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Abstract

This thesis explores the integration of autonomous vehicle technology with
smart manufacturing systems. At first, essential control methods for autonomous
vehicles, including Linear Matrix Inequalities (LMIs), Linear Quadratic Regu-
lation (LQR)/Linear Quadratic Tracking (LQT), PID controllers, and dynamic
control logic via flowcharts, are examined. These techniques are adapted for
platooning to enhance coordination, safety, and efficiency within vehicle fleets,
and various scenarios are analyzed to confirm their effectiveness in achieving
predetermined performance goals such as inter-vehicle distance and fuel con-
sumption. A first approach on simplified hardware, yet realistic to model the
vehicle’s behavior, is treated to further prove the theoretical results.
Subsequently, performance improvement in smart manufacturing systems (SMS)
is treated. The focus is placed on offline and online scheduling techniques ex-
ploiting Mixed Integer Linear Programming (MILP) to model the shop floor
and Model Predictive Control (MPC) to adapt scheduling to unforeseen events,
in order to understand how optimization algorithms and decision-making frame-
works can transform resource allocation and production processes, ultimately
improving manufacturing efficiency.
In the final part of the work, platooning techniques are employed within SMS.
Autonomous Guided Vehicles (AGVs) are reimagined as autonomous vehicles,
grouping them within platoon formations according to different criteria, and
controlled to avoid collisions while carrying out production orders. This strate-
gic integration applies platooning principles to transform AGV logistics within
the SMS. The impact of AGV platooning on key performance metrics, such
as makespan, is devised, providing insights into optimizing manufacturing pro-
cesses.

Throughout this work, various research fields are examined, with intersecting
future technologies from precise control in autonomous vehicles to the coordi-
nation of manufacturing resources. This thesis provides a comprehensive view
of how optimization and automation can reshape efficiency and productivity
not only in the domain of autonomous vehicles but also in manufacturing.
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Chapter 1

Introduction and state of the art

In the context of contemporary technological advancements, the intersection of autonomous
systems and manufacturing processes becomes a focal point of exploration. This thesis sets
out to investigate the enhancement of platooning performance, the optimization of manu-
facturing scheduling, and the comprehensive analysis of the effects induced by platooning-
based control techniques in manufacturing.
Firstly, autonomous vehicles are considered, and specifically their coordination within pla-
toons. The objective is to identify potential improvements in platooning performance, with
a particular focus on aspects like fuel efficiency and safety through platooning control.
Secondly, the allocation of tasks in manufacturing systems is treated, where the primary
focus centers on refining product scheduling processes. The aim is to streamline manufac-
turing operations, minimize downtime, and enhance operational efficiency.
These two fields of research are closely related, as in the scheduling of heavy-duty vehicles
(HDV) in transportation, or on the contrary in the routing of Automated Guided Vehicles
(AGVs) through machines in manufacturing.
Lastly, this work extends to the interplay between autonomous vehicles and manufacturing
systems, to analyze how the implementation of platooning-based control techniques reflects
within the sphere of manufacturing.
During the whole research, the objective is to uncover innovative insights and present prag-
matic solutions for the aforementioned topics, while contributing to the ongoing discourse
about technological advancements. The research conducted has the potential to signif-
icantly impact various industries and research fields, as the convergence of autonomous
systems and manufacturing processes is navigated.

After a comprehensive analysis of the current state of the art for autonomous vehicles in
Chapter 1, the first goal, developed throughout Chapter 2, is to enhance trajectory planning
and control within predefined scenarios for platooning. This thesis primarily concentrates
on the planning and automation of vehicle displacement over time, with minimal emphasis
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on information exchange, and it assumes the absence of data retrieval failures. Various
techniques are employed, and practical implementation is demonstrated using Wheeled
Mobile Robots (WMRs). This implementation serves as a cost-effective testbed for the
validation of new platooning algorithms, even in their early stages, with an acceptable
level of reliability.
The second objective in Chapter 3 explores various scheduling algorithms to optimize
production processes. These algorithms are not only presented but also applied in real
production cells to showcase their efficiency in enhancing overall productivity.
Lastly, the third objective, treated in Chapter 4, involves the identification of potential
platooning characteristics that apply to other domains, such as smart manufacturing sys-
tems. This exploration includes the inheritance and application of platooning-based control
techniques to manufacturing systems to assess potential performance improvements. The
interoperability between platoons and smart manufacturing systems is facilitated by the
shared characteristics between platoon AVs and AGVs, similar to WMRs. While differ-
ences exist in their modeling, these shared traits enable the exploration of scenarios where
clustering and WMR platoon formation benefit the entire infrastructure.
In summary, this work aims to assess the benefits of platooning techniques in autonomous
vehicles and extends these findings to diverse domains, including smart manufacturing sys-
tems. The ultimate goal is the smooth integration of scheduling techniques with trajectory
planning for platooning, creating a comprehensive framework for enhancing manufacturing
system performance.

1.1 Autonomous vehicles fields of research

Autonomous vehicles (AVs) are a topic of significant interest in systems engineering. The
vision of populating our roads exclusively with unmanned cars is one of the most ambitious
projects of the century, pursued by numerous research centers worldwide. The transition
from human-driven to self-driving vehicles necessitates the implementation of robust secu-
rity protocols to ensure the safety of passengers and other vulnerable road users, such as
pedestrians. Indeed, manned vehicles may exhibit unexpected behaviors that could poten-
tially impact autonomous cars, leading to undesired actions.
Due to their complexity, AVs include various interconnected research fields that contribute
to automating car movements. For instance, AVs must be resilient to cyber-attacks while
ensuring passenger privacy throughout the entire journey. More broadly, security and
safety are primary aspects of AVs, closely tied to the hardware and sensors integrated
into the vehicle. However, the primary emphasis lies in achieving autonomous operations,
particularly guidance and navigation on the road.
The road environment is inherently complex, demanding the consideration of numerous
parameters when automating a car’s movements. Smart sensors play a pivotal role in
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capturing videos and images from the surroundings and transmitting them to the CPU
for analysis and evaluation. Furthermore, vehicles can exchange their state information,
enhancing the environment reconstruction process.
Once the environment is reconstructed, the automated system can plan a trajectory to
follow overtime and provide accordingly a control action, by modifying the acceleration
and steering of the vehicle, just like a human being would.
The Society of Automotive Engineers has defined six different levels of automation for
unmanned vehicles [1], more precisely:

• Level 0 (No automation): there is no automation and all driving tasks remain
under the responsibility of the driver.

• Level 1 (Hands-on): there is a driver assistance system that can handle steering,
acceleration, and braking based on environmental data, but the vehicle still remains
under the control of the driver.

• Level 2 (Hands-off): the automated system can manage the vehicle’s control, but
the driver must actively monitor and be prepared to take control of the vehicle for
decision-making processes.

• Level 3 (Eyes-off): the dynamic driving tasks are managed by the automated
system. However, some limitations in the driving modes may require the driver to
take control of the vehicle’s, within some seconds after a warning.

• Level 4 (Mind-off): a high level of automation, able to perform all tasks in limited
spatial areas or under specific traffic circumstances. The steering wheel might not
even be required.

• Level 5 (Full automation): the highest level of automation, able to manage all
dynamic driving tasks in any situation, effectively transforming the driver into a
passenger within the vehicle.

To have an indicator of the current state of autonomous vehicles, Tesla’s latest autopilot
system, a leader in the industry, falls somewhere between Level 2 and Level 3 automation
[2]. It is evident that there is substantial progress needed to ensure the safety of fully
driverless vehicles, especially when considering their potential interactions in real-world
road environments. Literature has been studying AVs for decades, with a growing interest
in the last 20 years, driven by significant technological advancements that have facilitated
the development of new algorithms and methodologies for these vehicles.
Undoubtedly, many topics are associated with AVs, including:
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• Cybersecurity:Ensuring the safety of passengers relies heavily on the software of
AVs. Consequently, it is crucial to address vulnerabilities that make vehicles suscep-
tible to cyberattacks by hackers who could potentially take control of the cars and
make them perform undesirable actions. Numerous concerns regarding technological
risks have been raised, as evidenced by several studies [3, 4, 5]. This theme is closely
intertwined with user privacy, necessitating the establishment of a robust framework
to prevent and recover from cyberattacks, such as the one proposed in[6] which makes
use of deep learning algorithms.

• Data fusion: AVs gather data from various sensors placed on the vehicle, which
must be integrated to provide the most accurate information about the vehicle’s
surroundings. For instance, [7] proposes a sensor fusion mechanism to combine 3D
camera sensor data and Lidar sensor information. Similarly, [8] presents a real-time
data fusion network equipped with fault diagnosis and fault tolerance mechanisms to
recover from sensor failures.

• Decision making: Vehicles must make informed decisions based on the information
collected and the current road conditions. Particularly in dense traffic situations, im-
proper decision-making can lead to traffic deadlocks. For instance, [9] has developed
a game-theoretic framework that enables agents to negotiate safely with other traffic
participants. A subfield of this topic focuses on ethical decision-making, explored in
greater detail in [10].

• Information exchange: This topic encloses all the possible communication chan-
nels between vehicles, such as Vehicle-To-Vehicle communication and Vehicle-To-
Infrastructure, and even interactions with pedestrians who can contribute to infor-
mation exchange through their smartphones [11, 12]. The union of these communi-
cation modes is referred to as Vehicle-to-Everything or when considering the entire
infrastructure, the Internet of Vehicles, and it is anticipated that this will evolve into
the Internet of Autonomous Vehicles [13].

• Trajectory planning and control: This topic, perhaps more than any other, aligns
closely with systems engineering principles, as it deals with planning the vehicle’s
trajectory over time and guiding it along that path. Precise control of the vehicle
is essential to closely follow the prescribed trajectory while adhering to physical
constraints and traffic regulations. This field typically comprises two categories:
longitudinal and lateral control.

1.1.1 Models for autonomous vehicles

Modeling serves as the initial step in applying control algorithms to unmanned vehicles.
In the literature, numerous options exist, categorizing these models into two main groups:
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kinematic models and dynamic models.
Kinematic models are typically employed in trajectory planning, where vehicle dynamics
are often simplified or neglected to facilitate the rapid derivation of feasible paths. The
widely used kinematic bicycle model, extensively discussed in [14], has been scrutinized for
trajectory planning purposes. The study found that this model can be effectively employed
for motion planning, provided that constraints on lateral acceleration are respected. Addi-
tional research in [15] supports the suitability of both the kinematic model and its dynamic
variant for tracking reference trajectories, particularly at low and moderate speeds. During
this phase, the vehicle’s path is often analyzed concerning a predefined desired trajectory,
without distinguishing between longitudinal and lateral displacement.
Conversely, for vehicle control applications, the model must be more precise, considering
physical characteristics to offer a reliable representation of the vehicle. Tire-based models,
such as Pacejka’s model [16], have been developed to handle non-linear tire behavior effec-
tively.
In some cases, models from other research fields can also be applied to autonomous ve-
hicles. Lomonossoff’s model [17], primarily designed for trains, can play a crucial role in
accurately modeling a vehicle’s longitudinal dynamics.
In summary, it is common practice to use two distinct models to represent vehicle dynam-
ics: one is well-suited for trajectory planning, providing a simplified approximation of the
vehicle’s physical components, while the other offers a more detailed representation for ac-
tual displacement. The choice involves a trade-off between model simplicity, computational
complexity, and fidelity to real-world vehicle behavior

1.1.2 Trajectory planning

Trajectory planning covers a broad area of research, particularly in the field of robotics
and automation. Special attention is dedicated to determining feasible trajectories that
can be safely pursued at high speeds, ensuring the safety of all involved agents.
In the literature, various algorithms have been developed, each with its own focus, such
as minimizing time, energy consumption, or jerk over time. Some studies also investigate
multi-objective functions that aim to strike a balance between these goals. For instance
[18] introduced a Nonlinear MPC for urban traffic trajectory planning, even under zero-
speed conditions, often challenging for modeling. They incorporated Pacejka’s nonlinear
tire model [19] and considered road boundaries as well as the presence of static and moving
objects. The former, usually referred to as lane-keeping, has been a subject of study in
many articles. For example, [20] employed a Convolutional Neural Network on raw image
frames, while [21] developed an embedded system integrating lane detection and tracking
using deep learning techniques. Additionally, [22] combined lane keeping with longitudi-
nal speed control through MPC and Proportional Integral Derivative (PID) controllers to
create a reliable system that minimizes lateral deviation while maintaining an acceptable
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longitudinal speed.
On the other hand, obstacle avoidance plays a relevant role in ensuring passenger safety.
[23] proposed a local planner to handle dynamic changes in the environment, while the
global planner provides the fundamental reference waypoints to pursue in predefined sce-
narios.
arious approaches are used to generate optimal trajectories. For example, [24] creates
clothoid tentacles based on the ego-centered reference frame of the vehicle, using an occu-
pancy grid to classify each tentacle as navigable or not. The best tentacle is chosen as the
reference trajectory based on criteria related to obstacle clearance, curvature change on the
clothoid, and deviation from the initial obstacle-free trajectory. Similarly, [25] computes a
feasible path considering kinematic constraints suitable for urban environments where low
curvature tentacles provide greater passenger comfort.
In contrast, [26] employs quartic Bézier curves, a parametric curve type, to generate
collision-free trajectories, balancing comfort and safety through optimization. [27] tested
the Bézier curve path planner in a real rotary course scenario. Another approach involves
B-Spline, a basis function containing a set of control points. B-Splines are widely used in
autonomous driving, such as in [28], where they provide a robust controller for lane-change
maneuvers while considering vehicle motion constraints and real-time requirements. Prob-
abilistic models from other fields or research, such as biomedical [29], can help in improving
the reliability of the controller.

1.1.3 Vehicle guidance and control

When it comes to controlling the vehicle, a common practice is to divide controllers into
longitudinal and lateral components, as extensively reviewed in [30]. The longitudinal con-
troller is responsible for regulating the vehicle’s cruise velocity, while the lateral controller
is tasked with steering the vehicle’s wheels for path tracking and maintaining it on the
centerline.
Longitudinal control faces a significant challenge due to non-linearity in the powertrain,
leading to suboptimal performance at low speeds. To address this issue, [31] developed a
two-level controller that incorporates the vehicle’s reverse plant. The outer level determines
the target speed based on the preceding vehicle on the road, while the inner level utilizes
a Proportional-Integral (PI) controller to determine the appropriate accelerator pedal or
brake percentage. An alternative approach is presented in [32], which proposes an adap-
tive solution based on a Model Reference Adaptive Controller. In general, pure pursuit
path-tracking algorithms have proven effective for both mobile robots and autonomous
vehicles. In this context, [33] introduced a variation called CF-Pursuit, which employs
clothoid tentacles to generate the path. Adaptive pure pursuit, as seen in [34], optimizes
lateral displacement for both high-curved and low-curved paths.
Lateral controllers primarily focus on keeping the vehicle in the middle of the lane. Given
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that a car is a nonholonomic system, preventing sliding on the road is crucial. In [35]
lateral controller is designed based on the Immersion and Invariance principle, achieving
robust lateral tracking of a reference trajectory and smoother steering in simulations. An-
other approach, as outlined in [36], combines backstepping and sliding mode control, with
stability verified through Lyapunov analysis and parameter tuning using Particle Swarm
Optimization.
For lane-change maneuvers, some implementations integrate longitudinal and lateral con-
trollers with Vehicle-to-Vehicle communication-based algorithms, as demonstrated in [37].
Similarly, [38] considers both lateral and longitudinal displacements within a neural, model-
independent controller. Recent works [39, 40] consider also the implementation of navi-
gation systems on cost-effective hardware to preliminary test the behavior of autonomous
systems in indoor and outdoor environments.

1.2 Autonomous vehicle platooning: an overview

Vehicle platooning refers to a group of vehicles traveling closely together in a coordinated
fashion. Platooning involves vehicles communicating with each other to retrieve infor-
mation about their surroundings in order to virtually reconstruct the environment and
consequently optimize their behavior on the road. Its primary application lies in the trans-
portation industry, notably in freight transport, where multiple trucks can form platoons
to enhance fuel efficiency and reduce operational costs. Autonomous vehicle platooning
adds a degree of complexity to the system because it raises the need to optimally control
a set of vehicles as a whole. Consequently, with respect to a single AV, more constraints
have to be taken into account both in planning the leader/followers’ trajectory and in
their displacements. It is a subset of autonomous vehicles and more broadly of System
of Systems (SoS) engineering, which involves multiple interconnected systems influencing
each other’s behavior. In the context of autonomous vehicles, SoS engineering pertains
to coordinating multiple elements traveling the same path and interacting. Typically, a
platoon comprises 3 to 20 vehicles, necessitating information exchange to enhance control
reliability. In larger platoons, efficient information flow is essential, and it’s established
that all vehicles should have information about the leader for optimal coordination [41].
The advantages of platoon control are evident in their impact on road throughput. Platoon
management can enhance stability and capacity within traffic flow, even in mixed traffic
conditions [42]. However, inadequate platoon management can lead to road bottlenecks
affecting the entire section.
Platoons can dynamically adjust their size by adding or removing vehicles based on traffic
routing and their primary drawback lies in these dynamic changes, which may either slow
down vehicles and reduce overall traffic flow or speed up some vehicles, potentially causing
them to exceed speed limits.
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However, vehicle platooning revealed to be very useful for trucks, as less space can be
taken between two adjacent elements due to the faster reaction time, even if there still are
concerns about how large platoons may impede traffic and about another vehicle trying
to wedge itself between elements of the platoon. Lastly, the hardware to be mounted on
each vehicle comprehends many sensors and thus it may be expensive in the near future.
Overall, platooning represents a promising field of research in SoS engineering and many
efforts have been made recently to enhance single autonomous vehicles, as well as fleets of
AVs.
The distinction between single (independent) vehicles and platoons lies in their control
mechanisms. Individual vehicles can select their control laws based on information and
goals, whereas platoons are viewed as single entities from a traffic flow perspective (macro-
scopic) while being composed of multiple elements from a microscopic standpoint. This
necessitates a dual-level controller approach: the high level treats the platoon as a single,
extended vehicle within traffic, while the low level focuses on guiding individual vehicles
to maintain inter-vehicle distances and ensure passenger safety.
This control process acts in two distinct stages: first, trajectory planning, which identifies
a feasible and secure path for the vehicle to follow over time. Subsequently, the actual
vehicle control occurs, with the aim of closely adhering to the desired path. Trajectory
planning assumes a central role in autonomous vehicles, as it predicts vehicle movements
along the road. In platooning, path planning primarily centers on the leader’s trajectory
but holds significance across various contexts, including applications within smart manu-
facturing systems. When dealing with platooning, and thus with SoS, there are usually
two main control approaches: centralized and distributed. The former relies on a cen-
tralized architecture that retrieves all the data and handles the control of each element
autonomously. Its main advantages are the simplicity both in creating the infrastructure
and in the control law. The drawbacks, though, include the single point of failure and the
non-scalability.
Distributed systems take the benefits of decentralization, adding communication between
elements in order to provide a reliable and scalable control algorithm. Moreover, distribu-
tion in such systems boosts adaptability to different scenarios and ensures that the failure
of an agent does not result in the failure of the whole system.
There are already several findings that show how autonomous driving could improve the
throughput of the road, while reducing bottlenecks and fuel emissions, especially for pla-
tooning [43, 44]. In order for self-driving cars to overcome human drivers, they have to
provide greater reliability, better driving performances, faster reaction time, and safer man-
agement of emergencies. Moreover, all these features must be stated in every condition,
disregarding weather factors or unexpected events that may happen on the road. Moreover,
in any urban environment, the vehicle will need to react safely to each type of unexpected
event such as ill-behaved pedestrians, and pranksters [45].
Due to the rigid constraints that surround AVs in terms of safety and performance, it is
clear that many approaches have been reviewed in the literature with the aim of finding the
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best one for each possible scenario. The main challenge is to make these vehicles ever more
performing and safer, thus guaranteeing a greater number of vehicles on the roads and a
lower risk of accidents, ideally accident-prone. Usually, when dealing with platoons, great
interest is put on longitudinal control and the respect of inter-vehicle distances, surely the
key aspect of platooning. On the other hand, the lateral control is neglected, as the lane
maintenance is kept employing a specific controller, such as the adaptive MPC in [46]. The
planning and control modules may be overlapped, as in [47], where it has been designed
an optimal control-based trajectory planning model that can be incorporated in platoon-
ing and with lane changing. For platooning, lane-change maneuver has been preliminary
studied in [48], even if such maneuvers were revealed to be particularly heavy in terms of
road congestion, especially for large platoons. Of course, in order to perform a lane-change
maneuver, lateral control is required on each element of the platoon; this is handled with
the sinusoidal controller explained in [49].
However, platoon research usually tackles the trajectory planning with regards to the
leader, while followers reproduce the behaviour of a leading vehicle [50] separated by a
safety inter-distance. They are constantly monitored utilizing safety zones, designed ac-
cordingly to road traffic rules and following principles introduced in [51] and [52]. The
classification of safer or less safe areas leads to the choice of the trajectory generator algo-
rithm to be used on followers.
Other works such as [53] consider cooperative driving to ensure that vehicles reach a pre-
defined state of both position and velocity, employing Pontryagin’s minimum principle to
optimize longitudinal speed combined with MPC to avoid collisions. Platoons play a lead-
ing role especially in HDVs, as they are the class of vehicles that benefit the most from the
characteristics of string line formation. In terms of fuel consumption reductions, as argued
in [54], the air drag is drastically lowered, allowing up to 10% fuel reduction for trucks
driving within the platoon. To this end, several works in the literature have been oriented
at reducing the fuel consumption of trucks composing the platoons. In fact, [55] studied
when it is efficient for an independent vehicle to drive faster and catch up with a platoon,
in order to reduce long-term fuel consumption. In the same direction [56] evaluated the
fuel-saving potential as offered by platooning under realistic conditions, while [57] designed
a centralized truck platoon coordinator with dynamic vehicle plans that lead to reduced
fuel consumption.
Other important aspects of HDV platooning are energy saving and enhanced transporta-
tion capacity, as pointed out in [58]. Experiments on three to four HDVs, which seems
a reasonable number for platooning such type of vehicles, have shown the effectiveness in
reducing energy consumption and CO2 emissions with the aid of a lateral controller inde-
pendent for each vehicle and a longitudinal one which maintains truck speed and clearance
gap using Linear Quadratic (LQ) control. More in general, Linear Quadratic Regulator
(LQR) seems suitable to handle trajectory planning, as the model considered is often linear
and kinematic. Also, [59] uses it to obtain optimal control of a string of high-speed moving
vehicles, with the more general theory provided by [60]. However, both works seem to be
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ill-posed according to [61], which proposes a solution for detectability and stabilizability
issues. Another approach consists of using Lyapunov control to guarantee string stability,
necessary to prevent the propagation and amplification of any spacing error [62].
To mention that platooning represents a branch of SoS, and consequently it can present
emergent behaviours due to the interconnection of the single subsystems (i.e. the element
composing the platoon). The emergent properties of energy efficiency and transport effi-
ciency have been studied in [63], which shows that the drivers’ choice has a large impact
on them. In particular, individual selfish/aggressive behaviours on road will lead to poor
efficiency performances for everyone. Therefore, autonomous platooning can help in re-
ducing the effects with a cooperation approach that enhances safety. In [64], for example,
the usage of a local MPC extended by a collision-safety framework allows the achieving of
a smaller inter-vehicle distances safely. This reflects in a higher road capacity, as platoons
usually represent the bottleneck in traffic flow. In [65] control actions on platoons are
computed with a prediction model with an overall faster decongestion of traffic.
Nonetheless, it is important to analyze autonomous platoons in conditions of mixed traffic,
because the transition to unmanned vehicles will inevitably occur in a gradual fashion.
In this direction, a MPC-based cooperative control has been developed in [66] to obtain
traffic flow smoothness and stability, taking into consideration the unexpected behaviour
of drivers within the road.

