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Abstract

Stellar systems in the Universe are mainly driven by gravity, a long-range force affecting every
massive object. Recent surveys have produced a formidable quantity of data capturing the
kinetic properties of the Galaxy and its components (such as globular clusters and its nucleus).
Decades of research have allowed the astrophysical community to reach a good understanding
of the formation of gravitationally bound structures: the Λ-CDM model. Still, the long-term
evolution of these systems remains an ongoing subject of research.

My thesis is focused on the evolution of gravitational systems on such secular timescales.
My triple objective is: (i) to understand the particular mechanisms which operate on these
long timescales; (ii) to identify the origin of the observed differences depending on the nature
of these objects (geometry, kinematics, composition, ...); (iii) to deduce diagnostics for dark
matter experiments (e.g., the identification of populations of intermediate mass black holes).

In practice, this thesis aims at describing the secular fate of isolated stellar clusters by relying
on kinetic theory. The master equation describing self-gravitating clusters over many orbital
times is the Balescu–Lenard diffusion equation. It captures perturbatively the effect of resonant
interactions between noise-driven fluctuations within the system. In this thesis, I specifically
study two approximations of the Balescu–Lenard equation: (i) the inhomogeneous Landau
limit, in which collective amplification is neglected; (ii) the (orbit-averaged) Chandrasekhar
limit, in which local, incoherent deflections dominate over long-range resonances.

I apply these formalisms to a variety of systems. First, I study the Galactic nucleus, where
I present a fiducial likelihood analysis to probe the presence of intermediate mass black holes
around Sgr A?. Second, I consider globular clusters with kinematic anisotropy and ultimately
rotation. I first apply the extended non-resonant approach, which I validate by using large sets
of direct N -body simulations. This allows me to investigate the rate of core collapse and the
diffusion of orbital inclinations. I also study the impact of resonant relaxation on the effective
Coulomb logarithm from the non-resonant formulation. Finally, I probe the space of physical
parameters of galactic discswhich are prone to bi-symmetric instabilities. Using linear response
theory, I study the onset of bars. This allows me to understand the lack of bars in galactic discs
observed in current hydrodynamical simulations.
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Résumé

Les systèmes stellaires de l’Univers sont principalement régis par la gravité, une force à longue
portée qui affecte tous les objets massifs. Des études récentes ont permis de recueillir une quan-
tité considérable de données sur la cinétique de la Galaxie et de ses composants (tels que ses
amas globulaires et son noyau). Des décennies de recherche ont permis à la communauté as-
trophysique de parvenir à une bonne compréhension de la formation des structures gravita-
tionnellement liées : le modèle Λ-CDM. Cependant, l’évolution à long terme de ces systèmes
reste un sujet de recherche intense.

Ma thèse se concentre sur l’évolution des systèmes gravitationnels sur ces échelles de temps
séculaires. Mes objectifs sont triples: (i) comprendre les mécanismes particuliers qui opèrent
sur ces échelles de temps longs ; (ii) identifier l’origine des différences observées en fonction de
la nature de ces objets (géométrie, cinématique, composition, ...) ; (iii) déduire des diagnostics
pour des expériences de matière noire (par exemple, l’identification de populations de trous
noirs de masse intermédiaire).

Cette thèse vise donc à décrire le destin séculaire des amas stellaires isolés en s’appuyant
sur la théorie cinétique. L’équation maîtresse décrivant les amas autogravitants sur de nom-
breux temps orbitaux est l’équation de diffusion de Balescu–Lenard. Elle capture de manière
perturbative l’effet des interactions résonantes entre les fluctuations issues du bruit au sein du
système. Dans cette thèse, j’étudie deux approximations de l’équation de Balescu–Lenard : (i)
la limite de Landau inhomogène, dans laquelle l’amplification collective est négligée ; (ii) la
limite de Chandrasekhar (moyennée sur les orbites), dans laquelle les déviations locales inco-
hérentes dominent sur les résonances à longue portée.

J’applique ces formalismes à des systèmes variés. Tout d’abord, j’étudie le noyauGalactique,
où je présente une analyse de vraisemblance pour sonder la présence de trous noirs de masse
intermédiaire autour de Sgr A?. Deuxièmement, je considère les amas globulaires avec une
anisotropie cinématique et éventuellement de la rotation. J’applique d’abord une extension de
l’approche non-résonante, que je valide en utilisant un jeu important de simulations directes à
N -corps. Cela me permet d’étudier le taux d’effondrement du noyau et la diffusion des incli-
naisons orbitales. J’étudie également l’impact de la relaxation résonante sur le logarithme de
Coulomb effectif qui intervient dans la formulation non-résonante. Enfin, je sonde l’espace des
paramètres physiques des disques galactiques qui sont sujets à des instabilités bi-symétriques.
En utilisant la théorie de la réponse linéaire, je quantifie le contexte propice à l’apparition des
barres. Cela me permet d’expliquer l’absence de barres dans les disques galactiques observée
dans les simulations hydrodynamiques actuelles.
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Chapter 1

Introduction

Studying the long-term evolution of astrophysical objects is a fascinating yet challenging task
because it typically involves non-linear processes. Physicists have attempted to address this
challenge over many decades by the use of three main techniques: observation, simulation and
kinetic theory. For the most massive objects in the Universe, the principal force which drives
the evolution is gravity, a long-range interaction. Its action is the cause for many observable
phenomena. Gravity indeed drives the evolution of numerous large and complex structures,
from entire galaxies to stellar clusters such as galactic nuclei or globular clusters.

Until recently, the precision of observations of globular clusters were found to be in agree-
ment with the convenient model of isotropic stellar systems with no rotation. For this reason,
most theoretical and numerical works have focused on this particular restrictive class of objects.
However, the last few decades have been especially fruitful in the evolution of the precision of
observations (HST, VLT, GAIA, ...), but also in the development of the precision and size of
numerical simulations. Indeed, because these objects can also be straightforwardly studied us-
ing numerical simulations – either via N -body or Monte-Carlo methods – they have become
fantastic laboratories to study spheroidal systems with complex kinematics.

For spheroidal galaxies, integral field spectroscopy now allows for a precise reconstruction of
their galactic phase space structure (Wisnioski et al., 2019). These galaxies present anisotropy
and rotation. Such kinematic features may reflect their past dynamical history. Recent astro-
metric data on Galactic globular clusters also unveiled the 6D phase space of such structures
as never probed before, revealing that anisotropy and rotation are usually present at various
degrees (Bianchini et al., 2018; Sollima et al., 2019; Vasiliev, 2019b). Finally, integral field spec-
troscopy also revealed the high degree of rotation of nuclear star clusters (NSCs) (Seth et al.,
2008b; Feldmeier et al., 2014). These observations can be used to constrain formation sce-
narii for NSCs, in relation with the build-up of the angular momentum of supermassive black
holes (SMBHs) (Seth et al., 2008a).

Hence most stellar clusters, from galactic to nuclear, have some level of a kinetic reservoir of
free energy, which allows them to evolve into more likely configurations given enough stimuli
(internal or external). The topic of my Ph.D. is to study such an evolution in the regime where
it operates sufficiently slowly so that it can be described perturbatively. This evolution then falls
into the framework of kinetic theory, which I will describe and apply in the next chapters. I will
in particular show how it recovers the mean behaviour ofN -body simulations when averaging
over the range of possible initial conditions.
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1.1 Context

The Λ-CDMmodel (Springel et al., 2006; Weinberg et al., 2013) is the product of years of accu-
mulated research, and is currently the best model to describe our observations of the Universe.
The evolution of the Universe can be roughly described along the following chronology. First,
immediately after the Big Bang, quantum field fluctuations in the density of non-baryonic dark
matter occurred (Bardeen et al., 1986). Then, as a result of a very short period of inflation
(Guth, 1981; Linde, 1982), these fluctuations were stretched by the fast expansion of space-
time. This mechanism produced the temperature fluctuations seen in the cosmic microwave
background (CMB) (see Fig. 1.1). This map, which probes the temperature map of the early

Figure 1.1: The map of CMB temperature fluctuations ∆T/T over the whole sky, as measured by the Planck
satellite (Planck Collaboration et al., 2016). The foreground emission from the Milky Way galaxy and the dipole
component due to the motion of the galaxy relative to the CMB have been removed. The colours from blue to red
indicate themagnitude of under-density to over-density. The large structures we observe in the Universe come from
these density fluctuations.

Universe (see, e.g., Schlegel et al., 1998; Hinshaw et al., 2013; Planck Collaboration et al., 2020)
can be linked to the present large structures of the observable Universe. Indeed, after the end
of the inflation era, gravity accentuates over-densities and under-densities. With enough time,
this has led to the formation (Davis et al., 1985; Bond et al., 1996) of hierarchical over-dense
regions (see Fig. 1.2), in which galaxies were able to develop (Frenk & White, 2012).

In this picture, galaxies are naturally embedded in their cosmic environment. As such, their
respective evolutions are inevitably coupled with each other. They can be impacted by vio-
lent and destructive events such as mergers (Fig. 1.3) with other galaxies (see, e.g., Murali
et al., 2002). They can also undergo smoother perturbing events such as constructive inflows
of cold gas along a cosmic filament (see, e.g., Katz et al., 2003; Kereš et al., 2005; Pichon et al.,
2011). Additionally, perturbations of a more stochastic nature can impact a galaxy’s evolution
regardless of its cosmic neighbourhood. On the one hand, one can mention violent, punctual
but recurrent events such as supernovae explosions (Fig. 1.4; see, e.g., Spitzer, 1978; Madau &
Dickinson, 2014) or turbulence-driven noise (see, e.g., Frisch, 1995). On the other hand, one can
highlight the finite-N nature of the galaxy (i.e. the finite number of stars or clumps it contains,
such as giant molecular clouds). This induces Poisson fluctuations of its internal gravitational
potential, hence can drive a slow, long-term evolution. As an example, this seemingly tight in-
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Figure 1.2: From fig. 1 of Dubois et al. (2021). Sequential zoom (clockwise from top left) over the projected
density (silver blue colours) and projected temperature (red) of the NewHorizon simulation at redshift z = 2.
Units are in co-moving Mpc. On large scales (top panels), one can observe the filamentary structure. Through
the successive zoom-ins, the hierarchical structure of the large scale structures appears. On the bottom left panel,
massive galaxies make up the node where very narrow filaments converge together, feeding them with cold gas to
form stars.

Figure 1.3: Imaging of Stephan’s Quintet by the James Webb Space Telescope (JWST). Four of the five galaxies
(excluding the leftmost one) are physically close and are merging with one another. In the process, this interaction
disturbs the distribution of gas in the galaxies, which triggers, e.g., star formation events. Such events also perturb
the gas flow in its vicinity, hence induce potential fluctuations. Image credit: NASA, ESA, CSA, and STScI.
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Figure 1.4: Imaging of the supernova 1994D in the galaxy NGC 4526 (the luminous dot located at the bottom left
of the galaxy) by the Hubble Space Telescope (HST). During a brief time period, supernovae emit a considerable
amount of light, comparable to that of their host galaxy. Credit: NASA/ESA.

terplay between inner and external perturbations can drive the apparition of bars in the centre
of galaxies (Combes & Elmegreen, 1993; Sellwood, 2012; Reddish et al., 2022). This is what I
refer to as secular evolution, because it operates on long timescales and induces slow changes in
themean field, hence changes the galaxy’s orbital structure. This competition is also the rule for
other stellar systems: (i) galactic nuclei, which are stellar systems dominated by a supermas-
sive object at their centre – a SMBH; (ii) globular clusters, which are very dense stellar clusters
containing 105 – 106 stars typically within ∼ 1pc3.

An open question in that context is to determine which of inner or external perturbations
tend to dominate the secular fate of these objects. To do so, it is necessary to determine the
relative impact of each perturbation. In addition, the acceleration of the expansion of the uni-
verse as a result of dark energy (Planck Collaboration et al., 2020) tends to rarefy violentmerging
events – and more generally any interaction with the cosmic environment. One may argue that
the eventual future of stellar clusters is isolation from their environment, which makes their
study interesting on its own.

A combination of factors motivates this study now more than ever before.

First, the emergence of new data, e.g., GAIA (Gaia Collaboration et al., 2016, 2018, 2021)
and other grand surveys such as 4MOST (de Jong et al., 2019), JWST (Gardner et al., 2006)
and Weave (Dalton et al., 2012, 2016; Jin et al., 2023), make it now possible to have access to
samples of many galaxies (together with some knowledge of their internal kinematics) over
secular times. This can be achieved either by studying the kinematics of the present-day galax-
ies (galactic archaeology), or by studying the evolution of galaxies as a function of cosmic time
(lightcone studies). This opens the prospect of stacking galaxies so as to leverage the expected
diversity of their individual long-term non-linear evolution.

Moreover, important advancements have been achieved in gravitational kinetic theory –
which aims at describing the long-term behaviour of a whole system – in the past decade. His-
torically, the description of the long-term evolution of stellar clusters relied on local, two-body
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deflections (see, e.g., Chandrasekhar, 1943; Hénon, 1961; Cohn & Kulsrud, 1978; Cohn, 1979,
1980; Inagaki & Wiyanto, 1984; Spitzer, 1987; Lee, 1987; Quinlan & Shapiro, 1989; Chernoff &
Weinberg, 1990; Murphy et al., 1991; Merritt, 2009, 2013; Vasiliev, 2015, 2017) using simplifying
assumptions such as local homogeneity and infinite extent.

These approaches did not attempt to take into account the importance of self-gravity, which
can be expected to impact significantly the secular fate of dynamically cold objects (such as
discs, see e.g., Sellwood, 2012). Nonetheless, several steps have been achieved in that direction
early on. Kalnajs (1976) developed the matrix method to study the linear response theory of
self-gravitating galactic discs. Starting from the inhomogeneous Landau equation derived by
Polyachenko & Shukhman (1982), Weinberg (1993) carried out a first seminal investigation of
the importance of collective effects. In particular, he showed how the properties of the noise
present in the systems can impact the orbital diffusion coefficients (see alsoWeinberg, 2001a,b).
Rauch & Tremaine (1996) highlighted an enhanced rate of angular momentum relaxation in
galactic nuclei which cannot be explained using Chandrasekhar relaxation theory. However, it
is only recently that a full description of the effects of fluctuationswas derived, in the formof the
Balescu–Lenard equation (Heyvaerts, 2010; Chavanis, 2012; Fouvry & Bar-Or, 2018; Hamilton,
2021). This equation describes the secular (long-term) collisional (i.e. under the effect of internal
fluctuations) evolution of a self-gravitating system, and takes into account the amplification of
fluctuations by self-gravity. In particular, it encompasses the previouslymentioned formalisms,
such as the Landau equation (Chavanis, 2013b).

The Balescu–Lenard equation captures the diffusion of the orbital structure, a phenomenon
sharing deep similarities with the process of diffusion (Fig. 1.5) studied by Einstein (1905)
and Langevin (1908) and rooted in the fundamental fluctuation-dissipation theorem. Under

Figure 1.5: A picture of the diffusion of ink in water. The process of long-range resonant orbital diffusion discussed
in this thesis – occurring in action space – is similar to the process of local diffusion of ink – occurring in physical space.

the action of the fluctuations of the gravitational forces of the cluster, the orbits of the stars
undergo a non-local, resonant diffusion.

Most interestingly, the Balescu–Lenard equationwas applied recently to a variety of systems.
Among those, I can mention the following applications:

• Thefirst investigationwas the secular evolution of a tepid galactic disc. Usingfirst aWentzel–
Kramers–Brillouin (WKB) approximation (Fouvry et al., 2015a) and then thematrixmethod
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(Fouvry et al., 2015c; De Rijcke et al., 2019a), these authors were able to recover the nu-
merical observations made earlier by Sellwood (2012) for razor-thin and thick galactic
discs.

• Its application to galactic nuclei led to the description of eccentricity relaxation of the quasi-
Keplerian orbits (Bar-Or & Fouvry, 2018), and recovered numerical observations made
by Merritt et al. (2011).

• The secular evolution of barswas investigated in the context of the so-called inhomogeneous
Hamiltonian mean field model (Benetti & Marcos, 2017). It showed how collective effects
could affect the secular relaxation of a system.

• Using the periodic cube as a proxy for multiperiodic stellar systems, Weinberg (1993) and
Magorrian (2021) explored the impact of collective effects near the Jeans instability, i.e.
near marginal stability.

• Later on, Roule et al. (2022) studied 1D self-gravitating systems and showed that collective
effects could damp the system’s response instead of amplifying it.

• Interestingly, the relaxation of isotropic globular clusters (Hamilton et al., 2018; Lau & Bin-
ney, 2019; Fouvry et al., 2021) was shown to only weakly involve collective effects while
resonant interactions seemed to have little impact on the overall relaxation.

• This formalism was transposed to the study of more exotic systems, such as 2D point
vortices (Fouvry et al., 2016; Chavanis, 2023), secular dynamics on a sphere (Fouvry et al.,
2019a) or kinetic blockings (Fouvry, 2022). The latter characterises the impact of shot noise
on systems for which symmetry leads to an exactly vanishing Balescu–Lenard flux. These
systemswere shown to diffuse over timescales scaling like 1/N2 atmost (Fouvry&Roule,
2023). This implies that correlations beyond three stars are never important in long-range
interacting systems.

Overall, these studies test the robustness of the Balescu–Lenard equation, and its limits (see,
e.g., Hamilton & Heinemann, 2020, 2023).

In this context, my Ph.D. is focused on the evolution on secular timescales of isolated gravi-
tational systems presenting kinematic diversity (anisotropy, rotation). It relies on the Balescu–
Lenard formalism and various approximations of it. Building upon them, I will aim at: (i) un-
derstanding the mechanisms which are typical of a long-term diffusion (i.e. departures from
the mean field driven by potential fluctuations); (ii) determining the impact of the nature of
these objects (e.g., their geometry, kinematics or composition) w.r.t. the observed differences ;
(iii) setting up methods for dark matter experiments in order to probe the existence of unre-
solved or faint families of objects (e.g., intermediate mass black holes (IMBHs) in the Galactic
nucleus).

My work will focus on three scales: the Galactic nucleus (at the centre of the Milky Way),
globular clusters, and finally galaxies as a whole. To that end, I will rely on the recent ad-
vances in kinetic theory I discussed, and extend their applicability to wider classes of objects
(anisotropic, rotating). I will show in particular how this secular theory recovers quantita-
tively the mean expectation of various quantities extracted from sets of simulations averaged
over their initial conditions.

Before delving into the actual re-derivation of secular theory and my contributions to it,
it is useful to review the general dynamics of an N -body system. In section 1.2, I motivate
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the framework in which kinetic theory is derived. I describe tools and results of Hamiltonian
dynamics applied toN -body self-gravitating systems, and highlight a fewmechanisms that are
crucial in the evolution of stellar systems.

1.2 Hamiltonian dynamics

A dynamical system is described by its Hamiltonian, H , which is a function of the canonical
coordinates (q,p) (see, e.g., Arnold, 1978). The time evolution of these coordinates is given by
Hamilton equations

dq

dt
=
∂H

∂p
;

dp

dt
= −∂H

∂q
. (1.2.1)

The N -dimension space in which the coordinates q live is called the configuration space, while
the coordinates p live in the associated momentum space. The phase space is defined as the space
containing all (q,p) = w coordinates. This space is given an antisymmetric operation called
the Poisson bracket, defined by

[F,G] =
∂F

∂q
· ∂G
∂p
− ∂G

∂q
· ∂F
∂p

, (1.2.2)

with F,G being functions of the canonical coordinates w. This allows me to rewrite Hamilton
eqs. (1.2.1) under the form

dw

dt
= [w, H]. (1.2.3)

The phase space coordinates satisfy the canonical commutation relations

[wα, wβ] = Jαβ, (1.2.4)

where J is the 2N symplectic matrix

J =

(
0 −IN
IN 0

)
. (1.2.5)

Here, N is the number of particles of the system and IN the N -dimensional identity matrix.
Because Hamiltonian dynamics describes the system’s dynamics in phase space, it allows for
generalised change of coordinates. Some phase space coordinatesW are said to be canonical
if they satisfy the canonical relations given in eq. (1.2.4). A canonical transformation, w → W ,
conserves the form of Hamilton equations, Poisson brackets, as well as the infinitesimal phase
space volume dw = dW .

Another key aspect of Hamiltonian dynamics is the determination of integrals of motion. By
this, I mean functions ofw which are invariant along the orbits, i.e. the trajectories of the stars.
An integral of motion I(w) is said to be isolating if for any value in the image of I(w), the
region of phase space which reaches this value is a smooth manifold of dimension 2N − 1.
For example, a trivial isolating integral of motion is the energy. Finally, a system is said to be
integrable if it has at leastN independent integrals ofmotion. For those systems, one can obtain
a set of canonical coordinates (θ,J), called angle-action coordinates, such that the actions J are
independent isolating integrals of motion. These coordinates are constructed in a way that the
Hamiltonian can be expressed only in actions, i.e. H = H(J). As a key corollary, Hamilton
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eqs. (1.2.1) become angle-independent, hence read

dθ

dt
=
∂H

∂J
= Ω(J) ;

dJ

dt
= −∂H

∂θ
= 0, (1.2.6)

where Ω are the motion frequencies (Fig. 1.6). In this space, trajectories, which have a complex
shape in phase space (q,p), are reduced to straight lines in angle-action space, where

θ(t) = θ0 + Ω(J)t ; J(t) = J . (1.2.7)

To illustrate this property, I exhibit the case of the one-dimensional harmonic oscillator in
Fig. 1.6. The orbits in (q, p)-space, which were circles, become straight lines in angle-action
space.

Figure 1.6: Phase space diagram of a 1D harmonic oscillator. On the left, three orbits are represented in the
physical phase space (q, p). They take the form of concentric circles along which the particles move. In the right, the
same orbits are represented in angle-action space (θ, J). The trajectories have been transformed into straight lines,
labelled by a constant action. The particle moves with a constant frequency along the angle θ.

Based on these observations, let me consider that the self-gravitating system can be de-
scribed by a distribution function (DF), F (w) = F (q,p). In particular, F (w)dw is proportional
to the probability of finding a particle in a phase space region of volume dw aroundw. During
its evolution, probability in phase space must be conserved, hence F evolves according to the
continuity equation

∂F

∂t
+

∂

∂w
·
(
F ẇ

)
= 0. (1.2.8)

Using Hamilton eqs. (1.2.3), eq. (1.2.8) can be expressed as

∂F

∂t
+ [F,H] = 0. (1.2.9)

Equation (1.2.8) is usually known as the Liouville equation (for an N -body system), or the col-
lisionless Boltzmann equation (for the DF of one particle in the mean field limit), or the Vlasov
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equation (in the mean field limit). Because gravity is a long-range interaction, the mean field
limit works especially well. Therefore, if the number of particlesN is large enough, I can define
a set of angle-action coordinates (θ,J) for the mean field limit. Then, using the conservation
of Poisson brackets through a canonical transformation, eq. (1.2.9) can be expressed under the
form

∂F

∂t
+ Ω · ∂F

∂θ
= 0. (1.2.10)

Steady states of the collisionless Boltzmann eq. (1.2.10) appear naturally: they are given by
DFs of the form F = F (J). This assertion corresponds to Jeans theorem (Jeans, 1915), which
is crucial in the case of self-gravitating system due to two mechanisms.

First, self-gravitating systems undergo phase mixing, as shown in Fig. 1.7. Hamilton equa-

Figure 1.7: Fromfig. 2.4 of Fouvry (2020). In angle-action space, trajectories are simple straight lines (see Fig. 1.6).
Particle move along these lines at a frequency depending on the action J . This leads to a dephasing of the particles,
which is shown for various times in the panels. This is phase-mixing mechanism, one of the main motivations behind
orbit-averaging and the J -dependence only of the DF.

tions in angle-action (eqs. 1.2.6) show that the orbital phase θ of a particle with action J follows
a straight line in angle-action space, with frequency Ω(J). While Ω(J) was independent of the
action for a harmonic oscillator (Fig. 1.6), it is not the case in general. Therefore, two parti-
cles initially close in angle-action space will stream with different frequencies. This induces a
dephasing of these particles, and more generally creates a shearing in angle-action space. As
time progresses, finer and finer structures in the DF will be created, ultimately converging to
an angle-independent DF F (J) when coarse grained (i.e. locally smoothed or analysed with
finite resolution).

Second, a system far from equilibriumundergoes violent relaxation (Lynden-Bell, 1967). Dur-
ing this period, the system undergoes a series of violent and abrupt variations of its mean po-
tential. This leads to a redistribution of its particles’ energy. This process is very efficient in
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allowing the system to reach a quasi-stationary state (QSS) in a few dynamical times.a

After violent relaxation and phase mixing, the system is locked into a stationary state for
the mean field limit. If it were only subjected to its mean field, then it would be frozen on its
QSS. Yet, it is still subject to fluctuations in its potential (e.g., induced by the shot noise from
its finite number of stars). It is this departure from the mean field which allows the system
to slowly evolve from one QSS to another (see, e.g., Joyce et al., 2016; Marcos et al., 2017), and
drives secular evolution. If the perturbations are sufficiently small (e.g., a large enough number
of stars, or a weak external perturbation), this departure from the mean field can be treated
perturbatively. It corresponds to a slow diffusion of the actions (which label the orbits). If this
process is sufficiently slow, it may build up through the recurrence of interactions occurring at
resonances.

1.3 Angle-action coordinates in spherically symmetric systems

In this section, let me introduce two sets of angle-action variables which I will use in the sub-
sequent chapters. Importantly, these actions label the orbits and will slowly drift with cosmic
time on secular timescales, should the cluster be subject to coherent potential fluctuations.

1.3.1 Spherically symmetric system

In a spherically symmetric system with a static central potential, it is known that the energy of
a given test particle, E, as well as its angular momentum vector, L, are conserved quantities.
From these conserved quantities, one can derive a set of canonical variables composed of three
independent isolating integrals (see, e.g., Torrielli, 2016). One such integral is the radial action

Jr =
1

π

∫ ra

rp

dr vr, (1.3.1)

where rp (resp. ra) is the pericentre (resp. the apocentre) of the radial motion of the particle
(Fig. 1.8) and vr the radial velocity of the particle. The two other actions are the norm of the
angular momentum, L, and its projection along the z-direction, Lz . Once again, I can illustrate
the crucial role of angle-action coordinates in capturing the mean motion of such dynamical
systems. The case of a central Plummer potential is shown in Fig. 1.8, where I represent the
orbits of two particles with different orbital parameters, in their orbital planes. The complexity
of this orbital motion appears in the fact that orbits are typically not closed. This is typical for
most systems beyond the one-dimensional case.b One may obtain the orbital frequencies (see,
e.g., Tremaine & Weinberg, 1984) Ωr and ΩL

2π

Ωr
= 2

∫ ra

rp

dr

vr
, (1.3.2a)

ΩL

Ωr
=
L

π

∫ ra

rp

dr

r2vr
, (1.3.2b)

aTogether, these mechanisms are two of the motivations behind the orbit-average presented in chapter 2.
bFor spherically symmetric systems subjected to a central potential U = U(r), only the Keplerian system and the

harmonic oscillator have systematically closed orbits (Bertrand, 1873).
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Figure 1.8: Illustration of Plummer orbits (see eq. 4.2.1) projected on their orbital plane. One can observe the
rosette-like nature of these orbits, which are not closed in physical space. As can be seen, these orbits will (typically)
fill the available physical radius given enough time.

while ΩLz = 0 because of spherical symmetry. Then one may obtain the evolution of the angles
(see, e.g., Tremaine & Weinberg, 1984)

θr =

∫ r

rp

drΩr

vr
, (1.3.3a)

θL = θ +

∫ r

rp

dr (ΩL − L/r2)

vr
, (1.3.3b)

where θ is the ascending node and r is the radius of the star (see Fig. 2.9).

1.3.2 Test star in a Keplerian potential

Depending on the system that is studied, other sets of angle-action coordinates might be more
adapted (see, e.g., Morbidelli, 2002). For the Newtonian two-body problem, the Delaunay vari-
ables (Delaunay, 1860) are the most appropriate.

First, let me observe that the Keplerian system is a spherically symmetric system. Therefore
it has a set of angle-action (Jr, L, Lz), as detailed in section 1.3.1. Using these actions, I can
rewrite the Keplerian Hamiltonian under the form (see, e.g., appendix E of Binney & Tremaine,
2008)

HKep =
v2

2
− GM•
|r|

= − (GM•)
2

2(Jr + L)2
, (1.3.4)

where M• is the mass of the central massive object. In particular, the orbital frequencies are
given by

Ωr = ΩL =
(GM•)

2

2(Jr + L)3
; ΩLz = 0. (1.3.5)

Because only the combination of actions Jr +L occurs in the Hamiltonian (eq. 1.3.4), it is useful
to define this combination as a new action. This transformation (Jr, L, Lz) 7→ (Lc, L, Lz) is a
canonical transformation in this case (see, e.g., Goldstein, 1980), where

Lc = Jr + L.
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These new actions are called the (specific) Delaunay actions. As a Keplerian orbit is usually
described by its semi-major axis (sma) a, its eccentricity e and its orbital inclination I (see
Fig. 1.9), one may express the specific Delaunay actions as (see, e.g., Duncan et al., 1998)

Figure 1.9: FromMurray&Dermott (2000). Illustration of the Keplerian orbital elements. Here, ω is the argument
of the pericentre, as well as the angle associated with the action L. Similarly, Ω is the longitude of the ascending
node, and is the angle associated with the action Lz . Finally, I is the orbital inclination (w.r.t. some fixed reference
plane).

Lc =
√
GM•a ; L = Lc

√
1− e2 ; Lz = L cos I. (1.3.6)

In particular, this shows that Lc corresponds to the angular momentum for a circular orbit.

1.4 Overview

The main objective of my thesis is to characterise the long-term processes operating in stellar
systems. This is of interest both astrophysically and conceptually. For the former, it provides
us with means to build estimators for dark components whose impact only operates on such
timescales (e.g., a measure of the clumpiness of the mass distribution near supermassive black
holes). For the latter, to understand how long-range fluctuations distort orbits. Depending on
the geometry and kinematics of the cluster at play, I will show that two types of contributions
can drive secular evolution: the local deflections with the nearest stars, or the long-range non-
local interactions with resonant orbits. This distinction will play a crucial role in the coming
chapters.

In chapter 2, I will recall recent advances in kinetic theory and present the main formalisms
which allow us to describe secular orbital diffusion. First, I will recover the Balescu–Lenard
equation by starting from the Klimontovich description of the system. Under the assumption
of small enough departures from the mean field, I will show that this equation completely cap-
tures the secular evolution of self-gravitating systems (e.g., inhomogeneity, resonant interac-
tions and collective effects). Furthermore, I will discuss situations inwhich the Balescu–Lenard
equation can be approximated: (i) when collective effects can be neglected,c giving rise to the
resonant relaxation (RR) approximation; (ii) when long-range, resonant interactions can be

cIt should be noted that collective effects cannot be strictly screened – as can be the case in plasma physics – due
to masses always being positive. This makes collective effects a crucial feature of self-gravitating systems a priori.
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ignored in favour of local, successive two-body deflections, giving rise to the (orbit-averaged)
non-resonant relaxation (NR) approximation. I will discuss the limitations of this formalism,
such as the induced large-scale and small-scale divergences.

In chapter 3, I will study the long-term evolution of the Galactic centre. Using both the NR
and RR formalisms presented in chapter 2, my aimwill be to probe the existence of IMBHs hid-
den within an unresolved dark cluster of objects orbiting around the SMBH Sgr A?. I will apply
secular theory to characterise the diffusion in eccentricity of the S-stars. Here, the influence of
the hidden IMBHs or faint massive star families is what accelerates the diffusion. Because its
efficiency depends on the model describing them, this will allow me to determine the most
likely models of IMBHs around Sgr A?.

In Chapter 4, I will apply the extended NR formalism from chapter 2 to study globular
clusters with an anisotropic distribution of velocities. These objects (Fig. 1.10) are known to

Figure 1.10: An all-sky view of 75 globular clusters (blue) and 12 nearby dwarf galaxies (red) as viewed by ESA’s
Gaia satellite using information from the mission’s second data release. Recent observations were able to detail the
kinematic richness of these objects, including velocity anisotropies and inner rotation. Acknowledgement: Gaia
Data Processing and Analysis Consortium (DPAC).

undergo core collapse. Recent numerical works (see, e.g., Breen et al., 2017) have shown that
an initial tangential anisotropy can accelerate the rate of core collapse in isolated globular clus-
ters. I will show how the NR formalism explains this observation. In particular, I will study
orbital reshuffling and how anisotropy impacts it. This analysis will be complemented with
tailored sets of N -body simulations to validate my results. Their confrontation to predictions
will show how accurate the NR formalism can be. Additionally, a comparative analysis of the
RR predictions against the NR ones will allow me to discuss the importance of resonances in
dynamically hot systems, as well as the origin of the Coulomb logarithm of the NR theory.

Chapter 5 will extend the study to a wider class of rotating clusters. These systems are dy-
namically colder, hencemore prone to amplified resonant interactions because of the coherence
in the motion of the co-rotating stars. This will provide me with the opportunity to quantify
the limitations of the NR formalism. I will apply the NR formalism developed in chapter 2 to
predict the impact of rotation on both the in-plane diffusion and the out-of-plane one. When
compared to myN -body simulations, I will show that the NR theory gives a satisfying predic-
tion for the former, but fails to deliver for the latter, highlighting the shortcomings of the NR
assumptions.
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In chapter 6, I will study the specific secular process of bar formation from a different angle.
Rather than focussing on the impact of shot noise, I will explore which subsets of geometric
configurations can be subject to bi-symmetric instabilities. I will adapt the method used by
Aoki et al. (1979) to describe razor-thin gaseous galactic discs with a dark halo (DH) and a
bulge. Using linear response theory, I will quantify the growth mode of the disc w.r.t. to the
bulge and DH fraction. I will use this formalism to provide a tentative explanation regarding
the low number of bars observed in the NewHorizon simulation (Reddish et al., 2022).

In chapter 7, Iwill conclude by discussing the state-of-the-art for the secular evolution of self-
gravitating integrable clusters displaying kinematic diversity. I will also list possible extensions
of the present work.



Chapter 2

The theory of secular relaxation

2.1 Introduction

In the previous chapter, I presented a few tools from Hamiltonian mechanics, which I will use
to describe the typical fate of self-gravitating systems. In particular, I highlighted two phe-
nomena inherent to these N -body systems. First, they are subject to phase mixing, a process
duringwhich their angle dependency iswashed out over a fewdynamical times (Hénon, 1964).
Second, they are subject to a violent relaxation, which also quickly brings out-of-equilibrium
systems towards quasi-stationary states (QSS) (Lynden-Bell, 1967). These two processes effi-
ciently virialise the system, whose potential then follows from its mean field. As a result, stellar
orbits are mainly set by this mean field, while stellar positions are uniformly distributed in an-
gles. It follows that the system can then only evolve through fluctuations, i.e. the departure
from the mean field coming from the finite number of stars or external perturbations (Fig. 2.1).

Figure 2.1: Courtesy of J.-B. Fouvry. A self-gravitating system first undergoes: (i) a violent relaxation due to
abrupt variations of its mean potential; (ii) a phase-mixing due to the action-dependent frequencies of its orbits.
Then, after a few dynamical times, it reaches a QSS. From there on, it can only evolve on long timescales under
the effects of either external (for example, fly-bys of satellites) of internal fluctuations (e.g., of its own potential),
as described by the inhomogeneous Balescu–Lenard equation. This induces a secular diffusion of its orbits, which
either leads to a linear instability or a series of QSS.

Because gravity is a long-range interaction, it has the ability to amplify perturbations (see,
e.g., Kalnajs, 1976; Hernquist & Ostriker, 1992; Weinberg, 1993, 1998). This phenomenon can

21
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lead to the spontaneous growth of dynamical instabilities, such as the radial orbit instability
(see, e.g., Maréchal & Perez, 2011, for a review), or it can lead to a strong amplification of the
potential fluctuations. This is particularly relevant in cold dynamical systems such as galactic
discs (see, e.g., Toomre, 1981; Sellwood, 2012; Fouvry et al., 2015d), where the velocity dis-
persion is low. Collective effects are expected to have less impact on hotter stellar systems,
such as globular clusters (see, e.g., Theuns, 1996; Sellwood, 2015; Hamilton et al., 2018) or the
Galactic nucleus (Rauch & Tremaine, 1996; Bar-Or & Fouvry, 2018). If potential fluctuations
are small, then their impact on short timescale is limited. Yet, recurrent effects operating repet-
itively through resonances may still reshuffle the orbital structure of the system. Under these
conditions, orbital evolution can only occur over long timescales (provided the considered sys-
tems do not undergo any instability). This is what the theory of secular evolution aims at
describing.

For simplicity, I shall be focused on internal fluctuations coming specifically from the finite
number N of particles. These specific types of fluctuations are known as finite-N effects, or
equivalently as Poisson shot noise fluctuations. In this regime, the graininess of the potential
is what drives an irreversible, long-term relaxation in the system (see, e.g., Weinberg, 1998,
2001a,b). The existence of a mass spectrum of components – a generic situation in realistic
astrophysical systems – can in particular also boost finite-N effects, and diffusion can then be
dominated by the most massive components.

In this chapter, I shall sketch a derivation of the secular evolution of self-gravitating systems,
in the shot noise-driven limit. I will first discuss the derivation of the generic Balescu–Lenard
equation in section 2.2. This equation predicts the amplification of the fluctuations induced by
self-gravity (Heyvaerts, 2010; Chavanis, 2012). Because such effects can be ignored in some
conditions – this will be the case in most of this thesis – the Balescu–Lenard equation can be
simplified into the inhomogeneous Landau equation (section 2.3.1). Then, in section 2.3.2, I
will describe secular relaxation in systems where small-scale interactions (NR) dominate over
long-range effects. In this case, the inhomogeneous Landau equation reduces to the locally
homogeneous Landau equation. This is at the cost of small- and large-scale divergences reg-
ularised by a cutoff, giving rise to a Coulomb logarithm (see, e.g., Chavanis, 2013b, for a re-
view). Nonetheless, it is computationally more accessible, and appears to give satisfactory
results for some stellar systems (see, e.g., Hamilton et al., 2018, and chapter 4). Finally, I will
derive an extension of the isotropic, non-rotating NR description of globular clusters to the
study of anisotropic and rotating systems (section 2.3.3).

2.2 Collisional dynamics of an N -body system

The derivation of the general Balescu–Lenard equation, which I sketch below, is based on Cha-
vanis (2012), if not stated otherwise.

2.2.1 The Klimontovich equation

Let me consider an isolated system of N stars with identical masses m, interacting with one
another under the influence of gravity. Their dynamics can be described byHamilton equations

m
dri
dt

=
∂HN

∂vi
; m

dvi
dt

= −∂HN

∂ri
, (2.2.1)
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where HN is the Hamiltonian of the system. It is given by

HN =
1

2

N∑
i=1

mv2
i +m2

∑
i<j

U(|ri − rj |), (2.2.2)

where U(r) is the interaction potential. For 3D gravity, the Newtonian interaction potential
reads U(r) = −G/r, where G is the gravitational constant. This system conserves its total
energy E = HN , its total massMtot = Nm and its total angular momentum L =

∑
imi ri × vi.

The purpose of my work is to understand how such a system evolves over long timescales, e.g.,
by redistributing angular momentum andmass within the system. Such an evolution I will call
secular relaxation, to make a distinction w.r.t. violent relaxation and phase mixing.

Figure 2.2: Illustration of the core collapse of an isotropic, non-rotating cluster, as measured in myN -body simu-
lation withN = 104. The top panel shows the evolution of the enclosed mass of the cluster, while the bottom panel
shows that of the cluster potential. Each colour corresponds to a different time in the evolution of the cluster, in
initial half-mass radius time units (defined in eq. 5.2.1). Here, CC stands for core collapse. The limits on the left of the
curves correspond to the location of the most central particle. As time advances, mass becomes more concentrated
in the centre.

Already, Hénon (1964) noticed that self-gravitating systemswere predetermined to undergo
two successive types of relaxation. First, they would experience a quick, collisionless – i.e. sub-
ject only to the mean field – relaxation towards a quasi-stationary state (QSS). By this, I mean a
virialised state in dynamical equilibrium in themean field limit, butwhich is not in a thermody-
namical equilibrium. Second, even in isolation, ifN is sufficiently large, they would experience
a slow, long-term collisional relaxation – i.e. sourced by finite-N effects. However, the perma-
nent escape of high energy stars (evaporation) and the gravothermal catastrophe (core collapse,
see Fig. 2.2) imply that the system may never reach a true statistical equilibrium (Hénon, 1961;
Aarseth, 1963). Moreover, Lynden-Bell (1967) tried to predict the QSS resulting from the first
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relaxation by developing a statistical mechanics of the collisionless Vlasov equation. However,
when coupled to the Poisson equation, theDF he obtained ended up having an infinitemass, re-
flecting the fact that the Vlasov–Poisson system has no maximum entropy state (Spitzer, 1975).
His solution was later disregarded by Arad & Lynden-Bell (2005) as not satisfying transitivity
in evolution. Yet it remains of interest to study how the QSS state evolves secularly through the
deflection of its orbital structure via recurrent shot noise-driven perturbations. This is the topic
of kinetic theory, the core topic of this thesis.

Following Chavanis (2012), let me now sketch a derivation of the Balescu–Lenard equation
– first obtained by Heyvaerts (2010) – which fully describes the secular evolution of these sys-
tems. First, I consider the discrete DF of the system

Fd(w, t) = m

N∑
i=1

δD(r − ri[t]) δD(v − vi[t]), (2.2.3)

where I introducedw = (r,v) the (specific) phase space coordinate. This DF describes exactly
the N -body system where the particle i has position ri[t] and velocity vi[t] at time t. I can
recover its associated potential using Poisson equation

Φd =

∫
dw′ U(|r − r′|)Fd(w′, t). (2.2.4)

Using Hamilton eqs. (2.2.1) with the Hamiltonian given in eq. (2.2.2), the discrete DF obeys
the Klimontovich equation (Klimontovich, 1967)

∂Fd

∂t
+ [Fd, Hd] = 0, (2.2.5)

whereHd = v2/2 + Φd(r, t) is the specific Hamiltonian of an individual particle. Because I am
interested in the evolution of the system driven by the fluctuations of its mean field, I define
the smooth DF, F (w, t) = 〈Fd(w, t)〉, where the average 〈·〉 is to be understood as the average
over a large number of initial conditions.a I can then introduce the quasilinear decomposition

Fd = F + δF,

where δF denotes the fluctuations of the DF around its mean value. In the same fashion, I can
decompose the discrete potential

Φd = Φ + δΦ,

where δΦ describes the fluctuations around the mean potential. I then inject these decomposi-
tions into the Klimontovich eq. (2.2.5), and obtain

∂F

∂t
+
∂δF

∂t
+ [F,H] + [δF,H] + [F, δΦ] + [δF, δΦ] = 0, (2.2.6)

where I have decomposed the exact Hamiltonian Hd = H + δΦ, with H = v2/2 + Φ the mean
field Hamiltonian. Now, taking the ensemble average 〈·〉 of eq. (2.2.6) yields

∂F

∂t
+ [F,H] = −〈[δF, δΦ]〉, (2.2.7)

aSpecifically, sets of distributions of positions and velocities which are drawn from the initial DF.
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which describes the evolution of the mean field DF. If I neglect the non-linear terms, and inject
eq. (2.2.7) into eq. (2.2.6), I obtain the evolution equation for the fluctuations

∂δF

∂t
+ [δF,H] + [F, δΦ] = 0. (2.2.8)

The linearisation of eq. (2.2.7) is called the quasilinear approximation (see, e.g., Diamond et al.,
2010). Due to the non-linear term, the orbital diffusion undergone by the averaged DF only
occurs only at second order in the perturbations.

2.2.2 The Balescu–Lenard equation for self-gravitating systems

Now, as I discussed in section 1.2, orbits in N -body self-gravitating systems are intricate. This
is because of the (unshielded) long-range interaction operating in these systems, which makes
them inherently inhomogeneous. Therefore, their description by the phase space coordinates
(r,v) is not optimal to capture the mean field motion in a simple fashion. To remedy this issue,
it is much more convenient to use angle-action coordinates (θ,J) (Goldstein, 1980). Although
their existence might be of concern for clusters of arbitrary geometry, I am interested in this
thesis in spherically symmetric systems (on average). Under these conditions, I have access
to a set of angle-action coordinates, as introduced in section 1.3. Because fluctuations are of
order 1/

√
N , the relaxation timescale of the system is of order tR ∼ NtD (Chandrasekhar,

1942) with tD the dynamical time. Due to this timescale separation, the DF will evolve through
a sequences of QSS solutions of the Vlasov equation (eq. 1.2.10) – hence depending only on
the actions J – while changing slowly under the impact of finite-N effects (which are called
collisions). Therefore, I can approximate the mean field DF by

F (w, t) ' F (J , t). (2.2.9)

By construction, the average (mean field) Hamiltonian of the system H = H(w) = H(J)

does not depend on the angles. Therefore, Hamilton equations for the averaged Hamiltonian
become

dθ

dt
=
∂H

∂J
= Ω(J) ;

dJ

dt
= −∂H

∂θ
= 0, (2.2.10)

where I defined the angular frequency Ω(J) of the orbits with actions J . In this space, the
angles evolve ballistically as θ = Ω(J)t+θ0. Of course, the complexity has not simply vanished.
Instead, it has been relocated in the relation between the position-velocity (r,v) and angle-
action coordinates (θ,J). Most notably, the expression of the interaction potential U(|r − r′|)
has become much more intricate than in position-velocity.

