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Résumé

Cette thèse a pour objectif d’étudier les marches aléatoires branchantes spatiales et les marches
aléatoires renforcées. Nous nous intéresserons tout particulièrement au processus de saut renforcé
par sommets (communément appelé VRJP en raison de son acronyme anglais). Le VRJP est
un processus renforcé qui peut être défini sur n’importe quel graphe localement fini et dont le
renforcement dépend d’un paramètre W ą 0. Ce paramètre peut également varier sur chaque
arête du graphe mais nous le supposerons constant dans ce résumé. Grâce à de précédents travaux
(voir [152], [153], [154] et [139]), on sait que le VRJP est presque sûrement récurrent sur Z et
Z
2 pour toute valeur de W . A l’inverse, sur Z

d avec d ě 3, on sait qu’il existe une unique valeur
Wcpdq telle que le VRJP sur Zd avec paramètre W ą 0 est récurrent si W ă Wcpdq et transient si
W ą Wcpdq. Quant aux marches branchantes, il s’agit de marches aléatoires qui ont la propriété
de se diviser au cours du temps. Leurs propriétés en dimension 1 sont à présent connues de manière
très fine. (Voir par exemple [25], [24], [2],[37], [86] et [117].) Par ailleurs, on peut considérer aussi
des marches branchantes en dimension supérieure comme dans [106], [72] ou encore [169] et [171].

En premier lieu, nous nous intéresserons à un modèle de branchement critique en temps discret
partant d’un processus de Poisson Θ0 sur R

d avec d P N
˚. Cela nous amène à considérer la suite

de processus ponctuels pΘnqnPN résultant de cette construction. Si la loi du mouvement de la
marche branchante est dans le domaine d’attraction de la Gaussienne, alors on sait (voir [50], [60]
et [49]) que pΘnqnPN converge en loi vers le processus ponctuel nul si d P t1, 2u et, qu’à l’inverse ,
pΘnqnPN converge en loi vers un processus ponctuel non trivial si d ě 3. Cependant, les preuves de
ces résultats avaient deux problèmes. Soit elles supposaient des hypothèses très restrictives, soit
elles se plaçaient dans le cadre d’un modèle continu en temps ce qui permettait, chose impossible
pour nous, d’utiliser des méthodes venant de la théorie des équations aux dérivées partielles.
Dans cette thèse, nous prouvons à nouveau le résultat de convergence lorsque d ě 3 à l’aide
d’une preuve unifiant les différents cas abordés par la littérature, le tout dans un formalisme
plus moderne. En outre, le processus limite obtenu est invariant en loi par rapport à la marche
branchante. Grâce à [32], une caractérisation de ces processus invariants était connue dans le cadre
d’un modèle continu en temps. Là encore, la preuve de [32] utilisait des EDPs. Dans cette thèse,
nous fournissons une nouvelle preuve de la caractérisation des processus ponctuels invariants en
loi pour les processus de branchement critiques sous des hypothèses plus générales et en ayant
seulement recours à des outils probabilistes.

Par ailleurs, dans cette thèse, nous utilisons également les marches branchantes comme outil
pour étudier le VRJP sur les arbres. Dans le cadre de l’étude du VRJP, Sabot et Zeng ont construit
une martingale positive pψnqnPN dans [154]. Cette martingale joue un rôle crucial puisqu’elle
converge vers 0 si et seulement si le VRJP est récurrent. Par ailleurs, si cette martingale est bornée
dans Lp pour p assez grand, on peut l’utiliser pour montrer que le VRJP a un comportement
asymptotiquement diffusif sur Z

d avec d ě 3. Dans cette thèse, nous montrerons que pψnqnPN est
uniformément intégrable dès que W ą Wcpdq mais nous ne parvenons pas à étudier les moments
dans Lp dans le cas où le graphe sous-jacent est Z

d. Par contre nous prouvons que pψnqnPN est
bornée dans Lp pour tout p ą 1 dès que le VRJP est transient sur les arbres. En outre, nous nous
intéressons à la vitesse de décroissance vers 0 de pψnqnPN lorsque le VRJP est récurrent sur les
arbres.

Par la suite, nous étudions les propriétés spectrales d’un opérateur de Schrödinger aléatoire
Hβ sur Z

d qui a été introduit dans [153] et [154] dans le cadre de l’étude du VRJP. Pour tout
paramètre W ą 0 associé au VRJP, Hβ sur Zd a une densité d’états intégrée nW,d. Nous montrons
que lorsque W est petit, on a nW,dpEq » ?

E lorsque E tend vers 0. Cela est très différent du
comportement bien connu du modèle d’Anderson dont la densité d’états décroît exponentiellement
vite au bord du spectre d’après la propriété des "queues de Lifshitz". Au contraire, lorsque W
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est grand et d ě 3, on va montrer que nW,dpEq “ OpEq lorsque E tend vers 0. Il y a donc une
transition de phase concernant le comportement de la densité d’états.

En outre, dans cette thèse, nous considérerons des limites d’échelle du VRJP sur des graphes
unidimensionnels en prolongeant les travaux réalisés dans [113]. Nous utiliserons ces limites
d’échelle pour donner une nouvelle preuve des propriétés de Matsumoto et Yor concernant des
fonctionnelles exponentielles du mouvement Brownien. De plus, nous construirons une version
continue de l’opérateur Hβ et de son inverse Gβ sur des cercles et nous calculerons la densité
d’états de cet opérateur continu.

Enfin, nous poursuivrons les travaux initiés par Sabot et Zeng dans [155] et approfondis
ensuite par Gérard dans [76] en prouvant une généralisation multidimensionnelle des propriétés
de Matsumoto-Yor.



Table des matières

1 Introduction 11
1.1 How to read this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Reinforced processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Exchangeability and De Finetti’s theorem . . . . . . . . . . . . . . . . . . 11
1.2.2 The edge-reinforced random walk . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 The Vertex Reinforced Jump Process . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 The supersymmetric hyperbolic sigma model, localisation and delocalisation 18
1.2.5 The β-potential and the environment of the VRJP . . . . . . . . . . . . . 19
1.2.6 The infinite version of β, the martingale pψpnq

β qnPN and its applications . . 21
1.3 Random Schrödinger operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.1 Background on self-adjoint operators . . . . . . . . . . . . . . . . . . . . . 24
1.3.2 Physical interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.3 An important example of random Schrödinger operator : the Anderson model 27
1.3.4 The density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.5 Link with the VRJP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4 Branching random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4.1 One-dimensional branching random walks . . . . . . . . . . . . . . . . . . 31
1.4.2 Critical spatial branching random walks . . . . . . . . . . . . . . . . . . . 35
1.4.3 Spatial branching random walks starting from a point process . . . . . . . 36

1.5 Our results regarding branching random walks . . . . . . . . . . . . . . . . . . . . 39
1.6 Our main results regarding the VRJP . . . . . . . . . . . . . . . . . . . . . . . . 41

1.6.1 Main results of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.6.2 Main results of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.6.3 Main results of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.6.3.1 A new approach to Matsumoto-Yor properties . . . . . . . . . . 48
1.6.3.2 The space-continuous operator on circles . . . . . . . . . . . . . . 50
1.6.3.3 New Dufresne type identities . . . . . . . . . . . . . . . . . . . . 51
1.6.3.4 The density of states on the real line . . . . . . . . . . . . . . . . 52

1.6.4 Main results of Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2 Invariant measures of critical branching random walks in high dimension 55
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.1.1 Definition of the model and first notation . . . . . . . . . . . . . . . . . . 55
2.1.2 Previous results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.1.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.1.4 Organisation of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.2.1 Local-limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.2.2 Heat kernel estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.2.3 A warm-up about point processes . . . . . . . . . . . . . . . . . . . . . . . 60
2.2.4 Spine method and change of measure . . . . . . . . . . . . . . . . . . . . . 61



8 Table des matières

2.2.5 A critical branching random walk conditioned on survival in a given set . 63
2.3 Proof of Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.4 Compatibility of Λd,X8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.5 Characterization of invariant measures . . . . . . . . . . . . . . . . . . . . . . . . 74

2.5.1 Preliminary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.5.2 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.6 Heavy tail genereralization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.6.1 New setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.6.2 Generalized proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.7 Remarks and further discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3 The asymptotic behaviour of the martingale associated with the VRJP 91
3.1 Introduction and first definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.2 Context and statement of the results . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.2.1 General notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.2.2 The β-potential and the martingale pψnqnPN . . . . . . . . . . . . . . . . . 93
3.2.3 Notation associated with the VRJP . . . . . . . . . . . . . . . . . . . . . . 94

3.2.3.1 General notation for the VRJP . . . . . . . . . . . . . . . . . . . 94
3.2.3.2 Notation for the VRJP on trees . . . . . . . . . . . . . . . . . . 95

3.2.4 The phase transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.2.5 Statement of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.2.5.1 Results on Z
d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.2.5.2 Results on Galton-Watson trees . . . . . . . . . . . . . . . . . . 95
3.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3.1 Marginals and conditional laws of the β-potential . . . . . . . . . . . . . . 97
3.3.2 Warm-up about the VRJP . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.3.3 Specificities of the tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.3.4 β-potential and path expansions . . . . . . . . . . . . . . . . . . . . . . . 100
3.3.5 Warm-up about branching random walks . . . . . . . . . . . . . . . . . . . 102

3.4 Preliminary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.4.1 ψnpoq as a mixture of Inverse Gaussian distributions and proof of Theorem

3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.4.2 Resistance formula on a tree . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.4.3 Burkholder-Davis-Gundy inequality . . . . . . . . . . . . . . . . . . . . . . 108
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Chapitre 1

Introduction

1.1 How to read this thesis

This thesis is about branching random walks, reinforced random walks, random operators
and the links between these topics. In this introduction, we start by decribing the state of the
art regarding these subjects. Afterwards, we explain which are the main results of this thesis
and we give short insights into their proofs. The next chapters are based on the articles which
have been written during this thesis. In particular, each chapter is self-contained and can be read
independently. Finally, in the appendix, we present numerical simulations which are related to
Chapter 4.

1.2 Reinforced processes

1.2.1 Exchangeability and De Finetti’s theorem

Let us start with the simplest example of reinforced process we can imagine : Pólya’s urn.
This model was introduced in [61] and has been studied and generalized in many works including
[12], [13] and [90]. We focus here on a very simple case. Let a P N

˚ and b P N
˚. We start with

an urn containing a white balls and b black balls. At every step, we choose a ball uniformly at
random in the urn and we put it back in the urn together with a new ball with the same color as
the chosen ball. More precisely, this process defines two sequences pU1pnq, U2pnqqnPN such that
U1p0q “ a, U2p0q “ b and for every n P N,

pU1pn ` 1q, U2pn ` 1qq “ pU1pnq, U2pnqq ` pξ1pn ` 1q, ξ2pn ` 1qq

where conditionally on pU1pkq, U2pkq, 0 ď k ď nq,
— pξ1pn ` 1q, ξ2pn ` 1qq “ p1, 0q with probability U1pnq

a`b`n .
— pξ1pn ` 1q, ξ2pn ` 1qq “ p0, 1q with probability U2pnq

a`b`n .
The process pU1pnq, U2pnqqnPN is reinforced in the sense that the more you pick balls of some
color, the more likely it is to pick balls of this color. Moreover, a simple computation yields the
following result :

Proposition 1.1. Let n P N
˚. Let px1, ¨ ¨ ¨ , xnq P t0, 1un. Let L “

nř
i“1

xi. It holds that

P pξ1p1q “ x1, ¨ ¨ ¨ , ξ1pnq “ xnq “

L´1ś
k“0

pa ` kq ˆ
n´L´1ś
k“0

pb ` kq
n´1ś
k“0

pa ` b ` kq
.
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A remarkable fact which stems directly from Proposition 1.1 is that for every n P N
˚, for

every px1, ¨ ¨ ¨ , xnq P t0, 1un and for every permutation σ of �1, n�,

P pξ1p1q “ x1, ¨ ¨ ¨ , ξ1pnq “ xnq “ P
`
ξ1p1q “ xσp1q, ¨ ¨ ¨ , ξ1pnq “ xσpnq

˘
. (1.1)

For any measure, ν on r0, 1s we can define a random variable ζ˚,ν which has distribution ν and
a sequence of random variables pζνpkqqkPN˚ such that conditionally on ζ˚,ν , pζνpkqqkPN˚ is a
sequence of i.i.d Bernoulli random variables with parameter ζ˚,ν .
The property given by (1.1) is called exchangeability. Actually, it is the main ingredient in order
to apply the De Finetti’s theorem. (See [65].)

