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Abstract

Stability of equilibrium points of nonlinear systems is one of the central issues of nonlinear
control theory and applications. Stability analysis often boils down to searching for a
Lyapunov candidate that adequately dissipates along the system’s solutions. The last
two decades have witnessed a growing need to go beyond stability of an equilibrium,
by imposing that any two solutions of a system eventually converge to one another.
Such an incremental version of Lyapunov stability (contraction) indeed proves useful in
observer design, synchronization and trajectory tracking. However, analysis methods to
contraction are still far from being standardized, particularly for systems evolving on
manifolds such as rotation dynamics in special orthonormal group, Lagrangian systems
modeled in non-Euclidean configuration space and quantum systems in density matrix
space. The main objective of this thesis is to provide further understanding of contractive
systems on manifolds and to propose applicable methods to ensure contraction. More
precisely, the contributions of the thesis are:

C1 Introduce the new tool, based on the complete lift, for contraction analysis. This new
tool makes it possible to carry out contraction analysis on manifolds in a coordinate-
free manner and to understand the geometric essence of contractive systems.

C2 Show that Finsler-Lyapunov functions play a similar role for contraction as Lya-
punov functions for stability analysis. In particular, we show that a contractive
system always admits a Finsler-Lyapunov function.

C3 Provide new geometric characterizations of contractive systems. First, we show
that contraction can be fully characterized on a tubular neighborhood of the base
manifold of the tangent bundle, therefore relaxing the main results of C1. Second,
we establish a connection between Lyapunov stability and contraction. The con-
nection is made by Krasovskii’s method. It is shown that a Lyapunov function can
be directly constructed using the information of contraction, in which the latter is
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concerned with objects in the tangent bundle while the former is an object on the
base manifold.

C4 Study local exponential stability of nontrivial solutions of systems on manifolds. It
is found that such stability has close relationship with contraction, and is easier
to use than contraction in some situations. Necessary and sufficient conditions
are obtained. An illustrative example, namely, convergence analysis of observer of
Lagrangian system is given to show the effectiveness of the approach.

C5 Study robustness of contraction by converting contraction into transverse stability.
It is shown that contraction is robust when the system flow along the horizontal
manifold is hyperbolic. The method is then extended to study robustness of hyper-
bolic flow along compact submanifold.

Keywords: Contraction, Nonlinear Systems, Riemannian Manifolds



Résumé en français

La stabilité des points d’équilibre des systèmes non linéaires est l’un des problèmes cen-
traux de la théorie et des applications du contrôle non linéaire. L’analyse de stabilité se
résume souvent à la recherche d’un candidat Lyapunov qui se dissipe de manière adéquate
le long des solutions du système. Les deux dernières décennies ont été marquées par un
besoin croissant d’aller au-delà de la stabilité des un équilibre, en imposant que deux
solutions quelconques d’un système finissent par converger l’une vers l’autre. Une telle
version incrémentale de la stabilité de Lyapunov (contraction) s’avère en effet utile dans
la conception, la synchronisation et le suivi de trajectoire des observateurs. Cependant,
les méthodes d’analyse à la contraction sont encore loin d’être standardisées, en parti-
culier pour les systèmes évoluant sur des variétés telles que la dynamique de rotation
dans un groupe orthonormé spécial, les systèmes Lagrangiens modélisés dans un espace
de configuration non Euclidien et les systèmes quantiques dans un espace de matrice de
densité. L’objectif principal de cette thèse est d’approfondir la compréhension des sys-
tèmes contractifs sur les variétés et de proposer des méthodes applicables pour assurer la
contraction. Plus précisément, les contributions de la thèse sont :

C1 Présenter le nouvel outil, basé sur la complete lift, pour l’analyse de la contraction.
Ce nouvel outil permet d’effectuer des analyses de contraction sur des variétés sans
coordonnées et de comprendre l’essence géométrique des systèmes contractifs.

C2 Montrer que les fonctions de Finsler-Lyapunov jouent un rôle similaire pour la con-
traction que les fonctions de Lyapunov pour l’analyse de stabilité. En particulier, on
montre qu’un système contractif admet toujours une fonction de Finsler-Lyapunov.

C3 Proposer de nouvelles caractérisations géométriques des systèmes contractifs. Tout
d’abord, on montre que la contraction peut être entièrement caractérisée sur un
voisinage tubulaire de la variété de base du fibré tangent, relâchant ainsi les prin-
cipaux résultats de C1. Deuxièmement, on établie un lien entre la stabilité de
Lyapunov et la contraction. La connexion est établie par la méthode de Krasovskii.
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On montre qu’une fonction de Lyapunov peut être directement construite en util-
isant l’information de contraction, dans laquelle cette dernière concerne des objets
dans le fibré tangent tandis que la première est un objet sur la variété de base.

C4 Étudier la stabilité exponentielle locale de solutions non triviales des systèmes sur
des variétés. Il s’avère qu’une telle stabilité a une relation étroite avec la contraction,
et est plus facile à utiliser que la contraction dans certaines situations. Les conditions
nécessaires et suffisantes sont obtenues. Un exemple illustratif, à savoir, l’analyse
de convergence de l’observateur du système Lagrangien est donné pour montrer
l’efficacité de l’approche.

C5 Étudier la robustesse de la contraction en convertissant la contraction en stabilité
transversale. On montre que la contraction est robuste lorsque l’écoulement du
système le long de la variété horizontale est hyperbolique. La méthode est ensuite
étendue pour étudier la robustesse du flot hyperbolique le long d’une sous-variété
compacte.

Mots clés: Contraction, Systèmes non-linéaire, Variété Riemanniennes
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Chapter 1

Prologue

1.1 Research Background and Literature Review

1.1.1 The Notion of Incremental Stability

Stability analysis lies in the core of nonlinear control theory. Amongst the many methods
up-to-date to analyze the stability of nonlinear dynamical systems, Lyapunov’s second
method (or Lyapunov’s indirect method) has been the most widely used one. The simplest
reason for this fact is that Lyapunov’s second method converts a problem which involves
solving a differential equation to a simpler task of searching for a scalar Lyapunov function,
and the ability to use a scalar function to analyze the stability of a system with higher
dimension greatly simplifies the problem. Various developments based on Lyapunov’s
second method are covered in many standard textbooks of nonlinear control, such as
[58, 131, 108]. Needless to say, Lyapunov’s second method has become the fundamental
tool not only for stability analysis, but also for wide range of control problems including
constructive design [109], adaptive control [88], passivity-based control [90]. Therefore,
Lyapunov’s pioneering work [77] which was published in 1892, is a milestone in course of
the development of control theory and control applications.

Despite the dominating role of Lyapunov’s stability and Lyapunov’s second method
in the realm of nonlinear control, in some situations however, an incremental form of
stability [41] is needed. In these occasions, instead of studying the convergence of solutions
to an equilibrium, one is concerned with the convergence of a set of solutions toward one
another.

As an illustration, Figure 1.1 shows three trajectories x1(t), x2(t) and x3(t) of a given
dynamical system; then incremental asymptotic stability (to be defined rigorously in

17



18 CHAPTER 1. PROLOGUE
Chapter 4, see Definition 4.1.3) implies that the three trajectories converge to a single
trajectory. Nonetheless, one should take care that this single trajectory is not unique, on
the contrary, any one of x1(t), x2(t) and x3(t) is such a trajectory that attracts the other
two. At the first glance, this rather peculiar behaviour — compared to the stability of
equilibria — seems to be difficult to satisfy, while in reality, there does exist many impor-
tant examples which are incrementally stable, including (but not limited to) some which
have already been dealt with in classical control theory, e.g., exponentially stable linear
systems. On the other hand, some control and observation problems can be naturally
transformed to or interpreted as problems of making certain systems incrementally sta-
ble [2, 107]. Therefore, developing applicable theories and tools for incremental stability
analysis has become the aim of many control theorists.

1x

2x

3x

Figure 1.1: Illustration of Incremental stability

1.1.2 Historical Perspective on Incremental Stability

In this section, we give a literature review of contraction analysis. But before we start,
it is necessary to make a remark on the terminology “contraction”, since so far we have
only talked about incremental stability.

As indicated in the thesis title, the thesis is about contraction analysis. We emphasize
that contraction is a loose synonym of incremental stability in our context. The reason
why we have chosen to use the terminology “contraction” instead of the more accurate
one in the title of the thesis is that most of the results in this thesis regarding incremental
stabilities stem from the original works of W. Lohmiller, J. Slotine, F. Forni, and R.
Sepulchre, in which incremental stability is usually called contraction. In particular, F.
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Forni and R. Sepulchre have referred to “contraction analysis” as incremental stability
analysis in [41], which we are going to follow.

Extreme Stability and Incremental Stability
The study of contraction in the control community can date back to the 1950s and

1960s [67, 66]. At the time it was termed as extreme stability, which was well documented
in the book of T. Yoshizawa [141]. In [141], a system ẋ = f(x), x ∈ Rn is defined to be
extremely asymptotically stable provided that given any pair of solutions x(t) and y(t) to
the system, there holds x(t) → y(t) as t → ∞. It is customary to tackle extreme stability
via augmenting the system by its identical copy, denoted as ẏ = f(y), and then study the
stability (attraction) of the unbounded diagonal set D = {(x, y) ∈ Rn × Rn : x = y} of
the augmented system. Based on this transformation, set version Lyapunov theorems can
be proposed to analyze extreme stability. More recent results in this line of research can
be found in the works of D. Angeli [8, 9], M. Zamani et al. [142, 143] and V. Fromion et
al. [44, 45, 46].

Convergent Systems
In addition to extreme stability, another important notion concerning incremental

stability, entitled convergent system, has also been extensively studied since the 1960s. As
pointed out in [94], this subject was pioneered by B. P. Demidovich [36, 35]. As definition,
a system ẋ = f(x) is called convergent on a positively invariant set if all solutions in this
domain converge asymptotically to a single solution. Standard definitions can be found in
the works of A. Pavlov et al. [93, 94, 95], and the work of B. Rüffer et al. [101]. One of the
most remarkable results of convergent systems is derived from the so called Demidovich
condition — a matrix inequality — which guarantees the exponential convergence of each
pair of solutions to each other. Unlike extreme stability analysis, Demidovich condition
does not involve an augmentation procedure.

Strong links as well as some subtle differences exist between convergent systems and
incrementally stable systems. The reader is referred to [101, 53] for details on this matter.

Differential Contraction Analysis
Between 1996 and 1998, W. Lohmiller and J.J. Slotine proposed the notion of contrac-

tion analysis of nonlinear systems in a series of articles [71, 69, 72, 70] These results were
later summarized in W. Lohmiller’s PhD thesis [76], see also the PhD thesis of J. Jouffroy
[54] for a complete list of references. A crucial step of the differential contraction analysis
method is the calculation of the virtual dynamics of the system, which characterize the
evolution of the infinitesimal distance between two sufficiently close trajectories. Then it
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was argued that as long as the virtual dynamics converge exponentially, each pair of so-
lutions necessarily converge to each other, at the same rate. It should be mentioned that
the state space setting of the contraction analysis mentioned above is the Euclidean space
equipped with a Riemannan norm. This Riemannian norm is utilized to characterize the
infinitesimal distance, which depends on the state.

An alternative way for contraction analysis is via the matrix measure method proposed
by E. Sontag et al. [116, 5], which proves to be powerful to handle systems with input,
see for example [103], where it is shown that contraction implies entrainment for cer-
tain systems with input. This method applies to systems living in normed vector spaces,
even infinite dimensional ones [5]. E. Sontag’s works have been enriched by many other
researchers in various aspects, such as by Z. Aminzare et al. for contraction of systems de-
scribed by PDEs [4, 6, 110], by M. Margaliot et al. for some generalizations of contraction
[84, 83, 83, 117, 135], and by M. di Bernardo et al. for contraction of networked systems
[104, 39, 34, 34]. It is worth mentioning that, different from the methods developed by
W. Lohmiller and J.J. Slotine, the matrix measure method assigns a constant metric to
the state space.

Based on previous works, in 2014, F. Forni and R. Sepulchre laid a differential frame-
work for contraction analysis on manifolds [41]. They noticed that it is the metric rather
than the linear structure which is essential for contraction analysis. Hence they chose
the Riemannian-Finsler manifold as the working space on which a distance is naturally
defined. The authors then proposed a sufficient condition for contraction based on a novel
concept — the Finsler-Lyapunov function. This condition is a partial differential inequal-
ity written in local coordinates. The advantage of F. Forni’s and R. Sepulchre’s work lies
in at least two aspects. First, it provides a possibility to carry out contraction analysis on
manifolds. Second, it is a rather general framework which includes a bunch of previous
results as special cases, or to put it in another way, many previous known results such
as the contraction analysis initiated by W. Lohmiller and J.J. Slotine, and the matrix
measure methods developed by E. Sontag et al. can be interpreted by this theory [41].

Besides general theory of contraction, some researchers are interested in developing
contraction theory for systems with certain structures. J. Simpson-Porco and F. Bullo
studied intrinsic contraction on Riemannan manifolds [22, 112], in which they get intrinsic
criterion to check contraction. R. Reyes-Báez, R. Ortega and A. Yaghmaei et al. studied
contraction of port-Hamiltonian systems [99, 137, 16]. Q. Pham et al. studied contraction
of stochastic systems [97, 98]. We underscore that the idea of contraction of stochastic
systems has already been used in a much older work [123] in 1976. A. van der Schaft, Y.
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Kawano, F. Forni et. al studied differential passivity systems [41, 57, 62, 130, 128], which
has close relationships with contraction.

Applications of Contraction Analysis
Applications of contraction theory can be found in various fields, ranging from mechan-

ical systems to system biology. The incremental characteristic of contraction makes itself
particularly useful when the control objective is to achieve certain convergence property
of a pair, or some pairs of solutions.

To explain the underlying idea of applications of contraction, perhaps the most il-
lustrative example is the two agents synchronization problem. For a system with two
agents described by ẋ1 = f1(x1, x2) and ẋ2 = f2(x1, x2), x1, x2 ∈ Rn, synchronization
is achieved as long as |X1(t, x1, x2) − X2(t, x1, x2)| → 0 as t → ∞, where Xi(t, x1, x2)
corresponds to the solution of the i-th agent with initial condition x1, x2, i = 1, 2. Notice
that synchronization necessarily implies f1(x, x) = f2(x, x) for all x ∈ Rn. Now con-
sider an auxiliary system ẋ = f2(x1, x) − f1(x1, x) + f1(x1, x2). It is readily checked that
Xi(t, x1, x2), i = 1, 2 are solutions to this system. Therefore, if this auxiliary system is in-
crementally exponentially stable uniformly in x1 and x2, then the two agents synchronize.
This simple observation makes it possible to apply contraction theory to synchronization
and consensus problems in various situations [87, 37, 114, 133, 34, 102, 104].

Based on the above analysis of synchronization, one can argue in a similar fashion for
observer design. In fact, it can be easily shown that observer design may be viewed as a
special case of synchronization. Contraction-based observer has been studied extensively
in the literature and it is still an active area [2, 140, 53, 133, 106, 107, 72, 73, 74, 75],
among which we want to mention is the observer design for free Lagrangian systems
proposed by N. Aghannan and P. Rouchon in [2]. The observer in [2] is intrinsic in the
sense that the construction of the observer does not rely on local coordinates. However,
the contraction analysis was done in local coordinates.

Other applications include trajectory tracking of mechanical systems [93, 100, 82, 137],
stabilization of limit cycle [81, 116], output regulation [82, 93], to name a few. Recently,
contraction analysis has also been applied for learning [80, 61, 125, 113, 124].

1.2 Motivation of the Thesis

Most control problems can be dealt with in Euclidean spaces, either because the most
common state spaces in application are Euclidean or many of the control problems are
local in nature so that analysis in local coordinate chart will suffice. There exist however
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some important control problems for which the natural setting of the state spaces are
differentiable manifolds, and meanwhile, for these problems, working in local coordinates
cannot solve them soundly. Typical examples may include trajectory tracking, observer
design and motion planning, and that in these situations, the problems can hardly be
transformed into set point stabilization ones in Euclidean spaces. Therefore, it is desirable
to develop control methods for systems evolving on manifolds, which is the theme of
many popular monographs and textbooks, such as [24] (geometric control of mechanical
systems), [33] (control of quantum systems), [3, 55, 105] (control methods for systems on
Lie groups).

This thesis is devoted to contraction analysis on manifolds. In the literature review
of contraction covered in previous section, we have seen that most of the theories and
applications address systems evolving in Euclidean spaces. Only a few are discussed on
manifolds, among which the most important ones are [112] and [41]. In [41], a differential
framework for contraction analysis was developed, though the analysis was carried out in
local coordinates. In [112], J. Simpson-Porco and F. Bullo proposed an intrinsic method
to study contraction analysis on Riemannian manifolds. However, this particular case is
limited in applications because only a very special class of Finsler-Lyapunov function was
considered, i.e., the Riemannian inner product.

In view of the importance of systems on manifolds and the fact that contraction is
far less understood for systems of this class, this thesis aims at providing a geometric
framework for contraction analysis on manifolds. We expect at the end of this thesis
to develop a theory for contraction analysis parallel to Lyapunov stability analysis such
that one can carry out contraction analysis on manifolds in a geometric way other than
working with local coordinates.

The rest of the thesis is structured as follows, as shown in Figure 1.2.
Chapter 2 recalls some necessary background material and provides a tour for contrac-

tion analysis. In particular, a brief introduction to smooth manifolds and Riemannian
geometry is given.

The main contributions of the thesis are reported in Chapters 3 to 6. Chapter 3 is
concerned with stability analysis on Riemannian manifolds, in particular, local exponen-
tial stability analysis of nontrivial solutions. This chapter also includes some important
preparations for the next chapter.

Chapter 4 focuses on geometric contraction analysis on manifolds. This chapter con-
tains the essential theoretical results of the thesis. In this chapter, we start by introducing
the basic tools for contraction analysis on manifolds, and then provides geometric char-
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acterizations of contractive systems.

Chapter 5 studies robustness of contraction. In this chapter, first we study robustness
of contraction via transverse linearization techniques in Euclidean space. Then we extend
the notion of robustness to compact invariant submanifolds.

Chapter 6 covers applications of contraction. In this chapter, we study several appli-
cation problems, namely, extreme seeking on Riemannian manifolds via Euler method,
filter on SO(3), speed observer for Lagrangian systems and synchronization.

1.3 Terminologies

Notation of some particular sets
Bx(r) denotes the closed ball of radius r centered at x, i.e., the set {y : d(y, x) ≤ r},

S̄ the closure of set S, R+ the set of non-negative real numbers.

Some notations from Riemannian geometry
Throughout the manuscript, M denotes a smooth Riemannian manifold with a metric

g or ⟨, ⟩. | · | is the induced Riemmanian norm, i.e., |v| =
√
g(v, v), TpM the tangent

space of M at p, T ∗
pM the cotangent space of M at p, π : TM → M the projection map,

X (M) the set of smooth vector fields on M , d(x, y) the Riemannian distance between x

and y, P b
a the parallel transport from TaM to TbM , ∇ the Levi-Civita connection, D

dt
the

Covariant derivative, ℓ(γ) the arc-length of a rectifiable curve γ.

Miscellaneous
A class K function is a continuous mapping α : R+ → R+ which is strictly increasing

and which vanishes at the origin. A class K function α is said to belong to class K∞

if α(r) → ∞ as r → ∞. A class KL function is a continuous mapping β : R+ ×
R+ which satisfies: 1) for each fixed s, r 7→ β(r, s) is class K and 2) for each fixed r,
s 7→ β(r, s) is non-increasing and β(r, s) → 0 as s → ∞. X(t, x0) denotes the solution
to the autonomous ordinary differential equation ẋ = f(x) with initial condition x0 at
initial time t = 0; ϕ(t; t0, x0) denotes the solution or flow of a nonautonomous ordinary
differential equation ẋ = f(t, x) with initial condition x0 at initial time t = t0. Ck will
denote continuously differentiable functions of order k, 1 ≤ k ≤ ∞. LfV denotes the
Lie derivative of a function V with respect to a vector field f . The symbol ≃ means
isomorphism, e.g., Rn × Rn ≃ R2n.

Abbreviations
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GAS Globally asymptotically stable

GES Globally exponentially stable

LES Locally exponentially stable

FLF Finsler-Lyapunov function

IS Incrementally stable

IES Incrementally exponentially stable

GIES Globally incrementally exponentially stable

IAS Incrementally asymptotically stable

GIAS Globally incrementally asymptotically stable
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Chapter 2

Background Material

2.1 Smooth Manifolds

In order to make this manuscript self contained, we spend a few pages to provide a brief
introduction to the theory of smooth manifolds. The material is rather standard and can
be found in textbooks such as [59, 68, 126].

The building blocks for smooth manifolds are topology and calculus.

Definition 2.1.1 (Topological space). A topology on a set S is a collection T of subsets
of S with the following properties:

• ∅, S ∈ T ;

• Finite intersection and arbitrary union of elements in T are still in T .

The set S equipped with a topology T is called a topological space and the elements
in T are called open sets. The notation (S, T ) means “set S equipped with the topology
T .” An open set containing a point is called a neighborhood of that point.

Definition 2.1.2 (Topological base, second countable space). A collection B of open sets
of S is called a (topological) base if every open set in S is a union of sets in B. S is called
second countable if it admits a countable base.

Definition 2.1.3 (Hausdorff Space). A topological space S is Hausdorff if given any two
distinct points x, y ∈ S, there exist two disjoint open sets U, V , with x ∈ U and y ∈ V .

Definition 2.1.4 (Continuous mapping). Let (M, T1) and (N, T2) be two topological
spaces. A mapping f : M → N is called a continuous mapping if f−1(U) ∈ T1 for all
U ∈ T2.

27
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Definition 2.1.5 (Homeomorphism). A continuous mapping f : M → N is said to be
a homeomorphism if it has a continuous inverse. In this case, M and N are said to be
homeomorphic.

Roughly speaking, a (topological) manifold is a topological space which is locally
Euclidean in the sense that each point has a neighborhood which is homeomorphic to an
open set of Rn. The precise definition is provided below.

Definition 2.1.6 (Topological manifold). M is a topological manifold of dimension n if
the following properties hold:

• M is a second countable Hausdorff topological space;

• for each point of M , there exists an open set U , homeomorphic to an open subset
of Rn via a mapping ϕ.

ϕ is called a coordinate mapping, the pair (U, ϕ) is called a (coordinate) chart, and a
collection of charts (Uα, ϕα), α ∈ A such that ∪α∈AUα = M is called an atlas for M ,
where the set A is an index set.

The starting point moving from a topological manifold to a smooth manifold is the
introduction of a smooth structure.

Definition 2.1.7 (Differentiable structure). A differentiable structure F of class Ck (1 ≤
k ≤ ∞) on a topological manifold M is a designation of an atlas (Uα, ϕα)α∈A with the
following properties:

• ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ) is Ck for all α, β ∈ A;

• the collection F is maximal in the following sense: if (U, ϕ) is a chart such that
ϕ ◦ ϕ−1

α and ϕα ◦ ϕ−1 are Ck for all α ∈ A, then (U, ϕ) ∈ F .

Notice that the two domains ϕβ(Uα ∩ Uβ) and ϕα(Uα ∩ Uβ) are in Rn and are homeo-
morphic, and hence class Ck function is well-defined.

Definition 2.1.8 (Differentiable manifold). A topological manifold M with a differen-
tiable structure of class k is called a differentiable manifold of class Ck. When k = ∞,
we call M a smooth manifold.

Since all the smooth manifolds treated in this manuscript are of class C∞, for brevity,
the term “manifold” will be referred to as smooth manifold unless otherwise stated.



2.1. SMOOTH MANIFOLDS 29
Definition 2.1.9 (Smooth functions). Let M and N be two smooth manifolds. A map-
ping f : M → N is called a Ck if for every p ∈ M , there exist Ck charts (U, ϕ) ∋ p and
(V, ψ) ∋ f(p) such that f(U) ⊆ V and ψ ◦ f ◦ ϕ−1 is a Ck function from ϕ(U) ⊆ Rm to
ψ(V ) ⊆ Rn. In particular, when k = ∞, f is called a smooth function.

The following diagram is an illustration of the above definition:

M N

Rm Rn

f

ϕ ψ

f̃

where f̃ = ψ◦f ◦ϕ−1 is called the coordinate representation of f . Denote the set of smooth
functions from M to N as C∞(M ;N). When N = R, we simply write C∞(M ;R) =:
C∞(M). f is called a diffeomorphism when it has a smooth inverse, and in this case M
and N are said to be diffeomorphic. The set C∞(M) is an algebra over R under point-wise
multiplication.

Next, we define tangent space and tangent bundle on smooth manifolds. There are
several standard ways to define a tangent space at a given point p ∈ M . We follow [68]:

Definition 2.1.10 (Tangent space). A linear map v : C∞(M) → R is called a derivation
at p if it satisfies

v(fg) = f(p)v(g) + g(p)v(f), f, g ∈ C∞(M).

The set of all derivations of C∞(M) at p, denoted by TpM is called the tangent space of
M at p. The linear — since TpM is a linear space — dual of TpM is called the cotangent
space at p and is denoted T ∗

pM .

Definition 2.1.11 (Differential). The differential dfp : TpM → Tf(p)N of a smooth map
f : M → N is defined via dfp(v)(g) = v(g ◦ f) for all g ∈ C∞(N) and v ∈ TpM .

The tangent space and cotangent space have the same dimension as vector spaces as
the dimension of the manifold M . From TpM and T ∗

pM , one can construct vector bundles.

Definition 2.1.12 (Vector bundle, section). A vector bundle of rank m consists of a
pair of topological spaces E and M , with a continuous surjective map π : E → M such
that for each x ∈ M , the subset Ex := π−1(x) ⊆ E is a vector space isomorphic to Rm,
and for every point x ∈ M there exists an open neighborhood x ∈ U ⊆ M and a local
trivialization

Φ : π−1(U) → U × Rm.
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Here Φ is a homeomorphism which restricts to a linear isomporphism Ey → {y} × Rm

for each y ∈ U . A section of the bundle π : E → M is a map s : M → E such that
π ◦ s = IdM .

We are in position to define tensor bundles.

Definition 2.1.13 (Multilinear function). Given linear spaces Ei, i = 1, · · · ,m and V

over R, a multi-linear function from E1×· · ·×Em to V is a mapping f : E1×· · ·×Em → V

such that f ◦ pi : Ei → V is linear for all i = 1, · · · ,m, where pi : Ei → E1 × · · · × Em is
defined by p(v) = (0, · · · , 0︸ ︷︷ ︸

i−1 times

, v, 0, · · · , 0).

Given two multi-linear functions

f : E1 × · · · × Em → F and g : E1 × · · · × Em → G, (2.1)

define a morphism f 7→ g to be a linear mapping h : F → G which makes the following
diagram commutative.

F

E1 × · · · × Em

G

h

f

g

Figure 2.1: Morphism of multi-linear functions

Definition 2.1.14 (Tensor Product). Given vector spaces E1, · · · , Em over R. The tensor
product of E1, · · · , Em is the universal object (see [65, Chapter 1, §11]) which makes the
above diagram commutative.

Thus a tensor product is the “unique” (more precisely, universal) object (f, E1 ⊗ · · · ⊗
Em) (usually f is not specified explicitly), such that for any multi-linear mapping g, there
exists a unique linear mapping h which makes the following diagram commutative.

Thus, a tensor product “lifts” a multilinear mapping g to a linear mapping h. For the
existence and detailed construction of tensor product, we refer to [65].

Definition 2.1.15 (Tensor Bundle). The tensor bundle of type (r, s) (contravariant of
order r and covariant of order s) is defined as

T rs (M) =
⊔
p∈M

TpM ⊗ · · · ⊗ TpM︸ ︷︷ ︸
r times

⊗T ∗
pM ⊗ · · · ⊗ T ∗

pM︸ ︷︷ ︸
s times

(2.2)

where ⊔ represents the disjoint union of sets.
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E1 ⊗ · · · ⊗ Em

E1 × · · · × Em

G

h

f

g

Figure 2.2: Morphism of multilinear functions

In particular, (1, 0)-tensor bundle is called the tangent bundle and is written as TM
and (0, 1)-tensor bundle is called the cotangent bundle is written as T ∗M . The tensor
bundle admits a natural smooth structure induced by the smooth structure on M which
makes the projection map πrs : T rsM → M , πrs(p, e) = p smooth, see for example [59].
Hereafter, we assume that the tensor bundle is always equipped with this smooth struc-
ture. It should be noted that tensor bundle is a special case of vector bundle, and thus
we can define sections.

Definition 2.1.16 (Tensor field). A smooth (r, s)-tensor field on M is a smooth map
s : M → T rsM such that πrs ◦ s(p) = p, ∀p ∈ M .

Intuitively, a tensor field is a smooth assignment of tensors at each point p ∈ M . The
simplest but the most important tensor field is the (1, 0)-tensor field, i.e., the vector field
on M . Denote X (M) the set of smooth vector fields on M .

Given a chart (U, ϕ) on M , define ∂
∂xi |p = (dϕ|p)−1(ei) where {ei}i=1,··· ,n is the standard

Euclidean base. Define the dual dxi via the relation dxi|p(∂/∂xj|p) = δij. Then an element
in T rsM |p can be expressed as

t|p = ti1···ir
j1···js(p)

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

∣∣∣∣∣
p

using Einstein summation notation. When ti1···ir
j1···js(p) varies smoothly with respect to p,

then t : p 7→ t|p is a smooth (r, s)-tensor field. A (0, 2)-tensor field can be written as
g = ∑n

i,j=1 gijdx
i ⊗ dxj. g is said to be symmetric if gij = gji and in this case, it is

conventional to write g = gijdx
idxj.

To end this section, we introduce two important definitions that will be used fre-
quently throughout the thesis, namely, Lie transport and complete lift. There are several
equivalent ways to define complete lift, and we have followed [30].

Definition 2.1.17 (Lie transport [30]). Consider the ODE ẋ = f(t, x), and its flow
ϕ(s; t, x), i.e., the solution to the following ODE:

d

dt
ϕ(t; s, x) = f(t, ϕ(t; s, x)), ϕ(s; s, x) = x
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∀x ∈ M , t ≥ s ≥ 0. The Lie transport of the vector W ∈ TxM along the ODE is
defined as the push forward of the vector W along the curve s 7→ ϕ(s; t, x) by the flow
x 7→ ϕ(s, t, x) for s ≥ t. And we denote Lie(W )(t, s) = (ϕs,t)∗W , where ϕs,t(x) = ϕ(t; s, x).
Thus Lie(W ) defines a vector field along the curve σ(t, s) = ϕ(t; s, x).

Remark 2.1. We remark that W 7→ Lie(W ) defines a linear operator in the sense that for
any constant α, Lie(αW )(t, s) = αLie(W )(t, s). The operator also satisfies the semi-group
property in the following sense:

Lie(Lie(W )(r, s))(t, r) = Lie(W )(t, s)

Having at hand the notion of Lie transport, we can now proceed to define the complete
lift of a vector field. But before going into technical details, we provide some intuitions.
Loosely speaking, the complete lift is a linearization procedure. To understand this,
we recall the linearization in Rn. Consider an ordinary differential equation ẋ = f(x),
where x ∈ Rn, and a solution q(·). The linearization of the system along q(·) should be
understood as the linearization of the error dynamics ė = f(q+e)−f(q), where e := x−q.
This is obviously δq̇ = ∂f

∂x
(q)δq, where we have denoted δq as the linearized state. We

show next that the solution to this linearized error dynamics is the Lie transport. By
definition, the Lie transport of a (constant) vector v is (ϕt,0)∗(v), but

d

dt
(ϕt,0)∗(v) = d

dt

∂ϕ(t; 0, x)
∂x

(v)

= ∂

∂x

dϕ(t; 0, x)
dt

(v) = ∂

∂x
f(ϕ(t; 0, x))(v)

=∂f
∂x

(ϕ(t; 0, x))∂ϕ(t; 0, x)
∂x

(v)

=∂f
∂x

(ϕ(t; 0, x))(ϕt,0)∗(v),

which shows it is indeed the case by replacing x by q and v by δq(0). Therefore, the
vector field ∂f

∂x
(q)δq can be obtained by taking the time derivative of the Lie transport,

which however, results in a vector field on the second order tangent bundle when Rn is
replaced by a manifold M , since the Lie transport forms a curve in TM .

Definition 2.1.18 (Complete lift [30]). Consider the time-varying system (3.1). Given
a point v ∈ TM , let (s, t) 7→ σ(t, s) be the integral curve of f with σ(s, s) = π(v). Let
V be the vector field along σ obtained by Lie transport of v by f . Then (σ, V ) defines a
curve in TM through v. For every t ≥ s, the complete lift of f into TTM is defined at v
as the tangent vector to the curve (σ, V ) at t = s. We denote this vector field by f̃(v, t)
for each v ∈ TM and each t ≥ 0.
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Figure 2.1 shows the lifting procedure for a time-invariant vector field f : σ is an

integral curve of the vector field f in M , V a vector field along σ constructed by Lie
transport of the flow generated by f . f̃(V, t) is the velocity of the curve (σ(t), V (t)).

Remark 2.2. The discussion before Definition 2.1.18 shows that for a vector field f in
Rn, the complete lift of f at a point (x, vx) is the vector col(f(t, x), ∂f(t,x)

∂x
vx).

The above procedure can be written in a more compact form as follows. Given a vector
field f on M , f can be viewed as a mapping from M to TM , and we define a mapping
XT : TM → TTM (which is again, a vector field) as

XT (vx) = ∂

∂t

∣∣∣∣∣
t=0

(dϕXt (vx)), (2.3)

where ϕXt (x) = X(t, x) and dϕXt is its differential map. It is straightforward to verify
that this definition coincides with Definition 2.1.18. See for example Remark S1.10 of the
online supplementary material of the book [24].

M

TM)( t,Vf
~

))()(( tV,t



)( V,

Figure 2.3: Schematic view of the complete lift.

