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Résumé

Cette thése a pour objectif d’étudier les marches aléatoires branchantes spatiales et les marches
aléatoires renforcées. Nous nous intéresserons tout particuliérement au processus de saut renforcé
par sommets (communément appelé VRJP en raison de son acronyme anglais). Le VRJP est
un processus renforcé qui peut étre défini sur n’importe quel graphe localement fini et dont le
renforcement dépend d’un paramétre W > 0. Ce paramétre peut également varier sur chaque
aréte du graphe mais nous le supposerons constant dans ce résumé. Grace a de précédents travaux
(voir [152], [153], [154] et [139]), on sait que le VRJP est presque siirement récurrent sur Z et
7Z? pour toute valeur de W. A l'inverse, sur Z% avec d > 3, on sait qu’il existe une unique valeur
W,.(d) telle que le VRJP sur Z? avec paramétre W > 0 est récurrent si W < We(d) et transient si
W > W.(d). Quant aux marches branchantes, il s’agit de marches aléatoires qui ont la propriété
de se diviser au cours du temps. Leurs propriétés en dimension 1 sont & présent connues de maniére
trés fine. (Voir par exemple 25|, [24], [2],[37], [86] et [117].) Par ailleurs, on peut considérer aussi
des marches branchantes en dimension supérieure comme dans [106], [72] ou encore [169] et [171].

En premier lieu, nous nous intéresserons a un modéle de branchement critique en temps discret
partant d’un processus de Poisson ©g sur R? avec d € N*. Cela nous améne a considérer la suite
de processus ponctuels (O ),en résultant de cette construction. Si la loi du mouvement de la
marche branchante est dans le domaine d’attraction de la Gaussienne, alors on sait (voir [50], [60]
et [49]) que (©,,)nen converge en loi vers le processus ponctuel nul si d € {1,2} et, qu’a 'inverse ,
(©n)nen converge en loi vers un processus ponctuel non trivial si d > 3. Cependant, les preuves de
ces résultats avaient deux problémes. Soit elles supposaient des hypothéses trés restrictives, soit
elles se plagaient dans le cadre d’'un modéle continu en temps ce qui permettait, chose impossible
pour nous, d’utiliser des méthodes venant de la théorie des équations aux dérivées partielles.
Dans cette thése, nous prouvons a nouveau le résultat de convergence lorsque d > 3 a ’aide
d’une preuve unifiant les différents cas abordés par la littérature, le tout dans un formalisme
plus moderne. En outre, le processus limite obtenu est invariant en loi par rapport a la marche
branchante. Grace a [32], une caractérisation de ces processus invariants était connue dans le cadre
d’un modéle continu en temps. La encore, la preuve de [32] utilisait des EDPs. Dans cette thése,
nous fournissons une nouvelle preuve de la caractérisation des processus ponctuels invariants en
loi pour les processus de branchement critiques sous des hypothéses plus générales et en ayant
seulement recours a des outils probabilistes.

Par ailleurs, dans cette thése, nous utilisons également les marches branchantes comme outil
pour étudier le VRJP sur les arbres. Dans le cadre de I’étude du VRJP, Sabot et Zeng ont construit
une martingale positive (¢,)nen dans [154]. Cette martingale joue un role crucial puisqu’elle
converge vers 0 si et seulement si le VRJP est récurrent. Par ailleurs, si cette martingale est bornée
dans LP pour p assez grand, on peut l'utiliser pour montrer que le VRJP a un comportement
asymptotiquement diffusif sur Z? avec d > 3. Dans cette thése, nous montrerons que (¢, )pen €st
uniformément intégrable dés que W > W,(d) mais nous ne parvenons pas a étudier les moments
dans LP dans le cas ol le graphe sous-jacent est Z%. Par contre nous prouvons que (¥n)nen est
bornée dans LP pour tout p > 1 dés que le VRJP est transient sur les arbres. En outre, nous nous
intéressons a la vitesse de décroissance vers 0 de (¢, )nen lorsque le VRJIP est récurrent sur les
arbres.

Par la suite, nous étudions les propriétés spectrales d’un opérateur de Schrodinger aléatoire
Hg sur Z4 qui a été introduit dans [153] et [154] dans le cadre de I'étude du VRJP. Pour tout
parametre W > 0 associé au VRJP, Hg sur 7% a une densité d’états intégrée ny,q- Nous montrons
que lorsque W est petit, on a nyy q(E) ~ VE lorsque E tend vers 0. Cela est tres différent du
comportement bien connu du modéle d’Anderson dont la densité d’états décroit exponentiellement
vite au bord du spectre d’aprés la propriété des "queues de Lifshitz". Au contraire, lorsque W



est grand et d > 3, on va montrer que ny,4(F) = O(E) lorsque E tend vers 0. I y a donc une
transition de phase concernant le comportement de la densité d’états.

En outre, dans cette thése, nous considérerons des limites d’échelle du VRJP sur des graphes
unidimensionnels en prolongeant les travaux réalisés dans [113|. Nous utiliserons ces limites
d’échelle pour donner une nouvelle preuve des propriétés de Matsumoto et Yor concernant des
fonctionnelles exponentielles du mouvement Brownien. De plus, nous construirons une version
continue de I'opérateur Hg et de son inverse G g sur des cercles et nous calculerons la densité
d’états de cet opérateur continu.

Enfin, nous poursuivrons les travaux initiés par Sabot et Zeng dans [155] et approfondis
ensuite par Gérard dans |76] en prouvant une généralisation multidimensionnelle des propriétés
de Matsumoto-Yor.
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Chapitre 1

Introduction

1.1 How to read this thesis

This thesis is about branching random walks, reinforced random walks, random operators
and the links between these topics. In this introduction, we start by decribing the state of the
art regarding these subjects. Afterwards, we explain which are the main results of this thesis
and we give short insights into their proofs. The next chapters are based on the articles which
have been written during this thesis. In particular, each chapter is self-contained and can be read
independently. Finally, in the appendix, we present numerical simulations which are related to
Chapter 4.

1.2 Reinforced processes

1.2.1 Exchangeability and De Finetti’s theorem

Let us start with the simplest example of reinforced process we can imagine : Polya’s urn.
This model was introduced in [61] and has been studied and generalized in many works including
[12], [13] and [90]. We focus here on a very simple case. Let a € N* and b € N*. We start with
an urn containing a white balls and b black balls. At every step, we choose a ball uniformly at
random in the urn and we put it back in the urn together with a new ball with the same color as
the chosen ball. More precisely, this process defines two sequences (U1 (n), U2(n))nen such that
U1(0) = a, U2(0) = b and for every n € N,

(Ui(n +1),Uz(n + 1)) = (Ur(n),U2(n)) + (§1(n + 1), &(n + 1))

where conditionally on (Ui (k),Usa(k),0 < k < n),
— (&1(n+1),&(n+ 1)) = (1,0) with probability a[ilb(z)n
) =

— (&(n+1),&(n+ 1)) = (0,1) with probability +é+)n
The process (Ui(n), U2(n))nen is reinforced in the sense that the more you pick balls of some
color, the more likely it is to pick balls of this color. Moreover, a simple computation yields the

following result :

n
Proposition 1.1. Let n € N*. Let (xy1, -+ ,x,) € {0,1}". Let L = > x;. It holds that

i=1

L1 n—L—1
[[a+k)x J[ (b+k)
k=0 k=0

P(fl(l) = T1, 751(77’) = x”) = n—1
[[(a+b+k)
k=0
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A remarkable fact which stems directly from Proposition 1.1 is that for every n € N*, for
every (1, -+ ,xy) € {0,1}" and for every permutation o of [1,n],

P(&(1) =1, &(n) = ) = P (&1(1) = Zo(1), -+, 1(n) = Zon)) - (1.1)

For any measure, v on [0, 1] we can define a random variable (** which has distribution v and
a sequence of random variables ((¥(k))gen# such that conditionally on ¢(**, ((¥(k))gen* is a
sequence of i.i.d Bernoulli random variables with parameter (*".

The property given by (1.1) is called exchangeability. Actually, it is the main ingredient in order
to apply the De Finetti’s theorem. (See [65].)

Theorem 1.2 (De Finetti’s theorem). Let (§(k))rens be an exchangeable sequence of random
variables whose values are in {0,1}. Then, there exists a measure v on [0,1] such that

(g(k))keN* o (Cy(k))keN* .

Basically, De Finetti’s theorem states that if a sequence of random variables whose values
are in {0, 1} is exchangeable, then, it is a sequence of independent coin tossings where the bias
of the coin is itself a random variable. Therefore, one can apply De Finetti’s Theorem to the
case of Polya’s urn which implies there exists a measure v on [0, 1], a random variable Cf " with
distribution v and an i.i.d sequence of Bernoulli random variables ({7 (k))ren+ with parameter
(1" such that

(E1(k) ke "2 (CY (K)) perve-

The random variable ¢;"” with distribution v is called "the random environment" of Pélya’s urn.
If we know the distribution v, we will be able to entirely characterize the distribution of the
process ((Ui(k), Ua(k)))kens. Actually, a simple computation shows that for every k € N,

=P{(1)=1,0(2)"=1,--- ,{{(k) =1)

=]P’(€()—1,€1(2)= ,“',51( )=1)

Ty lati) 1.2
Ea—i—b—i—i 12)

Then, one can recognise the moments of a Beta distribution with parameters (a,b), that is, a
distribution whose density is

I'(a+ )

xa—l —ZL'b_l.
Marp)” 70

1{z e (0,1)}
Therefore, by the theorem of moments (see Theorem 30.1 in [27]), v is a Beta distribution with
parameters (a,b). In this case, the distribution of the random environment was quite easy to
compute but it is sometimes much more difficult. Nevertheless, one may wonder in which context
the random environment does exist. In [51|, Diaconis and Freedman proved a generalization of
De Finetti’s theorem.
Let (V, E) be a locally finite countable graph. V' denotes the set of vertices and E denotes
the set of (non-oriented) edges. Furthermore, let us define the set of oriented edges of (V, E) by

| {G.5), (.}
{i,j}eE

A path o of length n in V' is a finite sequence (09,01, -+ ,0y) such that for every k € [0,n — 1],
(0k,0k11) € E. For every oriented edge e € F and for every path o, one can define

w(€70) = ’{k € [[0777‘ - 1]]76 = (UkvakJrl)}’
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where | - | denotes the cardinality. Then, let us define an equivalence relation ~ on the set of paths.
Two paths o) and o are equivalent, that is, ¢ ~ ¢ if and only if they start from the
same vertex and for every e € E, w(e,c) = w(e,0?). A sequence of random variables (X, )nen
is said to be partially exchangeable if and only if for every paths ¢(!) and (2 with the same size

n such that o) ~ (2,

IP(XO —olV X, =0(1)> =IP’(X0 o X, =0(2)).

A transition kernel on (V, E) is an element K of [0, 1] such that for everyi e V., > K(i,j) = 1.
{i.j}eE

Let IC be the set of transition kernels on (V, E'). For any distribution v on K and for any ig € V one

can define a random variable K on K whose distribution is v and a sequence of random variables

(Y2"")nen which is a Markov chain with transition kernel K" starting from 4y conditionally on

K" (Yn"")nen is a random walk in the random environment K. Sometimes, (Y,*"),cn is also

called a "mixture of Markov chains".

Theorem 1.3 (Section 2 in [51]). Let (V, E) be a locally finite countable graph. Let ig € V. Let
(Xn)nen be a sequence of random variables such that Xo = iy and for every k € N, X, € V and
{Xk, Xp1+1} € E. Moreover, we assume that (X, )nen is partially exchangeable. Further, we assume
that (X, )nen is recurrent in the sense that almost surely there is an infinite number of k such
that Xy = Xo. Then, there exists a unique distribution v on K such that

(Xn)nen ‘2 (Y0 ) pen.

By Theorem 1.3, if (X,,)nen is partially exchangeable and recurrent, then (X,,),en is a Markov
chain in random environment. Therefore a relevant way to study the behaviour of (Xp,)nen is to
find the distribution v and study its properties. However, in [51], Freedman and Diaconis showed
that Theorem 1.3 can fail if we do not assume recurrence of the process. Now, let us focus on a
particular case of partially exchangeable process : the Edge-Reinforced Random Walk.

1.2.2 The edge-reinforced random walk

The Edge-Reinforced Random Walk (ERRW) was introduced by Coppersmith and Diaconis
in [45]. Let (V, E) be a locally finite graph. Let a € (0, +00)¥. For every e € E, a. is the weight of
the non-oriented edge e. Let ig € V' be the initial point. Then, let us define a stochastic process
(Xn)nen with law P, ;, such that

— Py iy (Xo = i0) = 1,

— for every n € N and for every i € V,

wix, iy (1)

2 wix, ;3 (n)
{Xn,jleE

]P)a,io (Xn+1 = i|X0, T Xn) =

n—1
where for every e € E and for every n € N, we(n) = ae + >, 1{{Xp, X141} = e}.
k=0

Remark 1.1. We insist on the fact that the weights are associated with non-oriented edges in the
ERRW. There is also an oriented version of the ERRW but it is a very different model which is
known as the random walk in Dirichlet environment. This model has been studied for example in

[150], [161], [151] and [140)].

There are a few important questions concerning the ERRW. One wonder whether the ERRW
is recurrent or transient ? If it is recurrent, is it exponentially localized 7 If it is transient, does
it exhibit a diffusive behaviour ? Especially, one would like to know what is the asymptotic
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behaviour of the ERRW on classical graphs like trees or Z¢ and whether it depends on the
reinforcement a € (0, +00)” or not. Now, let us assume that all weights are equals to some
constant a. Heuristically, when a is very large, the reinforcement is very small and the same
behaviour as for the simple random walk is expected. On the contrary, if a is very small then the
reinforcement is huge and we expect the ERRW to be recurrent. In particular, it is natural to
conjecture that the ERRW on Z or Z? is always recurrent and that there is a phase transition
between recurrence and transience on Z¢ when d > 3. We will see in the introduction of this
thesis that these conjectures are true even if their proofs required three decades of work involving
many different authors.

The first step towards this conjecture has been made in [136], where Pemantle proved there is
a phase transition in the case of the binary tree.

Theorem 1.4 (Theorem 1 in [136]). Let us consider the ERRW on an infinite binary tree such
that each edge has the same weight a. Then, there exists a constant ag > 0 such that

(i) If a < ag, the ERRW is recurrent,
(i) If a > ag, the ERRW is transient.

