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ABSTRACT

The forthcoming sixth generation (6G) of wireless communication systems is
expected to enable a wide range of new applications in vehicular communication, which is
accompanied by a diverse set of challenges and opportunities resulting from the demands
of this cutting-edge technology. In particular, these challenges arise from dynamic channel
conditions, including time-varying channels and nonlinearities induced by high-power
amplifiers. In this complex context, wireless channel estimation emerges as an essential
element in establishing reliable communication. Furthermore, the potential of machine
learning and deep learning in the design of receiver architectures adapted to vehicular
communication networks is evident, given their capabilities to harness vast datasets, model
complex channel conditions, and optimize receiver performance. Throughout the course
of this research, we leveraged these potential tools to advance the state-of-the-art in
receiver design for vehicular communication networks. In this manner, we delved into the
characteristics of wireless channel estimation and the mitigation of nonlinear distortions,
recognizing these as significant factors in the communication system performance. To
this end, we propose new methods and flexible receivers, based on hybrid approaches
that combine mathematical models and machine learning techniques, taking advantage
of the unique characteristics of the vehicular channel to favor accurate estimation. Our
analysis covers both conventional wireless communications waveform and a promising 6G
waveform, targeting the comprehensiveness of our approach. The results of the proposed
approaches are promising, characterized by substantial enhancements in performance
and noteworthy reductions in system complexity. These findings hold the potential for
real-world applications, marking a step toward the future in the domain of vehicular
communication networks.

Keywords: Vehicular communication. Nonlinear Distortions. Channel
Estimation. Machine Learning.



RÉSUMÉ

La futur sixième génération (6G) de systèmes de communication sans fil devrait
permettre un large éventail de nouvelles applications dans le domaine de la communication
véhiculaire, ce qui s’accompagne d’un ensemble varié de défis et d’opportunités résultant
des exigences de cette technologie de pointe. En particulier, ces défis découlent des
conditions dynamiques des canaux, y compris les canaux variables dans le temps et les
non-linéarités induites par les amplificateurs de puissance. Dans ce contexte complexe,
l’estimation des canaux sans fil apparaît comme un élément essentiel pour établir une
communication fiable. En outre, le potentiel de l’apprentissage automatique et de
l’apprentissage profond dans la conception d’architectures de récepteurs adaptées aux
réseaux de communication véhiculaires est évident, étant donné leurs capacités à exploiter
de vastes ensembles de données, à modéliser des conditions de canal complexes et à
optimiser la performance des récepteurs. Au long de cette recherche, nous avons tiré
parti de ces outils potentiels pour faire progresser l’état de l’art en matière de conception
de récepteurs pour les réseaux de communication véhiculaires. Ainsi, nous avons exploré
les caractéristiques de l’estimation des canaux sans fil et de l’atténuation des distorsions
non linéaires, en reconnaissant qu’il s’agit de facteurs importants pour la performance
des systèmes de communication. À cette fin, nous proposons de nouvelles méthodes et
des récepteurs flexibles, basés sur des approches hybrides qui combinent des modèles
mathématiques et des techniques de l’apprentissage automatique, en tirant parti des
caractéristiques uniques du canal véhiculaire pour promouvoir une estimation précise.
Notre analyse couvre à la fois la forme d’onde des communications sans fil conventionnelles
et une forme d’onde prometteuse de la 6G, ce qui démontre la complétude de notre
approche. Les résultats des approches proposées sont prometteurs, caractérisés par des
améliorations substantielles de la performance et des réductions notables de la complexité
du système. Ces résultats offrent un potentiel pour des applications dans le monde
réel, marquant un pas vers l’avenir dans le domaine des réseaux de communication
véhiculaires.

Mots clés: Communication véhiculaire. Distorsions non linéaires. Estimation
du canal. Apprentissage automatique.



RESUMO

Espera-se que a futura sexta geração (6G) de sistemas de comunicação sem fio
possibilite uma ampla gama de novas aplicações na comunicação veicular, o que deve
ser acompanhado por um conjunto diversificado de desafios e oportunidades resultantes
das demandas dessa tecnologia de ponta. Em particular, esses desafios decorrem das
condições dinâmicas do canal, incluindo canais que variam no tempo e não linearidades
induzidas por amplificadores de alta potência. Nesse complexo contexto, a estimativa
de canal sem fio surge como um elemento essencial para estabelecer uma comunicação
confiável. Além disso, o potencial do aprendizado de máquina e do aprendizado profundo
no projeto de arquiteturas de receptores adaptadas às redes de comunicação veicular é
evidente, dadas as capacidades desses métodos em aproveitar vastos conjuntos de dados,
modelar condições complexas de canal e otimizar o desempenho do receptor. Ao longo
desta pesquisa, aproveitamos essas ferramentas potenciais para avançar o estado da arte no
projeto de receptores para redes de comunicação veicular. Dessa forma, aprofundamos as
análises sobre as características da estimativa de canal sem fio e a atenuação de distorções
não lineares, reconhecendo-as como fatores significativos no desempenho do sistema de
comunicação. Para isso, propusemos novos métodos e receptores flexíveis, com base em
abordagens híbridas que combinam modelos matemáticos e técnicas de aprendizado de
máquina, aproveitando as características do canal veicular para favorecer uma estimativa
precisa. A nossa análise abrange tanto uma forma de onda padrão de comunicações
sem fio como uma forma de onda promissora ao 6G, visando a compreensão da nossa
abordagem. Os resultados das abordagens propostas são promissores, caracterizados por
melhorias substanciais no desempenho e reduções notáveis na complexidade do sistema.
Essas descobertas têm potencial para aplicações no mundo real, marcando um passo em
direção ao futuro no domínio das redes de comunicação veicular.

Palavras-chave: Comunicação Veicular. Distorções Não-lineares. Estimação de
Canal. Aprendizado de Máquina.



RÉSUMÉ DES TRAVAUX DE THÈSE

Chapitre 1 - Introduction

En réponse à la demande croissante de débits de données plus élevés, de fiabilité
et de connectivité, le domaine dynamique des systèmes modernes de communication sans
fil présente des défis importants pour les applications attendues dans les prochaines
générations de télécommunications. En particulier, la communication véhicule-à-tout
(V2X) est un sujet majeur pour le développement de solutions dans le cadre des futures
applications 6G et présente des défis en ce qui concerne la complexité des solutions et leur
applicabilité à ces scénarios hautement variables et dynamiques [1].

Dans ce contexte, il est extrêmement important d’estimer le canal sans fil
avec une qualité suffisante pour garantir une communication fiable, car cela affecte
considérablement les performances globales du système et permet d’en exploiter tout
le potentiel. En outre, pour répondre aux demandes futures, l’intégration d’outils
d’intelligence artificielle est apparue comme un nouveau paradigme pour l’évolution des
réseaux du futur [2]. En ce sens, ce travail est motivé par le potentiel des outils de
l’apprentissage automatique et en particulier de l’apprentissage profond pour concevoir
de nouvelles architectures de récepteurs capables de s’adapter aux conditions dynamiques
du canal, en particulier dans le contexte des réseaux V2X, qui sont caractérisés par des
canaux variant dans le temps et des non-linéarités dues à la présence d’amplificateurs de
puissance.

Dans cette thèse, nous proposons d’explorer la combinaison de stratégies
classiques avec des techniques d’apprentissage profond pour concevoir des récepteurs.
L’analyse commence par l’OFDM, une forme d’onde largement utilisée dans les normes
de communication sans fil et montre que cette combinaison permet une amélioration
significative des performances, ainsi qu’une réduction de la complexité, pour différents
scénarios et aspects pris en compte dans l’analyse. Cette étude est ensuite étendue à
l’application de la méthode proposée à une forme d’onde candidate pour lesréseaux V2X
à forte mobilité, montrant son potentiel en tant que technique prometteuse pour de futures
applications dans le monde réel.



Objectifs de la thèse

L’objectif principal de cette thèse est d’explorer l’application des techniques de
l’apprentissage profond dans la conception de nouvelles architectures de récepteurs pour
les communications V2X, en tenant compte de leur nature variable dans le temps et des
effets non linéaires induits par les amplificateurs de puissance. Les objectifs de cette
recherche sont donc les suivants:

• Étudier les exigences et les défis spécifiques présentés par les futurs scénarios de
communication sans fil, en particulier dans le domaine des communications V2X;

• Proposer des algorithmes robustes basés sur l’aprendissage profond capables de
suivre les canaux véhiculaires, en tenant compte de leur nature dynamique;

• Explorer des approches permettant de réduire la complexité des architectures
proposées.

Chapitre 2 - Principes fondamentaux

Communication véhiculaire multiporteuse

Dans les systèmes de communication sans fil, le signal reçu est : le résultat de
superposition de plusieurs versions retardées et atténuées du signal émis. Ce phénomène,
appelé évanouissement, est influencé par l’effet des multitrajets du canal ainsi que l’effet
Doppler. Le phénomène de multitrajet entraîne un évanouissement sélectif en la fréquence.
D’autre part, l’effet Doppler est causé par la vitesse relative entre l’émetteur et le
récepteur, entraînant une sélectivité dans le domaine temporel.

En raison de ces deux effets, le canal de communication sans fil présente une
double sélectivité, variant à la fois en temps et en fréquence. Un canal doublement
sélectif peut être présenté dans le domaine dit délai-Doppler (delay-Doppler - DD), par
une réponse parcimonieuse quasi-statique avec des impulsions associées à des retards-
Doppler différents.

La transmission multiporteuse est largement utilisée pour déployer des systèmes
de communication sans fil afin d’éviter les problèmes liés à la propagation par trajets
multiples. Ces schémas de modulation divisent la transmission en un format structuré
dans lequel plusieurs symboles sont envoyés simultanément sur plusieurs fréquences dites
sous-porteuses..



La modulation OFDM (Orthogonal Frequency Division Multiplexing) est l’un des
schémas de modulation multiporteuse les plus importants, largement utilisé dans diverses
normes de systèmes de communication sans fil. D’autres formes d’onde multiporteuses
ont été proposées pour répondre à des défis et à des exigences spécifiques dans les systèmes
de communication sans fil. Une forme d’onde notable est la modulation Orthogonal Time
Frequency Space Modulation (OTFS), introduite dans [3], qui se distingue comme une
forme d’onde prometteuse pour les futurs systèmes de communication véhiculaire.

Bien que les systèmes de modulation multiporteuse offrent des avantages tels
qu’une efficacité spectrale élevée et une réduction des interférences inter-symboles, ils
présentent des inconvénients liés au facteur de crête (Peak-to-Average Power Ratio -
PAPR) élevé du signal transmis [4], qui est dû à l’utilisation d’un grand nombre de sous-
porteuses pour la transmission du signal. Par conséquent, la transmission multiporteuse
peut nuire considérablement à l’efficacité des amplificateurs de puissance fonctionnant
dans des régions non linéaires, ce qui peut entraîner une dégradation de l’information.
Dans les systèmes de communication sans fil, un PAPR élevé peut avoir une incidence
négative sur l’efficacité de l’amplificateur de puissance.

Techniques d’apprentissage automatique

Les réseaux de neurones profonds (Deep Neural Networks - DNNs) représentent
une partie fondamentale des techniques d’apprentissage automatique [5]. Ce type
de réseau neuronal artificiel se caractérise par plusieurs couches interconnectées, dans
lesquelles chaque couche est constituée d’un ensemble de noeuds, généralement appelés
neurones ou unités, qui effectuent des calculs et des transformations spécifiques sur les
données d’entrée.

Les LSTMs sont des blocs/unités neuronales qui conviennent pour traiter et
faire des prédictions basées sur des séquences de données [6]. Contrairement aux DNN
traditionnels, les réseaux LSTM ont la capacité de capturer les dépendances à long terme.
Cela est possible grâce à des unités passerelles internes capables de maintenir le contenu
de la mémoire de données et, en même temps, d’employer des structures capables de
décider quand conserver ou remplacer l’information dans ces cellules. Par conséquent, ces
caractéristiques de traitement avancées des réseaux LSTM leur permettent d’apprendre
la corrélation du canal au fil du temps et de s’adapter aux estimations du canal.

Comme pour les DNN, l’entraînement des réseaux LSTM implique l’ajustement de
ses paramètres internes à l’aide de techniques visant à minimiser la fonction de perte. Une
fois entraînés, les réseaux LSTM peuvent être utilisés pour la prédiction et la génération



de séquences, ainsi que pour d’autres tâches nécessitant une compréhension des modèles
temporels.

Chapitre 3 - Modèle du système

Cette thèse est basée sur la norme IEEE 802.11p, qui est un sous-ensemble du
protocole Wi-Fi et prend en charge la transmission de données pour la communication
véhiculaire. Ainsi, cette étude prend en compte deux modèles différents de HPA ainsi que
le scénario de mobilité. Dans un premier temps, nous examinons le modèle HPA sans
mémoire, en désignant le signal d’entrée par x(t) et la sortie est donnée, selon le théorème
de Bussgang [7], par

umless(t) = x(t)+ δ(t),

où δ̃(t) présente la distorsion non linéaire et γ0 décrit un gain complexe et δ(t) = δ̃(t)/γ0

est la distorsion non linéaire restante de l’amplificateur de puissance.

Les HPA sans mémoire modélisent efficacement le comportement à bande large
des amplificateurs. Cependant, en règle générale, une augmentation de la largeur de
bande devrait introduire un effet de mémoire plus important dans le signal amplifié [8].
Il existe différentes représentations connues des amplificateurs de puissance dans les
communications à large bande pour approximer le comportement non linéaire avec des
structures de mémoire. En particulier, le modèle Hammerstein [9] considère un HPA
non linéaire sans mémoire en cascade avec un filtre à réponse impulsionnelle finie (Finite
Impulse Response - FIR) pour modéliser les effets de la mémoire [10].

Enfin, le canal sans fil considéré suit le modèle de canal véhiculaire décrit
dans [11], où les caractéristiques de retard du canal sont fournies pour différents
environnements. La caractérisation est basée sur des mesures réelles avec un ou deux
véhicules se déplaçant à des vitesses différentes, où les profils d’intensité du canal
sont présentés en tant que fonction des retards de trajet et des gains de puissance
moyens, étant donné le profil de retard de puissance du canal (Power Delay Profile -
PDP), statistiquement décrit par une distribution d’évanouissement de Rayleigh avec
une densité spectrale de puissance Doppler. Les scénarios modélisés comprennent la
communication entre les véhicules (Vehicle to Vehicle - V2V) et entre les véhicules
et l’infrastructure (Roadside to Vehicle - R2V) dans des environnements présentant
différentes caractéristiques de trafic et de vitesse.

Chapitre 4 - État de l’art sur l’estimation du canal

véhiculaire



Ce chapitre présente l’état de l’art des méthodes d’estimation des canaux V2X
considérées comme une référence dans ce travail. Il convient de noter que nous nous
intéressons à une approche dite symbole par symbole, où l’estimation l’estimation du
canal est effectuée pour chaque symbole reçu séparément en utilisant uniquement les
pilotes précédents et actuels reçus, sans augmenter la latence de l’application [12].

La méthode de base considérée pour fournir une estimation du canal dans
la norme IEEE 802.11p est l’estimateur LS, qui utilise des symboles d’apprentissage
prédéfinis pour obtenir une estimation dans le domaine des fréquences pour chaque
sous-porteuse. La méthode Data Pilot-Aided (DPA) utilise quant à elle le symbole
reçu précédemment comme préambule pour estimer le canal du symbole actuel. Cette
méthode démarre avec une estimation LS du premier symbole reçu. L’amélioration
consiste à exploiter les caractéristiques de corrélation entre les symboles adjacents dans
la transmission OFDM. Toutefois, la performance de ce système est fortement influencée
par la fiabilité des pilotes de données, qui tend à se dégrader en raison de la dynamique
sévère des canaux véhiculaires [13]. La méthode Spectral Temporal Averaging (STA) est
présentée dans [14], dans laquelle une moyenne des canaux estimés dans les domaines
temporel et fréquentiel est réalisée après l’estimation DPA.

Pour améliorer les performances des estimateurs conventionnels, les auteurs
dans [15] et [16] ont envisagé un DNN pour le post-traitement des estimateurs DPA
et STA, respectivement. L’objectif du DNN utilisé est de minimiser l’erreur quadratique
moyenne (Mean Squared Error - MSE) entre l’information parfaite sur l’état du canal
(Channel State Information - CSI) et l’estimation conventionnelle.

Afin de procéder à une analyse préliminaire des performances des estimateurs
de canal lorsqu’ils sont appliqués à la norme IEEE 802.11p en présence de distorsions
dues à des non-linéarités HPA sans mémoire, cette section présente des comparaisons de
performance des estimateurs DPA et STA [14], ainsi que des estimateurs basés sur les
DNN tels que DPA-DNN [15] et STA-DNN [16].

Les résultats obtenus montrent la supériorité des méthodes basées sur les DNN
pour l’estimation du canal, de sorte que l’utilisation des DNN en tant que processus non
linéaire améliore considérablement les performances des estimateurs conventionnels, en
ajoutant la capacité d’apprendre des caractéristiques sur le canal et en réduisant l’erreur
entre son estimation et le canal idéal, même lorsqu’il est affecté par des non-linéarités. En
outre, quand les distorsions HPA sont prises en compte lors de l’apprentissage des DNNs,
ces estimateurs surpassent le taux d’erreur binaire (Bit Error Rate - BER) fourni par



Absence des distorsions de HPA. Avec des distorsions de HPA.

– Performance des estimateurs conventionnels et des estimateurs basés sur les
DNN.

les estimateurs conventionnels dans les différents scénarios considérés, pouvant atteindre
10−2 à ξ = 20 dB, alors que les estimateurs conventionnels souffrent d’une dégradation
significative de performance.

Selon la littérature existante, les méthodes basées sur les réseaux LSTM sont plus
performantes que les réseaux de neurones profonds classiques lorsqu’il s’agit d’estimer des
canaux V2X [12, 17]. Toutefois, ce gain de performance se fait au prix d’une complexité
accrue. Reconnaissant à la fois les avantages et les limites, cette thèse propose une nouvelle
approche qui est également basée sur les réseaux LSTM. Cependant, une méthode est
envisagée pour réduire considérablement la complexité de l’estimateur, atténuant ainsi
ce compromis. Une analyse complète des performances est effectuée, comparant les
performances des méthodes de référence employant des DNN, des réseaux LSTM et notre
propre proposition d’architecture.

Chapitre 5 - Proposition d’estimation du canal basée sur

les réseaux LSTM

Ce chapitre présente une nouvelle architecture de récepteur basée sur
l’apprentissage proposée pour estimer le canal V2X. La méthode DPA-LSTM-NN
comporte trois structures principales qui sont fondamentales pour ses performances. En
outre, cette méthode prend en compte un processus d’échantillonnage de sous-porteuses
à l’entrée de les réseaux LSTM, ce qui réduit le nombre de sous-porteuses actives prises
en compte pour l’estimation du canal afin d’interpoler les informations manquantes sur
les sous-porteuses et de réduire la complexité de la solution.



Parmi les caractéristiques de la méthode, il y a la prise en compte d’une estimation
initiale plus fiable au moyen de l’estimation DPA. La DPA est capable d’apprendre les
caractéristiques temporelles et fréquentielles du canal et de reconstruire l’estimation aussi
proche que possible de la réponse idéale du canal. Ensuite, l’étage LSTM est conçu pour
traiter des données séquentielles, en étant capable d’apprendre la corrélation du canal
dans le temps et de prédire avec efficacité les réalisations futures du canal sur la base des
observations précédentes. Il s’agit d’un élément clé pour traiter les effets non linéaires de
le HPA. En complément, un NN est utilisé comme étape supplémentaire de compensation
du bruit.

Échantillonnage des
Sous-porteuses

LSTM
NN

DPA

ĥDPAi−1
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– Méthode DPA-LSTM-NN proposée.

Dans un premier temps, nous avons considéré un modèle de HPA non linéaire
sans mémoire. Les performances du schéma DPA-LSTM-NN proposé sont évaluées et
comparées aux performances des schémas DPA-DNN [15], LSTM-NN-DPA [17] et LSTM-
DPA-TA [18] dans des scénarios avec différentes vitesses, ordres de modulation et niveaux
de non-linéarité.

À titre d’exemple, les performances en termes de BER des schémas d’estimation
utilisant la modulation 16-QAM pour les scénarios de mobilité élevée sont analysées,
où il est possible d’obtenir un gain de performance significatif pour l’estimateur DPA-
LSTM-NN proposé, surpassant les autres solutions quel que soit le niveau de bruit. Il est
également important de souligner que le DPA-LSTM-NN proposé est le seul estimateur
capable d’atteindre un BER de l’ordre de 10−4 dans les différents scénarios, ce qui
est nécessaire pour de nombreuses applications pratiques attendues pour les futures
communications véhiculaires.

Nous avons ensuite étendu l’analyse en considérant un modèle non linéaire de
HPA avec effet mémoire. L’analyse des performances compare les estimateurs LSTM-NN-
DPA [17], LSTM-DPA-TA [18] et DPA-LSTM-NN dans des scénarios avec des modèles
HPA avec des effets de mémoire ayant un impact sur la communication entre une
infrastructure installée sur une route et un véhicule récepteur l’approchant à une vitesse de
v= 50 km/h. La comparaison, avec le cas de l’amplificateur sans mémoire, révèle une forte



v = 100 km/h. v = 200 km/h.

– Performance des estimateurs DPA-DNN [15], LSTM-NN-DPA [17], LSTM-DPA-
TA [18] et DPA-LSTM-NN (proposée) pour une modulation 16-QAM dans le cas
d’un HPA sans mémoire.

dégradation en termes de BER due à la non compensation de la sélectivité fréquentielle
causée par l’effet mémoire du HPA. Nous avons montré ensuite qu’il est possible de pallier
à ce problème en appliquant une pré-compensation de cette sélectivité en fréquence. En
outre, le DPA-LSTM-NN présente un avantage par rapport aux autres solutions dans le
cas d’un HPA non-linéaire avec effet mémoire.

Nous avons ensuite analysé la complexité de de chacun de ses schémas
d’estimation de canal. Celle-ci est exprimée en nombre d’opérations requises en fonction
du nombre de sous-porteuses. Il convient de noter que le schéma DPA-LSTM-NN proposé
présente les coefficients les plus faibles pour les facteurs les plus importants associés au
nombre de sous-porteuses actives Kon dans les opérations de multiplication et de division,
ce qui a la plus grande incidence sur la complexité des estimateurs considérés. En outre,
on peut constater que l’estimateur DPA-LSTM-NN proposé avec échantillonnage de sous-
porteuse nécessite 49,9% de moins d’opérations en valeur réelle en moins que les autres
solutions basées sur les LSTM et 16,7% de moins d’opérations en valeur réelle que le
schéma DPA-DNN, et qu’il présente une amélioration significative des performances en
matière de réduction des erreurs d’estimation.

