call the probability of
toxicity is rigorously the probability of the occurrence of any DLT. This target toxicity
rate is most often between 17% and 33%.
In practice, even if the dose could be seen as continuous, a panel of K doses d1, ..., dK is
decided. The MTD is then estimated as the dose which has the closest probability of
toxicity near to the target toxicity rate ν among the panel of K doses, keeping in mind
that a higher dose involves a higher probability of toxicity.
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Fig. 3.1 An example of dose-toxicity relationship

We denote X1, ..., Xn the doses administered to the first n patients, and Y1, ..., Yn their
binary response: for dose Xi ∈ {d1, ..., dK} given to the ith patient, Yi = 0 if there were
no observed DLT and Yi = 1 if there was an observed DLT. The probability of toxicity
for the ith patient with a given dose dj is P(Yn = 1|Xn = dj), with j ∈ {1, ..., K}. In
sequential design, for each new patient a new dose Xn+1 ∈ {d1, ..., dK} to administer
must be found such that P(Yn+1 = 1|Xn+1) be the closest as possible of the target toxicity
rate ν: Xn+1 = argmin

dj∈{d1,...,dK}
|P(Yn+1 = 1|dj) − ν|.

There are different dose-finding methods, with two main families of methods: non-
parametric algorithmic methods and model-based methods. In the first family we
find for example the "3+3" algorithm, which was and is still widely used, or "up and
down" methods, and in the second family the famous continual reassessment method
(CRM) and its variants, or the dose escalation method with toxicity control: EWOC (for
Escalation With Overdose Control) and BLRM (Bayesian logistic regression model). A
brief presentation of these different methods is given in Appendix B, while the continual
reassessment method is presented just below. All the presented method are adaptive,
which means with possible modifications of the design depending on interim analyses.
Those adaptive designs are described more flexible, not only for dose-finding studies, as
explain by Pallmann et al. [72].
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3.1.1 The continual reassessment method (CRM)

The CRM was introduced by O’Quigley, Pepe and Fisher [69]. This method is widely
used and is the subject of an extensive literature. In particular, Cheung [15] details the
theoretical and practical aspects of CRM. Some extensions of the CRM are presented in
Appendix B.

The CRM is a parametric dose-finding method. There exist a frequentist as well as a
Bayesian version (the most used one).
The dose-toxicity model is

P(Yi = 1|Xi = xi) = ψ(xi, β)

where ψ depends on the dose xi given to the ith patient and on the parameter β to
estimate. For the n first observations, the binomial likelihood can be written as:

Ln(β) =
n∏

i=1
{ψ(xi, β)}yi{1 − ψ(xi, β)}1−yi (3.1.1)

The general principle of CRM is, after each cohort of patients, to estimate the parameter
β, which allows an estimate of the dose-toxicity relationship ψ(xi, β̂), β̂ is the estimate
of β and can be obtained either by the maximum likelihood, or often by the Bayesian
approach:

β̂ = E[Z] where Z ∼ π(β|(x1, y1), ..., (xn, yn)) = Ln(β)π(β)∫
Ln(β)π(β)dβ

where π(β) is the prior distribution of β and π(β|(x1, y1), ..., (xn, yn)) the posterior
distribution of β.
We set the dn+1 dose that will be administered to the next patient (or the next cohort of
patients) using the β̂ estimate, according to the rule:

dn+1 = argmin
dj∈{d1,...,dK}

|P(Yn+1 = 1|dj) − ν|

= argmin
dj∈{d1,...,dK}

|ψ(dj, β̂) − ν|

where ν is the target toxicity rate.
At this stage, several things must be noticed.

• It is common to add a no-skipping rule: the dose to be given to the next cohort of
patients is either already tested or immediately above the maximum tested dose.
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In practice, if doses d1, d2 and d3 have been tested but the recommended dose is
dose d5, the dose d4 will actually be given to the next cohort of patients.

• The doses used in the model P(Yi = 1|Xi = xi) = ψ(xi, β) are not the real doses
administered to the patients, but pseudo-doses (however, we keep the same notation
xi ∈ {d1, ..., dK} for simplicity). In order to allow the model to be consistent and
to work correctly, we choose pseudo-doses (as many as the real doses) which satisfy
the equations p0,j = ψ(dj, β̄), j ∈ {1, ..., K}, where β̄ is the mean of the prior
distribution of β, and the p0,j are initial toxicities elicited for each dose level. This
set of initial toxicities is sometimes called "skeleton" of the CRM, or "working
model" depending on the authors (as in [70]). The issue of the skeleton choice is
discussed below.

• The choice of the ψ function is not unique. The most used functions are:

– The empiric function:

ψ(dj, β) = αβ
j , αj ∈]0, 1[, β > 0

with fixed αj for each dose before the beginning of the trial

– The one-parameter logistic function:

ψ(dj, β) = exp(a+ βdj)
1 + exp(a+ βdj)

where a is a constant and the dose is in R.

– The hyperbolic tangent:

ψ(dj, β) =
(

tanh(dj) + 1
2

)β

,

also for a dose of the skeleton in R.

Some illustrations for logistic functions and hyperbolic tangent on a continuous standard-
ised dose are given in figure 3.2.

The previous models have the advantage of having only one parameter to estimate.

3.1.1.1 CRM settings

The CRM is a widely used method and its theoretical and operating characteristics have
been studied in detail in numerous publications. In the following we briefly discuss the
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Fig. 3.2 Examples of ψ functions for logistic and hyperbolic tangent models

main practical setting of the CRM.

• Doses panel choice
The problem of the number of doses to be tested is twofold. One can wonder
about the number of doses to be tested, but also about the "quantitative" difference
between each dose. To determine the panel of doses to be tested, the Fibonacci
sequence is often cited. However, the use of this sequence in the construction
of the dose panel is rare, as shown in the study [75], while a modified Fibonacci
sequence is preferred. For our part, we will highlight only one mechanical element
of CRM: the increase in the number of doses in the panel does indeed allows a
better precision in the estimation of MTD, but it also induces an increase in the
number of patient cohorts, since the number of doses to be tested is higher. This
element, underlined by Wheeler et al. [91], is interesting to consider in a clinical
context involving a small number of patients.

• Skeleton choice and robustness
Clearly, the choice of initial toxicity guesses is central to the internal mechanism of



28 Dose-finding and bridging studies: state of the art

the CRM. It is therefore interesting and important to understand how the choice
of this skeleton influences the results. This issue has been raised by O’Quigley
and Zohar [70]. In this article, the authors tested different skeletons on several
possible toxicity scenarios. The authors underlined the importance of having an
"spaced-out" skeleton: the initial toxicities should not be too close to each other.
Typically, with a target toxicity of 0.2, if the skeleton has the initial toxicities 0.19,
0.2 and 0.23 the results will be poor since the model will not be able to identify
the MTD in good proportion. Several methods have been proposed for the choice
of the skeleton, including the method based on indifference intervals (see [41]) and
the Bayesian Model Averaging (see [95]).

• Prior distribution variance
If several approaches have been specifically proposed for the choice of the CRM
skeleton, relatively few concern the variance of the prior distribution of the pa-
rameter to estimate. Considering the empiric model ψ(d, β) = dexp(β) and the
one-parameter logistic model ψ(d, β) = {1 + exp(−a − exp(β)d)}−1 with a fixed
a, Lee and Cheung [42] proposed in the case of a Gaussian prior distribution a
choice of variance based on the hypothesis that each of the K doses would have the
same probability as the others to be the MTD. This discrete uniform distribution
leads the authors to suggest a variance equal to K2−1

12 , that is the variance of the
discrete uniform distribution. The authors then propose empirical approaches to
simultaneously choose the indifference intervals’ window and the variance.
The variance of the prior distribution has in this Bayesian framework a very par-
ticular significance, its value influencing on the speed of convergence, in several
possible ways: in the case of a low variance with a centred distribution around the
"true" value of the parameter, the convergence is very fast, but the convergence will
be slow if the variance is low and the distribution centred "far" from the value of
the parameter of interest.
In a Bayesian setting with few observations and in which asymptotic convergence
theorems can’t be used, it is clear that the variance of the prior distribution must
be rigorously calibrate, and if possible according to an objective criterion.

3.1.2 Bayesian logistic regression model (BLRM)

We have previously presented the general methodology of CRM, based on a logistic
regression with one parameter and initial probabilities of toxicity: the skeleton. The
BLRM presented by Neuenschwander et al.(2008) [58] consists in a two parameters
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logistic regression, with continuous dose:

logit{pT (d)} = log(α) + β log(d/d∗) (3.1.2)

where pT (d) is the probability of toxicity at dose d, parameters α, β > 0 and d∗ a
reference dose. α can be interpreted as the odds of toxicity at dose d∗. This model is
described as more flexible and also more realistic to represent the dose-response curve.
For the choice of the prior distribution, the authors suggested for instance to relate
on prior information for each dose through M quantiles qd = (qd(p1), ..., qd(pM)) where
P(pT (d) ≤ qd(pm)) = pm for m = 1, ...,M . This should be done for each dose, so we
define qkm = qdk

(pm), k = 1, ..., K, m = 1, ...,M . The prior choice consists of the choice
of a prior which minimize arg max

k,m
|qkm − q′

km| where q′
km is obtained with the prior

distribution. The authors especially suggest a bivariate normal prior for the parameter
θ = (log(α), log(β)), built as a product of univariate.
In the general setting of dose-escalation, this model was also used in a hierarchical way
to incorporate knowledge from pre-clinical data by Zheng and Hampson [98].

3.2 Bridging studies designs for dose-finding trials

In the context of dose-finding trials, bridging studies were mainly discussed through the
use of the CRM in the literature.

CRM through population heterogeneity

Several approaches were proposed by Shu [79], with some asymptotic properties being
studied by O’Quigley [67]. Although those method are not strictly speaking an bridging
study in the sense that there is not one finished trial and one to be conducted, the
heterogeneity of several populations is taken into account, but the two trials can conducted
in parallel.
One method, call CRM shift model, consists in considering one of the two groups as a
reference group, and to consider for the second one that the dose-toxicity relationship
will be "shifted". It is assumed in this approach that the level of shifting is either known
or if not a discrete prior can be considered. For the first group, the probability of toxicity
for dose xj is P(Yi = 1|Xi = xi) = ψ(xi; a) = α

exp(a)
i where Yi is the binary outcome for

ith patient indicating toxicity and Xi the dose given to this patient among the panel of
K doses {d1, ..., dK}, and the recommended dose is supposed to be identified. Then, for
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the second group, the dose-toxicity is

ψ(di; a) = α
exp(a)
ϕ(i) for i ∈ {1, ..., K}

where

ϕ(i) = i+ zh(i)
with h(i) = LI(1 ⩽ i+ L ⩽ K) +KI(i+ L > K) + I(i+ L < 1) for L ∈ {−K, ...,K}

where z is an indicator variable for the group (z = 0 for group 1 and z = 1 for group 2),
I() is the indicator function and L the levels shifted. This method then deals with two
trials, or one trial composed by two subgroups. In a way, this approach is twice adaptive,
with an interdependence in the dose allocation rules. It is not designed to be particularly
a Bayesian method (no specific prior for parameter a).
Another possibility is the two parameter CRM model for two groups G1 and G2:

P(Yi = 1|Xi = xi, G1) = ψ1(xi, a)
P(Yi = 1|Xi = xi, G2) = ψ2(xi, a, b)

with a is the parameter for the shared information and b is used to distinguish the two
groups. The probability of toxicity for the dose di is then

P(Y = 1|X = di, z) = ψ(di, a, bz) = αa+bz
i for i ∈ {1, ..., K}

where z = 0 for the first group and z = 1 for the second group. The estimated probability
of toxicity for group 1 and 2 for a dose di are then ψ(di, â) and ψ(di, â, b̂) respectively.
Further details about those bridging methods depending on the setting (two trials in
parallel or one finished for instance) were studied by O’Quigley and Iasonos [68]

The Bridging continual reassessment method (BCRM)

An other method is proposed by Liu et al.(2015) [48]. This one, also based on the use
of the CRM, directly defines or sets the skeleton of the CRM. The previous finished
trial is considered to be the landmark one. The idea is to take for each dose of the new
trial d1, ..., dK the estimate probability of toxicity p̂1, ..., p̂K based on the dose-toxicity
relationship estimate obtained from the previous trial. Let’s consider three skeleton:

• Skeleton 1: pi = p̂i
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• Skeleton 2:

pi = p̂i+1 for i ∈ {1, ..., K − 1}

pK = p̂K + 1
2

• Skeleton 3:

pi = p̂i−1 for i ∈ {2, ..., K}

p1 = p̂1

2

Each skeleton is associated to a model Mk, for k = 1, 2, 3. The skeletons correspond to
the three cases where the new population has the same dose-toxicity relationship than
the landmark one, or is more sensitive or less sensitive for skeletons 2 and 3 respectively.
Skeleton 1 corresponds to the skeleton for which the toxicity probabilities are estimated
from a previous trial. Skeleton 2 to the same skeleton as before but with a shift of one
rank lower in the toxicity probabilities associated with the doses: the toxicity probability
estimated for dose i in the previous trial is now associated with dose i− 1, this skeleton
assumes a higher sensitivity to the drug in the population. Finally, skeleton 3 is the same
idea as before but the shift is now of one rank higher, assuming a lower sensitivity to the
drug. An illustration is given in figure 3.3.
Then, the probability of toxicity associated to each dose is calculated through the Bayesian
model averaging method (the principle of the Bayesian model averaging is reminded in
the appendix of [65] or is detailed in [31]). The results show better performance than
the classic CRM in most scenarios. However, it does not take into account the possible
opposition between the two data sets, and the method is strongly dependant on the
skeleton calculated from the landmark trial.

CRM through historical-to-current parameter

Takeda and Morita (2018) [85] proposed to consider an historical-to-current parameter
space.The authors proposed to retrospectively analyse an historical dataset DH using a
two parameter logistic model

π(xi, α, β) = P(Yi = 1|xi, α, β) = exp(α + βxi)
1 + exp(α + βxi)
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Fig. 3.3 Example of three skeletons obtained with the BCRM method. The black curve
represents the dose-toxicity relationship estimates based on the landmark trial.

where xi is the standardized dose given to patient i: xi = log(di)/ 1
K

∑K
j=1 log(dj) with

d1, ..., dK the doses administered. Then, considering µ̃α,H and σ̃2
α,H the posterior mean

and variance of the parameter α, the authors assume that the current α parameter
αC ∼ N (µ̃α,H ,

1
ωα
σ̃2

α,H) with ωα being the historical-to-current parameter, included
between 0 and 1. The authors investigated several priors for the historical-to-current
parameter and calibrated the two prior distributions for αC and βC for to have an effective
sample size fixed at 2. The authors’ simulation study showed that their method had
comparable results in terms of MTD recommendation.

3.3 Similarity criteria between curves

In this section, we explore existing criteria or methods to evaluate the similarity between
several curves. In the context of bridging studies, it is often necessary to compare several
dose-response relationships to then assess if an extrapolation is possible or not [35].
Therefore, it is necessary to have some appropriate tools to be able to compare several
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Name Expression of Df (p||q) Expression f(t)

Kullback-Leibler
∫
p(x) log

(
p(x)
q(x)

)
dx t log(t)

Squared Hellinger
∫ (√

p(x) −
√
q(x)

)2
dx (

√
t− 1)2

Total variation
∫

|p(x) − q(x)|dx 1
2 |t− 1|

Pearson χ2
P

∫ (q(x) − p(x))2

p(x) dx (t− 1)2

α-divergences 4
1−α2

(
1 −

∫
p(x)

1−α
2 q(x)

1+α
2 dx

)
4

1−α2 (1 − t
1+α

2 ), α ̸= ±1
Table 3.1 Examples of f -divergences

dose-response relationships. We decided to deal with the question of curves comparison in
two parts. In the first one the divergences approach is considered to compare distributions.
The second part deals with dose-response curves distances, directly developed in a clinical
context.

3.3.1 Degree of similarity between distributions: divergences

Several criteria are available to compare two distributions. Here we focus on the diver-
gences approach, and particularly in the setting of continuous density functions.

f-divergences

The concept of f -divergences was introduced independently by Csiszàr [17], Ali and
Silvey [1] and Morimoto [52]. Let’s consider p and q two density functions and let f be a
convex function satisfying f(1) = 0. The f -divergence Df (p||q) between p and q is

Df (p||q) =
∫
q(x)f

(
p(x)
q(x)

)
dx

Those divergences have the some specific properties, developed below, as being always
positive, being jointly convex and having some invariance properties (see [2] for example),
which can be useful, for instance, for image reconstruction (see [40]). The most known
f -divergences are given in table 3.1.

Several links were established between the several divergences. For instance, the
know Neyman divergence is the reverse of the Pearson one χ2

P (p, q) = χ2
N(q, p), and

the α-divergence with α = 0 is proportional to the Hellinger divergence. The Kullback-
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Leibler divergence is perhaps one of the most used f -divergence. This is due to its
interpretation as a relative entropy between the two density functions.As explained
before, the f -divergences has many interesting properties:

• They are positive: Df (p||q) ⩾ 0

• They are jointly convex: for λ ∈ [0, 1] and p1, p2, q1, q2 some density functions,
Df (λp1 + (1 − λ)p2||λq1 + (1 − λ)q2) ⩽ λDf (p1||q1) + (1 − λ)Df (p2||q2).

• They satisfy some invariance properties, for example:

– Denoting f̃(t) = f(t) + at+ b, then Df̃ (p||q) = Df (p||q)

– Denoting f̂(t) = tf(1
t
), then Df̂ (p||q) = Df (q||p) (f̂ is called the conjugate of

f , see [71]).

• Two conjugate functions f and f̂ satisfy Df (p||q) = Df̂ (p||q) of all p and q if and
only if f(t) − f̂(t) = c(t− 1), c being a constant.

Other f -divergences’ properties can be found in [71], [2], [17].

Bregman divergences

Bregman divergences, introduced by Bregman [9], are adapted to very various areas. They
can be defined for matrix, vectors, functions, density functions. There are particularly
used for machine learning and classification problems. Generally, f being a strictly
convex and continuously differentiable function, define on a convex set, and x, y being
two points (vectors, matrix, functions...) and ⟨., .⟩ the inner product, the Bregman
divergence between x and y is

DB
f (x, y) = f(x) − f(y) − ⟨∇f(y), x− y⟩

This general definition can be adapted depending on the context. For our setting [5], the
Bregman divergences between two density functions p and q are:

DB
f (p, q) =

∫
{f(p(x)) − f(q(x)) − (p(x) − q(x))f ′(q(x))}dx

3.3.2 Comparison between regression curves in clinical trials

Several ways were proposed to compare regression curves, most of the time based on
hypothesis testing. In the case where the two regression curves have some common
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parameters, Möllenhoff et al. [51] proposed the approach below. We consider

Yl,j,i = ml(dl,j,βl) + ηl,j,i

where Yl,j,i is the response of the ith subject at the jth dose under the lth dose-response
model, with l = 1, 2, j = {1, ..., kl}, i ∈ {1, ..., nl,j}. kl is the number of doses in group l.
The ηl,j,i terms are independent and identically distributed. The two regression models
m1 and m2 can be different, the the vector parameters β1 and β2 too. Considering the
approach presented in [49] and [26], and defining d∞(β1,β2) = max

d∈D
|m1(d,β1)−m2(d,β2)|

with D the region containing all doses and ϵ being a pre-specified constant, often considered
as a relevant threshold, the authors proposed a test for the hypothesis

H0 : d∞(β1,β2) ⩾ ϵ vs H1 : d∞(β1,β2) < ϵ (3.3.1)

The test is then performed through a bootstrap procedure. Afterwards, considering that
both β1 = (β1,1, ..., β1,p1) and β2 = (β2,1, ..., β2,p2) have a common part (βl,1, ..., βl,p′) for
l = 1, 2, the authors proposed to test the equivalence of model parameters through the
hypothesis

K0 : max
i=1,...,p′

|βi,1 − β2,i| ⩾ δ vs K1 : max
i=1,...,p′

|βi,1 − β2,i| < δ

A similar approach was proposed by Bretz et al. [10]. The authors first constructed
their own method without bootstrap for testing hypothesis 3.3.1, using confidence intervals
for m1(d,β1) −m2(d,β2) obtained with the delta-method. Then, the authors considered
the problem of similarity between two target doses from two dose-response curves from
two non-overlapping subgroups. The target dose for them is the minimum effective
dose: the MED, that is the smallest dose showing a clinical relevant benefit over placebo.
The authors then propose an asymptotic test to assess the similarity between two MED
calculated through two different models. In particular, if M̂EDi denotes the estimated
MED of group i, i = 1, 2, the authors established that M̂ED1 − M̂ED2 − (MED1 −
MED2) follows a normal distribution with mean zero and a variance τ 2 calculated with
the delta method. With confidence intervals calculation, the authors show that rejecting
hypothesis H ′′ : |MED1 − MED2| ≥ η if |M̂ED1 − M̂ED2| < c gives an asymptotic
test with level α, if c is such as α = Φ

(
c−η

τ̂

)
− Φ

(
−c−η

τ̂

)
.





