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Abstract

Analytical chemistry plays a crucial role in various fields as it it covers identification, quan-
tification, and characterization of chemical substances. It is essential for understanding the
composition and behavior of matter and for developing new materials and technologies. It han-
dles specially complex mixtures notably oil, an integral part of modern life, used as a source
of energy and raw material for a range of products. It is a collection of hydrocarbons, must
be refined using efficient technologies to produce lighter products and reduce impurities. Their
physicochemical properties are essential for refining, transportation, and storage processes and
can influence the quality of the deriving products. However, extracting them are pricy and
resource-intensive. Spectroscopy is a widely used rapid analysis method that exploits the phys-
ical properties of products, using a signal profile represented by functional data. However, the
accuracy of spectroscopy may be lower, and results may not be as comprehensive as standardized
methods. Chemometrics techniques can create a predictive model for each property using rapid
analysis spectra. It achieves two main objectives: predicting physico-chemical properties of new
mixtures from reference mixtures and providing additional insights into the most related parts
of the signal.

Multivariate calibration techniques establishes a mathematical relationship between functional
data obtained from physico-chemical measurements X and traditional numerical macroscopic
properties y. Linear regression is used to establish the relationship between the two. As X is
high dimensional, classical OLS regression is inapplicable and reduction techniques are used. A
trade-off between accuracy and simplification is thus necessary to handle high-dimensional data
problems.

This thesis uses real data to predict the density of oil cuts using infrared spectra. It was provided
by IFPEN and made public for further scientific study. This manuscript also includes simulated
data generated using Gaussian mixtures and sparse linear relationships to test hypotheses and
assess the accuracy and interpretability of predictions.

An evaluation procedure was established, including new calibration-validation algorithm called
CalValXy, which selects calibration observations using both X and y information. Metrics
were used to evaluate the similarity of the calibration to the overall data and the prediction
accuracy. The thesis also focuses on the interpretability of the results by detecting information
using parsimony indicators, which refers to the presence of a relatively small number of non-zero
coefficients in the model.
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Dimension reduction techniques in data analysis includes projection (like PLS) and penalized
(like lasso) methods. A new approach called Dual sparse Partial Least Squares was developed,
which combines the advantages of both techniques for improved interpretability and accuracy in
prediction models. The method uses a dual norm of selected penalties and our studies suggest
four types of norms. A comparative benchmark test showed that the approach provided better
interpretation of the trained prediction model with accurate prediction. It was also implemented
in an R package called dual.spls, which also includes real data, a data simulation algorithm, a
calibration and validation method, and evaluation tools.

Keywords— Partial least squares, lasso, ridge, regression, sparsity, dual norm, chemometrics,
machine learning



Résumé

La chimie analytique joue un rôle crucial dans divers domaines car elle couvre l’identification, la
quantification et la caractérisation des substances chimiques. Elle est essentielle pour compren-
dre la composition et le comportement de la matière et pour développer de nouveaux matériaux
et technologies. Elle traite spécialement des mélanges complexes formés par un ensemble de
molécules différentes, notamment les mélanges pétroliers, la source d’énergie la plus utilisée
dans le monde depuis la révolution industrielle. Ils sont utilisés pour produire de l’essence, du
diesel et d’autres combustibles pour les voitures, les camions, les avions et les bateaux. Leur
caractérisation peut être établie à l’aide des propriétés physico-chimiques globales telles que la
densité, la viscosité, le point d’éclair, le point d’écoulement, etc.. Ces méthodes sont normalisées
et peuvent avoir un impact significatif sur les processus de raffinage, de transport et de stockage
du pétrole. Elles peuvent également influencer la composition et la qualité des produits qui en
dérivent. Cependant, les analyses de référence nécessitent des ressources importantes et sont
coûteuses, limitant ainsi le nombre d’analyses pour le suivi des processus. De fait, il est donc
nécessaire de disposer d’analyses rapides.

Les méthodes d’analyse rapide utilisent principalement la spectroscopie, qui exploite les pro-
priétés physiques des produits. Cette approche présente plusieurs avantages, tels que la minia-
turisation, les faibles coûts de fonctionnement et la rapidité. La spectroscopie comprend plusieurs
types comme l’infrarouge, la résonance magnétique nucléaire, etc. Chacun diffère par la plage
de longueurs d’onde utilisée, le type d’interaction impliquée ou le type de substance étudiée.
Toutefois, ils ont tous en commun d’utiliser un profil de signal représenté par des données fonc-
tionnelles. Cependant, leur précision est relativement inférieure et les résultats peuvent ne pas
être aussi exhaustifs que ceux obtenus à partir de méthodes plus standardisées. Pour cela, les
techniques de la chimiométrie peuvent résoudre ce problème en créant un modèle prédictif pour
chaque propriété. De ce fait, cette thèse a deux objectifs principaux : le premier consiste à
prédire les propriétés physico-chimique de nouveaux mélanges à partir de mélanges de référence,
tandis que le deuxième objectif est d’apporter des éclairages supplémentaires sur les parties du
signal qui est relié le plus la propriété d’intérêt.

LesN spectres obtenus à partir de mesures physico-chimiques sont considérés comme des données
fonctionnelles. Ces dernières décrivent des phénomènes ou des variables qui varient continuelle-
ment dans le temps ou dans l’espace. Les spectres peuvent être discrétisés en un nombre fini
de point P et stockés dans une matrice X ∈ R

N×P . Les propriétés macroscopiques à prédire
sont des données traditionnelles qui sont des valeurs numériques regroupées dans un vecteur
y ∈ R

N . Pour résoudre ce problème, on utilise généralement des techniques de calibration
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multivariée pour l’analyse prédictive, et la modélisation de régression pour établir une rela-
tion mathématique entre les données des spectres X et les propriétés macroscopiques y. Cette
thèse se place dans un contexte de régression linéaire où la relation entre les deux parties sont
représentées par un vecteur de coefficient de régression β. Les spectres de mesures physico-
chimiques ont généralement un nombre d’observations N dans X plus petit que le nombre de
variables P représentant la longueur d’onde. Ainsi, nous traitons principalement des cas où
P ≥ N . La méthode OLS classique utilisée généralement en regression linéaire minimise l’erreur
quadratique de prédiction. Cependant, avec les problèmes de grande dimension, l’estimation
OLS n’est plus applicable. ll est important de réduire le nombre de variables afin de pouvoir les
visualiser et les analyser plus facilement. Toutefois, les techniques de réduction de dimension
peuvent entrâıner une perte de précision. La solution consiste à accepter une certaine perte de
précision en échange d’une simplification des données.

IFPEN a fourni des données réelles pour appuyer cette étude. Chaque donnée comprend des
propriétés physico-chimiques standardisées pour une variété de coupes de pétrole ainsi qu’un
ou plusieurs spectres d’analyse rapide associés. Dans le chapitre 2, on présente les données
réelles utilisées dans ce manuscript et rendues publicques dans un article pour encourager
le développement d’autres études scientifiques. Elles sont composées de spectres infrarouges
qu’on utilise pour prédire la densité des coupes considérées. En outre, nous avons proposé un
générateur de données qui permet de reproduire des ensembles de données similaires aus données
réelles. Les données simulées sontgénéralement importantes dans les projets de data science car
elles permettent aux scientifiques de tester des hypothèses et de mener des expériences sans
avoir à se limiter aux données réelles disponibles. Nous avons simulé des spectres fonctionnels
représentés par une matrice X explicative en utilisant des mélanges de Gaussiennes et avons lié
linéairement la réponse y à un nombre petit de variable de X. De cette façon, nous avons pu
évaluer la précision des prédictions en utilisant des modèles linéaires et évaluer l’interprétabilité
lors de la création de régressions parcimonieuses.

Avant de commencer l’analyse et la modélisation des données, une procédure d’évaluation a été
mise en place. L’un des objectifs principaux de la thèse est d’obtenir une précision de prédiction
élevée. Dans un contexte de regression, la prédiction est souvent évaluée en séparant les données
en ensembles de calibration et de validation. Le choix d’observation de calibration peut être fait
aléatoirement sans grande connaissance préalable de la population. Dans cette procédure, chaque
observation a une chance égale d’être retenue. Cependant, il n’est jamais garanti d’obtenir une
calibration représentative de l’ensemble de l’échantillon. L’algorithme Kennard et Stone est
moins aléatoire et largement utilisé en chimiométrie. Il sélectionne de manière séquentielle
des observations de calibration uniformément espacées par rapport au valeurs dans X. Or en
regression, la réponse y porte aussi des informations importantes. D’où la deuxième contribution
de cette thèse: un algorithme de calibration-validation nommé CalValXy détaillé dans le chapitre
3. Il sélectionne les observations de calibration en utilisant à la fois les informations de X et de
y. Pour évaluer la performance de la calibration, nous avons utilisé des mesures telles que la
distance euclidienne et la distance Φ2 qui quantifie la similitude entre l’ensemble de calibration
et les données, ainsi que des métriques telles que l’erreur quadratique moyenne (RMSE), l’erreur
absolue moyenne (MAE) et le coefficient de détermination (R2) pour évaluer la précision de
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prédiction. Les résultats obtenus ont montré que la calibration construite avec cet algorithme
couvre de manière uniforme l’espace expérimental et fournit des prédictions en régression précises
par rapport aux méthodes de référence. Nous avons également cherché à fournir des informations
sur le signal en fonction de la prédiction des propriétés, c’est-à-dire en considérant d’évaluer
l’interprétabilité des résultats. Nous avons choisi de relever ce défi en détectant des informations
à l’aide d’indicateurs de parcimonie. La parcimonie dans un modèle de régression fait référence à
la présence d’un nombre relativement faible de coefficients non nuls dans le modèle. Les modèles
de régression parcimonieux sont plus faciles à interpréter car ils ne comprennent que les variables
les plus importantes dans le modèle, ce qui permet de localiser plus facilement les facteurs les
plus pertinents qui permettent une bonne prédiction. Ils nécessitent également moins de calculs
pour construire le modèle de régression. Cela peut être particulièrement bénéfique lorsqu’on
traite des données de grandes dimension. Nous proposons d’évaluer la parcimonie en calculant
la mesure de comptage �0 des coefficients de régression β et en les comparant graphiquement
aux spectres originaux pour évaluer la localisation.

Les techniques de réduction de dimension impliquent la transformation de données d’un espace
de grande dimension vers un espace de faible dimension tout en préservant les informations clés
des données d’origine. Deux catégories d’approches sont couramment utilisées : les méthodes
projectives et les méthodes pénalisées. Les méthodes de projection sont basées sur la synthèse
de la matrice de données X originale dans un espace de dimension inférieure, utilisant souvent
des techniques telles que la régression PLS (moindres carrées partiels), couramment utilisées
en chimiométrie. Le principe de la PLS consiste a résumer X en une matrice de score T
en maximisant la covariance entre T et y. La PLS a montré son efficacité grâce a la sim-
plicité de son algorithme et la précision dans ses prédictions. Cependant, les résultats manquent
d’interprétabilité. Les méthodes de pénalisation, quant à elles, consistent à régulariser les co-
efficients de régression pour une meilleur interprétabilité. Le lasso est une technique souvent
utilisée. Sa régularisation de type �1 permet de produire des résultas parcimonieux visant une
bonne interprétabilité. Néanmoins, le lasso possède des désavantages dans des situations de
grande dimension comme sa saturation quand N variables sont selectionnées. Pour bénéficier
des avantages des méthodes de projection et de pénalisation, leur combinaison a été proposée
dans la litérature nommée sparse PLS. Comme troisième contribution de cette thèse détaillée
dans le chapitre 4, une nouvelle approche généralisée appelée Dual sparse PLS a été développée.
Cette méthode est inspirée par les sPLSs et applique une réduction adaptative. Elle est basée
sur une norme duale de la pénalité sélectionnée. Nous avons proposé quatre types de normes
inspirés des techniques connues: lasso, groupe lasso, moindres carrés et ridge, qui présentent des
performances de calibration et de validation quasiment équivalentes au modèles de référence,
avec moins de composantes formant T. Un test de référence comparatif a été réalisé à l’aide
des données simulés et de données réelles de spectroscopie proche infrarouge. Il a été constaté
que les coefficients obtenus indiquent l’emplacement exact des zones de données influentes. Cela
fournit une meilleure interprétation du modèle de prédiction formé.

Un package R appelé dual.spls a été développé pour mettre en œuvre la regression Dual-sPLS
et la rendre accessible à la communauté scientifique pour résoudre des problèmes réels. En
plus de la modélisation, ce package propose des fonctions supplémentaires pour faciliter son
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utilisation autonome, notamment des données réelles, un algorithme de simulation de données,
une méthode de calibration et validation CalValXy et des outils d’évaluation. Le chapitre 5
propose un tutoriel d’utilisation de dual.spls avec des exemples graphiques et les lignes de codes.

Ce travail de thèse a donc permis de gérer un projet de data science dans le domaine de la
chimiométrie. Avant de proposer des solutions, nous nous somme mis des objectifs selon la
problématique de caractérization du pétrole à l’aide de données fonctionelles de grande dimen-
sion. Ensuite, dans un premier lieu, nous avons regrouper les données qui peuvent nous être utile
et surtout, nous avons contribué à aider la communauté scientifique en publiant des spectres
infrarouges réels avec leurs densités associées en tant que source ouverte pour d’autres travaux.
Dans un deuxième lieu, nous avons proposée une méthode de calibration validation qui permet
de crée des modèle à partir d’un sous ensemble représentatif des observations selon l’espace de X
et y. Enfin, nous avons concue une méthode de régression qui présente de nombreux avantages:

• les prédictions correspondent ou dépassent les méthodes de reférence ou comparables,

• dans les différentes propositions de normes que nous avons examinées, elles produisent en
outre des représentations parcimonieuses des données simulées et réelles,

• elles offrent une localisation interprétable des caractéristiques du point de vue des données
fonctionnelles,

• elles permettent enfin le regroupement des variables : la possibilité de rassembler les
variables explicatives en sous-ensembles plus significatifs (échantillons contigus autour d’un
pic, bandes spectrales disjointes associées à un composé) pour pouvoir combiner différentes
modalités physico-chimiques.

Mots clés— Régression moindre carrées, lasso, ridge, régression, parcimonie, norme duale,
chimiométrie, machine learning



Acronyms

API American Petroleum Institute.

ASTM American Society of Testing Materials.

AWLS Automatic Weighted Least Squares.

CV Cross validation.

Dual-sPLS Dual sparse Partial Least Squares.

Icoshift interval correlation optimization shifting.

IR Infrared.

KS Kennard and Stone algorithm.

lasso Least absolute shrinkage and selection operator.

MAE Mean Absolute Error.

NIPALS Non- linear iterative partial least squares.

NIR Near-Infrared.

NMR Nuclear Magnetic Resonance.

OLS Ordinary Least Square.

PC Principal Component.

PCA Principal Component Analysis.

PCR Principal Component Regression.

PLS Partial Least Squares.

R2 Determination coefficient.
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10 Acronyms

RMSE Root Mean Square Error.

simdist Simulated distillation.

SNV Standard Normal Variate.

sPLS sparse Partial Least Squares.

SRS Simple Random Sampling.

TMS Tetramethylsylan.
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Introduction

1.0 Data science general workflow

This thesis is the outcome of a work pleasantly completed in a tripartite setting: in a joint
agreement with the Claude Bernard University of Lyon 1 and the Saint Joseph University of
Beirut and in collaboration with the French Institute of Petroleum New Energy (IFPEN). With
this multi-background context, we were able to raise a wide range of questions and gather
several contributions, each presented in a separate chapter. As the latter are component of
a conventional data analysis scheme, we have chosen to start this manuscript with a form of
generalization of what a data science workflow may be. We will roughly detail how, during these
last three years, each step was completed and the questions we have specifically asked ourselves.
A straight-through read of this manuscript will give the impression of a certain redundancy in
the presentation of some concepts. We have preferred to retain the repeats as they serve to keep
each chapter’s integrity.

Data science makes it possible to model problems using multiple data and algorithms to produce
efficient decisions. As illustrated in Figure 1.1, this practice is at the crossroads of skills in
statistics and data analysis, computer sceince and business. In particular, machine learning can
be used, hence allowing the ability to recognize structures in masses of data.

This thesis takes place in the field of chemometrics where chemical data are analyzed using
mathematical tools to provide maximum relevant chemical information. In our project, we
exploit two types of data: functional data that allows to discover a fine characterization of
chemical mixtures, and macroscopic data providing generic physico-chemical properties and
contributions at various levels (pre-treatement, inference...)were proposed in the manuscript.
The core stages of this thesis are compatible with those found in other data science projects.
For this reason, it seemed important to address the following steps (also illustrated in Figure
1.2), extensively developed throughout the manuscript:

(S1) Defining questions and setting up context: before embarking on a data science
project, it is essential to understand the corresponding environment. Asking a set of
measurable, clear, and concise questions helps in identifying problems and specifying main
objectives. Therefore, building a roadmap will greatly clarify the goals of the project
for all team members. In chemometrics, cores area of study are classification, pattern
recognition, experimental design, signal processing, etc. For this project, we focused on
multivariate calibration where we build models to forecast properties of complex petroleum

1
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Figure 1.1 ∼ Data science: fusion of computer science, math, and business (extracted from
https://clevertap.com/blog/data-science/).

mixtures based on physico-chemical measurements. Section 1.1 details context, motivation
and objectives.

(S2) Acquiring and collecting data: after setting up a solid idea of the context, aggregating
the appropriate data and conceiving an appropriate experimental design come next. Data
can be collected from internal or external sources. Regardless of the topic of the study,
accurate data collection is imperative to maintain the virtue of research. Quality control
helps ensuring the latter. Databases related to chemometrics are specifically designed to
store chemical information. During the preparation of this PhD, IFPEN supplied this work
with several data sets of physico-chemical measurements (Nuclear magnetic resonance,
Near infrared and distillation) and associated macroscopic properties (cetane number and
density). Data provided are presented in Section 1.2.

(S3) Cleaning and pre-treating data: data from different sources may have different for-
mats, types and specific features. To prevent skewing of the project, anomalies must be
identified and duplicates purged. Overseeing this can lead to errors regarding hypothesis
or model biases for example. In chemical analysis, data are often large and common issues
can emerge like outliers that can affect analysis and missing values. For cleaning, we usu-
ally aim at detecting and eliminating them. Moreover, popular pre-treatement procedures
are smoothing techniques, interpolation procedure, reducing noise, baseline-correction pro-
cesses etc. For example, in this work, we turned to a Savitzky–Golay filter for a derivative
pre-processing to the NIR data (see Table 1.1) to increase its precision without distorting
the signal tendency. Scatter-corrective dispersion correction methods were also applied on
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other datasets. Details are covered in Section 1.3.

(S4) Designing application and evaluation procedures: this is a preliminary step before
analyzing data. It depends on the initial objectives and type of analysis specified in step
(S5). Procedure of applications of adequate methods are set up for a clear representation of
results. An organized evaluation strategy is required based on project goals. For multivari-
ate calibration objective set in (S1), one can choose metrics, reference methods, boundaries
to improve etc. In this thesis, several dimensionality issues are associated to the considered
data. Hence, we mainly resort to dimension reduction techniques like Partial Least Squares
(PLS) as reference method. We consider different prediction errors metrics like Root mean
squares error (RMSE), Mean absolute error (MAE) and determination coefficient (R2) to
improve. Another challenge is to look to interpret regression coefficients for information
extraction. Strategies for evaluation are conceived and detailed in Section 1.4.

(S5) Analyzing data: This step allows manipulating data to extract meaningful insights.
There are four main categories of data analysis:

• descriptive: identifies what has already happened,

• diagnostic: understands why something has happened,

• predictive: estimates future bearings based on historical data,

• prescriptive: provides future guidance.

Chemometrics covers all types. However, according to step (S1), we focus here on a pre-
dictive data analysis. More specifically, we turn to predictive modeling with regression
procedures. Classical regression and dimension reduction methods are benchmarked for
improvement. The considered approaches are presented in Section 1.5.

(S6) Improving, evaluating and sharing results: when all the previous steps are completed,
outcomes must be interpreted and analysis should be evaluated. This is crucial since it
measures gain from the overall work. Contributions of our thesis have been shared to
users through an R package and several conferences and submitted articles. All of them
summarized in Section 1.6

1.1 Defining questions and setting up context (S1)

The purpose of this chapter is to clearly define our questions and objectives. The petroleum
industry, to which the thesis is applied, will be familiarized along with certain terminology
specific to this sector. We will then go through the mathematical background that is typically
taken into account in such a context such as ours.

1.1.1 Chemical aspect

Humans use energy from the environment and transform it into useful forms that fulfill their
needs. Despite their concerns for the environment, currently, the primary sources of energy used
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Figure 1.2 ∼ Six fundamental steps to complete a data analytics project.

still include oil and represents approximately one third of human needs in energy [18]. It is
essential for transportation, industry, pharmacy, etc.

Oil is a continuum of molecules, the majority of which are hydrocarbons. In terms of structure,
these hydrocarbons are quite heterogeneous. Distillation allows crude oil to be separated into
petroleum cuts (gasoline, kerosene, diesel, etc.) according to the boiling temperature of the
molecules that compose it. The compounds with boiling temperatures higher than 350°C are
referred to as heavy products, most abundant in the manufacture of oil. These heavy products
can only be operative in conjunction with the development of effective refining technologies can.
Petroleum refining turns these heavy goods into light products (fuels) and lower their metal
content and other impurities. It aim to make quality products available to the consumer, in
compliance with precise standards, particularly environmental ones, and with the quantities
required by the market, which makes analyzing these sub-products an important issue. Heavy
products are hard to be analyzed due to their complex, polydisperse composition and physical
nature (opaque and viscous).

The analysis carried out for the characterization of heavy petroleum products can be grouped
into three main types: global physico-chemical properties, mass repartition by chemical families
and elemental analyses. Note that they are standardized. The first form of analysis surrounds
this thesis. The most commonly used macroscopic properties are density, refractive index and
viscosity. Section 1.2 and [87] both have further details on this topic. However, the reference
analysis that are currently employed for characterizing them are pricy and resource-intensive.
The number of analysis available for process monitoring is thus limited by cost and time and
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rapid analysis is therefore needed.

The rapid analysis methods based on the exploitation of the physical properties of products are
essentially spectroscopic methods. The advantages of this approach includes miniaturization,
inexpensive running costs, and rapidity [9]. There are five types of spectroscopy: Infrared (IR),
Ultraviolet-Visible (UV/Vis), Nuclear Magnetic Resonance (NMR), Raman, and X-Ray. They
differ by wavelength range chosen, the type of interaction involved, or the type of substance under
study. Their common thread is their signal profile represented by functional data. Examples of
the latter can be found in Section 1.2.

However, rapid analysis is an indirect method. Indeed it is rarely possible to directly relate band
intensity to property values. It is therefore necessary to resort to chemometrics techniques and
develop a predictive model for each property in order to extract the relevant spectral information
for its description. Therefore the focal point of this thesis relies on two main objectives:

(O1) predict properties of novel mixtures having previous knowledge of reference ones

(O2) provide additional insights on the signal parts that drives the majority of the property

We describe which statistical approaches allow achieving these objectives in the following section.

1.1.2 Predictive modeling

Resulting spectra from physico-chemical measurements are classified as functional data as they
represent intensities according to a continuum observed in a largely finite set of points. This
problem is usually solved by using multivariate calibration techniques [19] for predictive anal-
ysis where regression modeling [42] is mostly used. It operates by conceiving a mathematical
relationship between explanatory data (spectra) and response data (macroscopic properties).

We establish below some formal notation and definitions that will be used throughout the
manuscript.

Matrices, vectors and scalars are denoted by boldface uppercase letters, boldface lowercase and
light lowercase letters respectively, e.g. X, y and λ. The transpose of a given matrix X is XT .
The identity matrix of size P is represented by IP . The �1-norm and the �2-norm of vector a
w ∈ RP are

∥w∥1 = P∑
p=1

∣wp∣ and ∥w∥2 =
����	 P∑

p=1

∣wp∣2 . (1.1)

The vector of signs of any vector w ∈ RP is noted sign(w), and (w)+ is the vector composed of
wp if wp ≥ 0 and 0 if wp < 0(1).

(1)It corresponds to the Rectified Linear Unit (ReLU), a popular activation function for neural networks.



6 Chapter 1. Introduction

We observe N ∈ N
∗ spectra stored in a matrix X ∈ R

N×P where for any p ∈ {1, . . . , P} and
n ∈ {1, . . . ,N}, columns p and row n denotes scalar xnp, the nth spectra (observation) denotes
row xn ∈ RP and pth wavelength (variable) denotes column x(p) ∈ RN . The chemical property
is represented by a response vector y ∈ R

N . In the following, we assume — without loss of
generality— that both explanatory matrix X and response vector y ∈ RN are mean-centered.

