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Abstract

The amount of data produced by today’s web-based systems and applications in-
creases rapidly, due to the many interactions with users (e.g. real-time stock market
transactions, multiplayer games, streaming data produced by Twitter, etc.). As a
result, there is a growing demand, particularly in the fields of commerce, security
and research, for systems capable of processing this data in real time and providing
useful information in a short space of time. Stream processing systems (SPS) meet
these needs and have been widely used for this purpose. The aim of SPSs is to pro-
cess large volumes of data in real time by housing a set of operators in applications
based on Directed acyclic graphs (DAG).

Most existing SPSs, such as Flink or Storm, are configured prior to deployment,
usually defining the DAG and the number of operator replicas in advance. Over-
estimating the number of replicas can lead to a waste of allocated resources. On
the other hand, depending on interaction with the environment, the rate of input
data can fluctuate dynamically and, as a result, operators can become overloaded,
leading to a degradation in system performance. These SPSs are not capable of
dynamically adapting to operator workload and input rate variations. One solution
to this problem is to dynamically increase the number of resources, physical or
logical, allocated to the SPS when the processing demand of one or more operators
increases.

This thesis presents two SPSs, RA-SPS and PA-SPS, reactive and predictive approach
respectively, for dynamically modifying the number of operator replicas. The reactive
approach relies on the current state of operators computed on multiple metrics,
while the predictive model is based on input rate variation, operator execution time,
and queued events. The two SPSs extend Storm SPS to dynamically reconfigure the
number of copies without having to downtime the application. They also implement
a load balancer that distributes incoming events fairly among operator replicas.

Experiments on the Google Cloud Platform (GCP) were carried out with applications
that process Twitter data, DNS traffic, or logs traces. Performance was evaluated
with different configurations and the results were compared with those of running
the same applications on the original Storm as well as with state-of-the-art work
such as SPS DABS-Storm, which also adapt the number of replicas. The comparison
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shows that both RA-SPS and PA-SPS can significantly improve the number of events
processed, while reducing costs.

Keywords: Stream processing, Adaptive SPS, Predictive algorithm, Reactive algo-
rithm, Google Cloud Platform.
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Résumé

Le nombre de données produites par les systèmes ou applications Web actuels aug-
mente rapidement en raison des nombreuses interactions avec les utilisateurs (dans
le cadre par exemple, transactions boursières en temps réel, des jeux multijoueurs,
des données en continu produits par Twitter, etc.). Ainsi, il existe une demande crois-
sante, notamment dans les domaines du commerce, de la sécurité et de la recherche,
pour des systèmes capables de traiter ces données en temps réel et de fournir des
informations utiles dans un court laps de temps. Les systèmes de traitement des flux
(SPS) répondent à ces besoins et ont été largement utilisés à cette fin. L’objectif des
SPS est de traiter de grands volumes de données en temps réel en endentent un
ensemble d’opérateurs dans des applications structurée en DAG.

Le plupart des SPS existants, tels que Flink ou Storm, sont configurés avant leur
déploiement, définissant généralement à l’avance le DAG et le nombre de ré-
pliques opérateurs. Une surestimation du nombre de répliques entraîne alors
un gaspillage des ressources allouées. D’autre part, en fonction de l’interaction
avec l’environnement, le taux de données en entrée peut fluctuer de manière dy-
namique et, par conséquent, les opérateurs peuvent être surchargés, ce qui entraîne
une dégradation des performances du système. Ces SPS ne sont pas capables de
s’adapter dynamiquement à la charge de travail de l’opérateur et aux variations
du taux d’entrée. Pour résoudre ce problème, une solution consiste à augmenter
dynamiquement le nombre de ressources, physiques ou logiques, allouées au SPS
lorsque la demande de traitement d’un ou plusieurs opérateurs augmente.

Nous présentons dans cette thèse deux approches, RA-SPS et PA-SPS, pour modifier
dynamiquement le nombre de répliques d’un opérateur. L’approche réactive repose
sur l’état courant des opérateurs calculé sur de multiples métriques. Tandis que
le modèle prédictif se base sur la variation du taux d’entrée, le temps d’exécution
des opérateurs et les événements en file d’attente. Nous avons également étendu
Storm pour reconfigurer dynamiquement le nombre de copies sans avoir à geler
l’application. Notre SPS met aussi en œuvre un équilibreur de charge qui distribue
les événements entrants de manière équitable entre les répliques d’un opérateur.

Des expériences sur la Google Cloud Platform (GCP) ont été menées avec des
applications qui traitent le flux Twitter, le trafic DNS ou les traces de flux du journal
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système. Nous avons évalué différentes configurations et les avons comparées avec
l’implémentation originale de Storm ainsi qu’avec des travaux de pointe tels que SPS
DABS-Storm qui adapte également le nombre de répliques. Les résultat montrent que
notre approche permet d’améliorer de manière conséquente le nombre d’événement
traité tout en réduisant les coûts.

Mots-clés: Flux de données, Traitement en temps réel, Algorithme predictive,
Algorithme reactive.
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Introduction 1
The tremendous volume of information in the Internet started with Web 2.0 de-
velopment. Web 2.0 established a paradigm shift where users actively participate
and share data through applications such as blogs, social networks, or other web
applications [New+16]. Since the amount of exchanged information grows everyday
faster, data processing becomes even more challenging.

Figure 1.1 presents an example of interactions between users and applications,
such as uploading or downloading music, commenting on a post, and receiving
notifications, among many other possibilities.

Connect

Feeds

Share

Buzz

Discuss
Comment

Tweet

Blog

UploadDownload

Internet

Link

Mail

Fig. 1.1: Interactions on the Internet.

Data analysis for extracting information may be defiant. Such a task is even more
complex if the analysis should take place in real-time. Under such a scenario, tradi-
tional processing systems based on the Batch processing paradigm like MapReduce
[DG08; CY15] are not suitable for carrying out the analysis. Figure 1.2 shows a data
pipeline using Batch processing, where events are read to be processed periodically
according to a time window, and, therefore, report are not generated online.

Sustained on the need to process interactions in an online manner, different pro-
cessing systems have been proposed in the literature. These systems are capable of
dealing with unbounded sequences of events and deliver low-latency data. Nowa-
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Recorded
Events

Periodic Query /
Application

read

Database / HDFS

Rapport

write

Fig. 1.2: Batch processing concept.

days, most users require quick and updated information online as a support for
decision-making [ÖRT11].

A good example is social network analysis under post-disaster scenarios, where
events are continuously generated, processing them as close to real-time as possible
is necessary to obtain timely information to mitigate the disaster effects [Wla+16].
With such information, areas may be prioritized, resource distribution can be im-
proved, people searches may be more efficient, among others.

Another application is stock exchange prediction [Din+17]. In this case, processing
systems may analyze data and create mathematical models to predict the next day’s
market behavior.

In network security scenarios it is possible to monitor the network activity [Zha+17].
As the data is processed in real-time, it may help to detect ’on the fly’ malicious
behaviors. A similar approach is followed on logs analysis. Online data processing
makes it possible to detect bugs or errors, as well as to see if there is any intruder or
system policy violation.

Stream Processing Systems (SPS) were specially designed to fulfill these needs
[LES12]. The goal of a SPS is to process unbounded continuous flows of events and
to provide a scalable and efficient tool to process data close to real-time. Figure 1.3
presents an example of a stream processing pipeline. Events are processed on the fly
and aggregated results are stored in a database or presented on a dashboard.

SPSs are based on directed acyclic graphs (DAG) whose vertices and unidirectional
edges correspond to operators and event data flows respectively [CJ09]. An external
source continuously provides the data that the system consumes. Light programming
tasks (like filters, counters, storage, etc.) are handled by operators that quickly
and in pipeline-style process the data (events). In a processing infrastructure (e.g.
clusters, clouds, etc.), resources (e.g., VMs) are allocated to execute the operators
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Real-time
events

Continuous Query
/ Application

ingest

Database /
K-V Store Dashboard

update

State

read

Fig. 1.3: Stream processing concept.

which are frequently replicated for performance reasons. Figure 1.4 shows an
example of a SPS application, whose pipeline is composed of one input data and
four operators. In this example, each operator processes the events according to the
pipeline flow, provided by the input data.

Split

Filter

Filter

Store
Input
data Database

Fig. 1.4: Example of a SPS application.

SPS frameworks, such as Storm [LES12] or Flink [Car+15], are configured before
their deployment, usually defining both the DAG and the number of operator replicas
beforehand. There are works that adapt the number of replicas dynamically based
on analysis of input fluctuation [Car+18; Ark+21; Kom+19]. However, replica
reconfiguration usually requires stopping the application and restating it. For
adapting the number of replicas, there exist basically two approaches. The reactive
approach considers the state of the system, while the predictive analyses the history
of the states.

Another critical feature of SPSs is the grouping strategy which is responsible for
sharing the input load among operators’ replicas. For instance, the round-robin
policy is one of the most common approaches to implementing shuffle grouping.
However, the latter does not consider the input load of each replica, i.e., current
queued events waiting to be processed.

The behaviour of data streams can be quite dynamic. Traffic behaviour may suddenly
increase/decrease, and event distributions may be unbalanced, among others. Such a
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dynamics may create struggle operators, increasing end-to-end latency and message
loss. To solve this problem it is necessary to dynamically adapt the processing logic
of the SPS, thereby increasing or decreasing the number of replicas of an operator, so
a good adaptation decision may minimize the aforementioned problem: the latency
and message loss can be reduced reaching higher accuracy for the data analysed.

For this reason, one solution is to propose an adaptive SPS, which characterize
system utilization requirements and automatically increase/decrease the number of
replicas of critical operators to keep latency restrictions and reduce event loss.

1.1 Contributions

This thesis proposes two adaptive SPSs (RA-SPS and PA-SPS) based on Storm
[Tos+14]. Its aim is to adapt the number of replicas of the operators according to
the sparks in the data stream. Both adaptive SPS use the MAPE model [IBM05],
which consists of a control loop composed of four modules: Monitoring, Analysis,
Planning, and Execution.

RA-SPS and PA-SPS exploit a reactive and predictive approach respectively. RA-SPS
bases its decision on the state of an operator at runtime, according to the analysis of
traffic peaks in short periods of time. PA-SPS bases its decision on the behaviour of
the input data and the number of operator active replicas required for processing
the input data, finding patterns in the traffic to anticipate possible overloads, or
underloads in the SPS.

In order to cope with stream fluctuation both SPS, use a pool of operator replica,
created beforehand. These replicas may be either active or inactive. Active replicas
are deployed by the Storm scheduler. On the other hand, inactive replicas are idle,
so they do not consume CPU resources but can be allocated as needed. Consequently,
a pool of replicas can be dynamically activated (resp., deactivated) when the system
detects the need for increasing (resp., decreasing) the number of active replicas of
an operator. Note that under this model, the stream processing systems can adapt
without stopping the SPS.

Another feature introduced in the proposed SPSs is the load-aware grouping that
partitions the stream among replicas based on their respective current load.

RA-SPS dynamically modify the number of replicas per operator based on a multi-
metric. The multi-metric is composed of system statistics such as the queue size,
the average execution time of an event, and the utilisation rate of an operator. It
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determines the state of the operators during a time interval, and depending on
the state of the operator and conditions of the SPS, it is decided whether or not to
modify the number of replicas.

PA-SPS dynamically allocates the number of replicas per operator necessary to
process the input stream, defining the events that each operator O should process
within a time interval. In order to predict the input stream and analyse the system’s
potential future behaviour, a predictive model is proposed, integrated to PA-SPS.
By considering both (1) the events sent to an O by its direct operator predecessors
as well as those from earlier time intervals that O could not process at the time,
therefore, kept in a queue and (2) event execution time, the ideal number of O’s
replicas for processing these events at each interval is deduced. As a result, the
number of O’s replicas changes over time, depending on the input rate.

This proposal is evaluated over the infrastructure of a well-known cloud provider, the
Google Cloud Platform (GCP). Performance was an exhaustive evaluation in terms
of classical metrics such as end-to-end latency, resource utilization, the number of
processed events, and the error of our estimations. This work presents, analyses,
and discusses the results also comparing them with state of the art solutions.

1.2 Publications

Two articles in international conferences, two articles in French conferences, and
one journal article submission under review. Chapter 4 presents the contributions of
each article.

1.2.1 International Conferences

• [Wla+21] Daniel Wladdimiro, Luciana Arantes, Pierre Sens and Nicolas Hi-
dalgo. "A Multi-Metric Adaptive Stream Processing System." In: NCA. IEEE,
2021.

• [Wla+22a] Daniel Wladdimiro, Luciana Arantes, Pierre Sens and Nicolas
Hidalgo. "A predictive approach for dynamic replication of operators in dis-
tributed stream processing systems" In: SBAC. IEEE, 2022.

1.2 Publications 5



1.2.2 Journal

• [Wla+23a] Daniel Wladdimiro, Luciana Arantes, Pierre Sens and Nicolas
Hidalgo. "PA-SPS: A Predictive Adaptive Approach for an Elastic Stream
Processing System" In: JPDC. 2023. [Under Review]

1.2.3 National Conferences

• [Wla+22b] Daniel Wladdimiro, Luciana Arantes, Pierre Sens and Nicolas
Hidalgo. "A predictive model for Stream Processing System that dynamically
calibrates the number of operator replicas." In: ComPAS. Amiens, France, 2022.

• [Wla+23b] Daniel Wladdimiro, Luciana Arantes, Pierre Sens and Nicolas
Hidalgo. "PRESPS: a PREdictive model to determine the number of replicas
of the operators in Stream Processing Systems" In: ComPAS. Annecy, France,
2023.

1.3 Organization

The remaining of this theses is organised as follows:

Chapter 2 gives the necessary concepts for the understanding of SPSs, the architec-
ture of the SPS frameworks, and our contribution.

Chapter 3 presents related work about adaptive SPS. Existing solutions use a manual
approach, which depends on a user for modifying the SPS, or a automatic approach,
where the SPS is in charge of the adaptation.

Chapter 4 presents the proposed SPSs(RA-SPS and PA-SPS) as well as the pool of
replicas and Load-Aware grouping approach.

Chapter 5 presents evaluation results related to RA-SPS and PA-SPS experiments
conducted on GCP.

Finally, Chapter 6 presents the conclusion and some future work.
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Background 2
This section introduces some concepts used in this work. First, we define what
is stream processing. This is important since it characterizes the behaviour of
events collected from data sources under this paradigm. Then, we introduce the
Stream Processing Systems (SPS), both the system and its components, and some
frameworks used to implement them.

2.1 Stream processing

Streaming refers to a continuous flow of data that is generated, transmitted, and
processed in real time over a network [Men02]. It allows users to access and
consume its content as it is under transmission, so there is no need to store all
the content before using it. It consists of an external entity sending data to a data
processing system. If the service is busy, the data is queued. Generally, streaming is
used by web interaction, such as social networking or online playback of multimedia
content.

Streaming is largely used in processing information in real-time, when the tempo-
rality of the data is relevant, such as online playback of multimedia material. For
instance, Streaming API provided by Twitter, can be used to study the most relevant
tweets, trending topics or hashtags for specific cases such as election campaigns or
natural disasters. Streaming is processed by SPSs.

Figure 2.1 shows a server emitting a data stream, which is received by different
clients. Each client is in charge of processing the received data, if the client is busy,
data is buffered. Otherwise the client will process the data according to the service
policy.

Stream processing is a computing paradigm and data processing approach that
involves the continuous processing of data as it is generated and ingested in real-time.
This paradigm focuses on programming applications that can process information
on the fly as close to real-time as possible, using system resources in a parallel
or distributed manner to meet their objective. It is typically used for real-time

7



ProcessingBuffer

Server

Stream

Client

Fig. 2.1: Streaming example among server and clients.

applications that close to real time responses, such as monitoring, fraud detection,
and predictive maintenance.

Figure 2.2 presents a Stream processing scenario. The input stream corresponds
to the input stream of external data, which is delivered by an external source such
as sensors, log records, or database transactions. Each data is a basic unit, which
is processed to obtain relevant information. The stream process is the component
in charge of processing the input stream. These processes can be stateful, so if
necessary, the processing status is stored in an external database. It is also possible
to process several data in parallel, either using more logical or physical resources.
The output stream is the processed data, which can be used as a data stream to be
processed or stored.