Chapter 4

An adaptive power prior for
sequential clinical trials –
Application to bridging studies

In this chapter, we present article [65]: Adrien Ollier, Satoshi Morita, Moreno Ursino,
Sarah Zohar. An adaptive power prior for sequential clinical trials–Application to bridging
studies. Statistical methods in medical research, 2020, vol. 29, no 8, p. 2282-2294,
https://doi.org/10.1177/0962280219886609.

Context
In early phase clinical trials, it is common to have previous available information from
clinical trials conducted in another population for example. This is the case for bridging
studies in particular. It is highly desirable to share this previous information in the
setting of sequential dose-finding trials.

Objective
We want to propose a Bayesian method which permits to adaptively set prior distribution
to better estimate the dose-response relationship. Such a method must take into account
the weight given to historical data and the potential data-prior conflict.

Method: The power prior approach was used to incorporate historical data. The
weight of the prior distribution was considered through its variance. The variance was
calibrated by selecting the power in the power prior’s likelihood corresponding to a
desirable ESS, fixed by advance. This desirable prior distribution’s ESS depends on the
number of patients in the current trial: it must be low if there are few patients, and
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could increase if there are more patients. It is also the maximum ESS we authorise
the prior distribution to have, and it could be decreased. Then, to assess the potential
data-prior conflict, we built a similarity criterion between both the historical and the
current datasets. This similarity criterion is based on the Hellinger’s distance, and
permits to decrease the maximum authorised ESS fixed before.

Results
Through an extensive simulation study, we explored several ways to fixed the maximum
desirable ESS and the similarity criterion setting and compared it to the classic CRM.
We noted, as expected, that a high ESS permits to increase the MTD selection if both
historical and current datasets are similar. However, it also induces a bias if they are not
similar, even taking the difference into account through the similarity criterion. Then, a
low ESS does not permit to increase the MTD selection. We finally suggested a setting
that permits to increase the selection of the MTD when the two datasets are similar and
has similar results to the classic CRM when they are not.

Conclusion
Even if we suggested a setting that permits to increase the selection of the MTD, a
sensitivity analysis is required before the starting of the trial. More precisely, the
number of patients in each cohort, the desired ESS, and the similarity criterion must be
considered. The built similarity criterion has an easy interpretation since it is between 0
and 1. However, it also depends on the model, since it is based on the likelihood function.
In other words, the quality of this criterion also depends on the quality of the matching
between the model and the data.
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Abstract

During drug evaluation trials, information from clinical trials previously conducted on another population, indications or

schedules may be available. In these cases, it might be desirable to share information by efficiently using the available

resources. In this work, we developed an adaptive power prior with a commensurability parameter for using historical

or external information. It allows, at each stage, full borrowing when the data are not in conflict, no borrowing when the

data are in conflict or “tuned” borrowing when the data are in between. We propose to apply our adaptive power prior

method to bridging studies between Caucasians and Asians, and we focus on the sequential adaptive allocation design,

although other design settings can be used. We weight the prior information in two steps: the effective sample size

approach is used to set the maximum desirable amount of information to be shared from historical data at each step of

the trial; then, in a sort of Empirical Bayes approach, a commensurability parameter is chosen using a measure of

distribution distance. This approach avoids elicitation and computational issues regarding the usual Empirical Bayes

approach. We propose several versions of our method, and we conducted an extensive simulation study evaluating

the robustness and sensitivity to prior choices.

Keywords

Bayesian, bridging studies, power priors, dose-finding, phase I, early phase

1 Introduction

Bayesian inference is increasingly used in clinical trial planning, implementation and analysis. It has the advantage
of using external information (historical data from previous clinical data, electronic health records, the medical
literature, expert opinion, etc.) into the statistical framework. This property allows the reduction of sample size
while increasing the statistical power.1–3 However, incorporating external sources of data into the prior distribu-
tion needs to be done carefully, as these data can either be in conflict with or empower the resulting posterior.
In these cases, specific tools for prior distribution calibration are required.

Two efficient approaches have been proposed in recent years to calibrate and tune prior information: the
effective sample size (ESS) method and the power prior approach. The ESS method allows us to interpret the
calibrated parametric prior in terms of the number of hypothetical patients who were used to develop the prior
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distribution. The ESS can be viewed as “how informative” a prior distribution is and can quantify it.4–6

In addition, the power prior was first proposed when incorporating historical data into the analysis of clinical
trials.7–9 In this context, one weights the amount of information that will be used in the posterior computation.
For this aim, a weight is introduced as a power parameter and is defined between 0 and 1 (where 0¼ non-
informative prior and 1¼ full borrowing prior). However, this parameter requires subjective elicitation which
can lead to prior misspecification if it is not done correctly.10 Recently, a class of commensurate priors has been
proposed, that can be viewed as an attempt to quantify the degree of similarity between the informative prior
distribution and the likelihood. Indeed, if the two distributions are superposed, there would be a full borrowing.
Therefore, the amount of “borrowing” depends, in this case, on the amount of commensurability between the
prior and the likelihood.1,11 To do that, the authors define a commensurability parameter that is estimated once
the trial data (that are resumed in the likelihood) are observed. Other efforts have also been made to set the power
prior to control the type I error in the case of data-prior conflict,12,13 or when historical data are simulated from
medical device and their uncertainty is taken into account.14 Regarding commensurability, a meta-analytic
approach was also proposed by Schmidli et al.15 with the robust meta-analytic predictive (MAP) prior.

However, when designing a sequential adaptive trial, interim analyses are performed regarding dose modification,
safety or efficacy estimation depending on the trial design and the clinical trial phase (early or confirmatory). Owing
to the sequential aspect of the process, (1) one cannot wait the end of the trial to estimate the commensurability or
power prior parameter, (2) one cannot necessarily decisively elicitate the power parameter, as it either has a large
weight that is too informative during the initial interim analysis because the trial did not yet reach its full sample size
or a small weight that renders it non-informative at the time of the final analysis, and (3) one can propose a small
value of the power parameter but all the advantages of information borrowing are lost.

Early phase dose-finding clinical trials aiming at estimating the maximum tolerated dose (MTD) are sequential.
In model-based methods, the dose administered to the next cohort of patients depends on all the doses given and
the associated toxicities observed so far. Recently, methods were proposed that allow using external information
into the dose-finding design, where either external data were used for choosing the skeleton (working model) of
the design or for calibrating the prior of the dose-toxicity relationship parameter(s).16,17 Liu et al. proposed using
a Bayesian model averaging (BMA) dose-finding method in which the estimated probabilities of toxicity at the end
of the previous trial are used to build three different skeletons, that will be averaged during the present trial.18

Takeda and Morita defined a “historical-to-current” (H-C) parameter representing the degree of borrowing based
on a retrospective analysis of previous trial data.19 Finally, Petit et al. used external information to calibrate the
dose range and the working model.20

1.1 Motivating case study

Bridging studies are designed to bridge the gap of clinical data, such as efficacy, comorbidities, safety and dosing
regimens between two populations. According to the International Council for Harmonisation of Technical
Requirements for Pharmaceuticals for Human Use E5 (ICH-E5) guidelines, a bridging study of a medicine can
be defined as an additional study executed in a new population, for example, in another ethnic group, to “build a
bridge” to the new clinical data on safety, efficacy, and dose response.21 These studies are important for both
pharmacodynamic and pharmacokinetic reasons. Indeed, ethnic diversity in drug response for some drugs with
respect to safety, efficacy and the resulting similarities or differences in recommended doses have been well
described.22 Some of these differential responses may be related to the pharmacogenomics of a particular
drug.23 In some situations, it might be desirable to share information between populations to look for a more
efficient use of resources but in other cases, it should not be done if the populations are very different from each
other. For instance, the MTD of lapatinib, a tyrosine kinase inhibitor used in breast cancer, was estimated to be
1800mg in Japanese patients but was higher in US and European patients. By contrast, the MTD of sunitinib, a
multi-targeted receptor tyrosine kinase inhibitor, which is given for renal cell carcinoma, is equal to 50mg and is
similar in all countries. Accordingly, it will be pertinent to achieve “full borrowing” when the populations are
similar, “no borrowing” when they are different or “tuned borrowing” when some, but not all, information can be
borrowed.24

The aim of our work is to propose a new method which, using the information coming from an existing fixed
historical trial, helps the design and dose-allocation of a new prospective clinical trial. In this paper, we propose an
adaptive power prior (APP) approach, based on a criterion constructed using the power prior, the ESS and the
Hellinger distance. Using the advantages of each approach, the ESS is used for checking the maximum desired
amount of information, the power prior is used for adding historical data, and the Hellinger distance is used for
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tuning the final borrowing. A criterion measures the similarity between distributions and decides how much
information should be used in the clinical trial. We used the example of a phase I dose-finding study, because
sequential and adaptive dose allocation need to be performed often during the trial.

In Section 2, the proposed method is described in detail along with several variants of the application to phase I
bridging studies. Then, the simulation study is shown in Section 3, followed by the results in Section 4. The article
ends with a discussion on strengths, weaknesses, and future improvements of the method.

2 Methods

Let h be the parameter or the vector of parameters of interest. For simplicity, we will write all notations as if we
are in one dimension, but everything can be easily generalised to vectors and matrices. Let D0 denote the historical
data, D0 ¼ fyjgn0 , n0 the sample size of D0, and LðhjD0Þ the likelihood function of h given the historical data. In a
similar manner, define D as the current data, D ¼ fyign, n as the sample size of D and LðhjDÞ as the likelihood
function of h given the current data. We propose the following adaptive power prior pAPP

pAPPðhÞ ¼ LðhjD0Þa0ð1�cÞp0ðhÞR
LðhjD0Þa0ð1�cÞp0ðhÞdh

(1)

where p0 represents a non-informative prior distribution for h and the original power prior parameter, introduced
in Ibrahim and Chen,8 is split into two parts, 0 � a0 � 1 and 0 � c � 1. Since the two new parameters, a0 and c
called the “quantity of information” and “commensurability” parameters, respectively, have two separate and
specific interpretations, we propose a two-steps approach to set their values.

2.1 Quantity of information parameter value

In the first step, a0 is chosen to add an upper limit on the quantity of information that is desirable to borrow.
c is temporarily set to 0, and the ESS of equation (1) is computed as s ¼ ESS½pAPPðhjc ¼ 0Þ� ¼
a0ESS½LðhjD0Þ� þ ESS½p0ðhÞ�, where LðhjD0Þ should be seen as a distribution.4 If a very non-informative prior
is chosen for p0, for example an improper uniform distribution when possible, the second term of the summation,
ESS½p0ðhÞ� ¼ s0, tends towards zero. Moreover, since LðhjD0Þ includes n0 observations, it is straightforward to
think that the ESS can be approximately equal to n0 (a proof of the convergence is given in the Supplementary
Material). The resulting ESS can be written as s� a0n0 þ s0, and it is linearly dependent on the parameter a0.
Therefore, after setting a desirable ESS s� for the upcoming analysis, a0 can be chosen to invert the previous
equation, that is a0 ¼ ðs� � s0Þ=n0. a0 can be viewed as an upper limit on the quantity of information borrowed,
because ESS½pAPPðhjc ¼ 0Þ� > ESS½pAPPðhjc > 0Þ�. A desirable s� depends on the application and on the sample size
n of the actual data. Except in rare cases, it is usually accepted that s� < n to avoid the situation where the prior
distributions overcome the actual data.

2.2 Commensurability parameter value

In the second step, we set the commensurability parameter c. This parameter takes care of the possible conflict
between the historical and current datasets. When the two datasets are very different, a non-informative prior
should be preferable; when they are similar, a complete borrowing is preferred. We suggest linking c to a measure
of distance between the two datasets, that is, between D0 and D. This distance should be a positive number
between 0 and 1, and it should tend towards the maximum value when the two datasets are very different, and to
zero when D0 and D are close. Since in some applications, such as dose finding, the data can come from a non-
homogeneous population, the approach of Pan and Yuan25 cannot be directly used. For instance, in dose-finding
trial data, each dose of the panel will produce a different population outcome. To overcome this issue, we
propose, in a sort of Empirical Bayes method, to use the Hellinger distance with the normalised likelihoods, as
follows

d2ðD0;DÞ ¼ 1

2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðhjDÞR
LðhjDÞdh

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðhjD0Þ

n
n0R

LðhjD0Þ
n
n0dh

vuut
0
B@

1
CA

2

dh (2)
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where d2 refers to the square of the Hellinger distance. Each likelihood has a normalisation constant to ensure

that it can be viewed as a probability distribution. Moreover, LðhjD0Þ is raised to a factor n=n0 to allow it to be

comparable to LðhjDÞ. Since n0 � n, we expect that the information included in the historical likelihood is
more accurate, or in other words, has less variance then the actual data. Therefore, it is not directly comparable

to a likelihood with fewer data points. We propose the addition of this factor to avoid this inconvenience.

For example, in the Bernoulli case, e.g. yi follows a Bernoulli distribution, we have that LðhjD0Þ ¼
pRn0yið1� pÞn0�Rn0yi , and, when we add the exponent, we obtain LðhjD0Þn=n0 ¼ pn�yn0 ð1� pÞn�n�yn0 , where
�yn0 ¼ ðRn0yiÞ=n0. If we rewrite Rn0yi as n0�yn0 in the likelihood without the exponent, we can easily see that the

mean of the data is preserved, and the historical and the actual likelihood can now be compared with regard to

their variability. Another example is given by the Gaussian case, where yi �Nðl; r2Þ. In this situation, LðhjD0Þ ¼
ð2pr2Þ�n0=2exp

�
� ð2r2Þ�1Rn0ðyi � lÞ2

�
and LðhjD0Þn=n0 ¼ ð2pr2Þ�n=2exp

�
� ð2r2Þ�1n

�
Rn0ðyi � lÞ2

�
=n0

�
. Again,

writing Rn0ðyi � lÞ2 as n0ðRn0ðyi � lÞ2Þ=n0, we can see that the quantity ðRn0ðyi � lÞ2Þ=n0 is preserved but its

“intensity” is reduced to n. The same reasoning can be done for the variance parameter. To be noted, equation (2)

assumes that n0 � n, but it can be easily generalised as follows

d2ðD0;DÞ ¼ 1

2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðhjDÞmin 1;

n0
nð ÞR

LðhjDÞmin 1;
n0
nð Þdh

vuut �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðhjD0Þmin 1; nn0ð ÞR
LðhjD0Þmin 1; nn0ð Þdh

vuut
0
B@

1
CA

2

dh (3)

where each time we downgrade the more accurate likelihood.
Finally, we set c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2ðD0;DÞp
, considering, of course, the only real root (this reasoning will be applied for

now on for all other c-roots). Any other power of d can be used to define the parameter c, since c ¼ dcðD0;DÞ 2
½0; 1� 8c 2 Rþ. Values greater than 1 will reduce the computed distance and will lead to more borrowing, while

values less than 1 will lead to a more conservative approach and will increase the computed distance.

2.3 Application in phase I bridging studies

The adaptive power prior distribution naturally fits the sequential nature of the phase I bridging study. It is only

necessary to set the maximum ESS that a prior can have at each stage of the trial. One can set the maximum ESS

as a vector where each number is related to a trial cohort, or set it as a function with the number of patients
already accrued as an independent variable. In this article, as an example, we apply the APP on phase I bridging

studies where the continual reassessment method (CRM) was used as the design. In particular, we chose the

logistic model, that is

logitðpiÞ ¼ aþ expðbÞ~di

where pi refers to the probability of toxicity at dose i, a¼ 3 is a constant parameter, ~di is the “effective” dose,

which is defined as the prior estimate of the probability of toxicity associated with dose level i and b is the
parameter of interest (to be estimated).26 Usually, a normal distribution with a mean equal to 0 and variance equal

to 1.34 is used as prior distribution for b.27 In our setting, we used the same distribution as p0ðbÞ, that is as the
non-informative distribution, to build the pAPPðbÞ, and we propose several possible versions of it.

The classical CRM, that is when c¼ 1 or directly a¼ 0 for all cohorts to ensure that no historical data is shared,

will be called P_NI from now on. P_ESS refers to the model where only the ESS part is specified and constant, and

in parentheses, the amount of information desired will be specified. AP_L denotes the model with c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðD0;DÞp

and a linear ESS that depends on the number of patients, s�ðnÞ ¼ n. Other forms, including the rounded sigmoid

form, gave almost the same results; therefore, we opted for the simpler version. The version called AP_S is the

same as before but with c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðD0;DÞ4

p
, that is, to have the square root of the distance equal to c. To make the

prior more robust, we checked the performance of the method using a mixture prior, AP_MIX(x), built as follows
pðhjDÞ ¼ xpAPPðbÞ þ ð1� xÞp0ðbÞ, where x represents the mixture weight parameter. Then, following the exam-
ple of Liu et al.,18 we also propose using the Bayesian model averaging technique, where the two models involved

are AP_L, as M1, and AP_NI, as M2.
28 Details on the BMA methods, called AP_BMA, are given in the
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Supplementary Material. We have also reshaped the idea of Occam’s windows,29 frequently used in BMA, to set a

threshold on a ¼ a0ð1� cÞ or on c. In this way, a ¼ aIða > saÞ, where I is the indicator function. In other words, a
is set to zero if its value is less than the pre-specified threshold. In the same manner, we can define

c ¼ cIðc < scÞ þ Iðc � scÞ.

3 Simulation studies

To evaluate the performance of the proposed method, we carried out an extensive simulation study, in which 1000

independent phase I trials per scenario were simulated. The aim is to evaluate the performance of the dose-finding

methods in different scenarios, when the generating probabilities of the prospective trial are similar to the ones

estimated by D0 and when they are different. In any case, D0 is considered fixed, since we are not interested in their

generated probabilities: the best guesses are, of course, the estimated ones.
First, to compare the dose-finding methods, we simulated subject responses, which follow Bernoulli distribu-

tions with parameters defined depending on the scenario, to all doses for each trial. Then, each simulated dataset

was stored, and when running a trial, regardless of the method applied, subject responses were read from this

stored dataset. In this way, when two methods coincide when proposing the dose allocation to the next patient, the

results on the simulated patient are the same.
Regarding the design, each trial had a maximum sample size of 30 patients, six dose levels, a cohort size of one

patient. The no-skipping rule was applied; that is, a higher dose was not proposed if all previous ones were not

already given. For simplicity, stopping rules were not applied, except for scenario 6. Six scenarios were studied

with a target toxicity of 20% and the trial plotted in Figure 1 was assumed as historical data D0. In particular, D0

followed a CRM design with six doses, a cohort of one and a maximum sample size of 30, as the main simulation

trials. There were five dose-limiting toxicities (DLTs) at dose level 3 and one at dose level 5. The final posterior

probability of toxicity was estimated to be ð0:052; 0:073; 0:205; 0:406; 0:506; 0:555Þ, and the MTD was declared to

be dose level 3. Scenarios (that is, the choice of the probability of toxicity at each dose level) were generated to

have the MTD be in several positions in the dose panel. This attribute allowed us to study cases where the

probabilities of toxicity per dose were higher than the historical one, a scenario where these probabilities coincide

in the two trials and in others where the probabilities of toxicity per dose in the actual trial were lower than in the

historical one. As a skeleton, we adopted probabilities ð0:05; 0:07; 0:2; 0:4; 0:5; 0:55Þ that reflect the probabilities of
the historical data. In order words, we checked the performance of borrowing information when we already had a

very good setting.

Figure 1. Dose allocation and toxicity representation for the historical data. On the x-axis, the number given to the accrued patient
is shown, while on the y-axis, it is marked at which dose s/he was allocated. A circle denotes that the patient did not experience any
DLT, while a cross indicates that the patient had at least a DLT. The historical trial followed a CRM design with six doses,
di; i ¼ 1; . . . ; 6, and generating probabilities of toxicity at each dose equals to pTðd1Þ ¼ 0:05; pTðd2Þ ¼ 0:07; pTðd3Þ ¼ 0:2; pTðd4Þ ¼
0:4; pTðd5Þ ¼ 0:5 and pTðd6Þ ¼ 0:55. This specific trial was chosen since the estimated probabilities of toxicities were similar to the
generating ones.
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After preliminary simulations (not shown here), we decided to use all methods that require a distance com-

putation after the 10th patient enrolled in the trial in order to gather some information before starting to compute

the commensurability parameter. For comparison, we ran the classic CRM (denoted by P_NI) and the CRM with

power prior where the power a, which is denoted by AP_EB, was chosen using the Empirical Bayes method.30

In the latter case, a is chosen to maximise the marginal likelihood

mðD;D0; aÞ ¼

Z
LðhjDÞLðhjD0Þap0ðhÞdhZ

LðhjD0Þap0ðhÞdh

As a third competitor model, we run the bridging CRM (denoted by BCRM) of Liu et al.18 We utilised the code

that was provided online by the authors. However, using D0, the principal skeleton estimated gave two doses at

the same prior probability; therefore, we added 0.01 to the estimation of the higher dose in the couple to distin-

guish between them and then ran the BCRM.
Computations were carried out in R (version 3.5.0),31 running under macOS High Sierra 10.13.6. rstan package

(2.17.3)32 was used for Bayesian inference, the ks package (1.11.3)33 was adopted to approximate the distribution-

like likelihoods in equation (2), and Monte Carlo sampling was used to approximate the final integral. R scripts

will be available at the GitHub of the corresponding author.