According to the discussion displayed in Section 1.1.1, our aim is to build a mathematical link
between response variable y and corresponding spectra X. We focus in this manuscript on a
linear relationship(2) between the two compounds, transcribed by the following equation:

y =Xβ + ε , (1.2)

where ε is the measurement error depending on the variability within the sample. It is expected
to be independent of X, with zero mean. Parameter β describes the relationship between X and
y and should be estimated, especially to understand the effect of each covariates on response y.
Equation (1.2) also allows to predict new responses related to external observations .

Ordinary Least Squares (OLS) is a common technique for estimating coefficients β from the
model (1.2). It aims to minimize the sum of square differences between the observed and
predicted values. More formally, it estimates β by

β̂ ∈ argmin
β∈RP

∥y −Xβ∥22 . (1.3)

When P ≤ N and provided X has full column rank, the solution of optimization problem (1.3)
is:

β̂
OLS = (XTX)−1Xy . (1.4)

The ordinary least squares (OLS) prediction is ŷLS =Xβ̂
OLS = P[X]y, where P[X] is the orthog-

onal projection onto the space spanned by the columns of X.

In our context, we recall that the number of lines (observations) inX corresponding to the spectra
is smaller than the number of variables representing the wavelengths. Thus, we mainly deal
with cases where P ≥ N i.e. data is composed of a large number of variables and relatively few
observations. In this context, OLS estimation fails due to Gram matrix XTX shape. Although
it is a squared matrix of P dimension, its rank is lower than N which makes the optimization
problem (1.3) ill-conditioned (most of the eigenvalues are null) and singular.

As high-dimensional data structures are rapidly becoming recurrent, reducing the number of
variables is crucial for visualization and analysis. Simple data also helps algorithm to be less
time consuming. However dimension reduction techniques comes at the expense of accuracy,
thus finding a trade off between accuracy and simplicity can be helpful. Most used methods will
be detailed in Section 1.5.

(2)All regression methods can be applied for a multidimensional response. However, we restrict our study to
one-dimensional y.
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Data
Explanatory
matrix X

Response
vector y

Number of
observations

N

Number of
variables P

DNIR Near-Infrared Density 208 ∼1500

DNMR
NIR

Nuclear
Magnetic
Resonance Cetane number

93
∼14000

Near-Infrared ∼2300

DNMR
simdist

Nuclear
Magnetic
Resonance

Density 243 ∼65000
Simulated
distillation

101

Table 1.1 ∼ Three internal real data sets provided by IFPEN.

1.2 Acquiring and collecting data (S2)

This section describes briefly data sets manipulated during this thesis. Chapter 2 will provide
further information.

Two types of data were handled. On the one hand, data from internal source were provided
by IFPEN. Table 1.1 list down their nature and dimensions and this section offers an extensive
description. On the other hand, we also resorted to simulated data to empower data-driven
decision making. Integrating simulated data provides richer insights due to all the different
scenarios that can be generated.

Real data ∼ As shown in Table 1.1, three internal data sets were made available by IFPEN.
Each provides one microscopic property, stored in the response vector y ∈ R

N , that we wish
to predict and one or two spectral physico-chemical measurement, represented by the matrix
X ∈ RN×P , that we wish to analyze for forecasting.

In the following, we will give a brief description of each kind of measurement. As macroscopic
densities, DNIR and DNMR

simdist consider sample’s densities and DNMR
NIR focus on Cetane number

index. .

Density is the physico-chemical characteristic that is most frequently used to describe oil. The
American Petroleum Institute (API) gravity is typically used to indicate the density of crude
oils. It is related to specific density in such a fashion that an increase in API gravity corresponds
to a decrease in specific density. The oil industry makes extensive use of density measurement
because it provides a rapid, accurate, and repeatable indicator of the quality of an oil cut. It is
strongly correlated to a large number of properties such as unsaturated carbon content, hydrogen
content, . . . It is measured depending on the product’s state (liquid or solid) at 70°C. The lower
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Figure 1.6 ∼ Sparse simulated data DSIM represented by 300 curves. Each curve is stored in
a row in the explanatory matrix X used to predict a simulated vector y. Highlighted red areas
represents the only variables of X linked to y.

or caused by physico-chemical interferences (diffusion). Removing them offers improvement of
predictive models [79]. According to the noise’s primary cause, pre-treatment techniques can
be split into two broad categories: scatter-corrective dispersion correction methods and spectral
derivatives.

Due to confidentiality restrictions placed on DNMR
NIR and DNMR

simdist, only applications on DNIR

are offered for real data in this manuscript. As a supplement, we will describe how each were
pre-treated and briefly go through some procedures.

NIR spectra from DNIR and DNMR
NIR were both derivated using Savitzky Golay smoothing (see

Section 1.3.1) for a window of 15 variables and from a polynomial of order 2. Additionally,
to lessen the scatter effects between samples, Standard Normal Variate (SNV) [10], a popular
scatter correction technique, is applied to NIR spectra from data DNMR

NIR .

NMR spectra from DNMR
NIR data were first aligned using the interval correlation optimization

shifting (Icoshift) [82]. Afterwards, Automatic Weighted Least Squares of order 2 (AWLS),
Savitzky Golay smoothing and Normalization over the area of each spectrum were applied as
pre-treatment.

We choose to describe briefly in this section Savitzky-Golay filter and Standard Normal Vari-
ate (SNV). The cited references above contain descriptions and illustrations of the remaining
approaches.
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1.3.1 Savitzky-Golay filter

Both additive (vertical baseline offset) and multiplicative (vertical baseline shifts as a function
of wavelength) effects may appear in the spectra. To get round of such perturbations, spectra
derivatives are usually considered. In this context, savitzky-Golay algorithm [83] is the most
widely used technique in chemometrics for the derivation of spectra. The principle is the follow-
ing: for a given spectra and a given width v (odd scalar in N

+), it calculates a polynomial fit of
order o ∈ N+ in each filter window as the filter is moved across the signal. Mathematically, for a
given window of width v, it operates as follows

x∗p = 1

R

H∑
h=−H

chxp + h , forp ∈ {v + 1

2
, . . . , P − v + 1

2
} (1.6)

where

• x∗p is the new value at variable p,

• R is a normalizing coefficient,

• H is the gap size on each side of variable p,

• ch are the pre-computed coefficients, that depends on the chosen polynomial order and
degree.

Figure 1.7 borrowed from [39] illustrates an example where the blue lines represents a signal
spectrum and the filled dots the measurements. The signal is a spectrum that has been discretely
measured (blue line with measurements at the filled dots). On the bottom left, black dotted
lines indicates three filter windows for an application of Savitzky Golay smoothing for v = 7. The
subplot in the upper right corner displays an example for the window 22 to 28 The polynomial
fit at the center point determines the filter estimate at the center of each window, thus v is
always an odd integer. The ”X” sign in the subplot provides the filtered signal at point 25
which is the center point. The smoothing is complete when the filter run through each variable.

The Savitzky-Golay filter especially is interesting because it is designed to preserve specific
features of the signal, such as peaks or slopes, by adjusting the order of the polynomial and the
size of the window used in the filter. The parameters used in the Savitzky-Golay filter include
the order of the polynomial used to fit the data, the size of the window used for each point, and
the degree of smoothing desired. Generally, higher order polynomials and larger window sizes
will result in better smoothing, but may also lead to more distortion of the signal. The degree
of smoothing can be controlled by adjusting the number of points used in the filter.

To compute derivative, Savitzky Golay simply estimates it for each filter window for a given
order d. Figure 1.8 shows NIR spectra from data DNIR after a first derivative filtering using
Savitzky Golay smoothing for a window of 15 variables and from a polynomial of order 2.
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Figure 1.7 ∼ Spectrum measured at discrete points (blue line with dots). Filter windows,
w = 7, are shown in the bottom left. A quadradic fit is shown in the top right for windows 22 to
28 with corresponding filter value at point 25 given as X. Figure borrowed from [39].

Figure 1.8 ∼ First derivative of 208 NIR data spectra from data set DNIR. Right bottom
subplot provide a clearer representation of overlaid spectra in wavenumber range from 7000 to
4000 cm−1



14 Chapter 1. Introduction

1.3.2 Standard Normal Variate (SNV)

SNV is a straightforward methodology and has efficient scattering correction powers. It is
frequently applied to spectra where discrepancies across otherwise identical spectra are caused
by baseline and pathlength changes. Therefore, it normalizes the data and operates row-wise,
for n ∈ {1, . . . ,N}:

SV Nn = xn − x̄n

sn
, (1.7)

where

• SV Nn Corrected value,

• x̄n mean value of the uncorrected nth spectrum xn,

• sn standard deviation of the values of the nth spectrum xn.

The resultant SV Nn spectra are independent of the initial absorbance values as they consistently
have a zero mean value and a variance of one. [35] provides a clear illustration of the impact of
SVN changes.

1.4 Designing application and evaluation procedures (S4)

Clear objectives were stated(3). Before analyzing data and building the most adequate predictive
model, evaluation procedures must be specified. Therefore, in order to evaluate whether each
goal was reached, this section will be divided in two, each dedicated respectively for (O1) and
(O2).

1.4.1 Prediction evaluation (O1)

This objective focuses on the power of prediction of conceived model. In our work we resort
to splitting data into two different subsets. This is essential to assess newly built models per-
formance, otherwise, the prediction will be overly optimistic and biased. First,a representative
set, named calibration, is needed to set up the model by estimating parameters. Second, a
smaller similar set, named validation, is essential to determinate most appropriate parameters
and estimate the quality of the final model. Several calibration-validation methods have been
proposed in the literature. We evoke here the two most used.

Simple random sampling (SRS) is the most straightforward method. It is based on randomly
selecting calibration with little advance knowledge about the population. In this procedure,
each observation has equal chance to be retained. Due to randomization, it has a low risk of
sampling bias. However, a representative calibration of the overall sample is never garanteed.

(3)see step (S1) in Section 1.1.1
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Kennard and Stone(KS) algorithm ∼ Kennard and Stone [54] splitting is less random. Its
corresponding algorithm is popularly used in chemometrics [97, 70]. It sequentially selects
calibration promoting the most uniform spatial distribution possible which means it is based on
computation of distances between samples. Thus, the choice of distance is influential. Kennard
and Stone generally uses either Euclidean dE or Mahalanobis distance dM defined for i, j ∈{1, . . . ,N}:

dEij(xi,xj) =
����	 P∑

p=1

(xip − xjp)2 , (1.8)

dMij = √(xi − xj)TΣ−1(xi − xj) , (1.9)

where Σ is the sample covariance matrix.

Let D = {o1, . . . , oN} be the set of the N where, for any n ∈ {1, . . . ,N}, on = (xn, yn) ∈ R
P+1

gathers xn ∈ RP from the X space and the corresponding response yn ∈ R. At each iteration,
a candidate will be removed from O and added to the calibration set C. At the end of the
procedure, C will contain Nc < N points, where Nc is a number set in prior, and the N −Nc

remaining data in O will form the validation set. With KS algorithm, computations are done
using the projections of the observations on the X-space.

Starting point: The first calibration point is the observation that is the farthest away from the

centroid G ∈ R
P with components Gp = N−1∑N

n=1 xnp for p ∈ {1, . . . , P}. This observation is
removed from D and assigned to the calibration set C.

Another way of initiating the algorithm is to select the first most distant couple of observations.

Iteration n + 1: Assume that we have successively determined n (1 ≤ n < Nc) calibration points
c1, . . . , cn, we determine the next observation cn+1 along these operations.

1. Compute the distance Δ(o,C) between each point o of D and the calibration set C ={c1, . . . , cn}
Δ(o,C) =min{dX(o, c1), . . . , dX(o, cn)} ∀o ∈D.

Here dX represents the distance chosen between the X-values of the observations.

2. The observation o ∈ D that has the largest Δ(o,C) will be the n + 1-th calibration point
cn+1.

Step 2 is repeated until the desired number Nc of calibration points is attained.

These steps are summarized in Algorithm 1.
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Algorithm 1: Kennard and Stone

Input: X, Nc

Set O = {o1, . . . , oN}, the set of the overall observations
Compute Gp = N−1∑N

n=1 xnp for p ∈ {1, . . . , P} (centroid)
Determine c1 = argmaxo∈Od(G,o)
Move c1 from O to calibration set C
while number of observations in C is less than Nc do

o = argmaxo∈Od(o,C)
Move o from O to C.

end while

Comparing SRS to Kennard and Stone splitting ∼ Figures 1.9 and 1.10 illustrate the split-
ting of DSIM after applying PCA (see Section 1.5.1 for more details) with a 80-20 calibration
and validation percentage. We notice that with KS, each validation observation (in green) is
represented by one or more calibration (in red), unlike with SRS. With the latter, loads of vali-
dation points seem to be dispersed, hence the model cannot be calibrated to suit the majority
of samples. Here, KS provides a more adequate calibration. However, the splitting is employed
in a prediction context that involves two sets of variables: X and y. The KS algorithm ignores
response vector y and solely uses explanatory factors to calculate distances. In Chapter 3, we
present a new splitting technique called CalValXy that takes into account both sets.

After sample splitting, models are built and predictions are done over the two subsets. To assess
models prediction accuracy, it is only logical to consider prediction errors metrics. We choose
the following three error measures: the root mean squares error (RMSE), the mean absolute
error (MAE) and the determination coefficient (R2) defined respectively as:

RMSE =
���	 1

N

N∑
n=1

(yn − ŷn)2 = 1√
N
∥y − ŷ∥2 , (1.10)

MAE = 1

N

N∑
n=1

∣yn − ŷn∣ = 1

N
∥y − ŷ∥1 , (1.11)

R2 = ∑N
n=1(yn − ȳ)2

∑N
n=1(yn − ŷn)2 with ȳ = ∑N

n=1 yn

N
, (1.12)

where in each definition, y ∈ RN denotes the response vector and ŷ its estimate.

1.4.2 Coefficient interpretation (O2)

This task requires additional understandings regarding the relationship between X and y. More
precisely, it requires strict information concerning localization of most influential variables ac-
cording to response y. Regression coefficients β̂ quantify the link between predictor variables
and response by providing estimates of unknown vector β from Equation (1.3). The coefficient
value represents the mean change in the response given a one unit change in the predictor while
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Figure 1.9 ∼ Simple random splitting of PCA transformation of DSIM with 80-20 percentage
splitting according to first four principal components.
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Figure 1.10 ∼ Kennard and Stone splitting of PCA transformation of DSIM with 80-20
percentage splitting according to first four principal components.
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holding other variables in the model constant. A simple way to grasp regression coefficient is to
picture them as linear slopes. Comparing β̂ to original spectra is a straightforward technique to
interpret coefficients and try to extract information.

Model selection in statistics is the process of choosing the pertinent predictors to include in the
model. A possible way to select a small number of relevant features from a training set is to
fit a sparse linear model that only depends on a subset of S ≪ P predictors. Resulting sparse
estimator β̂ will give insights about the location of the most relevant variables. Sparse regression
is frequently used with high-dimensional data (see [14, 12] for recent publications).

To evaluate interpretation of models, β̂ will be plotted against original data spectra like in
Section 1.5.1 for example. The model gives further insights when it is more selective and has
accurate localization. To emphasize on sparsity performance, we introduce an objective criteria
that quantifies the sparsity amount. In the following, �0(w), the sparsity index or count measure
[24] will denote the non-zero coordinates of w and �c0(w) its complement i.e. �c0(w) = P−�0(w).
A relatively small �0(w) reflects a stronger sparsity.

1.5 Analyzing data (S5)

Objectives prompt the use of a predictive analysis. With high-dimensional data like ours, dimen-
sion reduction procedures are aided. They consist of converting data from a high-dimensional
space to a low-dimensional space while preserving most significant information of the original
data. Some impressing benefits [76] of these reductions are:

• less processing power and training time, hence improving thus machine learning perfor-
mances,

• allowing data visualization,

• avoiding overfitting problems,

• fixing multicollinearity issues.

Different existing approaches can be classified as either projection or penalized methods. This
section focuses on presenting each type and describing which specific ones were tested for data
analysis. To illustrate the latter, each method is applied to DSIM data and corresponding graphs
will be presented to support the theoretical explanation.

1.5.1 Projection methods

Projection methods summarize original matrix X by building a new space of dimension M < N

with M ∈ N∗. The idea is to build an orthogonal matrix of weights, W ∈ RP×D such as T =XW
is of full rank. Matrices W and T are denoted respectively loadings and scores. Scores T are
used instead of original X, and linear model (1.2) is reformulated as:

y = TβW + ε =XWβW + ε . (1.13)
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With this reduction, OLS is applied and βW is estimated using Equation (1.4):

β̃
W = (TTT)−1Ty . (1.14)

We denote by β̂
W

the estimated regression coefficient associated to Equation (1.2) via dimension
reduction. Thus,

β̂
W =Wβ̃

W =W(TTT)−1Ty . (1.15)

In this last equation, the singularity problem of OLS estimator in high dimensional situations is
solved. Indeed, the inversion of matrix TTT is required and conceivable in projection methods
where dimension is reduced.

The above equations show that this type of methods projects response y in the new lower
dimensional space to estimate them with ŷ i.e. ŷ = PTy, where P. denotes the orthogonal
projection onto the space spanned by the subscript.

Projection methods differ by the way where the lower-dimensional M < N sub-space is built. We
focus in the following on two specific construction strategies leading to the so-called Principal
Component Regression (PCR) and Partial Least Squares (PLS) regressions.

Principal Component Regression ∼ PCR is based on Principal Component Analysis (PCA)
[107]. Also known as Karhunen-Loève transform (KLT), it is widly used for several purposes:
dimension reduction, data compression, feature extraction, data visualization, among others.

The PCA algorithm is commonly used in several fields that deals with high-dimensional data like
neuroimaging [36], chemometrics [30], bioinformatics [66], voice recognition [44], etc. It based
on an orthogonal projection of X onto a smaller subspace, called principal sub-space [105]. The
latter is built while maximizing the variance between new covariates, i.e. solving optimization
problem

max
W∈RP×M

WTΣW s.t. WTW = IM , (1.16)

where Σ = n−1XTX is the empirical covariance matrix of X.

The PCA loadings W are the eigenvectors of the symmetric covariance matrix Σ associated
to its eigenvalues sorted from largest to smallest. They allow building the set of scores T
denoted as the principal components (PCs). The first PC offers the maximum potential variance,
which represents a variation as large as that in the input characteristics, followed by later PCs.
PCA is thus essentially interesting when dealing with highly correlated variables. Indeed, when
the information is redundant, i.e. variables are linearly dependent, PCA excludes components
associated with small eigenvalues to build a decorellated set of score vectors. They are built to
also be orthogonal due to the constraint in Problem (1.16).
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In a conventional linear regression model, PCR is especially used to estimate the unknown
regression coefficients in order to represent the link between predictors and responses. Instead
of using X, a PCA transformation is applied and the new set of PCs are used as regressors.
PCR deals with the problem of dimensionality by building a new sub-space solely depending
on variation between predictors. However, in a regression problem, two sets of variables are
considered: the explanatory variables in X and the response variable in y. The latter is not
taken into consideration, potentially affecting the prediction accuracy, unlike the PLS described
in the next section [41].

Partial Least Squares ∼ PLS methods (also called projection to latent structures) were first
developped in the late 1960s to the 1980s by economist Herman Ole Andreas Wold [68]. PLS
was mainly developped for chemometrics [104, 106]. When the goal is to predict while reducing
dimension, the technique is called partial least square (PLS) regression [16, 1]. Unique to PLS,
and unlike PCR, the extracted factors W account for both predictor and response variation. It
is considered a flexible technique as it it can be applied to wide data with low sample size [43].

The fundamental idea of PLS avatars is to project data onto a lower-dimensional space like
mentioned in Section 1.5.1 by building linear combination of original variables. Its basic idea is to
compress the predictor matrixX by maximizing covariance betweenX and y. The corresponding
optimization problem for the first loading w1 is:

max
w1

(yTXw1) s.t. ∥w1∥2 = 1 . (1.17)

The convex Problem (1.17) can be solved with Lagrange multipliers leading to a closed form
solution: w1 =XTy. PLS uses the weight vector w1 to compress regressor X into the first score
vector t1 =Xw1.

Following components are built iteratively and a new lower dimensional score matrix T ∈ RN×M

is produced. Several approaches can be considered. Two popular algorithm are NIPALS [102]
and SIMPLS [32]. While NIPALS uses deflation to iteratively compute components, SIMPLS
is more direct [63]. NIPALS iteratively computes weight vectors by deflation while SIMPLS is
more direct. NIPALS considers the part of X that is orthogonal to tk, k <m. Thus, iteratively,
for the mth component, X is replaced by Xm such that:

Xm =X − Pt1,...,tm−1X =Xm−1 − Ptm−1Xm−1 , (1.18)

where Pt1,...,tm−1 denotes the orthogonal projection onto the space spanned by components
t1, . . . , tm−1.

Based on Proposition 1 from [57], the regression coefficients for M components are computed
as:

β̂
PLS

M =W(TTXW)−1TTy . (1.19)

The vector of regression fitted values ŷ for M components is the projection of response vector
y onto the space spanned by scores columns of T.
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Figure 1.11 ∼ RMSE values of PCA and PLS regressions on DSIM with respect of the number
of latent components.

According to [31], PLS is known for

1. its algorithm simplicity,

2. its accuracy in predictions,

3. its good performance when dealing with highly-correlated data etc.

However, in order to get valuable information about the variables, its regression coefficients are
challenging to interpret.

Comparing PCR to PLSR ∼ The RMSE values for PCA and PLS regressions applied on DSIM

data, are compared in Figure 1.11 while increasing the number of latent components. Lower
RMSE indicates more accurate forecasts. The RMSE values of the two methods decreases as
the number of components rises. Indeed, the more components are used the more variance is
preserved, thus more information. A significant disparity between the two curves for the first
six components hints that PLSR is more accurate at making predictions than PCR. For this
dataset, this suggests that PLS will be used as the primary reference technique for improvement
to reach this thesis prediction objective (O1).

We examine the PCA and PLS regression coefficients in Figure 1.12 by comparing them to the
original data DSIM. It is obvious that both curves share characteristics and exhibit variation
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Figure 1.12 ∼ Original data DSIM (top) compared to PCA (bottom left) and PLS (bottom
right) regression coefficients for six components.

in the same places. Additionally, the curves resemblance to the original data spectrum can be
easily seen. However, we recall that DSIM is built to be sparsely linearly linked to response
y, thus we no in prior the location of influential variables. The interpretation of β̂ with both
regressions is impractical as the curves do not hint to where the information is located. Thus,
(O2) is hard to be achieved using these projection methods.

1.5.2 Penalized methods

Another way to perform dimension reduction is to resort to penalization. Popular penalized
methods adds to Problem 1.3 a penalty function pen as in the following:

argmin
β∈RP

∥y −Xβ∥22 + pen(β) . (1.20)

Penalized regression methods constrain regression coefficients by shrinking them towards zero.
If the amount of shrinkage is large enough, they can also perform variable selection by zeroing
some coefficients. This latter results in a less complex model by choosing the most crucial
features. It offers the benefit of being more straightforward to control than the entire collection
of variables.

The choice of the penalty function pen depends on study objectives. Table 1.2 explicits some
popularly used penalization.

All these penalties are associated with hyper-parameters. For example, the Lasso strength of
shrinkage depends on λ. Hyper-parameters are all positive values. They control the amount
of regularization and choosing the appropriate ones is crucial and remains a challenge. Cross-
validation is a way to tune the hyperparameters using only the training data [45]. In the following
applications, regularization parameters are chosen by using CV.
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Lasso [47] λ∥β∥1
acheives variable selection
and handles high dimesion

problems

Ridge [49] λ∥β∥22
limits instability of
predictions due to
correlated variables

Elastic-net
[112, 47]

λ1∥β∥1 + λ2∥β∥22 combine above penalties to
improve the approaches

Fused-lasso
[96]

λ1∥β∥1 + λ2∑P
p=2 ∣βj − βj−1∣

ensures that spatially close
variables are activated

together

Group lasso
[111]

λ∑G
g=1 vg∥βg∥2

where G groups of variables
are associated vg weight for
a sparse selection of groups.

Table 1.2 ∼ Popular penalties.

Least absolute shrinkage and selection operator ∼ Least absolute shrinkage and selection
operator, also known as lasso [95], is a popular regression analysis technique that allows the
interpretation of the resulting statistical model by performing variable selection. The corre-
sponding penalty is based on an �1 regularization technique that may build sparse models with
few coefficients. In particular, certain coefficients can be reduced to zero and be dropped from
the model. Equation (1.20) in this case is formulated as:

argmin
β∈R

[∥y −Xβ∥22 + λ∥β∥1] . (1.21)

Problem (1.21) is reformulated as:

argmin
β

∥y −Xβ∥22 subject to ∥β∥1 ≤ t , (1.22)

with a one-on-one correspondance between parameters λ and t.