Input stream Output stream

Stream
process

State
Store

Fig. 2.2: Stream processing paradigm.

For the correct functioning of these applications, some requirements should be
satisfied. The work [AGT14] defines them, which are classified as follows:
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• Processing large quantities of distributed data: One of the main goals of
Stream processing is the processing of large volumes of data, which are sent in
a distributed manner by external sources. By processing these data, the system
can monitor, analyse, or control them in real-time, since the data processing is
performed as the data stream continues.

• Addressing stringent latency and bandwidth constraints: This point refers
to a stable connection between components over the network, where band-
width or latency is not a limiting factor for data processing. Such a requirement
is important since an application that considers data in real time is useless if it
presents a high latency. Low latency should always be maintained, so that the
data is as close to real time as possible.

• Processing heterogeneous data: A standard both in the data structure and
its format should be application in the raw data from external sources that are
used in the Stream processing. In this way, the processing will be homogeneous
for all data, avoiding problems associated with the data structure.

• Providing long-term high availability: SPS operators can fail which inducing
the decrease of data throughput. Thus, it is important to have a fault tolerance
mechanism to reduce the loss of information. In the order, provide a constant
processing of data, which is stable and persistent over time. Otherwise, infor-
mation can be lost, compromising the accuracy of the results and requiring
more time to collect the lost information or reach a similar state.

2.2 Stream Processing Systems

A Stream Processing System (SPS) is a software or framework designed to process
and analyze data streams in real-time, which is based on the concepts of Stream
processing. The main goal of an SPS is to process high volumes of data in a
distributed way and in real-time [Kle16]. In contrast to the traditional batch
processing model, which stores the data to later process it offline [HN14]. SPS shift
involves the analysis of data without requiring storage.

The paradigm used by SPSs is based on a directed acyclic graph (DAG) as shown in
Figure 2.3. The operators correspond to the vertices of the graph, such as analyzers,
word filters or some particular algorithm, while the edges correspond to the dataflow
between operators [Sha14]. In addition, the input data (the source) is originated
by an external entity, such as streaming from social networks, statistics from the
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monitoring of a system, or transactions in the stock exchange. The first operator
consumes data from the source [App+12]. In most graphs, the terminal operators
are in charge of storing the results of the data processing in a database.

v1

v2

v3

v4
Input 
data Database

Fig. 2.3: Example of the representation of the DAG in an SPS application.

It should be noted that SPSs are distributed, i.e., each vertex is hosted in a physical
node available in the environment where the system is hosted, either a cluster, a
grid or a cloud. To achieve communication between the operators, systems specially
designed for this type of task are used, such as Apache ZooKeeper [Hun+10].
The latter consists of a centralized orchestration that maintains configuration and
synchronization information of the distributed applications. To this end, each
processing node must register in the system, and it is the orchestrator that is
subsequently in charge of synchronizing the nodes available for processing and
distributing the events among them.

Most applications running on SPS, manage large amount of data, which must be
processed to obtain information or statistics, as , for instance, fraud detection,
collection of information in case of disasters or analysis of interaction in social
networks. To perform real-time processing of the data, [SÇZ05] establishes the
following requirements:

• Keep the Data Moving: To ensure low latency in the processing of high
volumes of data, it is necessary to preclude the storage of the data when
processing it, since the storing data adds unnecessary latency to the system.
Thus, the aim is to process data "in-stream", i.e., as the data is received, it is
processed.

• Query using SQL on Streams: To reduce the development and programming
time of projects, it is important to provide an abstraction in the operations
performed by the program, as done by a high-level language such as SQL. In
this way, there is a set of default functions, which we can be use to query,
group, join, or modify, accepted by most popular DBMS. Thus, providing a
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support to StreamSQL, a variant of SQL designed for SPS, ends up being an
important tool for the SPS ecosystem.

• Handle Stream Imperfections: Because data are processed in-stream, it is
necessary to provide a provision model for handling data that is delayed,
missing, or out-of-order. Hence, if the SPS is performing an operation that
considers a calculation in a time window, a mechanism must be provided to
handle delayed or out-of-order events. On the other hand, if the system is wait-
ing for a missing data, which might never arrive, then a timeout mechanism
should avoid that the system blocks forever.

• Generate Predictable Outcomes: SPS can predictably process data, always
given the same results. This means that the process must be deterministic
and repeatable. Such a behaviour reflects the fault tolerance provided by the
SPS, given that in the case of data loss, data recovery is possible and the result
remains the same.

• Integrate Stored and Streaming Data: Some applications may be composed
of stateful operations. For instance, the word-counting operator requires
variables that store the statistics of the incoming stream. Therefore, the SPS
must provide a system for storing, accessing and modifying the states used by
the application. These states can also be added to the data in the stream, so it
is important to have a uniform language to deal with both components.

• Guarantee data security and availability: SPS must provide data fault
tolerance mechanism to ensure data integrity and provide integrity to the
processing of critical data information. In this way, the system must provide
checkpoint management for both data integrity and state. Thus, in case of
data processing failure, the system will be able to reprocess data.

• Partition and Scale Applications Automatically: The distribution of an
SPS is important both in terms of scalability and cost. By using the system
on a single machine, resource constraints are likely to happen. Likewise,
the costs associated with distributing a system across multiple machines are
higher. Therefore, the SPS should ideally provide a transparent and automatic
distribution of operators on the available machines, providing scalability in its
processing.

• Process and Respond Instantaneously: When considering the use of SPS,
a system is required to respond close to real-time. Therefore, the SPS must
provide a solution that copes with operator overloads, which affect system
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performance. The solution should present low overhead, i.e., small imple-
mentation cost or resources requirements, increasing, thus, the efficiency and
performance of the system.

2.2.1 Stream

Stream is a continuous flow of data records or events that are processed and analysed
in real-time. It represents a sequence of data elements that arrive continuously over
time. Stream is the fundamental building blocks in SPS corresponding to the input
and output channels for data processing. They can represent various types of data,
such as sensor readings, log entries, financial transactions, social media updates, or
any other type of event-based data.

Streams in SPS typically exhibit the following characteristics [AS+13]:

• Continuous flow: Streams are continuous and persistent, with data flowing
continuously over time. Data arrived are generated, transmitted, and added to
stream, creating a dynamic traffic.

• High data arrival rate: In Streams usually data arrives at a high rate or
frequency, requiring SPSs to handle and process data in real-time or near
real-time to keep up with the incoming data.

• Potentially unbounded: Streams can be unbounded, meaning that there
is no predefined endpoint or limit. They can continue indefinitely, and the
processing system needs to handle the continuous arrival of data without
assuming an end.

• Ordered or unordered: Streams can be ordered, where the order of events is
meaningful and needs to be preserved during processing. On the other hand,
if the order of events is not important, processing can occur independently on
each event.

• Potentially partitioned: In distributed stream processing systems, streams
can be partitioned into multiple partitions or shards. Each partition contains a
subset of the data, and, thus, for parallel processing across multiple nodes or
processing units can take place.

Streams are the primary input to SPS, and then they are ingested, processed, and
transformed by various operators or computations. The processed results or derived
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streams can also be emitted as outputs for further processing, storage, visualization,
or integration in other systems.

2.2.2 DAG

A directed acyclic graph (DAG) defines the processing logic of the SPS where each
vertex represents an operator, and unidirectional edges (arcs) represent the dataflow.
The DAG is defined as G = (V, A), where V is the set of vertices and A is the
arcs group. Likewise, n represents the number of vertices in V and m represents
the number of arcs in A. Each vertex corresponds to an operator, and each arc
corresponds to a stream in the SPS application. For example, Figure 2.4 shows a
DAG, where G = (V, A) with V = {v1, v2, v3, v4} and A = {a1, a2, a3, a4, a5}, n = 4
and m = 5. In this case, the initial vertex is v1 and the terminal vertex is v4.

a1

a2

v1

a3v2

a4v3

v4

a5

Fig. 2.4: DAG in an SPS.

A path v is a sequence of vertices and arcs defined as v = viakvj ...vpalvq, where
vi, vj , vn, vm ∈ V for i, j, p, q ∈ {1, ..., n} and ak = {vi, vj}, al = {vp, vq} ∈ A.
Therefore, since in DAGs there are no cycles, the first and last vertices in the path are
not the same, i.e., vi ̸= vq. For example, in the Figure 2.4 it is possible to trace a path
between v1 and v4, defined by v1 = v1a1v2a3v4, v2 = v1a2v3a4v4 or v3 = v1a5v4,
without having cycles.

For a DAG G = (V, A), it is possible to associate the relation ≤ defined by: for any
pair of vertices (vi, vj) ∈ v for i, j ∈ {1, ..., n} , vi ≤ vj if there exists a path v from
vi to vj in G. In this way, a topological ordering of G is defined as a list (vi, ..., vj) of
vertices of G for i, j ∈ {1, ..., n}, such that if i ≤ j, then there is no path between vj

to vi. For example, Figure 2.4 has the list (1, 2, 3, 4) or (1, 3, 2, 4). The ordering is
unique, only in the case that a path connects all the vertices, and corresponds to the
order in which the vertices appear.

Paths can start from different vertices. Thus, depending on its origin, the set of
vertices of different paths is not the same. Figure 2.5 presents a complex DAG, where
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there are two initial vertices (v1 and v5) and two terminal vertices (v4 and v7). In
the case of choosing v1 as the initial vertex, it is possible to end at v4 or v7, but not in
the case of v5, since it can only end at v7. By taking different paths, the application
relies on different operators, so processed data also varies.

a1

a2

v1

a3v2

a4

v3

v4

v6

v5

v7

a6

a7

a8
a5

Fig. 2.5: DAG complex in an SPS.

2.2.3 Tuples

The SPS must process structured input data. Therefore, initial operators are used to
structure the input data, which can be structured, semi-structured or unstructured.
Thus, each structured data created by an external data source is called tuple. A tuple
is a basic unit of data that is defined by (key, value), a set of attributes or fields,
which flow through the application graph. Each tuple is a single event in the data
stream, which is often used to represent an event such as sensor reading, user action,
or a financial transaction in real-time applications such as monitoring, alerting, or
fraud detection. In general, a tuple has the timestamp of its creation, as well as the
timestamp of its predecessor vertices in the DAG. The number and type of attributes
in a tuple depend on the need of the application, as well as the path taken by the
tuple.

Figure 2.6 presents the flow of a tuple through SPS application, which is defined
by four components: input data, two operators and a database. Operator v1 counts
the number of words in the stream, and operator v2 stores the tuples in a database.
The start of the flow begins with the input data, structured in key-value. After this,
the tuple is sent to operator v1, which determines that the number of words is 2.
Therefore, it adds a new field count to the tuple and the timestamp record, and
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v1

v2

Input
data

{key = timestamp, value = 100}
{key = text, value = "hello world"}

{key = timestamp, value = 100}
{key = text, value = "hello world"}
{key = count, value = 2}
{key=timestamp_record_v1, value = 80}

{key = timestamp, value = 100}
{key = text, value = "hello world"}
{key = count, value = 2}
{key=timestamp_record_v1, value = 80}
{key=timestamp_record_v2, value = 120}

Database

Fig. 2.6: The tuple exchange in an SPS.

sends it to operator v2. Finally, the v2 operator stores the tuple in a database, adding
the timestamp record.

2.2.4 Operator

An operator is a processing unit that receives data from one or more input streams,
performs some computation on the data, and produces one or more output streams.
An operator is represented by a vertex in the DAG. The majority of operators are
designed to perform light tasks, nevertheless, they can also implement complex
tasks, depending on the design of the SPS application.

Depending on the DAG, operators can be replicated and the income data is processed
in parallel. Also, each operator has a level of parallelism, which is related to the
SPS implementation. Same solutions propose to associate parallel unit to logical
resources (i.e. processes or thread), and others to physical resources (i.e. containers
or VM).

Figure 2.7a shows the DAG for an SPS application. The DAG is composed of three op-
erators: v1, v2 and v3. Due to the complexity of operator v2, the application requires
increasing the parallelism of the operator. Figure 2.7b shows the parallelization
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of the operator v2, where k replicas of the operator are created to process data in
parallel.

v1 v2 v3

(a) Representation by DAG.

v1 v2.2 v3

v2.1

v2.k

1

2.k

2.2

2.1

3

(b) Representation of operator parallelisation.

Fig. 2.7: Example of parallelism of an SPS operator.

Data is represented by tuples, so operators process tuples. Depending on the
operator’s task, tuples are sent without or with modification. It is also possible to
discard them, create new tuples, or on the other hand, to perform some analysis on
them. Futhermore, depending on whether or not the operator maintains the state or
context of the data it processes, operators are classified into: stateless and stateful.

Stateless operators do not maintain the internal state or context of the data. They
are independent tasks that depend only on the input tuples, without the need to
know the past processing or global state of the application. These types of operators
are used to perform operator-specific tasks. Stateless operators are associated with
mapping, filtering, and data transformation tasks in the SPS.

Figure 2.8 presents an operator v1 that performs a filtering task, which analyses if the
text is in english written. If it is not, the event will not continue in the pipeline. In
most cases, stateless operators are easily parallelizable, because it is not necessary to
have consistency in the state of replicated operators, so they have a high scalability,
which is useful for processing large amounts of data. When these operators are
restarted, they have no impact in the overall processing of the data.

16 Chapter 2 Background



v1

{key = timestamp, value = 100}
{key = text, value = "hello world"}

filter operator

Fig. 2.8: An example of stateless operator.

For stateful operators, the output depends on the internal state of the operator.
Therefore, they require past knowledge of the events or global state of the SPS to
perform the task effectively. Such tasks are associated with windowed aggregations,
pattern detection, or any operation that requires continuous analysis of data over
some time.

v2

{key = timestamp, value = 100}
{key = text, value = "hello world"}

word counter

{hello_counter=10}

Fig. 2.9: An example of stateful operator.

Figure 2.9 presents operator v2 which has a state that stores a counter indicating
the number of tuples containing a specific word under a time window. Initially the
operator v2 has a state hello_counter=9. Thus, after counting the incoming event
the internal state will be hello_counter=10. This state can be stored in memory
or in an external database. The management of its state increases complexity, due
to data consistency, fault tolerance, and scalability of the operator, because, as the
number of replicas of this operator increases, it is necessary to ensure the consistency
of the replica states.
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2.3 SPS Frameworks

In this section, we will present two popular SPS frameworks: Storm and Flink. The
logical architecture will be presented, with the components that make up the DAG,
as well as the physical architecture, explaining the components necessary for its
deployment and communication.

2.3.1 Storm

Storm [Tos+14] is a distributed SPS framework implemented in Java and Clojure
that enables the processing of unbounded streams of data. It was initially developed
by the BackType team, which was later acquired by Twitter. It is an open-source
Apache project, so there is a strong community of developers involved.

Logical architecture

A Storm application is represented by a DAG, also referred as Topology. There are
three types of components in a Topology: Streams, Spouts, and Bolts.

Streams are a sequence of tuples created and processed in parallel following the
DAG model. These are distributed around the application. Streams are composed of
a structure of key-value tuples. Tuples can be defined by bytes, numbers, booleans
or strings. Each Stream must be declared by a unique identifier.

Spouts are responsible for capturing the input data from external sources. They
consume events and generate tuples sharing them to other Bolts downstream in
the Topology. Spouts can be implemented in either reliable or unreliable fashion. A
reliable Spout is capable of resending the same tuple in case it fails. Otherwise, it
forgets to resend the tuple once it is emitted.

In Storm, operators are called Bolts. In general, these are lightweight tasks, so
complex operations are designed as a pipeline of operators. Bolts can receive the
tuples emitted from one or more Streams. Similarly to Spouts, Bolts can send the
processed tuples through one or more Streams. To guarantee processing, Bolts can
send an ACK (acknoledgement) message to indicate a tuple was processed. Each
Bolt is parallelizable, so it has an associated parallelism degree, which corresponds
to the number of replicas of an operator.
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Topology

Bolt1

Bolt2

Bolt3

Bolt4Spout
Bolt1

Bolt2Bolt2

Bolt3Bolt3Bolt3

Fig. 2.10: A Storm Topology and components.