4 Results

Among the models compared, we added the AP_SOC1 that refers to the AP_S with an Occam’s window with

sa ¼ 0:2, and AP_SOC2, which is the same version of AP_SOC1 with the ESS term replaced with

s�ðnÞ ¼ minðn; 20Þ. In the latter case, we reduced the possible amount of ESS to 20 instead of 30, as in the

other models.
Table 1 summarized the characteristics of each method compared through simulation study. Table 2 shows the

main results: the percentage of correct selection (PCS) and the number of DLTs, each for six different scenarios.
In scenario 1, where the MTD was placed at dose level 5, that is two ranks higher than the MTD of the

historical data, the best PCS (54%) was obtained by P_NI, followed by AP_SOC1 (52%) and AP_SOC2 (52%).

These three methods share the same percentage of dose allocation (shown in Supplementary Material) and median

number of DLTs. The PCS of the other methods is smaller by 10–22% (in absolute change), except for the full

borrowing method P_ESS(30). In the second scenario, the MTD was set one position higher with respect to the

historical data. P_NI, P_ESS(10) and AP_SOC2 achieved a similar PCS, approximately 60%, while P_NI had a

higher median number of DLTs than the other two methods. The performance of the rest of the methods, except

of P_ESS(30), was between 44% and 54%. Scenario 3 represents the situation where both the historical data and

the actual data came from the same population. All methods increase the PCS with respect to P_NI, except for the

BCRM, which, by contrast, experiences a lower number of DLTs. The maximum PCS (95%) was reached by

P_ESS(30), followed by AP_EB (90%). The other methods ranged between 80% and 87%, and the dose alloca-

tion table shows that more patients were treated at the MTD. In scenario 4, where the MTD was one rank less

than the historical data, P_ESS(10) had the best result, 73%, followed by the other methods whose PCSs ranged

between 58% and 68%. The lowest performance was achieved by AP_EB with a PCS of 54% and a higher median

number of DLTs. In scenario 5, the MTD was set to two ranks lower than the historical data, and all methods,

except for P_ESS(30), had an high PCS, ranging from 76% to 90%. P_ESS(10) and P_ESS(30) tended to assign

more patients to toxic doses. Finally, scenario 6 represents the situation where all doses are toxic. We added the

same stopping rule to all methods, that it the trial is stopped if the posterior probability that the probability of

toxicity of the first dose is higher than the pre-specified toxicity threshold is higher than 0.9. P_ESS methods

stopped and/or selected no dose with a lower percentage than the rest of the method, whose PCS ranges from 81%

to 88%.
Sensitivity analyses regarding the ESS shape, mixture priors with different weights, BMA and Occam’s window

types are given in the Supplementary Material.
Then, we focused on the amount of borrowing, defined as the total power used in the power prior, that is,

a ¼ a0ð1� cÞ, at the end of trial for three methods: AP_SOC2, AP_S and AP_MIX(05). The results are shown in

Figure 2, where the scenarios are resumed in the x-axis through the difference of the probability of toxicity at dose
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3 with respect to the historical data (assumed to be 0.20). The median and the first and third quartiles of the final a
are represented on the y-axis. Between the three methods, AP_MIX(05) is the one that borrows more information

in scenario 3 (denoted by SC3 in the figure), with a median greater than 0.7. However, AP_MIX(05) also adds
more bias in the other scenarios, since its median is always greater than 0.1. Going through AP_S to AP_SOC2,
the amount of borrowing is decreased in all scenarios, but borrowing information is still permitted in scenario 3
(median greater than 0.3) and does not add too much bias in the other scenarios.

We also examined at the convergence properties of a for AP_SOC2. We increased the sample size of each trial
up to 100 and we used equation (3) to compute the distance to be used in c. The results are plotted. Figure 3 shows
the median value of a along with the first and the third quartiles for scenarios 1, 2 and 3. In scenario 3, where full
borrowing is desired, the median has an increasing trend, while the range tends to become narrower as the sample
size increases. After 70 patients, a starts to be greater than 0.4. In scenario 1, the median and the first and third

quartiles coincide and are all equal to zero. In scenario 2, the median goes up to 0.20 when the sample size is
approximately 20 patients, but then it decreases quickly to zero. Additionally, the third quartile decreases to
zero after 40 patients. Scenarios 4 and 5 give similar results as scenarios 2 and 1, respectively; therefore, we did not
plot them.

Finally, in Figure 4, we showed the dose-allocation/toxicity of the same trial, simulated under scenario 3, using
the non-informative prior (left side) and the AP_SOC2 (right side). Both dose-allocation schemes coincide
until the 14th patient. Then, the AP_SOC2 remains at the MTD level, while P_NI is more conservative and
decreases the dose level.

5 Discussion

The aim of our work was to propose a modification of the power prior by incorporating external fixed data into a
sequential adaptive design. Indeed, during sequential clinical trials, several adaptations are possible, including

dose or regimen modification which are usually performed in early phase dose-finding studies. As noted in the
Introduction, using the data from another population, indication or schedule can empower the trial results when

Table 1. Methods notation summary.

Method s�ðnÞ (ESS) c Description

P_NI s�ðnÞ ¼ 0 – Classic CRM, without historical information

P_ESS(10) s�ðnÞ ¼ 10 c¼ 0 Constant ESS

AP_L s�ðnÞ ¼ n c ¼ dðD0;DÞ Linear ESS, commensurability criterion equal to

the modified Hellinger distance

AP_S s�ðnÞ ¼ n c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðD0;DÞ

p
Linear ESS, commensurability criterion equal to

the square root of the modified Hellinger

distance

AP_Mix(x) s�ðnÞ ¼ n c ¼ dðD0;DÞ Mixture prior with

pðhjDÞ ¼ xpAPPðhÞ þ ð1� xÞp0ðhÞ, with pAPP

denoting the prior distribution obtained with

AP_L

AP_SOC1 s�ðnÞ ¼ n c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðD0;DÞ

p
Linear ESS, commensurability criterion equal to

the square root of the modified Hellinger dis-

tance, a ¼ aIa>0:2

AP_SOC2 s�ðnÞ ¼ minð20; nÞ c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðD0;DÞ

p
Threshold (equals to 20) on the linear ESS,

commensurability criterion equal to the square

root of the modified Hellinger distance,

a ¼ aIa>0:2

AP_EB – – Empirical Bayes,30 a is chosen to maximise the

marginal likelihood

mðD;D0; aÞ ¼
R
LðhjDÞLðhjD0Þap0ðhÞdhR
LðhjD0Þap0ðhÞdh

BCRM – – Bridging CRM18

CRM: continual reassessment method; ESS: effective sample size.
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the data are not in conflict. Our method has been shown to be able to detect data conflict during sequential
adaptive trials and to add it when there is a strong reliable belief in its usefulness. To note, our method is tailored
to check if the prospective trial is similar to a fixed historical dataset, not if both datasets come from the same
population, that is, if both trials have the same generating probabilities.

We proposed several ways of using pAPP and the amount of historical information that could be used in the
analysis of clinical trials. In our setting, the best method, on average, was AP_SOC2, but in other settings, another
choice could be better. Therefore, a sensitivity analysis should always be performed before the study onset. The
Occam’s window threshold on a (the total borrowing) was set to 0.2, that is, if the total borrowing is less than 0.2,
we set it to zero. Therefore, a great variability in SC2 is shown, since all numbers below 0.2 are set to zero by the
method. Otherwise, we have an increasing alpha and then, after approximately 20-22 patients, a slower decrease.

Table 2. Results for each method and each scenario in terms of the percentage of dose selection at the end of the trial, the PCS in
bold and median number of DLTs, along with the first and the third quartiles. At the beginning of each scenario section, the true
probabilities used for the scenario simulation are displayed. All methods were provided with stopping rules for scenario 6.

% dose selection
DLTs

% dose selection
DLTs

Method 1 2 3 4 5 6

Median

(25q, 75q) 0 1 2 3 4 5 6

Median

(25q, 75q)

Scenario 1 Scenario 2

ptox 0.001 0.01 0.05 0.07 0.2 0.4 0.01 0.05 0.07 0.2 0.4 0.5

P_NI 0 0 2 28 54 16 5 (5, 6) 0 1 25 61 12 1 6 (5, 7)

P_ESS(10) 0 0 10 51 32 7 2 (2, 3) 0 0 36 61 3 0 3 (3, 4)

P_ESS(30) 0 0 68 32 0 0 1 (1, 2) 0 0 84 16 0 0 2 (1, 3)

AP_L 0 0 8 37 39 16 4 (4, 5) 0 0 45 48 6 1 5 (4, 6)

AP_S 0 0 6 32 47 15 5 (4, 5) 0 0 37 54 8 0 5 (4, 6)

AP_MIX(0.5) 0 0 6 34 46 14 5 (4, 5) 0 0 39 53 7 1 5 (4, 6)

AP_SOC1 0 0 5 26 52 17 5 (5, 6) 0 0 38 50 11 1 5 (4, 6)

AP_SOC2 0 0 3 28 52 17 5 (5, 6) 0 0 30 58 11 1 5 (5, 6)

AP_EB 0 0 9 34 43 14 5 (4, 5) 0 0 46 47 6 1 5 (4, 6)

BCRM 0 0 16 45 38 1 3 (2, 4) 0 1 51 44 3 0 4 (3, 5)

Scenario 3 Scenario 4

ptox 0.05 0.07 0.2 0.4 0.5 0.55 0.07 0.2 0.4 0.5 0.55 0.65

P_NI 1 18 70 11 0 0 6 (5, 7) 17 68 15 0 0 0 6 (6, 8)

P_ESS(10) 0 12 84 4 0 0 6 (5, 7) 10 73 17 0 0 0 8 (7, 8)

P_ESS(30) 0 4 95 0 0 0 6 (4, 7) 1 64 35 0 0 0 9 (8, 10)

AP_L 0 9 87 4 0 0 6 (5, 7) 11 61 28 0 0 0 7 (6, 8)

AP_S 0 11 84 5 0 0 6 (5, 7) 15 63 22 0 0 0 7 (6, 8)

AP_MIX(0.5) 0 10 85 4 0 0 6 (5, 7) 14 62 24 0 0 0 7 (6, 8)

AP_SOC1 1 10 85 5 0 0 6 (5, 7) 18 58 24 0 0 0 7 (6, 8)

AP_SOC2 1 11 80 8 0 0 6 (5, 7) 18 62 19 0 0 0 7 (6, 8)

AP_EB 0 6 90 4 0 0 6 (5, 7) 12 54 34 0 0 0 8 (7, 9)

BCRM 1 22 73 4 0 0 5 (4, 6) 21 68 10 0 0 0 6 (5, 7)

Scenario 5 Scenario 6

ptox 0.2 0.4 0.5 0.55 0.65 0.7 0.35 0.45 0.5 0.6 0.7 0.8

P_NI 86 14 1 0 0 0 8 (7, 9) 88 10 2 0 0 0 0 9 (8, 10)

P_ESS(10) 76 23 1 0 0 0 9 (8, 10) 54 39 7 0 0 0 0 10 (9, 11)

P_ESS(30) 40 57 3 0 0 0 12 (11, 13) 7 54 37 2 0 0 0 13 (12, 14)

AP_L 77 22 1 0 0 0 8 (7, 9) 86 10 3 1 0 0 0 9 (8, 10.25)

AP_S 79 20 1 0 0 0 8 (7, 9) 86 10 2 1 0 0 0 9 (8, 10)

AP_MIX(0.5) 79 20 1 0 0 0 8 (7, 9) 86 10 3 1 0 0 0 9 (8, 10)

AP_SOC1 86 13 1 0 0 0 8 (7, 9) 88 10 1 1 0 0 0 9 (8, 10)

AP_SOC2 86 13 1 0 0 0 8 (7, 9) 88 10 2 1 0 0 0 9 (8, 10)

AP_EB 76 21 3 0 0 0 8 (7, 9) 85 11 3 2 0 0 0 9 (8, 11)

BCRM 90 10 0 0 0 0 7 (6, 9) 81 18 1 0 0 0 0 9 (8, 9)

DLT: dose-limiting toxicity; PCS: percentage of correct selection.
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The effect of the Occam’s window is a strong cut and we “feel” a greater variability than we expect in SC2. In our

point of view, large decrease in PCS, in scenarios where the actual population is different from the previous one,

should have more weight in the decision of which method to use. As usual, there is a trade-off between benefit

and risk.
From our simulations, the amount of borrowing value was, on average, between 0.3 and 0.5 according to the

method when the data were not in conflict. As the sample size of the clinical study was fixed at 30, which

represents the additional information of 10 to 15 patients, the overall trial accuracy increased.
We compared our propositions to the Empirical Bayes approach and to the BCRM. It has been shown that the

EB approach works best when there are no data conflict. However, in situations where there is major conflict

between the data, it fails to detect that no borrowing is necessary. A way of improving its performance would be

to incorporate the EB approach in our c parameter, such as c ¼ argmaxðmðD;D0; aÞÞ. However, it could

Figure 2. Evolution of the amount of borrowing value, that is, a ¼ a0ð1� cÞ, at the end of the trial, for models AP_SOC2, AP_S and
AP_MIX(05) in all five scenarios. On the x-axis, scenarios (SC) are represented by their difference in the probability of toxicity at dose
3 with respect to the historical data (assumed to be 0.20). On the right, more toxic scenarios than SC3 are plotted.
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experience computational issues in optimisation when moving in multidimensional parameter space. Even if
equation (2) involves three possibly multidimensional integrals, where the dimension depends on the length of
the vector h, it can be easily approximated using Monte Carlo approaches. First, to reduce computational time,

we suggest an MCMC approach, where the two pseudo distributions, LðhjDÞ=R LðhjDÞdh and

LðhjD0Þn=n0=
R
LðhjD0Þn=n0dh, can be obtained as Bayesian posterior distributions, for example, by setting an

improper uniform prior on h and forcing the likelihoods to be LðhjDÞ and LðhjD0Þn=n0 , respectively. Then, the
final integral of the distance in equation (2) can be computed using the Monte Carlo approach and the density
kernel estimation from the previous sampling results. To the best of our knowledge, this approach works well in
up to six dimensions and is robust. Regarding the BCRM, its aim is to select a proper skeleton for the prospective
trial and not to increase the information used in the analysis. Therefore, the comparison is not fair in our setting,
since it is made to maintain a constant PCS and to not increase in the case of no data conflict between pop-
ulations. In our case, we experienced some issue in computing the skeleton. The final proposed skeleton had two
couples of doses with the same probability of toxicity. Changing the skeleton and/or adding our method as one of
the models inside the BMA procedure in the BCRM could increase the performance.

Our method is based on several parametrisation choices. First, we used the ESS to tune the quantity of
information used from the historical data. In this case, we fixed a threshold that reflects the maximum amount

Figure 3. Evolution of the a value in model AP_SOC2 for a sample size going up to 100 patients. The median and the first and third
quartiles are plotted for scenario 1 (SC1), scenario 2 (SC2), and scenario 3 (SC3).

Figure 4. Dose allocation representation for the same trial using P_NI (left) and AP_SOC2 (right). Each point represents a patient, a
circle indicates no toxicity, and a cross indicates toxicity.
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of hypothetical patients who are incorporated into the prior with respect to the number of patients who will be

included in the present trial. In our case, for the AP_SOC2 method, we simulated a phase I clinical trial with

30 patients and we fixed the maximum ESS threshold to 20. Even if our method is built to add information only

when necessary, increasing the threshold can decrease the PCS when data are in conflict, as shown above. However,

this threshold is already high, as it already allows the incorporation of 67% (20/30) additional information.
Second, the value of c is defined between zero and one. We chose to parametrise it using the Hellinger distance

dð:Þ or its square root. As proposed in the methods section, c can also be parametrised as dcðD0;DÞ 2 ½0; 1�
8c 2 Rþ. If c is higher than 1, it will reduce the computed distance and will lead to more borrowing, while a

value less than 1 will lead to a more conservative approach with an increase in the computed distance. Trial

statisticians can decide to use other possibilities for c, but an extensive sensitivity analysis is required.
Third, the method is based on the power prior approach and, therefore, on some notion of exchangeability.34

When the two datasets can be seen as a realisation from the same process, we would assume full exchangeability;

that is, the two datasets would have the same parameter, but not otherwise. Many models, such as hierarchical

models and the power prior, are based on the assumption of exchangeability. As pointed out by Psioda et al.,35 we

prefer to see historical data that give the prior as non-random. In this point of view, the prior simply reflects the

previous knowledge, which can be near the truth or not with respect to the new prospective trial. Therefore, even

though exchangeability is an intrinsic part of the design, whether the patients in the two trials are actually

exchangeable is not important when evaluating the impact of borrowing the prior information on the PCS.
Our approach is not limited to early phase dose-finding clinical trials. It can be generalised to any adaptive

sequential method and trial phase. It can adapt the amount of the historical information that could be used in any

interim analysis. Of course, some choices need to be fixed before the beginning of the trial, such as the ESS, the

Occam’s window threshold and the parametrisation of c. The generalisation of our method is straightforward

because it does not depend on the number of interim analyses or on the type of outcomes. Then, it should be

noticed that the term “fixed historical dataset” does not mean necessarily a unique dataset; this can be extended

either for the averaging of several datasets or for a meta-analysis of several phase I datasets in order to take into

account the inter- and intra-trials’ variability.36

Being able to incorporate external data into small sample trials is an advantage when the data are not in

conflict. Proposing a full borrowing when not appropriate will conduct to a wrong choice of the MTD in the

majority of cases. Full borrowing should not be considered, unless there is a strong evidence of similarity.

Our method was shown to be able to detect conflict and avoid it. This method will help investigators and clinical

trial statisticians use historical data without the fear of adding bias to the results when the data are in conflict.

We believe that such approaches should be further developed in the future.
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Method % dose selection % dose allocation DLTs
1 2 3 4 5 6 1 2 3 4 5 6 median

(25q, 75q)
Scenario 1
Prob of toxicity 0.001 0.01 0.05 0.07 0.2 0.4
P NI 0 0 0.02 0.277 0.541 0.162 0.037 0.042 0.097 0.281 0.331 0.212 5 (5, 6)
P ESS(10) 0 0 0.096 0.511 0.324 0.069 0.033 0.037 0.379 0.423 0.118 0.01 2 (2, 3)
P ESS(30) 0 0 0.68 0.32 0 0 0.033 0.033 0.857 0.077 0 0 1 (1, 2)
AP L 0 0 0.081 0.368 0.386 0.165 0.037 0.041 0.158 0.351 0.248 0.164 4 (4, 5)
AP S 0 0 0.056 0.325 0.469 0.15 0.037 0.042 0.136 0.332 0.276 0.177 5 (4, 5)
AP MIX(0.5) 0 0 0.062 0.338 0.461 0.139 0.037 0.042 0.141 0.336 0.268 0.176 5 (4, 5)
AP SOC1 0 0 0.048 0.262 0.517 0.173 0.037 0.042 0.115 0.265 0.33 0.211 5 (5, 6)
AP SOC2 0 0 0.033 0.278 0.515 0.174 0.037 0.042 0.113 0.268 0.33 0.211 5 (5, 6)
AP EB 0 0 0.09 0.34 0.433 0.137 0.037 0.041 0.176 0.321 0.258 0.166 5 (4, 5)
BCRM 0 0 0.161 0.446 0.383 0.01 0.037 0.046 0.185 0.382 0.33 0.02 3 (2, 4)

Scenario 2
Prob of toxicity 0.01 0.05 0.07 0.2 0.4 0.5
P NI 0 0.006 0.253 0.614 0.119 0.008 0.047 0.066 0.278 0.42 0.128 0.06 6 (5, 7)
P ESS(10) 0 0.005 0.355 0.611 0.028 0.001 0.034 0.05 0.54 0.364 0.011 0 3 (3, 4)
P ESS(30) 0 0 0.845 0.155 0 0 0.033 0.034 0.897 0.036 0 0 2 (1, 3)
AP L 0 0.004 0.454 0.48 0.055 0.007 0.047 0.057 0.431 0.339 0.078 0.048 5 (4, 6)
AP S 0 0.004 0.374 0.537 0.08 0.005 0.047 0.059 0.371 0.379 0.091 0.052 5 (4, 6)
AP MIX(0.5) 0 0.004 0.386 0.532 0.072 0.006 0.047 0.058 0.384 0.371 0.088 0.052 5 (4, 6)
AP SOC1 0 0.003 0.385 0.497 0.108 0.007 0.047 0.059 0.361 0.348 0.125 0.06 5 (4, 6)
AP SOC2 0 0.004 0.3 0.58 0.109 0.007 0.047 0.059 0.347 0.362 0.125 0.06 5 (5, 6)
AP EB 0 0.003 0.455 0.472 0.064 0.006 0.047 0.054 0.459 0.304 0.086 0.05 5 (4, 6)
BCRM 0 0.009 0.514 0.444 0.033 0 0.049 0.075 0.427 0.366 0.082 0.001 4 (3, 5)