Theorem 1.2 (De Finetti’s theorem). Let pξpkqqkPN˚ be an exchangeable sequence of random
variables whose values are in t0, 1u. Then, there exists a measure ν on r0, 1s such that

pξpkqqkPN˚ law“ pζνpkqqkPN˚ .

Basically, De Finetti’s theorem states that if a sequence of random variables whose values
are in t0, 1u is exchangeable, then, it is a sequence of independent coin tossings where the bias
of the coin is itself a random variable. Therefore, one can apply De Finetti’s Theorem to the
case of Pólya’s urn which implies there exists a measure ν on r0, 1s, a random variable ζ˚,ν

1 with
distribution ν and an i.i.d sequence of Bernoulli random variables pζν1 pkqqkPN˚ with parameter
ζ˚,ν
1 such that

pξ1pkqqkPN˚ law“ pζν1 pkqqkPN˚ .

The random variable ζ˚,ν
1 with distribution ν is called "the random environment" of Pólya’s urn.

If we know the distribution ν, we will be able to entirely characterize the distribution of the
process ppU1pkq, U2pkqqqkPN˚ . Actually, a simple computation shows that for every k P N,ż 1

0
xkdνpxq “ E

”
pζ˚,ν

1 qk
ı

“ P pζν1 p1q “ 1, ζ1p2qν “ 1, ¨ ¨ ¨ , ζν1 pkq “ 1q
“ P pξ1p1q “ 1, ξ1p2q “ 1, ¨ ¨ ¨ , ξ1pkq “ 1q

“
k´1ź
i“0

pa ` iq
a ` b ` i

. (1.2)

Then, one can recognise the moments of a Beta distribution with parameters pa, bq, that is, a
distribution whose density is

1tx P p0, 1qu Γpa ` bq
ΓpaqΓpbqx

a´1p1 ´ xqb´1.

Therefore, by the theorem of moments (see Theorem 30.1 in [27]), ν is a Beta distribution with
parameters pa, bq. In this case, the distribution of the random environment was quite easy to
compute but it is sometimes much more difficult. Nevertheless, one may wonder in which context
the random environment does exist. In [51], Diaconis and Freedman proved a generalization of
De Finetti’s theorem.

Let pV,Eq be a locally finite countable graph. V denotes the set of vertices and E denotes
the set of (non-oriented) edges. Furthermore, let us define the set of oriented edges of pV,Eq by

Ê :“
ď

ti,juPE
tpi, jq, pj, iqu.

A path σ of length n in V is a finite sequence pσ0, σ1, ¨ ¨ ¨ , σnq such that for every k P �0, n ´ 1�,
pσk, σk`1q P Ê. For every oriented edge e P Ê and for every path σ, one can define

ωpe, σq “ |tk P �0, n ´ 1�, e “ pσk, σk`1qu|
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where | ¨ | denotes the cardinality. Then, let us define an equivalence relation „ on the set of paths.
Two paths σp1q and σp2q are equivalent, that is, σp1q „ σp2q, if and only if they start from the
same vertex and for every e P Ê, ωpe, σp1qq “ ωpe, σp2qq. A sequence of random variables pXnqnPN
is said to be partially exchangeable if and only if for every paths σp1q and σp2q with the same size
n such that σp1q „ σp2q,

P

´
X0 “ σ

p1q
0 , ¨ ¨ ¨ , Xn “ σp1q

n

¯
“ P

´
X0 “ σ

p2q
0 , ¨ ¨ ¨ , Xn “ σp2q

n

¯
.

A transition kernel on pV,Eq is an element K of r0, 1sÊ such that for every i P V ,
ř

ti,juPE
Kpi, jq “ 1.

Let K be the set of transition kernels on pV,Eq. For any distribution ν on K and for any i0 P V one
can define a random variable Kν on K whose distribution is ν and a sequence of random variables
pY i0,ν

n qnPN which is a Markov chain with transition kernel Kν starting from i0 conditionally on
Kν . pY i0,ν

n qnPN is a random walk in the random environment Kν . Sometimes, pY i0,ν
n qnPN is also

called a "mixture of Markov chains".

Theorem 1.3 (Section 2 in [51]). Let pV,Eq be a locally finite countable graph. Let i0 P V . Let
pXnqnPN be a sequence of random variables such that X0 “ i0 and for every k P N, Xk P V and
tXk, Xk`1u P E. Moreover, we assume that pXnqnPN is partially exchangeable. Further, we assume
that pXnqnPN is recurrent in the sense that almost surely there is an infinite number of k such
that Xk “ X0. Then, there exists a unique distribution ν on K such that

pXnqnPN
law“ pY i0,ν

n qnPN.

By Theorem 1.3, if pXnqnPN is partially exchangeable and recurrent, then pXnqnPN is a Markov
chain in random environment. Therefore a relevant way to study the behaviour of pXnqnPN is to
find the distribution ν and study its properties. However, in [51], Freedman and Diaconis showed
that Theorem 1.3 can fail if we do not assume recurrence of the process. Now, let us focus on a
particular case of partially exchangeable process : the Edge-Reinforced Random Walk.

1.2.2 The edge-reinforced random walk

The Edge-Reinforced Random Walk (ERRW) was introduced by Coppersmith and Diaconis
in [45]. Let pV,Eq be a locally finite graph. Let a P p0,`8qE . For every e P E, ae is the weight of
the non-oriented edge e. Let i0 P V be the initial point. Then, let us define a stochastic process
pXnqnPN with law Pa,i0 such that

— Pa,i0pX0 “ i0q “ 1,
— for every n P N and for every i P V ,

Pa,i0 pXn`1 “ i|X0, ¨ ¨ ¨Xnq “ wtXn,iupnqř
tXn,juPE

wtXn,jupnq

where for every e P E and for every n P N, wepnq “ ae `
n´1ř
k“0

1ttXk, Xk`1u “ eu.

Remark 1.1. We insist on the fact that the weights are associated with non-oriented edges in the
ERRW. There is also an oriented version of the ERRW but it is a very different model which is
known as the random walk in Dirichlet environment. This model has been studied for example in
[150], [161], [151] and [140].

There are a few important questions concerning the ERRW. One wonder whether the ERRW
is recurrent or transient ? If it is recurrent, is it exponentially localized ? If it is transient, does
it exhibit a diffusive behaviour ? Especially, one would like to know what is the asymptotic
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behaviour of the ERRW on classical graphs like trees or Z
d and whether it depends on the

reinforcement a P p0,`8qE or not. Now, let us assume that all weights are equals to some
constant a. Heuristically, when a is very large, the reinforcement is very small and the same
behaviour as for the simple random walk is expected. On the contrary, if a is very small then the
reinforcement is huge and we expect the ERRW to be recurrent. In particular, it is natural to
conjecture that the ERRW on Z or Z

2 is always recurrent and that there is a phase transition
between recurrence and transience on Z

d when d ě 3. We will see in the introduction of this
thesis that these conjectures are true even if their proofs required three decades of work involving
many different authors.

The first step towards this conjecture has been made in [136], where Pemantle proved there is
a phase transition in the case of the binary tree.

Theorem 1.4 (Theorem 1 in [136]). Let us consider the ERRW on an infinite binary tree such
that each edge has the same weight a. Then, there exists a constant a0 ą 0 such that

(i) If a ă a0, the ERRW is recurrent,
(ii) If a ą a0, the ERRW is transient.

The proof of Theorem 1.4 relies on the fact that a tree does not have cycles. Therefore, it
is possible to show that the ERRW on trees is a random walk whose jumps from a vertex to
another one are given by i.i.d Pólya’s urns on each vertex. Moreover, by De Finetti’s theorem,
these Pólya’s urns are associated with Dirichlet random variables. That is why, the ERRW on
trees is a random walk in Dirichlet environment which gives a lot of tools in order to analyse this
random walk.

However, when the graph pV,Eq has cycles, everything is much more complicated. Nevertheless,
Coppersmith and Diaconis observed the following general fact about the ERRW :

Proposition 1.5. For any locally finite graph pV,Eq, for any a P p0,`8qE and for any i0 P V ,
the ERRW with law Pa,i0 is partially exchangeable.

Proposition 1.5 is not difficult to prove but it has huge consequences. Indeed, if the ERRW is
recurrent, by Theorem 1.3, the ERRW should be a random walk in random environment. Moreover,
in [127], Merkl and Rolles proved that the ERRW is a random walk in random environment
without assuming the recurrence of the process. As usual, one would like to know what is the
distribution of this random environment. For example, does it have an explicit formula for its
density ? Actually, Coppersmith and Diaconis found such a formula on any finite graph in [45]
and it is so amazing that it was called later the "magic formula".

Theorem 1.6 (Magic formula). Let pV,Eq be a finite graph with n vertices. Let a P p0,`8qE.
Let i0 P V . Let us choose e0 P E. Let Ωe0 “ p0,8qEzte0u which is the space of conductances where
we imposed that the conductance of the edge e0 is 1. Every x P Ωe0 can be written as pxeqePEzte0u.
We define xe0 “ 1. For every i P V , we denote

yi “
ÿ

ePE,iPe
xe and ai “

ÿ
ePE,iPe

ae.

Then the ERRW pXnqnPN with distribution Pi0,a is distributed as a random walk with a random
transition kernel K. Moreover, for every ti, ju P E,

Kpi, jq “ xti,ju
yi

where pxeqePE has the following density on Ωe0 :

Cpi0, aq?
yi0

ś
ePE

xaeeś
iPV

y
pai`1q{2
i

ˆ
d ÿ

TPT

ź
ePT

xe ˆ
ź

ePEzte0u

dxe
xe
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where T is the set of spanning trees of pV,Eq and

Cpi0, aq “ 2
1´n` ř

ePE
ae

πpn´1q{2 ˆ
ś
iPV

Γ
`
1
2pai ` 1 ´ 1ti “ i0uq˘

ś
ePE

Γpaeq .

Theorem 1.6 was originally proved in [45] but this paper was never published. However, one
can find two different proofs of the magic formula in [95] and in [126]. This formula is not very
easy to use in practical cases. By the matrix-tree theorem (see [168]) the term which is a sum on
spanning trees can be interpreted as the determinant of any minor of the matrix M pxq which is
defined by

M pxqpi, jq “ 1ti “ ju
¨̋ ÿ

tk,iuPE
xk‚̨´ xi,j

for every i, j P V . This kind of determinantal term creates long-range interactions which are quite
difficult to study. However, Theorem 1.6 was used by Merkl and Rolles in order to prove the
recurrence of the ERRW on Z ˆ �1, d� in [129] and on a modified version of Z2 in [131] for any
initial weights. However, at this point, it was still not possible to prove any result of transience
and the recurrence on Z

2 for any reinforcement was still unproved. We present in the next section
a continuous-time process which is related to the ERRW, the VRJP, which was decisive in further
investigations of the ERRW.

1.2.3 The Vertex Reinforced Jump Process

Let pV,Eq be a locally finite graph. For every i, j P V , let Wi,j “ Wj,i be a non-negative
weight. We will always assume that for every i, j P V , Wi,j ą 0 if and only if ti, ju P E. For now,
we assume that Wi,i “ 0 for every i P V but this restriction shall be removed later in a slightly
different context. Let i0 P V be an initial point. The Vertex Reinforced Jump Process (VRJP) is a
continuous time process pYtqtě0 which starts from i0 and such that for every t ě 0, conditionally
on pYs, s ď tq, if Yt “ i, then Y jumps to a neighbour j of i at rate Wi,jLjptq, where

Ljptq “ 1 `
ż t

0
1tYs “ juds.

The VRJP was originally introduced by Werner but the first results about the VRJP were
obtained by Davis and Volkov in [47] where they proved the following result :

Proposition 1.7 (Theorem 1.1 in [47]). Let us consider pYtqtě0 which is the VRJP on Z where
weights are all equal to 1. Then for every i P Z, the almost sure limit Vi :“ lim

tÑ`8
1
t

şt
0 1tYs “ iuds

exists. Moreover there are i.i.d random variables pAiqiPZ˚ with density

1tx ą 0u 1?
2πx3

exp

ˆ
´ 1

2x
px ´ 1q2

˙
such that for every i P Z,

Vi “ Ṽi

`8ř
k“´8

Ṽk

where Ṽ0 “ 1, for every i ą 0, Ṽi “
iś

k“1

Ak and for every i ă 0, Ṽi “
´1ś
k“i

Ak.
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Remark 1.2. In Proposition 1.7, the distribution of the random variables pAiqiPZ˚ is a particular
case of the Inverse Gaussian distribution with parameters pμ, λq whose distribution is

1tx ą 0u
?
λ?

