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Abstract

Les Knowledge Graphs (KG) sont la représentation la plus utilisée dínformations structurées sur
un domaine particulier, composée de milliards de faits sous la forme déntités (nœuds) et de

relations (bords) entre eux. De plus, les informations de type sémantique des entités sont également
contenues dans les KG. Le nombre de KG ná cessé dáugmenter au cours des 20 dernières années dans
divers domaines, notamment le gouvernement, la recherche universitaire, les domaines biomédicaux,
etc. Les applications basées sur lápprentissage automatique qui utilisent les KG incluent la liaison
déntités, les systèmes de questions-réponses, les systèmes de recommandation, etc. Les Open
KG sont généralement produits de manière heuristique, automatiquement à partir de diverses
sources, notamment du texte, des photos et dáutres ressources, ou sont sélectionnés manuellement.
Cependant, ces KG sont souvent incomplètes, cést-à-dire quíl existe des liens manquants entre les
entités et des liens manquants entre les entités et leurs types déntités correspondants. Dans cette
thèse, nous abordons l’un des problèmes les plus difficiles auxquels est confronté le Knowledge
Graph Completion (KGC), à savoir la prédiction de liens. Prédiction générale des liens en KG qui
inclut la prédiction de la tête et de la queue, triple classification.

Ces dernières années, les KGE ont été formés pour représenter les entités et les relations du KG
dans un espace vectoriel de faible dimension préservant la structure du graphe. Dans la plupart des
travaux publiés tels que les modèles translationnels, les modèles de réseaux neuronaux et autres, la
triple information est utilisée pour générer la représentation latente des entités et des relations.

Dans cette thèse, plusieurs méthodes ont été proposées pour KGC et leur efficacité est démontrée
empiriquement dans cette thèse. Tout d’abord, un nouveau modèle d’intégration KG, TransModE,
est proposé pour la prédiction de liens. TransModE projette les informations contextuelles des
entités dans un espace modulaire, tout en considérant la relation comme vecteur de transition qui
guide léntité tête vers léntité queue.

Deuxièmement, nous avons travaillé sur la construction dún modèle KGE simple et de faible
complexité, tout en préservant son efficacité. KEMA est un nouveau modèle KGE parmi les modèles
KGE les plus bas en termes de complexité, tout en obtenant des résultats prometteurs.

Enfin, KEMA++ est proposé comme une mise à niveau de KEMA pour prédire les triplets
manquants dans les KG en utilisant lópération arithmétique des produits dans un espace modulaire.
Les expériences approfondies et les études dáblation montrent léfficacité du modèle proposé, qui
rivalise avec les modèles de pointe actuels et établit de nouvelles références pour KGC.

Knowledge Graphs (KGs) are the most used representation of structured information about a
particular domain consisting of billions of facts in the form of entities (nodes) and relations

(edges) between them. Additionally, the semantic type information of the entities is also contained

I



II Chapter 0. Abstract

in the KGs. The number of KGs has steadily increased over the past 20 years in a variety of fields,
including government, academic research, the biomedical fields, etc. Applications based on machine
learning that use KGs include entity linking, question-answering systems, recommender systems, etc.
Open KGs are typically produced heuristically, automatically from a variety of sources, including
text, photos, and other resources, or are hand-curated. However, these KGs are often incomplete,
i.e., there are missing links between the entities and missing links between the entities and their
corresponding entity types. In this thesis, we are addressing one of the most challenging issues
facing Knowledge Graph Completion (KGC) which is link prediction. General Link Prediction
in KGs that include head and tail prediction, triple classification. In recent years, KGE have been
trained to represent the entities and relations in the KG in a low-dimensional vector space preserving
the graph structure. In most published works such as the translational models, neural network models
and others, the triple information is used to generate the latent representation of the entities and
relations.

In this dissertation, several methods have been proposed for KGC and their effectiveness is shown
empirically in this thesis. Firstly, a novel KG embedding model TransModE is proposed for Link
Prediction. TransModE projects the contextual information of the entities to modular space, while
considering the relation as transition vector that guide the head to the tail entity. Secondly, we
worked on building a simple low comlexity KGE model, meanwhile preserving its efficiency. KEMA
is a novel KGE model among the lowest KGE models in terms of complexity, meanwhile it obtain
promising results. Finally, KEMA++ is proposed as an upgrade of KEMA to predict the missing
triples in KGs using product arithmetic operation in modular space. The extensive experiments and
ablation studies show efficiency of the proposed model, which compete the current SoTA models
and set new baselines for KGC.

The proposed models establish new way in solving KGC problem other than transitional, neural
network, or tensor factorization based approaches. The promising results and observations open up
interesting scopes for future research involving exploiting the proposed models in domain-specific
KGs such as scholarly data, biomedical data, etc. Furthermore, the link prediction model can be
exploited as a base model for the entity alignment task as it considers the neighbourhood information
of the entities.

KEYWORDS: Knowledge Graph , Knowledge Graph Completion, Link Prediction, Knowledge
Graph Embedding
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Introduction

1 General Introduction

In the third century before Christ’s birth, one of the most ambitious projects of knowledge collection
in history was Established. it was the famous Great Library of Alexandria. This library was collected
through copying all books found on the numerous ships that docked in the Alexandria harbor. This
was just an example of the numerous attempts of mankind to centralize knowledge. Such ambitious
projects have found a recent embodiment in the internet: Birth of Wikipedia, a global, open-source
and collaborative project. Jimmy Wales, a co-founder of Wikipedia presented it in the following
terms: “Imagine a world in which every single person on the planet is given free access to the sum
of all human knowledge. That’s what we are doing.”. Wikipedia, now, counts nearly sixty million
articles in more than three hundred languages. It is widely used by people around the world. However,
the text format in wikipedia limits its benefit in some modern usage. Particularly, text of natural
language is not machine understandable, what hinders its processing by modern intelligent systems
such as recommender systems or chatbots. In the last decades, knowledge graphs rise to record
and organize knowledge by listing entities and verified facts involving these entities. Knowledge
graphs differ first according to its accessibility. Some are public such as ConceptNet and Wikidata.
Others are private and are simply projects that companies launch to organize their domain expertise.
Knowledge graphs also differ according to the specialty. Freebase, for example, contains general
knowledge, and not dedicated to one topic. In opposition, others are topic-specific such as WordNet,
which specifically records knowledge in the field of linguistics.

Wikidata is now the most unavoidable knowledge graph. It was found in 2012, after organizing
the knowledge contained in wikipedia textual articles in the form of a structured knowledge base
that would be easily queryable and processable by machines.

Because of their size, knowledge graphs are difficult to process manually. As a result, methods to
automatize processing tasks have been developed simultaneously with the knowledge bases them-
selves. Two examples of such tasks researchers are working to automatize are: the KG completion,
and the KG correction. Because of their size, knowledge graphs are difficult to process manually.
As a result, methods to automatize processing tasks have been developed simultaneously with the
knowledge bases themselves. Two examples of such tasks researchers are working to automatize are:
the KG completion, and the KG correction. Despite the first methods were symbolic and primitive,
these methods still prove to solve efficiently some problems. They can either be used to raise unusual
facts as possible errors or to propose missing facts.

In the same way as first methods, a prominent field in data mining is statistics. Statistics provides a
lot of tools to estimate underlying distributions of observed data. An important example of statistics is
machine learning, which originally used mainly statistical methods. A turning point was ease access
to graphics processing units in the last fifteen years, what takes the development to a higher level,

XV



XVI Chapter 0. Introduction

and give the opportunity to models requiring heavy tensor computations. One of the consequences
was the revolutionary performances of neural networks in the field of computer vision. As well
as other, knowledge graphs also benefited from this cheap access to computation power and many
new machine learning models were proposed to automatically solve tasks such as construction,
completion and correction by involving vector representations of knowledge graphs.

This thesis works on the solution of knowledge graphs completion problem. To realize the added
values offered by our proposed models, chapter 1 gives a proper introduction to the concepts
presented. Chapter 2 introduces the different classifications of KGE models, and shows examples of
each classification, clarifying the way it work. In its simplest form, a knowledge graph is a collection
of facts in the form of triples (h, r, t) were a relation r links a head entity h to a tail entity t. An
example of a fact can be (Alex, child,Emma). Completing a knowledge graph then comes down to
find new triples that has a high plausibility to be true given the existing ones. An example is shown
in Figure 1.

Figure 1 Example of a knowledge graph..

Following these definitions, Chapter 3 introduce a knowledge graph embedding model for know-
ledge graph completion, and reviews the existing methods. The focus of the chapter is on building a
KGE model based on transition combined to modular arithmetic, mainly relying on vector repre-
sentations, or embeddings, of entities and relations in modular space. This chapter experiments
the model TransModE, and shows the promising results compared to existing models, taking into
consideration the low complexity of the model.

The proposed models in this thesis are characterized by simplicity. Mainly knowledge graph
embedding models must improve its efficiency while taking into consideration to keep its complexity
as low as possible. Therefore the characteristics, low complexity and high efficiency, are must for
KGE model. In chapter 4, we introduce two models: KEMA and and its enhanced version KEMA++.
In this chapter, we work on producing two models each focuses on one of the characteristics while
preserving the other. The most prominent feature of KEMA is that it can be considered one of
the simplest KGE models in the literature, meanwhile it achieves excellent results compared to its
alternatives. On the other hand, KEMA++ focuses on achieving perfect results with a moderate
complexity.

Eventually a conclusive chapter puts the contributions of this thesis in perspective with the rest
of the field to isolate promising axis for future works.
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Semantic network [1] was first built in the 1960s. It was the basis of what was called later
Knowledge Graphs (KGs). The term "Knowledge Graph" was first mentioned in literature in 1972
[2], which was later used by Google in 2012 during the announcement of "Google Knowledge
Graph" [3]. As defined in [4], a KG describes real-world entities and their interactions in a graph
form having a schema built of entities and relations. KG allows potential connections between
arbitrary entities with each other and covers various topical domains.

1.1 Knowledge Graph Definition

A knowledge graph KG is a directed multigraph in which nodes are entities and edges, typed by
a relation, represent known facts linking two entities. These graphs can encode a wide variety
of information. In its simplest form, a knowledge graph consist of facts in the form of triplets
(h,r, t) where a relation r links a head entity h to a tail entity t. An example of a fact can be
(Paris, capital o f , France). Each of the head and the tail of a triplet can be either entity, literal, or
label, as the equation shows:
h, t ∈ E ∪ L ∪ B
Where E, L, and B are respectively the set of entities, the set of literals, and the set of labels of G.





1 An Overview About Knowledge Graph
Embeddings Domain

1.1 Introduction to knowledge graph

Knowledge graphs allow users to visualize knowledge facts about real-world entities (nodes) and the
interrelations between them (edges), stored in the form of RDF triples. They incorporates knowledge
from structured repositories such as DBpedia, or by extracting knowledge from semi-structured
web resources such as Wikipedia. The term knowledge graph has appeared firstly in 2012, when
Google introduced a knowledge panel in their search results. It allows users to visualize consolidated
knowledge from heterogeneous data resources such as personal websites and social media channels
in a unified and categorized knowledge panel. Similarly, other knowledge graphs such as Wikidata
[5], YAGO [6], and PROSPERA [7] did. They allow individuals to visualize knowledge facts about
entities in a graphical representation. A user must enter an entity name as a keyword query, and he
will get a knowledge graph as an outcome.

1.1.1 Graph

In the last two decades, the world has witnessed the rise of social media network platforms, connected
devices, internet-of-thing IOT , and other copious data sources. As a result, a significant increase in
the research of graph-structured data is observed. Graphs are a mathematical representation of a
network designed to study, analyze, and learn from complex systems in real-world. A graph is built
of group of objects represented by nodes, beside a set of interactions between them represented
in the graph by edges. Social network can be an illustrative example of graph, where the users are
the nodes, and the interactions in between them like friendship, shares, and others are represented
as edges connecting them. Many other fields also use graph formalization for its encoding, like
recommender systems, question-answering, etc.

Formally, a graph G is denoted as a pair G(V,E), where V represents a set of nodes and E
represents the set edges. The edge in the graph is denoted by the pair of nodes at its ends, for
example the edge by (u,v)E is connecting the nodes u and v. By the mean of this edge, these two
nodes are called to be adjacent. Whereas 2 edges can be adjacent if they share a common node in
between.

Graph types differ according to the connectivity between the nodes and the nature of the edges:
The types of graphs depending on the nature of the edges are:

• Undirected Graph G = (V, E): connect each pair of nodes through an undirected edge denoted
as follows:(u,v) ∈ E ⇔ (v,u) ∈ E , as shown in Figures Fig.1.1.

1



2 Chapter 1. An Overview About Knowledge Graph Embeddings Domain

(a) undirected Simple Graph (b) Directed Simple Graph (c) Undirected MultiGraph

(d) Directed MultiGraph

Figure 1.1 Types of Graphs.

• Directed Graph G= (V, E): connect each pair of nodes through a directed edges (also called arcs).
The edge e ∈ E, where E = (u,v)|(u,v) ∈ V 2.

The types of graphs depending on the nature of the edges are:

• Simple graph G: it consists of at most one edge between each pair of nodes.

• Multi-graph G: it consists of multiple edges i.e., edges with the same source and target nodes.

A hybrid type according to both types of graphs:

• An Undirected Multi-graph G is an ordered triple G = (V,E,R), where V and E are the set of
nodes and edges respectively, and R is an indicator function such that R : E ⇔ (u,v)|u,v ∈ V ,
assigning to each edge an unordered pair of endpoint nodes.

• A Directed Multi-Graph G is an ordered pair G = (V,E), where V is the set of nodes and E
is the set of directed edges. It consists of multiple arcs i.e., arcs with the same source and
target nodes, as well as self-loops.

1.1.2 Knowledge Graph

1.1.2.1 KG Definition
Although knowledge graph KG has been studied widely in the last decade, it remains one of the

most fundamental problems in artificial intelligence (AI) research and data engineering. KGs are
large networks consisting of huge amounts of facts organized as entities, represented as nodes and
relations given by directed labelled edges connecting the nodes. The facts in a KG are presented in
the form of a triplet, the main elements of KG. The triplet < h, r, t > is built of the head entity h,
the tail entity t, and r is the relationship connecting them. For instance, the entities Paris, France,
and others are represented as nodes, and their relations are represented as directed edges. In the
example of knowledge graph is shown in Fig. 1.2, < Paris, capital of, France> is a valid triplet. Apart
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from the entities and the relations, the KGs also comprise a special kind of relation that denotes the
semantic types of the entities. Semantic types of entities also referred to as classes, are used in KGs
to group similar entities together. In Figure 1.2, the semantic type is given by ’is a’ relation, hence
the triplet represents that James is an instance of class Person.

Figure 1.2 Sub graph extracted from FreeBase.

1.1.2.2 Triplet in Knowledge Graph

A triplet (h,r, t) in a KG G consist of h ∈ E is the subject, r ∈ R is the relation, and t ∈ E is the
object. The subject is referred to as the head entity and the object as the tail entity. The triplets with
literals as objects, namely t ∈ L are known as attributive triplets. Lastly, the triplets with t ∈ B
represent the classes of the entities.