Scenario 3
Prob of toxicity 0.05 0.07 0.2 0.4 0.5 0.55
P NI 0.006 0.184 0.7 0.107 0.003 0 0.085 0.215 0.496 0.151 0.032 0.021 6 (5, 7)
P ESS(10) 0 0.12 0.837 0.043 0 0 0.036 0.156 0.757 0.052 0 0 6 (5, 7)
P ESS(30) 0 0.045 0.954 0.001 0 0 0.033 0.059 0.907 0 0 0 6 (4, 7)
AP L 0.001 0.087 0.872 0.04 0 0 0.076 0.154 0.632 0.097 0.024 0.018 6 (5, 7)
AP S 0.004 0.108 0.836 0.049 0.002 0.001 0.078 0.168 0.602 0.107 0.027 0.019 6 (5, 7)
AP MIX(0.5) 0.004 0.097 0.853 0.044 0.001 0.001 0.077 0.163 0.611 0.103 0.026 0.019 6 (5, 7)
AP SOC1 0.007 0.095 0.847 0.048 0.003 0 0.085 0.159 0.588 0.115 0.032 0.02 6 (5, 7)
AP SOC2 0.007 0.11 0.801 0.079 0.003 0 0.085 0.162 0.582 0.119 0.032 0.02 6 (5, 7)
AP EB 0.003 0.057 0.904 0.035 0.001 0 0.076 0.119 0.675 0.086 0.025 0.018 6 (5, 7)
BCRM 0.01 0.217 0.729 0.043 0 0.001 0.1 0.244 0.538 0.096 0.021 0.001 5 (4, 6)

Scenario 4
Prob of toxicity 0.07 0.2 0.4 0.5 0.55 0.65
P NI 0.166 0.681 0.151 0.002 0 0 0.263 0.473 0.209 0.037 0.012 0.006 6 (6, 8)
P ESS(10) 0.099 0.732 0.169 0 0 0 0.115 0.561 0.321 0.003 0 0 8 (7, 8)
P ESS(30) 0.008 0.645 0.347 0 0 0 0.036 0.378 0.586 0 0 0 9 (8, 10)
AP L 0.107 0.609 0.284 0 0 0 0.196 0.451 0.309 0.03 0.01 0.005 7 (6, 8)
AP S 0.151 0.632 0.216 0.001 0 0 0.22 0.457 0.275 0.033 0.01 0.005 7 (6, 8)
AP MIX(0.5) 0.14 0.618 0.241 0.001 0 0 0.213 0.456 0.284 0.032 0.01 0.005 7 (6, 8)
AP SOC1 0.182 0.578 0.237 0.003 0 0 0.268 0.408 0.273 0.034 0.011 0.006 7 (6, 8)
AP SOC2 0.179 0.624 0.193 0.004 0 0 0.268 0.414 0.266 0.034 0.011 0.006 7 (6, 8)
AP EB 0.117 0.54 0.343 0 0 0 0.202 0.37 0.383 0.029 0.01 0.005 8 (7, 9)
BCRM 0.206 0.685 0.105 0.004 0 0 0.306 0.473 0.177 0.037 0.007 0 6 (5, 7)

Scenario 5
Prob of toxicity 0.2 0.4 0.5 0.55 0.65 0.7
P NI 0.859 0.135 0.006 0 0 0 0.725 0.195 0.058 0.015 0.005 0.002 8 (7, 9)
P ESS(10) 0.764 0.229 0.007 0 0 0 0.499 0.384 0.116 0.001 0 0 9 (8, 10)
P ESS(30) 0.399 0.568 0.033 0 0 0 0.152 0.543 0.306 0 0 0 12 (11, 13)
AP L 0.767 0.219 0.014 0 0 0 0.639 0.265 0.076 0.013 0.004 0.002 8 (7, 9)
AP S 0.791 0.196 0.013 0 0 0 0.671 0.239 0.07 0.014 0.004 0.002 8 (7, 9)
AP MIX(0.5) 0.789 0.198 0.013 0 0 0 0.661 0.249 0.069 0.014 0.004 0.002 8 (7, 9)
AP SOC1 0.858 0.128 0.014 0 0 0 0.722 0.187 0.069 0.015 0.005 0.002 8 (7, 9)
AP SOC2 0.857 0.129 0.014 0 0 0 0.722 0.187 0.069 0.015 0.005 0.002 8 (7, 9)
AP EB 0.764 0.208 0.028 0 0 0 0.634 0.243 0.102 0.013 0.004 0.002 8 (7, 9)
BCRM 0.899 0.099 0.002 0 0 0 0.775 0.158 0.049 0.016 0.002 0 7 (6, 9)

Table 1. Results for each method and each scenario (1-5) in terms of the percentage of dose selection at the
end of the trial, the percentage of dose allocation and median number of DLTs, along with the first and the third
quartiles. At the beginning of each scenario section, the true probabilities used for the scenario simulation are
displayed.
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Method % dose selection % dose allocation DLTs
0 1 2 3 4 5 6 1 2 3 4 5 6 median

(25q, 75q)
Scenario 6
Prob of toxicity 0.3 0.4 0.5 0.6 0.7 0.8
P NI 0.877 0.104 0.016 0.003 0 0 0 0.629 0.213 0.114 0.032 0.009 0.003 9 (8, 10)
P ESS(10) 0.538 0.389 0.069 0.004 0 0 0 0.57 0.319 0.11 0.001 0 0 10 (9, 11)
P ESS(30) 0.071 0.535 0.37 0.024 0 0 0 0.235 0.504 0.261 0 0 0 13 (12, 14)
AP L 0.861 0.1 0.032 0.007 0 0 0 0.568 0.258 0.135 0.027 0.009 0.003 9 (8, 10.25)
AP S 0.864 0.104 0.025 0.007 0 0 0 0.586 0.245 0.129 0.029 0.009 0.003 9 (8, 10)
AP MIX(0.5) 0.865 0.101 0.027 0.007 0 0 0 0.588 0.249 0.123 0.028 0.009 0.003 9 (8, 10)
AP SOC1 0.878 0.101 0.012 0.009 0 0 0 0.624 0.201 0.131 0.031 0.009 0.003 9 (8, 10)
AP SOC2 0.878 0.1 0.015 0.007 0 0 0 0.624 0.202 0.131 0.031 0.009 0.003 9 (8, 10)
AP EB 0.852 0.107 0.026 0.015 0 0 0 0.559 0.237 0.165 0.028 0.009 0.003 9 (8, 11)
BCRM 0.806 0.185 0.009 0 0 0 0 0.768 0.14 0.068 0.022 0.003 0 9 (8, 9)

Table 2. Comparison of the proposed methods in a toxic scenario.
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2 ESS sensitivity analysis

We compare, when γ = 0, the linear ESS, that is s(n) = n, with respect a sigmoid ESS, computed as

s(n) = min

(
30,

[
31

1 + exp(−0.25(n− 15))

])
,

where [x] refers to the integer part of x. Results, shown in Table 3, suggest not big difference between
them in percentage of correct selection.

Method % dose selection % dose allocation DLTs
1 2 3 4 5 6 1 2 3 4 5 6 median

(25q, 75q)
Scenario 1
Prob of toxicity 0.001 0.01 0.05 0.07 0.2 0.4
ESS LIN 0 0 0.299 0.701 0 0 0.034 0.04 0.324 0.602 0 0 2 (1, 3)
ESS SIG 0 0 0.312 0.688 0 0 0.035 0.04 0.327 0.488 0.11 0 2 (1, 3)

Scenario 2
Prob of toxicity 0.01 0.05 0.07 0.2 0.4 0.5
ESS LIN 0 0.001 0.802 0.197 0 0 0.038 0.051 0.651 0.26 0 0 3 (2, 4)
ESS SIG 0 0.002 0.782 0.216 0 0 0.041 0.054 0.661 0.197 0.048 0 3 (2, 4)

Scenario 3
Prob of toxicity 0.05 0.07 0.2 0.4 0.5 0.55
ESS LIN 0 0.032 0.966 0.002 0 0 0.047 0.122 0.77 0.061 0 0 6 (5, 7)
ESS SIG 0 0.035 0.96 0.005 0 0 0.056 0.126 0.744 0.058 0.017 0 6 (5, 7)

Scenario 4
Prob of toxicity 0.07 0.2 0.4 0.5 0.55 0.65
ESS LIN 0.003 0.599 0.398 0 0 0 0.079 0.5 0.395 0.025 0 0 8 (7, 9)
ESS SIG 0.004 0.594 0.402 0 0 0 0.097 0.462 0.406 0.028 0.007 0 8 (7, 9)

Scenario 5
Prob of toxicity 0.2 0.4 0.5 0.55 0.65 0.7
ESS LIN 0.256 0.717 0.027 0 0 0 0.327 0.552 0.11 0.011 0 0 10 (9, 11)
ESS SIG 0.296 0.672 0.032 0 0 0 0.314 0.565 0.105 0.013 0.002 0 11 (9, 11)

Table 3. Comparison of two ESS shapes: linear (ESS LIN) vs sigmoidal (ESS SIG).
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3 Mixture priors and Bayesian Model Averaging

We performed a sensitivity analysis for the mixture prior, AP MIX(ω) choosing several ω. Then,
for the Bayesian Model Averaging technique (BMA), the two models involved are AP L, as M1,
and the AP NI, as M2. We consider the posterior distribution p(θ|D) = P (θ|M1, D)P (M1|D) +

P (θ|M2, D)P (M2|D) as a mixture of posterior distribution with P (θ|M1, D) the posterior with adaptive

power prior and P (θ|M2, D) the posterior with vague prior for the parameter of interest.M1 andM2 are
called model 1 and 2. The posterior probability of each model is P (Mi, D) = P (D|Mi)P (Mi)∑2

i=1 P (D|Mi)P (Mi)
with

P (D|Mi) =
∫
P (D/θi,Mi)P (θi|Mi)dθi the integrated likelihood of model Mi, θi the parameter of

modelMi, P (θi|Mi) the prior of θi forMi, P (D/θi,Mi) the likelihood and P (Mi) the prior probability
that Mi is the good model, set as 0.5.

For all models, we set ESS linear, that is s(n) = n, and γ =
√
d2(D0, D), except for AP BMANG

where γ = 0. Results are shown in Fig 4.
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Method % dose selection % dose allocation DLTs
1 2 3 4 5 6 1 2 3 4 5 6 median

(25q, 75q)
Scenario 1
Prob of toxicity 0.001 0.01 0.05 0.07 0.2 0.4
AP MIX(0.3) 0 0 0.055 0.32 0.467 0.158 0.037 0.042 0.129 0.325 0.282 0.185 5 (4, 6)
AP MIX(0.8) 0 0 0.078 0.34 0.424 0.158 0.037 0.042 0.153 0.346 0.254 0.168 5 (4, 5)
AP MIX(0.9) 0 0 0.08 0.358 0.397 0.165 0.037 0.042 0.156 0.35 0.25 0.165 5 (4, 5)
AP BMA 0 0 0.063 0.337 0.457 0.143 0.037 0.042 0.14 0.336 0.27 0.175 5 (4, 5)
AP BMANG 0 0 0.117 0.343 0.367 0.173 0.037 0.041 0.172 0.363 0.222 0.164 4 (4, 5)

Scenario 2
Prob of toxicity 0.01 0.05 0.07 0.2 0.4 0.5
AP MIX(0.3) 0 0.003 0.354 0.564 0.069 0.01 0.047 0.06 0.354 0.388 0.097 0.054 5 (4, 6)
AP MIX(0.8) 0 0.004 0.431 0.491 0.061 0.013 0.047 0.058 0.414 0.349 0.083 0.05 5 (4, 6)
AP MIX(0.9) 0 0.004 0.441 0.494 0.05 0.011 0.047 0.057 0.422 0.347 0.079 0.049 5 (4, 6)
AP BMA 0 0.004 0.402 0.514 0.075 0.005 0.047 0.059 0.384 0.37 0.088 0.052 5 (4, 6)
AP BMANG 0 0.004 0.55 0.391 0.046 0.009 0.047 0.057 0.464 0.315 0.069 0.048 5 (4, 5)

Scenario 3
Prob of toxicity 0.05 0.07 0.2 0.4 0.5 0.55
AP MIX(0.3) 0.003 0.11 0.836 0.049 0.002 0 0.078 0.174 0.589 0.111 0.027 0.019 6 (5, 7)
AP MIX(0.8) 0.001 0.094 0.873 0.031 0.001 0 0.076 0.156 0.626 0.099 0.025 0.018 6 (5, 7)
AP MIX(0.9) 0 0.084 0.874 0.042 0 0 0.075 0.156 0.629 0.098 0.024 0.018 6 (5, 7)
AP BMA 0.003 0.091 0.858 0.045 0.002 0.001 0.077 0.163 0.611 0.104 0.026 0.019 6 (5, 7)
AP BMANG 0 0.068 0.907 0.025 0 0 0.074 0.148 0.647 0.089 0.024 0.018 6 (5, 7)

Scenario 4
Prob of toxicity 0.07 0.2 0.4 0.5 0.55 0.65
AP MIX(0.3) 0.154 0.624 0.221 0.001 0 0 0.225 0.459 0.27 0.031 0.01 0.005 7 (6, 8)
AP MIX(0.8) 0.122 0.597 0.281 0 0 0 0.198 0.452 0.305 0.03 0.01 0.005 7 (6, 8)
AP MIX(0.9) 0.109 0.617 0.274 0 0 0 0.197 0.454 0.305 0.03 0.009 0.005 7 (6, 8)
AP BMA 0.14 0.619 0.24 0.001 0 0 0.213 0.455 0.285 0.032 0.01 0.005 7 (6, 8)
AP BMANG 0.074 0.595 0.331 0 0 0 0.176 0.455 0.324 0.03 0.009 0.005 8 (7, 9)

Scenario 5
Prob of toxicity 0.2 0.4 0.5 0.55 0.65 0.7
AP MIX(0.3) 0.782 0.204 0.014 0 0 0 0.681 0.23 0.068 0.014 0.005 0.002 8 (7, 9)
AP MIX(0.8) 0.783 0.202 0.015 0 0 0 0.645 0.261 0.074 0.013 0.004 0.002 8 (7, 9)
AP MIX(0.9) 0.784 0.198 0.018 0 0 0 0.644 0.262 0.074 0.013 0.004 0.002 8 (7, 9)
AP BMA 0.779 0.206 0.015 0 0 0 0.659 0.25 0.071 0.014 0.004 0.002 8 (7, 9)
AP BMANG 0.703 0.278 0.019 0 0 0 0.599 0.303 0.078 0.013 0.004 0.002 8 (8, 10)

Table 4. Performance comparison of mixture priors and BMA.
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4 Occam window sensitivity analysis

We re-shaped the idea of the Occam windows to set a threshold on α = α0(1− γ) or on γ. In this way,
α = αI(α > τα), where I is the indicator function. In other words, α is set to zero if its value is lower
than the pre-specified threshold. This model is denoted as OC A(τα). In the same manner, we can define
γ = γI(γ < τγ) + I(γ ≥ τγ) and the model is called OC G(τγ). For all models, we set ESS linear, that
is s(n) = n, and γ =

√
d2(D0, D). Results are shown in Fig 5.

Method % dose selection % dose allocation DLTs
1 2 3 4 5 6 1 2 3 4 5 6 median

(25q, 75q)
Scenario 1
Prob of toxicity 0.001 0.01 0.05 0.07 0.2 0.4
OC A(0.2) 0 0 0.082 0.267 0.489 0.162 0.037 0.041 0.161 0.238 0.314 0.209 5 (4, 6)
OC A(0.3) 0 0 0.078 0.227 0.526 0.169 0.037 0.042 0.131 0.251 0.328 0.211 5 (5, 6)
OC A(0.4) 0 0 0.054 0.245 0.529 0.172 0.037 0.042 0.105 0.272 0.332 0.211 5 (5, 6)
OC G(0.6) 0 0 0.081 0.254 0.506 0.159 0.037 0.041 0.159 0.24 0.311 0.211 5 (4, 6)
OC G(0.7) 0 0 0.086 0.258 0.49 0.166 0.037 0.041 0.16 0.278 0.268 0.216 5 (4, 6)
OC G(0.8) 0 0 0.079 0.209 0.53 0.182 0.037 0.041 0.158 0.338 0.217 0.209 5 (4, 6)

Scenario 2
Prob of toxicity 0.01 0.05 0.07 0.2 0.4 0.5
OC A(0.2) 0 0.003 0.465 0.428 0.096 0.008 0.047 0.057 0.436 0.282 0.118 0.06 5 (4, 6)
OC A(0.3) 0 0.003 0.499 0.378 0.114 0.006 0.047 0.058 0.41 0.301 0.124 0.06 5 (4, 6)
OC A(0.4) 0 0.002 0.482 0.398 0.11 0.008 0.047 0.062 0.338 0.365 0.127 0.06 5 (5, 6)
OC G(0.6) 0 0.004 0.459 0.426 0.105 0.006 0.047 0.056 0.436 0.28 0.12 0.06 5 (4, 6)
OC G(0.7) 0 0.004 0.471 0.404 0.111 0.01 0.047 0.056 0.435 0.298 0.102 0.061 5 (4, 6)
OC G(0.8) 0 0.004 0.455 0.409 0.117 0.015 0.047 0.057 0.431 0.328 0.079 0.058 5 (4, 6)

Scenario 3
Prob of toxicity 0.05 0.07 0.2 0.4 0.5 0.55
OC A(0.2) 0 0.085 0.883 0.03 0.002 0 0.079 0.149 0.636 0.085 0.031 0.02 6 (5, 7)
OC A(0.3) 0.006 0.068 0.892 0.029 0.005 0 0.085 0.145 0.617 0.101 0.032 0.02 6 (5, 7)
OC A(0.4) 0.008 0.076 0.876 0.037 0.003 0 0.085 0.166 0.568 0.128 0.032 0.02 6 (5, 7)
OC G(0.6) 0.007 0.082 0.869 0.036 0.005 0.001 0.082 0.147 0.633 0.087 0.031 0.021 6 (5, 7)
OC G(0.7) 0.006 0.083 0.871 0.036 0.004 0 0.077 0.152 0.632 0.092 0.027 0.02 6 (5, 7)
OC G(0.8) 0.001 0.087 0.871 0.041 0 0 0.076 0.154 0.632 0.096 0.024 0.018 6 (5, 7)

Scenario 4
Prob of toxicity 0.07 0.2 0.4 0.5 0.55 0.65
OC A(0.2) 0.107 0.612 0.279 0.002 0 0 0.213 0.432 0.309 0.029 0.011 0.006 7 (6, 8)
OC A(0.3) 0.168 0.536 0.294 0.002 0 0 0.268 0.378 0.305 0.032 0.011 0.006 7 (6, 8)
OC A(0.4) 0.182 0.51 0.306 0.002 0 0 0.265 0.406 0.276 0.035 0.011 0.006 7 (6, 8)
OC G(0.6) 0.195 0.523 0.281 0.001 0 0 0.261 0.384 0.309 0.029 0.011 0.006 7 (6, 8)
OC G(0.7) 0.202 0.515 0.283 0 0 0 0.228 0.418 0.309 0.029 0.01 0.006 7 (6, 8)
OC G(0.8) 0.12 0.596 0.284 0 0 0 0.196 0.45 0.309 0.03 0.01 0.005 7 (6, 8)

Scenario 5
Prob of toxicity 0.2 0.4 0.5 0.55 0.65 0.7
OC A(0.2) 0.765 0.22 0.015 0 0 0 0.654 0.249 0.077 0.013 0.005 0.002 8 (7, 9)
OC A(0.3) 0.855 0.125 0.02 0 0 0 0.723 0.182 0.073 0.015 0.005 0.002 8 (7, 9)
OC A(0.4) 0.851 0.127 0.022 0 0 0 0.721 0.19 0.067 0.015 0.005 0.002 8 (7, 9)
OC G(0.6) 0.861 0.125 0.014 0 0 0 0.709 0.194 0.077 0.013 0.004 0.002 8 (7, 9)
OC G(0.7) 0.888 0.098 0.014 0 0 0 0.675 0.229 0.076 0.013 0.004 0.002 8 (7, 9)
OC G(0.8) 0.779 0.207 0.014 0 0 0 0.639 0.265 0.076 0.013 0.004 0.002 8 (7, 9)

Table 5. Performance comparison of methods with Occam window threshold.
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5 Results in another setting

We performed an other simulation study where, in each scenario, 1000 trial where simulated with 4
different dose levels, 18 patients and 0.3 as target toxicity. The D0 was chosen as a trial with 1 patient
allocated to the first dose level, 2 patients at the second dose level, 9 and 6 patients allocated to the third
and fourth dose level, respectively. Three DLTs were seen at both dose level 3 and 4. The final CRM
analysis gave the following estimation of probability of toxicity: 0.06, 0.16, 0.32, and 0.47.