Ensemble learning pour la généralisation de l’estimation des canaux
véhiculaires

Comme d’autres récepteurs dans la littérature [16–18], le schéma DPA-LSTM-NN
considère l’entraînement sur un modèle de canal spécifique, bien que les caractéristiques du
canal soient sujettes à variation et dépendent de l’environnement dans lequel les véhicules
opèrent.
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– Complexité en termes d’opérations avec Kon = 52 sous-porteuses et Kp = 4
pilotes.

À fin de généraliser les connaissances de l’estimateur DPA-LSTM-NN, nous avons
proposé d’utiliser la technique Ensemble Learning (EL) pour améliorer les performances en
combinant les prédictions de plusieurs modèles entraînes sur des ensembles de données qui
prennent en compte différentes vitesses, des décalages Doppler maximaux et des retards
de trajectoire.

Pour analyser l’impact de l’utilisation de la technique EL sur la généralisation
de l’estimateur DPA-LSTM-NN, l’estimateur résultant de la combinaison de modèles
entraînés sur des scénarios de vitesses et de PDP différents est comparé à des modèles
entraînés spécifiquement pour un PDP/vitesse donné. Les résultats, tels que le scénario
testé avec la communication V2V et la vitesse v = 200 km/h, montrent que le modèle EL
présente une perte presque négligeable par rapport au cas le plus performant, dans lequel
le modèle a été entraîné avec le même PDP/vitesse. D’autre part, une forte dégradation
de performance peut être observée lorsque l’on teste les modèles formés avec le PDP et
une vitesse fixe. De cette manière, le modèle EL constitue une alternative intéressante
en offrant une estimation avec des pertes négligeables pour différents canaux. En outre,
il est important de souligner que ces gains sont obtenus sans ajouter de complexité de
calcul à l’estimation du canal, puisque le processus d’obtention du modèle EL combiné
est effectué hors ligne.

Chapitre 6 - Estimation de canal basée sur les réseaux

LSTM pour les systemes OTFS

À mesure que les scénarios de communication entre véhicules continuent d’évoluer,
la demande de systèmes de communication sans fil robustes et efficaces devient de plus en



plus critique. Dans ce contexte, bien que largement adoptés, les schémas de transmission
multiporteuse conventionnels, tels que la modulation OFDM, présentent des limites
inhérentes qui pourraient compromettre leur efficacité dans les futurs environnements
véhiculaires [19]. En réponse à cela, l’OTFS [3, 20] est apparu comme un schéma de
modulation prometteur, présentant une nouvelle approche de la communication sans fil.
Dans ce contexte, ce chapitre présente l’étude sur la proposition d’un nouveau récepteur
pour la forme d’onde OTFS, à comparer avec deux techniques de référence dans un
scénario d’estimation de canal dans la transmission OTFS soumise à des distorsions non-
linéaires induites par un HPA sans mémoire. Enfin, nous présentons l’évaluation de ce
récepteur par le biais d’une analyse détaillée de ses performances.

OTFS basée sur la SFFT

Une des applications les plus populaires des systèmes OTFS que l’on trouve dans
la littérature est basée sur la transformée de Fourier rapide symétrique (Symplectic Finite
Fourier Transform - SFFT) et la SFFT inverse (ISFFT), combinées à une modulation
multiporteuse. Ces transformations sont utilisées pour convertir les canaux variables
dans le temps en canaux invariants dans le domaine DD et vice versa. Cela permet
de voir le système OTFS comme une technique multiporteuse avec des blocs de pré- et
de post-traitement. En outre, pour une caractérisation plus réaliste des scénarios de
communication sans fil, notre analyse considère que le signal émis est affecté par des
non-linéarités induites par le HPA.

Domaine Temps-Fréquence

ISFFT
Modulation

Multiporteuse
HPA

sans mémoire

Canal
h(τ, ν)

Demodulation
Multiporteuse

SFFT
XDD[l, k] XTF[m,n] s(t) sNLD(t) r(t) YTF[m,n] YDD[l, k]

– Architecture de l’OTFS basée sur la SFFT.

Méthodes de référence pour l’estimation du canal OTFS

L’état de l’art relatif à l’estimation du canal OTFS implique généralement
l’estimation des caractéristiques du canal dans le domaine DD. Deux techniques
établies, que nous appellerons Threshold Channel Estimation (TCE) [21] et Correlation
Channel Estimation (CCE) [22], seront utilisées comme références de performance pour
l’estimateur de canal basé sur les réseaux LSTM proposé.

Le travail de [21] a été le premier à présenter une solution pour l’estimation du
canal dans les systèmes OTFS. Les auteurs ont introduit un schéma de pilote intégré, dans
lequel un intervalle de garde suffisamment grand est appliqué autour d’un pilote exclusif



pour améliorer l’acquisition des réponses de retard et Doppler.

Dans [22] un estimateur est proposé pour OTFS dans lesquels la matrice
d’autocorrélation du canal est acquise par estimation dans le domaine DD. Les auteurs
supposent que le canal est invariant pendant au moins la durée d’un symbole OTFS, de
sorte que le pilote et l’information sont envoyés dans des trames différentes.

Les propositions présentées dans [21, 22] nécessitent un intervalle de garde
important pour atténuer l’interférence entre les symboles de données et les pilotes utilisés
pour l’estimation du canal. En outre, les systèmes proposés nécessitent une puissance
élevée pour les sous-porteuses pilotes. En conclusion, ces aspects peuvent avoir une
incidence négative sur le rapport PAPR du signal transmis, comme le souligne [23], ce qui
peut compromettre son application pratique.

Méthode basée sur les réseaux LSTM proposée pour l’estimation du
canal OTFS

Un nouveau schéma d’estimation du canal est proposé pour les systèmes OTFS
soumis aux non-linéarités causées par le HPA. La méthode commence par une estimation
initiale du canal utilisant le préambule et les pilotes dans le domaine des fréquences. Cette
estimation est injectée dans les réseaux LSTM, qui suit efficacement le comportement du
canal. Ensuite, un NN est appliqué pour augmenter la capacité de réduction du bruit et
affiner la précision de l’estimation. Grâce à ces étapes, nous pouvons maintenir un faible
nombre de pilotes et obtenir une estimation fiable du canal, en particulier lorsqu’il s’agit
de canaux hautement sélectifs. Il convient de noter ici que, contrairement aux propositions
de [21, 22], les pilotes ont la même puissance que le signal transmis. Par conséquent, les
échantillons du signal émis dans le domaine temps-fréquence servent de base au réseau
LSTM-NN pour interpoler les informations sur le canal pour les porteuses de données et
obtenir l’estimation finale.

LSTM
NN

ĤLS[m,n] ĤLS−LSTM−NN[m,n]
σ σ tanh σ

× +

× ×

tanh

ct−1

ht−1

xt

ct

ht

ht

– Méthode LS-LSTM-NN proposée.



Analyse des performances

La performance du récepteur LS-LSTM-NN dans un scénario affecté par des
distorsions résultant de non-linéarités HPA est analysée en termes de BER, débit de
transmission et de PAPR. Nous comparons notre proposition aux méthodes de référence
TCE [21] et CCE [22], dans lesquelles l’estimation du canal est réalisée à l’aide de la
réponse pilote dans le domaine DD. Les résultats montrent les performances dans un
scénario avec des véhicules se déplaçant à une vitesse de v = 300 km/h et pour les deux
méthodes de référence, le SNR des pilotes est supposé être SNRp = 40 dB, conformément
à leur conception.

L’évaluation du BER en considérant, par exemple, une modulation 16-QAM,
montre les estimateurs de canal considérés présentent des performances comparables
quand le SNR est relativement faible. Cependant, un gain notable est observé pour
la méthode proposée quand le SNR est élevé. En revanche, les deux estimateurs présentés
dans [21] et [22] ouffrent d’un BER trop élevé même dans les scénarios où le bruit devient
négligeable devant le signal utile. Par conséquent, ces estimateurs ne parviennent pas à
réduire le BER en dessous de 10−2 pendant la détection.

– BER pour v = 300 km/h, modulation 16-QAM et IBO = 4 dB.

L’analyse du PAPR est d’une importance fondamentale dans les scénarios de
communication du monde réel. En comparant les techniques d’estimation du canal en
termes d’impact sur le CCDF, il est possible de mettre en évidence le problème de
l’attribution de pilotes avec une puissance très élevée pour faciliter l’estimation du canal
dans le domaine DD. Plus précisément, l’estimateur LS-LSTM-NN proposé produit un
gain de seuil de PAPR d’au moins 10 dB par rapport à la méthode proposée dans [21]. En



outre, cet avantage est encore plus prononcé par rapport à l’estimateur présenté dans [22].
En ce sens, nous notons que la meilleure performance du LS-LSTM-NN proposé est
évidente, car il est le seul capable d’atteindre un taux d’erreur de 10−3 et est donc le
seul à fournir des estimations fiables des canaux dans de tels scénarios.

– Analyse du PAPR.

Il est important de souligner que la limitation du PAPR due à des pilotes de forte
puissance dans le domaine DD est un facteur déjà étudié dans la littérature existante [23].
Toutefois, le maintien d’un PAPR plus faible est d’une importance capitale pour atténuer
la distorsion induite par les HPA. Cette importance provient du fait que l’efficacité du HPA
diminue à mesure que le PAPR du signal d’entrée augmente. En fait, il convient de noter
que des valeurs de PAPR plus élevées peuvent compromettre considérablement la qualité
de la communication et sont généralement impraticables dans des scénarios réels [24]. En
revanche, notre système offre une voie pratique pour la communication OTFS. Enfin, nous
soulignons que le calcul de l’ordre de complexité de calcul des différentes méthodes met en
évidence la réduction de la complexité obtenue par l’estimateur de canal LS-LSTM-NN
proposé, quelle que soit la taille de trame choisie.

Chapitre 7 - Conclusions

Cette thèse s’est intéressée à la problématique de l’estimation des canaux des
véhicules, notamment en tenant compte des effets des non-linéarités dues aux HPA. Tout
d’abord, la recherche a permis de comprendre les limites des méthodes conventionnelles,
qui souffrent généralement d’une dégradation significative des performances en présence
de distorsions induites par les HPA. En conséquence, les résultats préliminaires de la
recherche ont mis en évidence que les techniques DL présentent une robustesse inhérente



xx

face à ces effets non linéaires. Cette analyse a encouragé la poursuite de l’exploration et
de l’application de méthodes avancées basées sur la DL pour une estimation plus précise
du canal véhiculaire.

Dans ce contexte, la contribution de cette recherche réside dans l’introduction de
nouvelles architectures de récepteur basées sur l’apprentissage automatique, explicitement
adaptées à l’estimation précise des canaux véhiculaires non-linéaires. En considérant
le modèle HPA sans mémoire de la norme IEEE 802.11p, l’estimateur DPA-LSTM-NN
proposé s’est révélé résistant aux effets induits par le HPA. En étendant cette analyse à
des scénarios plus complexes impliquant des effets HPA non linéaires. Ainsi, la recherche
montre qu’à partir d’une nouvelle technique de compensation peu complexe, l’efficacité du
récepteur proposé est validée dans les scénarios présentés par les HPA à mémoire. Enfin,
en prévision de la prochaine génération de communications sans fil 6G, une architecture
pour l’estimation du canal OTFS a également été proposée, dans laquelle la supériorité de
la proposition par rapport aux estimateurs conventionnels dans les scénarios de véhicules
à haute mobilité, qui sont attendus pour les futures communications véhiculaires, ainsi
que la réduction de la complexité lors de la détection du signal.



RESUMO DOS TRABALHOS DE TESE

Capítulo 1 - Introdução

Em resposta à crescente demanda por taxas de dados, confiabilidade e
conectividade mais altas, o cenário dinâmico dos modernos sistemas de comunicação
sem fio apresenta desafios significativos para as aplicações esperadas nas próximas
gerações de telecomunicações. Em particular, a comunicação veicular é uma das áreas de
maior interesse para o desenvolvimento de soluções dentro das futuras aplicações 6G e
apresentará desafios com relação à complexidade das soluções e sua aplicabilidade a esses
cenários altamente variáveis e dinâmicos [1].

Nesse contexto, a estimativa do canal sem fio com qualidade suficiente
para garantir uma comunicação confiável é extremamente importante, pois afeta
significativamente o desempenho geral do sistema e libera todo o seu potencial. Além
disso, para superar as futuras demandas, a integração de ferramentas de inteligência
artificial surgiu como um novo paradigma para a evolução das futuras redes de
comunicação sem fio [2]. Nesse sentido, o presente trabalho é motivado pelo potencial
das ferramentas de aprendizado de máquina e aprendizado profundo para projetar novas
arquiteturas de receptores capazes de se adaptar às condições dinâmicas do canal,
especialmente no contexto de redes de comunicação veicular caracterizadas por canais
variáveis no tempo e não linearidades devido à presença de amplificadores de alta potência
(High Power Amplifier - HPA).

Propõe-se explorar a combinação de estratégias que utilizam modelos
matemáticos e técnicas de aprendizado de máquina para projetar receptores. A análise
inicia com uma forma de onda convencionalmente usada em padrões de comunicação sem
fio, apresentando que essa combinação implica uma melhoria significativa no desempenho,
bem como uma redução na complexidade, para diferentes cenários e aspectos considerados.
Posteriormente, esse estudo é estendido para aplicar o método proposto a uma forma de
onda candidata a futuras redes veiculares, apresentando seu potencial como uma técnica
promissora para futuras aplicações no mundo real.



Objetivos da tese

O principal objetivo desse trabalho é explorar a aplicação de técnicas de
aprendizado de máquina no projeto de novas arquiteturas de receptores para comunicações
veiculares, levando em conta sua natureza variável no tempo e os efeitos não lineares
induzidos por HPA. Portanto, a presente pesquisa tem as seguintes finalidades:

• Investigar os requisitos e desafios específicos apresentados pelos futuros cenários de
comunicação sem fio, especialmente na comunicação veicular.

• Propor algoritmos robustos baseados em aprendizado de máquina que possam
rastrear dinamicamente os canais veiculares, considerando a sua natureza dinâmica;

• Explorar abordagens para reduzir a complexidade das arquiteturas propostas.

Capítulo 2 - Princípios fundamentais

Comunicação veicular multiportadora

Em sistemas de comunicação sem fio, o sinal recebido é uma composição de
vários componentes que chegam de diferentes caminhos, cada um com diferentes atrasos
e intensidades de sinal. Esse fenômeno é chamado de desvanecimento e é influenciado
por fatores como a propagação por múltiplos percursos e o deslocamento Doppler. A
propagação por múltiplos percursos ocorre devido às recepções de sinal que chegam
em momentos diferentes de vários caminhos, levando ao desvanecimento seletivo em
frequência. Por outro lado, o deslocamento Doppler é causado pelo movimento entre
o transmissor e o receptor, resultando em seletividade no domínio do tempo.

Devido a ambos os efeitos, o canal de comunicação sem fio apresenta dupla
seletividade, variando tanto no tempo quanto na frequência. Os canais duplamente
seletivos podem ser representados com eficiência no chamado domínio delay-Doppler
(DD), em que a resposta ao impulso do canal variável no tempo se apresenta como uma
derivação de canal quase estática e esparsa, com um local determinado pelo atraso do
caminho e pelo efeito Doppler.

A transmissão com multiportadoras é amplamente usada para implantar sistemas
de comunicação sem fio com o objetivo de evitar os problemas decorrentes do efeito de
propagação por múltiplos caminhos. Esses esquemas de modulação dividem a transmissão
em um formato estruturado em que vários símbolos são enviados simultaneamente, cada
um ocupando sub-bandas diferentes.



A modulação por divisão ortogonal de frequência (Orthogonal Frequency Division
Multiplexing - OFDM) é um dos mais proeminentes esquemas de modulação de
multiportadoras, amplamente utilizado em vários padrões de sistemas de comunicação sem
fio. Outras formas de onda de multiportadoras foram propostas para atender a desafios e
requisitos específicos em sistemas de comunicação sem fio. Uma forma de onda notável é
a modulação Orthogonal Time Frequency Space Modulation (OTFS), introduzida em [3],
que se destaca como uma forma de onda promissora para futuros sistemas de comunicação
veicular.

Embora os sistemas de modulação de multiportadoras ofereçam benefícios
como alta eficiência espectral e interferência entre símbolos reduzida, eles apresentam
desvantagens associadas à alta razão entre a potência de pico e a potência média (Peak-
to-Average Power Ratio - PAPR) do sinal transmitido [4], que surge devido à utilização de
um grande número de subportadoras para a transmissão do sinal. Consequentemente, a
transmissão por multiportadoras pode prejudicar significativamente a eficiência dos HPAs
que operam em regiões não lineares, o que pode levar à degradação das informações.

Técnicas de aprendizado de máquina

As redes neurais profundas (Deep Neural Networks - DNNs) são fundamentais
entre as técnicas de aprendizado produndo [5]. Esse tipo de rede neural artificial é
caracterizado por várias camadas interconectadas, em que cada camada consiste em um
conjunto de nós, geralmente chamados de neurônios ou unidades, que realizam cálculos e
transformações específicos nos dados de entrada.

A LSTM é um tipo de arquitetura de rede neural recorrente adequada para
processar e fazer previsões com base em sequências de dados [6]. Diferentemente do
caso das DNNs tradicionais, as redes baseadas em LSTM têm a capacidade de capturar
dependências de longo prazo. Isso é feito por unidades de porta interna capazes de
armazenar o conteúdo da memória dos dados e, ao mesmo tempo, empregar estruturas
capazes de decidir quando manter ou substituir as informações dessas unidades. Portanto,
essas características avançadas de processamento das redes LSTM permitem que elas
aprendam a correlação do canal ao longo do tempo e se adaptem às estimativas do canal.

Semelhante às DNNs, o treinamento da rede LSTM envolve o ajuste de seus
parâmetros internos por meio de técnicas para minimizar a função de perda. Depois de
treinado, um LSTM pode ser usado para previsão de sequências, geração e outras tarefas
que exijam uma compreensão dos padrões temporais.



Capítulo 3 - Modelo do sistema

A presente tese baseia-se no padrão IEEE 802.11p, um subconjunto do protocolo
Wi-Fi que oferece suporte à transmissão de dados para comunicação veicular. Assim, o
estudo considera dois modelos diferentes de HPA juntamente com o cenário de mobilidade.
Inicialmente, o modelo HPA sem memória é examinado, denotando o sinal de entrada
como x(t) e, seguindo o teorema de Bussgang [7], tem-se a saída dada por

umless(t) = x(t)+ δ(t),

em que δ̃(t) apresenta a distorção não linear e γ0 descreve um ganho complexo e δ(t) =
δ̃(t)/γ0 é a distorção não-linear restante do HPA,

Os HPAs sem memória modelam com eficácia o comportamento de banda estreita
dos amplificadores. No entanto, como uma tendência geral, espera-se que um aumento
na largura de banda introduza um efeito de memória mais forte no sinal amplificado [8].
Há diferentes representações conhecidas de HPAs em comunicações de banda larga para
aproximar o comportamento não linear com estruturas de memória. Em particular, o
modelo Hammerstein [9] considera um HPA não linear sem memória em cascata com
um filtro de resposta ao impulso finito (Finite Impulse Response - FIR) para modelar os
efeitos de memória [10].

Por fim, o canal sem fio considerado segue o modelo de canal veicular descrito
em [11], em que as características de atraso do canal são fornecidas para diferentes
ambientes. A caracterização é baseada em medições reais com um ou dois veículos se
movendo em velocidades diferentes, onde são apresentados perfis de intensidade do canal
em função de atrasos de caminho e ganhos médios de potência, dado o perfil de atraso
de potência do canal (Power Delay Profile - PDP), descritos estatisticamente por uma
distribuição de desvanecimento de Rayleigh com uma densidade espectral de potência
Doppler. Os cenários modelados incluem comunicação entre veículos (Vehicle to Vehicle
- V2V) e entre veículo e infraestrutura (Roadside to Vehicle - R2V) em ambientes com
diferentes características de tráfego e velocidade.

Capítulo 4 - Estado da arte sobre estimação de canal

veicular

Esse capítulo apresenta o estado da arte para os métodos de estimação de canal
veicular considerados como referência nesse trabalho. Destaca-se que o foco desse trabalho
está nos estimadores de canal símbolo a símbolo, i.e., nos quais a estimativa de canal é



realizada para cada símbolo recebido separadamente usando apenas os pilotos recebidos
anterior e atual, sem aumentar a latência da aplicação [12].

O método básico considerado para fornecer estimativa de canal no padrão IEEE
802.11p é o estimador LS, o qual utiliza símbolos predefinidos de treinamento para obter
uma estimativa no domínio da frequência para cada subportadora. Por sua vez, o método
Data Pilot-Aided (DPA) emprega o símbolo recebido anteriormente como preâmbulo para
estimar o canal do símbolo atual. Como ponto de partida, o primeiro símbolo recebido
utiliza o método LS. Dessa forma, o método DPA melhora o desempenho explorando
as características de correlação entre os símbolos adjacentes na transmissão OFDM.
No entanto, o desempenho desse esquema é fortemente influenciado pela confiabilidade
dos pilotos de dados, que tende a se degradar devido à dinâmica severa dos canais
veiculares [13]. Por sua vez, o método Spectral Temporal Averaging (STA) é apresentado
em [14], em que uma média dos canais estimados nos domínios de tempo e frequência é
realizada após a estimativa DPA.

Para melhorar o desempenho dos estimadores convencionais, os autores em [15]
e [16] consideraram uma DNN para o pós-processamentos dos estimadores DPA e STA,
respectivamente. O objetivo da DNN empregada é minimizar o erro quadrático médio
(Mean Squared Error - MSE) entre as informações perfeitas sobre o estado do canal
(Channel State Information - CSI) e a estimativa convencional.

Para fins de uma análise preliminar do desempenho dos estimadores de canal
quando aplicados ao padrão IEEE 802.11p na presença de distorções devido a não
linearidades HPA sem memória, essa seção apresenta as comparações de desempenho
dos estimadores DPA e STA [14], bem como estimadores baseados em DNN, como o
DPA-DNN [15] e o STA-DNN [16].

Os resultados obtidos evidenciam a superioridade dos métodos baseados em DNN
na estimativa do canal, de modo que o uso de DNN como um processo não linear
melhora consideravelmente o desempenho dos estimadores convencionais, acrescentando a
capacidade de aprender recursos sobre o canal e reduzindo o erro entre sua estimativa e o
canal ideal, mesmo quando afetado por não-linearidades. Além disso, quando as distorções
HPA são consideradas, os estimadores baseados em DNN melhoram a taxa de erro de bit
(Bit Error Rate - BER) fornecida pelos estimadores convencionais em diferentes cenários
considerados, sendo capazes de atingir uma taxa de erro de bit de 10−2 a SNR= 20 dB,
enquanto os estimadores convencionais sofrem uma grave degradação de desempenho.