As mentioned before, an entity can also be linked to a class using a special kind of relation. For
example, in Freebase the relation isA represents the relation that is used to state that an entity is
an instance of a label in the respective KGs. A triplet (Paris, isA, City), states that City ∈ B is a
class and Paris ∈ E is an entity in G and is an instance of City. The labels in a KG are organized in
a hierarchical tree structure. An entity can belong to more than one label in a KG.

1.1.2.3 Relations in Knowledge Graph

Depending on the nature of the objects in a triplet, the relations are classified into two main
categories:

• Object Relation, in which an entity is linked to another entity. For instance, in the triplet
(Paris, capital o f , France), the relation capital o f is an object relation connecting the head
entity Paris to the tail entity France.

• Data Type Relation, where the head entity is linked to a literal. For example, in the triplet
(James, is born on, ”Jan 1 1984”), the relation birthdate is a data type relation.

1.1.2.4 Literals in Knowledge Graph
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The literals in a KG encode that there is no additional information of the entities to be represented.
The different types of literals present in a KG are:

• Text: Different information is stored in a KG in form of free natural language texts such as
labels, entity descriptions, comments, titles, etc.

• Numeric: Date, area, size, and other data stored as integers, floats, and so on also provide
important information about an entity in a KG.

• Image: also encode useful information about the entities. For instance, the gender of a person
or the shape of an object can be determined by analyzing the respective images of the entities.

• Other Types of literals: External URIs containing an image, text, audio, videos, etc. linked to
the entities also contain beneficial information.

Figure 1.2 illustrates an example of a KG extracted from Freebase consisting of entities, relations,
labels, and literals. Here, DaVinci,Monalisa, and James are the entities. The entity DaVinci is of
type person. The relations is a, and is in are object relations as they link two entities. The example
also consists of triples with text and numeric literals. The relations in the attributive triples such as
Person, Museum are the data type relations.

1.1.3 Applications of KG

Knowledge graph has vast amount of different and important applications. It actually enables fast
retrieval of structured data about target entities upon user search. For example, when you search
for a famous person, place, or a popular topic on Google, Google Knowledge Panel will pop up as
shown in Fig.2 alongside with search results. This Knowledge Panel helps the users understanding
the subject of interest quickly. The data source for Knowledge Panel is the Google Knowledge Graph
launched in 2012. Knowledge Graph (KG) was first used in literature in 1972. Later, in 2010 Google
Knowledge Graph was created from Freebase, which was a popular open source KG acquired by
Google. The Google Knowledge Graph was later augmented by integrating many other data source
such as the Wikidata.

Indeed, KG information integration is not limited to the construction of Google Knowledge Graph,
but has many more applications in different domains. E-Commerce companies seek to build users
and products KGs and merge with other companies’ KGs in order to gain business intelligence and
better sell their products to the right person. Hospitals and clinics share medical conditions about
patients in the form of KG to facilitate better treatment in case the patients move to live at different
places. Financial institutions also integrate knowledge bases to track down illegal activities such
money laundering. Ride sharing companies such as Uber are also embarking on similar efforts
to crack down collusion between ill-intentioned drivers. To identify the matching entity or entity
alignment is therefore very important under the above application scenarios. Besides, knowledge
graph is also and important source of information for AI-powered virtual assistant such as Siri,
Alexa, and Google Assistant. Dialogs are first analyzed with Natural Language Understanding
(NLU) algorithms to extract a few keywords as cues for locating the subgraph of the KG as the
useful information. By traversing a few hops on the KG, sensible responses can be generated using
Natural Language Generation models. Other applications of KGs including music recommendation
systems based on music KGs or event forecasting system based on temporal KGs.

1.1.4 Challenges facing KG

KGs are mostly constructed from semi-structured knowledge, such as Wikipedia, or harvested from
the web with a combination of statistical and linguistic methods. As a result, KGs try to make a
good trade-off between completeness and correctness. In order to further increase the utility of such
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Figure 1.3 Google Knowledge Panel.

knowledge graphs, various refinement methods have been proposed, which try to infer and add
missing knowledge to the graph, or identify erroneous pieces of information.

Researchers are working on solving the challenges facing KG in order to get the maximum benefit
of KG. One Challenge is the correctness problem, which is formed due to adding incorrect data
or depending on untrusted data source. The result of such a problem can destroy the trust of the
end user with the returns of KG. to the Many challenges are facing KGs the correctness and the
completeness. Another challenge which we address in this thesis is the completeness problem.

However, given the limited information accessible to each individual and the limitation of algo-
rithms, it is nearly impossible for a Knowledge Graph to perfectly capture every single piece of facts
about the world. There still missing links between the entities and missing links between the entities
and their corresponding entity types. As such, Knowledge Graphs are often incomplete and many
researchers have developed different algorithms to predict missing facts in knowledge graphs. As a
result, for particular KG-based applications such as question-answering systems, incomplete KGs
might not offer the right response to a correctly interpreted question. Given the KG in Figure 1.2, it
would not be possible to answer the question, "Who painted Mona Lisa?", even though both the
entity Mona Lisa and Da Vinci are included in the KG. Therefore, there arises a necessity to predict
the missing relation connecting DaVinci to MonaLisa in the triplet < DaVinci,?,MonaLisa >, or
to identify if < DaVinci,Painted,MonaLisa > is a correct triple for the KG. Additionally, it would
be impossible to provide a response to the question, "Is France a place?". Here also, the entity
France and the class Place are there in the KG, but the information that France is an instance of
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the class Place is missing. Knowledge Graph Completion (KGC) aims to tackle the aforementioned
challenges by addressing the issues of incompleteness and sparsity, hence improving the structure
of the KG.

1.1.5 Existing Knowledge Graph

The KGs can be broadly categorized into public (open) KGs, and private (enterprise) KGs. Open
KGs are accessible and available online for all people. Some of the most prominent and widely
used public KGs are DBpedia [8], Freebase [9], YAGO [10], Wikidata[5], etc. Each public KG have
been created in specific domains, such as media [11], life sciences [12], etc. Some of these KGs are
extracted from Wikipedia, whereas the others are created by community. Unlike public KGs, private
KGs are confidential to the respective companies such as Google [3], eBay [13], and Amazon [14],
and they are used for commercial purposes.

1.1.5.1 Public Knowledge Graph
Public knowledge graphs (KGs) such as WordNet [15], Freebase [9], and DBpedia [8] are open,
online available KGs that can be publicly viewed. In Table 1.1, we present some of the public KGs
with their characteristics.

These KGs allow users to search (typically a keyword query), visualize and save them as well.
Moreover, some of them provide SPARQL endpoints API to query and use their data when building
applications. For instance, Wikidata allows individuals to query and visualize their KGs interactively.

Table 1.1 A number public knowledge graphs and their statistics .
– Wikidata DBpedia YAGO NELL

instances 17,581,152 5,109,890 5,130,031 1,974,297
axioms 1,633,309,138 397,831,457 1,435,808,056 3,402,971

Average outdegree 9.83 13.52 17.44 5.33
Average indegree 41.25 47.55 101.86 1.25

classes 30,765 754 576,331 290
relations 11,053 3,555 93,659 1,334
Release Live Biyearly >1 year 1-2 days

1.1.5.1.1 DBpedia
DBpedia [8] knowledge graph mainly extracts its information from Wikipedia. It provides semantic
interpretation of Wikipedia resources by enabling users to SPARQL query these resources. It is first
open available dataset was released in 2007. Right now, it contains over 4.58 million entities. In
Figure 1.4, we show the number of some entities available on DBpedia.
1.1.5.1.2 Wikidata
Wikidata [5] collects its information from various resources, mainly, Wikipedia, Wikivoyage,
Wikisource, and other resources. This knowledge base can be edited by public. Wikidata is open and
free, which it can be accessed by the public. It supports multilingual documents and information
about entities in a structured and interlinked model. The number of entities for this knowledge graph
is given in Figure 1.5.
1.1.5.1.3 YAGO
YAGO [6] extracts information automatically from Wikipedia mainly. In addition, it extracts infor-
mation from other resources such as WordNet and GeoNames. It provides public access for the
public using Turtle and SPARQL as well as CSV format. YAGO current version which is YAGO3
contains up to 10 million entities. The number of entities available in this knowledge graph is given
in Figure 1.6.
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Figure 1.4 The total number of several DBpedia entities.

Figure 1.5 The total number of several WikiData entities.

1.1.5.2 Private Knowledge Graphs
Private knowledge graphs such as Google Knowledge Vault can be be accessed only for browsing and
cannot be queried, i.e., end users can not extract data from them. Thus, they are neither convenient
to create applications. Moreover, these graphs cannot be deeply analyzed. However, in this section,
we did our best trying to describe and overview some of these KGs.
1.1.5.2.1 Google knowledge graph
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Figure 1.6 The total number of several YAGO entities.

Table 1.2 A number private knowledge graphs and their statistics .
– Google knowledge vault Google knowledge graph Yahoo! knowledge graph

instances 45,000,000 570,000,000 3,443,743
relations 4,469 35,000 800
classes 1,100 1,500 250
facts 271,000,000 18,000,000,000 1,391,054,990

Google knowledge graph [16] is the largest private knowledge graph on the web with more than
18 billion entities. It is created to collect information about objects in the real world. It is mainly
intended to assist humans when searching for such a query, by providing an integrated information
which is clearly displayed at the top of each search result as a knowledge panel, Figure 2. For
example, for a specific person, they collect and present his key information such as his date of birth,
or how tall he is as well as social profile links. It also connects that person to closely related objects
in the knowledge graph, such as a city where he was born, related persons, for instance, if we search
for a specific artist, we get his related artists in this knowledge panel. Google knowledge graph is
currently supported with 8 languages and English language.
1.1.5.2.2 Facebook entity graph
Facebook entity graph model the relationships and information about more than 1 billion Facebook
users. The graph models the social connections between users, such as friendships. In addition, this
entity graph contains also connections about check-ins, interests and work and living places. In
figure 1.7, we illustrate an example of Facebook entity graph. The nodes represent the entities such
as users, locations, workplaces. The edges represent the relations, such as friendship, lives in and
works in.
1.1.5.2.3 Yahoo! knowledge graph

Similarly to Google, Yahoo! released in 2012 a so-called knowledge panel at the top of its search
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Figure 1.7 Facebook entity graph.

results. It contains an integrated and structured important information about entities. There are other
knowledge graphs of the ones listed above such as Bing action graph and LinkedIn professional
graph.

1.1.6 Knowledge Graphs Overlapping

Overlapping is the measurement of the similarities and differences between knowledge graphs.
Mainly, it consists in measuring the number of instances in common between knowledge graphs. The
traditional interlinks used to find similar instances is the owl : sameAs ontology property. However,
this interlink is not enough, in [17] the authors propose a novel approach to find interlinks between
two knowledge graphs using arbitrary rules, for example, linking the same cities of the same name.
Typical similarity measures between names are, Levenshtein, Jaccard, Jaro and JaroWinkler.

The measures used to find the overlap are as follows: (1) global measures, such as overall size
and shape of knowledge (2) class measures, finding the similarity between details of the classes.
The resulting overlap measures finds for instance the number of instances in common, the average
indegree in common, or the average outdegree in common of such selected classes and knowledge
graphs. For instance, find the number of common instances between Wikidata and NELL related to
“Social Event” class.

Based on the outcomes of [18], the most riched resource is Wikidata, it contains twice of instances
of DBpedia and YAGO. However, DBpedia contains the largest number of places compared to other
knowledge graphs. In figure 1.9, we present the results of [18] that shows the range of overlapping
between 4 different knowledge graphs

1.2 General approaches for Knowledge Graph Completion

Approaches for Knowledge Graph Completion KGC usually target to increase the coverage of a
knowledge graph. They predict missing knowledge such as entities, type and relations between
entities as well. These approaches are composed of internal and external methods. Internal methods
use the existing knowledge in the knowledge graph itself to predict missing knowledge. On the
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Figure 1.8 Number of instances (a), avg. indegree (b) and avg. outdegree (c) of selected classes.
D=DBpedia, Y=YAGO, W=Wikidata, O=OpenCyc, N=NELL..

other hand, external methods use knowledge from other knowledge graphs or large text-corpora.
The authors in [19] employ web search engines to complete missing relations in knowledge graphs.
They formulate first a structured query and pass it to a search engine. Finally, they use information
retrieval and extraction techniques to complete knowledge graphs. The authors in [20] propose the
use of reinforcement learning to fill missing values in a knowledge base efficiently. They mainly
address three basic attributes, email, job title and affiliation of professors inside an institution.
Similarly to [19], they also use the web search engines and information extraction techniques to
extract information from the web. Works that use social media to construct knowledge graphs such
as [21] work on crawling, parsing, annotating and analyzing social media content to create new
knowledge graphs from this content. Works that creates scholarly knowledge graph such as [22]
work on integrating data from heterogeneous resources and metadata from DBLP and Microsoft
Academic graph to create new scholarly knowledge graphs. Similarly, [23] consolidates data from
different resources to build new knowledge graph about artists using LSH techniques. NOUS [24]
is an approach for constructing domain knowledge graphs through integrating existing knowledge
graphs and information from external resources. In [25], the authors suggest social networks for
increasing the coverage of knowledge graph. Specifically, they found what people say on social
networks about real-world entities in a knowledge graph. They use three resources mainly: Google+,
Facebook, and Twitter. In the recent year also there are many papers published in this field. The
authors in [26] [27] [28]address the problem of validating and filling entities and relationships
inside knowledge graphs.

Knowledge Graph Embedding models were first proposed as link prediction technique to mainly
solve the Knowledge Graph Completion problem. The main goal of Knowledge Graph Embed-
ding(KGE) models is to generate a latent representation of the entities and relations in a KG to a
continuous low-dimensional vector space that can be used for different knowledge acquisition tasks
and downstream applications. A typical KGE model is characterized by the following steps:

• Representation Space, the low-dimensional space in which the relations and entities are repre-
sented. Entities are represented as vectors or modelled as multivariate Gaussian distributions.



1.3 Conclusion 11

Relations, on the other hand, can be represented as vectors, matrices, tensors, multivariate
Gaussian distributions, or even mixtures of Gaussians.

• Scoring Function given by f r(h,t) is defined on each triplet < h, r,t > to measure its plausibility.
The triples observed (or true triples) in the KG tend to have a higher score and lower scores
are assigned to false/negative/corrupted triples.

• Encoding Models for representing and learning relational interactions between the entities.
The model learns the representations of the entities and relations by solving an optimization
problem that maximizes the total plausibility of observed triples. Negative or corrupted triples
are generated in this step and the method used to generate negative samples has an impact on
learning the embeddings.

• Auxiliary Information: Any additional information available in the KG, such as literals, that
can be leveraged to enrich the embeddings of the entities and the relations. In such a scenario,
an ad-hoc scoring function is defined for the additional information and is integrated into the
general scoring function.

All the aforementioned steps are depicted in Figure 3. An extensive study of the existing KGE
models is provided in Chapter 2. Furthermore, Chapters 3 and 4 discusses the shortcomings in the
baseline models and proposes a new KGE model for link prediction in KGs.