Figure 2.10 shows an Storm Topology (DAG) example, composed of Spout, and four
Bolts. The number of replicas for Bolt1, Bolt2, Bolt3 and Bolt4 are 2, 3, 4 and 1
respectively. Spout is in charge of sending the raw data to Bolt1 by distributing
the stream data input to each of Bolt1’s replicas based on some stream grouping.
After processing the tuple, Bolt2 sends the processed tuple to Bolt2 and Bolt3, the
following Bolts downstream in the DAG. If there is not Bolt downstream, we are
in presence of a sink operator and dataflow is terminated. The last operator that
processes the data in Topology is Bolt4.

In the presence of Bolt’s replicas in Figure 2.10, Stream is partitioned and shared
among them as shown in Figure 2.11, which is defined by Stream grouping. Every
Bolt’s replica processes the received tuple and sends the processed tuple to the next
based on some stream grouping. Therefore, for each defined Stream it is necessary
to define Stream grouping for sending a tuple between two components.

Storm has defined eight stream groupings, can be used. If necessary, it is possible to
define new stream groupings.

1. Shuffle grouping: Tuples are sent randomly to each replica.

2. Fields grouping: The stream is partitioned by a field given in the tuple that
determines which replica will receive the tuple.

3. Partial Key grouping: This stream grouping is proposed by [Nas+15]. Similarly
to Fields grouping, it used a specific field for the choise of the replica, but also
considers the load balancing between the available replicas.

4. All grouping: Tuples are sent to all replicas.

5. Global grouping: Tuples are sent to a single replica.
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Bolt1

Bolt3

Bolt2

Bolt4

Fig. 2.11: Stream grouping in a Storm Topology.

6. None grouping: Tuples are sent randomly to each replica but in this case the
same thread is always used by the assigned Bolts.

7. Direct grouping: Tuples are sent directly to the desired replica according to
some attribute declared in Stream.

8. Local grouping: Tuples are sent to a group of replicas sharing the same re-
sources.

Except Partial Key grouping, the drawback of these approaches is the potential lack of
load balance. To cope with such a problem, other existing SPS propose hash-based
data partition[Sha+03], partial-key based [Nas+15] or executor-centric solutions
[Wan+19].

Storm parallelism implementation is based on three concepts: Tasks, Executors and
Worker processes.

Tasks are defined as data processing units, being replicas of a Bolt or Spout. While
by default a task is assigned to one thread, it is possible to assign several tasks to
the same thread.

An Executor is a thread. One or more Tasks of the same type (Bolt or Spout) can be
assigned within the Executor.
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Worker processes are a subset of a Topology, so its in charge to run a set of Executors.
A Worker process is a physical JVM. Each Worker process is assigned to a machine
and allocated resources can be configured according to the latter.

Figure 2.12 shows the parallelism of the Storm Topology of Figure 2.10. The Topology
has three subsets represented by Workers processes, which are distributed on physical
machines. Each Bolt and Spout represent a Task, and each Task is associated with a
single Executor, except in the case of Bolt2, where all Tasks are associated with a
Executor. In summary, the number of associated threads for each Bolt is Bolt1 = 2,
Bolt2 = 1, Bolt3 = 3 and Bolt4 = 1.

Worker process Worker process

Bolt1

Executor

Bolt4

Executor

Executor

Bolt3

Worker process

Bolt2

Bolt2

Bolt2

Executor
Bolt3

Executor

Bolt3

Executor

Topology

Spout

Executor
Bolt1

Executor

Fig. 2.12: Parallelism of a Storm Topology.

Physical architecture

Storm Topology is deployed in a Storm Cluster, which is a physical environment for
its execution. Its components, hosted on machines, cores or VMs, are distributed
on a platform such as a Grid, Cluster or Cloud. There are two kinds of components:
Worker node and Master node.

The Worker node is responsible for hosting Storm Topology tasks. Each Worker node
runs a daemon called Supervisor. The role of the Supervisors is to host one or more
Worker processes, so they deploy a subset of Storm Topology. Thus, when deploying a
Storm Topology on a set of Worker processes, each associated task will be distributed
around Storm Cluster.
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The master node runs a daemon called Nimbus, which is responsible for distributing
the associated Storm Topology code around the Storm Cluster. At the same time,
Nimbus detects distributed component failures (i.e. node crashes or loss of messages)
and the state of nodes. Finally, Nimbus runs the scheduling algorithm.

The scheduling algorithm is in charge of performing the mapping. This case, load
balance problems may arise. For instance, when a random policy is applied (as Storm
can do it), there is no guarantee that the workload will be homogeneously distributed
among the operators since an operator may be more complex than another one
[XZH05] and machine resources could be heterogeneous. Even with homogeneous
computation nodes, load balance issues can also arise [Xu+14]. Figure 2.13 shows
the scheduling of Storm Topology (shown in Figure 2.10) in a physical platform.
According to some scheduling algorithms, each operator replica is placed in an
available worker node.

Worker 1

Supervisor 1

Worker 2

Bolt1 Bolt1

Bolt2 Bolt2

Bolt2

Worker 3

Supervisor 2

Bolt3 Bolt4

Bolt3 Bolt3

Bolt3 Spout

Fig. 2.13: Storm physical architecture.

Architecture

For coordination between Nimbus and the Supervisors, Storm Cluster uses Zookeeper.
Additionally, the states of the latter are stored in Zookeeper or on a local disk, to
provide fault tolerance in case of node failure.

Finally, Storm architecture comprises Storm Cluster and Zookeeper cluster as shown
by Figure 2.14.
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Fig. 2.14: Storm architecture.

2.3.2 Flink

Flink [KS16] is a distributed SPS framework implemented in Java and Scala that
enables the processing of unbounded data streams. It was initially developed by TU
Berlin, and is currently part of the Stratosphere project.

Logical architecture

Like Storm, a Flink Application is a DAG. There are two types of components in a
Flink Application: Sources and Operators.

Sources are the components necessary for sending external data to Flink Application.
Each Source can be associated with logs, written data to external sinks, message
queues, and interface with other systems. In this way, a Flink Application can have
one or more Sources in the data processing.

Operators are the components that process the data in the Flink application pipeline.
Unlike Storm, Flink provides a high-level model, providing several default functions,
which can be used. In this way, the system provides a high level of abstraction,
simplifying various aspects of application construction. Like Storm, each Operator
can be parallelised according to the application’s requirements.

Figure 2.15 shows a Flink Application (DAG) example, composed of a Source, and
three Operators. In this example, can observe that the first Operator performs the
mapping task, while the second Operator groups by a key and operates in a time
window. These Operators are named Transformation Operators. After, the third

2.3 SPS Frameworks 23



Flink Application

Operator2Operator1 Operator3Source

Fig. 2.15: A Flink Topology.

Operator, the last one, sends the processed data to either a database or an external
system. This type of Operator is called Sink Operator.

Physical architecture

A Flink application is deployed on Flink Cluster, which has two components: Job
Manager and Task Manager.

The Job Manager is responsible for distributing and coordinating the execution of
the Flink Application. It decides on which machine each Task will be deployed. At the
same time, it monitors the status of the tasks, in case of a possible failure or progress
in the stream, as well as the coordination of checkpoints and their recovery.

Task Manager is the component that hosts one or more Tasks of Flink Application.
Each Task is associated to an Operator, so this component must also allocate resources
for its parallelisation. It also sends the state of the Tasks to the Job Manager.

Outside the Flink Cluster, there is a component named Client, which is responsible
for the code of the Flink application and for sending it to the Job Manager for
deployment. This component also receives statistics, results and the state of the
execution of Flink Application.

Figure 2.16 shows the scheduling of the Flink Application (shown in Figure 2.15)
in a physical platform. According to some scheduling algorithms, each Operators is
placed in an available Task.
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Fig. 2.16: Flink physical architecture.

2.3.3 Discussion

Although there are differences at the programming level, because Storm does not
provide a high level of abstraction as Flink, both the logical and physical architecture
are quite similar. On the one hand, the logical architecture is based on a DAG model,
where each vertex is a component that performs a function and the edges are the
data stream. As for the physical architecture, both are based on a model of main
and secondary nodes, whereby the former is in charge of distributing the DAG as
well as monitoring its state, and the later are responsible for processing the data.

It is worth noting that while we have given two examples, there have been other
SPS frameworks, such as Apache S4 [Neu+10], Apache Heron [Kul+15] or Apache
Apex [GW19], but they have been given up over time. One of the main reasons is
the flexibility provided by cloud services such as Amazon Web Services, Google Cloud
Platform or Microsoft Azure, where they provide their own SPS (Amazon Kinesis Data
Streams, Google Cloud Dataflow and Microsoft Azure Stream Analytics), with a high
level of abstraction, simplifying both deployment and programming.

2.4 Conclusion

In this chapter, we present the concepts used in an SPS, as well as its requirements.
We have explained each component, i.e. Stream, Operator, and Tuple, and the concept
of DAG, which is the theoretical basis of the paradigm. In addition, we explained
the parallelism of the operators, detailing their implementation and replication, as
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well as the types of Operator, stateful and stateless, which are differentiated by the
state handling in them. Finally, we present two SPS frameworks, Storm and Flink,
explaining both their logical and physical architecture, as well as a discussion of the
differences and similarities between them.
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Related work on adaptive|
SPS

3
One of the challenges of SPS is the dynamic availability resources. For example, if
the external data source has an exponential increase of data, its transmission rate
will increase considerably, so that the resources (either logical or physical) might
be insufficient for processing all the data. One solution is to modify the amount
of logical resources (operators) to maintain stable SPS performance. The works
presented below focuses on the operator scaling.

This chapter presents two types of SPS adaptation: manual and automatic. The
first one, as the name suggests, must be done manually by a user. The second one
provides automatic scalability, being, thus, capable of modifying resource allocation
according to the needs of the application. There are two approaches to automatic
adaptation: reactive and predictive.

3.1 Manual adaptation

One of the requirements of an SPS is its scalability when the load increases. The
distribution of the application across nodes and the parallelisation of its tasks need
then to be adapted.

SPS

Client
req

(a) Request for SPS reconfiguration.

SPS

Client
res

(b) Response of SPS reconfiguration.

Fig. 3.1: Manual adaptation of a SPS.
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The SPS frameworks mentioned above (see Section 2.3) provide both features, as
well as the modification of their parallelisation through a client as shown in Figure
3.1. Figure 3.1a shows the request to modify the parallelisation of a SPS, and then
in Figure 3.1b, once the modification has been performed, the response that the
modification has been successful is sent to the client.

Basically, there are two ways to manually modify resources: GUI application or
terminal command. In both cases, the parallelisation degree of the components
must be indicated. For Storm, the number of Executors per Bolt and the number of
Workers must be informed. While for Flink it is necessary to inform, the degree of
parallelisation of each Operators and the number of Tasks. In both SPS framworks,
reconfiguration requires stopping the application and restarting it. A comparative
summary of the two is presented in Table 3.1.

Framework Client
Mod. of
operators

Mod. of
nodes used

Reconf.
downtime

State
restoration

Storm
GUI /
Terminal cmd

Yes Yes Yes Manual

Flink
GUI /
Terminal cmd

Yes Yes Yes Automatic

Tab. 3.1: Comparison of manual adaptation of SPS.

To cope with such a manual intervention drawback, ELK Stack [HF18] proposes
to read the SPS statistics and notify the user if the system is overloaded, aiming
at helping him/her to decide on the system reconfiguration. Although this alert
system indicates an overload in the system, the logic of the application or the system
parameters remain dependent on the user’s expert knowledge, which is a limitation
of this solution.

3.2 Automatic adaptation

As a consequence of the limitations manual adaptation, some works have proposed
self-adaptive SPSs [KG20; Ark+21] by modifying the amount of resources aiming
at increasing the performance of the system and/or decreasing the costs associated
with excessive idle resources. The works that follows are able to automatically
modify the allocated resources in order to satisfy the requirement of instantaneous
processing and response.

28 Chapter 3 Related work on adaptive| SPS



In general, this type of adaptation is achieved by using SPS statistics, through a
monitoring system. Unlike manual adaptation, which is passive since it depends
on a user to perform the adaptation, automatic adaptation actively and constantly
analyses the SPS. Figure 3.2 presents the gathering of statistics by the monitor, which
are performed according to some set of parameter (number of messages processed,
time windows, etc.). Subsequently, the model in charge of the automatic adaptation
determines that a new configuration is needed, so it actively signals this change to
the SPS.

Model

SPS

Monitor

Stats Reconfig

Fig. 3.2: Automatic adaptation in a SPS.

Existing works apply either a reactive or predictive approach to implement an
adaptive SPS. The reactive approach corresponds to adaptations that are performed
in situ, i.e. it considers the states or/and variables of the system to determine
whether it is necessary to adapt the system. This approach considers algorithms
focused on modifying the system as a response to its current state, based on metrics
and thresholds. On the other hand, the predictive approach analyses the history
of the states and/or variables system to give a proposal of a new configuration
based on prediction models. Therefore, more complex systems such as Machine
Learning, time series, or mathematical models are used to determine the proposed
configuration.

3.2.1 Reactive approach

The reactive approach is based on state analysis via a monitor, which periodically
receives system statistics (utilization, queue size, throughput, CPU utilisation, etc.).
These statistics determine an objective function, so that if their value exceeds a
threshold, the system will modify the number of replicas of the operators.
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Figure 3.3 presents a variation of the objective function, which over time changes
the state of the system. Consider that the used metric is the workload. If the metric
value is lower (resp., higher) than the lower threshold (resp., upper threshold),
the system is considered underloaded (resp., overloaded). And in the case where
the value of the metric is between the lower and upper threshold, the system is
considered stable.

Lower
threshold

Upper
threshold

stable

overloaded

underloaded

Fig. 3.3: Thresholds in a reactive model.

Once the state of the system is determined, if an instability happens (e.g. overloaded
or underloaded), the reactive model proposes a new configuration. Figure 3.4 shows
an example of a SPS, which uses a reactive approach. The metric determines the
state of the system according the thresholds. Therefore, if the system is unstable,
the model proposes a new configuration, which modifies the number of replication
of the operators according to the needs. Otherwise, no configuration is proposed.

StreamCloud [Gul+12] is an adaptive SPS, based on Borealis SPS [Aba+05], that
modifies the number of replicas in the system according to CPU utilisation. Depend-
ing on the number of queries issue to the system, the number of operators processing
the requested tasks increases or decreases. For this, a specific operator, called slit,
distributes the data, and an other one, called merge, gathers the information deliv-
ered by the operator’s replicas. So this system only supports certain operations, so
that split and merge operators are automatically created. In this way, there are no
problems with stateful operators, such as counters and sorting algorithms, since it
automatically performs the procedure of separation and union of data.

The MEAD SPS [Rus+21] was implemented in Flink [Car+15]. Operator auto-
scaling takes place based Markovian Arrival Processes approach, where the system
load is analysed according to a queuing model. The SPS proposes a MAPE-K for
the control flow. Evaluation experiments were carried out on both synthetic and
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Configuring

Reactive model

Monitor New
config

Stats

Fig. 3.4: Adaptive SPS using a reactive approach.

real environments. However, if the authors state that MEAD supports operators
scaling-out, such a feature has not been implemented. On the other hand, similar to
other works that use Flink, such as [Ark+21], reconfiguration induce performance
degradation.

Enorm [MZS16], a work based on Storm, proposes elasticity that integrates with
fault tolerance. For this, it uses a check-pointing mechanism to enable fast and
low-cost state migration by increasing or decreasing parallelism. This work focuses
on how to adapt the system by increasing or decreasing parallelism, but not on
the amount of parallelism required by the system. In addition, the work uses a
threshold-based approach to determine when to scale. We believe the author’s
proposal can be integrated into our solution to provide integrity when replicating
stateful operators.

Some works also focus on the dynamic adaptation of SPS under a reactive approach,
with the difference that they use their own SPS. For instance, the SPS Joker, which
claims to provide elasticity with “organic” adaptation, is presented in [KG20]. The
authors denote “organic adaptation”, when the execution of streaming application
scales safely, transparent, dynamic, and automatic. Joker continuously monitors
the runtime performance of the SPS and runs optimization algorithms to resolve
bottlenecks, using the throughput metric as an objective function. It then scales
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the application by adjusting the degree of pipeline and data parallelism. While
parallelising SPS tasks, distribution between machines has not been implemented.