2πx3
exp

ˆ
´ λ

2μ2x
px ´ μq2

˙
.

The Inverse Gaussian distribution with parameters pμ, λq is denoted by IGpμ, λq. This distribution
will play a crucial role in this thesis and more generally in the theory of the VRJP.

Proposition 1.7 implies the recurrence of the VRJP on Z when all weights are equal to 1 and
describes precisely what is the amount of time where the VRJP occupies each vertex. Moreover,
it is not difficult to prove that if the VRJP on Z starts with weights which are all equal to
W ą 0, then Proposition 1.7 remains true with Ai having density IGp1,W q for every i P Z

˚.
Consequently, there is no phase transition between recurrence and transience for the VRJP on Z.
On the contrary, on supercritical Galton-Watson trees, there is a phase transition. The case of
d-ary trees has been studied in [48] and a complete phase diagram has been obtained in [15] for
Galton-Watson trees.

Proposition 1.8 (Theorem 1.1 in [15]). Let μ be an offspring law on N. We assume that μ is
supercritical, that is, its mean m satisfies m ą 1. Let pYtqtě0 be the VRJP with constant weights
W ą 0 on a Galton-Watson tree with offspring μ . For every c ą 0, let

rpcq “
?
c?
2π

ż 8

0

1

x
exp

´
´ c

2x
px ´ 1q2

¯
dx.

Then, we have the following phase transition :

(i) If mrpW q ď 1,pYtqtě0 is almost surely recurrent.

(ii) If mrpW q ą 1, pYtqtě0 is almost surely transient conditionally on the survival of the
underlying Galton-Watson tree.

There is unique positive real number W such that mrpW q “ 1. It is the transition point and it
will be denoted by Wcpμq.

However, a decisive step in the understanding of the VRJP has been achieved by Sabot and
Tarrès in [152]. It is easy to see that the VRJP goes faster and faster. That is why, Sabot and
Tarrès found a time-change which is convenient for the study of the VRJP. More precisely, if
pV,Eq is a locally finite graph and pYtqtě0 is the VRJP on pV,Eq with symmetric non-negative
weights pWi,jqi,jPV then one can define the strictly increasing random function D such that for
every t ě 0,

Dptq “
ÿ
iPV

`
L2
i ptq ´ 1

˘
.

Let us define the time-changed VRJP Ẑ by Ẑt “ YD´1ptq for every t ě 0. For every i P V , and for
every t ě 0, we define liptq “ şt

0 1tẐs “ iuds. Sabot and Tarrès obtained the following result :

Theorem 1.9 (Theorem 2 in [152] or Theorem 2 in [153]). Let pV,Eq be a finite graph with
symmetric non-negative weights pWi,jqi,jPV . Let n be the cardinality of V . Let i0 P V . Let pẐtqtě0

be the time-changed VRJP on pV,Eq with weights pWi,jqi,jPV . Then, for every i P V ,

Ui :“ lim
tÑ`8

1

2
ln

ˆ
liptq ` 1

li0ptq ` 1

˙
exists almost surely. Moreover, conditionally on U , Ẑ is a continuous-time Markov process which
jumps from i to j at rate

1

2
Wi,je

Uj´Ui .
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Furthermore, pUjqjPV has an explicit distribution QW
i0,V

on tpujqjPV , ui0 “ 0u which is given by

1

p2πqpn´1q{2 exp

¨̋
´

ÿ
jPV

uj ´ 2
ÿ

ti,juPE
Wi,j sinh

2

ˆ
1

2
pui ´ ujq

˙‚̨a
DpW,uq

ź
jPV zti0u

duj

where DpW,uq is any diagonal minor of the matrix MpW,uq on V ˆV such that for every i, j P V

MpW,uqpi, jq “ 1ti “ ju
¨̋ ÿ

tk,iuPE
Wi,je

ui`uk‚̨´ Wi,je
ui`uj .

First, one can observe that, as in the case of the ERRW, the time-changed VRJP Ẑ is a
Markov process in a random environment. Moreover, the density of this environment is quite
similar to the magic formula obtained for the ERRW, especially concerning the determinantal
term. Actually, this is not a coincidence because Sabot and Tarrès proved that the ERRW is a
VRJP with random weights.

Theorem 1.10 (Theorem 1 in [152]). Let pV,Eq be a locally finite graph. Let paeqePE be positive
weights on the edge set E. Let pXnqnPN be the ERRW on pV,Eq with weights paeqePE. Let pWeqePE
be independent random variables such that for every e P E, We is a Gamma distribution with
parameters pae, 1q. Finally, let pYnqnPN be the discrete time process associated with the VRJP,
that is, the VRJP taken at jump times, on pV,Eq with weights pWeqePE. Then, it holds that

pXnqnPN
law“ pYnqnPN.

Theorem 1.10 states that the ERRW is basically a mixture of VRJPs. However, it is not
always straightforward to deduce properties about the ERRW directly from properties about the
VRJP. Nevertheless, it will be possible to apply on the ERRW the proof ideas which work for the
VRJP.

Furthermore, thanks to the field U , one can reprove Proposition 1.8 about the phase transition
of the VRJP on trees. Indeed, in [40], Chen and Zeng made a change of variables in the field U
and they get a very explicit description of the environment of the VRJP on trees.

Proposition 1.11 (Theorem 3 in [40]). Let pV,Eq be a rooted tree with root o. Let W ą 0. Let
pAxqxPV ztou be a family of i.i.d random variables with Inverse Gaussian distribution IGp1,W q.
We define Uo “ 1 and for every x P V ztou we define

Ux “
ź

oăzďx

Az

where the order between vertices of V is the genealogical order associated with the structure of
rooted tree. Then the time-changed VRJP pẐtqtě0 on pV,Eq starting from o with constant weights
W is a mixture of Markov processes which jumps from i to j at rate

1

2
WeUj´Ui .

Remark 1.3. In Proposition 1.7, the field Ṽ is exactly the same as the field U in Proposition
1.11. However, the authors of [47] (where Proposition 1.7 was originally proved) did not know
that Ṽ could give the random environment of the VRJP. They understood Ṽ only as the mean
local times of the VRJP.

However, as for the magic formula, apart from the case of trees, the density of the field U in
Theorem 1.9 is not easy to handle because of the determinantal term. Nonetheless, the density of
the field U is related to the supersymmetric hyperbolic sigma model which has been studied by
Disertori, Spencer and Zirnbauer in [54] and [53].
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1.2.4 The supersymmetric hyperbolic sigma model, localisation and delocali-
sation

The supersymmetric hyperbolic sigma model, also called the H
2|2 model, has been introduced

by Zirnbauer in [56] and [172] for physical motivations. The main advances concerning the H
2|2

model for our purpose were obtained by Disertori, Spencer and Zirnbauer in [54] and [53]. This
model takes values in a supermanifold which contains classical variables and anticommuting
variables. By using tools coming from the theory of superanalysis (see [20] for an introduction to
this theory), they found a non-probabilistic proof of the fact that QW

i0,V
, the measure of the field

U , is a probability measure. Moreover, they obtained the following results :

Theorem 1.12 (Theorem 2 in [53]). Let d P N
˚. Let pV,Eq be Z

d endowed with its natural graph
structure. Then, there exists C0 ą 0 and Wrpdq ą 0 such that for every W ă Wrpdq, there exists
rW ą 0 such that for every finite connected subset Λ Ă Z

d containing 0 and for every x P Λ,ż
eux{2dQW

0,Λpuq ď C0e
´rW ||x||

where || ¨ || is the euclidean norm.

Theorem 1.13 (Theorem 1 in [54]). Let d ě 3. Let pV,Eq be Z
d endowed with its natural graph

structure. Then, there exists Wtpdq ą 0 such that for every W ą Wtpdq, for every finite connected
subset Λ Ă Z

d containing 0 and for every x, y P Λ,ż
coshmpux ´ uyqdQW

0,Λpuq ď 2

provided that m ď W 1{8.

Remark 1.4. In the two previous theorems, we made a small abuse of notation. Indeed, when
W is a positive number, we use the notation QW

i0,V
to denote the measure of the field U (see

Theorem 1.9) associated with the VRJP starting from i0 on some graph pV,Eq where all weights
are assumed to be equal to W .

Theorem 1.12 states that the environment of the VRJP exhibits exponential decay when W
is small. On the contrary, Theorem 1.13 implies that the environment of the VRJP is almost
constant when W is large and d ě 3. Consequently, by combining their own results with Theorem
1.12 and Theorem 1.13, Sabot and Tarrès obtained the following result :

Theorem 1.14 (Corollary 1 and Corollary 3 in [152]). Let d P N
˚. Let W ą 0. Let us consider

the discrete time process pYnqně0 associated with the VRJP on Z
d starting from 0 with constant

weights W .
(i) If W ă Wrpdq, pYnqně0 is a mixture of positive recurrent Markov chains.
(ii) If d ě 3 and W ą Wtpdq, pYnqně0 is a mixture of transient Markov chains.

By Theorem 1.10, it is natural to wonder whether one can prove the same result for the
ERRW by means of the supersymmetric hyperbolic sigma model. Actually, it is possible but it
requires stronger results even if the proof is in the same spirit as Theorems 1.12 and 1.13.

Theorem 1.15 (Corollary 2 in [152] or Theorem 1 in [8] for (i) and Theorem 1 in [52] for (ii)).
Let d P N

˚. Let a ą 0. Let us consider the ERRW pXnqně0 on Z
d starting from 0 with constant

weights a.
(i) There exists arpdq ą 0 such that if a ă arpdq, pXnqně0 is a mixture of positive recurrent

Markov chains.
(ii) If d ě 3, there exists atpdq ą 0 such that if a ą atpdq, pXnqně0 is a mixture of transient

Markov chains.
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We mention that Theorem 1 in [8] was proved with a method which does not use the VRJP
but only the partial exchangeability of the ERRW. Finally, the supersymmetric hyperbolic sigma
model was a very powerful tool which allowed to make a major breakthrough in the understanding
of the VRJP and the ERRW. However, at this point, many questions remain unsolved :

— Is there a unique transition point for the VRJP and the ERRW on Z
d with d ě 3, that is,

is it true that Wrpdq “ Wtpdq and arpdq “ atpdq for every d P Nzt0, 1, 2u ?
— Is the VRJP or the ERRW always recurrent on Z

2 ?
— In Theorem 1.6 and 1.9, we gave a representation of the environment of the ERRW and

the VRJP on finite graphs. Is it possible to get a useful representation on infinite graphs ?
In order to answer these questions, we need to introduce a new object : the β-potential.

1.2.5 The β-potential and the environment of the VRJP

As we explained at the end of the previous subsection, we would like to get a representation
of the environment of the VRJP on infinite graphs. To do so, we first need to make a change of
variables involving the field U on any finite graph.

Let pV,Eq be a finite graph with n vertices. Let pWi,jqi,jPV be symmetric non-negative weights.
Let i0 P V . Recall that QW

i0,V
is the measure of the field U given by Theorem 1.9 which is associated

with the VRJP on V starting from i0 with weights pWi,jqi,jPV . Let pUiqiPV be a random field
with distribution QW

i0,V
and let γ be a Gamma random variable with parameters p1{2, 1q which is

independent of pUiqiPV . Now, for every i P V , we define

βi “ 1

2

ÿ
ti,juPE

Wi,je
Uj´Ui ` 1ti “ i0uγ. (1.3)

Then, Sabot, Tarrès and Zeng introduced this random potential pβiqiPV and computed its density.

Proposition 1.16 (Theorem 1 in [153]). The density of pβiqiPV isˆ
2

π

˙n{2
1tHβ ą 0uexp

`´1
2x1, Hβ1y˘a
detpHβq

where x¨, ¨y is the usual euclidean scalar product, 1 in the scalar product stands for the vector
p1, 1, ¨ ¨ ¨ , 1q and Hβ is a symmetric matrix on V ˆ V such that for every i, j P V ,

Hβpi, jq “ 2βi1ti “ ju ´ Wi,j . (1.4)

The measure which is associated with this density will be denoted by νWV .