The level of shrinkage applied to the estimate is controlled by threshold t, which must be greater
than 0. To acquire outcomes that can be interpreted, a suitable parameter is essential. When

t ≥ ∥β̂LS∥1, the lasso estimate is equivalent to the standard least squares solution β̂
LS
, if existing,

as stated in [95]. Additionally, it chooses, on average, half of the variables when t = ∥β̂LS
∥1

2 . In

the orthonormal design case, i.e. XTX = IP , there exists a closed form solution β̂l called soft
thresholding. It zeros coefficients with small magnitudes and reduces the others relatively to the
threshold. It verifies:

β̂l
p = sign(β̂LS

p )(∣β̂LS
p ∣ − λ)+ ∀p ∈ {1, . . . , P} . (1.23)

Despite having been successful in several applications, there are some recognized limitations
[112, 47] as:
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Figure 1.13 ∼ Original data DSIM compared to lasso regression coefficients.

1. non-strict convexity of Problem (1.21) in high dimensional cases,

2. algorithm saturation when N variables have been chosen

3. tendency to select moderately representative variables when using strongly correlated vari-
ables

Lasso application on simulated data DSIM is illustrated in Figure 1.13. We can notice that
variable selection is evident with sharp peaks. Lasso only selects 39 variables out of 1000 and
shrinks the rest to zero. However, some selected variables do not appear to be in the red areas
i.e. lasso selected irrelevant variables. This hints that in some cases, lasso interpretation can be
inaccurate.

Ridge penalization ∼ Another popular penalization procedure is the ridge regression [49].
Compared to the lasso optimization Problem 1.21, the penalty function is replaced with an �2
constraint equivalent to square of the magnitude of the coefficients. Equation (1.20) is re-written
as:

argmin
β

1

2
∥y −Xβ∥22 + λ∥β∥22 . (1.24)

With ridge regression, the singularity problem of matrix (XTX) is solved by adding a variation
λ to the matrix spectrum. Therefore, the solution always exists, expressed as:

β̂
r = (XTX + tλIP )−1XTy . (1.25)
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Figure 1.14 ∼ Original data DSIM compared to ridge regression coefficients. Hyper-parameter
λ is selected using cross validation. Subplot in orange provides a detailed curve with smaller
y-axis scale proving that coefficients are not shrunk to zero.

This regularization causes shrinkage of coefficients aiding in reducing multicollinearity and model
complexity. We can notice that when parameter λ is close to zero, Equation (1.24) is closer to
standard linear regression Problem (1.3).

Ridge regression shrinks regression coefficients corresponding to variables with minor contribu-
tion to the outcome close to zero. Compared to the lasso, it uses an �2-norm instead of the �1
penalization but retains most variables by design.

Regression coefficients of ridge application on simulated data DSIM are portrayed in Figure 1.14
and compared to original data. We can notice that variables are shrunked close to zero and thus
model is less complex. However, analyzing coefficients for information about variables influence
on response y is practically impossible. In fact, as we know where most influential variables are
located, we can not deduct their locations by relying on the ridge regression coefficient of this
application.

1.5.3 Blending methods: sparse Partial Least Squares (sPLS)

PLS projection method and lasso variable selection approach have important advantages that
allows reaching respectively (O1) and (O2). Sparse Partial Least Squares (sPLS) denotes a body
of works that combines both strategies in order to balance precision of prediction and meaningful



1.5. Analyzing data (S5) 27

interpretation. They add lasso inspired penalties to the PLS framework by integrating an �1-
norm to optimization problem (1.17). For λs > 0 and with an orthogonality constraint on
components, we get, for the first component:

ŵ = argmin
w∈Rp

{−yTXw + λs∥w∥1}, for wTw = 1 , (1.26)

Problem (1.26) is hard to handle and was tackled throughout the years with several reformula-
tions each introducing the penalty differently. We mention three important contributions and
denote them after their first author. With z =XTy = N Ĉov(X,y):

1. sPLSLeCao — In 2008, Lê Cao and its co-authors [61] penalized a sparse Singular Value
Decomposition (SVD) proposed in [84]. Their optimization problem is the following:

argmin
u,v∈RP

= ∥z − uvT ∥22 + λ∥u∥1 , (1.27)

where λ > 0 is the sparsity parameter. Their algorithm iteratively penalizes the SVD
decomposition of the product of the deflated versions of X and y.

2. sPLSChun — In 2010, [25] used a surrogate direction c close to the original vector w.
Problem (1.26) is reformulated by imposing the �1 penalty on c , providing an approximate
solution. Their optimization problem is the following:

argmin
w,c∈RP

= {−KwT zw(1 −K)(c −w)T z(c −w) + λ1∥c∥1 + λ2∥c∥22} , (1.28)

where λ1, λ2 > 0 are the sparsity parameters and K > 0 is fixed. Solving (1.28) is done by
alternatively iterating between solving for w for fixed c and solving for c after fixing w.

3. sPLSDurif — In 2018, [37] consider another reformulation of the following optimization
problem:

argmin
w∈RP

{1
2
∥z −w∥22 + λ∥w∥1} , (1.29)

under the constraints ∥w∥2 = 1 and orthogonality between components and where λ > 0
controls sparsity. Resolution of Problem 1.29 uses recent notions from proximal optimiza-
tion [8]. Additionally, the authors provide an adaptive method for computing sPLS weights
vectors relating them to classical PLS ones.

Optimization problem of each SPLS variants presented above are solved using different math-
ematical tools. However, variable selection is their common objective. It is achieved by using
the soft threshold operator

gλ(u) = sign(u)(∣z∣ − η)+ (1.30)

where u ∈ RP and η ∈ R+. The thresholding is based on a value η that is used to be compare with
all the coefficients of u. Soft thresholding first sets to zero coefficients whose absolute values are
lower than the threshold η and then shrinks the nonzero coefficients toward zero. It is known to
provide smoother results [40].
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Figure 1.15 ∼ RMSE values of sPLSs variants sPLSLeCao, sPLSChun and sPLSDurif regressions
on DSIM with respect to the number of latent components. Corresponding hyper-parameters
are selected usin cross validation.

Figure 1.15 represents RMSE values of each sPLS regression avatar applied on DSIM data for
1 to 10 latent components. Naturally, values decrease with the increasing number of latent
component similarly to results for PLS and PCA application in Figure 1.11. Starting with
four components, decreasing speed is much slower and each curve is found to plateau. The
curves represent close values to the PLS RMSE (see Figure 1.11) indicating accuracy in their
predictions.

In Figure 1.16, regression coefficients of the three variants are compared to the original data
DSIM. We can notice that the most informative results are those from sPLSLeCao since it only
selects 60 features. However, in some important areas (highlighted in red), all variables are
shrunk to zero. Several peaks also appear localizing the wrong information in clear ranges.
sPLSChun and sPLSDurif almost retain all variables providing unsatisfactory results.

1.6 Improving, evaluating and sharing results (S6)

This section presents a summary of the contributions achieved in this thesis and provides a
description of the organization of the manuscript. This work was involved in improving several
aspects in the steps listed earlier which makes our contributions covering a wide range of themes.
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Figure 1.16 ∼ Original data DSIM compared to sPLS variants sPLSLeCao, sPLSChun and
sPLSDurif regression coefficients for six components.
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1.6.1 Real and simulated data (Chapter 2)

Every study requires solid supporting real data. However, it is hard to access interesting and
useful databases. Sometimes, open source data are incomplete or unreliable. The first contri-
bution of this thesis was setting up the DNIR real data base as open source for it to be be used
and exploited with benchmarking in other studies.

Two types of data were used in this thesis: real and simulated. On the one hand, real data
ensures that study is valid, reliable, and applicable to real-world situations. Thus, we rigorously
detail the development and description of real NIR data DNIR in Chapter 2. On the other
hand, simulated data allows testing hypotheses and models in a controlled environment, con-
duct experiments or simulations that would be difficult or impossible to do in real life, explore
different scenarios, and identify patterns that may not be immediately apparent in real-world
data. Therefore, we also provide a simulation approach for synthetic data (like DSIM mentioned
in Section 1.2). By altering particular parameters, it is intended to deliver data that is compara-
ble to real spectra like NIR or NMR. Proposed simulated data algorithm also allows generating
several complementary explanatory data linked to the same response. Additionally, as we focus
on sparse regressions, it has the advantage of providing data that verifies the hypothesis that
certain explanatory factors may be more strongly associated with response y than others. In
this manner, variable selection technique may be efficiently investigated for feature localization.

Related scientific production: ∼ Paper entitled ”MLnir IFPEN near-infrared spectroscopy
dataset for property prediction: 208 NIR hydro- carbon spectra and density response”, to be
submitted in June 2023 in Data in Brief.

1.6.2 CalValXy splitting (Chapter 3)

When designing evaluation procedure in (S4), we raise an issue in calibration and validation
splitting. As this work is placed in a regression context, two data are involved: independent
X and response y. As mentioned in Section 1.4.1, Kennard and Stone algorithm does not take
into account information brought by response y. Therefore, the second contribution solves this
dilemma by proposing a novel experimental design called CalValXy.

In a few words, CalValXy mainly stratifies response y and applies the Kennard Stone algorithm
to predictor matrix X in the concerned strata. Through numerical simulations we evaluated
similarities between the —smaller— calibration set and the original data. We showed that
the new approach offered a decent representation of the initial database. By testing CalValXy
splitting against alternative splitting methods, we were also able to evaluate the prediction
performance. By computing RMSE values, we found that our new method outperforms the
others in prediction. Overall, CalValXy was judged to be simple and reliable. Chapter 3
provides a full description of the new algorithm and associated outcomes.

Related scientific production ∼ Paper entitled ”CalValXy: well-balanced and stratified cali-
bration/validation splitting using both predictors X and response y”, to be submitted in June
2023 in Technometrics.
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1.6.3 Dual sparse Partial Least Squares (Chapter 4 and 5)

In step (S5), we applied and evaluated methods already documented in literature. As presented
in Section 1.5, each approach have some downsides to improve and advantages to preserve. Thus
a mix of these regression methods was conceived in one generalized sparse regression called Dual
sparse Partial Least Squares (Dual-sPLS). It is the third contribution of this thesis. Dual-sPLS
is based on PLS1 algorithm [57]. It relies on the dual norm of a chosen penalty norm [8] where
shrinkage is applied adaptively.

Definition 1.6.1 Let Ω(⋅) be a norm on R
P . For any z ∈ RP , the associated dual norm, denoted

Ω∗(⋅), is defined as
Ω∗(z) =max

w
(zTw) s.t. Ω(w) = 1 . (1.31)

Comparing (1.17) and (1.31), we find that the optimization of the PLS objective function
amounts to finding the vector w1 that fits the dual norm of the �2-norm of z, where z = XTy.
This motivates us to evaluate different norm expressions that could be used as domain-related
penalizations. Thus, for any norm Ω(.) used, the first loading vector will be:

ŵ = argmin
w∈Rp

{−zTw}, s.t. Ω(w) = 1 . (1.32)

NIPALS deflation scheme introduced in Section 1.5.1 is adopted to iteratively compute the rest
of the components. Although formulation is generic, we emphasize four types of norms that aim
at

1. combining heterogeneous and high-dimensional data sources,

2. providing accurate predictions,

3. extracting pertinent knowledge for better localization.

Chapter 4 provide all important details concerning this new approach. We also implemented
corresponding package dual.spls in R. It includes the following main functions, each of them
being associated to specific penalty:

1. Dual-sPLSl (pseudo-lasso norm, d.spls.lasso()). Similar to the sPLS Problem (1.26), an
intuitive norm combines �2 and �1:

Ω(w) = λ∥w∥1 + ∥w∥2 . (1.33)

2. Dual-sPLSgl (pseudo-group lasso norm, d.spls.GL()). Inspired by group lasso [86], it
combines groups of measurements. It applies pseudo-lasso to each group individually
while constraining the total set. For G groups, wg represents the variables of the loading
vector w that belongs to group g. The corresponding norm is formulated as:

Ω(w) = G∑
g=1

αg∥wg∥2 + λg∥wg∥1 , (1.34)

where αg ≥ 0,∀g ∈ {1, . . . ,G} and ∑g∈1,...,G αg = 1.
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3. Dual-sPLSLS (pseudo-least squares norm, d.spls.LS()). It introduces N1, a matrix of p
columns, and applies when X is not singular:

Ω(w) = λ∥N1w∥1 + ∥Xw∥2 . (1.35)

The classical least squares solution is recovered for λ = 0.

4. Dual-sPLSr (pseudo-ridge norm, d.spls.ridge()). It deals with cases where X is singular
and resorts to a ridge-like penalization:

Ω(w) = λ1∥w∥1 + λ2∥Xw∥2 + ∥w∥2 . (1.36)

A tutorial of R package dual.spls is detailed in Chapter 5 and regroups a set of functions used
for Dual-sPLS fitting listed above. It also provides functions for sparse data simulations and real
NIR data presented in Chapter 2. CalValXy splitting algorithm is also included in this package
with extra functions for error computing, data visualization, etc.

The construction of weight vectors w1, . . . ,wM differs in each of the four options but follows
similar steps. Each alternative has a closed form solution that can be expressed with the soft
thresholding operator introduced in Equation (1.30).

A common issue in shrinkage methods is the choice of the appropriate regularization parameter.
Thereby, we conceived an adaptive algorithm that computes it according to the number of
variables that we would like to keep in the active set at each iteration also detailed in Chapter
4.

Results of applications of each norm case, on simulated and real data are illustrated in Chapter 4
and 5. They show how Dual-sPLS reaches objectives (O1) and (O2) by finding balance between
accurate prediction and satisfactory interpretation.

Related scientific production ∼ Paper entitled ”Dual-sPLS: a family of Dual Sparse Partial
Least Squares regressions for feature selection and prediction with tunable sparsity; evaluation
on simulated and near-infrared (NIR) data”, published in April 2023 in Chemometrics and Intel-
ligent Laboratory Systems, R package ” dual.spls: Dual sparse partial least squares regression”
published in October 2022 in CRAN and paper entitled ”Sparse PLS with a group lasso inspired
penalty: inside the dual.spls package”, to be submitted in June 2023 in Journal of Statistical
Software.
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Data

This chapter is dedicated to the presentation of the data processed throughout this thesis. They
chiefly consists in a database of real experiments and a variety of simulated observations. In
Section 2.2, we present MLnir, a collection of 208 near-infrared spectra of complex mixtures with
their density feature (DNIR), provided by IFPEN. They are subject to an open data publication
[38]. In Section 2.3, we simulate different sets (DSIM and alike) of explanatory matrices X

based on mixtures of Gaussians. They emulate typical analytical chemistry measurements.
They provide us with a precise control on how the influental spectral variates influence the
(potentially non-linear) modeled response y. They allow a more thorougful assemement of the
proposed calibration/validation and regression algorithms (resp. CalValXy and dual-sPLS),
especially in the evaluation of the impact of sparsity on coefficient localization.
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2.1 Introduction

The inspiration of our work resides in the analysis of chemical compounds, as can be found
in products related to refined crude oil, a longlasting major energy resource. They appear as
complex mixtures of numerous hydrocarbons, sulfur, oxygen, nitrogen, and metal-containing
organic species with a wide range of molecular weights, contents, and structures [90]. Their
characterization is crucial to their rationalized use, either in terms of efficiency or safety. It
consists for instance in determining global properties of a sample, as well as identifying more
precise their chemical components [71, 80, 108].

Characterization can be performed using physico-chemical standardized methods [89]. The
American Society of Testing Materials (ASTM) and the International Organization for Stan-
dardization (ISO) methodologies are commonly used analytical techniques in the oil industry.
Those techniques can additionally be customized to meet specific requirements. Some of them
however require a certain volume of the analyzed mixture sample (in the order of liters), which is
not compatible with present high-throughput experiments (producing millimeters of products).
Furthermore, standardized methods might be lengthy and costly. Alternative characterizations
of complex mixtures as thus desirable.

Combining physico-chemical analysis and chemometric techniques has become a promising ap-
proach to evaluate properties and composition of chemical mixtures [67, 73]. Among many
spectroscopic techniques, we highlight infrared (IR) measurements. For the given oil sample, it
results in a spectrum which may benefit from being represented, and treated, as an instance of
functional data. Figure 2.1 illustrates an example of a single near-infrared spectrum.

In chemometrics, it may be rewarding to explicit links between analytical physico-chemical mea-
surements (e.g. IR spectra) X to properties y deriving from standardized methods (e.g. sample
density) [55]. Regression models can be built for this purpose. The resulting model, through
well-chosen calibration or learning, would be used to predict — within a certain precision —
properties faster, from small-sized chemical samples, in partial replacement of standardized ap-
proaches. In this thesis, our main objectives are to both efficiently construct predictive models,
and detect (sparse) areas of spectra that are likely to be most related to the considered property.
Assessment qualitatively and quantitatively those objective requires different sorts of represen-
tative datasets.

We recall that IFPEN provided different sets of real data to support this study: Nuclear Mag-
netic Resonance, Near-Infrared spectrometry, Simulated distillation (see Table 1.1). They were
acquired along the main problematic dealt with this thesis. Each dataset is obtained from a
given quantity of chemical samples (here petroleum cuts). For each sample, data is composed
of one or several macroscopic chemical property, and one or a couple of associated (spectral)
physico-chemical measurements. The latter are mainly represented by a monodimensional sig-
nal (or function) with varying intensities along a specific ordinal axis. They are discretized
with a relatively fine resolution, yielding high dimensional sets of data. For confidentiality pur-
poses, only a DNIR near-infrared spectroscopy dataset is discussed in this manuscript and made
available. We therefore mostly use the terms spectrum/spectra.
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Figure 2.1 ∼ Example of a near-infrared spectrum.

In addition, we resort to data simulation, to more accurately assess — and compare — the
performance of different statistical models. It aims at mimicing real analytical data with a
known generative model for the associated property. A key strength of simulated data is the
ability to explore different hypotheses and settings, while knowing presicely the ground truth,
which is not often accessible in actual chemical experiments. It also allows to produce variability
in data generation.

Section 2.2 first provides background information on near-infrared spectroscopy before going
into depth regarding the composition of DNIR real data. Then, three examples of the simulation
situations are described in Section 2.3 along with the associated algorithm. We conclude in
Section 2.4.

2.2 Real data

The set DNIR contains a two sets of information. First, it provides the density of 208 petroleum
cuts, analyzed in [60]. This physico-chemical property plays a critical role in identifying the
mixture functionality. It is defined as the mass per unit volume and measured at specified
pressure and temperature as it varies when cuts are fluids. API (American Petroleum Institute)
gravity is a commonly used index of the density of a crude oil or refined products. API gravity
is thus an inverse measure of a petroleum liquid’s density relative to that of water. A crude
with a higher API is lighter (lower density). A crude that is heavier and/or denser has a lower
API. It is commonly considered that lighter (high API) crudes are more desirable, as they allow
refining to produce more valuable products.
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Figure 2.2 ∼ First derivative of 208 NIR data spectra from dataset DNIR. Right bottom
subplot provides a clearer representation of overlaid spectra in wavenumber range from 7000 to
4000 cm−1.

Second, near-infrared spectra of the same 208 cuts are also included in DNIR. It measures how
much near-infrared radiation a matter absorbs. The ordinal variable region typically ranges
from 800 nm to 3000 nm. NIR spectroscopy provides insight about molecule atom bonds, with
variations in length and strength. Hence the frequency at which a given bond absorbs infrared
radiation will differ over a range of bonds and modes of vibration. An infrared spectrometer
examines a sample by exposing it to infrared light at a variety of frequencies, and detecting the
absorptions caused by each type of bond in the complex. This produces a discrete spectrum
representing the transmission intensity against the wavenumber [6]. Two organic compounds
ought to exhibit different spectra.

As spectra span a relatively large range of intensity values, and may be affected by trends and
noise that seem unrelated to the property of interest. It is customary to first remove artifacts
and apply a diversity enhancement operator. Smoothed derivatives — such as obtained with
Savitzky-Golay filters — may serve both purposes. The 208 different pre-processed spectra
in DNIR are depicted in Figure 2.2. Each is represented with a vector containing the trans-
mission intensity of each wavenumber of the infrared range. In DNIR, the latter browses 1557
wavenumbers.

To build a predictive model, all vectors are regrouped one matrix where each column covers one
wavenumber (variable) and each row represents one selected portion of a spectrum (observation).
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2.3 Simulated data

Chemometric high-dimensional functional data, like DNIR, are generaly complicated and re-
quire an understanding of the underlying chemical processes. As sharable data is seldom, and
the ground truth relating the dependent variables to the response is unknown, assessing and
comparing the performance of statistical models is an uneasy task.

We therefore developed a tunable generative model allowing us to mimic different behaviors
observed in chemometric high-dimensional functional data. It follows a standard sum-of-peak-
like description, plus noise. There, random positive peaks are expected to represent quantities,
somehow related to constituents (we intentionally keep this imprecise) of a given chemical sam-
ple. From that data (explanatory matrix X), we may select a sparser support composed of
non-contiguous segments. Such segments are highlighted in red in Figure 2.3. The contributions
of values of X restricted to the limited support are then combined in a appropriate way (linearly
with positive weights or through a monotonous function), to yield response y. The motivation
lies in the evaluation of the proper localization of coefficients for a given prediction method.
Since the model is overdetermined, we expect feature selection to pick coefficients mostly inside
the limited support. From a chemometrics point-of-view, this may help the interpretation of
whose variables in spectra are most related to the macroscopic property, and possibly enhance
the chimical insight.

On the one hand, for each row (observation) n of independent matrix X, K Gaussians are mixed.
We affect them the same scale σ, while their locations μk and amplitudes Ank are randomly
generated for n ∈ {1, . . . ,N} and k ∈ {1, . . . ,K}. The resulting mixture of N Gaussians are
discretized, using a uniform sampling in P variables. In other words, each curve represents one
row xn for i ∈ {1, . . . ,N} of matrix X:

K∑
k=1

Ank exp(−x − μk

2σ2
) . (2.1)

evaluated on a regular grid from 1 to P indices/variables.

On the other hand, response y is generated. First, as we consider linear regression context, we
emulate the response link to matrix X as a linear combination with a preset uncertainty ε. This
allows us to evaluate prediction performance of models. Second, our aim is to evaluate models
beyond prediction accuracy. We therefore measure model interpretability in addition to accuracy,
with the hope of finding a balance between them two. Model interpretability is closely linked
to sparsity, particularly in the context of high-dimensional data (N ≪ P ). When a regression
model contains a large number of predictors, it becomes increasingly difficult to understand
which predictors are contributing the most towards the outcome of interest. Sparsity refers to
situations where the data contains many variables (or predictors) that have little to no impact
on the outcome of interest y. Thus the latter is simulated by imposing only S ≪ P positive
weights in the linear link between X and y and P −S null weights. Thus, only S variables (the
cardinal of the limited support) are accountable in the construction of y.
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Three pratical scenarios were considered in the evaluation process. Hence, three data were
simulated, denoted DSIM, DSIM and D2

SIM and illustrated in Figure 2.3. Highlighted bands
indicate positively weighted variables i.e. influential variables locations.

• DSIM represents N = 300 mixtures (spectra) of K = 30 Gaussians discretized into P = 1000
variables. We set σ = 0.05 and ε = 0.5. This simulated data is characterized by being
functional and high dimensional with some peaks that appear on the set of spectra. Since
the corresponding matrix of explanatory variables X is most generally singular, which
hamper certain methods, we also conceived a non-singular set.

• DSIM consists in a non-singular matrix of independent variables X. It possesses N = 200
rows and P = 50 variables. Spectra are composed using K = 100 Gaussians of σ = 0.01
standard deviation. Response y is constructed linearly linked to X with some noise ε = 0.5.

• To evaluate the group-lasso property of dual-SPLS (Chapter 4), D2
SIM contains two inde-

pendent sets of explanatory variables denoted X1 and X2 of N = 300. Both are linearly
linked to a same response y with an uncertainty set to ε = 0.5. X1 and X2 use respectively
K1 = 10 and K2 = 4 Gaussians of standard deviation σ1 = 0.03 and σ2 = 0.2 and discretized
spectra into P1 = 5000 and P2 = 2000 variables.

Finally, to evaluate the proposed calibration/validation method CalValXy (Chapter 3), we also
resort to non-linear response generation, namely using the square root of the amplitude of the
positive Gaussian peaks.