The proof of Theorem 1.4 relies on the fact that a tree does not have cycles. Therefore, it
is possible to show that the ERRW on trees is a random walk whose jumps from a vertex to
another one are given by i.i.d Polya’s urns on each vertex. Moreover, by De Finetti’s theorem,
these Polya’s urns are associated with Dirichlet random variables. That is why, the ERRW on
trees is a random walk in Dirichlet environment which gives a lot of tools in order to analyse this
random walk.

However, when the graph (V, E) has cycles, everything is much more complicated. Nevertheless,
Coppersmith and Diaconis observed the following general fact about the ERRW :

Proposition 1.5. For any locally finite graph (V,E), for any a € (0, +0)¥ and for any ige V,
the ERRW with law P, ;, is partially exchangeable.

Proposition 1.5 is not difficult to prove but it has huge consequences. Indeed, if the ERRW is
recurrent, by Theorem 1.3, the ERRW should be a random walk in random environment. Moreover,
in [127], Merkl and Rolles proved that the ERRW is a random walk in random environment
without assuming the recurrence of the process. As usual, one would like to know what is the
distribution of this random environment. For example, does it have an explicit formula for its
density 7 Actually, Coppersmith and Diaconis found such a formula on any finite graph in [45|
and it is so amazing that it was called later the "magic formula".

Theorem 1.6 (Magic formula). Let (V, E) be a finite graph with n vertices. Let a € (0, +00)F.
Let ig € V. Let us choose eg € E. Let Q¢ = (0, OO)E\{EO} which is the space of conductances where
we imposed that the conductance of the edge ey is 1. Every x € ¢, can be written as (er)eeE\{eO}-
We define x., = 1. For every i€ V, we denote

Y = 2 Te and a; = Z Qe.
eeFEice ecFEice

Then the ERRW (Xp,)nen with distribution P,  is distributed as a random walk with a random
transition kernel K. Moreover, for every {i,j} € E,

X ij
K(i.j) ==

where (Te)ecr has the following density on Qe, :

[] =g
. . dx,
Clio,a)io ==y * | 5 [T T1 5
y.

i TeT ecT ecE\{eo} "¢

eV
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where T is the set of spanning trees of (V, E) and

ot See TTT (Blai+1— 10 = io})
. 2 ecE eV
Clig,a) = D2 < [] T(ac)

Theorem 1.6 was originally proved in [45] but this paper was never published. However, one
can find two different proofs of the magic formula in [95] and in [126]. This formula is not very
easy to use in practical cases. By the matrix-tree theorem (see [168]) the term which is a sum on
spanning trees can be interpreted as the determinant of any minor of the matrix M© which is
defined by

M@ (i, j) = 1{i = j} Z T | — Tij
{kj}eE

for every 7,7 € V. This kind of determinantal term creates long-range interactions which are quite
difficult to study. However, Theorem 1.6 was used by Merkl and Rolles in order to prove the
recurrence of the ERRW on Z x [1,d] in [129] and on a modified version of Z? in [131] for any
initial weights. However, at this point, it was still not possible to prove any result of transience
and the recurrence on Z? for any reinforcement was still unproved. We present in the next section
a continuous-time process which is related to the ERRW, the VRJP, which was decisive in further
investigations of the ERRW.

1.2.3 The Vertex Reinforced Jump Process

Let (V, E) be a locally finite graph. For every i,j € V, let W; ; = W;; be a non-negative
weight. We will always assume that for every 4, j € V, W; ; > 0 if and only if {i,j} € E. For now,
we assume that W;; = 0 for every i« € V but this restriction shall be removed later in a slightly
different context. Let ip € V' be an initial point. The Vertex Reinforced Jump Process (VRJP) is a
continuous time process (Y;)=o which starts from iy and such that for every ¢ > 0, conditionally
on (Y, s <t),if Y; =4, then Y jumps to a neighbour j of i at rate W; ;L;(t), where

L) =1+ f 1Y, — j}ds.
0

The VRJP was originally introduced by Werner but the first results about the VRJP were
obtained by Davis and Volkov in [47] where they proved the following result :

Proposition 1.7 (Theorem 1.1 in [47]). Let us consider (Y:)i=o which is the VRJP on Z where
weights are all equal to 1. Then for every i € Z, the almost sure limit V; := thI—P %Sf) 1Y = i}ds
—+4o

exists. Moreover there are i.i.d random variables (A;)iez+ with density

such that for every i € Z,

N N i 4
where Vo =1, for every i >0, V; = [[ Ax and for every i <0, V; = [] Ag.
k=1 k=i
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Remark 1.2. In Proposition 1.7, the distribution of the random variables (A;)iez+ is a particular
case of the Inverse Gaussian distribution with parameters (p, \) whose distribution is

VA A
Kz > O}W exp <— 2u2x(x - ,u)2> .

The Inverse Gaussian distribution with parameters (p, X) is denoted by IG(p, N). This distribution
will play a crucial role in this thesis and more generally in the theory of the VRJP.

Proposition 1.7 implies the recurrence of the VRJP on Z when all weights are equal to 1 and
describes precisely what is the amount of time where the VRJP occupies each vertex. Moreover,
it is not difficult to prove that if the VRJP on Z starts with weights which are all equal to
W > 0, then Proposition 1.7 remains true with A; having density IG(1, W) for every i € Z*.
Consequently, there is no phase transition between recurrence and transience for the VRJP on Z.
On the contrary, on supercritical Galton-Watson trees, there is a phase transition. The case of
d-ary trees has been studied in [48] and a complete phase diagram has been obtained in [15] for
Galton-Watson trees.

Proposition 1.8 (Theorem 1.1 in [15]). Let p be an offspring law on N. We assume that p is
supercritical, that is, its mean m satisfies m > 1. Let (Yi)i=0 be the VRJP with constant weights
W > 0 on a Galton-Watson tree with offspring p . For every ¢ > 0, let

r(c) = \/\/Q%L éexp (—i(m — 1)2> dx.

Then, we have the following phase transition :

(i) If mr(W) < 1,(Y2)i=0 is almost surely recurrent.
(i) If mr(W) > 1, (Yi)=0 is almost surely transient conditionally on the survival of the
underlying Galton- Watson tree.

There is unique positive real number W such that mr(W) = 1. It is the transition point and it

will be denoted by W(p).

However, a decisive step in the understanding of the VRJP has been achieved by Sabot and
Tarrés in [152]. It is easy to see that the VRJP goes faster and faster. That is why, Sabot and
Tarres found a time-change which is convenient for the study of the VRJP. More precisely, if
(V,E) is a locally finite graph and (Y;)>0 is the VRJP on (V, E) with symmetric non-negative
weights (W; ;)i jev then one can define the strictly increasing random function D such that for

every t = 0,
D(t) = Y (L3 (t) - 1).
eV
Let us define the time-changed VRJP Z by Zy = Yp-1() for every ¢ = 0. For every ¢ € V, and for
every t > 0, we define [;(t) = Sé 1{Z, = i}ds. Sabot and Tarrés obtained the following result :

Theorem 1.9 (Theorem 2 in [152] or Theorem 2 in [153]). Let (V, E) be a finite graph with
symmetric non-negative weights (W ;)i jev. Let n be the cardinality of V. Let ig € V. Let (Z;)i=0
be the time-changed VRJP on (V, E) with weights (W ;)i jev. Then, for everyieV,

U; == lim 1ln (li(t) 1 >

t—+00 2 lio (t) +1

exists almost surely. Moreover, conditionally on U, Z is a continuous-time Markov process which

jJumps from i to j at rate
1 U
5 i»jeUJ Ul‘
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Furthermore, (Uj)jev has an explicit distribution QE)/V on {(uj)jev,ui, = 0} which is given by

1 . 1
Wexp —Zuj—2 Z W; j sinh? (2(ui—uj)> vV D(W,u) H du;

Jev {i.j}eE jeViio}

where D(W,u) is any diagonal minor of the matriz M (W,w) on V x V' such that for everyi,j eV

M(W,u)(i,j) = 1{i =g} [ D] Wigem e | = W et
{kji}eE

First, one can observe that, as in the case of the ERRW, the time-changed VRJP Zis a
Markov process in a random environment. Moreover, the density of this environment is quite
similar to the magic formula obtained for the ERRW, especially concerning the determinantal
term. Actually, this is not a coincidence because Sabot and Tarrés proved that the ERRW is a
VRJP with random weights.

Theorem 1.10 (Theorem 1 in [152]). Let (V, E) be a locally finite graph. Let (ae)ecr be positive

weights on the edge set E. Let (X, )nen be the ERRW on (V, E) with weights (ae)ecr. Let (We)eer

be independent random variables such that for every e € E, W, is a Gamma distribution with

parameters (ae,1). Finally, let (Yn)nen be the discrete time process associated with the VRJP,

that is, the VRJP taken at jump times, on (V, E) with weights (We)eep. Then, it holds that
(Xn)nEN ltgﬂ (Yn)neN-

Theorem 1.10 states that the ERRW is basically a mixture of VRJPs. However, it is not
always straightforward to deduce properties about the ERRW directly from properties about the
VRJP. Nevertheless, it will be possible to apply on the ERRW the proof ideas which work for the
VRJP.

Furthermore, thanks to the field U, one can reprove Proposition 1.8 about the phase transition
of the VRJP on trees. Indeed, in [40], Chen and Zeng made a change of variables in the field U
and they get a very explicit description of the environment of the VRJP on trees.

Proposition 1.11 (Theorem 3 in [40]). Let (V, E) be a rooted tree with root o. Let W > 0. Let
(Az)zev\(o} be a family of i.i.d random variables with Inverse Gaussian distribution IG(1,W).
We define U, = 1 and for every x € V\{o} we define

where the order between vertices of V' is the genealogical order associated with the structure of
rooted tree. Then the time-changed VRJP (Zy)i=o on (V, E) starting from o with constant weights
W is a mizture of Markov processes which jumps from i to j at rate

1
—WweliVi,
9 e

Remark 1.3. In Proposition 1.7, the field Vs exactly the same as the field U in Proposition
1.11. However, the authors of [47] (where Proposition 1.7 was originally proved) did not know

that V could give the random environment of the VRJP. They understood V only as the mean
local times of the VRJP.

However, as for the magic formula, apart from the case of trees, the density of the field U in
Theorem 1.9 is not easy to handle because of the determinantal term. Nonetheless, the density of
the field U is related to the supersymmetric hyperbolic sigma model which has been studied by
Disertori, Spencer and Zirnbauer in [54] and [53].
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1.2.4 The supersymmetric hyperbolic sigma model, localisation and delocali-
sation

The supersymmetric hyperbolic sigma model, also called the H212 model, has been introduced
by Zirnbauer in [56] and [172] for physical motivations. The main advances concerning the H?2?
model for our purpose were obtained by Disertori, Spencer and Zirnbauer in [54] and [53]. This
model takes values in a supermanifold which contains classical variables and anticommuting
variables. By using tools coming from the theory of superanalysis (see [20] for an introduction to
this theory), they found a non-probabilistic proof of the fact that QXKV, the measure of the field
U, is a probability measure. Moreover, they obtained the following results :

Theorem 1.12 (Theorem 2 in [53]). Let d € N*. Let (V, E) be Z endowed with its natural graph
structure. Then, there exists Cy > 0 and W,(d) > 0 such that for every W < W,.(d), there exists
rw > 0 such that for every finite connected subset A = Z% containing 0 and for every x € A,

J e"=/2dQW, (u) < Cope~w el

where || - || is the euclidean norm.

Theorem 1.13 (Theorem 1 in [54]). Let d = 3. Let (V, E) be Z¢ endowed with its natural graph
structure. Then, there exists Wi(d) > 0 such that for every W > Wy(d), for every finite connected
subset A = Z¢ containing 0 and for every x,y € A,

fcoshm (uy — uy)ngE/A(u) <2

provided that m < W8,

Remark 1.4. In the two previous theorems, we made a small abuse of notation. Indeed, when
W is a positive number, we use the notation Qfgv to denote the measure of the field U (see
Theorem 1.9) associated with the VRJP starting from ig on some graph (V, E) where all weights
are assumed to be equal to W.

Theorem 1.12 states that the environment of the VRJP exhibits exponential decay when W
is small. On the contrary, Theorem 1.13 implies that the environment of the VRJP is almost
constant when W is large and d > 3. Consequently, by combining their own results with Theorem
1.12 and Theorem 1.13, Sabot and Tarrés obtained the following result :

Theorem 1.14 (Corollary 1 and Corollary 3 in [152]). Let d € N*. Let W > 0. Let us consider
the discrete time process (Yy)n=0 associated with the VRJP on Vi starting from O with constant
weights W.

(i) If W < Wy (d), (Yn)nso is a mizture of positive recurrent Markov chains.

(i) If d = 3 and W > Wi(d), (Yn)n>0 is a mizture of transient Markov chains.

By Theorem 1.10, it is natural to wonder whether one can prove the same result for the
ERRW by means of the supersymmetric hyperbolic sigma model. Actually, it is possible but it
requires stronger results even if the proof is in the same spirit as Theorems 1.12 and 1.13.

Theorem 1.15 (Corollary 2 in [152] or Theorem 1 in [8] for (i) and Theorem 1 in [52] for (ii)).
Let d € N*. Let a > 0. Let us consider the ERRW (X,,)n=0 on Vi starting from 0 with constant
weights a.

(i) There exists a,(d) > 0 such that if a < a,(d), (Xn)ns0 is a mizture of positive recurrent
Markov chains.

(i) If d = 3, there exists a;(d) > 0 such that if a > a;(d), (Xn)n>0 is a mizture of transient
Markov chains.
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We mention that Theorem 1 in [8] was proved with a method which does not use the VRJP
but only the partial exchangeability of the ERRW. Finally, the supersymmetric hyperbolic sigma
model was a very powerful tool which allowed to make a major breakthrough in the understanding
of the VRJP and the ERRW. However, at this point, many questions remain unsolved :

— Is there a unique transition point for the VRJP and the ERRW on Z? with d > 3, that is,

is it true that W,.(d) = Wi(d) and a,(d) = a:(d) for every d € N\{0, 1,2} 7
— Is the VRJP or the ERRW always recurrent on Z?2 ?
— In Theorem 1.6 and 1.9, we gave a representation of the environment of the ERRW and
the VRJP on finite graphs. Is it possible to get a useful representation on infinite graphs?
In order to answer these questions, we need to introduce a new object : the S-potential.