Conforme a literatura existente, destaca-se que os métodos LSTM apresentam



Sem distorções de HPA. Com distorções de HPA.

– Desempenho dos estimadores convencionais e baseados em DNN.

desempenho superior em comparação com os métodos DNN ao estimar o canal veicular [12,
17]. No entanto, esse ganho de desempenho ocorre às custas do aumento da complexidade.
Reconhecendo tanto as vantagens quanto as limitações, a presente tese propõe uma nova
abordagem que também se baseia em redes LSTM. No entanto, é considerado um método
para reduzir substancialmente a complexidade do estimador, atenuando esse aumento
de complexidade. Uma análise completa do desempenho é realizada, comparando o
desempenho de métodos de referência que empregam DNN, LSTM e a nova proposta.

Capítulo 5 - Proposta para estimação de canal baseada em

LSTM

Essa seção apresenta uma nova arquitetura de receptor baseada em aprendizado
proposta para estimar o canal veicular. O método DPA-LSTM-NN apresenta três
estruturas principais que são fundamentais para seu desempenho. Além disso, o esse
método considera um processo de amostragem de subportadora na entrada do LSTM,
reduzindo o número de subportadoras ativas consideradas para a estimativa do canal, de
modo a interpolar as informações das subportadoras faltantes e reduzir a complexidade
da solução.

Dentre os recursos do método, está primeiro a consideração de uma estimativa
inicial mais confiável, por meio da estimativa DPA. O DPA é capaz de aprender as
características de tempo e frequência do canal e reconstruir a estimativa o mais próximo
possível da resposta ideal do canal. Em seguida, a estrutura LSTM é projetada para
lidar com dados sequenciais, sendo capaz de aprender a correlação do canal ao longo do
tempo e prever com eficiência as realizações futuras do canal com base em observações



anteriores. Isso é fundamental para lidar com os efeitos não-lineares do HPA. Além disso,
uma NN é empregada como uma etapa adicional de compensação de ruído.
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– Método DPA-LSTM-NN proposto.

Iniciamos nossa análise com foco no HPA sem memória. A avaliação de
desempenho do esquema DPA-LSTM-NN proposto é comparando com os esquemas
DPA-DNN [15], LSTM-NN-DPA [17] e LSTM-DPA-TA [18] em cenários com diferentes
velocidades, ordens de modulação e impactos de não-linearidade.

Como exemplo, o desempenho em BER dos esquemas de estimativa usando
modulação 16-QAM para cenários de alta mobilidade é analisado, onde é possível obter um
ganho de desempenho significativo para o estimador DPA-LSTM-NN proposto, superando
as outras soluções independentemente do nível de ruído. Também é importante destacar
que o método proposto é o único estimador a atingir BER da ordem de 10−4 nos
diferentes cenários, o que é exigido por muitas aplicações práticas esperadas para futuras
comunicações veiculares.

v = 100 km/h. v = 200 km/h.

– Desempenho dos estimadores DPA-DNN [15], LSTM-NN-DPA [17], LSTM-DPA-
TA [18] and DPA-LSTM-NN (proposto) para modulação 16-QAM no caso com HPA
sem memória.

Utilizamos a análise anterior para expandir a discussão sobre cenários práticos
com não-linearidades, com os efeitos de memória do modelo HPA sendo considerados como



uma etapa adicional na avaliação de desempenho. A análise de desempenho compara os
estimadores LSTM-NN-DPA [17], LSTM-DPA-TA [18] e o DPA-LSTM-NN em cenários
com modelos HPA com efeitos de memória impactando a comunicação entre uma antena
transmissora montada em uma estrada e um veículo receptor que se aproxima com uma
velocidade de v = 50 km/h. A comparação entre os casos com HPA sem memória e
HPA com memória sem compensação revela um aumento significativo de BER devido aos
efeitos de memória. Apesar disso, a compensação de memória HPA é efetiva contra essa
perda, sendo responsável por um desempenho mais próximo do cenário sem memória para
todos os estimadores considerados. Além disso, o DPA-LSTM-NN mostra uma vantagem
sobre outras soluções em cenários com efeitos de memória HPA.

O resumo das operações de valor real exigidas pelos esquemas de estimativa de
canal, como uma função do número de subportadoras ativas é apresentado. Destaca-
se que o esquema DPA-LSTM-NN proposto tem os menores coeficientes para os fatores
mais significativos associados ao número de subportadoras ativas Kon nas operações de
multiplicações e divisões, o que resulta na redução da complexidade em comparação aos
demais estimadores considerados. Além disso, observa-se que o estimador DPA-LSTM-
NN proposto com amostragem de subportadoras necessita 49,9% menos operações do
que outras soluções baseadas em LSTM e 16,7% menos operações do que o esquema
DPA-DNN, além de apresentar uma melhoria significativa no desempenho.
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– Complexidade computacional em termos de operações com Kon = 52
subportadoras e Kp = 4 pilotos.

Ensemble learning para generalização da estimação do canal veicular

Assim como outros receptores presentes na literatura [16–18], o esquema DPA-
LSTM-NN considera o treinamento em um modelo de canal específico, embora as
características do canal estejam sujeitas a variações e dependam do ambiente em que os



veículos estão operando. Para estender a análise do estimador DPA-LSTM-NN proposto,
de forma a generalizar a solução proposta, empregamos a técnica Ensemble Learning (EL)
para melhorar o desempenho combinando as previsões de vários modelos treinados com
conjuntos de dados que consideram diferentes velocidades, deslocamentos máximos de
Doppler e atrasos de caminho.

Para analisar o impacto do uso da técnica EL na generalização do estimador
DPA-LSTM-NN, o estimador resultante da combinação de modelos treinados em
cenários de diferentes velocidades e perfis de atraso de potência (Power Delay Profile
- PDP) é comparado com modelos treinados especificamente para um determinado
PDP/velocidade. Os resultados mostram que o modelo EL tem uma perda quase
insignificante em comparação com o caso de melhor desempenho, em que o modelo foi
treinado com o mesmo PDP/velocidade. Por outro lado, uma perda significativa de
desempenho pode ser observada ao testar os modelos treinados com PDP e velocidade
fixa. Dessa forma, o modelo EL apresenta uma alternativa interessante ao oferecer
uma estimativa com perdas consideravelmente menores para diferentes canais. Além
disso, é importante ressaltar que esses ganhos são obtidos sem acrescentar complexidade
computacional à estimativa do canal, pois o processo de obtenção do modelo EL
combinado é feito off-line.

Capítulo 6 - Estimação de canal baseada em LSTM para

sistemas OTFS

Como os cenários de comunicação veicular continuam a evoluir, a demanda por
sistemas de comunicação sem fio robustos e eficientes torna-se cada vez mais crítica. Nesse
contexto, embora amplamente adotados, os esquemas de transmissão multiportadora
convencionais, como a modulação OFDM, revelam limitações inerentes que podem
prejudicar sua eficácia em futuros ambientes veiculares [19]. Em resposta a isso, o
OTFS [3,20] surgiu como um esquema de modulação promissor, apresentando uma nova
abordagem para a comunicação sem fio. Nesse contexto, esse capítulo apresenta o estudo
sobre a proposta de um novo receptor para a forma de onda OTFS, a ser comparado com
duas técnicas referência em um cenário estimativa de canal na transmissão OTFS sujeita
a distorções induzidas por HPA sem memória. Por fim, apresentamos a avaliação desse
receptor por meio de uma análise detalhada de seu desempenho.



OTFS baseado em SFFT

Uma das implementações mais populares para sistemas OTFS encontradas na
literatura é baseada na transformada rápida de Fourier simétrica (Symplectic Finite
Fourier Transform - SFFT) e na SFFT inversa (ISFFT), combinada com uma modulação
de várias portadoras. Essas tranformações são usadas para converter canais variantes
no tempo em canais invariantes no domínio DD e vice-versa, o que permite interpretar
o sistema OTFS como blocos de pré e pós-processamento aplicados a um esquema
de sinalização multiportadora. Além disso, para uma caracterização mais realista dos
cenários de comunicação sem fio, nossa análise considera que esse sinal no domínio do
tempo é afetado por não linearidades induzidas por HPA, o que segue o modelo HPA sem
memória.

Domı́nio Tempo-Frequência

ISFFT
Modulação

Multiportadora
HPA

sem memória

Canal
h(τ, ν)

Demodulação
Multiportadora

SFFT
XDD[l, k] XTF[m,n] s(t) sNLD(t) r(t) YTF[m,n] YDD[l, k]

– Arquitetura para o OTFS baseado em SFFT.

Métodos referência para estimativa de canal OTFS

A literatura relacionada à estimativa de canais OTFS geralmente envolve a
estimativa das características do canal no domínio DD. Duas técnicas estabelecidas,
que denotaremos como Threshold Channel Estimation (TCE) [21] e Correlation Channel
Estimation (CCE) [22], serão usadas como referências de desempenho para o estimador
de canal baseado em LSTM proposto.

O trabalho em [21] foi o primeiro a apresentar uma solução para a estimativa de
canal em sistemas OTFS. Os autores introduziram um esquema de piloto incorporado,
no qual um intervalo de guarda suficientemente grande é aplicado em torno de um piloto
exclusivo para melhorar a aquisição de respostas de atraso e Doppler.

Em [22], é proposto um estimador para sistemas OTFS em que a matriz de canal
de correlação é adquirida por meio de estimativa no domínio DD. Os autores assumem
que o canal é invariável por mais de um símbolo de duração, de modo que o piloto e as
informações são enviados em quadros diferentes.

As propostas apresentadas em [21,22] exigem um intervalo de guarda substancial
para atenuar a interferência de símbolos de dados desconhecidos nos pilotos usados para
estimativa de canal. Além disso, os esquemas propostos requerem uma potência de piloto
elevada. Como uma conclusão importante, esses aspectos podem afetar negativamente



a PAPR do sinal transmitido, conforme destacado em [23], o que pode prejudicar sua
aplicação prática.

Método baseado em LSTM proposto para estimativa de canal OTFS

É proposto um novo esquema de estimativa de canal para sistemas OTFS sujeitos
a distorções induzidas por HPA. O método começa com uma estimativa inicial de canal
derivada do preâmbulo e dos pilotos no domínio da frequência. Essa estimativa serve como
entrada para uma camada LSTM, rastreando efetivamente o comportamento do canal.
Posteriormente, uma NN é aplicada para aumentar a capacidade de redução de ruído
e refinar a precisão da estimativa. Por meio dessas etapas, podemos manter uma baixa
sobrecarga de piloto e obter uma estimativa de canal confiável, especialmente ao lidar com
canais altamente seletivos. Deve-se observar aqui que, ao contrário das propostas em [21,
22], os pilotos têm a mesma potência que o sinal transmitido. Consequentemente, as
informações piloto são usadas como base para a rede LSTM-NN interpolar as informações
do canal para as portadoras de dados e obter a estimativa final.

LSTM
NN
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× ×
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– Diagrama de blocos para o estimador LS-LSTM-NN proposto.

Análise de desempenho

A análise do desempenho do receptor LS-LSTM-NN em um cenário afetado
por distorções resultantes de não linearidades HPA é feita em termos de BER, taxa
de transferência e PAPR. Comparamos nossa proposta com os métodos de referência
TCE [21] e CCE [22], nos quais a estimativa de canal é feita usando a resposta piloto
no domínio DD. Os resultados mostram os desempenhos em um cenário com os veículos
se movendo a uma velocidade de v = 300 km/h e para ambos os métodos de referência,
supõe-se que a SNR dos pilotos seja SNRp = 40 dB, de acordo com seu projeto.

A avaliação da BER considerando, por exemplo, uma modulação 16-QAM, mostra
que para cenários com alto nível de ruído os estimadores de canal considerados apresentam
desempenhos comparáveis. Entretanto, um ganho notável é observado para o método
proposto na região de baixo ruído do sinal. Além disso, ambos os estimadores apresentados
em [21] e [22] mostram um patamar de erro ainda mais expressivo em cenários com alta



qualidade do sinal. Consequentemente, esses estimadores não conseguem reduzir a BER
a um nível inferior a 10−2 durante a detecção.

– BER para v = 300 km/h, modulação 16-QAM e IBO = 4 dB.

A análise da PAPR tem importância fundamental nos cenários de comunicação
do mundo real. Ao comparar as técnicas de estimativa de canal em termos de seu impacto
na CCDF, é possível destacar o problema de alocar pilotos com potência muito alta para
facilitar a estimativa de canal no domínio DD. Especificamente, o estimador LS-LSTM-NN
proposto produz um ganho de limiar de PAPR de pelo menos 10 dB quando comparado
com o método proposto em [21]. Além disso, essa vantagem é ainda mais acentuada
quando comparada ao estimador apresentado em [22]. Nesse sentido, observamos que o
melhor desempenho do LS-LSTM-NN proposto é evidente, pois é o único capaz de atingir
uma taxa de erro de 10−3 e, portanto, é o único a fornecer estimativas de canal confiáveis
em tais cenários.

É importante destacar que a limitação de PAPR devido a pilotos de alta potência
no domínio DD é um fator já investigado na literatura existente [23]. No entanto, manter
uma PAPR mais baixa é de suma importância para atenuar a distorção induzida por
HPAs. Essa importância decorre da indicação de que a eficiência do HPA diminui com
o aumento da PAPR do sinal de entrada. De fato, vale observar que valores mais altos
de PAPR podem prejudicar significativamente a qualidade da comunicação e, em geral,
são impraticáveis em cenários do mundo real [24]. Em contrapartida, nosso esquema
oferece um caminho prático para a comunicação OTFS. Por fim, destacamos que o cálculo
da ordem da complexidade computacional dos diferentes métodos enfatiza a redução na
complexidade obtida pelo estimador de canal LS-LSTM-NN proposto, independentemente



– Análise da PAPR.

do tamanho do quadro escolhido.

Capítulo 7 - Conclusões

A presente tese abordou alguns dos desafios na estimativa de canais de
veículos, especialmente considerando os efeitos de não linearidades devido a HPAs. Em
primeiro lugar, a investigação apresentou perspectivas sobre as limitações dos métodos
convencionais, que geralmente sofrem uma degradação significativa do desempenho na
presença de distorções induzidas por HPAs. Além disso, os resultados preliminares da
pesquisa destacaram que as técnicas de DL, especialmente as DNNs, apresentam robustez
inerente contra esses efeitos não-lineares. Consequentemente, essa análise incentivou uma
maior exploração e aplicação de métodos avançados baseados em DL para uma estimativa
mais precisa do canal veicular.

Nesse contexto, a contribuição dessa pesquisa está na introdução de novas
arquiteturas de receptor baseadas em aprendizado de máquina, explicitamente adaptadas
à estimativa precisa de canais veiculares não lineares. Ao considerar o modelo HPA
sem memória dentro do padrão IEEE 802.11p, o estimador DPA-LSTM-NN proposto
demonstrou ser altamente resistente aos efeitos induzidos pelo HPA. Assim, a pesquisa
mostra que a partir de uma nova técnica de compensação de baixa complexidade, a eficácia
do receptor proposto é validada nos cenários apresentados pelos HPAs com memória. Por
fim, em antecipação à próxima era da comunicação sem fio 6G, também foi proposta
uma arquitetura para estimativa de canal OTFS, na qual foi apresentada a superioridade
da proposta em relação aos estimadores convencionais em cenários veiculares de alta
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mobilidade, que são esperados para as futuras comunicações veiculares, bem como a
redução da complexidade computacional durante a detecção de sinais.
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1 INTRODUCTION

1.1 Motivation

In response to the growing demand for higher data rates, reliability,
and connectivity, the dynamic scenario of modern wireless communication systems
poses significant challenges to the applications expected in the next generations of
telecommunications [28]. In particular, vehicular communication is one of the areas of
greatest interest for the development of solutions within future 6G applications, being
crucial to enable connected vehicles and road infrastructure, which will improve road
safety and promote greater traffic efficiency and comfort for drivers [1]. Transportation
systems and smart cities are expected to have a profound impact on modern society
by making everyday transport more efficient and comfortable, but also entail challenges
related to the high level of connectivity required between network nodes, combined with
the respective user requirements [29]. On this road, along with the increase in the
number of devices and user demands, vehicular communications will introduce challenges
regarding the complexity of the solutions and their applicability to these highly variable
and dynamic scenarios.

In this context, estimating the wireless channel with sufficient quality in order to
ensure reliable communication is critically important, as it significantly affects the overall
system performance and unlocks its full potential. The existing literature presents several
mathematical tools for channel estimation in vehicular channels [14, 30, 31]. However,
these solutions often rely on simplifications that diverge from the complexities of modern
wireless communication systems [12], such as assuming a linear channel behavior or using
simplified mathematical models. In this regard, data availability is crucial to meet the
requirements of future wireless networks and the approaches for estimating the channel
in modern wireless network scenarios will require more robust and flexible solutions to
exploit the data generated by the network and make real-time decisions [32].

Contrary to the assumption made by the above-mentioned works, which consider
a linear communication environment assuming an ideal radio frequency (RF) interface,
the reality of vehicular communications involves multicarrier modulation techniques,
which introduces intricate challenges associated with high peak-to-average power ratio
(PAPR) [33], leading to nonlinear distortions (NLD) in the output signal of the high power
amplifier (HPA) at the transmitter. These NLDs can impair the channel estimation and
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detection capability of the receivers, leading to a considerable degradation in the overall
system performance. This highlights the importance of considering these often neglected
effects in the development of vehicular communication solutions tailored for practical
scenarios. At the transmitter side, a digital pre-distortion (DPD) block is commonly
adopted in order to linearize the output signal [34], where the nonlinear HPA is linearized
from its inverse function before transmission. However, such a linearization task is not
trivial to be optimally performed, while occurring at a complexity cost. As an alternative,
the HPA nonlinearity can also be compensated at the receiver side, where it may be
possible to reduce the power consumption [35].

To overcome these demands in a more realistic scenario, the integration of
artificial intelligence (AI) tools has emerged as a new paradigm for the evolution of
future wireless communication networks. Machine learning (ML) and deep learning (DL)
algorithms, well recognized for their ability to analyze huge amounts of data and learn
from them, stand out as solutions capable of improving network performance and reducing
inefficient energy consumption through the acquisition and processing of available
data [36]. Furthermore, recent advancements in data processing, security measures, and
accuracy enhancements have further elevated the applicability and effectiveness of AI-
based solutions in wireless communications [2].

In this context, this work is driven by the potential of ML and DL tools to
design novel receiver architectures capable of adapting to dynamic channel conditions,
particularly in the context of vehicular communication networks characterized by time-
varying channels and nonlinearities due to the presence of HPAs. The ML techniques
are leveraged to enhance flexibility by concurrently performing two critical tasks: channel
estimation and nonlinear distortion reduction, considering the effects of nonlinearities as
an additional source of noise and mitigating them on the receiver side. To this end, it is
proposed to explore the combination of strategies that use mathematical models and ML
techniques to design receivers, using the characteristics of the vehicle channel in order
to favor estimation. We started the analysis with a waveform conventionally used in
wireless communication standards, presenting that this combination implies a significant
improvement in performance, as well as a reduction in complexity, for different scenarios
and aspects considered in the analysis. Subsequently, we extend this analysis to apply
the proposed method to a waveform candidate for future vehicular networks, showcasing
its potential as a promising technique for future real-world applications.
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1.2 Objectives

Future communication scenarios are expected to progress in terms of connectivity,
user requirements, and consequently, challenges. From this perspective, recently, there has
been a growing interest in ML and DL solutions as tools to meet these demands. In this
context, the primary objective of this work is to explore the application of these techniques
in designing novel receiver architectures for multicarrier vehicular communications, taking
into account its time-varying nature and the nonlinear effects induced by HPAs. Thus,
this research presents the following goals:

• Investigate the specific requirements and challenges posed by future wireless
communication scenarios, particularly in vehicular communication. This involves a
comprehensive analysis of the distortions caused by HPAs and a thorough review of
existing solutions in the literature, with a focus on exploring ML and DL techniques.

• Propose robust algorithms based on ML and DL that can dynamically track
vehicular channels, considering the dynamic nature of vehicular communication.

• Explore methods to reduce the complexity of the proposed receivers. This reduction
will be achieved by combining ML and DL approaches with mathematical methods
and utilizing techniques that explore wireless channel information through statistical
analysis.

1.3 Thesis outline

The organization of this work and the chapter’s content are presented as follows.

Chapter 2 gives a summary of some fundamentals about the time-varying
wireless channel, introducing some basic concepts on vehicular communication, and
presenting the background related to multicarrier systems. Additionally, it outlines the
DL techniques that will be further considered in our investigation.

Chapter 3 presents the characteristics of the communication system model,
focusing on essential aspects of vehicular communication, particularly when considering
orthogonal frequency division multiplexing (OFDM) transmission scheme, that will be the
focus of the first part of the thesis content. The details on the HPA nonlinear distortions
models are presented and the vehicular channel modeling is also covered.
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Chapter 4 introduces the state-of-the-art channel estimators proposed in the
literature, which serve as benchmarks for the novel proposals presented in this manuscript.
In this chapter, we present the preliminary analysis of the impact of HPA nonlinearities
on the performance of conventional and deep neural network (DNN)-based estimators.
We emphasize the advantages of hybrid schemes in estimating the vehicular channel,
motivating the study on advanced DL techniques to effectively track the vehicular channel.

Chapter 5 presents detailed information about the novel long short-term
memory (LSTM)-based channel estimation method designed for vehicular communication
scenarios. Extensive comparative analyses are conducted against benchmark methods,
considering different effects of nonlinearities. The simulation results, which encompass
different vehicular channel models, reveal the performance superiority of the proposed
estimator compared to the conventional methods, also recording a significant decrease
in computational complexity. This chapter further delves into two extensions of the
investigation. Firstly, it explores the impact of nonlinear HPA memory effects on
channel estimation, acknowledging their importance in realistic communication scenarios.
Secondly, a proposal for generalized learning architecture for vehicular channel estimation
is proposed using the ensemble learning (EL) technique applied to the LSTM-based
method.

Chapter 6 presents the broadening of the work to the orthogonal time frequency
space (OTFS) waveform, recently proposed as a potential waveform for mobility channel
deployment. Here, the analysis is based on the advantages presented for OTFS over the
OFDM transmission. The results of the proposed channel estimation solutions for OTFS,
including an analysis of computational complexity and performance, are presented and
compared to the existing state-of-the-art solutions.

Chapter 7 concludes the thesis, presenting the final considerations and
perspectives for future work.

1.4 Publications

This work investigates the challenges inherent to vehicular communications and
opportunities in proposing new estimation algorithms designed for these scenarios. The
main contributions of this thesis are summarized as follows.