Topic References

Single vehicle
[2, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30]

[31, 32, 33, 34, 35, 36, 37, 38, 46]

Platoon
[41, 42, 43, 44, 48, 54, 55, 56, 57, 58, 59, 61]

[62, 63, 64, 65, 66]

Heavy-duty vehicles [41, 43, 54, 55, 56, 57, 58, 62, 66]

Trajectory planning [18, 23, 24, 25, 26, 27, 28, 47, 53]

Control
[20, 21, 22, 30, 31, 32, 33, 35, 36, 37, 38, 44]

[46, 61, 65, 66]

Modeling [14, 15, 16, 17, 19, 48]

Information exchange [7, 8, 9, 11, 12, 13, 41]

Table 1.1: References for autonomous vehicles
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1.3 Smart manufacturing systems: an overview

Another aim of this thesis is to investigate the potential enhancement of a smart manu-
facturing system’s performance through the management of Automated Guided Vehicles
(AGVs) trajectories and their scheduling through machines. In order to provide a more
comprehensive analysis, Chapter 3 addresses product scheduling challenges in manufactur-
ing machinery. Though this example may seem manufacturing-focused, a similar concept
of scheduling exists in the transportation domain. Scheduling trucks within warehouses
follows a comparable logic, on a larger spatial scale, to the scheduling of products through
machines.
In both manufacturing and transportation domains, the core concept revolves around op-
timizing the allocation of resources to achieve efficient and effective operations. When it
comes to manufacturing, this entails scheduling the production of various items on machines
within a factory to minimize production time and resource utilization. On the contrary, in
the transportation domain, a parallel need arises within warehouses, where the goal is to
efficiently manage the flow of goods and materials. This involves scheduling the movements
of trucks and other transport vehicles to ensure timely deliveries, minimize handling and
storage costs, and streamline the logistics process. While the scale and specifics may dif-
fer, the fundamental principles of resource allocation and optimization remain a common
thread between these two domains. Moreover, it represents the preliminary step preceding
trajectory management and can be seamlessly integrated with it to address manufacturing
issues entirely, considering both scheduling and the actual movement of AGVs within the
system. The latter is treated in Chapter 4 with two comprehensive case studies.
During the production execution, it is well established that material flow management and
material transport are fundamental processes for achieving optimal manufacturing opera-
tion performance. These production processes comprise how the material is transported
and transferred within a manufacturing facility through several stages, from material ex-
traction, product processing, recycling, and correspondent disposal [67]. The importance
of searching for efficient management on these processes is that a lack of control negatively
impacts the overall production performance [68]. Dynamic trajectory planning is a critical
aspect of material flow and transportation in manufacturing. It involves computing real-
time AGV motions from initial states to specific destinations, considering feasible paths
and vehicle capabilities [69]. Contributions to this field can be categorized as centralized
or decentralized approaches. In a centralized approach, as seen in [70], optimal control
problems are used with differential-algebraic equations to describe vehicle characteristics
and achieve near-optimal solutions. Conversely, decentralized approaches, such as the
one highlighted in [71], enhance autonomous vehicle capabilities with path planning and
motion coordination algorithms to ensure reliable path selection and conflict resolution.
Additionally, hybrid approaches, like the one discussed in [72], combine trajectory plan-
ning and scheduling to minimize task completion times. Analogously, [73] employs a model
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predictive planner to coordinate AGVs in a distirbuted fashion. Transport scheduling is
the manufacturing procedure that sequences the tasks of each product to deliver it to the
required destination while respecting constraints on its process and avoiding inefficiency,
delays, congestion, and buffer usability [74]. This is usually referred to as short-term
scheduling, whereas long-term scheduling manages the product demand over a longer time
horizon (i.e., weekly or monthly), taking into consideration also the costs of inventory
and employment [75]. Deep reinforcement learning was revealed to be promising too for
short-term scheduling [76, 77], while in [78] Petri Nets and a heuristic based on artificial
intelligence have been combined to solve flexible manufacturing systems (FMS) scheduling
problems.
If all information is given a priori, offline scheduling can reduce the waiting time for prod-
ucts by planning the dispatching of products over machines before their arrival time.
While the state of the art in offline scheduling has provided valuable insights into optimiz-
ing tasks in predetermined conditions, the shift towards dynamic scheduling necessitates
a focus on real-time adaptability and responsiveness to changing environments, as demon-
strated in [79], with various reactive scheduling policies. Also link failures can be considered
to guarantee the continuity of production [80, 81]. To address stochasticity, typically as-
sociated with processing times, [82] developed a multiobjective scheduling model. This
model seeks to optimize product quality while minimizing tardiness, which refers to the
delay or lateness in completing scheduled tasks.
In [83, 84] authors make use of genetic algorithms and, as for the offline scheduling, deep
reinforcement learning is a suitable approach in case of the need for adaptability within
the shop [85]. Similarly, [86] accomplishes a bi-objective optimization with the aid of
reinforcement learning and a Mixed Integer Linear Programming (MILP) model. MILP
and Constrained Programming (CP) are widely used to schedule jobs within facilities. It
is the case of [87] which proposes a comparison between methodologies highlighting the
advantages and drawbacks of both. Again, [88] makes use of a MILP model and memetic
algorithm to solve the bi-objective cost function and minimize total setup time and the
number of late jobs.
In modern manufacturing scheduling, digital twins can be employed to offer a virtual
representation of physical manufacturing systems. These virtual replicas, often based on
real-time data and simulation, enable manufacturers to optimize scheduling processes in
several ways or to reconfigure the control of those systems [89]. Digital twin-driven schedul-
ing has been deeply studied in recent years, with the overall architecture presented in [90],
and has proven to be a valuable option to handle dynamic rescheduling necessary to adapt
to both internal and external events [91]. Rescheduling in general helps in keeping com-
petitive performance in manufacturing control [92]. Moreover, several digital twins can be
aggregated, as in [93], to represent autonomous decision-making entities within the shop
floor.
In summary, AGV trajectory planning and advanced real-time scheduling techniques offer
an innovative approach to boost the performance and efficiency of smart manufacturing
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systems. By addressing dynamic challenges in material flow and product scheduling, these
methodologies pave the way for agile, responsive, and optimized manufacturing operations.

Topic References

AGV [69, 70, 71, 72, 73, 74]

Scheduling
[72, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86]

[87, 88, 90, 91, 92, 93]

Manufacturing [68, 78, 79, 80, 81, 83, 84, 85, 86, 89, 90, 92]

Table 1.2: References for smart manufacturing systems
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Chapter 2

Platoon control in transportation

Autonomous vehicle platooning involves a group of self-driving vehicles traveling in a string
formation, closely following each other. This concept has numerous advantages, making it
an important solution to address several critical challenges in the transportation industry.
The control of autonomous vehicle platooning allows to achieve numerous benefits, such
as:

• Reduced fuel emissions: platooning can drastically reduce fuel consumption and,
consequently, gas emissions.Vehicles traveling in a close formation experience reduced
aerodynamic drag, which leads to improved fuel efficiency. Studies [94] have indicated
that platooning can result in fuel savings of up to 10-20% for the entire platoon. The
transportation sector is a major contributor to air pollution and climate change, thus
implementing platooning can play a crucial role in achieving sustainability goals and
combating climate change. Moreover, reduced fuel consumption directly translates to
lower operational costs for companies, which can, in turn, lead to more competitive
pricing for consumers.

• Enhanced safety: platooning can significantly improve road safety through precise
coordination and reaction times of self-driving systems. The vehicles within a platoon
can communicate and exchange information in real-time to keep a safe inter distance
and speed, which reduces the risk of accidents caused by human error (estimated as
90% of road traffic accidents, with 57% of cases in which human error is the only
cause [95]). Additionally, AVs can respond to potential hazards much faster than
human drivers, further enhancing safety on the road.

• Increased overall throughput of roads: platooning allows for better utilization
of road capacity, as vehicles are able to travel closely together and occupy less space
on the road. This has a huge impact on traffic througput, especially on highways. By
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minimizing the distance between vehicles and reducing traffic congestion, platooning
helps optimize traffic flow, allowing more vehicles to traverse the same stretch of road
in a shorter amount of time, enhancing overall transportation efficiency.

In conclusion, controlling efficiently autonomous vehicle platooning is fundamental to ad-
dressing critical challenges in the transportation sector. By reducing fuel emissions, en-
hancing road safety, and increasing the overall throughput of roads, autonomous vehicle
platooning can offer a comprehensive and sustainable solution within road environment.

2.1 Modeling the dynamics of autonomous vehicles

Vehicle modeling is a foundational aspect of developing autonomous vehicles, serving as the
mathematical representation that simulates a vehicle’s behavior and dynamics. Modeling
is a fundamental component of autonomous vehicle design, control, and decision-making
processes. Through accurate vehicle modeling, engineers and researchers can better un-
derstand and predict how an autonomous vehicle will respond to various inputs and envi-
ronmental conditions.
Vehicle modeling helps describe how a vehicle moves and behaves in response to differ-
ent inputs, such as steering, throttle, and braking. Understanding a vehicle’s dynamics is
critical for creating control algorithms that ensure safe and precise navigation. Moreover,
vehicle models are essential for designing control systems that stabilize the vehicle, main-
tain desired speeds, and execute complex maneuvers, such as lane changes and parking.
Accurate modeling is crucial also for realistic and effective simulation, allowing engineers
to assess the vehicle’s performance under various conditions in a simulated environment
before deploying the control algorithm on a real unmanned car.
Vehicle modeling can range from simple linear models to highly complex, physics-based
representations, depending on the level of accuracy required for specific applications. Ad-
vanced models may account for factors like tire-road interaction, aerodynamics, suspension
dynamics, and more.
In the following sections, discrete-time equivalents of the models are employed, even though
continuous-time representations are possible. Additionally, each model pertains to an in-
dividual vehicle, with the platoon considered as an aggregation of these individual models.
Effective communication and information exchange among vehicles is enhanced by the
chosen controller type.
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2.1.1 Kinematic model

The kinematic model represents one of the simplest yet useful models to reproduce vehicle’s
displacement along the road. It abstracts the vehicle’s dynamics into a mathematical
framework. There are primarily two types of kinematic models: first-order and second-
order:

• First-order kinematic model: The vehicle’s motion is described using basic pa-
rameters like position and orientation. It assumes that the vehicle can instanta-
neously change its velocity and steering angle. This model is simpler and more
suitable for low-speed applications or when smooth and accurate control is not re-
quired. It doesn’t consider the vehicle’s acceleration directly. Its equations to update
the position are: {

xt = xt−1 + vt cos θt−1∆t

yt = yt−1 + vt sin θt−1∆t
(2.1)

where xt,yt are the updated coordinates of the vehicle at time t and they are kept
constant until instant t+ 1, vt is the vehicle’s velocity ad time t, θt−1 its orientation
at the previous instant and ∆t the sampling time.
The equation for the heading update is:

θt = θt−1 +
vt
L
δ∆t (2.2)

where θt is the updated heading (orientation) of the vehicle at time t, L is the distance
between the front and rear axles, and δ is the steering angle.
In general, the state variables are the position and orientation, while speed and
steering angle and control variables.

• Second-order kinematic model: The second-order kinematic model is more so-
phisticated. It accounts for the vehicle’s acceleration by including velocity and yaw
rates. This model provides a more accurate representation of a vehicle’s motion and
is commonly used in higher-speed or more dynamic situations, where acceleration
and deceleration play a significant role. Its equations are:

xt = xt−1 +
vt
ψ̇t

·
(
sin(θt−1 + ψ̇t∆t)− sin(θt−1)

)
yt = yt−1 +

vt
ψ̇t

·
(
cos(θt−1)− cos(θt−1 + ψ̇t∆t)

)
vt = vt−1 + a∆t

θt = θt−1 + ψ̇t∆t

(2.3)

where ψ is the rate of change of heading, namely yaw rate, and a is the vehicle’s
acceleration.
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In this model, the position, heading, and speed are state variables, while yaw rate
and acceleration are used as control variables.
In literature a simplification of the second-order model is employed when dealing
with one-dimensional trajectories:{

xt = xt−1 + vt−1∆t+
1
2
at−1∆t

2

vt = vt−1 + at−1∆t
(2.4)

In summary, the main difference between first-order and second-order kinematic models
for autonomous vehicles is the level of detail they provide regarding the vehicle’s motion.
The second-order model, being more comprehensive, is better suited for situations where
precise control and handling dynamics are essential, while the first-order model offers a
simpler approximation appropriate for more straightforward scenarios.

2.1.2 Lomonossoff’s model

A more sophisticated model for a one-dimensional path can be retrieved from train lit-
erature and it is called Lomonossoff’s model, also exploited in [96]. The model has the
advantage of incorporating not only the vehicle’s mass but also various physical param-
eters, including aerodynamic and mechanical resistances. The equations describing the
motion are well-suited for HDVs due to their similarities in dynamics with trains:{

ẋ(t) = v(t)

W ′v̇(t) = f(t)− (Ca + Cbv(t) + Ccv2(t))−Wg sinα(t)
(2.5)

where x and v are state variables for position and speed of the vehicle, f is the control input,
corresponding to the tractive effort and it is expressed in kN , Ca, Cb, Cc are the Davis
constants, related respectively to mechanical resistance, viscous mechanical resistance and
aerodynamic resistance, W is the vehicle’s tare mass andW ′ is its effective mass, including
rotary allowance, both expressed in tonnes. The slope angle of the road, α, is generally
neglected.
The dynamics of the longitudinal motion are represented by prompting a tractive effort,
with a maximum value similar to what happens in train modeling.

2.1.2.1 Linearization of the Lomonossoff’s model

The model presented in Eq. 2.5 is clearly nonlinear. It can be linearized for each planned
instant tp around a working state/control couple (v̄, f̄), supposing no acceleration in that
instant of time.
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The resulting linear approximation that represents the evolution of the system over time
is:

δẋ = Apδx+Bpδf (2.6)

where:
δx = [x(t)− x̄(t) v(t)− v̄(t)]T , δf =

[
f(t)− f̄(t)

]
(2.7)

Ap =

[
0 1

0 −Cb+2Ccv̄(t)
W ′

]
, Bp =

[
0

1/W ′

]
(2.8)

It has to be noted that the Ap matrix is time-variant, as it depends on the actual speed of
the vehicle.

2.1.3 Micro-Macro METANET model

Autonomous vehicles and platoons can also be viewed from a broader perspective, specifi-
cally in the context of road traffic. To achieve this, the traffic conditions and the presence
of platoons within the mainstream can be modeled using the Micro-Macro METANET
(M3-net) model, introduced in [97] and derived from the well-known METANET model
[98].
The Micro-Macro METANET model, for sake of simplicity, is reported in the following
referring to the single stretch. In this version of the M3-net model the freeway stretch is
divided into N sections, denoted with i = 1, . . . , N , each of length Li, and with λi lanes.
Even the stretch version of the model is discretized in time, specifically the time horizon
is divided into K time steps, indicated hereafter with k = 0, . . . , K, and with sample time
interval T . With regard to platoon presence in the model, let Z represent the total number
of platoons, and let z, with z = 1, . . . , Z, denote a generic platoon. It is important to note
that in this model, platoons are represented in an aggregate manner, as single long vehicles
with specified occupancy.
The dynamic evolution of the M3-net model is described by means of aggregate quanti-
ties, referring to the whole traffic stream, and microscopic variables describing instead the
movements of platoons in the freeway. The quantities related to the macroscopic behavior
are:

• ρi(k), the traffic density in section i at time instant kT (expressed in vehicles per
kilometre per lane);

• ρ̄i(k), the traffic density including the presence of platoons in section i at time instant
kT (expressed in vehicles per kilometer per lane);

• vi(k), the mean traffic speed in section i at time instant kT (expressed in kilometres
per hour);
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• qi(k), the traffic volume which leaves section i during time interval [kT, (k + 1)T )
(expressed in vehicles per hour);

whereas the macroscopic quantities referred to the on-ramps and off-ramps are:

• li(k), the queue length of vehicles waiting on the on-ramp of section i at time instant
kT (expressed in vehicles);

• bi(k), the queue length of platoons waiting on the on-ramp of section i at time instant
kT (expressed in vehicles);

• di(k), the traffic volume requiring to access section i from the on-ramp during time
interval [kT, (k + 1)T ) (expressed in vehicles per hour);

• ri(k), the on-ramp traffic volume entering section i during time interval [kT, (k+1)T )
(expressed in vehicles per hour);

• si(k), the off-ramp traffic volume exiting section i during time interval [kT, (k+1)T )
(expressed in vehicles per hour).

Some macroscopic variables are introduced to represent the inflows from the mainstream:

• l0(k), the queue length of vehicles waiting in the mainstream to enter section 1 at
time kT (expressed in vehicles);

• b0(k), the queue length of platoons waiting in the mainstream to enter section 1 at
time kT (expressed in vehicles);

• d0(k), the traffic volume requiring to access section 1 from the mainstream during
time interval [kT, (k + 1)T ) (expressed in vehicles per hour);

• q0(k), the traffic volume entering section 1 from the mainstream during time interval
[kT, (k + 1)T ) (expressed in vehicles per hour).