For AP SOC2 we set s∗(n) = min(12, n). Result trends, Table 6, are similar to the ones showed in
the main simulation analysis.
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Method % dose selection % dose allocation DLTs
1 2 3 4 1 2 3 4 median

(25q, 75q)
Scenario 1b
Prob of toxicity 0.05 0.15 0.30 0.45
P NI 0.011 0.229 0.546 0.214 0.125 0.266 0.345 0.264 5 (4, 6)
P ESS(10) 0 0.159 0.709 0.132 0.057 0.21 0.638 0.096 5 (4, 6)
P ESS(18) 0 0.099 0.833 0.068 0.056 0.143 0.769 0.033 5 (4, 6)
AP L 0.003 0.141 0.738 0.118 0.117 0.228 0.438 0.218 5 (4, 6)
AP S 0.006 0.168 0.677 0.149 0.119 0.24 0.412 0.23 5 (4, 6)
AP MIX(0.5) 0.007 0.159 0.692 0.142 0.119 0.239 0.413 0.229 5 (4, 6)
AP SOC1 0.011 0.163 0.677 0.149 0.124 0.235 0.412 0.23 5 (4, 6)
AP SOC2 0.011 0.179 0.642 0.168 0.125 0.237 0.405 0.233 5 (4, 6)
AP EB 0.002 0.1 0.821 0.077 0.117 0.205 0.481 0.197 5 (4, 6)
BCRM 0.014 0.238 0.536 0.212 0.115 0.274 0.389 0.222 5 (4, 6)

Scenario 2b
Prob of toxicity 0.15 0.30 0.45 0.60
P NI 0.226 0.543 0.206 0.025 0.339 0.389 0.188 0.084 5 (5, 6)
P ESS(10) 0.049 0.608 0.331 0.012 0.092 0.499 0.393 0.017 6 (5, 7)
P ESS(18) 0.008 0.539 0.45 0.003 0.059 0.408 0.529 0.004 7 (6, 8)
AP L 0.111 0.521 0.359 0.009 0.288 0.388 0.252 0.073 6 (5, 7)
AP S 0.149 0.53 0.308 0.013 0.303 0.388 0.233 0.076 6 (5, 7)
AP MIX(0.5) 0.143 0.534 0.31 0.013 0.299 0.393 0.232 0.076 6 (5, 7)
AP SOC1 0.215 0.463 0.309 0.013 0.337 0.355 0.233 0.076 6 (5, 6)
AP SOC2 0.229 0.478 0.277 0.016 0.34 0.357 0.227 0.076 6 (5, 6)
AP EB 0.118 0.451 0.43 0.001 0.289 0.349 0.293 0.069 6 (5, 7)
BCRM 0.203 0.554 0.221 0.022 0.308 0.41 0.212 0.07 5 (4, 6)

Scenario 3b
P Prob of toxicity 0.30 0.45 0.60 0.70
P NI 0.728 0.242 0.029 0.001 0.668 0.234 0.074 0.024 7 (6, 8)
P ESS(10) 0.401 0.549 0.048 0.002 0.277 0.565 0.155 0.004 8 (7, 9)
P ESS(18) 0.167 0.75 0.082 0.001 0.113 0.628 0.258 0 8 (7, 9)
AP L 0.584 0.354 0.062 0 0.609 0.276 0.093 0.023 7 (6, 8)
AP S 0.654 0.303 0.042 0.001 0.633 0.258 0.086 0.023 7 (6, 8)
AP MIX(0.5) 0.637 0.32 0.043 0 0.626 0.264 0.086 0.023 7 (6, 8)
AP SOC1 0.713 0.245 0.041 0.001 0.666 0.225 0.086 0.023 7 (6, 8)
AP SOC2 0.729 0.233 0.037 0.001 0.668 0.225 0.085 0.023 7 (6, 8)
AP EB 0.605 0.302 0.092 0.001 0.612 0.253 0.112 0.023 7 (6, 8)
BCRM 0.694 0.272 0.032 0.002 0.635 0.265 0.081 0.019 7 (6, 8)

Table 6. Results for each method and each scenario (1-5) in terms of the percentage of dose selection at the
end of the trial, the percentage of dose allocation and median number of DLTs, along with the first and the third
quartiles. At the beginning of each scenario section, the true probabilities used for the scenario simulation are
displayed.
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6 ESS of a likelihood

We detail the computation of the ESS for a likelihood function, and we show its asymptotic value. We
considerX0 = (X1,0, ..., Xn0,0) a vector of n0 i.i.d. observations from f(Xi,0|θ)) with θ = (θ1, ..., θq),
and L(θ|X0) =

∏n0

i=1 f(Xi,0|θ) the corresponding likelihood.

Theorem:
For a given likelihood L(θ|X0) =

∏n0

i=1 f(Xi,0|θ), X = (X1, ..., Xn) a vector of n generic i.i.d.
observations which comes from the same distribution than X1,0, ..., Xn,0, a vague prior q0(θ), with the
following hypothesis:

(i) E
[∣∣∣∂

2 log(f(Xi/θ))
∂θ2j

∣∣∣
]
< +∞ for all j

(ii) ∂2 log(q0(θ))
∂θ2j

→ 0 for all j

then, ESS[L(θ|X0)] −−−−→
n0→∞

n0.

Proof:
We consider the likelihood as a general function of theta to calculate its ESS. Considering a vague prior
q0(θ), we denote qm(θ|X) = q0(θ)

∏n
i=1 f(Xi|θ) the posterior distribution of θ after n observations.

fn(X) is the marginal density ofX With Morita’s notations,

Dq,+(θ, n) =

q∑

j=1

∫ {
−∂

2 log(q0(θ))

∂θ2
j

−
n∑

i=1

∂2 log(f(Xi|θ))

∂θ2
j

}
fn(X)dX

= −
q∑

j=1

∂2 log(q0(θ))

∂θ2
j

− n
q∑

j=1

E

[
∂2 log(f(Xi|θ))

∂θ2
j

]

Then, considering that in the particular case of the ESS of a likelihood, the prior of interest is the
likelihood with observation, p(θ) = L(θ|X0). So still with Morita’s notations:

Dp,+(θ) = −
q∑

j=1

n0∑

i=1

∂2 log(f(Xi,0|θ))

∂θ2
j

Reminding that

δ(n, q0) = |Dp,+(θ̄)−Dq,+(θ̄, n)|
ESS[L(θ|X0)] = arg minn δ(n, q0)
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Therefore,

δ(n, q0) =

∣∣∣∣∣−
q∑

j=1

n0∑

i=1

∂2 log(f(Xi,0|θ))
∂θ2

j

∣∣∣∣
θ=θ̄

+

q∑

j=1

∂2 log(q0(θ))

∂θ2
j

∣∣∣∣
θ=θ̄

+ n

q∑

j=1

E
[
∂2 log(f(Xi|θ))

∂θ2
j

]

θ=θ̄

∣∣∣∣∣

Considering hypothesis (ii), minimising δ(n, q0) is equivalent to minimise

∆(n, n0) = −
q∑

j=1

n0∑

i=1

∂2 log(f(Xi,0|θ))

∂θ2
j

∣∣∣∣
θ=θ̄

+ n

q∑

j=1

E

[
∂2 log(f(Xi|θ))

∂θ2
j

]

θ=θ̄

And with hypothesis (i) and Law of Large Number, for θ = θ̄,

∆(n, n0) −−−−→
n0→∞

(n− n0)

q∑

j=1

E

[
∂2 log(f(Xi|θ))

∂θ2
j

]

θ=θ̄

With ∆(n, n0) = 0 if n = n0, so arg minn δ(n, q0) = n0. �
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Chapter 5

Estimating similarity of
dose-response relationships in phase
I clinical trials - case study in
bridging data package

In this chapter, we present article [66]: Adrien Ollier, Sarah Zohar, Satoshi Morita,
Moreno Ursino. Estimating Similarity of Dose–Response Relationships in Phase I Clinical
Trials—Case Study in Bridging Data Package. International Journal of Environmental
Research and Public Health.2021; 18(4):1639. https://doi.org/10.3390/ijerph18041639.

Context
It is not uncommon for a drug to be tested several times, on different populations. In
particular, bridging studies are additional studies conducted into a new population to
provide clinical data from an historical trial. The ICH-E5 [35] considers that clinical data
can be extrapolated from a population to another if the two dose-response curves are
similar. However, the similarity between two dose-response curve is not precisely defined.

Objective
Our objective is to propose several statistical similarity criteria to evaluate the similarity
of two dose-response curves obtained in two Phase I clinical trials, and more generally
the similarity between the two populations response to the drug. This should help the
regional authorities to decide if the extrapolation is possible in term of dose-toxicity and
MTD.



64
Estimating similarity of dose-response relationships in phase I clinical trials - case study

in bridging data package

Method: We extended the existing criterion developed in Ollier et al.[65]. This
criterion was first proposed for an adaptive context. The proposed extensions permit to
evaluate the similarity in terms of parameter posterior distributions and MTD posterior
distributions. The new criteria do not assess the same kind of similarity and have not
the same numerical particularities (some are bounded, some are not). To evaluate the
performance of the proposed criteria, synthetic datasets were built as example, and six
drugs with published data were also considered. Illustrative plots are proposed to guide
the interpretation of the results.

Results
The synthetic example considered permitted to illustrate the expected differences between
several populations. Indeed, two populations could have a same MTD but different
dose-response relationship, or both can be different, etc. The different crieteria appear
to correctly assess the expected kind of similarity or dissimilarity.

Conclusion
The proposed criteria appeared to be in adequacy with the expected results, and demon-
strated that one single criterion is not enough to assess the similarity between two
datasets or two dose-response curves. However, several criteria are based on the MTD,
and so depends on the definition of the MTD at the beginning of the trials.
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Abstract: Bridging studies are designed to fill the gap between two populations in terms of clinical
trial data, such as toxicity, efficacy, comorbidities and doses. According to ICH-E5 guidelines,
clinical data can be extrapolated from one region to another if dose–reponse curves are similar
between two populations. For instance, in Japan, Phase I clinical trials are often repeated due to
this physiological/metabolic paradigm: the maximum tolerated dose (MTD) for Japanese patients is
assumed to be lower than that for Caucasian patients, but not necessarily for all molecules. Therefore,
proposing a statistical tool evaluating the similarity between two populations dose–response curves
is of most interest. The aim of our work is to propose several indicators to evaluate the distance
and the similarity of dose–toxicity curves and MTD distributions at the end of some of the Phase
I trials, conducted on two populations or regions. For this purpose, we extended and adapted the
commensurability criterion, initially proposed by Ollier et al. (2019), in the setting of completed
phase I clinical trials. We evaluated their performance using three synthetic sets, built as examples,
and six case studies found in the literature. Visualization plots and guidelines on the way to interpret
the results are proposed.

Keywords: bridging studies; distribution distance; oncology; phase I; dose-finding; dose–response;
bayesian inference

1. Introduction

Bridging studies are designed to fill the gap between two populations in terms of
clinical trial data, such as toxicity, efficacy, comorbidities and doses. A bridging data
package consists of selected data from the Clinical Data Package of the population in the
new region, including pharmacokinetic, any pharmacodynamic, dose–toxicity or dose–
efficacy data, and if appropriate, a bridging study to extrapolate the foreign dose–response
data to the new region [1].

According to the International Council for Harmonisation of Technical Requirements
for Pharmaceuticals for Human Use E5 (ICH-E5) guidelines, data can be extrapolated from
one region to another if “a bridging study [...] indicates that a different dose in the new
region results in a safety and efficacy profile that is not substantially different from the one
derived from the original region; it will often be possible to extrapolate the foreign data to
the new region, with an appropriate dose adjustment, if this can be adequately justified
(e.g., by pharmacokinetic and/or pharmacodynamic data)” [1]. This is the reason why
proposing a statistical tool evaluating the similarity between two foreign dose–response
curves is of great interest. If this is proven, then, other clinical trials data can be used and
extrapolated for the new region.

Int. J. Environ. Res. Public Health 2021, 18, 1639. https://doi.org/10.3390/ijerph18041639 https://www.mdpi.com/journal/ijerph
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In Japan, the Pharmaceuticals and Medical Devices Agency (PMDA) recommends the
re-evaluation of a drug if there are insufficient data from Japanese patients [2]. Indeed,
Phase I clinical trials in oncology, which aim to estimate the maximum tolerated dose
(MTD), are often repeated. Ogura et al. [3] pointed out that MTD differences between pop-
ulations could be due to the different distribution of genetic polymorphisms in enzymes
involved in drug metabolism or of biomarker incidences in different populations. In partic-
ular, in Japan, Phase I trials are repeated based on a physiological/metabolic paradigm:
MTDs for Japanese patients are often lower than the ones of for Caucasian patients [4].
Based on this assumption, Maeda and Kurokawa [5] have performed an intensive study
comparing the MTD of 21 molecularly targeted cancer drugs in Japanese versus Caucasian
populations. They found out that this assumption does not hold well: in their study, the
MTD was lower for Japanese patients in only two cases, there were no differences between
the two populations with 10 drugs and MTD was incommensurable as the evaluated dose
range acted different with nine drugs. Moreover, Mizugaki et al. [6] have analyzed data of
single-agent Phase I trials at the National Cancer Center Hospital between 1995 and 2012,
comparing the dose-limiting toxicity (DLT) profiles and MTDs of Japanese trials with the
trials from Caucasian populations.

Recently, methods for bridging dose-finding design have been proposed where pre-
vious population data were used to either calibrate the prior distribution of the Bayesian
model parameter(s) or to choose the “working model” of the design for prospective tri-
als [7]. Liu et al. [8] proposed using a Bayesian model to average the dose-finding method
where the previous trial data were used to build three different skeletons which would
then be averaged during the study. Moreover, Takeda and Morita recently defined an
“historical-to-current” parameter that could describe the degree of borrowing from one
population to the other [9]. Ollier et al. [10] proposed a bridging method where a borrowing
parameter was estimated sequentially in a response adaptive design which quantifies the
amount of reasonable borrowing according to the similarity between the two populations’
estimates. Usually,the proposed methods focus on one parameter, strictly related to the
MTD and not on the full dose–toxicity response curve. All these methods were proposed
with the purpose of using the foreign data to plan and conduct the future Phase I trial
in the new region. Indeed, at this stage, the idea is to use the foreign data to calibrate
model-based priors to be used in the new region trial. However, in most cases, the trial
in the new region will not be planned this way, but rather by using the MTD information
from the foreign region only, if available. The sophisticated statistical approach will not
be used.

Another option is to compare the two dose–response curves estimated from each
region and to evaluate how similar they are. In this case, the overall purpose is different
from before; if the curves prove to be similar (under the uncertainty estimation), the
new purpose will be to extrapolate other trial data—such as that of Phase II—to the new
region and to avoid further repetition of clinical investigations. For dose–response curves,
Bretz et al. [11] introduced an asymptotic test to evaluate the difference of the minimum
efficient dose among several groups of subjects, according to a threshold. However, this
method was built for later clinical phases and presents weaknesses when applied to a small
sample size. By contrast, Bayesian methods could mitigate the issue of estimation based on
a small sample size setting, since they do not rely on asymptotic approximations and prior
distributions can be used to ensure more stability in computation. Thereafter, the degree
of similarity could be considered directly at the posterior distributions level. Therefore,
methods proposing to estimate the similarity between dose–toxicity curves should be
proposed when there is the need to evaluate if the safety data can be extrapolated or not.

The aim of our work is to propose some Bayesian indicators that evaluate the distance
and the similarity of (1) dose–toxicity curves, taking into account the variability, (2) the
MTD posterior distributions, by extending and adapting the commensurability criterion
initially proposed by Ollier et al. [10]. These indicators were applied to several Phase I trials
presented in Maeda and Kurokawa [5] and Mizugaki et al. [6], evaluating the similarity
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between Western dose–toxicity data to Eastern ones. The proposed tools should be used
by trial stakeholders in order to decide if other trials data could be extrapolated from
the new region, and, if so, to avoid the repetition of multiple clinical trials. In the next
section, the original commensurability parameter is summarized along with the proposed
extensions and the dose–toxicity model used. The case studies are described in Section 3,
while Section 4 details the computational settings. The results are given in Section 5,
followed by a Discussion section.

2. Methods

In this section, we briefly recall the Bayesian commensurability measure used in
Ollier et al. [10], which was originally adopted into a power prior setting [12]; we then
propose extensions and modifications to this measure to be applied at the end of the study.
We also introduce the Bayesian dose–toxicity model, which will be used for retrospective
data analyses.

Let Dc denote the Caucasian data, Dc =
{(

yj, xj
)}

nc
, nc the sample size of Dc, and

yj the binary outcome of the j-th patient which received dose xj. In a similar way, we
can define Da, the Japanese data and associated parameters. Let us also set a model
for the probability of toxicity vs dose; pT(x) = f (x, β), where f (.) denotes a convenient
monotonous link function parametrized by β. The likelihood function for each population
can be written as L(β|Dm) = ∏nm

j=1 f (x, β)yj(1− f (x, β))1−yj , for m = c, a.

2.1. Commensurability Distances

Ollier et al. [10] suggested to consider the likelihood function as a distribution, divided
by a normalization constant. This type of normalized likelihood can also be seen as the
resulting Bayesian posterior distribution when constant (probably improper) priors are
used for the analysis. Then, the authors defined a measure of “commensurability” between
the two data-sets through a distance d(Dc, Da), the Hellinger one, in the parameters space
via the following relation

d2(Dc, Da) =
1
2

∫


√√√√ L(β|Dc)

min(1, na
nc )

∫
L(β|Dc)

min(1, na
nc ) dβ

−

√√√√ L(β|Da)
min(1, nc

na )

∫
L(β|Da)

min(1, nc
na ) dβ




2

dβ. (1)

The commensurability measure, denoted by γ, is then defined as γ = dq(Dc, Da), with
q ∈ R+. Values of q higher than 1 will reduce the computed distance, while values lower
than 1 will lead to a more conservative method, increasing the computed distance. In case
of sequential trials, the authors proved that, when coupled with the power prior approach,
a conservative value of γ leads to a better result in terms of operating characteristics, as a
percentage of the right MTD selection. However, at the end of the trial, we are interested in
comparing the achieved results, without any discount in the resulting distance. Therefore,
in this paper, we will focus on the original Hellinger distance, which is q = 1. This
computed distance is a positive number between 0 and 1, it tends towards the maximum
value when the two datasets are quite different, and towards zero when they are close to
each other. Each likelihood is divided by a normalization constant in order to ensure that it
can be viewed as a probability distribution. The variance of the likelihood density depends
on the sample size of the trial. To make the two likelihoods comparable in terms of precision
(variance), if nc > na, L(β|Dc) is raised to a power of less than 1, otherwise, L(β|Da) is
raised to a power of less than 1. Following this method, the variance of likelihood density
of the trial with more patients is increased to almost fit the one of the trial with fewer
patients. Practical examples are given in Ollier et al. [10].

A straightforward modification of the distance in Equation (1) was performed by
changing the underlying flat prior into a proper one. The posterior distribution obtained
with the weighted likelihood is then used in the Hellinger formula. Thus, denoted by
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πpost,c(β|Dc) ∝ L(β|Dc)
min(1, na

nc )πprior(β) and by πpost,a(β|Da) ∝ L(β|Da)
min(1, nc

na )πprior(β)
the posterior distribution of β given Dc and Da, respectively, we have

d2
mod(Dc, Da) =

1
2

∫ (√
πpost,c(β|Dc)−

√
πpost,a(β|Da)

)2
dβ. (2)

This modification will ensure more stability in computation when the likelihoods
involve more than one parameter. When flat/constant priors are used for πprior(β),
Equation (2) is equivalent to Equation (1). Even if, theoretically, two different priors
can be chosen for the two trials, we suggest using a single one for the sake of comparability.

Both previous distances work at the parameter level. They check if the whole dose–
toxicity curve is similar or not. Using a single parameter model for the dose–toxicity
relationship, as a one parameter logistic model used in the continual reassessment method
(CRM) [13], is also equivalent to check the MTD distance. However, in models with more
parameters, such as the Bayesian Logistic Regression Model (BLRM) [14] where we have
two parameters, intercept and slope, we check if the bivariate distribution of β is the same.
Since the distance is difficult to interpret in case of the multidimensional parameters space,
we propose a summary distance using the resulting posterior MTD distribution. In our
setting, the MTD, x∗, is estimated as the dose linked to a pre-specified toxicity target τ,
that is, x∗ = f−1(τ|β), where f−1(.) is the inverse function of f (.). The posterior MTD
distribution, πMTD,m(x∗|Dm), is obtained evaluating x∗ through the posterior distribution
of the parameter, πpost,m(β|Dm), for m = c, a. Therefore, we can define

d2
MTD(Dc, Da) =

1
2

∫ (√
πMTD,c(x∗|Dc)−

√
πMTD,a(x∗|Da)

)2
dx∗. (3)

Note that this distance always involves a one dimensional integral.
Previous distances focused on understanding the similarity of the whole dose–toxicity

curve between two populations. However, even with different slopes and intercepts, two
populations can still have the same MTD. Those differences should generally indicate a
difference in responsiveness to a drug and it is important to know when MTDs are similar
but not the underlying curves. Therefore, we propose to couple the distances, previously
described, with a measure denoting the difference in MTD point estimations. We can build
this measure as a percentage using the median of the posterior MTD distributions, such as

dp1(Dc, Da) =

(
medc

meda

)1−2I(medc<meda)

− 1, (4)

where I(.) is the indicator function, which assumes the value 1 if the statement in paren-
theses is true and zero otherwise, and medi with i = c, a, is the median of the posterior
MTD distribution of Caucasians and Japanese, respectively. This formulation was chosen
for its easy interpretation, indeed, we check how much the highest MTD differs in per-
centage in respect to the lowest one. For this reason, the formula implies the exponent
1− 2I(medc < meda), which allows us to always have the highest estimate at the numer-
ator, and the −1 term. Similarly to the three previous measures, Equation (4) tends to
zero when the two MTDs are very similar. However, this measure does not have an upper
bound. We propose the use of the median since it is less impacted by outliers than the
mean. The maximum a posteriori is another possible candidate, that is

dp2(Dc, Da) =

(
x̃∗c
x̃∗a

)1−2I(x̃∗c <x̃∗a )
− 1, (5)

where
x̃∗i = arg max

x∗
πMTD,i(x∗|Di).
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To summarize, the first three measures d, dmod, and dMTD are bounded between 0 and
1. Even if they are not built as percentages, their interpretation could be strictly linked to
the percentage. Otherwise, the last two measures dp1 and dp2 have a ratio-like measure,
lower bounded at 0. In practice, they give the information on the number of times the
maximum MTD is higher than the lowest one.