Remark 1.5. In Proposition 1.16, we have to clarify that for every i P V , it is possible that
Wi,i ą 0. Even if it does not really make sense for the VRJP, it will be useful to allow that case
for the potential pβiqiPV .

Remark 1.6. By means of the β-potential, Sabot, Tarrès and Zeng gave in [153] a purely
computational proof of the fact that QW

i0,V
has total mass 1. This is the third proof of this fact.

The first one was obtained in [54] by means of superanalysis and the second one was obtained in
[152] with probabilistic tools.

One can also compute the Laplace transform of pβiqiPV .

Proposition 1.17 (Proposition 1 in [153]). Let ptiqiPV P R
V`. Then, it holds that

ż
e´xt,βyνWV pdβq “ exp

¨̋
´1

2

ÿ
ti,juPE

Wi,j

´b
pti ` 1qptj ` 1q ´ 1

¯‚̨ź
iPV

1?
1 ` ti

. (1.5)
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Thanks to the Laplace transform given by (1.5), we can deduce directly the following proposi-
tion.

Proposition 1.18. Let pV,Eq be a finite graph. Let pWi,jqi,jPV be symmetric non-negative weights.
Let pβiqiPV be a random vector with distribution νWV . Then, it holds that

(i) For every i P V , 1
2βi´Wi,i

is an Inverse Gaussian random variable

IG

¨̊
˝ 1ř

ti,juPE,j‰i

Wi,j
, 1

‹̨‚.

(ii) Let V1 and V2 be two subsets of V which are not related by any edge. Then pβiqiPV1 and
pβiqiPV2 are independent.

Remark 1.7. Remark that 2βi ´ Wi,i is a reciprocal Inverse Gaussian distribution. It is an
important fact which explains the major role which is played by the Inverse Gaussian distribution
in the sequel of this thesis.

We started from pUiqiPV with distribution QW
i0,V

and by a change of variables, we obtained
pβiqiPV with distribution νWV . However, it is possible to go the other way. If pβiqiPV P R

V` and if
Hβ is inversible, then we can define the matrix Gβ which is the inverse of Hβ. Remark that if
pβiqiPV „ νWV , Hβ is positive definite and thus invertible almost surely.

Proposition 1.19 (Theorem 3 in [153]). Let pV,Eq be a finite graph. Let pWi,jqi,jPV be symmetric
non-negative weights. Let pβiqiPV be a random vector with distribution νWV . Let i0 P V . Then,ˆ

Gβpi0, iq
Gβpi0, i0q

˙
iPV

has distribution QW
i0,V

. Moreover, Gβpi0, i0q is independent from
´

Gβpi0,iq
Gβpi0,i0q

¯
iPV

and 1
2Gβpi0,i0q is

distributed like a Gamma random variable with parameters p1{2, 1q. In particular the time-changed
VRJP starting from i0 with weights pWi,jqi,jPV is a mixture of Markov processes which jumps from
i P V to j P V at rate

1

2
Wi,j

Gβpi0, jq
Gβpi0, iq .

Therefore, thanks to Proposition 1.19, it is possible to recover the environment of the VRJP
from the random vector pβiqiPV with distribution νWV . A remarkable fact is that the measure νWV
belongs to a more general family of measures.

Proposition 1.20 (Theorem 2.2 on [110]). Let pV,Eq be a finite graph with n vertices. Let
pWi,jqi,jPV be symmetric non-negative weights. Let pηiqPV P R

V`. Let us define the measure νW,η
V

as

1tHβ ą 0u
ˆ
2

π

˙n{2 exp
`´1

2x1, Hβ1y ´ 1
2xη,Gβηy ` x1, ηy˘a

detpHβq dβ.

Then νW,η
V is a probability measure. Moreover, we can compute its Laplace transform. For any

t P R
V`,ż

e´xt,βyνW,η
V pdβq

“ exp

¨̋
´

ÿ
iPV

ηip
?
ti ` 1 ´ 1q ´ 1

2

ÿ
ti,juPE

Wi,j

´b
p1 ` tiqp1 ` tjq ´ 1

¯‚̨ź
iPV

1?
1 ` ti

.
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Observe that if η “ 0, then νWV and νW,η
V are equal. This generalization of νWV is very useful

because it exhibits stability properties with respect to restriction and conditioning. For any matrix
M and any subsets U1 and U2 of V , we denote the restriction of the matrix M to the set U1 ˆU2

by MU1,U2 . Moreover,for any subset U1 of V , for any vector v of RV the restriction of v to U1 is
denoted by vU1 and 1U1 is the vector of RU1 whose entries are all equal to 1.

Lemma 1.21 (Lemma 5 in [154] and Proposition 4.3 in [110]). Let pV,Eq be a finite graph. Let
pWi,jqi,jPV be symmetric non-negative weights. Let η “ pηiqPV P R

V`. Let U be a finite subset of V
and let U c “ V zU . Let pβiqiPV be a random vector with distribution νW,η

V .

(i) pβiqiPU has distribution ν
WU,U ,η̂
U where η̂ is a vector on U such that

η̂ “ ηU ` WU,Uc1Uc .

(ii) Conditionally on pβiqiPU , pβiqiPUc has distribution νW̌ ,η̌
Uc where W̌ is a matrix on U c ˆ U c

and η̌ is a vector on U c such that

Ŵ “ WUc,Uc ` WUc,U ppHβqU,U q´1WU,Uc

where Hβ|UˆU is the restriction and

η̌ “ ηUc ` WUc,U ppHβqU,U q´1ηU .

Remark 1.8. Lemma 1.21 explains why it is natural to consider the case where Wi,i ą 0 for
some i P V for the β-potential. Indeed this case arises naturally when we condition pβiqiPUc on
pβiqiPU .

In the case of finite graphs, by Proposition 1.19, the time-changed VRJP starting from i0
jumps from i to j at rate

1

2
Wi,j

Gβpi0, jq
Gβpi0, iq

where Gβ is the inverse of the matrix Hβ . One may wonder whether it remains true when Hβ is
an operator on an infinite graph. Does its "inverse" give the environment of the VRJP on infinite
graphs ? The problem is that Hβ is not invertible on infinite graphs. Actually, on particular graphs
as Zd or an infinite tree, one can show that the spectrum of Hβ is exactly R`. Nonetheless, Sabot
and Zeng showed in [154] that it is possible to construct a kind of pseudo-inverse of Hβ which
can play the role of the environment of the VRJP on infinite graphs. To do so, they developped a
new tool which is the martingale pψpnq

β qnPN discussed below.

1.2.6 The infinite version of β, the martingale pψpnq
β qnPN and its applications

In this subsection, we will work on an infinite locally finite graph pV,Eq with non-negative
symmetric weights pWi,jqi,jPV and a root o. For example, pV,Eq can be Z

d with o “ 0 or an
infinite rooted tree. Now, we want to construct an infinite version of β. Let us consider an
increasing sequence pVnqnPN of finite subsets of V which contain o such that

Ť
nPN

Vn “ V . For

every n P N, we denote by En the set of edges of E whose ends lie in Vn. Then, for every n P N,
we can construct a wired version pṼn, Ẽnq of pVn, Enq. For every n P N, we define Ṽn “ Vn Y tδu
and

Ẽn “ En Y tti, δu, i P Vn such that Dj R Vn, ti, ju P Eu.
Besides, for every n P N, pṼn, Ẽnq is endowed with the symmetric weights W pnq on Ṽn ˆ Ṽn such
that for every i, j P Ṽn, W pnq

i,j “ Wi,j if i, j P Vn and W
pnq
i,δ “ ř

jRVn,ti,juPE Wi,j if ti, δu P Ẽn. By
applying Lemma 1.21, this leads us to the following result :



22 Chapitre 1. Introduction

Proposition 1.22 (Lemma 1 in [154]). The sequence of measures
´
νW

pnq
Ṽn

|Vn
¯
nPN

is compatible.

In particular, there exists a measure νWV on the infinite graph V such that for every n P N

νWV |Vn “ νW
pnq

Ṽn
|Vn .

By Proposition 1.22, we can construct pβiqiPV even if V is infinite. Now, let β be a random
element of RV` with distribution νWV and let Hβ be the infinite volume operator on V ˆ V which
is associated with β in the same way as in (1.4). For every n P N, we define the sigma-field
Fn :“ σpβi, i P Vnq. Then, following Definition 1 in [154], we define the operator pĜpnq

β pi, jqqi,jPV
by

Ĝ
pnq
β pi, jq “ pHβ|VnˆVnq´1pi, jq

if i, j P Vn and Ĝ
pnq
β pi, jq “ 0 otherwise. Moreover, we define the random vector pψpnq

β piqqnPN as
the unique solution of the equation

pHβψ
pnq
β qpiq “ 0, for every i P Vn,

ψ
pnq
β piq “ 1, for every i P V c

n .

The idea behind the definition of pψpnq
β qnPN is to create an eigenstate of Hβ for the eigenvalue 0

when n goes to infinity. However, at first sight, pψpnq
β qnPN does not have any reason to converge.

Nevertheless, miraculously, it is a martingale.

Theorem 1.23 (Theorem 1 in [154]).

(i) For every i P V , pψpnq
β piqqnPN is a positive martingale with respect to the filtration pFnqně0.

In particular, it converges almost surely towards some finite random variable ψβpiq.
(ii) For every i, j P V , pĜpnq

β pi, jqqnPN is increasing almost surely and converges almost surely
towards some finite random variable Ĝβpi, jq.

The proof of Theorem 1.23 relies on the stability of the measures of the form νW,η
V under

conditioning and restriction which is described in Proposition 1.21. Thanks to Theorem 1.23,
Sabot and Zeng were able to construct the environment of the VRJP on infinite graphs.

Theorem 1.24 (Theorem 1 in [154]). Let β be a random element of RV` with distribution νWV . Let
γ be a random variable with Gamma distribution with parameters p1{2, 1q which is independent
of β. Then, for every i, j P V , let us define

Gβ,γpi, jq :“ Ĝβpi, jq ` 1

2γ
ψβpiqψβpjq.

Let i0 P V and let pẐtqtě0 be the time-changed VRJP on V starting from i0 with weights pWi,jqi,jPV .
Then, Ẑ has the same distribution as the mixture of Markov processes which starts from i0 and
jumps from i to one of its neighbour j at rate

1

2
Wi,j

Gβ,γpi0, jq
Gβ,γpi0, iq .

Remark 1.9. Thanks to Theorem 1.24, we know a representation of the VRJP on an infinite
graph as a mixture of Markov processes. One may wonder whether there is a unique possible
distribution for this environment or not. This question has been studied by Gerard in [77]. He
proved there is uniqueness of the environment when the VRJP is recurrent. Moreover, he proved
the same uniqueness property when the VRJP walks on the lattice Z

d with d ě 1 with small
reinforcement, that is, for large W . Moreover, when the VRJP is transient on trees, Gerard proved
there is an infinite number of distinct representations of the VRJP.
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Furthermore, the martingale pψpnq
β qnPN has been used by Sabot and Zeng in [154] in order to

prove the diffusive behaviour of the VRJP (and of the ERRW too) when W is large and d ě 3.

Theorem 1.25 (Theorem 3 in [154]). Let W ą 0. Let d ě 3. Let pYnqnPN be the discrete-time
process which is associated with the VRJP on Z

d with constant weights W ą 0. For every t ě 0,
we define

Y
pnq
t “ Yrtns?

n
.

Then, there exists Wbpdq ą 0 such that if W ą Wbpdq, then for every T ą 0 the following
convergence does hold for the Skorokhod topology :´

Y
pnq
t

¯
tPr0,T s

lawÝÝÝÝÑ
nÑ`8 pαpd,W q

t qtPr0,T s

where αpd,W q is a Brownian motion on R
d with covariance matrix σpW,dq2Id for some σpW,dq P

p0,`8q.
Remark 1.10. The proof of Theorem 1.25 requires that ψβpiq and 1{ψβpiq are in L4 for every
i P Z

d. It is true for large W thanks to the results of [54]. However, we do not know whether the
rescaled VRJP converges toward a Brownian motion as soon as the VRJP is transient or not.
That is why, the study of the Lp-boundedness of the martingale pψpnq

β qnPN will be an important
topic in this thesis.

Besides, the martingale pψpnq
β qnPN gives a very simple criterion for recurrence or transience.