1.2.1 Link Prediction

As mentioned earlier, KGs store information in form of triples, hence the KGC problem can be
looked upon as a problem of estimating missing parts of the triples. Therefore, KGC is achieved by
link prediction that aims to estimate the probability of the existence of links between entities based
on the current observed information in the KG [29]. Link prediction can be further categorized
into three different types of prediction problems depending on the nature of the missing links. The
different types are as follows:

• Head and Tail Prediction: The head or tail entity in a triple < h,r,? > is predicted by defining
a scoring function. For e.g., in reference to the KG shown in Figure 1.2, the prediction of
the missing entity in the triple (Da Vinci , Painted, ?) is denoted as the tail prediction as the
head entity and relation information are provided. On the other hand, (?, is in, Louvre) is
considered as the head prediction since the relation and tail entity are given.

• Triple Classification: A binary classifier is trained to identify whether a given triple is f alse(0)
or true(1). With reference to the triple in the illustration Figure 1.2 as an example, triple
classification helps in identifying if (Paris,capitalo f ,France) is a true triple for the KG.

• Entity Type Prediction: It deals with predicting the special kind of links i.e., the semantic
types of the entities in the KGs. The problem is transformed into a classification problem in
order to predict the semantic type of each entity in the KG and is given by < e, is A , ? >,
where e is the entity.

1.3 Conclusion

In this chapter, we provided an overview of knowledge graphs, we started by presenting facts
about the existing private and public knowledge graphs. We then presented a statistical comparison
between these knowledge graphs. We, in addition, presented a review of the recent state-of-the-art
approaches on knowledge graph completion.

In this thesis, Chapter 3, Chapter 4, we propose a knowledge graph completion approach relying
on modular arithmetic.
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Figure 1.9 KGE framework..
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Figure 1.10 tasks of KGE.





2 Literature Review

Since a KG often consists of many complex structures (namely N to 1, 1 to N, N to N), researchers
have proposed embedding KGs into different representation spaces to better preserve these infor-
mation complex structural structures [30, 31, 32, 33, 34]. Each representation space has a different
structure and set of characteristics. Nevertheless, besides the basic mathematical spaces, there exist
other spaces that offer superior features for KGE. In hyperbolic space, for instance, the region and
length grow exponentially with the radius, increasing the amount of space that is accessible for the
embedding assignment [35, 30, 36, 37, 38, 39]. Additionally, regularization of embedding vectors
is no longer necessary for effective learning since in Lie groups, embedding vectors never diverge
infinitely [31]. Consequently, KGE techniques based on distinct representation spaces can capture
and maintain distinct structural and attribution details in the original KGs. Nonetheless, neither a
comprehensive analysis of KG embedding techniques from the standpoint of representation spaces
nor any literature demonstrating how to appropriately select representation space given specific
KGE tasks exist.By summarizing KGE approaches based on their mathematical representation
spaces’structures and features, we hope to close this gap in this study.

Note that we introduced some algebraic definitions of some basic spaces in this chapter. So-
me geometric perspectives, including euclidean geometry and hyperbolic geometry, can also be
introduced in accordance with them. Simultaneously, we observe that KGE contains a variety of
mathematical spaces that each have a unique function and correspond to distinct mathematical
structures. The many spaces in KGE frequently have complex connections. For example, because
there exist overlapping structures between manifolds and Euclidean geometry, they have inclusion
relations. Furthermore, some spaces—like probability space and spherical space—are not identical
since they come from separate mathematical structures and cannot be treated in the same category.

Accordingly, in order to classify the special spaces and categorize KGE models more accura-
tely based on three mathematical structures, namely algebraic structure, geometric structure, and
analytical structure as shown in (See figure 2.1).We build a systematic, comprehensive, multi-angle
categorisation.

The definitions and characteristics of the aforementioned three mathematical structures will be
covered in this section, then provide some KGE methods that learn embedding in the respective
mathematical structure, as well as summarize how spatial advantages function in KGE models.

2.1 Algebraic Structure

An algebraic structure is a nonempty set on which one or more finite operations meet the stated
axiom[40, 41].Vector space, group, and ring are examples of representational algebraic structures.For
example,the vector space X is an algebraic structure that includes numerous basic binary operations
like addition, subtraction, and multiplication. The majority of techniques in machine learning and

15
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even knowledge graph embedding entail algebraic operations like group embedding [31, 42], user
and word embedding [36, 37, 39], mobuis embedding [35, 43, 44] and so on are all techniques in
the category of algebraic structure.

2.1.1 Vector Space

The Vector Space is the most extensively used mathematical space in machine learning. Many KGE
techniques make significant utilization of vector space because it defines two handy algebraic opera-
tions: vector addition and scalar multiplication. The aforementioned methods use these operations
to project both entities and relations into the same vector space, with the goal of maintaining the
vector representation space’s relational relationships between entities. Based on the scalar field,
the vector space may be divided into two types: real vector space and complex vector space. We
divide vector space-based KGE algorithms into three separate classes based on these categorization
criteria: complex vector space-based, real vector space-based, and additional models inside the
vector space domain, such as neural network-based and external information-based models. In the
following sections, we will go over each of these sets of KGE approaches in detail.

2.1.1.1 Real Vector Space

TransE [45] is a representative KGE algorithm based on real vector space. It projects all entities
and relationships in a low-dimensional real vector space R given a knowledge graph. It reflects the
head entity, the relation, and the tail entity in a triple as embedding vectors h, r, t. If the triplet
(h,r, t) holds, the embedding of the tail entity t should be as near to the head entity embedding h
as possible, which adheres to the principal: h+ r = t. The addition operation is a very basic and
effective way of directly expressing the relationships between objects. fr(h, t) = |h+ r− t|. Then,
the score function of TransE is:

s(h,r,t) =−||h+ r− t||1/2

Although TransE shows a high efficiency when applied in large-scale knowledge graph embedding,
it still struggle when dealing with complex relations such as 1−N,N − 1, and N −N. In order
to overcome such challenge, the authors of transH[46] proposed an extension of TransE called
TransH. Indeed, TransH assigns a hyper-plane to each relation, so that the heads and the tails of this
relation are projected to. This model enables each entity to have different embedding representations
depending on the relation involved in. Specifically, TransH assumes that each relation embedding r
lies in a different relation-specific hyperplane wr . In order to measure the plausibility that a triple
(h,r, t) holds, the head entity embedding h and tail entity embedding t are first projected into the
relation-specific hyperplane wr:

h⊥ = h−w⊥
r hwr,t⊥ = t −wT

r twr

where h⊥ and t⊥ represent the projected head and tail entity embeddings, respectively. Therefore,
the score function of a triple

(h,r,t)

is defined as:
s(h,r,t) =−||h⊥+ r− t⊥||22

TransH assures that the embedding of t is distinct regardless of the head entity or the relation is the
same by projecting the entity embedding to a relation-specific hyperplane, allowing entities to have
various embeddings in different relationships. TransH makes it clear that projection is important.
Projection is a widely used vector space operation that creates a variety of connections (See figure
2.2.a)
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TransH considers that the relation embeddings and entity embeddings belong to the same embed-
ding space, which will restrict variety even if it can manage multi-relations in KGs successfully. On
the other hand, an entity can have more than one aspect, and various interactions might concentrate
on distinct facets of entities. In order to solve this issue, TransR [47] suggests that entities should be
embedded in an entity space Rk(h, t ∈ Rk) and relations should be embedded in a distinct relation
space Rd(r ∈ Rd), where Rk and Rd are not always the same. The relation-specific mapping matrix
(Mr ∈ Md×k) correlates the entity and relation embeddings by projecting the entity embedding from
entity space to relation space. As a result, TransR defines the scoring function as:

s(h,r,t) =−||Mrh+ r−Mrt||22

RESCAL [48] uses bilinear operations with a scoring function to describe the semantic rela-
tionships between entities.

s(h,r,t) = hT Mrt = ∑
i

∑
j
[Mr]i j.hi.t j

where each relation is defined as a matrix MrMd×d , and [Mr]i j denotes the i− th row and j− th
column of the matrix Mr. Equivalent linear models have shown excellent performance on downstream
tasks, including TuckER [49], LowFER [50], ANALOGY [51], HolE [52], DisMult [53], and
SimpleE [54]. Thus, the plausibility of facts may be evaluated by matching the latent semantics of
entities and relations using straightforward and effective linear methods (See figure 2.2.b).

Some KGE models have recently rises learn embeddings in the actual vector space. For instance,
ReflectE [55] maps attributes and entities according to the Householder matrix by using reflection
transformation. In order to capture patterns of relationship, LineaRE [56] perceives a relation as a
linear function of entities. Moreover, to get an increased diversity distribution, TimE [57] projects
entities into the nonlinear time domain. Numerous real vector space mathematical procedures were
discovered to be worthwhile to investigate and apply to KGE.

2.1.1.2 Complex Vector Space.

Complex vector embedding is more capable of handling a wide range of simple relations [58] than
real vector embedding, including symmetric and antisymmetric relationships. Many studies have
also been conducted on complex embedding techniques for KGs, which embed entities and relations
in the Complex Vector Space (that is, h, r, t ∈Ck). The first model to employ complex embedding in
KGE was ComplEx [58]. It builds a scoring function in complex vector space using the Hermitian
dot product specifically:

s(h,r,t) = Re(hT diag(r)t̄)

where t̄ is the transpose of t, Re(.) denotes the operation to obtain the real part of a complex
number. Given that the scoring function is not anymore symmetric, the ordering of entities might
affect the scores assigned to facts with antisymmetric relations. ComplEx may therefore preserve
the dot product’s efficiency advantages while successfully capturing antisymmetric relations.

RotatE [59] projects entities and relations into the complex vector space and refers to each re-
lation as a rotation from the source entity to the target entity with the principal t = h ◦ r (where
◦ denotes the Hadamard product, i.e., elementwise product). This is driven by the Euler’s rule
:eiθ = cos(θ)+ sin(θ). Through the angular transformation as shown in (See figure 2.2.c), several
entities may be directly represented in order to capture certain patterns like symmetry, antisymmetry,
inversion, and composition. BiQUE [32] enhances the quaternion system to a more powerful alge-
braic system called biquaternion q = (wr +wiI)+(yr +yiI)+(zr + ziI),where wr,wi,yr,yi,zr,zi ∈ R.
Using the biquaternion Hamilton product, BiQUE lends itself to a robust geometric interpretation
(the Euclidean/hyperbolic rotation). Furthermore, in four-dimensional space, quaternions have an
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increased degree of freedom. Notably, it is very simple to interpolate between two quaternions,
which facilitates the establishment of rotations. Recently, DualE [34] has used a unique framework
that can handle translation as well as rotation operations in the dual quaternion space (where a
and b are dual units and Qdual = a+ εb). DualE and QuatE are combined in DualQuatE [60]. The
framework of RotatE is carried over into HA-RotatE [61] and CORE [62], which enhance KGs
embedding capabilities.

2.1.1.3 Vector Space: Models using Neural Network

KGE models use neural networks [63] in order to learn embedded characteristics. Nevertheless, we
are unable to comprehend the precise mathematical characteristics that these neural network-based
KGE models represent due to the black-box nature of neural networks. However, as these models
produce vector representations, we classify them in conventional vector spaces.

ConvE [63] first reshapes the head entity and relation into a 2D matrix. To describe interactions
between entities and relations, it then uses several layers and 2D convolution. The definition of the
scoring function is:

s(h,r,t) = α(vec(α([h2D,r2d ]∗β ))W )t

where α denotes activation function, and vec() means the vectorisation operation. h2D and r2d
are 2D reshaping of h and r (i.e., h2D,r2d ∈ Rkw×kh , and the convolutional filter symbol is β . ConvE
displays high expressiveness and provides remarkable performance thanks to the nonlinear neu-
ral network layer’s strong feature extraction capabilities. R-GCN [64] uses Graph Convolutional
Networks (GCNs [65, 66]) to handle large-scale relational data by focusing on small graph neigh-
borhoods. This allows the representation of links between entities and relations. The propagation
procedure is applied on the hidden state y of layer l+1 in order to compute the forward-pass update
for an entity:

Y l+1
i = σ(∑

r∈R
∑

j∈Nr
i

1/ci,rW l
r yl

j +W l
0yl

i)

where Nr
i denotes the set of neighbor indices of node i under relation r ∈ R and ci,r is a normalisa-

tion constant. CompGCN [67] simultaneously embeds nodes and relations in a graph by utilizing a
range of composition operators that are developed from KGE techniques. It has been shown that this
method can generalize a number of multi-relational GCN approaches that are already in use, such as
R-GCN [64], Directed-GCN [68], and Weighted-GCN [69]. KG-BERT [70] is a transformer-based
[71] model that uses a pre-trained language model BERT [72] to perform knowledge embedding
and interpret triples as text sequences. KG-BERT may make use of a wealth of linguistic data found
in the text and highlight the most relevant terms related to a trip.

In order to attain state-of-the-art results, Knowformer [73] recently used position-aware relational
compositions to encode the semantics of entities occurring in different places inside a relational
triple. These compositions have been demonstrated to support the self-attention mechanism [71] in
identifying distinct entity responsibilities according to their location.

2.1.1.4 KGE Integrating Auxiliary Information

Within KGE techniques, learning knowledge graph embeddings using auxiliary data is an important
topic. To maintain a thorough examination, even if this issue might not be as directly related to the
mathematical representation space, we will give a succinct summary of several traditional external-
information-based KGE models. Text descriptions, entity types, relational structures or pathways,
and other information are often utilized in the work that has already been done [74, 75, 76, 77].
By using CNNs to extract the semantics of entity descriptions in a representation learning fashion,
DKRL [78] explores deeper knowledge representation. TKRL [79] uses the type information as
relation-specific type constraints and views hierarchical entity types as projection matrices. It has
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been shown that hierarchical type information, which is essential for creating knowledge graph
representations, is successfully captured by TKRL. Knowledge graph relations are treated by HRS
[80] as a three-layer hierarchical relation structure that is easily incorporated into other KGE models
to provide a wealth of structural information.

By using relational routes, RSN [81] and Interstellar [82] address the problem of earlier model-
sínability to represent long-term relational dependencies of entities effectively. TransO [83] has
been proposed recently as a way to improve decision-making in complex situations by seamlessly
integrating all available ontology information (i.e., type information, relation constraint information,
and hierarchical structure information) within the knowledge embedding process. Furthermore, in
the field of knowledge graph embedding, conceptual information [84, 85, 86] is also very important
when paired with additional external information like images [87].

2.1.2 Ring

Rings are algebraic structures that generalize fields in mathematics [88, 89, 90]. One of the primary
areas of ring theory is commutative rings. A set of integers with addition and multiplication as well
as a set of polynomials with the same operations are two examples. Later on, ring theory was found
to be beneficial in geometry and analysis [91]. We will define ring first in this section and then talk
about KGE models that use ring as an embedding space.