1.2.5 The p-potential and the environment of the VRJP

As we explained at the end of the previous subsection, we would like to get a representation
of the environment of the VRJP on infinite graphs. To do so, we first need to make a change of
variables involving the field U on any finite graph.

Let (V, E) be a finite graph with n vertices. Let (W; ;); jev be symmetric non-negative weights.
Let ip € V. Recall that QKV is the measure of the field U given by Theorem 1.9 which is associated
with the VRJP on V starting from iy with weights (W; ;)i jev. Let (U;)iey be a random field
with distribution QE’XV and let v be a Gamma random variable with parameters (1/2,1) which is
independent of (U;);ey. Now, for every i € V', we define

1 U .
Pi=5 D WiV 1{i = ig}y. (1.3)
{i,j}eE

Then, Sabot, Tarrés and Zeng introduced this random potential (3;);eyy and computed its density.
Proposition 1.16 (Theorem 1 in [153]). The density of (5i)icv is

2\"/? exp (—3(1, Hg1))
<7r> 1tHp > 0} d2et(H5)

where {-,-) is the usual euclidean scalar product, 1 in the scalar product stands for the vector
(1,1,---,1) and Hg is a symmetric matriz on V x V such that for everyi,jeV,

Hpg(i,j) = 2B;1{i = j} — Wi;. (1.4)
The measure which is associated with this density will be denoted by I/“;V .

Remark 1.5. In Proposition 1.16, we have to clarify that for every i € V, it is possible that
Wi > 0. Even if it does not really make sense for the VRJP, it will be useful to allow that case
for the potential (3;)icv -

Remark 1.6. By means of the B-potential, Sabot, Tarrés and Zeng gave in [153] a purely
computational proof of the fact that QXKV has total mass 1. This is the third proof of this fact.
The first one was obtained in [54] by means of superanalysis and the second one was obtained in
[152] with probabilistic tools.

One can also compute the Laplace transform of (5;)ev .

Proposition 1.17 (Proposition 1 in [153]). Let (t;)icy € RY.. Then, it holds that

Je—<t,a>yy(dﬁ):exp —% 3wy (Ve + 0+ 1) - 1) \/11? (1.5)
eV v

{i.j}eE
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Thanks to the Laplace transform given by (1.5), we can deduce directly the following proposi-
tion.

Proposition 1.18. Let (V, E) be a finite graph. Let (W; ;)i jev be symmetric non-negative weights.
Let (B;)iev be a random vector with distribution V‘I;V. Then, it holds that

(i) For everyieV, ﬁ is an Inverse Gaussian random variable
7 1,7

1
Gl —— 1
> Wi
{i,j}eB.ji

(ii) Let Vi and Vi be two subsets of V' which are not related by any edge. Then (B;)iev; and
(Bi)iev, are independent.

Remark 1.7. Remark that 23; — W;; is a reciprocal Inverse Gaussian distribution. It is an
important fact which explains the major role which is played by the Inverse Gaussian distribution
i the sequel of this thesis.

We started from (U;);ey with distribution QZ‘)/,V and by a change of variables, we obtained

(Bi)iev with distribution V‘V,V . However, it is possible to go the other way. If (5;)ev € RK and if
Hp is inversible, then we can define the matrix Gz which is the inverse of Hg. Remark that if
(Bi)iev ~ 1/“/}/ , Hg is positive definite and thus invertible almost surely.

Proposition 1.19 (Theorem 3 in [153]). Let (V, E) be a finite graph. Let (W; ;)i jev be symmetric
non-negative weights. Let (3;)icy be a random vector with distribution V‘I;V. Let ig € V. Then,

( Glio, 1) )
Gﬂ(ig,io) eV
Gﬂ(ZOﬂz)

has distribution QY(E/V Moreover, Gg(io, o) is independent from (Gﬁ(io io)) . and m 18
’ ’ = ’

distributed like a Gamma random variable with parameters (1/2,1). In particular the time-changed
VRJP starting from iy with weights (W ;)i jev is a mizture of Markov processes which jumps from
1€V tojeV at rate
1. Gglio,J)
2 " Gplio, 1)

Therefore, thanks to Proposition 1.19, it is possible to recover the environment of the VRJP
from the random vector (3;);ey with distribution V“;V . A remarkable fact is that the measure V“;V

belongs to a more general family of measures.

Proposition 1.20 (Theorem 2.2 on [110]). Let (V,E) be a finite graph with n vertices. Let

(Wi j)ijev be symmetric non-negative weights. Let (n;)ev € RK. Let us define the measure V‘v/v’"

* 2\ "2 exp (— 31, Hg1) — L{n, Gan) + (1, 1))
ity 0) () S )

dB.

Then V‘I;V’n 18 a probability measure. Moreover, we can compute its Laplace transform. For any
teRY,

| e

eV {i.j}eE i€V ‘
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Observe that if n = 0, then l/y and V“;V T are equal. This generalization of V“;V is very useful
because it exhibits stability properties with respect to restriction and conditioning. For any matrix
M and any subsets U; and Us of V', we denote the restriction of the matrix M to the set Uy x Us
by My, u,. Moreover,for any subset Uy of V, for any vector v of RY the restriction of v to Uy is
denoted by vy, and 1y, is the vector of RVt whose entries are all equal to 1.

Lemma 1.21 (Lemma 5 in [154] and Proposition 4.3 in [110]). Let (V, E) be a finite graph. Let
(Wi.j)ijev be symmetric non-negative weights. Let n = (n;)ev € RY. Let U be a finite subset of V
and let U¢ = V\U. Let (f;)iev be a random vector with distribution VE/’".

(i) (Bi)icu has distribution V[I}VU’U’ﬁ where 1 is a vector on U such that
i =nu + Wuue1ye.

(i) Conditionally on (B;)icv, (Bi)ieve has distribution I/LV,VC’77 where W is a matriz on U¢ x U¢
and 1 s a vector on U such that

W = Wyepe + Woyeu (Hg)uw)  Wo,ue
where Hg|yxu is the restriction and
i = nue + Woeu (Hg)vw) ™ .

Remark 1.8. Lemma 1.21 explains why it is natural to consider the case where W;; > 0 for
some i €'V for the B-potential. Indeed this case arises naturally when we condition ([3;)icye on

(Bi)iev -

In the case of finite graphs, by Proposition 1.19, the time-changed VRJP starting from g

jumps from ¢ to j at rate

1. Gglio, J)

2 " Ga(io, 1)
where G is the inverse of the matrix Hg. One may wonder whether it remains true when Hp is
an operator on an infinite graph. Does its "inverse" give the environment of the VRJP on infinite
graphs ? The problem is that Hg is not invertible on infinite graphs. Actually, on particular graphs
as Z¢ or an infinite tree, one can show that the spectrum of H 3 is exactly R,. Nonetheless, Sabot
and Zeng showed in [154] that it is possible to construct a kind of pseudo-inverse of Hz which
can play the role of the environment of the VRJP on infinite graphs. To do so, they developped a
new tool which is the martingale (wén))neN discussed below.

1.2.6 The infinite version of 3, the martingale (wgn))neN and its applications

In this subsection, we will work on an infinite locally finite graph (V, E) with non-negative
symmetric weights (W; ;)i jev and a root o. For example, (V, E) can be Z¢ with o = 0 or an
infinite rooted tree. Now, we want to construct an infinite version of 8. Let us consider an

increasing sequence (V;,)nen of finite subsets of V' which contain o such that (J V;, = V. For
neN
every n € N, we denote by FE, the set of edges of F whose ends lie in V,,. Then, for every n € N,

we can construct a wired version (Vn, E,) of (Vi, Ey). For every n € N, we define V, =V, u {0}
and

E, = E, u{{i,0},i€V, such that 35 ¢ V,,, {3, j} € E}.
Besides, for every n € N, (f/n, En) is endowed with the symmetric weights W™ on V, x V,, such
that for every i,j € V,,, VVZ(Z) =W;,;ifi,j €V, and Wi(g) = Zj$vn,{z‘,j}eE Wi if {i,0} € E,. By

applying Lemma 1.21, this leads us to the following result :
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Proposition 1.22 (Lemma 1 in [154]). The sequence of measures (VW(n)\Vn> . is compatible.
ne

Vi
In particular, there exists a measure V“;V on the infinite graph V' such that for every n € N

(n)
n ‘Vn °

w v, = vy
By Proposition 1.22; we can construct (3;);cy even if V' is infinite. Now, let 8 be a random
element of RZ with distribution V‘I}V and let Hg be the infinite volume operator on V' x V' which
is associated with 8 in the same way as in (1.4). For every n € N, we define the sigma-field
Fn :=0(Bi,i € V). Then, following Definition 1 in [154], we define the operator (G‘gl)(i,j))i,jev
by
G (0,5) = (Halvioew) ™ (3,)

ifi,7 €V, and G(ﬁn) (i,7) = 0 otherwise. Moreover, we define the random vector (wén) (1)) nen as
the unique solution of the equation

(Hﬁwén))(i) =0, foreveryieV,,
U5 = 1,

y (&
for every i € V2.

The idea behind the definition of (wén))neN is to create an eigenstate of Hg for the eigenvalue 0

when n goes to infinity. However, at first sight, (T/Jén))neN does not have any reason to converge.
Nevertheless, miraculously, it is a martingale.

Theorem 1.23 (Theorem 1 in [154]).

(i) For everyieV, (wgl) (1))nen ts a positive martingale with respect to the filtration (Fp)n>0-
In particular, it converges almost surely towards some finite random variable ().

(ii) For everyi,jeV, (é,(Bn) (7,7))nen is increasing almost surely and converges almost surely

towards some finite random variable G (i, 7).

The proof of Theorem 1.23 relies on the stability of the measures of the form V‘I;V’" under
conditioning and restriction which is described in Proposition 1.21. Thanks to Theorem 1.23,
Sabot and Zeng were able to construct the environment of the VRJP on infinite graphs.

Theorem 1.24 (Theorem 1 in [154]). Let 3 be a random element of RY with distribution v . Let
v be a random variable with Gamma distribution with parameters (1/2,1) which is independent
of B. Then, for every i,j €V, let us define

Gm@ﬂ:QMﬁ+;wwww-

Letig € V and let (Zt)t>0 be the time-changed VRJP on'V starting from ig with weights (Wi ;)i jev -
Then, Z has the same distribution as the mixture of Markov processes which starts from 1g and
jJumps from i to one of its neighbour j at rate

2 ™ Gy lio, )

Remark 1.9. Thanks to Theorem 1.24, we know a representation of the VRJP on an infinite
graph as a mixture of Markov processes. One may wonder whether there is a unique possible
distribution for this environment or not. This question has been studied by Gerard in [77]. He
proved there is uniqueness of the environment when the VRJP is recurrent. Moreover, he proved
the same uniqueness property when the VRJP walks on the lattice Z¢ with d > 1 with small
reinforcement, that is, for large W. Moreover, when the VRJP is transient on trees, Gerard proved
there is an infinite number of distinct representations of the VRJP.
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Furthermore, the martingale (wén))neN has been used by Sabot and Zeng in [154] in order to
prove the diffusive behaviour of the VRJP (and of the ERRW too) when W is large and d > 3.

Theorem 1.25 (Theorem 3 in [154]). Let W > 0. Let d = 3. Let (Yy)nen be the discrete-time
process which is associated with the VRJP on Z¢ with constant weights W > 0. For every t = 0,
we define

Yjtn]

Vi

Then, there exists Wy(d) > 0 such that if W > Wy(d), then for every T > 0 the following
convergence does hold for the Skorokhod topology :

(n) law (d,W)
(Y;t >te[0,T] — (o )te[O,T]

n—+ao0

Y't(”) _

(d,W)

where « is a Brownian motion on R with covariance matriz o(W,d)*Id for some o(W,d) €

(0, +0).

Remark 1.10. The proof of Theorem 1.25 requires that 1g(i) and 1/1s(i) are in L* for every
i€ Z%. It is true for large W thanks to the results of [54]. However, we do not know whether the
rescaled VRJP converges toward a Brownian motion as soon as the VRJP is transient or not.
That is why, the study of the LP-boundedness of the martingale (wgl))neN will be an important
topic in this thesis.

Besides, the martingale (¢én))neN gives a very simple criterion for recurrence or transience.

Proposition 1.26 (Theorem 1 in [154]). Let (Z;)i=o be the time-changed VRJP on V starting
from iy with non-negative symmetric weights (W ;)i jev. Then, it holds that

(i) Z is a mizture of transient Markov processes if and only if (i) > 0 for everyie V.

(i1) Z is a mizture of recurrent Markov processes if and only if (i) = 0 for everyie V.

By means of Proposition 1.26, we get a convenient tool in order to prove the recurrence of the
VRJP. Indeed if we have an estimate of the type

E [(@bé”)(i))s] <en (1.6)

for all i € V where s < 1 and ¢, 0, then it implies that the VRJP is a mixture of recurrent

n——+0o0

Markov processes. However, in [128], in the case of the ERRW, Merkl and Rolles proved an
estimate with polynomial decay of the fractional moments of the environment on Z? which can
be related to (1.6). Moreover, such an estimate with polynomial decay for the VRJP was proved
simultaneously in [149] and [102]. Together with Proposition 1.26, this implies the following result
which answers an ancient question concerning the ERRW and the VRJP :

Theorem 1.27. Let a > 0. Let W > 0. Let (X;,)nen be the ERRW on 72 with constant weights a.
Let (Zy)i=0 be the time-changed VRJP with constant weights W > 0. Then (X )nen is a mizture
of recurrent Markov chains and (Zi)i=o is a mizture of recurrent Markov processes.

Another important question concerning the VRJP and the ERRW was to know whether there
is a unique phase transition between recurrence and transience on Z? when d > 3. Usually, for
example in the case of Bernoulli bond percolation or the Ising model (see [82] and [67]), such a
result is proved thanks to a monotonicity property. For example, let us assume that we can prove
that for some s €]0, 1] and for any n € N

W Ew [ (457 0)] (1.7)
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is non-decreasing where Eyp means that the VRJP starts with constant weights W. If such a
monotonicity property is true, together with Proposition 1.26, it would prove that there is a
unique transition between recurrence and transience for the VRJP with constant weights. The
basic idea in order to prove that (1.7) is non-decreasing would be to show that for every n € N,
the random variable wén)(O) is stochastically non-decreasing as a function of W. However, it is
not difficult to check that it is not true on some simple examples. Therefore, it was necessary to
be more subtle. By means of a clever coupling, Poudevigne proved a different property of convex
monotonicity which implies that (1.7) is non-decreasing.