Proposition 1.26 (Theorem 1 in [154]). Let pẐtqtě0 be the time-changed VRJP on V starting
from i0 with non-negative symmetric weights pWi,jqi,jPV . Then, it holds that

(i) Ẑ is a mixture of transient Markov processes if and only if ψβpiq ą 0 for every i P V .

(ii) Ẑ is a mixture of recurrent Markov processes if and only if ψβpiq “ 0 for every i P V .

By means of Proposition 1.26, we get a convenient tool in order to prove the recurrence of the
VRJP. Indeed if we have an estimate of the type

E
”´

ψ
pnq
β piq

¯sı
ď εn (1.6)

for all i P V where s ă 1 and εn ÝÝÝÝÑ
nÑ`8 0, then it implies that the VRJP is a mixture of recurrent

Markov processes. However, in [128], in the case of the ERRW, Merkl and Rolles proved an
estimate with polynomial decay of the fractional moments of the environment on Z

2 which can
be related to (1.6). Moreover, such an estimate with polynomial decay for the VRJP was proved
simultaneously in [149] and [102]. Together with Proposition 1.26, this implies the following result
which answers an ancient question concerning the ERRW and the VRJP :

Theorem 1.27. Let a ą 0. Let W ą 0. Let pXnqnPN be the ERRW on Z
2 with constant weights a.

Let pẐtqtě0 be the time-changed VRJP with constant weights W ą 0. Then pXnqnPN is a mixture
of recurrent Markov chains and pẐtqtě0 is a mixture of recurrent Markov processes.

Another important question concerning the VRJP and the ERRW was to know whether there
is a unique phase transition between recurrence and transience on Z

d when d ě 3. Usually, for
example in the case of Bernoulli bond percolation or the Ising model (see [82] and [67]), such a
result is proved thanks to a monotonicity property. For example, let us assume that we can prove
that for some s Ps0, 1r and for any n P N

W ÞÑ EW

”´
ψ

pnq
β p0q

¯sı
(1.7)
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is non-decreasing where EW means that the VRJP starts with constant weights W . If such a
monotonicity property is true, together with Proposition 1.26, it would prove that there is a
unique transition between recurrence and transience for the VRJP with constant weights. The
basic idea in order to prove that (1.7) is non-decreasing would be to show that for every n P N,
the random variable ψ

pnq
β p0q is stochastically non-decreasing as a function of W . However, it is

not difficult to check that it is not true on some simple examples. Therefore, it was necessary to
be more subtle. By means of a clever coupling, Poudevigne proved a different property of convex
monotonicity which implies that (1.7) is non-decreasing.

Theorem 1.28 (Theorem 6 in [139]). Let pV,Eq be a finite graph. Let pW´
i,jqi,jPV and pW`

i,jqi,jPV
be two sets of symmetric non-negative weights such that for every i, j P V ,

W´
i,j ď W`

i,j .

Let ϕ be a concave function. Let i, j P V . Then, it holds thatż
ϕ

ˆ
Gβpi, jq
Gβpi, iq

˙
νW

´
V pdβq ď

ż
ϕ

ˆ
Gβpi, jq
Gβpi, iq

˙
νW

`
V pdβq.

Moreover, it is possible to interpret ψ
pnq
β p0q as a random variable of the form Gβpi,jq

Gβpi,iq . Together
with Theorem 1.28, it implies that (1.7) is non-decreasing as a function of W . Consequently,
thanks to Theorem 1.28, Poudevigne proved there is a unique phase transition for the VRJP (and
actually also for the ERRW).

Theorem 1.29 (Theorem 2 in [139]). Let d ě 3. There exists Wcpdq P p0,`8q such that the VRJP
on Z

d with initial constant weights W is recurrent if W ă Wcpdq and transient if W ą Wcpdq.
Theorem 1.30 (Theorem 3 in [139]). Let d ě 3. There exists acpdq P p0,`8q such that the
ERRW on Z

d with initial constant weights a is recurrent if a ă acpdq and transient if a ą acpdq.
Finally, thanks to the field β on infinite graphs, some of the most important questions regarding

the VRJP and the ERRW were solved. During the developpement of the theory about the VRJP,
the infinite volume self-adjoint operator Hβ appeared to be a very important object. That is
why we would like to understand how the properties of Hβ as an operator, especially its spectral
properties, are related to the asymptotic behaviour of the VRJP. A part of this thesis is devoted
to this kind of questions. Actually, Hβ belongs to a vast category of objects which are called
random Schrödinger operators. Now, let us look at the theory of random Schrödinger operators.

1.3 Random Schrödinger operators

1.3.1 Background on self-adjoint operators

In this section, all operators are defined on a separable complex Hilbert space H with some
scalar product p¨|¨q. For example, if pV,Eq is an infinite locally finite graph, we will consider

H “ l2pV q :“
#
φ P C

V ,
ÿ
xPV

|φpxq|2 ă `8
+

with scalar product
pφ, χq :“

ÿ
xPV

φpxqχpxq

for every φ, χ P l2pV q. We denote by || ¨ || the euclidean norm which is associated with p¨, ¨q. A
linear operator A on H is a linear application from some subset DpAq of H into H such that DpAq
is dense in H. Moreover, DpAq is called the domain of A. It is very common that DpAq Ř H.
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Indeed it allows to manage with unbounded operators. Now, let us consider a linear operator
pA,DpAqq on H. Then, we define the domain of the adjoint of A by

DpA˚q :“ tφ P H, Dη P H,@χ P DpAq : pφ,Aχq “ pη, χqu .
Then pA,DpAqq is self-adjoint if and only if

(i) A is symmetric, that is, for every φ, χ P DpAq,
pφ,Aχq “ pAφ, χq.

(ii) DpA˚q “ DpAq.
One crucial example of self-adjoint operator on l2pV q is the discrete laplacian Δ where V has

bounded degree.
Δ : l2pV q Ñ l2pV q

φ ÞÑ Δφ

where for every x P V ,
pΔφqpxq :“

ÿ
tx,yuPE

pφpyq ´ φpxqq.

At present, we consider a self-adjoint operator pA,DpAqq on H. The spectrum of A is defined as

σpAq :“ tz P C, pA ´ zq : DpAq Ñ H is not bijective.u.
As A is self-adjoint, σpAq is included in R. Moreover, it is always a closed subset of R. Now, let
us introduce the spectral measure which is a crucial object in the study of self-adjoint operators.

Proposition 1.31 (Section A.2 in [6]). Let φ P H. Then there exists a unique real-valued measure
μφ whose support is included in σpAq such that for every z P C with Impzq ą 0,

pφ, pA ´ zq´1φq “
ż
σpAq

dμφpEq
E ´ z

.

Moreover, μφ is a finite measure whose total mass is ||φ||2 and μφ is called the spectral measure of
A associated with the vector φ. If φ, χ P H, then by polarization, there exists a complex measure
μφ,χ such that for every z P C with Impzq ą 0,

pφ, pA ´ zq´1χq “
ż
σpAq

dμφ,χpEq
E ´ z

.

The construction of the spectral measure is explained roughly in [6] but one can also look at
chapter VII in [143]. Thanks to the spectral measure, one can apply functional calculus to A. Let
F be a bounded measurable function. Then we can define the linear self-adjoint operator F pAq
such that for every φ, χ P H,

pφ, F pAqχq “
ż
σpAq

F pEqdμφ,χpEq.

Moreover, one can also use the spectral measure in order to classify the elements of H. It is
well known that every measure μ can be decomposed as

μ “ μac ` μsc ` μpp

where μac is absolutely continuous, μsc is singular and μpp is a pure-point measure. Now, we can
apply this decomposition to the spectral measure. We define

Hac :“ tφ P H, μφ “ μac
φ u,Hsc :“ tφ P H, μφ “ μsc

φ u and Hpp :“ tφ P H, μφ “ μpp
φ .u

Then, these subspaces of H are closed vector spaces which give an orthogonal decomposition of
H.
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Proposition 1.32 (Theorem VII.4 in [143]). We have the following orthogonal decomposition :

H “ Hac ‘ Hsc ‘ Hpp.

By means of this classification of vectors, one can also divide the spectrum into three parts.

σacpAq “ σ pA|Hacq , σscpAq “ σ pA|Hscq and σpppAq “ σ pA|Hppq .
Remark 1.11. There is no reason in general for σacpAq, σscpAq and σpppAq to be disjoint.
However it is true (or conjectured to be true) in all the cases which will be studied in this thesis.

This classification of vectors and of the spectrum has physical meaning through the notions
of localization and delocalization. The connection between the theory of operators and quantum
physics is made rigorous in the next subsection thanks to the RAGE Theorem.

1.3.2 Physical interpretation

This subsection explains briefly how we can interpret self adjoint operators from the point of
view of quantum physics. For more details, one can consult [6] and [84]. Let us fix an infinite
locally finite graph with bounded degree pV,Eq and let pζpxqqxPV P R

V be a real-valued function
on V which is called the potential. We can imagine the potential pζpxqqxPV P R

V as impurities in
a crystal structure which is represented by the graph V . For sake of convenience, we will often
write ζ to denote the diagonal operator such that for every φ P l2pV q for all x P V ,

pζφqpxq “ ζpxqφpxq.
Remark that it is possible that ζφ is not in l2pV q anymore. Then, a Schrödinger operator on
l2pV q is an operator of the form

Aζ “ ´Δ ` ζ.

It is not difficult to prove that it is self-adjoint with domain

D pAζq :“
#
φ P l2pV q,

ÿ
xPV

ζpxq2|φpxq|2 ă `8
+
.

Let φ P V be such that ÿ
xPV

|φpxq|2 “ 1.

Let us imagine a quantum particule which walks on the graph V with the potential ζ. As it is a
quantum particule, we do not know exactly where it is located. Let us say that at time 0, the
particle is at site x with probability |φpxq|2. One may wonder what is the probability that this
particle is at x P V at time t P R`. Actually, this probability equals |φpt, xq|2 where φp¨, ¨q is
solution of the famous Schrödinger equation :" Bφ

Bt pt, xq “ ´iAζφpt, xq
φp0, ¨q “ φ.

Thanks to functional calculus, we get a simple representation of pφpt, xqqtě0,xPV . Indeed, for every
t ě 0,

φpt, ¨q “ e´itAζφ.

Remark that e´itAζ is a unitary operator. Consequently, for every t ě 0,ÿ
xPV

|φpt, xq|2 “ 1
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which means that |φpt, ¨q|2 remains a probability measure for every t ą 0. Now, let us consider
a self adjoint operator R on l2pV q. A fundamental point of quantum physics is that R can be
interpreted as an observation of the particle, for example its position or its impulsion. Let I be
an interval of R. Let PI be the function which is 1 on I and 0 elsewhere. Then the probability
Pφ,tpR P Iq that at time t, R lies in I can be computed by

Pφ,tpR P Iq “ pφpt, ¨q, PIpRqφpt, ¨qq “ ||PIpRqe´itAζφ||2. (1.8)

Then, it is possible to get a physical interpretation of Hac, Hsc and Hpp thanks to the following
result which is due to Ruelle, Amrein, Georgescu and Enss (RAGE).

Theorem 1.33 ((RAGE) Theorem 2.6 in [6]). Let H be the Hilbert space l2pV q and let Aζ be a
Schrödinger operator on l2pV q. Let pRLqLPN be a sequence of compact self-adjoint operators which
converges towards the identity. Then, it holds that

(i)

Hac ‘ Hsc “
"
φ P H, lim

LÑ`8 lim
TÑ`8

1

T

ż T

0
||RLe

´itAζφ||2dt “ 0

*
,

(ii)

Hpp “
"
φ P H, lim

LÑ`8 sup
tPR

||pId ´ RLqe´itAζφ|| “ 0

*
.

By the interpretation given by (1.8), (i) in Theorem 1.33 tells us that if the particle starts
from a state φ P Hac ‘ Hsc, then the particle spends a fraction of time in finite subsets of V
which is asymptotically zero. Therefore, continuity of the spectrum corresponds to quantum
delocalization. On the contrary, (ii) in Theorem 1.33 tells us that if the particle starts from
a state φ P Hpp, then the particle will stay in finite subsets of V with high probability. Thus,
pure-point spectrum corresponds to quantum localization. Therefore, a fundamental question
about self-adjoint operators is to know whether their spectrum is continuous or pure-point. For
example, the opposite of the Laplacian ´Δ on Z

d has only absolutely continuous spectrum and
σp´Δq “ r0, 4ds. On the contrary, the diagonal operator ζ has only pure point spectrum which is

tζpxq, x P V u.