Definition 2.1.2.1: A ring is defined as a set S that has two binary operations (addition: + and
multiplication: ·) that meet the following:

• Under addition, S is an Abelian group, which means that:

– (a+b)+ c = a+(b+ c) f or every a,b,c ∈ R;

– a+b = b+a f or every a,b ∈ S;

– There is an element 0 in S such that x+0 = x for all x ∈ S;

– For each x in S there exists −x such that x+(−x) = 0.

• Under multiplication, S is monoid means that:

– (a.b).c = a.(b.c) f or every a,b,c ∈ S;

– There is an element 1 in S such that x.1 = x for all x ∈ S;

• With regard to addition, multiplication is distributive. That means:

– (a+b).c = (a.c)+(b.c) f or every a,b,c ∈ S;

– a.(b+ c) = (a.b)+(a.c) f or every a,b,c ∈ S;

In manifold-based embedding, where entities and relations are embedded to the surface of Mobius
ring, MobiusE [43] extends KGE. Due to the additional features on ring, MobiusE has considerably
more expressiveness and versatility than TorusE [31] using the scoring function (dist(h + r,t), where +
and dist denote addition and distance function particularly constructed on Mobius ring, respectively.
Since MobiusE subsumes TorusE, it automatically acquires all of TorusE’s relation pattern, such as
composition, inversion, and symmetry/antisymmetry. It should be noted that the Mobius band is a
non-oriented surface, making it difficult to define the concepts of clockwise and counterclockwise.
This information may be useful for problems involving orientation.
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2.1.3 Group

Groups, which are algebraic structures made up of a set and an operation, are common in both
mathematical and non-mathematical domains [88, 89, 90]. For instance, lie groups are employed in
particle physics [92] and symmetry groups are utilized to characterize the symmetries of geometry
[93]. Groups are also extensively employed in machine learning due to their special abstract algebraic
features. This section will begin with defining groups and go on to discuss KGE models that use
groups as embedding spaces.

Definition 2.1.3.1: A function is a (binary) operation on a set G when:

∗ : G×G → G

Definition 2.1.3.2: A group is a set G that has an operation ∗ and member e ∈ G that is known as
the identity, such that:

• (a∗b)∗ c = a∗ (b∗ c) where a,b,c ∈ G ;

• e∗a = a f or every a ∈ G

In order to address TransE’s regularization issue, TorusE [31] suggests integrating KGEs into a
unique algebraic structure called Torus. An Abelian Lie group Torus is created by using the nature
projection to extract it from vector space as follows: Rn → T n,x 7→ [x]. Torus ensures that the model
never diverges indefinitely.

The first effort to use a finite non-Abelian group in KG embedding to account for relation
compositions is DihEdral [94]. Dihedral groups are able to capture all mapping properties including
symmetry, inversion, and (non-)Abelian composition. That is because the components in a dihedral
group are easily built by rotation and reflection operations, and the multiplication between elements
can be Abelian or nonAbelian.

DensE [42] breaks down a relation operator into a scaling transformation and a rotation based on
the SO(3) group (SO(3): Special Orthogonal Group in 3 dimensions). For the first time, NagE [95]
establishes the importance of the group algebraic structure in relational embedding model creation.
In particular, group definition may naturally meet knowledge graph fundamental features (such as
composition and inversion), suggesting that group-based models offer a lot of promise for handling
KGE problems. In order to reach state-of-the-art performance, more recent models based on group
structure, such Module E [96], take into account both entity and relation as group components.

2.2 Geometric Structure

Any two points on a manifold that have isometric neighbourhoods are said to be in a geometric
structure [97], which is a locally homogeneous full Riemannian metric. Even if there are few in-depth
explanations of geometric structures, in this case we concentrate more on the knowledge graph
embedding models constructed on several geometric models/spaces and thoroughly examine them
from the perspective of Euclidean geometry, hyperbolic geometry, and spherical geometry.

2.2.1 Euclidean Geometry

The study of geometrical forms and figures using various axioms and theorems is known as Euclidean
geometry. In essence, it is introduced for plane or flat surfaces. The Greek mathematician Euclid
used this aspect of geometry, and he also wrote about it in his book Elements [98]. The Greek terms
"geo," which means "earth," and "metrein," which means "to measure," are the origin of the word
geometry.
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Euclidean geometry is concerned with various forms and quantities such as squares, triangles,
angles, points, and lines. This section will split the KGE models produced in Euclidean geometry
into four parts based on several coordinate systems: Cartesian coordinate, Polar coordinate, and
Spherical coordinate. It is important to note that there are certain concepts shared by vector space
under algebraic structure and Euclidean geometry under geometric structure. This is due to the
general strong relationship between geometric and algebraic aspects. However, we shall highlight
the benefits of KGE models from a geometric standpoint in this section.

2.2.1.1 Cartesian coordinates

The standard Cartesian coordinates form the foundation for the majority of translation-based models.
TransE, for instance, adheres to the following principle: h+ r = t, meaning that a translation makes
the head entity’s vector equal to the tail vector. From head to tail, these three vectors are joined to
produce a closed path in Cartesian coordinates. It is practical to specify each relation as a rotation
from the source entity to the destination entity, as demonstrated by RotatE. For example, two
relations r1 and r2 are inverse if and only if their embeddings are conjugate, which means they
are symmetric about the real axis. Geometric transformations in Cartesian coordinates allow for
the clear illustration of all related patterns. Furthermore, QuatE [34] expands complex space to
quaternions, which have two rotational planes. Tang et al. [99], who were inspired by RotatE, use
orthogonal transformations to expand RotatE from the 2D complex domain to high dimensional
space while maintaining the capability of improving performance when modeling various patterns.
Moreover, there are a number of RotatE-based models that build upon the key concepts of the first
RotatE framework, including [100, 101, 102, 103, 61]. In higher dimensional space, for instance,
rotational relations are defined by Rotate3D [100] and Rotate4D [103]. Complex relations are still
difficult for KGE models to comprehend, though.

PairRE [104] makes use of paired vectors for each relation [rh, rt] in order to lessen this is-
sue, where rh and rt might have different values to suit the complicated relations. Relation vectors
may project entities to any location inside a unit circle on the Cartesian coordinates by using the
scoring function. Further research shows that PairRE is also capable of capturing subrelations
beyond those that RotatE can represent [59].

There are also other recent developments in Cartesian coordinate-based KGE models. TripleRE
[105], for instance, develops the translation component independently while inheriting the projection
part from PairRE. Information from tail entity representation is combined with head entity represen-
tation in InterHT [106]. HousE [107] uses householder parameterization [108] to capture important
relation patterns, whereas TranS [109] is suggested as an effective way to capture single relations.
CompoundE [110] uses three basic Euclidean geometric procedures to embed KGs effectively. In
order to better fit the complex underlying properties of a KG, CompoundE3D [111] updates the
compound transformation. For the purpose of solving the circular relation difficulties, ConE [112]
combines an explicit relation with a latent relation as a collaborative relation. To sum up, translation,
rotation, reflection, and scaling are the most common geometric transformations used in KGE. It has
been demonstrated that these transformations are successful in identifying key relationship patterns
and mapping attributes.

2.2.1.2 Spherical Coordinate

For temporal knowledge graphs, STKE [113] depicts entities and relations in a spherical coordinate
system. The polar portion ϕ , the azimuth part θ , and the radial part r are present in every entity.
Spherical coordinates allow STKE to consider temporal changes as rotation and scaling of entity
embeddings, allowing it to dynamically differentiate between various time-constrained entities.
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2.2.2 Hyperbolic Geometry

In order to incorporate hierarchical multi-relational data in the Pointcare ball of hyperbolic space
MuRP [35] is presented. MuRP surpasses Euclidean KGE models and delivers higher performance,
especially in hierarchical datasets, since hyperbolic surfaces, as compared to Euclidean space, may
be found to have more spaces to represent entities and capture hierarchy information with increasing
radius [114].

With ATTH [30], logical patterns and hierarchies are simultaneously captured, as opposed to
learning in a hyperbolic environment with a fixed curvature as in MuRP. To prevent accuracy
mistakes, it learns a unique absolute curvature for each relation (such as rotation and reflection).
Additionally, models under various situations (e.g., ATTE, ROTE/H, and REFE/H) are proposed
based on ATTH. As was also indicated in the section on polar coordinates, HBE [115] uses an
extended Pointcare ball to overcome boundary limitations that may arise in a standard Pointcare ball
when capturing hierarchical structures using a polar coordinate system (Pointcare disk). Sun et al.
[116] similarly use HyperKA to describe KG embedding in a hyperbolic space, but they start by
using a graph neural network (GNN) to embed hyperbolic translation. However, Kai Wang et al.
[117] had to consider the question of whether hyperbolic geometry was actually required given the
ongoing growth of hyperbolic models. Given that the hyperbolic-based model invariably demands
more computing complexity, which in turn implies higher training resource requirements, it begs
the issue of whether the advantages outweigh the drawbacks. In order to address this problem, the
hyperbolic operation in RotH is made simpler with the suggested RotL and Rot2L. RotL can save
more than half of the training time and lessen the computing complexity of RotH [30] by developing
Flexible Addition. It is important to remember that knowledge graphs contain a variety of mixed
relations and that other types of information are frequently overlooked in favor of hierarchical
information. HypHKGE [118] introduces hyperbolic hierarchical transformations for the purpose of
extracting hierarchies. MuRMP [119] use the mix-curvature model in conjunction with GNN to
more effectively reflect the KGsínherent heterogeneous nature. An ultrahyperbolic manifold is taken
into consideration in UltraE [120] in order to solve the non-hierarchical embedding issues. Notable
performance has also been shown by a number of modern KGE models based on hyperbolic spaces,
such as SEPA [121] and FFTAttH [122].

2.2.3 Spherical Geometry

We first outline an obvious distinction between the ideas of spherical coordinate system and spherical
geometry before providing the spherical geometry models to prevent misunderstandings. The
previously described spherical coordinate system may be thought of as a tool to intuitively express
the locations of points. The fundamental ideas underlying it are derived from Euclidean geometry
and consist of points and straight lines. However, the fundamental ideas of spherical geometry [123]
are that there are no parallel lines and that any two lines intersect at two points, which is known as
a great circle. Since the circular pattern of the vector field produced by spherical embedding has
a natural circularity, spheres and ring structures are compatible [124]. As such, spherical-based
models are also capable of producing competitive results on intricate relational datasets.

TransC [125] encodes every concept in the knowledge graph as a sphere and each instance as a
vector in the same semantic space in order to distinguish between the concepts and the instances.
For instance, TransC constructs many alternative locations (e.g., inclusion, intersection, separation)
between two idea spheres under various conditions in order to determine the links between concepts
and sub-concepts (i.e., subClassOf). In contrast to TransC, HypersphereE [126] expands the sphere
into the hypersphere in order to account for instance uncertainty. ManifoldE [33] is another unique
model that extends point-wised embedding to manifold-based embedding. ManifoldE utilizes the
manifold-based principle M(h,r,t) = D2

r (where M is the manifold function) in the sphere and
hyperplane, respectively, in place of the earlier translational-based concept h+ r = t. In the Sphere
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condition, an entity that was previously only thought of as a point in traditional models is now
expanded to a full high-dimensional sphere. ManifoldE minimizes noise through this mean, allowing
it to better discern actual facts. Numerous mappings between the surface and the circle’s center are
possible due to the sphere’s smooth surface, which greatly increases the embedding’s flexibility. As
is well known, KGs frequently have rich structural types including cyclic and hierarchical types.
When KGs are embedded in a single curvature space, either hyperbolic or Euclidean space, fails to
appropriately represent the KGsíntrinsically diverse structures and as a result. SEA [121] captures
a range of logical and structural patterns by combining different existing representations of KGE
inquiries using spherical geometry. Interestingly, a more complex structural representation may be
achieved by projecting SEPA [121], an alternate variant of the SEA, onto the Pointcare ball.

2.3 Analytical Structure

In general, an analytical structure is one that has a measure. For example, in Euclidean space, the
metric (or distance) is clearly defined, allowing us to perform various analytical operations such
as differentiation and integration. Analogously, the probability space can be seen as an analytical
structure as the probabilistic measure is defined there. We will examine the KGE models in detail in
this part by breaking them down into two primary spaces: Euclidean Space and Probability Space.

2.3.1 Probability Space

As far as we are aware, KG2E [127] is the first density-based KGE model. It depicts each entity/rela-
tion as a multi-dimensional Gaussian distribution N(t,ε) in probability space, where the covariance
metric ε indicates the related (un)certainty that affects other entities. The mean vector t indicates
the entity’s position. Furthermore, two comparable approaches based on anticipated likelihood
and KL-divergence are put forth to examine the distinction between symmetric and asymmetric
data, respectively. A formal consideration of various relation semantics in KGs has been made in
previous models. But the conventional translational-based models never provide more than one
vector to a single vector, neglecting the possibility that a connection may have more than one
meaning. In order to manage numerous relation semantics, TransG [128] is developed by utilizing a
Bayesian non-parametric infinite mixture model, which generates several translation components
for a relation. TransG would choose the optimal match between h, t, and r that satisfy its score
function. By using Gaussian representation, other probabilistic-based models like GaussianPath
[129] and DBKGE [130] also take use of the uncertainty of KGs. By embedding relations as multi-
nomial distributions and entities as Dirichlet distributions, DiriE [131] is proposed. This approach
develops binary embeddings of knowledge networks for modeling complex connection patterns and
uncertainty after evaluating the links between elements using Bayesian inference. Most recently,
ItoE [132] introduced the formulation of relations in a KG as stochastic Ito processes, which allows
transitions between two nodes to happen with a corresponding likelihood. This technique, which is
a mathematical generalization of various state-of-the-art models, enables ItoE to express numerous
stochastic trajectories, including loops connected to pathways. The approaches outlined above
show that probabilistic embedding is not only good at gathering more ambiguous data but also at
recognizing unstructured patterns [133].

2.3.2 Euclidean Space

Nayyeri et al. [134] offer a novel KGE model called FieldE that uses ordinary differential equations
(ODEs) for embedding KGs into a Euclidean space in order to improve the structure preservation
capabilities of KGE models.

Each relation in Rn is represented as a vector field fθr
, and each entity is represented by a vector

indicated by e(t), solving the ODE: de(t)/dt = fθr
(e(t)) on a Riemannian manifold, where e(t) lies
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on a trajectory (continuous) on the manifold M. Therefore, FieldE may naturally characterize the
underlying geometry and record the continuity of changes in the embedding space. Neural ODE
approach [135] is introduced in TANGO [136] to learn continuous-time representations of entities
and relations dynamically. ODE method may also be applied in temporal KGs. By making it easier to
acquire dynamic and continuous representations of entities and relations, these analytical techniques
improve parameter effectiveness, adaptive computation, and memory efficiency in a variety of
ensuing tasks [137]. Other analytical vantage points in KGEs, such as derivability, differentiability,
and integrability, are also worthwhile to investigate in addition to continuous analysis.
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(a) Real Vector Space: Tensor Projection

(b) Real Vector Space: Tensor Projection: Similarity Matching

(c) Complex Vector Space: Transformation

Figure 2.2 An illustrative example of an algebraic operation that may be used to embed knowledge
graphs from an algebraic perspective.