Theorem 1.28 (Theorem 6 in [139]). Let (V. E) be a finite graph. Let (W, )i jev and (W/Z‘E)i,jev
be two sets of symmetric non-negative weights such that for every i,j eV,
W, < W

Let ¢ be a concave function. Let i,j € V. Then, it holds that
Gp(i,J)\ w- Gs(i,J)\ w+
dp) < dp).

Moreover, it is possible to interpret Q/J;jn) (0) as a random variable of the form gi ((ZZ’Z)) . Together
with Theorem 1.28, it implies that (1.7) is non-decreasing as a function of W. Consequently,
thanks to Theorem 1.28, Poudevigne proved there is a unique phase transition for the VRJP (and

actually also for the ERRW).

Theorem 1.29 (Theorem 2 in [139]). Let d = 3. There exists W(d) € (0,40) such that the VRJP
on 74 with initial constant weights W is recurrent if W < We(d) and transient if W > W(d).

Theorem 1.30 (Theorem 3 in [139]). Let d > 3. There exists a.(d) € (0,+) such that the
ERRW on Z@ with initial constant weights a is recurrent if a < a.(d) and transient if a > a.(d).

Finally, thanks to the field 5 on infinite graphs, some of the most important questions regarding
the VRJP and the ERRW were solved. During the developpement of the theory about the VRJP,
the infinite volume self-adjoint operator Hg appeared to be a very important object. That is
why we would like to understand how the properties of Hg as an operator, especially its spectral
properties, are related to the asymptotic behaviour of the VRJP. A part of this thesis is devoted
to this kind of questions. Actually, Hg belongs to a vast category of objects which are called
random Schrédinger operators. Now, let us look at the theory of random Schrédinger operators.

1.3 Random Schrodinger operators

1.3.1 Background on self-adjoint operators

In this section, all operators are defined on a separable complex Hilbert space H with some
scalar product (-|-). For example, if (V, E) is an infinite locally finite graph, we will consider

H=P(V) = {¢ecv, Y l6(@)? < +oo}

zeV

with scalar product
(6.x) = D, d(x)x(x)
zeV
for every ¢, € I?(V). We denote by || - || the euclidean norm which is associated with (-,-). A
linear operator A on H is a linear application from some subset D(A) of H into H such that D(A)
is dense in H. Moreover, D(A) is called the domain of A. It is very common that D(A) & H.
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Indeed it allows to manage with unbounded operators. Now, let us consider a linear operator
(A,D(A)) on H. Then, we define the domain of the adjoint of A by

D(A*) :={peH,Ine H,Yx e D(A): (¢, Ax) = (1,X)} -

Then (A, D(A)) is self-adjoint if and only if
(i) A is symmetric, that is, for every ¢,y € D(A),

(¢, Ax) = (Ao, X)-
(il) D(A*) = D(A).

One crucial example of self-adjoint operator on [2(V) is the discrete laplacian A where V has
bounded degree.
A BV) - 2(V)
¢ - A
where for every x € V,

(Ag) (@)= D (8(y) — ¢(x)).

{z,ylel

At present, we consider a self-adjoint operator (A, D(A)) on H. The spectrum of A is defined as
0(A):={z€C,(A—2z2):D(A) — H is not bijective.}.

As A is self-adjoint, o(A) is included in R. Moreover, it is always a closed subset of R. Now, let
us introduce the spectral measure which is a crucial object in the study of self-adjoint operators.

Proposition 1.31 (Section A.2 in [6]). Let ¢ € H. Then there exists a unique real-valued measure
gy whose support is included in o(A) such that for every z € C with Im(z) > 0,

(6, (A—2)""9) = f " olB)

Moreover, pg is a finite measure whose total mass is l|9|1? and ftg is called the spectral measure of
A associated with the vector ¢. If ¢, x € H, then by polarization, there exists a complex measure
Lo such that for every z € C with Im(z) > 0,

dpig x (E)
o(A) E—z

The construction of the spectral measure is explained roughly in [6] but one can also look at
chapter VII in [143]. Thanks to the spectral measure, one can apply functional calculus to A. Let
F be a bounded measurable function. Then we can define the linear self-adjoint operator F'(A)
such that for every ¢, x € H,

(6, F(A)x) = f P (B),

Moreover, one can also use the spectral measure in order to classify the elements of H. It is
well known that every measure 1 can be decomposed as

N:NGC+MSC+NPP

where ¢ is absolutely continuous, p*¢ is singular and pPP is a pure-point measure. Now, we can
apply this decomposition to the spectral measure. We define

H = {peH, pp = pg}, H* :={peH,up = pg } and H? := {¢p e H,puy = ,ugp.}

Then, these subspaces of H are closed vector spaces which give an orthogonal decomposition of

H.
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Proposition 1.32 (Theorem VII.4 in [143]). We have the following orthogonal decomposition :
H = Hae ® Hse ® Hpp.
By means of this classification of vectors, one can also divide the spectrum into three parts.
0% (A) = o (Al|pac),0°(A) = o (Alyse) and oPP(A) = o (Alpwr) -

Remark 1.11. There is no reason in general for 0% (A), 0%¢(A) and oPP(A) to be disjoint.
However it is true (or conjectured to be true) in all the cases which will be studied in this thesis.

This classification of vectors and of the spectrum has physical meaning through the notions
of localization and delocalization. The connection between the theory of operators and quantum
physics is made rigorous in the next subsection thanks to the RAGE Theorem.

1.3.2 Physical interpretation

This subsection explains briefly how we can interpret self adjoint operators from the point of
view of quantum physics. For more details, one can consult [6] and [84]. Let us fix an infinite
locally finite graph with bounded degree (V, E) and let (¢(z))zev € RY be a real-valued function
on V which is called the potential. We can imagine the potential (¢(z))zey € RV as impurities in
a crystal structure which is represented by the graph V. For sake of convenience, we will often
write ¢ to denote the diagonal operator such that for every ¢ € I?(V) for all z € V/,

(€9) () = ((z)¢(x).

Remark that it is possible that (¢ is not in I2(V) anymore. Then, a Schrédinger operator on
I2(V) is an operator of the form
Ag =—-A+(.

It is not difficult to prove that it is self-adjoint with domain

D(A) = {¢ e 2(V), Y C@)o(@) < +oo} .

zeV

Let ¢ € V' be such that

D @) = 1.

zeV
Let us imagine a quantum particule which walks on the graph V with the potential (. As it is a
quantum particule, we do not know exactly where it is located. Let us say that at time 0, the
particle is at site 2 with probability |¢(z)[?. One may wonder what is the probability that this
particle is at = € V at time ¢ € R,. Actually, this probability equals |¢(¢,x)|> where ¢(-,-) is
solution of the famous Schrédinger equation :

Thanks to functional calculus, we get a simple representation of (¢(t, z))t>0zev. Indeed, for every
t>=0,

o(t,) = e o,

Remark that e~#4¢ is a unitary operator. Consequently, for every ¢ = 0,

> et z))? =1

zeV
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which means that |¢(t,-)|? remains a probability measure for every ¢ > 0. Now, let us consider
a self adjoint operator R on I2(V). A fundamental point of quantum physics is that R can be
interpreted as an observation of the particle, for example its position or its impulsion. Let I be
an interval of R. Let P be the function which is 1 on I and 0 elsewhere. Then the probability
Py (R € I) that at time ¢, R lies in I can be computed by

Py(R € 1) = (¢(t,-), Pr(R)$(t. ) = || Pr(R)e~ "< o|[%. (1.8)

Then, it is possible to get a physical interpretation of H, H¢ and HPP thanks to the following
result which is due to Ruelle, Amrein, Georgescu and Enss (RAGE).

Theorem 1.33 ((RAGE) Theorem 2.6 in [6]). Let H be the Hilbert space I*(V) and let A¢ be a
Schrodinger operator on I12(V). Let (Rp)ren be a sequence of compact self-adjoint operators which
converges towards the identity. Then, it holds that

(i) .
1 ,
H*C DH* = {d) eH, lim lim f HRLe_”ACd>H2dt = 0} )
L—+40w T—+w0 T 0
(i)
HPP = {qﬁ € H, lim sup ||(Id— RL)e_itA<¢H = 0} )
L—+®0 R
By the interpretation given by (1.8), (i) in Theorem 1.33 tells us that if the particle starts
from a state ¢ € H* @ H*¢, then the particle spends a fraction of time in finite subsets of V'
which is asymptotically zero. Therefore, continuity of the spectrum corresponds to quantum
delocalization. On the contrary, (ii) in Theorem 1.33 tells us that if the particle starts from
a state ¢ € HPP, then the particle will stay in finite subsets of V' with high probability. Thus,
pure-point spectrum corresponds to quantum localization. Therefore, a fundamental question
about self-adjoint operators is to know whether their spectrum is continuous or pure-point. For
example, the opposite of the Laplacian —A on Z? has only absolutely continuous spectrum and
o(—A) = [0,4d]. On the contrary, the diagonal operator ¢ has only pure point spectrum which is

{¢(x),x e V}.

1.3.3 An important example of random Schrédinger operator : the Anderson
model

Let d € N* and A > 0. In his seminal paper [7], Anderson introduced the following random
Schrédinger operator :
A)\C =—-A+ AC

where

{C(m), x € Zd}

is a random i.i.d potential on Z?. This model is known as the Anderson model. The Laplacian
term —A has absolutely continuous spectrum whereas ( is a very disordered operator which
has pure point spectrum. At first sight, it is not obvious to know which part of the operator,
the continuous one or the pure point one, will prevail in the spectrum of A;. By the RAGE
Theorem, this question is directly linked to the following one : if an electron walks in a metal
with many impurities, is this electron able to move far away from its original position, that is, is
the impure metal conductive or not ? In |7], Anderson explained in a non rigorous way that the
metal should not be conductive when A is large. Moreover, it is reasonable to expect that the
nature of the spectrum of Ay depends on the disorder strength A and the dimension d. In [1], it
was conjectured that there is only pure point spectrum in dimension 1 and 2 for any A > 0 and
that a phase transition should occur in dimension d > 3.
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Disorder strength A A

Pure point spectrum

Localized phase

Absolutely continuous spectrum

Delocalized phase

0 4d Energy EP
FI1GURE 1.1 — Conjectured phase diagram of the Anderson model with uniform potential on [—%, %]

Let us assume that for every x € Z%, the distribution of the random variable ¢, has a support
S. Then by Corollary II1.3 in [104], the spectrum of Ajy¢ is almost surely

[0,4d] + AS.

Is this spectrum only pure point, only absolutely continuous or a mix of both types ? Today, when
d > 3, the phase diagram of the Anderson model on Z¢ is conjectured to look like Figure 1.1.

When d > 3, it is expected that for small A, that is for small disorder, we should see
delocalization (absolutely continuous spectrum) for small energies. This first part of the conjecture
remains unproved nowadays. On the contrary at extreme energies or high disorder, the Anderson
model is localized (only pure point spectrum). This second part of the conjecture has been proved
rigorously by mathematicians but it took a few decades.

The first thing about the Anderson model which has been proved by mathematicians is the
localization in dimension 1 for any A > 0. It has been proved rigorously in [88]| and [80]. In [70],
by a multiscale analysis, Frohlich and Spencer proved that for any d € N*  if X is large, then the
Green function (Ayc — z) 7! (z,y) decreases exponentially fast for every z € C\R with respect to
the distance d(x,y) between the vertices x and y. More precisely, they obtained the following
result :

Theorem 1.34 (Theorem 1.2 in [70]). Let d € N*. Let ¢ be an i.i.d potential on Z such that for
every x € Z%, ¢, has a bounded density. Then, there exist \g > 0 and C' > 0 such that for every
X > \g, for every E € R, for every € > 0, for every N > 0 and for every x € Z%,

P (\(AM — E—ie)1(0,2)] < eN*”l‘“) >1- %

This was the first result of localization at large disorder which was proved rigorously for any
dimension. In [118], Martinelli and Scoppola showed that the result of [70] implies that Ay has
only pure-point spectrum when A is large for every d € N*. In [5], Aizenman and Molchanov
proved also the exponential decrease of the Green function and the pure-point nature of the
spectrum for large disorder or extreme energies. Actually their proof uses a method called "the
method of fractional moments" which is different of the method of Frohlich and Spencer.

Nowadays, we still do not now how to show delocalization on Z%. Such a result seems to be
very hard. Consequently, the Anderson model on the Cayley tree (sometimes called the Bethe
lattice) sparked off a huge interest because it can be viewed a toy model of the Anderson model
on Z%. The localization on the Cayley tree is known in a very detailed way when X is large. (See
for example Chapter 16 in [6].) Moreover, in the particular case of the Cayley tree, delocalization
has been proved for small values of A by Klein in [99]. However, it was not possible to adapt
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his proof on Z¢ with d > 3. Localization and delocalization properties have also been shown
for random Schrédinger operators which are not the Anderson operator Ay¢. For example, one
can look at [98], [79] and [29]. Remark also that we presented the Anderson model in a discrete
setting. This discrete model is known as the Anderson tight-binding model. However, it is also
possible to consider the continuous Anderson operator on R? :

- ) =5 +dB
i_zl ox?

where dB is a white noise. When d = 1, this model has been studied first by Halperin in [85].
Fukushima and Nakao gave a rigorous formulation of the related eigenvalue problem in [71]. They
found an explicit form for the cumulative distribution function of spectral values. More recently,
in [58], Dumaz and Labbé proved very precise results concerning the shape of the localized
eigenvectors of the continuous Anderson model in dimension 1. Besides, in [59], considering the
continuous Anderson model Hy, on (0, L) with Dirichlet boundary condition, they proved the
existence of a delocalized phase of H, for eigenvalues corresponding to energies FocL and E » L.
Moreover, in [105]|, Labbé proved it is possible to construct the continuous Anderson model
rigorously on (—L, L)% for d € {1,2,3}.