• We provided a preliminary analysis of the impact of HPA nonlinearities on the
performance of conventional and DNN-based channel estimation schemes employed
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in vehicular scenarios. The results show that the DNN-based estimation schemes
outperform conventional estimators, evidencing their superiority in providing
reliable estimation in mobility scenarios in the presence of HPA nonlinear
distortions. This study was published in

A. F. dos Reis, Y. Medjahdi, G. Brante, B. Sens Chang, F. Bader. "Deep learning
based receivers for IEEE 802.11p standard with high power amplifiers distortions".
In: Proceedings of the IEEE 95th Vehicular Technology Conference, 2022, Helsinki,
Finland (VTC2022-Spring).

• We proposed a novel low-complexity receiver based on LSTM network. This
receiver presents robust performance in the presence of HPA-induced nonlinearities
and is adapted to estimate the doubly selective channel deployed by the IEEE
802.11p standard for vehicular communications. In addition, we propose a new
technique to exploit the characteristics of the vehicular channel, by sampling the
subcarriers used at the input of the LSTM. The results show the superiority of
the proposal in comparison with other state-of-the-art schemes. Furthermore, this
scheme significantly reduces the computational complexity due to the subcarrier
sampling procedure. This proposal was published in

A. F. dos Reis, Y. Medjahdi, B. Sens Chang, J. Sublime, G. Brante, F. Bader.
"Low Complex LSTM-NN-Based Receiver for Vehicular Communications in the
Presence of High-Power Amplifier Distortions", in IEEE Access, vol. 10, pp. 121985-
122000, 2022, doi: 10.1109/ACCESS.2022.3223113.

• We proposed a generalized learning architecture to combine the predictions of
multiple models of vehicular channels using the EL technique applied to the method
based on LSTM. We show that using a model trained for a specific dataset in
a new scenario can lead to poor performance and reduced reliability in vehicular
communication. However, our proposed method overcomes these limitations and
provides robustness to variations in channel conditions. This proposal was published
in

A. F. dos Reis, G. Brante, B. Sens Chang, Y. Medjahdi, F. Bader, J. Sublime.
"Ensemble Learning for LSTM-based Vehicle Channel Estimation Generalization".
In: XLI BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND
SIGNAL PROCESSING - SBrT 2023, OCTOBER 08–11, 2023, SÃO JOSÉ DOS
CAMPOS, SP.

• We extended the analysis of the impact of HPAs’ nonlinearities on vehicular channel
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estimation performance by investigating the use of LSTM-based receivers in models
that consider the memory effects inherent in nonlinear HPAs. In addition, we
present a low-complexity method to compensate part of the memory NLD effects
on the transmitter side, while handling the remaining distortions along with the
channel estimation. The results present that considering more realistic NLD models
significantly affects receiver performance, being an important aspect in developing
estimators for future vehicular communication applications. Furthermore, the
importance of compensating the signal at the transmitter side when the memory
effects of the HPA are considered is highlighted. This study was published in

A. F. dos Reis, Y. Medjahdi, B. Sens Chang, G. Brante, F. Bader. "Memory
Effects of High-Power Amplifiers in LSTM-based Vehicular Channel Estimation", in
IEEE Access, vol. 11, pp. 79994-80002, 2023, doi: 10.1109/ACCESS.2023.3299871.

• Presenting a broadening analysis of future waveforms designed for vehicular
communication, we address channel estimation in nonlinear OTFS systems. Our
contribution involves proposing a novel channel estimation method within the time-
frequency domain, aiming to reduce the PAPR impact and improve the detection
capacity of OTFS signals. This estimator is effectively applied to a model that
includes nonlinear effects induced by HPAs in an OTFS transmission system. The
results show that it is possible to obtain a robust channel estimate without the
need for signal linearization at the transmitter and to effectively compensate for
nonlinearities together with the channel estimate. To validate the effectiveness
of our proposed estimator, we carried out a comparative analysis with classical
OTFS estimation methods, with the proposed method presenting greater accuracy
in tracking the channel and a substantial reduction in the computational complexity
required to detect the received signals. This study is currently undergoing peer
review.

A. F. dos Reis, B. Sens Chang, Y. Medjahdi, G. Brante, F. Bader. "LSTM-Based
Time-Frequency Domain Channel Estimation for OTFS Modulation". Submitted to
the IEEE Transactions on Vehicular Technology.

AE AI AM/AM AM/PM AWGN BER CCDF CCE CNNs CP CSI DD DL DNN
DPD DPA EL EX FBF FFT FIR HPA IBO ICI IFFT ISFFT ISI LSTM LS MIMO ML
MSE NLD NN NMSE OFDM OTFS PAPR PDP QAM RF R2V ReLU SBS SDWW
SFFT SNR SISO SS STA TCE TDL TF UC V2V
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2 FUNDAMENTALS AND BACKGROUND

This chapter explores the fundamental concepts of wireless communication. First,
the concepts of propagation and fading are presented. Following that, the chapter delves
into the concept of multicarrier transmission, highlighting its advantages in wireless
communication and exposing the challenges related to the PAPR problem during power
amplification. Lastly, we introduce the fundamental concepts of the DL techniques that
will be used in this thesis.

2.1 Multipath propagation and fading

In typical wireless communication systems, the setup consists of one or more
transmitters and receivers, each equipped with at least one antenna for the purpose of
transmitting and receiving information. As signals are transmitted through the wireless
channel, they may experience attenuation, which is the reduction in signal strength as it
propagates through space.

At the receiver, the received signal is a composition of various components arriving
from different paths, each with different delays and signal strengths. These components
can either combine constructively or destructively. This phenomenon is referred to as
fading and is influenced by factors such as propagation and Doppler shift. The propagation
occurs due to signal receptions arriving at different times from various paths, leading to
frequency-selective fading. On the other hand, Doppler shift is caused by motion between
the transmitter and receiver, resulting in time domain selectivity.

Due to both effects, the wireless communication channel exhibits double
selectivity, varying both in time and frequency [25]. This doubly selective characteristic
is illustrated in Figure 1, where the influences of both time-varying and frequency-
selective channels are integrated during signal transmission. A doubly selective channel is
frequently encountered in highly dynamic communication environments, such as vehicular
communication. In scenarios like vehicular communication, the temporal variations arise
from vehicle movement, while frequency variations result from reflections off buildings,
other vehicles, or changing terrain. Moreover, doubly selective channels can be effectively
represented in the so-called delay-Doppler (DD) domain [37], where the impulse response
of the time-varying channel presents as a quasi-static and sparse channel derivation, with
a location determined by the path delay and the Doppler effect. As described in [38],
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Figure 1 – Doubly selective channels [19].

assuming κ paths with delays τk, Doppler frequencies νk and complex gains Sk, the
received signal is given by a weighted superposition of Time-Frequency (TF) shifts of the
transmitted signal x(t) as

y(t) =
κ∑

k=1
Skx(t− τk)ej2πνkt. (1)

2.2 Multicarrier systems

Multicarrier modulation is widely used to deploy wireless communication systems
aiming to avoid the problems given the multipath effect. These modulation schemes
split the transmission into a structured format in which the data stream is parallelized
into low-rate streams transmitted on adjacent subcarriers, enabling modulation without
causing interference between subcarriers. The number of streams is designed to match
the bandwidth of each subchannel but remains smaller than the coherence bandwidth
of the channel. Also, the maximum delay spread of the channel is lower than the
symbol duration and, consequently, each subchannel experiences a flat fading and the
inter-symbol-interference (ISI) in each subchannel becomes very small [25].
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Figure 2 – OFDM transmitter block diagram [25].

The OFDM is one of the most prominent multicarrier modulation schemes, widely
utilized in several standards for wireless communications systems. This modulation
technique efficiently spaces orthogonal subcarriers, a key characteristic that significantly
mitigates the impact of frequency-selective fading in the channel by reducing the
interference between adjacent subcarriers. As depicted in Figure 2, the OFDM
modulation process is comprised of a serial-to-parallel conversion, the quadrature
amplitude modulation (QAM), the inverse fast Fourier transform (IFFT), the cyclic
prefix (CP) insertion, and a parallel-to-serial conversion before transmission. Thus, it
is characterized by a distinct implementation at both the transmission and reception
levels, where for the transmission, the IFFT operation is performed on the subcarriers to
transform the data from the frequency domain to the time domain. The IFFT operation
to obtain the transmitted OFDM signal is expressed by

x(t) = IFFT(X[k]) = 1√
K

K−1∑
k=0

X[k] · e
j2π
K kt, k = 0,1, . . . ,K−1, (2)

where K is the total number of subcarriers, X[k] represents the modulated symbol on
the k-th subcarrier and t denotes the time index. The CP is strategically inserted to
achieve circular convolution with a linear and time-invariant channel, thereby enhancing
the robustness of the transmitted signal against ISI. The process involves appending
each symbol with a replica of the last symbols within the duration T − TCP. Thus,
the cyclically-extended symbol appears periodic when convoluted with the channel.
Mathematically, this can be expressed as:

xCP(t) = x(t) for T −TCP ≤ t < T. (3)

Here, TCP is the duration of the CP, and T is the total duration of the OFDM symbol.
Consequently, the transmitted OFDM signal with the cyclic prefix is given by

xTX(t) =


xCP(t), 0 ≤ t < TCP

x(t), TCP ≤ t < T +TCP

. (4)
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The received signal can be expressed as

y(t) = h(t)∗xTX(t)+n(t), (5)

where h(t) is the time-varying channel impulse response, ∗ denotes convolution, and n(t) is
the additive white Gaussian noise (AWGN). The received OFDM signal can be efficiently
demodulated using the fast Fourier transform (FFT). The received signal in the frequency
domain is given by

yi[k] = hi[k]xi[k]+ni[k], (6)

where for all k subcarriers within the i-th OFDM symbol, hi[k] is the frequency response
of the channel, xi[k] is the frequency-domain representation of the transmitted signal,
and ni[k] is the frequency-domain representation of the AWGN. The diagonalization of
the channel ensures flat fading in each subchannel and, under this condition, one-tap
equalizers are sufficient to compensate for the effects of the channel. Finally, the equalized
signal is given by

x̂i[k] = hi[k]
yi[k] . (7)

Although widely adopted in wireless communication systems due to its ability to
mitigate the effects of frequency-selective fading and provide efficient spectrum utilization,
OFDM modulation is sensitive to inter-carrier interference (ICI) and can struggle in
scenarios with time-varying channels, since the assumption of a quasi-static channel may
not hold, especially in highly dynamic environments such as vehicular communication [39].
To address these drawbacks, recent proposals in the field of wireless communications aim
to develop innovative modulation schemes and receiver architectures.

Several other multicarrier waveforms have been proposed to address specific
challenges and requirements in wireless communication systems. One notable waveform is
OTFS modulation, first introduced in [3]. This waveform extends the principles of OFDM
to the DD domain, providing enhanced performance in highly dispersive environments.
The OTFS stands out as a promising waveform for future vehicular communication
systems, offering improved resilience against time-varying channels and highly dispersive
environments.

Besides OFDM and OTFS, which are the primary focus of this thesis, various
multicarrier modulation schemes have gained attention in recent wireless communication
literature [40, 41], positioning them as candidates for 6G communication. Each of
these schemes offers unique advantages and is tailored to specific communication
scenarios. Research and development in multicarrier modulation continue to evolve,
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focusing on designing waveforms that can efficiently utilize the spectrum, accommodate
diverse communication requirements, and improve the overall performance of wireless
communication systems. These advancements are vital for addressing the challenges and
meeting the demands of future wireless networks.

2.3 Radio frequency (RF) high-power amplifier (HPA)

While multicarrier modulation systems offer benefits such as high spectral
efficiency and reduced ISI, they usually come with drawbacks associated with the high
PAPR of the transmitted signal [4]. The elevated PAPR arises due to the utilization
of a large number of subcarriers for signal transmission. Consequently, multicarrier
transmission can significantly impair the efficiency of power amplifiers that operate within
nonlinear regions, potentially leading to information degradation.

Figure 3 presents the characteristic curve of a typical HPA, illustrating the
relationship between the input power and the resulting output power of the amplifier.
At lower input power levels, the HPA operates in the linear zone, where output power
Pout proportional to input power Pin with a constant amplifier gain. In general, this
zone is free of nonlinear distortions and provides amplification in a linear and predictable
manner. However, as the input power increases, the output power gradually saturates,
reaching the compression zone. Within this zone, even though the input power continues
to rise, the rate of increase in output power diminishes. This is the region where the
amplification is nonlinear, and the amplifier begins to saturate. Notably, this zone is
characterized by a particular point, known as the 1 dB compression point, where the
actual gain of the HPA deviates from the ideal linear gain by 1 dB. With further increases
in Pin, the saturation zone is reached. At this zone, the amplifier reaches minimal or no
increase in output power. As a result, the amplifier is unable to further amplify the input
signal, resulting in a flat portion of the characteristic curve, with very high NLD.

These nonlinear signal characteristics can lead to unnecessarily high power
consumption at the HPA, often resulting in a high PAPR. The PAPR is a crucial
parameter that represents the ratio between the peak power of the signal and its average
power. In wireless communication systems, a high PAPR can adversely affect power
efficiency by demanding excessive power to handle the peaks in the signal. This can have
a significant impact on the overall system performance, making it a critical consideration
in system design and operation. The maximum PAPR for the transmitted signal x(t) is
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Figure 3 – Characteristic curve of the HPA [26].

given by [4, 42]

PAPR = max
∀t

|x(t)|2

Pavg
, (8)

where Pavg is average power of the signal over its entire duration T , given as

Pavg = 1
T

∫ T

0
|x(t)|2 dt. (9)

The complementary cumulative distribution function (CCDF) is used to
characterize a signal’s PAPR performance by analyzing the statistical behavior of its
fluctuations. Specifically, the CCDF quantifies the probability that the PAPR of the
signal exceeds a given threshold, offering a comprehensive understanding of its power
characteristics. The CCDF is mathematically expressed as

CCDF = P(PAPR > γ) = 1−P(PAPR ≤ γ), (10)

where γ is a constant and defines the threshold for the CCDF.

It is also important to emphasize that the efficiency of the HPA is inversely related
to the PAPR of the input signal, being given as [43]

ηHPA =
( 1

PAPR

)ϵ

ηHPAmax , (11)

where ηHPAmax is the maximal HPA efficiency and ϵ ∈ [0,1] is the efficiency exponent,
which depends on the class of the HPA.

Several techniques have been developed to mitigate the PAPR problem in OFDM
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systems [44], such as amplitude peak clipping and filtering [45], coding schemes [46] and
selective mapping [47]. However, these techniques can be often related to the impact on
the overall system performance, introducing transmit signal power increase, data rate loss
and higher computational complexity.

2.4 Deep learning (DL) techniques

In recent years, the advent of DL techniques has emerged in various domains,
revolutionizing the way complex problems are approached and solved. In the field of
wireless communications, DL techniques have gained substantial attraction due to their
ability to learn complex patterns and representations directly from data. Many solutions
can be found in the context of channel estimation and signal detection [48, 49], resource
allocation and optimization [50], modulation and demodulation [51], and more. This
section covers the fundamentals related to DL-based methods that will be applied to the
receivers under consideration in our research.

2.4.1 Deep neural networks (DNN)

DNNs are fundamental among the DL techniques [5, 52]. This type of artificial
neural network (NN) is characterized by multiple interconnected layers, hence the term
deep indicating the depth of layers. Each layer consists of a set of nodes, often referred
to as neurons or units, which perform specific computations and transformations on the
input data.

As presented in Figure 5, a typical DNN consists of three main types of layers:
the Input Layer, Hidden Layers, and the Output Layer. In this architecture, each neuron
applies an activation function to process its input, performing mathematical operations
to the model, and enabling it to learn complex patterns within the data. This iterative
process continues through the layers until the final output is produced, making DNNs
powerful tools for complex pattern recognition and representation. The mathematical
expression for a neuron operation in a DNN is given as

a
(l)
j = σ

n(l−1)∑
i=1

w
(l)
ji a

(l−1)
i + b

(l)
j

 , (12)

where σ presents the activation function, w(l)
ji is the weight of the connection between



14

Σ

b
(l)
j

inj σ

Activation

outj
w

(l)
ji
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neuron i in layer l−1 and neuron j in layer l, a(l−1)
i is the activation of neuron i in layer

l−1 and b
(l)
j is the bias associated with neuron j in layer l.

After defining the DNN architecture, the next step is to estimate the weights
(w(l)

ji ) and biases (b(l)j ) through the learning procedure during the training phase. Initially,
these weights and biases are initialized, often with random values, to start the training
process. During the training, the input data are passed through the network, and
computations involving the initialized weights and biases are performed. As presented in
the basic neuron structure in Figure 4, the activation function is applied in each layer to
obtain the network’s output. To assess the performance of the DNN, the generated output
is compared to the actual target values using a suitable loss function, which quantifies
the error or difference between predicted and actual values. The error information is then
back-propagated through the network using an optimization algorithm, typically based
on gradient descent. This backward propagation calculates the loss with respect to the
weights and biases, allowing for adjustments that minimize the loss. Through several
iterations, also called epochs, the weights and biases are updated in a way that minimizes
the error, guided by the learning algorithm and its learning rate. In this iterative process,
the objective is to achieve the convergence of the training. Finally, once the model is
trained and validated, it can be used to make predictions on new data during the testing
phase.

2.4.2 Long short-term memory (LSTM)

The LSTM is a type of recurrent unit that is well-suited for processing and
making predictions based on sequences of data [6]. Unlike in traditional DNN, LSTM-
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based networks have the ability to capture long-term dependencies. This is done by
internal gate units capable of storing the memory content of the data while employing
structures capable of deciding when to keep, or override, information of these memory
cells. Therefore, such advanced processing characteristics of the LSTM make it able to
learn the channel correlation over time and adapt the channel estimates accordingly [17,
18].

Figure 6 presents the structure of the classical LSTM unit. Following [6], the
operations with the inputs are illustrated by the activation function σ and the hyperbolic
tangent. These operations regulate the information flow and define which information is
overridden and which is kept memorized in the current cell state. As outputs, the LSTM
unit produces ct, the memory cell state at the time step t, and the output ht. The loop
continues until the end of the sequential information so that ht of the last unit is the output
of the LSTM network. Similar to DNNs, LSTM training involves adjusting its internal
parameters through techniques like backpropagation and gradient descent to minimize the
loss function. Once trained, an LSTM can be used for sequence prediction, generation,
and other tasks that require an understanding of temporal patterns. Internally, the gates
of the LSTM cell are calculated as:
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• Forget Gate: ft = σ(xtUf +ht−1Wf + bf )

• Input Gate: it = σ(xtUi +ht−1Wi + bi)

• Output Gate: ot = σ(xtUo +ht−1Wo + bo)

Recalling that σ represents the activation function. The weight matrices Uq, Wq

correspond to the input and recurrent connections, where the subscript q can either be
the input gate (i), output gate (o) or the forget gate (f). The notation ht−1 represents
the previous hidden state and xt the current input, while bf , bi and bo are bias terms.
Thus, the behavior of an LSTM cell is guided by the following steps.

• Internal memory update
ct = σ(ft ⊙ ct−1 + it ⊙ c̃t), (13)

where ⊙ is the Hadamard product and c̃t is the candidate memory state at time
step t, which is calculated based on the current input and previous hidden state as

c̃t = tanh(xtUc +ht−1Wc + bc), (14)

where Uc and Wc are the weight matrices to the input and recurrent connections
and bc is the current bias for candidate memory information.

• Hidden state output update

ht = ot ⊙ tanh(ct), (15)
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which is used for predictions or passed to the next time step.

Such processing characteristics of the LSTM allow it to learn the channel correlation over
time and adapt the channel estimates accordingly.

Building on these foundations, where we start by providing fundamental insights
into wireless communication, identifying the advantages of multicarrier transmission as
well as recognizing the challenges presented by these techniques, and beginning our
exploration of DL techniques, the subsequent chapter delves into a detailed system model.
These fundamental concepts interact in the context of our research, preparing the ground
for a comprehensive understanding of the channel estimation methods proposed.
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3 SYSTEM MODEL

In this chapter, a thorough description of the communication system model is
presented. For the first part of this thesis, comprising chapters 3-5, the focus will be
on the OFDM modulation, as the transmission scheme is founded on the IEEE 802.11p
standard [27]. In addition, the models for the HPAs that are under consideration in our
analysis are described. Finally, the characteristics of the vehicular communication models
are provided.

3.1 IEEE 802.11p standard

The IEEE 802.11p standard [27] is a subset of the Wi-Fi protocol that uses
10 MHz frequency bandwidth and supports data transmission for roadside-to-vehicle
(R2V) and vehicle-to-vehicle (V2V) communication. As illustrated by Figure 7, this
standard specifies that every packet transmission consists of a preamble, a signal field,
which carries the physical layer information, and a data field. The preamble has short
and long training symbols, known at the receiver in order to conduct the channel
synchronization, and the long training symbols are split into two predefined sequences
tp,1 and tp,2, used for channel estimation. Moreover, a CP is used to absorb the ISI
caused by the multipath propagation.

Each OFDM symbol utilizes a total of K = 64 subcarriers in the data field, with
Kon = 52 subcarriers being active and the remaining 12 serving as a guard band. Out
of the Kon subcarriers, Kp = 4 are allocated as pilots, and the remaining 48 carry the
actual data. For each active subcarrier k ∈ Kon, with Kon being the set containing the
Kon active subcarriers, the received OFDM symbols are expressed as

yi[k] = hi[k]ui[k]+ni[k], (16)

Signal Data

Preamble:

C
P

C
P

C
P tp,1 tp,2

Short Long

Figure 7 – IEEE 802.11p packet structure [27].
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Table 1 – IEEE 802.11p Standard.
Parameter Values
Bandwidth 10 MHz

Carrier Frequency (fc) 5.9 GHz
CP Duration 1.6 µs

Symbol Duration 8 µs
Short Training Symbols duration 1.6 µs
Long Training Symbols duration 6.4 µs
Total number of subcarriers (K) 64

Subcarrier spacing 156.25 kHz
Modulation QPSK, 16-QAM, 64-QAM
Coding rate 1/2, 2/3, 3/4
Data Rate Up to 27 Mbps

where for all k subcarriers within the i-th OFDM symbol, hi[k] denotes the time-variant
frequency response of the subcarriers, ui[k] is the k-th subcarrier in the i-th transmitted
OFDM data symbol that is impacted by the HPA-induced distortions and ni[k] represents
the AWGN, with power

η0 = εp

ξ ·K
, (17)

where εp is the preamble power per sample, ξ the average signal-to-noise ratio (SNR)
at the receiver and K is the total number of subcarriers employed within each OFDM
symbol.

The channel coefficients hi[k] are modeled over a Rayleigh fading channel with
Jakes’ Doppler spectrum, with the Doppler frequency given by

fD = v

c
fc, (18)

where v is the speed of the vehicle, c is the speed of light and fc is the carrier frequency.
Table 1 summarizes the IEEE 802.11p standard physical layer specifications.