Because the mapping (r,v) 7→ (θ,J) is a canonical transformation, it conserves phase space
volume and Poisson brackets. I can express these in the new coordinates

[F,H] =
∂F

∂θ
· ∂H
∂J
− ∂F

∂J
· ∂H
∂θ

= 0, (2.2.11)

since H=H(J) and F =F (J). Therefore, eqs. (2.2.7) and (2.2.8) become

∂F

∂t
=

∂

∂J
·
〈
δF

∂δΦ

∂θ

〉
, (2.2.12a)

∂δF

∂t
+ Ω(J) · ∂δF

∂θ
− ∂δΦ

∂θ
· ∂F
∂J

= 0, (2.2.12b)
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where the first equation was obtained after averaging over the angles θ assuming phase mix-
ing (eq. 2.2.9). Note that this angle averaging effectively erases any dependence on the initial
phases. This is a generic feature of kinetic theory which aims to capture on average the impact
of non-linearities which operate over long timescales. Thus, kinetic theory forfeits the detailed
knowledge of stellar positions so as to predict the mean evolution of the stellar distribution.

From this point, if N is sufficiently large, I shall assume that the fluctuations evolve quickly
compared to the evolution of the mean field. This is motivated by the observation that the
evolution timescale of δF is given by the mean advection Ω(J), hence evolves on a dynamical
timescale, while F has no mean advection. This assumption of timescale separation is known
as Bogoliubov’s ansatz. As a consequence of this hypothesis, mean field quantities – namely
the DF F (J) and the orbital frequencies Ω(J) – involved in eq. (2.2.12b) are considered as
time-independent at this level of approximation. Additionally, I assume that the system does
not undergo any dynamical instability, meaning that it is only sourced by collisions. Finally I
assume that initial perturbations have had time to damp away.b Therefore, the system does
not have too weakly damped modes (Hamilton & Heinemann, 2020, 2023). Following these
assumptions, I solve eqs. (2.2.12) by using the Fourier–Laplace transform formalism. This will
allow me to compute explicitly the collision term in the Vlasov eq. (2.2.12a).

First, let me express the Fourier–Laplace transform of the fluctuations

δF̃k(J , ω) =

∫
dθ

(2π)d

∫ ∞
0

dt e−i(k·θ−ωt)δF (θ,J , t), (2.2.13)

where d is the dimension of the physical space. This expression is well-defined for large enough
values of Im(ω). Nonetheless, analytic continuation can be used to recover the remaining part
of the complex ω-plane (see, e.g., Churchill & Brown, 2009). Finally, this transformation can be
inversed using the Bromwich–Mellin transform

δF (θ,J , t) =
∑
k∈Zd

∫
C

dω

2π
ei(k·θ−ωt)δF̃k(J , ω), (2.2.14)

where C is a contour in the complex ω-plane which passes above all poles of the integrand,
i.e. for Im(ω) large enough. I apply the Fourier–Laplace transform to eq. (2.2.12b) and obtain
(Chavanis, 2012)

− δF̃k(J , 0)− iωδF̃k(J , ω) + ik ·Ω δF̃k(J , ω)− ik · ∂F
∂J

δΦ̃k(J , ω) = 0. (2.2.15)

Rearranging this expression, I can express the fluctuations as

δF̃k(J , ω) =
k · ∂F∂J
k ·Ω− ω

δΦ̃k(J , ω) +
δF̃k(J , 0)

i(k ·Ω− ω)
. (2.2.16)

The first term of the r.h.s. corresponds to the impact of collective effects. As the system gets closer
to a resonance ω= k · Ω, the fluctuations δΦ̃ are amplified by the resonant denominator. The
second termof the r.h.s. is driven by the initial condition δF̃k(J , 0). In particular, the 1/(k·Ω−ω)

term captures its phase mixing (Fig. 1.7).

Now, I want to compute the r.h.s. of eq. (2.2.12a). Using Poisson equation, the fluctuations
bThere exist examples of systems which exhibit algebraic damping instead of the classical exponential damping

(see, e.g., Barré et al., 2010, 2011).
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δΦ of the potential Φ are related to the fluctuations δF of the DF F (eq. 2.2.4) by

δΦ(r, t) =

∫
dw′ U(|r − r′|) δF (w′, t). (2.2.17)

Therefore, it is useful to expand the pairwise interaction potential in angle-action space as

U(|r[θ,J ]− r′[θ′,J ′]|) =
∑
k,k′

ψkk′(J ,J
′) ei(k·θ−k′·θ′), (2.2.18)

where I introduced (following Fouvry, 2020) the coupling coefficients

ψkk′(J ,J
′) =

∫
dθ

(2π)d
dθ′

(2π)d
U(|r[θ,J ]− r′[θ′,J ′]|) e−i(k·θ−k′·θ′). (2.2.19)

Here, these coefficients are said to be bare because they do not capture any self-gravitating am-
plification. Their role is to capture the strength of the coupling between orbits J and J ′ through
the pair of resonance vectors (k,k′). Using this decomposition, I can rewrite the self-consistency
relation (eq. 2.2.17) between δF and δΦ as

δΦ̃k(J , ω) = (2π)d
∑
k′

∫
dJ ′ψkk′(J ,J

′)δF̃k′(J
′, ω). (2.2.20)

I can now inject this expression into eq. (2.2.16). Ultimately, this yields

δΦ̃k(J , ω) = −(2π)d
∑
k′

∫
dJ ′

δF̃k′(J
′, 0)

i(ω − k′ ·Ω′)
ψd
kk′(J ,J

′, ω), (2.2.21)

where I have introduced the dressed coupling coefficientsψd
kk′(J ,J

′, ω). It can be shown that these
coefficients satisfy the self-consistency relations (Fouvry & Bar-Or, 2018)

ψd
kk′(J ,J

′, ω)=(2π)d
∑
k′′

∫
dJ ′′

k′′ ·∂F/∂J ′′

k′′ ·Ω′′ − ω
ψkk′′(J ,J

′′)ψd
k′′k′(J

′′,J ′, ω)+ψkk′(J ,J
′). (2.2.22)

Because this relation only involves the mean field properties from the background, it cap-
tures the efficiency with which the underlying collisionless system can amplify perturbations
through self-gravity. On the contrary, if collective effects do not occur or are neglected, then the
dressed coupling coefficients reduce to the bare coupling coefficients defined in eq. (2.2.19).

Let me assume now that I have access to a complete bi-orthogonal set of basis functions
(ψ(p)[r], ρ(p)[r]) (Kalnajs, 1976) which satisfy

ψ(p)(r) =

∫
dr′ U(|r − r′|)ρ(p)(r′), (2.2.23a)∫

dr ψ(p)∗(r)ρ(q)(r) = −δpq. (2.2.23b)

The first equation corresponds to Poisson equation. The second equation describes the mu-
tual orthogonality between potential and density basis functions. Therefore, using this set of
functions allows me to convert easily the potential fluctuations into the associated density fluc-
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tuations
δΦ(r, t) =

∑
p

Ap(t)ψ
(p)(r) ↔ δρ(r, t) =

∑
p

Ap(t)ρ
(p)(r), (2.2.24)

where
Ap(t) = −

∫
dr δΦ(r, t)ρ(p)∗(r). (2.2.25)

By construction, the basis elements satisfy Poisson equation (eq. 2.2.17). Therefore, it is im-
mediate to go from potentials to densities. Furthermore, the temporal and spatial parts in the
fluctuations have been separated in eq. (2.2.24).

Let me now express the interaction potential with the potential basis functions as

U(|r − r′|) = −
∑
p

ψ(p)(r)ψ(p)∗(r′). (2.2.26)

It follows that the bare coupling coefficients read as

ψkk′(J ,J
′) = −

∑
p

ψ
(p)
k (J)ψ

(p)∗
k′ (J ′), (2.2.27)

where ψ(p)
k (J) is the Fourier transform of the corresponding basis element

ψ
(p)
k (J) =

∫
dθ

(2π)d
ψ(p)(r[θ,J ]) e−ik·θ. (2.2.28)

After a lengthy computation (Chavanis, 2012), the dressed coupling coefficients can be ex-
pressed as

ψd
kk′(J ,J

′, ω) = −
∑
p,q

ψ
(p)
k (J)E−1

pq (ω)ψ
(q)
k′ (J ′), (2.2.29)

where I introduced the dielectric matrix E(ω) = I −M(ω). Here, M(ω) is the response matrix
defined by

Mpq(ω) = (2π)d
∑
k

∫
dJ

k · ∂F/∂J
ω − k ·Ω(J)

ψ
(p)∗
k (J)ψ

(q)
k (J). (2.2.30)

This reponse matrix is central in describing how perturbations can be amplified via the self-
gravity of the system. For orbits for which ω is close to the frequency k ·Ω(J), the denominator
1/(ω−k ·Ω[J ]) in eq. (2.2.30) becomes very large. The behaviour of the numerator, k · ∂F/∂J ,
will impact the contribution of the resonance k: when many orbits accumulate near it, i.e. if it
corresponds to a broad extremum, these orbits will be given more time to torque each other. I
will refer to this as coherent motion. This is typically what happens for cold centrifugally sup-
ported systems, for which the dielectric matrix E(ω) can have eigenvalues close to zero. This
has the effect of amplifying the fluctuations in the system by changing the bare coupling coef-
ficients (eq. 2.2.28) into the dressed ones (eq. 2.2.29). However, a supplementary complexity
arises, because eq. (2.2.30) is only defined for values of Im(ω) large enough. In order to compute
M(ω) for any frequency ω, I need to obtain its analytic continuation over the whole complex
plane. This can be done by using the Landau prescription (see, e.g., section 5.2.4 of Binney &
Tremaine, 2008).

Having access to the dressed coupling coefficients, it is now possible to recover – in prin-
ciple – the potential fluctuation δΦ̃k(J , ω) given in eq. (2.2.21), as well as its time-dependent
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equivalent δΦk(J , t) by taking an inverse Fourier transform (eq. 2.2.14). In practice however,
the treatment of the resonant denominator in M(ω) makes this computation an arduous task.
Notwithstanding, Chavanis (2012) expresses eq. (2.2.12a) w.r.t. the system fluctuations, to get

∂F

∂t
(J , t) = π(2π)dm

∂

∂J
·
∑
k,k′

k

∫
dJ ′|ψd

kk′(J ,J
′,k ·Ω)|2 δD(k ·Ω− k′ ·Ω′)

×
(
k · ∂

∂J
− k′ · ∂

∂J ′

)
F (J , t)F (J ′, t),

(2.2.31)

where Ω = Ω(J), Ω′ = Ω(J ′) and I reintroduced explicitely the (secular) time dependence
in the DF. This is the self-consistent, inhomogeneous Balescu–Lenard equation first derived by
Heyvaerts (2010). It convenient to rewrite eq. (2.2.31) as the continuity equation

∂F

∂t
= − ∂

∂J
·F , (2.2.32)

where F(J , t) is the diffusion flux in action space. It can be expressed in the form

F(J) = A(J)F (J)− D(J)

2
· ∂F
∂J

, (2.2.33)

where the friction coefficient A(J) and the diffusion tensor D(J) can be identified from the
Balescu–Lenard eq. (2.2.31) as

A(J) = π(2π)dm
∑
k,k′

k

∫
dJ ′|ψd

kk′(J ,J
′,k ·Ω)|2 δD(k ·Ω− k′ ·Ω′)k′ · ∂F

∂J ′
, (2.2.34a)

D(J) = 2π(2π)dm
∑
k,k′

k ⊗ k
∫

dJ ′|ψd
kk′(J ,J

′,k ·Ω)|2 δD(k ·Ω− k′ ·Ω′)F (J ′). (2.2.34b)

As it is the master equation describing the full secular relaxation of self-gravitating systems,
let me take a moment to describe each of its components. First, note that as expected, the
Balescu–Lenard eq. (2.2.31) is quadratic in F . As such it retains the non-linear nature of or-
bital diffusion, where the system operates on itself to self-diffuse its orbital structure (Fig. 2.1).
The collision term of eq. (2.2.34) is proportional tom=M/N , because relaxation is sourced by
finite-N effects. It involves a summation over the resonance vectors (k,k′), as well as a reso-
nance condition k·Ω(J)=k′·Ω(J ′), i.e. relaxation is sourced by non-local interactions between
sets of orbits captured in mutual resonance. In addition, the strength of these interactions is
captured by the dressed coupling coefficients ψd

kk′(J ,J
′,k · Ω[J ]) (eq. 2.2.29). Not only do

these describe the efficiency of orbital interaction, but they are also amplified by self-gravity
through the response matrix M(ω) defined in eq. (2.2.30). Interestingly this motivates linear
response theory: the Balescu–Lenard theory simply dresses up the linear response (Hamilton,
2021). This was not obvious a priori. Furthermore, the collision term involves the mean field
quantities F (J) and Ω(J), because relaxation occurs as a series of QSS (Lynden-Bell, 1967).
Finally, this equation involves an integration over action space, in order to scan over all stars of
the background.

One can straightforwardly transpose the derivation of the Balescu–Lenard eq. (2.2.31) to the
case of a multi-mass system, which is undoubtedly astrophysically more relevant. Following
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Fouvry (2020), the corresponding Balescu–Lenard equation reads

∂Fα
∂t

(J , t) = π(2π)d
∂

∂J
·
∑
k,k′

k

∫
dJ ′|ψd

kk′(J ,J
′,k ·Ω)|2 δD(k ·Ω− k′ ·Ω′)

×
∑
β

(
mβ k ·

∂

∂J
−mα k

′ · ∂

∂J ′

)
Fα(J , t)Fβ(J ′, t).

(2.2.35)

Here,mα is the individual mass associated to the family α with DF Fα such that∫
dθdJ Fα = Mα,

where Mα is the total mass of the family. Furthermore, the computation of the susceptibility
coefficients (eq. 2.2.29) involves all the family components, i.e. one has to make the change
F →

∑
β Fβ . In chapter 3, I will use eq. (2.2.35) to describe the secular evolution of the S-cluster

under the effect of a family of stars and a family of IMBHs. Note that themulti-mass formulation
captures amass segregation of the differentmassive components due to the (mα ...−mβ ...) term
in eq. (2.2.35). However, I will not discuss this mechanism in this thesis.

2.2.3 Previous applications of the Balescu–Lenard equation

The previous sections showed how the Balescu–Lenard equation (eq. 2.2.31) could be used –
in theory – to describe any kind of self-gravitating system. However, its structure shows how
difficult both its theoretical and its numerical applications are expected to be. Let me now
highlight some of the previous applications of the Balescu–Lenard formalism.

Asmentioned in chapter 1, the Balescu–Lenard equationwas first applied to tepid discs (Fou-
vry et al., 2015a). In this setup, a few approximations were needed. First, an explicit mapping
(x,v) 7→ (θ,J) between physical space and angle-action space was required. Generically, such
amapping can be challenging to obtain, and is one of themain difficulties one encounters when
applying the Balescu–Lenard theory (as discussed in section 2.2.2). To obtain thismapping, the
authors considered a disc which is sufficiently cold so as to be able to rely on the epicyclic approx-
imation (see, e.g., Binney & Tremaine, 2008). Having obtained amapping between physical and
angle-action spaces, there remains the need to use the appropriate basis elements (eq. 2.2.23).
By assuming that only tightly wound spirals occur in the disc, a WKB basis was used. These
approximations allow one to compute the initial variation of the DF in action space. In par-
ticular, one can highlight the importance of a few key resonances, such as the inner Lindblad
resonance (Fouvry et al., 2015b). Overall, the Balescu–Lenard eq. (2.2.31) is able to predict the
formation of ridges in action space (Fig. 2.3), already observed in simulations (Sellwood, 2012).
Taking into account swing amplifications induced by self-gravity (Fouvry et al., 2015c), and us-
ing the matrix method of Kalnajs (1977), these authors were able to explain the amplification
of the secular evolution by a factor∼ 1000 as a result of collective effects in the Balescu–Lenard
equation.

While the cold tepid disc case highlights nicely the resonant structure of the Balescu–Lenard
equation, as well as its ability to greatly amplify initially small fluctuations, there exist systems
in which its application can yield quite distinct results. A particular example is that of spher-
ically symmetric systems. This symmetry induces a degeneracy w.r.t. Lz the z-component of
the angular momentumL, which makes the Balescu–Lenard prediction more intricate than ex-
pected. Additional steps are required to solve the degeneracy, such as integrating over Lz , and
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Figure 2.3: From fig. 4 of Fouvry et al. (2015c). The left panel is a map of the diffusion rate ∂F/∂t in a Mestel disc
using the Balescu–Lenard equation (see eq. 2.2.31). The red contours correspond to depleted regions, while the blue
contours correspond to regions where the DF is increased. The right panel is the measurement of Sellwood (2012)
using N -body simulations. The Balescu–Lenard equation is able to predict the leftmost resonant ridge observed in
N -body simulations.

developing the potential using a multipole expansion. This applies in particular to two sys-
tems of astrophysical interest: the Galactic nucleus (Bar-Or & Fouvry, 2018) and the isotropic
isochrone globular cluster (Hamilton et al., 2018; Lau & Binney, 2019; Fouvry et al., 2021).

In the first system, the Balescu–Lenard equation can be used to predict the existence of the
so-called Schwarzschild barrier observed numerically by Merritt et al. (2011), which prevents
the orbital diffusion of stars close to the central SMBH. Furthermore, using a fixed background
isotropic distribution, one can compute a Fokker–Planck equation describing the evolution of
the eccentricity of test stars in the quasi-Keplerian system, as well as an associated stochastic
Langevin equation which can be used to incorporate other processes.

For globular clusters (Hamilton et al., 2018; Fouvry et al., 2021), the Balescu–Lenard equa-
tion yields yet again qualitatively and quantitatively different predictions w.r.t. the previous
systems. First, the multipole expansion of the Balescu–Lenard equation diverges logarithmi-
cally on small scales. Second, the resonant effects which were observed in tepid discs do not
play a significant role in isotropic globular clusters. In fact, the Balescu–Lenard prediction
makes quantitative predictions which are paradoxically very close to Chandrasekhar’s predic-
tion. Therefore, resonances, which had a strong impact on secular relaxation in cold systems
(e.g., the tepid disc), are not as impactful in hotter systems (e.g., the non-rotating globular clus-
ter). Additionally, collective effects do not impact strongly the system: the Balescu–Lenard pre-
diction matches the prediction one would obtain when setting the response matrix (eq. 2.2.30)
to zero. This will be investigated in more details in chapter 4.

2.3 Limiting cases of the Balescu–Lenard equation

It is also of interest to simplify the problem by neglecting collective effects (Fig. 2.4). This is the
topic of the next section.

2.3.1 The inhomogeneous Landau equation

Neglecting collective effects amounts to setting the response matrix M (eq. 2.2.30) to zero, i.e.
replacing the dressed coupling coefficients (eq. 2.2.29) by the bare ones (eq. 2.2.27). Then,
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Figure 2.4: Schematic representation of the successive limiting cases of the Balescu–Lenard equation. Neglecting
collective effects, i.e. setting the response matrixM (eq. 2.2.30) to zero, yields the inhomogeneous Landau equation
(eq. 2.3.1) describing the RR theory (section 2.3.1). Imposing local homogeneity on top of the RR formalism yields
the NR theory, which is dominated by non-resonant, local interactions (section 2.3.2).

the Balescu–Lenard equation (eq. 2.2.31) reduces to the inhomogeneous Landau equation (Poly-
achenko & Shukhman, 1982; Chavanis, 2013a)

∂F

∂t
= π(2π)dm

∂

∂J
·
∑
k,k′

k

∫
dJ ′|ψkk′(J ,J ′,k ·Ω)|2 δD(k ·Ω− k′ ·Ω′)

×
(
k · ∂

∂J
− k′ · ∂

∂J ′

)
F (J , t)F (J ′, t),

(2.3.1)

where the bare coupling coefficients are the Fourier coefficients of the interaction potential,
given by eq. (2.2.19).

Let me consider next the relaxation of a test starc – a particle which does not induce any
back-reaction from the background – under the effect of a steady distribution of field stars. The
effect of this background distribution, which I call F0(J), is to impose a stochastic force field on
the test star. This allows me to simply transform the quadratic differential Landau eq. (2.3.1)
into the linear, differential Fokker–Planck equation

∂F

∂t
= π(2π)dm

∂

∂J
·
∑
k,k′

k

∫
dJ ′|ψkk′(J ,J ′,k ·Ω)|2 δD(k ·Ω− k′ ·Ω′) (2.3.2)

×
(
k · ∂

∂J
− k′ · ∂

∂J ′

)
F (J , t)F0(J ′),

where the distribution of field stars F0(J) is fixed. Of course, I can express this equation under
the form given in eq. (2.2.32). Then, the diffusion coefficients are those given in eq. (2.2.34),
where I replace the self-consistent DF F (J ′, t) by the background distribution F0(J ′).

Application to the Galactic centre

Now, let me use this Fokker–Planck approximation to a stellar system dominated by a central
object, e.g., a galactic nucleus with a central SMBH. Its Hamiltonian takes the form (see, e.g.,
Bar-Or & Fouvry, 2018)

H(J) = HKep(Lc) + ΦGR(Lc, L) + Φ?(Lc, L) + δΦ, (2.3.3)

where I have used the suitable Delaunay angle-action coordinates (see section 1.3.2). The first
term,HKep, describes the interaction between the stars and the central SMBH. The second term,
ΦGR, describes the (relativistic) precession induced by the SMBH. The third term, Φ?, describes
the (non-relativistic) precession induced by the mass of the stellar background. Finally, the

cWhile the concept of test star is borrowed from theoretical physics and may seem contrived, in astrophysics it
corresponds to a two-species situation where one very hot component does not react to the other thanks to its own
inertia.
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fourth term, δΦ, describes the finite-N effects induced by the mutual interactions between the
stars. Now, because of the overwhelming predominance of the SMBH, themost important term
of theHamiltonian is theKeplerian term. Comparing the two non-vanishing orbital frequencies
yields the ratio ΩKep/ΩP ∼M•/M? � 1, where M? = Nm is the total stellar mass within the
system and ΩP is the in-plane precession frequency. As a consequence, stars follow a fast,
quasi-Keplerian motion around the SMBH.

This prompts me to perform an orbit-averaged over the fast Keplerian motion, which means
averaging over the mean anomalyM (see, e.g., Murray & Dermott, 2000, for a more complete
description of the orbital anomalies). This yields the orbit-averaged SRRHamiltonian (Fouvry
& Bar-Or, 2018)

H(J) = ΦGR + Φ? + δΦ = H0 + δΦ. (2.3.4)

As a result of orbit-averaging, the circular angular momentum Lc is adiabatically conserved. In
addition, instead of considering the dynamics of stars, I now consider the (orbit-averaged) dy-
namics of Keplerian wires (Fig. 2.5). Hence, the semi-major axis of a wire cannot be impacted

Figure 2.5: Schematic representation of the orbit-averaged Landau equation, applied to the Galactic nucleus. Due
to the overwhelming presence of the central SMBH, I observe a timescale separation between the diffusion inLc and
in L. This prompts averaging over the fast Keplerian motion to study the orbit-averaged dynamics of the S-cluster.

by orbit-averaged dynamics. Therefore, secular theory applied to eq. (2.3.4) will describe the
secular relaxation of the angular momentum of wires alone (or equivalently, of their eccentric-
ity).

If I restrict my analysis to an isotropic background distribution of stars F0(Lc), its gradient
∂F0/∂L vanishes. Because the response matrix M in eq. (2.2.30) involves the gradient of the
background DF, the response matrix naturally exactly vanishes in this case (Bar-Or & Fouvry,
2018). In practice, as stated above, this means that an isotropic background does not feel any
back-reaction from the test particle. Therefore, this system sources no dynamical friction and its
dressed coupling coefficients (eq. 2.2.29) reduce to the bare ones (eq. 2.2.19). It follows that the
Balescu–Lenard equation for such isotropic Keplerian systems reduces to the Fokker–Planck
equation given by eq. (2.3.2). Moreover, integrating eq. (2.3.1) over Lz yields the diffusion
equation (Bar-Or & Fouvry, 2018)

∂F (J , t)

∂t
=

1

2

∂

∂L

[
LDRR

LL (J)
∂

∂L

(
F (J , t)

L

)]
, (2.3.5)

where J = (Lc, L) are the in-plane actions. In this equation, the diffusion coefficient from
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eq. (2.2.34b) becomes

DRR
LL (J) = 4π

∑
k,k′

k

∫
dJ ′|ψkk′(J ,J ′)|2 δD(kΩP[J ]− k′ΩP[J ′])Ftot(J), (2.3.6)

where ΩP = ∂H0/∂L is the in-plane precession frequency and ψkk′(J ,J
′) are the bare in-

plane orbit-averaged coupling coefficients between a set of resonant wires (Fig. 2.6). This

Figure 2.6: From fig. 1 of Fouvry et al. (2017). Illustration of the process of eccentricity relaxation in a galactic
nucleus. In the vicinity of a SMBH, Keplerian wires undergo an in-plane pericentre precession (top left panel) due
to relativistic corrections and the stellar mean potential. Additionally, two wires can resonate with each other (top
right panel): they are then correlated and can efficiently couple together. To that end, they must satisfy a resonance
condition between their precession frequencies. In the bottom panel are illustrated the fluctuations of the DF in
action space. The resonant line is represented by the dashed black line, while the two stars are located at the blobs
of their respective colours. Because they are located on the same resonance line, they can efficiently couple to one
another.

equation applies for a multi-mass background family described by the (Lz-averaged) distribu-
tion function, Ftot(Lc, L) = 2LF0(Lc). Changing variables to the reduced angular momentum
j=L/Lc =

√
1− e2 and semi-major axis (sma) a, the Fokker–Planck eq. (2.3.5) becomes

∂F (j, a, t)

∂t
=

1

2

∂

∂j

[
jDRR

jj (a, j)
∂

∂j

(
F (j, a, t)

j

)]
. (2.3.7)

Because the smas of Keplerian wires are not impacted by orbit-averaged dynamics, I can de-
compose the DF into F (j, a, t)=P (j, t | a)N(a). This yields the simple Fokker–Planck equation
(Bar-Or & Alexander, 2016)

∂P (j, t | a)

∂t
=

1

2

∂

∂j

[
jDRR

jj (a, j)
∂

∂j

(
P (j, t | a)

j

)]
, (2.3.8)

which describes the diffusion of j given the sma a. I will use this formulation in chapter 3
to probe the presence of IMBHs in the background cluster Ftot(Lc, L) of the Galactic nucleus.
Figure 2.7 illustrates schematically the impact of their presence in the Galactic nucleus. A few
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hundred years are sufficient to distribute effectively each star along its orbit (angle averaging),
while the differential precession rate induces phase mixing. These two phenomena are followed
by a slow relaxation of the S-cluster’s eccentricity though the orbit-averaged RR formalism,
whose efficiency is driven by the background families of the cluster.

Figure 2.7: Sketch of the impact of IMBHs on the rate of diffusion of a recently formed cluster, courtesy of C.
Pichon. Brown dots on the bottom represent IMBHs. From left to right: a) the time of formation of the S-cluster;
b) after a few hundred years, each star is effectively distributed along its quasi-Keplerian orbit; c) because of the
differential precession rates, the different orbits phasemix; d) through scalar resonant relaxation (SRR), they diffuse
in eccentricity. The S-cluster on the bottom right panel contains more eccentric orbits because the IMBHs accelerate
the scalar resonant relaxation.

2.3.2 The homogeneous Landau equation

In the previous section, I argued that in some systems, collective effects could be expected not
to play a significant role. This allowed me to simplify the Balescu–Lenard equation into the
inhomogeneous Landau equation. Yet, its implementation – while simplified compared to that
of the Balescu–Lenard equation – is still convolved. This prompts me to further simplify it fol-
lowing Chandrasekhar (1942). Because as a first approximation, diffusion can be decomposed
into a succession of local deflections, I will ignore long-range, resonant interactions and focus
here on these local deflections (Chandrasekhar, 1943; Cohn, 1979). This is what is called NR
theory. In this context, the test particle is only impacted by its nearest environment (Fig. 2.8).
Therefore, I can enforce the additional assumption of local homogeneity. This can be done be-
cause in that regime, the distribution of the gravitational force is assumed to be dominated by
the nearest neighbour’s contribution (Chandrasekhar & von Neumann, 1942).

Let me discuss the impact of these assumptions on the inhomogeneous Landau equation
(eq. 2.3.1). First, the cluster is assumed to be locally homogeneous, hence a test star locally fol-
lows a straight orbit in physical space as long as it is not deflected. Thus, orbital structure is best
described in velocity space, which prompts the transformation (θ,J) 7→ (r,v). In addition, the
cluster is assumed (for simplicity) to have infinite extent. Therefore, the resonance vectors form
a continuum, which transforms the summation

∑
k into an integral

∫
dk. Finally, the coupling

coefficients ψkk′(J ,J ′) reduce to the Fourier transform in physical space of the interaction po-
tential, which reads δD(k − k′)/|k|2 up to some prefactor. This simple form arises because the
basis functions (eq. 2.2.23a) are simply Fourier basis functions as a result of translation invari-
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Figure 2.8: From Binney & Tremaine (2008). Geometry of one of the successive two-body encounters which
source NR relaxation. The test star coming from infinity is deflected under the gravitational influence of one fixed
background star, before going back to infinity. The successive deflections of the test star by background stars along
its orbit, induce a secular diffusion of its orbital parameters. This method is the historical formalism used by Chan-
drasekhar to obtain the NR theory. This is equivalent to the method obtained from the Balescu–Lenard equation
described in this chapter.

ance. In particular, orbital couplings become independent of the actions, i.e. independent of
the particles’ velocities. Ultimately, the inhomogeneous Landau equation (eq. 2.3.1) reduces to
the homogeneous Landau equation (Chavanis, 2013b)

∂F

∂t
= π(2π)3m

∂

∂vi

∫
dv′dk kikj δD(k ·w) û2(k)

(
F ′
∂F

∂vj
− F ∂F

′

∂v′j

)
, (2.3.9)

where I definedw=v−v′, let F =F (r,v, t) and F ′=F (r,v′, t), and defined û(k)=−G/(2π2k2)

the Fourier transform of the gravitational potential. In this formulation, the system’s evolution
is subject to the resonance condition k · v=k · v′ in (r,v)-space. This condition can be under-
stood as the conservation of energy during the two-body deflections (see Fig. 2.8 and Chavanis,
2013b). Equivalently, using Einstein notations, I can rewrite eq. (2.3.9) in the form (see, e.g.,
appendix C of Chavanis, 2013b)

∂F

∂t
=

∂

∂vi

∫
dv′Kij

(
F ′
∂F

∂vj
− F ∂F

′

∂v′j

)
; Kij = 2πmG2 ln Λ

w2δij − wiwj
w3

. (2.3.10)

Here, I have explicitly introduced the Coulomb logarithm

ln Λ =

∫ kmax

kmin

dk

k
= ln

(
kmax

kmin

)
= ln

(
bmax

bmin

)
, (2.3.11)

with some cutoffs at small scales and large scales to regularise strong collisions and far-away
encounters.

The r.h.s. of eq. (2.3.10) is the original form of the collision operator given by Landau (1936)
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for the Coulomb interaction. It was derived under the assumption of weak deflections for a
generic potential. Because of the assumption of local homogeneity, Chandrasekhar (1943) in-
troduced a logarithmic divergence at large scales in eq. (2.3.10). In plasma physics, this di-
vergence is taken care of by Debye shielding (see, e.g., Ichimaru, 1973). In that context, a
polarisation cloud of opposite charges effectively reduces the range of interaction, making it
short range in practice. This cutoff arises naturally when taking into account collective effects
in the Balescu–Lenard equation of plasma physics (Balescu, 1960; Lenard, 1960). One can then
use the Landau equation with the Debye length as a large-scale cutoff. However, there is no
such shielding for the gravitational interaction, because only positive masses exist. Instead, the
large-scale divergence is cured because two-star interactions are limited by the finite extent of
the system. Taking spatial inhomogeneities into account ensures that no divergence at large
scale occurs, such as in the inhomogeneous Landau equation (see, e.g., Chavanis, 2013a). In
practice, I can use eq. (2.3.10) with a large scale cutoff taken at, e.g., the Jeans length λJ (fixed
by the size of the system).

Nevertheless, a small-scale divergence may still persist in the inhomogeneous Landau equa-
tion (eq. 2.3.1). This is the result of neglecting strong collisions at small impact parameters.
In that regime, the linearisation to first-order perturbations cannot describe accurately the dy-
namics. Therefore, onemust solve the exact two-body problem (see, e.g., appendixH in Chava-
nis, 2013a). Heuristically, this means imposing a small scale cutoff at the gravitational Landau
length λL, which is the impact parameter for 90° deflections given by

b90 =
G(m+mb)

w2
, (2.3.12)

where w = |w|, m is the test star’s mass and mb the background star’s mass. This cutoff is
imposed by the fact that linear perturbation theory cannot predict deflections that are too strong
(i.e. which fail to obey ∆v�v). Overall, one can compute the Coulomb parameter from these
cutoffs as

ln Λ ∼ ln
λJ

λL
∼ lnN, (2.3.13)

where N is the number of stars in the cluster. In effect, I shall take ln Λ = ln(λN) with λ being
some parameter depending on the geometry of the cluster. For a globular cluster, I will take
λ=0.11 (Giersz & Heggie, 1994; Heggie & Hut, 2003).

Now, letme consider the non-resonant relaxation of a test star under the effect of a steadydis-
tribution of field stars. Following the discussion in section 2.3.1, this means changing F (r,v′, t)

into F0(r,v′) the steady distribution of the field stars in eq. (2.3.10). This allows me to simplify
a quadratic differential equation (eq. 2.3.10) into the linear differential equation

∂F

∂t
= π(2π)3m

∂

∂vi

∫
dv′dk kikj δD(k ·w) û2(k)

(
F0
∂F

∂vj
− F ∂F0

∂v′j

)
. (2.3.14)

This equation is in fact once again a Fokker–Planck equation of the form

∂F

∂t
= − ∂

∂v
·F , (2.3.15)

where the components of the flux F are given by

Fi = −〈∆vi〉F +
1

2

∑
j

∂

∂vj

(
〈∆vi∆vj〉F

)
, (2.3.16)
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with (Chavanis, 2013a)

〈∆vi〉 = −8πmG2 ln Λ

∫
dv′

wi
w3

F0, (2.3.17a)

〈∆vi∆vj〉 = 4πmG2 ln Λ

∫
dv′

w2δij − wiwj
w3

F0. (2.3.17b)

From these coefficients, I can recover the (local) friction coefficient A (see eq. 2.2.34 for the
general self-gravitating case) by lettingAi = 〈∆vi〉− 1

2∂〈∆vi∆vj〉/∂vj , and the (local) diffusion
tensor D by letting Dij = 〈∆vi∆vj〉.

As I showed in the previous sections, when N is sufficiently large, the secular evolution of
self-gravitating systems happens on timescales much longer than the dynamical time (Chan-
drasekhar, 1942). Hence, I expect that the orbital deflections induced by fluctuations occurring
over a single orbit will be small. Furthermore, because the physical system is far from homoge-
neous, I want to reinstate the impact of some of the inhomogeneities in the NR picture. These
two observations motivate me to phase-average the local diffusion coefficients over the star’s
orbit, and therefore to follow the secular evolution of this orbit instead of the precise location
of the star on it. To that end, it is necessary to do a canonical transformation from phase space
(r,v) to angle-action space (θ,J), as was done in section 2.2.2. Under this canonical transfor-
mation, eq. (2.3.15) becomes

∂F

∂t
= − ∂

∂J
·F . (2.3.18)

Orbit-averaging eq. (2.3.18) yields the phase averaged Fokker–Planck equation (Cohn, 1979)

Figure 2.9: Illustration of the various parameters used to describe the dynamics of the system. In the left panel,
the cluster is seen from the side, with (Oxy) being the equatorial plane of the cluster. In the right panel, the (OXY )-
plane is the orbital plane of the test star, seen from above.

∂F

∂t
= −

∑
i

∂(DJiF )

∂Ji
+

1

2

∑
i,j

∂2(DJiJjF )

∂JiJj
, (2.3.19)

where I defined the orbit-averaged diffusion coefficients

DJi =
1

(2π)3

∫
dθ 〈∆Ji〉 ; DJiJj =

1

(2π)3

∫
dθ 〈∆Ji∆Jj〉. (2.3.20)
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These action diffusion coefficients can be deduced from the velocity deflection coefficients given
in eq. (2.3.17) (see section 2.3.3). I will do so in this thesis in the context of the Galactic nucleus
(chapter 3) and of anisotropic globular clusters (chapters 4 and 5).

Now, recall that I assumed the system to be spherically symmetric. This means that un-
perturbed orbits stay confined within a plane perpendicular to the angular momentum L. I
parametrise the star’s location on this plane by r the radius and θ the angle variable (Fig. 2.9).
Recall that θ = (θr, θL, θz) are the angles associated with the three actions (Jr, L, Lz). Using the

Figure 2.10: Illustration of orbit-averaging in angle-action space (left panel) and in physical space (right panel).
While expressing the physical quantities w.r.t. to orbital angles can prove difficult, using physical coordinates (r, θ)
in the orbital plane is straightforward. The latter can be used for orbit-averaging, at the cost of a Jacobian 1/|vr| (see
eq. 2.3.21). The red dot represents the location in angle space and physical space of the test star on its orbit.

angles defined in eqs. (1.3.3), I obtain the relation dθ1dθ2 =(Ωr/vr)drdθwithΩr being the radial
frequency. At fixed r, the angles θ and θL differ by a constant r-dependent phase, hence I can
average over either of them between 0 and 2π with the same end-result (Fig. 2.10). Therefore,
the orbit-averaging of the local deflection coefficient 〈∆X〉 inX can generically be rewritten as

DX(J) =
Ωr

π

∫ ra

rp

dr

|vr|

∫ 2π

0

dθ

2π
〈∆X〉(r, θ,J), (2.3.21)

As it is now, eq. (2.3.21) displays an integrable singular integrand, whose behaviour is of order
|r−rp,a|−1/2 at the boundaries ofmotion rp,a because of the factor 1/|vr|. On a practical level, this
makes the numerical integration of eq. (2.3.21) complicated. On a theoretical level, this makes
the computation of the gradient of any quantities involving 1/vr impossible by simply differen-
tiating the integrand. It is therefore better to define some effective anomaly u (Hénon, 1971) such
that dr/vr=duΘ(u), where Θ(u)=(dr/du) 1/vr is well-defined and analytical everywhere (in-
cluding at the radial boundaries). In addition, r= r(u) should be relatively easy to compute.
In the case of a galactic nucleus dominated by a SMBH, I can use the eccentric anomaly as the
effective anomaly (section 3.3.2). As for globular clusters, other effective anomalies can be cal-
culated depending the potential. In chapter 3, I will derive an explicit effective anomaly for the
Plummer potential.

2.3.3 Applications of the NR theory

I can now apply the NR formalism I have re-derived in the previous section to a variety of
cases. To that aim, let me first compute the local diffusion coefficients in E and L from which
I can obtain all the Jr and L diffusion coefficients. These coefficients can be deduced from the
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velocity coefficients by computing the changes in energy and angular momentum at second
order in ∆v/v (see appendix 2.B). They read (Bar-Or & Alexander, 2016)

〈∆E〉 =
1

2
〈(∆v‖)2〉+

1

2
〈(∆v⊥)2〉+ v〈∆v‖〉, (2.3.22a)

〈(∆E)2〉 = v2〈(∆v‖)2〉, (2.3.22b)

〈∆L〉 =
L

v
〈∆v‖〉+

r2

4L
〈(∆v⊥)2〉, (2.3.22c)

〈(∆L2〉 =
L2

v2
〈(∆v‖)2〉+

1

2

r2v2
r

v2
〈(∆v⊥)2〉, (2.3.22d)

〈∆E∆L〉 = L〈(∆v‖)2〉. (2.3.22e)

The coefficients 〈∆v‖〉, 〈(∆v‖)2〉 and 〈(∆v⊥)2〉 can be obtained from eqs. (2.3.17) using the ap-
propriate velocity coordinate system, and are the first- and second-order local velocity deflec-
tions. Here, ∆v‖ stands for the velocity increment along the initial trajectory, while ∆v⊥ stands
for the velocity increment perpendicular to the initial trajectory. In particular, they obey the
relation

∆v = ∆v‖v̂ + ∆v⊥, (2.3.23)

where ∆v is the change in velocity of the test particle during a local encounter. Using the frame
represented in Fig 2.11, the following relations hold

〈∆v‖〉 = 〈∆v1〉, (2.3.24a)
〈(∆v‖)2〉 = 〈(∆v1)2〉, (2.3.24b)
〈(∆v⊥)2〉 = 〈(∆v2)2〉+ 〈(∆v3)2〉. (2.3.24c)

Figure 2.11: Tailored frame used to compute the parallel and perpendicular local velocity deflections in
eq. (2.3.24). By construction, the test star’s angular momentum L is along the axis e2.

Isotropic background

The simplest case to which I apply the NR theory is that of an isotropic background. Let me
compute the associated velocity deflection coefficients (eqs. 2.3.17). They can be rewritten un-
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der the form (Chavanis, 2013a)

〈∆vi〉 = 8πmG2 ln Λ
∂h

∂vi
(v), (2.3.25a)

〈∆vi∆vj〉 = 4πmG2 ln Λ
∂2g

∂vi∂vj
(v), (2.3.25b)

where the Rosenbluth potentials (Rosenbluth et al., 1957) are defined by

g(v) =

∫
dv′ Ftot(v

′)|v − v′| ; h(v) =

∫
dv′

Ftot(v
′)

|v − v′|
. (2.3.26)

For an isotropic distribution Ftot(r,v) = Ftot(r, v), it can be shown (see, e.g., appendix L of
Binney & Tremaine, 2008) that the Rosenbluth potentials depend on r and v only. After com-
putation,

〈∆v‖〉 = −32π2mG2 ln Λ

v2

∫ v

0
dv′

v′2

v2
Ftot(r, v

′), (2.3.27a)

〈(∆v‖)2〉 =
32π2mG2 ln Λ

3

[ ∫ v

0
dv′

v′4

v3
Ftot(r, v

′) +

∫ ∞
v

dv′v′Ftot(r, v
′)

]
, (2.3.27b)

〈(∆v⊥)2〉 =
32π2mG2 ln Λ

v2

[ ∫ v

0
dv′
(

3v′2

v
− v′4

v3

)
Ftot(r, v

′) + 2

∫ ∞
v

dv′v′Ftot(r, v
′)

]
. (2.3.27c)

Since the cluster is assumed to be spherically symmetric and non-rotating, all these quantities
depend only on the radius r, making the θ-orbit-average in eq. (2.3.21) trivial.

The Galactic nucleus

Figure 2.12: Schematic representation of the Fokker–Planck equation describing the secular evolution of the
Galactic nucleus. The orbit-averaged RR dynamics (SRR) describes the secular relaxation of Keplerian wires, but
can be very damped near the SMBH. In these regions, the NR formalism, which complements the orbit-averaged
RR dynamics, drives the diffusion.

In section 2.3.1, I presented an equation describing the relaxation of eccentricity in the case
where it is sourced by long-range, resonant interactions between precessing wires. However,
there exist regions in orbital space where the RR prediction is considerably damped. In these
regions, relaxation is therefore sourced by the NR theory described in section 2.3.2 (Fig. 2.12).

Due to the timescale separation between the diffusion in Lc and in L discussed in sec-
tion 2.3.1, I can approximate the Fokker–Planck equation by setting all the Lc diffusion coef-
ficients of the 3D-Fokker Planck equation (eq. 2.3.19) to zero (Bar-Or & Alexander, 2016). Fig-
ure 2.13 represents the (Lc, L)-NR diffusion flux in a typical galactic nucleus, and clearly shows
the separation between both diffusions. Using this observation, the Fokker–Planck eq. (2.3.19)
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Figure 2.13: From fig. 5 of Bar-Or & Alexander (2016). Illustration of the NR diffusion flux in (j, a)-space. The
streamlines mostly follow the j-direction. This shows a separation between the diffusion timescales in a and j, and
motivates the study of j-relaxation at fixed a. The color map describes the strength of the diffusion coefficient.

reduces to the 1D Fokker Planck equation

∂F (Lc, L, t)

∂t
= −∂(DLF )

∂L
+

1

2

∂2(DLLF )

∂L2
. (2.3.28)

Then, I can change variables (Lc, L) 7→ (a, j) using Lc =
√
GMa and j = L/Lc(E). Under this

transformation, eq. (2.3.28) reads

∂P (j, t | a)

∂t
=

1

2

∂

∂j

[
jDjj

∂

∂j

(
P (j, t|a)

j

)]
, (2.3.29)

where Djj = DLL/L
2
c and F (a, j, t) = N(a)P (j, t | a) owing to timescale separation. Equa-

tion (2.3.29) requires the computation of the j diffusion coefficientDjj , hence the L-coefficient
DLL, which are given in eqs. (2.3.22). I will come back to the computation of Djj in chapter 3.