Other works such as [Ged+14; Sch+09] also use parallel elastic tasks and a metric
(the throughput in both works) for determined the state of each task, and, the
SPSs are deployed in the Cloud. Therefore, parallelization of tasks uses different
VMs. Other similar work, [Fer+13] propose to increase the number of replicas from
the operators to reduce bottlenecks, where each replica is hosted in a VM. For the
detecting bottlenecks, a monitor inquires the state of each operator from time to
time. If an operator exceeds the established load threshold on the CPU usage, it is
replicated.

In Esc [Sat+11] the authors proposed to dynamically modify the replicas of the
operators, as well as to couple and release machines to adjust the computational
capabilities to the current nodes. To determine the number of replicas of the
operators, the latency of the system is analyzed and the modification of replicas
is determined according to thresholds. In the case of machines, their respective
workload is used. Thus, the Esc implementation provides elasticity of both physical
and logical resources automatically.

Another work that uses threshold-based decisions for operator replica adaptation
is [Hei+14]. The authors compared decisions based on local thresholds on the
processing operators, global thresholds of the system, and a reinforcement learning
approach. Besides lower and upper bounds a target utilization value is taken into
account. A grace period after a scaling decision is considered in order to maintain
stability. The reinforcement learning approach uses the actions: scaling up, scaling
down, and no action. The system uses as reward a weighted average of the difference
between the current value and respective target system utilization.

Flood [ABM10] proposes a DPS (Distributed data stream processing) which, while
modifying the replicas of the operators, is determined according to the physical
resources. To this end, a manager module gathers runtime statistics such as the
amount of used CPU, latency or available memory of the VMs. These statistics make
it possible to see in which load range the machine can be placed, according to the
established thresholds, in order to subsequently modify the VMs. Thus, by increasing
(resp. decreasing) the VMs, the replicas associated with the VM are also added (resp.
removed).

To this end, above works presented use only one metric, which does not take into
account the behaviour of other variables, either local (operators) or global (SPS).
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Table 3.2 shows a comparison of the discussed adaptive SPSs that use a reactive
approach. Objective and Model are the objective function and model used for
adaptation respectively. VM Scaling indicates whether it uses horizontal or vertical
scalability of the physical resources (VMs). Stateful operator indicates whether the
SPS supports type of operator. Then the Infrastructure used for its deployment is
indicated. Finally the used SPS framework, None means that the work does not use
any framework, because it has implemented its own SPS.
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[Gul+12] CPU Threshold Non Yes Cloud Borealis

[Rus+21] Throughput Regression Yes Non Cluster Storm

[MZS16] Latency Threshold Non Yes Cloud Storm

[KG20] Throughput Heuristic Non Yes Single Machine None

[Ged+14] Throughput Threshold Non Yes Cluster None

[Sch+09] Throughput Heuristic Non Non Single Machine None

[Fer+13] Throughput Threshold Yes Yes Cloud None

[Sat+11] Latency Threshold Non Non Cluster None

[Hei+14] Latency Heuristic Yes Yes Cluster None

[ABM10] CPU, Network Threshold Yes Non Cloud None
Tab. 3.2: Comparative table of adaptative SPS that use reactive approach.

3.2.2 Predictive approach

The predictive approach is based on prediction of the future behaviour of an SPS to
determine its new configuration. For this, its behaviour is estimated according to
some predictive model based on its history. Examples of such models are regressions,
time series, neural networks, etc. Data used for prediction can be system statistics,
such as CPU utilisation, latency, throughput, etc.

Figure 3.5 shows an example of a predictive approach, where the system analyses
CPU utilisation. With the sample history of this statistic, a prediction is made about
the future behaviour of the system based on some predictor. Finally, based on
the prediction, the model determines a possible state of the SPS, and if necessary,
mitigate the possible CPU overloads.
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config

Fig. 3.5: Predictive model of an adaptative SPS.

In [Car+18], the authors propose a hierarchical decentralized adaptive SPS in Storm,
using the MAPE model to design the solution. Regarding the scaling policy, the
used metric is CPU utilization of the operator replicas, which defines whether a
system adaptation is necessary or not. The proposed solution also analyzes the costs
associated for each reconfiguration and on a latency-based reinforcement learning
model to predict system behavior. One of the parameters is the downtime, i.e., the
time necessary to restart the system which can induce much overhead.

There also exist some works that use SPS frameworks, such as Gesscale which is
implemented in Flink [Ark+21]. In this work, a model is proposed in order to
compute the maximum processing capacity of a physical node. For this purpose, like
our approach, the SPS defines multiple different metrics which are the maximum
sustainable throughput capacity of a single node, maximum network delay, and
parallelization inefficiency. By applying these metrics, the model analyzes the
behavior of the system in every time window and, if necessary, modifies the replicas
elastically. One of the disadvantages of Gesscale solution is that, for reconfiguring
the system, it is necessary to restart the application, which takes a considerable
time.

The authors in [KLL17] present a predictive SPS called AUTOSCALE which analyzes
the data stream to predict traffic congestion on tasks. Queue theory principle is
applied for gathering information about utilization, arrival rate, and departure
rate of the tasks. A centralized system then analyzes the statistics, predicting data
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congestion in tasks according to a sliding window. Whenever the system detects
a possible congested operator, the number of replicas is increased. However, the
article does not present evaluation results in scenarios with high variations in the
data flow rate.

DABS-Storm, a congestion prevention SPS, is presented in [Kom+19]. Its aim is to
reduce the degradation of the quality of the results. To this end, a metric is used to
estimate the level of activity of the operators. A monitor gathers statistics about the
operators activity and then, based on a metric, decides if the amount of resource
allocated to each operator should be modified or not. Such a metric is defined by
predicting the system input by using a regression function as well as taking into
account pending events. The capacity of the operators is also estimated, considering
both the physical capacity of the machine where the operator is located and the
latency of the system. As DABS-Storm has been implemented in Storm, its operators
reconfiguration approach carries the drawback of Storm reconfiguration downtime
cost.

ELYSIUM [Lom+18] is a Storm-based SPS that scales in and out the number of
replicas of the operators and, if necessary, modifies the number of workers associated
with the application (horizontal and vertical scalability). It provides both a reactive
and predictive approach based on time window and an ANN model. ELYSIUM was
not been evaluated with a real prototype integrated in Storm.

The authors in [BTÖ13] propose a predictive model implemented in Borealis SPS
[Aba+05], taking into account not only the input rate as a metric, but also the
capacity of the nodes as well as data processing complexity. Then, the model
provides an equation that characterizes the workload of the system and determines
the amount of required parallelism for processing events. Therefore, its objective is
both the balance of the workload between the nodes and the reduction of latency.
Although the system is capable of scaling-out, it does not perform scale-in, so it does
not consider the reduction of allocated resources.

Based on look-ahead approach, PLAStiCC is a predictive scheduling proposed by
[KSP14]. Its model analyzes the system performance through the balance of resource
overload. Furthermore, as it is conceived to run on clouds, allocated resources can
have different costs. Therefore, the model considers not only the workload of the
system, but also the costs associated with the increase in resources. The work is not
evaluated in a real platform, nor does it use a real application, because it uses for
evaluation the cloud simulator CloudSim [Cal+09], as well as synthetic dataflows.
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The Elastic-PPQ SPS [MTD18] proposes to analyze the system at short-term and
medium/long-term levels. The first one performs an analysis on the events that
arrive in a time interval while the second one takes into account longer periods
to perform a more complex analysis, using Fuzzy Logic Controller. To this end,
an autonomous system, based on QoS, manages the system resources according
to a runtime strategy, which considers the complexity of the system components.
In this way, the parallelism of the tasks, associated with a set of threads, can
increase or decrease. For the evaluation and validation of system load analysis,
both synthetic and real data were used. Although the solution is quite robust,
since it is implemented in FastFlow [Ald+17] framework, its focus is more on high
performance processing than on distributed data processing.

Finally, [HWR17] performs an analysis of operator replicas based on queue theory.
Operator utilization due to data arrival and departure rates is used as a metric, which
determines the state of the operator, thus modifying the number of its replicas, if
necessary. The solution uses a hybrid approach, composed of a predictive approach,
based on Markov chains, and a reactive one, based on thresholds. The aim of the
former is to analyse possible system behaviours, and the latter is to adjust the system
configuration in short periods of time.

Table 3.3 shows a comparison of adaptive SPSs using predictive approach. Objective
and Model are the objective function and predictive model used for adaptation. VM
Scaling indicates whether it uses horizontal or vertical scalability of the physical
resources (VMs). Stateful operator indicates whether it supports this type of oper-
ator. Then the Infrastructure used for its deployment is indicated. Finally, the SPS
framework used. None means that a frameworks is not used, because it implemented
its own SPS.

3.3 Conclusion

This chapter has presented several works on the adaptation of the number of operator
replicas of an SPS, specifically the number of replicas of each operator in a DAG
SPS.

First, we present the manual adaptation of two popular SPS frameworks, Storm
and Flink, that allows the modification of their respective resources. Although they
provide a way for reconfiguring a SPS, the solution depends on a user for adaptation.
In addition, both frameworks have a downtime when modifying their configurations,
which is an important limitation to consider.
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[Car+18] Latency
Reinforcement
learning

Non Yes Cluster Storm

[Ark+21] Throughput Model-based Yes Yes Cluster Flink

[Kom+19] Throughput Time series Non Yes Cluster Storm

[Lom+18] Utilization ANN Yes Yes Cluster Storm

[BTÖ13] Utilization Heuristic Non Non Cluster Borealis

[KSP14] Throughput Heuristic Non Non Simulation None

[MTD18] Throughput Fuzzy logic Non Non Single Machine FastFlow

[HWR17] Throughput Markov Chain Non Non Cluster S4
Tab. 3.3: Comparative table fo adaptative SPS that use predictive approach.

Subsequently, we analyse automatic adaptation solutions, which is can be divided
into two approaches: reactive and predictive. The ones based on reactive approach
generally focus on metrics thath either considerer one variable on multiple variables
whose relevance for decision can not be configured. These based on the predictive
approach mostly use a SPS framework, which present performance degradation when
modifying resources, given that there is a downtime of the system. Furthermore,
they usually use only one predictive model, and the result may vary depending on
the workload scenario.
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Proposed adaptive SPS 4
In this chapter, we present our self-adaptive SPS capable of providing high through-
put, scalability, and low latency, while guaranteeing the integrity of the results
obtained from the analysed data. Our proposal, which is an extension of Storm,
dynamically adapts the number of operator replicas to cope with environments that
present highly variable input rate environments.

This chapter is structured in three sections. Section 4.1 presents the extensions
made in Storm to circumvent its limitations. Then, Section 4.2 presents RA-SPS,
our proposed reactive approach, published in [Wla+21], which is based on multi-
metrics. Finally, Section 4.3 presents PA-SPS, our predictive approach, published in
[Wla+22a], which focuses on predicting the number of replicas required by for the
next time interval.

4.1 New features of the adaptive SPS

Most SPSs require expert knowledge for configuring the system’s processing re-
sources according to the environment requirements. Furthermore, they can not
reconfigure themselves at runtime. Highly variable input rate environments may
induce resource over-provisioning, wasting processing resources, while under-
provisioning, may induce the loss of data processing.

In order to handle such scenarios, RA-SPS and PA-SPS can dynamically allocate/deal-
locate operators’ replicas at runtime. Such an elasticity enables the two adaptive
SPSs to adapt their processing logic, optimizing resource usage while minimizing
data loss.

Both SPSs exploit two mechanisms that do not exist in the original Storm: a pool
of replicas and a load-aware grouping strategy. The first one attempts to reduce
adaptation reaction delay reducing, therefore, event processing latency. Storm’s
original version provides a rebalancing feature to reallocate the number of executors
for a bolt. However, this action involves system downtime, loss of messages, and in-
creasing of end-to-end latency which degrades performance. The second mechanism
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handles operators’ replicas event distribution. Grouping strategies in Storm define
how events are distributed among operators. Due to the heterogeneous nature of
the processing resources and operators’ tasks complexity, balance issues may occur,
creating bottlenecks and increasing latency.

4.1.1 Pool of replicas

At initialization, RA-SPS and PA-SPS assign, for each operator, a pool of replicas
deployed by the scheduler. Replicas can be either in active or inactive state. The
state of a replica can be modified at runtime. An inactive (resp., active) replica
consumes negligible (resp., non negligible) CPU power and can be dynamically
activated (resp., deactivated) whenever the prediction model of the system detects
the need for increasing (resp., decreasing) the replicas for the operator in question.
Thus, based on the number of available cores by VMs and the fact that, in general,
each replica is associated with a thread, it is possible to set the size of a pool (p),
which is the same for each operator pool.

Figure 4.1 considers a DAG with operators OA and OB and their respective pool of
replicas of size p. When initialising the application, there is only one active replica
per operator as shown in Figure 4.1a there is only one active replica per operator
(OA.1 and OB.1). Therefore, the other replicas are inactive and do not receive a data
stream. It is important to note that it is necessary to keep one replica active, since
if all replicas are inactive, the DAG components related to the operator would be
lost. The state of an operator can be modified, as is the case of OA.2, which changes
from inactive to active as shown in Figure 4.1b. When this is done, the stream data
sharing is determined by the grouping strategy of the operator (see Section 4.1.2).

OA.1

OA.2

OA.3

OA.p

Input 
data

OB.1

OB.2

OB.3

OB.p

(a) One active replica per operator.

OA.1

OA.2

OA.3

OA.p

Input 
data

OB.1

OB.2

OB.3

OB.p

(b) Activation of a replica.

Fig. 4.1: Example of pool replicas for two operators.
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Despite its simplicity, performance results showed that the pool of replica is very
effective, since RA-SPS and PA-SPS are self-adaptive at runtime at a negligible cost.
Moreover, as it is implemented in Storm, there is no need to restart the application,
so downtime is avoided.

4.1.2 Load-Aware Grouping

A grouping technique specifies how a stream (tuples) should be partitioned among
operators. Using traditional methods like Shuffle grouping (see Section 4.1.2), tuples
are randomly distributed across operators, ensuring that each operator receives an
equal number of tuples. Due to the complexity of the tasks or the heterogeneous
nature of the processing resources, load balance issues may occur. In this case, while
pending events are still in the processing queue, new events can go on arriving.

To overcome this problem, we propose a load-aware grouping strategy, which con-
siders the load state of active replicas in terms of µi.j(t), i.e., the number of events
processed by replica j of an operator i during a time interval t, eti, the average
execution time of one event at operator i, and td, the time interval duration. Note
that we define a replica j of an operator i as Oi.j .

Therefore, the proportional distribution of events considers the current utilization of
active replicas. The utilization is computed following Equation 4.1, where U ranges
between 0 and 1 for a replica j of an operator i. A 0 and 1 values represent 0% and
100% utilization of the replica respectively. If all replicas present the same utilization
value, events are sent in a round-robin fashion. Otherwise, events will be assigned
to the replica with the lowest load.

Ui.j(t) = µi.j(t)× eti

td
(4.1)

Algorithm 1 shows the pseudo-code of the load-aware grouping strategy. The loop
of lines 3-7 is responsible for selecting the replica j of operator Oi with the lowest
utilisation. Then, if the utilisation is 100% (U = 1), which means that all the replicas
are overloaded, a replica candidate is randomly chosen (lines 8-9). Otherwise, the
overhead of processing the event is added to the replica candidate utilisation (line
11). Finally in line 13, the event is sent to the replica candidate of the Oi operator.
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Algorithm 1 Load-Aware grouping for operator Oi.

Require: Statistics of replicas of Oi in interval t.
Ensure: Replica Oi.m that should process the event.

1: m← 0
2: p← sizePoolReplicas(Oi)
3: for j : 1→ p do
4: if Ui.j < Ui.m then
5: m← j
6: end if
7: end for
8: if Ui.m = 1 then
9: m← getReplicaRoundRobin(Oi)

10: else
11: Ui.m ← Ui.m + eti

td
12: end if
13: sendEvent(Oi.m)

4.2 Reactive approach

Due to the high variability of the input rate, the adaptation of SPS resources is
necessary for performance sake. In this first proposal, denoted RA-SPS, we use a
reactive model to analyse the state of the operators to modify the number of active
replicas of the operators in the DAG. Table 4.1 summarises all parameters used in
RA-SPS.