1.3.4 The density of states

Let ((z)yeze be a random potential on Z?. For every x € Z¢, we write 7, the translation

y— 1y + x on Z% We say that ( is stationary when for every A e B(R)®Zd

P(CeA)=P(Cem(A).

Furthermore, we assume that ( is ergodic when for every A € B(R)®Zd such that for every x € Z4,
Tz(A) = A, it holds that

P(Ce A) e {0,1}.
Of course, i.i.d potentials are ergodic. In the case of ergodic stationary potentials, one can define
a very important object which is known as the Density of States (DOS). For every z € Z¢, we
define 6, which is the vector of 1?(Z?) which is 1 at x and 0 elsewhere. If A is a finite set, |A|
denotes its cardinality.

Proposition 1.35 (Theorem 3.14 in [6]). Let Ac = —A + ( be a random Schrodinger operator
such that ¢ is an ergodic stationary potential on Z with d € N*. Let (Ar)ren be an increasing
sequence of bozes of Z¢ such that Uren AL = 7. Then, there exists a measure v on R such that
for every continuous function f it holds that

D (s f(A¢)Sa LMJ f(E)dv(E).

| L| TEN],

The measure v is called the density of states of A¢ and it does not depend on the sequence of
bozes (AL)Len-

The density of states v can be interpreted as the density of spectral values in the spectrum of
A¢. For sake of convenience, we often prefer to use the integrated density of states n which is
defined by n(F) = v((—o0, E)). A natural problem consists in finding the properties of n. A very
general result concerning the integrated density of states was found by Wegner in [163].

Proposition 1.36 (Corollary 5.25 in [97]). Let ((i)yeza be a random potential on Ze which
is ergodic and stationary. Let us assume that for every x € Z%, ¢, has density g and that g is
bounded. Let n be the integrated density of states which is associated with Ac. Then, there exists
C' > 0 such that for every E € R and every e > 0,

n(E+e)—n(E —¢) < Cllg||ne.
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Therefore, under mild conditions, n must be a Lipschitz function. Actually, in [112], Lifschitz
remarked that at the edges of the spectrum, the density of states decreases exponentially fast
when the potential is i.i.d.

Theorem 1.37 (Theorem 6.1 in [97]). Let ¢ be an i.i.d potential on Z¢. We assume that the
infimum of the support of Cy is 0 for every x € Z%. In particular the infimum of the spectrum of
A is 0. Let n be the integrated density of states of A¢. Then

In (| In(n(£))]) d

IH(E) E—0 2 '

Therefore, if ¢ is i.i.d, then at the bottom of the spectrum, let us say 0, the integrated density
of states behaves roughly as e ¥ ~2°M The idea of the proof of Theorem 1.37 is that creating an
eigenvalue at the bottom of the spectrum of A¢ requires a huge number of the random variables
({(7))4eza to be small. As the random variables ({(z)),cz¢ are independent, this event has an
exponentially small probability.

Now, let us look at the connection between these notions regarding random Schrodinger
operators and the VRJP.

1.3.5 Link with the VRJP

Let d € N*. Let W > 0. Recall that by Proposition 1.22, there exists a potential (/) ,cz¢ on
Z¢ with distribution yy where V' = Z% which is linked to the VRJP on Z? with constant weights

W. Remark that = 28
B
— =-A — —2d].
e (-2

Consequently, Hg/W is a random Schrédinger operator with an ergodic potential % —2d. Actually,
it looks like the Anderson model where 1/W would correspond to the disorder strength A in the
Anderson model. Nevertheless, the potential (85 ),cz¢ is not i.i.d. On the contrary, the correlations
of (Bz)zeze make Hg non-negative. By Theorem 1.24, we know that Hpg is strongly related to
the VRJP. On Z and Z?, by Theorem 1.27, the VRJP is recurrent almost surely for any value
of W. This can be interpreted as a kind of localization property. On the contrary, on Z% with
d = 3, the VRJP exhibits a unique phase transition between recurrence and transience according
to Theorem 1.29. It can be interpreted as a kind of phase transition between localization and
delocalization. Besides, in the transient phase, ¥ can be viewed as a delocalized pseudo-eigenstate
of Hpg for the spectral value 0. Consequently, as an operator, it is reasonable to expect that Hg
exhibits the same kind of phase transition as the Anderson model. The properties of Hg as a
random Schrédinger operator were first studied in [154].

Proposition 1.38 (Theorem 2 in [154]). Let V = Z® with d € N* and let W > 0. Then, under

W
vy,

1) The spectrum of Hg is included in R .
B

(ii) For every i,j € Z%, almost surely,

A~

Gs(i,j) = lim (Hg+¢e) (i, ).

e>0,e—0

(11t) Hgp = 0 and 1 has at most polynomial growth in the sense that for every p > d, almost
surely, there exists a random C > 0 such that for every z € Z¢,

[¥s(2)] < Cll2[]".

Actually, we will see in this thesis that the spectrum of Hg is exatly Ry. The question of the
localization of Hg has been partially studied by Zeng and Collevecchio in [43]. They proved the
following result :
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Theorem 1.39 (Theorem 2.4 in [43]). Let V = Z¢ with d € N* and let W > 0. Then, there exists
Wi(d) > 0 such that for every W € (0, W;(d)), under v{¥, Hg is localized in the sense that it has
almost surely a complete set of orthonormal eigenfunctions which decay exponentially.

Remark 1.12. Similarly as in Remark 1.4, in this section, we made a small abuse of notation.
Indeed, when W is a positive number, we use the notation V‘I//V to denote the probability measure
of the potential 5 associated with the VRJP on some graph (V, E) where all weights are assumed
to be equal to W.

The proof of Zeng and Collevecchio relies on the properties of the potential 5 and the result
of Aizenman and Molchanov in [5]. One goal of this thesis is to go further in the understanding
of Hg as an operator. In particular, we will focus on its integrated density of states which has
many surprising properties.

1.4 Branching random walks

In this thesis, branching random walks arise simultaneously as a tool and as an object of
study. In this section, we describe the most important results regarding branching random walks
which are important in order to understand Chapter 2 and Chapter 3.

1.4.1 One-dimensional branching random walks

First, let us define one-dimensional branching random walks. Let x be a point process on R
with a finite number of points. More precisely x = {0;, 1 <i < N} where N is an integer-valued
random variable and for every ¢ € [1, N], 0; € R. Let o be a first individual called the root
and let S(0) = 0 be the initial position of o. (0, S(0)) = (0,0) constitutes the generation 0 of
the branching random walk. The generation 1 of the branching random walk is given by x :
o has N children with positions {g1, -, on}. Then, next generations are defined as follows :
Let n € N. We associate a new point process x,, := {of,1 < i < N,} to every individual u at
generation n. If the position of u is 5, then the positions of the children of u will be given
by the point process {o}' + Sy,1 < i < N,}. Moreover, we assume that the point processes
{Xu, v individual at generation n} are i.i.d with distribution y. Further, we assume that these
point processes are independent from the previous generations. The point process

{0 + Su,1 <i < N,,u individual at generation n}

represents the (n + 1)-th generation of the process. This construction gives us an underlying
Galton-Watson tree V. Then, the branching random walk can be represented as (u, S, )uey where
Sy is the position of the individual u. For every u € V, the generation of u is denoted by |ul.
The structure of rooted tree gives a natural genealogical order < on V. The parent of u € V,
for the genealogical order is denoted by u. A simple example of branching random walk can be
constructed as follows :

— Let V be a Galton-Watson tree with a root o.

— Let {&}ver\ (o} be real valued random variables which are i.i.d conditionally on V.

— For every u € V, we define
Su= > &

o<v<U

In this case the positions of the branching random walks are independent of the underlying
Galton-Watson tree but remark that it is not necessarily true in the definition of a branching
random walk.

By Proposition 1.11, one can easily check that, when V is a Galton Watson tree with root o,
the discrete-time process which is associated with the VRJP on V' with constant weights W > 0
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is a random walk in random environment whose conductances (c(u, &)),e1\ (o} are given by

c(u, ) = Ay H A?

o<v<i

for every u € V'\{o} where (Ay)yev\ (o} are i.i.d Inverse Gaussian random variables with parameters
(1, W). Therefore the conductances of the VRJP on a tree form a process which is very similar to

(€(u, @) ey oy = <exp< > 21n(Av)>>
o0<VUsU ueV\{o}

which is the exponential of a branching random walk. That is why one-dimensional branching
random walks are a very convenient tool in order to study the VRJP on trees.

A natural problem regarding branching random walks consists in looking at their asymptotic
behaviour. Let (u, Sy)uev be a branching random walk. For every n € N, we define

I, := min S,,.
[ul=n

Of course, the asymptotic behaviour of (I,,),en depends on the point process x which was chosen
in order to define the branching random walk. Actually, the behaviour of (u, S, )uecy is mostly
linked to the function F' which is defined by

Ft)=In [E| ) e
|u|=1

Moreover, we will always assume that the underlying Galton Watson tree V' is supercritical.
In particular F'(0) > 0. Besides, the survival event of V' is denoted by S. As V' is assumed to
be supercritical, S has positive probability. In [25], Biggins found the asymptotic behaviour of
(In)nen on S.

Proposition 1.40 (Theorem 4 in [25]). Let us assume that F(t) <+ for some t > 0. For any
a € R, let p(a) :=inf {ta + F(t),t = 0} and v := inf {a € R, pu(a) = 0}. Then, conditionally on S
it holds that

-[771 a.s
n n—+w
Moreover,
F(t)
=inf —=.
TR

Therefore, when v # 0, we know the first order of the asymptotic behaviour of (I,)nen-
However, Proposition 1.40 does not explain what is going on when ~ = 0. Actually, it is not very
difficult to check that v = 0 when

F(1)=0  and  F'(1)=0. (1.9)

Moreover, by section 7 of chapter 3 of [89], it is always possible to reduce to (1.9) under mild
assumptions. Therefore, the main issue now consists in finding the asymptotic behaviour of
(In)nen assuming (1.9). The main tool in order to answer this question is the martingale

Wadpew = | D, ¢

|ul=n neN

By Biggins’s theorem in [24] (see [114] for a simpler proof), it holds that
Wy —=— 0 (1.10)

n—+ao0

when we assume (1.9). One may wonder what is the decay rate of W,,. A partial answer was given
by Aidekon and Shi in [2].
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Theorem 1.41 (Theorem 1.1 in [2]). Let us assume that the underlying Galton-Watson tree is
supercritical and that

o2 = Z 556_5" < +400.
|ul=n

Moreover we assume (1.9) and
E[X 2 (X)] < +o and E [le(ff)] < o0

where X = 3 e % and X = 3] (Sy A 0)- e~ 5. Then, conditionally on S, it holds that
Ju|=1 |ul=1

P 2
Vi, —E— [ 2D,

n——+00 e

where Dy, is the limit of the derivative martingale ( >, Su6_5“> for whom Chen has found
neN

lul=n

a necessary and sufficient condition of convergence in [37].

Remark that for every n € N, e I» < W,. Together with Theorem 1.41, this implies that, in
probability,

I
liminf —"~ > 1/2.
n—+w In(n)

Actually, in [86], Hu and Shi proved a much more precise result :

Theorem 1.42 (Theorem 1.2 in [86]). Let us assume (1.9) and that the underlying Galton- Watson
tree is supercritical. Moreover, we assume that there exists 51 > 0, 6o > 0 and d3 > 0 such that

1+0;1

E Z 1 +E Z e~ (1+02)Su | L Z eS| < 1op,
|u|=1 Ju|=1 lu|=1

Then, conditionally on S, it holds that

. T _ 3
lim sup Wiy =2 @5
n—-+aoo
liminf 2o =1 g,
n—+op n(n) 2

lim oo =2 in probability.
n—-+o0 In(n) 2 p Y

In order to prove this result, Hu and Shi introduced (W,, g)nen such that for every n e N and

every 3> 1,
Whp = Z e B,

[ul=n

They proved the following estimate regarding W, g which will be very useful in Chapter 3 in
order to study the VRJP on trees.

Proposition 1.43 (Theorem 1.6 in [86]). Make the same assumptions as in Theorem 1.42. Let
B> 1. Let r € (0,1/8). Then, it holds that

E[W, ] =n 2 o)),

Furthermore, in chapter 3 of this thesis, we will use estimates regarding the asymptotic
behaviour of another quantity which is similar to (I,)pnen.



34 Chapitre 1. Introduction

Theorem 1.44 (Theorem 1.4 in [64]). Let (u, Su)uev be a branching random walk satisfying
(1.9). For every x € V, let us define

S(zr) = max S(u).

o<u<sT

In addition, we define

o’ =FE Z S(u)?e®

lul=1

Then, conditionally on S, almost surely, it holds that

in S
Lo Tl W) rgrrgn\ 12
n—lg-loo nl/3 - 2 '

Moreover, branching random walks have a continuous-time counterpart which is called the
branching Brownian motion. In this thesis, we focus on discrete-time branching random walks but
we often generalize theorems which had been proved previously in the continuous-time setting.
Let us give a short insight into the main results concerning the branching Brownian motion.

The binary branching Brownian motion is defined in the following way :

— We start with 1 initial particle o at the origin. It behaves as a Brownian motion until
an exponential time (with parameter 1) T where o divides itself into two independent
Brownian motions which start from the position of o at time 7.

— Each particle u behaves as a Brownian motion and divides into two Brownian motions at
rate 1.

For every t € R, we denote the number of particles at time ¢ by n(t) and the set of particles at
time ¢ by N(t). For every t > 0 and for every u € N(t), we denote the position of u at time ¢
by Sy (t). Moreover, for every t > 0, we define M (t) = max {S,(t),u € N(t)}. (M(t))t=0 is the
continuous-time analogue of (I,)nen. Let f be a positive measurable function. Then, let us define
for every t = 0,

ht,o) =B | [] flz+Su(®))

ueN (t)
A remarkable fact is that h is solution of the famous FK PP equation which is
oh  10%h
ot 2022
with h(0,-) = f. This equation has been first studied by Fisher in [66] and by Kolmogorov,
Petrovsky and Piskunov in [100]. In [125], McKean found the link between the FKPP equation

and the branching Brownian motion. Furthermore, with f = 1{- > 0}, for every ¢ > 0 and every
z € R, remark that

+h2—h

h(t,z) =P (M(t) < z).