Anisotropic clusters

Letme consider a stellar system ofN stars embedded in a background distribution of stars with
spherical symmetry. Let me denote its potential byψ(r). I drop the assumption of isotropy: this
means that the diffusion coefficients cannot be computed by the previous Rosenbluth isotropic
formulae (eqs. 2.3.27). Instead, it is useful to start from eq. (2.3.17). To benefit from the straight-
forward relations given in eqs. (2.3.24), I define the velocity frame to be the one from Fig. 2.11.
The spherical coordinates read

w1 = w cosϕ ; w2 = w sinϕ cosφ ; w3 = w sinϕ sinφ, (2.3.30)

where w = v − v1 as defined for eq. (2.3.1), v1 = v, and v2 = v3 = 0. I may plug these expres-
sions in eq. (2.3.17). I therefore obtain the new expressions (see appendix 2.A for my complete
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derivation of these coefficients)

〈∆v‖〉 = −8πmG2 ln Λ

∫ π

0
dϕ

∫ 2π

0
dφ

∫ wmax

0
dw sinϕ cosϕFtot(r, E

′, L′),

〈(∆v‖)2〉 = 4πmG2 ln Λ

∫ π

0
dϕ

∫ 2π

0
dφ

∫ wmax

0
dww sin3 ϕFtot(r, E

′, L′),

〈(∆v⊥)2〉 = 4πmG2 ln Λ

∫ π

0
dϕ

∫ 2π

0
dφ

∫ wmax

0
dww sinϕ(1 + cos2 ϕ)Ftot(r, E

′, L′),

(2.3.31a)

(2.3.31b)

(2.3.31c)

where the arguments of the DF, Ftot(E,L), normalised such that
∫

drdv Ftot = M the total
cluster’s mass, read

E′(r,v,v′) = ψ(r) +
v2

2
+
w2

2
− vw cosϕ,

L′(r,v,v′) = r

√
(w sinϕ cosφ)2 +

(
vt +

vr
v
w sinϕ sinφ− vt

v
w cosϕ

)2

.

(2.3.32a)

(2.3.32b)

The w-integrand originally ranges from 0 to +∞. However, I can limit this interval to cover
only the region within which E′ < 0, i.e. for bound background stars. Solving E′ < 0 gives me
the upper bound wmax = v cosϕ +

√
v2 cos2 ϕ− 2E, where E is the energy of the test star. As

thew-boundwmax involves ϕ, I can push thew-integration in eqs. (2.3.31) inside. Furthermore,
in all these expressions, the non-negativity of the second-order velocity deflection coefficients
is ensured.

I now orbit-average the coefficients given in eqs. (2.3.22) (using the anisotropic velocity de-
flection coefficients) as described in section 2.3.2. Then, I obtain the diffusion coefficients in
(Jr, L) from the (E,L) ones (eqs. 2.3.22)

DJr =
∂Jr

∂E
DE +

∂Jr

∂L
DL +

1

2

∂2Jr

∂E2
DEE +

1

2

∂2Jr

∂L2
DLL +

∂2Jr

∂E∂L
DEL, (2.3.33a)

DJrL =
∂Jr

∂E
DEL +

∂Jr

∂L
DLL, (2.3.33b)

DJrJr =

(
∂Jr

∂E

)2

DEE + 2
∂Jr

∂E

∂Jr

∂L
DEL +

(
∂Jr

∂L

)2

DLL. (2.3.33c)

Here, I need to compute a few energy- and angular momentum-derivatives of the radial action
Jr. This prompts the need to obtain an easily computable formula for it. This is presented
in section 4.5.1. Finally, I recover the Fokker–Planck eq. (2.3.19) in action space. By defining
J=(Jr, L), it may be rewritten in a flux form as

∂F (J)

∂t
= − ∂

∂J
·F(J) = − ∂

∂J
·
[
D1(J)F (J)− 1

2

∂

∂J
·
(
D2(J)F (J)

)]
, (2.3.34)

where F(J) is the (orbit-averaged) two-dimensional diffusion flux in the (Jr, L)-action space,
and the first- and second-order diffusion coefficients read

D1(J) =

(
DJr

DL

)
, D2(J) =

(
DJrJr DJrL

DJrL DLL

)
. (2.3.35)

These coefficients will be used in chapter 4.
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Rotating clusters

As observations have shown, rotation in stellar clusters appears to be the norm rather than the
exception. Because it impacts linear response, it also impacts the secular fate of these systems.
In order to predict the evolution of the distribution of Lz , or that of cos I – the cosine of the
orbital inclination – I need to compute the 3D diffusion tensors involved in the local 3D Fokker–
Planck equation. For simplicity, I apply the Lynden–Bell demon (LBD) boost (Lynden-Bell,
1960; Rozier et al., 2019) and consider the DF

Frot(Jr, L, Lz) = Ftot(Jr, L)
(
1 + α sgn[Lz/L]

)
, (2.3.36)

where Ftot(Jr, L) is a DF for a non-rotating cluster and α ∈ [−1, 1] a rotation parameter. Using
formulae (C.52) and (C.53) from Bar-Or & Alexander (2016), I can construct the cos I diffu-
sion coefficients in (Jr, L, cos I)-space from those in (Jr, L, Lz)-space (the other coefficients are
given in eqs. 2.3.22). These new coefficients read (see appendix 2.C for my derivation of these
expressions)

〈∆Lz〉 =
Lz
v
〈∆v‖〉, (2.3.37a)

〈(∆L2
z〉 =

(
Lz
L

)2[L2

v2
〈(∆v‖)2〉+ 1

2

r2v2
r

v2
〈(∆v⊥)2〉

]
+
r2 sin2 θ

2

(
1−L

2
z

L2

)
〈(∆v⊥)2〉, (2.3.37b)

〈∆E∆Lz〉 = Lz〈(∆v‖)2〉, (2.3.37c)

〈∆L∆Lz〉 =
Lz
L

(
L2

v2
〈(∆v‖)2〉+ 1

2

r2v2
r

v2
〈(∆v⊥)2〉

)
. (2.3.37d)

Because the local diffusion terms (eqs. 2.3.31 and 2.3.37) now depend on the physical angle θ
(see Fig. 2.9 and appendix 2.C), the orbit-average discussed in section 2.3.2 cannot be reduced
to a simple radial integral. Therefore, I must compute a non-trivial θ-integral (eq. 2.3.21). All
in all, the 3D orbit-averaged Fokker–Planck equation reads

∂Frot(J)

∂t
= − ∂

∂J
·F(J) = − ∂

∂J
·
[
D1(J)Frot(J)− 1

2

∂

∂J
·
(
D2(J)Frot(J)

)]
, (2.3.38)

where F(J) is the corresponding 3D diffusion flux in action space, and the first- and second-
order diffusion coefficients read

D1(J) =

DJr

DL

DLz

 , D2(J) =

DJrJr DJrL DJrLz

DJrL DLL DLLz

DJrLz DLLz DLzLz

 . (2.3.39)

Converting the Fokker–Planck equation into (Jr, L, cos I)-space yields

∂F

∂t
= − ∂

∂J
·F(J) = − ∂

∂J
·
[
D1(J)F − 1

2

∂

∂J
·
(
D2(J)F

)]
, (2.3.40)

where F(J) is the new 3D diffusion flux in action space, F (Jr, L, cos I) =LFrot(Jr, L, L cos I),
and the first- and second-order diffusion coefficients read

D1(J) =

 DJr

DL

DcosI

 , D2(J) =

DJrJr DJrL 0

DJrL DLL 0

0 0 DcosIcosI

 , (2.3.41)
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since computation (presented in appendix 2.D) shows that DJrcosI = DLcosI = 0. In particu-
lar, I can obtain the expressions of the flux components for the 3D (Jr, L, cos I)-Fokker–Planck
equation as

FJr = DJrF −
1

2

∂(DJrJrF )

∂Jr
− 1

2

∂(DJrLF )

∂L
, (2.3.42a)

FL = DLF −
1

2

∂(DJrLF )

∂Jr
− 1

2

∂(DLLF )

∂L
, (2.3.42b)

FcosI = DcosIF −
1

2

∂(DcosIcosIF )

∂I
. (2.3.42c)

Note that I can simplify the expressions for the cos I coefficients (see eqs. 2.D.1), which become

DcosI = −
〈
r2 cos I

4L2
〈(∆v⊥)2〉

〉
r,θ

, (2.3.43a)

DcosIcosI =

〈
r2 sin2 I sin2 θ

2L2
〈(∆v⊥)2〉

〉
r,θ

. (2.3.43b)

In that expression, all θ-dependencies except for the sin2 θ term disappear, and I obtain the
fluctuation-dissipation relation

DcosI −
1

2

∂DcosIcosI

∂ cos I
= −

〈
r2 cos I

4L2
〈(∆v⊥)2〉

〉
r

− 1

2

〈
−2r2 cos I

4L2
〈(∆v⊥)2〉

〉
r

= 0. (2.3.44)

It follows that FcosI = 0 if F does not depend on cos I (e.g., for a non-rotating cluster). In that
case, I can then integrate the Fokker–Planck equation and recover exactly the 2D (Jr, L)-space
eq. (2.3.34). This is a pleasant self-consistency check.

Let me now integrate the 3D Fokker–Planck equation in (Jr, L, cos I) over L. It reduces to
the Fokker–Planck equation in (Jr, cos I) space

∂F

∂t
(Jr, cos I) = − ∂

∂J
·F , (2.3.45)

where J = (Jr, L) and the components of the 2D-flux F are

FJr =

∫ ∞
0

dL

(
DJrF −

1

2

∂(DJrJrF )

∂Jr

)
, (2.3.46a)

FcosI =

∫ ∞
0

dL

(
DcosIF −

1

2

∂(DcosIcosIF )

∂ cos I

)
. (2.3.46b)

Finally, integrating over Jr, I obtain

∂F

∂t
(cos I) = −∂FcosI

∂ cos I
, (2.3.47)

where the 1D-flux in cos I reads

FcosI =

∫ ∞
0

dJr

∫ ∞
0

dL

(
DcosIF −

1

2

∂(DcosIcosIF )

∂I

)
. (2.3.48)

I should not separate the two terms in the last integrand, because while the difference is well-
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behaved, the same cannot be said for each term individually, whose asymptotic behaviour for
L → 0+ behaves like 1/L (as can be seen from eqs. 2.3.43). In particular, when there is no ro-
tation (hence no dependency on cos I = Lz/L), FcosI = 0, hence F (cos I) does not change. All
these expressions will be useful when studying the relaxation of globular clusters in chapter 5.

2.4 Concluding remarks

In this chapter, I showed how intrinsic shot noise driven fluctuations in isolated self-gravitating
systemsdrive orbital diffusion. Themaster equationwhichdescribes this process is the Balescu–
Lenard eq. (2.2.31). Given its theoretical complexity, I also presented two complementary ap-
proaches based on approximations of it. The first approach, presented in section 2.3.1, is the RR
theory. It is captured by the inhomogeneous Landau eq. (2.3.1). It is sourced by non-local or-
bital resonances and depends on long-range orbital torques. In particular, it neglects collective
effects. The second formalism, presented in section 2.3.2, is the NR theory. It is captured by the
homogeneous Landau eq. (2.3.9), which relies on the further assumption of local homogeneity.
In this formalism, only local interactions are considered – though orbit-averaging is used to
recover global inhomogeneities. In all cases, orbital diffusion is driven by the graininess of the
potential, i.e. finite-N effects.

In the next chapters – chapters 3, 4 and 5 – I will implement these two methods in two
distinct stellar systems. In chapter 3, I will apply the NR and RR formalisms to the Galactic
centre. In particular, I will show how secular evolution can be used to constrain the parameters
of an eventual hidden dark cluster. In chapter 4, I will apply the NR formalism to describe
the secular evolution of Plummer globular clusters, complemented by N -body simulations. I
will determine the impact of initial velocity anisotropies on orbital reshuffling, and discuss the
resonant structure of the RR formalism in dynamically hot systems. In chapter 5, I will extend
this analysis to rotating clusters and highlight the limits of the NR formalism in cold systems
to predict azimuthal diffusion (Fig. 2.14).

Figure 2.14: Schematic representation of the different approximations of the Balescu–Lenard equation. Applying
the NR theory to globular cluster yields a kinetic theory for anisotropic, rotating clusters. These can be compared to
N -bodymeasurements to determine the respective importance of large-scale interactions and small-scale relaxation.
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2.4.1 Perspectives

During the derivation of the formalisms described in this chapter, I relied on a few simplifying
assumptions. These could be lifted in future works, which I discuss now.

The theory of secular orbital diffusion with collective effects has only recently been devel-
oped generically (Heyvaerts, 2010; Chavanis, 2012). However, its complexity has made diffi-
cult its applications to astrophysical systems. The case of galactic discs (Fouvry et al., 2015d),
isotropic clusters (Hamilton et al., 2018; Fouvry et al., 2021) and galactic nuclei (Bar-Or & Fou-
vry, 2018; Fouvry et al., 2022) have been studied, and their extension to anisotropic systems is
still accessible with some work. However, its extension to rotating systems – more generally, in
systems depending explicitly on three integrals of motion – has yet to be achieved. Nonethe-
less, part of thework has been done in developing the associated linear response theory (Rozier
et al., 2019). In particular, in section 2.3.1, I neglected collective effects to obtain the inhomo-
geneous Landau eq. (2.3.1). This simplification has been shown to be justified qualitatively
in systems such as isotropic globular clusters (Theuns, 1996; Sellwood, 2015; Hamilton et al.,
2018). This motivates a similar study to anisotropic systems, eventually with rotation. This is
the topic of chapters 4 and 5.

Furthermore, the long-term evolution of non-spherically symmetric systems is still an open
question, owning to both its computational difficulty (an additional action dependency) and
its theoretical difficulty (lack of analytical angle-action for generic spheroidal potential). Re-
laxation in chaotic systems is yet again an open question, as they lack parametrisation of the
mean field trajectories. Finally, one could of course consider the impact of the environment on
the secular behaviour of isolated anisotropic clusters, with or without rotation. While some
work has been initiated on the subject (Palmer et al., 1990; Kuijken & Dubinski, 1994; Sellwood
& Valluri, 1997; Breen et al., 2021), a comprehensive theoretical study has yet to be developed.



Appendices of chapter 2

2.A Local velocity deflections for an anisotropic cluster

Let me compute the formulae of eqs. (2.3.31) as well as the expressions of its arguments given
in eqs. (2.3.32). To begin, I consider eqs. (2.3.17). In the frame described in Fig. 2.11, the lo-
cal velocity deflections are related to the coefficients in eqs. (2.3.31) by the relations given in
eqs. (2.3.24). Therefore, I have to compute the coefficients given in eqs. (2.3.17).

Starting from these equations, I let w=v − v′ and change the integration variables from v′

to w to obtain

〈∆vi〉 = −8πmG2 ln Λ

∫
dw

wi
w3
Ftot(E

′, L′), (2.A.1a)

〈∆vi∆vj〉 = 4πmG2 ln Λ

∫
dw

w2δij − wiwj
w3

Ftot(E
′, L′). (2.A.1b)

These expressions can be expressed using polar coordinates

w1 = w cosϕ ; w2 = w sinϕ cosφ ; w3 = w sinϕ sinφ, (2.A.2)

and yield

〈∆v1〉 = −8πmG2 ln Λ

∫
dw

w1

w3
Ftot(E

′, L′), (2.A.3a)

〈∆(v1)2〉 = 4πmG2 ln Λ

∫
dw

w2 − w2
1

w3
Ftot(E

′, L′), (2.A.3b)

〈∆(v2)2〉 = 4πmG2 ln Λ

∫
dw

w2 − w2
2

w3
Ftot(E

′, L′), (2.A.3c)

〈∆(v3)2〉 = 4πmG2 ln Λ

∫
dw

w2 − w2
3

w3
Ftot(E

′, L′). (2.A.3d)

Therefore, injecting eqs. (2.A.2) into eqs. (2.A.3), I obtain

〈∆v1〉 = −8πmG2 ln Λ

∫
dwdϕdφ sinϕ cosϕFtot(E

′, L′), (2.A.4a)

〈∆(v1)2〉 = 4πmG2 ln Λ

∫
dwdϕdφw sin3 ϕFtot(E

′, L′), (2.A.4b)

〈∆(v2)2〉 = 4πmG2 ln Λ

∫
dwdϕdφw sinϕ (1− sin2 ϕ cos2 φ)Ftot(E

′, L′), (2.A.4c)

〈∆(v3)2〉 = 4πmG2 ln Λ

∫
dwdϕdφw sinϕ (1− sin2 ϕ sin2 φ)Ftot(E

′, L′). (2.A.4d)

48
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Through the relations given by eqs. (2.3.24), I obtain

〈∆v‖〉 = −8πmG2 ln Λ

∫
dwdϕdφw sinϕ cosϕFrot(E

′, L′), (2.A.5a)

〈(∆v‖)2〉 = 4πmG2 ln Λ

∫
dwdϕdφww sin3 ϕFrot(E

′, L′), (2.A.5b)

〈(∆v⊥)2〉 = 4πmG2 ln Λ

∫
dwdϕdφww sinϕ(1 + cos2 ϕ)Frot(E

′, L′). (2.A.5c)

Now, I have to compute the argumentsE′ andL′ in the background distribution function. First,
let me compute E′. It is given by

E′ = ψ(r) +
(v′)2

2
= ψ(r) +

(v −w)2

2
(2.A.6)

= ψ(r) +
v2 + w2 − 2w · v

2

= ψ(r) +
v2 + w2 − 2wv cosϕ

2

= E +
w2

2
− wv cosϕ,

since v = v e1. On the other hand, the computation of L′ needs some work. Following Figs. 2.9
and 2.11, I can relate the frame (1, 2, 3) to the frame (X,Y, Z) through the relations

e1 =

(
vr
v

cos θ − vt

v
sin θ

)
eX +

(
vr
v

sin θ +
vt

v
cos θ

)
eY , (2.A.7a)

e2 = eZ , (2.A.7b)

e3 =

(
vr
v

sin θ +
vt

v
cos θ

)
eX +

(
vt

v
sin θ − vr

v
cos θ

)
eY . (2.A.7c)

I can also relate the frame (X,Y, Z) to the frame (x, y, z) through the relations

eX = cos I ex + sin I ez, (2.A.8a)
eY = ey, (2.A.8b)
eZ = − sin I ex + cos I ez. (2.A.8c)

Now, let me compute L, the norm of L. As it is a norm, I can freely choose any frame for its
computation. I choose the frame (1, 2, 3), as it is used in the computation of the integrands. I
have

L′2 = (r1v
′
2 − r2v

′
1)2 + (r1v

′
3 − r3v

′
1)2 + (r2v

′
3 − r3v

′
2)2, (2.A.9)

where (r1, r2, r3) are the coordinates of r in the frame (1, 2, 3). Using the above relations, I can
compute those directly using linear algebra. I obtain

r1 =
vr
v
r ; r2 = 0 ; r3 =

vt

v
v. (2.A.10)
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Therefore,

L′ = r

√
v′22 +

(
vr
v
v′3 −

vt

v
v′1

)2

(2.A.11)

= r

√
(w sinϕ cosφ)2 +

(
vt +

vr
v
w sinϕ sinφ− vt

v
w cosϕ

)2

,

by using v′=v −w.

2.B Local deflection coefficients in E and L

Following closely appendix C of Bar-Or & Alexander (2016), let me compute the E and L dif-
fusion coefficients given in eqs. (2.3.22). Let me consider a star located at position r in the
potential ψ(r), with the velocity v. Its specific energy and angular momentum are given by

E = ψ(r) +
v2

2
; L = r × v. (2.B.1)

Suppose that it is deflected by a field star. Therefore, its velocity changes from v to v′=v+ ∆v.
Now, I consider the frame described in Fig. 2.11. By construction, its units vectors e1, e2, e3 can
be related to the unit vectors r̂, v̂, L̂ through

e1 = v̂ ; e2 = L̂ ; e3 =
vr̂− vrv̂

vt
. (2.B.2)

I can then decompose the velocity deflection vector into

∆v = ∆v‖v̂ + ∆v⊥ ; ∆v⊥ =
√

(∆v2)2 + (∆v3)2. (2.B.3)

The change in energy due to the deflection is therefore given by

∆E =
1

2
(v′2 − v2) =

1

2
(∆v)2 + v ·∆v =

1

2
(∆v‖)

2 +
1

2
(∆v⊥)2 + v∆v‖. (2.B.4)

Letme now compute the change in the angularmomentumvector. First, I can straightforwardly
decompose the position vector onto my reference frame

r =
rvr
v

e1 +
rvt

v
e3. (2.B.5)

Therefore, I can compute the change in the angular momentum vector

∆L = r ×∆v =

(
∆v‖

v
− vr
v2

t

∆v3

)
L+

∆v2L

v

(
vr
vt
ŵ − v̂

)
. (2.B.6)

The change in the norm of the angular momentum is slightly trickier to compute. First, I eval-
uated the change in the radial velocity

∆vr = ∆v · r̂ =
vr
v

∆v‖ +
vt

v
∆v3. (2.B.7)
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From this expression, the change in the transverse velocity (at second order in ∆v/v) reads
(Bar-Or & Alexander, 2016)

∆vt =
vt

v
∆v‖ +

1

2vt
∆v2

2 −
vr
v

∆v3. (2.B.8)

It follows that
∆L = r∆vt =

L

v
∆v‖ +

r2

2L
∆v2

2 −
rvr
v

∆v3, (2.B.9)

at second order. Now, averaging over all orbital inclinations yields 〈∆v2〉 = 〈∆v3〉 = 0 while
〈∆v2

2〉 = 〈∆v2
3〉 = 〈∆v2

⊥〉/2. This yields eqs. (2.3.22).

2.C Local deflection coefficients for a rotating cluster

If I consider a rotating cluster, the local velocity coefficients given in eq. (2.3.31) keep the same
form. However, the DF of the background must be evaluated at (E′, L′, L′z). Let me compute
this last argument. It is expressed in the (x, y, z) frame as

L′z = xv′y − yv′x. (2.C.1)

First, the position components are obtained using the change of frame (X,Y, Z) 7→ (x, y, z), and
read

x = X cos I = r cos θ cos I,

y = Y = r sin θ,

z = X sin I = r cos θ sin I,

(2.C.2)

using X = r cos θ and Y = r sin θ. Let me now compute the background velocity components.
First,  v′x

v′y
v′z

 =

 cos I 0 − sin I

0 1 0

sin I 0 cos I


 v′X

v′Y
v′Z

 . (2.C.3)

Second,  v′X
v′Y
v′Z

 =

 vr
v cos θ − vt

v sin θ 0 vr
v sin θ + vt

v cos θ
vr
v sin θ + vt

v cos θ 0 vt
v sin θ − vr

v cos θ

0 1 0


 v′1

v′2
v′3

 . (2.C.4)

Therefore v′x
v′y
v′z

 =

 cos I(vrv cos θ − vt
v sin θ) − sin I cos I(vrv sin θ + vt

v cos θ)
vr
v sin θ + vt

v cos θ 0 vt
v sin θ − vr

v cos θ

sin I(vrv cos θ − vt
v sin θ) cos I sin I(vrv sin θ + vt

v cos θ)


 v′1

v′2
v′3

 . (2.C.5)

From there, I can compute L′z

L′z = r

(
v′1vt

v
− v′3vr

v

)
cos I + rv′2 sin θ sin I (2.C.6)

= r

(
vt −

vt

v
w cosϕ+

vr
v
w sinϕ sinφ

)
cos I − rw sinϕ cosφ sin θ sin I.
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In order to compute the 3D Fokker–Planck equation, I need to obtain the local diffusion coef-
ficients involving Lz . Following eqs. (2.B.2) and (2.B.6), and using the expressions given in
appendix 2.C, I obtain

ŵz = sin I

(
vr
v

sin θ +
vt

v
cos θ

)
. (2.C.7)

It follows that
vr
v
ŵz −

vzvt

v2
= sin θ sin I, (2.C.8)

hence

〈∆Lz〉 =
Lz
v
〈∆v‖〉, (2.C.9a)

〈(∆L2
z〉 =

(
Lz
L

)2(L2

v2
〈(∆v‖)2〉+ 1

2

r2v2
r

v2
〈(∆v⊥)2〉

)
+
r2 sin2 θ

2

(
1−L

2
z

L2

)
〈(∆v⊥)2〉, (2.C.9b)

〈∆E∆Lz〉 = Lz〈(∆v‖)2〉, (2.C.9c)

〈∆L∆Lz〉 =
Lz
L

(
L2

v2
〈(∆v‖)2〉+

1

2

r2v2
r

v2
〈(∆v⊥)2〉

)
. (2.C.9d)

2.D Computing the cos I diffusion coefficients

Letme compute the cos I-matrix elements involved in eq. (2.3.41). Using the change of variables
(Jr, L, Lz) 7→ (Jr, L, cos I), I obtain the transformations (Risken, 1996)

DcosI = −cos I

L
DL +

1

L
DLz +

cos I

L2
DLL −

1

L2
DLLz , (2.D.1a)

DJr cosI = −cos I

L
DJrL +

1

L
DJrLz = 0, (2.D.1b)

DL cosI = −cos I

L
DLL +

1

L
DLLz = 0, (2.D.1c)

DcosIcosI =
cos2 I

L2
DLL −

2 cos I

L2
DLLz +

1

L2
DLzLz , (2.D.1d)

while the other coefficients stay unchanged. Injecting eqs. (2.3.37) into eqs. (2.D.1) yields the
desired coefficients. In particular, the vanishing of the off-diagonal terms is due to the two
relations DLLz = cos I DLL and DELz = cos I DEL.



Chapter 3

The Galactic centre and IMBHs

Unless stated otherwise, the work presented in this chapter is based on Tep et al. (2021).

3.1 Introduction

Observations of the Galactic centre of our own Milky Way reveal the presence of a cluster of
bright young stars, called the S-cluster, whose behaviour appears to be very peculiar. Indeed,
these stars follow quasi-Keplerian orbits around an invisible object – Sgr A?, see Fig. 3.1.1 –
which is strongly believed to be a SMBH (Genzel & Eckart, 1999; Melia & Falcke, 2001; Ghez

Figure 3.1.1: From Hees et al. (2017). Stars of the S-clusters orbit around the SMBH at the centre of the Milky
Way. As such, they follow quasi-Keplerian orbits. On longer timescales, relativistic effects due to the central SMBH
induce a precession of their pericentre.

et al., 2008; Gillessen et al., 2017). The existence of such amassive object is one of the keys to our
understanding of galaxy formation (Haehnelt &Rees, 1993). On one hand, we know that stellar
mass black holes (BHs) exist (see, e.g., Abbott et al., 2016, 2017), while on the other hand, we
strongly believe that SMBHs exist (Event Horizon Telescope Collaboration et al., 2019, 2022)
within every galactic centre (Kormendy & Richstone, 1995; Magorrian et al., 1998; Richstone
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et al., 1998). It is therefore legitimate to ask ourselves the question of their formation, that is
how they came to be so massive.

A wide range of scenarii have been proposed to explain the formation of these cosmic be-
hemoths. A SMBH could have been the result of the collapse of the first generation of stars.
As these stars were formed out of metal-free gas with no efficient cooling mechanism, this may
have led to a very top-heavy initial stellar mass distribution (Carr et al., 1984; Larson, 1998).
Numerical simulations tend to reach the same conclusions (Bromm et al., 1999; Abel et al.,
2000; Bromm et al., 2002) and predict the formation of BHs of mass 10 − 100M� through this
mechanism. Another formation scenario points to the collapse of supermassive objects formed
out of dense gas in the early Universe (Haehnelt & Rees, 1993; Umemura et al., 1993; Loeb &
Rasio, 1994; Koushiappas et al., 2004). However, both these models struggle with the disposal
of angular momentum (Eisenstein & Loeb, 1995). To remedy this issue, more exotic mecha-
nisms have been explored, such as the existence of early quasi-stars – extremely massive objects
in which accretion from the envelope surrounding the collapsed core can build up a substantial
black hole mass very rapidly, at a highly super-Eddington rate (Begelman et al., 2006, 2008).
Finally, one of the possibilities is that SMBHs arose from the merger of IMBHs, that is, BHs
with a mass range of ∼ 100M�. However, their existence has yet to be proven with certainty
(Portegies Zwart & McMillan, 2002) and is an ongoing investigation (The LIGO Scientific Col-
laboration et al., 2019). If those were to exist, then galactic centres are among the best locations
to look for intermediate mass objects. Because they tend to migrate there via mass segregation,
they would then merge together to increase the mass of the central BH.

Astrometric data from the satellite GAIA (see, e.g., Jindal et al., 2019), coupled with spectral
data from the Very Large Telescope (VLT)’s instrument GRAVITY (see, e.g., Gravity Collab.
et al., 2020, 2023), give us access to a very well-furnished catalogue of theMilkyWay, including
in particular precise information on the dynamics of the S-cluster (Ghez et al., 2008; Habibi
et al., 2017; Gillessen et al., 2017), i.e. the stellar cluster within the very core of the Galactic
centre. As Sgr A? overwhelmingly dominates the gravitational potential of the region, with a
massM•= 4.3 × 106M� (Gillessen et al., 2017), the stars follow quasi-Keplerian orbits with a
very fast period, of orderT?=10−103 yr (Kocsis&Tremaine, 2011). This is very short compared
to that of the Sun around the Milky Way (T�∼200 Myr). More generally, the Keplerian orbital
frequency is given by

ΩKep =
√
GM•/a3, (3.1.1)

with a the orbit’s semi-major axis. Finally, astrometric data from the VLT (Boehle et al., 2016;
Gillessen et al., 2017) show that these stars are close to being thermalised, in the sense that
their angularmomentumdistribution is the equilibriumdistribution of the associated diffusion
process (see sections 2.3.1 and 2.3.3).

In this chapter, I will constrain the presence of unresolved background stellar families made
of faint stellar objects or IMBHs (Fig. 3.1.2). I will use tools from kinetic theory to that end, as
there is a high density of stars (N ∼ 106) within 1pc3, the region of influence where the SMBH
predominates. To describe the evolution of the stellar cluster, I will use the gravitational Landau
eq. (2.3.8) developed in chapter 2. First, I will describe the dynamics driving secular relaxation
in the Galactic centre in section 3.2. Then I will compute the associated diffusion coefficients.
While this is relatively straightforward within the NR formalism, it is (much) more difficult
for the RR formalism, as one has to solve a resonance condition and compute the strength of
orbital couplings (section 3.3). Finally, in section 3.4, I will constrain the parameters of Sgr A?’s
unresolved background cluster by doing a likelihood analysis in parameter space.
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Figure 3.1.2: From Do et al. (2019). Simulated image of the S cluster in the Galactic centre as it will be seen by
the TMT (Thirty Meter Telescope) in a couple of years. Today, only one star (S2) has the astrometric and radial
velocity precision to constrain GR (Gravity Collab. et al., 2020). With ELTs, it should be possible to use about 100
stars jointly for GR tests (Gravity Collab. et al., 2021; Gravity+ Collab. et al., 2022).

3.2 Dynamics of the Galactic nucleus

Following closely Fouvry et al. (2017), let me present the dynamics occurring in the S-cluster
of the Galactic nucleus. The most important feature is the presence of the SMBH Sgr A?. Be-
cause the SMBH dominates the gravitational potential, these stars – in particular the S-stars –
follow quasi-Keplerian orbits, with orbital periods ranging from 7.6yr for S4711 to 3580yr for
S85 (Gillessen et al., 2017; Gravity Collab. et al., 2020; Peißker et al., 2020; Gravity Collab. et al.,
2021). Nevertheless, because there is a finite number of stars in the cluster, the stars are also
subjected to stochastic Poisson fluctuations, which have a definite impact on secular times as
described in section 2.3.1.

I can model this system by a set of N stars of mass m orbiting a SMBH of mass M•. As is
the case in the Galactic nucleus, I assume that M• is much bigger that the total stellar mass
M? = Nm. Following section 2.3.1, I can describe the secular relaxation of this system by av-
eraging over the fast quasi-Keplerian motion of the stars. This yields a specific, orbit-averaged
Hamiltonian (eq. 2.3.4) describing the secular evolution of Keplerian wires. The principal con-
tribution to the relativistic correction induced by the SMBH is the 1PN contribution, called the
Schwarzschild precession (Merritt, 2013). It drives an in-plane precession of the stars’ pericen-
tre, hence a precession of the Keplerian wires. The associated precession frequency reads (see,
e.g., Touma et al., 2009)

ΩGR(a, e) =
∂ΦGR

∂L
=

3GM•ΩKep(a)

c2a(1− e2)
. (3.2.1)

It is prograde (i.e. has positive frequency) and does not depend on the wire’s inclination. An-
other source of in-plane precession comes from the background stellar distribution. Because
this distribution is spherically symmetric on average, it generates a precession of the test’s wire
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with frequency (Tremaine, 2005)

Ω?(a, e) =
∂Φ?

∂L
=

ΩKep(a)

πM•e

∫ π

0
df M?(r[f ]) cos f, (3.2.2)

where f is the true anomaly and M?(r) the enclosed mass profile. For the background fam-
ily which I will consider in this chapter, this precession is retrograde (see appendix 3.B) and
independent of the wire’s inclination.

As discussed in section 2.3.1, the response matrix (eq. 2.2.30) of this system exactly vanishes
for an isotropic background distribution of the form F0(Lc). Therefore, the secular relaxation
of a Keplerian wire in that system is fully described by the inhomogeneous Landau eq. (2.3.1).

3.3 Eccentricity relaxation of the Keplerian wires

Now, the unresolved background cluster is expected to be old, i.e. has been orbiting around
Sgr A? for a time much longer than the SRR relaxation time. As such, I may assume that it
has already fully relaxed in all its orbital elements. I therefore assume that it has a spherically
symmetric distribution of orientations, and, importantly, follows a thermal distribution of ec-
centricities. As such, it corresponds to a background for the subset of observed stars.

In that limit, as shown in section 2.3.1, the eccentricities of the test particles, i.e. the eccentric-
ities of the S-stars, diffuse according to the Fokker–Planck equation given by eq. (2.3.8), where
P (j, t | a) describes the probability distribution function (PDF) of the test stars’ eccentricities,
j, for a given sma a, as a function of time, normalised so that

∫
dj P (j, t | a)=1. Let me already

note that eq. (2.3.8) can be rewritten under the more classical Fokker–Planck (FP) form as

∂P (j, t | a)

∂t
= − ∂

∂j

[
Dj(a, j)P (j, t | a)

]
+

1

2

∂2

∂j2

[
Djj(a, j)P (j, t | a)

]
. (3.3.1)

The structure of eq. (3.3.1) is useful to perform Monte-Carlo integrations of the stochastic dy-
namics, as presented in section 3.4.2.

In eq. (2.3.8), the diffusion coefficient involves only a RR contribution at the moment. How-
ever, as will be discussed in the next section, there exist regions of orbital space where the RR
contribution is considerably damped. If I introduce the diffusion coefficient in angular momen-
tum, Djj(a, j), it is the sum of two contributions

Djj(a, j) = DRR
jj (a, j) +DNR

jj (a, j), (3.3.2)

where DRR
jj (a, j) captures the contribution from the RR theory, while DNR

jj (a, j) is associated
with the contribution from the NR theory. Together, the RR and NR contributions drive the
Fokker–Planck equation

∂P (j, t | a)

∂t
=

1

2

∂

∂j

[
j Djj(a, j)

∂

∂j

(
P (j, t | a)

j

)]
. (3.3.3)

At this point, one may be worried about adding together the NR and the RR contributions
aforementioned. Indeed, I argued in section 2.3.2 that the NR theory is contained in the RR
theory, in the sense that it is a limiting case of the latter one. However, the resonant contri-
bution (which I still call RR in this section) is not exactly the one described in section 2.3.1.
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Indeed, consider the summation over resonances involved in eq. (2.3.1). This inhomogeneous
Landau equation describes the RR formalism of secular evolution. First, because the Keplerian
potential is degenerate w.r.t. Lz (meaning that Ω3 =0), eq. (2.3.1) must be integrated over Lz to
obtain a well-defined evolution equation (Hamilton et al., 2018). This integration reduces the
3D summation of resonances over (k1, k2, k3) to a 2D summation over (k1, k2). Second, due to
the presence of a SMBH in the centre of the Galactic nucleus, I remarked that Ω1 � Ω2. There-
fore, I considered the orbit-averaged dynamics of Keplerian wires, reducing the 2D summation
to a 1D summation over the resonances k2 (associated to the slow motion). The successive
dimension reductions can be summed up as follows

∑
k1,k2,k3

∫
dLz

−−−−−−−→
∑
k1,k2

∫
dM

−−−−−−−→
∑
k2

.

The true dynamics of the stars is described by the RR theory involving the 2D summation.
The 1D summation can be understood as the mean field term k1 = 0 of the 2D summation.
Therefore, higher resonances have been neglected due to the SMBH’s influence. Because high
order resonances correspond to small-scale interactions, it is natural to supplement the 1D-RR
summation with the NR theory.

Additionally, because of the influence of the SMBH, I expect that the orbit-averaged RR part
contributes the most to the relaxation. This can be understood roughly through the following
argument. Let me recall that (Ω1,Ω2)=(ΩKep,ΩP) where ΩP =ΩGR + Ω?. As mentioned above,
because of the much larger mass of the SMBH, ΩP = εΩKep, where ε∼M?/M•� 1. Hence, the
overall contribution of the resonances to the relaxation is roughly given by∑

k,k′

δD(k ·Ω− k′ ·Ω′) ' 1

|ε|
∑
k2,k′2

δD(k2ΩKep − k′2Ω′Kep) (RR)

+
∑

|k|,|k′|�1

δD(k ·Ω− k′ ·Ω′), (NR)

where I used the relation δD(εx) = δD(x)/|ε|. From this decomposition, the first part of the
summation (k1 = k′1 = 0) corresponds to the orbit-averaged RR contribution (SRR), and is of
order 1/ε�1. This dominates the second part – which contains higher resonances, hence local
interactions described by NR theory – in regions that are not too close to the SMBH.a

I now detail the content of each of these coefficients.

3.3.1 RR diffusion coefficients

A first source of eccentricity relaxation stems from the long-range resonant couplings between
the in-plane precessingwires. Following Bar-Or&Fouvry (2018), the SRRdiffusion coefficients
read

DRR
jj (a, j) =

4πG2

L2
c

+∞∑
k=1

+∞∑
k′=−∞
k′ 6=0

k2

|k′|

∫
da′ Ftot(a

′, j′)
|ψkk′(a, j, a′, j′)|2

|∂jΩP(a′, j′)|
, (3.3.4)

aIn these regions, the precession frequency diverges, hence ε becomes much bigger than 1 and the NR part
dominates over the RR part (Fig. 3.3.5).
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where Lc =Lc(a) was defined in section 1.3.2, and j′ is the implicit solution of the resonance
condition

k′ΩP(a′, j′) = kΩP(a, j), (3.3.5)

where the in-plane precession frequency ΩP(a, j) is defined by

ΩP = ΩGR + Ω?. (3.3.6)

Figure 3.3.1: Illustration of precession frequencies, |ΩP(a, j)|, in orbital space for the Top-Heavymodel (eq. 3.4.2).
For circular orbits and large sma, i.e. j → 1 and large a, the precession is dominated by the mass precession and is
therefore retrograde (ΩP < 0). For small j and small a, the precession is dominated by the relativistic precession
and is therefore prograde (ΩP > 0).

In eq. (3.3.4), I introduced the DF, Ftot(a
′, j′). It is defined as

Ftot(a, j) =
∑
i

m2
iNi(a) fi(j | a), (3.3.7)

where the sum over i runs over all the sub-populations of the background cluster. Each popula-
tion is characterised by an individual mass,mi, whileNi(a) is the number of stars per unit sma
a, and fi(j | a) is the conditional PDF of j for a given a, normalised so that

∫
djfi(j | a)=1. In

practice, in order to ease the numerical resolution of the resonance condition (see appendix 3.B)
and the computation of the NR diffusion coefficients, I assume that each population follows a
power law distribution in smas and is also fully relaxed in eccentricity, i.e. fi(j|a) = 2j, owing
to their old dynamical age. I further detail all my normalisation conventions in section 3.4.1.

The resonant diffusion coefficients from eq. (3.3.4) involve the coupling coefficients |ψkk′ |2,
which describe the efficiency of the resonant coupling between two wires. In the present case,
they read (Bar-Or & Fouvry, 2018)

∣∣ψkk′(a, j, a′, j′)∣∣2 =16π2
∑
`

|yk` |2|yk
′
` |2

(2`+ 1)3

∣∣K`
kk′(a, j, a

′, j′)
∣∣2, (3.3.8)
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with the constant coefficients yk` =Y k
` (π2 ,

π
2 ), where the spherical harmonics are definedwith the

convention
∫

dr̂ |Y k
` (r̂)|2 =1. This equation involves the pairwise in-plane coupling coefficients

K`
kk′ that read

K`
kk′(a, j, a

′, j′)=

〈
cos(kf) cos(k′f ′)

min(r, r′)`

max(r, r′)`+1

〉
�
, (3.3.9)

where f is the true anomaly, while 〈 · 〉� stands for the orbit-average over both radial oscillations.

Let me already emphasise that the coupling coefficients from eq. (3.3.8) satisfy various sym-
metry properties. First, as imposed by the symmetries of |yk` |2 and |yk′` |2, these coefficients are
non-zero only when |k|, |k′| ≤ `, as well as (`−k) and (`−k′) even. In addition, I note that
|ψkk′ |2 = |ψ±k±k′ |2, i.e. the strength of the (k, k′) coupling, is independent of the sign of the res-
onance numbers. These are all important features which allow me to reduce the number of
evaluations of the coupling coefficients required. Finally, in practice, in eq. (3.3.8), I truncate
the harmonics up to some given `max.

In eq. (3.3.9), the min – max terms stem from the usual Legendre expansion of the New-
tonian interaction potential. The computation of K`

kk′ is the overall bottleneck of the whole
calculation of the SRR diffusion coefficients which I therefore have to address. A naive in-
spection of eq. (3.3.9) would lead me to believe that its computational complexity scales like
O(K2), with K the number of sampling points used to discretise both anomalies. Fortunately,
I can take inspiration from multipole methods (see, e.g., Fouvry et al., 2022) to compute them
much more efficiently, yielding a computational complexity scaling likeO(K). This is detailed
in appendix 3.A.

Figure 3.3.2: Illustration of the RR (full line, see section 3.3.1) and NR (dashed line, see section 3.3.2) diffusion
coefficientsDjj . For the Top-Heavy model (eq. 3.4.2), I vary the cusp parameter γ• for a given value of semi-major
axis a=10 mpc and the harmonic cutoff `max =10. The diffusion coefficients go to 0 as j→1 (circular orbits), while
the RR ones get drastically reduced for very eccentric orbits due to the Schwarzschild precession. As such, for small
enough j, the NR coefficients dominate over the RR ones.

Once the coupling coefficients have been estimated, I rely on eq. (3.3.4) to evaluate the diffu-
sion coefficients. This requires in particular to solve for the resonance condition from eq. (3.3.5).
For a given wire (a, j) and a given resonance pair (k, k′), this amounts to finding all the wires
(a′, j′) for which the resonance condition kΩP(a, j)=k′ΩP(a′, j′) is satisfied (see Fig. 3.3.1 for a
representation of the iso-contours of precession frequencies). I detail in appendix 3.B my ap-
proach to solve the resonance condition, improving upon the method from Bar-Or & Fouvry
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(2018).

Figure 3.3.2 gives an example of a computation of the RR diffusion coefficients for a fixed
value of the sma. Furthermore, I represent in Fig. 3.3.3 the contribution to the total RR diffu-
sion coefficient DRR

jj from the first lowest resonance vectors. In particular, I recover the drastic

Figure 3.3.3: Illustration of the contribution to the RR diffusion coefficients (eq. 3.3.4) of the different resonances
(k, k′), for a given sma a = 10 mpc and the cutoff `max = 10. The RR coefficients are typically dominated by the
resonances (k, k′)=(1, 1) (for small and large j) and (k, k′)=(1,−1) (for intermediate j). For intermediate eccen-
tricities, higher-order resonances also contribute to the fine structure ofDjj (i.e. the bumps on the black curve).

damping of the RR diffusion coefficients for very eccentric orbits. This is due to the divergence
of the relativistic precession frequencies for ever more eccentric wires, which prevents these
wires from resonating with the bulk of the other wires (Merritt et al., 2011; Bar-Or & Alexan-
der, 2016). This is the so-called Schwarzschild barrier, for which I give a schematic representation
in Fig. 3.3.4. As can be noted in Fig. 3.3.2, very eccentric wires (j∼0) are then immune to the
RR diffusion, and can only keep diffusing under the effect of the NR contributions.

3.3.2 NR diffusion coefficients

A second process through which test stars relax in eccentricities originates from the NR theory
(see section 2.3.3). In order to evaluate the associated diffusion coefficient, DNR

jj (a, j), I used
the approach detailed in section 2.3.3. In practice, I define the Coulomb logarithm of a family
as ln Λi=ln(M•/mi) (see eq. 7.84 of Binney & Tremaine, 2008). Because they do not involve any
resonance condition, these NR diffusion coefficients are numerically much less demanding to
compute than the RR ones.