2.4 Conclusion

In conclusion, this chapter presented high-dimensional real petroleum-related spectra DNIR col-
lected from IFPEN, as well as simulated data. These data sets are highly valuable for conducting
predictive modeling and analysis, which can help to understand the composition of petroleum
samples and optimize production processes. The datasets help ensuring the accuracy and inter-
pretability of the results. In the following chapters, several machine learning algorithms were
tested on the datasets, and their performance was evaluated using various metrics for prediction
precision and sparsity efficiency. The availability of these data sets will enable researchers and
industry professionals to perform comparative analyses of predictive models. DNIR and the data
simulation algorithm are already available in the R package dual.spls.
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Figure 2.3 ∼ Simulated data. (Top left) DSIM, (top right) DSIM and (bottom) D2
SIM. Each

curve is stored in a row in explanatory matrix X used to predict a simulated vector y. High-
lighted areas represent the only variables of X linked to y.
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Calibration and Validation with
CalValXy

This Chapter is dedicated to the detailed presentation of CalValXy splitting method for which
a preliminary version is available in [2]. Calibration and validation splitting helps in assessing
models. In a regression context, disadvantage of state-of-the-art methods is ignoring response
y while partitioning data. CalValXy steps up and takes into account the overall information.
Recent techniques are contrasted with numerical results obtained from simulated and and real
benchmark datasets. This chapter is a preprint and is aimed to be submitted to Technometrics
for June 2023.
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3.1 Introduction

In regression analysis, splitting a dataset into calibration and validation sets is a common practice
to evaluate the performance of a model. First, the calibration (also called training or estimation)
set is used to train the model and to estimate its coefficients. Then, the validation set is used
to assess how well the model is performing. More formally, the trained model is evaluated on
the validation data. The error measuring the difference between the predicted and actual values
provides some hint on the accuracy performance of the trained model. The primary purpose of
this procedure is to prevent overfitting, which occurs when a model is too complex and fits the
noise in the data rather than the underlying trend or pattern. In this context, a real challenge
in tuning a model is to properly select the validation points to be as representative as possible
of the whole dataset.

In the present work, we consider a dataset of N points described by P factors and stored in
a matrix X ∈ R

N×P . For any n ∈ {1, . . . ,N}, the n-th row of X represents an observation
denoted by xn = (xn1, . . . , xnP ). The latter is associated to a response (or dependent) variable
yn displayed in a vector y ∈ R

N . Calibration and validation splitting can be used in various
types of predictive models, including linear regression, logistic regression, neural networks, and
many others. In this paper, we focus our attention on linear regression modeling of the form

y =Xβ + ε , (3.1)

that relates the response variable y to the matrix of independent variables X. Here, β is
the vector of regression coefficients or parameters, and ε is the error vector that captures the
unexplained variation in y that is not accounted for by the predictor variables. Numerous
techniques are commonly employed to construct sets for calibration and validation purposes,
as the simple random sampling [56, 46], the Kennard-Stone or CADEX algorithm [54] and the
SPlit technique [53] (see Section 3.2 for more details on these procedures). Our objective is
to provide a splitting method that improves their performance while providing an additional
qualitative description of the dataset. In particular, our aim is to take into consideration not
only the matrix X, but also the response vector y.

The remaining of this paper is organized as follows. In Section 3.2, we briefly recall some
splitting techniques that will be useful to describe the new design in Section 3.3. In Section 3.4,
we illustrate its efficiency through simulations on high dimensional databases. Conclusions are
drawn in Section 3.6. The algorithm is available in an R package that we present at the end of
the paper.

3.2 Review of splitting techniques

In this section, we succinctly overview some splitting techniques available in the literature.

The easiest way to split a dataset into calibration and validation sets is the simple random
sampling technique (SRS) [56, 64, 62, 27]. In SRS, the selection of the calibration set is done
at random and each individual in the population has an equal chance of being picked. This
procedure is considered as a fair and unbiased method of sampling which makes it commonly
used in scientific research and opinion polls. However, its implementation may not ensure that
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all subgroups in the population are represented equally in the sample retained for calibration,
especially when these subgroups represent small percentages of the whole population.

To improve the representativeness and accuracy of the calibation set, a stratified sampling [46]
can be perfomed. This technique first divides the population into non-overlapping subgroups,
called strata, based on certain characteristics of the candidates. Then, a random sample is
taken from each stratum, which usually is proportional to the size of the stratum in the overall
population. Stratified sampling is more efficient than simple random sampling, especially when
the population is heterogeneous with high variability in the variable of interest. Nevertheless,
it can be challenging to identify the right characteristics to use and that reflect the underlying
population accurately. Clearly, stratified sampling requires additional effort to implement than
SRS especially when the strata are small and/or numerous.

More sophisticated splitting procedures have been developped, of which the Kennard and Stone
(also called CADEX for Computer-Aided Design of Experiment) algorithm [54]. It is based on
distance computation between observations in the X-space. It begins by selecting the two points
that are the farthest apart, and then adds new points one at a time until the desired subset
size is reached. At each step, the new added candidate is the one that is farthest from all of
the previously selected ones. The main advantage of CADEX is that it is relatively easy to
implement and can be applied to a wide range of data types. However, it is sensitive to outliers.
This can result in the selection of outliers as representative samples, which can negatively impact
the accuracy of the model or analysis. An extension to CADEX, called DUPLEX algorithm,
was poposed in [88]. It alternates the constructions of both the calibration and validation sets
as follows. First, the two points which are farthest apart are assigned to the calibration set
while the two points in the remaining list which are farthest apart are assigned to the validation
set. At the second step, the point which is farthest from the two points in the calibration set is
added to the calibration set and the point which is farthest from the two points in the validation
set is included in this set, and so on until all points in the list have been assigned to one of the
two sets. Unlike the previous technique, DUPLEX distributes the extreme points between both
sets.

A totally different procedure was recently poposed in [53] and named SPlit (for Support Points-
based split). Computations are done using both X and y by merging them in one big matrix.
It creates the set with the smallest cardinality between the training and the testing sets in two
steps. The first one consists in finding the values of a set of variables that minimize an energy
distance defined in [92]. The second step is a sequential nearest neighbor search to select the
representative points from the dataset. Nonetheless, SPlit algorithm can focus on constructing
the validation set and thus neglects the calibration set. This may deliver a model that might not
be well calibrated. A faster version of SPlit which enables its application to big data problems
was proposed in [52].

The common thread between these splitting techniques and the algorithm we present in the
upcoming section, is to select calibration sets that cover the experimental space as uniformly as
possible and provide accurate regression predictions. To check if these objectives are met, two
criteria will be investigated in the experiments of Section 3.4. First, we will calculate Euclidean
distances and φ2 distances to evaluate the similarity between the calibration set and the whole
dataset. Then, we will compute the root mean squared error when performing two types of
regression that are well known in the chemometrics field: the Partial Leaset Squares [104] and
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least absolute shrinkage and selection operator [95].

3.3 CalValXy: algorihm description and example

CalValXy splits datasets using both the predictors in X and their outcomes in y. The prin-
cipale (see Section 3.3.1 for a formal definition) is the following. Observations are initially
stratified according to y values(1). Then, strata are sampled dynamically, along the lines of the
CADEX algorithm, using the X’s values. In particular, we aim to select a calibration set that
efficiently represents the overall observations in the X-space, while using underlying patterns in
the response vector for more accurate predictions.

3.3.1 CalValXy description

Let V = {v1, . . . , vN} initially denote the set of the N ”values” combining X and y. For any
n ∈ {1, . . . ,N}, vn = (xn, yn) ∈ RP ×R. This set will be deflated iteratively by picking appropriate
calibration points. They will be assigned to a growing calibration set C, initialized as the empty
set ∅. The final deflated V will contain the validation points. Free parameters are Nc < N ,
the final cardinal of C and a number K ∈ N

∗ of (expertise-based or) data-based classes. Let
dX represents a distance function rescricted to the space of X, i.e. between the X-values of
observations. The appropriate distance may be selected inside a quantity of candidates [34],
provided that it is adapted to the data structure (for instance a Riemannian metric). We
define μ(.), a measure of the central tendency of a finite set of points. It may belong to
generalized means, medoids (for robustness to outliers) or be derived from dX. Note that X
may represents either the original data, or a transformation thereof; the latter may be a standard
distance-preserving decomposition — Principal Component Analysis (PCA), Fourier or wavelet
representations —, a feature selection or a dimension reduction method. It may prove useful for
initial attribute extraction or computation speedups.
We chose here for simplicity the Euclidean distance: or �2-norm for points ui and uj in (RP ×R),
their ”restricted distance” is defined wit respect to their first P dimensions, as dX(ui, uj) =√∑P

p=1(ui,p − uj,p)2 = ∥ui − uj∥2. Consequently, we choose μ(.) as the standard centroid, a
common choice in chemometrics and quite natural for the Euclidean distance.

Step 0: response vector y stratification in K classes ∼ This step aims to segment the
observations into K non-overlapping classes, according to the response pattern. The classes are
meant to use explicit or implicit domain-related information. For instance, observations may
be labeled, offering a meaningful segmentation. As for X, in a problem-dependent manner,
one may also transform the response y, or focus on gaps/distances between their values. This
results in a collection of mutually disjoint Vk,1≤k≤K classes whose union span all observations.
Such specific categorie are not alxways available. However, the range of a scalar response y is
generally easily characterized by natural description based on the location of values in the range.
One often resorts to a number of named characterizations with a semantic gradient (FIND THE
PROPER): low/mid/high, cold/tepid/warm/hot, etc. When the boundaries are not known, we

(1)Strata may also incorporate additional a priori labelling knowledge on the data.
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suppose at least that their approximate quantity K can be provided. We therefore stratify as
follows. Values of y are first sorted (in increasing order). We then split the interval [ymin, ymax]
into K contiguous subintervals with endpoints ymin = r0 < r1 < ⋅ ⋅ ⋅ < rK−1 < rK = ymax. We define
Rk = [rk−1, rk[ for 1 ≤ k < K and RK = [rK−1, rK]. Therefore, [ymin, ymax] = ∪K

k=1Rk and we
define Vk = {v = (x, y) ∈V∣y ∈ Rk}.
This is illustrated on a uniform partition with K = 10 in Figure 3.1 for dataset DNIR described
in Section 3.4.

Figure 3.1 ∼ Splitting a response vector y uniformly into K = 10 intervals with different
colors. Dotted vertical lines denote subinterval boundaries according to the sorted values of y
(horizontal axis).

The next steps use restrictions of the observations on the X-space.

Step 1: starting calibration point selection ∼ We first select a seed c0 as a reference location
for dataset X. It can be chosen at random in the convex hull of the dataset. As it is common
is calibration/validation selection, we somehow look for extreme dispersions with resepct to
the dataset. We suggest to choose it as a measure of the central tendency c0 = (μ(X), μ(y))
(for dimension consistency: the last coordinate does not play an active role). Then, the first
calibration point c1 is chosen among the farthest observations from c0, according to distance
dX. For multiple candidates, we pick by convention the one with the lowest index. It is removed
from the appropriate Dk(1) and added to the (empty) calibration set C.

Step 2: iterative calibration point selection ∼ We assume that we have successively deter-
mined the first n < Nc calibration points c1, . . . , cn, cn formerly in Vk(n) before being appened to
C. Remember that Vk subsets are dynamically shrunk, and may become empty. We define the
following search rule: the successor Vk(n+1) of Dk(n) is the next non-empty subset, assuming a
cyclic indexing: V1 ”follows” VK .



46 Chapter 3. Calibration and Validation with CalValXy

1. Compute the compound distance Δ(v,C) between each point v of Vk(n+1) and the cali-
bration set C (equal to {c1, . . . , cn} at this time)

Δ(v,C) =min{dX(v, c1), . . . , dX(v, cn)} ∀v ∈Vk(n+1).

2. The observation v ∈Vk(n+1) with the largest value Δ(v,C) (and the least index) is removed
from this set and added to C as the n + 1-th calibration point cn+1.

Step 2 is iterated until the desired number Nc of calibration points in C is reached. The
validation set is therefore its complement with respect to the whole dataset, or equivalently the
union of the residual shrunk Vks. The whole CalValXy procedure is summarized as pseudo-code
in Algorithm 2. Along the lines of [54], the first iterations are given for a simple illustrative
example, presented in Section 3.3.2.

Algorithm 2: CalValXy: Constructing calibration and validation sets from a predictor
matrix X and a response vector y

Input: X, y , NC, K, dX (metric), μ(.)
Split (X,y) into K classes Vk (e.g. using y)
c0 = μ(X)
C = ∅ and V = (X,y)
Determine c1 = argmaxv∈Vd(v, c0)
Find k(1)∣c1 ∈Vk(1)

for n← 1 to N do
Vk(n) ←Vk(n) ∖ cn
C←C ∪ cn−1
Find next none empty Vk(n+1) set (cycling indices)
cn+1 = argmaxv∈Vk(n+1)

d(v,C)
end for

3.3.2 Simple example of the design procedure

To better understand how CalValXy operates, we apply it to an example drawn from [54].
Consider a factorial structure of the form 52 where the dataset of independent variables, stored
in X ∈ R25×2, is represented in Figure 3.2. To apply CalValXy algorithm, a response vector y
is required. For the sake of the example simplicity, a pattern of three groups of relatively close
values is set. Figure 3.2-(right) shows the response values of each observation, in coherence with
the factorial design represented in Figure 3.2-(left).
According to the pattern of the response, we set the number of strata to be K = 3. Often, the
percentage of calibration is set to 80 % hence, here we would like to select namely Nc = 20.
After sorting y, observations are consequently rearranged and listed as follows

V =(v19, v4, v16, v9, v1, v14, v21, v11, v6, v24, v20, v7,
v5, v15, v10, v12, v22, v25, v2, v17, v3, v8, v18, v23, v13).
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Smaller ratio of the rφ2 distances corresponds to a more uniformly spaced design over
the set of candidates. This indicator is closely related to maximizing Euclidean distances
between the points. In order to simplify the criterion comparison, we compute 1− rφ2 and
aim at a large value.

On the other hand, since calibration and validation splitting is specially useful in regression, we
evaluate our algorithm in terms of prediction accuracy. We recall the linear model introduced in
3.1. We choose to apply Partial Least Squares regression (PLS) [104, 106] popularly used with
functional chemometric data like DNIR. It is a statistical technique that consists on projecting
data into a lower dimensional space composed of latent components that explain the maximum
covariance between the two sets. We also consider the least absolute shrinkage and selection
operator (lasso) [95] algorithm which adds an �1 penalization to the original least squares opti-
mization. It uses a regularization parameter that is usually selected by cross validation [91]. In
both cases, Predictions are evaluating by computing the Root Mean Square Error (RMSE) of
validation. For the validation set V = {v1, . . . , vNV

}:

RMSE =
���	 1

NV

NV∑
n=1

(ŷvn − yvn)2 ,
where yvn is the response value of validation observation vn and ŷvn is its predicted value.

Hereafter, we describe each database that are at the core of our simulations.

3.4.2 Simulated dataset DSIM: Gaussian mixtures

Simulated data are used to test the validity and reliability of models, and to explore how as-
sociated methods perform under different conditions and several scenarios. Thus, for a stable
evaluation of CalValXy, N = 300 positively weighted mixture of G = 10 Gaussian peaks are
generated with preset scale σ2 = 0.05, randomly picked amplitudes Aig and locations μg, for
n ∈ {1, . . . ,N} and g ∈ {1, . . . ,G}. Each row (observation) xn ∈ R

P for n ∈ {1, . . . ,N} of the
associated X explanatory matrix is formulated as:

xn = ( G∑
g=1

Ang exp(−(xp − μg)2
2σ2

))
p∈{1,...,P}

, (3.4)

where {x1, . . . , xP } are a uniform discretization of range [0,1]. Response vector y is defined
by an explicit linear model composed of weighted sums of the squared root of X values i.e.
y = √Xβ + ε where ε ∼ N(0, 12). Weights defining β are fixed quantities by range of indices(3).
We denote this kind of simulated data DSIM. For more accurate and reliable evaluation, we use
the Monte Carlo method that proposes to simulate multiple DSIM data and assess the criteria
values for each or take their average. We choose to simulate one hundred DSIM where for each,
N = 300, P = 1000,G = 10, σ2 = 0.05, σ2

ε = 0.5 and β remains as specified in the supplementary
material. Each simulation is then different by the Gaussians randomly chosen Aig and locations
μg for n ∈ {1, . . . ,N} and g ∈ {1, . . . ,G}. An example of DSIM data is represented in Figure 3.5.

(3)Associated code is provided as supplementary material
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The validation RMSE values are shown in Figure 3.7. For PLS regression (left), average values
are close for the four splitting methods. However, variability is much smaller for CalValXy
compared to its challengers. This implies that the RMSE values of the new approach are
close to each other, suggesting that they are more reliable and precise with higher degree of
confidence in the accuracy of the measurements. For lasso regression (right), we can notice
a large improvement on accuracy on the average level of the violon plots where RMSE for
CalValXy is the lowest. We also note significant enhancement in the worst-case performance
of CalValXy over other splitting methods. Thus, CalValXy produces calibration and validation
sets that clearly improve prediction and model fitting on the simulated data DSIM.

Figure 3.7 ∼ CalValXy evaluation on simulated data DSIM. Validation RMSE values of PLS
for six components (left) and lasso regression (right). Splitting methods from left to right:
CalValXy, SPlit, Kennard and Stone, and simple random sampling.

3.4.3 Real data DNIR: Near-infrared spectroscopy

The real data considered here consists of near-infrared (NIR) spectra of hydrocarbon samples.
It is based on the principle of absorption of radiation (infrared) by matter. NIR spectroscopy
is the most frequently used approach to characterize heavy oil products. Radiation absorption
by oil samples depends on their composition. More precisely it is linked to chemical bonds.
An exhaustive literature on these techniques can be found in [23, 65]. The data set DNIR

considered in this Section was provided by IFPEN. It was partly exposed in [59], is available at
http://www.laurent-duval.eu and will be subject to a forthcoming publication [38].

DNIR is composed of 208 samples described by 1557 variables regrouped in X. The latter ac-
tually represents pre-treated NIR raw spectra with a derivate using Savitzky Golay smoothing
[83] to reduce additive and multiplicative effects. We aim to explain the density property y, a
physico-chemical characteristic that is most frequently used to describe oil. Density measure-
ment is widely used to characterize oil cuts because its efficiency and precision. A graphical
representation of DNIR is plotted in Figure 3.8.
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Figure 3.8 ∼ First derivative of 208 NIR data spectra from dataset DNIR. Each curve is
stored in a row in explanatory matrix X. Right bottom subplot provide a clearer representation
of overlaid spectra in wavenumber range from 6000 to 5500 cm−1.

Since we have a single data set, variability can not be evaluated like in Section 3.4.2, thus,
the representation of the results will differ. Indeed, here, for RMSE computations, with PLS
regression, we vary latent components from 1 to 10 and assess each case. Table 3.1 displays the
computed values of rd and 1−rΦ2 . We can see that values for CalValXy and Kennard and Stone
splitting are relatively close and both outperform SPlit and SRS. Furthermore, Table 3.1 shows
the RMSE values obtained when performing a lasso fitting. We notice that CalValXy, SPlit and
Kennard and Stone algorithm exhibit good performance with close values, much smaller than
random sampling. However, for PLS regression, the improvement using the new approach is
considerable. Figure 3.9 entails that the accuracy, measured by the RMSE, globally improves as
the number of latent variables increases for all four splitting methods. From five to ten latent
variables, all curves tend to plateau. CalValXy provides the best results (i.e. the lowest curve)
which shows that the new approach seems more reliable in predicting density using chemical
data.

CalValXy SPlit CADEX SRS
rd 0.6224 0.5572 0.6059 0.5715

1 − rφ2 0.5490 0.2669 0.5875 0.3369
PLS RMSE [0.0056; 0.003] [0.0047; 0.0043] [0.0058; 0.0042] [0.0062; 0.0061]
Lasso RMSE 0.0041 0.004 0.0046 0.0073

Table 3.1 ∼ Computation of criteria rd and 1 − rφ2 and RMSE ranges of PLS and values of
lasso regressions for the different splitting techniques using DNIR.
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Figure 3.9 ∼ RMSE values with respect to the number of latent components for the different
splitting techniques using DNIR.

3.5 R package for CalValXy

We developped an R-Studio package that splits a dataset into two samples using the CalValXy
algorithm. One sample is used for calibration and the other one to perform PLS, Dual-PLS and
other types of regression. The package [5, 4] also provides a funtion that simulates mixtures of
Gaussians to build sets of predictors and responses like the DSIM dataset.

3.6 Conclusion

We proposed a new algorithm called CalValXy that splits a dataset into calibration and valida-
tion sets. It stratifies the response vector and applies the main steps of the Kennard and Stone
algorithm to the corresponding strata of the predictor matrix. We compared the new procedure
to some usual splitting techniques through numerical simulations in which we computed several
error estimates. Overall, our results showed that the derived combination gives very satisfactory
results; in particular it provides calibration sets with better coverage of the initial database. We
also tested the algorithm on regression models in which the Root Mean Square Error of predic-
tions was computed to measure the expected uncertainty. The CalValXy approach outperforms
the other splitting techniques, regardless the number of components.
Calibration and validation splitting requires to preset the number of calibration observation
NC . The latter can impact the accuracy and reliability of the process. If too few calibration
samples are used, the model may not be able to capture the full range of variability in the data,
resulting in underfitting. On the other hand, if too many calibration samples are used, the
model may overfit the calibration data, leading to poor generalization to new data. Therefore,
the choice of the number of calibration samples depends on the complexity of the model and
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the size of the dataset. In general, the most common splitting ratio is to use 70% of the data
for calibration and 30% for validation. However, this is not always the best choice, and other
ratios may be more appropriate in some cases. CalValXy in particular divide the observation
in prior into K classes according to the response y. This number is also required to be chosen
and depends on the response pattern. When y ∈ R, as in our cases, one may want to plot the
empirical cumulative distribution of the y values in order to detect a certain pattern that can
help in choosing the best K. Although CalValXy proposed a method to choose each class, the
calibration and validation splitting can still be applied if user want to assign a category to each
observation manually.
In chemometrics, regression techniques other than those considered in this paper have proven
their effectiveness, in particular, [72, 7]. In future works, we plan to analyze the preformance of
these regressions when using CalValXy to varied types of data.
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Dual sparse partial least squares

This chapter is dedicated to the development of a novel regression method called dual sparse
partial least squares (Dual-sPLS), which aims to overcome the limitations of existing approaches
in providing accurate predictions and pertinent interpretation of chemical data sources. The pro-
posed method is a unified formulation for regression methods that blends dimension reduction
and variable selection in a PLS formalism. It also allows for variable grouping and offers inter-
pretable localization of features from a functional data or statistical point of view. The chapter
provides detailed explanations of the principles behind the Dual-sPLS family, norm penalties,
and algorithms, as well as benchmarking results of real and simulated data, concluding remarks,
and supplementary material.
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4.1 Introduction

Two main feats of chemometrics reside in first, providing reliable inference and second, offering
interpretability of chemical data sources. On the one hand, one may expect to estimate, within
a given precision, responses Y ∈ RN×Q (e.g. hydrocarbon properties: viscosity, density, cetane
number [78]) from spectra or variables represented by quantities X ∈ RN×P (nuclear magnitude
resonance or NMR, chromatography, infrared spectroscopy, etc. [101]). It aims at relating a
target Y to X through a predictive model: for instance, NMR spectra can be linked to viscosity
with predictive purposes. On the other hand, one also wishes to interpret how variables in X
influence quantities Y, i.e. which spectral features are most consistent with response prediction,
a question related to wavelength selection. For instance, which spectral bands in NMR, in terms
of continuous localization, could be related to the viscosity index estimation (see e.g. [98])? This
can be transcribed by a regression model, often considered linear:

y =Xβ + ε , (4.1)

where ε is expected to be independent of X, with zero mean. With the growing size of consol-
idated analytical chemistry databases, chemometrics still require methodologies to 1) provide
accurate predictions 2) extract pertinent knowledge or offer useful insights on measurements
3) combine heterogeneous or high-dimensional data sources. When the number P of variables
(samples) is far greater than the number of observations (signals) N (P ≫ N), naive statistical
models risk overfitting. This notably happens in standard least squares optimizations. Dimen-
sion reduction techniques are generic approaches to deal with high dimensionality. They in-
clude projection methods or variable selection algorithms. Commonly used strategies start with
PCA/PCR (principal component analysis/regression), performed only on explanatory variables
in X. They however do not incorporate information held by the response Y. Partial least
squares (PLS) [104, 106], also called projection onto latent structures, is therefore common in
chemometrics, with better prediction-prone latent components. However, PLS sometimes lacks
appropriate interpretability.
As for variable selection, one often resorts to the lasso algorithm (least absolute shrinkage and
selection operator [95]). Shrinkage induces a form of sparsity, which amounts to selecting im-
portant variables. It is however known to be sensitive to data types. It does not always yield
interpretable coefficients. Blends of the two above – dimension reduction and variable selection –
have recent avatars called sparse PLS (sPLS). While they enforce lower dimensional decomposi-
tions, they do not always provide chemically pertinent feature localization for physico-analytical
measurements. Thereby, we propose a dual sparse PLS family dedicated to one dimensional or
univariate responses: y =Y, with y ∈ RN . It generalizes the standard PLS1 algorithm by supple-
menting it with adequate penalties. This formally provides a unified formulation for regression
methods in the spirit of the lasso mentioned above, and also least-squares or ridge, all blended
in a PLS formalism. It also allows variable grouping : the possibility to gather explanatory vari-
ables into more meaningful subsets (contiguous samples around a peak, disjoint spectral bands
associated to a compound). This can be used to combine different physico-chemical modalities.
Resolution resorts to the dual norm of the chosen Dual-sPLS penalty. This new method has
many advantages:
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1. predictions match or outperform state-of-the-art or comparable methods,

2. in the different norm options we considered, they additionally yield sparse representa-
tions of both simulated and real chemical near infrared data, even singular, a frequent
ill-conditioning issue in high dimension,

3. they finally offer a interpretable localization of features from a functional data or statistical
point of view.