Parameter Description

Oi operator i

t time interval number
td time interval duration

eti(t) average execution time of one event by Oi during t

eti average execution time of one event by Oi according to the benchmark
qi(t) queue of events received and not processed by Oi at the end of t

µi(t) number of events processed by Oi during t

ri(t) number of active replicas of Oi during t

Ui(t) Utilization metric by Oi during t

Ei(t) Execution Time metric by Oi during t

Qi(t) Queue metric by Oi during t

δi(t) State metric by Oi during t

Tab. 4.1: Parameters notation and their description in RA-SPS.
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4.2.1 Metrics

An adaptive SPS should define metrics to characterize the state of the operators at
runtime on a given scenario. Traditional metrics such as throughput, latency, and
CPU are the most used in literature (see Section 3.2.1). In RA-SPS, we propose to
integrate the metrics denoted Utilization (U), Execution Time (E), Queue (Q) and
State (δ).

Utilization metric is defined by Equation 4.2. The aim of the metric is to characterize
the operator load: if its value is close to 1 (resp., 0), the operator is overloaded
(resp., underloaded). Figure 4.7 shows an example composed of three independent
operators (O1, O2, and O3) that have different Ui(t).

Ui(t) = µi(t)× eti(t)
r × td

(4.2)

In Figure 4.2, the three operators have 2 replicas (ri = 2) and an average execution
time of 200 milliseconds (ei = 200 ms). As the number of events processed is
different during the time interval t for each operator, their loads are different. O1

has no idle time, so it is at maximum utilization, so the operator is overloaded.
O2 has a load level which is 50% of the time idle in time period t. O3 is almost
underloaded.

O1 O2 O3O1 O2 O3

   

Fig. 4.2: Example of the Utilisation metric.

Execution Time metric is defined by Equation 4.3. The aim of the metric is to
characterize execution degradation of operators: if the value of eti(t) is greater than
eti, the physical machines are overloaded. It is a QoS metric which allows to detect
struggle operators. Therefore, the difference between eti(t) and eti is that the latter
is the average execution time of one event processed by an operator Oi without
any extra load. The variable eti is considered as a baseline, and it is estimated by
previously benchmark execution.

Ei(t) = 1− eti

eti(t)
(4.3)
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In Figure 4.3, the three operators have an average execution time of 200 milliseconds
(eti = 100). O1 has a large extra load, possibly due to overutilisation of resources,
so the execution time is much longer. Unlike O3, which has no extra load, or O2

which has less extra load.

O1 O2 O3O1 O2 O3

   

Fig. 4.3: Example of the Execution Time metric.

Queue metric is defined by Equation 4.4. The aim of the metric is to analyze the
impact of the input queue on the operator with respect to its current processing
capacity. The Qi(t) tackles the input traffic behavior (traffic shape). Sudden peaks
will increase the number of the events queued, qi(t) value, generating higher values
of Qi(t). If qi(t) value is 0 or Qi(t) value is negative, its value is set to 0.

Qi(t) = 1− µi(t)
qi(t).

(4.4)

In Figure 4.4, the three operators have 10 processed events (µi(t) = 10 events). In
the case of O1, it has a small tail, so its impact is minimal. Compared to O1, O2 has
a larger number of queued events, which is reflected by the increase of metric value.
Finally, O3 has a considerable high Q3(t) value, due to the large number of queued
events.

O1 O2 O3O1 O2 O3

   

Fig. 4.4: Example of the Queue metric.

To determine the overall state of an operator, the State metric, denoted δi(t), is
defined by Equation 4.5. It uses the previously defined metrics Ui(t), Qi(t), and
Ei(t). By introducing weights (ωU , ωQ, and ωE), the impact of the 3 metrics can be
balanced, allowing, therefore, the study of the relevance of each metric in different
load scenarios.
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δi(t) = Ui(t)× ωU + Qi(t)× ωQ + Ei(t)× ωE (4.5)

The δi(t) value characterizes the overall state of an operator as shown in Figure
4.5. Following a threshold-based approach, two bounds are defined: the upper
bound δu and the lower bound δl. Considering these bounds, an operator can be in
one of the three following states: overloaded, stable, or underloaded. These states
give information about an operator’s effectiveness and efficiency. Effectiveness is the
capacity to fully process the input data, while efficiency is the capacity to process
data by taking advantage of the available resources. If an operator is overloaded, it is
not capable of processing all the input data, losing efficiency. On the other hand, if
the operator is underloaded, it processes the input data effectively but not efficiently.
Finally, an operator whose state is stable processes input data both efficiently and
effectively.

1

0

overloaded

stable

underloaded

Fig. 4.5: Example of the evolution of the State metric in the operator Oi.

4.2.2 MAPE implementation

Monitoring, Analysis, Planning, and Execution compose the MAPE control loop.
This model is exploited in most autonomic systems. By repeating these four steps,
the system can detect issues by analysing data. If a problem is found, a strategy is
developed and the executed to solve the issue. The MAPE control loop brings the
system autonomic features such as self-configuration and self-optimization. Figure
4.6 presents the architecture of RA-SPS:

In our system, the MAPE model integrates the before-mentioned components where
each of the four MAPE modules performs the following tasks:

1. Monitor: module in charge of collecting statistics from the DAG. At a predefined
time interval t, the monitor requests the values of µi(t), eti(t), and the number
of queued events qi.
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Fig. 4.6: The architecture of RA-SPS.

2. Analysis: The module analyses the metrics of each operator and determines its
status according to Equation 4.5.

3. Plan: Based on the previous analysis, the Plan module defines whether it is
necessary or not to modify the system resource capacity. See Algorithm 2
presented in Section 4.2.3.

4. Execute: module in charge of carrying out the change in an operator’s current
number of replicas, if required by the Plan module.

4.2.3 Planning

Algorithm 2 that presents the algorithm executed by the Plan module for the Oi

operator, deciding if the number of replicas of Oi should be increased (or decreased)
by k or remain the same. It uses a fixed value for k for the RA-SPS evaluation (see
Section 5.1.4). However, it is possible to dynamically modify this variable for the
adaptation of the SPS.

Therefore, the aim of the algorithm is to modify the number of replicas of an operator
Oi. If the operator is overloaded in line 3 (δi(t) > δu) or underloaded in line 7
(δi(t) < δl), the number of replicas should be increased or decreased respectively by
k replicas. Otherwise, if the operator state is stable, the number of replicas will not
change. In order to ensure system stability, we define that an operator must remain
in the same state by at least two consecutive time windows in line 2 (δi(t) = δi(t−1))
before carrying out any change in the number of replicas.

While the size of the pool of replicas is defined by the amount of cores, in case
there is an overload of physical resources (VMs or nodes), it is necessary to limit
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the number of active replicas. For this, we determine a threshold δE for the metric
Ei(t), because the value of Ei(t) indicates the degradation of the processing of the
operator Oi. If Ei(t) is greater than the threshold δE (line 4), the planning cannot
increase the number of active replicas. In this way, we avoid an overload on the
physical resources of the system and performance degradation of the SPS.

Algorithm 2 Adaptive planning algorithm according to the reactive approach for
the operator Oi.

Require: Statistics Operator Oi in time interval t.
Ensure: Modifying the current number of active replicas of operator Oi.

1: δi(t)← calculateMultiMetric(Ui(t) , Qi(t) , Ei(t))
2: if δi(t) = δi(t− 1)i then
3: if δi(t) > δu then
4: if Ei(t) > δE then
5: Add k active replicas for Oi

6: end if
7: else if δi < δl then
8: Remove k active replicas for Oi

9: end if
10: end if

4.3 Predictive approach

Under highly variable input rate environments, input prediction is crucial in order
to adapt the system processing logic over the time, which will keep events flowing,
ensuring accurate results.

In our second proposal, denoted PA-SPS, we use a prediction model for the estimation
of the optimal number of replicas for a given operator in the DAG. Therefore, unlike
RA-SPS, a reactive approach that focuses on detecting traffic peaks, PA-SPS, a
predictive approach, focuses on finding patterns in the traffic, predicting possible
overloads or underloads.

Table 4.2 summarizes all the parameter’s notations used in PA-SPS.

4.3.1 Predictive model

The aim of our predictive model is to estimate how many active replicas would be
necessary for operator Oi to process the number of input events for the next time
interval t + 1 (λ̂i(t + 1)). It considers the processing capacity of Oi as the average
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Parameter Description

Oi operator i

t time interval number
td time interval duration
eti average execution time of one event by Oi

qi(t) queue of events received and not processed by Oi at the end of t

λG(t) number of events sent by input data during t

λr
i (t) number of events received by Oi during t

λp
i (t) number of events received by Oi sent from Op during t

µi(t) number of events processed by Oi during t

θx(t) percentage of events processed of λG(t) by Ox during t

Op
i predecessor operator of Oi in the SPS DAG

θp
i (t) percentage of events produced by Op

i sent to Oi during t

λ̂G(t + 1) predicted number of events sent by input data during t + 1
λ̂i(t + 1) predicted number of events to process by Oi during t + 1
λ̂r

i (t + 1) predicted number of events received by Oi during t + 1
λ̂q

i (t + 1) predicted number of queued events to be processed by Oi during t + 1
ri(t + 1) number of replicas of Oi computed at the end of t

Tab. 4.2: Parameters notation and their description in PA-SPS.

execution time of one event at the operator (eti). At the end of each interval, the
number of replicas is calculated following Equation 4.6.

ri(t + 1) = λ̂i(t + 1)× eti

td
(4.6)

Let us consider that the time interval duration (td) equals 1000 ms. Figure 4.7 shows
an example composed by three independent operators (O1, O2, and O3) which have
different average execution time of one event (eti). At the beginning of t, all the
three operators have two replicas (ri = 2). And by prediction, they will receive the
same number of events λ̂i(t + 1).

In this example, due to eti’s differences, Equation 4.6 will render r1(t + 1) = 2,
r2(t + 1) = 1, and r3(t + 1) = 4 at the end of t. Such results inform that the number
of O1’s active replicas should not change but that of O2 (resp., O3) is overestimated
(resp., underestimated) and should be reduced (resp., increased) to one (resp.,
four).
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Fig. 4.7: Example of the number of replicas calculation, according Equation 4.6.

We point out that since prediction of a number of active replicas depends on multiple
factors, dynamically determining it is not trivial. Thus, we model this complex
problem so that the value of λ̂i(t + 1) is determined by Equation 4.7 which, in turn,
is determined by the prediction of received events (λ̂r

i (t + 1)) and the prediction of
queued events (λ̂q

i (t + 1)) during the next time interval.

λ̂i(t + 1) = λ̂r
i (t + 1) + λ̂q

i (t + 1) (4.7)

In most SPS, the processing logic is represented by a DAG. The latter establishes a
dependency condition where operators share a stream of events according to their
location in the DAG. For example, let’s consider a linear DAG with two operators (see
Figure 4.8), O1 and O2, and their respective values of λr

i (t) and µi(t) (see Table 4.2).
µ1(t) and λr

2(t) are equal since operator O1 has sent all the events it has processed
to its single successor O2. If i is the initial single DAG operator, then λr

i (t) equals
λG(t) (λr

1(t) = λG(t)).

Note that the increase of Op’s number of active replicas at the end of the interval
t has a direct impact in Op’s successors, since, in this case, µp(t + 1) increases
and thus, λr

i (t + 1) too, inducing a domino effect that the prediction formulations
should avoid. For example, in Figure 4.8, if µ1(t + 1) increased from 5 to 10
events, due to the replication of O1 at the end of t, λr

2(t + 1) would increase as
well. Hence, if the operators process all received events during t + 1, we have that
λG(t + 1) = λr

1(t + 1) = µ1(t + 1) = λr
2(t + 1) and, consequently, all operators Oi are

dependent on λG(t).

The above example is a borderline case. In a SPS DAG, not always, all the output
processed events of Op

i , the predecessor operator of Oi, will be sent to Oi. It might
happen that Op

i splits, filters, or replicates the events into several streams, sending
each of them to one of its different successor operators in the DAG. Thus, we define
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Fig. 4.8: DAG operators dependence example.

Equation 4.8, where θp
i parameter tackles this issue by informing the percentage of

processed events of Op
i sent to Oi.

θp
i (t) = λp

i (t)
µp(t) (4.8)

Considering the condition of dependence among the operators, θi(t) is defined as
the sum of the events processed by the predecessors of Oi, where it is determined by
all the predecessor operators Op

i as presented in Equation 4.9. Note that θi(t) must
be calculated from the initial operators.

θi(t) =
∑

p∈pred(Oi)
θp

i (t)× θp(t) (4.9)

Thus, we define Equation 4.10, which predicts the number of events received by
the operator Oi during t + 1. For its calculation, the percentage of events processed
by operator Oi is used (θi(t)), according to the prediction of the number of events
sent by the input data (λ̂G(t + 1)). Note that a predictive model is used to calculate
λ̂G(t + 1) (see Section 4.3.2).

λ̂r
i (t + 1) = λ̂G(t + 1)× θi(t) (4.10)

Figure 4.9 shows a DAG example and θp
i value which was estimated applying

Equation 4.8. It is worth pointing out that, given the dependence among the
operators, it is necessary to start from the initial operator downstream to the last
one. Since θ1 is equal to 1, O1 receives all the events sent from the input and then
splits them among O2 and O3. In this case, the two operators do not receive all
the events from their respective predecessor, O1; therefore θ2 and θ3 have values
0.7 and 0.3 respectively. Finally, operator O4 receives events from its predecessor
operators O2 and O3. However, O2 does not send all its processed events to O4, but
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only θ2
4 = 0.4, unlike O3 which sends all processed events to O4 (θ2

4 = 1). The value
of θ4 is, therefore, 0.58, according to Equation 4.9.

O1

O2

O3

O4
Input
Data

O1 O2 O3 O4

λ̂r
i (t + 1) 100 70 30 58

Fig. 4.9: DAG example of predicted received number of events according to Equation 4.10.

Finally, we should consider the events received and not processed during t by Oi

which are kept in qi(t). Hence, the number of input events λ̂i(t + 1) that Oi should
actually process in t is composed not only of received events λ̂r

i (t + 1) but also of the
events queued in Oi and its predecessor operators Oi

p because of the domino effect
on the DAG.

For this reason, Equation 4.11 is defined, where λ̂q
i (t + 1) consists of the number of

events queued in Oi and the percentage of queued events that will be sent by its
predecessor operators Op

i during t + 1. Note that there is one queue per operator.

λ̂q
i (t + 1) = |qi(t)|+

∑
p∈pred(Oi)

λ̂q
p(t + 1)× θp(t) (4.11)

4.3.2 Input prediction

As mentioned above, Equation 4.10 used λ̂G(t + 1), which indicates the predicted
number of events sent by the input data during t + 1. Its prediction is based on the
previous observation windows according to a number of samples s. The observation
time interval is determined by to. The prediction is applied by one of the following
models:
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• Basic: considers that the input data values during t + 1 will behave the same
way as they did during t.

• LR: uses a simple linear regression similar to the one presented in [MPV21].

• FFT: Fast Fourier Transform decomposes functions depending on space or time
into functions depending on frequency. It allows to predict the input data by
modeling its behavior as a time series [NN82].

• ANN: uses a neural network regression model, specifically a Multi-Layer Per-
ceptron (MLP). It implements an MLP algorithm for training and testing data
sets using backpropagation and stochastic gradient descent methods [RL14].
The parameters values used in this model where extracted from [Ped+11].

• RF: Random Forest combines learning methods with the decision tree frame-
work to create multiple randomly drawn decision trees from the data. [Rig17].
The parameters used are the values for defects in [Ped+11].

4.3.3 MAPE implementation

As with the reactive approach, in PA-SPS we will use the MAPE model for the
automation of system adaptation. The big difference is in the Analysis module,
because it performs a request to the predictor model for input rate prediction. Figure
4.10 presents the architecture of PA-SPS:

Adaptive SPS

O1.1

O2.1

O2.2 O3.1

O2.3

Input
Data

Monitor Analysis Plan Execute
Control loop

Predictor

Fig. 4.10: The architecture of PA-SPS.

In our system, the MAPE model integrates the before-mentioned components where
each of the four MAPE modules performs the following tasks:
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1. Monitor: Module in charge of collecting statistics from the DAG. At a predefined
time interval t, the monitor requests the values of λi(t), eti, and the number
of queued events qi(t).

2. Analysis: The module analyses input data and predicts its behaviour following
Equation 4.7. Note that the analysis is performed for each operator in the
DAG.