3 TransModE: Translational Knowledge
Graph Embedding Using Modular
Arithmetic

3.1 Introduction

Knowledge graphs are collections of facts in form of triplets. Each triplet (h,r,t) represents the
relation r connecting the head h and the tail t entities. Freebase [9], Yago [138], and WordNet [15]
are real-world examples of knowledge graph in use. Knowledge graphs have proven to be effective in
many areas such as recommendation systems [139], question answering [140], and natural language
processing [141].

One of the main challenges facing knowledge graphs is its incompleteness. For example, some
real-world knowledge graphs may contain billions of triplets, but it still miss other valid triplets.
Since solving this problem manually is infeasible, link prediction has emerged as an optimal solution.
Relying on the known triplets of a knowledge graph, link prediction aims to predict the missing
triplets and determine the type of relationship connecting the entities of these triplets. Knowledge
graph embedding has proven to be very effective link prediction method. It replaces the entities
and relations with vectors of continuous numbers holding its semantics, and uses these vectors to
predict and infer the patterns of the missing relations.

The relation pattern vary from one relation to another according to its type. A relation type is
simple when connecting no more than two entities, otherwise it is complex relation. Each relation
type is divided into patterns. Simple relation can be symmetry/anti-symmetry, composition, and
inversion, whereas complex relation can be 1-to-N, N-to-1, or N-to-N. The majority of the existing
knowledge graph embedding approaches attempt to represent one or more simple relation patterns
while ignoring complex relations. For example, the TransE model [45] models the inversion and
composition patterns; the DisMult model [53] models the symmetry pattern; RotatE model [59]
can model relation patterns including symmetry/anti-symmetry, inversion, and composition, but
none of the examples dealt with complex relations.

In this chapter, we propose a new knowledge graph embedding model called TransModE, inspired
from TransE model. This model maps the entities to the modulus space and defines each relation
as a transition between entities in this space. TransModE kept on the simplicity of TransE while
greatly improving its representation ability. TransModE perfectly represents all simple and complex
relation patterns: symmetry, anti-symmetry, inversion, composition, 1-to-N, N-to-1, N-to-N. To
prove the effectiveness of our proposed model, we evaluate TransModE on a set of knowledge

27
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graph benchmark datasets including FB15k-237 and WN18RR, and we compared the results to
state-of-the-art approaches.

The rest of the chapter is organized as follows: Section 3.2 defines and explains the simple and
the complex relation patterns, the modulus space and the proposed knowledge embedding model
TransModE. The obtained simulation results are exposed in Section 3.3. Finally, we conclude the
chapter and provide directions for future work in section 3.4.

3.2 Our Embedding Model: TransModE

In this section we first introduce all the patterns of simple and complex relations studied in the
literature of link prediction in knowledge graph. Then we explain the modulus space characteristics
and its distance measurement. Later we introduce our novel knowledge graph embedding model
TransModE. Last, we mathematically prove the robustness of our proposition in representing all
patterns of simple and complex relations.

3.2.1 Types of relations

The relation in knowledge representation is divided into two types, it can be either simple or complex.
Each of these types have different representation patterns. For the simple type, the patterns are:
symmetry, anti-symmetry, composition, inversion. It is possible for a simple relation to follow more
than one pattern, but it can be either symmetry or anti-symmetry at once. For the complex type, a
relation can follow only one of the three patterns: 1-to-N, N-to-1, N-to-N, beside the simple relation
patterns. For example, a complex relation r can follow the patterns: 1-to-N, symmetry, composition.

3.2.1.1 Simple relation patterns

• Symmetry:

A relation is said to be symmetric if the head and the tail of entities can be switched, so the
relation holds in both directions: from head to tail, and from tail to head. Mathematically, a
relation r is symmetric if ∀x,y ∈ E, the set of entities

(x,r,y) =⇒ (y,r,x) (3.1)

• Anti-Symmetry:

A relation follows the anti-symmetry pattern if it holds from head to tail, and does not hold
from tail to head, it holds only in on direction. A relation r is anti-symmetric relation if ∀x,y ∈
the set of entities E:

(x,r,y)⇏ (y,r,x) (3.2)

• Inversion:

A relation follows the inversion pattern if there exist another relation that connect the same
entities but in opposite direction. A relation r2 is said to be the inverse of r1, if ∀x,y ∈ E, the
set of entities of KG:

(x,r1,y) =⇒ (y,r2,x) (3.3)

• Composition:
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A relation follows the composition pattern if it can be broken down into two or more rela-
tions.For x,y,z ∈ E, a relation r is a composed relation, if ∃ r1,r2 ∈ R, the set of relations in
KG:

(x,r1,z)+(z,r2,y) =⇒ (x,r,y) (3.4)

Where x,y,z ∈ E, the set of entities.

3.2.1.2 Complex relation patterns

• 1-to-N :
A relation following this pattern has a single head mapped into more than one tail. In 1−N
relation, the set of tails T = {t1, t2, ..tN} can share a unique head.

• N-to-1:
A relation following this pattern has more than one head mapped into a single tail. In N −1
relation, the set of heads H = {h1,h2, ..hN} can share the same unique tail t.

• N-to-N :
A relation following this pattern has more than one head mapped more than one tail, joining
both 1−N and 1−N patterns.
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Figure 3.1 Distance measurement in modulus space.

3.2.2 Modular Arithmetic

The Modular Arithmetic is often called as the fifth arithmetic operation, and comes after addition,
subtraction, multiplication and division . It has use in many practical situations, particularly in
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number theory and cryptology .In its most elementary form, Modular Arithmetic done with a count
that resets itself to zero every time a certain whole number N greater than one, known as the modulus
(mod), has been reached. Examples are a digital clock in the 12-hour system, which resets itself to
0 every 12 hours (N = 12), and a circular protractor marked in 360 degrees (N = 360), as shown in
Fig.3.1[d].

Examples of the use of modular arithmetic occur in ancient Chinese, Indian, and Islamic cultures.
In particular, they occur in calendrical and astronomical problems since these involve cycles (man-
made or natural), but one also finds modular arithmetic in purely mathematical problems.

The importance of Modular Arithmetic increases when can be combined with other arithmetic
operators. In number theory, it is a fundamental tool in the solution of Diophantine equations
(particularly those restricted to integer solutions). Moreover, modular arithmetic led to important
19th-century attempts to prove Fermat’s last theorem and the development of significant parts of
modern algebra.

Under modular arithmetic (with modN), the only numbers are 0,1,2, . . . ,N − 1, and they are
known as residues modulo N. Residues are added by taking the usual arithmetic sum, then subtracting
the modulus from the sum as many times as is necessary to reduce the sum to a number M between
0 and N −1 inclusive. M is called the sum of the numbers modulo N, for example:

2+4+3+7 ≡ 6(mod10), (3.5)

where the symbol ≡ is read “is congruent to”, N = 10 and M = 6.
The Swiss mathematician Leonhard Euler introduced the idea of congruence modulo a number

N and showed that this concept partitions the integers into N congruence classes. In mod(N) space,
the elements of each congruence class have the same remainder when divided by N. These integers
are considered to be equal in mod(N) space, as shown in Equation:

x mod(N) = y and z mod(N) = y =⇒ x ≡ z (3.6)

For example, if N = 5, then 4 and 9 are members of the same congruence class {. . . ,4,9,14,19. . .}.
Since each congruence class may be represented by any of its members, this particular class may be
called, for example, “the congruence class of 4mod5” or “the congruence class of 9mod5.”

In Euler’s system any N numbers that leave different remainders on division by N may represent
the congruence classes mod N. Thus, one possible system for arithmetic mod 5 would be 1,2,3,4.
Addition of congruence classes mod N is defined by choosing any element from each class, adding
the elements together, and then taking the congruence class mod N that the sum belongs to as the
answer. Euler similarly defined subtraction and multiplication of congruence classes. For example,
to multiply 3 by 4(mod5):

f irst multiply : 3×4 = 12,

since 12 ≡ 2(mod5)

then the solution is 3×4 ≡ 2(mod5).

(3.7)

Euler showed that one would get the same result with any two elements from the corresponding
congruence classes.

3.2.2.1 Negative values in modular arithmetic
The negative values is calculated exactly like the mod of positive numbers.
(x mod n) = r if there exists some integer q such that x = qn+ r.
Rearranging the terms, we get : x − q ∗ n = r.
Notice that since x is a negative integer in the present case, q is currently a negative integer. Therefore
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to find −x mod n, just keep adding n to x until the result is between 0 and n. As an example, let
us evaluate x mod n where n = 13, x =−27 . Add 13 to −27, you get −14, add again, you get −1,
and add again, you get 12. Thus, 27 mod 13 = 12. In other words, in the space mod(n), negative
value such as x represents moving backward from the value of n. To change a negative value x into
positive value, we subtract the absolute value |x| from n, so that the summation of the result y and
|x| equals to n.

n−|x|= y ⇔ x = y mod(n) (3.8)

3.2.2.2 Distance measurement
Measuring distance in modulus space differs from the Euclidean distance in 2d space used in TransE
model. In 2d space, there is only one path connecting two points. The length of this path is the
distance separating these two points:

dist(x,y) = |x− y|= |y− x|. (3.9)

However in modulus space, there are two paths connecting two points. In other words, the distance
separating x and y is different from that separating y and x. These two paths are inversely correlated,
the length of the first path increases, when the length of the second path decreases and vice versa, as
shown in Fig.3.1[a,b,c]. The real distance between x and y in modulus space dist(x,y) is the shortest
path between the two points:

dist(x,y) = min(|(x− y)mod(m)|, |(y− x)mod(m)|) (3.10)

In the 12-clock example in Fig.3.1[d], the distance between "3" and "11" in this mod(12) space is:

dist(3,11) = min(|−8mod(12)|, |8mod(12)|) = 4.

Basing on the distance measurement in modulus space, we have:

• Maximum distance: The maximum distance separating two points x and y in modulus space
mod(m) is obtained when y is d apart from x, where d is a multiple of m/2. In this case, the
distances dist(x,y) and dist(y,x) are equal, as shown in the Fig.3.1[b]:

dist(x,y) = min(|−m/2 mod(m)|, |m/2 mod(m)|) = m/2. (3.11)

• Minimum distance: The minimum distance separating two points x and y in modulus space
mod(m) is obtained when y is congruent to x, as shown in Fig.3.1[c]:

dist(x,y) = min(|m mod(m)|, |0 mod(m)|) = 0. (3.12)

3.2.3 TransModE

TransModE is a knowledge graph embedding model that extends TransE. It represents each entity by
one embedding vector, and each relation by 2 embedding vectors: rm the embedding vector defining
the modulus space, and rd the embedding vector coordinating the transition in this space. A relation
(h,r,t) in TransModE is the transition from the head h to the tail t in a modulus space of the relation
rm. Meanwhile the transition embedding vector of the relation rd regulates this transition, as the
equation shows:



32 Chapter 3. TransModE: Translational Knowledge Graph Embedding Using Modular Arithmetic

t ≡ (h+ rd) mod(rm)⇔ t = h+ rd + k ∗ rm,∀ k ∈ Z (3.13)

3.2.3.1 TransModE score function:
A score function of a knowledge graph embedding model has two roles which are maximizing the
scores of true triplets and minimizing the scores of false triplets. In TransModE, the score function
works exactly opposite to the distance equation in modulus space. For example, in a triplet (h,r,t),
the closer (h+ rd) is to t, the higher the triplet score will be, and the further it is the lower the score
will be. For this reason, TransModE uses the negation of the distance equation in modulus space as
a score function F , returning values normalized between 0 and m:

F =−dist(h+ rd ,t) =−min((h+ rd − t)mod(rm),(t − (h+ rd))mod(rm))

F = max((h+ rd − t)mod(rm),(t −h− rd)mod(rm)) (3.14)

• TransModE score function F maximizes the score of the true triplet:
The maximum score that a triplet can obtain in the modulus space mod(m) is m, which is
congruent to 0, the minimum distance between two points in the space. Thus, after performing
transition operation in a true triplet, the head is congruent to the tail, as shown in Fig.3.1[c].

maximize(max((h+ rd − t)mod(rm),(t − (h+ rd))mod(rm))) = m ≡ 0

=⇒ h+ rd ≡ t (3.15)

• TransModE score function minimizes the score of the false triplet:
Since TransModE score function opposes the distance function of modulus space, then the
minimization of the score function F is equivalent to the maximization of the distance equation
in modulus space. The maximum distance between 2 points in the modulus space mod(m) is
m/2. Thus, after performing transition operation in a false triplet, the head is m/2 apart from
the tail, as shown in Fig.3.1[b].

minimize(max((h+ rd − t)mod(rm),(t − (h+ rd))mod(rm))) = m/2

=⇒ h+ rd +m/2 ≡ t

3.2.3.2 TransModE fully expressive model:

A Fully expressive model is that can infer any type of relation: simple or complex. A simple
relation is that connecting no more than two entities, the head and the tail. According to the existing
literature, the most important patterns of simple relation are: symmetry, anti-symmetry, inversion,
and composition. On the other hand, complex relation is that connecting one or more heads to one
or more tails, thus simple relation is a special case of complex. Complex relation can follow one of
the following patterns: 1-to-N, N-to-1, N-to-N.

By defining each relation as a transition in a modulus spaces, TransModE can model and infer
all the simple relation patterns introduced above. In TransModE, a triplet (h,r, t) is represented as:
t = (h+ rd) mod(rm). Formally, we have following results with proves:



3.2 Our Embedding Model: TransModE 33

• Lemma 1. TransModE can infer the symmetry pattern.
proof:
t ≡ (h+ rd) mod(rm)
t − (h+ rd) = krm, for some k ∈ Z
(h+ rd)− t =−krm and −k ∈ Z
h+ rd ≡ t mod (rm)
for rd is a multiple of m, we obtain:
=⇒ h ≡ t + rd(mod rm)

• Lemma 2. TransModE can infer the anti-symmetry pattern.
proof:
Basing on the proof of the symmetry pattern we obtain:
TransModE can represent Anti-symmetry⇔rd is not a multiple of rm.

• Lemma 3. TransModE can infer the inversion pattern.
proof:
t ≡ (h+ rd) mod(rm)
t − (h+ rd) = krm
(h+rd)− t = (−rm)k
h+ rd ≡ t mod(k)
mod(rm) is the inverse of mod(k).

• Lemma 4. TransModE can infer the composition pattern.
proof:
c ≡ (t + rd1) mod(rm1) and t ≡ (h+ rd2) mod(rm2).
c = t + rd1 + k ∗ rm1, and t = h+ rd2 + k ∗ rm2,k ∈ Z.
c = h+ rd2 + k ∗ rm2 + rd1 + k ∗ rm1
c = h+(rd2 + rd1)+ k(rm2 + rm1)
=⇒ c = (h+(rd2 + rd1))mod(rm2 + rm1)

• Lemma 5. TransModE can infer 1-to-N complex pattern.
proof:
t ≡ (h+ rd) mod(rm)
t = h+ rd + krm
t = h+ rd +(k− c+ c)rm
t = h+ rd + crm +(k− c)rm

Hence t ≡ ((h+ crm)+ rd) mod(rm) and t ≡ (h+ rd) mod(rm)

• Lemma 6. TransModE can infer N-to-1 complex pattern.
proof:
t ≡ (h+ rd) mod(rm)
t = h+ rd + krm
t = h+ rd +(k− c+ c)rm
t − crm = h+ rd +(k− c)rm

Hence t − crm ≡ (h+ rd) mod(rm) and t ≡ (h+ rd) mod(rm)



34 Chapter 3. TransModE: Translational Knowledge Graph Embedding Using Modular Arithmetic

• Lemma 7. TransModE can infer N-to-N complex pattern.
proof:
By combining the results and the proves of Lemma 5 and Lemma 6, we conclude the ability
of TransModE to represent N-to-N relation.