Those three properties combined offer alternative surrogates to classical approaches (PLS, lasso,
least squares, ridge). It permits both accurate inference and pertinent domain-related interpre-
tation.
The paper is structured as follows: setting notations, we briefly revise in Section 4.2 the back-
ground of the PLS, recall classical variable selection methods and evoke their blending in sparse
PLS schemes, previously proposed. Then, in Section 4.3, we explain principles behind the Dual-
sPLS family and detail the list of norm penalties and their algorithms in three main instances:
the (group) lasso form —being the most important— and least squares and ridge forms. There-
after Section 4.4 describes tested data (simulated and real) and the choices of model settings,
calibration and validation. Each of the three penalties types are extensively benchmarked in Sec-
tion 4.5. We finally draw concluding remarks with perspectives in Section 4.6 and supplementary
material in the appendix.

Notation and definitions

Matrices, vectors and scalars are denoted by boldface uppercase letters, boldface lowercase and
light lowercase letters respectively, e.g. X, y and λ. The transpose of matrix X is XT . The
identity matrix of size P is represented by IP . The �1-norm and the �2-norm of vector a w of
length P are

∥w∥1 = P∑
p=1

∣wp∣ and ∥w∥2 =
����	 P∑

p=1

∣wp∣2 . (4.2)

We denote by �0(w) the sparsity index or count measure [24] of the non-zero coordinates of w
and �c0(w) its complement i.e. �c0(w) = P−�0(w). To choose the number of latent variables we
rely on the mean squared error (MSE) expressed as

MSE = 1

N

N∑
n=1

(yn − ŷn)2 , (4.3)

for a response vector y of N observations and a given estimate ŷ. For performance evalua-
tion, we choose the root mean squares error (RMSE), the mean absolute error (MAE) and the
determination coefficient (R2):

RMSE =
���	 1

N

N∑
n=1

(yn − ŷn)2 = 1√
N
∥y − ŷ∥2 , (4.4)
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MAE = 1

N

N∑
n=1

∣yn − ŷn∣ = 1

N
∥y − ŷ∥1 , (4.5)

R2 = ∑N
n=1(yn − ȳ)2

∑N
n=1(yn − ŷn)2 where ȳ = ∑N

n=1 yn

N
. (4.6)

The vector of signs of w is noted sign(w), and (w)+ is the vector composed of wp if wp ≥ 0 and
0 if wp < 0(1).
In the following, we assume that the matrix X ∈ RN×P of independent variables and the response
vector y ∈ RN are mean-centered. We use the convention where columns denote variables and
rows observations.

4.2 Background

4.2.1 Partial Least Squares (PLS)

PLS originated from econometrics [68]. It was progressively and succesfully applied to other fields
[69]: social and behavioral sciences, biosciences from bioinformatics [16] to neuroimaging [58],
and chemometrics [104, 106]. It denotes a class of methods aimed at explaining the relationship
between explanatory data and responses with the help of latent variables. They boast the
management of both formative and reflective measurements, require low sample sizes and mild
distributional assumptions.
PLS avatars root on projecting response onto a lower M -dimensional space spanned by new
orthogonal directions {t1, . . . , tM} constructed as linear combinations of original variables. Its
principle consists in compressing the predictor X into a smaller score matrix T of those M < P

variables. Thus, PLS computes M weights {w1, . . . ,wM} forming the loading matrix W such
that T =XW. As a result, loadings form an orthogonal basis. When Principal Component
Analysis (PCA) [107] ought to best summarize X by taking into account only the correlation
between the variables in X, the PLS steps up and also consider the covariance between X and
y. Several algorithms have been proposed. NIPALS (nonlinear iterative partial least squares)
[103] and SIMPLS [32] are most popular. When applied to a one-dimensional reponse, as in our
case, both are shown to be equivalent. They solve the following optimization problem for the
first component:

max
w

(yTXw) s.t. ∥w∥2 = 1 . (4.7)

The convex Problem (4.7) can be solved with Lagrange multipliers. For μ > 0, it rewrites:

min
w

L(w) where L(w) = −zTw + μ(∥w∥2 − 1) and z =XTy . (4.8)

Solving (4.8) leads to

w =XTy . (4.9)

The PLS algorithm uses the weight vector w to compress regressor X into score vector t =
Xw. NIPALS iteratively computes weight vectors by deflation while SIMPLS is more direct.

(1)It corresponds to the Rectified Linear Unit (ReLU), a popular activation function for neural networks.
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Let P. denotes the orthogonal projection onto the space spanned by components specified in
subscript. For instance, scores {t1, . . . , tm−1} span the space corresponding to Ptm−1 . The
algorithm considers the part of X that is orthogonal to tk, k <m. For the mth component, X is
replaced by Xm such that:

Xm =X − Pt1,...,tm−1X =Xm−1 − Ptm−1Xm−1 . (4.10)

The NIPALS variant PLS1 for an univariate reponse as given in [50] is described in Algorithm
3.

Algorithm 3: NIPALS PLS1

Input: X,y,M
X1 =X
for m = 1, . . . ,M do

wm =XT
my (weight vector computation)

tm =Xmwm (component construction)
Xm+1 =Xm − PtmXm (deflation)

end for

This algorithm produces a new lower dimensional score matrix T ∈ RN×M . Proposition 1 from
[57] explicits the regression coefficients for M components as:

β̂
PLS

M =W(TTXW)−1TTy . (4.11)

The vector of regression fitted values ŷ for M components is the projection of response vector
y onto the space spanned by scores columns of T.

4.2.2 Least absolute shrinkage and selection operator

By selecting the most important features, variable selection produces a less complicated model.
It has the potential advantage of being easier to handle than the complete full set of variables.
The optimization problem in standard linear regression is stated as:

argmin
β

∥y −Xβ∥22 . (4.12)

Provided X has full column rank, the ordinary least squares (LS) estimation is ŷLS = P[X]y,
where [X] is the space spanned by the columns of X. In other terms, β̂

LS = (XTX)−1XTy A
popular sparsity-based approach is the lasso developed by Tibshirani in 1996 [95]. It is reknown
for its �1 penalty scheme that shrinks less relevant variables to zero. It is obtained by solving:

argmin
β

∥y −Xβ∥22 subject to ∥β∥1 ≤ λ . (4.13)
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Threshold parameter λ > 0 controls the extent of shrinkage applied to the estimate; that is, the
number �c0 of coefficients set to zero. An appropriate λ is important to get interpretable results.

If β̂
LS

exists, as mentioned in [95], then for a λ ≥ ∥β̂LS∥1, the lasso estimate β̂
l
is equal to the

ordinary least square solution. And for λ = ∥β̂LS∥1
2

, it selects on average half of the variables.

We can reformulate (4.13) as

argmin
β

1

2
∥y −Xβ∥22 + t∥β∥1 . (4.14)

Note that there is a (non-explicit) correspondence between parameters λ and t. In the orthonor-
mal design case, i.e. XTX = IP , there exists β̂l closed form solution called soft thresholding
verifying

β̂l
p = sign(β̂LS

p )(∣β̂LS
p ∣ − λ)+ ∀p ∈ {1, . . . , P} . (4.15)

Coefficients whose magnitude is smaller than λ are set to zero. Amplitudes of the others are
shrunk with respect of the threshold. While proved successful for numerous applications, some
drawbacks are reported [112, 47]. Some are: 1) non strict convexity of the criterion when the
number of predictors exceeds the number of observations (P > N) 2) algorithm saturation when
N variables have been selected 3) with highly correlated variables, tendency to pick mildly
representative ones.
Another shrinking method is ridge regression [49] with optimization problem:

argmin
β

1

2
∥y −Xβ∥22 + t∥β∥2 . (4.16)

Its trick is to add a diagonal matrix to (XTX) in order to overcome the singularity problem.
Therefore, the solution always exists, expressed as:

β̂
r = (XTX + tIP )−1XTy . (4.17)

Compared to the lasso, it uses an �2-norm instead of the �1 penalization but retains most
variables by design.

4.2.3 Blending methods: sparse Partial Least Squares (sPLS)

Sparse Partial Least Squares (sPLS) denotes a body of works adding a variable selection flavor to
the standard PLS framework. We focus here on ones specifically using lasso inspired penalties.
An �1-norm can be incorporated in optimization problem (4.7). Noting

Ĉov(Xw,y) = 1

N
wT z, with z =XTy = N Ĉov(X,y) , (4.18)

adding the coupling parameter λs > 0 and orthogonality constraint on components {t1, . . . , tM},
the sPLS optimization problem is stated as:

ŵ = argmin
w∈Rp

{−Ĉov(Xw,y) + λs∥w∥1}, for wTw = 1 . (4.19)
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Problem (4.19) is tackled in 2008 [61] using sparse PCA [84]. Then iterative PLS [93] is com-
bined to singular value decomposition. We denote it as sPLSLeCao after the first author. In 2010
[25], Problem (4.19) is reframed by imposing the �1 penalty on a surrogate direction close to the
original vector w, providing an approximate solution with sPLSChun. In 2018, [37] reformulates
Problem (4.19) using recent results from proximal optimization [8] with sPLSDurif. In this last
case, sPLSDurif provides an exact and closed-form solution reminiscing the soft threshold oper-
ator. Moreover, they suggest an adaptive method for computing the sPLS weight vectors using
classical PLS ones.
Along the lines of methods presented above, Dual-sPLS aims at inference and interpretability:
accurate predictions combined with sparse localization features for better chemometrics perfor-
mance. Following [37], we also wish to provide a means to tuning the relative sparsity of the
outcome. Finally, as different analytical chemistry modalities provide different insights on chem-
ical mixtures, the Dual-sPLS is designed to naturally allow the combination of heterogeneous
datasets as a byproduct of the versatile dual norm approach(2).

4.3 Dual Sparse Partial Least Squares (Dual-sPLS)

4.3.1 Motivation and purposes

In statistics and machine learning, it is quite standard to penalize a data fidelity �2-norm by a
penalty involving a specific norm, e.g. ridge (�2), lasso �1, etc. (see previous Sections). These
penalty options are crucial, they drive the obtention of admissible or reasonable solutions, for
instance towards sparsity. The goal of this contribution is to provide a general paradigm for
this kind of task. Arbitrary norm choices may not lead to trackable algorithms. However, the
concept of dual norm is a means to formulate a unifying optimization framework, for which one
can opt for penalties with practical algorithmic properties.

Definition 4.3.1 Let Ω(⋅) be a norm on R
P . For any z∈ RP, the associated dual norm, denoted

Ω∗(⋅), is defined as
Ω∗(z) =max

w
(zTw) s.t. Ω(w) = 1 . (4.20)

Comparing (4.7) and (4.20), we find that the optimization of the PLS objective function amounts
to finding the vector w1 that fits the dual norm of the �2-norm of z, where z =XTy. This gives
us the incentive to evaluate different norm expressions that could be used as domain-related
penalizations. Thus, for any norm Ω(.) used, the first component will be:

ŵ = argmin
w∈Rp

{−zTw}, s.t. Ω(w) = 1 . (4.21)

Imposing a form of sparsity on the solution has inspired a quantity of research. The �1-norm
is one of the earliest penalties, that encourages sparsity while remaining convex, and associated
with efficient, tractable algorithmic implementations. Our study focuses on norms that 1) have
been employed as penalties in previous works and 2) provide explicit, straightforward, and
effective algorithms within the PLS framework. Namely, although formulation is generic, we

(2) Application of this extention is not performed here and is subject to a later work.
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emphasize four types of norms. They make practical sense when dealing with measurements
typically available in chemometrics, starting with the lasso analogue, a natural and intuitive
approach. We provide the corresponding R [77] package dual.spls [5] with a complete description.
It contains the following main functions, each of them being associated to specific penalty:

1. Dual-sPLSl (pseudo-lasso norm, d.spls.lasso()). Similar to the sPLS Problem (4.19), an
intuitive norm combines �2 and �1:

Ω(w) = λ∥w∥1 + ∥w∥2 . (4.22)

Dual-sPLSl is inspired by �1 lasso and implemented for situations where we seek selection
of features with most impact on the response when dealing with large, highly-correlated
data.

2. Dual-sPLSgl (pseudo-group lasso norm, d.spls.GL()). Inspired by group lasso [86], it
combines groups of measurements. It applies pseudo-lasso to each group individually
while constraining the total set. For G groups, wg represents the variables of the loading
vector w that belongs to group g. The corresponding norm is formulated as:

Ω(w) = G∑
g=1

αg∥wg∥2 + λg∥wg∥1 , (4.23)

where αg ≥ 0,∀g ∈ {1, . . . ,G} and ∑g∈1,...,G αg = 1. Dual-sPLSgl is mainly thought for the
following not-exclusive cases, akin to multiblock PLS. First, for a single type of measure-
ment X, when G different subsets of scalar variables are expected to contribute jointly
to the response, e.g. from wavelength selection or prior analytical chemistry knowledge.
Second, when a single response y can be predited by G distincts sets of measurements X1,
. . . , XG, e.g. different physico-chemical modalities that could be complementary.

3. Dual-sPLSLS (pseudo-least squares norm, d.spls.LS()). It introduces N1, a matrix of p
columns, and applies when X is not singular:

Ω(w) = λ∥N1w∥1 + ∥Xw∥2 . (4.24)

The mild conditions on N1 are provided in 4.A.2. Dual-sPLSLS adds a variable selection
flavor to classical least-squares. Therefore, it can be employed when shrinking original LS
regression parameters is desired. The classical least squares solution is recovered for λ = 0.

4. Dual-sPLSr (pseudo-ridge norm, d.spls.ridge()). It deals with cases where X is singular
and resorts to a ridge-like penalization:

Ω(w) = λ1∥w∥1 + λ2∥Xw∥2 + ∥w∥2 . (4.25)

The construction of weight vectors w1, . . . ,wM differs in each of the four cases. It however
follows similar steps as for the PLS. Starting with a reformulation of optimization Problem
(4.20) and using Lagrange multipliers, we aim at iteratively minimizing the function L(w) =−zTw + μ(Ω(w) − 1), for μ > 0. As some norms are not differentiable, we resort to the more
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generic notion of subgradient ∇Ω(w) [8]. It identifies to the classical differential when it is
defined. The subgradient of L vanishes for

∇Ω(w) = z

μ
. (4.26)

It is then sufficient to substitute the gradient — when it exists— of the considered norm of
Ω(w) in (4.26).
We provide in the following a detailed analysis for the pseudo-lasso case of Dual-sPLS (see
(4.22)) and some remarks for the other norms. In all cases we impose that w and z lie in the
same orthant; it generalizes, in n dimensions, the quadrant in the 2D plane or the octant in the
3D space. In other words, corresponding coordinates of w and z have the same sign.

4.3.2 Norm options (lasso, group lasso, least squares and ridge)

Pseudo-lasso ∼ We rconsider Equation (4.22). Let δ be the sign vector of w and z. By
differentiating Ω(w), we get

∇Ω(w) = λδ + w

∥w∥2 , (4.27)

and by substituting it in (4.26), we obtain

w

∥w∥2 = z

μ
− λδ . (4.28)

The closed-form solution of the Dual-sPLSl optimization problem consists in zeroing coordinates
whose magnitude is lower than the soft threshold λ and in reducing the others toward zero. Thus,
for ν = λμ and p ∈ {1, . . . , P}, it can be expressed as:

wp

∥w∥2 = 1

μ
δp(∣zp∣ − ν)+ . (4.29)

A common issue is the choice of the appropriate shrinking parameter. Cross-Validation [91],
evoked in Section 4.4.3, is popularly adopted in sparse regressions. We choose a more intuitive
option. We obtain it adaptively, according to the proportion of variables that we would like to
keep in the active set at each iteration. The procedure is illustrated in Figure 4.1. It represents
the empirical cumulative distribution of sorted magnitudes of ∣XTy∣ from the real data DNIR

described later in Section (4.4.2). Fixing a shriking ratio ς of expected zero coefficients (e.g.
ς = 80%), we select the threshold ν at iteration m as depicted. As the cumulative destribution
is non-decreasing, we choose the first x-axis value corresponding to ordinate 0.800.
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Figure 4.1 ∼ Empirical cumulative distribution of the sorted magnitude of z = XTy (black
crossed connected by solid red line) from real data DNIR. Dotted red line illustrated the selection
of appropriate ν for 80% of sparsity.

To guarantee the unit norm property for w, we set μ = ∥zν∥2 where zν is the vector of coordinates
δp(∣zp∣ − ν)+ for p ∈ {1, . . . , P}. Consequently,

w = μ

ν∥zν∥1 + ∥zν∥22 zν .

The rationale behind constrainting the direction w instead of the regression coefficients β̂ is their
collinearity. Indeed, the estimator writes β̂ =W(TTT)−1TTy. Being collinear, soft-thresholding
w performs a variable selection at the same location in β̂ coordinates. The pseudo-lasso Dual-
sPLS is described in Algorithm 4.
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Algorithm 4: Dual-sPLSl
Input: X,y,M (number of components desired), ς (shrinking ratio)
X1 =X
for m = 1, . . . ,M do

zm =XT
my (weight vector)

Find ν adaptatively according to ς

zν = (δp(∣zp∣ − ν)+)p (applying the threshold), p ∈ {1, . . . , P}
μ = ∥zν∥2 and λ = ν

μ

wp = ∥zν∥2
ν∥zν∥1 + ∥zν∥22 zν (loadings)

tm =Xmwm (component)
Xm+1 =Xm − PtmXm (deflation)

end for
β̂ =W(TTT)−1TTy

Note that as long as w and zν are collinear, the sparsity of the results only requires the compu-
tation of w, up to a non-zero factor.

Pseudo-group lasso ∼ Response y may be explained separately by explanatory variables of
different nature with prediction models. Combining them appropriately is potentially beneficial
both in predictive and interpretative powers. The same reasoning could be used to partition the
dataset into groups.
Physico-chemical motivation resides in segmenting a spectrum into homogenous bands or com-
bining complementary modalities (e.g. IR and NMR) to predict the same property (e.g. viscosity,
density). We consider G groups, and zg sub-vector of z denotes variables belonging to group g.
The group lasso inspired norm is expressed as in Equation (4.23). The closed-form solution is
collinear to the vector zνg . It is given by

zνg = δg(∣zg ∣ − νg)+ and zν = (zνg)g∈{1,...,G} , (4.30)

δg being the vector of signs of wg and νg = λgμ for g ∈ {1, . . . ,G}. Each group is driven by
its own threshold νg. The latter can be obtained similarly as in Section 4.3.2. Note that this
Dual-sPLS version reduces to the pseudo-lasso case when G = 1.

Pseudo-least squares and pseudo-ridge ∼ The above can be generalized in many ways, by
defining more versatile norm shapes, including notably weighted norms. One such possibility is∀w ∈ RP

Ω(w) = λ1∥N1w∥1 + ∥N2w∥2 + λ2∥w∥2 . (4.31)

It is not easily solvable in general. However, an appropriate choice of matrices N1 and N2, and
factors λ1 and λ2 allow us to recover the lasso and group lasso norms, but also several other
already known concepts, like fused lasso, least squares or ridge. We focus here on two main
situations whose optimization problem resolution can be obtained analytically. An obvious
option heavily inspired by least squares regression sets N2 = X and λ2 = 0. Its resolution
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supplements the traditional least squares problem with a more selective shrinkage akin to that
of our pseudo-lasso. Namely we first note

Ω(w) = λ∥N1w∥1 + ∥Xw∥2 . (4.32)

Then for ν = μλ and δ the vector of signs of N1w and N1z,

w

∥Xw∥2 = (XTX)−1 z
μ
− λ(XTX)−1NT

1 δ , (4.33)

where we have implicitly assumed that X has full rank. Consequently, we penalize ∣β̂LS∣ instead
of ∣z∣. For equation (4.33) to take a genuine pseudo-lasso form, it is sufficient that N1 verifies

(XTX)−1NT
1 δ = sign((XTX)−1z) . (4.34)

However, as it does not play a role in loadings’ computation, it does not need to be computed
explicitly. Thus, the coordinates of the simplified closed-form solution is:

wp

∥Xw∥2 = 1

μ
sign(β̂LS

p )(∣β̂LS
p ∣ − ν)+ , (4.35)

When X is singular, the above cannot hold. Meanwhile, this case can be addressed with a
regularization inspired by the ridge [49]. By choosing N1 = IP , N2 = λ2X and λ2 = 1, equation
(4.31) writes

Ω(w) = λ1∥w∥1 + λ2∥Xw∥2 + ∥w∥2 . (4.36)

It amounts to penalize ∣zν2 ∣ where zν2 = (ν2XTX + IP)
−1

and ν2 = λ2
w

∥Xw∥2 , instead of ∣z∣ like
in the pseudo-lasso. For ν1 = λ1μ, the closed-form solution is formulated as:

w

∥w∥2 = 1

μ
δ(∣zν2 ∣ − ν1)+ . (4.37)

where δ = sign(zν2z). Adding the diagonal perturbation resolves the non-invertability of XTX.

4.4 Simulated and real data, model settings, evaluation

4.4.1 Simulated sparse data: Gaussian mixtures DSIM and DSIM

For an in-depth analysis of machine learning algorithms, resorting to simulated data allows an
unbiased access to ground truth. We thereby propose a parametrized model. It is thought to
provide similarities with common analytical chemistry data, with all sparse parameters con-
trolled. We choose a positively weighted mixture of K Gaussians peaks with preset identical
scale σ and amplitudes A and locations μ are drawn from uniform distributions. They are
summed as follows:

K∑
k=1

Ak exp(−(x − μk)2
2σ2

) . (4.38)



4.4. Simulated and real data, model settings, evaluation 69

Figure 4.2 ∼ DSIM (left) and DSIM (right) simulated data. Ranges of variables involved in
the linear response model y are highlighted in red.

and uniformly sampled. The response vector y is defined by an explicit linear model(affected
by a stochastic Gaussian contamination) composed of weighted sums of X values. Weights can
be random or fixed quantities by ranges of indices.
In this work, to evaluate Dual-sPLS in both precision and information location, we devise a
sparse additive model with only S ≪ P positive weights and P − S null weights. Namely, only
S variables are responsible in the construction of response y. This information is especially
beneficial to demonstrate the strength of variable selection in sparse methods. Since we deal
with high-dimensional situations, we simulated DSIM: 300 mixtures of 30 Gaussians represented
by 1000 variables (Figure 4.2 (left)). Highlighted red areas denote variables involved in the
computation of response y. The corresponding matrix of DSIM is singular and used in the
evaluation of Dual-sPLSl and Dual-sPLSr. Since the Dual-sPLSLS is only operational with
invertible matrices, we also simulated non-singular data matrix DSIM, 200 mixtures of 100
Gaussians represented by 50 variables. The response y corresponding to DSIM depends only on
the first five and last twelve variables as shown in Figure 4.2 (right).

4.4.2 Real data: near-infrared (NIR) spectroscopy DNIR

In chemistry, complex mixtures of molecules are analyzed with different physico-chemical meth-
ods. Besides, determining macroscopic properties is important to their use.
The evaluation on real data is done using NIR spectra of hydrocarbon samples. NIR is based
on the principle of absorption of radiation (infrared) by matter [23]. Infrared radiations corre-
spond to wavenumbers directly lesser than those of the visible light spectrum. The absorption
of radiation depends on chemical bonds, therefore a NIR spectrum encodes information about
the composition of the sample. We focus on the density property which is obtained by stan-
dardized methods. The IFPEN dataset DNIR was partly exposed in [60, 59]. It is available
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at http://www.laurent-duval.eu/opus-dual-spls-sparse-pls/ and subject to a forthcom-
ing publication [38]. It is composed of 208 samples with 1557 variables. The corresponding
matrix X is singular. Many chemical data require adequate preprocessing: normalization, base-
line removal [75], deconvolution [24]. Here we simply apply a discrete derivative obtained with
a Savitzky–Golay smoothing filter [83] of degree 2 and length 15. It serves as both a crude
baseline filter and diversity enhancement operator [33]. The NIR preprocessed dataset DNIR is
represented in Figure 4.3.