The computation of the orbit-averaged version of these coefficients (section 2.3.2) relies on
the particular form of the Keplerian potential. Here, rp (resp. ra) is the pericentre (resp. apoc-
entre) of the Keplerian orbit with energy E and angular momentum L. These two values are
the two solutions of the radial equation vr = 0 in the equation

E = −M•
r

+
v2
r

2
+
L2

2r2
= −GM•

2a
. (3.3.10)

For the Keplerian potential, this orbit-average can be done using the eccentric anomaly u, such
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Figure 3.3.4: Schematic representation of the precession frequency of a Keplerianwire. Far away from the SMBH,
the retrograde mass precession dominates, and orbits can resonate with each other. However, near the SMBH,
relativistic effects – the prograde Schwarzschild precession – induced by the SMBH dominate. Therefore, in that
region, no resonant couplings can occur. This is the so-called Schwarzschild barrier (Merritt et al., 2011), which
leads to a sharp drop of the resonant diffusion coefficients near the SMBH.

Figure 3.3.5: Illustration of the total diffusion coefficients,Djj , in the (a, j)-orbital space for the Top-Heavymodel
defined in eq. (3.4.2). Here are also represented in yellow the seven S-stars which I used to constrain the properties
of the underlying unresolved stellar cluster. The white region on the left represents the location in orbital space of
the central BH’s loss cone. In the centre of the figure, resonant couplings due to RR create this rugged but accurate
aspect, that can be linked to the iso-contours of the precession frequencies. The sharp drop of amplitude beyond
this structure is due to the Schwarzschild barrier (see section 3.3.1 and Fig. 3.3.4).



62

that
r(u) = a(1 + e cosu). (3.3.11)

The orbit-average (eq. 2.3.21) becomes

DX =
1

π

∫ π

0
du 〈∆X〉(r[u]) (1 + e cosu). (3.3.12)

In the end, I obtain through this method the diffusion coefficients Dj and Djj sourced by the
NR theory (see, e.g., Cohn, 1979, for a detailed description of the computation of these coeffi-
cients). As discussed in section 2.3.3, they are the components of the Fokker–Planck eq. (3.3.1)
describing the secular evolution of the PDF, P (j, t | a). In Fig. 3.3.2, I illustrate the NR diffu-
sion coefficients. In practice, contrary to the RR ones, the NR diffusion coefficients are mostly
independent of the stars’ eccentricities.

Finally, in Fig. 3.3.5, I illustrate the overall dependence of the total diffusion coefficients from
eq. (3.3.2), i.e. both the RR and NR contributions, in the whole (a, j)-space. In that figure, I
can clearly note the presence of resonance lines associated with RR. In addition, the bulk of
the currently observed S-stars lie in a region of orbital space, where the diffusion of eccentric-
ities is dominated by resonant effects. As a consequence, it is essential to account for these
resonant mechanisms in order to accurately describe the dynamical fate of the S-stars’ eccen-
tricities. Finally, I note that the diffusion coefficient varies significantly as a function of j and
stalls dramatically for j→1. As a result, it takes a much shorter amount of time for initially
low eccentricity orbits to thermalise, or equivalently for a given age, it requires less massive
unresolved perturbers (see also Fig. 3.4.4 below).

3.3.3 Diffusion time

Figure 3.3.6: Representation of the diffusion time for two different families: a one-family model with solar-mass
stars (dashed), and a two-family model with solar-mass stars and IMBHs (full lines) of massm• = 50M�. Adding
black holes in themodel sharply increases the efficiency of this diffusion process. The sevenS-stars used to constrain
the models are represented in red dots. In particular, this two-family model fails to pass the zeroth order criterion
described in section 3.3.3.

Observations of the Galactic centre show that the S-cluster has nearly relaxed in eccentricity
(Eisenhauer, 2019; Gillessen et al., 2017; Peißker et al., 2020). Therefore, I can define the diffusion
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time by setting

Tjj(a) =
1

Diso
jj (a)

; Diso
jj (a) =

∫ 1

0
dj f(j; a)Djj(a, j), (3.3.13)

which in this context is of order of the relaxation timescale (Bar-Or & Fouvry, 2018). I compute
this timescale for a model with a single family of stellar masses, as well as a model composed of
a stellar family and an IMBH family. The results are shown in Fig. 3.3.6. The family of IMBHs
accelerates the system’s relaxation. Indeed, as I discussed in section 2.2, secular relaxation is
sourced by finite-N effects. The presence of IMBHs impacts the granularity of the potential, and
impacts the efficiency of the diffusion. The diffusion time can be used to probe this effect, and
thus gives a rough criterion to determine which background families can induce an efficient
enough eccentricity diffusion of the S-stars.

Let me detail a simple zeroth order criterion which will tell mewhether onemodel is accept-
able or not. To that end, I have access to the sma, the angularmomentumand themain-sequence
age for 7 stars of the S-cluster around Sgr A?, which I reproduce in Table 3.1 (Habibi et al.,
2017; Gillessen et al., 2017). I also know the distance to the SMBH Sgr A?, R•=8.32× 106 mpc

Star S1 S2 S4 S6 S8 S9 S12
Semi-major axis (") 0.595 0.1255 0.3570 0.6574 0.4047 0.2724 0.2987

Semi-major axis (mpc) 24.00 5.062 14.40 26.52 16.32 10.99 12.05
Eccentricity 0.556 0.8839 0.3905 0.8400 0.8031 0.644 0.8883

Main-sequence age (Myr) 4.3 6.6 5.9 11.5 3.1 3.5 14.7

Table 3.1: Table of orbital parameters of the 7 stars used to constrain the parameters of the unresolved background
families of the Galactic nucleus. Taken from Habibi et al. (2017) and Gillessen et al. (2017).

(Gillessen et al., 2017), which allows me to convert the smas from arcsec to mpc. The criterion
goes as follows. Consider a set S of parameters {α}α∈S .

1. Compute Tjj(ak) (eq. 3.3.13) for α ∈ S, where ak is the sma of those 7 stars.

2. If Tjj(ak) < Tk with Tk the main-sequence age of star k for more than half the stars (here,
at least 4), I say that α is a valid set of parameters and that the stars had enough time to
diffuse to their current eccentricity distribution.

I apply this criterion to the Top-Heavy model (defined in eq. 3.4.2) in Fig. 3.3.7, where I varied
the individual masses of the families’ components. First, I observe that the diffusion is not
efficient enough for IMBHmasses that are too low, as expected. Second, I cannot give an upper
bound on thesemasses, which is a problem. Indeed, on a practical level, observations show that
the S-stars have almost relaxed. In particular, some deviation from the thermal equilibrium can
be observed. In order to put an upper bound on the family’s parameters, I therefore have to go
beyond this zeroth order criterion.

3.4 Application to the search for IMBHs

3.4.1 Parametrisation of the unresolved cluster

For observational data, I use the orbital parameters listed in Tab. 3.1. The main sequence ages
are a measure of the total time that the diffusion equation has had to operate. For simplicity,
I assume that on these timescales, the NR relaxation did not drive any significant diffusion of
the S-stars’ energies, so that the stars’ smas are kept fixed. Regarding the initial conditions for
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Figure 3.3.7: Zeroth order criterion in the space of mass parameters of the Top-Heavy families. The dashed
region corresponds to models which fail to pass the criterion. The number of stars satisfying the criterion is written
in the figure. Increasing the individual mass of the IMBH background family increases the efficiency of diffusion.
However, this criterion fails to impose an upper mass bound on the models.

the stars’ eccentricities, I investigate two possibles scenarii, either originating from binary tidal
disruptions (Hills, 1988; Gould & Quillen, 2003; Alexander, 2017), i.e. large initial eccentrici-
ties, or from an episode of disc formation (Alexander, 2005; Levin, 2006; Koposov et al., 2019),
i.e. small initial eccentricities. In practice, I assume that the S-stars are initialised following a
Gaussian distribution centred at j(t = 0) = 0.2 – with width 0.02 – to mimic the eccentricity
distribution of binary disruptions (Generozov & Madigan, 2020), or j(t= 0) = 0.9 to mimic an
in-situ disc formation (see, e.g., Perets et al., 2007; Madigan et al., 2009, for alternative scenarii).

Now, let me also make key assumptions regarding the background old stellar cluster. I as-
sume that it is composed of various sub-populations of different individual masses mi with a
total massMi(< a0) enclosed within a physical radius a0. In addition, I also assume that each
population follows a thermal distribution in eccentricity, and infinite power-law distribution in
smas, that is

Mi(< a) = Mi(< a0)(a/a0)3−γi . (3.4.1)

This eases the resolution of the resonance condition in eq. (3.3.5). I finally assume that through-
out their eccentricity diffusion, the S-stars are treated as test stars. As such, they do not con-
tribute to the system’s mean potential, and do not interact with one another. Since I expect
the background to be thermal, the RR dynamical friction vanishes exactly (section 2.3.1). Con-
versely, I also neglect the NR part of dynamical friction, since energy diffusion is inefficient
in quasi-Keplerian systems on SRR timescale (Bar-Or & Alexander, 2016). Assuming a two-
family background composed of stars and an other heavy sub-population (e.g., IMBHs), I then
have a total of 7 free parameters for the available models, namely the power indices (γ?, γ•), the
individual masses (m?,m•), the total enclosed masses (M?[< a0],M•[< a0]) as well as the ini-
tial eccentricity of the S-stars, j0 =j(t=0). These models are complemented with the observed
constraints on the seven considered S-stars, namely their main-sequence age, as well as their
observed sma and eccentricity (Table 3.1).

In practice, I started my investigation from the two-family Top-Heavy model of Generozov
& Madigan (2020). Using a0 =0.1 pc, the fiducial model contains both stars and IMBHsm? = 1M�,

m• = 50M�,

M?(<a0) = 7.9×103M�,

M•(<a0) = 38×103M�,

γ? = 1.5,

γ• = 1.8,
(3.4.2)



65

Figure 3.4.1: Solution of the diffusion equation (as given by eq. 3.4.3) at fixed sma a = 10 mpc. The initial j-
distribution is a Gaussian with width σ = 0.02. On the left, the Gaussian is centred at j = 0.2, which corresponds to
the binary’s tidal disruption formation scenario. On the right, the Gaussian is centred at j = 0.9, which corresponds
to more circular orbits (in-situ star formation). The time after which I observe thermalisation depends on the initial
conditions. In particular, an in-situ star formation yields a faster thermalisation of the S-cluster.

where the star parameters follow Schödel et al. (2017). Such a model is compatible with the
current constraints associated with S2’s pericentre shift (Gravity Collab. et al., 2020), since
M•(<r

S2
apo)+M?(<r

S2
apo)'2500M�.

3.4.2 Time evolution and stochastic process

Under the effect of the background stellar families, the test stars of the S-cluster undergo a
diffusion, the efficiency of which depends on the profile of the background, as could be seen in
a first rough approach in section 3.3.3. However, if I want to obtain a more precise description
of eccentricity diffusion, I have to integrate the Fokker–Planck equation (eq. 3.3.3) forward in
time.

There are two methods to obtain the evolution of this PDF. The first one is to directly in-
tegrate the smooth partial differential equation (eq. 3.3.3) in time, using an initial condition
in j depending on the formation scenario (see section 3.4.1). In Fig. 3.4.1, I show the time-
evolution for the Fokker–Planck equation from the two initial conditions discussed previously
with a Top-Heavy model background.

In order to determine whether or not a model is compatible with the observational con-
straints of a significant eccentricity relaxation of the S-stars, I proceed as follows. I first compute
the RR and NR diffusion coefficients for the semi-major axis of the S-stars considered. The to-
tal diffusion coefficients are then interpolated and I integrate the diffusion equation forward in
time using finite elements. More precisely, I rely on the so-calledmethod-of-lines implemented
in the Mathematica NDSolve function, which discretises the j dimension and integrates the
semi-discrete problem as a system of Cauchy’s ODEs. As the smas are conserved, they can be
integrated separately. As such, I integrate eq. (3.3.3) for each of the seven considered S-stars,
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for a total time equal to the age of each star. In order to ensure that the PDF stays normalised
during the integration, it is useful to rewrite eq. (3.3.3) under the form

j2∂P

∂t
=
j2

2

∂

∂j

(
Djj

∂P

∂j

)
− 1

2

[
j
∂(DjjP )

∂j

]
+
Djj

2
. (3.4.3)

This form is more stable and avoid any 1/j singularity. This form is more stable numerically
and ensures the conservation of the PDF norm.

The secondmethod is to consider the equivalent Langevin process. FollowingRisken (1996),
I can mimic the dynamics of a given test star through the stochastic Langevin equation

∆j = Dj ∆t+
√
Djj ∆t ξ(t). (3.4.4)

In that expression, ∆t is my chosen (fixed) timestep, and ξ(t) follows a normal distribution of
unit variance, uncorrelated in time. I can then use a large sample of test particles to recover
the time evolution of their smooth underlying PDF. In Fig. 3.4.2, I illustrate some examples of

Figure 3.4.2: Illustration of stochastic random walks in eccentricities as driven by eq. (3.4.4) with a timestep
∆t = 0.1 kyr. Here, the test particles all have a = 10 mpc, are initialised with j = 0.6, and evolve within the same
background model as in Fig. 3.4.1. These randomwalks are not physical – in particular, they are uncorrelated – but
their average over realisations follows the physically relevant Fokker–Planck equation (eq. 3.3.1).

random walks in eccentricities.

To ensure that the randomwalks donotwander off the range j ∈ [0, 1], I introduce a reflective
barrier at j=0, 1. Let me note that the stochastic walks from Fig. 3.4.2 do not describe any
physically realistic random walks on their own, but only in an average sense. Indeed, here I
have supposed that the ξ(t) are uncorrelated in time, whereas they are in fact correlated (at
least on the fluctuations’ coherence time) in a real physical process. However, their average
over realisations accurately describes the evolution of the corresponding FP eq. (3.3.1).

Consequently, in Fig. 3.4.3, I use N=106 test particles to recover the PDF at various times
and compare it with that obtained from the direct integration of the diffusion eq. (3.3.3). It is
reassuring to note that both approaches are in precise agreement.
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Figure 3.4.3: Comparison between the direct integration of the diffusion eq. (3.4.3) (full lines) and its stochastic
realisation through eq. (3.4.4) (dashed lines), as a function of time, and using the same initial conditions as in
Fig. 3.4.2. For the stochastic evolution, I considered a total of N = 106 test particles, evolved with the timestep
∆t= 0.1 kyr. Some of its realisations are represented in Fig. 3.4.2. Both approaches are found to be in very good
agreement, and ultimately relax to the thermal distribution.

3.4.3 Likelihood analysis

Using the aforementioned approaches, I am now able to predict the time evolution of a variety
of models, parametrised by their individual masses, cusps, total masses and mass spectra. In
order to determine which one is best to understand the Galactic centre’s observations, let me
define a model’s likelihood as

L(α) =
∏
k

P (jk, Tk | ak), (3.4.5)

where k=1, ..., 7 go through the seven S-stars mentioned before. Here, Tk is the main-sequence
age of star k atwhich the PDF is evaluated. Relying on eq. (3.4.5), I can then explore the space of
parametersα and compare the various models to one another. To that end, I use the likelihood
ratio (LR) test through

λR(α) = 2 ln
(
Lmax/L[α]

)
≥ 0, (3.4.6)

where Lmax is the maximum likelihood in the domain of explored models.

Whenαmaximises the likelihood, it minimises by definition this likelihood ratio (as would
a χ2 analysis for Gaussian statistics), such that λR(α)=0. Then, I can reject a model α with
confidence 0≤p≤1, if the corresponding LR, λR(α), lies above a certain (explicit) value ηp.

As an illustration of the present method, I first consider the Top-Heavy model defined in
eq. (3.4.2), and let the individual massesm? andm• vary, with the natural constraintm•≥m?

while fixing the total enclosed masses M•(<a0) and M?(<a0). This is presented in Fig. 3.4.4.
In that figure, a model outside of the region of confidence nσ means that it can be discarded
with confidence nσ, as it would not allow the diffusion process to be fast enough to reach the
observed eccentricity distribution of the S-cluster. As expected, in Fig. 3.4.4 (top-left panel), I re-
cover that the larger the individual masses, the larger the underlying Poisson shot noise. There-
fore, the more efficient the diffusion process, and the faster the relaxation of the S-stars. Con-
versely, Fig. 3.4.4 shows that models with small individual masses cannot explain the current
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Figure 3.4.4: Confidence regions for the Top-Heavy model defined in eq. (3.4.2) using the maximum likelihood
method applied to the observed S-stars, assuming a large initial eccentricity (j0 = 0.2, the canonical value, left
panels), or a small initial eccentricity (j0 = 0.9, right panels). The cyan line corresponds to m• = 100M�, above
which heavy objects are usually considered as IMBHs. The cusp’s indices and the total enclosed masses are fixed
to their fiducial values (see eq. 3.4.2), but I let the individual masses vary. Confidence levels are inferred from the
LR test, see eq. (3.4.6). The top panels only used the seven S-stars with known orbital parameters and stellar ages
(see Tab. 3.1), while the bottom ones expanded this observed sample using the other thirty S-stars (Gillessen et al.,
2017), assuming a common age T = 7.1 Myr, i.e. the average age of the constrained seven S-stars. As expected, the
smaller j0, i.e. the more eccentric the stellar initial conditions, the slower the relaxation of the S-stars. Similarly, the
larger the observed sample, the tighter the constraints on the background clusters.
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S-cluster’s angular momentum PDF. As such, a relatively massive set of background sources
orbitingwithin the S-cluster is required to trigger a fast enough orbital diffusion of the observed
stars over their lifetime. Using the same data, in Fig. 3.4.4 (top-right panel), I also change the
initial eccentricity of the S-stars to j0 =0.9, to mimic an episode of disc formation. As already
observed in Fig. 3.3.5, I note that the diffusion coefficient is larger at smaller eccentricities, so
that the diffusion proceedsmore swiftly, hence enhancing the overall efficiency of the relaxation
of the S-stars.

The global shape of the likelihood contours presented in Fig. 3.4.4 clearly illustrates the
known dynamical degeneracy in flipping IMBHs and stars of the samemass, as the efficiency of
eccentricity relaxation is directly connected to the amplitude of the Poisson fluctuations gener-
ated by the background clusters as a whole. Interestingly, I note that all likelihood landscapes
presented in the top panels present an absolute minimum. This suggests that, having only
diffused a finite time, the observed eccentricity distribution of the S-stars is not fully thermal.

In order to increase the observed stellar sample, and tighten the inferred model constraints,
I present in the bottom panels of Fig. 3.4.4 the same measurement but using 30 additional S-
stars (as in fig. 13 of Gillessen et al., 2017). Their individual ages was fixed to T =7.1 Myr, i.e.
the average age of the seven S-stars, whose ages have been measured (Habibi et al., 2017). As
expected, I recover that a larger sample of observed stars leads to narrower contours around
the likelihood extremum, making the presence of a second population of massive objects all the
more mandatory. Finally, I also note that since the expanded sample of 37 stars contains stars
with smas larger than that of the initial seven S-stars, i.e. starswhose eccentricity relaxation time
is longer, the location of the likelihood maximum gets displaced to larger masses as I increase
the observed stellar sample.

From these considerations, Fig. 3.4.4 can be used to determine the presence or not of IMBHs.
Indeed, at fixed cusp indexes and fixed enclosed masses, increasing the individual masses of
the background’s families increases the efficiency of the eccentricity diffusion. Hence, I can
determine which values of the mass parameters are the most likely parameters to fit the ob-
servations of the S-cluster today. Using this method, I could ultimately study the impact of the
initial condition for eccentricity on the likelihood of a model. Depending on the model – in-situ
formation of near-circular orbits or binary disruptions resulting in eccentric stars – the presence
of IMBHs can be either strengthened (binary disruptions, left panels of Fig. 3.4.4) or discarded
(in-situ formation, right panels of Fig. 3.4.4). Of course, this requires the knowledge of the
other parameters, arbitrarily fixed in this example. Fortunately, a study of the full parameter
space is certainly numerically accessible for future works.

3.4.4 Impact of the data sample size

Let me now carry out a fiducial experiment where I vary the number of stars for which orbital
parameters are available, i.e. a prospective experiment appropriate for future surveys (Do et al.,
2019).

I consider a model similar to the one in eq. (3.4.2) where I setm?=5M� andm•=20M�. I
now wish to probe how the number of observed stars impacts my constraints on the determi-
nation of the background cluster’s parameters. To that end, I take the same seven S-stars as in
Fig. 3.4.4, and consider their smas andmain-sequence ages. For each of the seven smas, I evolve
the PDF from eq. (3.3.3) for j0 =0.2 for the entire star’s observed lifetime. From the resulting
PDFs, I draw N stars for each sma. In total, I therefore assume that my observation sample is
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composed of a total of nobs =7N stars. This sample constitutes my mock data, to which I apply
the previous likelihood analysis.

Following this approach, Fig. 3.4.5 shows the ability of the method to constrain the parame-

Figure 3.4.5: Same analysis as in Fig. 3.4.4, but applied to mock data, as detailed in section 3.4.4, as I vary the
parameters (m•, γ•) of the IMBHs’ population (keeping the total enclosed mass fixed). The left panel corresponds
to mock data with nobs =7 stars, while the right panel uses nobs =700 stars. As expected, increasing the observed
sample narrows the confidence contours around the maximum likelihood estimator (red dot) which converges
towards the fiducial model (green dot).

ters of the IMBHs’ population given a largermock sample. While the stellar parameters (m?, γ?)

are observables, I illustrate in that figure how the maximum likelihood approach indeed al-
lows me to constrain the parameters of the invisible dark cluster (m•, γ•), which cannot be
directly observed. As (m•, γ•) are not degenerate with one another, an increase in the number
of measured eccentricities (fromN=1 toN=100 from top to bottom panels) narrows the con-
fidence contours around the extremum of the likelihood, which itself converges to a specific
pair (m•, γ•) close to the fiducial one (green dot).

I further pursue this experiment in Fig. 3.4.6, where I investigate the expected improvements
in the inferred constraints as a function of the number of observed stars, nobs. For a given mock
realisation, I compute the uncertainty σm• , defined as the width of the LR w.r.t. m• at the 3σ

height and fixed γ•=1.8. This is represented in Fig. 3.4.6 as a function of nobs. Since the max-
imum likelihood estimator is asymptotically normal and efficient (see, e.g., Wasserman, 2004)
it reaches the Cramér–Rao bound in the large nobs limit, so that σm•(nobs)=σ3/

√
nobs, with

σ3'220M�. Assuming crudely that the number of resolved stellar orbits is proportional to the
survey’s bolometric limit, one can directly connect a target accuracy with the survey’s limiting
magnitude. Indeed, the survey’s magnitude would simply read M=−2.5 log10[(σm•/σ3)−2].
Gaining a factor two in the accuracy of the mass (i.e. σm•→σm•/2) would require a survey
that is at least ∆M=−5 log10(2)'−1.5 magnitudes fainter. Undoubtedly, upcoming surveys
of Sgr A?’s stellar neighbourhood, such as GRAVITY+ (Eisenhauer, 2019; Gravity Collab. et al.,
2021), TMT (Do et al., 2019), and ELT/MICADO (Davies et al., 2018; Pott et al., 2018) are on
the verge of putting ever more stringent dynamical constraints on the unresolved dark cluster.
Indeed, the central stellar cusp around Sgr A? is strongly confusion-limited for current observa-
tions on 8-meter class telescopes with adaptive optics. This limits in effect the reliable detection
and measurement of positions of stars to K magnitudes ∼ 16−17.5, i.e. main-sequence B stars.
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Figure 3.4.6: Same as in Fig. 3.4.5, using the same mock data, but with varying numbers of observed stars, nobs.
The top panel shows the evolution of the LR at fixed γ•=1.8, as a function of m•, for various values of nobs. The
vertical green line represents the fiducial parameters of the model,m•=20M�. The horizontal line represents the
value of the LR for a 3σ confidence contour. The bottom panel illustrates the evolution of the accuracy, σm• , of the
inferred IMBH mass as a function of the nobs, and for the 3σ confidence levels. For the modified Top-Heavy model
I used, I expect ∼ 103 stars within 5 and 20 mpc. Of course one does not expect to observe so many stars around
SgrA*, i.e. the asymptote 1/

√
nobs will not be attained, because of crowding and, more importantly, because the

total number of observed S-stars will be much smaller than 5000.

The combination of MICADO and the ELT will push the effective stellar detection sensitivity
by & 5 magnitudes with modest integration times (Fiorentino et al., 2019).

3.5 Concluding remarks

In this chapter, I showed how eccentricity diffusion in galactic nuclei can be used to put con-
straints on the stellar and putative dark clusters present therein. To that end, I used the NR and
RR formalisms developed in chapter 2, and applied them in the context of the Galactic centre.
Due to the overwhelming presence of the SMBH, the system is quasi-Keplerian. This defines
a set of convenient angle-action coordinates which can be used to describe the secular evolu-
tion of the system (section 3.3). The recent observations of the (quasi-)thermal distribution of
eccentricities of the S-stars orbiting Sgr A?, in conjunction with updated computations of the
eccentricity diffusion coefficients, can now be leveraged to this purpose. Investigating a simple
two-population model (section 3.4.1), I showed how the presence of a heavy sub-population,
e.g., IMBHs, can be mandatory to source an efficient enough relaxation of the S-stars’ eccen-
tricities. I jointly showed how only some ranges of dark cusp’s power law indices and masses
are compatible with that same dynamical constraint. Indeed, preliminary observations – such
as the study of the typical diffusion time – had motivated the existence of a heavy unresolved
population (section 3.3.3). In section 3.4, I refined this study by directly integrating forward
in time the Fokker–Planck equation describing the S-cluster’s orbital diffusion. I then applied
a likelihood approach to constrain the background families’ parameters. Assuming that up-
coming experiments will better quantity the properties of the visible cluster, kinetic theory will
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allow for dynamical dark matter experiment to constrain both the typical mass and geometry
of the IMBH cluster.

Finally, a simple fiducial experiment allowed me to quantify the depth that upcoming sur-
veys should achieve in order to, e.g., double the accuracy on the IMBHs’ mass required to
match the data. More generally, my investigation suggests that it will be of interest to lift some
of these dynamical degeneracies, both by increasing the number of measured stellar ages and
better quantifying the mass function and shape of the observed stellar cluster and initial ec-
centricity distribution. Then, kinematic modelling will be able to further focus on dynamically
quantifying the properties of the dark cluster.

3.5.1 Future works

Let me now discuss some venues for future developments. As shown in section 3.4.1, my in-
vestigation relied on various assumptions, some of which one could hope to partially lift. My
models for the old stellar and dark cluster remain simplistic, and it will be worthwhile to in-
vestigate possible contributions from other populations such as a dark matter dominated com-
ponent, or additional populations of IMBHs. Similarly, as already emphasised in eq. (3.3.3), I
assumed that the background cluster is spherically symmetric. Yet, Szölgyén & Kocsis (2018)
recently showed that in systems with a large mass spectrum, e.g., containing IMBHs, one could
expect vector resonant relaxation (VRR) to lead to equilibria distribution where the massive
components follow a strongly anisotropic structure, i.e. aligned within the same disc. Such a
structure could definitely affect the efficiency of eccentricity relaxation within it. Any addi-
tional non-trivial structures present in that PDF, e.g., non-spherically symmetric distributions
or dearth of stars in orbital space, would also have to be explained by the present diffusion
processes. Similarly, on scales even closer to the central BH, one would also have to account for
additional relativistic corrections stemming from it, e.g., effects associated with its spin such as
the Lense-Thirring process (see, e.g., Kocsis & Tremaine, 2015).

Observations show that 7-10% of the starsmay have originated from an infalling population.
These stars display significant rotation (Do et al., 2020) and likely populate a disc. The most
direct impact of that disc would be to induce a mean field torquing on the orbital planes, but it
might also impact later on the eccentricities within the cluster. Recently, Szölgyén et al. (2021)
have investigated this effect numerically and found that the timescale for the eccentricity de-
crease ismuch shorter thanChandrasekhar’s dynamical friction timescale. This supports previ-
ous findings by Madigan & Levin (2012) that RR dynamical friction, driven by orbit-averaged
torques, dominates over ordinary NR dynamical friction, driven by nearby encounters, and
leads to eccentricity decrease for a co-rotating disc.

Themass in the S-star cluster is only a small fraction of the total enclosedmasswithin 1 arcsec
of the central black hole. As such, it is unlikely that the S-cluster itself strongly disturbs the
background stellar distribution. I also assumed here that this background cluster was thermal
(i.e. f(j; a)=2j) hence fully relaxed. In that limit, it does not drive any RR dynamical friction
(Bar-Or & Fouvry, 2018). Should one lift this assumption, a more accurate modelling would
include the coupling between both components of the cluster as a two-population model. This
would require integrating the coupled set of kinetic equations in time (eq. 2.2.35), rather than
relying on a frozen Fokker–Planck approximation for the diffusion coefficient. While this might
be a worthwhile endeavour for upcoming data sets, it is clearly beyond the scope of this first
investigation.

When modelling the S-stars’ dynamics, I assumed that the smas of the stars were fixed
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throughout the diffusion, owing to the orbit-average. While accounting for the contributions
from the NR diffusion coefficients in a, it could be interesting to investigate whether any ad-
ditional diffusion in a-space would affect the present constraints. As already noted, the initial
conditions of the S-stars, e.g., very eccentric vs. quasi-circular, strongly affect the efficiency of
their eccentricity relaxation (see Fig. 3.4.4). In particular, I expect that the distribution of the
S-stars in smas also carries some information on their initial formation mechanism.

Here, I focused my interest on the innermost S-stars (a'5 mpc), which are known to have
partially relaxed in eccentricity (Gillessen et al., 2017). This allowed me to place constraints
on cluster models so that admissible clusters have to source an eccentricity diffusion that is
fast enough. One could use a similar approach to investigate the relaxation of S-stars further
out. These outer stars have only very partially relaxed in eccentricity, so that any admissible
cluster model must source a diffusion that is slow enough for these outer regions not to have
fully relaxed. Leveraging both constraints, one should be in a position to effectively bracket
cluster models, given that their induced diffusion must be both efficient enough in the inner
regions, and inefficient enough in the outer ones. A same double-sided investigation could also
be carried out in the context of the VRR of the same S-stars. Indeed, it has been observed that
the innermost stars follow a spherically symmetric distribution, while the outer ones tend to
be aligned within a disc (Bartko et al., 2009; Yelda et al., 2014), i.e. orientation neighbours have
not been separated (Giral Martínez et al., 2020). Once again, simultaneously accounting for all
these dynamical constraints will allow for better characterisations of Sgr A?’s dark and visible
structures. Recently, Fouvry et al. (2022) used the VRR formalism to constrain the parameter
space of the class of Top-Heavy families studied in this chapter. They found constraints roughly
corresponding with those presented in this chapter (Fig. 3.5.1). The survival of the observed

m
•/
m

★

m★ [M⊙]

Figure 3.5.1: From fig. 5 of Fouvry et al. (2023). The constraints obtained through the use of the VRR formalism
(coloured contours) roughly correspond to those obtained by the orbit-averaged RR prediction (hashed region)
in Fig. 3.4.4 (see bottom right panel). The offset between the two predictions could be linked, for example, to the
differences between the hypotheses of the two formalisms. Here, the existence of IMBHs is very unlikely, as objects
that massive in the background would drive a relaxation incompatible with the observations of Sgr A?’s disc.

Sgr A?’s stellar disc enforces a background population with very small individual masses. This
rejoins the observation made in Fig. 3.4.4 (right panels) for an in-situ formation scenario, and
seems to disfavour the possible presence of IMBHs in the Galactic centre. A recent study of S2’s
orbit seems to go in the same direction, showing that the presence of a large IMBH within S2’s
orbit is unlikely (Gravity Collab. et al., 2023).

Finally, future observations will undoubtedly prove useful in placing these investigations on
firmer grounds. A possible observation from GRAVITY of stars on scales even smaller than S2
would carry essential information on Sgr A?’s stellar structure on smaller scales, i.e. closer to
the central BH (Gravity+ Collab. et al., 2022). On larger scales, one expects that observations
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fromupcoming thirty-meter telescopes (Do et al., 2019)will allow for a finer characterisation of
the S-stars’ current distribution, P (a, j, t), a very valuable dynamical information as shown in
section 3.4.4. In particular, the dependence of P w.r.t. a is strongly dependent on the formation
mechanism of these stars. Regarding the dependence w.r.t. j, one could in particular hope
to measure the scale, i.e. the a, at which the S-stars diffuse less and less efficiently towards a
thermal distribution of eccentricities, hence strongly constraining the efficiency of the diffusion
mechanisms. I note that the present maximum likelihood formalism can naturally be extended
to account for the measurement uncertainties, such as uncertainties on stellar ages. Eventually,
this line of investigation should prove useful in constraining SMBH formation scenarii, possibly
jointly with core collapse predictions for massive stellar clusters as investigated in the next
chapter.



Appendices of chapter 3

3.A Numerical implementation of the RR coupling coefficients K`
kk′

Let me detail the numerical implementation of the pairwise in-plane coupling coefficients from
eq. (3.3.9). The naive implementation has a quadratic complexity in O(K2), where K is the
number of sampling nodes. Indeed, its expression reads

K`
kk′(a, L, a

′, L′) =

∫ 2π

0

dM

2π

∫ 2π

0

dM ′

2π

min(r, r′)`

max(r, r′)`+1
cos(kf) cos(k′f ′), (3.A.1)

where f is the Keplerian true anomaly and M the mean anomaly. First, I note that since
M 7→ r(M) and M 7→ f(M) are even functions, the ranges of the angular integrals can be re-
duced toM,M ′ ∈ [0, π]. Moreover, in order not to have to invert Kepler’s equation of motion,
it is appropriate to perform the average from eq. (3.A.1) w.r.t. the true anomaly. I recall that
the radius r is obtained from the true anomaly f (see, e.g., Murray & Dermott, 2000, for a more
complete description of the Keplerian anomalies) as

r =
a(1− e2)

1 + e cos f
. (3.A.2)

Finally, the mappingM 7→ f is characterised by the Jacobian

dM

df
=

(
R

a

)2 1√
1− e2

. (3.A.3)

Following these changes, I can rewrite eq. (3.A.1) as

K`
kk′(a, L, a

′, L′) =

∫ π

0

df

π

∫ π

0

d f ′

π

dM

df

dM ′

df ′
min(r, r′)`

max(r, r′)`+1
cos(kf) cos(k′f ′). (3.A.4)

Computing efficiently the interaction coefficients involves computing efficiently the double in-
tegral from eq. (3.A.4).

Letme nowdetail this approach. I sample uniformly the integration interval fromeq. (3.A.4)
usingK nodes. Specifically, I sample the true anomaly with

fn = δf (n− 1
2) with δf =

π

K
and 1 ≤ n ≤ K. (3.A.5)

Following this discretisation, eq. (3.A.4) becomes

K`
kk′ =

1

K2

∑
i,j

g(ri) g(rj)
min(ri, rj)

`

max(ri, rj)`+1
; with g(r) =

dM

df
cos(kf). (3.A.6)

75



76

A naive glance at eq. (3.A.6) would suggest that computing eq. (3.A.6) requires the evaluation
of O(K2) terms. Luckily, I can use the particular structure of the terms summed in eq. (3.A.6)
to drastically accelerate this computation. To do so, I sort the set of radii {ri, rj} by increasing
order. I note that this can be done inO(K) steps, provided that the sets {ri} and {rj} are already
ordered, so that it only remains to merge the two lists.

Following this ordering, I can then construct the array wj , for 1 ≤ j ≤ K, defined as

wj = Number of radii ri that satisfy ri ≤ rj . (3.A.7)

where the boundary terms are given byw0 =0 andwK+1 =K. The double sum from eq. (3.A.6)
can then be rewritten as

K`
kk′ =

1

K2

K∑
j=1

gj
{
Pj +Qj

}
, (3.A.8)

where I used the shortened notation gi=g(ri) and gj =g(rj), and introduced the reduced sums
Pj and Qj , with 1 ≤ j ≤ K, as

Pj =

wj∑
i=1

gi
r`i
r`+1
j

; Qj =

K∑
i=wj+1

gi
r`j

r`+1
i

. (3.A.9)

Interestingly, the sum Pj (resp.Qj) can be computed linearly in time, through an increasing
(resp. decreasing) recurrence. To highlight this property, let me define the partial sums, for
1 ≤ j ≤ K,

δPj =

wj∑
i=wj−1+1

gi
r`i
r`+1
j

; δQj =

wj+1∑
i=wj+1

gi
r`j

r`+1
i

. (3.A.10)

It is then important to note that the sum P satisfies the increasing recurrence relation

P1 = δP1 ; Pj+1 = z`+1
j Pj + δPj+1 , for 1 ≤ j < K, (3.A.11)

where I introduced the ratio

zj =
rj
rj+1

, for 1 ≤ j < K. (3.A.12)

Similarly, the sum Q satisfies the decreasing recurrence relation

QK = δQK ; Qj−1 = z`j−1Qj + δQj−1 for 1 < j ≤ K. (3.A.13)

As a conclusion, owing to these recurrence relations, the discrete sum from eq. (3.A.8) can
be computed in O(K) operations. Moreover, I note that the prefactors appearing in the re-
currence relations from eqs. (3.A.11) and (3.A.13) are always smaller than unity, which helps
making the recurrence relations numerically stable. Finally, in eq. (3.A.8), having the discrete
samples separated by a constant step allows me to benefit from the very fast convergence of the
trapezoidal rule for the computation of periodic functions (Trefethen & Weideman, 2014).
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3.B Resonance condition

In the vicinity of a supermassive BH, Keplerian wires undergo an in-plane precession of their
pericentres, as described by eq. (3.3.6). In that relation, the relativistic precession is given by
(see, e.g., Hartle, 2003)

ΩGR(a, j) = 3
rg

a

1

j2
ΩKep(a), (3.B.1)

where I introduced the (fast) Keplerian frequency, ΩKep(a), in eq. (3.1.1), as well as the grav-
itational radius rg =GM•/c

2. In practice, this precession is said to be prograde as one always
has ΩGR(a, j)>0. The gravitational radius allows me to introduce a maximal eccentricity

jlc(a) = 4
√
rg/a, (3.B.2)

so that wires with j≤jlc(a) are assumed to be within the loss cone (Merritt, 2013), and as such
are unavoidably absorbed by the central BH.

In order to compute Ω?(a, j), I assume that the stellar cluster follows an infinite power-law
distribution of the formM(<a)∝a3−γ , whereM(<a) stands for the total stellarmass physically
enclosed within the radius a (see section 3.4.1). In that limit, following appendix A of Kocsis
& Tremaine (2015), the mass precession frequency reads

Ω?(a, j) = Ω?(a)hM(j), (3.B.3)

where the dimensional dependence w.r.t. a is captured by

Ω?(a) = ΩKep(a)
M(< a)

M•
, (3.B.4)

while the dimensionless eccentricity dependence is given by

hM(j) =
j4−γ

1− j2

[
P1−γ(1/j)− 1

j
P2−γ(1/j)

]
, (3.B.5)

with Pα the Legendre function of order α. In practice, near the edge j=1, I note that hM(j) can
be advantageously replaced with its Taylor expansion

hM(j) ' 1
2(−3 + γ)− 1

8(−12 + γ + 4γ2 − γ3)(1− j), (3.B.6)

to avoid singularities.

Importantly, note that the function hM(j) is always negative for γ < 3. Indeed, following
eq. (A2) of Kocsis & Tremaine (2015), I can rewrite eq. (3.B.5) with the alternative integral
form

hM(j) =
j2(3−γ)

π
√

1− j2

∫ π

0
dψ

cosψ

(1 + e cosψ)3−γ (3.B.7)

=
j2(3−γ)

π
√

1− j2

∫ π/2

0
dψ cosψ

(
1

(1+e cosψ)3−γ −
1

(1−e cosψ)3−γ

)
,

which is explicitly negative for any potential satisfying 3−γ>0. As a consequence, the mass
precession is generically retrograde, i.e. one has Ω?(a, j)≤0.
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Now, in order to compute the resonant diffusion coefficients from eq. (3.3.4), I must solve the
resonance condition from eq. (3.3.5). For a given wire (a, j), and a given resonance pair (k, k′),
this involves characterising all the wires (a′, j′) such that k′ΩP(a′, j′)=kΩP(a, j), i.e. identifying
the appropriate level lines in Fig. 3.3.1.

Let me briefly detail my implementation for the search of the resonant lines. Here, the key
remark is to note that, following eqs. (3.B.1) and (3.B.5), I always have ∂ΩP/∂j<0. As a con-
sequence, for a given value of a′, it is straightforward to determine whether or not there exists
a j′, with jlc(a′)≤j′≤1, and k′ΩP(a′, j′)=kΩP(a, j). Using this approach, I may then identify a
domain a′min≤a′≤a′max, within which the resonance condition can be satisfied, by solving ap-
propriately the resonance conditions along the critical lines j=jlc(a) as well as along j=1. At
this stage, I also enforce that 16 rg≤a′min (see eq. 3.B.2) as well as a′max≤rh, with rh the consid-
ered influence radius (e.g., rh =2pc for Sgr A?), to ensure that I limit myself only to meaningful
resonant regions of orbital space.

Once the range [a′min, a
′
max] has been determined, to emphasise the system’s partial scale-

invariance, I sample this domain of smas linearly in log-space, using Kres =100 points. Finally,
for a given value a′ such that a′min≤a′≤a′max, the associated resonant value j′ is directly ob-
tained by bisection. For models with γ<1.5, it may happen that a 7→ ΩP(a, j) is not monotonic
anymore for j close to 1 (circular orbit), leading to the appearance of a second range of smas
over which the resonance condition is satisfied. When this is the case, I accordingly sample this
domain using the same method.



Chapter 4

Core collapse of anisotropic spheres

The work presented in this chapter is based on Tep et al. (2022).

4.1 Introduction

Understanding the long-term evolution of globular clusters is a long-standing problem in stel-
lar dynamics (Hénon, 1961; Harris & Racine, 1979; Spitzer, 1987). Not only is the dynamics
of globular clusters (Fig. 4.1.1) interesting per se (see, e.g., Lightman & Shapiro, 1978; Harris,
1991; Meylan & Heggie, 1997; Brodie & Strader, 2006), but it is also the archetype for the relax-
ation of a (weakly) collisional self-gravitating system with a simple integrable configuration
(see, e.g., Chavanis, 2013a, for a review). Historically, their study is often done under a set
of very crude approximations, including in particular isotropy, spherical symmetry and lack
of rotation. In Chandrasekhar (1943)’s picture, the velocity of a given test star undergoes a
series of weak, local, and uncorrelated kicks from each field star it encounters, a process that I
coined NR theory (see section 2.3.2). Once these deflections accumulated along the stars’ un-
derlying unperturbed orbits, the NR theory yields the classical picture for long-term relaxation
in spherical clusters (Heggie & Hut, 2003). In practice, the NR theory is straightforward to
implement for isotropic clusters and has been extensively used to describe their long-term evo-
lution (see, e.g., Vasiliev, 2015, for a review). This approach was recently generalised via the
(inhomogeneous) Balescu–Lenard equation (Heyvaerts, 2010; Chavanis, 2012) to account for
gravitational wakes and large-scale resonances within globular clusters (Hamilton et al., 2018;
Fouvry et al., 2021). Overall these non-local effects were, somewhat surprisingly, found to be
of small importance for such isotropic spheres.

However, with the development of more realistic numerical simulations, as well as detailed
observations, it has become apparent that the dynamical evolution of collisional systems can be
affected by anisotropy (Baumgardt et al., 2004), which may be both evolutionary or primordial
(Vesperini et al., 2014), and rotation (see, e.g., Hachisu, 1979). In addition, anisotropy can be
naturally generated by a star cluster’s evolution (Hénon, 1971; Spitzer & Shapiro, 1972), with
the formation of an isotropic core and an anisotropic stellar halo (see, e.g., Breen et al., 2017,
for further references). Afternatively, Longaretti & Lagoute (1997), Kim et al. (2008) andHong
et al. (2013) studied the impact of rotation on globular clusters using N -body simulations and
Fokker–Planck models. They concluded that core collapse was accelerated in clusters with a
non-zero total angular momentum. This phenomenon, analogous to the gravothermal catastro-
phe of non-rotating globular clusters, is known as the gravo-gyro catastrophe. I will discuss this

79
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Figure 4.1.1: Photography of the heart of the globular cluster NGC 6638, taken by the HST. Globular clusters
contain hundreds of thousands of stars held together tightly by gravity in a very small region of order 1pc3. One
can observe a high concentration of stars in that region.

phenomenon in more details in chapter 5.