Finally, the microscopic variables introduced to represent the movements of platoons in
the freeway are:

• vz(k) is the speed of platoon z at time instant kT (expressed in kilometres per hour);

• pz(k) is the distance covered by platoon z at time instant kT (expressed in kilome-
tres);
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The model has been designed to track the presence of platoons on the freeway in order to
understand what traffic conditions they will encounter on their route and how to adjust
their speed accordingly. To describe the behavior of platoons in the mainstream, for each
platoon z and for each time step k, the position of a generic platoon is updated as:

pz(k + 1) = pz(k) + vz(k)T (2.9)

In absence of control, it is assumed that the speed of each platoon vz(k) cannot overcome
the maximum speed allowed for platoon z, i.e. vz,max, nor the mean speed in the section in
which the platoon is traveling. To this end, iz(k) denotes the section index that corresponds
to the position of the platoon z at time step k. This index is updated based on the distance
covered pz(k). The average speed of the traffic flow that platoon z encounters at time step
k is denoted by viz(k)(k), while the speed of each platoon in the absence of control is given
by:

vz(k) = min
{
vz,max, viz(k)(k)

}
(2.10)

In the M3-net model the aggregate variables representing the traffic behavior in the main-
stream need to be updated to take into account the presence of platoons. As in the
METANET model, the conservation equation referring to the traffic density in which pla-
toons are not included, for i = 1, . . . , N , k = 0, . . . , K − 1, is given by:

ρi(k + 1) = ρi(k) +
T

Liλi

[
qi−1(k)− qi(k) + ri(k)− si(k)

]
(2.11)

The traffic density including platoons is based on Eq. 2.11 and defined as:

ρ̄i(k) = ρi(k) +
Z∑
z=1

γzi (k)o
z (2.12)

in which oz is the occupancy corresponding to the z-th platoon (expressed in [veh/km/lane]),
while γzi (k) is a binary variable adopted to indicate the presence, at time step k, of platoon
z in section i. This binary variable is defined as:

γzi (k) =

{
1 if iz(k) = i

0 otherwise
(2.13)

Also, the speed dynamics for each section i and for each time step k is computed by taking
into account the presence of platoons and hence by considering the density ρ̄i(k) , i.e.

vi(k + 1) = vi(k) +
T

τ

[
Vi(k)− vi(k)

]
+
T

Li
vi(k)

[
vi−1(k)− vi(k)

]
− νT [ρ̄i+1(k)− ρ̄i(k)]

τLi[ρ̄i(k) + χ]
−∆T

vi(k)ri(k)

Li[ρ̄i(k) + χ]
(2.14)
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where τ , ν, χ, and ∆ are model parameters, while the steady-state speed-density relation
is given by:

V (ρ̄i(k)) = vfi ·
[
1−

(
ρ̄i(k)

ρmax
i

)l]m
(2.15)

in which ρmax
i is the jam density [veh/km/lane], vfi is the free-flow speed [km/h], and l, m

are other model parameters.
Note that the traffic flow to be used in Eq. 2.11 is computed as qi(k) = ρi(k)vi(k)λi. It
is assumed that platoons can enter the stretch from on-ramps or through the mainstream.
In addition, we assume that the expected arrival of a platoon z at an on-ramp is known
and modeled through a binary constant azi (k) that, for each time step k, is defined as:

azi (k) =

{
1 if platoon z arrives at the on-ramp i

0 otherwise
(2.16)

Similarly, the arrival of a generic platoon z to the mainstream is modeled using the binary
constant az0(k), which is defined in a manner analogous to Eq. 2.16. These binary constants
are defined to ensure that a platoon z cannot simultaneously enter from both the on-ramps
and the mainstream. The effective entrance of a generic platoon z from an on-ramp onto
the freeway at time step k is represented by the binary variable yzi (k):

yzi (k) =

{
1 if platoon z enters from on-ramp i

0 otherwise
(2.17)

The platoon’s entry from the mainstream at time step k is modeled with the variable yz0(k).
Given the schedule of platoon arrivals at entry ramp i, platoon z enters the freeway, i.e.,
yzi (k) = 1, if and only if the following conditions are satisfied:

ri(k) +
1

T
[azi (k)n

z + bzi (k)] ≤ rmax
i (2.18)

ri(k) +
1

T
[azi (k)n

z + bzi (k)] ≤ rmax
i · ρ

max
1 − ρ̄1(k)

ρmax
1 − ρcr1

(2.19)

while a generic platoon z enters from the mainstream, i.e. yz0(k) = 1, if the following
conditions are both satisfied:

q0(k) +
1

T
[az0(k)n

z + bz0(k)] ≤ qmax
0 (2.20)

q0(k) +
1

T
[az0(k)n

z + bz0(k)] ≤ qmax
0 · ρ

max
1 − ρ̄1(k)

ρmax
1 − ρcr1

(2.21)

where rmax
i is the maximum flow that can enter the on-ramp i, qmax

0 is the maximum flow
that can enter the mainstream, and nz is the number of trucks that constitute platoon z.
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In particular, bzi (k) and b
z
0(k) are virtual buffers defined for each platoon z whose length

can be 0 or equal to the number of vehicles nz that compose the platoon. The dynamic
evolution of these virtual buffers are given by:

bzi (k + 1) = bzi (k) + azi (k)n
z − yzi (k)n

z (2.22)

bz0(k + 1) = bz0(k) + az0(k)n
z − yz0(k)n

z (2.23)

If conditions specified in Eqs. 2.18-2.19 and Eqs. 2.20-2.21 are not met, the corresponding
binary variables yzi (k) and yz0(k) are assigned a value of 0, ensuring that buffer lengths,
bzi (k) and bz0(k), do not decrease to 0. This prevents the processing of the subsequent
platoon z + 1 until the former conditions are met, if platoon z fails to enter from the
on-ramps, or until the latter conditions are satisfied if platoon z fails to enter from the
mainstream. Under these circumstances, the virtual queues are respecitvely updated as
follows:

bi(k) =
Z∑
z=1

bzi (k) (2.24)

b0(k) =
Z∑
z=1

bz0(k) (2.25)

The queue length at on-ramps and at mainstream are computed as

li(k + 1) = li(k) + T [di(k)− ri(k)] (2.26)

l0(k + 1) = l0(k) + T [d0(k)− q0(k)] (2.27)

where the on-ramp entering flow is obtained as

ri(k) = min

{
di(k) +

li(k)

T
, rmax
i , rmax

i · ρ
max
i − ρ̄i(k)

ρmax
i − ρcri

}
(2.28)

while the traffic flow entering the first section from the mainstream is given by

q0(k) = min

{
d0(k) +

l0(k)

T
, qmax

0 , qmax
0 · ρ

max
1 − ρ̄1(k)

ρmax
1 − ρcr1

}
(2.29)

In summary, the M3 − net model serves as a valuable tool in traffic modeling when the
objective is to capture and analyze traffic conditions at a macroscopic level. Moreover, by
incorporating the microscopic dynamics of platoons, the M3 − net model enables a more
comprehensive understanding of how platoons influence traffic dynamics.
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2.2 Controlling the displacement of autonomous ve-

hicles

There exist numerous control techniques available for planning trajectories or executing
the actual motion of autonomous vehicles on the road. In the context of platooning, the
techniques applied to individual vehicles are often complemented by distributed techniques
to facilitate communication among platoon elements.
The choice of one technique over another may depend on several factors, including:

• The type of model, with a clear distinction between control techniques for linear and
nonlinear models;

• The computational speed required;

• The level of accuracy needed;

• And more.

In the following, some of the control techniques widely used in the platoon domain, and
especially in this thesis, are listed.

2.2.1 Linear Matrix Inequalities

Linear Matrix Inequalities (LMIs) offer a mathematical framework to address key control
and optimization challenges. In the context of platooning, where a group of autonomous
vehicles follows a lead vehicle closely and cooperatively, LMIs are a valuable tool for en-
suring safe and efficient operation. A standard form for LMIs is:

F (x) := F0 +
m∑
i=1

xiFi > 0 (2.30)

where x ∈ Rm is a vector of real numbers, namely the decision variables, and the matrices
Fi ∈ Rn×n, i = 0, ...,m, are given and assumed symmetric. The non-strict relaxation allows
for F (x) ≥ 0
Solving an LMI means finding a set of vectors x such that F (x) > 0.
Moreover, a set of LMIs F1(x) ≥ 0, F2(x) ≥ 0,...,Fk(x) ≥ 0 can be represented as one
single LMI:

F (x) =


F1(x)

F2(x)
. . .

Fk(x)

 (2.31)
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This equation is beneficial in control theory because LMI’s arise as functions of matrix
variables rather than scalar-valued decision variables

2.2.1.1 Application of LMI to minimax team decision problems

Minimax team decision problems are a class of decision-making situations involving teams
or groups of individuals working together to make uncertain choices. Robustness is one
of the key arguments of minimax decision problems. Robustness refers to the ability of a
decision or strategy to maintain acceptable performance even when faced with the most
unfavorable or adverse conditions and it is indeed a fundamental concept in minimax
decision problems. In this problem, each player has limited information that could differ
from the other players in the team. To prove this, the following team decision problem can
be considered:

inf
µ

sup
0̸=x∈Rn

J(x, u)

∥x∥2
(2.32)

subject to: {
yi = Cix for i = 1, ..., N

ui = µi(yi) for i = 1, ..., N
(2.33)

where ui ∈ Rmi , m = m1 + ...+mN , Ci ∈ Rmi×n, for i = 1, ..., N .
J(x, u) can be a quadratic cost given by:

J(x, u) =

(
x
u

)T (
Qxx Qxu

Qux Quu

)(
x
u

)
(2.34)

with Quu positive definite (Quu > 0).
The players u1, ..., uN make up a team, which plays against nature, represented by the
vector x, using µ:

µ(Cx) =

 µ1(C1x)
...

µN(CNx)

 (2.35)

The game is formulated as a minimax problem, where the team is the minimizer and the
nature is the maximizer, and [99] proven that if there is a solution to the static minimax
team problem, then linear decisions are optimal and a linear optimal solution

µi(yi) = Kiyi (2.36)

can be found by solving a LMI.
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2.2.2 Linear Quadratic Regulators

Linear Quadratic Regulator (LQR) and Linear Quadratic Tracking (LQT) are fundamental
control techniques used in the field of control systems engineering. They are employed to
optimize the performance of systems characterized by a linear time-invariant plant, to
optimize a quadratic cost function.
LQR is a control strategy designed to minimize a cost function that quantifies the system’s
performance. It achieves this by adjusting the control inputs in a way that optimizes the
system’s response, taking into account both the desired behavior and the system’s inherent
dynamics. LQR is particularly well-suited for stabilizing unstable systems.
The LQR problem can be mathematically defined as follows: Consider a continuous-time
linear time-invariant system represented by the state-space equations:

ẋ(t) = Ax(t) +Bu(t) (2.37)

where ẋ is the evolution of the state vector over time, representing the system’s dynamics,
u(t) is the control input vector, and A and B are system matrices.
The goal of LQR is to design a control law u(t) that minimizes a cost function J over an
infinite time horizon:

J =

∫ inf

0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt (2.38)

with Q and R respectively the state weighting and input weighting matrices. They repre-
sent the importance of tracking different states and the cost of control effort and they can
be time-variant, namely Q(t) and R(t).
The optimal control law for the LQR problem is obtained by solving the continuous-time
algebraic Riccati equation (CARE):

ATP + PA− PBR−1BTP +Q = 0 (2.39)

where P is the state feedback gain matrix and it is positive definite.
Finally, the optimal control u∗(t) is computed as:

u∗(t) = −R−1BTPx(t) (2.40)

An equivalent discrete-time version can be obtained by the system’s discretization and by
solving the discrete-time algebraic Riccati equation (DARE) to find the matrix P .
Additionally, there exists an equivalent formulation over a finite time horizon, suitable for
applications where the control objectives are primarily concerned with achieving specific
performance goals within a defined time frame. More in detail, Eqs. 2.38 and 2.39 become:

J = xT (t1)F (t1)x(t1) +

∫ t1

t0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt

ATP (t) + P (t)A− P (t)BR−1BTP (t) +Q = −Ṗ (t) (2.41)
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with the boundary condition P (t1) = F (t1).
LQR provides an optimal control law that minimizes a quadratic cost function, offering
the best possible control strategy for linear time-invariant systems under the specified cost
criteria. Although it can be extended to address time-varying systems, LQR may not be
suitable for highly nonlinear systems without the use of linearization techniques, which
can potentially degrade performance. Furthermore, to address system model inaccuracies
and uncertainties, an extended controller, known as the Linear Quadratic Gaussian (LQG)
regulator, incorporates a Kalman filter for state estimation, accounting for potential dis-
turbances both in the state and its measurements.
LQT is an extension of LQR, tailored for applications involving trajectory tracking. While
LQR focuses on optimizing the system’s response to a fixed setpoint, LQT goes a step
further by ensuring that the system can accurately follow a specified trajectory, namely
xr, over time. It accomplishes this by incorporating a tracking error term into the cost
function, penalizing deviations from the desired trajectory. Indeed, LQT aims to minimize
a cost function J that quantifies the tracking error over a finite time horizon [0, T ]. In the
following, the discrete-time LQT approach is discussed, with the cost function formulated
as:

J = (x(T )− xr(T ))
T QT (x(T )− xr(T ))+

+
T−1∑
k=0

[
(x(k)− xr(k))

T Q (x(k)− xr(k)) + u(k)TRu(k)
]

(2.42)

with the term outside the summation necessary to consider the update of the state at the
final instant, without control action. For this reason, usually QT ̸= Q. To find the optimal
control, the DARE must be solved:

P (t) = ATP (t+ 1)[1 +BR−1BP (t+ 1)]−1A+Q (2.43)

And subsequently the vector difference equation:

g(t) = AT
{

1 −
[
P−1(t+ 1) +BR−1B

]−1
BR−1B

}
g(t+ 1) +Qxr(t) (2.44)

Solving for the optimal state x∗(t) as:

x∗(t+ 1) = (A−BL(t))x∗(t) +BLg(t)g(t+ 1)

L(t) =
[
R +BTP (t+ 1)B

]−1
BP (t+ 1)A

Lg(t) =
[
R +BTP (t+ 1)B

]−1
BT (2.45)

where L and Lg are computed based on the system dynamics.
Lastly, the resulting optimal control is:

u∗(t) = −L(t)x∗(t) + Lg(t)g(t+ 1) (2.46)
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2.2.3 Proportional-Integral-Derivative controller

The Proportional-Integral-Derivative (PID) controller is one of the most widely used control
mechanisms in the field of engineering and automation. It is a feedback controller that plays
a crucial role in regulating and stabilizing a huge variety of dynamic processes. The PID
controller is valued for its simplicity, effectiveness, and versatility, making it a fundamental
component in various industries and applications. It consists of three terms, even if for
some systems only one or two terms are used:

• Proportional term: The proportional term produces an output signal that is di-
rectly proportional to the current error. It measures the difference between the
desired setpoint and the actual process variable. The proportional action responds
to the present error and provides immediate corrective action. The proportional
gain (Kp in the following) determines the strength of this response. Proportional-
only controllers exhibit a significant limitation in nullifying the steady-state error.
Thus, they keep a persistent error, known as offset, which cannot be eliminated by
exploiting only proportional controllers.

• Integral term: The integral term accumulates past errors over time, relying on both
the error magnitude and the duration it persists within the system. For this reason,
its control action is small at the beginning and it increases over time, bringing the
error to zero slowly at the beginning and brutally at the end. In fact, a pure integral
controller can potentially overshoot the zero-error state as it diligently eliminates any
persistent error. The integral action is critical for systems with constant disturbances
or biases and can accelerate the movement of the process toward the setpoint. The
integral gain (Ki) governs the aggressiveness of this correction.

• Derivative term: The derivative term anticipates the future error by assessing the
rate of change of the error signal. It dampens abrupt changes in the process variable,
enhancing system stability and reducing overshoot. Even if the most used combina-
tion is the PI controller, the derivative term usually takes action when performance
need improvements in settling time and overall stability. The derivative gain (Kd)
controls the extent of this dampening.

Thus, the resulting control action is:

u(t) = Kpe(t) +Ki

∫ T

0

e(τ)dτ +Kd
de(t)

dt
(2.47)

where e(t) is the error between the outuput and the desired behaviour of the system.
Adjusting the control parameters is essential for optimizing system performance. While
stability remains a fundamental requirement, varying the gain values can influence aspects
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such as settling time and overshoot. PID tuning, although conceptually intuitive, can
be challenging when multiple conflicting objectives need to be met. Tuning can be done
manually using various methods, such as the Ziegler-Nichols [100] or automatically with
the assistance of different tools.

2.2.4 Event-based controllers

In the context of autonomous driving, event-based controllers can be used for real-time
decision-making based on sensor inputs and predefined triggers or events. These controllers
operate by responding to specific events or conditions encountered during the vehicle’s
operation, guiding it through various scenarios safely and efficiently.
The flowchart representation of an event-based controller for autonomous driving would
incorporate decision nodes and branches that respond to events such as obstacle detection,
lane departures, traffic signals, and more. Each event triggers a corresponding action or
sequence of actions to ensure the vehicle’s appropriate response. The equations and logic
for an event-based controller can be complex and system-specific, as they depend on the
specific events and conditions being monitored and controlled. However, some general
components and equations that may be relevant are:

• Event Detection: Event detection logic involves identifying specific conditions or
events that are critical for safe autonomous driving. These conditions could include
obstacles in the vehicle’s path, sudden changes in road conditions, traffic signals,
or other vehicles’ behavior. It relies on information provided by sensors about the
surroundings

• Control Action: Once an event is detected, the controller determines the appropri-
ate control actions. This step is usually left to more complex controllers capable of
incorporating the vehicle’s dynamics and its accurate modeling to supply the optimal
control action.

• Event Handling and Reset Logic: After taking action in response to an event,
the controller needs to monitor whether the event condition persists. If the condition
is no longer met, the event flag should be reset.

In essence, the flowchart embodies the logic and decision-making processes that enable an
autonomous vehicle to navigate complex environments, but to handle the actual vehicle’s
displacement they are usually paired with the aforementioned controllers. Thus, the event-
based controller is responsible for making the decision, while other controllers, handling
the vehicle’s dynamics, are in charge of executing the control actions to ensure accurate
movement on the road.
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2.3 Robust control in vehicles platooning through LMI

To first assess the problem of robust control in vehicle platooning, a one-dimensional sce-
nario is designed. Each element’s trajectory is modeled using the first-order kinematic
model of Eq. 2.1. In this scenario, the heading update is neglected, the y-coordinate is
unnecessary, and noise is introduced into the system. Consequently, the resulting equation
for discretized displacement is:

xi(t+ 1) = xi(t) + vi(t)∆t+ wi(t) t = 0, ..., T − 1 (2.48)

where xi is the position of the ith vehicle, vi its velocity, wi the possible disturbance and
∆t the sampling time. This simple approach ensures a fast modification of the conditions
and paired with rate limiters it can provide the bounding of the input respecting physical
constraints.
In matrix form, the platoon of M vehicles is the concatenation of each element’s model
and may be formalized as follows:

x(t+ 1) = Ax(t) + ∆tBv(t) + w(t) t = 0, ..., T − 1 (2.49)

with A and B identical matrices ∈ RM×M .
In addition, it is assumed that each vehicle can access the information about its own
position and on both the preceding and the following vehicle positions:

yi = Cixi (2.50)

and for the generic ith vehicle:

Ci =

 0 ... 0 1 0 0 0 ... 0
0 ... 0 0 1 0 0 ... 0
0 ... 0 0 0 1 0 ... 0

 (2.51)

where Ci ∈ R3×M .
The first and last vehicles of the platoon have slightly different Ci ∈ R2×M matrix:

C1 =

[
1 0 ... 0
0 1 ... 0

]
CM =

[
0 ... 1 0
0 ... 0 1

]
(2.52)

The structure of these matrices ensures that each vehicle monitors its own position, as well
as the positions of the preceding and following vehicles in the formation. The trajectory of
the ith vehicle is adjusted with respect to the predefined reference path, denoted as xdi (t).
For the sake of notation, this adjustment involves the following change of variables:{

x̃i(t) = xi(t)− xdi (t)

ṽi(t) = vi(t)− vdi (t)
(2.53)
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The problem can be defined as a minimax problem analogous to the one explained in
Section 2.2.1.1:

inf
v
sup
w ̸=0

J(v, w)

||w||2
(2.54)

subject to Eq. 2.49 where the cost function J is designed as:

J(v, w) =
M∑
i=1

T−1∑
t=0

αix̃
2
i (t) + γiṽ

2
i (t) +

M∑
i=2

T−1∑
t=0

βi(x̃i(t)− x̃i−1(t))
2 (2.55)

In Eq. 2.55 αi,βi and γi represent gains that give primary importance respectively to
tracking the trajectory, restoring the optimal inter-distance, and minimizing the difference
from the desired velocity.

Theorem 1. Let’s consider a time horizon of two intervals, i.e. t = 0, ...T and T = 1. The
trajectory of the platoon described by x(t) can be modified in real-time, according to the
problem defined by Eqs. 2.54 and 2.49 by an optimal control law v(t) = Kx(t), which is
linear, where K is the solution of the following LMI:

min
θ,K

θ (2.56)

s.t.

K =


k1,1 k1,2 0 0 0 ... 0 0
0 0 k2,1 k2,2 k2,3 ... 0 0
0 0 0 0 0 ... 0 0
... ... ... ... ... ... ... ...
0 0 0 0 0 ... kM,M−1 kM,M

 (2.57)

(
Q̂xx − θI+ Q̂xvKC+CTKT Q̂vx CTKT

KC −Q̂−1
vv

)
⩽ 0 (2.58)

and θ > θ⋆:

inf
µ∈S

sup
0̸=x∈Rn

((
x

µ(Cx)

)T
Q

(
x

µ(Cx)

))
/
(
∥x∥2

)
= θ⋆ (2.59)

Proof. From the cost function of Eq. 2.55 we can deduce the matrix QJ for the minimax
problem, so partitioned:

QJ =

[
Qxx Qxv

Qvx Qvv

]
(2.60)
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Qxx =


α1 + β2 −β2 ... 0 0

−β2 α2 + β2 + β3 ... 0 0

... ... ... ... ...

0 0 ... αM−1 + βM−1 + βM −βM−1

0 0 ... −βM−1 αM + βM


Qvv = diag(γ1, γ2, ...γM)

Qxv = Qvx = 0

(2.61)

The matrices obtained refer to a dynamic system. To perform an offline computation of
the trajectory, the system needs to be transformed from dynamic to static. Given the
available data on the initial state and disturbance (i.e., x(0) and w(0), hereinafter denoted
as x0 and w0 for notation simplicity), the following problem must be solved:

inf
v0
sup
x0,w0

(
xT0Qxxx0 + vT0 Qvvv0 + xT (1)Qxxx(1)

||x0, w0||2

)
(2.62)

By writing x(1) as a function of x(0) from Eq. 2.49 and developing the computation, Eq.
2.62 may be rewritten as:

inf
v0
sup
x0,w0

(
xT0 (Qxx + ATQxxA)x0 + vT0 (Qvv +BTQvvB) + xT0A

TQxxBv0 + vT0 B
TQxxAx0

||x(0), w(0)||2

)
(2.63)

The numerator in Eq. 2.63 can be represented in the matrix form as:[
x0
u0

]T
Q̂

[
x0
u0

]
(2.64)

More in detail, the matrix Q̂ is composed as follows:

Q̂ =

[
Q̂xx Q̂xv

Q̂vx Q̂vv

]
=

[
Qxx + ATQxxA ATQxxB

BTQxxA R +BTQvvB

]
(2.65)

and it holds all the data needed to solve the LMI problem of Theorem 1.
Furthermore, Theorem 1 of [101] demonstrates that there exist linear decision µi(Cix) =
KiCix, for i = 1, ..., N where the finite value θ∗ of the game represented by equation (2.59)
is achieved.

Corollary 1.1. The control can be applied on a wider time horizon, i.e. T > 1, applying
results in [102], Section VII.

The aforementioned robust control is applied to a five-vehicle platoon moving along a
rectilinear path [103]. The whole system is willing to proceed at the cruising speed of
15m/s, while initial speeds of individual vehicles are listed in Table 2.1.
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Table 2.1: Vehicles’ initial speed

Vehicle speed [m/s]
1 18.79
2 17.55
3 17.67
4 15.59
5 14.66

The main goal of the control law is indeed to restore a safe inter-vehicular distance, which
is assumed to be at least 29 meters according to Italian road traffic rules, that estimate
the safe inter distance as:

dred [m] ≤ 3× V [km/h]

10
dgreen [m] ≥

(
V [km/h]

10

)2

dred < dyellow < dgreen (2.66)

where dgreen is the recommended distance, computed as the sum of the space traveled
during the human reaction and the braking time, dyellow is the reaction space only, and dred
is a critical inter-vehicular distance that can provoke collision in case of a sudden brake of
the preceding vehicle. The unit mismatch arises because this equation is derived from a
common practice in Italian road regulations, aimed at enabling drivers to quickly estimate
the distance to keep with the preceding vehicle. A schematic representation is illustrated
in Fig. 2.1.