3.3 Simulation Results

In this section, we present the experimental settings in detail. We introduce the knowledge graphs
used in this evaluation, the negative sampling strategy, the hyperparameter settings and the evaluation
protocols.

3.3.1 Experimental settings:

3.3.1.1 Evaluation knowledge graphs
To evaluate our model, we implemented TransModE using Ampligraph [142] python library, and
evaluate it on two widely used knowledge graphs: FB15k-237, and WN18RR.

FB15k-237: is a subset of Freebase [9], a large knowledge graph that stores general knowledge
facts. It consists of 14951 entities, 237 relation types, and 310116 triples. It does not contain
inverse relationships. The goal of link prediction on FB15k-237 is to model and infer symmetry,
anti-symmetry and composition patterns.

WN18RR: is a subset of WordNet [15], a knowledge graph that clusters words into synonym
groups and features lexical relationships between words. It consists of 40,943 entities, 11 relation
types, and 93003 triples. WN18RR does not contain inverse relationships, it contains symmetry,
anti-symmetry and composition relation patterns. The main pattern is the symmetry since almost
each word has a symmetric relation in WN18RR, e.g., also− see and similar− to [59].

3.3.1.2 Negative Sampling
To explain about negative sampling, we should define the open world assumption (OWA) [29] and
the closed world assumption (CWA) [30]. The CWA states that facts that are not observed in a graph
are false, while the OWA is relaxed to assume that unobserved facts can be either missing or false.
KGE models prefer the OWA due to the incompleteness nature of KGs. As a result, KGs considered
to contain only ground-truth triples, which is insufficient to train KGE model. Beside the ground
truth triples, KGE model requires a large number of negative triples to have an efficient training,
and these negatives are obtained by negative sampling method. Thus negative sampling becomes a
critical point in knowledge representation learning. That is, in a standard KG, E represents the set
of entities, R represents the set of relations. D+ are sets of the positive triples (h, r,t) contained in a
given graph. D− contain the negative triples obtained through corrupting the head, the tail, or the
relation of a positive triple of D+.

KGE methods are trained through discriminating positive samples from negative ones. The
quality of generated negative samples has a direct impact on the performance of learnt knowledge
representation in a myriad of downstream tasks, such as recommendation, link prediction and node
classification. Poor or too obviously incorrect negative triples fail in facilitating the capture of latent
semantics and easily bring about the zero loss problem. In contrast, high-quality negatives will
ensure that the training smoothly moves on and the learnt knowledge representation performs.

3.3.1.3 Hyperparameter settings

We use Adam optimizer[143] to tune the hyperparameters on the training set. The loss was
calculated using multiclass-nll loss function with margin ∈ {1,2,6,9,12,18,24}. The ranges of
the hyperparameters during the training process are set as follows: embedding dimension k :
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{200,300,350,500,600}, batch size b : {64,128,512,1024,2048}, number of negative samples per
triplet eta : 20,30,50,70,100,150. And finally we use regularization with lambda ∈ {0.0001,0.05}
to prevent the model from overfitting. The embedding initialization follows the Xavier strategy
[144], and we generate the negative samples following < sub ject,ob ject > corruption strategy.
That is, for a triple, we randomly replace the entity in the subject or the object position by another,
but not both at once.

3.3.1.4 Evaluation protocols
We applied three tests to evaluate the performance of link prediction of TransModE. These tests
rely on ranking each positive test triple against all its generated negatives according to its score.
We compute the ranks of the triplets following the filtered scenario, in which the valid entities
outscoring the target one are not taken into consideration while ranking. Rank computation also
requires defining a tie-breaking strategy to apply when multiple entities obtain the same score as the
target one. In our evaluation, we choose to use the most strict policy in which we assign the worst
rank to the target entity.

The first test is Mean Rank (MR) which is calculated as follow:

mean(rankt) ∀t ∈ T (3.16)

with T is the set of positive test triples, and rankt is the rank of triple t against its negatives.
The second evaluation test is Mean Reciprocal Rank (MRR). It is similar to MR, but it uses the

reciprocal rank of a triple instead of its rank, what make it less sensitive to outliers [49]:

mean(1/rankt) ∀t ∈ T (3.17)

The last evaluation test is Hits@N, which counts the test triples having a rank less than or equal
to N.

∑ tN , where tN ∈ T,ranktN >= N (3.18)

3.3.2 Main results

We compare TransModE to several state-of-the-art models, including TransE [45], DistMult [53],
ComplEx [58], RotatE [59], and ModE [145] to show the efficiency of our model in inferring the
relation patterns for link prediction task. Table 3.1 shows the results of the evaluation tests of our
model and the state-of-the-art models based on WN18RR and FB15K-237 datasets respectively.

WN18RR dataset contains composition, symmetry and anti-symmetry relation patterns. Referring
to the results in Table 3.1, we conclude that symmetry pattern is dominating in this dataset. This
outcome can be inferred from:

• The close results of DistMult and TransE, knowing that the first represents only symmetric
relations while the latter represents anti-symmetry and composition patterns. This indicates
the significant presence of symmetry pattern in WN18RR.

• The comparison between the results of RotatE and that of TransE, knowing that the first can
represent symmetry while the latter can’t, meanwhile both can represent composition and
anti-symmetry patterns. In this comparison, RotatE clearly surpasses TransE just because of
its ability to represent symmetry pattern.

• The significant closeness between the results of RotatE and ModE, knowing that the first
can represent anti-symmetry pattern while the latter can’t, meanwhile both can represent
composition and symmetry patterns. This shows the weak presence of anti-symmetry pattern
in WN18RR.
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• The comparison between the results of RotatE and that of complEx, knowing that the first can
represent composition pattern while the latter can’t, meanwhile both can represent symmetry
and anti-symmetry patterns. This shows that the presence of composition pattern in WN18RR
is weak, but it’s better than that of anti-symmetry.

FB15k-237 dataset contains composition, symmetry and anti-symmetry relation patterns. Refe-
rring to the results in Table 3.1, we conclude that composition pattern is dominating in this dataset.
This outcome can be inferred from:

• The comparison between the results of RotatE and that of complEx, knowing that the first can
represent composition pattern while the latter can’t, meanwhile both can represent symmetry
and anti-symmetry
patterns. The clear difference in the results shows the importance of being able to represent
the composition pattern in FB15k-237.

• The significant closeness between the results of RotatE and ModE, knowing that the first
can represent anti-symmetry pattern while the latter can’t, meanwhile both can represent
composition and symmetry
patterns. This shows the weak presence of anti-symmetry pattern in FB15k-237.

• The comparison between the results of RotatE and that of TransE, knowing that the first can
represent symmetry while the latter can’t, meanwhile both can represent composition and
anti-symmetry patterns. This
comparison combined to the two previous comparisons show that this dataset contains more
symmetric relations than anti-symmetric relation, but the dominant pattern is the composition.

In our experiment on WN18RR and FB15k-237, our model surpasses all the models. This
superiority is actually due to TransModE ability to represent complex relations unlike other models
in the experiment. Both TransModE and RotatE can represent all simple relation patterns, but only
TransModE can represent complex relation patterns. This gave TransModE an advantage over its
competitors and this is evident in the results. Based on the inferred points of both datasets, we have
the presence of anti-symmetry pattern is the weaker in both WN18RR and FB15k-237. This can
be also proved through the close results of TransModE and ModE, knowing that our model can
represent anti-symmetry pattern while ModE can’t, meanwhile both can represent all other simple
and complex relation patterns.

3.4 Conclusion

Knowledge graph embedding is among the most prominent link prediction methods that solve the
problem of incompleteness of knowledge graph. In this chapter, we propose a new knowledge graph
embedding model called TransModE, which represents relation between entities as translation
in modulus space. This model has the ability to represent all patterns of simple and complex
relations while preserving low level of complexity. Our experimental results show that TransModE
outperforms the majority of the existing state-of-the art models on two large-scale benchmarks.





4 KEMA++: A Full Representative
Knowledge-Graph Embedding Model

4.1 Introduction

Knowledge graph (KG) rises recently as one of the best ways for knowledge representation. We
have seen the construction of many KGs of different sizes, domains, and coverage, like Freebase
[9], Yago [138], and WordNet [15]. KG is a multi-relational graph built of nodes representing
real world entities such as objects and events. These entities are connected by edges representing
the relations and interactions between them. KG is represented by a set of triplets that shows the
relations linking the entities. KG has proven to be effective in many real-world applications like
recommender systems [139], natural language processing [141], and question-answering [140].

Although a KG may consist of a huge number of entities and relations, it is usually incomplete.
It is impossible for a KG to cover every single entity or relation in whole world, no matter how
huge this KG is. This is called the completeness problem of KG. This challenge represents one
of the main issues facing KGs that researchers are working to solve. Link prediction emerges as
efficient way to overcome the KG completeness problem. Subsequently, link prediction is used to
predict not only the existence of a relation between two entities, but also the specific type of this
relation. However, these predictions are infeasible using traditional methods. So the need for novel
link prediction approaches like Knowledge graph embedding arises. Knowledge graph embedding
(KGE) methods have proven to be very effective applied in link prediction. KGE embeds a KG into a
continuous vector space while preserving certain information of the graph. Generally, KGE replaces
any object (entity, relation, ..) with a vector of continuous numbers holding this object semantics.
Mainly, KGE models differ in how these numeric vectors are used. and divided into three categories
accordingly. The first one is the Translational that consider relations as a motion between entities.
The second category is Tensor factorization that uses tensors for embedding vectors processing. The
third category is the Neural network, in which the embedding vectors are fed to neural networks for
training.

In this chapter, we introduce a novel knowledge graph embedding model based on the modulus
operation called as KEMA. Indeed, KEMA adopts a new way for dealing with embedding vectors
away from translational, tensor factorization, and neural networks. Our model relies on the modular
arithmetic mathematical operation. Since modular arithmetic is an equivalence relation, it helps
handling different types of knowledge graph relations such as symmetry, inversion, and composition.
Moreover, KEMA can deal with relations of complex mapping patterns like one-to-many, many-to-
one, and many-to-many. The limitation of KEMA is its inability to infer anti-symmetric relation.
This issue was overcomed by KEMA++, the enhanced version of KEMA ,that is a full representative
model inferring all simple and complex relation patterns.To prove the effectiveness of our proposed

39
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models KEMA and KEMA++, we evaluate both on a set of knowledge graph benchmark datasets
including FB15k-237 [146] and WN18RR [63], and we compared the results to state-of-the-art
approaches.

The rest of the chapter is organized as follows. Section 4.2 introduces our embedding model
KEMA, explains how it works . Section 4.3 introduces the enhanced version of KEMA: KEMA++,
explains its enhancements and the improvements applied to KEMA. Section 4.4 shows the experi-
mental results of KEMA and KEMA++, and analyses the obtained results. Finally, we conclude the
chapter in section 4.5.

4.2 KEMA Embedding Model

The novel idea behind KEMA is to represent the relation between two entities through modular
arithmetic operation. In other words, the tail embedding vector is considered to be the projection of
the head embedding vector in the modular arithmetic space of the relation embedding vector, as
shown in Equation (4.1).

t = h mod (r) (4.1)

where h, t, and r represent the embedding vectors of the head, the tail and the relation respectively.
The second layer of our model is called KEMA embedding model (see Fig. 4.1), and it shows

the way the embedding vectors are assigned for entities and relations of a given KG. KEMA starts
by assigning random vectors for entities and relations. Then, it modifies these vectors in a way it
satisfies the score function shown in Equation (4.1). First, every index Eh[ j] in the vector of the head
entity Eh is subjected to modular arithmetic operation of modulus r[ j], the j-th index of relation
r. Then, the vector of numbers obtained from this operation is assigned to the tail entity E3 of the
relation r.

4.2.1 KEMA: different relation pattern representation

Despite the simplicity of the calculation process used in KEMA, it has proved to be highly effective
and accurate compared to other models. This simplicity can also be seen in the low complexity of
both training and prediction processes. As well as simple relations, KEMA can effectively handle
complex relations of KG such as 1-N and N-N.

4.2.1.1 KEMA: simple relations
According to the existing literature, three types of simple relation patterns are very important:
symmetric, inverse, and composed patterns. All these patterns are covered by KEMA embedding
model and mathematically proved as follows:

Let a,b,n ∈ Z such that:
a ≡ b(mod n)

=⇒ a−b = kn, for some k ∈ Z
=⇒ b−a = (−k)n and −k ∈ Z
=⇒ b ≡ a(mod n)

Thus KEMA covers symmetric relations.

Let a,b,n ∈ Z such that:
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Figure 4.1 KEMA architecture..

a ≡ b(mod n)
=⇒ a−b = kn, for some k ∈ Z
=⇒ b−a = (−n)k and −n ∈ Z
=⇒ b ≡ a(mod k)

mod(n) is inverse to mod(k).
Thus KEMA covers inverse relations.

Let a,b,n,c ∈ Z, such that:
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Table 4.1 Embedding vectors of Entities and relations.
Entity Embedding vector Relation Embedding vector
Bob [1,2,1,1] Spouse [2,3,2,3]
Alice [1,2,5,1] Child [2,5,4,2]

Valeria [3,2,1,1] Parent [2,4,10,2]

a ≡ b(mod n) and b ≡ c(mod n).
then a = b+ kn,k ∈ Z and b = c+hn,h ∈ Z.

a = b+ kn
=⇒ a = (c+hn)+ kn
=⇒ a = c+(hn+ kn)
=⇒ a = c+(h+ k)n, h+ k ∈ Z .

Hence a ≡ c(mod n) .
Thus KEMA covers composed relations.

4.2.1.2 KEMA: Complex Relations
The majority of the models proposed in the literature can deal with simple relations between
KG entities, i.e 1-to-1 relations. However, relying on simple relationships to build knowledge is
impractical. Contrarily, KEMA has the ability to handle both simple and complex relationships.

Let a,b,n,c ∈ Z such that:
a ≡ b(mod n)

then a = b+ kn, k ∈ Z
=⇒ a = b+(k− c+ c)n
=⇒ a = b+ cn+(k− c)n, k− c ∈ Z .

Hence a ≡ b+ cn(mod n) and a ≡ b(mod n)

Thus KEMA covers 1-N relations.

Given the 1-N relation:

a ≡ b+ cn(mod n) and a ≡ b(mod n)

Since modular arithmetic is symmetric relation, then:

b+ cn ≡ a(mod n) and b ≡ a(mod n)

Thus KEMA covers N-1 relations.
By combining the 1-N and N-1 modular arithmetic relations, we conclude its ability to represent

N-N relation, and thus modulus can represent all the complex relation patterns.