2.2 Riemannian-Finsler Geometry

Riemannian geometry is among the most important tools and objects which will be used
in this manuscript. This section does not intend to provide a thorough introduction to
Riemannian geometry. Rather, it serves as a reference for some of the basic notions of
Riemannian geometry. For standard textbooks, we refer to [96, 27, 47, 60].

The use of Finsler geometry is not essential in this context. However, it helps explain
some interesting examples in the manuscript which cannot be covered by Riemannan
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geometry. Therefore, the author decides to list some of the fundamental concepts of
Finsler geometry which will be used in this manuscript. Interesting readers are referred
to [15] for more details.

Definition 2.2.1 (Riemannian metric). A Riemannian metric on M is a smooth sym-
metric covariant (0, 2)-tensor field g on M which is positive definite at each point. The
pair (M, g) is called a Riemannian manifold.

The Riemannian metric g defines an inner product on the tangent space and often will
be denoted as ⟨·, ·⟩.

Definition 2.2.2 (Affine connection). An affine connection on a differentialble manifold
M is a mapping

∇ : X (M) × X (M) → X (M),

denoted as (X, Y ) ∇−→ ∇XY and which satisfies the following properties:

• ∇fX+gYZ = f∇XZ + g∇YZ;

• ∇X(Y + Z) = ∇XY + ∇XZ;

• ∇X(fY ) = f∇XY +X(f)Y .

where X, Y, Z ∈ X (M) and f, g ∈ C∞(M).

It can be easily shown that ∇XY is a pointwise operator with respect to X. Namely,
if X(p) = W (p) for some point p ∈ M , then ∇XY (p) = ∇WY (p). Therefore, we can
restrict the affine connection to the pullback bundle ∇ : Γ∞(γ∗TM) × X (M) → X (M)
where γ : R → M is a smooth curve. Details about pullback bundle can be found in
[127]. Since this case is of special importance, it has a name: covariant derivative. More
precisely, given a vector field V ∈ X (M), and a smooth curve γ, the covariant derivative
of V along γ is defined as DV

dt
(t) = ∇γ′(t)V (t). A connection is symmetric or torsion free

if ∇XY − ∇YX = [X, Y ] for all X, Y ∈ X (M).

Theorem 2.1 (Levi-Civita connection). Given a Riemannian manifold (M, g), there is a
unique symmetric connection which is compatible with the Riemannian metric, i.e.,

X⟨Y, Z⟩ = ⟨∇XY, Z⟩ + ⟨Y,∇XZ⟩, X, Y, Z ∈ X (M)

This connection is called the Levi-Civita connection associated with the Riemannian man-
ifold (M, g).
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Definition 2.2.3 (Geodesic). A parametrized curve γ : I → M is a geodesic at t0 if
Dγ′(t)
dt

(t0) = 0; if γ is a geodesic at t ∈ I, we say γ is a geodesic.

A geodesic has constant speed since

d

dt
⟨γ′(t), γ′(t)⟩ = 2

〈
D

dt
γ′(t), γ′(t)

〉
= 0.

The geodesic is said to be normalized if its speed is 1.

Theorem 2.2 (Existence of Geodesic). Given any point p ∈ M and any tangent vector
v ∈ TpM , there is a geodesic c : (−ϵ, ϵ) → M with initial point c(0) = p and c′(0) = v,
where ϵ > 0 is some positive constant. Moreover, this geodesic is unique in the sense that
any other geodesic satisfying the same initial conditions agrees with c on the intersection
of their domains.

Write expp(v) := c(1) when the right hand side is defined. It can be shown that the
map expp : TpM → M , which we call the exponential map, is a local diffeomorphism.
Thus geodesic exists between two sufficiently close points. Given V ⊆ TpM such that
expp |U is a diffeomorphism, we call U := expp(V ) a normal neighborhood of p.

Definition 2.2.4 (Parallel transport). Given a smooth curve c : [a, b] → M , V a vector
field along c. If D

dt
V (t) = 0 for t ∈ [a, b], then we say that V (b) is obtained from V (a) via

parallel transport. We denote V (b) = P b
aV (a).

Given a curve c : [a, b] → M , the arc-length of c is defined as

ℓ(c) =
∫ b

a

√
⟨c′(t), c′(t)⟩dt.

Given two points p, q ∈ M , the distance between them is defined as d(p, q) = infc ℓ(c)
where the infimum is taken over all piecewise smooth curves c joining q to p.

Theorem 2.3 (Minimizing property of geodesic). Let p ∈ M , U a normal neighborhood
of p, and U ⊇ Br := {q ∈ M : d(q, p) ≤ r} a normal ball centered at p. Let γ : [0, 1] → Br

be a geodesic with γ(0) = p. If c : [0, 1] → M is any piecewise differentiable curve joining
γ(0) to γ(1) then ℓ(γ) ≤ ℓ(c).

Theorem 2.4 (Hopf-Rinow Theorem). Let M be a Riemannian manifold and let p ∈ M .
The following assertions are equivalent

• expp is defined on all of TpM ;

• M is complete as a metric space;
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• M is geodesically complete, i.e., any two points on M can be joined by a piecewise
C1 geodesic.

Definition 2.2.5 (Curvature). The curvature on a Riemannian manifold M is a (1, 3)-
tensor R defined by

R(X, Y )Z = ∇X∇YZ − ∇Y ∇XZ − ∇[X,Y ]Z

It can be easily checked that R is indeed a tensor.

Definition 2.2.6 (Sectional curvature). Given two linearly independent tangent vectors
v, w ∈ TpM , the sectional curvature of the two dimensional plane span{v, w} at p is
defined as

sec(v, w) := g(R(w, v)v, v)
g(v, v)g(w,w) − g(v, w)2 . (2.4)

If sec(v, w) is constant for all such two dimensional planes at each point, we say that
the manifold has constant sectional curvature, or constant curvature for short.

Definition 2.2.7 (Variation of a curve). Given γ : [a, b] → M a continuously dif-
ferentiable curve, a variation of the curve γ is a continuously differentiable mapping
F : (−ϵ, ϵ) × [a, b] → M , such that F (0, s) = γ(s), where ϵ > 0 is some constant.

Let F be a variation of γ, and denote ℓ(c) the arc-length of a curve c. Then we have
the following formula:

d

dt

∣∣∣∣∣
t=0

ℓ(F (t, ·)) = 1
|∂F/∂s|

〈∂F
∂s

,
∂F

∂t

〉s=b
s=a

−
∫ b

a

〈
∂F

∂t
,∇∂/∂s

∂F

∂s

〉
ds


t=0

(2.5)

(2.5) is called the first variation of arclength.
Next we recall some definitions from Finsler geometry. As S. Chern has put it [28],

“Finsler geometry is just Riemannian geometry without the quadratic equation”. The
theory of Finsler geometry shares a lot in common with Riemannian geometry. For
example, one can define geodesic, curvature etc. on a Finsler manifold.

Definition 2.2.8 (Finsler Structure). A Finsler Structure of M is a function F : TM →
[0,∞) with the following properties:

• regularity: F is smooth on TM \ {0};

• positive homogeneity: F (x, λy) = λF (x, y) for all λ > 0;
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• strong convexity: The n× n Hessian matrix

(gij) := 1
2
∂2F 2

∂yi∂yj

is positive definite at every point of TM \ {0}.

Given a smooth curve γ : [a, b] → M , define the Finsler arc-length by

ℓ(γ) =
∫ b

a
F (γ(t), γ′(t))dt

and the Finsler distance between two points p, q as d(p, q) = infγ ℓ(γ) where the infimum
is taken over all piecewise C1 curves γ joining q to p.

2.3 A Tour in Contraction Analysis

In this section, we list some fundamental results which have been obtained in the litera-
ture. It is our aim to provide a tour for the reader in theory and applications of contraction
analysis. Some classical definitions related to contraction are recalled, which will then be
followed with representative theorems. These theorems are stated without proof in this
section, but we will come back to these results along the thesis.

2.3.1 Extreme Stability and Incremental Stability

Definition 2.3.1 (Extreme stability [141]). Consider the system

ẋ = f(x), x ∈ Rn (2.6)

and its identical copy
ẏ = f(y), y ∈ Rn. (2.7)

Then the system (2.6) is called extremely stable (asymptotically stable, exponentially sta-
ble) if the diagonal set D =: {(x, y) ∈ Rn × Rn : x = y} is stable (asymptotically stable,
exponentially stable) for the augmented system (2.6)-(2.7).

Denote X(t, x0) the solution to the system (2.6) with initial condition x0 at t = 0. The
asymptotic stability of the set D implies contraction since the two sub-systems (2.6) and
(2.7) can be viewed as the same one with different initial conditions and that the stability
of D characterize the convergence of X(t, x) to X(t, y), where x and y are arbitrary.
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Theorem 2.5 ([141]). Consider the system (2.6) and its copy (2.7). If there exists a
continuously differentiable function V : Rn × Rn → R+, and class K functions a, b, c such
that

a(|x− y|) ≤ V (x, y) ≤ b(|x− y|), (2.8)
∂V (x, y)
∂x

f(x) + ∂V (x, y)
∂y

f(y) ≤ −c(|x− y|) (2.9)

for all (x, y) ∈ Rn × Rn, then the system is extremely asymptotically stable.

In this theorem, the function V is indeed a set Lyapunov function. In fact, |x− y| =
dist((x, y), D) where “dist” stands for distance and D the diagonal set defined as before.

Similar results concerning extreme stability and extreme exponential stability can be
derived.

Incremental stability, a more recent synonym of extreme stability, is defined as follows.

Definition 2.3.2 (δGAS [8]). We say that the system (2.6) is incrementally globally
asymptotically stable (δGAS) if there exists a function β of class KL so that for all
x, y ∈ Rn and all t ≥ 0, the following holds

|X(t, x) −X(t, y)| ≤ β(|x− y|, t) (2.10)

Following D. Angeli, one can define incremental stability (δS) on Q ⊆ Rn if (2.10) is
replaced by

|X(t, x) −X(t, y)| ≤ α(|x− y|), ∀x, y ∈ Q (2.11)

for some class K function α, and incremental exponential stability (δES) on Q ⊆ Rn if
(2.10) is replaced by

|X(t, x) −X(t, y)| ≤ Ke−λt|x− y|, ∀x, y ∈ Q (2.12)

for some positive constants K and λ.

Theorem 2.6 ([8]). The system (2.6) is δGAS if and only if there exist a continuous
function U : Rn × Rn → R+ and K∞ functions α1, α2, such that for all x, y ∈ Rn

α1(|x− y|) ≤ U(x, y) ≤ α2(|x− y|), (2.13)

and for all t ≥ 0,

U(X(t, x), X(t, y)) − U(x, y) ≤ −
∫ t

0
α(|X(s, x) −X(s, y)|)ds (2.14)

where α is a continuous positive definite function.
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We remark that Theorem 2.5 and Theorem 2.6 share the same spirit in the following

sense. Assume that U is continuously differentiable. Dividing t for t > 0 from both sides
of (2.14) results in

U(X(t, x), X(t, y)) − U(x, y)
t

≤ −1
t

∫ t

0
α(|X(s, x) −X(s, y)|)ds.

Now let t → 0+, one can get

U̇(x, y) = ∂U(x, y)
∂x

f(x) + ∂U(x, y)
∂y

f(y) ≤ −α(|x− y|)

We can see that this inequality has the same form as (2.9), except that the function α
here is only a continuous positive definite function instead of class K, and that Theorem
2.6 provides necessary and sufficient conditions, while Theorem 2.5 is only sufficient.
This similarity is not very surprising since both theorems translate extreme stability as
the Lyapunov stability of the diagonal set D. Nevertheless, the seeking for the function
V in Theorem 2.5 and the function U in Theorem 2.6 is quite difficult. More importantly,
such method does not take advantage of the fact that each of the two sub-systems is the
copy of each other.

2.3.2 The Method via matrix measure

The matrix measure, or the logarithm norm is a rather old concept [32, 121]. The defi-
nition is as follows: let A be a square matrix, and | · | a matrix norm, then the matrix
measure associated with this norm is defined as

µ(A) = lim
h→0+

|I + hA| − 1
h

, (2.15)

where I is the identity matrix. Matrix measure is a classical tool for the stability analysis
of linear time varying systems [131]. E. Sontag et al. introduced this for contraction
analysis [116]. Their main result can be stated in the following theorem.

Theorem 2.7 ([116]). Consider the system (2.6) and let C ⊂ Rn be a convex set. If
there exists a matrix measure µ and a positive constant c, such that

µ(Jf (x)) ≤ −c, ∀x ∈ C, t ≥ 0, (2.16)

where Jf is the Jacobian matrix of f , i.e.

Jf (x) = ∂f

∂x
(x).

then given any x, y ∈ Rn such that X(t, x), X(t, y) ∈ C for all t ≥ 0, there holds

|X(t, x) −X(t, y)| ≤ e−ct|x− y|, ∀t ≥ 0. (2.17)
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Remark 2.3. Notice that the inequality (2.17) is stronger than (2.12).

Compared to Theorem 2.5 and 2.6, Theorem 2.7 has the advantage that one only
needs to calculate the scalar quantity µ(Jf ). Since the logarithm norm can be defined for
operators on Hilbert space, the method also owns the advantage of being extendable to
larger classes of systems, for example, systems described by partial differential equations
[5]. The limitation is that the scalar quantity µ(Jf ) may encode much less information
than the Jacobian matrix Jf itself. Another limitation is that for systems not evolving in
vector spaces, the matrix measure is not defined.

2.3.3 Differential Contraction Analysis

In 1996, W. Lohmiller and J.J. Slotine proposed the notion of contraction analysis and
explored its applications in a series of papers [72, 73, 74, 75]. The intuition is as follows.
Consider two copies of the system (2.6), i.e., ẋ = f(x) and ẏ = f(y). The solutions to
these systems can be seen as two different solutions to the system with different initial
conditions. When the two solutions are sufficiently close, we can make the following
approximation:

ẋ− ẏ = f(x) − f(y) ≈ ∂f(x)
∂x

(x− y)

Based on this observation, W. Lohmiller and J.J. Slotine defined the following so called
virtual dynamics:

δẋ = ∂f

∂x
(x)δx, (2.18)

where δx is called the virtual displacement, see Figure 2.4. Now the square distance
between x and y is approximately δxT δx. By (2.18), the time derivative of this quantity
is:

d

dt
(δxT δx) = 2δxT δẋ = 2δxT ∂f

∂x
δx.

Let λmax(x) be maximum eigenvalue of the symmetric part of the Jacobian Jf (x), then
we have

d

dt
(δxT δx) ≤ 2λmax(x)δxT δx.

Invoking Gronwall lemma, it follows that

|δx(t)| ≤ |δx(0)|e
∫ t

0 λmax(x(s))ds.

If there exists a positive constant β such that λmax(x) ≤ −β for all x ∈ Rn then the
virtual displacement (the “infinitesimal distance”) converges to 0 exponentially. Using
path integral, this implies that all paths converge to each other exponentially. This is
summarized in the following definition and theorem.
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virtual displacement δx 

two nearby trajectories 

virtual velocity

Figure 2.4: The dynamics of the virtual displacement

Definition 2.3.3. Consider the system (2.6) and a set Q ⊂ M . The set Q is called a
region of contraction if the symmetric part of the Jocabian of f is negative definite over
Q.

Theorem 2.8 ([72]). Given the system (2.6), Q a region of contraction and a trajectory
X(t, x) contained in Q. Then any trajectory which starts in Q remains in Q and converges
to X(t, x) exponentially.

The authors have also extended this result to systems defined on Euclidean space
equipped with a quadratic form (in this case, the Euclidean space becomes a Riemannian
manifold, see Section 2.2). To gain some insights, we assume that Q is the whole space
Rn and consider the “coordinate transform” δz = Θ(x)δx, where Θ(x) is a square matrix.
Then

δzT δz = δxTT (x)δx, (2.19)

where T (x) = ΘT (x)Θ(x). The time derivative of δz reads

d

dt
δz = Θ̇(x)δx+ Θ(x)δẋ =

(
Θ̇(x) + Θ(x)∂f

∂x

)
Θ−1(x)δz = F (x)δz,

where F (x) is

F (x) =
(

Θ̇(x) + Θ(x)∂f
∂x

)
Θ−1(x). (2.20)

We get
d

dt
(δzT δz) = 2δzTF (x)δz.
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The dynamics of the “infinitesimal distance” can be characterized as follows:

d

dt
(δxTT (x)δx) = δxT

(
∂f

∂x

T

T (x) + Ṫ (x) + T (x)∂f
∂x

)
δx.

Then the region of contraction is the set on which there holds

∂f

∂x

T

T (x) + T (x)∂f
∂x

+ Ṫ (x) ≤ −βT (x), (2.21)

where β is a positive constant.
The above analysis leads to the following:

Definition 2.3.4 ([72]). Given the system (2.6), a region Q ⊂ M is called a contraction
region with respect to a positive definite metric T (x) = ΘT (x)Θ(x), if the inequality
(2.21) is fulfilled for all x ∈ Q.

Theorem 2.9 ([72]). Given the system (2.6), a contraction region Q with respect to the
metric T (x) = ΘT (x)Θ(x) and a solution X(t, x) contained in Q, all the trajectories which
start in Q remain in Q and converge to X(t, x) exponentially.

Remark 2.4. This method provides a differential approach for contraction analysis. One
no longer considers the copy of the system but the variation of the system. This is
obviously a new way of thinking and a turning point for contraction analysis. But we
remark that some of the analysis in the paper [72] is not easy to justify mathematically.
For example, the term “virtual displacement” and “infinitesimal distance” are not precise
mathematical languages and should be further clarified. Faced with this issue, F. Forni
and R. Sepulchre proposed a framework in [41] that we are going to introduce in next
subsection, which successfully solved the mentioned problems.

2.3.4 Contraction Analysis on Finsler Manifolds

Based on the works of W. Lohmiller and J.J. Slotine [72], F. Forni and R. Sepulchre
proposed in 2014 a differential Lyapunov framework for contraction analysis [41]. They
suggested to study contraction using Finsler geometry on manifolds. As we have seen in
Section 2.2, Finsler geometry is a kind of metric geometry, which includes Riemannian
geometry as a special case. It does not cause any trouble in this thesis, however, to view
a Finsler structure as a Riemannian norm.

The following definition and theorem are due to F. Forni and R. Sepulchre [41].
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Definition 2.3.5 ([41]). Given a manifold M equipped with a Finsler structure F , a
candidate Finsler-Lyapunov function is a continuously differentiable function V : TM →
R+, such that

c1F (x, δx)p ≤ V (x, δx) ≤ c2F (x, δx)p, (2.22)

is verified for all tangent vectors (x, δx) ∈ TM , where TM is the tangent bundle of M ,
and c1, c2 and p ≥ 1 are some positive constants.

Loosely speaking, like a Riemannian metric, a Finsler structure is a characterization
of the infinitesimal distance between two sufficiently close points on a manifold. For a
rigorous definition, see Definition 2.2.8.

Theorem 2.10 ([41]). Consider the system (2.6) defined on M , in which f is C2, a
connected and forward invariant set Q, and a function α : R≥0 → R≥0. Let V be a
candidate Finsler-Lyapunov function such that in local coordinates,

∂V (x, δx)
∂x

f(x) + ∂V (x, δx)
∂δx

∂f(x)
∂x

δx ≤ −α(V (x, δx)), (2.23)

for each t ∈ R, x ∈ Q ⊂ M , and δx ∈ TxM . Then the system (2.6) is

(IS) incrementally stable on Q if α(s) = 0, ∀s ≥ 0.

(IAS) incrementally asymptotically stable on Q if α is a class K function.

(IES) incrementally exponentially stable on Q if α(s) = λs, for all s ≥ 0 and some λ > 0.

Remark 2.5. In the above definition and theorem, the key object is the newly introduced
Finsler-Lyapunov function. This theorem can recover many classical results in contraction
theory. But it should be noted that (2.23) is expressed in local coordinates. So on the one
hand, its geometric meaning is not straightforward, on the other, if one wants to analyze
global contraction further analysis will be needed. Nevertheless, Theorem 2.10 is already
rich enough to derive some interesting results.

As an example, recall that in Section 2.3.2, we have discussed the contraction proper-
ties using matrix measure. It can be shown that the matrix measure method is a special
case of the above theorem. In fact, suppose that (2.16) holds and consider the Finsler-
Lyapunov candidate V (x, δx) = |δx| by setting F (x, δx) = |δx| and p = 1 [41]. Since
V (x, δx) does not depend on x, by (2.23), we have

∂V (x, δx)
∂δx

∂f(x)
∂x

= lim
h→0+

V (x, δx+ hJf (x)δx) − V (x, δx)
h
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≤ lim
h→0+

|I + hJf (x)||δx| − |δx|
h

= lim
h→0+

|I + hJf (x)| − 1
h

V (x, δx)

= µ(Jf (x))V (x, δx)

= −cV (x, δx), ∀t ≥ 0, x ∈ C, δx ∈ Rn

where Jf (x) is the Jocabian of f(x). Therefore the condition 3 in Theorem 2.10 is satisfied,
which implies that the system is IES. Note that the function V (x, δx) = |δx| is not C1.
Therefore, strictly speaking, it does not meet all the requirements of a Finsler-Lyapunov
candidate. However, Theorem 2.10 can still hold by using Dini derivative in (2.23).

The differential contraction analysis method proposed by W. Lohmiller and J.J. Slo-
tine [72] is also a special case of Theorem 2.10. In fact, consider the Finsler-Lyapunov
candidate V (x, δx) = δxTM(x)δx, where M(x) is the same as in Section 2.3.3 and
F (x, δx) =

√
δxTM(x)δx and p = 2 in Definition 2.3.5. Then by (2.23) we know that

V̇ (x, δx) = δxT
(
∂f

∂x

T

M(x) +M(x)∂f
∂x

+ Ṁ(x)
)
δx.

Therefore, if the condition (2.21) is satisfied, we have

V̇ (x, δx) ≤ −λδxTM(x)δx.

Invoking Theorem 2.10, the system is again IES.

2.3.5 Contraction Analysis on Riemannian Manifolds

Riemannian manifold is one of the most important classes of Finsler manifold. In fact, all
the manifolds that we will meet in this thesis are Riemannian, therefore, it is worthwhile
to see what kind of result can one get when Theorem 2.10 is specified to Riemannian man-
ifold case. Consider the Riemannian manifold M . Let ∇ be the Levi-Civita connection
associated with this metric. J. Simpson-Porco and F. Bullo proved the following theorem.

Theorem 2.11 ([112]). Consider the system (2.6), a connected set Q and a positive
constant λ. If

⟨∇vxf, vx⟩ ≤ −λ|vx|2, ∀vx ∈ TxQ. (2.24)

Then there exists K ≥ 1, such that for all x1, x2 ∈ Q, there holds

d(X(t, x1), X(t, x2)) ≤ Ke−λtd(x1, x2).
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Remark 2.6. To gain an insight about Theorem 2.11, simply consider the Euclidean
space Rn equipped with an inner product ⟨v, v⟩ = vTPv where P ∈ Rn×n is a constant
symmetric positive definite matrix. In this case, the covariant derivative is the directional
derivative, and therefore the inequality (2.24) reads

vT
∂f(x)
∂x

T

Pv ≤ −λvTPv, (x, v) ∈ Rn × Rn

or
P
∂f(x)
∂x

+ ∂f(x)
∂x

T

P ≤ −λP, x ∈ Rn.

Thus one recovers the inequality (2.21) when T is constant.

It should be noted that this theorem is derived independently of the theory developed
by F. Forni and R. Sepulchre [41]. In Chapter 4, we show that it can be obtained from
the intrinsic form of Theorem 2.10.

2.3.6 Transverse Exponential Stability

In 2016, V. Andrieu et al. studied the so called transverse exponential stability [7]. Such
stability has close relationships with contraction properties, and will be used in Chapter
6 for robust analysis, so we state their main results here.

Consider the system
ė = F (e, x), ẋ = G(e, x), (2.25)

where e ∈ Rne , x ∈ Rnx . For convenience, denote (E(t, e0, x0), X(t, e0, x0)) the solution
with initial condition (e0, x0). The authors have given the following defintions.

Definition 2.3.6 ([7]). The system (2.25) is called

• TULES-NL (Transversal uniform local exponential stability): If there exist positive
numbers r, k, λ, such that for all (e0, x0, t) ∈ B0e(r) × Rnx × R+, there holds

|E(t, e0, x0)| ≤ k|e0|e−λt

• UES-TL (Uniform exponential stability for the transversally linear system): If for
the system

˙̃x = G̃(x̃) := G(0, x̃),

there exist positive constants k̃, λ̃, such that the solutions (Ẽ(t, ẽ0, x̃0), X̃(t, x̃0))of
the system

˙̃e = ∂F

∂e
(0, x̃)ẽ, ˙̃x = G̃(x̃)
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satisfy

|Ẽ(t, ẽ0, x̃)| ≤ k̃e−λ̃t|ẽ0|,

∀(t, ẽ0, x̃0) ∈ Rne × Rnx × R+.

• ULMTE (Uniform Lyapunov Matrix Transversal Equation): If for all positive ma-
trices Q, there exists corresponding P : Rnx → Rne×ne , positive constants p1, p2,
such that for all x̃ ∈ Rnx , there holds

lim
h→0

P (X̃(h, x̃)) − P (x̃)
h

+ P (x̃)∂F
∂e

(0, x̃) + ∂F

∂e
(0, x̃)TP (x̃) ≤ −Q

and
p1I ≤ P (x̃) ≤ p2I.

In [7], the authors proved that under mild conditions, the three properties in Definition
2.3.6 are equivalent. Since these assumptions are too technical, we do not go into details
now.

The relationships between this definition and contraction can be seen from the follow-
ing arguments: let F (e, x) = f(x) + f(x− e), G(e, x) = f(x), since

X(t, e0, x1) = x1 +
∫ t

0
f(X(s, e0, x1))ds

X(t, e0, x2) = x2 +
∫ t

0
f(X(s, e0, x2))ds,

then

X(t, e0, x2) −X(t, e0, x1) = x2 − x1 +
∫ t

0
f(X(s, e0, x2)) − f(X(s, e0, x1))ds.

Denote φ(t) = X(t, e0, x2) −X(t, e0, x1), then one gets

φ(t) = φ(0) +
∫ t

0
f(X(s, e0, x1) + φ(s)) − f(X(s, e0, x1))ds.

Besides,

E(e0, x1, t) = e0 +
∫ t

0
f(X(s, e0, x1) + E(s, e0, x1)) − f(X(s, e0, x1))ds.

Let e0 = x2 − x1. By the uniqueness of the existence of solutions, we get

E(t, x2 − x1, x1) = X(t, x2 − x1, x2) −X(t, x2 − x1, x1).

Therefore, the dynamics of e characterizes the dynamics of the difference between two
solutions of the system (2.6).
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2.3.7 Two Applications

We mention two important applications that will be dealt with in this thesis, namely,
contraction-based observer and synchronization.

2.3.7.1 Observer Design

Consider a system 
ẋ = f(x)

y = h(x)
(2.26)

where y is the measured output. The target is to design an observer to reconstruct x.
A contraction-based observer is proceeded as follows. If there exists a function g such

that, f(x) can be rewritten as f(x) = g(x, h(x)) in such a way that the system

ż = g(z, h(x(t)))

is contractive, where h(x(t)) is viewed as a time varying signal, then an observer can be
constructed as follows

˙̂x = g(x̂, y). (2.27)

The convergence of this observer is obvious since x(t) is a particular solution to (2.27) and
by the contraction of this system, all solutions should converge to this particular solution.

2.3.7.2 Synchronization

Consider two coupled systems [133]:

ẋ1 = f(x1)

ẋ2 = f(x2) + u(x1) − u(x2).

where x1, x2 ∈ Rm is the state, f(xi) the non-coupled dynamics, and u(x1) − u(x2) the
coupled force. According to contraction analysis, if the vector field f(x)−u(x) is contract-
ing, then since x1(t) is a solution to the second equation, we assert that x1(t) converges
to x2(t) exponentially, meaning that x1(t) and x2(t) synchronize.

Obviously, the above reasoning can be also used to analyze the synchronization of the
following system with n subsystems.

ẋ1 = f(x1, t)

ẋ2 = f(x2, t) + u(x1) − u(x2)
...

ẋn = f(xn, t) + u(xn−1) − u(xn).
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Multi-agent systems with other topologies have also been reported in [133].



Chapter 3

Stability analysis on Riemannian
Manifolds

In this chapter, we study stability notions on Riemannan manifolds. Although the thesis is
mainly about contraction analysis, it will be seen in later chapters that stability analysis
and contraction analysis share much in common. For example, many techniques used
in the proof of converse theorem for stability will also appear in the proof of converse
contraction theorem. Thus this chapter serves as a preparation for contraction analysis
on manifolds, but it is also important in its own right.

We will meet two kinds of stability, 1) the stability of an equilibrium and 2) the
stability of a nontrivial trajectory. For 1), the main result is the converse Laypunov
function theorem. For 2), a theory for the analysis of local exponential stability of a
trajectory will be developed. Unlike in Euclidean space, on a manifold, problem 2) usually
cannot be converted to 1), therefore it should be treated separately.

3.1 Stability Analysis on Riemannan Manifolds

Two kinds of systems will be met in this manuscript, namely, time varying system Σ1 and
time-invariant system Σ2.

Σ1 : ẋ = f(t, x), t ∈ R+, x ∈ M (3.1)

Σ2 : ẋ = f(x), t ∈ R+, x ∈ M (3.2)

where M is the state space. The vector fields f(t, x) and f(x) are assumed to be C1 with
respect to t, x. An equilibrium is a point x∗ such that f(t, x∗) = 0, ∀t ∈ R+ (f(x∗) = 0).
Since time invariant systems are strictly included in the set of time varying systems, all

49
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the results obtained for time varying systems directly carry over to the autonomous case,
but the converse is not true.

In this section, we prove converse Lyapunov theorem for stability of an equilibrium
on Riemannan manifolds. The most relevant results to this section can be found in [122],
however, we follow a different approach which does not depend on local coordinates and
does not rely on converse results in Euclidean space. To begin with, we set up some
necessary backgrounds.

Definition 3.1.1. Suppose x∗ is an equilibrium for the system (3.1), then x∗ is said to
be

1. (locally) uniformly stable (LUS) if there exists a class K function α and a positive
constant c, independent of t0, such that for all t ≥ t0 ≥ 0 and x0 ∈ Bx∗(c):

d(ϕ(t; t0, x0), x∗) ≤ α(d(x0, x∗)), ∀t ≥ t0 ≥ 0;

2. (locally) uniformly asymptotically stable (LUAS) if there exists a class KL function
β and a positive constant c, independent of t0, such that for all t ≥ t0 ≥ 0 and
x0 ∈ Bx∗(c):

d(ϕ(t; t0, x0), x∗) ≤ β(d(x0, x∗), t− t0); (3.3)

3. (locally) exponentially stable (LES) if there exists three positive constants K, λ and
c such that for all t ≥ t0 ≥ 0 and x0 ∈ Bx∗(c):

d(ϕ(t; t0, x0), x∗) ≤ Ke−λ(t−t0)d(x0, x∗); (3.4)

4. uniformly globally asymptotically stable (UGAS) if (3.3 )is satisfied for all x0 ∈ M ;
globally exponentially asymptotically stable (GES) if (3.4) is satisfied for all x0 ∈ M .

Remark 3.1. In [24], [122], stability definitions are given via the ε-δ language. However,
it is not hard to show that the two ways are equivalent, see for example [122]. Similar
to the Euclidean case, the comparison functions are introduced to simplify the stability
analysis, especially for time varying systems.

In Euclidean space, one needs to calculate the partial derivate of the Lyapunov can-
didate V . However, on a manifold, the partial derivative of a function is normally not a
coordinate-free notion. To handle this, Lie derivate will be used instead. On the other
hand, we will deal with time varying systems, therefore we introduce the concept of timed
Lie derivative.
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Definition 3.1.2 (Timed Lie derivative). Rewrite the system (3.1) as follows:

dx(t)
dt

= f(s(t), x(t))

ds(t)
dt

= 1,
(3.5)

with initial condition
x(t0) = x0, s(t0) = t0.

The defined system (3.5) is now time-invariant, thus the Lie derivative of a function along
this system is well-defined. The Lie derivative of V with respect to (3.1) is defined as the
Lie derivative of V with respect to the system (3.5), and is denoted LfV . More precisely,

LfV (t, x) := Lf̄V (t, x) (3.6)

where f̄ is the augmented vector field col(f(s, x), 1).

Remark 3.2. Lf̄V is well defined since it is the usual Lie derivative of a time-invariant
function with respect to a time-invariant vector field. Since the flow of f̄ is (ϕf (t; t0, x0), t−
t0). In coordinates, at point (t0, x0), it reads

Lf̄V (t0, x0) = lim
t→t0

V (t, ϕf (t; t0, x0)) − V (t0, x0)
t− t0

= ∂V

∂t
(t0, x0) + ∂V

∂x
(t0, x0)f(t0, x0),

which coincides with the time derivative of V along (3.1) and is indeed the correct defintion
we need.

We are now in position to state the Lyapunov stability theorem on Riemannian man-
ifolds.

Theorem 3.1. Let x∗ be an equilibrium point of the system (3.1) and D be an open
connected neighborhood of x∗. Let V : R+ ×D → R+ be a Lyapunov candidate such that

W1(d(x, x∗)) ≤ V (t, x) ≤ W2(d(x, x∗)), ∀t ≥ 0, x ∈ D, (3.7)

then x∗ is uniformly stable if
LfV (t, x) ≤ 0;

it is uniformly asymptotically stable if

LfV (t, x) ≤ −W3(d(x, x∗)), (3.8)

where Wi are class K functions. If Wi(r) = cir
p, where ci > 0, for i = 1, 2, 3 and p > 0,

then (3.7) and 3.8) together imply exponentially stability.
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This theorem can be proved by repeating the procedures used in Euclidean space [58]

by noticing that
d
dtV (t, ϕ(t; t0, x0)) = LfV (t, ϕ(t; t0, x0)).