2.2. Dose–Toxicity Model

In this section, we describe the model selected for the link function f (.). Instead of
the CRM, originally used in Ollier et al. [10], which is better suited to prospective trials
than retrospective analyses (retrospective CRM requires special techniques), we opted for a
more flexible BLRM model, with two parameters, the intercept β0 and the (logarithm of
the) slope β1 [14]. The dose–toxicity relationship is represented by

logit{pT(x)} = β0 + exp(β1) log
(

x
xr

)

where β ∈ R2, xr denotes a reference dose and exp(β1) assures a positive final slope in
the model. In this case, f−1(.) is equal to the logit function and the BLRM formulation is
similar to the one of Zheng and Hampson [15]. To close the Bayesian model, we suggest a
bivariate normal distribution as prior for (β0, β1).

Following the described model, the final MTD is estimated as x∗ = xr exp logit(τ)−β0
exp(β1)

.
In order to minimize the overdispersion generated by this formula, we compared the
distribution of the log ratio of the MTD and the reference dose, x∗∗ = log(x∗/xr) (instead
of the real MTD). Therefore, we have also changed Equations (4) and (5), accordingly,
to the new formulation (x∗∗) in order to preserve the original distance meaning, that is
dp1(Dc, Da) = exp|medc −meda| − 1 and dp2(Dc, Da) = exp|x̃∗c − x̃∗a | − 1.

Finally, in a previous sensitivity analysis (not shown), even when comparing the
distribution of the log ratio of the MTD and the reference dose, we faced instability in
computation due to the issue of outliers. We have found that truncating the posterior
distribution of x∗∗ between the 10 and 90 percentiles gives a good compromise between
preserving trial information and computation stability.

3. Case Studies

To show the results and the interpretation of the proposed measures, we first introduce
four different synthetic datasets (1 for Caucasian and 3 for Japanese), to check the results
when two datasets are similar or not. We fixed the Caucasian dataset first: setting τ
equal to 0.3, the MTD at dose 600 mg/day. The same setting was used for the Japanese
synthetic-1 set. Moreover, the two datasets were generated to have the same dose–toxicity
shape. Japanese synthetic-2 set shares the same MTD with the Caucasian set, but has a
different dose–toxicity shape: the Japanese dose–toxicity is steeper at the MTD than the
Caucasian one. The Japanese synthetic-3 set has a different dose–toxicity curve and MTD
(200 mg/day). The data are summarized in Table 1.

Then, we applied our methods to eight examples found in the literature. Our research
started by looking at the drugs presented in Maeda and Kurokawa [5] and Mizugaki et al. [6].
We selected only drugs for which both Caucasian and Japanese trial data were available.
We then extracted the number of toxicities and the number of allocated patients to the
administered doses in each trial. All those data are shown in Table 2, each time with the
reference article. The MTD declared at the end of the trial is shown in a box. As we can see
from Table 2, Caucasians and Japanese trials were not usually used with the same set of doses.
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Table 1. Number of dose-limiting toxicity and total number of patients accrued at each dose for 1 Caucasian trial and
3 Japanese synthetic trials. In the first column, the trial population is specified. A dash (-) means that the dose was not
tested in the specified population. A box denotes the dose that has been defined as maximum tolerated dose (MTD).

Doses

Example (mg/day) 100 200 400 500 600 800

Caucasian (DLTs/nb pt) 0/3 0/3 0/6 - 3/9 2/3

Japanese
Synthetic-1 (DLTs/nb pt) - - - 1/10 2/8 2/2

Synthetic-2 (DLTs/nb pt) - - 0/3 0/9 4/12 3/3

Synthetic-3 (DLTs/nb pt) 0/3 1/6 3/3 - - -

Table 2. Value of dose-limiting toxicity and total number of patients accrued at each dose for all trials analysed in this
manuscript. In the first column, the trial population is specified. A dash (-) means that the dose was not tested in the
specified population. A box denotes the dose that has been defined as MTD, if the MTD was reached in the trial. For
Sorafenib, the doses were given twice daily (bid).

Investigated Drug Doses

Erilubin (mg/m2) 0.25 0.5 0.7 1.0 1.4 2 2.8 4

Caucasian [16] (DLTs/nb pt) 0/1 0/4 - 0/3 - 1/7 2/3 3/3

Japanese [17] (DLTs/nb pt) - - 0/3 0/3 2/6 3/3 -

Lapatinib (mg/day) 500 650 900 1000 1200 1600 1800

Caucasian [18] (DLTs/nb pt) 0/13 1/15 0/11 1/3 1/12 1/13 -
Japanese [19] (DLTs/nb pt) - - 0/6 - 0/6 1/6 1/6

Sorafenib (mg bid) 100 200 400 600

Caucasian [20] (DLTs/nb pt) 0/3 1/6 0/8 3/7

Japanese [21] (DLTs/nb pt) 0/3 1/12 0/6 1/6

Ixabepilone (mg/m2) 7.4 15 30 40 50 57 65

Caucasian [22] (DLTs/nb pt) 0/3 0/3 0/3 - 3/22 3/3 2/3

Japanese [23] (DLTs/nb pt) - 0/3 0/3 1/6 2/2 - -

Edotecarin (mg/m2) 6 8 11 13 15

Caucasian [24] (DLTs/nb pt) 0/3 0/3 0/6 1/9 4/9
Japanese [25] (DLTs/nb pt) - 0/3 1/6 1/9 2/6

E7070 (mg/m2) 50 100 200 400 600 700 800 900 1000

Caucasian [26] (DLTs/nb pt) 0/4 0/3 0/3 0/3 0/4 2/7 2/4 - 3/3

Japanese [27] (DLTs/nb pt) - - - 0/3 0/3 0/6 1/6 2/3 -

4. Settings

We chose τ, the target toxicity probability, to be used to define the MTD, which equals
0.3 for the three synthetic set examples, while it equals 0.25 for the real case studies. Most of
real case studies followed an algorithm base allocation; therefore, it seemed more natural to
have a threshold lower than 0.3, which is more frequently used when model based designs
are adopted in oncology.
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A non-informative bivariate prior distribution, commonly used in this setting, was
chosen for the BLRM model as follows:

(
β0
β1

)
∼ N

((
logit(0.1)

log 1

)
,
[

4 0
0 4

])
.

The hyperprior parameters of the bivariate prior were chosen after a preliminary sensitiv-
ity analysis (not shown) in order to ensure computational stability. In detail, this prior choice
suggests a mean prior probability of toxicity at the reference dose, xr, of 0.1 and that the slope
has the prior median centered at zero. Therefore, xr was chosen in the first half of the total
dose panel for each example. In detail, 400 mg/day was set for the three synthetic examples,
1 mg/m2 for Erilubin, 900 mg/day for Lapatinib, 200 mg/day for Sorafenib, 30 mg/m2 for
Ixabepilone, 8 mg/m2 for Edotecarin and 700 mg/m2 for E7070.

All distances were computed with q = 1, which is why we focus on the square root of
Equation (1)–(3) and on the original value for Equation (4) and (5). The reference doses
selected are reported along with the results in Table 3. All computations were performed
in R, version 3.5.2. Monte Carlo approximations were adopted for all integrals involved,
and uniform prior distribution on compact supports was set to approximate weighted
likelihoods (as posterior distributions) in Equation (4). Details can be found in R scripts in
the Supplementary Materials.

Table 3. Results in terms of d, dmod, dMTD, dp1 and dp2 for the synthetic examples and the real case
studies. xr denotes the reference dose selected for the Bayesian Logistic Regression Model (BLRM).

Drug d dmod dMTD dp1 dp2

Synthetic-1 0.23 0.18 0.19 0 0
Synthetic-2 0.53 0.37 0.41 0.02 0.02
Synthetic-3 0.91 0.83 1.00 1.50 1.27

Erilubin 0.92 0.83 0.91 0.47 0.43
Lapatinib 0.58 0.39 0.50 7.29 0.35
Sorafenib 0.45 0.43 0.57 10.07 0.75

Ixabepilone 0.77 0.56 0.62 0.34 0.26
Edotecarin 0.38 0.24 0.32 0.32 0.04

E7070 0.63 0.63 0.88 0.59 0.23

5. Results

The computed distances under all the proposed methods are shown in Table 3. When
the MTD and the dose–toxicity curves are similar, like in synthetic-1 data, d, dmod, dMTD
are lower than 0.23 and dp1 = dp2 = 0. When only the MTDs are similar (synthetic-2 data)
but not the dose–toxicity curves, dp1 = dp2 = 0.02 but d, dmod, dMTD are higher than 0.37.
Finally, when both curves and MTDs (synthetic-3 data) differ dp1 = 1.50, dp2 = 1.27 and d,
dmod, dMTD are higher than 0.83.

Taking these cases’ studies as reference, we then analyse the data from published
papers with Caucasian and Japanese datasets. Erilubin has the highest values of d, dmod and
dMTD, greater than 0.80, which suggests differences between the dose–toxicity curves. It is
also shown in Figure 1. Its values of dp1 and dp2 are around 0.45. Ixabepilone and E7070
have quite large d, dmod and dMTD, greater than 0.56 and they also have similar results in
term of dp2. The value of dp1 is different in these two examples and reflects the presence of
unbalanced heavy tails in the E7070 case. The heavy tail concern is observed, in at least
one population, in all examples except for Erilubin. The results obtained in Table 3 show
that dp1 is directly impacted by this phenomenon. For example, Lapatinbib and Sorafenb
have a very high value of dp1, greater than 7.29, whereas the maximum a posteriori, dp1,
has more stable and usual results. Edotecarin has close values of d, dmod and dMTD, around
0.3, representing similar dose–toxicity curves.

Figure 2 and Figure A1, in the Appendix A, show how the Caucasian posterior
distribution is different in the three synthetic examples even if it comes from the same
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Caucasian dataset. This behaviour is due to the variance adjustment given by min
(

1, na
nc

)
.

In general, the posterior peak is preserved and the variance increases when the exponent is
less than 1 (as in the synthetic-3 example).

Figure 1. MTD posterior distributions for Erilubin, Ixabepilone, Lapatinib, Sorafenib, Edotecarin and E7070 case studies.
Posterior medians are represented by a circle for Caucasian and a triangle for Japanese, while maximum a posteriori is
represented by a dashed line for Caucasian and a two-dash line for Japanese.
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Figure 2. MTD posterior distributions for the Synthetic-1, Synthetic-2 and Synthetic-3 examples. Posterior medians are
represented by a circle for Caucasian and a triangle for Japanese, while maximum a posteriori by a dashed line for Caucasian
and a two-dash line for Japanese.

Figure 3 represents the distance between dose–toxicity curves, dmod, and maximum
of the posterior MTD distribution, dp2. For the sake of interpretability, we have equally
divided the axes into three parts, each one denoting a small, moderate or high distance,
respectively. In this plot, Sorafenib has moderate distances between curves and high
difference between MTDs. This is the opposite for Erilubin, where there is a moderate
difference between MTD and a large distance between curves. When MTDs are similar
or close (first column of the gradient), Edotecarin has similar dose–toxicity curves, while
the distance between curves of Ixabepilone and E7070 is moderate. Lapatinib shows a
moderate distance of both dose–toxicity curve and estimated MTDs.
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Figure 3. Gradient plot representing the distance between dose–toxicity curves, dmod (y-axis), and maximum of the posterior
MTD distribution, dp2 (x-axis). The intensity of the color varies along with the increasing distance value and coherence.
Small dose–toxicity distance and high MTD distance is incoherent, as such it is plotted in a darker color.

6. Discussion

The aim of our work was to propose several Bayesian indicators to support further
decisions when using a bridging data package [1]. Bayesian methods permit the definition
of a similarity degree based on posterior distribution, which do not rely on asymptotic
approximations and can be used also in small sample size settings. Specifically, we proposed
Bayesian indicators which evaluate the distance and the similarity of dose–toxicity curves
and MTD. When evaluating a drug among different populations, assessing the dose–response
curves similarity is of most importance, since, if it is proved, other clinical trial data can be
used, as well as extrapolation from one population to the other. Maeda and Kurokawa [5]
pointed out the difficulty of defining a commensurability measure for different populations.

We presented and studied five criteria, where three of them, d, dmod and dMTD, mea-
sure the similarity between dose–toxicity curves, and two of them, dp1 and dp2, measure



Int. J. Environ. Res. Public Health 2021, 18, 1639 11 of 15

the distance between the median and the maximum a posteriori of the MTD posterior distri-
butions. The first three measures are bounded between 0 and 1 and their interpretation
could be linked to a proportion. The second ones, dp1 and dp2 have a ratio-like value with
a lower bound at 0. In practice, they represent a relative risk measure.

Our approach allows for the identification and discussion of similarities and differ-
ences between dose–toxicity curves and MTDs. However, as small samples were used in
these studies, estimation of the entire dose–toxicity curve, when only part of the doses
in the panel were evaluated, is complex and leads to an estimation with high variability.
This is reflected in the values of d, dmod and dMTD, which in our real case studies were
above 0.2. When high differences between d and dmod are observed, this is probably due to
computational difficulties in Equation (1), especially in computing the weighted likelihood
without a stabilization term. In general, dmod is lower than dMTD. This could be expected
for two reasons: (i) dMTD introduces, via the transformation, more variability (increased in
the density estimation step); (ii) dMTD is computed after truncating the posterior induced
distribution of the MTD. Moreover, we showed that dp2, based on the maximum a posteri-
ori, is more stable than dp1, which is based on the median, in the presence of unbalanced
heavy tails. Therefore, dp2 could be suggested as a more reliable measure in this setting.
We have attempted the analysis while varying the variance matrix of the bivariate normal
prior distribution and dp1 was less stable (results not shown).

The MTD definition can vary according to the trial and to the population. Therefore,
even if the same MTD is claimed in both Caucasian and Japanese populations, our analysis
can identify differences. For instance, in the Japanese trial of Sorafenib, 400 mg/day is
defined in the clinical trial as the MTD, but at the closest higher dose level, 600 mg/day,
only one patient experienced toxicities (16.7%). Otherwise, in the Caucasian trial, three
patients out of seven experienced toxicity at 600 mg/day (42.6%). Even if the two trials
find the same MTD, the toxicity probability associated with each one differs. That is the
reason why our results showed otherwise. Indeed, in the published clinical trials, there is
a discrepancy between the method section defining the MTD and the real given MTD at
the end of the trial. Our methods are based on data only and allow for evaluation of the
actual similarity.

We decided to present the plot of the posterior densities (of the parameters and of the MTD)
as it shows the super-position (or not) of the information. Plotting directly one-dimensional
dose–response curves could, instead, be misleading and give hazardous interpretation.

A first limitation of our work is that we used published data, where the reporting
can be sometimes incomplete in terms of DLTs and doses. For instance, in the paper of
Burris et al. [18], we had to re-compose the DLT table and the dose-allocation sequence.
Therefore, some interpretation discrepancy can be found in our Table 2. The issue of poor
reporting in cancer trials was already raised by Zohar et al. [28] and Comets and Zohar [29].
As a second limitation, we did not provide fixed cut-offs for each criterion. In our opinion,
the choice of the cut-offs depends on the application and on the quantity of information in
the two trials. The more information we have, the more stringent cut-offs can be considered.
Figure 3 only represents a proposition on the way to display the results.

The criteria proposed in this manuscript may be extended to be used in other settings.
For example, when several trials are available, a meta-analysis of the dose–toxicity curves
or of the MTDs can be considered [30–32]. In this case, pairwise distances can be previously
estimated, in an empirical Bayes approach, and then be used to model the heterogene-
ity parameter(s) or to set prior distribution(s). Other extensions, which do not involve
necessarily Phase I studies, could be considered: (i) in adults–children extrapolation; (ii)
when we are interested to jointly evaluate efficacy and toxicity [33]; (iii) when comparing
outcomes (efficacy or toxicity) of the same drug in different indications; (iv) when dealing
with similarities in subgroups; (v) in comparing historical control data with respect to the
actual trial in randomized Phase III trials.

Being able to quantify distance and bridging between two populations at the end of
early Phase I trials can be useful to better characterize the dose–toxicity relationship and
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differences. In case of small or acceptable differences, the extrapolation process can be
considered, as suggested in the ICH-E5.
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Abbreviations

The following abbreviations are used in this manuscript:

bid bis in die: twice a day
BLRM Bayesian Logistic Regression Model
CRM Continual reassessment method
DLT dose-limiting toxicity

ICH
International Conference on Harmonisation of Technical Requirements for
Registration of Pharmaceuticals for Human Use

MTD maximum tolerated dose
PMDA Pharmaceuticals and Medical Devices Agency

Appendix A. Bivariate Posterior Plots

Figures A1 and A2 show the bivariate posterior distributions of β0 and β1 when
using dmod.

Figure A1. Bivariate posterior distributions of β0 and β1 when using dmod for the three synthetic examples.
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Figure A2. Bivariate posterior distributions of β0 and β1 when using dmod for the real case studies
shown in Table 2.
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Conclusion

In oncology, phase I clinical trials aim is to evaluate the toxicity of a new drug and to
find the MTD. Sequential designs are often used for such trials. It is common for a drug
to be tested several times, for example in different regions, since two populations will not
necessary have the same response. This could be due to ethnic diversity in metabolism
and genetics. Bridging studies are recommended to bridge the gap between different
populations, in terms of dose-response relationship, toxicity etc. In this setting, our work
focused on proposing similarity criteria between two trials, to understand when sharing
information between them is pertinent or not.

Indeed, when a drug has already been tested, it is advisable to take into account the
data collected during the previous clinical trial for planning and analysing a new clinical
trial, notably bridging studies. Bayesian statistics is a suitable approach to take into
account these historical data, through the notion of prior distributions. However, two
main questions arise: (i) the possible contrast between this prior distribution and future
data; (ii) the amount of information that this prior should contain.
In the first part of our work, we developed a statistical method to incorporate historical
information from an historical to a current trial, in the setting of dose-finding trials. An
appropriate borrowing of historical information was supposed to allow a better MTD
selection. In a Bayesian setting, the power prior distribution allows to incorporate an
historical likelihood raised by a power α ∈ [0, 1] as a prior distribution. This power
α permits to calibrate the amount of historical information into the prior distribution,
through the ESS approach. Then, to detect a possible data-prior conflict, we developed a
similarity criterion. This similarity criterion based on the Hellinger’s distance compares
the historical and current likelihood functions, taking into account the difference of
number of patients into the two likelihoods. Comparing two normalised likelihood
function permits to compare two dose-response relationships.
Thereby, our method allows both a control of the quantity of information in a prior
distribution through the ESS notion taking into account historical data according to the
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size of the current dataset, but also the possibility of a data-prior conflict. These two
aspects had been studied separately in the scientific literature, we adapted and used
them simultaneously. Our simulation study showed that borrowing historical information
is highly desirable. When both historical and current datasets were similar, the MTD
selection was strongly improved, while it was comparable when both datasets were
different.
The simulation study also showed that the sensitivity analysis, performed at planning
stage, should be done carefully. Indeed, several points must be considered. First of
all, the number of patients in the current trial: our simulations were done with thirty
patients, but the results could change with the number of patients enrolled into the
trial. Second, the distance was evaluated at each new cohort of one patient.Cohort with
more than one patient can be considered. Finally, we should remind that the similarity
criterion was built to compare two likelihoods. It means that the statistical model chosen
for the likelihood function induces differences for the computed distance criterion.

The second part of the presented work focuses more specifically on similarity criteria
for finished clinical trials. Although bridging studies should permit to decide if an
extrapolation between two populations is possible [35], the use of statistical criteria to
assess such a possibility were rarely specifically developed.
We proposed several extensions of the similarity criterion proposed in the first part.
Indeed, two dosed-response curves can be different in several ways. In the first part of our
work, the likelihood functions were compared, it permitted to compare two dose-response
relationships. However, it is also possible for two populations to have the same MTD
but different dose-relationships. It was therefore necessary to propose other criteria to
compare two datasets. The proposed criteria were evaluated through three synthetic
datasets with same MTD and similar dose-toxicity curves, same MTD but different
dose-toxicity curves or all different. The criteria appeared to be able to assess the several
kind of similarity/dissimilarity. The critria were then evaluated with published datasets
from phase I clinical trials. We also provide illustrative plots to help for the interpretation
of the results. The provided plots illustrated the fact that only one similarity criterion
is not enough to assess the similarity of two dose-response curves, but at least two are
necessary.