3.2 Memoryless HPA

Our analysis considers two different HPA models along with the mobility scenario.
We start by examining the memoryless HPA model, denoting the input signal as
x(t), which is assumed to be a zero mean complex Gaussian random process so that,
following [53], we have the output given by

ũmless(t) = γ0x(t)+ δ̃(t), (19)
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where δ̃(t) is a NLD with zero mean and variance σδ̃
2, that is uncorrelated with x(t),

while γ0 describes a complex gain. Then, according to the Bussgang theorem [7] γ0 is
compensated at the transmitter and we can write the output of the HPA as

umless(t) = x(t)+ δ(t), (20)

where δ(t) = δ̃(t)/γ0 is the remaining NLD of the HPA.

The memoryless polynomial model considered here follows [53], which exhibits
both amplitude-to-amplitude (AM/AM) and amplitude-to-phase (AM/PM) distortions
by approximating its characterizations with a polynomial. Thus, for a given input signal
x(t), the amplified output signal ũmless(t) can be expressed as

ũmless(t) = ϕa

(
ρ(t)

)
exp

(
j
(
ϕp

(
ρ(t)

)
+φ(t)

))

= ς
(
ρ(t)

)
exp

(
jφ(t)

)
,

(21)

in which ρ(t) is the input signal modulus, φ(t) is the input signal phase, ϕa

(
ρ(t)

)
and

ϕp

(
ρ(t)

)
represent the AM/AM and AM/PM characteristics of the HPA respectively,

while
ς
(
ρ(t)

)
= ϕa

(
ρ(t)

)
exp

(
jϕp

(
ρ(t)

))
(22)

presents the complex soft envelope of the amplified output signal.

Moreover, the soft envelope of the amplified signal employed in our simulations
is approximated by

ς
(
ρ(t)

)
≈

P∑
l=1

alρ(t)l, (23)

where, according to the description of the polynomial model [53], al denotes the coefficients
of the polynomial with order P = 9, obtained by the least square (LS) method.

To mitigate the impact of nonlinearities, the HPA is configured to operate at a
specific input back-off (IBO), which is relative to the 1 dB compression point. As detailed
in Section 2.3, this allows the amplifier to operate in a range that minimizes nonlinear
distortions [54]. In this matter, before amplifying the signal by the HPA, it is scaled by
the gain ϱ to ensure the desired IBO, given by

ϱ=
√

τ1dB

10 IBO
10 τx

, (24)

where τ1dB is the input power at 1 dB compression point and τx is the mean power of the
input signal.
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3.3 Memory HPA

Usually, memoryless HPAs effectively model the narrowband behavior of the
amplifiers. However, as a general trend, an increase in bandwidth is expected to introduce
a stronger memory effect in the amplified signal. In addition, wideband HPAs usually
provide higher power levels [8], while restricting amplifiers to the linear amplification
range yields poor efficiency [55]. There are different well-known representations of
HPAs in wideband communications to approximate the nonlinear behavior with memory
structures. For instance, Volterra models have been widely employed to model HPAs [9].
Nevertheless, besides allowing for a detailed analysis of the HPAs’ behavior, the
literature [9,56] has recognized this model for its computational demands associated with
higher-order kernels. This increasing complexity of these kernels can make the Volterra
model less attractive from a theoretical perspective. Consequently, alternative models
have been developed to provide simplifications and improve computational efficiency while
still capturing essential aspects of HPA behavior [57]. In particular, we can refer to the
Wiener and Hammerstein models, which consider a static nonlinear model used in series
with a linear filter to model the memory effects [10].

Both Wiener and Hammerstein models are equivalent, with the Wiener model
assuming a linear filter followed by a memoryless nonlinear block [58,59]. In contrast, the
Hammerstein model accounts for the memory effects by incorporating a linear filter after
the nonlinearities [9, 60]. Figure 8 illustrates the transmitter side of the communication
system modeled using a nonlinear HPA with memory, in which the Hammerstein model
is constructed as a memoryless polynomial, described in Subsection 3.2, in cascade with
a finite impulse response (FIR) filter with F -taps. We denote Xi,k as the QAM data
symbols for all k subcarriers within each i-th symbol and the output signal affected by
the memory effects of the HPA as u(t), where t stands for the time domain index. We
employ the Hammerstein model [9], considering the memory effects in a cascade with
the static nonlinearity of the HPA. Following [9], we consider a FIR filter with F = 3
whose coefficients are given by ω = [0.7692,0.1538,0.0769], obtained by measurements. It
is noteworthy that ω can be modeled in practice either at the constructions of the HPA,
or at a setup stage of the communication equipment.

Figure 9 shows the normalized magnitude of the frequency response of the HPA
output as a function of the index of the subcarriers. Notice that the frequency response
is not flat for the Kon subcarriers1.

1Notice also that there are 12 inactive subcarriers, whose magnitudes are close to zero.
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Hammerstein HPA Model

OFDM ×

ϱ

Memoryless
HPA

FIR
Xi,k x(t) ϱ · x(t) umless(t) u(t)

Figure 8 – Transmission system model for the case with memory effect.

Figure 9 – Frequency response of the memory HPA output.

3.4 Vehicular channel model

The wireless channel considered in this work follows the vehicular channel model
described in [11], where the tapped delay line (TDL) characteristics of the channel are
provided for different environments. The characterization is based on real measurements
with one or two vehicles moving under different velocities, which models R2V and V2V
scenarios, respectively. The channel intensity profile for six vehicular channel models is
given as taps as a function of path delays and average power gains, given the channel
power delay profile (PDP), where each tap is statistically described by a Rayleigh fading
distribution with a Doppler power spectral density. Table 2 describes the PDP of the
different channel models, described as

• R2V Urban Canyon (R2V-UC): Communication between a transmitting antenna
and a vehicle approaching at 32-48 km/h in an environment with urban canyon
characteristics and dense traffic.

• R2V Suburban Street (R2V-SS): Communication between a transmitting antenna
and a vehicle approaching at 32-48 km/h in a suburban environment.

• R2V Expressway (R2V-EX): Communication between a transmitting antenna and
a vehicle approaching at 104 km/h on a highway.



23

0
10

20
30

40
50

0
10

20
30

40
50

60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

SymbolsSubcarriers

M
ag
ni
tu
de

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Figure 10 – Channel frequency response.

Table 2 – Channel models power delay profiles.

R2V-UC Path delays [ns] 0, 1, 2, 100, 101, 102, 200, 201, 300, 301, 500, 501
Average path gains [dB] 0, 0, 0, -11.5, -11.5, -11.5, -19.0, -19.0, -25.6, -25.6, -28.1,-28.1

R2V-SS Path delays [ns] 0, 1, 100, 101, 200, 201, 300, 301, 400, 500, 600, 700
Average path gains [dB] 0, 0, -9.3, -9.3, -14, -14, -18, -18, -19.4, -24.9, -27.5, -29.8

R2V-EX Path delays [ns] 0, 1, 2, 100, 101, 102, 200, 201, 300, 301, 500, 501
Average path gains [dB] 0, 0, 0, -9.3, -9.3, -9.3, -20.3, -20.3, -21.3, -21.3, -28.8, -28.8

V2V-UC Path delays [ns] 0, 1, 100, 101, 102, 200, 201, 202, 300, 301, 400, 401
Average path gains [dB] 0, 0, -10, -10, -10, -17.8, -17.8, -17.8, -21.1, -21.1, -26.3, -26.3

V2V-EX Path delays [ns] 0, 1, 2, 100, 101, 200, 201, 202, 300, 301, 302
Average path gains [dB] 0, 0, 0, -6.3, -6.3, -25.1, -25.1, -25.1, -22.7, -22.7, -22.7

V2V-SDWW Path delays [ns] 0, 1, 100, 101, 200, 300, 400, 401, 500, 600, 700, 701
Average path gains [dB] 0, 0, -11.2, -11.2, -19, -21.9, -25.3, -25.3, -24.4, -28, -26.1, -26.1

• V2V Urban Canyon (V2V-UC): Communication between two vehicles where urban
canyon characteristics exist. The vehicles move at 32-48 km/h in a dense traffic
environment.

• V2V Expressway (V2V-EX): Communication between two vehicles entering the
highway at the same time and accelerating to reach 104 km/h.

• V2V Expressway Same Direction with Wall (V2V-SDWW): Communication
between two vehicles entering at the same time on a highway having a center wall.
The vehicles were moving at 104 km/h.

As an illustrative example, Figure 10 showcases the channel frequency response
for the V2V-UC model, given as the time-variant transfer function obtained by Fourier
transforming the impulse response with respect to the delay. Notably, the channel exhibits
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a smooth variation in the frequency domain, which is a crucial characteristic in practical
vehicular communications scenarios.

Our analysis is based on a system model that encompasses several critical aspects
of wireless vehicular communication systems. Thus, based on the main specifications of
the IEEE 802.11p standard and their relevance in vehicular communication scenarios, we
explore the characteristics of HPA with and without memory, recognizing their impact
on signal distortions and overall system performance. In addition, we present the distinct
characteristics that arise from the dynamic nature of the vehicular environment model.
The combination of these components builds the basis for our subsequent exploration
of advanced receiver architectures and channel estimation techniques in the context of
wireless vehicular communication systems.
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4 STATE-OF-THE-ART ON VEHICULAR CHANNEL ESTIMATION

This chapter introduces the methods that will serve as benchmarks for
our subsequent analysis. We highlight that, in contrast to frame-by-frame (FBF)
proposals [61, 62], our focus is on symbol-by-symbol (SBS) channel estimators, i.e., in
which the channel estimation is performed for each received symbol separately using
only the previous and current received pilots, without increasing the latency of the
application [12].

The IEEE 802.11p [27] standard defines the physical layer specifications for
vehicular communication based on the OFDM scheme, with channel estimation supported
by pilot subcarriers. In addition, this standard takes into account a preamble known at
the receiver, which is used to synchronize the channel. Due to the limited number of
data pilots, several methods in the literature have been proposed to improve channel
estimation in vehicular networks. Most methods for IEEE 802.11p networks are based
on the data-pilot aided (DPA) scheme, which exploits the demapped data symbols in
order to improve the channel estimation, thus providing a low computational complexity
solution [14,30,31].

In view of the challenges of vehicular communication networks, DNN-based
schemes have been successfully employed recently to improve channel estimation for
vehicular channels. For instance, an auto-encoder (AE)-DNN was proposed by [15]
in order to improve the DPA method. Convolutional neural networks (CNNs) have
also been considered as a solution for vehicular scenarios [61, 62]. The TS-ChannelNet
estimator introduced by [61] suffers from high computational complexity, since it considers
integrating both LSTM and CNN to achieve the final channel estimates. The authors
in [62] present an estimator based on weighted adaptive interpolation, which is able
to reduce the complexity and at the same time outperforms TS-ChannelNet, given a
modification considered in the IEEE 802.11p standard to allocate the pilots within each
transmitted frame, adapting the scheme according to the mobility condition. However, by
considering FBF solutions, both CNN-based receivers require the reception of the whole
frame before starting the channel estimation.

Moreover, other recent studies have considered more advanced DL-based
algorithms to explore the correlation between OFDM symbols. As it was shown in [17]
and [18], DL is able to capture more features of the vehicular channel and to improve the
estimation performance compared to conventional methods. In this sense, a promising
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Figure 11 – Block diagram of the DPA method.

approach relies on the LSTM network, which can be a robust and efficient DL solution
to track the vehicular channel, especially in high mobility scenarios. Nevertheless, the
LSTM architecture still poses a significant challenge related to its high complexity.

4.1 Conventional estimators

4.1.1 LS

The basic method considered to provide channel estimation in the IEEE 802.11p
standard is the LS estimator. Recalling Figure 7, the two long training predefined symbols
tp,1 and tp,2, are demodulated to obtain the received frequency domain symbols for each
k-th subcarrier, denoted by yp,1[k] and yp,2[k]. Thus, the LS channel estimation is given
by

ĥLS[k] = yp,1[k]+yp,2[k]
2p[k] , (25)

where p[k] is the predefined preamble sequence in frequency domain.

4.1.2 DPA

As illustrated by its block diagram in Figure 11, the DPA method employs the
previously received symbol as a preamble to estimate the channel for the current symbol.
Considering the estimate for the first symbol as ĥDPA0 [k] = ĥLS[k], the equalization of the
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current i-th symbol at the k-th subcarrier is given by

ŷeqi
[k] = yi[k]

ĥDPAi−1 [k]
, (26)

so that ŷeqi
[k] is then demapped to the nearest constellation point to result in di[k]. The

DPA initial channel estimate is obtained as

ĥDPAi
[k] = yi[k]

di[k] . (27)

In contrast to the LS estimation, which exhibits significant degradation due to the
time variation, the DPA method enhances the performance by exploiting the correlation
characteristics between adjacent symbols in the OFDM transmission. However, the
performance of this scheme is heavily influenced by the data pilots’ reliability, which
tends to degrade given the harsh dynamic of vehicular channels. In addition, classical
DPA-based methods incur error propagation during the frames, a problem that is even
more significant in high-order modulation schemes and high-mobility [13].

4.1.3 STA

Several channel estimation schemes based on DPA method are proposed in the
literature to rapidly track time-varying channels. For instance, the spectral temporal
averaging (STA) method is introduced in [14], where an average of the estimated channels
in time and frequency domains is performed after the DPA estimation. As illustrated in
its block diagram in Figure 12, the STA estimation is obtained by averaging (27) in the
frequency domain to obtain

ĥupdatei
[k] =

λ=β∑
λ=−β

ωλĥDPAi
[k+λ], (28)

where ωλ = 1
2β+1 , with β being the frequency averaging coefficient. Next, the channel’s

final estimation is computed as

ĥSTAi
[k] =

(
1− 1

α

)
ĥSTAi−1 [k]+ 1

α
ĥupdatei

[k], (29)

where α is the time averaging coefficient that, as well as β, is an integer parameter
inherent to the STA. To improve the performance, α and β must be chosen experimentally
depending on the channel variation, and fixing these parameters can increase the gradually
accumulated demapping error from di[k] [14].
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Figure 12 – Block diagram of the STA estimator [14].
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Figure 13 – Block diagram of the DPA-DNN estimator [15].

4.2 DNN-based estimators

4.2.1 DPA-DNN

The DPA-DNN scheme [15] considers an initial DPA estimation that is followed
by an offline trained AE with three hidden layers, consisting respectively of 40, 20 and 40
neurons. Figure 13 illustrates the approach, in which the goal of the DNN is to update the
estimation initially obtained with the DPA, by learning to correct the estimation errors
between ĥDPAi

[k] and the perfect channel. The output is denoted by ĥDPA−DNNi
[k], which

is the DPA-DNN channel estimation.

The authors in [15] show that the trained DNN is capable of learning the channel
frequency domain characteristics, preventing the error propagation typical of the DPA
method.

4.2.2 STA-DNN

In order to reduce complexity when compared to the scheme proposed in [15],
the authors in [16] considered a three-layer DNN, with 15 neurons in each layer, which
is used as a post-process to the conventional STA estimator. Figure 14 illustrates such
approach, in which the STA estimation ĥSTAi

[k] is used as the input of the DNN in order
to produce ĥSTA−DNNi

[k].
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Figure 14 – Block diagram of the STA-DNN estimator [16].

The goal of the employed DNN is to minimize the mean squared error (MSE)
between the perfect channel state information (CSI) and the STA estimate, so that

MSESTA−DNN = 1
NT

NT∑
i=1

(
hi − ĥSTAi

)2
, (30)

where NT is the number of training samples. Unlike the proposal in [15], the nonlinear
processing along with the STA allows the proposed estimator to capture more features
of the time and frequency correlations of the channel. The results in [16] show that
the proposed STA-DNN scheme provides a performance improvement while reducing the
computational complexity of the solution.

4.3 Numerical results: conventional vs. DNN-based estimators

This section presents a preliminary analysis of the performances of the state-of-
the-art channel estimators when applied to the IEEE 802.11p standard in the presence
of distortions due to memoryless HPA nonlinearities based on the model as described in
Section 3.2. The results are presented in terms of the normalized MSE (NMSE) and bit
error rate (BER) of the DPA and STA [14] estimators, as well as DNN-based estimators
such as the DPA-DNN [15] and the STA-DNN [16]. The V2V-UC vehicular channel
model [11] is considered, deploying the communication channel between two vehicles
moving at v = 50 km/h in a dense traffic environment. The estimations are performed for
transmitted OFDM frame of size L= 100 symbols and 16-QAM modulation.

Figure 15a and Figure 15b present the NMSE result in the linear and nonlinear
scenario with fixed IBO = 4 dB, respectively. It is worth noting that the objective of the
DNN in both DL-based solutions is to minimize the NMSE between the ideal channel
and the channel estimation from the chosen conventional method. However, this is done
without any prior knowledge regarding the HPA nonlinearities effects. The superiority
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(a) Without HPA nonlinearities. (b) With HPA nonlinearities.

Figure 15 – NMSE performance for the conventional and DNN-based estimators.

of the DNN-based methods in estimating the channel is evident, so that using DNN
as a nonlinear process considerably enhances the conventional estimators’ performance,
adding the ability to learn features about the channel and reducing the error between its
estimation and the ideal channel, even when impacted by NLDs.

Figure 15a shows that, starting from the SNR of ξ = 25 dB, the DPA-DNN
presents less channel estimation error than the STA-DNN estimator, once the impact
due to demapping error is small for high SNR region and the initial DPA estimation
emerges over STA. Moreover, the results presented by Figure 15b show that, when the
HPA distortions are considered, the STA-DNN hybrid solution slightly outperforms the
DPA-DNN, proving to be more likely to capture the nonlinearities of the HPA while
reducing also the computational complexity due to its DNN architecture. Figure 16a
shows that the DNN-based estimators outperform the BER provided by the conventional
estimators in all considered scenarios. In Figure 16b it is observed that the DNN-based
estimators are still capable of providing a BER of around 10−2 at ξ = 20 dB, while the
conventional estimators suffer from severe performance degradation.

It is worth pointing out that, in performing an average of the estimated channels
in time and frequency domains, the classical STA takes more about the correlation of
the channel gain over successive received OFDM symbols into account than the DPA
estimation, providing a better entry for the DNN. As a consequence, the complexity of
the STA-DNN in terms of the number of neurons of the DNN can be reduced when
compared to the DPA-DNN, while still providing a slightly better BER performance.

In order to compare the estimators with different nonlinear distortion effects,
Figure 17 presents the BER performance by employing different IBO values. Intuitively,
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(a) Without HPA nonlinearities. (b) With HPA nonlinearities.

Figure 16 – BER performance for the conventional and DNN-based estimators.

(a) Initial DPA and AE-DNN estimators (b) STA and STA-DNN estimators.

Figure 17 – BER performance for the conventional and DNN-based estimators for
IBO ∈ {2,4,6} dB.
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since increasing the IBO represents an approximation to the characteristics of the ideal
HPA and its linear properties, a lower IBO implies a worse BER performance as an
expected result. In accordance with that, it is possible to notice that both classical
and DNN-based estimators show better performance with the increase of the IBO.
Nevertheless, the DNN-based estimators are more robust to these nonlinear effects, since
the variation in performance is smaller than the one from the conventional estimators.
The results presented in Figures 17a and 17b show that, even for the scenario with
IBO = 2 dB, both DPA-DNN and STA-DNN are capable to achieve BER lower than 10−2

at ξ = 25 dB, whereas the conventional initial DPA estimator and the STA estimator
exhibit respectively high error rates of 0.25 and 0.22. As a key result, this study shows
that DNN-based methods implicitly have some robustness against these nonlinearities.
This stands in contrast to using only conventional channel estimators without DNNs, for
which the performance is considerably degraded by the HPA distortions. This motivates
the exploration of advanced DL-based methods for accurate vehicular channel estimation.

4.4 LSTM-based estimators

Although the DPA method improves performance compared to the LS estimator,
a relevant performance loss is observed in communication scenarios with high mobility. In
these cases, the demapping error increases since the correlation between symbols, explored
by the DPA, decreases [16]. In order to deal with this issue, recently, more modern DL
algorithms have been introduced to address the error propagation issue.

4.4.1 LSTM-NN-DPA

The LSTM-NN-DPA scheme has been proposed in [17], which employs an LSTM
network allied with a NN in order to reconstruct the channel as close as possible to the
ideal channel response. The authors consider that the input of the LSTM receives the
LS of the Kp pilot subcarriers, in two consecutive OFDM symbols, denoted by ĥLSi,p [k]
and ĥLSi−1,p [k], and the previously estimated channel ĥLSTM−NN−DPAi−1,d

[k] for the Kd

subcarriers. Then, the estimate after the NN is denoted by ĥLSTM-NNi
[k], which is further

used as the input of the DPA method, providing the final estimation ĥLSTM-NN-DPAi
[k],

∀k ∈ Kon. The block diagram of the LSTM-NN-DPA scheme is shown in Figure 18,
while numerical results in [17] show that this method is able to learn the time and
frequency characteristics of the channel, tracking its variation and mitigating noise. Thus,
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Figure 18 – Block diagram of the LSTM-NN-DPA [17] scheme.

significant performance improvement in comparison to previous DNN-based receivers has
been achieved.

4.4.2 LSTM-DPA-TA

Another LSTM-based receiver has been proposed by [18], where the LSTM
estimates are directly fed to the DPA method, producing ĥLSTM-DPAi

[k] as an output.
Then, noise mitigation is achieved by means of a TA scheme, defined as

ĥLSTM-DPA-TAi
[k] =

(
1− 1

α

)
ĥLSTM-DPA-TAi−1[k]

+ 1
α

ĥLSTM-DPAi
[k],

(31)

where α defines the fixed time averaging weight.

Figure 19 illustrates the block diagram of the LSTM-DPA-TA scheme.
Furthermore, this estimator exhibits a lower computational complexity when compared
to LSTM-NN-DPA, while achieving similar performance in different mobility scenarios.
Nevertheless, both LSTM-NN-DPA and LSTM-DPA-TA still require a large number of
neurons to perform the operations in the LSTM units, since all active subcarriers are
used.

In line with existing literature, we underscore that LSTM methods exhibit
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Figure 19 – Block diagram of the LSTM-DPA-TA [18] scheme.

superior performance compared to DNN methods when estimating the vehicular
channel [12, 17]. However, this performance gain comes at the expense of increased
complexity. Recognizing both the advantages and limitations, our proposed approach
is also based on LSTM networks. Nevertheless, in this thesis we have developed a method
to substantially reduce the complexity of the estimator, mitigating this trade-off. By
introducing a new approach, we are able to balance the computational demands with
the superior performance associated with LSTM methods, making it more suitable for
real-world applications where computational resources are often limited.
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5 PROPOSED LSTM-BASED CHANNEL ESTIMATION

This chapter presents a novel learning-based receiver architecture proposed to
estimate the vehicular channel. Through a comprehensive analysis, we compare the
performance of the proposed estimator with benchmark methods from the literature,
validating its efficacy in scenarios characterized by dynamic conditions and nonlinearities
inherent in vehicular communications. The results provide a perspective on the robustness
and adaptability of the proposed learning-based receiver architecture, proving its potential
to improve channel estimation in realistic vehicular communication environments.