3.1.1 Converse theorem on Riemannian manifold

In this subsection, we prove the converse theorem of Theorem 3.1. To streamline our idea,
in the sequel, we only prove the global version, which can be easily extended to local case.

Recall that, in the proof of converse theorems for GES, there is a key assumption: the
global Lipschitz condition. In Rn, f : Rn → Rn is said to be globally Lipschitz continuous
if there exists a constant L such that

|f(x) − f(y)| ≤ L|x− y|, ∀x, y ∈ Rn

where |·| is the Euclidean norm. On Riemannian manifold, if f is a vector field, f(x) and
f(y) will live in different tangent spaces, so it is not possible to compare them directly.
In [122], the authors considered the tangent map

Tf : TM → TTM.

At every point x ∈ M , Txf is a linear operator. The authors assume this operator to be
uniformly bounded and claim that [122, (3.61)]

|Txf(t, x)(X)|e ≤ c2|Txf(t, x)(X)|g, (3.9)

when
|X|e ≤ c2|X|g, ∀X ∈ TxM (3.10)

where |·|e and |·|g stand for the Euclidean and Riemannian metric respectively, and con-
dition (3.9) will be used as the Lipschitz continuity condition on Riemannian manifolds.
However, Txf(t, x)(X) lives in Tf(x)TM so its Riemannian norm needs to be defined.
There exist canonical Riemannian metrics on the second order tangent bundle, such as
the Sasaki metric, we remark that however, even if |Txf(t, x)(X)|g is replaced by a Rie-
mannian metric on TTM , the implication from (3.10) to (3.9) is not straightforward.

Instead of defining a metric on TTM and studying the tangent map, we consider the
Riemannian version of Lipschitz continuity. This definition can be found for example in
[26, Chapter II.3]. Intuitively, we transport two tangent vectors into a same tangent space
so that we can compare them.

For a complete Riemannian manifold M , given x, y ∈ M , there exists a minimizing
geodesic curve γ : [0, 1] → M joining x to y. Given W ∈ TxM , let W (t) be the parallel
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transport of W along γ, i.e., W (t) ∈ Tγ(t)M and DW (t)/dt = 0, for all t ∈ [0, 1]. Then
we denote P y

xW =: W (1) ∈ TyM , i.e. we transport the vector W in TxM to TyM .

Definition 3.1.3 (Lipschitz continuity). A vector field f on M is said to be globally
Lipschitz continuous on M , if there exists a constant L > 0 such that for all p, q ∈ M and
all γ geodesic joining p to q, there holds

∣∣∣P q
p f(p) − f(q)

∣∣∣ ≤ Ld(p, q)

where | · | is the norm induced by the Riemannian metric, d the Riemannian distance and
L is called the Lipschitz constant.

Assume that f is C1. Then it can be easily shown that if |∇c′(0)f | ≤ L for all c(t) with
|c′(0)| = 1, then, f is Lipschitz continuous with constant L, and vice versa. Since the
Levi-Civita connection ∇ is an affine connection, we have ∇vV = |v|∇v/|v|V , consequently,
|∇c′(0)f | ≤ L is equivalent to |∇vf | ≤ L|v| for all v ∈ TM .

Lemma 3.1. Given a C1 vector field f on a complete Riemannian manifold M , then f

is Lipschitz with constant L on M if and only if |∇vf | ≤ L|v| for v ∈ TM .

Proof. Necessity: Suppose that f is Lipschitz continuous with constant L. Given v ∈
TM , with |v| = 1, there exists a normalized minimizing geodesic γ : [0, T ] → M with
γ(0) = π(v) and γ′(0) = v. Then

|∇vf | = |∇γ′(0)f | =
∣∣∣∣∣∣ lim
t→0+

P
γ(0)
γ(t) f(γ(t)) − f(γ(0))

t

∣∣∣∣∣∣
= lim

t→0+

∣∣∣∣∣∣
P
γ(0)
γ(t) f(γ(t)) − f(γ(0))

t

∣∣∣∣∣∣
≤ lim

t→0+

∣∣∣∣∣Ld(γ(0), γ(t))
t

∣∣∣∣∣
= L

since γ is normalized. Since ∇ is affine connection, the necessity follows.
Sufficiency: Suppose that |∇vf | ≤ L|v| for all v ∈ TM . Given p, q ∈ M and a

normalized minimizing geodesic γ joining p to q with γ(0) = p and γ(t) = q. Then

|P q
p f(p) − f(q)| = |P γ(0)

γ(t) f(γ(t)) − f(γ(0))|

=
∣∣∣∣∣
∫ t

0

d

ds
P
γ(0)
γ(s) f(γ(s))ds

∣∣∣∣∣
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=
∣∣∣∣∫ t

0
−∇γ′(s)f(γ(s))

∣∣∣∣ ds
≤ Lt

= Ld(p, q)

This completes the proof.

Assume that f is C1. In Euclidean space, the covariant derivative is simply the
directional derivative, i.e., ∇vf = ∂f

∂x
, by the above lemma we see that f is Lipschitz

continuous with constant L if and only if |∇vf = ∂f
∂x

| ≤ L. This indeed corresponds to
the usual definition of Lipschitz continuity since it is equivalent to saying |f(x) − f(y)| ≤
L|x− y|. We will see in the following that on a Riemannian manifold, it is the covariant
derivative rather than the tangent map which comes into play.

The following lemma is key to the proof of the converse theorem.

Lemma 3.2. Assume that the vector field of (3.1) globally Lipschitz continuous with
constant L, then there holds the following estimation

d(x1, x2)e−L(τ−t) ≤ d(ϕ(τ ; t, x1)), ϕ(τ ; t, x2)) ≤ d(x1, x2)eL(τ−t), (3.11)

for all τ ≥ t, x1, x2 ∈ M .

Proof. Suppose that x1 and x2 are joined by a normalized geodesic γ : [0, ŝ] → M , with
γ(0) = x1 and γ(ŝ) = x2, where ŝ is the arc-length of γ. Then the map F (t, s) =
ϕ(t; t0, γ(s)) defines a variation of γ. By the first variation formula of arc length (2.5), we
have

d

dτ
d(ϕ(τ ; t, x1), ϕ(τ ; t, x2))

∣∣∣∣∣
τ=t

=
〈
∂ϕ(t; t0, γ(s))

∂s
,
∂ϕ(t; t0, γ(s))

∂t

〉∣∣∣∣∣
s=ŝ,τ=t

s=0,τ=t

= ⟨γ′(ŝ), f(x2)⟩ − ⟨γ′(0), f(x1)⟩

=
〈
P x1
x2 γ

′(ŝ), P x1
x2 f(x2)

〉
− ⟨γ′(0), f(x1)⟩

=
〈
γ′(0), P x1

x2 f(x2) − f(x1)
〉
, (3.12)

where the third equality follows from the inner product preserving property of the parallel
transport operator. Since γ is normalized, by the Lipschitz continuity, we have∣∣∣∣∣ ddτ d(ϕ(τ ; t, x1)), ϕ(τ ; t, x2))

∣∣∣∣∣
τ=t

≤ Ld(x1, x2).

Using the semi-group property of the flow, for any s > t, we have

d

dτ
d(ϕ(τ ; t, x1)), ϕ(τ ; t, x2))

∣∣∣∣∣
τ=s
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= d

dτ
d(ϕ(τ ; s, ϕ(s; t, x1)), ϕ(τ ; s, ϕ(s; t, x2)))

∣∣∣∣∣
τ=s

,

hence ∣∣∣∣∣ ddτ d(ϕ(τ ; t, x1)), ϕ(τ ; t, x2))
∣∣∣∣∣
τ=s

≤ Ld(ϕ(s; t, x1), ϕ(s; t, x2)).

Or equivalently,

−Ld(ϕ(τ ; t, x1), ϕ(τ ; t, x2)) ≤ d

dτ
d(ϕ(τ ; t, x1)), ϕ(τ ; t, x2)) ≤ Ld(ϕ(τ ; t, x1), ϕ(τ ; t, x2)),

from which we get (3.11) invoking Gronwall lemma.

Remark 3.3. As we have remarked earlier, when working in Euclidean space, the Lips-
chitz condition in the Definition 3.1.3 is simply |f(t, x) − f(t, y)| ≤ L|x− y|. And Lemma
3.2 amounts to

|x1 − x2|e−L(τ−t) ≤ |ϕ(τ ; t, x1)) − ϕ(τ ; t, x2)| ≤ |x1 − x2|eL(τ−t). (3.13)

This is well-known, see for example in [58].
Our main result in this section is the following converse result for GES on Riemannian

manifolds.

Theorem 3.2. Assume that f(·, x) is globally Lipschitz (with constant L). Let x∗ be a
GES equilibrium point of the system (3.1) onM . Then there exists a continuous Lyapunov
candidate V satisfying the following properties:

1. There exist two positive constants c1 and c2, such that

c1d(x, x∗) ≤ V (t, x) ≤ c2d(x, x∗), ∀x ∈ M, t ≥ 0. (3.14)

2. The Lie derivative of V (t, x) in the sense of Definition 3.1.2 along the system satisfies

LfV (t, x) ≤ −c3V (t, x), ∀x ∈ M, t ≥ 0 (3.15)

where c3 is a positive constant.

3. If d(·, x∗) : M → R is class C1. Then for every t, the differential of V (t, x), dV (t, x) ∈
T ∗M is uniformly bounded on T ∗M :

|dV (t, x)| ≤ c4, ∀x ∈ M, t ≥ 0 (3.16)

where c4 is a positive constant independent of t and x.
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Remark 3.4. For ω ∈ T ∗M , the norm of ω is defined as

|ω| = sup
⟨v,v⟩=1

⟨ω|v⟩

where ⟨·|·⟩ stands for the pairing between ω and v.

Proof. Item 1: Consider the function

V (t, x) =
∫ t+δ

t
d(ϕ(τ ; t, x), x∗)dτ. (3.17)

Setting x2 = x∗ in Lemma 3.2, we get the following estimate by the fact that x∗ is an
equilibrium point:

d(x, x∗)e−L(τ−t) ≤ d(ϕ(τ ; t, x)), x∗) ≤ d(x, x∗)eL(τ−t), (3.18)

∀τ ≥ t, ∀x ∈ M . Thus the defined function (3.17) admits the following bounds:

V (t, x) =
∫ t+δ

t
d(ϕ(τ ; t, x), x∗)dτ

≥
∫ t+δ

t
d(x, x∗)e−L(τ−t)dτ

= 1 − e−Lδ

L
d(x, x∗),

and

V (t, x) =
∫ t+δ

t
d(ϕ(τ ; t, x), x∗)dτ

≤
∫ t+δ

t
Ke−λ(τ−t)d(x, x∗)dτ

= K(1 − e−λδ)
L

d(x, x∗).

So we can find two positive constants c1, c2 such that

c1d(x, x∗) ≤ V (t, x) ≤ c2d(x, x∗), ∀x ∈ M, t ≥ 0. (3.19)

Item 2: In order to estimate the evolution of V along the system’s solutions, we again
utilize the semi-group property:

V (s, ϕ(s; t, x)) =
∫ s+δ

s
d(ϕ(τ ; s, ϕ(s; t, x)), x∗)dτ =

∫ s+δ

s
d(ϕ(τ ; t, x), x∗)dτ.

Therefore

LfV (t, x) = d

ds
V (s, ϕ(s; t, x))

∣∣∣∣∣
s=t

= d(ϕ(t+ δ; t, x), x∗) − d(x, x∗)
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≤ −(1 −Ke−λδ)d(x, x∗)

= −K ′d(x, x∗), ∀t, ∀x ∈ M, (3.20)

where δ is chosen such that K ′ > 0. By (3.19),

LfV (t, x) ≤ −K ′d(x, x∗) ≤ −K ′

c2
V (t, x).

Now c3 can be set as c3 = K ′/c2.
Item 3: Denote ht(x) = V (t, x), then for any v ∈ TxM ,

dht(v) = d
ds

∣∣∣∣∣
s=0

ht(c(s))

where c : [−ε, ε] → M is a smooth curve with c′(0) = v, ε > 0 a constant. Hence

dht(v) =
∫ t+δ

t

d
dsd(ϕ(τ ; t, c(s)), x∗)

∣∣∣∣∣
s=0

dτ (3.21)

Since (τ, s) 7→ ϕ(τ ; t, c(s)) is a variation of the curve c (see Definition 2.2.7), then by the
first variation formula,

d
dsd(ϕ(τ ; t, c(s)), x∗)

∣∣∣∣∣
s=0

= ⟨ϕ(τ ; t, x)∗v, γ
′(1)⟩ ,

where ϕ(τ ; t, x)∗v is the push forward of the vector c′(0) by the map x 7→ ϕ(τ ; t, x) and γ
is the normalized geodesic joining x∗ to ϕ(τ ; t, x). Hence∣∣∣∣∣ d

dsd(ϕ(τ ; t, c(s)), x∗)
∣∣∣∣∣
2

s=0
≤ ⟨ϕ(τ ; t, x)∗v, ϕ(τ ; t, x)∗v⟩ . (3.22)

Now we estimate the term on the right hand side.

d
dτ

1
2 ⟨ϕ(τ ; t, x)∗v, ϕ(τ ; t, x)∗v⟩ =

〈
D
dτ ϕ(τ ; t, x)∗v, ϕ(τ ; t, x)∗v

〉

=
〈
∇f(ϕ(τ ;t,x))ϕ(τ ; t, x)∗v, ϕ(τ ; t, x)∗v

〉
=
〈
∇ϕ(τ ;t,x)∗vf(ϕ(τ ; t, x)), ϕ(τ ; t, x)∗v

〉
+ ⟨[f(ϕ(τ ; t, x)), ϕ(τ ; t, x)∗v], ϕ(τ ; t, x)∗v⟩ ,

where we have used the symmetry of the Levi-Civita connection, i.e.

∇XY − ∇YX = [X, Y ].

However,

[f(ϕ(τ ; t, x)), ϕ(τ ; t, x)∗v] = Lf(ϕ(τ ;t,x))ϕ(τ ; t, x)∗v
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= d
dτ ϕ

∗ϕ∗v = d
dτ v = 0.

Therefore
d
dτ

1
2 ⟨ϕ(τ ; t, x)∗v, ϕ(τ ; t, x)∗v⟩ =

〈
∇ϕ(τ ;t,x)∗vf(ϕ(τ ; t, x)), ϕ(τ ; t, x)∗v

〉
≤ L ⟨ϕ(τ ; t, x)∗v, ϕ(τ ; t, x)∗v⟩

where we have used that fact that |∇vf | ≤ L|v|. So

⟨ϕ(τ ; t, x)∗v, ϕ(τ ; t, x)∗v⟩ ≤ e2L(τ−t)|v|2

or
|ϕ(τ ; t, x)∗v| ≤ eL(τ−t)|v|, ∀τ ≥ t.

dht(v) ≤
∫ t+δ

t
eL(τ−t)|v|dτ = eLδ − 1

L
|v|.

So we have obtained
|dxV (t, x)(v)| ≤ c4|v|

or
|dxV (t, x)| ≤ c4, ∀x ∈ M,

where c4 = (eLγ − 1)/L.

Remark 3.5. In Item 3, the distance function d(x, x∗) is required to be C1. This is
however, not guaranteed in general. For example, in Euclidean space, d(x, x∗) = |x− x∗|,
which is not differentiable at the point x∗. To remedy this, it suffices to consider the
following Lyapunov candidate:

V (t, x) =
∫ t+γ

t
d(ϕ(τ ; t, x), x∗)2dτ (3.23)

The proof can be carried out in exactly the same way as Theorem 3.2, except that the
claims of Item 1 and 3 should change accordingly: the bound of V (t, x) should be

c1d(x, x∗)p ≤ V (t, x) ≤ c2d(x, x∗)2

and dV satisfies
|dV (t, x)| ≤ c4d(x, x∗).

Remark 3.6. In contrast to the proof in [122], all the proof here is coordinate-free. So if
the system has an invariant set U as region of attraction, then a Lyapunov function can
be naturally defined everywhere on U .

Remark 3.7. In Euclidean space, the Lyapunov candidate becomes

V (t, x) =
∫ t+δ

t
|ϕ(τ ; t, x)|2dτ

this reduces to the standard construction, see for example [58].
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3.1.2 Discussions and applications

Theorem 3.2 requires the system to be globally stable. However, such requirement is not
essential. In fact, all the procedures of the proof can be done locally in the same manner.
Hence we can obtain local version of converse theorems.

The extension to asymptotically stability is also not difficult. Following [58], we just
need to modify the Lyapunov candidate to

V (t, x) =
∫ ∞

t
G(d(ϕ(τ ; t, x), x∗))dτ

where G is constructed from the following Massera’s lemma.

Lemma 3.3 (Massera). Let g : R+ → R be a positive, continuous, strictly decreasing
function with g(t) → 0 as t → ∞. Let h : R+ → R be a positive, continuous, non
decreasing function. Then, there exists a function G(t) such that

1. G and its derivative G′ are class K functions;

2. for any continuous function u(t) that satisfies 0 ≤ u(t) ≤ g(t) for all t ≥ 0, there
exist positive constants k1 and k2, independent of u, such that∫ ∞

0
G(u(t))dt ≤ k1;

∫ ∞

0
G′(u(t))h(t)dt ≤ k2.

The rest of the proof can be done similarly as that of Theorem 3.2. That is to say, we
have the following theorem.

Theorem 3.3. Let x∗ be a UGAS equilibrium point of the system (3.1) on the M , i.e.,

d(ϕ(t; t0, x0), x∗) ≤ β(d(x0, x∗), t− t0), ∀t ≥ t0, x0 ∈ M

for a class KL function β. Then there exists a Lyapunov candidate V such that for all
t ≥ t0 ≥ 0 and all x ∈ M , the following three properties hold

1. V is C1 and satisfies

α1(d(x, x∗)) ≤ V (t, x) ≤ α2(d(x, x∗)),

2. The timed Lie derivative of V (t, x) along the system satisfies

LfV (t, x) ≤ −α3(V (t, x))
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3. If d(·, x∗) : M → R is class C1. Then for every t, the differential of V (t, x), dV (t, x) ∈
T ∗M satisfies

|dV (t, x)| ≤ α4(V (t, x)) (3.24)

where αi, i = 1, 2, 3, 4 are class K∞ functions.

As an application, we show that Theorem 3.2 can be applied to prove the input-to-
state stability (ISS) of a class of systems. The classical form of this theorem can be found
in [58].

Corollary 3.1. Consider the control system

ẋ = f(t, x, u) (3.25)

on Riemannian manifold M , where f is C1 and globally Lipschitz in x and u is bounded.
Additionally, assume f is globally Lipschitz in u with constant L, i.e.,

|f(t, x, u) − f(t, x, 0)| ≤ L|u|.

If the unforced system ẋ = f(t, x, 0) is GES with respect to equilibrium point x = 0,
then the system (3.25) is ISS.

Proof. By Theorem 3.2, a Lyapunov function V verifying the three conditions can be
constructed for the unforced system ẋ = f(t, x, 0). Rewrite

f(t, x, u) = f1 + f2

where

f1 = f(t, x, 0)

f2 = f(t, x, u) − f(t, x, 0).

By assumption, Lf1V ≤ −c3V . The Lie derivative of V (t, x) with respect to (3.25) reads

LfV = ∂V

∂t
+ LfV = ∂V

∂t
+ dV (f1 + f2)

= Lf1V + dV [f(t, x, u) − f(t, x, 0)]

≤ −c3V + c4|f(t, x, u) − f(t, x, 0)|

≤ −c3V + c4L|u|∞.

Now invoking Gronwall’s lemma, we conclude that the system (3.25) is ISS.
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3.2 Local Exponential Stability of Trajectories

In this section, we study another important kind of stability on Riemannian manifolds:
the stability of a particular solution which is not an equilibrium. We call such solution a
nontrivial solution.

It is well known that local stability of an equilibrium can be analyzed via linearization
in local coordinates (Lyapunov indirect method), just like in Euclidean spaces. Many
control objectives request to go beyond stability of a fixed point and to assess stability
of a particular solution X(·) of the system. This problem classically arises in observer
design [19, 18], trajectory tracking [52, 90, 25], orbital stabilization [139]. In Euclidean
spaces, this may be solved by introducing an error variable between the target trajectory
and the actual state and by studying its dynamics, which is a nonlinear time-varying
system. In particular, local exponential stability (LES) of X(·) can be characterized by
the linearization of this error dynamics near the origin.

For systems evolving on Riemannian manifolds, stability analysis of a given solution
X(·) is more challenging. The difficulty arises from two aspects. On the one hand, the
“error dynamics” is more involved than in the Euclidean case, as the induced Riemannian
distance on manifolds can hardly be used to derive error dynamics directly: there are,
indeed, no generally preferred definition of tracking (or observation, synchronization)
errors for such systems. In practice, one has to choose an error vector according to the
structure of the manifold [25, 64, 79]. On the other hand, the alternative method (via
first-order approximation or partial contraction) is nontrivial when applied to Riemmanian
manifolds, since it is usually a daunting task to calculate the differential dynamics which
involves complicated computations of parallel transport. Overcoming these two major
challenges is the main motivation of this section.

We provide an alternative way to study LES of trajectories on Riemannian manifolds.
More precisely, we show that LES of a given trajectory is equivalent to exponential sta-
bility of the origin of the complete lift of the system along the trajectory. In this way,
we remove the need of obtaining error dynamics and simplify the problem of stability of
a trajectory to that of an equilibrium. Complete lift (sometimes called tangent lift or
prolongation) has already been used to study various control problems: see for instance
[29, 129, 24, 23]. In particular, [23] has already remarked that the complete lift can be
seen as a linearization procedure.

For systems evolving in Euclidean spaces, studying stability of a nontrivial solution
via first-order approximation has already been used and is known as partial (or virtual)
contraction [133, 41]. A successful application may be found in [21] for the stability of
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extended Kalman filter.

Stability of a particular solution is tightly linked to contraction analysis or incremen-
tal stabilities [72, 41, 8] that we have introduced in Chapter 2. In contraction analysis,
stability is imposed on every trajectory since it is required that any pair of solutions
converge to one another. On the one hand, this allows to conduct the analysis or con-
trol design without any prior knowledge about the target trajectory X(·). On the other
hand, this requirement limits the domain of applicability of this approach. For instance,
observer design for non-uniformly observable systems can be achieved (although the re-
quested uniformity does not hold) by imposing persistency of excitation (PE) [92] or by
ensuring uniform complete observability along a specific class of trajectories [17]. Another
illustration is that of trajectory tracking and formation control of non-holonomic systems,
which require PE conditions to achieve asymptotic stability [78]. Taking account of these
issues, we study stability of nontrivial solutions on Riemannian manifolds in this section.

3.2.1 Fundamentals

In this section, we assume the system is of the form (3.1) and that the system is forward
complete. Let X denote a particular solution of this system, namely Ẋ(t) = f(t,X(t))
for all t ≥ 0. Local exponential stability of the particular solution X is defined as follows.

Definition 3.2.1 (LES of a solution). The solution X of the system (3.1) is locally
exponentially stable (LES) if there exist positive constants c,K and λ such that, for all
t0 ≥ 0 and all x0 ∈ M satisfying d(x0, X(t0)) < c, it holds that

d(ϕ(t; t0, x0), X(t)) ≤ Kd(x0, X(t0))e−λ(t−t0), ∀t ≥ t0. (3.26)

Remark 3.8. Intuitively, an LES solution “ attracts” all neighboring trajectories at
an exponential rate that is independent of the initial time t0. This definition should
not be confused with exponential stability of a path, in which solutions are requested
to exponentially converge to the set {X(t) : t ≥ 0}, and which thus constitutes a
weaker property than that of Definition 3.2.1. In particular, a periodic orbit of an au-
tonomous system can never be LES: for two different initial points x, y on the periodic
orbit, lim sup

t→∞
d(ϕ(t; t0, x), ϕ(t; t0, y)) ≥ d(x, y). However, the periodic solution to a time-

varying system can be LES. A simple example can be ẋ = −x + cos(t) + sin(t) to which
sin(t) is an LES solution as can be easily checked from the definition.

In the case when X is constant (meaning X(t) = X0 for all t ≥ t0), Definition 3.2.1
coincides with the definition of LES of an equilibrium, see Definition 3.1.1, and also
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[24, 122]. It is worth stressing that LES solutions may form a dense set in M : for
instance, every solution of ẋ = Ax is LES when A is a Hurwitz matrix.

Remark 3.9. It is well-known that if the autonomous system (3.2) is LES at an equilib-
rium point x∗, then there exists a neighborhood U of x∗ such that U is forward invariant.
This is easily shown by applying the Theorem 3.2. For example, let V be a Lyapunov
function constructed via the converse theorem. Let D = {x : V (x) ≤ c} where c > 0 is
a sufficiently small constant. Obviously D invariant since V̇ ≤ 0. A natural question is,
if a non-trivial solution X is LES, does there exist an invariant set which contains X?
In fact, this question can be answered in a similar fashion by constructing a “Lyapunov
function”.

Proposition 3.1. Suppose that X is an LES solution to the system (3.1). Then there
exists a function V : R+ × U → R+, such that

• U is an open neighborhood of X;

• there exist positive constants c1, c2, c3 satisfying

c1d(x,X(t))2 ≤ V (t, x) ≤ c2d(x,X(t))2,

and
LfV (t, x) ≤ −c3d(x,X(t))2

for all (t, x) ∈ R+ × U .

Proof. Let
V (t, x) =

∫ ∞

t
d(ϕ(τ ; t, x), X(τ))2dτ. (3.27)

Then the proposition is proved by repeating verbatim the procedure in the proof of The-
orem 3.2.

Now we are able to construct an invariant open neighborhood of X. For this, let

Dc :=
⋃
t≥0

{x : V (t, x) < c}.

where c is a sufficiently small positive constant. Then

• Dc is nonempty and open since it is the union of open sets;

• {X(t) : t ≥ 0} ⊆ Dc since V (t,X(t)) = 0 for all t ≥ 0. Thus Dc is an open
neighborhood of X;
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• Dc is invariant, since if x ∈ Dc, by definition, there exists a t ≥ 0, such that
V (t, x) < c. Since V̇ ≤ 0, we have

V (s, ϕ(s; t, x)) ≤ V (t, x) < c, ∀s ≥ t

Therefore, ϕ(s; t, x) ∈ Dc for all s ≥ t.

3.2.2 LES and complete lift

The results presented in this thesis make an extensive use of the complete lift of a vector
field which we have introduced in Section 2.1. Complete lift is a term widely used in
differential geometry [138, 30], see Definition 2.1.18. Its application can also be found in
control theory. For example, A. van der Schaft et al. used this concept to study prolonged
system and differential passivity [29, 129, 128] in a coordinate free manner. F. Bullo and
A. D. Lewis used it to study the linearization of nonlinear mechanical systems, see [24]
and its online supplementary materials. Complete lift is also referred to as prolongation
[31].

Definition 3.2.2 (Complete lift along a solution). The complete lift of the system (3.1)
along a given solution X is defined as

v̇ = f̃(v, t), v(t) ∈ TX(t)M, (3.28)

where f̃ denotes the complete lift of f .

The most important property of the complete lift system is its linearity at a fixed
fibre, namely, if v1 and v2 are two solutions to (3.28), then so is α1v1 +α2v2, where α1, α2

are two arbitrary real constants.
From the above definition, one can easily verify that any solution v of (3.28) has the

property that π(v(t)) = X(t) for all t ≥ 0, where π is the projection map. Hence we say
that (3.28) defines a dynamical system along the particular solution X.

Definition 3.2.3. The system (3.28) is exponentially stable if there exist two positive
constants k, λ such that

|v(t)| ≤ ke−λt|v(0)|, ∀t ≥ 0 (3.29)

Our main result in this section is the following, which can be viewed as an analogue
of the Lyapunov direct method on Riemannian manifolds.
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Theorem 3.4. If a solution X of (3.1) is LES, then the complete lift of the system (3.1)
along X is exponentially stable. If the system (3.1) is periodic in t and X is bounded,
the converse is also true.

The above statement thus allows to transform the stability analysis of a solution into
the stability analysis of a point (the “origin” of the complete lift, or more precisely, the
zero section of the pullback bundle X∗TM). The proof of this theorem relies on the
following lemma.

Lemma 3.4. Let γ1, γ2 be two continuously differentiable curves in M , where M is a
Riemannian manifold. If γ1(0) = γ2(0) and γ′

1(0) = γ′
2(0), then d

(
γ1(s), γ2(s)

)
= O(s2)

when s > 0 is sufficiently small.

Proof. Fixing s > 0, let t 7→ F (t, s), t ∈ [0, T ] where T = d(γ1(s), γ2(s)) is the normalized
geodesic joining γ1(s) to γ2(s). Then F (t, s) forms a smooth variation along the geodesic.
By the the first variational formula of arc-length (see Section 2.2), we have

d

ds
d(γ1(s), γ2(s)) = ⟨γ′

2(s), v′
2(s)⟩ − ⟨γ′

1(s), v′
1(s)⟩

where
v′

1(s) = ∂F

∂t
(0, s), v′

2(s) = ∂F

∂t
(T, s).

Clearly v′
1(s) → v′

2(s) as s → 0 since T → 0. This together with the fact γ′
1(s) → γ′

2(s)
implies

d

ds

∣∣∣∣∣
s=0+

d(γ1(s), γ2(s)) = 0

Hence we can conclude that d(γ1(s), γ2(s)) = O(s2).

Proof of Theorem 3.4. (=⇒) Assume that the solutionX is LES. Then there exist c,K, λ >
0 such that (3.26) is satisfied. Given any t0 ≥ 0 and any x0 ∈ M such that d(x0, X(t0)) <
c, denote the minimizing normalized (i.e., with unit speed) geodesic joining X(t0) to x0

as γ : [0, ŝ] → M , where ŝ := d(X(t0), x0) ≥ 0. It holds in particular that

γ(0) = X(t0), γ(ŝ) = x0.

Let v0 ∈ TM be such that π(v0) = X(t0) and v0 = γ′(0), and let v(·) be the solution to
the complete lift system (3.28) starting from v0 at t0. Then it holds that

ŝ |v(t)| = d
(
expX(t)

(
ŝv(t)

)
, X(t)

)
, ∀t ≥ t0, (3.30)
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where expx : TM → M is the exponential map, by choosing ŝ sufficiently small that exp
is defined. Using the metric property of d, we have that

d
(
expX(t)

(
ŝv(t)

)
, X(t)

)
≤ d

(
expX(t)

(
ŝv(t)

)
, ϕ(t; t0, x0)

)
+ d

(
ϕ(t; t0, x0), X(t)

)
≤ d

(
expX(t)

(
ŝv(t)

)
, ϕ(t; t0, x0)

)
+Kŝe−λ(t−t0). (3.31)

It follows from (3.30) and (3.31) that

|v(t)| ≤ κ(ŝ) +Ke−λ(t−t0) (3.32)

where, for each fixed t ≥ t0,

κ(ŝ) :=
d
(

expX(t)

(
ŝv(t)

)
, ϕ(t; t0, x0)

)
ŝ

. (3.33)

Note that κ is a function of both t and ŝ, but omitting the t argument does not affect the
following analysis. We next show that the term κ(ŝ) is of order O(ŝ). To this end first
notice that, since x0 = γ(ŝ), this term can be rewritten as

κ(ŝ) =
d
(
expX(t)

(
ŝv(t)

)
, ϕ(t; t0, γ(ŝ))

)
ŝ

Consider the functions α1 : ŝ 7→ expX(t) (ŝv(t)) and α2 : ŝ 7→ ϕ(t; t0, γ(ŝ)) (here again, we
have omitted the t argument). Then it holds that α1(0) = α2(0) = X(t) and α′

1(0) =
α′

2(0) = v(t). Thus by Lemma 3.4, we have κ(ŝ) = O(ŝ), or

lim
ŝ→0+

κ(ŝ) = 0, as ŝ → 0+

Now letting ŝ → 0+ in (4.25) and recalling that the geodesic has unit speed, we conclude
from (3.32) that

|v(t)| ≤ K|v(t0)|e−λ(t−t0),

for any v(t0) ∈ TX(t0)M , meaning that the origin of the complete lift is LES.
The proof of the converse is postponed to Chapter 4, Section 4.6.

A direct consequence of Theorem 3.4 is the following sufficient condition for LES of a
solution.

Corollary 3.2. Consider a particular solution X of system (3.1). If there exists a constant
k > 0 such that

⟨∇vf(t, x), v⟩|x=X(t) ≤ −k⟨v, v⟩, ∀v ∈ TX(t)M, t ≥ 0, (3.34)

then the solution X is LES.
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Proof. Let v(·) denote the solution of the complete lift system (3.28) along the solution X
with initial condition v0 and consider the Lyapunov function V defined as V (v) := 1

2⟨v, v⟩.
Then, for all t ≥ t0 ≥ 0, it holds that

dV (v(t))
dt

=
〈
∇Ẋ(t)v(t), v(t)

〉
=
〈
∇v(t)Ẋ(t), v(t)

〉
=
〈
∇v(t)f(X(t), t), v(t)

〉
≤ −k⟨v(t), v(t)⟩

≤ −2kV (v(t)),

where we have used the fact that ∇ ˙X(t)v(t) = ∇v(t)Ẋ(t) since [Ẋ(t), v(t)] = 0. It follows
that |v(t)| ≤ |v(t0)|e−k(t−t0), meaning that the origin of the complete lift is LES. The
conclusion follows by Theorem 3.4.

Remark 3.10. In [112], a similar result to Corollary 3.2 is obtained. The only difference
is that the left hand side term of (3.34) is evaluated for all v ∈ TM in [112], which is
exactly the meaning of contraction that we will study in the next chapters. For this
reason, we postpone the discusion of the details to the next chapter. The advantage of
Corollary 3.2 is that it does not involve the calculation of the complete lift system along
X.