Figure 2.1: Safety zones division, according to the Italian road traffic rules

In other words, the robust control aims to space the vehicles with the recommended inter
distance dgreen with a smaller as possible speed variation.
Neighboring elements are suboptimally spaced, as there is a 20-meter gap between neigh-
boring vehicles, caused by external factors prior to the simulation. Consequently, the
platoon employs a robust LMI-based control to increase the spacing.
In this scenario, the noise is assumed to be additive white Gaussian, with zero mean and
known covariance. Gains are held at unity for demonstration purposes, although in practi-
cal implementations they require empirical tuning based on their individual significance. It
is advisable to give priority to restoring the optimal inter-distance when vehicles encounter
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challenges exiting the yellow zone due to external factors. This adjustment will prompt
them to reduce speed, improving stability while returning to the initial platoon formation.
Fig. 2.2a illustrates the deviation of vehicle positions from their planned trajectories.
Initially, there is a significant difference between desired and actual trajectories, but con-
vergence is achieved over the course of the 50-second simulation. These results highlight
the effectiveness of the robust controller in restoring the initial and optimal state of the
vehicles in the string formation. Fig. 2.2b shows the inter-vehicle distances during the
simulation. In this case, the predefined values (29 meters) are consistently maintained,
aligning with the primary objective of the control law.

(a) Divergence in vehicles’ position with respect
to the planned one

(b) Distance between neighboring vehicles

Figure 2.2: Platoon evolution over time
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(a) Trend of the velocities (b) Vehicles’ accelerations

Figure 2.3: Trend of velocities and acceleration over time

Furthermore, Fig. 2.3a illustrates the velocity trends, aligning with expectations: the
leading vehicles initially slow down to facilitate the correct repositioning of other platoon
members, ultimately achieving stability. Subsequently, they resume cruising speed and,
through other cooperative control techniques, they may increase both speed and inter-
vehicle distance. Table 2.2 provides a summary of the velocities and distances between
vehicles and their preceding platoon elements, validating the control algorithm. It is worth
noting that the required acceleration, as depicted in Fig. 2.3b, remains within feasible
limits (i.e., oscillating between -1 and 1), instilling confidence for testing the trajectory on
a more realistic model.

Table 2.2: Vehicles’ state at the end of the simulation

Vehicle Velocity [m/s] Distance
from

preceding
car [m]

1 14.92 -
2 15.00 29.78
3 15.08 29.41
4 15.01 28.98
5 14.99 29.02

In conclusion, the resistance to disturbances and the linearity of the control law allows this
algorithm to be used when fast modification of the planned trajectory is required due to
unforeseen approaching among vehicles.
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2.4 Comparison of LQT and PID techniques on high-

way scenario

After analyzing an initial one-dimensional scenario, the focus can be shifted to a more
complex highway platoon maneuver. Specifically, an overtaking maneuver between two
heavy-duty vehicles (HDVs) is considered [104]. It can be viewed as a space-constrained
overtaking maneuver, as the vehicle wishing to overtake must:

• Position itself on the fast lane, exiting the string formation (Fig. 2.4b)

• Overtake the vehicle in front while the latter decelerates to favour the maneuver

• Settle at the correct distance between its neighboring vehicles (Fig. 2.4c)

• Return to the platoon lane (Fig. 2.4d)
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(a) (b)

(c) (d)

Figure 2.4: Overtaking maneuver with position constraints

The maneuver, graphically represented in Fig. 2.4 has to be performed keeping a similar
speed with respect to the rest of the platoon and in a reasonable time frame. Moreover,
for the whole time, vehicles involved in the swap have to prevent getting too close to their
neighbors, thus endangering passengers’ safety.
The role of each element can be summarized as follows:

• Vehicle #1 has to keep a constant speed and measure the distance to its follower, in
order to improve the reconstruction of the surroundings

• Vehicle #2 decelerates in order to favor the overtaking of vehicle #3, while measuring
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the distance from the leader and the last element of the platoon

• Vehicle #3 overtakes vehicle #2 and measures the distance from it and from the
leader, in order to re-enter the string formation in the best position possible

• Vehicle #4, similarly to vehicle #1, has to keep a constant speed and increase the
knowledge of the environment by providing its measurements

The Lomonossoff model discussed in Section 2.1.2 has been utilized to represent the non-
linear model of HDVs, and it is controlled using a PID controller of Section 2.2.3. The
performance of this nonlinear model is then compared to that of the model described
in Section 2.1.2.1, which employs a LQT controller of Section 2.2.2, benefiting from the
linearity of the latter.

A four-vehicle platoon (M = 4) is considered, in which vehicles #2 and #3 are involved
in a position swap. The first and last vehicles in the platoon maintain a constant speed
of vreg = 22[m/s]. This four-vehicle subset is a practical choice since it allows for the
exchange of positions between two trucks while minimizing disruptions to adjacent platoon
members. In larger platoons, the controller can focus on the four-vehicle subset only
during the maneuver, keeping the other elements at a constant speed. The maneuver
must prioritize the safety of the entire system, necessitating a minimum distance between
adjacent vehicles, as computed in Eq. 2.66. According to this formulation, the minimum
and the recommended distances are:

dmin[m] =
3 ∗ vreg[km/h]

10
= 23.76m

dopt[m] = (
vreg[km/h]

10
)2 = 62.73m

(2.67)

Nevertheless, these bounds could potentially be reduced further, considering the quicker
reaction times of unmanned vehicles compared to human-driven ones. While other rules
exist for computing the optimal inter-vehicle distance, such as those outlined in Responsi-
bility Sensitive Safety (RSS) principles widely discussed in the literature (e.g., in [105] and
[106]), it is beneficial to begin with the recommended distances specified by traffic regu-
lations, which currently serve as the minimum constraints on road safety. Naturally, in a
scenario involving only unmanned vehicles, the possibility of shorter inter-vehicle distances
can be explored.
The case study begins with an initial inter-vehicle spacing of d = 30[m]. This spacing is
close to the critical bound (dmin) and represents a challenging scenario for executing an
overtaking maneuver between platoon vehicles. During the first 5 seconds of the simula-
tion, all vehicles maintain their regular speed, and at this point, vehicle #3 changes lanes
to initiate the overtaking maneuver. The re-entry into the original lane is assumed to occur
in the last 5 seconds of the simulation without altering the longitudinal displacement.
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The performance of a PID controller on the continuous nonlinear system is presented and
then compared to a control algorithm that deals with the linear discrete approximation
of Lomonossoff’s model and makes use of a LQT problem to compute the optimal control
input.

2.4.1 Nonlinear system and PID control

The control of the nonlinear system is executed through individual PID controllers, each
responsible for adjusting the speed of a vehicle from the nominal regime speed. These con-
trollers convert the desired position into the corresponding tractive effort. Communication
between vehicles is limited to sharing the current position, enabling the PID controllers to
formulate appropriate control actions to achieve the desired position. Specifically, the de-
sired position (xd) is defined relative to the actual position and the position of the platoon
leader, or the position of the last platoon element, along with the inter-vehicle distance,
which is computed based on the nominal regime speed. At each sampling instant k, it can
be expressed as follows: {

xd2(k) = x1(k)− 2d

xd3(k) = x4(k) + 2d = x1(k)− d
(2.68)

Reference trajectory of vehicle #3 should be written with respect to the position of the
leader, since unexpected behavior can arise when dealing with a large-scale platooning, as
demonstrated in [41]. However, considering the small number of vehicles involved in the
platoon, both formulations give the same results.

Table 2.3: PID coefficients

Proportional 2.754
Integral 0.484

Derivative 2.986
Filter coefficient 9.300

The parameters of the continuous-time PID controller were tuned using the Matlab/Simulink
tool by linearizing the plant near the equilibrium point corresponding to the nominal regime
speed. However, it is important to note that unexpected behavior may occur at signifi-
cantly different speeds from the initial one. The simulation employs the values listed in
Table 2.3. A filter coefficient is applied to enhance the performance of the derivative term,
which is not implemented as a pure derivative due to its sensitivity to noise. Addition-
ally, a rate limiter is introduced to prevent abrupt changes between consecutive sampling
instants. Output saturation is used to keep the vehicle near its equilibrium point and
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enhance the overall realism of the control input in the virtual environment.
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Figure 2.5: Platoon evolution with nonlinear model and PID controller

Fig. 2.5a shows the trend of the velocities. As expected, there is a slight acceleration from
the third vehicle, while the other starts decelerating to favor the overall maneuver. The
behavior is almost specular as both vehicles have the same PID gains and their desired
positions are symmetric with respect to the center of the platoon.
Fig. 2.5b confirms the effectiveness of the nonlinear controller, as the distance between
vehicles varies according to the expectation and it settles on multiples of 30 meters (based
on the pair of vehicles analyzed), ensuring that the initial inter-vehicle distance is main-
tained.
The objective is achieved smoothly and quickly, without abrupt changes in acceleration
thus preserving passenger comfort.

2.4.2 Linear system and LQT control

The key distinction of the linear controller compared to the previous one is its reliance
on time-varying system information, operating on a discretized model detailed in Section
2.1.2.1. This model serves as an approximation of the actual system. Specifically, the vehi-
cle’s state is utilized to linearize the system around the operating point ¯v(tp) and provide
input to the Linear Quadratic Tracking (LQT) problem. Consequently, it is assumed that
the velocity trends for the nonlinear evolution are known and used as a reference signal for
the tracking algorithm.
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The knowledge of velocity trends is a strong assumption, but it is reasonable as the be-
havior depends on the actual speed of the vehicles. Thus, it is possible to have a set of
different maneuvers based on the initial regime speed of the other vehicles of the platoon.
The LQT necessitates a cost function to assign priorities to tracking specific state variables
and controlling costs. For each sampling instant the cost function is formulated as follows:

J =
M∑
i=1

K∑
k=1

(αi(xi(k)− xdi (k))
2 + βi(vi(k)− vreg)

2 + γifi(k))+

M∑
i=1

(αi(xi(K + 1)− xdi (K + 1))2 + βi(vi(K + 1)− vreg)
2) (2.69)

where α, β, and γ are gain values that are tuned to prioritize specific elements of the
summation, and K represents the control horizon for the LQT problem. A higher value of
K results in smoother system response but reduces its responsiveness. In the case study,
K is set to 10 to manage computational costs efficiently.
The desired positions, denoted as xdi , are determined following Eq. 2.68 for vehicles involved
in the swap maneuver. For the outer vehicles, xdi is computed as a constant displacement
between consecutive sampling instants. The regime speed, denoted as vreg, is fixed at
22m/s for all platoon members in the case study. Specifically, the first term is the quadratic
deviation from the desired trajectory, which for inner vehicles xdi is computed as in Eq. 2.68
and for outer vehicles is not considered (i.e. α1, α4 = 0), the second term is the deviation
from the desired speed and their trend is supposed to be known, and the last term regards
the minimization of the input which translates in the minimum tractive effort to be applied
to accomplished the goals. The second summation is needed to represent the final control
instant for the state.
The equivalent of the cost function in matrix form is:

Q =



α3 + α2 0 −α2 0 −α3 0 0 0 −α3d− 2α2d
0 β1 0 0 0 0 0 0 0

−α2 0 α2 0 0 0 0 0 2α2d
0 0 0 β2 0 0 0 0 −β2vreg

−α3 0 0 0 α3 0 0 0 α3d
0 0 0 0 0 β3 0 0 −β3vreg
0 0 0 0 0 0 α4 0 0
0 0 0 0 0 0 0 β4 0

−α3d− 2α2d 0 2α2d −β2vreg −α3d −β3vreg 0 0 0



R =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (2.70)
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Note that Q ∈ R2M+1 and R ∈ RM+1 due to nonquadratic terms present in the cost function
that require to increase the size of the matrix and the state vector, following the procedure
in [107].
The control technique is inherently centralized, with the system state composed of all pla-
toon vehicles, including those traveling at constant speeds. This centralization ensures
optimal platoon behavior from a collective perspective, prioritizing overall system safety
over individual elements. In the case study, a strong emphasis has been placed on tracking
speeds over controlling costs by setting high β gains. It should be noted that setting all
α gains to zero transforms the platoon control problem into M individual vehicle control
problems, as no constraints related to inter-vehicle distance exist.
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Figure 2.6: Platoon evolution with nonlinear model and PID controller

With unitary gains, the control technique cannot execute the vehicle swap, as illustrated
in Fig.2.6a. This occurs because the control algorithm finds the maneuver costly and thus
not favorable. On the other hand, when greater importance is placed on the maneuver
(i.e., when gains for tracking velocity trends significantly outweigh control cost gains), the
inter-vehicle distance evolves as shown in Fig.2.6b, with markers highlighting behavior at
the midpoint and the end of the simulation.
The overall objective is achieved with minor reductions in inter-vehicle distances. This does
not compromise the system’s safety, as each element maintains a distance greater than dmin
from the following vehicle. This is particularly valuable given the high regime speed and
the initially unfavorable conditions that may not suggest such a maneuver. Increasing
the initial spacing between vehicles yields safer results, as it provides more room for the
exchange.
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2.5 Platoon integration in macroscopic environment

In the upcoming section, the focus will shift from the analysis of platooning maneuvers to
the integration of platooning into the control of highway traffic within the macroscopic road
environment described in Section 2.1.3. This transition expands the scope of the research,
offering valuable insights into the potential advantages and challenges associated with
platoon-based traffic management on a larger scale. From the platooning control purpose,
this model serves as a bridge between the micro-level interactions within individual nodes,
namely the platoon, and the macro-level behavior of the entire network, the traffic flow.
The objective is to develop a hierarchical control scheme to improve the travel performance
of truck platoons, in terms of travel times, comfort, and safety [108]. As depicted in Fig.
2.7, the control of each platoon is implemented by means of a two-level control architecture
located in the leader vehicle of each platoon. More in detail, the high level of control,
that is a PI controller of Section 2.2.3, defines the reference speed of the platoon based
on the traffic conditions detected in a portion of the freeway downstream of the platoon
itself. Based on this speed reference profile, the low control level, that is a LQT controller
of Section 2.2.2, defines the accelerations that each vehicle in the platoon must actuate
to achieve the desired speed while maintaining the inter-vehicular distances ensuring the
necessary platoon safety conditions. Indeed, at the low control level, the optimal control is
achieved with respect to the global behavior of the platoon, thus forbidding selfish actions
performed by individual vehicles.

Figure 2.7: Sketch of the proposed control scheme.

It must be noted that combining the high control level defined on the basis of traffic
conditions with the low control level accounting for the conditions of each single vehicle
allows for regulation of the vehicles in the platoon in order to guarantee safety and, at
the same time, to improve the travel performance of the platoon. Indeed, the reference
speed defined at the high control level considering the platoon in an aggregate way may be
unfeasible in practice, where a platoon is instead composed of several vehicles with different
dynamic characteristics. The combination of the two control levels allows to overcome this
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criticality and to find the optimal behavior of the vehicles according to the reference speed
and their dynamic behavior.
The goal of the proposed control scheme is to improve the driving experience of individual
platoons by trying to reduce the time spent in congested area and by limiting abrupt speed
variations. These aspects are crucial for improving safety, reducing traffic emissions, and
platoon fuel consumption due to driving in congestion.

2.5.1 High-level controller: PI-type platoon speed feedback

The objective of the high control level is to define the speed for each platoon to improve
its performance indices. This speed is defined by means of a PI-type feedback controller
based on traffic conditions measured instantaneously and continuously downstream of each
platoon. Specifically, at each time step k the vehicle leader of platoon z receives measure-
ments of the traffic densities detected over a number of sections N z that are immediately
downstream of the platoon position. Based on these measurements, it computes the aver-
age density ϱz(k) over the subset of sections N z, which define the reference speed v̂z(k) to
transmit to the low-level controller. To this end, the subset of sections used to compute
the average density is defined as Iz(k). This subset starts at iz(k), i.e., the section where
platoon z is located at time step k, and lasts for N z sections. The average density ϱz(k)
is calculated as

ϱz(k) =

∑
i∈Iz(k) ρ̄m,i(k)

N z
(2.71)

Hence, the reference speed of platoon v̂z(k) at time step k is given by

v̂z(k) = vz(k − 1) +KP [ϱz(k − 1)− ϱz(k)] +KI · [ρ̂− ϱz(k)] (2.72)

where KP and KI are the gain parameters of the controller, vz(k − 1) is the average
speed actuated by platoon z in the previous time step and where the density set-point ρ̂
is generally set equal to the critical density ρcr. Before being transmitted to the low-level
controller, the speed defined with Eq. 2.72 must be compliant with the bounds referring
to the minimum values of speed allowed for platoon z and the current speed of the section
in which the platoon is located at time step k or the maximum platoon speed, i.e.

vz,min ≤ vz(k) ≤ min
{
vz,max, viz(k)(k)

}
(2.73)

2.5.2 Low-level controller: Linear Quadratic Tracking

Analyzing the traffic flow from the microscopic point of view, platoons represent the main
bottleneck of the system. This happens due to the higher number of constraints that
involve many vehicles at a time. Therefore, platoons require specific control techniques
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because the optimality of the control regards the whole set rather than the individual
truck and their performance greatly influences traffic flow.
The discretized model of vehicles belonging to platoons is the second-order kinematic model
of Section 2.1.1 and their state equations, referring to a single vehicle j, can be translated
into matrix form:

Azj =

[
1 T
0 1

]
Bz
j =

[
1
2
T

2

T

]
(2.74)

with T the sampling time referred to the dynamics of the individual vehicles present in the
platoon. It has to be noted that T must be consistently smaller than T , the METANET
sampling time, to allow vehicles to react promptly to some unexpected situations during
their trip.
Consequently, the system matrices gathering the dynamics of all the vehicles composing
platoon z are represented as

xz(h+ 1) = Azxz(h) + TBzuz(h) (2.75)

with Az and Bz being the diagonal concatenation of Azj and Bz
j , respectively. Moreover,

each vehicle can access information on its own state and on its neighbors, as in the case
study of Section 2.4, and also about the leader.
The speed provided by the PI controller is the signal to be tracked from the low-level
controller, which handles the platoon displacement by exploiting a centralized LQT. The
aim of the control algorithm is to reach the target speed in the shortest possible time while
keeping an adequate inter-vehicle distance between elements.
For each platoon z an optimization problem is solved by minimizing the following objective
function:

J =
nz∑
j=1

H∑
h=1

[
αz|vzj(h)− wzj(h)|

2 + ωzuzj(h)
2

]
+

nz−1∑
j=1

βz1 |pzj(h)− pz
j+1

(h)− δj|2+

nz∑
j=3

βz2 |pz1(h)− pz
j
(h)− (j − 1)δj|2 (2.76)

The first term aims to track the desired state. Specifically, for each vehicle j composing
platoon z, xzj is the state vector composed of position and speed, while wzj is the reference
signal composed again of position and speed. The reference value of the speed v̂z(k)
communicated by the high control level is kept constant for a number of time steps equal
to T/T , so the reference position is retrieved from the transmitted value of v̂z(k). The
second term is defined to limit abrupt changes in the control trajectory, while the third
term is included in the objective function to implement the inter-distance constraints. The
parameter δj represents the desired inter-vehicle distance for vehicle j and it is calculated
using the two-second rule. This rule computes the distance to maintain as the current
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speed of vehicle j multiplied by two seconds, relative to the desired speed of the vehicle.
It is worth noting that, given the faster reaction times of autonomous vehicles compared
to human drivers, this inter-vehicle distance could potentially be reduced. The last term
enforces position constraints by adding terms related to the inter-vehicle distance that each
element has to preserve with respect to the leader.
Finally, the parameters αz, βz1 , β

z
2 , ω

z are gains to weigh the different cost function terms.
The cost function can be put in matrix form to obtain the matrices Qz and Rz required to
implement the LQT problem that supplies the optimal acceleration, saturated with feasible
values, to prompt to each vehicle.

J = xz⊺Qzxz + uz⊺Rzuz (2.77)

2.5.3 Traffic performance controlling platoons speed

As introduced before, the goal of this control architecture is to improve the operation
of truck platoons, in terms of time spent in the congested area and in terms of speed
variations. In the following, two suitable performance indices are introduced to quantify
the performance of the controller, defined on the basis of the Micro-Macro METANET
model.
The time spent in the congested area by platoon z is denoted as τ z and given by

τ z = T
K∑
k=0

ηz(k) (2.78)

where ηz(k) is equal to 1 if platoon z is, at time step k, in a section in which the traffic
density exceeds the critical value, i.e. ρ̄mz(k),iz(k)(k) ≥ ρcr.
The second performance index computes the smoothness of the speed profile of platoon z,
which is strongly related to comfort levels. This index is denoted as σz and is given by

σz =
K∑
k=1

(vz(k)− vz(k − 1))2 (2.79)

The effectiveness of the platoon speed controller can be computed considering the entity
of the reduction of τ z and σz compared with the uncontrolled case.
The freeway stretch adopted to test the control framework, which is depicted in Fig. 2.8,
is 20 [km] long and is divided into N = 40 sections each of which has a length of 0.5
[km]. The stretch has three on-ramps, located respectively at kilometers 11, 13 and 15,
and an exit ramp at kilometer 14. The stretch under consideration has three lanes except
for one kilometer where only two lanes are present. Specifically, the narrowing is located
from kilometer 11.5 to kilometer 12.5. The presence of four platoons is considered. An
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equivalent occupancy oz = 10 [veh/km/lane], which corresponds to nz = 5 vehicles, has
been considered ∀z. The arrival of the platoons at the freeway is scheduled at minutes 75,
97, 107 and 117 respectively.

Figure 2.8: Sketch of the freeway network adopted for the case study.

The simulation has been conducted over a time horizon of two and a half hours. The
sample time T adopted for the traffic simulation model and to compute the reference value
of speed of each platoon has been set equal to 10 [s] (K = 900 time steps). Moreover, the
following values of the traffic model parameters have been adopted: vz,max = 85 [km/h],
∀z, vfi = 100 [km/h], ρmax

i = 200 [veh/km/lane], ρcri = 50 [veh/km/lane], ∀i, qmax
0 = 6000

[veh/h], and rmax
i = 1800 [veh/h] for all on-ramps.