5.1 DPA-LSTM-NN

This section introduces a novel learning-based receiver architecture proposed for
estimating the vehicular channel. Using the DPA procedure detailed in Section 4.1.2 as
initial estimation, the proposed DPA-LSTM-NN scheme performs first a coarse channel
estimation that is used as the input of an LSTM layer. Since the LSTM is a powerful tool
to track the channel variation and learn the channel correlation in the time domain, we
favored the use of the DPA method instead of more complex estimators, such as STA [14].
The LSTM is then followed by a NN in order to mitigate the remaining noise from the
hybrid estimator, refining the channel estimation. Such a combination of the DPA, LSTM,
and NN provides robustness with respect to the HPA distortions at the receiver.

5.1.1 Subcarrier sampling

The DPA-LSTM-NN considers a subcarrier sampling process at the input of the
LSTM, so that it interpolates the subcarriers’ information to reduce the complexity of
the solution. The small maximum delay spread of the channel leads to a weak frequency
selectivity, i.e., h[k] ≈ h[k± 1]. Thus, we define a subset S ⊂ Kon, so that only the DPA
estimates ĥDPAi

[s], ∀s ∈ S, are selected as inputs of the LSTM layer. Moreover, we also
define Kp as the set containing the Kp pilot subcarriers, while Kd is the set of the Kd data
subcarriers, so that Kon = Kp ∪ Kd. As an example, let us consider a slice of vehicular
channel of Figure 10 for an arbitrary symbol index, plotting the magnitude as a function
of the subcarrier index. Figure 20a shows all active subcarriers for a given symbol index,
with pilot subcarriers illustrated with dashed lines and data subcarriers in solid lines. In
this example, the scenario follows the IEEE 802.11p standard, where there are Kon = 52
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Figure 20 – Subcarrier sampling procedure.

active subcarriers, out of which Kp = 4 subcarriers are pilots and the remaining Kd = 48
subcarriers carry the data.

Notice that the inclusion of the set Kp in S is mandatory since it carries the
OFDM pilots, so that Kp ⊂ S. Therefore, we sample only among the subcarriers in Kd.
Figure 20b illustrates a 1/2 sampling rate, where the Kp = 4 pilot subcarriers are included,
while 24 out of the Kd = 48 data subcarriers are chosen. The selected subcarriers are taken
using a simple down-sampling pattern. In this manner, the size of the LSTM layer can
be adjusted according to the cardinality of S, denoted as |S|, which allows to effectively
manage the complexity of the channel estimation process.

Finally, it is worth noting that the input of the LSTM layer has size 2 |S|, while its
output has size 2 |Kon|, related to the real and imaginary parts from the complex-valued
channel estimations. The interpolation to produce the channel estimates for all active
subcarriers is intrinsically performed by the LSTM, by means of training.
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Figure 21 – Proposed DPA-LSTM-NN channel estimator with subcarrier sampling.

5.1.2 NN post-processing and training

The output from the LSTM layer is then processed by a shallow NN with
N1 neurons to reduce the noise and provide the final channel estimation, denoted as
ĥDPA−LSTM−NNi

[k]. Furthermore, we follow [5] to define the parameters related to the
training and testing stages of our method. The number of samples used for the training
and testing phases is defined by splitting 10000 different realizations of the vehicular
channel into sets with 80% and 20% of the total, respectively. The batch size is set to be
sufficiently smaller than the size of the training dataset, thus speeding up its generalization
and the training process, while the number of training epochs is set large enough to
ensure the convergence of the model. For the optimizer, we favored the adaptive moment
estimation (ADAM) with the rectified linear unit (ReLU) activation function to minimize
the loss between the perfect channel and the estimates from the proposed DPA-LSTM-
NN. This choice is motivated by its fast computing time, a small number of parameters
to tune, and its well-known ability to solve optimization problems. As suggested in [5],
the learning rate is set as 0.001, which is automatically adapted by the ADAM during
its progress, until the method converges. Finally, following [63], the training for all the
estimators is performed at the highest expected SNR value in order to reduce the impact of
the noise and better learn the channel variations. Table 3 summarizes the DL architecture
and parameters used in the training phase from our proposed scheme. The block diagram
of the proposed DPA-LSTM-NN architecture is presented in Figure 21.

5.2 Performance in the presence of memoryless HPA

We start our analysis focusing on the memoryless HPA. For a transmitted OFDM
frame consisting of L = 50 symbols, the performance evaluation of the proposed DPA-
LSTM-NN scheme is done in terms of BER and NMSE, and compared with DPA-
DNN [15], LSTM-NN-DPA [17] and LSTM-DPA-TA [18] schemes. For all schemes, a
convolutional encoder with code rate 1/2 at the transmitter and a Viterbi decoder at the
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Table 3 – Parameters for training the proposed estimator.
Parameter Values

Hidden size of the LSTM |S|
Hidden size of the NN N1

Epochs 500
Training samples 8000
Testing samples 2000

Batch size 128
Optimizer Adam

Learning rate 0.001

receiver is taken into account, as defined by the IEEE 802.11p standard [27]. Furthermore,
we consider the V2V-UC vehicular channel model, with two vehicles moving in opposite
directions, modeling a single-input single-output (SISO) transmission with line-of-sight
(LoS). The comparison is done in scenarios with speeds v = 50 km/h (low mobility
scenario), v = 100 km/h (high mobility scenario) and v = 200 km/h (very high mobility
scenario). Also, we considered 16-QAM and QPSK modulation techniques, aiming to
cover both lower and higher modulation order aspects in the analysis, while the impact
of the HPA nonlinearities has been considered for IBO = 4 dB for the higher modulation
order and, since QPSK is considerably more robust with respect to the nonlinearities, we
extend our analysis to higher effects of HPA-induced nonlinearities, employing IBO = 2 dB
in this case.

We first investigate the impact of the subcarrier down-sampling factor on the
BER performance of the proposed DPA-LSTM-NN scheme. Figure 22 plots the BER as a
function of the SNR of the DPA-LSTM-NN estimator for the low mobility scenario (v= 50
km/h), 16-QAM modulation with an IBO = 4 dB. Notice that we indicate the size of the
LSTM unit and the number of neurons of the NN in the legend. For instance, (52-15)
indicates an LSTM unit with size P = 52 hidden states and N1 = 15 neurons. Then, we
have considered different sets of sampled subcarriers with P = |S| ∈ {52,36,28,20,16}.
Since the Kp = 4 pilot subcarriers are always included in S, we illustrate the cases of
sampling the data subcarriers with rates 1/1, 2/3, 1/2, 1/3 and 1/4, respectively. We
observe that it is possible to reduce the input size of the LSTM U and the number
of P hidden states considerably with a slight degradation in the BER performance.
Consequently, the LSTM demonstrated to be capable of interpolating the information
of the missing subcarriers even with P = 28. Therefore, in the sequel we only consider
the DPA-LSTM-NN scheme with P = |S| = 28 hidden states and an LSTM input



39

Figure 22 – BER performance of the proposed DPA-LSTM-NN scheme for different
sets of sampled subcarriers, with |S| ∈ {52,36,28,20,16}, v = 48 km/h, 16-QAM
modulation and IBO = 4 dB in the memoryless case.

U = 2 |S| = 56.

Figure 23 compares the BER performance of the estimation schemes using 16-
QAM modulation and IBO = 4 dB. As illustrated in Figure 23a for the low mobility
scenario, LSTM-NN-DPA [17] and LSTM-DPA-TA [18] perform better than our proposed
scheme at low SNR. This is due to the demapping error of the DPA method, which
increases in low SNR. Thus, since [17,18] use the LSTM layer before the DPA, they achieve
increased performance. However, when the SNR increases the DPA method provides
cleaner information to the LSTM layer, compared to LS used in [17,18]. Then, we observe
that the DPA-LSTM-NN scheme outperforms all other benchmark methods when ξ ≥
22 dB. Note also that such SNR level is crucial to achieve BER lower than 10−3, required
by many practical applications. Furthermore, for high and very high mobility scenarios,
respectively in Figures 23b and 23c, we observe a higher advantage for the proposed DPA-
LSTM-NN estimator, outperforming the other solutions regardless of the SNR. It is also
important to highlight that the proposed method is the sole estimator to achieve BER
in the order of 10−4 for high and very high mobility. In addition, considering a BER
of 10−3, the proposed scheme has 4 dB of SNR gain compared to the LSTM-DPA-TA
method in Figure 23b, and 2 dB of SNR gain compared to the LSTM-NN-DPA method
in Figure 23c.

The performance improvement of the proposed estimator with respect to LSTM-
NN-DPA and LSTM-DPA-TA is illustrated in Figure 24 in terms of the NMSE gap. Here,
let us highlight that the NMSE is calculated as the error between the channel estimated
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(a) Low mobility, v = 48 km/h. (b) High mobility, v = 100 km/h.

(c) Very high mobility, v = 200 km/h.

Figure 23 – BER performance of the DPA-DNN [15], LSTM-NN-DPA [17], LSTM-
DPA-TA [18] and DPA-LSTM-NN (proposal) using 16-QAM modulation and IBO =
4 dB in the memoryless case.
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Figure 24 – NMSE gap between the proposed DPA-LSTM-NN and LSTM-NN-
DPA/LSTM-DPA-TA, with ξ = 30 dB, 16-QAM modulation, IBO = 4 dB in the
memoryless case and v ∈ {48,100,150,200} km/h.

for each receiver and the perfect channel, i.e. the channel where CSI is known. Thus,
we calculate the NMSE for fixed SNR ξ = 30 dB, 16-QAM modulation, IBO = 4 dB, for
different speeds and obtain the NMSE gain achieved by the proposed method compared
to each benchmark. Comparing DPA-LSTM-NN and LSTM-NN-DPA, we observe that
the NMSE gap is always higher than 40% regardless of v. Comparing DPA-LSTM-NN
and LSTM-DPA-TA the NMSE gap is always higher than 20%, increasing with v. This
result shows that the proposed DPA-LSTM-NN performs better in minimizing the error
between the perfect channel and its channel estimates in high SNR, being a better choice
for tracking the channel in the presence of nonlinear distortions.

In order to focus on the effects of the HPA-induced nonlinearities, the error rate
performance is evaluated with IBO = 2 dB in Figure 25. Low, high and very high mobility
scenarios are considered with QPSK modulation. Similarly to the results considering 16-
QAM modulation, we observe that the proposed DPA-LSTM-NN scheme outperforms
other methods, except in the low mobility scenario at low SNR. Nevertheless, we can
notice here that both LSTM-NN-DPA and LSTM-DPA-TA estimators present an error
floor at high SNR. This is mainly due to the low IBO, since the LS estimation used
as the input of the LSTM layers in [17, 18] is highly degraded by the HPA nonlinear
distortions. In addition, the performance gap between the LSTM-NN-DPA, LSTM-DPA-
TA and our proposed method increases with the SNR, since the DPA method provides
more reliable channel estimates in this case. Figure 26 corroborates such analysis, by
showing the NMSE gap between ours and the benchmark LSTM-based estimators in the
same scenario of Figure 25. Similar conclusions as in Figure 26 can be obtained, with the
DPA-LSTM-NN method outperforming other schemes by at least 53%.
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(a) Low mobility, v = 48 km/h. (b) High mobility, v = 100 km/h.

(c) Very high mobility, v = 200 km/h.

Figure 25 – BER performance of the DPA-DNN [15], LSTM-NN-DPA [17], LSTM-
DPA-TA [18] and DPA-LSTM-NN (proposal) using QPSK modulation and IBO =
2 dB in the memoryless case.

Figure 26 – NMSE gap between the proposed DPA-LSTM-NN and LSTM-NN-
DPA/LSTM-DPA-TA, with ξ = 30 dB, QPSK modulation, IBO = 2 dB in the
memoryless case and v ∈ {48,100,150,200} km/h.
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Figure 27 – Transmission system model for the case with memory effect
compensated.

5.3 Performance in the presence of memory HPA

We take advantage of the previous analysis to extend the discussion regarding
practical scenarios with NLDs. Thus, the effects of memory of the HPA model are now
considered as an additional step to the analysis. It is important to note that a memoryless
HPA model is an acceptable approximation for narrowband signals with nearly constant
envelope modulations. However, the distortion cancellation performance in scenarios with
higher bandwidth or higher data rates is degraded if the memory effects of the HPA are
neglected [9, 59, 60].

5.3.1 Compensation at the transmitter

As presented in Figure 9, the frequency response of the HPA with memory is not
flat for the active subcarriers, which can significantly affect the channel estimation. In
order to mitigate this impact, we present a method to compensate part of the memory
NLD effects at the transmitter side using only a priori known HPA information, while
handling the remaining distortions together with the channel estimation. This low-
complexity proposal considers a matched filter precoding as a compensation block, as
presented in Figure 27, ensuring a flat spectrum for all data subcarriers in the transmitted
signal. The precoded QAM data symbols can be written as

X′
i,k = Xi,k

HFIRk
, (32)

where HFIRk is the frequency response of the FIR filter for the k-th subcarrier, i.e., it
corresponds to the FFT of ω, recalling that we consider ω = [0.7692,0.1538,0.0769], which
are obtained from measurements and modeled according to the HPA characteristics. This
strategy assigns a compensation step with low complexity to the transmitter. The result
is shown in Figure 28, where we can observe a flat spectrum except for the guard band,
i.e. inactive, subcarriers. This alleviates the signal degradation.

According to [53], since x(t) is an OFDM signal with a large number of
subcarriers, it can be approximated as a zero mean normal distribution, i.e., x(t) ∼
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Figure 28 – Frequency response of the HPA output compensated.

N (0,ϑ), with ϑ being its variance. Thus, the frequency domain pre-compensation (as in
Figure 27) is equivalent to precoding x(t), so that

x′(t) = g(t)∗x(t) (33)

where ∗ denotes the convolution operation and g(t) is obtained as the IFFT of 1
HFIR k

.
As proven by [64], since x′(t) is a linear combination of uncorrelated normally distributed
random variables, it also yields a normally distributed random variable, such that
x′(t) ∼ N (0,ϑ′), where ϑ′ depends on coefficients of 1

HFIR k
. Let us remark that this

is crucial in order to apply the Bussgang theorem in (20) and validate the polynomial
approximation in (23) while compensating the signal. In other words, even by introducing
the compensation stage and the FIR filter of the Hammerstein model, the relations
assumed in (20)-(23) are still valid.

Finally, the signal x(t) is normalized using a root mean square (RMS)
normalization, while the output signal u(t) is normalized according to the effects of the
FIR filter, being divided by the factor

υ =

√√√√√ F∑
f=1

ω2
f . (34)

At the receiver, we employ the DPA-LSTM-NN method. Thus, the DPA is able to
learn the time and frequency characteristics of the channel and reconstruct the estimation
as close as possible to the ideal channel response. Then, the LSTM structure is designed
to deal with sequential data, being capable of learning the channel correlation over time
and efficiently predicting future channel realizations based on previous observations. As a
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consequence, the combination of the compensation step at the transmitter and the DPA-
LSTM-NN scheme at the receiver results in a communication system robust to the effects
of memory of the HPA.

5.3.2 Simulation results

We compare the LSTM-NN-DPA [17], LSTM-DPA-TA [18], and the proposed
DPA-LSTM-NN estimators in terms of NMSE and BER performances in scenarios with
HPA models with memory effects. A transmitted OFDM frame size of L = 50 symbols
is taken into consideration in a scenario based on the R2V-UC [11] model to deploy the
communication channel between a transmitting antenna mounted on a roadside and a
receiver vehicle approaching. The analysis is performed with a speed v = 50 km/h, but it
should be noted that the results are qualitatively similar at other mobilities.

Figure 29 presents the NMSE performance for the wireless channel affected by
the impairments related to the memory HPA. The estimators’ performance is almost
identical at a low SNR in the scenario with QPSK modulation and IBO = 2 dB, presented
in Figure 29(a). However, when the SNR is greater than 10 dB, the DPA-LSTM-NN
outperforms the other methods since the DPA provides more reliable information to the
LSTM layer when compared to the LS used by [17, 18]. Moreover, in the scenarios with
16-QAM modulation presented in Figures 29(b) and 29(c), we observe an advantage of the
DPA-LSTM-NN estimator, that outperforms the other solutions regardless of the SNR.
This highlights the gain of this estimator for the case of higher modulation orders, while
the other receivers suffer from a huge estimation error.

Figure 30 presents the BER performance of the LSTM-based estimation schemes
in transmission with QPSK modulation and IBO = 2 dB. Besides focusing on the memory
HPA, the performance with a memoryless HPA model from previous results in Section 5.2
is also shown for comparison purposes. In addition, the effects with and without the
compensation done by (32) are also put side-by-side. The comparison of Figures 30(a)
and 30(b) reveals a loss of at least 6 dB to achieve a BER below 10−3. Despite this, the
HPA memory compensation is shown in Figure 30(c), where the loss is reduced to less
than 1 dB to achieve the same error rate, achieving a performance closer to the memory
scenario for all the estimators considered. Still, for all cases considered and in agreement
with the NMSE result, the DPA-LSTM-NN estimator outperforms the other solutions in
high SNR scenarios.
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(a) QPSK and IBO = 2 dB. (b) 16-QAM and IBO = 2 dB.

(c) 16-QAM and IBO = 4 dB.

Figure 29 – NMSE performance in the scenario with NLD memory effects.
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(a) Memoryless. (b) Memory, without compensation.

(c) Memory, with compensation.

Figure 30 – BER performance using QPSK modulation, v = 50 km/h and IBO =
2 dB.
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(a) Memoryless. (b) Memory, without compensation.

(c) Memory, with compensation.

Figure 31 – BER performance using 16-QAM modulation, v = 50 km/h and IBO =
2 dB.

The effects of HPA modeling are shown in Figure 31, where memory effects
severely degrade system performance with IBO = 2 dB and higher modulation order (16-
QAM). Comparing Figures 31(a) and 31(b), a significant BER increase is observed due
to the memory effects. By its turn, Figure 31(c) shows effective compensation using the
proposed method. We remark that the compensation in (32) is practical since the FIR
coefficients ω need only to be estimated based on numerical measurements given the
employed HPA, presenting a method where no high computational complexity is required
on the transmitter side. Additionally, the DPA-LSTM-NN method outperforms other
estimators in the presence of HPA memory effects, maintaining similar performance as
shown in Figures 31(a) and 31(c). Furthermore, regardless of whether the compensation
is performed in the transmitter, DPA-LSTM-NN shows an advantage over other solutions
in scenarios with HPA memory effects. This indicates that the LS estimation used as the
input of the LSTM layers in [17,18] is highly degraded by the HPA NLD effects.
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(a) Memoryless. (b) Memory, without compensation.

(c) Memory, with compensation.

Figure 32 – BER performance using 16-QAM modulation, v = 50 km/h and IBO =
4 dB.

Finally, Figure 32 presents the BER with 16-QAM modulation and IBO = 4 dB,
i.e., smoother nonlinear effects. Again, the DPA-LSTM-NN performs better in minimizing
the error between the perfect channel and its channel estimates, being a better choice for
tracking the channel in the presence of NLD with memory. Figure 32(c) shows that the
compensation done at the transmitter side significantly improves the performance for
all estimators. Here, we underline the importance of this compensation step, showing
that from a robust estimator, such as the proposed DPA-LSTM-NN, a compensation by
means of (32) is sufficient to improve communication performance. This effect becomes
evident by comparing Figure 32(b) and Figure 32(c), since a BER below 10−3 can only be
obtained when the compensation stage is considered at the transmitter. In addition, when
comparing the DPA-LSTM-NN estimator with [17,18], we can observe that DPA-LSTM-
NN is the sole capable of reaching a BER in the order of 10−3, while both LSTM-NN-DPA
and LSTM-DPA-TA estimators present an error floor at high SNR.
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5.4 Computational complexity analysis

In order to compare the computational complexity of the schemes, we
calculate the number of real-valued operations in terms of multiplications/divisions
and summations/subtractions, required to estimate the channel from a received OFDM
symbol. It should be noted here that the pre-compensation required for the case of the
scenario including NLD effects with memory requires only Kon real-value operations in
terms of multiplications/divisions and sums/subtractions, representing less than 2% of
the overall complexity for estimating the channel from a received OFDM symbol for
each of the receivers compared. Consequently, in the subsequent complexity calculations,
this additional step is disregarded to maintain a comprehensive understanding of the
complexity involved.

The computational complexity of the DPA-DNN estimator has been detailed
in [16]. The initial DPA estimation requires 18Kon multiplications/divisions and 8Kon

summations/subtractions, while the total number of multiplications and summations of
the DNN depends on the number of neurons at each layer. Following [16], the number of
multiplications and summations of the DNN is given by

CMult
DNN = CSum

DNN =
ι+1∑
l=1

ND
l−1N

D
l , (35)

where ι is the number of hidden layers of the DNN, and ND
l is the number of neurons at the

l-th hidden layer. In addition, ND
0 denotes the number of neurons of the input layer of the

DNN, while ND
ι+1 is the number of neurons of the output layer. The DPA-DNN has been

designed in [15] with ι= 3 hidden layers, respectively with ND
1 = 40, ND

2 = 20 and ND
3 = 40

neurons. In addition, both input and output layers depend on the number of active
subcarriers multiplied by two in order to handle real and imaginary parts, so that ND

0 =
ND

4 = 2Kon. Hence, the DPA-DNN requires 178Kon +1600 multiplications/divisions and
168Kon +1600 summations/subtractions.

The shallow NN, by its turn, has a single hidden layer, so that it computational
complexity is given by

CMult
NN = CSum

NN =N0N1 +N1N2, (36)

while the computational complexity of the LSTM unit has been detailed in [18], which
depends on the input size of the LSTM unit U and on the size of its hidden states P .
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Table 4 – Real-valued operations for the considered channel estimators.
Channel Estimator Multiplications/Divisions Summations/Subtractions

DPA-DNN 178Kon +1600 168Kon +1600
LSTM-NN-DPA 12Kon

2 +81Kon +8KonKp 89Kon +8Kp −8
LSTM-DPA-TA 12Kon

2 +23Kon 31Kon −8
DPA-LSTM-NN 3Kon

2 +3Kp
2 +6KonKp +159/2Kon +3/2Kp 157/2Kon +21/2Kp −8

Following [18], the overall number of real-valued operations of the LSTM unit is given by

CMult
LSTM = 4P 2 +4PU +3P, (37)

CSum
LSTM = 13P +4U −8. (38)

The LSTM-NN-DPA estimator considers U = 2(Kon +Kp) = 112 inputs for the
LSTM, where the multiplication by two takes both real and imaginary parts into account,
and P = Kon = 52 hidden states. In addition, the input size of the NN matches the size
of the LSTM output, as well as its output, that is related to the number of subcarriers,
so that N0 =N2 = 2Kon = 104. Also, N1 = 15 has been considered for all schemes in this
paper. Thus, combining the computational complexity of the LSTM, the NN and the DPA
corresponds to 12Kon

2 +81Kon +8KonKp multiplications/divisions and 89Kon +8Kp −8
summations/subtractions.