1.3.3 An important example of random Schrödinger operator : the Anderson
model

Let d P N
˚ and λ ą 0. In his seminal paper [7], Anderson introduced the following random

Schrödinger operator :
Aλζ “ ´Δ ` λζ

where !
ζpxq, x P Z

d
)

is a random i.i.d potential on Z
d. This model is known as the Anderson model. The Laplacian

term ´Δ has absolutely continuous spectrum whereas ζ is a very disordered operator which
has pure point spectrum. At first sight, it is not obvious to know which part of the operator,
the continuous one or the pure point one, will prevail in the spectrum of Aζ . By the RAGE
Theorem, this question is directly linked to the following one : if an electron walks in a metal
with many impurities, is this electron able to move far away from its original position, that is, is
the impure metal conductive or not ? In [7], Anderson explained in a non rigorous way that the
metal should not be conductive when λ is large. Moreover, it is reasonable to expect that the
nature of the spectrum of Aλζ depends on the disorder strength λ and the dimension d. In [1], it
was conjectured that there is only pure point spectrum in dimension 1 and 2 for any λ ą 0 and
that a phase transition should occur in dimension d ě 3.
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Figure 1.1 – Conjectured phase diagram of the Anderson model with uniform potential on r´1
2 ,

1
2 s.

Let us assume that for every x P Z
d, the distribution of the random variable ζx has a support

S. Then by Corollary III.3 in [104], the spectrum of Aλζ is almost surely

r0, 4ds ` λS.

Is this spectrum only pure point, only absolutely continuous or a mix of both types ? Today, when
d ě 3, the phase diagram of the Anderson model on Z

d is conjectured to look like Figure 1.1.
When d ě 3, it is expected that for small λ, that is for small disorder, we should see

delocalization (absolutely continuous spectrum) for small energies. This first part of the conjecture
remains unproved nowadays. On the contrary at extreme energies or high disorder, the Anderson
model is localized (only pure point spectrum). This second part of the conjecture has been proved
rigorously by mathematicians but it took a few decades.

The first thing about the Anderson model which has been proved by mathematicians is the
localization in dimension 1 for any λ ą 0. It has been proved rigorously in [88] and [80]. In [70],
by a multiscale analysis, Fröhlich and Spencer proved that for any d P N

˚, if λ is large, then the
Green function pAλζ ´ zq´1px, yq decreases exponentially fast for every z P CzR with respect to
the distance dpx, yq between the vertices x and y. More precisely, they obtained the following
result :

Theorem 1.34 (Theorem 1.2 in [70]). Let d P N
˚. Let ζ be an i.i.d potential on Z

d such that for
every x P Z

d, ζx has a bounded density. Then, there exist λ0 ą 0 and C ą 0 such that for every
λ ą λ0, for every E P R, for every ε ą 0, for every N ą 0 and for every x P Z

d,

P

´
|pAλζ ´ E ´ iεq´1p0, xq| ď eN´||x||

¯
ě 1 ´ C

N
.

This was the first result of localization at large disorder which was proved rigorously for any
dimension. In [118], Martinelli and Scoppola showed that the result of [70] implies that Aλζ has
only pure-point spectrum when λ is large for every d P N

˚. In [5], Aizenman and Molchanov
proved also the exponential decrease of the Green function and the pure-point nature of the
spectrum for large disorder or extreme energies. Actually their proof uses a method called "the
method of fractional moments" which is different of the method of Fröhlich and Spencer.

Nowadays, we still do not now how to show delocalization on Z
d. Such a result seems to be

very hard. Consequently, the Anderson model on the Cayley tree (sometimes called the Bethe
lattice) sparked off a huge interest because it can be viewed a toy model of the Anderson model
on Z

d. The localization on the Cayley tree is known in a very detailed way when λ is large. (See
for example Chapter 16 in [6].) Moreover, in the particular case of the Cayley tree, delocalization
has been proved for small values of λ by Klein in [99]. However, it was not possible to adapt
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his proof on Z
d with d ě 3. Localization and delocalization properties have also been shown

for random Schrödinger operators which are not the Anderson operator Aλζ . For example, one
can look at [98], [79] and [29]. Remark also that we presented the Anderson model in a discrete
setting. This discrete model is known as the Anderson tight-binding model. However, it is also
possible to consider the continuous Anderson operator on R

d :

´
dÿ

i“1

B2

Bx2i
` dB

where dB is a white noise. When d “ 1, this model has been studied first by Halperin in [85].
Fukushima and Nakao gave a rigorous formulation of the related eigenvalue problem in [71]. They
found an explicit form for the cumulative distribution function of spectral values. More recently,
in [58], Dumaz and Labbé proved very precise results concerning the shape of the localized
eigenvectors of the continuous Anderson model in dimension 1. Besides, in [59], considering the
continuous Anderson model HL on p0, Lq with Dirichlet boundary condition, they proved the
existence of a delocalized phase of HL for eigenvalues corresponding to energies E9L and E " L.
Moreover, in [105], Labbé proved it is possible to construct the continuous Anderson model
rigorously on p´L,Lqd for d P t1, 2, 3u.

1.3.4 The density of states

Let pζxqxPZd be a random potential on Z
d. For every x P Z

d, we write τx the translation
y ÞÑ y ` x on Z

d. We say that ζ is stationary when for every A P BpRqbZd

P pζ P Aq “ P pζ P τxpAqq .
Furthermore, we assume that ζ is ergodic when for every A P BpRqbZd such that for every x P Z

d,
τxpAq “ A, it holds that

P pζ P Aq P t0, 1u.
Of course, i.i.d potentials are ergodic. In the case of ergodic stationary potentials, one can define
a very important object which is known as the Density of States (DOS). For every x P Z

d, we
define δx which is the vector of l2pZdq which is 1 at x and 0 elsewhere. If Λ is a finite set, |Λ|
denotes its cardinality.

Proposition 1.35 (Theorem 3.14 in [6]). Let Aζ “ ´Δ ` ζ be a random Schrödinger operator
such that ζ is an ergodic stationary potential on Z

d with d P N
˚. Let pΛLqLPN be an increasing

sequence of boxes of Zd such that
Ť

LPN ΛL “ Z
d. Then, there exists a measure ν on R such that

for every continuous function f it holds that

1

|ΛL|
ÿ

xPΛL
pδx, fpAζqδxq a.sÝÝÝÝÑ

LÑ`8

ż 8

´8
fpEqdνpEq.

The measure ν is called the density of states of Aζ and it does not depend on the sequence of
boxes pΛLqLPN.

The density of states ν can be interpreted as the density of spectral values in the spectrum of
Aζ . For sake of convenience, we often prefer to use the integrated density of states n which is
defined by npEq “ νpp´8, Eqq. A natural problem consists in finding the properties of n. A very
general result concerning the integrated density of states was found by Wegner in [163].

Proposition 1.36 (Corollary 5.25 in [97]). Let pζxqxPZd be a random potential on Z
d which

is ergodic and stationary. Let us assume that for every x P Z
d, ζx has density g and that g is

bounded. Let n be the integrated density of states which is associated with Aζ . Then, there exists
C ą 0 such that for every E P R and every ε ą 0,

npE ` εq ´ npE ´ εq ď C||g||8ε.
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Therefore, under mild conditions, n must be a Lipschitz function. Actually, in [112], Lifschitz
remarked that at the edges of the spectrum, the density of states decreases exponentially fast
when the potential is i.i.d.

Theorem 1.37 (Theorem 6.1 in [97]). Let ζ be an i.i.d potential on Z
d. We assume that the

infimum of the support of ζx is 0 for every x P Z
d. In particular the infimum of the spectrum of

Aζ is 0. Let n be the integrated density of states of Aζ . Then

ln p| lnpnpEqq|q
lnpEq ÝÝÝÑ

EÑ0
´d

2
.

Therefore, if ζ is i.i.d, then at the bottom of the spectrum, let us say 0, the integrated density
of states behaves roughly as e´E´d{2`op1q . The idea of the proof of Theorem 1.37 is that creating an
eigenvalue at the bottom of the spectrum of Aζ requires a huge number of the random variables
pζpxqqxPZd to be small. As the random variables pζpxqqxPZd are independent, this event has an
exponentially small probability.

Now, let us look at the connection between these notions regarding random Schrödinger
operators and the VRJP.

1.3.5 Link with the VRJP

Let d P N
˚. Let W ą 0. Recall that by Proposition 1.22, there exists a potential pβxqxPZd on

Z
d with distribution νWV where V “ Z

d which is linked to the VRJP on Z
d with constant weights

W . Remark that
Hβ

W
“ ´Δ `

ˆ
2β

W
´ 2d

˙
.

Consequently, Hβ{W is a random Schrödinger operator with an ergodic potential 2β
W ´2d. Actually,

it looks like the Anderson model where 1{W would correspond to the disorder strength λ in the
Anderson model. Nevertheless, the potential pβxqxPZd is not i.i.d. On the contrary, the correlations
of pβxqxPZd make Hβ non-negative. By Theorem 1.24, we know that Hβ is strongly related to
the VRJP. On Z and Z

2, by Theorem 1.27, the VRJP is recurrent almost surely for any value
of W . This can be interpreted as a kind of localization property. On the contrary, on Z

d with
d ě 3, the VRJP exhibits a unique phase transition between recurrence and transience according
to Theorem 1.29. It can be interpreted as a kind of phase transition between localization and
delocalization. Besides, in the transient phase, ψ can be viewed as a delocalized pseudo-eigenstate
of Hβ for the spectral value 0. Consequently, as an operator, it is reasonable to expect that Hβ

exhibits the same kind of phase transition as the Anderson model. The properties of Hβ as a
random Schrödinger operator were first studied in [154].

Proposition 1.38 (Theorem 2 in [154]). Let V “ Z
d with d P N

˚ and let W ą 0. Then, under
νWV ,

(i) The spectrum of Hβ is included in R`.
(ii) For every i, j P Z

d, almost surely,

Ĝβpi, jq “ lim
εą0,εÑ0

pHβ ` εq´1pi, jq.

(iii) Hβψ “ 0 and ψ has at most polynomial growth in the sense that for every p ą d, almost
surely, there exists a random C ą 0 such that for every x P Z

d,

|ψβpxq| ď C||x||p.
Actually, we will see in this thesis that the spectrum of Hβ is exatly R`. The question of the

localization of Hβ has been partially studied by Zeng and Collevecchio in [43]. They proved the
following result :
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Theorem 1.39 (Theorem 2.4 in [43]). Let V “ Z
d with d P N

˚ and let W ą 0. Then, there exists
Wlpdq ą 0 such that for every W P p0,Wlpdqq, under νWV , Hβ is localized in the sense that it has
almost surely a complete set of orthonormal eigenfunctions which decay exponentially.

Remark 1.12. Similarly as in Remark 1.4, in this section, we made a small abuse of notation.
Indeed, when W is a positive number, we use the notation νWV to denote the probability measure
of the potential β associated with the VRJP on some graph pV,Eq where all weights are assumed
to be equal to W .

The proof of Zeng and Collevecchio relies on the properties of the potential β and the result
of Aizenman and Molchanov in [5]. One goal of this thesis is to go further in the understanding
of Hβ as an operator. In particular, we will focus on its integrated density of states which has
many surprising properties.

1.4 Branching random walks

In this thesis, branching random walks arise simultaneously as a tool and as an object of
study. In this section, we describe the most important results regarding branching random walks
which are important in order to understand Chapter 2 and Chapter 3.

1.4.1 One-dimensional branching random walks

First, let us define one-dimensional branching random walks. Let χ be a point process on R

with a finite number of points. More precisely χ “ t�i, 1 ď i ď Nu where N is an integer-valued
random variable and for every i P �1, N�, �i P R. Let o be a first individual called the root
and let Spoq “ 0 be the initial position of o. po, Spoqq “ po, 0q constitutes the generation 0 of
the branching random walk. The generation 1 of the branching random walk is given by χ :
o has N children with positions t�1, ¨ ¨ ¨ , �Nu. Then, next generations are defined as follows :
Let n P N. We associate a new point process χu :“ t�ui , 1 ď i ď Nuu to every individual u at
generation n. If the position of u is Su, then the positions of the children of u will be given
by the point process t�ui ` Su, 1 ď i ď Nuu. Moreover, we assume that the point processes
tχu, u individual at generation nu are i.i.d with distribution χ. Further, we assume that these
point processes are independent from the previous generations. The point process

t�ui ` Su, 1 ď i ď Nu, u individual at generation nu
represents the pn ` 1q-th generation of the process. This construction gives us an underlying
Galton-Watson tree V . Then, the branching random walk can be represented as pu, SuquPV where
Su is the position of the individual u. For every u P V , the generation of u is denoted by |u|.
The structure of rooted tree gives a natural genealogical order ď on V . The parent of u P V ,
for the genealogical order is denoted by �u. A simple example of branching random walk can be
constructed as follows :

— Let V be a Galton-Watson tree with a root o.
— Let tξvuvPV ztou be real valued random variables which are i.i.d conditionally on V .
— For every u P V , we define

Su “
ÿ

oăvďu

ξv.