By using the simulation model, it is possible to reproduce the traffic behavior in the stretch.
As it is possible to observe in Fig. 2.9, which shows the time and space evolution of traffic
density and speed, the platoons encounter a state of congestion mainly due to the lane
drop at kilometer 11.5.
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Figure 2.9: Traffic indicators of congestion in the freeway stretch
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As for the microscopic representation of platoons, there is a need for a shorter sampling
time (T = 50 [ms]) to ensure the responsiveness of vehicles to unexpected events. This
allows the platoons to evolve coherently between two consecutive Micro-Macro METANET
time intervals and allows the low-level controller to work with a reasonable control horizon,
H = 5, in order to pursue the desired speed.
The tuning of αz, βz1 , β

z
2 and ωz can affect the platoon behavior in response to the evolu-

tion of the traffic flow. In this case study, the gains have been considered equal for all the
platoons in the simulation. Primary importance has been given to tracking the reference
speed (αz = 5) and to the minimization of the input ωz = 5. The values βz1 = 1 and βz2 = 1
have been used to force a different behavior between elements of the platoon by giving
secondary importance to the optimal inter-vehicle distance. Note that, by posing βz1 and
βz2 equal to zero each vehicle can be considered independent by the other elements.
At the end of a Micro-Macro METANET sampling time interval, the average speed of the
leader within 10 seconds is provided to the Micro-Macro METANET, and the new state
of the platoon, considering the evolution of the traffic, is retrieved to start again the LQT
control algorithm.
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Figure 2.10: Evolution over time platoon #1
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Platoon 2 state
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Figure 2.11: Evolution over time platoon #2
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Figure 2.12: Evolution over time platoon #3
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Platoon 4 state
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Figure 2.13: Evolution over time platoon #4

Figs. 2.10-2.13 shows the evolution of each platoon over time, with respect to their entrance
and exit time in the main flow. The optimal inter-vehicle distances are broadly maintained
throughout the whole time of simulation without endangering passengers safety. In other
words, the inter-distances do not become too low with respect to the optimal one. More-
over, the desired speed is well-followed even in case of abrupt changes. The zoom in the
speed profile denotes the slight differences among elements of the platoon. This suits the
expectation of having a set of vehicles moving at a similar speed.
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Table 2.4: Performance parameters

τ z τ z % of
Platoon no-control control improvement
z = 1 6.33 6.00 5.3
z = 2 1.83 1.83 0.0
z = 3 5.33 4.83 9.4
z = 4 5.83 5.50 5.7

σz σz % of
Platoon no-control control improvement
z = 1 17584 16892 3.9
z = 2 15548 15530 0.1
z = 3 17659 16741 5.2
z = 4 16702 16158 3.3

Finally, the previously defined performance indexes are improved in three out of four
platoons (z = 1, 3, 4), as shown in Table 2.4. This depends on the traffic conditions
encountered by the platoons, but in no case does it lead to a worsening in performance.

2.6 Application of event-based controller on WMR in

driving routines

A further step in vehicle modeling involves transitioning from theoretical models to prac-
tical implementations. WMRs are valuable tools for this purpose, serving as a practical
platform to validate and refine autonomous vehicle concepts in real-world scenarios. The
models discussed in the previous sections can be validated through testing on simplified
physical hardware. This initial testing provides an initial assessment of the effectiveness
of the control techniques proposed in the following section.
WMRs offer a valuable platform for simulating the behavior of autonomous vehicles in
embryonic-stage projects. These projects typically involve the early development and test-
ing of algorithms, sensors, and control systems before the physical implementation of a
full-scale autonomous vehicle. They provide an accessible and cost-effective means to
replicate many of the challenges and scenarios encountered by autonomous vehicles in
real-world environments. Indeed, developing autonomous vehicles can be prohibitively ex-
pensive, especially in the early stages. WMRs are generally more affordable, making them
an ideal choice for prototyping and experimentation without incurring the high costs asso-
ciated with full-scale vehicles. Moreover, they are highly modular and easily customizable.
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Researchers and developers can quickly iterate on hardware and software components,
allowing for rapid prototyping of different autonomous vehicle configurations while repli-
cating real-world scenarios at a sufficiently realistic level. They may even be equipped
with a wide array of sensors, including lidar, cameras, and GPS, similar to those used
in autonomous vehicles to favor data fusion, and in turn, their data can be valuable for
training machine learning models and validating autonomous systems. Lastly, WMRs play
a huge role in teaching and training, helping students familiarize themselves with hands-on
experience in developing and testing autonomous algorithms.
In the final section of this chapter, event-based algorithm techniques of Section 2.2.4 are
applied to a physical hardware platform, representing a simplified model of an autonomous
vehicle. Importantly, the analysis extends beyond simulated environments, as real-world
scenarios are tested [103]. This transition enhances the value of the previous work, as it
opens the possibility to assess control techniques on simpler yet more cost-effective physical
hardware, providing an initial analysis of algorithm reliability.
The Freenove 4WD mobile robot of Fig. 2.14 is used to represent the vehicle’s dynamics.
It is a four-wheeled non-steering mini-car, 21 cm long and 15 cm wide with a mass of 400
grams, equipped with an ultrasonic sensor, wheel encoders, and line sensors.

Figure 2.14: Wheeled Mobile Robot used for testing

Each wheel is equipped with its own DC motor, but the controller simultaneously provides
the same power to the wheels on the same side. This design allows the mini-car to rotate
in place, changing its direction effectively. Because of the hardware architecture, wheels

51



on the same side consistently receive identical power, resulting in uniform angular speed.
Consequently, we can represent the wheels using a simplified model with only one wheel
per side, conveniently positioned near the Center of Gravity (CoG), as illustrated in Fig.
2.15a.
Under these assumptions, the dynamics of the WMR, graphically represented in Fig. 2.15b,
can be described by: 

ẋ = R
2
(vr + vl) cos θ

ẏ = R
2
(vr + vl) sin θ

θ̇ = R
L
(vr − vl)

(2.80)

where x and y are the longitudinal and lateral position of the robot with respect to the
CoG, θ denotes its heading, R is the wheel radius, L is the wheelbase and vl,vr are the left
and right angular wheel velocities.

CoG

(a) Schematic representation of the
mini-car. Wheels on the same side have
always the same rotation speed, thus
one wheel per side located next to the
CoG is supposed.
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y x
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(b) Scheme representing the mechani-
cal aspects involved in the model de-
fined by Eq. 2.80

Figure 2.15: Representations of the WMR and its mechanical characteristics

More in detail, the model is the differential version of the kinematic model of Section
2.1.1. The WMR, albeit in a limited sense, serves as a representation of an autonomous
vehicle. On the other hand, it can also serve as a valuable model for agents responsible
for transporting products within a manufacturing system, as further explored in Chapter
4. The WMR is equipped with a Nucleo board microcontroller with a frequency of 32 kHz
and various sensors:

• Ultrasonic sensor: The HC-SR04 Ultrasonic Ranging Module integrates both an
ultrasonic transmitter and a receiver. The transmitter serves to convert electrical
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signals into high-frequency sound waves, while the receiver performs the opposite
function. The module operates on the principle that ultrasonic waves reflect upon
encountering obstacles. Distance measurement is achieved by calculating the time
interval between the transmission and reception of ultrasonic waves after they en-
counter an obstacle. This time interval, denoted as ’t,’ represents the complete
duration of the ultrasonic wave’s journey. Given that the speed of sound in air is
a constant (v = 343m/s), distance ’d’ between the Ultrasonic Ranging Module and
the obstacle can be calculated using the formula: d = vt/2.

• Line-tracking sensor The line-tracking sensor comprises three reflective optical
photodiodes that emit and receive infrared light, which reflects off a surface and
detects color based on light intensity. Each optical sensor produces a high-level signal
upon detecting a black surface and a low-level signal when the surface is white.
A lookup table is used to convert a three-bit value into a controller value (Table
2.5). Negative values indicate a control action towards the left, while positive values
indicate a control action towards the right, weighted with different control intensities.
This helps keep the robot on the lane when it deviates from the centerline.

left center right control intensity
0 0 0 0
0 0 1 2
0 1 0 0
0 1 1 1
1 0 0 -2
1 0 1 0
1 1 0 -1
1 1 1 0

Table 2.5: Look-up table used for the line-tracking sensor

• Wheels encoders: The encoders used are rotary incremental with an optical in-
terrupter that detects the rotation of a wheel with holes. Each time the encoder
detects a hole in the wheel, it sends an interrupt. By counting the number of these
interruptions (ticks) during a specific time interval, the traveled distance, speed, and
wheel rotation speed can be retrieved. Denoting the total number of ticks at time k
as t(k), the rate is:

∆t(k) = t(k)− t(k − 1) (2.81)
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At each instant, the traveled distance d, speed v, and rotational speed ω are:

d(k) =
2πR

Nt
t(k) (2.82)

v(k) =
∆t(k)
Ts

(2.83)

ω(k) =
2π

Nt
∆t(k) (2.84)

where Nt represents the number of holes in the wheel and Ts is the sampling time.
All sensor data are utilized to determine the motor actions based on the WMR’s objectives.
The WMR is equipped with four 5V DC motors and one Tower Pro Micro Servo SG90.
These components are responsible for its movement and for rotating the ultrasonic sensor,
respectively. To operate the motors, a Pulse-Width Modulation (PWM) signal is required.
Therefore, the controller is tuned to provide the correct duty cycle, ensuring that the
motors receive the appropriate voltage within the 0-5 Volts range.
On the software side, the controller is designed and developed using Matlab/Simulink to
enable the WMR to move and respond to its surroundings. To simulate the WMR and
its environment, the Mobile Robotics Training Library is employed. This library offers
various blocks to simulate motors, encoders, line sensors, and the tracks to follow.
Subsequently, the code is converted to C++ using Simulink Coder and uploaded to the
Nucleo board for serial communication, as illustrated in Fig. 2.16.

Ultrasonic 

Sensor

Wheel's 

Encoders

Mini-car system

Simulink code

for Finite State

Controller

Motors

Line 

Sensor

nvironme

Serial

Communication

Figure 2.16: Scheme of the system
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The analyzed driving scenarios involve a three-lane road with fixed obstacles. The vehicle
initiates its journey in the rightmost lane and changes lanes only when compelled to do so
due to an obstacle ahead. It is assumed that at least one lane remains obstacle-free for a
sufficiently long stretch, allowing the vehicle to settle in that lane before changing lanes to
avoid subsequent obstacles.
Both scenarios feature a three-lane map with obstacles positioned on different lanes, influ-
encing the WMR’s behavior:

Scenario 1: Zig-zagging
Three obstacles are positioned at distances of 0.7, 1.5, and 2.4 meters from the
starting point, which is at the beginning of the rightmost lane. The first and last
obstacles are located in the rightmost lane, while the second obstacle is in the center
lane. This configuration is expected to result in a zig-zag movement, starting from
the right lane and concluding in the center lane.

Scenario 2: Double left lane change
This scenario involves four obstacles: one in the right lane at 0.7 meters, two at 1.5
meters (leaving the left lane free), and the last obstacle at 2.2 meters in the left lane.
The expected result is a double left lane change in response to obstacles in the other
lanes, followed by repositioning in the center lane.

These two scenarios ensure the replication of every possible maneuver in a three-lane road
environment.
Tests have been conducted in both simulated and real-world environments, using a car kit
that closely mimics the behavior of an unmanned vehicle. The objective was to compare
performance to validate the theoretical model’s accuracy and the physical robot’s reliability.
In both simulation and real-world tests, a flowchart has been designed to outline the
vehicle’s behavior over time. Within the flowchart, certain states require the robot to
perform specific actions, such as following the road, while continuously monitoring the
environment for obstacles ahead. When an obstacle is detected, the vehicle checks the
availability of other lanes and moves to one of them if necessary. To simplify the flowchart
while ensuring a realistic scenario, the following assumptions have been made:

• when in an external lane and encountering an obstacle, it is assumed that the central
lane is free.

• when in a central lane and encountering an obstacle, it is assumed that at least one
of the external lanes is free. If both are free, priority is given to the rightmost lane.

The resulting event-based controller is visible in Fig. 2.17.
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Figure 2.17: Scheme of robot’s evolution overtime

A PID controller regulates the voltage supplied to the motors based on input from the
line-tracking sensor. It processes the data received from the sensor, as outlined in Table
2.5. The controller uses a reference value of 0, indicating that the center optical sensor
detects a black surface.
The choice of a PID controller is due to its simplicity and repeatability, aligning with
the minimum lane-keeping requirements for validating the approach in the considered sce-
nario. Given that the vehicle’s behavior on a straight lane requires relatively minor control
adjustments, a basic controller suffices, providing quick and reliable performance without
extensive tuning of its constants. Trial-and-error tuning proved adequate to obtain reliable
values for keeping the vehicle on track. Sub-optimal gains remain effective for this type
of control, partly because standard tuning methods, such as the Ziegler-Nichols method
detailed in [109], necessitate system response measurements for coherent gain adjustments,
which were not feasible in the chosen configuration.
The lane change is based on the following discrete-time equation of the evolution of the
WMR’s direction:

θ(k + 1) = θ(k) +
∆DR(k)−∆DL(k)

L
(2.85)

where θ is the orientation of the WMR, DR(k) and DL(k) are the traveled distance by the
right and left wheel at time k, and L is the distance between the wheels.
The motors mounted on the WMR have specific operational constraints that necessitate a
minimum power input for functioning. To address this limitation, a proportional controller
with a bounded output has been implemented.
In comparing a virtual and real case study, minor variations in gain tuning are predictable,
due to the distinctive physical characteristics of the WMR. These modifications primarily
impact the derivative component of the controller, as summarized in Table 2.6. It is worth
noting that alternative values are viable without compromising the overall objective. How-
ever, empirical tests have demonstrated that higher derivative term values in the simulated
environment can lead to the robot coming to a halt and oscillating as it approaches a lane.
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Conversely, the execution of the lane-changing maneuver relies on a high-gain proportional
controller coupled with a constraint that halts the rotation of the WMR at a predefined
angle, approximately 45°. The utilization of high gain is imperative to accommodate the
physical constraints of the WMR, as it requires a minimum power input to overcome fric-
tion and initiate rotation.
The inputs of the flowchart are measurements retrieved from sensors, while its outputs are
the pulse width modulation to supply to the motors that command the velocity and the
rotation of the robot, together with the heading of the servomotor linked to the ultrasonic
sensor.

Kp Ki Kd
Real 65 1 2

Virtual 65 1 0.2

Table 2.6: Values of the PID in the real and virtual simulation

2.6.0.1 Virtual tests

Tests in the virtual environment were conducted using Simulink, which provides built-in
toolboxes for simulating the movement of autonomous robots. Although the model used in
the virtual environment represents a simplified unicycle, it serves as a valuable approxima-
tion for predicting the behavior of the autonomous vehicle before implementing the control
algorithm on the physical robot.
Specifically, the Matlab Mobile Robot Toolbox has been employed, including the Mobile
Robotics Training Library, which provides insights into the model’s architecture and design
of Eq. 2.80. Sensors are simulated by exploiting Simulink blocks that reproduce the main
properties of each WMR component. One notable difference compared to the physical
device is that the virtual ultrasonic sensor must align with the vehicle’s heading. Conse-
quently, when the sensor rotates in the simulation, it results in the entire robot rotating.
However, this adjustment does not impact the overall performance. Fig. 2.18 offers an
overview of the WMR’s behavior in a simulated environment, confirming its effective exe-
cution of the desired maneuvers within lanes. Additionally, Fig. 2.19 illustrates the heading
of the vehicle during simulation. It is important to note that the comparison between the
heading in the virtual scenario and the real one can only be done approximately, due to
the absence of a gyroscope on the WMR to obtain precise orientation measurements.
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Figure 2.18: Simulation of both scenarios: the zig-zag scenario on the left and the double
lane change scenario on the right. The red dotted line is the path of the WMR.

(a) θ angle in the first scenario (b) θ angle in the second scenario

Figure 2.19: WMR’s orientation during simulation in both scenarios

2.6.0.2 Real-world tests

To conduct tests with the physical vehicle, a longitudinal track was designed, consisting of
three lanes drawn on a white sheet of paper using a black spray can. This choice, with re-
spect to the common practice of using black tape to draw the road, reduces friction between
the wheels and the floor, thereby enhancing the reliability of the WMR’s performance.
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To represent obstacles, boxes were placed on the road, with a longitudinal separation of at
least half a meter. This separation facilitates the vehicle’s adjustment after a lane change.
The vehicle operated at 40% of its maximum speed, approximately 1m/s, with a critical
obstacle detection distance set at 0.5 meters. This distance was found to be suitable for
the ultrasonic sensor to operate with high precision and for the vehicle to have sufficient
space for smooth obstacle avoidance.

(a) Sequence of zig-zagging (b) Sequence of double lane change

Figure 2.20: WMR real-time behavior in both scenarios

As expected, the real-world implementation introduces dynamics that were not considered
in the simulation, primarily due to factors like friction. A photo sequence illustrating the
WMR’s behavior is shown in Fig. 2.20a. In this scenario, the WMR doesn’t complete a
full 45◦ left turn due to higher friction, resulting in a longer path to reach the center lane.
Consequently, the WMR detects an obstacle while approaching the target lane, leading to
a right turn to change lanes immediately after reaching the center lane. On the contrary,
during the second left turn lower friction allows the WMR to turn more effectively, reduc-
ing travel time between the left and center lanes, similar to the simulation.
Similarly, Fig. 2.20b illustrates the second scenario, wherein higher initial friction causes
the real-world application to exhibit slightly different behavior from the simulation. Ini-
tially, the WMR detects the obstacle and initiates a left turn, but friction and wheel slipping
cause it to turn less than 45◦. This leads to increased travel distance while changing lanes,
resulting in the WMR detecting the obstacle in the center lane while still in the process of
lane change. Consequently, the WMR starts moving toward the third lane while checking
if there’s space to return to the right lane. Even before completing the lane change, the
last obstacle in the left lane is detected, prompting a midway right turn and stabilization
in the center lane.
In summary, the real-world implementation of the WMR highlights the significance of
considering friction and wheel slipping effects when designing control algorithms for au-
tonomous vehicles, as these factors can lead to deviations from simulated behavior. The
WMR exhibits adaptive behavior in response to these real-world dynamics, showcasing its
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ability to navigate through obstacles and change lanes effectively, even if a deeper under-
standing of its dynamics is needed to improve the reliability of its driving.
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Chapter 3

Routing in Smart Manufacturing
Systems

In the preceding chapter, the exploration of autonomous vehicles and platooning unveiled
the technologies revolutionizing transportation and logistics. The principles of efficient
control and coordination extend beyond transportation and apply to a broader spectrum
of domains.
This chapter shifts the focus to the core of modern production: smart manufacturing sys-
tems. Here, the significance of routing and scheduling, disciplines that manage machine
operation and task allocation in the production chain, becomes evident. This chapter
analyzes some techniques in manufacturing scheduling, emphasizing its role in optimizing
resource allocation and production processes, before bridging these concepts in the fol-
lowing chapter with a case study that demonstrates the integration of platooning-based
control techniques and AGVs in smart manufacturing systems.
The principles explored in autonomous vehicle platooning provide a foundation for the
coordination and control required in manufacturing. AGVs represent the link to connect
the two domains, as they can be considered dynamically similar to autonomous vehicles for
what concerns their displacement within the environment. In that direction, platooning-
based control techniques applied to AGVs in smart manufacturing systems are treated in
the next chapter. This integration exemplifies how the principles of autonomous vehicle
platooning can enhance manufacturing processes, promoting efficiency and adaptability
within the context of smart factories.
However, before handling the trajectories, it is necessary to consider the allocation of prod-
ucts (or jobs) through machines. It involves determining which machine should perform
each task, considering factors such as machine capabilities, processing times, and task pri-
orities.
Various types of scheduling problems are employed based on their characteristics, desired
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requirements, and the type of manufacturing system. Each of these scheduling types has
a corresponding scenario in transportation:

• Open Shop Scheduling: In an open shop, each job consists of a sequence of op-
erations that can be processed on any available machine without any specific order.
It offers the highest level of flexibility in terms of machine assignment, making it
suitable for job sequencing where machine order doesn’t matter. Solving open shop
scheduling problems can be challenging due to the high level of flexibility, making it
computationally complex. However, it can be commonly found in industries where
various jobs have different process requirements and can be completed on multiple
machines in any order. In transportation, a similar concept exists in the road envi-
ronment, where vehicles may merge into a platoon when they share a common route
passing through the same waypoints.

• Flow Shop Scheduling: In a flow shop, each job follows a fixed sequence of op-
erations, and all jobs must follow the same order on the machines. Flow shops are
more rigid in terms of job sequencing, as all jobs must adhere to the same prede-
fined sequence. On the other hand, they are efficient for repetitive and standardized
manufacturing processes with limited job variations and are commonly used in mass
production, where products follow a consistent assembly line. The concept of flow
shop scheduling aligns with public transportation systems, such as buses and trains.
Indeed, each vehicle follows a fixed and predefined route, and all vehicles must adhere
to the same order of stops, analogously with jobs following a fixed sequence through
machines in manufacturing. Moreover, buses sharing some of their stops along the
route may merge into platoons to enhance performance.

• Job Shop Scheduling: Job shops are characterized by high variability, where each
job has a unique sequence of operations and can be processed on different machines
with no specific order, offering high versatility to handle customized or low-volume
production, as jobs are tailored to specific customer requirements. Solving job shop
scheduling problems can be highly complex due to the wide range of possible job
sequences and machine assignments and their usage involves sectors in which products
are made-to-order and diverse, such as custom manufacturing. A known variant is
the permutation job shop scheduling, in which each job has a set of valid sequences of
operations, and any one of these sequences can be selected for the job, with the final
goal of determining the assignment of jobs to machines and the selection of a specific
sequence for each job while optimizing specific criteria. An analogous concept in the
road environment can be found in logistics and delivery services. Each company has
its own delivery routes and trucks can form platoons to go from the warehouse to
retailers in string formation.

• Hybrid Shop Scheduling: Hybrid shops combine elements of open shop, flow

62



shop, and job shop scheduling based on the specific requirements of the manufactur-
ing process, providing a balance between flexibility and structure, and allowing for
customized sequences and machine assignments when needed. In the road environ-
ment hybrid shop scheduling resembles ridesharing, with scheduled routes for regular
passengers and the flexibility to provide on-demand services with varying routes and
destinations. However, there are differences between hybrid shop scheduling and
ridesharing, particularly since in the latter platoons do not currently exist, despite
their potential applicability on frequently used routes.