In addition, the LSTM unit of the LSTM-DPA-TA scheme has U = 2Kon =
104 inputs and P = Kon = 52 hidden states, while the TA technique requires 2Kon

multiplications/divisions and 2Kon summations/subtractions. Thus, combining the
complexity of the LSTM, DPA and TA leads to 12Kon

2 +23Kon multiplications/divisions
and 31Kon −8 summations/subtractions.

By its turn, the proposed DPA-LSTM-NN estimator with subcarrier sampling
employs the DPA initial estimation, followed by the LSTM unit with P = Kon+Kp

2 = 28
hidden states and U =Kon +Kp = 56 inputs, with an additional NN layer with N0 =N2 =
2Kon = 104 and N1 = 15 neurons. We obtain, thus, the complexity as

CMult
DPA−LSTM−NN = 3Kon

2 +3Kp
2 +6KonKp + 159

2 Kon + 3
2Kp (39)

and

CSum
DPA−LSTM−NN = 157

2 Kon + 21
2 Kp −8. (40)

Table 4 summarizes the real-valued operations required by the channel estimation
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Figure 33 – Computational complexity in terms of real-valued operations with Kon =
52 subcarriers and Kp = 4 pilots.

schemes, as a function of the number of active subcarriers. As we observe, the proposed
DPA-LSTM-NN scheme has the smallest coefficients for the most significant factors
associated to Kon in the operations of multiplications and divisions, consisting in the
most impactful in the complexity of the considered estimators. This is relevant in the
case, e.g., of a different communication standard employing a different number of active
and pilots subcarriers, so that our solution would still present a lower complexity compared
to other LSTM-based solutions in the literature. In addition, Figure 33 illustrates the
computational complexity of the schemes in the case of Kon = 52 subcarriers and Kp = 4
pilots. We observe that the proposed DPA-LSTM-NN estimator with subcarrier sampling
has at least 49.9% less real-valued operations than other LSTM-based solutions, and 16.7%
less real-valued operations than the DPA-DNN scheme, while also improving the BER at
the same time.

5.5 Ensemble learning for vehicle channel estimation generalization

As well as other receivers present in the literature [16–18], the DPA-LSTM-
NN scheme considers the training on a specific channel model, even though the channel
characteristics are subject to variation and are dependent on the environment in which
the vehicles are operating. The most important factors to dictate the performance of
the DNN-based schemes are the channel PDP, the vehicle speed, and the modulation
order used in communication. Consequently, fixing the training for a given channel
will significantly degrade performance when the vehicle communicates under a different
channel scenario, limiting its practical deployment.
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Algorithm 1 Ensemble Learning

Require: M LSTM-NN models {m1,m2, · · · ,mM} trained on different
subsets, with the same architecture and hyperparameters

Require: Input data, X
Ensure: An ensemble prediction, EL
1: function Bagging(m1,m2, · · · ,mM)
2: Initialize empty list of predictions, P ← []
3: for i = 1 to M do
4: Make prediction using mi: pi ← mi.predict(X)
5: Append pi to P : P ← P + pi
6: end for
7: Average the predictions in P : EL← 1

M

∑M
i=1 pi

8: return EL
9: end function

To extend the analysis of the proposed DPA-LSTM-NN estimator, we employ
the EL technique to improve the overall performance by combining the predictions from
multiple models trained with datasets considering different speeds, maximum Doppler
shifts, and path delays. The principle of this proposal for generalization is described by
the Algorithm 1. Here, we highlight the use of the Bagging method, in which the base
models are trained independently and on different subsets of data using the same algorithm
configuration, and the predictions of the base models are combined using averaging with
equal weight in the final prediction [65]. This choice was given the potential of the Bagging
algorithm to decrease the variance of the estimate by combining multiple predictions, thus
avoiding overfitting [66]. In the EL algorithm, the function “Bagging” takes M LSTM-
NN models {m1,m2, · · · ,mM } as input, that have been trained on different subsets with
the same architecture and hyperparameters. Then, the function returns an ensemble
prediction (EL) that averages predictions of the M LSTM-NN models obtained.

The function initializes P to be an empty list of predictions. It then loops
through the prediction of each input model mi, from i = 1 to M , obtained using
mi.predict(X). Each prediction pi is appended to P and then averaged to obtain the
ensemble prediction EL, which is the final output of the algorithm. By using this method,
the final EL prediction is able to integrate the different offline trained models, combining
the strengths of multiple LSTM-NN models trained on different datasets to achieve
generalized prediction performance, increasing the flexibility and robustness of the receiver
against changes in the wireless channel conditions. Figure 34 presents the block diagram
of the DPA-LSTM-NN channel estimator with EL.
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Figure 34 – Block diagram of the DPA-LSTM-NN channel estimator with EL.

Figure 35 – NMSE for models trained with different speeds on the R2V-UC scenario.

5.5.1 Simulation results

We analyze the performance impact of employing the EL technique on the DPA-
LSTM-NN estimator to generalize the solution for different scenarios. We consider single-
antenna nodes, with a transmitted OFDM frame size of L = 50 symbols in the scenario
based on the IEEE 802.11p standard.

In Figure 35, a fixed SNR = 30 dB is considered to analyze the NMSE performance
of DPA-LSTM-NN models trained with different speeds for the same considered PDP,
deployed as the R2V-UC scenario. The results show that models trained at higher
speeds than those considered in the tested scenario exhibit certain robustness, with
minimized estimation error. However, it is important to note that this robustness does
not hold when different PDPs are considered during testing, requiring a model that
can handle this variation. Therefore, in the subsequent analysis, we focus on the BER
performance of the EL model, where M = 4 models are trained and combined using
Algorithm 1. Specifically, our EL approach considers m1 = {R2V-UC,v = 50 km/h},
m2 = {R2V-UC,v = 200 km/h}, m3 = {V2V-EX,v = 50 km/h}, and m4 = {V2V-EX,v =
200 km/h}, given the PDP in Table 2. Then, we compare the performance of the EL model
with other models trained specifically for a given PDP/speed, in different scenarios.
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(a) v = 50 km/h. (b) v = 200 km/h.

Figure 36 – BER for models trained with different datasets and tested on the R2V-
UC dataset.

Figure 36(a) presents the BER performance of the different models tested with
a dataset deployed as the R2V-UC channel with v = 50 km/h. Notice that the legend
of each curve indicates the scenario for which each model was trained. First, we note
that the model trained with the same PDP/speed as the scenario under test is the one
to achieve the best performance, while the model trained with the same PDP, but with
a higher speed (v = 200 km/h) has almost negligible loss compared to this most effective
model. Furthermore, the EL model exhibits almost negligible loss compared to the best-
performing case. However, the same cannot be said when testing the models trained with
a different PDP, i.e., the V2V-EX channel in this case. In these cases, from 2 dB to 4 dB
of performance loss is observed at the BER of 10−4.

The R2V-UC channel with v = 200 km/h is considered in Figure 36(b). As
illustrated, there is a significant loss when moving to the high-speed scenario during the
test of the models trained for a specific channel condition. In this case, it is observed that
apart from the PDP considered when training the model, the choice of a dataset with
speed lower than the one considered in the test phase is a crucial factor for performance
loss. We observe that the EL model presents a slight performance gain in this scenario,
while the models trained with the same PDP and lower speed v = 50 km/h or different
PDP show a considerable performance loss.

Figure 37(a) shows the performance of the ensemble method for the case where
the V2V-EX scenario is considered during the test phase of the models. Again, it can be
noticed that for the models trained with v = 50 km/h, the one trained with a different
PDP has a higher performance loss, which justifies the need for a combined model that
generalizes the solution. Moreover, the performance loss of the EL model compared to the
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(a) v = 50 km/h. (b) v = 200 km/h.

Figure 37 – BER for models trained with different datasets and tested on the V2V-
EX dataset.

models trained with same PDP can be understood by analyzing the path gains of the R2V-
UC and V2V-EX channel models in Table 2. The fact that the V2V-EX channel model
has lower average path gains compared to the R2V-UC entailed in a small performance
loss for the low-speed scenario. Still, we emphasize that this loss is smaller than that
presented by the models trained with different PDP, evidencing the ability of the EL
model to adapt to harsh conditions.

Finally, Figure 37(b) shows that the models trained with v = 50 km/h are not
adapted to estimate the channel with v = 200 km/h during the testing phase in the
V2V-EX channel, presenting a loss higher than 10 dB in comparison to the EL model.
This substantial loss is crucial to support that models trained for specific scenarios
are insufficient to generalize the DNN-based solution for vehicular channel estimation,
presenting several constraints for practical deployment. On the other hand, the EL model
presents an interesting alternative by offering an estimation with considerably lower losses
for different channels. Additionally, it is important to emphasize that these gains are
achieved without adding computational complexity to the channel estimation, as the
process of obtaining the combined EL model is done offline. Another relevant factor is
related to the advantage of storage of a single model capable of estimating the channel
in different scenarios, resulting in a gain compared to the storage and management of
multiple models, which can be computationally expensive and can result in high storage
costs, particularly when dealing with large datasets.
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5.6 Conclusion

This chapter explores in depth the DPA-LSTM-NN estimator, a novel approach
adapted to vehicular channel estimation. We begin with a comprehensive description
of the method, characterized by its three fundamental components, starting with the
initial DPA estimate, able to learn the time and frequency characteristics of the channel
and reconstruct the estimation as close as possible to the ideal channel response. This is
followed by LSTM structure, designed to deal with sequential data and capable of learning
the channel correlation over time and efficiently predicting future channel realizations
based on previous observations. Complementing these, the NN step is employed as an
additional noise compensation step. Furthermore, the DPA-LSTM-NN method employs
a subcarrier sampling approach at the input of the LSTM, strategically interpolating the
subcarriers’ information to effectively reduce the overall complexity of the solution when
compared to the recently proposed benchmark schemes.

To begin, this estimator is validated in a scenario modeled in accordance with
the IEEE 802.11p standard where it operates in the presence of a memoryless HPA. Our
results confirm the superior performance of the estimator compared to state-of-the-art
methods proposed in the literature. Moreover, we showcase the significant complexity
reduction achieved through subcarrier sampling, demonstrating a solution with improved
performance and notable complexity gain.

To extend the analysis, we also employ this proposed estimator in a scenario
with more realistic NLD models, considering the effects of memory from the HPA. Our
results highlight that utilizing more realistic NLD models has a substantial impact on
the receivers’ performances, a crucial aspect in the development of estimators for future
vehicular communication applications. We further present a low-complexity method to
compensate for part of the NLD memory effects on the transmitter side using only a priori
known HPA information, while handling the remaining distortions along with channel
estimation. The DPA-LSTM-NN estimator presents robustness face to the memory effects
of the HPA. It outperforms other estimators in terms of NMSE performance and has an
almost negligible error rate performance gap when comparing scenarios with memoryless
and memory HPA with compensation. Furthermore, our results underline the importance
of compensating the signal at the transmitter side when considering the memory effects
of the HPA.

We also explore a proposal for generalizing of the method through the EL
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technique, which combines models trained on different feature sets, covering various
PDPs and vehicle mobilities. This approach provides robustness and general learning
architecture for vehicular communication scenarios. The proposed estimator exhibits
resistance to changes in the characteristics across different environments and channel
models, resulting in an estimator that can work under varying conditions and leading to
improved performance compared to a model trained for a specific channel condition. It is
worth noting that this technique is cost-effective, with the combined model acquired offline
and effectively reducing storage expenses. Therefore, the EL method offers a practical and
efficient solution for accurate vehicular channel estimation in future real-world vehicular
scenarios.

Motivated by the results presented, we intend to delve further into investigating
the performance of LSTM-based solutions across modulation techniques other than
OFDM. The aim is to explore prominent candidates for future vehicular communication
scenarios and evaluate the efficiency of novel channel estimators in mitigating the
NLD effects induced by HPAs, comparing them to existing methods. In this sense,
OTFS modulation has emerged as a promising candidate for next-generation wireless
communication systems, particularly well-suited for environments with high mobility.
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6 LSTM-BASED CHANNEL ESTIMATION FOR OTFS SYSTEMS

This chapter proposes a novel receiver architecture for the OTFS waveform, one
of the potential candidates for future communications networks in scenarios with high
mobility. We first review the literature on OTFS modulation, which is followed by a
presentation of the OTFS implementation considered in this chapter. Subsequently, we
introduce two well-established techniques to be used as performance benchmarks for our
proposed method for channel estimation in OTFS transmission subject to memoryless
HPA-induced distortions. Finally, we present a comprehensive evaluation through detailed
performance analysis.

It is important to point out that, in order to facilitate the understanding of
this work and highlight the differences between the waveforms considered, this chapter
introduces a new notation, which is not directly related to the notations considered in the
previous chapters for OFDM communication.

6.1 Literature review

As vehicular communication scenarios continue to evolve, the demand for robust
and efficient wireless communication systems becomes increasingly critical. In this
context, although widely adopted, conventional multicarrier transmission schemes, such
as OFDM modulation, reveal inherent limitations that may impair their effectiveness in
future vehicular environments [19]. In response to this, OTFS [3, 20] has emerged as a
promising modulation scheme, presenting a new approach to wireless communication.
Unlike traditional modulation methods, OTFS uses the DD domain to encode and
transmit information, making it robust to the doubly selective channel effects. The
OTFS addresses the limitations of conventional communication systems in dynamic and
highly dispersive environments. In addition, the ability of OTFS to effectively handle
time-varying channels opens up new possibilities for communication technologies, being
particularly suitable for high mobility scenarios and holding the promise of improved
performance and extended applications in modern wireless systems.

Most of the existing techniques for channel estimation in OTFS are based on
the DD domain pilot-adding method [21, 22]. A well-known approach in the literature is
presented in [21], in which the authors propose a threshold-based estimation technique
that considers an OTFS frame with embedded pilots, that is surrounded by a guard
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band to avoid interference with the data symbols. Another work, presented in [22], also
considers DD-embedded pilots along with data symbols, where a cross-correlation-based
algorithm is presented to perform Doppler domain channel estimation. It is highlighted
that the guard band insertion significantly degrades the spectral efficiency.

As analytically characterized by [42], although OTFS signals can exhibit lower
PAPR compared to OFDM, the issue of high PAPR persists in such systems, posing
a significant challenge in OTFS channel estimation. Consequently, researchers have
dedicated several efforts to develop PAPR reduction techniques for OTFS [24, 67].
Nonetheless, studies that discuss the impact of high PAPR on channel estimation are still
incipient in the OTFS literature and, as well as in [21,22], assume a linear communication
environment. However, it is worth noting that in practical OTFS communication systems,
nonlinearities in the RF interface can significantly impact the performance of channel
estimation and the overall communication system [23], and addressing nonlinear effects
will be crucial to developing robust and high-performance OTFS channel estimators.
Furthermore, the analysis in [24, 68] highlights that adding pilot structures with high
power in the DD domain can induce high PAPR and lead to these estimators becoming
infeasible [23].

To avoid the problems in placing pilots and guard intervals in the DD domain,
different methods for OTFS channel estimation with the pilot transmission done in the TF
domain can be found, e.g., in [68,69]. Although the proposal in [69] results in a significant
reduction in pilot overhead and an increase in bandwidth efficiency, it comes at the cost
of high computational complexity, as it considers that while pilots are transmitted in the
TF domain, another OTFS frame is needed to send the data. On the other hand, in [68],
the advantages of reducing interference between pilots and data are achieved through
the successive interference cancellation method. However, this approach, while effective,
offers less flexibility and adaptability compared to methods based on NNs, and can entail
higher computational complexity.

In this chapter, we address channel estimation in OTFS systems considering
HPA-induced nonlinearities. To this end, we propose a novel method based on TF
domain channel estimation, reducing the PAPR while improving the capacity to detect
OTFS signals. Inspired by our previous research findings, which concentrated on the
OFDM channel, we show that it is possible to obtain a robust channel estimate without
requiring signal linearization at the transmitter. Then, we effectively compensate for
the nonlinearities along with the channel estimation. To validate the efficacy of our
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Figure 38 – SFFT-based OTFS architecture.

proposed estimator, we conducted a comparative analysis against the classic methods
outlined in prior works [21, 22]. Our results present that this proposed method not
only showcases enhanced precision in channel estimation, demonstrated through improved
BER and PAPR performances, but also introduces a more efficient approach for OTFS
communication systems within real-world scenarios. This is highlighted by a significant
reduction in the computational complexity required for detecting the received signals
compared to the benchmark methods.

6.2 SFFT-based OTFS

The most popular implementations for OTFS systems found in the literature
use either the symplectic fast Fourier transform (SFFT) combined with a multicarrier
modulation or the discrete Zak transform [39]. In this section, we first review the OTFS
modulation implementation considered in this chapter, where the inverse SFFT (ISFFT)
and SFFT operations are used to convert time-varying channels into invariant channels
in the DD domain and vice versa, allowing us to interpret the OTFS system as pre- and
post-processing blocks applied to a multicarrier signaling scheme.

6.2.1 OTFS modulation

Let us consider that the TF plane is sampled in time and frequency axes
at intervals of T (seconds) and ∆f (Hz), respectively. The multicarrier system is
characterized as a block structure consisting of N symbols with M subcarriers each. As
illustrated in Figure 38, the data symbols, denoted as XDD[l,k], are mapped to the two-
dimensional DD grid, where l ∈ {0, . . . ,M − 1} is the delay index and k ∈ {0, . . . ,N − 1}
is the Doppler index. As a key component in OTFS modulation, the SFFT operation
enables efficient signal mapping between DD and TF domains. Thus, the M -by-N matrix
of TF domain symbols is obtained via the ISFFT as

XTF[m,n] = 1√
NM

N−1∑
k=0

M−1∑
l=0

XDD[l,k] · ej2π(nk
N − ml

M ), (41)
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where the m ∈ {0, . . . ,M −1} is the subcarrier index and n ∈ {0, . . . ,N −1} is the symbol
index.

The multicarrier modulation is performed on XTF[m,n] to obtain the OTFS
transmit signal s(t) as

s(t) =
N−1∑
n=0

M−1∑
m=0

XTF[m,n] ·gtx (t−nT ) · ej2πm∆f(t−nT ), (42)

where gtx(t) is the pulse shape filter at the transmitter side. This operation is known
as the Heisenberg transform, which describes a generalization of the IFFT transform,
converting the TF-modulated signal into the time domain for transmission [3]. Finally,
following a pattern similar to OFDM, a CP is appended at the beginning of each symbol
before being transmitted.

For a more realistic characterization of wireless communication scenarios, our
analysis considers that this time-domain signal is affected by HPA-induced nonlinearities,
which follows the memoryless HPA model detailed in Section 3.2. This nonlinear signal,
denoted as sNLD(t), is then transmitted over a doubly selective channel being characterized
by the delay-Doppler response [39]

hDD(τ,ν) =
κ∑

k=1
hkδ(τ − τk)δ(ν−νk), (43)

where τ and ν denote respectively delay and Doppler variables, κ ∈ Z is the number of
resolvable propagation paths and δ(·) is the Dirac delta function. Each path is represented
by a hk ∈C channel coefficient and has a delay τk and Doppler frequency νk. This response
can be transformed to the TF domain using ISFFT as

HTF[m,n] = 1√
NM

N−1∑
ν=0

M−1∑
τ=0

hDD(τ,ν)ej2π(nν
N − mτ

M ) (44)

Then, the signal at the OTFS receiver is given by

r(t) =
∫ ∫

hDD(τ,ν)ej2πν(t−τ)sNLD(t− τ)dτdν+w(t), (45)

where w(t) ∼ N (0,σ2
w) is the AWGN in the time domain.

Next, the multicarrier demodulation of the received signal r(t) is performed
through the Wigner transform, which presents the inverse of the Heisenberg transform.
Thus, the TF domain signal is obtained as

YTF[m,n] =
∫
r(t)g†

rx (t−nT )e−j2πm∆f(t−nT )dt, (46)
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where g†
rx(t) represents the conjugate of the pulse shape filter at the receiver side. We

consider the rectangular waveform for both gtx(t) and grx(t) [70,71].

By employing suitable equalization and decoding, the wireless communication
channel can be effectively utilized for signal detection on the receiver side. Also, it is noted
that the equalization process can be conducted in either TF or DD domains, in which
the receivers in the DD domain often confers a higher degree of complexity. Referring to
the details provided in [72], our system adopts the one-tap channel to derive the MMSE
equalizer within the TF domain. This equalizer is mathematically represented as follows

EQ[m,n] = H†
TF[m,n]

|HTF[m,n]|2 +σ2
w

. (47)

Thus, the received signal after equalization X̂TF[m,n] can be obtained as

X̂TF[m,n] = YTF[m,n]EQ[m,n]. (48)

6.3 Benchmark schemes on OTFS channel estimation

The literature related to OTFS channel estimation usually involves estimating
the channel characteristics in the DD domain. In this section, we present two well-
established techniques, which we will denote as threshold channel estimation (TCE) [21]
and correlation channel estimation (CCE) [22], to be used as performance benchmarks
for our proposed LSTM-based channel estimator.

6.3.1 Threshold channel estimation (TCE)

The work in [21] is a seminal work for channel estimation in OTFS systems. The
authors introduced an embedded pilot scheme, in which a sufficiently large guard interval
is applied around a unique pilot to improve the acquisition of delay and Doppler responses.
As illustrated by Figure 39, the pilot and data symbols are allocated in the OTFS frame
as

XDD[l,k] =


pilots if l = lp,k = kp

0 if (lp −Gl ≤ l ≤ lp +Gl,kp −Gk ≤ k ≤ lk +Gk)

data otherwise

, (49)

where Gl and Gk present the guard band along the delay and Doppler axis, respectively.
Moreover, the pilot position (lp,kp) is known at the receiver side. This positioning of the
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Figure 39 – DD domain frame structure for the TCE scheme proposed by [21],
where D denotes the data subcarriers and P the pilot, surrounded by the guard
interval.

pilot is strategic, allowing a simple channel estimation process by analyzing the received
signal values around the DD grid of this embedded pilot. This guarantees that the receiver
can segment the frame into one group comprising pilot and guard symbols, dedicated to
channel estimation, and another group consisting of symbols for data detection. Such a
structure ensures that received symbols designated for channel estimation do not interfere
with those intended for data detection.

The channel estimation is based on the received symbols YTCE[l,k] for the subgrid
(lp −Gl ≤ l ≤ lp +Gl,kp −Gk ≤ k ≤ lk +Gk). Thus, using the threshold method in which,
for this grid, the estimated channel is given as

h̃DDTCE [l− lp,k−kp] =


YTCE[l,k]

XDD[lp,kp] , if YTCE[l,k] ≥ Υ

0, otherwise
, (50)

with Υ being the detection threshold, which is arbitrarily fixed as Υ = 3σw. So, if there
is a path, it can be seen on the receiver side as a scaled version of the pilot plus Gaussian
noise [73]. Finally, the estimated channel is used for data detection.