Figure 4.3 ∼ DNIR: first Savitzky-Golay derivatives of the NIR spectra of 208 samples. Bottom
subplot: magnification of the red box.

4.4.3 Model settings: number of latent component selection

Selecting the appropriate number M of latent components is crucial when building a regression
model. It balances between model complexity and prediction accuracy (degrees of freedom),
preventing the risk of overfitting. This issue is especially important when using PLS and its
extensions in chemometrics. In practice, one may use this variant of a proposal in [15], based on
cross-validation with multiple random split. First, observations are split randomly several times
into calibration and validation sets. Second, candidate models are constructed with different
numbers of latent components. Third, each prediction is evaluated on the validation set with
MSE. The latter are averaged for each model. Finally, the smallest model with the lowest aver-
aged MSE reveals an adequate number of latent components. With this method, two parameters
are necessary: the splitting ratio and the number of times observations are divided.
We do not use this procedure in Section 4.5. We evaluate Dual-sPLS performance by compar-
ing it to other regression methods, and exploring model orders. We vary the number of latent
components from 1 to 10 and assess each case.
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4.4.4 Calibration and validation

The evaluation of prediction models traditionally divides the dataset into two representative sets
called calibration and validation. Three main methods are used. In the first one, observations
are randomly selected. The second only considers the distribution of values in the response y
[81, Stratified sampling]. A third class is known as Kennard and Stone (KS) method [54]. It
optimizes relative distances between observations according to variables of X. In chemometrics,
one may expect the existence of a yet unknown dependence between analytical measurements
and properties. Taking both X and y values for a proper calibration and validation split would
be desirable. The attempts of [94] to consider X and y in a single distance with appropriate
weights is not straightforward. It is difficult to adequately weight variables that do not belong
to the same space. We have recently proposed a CalValXy for that purpose. It consists in
dividing the dataset into subgroups according to the repartition of y and applying the Kennard
and Stone to each subgroup. It is summarized in Algorithm 5, and extensively described in [2].

Algorithm 5: Calibration and validation CalValXy

Input: X,Xtype(index of which set belongs each observation of X),
Listecal (number of calibration points to pick from each subset)
G =mean(X) (centroid)
C1 =maxn ∥xG − xn∥, n ∈ {1, . . . ,N} (first calibration point)
s = subset where C1 is located
while Listecal is not empty do

s← s + 1
Find the minmax point C in subset s
Remove C from X and Listecal
Store C in a vector of calibration index cal

end while

4.5 Comparative evaluation and discussion

We benchmark each proposed Dual-SPLS regression flavor (respectively pseudo-lasso, least
squares and ridge) against its classical counterpart, and comparable sparse SPLSs, when ap-
plicable. We follow a common procedure to state the main results. First, we split observations
into calibration (80%) and validation (20%). We replaced the traditional Kennard and Stone
method [54] — using explanatory variables X only — with CalValXy (cf. Section 4.4.4 and
[2]). The latter incorporates the response variable y in the splitting and proves slightly better
than KS in terms of prediction. Comparative performance is assessed in both accuracy and
quality of interpretation. For the first one, common objective metrics are root mean squared
error (RMSE), mean absolute error (MAE), or determination coefficient (R2) (see end of Section
4.1). As metrics yield similar outcomes, we only compare, in the topmost figures, RMSE values
for either calibration (left) or validation (right) CalValXy splits, as we increase the number M
of latent components from one to ten. For the second one, we assess both variable selection
and localization by vertically stacking regression coefficients for each compared algorithm in the
bottom figure. Results are extensively discussed on simulated and real data for Dual-SPLSl, and
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in less details for the least squares and ridge flavors. Complementary outcomes are provided in
the supplementary materials.

4.5.1 Dual-sPLS pseudo-lasso evaluation (DSIM, DNIR)

Dual-sPLSl is compared to standard PLS, three alternative sparse PLS (sPLSLeCao [61], sPLSChun

[25], sPLSDurif [37]) and lasso [95]. Their respective parameters are selected by cross-validation
(Section 4.4.1). Both sPLSLeCao and Dual-sPLSl explicitely specify a sparsity parameter: the
(approximate) proportion of variables ς to be discarded (�c0/P ). We set it here to 99%.
We first evaluate Dual-sPLSl on simulated data DSIM (Section 4.4.1) in Figure 4.4. Top-left
and right plots entail that accuracy (RMSE) globally improves as the number of latent variables
M increases for all five PLS-related methods — in both calibration and validation. The lasso
performance, independent on the number of components, is represented by the sixth dotted
curve. From six to ten latent variables, all curves tend to plateau, with close RMSE values.
Dual-SPLSl, sPLSChun and PLS provide the best results (lowest curves). Thus, adding more
components seems uncessary. We choose six latent variables to compare coefficient localization.
On Figure 4.4-bottom, we stack seven panels: original spectra (1) and the coefficients for: PLS
(2), Dual-sPLSl (3), sPLSLeCao (4), sPLSChun (5), sPLSDurif (6), lasso (7). PLS coefficients
(panel 2) match the shape of the simulated data (panel 1). However, it fails to localize the most
important variables, unlike sparse PLS. The �0 criterion (Section 4.1) quantifies the sparsity
induced by each method. Dual-sPLSl, sPLSLeCao and lasso perform best, selecting as expected
a small number of variables, with an �0 value around 40 to 60. It however is not sufficient to hint
at improvements in interpretability. Looking only at variables affecting the response (shaded
red background in panel 1), most compared methods exhibit significant coefficients in many
(useless) areas (transparent background). Only Dual-sPLSl, sPLSLeCao present concentrated
coefficients that can help chemical interpretation. On this rudimentary yet explainable model,
we hint that Dual-sPLSl provides a predictive quality comparable to its challengers, and is the
best in providing at the same time accurate localization on simulated data, with a verifiable (yet
simplified) prediction model.
We are now able to evaluate the performance of Dual-sPLSl on real near-infrared data DNIR

(4.4.2) for density prediction. Similarly to DSIM, RMSE curves in Figure 4.5 for calibration
(top-left) and validation (top-right) globally decrease with an increasing number of components.
Errors plateau after six components, indicating that additional latent structure orders might
be weakly helpful. The performance gap for sPLSDurif could occur as it was mainly designed
for classification. Again, we assess model interpretation in Figure 4.5 (bottom) for six latent
vectors. By nature, location of the most influential features of spectra for a specific property is
yet to be unveiled. One may expect that most of the meaningful variables are located in the
active parts of the signal, e.g. spectral bands with relatively higher intensities, with some others
possibly in quieter wavenumber ranges. On the top panel, NIR spectra are mainly active(3) from
4000 cm−1 to 4800 cm−1 and 5500 cm−1 to 6000 cm−1. Meaningful PLS coefficients are visible on
a much wider support, provoking ambiguity on the identification of spectral bands related to
density. All sPLS actually have smaller support, sPLSLeCao and Dual-sPLSl being the sparsest

(3)We do not endeavour a chemical explanation here. It ought to be substanciated in forthcoming paper [38]
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with �0 respectively equal to 88 and 82. The first singularity of Dual-sPLSl is the contiguous and
smoothness of its coefficients. By contrast, sPLSChun and sPLSDurif coefficients location appear
to be more scattered across the wavenumber axis, in non-contiguous small chunks and even
isolated spikes. The second is the absence of response in the 5500 cm−1 to 6000 cm−1 bands(3)

in Dual-sPLSl. We are not able to chemically explain the discrepancy of absence/presence re-
sults in this band. However, Dual-sPLSl does not need it to remain almost as accurate as its
competitors.

4.5.2 Dual-sPLS pseudo-least squares evaluation (DSIM)

The Dual-sPLSLS requires data to be represented by a non-singular matrix X, as explained in
Section 4.3.2. Since real data DNIR is singular, we use simulated data DSIM presented in Section
4.4.1. As the number of variables in DSIM is already small, we only shrink 60% of its variables
to evaluate the Dual-sPLSLS against classical least squares. The latter is denoted by dashes, as
the number of latent components is meaningless in this case.

For calibration (Figure 4.6 top-left) the RMSE for Dual-sPLSLS decreases mildly as the number
of components increases. It approaches the least squares performance. For validation (Figure
4.6 top-right) Dual-sPLSLS performs similarly or better than least squares all over model orders.
This contrast in performance might be explained by a tendency to overfit for least squares. A
better prediction performance is expected with our model. Similarly to the Dual-sPLSl, we also
choose to evaluate it with six components in the bottom of Figure 4.6. Again, redish regions
indicate active variables for the unknown linear model. We observe an overall similarity in the
dynamics of both regression coefficients: strong amplitude in the first five and last ten variables
corresponding to active regions. The main difference resides in the intermediate part, irrelevant
to the response. Least squares as expected shrinks inactive variables towards zero but not
as much as Dual-sPLSLS does. This is exemplified in the zoomed panels, where Dual-sPLSLS
exhibit much less non-zero coefficients.

4.5.3 Dual-sPLS pseudo-ridge evaluation (DSIM, DNIR)

Dual-sPLSr is compared to classical ridge regression (Section 4.2.2) either applied to simulated
data DSIM or real data DNIR. Ridge hyper parameter t (equation (4.16)) is fixed using cross-

validation. We set λ2 for Dual-sPLSr (equation (4.25)) to
1

t
for easier comparison. All other

parameters are kept as for Dual-sPLSl (Section 4.5.1). Looking at top-left and -right in Figure
4.7 Dual-sPLSr reaches a plateau for DSIM after five latent components. Moreover, its RMSE
values are slightly lower than ridge’s for both calibration and validation. We can safely select six
latent components as before. Reference coefficients for ridge are misleading because the largest
ones do not reside in influencing areas. They therefore can not be used for data interpretation.
By selecting only fifty variables, located in red regions governing the model, Dual-sPLSr better
succeeds in both prediction and localization. Similar conclusions can be drawn for real data
DNIR on RMSE values. Dual-sPLSr even better predicts the response y with only four compo-
nents. Regression coefficients (Figure 4.8 bottom) yield comments akin to above. While ridge
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Figure 4.4 ∼ Dual-sPLSl evaluation on simulated data DSIM. (Top) RMSE values for cal-
ibration (left) and validation (right) with respect to the number of latent components. (Bot-
tom) From top to bottom: simulated data DSIM, regression coefficients of PLS, Dual-sPLSl,
sPLSLeCao, sPLSChun, sPLSDurif for six components, and lasso.
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Figure 4.5 ∼ Dual-sPLSl evaluation on real data DNIR. (Top) RMSE values for calibration
(left) and validation (right) with respect to the number of latent components. (Bottom) From top
to bottom: original data DNIR, regression coefficients of PLS, Dual-sPLSl, sPLSLeCao, sPLSChun,
sPLSDurif for six components, and lasso.
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Figure 4.6 ∼ Dual-sPLSLS evaluation on simulated data DSIM. (Top) RMSE values for cali-
bration (left) and validation (right) with respect to the number of latent components. (Bottom)
From top to bottom: simulated data DSIM, regression coefficients of least squares and Dual-
sPLSLS for five components.
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apparently emphasizes unimportant features, Dual-sPLSr seems more reliable in identifiying of
relevant variables to predict density using chemical data.

4.6 Conclusion and perspectives

We propose a family of dual sparse Partial Least Squares algorithms that broadens the compass
of standard PLS. Along with competitive prediction accuracy with respect to PLS as used in
chemometrics, we expect additional benefits in dimension reduction or model interpretability.
This is achieved by supplementing the traditional optimization problem with well-chosen dual
norms.
We chiefly validate this approach by borrowing three classical regression penalties: lasso, least-
squares, ridge. Each proposed Dual-sPLS draws close to the reference in calibration/validation
performance with a reduced number of latent components. This is assessed in a benchmark on
both realistic simulated models and real near infrared spectroscopy data, against a standard
baseline and sparse contenders. Coefficients are sieved with a user-defined sparsity target. They
are well-located in influential data ranges, suggesting a means for better interpretability of the
trained prediction reduced model. Pseudo-lasso and ridge Dual-sPLS avatars exhibit close colo-
cation of selected features in both datasets despite different penalties. This suggests a robust
identification of meaningful information in signals.
The Dual-sPLS framework is thus a good candidate for a host of applications. We provide it
as an open-source package in R [5]. It can be prolonged to other field-favorite penalties, for
instance elastic net. We plan to evaluate the alluded “pseudo-group lasso” option, to refine fea-
ture selection on important contiguous areas, or to combine datasets providing complementary
information on the predicted response. To improve prediction robustness or reduce the num-
ber of necessary latent components (toward three or four instead of six), we explore additional
diversity enhancement preprocessing, such as higher-order derivatives and discrete wavelet trans-
forms. Last, as PLS deserves sounder statistical foundations, we endeavor a study of asymptotic
convergence bounds.
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Figure 4.7 ∼ Dual-sPLSr evaluation on simulated data DSIM. (Top) RMSE values for cali-
bration (left) and validation (right) with respect to the number of latent components. (Bottom)
From top to bottom: original data DSIM, regression coefficients of ridge and Dual-sPLSr for five
components.
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Figure 4.8 ∼ Dual-sPLSr evaluation on real data DNIR. (Top) RMSE values for calibration
(left) and validation (right) with respect to the number of latent components. (Bottom) From
top to bottom: original data DNIR, regression coefficients of ridge and Dual-sPLSr for five
components.
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Appendix

Appendix 4.A Detailed resolution of Dual-sPLSs

4.A.1 Dual-sPLS pseudo-group lasso

We recall Equation (4.23): the Dual-sPLSgl norm case applied to optimization Problem (4.20).
Note that here

• g represents a group of P (g) index extracted from {1, . . . , P};
• G represents the number of groups;

• wg represents the values of index g in the loading vector w.

We denote zg the variables of z belonging to group g. We impose zg and wg to be in the same
orthant. Let δg be their vector of signs. By differentiating equation (4.23) we obtain

∂Ω(w)
∂wg

= αgwg

∥wg∥2 + αgλgδg . (4.39)

Using Lagrange multipliers as in Section 4.3.1, we compare (4.26) to (4.39) and obtain for
g ∈ {1, . . . ,G}:

wg

∥wg∥2 = zg

αgμ
− λgδg , (4.40)

which is simplified by
wg

∥wg∥2 = 1

μαg

zνg , (4.41)

where

zνg = δg(∣zg ∣ − νg)+ for g ∈ {1, . . . ,G} . (4.42)

Here νg = μαgλg and controls the amount of variables that we would like to shrink to zero. By
applying �2-norm to (4.41), we conclude that for g ∈ {1, . . . ,G},

μ = G∑
g=1

∥zνg∥2 and αg = ∥zνg∥2
μ

. (4.43)

The term ∥wg∥2 is more involved. Thus, we simply use grid search. For each group g, ten
possible values are chosen to be tested. The selection is done by detecting the maximum value

81
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of ∥wg∥2 for each group g, denoted ∥wg∥max
2 . The latter is computed by zeroing ∥wg′∥2 for all

groups g′ ≠ g and is expressed as:

∥wg∥max
2 = μ

Ωg(zνg) . (4.44)

Then, ten values of each group g are selected inside the interval [0, ∥wg∥max
2 ]. The grid search

tests all the possible combinations and retains the one that allows the smallest error. We sum-
marize the methodology with Algorithm 6.

Algorithm 6: Dual-sPLSgl algorithm

Input: X1, . . . ,XG,y, M (number of components desired), ς (shrinking ratio), α1, . . . , αg.
for m = 1, . . . ,M do

Xm = (X1, . . . ,XG) (combining data)
zm =XT

my (weight vector)
Find ν adaptively according to ς for each group seperatly
zνg = δg(∣zg ∣ − νg)+ for g ∈ {1, . . . ,G} (applying the threshold)

μ = ∑G
g=1 ∥zνg∥2

αg = ∥zνg∥2
μ

and λg = νg

αgμ
for g ∈ {1, . . . ,G}

∥wg∥max
2 = μ

Ωg(zνg) for g ∈ {1, . . . ,G}
selection of the values of ∥wg∥2 for each group

wg = ∥wg∥2
μαg

zνg for g ∈ {1, . . . ,G} (loadings)

wg = (wg)
G

g=1

tm =Xmwm (component)
Xm+1 =Xm − PtmXm (deflation)

end for
Compute β̂.

4.A.2 Dual-sPLS pseudo-least squares

We recall Equation (4.24): the Dual-sPLSLS pseudo case applied to optimization Problem (4.20).
We impose N1z and N1w to be in the same orthant. Let δ2 be their vector of signs. By
differentiating (4.24) we obtain

∇Ω(w) = λNT
1 δ2 + XTXw

∥Xw∥2 . (4.45)

Using Lagrange multipliers as in Section 4.3.1, we compare (4.26) to (4.45) and obtain

w

∥Xw∥2 = (XTX)−1 z
μ
− λ(XTX)−1NT

1 δ2 , (4.46)
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imposing the invertibility of XTX. We choose N1 such as

(XTX)−1NT
1 δ2 = sign((XTX)−1z) . (4.47)

The resolution steps are be similar to the ones from Dual-sPLSl but instead of applying the
threshold on z, we apply it on (XTX)−1z which is exactly the classical Least Squares regression

coefficients β̂
LS

. So, the simplified solution is

w

∥Xw∥2 = 1

μ
sign(β̂LSj

)(∣β̂LSj
∣ − ν)+ , (4.48)

where ν is chosen adaptively.
For a simpler algorithm, ∥Xw∥2 is not computed as it is not mandatory in this case. Additionally,
w only depends on ν and β̂LS , which means N1 does not intervene in the computation of the
optimal solution. Thus, proving that N1 exists is enough. (4.47) implies the following

NT
1 δ2 = (XTX)sign((XTX)−1z) . (4.49)

Let w be an eignvector of N1, and N′1 be such as

N′1 =N1 −wTw and N′1w = 0 . (4.50)

Therefore, using (4.49) we have

N′1δ2 = (XTX)sign((XTX)−1z) −wwTδ2 with N′1w = 0 . (4.51)

With N1 a square matrix of P variables, (4.51) is a system of P 2 unknowns, P equations and
P contraints. It can be verified by an infinite number of solutions.
The following algorithm reformulates the previous steps:

Algorithm 7: Dual-sPLSLS algorithm

Input: X,y,M (number of components desired), ς (shrinking ratio)
X1 =X
for m = 1, . . . ,M do

zm =XT
my (weight vector)

β̂LS = (XTX)−1z
Find ν adaptively according to ς and β̂LS
zν = (sign(β̂LS)(∣β̂LS ∣ − ν)+) (applying the threshold)

wm = zν
μ

(loadings)

wm = wm∥w∥2 (normalizing loadings)

tm =Xmwm (component)
Xm+1 =Xm − PtmXm (deflation)

end for
Compute β̂.
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4.A.3 Dual-sPLS pseudo-ridge

We recall Equation (4.25): the Dual-sPLSr pseudo case applied to optimization Problem (4.20).
We impose z and w to be in the same orthant. Let δ be their vector of signs. By differentiating
(4.25), we obtain

∇Ω(w) = λ1δ + λ2
XTXw

∥Xw∥2 + w

∥w∥2 . (4.52)

Using Lagrange multipliers as in Section 4.3.1, we compare (4.26) to (4.52) and obtain

w

∥w∥2 = (ν2XTX + IP)
−1

(z − ν1δ) , (4.53)

where ν1 = λ1μ and ν2 = λ2
∥w∥2∥Xw∥2 .

In line with Dual-sPLSl, we note zX,ν2 = (ν2XTX + IP)
−1

z and δX its vector of signs. We

exhibit a solution imposing that w and zX,ν2 are in the same orthant, which leads to the
following reformulation of (4.53):

w

∥w∥2 = 1

μ
δX(∣zX,ν2 ∣ − ν1)+ . (4.54)

The threshold ν1 is chosen with the adaptive procedure described in Section 4.3.2 and Figure 4.1.
However, in this case, we compare ν1 to ∣zX,ν2 ∣. Since the latter is colinear to z, the shrinkage
is adequate. Denoting zν = δX(∣zX,ν2 ∣ − ν1)+, simple computations lead to

μ = ∥zν∥2 , (4.55)

and

w = μ

ν1∥zν∥1 + ν2∥Xzν∥22 + μ2
. (4.56)
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It is summarized in Algorithm 8:

Algorithm 8: Dual-sPLSr algorithm

Input: X,y,M (number of components desired), ς (shrinking ratio), ν2
X1 =X
for m = 1, . . . ,M do

zm =XT
my (weight vector)

zX,ν2 = (ν2XTX + IP)
−1

z

Find ν adaptively according to ς and ∣zX,ν2 ∣
δX vector of signs of zX,ν2

zν = δX(∣zX,ν2 ∣ − ν1)+ (applying the threshold)

μ = ∥zν∥2 and λ = ν

μ

wm = μ

ν1∥zν∥1 + ν2∥Xzν∥22 + μ2
(loadings)

tm =Xmwm (component)
Xm+1 =Xm − PtmXm (deflation)

end for
Compute β̂.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices.
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst.
Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean
placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit
purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae
risus porta vehicula.

Appendix 4.B Complementary plots

As mentioned in Section 4.5, metrics MAE and R2 were also computed. They support our
findings based on RMSE, as they yield similar results (see Figures 4.B1, 4.B2,4.B3,4.B4 and
4.B5).
Figures 4.B6 and 4.B7 represent a clearer perpective on regression coefficients for Dual-sPLSl
applied DSIM and DNIR from Section 4.5.1.
Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices.
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst.
Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean
placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit
purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae
risus porta vehicula.
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Figure 4.B1 ∼ Dual-sPLSl evaluation on simulated data DSIM. MAE (top) and R2 (bottom)
values for calibration (left) and validation (right) with respect to the number of latent compo-
nents derived from PLS, Dual-sPLSl, sPLSLeCao, sPLSChun, sPLSDurif and lasso regressions.
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Figure 4.B2 ∼ Dual-sPLSl evaluation on real data DNIR. MAE (top) and R2 (bottom) values
for calibration (left) and validation (right) with respect to the number of latent components
derived from PLS, Dual-sPLSl, sPLSLeCao, sPLSChun, sPLSDurif and lasso regressions.
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Figure 4.B3 ∼ Dual-sPLSLS evaluation on simulated data DSIM. MAE (top) and R2 (bot-
tom) values for calibration (left) and validation (right) with respect to the number of latent
components derived from Dual-sPLSLS and least squares regressions.
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Figure 4.B4 ∼ Dual-sPLSr evaluation on simulated data DSIM. MAE (top) and R2 (bot-
tom) values for calibration (left) and validation (right) with respect to the number of latent
components derived from Dual-sPLSr and ridge regressions.
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Figure 4.B5 ∼ Dual-sPLSr evaluation on real data DNIR. MAE (top) and R2 (bottom) values
for calibration (left) and validation (right) with respect to the number of latent components
derived from Dual-sPLSr and ridge regressions.
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Figure 4.B6 ∼ Dual-sPLSl evaluation on simulated data DSIM. From top to bottom: simu-
lated data DSIM, regression coefficients of PLS, Dual-sPLSl, sPLSLeCao, sPLSChun, sPLSDurif for
six components, and lasso.
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Figure 4.B7 ∼ Dual-sPLSl evaluation on real data DNIR. From top to bottom: simulated
data DSIM, regression coefficients of PLS, Dual-sPLSl, sPLSLeCao, sPLSChun, sPLSDurif for six
components, and lasso.
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Package dual.spls

This chapter is dedicated to the introduction of the dual.spls package, which implements the
Dual sparse partial least squares (Dual-sPLS) method in R. The statistical background behind
the method is briefly explained, including Partial Least Squares and lasso algorithm, as well
as the theory underlying Dual-sPLS. It then goes on to provide a comprehensive description of
the package and how to use it, with illustrating chunks of code. The package includes the four
primary Dual-sPLS penalties, a calibration and validation splitting routine, and a weighted data
simulation algorithm. As Dual-sPLS can be used to combine explanatory variables related to
the same response, the chapter benchmarks the method against state-of-the-art techniques using
suitable simulated data. This chapter is a preprint and is aimed to be submitted to Journal of
Statistical Software for June 2023.
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5.1 Introduction

Data has always played a crucial role in scientific research due to the insights it can provide.
However, the rapid advancement of technology has brought new challenges to the field of data
analysis. High-dimensional data, in particular, has emerged as a significant obstacle especially
found in regression contexts. In the latter, N ∈ R observations are represented by Q ∈ R re-
sponse variables (stored in Y ∈ RN×Q) and P ∈ R explanatory variables (stored in X ∈ RN×P )
Dimensionality issues are common when trying to relate both sets of features. First, it prevents
the use of naive statistical prediction models like the classical Ordinary Least Squares (OLS)
inapplicable do to the singularity of the large matrix X. Second, as data are high dimensional,
more noise appears which hinders insightful interpretation of data. Dimension reduction tech-
niques are commonly used when facing these challenges and include projection and penalization
methods. On the one hand, projection strategies particularly address multi-collinearity problems
between variables. They project data onto a smaller space summarizing original data. They
also reduce storage requirements and algorithm running time. With a smaller number of vari-
ables and reduced noise in the data, the model is thus improved and data visualization becomes
feasible. Principal Component Analysis [51] is a popular projection technique that builds new
uncorrelated and orthogonal components that successively maximize the variance between the
projected new axes. Partial Least Squares (PLS) [103] regression differs from PCA by generating
components using both predictors X and target variables Y. It is an iterative method that deals
with highly correlated data and results in accurate forecasts. PLS is implemented in multiple
are straightforward and simple to handle algorithms NIPALS[103], SIMPLS [32], etc.. However,
statistical interpretation is often deceiving as its associated regression coefficients fail to accu-
rately localize most important variables. On the other hand, penalization-based methods most
often address dimensionality issues with shrinkage. The latter provides insights about the rele-
vance of the variables and their localization when dealing with functional data allowing better
interpretability compared to PLS. The lasso procedure ([95]) is popularly adopted. It performs
�1 regularization which induces sparsity. Nevertheless, lasso has some recognizable limitations
[112, 47] as it is known to be sensitive to the data and has the tendency to select moderately
representative variables when using strongly correlated variables
The sparse PLS approach [61] combines both dimension reduction techniques. It adds to the
PLS framework a selection step inspired by the lasso. Several sPLS variants exist in the lit-
erature [25, 37], but despite their sparse results, they do not always yield pertinent feature
localization for instance in some functional data cases. Dual sparse PLS [3] was recently sug-
gested for univariate responses y = Y, with y ∈ R

N . It generalizes the standard PLS1 [57]
algorithm by extending it with adequate norm-based regularization inspired by state-of-the-art
methods: (group) lasso, least squares, ridge. It balances accuracy in predictions and satisfactory
interpretation. In the present work, we introduce the associated dual.spls package implemented
in R.. It is self-contained including the four primary Dual-sPLS penalties, a new calibration and
validation splitting routine called CalValXy [2] and a weighted data simulation algorithm.
The paper is structured as follows: first we detail some notations, then the statistical back-
ground (PLS and penalization) and the theory underlying the Dual-SPLS is briefly introduced
in Section 5.2. Next, Section 5.3 presents a full description of the package with illustrating
chunks of codes. Afterward, Section 5.4 benchmarks the pseudo group lasso penalty against its
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counterpart and classical PLS using suitable simulated data. Finally, we conclude by providing
insight in Section 5.5 and further information in the appendix.