As one moves away from isotropy, one could expect that more coherent motions within the
cluster could affect its long-term evolution. In this chapter, I wish to quantify the extent to
which the NR theory still applies for such systems. For non-rotating, but anisotropic clusters,
Hénon (1973) devised an orbit-averaged Fokker–Planck equation to integrate self-consistently
the evolution of a spherical star cluster. In that approach, the velocity diffusion coefficients are
computed using a pseudo-isotropic distribution function: at a fixed radius, the test star is scat-
tered by a locally isotropic background of perturbers. This approach was further refined in the
Fokker–Planck simulations of Drukier et al. (1999) to carefully treat the effects of velocity-space
anisotropy. More recently, Breen et al. (2017) used directN -body simulations to investigate the
relaxation of isolated equal-mass star clusters, primarily focusing on the effects of primordial
velocity anisotropies. Interestingly, core collapse is found to be swifter as the model becomes
more and more tangentially anisotropic. This can be probed by following the evolution of the
core radius Rc (Fig. 4.1.2), defined by

R2
c =

N∑
i=1

ρ2
i r

2
i

/ N∑
i=1

ρ2
i , (4.1.1)

where ρi is the stellar density at the position ri of the star i.

In this chapter, I will apply the NR formalism presented in chapter 2 to spherically symmet-
ric, anisotropic isolated globular clusters. I will be facedwith a few newdifficulties to overcome
in order to numerically compute the rate of orbital diffusion. First, I will describe the Plummer
cluster in section 4.2 and detail the computation of the useful orbital parameters in section 4.3.
Then, I will perform a series of N -body simulations in section 4.4 and solve various technicali-
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Figure 4.1.2: Ensemble-averaged evolution of the cluster’s core radius (eq. 4.1.1) as a function of time from direct
N -body simulations, where I varied the anisotropy parameter q (present in the DF , see eq. 4.2.3). Larger negative
values of q, i.e. more tangentially anisotropic clusters, are unambiguously associated with a faster initial evolution.

ties arising from their treatment. I will also compute in section 4.5 theNR prediction for the rate
of orbital diffusion. To achieve this goal, I will define a well-chosen anomaly to perform a nu-
merically stable orbit-averaging and compute the NR diffusion rate in an action space tailored
for this self-gravitating system. When compared to theN -bodymeasurements, I will showhow
the two predictions match relatively well, up to some limits that I shall discuss in section 4.5.3.
In addition, in section 4.6, I will compare the fully anisotropic prediction to a pseudo-isotropic
prediction proposed by Cohn (1979), and show the limitations of this approach. Finally, I will
explore the links between the RR and the NR approximations in section 4.7, and discuss the
physical meaning of the Coulomb logarithm.

4.2 The Plummer cluster

Various models have been used to model globular clusters (see, e.g., King, 1966; Wilson, 1975).
In my work, I will use the Plummer model (Plummer, 1911), which was shown in the past to
provide a good match to observations. Even though better suited models have been used since
then (see, e.g., Bertin & Varri, 2008; Webb et al., 2023), the Plummer model retains a theoretical
interest. Aswill be apparent later on, it will allowme to compute numerically stable predictions
for the NR theory, by allowing for numerous analytical formulae.

The gravitational potential of the Plummer model reads

ψ(r) = − GM√
r2 + b2

, (4.2.1)

withM the cluster’s totalmass and b the Plummer scale radius. In the following, if not specified,
I will use physical units, so that G=M=b=1. I consider a cluster composed of N = 105 stars.
FollowingGiersz&Heggie (1994), the value of theCoulomb logarithm is set to ln Λ=ln(0.11N)

(see chapter 2).

One of themain difficulties of theNR theory is to obtain the DF associatedwith the potential
ψ(r). For an isotropic cluster, this can be done by using Eddington’s inversion (Eddington,
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1916). The analytical computation yields the unique associated isotropic DF

Ftot(E) =
3

7π3

M

(GMb)3/2
(2Ẽ)7/2, (4.2.2)

where Ẽ =−bE/(GM) =E/E0 is a reduced energy. However, for anisotropic clusters, the in-
version is more challenging. In mywork, I will consider the family of DFs derived by Dejonghe
(1987). They read

Ftot(E,L; q) =
M

L3
0

3 Γ(6−q) Ẽ7/2−q

2(2π)5/2
Hq

(
L̃2

2Ẽ

)
, (4.2.3)

where q controls the flavour and degree of anisotropy in the cluster (see Fig. 4.2.1) and I intro-
duced a reduced angular momentum L̃=L/

√
GMb=L/L0. This parametrisation allows me to

study all types of anisotropies (from radial q > 0 to tangential q < 0) by simply varying the
continuous parameter q, as shown by the anisotropy parameter (Fig. 4.2.1) defined by (Breen
et al., 2017)

β(r) = 1− σ2
t

2σ2
r

=
q

2

r2

r2 + b2
. (4.2.4)

While Plummer clusters are always isotropic at their centre, their velocity anisotropy is felt as

Figure 4.2.1: Anisotropy parameter β(r) (eq. 4.2.4) of the considered equilibriumDFs as a function of the radius,
in physical units b = 1. Here, q = 0 stands for the isotropic equilibrium while q < 0 (resp. q > 0) are tangentially
(resp. radially) anisotropic equilibria. Plummer clusters are isotropic in their centre, and velocity anisotropy begins
to appear as one gets away from it. If a cluster is more anisotropic, then its anisotropywill be felt closer to the centre.

one gets further away from it. I also introduced the function

Hq(x)=


2F 1(1

2q, q−
7
2 , 1;x)

Γ(9
2−q)

if x ≤ 1,

2F 1(1
2q,

1
2q,

1
2(9−q); 1/x)

Γ(1− 1
2q)Γ(1

2(9−q))
1

xq/2
if x ≥ 1,

(4.2.5)

with 2F 1 the hypergeometric function and Γ the Gamma function. In Fig. 4.2.2, I illustrate the
reduced DF, F =

∫
dLz Ftot = 2LFtot, in action space for various anisotropies.
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Figure 4.2.2: Illustration of the reduced DF, F = 2LFtot, for a radially anisotropic distribution (q = 1, left), an
isotropic one (q= 0, middle), and a tangentially anisotropic one (q=−6, right). The radially (resp. tangentially)
anisotropic DF shows a higher concentration of radial (resp. tangential) orbits, i.e. orbits with small L (resp. small
Jr).

4.3 Computing the orbital parameters

Before turning to the study of anyNRprediction (section 2.3.3) orN -bodymeasurement, letme
present in this section the relevant orbital parameters. Indeed, the velocity diffusion coefficients
are functions of the local parameters r, vr and vt (eqs. 2.3.31 and 2.3.32). The Fokker–Planck
equation is also a function of the integrals of motion Jr and L (eq. 2.3.34). Thus, I need to relate
these two sets of parameters.

4.3.1 Position-velocity space to/from energy-angular momentum space

Let me consider a bound orbit with energy E < 0 and angular momentum L. Its radial motion
is given by the conservation equation

E = ψ(r) +
v2
r

2
+
L2

2r2
, (4.3.1)

where its radius r is contained between its boundaries – pericentre and apocentre rp, ra – set by
vr=0. Now, define the radial coordinate s through the relation s2 =1 + (r/b)2. Equation (4.3.1)
can be easily expressed w.r.t. the s-coordinate, whose inverse is given by r2 =b2(s2 − 1). There-
fore, it is equivalent to look for the s-boundaries (sp, sa), which are solution to the equation of
conservation

E =
E0

s
+

L2

2b2(s2 − 1)
. (4.3.2)

Equation (4.3.2) is equivalent to the polynomial equation

Ẽs3 − s2 +

(
L̃2

2
− Ẽ

)
s+ 1 = 0. (4.3.3)

The two roots can then be found by bisection. Additionally, I can compute analytically the value
of the circular angular momentum Lc(E). This is done in appendix 4.B. It is then straightfor-
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ward to recover (E,L) from (rp, ra) (Lynden-Bell, 2015)

E =
r2

pψ(rp)− r2
aψ(ra)

r2
p − r2

a

; L =

√
2(ψ[ra]− ψ[rp])

r−2
p − r−2

a
, (4.3.4)

which in the specific case of a Plummer sphere can be simplified into the expressions

E =
E0

sp
+

E0(s2
a − 1)

sasp(sa + sp)
; L = L0

√
2(s2

p − 1)(s2
a − 1)

sasp(sa + sp)
. (4.3.5)

These two expressions are well-posed and numerically stable, even for circular and/or radial
orbits.

4.3.2 Energy-angular momentum space to/from action space

Computing the radial action is straightforward for any spherically symmetric potential. In prac-
tice, it can be rewritten in terms of an effective anomaly u

Jr(E,L) =
1

π

∫ ra

rp

dr vr =
1

π

∫ ra

rp

dr

vr
v2
r =

1

π

∫ 1

−1
duΘ(u) v2

r (r[u]), (4.3.6)

where v2
r (r)=2(E − ψ[r])− L2/r2 and Θ(u) = (dr/du)(1/vr) is the Jacobian of the change of

variables r 7→ u (computed explicitly in eq. 4.5.1 for the Plummer cluster). However, the com-
putation of the derivatives of Jr w.r.t. E and L is more subtle. One can write

∂Jr

∂E
=

1

π

∫ ra

rp

dr

vr
=

1

π

∫ 1

−1
duΘ(u), (4.3.7a)

∂Jr

∂L
= −L

π

∫ ra

rp

dr

r2vr
= −L

π

∫ 1

−1
du

Θ(u)

r2(u)
. (4.3.7b)

While the first expression is well-defined for any kind of orbits, the second one appears to be
ill-defined for radial orbits, though one can infer that it tends to −1/2 when L → 0+ (Binney
& Tremaine, 2008). For this reason, I must take extra care when computing the L-derivative –
even with the effective anomaly – by using a particular integration scheme when L is too close
to 0 (see appendix 4.C for more details).

Taking the second derivativewithin the integral is – in both cases – not possible for the radial
expression of eqs. (4.3.7), because the derivative of the integrand is not integrable. However,
using the effective anomaly makes it possible to differentiate the integrand and still obtain an
integrable expression (see appendix 4.C).

Now, it remains to invert the transformation (E,L) 7→ (Jr, L). This is done using a bisection
method with some restrictions to stay within the authorised (E,L) region (see appendix 4.A).

4.4 N-body simulations

I performed the numerical simulations presented throughout this chapter using the direct N -
body code NBODY6++GPU (Wang et al., 2015), version 4.1. The initial conditions I used for the
anisotropic Plummer spheres (see eq. 4.2.3 and Fig. 4.2.2)were generated from PlummerPlus.py
(Breen et al., 2017), while I used the same input file as in appendix H1 of Fouvry et al. (2021).
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q 1 0 -6 -16 -30
Nrun 100 100 100 50 50

tlast[HU] 1000 1000 100 100 100
(NJr , NL) (20,15) (20,20) (20,20) (70,70) (70,70)

(Jmin
r , Jmax

r ) (0, 0.55) (0, 0.55) (0, 0.6) (0, 0.6) (0, 0.6)
(Lmin, Lmax) (0,1.05) (0,1.05) (0,1.1) (0,1.1) (0,1.1)

Table 4.1: Detailed parameters for theN -body simulations and the associated binning of action space. Following
eq. (4.4.12), I bin the J = (Jr, L) action space in NJr × NL uniform bins within the domain Jmin

r ≤ Jr ≤ Jmax
r

(similarly for L). All quantities are in physical units G=M=b=1 if not stated otherwise.

Internally, NBODY6++GPU uses Hénon units (HU) (Hénon, 1971), defined such that the physical
constants are set to G=M=Rv =1 HU, with Rv the cluster’s virial radius.

For the Plummer potential from eq. (4.2.1), one readily findsRv/b=16/(3π) (see, e.g., tab. 1
p. 81 in Heggie & Hut, 2003). Each N -body realisation is composed of N = 105 stars and
integrated up to tmax =1 000 HU with a dump every ∆t=1 HU. On a 40-core node with a single
V100 GPU, one simulation typically required∼ 24 h of computation. In practice, I consider
anisotropies set by q = 1, 0,−6,−16,−30 and, depending on the values of q, performed either
Nrun = 50, 100 independent realisations, as spelled out in Tab. 4.1. This was made possible
thanks to my continuous access to the Infinity cluster which hosts seven such GPUs. In the
end, it allowed me to compare the ensemble averaged kinetic theory to the ensemble average
of Nrun simulations.

4.4.1 Finding the cluster’s centre

N -body simulations give me access to the time evolution of a self-gravitating system. How-
ever, various technical difficulties come with their analysis. In this chapter, I am interested in
the evolution of the DF in action space. Therefore, I need to compute the radial action Jr and
the angular momentum L of every star. These quantities require the computation of the in-
stantaneous potential of the system ψ(r), as well as the positions and velocities (r,v) of every
star.

In practice, I need to define a frame to compute the numerical values of the position-velocities
of the stars. The computation of ψ(r) supposes that I have set this frame so that r= 0 is at the
centre of the cluster. In addition, I also need to centre the velocity of the cluster, which is trivially
done by subtracting from the velocity the barycentre velocity.

Therefore, I must centre the cluster. Because I expect that the centre of the cluster should
correspond the location with maximum density, I must build an estimator biased by star den-
sity. Following Casertano & Hut (1985), let me first define a density estimator. Consider a star
in the cluster. I label "1" its nearest neighbour, "2" its second nearest, ..., k its k-th nearest, and
so on (see Fig. 4.4.1). I let rk be the distance between star k and the considered star. Then, the
enclosed volume up to star k is given by V (rk) = 4πr3

k/3. I can now define the density estimator
of order k

ρk =
k − 1

V (rk)
m. (4.4.1)

It can be shown that 〈ρk〉(r) = ρ(r), and that this estimator is unbiased (Casertano&Hut, 1985).
The average is to be understood in the sense that this estimator gets better as one increases the
number of stars N . On the one hand, increasing the number of neighbours k reduces fluctu-
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Figure 4.4.1: From fig. 3 of Casertano & Hut (1985). Representation of the sphere used in the local density
estimator. The centre C might or might not coincide with a star. Distance to the third-nearest neighbour of C
defines here the radius of the sphere.

ations. On the other hand, in order to retain locality, k should not be too large w.r.t. N . The
compromise that is usually taken is the value k = 6. Using this estimator, I can now define the
density centre

rd =
N∑
i=1

riρ
(i)
k

/ N∑
i=1

ρ
(i)
k , (4.4.2)

where ρ(i)
k is the density estimator of order k for the ith star. In order to centre the positions of

the cluster, I can now subtract the density centre from the stars’ positions.

4.4.2 Evolution of the potential

In Fig. 4.4.2, I represent the sphericality for a variety of anisotropic clusters w.r.t. time. As de-

Figure 4.4.2: Time dependence of the cluster sphericality j for various anisotropies. As detailed in appendix 4.D,
the closer to 1 the sphericality, the more spherical the cluster is. The typical value of j is ∼ 0.996, i.e. the clusters
stay close to spherical symmetry throughout their relaxation.

tailed in appendix 4.D, this quantity is the ratio between the eigenvalues of an inertia-like tensor,
and therefore is used to probe how spherical the cluster is. In particular, the closer it is to 1,
the more spherical the cluster is. Using these properties, Fig. 4.4.2 shows that the systems stay
spherically symmetric. Therefore, I can assume that the density and the gravitational poten-
tial depend only on radius. In particular, these two quantities are related through the relation
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(Hénon, 1971)

ψ(r, t) = −4πG

∫ ∞
0

dr′
r′2ρ(r′, t)

max(r, r′)
= −GM(< r)

r
− 4πG

∫ ∞
r

dr′ r′ρ(r′, t), (4.4.3)

where M(< r) is the mass within the sphere of radius r. For a discrete system of N stars of
individual massm=M/N , its instantaneous radial mass density is given by

n(r) =
N∑
i=1

miδD(r − ri), (4.4.4)

where the ith particle is at radius ri and has mass mi and I have ordered the particle radii
r1 ≤ r2 ≤ ... ≤ rN . Therefore, for rk ≤ r < rk+1, I have

ψ(r) = G

(
− 1

r

k∑
i=1

mi −
N∑

i=k+1

mi

ri

)
, (4.4.5)

with the conventions r0 =0 and rN+1 =∞. This formula allows me to compute the potential by
recursion (Fig. 4.4.3) using the formulae (Hénon, 1971)

Figure 4.4.3: Comparison between the mean field Plummer potential ψ(r) as given by eq. (4.2.1) (full black line)
to the numerical reconstruction of itsN -body realisation (dashed red line) at the initial time for a single realisation.
The reconstruction of the potential is in close agreement with the theoretical value.

ψN+1 = 0,

MN = M,

ψk = ψk+1 −GMk(1/rk − 1/rk+1),

Mk−1 = Mk −mk,
(4.4.6)

where ψk is the potential at rk,Mk=M(≤ rk) themass within the sphere of radius rk. It follows
that the potential is given by

ψ(r) = ψk +
1/rk − 1/r

1/rk − 1/rk+1
(ψk+1 − ψk), (4.4.7)

where rk < r ≤ rk+1.
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4.4.3 Computing the simulation’s actions

Now that I can evaluate the cluster’s potential ψ(r) at any time, I can compute the stars’ orbital
parameters to study their evolution. Let me consider a star with the (centred) position r and
velocity v. Its energy is given by E = ψ(r) + v2/2 and the norm of its angular momentum is
given by L = |r × v|. In order to determine the bounds of its radial motion, I must solve the
radial equation

E = ψ(r) +
L2

r2
. (4.4.8)

This has two solutions rp and ra (see section 4.3.1). I can compute the radial actions with the
expression

Jr =

∫ ra

rp

dr′
√

2(E − ψ[r′])− L2/r′2. (4.4.9)

Finally, I can estimate the discrete DF in action space of one simulation by taking

Fd(J , t) =
Mn(J , t)

(2π)3δJrδL
. (4.4.10)

Here, I defined δJr the size of the Jr bins and δL the size of theL, while the star number density
is given by

n(J , t) =
stars in [Jr − 1

2δJr, Jr + 1
2δJr]× [L− 1

2δL, L+ 1
2δL]

total number of bound stars
. (4.4.11)

Then, I estimate the time derivative via

∂Fd

∂t
(J , t = 0) ' Fd(J , tlast)− Fd(J , t = 0)

tlast
. (4.4.12)

Increasing the number of realisations and averaging over them, I can estimate the DF by using
the discrete one, since the ensemble average obeys 〈Fd〉=F .

4.5 Non-resonant relaxation

As a result of the cluster’s finite number of constituents, a given test star of massm and velocity
v, embedded in such a noisy environment will irreversibly see its velocity diffuse. This long-
term relaxation is driven by pairwise encounters, which I calledNR theory in section 2.3.2. Both
assumptions (local and uncorrelated encounters) used in the NR theory are strictly speaking
not satisfied, as can be seenwithin the RR framework (section 2.3.1). It turns out to be nonethe-
less a fairly good approximation in practice.

4.5.1 Orbit averaging and diffusion coefficients

Assuming that the deflection is local and following section 2.3.2, the test star’s velocity will
locally diffuse according to the first- and second-order velocity diffusion coefficients given by
eqs. (2.3.17). While fully generic, eqs. (2.3.17) are typically further simplified by assuming
spherical symmetry and a locally isotropic velocity distribution (see, e.g., Hénon, 1958). In
that limit, one imposes Ftot(r,v) = Ftot(r, v), with v = |v|, r = |r|, and all the integrals from
eq. (2.3.17) become one-dimensional. In this chapter, following section 2.3.3, I will consider the
fully anisotropic case. This will allow me to compute a theoretical prediction of the relaxation
in anisotropic Plummer spheres.
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Because I consider a system without rotation, the angle-dependency in eq. (2.3.21) can be
integrated over, and I am left with an average over the radial motion of the form

DX(J) =
2

Tr

∫ ra

rp

dr

vr
〈∆X〉(r,J). (4.5.1)

Now, let me introduce an effective anomaly u in order to rewrite the orbit-average into the form

DX(J) =
2

Tr

∫ 1

−1
duΘ(u,J)〈∆X〉(r[u,J ],J), (4.5.2)

where r= r(u), Θ(u,J) = (dr/du) 1/vr and Tr is the radial period. My motivation is the exis-
tence of such a nicely behaved anomaly in other types of stellar systems, including theKeplerian
systemor the isochrone cluster (Fouvry et al., 2021). Taking inspiration fromHénon (1971) and
Fouvry et al. (2021), I chose an effective anomaly of the form r(u)=b

√
s2(u)− 1, where

s(u) = a
(
1 + ef [u]

)
, with f [u] = u

(
3
2 −

1
2u

2
)
. (4.5.3)

Here, I have defined an effective semi-major axis a and an effective eccentricity e by

a =
sa + sp

2
, e =

sa − sp

sa + sp
. (4.5.4)

I provide a way to compute the bounds (sp, sa) in section 4.3, along with other useful orbital
parameters.

Using these formulae and feeding them into the Θ(u), I obtain after simplification

Θ(u) =
dr

du

1

vr
=

1

Ω0

3

4
√

2

√
sasp(sa + sp)
√

4− u2

A(u)3/2√
saspA(u) + B(u)

, (4.5.5)

where I defined the frequency scale Ω0 =
√
GM/b3 and the functions

A(u) = sp(u+ 2)(u− 1)2 − sa(u− 2)(u+ 1)2, (4.5.6a)
B(u) = sp(u3 − 3u+ 6)− sa(u3 − 3u− 6), (4.5.6b)

which are always positive. Under this form, Θ(u) is not singular, and neither are the orbit-
averaging integrands. Similarly, the radial half-period is now given by

Tr(J)

2
=

∫ 1

−1
duΘ(u,J). (4.5.7)

Using this effective anomaly allows me to replace any expression involving dr/vr with its reg-
ular counterpart duΘ(u). While the radial integrand (r-integral of eqs. 4.3.7) is not differen-
tiable, the u-one is (u-integral of eqs. 4.3.7). This is important as it allows me to differentiate
these expressions (see appendix 4.C).

4.5.2 Global relaxation

In this chapter, my goal is to investigate the impact of velocity anisotropy on a cluster’s relax-
ation. Using direct N -body simulations, detailed in section 4.4, I illustrated this dependence
in Fig. 4.1.2 with the evolution of the cluster’s core radius as I vary q. As already pointed out
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Figure 4.5.1: Ensemble-averaged evolution of the mean angular momentum norm, 〈L〉 (eq. 4.5.8), rescaled
by its initial value 〈L〉(0), as one varies the anisotropy parameter q, from N -body measurements. Clusters
isotropise throughout their relaxation, i.e. 〈L〉 increases for radially anisotropic clusters and decreases for tangen-
tially anisotropic ones. In addition, for q < 0, the stronger the tangential anisotropy, the faster the initial isotropisa-
tion.

in Breen et al. (2017) (fig. 4 therein), the more tangentially anisotropic the cluster, the faster its
initial contraction.

Using the same simulations, I also investigate the time evolution of the clusters’ average
angular momentum modulus

〈L〉 =
(2π)3

M

∫
dJ LF (J), (4.5.8)

as illustrated in Fig. 4.5.1. Similarly to fig. 7 of Breen et al. (2017), I recover here that the clus-
ters’ relaxations drive them towards more isotropic distributions. Indeed, radially anisotropic
clusters (i.e. q > 0) see their average angular momentum grow, i.e. orbits become on average
more circular, while tangentially anisotropic clusters (i.e. q < 0) see their average angular mo-
mentum decrease, i.e. orbits become more radial. Finally, similarly to Fig. 4.1.2, I recover that
the more tangentially anisotropic a cluster, the faster its initial isotropisation.

4.5.3 Diffusion rate

Let me now assess how well the anisotropic NR theory from section 2.3.3 can predict these
trends. In the limit where nearby deflections drive the cluster’s relaxation, its long-term evo-
lution is governed by the Fokker–Planck eq. (2.3.38), which predicts the rate of change, ∂F/∂t,
in action space.

In Fig. 4.5.2, I compare the contours of ∂F/∂t as predicted by the anisotropic NR theory from
eq. (2.3.34)with thosemeasured inN -body simulations, for various initial velocity anisotropies.
It is remarkable that the NRmaps and theN -body measurements are so similar, up to an over-
all prefactor which appears to weakly depend on the considered actions. This prefactor reflects
the fact that NR theory poorly accounts for far-away encounters, that only RR captures (see,
e.g., Fouvry et al., 2021).

In order to better quantify the overall amount by which the NR prediction overestimates the
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N -body prediction, I define the average ratio

NR
N -BODY =

∫
dJ F (J) |∂F/∂t|NR∫

dJ F (J) |∂F/∂t|N -BODY

, (4.5.9)

where the rates of change, ∂F/∂t, are inferred from Fig. 4.5.2.

Figure 4.5.2: Illustration of the relaxation rate, ∂F/∂t, for various values of the anisotropy parameter q (left to
right), as predicted by the anisotropic NR prediction (top panels) and measured in direct numerical simulations
(bottom panels). There is a qualitative agreement between the NR predictions and the N -body measurements.
Because globular clusters are hot systems, resonances between orbits do not play a role as important as one might
expect from the Balescu–Lenard formulation. However, this is up to an overall prefactor depending on the level of
anisotropy q (see Fig. 4.5.3). This can be the result of long-range interactions, which the NR formalism does not
capture accurately.

In that figure, I find that for an isotropic velocity distribution, i.e. q = 0, NR overestimates
the N -body measurement by a factor ∼ 1.4. This is compatible with the previous measure-
ments from Theuns (1996) and Fouvry et al. (2021) that observed ratios of order ∼ 1.5 − 2 in
isotropic King spheres and isotropic isochrone clusters respectively. Interestingly, in Fig. 4.5.3,
I show that the ratio from eq. (4.5.9) worsens as the cluster gets more tangentially anisotropic:
for q = −30, the NR theory overestimates the diffusion rate by a factor∼3. To complete this ob-
servation, I compute the same ratio over different regions in the clusters, as defined in Fig. 4.5.4.
The closer to the cluster’s centre, the more the NR theory overestimates the diffusion rate. Due
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Figure 4.5.3: Ratio of the diffusion rate of the NR theory and N -body predictions (eq. 4.5.9) as a function of the
cluster’s anisotropy parametrised by q and computed over the whole cluster (black line). The dots correspond to
anisotropies for which N-body simulations were performed, and the contours correspond to the 16% and 84% level
lines over the available realisations. For the isotropic cluster (q = 0), the NR theory overestimates the diffusion rate
by a factor ∼ 1.4, which worsens as the cluster becomes more anisotropic. The coloured lines illustrate the ratios
when computed over different regions in the clusters (see Fig. 4.5.4). As one gets closer to the cluster’s centre, the
NR theory overestimates more and more the diffusion rate.

to the high stellar density in the cluster’s centre, strong deflectionsmight impactmore the relax-
ation occurring in that region than in external regions. Because the NR approximation neglects
these interactions (with a small-scale cutoff), a large discrepancy is expected to occur. Fur-
thermore, in all regions, the ratio of the diffusion rate increases as one increases the cluster’s
anisotropy. Indeed, as I increase tangential anisotropy, more and more stars follow circular
orbits. The respective motions of the stars become more coherent w.r.t. one another. This facil-
itates long-range resonant interactions, which the NR theory fails to account for accurately.

Figure 4.5.4: Average radius 〈r〉 as a function of the orbital parameters. I divide the cluster into three regions: (i)
the inner region (〈r〉<0.52b) contains 10% of the total cluster’s mass; (ii) the intermediate one (0.52b<〈r〉<1.30b)
comprises 40% of the total mass; (iii) and the outer one (〈r〉>1.30b) the remaining 50%.
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Figure 4.5.5 provides an alternative representation of the diffusion predicted by the NR the-
ory. In that figure, I represent the field lines of the diffusion flux sourced by eq. (2.3.38), i.e.
the direction along with orbits flow in action space. Here, I recover that the NR diffusion flux
reshuffles the system towards a more isotropic distribution. In particular, the field lines show
a clear flow from radial orbits (resp. circular orbits) in initially radially (resp. tangentially)
anisotropic clusters towards circular orbits (resp. radial orbits).

Figure 4.5.5: Illustration of the field lines of the diffusion flux, F(J) (see eq. 2.3.34), as predicted by the NR
theory for various anisotropies. The arrows give the average direction along which orbits flow in action space,
while red colours are associated with larger flux amplitudes. For anisotropic clusters, i.e. q 6= 0, these flows reflect
the expected redistribution of orbits towards a more isotropic distribution.

4.6 Pseudo-isotropic diffusion

The anisotropic diffusion coefficients involve three-dimensional integrals (see eq. 2.3.31). This
is numerically more demanding than the isotropic ones which involve one-dimensional inte-
grals (see eq. 2.3.27). In the view of benefiting from these simpler expressions, Cohn (1979)
introduced the concept of a locally isotropised DF. Following eq. (16) of Cohn (1979), I intro-
duce the pseudo-isotropic (P-Iso) DFa

F P-Iso
tot (r, E) =

∫ π
2

0
dx sinxFtot

(
E, sinxLmax

)
, (4.6.1)

withLmax(r, E)=
√

2r2(E − ψ[r]) themaximumangularmomentumpossible for a bound orbit
of energy E going through the radius r. Importantly, following this local average, the pseudo-
isotropic DF, F P-Iso

tot , only depends on the energy E. In appendix 4.E, I justify the form of this
P-Iso DF.

In Fig. 4.6.1, I compare the cluster’s anisotropic and pseudo-isotropic DFs for various radii
and various anisotropies. As already highlighted in Fig. 4.2.1, for a fixed value of q, as one
moves closer to the cluster’s centre, the local anisotropy diminishes so that the anisotropic and
pseudo-isotropic DFs closely follow one another. For a fixed radius r, as the anisotropy param-
eter q gets away from q = 0, the local anisotropy increases, hence increasing the differences
between the two DFs.

aEquation (4.6.1) follows from eq. (16) of Cohn (1979) via the change of variable R = sin2 xRmax, with R and
Rmax defined in Cohn (1979).
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Figure 4.6.1: Contour levels of the anisotropic DF (full lines) and pseudo-isotropic DF (dashed lines) in the
(vt, vr)-space, for various radii (left to right) and various anisotropies (top to bottom). Contours levels correspond
to 50% (blue), 20% (orange) and 10% (red) of theDF’smaximumat the considered radius. The closer to the cluster’s
centre, the weaker the anisotropy, and therefore the better the match between the two DFs.
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4.6.1 Local velocity deflections

Once the pseudo-isotropic DF is known, it can straightforwardly be used in eq. (2.3.27) to es-
timate the velocity diffusion coefficients via (rapid) one-dimensional integrals. This is what I
present in Fig. 4.6.2, where I compare the contours of ∂F/∂t as predicted by the fully anisotropic
diffusion coefficients (computed via eq. 2.3.31) and their pseudo-isotropic analogues (com-
puted via eq. 2.3.27).

In that figure, I note that, for the anisotropies considered here, the differences between the
two maps are minor. This follows in fact from Fig. 4.2.1, where I noted that as one moves closer
to the cluster’s core, the anisotropy gets reduced, hence the similitude of the twomaps reported
in Fig. 4.6.2 which focuses on the cluster’s central region. To strengthen this conclusion, I note

Figure 4.6.2: Illustration of the relaxation rate, ∂F/∂t, for two values of the anisotropy parameter q (top and
bottom), as predicted by the fully anisotropic NR diffusion coefficients (left) and the pseudo-isotropic ones (mid-
dle). The right panel illustrates the difference (NR minus P-Iso). For the level of anisotropy considered here, the
difference between the two predictions is found to be, at most, ∼ 5%.

that the local velocity deflections accumulated along a test star’s motion in the cluster’s core
onlymarginally differ between the anisotropic andpseudo-isotropic predictions (see Fig. 4.6.3).
Indeed, the anisotropy of the background Plummer cluster appears to have a weak impact on
local deflections. This might be a sign of the weak anisotropy of this family of Plummer DFs,
which I already observed in Fig. 4.6.1.
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Figure 4.6.3: Illustration of the parallel velocity deflections accumulated along the motion of a test star, seen here
as a function of the effective anomaly u. The full lines are the anisotropic NR predictions, while the dashed ones
are the pseudo-isotropic ones. Different colours correspond to different background velocity anisotropies. The test
star’s orbit is Jr = 0.1L0 and L = 0.5L0. As in Fig. 4.6.2, for the present levels of anisotropies, the differences
between the two predictions are minor.

4.6.2 Impact of anisotropy

In order to better compare these two predictions, following eq. (4.5.9), I compute the respective
ratios of the NR and P-Iso predictions through

NR
P-Iso =

∫
dJ F (J) |∂F/∂t|NR∫
dJ F (J) |∂F/∂t|P-Iso

. (4.6.2)

This is represented in Fig. 4.6.4. In that figure, I recover that for the anisotropy parameters q
considered here, the two maps typically differ, at most, by ∼ 5%. As expected, as I increase
the cluster’s anisotropy, the mismatch between the two predictions increases. This similitude
between NR and P-Iso is some pleasant numerical news. Indeed, rather than having to go
through the three-dimensional NR integrals from eq. (2.3.31), the P-Iso prediction requires, in
essence, two-dimensional integrals by computing first the pseudo-isotropic DF from eq. (4.6.1)
and subsequently the associated isotropic diffusion coefficients from eq. (2.3.27).

4.7 Linking the Landau theory to the NR theory

In sections 4.5 and 4.6, I showed how the NR theory can be used to capture the secular be-
haviour of anisotropic globular clusters. As discussed in section 2.3, this theory comes with a
few caveats. The derivation of the NR’s Fokker–Planck equation (eq. 2.3.34) from the Balescu–
Lenard equation (eq. 2.2.31) uses the approximation of local homogeneity, which introduces
the Coulomb logarithm ln Λ (eq. 2.3.11). In a certain sense, this quantity is a free parameter,
whose value is set by the geometry of the system. Efforts have been made to give a heuristic
value to ln Λ. In particular, Giersz & Heggie (1994) have given the fit ln Λ = ln(0.11N) for the
Plummer system. However, determining ln Λ directly from first principles could in principle be
achieved starting from the gravitational homogeneous Landau equation (eq. 2.3.10). These two
remarks – the accuracy of NR predictions and the determination of ln Λ – are open questions,
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Figure 4.6.4: Ratio of the diffusion rate of the NR prediction and the P-Iso one, as defined in eq. (4.6.2). For an
isotropic cluster (q = 0) both predictions are, naturally, in agreement, and they start to (marginally) differ as the
cluster becomes more and more anisotropic.

which I explore briefly in this section.

4.7.1 The inhomogeneous Landau prediction

In order to understand these two observations, let me build upon Hamilton et al. (2018) and
consider the inhomogeneous Landau equation given in eq. (2.3.1). Following these authors, I
can express eq. (2.3.1) under the form

∂F

∂t
= − ∂

∂J
·F(J) = −

∞∑
`=0

∂

∂J
·F `(J) ; F `(J) =

∑
k,k′∈Z2

kF `kk′(J), (4.7.1)

where

F `kk′(J) =
π(2π)3m

2`+ 1

∫
dJ ′LL′|ψ`kk′(J ,J ′)|2δD(k ·Ω− k′ ·Ω′) (4.7.2)

×
(
n′ · ∂

∂J ′
− n· ∂

∂J

)
F (J)

L

F (J ′)

L′
.

I refer to appendix 4.F for more details on how I compute numerically eq. (4.7.2) in practice.
Here, I have used in eq. (4.7.1) the spherical harmonic expansion of the interaction potential
(see, e.g., eqs. 9 and 10 of Fouvry et al., 2021, for the exact expressions). This allows me to
distinguish the contributions coming from different scales, in particular, between large-scale
and small-scale interactions. As in the Balescu–Lenard equation (eq. 2.2.31) from which it is
derived, eq. (4.7.2) contains a resonance condition δD(k ·Ω−k′ ·Ω′) and a coupling coefficient
ψ`kk′(J ,J

′) that encodes the strength of orbital couplings. In this section, I will in particular be
interested in the regime of large harmonics `� 1 and high-order resonances |k|, |k′| � 1.

Figure 4.7.1 shows the contributions of the first harmonics ` to the relaxation rate, ∂F/∂t, for
the isotropic cluster q = 0. Let me now comment on these various contributions.

First, let me consider the first harmonics `= 0, 1, 2. Due to the condition |k2|, |k′2| ≤ `, only
low-order resonances occur. As a result, the resonant orbits will not overlap very much during
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Figure 4.7.1: Computation of the relaxation rate ∂F/∂t for the isotropic Plummer cluster, as predicted by the RR
theory (eq. 4.7.1). Each panel corresponds to− ∂

∂J
·F`(J), from `=0 (large scales) to `=5 (smaller scales). On the

one hand, large scales are dominated by resonant interactions, hence need to be described by the RR theory. On the
other hand, small scales predictions (from `= 5) appear to converge toward the NR prediction (Fig. 4.5.2, central
panel). In that regime, the Landau theory appears not to be as resonant as the structure of the Landau equation
would imply.

Figure 4.7.2: Inspired from fig. 10 of Fouvry et al. (2021). Schematic representation of the in-plane resonant
interaction between two orbits. I represent a low-order resonance, (k, k′), in the left panel, whereas I represent
a high-order resonance in the right panel. As they are much more high-order resonances than low-order ones, it
surely is not obvious whether or not they contribute the most to the total Landau flux.
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their motions (see the left panel of Fig. 4.7.2 for an example). This implies a large pairwise dis-
tance, hence a weak interaction between the two. Therefore, relaxation will mostly be induced
by the long-term resonant interactions of the orbits over multiple orbital times. Thus, these
harmonics can be understood as the contribution coming from large-scale interactions. In ad-
dition, because self-gravity plays an important rolemostly on large scales (as illustrated by, e.g.,
the Jeans instability), collective effects are, in essence, limited only to these large-scale harmon-
ics (top left panels of Fig. 4.7.1). As a consequence, accurately modelling these contributions
requires the dressed RR theory, i.e. the Balescu–Lenard equation (eq. 2.2.31).

Then, let me consider the next harmonics `= 3, 4, 5. Due to the aforementioned condition
on |k2|, |k′2|, these harmonics correspond to the contribution of resonances of a higher rank.
These correspond to scales which are not small enough to be described by a local theory, but
not large enough to be largely impacted by collective effects (bottom panels of Fig. 4.7.1). These
contributions can therefore be described by the bare RR theory, i.e. the inhomogeneous Landau
equation (eq. 2.3.1).

Finally, let me consider the harmonics `=6, 7, 8, ... . In this case, high-order resonancesmake
up the most part of the associated diffusion flux. Their high order induces a large number of
overlaps in their orbits (see the right panel of Fig. 4.7.2 for an example), hence a large number
of local encounters which accumulate during their motions. Heuristically, they play the role
of the local deflections involved in the NR theory: they correspond to small-scale interactions.
Thus, I expect that high harmonics will behave closely to the NR prediction (eq. 2.3.34).

This last remark is exactly what I observe in Fig. 4.7.3 (central panel). I observe that: (i)
the relaxation rate ∂F/∂t|` closely looks like the NR prediction ∂F/∂t; (ii) ` ∂F/∂t|` does not
depend on ` for large harmonics `. Nevertheless, because high-order resonances aremuchmore
numerous than low-order ones, it is not obvious question to determine whether they may or
may not dominate over the RR prediction. (Fig. 4.5.2).

Figure 4.7.3: Relaxation rate, ∂F/∂t, for the isotropic cluster, as in Fig. 4.7.1. The amplitudes have been multi-
plied by ` to emphasise the 1/` behaviour for large `, so as to highlight the convergence towards the NR prediction
(Fig. 4.5.2, central panel).

Figure 4.7.4 shows the dependence of |F `| w.r.t. ` for the usual anisotropies used in this
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thesis, namely q=1, 0,−6. The actions J at which the flux is evaluated is the mean action, 〈J〉q,
defined as

〈J〉q =
(2π)3

M

∫
dJ J F (J). (4.7.3)

This figure clearly shows a logarithmic small-scale divergence in 1/`, which requires me to
truncate the `-summation in eq. (4.7.1) to some cutoff `max. As I increase `, I consider encoun-
ters which are closer and closer, until they can be considered strong encounters. This is the
small-scale divergence observed in the NR formalism (section 2.3.2). However, the large-scale
divergence of theNR theory does not occur in the RR formalism. Fundamentally, this is because
the RR formalism takes into account the cluster’s inhomogeneity (section 2.3.1). Formally, this
is described by the fact that the largest scales are described by the first harmonics ` = 0, which
is not divergent. Still, the determination of a small-scale cutoff remains an open question at the
moment.

Fouvry et al. (2021) argues that `max should be related to the bmin cutoff used in eqs. (2.3.11)
and (2.3.13) through `max = ln(2) b/bmin. Indeed, consider the multipole expansion of the po-
tential at order ` (see eq. 4.F.3 for the exact expression)

U`(r, r
′) ∝ 1

rmax

(
rmin

rmax

)`
, (4.7.4)

where rmax = max(r, r′) and rmin = min(r, r′). As ` increases, this function becomes extremely
peaked, hence the interactions which matter are the local ones. Following Fouvry et al. (2021),
if I consider an interaction in the core of the cluster with rmax = b and rmin = b(1 − ε) with
ε � 1, then the potential can be rewritten as U` ∝ exp(−`ε)/b. Taking the half-width of the
potential as the typical separation of this interaction yields ε=ln(2)/`. Equating this with bmin

the NR small-scale cutoff yields the desired heuristic prescription of `max. This sets an effective
Coulomb logarithm in the RR formulation of the inhomogeneous Landau eq. (4.7.1) which is
matched to the usual Coulomb logarithm prescription for the NR theory.

4.7.2 Higher-order harmonics and Chandrasekhar limit

Because the RR theory appears to behave like the NR theory asymptotically (Fig. 4.7.1), and
because of the corresponding 1/` divergence (Fig. 4.7.4), let me define the (assumed to be `-
independent) correction ratioR(J) by the equation

D`
RR(J) ∼ R(J)

`

DNR(J)

ln Λ
when `� 1, (4.7.5)

where I have chosenDNR (resp.DRR) as theLL diffusion coefficient predicted usingNR theory
(resp. RR theory, see appendix 4.F). This choice is motivated by the fact that this diffusion
coefficient is always positive. This prevents any sign change, and hence any division by 0, when
computingR(J). Furthermore, I have taken ln Λ=ln(0.11N), so as to normalise by the average
Coulomb logarithm. Hence by construction,R(J) is expected to be of order unity. In Fig. 4.7.5, I
represent R(J) for q= 1, 0,−6. Figure 4.7.5 has been made using the formula (obtained from
the asymptotic behaviour given in eq. (4.7.5)

R(J) ∼
`D`

RR(J)

DNR(J)/ ln Λ
, (4.7.6)



101

Figure 4.7.4: Illustration of |F`
RR| for q = 1, 0,−6. The modulus of the fluxes are computed at the mean action

J = 〈J〉q for each value of q (top panel) and for (Jr, L)=(0.025, 0.25) (bottom panel). In the top panel, I observe an
asymptotic behaviour in∼1/` for large values of `, which can be understood as the origin of the Coulomb logarithm.
The relative amplitudes of the fluxes show the increasing isotropisation strength when increasing anisotropy. The
bottom panel shows that the 1/` asymptotic behaviour is seen for higher harmonics for near-circular orbits.

Figure 4.7.5: Computation ofR(J), as defined by eq. (4.7.5), for Plummer clusters with anisotropies q=1, 0,−6.
Apart from the central region, this ratio is close to 1, hence the Coulomb logarithm stems from the 1/` summation.
The black dot corresponds to the average action 〈J〉q used in Fig. 4.7.4. I observe a gradient roughly along the first
diagonal, withR(J) increasing from ∼ 0.9 to ∼ 2 towards the centre.
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which is accurate only for ` large enough. This requires the computation of the r.h.s. of eq. (4.7.6)
for large values of `, followed by a fit with a constant. Whereas using the range of harmonics
` ∼ 5− 10 appears to be sufficient to make this prediction for actions large enough (Fig. 4.7.4),
this is not necessarily the case for smaller actions. In the end, using eq. (4.7.5) and summing
over `, I obtain

ln ΛDRR
LL ' R(J)

( `max∑
`=1

1

`

)
DNR
LL (J), (4.7.7)

hence
ln Λ ' R(J) ln(`max). (4.7.8)

Overall, Fig. 4.7.5 appears to show a small gradient in R(J) along the first diagonal in action
space, with a maximum value reached for small actions. Understanding the origin of this ac-
tion dependence would hopefully yield a definitive prescription for the computation of the
Coulomb logarithm. To that end, I try in the following section to recover the observations of
Fig. 4.7.5 using a simple model for ln Λ.