In this case the positions of the branching random walks are independent of the underlying
Galton-Watson tree but remark that it is not necessarily true in the definition of a branching
random walk.

By Proposition 1.11, one can easily check that, when V is a Galton Watson tree with root o,
the discrete-time process which is associated with the VRJP on V with constant weights W ą 0
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is a random walk in random environment whose conductances pcpu, �uqquPV ztou are given by

cpu, �uq “ Au

ź
oăvď 
u

A2
v

for every u P V ztou where pAuquPV ztou are i.i.d Inverse Gaussian random variables with parameters
p1,W q. Therefore the conductances of the VRJP on a tree form a process which is very similar to

pc̃pu, �uqquPV ztou :“
˜
exp

˜ ÿ
oăvďu

2 lnpAvq
¸¸

uPV ztou
which is the exponential of a branching random walk. That is why one-dimensional branching
random walks are a very convenient tool in order to study the VRJP on trees.

A natural problem regarding branching random walks consists in looking at their asymptotic
behaviour. Let pu, SuquPV be a branching random walk. For every n P N, we define

In :“ min
|u|“n

Su.

Of course, the asymptotic behaviour of pInqnPN depends on the point process χ which was chosen
in order to define the branching random walk. Actually, the behaviour of pu, SuquPV is mostly
linked to the function F which is defined by

F ptq “ ln

¨̋
E

»– ÿ
|u|“1

e´tSu

fifl‚̨.

Moreover, we will always assume that the underlying Galton Watson tree V is supercritical.
In particular F p0q ą 0. Besides, the survival event of V is denoted by S. As V is assumed to
be supercritical, S has positive probability. In [25], Biggins found the asymptotic behaviour of
pInqnPN on S.

Proposition 1.40 (Theorem 4 in [25]). Let us assume that F ptq ă `8 for some t ą 0. For any
a P R, let μpaq :“ inf tta ` F ptq, t ě 0u and γ :“ inf ta P R, μpaq ě 0u. Then, conditionally on S
it holds that

In
n

a.sÝÝÝÝÑ
nÑ`8 γ.

Moreover,

γ “ inf
tą0

F ptq
t

.

Therefore, when γ ‰ 0, we know the first order of the asymptotic behaviour of pInqnPN.
However, Proposition 1.40 does not explain what is going on when γ “ 0. Actually, it is not very
difficult to check that γ “ 0 when

F p1q “ 0 and F 1p1q “ 0. (1.9)

Moreover, by section 7 of chapter 3 of [89], it is always possible to reduce to (1.9) under mild
assumptions. Therefore, the main issue now consists in finding the asymptotic behaviour of
pInqnPN assuming (1.9). The main tool in order to answer this question is the martingale

pWnqnPN “
¨̋ ÿ

|u|“n

e´Su‚̨
nPN

.

By Biggins’s theorem in [24] (see [114] for a simpler proof), it holds that

Wn
a.sÝÝÝÝÑ

nÑ`8 0 (1.10)

when we assume (1.9). One may wonder what is the decay rate of Wn. A partial answer was given
by Aïdekon and Shi in [2].
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Theorem 1.41 (Theorem 1.1 in [2]). Let us assume that the underlying Galton-Watson tree is
supercritical and that

σ2 :“ E

»– ÿ
|u|“n

S2
ue

´Su

fifl ă `8.

Moreover we assume (1.9) and

E
“
X ln2`pXq‰ ă `8 and E

”
X̃ ln`pX̃q

ı
ă `8

where X “ ř
|u|“1

e´Su and X̃ “ ř
|u|“1

pSu ^ 0q ¨ e´Su . Then, conditionally on S, it holds that

?
nWn

PÝÝÝÝÑ
nÑ`8

c
2

πσ2
D8

where D8 is the limit of the derivative martingale

˜ ř
|u|“n

Sue
´Su

¸
nPN

for whom Chen has found

a necessary and sufficient condition of convergence in [37].

Remark that for every n P N, e´In ď Wn. Together with Theorem 1.41, this implies that, in
probability,

lim inf
nÑ`8

In
lnpnq ě 1{2.

Actually, in [86], Hu and Shi proved a much more precise result :

Theorem 1.42 (Theorem 1.2 in [86]). Let us assume (1.9) and that the underlying Galton-Watson
tree is supercritical. Moreover, we assume that there exists δ1 ą 0, δ2 ą 0 and δ3 ą 0 such that

E

»—–
¨̋ ÿ

|u|“1

1‚̨1`δ1
fiffifl ` E

»– ÿ
|u|“1

e´p1`δ2qSu
fifl ` E

»– ÿ
|u|“1

eδ3Su

fifl ă `8.

Then, conditionally on S, it holds that

lim sup
nÑ`8

In
lnpnq “ 3

2 a.s.

lim inf
nÑ`8

In
lnpnq “ 1

2 a.s.

lim
nÑ`8

In
lnpnq “ 3

2 in probability.

In order to prove this result, Hu and Shi introduced pWn,βqnPN such that for every n P N and
every β ą 1,

Wn,β “
ÿ

|u|“n

e´βSu .

They proved the following estimate regarding Wn,β which will be very useful in Chapter 3 in
order to study the VRJP on trees.

Proposition 1.43 (Theorem 1.6 in [86]). Make the same assumptions as in Theorem 1.42. Let
β ą 1. Let r P p0, 1{βq. Then, it holds that

E
“
Wr

n,β

‰ “ n´ 3rβ
2

`onp1q.

Furthermore, in chapter 3 of this thesis, we will use estimates regarding the asymptotic
behaviour of another quantity which is similar to pInqnPN.
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Theorem 1.44 (Theorem 1.4 in [64]). Let pu, SuquPV be a branching random walk satisfying
(1.9). For every x P V , let us define

Spxq “ max
oăuďx

Spuq.

In addition, we define

σ2 “ E

»– ÿ
|u|“1

Spuq2e´Spuq
fifl .

Then, conditionally on S, almost surely, it holds that

lim
nÑ`8

min
|u|“n

Spuq
n1{3 “

ˆ
3π2σ2

2

˙1{3
.

Moreover, branching random walks have a continuous-time counterpart which is called the
branching Brownian motion. In this thesis, we focus on discrete-time branching random walks but
we often generalize theorems which had been proved previously in the continuous-time setting.
Let us give a short insight into the main results concerning the branching Brownian motion.

The binary branching Brownian motion is defined in the following way :
— We start with 1 initial particle o at the origin. It behaves as a Brownian motion until

an exponential time (with parameter 1) T where o divides itself into two independent
Brownian motions which start from the position of o at time T .

— Each particle u behaves as a Brownian motion and divides into two Brownian motions at
rate 1.

For every t P R`, we denote the number of particles at time t by nptq and the set of particles at
time t by Nptq. For every t ě 0 and for every u P Nptq, we denote the position of u at time t
by Suptq. Moreover, for every t ě 0, we define Mptq “ max tSuptq, u P Nptqu. pMptqqtě0 is the
continuous-time analogue of pInqnPN. Let f be a positive measurable function. Then, let us define
for every t ě 0,

hpt, xq “ E

»– ź
uPNptq

fpx ` Suptqq
fifl .

A remarkable fact is that h is solution of the famous FKPP equation which is

Bh
Bt “ 1

2

B2h

Bx2 ` h2 ´ h

with hp0, ¨q “ f . This equation has been first studied by Fisher in [66] and by Kolmogorov,
Petrovsky and Piskunov in [100]. In [125], McKean found the link between the FKPP equation
and the branching Brownian motion. Furthermore, with f “ 1t¨ ą 0u, for every t ě 0 and every
x P R, remark that

hpt, xq “ P pMptq ď xq .
Therefore, one can use the FKPP equation in order to study the distribution of M . More precisely,
McKean showed in [125] the following result : which was generalized by Bramson in [30]

Proposition 1.45 ((3) in [125]). It holds that

Mptq ´ mptq lawÝÝÝÝÑ
tÑ`8 M˚

where mptq is the median of Mptq for every t ě 0. Moreover, for every x P R, PpM˚ ď xq “ wpxq
with w solution of the ODE

1

2
w2 ` ?

2w1 ` w2 ´ w “ 0.
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Further, in [31] and [30], Bramson proved that, as t goes to infinity

mptq “ ?
2t ´ 3

2
?
2
lnptq ` Op1q.

Nowadays, new progresses have been made regarding the branching Brownian motion. For example,
one can consult [38], [19], [10] and [4] for an insight into the recent litterature concerning the
branching Brownian motion.

1.4.2 Critical spatial branching random walks

Spatial branching random walks are defined in the same way as one-dimensional branching
random walks, except that the random variables �i in the point process χ “ t�i, 1 ď i ď Nu can
now take values in a set which is not R but Z

d or R
d. Usually, as in the one-dimensional case,

one can consider a simpler case of spatial branching random walks which is defined as follows :
— Let μ be a probability measure on N and let P be a probability measure on R

d. μ is called
the offspring law and P is the motion law.

— Let V be a Galton-Watson tree with a root o.
— Let tξvuvPV ztou be i.i.d random variables with distribution P which are independent of V .
— For every u P V , we define

Su “
ÿ

oăvďu

ξv.

Moreover, in this thesis, we will assume that spatial branching random walks are critical. It means
that `8ÿ

k“0

kμpkq “ 1.

In other words, we assume that the underlying Galton-Watson tree V is critical. It is well known
that it implies that V is almost surely finite. Moreover, in [101] (see [75] for a modern proof)
Kolmogorov proved the following result :

Lemma 1.46 (Theorem 3.1 in [75]). Assume that μ is a critical measure on N and let σ2 “
`8ř
k“1

kpk ´ 1qμpkq ă `8. Let pZnqnPN be the successive generation sizes of a Galton-Watson tree

with offspring law μ. Then,

PpZn ą 0q „
nÑ`8

2

σ2n
.

Thanks to Lemma 1.46, in [166], Yaglom found the limit in law of Zn conditionally on Zn ą 0.

Proposition 1.47 (Theorem 1 in [74]). Assume that μ is a critical measure on N and let

σ2 “
`8ř
k“1

kpk ´ 1qμpkq ă `8. Let pZnqnPN be the successive generation sizes of a Galton-Watson

tree with offspring law μ.

L
˜
Zn

n

ˇ̌̌̌
ˇZn ą 0

¸
lawÝÝÝÝÑ

nÑ`8 E

where E is an exponential distribution which has density

2

σ2
expp´2x{σ2qdx.

For every d P N
˚, let Pd be a distribution which has probability 1{p2d` 1q on every element of

the form p0, ¨ ¨ ¨ , 0,˘1, 0, ¨ ¨ ¨ , 0q in Z
d and probability 1{p2d ` 1q on 0 P Z

d. In dimension d ě 3,
in [106], Lalley and Zheng proved the following result which generalizes Proposition 1.47 :
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Theorem 1.48 (Theorem 5 in [106]). Let d ě 3. Let μ be a critical measure on N such that

σ2 “
`8ř
k“1

kpk ´ 1qμpkq ă `8. Let us consider a spatial branching random walk with offspring law

μ and motion law Pd. For every n P N, let Zn be the number of particles in generation n, let Ωn

be the number of occupied sites in generation n and for every j P N
˚, let Mnpjq be the number

of vertices of Zd which contain exactly j particles in generation n. Then there exists a sequence

pκjqjPN˚ P R
N˚
` such that

`8ř
j“1

jκj “ 1 and

L
˜
Zn

n
,

ˆ
Mnpjq

n

˙
jě1

,
Ωn

n

ˇ̌̌̌
ˇZn ą 0

¸
lawÝÝÝÝÑ

nÑ`8

˜
1, pκjqjě1,

`8ÿ
j“1

κj

¸
¨ E

where E is an exponential distribution which has density

2

σ2
expp´2x{σ2qdx.