Therefore, one can use the FKPP equation in order to study the distribution of M. More precisely,
McKean showed in [125] the following result : which was generalized by Bramson in [30]

Proposition 1.45 ((3) in [125]). It holds that

M(t) — m(t) -2 Ar*

t—+00

where m(t) is the median of M (t) for every t = 0. Moreover, for every x € R, P(M* < x) = w(x)
with w solution of the ODE

1
§w"+\@w'+w2—w=0.
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Further, in [31] and [30], Bramson proved that, as ¢ goes to infinity

3
m(t) = V2t — m1n(1t) +0(1).

Nowadays, new progresses have been made regarding the branching Brownian motion. For example,
one can consult [38], [19], [10] and [4] for an insight into the recent litterature concerning the
branching Brownian motion.

1.4.2 Critical spatial branching random walks

Spatial branching random walks are defined in the same way as one-dimensional branching
random walks, except that the random variables p; in the point process x = {0;,1 <i < N} can
now take values in a set which is not R but Z? or R%. Usually, as in the one-dimensional case,
one can consider a simpler case of spatial branching random walks which is defined as follows :

— Let u be a probability measure on N and let P be a probability measure on R%. i is called

the offspring law and P is the motion law.

— Let V be a Galton-Watson tree with a root o.

— Let {§U}vev\{o} be i.i.d random variables with distribution P which are independent of V.

— For every u € V', we define

>

o<VLU

Moreover, in this thesis, we will assume that spatial branching random walks are critical. It means

that
+00
> ku(k) =
k=0

In other words, we assume that the underlying Galton-Watson tree V is critical. It is well known
that it implies that V' is almost surely finite. Moreover, in [101] (see |75] for a modern proof)
Kolmogorov proved the following result :

Lemma 1.46 (Theorem 3.1 in [75]). Assume that p is a critical measure on N and let 02 =
Z kE(k — 1Du(k) < 4+00. Let (Zy)nen be the successive generation sizes of a Galton-Watson tree

wzth offspring law p. Then,
2
Thanks to Lemma 1.46, in [166], Yaglom found the limit in law of Z,, conditionally on Z, > 0.

Proposition 1.47 (Theorem 1 in [74]). Assume that p is a critical measure on N and let

Z k(k — 1pu(k) < +00. Let (Zp)nen be the successive generation sizes of a Galton-Watson

c(z Z>O)_>g
n—+00

where € is an exponential distribution which has density

tree wzth offspring law w.

2
— exp(—2z/0?)d
= exp(—2x/0”)dx

For every d € N*, let Py be a distribution which has probability 1/(2d + 1) on every element of
the form (0,---,0,41,0,---,0) in Z? and probability 1/(2d 4+ 1) on 0 € Z¢. In dimension d > 3
in [106], Lalley and Zheng proved the following result which generalizes Proposition 1.47 :
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Theorem 1.48 (Theorem 5 in [106]). Let d = 3. Let pu be a critical measure on N such that
+o0

02 = > k(k — 1)u(k) < +o0. Let us consider a spatial branching random walk with offspring law
k=1

w and motion law Py. For every n € N, let Z,, be the number of particles in generation n, let ),
be the number of occupied sites in generation n and for every j € N*, let M, () be the number
of vertices of Z¢ which contain exactly j particles in generation n. Then there exists a sequence

+00
(Hj)jeN* € RI}T_* such that Z Jjk; =1 and

7j=1

Zy [ My(j Qn aw 3
E ) <(])> y T Zn >0 l—> 1,(I€j)j21,21€j g
n n j=1 n n—+0o0 j=1

where € is an exponential distribution which has density

2
= exp(—2z/0?)dz.

In dimension 1 and 2, the behaviour of the spatial branching random walk is very different.
In dimension 1, it is not hard to see that €, is of order y/n. (See section 7 in [146].) Moreover, in
dimension 2, Lalley and Zheng proved the following result :

Proposition 1.49 (Theorem 7 in [106]). Let u be a critical measure on N such that o? =
+00
> k(k—1)u(k) < 4+00. Let us consider a spatial branching random walk with offspring law p and
k=1

motion law Ps. For every n e N, let Z,, be the number of particles in generation n and let €, be
the number of occupied sites in generation n. Then, conditionally on Z, > 0, In(n)n~1Q,, is tight.

Consequently, according to Theorem 1.48 and Proposition 1.49, spatial branching random
walks which are conditioned on survival exhibit a very different behaviour when d > 3 compared
to lower dimension. Indeed, in dimension 1 and 2, there is not enough space and particles are
accumulating. On the contrary, when d > 3, particles spread in an homogeneous way.

Dimension 2 is a kind of critical dimension when we condition on survival at time n. Let us
mention that it is also possible to consider a spatial conditioning. For example, one can condition
the Galton-Watson tree to have n vertices and make n go to infinity. This approach is explored by
Le Gall and Lin in |72] and in |73]. One can also consider a branching random walk starting from
2 and condition it to visit 0 and make ||z|| go to infinity. This type of conditioning is studied by
Zhu in [169], [170] and [171]. Some crucial estimates of Zhu have also been generalized by Angel,
Hutchcroft and Jarai in [9] and more recently by Asselah and Schapira in [11]. In the spatial
conditioning, the critical dimension is 4 whereas it was 2 in the time conditioning.

In their articles, Lalley, Zheng, Le Gall, Lin, Zhu, Asselah and Schapira used a very important
tool in the area of branching random walks which is the spine decomposition. The principle of
this spine decomposition is that, by the means of a change of measure, one can decompose the
branching random walk into a simple random walk which is called the spine on which we attach
smaller branching random walks which are independent from the spine. In Chapter 2 we give a
precise explanation of the spine decomposition and we use it in order to find properties of spatial
branching random walks starting from a point process.

1.4.3 Spatial branching random walks starting from a point process

Let d € N*. Let © be a point process on R?, that is, a random locally finite integer-valued
measure on R%. © can be represented in the following way :

CEDI

el
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Let p be an offspring law on N. We do not assume criticality of p for now. Let P be a motion law
on R%. Then, conditionally on ©, for every i € I, let us consider a branching random walk S
with offspring law g and motion law P starting from x;. Besides, we assume that, conditionally
on O, these branching random walks (S (i))ie 1 are independent. Then, for every n € N, we can
construct the measure ©,, which is defined by

On=2, D, b5

i€l |u|=n

Remark that ©,, is not always locally finite for any n € N if we do not make assumptions on
O, 1 and P. Actually, for each choice of O¢, i and P, it is necessary to verify whether ©,, is
locally finite for every n € N or not. For example if Og is a Poisson point process with intensity
e”IHSd:c, w is critical and P is a standard Gaussian distribution, then ©; is not locally finite. On
the contrary, if ©¢ is a homogeneous Poisson point process and p is critical, then ©,, is locally
finite for every integer n. If for every bounded subset A of R, E[O(A)] < +c0, then we say that
© has finite intensity and A — E[©(A)] is called the intensity measure of ©. However, such a
measure does not exist for every point process O.

A natural problem regarding spatial branching random walks starting from a point process
is to know whether (©,,),en converges towards the null point process or not. This question has
been studied a lot in the 70’s and the 80’s and engendered the theory of cluster fields which
is summarized in [124]. We say that a point process O is cluster-invariant (with respect to the
branching random walk with offspring law p and motion law P) if and only if for every n € N,
0, '™ 0. A branching random walk D(u,P) with offspring law p and motion law P is said
to be stable if there exists a point process © which is invariant in law by translation, which is
cluster-invariant with respect to D(u,P) and which has finite intensity. In [94], thanks to his
backward tree method, Kallenberg proved the following result.

Theorem 1.50 (Particular case of Theorem 1.2 in [94]). Let d € N*. Let © be a point process on
R? which has a finite intensity o and whose law is invariant by translation. Let us assume that for
every n € N, the random measure ©,, is locally finite where ©, is obtained from © by performing
the nth generation of the branching random walk D(pu, P) with critical offspring law p and motion
law P. Then (On)nen converges in law for the vague topology towards some limiting point process

Ou. Moreover Oy is either zero if D(u,P) is unstable or it is non-zero and its intensity measure
is 0 if D(u,P) is stable.

According to Theorem 1.50, the notion of stability is very useful in order to analyse the
asymptotic behaviour of branching random walks starting from a point process. Therefore, it is a
big question to know whether a branching random walk is stable or not. Let § €]0,1] and let
a €]0,2]. Then, we can consider the critical offspring law pz on N such that for every s € [0, 1],

+o0 1
Z pp(k)s® = s+ 5(1 —5)1H8,
k=0

Moreover, we define the motion law P, ¢ which is defined by its characteristic function such that
for every y € R,

d /2
j exp (iy, ©)) Paaldz) = exp | — (Z IW)
k=1

Then, generalizing [50] and [60], Gorostiza and Wakolbinger proved in [81], in the case of a
continuous-time model, that there is a critical dimension between stability and unstability.

Theorem 1.51 (Theorem 2.2 in [81]). The continuous-time branching random process with
offspring law pg and motion law Py q is stable if and only if d > a/p.
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In [49], considering the discrete-time model, Dawson and Fleischmann proved that the critical
dimension is also /3 in the lattice case. Another important question concerning spatial branching
random walks starting from a point process is to characterize the set of cluster-invariant point
processes. Assuming some strong hypothesis, it is possible to find the set of the laws of cluster-
invariant point processes.

Theorem 1.52 (Theorem 12.4.6 in [124]). Let d € N*. Let p be a critical offspring law and let
P be a non lattice motion law on RY. We assume that the branching random walk associated

with (u, P) is stable. For every | € Ry, we denote by ch) the non-trivial limit in law of the

sequence (@ﬁ))neN starting from the Poisson point process ©W) with intensity 1 - Leb. Po(é) s a
translation-invariant, cluster-invariant point process with intensity [ - Leb. Let © be a point process
on R which is cluster-invariant and whose law is invariant by translation. Then, there exists a

probability measure p on Ry such that the law L(O) of © satisfies

£O) = L Y (PD) du(r).

Theorem 1.52 characterizes the set of cluster-invariant point processes which are invariant by
translation. Actually, this assumption of invariance by translation is very strong. In 11.10.5 in
[124], one can find a counter-example where a one-dimensional cluster-invariant point process is
not invariant by translation. In [92], in some cases, Kabluchko found a criterion to know when
there exists such cluster-invariant processes which are not invariant by translation. However,
there are some important cases where all the cluster-invariant point processes are invariant by
translation. For example, in [32], Bramson, Cox and Greven studied the case of the critical binary
branching Brownian motion by means of estimates on the PDE

M Lapp2
ot 2

The critical binary branching Brownian motion on R? is defined as follows :
— We start with 1 initial particle o at the origin. It behaves as a Brownian motion in R? until
an exponential time T with parameter 1. At time 7', the particle o dies with probability
1/2 or divides into two independent Brownian motions in R? starting from the position of
o at time T
— Each particle u behaves as a Brownian motion in R? and at rate 1, it dies with probability
1/2 or divides into two independent Brownian motions in R? with probability 1/2.

Theorem 1.53 (Theorem 1 in [32|). Let d = 3. There exists a family (Po(é))l;o of point processes
which are cluster-invariant with respect to the critical binary branching Brownian motion in R?
such that for every | € R, 150(5) has constant intensity . Moreover, for every | € R, 150%) 18
translation-invariant. Let © be a cluster-invariant point process with respect to the critical binary
branching Browian motion in R®. Then, there exists a probability measure i on Ry such that,

£(O) = f Y (PD) du(r).

0

Remark that, in Theorem 1.53, the only assumption which is made is cluster-invariance. © is not
assumed to be translation-invariant anymore. In other words, in that case, all cluster-invariant
point processes are invariant by translation. In [39], Chen, Garban and Shekhar proved a similar
result for the one-dimensional branching Brownian motion with critical drift. The aim of chapter
2 is to generalize Theorem 1.53 in the discrete-time setting by means of methods which are
developped in [39].
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1.5 Our results regarding branching random walks

This section will briefly describe the results of chapter 2. It is based on my paper [142] which
was written under the supervision of my PhD advisor Xinxin Chen. In this chapter we will study
spatial branching random walks in R? with critical offspring law x and motion law P in three
different cases :

1. Hypothesis H; : We assume that d > 3. The distribution P is a d-dimensional Gaussian

random variable with mean 0 and covariance matrix ¥ = I; where I; is the identity matrix.
Moreover o2 := 3% k2 u(k) < +oo.

2. Hypothesis Hs : We assume that P can be written as

P = 2 p(x)d,

TeR

where R is a finite subset of Z¢ with d > 3. Moreover p is symmetrical in the sense that
for every x € R, —x € R and p(—z) = p(z). P has a positive definite covariance matrix
3. In addition, we assume that the random walk generated by the motion P is aperiodic.
Furthermore o2 := 3% k2u(k) < +oo.

3. Hypothesis H3 : The motion law P is given by a spherically symmetric a-stable law with
a €]0,2]. More precisely for every y € R,

d /2
f exp (iy, #)) P(dz) = exp | — (Z W)
k=1

The critical offspring law p has no second moment anymore. However we assume that there
exists 3 €]0, 1] such that for every v < 3, Z,‘:ioo k17 u(k) < 400. Moreover, we assume that
d> a/p.

Remark 1.13. Hypothesis Hi is a particular case of Hs with (a, ) = (2,1). However we
distinguish the special case of Hypothesis H1 because the proofs of the forthcoming results are very
similar when we assume Hypotheses Hy and Ha. On the contrary, if we assume Hs with general
a and 3, then we need to slightly change the proofs.

Now, let X be a non-negative random variable. If we assume hypotheses H1 or Hs, let Ag’X be a
Poisson point process with distribution

PPP(X\(dx))

where A is the Lebesgue measure. If we assume hypothesis Ho, let Ag’X be the discrete Poisson

point process
PPP (X > 536) :

xeZd

Let us define the sequence (AZ’X)HGN which is obtained by attaching independent spatial branching
random walks with motion law P and offspring law p to the point process Ag’X. Moreover, a
"closed ball" designates a euclidean closed ball of R, Under hypothesis Ho, we always assume
that a closed ball contains at least one point of Z%.

Theorem 1.54 (Convergence Theorem). We assume hypotheses Hi, Ho or Hs. Then, there
exists a non-trivial point process A%X such that
AdX law ALX
n n— -+ ©

i the vague topology.
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Idea of the proof of Theorem 1.54.