4.7.3 Estimating the Coulomb logarithm

The physical prescription of the Coulomb logarithm which is widely used is the one given by
Chandrasekhar (1943), where bmin ∼ 2Gm/σ2, with σ2 = σ2

x+σ2
y+σ2

z is the velocity r.m.s. of the
system, while bmax is a free parameter. Nevertheless, other prescriptions exist: Chandrasekhar
& von Neumann (1942) argue that one should take bmax as the interparticle distance. Other
authors (see, e.g., Hénon, 1961; Merritt, 2013, and references within) have chosen larger values
for bmax of the order of the size of the system, such as the core radius (0.64b), the 3D half-
mass radius (1.3b), the 2D half-mass radius (b), the virial radius (1.7b), the mean radius (2b),
and so on. Let me now investigate the possible impacts of these various prescriptions for ln Λ,
and compare them with my numerical measurements of R(J). For the Plummer potential
(Dejonghe, 1987), the velocity r.m.s. σ is given by

σ2(r) =
1

6− q
GM√
b2 + r2

(
3− q r2

b2 + r2

)
. (4.7.9)

In order to obtain an estimator depending only on orbital parameter, I can orbit-average the
velocity r.m.s. . This provides me with a naive estimator of the Coulomb logarithm

ln Λ?(J) = ln
b 〈σ2〉(J)

2Gm
. (4.7.10)

I represent this estimator of ln Λ(J) in Fig. 4.7.6. This prediction fails to recover the action
dependency I observe in Fig. 4.7.5 for the full range of q considered. First, whereas the cluster
q = 0 and q = 1 reach a maximum at the bottom left corner of action space (left and centre
panels of Fig. 4.7.6), this is not the case for q=−6. Additionally, the contour lines observed in
Fig. 4.7.5 do not appear as simple as the seemingly straight lines of Fig. 4.7.6. Finally, whereas
the range of values observed in Fig. 4.7.5 extends between 0.8 and 2− 3, the range observed for
the estimator is much smaller, and typically goes from 0.9 to 1.15. Such clear qualitative and
quantitive distinctions show that the prediction the Coulomb logarithm from first principles
still requires more research, and goes beyond the naive prescription described in this section.
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Figure 4.7.6: Illustration of the effective Coulomb logarithm, ln Λ?, in action space, as defined by eq. (4.7.10). The
large-scale cutoff is set by the size of the system, approximated by the Plummer length b. The small-scale cutoff is set
by a rough estimator of the 90-degree deflection impact parameter b90, and hence is set by the velocity dispersion
of the cluster. While this Coulomb estimator appears to reproduce the diagonal gradient observed in Fig. 4.7.5
for low-anisotropy system, obvious differences occur for more tangentially systems. Furthermore, the range of the
Coulomb logarithm given by this estimator is much smaller than that obtained from RR theory.

4.7.4 Asymptotics of the inhomogeneous Landau equation

In an unpublished paper, Heggie & Retterer (priv) considered the limiting case of a radial or-
bit near the centre of a globular cluster. They showed that its interactions with the background
amounts to the orbit-averaged NR prediction, with the Coulomb logarithm coming from a cut-
off on an harmonics summation similar to that of eq. (4.7.1).

Supposing that the background stars perturbing the radial star must be close to the centre,
hence with a low angular momentum, they were able to obtain an expression for the diffusion
coefficient in energy for the perturbed orbit

〈∆E2〉 =
32π2G2m2

3
E ln

(
bmax

bmin

)∫
dEp Ftot(Ep), (4.7.11)

at the cost of a few computation tricks such as, e.g., summation/integration exchanges (see
appendix 4.G for a brief overview of the computation). Here, bmax is cutoff coming from the
contribution of large scales, which is induced by the finite extent of the system. As for bmin, it is a
cutoff coming from the contributions of small scales, which is induced by the strong deflections
which cannot be dealt with by this theory. Equation (4.7.11) can then be compared to the NR
prediction

〈∆E2〉 =
32π2G2m2

3
E ln Λ

∫
dEp Ftot(Ep). (4.7.12)

Therefore, setting Λ = bmax/bmin, the two formulae (eqs. 4.7.12 and 4.7.11) exactly correspond
to one another. This is a remarkable result. Indeed, despite the approximations needed to
obtain an analytic asymptotic formula (e.g., the radial limit and only radial perturbers), Heggie
& Retterer (priv) were able to obtain a formula identical to the NR limit, down to the exact
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multiplicative prefactor before ln Λ. Thus, they recovered the NR theory from the RR theory in
the case of radial orbits in an isotropic globular cluster.

Unfortunately, eq. (4.7.11) cannot be compared to Fig. 4.7.5 because it corresponds to a point
on the Jr-axis in orbital space. Therefore, determiningR, thus the Coulomb logarithm, is a dif-
ficult numerical problem. Focussing on a different subset of orbits, one might be interested in
doing a similar prediction for circular orbits, using for example an epicyclic approximation to
recover analytical predictions. This alternative regime also falls in the regionwhere a prediction
is numerically difficult to make. This is a problem generic to asymptotes, and one should even-
tually match them to customised numerics accounting for the limiting scalings of this regime.

4.8 Concluding remarks

In this chapter, I extended Chandrasekhar’s NR theory to compute the local velocity diffusion
coefficients in non-rotating anisotropic spherical clusters. This allowed me to go beyond the
usual isotropic and pseudo-isotropic predictionsmade in this context (see, e.g., Spitzer & Shull,
1975; Lightman& Shapiro, 1978; Cohn, 1979, 1980; Spitzer, 1987; Takahashi, 1993; Theuns, 1996;
Quinlan, 1996; Heggie & Hut, 2003; Vasiliev, 2015; Fouvry et al., 2021). By relying on tailored
N -body simulations (section 4.4), I was able to investigate the impact of anisotropy on the evo-
lution of an anisotropic Plummer cluster. Namely, I observed a clear dependence of the core
collapse rate w.r.t. the initial velocity anisotropy of the cluster, as already reported in Breen
et al. (2017). To understand this trend, I measured the evolution of the core radius, a proxy
for the cluster’s size. In order to obtain a quantity more accessible to NR predictions, I directly
measured the time evolution of the DF in action space. This allowed me to observe a reshuf-
fling of the orbits, reflecting the isotropisation of the cluster. In section 4.5, I computed the NR
prediction for this latter measurement. Overall, I reached two main conclusions. First, the NR
prediction matches qualitatively direct N -body measurements (see Fig. 4.5.2) up to an overall
prefactor ∼ 1.4− 2 that worsens as the initial anisotropy increases (see Fig. 4.5.3). This match
between theory and simulations shows that the NR theory captures the faster compression of
tangentially anisotropic globular clusters compared to radially anisotropic ones (see Fig. 4.1.2).
Nonetheless, the incorrect prefactor suggests that the NR theory overestimates the relaxation
rate coming from contributions from large-scale encounters. Second, I pointed out that the NR
theory also drives initially an isotropisation of the cluster (see, e.g., Fig. 4.5.5).

Then, following Cohn (1979), I investigated in section 4.6 the errors introduced by locally
isotropising the DF of the perturbers (see eq. 4.6.1), an approach coined pseudo-isotropic. For
the class of anisotropic clusters considered, I emphasised that the limited extent of anisotropy
in the inner regions (see Fig. 4.6.1) led to differences of order . 5% w.r.t. the fully anisotropic
calculation. As such, for the clusters considered here, I confirmed that the anisotropy of the per-
turbers’ DF, via Ftot(r,v

′) in eq. (2.3.31), plays a much less important role than the anisotropy
in the test particles’ DF, via F (J) in eq. (2.3.38).

Finally, I studied the impact of resonant interactions in the secular evolution of anisotropic
clusters in section 4.7. By computing the Landau prediction for the long-term relaxation of
the cluster (RR theory), I was able to study the impact of low-order harmonics (large scales)
and higher-order harmonics (small scales) on orbital diffusion. I found that high-order har-
monics predictions converge toward the NR prediction. Furthermore, I observed a logarithmic
divergence of the RR prediction, which I linked to the Coulomb logarithm parameter present
in the NR theory. This overall logarithmic prefactor weakly depends on actions. However at
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this stage I did not manage to relate its behaviour and amplitude to simplistic prescriptions for
the Coulomb logarithm.

4.8.1 Future works

Having computed ∂F/∂t from kinetic theory (Fig. 4.5.2), I could in principle predict the initial
time evolution of more traditional quantities such as the anisotropy parameter β(r) (Fig. 4.2.1)
or the core radius Rc(t) (Fig. 4.1.2). This would come at the cost of accounting appropriately
for the self-consistent update of the cluster’s mean potential. Ultimately, following for exam-
ple Vasiliev (2015), one could also hope to integrate self-consistently the time evolution of the
whole cluster as driven by the present NR theory (or ultimately, its RR counterpart). Fig-
ure 4.5.5 emphasised that local deflections naturally tend to isotropise the cluster’s DF. Given
this increased isotropy, I can expect that the pseudo-isotropic prescription from eq. (4.6.1) will
become more relevant as relaxation occurs. Of course this would deserve to be investigated in
more detail, following for example fig. 7 of Breen et al. (2017).

In this chapter, I restricted my analysis to Plummer potentials. Nevertheless, the generic
derivation presented in section 2.3.3 should translate to any reasonable cored potential, provided
one has access to its DF (e.g., following the method from Dejonghe, 1987). It would also be of
interest to investigate truncated or cuspy spheres, since the clusters’ orbital structure impacts
both their linear and long-term responses. In order to alleviate some of the present numerical
challenges, it would be worthwhile to find an efficient way of carrying out the orbit-averages
using numerically stable effective anomalies (as in section 4.5.1) for such potentials.

As illustrated in Fig. 4.5.3, the NR theory and the N -body measurements still present an
overall multiplicative discrepancy. Following Fouvry et al. (2021), it would be of interest to
investigate the RR of spherical clusters with various levels of anisotropy. This should ultimately
pave the way to predict ab-initio the effective Coulomb logarithm ln Λ in eq. (2.3.11), as was
briefly discussed in section 4.7. A promising way to achieve this aim would be to capitalise on
the work of Heggie & Retterer (priv) (briefly presented in section 4.7.4). As they were able to
recover NR theory fromRR theory in the radial orbit limit, it would be enlightening to achieve a
similar result in the circular orbit limit, beforemoving onto amore general analytic formulation.



Appendices of chapter 4

4.A Computing energy from radial action

In any spherically symmetric system, the transformation (E,L) 7→ (Jr, L) is done straightfor-
wardly using the integral expression of Jr(E,L) (eq. 4.3.6). However, the inverse transforma-
tion (Jr, L) 7→ (E,L) cannot be done analytically in the general case.b Nonetheless, because
the transformation is bijective, this inverse can be done by solving the equation Jr(E,L) = Jr

w.r.t. the unknown energy E, at fixed L. This is achieved by using a classical bisection method.
Yet, because the (E,L) is limited by circular orbits, i.e. is delimited by L≤Lc(E), I have to be
careful not to overshoot the prediction for E. To that end, I proceed as follows. Let ε > 0 be the
desired precision on E and suppose that (Jr, L) 6=(0, 0) (if not, then E=E0). Define {∆n}n the
sequence of upper bounds on the energy error, and {En}n the sequence of energy estimators.

1. Start with an initial guess E1 =0.5E0. Since E0<E<0, we have ∆1 = |E0|/2

2. If ∆1>ε, then the energy guess is not precise enough. Set ∆2 =∆1/2. If L>Lc(E1), then
E1 overshoots the region and I move back to the orbital region by letting E2 =E1 + ∆2.
Otherwise, consider Jr,1 =Jr(E1, L). If Jr,1 < Jr, then E2 =E1 + ∆2. Otherwise, I set
E2 =E1 −∆2. Conversely, if ∆1 < ε, then the desired precision on the energy has been
reached.

3. ...

4. If ∆n> ε, then the energy guess is not precise enough. Set ∆n+1 = ∆n/2. If L>Lc(En),
then En overshoots the region and I move back to the orbital region by setting the en-
ergy as En+1 =En + ∆n+1. Otherwise, consider Jr,n=Jr(En, L). If Jr,n < Jr, then I set
En+1 =En + ∆2. Otherwise, I set En+1 =En −∆2. Conversely, if ∆n < ε, then desired
precision on the energy has been reached.

Finally, the last estimation En satisfies Jr(En, L)=Jr with a precision bounded by ε.

4.B Computing the circular motion

The region in (E,L)-space where orbits are located is defined by the constraintsE<0 and L≥0

such that there exists r≥ 0 verifying the inequality ψeff(r;L)≤E. For L> 0, this function has
a global minimum at some radius rc. Increasing the value of L increases this minimum value,
meaning that there exists a maximum value Lc(E) such that ψeff(rc;Lc[E])=E.

bIf one has access to an analytical expression of Jr(E,L), then the inversion is trivial. This is the case for the
isochrone potential (see, e.g., Binney & Tremaine, 2008).
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The effective potential is given by

ψeff(r) = − GM√
b2 + r2

+
L2

2r2
= E0

(
1

s
− L̃2

2(s2 − 1)

)
, (4.B.1)

where I used the change of variable s2 = (r/b)2 + 1 and L̃ is the reduced angular momentum
(occurring in eq. 4.2.3). Then, let me define for convenience

η(s, E) = (s2 − 1)

(
1

s
− Ẽ

)
. (4.B.2)

By definition, the circular radius rc, or equivalently sc, corresponding to the energyE is reached
when η(s, E) reaches its maximum value. It follows that

L2
c(E) = 2L2

0 max
s>0

η(s, E) = 2L2
0η(sc[E], E). (4.B.3)

Let me compute the maximum of η. Its derivative is given by

dη

ds
=
s2 + 1

s2
− 2Ẽs. (4.B.4)

It vanishes iff
− 2Ẽs3 + s2 + 1 = 0. (4.B.5)

The polynomial discriminant of eq. (4.B.5) is given by ∆=−4(27Ẽ2 +1)<0, meaning that it has
only one real root, which is positive. The Cardan formula gives its expression. Let me define

α = −2Ẽ ; β = 1 ; γ = 0 ; δ = 1, (4.B.6)

and let

p =
3αγ − β2

3α2
= − 1

12Ẽ2
, (4.B.7a)

q =
2β3 − 9αβγ + 27α2δ

27α3
= −1 + 54Ẽ2

108Ẽ3
, (4.B.7b)

The discriminant∆′ of the depressed cubic is that of the initial polynomial divided by α4, hence
∆′=−(4p3 + 27q2)=−(27Ẽ2 + 1)/(4Ẽ4). The unique real root is given by

sc(E) = − β

3α
+

3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27
, (4.B.8)

or, more explicitly,

sc(E) =
1

6Ẽ
+

3

√
1 + 54Ẽ2

216Ẽ3
+

1

4Ẽ

√
1 +

1

27Ẽ2
+

3

√
1 + 54Ẽ2

216Ẽ3
− 1

4Ẽ

√
1 +

1

27Ẽ2
. (4.B.9)

This expression allows me to compute Lc(E) analytically using eq. (4.B.3).
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4.C Computing the derivatives of Jr(E,L)

The computation of the (Jr, L)-space orbit-averaged diffusion coefficients involves the first and
second derivatives of Jr(E,L) w.r.t. (E,L). However, their computation is made difficult by
both the presence of an integrable singularity and the lack of an integrable integrand (eqs. 4.3.7).
In the latter case, one would be forced to take the numerical derivative of the integral expres-
sion. However, the existence of an effective anomaly u (with nice properties, see section 4.5.1)
allows me to bypass these difficulties.

First, I consider the radial action Jr given by eq. (4.3.6). To obtain the equalities in that
equation, I use the identity dr/vr=duΘ(u), which is the property that motivated the research
of the effective anomaly u. Now, taking the first derivative of the radial expressions yields
eqs. (4.3.7). The E-derivative can now be integrated with both precision and efficiency using
a classical midpoint integration scheme. The case of the L-derivative is a bit trickier, and shall
be discussed later in this appendix (see eq. 4.C.10).

Now, I observe thatwhile the radial integrands in eqs. (4.3.7) are not differentiable, this issue
does not occur in the u-integral. This allows me to differentiate these expressions once more to
recover the second-order derivatives

∂2Jr

∂E2
=

1

π

∫ 1

−1
du

∂Θ

∂E
, (4.C.1a)

∂2Jr

∂L∂E
=

1

π

∫ 1

−1
du

∂Θ

∂L
, (4.C.1b)

∂2Jr

∂L2
= − 1

π

[∫ 1

−1

duΘ(u)

r2(u)
+ L

∫ 1

−1

du

r4(u)

(
∂Θ

∂L
r2(u)− 2b2Θ(u)s(u)

∂s

∂L

)]
. (4.C.1c)

The derivatives that appear in the integrand can be easily obtained by the chain rule and implicit
differentiations.

Now, letme discuss the u-integration of ∂Jr/∂L (eq. 4.3.7b). As I considerL→0+, the radius
r(u)2 in the denominator tends to 0 at the lower bound u=−1. This is in theory compensated
by the L prefactor in eq. (4.3.7b), which overall allows ∂Jr/∂L to converge to −1/2 as L→ 0+.
A naive sampling would however miss all the contributions from the lower u-bound. In order
to remedy that issue, I proceed as follows. First, I consider the u-derivative of r2

d(r2)

du
= 3

sa + sp

2

[
1 +

sa − sp

sa + sp
u

(
3

2
− u2

2

)]
sa − sp

2
(1− u2). (4.C.2)

Its Taylor expansion near u=−1 is given by

d(r2)

du
= 3(sa − sp)sp

[
(u+ 1)− (u+ 1)2

2

]
+O[(u+ 1)3], (4.C.3)

hence
d(1/r2)

du
=

3(sa − sp)sp

b2(s2
p − 1)2

[
(u+ 1)− (u+ 1)2

2

]
+O[(u+ 1)3]. (4.C.4)

Therefore, 1/r2 flattens near u = −1. I will therefore cut the integration in two parts: (i) I
integrate the flat contribution near u=−1 linearly; (ii) I sample linearly in ln(u) the rest of the
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integral. I set the cutoff to be such that the slope is small with value ε� 1, i.e.

3(sa − sp)sp

b2(s2
p − 1)2

[
(u+ 1)− (u+ 1)2

2

]
≤ ε

b2
. (4.C.5)

Therefore

u+ 1 ≤ 1−

√
1−

2 ε (s2
p − 1)2

3(sa − sp)sp
'

ε (s2
p − 1)2

3(sa − sp)sp
'

ε r4
p

3b4(sa − 1)
, (4.C.6)

and I choose umin + 1 = ε (s2
p − 1)2

/
(3(sa − 1)) to be the u-cutoff in the integral. Defining

vmin =ln(umin + 1), I can write

vmin = ln(ε) + 4 ln(rp)− ln(3)− ln(sa − 1). (4.C.7)

Following energy conservation for L→ 0+ (i.e. rp → 0+)

E = ψ(rp) +
L2

2r2
p

= ψ(0) +
L2

2r2
p

+ o(L), (4.C.8)

I obtain the asymptotic behaviour rp ∼ L/
√

2(E − ψ[0]) as L→ 0+. It follows that

vmin ' ln(ε) + 4 ln(L)− 2 ln(E − ψ[0])− 2 ln(2)− ln(3)− ln(sa − 1). (4.C.9)

I can use this approximation to avoid computing rp with precision using bisection, as that
method tends to give |rp| ≤ 10−16, hence vmin = −∞, due to rounding errors. Overall, I obtain
the expression

∂Jr

∂L
= −L

π

∫ 1

−1

duΘ(u)

r2(u)
= −L

π

∫ umin

−1

duΘ(u)

r2(u)
− L

π

∫ 1

umin

duΘ(u)

r2(u)
(4.C.10)

= −
(umin + 1)LΘ(umin−1

2 )

π r2(umin−1
2 )

− L

π

∫ ln 2

vmin

dv ev Θ(ev − 1)

r2(ev − 1)
.

In practice, I use ε = 10−5.

4.D Testing the cluster’s sphericity

In order to track the clusters’ sphericity, I introduce the inertia-likematrix I={Iij}1≤i,j≤3 where

Iii=

∑N
k=1ρ

2
k(r

2
k−x2

i,k)∑N
k=1 ρ

2
k

; Iij =−
∑N

k=1ρ
2
kxi,kxj,k∑N

k=1 ρ
2
k

(i 6=j), (4.D.1)

with r2
k = x2

1,k + x2
2,k + x2

3,k. In eq. (4.D.1), the extra ρ factor enhances the contributions from
the regions close to the centre and reduces the ones from far-away stars.

The matrix I is symmetric and semi-definite positive. Indeed, it can be written as

I =
N∑
k=1

ρ2
k

(
||rk||2I3 − rkrT

k

)/ N∑
k=1

ρ2
k =

N∑
k=1

ρ2
k Ĩk

/ N∑
k=1

ρ2
k, (4.D.2)

fromwhich symmetry is trivial. To prove semi-definite positiveness, I must show that yT I y≥0
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for any y ∈ R3. Let me consider each term of the summation in eq. (4.D.2):

yT Ĩk y = ||rk||2 yTy − yT rk r
T
k y = ||rk||2 yTy − (rT

k y)T (rT
k y) (4.D.3)

= ||rk||2 ||y||2 − |〈rk,y〉|2 ≥ 0,

where the last inequality follows fromCauchy-Schwarz’s inequality. Therefore it has three pos-
itive eigenvalues λ1, λ2, λ3, which encapsulate the cluster’s sphericality: when all eigenvalues
are equal, the cluster is spherically symmetric. I generically define the cluster’s sphericality
with j = mini λi/maxi λi. To reduce shot noise when estimating j, I average its value over
realisations as follows. I compute the elementary symmetric polynomials α = λ1 + λ2 + λ3,
β=λ1λ2 + λ1λ3 + λ2λ3 and γ=λ1λ2λ3 for every cluster, and average them over all realisations.
From their expectation, I recover estimators for the eigenvalues λi as the roots of the polyno-
mial λ3− 〈α〉λ2 + 〈β〉λ− 〈γ〉. In Fig. 4.4.2, I show the evolution of the sphericality j for various
anisotropies. Its typical value is j ' 0.996, i.e. I can safely assume that the clusters remain on
average spherically symmetric throughout their evolution.

4.E Pseudo-isotropic DF

Let me justify the expression of the P-Iso DF defined in eq. (4.6.1). First, I consider the energy
distribution of the cluster with a DF Ftot(E,L) given by (see, e.g., Binney & Tremaine, 2008)

N(E) =

∫
drdv δD(H − E)Ftot(H,L). (4.E.1)

Developing the integrand in eq. (4.E.1) yields

N(E) = 8π2

∫
dr r2

∫
dvrdvt vt δD(H − E)Ftot(H,L), (4.E.2)

where the integral is now restricted to positive values for vr. Changing variables and resolving
the Dirac yields

N(E) = (4π)2

∫
dr

∫ Lmax

0
dL

LFtot(H,L)

vr
, (4.E.3)

where v2
r = 2(E − ψ[r]) − L2/r2 and Lmax(r, E) = 2r2(E − ψ[r]) is the maximum value of L

which can be reached for a star with energy E and radius r. Let me define R = L2/L2
c and

Rmax =L2
max/L

2
c . Then vr=(Lc/r)

√
Rmax −R and the energy distribution can be written as

N(E) = (4π)2

∫
dr rLc

∫ Rmax

0

dRFtot(E,L)√
Rmax −R

. (4.E.4)

Now, let me consider a system described by an isotropic DF, Ftot(E). Then eq. (4.E.4) becomes

N(E) = (4π)2

∫
dr rLcFtot(E) 2

√
Rmax. (4.E.5)

If I define the locally isotropic DF

F P-Iso
tot (r, E) =

1

2
√
Rmax

∫ Rmax

0

dRFtot(E,L)√
Rmax −R

, (4.E.6)
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then eq. (4.E.4) becomes

N(E) = (4π)2

∫
dr rLc F

P-Iso
tot (r, E) 2

√
Rmax, (4.E.7)

which is identical to the fully isotropic case. Therefore, the P-Iso distribution F P-Iso
tot (r, E) cor-

responds to the locally isotropic DF of the anisotropic system which yields the same energy
distribution as the fully anisotropic DF Frot(E,L). Letting R = Rmax sin2 x, I recover the DF
defined from eq. (4.6.1).

4.F Landau prediction (RR)

4.F.1 Coupling coefficients

Following Fouvry et al. (2021), the coupling coefficient ψ`kk′ (eq. 4.7.2) can be reduced to the
expression

ψ`kk′(J ,J
′) = y`k2 y

`
k′2
W `
kk′(J ,J

′), (4.F.1)

where y`k2 =Y k2
`

(
π
2 , 0
)
is a spherical harmonics, normalised such that

∫
dr̂ |Y k2

` (r̂)|2 =1, and

W `
kk′(J ,J

′) =

∫ π

0

dθ1

π

dθ′1
π
U`(r, r

′) cos
(
k1θ1 + k2(θ2 − θ)

)
cos
(
k′1θ
′
1 + k′2(θ′2 − θ′)

)
. (4.F.2)

This coefficient involves the `th harmonics of the potential decomposition

U`(r, r
′) =

4πG

2`+ 1

min(r, r′)`

max(r, r′)`+1
, (4.F.3)

the phase angles (θ1, θ2) of the star with orbital parameters J and the phase angles (θ′1, θ
′
2) of

the star with orbital parameters J ′. Using the effective anomaly obtained in eq. (4.5.5), I can
rewriteW `

kk′ and the phase angles in the more convenient forms

θ1(u) =

∫ u

−1
du′Θ(u′) Ω1, (4.F.4a)

θ2(u)− θ =

∫ u

−1
du′Θ(u′)

(
Ω2 −

L

r2(u′)

)
, (4.F.4b)

and

W `
kk′(J ,J

′) =
2Ω1

π

2Ω′1
π

∫ 1

−1

du

2

du′

2
Θ(u)Θ(u′)U`(r, r

′) (4.F.5)

× cos
(
k1θ1 + k2(θ2 − θ)

)
cos
(
k′1θ
′
1 + k′2(θ′2 − θ′)

)
.

This multipole decomposition is very similar to the one used in chapter 3. Therefore, I can use
the samemethod as in appendix 3.A to perform the integration. Now, contrary to the Keplerian
case, I must also compute the angles θ1, θ2 numerically. However, because the integration vari-
able is the same both for the coefficientW `

kk′ and the phase angles, I can integrate both variables
at the same time (Rozier et al., 2019). Finally, because of the 1/r2 term in the θ2 − θ integrand,
the computation of θ2− θ is very difficult for the effective anomaly u close to−1. This is solved
by performing the integration in reverse – i.e. starting at u = 1.
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4.F.2 Resonance condition

The final step in the computation ofF `kk′(J) (eq. 4.7.2) is the integration over phase space w.r.t.
the action variable J ′. To do so, I am constrained by a resonance condition. Following Fouvry
& Prunet (2022), I define the dimensionless frequencies

1

α
=

Ωmax
1

π

∫ ra

rp

dr

vr(r, E, L)
, β =

L

π

∫ ra

rp

dr

r2vr(r, E, L)
, (4.F.6)

where Ωmax
1 = max Ω1 = 2Ω0. This defines a bijection between (Jr, L) and (α, β). By design,

0≤ α≤ 1, with α= 0 at the centre of the cluster and α= 1 at infinity. As for the β variable, it
is bound by the minimal value 1/2 for radial orbits, and βc its value for circular orbits. For the
Plummer cluster, I cannot obtain the analytical formula βc =βc(α). However, I can compute its
inverse relation

αc(β) =
1

2

(1− β)3/4

33/4β5/2
. (4.F.7)

Letting ωk=k ·Ω(J), I can rewrite the resonance condition in eq. (4.7.2) as

ωk = k′ ·Ω(J ′) = Ωmax
1 (k′1α

′ + k′2α
′β′). (4.F.8)

Let me define

ωmin
k = min

(α,β)
ωk(α, β) = min

β
ωk(αc[β], β), (4.F.9a)

ωmax
k = max

(α,β)
ωk(α, β) = max

β
ωk(αc[β], β), (4.F.9b)

and

Σk = ωmax
k + ωmin

k , (4.F.10a)
∆k = ωmax

k − ωmin
k . (4.F.10b)

I then define the change of variables

u =
2ωk(α, β)− Σk

∆k
, v =

β if k2 = 0,

α if k2 6= 0,
(4.F.11)

where −1 ≤ u ≤ 1 and v > 0 (since α > 0 and β ≥ 1
2). Its inverse transformation is given by

α =


Σk + u∆k

2k1Ωmax
1

if k2 = 0,

v if k2 6= 0,
β =


v if k2 = 0,
1

n2

(
Σk + u∆k

2vΩmax
1

− n1

)
if k2 6= 0,

(4.F.12)

with the Jacobians given by

∣∣∣∣ ∂(u, v)

∂(α, β)

∣∣∣∣ =
2Ωmax

1

∆k
×

k1 if k2 = 0,

k2α if k2 6= 0,
(4.F.13)
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and ∣∣∣∣∂(α, β)

∂(u, v)

∣∣∣∣ =
∆k

2Ωmax
1

×

1/k1 if k2 = 0,

1/(k2v) if k2 6= 0.
(4.F.14)

I can then rewrite the J ′ integration of eq. (4.7.2) under the form

F `kk′(J) =

∫
dα′dβ′

α′3(Ωmax
1 )2

G(J ,J ′)

|Hess|
δD

[
Ωmax

1 α′(k′1 + k′2β
′)− ωk(J)

]
. (4.F.15)

If a resonance line exists, then letting ω′=(∆ku
′ + Σk)/2, eq. (4.F.15) becomes

F `kk′(J) =

∫
dα′dβ′

α′3(Ωmax
1 )2

G(J ,J ′)

|Hess|
δD

(
∆k′u

′ + Σk′

2
− ωk(J)

)
(4.F.16)

=
2

∆k′

∫
dα′dβ′

α′3(Ωmax
1 )2

G(J ,J ′)

|Hess|
δD(u′ − u0),

where u0 =(2ωk[J ]− Σk′)/∆k′ , |Hess| is the Hessian of Jr(E,L) and

G(J ,J ′) =
π(2π)3m

2`+ 1
LL′ |ψ`kk′(J ,J ′)|2

(
k′ · ∂

∂J ′
− k · ∂

∂J

)
F (J)

L

F (J ′)

L′
. (4.F.17)

A final change of variable (α, β) 7→ (u, v) transforms eq. (4.F.16) into

F `kk′(J) =


sgn(k′1)k′21
ωk(J)3

∫
u′=u0

dv′
G(J ,J ′)

|Hess|
if k′2 = 0,

1

(Ωmax
1 )3

1

|k′2|

∫
u′=u0

dv′

v′4
G(J ,J ′)

|Hess|
if k′2 6= 0.

(4.F.18)

In the case k′2 = 0, then v′ = β′, while in the case k′2 6= 0, v′ = α′.

k′1 + 1
2k
′
2 ν µ Resonance line

6= 0 > 1 × None
6= 0 [0, 1] × RC
6= 0 [νmin, 0] × CC
6= 0 < νmin × None
= 0 × > 0 None
= 0 × [µmin, 0] CC
= 0 × < µmin None

Table 2: Nature of the resonance line depending on the resonance numbers (n′1, n
′
2) and action location J . The

resonance line can either be bound by a radial and a circular orbit (denoted as RC), by two circular orbits (CC), or
might not exist.

I still have to determine the boundaries of the resonance line in order to compute these inte-
grals. There are two types of resonance lines: (i) a radial-circular resonance line, whose bound-
aries are radial and circular orbits; (ii) a circular-circular resonance line, whose boundaries are
both circular orbits. Let me define νk′ = ωk′

/
[Ωmax

1 (k′1 + 1
2k
′
2)] and ν = ω

/
[Ωmax

1 (k′1 + 1
2k
′
2)].

Similarly, let me define µk′=ωk′/(Ω
max
1 k′1)=α(1− 2β)and µ=ω/(Ωmax

1 k′1). For each of these, I
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define their minimum value

νmin = min
β∈[ 1

2
,1]
νk′(αc[β], β) = min

β∈[ 1
2
,1]

αc(β) (k′1 + k′2β)

k′1 + 1
2k
′
2

, (4.F.19a)

µmin = min
β∈[ 1

2
,1]
µk′(αc[β], β) = min

β∈[ 1
2
,1]
αc(β) (1− 2β). (4.F.19b)

Finally, I regroup the different cases in Tab. 2.

If k′1 + 1
2k
′
2 6= 0, then the radial boundary is always set by (α, β) = (ν, 1/2). In any case, if

one or two circular boundaries exist, then they are given by (α, β) = (αc[β], β), where β is a
solution of ωk′(αc[β], β) = ω.

4.G Computing the NR diffusion coefficients from Landau theory

Let me give a few key points of the derivations of eq. (4.7.11). Consider a radial star (L= 0)
with a low energy orbit (E ∼ ψ[0]), so that its unperturbed motion is approximately simply
harmonic. Letting φ be an angle variable and ω be its frequency, we have

r(φ) = r0 cosφ ; r(t) = r0 cosωt, (4.G.1)

where r0 is a constant vector. Because the star is located deeply within the potential, most of
the stars which perturb its motion will have a much higher energy. Additionally, in order to
exert substantial perturbations on the test star’s motion, the perturbing star must be close to
the centre, i.e. its angular momentum must be low. Suppose for simplicity that their angular
momentum is Lp = 0. The rate of change of the perturbed star’s energy is given by

Ė = ṙ · ∂
∂r

(∑
p

Gm

|r − rp|
+ ψ(r, t)

)
, (4.G.2)

where the sum is performed over the perturbers indexed by p. Since r is a periodic function of
φ, we can write

ψ(r, t) =
∑
`

ψ`(t)e
i`φ, (4.G.3)

hence
ṙ · ∂ψ

∂r
= φ̇ · ∂ψ

∂φ
= iω

∑
`

′

` ψ` ei`φ, (4.G.4)

where the prime denotes the fact that the summation excludes ` = 0. Furthermore, we can also
use the decomposition

ṙ · ∂
∂r

(
Gm

|r − rp|

)
=
∑
`

∑
n

a`n ei(`φ+nφp), (4.G.5)

for certain quantities a`n using the periodicity of each angle variables. As we are interested
in computing the first-order change in E, the expressions for the unperturbed motion may be
substituted for φ and φp on the r.h.s. of eq. (4.G.2), that is,

φ = φ0 + ωt; φp = φp0 + ωpt, (4.G.6)
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where φ0, φp0 are initial values. Now, let us compute the average value of (∆E)2, assuming
that stars are randomly distributed along orbits (in the sense that φ0 and φp0 are distributed
uniformly and independently). A lengthly computation yields

〈∆E2〉 =
1

t

∑
p

∑
`

′∑
n

′

|a`n|2
sin2(xpt)

x2
p

, (4.G.7)

where xp = 1
2(`ω + nωp). Let us drop the prime notation for clarity. We shall suppose that

the DF of the perturbing stars (in position-velocity space) is a function of energy alone, i.e.
Ftot(rp,vp) = Ftot(Ep). Then the distribution of Ep and Lp is Ftot(Ep, Lp) where, following
Spitzer & Shapiro (1972),

Ftot(Ep, Lp)dEpdLp =
8π3

ωp
Ftot(Ep)dEpdLp. (4.G.8)

Thus the diffusion coefficient reads

〈∆E2〉 =
1

t

∑
`

∑
n

∫
dEpdLp Ftot(Ep, Lp)〈|a`n|2〉

sin2(xpt)

x2
p

, (4.G.9)

where 〈|a`n|2〉 is an average taken over all perturbers with particular values of Ep, Lp. In the
limit of large t, we substitute the sinc term with a Dirac function. This yields

〈∆E2〉 = 4π
∑
`>0

∑
n<0

1

|n|

∫
dLp

∣∣∣∣∂Ep

∂ωp

∣∣∣∣Ftot(Ep, Lp) 〈|a`n|2〉, (4.G.10)

where the value of Ep corresponds to the resonance condition xp = 0, i.e. a perturber such that
nωp + `ω = 0. After computation, the contribution from all resonances yields eq. (4.7.11).



Chapter 5

Rotating globular clusters

5.1 Introduction

Figure 5.1.1: From fig. 2 of Bianchini et al. (2018). Representation of themean propermotion along the tangential
component measured in a 3 half-light radii field-of-view around a large sample of globular clusters using proper
motions from Gaia DR2. Red stars indicate clusters for which rotation is detected at least with a 3-sigma confidence
level. Overall, a significant fraction of globular clusters have been shown to be rotating.

Rotation is ubiquitous. I showed in chapter 2 that kinetic theory involves the gradient of
the distribution function w.r.t. to angular momentum, both explicitly (eq. 2.2.31) and implicitly
(eq. 2.2.30) via the dressing of the interaction potential. These gradients spikewhen the dynam-
ics is dominated by a coherent flow in regions within the cluster where the effective moment
of inertia of the orbits is small and positive (e.g., at the inner Lindblad resonance), allowing
self-torquing to operate for a long time (Rozier et al., 2019). In effect rotation provides a source
of free energy, allowing the cluster to do work to reshuffle its orbital structure more efficiently
towards more likely configurations while amplifying shot noise. Yet, historically, the study of
globular clusters has been limited to initially isotropic, non-rotating, old globular clusters with
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a single stellar population (Aarseth et al., 1974; Spitzer & Shull, 1975; Cohn, 1979; Trager et al.,
1995; Miocchi et al., 2013). The reasons behind this are two-fold: just as in the anisotropic
case, it is easier numerically and analytically to neglect the effect of rotation. Indeed, spherical
isotropic models – e.g., the King models (King, 1966) or the Wilson models (Wilson, 1975) –
provided a satisfactory zeroth-order description of their main observed dynamical properties
(see, e.g., McLaughlin & van der Marel, 2005).

However, the large scale structures in which stellar systems evolve exhibit some degree of
anisotropy related to the primordial density field (West, 1994). These spin up stellar systems
either through their relative alignments (Plionis & Basilakos, 2002) or through the infall of
satellites onto the main cluster (Tormen, 1997; Aubert et al., 2004; Pichon et al., 2011). Angular
momentum may also be generated through the violent relaxation of initially non-rotating cold
self-gravitating systems in some cases (Benhaiem et al., 2016). Additionally, the last decade has
seen the emergence of new data (Fig. 5.1.1) – e.g., HST (see Fig. 5.1.2 and Bellini et al., 2017)
and Gaia DR2 (Bianchini et al., 2018; Sollima et al., 2019). These surveys gave the astrophysical

Figure 5.1.2: Image of 47 Tuc, which is one of themostmassive globular clusters of theMilkyWay. High-precision
measurements of Bellini et al. (2017) have shown the existence for rotation in this cluster. Credit: NASA/ESA.

community access to numerous and detailed observations of the internal kinematics of several
globular clusters of the MW (Bianchini et al., 2013; Fabricius et al., 2014; Watkins et al., 2015;
Ferraro et al., 2018; Kamann et al., 2018), as well as a quantification of the degree of anisotropy
in the three-dimensional velocity space (Jindal et al., 2019). Using these data, the historical
static cluster models are not satisfactory anymore. Therefore, a kinetic theory which describes
the evolution of globular clusters and accounts for their rotation is needed. Observations show
that the angular momentum distribution which is measured in Galactic clusters was shown to
contain the signature of their formation process (Lanzoni et al., 2018). While N -body simula-
tions are able to reproduce these results (Tiongco et al., 2016, 2022), the historical context and
the complexity of the problem have led to few analytical explorations (Geyer et al., 1983; White
& Shawl, 1987; Kontizas et al., 1989). These remain scarce even now (see, e.g., Stetson et al.,
2019; Rozier et al., 2019; Livernois et al., 2022).

Interestingly, the secular fate of rotating objects still remains an open question. For isolated
systems, a non-vanishing total angular momentum can have a significant impact on the clus-
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ter’s long-term evolution compared to its non-rotating counterpart. It has been shown to in-
duce complex dynamical evolutions such as a gravo-gyro catastrophe (Hachisu, 1979; Ernst et al.,
2007). This phenomenon has been observed in a range of systems, including rotating gas cylin-
ders (Inagaki &Hachisu, 1978; Hachisu, 1979), rotating gaseous discs (Hachisu, 1982), rotating
flattened (quasi-spherical) star clusters (Akiyama & Sugimoto, 1989; Einsel & Spurzem, 1999;
Ernst et al., 2007) or embedded BHs (Fiestas & Spurzem, 2010; Kamlah et al., 2022). However,
a large part of these studies have used a rotating King model to study the impact of rotation (see,
e.g., Einsel & Spurzem, 1999; Varri & Bertin, 2012). In particular, changing the rotation param-
eter impacts the density profile, and may therefore pose a problem when comparing rotation
models.

Alternatively, the joint presence of some internal rotation and a stellar mass spectrum seems
to produce an oblate core of fast rotating heavy masses (Kim et al., 2004; Tiongco et al., 2021).
The orbital inclinations of the heaviest stars decrease over time, inducing mass segregation in
the distribution of orbital inclinations in addition to the well-known radial (isotropic) mass
segregation (Szölgyén et al., 2019). The generally agreed explanation for this phenomenon is
resonant relaxation and resonant friction (Rauch & Tremaine, 1996; Meiron & Kocsis, 2019).
While this effect concerns rotating star clusters, nuclear cluster simulations containing a dom-
inant massive black hole (Szölgyén & Kocsis, 2018; Foote et al., 2020; Gruzinov et al., 2020;
Magnan et al., 2022) also appear to produce this phenomenon.

In this chapter, I will consider the same isolated, anisotropic Plummer globular cluster from
the previous chapter, and will add rotation. I will present the results of a series of N -body
simulations of Plummer clusters with a wide range of rotation in section 5.2. I will use these to
determine which range of parameters are still compatible with the clusters remaining linearly
stable and spherically symmetric. Then, I will measure the time-evolution of both radial and
azimuthal diffusion to probe the impact of rotation on both processes. In section 5.3, I will apply
the NR formalism (derived in section 2.3.3) to predict these two diffusions. In particular, I will
discuss the limitations of the NR theory, which are most visible when studying the azimuthal
diffusion.

5.2 N -body simulations

In order to study the impact of rotation on a globular cluster, let me first consider the system
from chapter 4 to which I add rotation via orbital flips using the Lynden-Bell demon procedure.
In practice, this corresponds to: (i) I draw a sample of stars for the non-rotating cluster using
the PlummerPlus.py script (see Breen et al., 2017); (ii) then, I switch the sign of Lz for a fraction
α of retrograde orbits chosen at random. The larger α, the more rotating the cluster is. This
method allows me to preserve the spherical symmetry of the density distribution as well as the
positivity of the DF.

As the cluster needs to be recentred in position and velocity, I apply the procedure presented
in section 4.4.1.

5.2.1 Sphericality and instabilities

In order to study the evolution of rotating clusters, I compute the actions (Jr, L, Lz) of each star
in the system. Then, I recover their inclination I using cos I = Lz/L.

Note that Rozier et al. (2019) showed that rotating clusters – with initial spherical symmetry
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– could harbour unstable modes (see Fig. 5.2.1), which may induce a flattening of the cluster.

Figure 5.2.1: From fig. 8 of Rozier et al. (2019). Illustration of the dependence of the growth rate, η(α, q), of the
dominant unstable mode in rotating clusters, as a function of the cluster’s parameters (α, q), measured here using
N -body methods. Beyond some q-dependent rotation-threshold, rotating clusters are (linearly) unstable, hence
breaking away from spherical symmetry.

Computationally, moving beyond spherical symmetry is costly when estimating the potential
and makes the orbits more intricate. In addition, in axisymmetric systems, L is not an integral
of motion anymore (though Lz remains one).

Hence, I will restrict myself to (linearly) stable rotating systems which conserve their spher-
ical symmetry, at least initially. To probe the conservation of symmetry, I rely on sphericality, as
introduced in appendix 4.D. I follow its evolution for a range of rotating clusters in Fig. 5.2.2, us-
ing N -body simulations. In that figure, all the clusters appear to approximately conserve their
spherical symmetry, with the clear exception of the radially-anisotropic cluster (q, α) = (1, 0.5).
In that particular case, the cluster flattens quickly. This is in agreement with the measurements
from Fig. 5.2.1, as this cluster falls into the region of instability.

5.2.2 Radial diffusion

Having identified stable rotating globular clusters, I rely on N -body simulations to study the
impact of rotation on their long-term evolutions. Following chapter 4, a natural starting point
is to look at the evolution of the core radius. The result is presented in Fig. 5.2.3. Rotation
does not impact appear to impact the rate of core collapse in rotating clusters. For the unstable
cluster (q, α) = (1, 0.5), the corresponding mode likely impacts the efficiency of the cluster’s
overall relaxation. Indeed, the deviation from the other core collapse plots happens around
t ∼ 100 HU. This corresponds to the time where the instabilities begins to grow in Fig. 5.2.2, i.e.
when flattening occurs. A slight instability is also occurring for (q, α) = (1, 0.25), as predicted
by Fig. 5.2.1, but it is small enough so that I can still assume spherical symmetry during the
early evolution of the cluster.
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Figure 5.2.2: Sphericality of a sample of rotating clusters, as observed in my N -body simulations. Each of the
clusters have been averaged over 50 realisations. I represent radial clusters (q = 1) in red, isotropic clusters (q = 0)
in yellow and tangential ones (q = −6) in blue, for three rotating parameters α = 0.1, 0.25, 0.5. In agreement with
the results fromRozier et al. (2019) shown in Fig. 5.2.1, some of these clusters are unstable – namely (q, α) = (1, 0.5),
and in a smaller fashion (q, α) = (1, 0.25), while the others are linearly stable and conserve their spherical symmetry.