An alternative proof
We now provide an alternative proof of Corollary 3.2, as the technique will be adopted

to study the stability of Lagrangian systems in later chapters. Choose a curve γ : [0, 1] →
M passing through X(t0) at s = 0. Then, given any t0 ≥ 0, (t, s) 7→ ϕ(t; t0, γ(s))
forms a variation of the curve X. Let q : (s, t) 7→ ϕ(t; t0, γ(s)), q′ : s 7→ ∂q

∂s
(s, t), and

q̇ : t 7→ ∂q
∂t

(s, t). It can be verified that q′ is the solution to the complete lift system (3.2.2)
with the initial condition γ′(0). Taking the covariant derivative on both sides of (3.1)
along X, we get

∇q′ q̇ = ∇q̇q
′ = ∇q′f.

Hence
1
2
d

dt
⟨q′, q′⟩|s=0 = ⟨∇q′f, q′⟩|s=0 ≤ −k⟨q′, q′⟩|s=0.

Note that the curve q′|s=0 is the Lie transport of the vector q′|s=0,t=0 along the curve q
and hence the solution to the complete lift system. Since γ is arbitrary, the conclusion
follows from Theorem 3.4.
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Revisit of LES of an equilibrium

Suppose that the system (3.1) has an equilibrium x∗ = 0. We characterize local expo-
nential stability of the equilibrium using Theorem 3.4. Since we are concerned with LES,
without loss of generality, assume that the system (3.1) evolves in Rn with a Riemannian
metric given by a constant symmetric positive definite matrix P , and that X(t) = 0 for
all t ≥ 0. Then the solution to the complete lift system along X(t) ≡ 0 is

V̇ (t) = ∂f(t, 0)
∂x

V. (3.35)

That is, (3.35) shares the same form of the linearized system of (3.1) near the origin.
Theorem 3.4 says that if the system (3.35) is exponentially stable, so is the system (3.1),
which is what the well-known Lyapunov indirect method says. There is however, a dif-
ference between (3.35) and the linearization of (3.1): in (3.35), the vector V (t) ∈ T0Rn

here is a tangent vector. The reason why they share the same form in Euclidean space is
that the tangent space at the origin can be naturally identified with the state space Rn.
However, on a Riemannian manifold, such identification does not hold along a nontrivial
solution.

Figure 3.1: Complete lift in Euclidean space

3.2.3 Boundedness and aperiodicity of LES solutions

When restricting to time-invariant systems, namely the sytem (3.2), some interesting
features can be derived from Theorem 3.4. For example, any LES solution of (3.2) is
necessarily bounded and it cannot be periodic unless it is constant.
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Corollary 3.3. Let X be an LES solution of the time-invariant system (3.2). Then it is
bounded and, if it is periodic, it is necessarily constant.

Note: This result does not hold for time-varying systems. For instance, as remarked
in [101], the solution X(t) = t is LES for the system ẋ = t−x, and it is clearly unbounded.
Similarly, the solution X(t) = sin(t) is LES for ẋ = sin(t) − x and it is clearly periodic.

Proof. For time-invariant system, v = Ẋ is a solution of the complete lift system of (3.2).
Then it follows from Theorem 3.4 that there exist K,λ > 0 such that

|Ẋ(t)| ≤ K|Ẋ(0)|e−λt, ∀t ≥ 0. (3.36)

Hence X cannot be periodic unless it is constant. Furthermore, d(X(t), X(0)) ≤ ℓ(γ)
where γ is the curve s 7→ X(s), s ∈ [0, t]. Therefore, it holds from (3.36) that

d(X(t), X(0)) ≤
∫ t

0
|Ẋ(s)|ds

≤
∫ t

0
k|Ẋ(0)|e−λsds

= k|Ẋ(0)|
λ

(1 − e−λt)

≤ k|Ẋ(0)|
λ

,

which shows that X is bounded.

In [48, Lemma 1], the authors recently obtained a similar result for autonomous sys-
tems, namely, there is a unique attractive equilibrium – limit cycle will never appear – in
a forward invariant set in which the system is incrementally exponentially stable.

As we will see in the next chapter, incremental exponential stability has close rela-
tionship with LES.

Applications of the results in this chapter will be reported in Chapter 5.

3.3 A Brief Summary

In this chapter, we have studied stability analysis on Riemannian manifolds. The main
contributions are now reviewed.

First, we proved converse Lyapunov theorem on Riemannian manifolds in a coordinate
free manner. In the proof, a key step is to use a proper definition of Lipschitz continuity
on Riemannian manifolds.
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Second, we studied local exponential stability of nontrivial solutions on Riemannian

manifolds by lifting the system along the target trajectory into the pullback tangent
bundle. Since the lifted system is fibre-wise linear and it is therefore easier to study.

Another important task of this chapter is to lay some foundations for next chapter.
In particular, some estimations will prove to be useful. Furthermore, at the end of next
chapter, we will find out that there exist strong relationships between LES of nontrivial
solutions and contraction.



Chapter 4

Contraction Analysis on Riemannian
Manifolds

In this chapter, we propose a geometric (or intrinsic) framework for contraction analysis
on Riemannan manifolds. By geometric or intrinsic, we mean that the approach does
not depend on the choice of local coordinates. As we have pointed out in Chapter 1,
although contraction theory has been well established for systems evolving in Euclidean
spaces, it is generally less understood for systems on manifolds. It is true that when
we are concerned with local contraction, working in local coordinates is possible, see for
example [41, 136]. But there are at least two drawbacks of such method: first, calculation
in local coordinates may be quite involved; second, when expressed in local coordinates,
it may be difficult to see how the geometry (e.g., the curvature) of the manifold affects
the contraction of the system. In view of these issues, we rely on the work proposed by
F. Forni and R. Sepulchre [41] to develop an intrinsic framework for contraction analysis
on manifolds.

In [41], F. Forni and R. Sepulchre introduced two essential objects, namely, the Finsler
structure and the Finsler-Lyapunov function. Then sufficient conditions of incremental
stability are deduced by utilizing these two notions. The advantage of this framework was
justified by showing that numerous previous works in the literature can be unified utilizing
this formalism. Nevertheless, there still remain several important issues and interesting
questions in this framework that need to be addressed:

Q1 Most of the results in [41] as well as their proofs are handled in local coordi-
nates. Therefore, the geometric interpretations of the differential conditions ob-
tained therein need to be clarified. This leads to the following question: what is the
geometric essence of this framework?

71
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Q2 The main theorem in [41] (Theorem 2.10) gives a sufficient condition for incremental

stability. A natural question is: is it also necessary? Equivalently, can we prove
converse theorems?

Q3 When a system has an equilibrium, incremental stability implies stability of the
equilibrium. In this case, what is the connection between incremental stability and
stability of the equilibrium?

We provide answers to the questions above in this chapter:

• We give an intrinsic form condition expressed in the tangent bundle, which guar-
antees the incremental stability of the system. This is achieved by studying the
behaviour of the complete lift of the system. The result easily recovers one of the
main results in [41] and gives new geometric insights to it.

• We prove converse theorems for exponential incremental stability in a coordinate-
free way. The results are expressed in the tangent bundle involving no copy of the
original system (cf. [8]).

• We show that contraction can be fully characterized in a tubular neighborhood of
the tangent bundle.

• We reveal the relationship between incremental stability and stability, which are
linked by the so called Krasovskii’s theorem. More precisely, we prove that a Lya-
punov function can be directly constructed from the information of contraction.

• The connection between local exponential stability of nontrivial solutions and con-
traction will also be established.

4.1 Fundamental Theories

It is shown in [41] that a natural setting for contraction analysis is the Finsler geometry.
This work introduced the concept Finsler-Lyapunov function (FLF) which is crucial for
the characterization of incremental stability. We propose a somewhat relaxed definition
of FLF, which will be sufficient for geometric contraction analysis.

Definition 4.1.1. Given a Finsler structure F (refer to Chapter 2 for the definition of
Finsler structure) on the manifold M , a candidate Finsler-Lyapunov function on U ⊆ M

is a C1 function V : R+ × TM |U → R+ satisfying

α1(F (x, δx)) ≤ V (t, x, δx) ≤ α2(F (x, δx)), (4.1)
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for all (t, x, δx) ∈ R+ × TM |U , where α1, α2 are class K∞ functions.

Remark 4.1. In [41], a candidate Finsler-Lyapunov function is defined as a function V

satisfying
c1F (x, δx)p ≤ V (t, x, δx) ≤ c2F (x, δx)p , (4.2)

for some p ≥ 1 and some c1, c2 > 0. This is a special case of (4.1) by taking α1(s) = c1|s|p

and α2(s) = c2|s|p. Hence Definition 4.1.1 is a relaxed version, and we always refer to
(4.11) as a Finsler-Lyapunov function in this thesis.

Remark 4.2. To the best of our knowledge, it is J. Mierczyński who firstly used Finsler
structure to define Lyapunov functions [86, 85]. But we should underscore that the
functions in [85, 86] are defined quite differently from the Finsler-Lyapunov function
here in that the former ones are defined on a cone field of the tangent bundle while the
later is defined on the whole tangent bundle. The functions in [85, 86] are defined to
study cooperative systems. We thus believe that they may have some close relationships
with differential positivity studied by F. Forni et al. in [40].

Remark 4.3. In Definition 4.1.1, the conditions imposed on α1 and α2 can be relaxed to
class K functions, once we have shown the local properties of contraction in Section 4.4.

Since a Riemannian manifold is easier to handle compared to a Finsler one, we focus
on Riemannian manifold, and later we discuss how to extend to the Finsler case. In
the setting of Riemannian manifold, a candidate Finsler-Lyapunov function satisfies the
following condition,

α1(|δx|) ≤ V (t, x, δx) ≤ α2(|δx|) (4.3)

since F (x, δx) = |δx|, where |·| denotes the induced norm of the Riemannian metric, i.e.
|δx| =

√
⟨δx, δx⟩. The Riemannian distance induced by g is

d(x1, x2) = inf
γ∈Γ(x1,x2)

∫ 1

0
|γ′(s)| ds

where Γ(x1, x2) is the set of continuous piecewise C1 curves joining x1 to x2. For any
γ ∈ Γ(x1, x2), there are finitely many points at which γ is not differentiable, therefore
when evaluating the above integration, γ′ can be taken arbitrarily at these points.

In order to be able to handle local and global contraction at the same time, we give
the following definition.

Definition 4.1.2. Let D be a connected subset of the manifold M . Then D is said to
have GC property if one of the following conditions is satisfied
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A1 D ⊆ M is compact with C1 boundary.

A2 D ⊆ M is closed and geodesically convex.1

A3 D = M .

We are now in position to give the definition of incremental stabilities.

Definition 4.1.3. Given a forward invariant set D of the system (3.1), satisfying the GC
property, then the system is called

1. incrementally stable (IS) on D if there exits a class K function α, such that for all
t ≥ t0 ≥ 0 and x1, x2 ∈ D,

d(ϕ(t; t0, x1), ϕ(t; t0, x2)) ≤ α(d(x1, x2)); (4.4)

In particular, it is called globally incrementally stable (GIS) if D = M .

2. incrementally asymptotically stable (IAS) on D if there exists a class KL function
β, such that for all t ≥ t0 ≥ 0 and x1, x2 ∈ D,

d(ϕ(t; t0, x1), ϕ(t; t0, x2)) ≤ β(d(x1, x2), t− t0); (4.5)

In particular, it is called globally incrementally asymptotically stable (GIAS) if D =
M .

3. incrementally exponentially stable (IES) on D if there exists K ≥ 1, λ > 0, such
that for all t ≥ t0 ≥ 0 and x1, x2 ∈ D,

d(ϕ(t; t0, x1), ϕ(t; t0, x2)) ≤ Ke−λ(t−t0)d(x1, x2); (4.6)

In particular, it is called globally incrementally exponentially stable (GIES) if D =
M .

Remark 4.4. Incremental stability may be better called uniform incremental stabiliy,
as the function α is independent of the initial state t0. But to keep consistency with the
literature, we have chosen not to do so (c.f. [41, Definition 1]). Likewise, the above defined
incremental asymptotic stability is indeed uniform incremental asymptotic stability.

1In this thesis, a geodesically convex subset U ⊆ M is such that for any two arbitrary points in U ,
there exists a C1 minimizing geodesic joining the two points and lying entirely in U .
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Remark 4.5. In the third item of Definition 4.1.3, when K = 1, the system is sometimes
called contraction, see for example [5, 83]. Other researchers refer to contraction as certain
incremental stabilities. For example, F. Forni and R. Sepulchre call incremental stability
analysis as contraction analysis [72, 41]. In this thesis, we adopt the latter convention.

Remark 4.6. In the above definition, the conditions from (4.4) to (4.6) need to be
satisfied for all pairs x1, x2 in the domains in concern. This can be relaxed: it is sufficient
that these conditions are satisfied for all pairs (x1, x2) with d(x1, x2) < c , where c is
some fixed positive constant, see [8]. For example, the system (3.1) is IAS on D if (4.5)
is verified for all {(x1, x2) : d(x1, x2) < c} ∩D for some positive constant c.

This remark leads to the following proposition which will be used in next subsection.

Proposition 4.1. Suppose that the system (3.1) is IAS, i.e., (4.5) is satisfied. Addition-
ally, assume that there exist class K function α, which is differentiable at r = 0, and a
decreasing function η : R+ → R+, satisfying η(s) → 0 as s → ∞, such that

β(r, s) ≤ α(r)η(s), ∀r, x ≥ 0.

Then the system (3.1) is IES.

Proof. Since r 7→ α(r) is differentiable at r = 0, there exist positive constants a, b such
that α(r) ≤ ar, ∀r ∈ [0, b]. Moreover, there exists a constant T > 0, such that for all
r ∈ [0, b], there holds β(r, T ) ≤ cr, where c ∈ (0, 1) is a constant. Now given x1, x2, with
d(x1, x2) ≤ b, by assumption, we have

d(ϕ(t0 + T, t0, x1), ϕ(t0 + T, t0, x2)) ≤ β(d(x1, x2), T ) ≤ cd(x1, x2),

for all t0 ≥ 0. Using the semi-group property of ϕ, we can obtain

d(ϕ(t0 + nT, t0, x1), ϕ(t0 + nT, t0, x2)) ≤ cnd(x1, x2) = en ln cd(x1, x2).

Now for arbitrary t ≥ t0, there exists n ∈ N, such that t = nT + t0 + r for r ∈ (0, T ], and
therefore

d(ϕ(t, t0, x1), ϕ(t, t0, x2)) ≤ en ln cd(ϕ(t0 + r, t0, x1), ϕ(t0 + r, t0, x2))

≤ c′en ln cd(x1, x2)

= Ke−λ(t−t0)d(x1, x2)

where
K = c′e−r ln c/T , λ = − ln c/T

and c′ is a positive constant. Invoking Remark 4.6, the proposition follows.
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4.2 Complete lift and Intrinsic Contraction Analysis

Theorem 2.10 revealed the significance of Finsler-Lyapunov function in contraction anal-
ysis. In this Chapter, we explore further the relationship between Finsler-Lyapunov func-
tion and contraction. Notice that the results in [41] are local since the conditions are
represented in local coordinates. This poses the following problem: in Theorem 2.10, the
set D needs to be invariant; assume now that the manifold M is covered by three coor-
dinate charts U1, U2, U3, and U1 ∩ U2 = ∅. If we have already known that the system is
GIAS, then neither U1 nor U2 can be invariant (otherwise ϕ(t; t0, x1) and ϕ(t; t0, x2) with
x1 ∈ U1, x2 ∈ U2 cannot converge to each other). Now that U1 and U2 are not invariant
sets, Theorem 2.10 cannot be applied on the two sets simultaneously, hence to analyze
GIAS of the system, further analysis will be needed.

To overcome this difficulty, we provide an intrinsic proof of Theorem 2.10 [41]. In
particular, an intrinsic form of (2.23) will be given. The key ingredients we need to
achieve this goal are two concepts from differential geometry that we have already used
in the Chapter 3: the Lie transport of a vector (Definition 2.1.17) and the complete lift
of a vector field (Definition 2.1.18). In order to study contraction, Definition 3.2.2 will be
modified by just replacing v(t) ∈ TX(t)M with v ∈ TM and keeping all the rest unchanged.
With these ingredients at hand, coordinate free form of Theorem 2.10 can be proved. For
this, we need a technical lemma.

Lemma 4.1. Let D ⊆ M be a compact set with C1 boundary and suppose that there ex-
ists a geodesically convex subset U containing D (this is the case when (M, g) is complete).
Then there exists a positive constant K ≥ 1, such that

d(x1, x2) ≤ inf
γ∈Γ(x1,x2)

ℓ(γ) ≤ Kd(x1, x2), ∀x1, x2 ∈ D (4.7)

where ℓ(γ) stands for the length of the curve γ and Γ(x1, x2) the set of continuous piecewise
C1 curves joining x1 to x2.

Proof. Define the function σ : D ×D → R as

σ(x1, x2) =


infγ∈Γ(x1,x2) ℓ(γ)

d(x1, x2)
, x1 ̸= x2

1, x1 = x2

Let D1 = {(x1, x2)|x1 = x2 ∈ D} be the diagonal set of D × D. We now show that σ is
continuous on D×D. Since the boundary of D is C1, it can be shown that the minimizing
curve (if it exists) in D between any two points is C1 and is thus rectifiable.
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Case 1, x1 ̸= x2: Let Si,δ := Bδ(xi) ∩ D, i = 1, 2 and δ > 0 small enough such that

S1,δ ∩ S2,δ = ∅ and smaller than the injectivity radius.2 Suppose that γ : [0, 1] → D is
the minimizing curve when it ranges over Γ(x1, x2) (when the infimum infγ∈Γ(x1,x2) ℓ(γ)
is not attained, the procedure is similar by replacing γ with an arbitrary close curve).
Now consider two arbitrary points yi ∈ Si,δ. Since δ is smaller than the injectivity radius,
there exist two minimizing geodesics η1 joining y1 to x1 and η2 joining x2 to y2 such that
ℓ(ηi) ≤ δ. Let the minimizing curve joining y2 to y1 be γ̄, see Figure 4.1. Then by the
minimizing property, we have

ℓ(γ) ≤ ℓ(η1 ∪ γ̄ ∪ η2) = ℓ(γ̄) + 2δ

and
ℓ(γ̄) ≤ ℓ(η1 ∪ γ ∪ η2) = ℓ(γ) + 2δ

Combining the two inequalities, we get

|ℓ(γ) − ℓ(γ̄)| ≤ 2δ

Since δ is arbitrary, infγ∈Γ(x1,x2) ℓ(γ) is continuous on D\D1. On the other hand, the
Riemannan distance function d is continuous, hence σ is continuous on D\D1.

1x

2x

1y

2y




1

2

D





Figure 4.1: Proof Illustration

Case 2, x1 = x2: It suffices to show that

lim
d(x1,x2)→0+

infγ∈Γ(x1,x2) ℓ(γ)
d(x1, x2)

= 1. (4.8)

2Recall that Bδ(x) is the geodesic ball centered at x with radius δ.
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When x1, x2 are both in the interior of D, then (4.8) is trivially satisfied, therefore it
suffices to prove (4.8) when x1 and x2 are near the boundary. Without loss of generality,
assume x1 ∈ ∂D. Let s = d(x1, x2), and γ : [0, s] → M be the normalized geodesic joining
x1 to x2. Let η : [0, s] → D be any curve passing through x1 with η′(0) = γ′(0). Such curve
exists thanks to the differentiability of the boundary ∂D. Then |ℓ(η)−d(x1, x2)| = O(s2).
Therefore, for sufficiently small s > 0,

infγ∈Γ(x1,x2) ℓ(γ)
d(x1, x2)

≤ ℓ(η)
d(x1, x2)

= 1 +O(d(x1, x2)).

Letting s → 0+, we immediately get (4.8).
Now that σ is a continuous function on D×D, which is compact, σ attains a maximum

on D ×D, say K. This implies (4.7).

Lemma 4.2. If there exists a closed subset U ⊇ D, such that U is geodesically convex
and D has the GC property, then, the following defines a metric on D which makes D a
complete metric space:

dK(x, y) := inf
γ∈Γ(x1,x2)

ℓ(γ). (4.9)

Proof. If D = M , then by assumption M is geodesically complete. By Hopf-Rinow
theorem, M is a complete metric space under the Riemannian distance d = dK .

If D is a closed geodesically convex subset. Then again by Hopf-Rinow theorem, D is
a complete metric space under the Riemannian distance d = dK .

If D is a compact space of M with C1 boundary, it suffices to show that dK defines a
metric on D. Then by (4.7), dK is equivalent to d and the lemma follows. But clearly we
have

• dK(x, y) = dK(y, x) by reversing the parameterization of the curve;

• dK(x, z) ≤ dK(x, y)+dK(y, z) because the curve joining x to y and the curve joining
y to z can be joined together to form into a curve joining x to z.

• dK(x, y) ≥ 0 and dK(x, y) = 0 if and only if x = y.

This completes the proof.

Remark 4.7. The inequality (4.7) implies that dK and d are equivalent norms and induce
the same topology on D.

The above lemma allows us to treat the invariant set D as if it is geodesically convex
when either one of the assumptions from A1 to A3 of Definition 4.1.2 is satisfied. In
particular, when D satisfies assumption A1 or A3, the constant K can be set to 1.
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Theorem 4.1. Consider the system (3.1) defined on a Riemannian manifold M , a forward
invariant set D satisfying the GC property defined in Definition 4.1.2, a function α : R+ →
R+ and the dynamical system defined by the complete lift of f ,

v̇ = f̃(v, t), v ∈ TM |D. (4.10)

Let V be a candidate Finsler-Lyapunov function on D, i.e., there exist two class K∞

functions α1 and α2, such that for all (t, v) ∈ R+ × TM |D,

α1(|δx|) ≤ V (t, x, δx) ≤ α2(|δx|). (4.11)

and
Lf̃V (t, v) ≤ −α(V (t, v)) (4.12)

for all (t, v) ∈ R+ × TM |D, where Lf̃ is the timed Lie derivative along the flow of f̃ , see
Definition 3.1.2. Then the system (3.1) is

C1 IS on D if α(s) = 0 for each s ≥ 0;

C2 IAS on D if α is a class K function;

C3 IES on D if αi(s) = ci|s|p for i = 1, 2 and α(s) = λs for some λ > 0.

All the incremental stabilities above are global when D = M .

Proof. By Definition 2.1.18, the trajectory of the system (4.10) started from v is the
Lie transport of the vector v along ϕ(t; t0, π(v)). Given two points x1, x2 ∈ D, there
is a normalized curve γ : [0, ℓ] → M joining x1 to x2 such that γ is a minimizer of
infη∈Γ(x1,x2) ℓ(η) by the GC property of D. Then there exists a constant k ≥ 1 such that
ℓ(γ) = ℓ ≤ kd(x1, x2) and k depends only on the geometry of D.

The following expression defines a curve in TM :

t 7→
(
ϕ(t; t0, γ(s)), ∂

∂s
ϕ(t; t0, γ(s))

)
∈ TM |D

which is the Lie transport of the vector γ′(s) along the curve ϕ(t; t0, γ(s)) for s ∈ [0, ℓ]
and hence is the solution to (4.10). The following estimate is then obvious:

d(ϕ(t; t0, x1), ϕ(t; t0, x2)) ≤
∫ ℓ

0

∣∣∣∣∣ ∂∂sϕ(t; t0, γ(s))
∣∣∣∣∣ ds

≤
∫ ℓ

0
α−1

1

(
V

(
t, ϕ(t; t0, γ(s)), ∂

∂s
ϕ(t; t0, γ(s))

))
ds
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=
∫ ℓ

0
α−1

1 (V (t,Lie(γ′(s))(t; t0))) ds (4.13)

On the other hand, (4.12) implies that
d

dt
V (t,Lie(γ′(s))(t; t0)) ≤ −α(V (t,Lie(γ′(s))(t; t0))) (4.14)

(IS) If α(s) = 0 for all s ∈ R+, then (4.14) implies that

V (t,Lie(γ′(s))(t; t0)) ≤ V (t0,Lie(γ′(s))(t0; t0) ≤ α2(|γ′(s)|) = α2(1)

for all t ≥ t0. Hence it follows from (4.13) that

d(ϕ(t; t0, x1), ϕ(t; t0, x2)) ≤
∫ ℓ

0
α−1

1 ◦ α2(1)ds ≤ b · d(x1, x2)

where b = kα−1
1 ◦ α2(1). Therefore, the system (3.1) is IS on D.

(IAS) If α is a class K function, then by [115, Lemma 6.1], there exists a class KL
function β such that

V (t,Lie(γ′(s))(t; t0)) ≤ β(V (t0, γ′(s)), t− t0) ≤ β(α2(1), t− t0),

and it follows from (4.13) that

d(ϕ(t; t0, x1), ϕ(t; t0, x2)) ≤
∫ ℓ

0
α−1

1 (β(α2(1), t− t0))ds

≤ kα−1
1 (β(α2(1), t− t0)) · d(x1, x2)

=: β̄(d(x1, x2), t− t0)

where β̄ is clearly a class KL function. Thus the system (3.1) is IAS on D.
(IES) If α(s) = λs, then (4.14) implies

V (t,Lie(γ′(s))(t; t0)) ≤ V (t0, γ′(s))e−λ(t−t0) ≤ α2(1)e−λ(t−t0) (4.15)

and it follows from (4.13) that

d(ϕ(t; t0, x1), ϕ(t; t0, x2)) ≤
∫ ℓ

0
α−1

1 (α2(1)e−λ(t−t0))ds ≤ Ke−λ′(t−t0) · d(x1, x2)

for some K,λ′ > 0, where we have used Proposition 4.1.
Thus the system is IES on D. This completes the proof.

Remark 4.8. We remark that the above proof is an intrinsic version of the proof of [41,
Theorem 1]. It can be easily adapted to prove other intrinsic version results of [41]. The
complete lift technique will be used throughout this manuscript, in particular, to prove
converse theorems and reveal the connection between incremental stability and Lyapunov
stability of an equilibrium. Thus we underscore that this subsection is crucial for the rest
of the thesis.
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To see that Theorem 4.1 is indeed the intrinsic form of Theorem 2.10 [41], we only

need the following lemma [30].

Lemma 4.3. Suppose that TM has local coordinates {x, v} and TTM is locally spanned
by

{
∂
∂xi ,

∂
∂vi

}
i=1,··· ,n

, where n is the dimension of the manifold M . Then in these coordi-
nates, f̃ reads

f̃(t, v) =

 f(t, π(v))

∂f
∂x

(t, π(v))v

 .
Remark 4.9. In [112], J. Simpson-Porco and F. Bullo gave a coordinate free proof of a
contraction theorem on Riemannian manifold. But we should notice that there are several
differences between our result and theirs. Firstly, the function ⟨⟨vx, vx⟩⟩ considered in
[112] is a special case of the more general Finsler-Lyapunov function considered here.
Second, the proof in [112] relies on the Levi-Civita connection defined on the Riemannian
manifold. In the whole thesis however, we do not use any connection on the manifold.
Because of this, the proof can be easily extended to Finsler manifold without considering
any connections, thus simplifying the analysis.

Next, we prove a more striking result: in Theorem 4.1, Condition C2 is sufficient to
guarantee IES.

Corollary 4.1. Assume in Theorem 4.1 that all the conditions above C1 are met. Then
Condition C2 is sufficient to imply that the system is IES.

Proof. In the proof of Theorem 4.1, we have shown that if C2 is satisfied, then there exists
a class KL function β, such that

d(ϕ(t; t0, x1), ϕ(t; t0, x2)) ≤ kα−1
1 (β(α2(1), t− t0)) · d(x1, x2)

for all x1, x2 ∈ D and all t ≥ t0 ≥ 0. Thus the newly defined class KL function β̄(r, s) :=
ψ(s) · r where ψ(s) := kα−1

1 (β(α2(1), s)) decreases monotonically to 0 as s → ∞, where k
is as in the proof of Theorem 4.1. Invoking Proposition 4.1, the corollary follows.

4.2.1 Quadratic Finsler-Lyapunov Function on Riemannian Man-
ifolds

There exists a special class of Finsler-Lyapunov functions on Riemannian manifolds,
namely, quadratic Finsler-Lyapunov function, which is of particular importance in ap-
plications. Therefore, we study in detail this matter in this subsection.
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Definition 4.2.1 (Positive Definite Operator). A positive definite operator P on the
Riemannian manifold M is a (1, 1)-tensor field, expressed as

P (x) = P j
i (x)dxi ⊗ ∂

∂xj
3

in local coordinate, such that

• P j
i (x) = P i

j (x) for all i, j ∈ {1, · · · , n} and x ∈ M ; (This is equivalent to saying
that P is self adjoint)

• there exist two positive constants k1 and k2, such that k1|v|2 ≤ ⟨Pv, v⟩ ≤ k2|v|2 for
all v ∈ TM . 4

Corollary 4.2. Consider the system (3.2) defined on (M, g). If there exists a positive
operator P on M and a constant k > 0, such that

⟨(∇fP )v, v⟩ + ⟨P∇vf, v⟩ + ⟨Pv,∇vf⟩ ≤ −k|v|2, v ∈ TM (4.16)

then the system is IES.

Proof. Consider the Finsler-Lyapunov function

V (v) = ⟨Pv, v⟩,

then

Lf̃V (v0) = d

dt
⟨P (π(v(t)))v(t), v(t)⟩

∣∣∣∣∣
t=t0

where v(t) is the solution to the complete lift system with initial condition v0. Since
both P (π(v(t)))v(t) and v(t) are vector fields along the integral curve of f , then by the
compatibility of the Levi-Civita connection, we have

Lf̃V (v0) = ⟨∇f (Pv(t))|t=t0 , v0⟩ + ⟨Pv0,∇fv(t)|t=t0⟩

= ⟨(∇fP )v0 + P (∇fv(t))|t=t0 , v0⟩ + ⟨Pv0,∇fv(t)|t=t0⟩

Since [f(π(v(t))), v(t)] = 0, there holds

∇fv(t)|t=t0 = ∇v(t)f(π(v(t)))|t=t0 + [f(π(v(t))), v(t)] = ∇v0f(π(v0)), (4.17)

hence
Lf̃V (v0) = ⟨(∇fP )v0, v0⟩ + ⟨P (∇v0f), v0⟩ + ⟨Pv0,∇v0f⟩ (4.18)

Since v0 is arbitrary, invoking Theorem 4.1 and (4.16), the corollary follows.
3In order that P is a tensor,

∑
i,j

∂x̃p

∂xj
∂xi

∂x̃q P j
i (x(x̃)) = P q

p (x̃), ∀x̃ ∈ M should be satisfied for coordinate
transform x̃ = x̃(x). For example, when P j

i = δj
i , P is a (1, 1)-tensor.

4Pv is defined pointwisely via the natural isomorphism Hom(V, W ) ≃ V ∗ ⊗ W .
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Remark 4.10. ∇fP is the covariant derivative of the tensor P in the direction of f , which
is again a (1, 1)-tensor. See [96, Section 2.2.2] for the definition of covariant derivative of
an arbitrary tensor.

Remark 4.11. When P is the identity operator, (4.16) becomes

⟨∇vf, v⟩ ≤ −k

2 |v|2, ∀v ∈ TM.

This has been proven in [112].

Remark 4.12. Compared to Theorem 4.1, Corollary 4.2 does not involve the calculation
of the complete lift of the system. Thus it is easier to implement.

Remark 4.13. When specified to Rn with the standard Euclidean inner product as the
Riemannian metric and noticing that ∇fP = LfP , (4.16) reads

LfP (x) + P (x)∂f(x)
∂x

+ ∂f(x)
∂x

T

P (x) ≤ −kI.

This formula has been used in for example [106] and [7]. However, the matrix P was
interpreted as a Riemannian metric in Rn in the two mentioned articles. The above
result suggests that on Riemannian manifolds, it is naturally interpreted P as a positive
operator, which is a (1, 1)-tensor instead of a (0, 2) one.

4.3 Converse Results of Incremental Exponential Sta-
bility

In this section, we prove that the conditions in Theorem 4.1 to ensure IES are not only
sufficient but also necessary. That is, if the system is IES, then we will be able to find a
Finsler-Lyapunov function.

In [8], D. Angeli gave a necessary and sufficient conditions of GIAS using incremental
Lyapunov functions, which is a set version of Lyapunov functions and involves augmenting
the orginal system with its copy. In comparison, what we are going to prove is a differential
version and augmentation is not needed. In [7], V. Andrieu et al. proved a converse
theorem for IES systems defined on Rn. See also [56] for converse theorems for monotone
systems.

In order to streamline the idea, we assume the system to be GIES. Extension to local
version is straightforward.
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Theorem 4.2. Consider the system (3.1) defined on a Riemannian manifold (M, g) with
f ∈ C2 globally Lipschitz continuous with constant L in the sense of Definition 3.1.3.
Then the system is GIES if and only if there exists a (possibly time dependent) C1

Finsler-Lyapunov function V : R+ × TM → R such that the following conditions are
satisfied

1. there exists two positive constants c1, c2, such that

c1|v|2 ≤ V (t, v) ≤ c2|v|2, ∀(t, v) ∈ R+ × TM

where | · | is the Riemannian norm.

2. the timed Lie derivative of V along the system (4.10 ) satisfies

Lf̃V (t, v) ≤ −kV (t, v), ∀(t, v) ∈ R+ × TM (4.19)

for some positive constant k > 0, where f̃ is the complete lift of f .

To prove the theorem, we need a few lemmas.