In a context where clinical trials for the same drug are repeated, it is necessary to
have objective tools to calibrate the sharing of information from an old clinical trial to a
new one in order to avoid possible data-prior conflict. Furthermore, such criteria have
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proven to be effective in judging the similarity between two trials from two different
regions.





Discussion

The aim of my PhD research work was to propose a framework to incorporate external
data either when planning new clinical trials in a different population or when comparing
distributions of parameter of interest in two distinct populations. To do so, we proposed
a first tool for quantifying the maximum amount of information to be incorporated
using Bayesian inference, in particular, the ESS driven prior distribution calibration.
Second, we proposed a modelling approach to evaluate the commensurability, that is,
the similarity between two datsets or two populations. These tools allow to quantify the
prior amount of information and the data-prior conflict before deciding whenever to used
external data or not.

In this project, we evaluated the proposed framework in the setting of phase I dose-
finding clinical trials in oncology. However, our modelling approach can be used at any
evaluation phase either in interventional or observational studies. The issue of "if" and
"how" to use external information is currently in discussion in the methodological field
([61],[77]). Especially, recently, with unplanned clinical trial disruptions due to the Covid
19 pandemic. Indeed, many clinical trials have been stopped and could not restart for
different reasons. Nevertheless, for some of them, using external data sources could
allow to cope with information loss and to avoid research waste, more critical, to keep
from including patients in inconclusive trials. Our methods could be used in this setting
when, first, evaluating the similarity between data-sets and if it is acceptable, second, in
calibrating how much information should be used (avoiding overpowering the current
trial data-set).

Yet, there are some limits to the proposed methods. One of them is associated with
the computational difficulties and approximation that needed to be done in order to cope
with it. These approximations choices have influenced the estimation of the commesura-
bility criterion; however, we have considered it be minor. Some limits could be related to
the CRM design itself. For instance if the model is misspecified, the interpretation of
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the results could be more difficult. However, since the Hellinger distance is applied to
normalised likelihoods, the commensurability criterion should work even in this situation.
The two datasets are fitted with the same misspecified model and their "distance" in
results should be preserved. For instance, when comparing two exponential datasets but
fitted with gaussian likelihoods, the distance estimation was increasing but still able to
detect when the two datasets were similar or not. In the case of dose-finding design with
logistic regression models, it could be interesting to systematically assess the consistency
of the model with the data [88]. Our method based on adaptive power prior applied to
phase I dose-finding trials focused on the CRM parameter of interest. This parameter is
then used to estimate the dose-toxicity curve and the MTD. Thus, the information of the
dose-response curve is given by the posterior distribution of the unique parameter of the
model, and the Hellinger distance applied to normalised likelihoods (of one parameter)
can be considered equivalent to the Hellinger distance between the posterior distributions
of the MTD. However, the MTD itself could be a parameter of interest, like in the
EWOC approach (with two parameters). As shown in the second work presented in this
manuscript, two populations can have the same MTD but a different dose-response curve.
A model with only one parameter is not able to catch both quantities. This is why inves-
tigating the proposed framework with other dose-finding designs might be desirable and
will be a future work. For example, a sequential dose-finding method will be investigated
in the setting of the EWOC design, where we will aim at calibrating the prior distributions
considered for the join density for the probability of toxicity of the first dose and the MTD.

In this work, we considered that the prospective trial follows the same design of the
historical one, that is, the CRM in our case. We can imagine to extend this method
when the historical trial was done under a different design. For example, algorithm
designs are still widespread for phase I dose-finding trial. Therefore, a retrospective
analysis of historical data, for instance with the retrospective CRM to first assess the
probability of toxicity of each dose of the historical trial, could be necessary if the CRM
is considered as design for the prospective trial. In this situation, the method should be
generalised. Indeed, the retrospective CRM does not provide historical data as results,
but a parameter estimation. In this situation, the power prior approach cannot be used
as it was formulated and a new prior distribution should be defined, starting from the
retrospective CRM results. Then, its variance can be calibrate using our framework, that
is, ESS and commensurability tools. More generally, this question can be raised into
other statistical settings, when the design could influence the data analysis.
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An extension to several historical datasets could and will be investigated extending
the multiple power priors model proposed by Ibrahim and Chen [33]. Indeed, we can
consider to add the commensurability parameter for each historical trial. However, the
computational time can be very long (as it is also the case for the meta-analytic prior):
while it is not a main issue in oncology setting, where the time window between the
patient screening and the his/her trial inclusion is usually large, but it can be difficult
in other setting, as in paediatrics, notably in newborn setting, where the new dose
level should be estimated rapidly in an emergency situation. Moreover, these historical
trials might have been performed with several designs, a retrospective analysis could
be required and a mixed framework (power prior and the extensions described in the
previous paragraph) would be necessary.

Future works regard the exploration of two key points of clinical trials: the sample
size and the dose panel choice. If the two datasets (historical and prospective one) seems
to be similar, the number of patients in the ongoing trial to obtain a MTD estimation
associated to a pre-specified precision threshold can be reduced with respect to the total
planned sample size. Otherwise, the total sample size will be used when historical and
new data populations seems to be in conflict. Moreover, the historical data can be used
not only to define prior distribution but also to chose the dose panel. An example of
planning a dose-finding trial in paediatrics using historical adult data have been proposed
by [73].

A main part of our methods depend on the likelihood, which implies the weakness
of a model could possibly have repercussions on the method. This is why an extension
to non-parametric approaches could be interesting (see Appendix B). In case of non-
parametric density estimation, our framework can be easily adapted since it is based
distribution-kind object: indeed the normalised likelihood used in the commensurability
part, can be seen as a posterior distribution generated by an uniform prior distribution
(degenerate if necessary).
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Appendix A

Bayesian statistics and decision
theory

In the setting of decision theory of Wald, we consider the triplet (E,B,P) where P is a
set of probability measures on the measure space (E,B), a measure space (D,D) called
decision space, a set R of B − D measurable functions called decisions functions.
By this way, we define a loss function U : (Θ × D, T ⊗ D) −→ (R+,BR+) to which we
associate a risk function R:

R(θ, d) = E [U (θ, d (X))] , θ ∈ Θ, d ∈ R

where X ∼ f(.|θ).
In a Bayesian setting, Θ has a σ-algebra T and we denote π a probability measure on
(Θ, T ). Finally, we define r the Bayesian risk function associated to R

r(τ, d) =
∫

Θ
R(θ, d)dπ(θ)

Then, rewriting r as

r(τ, d) =
∫
R(θ, d)dπ(θ) =

∫
U(θ, d(x))f(x|θ)dxdπ(θ)

=
∫ {[∫

U(θ, d(x))g(x, θ)dπ(θ)
] [∫

f(x|θ)dπ(θ)
]}
dx

where g(x, θ) = f(x|θ) [
∫
f(x|θ)dπ(θ)]−1. The objective is to minimise

∫
U(θ, d(x))t(x, θ)dτ(θ)

for d. Now, g is the conditional distribution of θ given X = x:

d(x) =
∫
θg(x, θ)dπ(θ)
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where the posterior distribution g naturally appears, and we can interpret that with a
Bayesian risk and a quadratic loss function, the best way to estimate the parameter θ is
to consider the expected value of θ with its posterior distribution.



Appendix B

Dose-finding methods

B.1 Algorithm-based methods

B.1.1 The "3+3" algorithm

This method is one of the most widely used in dose-finding trials, due to the simplicity of
its application. The idea is to systematically start from the lowest dose in the {d1, ..., dK}
panel, and by including cohorts (that is sets of patients) of three patients by three
patients, select the next dose under some conditions. The algorithm works as follows: we
include three patients at the minimum dose. If no toxicity is observed, three additional
patients are included at the next higher dose. If more than two of three patients have
toxicities, the MTD is considered to have been exceeded, and the trial is stopped. If one
out of three patients have toxicities, three additional patients are included at the same
dose. In the latter case, if toxicity is observed in one out of three patients, then the MTD
is the tested dose. If one out of six patients has toxicity, then include three patients at
the higher dose. If more than three out of six patients have toxicity, then the dose is the
dose previously tested. And so on. This algorithm is illustrated in Figure B.1.

This method has the significant advantage of being easy to implement in practice. It
should also be noted that it allows a simple interpretation of the dose identified as the
MTD. However, this algorithm allows only one target toxicity rate: thirty-three percent
[82]. Moreover, the final estimate is only done with six patients: such an estimate gives
very wide confidence intervals. In addition, there is a statistical curiosity associated
with this method: if intuition dictates that the target toxicity rate is 33%, Ivanova [36]
showed that such an algorithm targets a toxicity rate between 16% and 27%. Finally, if
the final estimate is only based on the last six patients, it is due to the algorithm itself:
it is a memoryless design. In fact, at each step, there are at most six patients used for
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Fig. B.1 The "3+3" dose-finding algorithm

the estimate, and the information brought by patients previously treated at the same (or
another) dose is no longer taken into account.

B.1.1.1 Generalisation: "A+B" algorithms

Lin and Shih [45] proposed a generalisation of the "3+3" algorithm, more flexible in terms
of cohort size (see Figure B.2). In addition, Ivanova [37] gave a method to calibrate
the algorithm according to the target toxicity rate ν. Note that "A+B" methods are
sometimes called "up and down" methods (for example by Storer [81]), to be distinguished
from the one we’re going to present next.

B.1.2 The "up and down" method

A presentation of this method, sometimes called "random walk rule" is given by Durham
et al. [20]. The idea is to start from a target toxicity rate ν ∈]0.0.5] and then to define
b = ν

1−ν
. For the ith patient, we denote Xi and Yi the dose assigned to the patient and
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Fig. B.2 Figure inspired from article [45],about a generalisation of the "3+3" algorithm

his (binary) response. If Yi = 1, the i+ 1th patient will have the dose immediately below
that given to the ith patient. If Yi = 0, the i + 1th patient will have the immediately
higher dose with probability b, or the same dose as the ith with probability 1 − b. In
the special case where (Xi, Yi) = (dK , 0) (so the dose is the higher of the panel) the
next patient has the dose dK . In this method, it is common to choose the number of
patients before starting the trial [82]. The asymptotic properties of this method have
been investigated by Bortot and Giovagnoli [6] in a Markovian setting.

B.2 Model-based methods

B.2.1 The EWOC method (Escalation With Overdose Con-
trol)

This method, presented by Babb et al. [4], is a parametric and Bayesian one. Its aim is
to treat patients with a dose as close as possible to MTD, but avoiding exposing these
patients to a dose whose toxicity would be above the threshold ν.
The method is based on the following parametric model:

P(Yi = 1|Xi = xi) = F (b0 + b1xi)
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where xi ∈ {d1, ..., dK}, F is a cumulative distribution function and b0 and b1 are the
parameters to be estimated. Based on the assumption that the probability of toxicity is
an increasing function of dose, b1 > 0 is required. It immediately follows that the dose
dν corresponding to the toxicity threshold ν is

dν = F−1(ν) − b0

b1

However, it is common and convenient to place ourselves in the special case where
F (z) = 1

1+exp(−z) is the logistic function. In this case and by defining ρ the probability of
toxicity of d1 we obtain

b0 =d1logit(ν) − dν logit(ρ)
d1 − dν

b1 = logit(ρ) − logit(ν)
d1 − dν

with logit(x) = log(x/(1 − x)). The EWOC method aim is to control the risk of
administering a dose higher than the MTD to the i+ 1th patient. To control this risk,
we define

r = P(dν ⩽ xi+1|x1, ..., xi, y1, ..., yi)

with (x1, ..., xi) and (y1, ..., yi) the doses and toxicities of the i first patients. The model,
in the case where F is the logistic function, can then be written as a function f of the
dose, dν and ρ: F (b0 + b1xi) = f(xi, ρ, dν). The likelihood of the model is L(ρ, dν) =∏i

j=1{f(xj, ρ, dν)}yj {1 − f(xj, ρ, dν)}1−yj , and defining g(ρ, dν) a joint prior distribution
for (ρ, dν), we get the posterior distribution g(ρ, dν |x1, ..., xi, y1, ..., yi) ∝ L(ρ, dν)g(ρ, dν).
Note that the support of g can be as [0, ρ0] × [d1, dK ], where ρ0 would be chosen by a
clinician.
The parameter of interest here is dν and its posterior distribution is

g(dν |x1, ..., xi, y1, ..., yi) =
∫ ρ0

0
g(ρ, dν |x1, ..., xi, y1, ..., yi)dρ

and
r =

∫ xn+1

d1
g(dν |x1, ..., xi, y1, ..., yi)d{dν}

with r defined previous, "small enough" for the risk of overdose being low.
Considering that the doses’ space is not continuous but discrete, the i+ 1th patient’s
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dose is

x̃i+1 = max{dj ∈ {d1, ..., dK} avec: dj −Xi+1 ⩽ T1 et P(dν < Xi+1) − r ⩽ T2}

where T1 and T2 are tolerance thresholds. Simulation studies [4] have shown that this
method gives comparable results to those of the CRM, but with a lower proportion of
overdosing, which is not surprising: avoiding overdosing is at the heart of the method.

B.2.2 Extensions

Time to event CRM (TITE-CRM)

One difficulty with dose-finding designs and particularly with an adaptive design like
the CRM is the DLTs evaluations, which are done in long-term. The protocol is indeed
defined to consider only the DLTs that appear after few weeks, for example three or four
after the beginning of the treatment. The problem is therefore on one hand to evaluate
and take into account the DLTs after such a delay, and on the other hand the duration of
a trial for which several weeks of observations per patient are necessary to evaluate the
toxicity of a dose and to include another patient. To overcome this problem, a method
was proposed by Cheung and Chappell [13]. If one assumes that a patient is followed up
during a time T , denoting ti the time to toxicity for patient i, in the traditional CRM
P(ti ⩽ T |d) = ψ(d, β), as noted by Cheung [15], while the TITE-CRM considers that
the time to toxicity is perhaps not observed, which leads Cheung and Chappell [13] to
weight the ψ function:

P(ti ⩽ t) = P(ti ⩽ t|ti ⩽ T )P(ti ⩽ T )
= w(t, T )ψ(xi, β)

with xi the dose assigned to patient i. Therefore, the basic idea is to replace the likelihood
function 3.1.1 by a weighted one, by changing the model ψ(d, β) in ψ̃(d, β, w), with ψ̃

also monotonous in d, β and w, and such as ψ̃(d, β, 0) = 0 and ψ̃(d, β, 1) = ψ(d, β).
The resulting likelihood for the first n patients is

L̃n(β) =
n∏

i=1
{ψ̃(xi, β, wi,n)}Yi{1 − ψ̃(xi, β, wi,n)}1−Yi

The weight wi,n is the one associated to the ith patient. The choice of the weight function
is indeed a central question, and several answers can be considered. The author proposes
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a weight function w(t, T ) = t
T

, with t the time during which the patient is being followed
up. An easy generalisation is given by Cheung [15], which is w(t, T ) = min( t

T
, 1). This

choice correspond to consider that the weight does not depends neither on the function
ψ nor on the dose xi given to patient i. It is possible to consider that the weight depends
on the dose [12], or the weight can even be adaptive [14].

B.2.3 Non-parametric approaches to dose-finding

The CRM provides an important ethical and practical framework for dose-finding studies.
However, the choice of a parametric approach can be discussed ([22],[15]), as it involves
complications (use of pseudo-doses, choice of skeleton or other, see Gasparini and Eisele
[22]). In order to free oneself from the constraints induced by the choice of a model,
several authors proposed some non-parametric approaches. The idea is basically not to
estimate a parameter of a model to estimate the probability of toxicity associated to a
dose, but to directly consider a probability distribution associated to each probability of
toxicity: each probability of toxicity become a parameter of interest. There are many
ways to address this idea.
For instance, Gasparini and Eisele [22] consider a joint prior distribution π(p1, ..., pK)
for the vector of probability of toxicity associated to each dose d1, ..., dK . The authors
recommend this prior to respect some conditions, as to be centred around clinicians prior
guesses, to be disperse to allow dose-escalation and that each marginal distribution of pi

to be unimodal. The authors then propose a reparametrisation of the model:

θ1 = 1 − p1

θ2 = 1 − p2

1 − p1

...

θK = 1 − pK

1 − pk−1

with each θi being independent beta distribution Beta(ai, bi), ai, bi being fixed for
i ∈ {1, ..., K}. With this model, the distribution of each pi is then called a product-of-
beta prior (PBP) by the auhtors since pi = 1 −∏K

i=1 θi. The properties of this seems to
be as good as the standard CRM, and it avoids over-dosing issue in dose-finding.
An other possibility, more complex, is given by Tang et al. [86]. Denoting nk and Nk the
number of observed toxicity at dose dk and the number of patients treated at dose dk
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respectively, the authors propose the following model:

nk|pk ∼ Bin(Nk, pk), k ∈ {1, ..., K}
pk = F (dk) with F |η, α ∼ DP (αF0(x|η))

with F0(.) a function used as starting point to construct the non-parametric distribution
of F (dk), which associate a probability of toxicity to each dose: F (dk) = P(Y = 1|dk),
and DP denotes a Dirichlet process. This hierarchical model is then extended in the
particular case where F0 is based on the cumulative probability function of a Gaussian
variable. Although the results shown with this model seem remarkable, it should be
noticed that the simulations were performed with the basis of sixty patients, which is not
usual in dose-finding studies. Then, the performances of such a model are not assured to
be better than some usual methods with fewer sample sizes.
Finally, an isotonic approach was investigated by Leung and Wang [43].

B.2.4 Dose-finding and pharmacokinetics

The purpose of the pharmacokinetics is the study of the evolution and transformation of
a drug in the body or in an organ. This evolution of the drug in the body or organ goes
through four processes: absorption (A), distribution (D), metabolism (M) and excretion
(E), summarised by the ADME concept.
During Phase I trials it is common to conduct simultaneously dose-finding and pharacoki-
netics study. The interests of pharmacokinetics are multiple, including understanding
how a patient’s body will respond to a molecule, or establishing the presence or absence of
a link between toxicity and pharmacokinetics values (e.g. in [21]). Comets and Zohar [16]
showed that most phase I studies doing both dose-finding and pharmacokinetics study
do not bring these two aspects together. However, it is possible to consider dose-finding
methods that closely combine PK data with the dose-finding process, as shown by Ursino
et al. [89]. The authors explain that a basic idea could be to link the dose to the area
under the curve (AUC, which is a pharmacokinetics important value: the area under the
curve which represents the concentration of the drug), and then to link this AUC to the
probability of toxicity. Several methods were compared in Ursino et al. [89], and the
authors concluded that even if the percentage of right MTD selection was not improved,
the dose-toxicity relationship curve estimation was more precise.
An other method was proposed by Takeda et al. [84]. It consists in a CRM but instead
of considering the dose-toxicity relationship to consider the standardized AUC-toxiciy
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relationship, the MTD selection is generally higher with this method than with the classic
CRM.
Otherwise, Günhan et al.[27] proposed a time to event approach through a pharma-
cokinetic model for phase I dose escalation with multiple schedules: the TITE-PK
(time-to-event pharmacokinetic model), which showed comparable or better perfomrances
than a reference model for dose-schedule finding design, the POCRM (partial order CRM,
introduced by Wages et al.[90]).
Gerard et al.[25] proposed the DRtox dose regimen model, with better performances
than other dose regimen models in term of MTD-regimen.

B.2.5 Bivariate outcomes: efficacy and toxicity

We have explained the assumption that increasing a dose implies an increase in efficacy
and toxicity. Then, ethics imposes a control of toxicity. However, for certain drugs, it
seems that the efficacy is not monotonous with the dose but become constant at some
level. In this setting, there are methods that allow a simultaneous evaluation of toxicity
and efficacy. Here is a quick overview of what exists to take into account both toxicity
and efficacy.
In the context of adoptive cell therapy (ACT), Li et al. [44] proposed a method which
consists in proposing a toxicity and efficacy probability interval (TEPI) design. It involves
dose escalation, de-escalation or staying at the same dose considering both probability of
efficacy and probability of toxicity of the drug. This method permits to not increase the
dose if it is efficient but too toxic and to increase the dose if the toxicity is reasonable.
The compromise is performed through a utility function. Ananthakrishnan et al. [3]
proposed a frequentist version of the method proposed by Li et al. [44].
The bivariate CRM (bCRM) method, proposed by Braun [8], takes into account the
efficacy of the drug (which corresponds to a low progression rate of a disease) through
a CRM-based model. In this model the probability of efficacy by dose is given by a
logistic regression. The MTD finally corresponds to the dose which minimises a distance
dn

i =
√∑2

k=1 wk(pn
k,i − p∗

k)2 where p∗
k, k = 0, 1 is a rate of toxicity and efficacy, respectively,

and pk,i the estimate probability of toxicity and efficacy. A CRM approach to take into
account efficacy is also considered by Seegers et al. [78], where the authors use the CRM
empiric function (called power model), and a correlation parameter between efficacy and
toxicity is considered. The empiric model and a nonparametric one are investigated by
Cunanan and Koopmeiners [18] through a hierarchical approach for dose-finding with
multiple populations.
Thall and Cook [87] proposed a method that can be applied to different dose-finding
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models (bivariate or trivariate), consisting of searching for a compromise between proba-
bility of toxicity and probability of efficacy in contours within a two-dimensional domain.
Yin et al. [94] proposed to adopt the toxicity-efficacy trade-off investigate by Thall and
Cook [87]. However, instead of considering a direct dose-response model, efficacy and
toxicity are modelled jointly through odd-ratios.
A score approach was given by Bekele and Shen [57], where the authors also introduced a
correlation between toxicity and efficacy, which is evaluated via a biomarker expression.
A comparison of several designs, taking into account both toxicity and efficacy, can be
found in [97], in the context of muscularly targeted agent use. The authors conclude
that in their setting, a non-parametric (isotonic) regression or a semi-parametric (locally
logistic model) have both good operating characteristics to find a optimal biological dose,
which is the lowest dose with highest efficacy rate while safe for patients.
A utility function approach was proposed by Takahashi and Suzuki [83] in a phase I/II
setting, where this utility function is a function to be optimised to obtain the optimal
dose, defined as the dose that provides sufficient efficacy under an acceptable toxicity
rate. The dose-efficacy and dose-toxicity functions are estimated through Gaussian prior
process.