Figure 5.2.3: Evolution of the core radius as measured in N -body simulations. Each of the clusters have been
averaged over 50 realisations. Colour-coding is the same as in Fig. 5.2.2. Interestingly, in stable clusters, rotation
weakly impacts the rate of core collapse compared to the effect of velocity anisotropy.
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In order to probe the impact of rotation on secular evolution, I measure in N -body sim-
ulations the diffusion in the (Jr, L)-space. This choice is motivated by the fact that the core
radius only depends on stellar density, hence is not impacted by orbital inclination. I present
this measurement in Fig. 5.2.4. As was already the case in non-rotating clusters, the clusters

Figure 5.2.4: Illustration of the relaxation rate, ∂F/∂t, for various values of the anisotropy parameter q (left to
right) and rotation parameter α (top and bottom), as measured in N -body simulations in the (Jr, L)-space. The
amplitude of the radial relaxation rate depends on q as seen in chapter 4, but does not appear to depend strongly
on the amount of rotation α.

appear to isotropise. I observe a depletion of radial orbits in clusters with initial radial velocity
anisotropy, and I observe a depletion of circular orbits in clusters with initial tangential velocity
anisotropy. However, the strength of rotation, α, does not appear to have a significant impact
on the geometry of radial diffusion.

5.2.3 Azimuthal diffusion

I now consider the evolution of the stars’ orbital inclinations. This is presented in Fig. 5.2.5. For
the rotation-free cluster, as expected, the evolution of the DF is independent of cos I . Therefore,
integrating over Jr yields aDF in cos I whose time derivative vanishes: the systemdoes not gain
any rotation.

Now, let me consider the case of the rotating clusters. First of all, for the radially anisotropic
(q = 1) and isotropic (q = 0) clusters, the systems tend to lose stars in the region cos I > 0
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Figure 5.2.5: Illustration of the relaxation rate, ∂F/∂t, for various values of the anisotropy parameter q (left to
right) and rotation parameter α (from top to bottom), as measured in N -body simulations in the (Jr, cos I)-space.
The amplitude and structure observed depend on anisotropy, and show a reshuffling of orbits towards isotropisa-
tion. They also depend on rotation: the orbital inclinations reshuffle toward a more affine distribution in cos I .
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(prograde) and gain stars in the region cos I < 0 (retrograde). As I increase the number of
prograde orbits in the cluster (i.e. I increase α), I observe that this trend strengthens. This
phenomenon is related to the reshuffling of orbits observed in anisotropic clusters, where the
systems always seemed to isotropise. The highest diffusion rates in inclination are observed
near cos I = 0, where the discontinuity of the LBD occurs (eq. 2.3.36). Overall, the systems
appear to evolve towards a state in which the inclination distribution is smoother.

At first glance, the case q =−6 may appear to be slightly different. Indeed, a depletion in
orbits is observed for low Jr of any cos I (as a result of isotropisation). On the other hand,
an increase in orbits is observed for higher Jr, yet again for any cos I . This reshuffling is to be
linked to the isotropisation of the cluster, whichwas initially tangentially biased. Now, if I focus
on the amplitude of depletion, I observe that more orbits are depleted in the cos I > 0 region
than in the cos I < 0 region. This is the orientation reshuffling which I observed for the q = 1

and q=0 cluster, and is the signature of rotation.

As a complement, diffusion maps in the (L, cos I)-space are shown in appendix 5.B. There, I
observe a similar reshuffling of inclinations from the over-populated regions toward the under-
populated regions. Orbital reshuffling due to anisotropy also occurs: I observe either a deple-
tion (q=1) or an increment (q=−6) of radial orbits (L=0).

5.2.4 Inclination relaxation

Finally, I measure the time evolution of theDF in cos I in Fig. 5.2.6 (averaged over 50 realisations
of rotating clusters). It appears that the systems tend towards a more affine distribution of

Figure 5.2.6: Evolution of the DF, F (cos I), describing orbital inclinations, as measured in N -body simulations.
The relaxation of orbital inclinations does not depend much on the initial anisotropy. The time evolution appears
to converge towards a more affine distribution of orbital inclinations.

inclinations, as if relaxation was erasing the discontinuity. Indeed, the sharp discontinuity at
cos I = 0 has already been washed away after 50 HU, which corresponds to a small fraction of
the cluster’s relaxation time (namely to 0.05 trh, with the half-mass relaxation time trh defined
in eq. 5.2.1). Additionally, the more rotation the cluster initially has, the faster the discontinuity
disappears. To draw a definitive conclusion on the universality of this observation, it would be
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of interest to repeat this experiment with other parameterisations for the rotation. This is left
for future investigations.

Note that the loss and gain of prograde or retrograde orbit does not contradict the conserva-
tion of angular momentum. Indeed, I consider the evolution of cos I = Lz/L, whose average is
not constrained by a conservation law, contrary toLz . To resolve this apparent paradox, one can
point that even if the number of particles with positive and negative cos I (hence Lz) changes,
the conservation of angular momentum can be still ensured by a modulation of the norm of
each star’s angular momentum.

5.2.5 Long-term relaxation

In the previous sections, I considered a cluster with N = 105 stars (i.e. the typical number of
stars in a globular cluster). This large number of particles allowed me to reduce fluctuations
when measuring ∂F/∂t in N -body simulations. However, such a large number of particles
induces a very slow relaxation. This timescale can be estimated using the half-mass relaxation
time (see, e.g., section 14 of Heggie & Hut, 2003, for more details), defined by

trh =
0.138N1/2r

3/2
h

(Gm)1/2 ln(0.11N)
, (5.2.1)

where rh is the half-mass radius. In Breen et al. (2017), core collapse occurs at ∼ 17trh for an
isotropic cluster (see tab. 1 of their work for a proper measurement w.r.t. anisotropies). For a
cluster with N = 105 stars, a quick computation yields trh = 994 HU, meaning that my stud-
ies have been limited to the very early evolution of the clusters. Because I was interested in
the initial evolution of the cluster (as a probe of its secular evolution), this was not a limita-
tion. However, if I had wished to reach core collapse, I would have had to push the numerical
integration of orbits up to ∼ 17000 HU. As a single run of NBODY6++GPU takes about a day (par-
allelised over 40 threads) to integrate until ∼ trh, integrating up to core collapse would not be
feasible.

Therefore, in this section I now temporarily consider clusters withN=104 stars. In this case,
trh = 132 HU, meaning that core collapse is reached after ∼ 2200 HU for an isotropic cluster.
With the lower number of stars, as well as the shorter core collapse time, the time integration
is much swifter and the core collapse is reached in approximatively 10h. Furthermore, as I am
interested in computing the core radius evolution – a very integrated quantity – fluctuations
do not impact its measurement as much as they impact ∂F/∂t. In practice, I average these
measurements over 10 runs.a

Figure 5.2.7 shows the averaged evolution of the core radius for the usual sets of anisotropies
and rotations (q= 1, 0,−6 and α= 0, 0.1, 0.25, 0.5). It is the analogue of Fig. 4.1.2, where time
integration has been pushed forwards. For these sets of rotating clusters, the impact of rotation
is not as important as the one observed in Einsel & Spurzem (1999) for rotating King models.
Furthermore, the spread of core collapse times between individual realisations of clusters with
the same anisotropydoes not allowme to distinguish clearly between, say, a non-rotating cluster
(α=0) and a very rotating cluster (α=0.5) for the same value of q.

aOne run in the cluster (q, α) = (0, 0.1) was arbitrarily discarded, as it deviated too much from the typical aver-
aged evolution of the core radius. Two runs, which did not reach Rc =0.001 HU, were also discarded and replaced
by runs which did so. Because the spread between realisations is quite large in practice, this does not affect the
trend observed in Fig. 5.2.7.
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Figure 5.2.7: Evolution of the core radius as measured in N -body simulations. Each of the clusters have been
averaged over 10 realisations with N = 104. Increasing the rotation strength α slightly reduces the time of core
collapse. Nevertheless, the impact of rotation (i.e. the gravo-gyro catastrophe) is not as pronounced as what was
observed in, e.g., Einsel & Spurzem (1999).

This does not necessarily contradict the measurements made by Einsel & Spurzem (1999).
In their study, they considered the secular evolution of a rotating King model with the DF (at
initial time)

Ftot(E,Lz) = cst. (e−βE − 1) e−βΩ0Lz . (5.2.2)

In this DF, β = 1/σ2
c is an inverse temperature, with σc the central velocity dispersion, and

ω0 =
√

9/(4πGnc)Ω0 is a rotation parameter, with nc the central density. In particular, β is
related to the so-called King parameter, defined byW0 =−β(ψ − ψt) where ψt is the potential
at the edge of the cluster. The rotating King models can therefore be parametrised by (W0, ω0).
Using this convention, the rotating King cluster is integrated forward in time using a Fokker-
Planck scheme until core collapse for a set of different rotation parameters, ω0, as represented in
Fig. 5.2.8. Einsel & Spurzem (1999) clearly showed the strong dependence of the core collapse
time with the rotation parameter of the King model. For the model W0 = 6.0, a non-rotating
cluster reaches core collapse at t∼12trh, and the cluster with rotation parameter ω0 = 0.4 does
so at t∼9trh. This difference is much more significant than for the Plummer cluster studied in
this chapter.

Letme finally stress that the parametersα (Plummer) andω0 (King) do not describe rotation
in the sameway. Beyond the obvious question of defining precisely how they parametrise some
sort of rotation strength, I can remark that ω0 impacts the mean density profile while α does not.
This is because the DF of the rotating King model does not decompose into an even part and
an odd part in Lz (see, e.g., Dejonghe, 1986). Therefore, definitive conclusions should only be
drawn with care. The LBD DF (eq. 2.3.36) does not suffer from this issue, as it keeps the mean
density the same. This makes the comparison between two rotating models, as in Fig. 5.2.7, in
some sense fairer.
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Figure 5.2.8: From fig. 2 of Einsel & Spurzem (1999). Evolution of the central density for the model W0 = 6.0,
with varying initial angular velocity parameters ω0. Core collapse is deeply impacted by the amount of rotation
introduced in the King model, and we observe a great acceleration of core collapse when more rotation is injected
initially. This is much different from what I observe in Fig. 5.2.7 for the rotating Plummer cluster, where rotation
only weakly impacts the core collapse time.

5.3 Theoretical predictions

In the previous section, I usedN -body simulations to investigate the relaxation of the (Jr, L)-DF
the (Jr, cos I)-DF and the cos I-DF. Both of these distributions can be obtained by integrating
over the full DF in (Jr, L, cos I) via

F (Jr, L) =

∫ 1

−1
d cos I F (Jr, L, cos I),

F (Jr, cos I) =

∫ ∞
0

dLF (Jr, L, cos I),

F (cos I) =

∫ ∞
0

dJr

∫ ∞
0

dLF (Jr, L, cos I).

(5.3.1a)

(5.3.1b)

(5.3.1c)

The (Jr, L, cos I)- DF can be expressed in terms of the distribution function in (Jr, L, Lz), which
I called Frot(Jr, L, Lz) (see eq. 2.3.36), via the relation F (Jr, L, cos I)=LFrot(Jr, L, L cos I). The
time-evolution of each of these reduced DFs can be computed using the Fokker–Planck equa-
tions I derived in section 2.3.3. Therefore, I need a practical way of numerically evaluating the
diffusion coefficients involved therein.

5.3.1 Orbit averaging for rotating clusters

The computation of the local velocity deflection coefficients is nowmuchmore complex than in
the non-rotating case. Indeed, I need to evaluate the backgroundDF at an additional parameter
L′z , whose evaluation is presented in appendix 2.C. Having obtained these local coefficients, I
then need to perform the orbit-average.

I start from the general formula of eq. (2.3.21). Here, the (new) θ-average cannot be done
trivially due to the θ-dependency in the L′z parameter (see eq. 2.C.6) of the velocity integral for
the local velocity deflection coefficients. Taking advantage of the structure of the coefficients
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in E, L and Lz (see eqs. 2.3.22 and 2.3.37), I can push the θ-integral all the way down to the
velocity integrals involved in the local deflection coefficients. In the end, I need to compute the
following quantities∫

dθ

2π
〈∆v‖〉,

∫
dθ

2π
〈(∆v‖)2〉,

∫
dθ

2π
〈(∆v⊥)2〉,

∫
dθ

2π
cos 2θ 〈(∆v⊥)2〉, (5.3.2)

where I used the formula sin2 θ= 1
2(1 − cos 2θ). This leaves me with the following non-trivial

Figure 5.3.1: Illustration of the relaxation rate, ∂F/∂t, for various values of the anisotropy parameter q (left to
right) and rotation parameter α (from top to bottom), as predicted from the NR theory in the (Jr, L)-space. The
predictionmatches themeasurements fromN -body simulations shown in Fig. 5.2.4, up to an overall prefactorwhich
depends on q, and veryweakly onα. This computation requires the evaluation of five embedded integrations, which
makes this prediction numerically very intensive.

θ-integrals to compute

A1 =

∫
dθ

2π
g(L′z/L

′), A2 =

∫
dθ

2π
cos 2θ g(L′z/L

′), (5.3.3)

which come from the L′z-dependent part of the background DF involved in eqs. (2.3.31). For
the particular choice of the LBD (eq. 2.3.36), these integrals can be computed analytically (see
appendix 5.A). This makes the numerical evaluation of the theory both easier and faster.
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5.3.2 Radial diffusion

Using eq. (2.3.45), I can now compute the time derivative of the DF in (Jr, L)-space. In addition
to the extra dimension in orbit-averaging induced by the background, I have to integrate the
test star’s DF over cos I = Lz/L in order to recover the reduced two-dimensional DF, which
gives much less leeway to a precise prediction of the diffusion rate given by eq. (2.3.45).

Figure 5.3.1 represents the impact of anisotropy and rotation on radial diffusion – the (Jr, L)-
orbital space – as predicted using kinetic theory. As with the non-rotating case (chapter 4), the
NR theory appears to be successful in recovering the evolution of the radial DF in stable rotating
clusters. Comparing with the measurements of Fig. 5.2.4, the NR theory recovers the observed
action space structures with a remarkable accuracy. As expected, even though the amplitudes
from both methods are comparable, there is still an overall mismatch prefactor. Interestingly,
I find that rotation does not appear to have a significant impact on this prefactor whatsoever
for the clusters I considered. At most, I can measure a slight increase in the relaxation rate as
I increase the rotation parameter α. This is compatible with the behaviour of the core radius
evolution observed in Figs. 5.2.3 and 5.2.7, where rotation had a (very) weak impact on the
rate of core collapse. Amore quantitative comparison would require performingmoreN -body
runs in order to refine the measurement of the core radius down to acceptable error bars.

5.3.3 Azimuthal diffusion

N -body simulations suggested in Fig. 5.2.5 that the impact of rotation is visible in the (Jr, cos I)-
space, which involves orbital inclinations. They showed evidence of a smoothing process: the
region with an extra amount of orbits loses a portion of its orbits to the benefit of the depleted
region.

The NR prediction is shown in Fig. 5.3.2 for the same process. This figure shows a very
different trend compared to the N -body measurements. First, the non-rotating response is
accurately recovered by the NR theory. The time derivative of the DF does not depend on cos I ,
hence ∂F/∂t(cos I)=0. This is a reassuring sanity check. However, I note some discrepancies in
the locations of the structures present in both approaches (see top panels of Fig. 5.2.5 for theN -
bodymeasurements). The location in Jr of the null line (in dark dashed lines) predicted by the
NR theorymight slightly underestimate themeasurement madewithN -body simulations (see
Fig. 5.3.3 for a direct comparison between N -body simulations and the NR theory for q=0).

For rotating clusters, the difference is much more striking. While the basic observations
of orbital reshuffling still holds – in particular, the system loses more prograde orbits than
retrograde ones – the structures predicted by the NR theory do not match accurately those
observed in N -body simulations. Indeed, the N -body measurements yield round structures
as one goes from cos I = 0 to cos I = 1. On the contrary, I observe straighter structures in the
NR predictions. This seems to be a robust conclusion, as the mismatch remains as I increase
the sampling of the various integrations performed in the NR prediction. I reach the same
conclusion in appendix 5.B when considering the relaxation in the (L, cos I)-space.

Now, cos I = 0 corresponds to orbits perpendicular to the rotation plane, whereas cos I =

±1 corresponds to orbits within the rotation plane. As I increase the rotation parameter α,
I increase the overall rotation of the cluster. In particular, I expect that stars orbiting near the
rotation planewill be subject to coherent interactionswith other stars contributing to the overall
rotation. On the contrary, stars orbiting on a plane perpendicular to the rotation plane will not
be impacted as much by them. Because the NR theory only takes into account local deflections
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Figure 5.3.2: Illustration of the relaxation rate, ∂F/∂t, for various values of the anisotropy parameter q (left to
right) and rotation parameter α (top and bottom), as predicted from the NR theory in (Jr, cos I)-space. Contrary to
radial diffusion, the prediction fails to recover the structures observed numerically in Fig. 5.2.5. While the isotropi-
sation and inclination smoothing is qualitatively recovered, the NR theory fails to predict the finer details. In order
to obtain a satisfying prediction near cos I=0, I had to finely sample some of the required orbital integrals.
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to source orbital relaxation, it cannot account for the corresponding amplification. As a result,
I expect that low-cos I stars can be described accurately by the NR theory, while high-cos I stars
cannot.

Figure 5.3.3: Comparison of the relaxation rate, ∂F/∂t(Jr, cos I), at q = 0, for various values of the rotation
parameter α (from top to bottom), between the NR theory (right panels) and N -body simulations (left panels).
The NR theory matches the N -body predictions for non-rotating clusters, though it might underestimate the null
lines. However, it only very roughly predicts the shape of action space structure for rotating clusters. Because
rotating clusters’ orbits are populated more coherently (as they are dynamically colder), the NR theory, which
cannot take into account coherent interactions in the secular response, fails.

The shortcomings of theNR theory in predicting azimuthal diffusion is undoubtedly amoti-
vation to extend the current RR theory (section 2.3.1) to the study of rotating clusters. Because
of the spherical symmetry of the cluster, such a system is degenerate in the z-direction. As
a consequence, the RR theory predicts no diffusion along the azimuthal direction. However,
due to the finite-N nature of the potential, stochastic deviations from the spherical potential
are nonetheless expected to occur. This drives a reshuffling of the orbital orientation of the
stars while conserving the norm of their angular momentum, i.e. drives a diffusion of L̂. This
process is called vector resonant relaxation (VRR) (see, e.g., Rauch & Tremaine, 1996; Kocsis &
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Tremaine, 2015; Meiron & Kocsis, 2019). By applying this formalism to predict the azimuthal
relaxation within the rotation plane, I should be able to take in account the coherent motion of
the stars. This would hopefully provide a better match to N -body simulation (Fig. 5.3.3).

5.4 Concluding remarks

In this chapter, I extended theNR theory to study the impact of rotation in the secular evolution
of sequences of Plummer globular clusters. By relying on a large sample ofN -body simulations
(section 5.2), I first identified a range of rotating clusters displaying no linear instabilities. This
allowedme to limit myself to spherically symmetric rotating clusters. Then, I was able to deter-
minewhich quantities are useful to study the impact of rotation on secular evolution. I observed
that while rotation does not appear to impact radial diffusion, it does impact the distribution
of orbital inclinations, which tends to become more affine.

In section 5.3, I used the NR formalism to predict the long-term time-evolution of the DF
measured in N -body simulations. The special form of the LBD allowed me to explicitly inte-
grate over the θ-angle average (section 5.3.1), which improved numerical efficiency and stabil-
ity. Regarding radial diffusion, I was able to recover the N -body measurements with an accu-
racy similar to the one observed in the non-rotating case (section 5.3.2). Namely, the structures
in both predictions match, up to an overall prefactor weakly dependent on rotation. Using a set
of clusters with fewer stars, I explored the evolution of the cluster up to its core collapse. I also
confirmed that rotation had a weak impact on radial relaxation by measuring the core collapse
time of a set of rotating, anisotropic clusters. Contrary to previous works on the subject (see,
e.g., Hachisu, 1979), I was not able to observe a strong gravo-gyro catastrophe accelerating core
collapse (see, e.g., Einsel & Spurzem, 1999). Since I did not use the same rotation parametrisa-
tion for the cluster, their studies do not contradict my result.

However, the NR theory does not predict exactly the same out-of-plane relaxation as what I
measured in N -body simulations. On the positive side, I observe in both cases a reshuffling of
orbital inclination from the overpopulated regions to the underpopulated ones, as well as an
acceleration of the relaxation as I increase the rotation parameter α (section 5.3.3). However,
as I consider orbits which are closer and closer to the rotating plane, the prediction of the local
NR theory fail to match numerical observations. Indeed, these orbits follow coherent motions
contributing to the overall rotation of the cluster. The boosted interactions between the more
numerous stars participating in this coherent motion is not taken into account by the NR for-
malism, which only deals with local deflections. In contrast, stars with orbits perpendicular
to the mid-plane are impacted by rotation. Therefore, most of the relaxation they undergo is
sourced by local interactions captured by the NR formalism.

5.4.1 Future works

As rotating systems can be dynamically cold, it would be of interest to implement the RR for-
malism for them. While the inhomogeneous Landau equation was investigated in non-rotating
systems (see, e.g., Hamilton et al., 2018), its implementation for rotating systems with an ex-
plicit dependence on Lz is still to be done. Furthermore, because collective effects can sig-
nificantly amplify fluctuations in cold dynamical systems, an implementation of the Balescu–
Lenard equationmight prove necessary to recover theN -bodymeasurements I obtained in this
chapter.

In section 5.2.4, I followed the evolution of the DF describing orbital inclinations. Though
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all of them seem to display the same behaviour – a convergence toward the same type of distri-
bution – the small time range and the limited sample of initial conditions prevented me from
reaching definite conclusions on certain aspects. In order to determine the asymptotic distribu-
tion of orbits, it might be interesting to push N -body simulations further in time. While some
studies did such long-term N -body simulations (Tiongco et al., 2020; Livernois et al., 2022),
inclinations were not their focus. In addition, the DF I investigated corresponds to a very early
period of the cluster’s core collapse. One may be able to observe a different behaviour when
analysing the final stages of core collapse. As a complement to N -body simulations, it would
be of interest to integrate the 3D Fokker–Planck equation itself. While this has recently been
implemented in the context of isotropic clusters (Vasiliev, 2015), its application to anisotropic,
rotating systems is another possible extension of this work. Taking into account that rotation
can induce a flattening of the cluster during its evolution and studying the implementation of
kinetic theory in the case of flattened axisymmetric systems (and eventually, their evolution)
will be the subject of future works.

Nonetheless, before treating as challenging a project, one might first try to follow the evo-
lution of the angular momentum orientation L̂ under the effect of coherent torques between
orbits using vector resonant relaxation. One would then be able to determine if coherent mo-
tions are the missing ingredient separating the NR predictions and theN -body measurements
made in this chapter. While its has been intensively applied to the Galactic nucleus (see, e.g.,
Eilon et al., 2009; Kocsis & Tremaine, 2011, 2015; Szölgyén & Kocsis, 2018; Fouvry et al., 2019b;
Szölgyén et al., 2019, 2021; Fouvry et al., 2022; Magnan et al., 2022), its application to globular
clusters remains to be developed (see Meiron & Kocsis, 2019, for a preliminary investigation).



Appendices of chapter 5

5.A Computing the θ-integral for g = sgn

Using the particular form of the LBD rotation function in eq. (2.3.36), where g = sgn, allows
me to integrate the θ-part of the orbit-average (eq. 2.3.21) explicitly. This speeds up the com-
putation of the NR predictions, as well as its accuracy. I start from the functions defined in
eqs. (5.3.3)

A1 =

∫
dθ

2π
sgn(L′z), A2 =

∫
dθ

2π
cos 2θ sgn(L′z), (5.A.1)

where I recall the expression (eq. 2.C.6)

L′z = r

(
v′1
vt

v
− v′3

vr
v

)
cos I + rv′2 sin I sin θ. (5.A.2)

Let me define ν = −(v′1vt/v− v′3vr/v) cos I and µ = ν/(v′2 sin I). I can then compute A1 and A2

explicitly, whose expressions are gathered in Tab. 1.

v′2 µ A1 A2

0 undefined −sgn(rν) 0
6= 0 > 1 −1 0
6= 0 [−1, 1] −2 sin−1 µ/π −2µ

√
1− µ2/π

6= 0 < −1 1 0

Table 1: Table of values of A1 and A2, as introduced in eq. (5.A.1) for the LBD DF (eq. 2.3.36).

5.B Orbital diffusion in the (L, cos I)-space

I can study the evolution of the system in (L, cos I)-space. I first report in Fig. 5.B.1 theN -body
measurements. The conclusions I draw from this figure are analogous to that of Fig. 5.2.5 in
(Jr, cos I)-orbital space. Indeed, I observe a reshuffling of the inclinations which depletes the
over-populated regions in favour of the under-populated ones. Similarly to the prediction in
the (Jr, cos I)-orbital space, the NR theory fails to predict accurately the relaxation rate, as I
present in Fig. 5.B.2.
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Figure 5.B.1: Illustration of the relaxation rate, ∂F/∂t, for various values of the anisotropy parameter q (left to
right) and rotation parameter α (from top to bottom), as measured inN -body simulations in the (L, cos I)-space. I
can make the same observations as in Fig. 5.2.5.
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Figure 5.B.2: Illustration of the relaxation rate, ∂F/∂t, for various values of the anisotropy parameter q (left to
right) and rotation parameter α (from top to bottom), as predicted by the NR formalism in the (L, cos I)-space. The
structures predicted by the NR theory differ from those observed in Fig. 5.B.1, increasingly so as I consider stars
orbiting near the rotation plane (cos I = ±1).
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5.C Fokker–Planck equation w.r.t. Lz
Let me first reduce the 3D Fokker–Planck equations from the (Jr, L, Lz)-space into the (Jr, Lz)-
space. Using the definition

F (Jr, Lz) =

∫ ∞
|Lz |

dLFrot(Jr, L, Lz), (5.C.1)

I obtain

∂F

∂t
(Jr, Lz) = −

∫ ∞
|Lz |

dL

(
∂FJr
∂Jr

+
∂FL
∂L

+
∂FLz
∂Lz

)
(5.C.2)

= − ∂

∂Jr

∫ ∞
|Lz |

dLFJr + FL(Jr, |Lz|, Lz)− sgn(Lz)FLz(Jr, |Lz|, Lz)−
∂

∂Lz

∫ ∞
|Lz |

dLFLz

= − ∂

∂Jr

∫ ∞
|Lz |

dLFJr −
∂

∂Lz

∫ ∞
|Lz |

dLFLz ,

since FLz(Jr, L,±L) = ±FL(Jr, L,±L). This reflects the fact that the flux cannot leave the
(L,Lz)-space (Hamilton et al., 2018). Equation (5.C.2) can be written as a 2D-continuity equa-
tion of the form

∂F

∂t
(Jr, Lz) = −∂FJr

∂Jr
− ∂FLz

∂Lz
, (5.C.3)

with the flux in the (Jr, Lz)-space given by F = (FJr ,FLz), where

FJr =

∫ ∞
|Lz |

dLFJr(Jr, L, Lz), (5.C.4a)

FLz =

∫ ∞
|Lz |

dLFLz(Jr, L, Lz). (5.C.4b)

Now recall from eqs. (2.3.38) and (2.3.39) that

FJr = DJrFrot −
1

2

(
∂(DJrJrFrot)

∂Jr
+
∂(DJrLFrot)

∂L
+
∂(DJrLzFrot)

∂Lz

)
, (5.C.5a)

FLz = DLzFrot −
1

2

(
∂(DJrLzFrot)

∂Jr
+
∂(DLLzFrot)

∂L
+
∂(DLzLzFrot)

∂Lz

)
. (5.C.5b)

Using DJrLz = sgn(Lz/|Lz|)DJrL and DLLz = sgn(Lz/|Lz|)DLL at L = |Lz|, it follows that

FJr =

∫ ∞
|Lz |

dLDJrFrot −
1

2

(
∂

∂Jr

∫ ∞
|Lz |

dLDJrJrFrot +
∂

∂Lz

∫ ∞
|Lz |

dLDJrLzFrot

)
, (5.C.6a)

FLz =

∫ ∞
|Lz |

dLDLzFrot −
1

2

(
∂

∂Jr

∫ ∞
|Lz |

dLDJrLzFrot +
∂

∂Lz

∫ ∞
|Lz |

dLDLzLzFrot

)
. (5.C.6b)

These equations are satisfactory for two main reasons. First, because the L-integration variable
never reaches 0 when Lz 6= 0, the singularity in 1/L (which comes fromDL, see eq. 2.3.22c) has
been avoided. Then, I got rid of the singularities in eq. (5.C.3) by using the exact cancellation
of the 1/L divergence in the term FL(Jr, |Lz|, Lz) − sgn(Lz)FLz(Jr, |Lz|, Lz) = 0. This is made
possible by the boundary condition FLz(Jr, L,±L) = ±FL(Jr, L,±L).

Now, the integration over Jr in eq. (5.C.3) can be straightforwardly carried, and leads to the
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1D Fokker–Planck eq. (5.D.5).

5.D Impact of discontinuities

One of the potential issues of the LBD (eq. 2.3.36) is its discontinuity in cos I = 0. Naturally,
one could be worried that it would impact my predictions. To investigate this concern, I can
generalise my range of rotating distribution functions to those of the form

Frot(Jr, L, Lz) = Ftot(Jr, L)(1 + αg[Lz/L]), (5.D.1)

where g[cos I] is an odd function such that g[1] = 1. The LBD demon is recovered for g= sgn.
To approximate this behaviour with a smooth function, I consider the sequence of functions
(Rozier et al., 2019)

ga(x) = erf(ax)/erf(a), (5.D.2)

such that g0(x) = x, while g∞(x) = sgn(x) as illustrated in Fig. 5.D.1. One way to probe the

Figure 5.D.1: Representation of the family of functions ga(cos I) (eq. 5.D.2) for various values of a. When I let
a→ 0, the function approaches identity. When I let a→∞, the function approaches the sgn LBD function. Using
this function allows me to study the impact of the discontinuity of the LBD DF against increasingly sharper smooth
approximations.

effect of the discontinuity is to compute the cos I component of the 3D-flux (eq. 2.3.42c) in
(Jr, L, cos I)-space for different values of a > 0. I represent this behaviour in Fig. 5.D.2. In this
figure, I observe a 1/L singularity for low L when I consider the smooth approximation of the
sgn rotation function. As I increase a→∞, the flux converges towards the LBD flux pointwise.
However, as it stands now, this NR prediction cannot be applied to a smooth DF. Indeed, I can
trace back the removal of the 1/L singularity to the cancellation of the derivative of sgn, which
is a piecewise constant function (see eq. 2.3.48). Such a property is not the norm for arbitrary
rotation functions g(cos I).

Nevertheless, it is possible to avoid this singularity by considering relaxation in the (Jr, L, Lz)

space instead of the (Jr, L, cos I) space. Indeed, I can define the DF in Lz as

F (Lz) =

∫ ∞
0

dJr

∫ ∞
|Lz |

dLFrot(Jr, L, Lz), (5.D.3)

so that
(2π)3

∫ ∞
−∞

dLz F (Jr, Lz) = M. (5.D.4)
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Figure 5.D.2: Representation of FcosI(Jr, L, cos I) at Jr = 0.1 and cos I = 0.2 for various smooth rotation func-
tions ga (eq. 5.D.2). I observe the existence of a 1/L divergence as L→ 0 when ga is smooth. As ga tends to the sgn
function, the flux converges to the LBD flux pointwise, though the 1/L-divergence always remains.

Integrating the 3D Fokker–Planck eq. (2.3.38) over Jr and L yields (see appendix 5.C)

∂F

∂t
(Lz) = − ∂

∂Lz

(
DLzF [Lz]

)
+

1

2

∂2

∂L2
z

(
DLzLzF [Lz]

)
, (5.D.5)

where the Lz-diffusion coefficients are

DLz =

∫ ∞
0

dJr

∫ ∞
|Lz |

dLDLzFrot(Jr, L |Lz), (5.D.6a)

DLzLz =

∫ ∞
0

dJr

∫ ∞
|Lz |

dLDLzLzFrot(Jr, L |Lz), (5.D.6b)

with Frot(Jr, L |Lz) = Frot(Jr, L, Lz)/F (Lz) the DF in (Jr, L) given the angular momentum Lz ,
normalised to unity. The barred notation means that the diffusion coefficients are averaged
over the other actions (Jr, L). When I consider Lz 6=0, the coefficients DLz and DLzLz are well-
defined everywhere for any distribution function with some rotation.



Chapter 6

Bar growth within thin galactic discs

The work presented in this chapter is based on section 5.4 of Reddish et al. (2022), which I
cosigned.

6.1 Introduction

Figure 6.1.1: From fig. A1 of Yi et al. (2023). The face-on (top panels) and edge-on (bottom panels) images of
the three most massive sample galaxies fromNewHorizon at z = 0.17. No bars are observed at this redshift.

In the previous chapters, I applied the formalism of orbital diffusion to stellar systems in
order to predict their secular evolution. Depending on the form of the potential, my studies
used either the NR formalism on its own – for a galactic potential – or a combination of the RR
and NR formalisms – for the degenerate Keplerian potential. In both cases, I used angle-action
coordinates in order to capture the mean field trajectories to model precisely the long-term re-
laxation of isolated stellar systems. In this chapter, I will consider the evolution of an other class
of stellar systems – self-gravitating discs – which are essentially centrifugally supported. Such
discs are dynamically much colder than the systems I previously studied in this manuscript.
Hence, dressing is expected to play amuchmore important role in their secular evolution (Fou-
vry et al., 2015c). As a result, I will focus my interest on the description of their linear response.
For the sake of simplicity, I will address the issue of their secular evolution from a different
standpoint, and chart the range of equilibria which are consistent with their dynamical stabil-
ity.

As discussed in Reddish et al. (2022), the secular resilience of bars is an open questionwhich
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is the topic of intense research both in hydrodynamical simulations and in theoretical works.
This question is crucial for many reasons. First of all, observations in our local Universe re-
veal that roughly between 1/3 and 2/3 of nearby spiral galaxies (depending on the detection
criterion) host a bar (see, e.g., Nair & Abraham, 2010; Masters et al., 2011; Melvin et al., 2014;
Díaz-García et al., 2016).a It is believed that bars spontaneously form in stellar discs that are
sufficientlymassive anddynamically cold to be gravitationally unstable to the non-linear develop-
ment of a bi-symmetric instability (see, e.g., Toomre, 1963; Combes & Sanders, 1981). In addition,
they may also be affected by the conditions of their host galaxy (see, e.g., Vogelsberger et al.,
2014; Pillepich et al., 2018; Kaviraj et al., 2017)

Cosmological numerical simulations provide an effective tool to study the formation and
evolution of bars (Fig. 6.1.1). However, these simulations produce a fraction of barred galax-
ies from about 20% (Peschken & Łokas, 2019) and 30% (Rosas-Guevara et al., 2022) to about
40%-60% (Rosas-Guevara et al., 2020; Zhao et al., 2020). Most spectacularly, the NewHorizon
simulation appears to form only one barred galaxy at z = 1.3 out of its 525 galaxies (Fig. 6.1.2).b
Once formed in simulations, bars can evolve through angular momentum exchange with both

Figure 6.1.2: From figs. 1 and 2 of Reddish et al. (2022). On the left: a non-barredNewHorizon galaxy detected
at z = 0.25. On the right: the (strongly) barredNewHorizon galaxy detected at z = 1.3. Axes are in kpc.

the DHs (see, e.g., Debattista & Sellwood, 2000) and with the stellar and gaseous discs (Bour-
naud & Combes, 2002). Additionally, bars also play an important role in the long-term evolu-
tion of disc galaxies, as they are key to the redistribution of their angular momentum (see, e.g.,
Lynden-Bell, 1979; Tremaine &Weinberg, 1984; Athanassoula & Sellwood, 1986). Determining
the requirements for such an instability to occur has been the subject of research for the past
six decades.

Lin & Shu (1964) have attempted to solve this question through the so-called density wave
theory. They showed how density waves can survive the differential rotation in the WKB ap-
proximation. They are subject to the self-gravity, pressure and inertia, and obey the dispersion
relation (for a gaseous disc) (Safronov, 1960)

(ω −mΩ)2 = κ2 − 2πΣk + k2c2, (6.1.1)

where ω is the frequency, k the spatial frequency, m the pattern number and Ω the angular
aAs observations show, about two-third of the observed galaxies display a clear bi-symmetric spiral structure

(de Vaucouleurs, 1963; Dressler, 1980; Loveday, 1996; Nakamura et al., 2004; Hammer et al., 2005; Delgado-Serrano
et al., 2010; Haslbauer et al., 2022), in which bars can then form.

bThis corresponds to a minimum of 2000 particles in a given galaxy, i.e. with a mass above 107.25M�.
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velocity. In that expression, the destabilising term is the self-gravity contribution 2πΣk, which
depends on the surface density Σ. The inertial term depends on the epicyclic frequency κwhile
the pressure term k2c2 stabilises the disc, with c the sound speed. Although this local analysis
is useful to probe the competition between the forces in play, this approach is doomed to fail
in realistic setups. Indeed, the WKB approximation cannot hold on the long-term, because
a tightly wound leading wave satisfying this dispersion relation (a requirement for the WKB
approximation) will eventually unwind itself (Toomre, 1969). Such a problem must therefore
be treated globally using linear response theory.

The study of the non-linear development of a bi-symmetric instability would require a com-
plex theory beyond the scope of this thesis. Nevertheless, I can probe whether or not this in-
stability process can occur by first determining the linear growth rate for the bi-symmetric modes of
the galactic disc. To achieve this purpose, linear response theory can be used to chart the range
of equilibria which are stable against bar formation. A first step was made by Aoki et al. (1979)
where he established a link between temperature, disc wounding and linear stability for a self-
gravitating razor-thin galaxy made of polytropic gas. Eventually, a satisfying model would
have to be able to reproduce the observations made in hydrodynamical simulations. Bars can
be weakened and even destroyed if they gain too much angular momentum from the infalling
gas (Bournaud et al., 2005). Furthermore, simulations have suggested that an excessive growth
of a central galactic bulge may destroy bars (see, e.g, Hasan &Norman, 1990; Shen & Sellwood,
2004) which in turn can disrupt the growth of the bar without any merger event (see, e.g., Du
et al., 2017; Guo et al., 2020). Additionally, they may be reinforced or reformed given sufficient
accretion of external gas onto the disc (Bournaud & Combes, 2002) as well as also being de-
stroyed or (re-)formed as a result of environmental factors such as tidal interactions or galaxy
mergers (see, e.g., Hohl, 1971; Noguchi, 1987; Berentzen et al., 2004; Moetazedian et al., 2017;
Zhou et al., 2020). In practice, for the sake of simplicity, I nonetheless restrict my analysis here
to gaseous linear response.

In this chapter, I will therefore extend the formalism from Aoki et al. (1979) to study the
linear response of a gaseous self-gravitating razor-thin galactic disc with a spherical bulge and
a spherical DH. Assuming a small enough response of the disc, I will convert in section 6.2 the
Euler–Poisson equations into an eigenvalue problem using the matrix method (Kalnajs, 1977)
along with the bi-orthogonal basis developed by Aoki & Iye (1978). For the sake of simplicity,
I will be interested in probing the regime for instabilities w.r.t. a few parameters describing the
geometry of the thin disc, which I will take as isolated. To do so, I will compute (complex)
frequency diagrams depending on the bulge mass fraction, the disc mass fraction, and predict
a proxy for the (secular) growth rate of the bar in the galaxy. In section 6.3, I will apply this
formalism to the parameters of the NewHorizon simulation (Dubois et al., 2021; Reddish et al.,
2022). I will show that most of the galaxies it forms have a low growth rate according to my
model, and hence are unlikely to form the bi-symmetric instability required to induce bar for-
mation in the non-linear regime. As for the single bar that is formed inNewHorizon, I will show
that the geometric structure of its host galaxy corresponds to the fastest linear growth rate of
the whole simulation.



142

6.2 Self-gravitating fluid dynamics

6.2.1 Evolution equation

I consider a self-gravitating razor-thin disc with a central spherical bulge and a spherical DH,
with surface density Σ and gravitational potential Φ. Importantly, for simplicity I will model
this disc as though it was made of gas. This will allow me to identify all its linear modes at
once. Let v be its velocity field and P its pressure. Then the disc obeys the hydro-dynamical
and mean field equations (see, e.g., Clarke & Carswell, 2007)

∂Σ

∂t
+ ∇ · (Σv) = 0 ,

∂v

∂t
+ (v ·∇)v = − 1

Σ
∇P −∇Φ ,

∆Φdisc = 4πGΣδD(z),

(6.2.1a)

(6.2.1b)

(6.2.1c)

where the total potential reads Φ = Φbulge + Φhalo + Φdisc. Let me assume that the gas is a
polytrope with index Γ = 4/3 (Aoki et al., 1979), and fix the baryonic mass of the disc and
bulge to beM=Mdisc +Mbulge. Then the present system is described by the two parameters

p =
Mbulge

Mdisc +Mbulge
; q =

Mdisc

Mdisc +Mhalo
, (6.2.2)

where p is the bulge fraction and q the disc fraction.

The equilibrium state is modelled for simplicity by a Kuzmin-Toomre disc as

Φdisc = −GM
ad

1− p√
1 + (r/ad)2

, (6.2.3)

and Plummer spheres for the bulge and DH as

Φbulge + Φhalo = −GM
ad

[
ad

ab

p√
1 + (r/ab)2

+
ad

ah

(
1

q
− 1

)
1− p√

1 + (r/ah)2

]
, (6.2.4)

where ad is the scale length of the disc, ah the scale length of the DHand ab that of the bulge.
I can then express the angular velocity, Ω, and the epicyclic frequency, κ, of the whole system
w.r.t. these variables and parameters (see appendix 6.A.8).

The system of eqs. (6.2.1a)-(6.2.1b), expressed in polar coordinates (r, θ), can be linearised
assuming an angular- and time-dependent scaling in exp(imθ− iωmt). Here, I expand the first
order perturbation of the two components of Euler and Poisson equation using the decompo-
sition

X(r, θ, t) = X0(r) + δX(r, θ, t) ; δX(r, θ, t) =
∑
m∈Z

Xm(r) ei(mθ−ωmt), (6.2.5)

whereX is a quantity which can be density, potential, etc., withX0 the mean quantity and δX
the fluctuations around the mean value. In the case of the density decomposition, δΣm(r) can
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be expanded over normalised Legendre polynomials P |m|n (ξ) in ξ as, e.g.,

δΣm(r) =
M(1− p)

2πa2
d

(
1− ξ

2

)3/2 ∞∑
n=|m|

amn P
|m|
n (ξ) , (6.2.6)

where I introduced the reduced radius, ξ = (r2 − a2
d)/(r2 + a2

d), andwhere the normalised Leg-
endre polynomials obey the orthogonality relations∫ 1

−1
dξ P |m|n (ξ)P

|m|
l (ξ) = δnl. (6.2.7)

I introduce similar expressions for the radial and the azimuthal components of the perturbed
velocity field involving some bmn and cmn coefficients (see eq. 6.A.5).

6.2.2 Matrix method

By design, this expansion satisfies Poisson eq. (6.2.1c). Following closely Aoki et al. (1979),
I inject these expansions in the linearised system (see eqs. 6.A.6). Making use of the orthog-
onality relation given by eq. (6.2.7), I obtain an infinite linear eigenproblem for the complex
dimensionless frequency ω̂ = sgn(m)ωm/Ωref , which can be expressed as an linear, infinite
matrix eigenproblem of the form

M a = ω̂ a. (6.2.8)

The matrix elements, as well as the method of their computation, are detailed in appendix 6.A
and 6.B. In particular, the matrix elements depend on p and q the bulge and DH parameters
(eqs. 6.2.2), as well as the disc’s temperature ε0 (see, e.g., Aoki et al., 1979), which is defined
as the ratio between the internal energy and the total energy. Small values of ε0 correspond to
gravitationally-dominated disc, whereas large values of ε0 correspond to pressure-dominated
discs.

The determination of the physical eigenvalues of this problem is slightly tricky, and needs a
rigorous analysis. The details are given in appendix 6.C.

6.3 Accounting for the bar fraction in NewHorizon

I will now apply this toy model to provide insight into the lack of bars in NewHorizon. While
galaxies in the previous model live in a four-dimensional space, we can reduce that space to a
two-dimensional space parameterised by (p, q) by using typical values for ab/ad and ah/ad mo-
tivated by a mapping from theNewHorizon galaxies to the model (see appendix D2 of Reddish
et al., 2022). For each (p, q), I select the (physical) eigenvalue with the highest imaginary part,
Im(ω̂), and build the corresponding map of the growth rate in parameter space. In addition, I
can assign some threshold below for which I consider that the 2−fold symmetric mode grows
too slowly to drive any significant bar formation. In practice, the fastest growing mode’s shape
and pattern speed display discontinuities as one increases p (or decreases q), as eigenvalues
corresponding to distinct physical branches become dominant. This can be seen as wiggles in
the bottom left part of the light contours in Fig. 6.3.1.

I focus on linear instabilities possibly leading to bar formation: the bi-symmetric m = 2

mode. Figure 6.3.1 shows the fastest growth rate, Im(ω̂), of a sequence of models parametrised
by p and q, with ab/ad = 20 and ah/ad = 2.8. Light (resp. dark) contours correspond to slow
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(resp. fast) growth. The inverse of this growth rate quantifies the time it would take for a linear
instability to grow (in units of the dynamical time). As seen in this figure, DM-dominated
and bulge-hosting galaxies both have slow growth ratesc (lower right light region), unlikely to
develop linear instabilities, hence unlikely to grow strong non-linear bars.