Notation and definitions

Matrices, vectors and scalars are respectively denoted by boldface uppercase letters, boldface
lowercase and light lowercase letters, e.g. X, y and λ. The transpose of matrix X is XT . The
identity matrix of size P is represented by IP . The �1-norm and the �2-norm of vector a w of
length P are respectively:

∥w∥1 = P∑
p=1

∣wp∣ and ∥w∥2 =
����	 P∑

p=1

∣wp∣2 . (5.1)

We denote by �0(w) the sparsity index or count measure of the non-zero coordinates of w and
�c0(w) its complement i.e. �c0(w) = P−�0(w). To choose the number of latent variables we rely
on the mean squared error (MSE) expressed as

MSE = 1

N

N∑
n=1

(yn − ŷn)2 , (5.2)

for a response vector y of N observations and a given corresponding estimate vector ŷ. For
performance evaluation, we choose the root mean squares error (RMSE), the mean absolute
error (MAE) and the determination coefficient (R2), respectively defined as:

RMSE =
���	 1

N

N∑
n=1

(yn − ŷn)2 = 1√
N
∥y − ŷ∥2 , (5.3)

MAE = 1

N

N∑
n=1

∣yn − ŷn∣ = 1

N
∥y − ŷ∥1 , (5.4)

R2 = ∑N
n=1(yn − ȳ)2

∑N
n=1(yn − ŷn)2 where ȳ = ∑N

n=1 yn

N
. (5.5)

The vector of signs of w entries is noted sign(w), and (w)+ is(1) the vector composed of scalars
wp if wp ≥ 0 and 0 if wp < 0 (assuming (wp)p=1,⋯P are the entries of the vector w).
In the following, matrix X ∈ R

N×P represents the explanatory data where rows and columns
respectively denote the N observations and P variables. Vector y ∈ R

N denotes the response
variable. Without loss of generality, we assume that X and y are mean-centered.

(1)It corresponds to the Rectified Linear Unit (ReLU), a popular activation function for neural networks.
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5.2 Dual-sPLS in a nutshell

5.2.1 Statistical background

Regression models are effective when an observable numerical feature y ∈ R
N is potentially

related to a group of variables X ∈ RN×P . A linear dependence is expressed as

y =Xβ + ε , (5.6)

where the noise ε is expected to be independent of X, with zero mean. When P < N and X is
of full rank, the classical ordinary least squares estimator is

β̂
OLS = (XTX)−1XTy . (5.7)

Otherwise, when P ≫ N , the matrix XTX becomes singular and one must resort to alternative
estimation techniques.

Partial Least squares (PLS) ∼ PLS is aims to estimate β from Equation (5.6) while avoiding

singularity poblem of matrix XTX. Its main idea is to compress predictor matrix X into a score
matrix T encoding M < min(N,P ) components while taking into account the covariance of X
and y and nicely handling the correlation between the variables in X. Therefore, PLS builds a
more compact latent space spanned by a set of new components tm for m ∈ {1, . . . ,M} on which
response y is projected. Each one is a linear combinations of original variables using weight
vectors wm for m ∈ {1, . . . ,M} as tm =Xwm. Several algorithms have been proposed. NIPALS
[nonlinear iterative partial least squares, 103] and SIMPLS [32] are most popular. When applied
to a one-dimensional reponse, as in our case, both are shown to be equivalent [57]. They solve
the PLS following (known as PLS1) optimization problem:

max
w

(yTXw) s.t. ∥w∥2 = 1 . (5.8)

For the first loading vector w1, solution of Equation (5.8) is

w1 =XTy . (5.9)

NIPALS iteratively computes weight vectors by deflation while SIMPLS is more straightforward
by avoiding this step. Let Pt1,...,tm−1 denotes the orthogonal projection onto the space spanned
by components t1, . . . , tm−1. The algorithm considers the part of X that is orthogonal to tk,
k <m. For the mth component, X is replaced by Xm such that:

Xm =X − Pt1,...,tm−1X =Xm−1 − Ptm−1Xm−1 . (5.10)

After M iterations, X is summarized by T ∈ R
N×M . Based on Proposition 1 from [57], the

regression coefficients for M components are computed as:

β̂
PLS

M =W(TTXW)−1TTy . (5.11)

The vector of regression fitted values ŷ for M components is the projection of response vector
y onto the space spanned by columns of T.
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Least absolute shrinkage and selection operator (lasso) ∼ The least square regression opti-
mization problem for estimating β in (5.6) is stated as:

argmin
β∈RP

∥y −Xβ∥22 . (5.12)

Variable selection methods supplement (5.6) with a penalty function pen(β). This is transcripted
by solving:

argmin
β∈RP

∥y −Xβ∥22 + pen(β) . (5.13)

Lasso [95] is popularly used owing it to its �1 regularization : pen(β) = λ∥β∥1. The latter induces
shrinkage of irrelevant variable coefficients to exactly zero, thus retaining a smaller number of
features. The penalized Problem (5.13) is initially formulated in the lasso case as constraint
Problem as the following:

argmin
β

∥y −Xβ∥22 subject to ∥β∥1 ≤ t . (5.14)

Note that there is a one-to-one correspondence between parameters λ and t.

Lasso allows to explain possible relationship between X and Y with a neater model due to
sparsity in its results. One challenge is the choice of appropriate threshold t. In fact, it controls
the amount of sparsity; that is the number �0(β) of coefficients set to zero. A closed form
solution of optimization problem (5.14) exists in the orthonormal design case, i.e. XTX = IP .
It is known as the soft thresholding operator and verifies:

β̂l
p = sign(β̂LS

p )(∣β̂LS
p ∣ − λ)+ ∀p ∈ {1, . . . , P} . (5.15)

Coefficients magnitudes are compared to threshold λ and insignificant variables coefficients are
set to zero.

Ridge regression ∼ Ridge [49] regression is another popular penalization technique that uses
an �2 penalty: pen(β) = λ∥β∥2. Its closed-form solution is stated as:

β̂
r = (XTX + λIP )−1XTy . (5.16)

Unlike lasso, it shrinks irrelevant variable coefficients close to zero retaining the totality of
features.

Group lasso ∼ One may suppose that some variables in X present related patterns, for example
close intensities or similar shape. Then, grouping them into G different subsets may give insights
about each group effect on the response. Similarly, in some cases, y can be explained by several
sets of independent variables. All are regrouped in the same matrix X and each is affected to
a group g ∈ {1, . . . ,G}, thus more information is gathered to predict he response. These cases
can be managed with group lasso [110] method where instead of selecting individual variables
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like in the classical lasso, groups of derived input variables are retained. The corresponding
optimization problem is

argmin
β∈RP

1

2
∥y − G∑

g=1

XgβG∥22 + λ
G∑
g=1

√
Pg∥βg∥2 . (5.17)

where Xg is the submatrix of X of variables in group g, βg is the corresponding vector of
coefficients for group g and Pg is the length of βg for each g ∈ {1, . . . ,G}.
Similar to lasso and ridge, the magnitude of the tuning parameter controls the amount of sparsity.
More details can be found in [110] and [85].

Sparse Partial Least Squares (sPLS) ∼ Sparse Partial Least Squares (sPLS) combines both
PLS and lasso by adding an �1 penalty to the PLS framework, i.e. Equation (5.8).

For λs > 0 and with an orthogonality constraint on components, the sPLS optimization problem
is for the first one:

ŵ = argmin
w∈Rp

{−yTXw + λs∥w∥1}, for wTw = 1 , (5.18)

Several avatars of sPLS were introduced along the years. In 2008, Problem (5.18) was solved [61]
using elements from sparse PCA [84]. We denote it as sPLSLeCao. In 2010, it was reformulated
by resorting to a surrugate for an approximated solution [25], sPLSChun. In 2018, proximal
optimization [8] was used for another reformulation of Equation (5.18) [37], denoted sPLSDurif.

5.2.2 Dual Sparse Partial Least Squares (Dual-sPLS)

Extending and generalizing sPLSs previous formulations, Dual-sPLS main objective is to achieve
balance between accurate prediction compared to state-of-art methods and statistically inter-
pretable localization of features. Additionally, it handles variable grouping: the possibility to
gather explanatory variables into more meaningful subsets, and the combination of heteroge-
neous data related to the same response(2).

Dual-sPLS defines a family of approaches that differ by the choice of with the notion of dual
norm defined in the following:

Definition 5.2.1 Let Ω(⋅) be a norm on R
P . For any z ∈ RP , the associated dual norm, denoted

Ω∗(⋅), is defined as
Ω∗(z) =max

w
(zTw) s.t. Ω(w) = 1 . (5.19)

When Ω(.) = ∥.∥2 and z = XTy, Equations (5.8) and (5.19) are equivalent, indeed optimizing
the PLS function in Equation (5.8) amounts to finding the vector w that goes with the dual of
the norm �2 applied to z. Thus, Dual-sPLS proposes to evaluate different penalties depending
on the use case.

(2)Applications of this extention are only performed in detail in this paper.
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For any chosen norm penalty Ω(.), the first component will be:

ŵ = argmin
w∈Rp

{−zTw}, s.t. Ω(w) = 1 . (5.20)

The following components are computed iteratively after applying a deflation step like in Equa-
tion (5.10) from the NIPALS algorithm.
Four norm penalties are considered with their corresponding function implemented in the dual.spls
package.

1. Dual-sPLSl (pseudo-lasso norm, d.spls.lasso()). Similar to the sPLS Problem (5.18),
an intuitive norm combines �1 to �2:

Ω(w) = λ∥w∥1 + ∥w∥2 . (5.21)

2. Dual-sPLSgl (pseudo-group lasso norm, d.spls.GL()). Inspired by group lasso [86], it
combines groups of measurements. It applies pseudo-lasso to each group individually while
constraining the total set. For G groups, wg represents the variables of the loading vector
w that belongs to group g. The corresponding norm is formulated as:

Ω(w) = G∑
g=1

αg∥wg∥2 + λg∥wg∥1 , (5.22)

where αg ≥ 0,∀g ∈ {1, . . . ,G} and ∑g∈1,...,G αg = 1.

3. Dual-sPLSLS (pseudo-least squares norm, d.spls.LS()). It introduces N1, a matrix of
p columns, and applies when X is not singular:

Ω(w) = λ∥N1w∥1 + ∥Xw∥2 . (5.23)

The classical least squares solution is recovered for λ = 0.

4. Dual-sPLSr (pseudo-ridge norm, d.spls.ridge()). It deals with cases where X is sin-
gular and resorts to a ridge-like penalization:

Ω(w) = λ1∥w∥1 + λ2∥Xw∥2 + ∥w∥2 . (5.24)

The resolution procedure for each are found in [3]. For the four penalty norms, w is colinear to
gν(z), where the latter is the soft thresholding operator:

gν(z) = sign(z)(∣z∣ − ν)+ . (5.25)

Thus parameter ν controls the shrinking ratio and Dual-sPLS provides an adaptive way of
selecting the appropriate parameter. In a few words, instead of choosing ν, users specify the
expected null confficients and ν is computed accordingly. The approach is also detailed in [3].
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5.3 Package dual.spls description

5.3.1 Package overview

The dual.spls package is self-contained providing various functions related to the Dual-sPLS
regression method. The package includes a range of functions that enable the user to simulate,
fit, evaluate, and visualize data. We list each function below:

• d.spls.lasso, d.spls.GL, d.spls.LS, d.spls.ridge and d.spls.pls represent the most useful fea-
tures of the package by implementing each version of Dual-sPLS introduced in Section
5.2.2 and the classical PLS1 algorithm. These regression functions allow the user to select
the most appropriate model for their data and to reduce the dimensionality of the data in
a way that best suits their needs.

• d.spls.cv is a cross-validation variant function proposed by [15]. It is particularly useful
for selecting the appropriate number of components to use in the regression analysis.

• d.spls.print displays the value of the shrinkage parameter and the number �c0 of variables
selected by the model for any specified component.

• d.spls.predict is a function typically found in a regression package for predicting new
responses based on the fitted model.

• d.spls.plot is used to visualize the coefficients of the model. It allows evaluating the latter
interpretability by stacking the coefficients plot below the original data mean. It also
quantify the model sparsity by specifying the number of zeros estimated.

• d.spls.metric helps in evaluating the accuracy of the predictions made by the model. It
computes the RMSE, MAE, and R-squared values introduced in Section 5.1. These metrics
are commonly used to assess the predictive performance of a model and can help the user
to identify areas where the model may need improvement.

• d.spls.NIR provides a real data set that can be analyzed using the Dual-sPLS algorithm
and provides an opportunity for users to experiment with the package and gain practical
experience or also use it for other kind of studies.

• d.spls.simulate generates simulated data using mixture of Gaussians. It allows the user
to generate data sets with sparse linearity dependence to test the performance of the
Dual-sPLS algorithm under different conditions.

• d.spls.calval is used to split the data into a calibration and a validation set using CalValXy
algorithm [2].

Main arguments and values for fitting a Dual-sPLS regression are represented respectively in
Tables 5.31 and 5.32.
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Arguments Desription

X predictor matrix or data frame
y response vector
ncp number of components
ppnu proportion of variables to shrink to zero
verbose wether to display or not the iteration number

Table 5.31 ∼ Main dual.spls arguments.

Values Desription

Xmean predictors X mean
scores scores matrix T
loadings loadings matrix W

Bhat regression coefficients β̂
intercept intercepts vector β0
fitted.values fitted values matrix ŷ
residuals residuals matrix ε̂

listelambda tuning parameter vector of λ
zerovar number of variables shrinked to zero �0

Table 5.32 ∼ Main dual.spls arguments.

5.3.2 Simulated and Real NIR data

Real data ∼ The provided real data set is near-infrared (NIR) spectra of hydrocarbon samples.
It is provided by IFPEN (3) and was partially published in [38]. NIR spectroscopic data are
often used in Chemometrics quantifying the absorption of infrared radiation which depends on
the chemical bonds of organic matter. Limits of corresponding wavelengths range are from
800 nm to 2500 nm. Response property y is the density obtained with standardized methods.
Corresponding covariate matrix X consist of 208 samples (rows) and 1557 variables (columns).
A simple discrete derivative for each variable, denoted DNIR is considered as a pre-processing
using a Savitzky Golay smoothing [83]. Such data are generally represented as functional data,
i.e. the absorbance derivative depending on the wavelenght, see Figure 5.31. Loading the dataset
from the package is described below:

R> # Data loading

R> data(d.spls.NIR)

R> summary(d.spls.NIR)

Length Class Mode

NIR 1557 data.frame list

density 208 -none- numeric

(3)a French research institute studying hydrocarbon-based and renewable energies
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Figure 5.31 ∼ DNIR: first derivative of the NIR spectra of 208 samples.

R> XNIR <- d.spls.NIR$NIR

R> XNIR <- as.matrix(XNIR)

R> yNIR <- d.spls.NIR$density

R> nNIR <- dim(XNIR)[1] #number of observations

R> pNIR <- dim(XNIR)[2] #number of variables

Note that we normalize the response variable between 0 and 1 as this can make model compar-
isons easier and help to ensure that the scale of the response variable does not unduly influence
the model estimation. This process will be applied to every data set used in this paper, but
since the coding procedure is identical, it will not be repeatedly illustrated in each segment. We
provide thus the following code for the normalization of y:

R> yNIR <- (yNIR-min(yNIR))/(max(yNIR)-min(yNIR)) #normalizing response

R> #between 0 and 1

Simulated data ∼ dual.spls provides a function d.spls.simulate that generates predictor matrix
X and a linearly dependent response y. X is a mixture K Gaussians with presetted scale σ and
randomly picked amplitudes Aik and location μk, for i ∈ {1, . . . ,N} and k ∈ {1, . . . ,K}. Each
row of X is generated as follows:

xi = K∑
k=1

Aik exp(−(x − μk)2
2σ2

) . (5.26)
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They are uniformly sampled into P variables such that X ∈ R
N×P . For y computation, first,

as we consider linear regression context, we simulate the response as a linear combination of
matrix X variables with a preset uncertainty ε. The linear coefficients depend on weights fixed
by parameter int.coef. The latter can specified for ranges of variables. Second, to evaluate
interpretabilty, we link it to sparsity by generating sparse models where only S ≪ P positive
weights are imposed. Additionally, d.spls.simulate also allows simulating several predictors
matrices explaining the same response y.

Since Dual-sPLSLS requires invertible matrices, non-singular data DSIM is simulated and rep-
resented in Figure 5.32. It includes an explanatory matrix X where P < N and a response
linearly and sparsely related to X. The red highlighted bands from Figure 5.32 indicate posi-
tively weighted variables i.e. influential variables locations. The following chunks of code show
the construction of DSIM.

R> # Parameters

R> set.seed(17)

R> nDS1 <- 200 # number of observations

R> pDS1 <- 50 # number of variables

R> K <- 100 # number of Gaussians

R> sigma <- 0.01 #Gaussians scale

R># Data simulation

R> DS1 <- d.spls.simulate(nDS1,pDS1,nondes=K,sigmaondes=sigma,sigmay=0.5,

R> int.coef=c(100,0,0,0,200))

R> XDS1 <- DS1$X

R> yDS1 <- DS1$y

%R> yDS1 <- (yDS1-min(yDS1))/(max(yDS1)-min(yDS1)) #normalizing response

%R> #between 0 and 1

Since Dual-sPLSGL allows dealing with heterogeneous data that explains the same property,
another data set was simulated denoted D2

SIM. It is composed of two explanatory matrices X1

and X2. Their combination is represented in Figure 5.33 where the dotted vertical line reflects
the limit between the two sets. D2

SIM also inlcudes a response y linearly linked to both matrices
simultaneously. In fact, the construction of y depends on variables in colored bands in Figure
5.33. The red ones represent influential variables from the first data set X1 and the blue ones
from the second data set X2. Following chunks of codes illustrate the simulation of D2

SIM. D2
SIM

is also simulated and represented in Figure 5.33.

R> # Parameters

R> set.seed(1)

R> nDS2 <- 300 # number of observations

R> p1<- 5000 # number of variables of first explanatory matrix X1

R> p2 <- 2000 # number of variables of second explanatory matrix X2

R> pDS2 <- p1+p2 # number of variables of combination of X1 and X2

R> K <- c(10,4) # number of Gaussians for each X1 and X2

R> sigma <- c(0.03,0.2) # standard deviation of X1 and X1 Gaussians
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Figure 5.32 ∼ Simulated data DSIM.

R> int.coef1 <- c(0,500,0,200,200, # depending ranges of variables in X1

R> 0,50,500,0) # (highlighted in Figure 3 in red)

R> int.coef2 <- c(0,100,0,0,100) # depending ranges of variables in X2

R> # (highlighted in Figure 3 in blue)

R> # Data simulation

R> DS2 <- d.spls.simulate(nDS2,p=c(p1,p2),nondes=K,sigmaondes=sigma,

R> sigmay=0.5,int.coef=c(int.coef1,int.coef2))

R> XDS2 <- DS2$X

R> yDS2 <- DS2$y

%R> yDS2 <- (yDS2-min(yDS2))/(max(yDS2)-min(yDS2)) #normalizing response

%R> #between 0 and 1

The package and data sets will be loaded and generated as described previously throughout the
remainder of this section. To showcase the efficiency of Dual-sPLS, Dual-sPLSl and Dual-sPLSr
will be applied on DNIR, Dual-sPLSLS on DSIM and Dual-sPLSgl on D2

SIM.

5.3.3 Calibration and validation splitting

To enhance model’s prediction performance, each data is first divided into calibration and val-
idation sets. The regression model is built using calibration data set, and its performance is
assessed using validation data set. The package dual.spls proposes a splitting technique called
CalValXy [2] implemented in function d.spls.calval. The latter selects observations to build the
calibration set to best represent the overall data in terms of its variability and range of values
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Figure 5.33 ∼ Simulated data D2
SIM.

while taking into account information provided by both X and y. It does so by partitioning
y into ncells subsamples (function input parameter) and applying the [54] algorithm to each
subgroup. When the number of variables is high, data dimension can be reduced using PCA;
this is established by selecting the appropriate method input parameter. Since CalValXy is
based on computation of distances between observations, data is first centered. As the splitting
procedure is similar to each data of Section 5.3.2, the following will only provide the application
on DSIM. It is also illustrated in Figure 5.34. The code below shows how the procedure can be
done using dual.spls functions.

R> # Centering Data

R> XDS1m <- apply(XDS1,2,mean) # mean of each column of XDS1

R> XDS1c <- XDS1-rep(1,nDS1) %*% t(XDS1m) # centering of XDS1 by column

R> # Splitting

R> cvDS1 <- d.spls.calval(XDS1c,pcal=80,y=yDS1, # index of calibration and

R> ncells=10,method="euclidien") # validation split of DS1

R> indcalDS1 <- cvDS1$indcal # calibration index of DS1

R> indvalDS1 <- cvDS1$indval # validation index of DS1

R> ncalDS1 <- length(indcalDS1) # number of calibration observations of DS1

R> nvalDS1 <- length(indvalDS1) # number of validation observations of DS1

R> XcalDS1 <- XDS1[indcalDS1,] # calibration covariates

R> XvalDS1 <- XDS1[indvalDS1,] # validation covariates

R> ycalDS1 <- yDS1[indcalDS1] # calibration response
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Figure 5.34 ∼ Calibration and validation splitting of DSIM

R> yvalDS1 <- yDS1[indvalDS1] # validation response

5.3.4 PLS and Dual-sPLS fitting

The difference between a PLS and Dual-sPLS fitting is the input parameter ppnu that controls
the sparsity of the model. Before fitting any regression model, input data matrix X is centered,
as shown below, in order to enhances the numerical stability.

R> #Centering Data after splitting

R> # calibration

R> XcalcDS1 <- scale(XcalDS1 - rep(1, ncalDS1) %*% t(apply(XcalDS1, 2, mean))

R> ycalcDS1<- ycalDS1-mean(ycalDS1)

R> # validation

R> XvalcDS1 <- XvalDS1 - rep(1, ncalDS1) %*% t(apply(XcalDS1, 2, mean))

R> yvalcDS1<- yvalDS1-mean(ycalDS1)

The typical way of fitting a PLS and Dual-sPLS model is detailed in the following. We will
apply the PLS1, Dual-sPLSl and Dual-sPLSr algorithms on real data DNIR. Then, Dual-sPLSgl
and Dual-sPLSLS will use respectively simulated data D2

SIM and DSIM. For each application, ten
components are use and the proportion of sparsity is set to 0.990 for all the Dual-sPLSs except
to Dual-sPLSLS where we choose to shrink to zero only 60% of the variables.