Appendix C

Additional considerations about the
ESS

C.1 Alternative computational approach for the Ef-
fective Sample Size

As Morita et al. [53] explained, the definition of the ESS is in many points quite arbitrary.
Several ways were investigated, and the previous one was the best for interpretations of
the resulting ESS, given "known" results.

C.1.1 Bayesian central limit theorem

A key point is that Morita’s approach is based on the "normal approximations of the
prior p(θ) and the posterior qm(θ/θ̃0,Ym)".
Indeed, Gelman [23] gives the first terms of the Taylor’s expansion of

log(p(θ|y)) = log(p(θ̂|y) + 1
2(θ − θ̂)2

[
d2 log(p(θ|y)

dθ2

]∣∣∣∣∣
θ=θ̂

+ ...

= log(p(θ̂|y) − 1
2(θ − θ̂)2I(θ̂) + ...

where θ̂ is the posterior mode, which yield to the normal approximation p(θ|y) ∼
N (θ̂, [I(θ̂)]−1), where I(θ̂) is the observed information. With this consideration,
the use of the second derivative in equation 2.4.1 appears naturally, as an asymptotic
equivalent of the inverse of the variance. In this way, it is logical to think about the
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use of variance instead of the second derivative, not always easy to use in Morita’s way
because of the integration over f(Ym) in Dq,+.

C.1.2 Non-asymptotic view for the variance: the natural ex-
ponential family

A non asymptotic consideration is possible to explain the use of the second derivative,
but not the x derivative, the parameter derivative.
The exponential family is the set of the probability law for which the density could be
written as

f(x|θ) = h(x) exp(< η(θ), T (x) > −A(η))

< ., . > being the inner product. There are several possible definitions of the natural
exponential family. We adopted the approach of Morris et al.[56]. The natural exponential
family is a subset of the exponential family with a special point: the η and T functions
are both the identity. Furthermore it is established that in this case, the variance of a
random variable X ∼ f is given by the second derivative

V[X] = A′′(θ)

Using this approach for the variance could be very interesting due to the fact that natural
exponential families with quadratic variance function cover several distributions: Normal,
Poisson, Gamma, Binomial, Negative Binomial and the hyperbolic secant distribution.

C.1.3 Alternative variance approach

Algorithm
For m from 1 to Nmax: [We assume that the ESS is in 1:Nmax]

1. Set B and for k in 1:B:

2. Simulate Yk = (Y k
1 , ..., Y

k
m), Y k

i ∼ Y |θ [simulate θ under p(θ|θ̃) for each Y k
i , or

take the mean. Both give similar results]

3. Estimate the posterior qm(θ) (m= size of the sample)

4. Extract sample Θk = (θk
1 , ..., θ

k
n) of θ from qm(θ/D0)

5. Set V = (V(Θ1), ...,V(ΘB)) the vector of variances of each sample

6. Vm = V , equivalent of integrating it over Y
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And the ESS m∗ is m∗ = argmin
m

|Vm − v| where v = V(p(θ/θ̃)) could be replaced if
necessary by the empirical variance of a sample of observations obtained with the law
p(θ|θ̃).
The advantages of this method are first the no need of the calculation of the second
derivative, and the easy computation since only the simulation under p(θ|θ̃) and Yi|θ are
required.

C.1.3.1 Simulations

To evaluate the performance of this method to compute the ESS, we performed a
simulation studie with two cases.

Beta-binomial model

α̃ β̃ real ESS "Variance" ESS
1 1 2 1
1 3 4 3
3 1 4 3
7 11 18 15
15 15 30 27
13 20 33 30
30 20 50 47
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Gamma-exponential model In this model, the data are normally distributed Y |θ ∼
E(θ) and θ ∼ Gamma(α̃, β̃).

shape (α̃) rate(β̃) real ESS variance ESS
5 2 5 7
5 5 5 7
10 5 10 12
10 10 10 12
15 3 15 17
15 5 15 17
15 10 15 16
20 5 20 22
20 7 20 23
20 10 20 22
30 5 30 32
30 10 30 32

Univariate normal with known variance In this model Y |θ ∼ N (θ, σ2) with σ

known and θ|θ̃ ∼ N (µ̃, σ̃2). The ESS is σ2

σ̃2 in that case. For all tried values, we obtained
the exact ESS with our method.
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C.2 ESS for the power prior

In Ollier et al.[65] we used the approximation ESS[πP P (.|D0, α0)] = α0n0 with πP P (.|D0, α0)
the power prior for historical data D0 with n0 observations raised to α0. We propose here
to justify this approximation, proposed first by Morita et al. [53]. We consider the power
prior πP P (θ) = L(θ/D0)π0(θ)∫

L(θ/D0)π0(θ)dθ
, with L(θ/D0) = ∏n0

i=1 f(Xi,0/θ) and focus on its ESS.

Here p(θ) = πP P (θ) is the prior of interest, and we assume E
[∣∣∣∣∂2 log(f(Xi/θ))

∂θ2
j

∣∣∣∣] < +∞ for
all j.

After some calculations we obtain

Dp,+ = −α0

q∑
j=1

n0∑
i=1

∂2 log(f(Xi,0/θ))
∂θ2

j

−
q∑

j=1

∂2 log(π0(θ))
∂θ2

j

Dq,+ = −
q∑

j=1

∫ {
n∑

i=1

∂2 log(f(Xi/θ))
∂θ2

j

+ ∂2 log(q0(θ))
∂θ2

j

}
fn(X)dX

= −n
q∑

j=1
E
[
∂2 log(f(Xiθ))

∂θ2
j

]
−

q∑
j=1

∂2 log(q0(θ))
∂θ2

j

Then

δ(πP P , n) =

∣∣∣∣∣−α0

q∑
j=1

n0∑
i=1

∂2 log(f(Xi,0/θ))
∂θ2

j

∣∣∣
θ=θ̄

−
q∑

j=1

∂2 log(π0(θ))
∂θ2

j

∣∣∣
θ=θ̄

+ n

q∑
j=1

E

[
∂2 log(f(Xiθ))

∂θ2
j

]∣∣∣
θ=θ̄

+
q∑

j=1

∂2 log(q0(θ))
∂θ2

j

∣∣∣
θ=θ̄

∣∣∣∣∣
Since it is not analytically possible to minimise with n δ(πP P , n), we proceed by lower

and upper bounds approximations to give an asymptotic value of the ESS of the power
prior.
We directly obtain

δ(πP P , n) ⩽
∣∣∣∣∣∣α0

q∑
j=1

n0∑
i=1

∂2 log(f(Xi,0/θ))
∂θ2

j

∣∣∣∣∣
θ=θ̄

− n
q∑

j=1
E
[
∂2 log(f(Xi|θ))

∂θ2
j

]∣∣∣∣∣
θ=θ̄

∣∣∣∣∣∣
+

∣∣∣∣∣∣
q∑

j=1

∂2 log(q0(θ))
∂θ2

j

∣∣∣∣∣
θ=θ̄

−
q∑

j=1

∂2 log(π0(θ))
∂θ2

j

∣∣∣∣∣
θ=θ̄

∣∣∣∣∣∣
Then, we can assume that the second term is about zero or negligible since these are
non-informative distributions, and with Law of Large Number,

δ(πP P , n) ⩽
∣∣∣∣∣∣(α0n0 − n)

q∑
j=1

E
[
∂2 log(f(Xi|θ))

∂θ2
j

]∣∣∣∣∣
θ=θ̄

∣∣∣∣∣∣+ ϵ0 if n0 → +∞ , with ϵ0 → 0
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which argmin is n = α0n0.
For the lower bound, we use ||x| − |y|| ⩽ |x+ y|:

δ(πP P , n) ⩾
∣∣∣∣∣∣
∣∣∣∣∣∣α0

q∑
j=1

n0∑
i=1

∂2 log(f(Xi,0/θ))
∂θ2

j

∣∣∣∣∣
θ=θ̄

− n
q∑

j=1
E
[
∂2 log(f(Xiθ))

∂θ2
j

]∣∣∣∣∣
θ=θ̄

∣∣∣∣∣∣
−

∣∣∣∣∣∣
q∑

j=1

∂2 log(π0(θ))
∂θ2

j

∣∣∣∣∣
θ=θ̄

−
q∑

j=1

∂2 log(q0(θ))
∂θ2

j

∣∣∣∣∣
θ=θ̄

∣∣∣∣∣∣
∣∣∣∣∣∣

We same kind of hypothesis for the second derivative for non-informative distribu-
tions, the second term is also negligible, and asymptotically the first tend to be∣∣∣∣∣(α0n0 − n)E

[
∂2 log(f(Xi,0θ))

∂θ2
j

]∣∣∣∣∣
θ=θ̄

∣∣∣∣∣
So we finally get∣∣∣∣∣(α0n0 − n)E

[
∂2 log(f(Xi,0θ))

∂θ2
j

]∣∣∣∣∣
θ=θ̄

∣∣∣∣∣−ϵ1 ⩽ δ(πP P , n) ⩽
∣∣∣∣∣(α0n0 − n)E

[
∂2 log(f(Xiθ))

∂θ2
j

]∣∣∣∣∣
θ=θ̄

∣∣∣∣∣+ϵ0

Since here Xi,0 ∼ Xi, ESS[πP P (θ)] −−−−→
n0→∞

α0n0. ■



Résumé détaillé

Les essais de phase I ou de recherche de dose en recherche clinique sont les premiers essais
réalisés chez l’humain et ont pour objectif l’évaluation de la toxicité de la molécule sur
l’homme. Dans le cas particulier de la recherche de dose en oncologie, le but de ces essais
est l’identification de la dose maximale tolérée (DMT), c’est-à-dire la plus forte dose
qu’il soit possible de donner à un patient en ayant défini un seuil de toxicité au préalable.
En effet, l’hypothèse pour certaines familles de molécules est qu’une plus forte dose est
plus efficace, mais aussi plus toxique pour les patients. On considèrera donc qu’une dose
au-dessus de la dose maximale tolérée aura une probabilité de toxicité inacceptable. Par
ailleurs, dans le cadre des essais cliniques de recherche de dose en oncologie, il est fréquent
qu’une seule molécule soit testée plusieurs fois, dans différentes régions du monde entre
différentes populations. Dans ce contexte, l’international council for harmonisation of
technical requirements for pharmaceuticals for human use (ICH) définit les bridging-
studies comme des essais cliniques complémentaires permettant de prendre en compte les
différences entre plusieurs populations, en termes d’efficacité, de toxicité, de comorbidités,
de pharmacocinétique notamment. En effet, des différences génétiques entre différentes
populations entraînant des différences métaboliques, la relation dose-réponse pour cette
même molécule peut différer entre différentes populations, en termes d’efficacité ou de
toxicité par exemple. La conduite d’un essai clinique additionnel est donc une étape
souvent nécessaire pour évaluer la relation dose-réponse dans la nouvelle population. La
problématique qui se pose alors est l’utilisation d’une méthode statistique permettant la
prise en compte pour un nouvel essai clinique des résultats d’un essai ayant été réalisé
dans une autre population, pour la même molécule. En effet, la prise en compte de
résultats antérieurs permettrait d’améliorer l’estimation de la dose maximale tolérée,
dans des essais de recherche de dose où le nombre de patients est généralement très
réduit. Dans un tel contexte, toute information extérieure permettant l’amélioration
de l’estimation de la relation dose-toxicité est cruciale. Par ailleurs, il est important
pour des autorités de santé régionales, lorsque deux essais de recherche de dose ont été
effectués pour une même molécule dans deux populations différentes, d’avoir des critères
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objectifs de comparaison afin de décider si l’ «extrapolation» des résultats est possible
ou non entre ces deux populations. Nos objectifs sont donc, dans un premier temps,
de fournir une méthode permettant la prise en compte d’information historique pour
un nouvel essai devant avoir lieu lorsque la molécule a déjà été testée dans une autre
population, et dans un deuxième temps, de fournir des outils objectifs de comparaisons
de résultats entre différents essais de recherche de dose réalisés pour une même molécule
mais dans des populations différentes.
Nous avons dans un premier temps considéré le cas où un essai a été réalisé dans une
population, et où un autre essai sur la même molécule doit avoir lieu mais pour une autre
population. Pour l’essai en cours, nous considérons le cas d’un essai adaptatif, dans lequel
les cohortes de patients sont enrôlées les unes après les autres à un niveau de dose estimé
comme le plus proche de la dose maximale tolérée en fonction des résultats des cohortes de
patients précédentes. Afin de permettre la prise en compte de résultats d’un essai clinique
antérieur dans un essai en cours, nous avons proposé une adaptation de la méthode
bayésienne de réévaluation séquentielle de recherche de dose (continual reassessment
method) à l’aide du power prior comme distribution a priori sur le paramètre d’intérêt à
estimer. Ce paramètre détermine ensuite la relation dose-toxicité, cette relation étant
une régression logistique. Le power prior comme distribution a priori sur le paramètre
d’intérêt permet en effet d’incorporer la vraisemblance des données historiques élevée
à une puissance alpha, comprise entre zéro et un. Le cas où le coefficient est égal à
zéro correspond au cas où on n’utilise aucune information historique et le cas où il est
égal à un au cas où toute l’information historique est utilisée. Le choix de la valeur du
coefficient alpha détermine donc le degré d’emprunt de l’information historique dans
la distribution a priori du paramètre d’intérêt. Pour mesurer la quantité d’information
dans la distribution a priori, paramétrique, la notion d’effective sample size a été utilisée.
Différentes méthodes d’estimation de ce paramètre alpha du power prior ont été étudiées
dans la littérature. Nous avons pour notre part proposé une méthode prenant en compte
non seulement la possibilité d’un data-prior conflict, mais également de fixer un seuil
maximal de quantité d’information désirée pour la distribution a priori. Pour prendre en
compte ces deux éléments, la méthode proposée consiste à séparer le coefficient alpha du
power prior en un produit de deux autres coefficients : l’un étant le critère de similarité
entre les deux jeux de données et l’autre déterminant un seuil maximal d’information
dans la distribution a priori.
Afin de prendre en compte la possibilité d’un data-prior conflict, la méthode proposée
permet de pondérer l’information empruntée dans la distribution a priori en fonction
d’un critère de similarité entre les deux relations dose-toxicité des deux populations.
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Nous utilisons pour cela les deux vraisemblances : celle de l’essai historique et celle de
l’essai en court. Ce critère de similarité proposé est basé sur la distance de Hellinger
entre les deux vraisemblances normalisées, il est égal à zéro si les deux vraisemblances
sont identiques, et tend vers un lorsque les deux vraisemblance diffèrent de plus en plus.
Par ailleurs, la différence d’effectif entre les deux essais doit également être considérée
dans la pondération de l’information de la distribution a priori sur le paramètre d’intérêt.
En effet, l’essai historique comportera plus de sujets que celui en cours, adaptatif, ce qui
aura pour conséquence une augmentation de la quantité d’information incorporée dans
le power prior. Or, une distribution a priori trop informative peut gêner l’estimation,
particulièrement dans notre cas où nous avons peu de patients, et notamment dans le
cas où les données et cette distribution sont en désaccord. Nous définissons donc, à
l’aide de l’effective sample size, un seuil d’information maximale que la distribution a
priori peut contenir, ce seuil étant fonction du nombre de patients dans l’essai en cours.
Cette quantité d’information maximale autorisée est ensuite repondérée par le critère de
similarité introduit précédemment. Nous avons évalué cette méthode, l’adaptive power
prior, à l’aide d’une étude de simulations. Nous avons pour cela fixé un essai clinique
fictif dans une population avec des probabilité de toxicité par dose prédéterminées. Les
différents scenarios proposés ensuite correspondent à des données d’essai en cours plus ou
moins proches des données de l’essai historique en terme de probabilité de toxicité pour
chaque dose. Le cas où les l’essai en cours était simulé selon les mêmes probabilités de
toxicité par dose a été étudié, et nous avons ensuite fait varier ces probabilités considérant
des cas de populations plus ou moins sensibles à la molécule. Nous avons également
proposé une analyse de sensibilité sur la façon de pondérer cette quantité d’information
dans le power prior en fonction du nombre de patients dans l’essai en cours, en faisant
varier cette quantité d’information prédéfinie, et du critère de similarité. Nous avons
ainsi montré la possibilité pour notre méthode d’améliorer le pourcentage de sélection de
la dose maximale tolérée quand les deux relations dose-toxicité étaient similaires, tout en
ayant une performance comparable à la méthode standard de réévaluation séquentielle
dans le cas contraire. De plus, l’étude du coefficient permettant l’emprunt d’information
obtenu dans le power prior par notre méthode a montré effectivement un emprunt
d’information plus élevé quand les deux jeux de données étaient similaires que dans le cas
contraire, illustrant ainsi le bon fonctionnement du critère de similarité proposé. Il est
également à noter que bien que cette méthode ai été utilisée dans un contexte clinique
de recherche de dose avec la méthode bayésienne de réévaluation séquentielle, elle peut
être adapté dans tout contexte bayésien prenant en compte des données historiques et
dans lequel la pondération de l’information et la possibilité de data-prior conflict doit
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être prise en compte. L’extension à d’autre modèles de recherche de dose est également
envisageable.
Dans un second temps, nous avons considéré le cas où les résultats de deux essais cliniques
terminés sont à disposition des autorités de santé dans une région du monde. Dans ce
cas, il leur revient de décider si l’«extrapolation» des résultats d’une population à une
autre est possible. Il apparait donc nécessaire d’avoir à disposition des outils objectifs
de comparaison entre les relations dose-toxicité, et d’une façon générale des critères
de similarité des données entre les différents résultats d’essais cliniques réalisés dans
différentes populations. Nous avons proposé plusieurs critères, basés sur les fonctions
de vraisemblances et les relations dose-toxicité notamment. Nous avons par exemple
proposer de modifier le précédent critère de similarité en comparant directement les
distribution a posteriori des paramètres d’intérêt, et aussi des distributions a posteriori
des doses maximales tolérées. Par ailleurs, nous avons introduit plusieurs critères de
comparaisons des distributions des doses maximales tolérées des deux essais cliniques,
permettant des critères ne fonctionnant pas uniquement au niveau paramétrique mais se
focalisant directement sur la quantité d’intérêt qu’est la dose maximale tolérée. Nous
avons également montré la nécessité de disposer de plusieurs critères pour évaluer les
différences entre deux relations dose- toxicité. En effet, deux essais de recherche de dose
sur deux groupes de patients peuvent trouver la même dose maximale tolérée mais obtenir
des relations dose-toxicité différentes, ou bien des relations dose-toxicité différentes et
différentes doses maximales tolérées. La mise au point de critère différents travaillant
soit au niveau du modèle soit au niveau de la distribution de la dose-maximale tolérée
permettait donc de détecter ces différents types de similarités. Ces différents critères ont
été évalués dans un premier temps sur trois jeux de données simulées, correspondant
aux trois possibilités de similarité ou disimilarité. Chacun consistait en deux essais
de recherche de dose d’une même molécule, mais dans deux populations. Le premier
jeux de données considérait le cas où les relations dose-toxicité étaient similaires et où
les doses maximales tolérées étaient identiques, le second jeux de données le cas où les
relations dose-toxicité était différentes mais avec la même dose maximale tolérée et enfin
le troisième jeux de données le cas où les relation dose-toxicité et la dose maximale
tolérée différent tous les deux. Les différents critères introduits ont montré leur efficacité
à détecter différents types de similarités ou disimilarités. Nous avons ensuite évalué nos
différents critères sur plusieurs molécules pour lesquelles les données d’essais de recherche
de dose dans deux population (caucasiennes et japonaises) étaient publiées, et fourni
des outils graphiques d’aide à l’interprétation des résultats. Dans chacun des cas, les
critères proposés ont permis de fournir une interprétation des différences de relations
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dose-toxicité entre différentes populations. Par ailleurs, les outils graphiques proposés
permettent également d’avoir une idée claire des différences dans les distribution des
doses maximales tolérés.
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