3.1 Flexible job-shop scheduling problem

In a flexible job-shop scheduling problem (FJSP), the objective is to allocate J jobs on
M machines to execute Oj operations each (j = 1, ..., J). The number of operations for
each job may differ and cycles (i.e. multiple passage of jobs on machines) may be present
in their path, increasing the general complexity of finding a feasible and efficient solution.
With the advancement of technology, in recent years the evolution in manufacturing has
given birth to the flexibility of machines. In other words, certain machines are able to ac-
commodate multiple operation types, thereby enabling distinct routing possibilities within
the shop for each job. In the following, all the possible paths of a job within the shop are
enumerated, providing a range of alternatives, namely Aj, representing the choices for job
j, collectively forming the set A = A1, A2, ..., AJ . This augmentation amplifies the system’s
adaptability and flexibility.
The interplay between jobs’ routings can give rise to shared resources, representing the
machines through which multiple jobs have to pass during the production process. This
leads to the formulation of sets of disjunctive connections, denoted as D, which ensures the
orderly processing of one job at a time on shared machines. This dynamic interplay is illus-
trated in Fig. 3.1, where a generalized graph G visually captures the product flow through
the shop. Alternatives are organized into rows by job, signifying potential sequencing on
machines. It’s worth noting that precisely one alternative must be selected for each job.
The diagram further highlights disjunctive connections, such as δ1 and δ2, demonstrat-
ing the interconnections between alternatives of different jobs on shared machines (e.g.,
M i+1

a1,1
=M i+1

aj,1
and M i+1

aj,AJ
=MN

a1,A1
).

3.1.1 Mathematical formulation of the FJSP

In order to systematically address the optimization problem through mixed integer linear
programming (MILP), it is essential to establish a clear framework by introducing the
relevant sets, variables, and constants that define the key parameters governing the system.
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Figure 3.1: Flow-shop graph representation of the FJSP

Therefore, the sets are:

• J : number of jobs;

• M : number of machines;

• D: number of disjunctive connections on shared machines;

• A: number of alternatives;

• Oj: number of operations for each job j.

Meanwhile, the decision variables of the problem are:

• sj,m ∈ R, [J ×M ]: the start time of job j on machine m;

• cj,m ∈ R, [J ×M ]: the completion time of job j on machine m;

• δd ∈ {0, 1}, [D × 1]: variable for disjunctive connections between shared resources;

• γj,aj ∈ {0, 1}, [A× 1]: variable for modeling possible job’s choices;

• C ∈ R, [1× 1]: completion time of the last job that completes the production process,
also known as makespan.
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The constants of the problem are:

• P , [J ×M ]: matrix of ideal processing times, where pj,m corresponds to the process-
ing time of job j on machine m. Processing times can be affected by disturbances
that cause delays in production;

• M: big-M, used to activate and deactivate pairs of constraints;

• R0, [J × 1]: vector of jobs’ release time.

The associated mixed integer programming problem minimizes the completion time of jobs:

minC (3.1)

subject to constraints expressed in Eqs. 3.2.a-3.2.g:

sj,m(j,o) ≥ cj,m(j,o−1) − (1− γj,aj)M ∀j = 1, .., J ∀o = 2, ..., Oj (3.2.a)

cj,m = sj,m + pj,m

Aj∑
aj=1

γj,aj ∀j = 1, .., J m = 1, ...,M and aj = 1, ..Aj (3.2.b)

sj1,m ≥ cj2,m − δdM ∀j1, j2 ∈ D (3.2.c)

sj2,m ≥ cj1,m − (1− δd)M ∀j1, j2 ∈ D (3.2.d)

sj,m(j,1) ≥ R0 ∀j = 1, .., J (3.2.e)

C ≥ cj,m(j,Oj) ∀j = 1, .., J (3.2.f)

Aj∑
a=1

γj,a,j = 1 ∀j = 1, .., J (3.2.g)

Specifically, Eq. 3.2.a establishes the relationship between the start and completion time
of consecutive machines in the sequence of job j, conditioned to the selected alternative.
The notation m(j, o) serves to denote the machine that processes job j at its oth operation
in the sequence. Eq. 3.2.b ensures the adherence to the correct processing time within
each machine. The disjunctive constraints are represented in Eqs. 3.2.c-3.2.d, where the
δd variables guarantee the activation of only one of the two constraints for each shared
machine. Furthermore, Eq. 3.2.e ensures compliance with the job release times in the
shop, while Eq. 3.2.f determines the completion time of the last processed job. Lastly, Eq.
3.2.g addresses the γ variables, ensuring that for each job, a single alternative is chosen,
thereby avoiding multiple paths for the same job.
In summary, the optimization problem aims to determine the optimal routing to minimize
job waiting times and completion time, while adhering to resource availability, machine
occupancy, and job processing flow constraints.
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3.1.1.1 Handling of unknown processing times

In the preceding section, deterministic processing times were assumed in the system. How-
ever, in general, they are subject to disturbances that may delay the completion time.
Thus, it is needed to account for real-world variability and provide a valuable solution.
To ensure a realistic behavior of the system, two key assumptions have been taken into
account: each machine can, at most, double its processing time, and the intensity of dis-
turbances that affect the system is bound by an upper limit denoted as Ω. To achieve this,
an iterative algorithm has been designed to strike the optimal balance between a solution
unaffected by noise and a resilient solution capable of handling worst-case scenarios, in
which disturbances on machines maximize the delay in production. Thus, the possible
delay of job j on machine m is represented with a new decision variable wj,m.
The optimization cost function then translates into a minimax problem: the former mini-
mization problem, which focused on reducing the makespan, has evolved into a minimiza-
tion of the makespan while accounting for the maximum delays, representing the most
adverse machine delay scenarios:

minmax
ω

C (3.3)

Constraints in Eqs. 3.2.a-3.2.g remain valid, except for Eq. 3.2.b which needs to be
extended to accommodate delays and be independent of γ:

cj,m = sj,m + pj,m + (pj,mωj,m) ∀j = 1, .., J ;m = 1, ...,M and aj = 1, ..Aj (3.2.b’)

Then, additional constraints are needed to realistically model delays:

J∑
j=1

Aj∑
i=1

γi,j

M∑
m=1

ωj,m = Ω (3.4)

0 ≤ ωj,m ≤ 1 ∀ j = 1, ...J m = 1, ...,M (3.5)

In Eq. 3.4, the optimization problem ensures that only the ωj,m values associated with
the alternatives selected in the previous minimization problem are considered in the com-
putation of the delay configuration. Furthermore, Eq. 3.5 enforces an upper limit on the
magnitude of each disruption, ensuring that, in the worst-case scenario, each machine is
allowed to at most double its processing time, and not beyond.

3.1.2 Minimum regret with stochastic processing times

Clearly, it is interesting to evaluate the solution in case of delays and for different intensities
of disturbance. To this aim, random instances of noises can be generated with different
magnitudes (i.e. Ω), leading to different scenarios σ. One feasible solution is empirically
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found and then X mutations are performed on the primordial solution by imposing one
alternative. Then, solutions are evaluated with the minimax regret criterion, in which the
regret is chosen with respect to the makespan:

R(σ, x) = C(σ, x)− C∗(σ) (3.6)

C∗(σ) indicates the optimal solution with respect to the objective function of Eq. 3.1 in the
scenario σ, while C(σ, x) is the completion time of solution x in the same scenario. Then,
for each solution, the worst-case scenario (i.e. the scenario that maximizes the regret) is
found:

Rw(x) = max
σ

R(σ, x) (3.7)

Finally, the solution that minimizes regret in the worst-case scenario is chosen as the best
solution.

R∗ = min(Rw(x)) (3.8)

The general idea behind the proposed approach relies on the NP-hardness of the optimal
solution, which usually can be hardly found or even estimated. For this reason, it seems
valuable to provide feasible solutions by imposing specific paths for some jobs. It may
happen within flexible manufacturing systems that, for some external reasons, the path
on one job is imposed by physical limitations. This drastically reduces the number of
feasible solutions to evaluate and thus the computational burden. In order to enhance the
robustness of the system, it is reasonable to evaluate candidates in different scenarios to
choose the one that gives the minimum regret in the worst case, especially if the physical
constraints on the path of jobs are not restrictive and there is freedom in the choice of the
solution.
However, in more complex problems, the optimal solution may be too heavy to compute;
therefore it is recommended to evaluate the regret with respect to Clb, the lower bound of
the completion time, which can be calculated using the heuristic of [110].

3.1.3 Ensuring robustness with unknown processing times

In order to find a solution capable of keeping competitive performance both in the case
of deterministic and unknown processing times, with the only assumption of knowing its
overall magnitude Ω, an iterative algorithm can be designed:

Step 1: Solve the problem with deterministic processing times. This solution rep-
resents the minimum achievable completion time for the given scenario in the ideal
case and can be found by solving the problem in Eq. 3.1-3.2.

Step 2: Solve the problem with stochastic processing times. Set the recently de-
termined γ variables as parameters for the max sub-problem in Eqs. 3.2-3.5, while
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keeping the δ variables to be determined through the optimization problem. This
involves imposing the path for each job while using the sequencing on machines and
disturbance on processing time, namely δ and ω, as decision variables. A solution
for ω represents the worst-case scenario in the given routing, while still allowing
flexibility in sequencing on machines

Step 3: Compare the two solutions and update the best trade-off solution. : Re-
visit the problem with deterministic processing time, setting pj,m = pj,m+pj,mωj,m ∀j =
1, ..., J ;m = 1, ...,M and solve the problem anew. In few words, this translates into
solving the deterministic problem in the case of the worst possible delays. Subse-
quently, compare the new job path solution (i.e., only the γ variables) with the one
obtained in Step 1:

• If the two solutions coincide, it indicates that the job path represents the best
trade-off between optimality and robustness when confronted with potential
delays of the given magnitude

• Should the new solution differ from its predecessor, it suggests that the delay-
free solution is no longer optimal provided conditions of Eqs. 3.4- 3.5 hold. In
such an instance, to derive an appropriate solution for both scenarios, the γ
variables of the novel solution are once again set as parameters, and Step 2 is
reiterated.

This approach, explained in Algorithm 1, enables the identification of a job path that
performs well across a range of Ω values, thus accommodating potential delays, even if
guaranteed convergence is not assured. Consequently, the algorithm is intentionally halted
after a predetermined number of iterations, with the selection of the solution minimizing
the completion time in the deterministic scenario.
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Algorithm 1 Algorithm to find a trade-off between the optimality and robustness

Input: P, R // Processing times, Release times
Output: Result

1: solution1 = solve(Eqs. 3.1-3.2, with 3.2.b, P, R)
2: γ = Solution1.γ // Set gamma as parameters
3: solution2 = solve(Eqs. 3.2-3.5, with 3.2.b’, P, R, γ)
4: if ”solution1” == ”solution2” then
5: Result = solution1
6: break
7: else
8: Solutions.append(Solution1) // Add Solution1 to the pool of solutions
9: ”solution1” = ”solution2.”
10: if Max iterations reached then
11: Result = min(Solutions) // Get the solution with minimum completion time
12: break
13: end if
14: Go to Line 3.
15: end if

3.2 Model predictive control-based approach for on-

line scheduling

The problem discussed in Section 3.1.1 pertains to the offline scheduling of jobs through
machines. In ideal situations, possessing comprehensive insight into the entire production
process becomes crucial to ensure the accuracy of the solution. However, there might be
instances where this information is unavailable, or the only accessible data is the planned
timing of job releases over time. As a result, the aforementioned problem needs an expan-
sion to tackle the scheduling challenge in real-time fashion, with each new product arrival.
In order to accomplish this, it is necessary to keep track of the progress of jobs that have
undergone operations within the shop. Thus, at each event denoted as t, marking the
arrival of a new product, the γ representing paths that are no longer feasible, due to the
job having already completed a portion of the route between machines, rendering its pas-
sage through other machines impossible, are removed from the job’s potential alternatives.
Analogously, the machines currently assigned to jobs are retained until their completion
time, to avoid their assignment to other jobs when solving the optimization problem.

stj,m = st−1
j,m (3.9.a)

ctj,m = ct−1
j,m (3.9.b)
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where t represents the tth event (i.e. arrival of a job) on the shop floor.
These constraints enable the execution of the scheduling algorithm described in the pre-
vious section for every arrival of a product. Additionally, a prediction horizon can be
incorporated to facilitate the scheduling of jobs currently present on the shop floor and
those planned to arrive shortly (i.e. within the prediction window).
The foundations lies in the Model Predictive Control (MPC), a powerful and widely used
control strategy in manufacturing processes to optimize the operation of complex systems
while adhering to various constraints. Nevertheless, it is hugely used in autonomous driv-
ing due to its ability to plan and optimize vehicle control actions over a short prediction
horizon while considering dynamic constraints and obstacles, enabling safe and efficient
real-time decision-making. In this field, a the mathematical formulation considers an ob-
jective function as follows:

min
U

Np−1∑
k=0

∥y(t+ k|t)− r(t+ k)∥2Q +
Nc−1∑
k=0

∥u(t+ k|t)∥2R (3.10)

where:

• U represents the control input sequence over the prediction horizon;

• y(t+ k|t) is the predicted output of the system at time t+ k given the current state
at time t;

• r(t+ k) is the reference trajectory for the system at time t+ k;

• Np and Nc are respectively the prediction and control horizon, which specify how far
into the future the system’s behaviour is predicted and how many control input are
optimized at each time step;

• Q and R are weight matrices that determine respectively the importance of tracking
the output trajectory and controlling the inputs.

System’s dynamics are modeled through the classical equation:

x(t+ k + 1) = f(x(t+ k), u(t+ k)) (3.11)

where x(t+k+1) represents the state of the system at tike t+k+1 and f(·) is the dynamic
model of the system, describing how the system evolves over time based on its current state
and control inputs. It has to be noted that the formulation allows for non-linear systems.
Lastly, between the advantages of MPC, there is the possibility of taking into account
constraints such as:

• Input constraints: umin ≤ u(t+ k|t) ≤ umax
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• Output constraints: ymin ≤ y(t+ k|t) ≤ ymax

• State constraints: xmin ≤ x(t+ k|t) ≤ xmax

• Rete of change constraints: ∆umin ≤ ∆u(t+ k|t) ≤ ∆umax

• and many more

In MPC scheduling for manufacturing, the optimization problem is solved at each event
(i.e. arrival of one or more job), considering only the jobs currently present in the shop
floor, and the prediction horizon helps in considering jobs that are supposed to arrive soon
in the future. Consequently, the set J , which represents the set of jobs considered in the
optimization problem, is initially a subset of the complete job pool. As the final job arrives
on the shop floor, this set J encompasses the entire spectrum of jobs.
Thus, for each new event:

∀p ∈ P ,∀s ∈ S (sγ ∩ pγ = ∅,Pγ ⊆ Γ)

with #(S ∪ P) = J
(3.12)

where

• P contains all the jobs within the prediction horizon;

• p is a job belonging to set P ;

• S contains all the jobs that have been already scheduled or are being processed;

• s is a job belonging to set S;

• Γ is the set of all alternatives;

• Pedix γ refers to the chosen alternative for the job of the corresponding set.

This translates into a dynamic, reactive controller capable of scheduling jobs based on the
system’s current state while forecasting the imminent arrival of new products. Fig. 3.2
graphically represents the implemented algorithm.
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J1 J2 J3 J4J1 J2 J3 J4

Figure 3.2: Graphical representation of the MPC-based scheduling. Black dashes on the
timeline represent the planned arrival time of jobs, and red dashes their real arrival time.
Blue lines indicate the prediction horizon of the algorithm, triggered at each new arrival
of a job and needed to figure out which jobs are considered in the scheduling problem.

3.3 Offline scheduling: AIP-PRIMECA application

PRIMECA stands for ”Pôles de Ressources Informatiques pour la Modélisation et l’Enseignement
en Conception Assistée” in French, which translates to ”Computer Resources Centers for
Modeling and Teaching in Computer-Aided Design”. PRIMECA networks are communi-
ties of expertise and resources designed to support teaching and research in these fields.
The AIP-PRIMECA (”Atelier Inter-Etablissement de Productique dans PRIMECA”, which
can be translated as ”Inter-Institutional Workshop for Production Engineering in PRIMECA”)
production cell in Valenciennes, France, serves as a benchmark [111] for the methodologies
discussed in previous sections. This production cell comprises seven distinct machines:

• M1: Loading/Unloading Unit - Responsible for loading plates at the beginning of
the production process and unloading finished products at the end. All products
initiate and conclude their production cycle on this machine.

• M2,M3,M4: Assembly Workstations - These stations perform the necessary pro-
duction operations to complete a product. For simplicity, a subset of the possible
operations has been considered and they can perform common operations in pairs,
i.e.

– M2 and M3 can handle OP1

– M2 and M4 can handle OP2

– M3 and M4 can handle OP3

• M5: Automatic Inspection Unit - Analyzes finished products to detect any potential
faults.
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• M6: Recovery Unit - This is the sole manual workstation within the system. It is
assumed that the recovery unit can repair any product defects.

• M7: Optional Workstation - Used primarily in dynamic scenarios with complex
product routing through the machines. It effectively represents a copy of M2.

Without loss of generality, the production cell can be simplified by assuming no faults,
deleting the optional workstation, and reducing the types of assembly operations. Thus,
the machines are reduced to five and for sake of completeness, their deterministic process-
ing time is expressed in Table 3.1, where the absence of a number indicates the inability
of the machine to perform that operation.

Table 3.1: Processing time

OPL OP1 OP2 OP3 OPI OPU
M1 10 - - - - 10
M2 - 20 20 - - -
M3 - - 30 30 - -
M4 - 20 - 20 - -
M5 - - - - 10 -

A simple production chain of three different products is designed, with their operations
shown in Table 3.2. Setup and transportation time between machines are supposed negli-
gible, and all products are available to be dispatched on machines from the beginning.

Table 3.2: Sequence of operations for each job

J1 OPL OP1 OP2 OPI OPU
J2 OPL OP1 OP3 OPI OPU
J3 OPL OP2 OP3 OPI OPU

The overall graph in Table 3.3 lists all the possible paths for each job.
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Table 3.3: Flexible job-shop schematization, with jobs path for each γ

Job Choice O1 O2 O3 O4 O5

J1

γ1 1 2 2 5 1
γ2 1 2 3 5 1
γ3 1 4 2 5 1
γ4 1 4 3 5 1

J2

γ5 1 2 3 5 1
γ6 1 2 4 5 1
γ7 1 4 3 5 1
γ8 1 4 4 5 1

J3

γ9 1 2 2 5 1
γ10 1 2 4 5 1
γ11 1 3 2 5 1
γ12 1 3 4 5 1

3.3.1 Evaluation of minimax regret for AIP-PRIMECA

The technique explained in Section 3.1.2 is employed on the AIP-PRIMECA production
cell, for Ω = {1, 4, 7, 10, 13}. Since the problem has a bearable complexity, the optimal
solution is found for each magnitude of the set, from the smallest one to one of the biggest
possible (given that Ω ≤ 15).
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Figure 3.3: Boxplot of the robust analysis. The zoomed area points out that all the solu-
tions lie above the optimal one, guaranteeing the correctness of the optimization algorithm.

Fig. 3.3 shows the data distribution over the different values of Ω, with the black point
that indicates the optimal value of C for the given scenario. It is evident that all solutions
lie above the optimal one, proving the correctness of the algorithm. Table 3.4 exhibits
each solution’s selected alternatives (i.e. γ). This imposes the path on machines but
still preserves some degree of freedom with the sequencing choice, determined by the δ.
Forcing some sequencing constraints represents a further refinement of the algorithm but
it increases considerably the complexity of finding a feasible solution and may easily lead
to unfeasibility. The proposed approach strikes a good trade-off between the simplicity
of finding a pool of feasible solutions and its reliability compared to the optimal one in
different scenarios.

Table 3.4: Solutions compared in the regret minimization

Solution 1 2 3 4 5 6 7 8 9
Path
(γi)

1-8-11 2-8-11 3-8-11 4-8-9 3-5-10 1-6-12 1-7-12 2-8-10 1-8-12

Fig. 3.4 shows the regret values each solution has for different intensities of Ω. Surprisingly,
greater magnitudes do not necessarily imply greater regret. This occurs because, when the
optimal solution is significantly affected by delays, other feasible solutions may converge
to similar completion times due to the system flexibility. It is evident that solution 6
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exhibits the minimum regret even in the worst-case scenario, significantly outperforming
other values. Therefore, it represents a robust and valid alternative to the optimal solution,
ensuring good performance and high reliability for various delay scenarios. Additionally,
it is worth noting that solution 9 is the optimal one for Ω = 4, but it performs poorly
compared to other feasible solutions in different scenarios.
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Figure 3.4: Regret values for each feasible solution and each distinct value of Ω, depicted
with distinct symbols to have a visually more appealing representation.

3.3.2 Evaluating robustness of solution for AIP-PRIMECA

The iterative algorithm in Section 3.1.3 is analyzed to prove its effectiveness on the same
AIP-PRIMECA production cell [112].
The optimal solution, without disturbances, is depicted in Fig. 3.5a and represents the
minimum achievable value when minimizing the completion time C∗ = 100.

76



0 10 20 30 40 50 60 70 80 90 100

Time

0

1

2

3

4

5

6

M
a
c
h
in

e

job 1

job 2

job 3

(a) Scheduling solution in absence of distur-
bances

0 20 40 60 80 100 120

Time

0

1

2

3

4

5

6

M
a
c
h
in

e

job 1

job 2

job 3

(b) Scheduling solution in the case of Ω = 7

Figure 3.5: Comparison of noise-free and disturbed solutions. Completion time keeps
competitive performance even with highly disturbed processing times.