3. Plan: Based on the previous analysis, the Plan module defines whether it is
necessary or not to modify the system resource capacity. For this, we define
Algorithm 3 which is explained in Section 4.3.4.

4. Execute: Module in charge of carrying out the change in an operator’s current
number of replicas, if required by the Plan module.

4.3.4 Planning

Algorithm 3 presents the algorithm executed by the Plan module for the Oi operator,
deciding if the number of replicas of Oi should be increased (or decreased) by k or
remain the same.

First, the algorithm determines the number of replicas for the next time interval
is computed (line 1). To this end, the number of necessary replicas is calculated
according to Equation 4.6, using an input data predictor to determine the future
behaviour of the input stream. Then, the getReplicas(Oi) function returns the
current active replicas of Oi. Hence, the difference between the prediction and the
current number of replicas will be the number of replicas (ki) to be modified (line
2). If the value of k is positive, then ki replicas are activated (line 4). If the value of
k is negative, then ki replicas are deactivated (line 6). If the value of k is 0, then the
same number of active replicas is kept.

Algorithm 3 Adaptive planning algorithm according to the predictive approach for
the operator Oi.

Require: Statistics Operator Oi in time interval t.
Ensure: Modifying the current number of active replicas of operator Oi.

1: ri(t + 1)← computeReplicas(λ̂i(t + 1) , eti, td)
2: ki ← ri(t + 1) - getReplicas(Oi)
3: if ki > 0 then
4: Add ki active replicas to Oi

5: else if ki < 0 then
6: Remove ki active replicas from Oi

7: end if
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4.4 Conclusion

In this section we propose two adaptive SPSs, RA-SPS and PA-SPS, under a reactive
and predictive approach respectively. These adaptive SPSs dynamically modify
the number of operator replicas based traffic fluctuations. Both proposals are
implemented on top of Storm.

Moreover, two other features were included in the two adaptive SPSs. The first
consists of a pool of replicas aiming at avoiding the restart the SPS when the number
of active replicas is modified. The second consists of a grouping strategy, which
denoted Load-Aware grouping. The latter determines which replica will process
the event according to the load of the operator’s active replicas, the latter the load
balance among the replicas.

The first adaptive presented SPS is RA-SPS, which is based on a reactive approach.
Its aim is to adapt resources according to the analysis of traffic peaks in short periods
of time. For this propose, the multi-metric δi(t), called State metric is used to define
the state of a given operator: overloaded, stable or underloaded. Each state indicates
the behaviour of each operator, so that the Planning Algorithm can determine if any
modification is necessary. The State metric is defined by three weighted metrics:
Ui(t) that determines the percentage utilisation of Oi during interval t; Ei(t) that
determines the processing degradation of the Oi operator during interval t; Qi(t)
that determines the impact of queue size on the Oi operator during interval t.

The second adaptive presented SPS is PA-SPS, which is based on a predictive ap-
proach. It aims to find patterns in the traffic to predict possible overloads or
underloads in the SPS. To this end, the number of replications needed by operator
Oi during the next time interval t + 1, denoted ri(t + 1), is predicted. This value is
defined by the average execution time of an event by operator Oi and the predicted
number of events received by operator Oi during the next time interval t + 1. To
predict the number of events received by operator Oi, the predicted number of
events sent by the input data and the number of queued events are considered.
Furthermore, the prediction also considers the dependency among operators, in
order to mitigate a possible cascade effect due to the change of the number of
replicas. For the prediction of events sent by the input data, the use of a predictive
model based on mathematical model or artificial intelligence model is proposed.
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Experimentation 5
The goal of this chapter is to evaluate our adaptive SPS, both the reactive and
predictive approaches. In this way, we will analyze the impact of adaptation on the
performance of the SPS.

Section 5.1 presents the experimental scenario, specifying the environment, the
dataset, the parameters and the evaluation metrics. Section 5.2 presents the evalua-
tion of our extended version our extended version of Storm, which uses a replica
pool and Load-aware grouping. Section 5.4 presents the evaluation and analysis of
RA-SPS, using different configurations in their weights and applications. Finally, Sec-
tion 5.5 presents the evaluation and analysis of PA-SPS, both of the parametrization
used as well as a comparison with other existing adaptive SPS.

5.1 Experiment scenario

In this section, we describe the components necessary for the creation of an experi-
ment scenario, which has three components: environment, dataset and application.
For each experiment, we considered a set of measures for which the difference in
behaviour was negligible.

Section 5.1.1 presents the environment that is the architecture used for the deploy-
ment of the adaptive SPS. Section 5.1.2 presents the dataset refers to the traffic used
to provide an input data stream. Section 5.1.3 presents the applications designed
with its respective processing according to the DAG and the type of data used. Sec-
tion 5.1.4 presents the parameters used by the adaptive SPSs. Finally, Section 5.1.5
presents the evaluation metrics.

5.1.1 Environment

All the experiments were conducted on the Google Cloud Platform (GCP) using seven
Virtual Machines (VMs): three in charge of Zookeeper, seven as Supervisor nodes,
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and one for running both the Nimbus and the adaptive SPS. Our test environment is
presented in Figure 5.1.

Three types of machines were used: a n1-standard-1 (1 CPU, 2.2 GHz, 3.75 GB of
RAM) machine for hosting Zookeeper VMs, a n1-standard-4 (4 CPU, 2.2 GHz, 15
GB of RAM) for Nimbus and the adaptive SPS, and a n1-highcpu-8 (8 CPU, 2.2GHz,
7.2GB of RAM) machine for the Supervisors VMs.

GCP

ZKMain node

ZKSecundary node ZKSecundary node

Nimbus

Adaptive 
system

Supervisor

Supervisor

Supervisor

VM1 VM2

VM3

VM4

VM5

VM6 VM7

Fig. 5.1: Development environment on GCP.

5.1.2 Dataset

We have considered four dataset for the experiments: Twitter Gaussian, Twitter
Smoothed, Twitter Raw, Logs and DNS.

• Twitter Gaussian: This dataset is traffic that follows a Gaussian distribution,
whose data are tweets related to COVID-19 [GM20]. Figure 5.2 shows the
traffic provided by this distribution.

• Twitter Raw: This dataset is based on data from Twitter related to COVID-19,
with 237 million tweets [GM20]. Figure 5.3 shows the traffic provided by this
dataset.

• Twitter Smoothed: This dataset is based on Twitter Raw. However, we have
considered only a sample of these tweets in the experiments, i.e., those in
periods of the datasets that present high rate variation. In other words,
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Fig. 5.2: Traffic shape of Twitter Gaussian dataset.
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Fig. 5.3: Traffic shape of Twitter Raw dataset.

we select a combination of traffic spikes and under spikes to compose the
input traffic for the experiments. The methodology adopted to build the
testing dataset was introduced in [Bod+10]. Figure 5.3 represented the traffic
designed 5.4.
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Fig. 5.4: Traffic shape of Twitter Smoothed dataset.

• DNS: This dataset is based on network traffic, which was created to test DNS
over HTTPS, a more secure version of the DNS protocol [Mon+20]. We used
the same methodology mentioned above was used to build the dataset. Figure
5.5 shows the log traffic provided by this dataset.
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Fig. 5.5: Traffic shape of DNS dataset.

• Log: This dataset is based on system logs from a distributed system [He+20].
We used the same methodology mentioned above was used to build the dataset.
Figure 5.6 shows the log traffic provided by this dataset.
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Fig. 5.6: Traffic shape of Log system dataset.

5.1.3 Application

For each traffic, we have at least one application to be used. The applications
designed for the experimental phase are listed below:

• Twitter linear: It is a linear DAG for Twitter dataset, which is composed of four
operators.

– Detection: Its goal is to detect tweet events of a Twitter data streaming
according to a topic, subtopic, category, and subcategory list of keywords.
Each operator has one of these lists and verifies if any of the words of a
tweet is included in the list in question. Therefore, in the sequence, the
first, second, third, and fourth operators respectively determine the topic,
subtopic, category, and subcategory of each tweet as shown in Figure 5.7.
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Fig. 5.7: Detection Twitter application in SPS.

– Classification: Its goal is to classify tweet events of a Twitter data stream-
ing. The first classifier determines whether the text is positive, negative
or neutral, and the second identifies the person who has published them.
Classified tweets are stored in a database. Figure 5.8 shows this applica-
tion.

Stopword Sentiment 
classifier

User
classifier

Database
store

Twitter 
streaming

Fig. 5.8: Classification Twitter application in SPS.

• Twitter complex: It is a complex DAG for Twitter dataset, which is composed
of eight operators. Figure 5.9 shows the DAG of this application. It analyses
Twitter streaming containing information such as news or opinions. Depending
on the type of information, the stream can be split. Finally, results are stored
in a database.

Parse 
data

Spam
detector

Data 
saved

News 
detector

Twitter 
streaming

Topic 
Classified

User 
Detect

Send 
notification

Sentimental 
classified

Fig. 5.9: Classification Twitter application in SPS.

• Log: It is a linear DAG for Log dataset, which is composed of four operators.
Figure 5.10 shows its representation of DAG. Its objective is to determine the
importance of the log trace.

• DNS: It is a linear DAG for DNS dataset, which is composed of four operators.
Figure 5.11 shows its representation of DAG. Its goal is analyses and classifies
events based on DNS traffic.
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5.1.4 Parameters

Table 5.1 summarizes RA-SPS parameters and their respective values. These values
were determined according to expertise and learning outcomes obtained from the
results of several previous experiments using different parametrizations.

Parameter Description Value

td Time interval duration 25 sec

δu Operator state upper limit 0.7

δl Operator state lower limit 0.3

δE Limit for adding replicas 0.7

ωU U metric weight 0.45

ωQ Q metric weight 0.45

ωE E metric weight 0.1

k Number of active replicas to add/remove 1
Tab. 5.1: RA-SPS parameters and their values.

Table 5.2 summarizes PA-SPS parameters and their respective values. To determine
the values of predictive model parameters, the model has considered obtaining a
representative sampling based on the methodology presented in [Win17].

Parameter Description Value

td Time interval duration 30 sec

to Observation time interval duration for predictor model 1 sec

s Number samples for predictor model 100
Tab. 5.2: PA-SPS parameters and their values.
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For Storm parameters, we used default values 1, except timeout to detect the failure
of an event, tout = 30s, and queue size, qsize = 100000.

5.1.5 Metrics

For the evaluation, we have defined six evaluation metrics.

• Saved resources: proposed in [Lom+18], this metric expresses the proportion
of resources (active replicas) saved with respect to a statically over-provisioned
configuration. It is defined by 1− r

rover
, with r the number of active replicas,

and rover the overestimated number of replicas. rover is the number of replicas
needed to process all the events during the highest input rate peak of the
benchmark. Note that if the value of the metric is close to 1, a high number of
resources has been saved.

• Throughput degradation: this metric, also described in [Lom+18], aims at
analyzing the behavior of the system in terms of throughput stability. It is
defined by |inputrate−outputrate|

inputrate
. If the metric value is close to 0, the system has

a good stability. On the other hand, if it is close to 1, the system is not capable
to process the input rate and the system is unstable.

• Latency: is the average time taken by an event between the moment it enters
and leaves the SPS (end-to-end latency). This metric is relevant since SPSs are
supposed to deliver real-time processed events.

• Difference in the number of processed events: is the difference between the total
number of processed events and the total number of received events. It is an
important metric since SPSs are used to process high volumes of data.

• Error estimation input: is the mean absolute percentage error of the difference
between the input rate and the predicted input rate during each interval.

• Error estimation replica: is the mean absolute percentage error of the difference
between the number of replicas needed to process all events and the number
of predicted replicas during each interval.

1http://github.com/apache/storm/blob/master/conf/defaults.yaml
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5.2 Impact of the new features

The aim of this section is to evaluate the modifications made to our SPS, being an
extension of Storm, with respect to the standard version of Storm. These modifica-
tions are described in Section 4.1, which correspond to Pool of replica (Section 5.2.1)
and Load-Aware grouping (Section 5.2.2).

5.2.1 Pool of replica

In this experiment, we compared Storm, denoted Storm-Default, with our modified
version of Storm that uses the pool of replicas, denoted Storm-Pool, described in
Section 4.1.1. We used the Twitter Gaussian dataset, the Twitter linear - Detection
application, Shuffle grouping for stream grouping strategy. Both versions of Storm
use the reactive approach presented in Section 4.2. Note that Gaussian traffic shape
allows to evaluate the capacity of the system to scale-out and scale-in. For calculating
the Saved resources metric, we have fixed rover = 60 (i.e., ri = 15). The size of each
pool of replicas (p) was set to 12. Table 5.3 summarizes the results obtained for
each metric.

System
Saved
Nodes

Throughput
Degradation

Diff. Processed
Events

Latency
(ms)

Storm-Pool 0.2038 0.2039 0.9987 12121.92

Storm-Default 0.2041 0.4031 0.8627 913.10
Tab. 5.3: System metric values of Storm-Pool and Storm-Default using Twitter Gaussain

dataset.

Figure 5.12 presents the number of replicas required by each of the two systems. We
observe that the difference between both curves is not very significant. Furthermore,
the difference in Saved nodes values of both systems shown in Table 5.3 is of 0.03%
and, in terms of memory usage, Storm-Pool requires only 2.6% of extra memory
when compared to Storm-Default, which is due to the pre-allocation of the pools of
replicas when deploying the application.

Figure 5.13 shows the output data rate for each system. The main drawback of Storm-
Default is the need to restart the system at each reconfiguration. We can observe
that output rates drop at each reconfiguration. On the other hand, Storm-Pool
exploits the preloaded replicas that enable the system to process events continuously
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Fig. 5.13: Throughput of Storm-Pool and Storm-Default.

while adapting itself. Table 5.3 shows a difference of almost 20% on throughput
degradation between both systems.

The number of cumulative processed events is shown in Figure 5.14. Once again,
we can observe the impact of reconfiguration downtime over the performance of
the Storm-Default: there is a 13.6% difference between both systems in terms of the
total number of processed events. We highlight that message loss in real stream
processing applications can be critical (e.g., fraud detection systems).

Therefore, based on the above results and discussions, we can conclude that Storm
reconfiguration approach is not suitable for real-time applications that require timely
responses.

Figure 5.15 evaluates the latency for both implementations. The difference in latency
is 92.46% between the two systems. The availability of the system explains this huge
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Fig. 5.14: Total number of processed events of Storm-Pool and Storm-Default.

difference. On the one hand, Storm-Pool is always available to process incoming
data. On the other hand, Storm-Default is down during the reconfiguration phase. In
this way, there is a greater number of queued events part of the Storm-Pool, resulting
in an increase in latency.
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Fig. 5.15: Comparison of latency between Storm-Default and Storm-Pool.

We should also point out that the MAPE integrated in our SPS does not use much
more extra resources since the monitored information exploited by it is the same
one collected by Nimbus. Furthermore, MAPE algorithms do not require much
computation time because they just consist in simple mathematical calculations
according to the formulas presented.
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5.2.2 Grouping

This experiment compares our stream grouping strategy, denoted Load-Aware Group-
ing, described in Section 4.1.2 with the shuffle grouping where events are randomly
distributed among the replicas. We used the Twitter Smoothed dataset, the Twitter
linear - Classification application and the predictive approach (PA-SPS)2, which used
Basic model for input prediction. For calculating the Saved resources metric, we have
fixed rover = 32 (i.e., ri = 8). The size of each pool of replicas (p) was set to 12.

Table 5.4 shows the metrics for both grouping strategies. There is no significant
difference in terms of processed events and only an increase of 4.04% in saved
resources using our grouping strategy. Regarding the use of VMs resources, CPU
utilization increases by 0.9% with respect to a random distribution and the difference
in memory usage is negligible.

Grouping
Saved
Resources

Throughput
Degradation

Diff. Proc.
Events

Latency
(ms)

Shuffle 0.5390 0.4332 0.9979 5271.01

Load-Aware 0.5617 0.1831 0.9987 2098.91
Tab. 5.4: System metric values of Load-Aware and Shuffle grouping using Twitter Gaussain

dataset.