Let us sketch the proof of Theorem 1.54 under hypothesis Hi or Ho. If a critical branching
process starts from a single particle and if we condition it to visit a closed ball A, we will prove in
Chapter 2 that the limiting point process is some point process AN 4. However, most of the critical
branching processes starting from particles in Ag’X will not reach A because of transience (in
dimension d > 3) or because of extinction of the branching process. Let us make this intuition
more quantitative. By homogeneity of the Poisson point process Ag’X, for every M > 1,

ASX(B(0, My/n)) ~ ©(n2).

Moreover, any particle of AS’X located at = € R? with ||z|| » /n is too far from A to have
descendants in A at time n. Indeed, a centered random walk with second moment is at distance
O (y/n) from 0 at time n. Moreover, we will prove in Chapter 2 that a particle in Ag’X located
at x € B(0, M+/n) has descendants which reach A at time n with probability which is of order
O(n~Y?). If Zy(ly)(') is the occupation measure of the n-th generation of the critical branching
process starting from a particle y in the support of Ag’X, combining both previous approximations,
we get that

f1{z§;f>(A) > 1}dAS™ (y) ~ O(n??) x O(n~Y?) = O(1).

Therefore, the number P4 of particles in Ag’X whose descendants reach A is of order ©(1).
Moreover, for each of these particles, the positions of their descendants in A form a point process
distributed as AV4. Consequently, A?.%X is a layering of P4 independent copies of N 4. ]

Remark 1.14. Theorem 1.5/ is not totally new. Actually the case of Hypothesis H3 was already
known in a continuous-time setting in [81]. However our result is stated in discrete time. Therefore,
we cannot use PDEs estimates as in [81] which makes necessary to use probabilistic tools. Moreover
the lattice case of Hypothesis Ha was already treated in the discrete-time setting in [49] with
a different formalism. Nonetheless, one advantage of our proof is that we can treat the three
different hypotheses with a unified proof in a modern formalism. (However the proof requires slight
modifications in the case of Hs but the main idea remains the same.)

It is clear that the limiting point processes obtained in Theorem 1.54 are cluster-invariant. In
fact, all cluster-invariant point processes have this form.

Theorem 1.55 (Characterization of cluster-invariant measures). Let us assume hypotheses H1,
Ho or Hs. Let © be a cluster-invariant point process. Then there exists a non-negative random
variable X such that :

0 ' ABX

a4, X . . . . .
Moreover A" is cluster-invariant for every non-negative random variable X .

Idea of the proof of Theorem 1.55.

Let us consider a cluster-invariant point process ©. Let f be a non-negative continuous compactly
supported function whose support is included in a closed ball A. By cluster-invariance, we remark
that for every n € N*,

E [exp (- f f(m)@(da:))] _E {exp <— J f(x)@n(dx)>].

Then, we investigate the asymptotics of the right-hand side above in order to describe the
distribution of ©. We will show that the particles « in the support of © such that ||z|| = M+/n
can be neglected. That is why,

E[exp (—Jf(a:)@n(d:z)>] ~E 11 Ep [exp [~ D f(Su+2)

z€ONB(0,M+/n) |u|=n
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where under P, S is a branching random walk with offspring law p and motion law P starting
from 0. Under P, for every set A, Z,(A) denotes the number of particles of the branching random
walk which lie in A in generation n. Furthermore, we will prove in Chapter 2 that there exists a
quantity Ry 4 such that, uniformly in x € B(0, M\/n),

In|Ep |exp | — Z f(Sy +x) ~ Ry aP(Zp(A—2)>1).

lul=n

Therefore, for every n € N*,

E [exp <—ff(x)®(d1:)>] ~ E[exp (RpaLy)] (1.11)

where

L, = P(Z,(A—z)>1)O(dx).

fB(o,Mﬁ)

In Chapter 2, we will prove that (Ly)nens is tight. Therefore, by Prokhorov’s theorem, up to
the extraction of a subsequence, (L;,),en+ converges in law toward some random variable Y.
Therefore, by making n go to infinity along this subsequence in (1.11), we obtain that

o (- [ rw0() | = Bleww (R7a1)1.

Actually, we will see that the right hand-side is exactly the Laplace transform of A&X for some
random variable X which is related to Y. It concludes the proof. ]

1.6 Owur main results regarding the VRJP

Most of the results of this thesis concern the VRJP but we focus on different objects including

the martingale (wén))neN, the operator Hg on Z%, the scaling limits of Hpg on one-dimensional
continuous topological spaces or a system of SDEs which is associated with the random potential

3.

1.6.1 Main results of Chapter 3

In chapter 3, we study the asymptotic behaviour of the martingale (wén))neN. It is based on
the paper [141]| which has been written under the supervision of my PhD advisors C. Sabot and
X. Chen. The proofs of Theorems 1.56, 1.57, 1.58 and 1.59 below use one-dimensional branching
random walks. By means of different tricks, we adapt the tools which are known about branching
random walks in the particular case of the VRJP on trees.

As explained in Remark 1.10, the LP-boundedness of (¢én))neN on Z%, is crucial in order to
prove diffusivity of the VRJP. We are not able to prove the LP-boundedness of (wén))neN for the

transient VRJP on Z¢. However we can always prove uniform integrability.

Theorem 1.56. We assume that V = Z% with d > 3 and that the weights on the edges of Z% are
constant and equal to some W > 0. Moreover we assume that W > W.(d). Then the martingale
(1/)[(;1) (0))nen 4s uniformly integrable with respect to 1}y .

Idea of the proof of Theorem 1.56.

Thanks to the stability of the distributions of the form V‘I;V’n under restriction and conditioning
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which is given by Lemma 1.21, we will prove in Chapter 3 that for every n € N, the law of wén) (0)
satisfies

i (0)
£ (0™ 0)6,) =16 |1, -2~ 1.12
(% Ol ) ¢47(0,0) 2

(n)

for some o-field Q’én) such that Czﬁﬁ)i(o) is measurable with respect to G,,. As the VRJP is transient

5 (0,0)
v (0)

because W > W,(d), we know that —/5—
&57(0,0)

stricly positive. Therefore, by making n go to infinity in (1.12), we obtain

¥3(0)

G30.0) which is

converges almost surely towards

¥5(0)
L 0)|Gw) = IG | 1, <
(¥5(0)|Ge0) ( G3(0,0)
for some o-field G, such that GZZB(E)O())) is measurable with respect to G. In particular, E [13(0)] =

1=E [wé”) (0)] for every n € N. By Scheffé’s lemma, it implies that (wén) (0))nen converges in L.
In particular, (wén) (0))nen is a uniformly integrable martingale. Ol

Moreover, in the case of Galton-Watson trees, when the VRJP is transient, we are able to
show LP-boundedness of (w(ﬂn))neN. In the next three theorems o designates the root of the tree.

Theorem 1.57. Let V' be a Galton-Watson tree with root o with offspring law p such that p(0) = 0

and the mean m of p satisfies m > 1. Let W > W.(u). Then, for every p €]1, +o[, the martingale

(1/)[(;1) (0))nen is bounded in LP with respect to V‘V/V .

On the contrary, when W < W¢(u), we know that the VRJP is recurrent which means that
(d)gn) (0))nen converges to 0 and therefore is not uniformly integrable. In Chapter 3, we compute

the rate of convergence of (ﬂ)gn))neN toward 0.

Theorem 1.58. Let V' be a Galton-Watson tree with a supercritical offspring law p satisfying
mild hypotheses. Let W < We(u). Then, it holds that, vV -almost surely,

lim n(vs () = —7(m, W)
n— -+ n

with 7(m, W) > 0.
Moreover, at the transition point W,(u), we found a different behaviour.

Theorem 1.59. Let V' be a Galton-Watson tree with a supercritical offspring law p satisfying
mild hypotheses. Let m be the mean of . We assume that W = We(u). Then, it holds that

@S 0) ..

nl/3 ot €
1/3 +00 2 :
where 0. = % (3”;"2) / with o2 = 16mf WG_W(I+1/x_2)dx.
0 T

The proof of these three theorems relies on the link between the square of wén) and the

effective resistance of the system. Therefore, controlling the ng") is tantamount to controlling
this effective resistance. To do so, we will use tools coming from the theory of branching random
walks.
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Idea of the proof of Theorem 1.57.
Let W > We(u). We aim to show that (wgl)(o))neN is bounded in L? for every p > 1. First,

(G(ﬂn)(o, 0))nen is the bracket of (wén) (0))nen in the sense that (1/1[(;) (0)* — G(ﬂn)(oa 0))neN is a

martingale. Therefore, by Burkholder-Davis-Gundy inequality, for every p > 1, it is enough to
show that there exists C' > 0 such that for every n e N,

E {(égﬂ(o, 0))p/2] <C

in order to prove that (E [(wén)(o))pD N is bounded. Now, how can we control G(ﬂn)(o, 0)?
ne

Surprisingly, everything is easier if we make a rank-one perturbation. More precisely, there exists a
potential (3;);ey on the tree V' and a random variable v with Gamma distribution with parameter
(1/2,1) which is independent of /5 such that for every i € V,

Bi = Bz + 1{i = o}7.

Moreover, if (A;)ie(o; are independent Inverse Gaussian random variables with parameters

(1, W) which are independent of v, we can construct f in the following way : for every i € V,

-~ W . 1
U=1
Now, let us consider the operator H 3 such that for every i,j € V,

Hg(i,j) = 1{i = j}26; — 1{{i,j} € BE}W.

Remark that H 5 and Hg differ only at point (0,0). We will show in Chapter 3 that for every
neN, H 3|V, xv,, is positive definite almost surely. In particular, we are allowed to define C:’gl)

which is the inverse of H, 3|V, xVv;,- By Cramer’s formula, for every n € N, it holds that

&5 (0,0)

= _ . (1.13)
1+ 2’)/ng) (0,0)

G5 (0, 0)

Moreover, by a direct computation, one can use (1.13) to prove that for every p > 1, there exists
ap > 0 such that for every n e N,

B|(¢570.0)" |~ ap| (6 00) " ).

Thus, in order to conclude the proof, it is enough to prove that for every a > 0,

limsup E [(één)(o, 0))a] < +00.

n—+ao

Moreover, (G(ﬁn)(o, o)) u is increasing. Therefore, it has almost surely a limit é(ﬁoo)(o, 0). Conse-
€
quently, we need that for every o > 0,

~ «
E [(G(BOO)(O, o)> ] < +o0. (1.14)
Then, in Chapter 3, we will prove the following remarkable fact :

C?g)o) (0,0) = R(0 «— )
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where R (0 «— ) is the effective resistance from 0 to infinity on V' with the random conductances
(c(®,Y)){z,yrep such that for every z € V,

clx,x) = A, H A2,

0<z<¥

By Proposition 1.11, these conductances are the conductances of the discrete time VRJP. Thus,
as W > We(u), we know that Ggw)(o, 0) = R(0 «— o0) < +o0 almost surely. However, we need
(1.14) which is a stronger result than the finiteness R(0 «— 0). Actually, by means of the theory
of electrical networks (see [116]), one can prove that R(o «— o) is solution of the following
equation in law :

1
?2 A TWR®G)

1=x

where (R(i));_, are i.i.d copies of R(0 <— c0) which are independent of (A;);_, . Thanks to the

study of the equation (1.15), we will prove (1.14). O

Idea of the proof of Theorem 1.58 and Theorem 1.59.
Let (A.).ev\(o} be ii.d Inverse Gaussian random variables with parameters (1, W). For every
x € V\{o}, let us define again the local conductance

clz, ) = A, || AZ

0<z<Z¥

For every n € N, let R(0 < 4,,) be the effective conductance between the root o and the point
9y, with local conductances c. §, is obtained by a wired contraction of V\V,,. The details of the

construction are given in Chapter 3. Besides, when W < W, (u), if v = e 1(0 o We will prove
B\,

that for every n € N the following identity in law does hold
¥5(0)% x 29 x (14 2yR(0 «— 6,)) "2 21(1/2, 1) a.s. (1.16)

Therefore, by means of (1.16) and Borel-Cantelli lemma, it is not difficult to show that, up to
some negligible terms,

In(R(0 «— dy,)) a.s.

DO |

(%5 (0)) ~

Then, it is possible to obtain almost-sure estimates for In(R(o0 «— dy,)) thanks to the theory of
branching random walks. In the non-critical case, we will use results of Hu and Shi in [87]. In the
critical case, we have to apply finer estimates. In particular, we will use the results of Faraud, Hu
and Shi in [64]. O

1.6.2 Main results of Chapter 4

Let W > 0 and let d € N*. Let us denote by I/CIZV the distribution of the random potential 3
which is associated with the VRJP on Z? with constant weights W > 0. In chapter 4, we study
the integrated density of states nyy 4 of the operator Hg on 7% where B has distribution l/}i/v. We
will show that the spectrum of Hg is R . Therefore nyy 4 is supported on R,. By the property
of Lifschitz tails (see Theorem 1.37), in the case of the Anderson model, the density of states
decreases exponentially fast at the bottom of the spectrum. However, Sabot and Zeng suspected
that Lifschitz tails should not occur for Hg and that we should have

nw,d(E) ~ \/E
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when E goes to 0, at least for certain values of W. During my thesis, I found some partial answers
to this conjecture. Nevertheless, simultanecously, Disertori, Rojas-Molina and Zeng proved results
which are very similar to mine. When we discovered this situation we decided to publish an article
together which yielded the paper [55]. However the original version of my proofs of the results in
[55] was slightly different. In Chapter 4, I present my original proofs of the results of [55]. First, I
proved a universal bound for the density of states of the operator Hg.

Theorem 1.60. Let d € N*. There exists a positive constant K1 which does not depend on d such
that for every W > 0 and for every > 0,

nw.a(E) < K1 EY?.

Moreover, when W > 0 is small, it holds that the upper bound of Theorem 1.60 is the good
asymptotic order up to some logarithmic correction.

Theorem 1.61. Let d € N*. There exists Wﬁd) > 0 such that for every W < Wﬁd), there exists a
positive constant K qw such that for every E € (0,1),

VE

nW,d(E) = K2,d,W W

Moreover, in the particular case of the dimension 1, we have Wﬁl) = +00.