6.3.2 Correlation channel estimation (CCE)

In [22], the authors propose an estimator for OTFS systems in which the cross-
correlation channel matrix is acquired through estimation in the DD domain. As presented
in Figure 40, they assume that the channel is invariant for more than one symbol duration,
so that the pilot and information are sent at different frames. Thus, the pilot signal in
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Figure 40 – DD domain frame structure for the CCE scheme proposed by [22],
where the P pilot and the D data subcarriers are sent at adjacent frames.

the DD domain is considered as

XDD[l,k] =


1 if l = lp,k = kp

0 otherwise
. (51)

Thus, the estimated channel response in the DD domain be written as

h̃DDCCE [l,k] =
P∑

p=1
hpδ((l− lp)M − lτp)ψp[l], (52)

where lτp is the path delay in the DD domain and ψp is the phase shift due to the Doppler
effect. Finally, this estimator is based on a cross-correlation function across Doppler delay
elements, detailed in [22].

While the CCE outperforms existing approaches in the literature, it does exhibit
error floors under a high SNR, which is a challenge for channel estimation in prospective
OTFS applications. In addition, common to [21, 22] is that these works require a
substantial guard interval to mitigate the interference of unknown data symbols in the
pilots used for channel estimation. In addition, a high pilot SNR is required by the
schemes proposed by [21, 22], which results in high signaling and pilot overheads to
ensure accurate CSI estimation. As an important conclusion, these aspects can potentially
negatively impact the PAPR of the transmitted signal, as highlighted in [23], and which
can jeopardize their practical application.

6.4 Proposed LSTM-based channel estimation for OTFS

We propose a new channel estimation scheme for OTFS systems subject to HPA-
induced distortions. Our method starts with an initial channel estimate derived from the
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preamble and the frequency-domain pilots. This estimate serves as input to an LSTM
layer, effectively tracking the channel’s behavior. Subsequently, a shallow NN is applied to
increase the denoising capability and refine the estimation accuracy. Through these steps,
we can maintain low pilot overhead and attain a reliable channel estimation, especially
when dealing with nonlinear and highly selective channels.

Inspired by the IEEE 802.11p standard, we consider a basic transmitted
packet consisting of a preamble with a known deterministic sequence, used for primary
synchronization of the channel, followed by the data field. In the data field, M subcarriers
are employed within each symbol, in which only Mon are active and the other are inactive
subcarriers. In addition, considering the Mon subcarriers, Mp of them are allocated as
pilots, while the remaining Md subcarriers carry the data.

In our proposal, the pilots are incorporated in the TF domain and, consequently,
the number of subcarriers reserved for data transmission in the DD domain is decreased,
while preserving the same subcarrier spacing and bandwidth. Let us first denote the set of
data subcarriers as Md, so that Md = |Md|, while the set of pilot subcarriers is Mp, with
Mp = |Mp|. Then, our configuration results in a frame with Md = M −Mp subcarriers
dedicated to data, and we first transform XDD to the TF domain, but only taking the
data into account, obtaining the Md-by-N matrix

XTFd [md,n] = 1√
NMd

N−1∑
k=0

∑
l∈Md

XDD[l,k]ej2π
(

nk
N − ml

Md

)
, (53)

in which md ∈ Md, and the pilot subcarriers are subsequently inserted by doing

XTF[m,n] =


pilots if m ∈ Mp

XTFd [m,n] if m ∈ Md

. (54)

Figure 41 illustrates the TF domain frame structure given in (54), in which the D represent
the data subcarriers, obtained from (53), while P denotes the pilot subcarriers. In
addition, the preamble is shown as PR. Importantly, this configuration ensures that
there is no overlap between the pilot and data subcarriers, optimizing the use of available
resources in our estimation process.

We initiate our estimation process by utilizing the LS method for the preamble
and pilot information in the frequency domain. The initial channel estimation in the
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Figure 41 – TF domain frame structure for the proposed initial channel estimation.
Here we denote the pilot subcarriers as P, the preamble as PR and D as the data
subcarriers.

preamble is obtained as

ĤTFLS [m,npr] = Y[m,npr]
P [m] , ∀m, (55)

where Y[m,npr] is the frequency domain signals for each m-th subcarrier, obtained by the
demodulation of the training sequences from the preamble at the npr symbol positions.
Furthermore, P [m] represents the frequency domain predefined preamble sequence.

On the pilots’ subcarriers, the initial channel estimation is obtained as

ĤTFLS [mp,n] = Y[mp,n]
S[mp,n] , ∀n. (56)

Thus, for each n-th symbol, Y[mp,n] and S[mp,n] represent the frequency domain received
and transmitted signals at the mp ∈ Mp pilot positions, respectively. It should be noted
here that, unlike the proposals in [21,22], the pilots have the same power as the transmitted
signal. Finally, to avoid interference in the training of LSTM-NN network, which will be
further explained, the information in the Md data subcarriers is considered as null to build
the initial channel estimation ĤTFLS [m,n]. Consequently, the pilot information is used as
the basis for interpolating the data carriers’ information and obtain final estimation of
the channel.

Taking advantage of the performance gain of the LSTM-based over traditional
DNN-based receivers, as the analysis presented in Chapter 5 for the OFDM transmission.
Thus, we consider the frame illustrated in Figure 41 as the initial point to perform
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LSTM-based interpolation for the data positions and obtain the channel information for
the entire frame. Finally, aiming to reduce the noise, the output of the LSTM layer is
further processed by a shallow NN with ω neurons. The goal of the LSTM-NN network
is to update the estimation initially obtained and learn to correct the estimation errors
compared to the channel with perfect CSI. The NN network is trained to determine the
parameter θ⋆ that minimizes the loss function ℓ, which measures the approximation

θ⋆ = argmin
θ

ℓ
(
θ, ĤTFLSTM [m,n],HTF[m,n]

)
, (57)

where θ represents the NN weight vector, HTF[m,n] is the perfect channel response
obtained from the vector of training samples, used during the training stage of the
proposed estimator, while ĤTFLSTM [m,n] is the output of the LSTM.

The loss is evaluated as

ℓ
(
θ, ĤTFLSTM [m,n],HTF[m,n]

)
=

1
NM

M−1∑
m=0

N−1∑
n=0

∣∣∣HTF[m,n]− f̂
(
ĤTFLSTM [m,n];θ

)∣∣∣2 , (58)

where f̂
(
ĤTFLSTM [m,n];θ

)
is the output of the NN, represented as a function of LSTM

estimate ĤTFLSTM .

Notice that this process during the training stage is iterative, with the LSTM-
NN network adapting f̂

(
ĤTFLSTM [m,n];θ

)
given each training sample. Finally, the final

channel estimation is obtained as

ĤLS−LSTM−NN[m,n] = f̂
(
ĤTFLSTM [m,n];θ⋆

)
. (59)

Figure 42 shows the block diagram of the proposed LS-LSTM-NN channel
estimator for OTFS systems. Combining the initial estimate, LSTM, and NN provides
robustness for estimating a channel with unknown instantaneous variation. In addition,
the use of multiple pilot symbols is advantageous due to a substantial reduction in
the PAPR of OTFS signals. Notably, this approach aligns with practical scenarios
characterized by nonlinearities [23]. Also importantly, our analysis shows that this
achievement does not compromise the spectral efficiency. In fact, our proposed solution
achieves nearly optimal performance in this regard, reinforcing the effectiveness of our
approach.
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Figure 42 – Block diagram of the proposed LS-LSTM-NN estimator.

6.4.1 BER analysis

We conduct a comparative analysis to evaluate the performance of the LS-LSTM-
NN receiver within a scenario affected by distortions resulting from HPA nonlinearities.
The performance evaluation scheme is done in terms of BER, throughput and PAPR. We
compare our proposal with the benchmark methods TCE [21] and CCE [22], in which
channel estimation is done using the pilot response in the delay-Doppler domain. For
both benchmark methods, the SNR for the pilots is assumed to be SNRp = 40 dB, as per
their design.

To ensure compatibility, we also follow the physical layer specifications of the
IEEE 802.11p [27] communication standard presented in Table 1. We consider a frame
with M = 64 subcarriers and N = 14 symbols, which is sufficiently large to neglect the
effect of fractional delay and Doppler shifts. Consequently, integer Doppler values are
presumed. Furthermore, we account for turbo LTE coding with a rate of 1/2 and
utilize the MMSE criterion for equalization. It is also important to note that, unlike
the other estimators, our proposed method conducts the equalization process within
the TF domain1. Our results show the performances in a scenario with the vehicles
moving at speed v = 300 km/h and [16-QAM, QPSK] modulation orders. Furthermore,
our evaluation takes into consideration the impact of HPA nonlinearities considering an
IBO = 4 dB for the highest modulation order and IBO = 2 dB for the nonlinear effects on
QPSK modulation.

Figure 43 compares the BER of the channel estimation methods in a scenario
involving QPSK modulation and IBO = 2 dB. As shown, the estimators perform similarly
at low SNR. Nevertheless, as the SNR increases over 20 dB, an error floor becomes
evident in the benchmark estimators. In contrast, the LS-LSTM-NN estimator is the best

1During our evaluations across the different scenarios, we found that conducting DD equalization
within the channel estimated with our method led to detection results similar to those in the TF domain,
but with increased computational complexity.
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Figure 43 – BER analysis for v = 300 km/h and QPSK modulation and IBO = 2 dB.

performer, closely approaching the detection performance when perfect CSI is considered.
Remarkably, even with an elevated SNR level of 30 dB, our estimator is the only one
capable of achieving a BER below 10−3, presenting a gain of at least 5 dB for this
particular error rate threshold, compared to [21,22].

Next, Figure 44 evaluates the BER performance considering a 16-QAM
modulation and IBO = 4 dB. Similarly to the results observed in QPSK modulation, at
low SNR the considered channel estimators exhibit comparable performances. However,
a notable gain is observed for the proposed method in the high SNR region. Furthermore,
both estimators presented in [21] and [22] show an even more expressive error floor at
high SNR for scenarios with higher modulation order. Consequently, these estimators fail
to reduce the BER to a level lower than 10−2 during signal detection.

The subsequent PAPR analysis will further explore this result. Higher modulation
orders yield greater variations in the amplitude of the transmitted signal, which
significantly affects the detection of benchmark estimators. In this sense, we remark
that the increased performance of the proposed LS-LSTM-NN is evident, as it is the only
one capable of achieving an error rate of 10−3 and, therefore, is the sole one to provide
reliable channel estimates in such scenarios.

6.4.2 Throughput analysis

Complementing the BER analysis, we now compare the channel estimators in
terms of system throughput. Our proposed estimator operates within a frame structure
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Figure 44 – BER analysis for v = 300 km/h and 16-QAM modulation and IBO =
4 dB.

where Mp = 8 subcarriers are designated as pilots in the frequency domain. Meanwhile,
Md = 44 subcarriers carry data, and the additional 12 subcarriers act as a guard band.
Moreover, these symbols are preceded by a unique preamble. Thus, the data density of
the transmitted frame can be written as

ηLS−LSTM−NN = N ·Md
(N +1) ·M

≈ 64%. (60)

To ensure a fair comparison, we consider that the channel estimator proposed
by [21] takes into account a frame with a single pilot inserted in the DD domain that is
surrounded by a guard band that achieves a data density similar to our proposal, except
for the preamble. Thus,

ηTCE = N ·Md
N ·M

≈ 69%. (61)

In contrast, since the estimator introduced in [22] adopts an arrangement where pilot
and data transmissions are transmitted in separate frames, as depicted in Figure 40, this
design leads to a spectral efficiency of

ηCCE = 50%, (62)

which clearly marks a reduction in the overall spectral efficiency compared to the TCE
method and the proposed LS-LSTM-NN scheme. This loss can be analyzed by comparing
the throughput of the transmission, calculated as

Ti = ηi ·B · (1−BERi), (63)
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Figure 45 – Throughput analysis for v = 300 km/h, 16-QAM modulation and IBO =
4 dB.

where the index i is used to differentiate the different channel estimation schemes.

Figure 45 presents the throughput comparison for the different estimators,
considering N = 14 symbols, v = 300 km/h, 16-QAM modulation, and IBO = 4 dB. As
illustrated, the estimator proposed in [21] is the one that offers the best performance
in terms of throughput, which is mainly due to the choice of the guard band to define
the spectral efficiency in (61). However, our proposed estimator closely approaches this
benchmark while outperforming the method introduced by [22]. Moreover, it is important
to highlight that the slight reduction in the throughput of our approach is counterbalanced
with substantial enhancements in terms of BER, as illustrated by Figure 44. An additional
investigation of the throughput in the same scenario, but with a fixed SNR of 30 dB and
different frame sizes N , presented in Figure 46, reveals an important trend. Our proposed
solution exhibits improved performance as the block size increases, which is expected due
to the use of a unique preamble. For instance, when the frame size is N ≥ 30 symbols,
the proposed LS-LSTM-NN scheme outperforms [21,22] in terms of throughput.

6.4.3 PAPR analysis

The PAPR analysis holds critical significance within real-world communications
scenarios. In this subsection, we compare the channel estimation techniques in terms
of their impact on the CCDF, defined by (10), which is often employed to assess signal
PAPR distortion and provides insights into the probability of signal exceeding a given
power level γ.
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Figure 46 – Throughput analysis for v = 300 km/h, 16-QAM modulation, IBO =
4 dB, and SNR = 30 dB for different frame sizes.

Figure 47 – PAPR analysis.
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The CCDF analysis comparing the different estimators is illustrated in Figure 47.
As we observe in the figure, the comparison between the estimators highlights the problem
of allocating pilots with very high power to facilitate channel estimation in the DD domain.
Specifically, the proposed LS-LSTM-NN estimator yields a PAPR threshold gain of at least
8 dB when compared with the method proposed in [21]. Moreover, this advantage is even
more pronounced when compared to the estimator presented in [22].

Let us remark that determining an acceptable PAPR threshold depends on several
factors, including the specific attributes of the communication system, the characteristics
of the HPA, and the performance requirements of the application. Additionally, we point
out that the PAPR limitation due to high power pilots in the DD domain is a factor already
investigated in the existing literature [23]. Nevertheless, maintaining a lower PAPR holds
paramount importance in mitigating the distortion induced by HPAs. This importance
arises from the indication that the efficiency of HPA decreases with the increase of the
PAPR of the input signal, as notable in (11). Indeed, it is worth noting that higher
PAPR values can significantly jeopardize the quality of communication and are generally
impractical in real-world scenarios [24]. In contrast, our scheme offers a practical avenue
for OTFS communication.

6.4.4 Computational complexity analysis

To assess the computational complexity of the schemes, we quantify the
complexity order of the operations needed to estimate the channel from a received symbol.
The channel estimation algorithm in [21] requires comparing N symbols and the maximum
Doppler samples with a given threshold, which yields a complexity order of O(NM). In
addition, this method depends on the equalization in the DD domain, which is significantly
complex due to the need to invert the channel matrix. The complexity of the MMSE
equalization in the DD domain is of order O(M3

d N
3) [72]. Thus, the complexity order of

the TCE scheme is given by

CTCE = O(NM +M3
d N

3). (64)

By its turn, the estimation algorithm in [22] uses the FFT for correlation
operations, while equalization is also performed in the DD domain, thus having a
complexity order of

CCCE = O(κDMN logN +M3
d N

3), (65)



75

Table 5 – Computational complexity.
Method Computational Complexity

TCE [21] O(MN +M3
dN

3)

CCE [22] O(κMN logN +M3
dN

3)

LS-LSTM-NN O(M2
on +M2

p +MonMp +MdN)

where D is the resolution of the fractional Doppler, which in the case of integer Doppler
is equal to 1, while κ is the number of paths of the vehicular channel.

The proposed LS-LSTM-NN estimator employs the LS initial estimation, with
the number of operations required being

CLS = 2Mon. (66)

Such initial estimation is followed by the LSTM unit with computational complexity
depending on the input size, here denoted as U = Mon +Mp, and the size of its hidden
states χ= Mon+Mp

2 . The detail in the overall number of operations of the LSTM and NN
units is given in Section 5.4, from which we can obtain the order of the computational
complexity of the LS-LSTM-NN estimator as O(M2

on +M2
p +MonMp).

Differently from [21, 22], the LS-LSTM-NN estimator performs equalization in
the TF domain, which has a complexity of order O(MdN) [72]. Combining the above,
we have that

CLS−LSTM−NN = O(M2
on +M2

p +MonMp +MdN). (67)

Table 5 summarizes the complexity order required for each method compared in
this work to detect the transmitted signal. In Figure 48, the order of the computational
complexity is calculated over different frame sizes, clearly emphasizing the reduction in
complexity achieved by the proposed LS-LSTM-NN channel estimator, independently of
the chosen N .

6.5 Conclusion

This chapter is dedicated to addressing the challenge of channel estimation
in OTFS communication systems while considering the nonlinear effects induced by
HPAs. In this context, we introduce an alternative strategy to face the conventional
methods where channel estimation relies on high-power pilot subcarriers inserted in the
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Figure 48 – Computational complexity for different frame sizes.

delay-Doppler domain. This conventional practice often leads to elevated PAPR levels,
ultimately compromising overall system performance.

Our proposed LS-LSTM-NN estimator represents an innovative approach that
combines an initial estimate, LSTM, and NN. This combination significantly enhances
the robustness for estimating a channel with unknown instantaneous variation. Moreover,
our approach adopts a time-frequency domain pilot insertion scheme, employing multiple
pilots. This results in a substantial reduction of the PAPR in OTFS signals, a feature
advantageous for practical scenarios characterized by nonlinearities. Also notably, this
approach aligns with practical scenarios, since exhibits significant resistance against
HPA-induced effects, as evidenced by the BER evaluations conducted under different
modulation schemes and SNR conditions.

In addition, our results present that our method significantly reduces the
computational complexity during signal detection, making it more suitable for future real-
world applications. Finally, our analysis shows that these achievements do not compromise
the spectral efficiency. In fact, our proposed solution achieves nearly optimal performance
in this regard, reinforcing the effectiveness of our approach.
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7 CONCLUSIONS AND PERSPECTIVES

This thesis addressed some of the critical challenges on vehicular channel
estimation, particularly considering the effects of nonlinearities due to HPAs. First,
our investigation yielded insights into the limitations of conventional methods, which
often experience significant performance degradation in the presence of HPA-induced
distortions. Also importantly, our research highlighted that DL techniques, particularly
DNNs, show inherent robustness against these NLD effects. Consequently, this analysis
encouraged further exploration and application of advanced DL-based methods for more
accurate vehicular channel estimation.

The core contribution of this research consists in the introduction of novel
learning-based receiver architectures explicitly tailored to accurate nonlinear vehicular
channel estimation. Our emphasis is particularly on hybrid approaches, where well-
known mathematical strategies are combined with learning-based methods. Initially, by
considering memoryless HPA model within the IEEE 802.11p standard, our proposed
DPA-LSTM-NN estimator has proven to be highly resilient against HPA-induced effects.
This resilience has been substantiated through extensive BER and NMSE evaluations
across varying modulation schemes, SNRs, and mobility conditions. Also importantly,
combining its structure with statistical analysis of the wireless channel, this method
achieves a substantial reduction in computational complexity compared to the benchmark
methods.

Based on this robust receiver architecture, we extended our analysis to cover more
complex scenarios that involved HPA nonlinear effects. Thus, by implementing a novel
low-complexity compensation technique, we successfully validated the effectiveness of our
proposed receiver in handling the intricate challenges presented by memory-affected HPAs.
This marked a significant step forward in enhancing the robustness and applicability of
our proposed receiver in practical communication systems.

In a subsequent study, we advanced our research presenting a proposal to
generalize the method using an ensemble learning approach. This envolved combining
different datasets using a characteristic learning approach, without adding online
complexity to the solution. This, in turn, enabled the development of receiver
architectures that are adaptive, capable of addressing a spectrum of real-world scenarios,
and achieving reliable channel estimation despite variations in the scenario.
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Finally, in anticipation of the forthcoming 6G wireless communication era, we
also proposed an architecture for OTFS channel estimation. Thus, we propose a time-
frequency domain pilot insertion scheme, significantly reducing the PAPR compared to
conventional OTFS receivers, which is crucial for practical scenarios characterized by
nonlinearities. The superiority of the proposal over conventional estimators in high
mobility vehicular scenarios, which are expected for future vehicular communications, is
presented in terms of BER performance. Also importantly, this proposed method presents
a relevant reduction in the computational complexity during signal detection, enhancing
its viability for real-world applications.

7.1 Future works

The findings of this thesis open several aspects that can be addressed in future
research. In particular, we outline the perspective of future works as follows

• Multiple-Input Multiple-Output (MIMO) communication: In this study, we focused
exclusively on SISO communication scenarios. Exploring MIMO channels offers
an interesting extension, given the heightened complexity of the system and the
potential for advanced ML tools to yield even more significant benefits.

• Explainable AI for channel estimation: The subcarrier sampling scheme proposed
considers uniform selection. Recently, studies in the literature have shown the
ability of AI to promote the explainability of DL-based methods, enhancing the
transparency of black box models and explaining the decisions made by the trained
network [74, 75]. These methods, called explainable AI (XAI), have already
presented advantages in the context of channel estimation and therefore open up
opportunities for future development to interpret the relevance of the subcarriers
considered for training the channel estimation methods, while maintaining the
primary intention of reducing the complexity of the solutions compared to those
that consider all the subcarrier information as input for the post-processing of LSTM
networks.

• Comparison to multicarrier waveforms candidates for 6G: This work focuses
on proposing receivers for OFDM and OTFS. However, as briefly discussed in
Section 2.2, various multicarrier modulation schemes are recognized in the literature
as potential candidates for 6G communication. Each of these proposals offers
distinct advantages adapted to specific wireless communication scenarios. Therefore,
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a valuable avenue for future research would be to compare the proposed estimators,
suitably adapted, when applied to different multicarrier communication waveforms.
This comparative analysis would provide information on the adaptability and
effectiveness of the proposed receivers in various multicarrier modulation schemes.

• Evaluation of the ability of other equalization methods to detect signals: We consider
MMSE detection for the OTFS technique, which serves as a classic and effective
benchmark. However, it is important to note that the literature offers alternative
equalization methods aimed at reducing the complexity of detection, such as the
message-passing algorithm (MPA). These alternatives present intriguing possibilities
for further exploration and, since complexity optimization is paramount in future
wireless communication, this presents a valuable direction for research.

• Explore joint estimation, equalization, and decoding: We aim to capitalize on
the potential synergies and mutual interactions between these blocks, delving
into an integrated framework. By optimizing these processes, we expect to
anticipate improved efficiency, robustness, and accuracy in channel estimation,
signal equalization, and subsequent decoding of transmitted information, enhancing
the overall performance and reliability of wireless communication systems.
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