R> # PLS fitting on DNIR

R> mod.dspls.pls <- d.spls.pls(XcalcNIR,ycalcNIR,ncp=10,verbose = FALSE)
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R>

R> # Dual-sPLS (lasso) fitting on DNIR

R> mod.dspls.l <- d.spls.lasso(XcalcNIR,ycalcNIR,ncp=10,

R> ppnu=0.99,verbose = TRUE)

Dual PLS ic= 1 lambda= 1.538579 mu= 0.1079445 nu= 0.1660811 nbzeros= 1541

Dual PLS ic= 2 lambda= 1.29071 mu= 0.00761122 nu= 0.009823877 nbzeros= 1526

Dual PLS ic= 3 lambda= 0.8785089 mu= 0.00146387 nu= 0.001286023 nbzeros= 1510

Dual PLS ic= 4 lambda= 0.4928369 mu= 0.003739323 nu= 0.001842877 nbzeros= 1501

Dual PLS ic= 5 lambda= 2.869796 mu= 0.0002254818 nu= 0.0006470867 nbzeros= 1489

Dual PLS ic= 6 lambda= 2.672436 mu= 0.000107955 nu= 0.000288503 nbzeros= 1475

Dual PLS ic= 7 lambda= 2.237073 mu= 4.334281e-05 nu= 9.696102e-05 nbzeros= 1461

Dual PLS ic= 8 lambda= 0.764029 mu= 0.0001691464 nu= 0.0001292327 nbzeros= 1451

Dual PLS ic= 9 lambda= 0.7945265 mu= 0.0001321681 nu= 0.0001050111 nbzeros= 1442

Dual PLS ic= 10 lambda= 0.696282 mu= 0.0001289014 nu= 8.975171e-05 nbzeros= 1434

R> # Dual-sPLS (group lasso) fitting on DS2

R> mod.dspls.GL <- d.spls.GL(XcalcDS2, ycalcDS2, ncp=10,ppnu=c(0.99,0.99),

R> indG = c(rep(1,p1),rep(2,p2)), verbose = FALSE)

R>

R> # Dual-sPLS (LS) fitting on DS1

R> mod.dspls.ls <- d.spls.LS(XcalcDS2,ycalcDS2,ncp=10,ppnu=0.6,verbose = FALSE)

R>

R># Dual-sPLS (ridge) fitting on DNIR

R> mod.dspls.r <- d.spls.ridge(XcalcNIR,ycalcNIR,ncp=10,ppnu=0.99,

nu2=2,verbose =FALSE)

As noticed in the output of the code above, when verbose=TRUE, every line displays the iteration
number, ic, along with the parameter values of lambda, mu, and nu, as well as the number of
zeros �0 in the regression coefficients.

5.3.5 Results visualization

The code above fits five models with 1 to 10 components. We can get an overview of each
via d.spls.print and d.spls.plot. They both require which num- ber of components to use when
displaying the results. They respectively print the values of the hyper-parameters along with the
number of variables selected and plot the regression coefficients versus the mean of the original
data. In particular, this helps in the visualization of the variable selection performed by Dual-
sPLS models. We present an example for model Dual-sPLSLS on DSIM for six components in
the following and in Figure 5.35.

R> d.spls.print(mod.dspls.ls,6)

Dual Sparse Partial Least Squares Regression for the LS norm
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Figure 5.35 ∼ Dual-sPLSLS Regression coefficients for six components versus mean of centered
original data DSIM

--------------------------------------------

Parameters: lambda = 8.47570848970008e-13 , ncomp = 6

Dual-SPLS selected: 20 variables among 50 variables

R > d.spls.plot(mod.dspls.ls,6)

5.3.6 Prediction of validation set

Fitted models are frequently employed to forecast upcoming observations. dual.spls provides a
d.spls.predict function for prediction and requires the fitted model to be used, the new batch
of data, and the list of components chosen to be employed. As the data was initially split into
calibration and validation, the latter is considered as new data for which corresponding response
must be predicted. To assess this matter, dual.spls also includes d.spls.metric to compute RMSE,
MAE and R2 criteria. We also use DSIM in this example.

R> # predictions on validation

R> yvalhat.ls=d.spls.predict(mod.dspls.ls,XvalcDS1,1:10)

R> d.spls.metric(yvalhat.ls,yvalcDS1)

$RMSE

[1] 0.0003723408 0.0003588578 0.0003514178 0.0003531040 0.0003454870

[6] 0.0003448199 0.0003480288 0.0003496940 0.0003694236 0.0003729228
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$MAE

[1] 0.0002818395 0.0002715141 0.0002683661 0.0002717894 0.0002674741

[6] 0.0002673378 0.0002774522 0.0002780488 0.0003056253 0.0003121005

$Rsquared

[1] 0.9999862 0.9999872 0.9999877 0.9999876 0.9999882

[6]0.9999882 0.9999880 0.9999879 0.9999865 0.9999862

5.3.7 Choosing the number of latent components

The optimum number M of latent components needs to be determined while building a regres-
sion model. It avoids the risk of overfitting by striking a compromise between forecast accuracy
and model complexity. dual.spls proposes a variant of popular cross validation procedure [15,
multiple random split]. Function d.spls.cv implements it and requests the specification of max-
imum candidate number ncomp (input parameter) of Dual-SPLS components, the Dual-sPLS
norm flavor with its associated parameters, the number (nrepcv) of repetitive iterations to be
performed and calibration ratio (pctcv). Associated algorithm uses the following procedure:

1. Multiple random partitions of the observations are generated into nrepcv calibration val-
idation set with (pctcv) ratio.

2. Different numbers (ncomp) of latent components are used while building potential models
with the calibration sets.

3. On each validation set, MSE is computed and average.

4. The smallest number of ncomp that has the lowest averaged MSE discloses enough latent
components.

An example of choosing the appropriate number of latent component from 1 to 10 for a Dual-
sPLSLS application on DSIM is detailed next:

R> d.spls.cv(XcalDS1,ycalDS1,ncomp=10,dspls="LS",ppnu=0.6,nrepcv=20,pctcv=75)

.

.

.

Dual PLS LS, ic= 6 nu= 0.1093369 nbzeros= 30

Dual PLS LS, ic= 7 nu= 8.947531e-05 nbzeros= 20

Dual PLS LS, ic= 8 nu= 5.201551e-05 nbzeros= 13

Dual PLS LS, ic= 9 nu= 2.241844e-05 nbzeros= 6

Dual PLS LS, ic= 10 nu= 1.051683e-05 nbzeros= 4

[1] 7
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5.4 Results of Dual-sPLS pseudo group lasso applied on simu-
lated data

This Section provides evaluation of Dual-sPLSgl regression. The latter is assessed in terms of
accuracy of prediction and interpretation quality. First, data D2

SIM is considered and divided
into calibration and validation sets with a 80-20 ratio via CalValXy. Second it is centered by
removing calibration variables average. Third, Dual-sPLSgl regression is applied and compared
to its counterpart (group lasso) and classical PLS. Hyper-parameter of group lasso is selected
by cross validation. For Dual-sPLSgl, we choose to impose 99% of the variables to be zero in
each group separately.
Predictions performance is assessed by computing common objective measures: root mean
squared error (RMSE), mean absolute error (MAE), or determination coefficient (R2). As met-
rics produce comparable results, we simply show the RMSE values for calibration and validation.
Since D2

SIM is generated in a way that the location of influential variables linked to the response
is known, interpretation quality is examined by vertically stacking the regression coefficients for
each of the three examined algorithms. Following chunks of code detail the evaluation proce-
dure with supporting interesting plots. They complement theD2

SIM data simulation from Section
5.3.2.

R> # Centering Data

R> XDS2m <- apply(XDS2,2,mean) # mean of each column of XDS2

R> XDS2c <- XDS2-rep(1,nDS2) %*% t(XDS2m) # centering of XDS2 by column

########################

R> # Splitting

R> cvDS2 <- d.spls.calval(XDS2c,pcal=80,y=yDS2, # index of calibration and

ncells=10,method="euclidien") # validation split of DS2

R> indcalDS2 <- cvDS2$indcal # calibration index of DS2

R> indvalDS2 <- cvDS2$indval # validation index of DS2

R> ncalDS2 <- length(indcalDS2) # number of calibration observations of DS2

R> nvalDS2 <- length(indvalDS2) # number of validation observations of DS2

R> XcalDS2 <- XDS2[indcalDS2,] # calibration covariates

R> XvalDS2 <- XDS2[indvalDS2,] # validation covariates

R> ycalDS2 <- yDS2[indcalDS2] # calibration response

R> yvalDS2 <- yDS2[indvalDS2] # validation response

########################

R> #Centering Data after splitting

R> # calibration

R> XcalcDS2 <- XcalDS2 - rep(1, ncalDS2) %*% t(apply(XcalDS2, 2, mean))

R> ycalcDS2<- ycalDS2-mean(ycalDS2)

R> # validation

R> XvalcDS2 <- XvalDS2 - rep(1, ncalDS2) %*% t(apply(XcalDS2, 2, mean))

R> yvalcDS2<- yvalDS2-mean(ycalDS2)

########################

R> # Application of Dual-sPLS group lasso
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R> v.group=c(rep(1,p1),rep(2,p2))

R> mod.dspls.GL <- d.spls.GL(XcalcDS2, ycalcDS2, ncp=10,ppnu=c(0.99,0.99),

indG = v.group, verbose = F)

R> #calibration

R> ycalhat.dspls.GL <- mod.dspls.GL$fitted.values # fitted values

R> metric.cal.dspls.GL <- d.spls.metric(ycalhat.dspls.GL,

R> ycalc) # calibration metrics

R> #validation

R> yvalhat.dspls.GL <- d.spls.predict(mod.dspls.GL,XvalcDS2,

R> liste_cp=1:ncp) # predictions on validation

R> metric.val.dspls.GL <- d.spls.metric(yvalhat.dspls.GL,

R> yvalcDS2) # validation metrics

R> #coefficients

R> betahat.dspls.GL <- mod.dspls.GL$Bhat

########################

R> # Application of d.spls.pls (PLS)

R> mod.dspls.pls <- d.spls.pls(XcalcDS2,ycalcDS2,ncp=10,verbose = FALSE)

#calibration

R> ycalhat.pls <- mod.dspls.pls$fitted.values # fitted values

R> metric.cal.pls <- d.spls.metric(ycalhat.pls,ycalc) # calibration metrics

R> #validation

R> yvalhat.pls <- d.spls.predict(mod.dspls.pls,XvalcDS2,

liste_cp=1:ncp) # predictions on validation

R> metric.val.pls <- d.spls.metric(yvalhat.pls,yvalc) # validation metrics

R> #coefficients

R> betahat.dspls.pls=mod.dspls.pls$Bhat

########################

R> # Application of SGL (group lasso)

R> library(SGL)

R> set.seed(1)

R> data <- list(x = XcalcDS2, y = ycalcDS2)

R> cvFit <- cvSGL(data, index=v.group, type = "linear",alpha=0)

R> mod.GL<- SGL(data, index=v.group, type = "linear",alpha=0,verbose=T,

R> lambdas = cvFit$lambdas)

R> lambda.SGL <- cvFit$lambdas[which.min(cvFit$lldiff)]

R> lambda.index <- which(mod.GL$lambdas==lambda.SGL)

#calibration

R> ycalhat.GL <- predict(mod.GL,as.matrix(XcalcDS2),lambda.index) # fitted values

R> metric.cal.GL <- d.spls.metric(ycalhat.GL,ycalcDS2) # calibration metrics

#validation

R> ycalhat.GL <- predict(mod.GL,as.matrix(XvalcDS2),

lambda.index) # predictions on validation

R> metric.val.GL <- d.spls.metric(yvalhat.GL,yvalcDS2) # validation metrics

#coefficients
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Figure 5.41 ∼ Dual-sPLSGL forecast evaluation on simulated dataD2
SIM, benchmarked against

classical group lasso and PLS. RMSE values for calibration (left) and validation (right) with
respect to the number of latent components.

R> betahat.GL <- mod.GL$beta

Figure 5.41 illustrates RMSE outcomes for calibration (left) and validation (right). Both curves
profiles look similar. As the number of components rises, Dual-sPLSGL and PLS error values
significantly decrease and come close to overlap. The dotted black curve reflects the Group
lasso prediction performance as it is independent of the number of components. Starting five
components, RMSE Dual-sPLSGL and PLS curves outpass Group lasso line and decreases slope
while remaining positive. A plateau is formed from component eight onwards where Dual-
sPLSGL outperforms PLS. With this satisfactory result, localization is thus assessed at this point
in Figure 5.42. In the later, four panels are stacked: original data (1) and regression coefficients
from PLS (2) and Dual-sPLSGL (3) for eight components and Group lasso (4). Dotted purple
vertical line distribute the data into the two original groups: G1 (left) andG2 (right). Highlighted
areas (in red and blue) represent relevant variable real locations (see details in Section 5.3.2). A
good interpretation is one that can provide the latter with precision. PLS coefficients (panel 1)
mimics the shape of original data with relatively high amplitude curves in highlited areas from
each group. However, it fails to localize the most important variables, unlike Dual-sPLSGL. In
panel (2), the latter selects a small number of variables �0(w) in each group and form sharp
peaks matching emphasized ranges in red and blue. Classical group lasso provides coefficients
in panel (3) that are less continuous and smooth. Additionally, they have high amplitude and
emphasize unimportant features, indicating that they give too much importance to variables
that do not contribute significantly to the outcome y. In contrast, Dual-sPLSGL appears to be
more reliable in identifying relevant variables in a regression context.
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Figure 5.42 ∼ Dual-sPLSGL interpretation performance evaluation on simulated data D2
SIM,

benchmarked against classical group lasso and PLS. From top to bottom: D2
SIM data compared

to regression coefficients of PLS and Dual-sPLSGL for eight components and classical Group
lasso.
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5.5 Conclusion

This paper describes the dual.spls R package. Dimensionality issues are becoming increasingly
common, thus the purpose of this package is to make Dual-sPLS modeling available to the sci-
entific community and so to enable its application to real-world issues. Package dual.spls also
additional functions to make it complete. It contains both real and simulated data, splitting
method and evaluation tools.
This paper also illustrate an detailed example of Dual-sPLS for the pseudo-group lasso. The
latter covered the situation where two sets of independent variables are related to the same
response. As illustrated by our example, Dual-sPLSgl successfully locates most relevant features
by shrinking to zero unimportant variable coefficients. With sparsity acquired, prediction is also
enhanced compared to PLS and group lasso. Indeed, Dual-sPLSgl outperforms both classical
methods by striking a balance between accurate predictions and good interpretation while ben-
efiting from information coming from both sets of explanatory variables.
So far, dual.spls includes just four types of penalties. However, other regularization procedure
can be developed in the Dual-sPLS context. Accordingly, the package will be in continuous
updating.
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Conclusions

Chemical analysis remains an important subject that is widely studied across various fields of
science and industry. The study of chemical products and their properties is essential for un-
derstanding their behavior and interactions in various environments. It is includes in particular
the characterization of petroleum cuts, an ongoing research subject, which is the main applica-
tion of this thesis. Knowing the unique set of properties of these complex mixtures is essential
for quality control, optimizing refining process to produce high-quality products efficiently, and
safety and environmental concerns. While standardized physicochemical properties (like den-
sity, viscosity, flash point, pour point, etc.) allows classifying and comparing different types of
mixtures, they require specialized equipment and skilled personnel, as well as extensive time and
resources. Thus, rapid analysis (like infrared spectroscopy, X-ray fluorescence, and near-infrared
spectroscopy) is often used instead. These methods offer a cost-effective way to rapidly assess the
properties of petroleum products. However, they have relatively lower accuracy and the results
may not be as comprehensive as those obtained from more standardized methods. Chemometric
methods are thus used and provide a powerful and efficient way to process large datasets and
extract meaningful information. For oil characterization multivariate calibration is often applied
as it allows to use rapid analysis to predict physicochemical properties by conceiving regression
models linking them together. Hence, this thesis addressed the need previously outlined. The
focus of this work is to conceive a regression method that create models that balance between
accurate forecasts of properties and good interpretability of rapid analysis spectra.

IFPEN supplied real data to support this study. Each incorporates a standardized physico-
chemical properties of a variety of petroleum cuts as well as one or more related rapid analysis
spectrum. The latter are characterized by their functional aspect. They refer to a collection of
measurements taken over a time-varying or continuous domain, rather than at fixed points in
time or space. They are often inherently complex and high-dimensional. As a result, functional
data sets can be challenging to analyze and visualize, requiring specialized tools and techniques
for data processing and interpretation. We focus our study on one main real data denoted
DNIR which includes information on the density, represented by response vector y of N = 208
petroleum cuts and their pre-processed near-infrared spectra discretized in P = 1557 variables,
regrouped in a matrix X ∈ RN×P to build a predictive model. The near-infrared spectra provide
insight into the molecule’s atom bonds, which vary by length and strength, and are measured
by how much near-infrared radiation a matter absorbs. Additionally, we composed a data gen-
erator that reproduce comparable sets to DNIR and similar data. Simulated data plays a crucial
role in data science projects because it allows data scientists to conduct experiments and test
hypotheses without having to make decisions based on the limited amount of available real-
world data. Thus we generated three data DSIM, DSIM and D2

SIM compatible with the thesis
objectives and adapted to different scenarios. Functional spectra represented by explanatory
matrix X are simulated using mixtures of Gaussians and response y is linearly related to S −P

variables from X. This allows us to evaluate prediction accuracy when using linear models and
assess interpretability when creating sparse regressions.

Before embarking in the analysis and modeling of data, we set an evaluation procedure to assess
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thesis objectives. On the one hand, the first main interest is to achieve accuracy. A typical
method used is calibration and validation splitting. The first set is used to create the model
and the second to evaluate forecast to prevent overfitting. We proposed the CalValXy algorithm
that chooses the calibration observation by taking into account information from both X and
y. With the conception of the algorithm and the results obtained, we proved that the associ-
ated calibration covers the experimental space as uniformly as possible and provide accurate
regression predictions compared to reference methods. This was concluded by computing the
Euclidean distances and Φ2 distances to evaluate the similarity between the calibration set and
the whole dataset and the root mean squared error (RMSE), mean absolute error (MAE) and
determination coefficient (R2) when performing regression. On the other hand, we aimed at also
providing insight on the signal according to the prediction of properties i.e. including further
evaluation metrics, such as interpretability. We chose to address this challenge by detecting
information with sparsity indicators. Sparsity in a regression model refers to the presence of
a relatively small number of non-zero coefficients in the model. Sparse regression models are
easier to interpret because they only include the most important variables in the model. This
makes it easier to locate the most relevant factors that affect the outcome being predicted. They
also involve fewer calculations, reducing the computational time required to build the regres-
sion model. This can be particularly beneficial when dealing with large datasets like ours. We
propose to evaluate sparsity by computing the count measure �0 of regression coefficients and
additionally plot them against original data spectra to compare localization.

With data that has a high number of dimensions, it can be useful to use dimension reduction
techniques. These methods involve transforming the data from a high-dimensional space to a
lower-dimensional one, while retaining the most important information from the original data.
Two categories of approaches are commonly used: projection and penalized methods. Projection
methods involve summarizing the original data matrix X in a lower-dimensional space, often
using techniques such as PLS, which is commonly used in chemometrics. Penalized methods, on
the other hand, involve penalizing the regression coefficient, often using techniques such as lasso,
which can produce sparse results. To combine the benefits of both projection and penalized
methods, a new generalized approach called dual-SPLS was developed. This method uses a
mix of these regression methods and applies shrinkage adaptively based on the dual norm of a
chosen penalty norm. We proposed four types of norms inspired by state-of-the art techniques:
lasso, group lasso, least squares and ridge. They demonstrates a near-equivalent calibration
and validation performance to the reference model, while using fewer latent components in
prediction. A comparative benchmark test was conducted on both simulated models and real
near infrared spectroscopy data. The resulting coefficients were found give precise location of
influential data ranges. This provides greater interpretability of the trained prediction model.

This work was implemented as an R package called dual.spls. The purpose of this package is to
make Dual-sPLS modelling available to the scientific community and so enable its application to
real-world issues. Package dual.spls also propose additional functions to make it self-contained.
It contains the real DNIR data and the data generator algorithm. It also provide the CalValXy
splitting method and evaluation tools.
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Perspectives

This thesis proposed a comprehensive pipeline for the analysis of physico-chemical data, both
from a practical and methodological perspective. From a practical point of view, we have made
efforts to share data and code while explaining them. From a methodological point of view,
we have developed two main blocks: first, a PLS related method, which is really the heart of
the thesis, and secondly, a method of calibration and validation adapted to our motivation.
Going back to the introduction, the steps on which we spent less time are on one hand the
pre-processing of the data and on the other hand a more theoretical analysis.

We have utilized several pre-treatment procedures, including Savitzky Golay filtering and de-
riving spectra, to achieve these goals on real data. However, we are also keen to explore other
treatments, such as wavelet treatment, which we believe can play an instrumental role in remov-
ing baselines, filtering, deriving and reducing noise. Wavelet treatment is particularly intriguing
to us because it has the potential to reduce the dimensionality of the data by concentrating
the information and increasing the gap between data points. In this way, we can identify the
most suitable base that lies behind the data, allowing us to improve the overall performance of
our predictive models. Additionally, we find that wavelet filtering potentially interesting to our
problematic as they often use shrinkage in their applications. We hope that by leveraging these
treatments, we can enhance the accuracy and effectiveness of Dual-sPLS or other PLS regression
methods.
Figure 6.01 represents our first tests. On the upper left figure, we show the first NMR spectra
of the data DNMR

NIR , to which we applied a wavelet transformation of the type sym4 at a decom-
position level of 1 that we show on the lower right side of the Figure. It reflects a diversity
enhancement where information is concentrated in around the first 6000 variables. Beyond this
range, this transformation shrinks the rest of the variables to zero leading to the sub-sampled
spectra on the upper right plot. This hints that wavelet filtering reduces dimension and noise.
With an inverse transformation of the data corresponding to the upper right plot, we recon-
structed a spectra similar to the original on the lower left of Figure 6.01. This treatment was
repeated to the 93 spectra in five levels of decomposition. We applied Dual-sPLS to each of the
four sets of data.

Preliminary results seem to indicate that from an analytical standpoint, the transformation
appears to effectively concentrate the information up to a certain level while respecting the
positivity constraints of the data. In terms of prediction performance, have found that a more
global decomposition of the data improves prediction accuracy and allows for a faster convergence
to a stable number of components. However, there are still questions that need to be addressed,
particularly regarding the location of the coefficients. Therefore, the results are worth to be
developed to complete the analysis and draw accurate conclusions from the data.

Another intriguing subject for us is the statistical foundation of the PLS method, as research
primarily focuses on PLS algorithms and avatars. As mentioned in this manuscript, PLS is a
popular alternative to traditional regression techniques as it is effective in handling collinear
and high-dimensional data sets. However, although PLS is commonly used and performs well
in practical applications, the absence of statistical inference results for PLS presents a difficulty
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Figure 6.01 ∼ NMR wavelet transformation of the first spectra. Original spectra (top left),
transformed spectra (bottom right), sub-sampled transformed spectra (top right) and inverse
transformation spectra (bottom left).
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in determining the importance of the results and the level of uncertainty associated with them.
Cook and Forzani [28] investigated the statistical properties of PLS in 2017, specifically the
asymptotic behavior of prediction using the first PLS component. Their findings supported the
idea that PLS regression is a useful approach for predicting in large, high-dimensional regression
problems. They provided a solid support for PLS regression that is complementary to its practi-
cal use in chemometrics. They later developed their studies by moving on to multi-dimensional
componenets [29]. However, they rely on statistical assumptions that may not align with what
is typically observed in chemometric data. Therefore, it seems interesting to introduce slightly
different and broader assumptions. In our future research, we aim to assess the level of uncer-
tainty in the first direction and corresponding component of PLS, which indicates the degree of
deviation from the true target. Our plan involves testing the null hypothesis and constructing
confidence intervals. Through our research, we hope to contribute to the understanding of the
statistical properties of PLS and provide insights into its practical application.
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thesis, Université de Lille 1, 2012.

[60] J. Laxalde, C. Ruckebusch, O. Devos, N. Caillol, F. Wahl, and L. Duponchel. Char-
acterisation of heavy oils using near-infrared spectroscopy: Optimisation of pre-
processing methods and variable selection. Anal. Chim. Acta, 705(1-2):227–234, oct
2011.
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