Lemma 4.4. If the system (3.1) is GIES, i.e.

d(ϕ(t; t0, x1), ϕ(t; t0, x2)) ≤ ke−λ(t−t0)d(x1, x2), ∀t ≥ t0 ≥ 0 (4.20)

for some positive constants k and λ, and all x1, x2 ∈ M , then the Lie transport of each
vector v along a trajectory of the system (3.1) satisfies

|Lie(v)(t, t0)| ≤ ke−λ(t−t0)|v|, ∀v ∈ TM. (4.21)

Proof. Since Lie is a linear operator as remarked after Definition 2.1.17, it suffices to prove
that

|Lie(v)(t, t0)| ≤ ke−λ(t−t0), ∀v ∈ TM

with |v| = 1. Given x1, x2 ∈ M , denote the normalized geodesic joining x1 to x2 as
γ : [0, ℓ] → M with 0 ≤ ℓ = d(x1, x2). Let v ∈ TM , |v| = 1, πTM(v) = x1 and v = γ′(0).
Denoting vt = Lie(v)(t, t0), we have

ℓ |vt| = d
(
expϕ(t;t0,x1) (ℓvt) , ϕ (t; t0, x1)

)
, (4.22)

by the property of the exponential map, see Theorem 2.2. Since we have assumed that
the Riemannian manifold is complete, expx is defined on TM for all x ∈ M . Using the
metric property of d, we have

d
(
expϕ(t;t0,x1) (ℓvt) , ϕ (t; t0, x1)

)
≤ d

(
expϕ(t;t0,x1) (ℓvt) , ϕ(t; t0, x2)

)
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Figure 4.2: Illustration of the proof

+ d(ϕ(t; t0, x2), ϕ(t; t0, x1)) (4.23)

≤ d
(
expϕ(t;t0,x1) (ℓvt) , ϕ(t; t0, x2)

)
+ kℓe−λ(t−t0), (4.24)

where the second inequality holds due to (4.20). From (4.22) and (4.24) we get

|vt| ≤
d
(
expϕ(t;t0,x1) (ℓvt) , ϕ(t; t0, x2)

)
ℓ

+ ke−λ(t−t0). (4.25)

See Figure. 4.2 for an illustration. Now we want to show that the first term on the right
hand side is of order O(ℓ) and hence converges to 0 as ℓ → 0. Since x2 = γ(ℓ), the above
formula can also be written as

κ(ℓ) =
d
(
expϕ(t;t0,x1) (ℓvt) , ϕ(t; t0, γ(ℓ))

)
ℓ

To this end, we consider the two functions α1(ℓ) = expϕ(t;t0,x1) (ℓvt) and α2(ℓ) = ϕ(t; t0, γ(ℓ)).
We have α1(0) = α2(0) = x1 and α′

1(0) = α′
2(0) = vt. Thus

κ(ℓ) = d(α1(ℓ), α2(ℓ))
ℓ

= O(ℓ)

invoking Lemma 3.4. Now letting ℓ → 0 in (4.25), we obtain (4.21), which completes the
proof.

The lower bound of Lie(v)(t; t0) is also needed.

Lemma 4.5. Suppose that f in (3.1) is Lipschitz continuous with constant L in the sense
of Definition 3.1.3, then the Lie transport satisfies |Lie(v)(t; t0)| ≥ |v|e−L(t−t0), ∀v ∈ TM.
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Proof. Let γ(s) = expx(sv), so γ′(0) = v. From Lemma 3.2, we have the following
inequality for s > 0:

d(x, γ(s))e−L(τ−t)

s
≤ d(ϕ(t; t0, x)), ϕ(t; t0, γ(s)))

s
,

in which the left hand side is nothing but |v|e−L(τ−t). Letting s → 0+,

lim
s→0+

d(ϕ(t; t0, x)), ϕ(t; t0, γ(s)))
s

= d
ds

∣∣∣∣∣
s=0

d(ϕ(t; t0, x)), ϕ(t; t0, γ(s)))

= lim
s→0

〈
∂ϕ(t; t0, γ(s))

∂s
, γ̄′(ℓ)

〉

≤ lim
s→0

∣∣∣∣∣∂ϕ(t; t0, γ(s))
∂s

∣∣∣∣∣
= |Lie(v)(t; t0)|

where γ̄ : [0, ℓ] → M is the normalized geodesic joining ϕ(t; t0, x) to ϕ(t; t0, γ(s)). Thus
the proof is completed.

Now we are in position to prove Theorem 4.2.

Proof of Theorem 4.2. Necessity has already been proven in Section 4.2. It remains to
prove the converse.

Step 1: We consider the following candidate Finsler-Lyapunov function:

V (t, v) =
∫ t+δ

t
|Lie(v)(τ ; t)|2 dτ (4.26)

where δ > 0. From Lemma 3.2 and Lemma 4.4, we can estimate the lower and upper
bound of V (t, v):

V (t, v) ≥ |v|2
∫ t+δ

t
e−2L(τ−t)dτ = 1 − e−2Lδ

2L |v|2

V (t, v) ≤ |v|2
∫ t+δ

t
e−2λ(τ−t)dτ = 1 − e−2λδ

2λ |v|2.

Thus there exists two positive constants c1, c2 such that

c1|v|2 ≤ V (t, v) ≤ c2|v|2.

Step 2: By the property of Lie transport, we know that

Lie(Lie(v)(t; s))(τ ; t) = Lie(v)(τ ; s), ∀v ∈ TM, τ ≥ t ≥ s

hence

V (s,Lie(v)(s, t)) =
∫ s+γ

s
|Lie(Lie (v)(s, t))(τ ; s)|2 dτ
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=
∫ s+δ

s
|Lie(v)(τ ; t)|2 d τ

The timed Lie derivative satisfies

Lf̃V (t, v) = d

ds
V (s,Lie(v)(s, t))

∣∣∣∣∣
s=t

= |Lie(v)(t+ δ; t)|2 − |v|2

≤ −(1 −K2e−2λδ)|v|2

≤ −1 −K2e−2λδ

c2
V (t, v).

By choosing δ large enough such that 1 − K2e−2λδ > 0, we obtain (4.19) with k =
(1 −K2e−2λδ)/c2.

Remark 4.14. In the proof of Theorem 4.2, the Finsler-Lyapunov function (4.26) is
constructed as a time dependent function, even if the system (3.1) is time-invariant. In
order to construct a time-invariant one for autonomous system, one may consider the
following Finsler-Lyapunov candidate,

V (v) =
∫ ∞

0
| Lie(v)(t; 0)|2dt (4.27)

and it can be shown that (4.27) is a bona fide Finsler-Lyapunov function.

Remark 4.15. When TM is equipped with Sasaki metric, then similar to Theorem 3.2,
one can easily show that the differential of the function V constructed above has following
bound,

|dV (t, v)|s ≤ c|v|, v ∈ TM

where | · |s is induced by the Sasaki norm.

Remark 4.16. Like Theorem 4.1, the above proof can be extended to the Finsler case,
by replacing the Riemannian metric gij with ∂2 (F 2) /∂xi∂xj.

Remark 4.17. In [7], the authors obtained similar results of Theorem 4.2 in Euclidean
space, see Proposition 1, 2, 3 [7]. More precisely, they proved the equivalence of TLES-NL,
UES-TL and ULMTE defined in Definition 2.3.6, see also [7]. We clarify their differences
with our results. First, in [7], the state space is Rn with a metric described by positive
definite matrices. Compared to Finsler manifolds, it is easier to deal with and excludes
some interesting examples, see for example [41]. In contrast, Finsler structure is the key
object in the theory that we have developed in this thesis, it is more general and admits
more complex structures. More importantly, it helps us single out what are the more
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essential conditions needed to guarantee contraction properties. For example, in [7], it
is required that the second order partial derivatives of f are uniformly bounded. On
Finsler manifold, this condition is no longer sufficient; instead, conditions imposed on the
covariant derivative is needed. Second, the Lyapunov function constructed in [7] is quite
different from the Finsler-Lyapunov function constructed in (4.26).

The following table exhibits a correspondence between stability and incremental sta-
bility. The most remarkable difference comes to the function V : for incremental stability,
the argument – |δx| – of the functions αi is part of the state (x, δx), while for Lyapunov
stability, one needs to take into consideration of the whole state.

Table 4.1: A comparison between incremental stability and Lyapunov stability

Incremental Stability Lyapunov Stability

State space: TM State space: M

Finsler-Lyapunov function Lyapunov function

α1(|δx|) ≤ V (t, x, δx) ≤ α2(|δx|) α1(|x|) ≤ V (t, x) ≤ α2(|x|)

Lf̃V (t, x, δx) ≤ −α3(|δx|) LfV (t, x) ≤ −α3(|x|)

4.4 Tubular Neighborhood Property

In this section, we prove a technical result concerning the local property of contraction.
We show that IES can be fully characterized on a tubular neighborhood of the base
manifold in the tangent bundle. To this end, we first give the following definition.

Definition 4.4.1 (Local Finsler-Lyapunov function). Given a forward invariant (under
the flow of the system (3.1)) set D satisfying the GC property, a function V is called a
local Finsler-Lyapunov function on D if (4.11) is satisfied for all x ∈ D, t ≥ 0 and all
|δx| < c for some positive constant c.

Remark 4.18. A local Finsler-Lyapunov function is thus defined on some set S =
{(x, δx) ∈ TM |D : |δx| < c}, which is an open neighbourhood of the base set D in
the tangent bundle.
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Theorem 4.3. Consider the system (3.1). Suppose that f is globally Lipschitz. Let V be
a local Finsler-Lyapunov function defined on the set S as in (4.11), such that the following
inequality holds for all t ≥ 0 and all (x, δx) ∈ S, i.e.,

∂V (x, δx)
∂x

f(t, x) + ∂V (x, δx)
∂δx

∂f(t, x)
∂x

δx ≤ −α(V (x, δx)),

then the system is IES.

Proof. Without loss of generality, assume that D is geodesically convex. Let ϕ(t; t0, x0)
be the solution of the system (3.1) at time t ≥ t0 with initial condition (t0, x0). Given
any two different points x1, x2 ∈ D. (When x1 = x2, the proof is trivial) Consider
the minimizing geodesic l(s), s ∈ [0, 1] joining x1 to x2. We can estimate the norm of
δϕ(t; t0, s) := ∂

∂s
ϕ(t; t0, l(s)). In fact

d

dt

∂ϕ(t; t0, l(s))
∂s

= ∂f(t, ϕ(t; t0, l(s))
∂x

∂ϕ(t; t0, l(s))
∂s

,

hence
|δϕ(t; t0, s)| ≤ eL(t−t0)/2 |δϕ(t0; t0, s)| = eL(t−t0)/2d(x1, x2),

for all t ≥ t0, s ∈ [0, 1] where L stands for the Lipschitz constant of f on D.
Let V̄ (t, s) = V (ϕ(t; t0, s), δϕ(t; t0, s)) for t ≥ t0, s ∈ [0, 1]. Its time derivative reads

dV̄ (t, s)
dt = ∂V (x, δx)

∂x
f(x, t) + ∂V (x, δx)

∂δx

∂f(x, t)
∂x

δx

∣∣∣∣∣
x=ϕ(t;t0,l(s)), δx=δϕ(t;t0,s)

(4.28)

Denote
T0 = 2

L
ln
(

c

d(x1, x2)

)
, T1 = 1

λ
ln c2

c1
.

Choose γ sufficiently small such that when 0 < d(x1, x2) < γ, T0 > T1 ≥ t0. Given that
t ∈ [t0, t0 + T0], one has |δϕ(t; t0, s)| ≤ eL(t−t0)/2d(x1, x2) < c, consequently, by (2.23),

dV̄ (t, s)
dt ≤ −λV̄ (t, s), ∀s ∈ [0, 1],

or
V̄ (t, s) ≤ e−λ(t−t0)V̄ (t0, s), ∀s ∈ [0, 1].

The distance between x1, x2 thus satisfies

d(ϕ(t; t0, x1), ϕ(t; t0, x2)) ≤
∫ 1

0
|δϕ(t; t0, s)|ds

≤ c
−1/p
1

∫ 1

0
V̄ (t, s)1/pds

≤ c
−1/p
1

∫ 1

0
e−λ(t−t0)/pV̄ (t0, s)1/pds
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≤
(
c2

c1

)1/p ∫ 1

0
e−λ(t−t0)/p|δϕ(t0; t0, s)|ds

=
(
c2

c1

)1/p
exp

(
−λ

p
(t− t0)

)
d(x1, x2) (4.29)

for t ∈ [t0, t0 + T0], and all t0 ≥ 0.
From the definition of T0 and T1, we know that c3 := (c2/c1)1/p exp

(
−λ
p
T0
)
< 1. In

particular,

d(ϕ(t0 + T0; t0, x1), ϕ(t0 + T0; t0, x2)) ≤
(
c2

c1

)1/p
e− λ

p
T0d(x1, x2) = c3d(x1, x2),

for all t0, T0 ≥ 0 and x1, x2 ∈ D. By the semi-group property of the flow of the ordinary
differential equation (3.1), we have

d(ϕ(t0 + 2T0; t0, x1), ϕ(t0 + 2T0; t0, x2))

=d(ϕ(t0 + 2T0; t0 + T0ϕ(t0 + T0; t0, x1)), ϕ(t0 + 2T0; t0 + T0ϕ(t0 + T0; t0, x2)))

≤c3d(ϕ(t0 + T0; t0, x1), ϕ(t0 + T0; t0, x2))

≤c2
3d(x1, x2).

By induction, one can easily obtain

d(ϕ(t0 + nT0; t0, x1), ϕ(t0 + nT0; t0, x2)) ≤ cn3d(x1, x2) = e−ηnTd(x1, x2),

where
η = − ln c3

T
> 0.

Now for any t ≥ t0 ≥ 0, there exist an integer n ≥ 0, and a constant 0 ≤ Tt < T0 such
that t = nT + Tt + t0. Therefore

d(ϕ(t; t0, x1), ϕ(t; t0, x2))

=d(ϕ(t0 + Tt + nT0; t0 + Tt, ϕ(t0 + Tt; t0, x1)), ϕ(t0 + Tt + nT0; t0 + Tt, ϕ(t0 + Tt; t0, x2)))

≤e−ηnT0d(ϕ(t0 + Tt; t0, x1), ϕ(t0 + Tt; t0, x2))

≤e−ηnT0d(x1, x2)

=e−η(t−t0−Tt)d(x1, x2)

≤c4e
−η(t−t0)d(x1, x2).

where η and c4 are independent of t.
We conclude that there exist three positive constants γ, η, c4, such that whenever

d(x1, x2) < γ,
d(ϕ(t; t0, x1), ϕ(t; t0, x1)) ≤ c4e

−η(t−t0)d(x1, x2),

for all t ≥ t0 ≥ 0. Invoking Remark 4.6, the theorem follows.
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Remark 4.19. In the above proof, we start by choosing two points x1, x2 which are
sufficiently close. Alternatively, we can assume that the two points are arbitrary, and
choose the minimizing geodesic whose velocity is smaller than a given constant. After
that, similar procedures as above can be used to arrive at the same conclusion.

Example 4.1. Consider the system ẋ = −2x− cosx+ u(t), where u(t) is a time-varying
signal. Let V (x, δx) = 1 − cos δx. Then we have V̇ = −(2 − sin x)δx sin(δx). By Taylor
expansion, when δx is sufficiently small, V (x, δx) = 1

2(δx)2 + O(δ4x). Then V is only a
local FLF. Furthermore, V̇ ≤ −(δx)2 + O(δ4x), hence V̇ ≤ −cV for δx sufficiently small
with some constant 1 < c < 2. Thus by Theorem 4.3, we can conclude that the system
ẋ = −2x− cosx+ u(t) is IES.

4.5 Krasovskii’s Theorem and Contraction

When a system is IES on D and has x∗ ∈ D as an equilibrium point, i.e., f(t, x∗) = 0, for
all t ≥ 0. It is obvious that x∗ is exponentially stable and D is a region of attraction.

For time-invariant or periodic systems, more can be said.

Theorem 4.4. Let the system (3.1) be T -periodic, i.e., f(t, x) = f(t+ T, x) for all t ≥ 0
and all x ∈ M . Suppose that D ⊆ M satisfies the GC property and that there exists a
continuous function γ : R+ → R+, satisfying γ(t) → 0 as t → ∞, and

d(ϕ(t; t0, x1), ϕ(t; t0, x2)) ≤ γ(t− t0)d(x1, x2), ∀x1, x2 ∈ D, t ≥ t0 ≥ 0, (4.30)

Assume furthermore that f is globally Lipschitz on D. Then, there exist a unique periodic
solution α(t), whose period is kT for some k ∈ N, constants C > 0 and λ > 0, such that

d(ϕ(t; t0, x1), α(t)) ≤ Ce−λ(t−t0)d(x1, α(0)), ∀t ≥ t0 ≥ 0, x1 ∈ D.

Proof. Define a mapping P as

P : x 7→ ϕ(kT ; 0, x) (4.31)

where k ∈ N is big enough that γ(kT ) = c < 1/K. It follows that d(Px, Py) =
d(ϕ(kT ; 0, x), ϕ(kT ; 0, y)) ≤ cd(x, y). Since D satisfies the GC property, P is a con-
traction mapping on the complete metric space D. Invoking Banach contraction mapping
theorem, there exists a unique x such that Px = x. Let α(t) = ϕ(t; 0, x), which is a
solution to the system (3.1). Then

α(t+ kT ) = ϕ(t+ kT ; 0, x)
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= ϕ(t+ kT ; kT, ϕ(kT, 0, x))

= ϕ(t; 0, ϕ(kT, 0, x))

= ϕ(t; 0, x)

= α(t), ∀t ≥ 0

meaning that α is a periodic function with period kT . Clearly, (4.30) implies that there
exist two positive constants C, λ, independent of t0, such that

d(ϕ(t; t0, x1), ϕ(t; t0, x2)) ≤ Ce−λ(t−t0)d(x1, x2), ∀x1, x2 ∈ D, t ≥ t0 ≥ 0. (4.32)

Hence

d(ϕ(t; t0, y), α(t)) = d(ϕ(t; t0, y), ϕ(t; 0, x))

= d(ϕ(t; t0, y), ϕ(t; t0, ϕ(t0; 0, x))

≤ Ce−λ(t−t0)d(y, ϕ(t0; 0, x))

= Ce−λ(t−t0)d(ϕ(0; 0, y), ϕ(t0; 0, x))

≤ CeLt0e−λ(t−t0)d(x, y) (4.33)

where L is the Lipschitz constant associated with the set D. Now each t0 ∈ R+ can be
written as t0 = mkT + s0 for some m ∈ N and s0 ∈ [0, kT ). Therefore, ϕ(t; t0, y) =
ϕ(t − mkT ; t0 − mkT, y) = ϕ(t − mkT ; s0, y). Therefore, in (4.33), we can assume that
t0 < kT , and consequently, CeLt0 < CekLT . By setting C ′ = CekLT , we immediately get

d(ϕ(t; t0, y), α(t)) ≤ C ′e−λ(t−t0)d(α(0), y), ∀t ≥ t0 ≥ 0, y ∈ D

which completes the proof.

In particular, when the system is autonomous, it admits a unique equilibrium which
is exponentially stable.

Corollary 4.3. Consider the autonomous system (3.2). Suppose that D ⊆ M satisfies
the GC property and that there exists a continuous function γ : R+ → R+, satisfying
γ(t) → 0 as t → ∞, and

d(ϕ(t; t0, x1), ϕ(t; t0, x2)) ≤ γ(t− t0)d(x1, x2), ∀x1, x2 ∈ D, t ≥ t0 ≥ 0, (4.34)

Then, the system has a unique equilibrium point x ∈ D, and there exist constants C > 0
and λ > 0, such that

d(ϕ(t; t0, x1), x) ≤ Ce−λ(t−t0)d(x1, x), ∀t ≥ t0 ≥ 0, x1 ∈ D.
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Remark 4.20. We make a remark on the difference between Theorem 4.4 and Theorem
2 in [116]. In [116], the domain D is assumed to be a convex set in Euclidean space and
the system is assumed to have the property µ(Jf (t, x)) ≤ −c for all x ∈ D, t ≥ 0. (Recall
that Jf (t, x) is the Jacobian matrix of f and c is a positive constant.) In the theorem
above, the domain D is a submanifold with GC property which is more general than
convexity, and the condition (4.30) is strictly weaker than restricting a uniform negative
bound on the matrix measure of the Jacobian of the system.

Corollary 4.3 is of special interest to us. If an autonomous system is incrementally
exponentially stable on D, then by Corollary 4.3, there exists a unique exponentially
stable equilibrium point in D. Then two questions can be asked.

LF (Lyapunov function construction): The converse Lyapunov theorem (see e.g. [58])
tells us that there should exist a Lyapunov function W (t, x) (not a Finsler-Lyapunov
function) for the system (3.1) along which, the time derivative of the Lyapunov
function is negative definite. Now, having the IES property at hand, by Theorem
4.2, a Finsler-Lyapunov function can be constructed. A natural question is, can we
construct a Lyapunov function based on the information of this Finsler-Lyapunov
function?

ES (Equilibrium searching): How to find the equilibrium point by numerical methods?

We answer the first question here and leave the second to Chapter 5.

Construction of Lyapunov Function
The following proposition gives an answer to the question LF. As we will see, it is a

rediscovery and extension of the classical Krasovskii’s method used for the construction
of Lyapunov function [58]. We highlight that the following theorem is valid even for time
varying system.

Theorem 4.5. Suppose the system (3.1) is IES with a Finsler-Lyapunov function V (t, v)
such that Lf̃V ≤ −kV for a positive constant k. Assume furthermore the system has an
equilibrium point x∗. Then

• the system is GES;

• given a smooth time invariant vector field h on M such that

η1(d(x, x∗)) ≤ |h(x)| ≤ η2(d(x, x∗))

for two class K functions η1, η2 and that [f, h] = 0, then the function W (t, x) =
V (t, x, h(x) is a Lyapunov function for the system.
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We need the following lemma to prove the theorem, which is interesting in its own

right.

Lemma 4.6. Consider the system (3.1). If there exists a vector field h(x) on M such
that [f, h] = 0, then h(ϕ(t; t0, x0)) is the unique solution to the system v̇ = f̃(t, v) with
initial condition (x0, h(x0)). In particular, the solution to the complete lift system of the
system (3.2) started from (x0, f(x0)) is (ϕ(t; t0, x0), f(ϕ(t; t0, x0))).

Proof. The Lie bracket of f and h can be calculated as

[f, h](ϕ(t; t0, x0)) = d(ϕ∗h)
ds (ϕ(s; t0, x0))

∣∣∣∣∣
s=t

= 0,

where ϕ∗ is the pullback of ϕ. Thus ϕ∗h(ϕ(t; t0, x0)) = constant = (x0, h(x0)), or

h(ϕ(t; t0, x0)) = ϕ(t; t0, x0)∗(x0, h(x0)) = Lie(h(x0))(t, t0).

which completes the first half of the lemma. Since [f, f ] = 0 is always true, the last claim
also follows.

Proof of Theorem 4.5. It can be readily checked that W (t, x) is a positive definite Lya-
punov candidate. Using the above lemma, we have

LfW (t, x) = d
dτ V (τ, h(ϕ(τ ; t, x)))

∣∣∣∣∣
τ=t

= Lf̃V (t, h(x))

≤ −kV (t, h(x))

= −kW (t, x),

showing that W (t, x) is indeed a Lyapunov function.

Corollary 4.4. Consider the system ẋ = f(t, x), where x ∈ Rn, with f(0, t) = 0. If
the system is IES with a Finsler-Lyapunov function V (t, x, δx) and there exists a smooth
vector field h(x) on Rn such that [f, h] = 0, where h = 0 if and only if x = 0, then the
function W (t, x) = V (t, x, h(x)) is a Lyapunov function and the system is exponentially
stable. In particular, W (t, x) can be chosen as V (t, x, f(x)) when the system is time
invariant.

Proof. The time derivative of W (t, x) reads

Ẇ (t, x) = V̇ (t, x, h(x))
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= ∂V (t, x, h(x))
∂t

+ ∂V (t, x, h(x))
∂x

f(x, t)

+ ∂V (t, x, h(x))
∂δx

∂h(x)
∂x

f(x, t)

= ∂V (t, x, h(x))
∂t

+ ∂V (t, x, h(x))
∂x

f(x, t)

+ ∂V (t, x, h(x))
∂δx

∂f(x, t)
∂x

h(x)

≤ −kV (t, x, h(x))

= −kW (t, x),

where the third equality follows from the fact that in Euclidean space,

[f, h] = ∂f

∂x
h− ∂h

∂x
f.

Thus we see that the system is exponentially stable with Lyapunov function W (t, x).

Theorem 4.5 recovers and extends the so called Krasovskii’s method [58]: if there exist
two constant positive definite matrices P and Q such that

P
∂f(x)
∂x

+
[
∂f(x)
∂x

]T
P ≤ −Q, (4.35)

then V (x) = fT (x)Pf(x) can serve as a Lyapunov function for the system since h can
be taken as f . Clearly, if (4.35) is satisfied, δTxPδx is a Finsler-Lyapunov function for
the system. Then the Krasovskii’s method is a direct consequence of Corallary 4.4. We
consider two examples.

Example 4.2. Consider the linear system ẋ = Ax. Suppose there exists a Finsler-
Lyapunov function V = δxTPδx, such that ATP + PA = −I. Then since [Ax, x] = 0,
Corallary 4.4 tells us that when replacing δx with x, V becomes a Lyapunov function,
i.e. W (x) = xTPx. Furthermore, xTBTPBx is also a Lyapunov function as long as B is
invertible and commutes with A since in this case [Ax,Bx] = (BA− AB)x = 0.

Example 4.3. We consider the case when the matrix measure of the Jacobian Jf (t, x) =
∂f(x, t)/∂x satisfies

µ(J(x)) ≤ −c, ∀x ∈ Rn

for some positive constant c. This is considered in [5] for example. The Finsler-Lyapunov
function can be chosen as V (x, δx) = |δx|, and the Lyapunov function W (x) = |f(x)|.
Indeed, it can be readily checked that

Ẇ (x(t)) = lim
h→0+

|f(x+ hf(x))| − |f(x)|
h
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= lim
h→0+

1
h

(∣∣∣∣∣f(x) + h
∂f(ξ)
∂x

f(x)
∣∣∣∣∣− |f(x)|

)

≤ lim
h→0+

|I + hJ(t, ξ)| − 1
h

|f(x)|

= µ(J(ξ))|f(x)|

≤ −cW (x(t)).

Remark 4.21. We remark that the results obtained by F. Bullo [24] and K. Kosaraju
[63] (when the input u is 0) regarding Krasovskii’s method are special cases of Corallary
4.4 .

4.6 Contraction and LES

In Section 3.2, we studied local exponential stability of nontrivial solutions of the system
(3.1) and in Section 4.2 of this chapter, we studied contraction analysis via geometric
methods. This section is to establish connections between the two different subjects,
namely, LES of particular solutions and the contraction property. The reader may refer
to [101, 8] for the this issue in Euclidean spaces.

In Section 3.2, it has been shown in Theorem 3.4 that LES of a solution X implies
exponential stability of the complete lift along X. It remains to show that for a bounded
X, the converse is also true.

Proof of the converse of Theorem 3.4. Suppose that the system (3.1) is periodic and the
complete lift system (3.28) along X is exponentially stable. By the remarks below Propo-
sition 3.1, there exists an open forward invariant set Dc containing X. Since X is bounded,
the closure of Dc is compact. As a consequence, D̄c verifies the GC property.

Thanks to the (fibre) linear structure of the complete lift, one can construct a C1

quadratic Lyapunov function V : R+ × X∗TM 5 such that the following inequalities are
satisfied for some positive constants c1, c2 and c3

c1|v|2 ≤ V (t, v) ≤ c2|v|2

∂V

∂t
(t, v) + ∂V

∂v
(t, v)f̃(v, t) ≤ −c3|v|2.

(4.36)

for all v ∈ X∗TM . Due to the quadratic nature of V (t, v) and the linearity of f̃ with
respect to v, the function

F (t, v) = ∂V

∂t
(t, v) + ∂V

∂v
(t, v)f̃(v, t)

5X∗TM is the pullback bundle.
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is again quadratic in v. Assume T > 0 to be the period of X and denote

S(TM |D̄c
) := {v ∈ TM |D̄c

: |v| = 1}.

Equip TM with the Sasaki metric, then for each v ∈ S(TM |D̄d
), the distance from v to

the set {v ∈ X∗TM : |v| = 1} is sufficiently small by choosing Dc sufficiently small.
By the continuity of V and F and the inequalities (4.36), it follows that there exist

some positive constants c′
1, c

′
2 and c′

3, such that

min
[0,T ]×S(TM |D̄c

)
V (t, v) ≥ c′

1

max
[0,T ]×S(TM |D̄c

)
V (t, v) ≤ c′

2

max
[0,T ]×S(TM |D̄c

)
F (t, v) ≤ −c′

3

for Dc sufficiently small. Recalling the quadratic nature of V and F with respect to v,
(4.36) is valid for all (t, v) ∈ [0, T ] × TM |D̄c

by replacing ci by c′
i. Hence the system (3.1)

is incrementally exponentially stable on Dc. Thus the particular solution X must be LES
with Dc being a region of attraction.

In the proof of the above theorem, we have also proved the following:

Proposition 4.2. Suppose that the system (3.1) is periodic and X is a bounded solution
to it. Then X is LES if and only if there exists an open neighborhood of X on which the
system (3.1) is IES.

A straightforward consequence of Proposition 4.2 is stated in the following corollary.

Corollary 4.5. Assume that the system (3.1) has an equilibrium point x∗ ∈ M . Then x∗

is LES if and only if there exists a forward invariant open neighborhood of x∗ on which
the system is IES.

In fact, for this special case, one can proceed much more easily. Since LES of an
equilibrium is a local property, it is sufficient to work in an open neighborhood of 0 ∈ Rn

and assume x∗ = 0. It is well-known that, 0 is LES if and only if the linearized system

ẋ = A(t)x (4.37)

is exponentially stable, where
A(t) = ∂f

∂x
(t, 0).
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From linear system theory, we know that the system (4.37) is exponentially stable if and
only if there exist two C1 positive definite matrix functions P,Q : R+ → Rn×n verifying
the differential Lyapunov matrix equation

Ṗ (t) + P (t)A(t) + A(t)TP (t) = −Q(t), ∀t ≥ 0.

and P (t) and Q(t) satisfies the following bound

c1I ≤ P (t) ≤ c2I,

b1I ≤ Q(t) ≤ c2I

for all t ≥ 0 and some positive constants c1, c2, b1, b2. When the system is periodic,
obviously ∣∣∣∣∣∂f∂x (t, x) − ∂f

∂x
(0, x)

∣∣∣∣∣ < c4, ∀t ≥ 0, |x| < δ

where δ > 0. Now consider the following candidate Finsler-Lyapunov function for the
system (3.1),

V (t, v) = vTP (t)v.

Then

Lf̃V (t, v) = vT Ṗ (t) + P (t)A(t) + A(t)TP (t)v + 2vTP (t)
(
∂f

∂x
(t, x) − ∂f

∂x
(t, 0)

)
v

≤ (−b1 + c2c4)|v|2.

Choosing δ and then c4 sufficiently small, the constant k := −b1 + c2c4 can be made
negative. Thus the system is IES on a forward invariant open neighborhood of the origin.

Remark 4.22. In [40], the authors proved similar result to this corollary for autonomous
systems in Euclidean space. The paper [101] focuses on asymptotic stability and asymp-
totic contraction, also in Euclidean space.

4.7 Volume Shrinking

Given a Riemannan density Vg on the manifold M , the volume of an measurable open set
D is defined as

vol(D) =
∫
D
dVg.

Consider the time-invariant system (3.2). Define the flow of the set D as

Dt = ϕ(t; t0, D).
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Lemma 4.7. If the vector field f of the system (3.2) satisfies

⟨∇vf, v⟩ ≤ −k|v|2, v ∈ TM, (4.38)

then divf(x) ≤ −kn for all x ∈ M , where n is the dimension of M .

Proof. Recall that
div = tr ◦∇

where ∇ is the covariant derivative operator. The vector field f can be viewed as a (1, 0)-
tensor field, and thus ∇f is a (1, 1)-tensor field defined as ⟨∇f(v)|w⟩ = ⟨∇vf, w⟩, for
v, w ∈ TM . Equivalently, recall the isomorphism V ⊗W ∗ = Hom(V,W ), then ∇f(x) can
also be seen as a linear operator from TxM to TxM defined as v 7→ ∇vf . Hence by (4.38),

divf(x) = tr(∇f) ≤ −kn,

which completes the proof.

Theorem 4.6. If the system (3.2) is contracive and condition (4.38) is verified, then the
system is exponentially volume shrinking in the sense that the volume of the flow of a
measurable set D shrinks exponentially.

Proof. By the transport formula, we have

d

dt
vol(Dt) =

∫
Dt

divfdVg

≤ −knvol(Dt)

by the above lemma. This justifies the conclusion.

4.8 A Brief Summary

In this chapter, we have obtained some new results of contraction analysis on Riemannian
manifolds.

First, based on the tool “complete lift”, we have given an intrinsic condition for incre-
mental stabilities. This condition is simple but fairly general which covers many important
results in the literature.

Second, we have proven the converse theorem of contraction on Riemannian mani-
folds. This converse theorem, for the first time, completely justifies the legitimacy of the
introduction of Finsler-Lyapunov function for contraction analysis.
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Third, we have obtained several other characterizations of contractive systems: (1) The

tubular neighborhood property shows that IES can be characterized fully on a tubular
neighborhood of the base manifold; (2) Krasovskii’s method reveals the intimate connec-
tions between incremental stability and Lyapunov stability on manifolds. Meanwhile, it
gives a geometric interpretation of the classical Krasovskii’s theorem.

To summarize, a geometric framework for contraction analysis on Riemannian mani-
folds has been established.



Chapter 5

Some Applications

This chapter is concerned with several applications of the theory developed so far. We
study three examples:

• Equilibrium seeking on Riemannan manifold;

• Gradient based filter on SO(3);

• Speed observer of Lagrangian systems on Riemannian manifold;

• Synchronization on manifolds.