By Theorems 1.60 and 1.61, when W is small, we have nyy4(F) ~ V'E. Nevertheless, it is not
true anymore when W is large.

Proposition 1.62. Let d = 3. Then, there exists Wid) > 0 such that for every W > WJ(rd), there
exists a positive constant K3 4w such that for every E > 0,

nmd(E) < K37d7wE.

Thus, according to Theorem 1.61 and Proposition 1.62, there is a phase transition regarding
the behaviour of the density of states at the bottom of the spectrum. We conjecture that this phase
transition for the density of states may coincide with the phase transition between recurrence
and transience for the VRJP but we do not know how to prove it for now.

Idea of the proof of Theorem 1.60.

Let 0* be the distribution of 3y conditionally on o(S,,z # 0). By Wegner’s bound (see Proposition
1.36), if o* had a bounded density then it would imply ny 4(E) < CE for some constant C' > 0.
However, by the conditioning property in Lemma 1.21, one can compute the density of o* which
is

1 1 U@ wg(0)

1{f > D}———c F=Ple TP 650076500 (1.17)
m(6 — D)

where D is a positive random variable which is measurable with respect to (8., z # 0). This
density function is not bounded. Therefore, we cannot apply Proposition 1.36. Nonetheless,
according to a generalization of Wegner’s bound, we can obtain a bound of the type ny 4(F) <
CW'E for some constant C' > 0 if there exists C' > 0 such that for every ¢ = 0 and for every z € R,

o*([z —t,z +1]) < CVt. (1.18)
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Using (1.17), we can show an estimate of the form of (1.18). Indeed, for every x € R and every
t>0,

T+t 1 1 @7 (0
o ([x —t,x +t]) < J 1{8 > D}————e (B-D)g 17D G002 G500 g3
ot (8 — D)
¥5(0) 2
_ f Tpsp L (o -20-0) dp
ot (8 — D)

which concludes the proof. O

Idea of the proof of Theorem 1.61.
For every L € N* let Ap = [~L,L]¢ n Z%. Let us denote by Hg the Dirichlet restriction of Hg
in the box Ay. More precisely, for every x,y € Ap,

— If x and y are neighbours in Z4, HP (z,y) = -W

— If z and y are not equal and not neighbours in Z¢, Hi)(x, y) = 0.

—Ifxzy,Hf)(x,y)=2Bx+ 2 w

(. k}eB(Z4),kgA L

where E(Z%) is the edge set of Z%. Moreover, the inverse of HE is denoted by G)P In order to
prove Theorem 1.61, we use the Dirichlet-Neumann bracketing which tells us that for any L € N*,

1
E)> —TFE w|NHP E
TLVV,d( ) ‘AL’ ng[ ( L )]

where N(HP | E) is the number of eigenvalues of HP which are lower than E. However, we cannot
control the eigenvalues of H f) except the first one. Indeed the smallest eigenvalue of H f is lower
than G(X)-P(0,0)~" by the min-max principle. Consequently,

1 1
= < .
rwalE) > [prve (G@),D(O,O) E>

Furthermore, if L is large, G(X)P(0,0) is almost GAE,L) (0,0) which converges towards G3(0,0).
Therefore, approximately,

1 1
E) > 7| = <E|.
) = [ (Gﬁm,o) )

Besides, if W is small enough, the VRJP is recurrent. By Proposition 1.26, ¢3(0) = 0 almost
surely. By Theorem 1.24, it implies that

N 1
G(0,0) = Gp(0,0) — gww = Gp4(0,0).

However, by Proposition 1.19, 1/(2G (0, 0)) has I'(1/2,1) distribution. Actually, in Proposition
1.19, the result is stated on finite graphs but one can show that the distribution of diagonal terms
of Gz remains the same on infinite graphs. Moreover, the cumulative distribution function of
the T'(1/2,1) distribution behaves as vE when E goes to 0. It yields the lower bound in Theorem
1.61. Some work still needs to to be done in order to justify that G(2):P(0,0) ~ G(BL) (0,0) for a
good choice of L with L ~ |In(E)|. This is the main difficulty of this proof. O
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Proof of Theorem 1.62.
We write Eyg" when we integrate with respect to z/gv. Let us denote by a4 the non-integrated

density of states of Hg. For every n > 0, we have Z/C‘I/V-a.s,

+00
fo s (1) = (Hy )7 (0.0) (1.19)

where p15, is the spectral measure of Hg which is associated with the vector dg. By Proposition
1.38, we know that (Hg + 1)~1(0,0) — G5(0,0), v} -a.s. Moreover, by monotone convergence
77—)

theorem,

+00 1 400 1
d — —d .
| e = | s

Together with (1.19), this implies that, V}{V—a.s,
+00 1 R
J adugo(u) = G3(0,0). (1.20)
0
Taking the expectation we obtain,

+00 1 R
fo ~dawa(u)du = B, [Gﬁ(o,o)] .

However, recall that (G(ﬂn)((), 0))nen is the bracket of the martingale (wgl) (0))nen- Moreover, by
Theorem 1 in [54] (see Lemma 9 in [154] for a more precise explanation.), if d > 3, there exists

WJ(rd) > 0 such that for every W > WJ(rd), (d)gb) (0))nen is bounded in L? and thus
E,p [G5(0,0)] < +o0.

Consequently, for every W > WJ(rd),
E

nwa(E) = fo dogy q(u)

This concludes the proof.
Ol

In Chapter 4, we also prove the localization for high energies of the Green function which is
associated with the operator Hp :

Theorem 1.63. Let d e N*. For every W > 0, there exist Ky gw > 0, pugw >0 and Eqw >0
such that for every z € C\R such that |z| > Eqw, for every z,y € Z2,

By |I(Hs = )7 @) | < Kaaw exp(—pawllz = ).

Proof.
By the finite volume criterion given by (11.5) in Theorem 11.2 of [6] applied just on 1 point, we
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only need to check that for every € > 0, there exists ¢ > 0 such that for every z € C such that
|2l = ¢,

1
E — | < e. 1.21
vy [|250_21/4] € (1.21)

In Chapter 4, we will prove something stronger than (1.21). Indeed, there exists C' > 0 such that
for every E > 1,
1 —1/4
- < .
o [|2ﬁ0 - E|1/4] =r
Actually, the finite volume criterion (11.5) in [6] is stated for an i.i.d potential. However, (53),cz4
is not i.i.d. but 1-dependent. Therefore, a part of Chapter 4 is devoted to an adaptation of the

proof of Theorem 11.2 in [6].
OJ

1.6.3 Main results of Chapter 5

Chapter 5 is devoted to the study of the scaling limits of the operator Hg on continuous
topological objects as the line or circles and some related topics. It is based on a work which
has been achieved with my PhD advisor Christophe Sabot. First, we want to understand the
continuous-space version of Hg and G by considering a fine-mesh limit on discrete graphs. In
[113], Lupu, Sabot and Tarrés managed to find the scaling limit of G3/G3(0,0) on R but they
mostly focused in this paper on the dynamics of the continuous-space VRJP. Here, we will not
look at the dynamics of the VRJP but we will carry on with the study of the continuous-space
version of Gg. We will do that on the simplest graph which is not a tree, that is, the circle and
we will make the size of the circle go to infinity. By inverting the continuous-space version of Gg,
we will obtain a continuous-space version of Hg. Several other results stems from this analysis :

— We find a discrete-time version of the so-called Matsumoto-Yor properties and we will

obtain a new proof of continuous-time Matsomoto-Yor properties by taking the limit. This
result is not direcly linked to the continuous-space version of Hg but the main tools of the
proof are very similar. In particular, it uses the same scaling-limit of the 5 potential.

— We prove generalizations of the famous Dufresne’s identity (see [57]) which states that

where 7 is a Gamma random variable with parameters (1/2,1) and « is a Brownian motion.
— We compute the density of states of the continuous-space version of Hg on R which has a
remarkably simple expression.

1.6.3.1 A new approach to Matsumoto-Yor properties

First, we use this scaling limit in order to give a new proof of the Matsumoto-Yor properties.
Matsumoto-Yor properties are beautiful results concerning exponential functionals of the Brownian
motion which were proved in [121] and [122]|. Let a be a standard Brownian motion on R;.
Then we can define the associated geometric Brownian motion e as (e;);>0 = (exp(ay — t/2))i>0.
Moreover, let us define the related exponential functionals 7" and Z such that for every ¢ > 0,
T

t
T, = f egds and Z; = —
0 €t

For every t > 0, we define two sigma-fields A; = o (s, s <t) and Z; = 0 (Zs,s <t). Then,
Matsumoto and Yor proved the following results :
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Theorem 1.64 (Theorem 1.6 and Proposition 1.7 in [122]).
(i) For everyt >0, Z; & Ay.
(ii) Z is a diffusion process whose infinitesimal generator is
1, d? d
—z—+ (1
5% 73 + (14 2)— .
(11i) For every t > 0, the conditional distribution of e; knowing Z; is an Inverse Gaussian
distribution with parameter (1,1/Z;). More precisely, for every t > 0, the conditional density
of e; knowing Z; s

1 (z—1)2

1 _1
H{x > 0}—=e % 2= (x.
{ } v 27’[‘Ztl‘3
In chapter 5, we show that some functionals of the 8 potential on N* furnish a discrete-time
analoguous version of Theorem 1.64. Moreover, by considering a relevant scaling limit of the £

potential we give a new proof of Theorem 1.64.

Idea of the new proof of Theorem 1.6/.

Actually, Theorem 1.64 has a discrete counterpart which is given by the VRJP on N*. Let
m > 0 and let K,, be a weight operator on the line graph N* such that for every i € N*
Kp(i,i+1) = Ky (i +1,4) = m. All other entries of K, are zero. Then we can deﬁne the random

operator H(B ™) on the discrete half-line N* associated with the random field B ~ Z/N* We write
Hgn) in bold letters in order to avoid the confusion with H é " on the discrete circle which shall

. -1
be introduced later. Now, for every n € N* let us define G(ﬁn’m) = ((H,(gm))‘[[l,n]]x[[l,n}]) . For

every n € N* we define also
G™(,1)

wén,m) _ G(ﬁ"’m)(l’n)m and Zémm) = Ql)(n,m)
B

wén’m) and Z é"’m) will play the same role as e; and Z; respectively in the discrete-time setting.
Furthermore, for every n € N*, we define

o™ 1<k <n)and Zom = o(Z5™, 1 <k <n).

The interest of these discrete objects is that they give a discrete version of the results of Matsumoto
and Yor :

Lemma 1.65. Let m € N* be fized.
(i) For every n e N*, Z, ., & Ay m.

(ii) (Z(”vm))neN* is a Markov process. More precisely, for every n € N*, the law of Zénﬂ’m)

conditionally on Z,, ., is

Z(nvm) 1
p X
m
IG| ——1—,1
mt——
Z(n m)
111) For every n = 1, the conditional distribution o knowmg Znm 15 an Inverse Gaussian
ﬁ
distribution wzth parameter (1, 1/Z ) More precisely, for every n = 1 the conditional
density of wﬂ knowmg Zpm 18
1 (e—1)2
1 — _(n,m) 2z
1{z > 0} e 7 dzx.

A/ ZWZén’m)xi”
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A remarkable fact is that the space in the context of the VRJP corresponds to the time
in the context of Matsumoto-Yor properties. Then, the main idea of the proof is to take the

m)

limit in (i), (ii) and (iii) of Lemma 1.65. It is possible because wén’ converges towards the

geometric Brownian motion thanks to a proper renormalisation. More precisely, let (@B(m) (t))t=0
and (Z™)(t));>0 be the continuous linear interpolations of (wgmtj’m))tgo and (Z};mtj’m))tgo. Then,
we will prove that the following convergence does hold for the topology of uniform convergence
on compact sets :

(¢(m) (t), 2™ (t)> . (et, Zt) =0 -

t>0 m—+0

Together with Lemma 1.65, it implies directly (iii) and (i) in Theorem 1.64. However, it still
requires some work in order to deduce (ii) of Theorem 1.64. O

1.6.3.2 The space-continuous operator on circles

Another part of Chapter 5 consists in constructing a continuous-space version of Hg on some
one-dimensional topological spaces as circles. Let n € N*. Let A > 0. We define the discretized

circle Cy,) = {—[An], ..., [An]} such that —[An] and [An]+1 are identified. Let WY be a matrix
on Cjyy, such that (W,S)‘))Z-,j is 0 if 7 and j are not connected and is n otherwise. Let us denote
Hg"n) the matrix associated with the random potential 5 with distribution I/g‘[/;(l:]). Let C™ be
the circle [—A, A\] where the points —\ and A are topologically identified. We denote by G(B)"n)

the inverse of H é’\’n). We define also a continuous bilinear interpolation (C:‘(B’\’n) (t,t ))

(S5 k),

Moreover, we introduce a limiting continuous version G\ of G as follows : Let B be a
Brownian motion on R such that B(0) = 0 almost surely. We define the geometric Brownian
motion M by

t,t’eCN)

(An)

(Mt)te]R = (eBt_t/Q)teR-

Then, the symmetric random kernel G on €W is defined by

My M, A ds Y ds tods
A t t 2 2
A T A (MA g M s [ M)

S

for every t < ¢ € CW. Then, we proved the following convergence result :

Theorem 1.66. Let A > 0. Then
G _law | 50

B n—-+00
for the topology of uniform convergence on (C(’\))2.

Idea of the proof of Theorem 1.66.
Let (Ai)iec[w be i.i.d Inverse Gaussian random variables with parameters (1,n). We will prove

(A)

that the random potential 8 with distribution Vg[[/; | can be constructed in the following way : for
every i € Cpyy),

n 1
— | At +— | .
2 < i+1 Az>
Remark that this representation is not valid on any graph. Here, the unidimensional structure of
the underlying graph is crucial in order to make work this proof. By means of tedious computations
involving this representation of the random potential 3, one can get an explicit form for the

i =

inverse GE;"”) of Hg"n). Thus, up to some negligible term, we can write G(B’\’n) as W) (Y(”))



1.6. Our main results regarding the VRJP 51

where ®™) is an explicit functional from the space of continuous functions on C™) into the space

of continuous functions on C x ¢ and t }Q(n) is a random continuous function such that if
jm<t<(j+1)/n,

J Jtl J
W= [T a+nt—gm| [] 4- J] A
i=—[An] i=—[An] i=—[An]

Moreo