Additionally, M1 can be expected as the main bottleneck of the system, as each product
needs to start and finish with an operation on that machine. This is confirmed by Fig.
3.6a, which also points out how the slowest machine (M3) is, reasonably, the least used,
as other machines can perform the same operations in a shorter amount of time.
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(a) Machines utilization rate in absence of dis-
turbances
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(b) Machines utilization rate with Ω = 7

Figure 3.6: Comparison of noise-free and disturbed machine utilization. The algorithm
prevents over-utilization of specific machines by balancing the load.
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Increasing the magnitude of disturbances provokes changes in the scheduling/routing of the
jobs, as shown in Table 3.5. To have a deeper insight, Fig. 3.5b points out the differences
in scheduling when Ω = 7. It can be seen that, in order to keep an acceptable completion
time also with the presence of disturbances, the optimization algorithm performs changes
in the scheduling of the jobs. Even if there are some hard constraints in jobs routing, the
algorithm still has some freedom in choosing the sequencing through machines and this
allows not to degrade performances. Moreover, Fig. 3.6b shows the uniform utilization of
machines to limit the risk of fault as an emergent behaviour. A slightly higher utilization
of M1 is noticeable, but it is due to the delays in its processing time and it can not
be avoided, as it is the load/unload machine and a necessary step in all jobs production
chain. However, the algorithm provides a solution that balances the usage of the assembly
machines.

Table 3.5: Comparison of solutions for increasing values of Ω

Ω Jobs path Start order C∗

1
1-2-2-5-1
1-4-4-5-1
1-3-2-5-1

J2 − J1 − J3 105

3
1-2-2-5-1
1-4-4-5-1
1-3-2-5-1

J2 − J1 − J3 110

5
1-4-2-5-1
1-4-3-5-1
1-2-2-5-1

J3 − J1 − J2 110

7
1-2-2-5-1
1-4-4-5-1
1-3-2-5-1

J1 − J3 − J2 112.5

9
1-2-2-5-1
1-2-3-5-1
1-3-4-5-1

J1 − J3 − J2 130

11
1-2-2-5-1
1-4-4-5-1
1-3-4-5-1

J1 − J2 − J3 130

To additionally test the robustness of the solution, 1000 iterations have been launched for
each of the chosen Ω with fixed path, fixed sequencing, and random disturbances, generated
with the aid of [113] in order to meet constraints of Eqs. 3.4-3.5. Data distribution is visible
in Fig. 3.7 as further evidence of the correctness of the solution found, as all other values
have a longer completion time.
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Figure 3.7: Data distribution of 1000 simulations for each Ω

3.4 Online scheduling: evaluation of robust MPC-

based approach

The performance of the dynamic MPC-based scheduling of Section 3.2 is compared with the
offline solution to present a case study with dynamic adaptation to the production chain.
Offline scheduling typically yields faster completion times but demands a comprehensive
knowledge of the system and longer computational efforts. In contrast, dynamic scheduling
can adapt to job release times that deviate from the initial plan, reconfiguring schedules
with each new arrival. Consequently, it only requires information about the jobs currently
in the shop and those expected to arrive shortly (i.e. within the prediction horizon).
To compare the two approaches, a theoretical case study is devised, involving M = 6
machines and J = 6 jobs. The complete range of feasible paths is outlined in Table 3.6, in
which each machine is represented as a number for sake of notation. The table highlights
that all jobs are required to commence from M1, which serves as the loading unit of
the SMS. Furthermore, it is notable that jobs have to perform from 4 to 5 operations,
and certain alternatives may share segments of the initial path, thereby enhancing the
MPC-based scheduling’s ability to dynamically select the optimal route depending on the
real-time release of other jobs.
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Table 3.6: Alternative paths for each job

Job Alternative O1 O2 O3 O4 O5

J1
γ1 1 2 3 4 5
γ2 1 3 5 6

J2
γ3 1 2 3 4 6
γ4 1 2 4 5

J3

γ5 1 2 5 6
γ6 1 2 3 5
γ7 1 3 4 6

J4 γ8 1 2 6 5 3

J5
γ9 1 4 6 5 3
γ10 1 2 4 5 6

J6

γ11 1 3 4 5
γ12 1 2 3 4 6
γ13 1 3 4 6

The flexibility of machines is expressed by Table 3.7, while the planned and real release
time of jobs is listed in Table 3.8.

Table 3.7: Processing times

M1 M2 M3 M4 M5 M6

J1 9 5 7 10 4 12
J2 4 7 3 7 1 10
J3 5 7 6 3 10 1
J4 4 3 10 6 4 5
J5 2 4 7 3 5 2
J6 1 6 5 3 6 8

Table 3.8: Jobs’ planned and real release

Rplan
0 Rreal

0

J1 0 0
J2 2 0
J3 4 2
J4 7 4
J5 10 7
J6 12 14

The planned release time for a job can deviate by a maximum of 3 units of time, either
ahead of schedule or delayed. In contrast, the MPC’s prediction horizon spans 2 units and
inherently considers the scheduled release time due to the unknown actual release time.
Moreover, it is assumed that jobs keep the scheduled order, avoiding possible swaps arising
from concurrent delays and advancements of consecutive jobs.
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Figure 3.8: Comparison between offline (a) and MPC-based (b) scheduling solutions in
the case of deterministic processing times. Both solutions are comparable in terms of
completion time.

Fig. 3.8 illustrates the optimal solutions in the absence of disturbances in processing times.
It can be observed that the completion time is nearly identical: 44 using the offline tech-
nique and 45 with the MPC-based approach. The key distinction lies in the fact that the
latter does not necessitate deterministic knowledge of the entire system but rather dynam-
ically adapts to the introduction of new jobs within the shop floor.

Table 3.9: MPC dynamic choice of the routing in the noise-free scenario

Jobs in the shop Chosen alternatives
J1 γ2
J1, J2 γ2, γ4
J1, J2, J3 γ2, γ4, γ6
J1, J2, J3, J4 γ2, γ4, γ6, γ8
J1, J2, J3, J4, J5 γ2, γ4, γ5, γ8, γ10
J1, J2, J3, J4, J5, J6 γ2, γ4, γ5, γ8, γ10, γ13

This reasoning is highlighted in Table 3.9, which refers to the noise-free scenario and points
out the chosen path at each arrival of a new job in the shop. The adaptability of the MPC-
based scheduling becomes evident in the context of J3. Specifically, it is initially scheduled
according to the routing specified by γ6. However, upon the subsequent arrival of J5, J3
is dynamically rescheduled using the routing strategy defined by γ5. This dynamic adjust-
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ment remains feasible because J3 has not yet been allocated to a machine that would render
altering its routing unviable, and it ensures the maintenance of competitive performance
levels.
In order to shorten the computational time needed to solve the optimization problem, the
alternatives listed in Table 3.6 are automatically eliminated once a job follows a divergent
path incompatible with the continuation of said alternative. Similarly, Fig.3.9 depicts a
comparison between solutions when processing times are perturbed, with a magnitude of
Ω = 10, while considering the worst-case distribution of these disturbances. In this scenario
as well, the completion time remains nearly identical, despite the presence of disturbances.
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Figure 3.9: Comparison between offline (a) and MPC-based (b) scheduling solutions in the
presence of delayed processing times. Completion time is 52 in the ideal offline scenario,
representing the minimum achievable value, and 53 in the dynamic scheduling, thus main-
taining competitive performance.

Furthermore, from a computational standpoint, the MPC-based algorithm offers substan-
tial benefits. Although there are more computations involved in managing data structures
and implementing the controller, it is important to highlight that the initial scheduling only
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involves a subset of the total jobs, resulting in faster optimization. As the number of jobs
increases, on the other hand, much of the routing within the shopfloor for already present
jobs has already been determined, thus minimizing its involvement in the optimization
problem. Consequently, the pool of potential alternatives to be analyzed is significantly
reduced. For these reasons, the implementation of the MPC-based algorithm results in an
enhancement of computational performance. In the examined case study, it has been ob-
served a significant 30% reduction in execution time, and it is reasonable to assume that a
larger number of jobs corresponds to a more pronounced reduction in computational time,
due to the algorithm’s operational approach. Indeed, at each iteration, the MPC-based
algorithm exclusively schedules jobs currently inside the shop floor as well as those antici-
pated to imminently arrive (i.e. within the prediction horizon). This selective scheduling
enables the algorithm to effectively manage a limited number of jobs with each invocation,
as opposed to offline scheduling.
To further substantiate the validity of the approach, Fig. 3.10 presents a robustness anal-
ysis conducted through 1000 simulations for the MPC-based scheduling, for each value of
Ω. Processing times were subjected to random perturbations across the machinery, and
a feasible solution with the same routing (i.e., identical γ values) was successfully deter-
mined. The graph proves that, across a wide range of scenarios, the solution provided
by the approach guarantees better performance, representing the best trade-off between
optimality and robustness for the given FJSP.
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Figure 3.10: Robustness analysis of 1000 simulations for each magnitude of noise. Solutions
present the same path, different feasible sequencing on machines, and randomly generated
disturbances. Blue points represent the solutions obtained with the proposed algorithm in
the case of worst delays
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Chapter 4

Platoon control in manufacturing

In the previous chapters, platooning control techniques and manufacturing scheduling were
thoroughly explored, elucidating their intricacies. This chapter marks the transition into an
interdisciplinary realm where the boundaries between the two fields of research are merged.
Here, the focus shifts towards the integration of platooning-based control techniques into
smart manufacturing systems. In this chapter, the potential benefits of such integration
are examined. By merging these domains, the aim is to enhance manufacturing efficiency.
Through the analysis of case studies and empirical data, insights into the optimization
of material flow, reduction of makespan, and enhancement in general productivity within
manufacturing environments are revealed. This chapter is centered on the exploration of
possibilities and practical implementations of platooning in manufacturing. The objective
is to uncover how this innovative approach can transform manufacturing processes into
more agile, responsive, and efficient operations.
In the following, the utilization of AGVs as integral components of platooning formations
has been treated. These AGVs, equipped with advanced autonomous navigation systems,
collaborate within platoons to streamline material handling, reduce bottlenecks, and en-
hance overall system efficiency.

4.1 AGV control: Potential field

The trajectory planning of AGVs has been accomplished using the potential field controller.
This method identifies the forces of attraction and repulsion between objects within the
system. In the manufacturing case study, the destination machine acts as the point of
attraction, while other AGVs, machines, and recharging stations are points to avoid. This
is necessary because trajectory planning involves designing paths that do not intersect with
other elements or shared resources in the system.
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The general equation of the resulting potential field is:

P⃗tot = P⃗att +
∑

P⃗rep =
−→
∇V (q) (4.1)

P⃗att = Ka(q − q
g
)

P⃗rep(qc) =

{
Kr(

1
d(q)

− 1
d0
) 1
d2(q)

q−q
c

∥q−q
c
∥ if d(q) < d0

0 if d(q) ≥ d0

(4.2)

where q represents the current pose of the agent, q
g
its goal position, d0 is the maximum

distance to consider an interaction in the potential field (i.e., the repulsion is zero when
the distance between two objects is greater than d0), qc is the current pose of the obstacle,
Ka and Kr respectively the attraction and repulsion gains.
The computation of P⃗rep(qc) has to be repeated for each obstacle in the system. The posi-
tion of static obstacles is fixed and does not change over time, while for dynamic obstacles
(i.e., other AGVs) the repulsive force is computed with respect to their instantaneous po-
sition. To differentiate between the two types of obstacles, different repulsive gains can be
designed, namely Krs for static obstacles and Krd for dynamic ones.
The potential field has to be decomposed into x and y components in order to retrieve the
corresponding value of speed to supply to AGVs. To this end, it must be noted that the
force gradient is:

−→
∇V (q) =

[
∂V

∂x

∂V

∂y

]T
= [FxFy]

T (4.3)

by incorporating the mass of the AGV, whether with or without payload, the corresponding
velocities along the x and y axes can be determined.
As the last thing, to detect and design a trajectory that takes into account physical borders
of the SMS, the repulsive force needs to be extended with an additional term to consider
borders:

P⃗rep b =
J∑
j=1

(
−Kr b

(
1

|r⃗j − q⃗|
− 1

d

)(
r⃗j − q⃗

|r⃗ − q⃗|3

))
(4.4)

where Kr b is the gain for the repulsive force from the borders, rj is a point on the border,
and J is the total number of points considered on the borders. Indeed, to account for the
borders effectively, a discretization process is employed, wherein a finite number of points
are selected to represent the boundaries.

4.1.1 Emergency controller

To ensure safety, at each iteration vehicles have to compute the distance with respect
to neighbors in order to verify that a minimum safety distance is maintained with other
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elements in the system.
In a centralized fashion, a single authority would be in charge of this check for each AGV.
This would imply comparing every pair of vehicles’ position and would result in a too
computationally heavy task. For this reason, it is logical to assume that each AGV is
provided with its own sensors to perform the assignment in a decentralized way.
In the event that the prescribed safety distance is disregarded, a precautionary low-level
protocol is triggered to prevent collisions. Within this particular scenario, one of the two
vehicles comes to a halt, while the other vehicle, prioritized because of its shorter due date
(or its release order in case of an equivalent due date), is permitted to proceed toward its
destination. The former vehicle resumes its motion once the latter has safely exited the
emergency radius.

4.2 Platooning AGVs

AGVs can be merged in platoons by aligning with various criteria, each of which holds
the potential to enhance manufacturing operations. One fundamental criterion for AGV
platooning is the utilization of shared pathways. This involves aligning vehicles that travel
along similar routes into cohesive formations, a strategy aimed at minimizing traffic conges-
tion and optimizing resource allocation within the manufacturing facility. This approach
is particularly valuable in shop floors equipped with railways, where vehicles lack the free-
dom to move freely throughout the facility. Another criterion for platooning is a common
destination or shared goals. AGVs that are all headed toward the same resource, whether
it be a specific machine, assembly station, or storage area, can collaboratively navigate
the shop floor. Additionally, AGVs can align within platoons when they share a common
objective during their shop floor operations. For instance, they may collectively aim to
complete the products they are carrying as rapidly as possible. This objective-driven pla-
tooning strategy optimizes task allocation, as well as AGVs working together to conserve
energy, especially in cases where vehicles have low battery levels. By grouping together
and strategically coordinating their movements, AGVs can minimize energy consumption
and prolong their operational lifespan, ensuring uninterrupted manufacturing processes.

4.2.1 Reactive platoon-based controller for AGVs

The reactive platooning-based procedure serves as a coordination method for AGVs, de-
signed to prevent shopfloor congestion and align their path trajectories based on priority
criteria. This procedure dynamically forms a subset of AGVs with a temporary shared
objective, distinct from the individual objectives of the group members. Specifically, it
operates as follows:
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• The platoon is dynamically created during execution, comprising two types of AGVs:

– The platoon leader, possessing the highest priority.

– AGVs that partially or fully overlap with the path of the platoon leader.

• Subsequently, the speeds of the second type of AGVs are adjusted to minimize con-
gestion for the platoon leader.

• At each iteration, all AGVs revert to their initial speeds, and the process repeats for
AGVs still operating within the shop floor.

This dynamic procedure, explained in Algorithm 2, continuously adds or removes AGVs
from the platoon, depending on the production path of the platoon leader.

Algorithm 2 Platoon-based cooperation procedure

1: while #AGV s ≥ 2 do
2: define AGV with (max priority) as platoon leader
3: for all AGVs do
4: if AGV ith shares routing path with leader then
5: add AGV ith to platoon
6: if AGV ith is in the shared path then
7: speedi = speedi + speed-factor
8: end if
9: end if
10: end for
11: end while

The speed factor denotes an increase in the velocity of shuttles and has been empirically
determined to be 10% to 20% faster than the regime speed until the next iteration with
the control architecture. This approach incorporates the advantages of platooning by
grouping a subset of shuttles under a common cooperation rule. The key contribution of
this approach lies in its dynamic and iterative policy, which adjusts shuttle speeds in real-
time to cooperatively assist in achieving the objectives of a prioritized shuttle. As a result,
production progress is sequenced in accordance with current manufacturing requirements,
prioritizing shuttles based on their assigned priority.
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4.2.2 Platoon-based control with time of arrival optimization cri-
terion

Another platoon-based control approach can intervene to group and manage the displace-
ment of AGVs headed to the same shared resource, aiming to provide the optimal speed
profile that minimizes energy consumption and ensures that AGVs reach their destination
precisely when it becomes available. If the target machine is currently in use, AGVs are
required to wait until it becomes accessible. Therefore, optimizing AGV speeds to synchro-
nize their arrival times with machine availability is a strategic approach to simultaneously
minimize waiting times and energy consumption. The platoon-based approach, imple-
mented to achieve precise coordination between AGVs and machine availability, results in
distinct behaviors for the AGV closest to the shared resource, namely the platoon leader,
and the followers. The leader adheres to its control law provided by the potential field, as
discussed in Section 4.1, while the movement of each follower (denoted as the ith AGV) is
regulated based on the arrival time at the shared resource of the preceding AGV in the
platoon formation, and the processing time of that resource:

Vi =

√
(xi − xm)2 + (yi − ym)2

tai−1 + pm
(4.5)

where (xi, yi) represents the position of the ith AGV, (xm, ym) the position of the shared
machine, pm its processing time, and tai−1 stands for the arrival time of the preceding AGV.
To maintain consistency, the arrival time of the leader is computed under the reasonable
assumption of constant speed throughout the entire path from its initial position to its
destination.

4.3 Platoon-based control in AIP-PRIMECA

In order to validate a first, simple platoon-based technique on a manufacturing system,
the reactive control of Section 4.2.1 is benchmarked on the AIP-PRIMECA production
cell explained in Section 3.3, suitable to determine the feasibility and potential benefits of
incorporating a reactive control procedure into the material handling system to improve
production performance.
The benchmark for the flexible manufacturing system (FMS) consisted of seven machines
capable of processing seven types of products, all transported using a shuttle-based mate-
rial handling system. A virtual testbed model of the selected case study has been created,
aiming to replicate the distributed handling control system and comprising two key layers:
the local and physical layers. The local layer, programmed in Python using the MESA
framework, represented the manufacturing system in a virtual environment, wherein the
platoon-based control procedure was implemented. The physical layer has been developed
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using an agent-based simulation software, Netlogo, to simulate the physical world and pro-
duction execution. A graphical representation is illustrated in Fig. 4.1. To establish a
connection between the two layers, the pyNetlogo library was utilized. This configuration
enabled continuous communication between the AGVs in the Python program and their
counterparts simulated in Netlogo, effectively creating a digital twin within the Python
program. To facilitate comparative analysis, a second instance of the testbed has been
created to assess the proposed platoon-based approach against a no-control policy.

Figure 4.1: FMS representation: the red agent is the platoon leader, the green vehicles
are part of the platoon and the blue vehicles are independent agents. zi denotes the ith

monorail zone, used for result analysis

Then, a set of production orders has been created, changing the number of products and
their variety, to obtain a diverse degree of complexity. The experimental protocol has been
tested on 10 instances, whose complexity has been computed with the formula:

f(n, t) = n+ 3 · t (4.6)

where n is the number of products, and t is the number of product types. The weighted
load is a simple parameter included in the experiment in order to preliminarily identify the
effect of product and order diversity within the platoon-based procedure.
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Table 4.1: Experimental instances and weighted load (complexity)

Scenario
Number of
AGVs (n)

Number of
product types (t)

Weighted load

Instance 1 5 1 8
Instance 2 7 1 10
Instance 3 5 2 11
Instance 4 7 2 14
Instance 5 5 4 17
Instance 6 7 4 19
Instance 7 10 4 22
Instance 8 7 7 28
Instance 9 12 6 30
Instance 10 15 7 36

Table 4.1 provides an overview of the tested instances, while Fig. 4.2 presents the ex-
perimental results, demonstrating a general increase in complexity as the weighted load
increases, with few exceptions.This increase in complexity is primarily driven by the num-
ber of products rather than their variety. While a variety of products introduces greater
uncertainties in their routing within the system, it is the number of products that creates
congestion, especially during the loading and unloading phases.
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Figure 4.2: Comparison of control procedures in makespan distribution in seconds for 10
instances with increasing complexity

To assess the impact of platoon-based control compared to a no-control policy, two key
response variables have been used as indicators: the makespan (representing task comple-
tion time) and the congestion factor throughout the FMS. The FMS has been divided into
11 zones, each linked to a specific monorail in proximity to the workstations.
A non-parametric ANOVA-type statistic, specifically a MANOVA analysis [114], was uti-
lized to assess the significance of the control policy procedure factor for each response
variable independently. This multivariate analysis of variance aimed to evaluate the dif-
ference between the Platoon and No-Control approaches as a single independent variable
across multiple outcome variables. While Fig. 4.2 showed similar average behavior be-
tween the approaches, the MANOVA was conducted to determine if there were significant
variability differences.
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Table 4.2: Non-parametric MANOVA

Df SS R2 F Pr(> F )

Instance factor 9 11.735 0.691 149.902 0.001

AGV factor 1 0.053 0.003 6.078 0.004

Instance factor:
AGV factor

9 0.160 0.009 2.042 0.016

Residual 580 5.045 0.297

Total 599 16.993 1.000

Table 4.2 displays the standard MANOVA results, including the relationships between
instances, AGV speed, and their interactions, with respect to response variables such as
makespan and zone occupancy.
A p-value is a statistical measure used to assess the significance of observed results in
hypothesis testing. It quantifies the likelihood of obtaining results as extreme as those
observed, assuming the null hypothesis is true. In this study, a significance level of 0.05
was chosen. When the p-value is less than 0.05, it indicates that the observed results
are unlikely to have occurred by random chance alone. According to results in Table 4.3,
variables with p-values below this threshold, such as makespan and occupancy in zone
10, are considered significant. An additional non-parametric analysis was performed for
Makespan and Occupancy Zone 10 since the assumptions for traditional MANOVA were
not met. The results, presented in Table 4.4, indicate that the intervals are narrower for
makespan and occupancy of zone 10, demonstrating better performance in these response
variables.