Figure 6.3.1: Representation of the fastest growth rate ofm = 2 modes predicted bymy toymodel. It is a function
of the bulge fraction p and disc fraction q, as defined in eqs. (6.2.2). The other parameters (typical scales of disc,
bulge and DH) are chosen to match those ofNewHorizon. The completely white region corresponds to a region
of low growth rate (less than 0.1

√
GM/a3d), which would lead to too slow a bar growth. As a function of cosmic

time, via accretion, star formation andmergers, the galaxiesmovewithin this diagram andmay cross this threshold,
triggering the spontaneous formation of a bar. I place three representative points within this space: (i) the bottom
left represents a typical barless bulgeless galaxy; (ii) the central one a typical barless bulge-hosting galaxy; (iii)
and the top one showing the approximate location of the most prominent barred galaxy in the simulated sample at
z = 1.3. The NewHorizon simulation does not produce bi-symmetric unstable discs, with the exception of that
one galaxy (out of 525), which only hosts a bar for a fraction of a Hubble time.

With the mapping derived in appendix D2 of Reddish et al. (2022), I find that the bulge-
less and bulge-hosting galaxies may be roughly split into distinct populations in (p, q) space. I
therefore select typical values to represent these two populations. I place an open galaxy symbol
in Fig. 6.3.1 at (log p, log q) = (−2,−1.7) representing the typical bulge-less galaxy in the sample
at z = 1.3. I also place an open galaxy symbol at the location of the typical bulge-hosting
galaxy at (log p, log q) = (−0.7,−1.0). Comparing the bulge-less and bulge-hosting galaxies, I
find that while galaxies would be considered unstable with a modestly larger log q values than
the bulge-less counterparts, the bulge acts as a stabiliser when interpreted in the framework of
my toy model. Interestingly, the most prominent barred galaxy at z = 1.3 is by far the most
massive disc in the z = 1.3 sample, and lies at (log p, log q) = (−0.62,−0.34). This corresponds
to a region where the bulge mass is too small for the bulge to stabilise the disc against bar
formation. This galaxy is shown as a filled galaxy symbol in Fig. 6.3.1.d

cI set up a growth time threshold at a fraction η of the dynamical time
√
a3d/GM? which I somewhat arbitrarily

set to η = 10. For a typical stellar mass of 1010M� and ad = 3 kpc, this corresponds to 0.25 Gyr.
dHowever, tracking the same galaxy forward to lower redshift reveals that log q decreases while log p (defined

in eq. 6.2.2) modestly increases. Both trends act to stabilise the galaxy against bar formation. Indeed, the observed
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At the level of this admittedly crude model, I show that nearly all NewHorizon discs fall in the
linearly stable part of parameter space. This suggests that secular processes alone cannot here
trigger bi-symmetric instabilities leading to bar formation.

6.4 Concluding remarks

In this chapter, I extended the toy model of self-gravitating razor-thin galactic discs first pro-
posed by Aoki et al. (1979) to study the linear response of galactic discs with a central bulge
and a spherical DH. My motivation was the formation of bars. The description of this pro-
cess required the computation of its response matrix. To that end, I based my approach on the
Euler–Poisson equations –whichdescribe the dynamics of a self-gravitatingfluid. In section 6.2,
I linearised these equations around a Toomre equilibrium (Toomre, 1963). This led to a system
of linear equations describing the perturbations of the disc. By using a bi-orthogonal basis, I
converted this infinite system of linear equations into an eigenproblem involving a truncated
response matrix, whose convergence I studied. In particular, the components of this response
matrix depend on the disc’s temperature – the ratio between the internal energy and the total
energy of the disc – the bulge fraction p and the DH fraction q.

I recovered the results from Aoki et al. (1979) in the disc-only case: beyond a temperature
threshold, no physical growing eigenvalues exist, hence the disc is stabilised by its pressure.
Second, I studied the impact of the presence of a central bulge and a DH. I determined that
beyond a certain fraction threshold, both the bulge and the DH have the effect of stabilising
the disc. In these cases, no growing modes exist, and therefore no bar can form. I applied
this formalism to the interpretation of the NewHorizon simulation in section 6.3. It is observed
that only one galaxy out of 525 has formed a bar at z = 1.3. I computed their characteristic
growth rate using the method developed in this chapter. Then, I observed that the galaxies
ended up in a region of low growth rate – hence explaining their lack of bars – apart from a
single barred galaxy. I conclude that the cosmic assembly of galaxies in NewHorizon is such
that the macroscopic properties of present day galaxies within the simulation are not prone to
bi-symmetric instabilities.

6.4.1 Future works

Because the present toy model explores a summary statistics space, (p, q), it leads to an easily
computed, physically motivated threshold for secular bar formation. Nevertheless, it clearly
does not allowme to capture in full the realm of non-linear processes relevant to bar formation.
For instance, beyond the aforementioned caveats, Aoki et al. (1979)’s formalism cannot rule
out some induced bar growth, e.g., via strong tidal perturbations (Noguchi, 1996; Zana et al.,
2018; Peschken & Łokas, 2019) nor does it account for the impact of a live halo (Athanassoula,
2002; Curir et al., 2007; DeBuhr et al., 2012). Yet, within that framework, I can conclude that the
measured bulge size and disc mass fractions are consistent with the lack of bars inNewHorizon.
I expect that this will apply to all cosmological simulations which have enough resolution to
capture secular processes such as those discussed in this thesis.

Eventually, it could be of interest and more realistic to implement the fitting strategy pre-
sented in Ueda et al. (1985) to my sets of galaxies, while accounting for the detailed shape of
the rotation curves (bulge included) and surface densities. One could then quantify statisti-
cally the dynamical stability of the discs inNewHorizon. Another possible improvement would

bar is gone by z = 0.7.
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involve implementing a proper stellar stability analysis, (see, e.g., Kalnajs, 1977; Pichon & Can-
non, 1997; Jalali & Hunter, 2005; Polyachenko & Just, 2015; De Rijcke & Voulis, 2016; De Rijcke
et al., 2019b). This would provide a welcome flexibility in matching the DF and potential to
that of the simulated galaxies. One could eventually account for the disc’s thickness, the live
halo, or use the shape of the eigenvectors to match the pitch angle of the spiral response.

While the NewHorizon simulation has been shown to reproduce several key properties that
define galaxies in reasonable agreement with observations (Dubois et al., 2021; Reddish et al.,
2022), the sub-grid physics encoded inNewHorizon (andmore generally in recent cosmological
simulations resolving discs scale heights down to low redshifts, e.g., Hopkins et al., 2018; Agertz
et al., 2021) seems to either lack resolution or induce a galactic assembly history statistically
incompatible with secular bar formation. This bar problem will need to be addressed in future
work. In closing, kinetic theory in the spirit of the previous chapters (i.e. driven by fluctuations)
should of course be applied to the bar resilience problem (see, e.g., Hamilton, 2023).

Finally, going beyond linear stability analysis may provide interesting insights regarding
the secular evolution of these discs. Computing their secular relaxation using the Balescu–
Lenard equation would allow one to study some of the non-linear processes which are out
of reach of a linear response theory. Whereas this chapter explores how the disc’s geometry
could lead later on to a bi-symmetric instability, the solutions to the Balescu–Lenard equation
would predict whether or not the disc’s inherent noise could lead to other types of secular evo-
lution (see, e.g., De Rijcke et al., 2019a). The relaxation of open systems is typically subject
to both the non-stochastic, adiabatic evolution of its core properties (e.g., the mass, the disc-
to-bulge ratio, etc. , as investigated in this chapter) and to stochastic perturbations (finite-N
noise, supernova explosions, turbulence, fly-bys, etc.). Both will impact the secular fate of the
system. In this thesis, I mostly studied how finite-N noise can drive the secular relaxation of
a system. Nonetheless, the slow, adiabatic evolution of the system’s geometry can also drive it
closer to marginal stability, hence amplify its gravitational susceptibility and therefore acceler-
ate its noise-driven secular evolution. The implementation of an extended kinetic theory with
stochastic (via Fokker–Planck terms) and non-stochastic sources (e.g., injection of matter, dis-
sipation, etc.) should therefore be the topic of upcoming investigations (following, e.g., Pichon
& Aubert, 2006).



Appendices of chapter 6

6.A Matrix elements

Let me compute the matrix elements of M, involved in eq. (6.2.8). First, let me define the
potential ψ such that ∇P = Σ∇ψ. Because I consider a polytropic gaseous disc, I can relate
the density to the pressure through the relation P =αΣΓ, where α,Γ are constants. Following
Aoki et al. (1979), I set Γ=4/3, which yields ψ=4αΣ1/3. Letting Ψ=Φ + ψ, eqs. (6.2.1) can be
developed into
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∆Φdisc = 4πGΣδD(z). (6.A.1d)
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Let me define δX(r, θ, t)=
∑

m∈ZXm(r) ei(mθ−ωmt), where I look for a temporal dependency in
e−iωmt. Following Aoki & Iye (1978), there is a correspondence between the surface density
and the gravitational potential through Poisson equation

δΣdisc
m (r) =

M(1− p)
2πa2

d

(
1− ξ

2

)3/2 ∞∑
n=|m|

amn P
|m|
n (ξ), (6.A.4a)

δΦdisc
m (r) = −GM(1− p)

ad

(
1− ξ

2

)1/2 ∞∑
n=|m|

amn
2n+ 1

P |m|n (ξ), (6.A.4b)

δψm(r) =
4α

3

(
M

2πa2
d

)1/3

(1− p)1/3

(
1− ξ

2

)1/2 ∞∑
n=|m|

amn P
|m|
n (ξ), (6.A.4c)

δΨm(r) =
GM(1− p)

ad

(
1− ξ

2

)1/2 ∞∑
n=|m|

[
ε0

3(1− p)2/3
− 1

2n+ 1

]
amn P

|m|
n (ξ). (6.A.4d)

Let me decompose the velocity components based on their equilibrium expression
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For the modem, this yields the set of equations
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where Ω = v0
t /r is the angular velocity and κ2 = 4Ω2[1 + r/(2Ω)(dΩ/dr)] is the epicyclic fre-

quency. Using the orthogonality relation given in eq. (6.2.7), and defining Ωref =
√
GM/a3

d,
Σref =M/(2πa2

d) such that ω̂= sgn(m)ωm/Ωref , Ω̂ = Ω/Ωref , κ̂=κ/Ωref and Σ̂ = Σ/Σref , I obtain
the matrix equations
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In these expressions, I defined
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Here, I introduced ε0, the ratio of the internal and total energy, which accounts for the strength
of the pressure forces in the disc (given my choice of Γ, the polytropic index, see Aoki et al.,
1979).

6.B Evaluation of the matrix elements

The integrals Aln (eq. 6.A.8a) and Fln (eq. 6.A.8e) are proportional. With Hln (eq. 6.A.8g),
these three integrals must be computed numerically because of the non-trivial shift in their ex-
pression induced by the bulge potential. As forBln,Cln,Dln andGln, they can be can expressed
in terms of the two following integrals
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Here, Î(l, n) and Ĵ(l, n) can be computed by recursion and by using the symmetry l ↔ n (see
Aoki et al., 1979, for more details). This makes the computation of the response matrix very
efficient, as a large part of it can be obtained through analytical recursion formulae.

6.C Linear growth modes of the disc

6.C.1 Convergence study

Finding the frequency ω̂ involves the computation of the eigenvalues of the infinite response
matrix defined in eq. (6.2.8). In practice, I only have access to sequences of truncated matrices
of varying size up to some fixed truncation number nmax – such thatM is a 3nmax×3nmax matrix
– fromwhich I obtain a list of eigenvalues. Among these eigenvalues, I have to determinewhich
ones are physically relevant, andwhich ones only result from the truncation process. The latter
either diverge to infinity or oscillate, which allows me to disregard them in favour of those that
converge with nmax (here typically nmax ≤ 170).

In that view, I proceed as follows. (i) First, I compute a sequence of truncated 3n × 3n

matrices Mn up to some fixed truncation number nmax. (ii) For each of these matrices Mn, I
compute the set eigenvalues Vn. (iii) I construct S(ω̂) = {ω̂′ ∈ V≤nmax

: |ω̂ − ω̂′| < α}, the set
of eigenvalues of the truncated matrices which are close to ω̂ an eigenvalue of Mnmax for some
fixed threshold α > 0. This allows me to probe if an eigenvalue is isolated or not. In particular,
diverging eigenvalues do not accumulate at one location, hence they are discarded at this step.
(iv) For eigenvalues ω̂ such that S(ω̂) has more than 3 points – if not, ω̂ is rejected – I compute
the variance of the eigenvalues gathered inS(ω̂). If these go beyond some threshold value δ > 0,
then ω̂ is rejected. (v) The remaining eigenvalues ω̂ are considered to be physical eigenvalues,
as they do not fluctuate strongly w.r.t. the truncation number and seem to accumulate around
some limit point.

Figure 6.C.1 illustrates this procedure. The physical eigenvalues appear to form two sym-
metric branches about the real axis, due to the fact that the coefficients of the response matrix
are real numbers. In particular, the growing modes are the ones above the real axis. However,
as can be seen from this figure, a lot of eigenvalues accumulate along the real axis. These do
not necessarily correspond to physical values, even though they have passed the previous con-
vergence test. Indeed, a lot of them accumulate on the line as I increase the truncation number,
which fools the test.
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Figure 6.C.1: On the top panel, I illustrate the convergence method (section 6.C.1) by showing the series of
truncated eigenvalues obtained for a galactic disc with no bulge and no DH, with ε0 = 0.15 andm = 2. The various
colours indicate the truncation numbers, n. On the bottompanel, I represent the physical eigenvalues as determined
through the convergence study.

6.C.2 Exploration of the disc’s parameters

Let me restrict this study to m = 2 modes, as those usually produce the fastest modes. First,
following Aoki et al. (1979), I compute the impact of temperature on the eigenvalues of the
disc. To that end, I consider a disc with no bulge and no DH, i.e. p = 0 and q = 1. I represent
in Fig. 6.C.2 the evolution of the eigenvalues as I increase the disc’s temperature ε0. The two
branches of eigenvalues grow closer to the real axis. In addition, it appears that fewer and
fewer eigenvalues are present on the branches. The critical threshold is reached around ε0 ∼ 0.5.
Beyond this value, no physical eigenvalues – apart from the possibly purely rotating ones on
the real axis – exist, hence the disc has been stabilised. Under these conditions, no spiral arms
nor any bars will form, as no growing modes can be excited by fluctuations. This ε0 ∼ 0.5

threshold can be understood reasonably well: this is the point where the disc pressure begins
to dominate over gravity. Any gravitationally bound structure will be swept away by pressure
forces beyond this point.

Second, let me study the impact of the bulge and the DH on the eigenvalues. Because I have
observed that warm discs do not produce growing eigenvalues, let me consider a cold disc,
with for example ε0 = 0.15. I represent in Fig. 6.C.3 a series of complex-frequency diagrams
for various bulge and DH components.

Increasing the DH component, i.e. reducing the value of q, has the same effect as increasing
the temperature of the disc. The DH stabilises the disc, and there exists a threshold beyond
which no growing mode exists. Increasing the bulge component, i.e. increasing the value of p,
also has the effect of lowering the eigenvalues’ branches towards the real axis. However, this
convergence is a bit peculiar. Indeed, the mode that was initially the fastest growing mode de-
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Figure 6.C.2: Evolution of the physical eigenvalues of a galactic disc with no bulge and no DH as I increase the
temperature ε0. From left to right and top to bottom, I show ε0 = 0.15, 0.2, 0.25, 0.3, 0.4, 0.5. Fewer and fewer
eigenvalues are present on the branches. Beyond ε0 ∼ 0.5, the disc is stabilised by pressure forces and no growing
eigenvalues remain.

creases quickly enough for the second eigenvalue of the branch to become the fastest growing
mode. This process repeats itself with the third eigenvalue, and so on, until the branch even-
tually merges with the real axis at some finite value of p (depending on q). This process is
responsible for the intricate structure observed in Fig. 6.3.1.
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Figure 6.C.3: Evolution of the growing modes of a cold galactic disc with fixed temperature ε = 0.1 and varying
bulge fraction p = 0, 0.01, 0.02 (columns) and DH fraction q = 1.0, 0.5, 0.3 (rows). Increasing the bulge compo-
nent or the DH component lowers the growth rate of the disc’s bar. Furthermore, the branches appear to curl on
themselves as the bulge fraction p increases.



Chapter 7

Conclusion

7.1 Overview

The last half century has seen the development of numerical simulations, and in particular the
ever-increasing degree of precision and details that they contain (von Hoerner, 1960; Aarseth,
1963; Barnes & Hut, 1986; Hockney & Eastwood, 1988; Makino et al., 1997; Aarseth, 2003; Heg-
gie & Hut, 2003; Springel, 2005; Springel et al., 2005; Trenti & Hut, 2008; Dehnen & Read, 2011;
Wang et al., 2015). While these simulations can be used to confront the predictions made
from theoretical models, they are also intensively used to model non-linear phenomena such
as the core collapse of globular clusters or galaxy evolution (see, e.g., Vogelsberger et al., 2020).
These numerical observations motivate analytical models to understand and clarify the under-
lying mechanisms often hidden therein. For instance, we may then ask what is the impact of
anisotropy on the secular evolution of stellar clusters – in particular globular clusters – but also
the impact of their inner rotation. Since these systems are in quasi-stationary states, they are
subject to small departure from the mean field. Thus, the description of the evolution of their
ensemble average falls within the realm of kinetic theory (Binney & Lacey, 1988; Heyvaerts,
2010). Such theories can be tailored to take into account anisotropy and rotation, to break away
from the standard paradigm. This was the focus of my Ph.D. work.

Specifically, my thesis aimed at studying the long-term evolution of stellar systems in order to
address challenging problems posed by recent observations. Recent developments of kinetic
theory provided me with the opportunity of numerically addressing these problems:

• I used the existing averaged RR diffusion theory to probe the presence of IMBHs in the
Galactic nucleus. Making use of existing observations of the S-stars, I implemented a likeli-
hood approach to constrain the space of parametersmodelling a background dark cluster.

• I developed the two-body deflection NR theory for anisotropic, and then rotating clusters
to investigate core collapse and orbital reshuffling. I found that in-plane diffusion can be
predicted rather accurately using NR formalism, suggesting that the role of resonances in
the Balescu–Lenard formalism is possibly less important than it seems at face value. Con-
trarily, I showed that the NR theory is not sufficient to describe out-of-plane relaxation,
because this relaxation is impacted by the high degree of coherence of the respective mo-
tions of the stars.

• I quantified the specific impact of resonant relaxation in terms of an effective action de-
pendent Coulomb logarithm. Using the RR theory and earlier works by Heggie & Ret-
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terer (priv), I recovered the observed NR prediction both in numerical and in asymptotic
regimes.

• I applied linear response theory to interpret the lack of bars in theNewHorizon simulation.
I found that most galaxies in the NewHorizon simulation fall within a low linear growth
region, hence are less likely to develop the bi-symmetric instability required to later form
a bar during their non-linear regime.

In my thesis, I have shown why kinetic theory captures non-linear phenomena reflecting the
diversity of outcomes induced by different initial phases. This hasmultiple consequences. First,
when a kinetic theory can be applied, it is as potent as large sets of numerical and hydrody-
namical simulations, which require many (costly) realisations and subtle stacking strategies
to extract the relevant statistical observables.a This makes kinetic theory interesting as a pre-
diction tool, beyond a mere checking tool. Additionally, kinetic theory provides a strategy on
how to take averages when stacking simulations. Indeed, determining which quantity should
be averaged and how to do so is not a trivial question a priori. Yet, chapter 2 demonstrates
that ensemble average (i.e. stacking) should be carried in action space,b so as to correctly re-
cover the secular behaviour of the underlyingphase-averageddistribution function. The precise
match observed in this thesis between kinetic theory predictions and stacked numerical mea-
surements is a clear illustration of this point. While the stacking of simulations also provides
estimates for the spread in the range of outcomes depending on the initial phases, the quan-
tification of the dispersion around the mean kinetic prediction is also the topic of on-going
research using, e.g., large deviations theory (see, e.g., Feliachi, 2023).

Let me recap in somewhat more details my findings. First, I sketched in chapter 2 a deriva-
tion for the theory of orbital diffusion. This allowedme to describe the secular fate of isolated, self-
gravitating systems using the Balescu–Lenard equation (eq. 2.2.31). This equation, which drives
the secular evolution of the DF of a stellar system, is sourced by potential fluctuations. As such,
it can be applied to a wide range of astrophysical systems. For example, for tepid galactic discs,
it can be used to explain two phenomena: (i) the strong amplifications of its fluctuations are the re-
sult of the resonant denominator occurring in its expression; (ii) the resonant ridges occurring
in action space are the result of the resonant interactions described by the Balescu–Lenard equa-
tion. However, there are also systems for which the Balescu–Lenard equation does not predict a
strong amplification nor does it display the resonant features one might have expected from its
structure. In the first case, the Balescu–Lenard equation becomes to the inhomogeneous Lan-
dau equation (eq. 2.3.1, Fig. 7.1.1). When also assuming the local homogeneity approximation,
it reduces to the classical Chandrasekhar equation (eq. 2.3.9, Fig. 7.1.1).

In chapter 3, I focused on the relaxation of stars in the Galactic nucleus. In particular, I
attempted to probe the existence of a family of unresolved heavy objects hidden in the S-cluster, and
whether these could be IMBHs. While the secular evolution of this system can be described
exactly by the Landau formalism (i.e. the RR theory), the presence of an SMBH at its centre
induces a clear separation of timescales. This motivated an orbit-average over the fast Kep-
lerian motion of every star (eq. 3.3.1, Fig. 7.1.1). With this formalism, I identified regions in
orbital spaces where the RR dynamics is very efficiently damped: the Schwarzschild barrier
(Fig. 3.3.4) observed by Merritt et al. (2011). However, as this description is an orbit-averaged
version of the real dynamics, higher-order resonances have been neglected. Because these res-

aA possible illustration of the no free lunch principle!
bThis is because actions label orbits which are preserved in the mean field, and only change when exposed to a

given realisation of the noise-driven fluctuation.
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Figure 7.1.1: The Balescu–Lenard equation can be used to predict the secular fate of a wide range of self-
gravitating systems. Using a series of approximations, I could derive a resonant relaxation theory (RR) to describe
eccentricity relaxation in the Galactic nucleus, but also a non-resonant theory (NR) to describe orbital diffusion in
globular clusters.

onances correspond to small-scale interactions, this justifies that I include the NR contribution
on top of the orbit-averaged RR one (eq. 3.3.2 and Fig. 3.3.5). Using this unified theory, I was
able to predict, for parametrised models, the secular fate of the Galactic nucleus (Fig. 7.1.1).
Using observational data, this allowed me to perform a dark matter experiment, in which I con-
strained the presence of IMBHs within the Galactic cluster using a likelihood analysis (eq. 3.4.5
and Fig. 3.4.4) on the eccentricity distribution of the S-stars. Interestingly, recent works from
Fouvry et al. (2023) produced results in general agreement with my predictions, by relying
on the observed disc of stars which did not have time to reshuffle in orientation via resonant
relaxation.

Globular clusters display a completely different behaviour. In chapter 4, I focused on non-
rotating globular clusters. Under the effect of self-gravity, the core of these dense stellar clusters
contract. Numerical works from Breen et al. (2017) have suggested that velocity anisotropies can
impact the rate of core collapse, with tangential anisotropy accelerating the process (Fig. 4.1.2). Us-
ing theNR relaxation formalism, which I extended to anisotropic clusters in chapter 2, I derived
the orbit-averaged Fokker–Planck equation (eq. 2.3.34) describing the evolution of the orbital
distribution of this system. I was able to show that the NR theory can recover remarkably well
the shape of the orbital diffusion observed in my N -body simulations, in the sense that I was
able to predict both the distortion and the isotropisation observed in statistical averages of di-
rect numerical simulations (Fig. 4.5.2). Nonetheless, differences do occur between theory and
simulations, in the form of an anisotropy-dependent prefactor (Fig. 4.5.3). I argued that this
discrepancy stems from far-away encounters, which are not correctly taken into account in the
NR theory. I also showed how an effective pseudo-isotropic approach (eq. 4.6.1) to the theory
could yield a good fit to the numerical observations, due to the weak anisotropy of the cluster.
I recalled that the NR formalism can be obtained from the exact Balescu–Lenard description of
the self-gravitating systemwhile relying on two assumptions: no collective effects and local homo-
geneity (as discussed in chapter 2), which removes any resonant interaction which appears in
the Balescu–Lenard equation. Hence, the secular theory of relaxation for hot systems appears
not to be as resonant as naively expected, as can be seen from the successive harmonics contri-
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butions in the RR formalism (eq. 4.7.1). Higher harmonic orders, which describe small-scale
interactions, tend towards the NR prediction up to some weakly action-dependent prefactor
which can formally be connected back to the Coulomb logarithm (eq. 4.7.8 and Fig. 4.7.5). Heg-
gie & Retterer (priv) obtained insightful analytical results along those lines. They recovered
exactly the orbit-averaged NR expression of a given diffusion coefficient from RR theory, down
to its numerical prefactor, despite the numerous hypotheses they made to perform their com-
putation.

Rotating clusters are yet another example of how kinetic diversity can impact secular relax-
ation. Observations show that almost all systems display some degree of rotation. In chapter 5,
I extended my kinetic theory to these systems. Rotating clusters are indeed dynamically colder
than the anisotropic clusters studied in chapter 4, i.e. the velocity dispersion of their stars is
lower. As a consequence, it is expected that their gravitational susceptibility is amplified by the
amount of rotation, through resonant interactions between co-rotating orbits. I studied the im-
pact of rotation in orbital space againstN -body simulations by computing the two-dimensional
Fokker–Planck equation in (Jr, L)-space. I showed that rotation does not appear to have a sig-
nificant impact on the shape of radial orbital distortions (for stable clusters, see Fig. 5.2.7). I
also computed the two-dimensional Fokker–Planck equation in the (Jr, cos I)-space, and found
that relaxation tended to reshuffle orbital inclinations so as to erase sharp gradients in the DF (e.g.,
around cos I = 0 for the LBD, see Fig. 5.2.6). Interestingly, whereas the NR theory provides
a prediction of the in-plane relaxation which closely matches that of N -body simulations (up to
the aforementioned prefactor, see Figs. 5.2.4 and 5.3.1), it is not so accurate in predicting out-of-
plane relaxation (Figs. 5.2.5, 5.3.2 and 5.3.3). This highlights the limits of the NR formalism in
describing colder systems. While no strong amplification is numerically observed, it is likely that
coherent interactions between co-rotating orbits can drive the relaxation of the orbital inclina-
tions (probed by cos I in this manuscript). Because the NR theory drives the cos I-diffusion
only through local encounters, it will fail to recover this phenomenon. However, because it
is fundamentally degenerate for 3D spherically symmetric systems (Ω3 = 0, see, e.g., Hamil-
ton et al., 2018), the Balescu–Lenard equation cannot be used to study the impact of resonant
and collective effects on azimuthal relaxation. The alternative VRR formalism circumvents this
caveat, and may be key to understanding the shortcoming of NR theory.

In chapter 6, I considered the secular evolution of a self-gravitating thin disc, focusing on the
problem of secular bar growth. To that end, I revisited the method put forward in Aoki et al.
(1979) in order to study a self-gravitating thin gaseous disc with a central spherical bulge and
a spherical dark halo. This allowed me to convert the problem into an eigenproblem involving
infinite matrices (eq. 6.2.8). Using this formalism, I extracted the physical eigenvalues of the
system to study their dependence on the geometry of the galaxy, i.e. the bulge to disc ratio,
the dark halo to disc ratio and the disc’s temperature. Comparing these findings to the hydro-
dynamical simulation NewHorizon (Reddish et al., 2022), I explained the very small number of
bars observed in the simulation. Indeed, most galaxies in the simulation fall within the region
of low growth rate (Fig. 6.3.1). Therefore, I expect that no bi-symmetric instability should occur
within these discs, hence no bar formation during the non-linear regime. Conversely, the only
barred galaxy observed in the simulation is the one expected to have the highest growth rate
of the simulation, hence in agreement with the linear prediction.

Overall, through a variety of approximations, I have argued in this thesis that secular re-
laxation has reached the point where it can be used to explain observations, stacked N -body
simulations (e.g., globular clusters) or large hydrodynamical simulations (e.g., bar formation
in discs). I have also shown that it can now be used against real data to conduct likelihood
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analysis of astrophysical models (e.g., for the research of IMBHs in the Galactic nucleus). The
ever-increasing size of data samples produced by modern instruments, together with the ex-
plosion of very precise simulations, require a flexible, parametric formalism able to deal with
the whole complexity of self-gravitating systems, on long timescales and on a large panel of
physical scales. As such, modern secular kinetic theory has proven to be effective in dealing
with the richness and complexity of evolved astrophysical systems.

7.2 Prospects

As a complement to the perspectives within each chapter, let me conclude this manuscript by
discussing possible future works at the intersection of the various themes investigated in this
thesis.

Time integration. In this manuscript, all the predictions concerning orbital diffusion were
made at t = 0+. Yet, orbital space evolution to later times is also of immediate interest. To
that end, the relevant evolution equation – the Fokker–Planck equation for the RR (eq. 2.3.1)
or NR (eq. 2.3.18) diffusions – would have to be integrated forward in time. However, as high-
lighted byWeinberg (2001a,b), time integration presents a few difficulties. The first one comes
from the computation of the diffusion coefficients. Their evaluation is made difficult by the self-
consistency inherent to this problem, as theDF appears twice in the Landau equation (eqs. 2.2.30
and 2.2.31). Furthermore, one would have to evolve not only the DF, but also the system’s po-
tential, which are related through Poisson equation. The self-consistent potential also defines
the new angle-action coordinates, which must be determined from the self-consistent poten-
tial. The second issue comes from the numerical challenge imposed by the various computa-
tional resources required to compute the diffusion rate. This difficulty is strengthened as one
adds anisotropy and rotation to the system. One may integrate the corresponding stochastic
Langevin equation using aMonte Carlo approach (Hénon, 1971) following the method I use to
validate my results in chapter 3 (see, e.g., Vasiliev, 2015, 2017). This method could be gener-
alised to validate N -body codes on secular timescales.

A prescription for the Coulomb logarithm. When studying anisotropic and rotating glob-
ular clusters, I assumed in particular local homogeneity. After phase averaging, this leads to the
incoherent NR formalism. The properties of isotropic clusters (Hamilton et al., 2018) and com-
parisons toN -body simulations motivated this approximation. While this approach yields sat-
isfying results when predicting diffusion rates for a non-rotating cluster, there are still caveats
to it, such as the overall anisotropic-dependent prefactor quantified in chapter 4 (Fig. 4.5.3). On
a practical level, the RR theory now provides us with an estimate for this prefactor. On a more
theoretical level, RR should be a way to express the Coulomb logarithm ln Λ without resort-
ing to any heuristic arguments (Heggie & Retterer, priv). In addition, rotating systems, where
the action space structures predicted by NR do not match the N -body predictions as well, re-
quires the development of a more complex theory beyond NR. While some theoretical work
has started (Rozier et al., 2019), the implementation of kinematically more complex theories –
such as the inhomogeneous Landau equation, the Balescu–Lenard equation or VRR (Meiron &
Kocsis, 2019) – will be the topic of my upcoming research.

Flattened systems. Observed globular clusters are typically flattened at some level. Gen-
eralising the orbital diffusion formalism to flattened objects would broaden the scope of ap-
plicability of kinetic theory to a wider range of astrophysical objects (such as, e.g., elliptical
galaxies). This may prove challenging. The orbital diffusion formalism is built upon the in-
tegrability of the mean potential, i.e. the existence of angle-action coordinates so as to capture
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Figure 7.2.1: Image of NGC 1316 by the HST. This galaxy is lenticular, and therefore can be treated neither as a
thin disc or as a spherical system. To determine its secular fate using kinetic theory, a more general treatment of
axisymmetric and triaxial systems is required. Credit: NASA/ESA.

the trajectories imposed by the mean field. While the spherically symmetric systems I studied
here are all integrable, this is not systematically the case in axisymmetric (Fig. 7.2.1) or triaxial
systems (see, e.g., Merritt & Vasiliev, 2011, for an example of an integrable triaxial system).
Two cases may occur depending on the systems at play. First, the system may lack integrability,
in which case its dynamics could be partially driven by chaotic diffusion (see, e.g., Weinberg,
2015a,b). Second, the system may be numerically integrable. By this, I mean that a third integral
of motion could exist (Poincaré sections), but we may lack an analytical expression for it. This
case typically occurs in axisymmetric systems, including flattened and rotating stellar systems.
Ultimately, Stäckel systems (Stäckel, 1889; Dejonghe & de Zeeuw, 1988) may be a way to probe
the behaviour and secular evolution of a subclass of such systems, as they have three analytical
actions and can be used to model real astrophysical observations (Vasiliev, 2019a).c

Multi-mass systems. While this thesis focussed mostly on equal mass clusters, chapter 3
has shown that it is astrophysically interesting to leverage multiple masses. First of all, one
may be interested in studying the impact of multiple stellar families – instead of the present
single-mass component cluster – with the aim of investigating mass segregation effects. The
work presented in my thesis can and should straightforwardly be adapted to this matter. This
is particularly motivated by recent observations of nuclear and galactic stellar clusters. One
could revisit the entropic analysis of Szölgyén & Kocsis (2018) and Magnan et al. (2022) while
relying on kinetic theory to predict the time evolution of the mass segregation of massive discs
in galactic centres. Conversely, Dekel et al. (2023) argues for instance that the excess of massive
galaxies found at very high redshift by the JWST could originate from early feedback-free star

cMore generally, developing a secular theory for non-integrable systems would clearly extend its realm of ap-
plicability. Since diffusion remains a local process, local Stäckel fits might be a venue (see, e.g., Sanders & Binney,
2016, for a review).
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formation within dense stellar clusters made of massive stars. The fate of such clusters should
be captured by the kinetic theory presented in chapters 4 and 5, and could lead to the formation
of IMBHs and possibly the seed for SMBHs.

Figure 7.2.2: Illustration of the turbulent processes which occur in the Galactic medium. On the top panel, the
three slices show the full area of the Galactic Plane visible from the southern hemisphere at submillimetre wave-
lengths, by the APEX telescope. These images are complemented with observations from the NASA Spitzer Space
Telescope and ESA’s Planck satellite. On the bottom panel, observations show how turbulent flows and supernovae
remnant impact the Milky Way’s internal structure. Credits: ESO/APEX/ATLASGAL, NASA/ESA and J.-P. Met-
savainio.

Open systems. The orbital diffusion formalism is interesting in the way it can describe self-
gravitating systems subject to very non-linear phenomena. In the context of this thesis, I fo-
cused on isolated stellar systems. While one could maybe argue that this assumption is a good
proxy for systems such as galactic nuclei, it is less applicable to globular clusters or galaxies.
Indeed, galaxies, for instance, are impacted by inflows and external potential perturbations such as
fly-bys, minor mergers, turbulence and supernovae explosions (Fig. 7.2.2). Accounting for the
effects of the corresponding dissipative processes is all the more important that the baryonic
component seems to induce the appearance of attractors via self-regulation. Ultimately, ex-
ternal fluctuations could therefore also contribute or indeed dominate secular evolution (Park
et al., 2021). The work presented in this thesis should therefore eventually be generalised to ac-
count for inflow and dissipation. This should lead to a wealth of new phenomena, such as the
emergence of orderly low entropy structures. A preliminary investigationwas recently attempted by
Yi et al. (2023)where they averaged (over 30 galaxies, see Fig. 6.1.1 for a sample) the drift coeffi-
cient of the circularity parameter, ε (Fig. 7.2.3), within the cosmological simulationNewHorizon
(Fig. 1.2). In addition, net inflow should also eventually generically be integrated into the ki-
netic framework, as it impacts directly the adiabatic response of the clusters (Pichon & Aubert,
2006; Aubert & Pichon, 2007), possibly driving it through stability thresholds (chapter 6 and
De Rijcke et al., 2019a), or boosting its rate of diffusion while increasing its gravitational sus-
ceptibility. The competing effect of external versus internal fluctuations versus adiabatic drifts
could be quantified in this framework.

Timescale separation. Finally, while the accuracy of the Bogoliubov’s ansatz could in princi-
ple challenge the relevance of such endeavour, recent work by Fouvry & Roule (2023) suggest
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Figure 7.2.3: From fig. 12 of Yi et al. (2023). Comparison between the circularity ε=L/Lc at birth and at today
for one galaxy in NewHorizon. Black lines correspond to 0.5σ, 1.0σ and 1.5σ contours. Most stars are initially
very circular (i.e. ε is close to 1). However, they tend to become less so as time evolve, as can be seen by the position
of the peak under the first diagonal of the figure.

that, e.g., the Balescu–Lenard formalism also holds in the not so largeN limit. This kind ofmea-
surement should be carried more systematically in the future. Developing the corresponding
extended kinetic theory should be the goal of upcoming investigations.

Globally, these various extensions will provide opportunities to go beyond today’s closed-
box perspective and advance the field towards a detailed understanding of the cosmic fate of
inter-connected self-gravitating systems over half a Hubble time.
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Long résumé

L’étude de l’évolution à long terme des objets astrophysiques est une tâche diffi-
cile en raison de la nature complexe et non-linéaire des processus impliqués. La
gravité, une interaction à longueportée, joue un rôle fondamental dans l’évolution
des objets les plus massifs de l’Univers, donnant lieu à la formation de structures
complexes telles que les galaxies et les amas stellaires comme les amas globu-
laires. Au fil des ans, les physiciens ont utilisé trois techniques principales pour
relever ce défi, à savoir l’observation, la simulation et la théorie cinétique.

Les dernières décennies ont été marquées par des avancées significatives dans
les techniques d’observation, notamment l’utilisation d’instruments – tels que
le télescope spatial Hubble (HST), le Very Large Telescope (VLT) et la mission
GAIA – qui ont permis d’améliorer considérablement la précision des observa-
tions. Ces observations ont révélé que les amas globulaires, que l’on pensait
isotropes et sans rotation, présentent une anisotropie et une rotation à des de-
grés divers. De même, la spectroscopie intégrale de champ a permis de mieux
comprendre les propriétés cinématiques des galaxies sphéroïdales et des amas
stellaires (e.g., des amas globulaires ou le noyau Galactique), mettant en lumière
leur histoire dynamique passée et le rôle du moment angulaire.

Le modèle Λ-CDM s’est imposé comme étant la description la plus précise de
l’Univers. Ce modèle retrace l’évolution de l’Univers depuis les premiers stades
après le Big Bang jusqu’à la formation des structures à grande échelle. Les fluctu-
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ations du champ quantique dans la densité de la matière noire non baryonique,
suivies d’une période d’inflation, ont donné lieu aux fluctuations de température
observées dans le fond diffus cosmologique. La gravité a amplifié ces fluctuations
de densité au fil du temps, conduisant à la formation hiérarchique de régions sur-
denses où les galaxies se sont développées.

Les galaxies et les autres objets astrophysiques sont influencés par une combi-
naison de perturbations violentes et plus douces provenant de sources internes
et externes. Les événements violents tels que les fusions avec d’autres galaxies ou
les explosions de supernova, ainsi que les perturbations plus douces telles que les
injections de gaz froid, peuvent avoir un impact sur leur évolution. En outre, la
nature finie de ces systèmes et les fluctuations de Poisson qu’ils subissent peuvent
également conduire à une évolution lente et à long terme. L’évolution séculaire,
induite par l’interaction entre ces perturbations internes et externes, peut donner
lieu à des phénomènes tels que la formation de barres dans les centres de galaxies.

Plusieurs facteurs motivent l’étude de l’évolution à long terme de ces objets
astrophysiques. La disponibilité de nouvelles données provenant d’études telles
queGAIAet les progrès de la théorie cinétique gravitationnelle permettent l’étude
des mécanismes opérant sur des échelles de temps séculaires. Ces modèles an-
alytiques peuvent aider à clarifier les mécanismes sous-jacents cachés dans les
simulations numériques et donner un aperçu de l’impact de l’anisotropie et de la
rotation sur l’évolution des amas stellaires.

Dans cette thèse, j’étudie le domaine complexe de la relaxation séculaire et de
ses implications pour divers systèmes astrophysiques. Je présente des résultats
qui éclairent le comportement des systèmes autogravitants sur le long terme. Ces
résultats, obtenus grâce à divers formalismes et techniques, donnent un aperçu de
phénomènes tels que la diffusion orbitale dans les noyaux galactiques, les amas
globulaires, les amas en rotation, et les disques galactiquesminces autogravitants.
Mes travaux cherchent à : (i) comprendre lesmécanismes particuliers qui opèrent
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sur ces échelles de temps longs ; (ii) identifier l’origine des différences observées
en fonction de la nature de ces objets (géométrie, cinématique, composition...) ;
(iii) déduire des diagnostics pour des expériences dematière noire (par exemple,
l’identification des populations de trous noirs de masse intermédiaire).

Le chapitre 2 pose les bases en revisitant la théorie de la diffusion orbitale.
J’explore le destin séculaire des systèmes isolés et autogravitants, en m’appuyant
sur l’équationde Balescu–Lenard, qui décrit la théorie cinétique de leur évolution.
Cette équation s’avère polyvalente, permettant d’expliquer l’amplification des
fluctuations et l’apparition de crêtes de résonance dans l’espace d’action. Pour les
amas sphériques anisotropes, il semble cependant que l’emphase mise par cette
équation sur l’amplification résonante soit peu pertinente. Dans ces cas, d’autres
approximations, telles que l’équation de Landau inhomogène et l’équation clas-
sique de Chandrasekhar, offrent des descriptions plus utiles.

Le chapitre 3 se concentre sur la structure du noyau galactique. En utilisant
le formalisme de Landau, j’infère la présence d’objets lourds non résolus, po-
tentiellement des trous noirs de masse intermédiaire, à l’intérieur de l’amas S.
J’identifie les régions de l’espace orbital où la diffusion est efficace. Ainsi, en
m’appuyant sur les données d’observation, jemène une analyse de vraisemblance
pour contraindre la présence de trous noirs de masse intermédiaire dans l’amas
galactique. Remarquablement, mes prédictions s’alignent sur des études récentes
indépendantes.

Le chapitre 4 explore le comportement des amas globulaires sans rotation.
En étendant le formalisme de relaxation non-résonante aux amas anisotropes,
je dérive l’équation de Fokker–Planck moyennée sur les orbites afin de décrire
l’évolution séculaire de la distribution orbitale. La théorie non-résonante cap-
ture avec succès la diffusion orbitale observée dans les moyennes statistiques des
simulations numériques directes, au prix d’un préfacteur numérique dépendant
peu des paramètres orbitaux. Une approche pseudo-isotrope offre une méth-
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ode de calcul efficace pour obtenir une bonne adéquation avec les observations
numériques. Je souligne les limites du formalisme non-résonant dans la descrip-
tion des systèmes plus froids et discute du lien entre celui-ci et les ordres har-
moniques supérieurs de la théorie de Landau inhomogène.

Dans le chapitre 5, j’élargis la théorie cinétique pour inclure les amas en rota-
tion, qui sont dynamiquement plus froids et présentent une dispersion de vitesse
plus faible. En analysant l’impact de la rotation sur l’espace orbital à travers
l’équationde Fokker–Planck bi-dimensionnelle, jemontre que la rotation n’affecte
pas de manière significative la relaxation radiale. Contrairement aux travaux
précédents, je n’observe pas de catastrophe gravo-gyro. De plus, alors que la
théorieNRprédit avec précision la relaxation radiale, elle ne parvient pas à prédire
la relaxation azimutale sourcée par des interactions cohérentes entre les orbites.
Les limites de la théorie NR dans les systèmes froids motivent une implémenta-
tion future de la relaxation résonante vectorielle.

Le chapitre 6 se concentre sur l’évolution séculaire des disques minces auto-
gravitants, en particulier la croissance des barres. Après avoir réécrit ce prob-
lème en une recherche de valeurs propres, j’étudie la dépendance des taux de
croissance de la barre par rapport à la géométrie de la galaxie. En comparant ces
résultats aux simulations hydrodynamiques, j’explique la rareté des barres ob-
servées dans les simulations, en montrant que la plupart des galaxies se situent
dans une région des paramètres associée à un faible taux de croissance qui em-
pêche la formule d’instabilités bi-symétriques. Une unique galaxie barrée avec
un taux de croissance relativement plus élevé fait figure d’exception.

Pour conclure, cette thèse illustre la pertinence et l’efficacité croissantes de
la relaxation séculaire pour expliquer divers phénomènes astrophysiques. La
théorie cinétique est un outil pertinent pour interpréter les données d’observation,
effectuer des analyses de vraisemblance et faire des prédictions robustes. Elle
complète les simulations numériques et hydrodynamiques en capturant les dif-
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férents phénomènes non-linéaires en jeu afin de construire des estimateurs ex-
plicites. Avec l’augmentation constante de la taille des échantillons de données
et les progrès des simulations, la nature flexible et paramétrique de la théorie
cinétique séculaire moderne s’avère donc inestimable pour démêler la complex-
ité des systèmes autogravitants à différentes échelles de temps et d’espace.
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