On the other hand, there is a great difference in latency and throughput metrics of
the two strategy since shuffle grouping does not take into account replicas’ load.
When a new replica is activated, the old loaded replicas must process both the new
events that arrive and the ones it previously queued, which explains a decrease of
60.18% in latency and 57.73% in throughput degradation. This is also reflected in
Figure 5.16, because in situations where there is a higher load on the operators
(high input rate peaks), Shuffle grouping has a considerably higher latency than
Load-Aware grouping.

5.2.3 Conclusion

In this section, we have been able to evaluate the performance of our SPS, being an
extension of Storm, which has a considerable improvement to the standard version
of Storm. This is due to the limitations of the standard version.

2Load-Aware grouping has only been implemented in PA-SPS, so RA-SPS cannot use it.
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Fig. 5.16: Comparison of latency between Load-aware grouping and Shuffle grouping.

First, we analysed the impact of the use of the replica pool, which ends up being a
benefit for the SPS. This is because there is no downtime when modifying the logical
resources (replicas of the operators) of the application. Secondly, we analyse the
impact of a load distribution in the dispatch of events, whereby a more sophisticated
strategy increases the performance of the SPS.

5.3 Impact of Storm parameters

Aiming at tuning their value, we propose in this section to discuss the impact of
the two Storm parameters. The parameters are: timeout to detect the failure of
an event (tout), and queue size (qsize). We consider that an event has failed when
its processing time on all operators exceeds the end-to-end timeout, tout. This
parameter removes events that have been queued for a long time, reducing the load
on an operator’s replicas.

We used the Twitter Smoothed dataset, the Twitter linear - Classification application,
Load-Aware grouping for stream grouping strategy, and PA-SPS, which used Basic
model for input prediction. For calculating the Saved resources metric, we have fixed
rover = 32 (i.e., ri = 8). The size of each pool of replicas (p) was set to 12.
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5.3.1 Timeout

Table 5.5 shows the four scenarios, when the value of tout varies. We observe that tout

has an impact in both latency and loss of processed events. For example, a tout = 1s

improves the latency in 82.40% when compared to tout = 30s but, at the same time,
there is a decrease of 9.5% in the difference of processed events. Therefore, on the
one hand, if the proposed application does not require full data processing but low
latency, one solution is to set the timeout to a low value for system deployment. On
the other hand, if the application requires full event processing, it is recommended
to use a high timeout value.

Timeout
Saved
Resources

Throughput
Degradation

Diff. Proc.
Events

Latency
(ms)

tout = 1s 0.6164 0.1000 0.9030 369.35

tout = 5s 0.5875 0.1038 0.9303 946.69

tout = 10s 0.5633 0.1056 0.9529 1298.45

tout = 30s 0.5617 0.1831 0.9987 2098.91
Tab. 5.5: System metric values with different timeout using Twitter Smoothed dataset.

5.3.2 Queue size

Table 5.6 summarizes the four scenarios values for different sizes of the pending
message queue, qsize. The greater the queue size, the higher the number of queue
events, thus reducing the loss rate and increasing the number of processing events
(Diff. Proc. Events), as we can observe in the table. On the other hand, since many
incoming events are dropped when using small queues, operators are less loaded
and we observe an increase of the saved resources. For example, with qsize = 100,
we observe a 19.61% improvement in saved resources and a 98.57% decrease of the
latency compared to qsize = 100000. However, the number of dropped events highly
increases, inducing a decrease of 46.12% in processed events.

5.3.3 Discussion

In this section, we have observed the impact on the processing of the number of
events, which can decrease depending on the chosen configuration. The timeout
parameter (tout) is inversely proportional to the latency and inversely proportional
to the percentage of processed events, because as its timeout decreases, events that
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Queue size
Saved
Resources

Throughput
Degradation

Diff. Proc.
Events

Latency
(ms)

qsize = 100 0.6719 0.1919 0.6835 29.91

qsize = 1000 0.6656 0.1375 0.6922 311.93

qsize = 10000 0.6602 0.1687 0.7249 1394.56

qsize = 100000 0.5617 0.1831 0.9987 2098.91
Tab. 5.6: System metric values with different queue size using Twitter Smoothed dataset.

take a long time to process are discarded. The same happens with the queue size
(qsize), so it is only recommended to use low values for both parameters if there is a
very limited amount of resources.

5.4 Reactive approach

This section presents performance results related to the evaluation of RA-SPS and
its ability to adapt to the dynamics of the data stream, without reducing the rate of
processed events.

The evaluation is composed of two parts: (1) a comparison of RA-SPS with different
configurations (Section 5.4.1); and (2) evaluation results of a tweet-based more
complex application (Section 5.4.2).

5.4.1 Weight evaluation

The current experiment aims at evaluating the performance of RA-SPS, which are
based on the δ value (see Equation 4.5) and the weights (see Table 5.1). We used the
Twitter Smoothed dataset, Twitter linear - Detection application, and Shuffle grouping
for stream grouping strategy. For calculating the Saved resources metric, we have
fixed rover = 40 (i.e., ri = 10). The size of each pool of replicas (p) was set to 50.

In order to quantify the impact of U and Q in the adaptation process, we evaluate
them independently. The results of the 3 metrics are presented in Table 5.7.

Figure 5.17 shows the number of active replicas for each metric. A considerable
increase in active replicas is observed in the first third of the three experiments.
Then, in the second period, since the U experiment only analyzes if another replica is
necessary to improve operator utilization, it continues to increase the active replicas,
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Saved
Nodes

Throughput
Degradation

Diff. Processed
Events

Latency
(ms)

δ 0.3996 0.1092 0.8907 39687.51

U -0.8934 0.2597 0.7402 23441.39

Q 0.4975 0.6830 0.3169 28799.60
Tab. 5.7: System metric values of δ, U, and Q using Twitter Smoothed dataset.

which generates a decrease in the performance of the system, due to the overhead of
managing a high number of replicas. Likewise, in Table 5.7, the Saved nodes metric
shows that the experiment with metric U requires 129.3% more active replicas than
the one with δ metric. Note that for the U metric, we observe a negative value
of saved nodes since sometimes the number of replicas becomes greater than the
overestimated value. On the other hand, the Q metric has a 24.5% Saved nodes
improvement over the δ metric but it succeeds to process only less than 32% of
events whereas δ metric can process more than 89% of events.
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Fig. 5.17: Total number of active replicas of δ, U, and Q.

The behaviour of δ, Q, U output rate as well as input rate are shown in Figure 5.18.
Regarding the three metrics, they are similar in the first and second peaks but not in
the third one, since the Q experiment was not able to process events similarly to the
other two: the queue increased, generating an overload in the system, which led
the application to crash after the fourth peak. On the other hand, both the δ and
U experiments continue to process events, until the eighth peak, which generates
a saturation in the system of the U experiment, making the application to crash
after the ninth peak. As mentioned above, a large number of active replicas induces
an overhead for handling them, decreasing the performance of the system. We
also observe that there is a 15.05% difference between the δ and U regarding the
Throughput degradation metric (Table 5.7), which indicates a higher stability of δ
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experiment then U one. Also, due to the early instability of the Q experiment, there
is a difference of 57.38% with respect to the δ one.
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Fig. 5.18: Throughput of δ, U, and Q.

The total number of processed events is shown in Figure 5.19. Because of application
crash, after t = 1600s (resp., t = 3300s) the curve is a constant for the Q (resp., U)
experiment. The difference using δ instance with respect to U and Q is 15.05% and
57.3% respectively (Table 5.7).
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Fig. 5.19: Total number of processed events of δ, U, and Q.

Figure 5.20 presents the latency of the three metrics. At t = 1600s, there is a strong
rise in the latency for Q until the application crashes. The same happens at t = 3300s

for the U experiment. Due to the number of events and the system overload, the
latest queued events can not been processed. The system becomes then saturated
and is not able to continue processing. On the other hand, the latency with δ is on
average higher, but the system is capable of processing a greater number of events.
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Therefore, although the δ instance does not have better performance in terms of
latency, it is able of processing a greater amount of data without having to cope with
the problem of over or under estimated number of per operator replicas, as in the
case of U and Q experiments respectively. The δ latency increase relative to U and
Q is 69.3% and 37.8% respectively.
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Fig. 5.20: Latency of δ, U, and Q.

5.4.2 Complex application

We have also evaluated RA-SPS with a complex application. For this experiment, we
have compared RA-SPS with an overprovisioning Storm which always uses a fixed
number of replicas per operator, denoted Sover. Such numbers are fixed (ri = 5) at
the beginning of the data processing and do not vary during the experiment. We
used the Twitter Smoothed dataset, Twitter complex application, and Shuffle grouping
for stream grouping strategy. For calculating the Saved resources metric, we have
fixed rover = 40 (i.e., ri = 5). The size of each pool of replicas (p) was set to 6.

Table 5.8 presents the results of both systems, RA-SPS and Sover. Due to the time gap
to process events, we observe a 42.52% difference between Throughput degradation
values of the two systems. However, such a difference is not a real problem since
the numbers of processed events of the two systems are quite close, as shown in
the same table. On the other hand, in RA-SPS, we observe a high reduction of
used resources with 50.23% fewer active replicas, when compared to Sover. Also, in
this application, RA-SPS succeeded to process almost 98% of the total events while
consuming 2.7 times less CPU than the static configuration which overestimates the
number of replicas.
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System
Saved
Nodes

Throughput
Degradation

Diff. Processed
Events

Latency
(ms)

δ 0.5023 0.4252 0.98 179.5401

Sover 0 0 1.00 31.990
Tab. 5.8: System metric values of RA-SPS and Sover using Twitter Smoothed dataset and

Twitter complex application.

5.4.3 Discussion

We have evaluated RA-SPS based on δ metric which aggregate three metrics, the
average load of the operator (U), the average execution time of an event (E), and
the operator input queue (Q) for characterizing the state of an operator at runtime.
By assigning a weight to each of these metrics, RA-SPS can decide whether the
operator is overloaded, underloaded or stable, respectively increasing, reducing, or
keeping the same number of active replicas. Performance results with Twitter input
data and different evaluation metrics confirm the advantages of using the three
metrics compared to a single one.

5.5 Predictive approach

This section presents performance results related to the evaluation of PA-SPS and
its ability to adapt to the dynamics of the data stream, without reducing the rate of
processed events.

The evaluation is composed of six parts: (1) the impact of interval time (Section
5.5.1); (2) an analysis of predictive models (Section 5.5.2); (3) a comparison of
PA-SPS with the original Storm, using a fixed number of replicas (Section 5.5.3)
as well as with (4) the other predictive adaptive SPS, DABS-Storm, proposed in
[Kom+19] (Section 5.5.4); (5) an experiment with a complex application (Section
5.5.5) and finally (6) with other datasets (Section 5.5.6).

5.5.1 Impact of the time interval

Aiming at tuning their value, we propose in this section to discuss the impact of the
time interval (td) used in Equation 4.6 3. We used the Twitter Smoothed dataset,

3In this experiment to calculate Equation 4.11, the dependence among operators was not considered,
because it was tested with a previous version of the prediction model.
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the Twitter linear - Classification application, the Basic model for input prediction,
and Load-Aware grouping for stream grouping strategy. For calculating the Saved
resources metric, we have fixed rover = 32 (i.e., ri = 8).

Table 5.9 shows the values of the four metrics when the value of td varies. Note that
the greater the time interval, the greater the number of samples used for calculating
Equation 4.6. We observe an improvement in the results when the time interval
is small, which is also in accordance with the dynamic behavior of the input rate.
Latency and throughput degradation confirm the latter, given that by increasing td

the system needs to wait longer to adjust the number of replicas and stabilize.

It is important to highlight that, unlike Storm’s traditional solution, which must
restart the application to reconfigure the number of resources of each operator,
PA-SPS should only activate or deactivate replicas in the pool. Therefore, the
reconfiguration downtime does not exist. Furthermore, the computational cost of
calculating the equations is minimal since they are basic operations carried out by
the system. Consequently, even if reconfiguration occurs quite often, we do not
observe a decrease in the number of processed events.

Time interval
Saved
Resources

Throughput
Degradation

Diff. Proc.
Events

Latency
(ms)

td = 30s 0.5617 0.1831 0.9987 2098.91

td = 60s 0.5390 0.4332 0.9979 5271.01

td = 120s 0.5219 0.9221 0.9976 17068.33

td = 180s 0.5563 0.8028 0.9992 22364.86
Tab. 5.9: System metric values with different time intervals using Twitter Smoothed.

5.5.2 Comparison of predictive models

We propose in this section to discuss the use of predictive models for the calculation
of the number of events sent by input data (λ̂G(t + 1)) and their impact on system
performance. We used the Twitter Smoothed dataset, the Twitter linear - Classification
application, and Load-Aware grouping for stream grouping strategy. For calculating
the Saved resources metric, we have fixed rover = 32 (i.e., ri = 8).

For each predictive model, Table 5.10 shows the respective values for the above
discussed metrics. There is no difference in processed events, except for the RF
model that presents a slight decrease in the number of processed events, representing
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Pred.
Model

Saved
Resources

Throughput
Degradation

Diff. Proc.
Events

Latency
(ms)

Error Est.
Input

Error Est.
Replica

ANN 0.475 0.070 1.000 355.490 0.212 0.277

FFT 0.519 0.189 1.000 1023.380 0.249 0.345

LR 0.533 0.195 1.000 663.030 0.090 0.140

RF 0.538 0.227 0.996 583.921 0.140 0.193

Basic 0.560 0.325 1.000 1295.490 0.180 0.287
Tab. 5.10: System metric values of different predictive models using Twitter Smoothed.

a loss of only 0.4% of the incoming events. Therefore, we all models are reliable to
be used in whole event processing experiments.

We can also observe that ANN has the lowest latency, with a difference of 39.12%
compared to the second lowest latency model (RF). Such values mean that PA-SPS
using ANN processes the received events faster than the others. However, in this
case, it needs a larger amount of resources, as shown by the saved resources metric,
where ANN has the lowest value, i.e., 15.17% worse than the Basic model metric.
Thus, there is a trade-off between latency and the amount of resources: on the one
hand, if the requirement is a SPS that processes all incoming events with low latency,
ANN is the most suitable model; on the other hand, if the aim is the reduction of
costs and the loss of events is not an issue, having an acceptable latency, RF is more
suitable.
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Fig. 5.21: Throughput of PA-SPS using different predictor models.

Regarding the estimation error of the input rate and number of replicas, a lower
estimation error can not be interpreted as better performance. Overestimating
the input rate implies an overestimation of the number of replicas, using a larger
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amount of resources. Consequently, more replicas are available for event processing
as shown in Figure 5.21.

Conversely, if the number of replicas is underestimated, the margin for processing
events is smaller, making it more likely that events will be stuck and the system will
be more unstable. In this case, events will probably get stuck in queues, making the
SPS more unstable. Regarding accuracy, LR has the best one with an improvement of
57.54% over ANN, which does not mean that it present better performance, because
there are moments when underestimating the number of replicas decreases the
processing of events in the execution of the system. Unlike ANN that presents an
overprovisioning of resources whenever the curve rises. On the other hand, in FFT,
its estimation error has a strong impact in PA-SPS performance since it does not
accurately predict the behaviour of the input rate, as shown in Figure 5.22.
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Fig. 5.22: Total number of replicas of PA-SPS using different predictor models.

5.5.3 Comparison of PA-SPS with Storm

This section compares PA-SPS with the original Storm where the number r of
replicas per operator is fixed. We have considered three configurations for Storm:
no replication (r = 1); four replicas (r = 4); eight replicas (r = 8). The latter
corresponds to the overprovisioning configuration where the total number of replicas,
rover = 32 (i.e., ri = 8), same value used to calculate Saved resources. The total
number of replicas of each configuration is shown in Figure 5.23. We used the
Twitter Smoothed dataset, the Twitter linear - Classification application, the ANN
model for input prediction, and Load-Aware grouping for stream grouping strategy.
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Fig. 5.23: Total number of replicas using PA-SPS and different configurations in Storm.

Table 5.11 summarizes the results of the different configurations. We observe that
the system without replication (r = 1) has a very low performance, because it only
processes 33.1% of the incoming events (see Figure 5.24). Such a result is due to
the lack of adaptation when incoming events increase. Consequently, there exists a
bound for the number of events to process while the others are queued. Therefore,
although such a configuration presents low resource usage, it is not recommended
for performance sake.