5.1 Optimal Contraction Rate of Equilibrium Search-
ing on Riemannian Manifolds

We now come back to the ES problem that we have mentioned in Section 4.5. That
is, suppose that the time-invariant system (3.2) is IES on an invariant set D ⊆ M with
the GC property (Definition 4.1.2), then by Corollary 4.3, there exists an equilibrium
point x∗ ∈ D which is exponentially stable. The problem is to search this equilibrium via
numerical methods.

In [22], F. Bullo et al. have considered the Euler method on a Riemannian manifold:

xk+1 = expxk
(αf(xk)) (5.1)

where exp is the exponential map, and α a positive constant, see also [132].
It has been pointed out in [22] that when the system (3.2) is IES, then the following

mapping
F : x 7→ expx(αf(x))

101
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is a Banach contraction mapping and an “optimal contraction rate” can be derived when
working in Euclidean space, but it is an open conjecture [22] whether it is still true for
Riemannian manifold. In this subsection, we show that under certain conditions, F is
indeed a Banach contraction mapping when the system (3.2) is IES.

Consider two points x, y ∈ M , and the normalized minimizing geodesic γ : [0, ŝ] → M .
Obviously,

d(expx(αf(x)), expy(αf(y))) ≤
∫ ŝ

0

∣∣∣∣∣ dds expγ(s)(αf(γ(s)))
∣∣∣∣∣ ds

≤

√√√√ŝ ∫ ŝ

0

∣∣∣∣∣ dds expγ(s)(αf(γ(s)))
∣∣∣∣∣
2

ds (5.2)

See Figure 5.1 for an illustration. Since s 7→ expγ(s)(αf(γ(s))) is a geodesic variation

x

y

)(exp xfx )(exp yfy 

)(s geodesic

Figure 5.1: Equilibrium Seeking

along the geodesic r 7→ expγ(s)(rf(γ(s))) at s > 0, it holds that

d

ds
expγ(s)(αf(γ(s))) = Js(α)

where Js(r) is the Jacobi field along the geodesic r 7→ expγ(s)(rf(γ(s))), r ∈ [0, α] with
Js(0) = γ′(s) and J ′

s(0) = ∇γ′(s)f(γ(s)).
Hence ∫ ŝ

0

∣∣∣∣∣ dds expγ(s)(αf(γ(s)))
∣∣∣∣∣
2

ds =
∫ ŝ

0
⟨Js(α), Js(α)⟩ ds (5.3)

where Js(r) is a solution to

J ′′
s (r) +R(φ′

s(r), Js(r))φ′
s(r) = 0

Js(0) = γ′(s), J ′
s(0) = ∇γ′f(γ(s))

(5.4)

with r ∈ [0, ŝ] and φs(r) = expγ(s) rf(γ(s)), φ′
s(0) = f(γ(s)).
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Based on the property of Jacobi fields, we can obtain some useful estimations. We

consider two particular cases, namely, the zero curvature case and non-negative constant
curvature case.

5.1.1 Zero Curvature Case

Let us consider the zero curvature case, i.e., when M = Rn. In this case, Js(α) =
γ′(s) + αdf(γ(s))

ds
, where γ : [0, ŝ] → Rn is the line segment with unit speed joining x to y,

with |x − y| = ŝ. Explicitly, γ(s) = x − x−y
ŝ
s. Thus Js(a) = −x−y

ŝ
+ αdf(γ(s))

ds
. Denote

f ′
s = df(γ(s))

ds
, then we have∫ ŝ

0
⟨Js(α), Js(α)⟩ ds =

∫ ŝ

0

[
1 + 2α

〈
y − x

ŝ
, f ′
s

〉
+ α2|f ′

s|2
]
ds

= |x− y| + 2α
〈
y − x

|x− y|
, f(y) − f(x)

〉
+ α2

∫ ŝ

0
|f ′
s|2ds

Assume the simplest condition of IES is imposed on the system (3.2), namely,

∂f

∂x
+ ∂f

∂x

T

≤ −cI

where c is a positive constant (Demidovich condition with P = I). This is equivalent to
saying

(y − x)T (f(y) − f(x)) ≤ −c|x− y|2

for all x, y ∈ Rn, see [22] for details. (Alternatively, one may rewrite
∫ ŝ

0 ⟨Js(α), Js(α)⟩ds
1
2

∫ ŝ

0

∫ α

0
⟨J ′

s(α), Js(α)⟩ds+
∫ ŝ

0
⟨Js(0), Js(0)⟩ds

and this equivalence will not be needed explicitly.) Additionally, assume that f is globally
ℓ-Lipschitz continuous. Then we get from above that∫ ŝ

0
⟨Js(α), Js(α)⟩ds ≤ |x− y| − 2αc|x− y| + α2

∫ ŝ

0

∣∣∣∣∣∂f∂x
∣∣∣∣∣
2

ds

≤ |x− y|(1 − 2αc+ α2ℓ2)

Then from (5.2), one can obtain

d(F (x), F (y)) ≤ |x− y|
√

1 − 2αc+ α2ℓ2

≤
√

1 − 2αc+ α2ℓ2d(x, y)

Then the “best contraction rate” is attained when κ(α) = 1−2αc+α2ℓ2 is minimized. Ob-
viously, this is achieved at α = c/ℓ2 and the corresponding contraction rate is

√
1 − c2/ℓ2.

(Notice that c < ℓ is always true since the Lipschitz constant is always larger than the
contraction rate.) This is indeed the result obtained in [22].
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5.1.2 Non-negative Constant Curvature Case

Suppose that the manifold M has non-negative curvature K, see Definition 2.2.6. The
system (3.2) is ℓ-Lipschitz in the sense of Definition 3.1.3, and that the system is IES,
namely, there holds

⟨∇vf, v⟩ ≤ −c|v|2, v ∈ TM (5.5)

for some positive constant c. Let

U(t, s) = ⟨J ′
s(t), J ′

s(t)⟩ + ⟨R(φ′
s(t), Js(t))φ′

s(t), Js(t)⟩

Then since the manifold has constant curvature, ∇R = 0, therefore,
∂U

∂t
= 2⟨J ′′

s (t), J ′
s(t)⟩ + 2⟨R(φ′

s(t), Js(t))φ′
s(t), J ′

s(t)⟩

+ ⟨(∇∂tR)(φ′
s(t), Js(t))φ′

s(t), Js(t)⟩

= 2⟨J ′′
s (t), J ′

s(t)⟩ + 2⟨R(φ′
s(t), Js(t))φ′

s(t), J ′
s(t)⟩

= −2⟨R(φ′
s(t), Js(t))φ′

s(t), J ′
s(t)⟩ + 2⟨R(φ′

s(t), Js(t))φ′
s(t), J ′

s(t)⟩

= 0

Thus U(t, s) = U(0, s) for all t ≥ 0, s ∈ [0, ŝ].
And we have∫ ŝ

0
⟨Js(α), Js(α)⟩ ds = 2

∫ ŝ

0

∫ α

0
⟨J ′

s(r), Js(r)⟩ drds+
∫ ŝ

0
|Js(0)|2ds

= 2L+
∫ ŝ

0
|γ′(s)|2ds

= 2L+ ŝ

where

L =
∫ ŝ

0

∫ α

0
⟨J ′

s(r), Js(r)⟩ drds

=
∫ ŝ

0

∫ α

0

(∫ r

0

d

dt
⟨J ′

s(t), Js(t)⟩ dt+ ⟨J ′
s(0), Js(0)⟩

)
drds

=
∫ ŝ

0

∫ α

0

(∫ r

0
⟨J ′′

s (t), Js(t)⟩ + ⟨J ′
s(t), J ′

s(t)⟩ dt+ ⟨J ′
s(0), Js(0)⟩

)
drds

=
∫ ŝ

0

∫ α

0

(∫ r

0
⟨−R(φ′

s(t), Js(t))φ′
s, Js(t)⟩ + ⟨J ′

s(t), J ′
s(t)⟩ dt+ ⟨J ′

s(0), Js(0)⟩
)
drds

=
∫ ŝ

0

∫ α

0

∫ r

0
(⟨−2R(φ′

s(t), Js(t))φ′
s, Js(t)⟩ + U(t, s) + ⟨J ′

s(0), Js(0)⟩)dtdrds

≤
∫ ŝ

0

∫ α

0

(∫ r

0
U(0, s)dt

)
drds+

∫ ŝ

0

∫ α

0
⟨J ′

s(0), Js(0)⟩ drds

≤ 1
2α

2
∫ ŝ

0
U(0, s)ds− c

∫ ŝ

0

∫ α

0
drds (5.6)
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and

∫ ŝ

0
U(0, s)ds =

∫ ŝ

0
|∇γ′f |2 + ⟨R(∇γ′f, γ′)∇γ′f, γ′⟩ds

≤
∫ ŝ

0
((1 +K)ℓ2ds

= (1 +K)ŝℓ2

Hence ∫ ŝ

0
⟨Js(α), Js(α)⟩ ds ≤ ŝ(1 − 2cα + α2(1 +K)ℓ2) (5.7)

Thus the best contraction rate is achieved at α∗ = c
(1+K)ℓ2 , and the corresponding con-

traction rate is √√√√1 − c2

(1 +K)ℓ2

Notice that when K = 0, we immediately recover the zero curvature case.

5.2 Gradient-based Filter on SO(3)

Gradient based methods are extensively used when it comes to systems on manifolds.
See for example, [50, 64, 112] and the references therein. The following statement, which
results from Theorem 5.1, focuses on gradient systems evolving on a manifold.

Proposition 5.1. Let V : M ×M → R+ be a twice continuously differentiable function
satisfying: V (y, y) = 0, V (x, y) > 0 whenever x ̸= y, and HessV (v, v) ≥ c1|v|2. Consider
the system

ẋ = −k gradV (x,X(t)) + η(x, t), (5.8)

where k ∈ R and η : M × R+ → TM is a smooth vector field in a neighborhood of
X : R+ → M with the following properties:

P1 η(X(t), t) = Ẋ(t), for all t ≥ 0;

P2 there exists a constant c2 > 0 such that

|∇vη(x, t)|x=X(t) ≤ c2|v|, ∀v ∈ TX(t)M. (5.9)

Then, X is a solution of (5.8) and, for all k > c2
c1

, it is LES for (5.8).
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Proof. First observe that, since V attains a global minimum on the diagonal, it holds that
gradV (X(t), X(t)) = 0 for all t ≥ 0. It follows from P1 that X is a solution of (5.8).
Moreover, it holds that〈

∇v[−k gradV (x,X(t)) + η(x, t)], v
〉∣∣∣∣
x=X(t)

= − k(HessV )(v, v)|TX(t)M + ⟨∇vη(x, t), v⟩|x=X(t)

≤ − (kc1 − c2)|v|2.

The conclusion follows by Corollary 3.2.

Remark 5.1. A natural choice for η is η(x, t) := P x
X(t)Ẋ(t), where the operator P x

X(t)

is the parallel transport from X(t) to x. Then, at each time t > 0, P x
X(t)Ẋ(t) defines a

vector field in a neighborhood of X(t). It follows that ∇vP
x
X(t)Ẋ(t) = 0, ∀v ∈ TX(t)M . In

an Euclidean space, P x
X(t)Ẋ(t) is simply Ẋ(t), and clearly ∇vẊ(t) = 0 for all v ∈ TxM

and all x ∈ Rn.

Remark 5.2. If the solution X is bounded, then η can be chosen as any smooth extension
of X since the formula (5.9) is always valid in this case thanks to the linear dependence
of v on both sides.

Consider the attitude dynamics

Ṙ = RΩ(t) (5.10)

where R ∈ SO(3) is the attitude and Ω(t) ∈ so(3) corresponds to the angular velocity. The
Lie group SO(3) is a Riemannian manifold with the bi-invariant metric ⟨X, Y ⟩ = tr(XTY ).
The corresponding Riemannian norm |X|F =

√
tr(XTX) is the Frobenius norm.

It is tempting to design a low pass filter for the dynamics (5.10), see for example [79].
To this end, we apply Proposition 5.1. Define a function

V (R̂, R) = 1
2 |R̂ −R|2F , R̂, R ∈ SO(3).

The gradient of V at R̂ is the unique vector gradV satisfying

dV (X) = ⟨gradV,X⟩, ∀X ∈ TR̂SO(3),

from which it can be readily checked that

gradV = 1
2R̂(RT R̂ − R̂TR). (5.11)
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By Proposition 5.1 (with η(R̂, t) = R̂Ω(t)), R(t) is an exponentially stable solution to

˙̂
R = −k gradV (R̂, R) + R̂Ω(t)

= −k

2 R̂(RT (t)R̂ − R̂TR(t)) + R̂Ω(t)

by noticing that η(R̂, t) = R̂Ω(t) is a smooth extension of Ṙ to SO(3) and that SO(3) is
compact. Therefore, the following is a locally exponential filter for the system (5.10)

˙̂
R = −k

2 R̂(RT R̂ −RT R̂) + R̂Ω (5.12)

More precisely, there exist two positive constants c, k, such that

d(R̂(t), R(t)) ≤ ke−λtd(R̂(0), R(0)), ∀d(R̂(0), R(0)) < c, t ≥ 0

Remark 5.3. The filter (5.12) has also been obtained in [79].

The above analysis is based on the theory developed in Chapter 3, namely, the local
exponential stability of a particular solution. This problem can also be tackled via the
contraction analysis method developed in Chapter 4.

Consider the following dynamics

Ṙ = RΩ, (5.13)

where Ω is now a function of R (c.f. 5.10). In order to apply contraction analysis, we
need first derive the complete lift system of (5.13). To this end, recall that the tangent
bundle of a Lie group G is trivial, i.e., TG ≃ G× TeG, we have

TSO(3) ≃ SO(3) × so(3)

via the mapping (R,RΩ) 7→ (R,Ω). Hence the second order tangent bundle has the
corresponding isomorphism

TTSO(3) ≃ TSO(3) × T so(3) ≃ TSO(3) × so(3)2

Therefore, the complete lift system of (5.13) is

d

dt

R
V

 =

 RΩ(R)

dΩR(RV )


For example, when Ω(R) = −ZTR +RTZ, the complete lift system reads

V̇ = −ZTRV + V TRTZ.
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Choose the Finsler-Lyapunov function W (V ) = 1

2 |V |2F , it follows that

Ẇ = −2 tr(V TZTRV )

When R = Z, we have Ẇ = −4W , this suggests that the system (5.13) is locally IES
near the solution near Z, where Z can be any solution to (5.13).

5.3 Intrinsic Speed Observer of Lagrangian Systems

Speed observer design for Lagrangian systems is of great practical and theoretical interest.
See for example [14, 89, 91] and the references therein. What we are interested in this
section is the intrinsic speed observer for Lagrangian system

∇q̇ q̇ = u, q(t) ∈ M, u(t) ∈ Tq(t)M (5.14)

for all t ≥ 0, where M is the configuration space equipped with a kinematic metric, see
[24, Chapter 4]. Our results are mainly motivated by the work of P. Rouchon [2]. Similar
results are also found in [20, 11]. Before observation, we first need to develop an intrinsic
stability theory for Lagrangian systems on Riemannian manifolds. After that we combine
this with the tools developed in previous chapters to provide an alternative convergence
analysis method other than the one in [2]. Compared to the three mentioned works, the
proposed method will greatly simplify the analysis procedure. In particular, the analysis
is intrinsic and does not involve any calculations in local coordinates. To achieve this
goal, some preparations will be covered in this section, which are also interesting in their
own rights.

5.3.1 Jacobi equation and stability

Jacobi equation is a second order differential equation which characterizes geodesic varia-
tion along a given geodesic. The solutions to the Jacobi equation form into a vector field
on the Riemannian manifold, called the Jacobi field. The most remarkable fact it reveals
is that the Jacobi field is related to the curvature of the manifold. In this section, we
study the Jacobi field from the stability analysis point of view.

Consider the system (5.14) with zero input, i.e., u = 0. Then the solutions to the
system are geodesics. Choose a geodesic q and find a smooth geodesic variation (t, s) 7→
q(t, s) such that q(t, 0) = q(t). For convenience, denote q̇ = ∂q

∂t
|s=0 and q′ = ∂q

∂s
|s=0. Then

both q̇ and q′ are vector fields along the geodesic q, but q̇ is tangent to the geodesic while
q′ is generally transverse to it. See Figure 5.2.
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Figure 5.2: q̇ and q′ along a geodesic t 7→ q(t)

Taking the covariant derivative of the system (5.14) with zero input along the curve
s 7→ q(t, s) results in ∇q′∇q̇ q̇ = 0, and using the relation

∇q′∇q̇ − ∇q̇∇q′ = R(q̇, q′)

∇q̇q
′ = ∇q′ q̇

(5.15)

where R is the curvature tensor, we obtain

∇q̇∇q̇q
′ = ∇q̇∇q′ q̇

= ∇q′∇q̇ q̇ −R(q̇, q′)q̇

= −R(q̇, q′)q̇

or
D2q′

dt2
= −R(q̇, q′)q̇, (5.16)

which is the well-known Jacobi equation. For (5.16), choose the “Lyapunov function”

V (q̇, q′) = ⟨Dq
′

dt
,
Dq′

dt
⟩ + ⟨R(q̇, q′)q̇, q′⟩.

Assume that (M, g) is a constant curvature manifold, that is, there exists a constant
K ∈ R, such that

⟨R(q̇, q′)q̇, q′⟩ = K⟨q̇, q̇⟩⟨q′, q′⟩

for all q̇, q′. The time derivative of V reads

V̇ = 2⟨D
2q′

dt2
,
Dq′

dt
⟩ + ⟨R(q̇, Dq

′

dt
)q̇, q′⟩ + ⟨R(q̇, q′)q̇, Dq

′

dt
⟩

= 2⟨−R(q̇, q′)q̇, Dq
′

dt
⟩ + 2⟨R(q̇, q′)q̇, Dq

′

dt
⟩
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= 0,

where we have used the fact that Dq̇
dt

= 0. Thus we have

V (q̇, q′) = |q̇′|2 +K|q′|2 = constant.

When K > 0, the phase plot of (q̇′, q′) is a series of ellipses, so one geodesic oscillates
along the other, as shown in Figure 5.3, in which the two drawing curves are geodesics
and the arrows represent the Jacobi field. When K < 0, the geodesic flow diverges. This
may be better understood if we rewrite (5.16) as

D2q′

dt2
= −gradq′V

and this shares the same form of the motion of a particle in a potential field with potential
force V , see also [13].

Figure 5.3: Jacobi field on positive curvature manifold

5.3.2 Dynamical Systems Along a Trajectory

To handle Lagrangian systems, we need to introduce some necessary concepts. Consider
the vector bundle

T kM =
k⊕
i=1

TM and Ωk = T kM |X ,

i.e., Ωk the restriction of T kM to the curve t 7→ X(t), which is still a vector bundle.
Given a curve c in M , the set of smooth k-vector fields along c is the smooth section of
Ωk. Explicitly,

Σk = {V ∈ Ωk|V i(t), t ∈ R≥0 are smooth vector fields along c(t), ∀i = 1, · · · , k},
(5.17)
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with k ∈ N+ and V i(t) the i-th component of the vector V (t), or equivalently

V (t) =



V 1(t)

V 2(t)
...

V k(t)


, V i(t) ∈ Tc(t)M.

Denote also

DV (t)
dt

=



DV 1(t)
dt

DV 2(t)
dt

...
DV k(t)
dt


.

We equip Ωk with the inner product (and hence a norm)

⟨W (t), V (t)⟩ = ⟨W i(t), V i(t)⟩ + · · · ,+⟨W k(t), V k(t)⟩,

where ⟨, ⟩ on the right hand side are the Riemannian metrics on M . The inner product
defined above has an important property, namely, for V,W ∈ Σk,

d

dt
⟨V, (P ⊗ In)W ⟩ =Lċ(t)⟨V, (P ⊗ In)W ⟩

=
〈
DV

dt
, (P ⊗ In)W

〉
+
〈
V, (P ⊗ In)DW

dt

〉
,

where P is a constant matrix of dimension k × k, In the identity matrix of dimension
n× n, and ⊗ stands for Kronecker product of matrices.

Using the above notations, one can define dynamical systems on Σk

DV (t)
dt

= f(t, V (t)), V ∈ Σk, (5.18)

where f is smooth and f(t, 0) = 0 for t ≥ 0.

Definition 5.3.1. The system (5.18) is said to be locally exponentially stable if there
exist positive constants K,λ and b such that

|V (t)| ≤ K|V (0)|e−λt

for all |V (0)| < b. If the above is satisfied for all V (0), then the system (5.18) is said to
be globally exponentially stable.
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Proposition 5.2. Let A ∈ Rk×k be a constant Hurwitz matrix. Then the following
system

DV

dt
= (A⊗ In)V, V ∈ Σk (5.19)

is globally exponentially stable, where Σk is defined as (5.17).

Proof. Since A is Hurwitz, there exists a positive definite matrix P ∈ Rk×k such that

PA+ ATP = −Ik.

Consider now the Lyapunov function W = ⟨V, (P ⊗ I)V ⟩. Differentiating W along c (see
(5.17)) yields

dW

dt
=
〈
DV

dt
, (P ⊗ I)V

〉
+
〈
V, (P ⊗ I)DV

dt

〉
= ⟨(A⊗ I)V, (P ⊗ I)V ⟩ + ⟨V, (P ⊗ I)(A⊗ I)V ⟩

= ⟨V, (AT ⊗ I)(P ⊗ I)V ⟩ + ⟨V, (P ⊗ I)(A⊗ I)V ⟩

= ⟨V, [(ATP + PA) ⊗ I]V ⟩

= −⟨V, V ⟩

≤ −kW,

for some k > 0. This completes the proof.

5.3.3 Local Exponential Stability and Contraction of Lagrangian
Systems

Clearly, the reason that trajectories of the Jacobi equation (5.16) oscillate around a given
geodesic is due to the curvurture term on the right hand side and the lack of damping.
Therefore, analogous to the second order system

ẍ+ αẋ+ βx = 0, x ∈ Rn, α, β ∈ R

in Euclidean space, intuitively, to achieve local exponential stability, the Jacobi equation
(5.16) should be modified by adding a damping term:

D2q′

dt2
+ α

Dq′

dt
+ βq′ = 0 (5.20)

with positive constants α and β where the covariant derivatives are evaluated along the
prescribed solution.
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Stability notions rely on metric (or distance in the case of Riemannian manifold). So,

the choice of the metric is crucial. For Lagrangian systems, the state space TM admits
the natural Sasaki metric [138] induced from the Riemannian metric on M , which we
recall now.

Let (p, v) ∈ TM and V,W tangent vectors in TM at (p, v). Choose curves in TM

α : t 7→ (p(t), v(t)), β : t 7→ (q(t), w(t)),

with p(0) = q(0) = p, v(0) = w(0) = v, v′(0) = V , w′(0) = W . Define the inner product
on TM by

⟨V,W ⟩(p,v) = ⟨dπ(V ), dπ(W )⟩p + ⟨Dv
dt

(0), Dw
dt

(0)⟩p. (5.21)

We call this metric the Sasaki metric on TM .
Having this metric at hand, one can calculate the length of a curve w(s) = (c(s), v(s))

lying in TM , which is

ℓ(w)

=
∫ √

⟨w′(s), w′(s)⟩ds

=
∫ √

⟨dπ(w′(s)), dπ(w′(s))⟩ + ⟨Dv(s)
ds

,
Dv(s)
ds

⟩ds

=
∫ √

⟨c′(s), c′(s)⟩ + ⟨Dv(s)
ds

,
Dv(s)
ds

⟩ds

in which the third equality is due to the simple fact that

dπ(w′(s)) = dπ(dw(∂/∂s))

= d(π ◦ w)(∂/∂s) = dc(∂/∂s) = c′(s)

where π : TM → M is the natural projection.

Assumption 5.1. For each pair of points (q, V ) and (p,W ) in TM , the minimizing
geodesic that joins (q, v) to (p,W ) always exists.

This assumption is reasonable since we work always locally.

Theorem 5.1. Consider a Lagrangian system (5.14) and its complete lift ẇ = W along
the solution (q∗(t), q̇∗(t)). Assume that Assumption 5.1 holds. If there exist positive
constants K and λ such that

|dπ(w(t;w0))|2 +
∣∣∣∣∣Ddπ(w(t;w0))

dt

∣∣∣∣∣
2

≤ Ke−λt

|dπ(w0)|2 +
∣∣∣∣∣Ddπ(w(t;w0))

dt

∣∣∣∣∣
2

t=0

 (5.22)
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for all w0 ∈ T(q∗(0),q̇∗(0))TM , where w(t;w0) is the solution to the complete lift of the
Lagrangian system with initial condition w0 and the covariant derivative is evaluated
along q∗(t). Then the solution (q∗(t), q̇∗(t)) is locally exponentially stable. Namely,

dTM((X(t), q̇(t)), (q∗(t), q̇∗(t))) ≤ K ′e−λ′tdTM((q(0), q̇(0)), (q∗(0), q̇∗(0))),

for (q(0), q̇(0)) ∈ Bϵ(q∗(0), q̇∗(0)) with ϵ > 0 small enough and K ′, λ′ two positive con-
stants.

Proof. Consider a point (q1, v1) ∈ TM , and the integral curve η1(t) = (q1(t), q̇1(t)) passing
through it at time t = 0. Denote η0(t) = (X(t), q̇(t)). By Assumption 5.1, there exists a
unique minimizing geodesic γ(s) = (q(s), v(s)), s ∈ [0, 1] joining (q0, v0) to (q1, v1), that is,
γ(0) = (q0, v0), γ(1) = (q1, v1). Now the family of integral curves t 7→ (q(s, t), ∂q(s,t)

∂t
), s ∈

[0, 1] passing through γ(s) at time t = 0 forms a variation of the curve η0. The curve
s 7→ (q(s, t), ∂q(s,t)

∂t
) joins η0(t) to η1(t). Therefore, we have the estimation of the distance

between the two points η0(t) and η1(t):

dTM(η0(t), η1(t)) ≤
∫ 1

0

√√√√∣∣∣∣∣∂q∂s(s, t)
∣∣∣∣∣
2

+
∣∣∣∣∣∇ ∂

∂s

∂q

∂t

∣∣∣∣∣
2

ds. (5.23)

By the definition of complete lift, we know that

∂q(s, t)
∂s

= dπ(w(t; ∂γ(s)
∂s

)).

Hence by (5.22),

dTM(η0(t), η1(t)) ≤Ke−λt
∫ 1

0

√√√√∣∣∣∣∣∂q(s)∂s

∣∣∣∣∣
2

+
∣∣∣∇ ∂

∂s
v(s)

∣∣∣2ds
=Ke−λtdTM((q0, v0), (q1, v1)),

which completes the proof.

Corollary 5.1. The solution X to the Lagrangian system (5.14) is LES if there exist
positive constants α, β, i = 1, 2, such that

D2dπ(w)
dt2

+ α
Ddπ(w)

dt
+ βdπ(w) = 0, (5.24)

for all w0 where w = w(t;w0) is as in Theorem 5.1 and the covariant derivative is taken
along X.
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Proof. Let V =

 π(w)
Ddπ(w)

dt

, then the system (5.24) can be rewritten as DV
dt

= (A ⊗ In)V ,

where

A =

 0 1

−β −α

 ,
which is Hurwitz. The corollary is then proved by invoking Proposition 5.2.

This corollary will serve as a powerful tool to analyse the convergence of the speed
observer in the next section.

5.3.4 Speed Observer of Lagrangian Systems

Consider the Lagrangian system (5.14). The objective is to design a speed observer for
q̇(t) knowing the information of q(t) and u(t). The following intrinsic speed observer in
proposed in [2] for the system (5.14) when u = 0:

˙̂q = v̂ − α∇F (q̂, q)

∇ ˙̂qv̂ = −β∇F (q̂, q) +R(v̂,∇F )v̂ + P q̂
q u(q, t).

(5.25)

where α, β are positive constants and F (x, y) = 1
2d

2(x, y) with d the Riemannian distance
function. In [2], the authors used contraction analysis in local coordinates to study the
local exponential convergence of the observer.

We provide an alternative way for this procedure based on the techniques we have
developed in this thesis, which will largely simplify the analysis in [2]. Moreover, unlike
that in [2], the analysis will be coordinate free.

Theorem 5.2. Consider the system (5.14), where M is a Riemannian manifold. Then
(5.25) is a local exponential speed observer for the system in the sense that there exist
some positive constants c, k, λ, such that

d(q̂(t), q(t)) ≤ ke−λtd(q̂(0), q(0)), ∀t ≥ 0, d(q̂(0), q(0)) < c (5.26)

Proof. It suffices to show that each solution (s(t), ṡ(t)) to the following system is LES:
q̇ = v − α∇F (q, s(t))

∇q̇v = −β∇F (q, s(t)) +R(v,∇F )v + P q
s(t)u(s(t), t),

(5.27)

The system (5.25) is equivalent to the following Lagrangian system:

∇q̇(q̇ + α∇F ) = − β∇F +R(q̇ + α∇F,∇F )(q̇ + α∇F ) + P q
s(t)u(s(t), t),
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or

∇q̇ q̇ = −α∇q̇∇F−β∇F +R(q̇,∇F )(q̇ + α∇F )

+ P q
s(t)u(s(t), t).

Taking the covariant derivative in the direction of q′ on the left hand side of the above
formula leads to

∇q′∇q̇ q̇ = D2q′

dt2
+R(q̇, q′)q̇, (5.28)

and on the right hand side

− α∇q′∇q̇∇F − β∇q′∇F + ∇q′ [R(q̇,∇F )(q̇ + α∇F )]

= − α∇q̇∇q′∇F − αR(q̇, q′)∇F − β∇q′∇F

+ ∇q′ [R(q̇,∇F )(q̇ + α∇F )]

= − α∇q̇q
′ − βq′ +R(q̇,∇q′∇F )q̇ (since ∇F (s(t), s(t)) = 0)

= − α∇q̇q
′ − βq′ +R(q̇, q′)q̇,

where we have used the relations ∇q′∇F |q=s(t) = q′ and ∇q′P q
s(t)u(s(t), t) = 0 for all t ≥ 0.

Combining this with (5.28) yields

D2q′

dt2
+ α

Dq′

dt
+ βq′ = 0. (5.29)

Now invoking Corollary 5.1, the theorem is proved.

In [2], the authors considered speed observer for Lagrangian system in the form of
(5.25). Note that by setting u = 0, we immediately get that result.

5.4 Synchronization

Synchronization is a broad research subject which finds applications in a variety of areas
ranging from manufacturing industry to systems biology. It is impossible for us to provide
a complete reference list for this subject; however, there are many excellent survey articles,
see for example [120, 38, 1] and the many references therein.

In this thesis, we are interested in studying synchronization via contraction analysis.
To the best of the author’s knowledge, contraction theory was first introduced to study
synchronization in [114]. This work was then followed by a more detailed and systematic
research article [133], in which W. Wang and J. Slotline proposed the so called partial
contraction as the basic tool to study synchronization. More recent works on this topic
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can be found in [34, 87, 41]. We try to establish a geometric framework and develop a
general theory for synchronization in this section. It can partly serve as a mathematical
interpretation for the ideas proposed in [133].

Consider a system with n+ 1 sub-systems

ẋ0 = f0(x0, x1, · · · , xn)

ẋ1 = f1(x0, x1, · · · , xn)

ẋ2 = f2(x0, x1, · · · , xn)
...

ẋn = fn(x0, x1, · · · , xn)

(5.30)

where xi ∈ M, and fi(x0, x1, · · · , xn) ∈ Txi
M for all i ∈ {0, 1, · · ·n}

Definition 5.4.1. The system (5.30) is said to achieve local exponential synchronization
(LE-sync) if there exist two positive constants K,λ, such that the following holds for some
positive constant c:

d(xi(t), xj(t)) ≤ Ke−λtd(xi(0), xj(0)), (5.31)

for all xi(0), xj(0) ∈ M with d(xi(0), xj(0)) < c, and all t ≥ 0, i, j ∈ {0, 1, · · · , n}. If c
can be chosen arbitrarily, the system is said to achieve global exponential synchronization
(GE-sync).

Definition 5.4.2. We say that the system (5.30) synchronize to the leader x0 locally if
there exist two positive constant K,λ such that the following holds for some positive
constant c:

d(xi(t), x0(t)) ≤ Ke−λtd(xi(0), x0(0)) (5.32)

for all xi(0), x0(0) ∈ M with d(xi(0), x0(0)) < c, and all t ≥ 0, i ∈ {1, · · · , n}. If the
constant c can be chosen arbitrarily, we say that the system synchronize to the leader x0

globally.

To begin with, consider two coupled nonlinear systems
ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)
(5.33)

where x1, x2 lie in M . We call the first line of (5.33) sub-system x1 and the second
line sub-system x2. The aim is to study the exponential stability of the diagonal set
DM = {(x1, x2) ∈ M × M : x1 = x2}. Clearly, this is achieved only when DM is an
invariant set, which is equivalent to saying that

f1(x, x) = f2(x, x), ∀x ∈ M. (5.34)
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Case 1: M = Rn with Euclidean metric

When M = Rn, introduce the error variable e = x1 − x2 and we get
ė = f1(x1, x1 − e) − f2(x1, x1 − e)

ẋ1 = f1(x1, x1 − e)
(5.35)

Let F (e, x) = f1(x, x− e) − f2(x, x− e) and G(e, x) = f1(x1, x1 − e). Invoking condition
(5.34), we see that the system can be written in the form of (2.25), i.e., ė = F (e, x),
ẋ = G(e, x) with F (0, x) = 0 for all x ∈ Rn.

Based on the error dynamics (5.35) and Definition 2.3.6, it is obvious that the system
(5.33) achieves LE-sync if the system (5.35) is TULES-NL (transversally uniformly locally
exponentially stable).

Therefore, we can easily prove the following result.

Proposition 5.3. Consider the system (5.33).