4.2.2 Analytical example

In this section, we illustrate an example to show the effectiveness of KEMA in terms of representing
simple and complex relations. According to the input knowledge graph layer shown in figure 4.1,
the sub-graph shows the relations between three entities. Table 4.1 shows the embedding vectors
that KEMA assigned to every entity and relation.
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Table 4.2 Symmetric relation Example.
Head Relation Tail (result)

[1,2,1,1] [2,3,2,3] [1,2,5,1]
[1,2,5,1] [2,3,2,3] [1,2,1,1]

Table 4.3 Inverse relations Example.
Head Relation Tail (result)

[1,2,5,1] [2,4,10,2] [3,2,1,1]
[3,2,1,1] [2,4,5,2] [1,2,5,1]

The relation “Spouse” is an example of the symmetric relation. In Fig. 4.1, the output layer of
KEMA shows that this relation holds in both directions. Moreover, in Table 4.2, the first row shows
that the tail of the relation "Spouse" with head entity "Bob" is "Alice". On the other hand, the
second row represents the opposite direction, where the tail of the relation "Spouse" with head
entity "Alice" is "Bob".

In Fig. 4.1, the relations "Child" and "Parent" show the inversion pattern of simple relations. In
the first row of the Table 4.3, "Alice" is the head of the relation "Child" while "Valeria" is its tail. In
the opposite direction, the second row shows the relation "Parent", where "Valeria" is the head and
"Alice" is the tail. Then the relations "Parent" and "Child" are said to be inverse.

Furthermore, Fig. 4.1 shows that the relation "Spouse" is a composed relation. Fig. 4.1 shows
that the relation "Child" of head "Alice" and tail "Valeria", followed by the relation "Parent" of head
"Valeria" and tail "Bob", can be replaced by the relation "Spouse" having the same head as "Child",
and the same tail as "Parent".

2 3 2 3

1 2 5 1 1 2 1 13 2 1 1

Child Parent

Spouse

Alice Valeria Bob

Figure 4.2 Composed relation example..

Indeed, the strength of KEMA in terms of representing complex relations is shown through the
relations "Parent" and "Child" in Fig. 4.1. Since "Parent" has one head which is "Valeria", and two
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tails which are "Bob" and "Alice", then it is a complex relation of 1−N mapping pattern. Whereas
"Child" relation has two heads "Bob" and "Alice" connected to one tail "Valeria", representing N-1
pattern.

4.3 Enhanced KEMA: KEMA++

The most influential factor in the success of the existing knowledge graph embedding models is
their ability to model various relation patterns, such as symmetry, antisymmetry, inversion, and
composition. Unfortunately, only few existing models have the ability to model complex relation
patterns along with the simple relation patterns mentioned above. For example, a relation "locatedIn"
can have hundreds of heads, in the case of searching a gas station in a certain city. Meanwhile the
same relationship can have hundreds of tails in the case of distribution of outlet branches across
cities.

In this section, we introduce an enhanced version of KEMA called KEMA++. Indeed, KEMA
model relies on representing the relation between two entities as modular arithmetic mathematical
operation. Such model has the ability to model all simple and complex relation patterns except
anti-symmetric. In this section, we are introducing KEMA++, an enhanced version of KEMA that
is a full representative model inferring all simple and complex relation patterns.

To model the complex patterns like 1-N, N-1 or N-N, KEMA++ takes benefit from the advantages
of modular arithmetic where the projection operation is used to enhance the accuracy of represen-
tations of simple relations, such as symmetric, anti-symmetric, inverse, transitive and composed.
Therefore, the major enhancements of KEMA++ are:

• We combine the modular arithmetic operation used in KEMA with the projection operation.
This step enhanced the modeling accuracy of simple and complex relation patterns.

• Unlike KEMA, KEMA++ can model and infer all simple and complex relation patterns,
particularly the anti-symmetry pattern.

• We add a new pattern to the set of simple relation patterns called as transitive, and we
mathematically prove the ability of KEMA++ to model and infer it.

• We test KEMA++ on a large scale knowledge graphs such as WN18 [45] and FB15K [45] in
order to prove its scalability.

• Beside the analytical study, we add an experimental verification of KEMA++ to test its
efficiency in inferring complex relations, i.e. 1-N, N-1, and N-N.

• We compare the results of KEMA++ to the results of up-to-date models like StructurE [147],
QuatE [148], and ConvR [149]. The results show that KEMA++ gives:

– The best scores in MR and Hits@1 tests for WN18RR dataset, and in Hits@1 for
WN18.

– The second best score in Mean Rank (MR) and Mean Reciprocal Rank (MRR) tests for
WN18 and MRR for WN18RR. As well as, the second best results in Hits@1, Hits@10,
and MRR for FB15K.

4.3.1 KEMA++ Core:

The objective of KEMA++ is to predict the missing links connecting the entities of a given knowledge
graph. First, the targeted knowledge graph is given as an input to KEMA++ model. This model
processes the knowledge graph components and embeds it to a low dimension continuous space.
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Finally, KEMA++ returns a representative numerical vector for every entity and relation in the KG.
These representative numerical vectors are then used for predicting links between KG entities.

KEMA++ is a knowledge graph embedding model that represents each entity by one embedding
vector, and each relation by 2 embedding vectors: rp the embedding vector used for projection of
the head , and rm the embedding vector defining the modular space. For a triplet (h,r,t), KEMA++
plots the result of head projection (h× rp) in modular space of the relation rm to obtain t, as Eq.
(4.2) shows.

t ≡ (h× rp) mod(rm)⇔ t = (h× rp)+ k× rm,∀ k ∈ Z (4.2)

We have × and mod() : Rn ×Rn → Rn.
Let × denote the product between two vectors, that is: [a×b]i = [a]i× [b]i; and Let mod() denote
the modulo of a vector in a modular space having another vector as modulus, that is: a[i]mod(b[i]) =
a[i]− k× [b]i, such that k ∈ Z.

For a triplet (h,r,t) in KEMA++, the closer (h× rp) is to t, the higher the triplet score will be.
This implies that the score function in KEMA++ opposes the distance function in modular space.
For this reason, KEMA++ uses the negation of the distance function in modulus space as a score
function F :

F =−dist(h× rp,t)

F =−min((h× rp − t)mod(rm),(t − (h× rp))mod(rm))

F = max((h× rp − t)mod(rm),(t − (h× rp))mod(rm)) (4.3)

KEMA++ starts by assigning random vectors for entities and relations. Then, it modifies these
vectors in a way it satisfies the score function shown in Eq. (4.3). In Algorithm 1, the head is
multiplied by rp, the relation projection vector. Then the result is plotted to modular space of
modulus rm. The vector of numbers obtained from this operation is assigned to the tail entity t of
the relation r.

Algorithm 1 KEMA++ Algorithm.

Require:
1: h: The embedding vector of the head entity
2: rp: The projection embedding vector of the relation
3: rm: The modulo embedding vector of the relation

Ensure: t: The embedding vector of the tail entity.
4: j = 0
5: while j < h.length do
6: t[ j] = h[ j]× rp[ j]mod(rm[ j])
7: j++
8: end while
9: return t

4.3.2 Types of Relations

Despite the simplicity of the calculation process used in KEMA++ , it has proved to be highly effec-
tive and accurate compared to other models. This simplicity can also be seen in the low complexity
of both training and prediction processes. As well as simple relations, KEMA++ can effectively
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handle complex relations of KG such as 1−N, N −1, and N −N.

4.3.2.1 Simple Relations

In addition to the four simple relation patterns defined in TransModE chapter, we define another
simple pattern called transitive. Then we mathematically prove that KEMA++ perfectly cover them
all. Each of the following lemmas corresponds to a relation pattern proof:

• [Transitive Relation in KEMA++]
For entities x, y, and z, a relation r is a transitive relation, if for any instances (x,r,y) and
(y,r,z) of relation r, (x,r,z) is also an instance of r.

(x,r,y)+(y,r,z) =⇒ (x,r,z) (4.4)

Demostración. Transitive relation can be proven in KEMA++ as follows:

t ≡ (h× rp) mod (rm) and c ≡ (t × rp) mod (rm)

t = h× rp + k× rm and c = t × rp + l × rm

c = h× (rp)
2 + rm(k× rp + l)

c ≡ (h× (rp)
2) mod(rm)

KEMA++ infers transitive pattern ⇔ rp = 1

this Lemma is proved and KEMA++ infers transitive pattern. ■

• [Symmetric Relation in KEMA++]

Demostración. Symmetric relation can be proven in KEMA++ as follows:

t ≡ (h× rp) mod(rm)

t − (h× rp) = k× rm, for some k ∈ Z
(h× rp)− t = −k× rm and − k ∈ Z

h× rp = t − k× rm

h =
1
rp

× t − k
rp

× rm

for rp is equal to 1, we obtain:

h ≡ t ×mod(rm)

rp = 1

Lemma 1 is proved and KEMA++ infers symmetric pattern. ■

• [Anti-Symmetric Relation in KEMA++]:

Demostración. Anti-Symmetric relation can be proven in KEMA++ as folows:
Basing on the proof of lemma 1 we obtain:
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KEMA++ infers Anti-symmetric⇔rp ̸= 1.

Lemma 2 is proved and KEMA++ infers composed pattern. ■

• [Composed Relation in KEMA++]

Demostración. Composed relation can be proven in KEMA++ as follows:

c ≡ (t × rp1) mod(rm1) and t ≡ (h× rp2) mod(rm2)

For k ∈ Z, we obtain: .
c = t × rp1 + k× rm1, and t = h× rp2 + k× rm2

c = (h× rp2 + k× rm2)× rp1 + k× rm1

c = h × (rp2 × rp1)+(k× rm2 × rp1)+ k× rm1

c = h× (rp2 × rp1)) mod ((rm2 × rp1)+ rm1)

The later is a relation composed of :

c ≡ (t × rp1)mod(rm1) and t ≡ (h× rp2) mod(rm2).

Lemma 3 is proved and KEMA++ infers composed pattern. ■

• [Inverse Relation in KEMA++]

Demostración. Inverse relation can be proven in KEMA++ as follows:

t ≡ (h× rp) mod (rm)

t = (h× rp)+ krm, for some k ∈ Z

h = (
1
rp
)× t − (

k
rp
)× rm

h ≡ t × (
1
rp
) mod (

rm

rp
)

The later equation is inverse of : t≡ (h× rp) mod(rm)

Lemma 4 is proved and KEMA++ infers inverse pattern. ■

• [Transitive Relation in KEMA++]

Demostración. Transitive relation can be proven in KEMA++ as follows:

t ≡ (h× rp) mod (rm) and c ≡ (t × rp) mod (rm)

t = h× rp + k× rm and c = t × rp + l × rm

c = h× (rp)
2 + rm(k× rp + l)

c ≡ (h× (rp)
2) mod(rm)

KEMA++ infers transitive pattern ⇔ rp = 1

Lemma 5 is proved and KEMA++ infers transitive pattern. ■
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4.3.2.2 Complex Relations

In contrast to the majority of the existing models, KEMA++ has the ability to perfectly cover all
complex relationships. Here is proves for KEMA++ ability to represent all complex patterns, i.e
1−N, N −1, N −N:

• [1 → N Relation in KEMA++]

Demostración. 1 → N relation can be proven in KEMA++ as follows:

t ≡ (h× rp) mod(rm)

t = (h× rp)+ k× rm

t = (h× rp)+ rm × (k+ c− c)

t +(c× rm) = (h× rp)+(k+ c)× rm

t +(c× rm) = (h× rp) mod (rm)

Hence we obatin:

t +(c× rm) ≡ (h× rp)mod(rm)

and t ≡ (h× rp)mod(rm)

Lemma 6 is proved and KEMA++ infers 1 → N complex pattern. ■

• [N → 1 Relation in KEMA++]

Demostración. N → 1 relation can be proven in KEMA++ as follows:

t ≡ (h× rp) mod(rm)

t = (h× rp)+ k× rm

t = (h× rp)+ rm × (k+ c− c)

t = (h× rp)− (c× rm)+(k+ c)rm

t = ((h× rp)− (c× rm))mod(rm)

Hence we obtain:

t ≡ (h× rp) mod(rm) and
t ≡ ((h× rp)− (c× rm))mod(rm)

Lemma 7 is proved and KEMA++ infers N → 1 complex pattern. ■

• [N → N Relation in KEMA++]

N −N complex relation can have several heads and several tails at once, joining both 1−N
and 1−N patterns. By combining the results and the proves of Lemma 6 and Lemma 7, we
conclude the ability of KEMA++ to represent N → N relation.
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4.3.3 Illustrative example

In this section, we illustrate an example to show the effectiveness of KEMA++ in terms of represen-
ting simple and complex relations, and how it is used to predict missing links in a knowledge graph.
As shown in Fig.4.3, the given knowledge graph is built of 5 entities which are: Father, Mother,
Child1, Child2, Child3; and 4 relations which are:

• “ParentO f " relation: is an anti-symmetric relation, in which head and tail can not be switched.
It also follows the inverse pattern having “ChildO f " as inverse. Moreover, it is a complex
relation following the patterns: 1→N, having more than one tail (Child1,Child2, and Child3)
for one head (Father or Mother); and N → N having more than one tail (Child1, Child2,
and Child3) for more than one head (Father and Mother).

• “ChildO f " relation: is an anti-symmetric relation, in which head and tail can not be switched.
It also follows the inverse pattern having “ParentO f " as inverse. Moreover, it is a complex
relation following the patterns: N → 1, having more than one head (Child1, Child2, and
Child3) for one tail (Father or Mother); and N → N having more than one tail (Father and
Mother) for more than one head (Child1, Child2, and Child3).

• “SisterO f " relation: is a symmetric relation, in which head and tail can be switched. It also
follows the transitive pattern. Moreover, it is a complex relation following the patterns: N → 1,
having more than one head (Child1 and Child2) for one tail (Child3); 1 → N, having more
than one tail (Child2 and Child3) for one head (Child1); and N → N having more than one
tail (Child1, Child2, and Child3) for more than one head (Child1, Child2, and Child3).

• “MarriedTo" relation: This is a symmetric relation, in which head and tail can be switched.
It also follows the Composed pattern, it can be broken down to: ParentO f + Child(1/2/3) +
ChildO f .

After the knowledge graph is given to our model, KEMA++ assigns two random vectors rp
and rm for each relation, and a single random vector for each entity. Then KEMA++ keep
modifying these vectors till it satisfy its function f which is:

t = (h× rp)mod(rm) (4.5)

So that for a triplet (h,r, t) in a modular space of modulus rm, the result of multiplying the
head vector h and the relation project vector rp must be congruent to the tail vector t.

In this example, we fixed the embedding vector size to 2. Table 4.4 shows a single embedding
vector assigned by KEMA++ for each entity in the given knowledge graph. Whereas Table
4.5 shows the projection and the modulo embedding vectors of the relations in the knowledge
graph.