Table 4.3: p-values for AGV control

Response
variable

p-value for
AGV velocity

control

Response
variable

p-value for
AGV velocity

control

Makespan 0.0006 Zone6 0.1867

Zone1 0.8994 Zone7 0.3290

Zone2 0.5554 Zone8 0.0540

Zone3 0.8062 Zone9 0.2006

Zone4 0.4674 Zone10 0.0065

Zone5 0.4165 Zone11 0.8955
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Table 4.4: Confidence intervals for ANOVA-Type Statistic Ranking of AGV Velocity Con-
trol for Zone 10 and Makespan

Response
variable

Policy Rel. effect Std. error
Lower
value

Upper
value

Makespan
No control 0.5234 0.0068 0.5101 0.5366
Platoon 0.4766 0.0068 0.4634 0.4899

Zone 10
No control 0.5142 0.0052 0.5039 0.5244
Platoon 0.4858 0.0052 0.4756 0.4961

In general, the results suggest a significant effect of the control policy, as evident in the
makespan and zone 10. The confidence intervals indicate that platoon-based control out-
performs the no-control policy, as the ranked values are consistently lower. This outcome
is reasonable because increasing the speed of certain agents accelerates the processing
of products. Even though it may lead to congestion in some parts of the system, this
did not occur in the analyzed case study. Moreover, congestion is reduced, especially in
zone 10, which represents the critical bottleneck in the system, given its close connection
to the loading/unloading workstation. In conclusion, it can be stated that the reactive
platoon-based control policy represents a valuable initial option for platoon-based control
in manufacturing.

4.4 Optimizing AGV control with platoon-based tech-

niques and recharging station scheduling in SMS

The final work of this thesis considers a comprehensive case study in SMS, wherein the
objective is to minimize the makespan by employing various control techniques based on
the AGVs’ states over time. AGVs are modeled using the first-order kinematic model of
Section 2.1.1, which ensures a fast calculation of the system’s evolution. To enhance the
realism and alignment with AGVs in manufacturing systems, saturators for speed and rate
of speed (i.e. acceleration) are incorporated.
Effective trajectory planning is crucial to ensure rapid and collision-free routing within the
trackless manufacturing system, providing optimal speed profiles in terms of efficiency and
energy consumption. The term ’trackless’ refers to the absence of fixed physical rails on
the factory floor, which enables AGVs to operate autonomously and navigate through the
manufacturing system using alternative guidance mechanisms, such as sensor-based tech-
nologies. Additionally, given the AGVs’ susceptibility to battery discharge, implementing
a recharge scheduling plan is fundamental to ensure uninterrupted production while mini-
mizing waiting times at the recharging stations. For simplicity, we assume that the decision
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on recharge is made only between the completion of one product and the potential start
of a new one. Thus, the control structure designed in this work can be divided into three
parts:

• Trajectory planning and control for independent AGVs: it focuses on AGVs that are
going to machines. It includes the following steps:

– Compute the significant neighborhood by identifying vehicles within the attrac-
tion radius

– If there are vehicles within the safety radius, perform an emergency maneuver
to avoid imminent collision with the principles of Section 4.1.1

– Apply the potential field controller of Section 4.1 to compute the velocity for
the AGVs

This technique is distributed, as each agent computes its own potential field based
on interactions with neighboring agents and its local perception of the environment,
which may even be enhanced in a real manufacturing by sensors placed on AGVs.
Thus, there is no central authority.

• Recharge convenience check for AGVs that ended a product process: it involves AGVs
that are going to the queue after completing a product process. A decision-making
process is applied to verify whether it is convenient or not to proceed with a recharge

• Platoon control for AGVs going to shared resources: it focuses on AGVs that are
heading towards recharging stations or unloading units, grouping them into platoons
and controlling each platoon with the specialized strategy of Section 4.2.2

By dividing the algorithm into these three parts, the control structure addresses different
aspects of AGV control, including trajectory planning, safety considerations, recharging
decisions, and platoon control. Each part handles a specific scenario and contributes to the
overall control and coordination of the AGVs within the system. Algorithm 3 represents a
schematic of the abovementioned approach.
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Algorithm 3 Complete control algorithm

Require: Positions and destinations of AGVs
Ensure: Speed profile for AGVs
1: procedure ControlAlgorithm

▷ a) AGVs going to machines
2: for AGVs going to machines do
3: Identify significant neighborhood ▷ Vehicles under the attraction radius
4: if neighbor within safety radius then
5: Perform emergency maneuvers
6: else
7: Apply the potential field controller and supply velocity to AGV
8: end if
9: end for

▷ b) AGVs going to the queue
10: for AGVs going to the queue do
11: if recharging is convenient then
12: AGV.destination = recharging station
13: end if
14: end for

▷ c) AGVs going to unloading unit
15: for AGVs going to unloading unit do
16: UnloadingPlatoon.append(AGV)
17: end for
18: Apply control for UnloadingPlatoon

▷ d) AGVs going to recharging stations
19: for AGVs going to recharging stations do
20: RechargingPlatoon.append(AGV)
21: end for
22: Apply control for RechargingPlatoon
23: end procedure

4.4.1 Battery recharging reactive decision-making

AGVs are equipped with batteries that adhere to standard charge/discharge cycles. Real-
istic battery values have been sourced from Safelog AGVX1 models [115] and then scaled
to expedite the discharging rate for simulation purposes. Specifically, the original dis-
charging rate has been divided by 20 to prevent the simulation from being excessively
time-consuming.
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The charging time is expressed as:
t = k1e

k2x (4.7)

where k1, k2 are two constants used to model the battery capacity of charge and x is the
depth of discharge (DoD) representing, in percentage, how much the battery is discharged.
In other words, the state of charge (SoC) is SoC = 100− 100DoD. To model the charging
operations with a similar time of the AGVX1 model (for the one-battery model), the
following values of k1, k2 have been chosen:

k1 = 121, k2 = 2.7 (4.8)

These values have been taken following the reasoning of [116, 117] and adapted to the
given datasheet.
On the opposite, the discharging overtime has been designed taking into account different
discharge ratios based on the AGV’s speed and whether or not it carries a payload:

SoC = SoC0 − C1V∆t− C2P∆t (4.9)

where SoC0 is the state of charge at the previous instant, ∆t is the time elapsed between
the two sampling instants, V is the speed and P a boolean to state if the AGV is carrying
a payload. The speed is assumed to remain constant throughout the time interval ∆T .
Constants C1 and C2 have been modeled to align with the information provided in the
datasheet. In the absence of a payload, the battery has a 4-hour lifespan, which corre-
sponds to C1 = 0.004. For C2 empirical considerations have been done: in particular, it is
reasonable to assume that a payload decreases the battery capacity of an additional term
estimated as 25% more (i.e. C2 = 0.5 · C1), although further studies should be done on
the influence of payload weight in battery discharging. Thus, the equation of the battery
discharging is:

SoC = SoC0 − 0.004∆t(V + 0.5P ) (4.10)

This model operates under the assumption that when an AGV is stationary, there is no
battery discharge. After completing one product process, AGVs have two options: go to
the waiting queue to start another product process or to the recharging station to recharge
batteries. It is assumed that the battery is fully recharged once in the recharging station
and the process cannot be interrupted.
To choose whether charging is convenient or not, four different terms help in building the
decision:

• the current SoC

• the number of batteries in the AGV

• the number of AGVs in the waiting queue
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• the number of free recharging stations

Borderline values of SoC are treated straightforwardly, i.e. recharging is not allowed if
SoC ≥ 80% and it is mandatory if SoC ≤ 20%, which represents the minimum safety SoC
for AGVs to complete a cycle of one product process. If SoC reaches this level, AGVs are
compelled to enter a power-saving mode with limited speed.
On the contrary, for values within the range of 20% to 80%, the following equation has
been designed to provide a convenience coefficient (CC) for recharging:

CC = K1
Rfree

Rtot

+K2
AGVwait
AGVtot

+
K3

B

SoC

100
(4.11)

subject to:
K1 +K2 +K3 = 1 (4.12)

where Rfree is the number of available recharging stations, Rtot the number of total recharg-
ing stations, AGVwait the number of AGVs waiting in the queue to move to the loading
unit, AGVtot the total number of AGVs, B the number of batteries equipped on the AGV,
and K1, K2, K3 are gains used to prioritize respectively the number of free recharging sta-
tions, the number of AGV waiting in the initial queue and the current state of charge
of the AGV. Eq. 4.11 and 4.12 provide a value between 0 and 1 to choose whether the
AGV can profit from a recharge or not. CC values above 0.5 indicate an advantage in
recharging, while lower values suggest the AGV postponing the recharge and continuing
with the routing of products.

Loading unit

Unloading unit

Vehicles

Machines
Recharging

stations

Figure 4.3: Representation of the manufacturing system at the beginning of the simulation.
Products are mounted on top of vehicles within the loading unit
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4.4.2 Analysis of a complete control system for production within
manufacturing production system

The case study examines a rectangular production cell consisting of 10 machines, one
loading unit, one unloading unit, and five recharging stations, within a shop floor measuring
23 × 11 m. Ten AGVs, four of which are equipped with one battery (AGVs of Type 1),
three with two batteries (Type 2), and the remaining three with three batteries (Type 3),
traverse the shop floor. Figure 4.3 illustrates the manufacturing system implemented in
NetLogo. A buffer to store vehicles during the waiting phase is required, but remains out
of control scope. Moreover, due to the symmetry of the system, vehicles may have crossing
trajectories in the default scenario (i.e., moving straightforwardly to the destination); thus,
a trajectory planning controller seems fundamental to improve performance.

Type Weight Operations
1 20 1-4-7
2 20 1-5-8
3 20 1-3-9
4 20 1-4-6-8
5 20 2-5-8-9
6 30 1-5-7
7 30 2-5-8
8 30 3-5-9
9 30 3-4-6-10
10 30 3-5-7-10

Table 4.5: List of products

In the investigated manufacturing system, the routing of products is fixed due to the lack
of machines’ flexibility.
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Scenario #1
4 product types

Scenario #2
6 product types

Scenario #3
8 product types

1 1 1
3 2 2
5 1 10
3 4 3
3 4 6
1 5 5
1 8 10
7 10 7
5 2 9
5 8 9
7 8 1
5 5 6

Table 4.6: Production order, repeated 3 times (36 products in total) for each simulation

Table 4.5 presents comprehensive information about the types of products, while Table 4.6
shows the different production orders used for simulation, repeated 3 times to guarantee
a proper discharge of batteries and test the algorithm in medium-term scheduling with
the battery recharging, since three distinct types of AGVs are considered, each equipped
with a variable number of battery slots. Understanding these fixed routes and operations
is essential for optimizing AGV trajectories to ensure efficient and reliable movement of
products throughout the system. In fact, as there are no railways, AGVs are free to move
within the shop floor, and thus their trajectory needs to be optimized to avoid collisions
and minimize congestion. When carrying a product, their maximum speed is 0.5m/s,
and 0.8m/s otherwise. A speed rate limiter of 0.1m/s has been inserted to avoid abrupt
changes in their speed that might make the product fall off the AGV.
Algorithm 3 is iteratively executed every 10 iterations, corresponding to 0.5 seconds in the
real scenario. This sampling time enhances responsiveness by allowing the control system
to gather updated information about the AGV’s state and environment more frequently
and keeping a balance between computational efficiency and control accuracy. Moreover,
it ensures that the control algorithms can be executed within a reasonable time frame
without compromising system performance or introducing significant delays. Parameters
of the control algorithm used for simulations are represented in Table 4.7, even if their
tuning can drastically upset system’s performance and represent thus a crucial part of the
process. The processing time of operational machines is fixed to 30 seconds, loading is
immediate and unloading requires 15 seconds.
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Table 4.7: Parameters of the control algorithm

Ka Krd Krs d0 [m] dmin [m] K1 K2 K3

20 350 300 10 0.8 0.25 0.5 0.25

Multiple simulations were conducted for each scenario, and the results in Fig. 4.4 confirm
that higher product variety leads to increased complexity in routing and in the generation
of safe trajectories, which needs to ensure collision avoidance for the whole production. As
a consequence, this heightened complexity generally leads to longer makespan and neces-
sitates AGVs to undergo more frequent recharges throughout the simulation.

Scenario 1 Scenario 2 Scenario 3
Scenario
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e 
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]
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Figure 4.4: Makespan distribution over 10 simulations for each scenario

However, the simulations reveal the effectiveness of the proposed approach. The AGVs
successfully complete production tasks without collisions, and their speeds consistently ap-
proach the maximum allowable, demonstrating that the potential field controller dynami-
cally generates safe trajectories even at high speeds, ensuring performance competitiveness.
This is illustrated in Fig. 4.5, which shows the speed distribution of four AGVs in the three
different scenarios.
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Figure 4.5: AGVs average speed distribution of four AGVs across the three scenarios

Furthermore, recharging scheduling is accomplished as AGVs autonomously select the op-
timal recharging times based on the current system state and their remaining battery
capacity. Across all simulations, there were consistently at least two available free recharg-
ing stations, suggesting that out of the five initially available, the number can potentially
be reduced to three without affecting system performance.
Notably, it is observed that primarily AGVs of type 1 required recharging in the given
scenarios. Approximately 80% of AGVs that underwent recharging were of type 1, with
the remaining 20% being of type 2. AGVs of type 3, in a medium-term production chain,
did not require recharging. This observation aligns with the data shown in Fig. 4.6, where
the number of AGVs requiring recharging fluctuates between 5 and 8 across all simulations.
Specifically, AGVs of type 1 consistently necessitate at least one recharge throughout the
entire production process, while the decision for AGVs of type 2 to recharge depends on
the system’s state.
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Scenario 3
Relationship between number of AGVs and average battery level at recharge

Figure 4.6: Distribution of the average battery level when going to recharge stations over
10 simulations for each scenario

The figure also illustrates that, on average, AGVs head to recharging stations with their
remaining battery levels consistently below half of their total capacity. However, there is
still adequate power available before reaching the power-saving mode threshold (< 20%).
This finding instills confidence in the robustness of the reactive decision-making control
policy, even in scenarios or situations where unforeseen events may cause AGVs to delay
their recharging.
In conclusion, the analysis of this case study illustrates that the proposed approach empow-
ers AGVs to operate consistently within the SMS, completing production processes without
interruptions. This is achieved through trajectory planning and collision avoidance handled
respectively by the potential field and emergency controllers, optimized machine utilization
via platooning for shared resources, minimized energy consumption, and efficient recharg-
ing scheduling guided by the reactive decision-making process. These factors collectively
contribute to uninterrupted and highly efficient production operations.
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Chapter 5

Conclusion and future work

This thesis represents a comprehensive exploration of two research topics, autonomous
vehicle platooning and smart manufacturing systems, that may appear unrelated at first
glance, but ultimately converge on the broader theme of optimizing systems for efficiency
and sustainability.

Initially, the platooning of multiple autonomous vehicles was explored, demonstrating that
through the strategic application of advanced control techniques, such as robust team
decision theory, LQT, and PID, these independent vehicles can act as a cohesive unit,
achieving not only individual benefits but also contributing to traffic improvements. The
studies presented in Sections 2.3 and 2.4 focus on platooning maneuvers designed specifi-
cally for HDVs. These maneuvers align with the platoon size discussed in [58], which aims
to enhance transportation capacity and reduce fuel consumption, as demonstrated in [54].
The primary objective in both works is to achieve these benefits while minimizing alter-
ations to acceleration patterns. The control techniques employed in both studies are drawn
from well-established literature. For instance, [59] first introduced the concept of using LQ
control for platoon formation in a string. Even if [61] has pointed out challenges at high
speeds, applying LQR or LQT for HDVs ensures safety and maneuver accuracy given that
vehicles of this type typically do not reach high speeds. These control strategies exploit
straightforward yet realistic models for trucks, instilling confidence in their applicability
in real-world testing environments. In these works, lateral displacement is not considered,
but it may be integrated with future research to provide a more comprehensive approach
to vehicle displacement control. The procedure outlined in [37] is a potential method for
integration, employing Vehicle-To-Vehicle communication to enhance reliability.

Furthermore, platoon control was also examined within a macroscopic traffic environment
to preliminarily demonstrate how one or more platoons can influence the throughput of
an entire road portion. Platoons have a significant impact on traffic and in case of con-
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gestion they represent the main bottleneck due to their size and influence on throughput,
as highlighted in [42, 43]. In the study discussed in Section 2.5, a dual-level controller
was designed, drawing inspiration from [31]. The main difference lies in the retrieval of
the desired speed, determined from the traffic model. A dedicated low-level controller for
platooning, similar to the approach in [50], is employed to reach the target speed. Future
research could explore the integration of the dual-level controller with platoon-actuated
control, as proposed in [44], to anticipate and potentially prevent congestion during bot-
tleneck scenarios. Additional enhancements in platoon formation within traffic could be
achieved through predictive control methods, such as those discussed in [18], in order to
take into account traffic conditions to decide when to form platoons, particularly at critical
points like on-ramps.

In addition, implementing an event-based controller on a WMR as a practical example
in Section 2.6 reinforces the versatility and adaptability of the research, demonstrating
how control techniques can be deployed on simpler, cost-effective hardware, that remains
sufficiently reliable for an initial testing phase. In this context, hardware enhancements
can be explored. This may involve incorporating more reliable sensors, even if it leads
to slightly increased costs, and employing methods to enhance their ability to reconstruct
the surrounding environment. For instance, equipment described in [39] can be applied
to provide WMRs with indoor localization. Similarly, localization tags are under study
for WMR navigation, with the goal of replacing line-tracking sensors with information
derived from these tags, effectively creating an emulated GPS system and eliminating the
need to draw roads for testing vehicle behavior. Additionally, achieving WMR platooning
through Bluetooth or Wi-Fi communication can facilitate information exchange, enhancing
the reliability of each vehicle within the environment and enabling the analysis of more
complex scenarios.

In the second part of the thesis, product scheduling in both offline and real-time scenarios
within manufacturing systems are treated, in order to optimize performance indexes such as
makespan or minimize maximum regret. Offline scheduling algorithms were benchmarked
against a model inspired by a real production cell in Valenciennes, France, to enhance
the realism of the experiments. The applications of offline approaches in Sections 3.3.1
and 3.3.2 offer an innovative solution for addressing the FJSP with respect to the work in
[78]. Formulating the problem as a flow-shop allows the utilization of various scheduling
algorithms via MILP. Additionally, a newly designed iterative algorithm ensures compet-
itive performance, particularly when uncertainties exist within the system. While these
offline approaches may not be directly comparable to dynamic scheduling techniques, they
effectively account for system uncertainties. They are particularly well-suited for scenarios
involving small to medium production orders, given the inherent limitations of offline tech-
niques, especially in manufacturing systems where production is highly predictable and
less susceptible to unforeseen events, primarily influenced by delays in processing times.
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Real-time scheduling offers a significant improvement in adaptability within FMS. It allows
for dynamic production reorganization in response to the latest events occurring in the
system. In contrast to other approaches found in the literature, such as those discussed in
[83] and [84], the method outlined in Section 3.4 is based on MPC, a technique commonly
employed in autonomous vehicles. In a custom case study, this approach demonstrated
its potential and was compared to previous offline scheduling methods. It exhibited faster
computational times and greater scalability, especially for larger production orders.
Future research, both in offline and online scheduling, may consider machine failures, as
these situations may require products to be re-routed or temporarily held until the machines
are repaired. This concept mirrors situations in transportation, where a retailer may
be unable to receive one or more HDVs due to unforeseen events within the warehouse.
Consequently, HDVs must adjust their routes to ensure timely deliveries when the goods
can be received and stocked.

Finally, the integration between the autonomous vehicle and manufacturing sectors was
achieved by grouping AGVs into platoons. The work in Section 4.3 represents the initial
implementation of platooning techniques within a production cell. This setup emulates
the concept of digital twins, as discussed in [90] and [91], in the Valenciennes production
cell, where AGVs operated on fixed tracks. Consequently, there was no need to plan
individual AGV trajectories. Nonetheless, dividing AGVs into platoons represents the
first step in integrating concepts from both domains, particularly platooning concepts
within manufacturing. For instance, in [70], trajectory planning, extensively studied in the
literature of autonomous vehicles, is obtained via centralized control, although vehicles are
managed individually, without considering groupings based on production requirements.

Lastly, in Section 4.4, a novel manufacturing system was introduced with the goal of achiev-
ing full automation within a production environment. To optimize production processes,
trajectory planning for AGVs was implemented using a potential field controller, which
represents a valuable approach for trajectory generation, different from other decentralized
methods in the literature, as exemplified by works like [71] and [72]. With the poten-
tial field controller, AGVs independently compute their trajectories, facilitating trajectory
generation while considering multiple objects within the system.
Additionally, AGVs’ charging constraints were addressed through a reactive decision-
making process that takes the system’s state into account. This approach optimizes their
schedules for recharging at stations to ensure uninterrupted production. Furthermore,
AGVs heading to the same destination were grouped into platoons, which enhanced their
arrival timing at machinery. This coordination with machinery availability conserved en-
ergy without impacting the production order.
While literature extensively covers AGV motion, such as the centralized approach in [70]
or the distributed coordination discussed in [73], and battery charging and discharging
modeling as seen in [116] and [117], the integration of these aspects within a manufactur-
ing case study, especially when combined with platooning techniques in specific areas of
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the shop floor, remains unexplored. The work in this section, therefore, represents a novel
contribution to the field of manufacturing processes.

In conclusion, the results obtained in the three research areas of platooning, scheduling,
and manufacturing with platooning techniques are not only satisfactory but also highly
promising. These findings lay a robust foundation for a multitude of potential benefits
across diverse domains, including road safety, traffic congestion reduction, production op-
timization, and the ability to effectively address unforeseen challenges in manufacturing
processes.
This thesis highlights the potential of autonomous and semi-autonomous systems, like pla-
tooning, to revolutionize various aspects across diverse domains. For instance, in the field
of transportation, platooning can lead to safer and more efficient road networks, as well as
significant reductions in fuel consumption and emissions. Additionally, the optimization
of manufacturing processes through platooning technologies can enhance productivity, re-
duce energy consumption, and improve resource allocation while maintaining competitive
performance in the production chain.
Additionally, although product scheduling and AGV trajectory planning were not studied
in a combined case, solid groundwork has been laid for future research in this direction.
This undoubtedly represents a potential avenue for immediate post-thesis work with a
high potential for contributions both to automation and optimization in manufacturing.
Nevertheless, the results obtained so far can already find practical applications in various
research domains.
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