1. If there exist two constants r, c > 0 and a matrix function C1 function P : Rn →
Rn×n such that

(a) there exists positive constants p1, p2, such that

p1I ≤ P (x) ≤ p2I, ∀x ∈ Rn, (5.36)

(b) ∣∣∣∣∣∂P∂x (x)
∣∣∣∣∣ ≤ c, ∀x ∈ Rn, (5.37)

(c) there exists a positive definite matrix Q, such that

Lf1(x,x)P (x) − P (x)
(
∂(f1 − f2)

∂x2
(x, x)

)
−
(
∂(f1 − f2)

∂x2
(x, x)

)T
P (x) ≤ −Q,

(5.38)
for all x ∈ Rn.

(d) ∣∣∣∣∣ ∂2f1

∂x2∂x2
(x1, x2)

∣∣∣∣∣ ≤ c,

∣∣∣∣∣ ∂2f2

∂x2∂x2
(x1, x2)

∣∣∣∣∣ ≤ c,∣∣∣∣∣ ∂2f2

∂x1∂x2
(x1, x2)

∣∣∣∣∣ ≤ c,

∣∣∣∣∣∂f1

∂x2
(x1, x2)

∣∣∣∣∣ ≤ c

(5.39)

for all x1, x2 ∈ Rn with |x1 − x2| ≤ r.

then the system (5.33) achieves LE-sync.
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2. Conversely, if the system (5.33) achieves LE-sync and that (5.39) is satisfied, then

there exists a continuous matrix function P : Rn → Rn×n such that 1(a) and 1(c)
are satisfied as above, where Lf1P should be understood in the Dini derivative sense.

Proof. See [7].

Therefore, the following matrix provides characterization of LE-sync of system (5.33).

∂f2

∂x2
(x1, x2) − ∂f1

∂x2
(x1, x2),

or
∂f1

∂x1
(x1, x2) − ∂f2

∂x1
(x1, x2),

by swapping the subscripts “1” and “2” in the analysis.

Example 5.1. Consider the simplest case: two coupled scalar linear systems
ẋ1 = a11x1 + a12x2

ẋ2 = a21x1 + a22x2

By (5.34), necessary condition of synchronization is

a11x+ a12x = a21x+ a22x, ∀x ∈ R

or equivalently, a11 + a12 = a21 + a22. (This implies that the matrix A = [aij] has
a real eigenvalue whose corresponding eigenvector is [1, 1]T .) So if a11 − a21 < 0 (or
a22 − a12 < 0), then the above analysis implies that x1 should converge exponentially to
x2. This is satisfied when A is a Metzler matrix.

Example 5.2. In [133], the authors studied the one-way coupling configuration
ẋ1 = f(x1, t)

ẋ2 = f(x2, t) + u(x1) − u(x2)
(5.40)

where x1, x2 ∈ Rm. It is claimed that if the function f − u is contracting, i.e., the system
ẋ = f(x, t) − u(x) is IES, then x1 and x2 will reach synchrony exponentially. This is
obvious by noticing that

∂f(x1, t)
∂x1

− ∂[f(x2, t) + u(x1) − u(x2)]
∂x1

= ∂[f(x1, t) − u(x1)]
∂x1

.
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Case 2: M = Rn with a Riemmanian metric

When Rn is equipped with a Riemannian metric g, or equivalently there exists a C1

positive definite function P : Rn → Rn × Rn, such that g(vx, vx) = vTx P (x)vx. The
distance between two given points x1, x2 is no longer |x1 − x2|. In this case, instead of
constructing an error dynamics, we construct a one parameter set of auxiliary systems:

ẋs = F (x1, x2, xs) (5.41)

where F (x1, x2, xs) = f2(x1, xs) − f1(x1, xs) + f1(x1, x2), xs ∈ Rn, s ∈ [1, 2], and (x1, x2)
the solution to (5.33). Alternatively, one can also consider

ẋs = f1(xs, x2) − f2(xs, x2) + f2(x1, x2) xs ∈ Rn (5.42)

See Figure 5.4.

1x

2x

sx

Figure 5.4: A Parameterized Auxiliary Systems

Remark 5.4. The auxiliary system (5.41) has the following important property: when
s = 1, it reduces to the sub-system x1 and the sub-system x2 when s = 2. Similar
techniques have been used in observer design [106, 7], but the construction of an auxiliary
system for the purpose of synchronization is new, and we will show the construction can
be easily extended to the Riemannian manifold case.

We adopt the following notations: ϕ1(t;x1, x2), ϕ2(t;x1, x2) the solution to (5.33) with
initial condition (x1, x2), and ϕs(t;x1, x2, xs) the solution to (5.41) with initial condition
(x1, x2, xs). For simplicity, we sometimes omit the initial conditions and write x1(t), x2(t)
and xs(t) when clear from the context.
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Fixing two points x1, x2 ∈ Rn, let γ : [1, 2] ⊂ R → Rn be the line segment joining x1

to x2, i.e., γ(1) = x1, γ(2) = x2. Invoking Remark 5.4, s 7→ ϕs(t;x1, x2, γ(s)) is a smooth
curve joining ϕ1(t;x1, x2) to ϕ2(t;x1, x2).

Meanwhile,

d

dt

∂ϕs(t;x1, x2, γ(s))
∂s

= ∂

∂s

dϕs(t;x1, x2, γ(s))
dt

=(Dx2f2 −Dx2f1)(ϕ1(t;x1, x2), ϕs(t;x1, x2, γ(s)))∂ϕs(t;x1, x2, γ(s))
∂s

in which Dx2f2 is the differential of the mapping x2 7→ f2(x1, x2). Thus ∂ϕs(t;x1,x2,γ(s))
∂s

is
the solution to:

v̇s =
(
∂f2

∂x2
(x1, xs) − ∂f1

∂x2
(x1, xs)

)
vs, vs(0) = γ′(s). (5.43)

where xs is as in (5.41).

Proposition 5.4. Consider the system (5.33) in which f1, f2 are assumed to be C1, and
M = Rn is equipped with a Riemannian metric. If there exists a constant c > 0, such
that

P (y)
(
∂f2

∂x2
(x1, y) − ∂f1

∂x2
(x1, y)

)
+
(
∂f2

∂x2
(x1, y) − ∂f1

∂x2
(x1, y)

)T
P (y) (5.44)

+ LF (x1,x2,y)P (y) ≤ −cI (5.45)

for all x1, x2, y ∈ Rn, then the system (5.33) achieves GE-sync.

Noticing the relation

d(ϕ1(t;x1, x2), ϕ2(t;x1, x2)) ≤
∫ 2

1

∣∣∣∣∣∂ϕs(t;x1, x2, γ(s))
∂s

∣∣∣∣∣ ds, (5.46)

we see immediately that the distance between ϕ1(t;x1, x2) and ϕ2(t;x1, x2) can be char-
acterized by (5.43). Thus proof of this proposition is straightforward by imitating the
procedure of the proof of Theorem 4.1 and hence is omitted.

Remark 5.5. In [7], the authors used transverse linearization techniques to study LE-
sync for systems in Euclidean space. In comparison, Proposition 5.4 is concerned with
GE-sync on Riemannian manifolds.

Case 3: M a general Riemannian manifold
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For general Riemannian manifold, the methods used in the above two cases no longer

work. For example, the auxiliary system

ẋs = f2(x1, xs) − f1(x1, xs) + f1(x1, x2) (5.47)

does not make sense any more in that f1(x1, xs) and f1(x1, x2) are tangent vectors in
Tx1M but f2(x1, xs) − f1(x1, xs) + f1(x1, x2) needs to be in TxsM . To handle this, we
modify the auxiliary system (5.41) into the following form

ẋs = f2(x1, xs) − P xs
x1 f1(x1, xs) + P xs

x1 f1(x1, x2). (5.48)

Again it can be easily verified that when s varies from 1 to 2, the vector field F̄ (x1, x2, xs) :=
f2(x1, xs) − P xs

x1 f1(x1, xs) + P xs
x1 f1(x1, x2) varies from f1(x1, x2) to f2(x1, x2).

Thus to estimate the distance between ϕ1(t;x1, x2) and ϕ2(t;x1, x2), we use

d(ϕ1(t;x1, x2), ϕ2(t;x1, x2)) ≤
∫ 2

1

∣∣∣∣∣∂ϕs(t;x1, x2, γ(s))
∂s

∣∣∣∣∣ ds (5.49)

But

1
2
∂

∂t

〈
∂ϕs
∂s

,
∂ϕs
∂s

〉
=
〈
D

∂t

∂ϕs
∂s

,
∂ϕs
∂s

〉

=
〈
D

∂s

∂ϕs
∂t

,
∂ϕs
∂s

〉
=
〈

∇ ∂ϕs
∂s
F̄ (ϕ1, ϕ2, ϕs),

∂ϕs
∂s

〉

therefore, it remains to study the quadratic form

Qx1,x2(vy) =
〈
∇vy F̄ (x1, x2, y), vy

〉
, vy ∈ TyM. (5.50)

We have the following proposition.

Proposition 5.5. Consider the system (5.33) in which f1, f2 are assumed to be C1, and
M is a Riemannian manifold with metric ⟨, ⟩. If there exists a constant c > 0, such that

Qx1,x2(vy) ≤ −c|vy|2, ∀x1, x2, y ∈ M, vy ∈ TyM (5.51)

where Qx1,x2 is the quadratic form defined in (5.50), then the system (5.33) achieves
GE-sync.

Remark 5.6. This proposition is a generalization of Proposition 5.4.

For a system with two sub-systems, there is no difference between Definition 5.4.1
(leaderless synchronization) and Definition 5.4.2 (synchronization to a leader). This is not
true for a system with more than two sub-systems, as d(xi(t), x0(t)) ≤ ke−λtd(xi(0), x0(0))
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for all i ∈ {1, · · · , n}, n ≥ 2 and some positive constants k, λ does not necessarily imply
d(xi(t), xj(0)) ≤ k′e−λ′td(xi(0), xj(0)) for all i, j ∈ {0, 1, · · · , n} for some positive con-
stants k′, λ′. However, one can always treat a leaderless synchronization problem with n

agents as n leader following problems by setting xi as the leader at the i-th step.
In this section, we show how to extend the results obtained in previous subsection to

synchronization of multi-agent systems. We start with leader following synchronization.
In analogy with the two coupled sub-system, we construct a parameterized system:

ẋsi =
n∑
j=1

Pi(fi − f0)(x0, · · · , x0︸ ︷︷ ︸
j times

, xsj , xj+1, · · · , xn)

−
n∑
j=1

Pi(fi − f0)(x0, · · · , x0︸ ︷︷ ︸
j times

, xj, xj+1, · · · , xn)

+ Pifi(x0, · · · , xn), i = 1, · · · , n

(5.52)

where xsi (0) = γi(s), s ∈ [0, 1], in which γi is a smooth curve joining x0(0) to xi(0), i.e.,
γi(0) = x0(0), γi(1) = xi(0); Pi is an operator which takes a vector f(u1, · · · , ui, · · · , un)
to P xs

i
ui f(u1, · · · , ui, · · · , un). This is illustrated in Figure 5.5.

1x

2x

4x

3x

sx2

sx3

sx4

Figure 5.5: A Parameterized Auxiliary Systems of n Subsystems

Rewrite (5.52) as
ẋsi = Fi(x0, · · · , xn; xs1, · · · , xsn). (5.53)

We have the following key observation:

ẋ0 = Fi(x0, · · · , xn; x0, · · · , x0), ∀i = 1, · · · , n (5.54)

ẋi = Fi(x0, · · · , xn; x1, · · · , xn). ∀i = 1, · · · , n (5.55)
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Lemma 5.1. Given two ordinary differential equations: ẏ1 = f(t, y1, y2) and ẏ2 =
f(t, y2, y2) with f smooth. If y1(0) = y2(0), then y1(t) = y2(t) for all t ≥ 0.

Proof. By assumption, y2(t) is a particular solution to ẏ1 = f(t, y1, y2) hence by unique-
ness of solution, y1(t) = y2(t) for all t ≥ 0.

Lemma 5.2. The map [0, 1] ∋ s 7→ xsi (t) forms a smooth curve joining x0(t) to xi(t) for
all i = 1, · · · , n.

Proof. Denote

X1 = (x0, · · · , x0︸ ︷︷ ︸
n times

), X2 = (x1, · · · , xn), Xs = (xs1, · · · , xsn),

then equations (5.53) to (5.55) can be rewritten as

Ẋs = F (x0, X2, X
s), (5.56)

Ẋ1 = F (x0, X1, X1) (5.57)

Ẋ2 = F (x0, X1, X2) (5.58)

for a smooth F . By construction, X0(0) = X1(0) and X1(0) = X2(0), therefore by Lemma
5.1, we have X0(t) = X1(t) and X1(t) = X2(t) for all t ≥ 0. Equivalently,

x0
i (t) = x0(t), x1

i (t) = xi(t), ∀i = 1, · · · , n, t ≥ 0. (5.59)

Thus the lemma follows.

Lemma 5.2 can now help us estimate the distance between xi(t) and x0(t). In effect,

1
2
∂

∂t

〈
∂xis
∂s

,
∂xis
∂s

〉
=
〈
D

∂t

∂xis
∂s

,
∂xis
∂s

〉

=
〈
D

∂s

∂xis
∂t

,
∂xis
∂s

〉
=
〈

∇ ∂xi
s

∂s

Fi(x0, · · · , xn;xs1, · · · , xsn), ∂x
i
s

∂s

〉

therefore, it remains to study the n quadratic forms

Qi
x0,··· ,xn,y1,··· ,yn

(vyi
) =

〈
∇vyi

Fi(x0, · · · , xn; y1, · · · , yn), vyi

〉
, vyi

∈ Tvyi
M (5.60)

with i = 1, · · · , n, and we can conclude without difficulty that if there exist n positive
constants ci, i = 1, · · · , n, such that

Qi
x0,··· ,xn,y1,··· ,yn

(vyi
) ≤ −ci|vyi

|2, vyi
∈ Tyi

M, i = 1, · · · , n (5.61)

for all x0, · · · , xn, y1, · · · , yn ∈ M and vyi
∈ Tyi

M , then the system (5.30) achieves GE-
sync to the leader x0.
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5.5 A Brief Summary

In this chapter, we have studied some applications of the theory that we have developed
in previous chapters.

First, equilibrium seeking on Riemannian manifold was studied. In particular, we
proved a conjecture posed in [22] under the assumption of non-negative constant curvature
manifold. Notably, we obtained the optimal step size for the Euler method on Riemannan
manifolds.

Second, we studied gradient filter on SO(3) using contraction method.
Third, speed observer of Lagrangian system on manifolds was studied. We started by

establishing contraction theory for Lagrangian system, based on which the convergence
of the intrinsic speed observer was analyzed in a coordinate free manner. The analysis is
greatly simplified compared to existing results in the literature.

At last, we studied the synchronization problem from a contraction point of view.
These examples shows the advantage of geometric contraction analysis developed in

previous chapters.
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Chapter 6

Extensions: Robustness of
Transverse Stability of Submanifolds

In this chapter, we study robustness properties of IES systems, and then extend the
results to the robustness of stable submanifolds. At the first stage, we want to know how
contraction is affected when a disturbance is introduced into the system. This question
is valuable for example, when designing a contraction based observer [111].

For systems evolving in an Euclidean space, this question can be well understood by
making use of the transverse stability theory developed in [7]. For example, consider a
nonlinear system with an unknown disturbance d1 : R+ → Rm,

ẋ = f(x, d1), x ∈ Rm

and an observer in the following form

˙̂x = f(x̂, 0) +B(y − h(x̂, 0))

where y = h(x, d2) ∈ Rm is the measured output, B ∈ Rn×m and d2 the measure noise.
If d1 = 0, d2 = 0 and the system ż = f(z, 0) − Bh(z, 0) is contractive, then the observer
converges exponentially. To study the robustness, introduce the error term e = x̂ − x,
then

ė = f(e+ x, 0) − f(x, d1) +B(h(x, d2) − h(x+ e, 0))

Let F (e, x, d) = f(e+x, 0)−f(x, d1)+B(h(x, d2)−h(x+e, 0)), d = (d1, d2) and G(x, d) =
f(x, d1). Then the error system, together with the dynamics of x can be written as

ė = F (e, x, d)

ẋ = G(x, d)
(6.1)

127
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where F satisfies F (0, x, 0) = 0, ∀x ∈ Rn. Observe that when d = 0, the system (6.1) is
in the form of (2.25). Thus, the robustness of contraction is equivalent to the robustness
of the transverse (exponential) stability of the system (2.25). Since it has been proven in
[7] that transverse exponential stability implies the existence of a “Lyapunov function”,
one can therefore use this function to analyze the robustness.

In fact, we can go one step further. Loosely speaking, transverse exponential stability
is equivalent to the exponential stability of the set W = {(e, x)|e = 0} ⊆ Rne × Rnx of
the system (2.25) (the assumption that F (0, x, 0) = 0 for all x guarantees the invariance
of W in the absence of d). Therefore, robust transverse exponential stability is equivalent
to the robust exponential stability of the set W . Notice that W is a plane in Rne×nx , a
submanifold with simple structure. One may ask if it is possible to derive a parallel theory
for more general class of submanifolds. More precisely, the uniform local exponential
stability of W , or TULES-NL defined in Definition 2.3.6 can be characterized by the
uniform exponential stability (UES-TL) of the linearization of the system (2.25) along
W , and this linearization can aid the robustness analysis of the set W . The question is
whether we can study the robust stability of more general classes of submanifolds via the
linearization along the submanifold once “linearization” of is properly defined.

We are going to study an important class of submanifolds, namely, compact subman-
ifolds, and dynamics along them. Unlike in the Euclidean case, in which the transverse
linearization system can be easily defined, for systems along a compact submanifold, how-
ever, this is much more involved. One important problem which will be met is that a
compact manifold generally cannot be covered by a single coordinate chart, and therefore
how to define a global linearization system along the manifold is not so obvious.

This chapter is organized as follows: we introduce some basic notions regarding invari-
ant dynamics along a submanifold, notably Anosov flow and normal hyperbolic invariant
manifold theory. Then we show in Eudlidean space that hyperbolicity plays a crucial
role for robustness. Next, to extend the result to a more general class of submanifolds,
we develop a technique to project the complete lift system along a submanifold to Eu-
dlidean space and thus a workable global linearization system can be obtained. Having
this linearized system at hand, robustness analysis will be carried out.
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6.1 Anosov Flow and Normally Hyperbolic Invariant

Manifold

In this chapter, we focus on nonlinear time invariant system (3.2), i.e., ẋ = f(x), x ∈ M .
For convenience, define ϕt : M → M as ϕt(x) = ϕ(t; 0, x), and we call ϕt the flow of the
system (3.2).

Definition 6.1.1 ([12]). Consider the system (3.2). The flow ϕt is called an Anosov flow
if there exists a splitting of the tangent bundle

TxM = Es(x) ⊕ Eu(x) ⊕ RE0(x),

such that the following properties hold:

1. the splitting is invariant under the flow Dϕt : TM → TM ;

2. E0(x) coincides with the direction of f(x);

3. there exist constants k, λ > 0 such that for all t > 0,

||Dϕt(v)|| ≤ ke−λt||v||, ∀v ∈ Es

and
||Dϕt(v)|| ≥ keλt||v||, ∀v ∈ Eu.

We can see that if the dimension of Eu is everywhere zero along a closed curve γ, then
by Theorem 3.4, γ is a locally exponentially stable (LES) curve. More generally, if there
exists a compact invariant submanifold 1 U ⊆ M , such that Eu(x) ⊆ TxU for all x ∈ U ,
then is the submanifold U LES?

Example 6.1. When M is Rn and U is an embeded smooth submanifold, we now try to
find criteria to check whether the flow is Anosov. To this end, we consider the linearization
of the system (3.2):

v̇ = ∂f

∂x
(x)v. (6.2)

If df(TxU) = TxU for all x ∈ Rn and we can find the following decomposition of Rn:

Rn = Es(x) ⊕ Eu(x) ⊕ TxU

1Recall that an invariant manifold is such that the vector field defining the system is tangent to this
submanifold.
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such that Es(x) and Eu(x) are invariant subspaces of ∂f(x)/∂x. In particular, if Es(x) =
span{v1(x), · · · , vk(x)}, Eu(x) = span{vk+1, · · · , vk+l} and

∂f(x)
∂x

vi(x) = λi(x)vi(x), ∀1 ≤ i ≤ k + l

where λi are smooth, λi(x) ≤ −c, ∀1 ≤ i ≤ k, λi(x) ≥ c, ∀k+ 1 ≤ i ≤ k+ l for a positive
constant c, then the flow along the submanifold U is Anosov. Clearly, a linear system
ẋ = Ax where A is diagonalizable is Anosov along the subspace {x ∈ Rn : Ax = 0}.

It is generally hard to check whether a flow is Anosov or not. However, a flow along
an LES manifold is automatically Anosov with dimEu = 0.

We now introduce a more important class of flow along submanifolds, namely, flow
along a normally hyperbolic invariant manifold (NHIM). It will be shown later in this
chapter that NHIM will play a central role for the study of robust transverse exponential
stability.

Definition 6.1.2 ([134]). Let U ⊆ M be a smooth invariant submanifold. If there exists
a splitting of the tangent bundle

TxM = Es(x) ⊕ Eu(x) ⊕ TxU

such that each of the three components is invariant under the flow ϕt and there exist some
positive constants c, λ, γ, such that

1. |Dϕt(vs)| ≤ ce−λ(t−t0)|vs|, ∀vs ∈ Es, t ≥ 0;

2. |Dϕt(vu)| ≥ ceλ(t−t0)|vu|, ∀vu ∈ Eu, t ≥ 0;

3. |Dϕt(vh)| ≤ ceγ(t−t0)|vh|, ∀vh ∈ TU, t ≥ 0;

4. λ > γ > 0.

then the manifold U is called an NHIM.

Remark 6.1. We underscore that the requirement γ < λ is crucial for hyperbolicity,
which is the only difference to an Anosov flow. Later, we will see that an NHIM has some
robust properties which an Anosov flow does not have.

Example 6.2. Let us consider a simple example of an NHIM. Consider the system (2.25).
If there exist two positive constants α > β > 0, such that(

∂F

∂e

)T
(0, x) + ∂F

∂e
(0, x) ≤ −2αI (6.3)



6.2. TRANSVERSE INPUT TO STATE STABILITY 131∣∣∣∣∣∂G(0, x)
∂x

∣∣∣∣∣ < β, ∀x ∈ Rnx (6.4)

then the invariant manifold W = {(e, x)|e = 0} is an NHIM.

Proof. Observe that ve(t)
vx(t)

 = Dϕt

ve(0)

vx(0)


Then the complete lift system of (2.25) along W is

v̇e
v̇x

 =


∂F
∂e

(0, x) 0

∂G
∂e

(0, x) ∂G
∂x

(0, x)


ve
vx

 (6.5)

By identifying T(e,x)(Rne × Rnx) with Rne × Rnx , the above equation shows clearly that
Rne ×{0x} is invariant since v̇e is independent of vx. Similarly, {0e}×Rnx is also invariant
since when ve = 0, we have v̇x = ∂G

∂x
(0, x)vx.

Furthermore, the condition (6.3) implies that |ve(t)| ≤ e−αt|ve(0)| for all t ≥ 0, and the
condition (6.4) implies that |vx(t)| ≤ eβt|vx(0)| for all t ≥ 0. Therefore, Es

(0,x) = Rne ×{0},
Eu

(0,x) = 0 and T(0,x)U = T(e,x)W = {0e} × Rnx . This makes W an NHIM according to
Definition 6.1.2.

6.2 Transverse Input to State Stability

We define transverse input to state stability as follows.

Definition 6.2.1. Consider the system{
ė = F (e, x, d)
ẋ = G(e, x, d) (6.6)

where (e, x, d) ∈ Rp × Rq × Rr, and F and G are assumed to be C2 with respect to
(e, x, d). The time varying signal d(t) is a continuous and bounded disturbance. The
system is called e-transverse input to state stable (e-tISS for short) if there exist a class
K∞ function γ, a class KL function β and a positive constant r, such that

|E(t, e0, x0)| ≤ β(|e0|, t) + γ(||d||∞).

for all (t, e0, x0) ∈ R+ ×Be(r) × Rnx .
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Remark 6.2. It should be emphasized that on the right hand side of the above inequality,
β and γ are independent of x0. Clearly, e-tISS is a special case of input to state stability
with respect to a set, see for example [119].

Assumption 6.1. The system (6.6) with d = 0 is TULES-NL, namely, there exist positive
real numbers r, k and λ such that we have for all (e0, x0, t) ∈ Be(r) × Rnx × R≥0

|E(t, e0, x0)| ≤ k|e0|e−λt.

Assumption 6.2. There exists a positive constant ρ such that
∣∣∣∂G
∂x

(0, x, 0)
∣∣∣ < ρ < λ

where λ is the decay rate of the linearized e-subsystem.

Invoking Example 6.2, this assumption makes the manifold W = {(e, x) ∈ Rne ×Rnx :
e = 0} a normally hyperbolic invariant manifold.

The following two propositions are from [7], which we are going to recall for further
use.

Proposition 6.1 ([7]). Consider the system (6.6). If Assumption 6.1 holds, then there
exists a continuous function P : Rnx → Rne×ne and strictly positive real numbers p1 and
p2 such that P has a derivative LG(0,x̃)P (x̃) := limh→0(P (X̃(h, x̃))−P (x̃))/h and we have,
for all x̃ ∈ Rnx ,

LG(0,x̃,0)P (x̃) + P (x̃)∂F
∂e

(0, x̃, 0) +
(
∂F

∂e

)T
(0, x̃, 0)P (x̃) ≤ −I (6.7)

p1I ≤ P (x̃) ≤ p2I; (6.8)

furthermore, the matrix P (x̃) can be constructed explicitly as

P (x̃) =
∫ ∞

0

(
∂Ẽ

∂ẽ

)T
(0, x̃, t)∂Ẽ

∂ẽ
(0, x̃, t)dt. (6.9)

where (Ẽ(t, ẽ, x̃), X̃(t, x̃)) is the solution to the system
˙̃e = ∂F

∂e
(0, x̃, 0)ẽ,

˙̃x = G(0, x̃, 0).
(6.10)

The converse of Proposition 6.1 was also proved in [7]:

Proposition 6.2 ([7]). Suppose that there exists a continuous matrix function P : Rnx →
Rne×ne and strictly positive real numbers p1 and p2 such that (6.7) and (6.8) are satisfied.
Additionally, if ∣∣∣∣∣∂P (x̃

∂x̃

∣∣∣∣∣ < C, ∀x̃ ∈ Rnx (6.11)
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for some positive constant C, then Assumption 6.1 holds, i.e. the system (6.6) is TULES-
NL when for d = 0.

In Proposition 6.2, a key assumption is (6.11), we show this is automatically satisfied
when the system flow of (2.25) along W = {(e, x) : e = 0} is normally hyperbolic.

Proposition 6.3. Under Assumption 6.2 and 6.1, the matrix function P (x̃) defined in
6.9 is globally Lipschitz and hence is differentiable almost everywhere. In particular, there
exists a constant C > 0 such that ∣∣∣∣∣∂P (x̃)

∂x̃

∣∣∣∣∣ < C,

for almost all x̃ ∈ Rnx .

Lemma 6.1. Consider the following ordinary differential equation,

ḃ(t) = A(t)b(t) + c(t).

Assume that

1) ḃ = A(t)b is exponentially stable;

2) there exist some positive constants a, δ, such that |c(t)| ≤ ae−δt for all t ≥ 0.

Then there exist some positive constants c1 and γ such that |b(t)| ≤ c1(|b(0)| + a)e−γt for
all t ≥ 0.

The proof of this Lemma is quite standard and hence omitted.

Proof of Proposition 6.3. Let α(ẽ, x̃, ỹ, t) = Ẽ(t, ẽ, x̃) − Ẽ(t, ẽ, ỹ), then

d

dt
α(ẽ, x̃, ỹ, t) = ∂F

∂e
(0, X̃(t, ỹ))α(ẽ, x̃, ỹ, t) + b(ẽ, x̃, ỹ, t)

where
b(ẽ, x̃, ỹ, t) =

(
∂F

∂e
(0, X̃(t, x̃)) − ∂F

∂e
(0, X̃(t, ỹ))

)
Ẽ(t, ẽ, x̃),

and

|b(ẽ, x̃, ỹ, t)| =
∣∣∣∣∣
(
∂F

∂e
(0, X̃(t, x̃)) − ∂F

∂e
(0, X̃(t, ỹ))

)
Ẽ(t, ẽ, x̃)

∣∣∣∣∣
≤ c1 max

∣∣∣∣∣ ∂2F

∂e∂x

∣∣∣∣∣ |X̃(t, x̃) − X̃(t, ỹ)| · e−λt|ẽ|

≤ c2e
−(λ−ρ)t|x̃− ỹ| · |ẽ|.
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By assumption, the system α̇(ẽ, x̃, ỹ, t) = ∂F

∂e
(0, X̃(t, ỹ))α(ẽ, x̃, ỹ, t) is exponentially

stable (uniformly in ỹ), then by Lemma 6.1, there holds

|Ẽ(t, ẽ, x̃) − Ẽ(t, ẽ, ỹ)| ≤ k|ẽ| · |x̃− ỹ|e−γt, ∀t ≥ 0 (6.12)

hence ∣∣∣∣∣∂Ẽ∂x̃ (t, ẽ, x̃)
∣∣∣∣∣ ≤ c1|ẽ|e−c2t, ∀x̃ ∈ Rnx , t ≥ 0,

and ∣∣∣∣∣ ∂2Ẽ

∂x̃∂e
(t, ẽ, x̃)

∣∣∣∣∣ ≤ c1e
−c2t, ∀x̃ ∈ Rnx , t ≥ 0.

due to the linearity of Ẽ with respect to ẽ. Thus P (x̃) is globally Lipschitz. By
Rademacher’s theorem, the proposition follows and further more, we have∣∣∣∣∣∂P (x̃)

∂x̃

∣∣∣∣∣ =
∣∣∣∣∣
∫ ∞

0

∂

∂x̃

[
∂T Ẽ

∂ẽ
(t, 0, x̃)Q∂Ẽ

∂e
(t, 0, x̃)

]
dt

∣∣∣∣∣ ≤ C.

Now that P (x̃) is differentiable almost everywhere, the term LG(0,x̃,0)P (x̃) can be safely
written as

LG(0,x̃,0)P (x̃) =
∑
i

∂P (x̃)
∂x̃i

Gi(0, x̃, 0).

for almost all x.
The following proposition will be useful for us.

Proposition 6.4 ([7]). If the system (2.25) is TULES-NL, and there exist positive real
numbers ρ, µ and c such that∣∣∣∣∣∂F∂e (0, x, 0)

∣∣∣∣∣ ≤ µ,

∣∣∣∣∣∂G∂x (0, x, 0)
∣∣∣∣∣ ≤ ρ, ∀x ∈ Rnx

and for all (e, x) ∈ Be(kr) × Rnx ,∣∣∣∣∣ ∂2F

∂e∂e
(e, x, 0)

∣∣∣∣∣ ≤ c,

∣∣∣∣∣ ∂2F

∂x∂e

∣∣∣∣∣ (0, x, 0) ≤ c,

∣∣∣∣∣∂G∂e (e, x, 0)
∣∣∣∣∣ ≤ c.

then the property UES-TL holds.

We have the following theorem.

Theorem 6.1. Under Assumptions 6.2 and 6.1, suppose that F and G are globally
Lipschitz with respect to d. Then the system (2.25) is e-tISS.
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Proof. Let V (e, x) = eTP (x)e. Using characterization of ISS with respect to a set [119], it
sufficies to prove that there exist positive constants a, b such that V̇ (e, x) ≤ −a|e|2 + b|d|2

for all |d| < c for some positive constant c and small e. The time derivative of V along
the system (6.6) reads

V̇ (e, x) = 2eTP (x)F (e, x, d) + eTLG(e,x,d)P (x)e

= 2eTP (x)(F (e, x, d) − F (e, x, 0)) + 2eTP (x)F (e, x, 0)

+ eTLG(e,x,d)−G(e,x,0)P (x)e+ eTLG(e,x,0)−G(0,x,0)P (x)e+ eTLG(0,x,0)P (x)e

≤ 2c|e| · |d| + 2c|e|2|d| + C|e|3

+ 2eTP (x)F (e, x, 0) + eTLG(0,x,0)P (x)e

= 2c|e| · |d| + 2c|e|2|d| + C|e|3

+ eT
(∫ 1

0
LG(0,x,0)P (x) + P (x)∂F

∂e
(se, x, 0) + ∂TF

∂e
(se, x, 0)P (x)ds

)
e

≤ 2c|e| · |d| + 2c|e|2|d| + c|e|3 − c|e|2 + c|e|3

≤ cγ|e|2 + c|d|2

γ
− c|e|2

≤ −a|e|2 + b|d|2

with 0 < γ < 1; we have assumed e small and used the following inequalities and the
inequalities in Proposition 6.4

|F (e, x, d) − F (e, x, 0)| ≤ c|d|

|LG(e,x,d)−G(e,x,0)P (x)| ≤ c|d|∣∣∣LG(e,x,0)−G(0,x,0)P (x)
∣∣∣ ≤ c|e|

2|e| · |d| ≤ γ|e|2 + |d|2

γ
,

and
∣∣∣∣∣
[
P (x)∂F

∂e
(se, x, 0) + ∂TF

∂e
(se, x, 0)P (x)

]
−
[
P (x)∂F

∂e
(0, x, 0) + ∂TF

∂e
(0, x, 0)P (x)

]∣∣∣∣∣
≤
∣∣∣∣∣P (x)

[
∂F

∂e
(se, x, 0) − ∂F

∂e
(0, x, 0)

]
−
[
∂TF

∂e
(se, x, 0) − ∂TF

∂e
(0, x, 0)

]
P (x)

∣∣∣∣∣
≤ c|P (x)| · |e| ≤ c|e|,

for all 0 ≤ s ≤ 1.
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6.3 Towards Anosov Flow on a Manifold

For general submanifold of Rn, it is not possible to represent a submanifold as {e = 0}
for some e, especially for compact submanifolds. Therefore, the results of the previous
section are not applicable. We develop an alternative method to handle the problem.
Since most of the systems of interest in control theory evolve in Euclidean space or on a
submanifold of it by appropriate embedding, in what follows we restrict our attention to
this case.