In Table 4.4, the embedding vector of each entity was chosen while taking into account the
pattern of the connected relations, and the position of this entity in these relation (head/tail).

For example, Father embedding vector was determined by KEMA++ in a way that all the
relations connected to this entity holds. The entity Father is:

– the tail of 3 ChildO f relations of different heads(Child 1, Child 2, Child 3),

– the head of 3 ParentO f relations of different tails(Child 1, Child 2, Child 3),

– the head/tail of the symmetric relation MarriedTo.
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Every single connection mentioned in the list above must hold when applied to KEMA++
score function.

In the Table 4.5, we see that the relations MarriedTo and SisterO f have project vectors of
’1’s, that’s due to the fact that they are symmetric and transitive, which is consistent with
lemmasym[KEMA++ ] and lemmatrans[KEMA++ ] in 4.3.2 above. By having project vector
of ’1’s, KEMA++ have the functionality of KEMA model [150], which only assigns modulo
vector for each relation, and this prevents it from representing anti-symmetric relations. The
project and modulo embedding vectors of each relation was chosen while taking into account
the pattern of the relations, and all heads and tails of this relation instances. For example,
ParentO f project and modulo vectors were determined by KEMA++ such that it must hold
for every single connection when applied to KEMA++ score function. The relation ParentO f
has one head (Father/Mother) and three tails(Child 1, Child 2, Child 3)

Father

Mother

Child 1 Child 2 Child 3

ParentOf

ChildOf

SisterOf
MarriedTo

Figure 4.3 Illustrative knowledge graph example..
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Table 4.4 Embedding vectors of Entities .
Entity Embedding vector
Father [5,1]
Mother [35,1]
Child1 [12,25]
Child2 [48,25]
Child3 [66,25]

Table 4.5 Embedding vectors of relations .
Relation Project vector Modulo vector

MarriedTo [1,1] [2,3]
SisterO f [1,1] [6,5]
ParentO f [6,8] [18,7]
ChildO f [5,2] [5,7]

Finally, the obtained embedding vectors shown in Table 4.4 and Table 4.5 are used in predicting
missing links. Unlike the other links in Fig.4.3, the faded orange arrow connecting Child 1
to Child 3 was not fed to KEMA++ model, this is a missing link that we predict according
to the connections in the given knowledge graph. In this case, we have a missing triplet
(Child 1,SisterO f ,Child 3) that we need to test its plausibility. here, we use the embedding
vectors of SisterO f and Child 1 in KEMA++ score function, if the returned result is congruent
to Child 3 embedding vector, then this triplet holds and its true according to KEMA++ ,
otherwise the triplet is false and there is no SisterO f relation connecting Child 1 and Child 3.

4.4 Simulation Results

In this section, we will show the experiment setting to implement our model followed by the
discussion of the obtained results.

4.4.1 Experimental setting

To evaluate our model, we implemented KEMA++ using Ampligraph [142] python library.
Then, we compare it to the state-of-the-art models on commonly used benchmark datasets:
WN18, FB15K, WN18RR, and FB15K-237.

– WN18 is extracted from WordNet [15], which contains semantic knowledge of English
lexical relations and has 40943 entities and 18 relations.

– FB15K is extracted from the large-scale knowledge database Freebase [9], which
describes the general facts in the real world. It has 592,213 entities and 1,345 relations.

– WN18RR is a subset of WordNet, a KG that clusters words into synonym groups and
features lexical relationships between words. It consists of 40,943 entities, 11 relation
types, and 93003 triples. WN18RR contains symmetric, anti-symmetric and composed
relation patterns. The main pattern is the symmetric since almost each word has a
symmetric relation in WN18RR, e.g., also− see and similar− to [59].

– FB15K-237 is a subset of Freebase, a large knowledge graph that stores general know-
ledge facts. It consists of 14951 entities, 237 relation types, and 310116 triples. The
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main patterns of the relation in FB15K are symmetric, anti-symmetric and composed
[59].

We use Adam optimizer[143] to tune the hyperparameters on the training set. We calculate
the loss using multiclass-nll loss function with margin 1, 2, 6, 9, 12, 18, 24. The ranges of the
hyperparameters during the training process are set as follows: embedding dimension k : 200,
300, 350, 500, 600, 700, 900, batch size b : 64, 52, 96, 128, 512, 1024, 2048, number of negative
samples per triplet eta : 20, 30, 50, 70, 100, 150. And finally we use regularization with lambda
0.0001, 0.05 to prevent the model from overfitting. The embedding initialization follows the
Xavier strategy [144], and we generate the negative samples following < sub ject,ob ject >
corruption strategy. That is, for a triple, we randomly replace the entity in the subject or the
object position by another, but not both at once. This is what is called the local closed world
assumption.

We applied three tests to evaluate the performance of link prediction of KEMA++ . These
tests rely on ranking each positive test triple against all its generated negatives according to
its score. We compute the ranks of the triplets following the filtered scenario, in which the
valid entities outscoring the target one are not taken into consideration while ranking. Rank
computation also requires defining a tie-breaking strategy to apply when multiple entities
obtain the same score as the target one. In our evaluation, we choose to use the most strict
policy in which we assign the worst rank to the target entity The first test is Mean Rank (MR)
which is calculated as follow:

mean(rankt) ∀t ∈ T (4.6)

with T is the set of positive test triples, and rankt is the rank of triple t against its negatives.

The second evaluation test is Mean Reciprocal Rank (MRR). It is similar to MR, but it uses
the reciprocal rank of a triple instead of its rank, what make it less sensitive to outliers [52]:

mean(
1

rankt
) ∀t ∈ T (4.7)

The last evaluation test is Hits@N, which counts the test triples having a rank less than or
equal to N.

∑ tN , where tN ∈ T,ranktN >= N (4.8)

4.4.2 Main Results

In order to evaluate the link prediction task in the KG, we conducted a set of extensive
experiments on four common datasets , i.e. mentioned above. Tables 4.6 and 4.7 show the
main results of our proposed model KEMA++ along with the results of several state of the art
methods. The following observations are eminent based on the results shown on Table 4.6:

– Regarding WN18RR, KEMA++ obtains the best scores with respect to MR and Hits@1,
which is better than the recent state of the art RotatE, Rot-Pro, ReflectE, StructurE, and
QuatE. Moreover, KEMA++ obtains the second best score for the MRR test. Hits@1 is
improved by 18% compared to state of the art, and 1.7% with respect to KEMA. In
addition, our model improve MR test by 18.2% compared to state of the art and 0.3%
compared to KEMA.
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– Regarding FB15K-237, KEMA++ shows important results compared to all state of the
art models in terms all the tests, i.e. MR, MRR, H@1, H@3 and H@10. Particularly,
KEMA++ applied on FB1K-237 outperforms all results of KEMA according to the
following percentages: 20% on MR, 9.8% on MRR, 10% on Hits@1, 10.7% on
Hits@3, and 9.1% for Hits@10. This is due to the fact that 95% of FB15K-237
relations are anti-symmetry [151] where KEMA++ can work perfectly.

Table 4.7 shows the results of our experiments on two large scales datasets, i.e. WN18 and
FB15K. The test leakage, which counts for the triples existing in both the training and testing
sets, accounts for almost 81% of the triples in the test set of FB15K and 94% WN18 [146].
The observations shown in Table 4.7 are as follows:

– Regarding FB15K, KEMA++ obtains the second best scores for each of MRR, Hits@1
and Hits@3 with a small difference compared to those obtained with the model having
highest score. Similarly, KEMA++ achieved a high MRR score (i.e. 0.801) compared
to StructurE that achieved a near results with a difference less than 0.004.Furthermore,
KEMA++ and StructurE outperform all other models in terms of Hits@1 with close
scores of 0.747 and 0.750 respectively. Lastly, KEMA++ achieves a high Hits@10
score, i.e. 0.893, just after the QuatE model that achieved the best score, i.e. 0.900.

– Regarding WN18, KEMA++ achieved the best Hits@1 score (i.e. 0.950) followed by
ConvR model, with a percentage of 0.32%. Whereas, KEMA++ achieved the second
best score with respect to MRR compared to the best model, i.e. ConvR, with a small
difference of 0.001.

Table 6 shows the scores of KEMA++ for different complex relation patterns in FB15K. For
the head prediction process, the results show that KEMA++ achieved a competitive results
compared to other models as follows:

– It achieved the second best scores in both Hits@10 and MRR for N-N pattern.

– It achieved the second best Hits@10 score for both 1-N and N-1 patterns.

– It achieved the second best Hits@10 score for 1-1 pattern.

Similarly, KEMA++ achieved a competitive results for the tail prediction process as follows:

– The best Hits@10 score for 1-N pattern that improves the result by 0.2%.

– The second best Hits@10 score for 1-1 pattern.

4.4.3 Further Analysis

Table 7 shows the score functions used in each model while comparing their complexities
in terms of the variable number needed for each model. By analyzing the complexity in
ascending order, the results show the following:
1) KEMA and TransE have the lowest complexity compared to other models, because both of
them assign one embedding vector for each entity and one embedding vector each relation.
Subsequently, the complexity of KEMA is less than that of TransE.

2) KEMA++ complexity is a bit more than that of KEMA and TransE models. This is due
to the fact that KEMA++ assigns one embedding vector for each entity, but two embedding
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Table 4.9 Comparison of knowledge graph embedding models in terms of scoring functions and
complexity.

Model Score Function Complexity
TransE |h + r - t| O( |E|d + |R|d)

Complex hT R t O(2|E|d +2|R|d)
RotatE -||h ⊙ r− t|| O(2|E|d +2|R|d)

O(|E|de + |R|dr+
ConvR g(W g([h]⊛ wr)+b)T t T dr +T de(2dem

−mw +1)
×(den

−nw +1))
QuatE h⊗ r

|r| .t O(2|E|d +2|R|d)
KEMA min((h− t)%r,(t −h)%r) O(|E|d + |R|d)

KEMA++ min(((h× rp)− t)%rm,(t − (h× rp))%rm) O(|E|d +2|R|d)

vectors for each relation. However, such increasing of complexity has allowed KEMA++ to
outperform the performance of both TransE and KEMA models.
3) ComplEx, RotatE, and QuatE share the same complexity levels. The main difference
between those models is that complEx is an aged model with limited performance unlike
RotatE and QuatE that achieve competitive results.
4) ConvR has the highest complexity compared to other models, because it is based on deep
learning architecture that have more variable to be tuned.
According to this analysis, we conclude that a model must be chosen according to three
factors: dataset, complexity and performance. We strongly believe that KEMA++ is the best
model since it can deal with all types of relation while preserving a low complexity.

4.5 Conclusion

Link prediction is among the most prominent methods that solve the problem of incom-
pleteness of Knowledge graph. It is used to predict the existence and the type of a relation
connecting two entities. The more the knowledge graph is well represented, the more the
predictions are accurate. In this chapter, We proposed a novel knowledge graph embedding
model (KEMA++ ) that relies on both projection and modular space to represent relations
between entities. The main strength of our model lies in its ability to represent all simple and
complex patterns: symmetric, anti-symmetric, inverse, transitive, composed, 1−N, N −1,
and N−N relations. The results of our experiments show that KEMA++ achieves good results
compared to the state-of-the-art models in representation accuracy while preserving low level
of complexity.





5 Conclusion and Perspectives

This thesis investigates the methods exploiting different features from the KGs for KGC: Link
Prediction in KGs including head and tail prediction, triple classification, and Entity Type
Prediction. The embeddings of entities and relations represented by low-dimensional vector
have proven to be beneficial for KGC as shown in literature review presented in Chapters 3
shows. However, the powerful features of KG are still not being used to their best extent. In
this thesis, several embedding-based models leveraging these features are proposed to predict
the missing links in the KG. The contributions made in this thesis are summarized in this
chapter and the prospective areas for future research.

5.0.1 Conclusions

In this thesis we have tackled several problems related to knowledge graph embedding models.

First, Chapter 1 introduced the concepts of knowledge graph after a brief introduction to
graphs. Chapter 1 defines and give examples of some basic concepts of knowledge graph
domain such as triplets, relations, and literals. Then it mentions some knowledge graph
applications, and shows the graph dependency of some public use applications. Later the
chapter discusses the challenges facing Knowledge graphs, before defining the types of
knowledge graphs with examples of each type. The chapter ends with the section explaining
the general component of a knowledge graph embedding model, and listing the tasks this
model can handle.

Chapter 3 introduce TransModE, an embedding model relying on transition in modular space.
Before explaining the core of the model, the chapter lists and defines all the patterns of
simple and complex relations. Then an overview on the modular arithmetic operation is
given, to recall its rules of negation, distancing, and others. In the core of TransModE model,
the chapter explains the details of the scoring function this model relies on. Moreover, the
chapter mathematically proves the ability of TransModE to represent all simple and complex
patterns. Last, the simulation results are shown in tables proving the efficiency of the model
in comparison to the models existing in the literature.

Chapter 4 proposes another knowledge graph model called KEMA++. This model is an
enhanced version of the model KEMA, knowledge graph embedding model using modular
arithmetic. KEMA is a low complexity, high efficiency model. The score function of KEMA
takes the advantage of the modular arithmetic operation to guide the head of a relation to its
missing tail. KEMA scores a promising results, knowing that it can represent all simple and
complex patterns except anti-symmetric. Beside its high efficiency, an important feature of
KEMA is it simplicity, reflecting low time complexity. To overcome the shortage of inability
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of KEMA to represent anti-symmetric relations, KEMA++ is introduced through upgrading
the scoring function. KEMA++ preserves the low time complexity meanwhile it improves the
representation ability. Mathematical equations show that all simple and complex patterns are
perfectly represented by KEMA++. Lastly, the simulation results are shown in tables proving
the efficiency of the model in comparison to the models existing in the literature.

5.0.2 Open issues and future work

This dissertation will encourage different opportunities to pursue open challenges that have
not been addressed so far. This section discusses the open issues of this thesis and possible
directions for future work.
This thesis focuses on predicting the missing links within a KG. However, link prediction
can be more generalized, so it can be performed across multiple KGs to predict the missing
links between the two same entities across KGs. This task is known as Entity Alignment, and
it relies on predicting links between entities of different KGs that each has its own point of
view of a certain domain. Entity Alignment can be achieved by learning the embedding of
the entities and the relations of the KGs separately then learning a supervised model to align
the entities and the relations. Next the KGs are joined into the unified space. The proposed
KG embedding models in this thesis TransModE, KEMA and KEMA++ can be used as a
base model to embed the KGs.
Our proposed KGE models focus on learning the embedding vectors of the entities and
relations of a knowledge graph depending on the graph itself. However, a vast amount of data
sources can be incorporated beside the KG, what may enhance the quality of the data in the
KG, and help obtaining more accurate embeddings, and therefore predict more missing links.
Another limitation of the thesis is that the proposed models are evaluated on open source
datasets. In future, it would be interesting to test the performance of our proposed link predic-
tion models on enterprise KGs, where the quality of the data is better and the performance of
the models for sure will be perfect.
In conclusion, it is anticipated that the contributions from this thesis will lead to rapid
advancement in the techniques used for KG-based representation and its applications in
different domains.
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