System
Saved
Resources

Throughput
Degradation

Diff. Proc.
Events

Latency
(ms)

PA-SPS 0.475 0.071 1.000 355.490

r = 1 0.875 0.515 0.331 196962.950

r = 4 0.500 0.855 0.987 269.750

r = 8 0.000 0.000 1.000 153.510
Tab. 5.11: System metric values with PA-SPS and different configurations in Storm using

Twitter Smoothed.

On the other hand, the r = 4 configuration has only a 1.3% difference between
incoming and processed events. The decrease in the amount of resources by 50%
increases latency by 43.03%. Thus, once again, there is a tradeoff between perfor-
mance and used resources, corroborating to our previous discussion.

Finally, PA-SPS decreases by 5% Saved Resources with respect to r = 4, but it is able
to process all incoming events. Compared to the r = 8 configuration PA-SPS presents:
(1) a 131.57% higher latency, whose impact should be balanced with its ability to
dynamically adapt itself; (2) a difference of 7.01% in throughput degradation, which
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means that it greatly adapts itself in order to process most of incoming events (see
Figure 5.24).
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Fig. 5.24: Throughput using PA-SPS and different configurations in Storm.

5.5.4 Comparison between PA-SPS and DABS-Storm

The aim of this experiment is to compare PA-SPS with DABS-Storm (denoted DABS),
proposed in [Kom+19] (see Section 3.2.2). We used the Twitter Smoothed dataset,
the Twitter linear - Classification application, the ANN model for input prediction,
and Load-Aware grouping for stream grouping strategy. For calculating the Saved
resources metric, we have fixed rover = 32 (i.e., ri = 8).

System
Saved
Resources

Throughput
Degradation

Diff. Proc.
Events

Latency
(ms)

PA-SPS 0.475 0.071 1.000 355.490

DABS 0.396 0.284 0.828 1391.280
Tab. 5.12: System metric values of PA-SPS and DABS using Twitter Smoothed.

Table 5.12 gathers the metric values related to PA-SPS and DABS. PA-SPS is able to
process all events, but not DABS as shown in Figure 5.25. The latter decreases by
17.2% the number of events processed. Similarly to Storm (see Section 4.1.1), DABS
needs to restart the application for reconfiguring the number of replicas, which is
not the case of PA-SPS due to their pool of replicas. Therefore, downtime has an
impact in the number of events that are processed.

As we have already discussed, the increase of resources has a correlation with the
decrease of latency, but there are scenarios where it does not apply. For example, in
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DABS, saved resources have been decreased by 16.63% when compared to PA-SPS,
but its latency is 291.36% higher. Such a behavior can be explained since DABS
overestimates resources in non-critical intervals, as observed between t = 800s and
t = 900s in Figure 5.26, which is useless in the case of curve peaks, where more
resources are needed.
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Fig. 5.25: Throughput using PA-SPS and DABS.
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Fig. 5.26: Total number of replicas using PA-SPS and DABS.

5.5.5 Complex application

We have also evaluated PA-SPS with a complex application. For this experiment, we
have compared PA-SPS with an overprovisioning Storm which always uses a fixed
number of replicas per operator, denoted Sover. Such numbers are fixed (ri = 5) at
the beginning of the data processing and do not vary during the experiment. We
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used the Twitter Smoothed dataset, Twitter complex application, and Load-Aware
grouping for stream grouping. For calculating the Saved resources metric, we have
fixed rover = 40 (i.e., ri = 5).

Table 5.13 shows evaluation results obtained with PA-SPS and Storm. In PA-SPS, we
observe a high reduction of used resources with 68.8% fewer active replicas, when
compared to Storm. Such a decrease has an impact on the physical used resources:
CPU consumption of PA-SPS (resp. Storm) is in average, 9.57% (resp. 14.66%). This
difference happens because each replica is associated with a thread. Therefore,
with a fixed number of 5 replicas, Storm requires more CPU than PA-SPS where the
number of replicas dynamically varies.

System
Saved
Resources

Throughput
Degradation

Diff. Proc.
Events

Latency
(ms)

PA-SPS 0.688 0.031 1.000 209.270

Sover 0.000 0.000 1.000 31.990
Tab. 5.13: System metric values of PA-SPS and Sover using Twitter Smoothed and Twitter

complex application.

5.5.6 Other datasets

The aim of this section is to evaluate our system with other datasets, to analyse
its adaptability and the behaviour of the results according to the predictive model
used.

Twitter Raw

We used the Twitter Raw dataset, the Twitter linear - Classification application, and
Load-Aware grouping for stream grouping strategy. For calculating the Saved resources
metric, we have fixed rover = 32 (i.e., ri = 8).

Table 5.14 shows the results obtained, which have similar values with Table 5.10,
related to smoothed data. PA-SPS, regardless the model, has processed most of the
received events, with only 1.2% (resp., 1.3%) of events not processed by LR (resp.,
RF). Also, the lowest latency corresponds to ANN, although the difference in latency
with respect to the second best model (Basic) is 0.47%.

By using a more unstable input rate (see Figure 5.28), the estimation error of the
models increases as the input behaviour is more complex to predict. Since PA-SPS
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Pred.
Model

Saved
Resources

Throughput
Degradation

Diff. Proc.
Events

Latency
(ms)

Error Est.
Input

Error Est.
Replica

ANN 0.395 0.213 1.000 1044.510 0.424 0.466

FFT 0.153 0.579 1.000 12285.990 0.903 1.282

LR 0.421 0.261 0.988 1366.680 0.397 0.391

RF 0.539 0.381 0.987 2610.330 0.253 0.398

Basic 0.513 0.251 1.000 1049.490 0.312 0.407
Tab. 5.14: System metric values of different predictive models using Twitter Raw.
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Fig. 5.27: Total number of replicas of PA-SPS using Twitter raw dataset.

also becomes more unstable, the throughput degradation increases. FFT presents
the highest difference because the input rate does not have a stationary behaviour.
Consequently, there is a large percentage of error in the prediction of the input and
the number of replicas which degrades performance (see Figure 5.27).

DNS

The aim of this experiment is to verify the adaptation ability of PA-SPS with an input
with a different fluctuation than the previous inputs and then analyse the behaviour
of it with each predictive model. We used the DNS dataset, the DNS application,
and Load-Aware grouping for stream grouping strategy. For calculating the Saved
resources metric, we have fixed rover = 12 (i.e., ri = 3).

Table 5.15 summarizes the obtained results. The processing capability of PA-SPS
is confirmed since each proposed model has none or a negligible difference in the
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Fig. 5.28: Throughput of PA-SPS using Twitter raw dataset.

Pred.
Model

Saved
Resources

Throughput
Degradation

Diff. Proc.
Events

Latency
(ms)

Error Est.
Input

Error Est.
Replica

ANN 0.515 0.381 0.998 446.840 0.294 0.872

FFT 0.498 0.337 0.995 397.140 0.367 1.674

LR 0.561 0.350 1.000 464.010 0.216 0.714

RF 0.608 0.436 0.975 545.910 0.112 0.583

Basic 0.604 0.511 0.984 487.600 0.090 0.738
Tab. 5.15: System metric values of PA-SPS using different predictive models using DNS

dataset.

number of processed events. The highest difference percentage is around of 2.5%
(RF) when compared to LR.

Figure 5.30 shows both the input rate and the throughput. Despite the high dynamics
of the input rate, PA-SPS is able to adapt its number of resources in order to process
the largest number of events in each time interval. In this experiment, the model
with the best performance is FFT, having the lowest value of latency and throughput
degradation. On the contrary, the input prediction error is the highest. Considering
the values of saved resources, we can conclude that there was an overestimation of
the input which led to an overestimation of resources as shown in Figure 5.29. If a
model with lower resource utilisation is required, RF is a good choice, given that
it has a difference of 22.08% of the saved resources value with respect to FFT. It is
worth remarking that due to the above difference, FFT throughput degradation and
latency decrease by 29.37% and 27.25% respectively.
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Fig. 5.29: Total number of replicas of PA-SPS using DNS dataset.
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Fig. 5.30: Throughput of PA-SPS using DNS dataset.

Log

We used the Log dataset, the Log application, and Load-Aware grouping for stream
grouping strategy. For calculating the Saved resources metric, we have fixed rover = 32
(i.e., ri = 8).

Table 5.16 summarizes the obtained results. The processing capacity of PA-SPS
is once again confirmed, where each proposed model has a none or a negligible
difference of processed events and the highest difference percentage of events
processed is around of 1.52% (ANN). Basic presents the best performance, both in
terms of resource usage and latency. Figure 5.31 shows the amount of used replicas,
where we can observe that the amount used by Basic does not vary much. Although
there are high peaks of the input rate (see Figure 5.32), as in t = 700s, they are
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Pred.
Model

Saved
Resources

Throughput
Degradation

Diff. Proc.
Events

Latency
(ms)

Error Est.
Input

Error Est.
Replica

ANN 0.603 0.236 0.987 905.290 0.355 0.537

FFT 0.503 0.572 1.000 9184.060 0.746 1.191

LR 0.565 0.252 0.994 1021.800 0.412 0.413

RF 0.661 0.335 0.998 1673.560 0.243 0.394

Basic 0.655 0.306 0.989 855.970 0.250 0.449
Tab. 5.16: System metric values of PA-SPS using different predictive models using Log

dataset.

short for periods. Thus, it is more appropriate to use a constant amount of replicas
rather than to adapt the SPS many times according to the input rate behaviour.
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Fig. 5.31: Total number of replicas of PA-SPS using Log dataset.
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Fig. 5.32: Throughput of PA-SPS using Log dataset.
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5.5.7 Discussion

In this section, we have seen the importance of the parameters, because depending
on the size of the time interval, it increases or decreases the latency of the SPS.

Compared to DABS, evaluation results confirm the effectiveness of the dynamic
replica adaptation of PA-SPS. In the experiments, latency decreases by 74.44% and
saved resources increase 19.94%, when compared to DABS.

On the other hand, we observed that the most appropriate predictor model depends
on the type of input rate behavior. In this way, we also corroborated that our solution
is able to adapt to different types of applications and datasets.

5.6 Conclusion

This section evaluated two adaptive SPSs, RA-SPS and PA-SPS, which to dynamically
adjust the number of operator replicas based on traffic fluctuations. Implemented
on top of Storm, these adaptive SPS incorporate new features: a replica pool to
prevent SPS restarts during changes in active replicas and Load-Aware grouping for
balanced among replicas, which were evaluated improving in the performance of
the adaptive SPS.

RA-SPS, which is based on a reactive approach, adapts resources by analyzing short-
term traffic peaks. The State metric, composed of weighted metrics, categorizes
operators as overloaded, stable, or underloaded to adapt the number of active
replicas of the SPS. The evaluations showed an improvement in performance when
using multic-metric compared to single-metric.

PA-SPS, which is based on a predictive approach, adapts resources by analyzing
historical input data and finding patterns in their behaviour. The evaluations corrobo-
rated the adaptability according to the predictive model, as well as the improvement
in performance with respect to other proposals. It was also evaluated with different
datasets and applications.
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Conclusion 6
The core of this research work was the adaptation of a SPS by dynamically modifying
the number of operator replicas without reconfiguring the SPS. Our models adapt in
an online fashion reducing event loss and end-to-end latency in the presence of data
stream fluctuations.

6.1 Contributions

This thesis proposes two adaptive SPSs, RA-SPS and PA-SPS. By using a reactive
and predictive approach respectively, they automatically adapt their processing logic
cope with traffic dynamics. Both SPSs are an extension of Storm and include the
pool of replicas and the load-aware grouping. Results showed that the use of a pool
of replicas increases by 13.6% of the total number of processed events, due to the
non-existence of downtime in the reconfiguration of the application. It also shows a
negligible increase in CPU usage, demonstrating that the use of inactive replicas is
a viable proposal in terms of cost. Regarding the use of Load-Aware grouping, the
experiments show a 60.18% decrease in latency compared to Shuffle Grouping, and
a negligible computational cost with only a 0.9% increase in CPU usage.

The work proposes two adaptive SPS: RA-SPS (a reactive mechanism) and PA-SPS (a
predictive mechanism). Both SPSs are based on a planning algorithm that modifies
the number of active replicas of an operator. Moreover, for the automation of
the adaptive feature, a control-loop-based on a MAPE model was proposed. It is
composed by four modules: Monitor, Analysis, Plan, and Execution. The Monitor
module is responsible for the recollection of statistics necessary for the analysis of
the system, either to determine its state or to predict its behaviour. The Analysis
module is in charge of performing the calculations necessary for system planning,
thus, this module varies according to the approach used. The reactive approach
determines the state of the operator, in order to activate o deactivate replicas, and
the predictive approach, determines the number of replicas needed according to the
prediction models. The Plan module determines the number of activated replicas
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to be modified according to the defined planning algorithm. Finally, the Execution
module performs the modification to the SPS.

The reactive RA-SPS (Section 4.2) bases its decision on the state of an operator at
runtime. To this end, three metrics were proposal: the load of the operator (U), the
average execution time of an event (E), and the operator input queue (Q). The aim
is to adapt the number active operator of replicas according to the analysis of traffic
peaks in short periods of time. These metrics are integrated in a function, assigning
weights to each of them. Based on the function value, the SPS can decide whether
an operator is overloaded, underloaded, or stable, and therefore increases, reduces,
or maintains the same number of active replicas. Performance results based on
Twitter data confirm the advantages of using the three metrics compared to a single
one. The use of a multi-metric increases total event processing by up to 181.06%
compared to a single-metric.

The PA-SPS (Section 4.3) dynamically adapts the active number of operator replicas
according to the behaviour of the input data. It aims to find patterns in the traffic
to anticipate possible overloads or underloads in the SPS, and then determine the
number of replicas needed by operator Oi during the next time interval. This value
is defined by the predicted number of events received by the operator Oi, which is
defined by the predicted number of events sent by the input data and the number
of queued events. In addition, prediction also takes into account the cascade effect
in the DAG, due to the dependence among operators. For the prediction of events
sent by the input data, the use of a predictive model based on mathematical model
or artificial intelligence models was proposed, whose performance will depend on
the behaviour of the data flow. Evaluation results confirm the effectiveness of the
dynamic replica adaptation of PA-SPS. In the experiments, latency decreased by
74.44% and saved resources increases by 19.94%, when compared to DABS. On the
other hand, we observed that the most appropriate predictor model depends on the
type of input rate behavior. For instance, in the Twitter application scenario, the best
performing model was ANN. In contrast to the DNS scenario, where FFT performed
better in latency and throughput degradation. And finally, in the Logs application
scenario, the best performing model was Basic, both in resource usage and latency.

6.2 Future work

This section discusses some future directions of the current work.
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6.2.1 Short term

• Extend both RA-SPS and PA-SPS in order to manage stateful operators and the
perform new experiments to evaluate the cost of managing operator states.

• Considerer the parameter values of Algorithm 2 (Table 4.1) as adaptive, i.e.,
they would vary according to the application execution state (e.g., operator
load, input rate fluctuation, etc.). To this end, we could use an artificial
intelligence model to determine the parameterization according to the history,
as well as a training database.

• Add conditions to Algorithm 3 in order to not to overload the physical resources
(VMs or nodes) of the SPS. For this purpose, a global analysis of the system
could be performed using the metrics presented in RA-SPS.

• Evaluation of our solution against an existing benchmark, such as [SCS17] or
[Ara+04].

6.2.2 Mid term

• Design and implementation of an adaptive system that considers logical and
physical resources. Therefore, in addition to the planning algorithm already
proposed, we would have another one that determines whether it is necessary
to modify the physical resources, either to reduce costs or to increase perfor-
mance. For its design, a hierarchical system that considers both global and
local components (operators) would modify the necessary resources according
to different states or predictions.

• Deployment of applications using specific VMs in the Cloud, which have lower
cost. For instance, in the case of GCP, the so-called E2 shared-core machines
1 make it possible to increase the number of cores for a short period of time
without the need to modify or restart the VM. So it would be possible to
vertically scale the physical resources, while scaling the logical resources as
well.

• Implement a hybrid adaptive SPS, which considers the reactive and predictive
approaches proposed in RA-SPS and PA-SPS. The planning algorithm would
be determined by both current and future time window contents. To this

1https://cloud.google.com/compute/docs/general-purpose-machines#e2-shared-core
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end, a possible solution would be to have hierarchy of resource adaptations,
according to the analyses performed by the two approaches.
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