6.3.1 Projection to a Normal Bundle

Given a k dimensional submanifold Uk ⊆ Rn, which is invariant under the flow of (3.2),
assume that there exist n − k smooth vector fields {Ei}i=k+1,··· ,n along U such that
Lf(x)E

i(x) = 0 for all x ∈ U and all i = k + 1, · · · , n. Assign a Riemannian met-
ric near U such that {Ei}i=k+1,··· ,n is an orthonormal basis of the normal bundle of U .
Assume, for simplicity, that the metric coincides with the Eudlidean metric. Denote

EH = [E1, · · · , Ek] ∈ Rn×k, EN = [Ek+1, · · · , En] ∈ Rn×(n−k).

The above assumption makes the normal bundle of U invariant in the following sense:
Lf(x)E

i(x) = 0 implies

Ėi(x) = ∂Ei(x)
∂x

f(x) = ∂f(x)
∂x

Ei(x).

Thus the n−k vector fields {Ei}i=k+1,··· ,n along U are n−k linearly independent solutions
to the complete lift system v̇ = ∂f(x)

∂x
v. And we have Ei(ϕt(x0)) = Dϕt(Ei(x0)).

Define the operator PN : TRn|U → Rn−k by

PN(v) =



〈
v, Ek+1

〉
...

⟨v, En⟩


whose restriction to the normal bundle is a linear invertible operator. (We underscore
that PN is defined on the restriction of the tangent bundle on U , which is not equal to
the normal bundle of U) The operator can also be written as PN(v) = ET

N(x)v where

ET
N(x) =


(Ek+1(x))T

...

(En(x))T

 ∈ R(n−k)×n
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for x ∈ U , which is a full row rank matrix function defined on U . Viewing y = PN(v) as
the output of the complete lift system of the system (3.2) along U , we get the following
system 

v̇ = ∂f(x)
∂x

v

y = ET
N(x)v

(6.13)

It should be noted that for a linear system ẋ = A(t)x, the output y = C(t)x is in gen-
eral not invariant in the following sense: the set {x|C(t)x = 0} is not invariant. However,
for the above system (6.13), the output y is indeed invariant: if y(t0) = PN(v(t0)) = 0 at
some moment t0, then v(t0) has no orthogonal component, which means that it is tangent
to the submanifold. Since the manifold is invariant, this vector under the flow should
always be tangent to the submanifold for all t ≥ t0. This implies that y(t) = 0 for all
t ≥ t0.

For invariant output, C(t0)x(t0) = 0 implies Ċ(t0)x(t0) + C(t0)A(t0)x(t0) = 0, there-
fore there exists a unique matrix function D(t) such that Ċ(t) + C(t)A(t) = D(t)C(t).
Consequently, ẏ = (Ċ(t) + C(t)A(t))x = D(t)C(t)x = D(t)y.

Based on these discussions, we conclude that there exists a matrix function D : U →
R(n−k)×(n−k) such that

d

dt
PNv = D(x)PNv. (6.14)

Notice that D(x) is a function on U taking values in R(n−k)×(n−k). More specifically,

D(x)ET
N(x) = ET

N(x)
(∂f(x)

∂x

)T
+ ∂f(x)

∂x


By choosing an output, we have in effect partially shifted the complete dynamics along

the manifold U to a system in Euclidean space.
When the normal bundle admits a splitting, U can be an Anosov flow.

Proposition 6.5. Suppose that U is a compact invariant submanifold of the system (3.2)
in Rn and that the normal bundle of U is spanned by {Ei}i=k+1,··· ,n with LfEi = 0 for all
i = k + 1, · · · , n and there exists a C1 matrix function R : Rn → R(n−k)×(n−k) such that

• R(x) is invertible for each x ∈ U , and R(·), R(·)−1 and ∂R
∂x

(·) are continuous on U ;

• there exists C1 matrix functions S : Rn → Rp×p, T : Rn → Rq×q with p+ q = n− k

such that

Ṙ(x) +R(x)D(x) =

S(x) 0p×q

0q×p T (x)

R(x)
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• the systems ż1 = S(x)z1, and ż2 = −T (x)z2 are exponentially stable.

then the system (3.2) along the manifold U is an Anosov flow, and

Es(x) = (PN |NU)−1 ◦R(x)−1(Rp ⊕ {0q})

Eu(x) = (PN |NU)−1 ◦R(x)−1({0p} ⊕ Rq)

where PN |NU is the restriction to the normal bundle.

Proof. Let z = R(x)y, x ∈ U . Then

ż = Ṙ(x)y +R(x)D(x)y

=

S(x) 0

0 T (x)

 z
Therefore by definition, U is Anosov. The rest is obvious.

We consider some examples to illustrate the above proposition.

Example 6.3. We revisit the example studied by V. Andrieu et al. mentioned earlier.
That is, LES of the invariant set U = {(e, x)|e = 0} ≃ Rnx of the system (2.25). In this
example, the state space Rne × Rnx is equipped with the usual Euclidean inner product
as the Riemannian metric. On U , there is a trivial normal bundle U × Rne . Then
PN : Rne × Rnx → Rne is PN(ve, vx) = ve. Notice that the complete lift of the system
(2.25) on U is v̇e

v̇x

 =


∂F
∂e

(0, x) 0

0 ∂G
∂x

(0, x)


ve
vx

 ,
therefore v̇e = ∂F

∂e
(0, x)ve, and D(x) = Ine . If

|ve(t)| ≤ ke−λ(t−t0)|ve(0)|, ∀ve(0) ∈ Rne

Then Es(x) = Rne ⊕ {0nx}.

Notice the submanifold U is just a linear subspace, thus the theorem applies trivially.
We study some more nontrivial examples.

Example 6.4. Consider the speed regulation of current-fed induced motors model taken
from [139], 

λ̇1

λ̇2

ω̇

 =



−Rλ1 + βRλ1√
λ2

1+λ2
2

− ωλ2 + kRλ2(ω−ω∗)
β
√
λ2

1+λ2
2

−Rλ2 + βRλ2√
λ2

1+λ2
2

+ ωλ1 − kRλ1(ω−ω∗)
β
√
λ2

1+λ2
2

− k
β

√
λ2

1 + λ2
2(ω − ω∗)
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where (λ1, λ2)T represents the rotor flux and ω the rotor angular velocity. R > 0 is
the resistance, β and ω∗ two positive constants. The complete lift of the system along
U = {(λ1, λ2)|λ2

1 + λ2
2 = 1} × {ω∗} reads

δλ̇1 =
(

−R + Rλ2
2

β2

)
δλ1 +

(
−ω − Rλ1λ2

β2

)
δλ2 +

(
−λ2 + kRλ2

β2

)
δω

δλ̇2 =
(
ω − Rλ1λ2

β2

)
δλ1 +

(
−R + Rλ2

1
β2

)
δλ2 +

(
λ1 − kRλ1

β2

)
δω.

Choose a normal bundle in a neighborhood of U as

span
{
λ1

β

∂

∂λ1
+ λ1

β

∂

∂λ2
,
∂

∂ω

}
Then

P 1
N(δλ1, δλ2, δω) = λ1

β
δλ1 + λ2

β
δλ2

P 2
N(δλ1, δλ2, δω) = δω

Calculations show that
d

dt
P 1
N(δλ1, δλ2, δω) = −λ2ω∗

β
δλ1 + λ1

β
δλ̇1 + λ1ω∗

β
δλ2 + λ2

β
δλ̇2

= −RP 1
N(δλ1, δλ2, δω)

d

dt
P 2
N(δλ1, δλ2, δω) = −kP 2

N(δλ1, δλ2, δω)

or in matrix form

d

dt

P
1
Nv

P 2
Nv

 =

−R 0

0 −k


P

1
Nv

P 2
Nv

 .
Thus Es(λ1, λ2, ω) = span

{
λ1
β

∂
∂λ1

+ λ1
β

∂
∂λ2

, ∂
∂ω

}
≃ R2 for all (λ1, λ2, ω).

The next example is to show that an asymptotically stable submanifold need not be
Anosov or an NHIM using the normal projection technique.

Example 6.5. Consider the following planar system

ẋ1 = −x2

ẋ2 = x1 − x2(x2
1 + x2

2 − 1)

This system has an invariant set U = {(x1, x2}|x2
1 + x2

2 = 1}, i.e., the unit circle. The
normal bundle along U can be chosen as the linear space spanned by the tangent vector
vN = x1

∂
∂x1

+ x2
∂
∂x2

. Now PN : TR2|S1 → N is

PN

(
v1

∂

∂x1
+ v2

∂

∂x2

)
= x1v1 + x2v2
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The complete lift can be written as

v̇1 = −v2

v̇2 = (1 − 2x1x2)v1 − (x2
1 + 3x2

2 − 1)v2

Easy calculations show that
d

dt
PN(v) = −2x2

2PN(v).

On U , the dynamics now reads

d

dt
PN(v) = −2x2

2PN(v)

ẋ1 = −x2

ẋ2 = x1.

Using LaSalle invariance principle, one can conclude that the PN(v) subsystem is uni-
formly asymptotically stable, but it is not exponentially stable. Therefore, the circle is
not an Anosov flow.

More generally, if the compact invariant manifold U is a hypersurface of codimension
1 and is given by a level set U = {x ∈ M : h(x) = 0} where h : M → R is smooth. The
invariance of U should be guaranteed by ∂h

∂x
f(x) = 0, ∀x ∈ U . Now the one dimensional

normal bundle is spanned by the gradient of h. Thus if〈
v(t), gradh(x(t))

| gradh(x(t))|

〉
≤ ke−λ(t−t0)

〈
v(t0),

gradh(x(t0))
| gradh(x(t0))|

〉
(6.15)

the manifold U is Anosov. In this example, h(x) = 1
2(x2

1 + x2
2 − 1), and

〈
v, gradh(x)

| gradh(x)|

〉
=

x1v1 + x2v2. But equation (6.15) is not satisfied.

6.3.2 Locally Exponentially Stable Manifold

In this subsection, we consider a special class of Anosov manifold, namely, locally expo-
nentially stable compact submanifold.

We line up the states x, y and v that we mentioned in the previous section to form
the following system 

ẋ = f(x)

v̇ = ∂f(x)
∂x

v

ẏ = D(x)y

(6.16)

where D(x) is defined by (6.14). Let us denote
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• X(t, x0) the solution to the first line with initial condition x0 at t = 0.

• Y (t, x0, y0) the solution to the y component with initial condition (x0, y0) by viewing
the first and third line as an autonomous system.

• v(t, x0, v0) the solution to the v component with initial condition (x0, v0) by viewing
the first and second line as an autonomous system, i.e., the solution to the complete
lift system.

Now by the definition of y, there holds

Y (x0, E
T
N(x0)v0, t) = ET

N(X(x0, t))v(x0, v0, t)

for all (x0, v0) ∈ TU . Noticing also that ET
N(x0)[EN(x0)y0] = y0, there holds

Y (x0, y0, t) = ET
N(X(x0, t))v(x0, EN(x0)y0, t)

for all (x0, y0) ∈ U × Rn−k.
Denote

Nϵ := {v ∈ NU : |v| < ϵ},

for small ϵ, which is diffeomorphic to a tubular neighborhood of U . Identify Nϵ with the
tubular neighborhood via (π(v), v) 7→ π(v) + v, see [51, Chapter 5, Section 4]. By this
identification, a point in the tubular neighborhood of U is written as x+ v where x ∈ U

with |v| < ϵ attached to x.
We give the following definition.

Definition 6.3.1. Consider the time-invariant system (3.2) and a compact invariant
manifold U . If there exists a positive constant L, such that

f(x)T ∂f(x)
∂x

f(x) ≤ Lf(x)Tf(x)

for all x ∈ U , then we call L the Lipschitz constant of the system on U .

Definition 6.3.2. Suppose that U is a compact invariant manifold of the system (3.2).We
say that U has property

(P1) Locally exponentially stable (LES), if there exists positive real numbers ε, k and λ

such that we have, for all (x0, t) ∈ Nϵ × R≥0,

d(X(x0, t), U) ≤ ke−λtd(x0, U). (6.17)
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(P2) Transversally exponentially stable (TES), if there exist positive real numbers k, λ

such that for all (x0, y0, t) ∈ U × Rn−k × R≥0,

|Y (x0, y0, t)| ≤ ke−λt|y0|

(P3) if for all positive definite matrix Q, there exists a matrix value function P : U →
R(n−k)×(n−k) satisfying the following conditions:

1. ∃p1, p2 > 0, such that p1I ≤ P (x) ≤ p2I, ∀x ∈ U

2. LfP + PD +DTP = −Q where LfP is understood as

LfP (x) = lim
h→0

sup P (X(x, h)) − P (x)
h

(P4) If there exists a C1 function V : Nε → R≥0 such that

k1d(x, U)2 ≤ V (x) ≤ k2d(x, U)2

LfV (x) ≤ −k3V∣∣∣∣∣∂V∂x
∣∣∣∣∣ ≤ k3d(x, U)

Then we have the following link between (P1) and (P2).

Proposition 6.6. If the compact invariant submanifold U is locally exponentially stable
(LES), then U is also transversally exponentially stable (TES). That is, (P1) ⇒ (P2).

Proof. Assume that |y0| is sufficiently small and let γ : [0, 1] → Nε be a segment satisfying
γ(0) = x0 and γ(s) = x0 + sENy0 for s ∈ [0, 1]. For all s ∈ (0, 1),

s|ENY (x0, y0, t)| = d(X(x0, t) + sENY (x0, y0, t), X(x0, t))

≤ d(X(x0, t) + sENY (x0, y0, t), X(x0 + sy0, t))

+ d(X(x0 + sy0, t), X(x0, t))

Multiply by 1
s

on both sides, it follows that

|ENY (x0, y0, t)| ≤ d(X(x0, t) + sENY (x0, y0, t), X(x0 + sy0, t))
s

+ d(X(x0 + sy0, t), X(x0, t))
s

≤ κ(s)
s

+ d(X(x0 + sy0, t), U)
s

≤ κ(s)
s

+ ke−λtd(x0 + sy0, U)
s
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= κ(s)
s

+ ke−λt|sy0|
s

= κ(s)
s

+ ke−λt|y0|,

where
κ(s) = d(X(x0, t) + sENY (x0, y0, t), X(x0 + sENy0, t)).

Clearly κ(0) = 0. We show κ′(0) = 0. Consider the curve γt(s) = X(x0 + sENy0, t), then
γ′
t(0) is a tangent vector at the base point X(x0, t) and it is the solution of the complete

lift of the system ẋ = f(x) along the curve X(x0, t) with initial condition (x0, sENy0).
Since the initial condition γ′

0(0) = ENy0 is normal to U , then γ′
t(0) ⊥ U for all t ≥ 0. By

uniqueness of solution, ENY (x0, y0, t) = γ′
t(0). Hence we have

∂[X(x0, t) + sENY (x0, y0, t)]
∂s

∣∣∣∣∣
s=0

= ENY (x0, y0, t) = ∂X(x0 + sENy0, t))
∂s

∣∣∣∣∣
s=0

Therefore κ(s) = O(s2). Let s → 0+, we get |ENY (x0, y0, t)| ≤ ke−λt|y0|, or |Y (x0, y0, t)| ≤
ke−λt|y0|. Since the complete lift system is linear fibre-wise, it holds for all y0 ∈ Rn−k.

Unfortunately we do not know if the converse of Proposition 6.6 is true. However, for
NHIM case, it is indeed the case.

Proposition 6.7. If the compact invariant submanifold U is transversally exponentially
stable with rate λ > L, where L is the Lipschitz constant on U , then U is locally expo-
nentially stable.

Proof. The condition λ > L implies that U is an NHIM with dimEu = 0. Therefore,
there esits a smooth asymptotic phase m : Nε → U [134, Theorem 5.6.1]. See Figure 6.1.
Let

V (x) = [ET
N(m(x))(x−m(x))]TP (m(x))[ET

N(m(x))(x−m(x))] (6.18)

Since x lies in the foliation passing through m(x) whose tangent space is spanned by
ET
N(m(x)), we can choose x sufficiently close to U such that

|ET
N(m(x))(x−m(x))| = |x−m(x)| ≤ 2d(x, U)

On the other hand |ET
N(m(x))(x−m(x))| = |x−m(x)| ≥ d(x, U). Hence ∃c1, c2 > 0, such

that for all x ∈ Nε,
c1d(x, U)2 ≤ V (x) ≤ c2d(x, U)2 (6.19)

Clearly, EN and m are both smooth. The time derivative of V reads

V̇ (x) = 2[ET
N(m(x))(x−m(x))]TP (m(x))
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·
[
ET
N(m(x))∂

Tf

∂x
(m(x))(x−m(x)) + ET

N(m(x))(f(x) − f(m(x)))
]

+ [ET
N(m(x))(x−m(x))]TLfP (m(x))[ET

N(m(x))(x−m(x))]

= 2[ET
N(m(x))(x−m(x))]TP (m(x))

[
ET
N(m(x))

(
∂Tf

∂x
+ ∂f

∂x

)
(m(x))(x−m(x))

]

+ [ET
N(m(x))(x−m(x))]TLfP (m(x))[ET

N(m(x))(x−m(x))]

+O(|x−m(x)|3)

= [ET
N(m(x))(x−m(x))]T [LfP (m(x)) + P (m(x))D(m(x) +D(m(x))TP (m(x)))]

· [ET
N(m(x))(x−m(x))] +O(|x−m(x)|3)

≤ −ε[ET
N(m(x))(x−m(x))]TQ(m(x))[ET

N(m(x))(x−m(x))]

≤ −cV (x)

Invoking (6.19), we get the inequality (6.17).

)(xEN

)(xm ))(( xmt

x

U

)(xt

Figure 6.1: Asymptotic phase of NHIM

Furthermore, we can prove the following proposition.

Proposition 6.8. In (P2), if λ > L where L is the Lipschitz constant on U , then (P1),
(P2) and (P4) are equivalent and (P2) implies (P3).

Proof. The proof consists in showing that (P2) ⇒ (P3) and that (P2) ⇒ (P4) ⇒ (P1) ⇒
(P2).

(P2) ⇒ (P3): It suffices to prove for Q = I. We construct a matrix value function
P (x) for x ∈ U as follows:

V (x, y) = yTP (x)y =
∫ ∞

0
Y (t, x, y)TY (t, x, y)dt
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Property (P2) makes the integration converge and hence V (x, y) is well defined. Mean-
while, the existence of P (x) is guaranteed by the linearity of Y (x, y, t) with respect to y.
We calculate the Lie derivative of V (x, y)

Lf̃V (x, y) = d

ds
V (X(s, x), Y (s, x, y))

∣∣∣∣∣
s=0

= d

ds

∫ ∞

0
Y (t,X(s, x), Y (s, x, y))TY (t,X(s, x), Y (s, x, y))dt

∣∣∣∣∣
s=0

= d

ds

∫ ∞

0
Y (s+ t, x, y)TY (s+ t, x, y)dt

∣∣∣∣∣
s=0

= d

ds

∫ ∞

s
Y (t, x, y)TY (t, x, y)dt

∣∣∣∣∣
s=0

= −yTy

or equivalently, LfP (x) + P (x)D(x) + D(x)TP (x) = −I.2 The bounds of P (x) can be
estimated easily by noticing that

V (x, y) ≤
∫ ∞

0
k2e−2λt|y|2dt = k2

2λ |y|2

On the other hand
∣∣∣∂f
∂x

∣∣∣ < C on U for a large C ≥ L, therefore |Y (x, y, t)| = |ENY (x, y, t)| ≥
e−Ct|y| for all t ≥ 0. Hence

V (x, y) ≥
∫ ∞

0
e−2Lt|y|2dt = 1

2L |y|2

Take
p1 = 1

2L, p2 = k2

2λ,

then (P2) implies (P3).
(P2) ⇒ (P4): Take V (x) as (6.18). Let Z(x) = ET

N(m(x))(x − m(x)). Then V (x) =∑
i,j Zi(x)Zj(x)Pij(m(x)). Since V (x) is C1,

∂V

∂xk
=
∑
i,j

Zi(x)Zj(x)∂Pij(m(x))
∂xk

+ 2ZT (x)P (x)∂Z(x)
∂xk

≤ c(|Z(x)|2 + |Z(x)|)

by noticing that P (x) and ∂Z(x)
∂xk

are bounded on compact sets. Therefore
∣∣∣∂V
∂x

(x)
∣∣∣ ≤

2c|Z(x)| ≤ c′d(x, U), when |Z(x)| < 1.
(P4) ⇒ (P1): Trivial.

Using the results in the previous subsection, the robustness of NHIM can be obtained:
2Like in Section 6.2, we can show that P is differential almost everywhere.
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Theorem 6.2. Assume that the submanifold U is an NHIM of the system ẋ = f(x, 0).
Then is locally input to state stable in the following sense: ∃ε > 0, such that

d(ϕt(x), U) ≤ β(d(x, U), t) + γ(||d||∞), ∀x ∈ Nε, t ≥ 0

where β is a class KL function and γ class K.

Proof. By Theorem 6.2, there exists a function V as in (P3) for the input-free system
ẋ = f(x, 0). Hence, for all x ∈ Nϵ,

V̇ (x) = ∂V (x)
∂x

f(x, 0) + ∂V (x)
∂x

(f(x, d) − f(x, 0))

≤ −cd(x, U)2 + c

∣∣∣∣∣∂V (x)
∂x

∣∣∣∣∣ · |d(t)|

≤ −cd(x, U)2 + cd(x, U) · |d(t)|

≤ −k1V + k2||d||2∞

where k1 and k2 are some positive constants. This completes the proof.

Remark 6.3. Results concerning input to state stability of compact submanifolds has
been well established, see for example [118]. The novelty of the above theorem is to char-
acterize the input to state stability of compact submanifolds via the “linearized system”
along the manifold.

6.4 A Brief Summary

In this chapter, we have mainly studied two problems. First, the robustness of contraction.
Second, the robustness of stable compact invariant submanifold.

For the first problem, we studied the robustness of transverse exponential stability in
Euclidean space. On the one hand, robustness of contraction can be restated as robust-
ness of transverse exponential stability; on the other, for transverse exponential stability,
Lyapunov functions have been constructed in the literature which then can be utilized to
analyze the robustness. It turns out that that hyperbolicity condition plays the crucial
role for the robustness of contraction. The first problem serves also as a preparation for
the second.

For the second problem, we studied the robustness of stable normally hyperbolic in-
variant manifold. This is an extension of the first problem, but it is generally more difficult
to deal with. Motivated by transverse linearization, we constructed Lyapunov functions
based on the complete lift of the system along the invariant manifold. Finally, we found
that hyperbolicity again plays an important role for robustness.



Conclusion and Future Research
Perspective

This thesis has studied contraction in several different aspects, with an emphasis on
geometric and Lyapunov characterizations. The main contributions are now summarized
as follows.

• A general theory for stability analysis on Riemannian manifolds is formulated. In
particular, converse Laypunov theorem is proved in a coordinate free manner. Then
local exponential stability of nontrivial solutions is studied, which proves to have
strong connections with contraction.

• Geometric criteria have been obtained to verify contraction. These conditions are
derived via the tool “complete lift” of vector fields. Based on the criteria, converse
result is obtained, which justifies the important role of Finsler-Lyapunov function.

• The geometric analysis approach has revealed some interesting properties of con-
traction. The tubular neighborhood property shows that contraction can be char-
acterized locally in the tangent bundle. The Krasovskii’s method proves to be a
bridge between stability and contraction, this is well understood by making use of
the Finsler-Lyapunov function.

• The developed theories are accompanied with some applications. Three main exam-
ples are considered, namely, filter on the special orthogonal group, speed observer
of Lagrangian systems and contraction based synchronization. These applications
have shown the efficiency of geometric contraction analysis.

• Some robustness properties relating to contraction has been studied. In Euclidean
space, this is performed by utilizing the transverse linearization theory. And it has
been discovered that robustness is guaranteed by hyperbolicity. As an extension,
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robustness of compact submanifolds have also been studied, in which the normal
hyperbolicity is crucial to achieve robustness.

Future research directions may be based on the following observations.

• LES of unbounded trajectories. In Chapter 3, we mainly studied LES a of bounded
trajectory. More precisely, it was shown that the complete lift system characterizes
the LES of a bounded trajectory. But our proof does not carry over directly to
unbounded trajectories, which constitutes an interesting direction to be investigated.

• Converse theorem of IAS. We proved converse theorem for IES in Chapter 4. Un-
fortunately, we do not know how to prove the converse theorem for IAS. For non-
incremental stability notions, once the converse theorem for ES is proven, the con-
verse theorem for AS is rather straightforward invoking Massera’s lemma. As L.
Grüne et al. have put it, “Asymptotic stability equals exponential stability, if you
twist your eyes” [49]. The incremental counterpart of this is still unclear to us.

• Equilibrium seeking for non-negative curvature manifold. We have studied in Sec-
tion 5.1 the equilibrium seeking problem for non-positive constant curvature mani-
fold. Notably, we obtained the optimal convergence rate of equilibrium seeking for
contractive systems on Riemannian manifolds. Unfortunately, we have not been
able to extend the result to more general classes of manifolds. In particular, ex-
tending this result to non-constant non-negative curvature manifolds (with a priori
upper bound on the curvature) would be worth investigating.

• Differential positivity and contraction. In Chapter 5, we studied synchronization on
Riemannian manifolds. This is an active research area and has some close relation-
ships with contraction, [87, 40, 42]. A natural question in that direction is how to
relate the results obtained in Section 5.4 to differential positivity.

• Almost global ISS. It was our initial intention to apply the theory developed in
Chapter 6 to study almost global input to state stability on manifolds. The problem
can be formulated as follows: when a system has multiple isolated ω-limit sets,
among which some are invariant submanifolds (see for example [79]) and only one
is LES equilibrium point, we would like to know the almost global ISS of this
equilibrium point. To answer this, one is forced to study the ISS of each ω-limit
set. ISS of hyperbolic equilibrium point has been established via linearization, see
for example [10], see also P. Forni’s PhD thesis regarding ISS issues of multistable
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systems [43]. But to study ISS of nontrivial ω-limit sets rather than equilibrium
point via linearization is much more difficult. Unfortunately, we did not have enough
time to finish this task.

• Contraction based design. The thesis is mainly about analysis. Developing design
techniques based on the geometric methods is our future research task. In [82], I.
Manchester and J.J. Slotine proposed the notion control contraction metric to to
design trajectory tracking controllers based on contraction theory. They showed
that via the control contraction metric method, trajectory tracking can be solved
by a feasible convex optimization procedure. But still, the computational burden is
very high. Future research direction may focus on developing efficient contraction
based algorithms.
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Résumé substantiel en français

Un bref résumé du chapitre 3

Dans ce chapitre, nous avons étudié la stabilité sur des variétés Riemanniennes. Tout
d’abord, nous avons prouvé le théorème de Lyapunov inverse sur les variétés Riemanni-
ennes sans recourir à des coordonnées locales. Dans la preuve, une étape clé consiste à
utiliser une définition appropriée de la continuité de Lipschitz sur des variétés Rieman-
niennes. Nous avons également étudié la stabilité exponentielle locale des solutions non
triviales sur les variétés Riemanniennes en soulevant le système le long de la trajectoire
cible dans le fibré tangent de retrait. Le système soulevé étant linéaire dans le sens des
fibres, l’analyse s’en retrouve significativement simplifiée. Une autre tâche importante de
ce chapitre est de jeter les bases du chapitre suivant, en fournissant notamment certaines
estimations utiles pour la suite.

Un bref résumé du chapitre 4

Dans ce chapitre, nous avons proposé de nouveaux résultats pour l’analyse de la con-
traction sur des variétés Riemanniennes. Tout d’abord, sur la base de l’outil “complete
lift”, nous avons donné une condition intrinsèque pour la stabilité incrémentale. Cette
condition est simple mais suffisamment générale pour couvrir de nombreux résultats im-
portants de la littérature. Deuxièmement, nous avons établi le théorème inverse de la
contraction sur les variétés Riemanniennes. Ce théorème inverse, pour la première fois,
justifie complètement la légitimité de l’introduction de la fonction de Finsler-Lyapunov
pour l’analyse de la contraction. Troisièmement, nous avons obtenu plusieurs autres car-
actérisations des systèmes contractifs : (1) La propriété de voisinage tubulaire montre
que la stabilité incrémentale exponentielle (IES) peut être entièrement caractérisée sur
un voisinage tubulaire de la variété de base ; (2) La méthode de Krasovskii révèle les
liens intimes entre la stabilité incrémentale et la stabilité de Lyapunov sur des variétés.
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En même temps, l’approche suivie donne une interprétation géométrique du théorème
classique de Krasovskii. (3) Le comportement des systèmes IES sous perturbations a été
étudié, ce qui montre que le comportement des systèmes IES partage de grandes similar-
ités avec celui des systèmes linéaires. Pour résumer, un cadre géométrique pour l’analyse
de la contraction sur les variétés Riemanniennes a été établi.

Un bref résumé du chapitre 5

Dans ce chapitre, nous avons étudié quelques applications de la théorie développée dans les
chapitres précédents. Tout d’abord, la recherche d’équilibre des systèmes non-linéaire sur
une variété Riemannienne a été étudiée. En particulier, nous avons prouvé une conjecture
sous l’hypothèse d’une variété à courbure constante non négative. Notamment, nous avons
obtenu la taille de pas « optimale » pour la méthode d’Euler sur les variétés de Riemann.
Deuxièmement, nous avons étudié le filtre gradient sur SO(3) en utilisant la méthode
de contraction. Troisièmement, l’observateur de vitesse du système Lagrangien sur les
variétés a été étudié. On a commencé par établir la théorie de la contraction pour les
système Lagrangiens, sur la base de laquelle la convergence de l’observateur de vitesse a
été analysée de manière sans utilisation de coordonnées locales. L’analyse est grandement
simplifiée par rapport aux résultats existants dans la littérature. Enfin, nous avons étudié
le problème de synchronisation du point de vue de la contraction. Ces exemples montrent
l’intérêt de l’analyse de contraction géométrique développée dans les chapitres précédents.

Un bref résumé du chapitre 6

Dans ce chapitre, nous avons principalement étudié deux problèmes. Tout d’abord, la
robustesse de la contraction. Deuxièmement, la robustesse d’une sous-variété invariante
compacte stable.

Pour le premier problème, nous avons étudié la robustesse de la stabilité exponentielle
transverse dans un espace Euclidien. D’une part, la robustesse de la contraction peut être
reformulée comme robustesse de la stabilité exponentielle transverse ; d’autre part, pour
la stabilité exponentielle transversale, des fonctions de Lyapunov ont été construites dans
la littérature qui peuvent ensuite être utilisées pour analyser la robustesse. Il s’avère que
la condition d’hyperbolicité joue le rôle crucial pour la robustesse de la contraction. Le
premier problème sert aussi de préparation au second. Pour le deuxième problème, on a
étudié la robustesse d’une variété invariante normalement hyperbolique stable. C’est une
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extension du premier problème, mais il est généralement plus difficile à traiter. Motivés
par la linéarisation transverse, nous avons construit des fonctions de Lyapunov basées sur
le « complete lift » du système le long de la variété invariante. Enfin, nous avons constaté
que l’hyperbolicité joue à nouveau un rôle important pour la robustesse.
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Titre : Analyse de contraction des systèmes non-linéaires sur des variétés Riemanniennes
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Résumé : La stabilité des points d'équilibre des
systèmes non linéaires est l'un des problèmes cen-
traux de la théorie du contrôle non linéaire et de
ses applications. L'analyse de stabilité se résume
souvent à la recherche d'une fonction de Lyapu-
nov candidate qui dissipe de manière adéquate le
long des solutions du système. Les deux dernières
décennies ont vu un besoin croissant d'aller au-
delà de la stabilité d'un équilibre, en imposant que
deux solutions d'un système �nissent par converger
l'une vers l'autre. Une telle version incrémentale
de la stabilité de Lyapunov (contraction) s'avère
en e�et utile dans la conception d'observateurs, la

synchronisation et le suivi de trajectoire. Cepen-
dant, les méthodes d'analyse pour la contraction
sont encore loin d'être standardisées, en particulier
pour les systèmes évoluant sur des variétés telles
que les dynamiques de rotation en groupe spécial
orthonormé, les systèmes Lagrangiens modélisés en
espace de con�guration non-Euclidien et les sys-
tèmes quantiques en espace matriciel de densité.
L'objectif principal de cette thèse est d'approfondir
la compréhension de la contraction sur les variétés
et de proposer des méthodes applicables pour as-
surer la contraction.

Title : Contraction Analysis of Nonlinear Systems on Riemannian Manifolds
Keywords : contraction, nonlinear systems, Riemannian manifolds

Abstract : Stability of equilibrium points of non-
linear systems is one of the central issues of nonli-
near control theory and applications. Stability ana-
lysis often boils down to searching for a Lyapunov
candidate that adequately dissipates along the sys-
tem's solutions. The last two decades have wit-
nessed a growing need to go beyond stability of
an equilibrium, by imposing that any two solutions
of a system eventually converge to one another.
Such an incremental version of Lyapunov stability
(contraction) indeed proves useful in observer de-

sign, synchronization and trajectory tracking. Ho-
wever, analysis methods to contraction are still far
from being standardized, particularly for systems
evolving on manifolds such as rotation dynamics
in special orthonormal group, Lagrangian systems
modeled in non-Euclidean con�guration space and
quantum systems in density matrix space. The
main objective of this thesis is to provide fur-
ther understanding of contractive systems on ma-
nifolds and to propose applicable methods to en-
sure contraction.
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