In dimension 1 and 2, the behaviour of the spatial branching random walk is very different.
In dimension 1, it is not hard to see that Ωn is of order

?
n. (See section 7 in [146].) Moreover, in

dimension 2, Lalley and Zheng proved the following result :

Proposition 1.49 (Theorem 7 in [106]). Let μ be a critical measure on N such that σ2 “
`8ř
k“1

kpk ´ 1qμpkq ă `8. Let us consider a spatial branching random walk with offspring law μ and

motion law P2. For every n P N, let Zn be the number of particles in generation n and let Ωn be
the number of occupied sites in generation n. Then, conditionally on Zn ą 0, lnpnqn´1Ωn is tight.

Consequently, according to Theorem 1.48 and Proposition 1.49, spatial branching random
walks which are conditioned on survival exhibit a very different behaviour when d ě 3 compared
to lower dimension. Indeed, in dimension 1 and 2, there is not enough space and particles are
accumulating. On the contrary, when d ě 3, particles spread in an homogeneous way.

Dimension 2 is a kind of critical dimension when we condition on survival at time n. Let us
mention that it is also possible to consider a spatial conditioning. For example, one can condition
the Galton-Watson tree to have n vertices and make n go to infinity. This approach is explored by
Le Gall and Lin in [72] and in [73]. One can also consider a branching random walk starting from
x and condition it to visit 0 and make ||x|| go to infinity. This type of conditioning is studied by
Zhu in [169], [170] and [171]. Some crucial estimates of Zhu have also been generalized by Angel,
Hutchcroft and Járai in [9] and more recently by Asselah and Schapira in [11]. In the spatial
conditioning, the critical dimension is 4 whereas it was 2 in the time conditioning.

In their articles, Lalley, Zheng, Le Gall, Lin, Zhu, Asselah and Schapira used a very important
tool in the area of branching random walks which is the spine decomposition. The principle of
this spine decomposition is that, by the means of a change of measure, one can decompose the
branching random walk into a simple random walk which is called the spine on which we attach
smaller branching random walks which are independent from the spine. In Chapter 2 we give a
precise explanation of the spine decomposition and we use it in order to find properties of spatial
branching random walks starting from a point process.

1.4.3 Spatial branching random walks starting from a point process

Let d P N
˚. Let Θ be a point process on R

d, that is, a random locally finite integer-valued
measure on R

d. Θ can be represented in the following way :

Θ “
ÿ
iPI

δxi .
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Let μ be an offspring law on N. We do not assume criticality of μ for now. Let P be a motion law
on R

d. Then, conditionally on Θ, for every i P I, let us consider a branching random walk Spiq
with offspring law μ and motion law P starting from xi. Besides, we assume that, conditionally
on Θ, these branching random walks pSpiqqiPI are independent. Then, for every n P N, we can
construct the measure Θn which is defined by

Θn “
ÿ
iPI

ÿ
|u|“n

δ
S

piq
u
.

Remark that Θn is not always locally finite for any n P N if we do not make assumptions on
Θ0, μ and P. Actually, for each choice of Θ0, μ and P, it is necessary to verify whether Θn is
locally finite for every n P N or not. For example if Θ0 is a Poisson point process with intensity
e||x||3dx, μ is critical and P is a standard Gaussian distribution, then Θ1 is not locally finite. On
the contrary, if Θ0 is a homogeneous Poisson point process and μ is critical, then Θn is locally
finite for every integer n. If for every bounded subset A of Rd, E rΘpAqs ă `8, then we say that
Θ has finite intensity and A ÞÑ E rΘpAqs is called the intensity measure of Θ. However, such a
measure does not exist for every point process Θ.

A natural problem regarding spatial branching random walks starting from a point process
is to know whether pΘnqnPN converges towards the null point process or not. This question has
been studied a lot in the 70’s and the 80’s and engendered the theory of cluster fields which
is summarized in [124]. We say that a point process Θ is cluster-invariant (with respect to the
branching random walk with offspring law μ and motion law P) if and only if for every n P N,
Θn

law“ Θ. A branching random walk Dpμ,Pq with offspring law μ and motion law P is said
to be stable if there exists a point process Θ which is invariant in law by translation, which is
cluster-invariant with respect to Dpμ,Pq and which has finite intensity. In [94], thanks to his
backward tree method, Kallenberg proved the following result.

Theorem 1.50 (Particular case of Theorem 1.2 in [94]). Let d P N
˚. Let Θ be a point process on

R
d which has a finite intensity � and whose law is invariant by translation. Let us assume that for

every n P N, the random measure Θn is locally finite where Θn is obtained from Θ by performing
the nth generation of the branching random walk Dpμ,Pq with critical offspring law μ and motion
law P. Then pΘnqnPN converges in law for the vague topology towards some limiting point process
Θ8. Moreover Θ8 is either zero if Dpμ,Pq is unstable or it is non-zero and its intensity measure
is � if Dpμ,Pq is stable.

According to Theorem 1.50, the notion of stability is very useful in order to analyse the
asymptotic behaviour of branching random walks starting from a point process. Therefore, it is a
big question to know whether a branching random walk is stable or not. Let β Ps0, 1s and let
α Ps0, 2s. Then, we can consider the critical offspring law μβ on N such that for every s P r0, 1s,

`8ÿ
k“0

μβpkqsk “ s ` 1

2
p1 ´ sq1`β .

Moreover, we define the motion law Pα,d which is defined by its characteristic function such that
for every y P R

d, ż
exp pixy, xyqPα,dpdxq “ exp

¨̋
´

˜
dÿ

k“1

|yk|2
¸α{2‚̨.

Then, generalizing [50] and [60], Gorostiza and Wakolbinger proved in [81], in the case of a
continuous-time model, that there is a critical dimension between stability and unstability.

Theorem 1.51 (Theorem 2.2 in [81]). The continuous-time branching random process with
offspring law μβ and motion law Pα,d is stable if and only if d ą α{β.
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In [49], considering the discrete-time model, Dawson and Fleischmann proved that the critical
dimension is also α{β in the lattice case. Another important question concerning spatial branching
random walks starting from a point process is to characterize the set of cluster-invariant point
processes. Assuming some strong hypothesis, it is possible to find the set of the laws of cluster-
invariant point processes.

Theorem 1.52 (Theorem 12.4.6 in [124]). Let d P N
˚. Let μ be a critical offspring law and let

P be a non lattice motion law on R
d. We assume that the branching random walk associated

with pμ,Pq is stable. For every l P R`, we denote by P
plq
8 the non-trivial limit in law of the

sequence pΘplq
n qnPN starting from the Poisson point process Θplq with intensity l ¨ Leb. P plq

8 is a
translation-invariant, cluster-invariant point process with intensity l ¨Leb. Let Θ be a point process
on R

d which is cluster-invariant and whose law is invariant by translation. Then, there exists a
probability measure μ on R` such that the law LpΘq of Θ satisfies

LpΘq “
ż `8

0
L

´
P

plq
8

¯
dμplq.

Theorem 1.52 characterizes the set of cluster-invariant point processes which are invariant by
translation. Actually, this assumption of invariance by translation is very strong. In 11.10.5 in
[124], one can find a counter-example where a one-dimensional cluster-invariant point process is
not invariant by translation. In [92], in some cases, Kabluchko found a criterion to know when
there exists such cluster-invariant processes which are not invariant by translation. However,
there are some important cases where all the cluster-invariant point processes are invariant by
translation. For example, in [32], Bramson, Cox and Greven studied the case of the critical binary
branching Brownian motion by means of estimates on the PDE

Bh
Bt “ 1

2
Δh ´ h2.

The critical binary branching Brownian motion on R
d is defined as follows :

— We start with 1 initial particle o at the origin. It behaves as a Brownian motion in R
d until

an exponential time T with parameter 1. At time T , the particle o dies with probability
1{2 or divides into two independent Brownian motions in R

d starting from the position of
o at time T .

— Each particle u behaves as a Brownian motion in R
d and at rate 1, it dies with probability

1{2 or divides into two independent Brownian motions in R
d with probability 1{2.

Theorem 1.53 (Theorem 1 in [32]). Let d ě 3. There exists a family pP̃ plq
8 qlě0 of point processes

which are cluster-invariant with respect to the critical binary branching Brownian motion in R
d

such that for every l P R`, P̃
plq
8 has constant intensity l. Moreover, for every l P R`, P̃

plq
8 is

translation-invariant. Let Θ be a cluster-invariant point process with respect to the critical binary
branching Browian motion in R

d. Then, there exists a probability measure μ on R` such that,

LpΘq “
ż `8

0
L

´
P̃

plq
8

¯
dμplq.

Remark that, in Theorem 1.53, the only assumption which is made is cluster-invariance. Θ is not
assumed to be translation-invariant anymore. In other words, in that case, all cluster-invariant
point processes are invariant by translation. In [39], Chen, Garban and Shekhar proved a similar
result for the one-dimensional branching Brownian motion with critical drift. The aim of chapter
2 is to generalize Theorem 1.53 in the discrete-time setting by means of methods which are
developped in [39].
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1.5 Our results regarding branching random walks

This section will briefly describe the results of chapter 2. It is based on my paper [142] which
was written under the supervision of my PhD advisor Xinxin Chen. In this chapter we will study
spatial branching random walks in R

d with critical offspring law μ and motion law P in three
different cases :

1. Hypothesis H1 : We assume that d ě 3. The distribution P is a d-dimensional Gaussian
random variable with mean 0 and covariance matrix Σ “ Id where Id is the identity matrix.
Moreover σ2 :“ ř`8

k“0 k
2μpkq ă `8.

2. Hypothesis H2 : We assume that P can be written as

P “
ÿ
xPR

ppxqδx

where R is a finite subset of Zd with d ě 3. Moreover p is symmetrical in the sense that
for every x P R, ´x P R and pp´xq “ ppxq. P has a positive definite covariance matrix
Σ. In addition, we assume that the random walk generated by the motion P is aperiodic.
Furthermore σ2 :“ ř`8

k“0 k
2μpkq ă `8.

3. Hypothesis H3 : The motion law P is given by a spherically symmetric α-stable law with
α Ps0, 2s. More precisely for every y P R

d,

ż
exp pixy, xyqPpdxq “ exp

¨̋
´

˜
dÿ

k“1

|yk|2
¸α{2‚̨.

The critical offspring law μ has no second moment anymore. However we assume that there
exists β Ps0, 1s such that for every γ ă β,

ř`8
k“0 k

1`γμpkq ă `8. Moreover, we assume that
d ą α{β.

Remark 1.13. Hypothesis H1 is a particular case of H3 with pα, βq “ p2, 1q. However we
distinguish the special case of Hypothesis H1 because the proofs of the forthcoming results are very
similar when we assume Hypotheses H1 and H2. On the contrary, if we assume H3 with general
α and β, then we need to slightly change the proofs.

Now, let X be a non-negative random variable. If we assume hypotheses H1 or H3, let Λd,X
0 be a

Poisson point process with distribution

PPP pXλpdxqq
where λ is the Lebesgue measure. If we assume hypothesis H2, let Λd,X

0 be the discrete Poisson
point process

PPP

˜
X

ÿ
xPZd

δx

¸
.

Let us define the sequence pΛd,X
n qnPN which is obtained by attaching independent spatial branching

random walks with motion law P and offspring law μ to the point process Λd,X
0 . Moreover, a

"closed ball" designates a euclidean closed ball of Rd. Under hypothesis H2, we always assume
that a closed ball contains at least one point of Zd.

Theorem 1.54 (Convergence Theorem). We assume hypotheses H1, H2 or H3. Then, there
exists a non-trivial point process Λd,X8 such that

Λd,X
n

lawÝÝÝÝÑ
nÑ`8 Λd,X8

in the vague topology.
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Idea of the proof of Theorem 1.54.
Let us sketch the proof of Theorem 1.54 under hypothesis H1 or H2. If a critical branching
process starts from a single particle and if we condition it to visit a closed ball A, we will prove in
Chapter 2 that the limiting point process is some point process NA. However, most of the critical
branching processes starting from particles in Λd,X

0 will not reach A because of transience (in
dimension d ě 3) or because of extinction of the branching process. Let us make this intuition
more quantitative. By homogeneity of the Poisson point process Λd,X

0 , for every M ě 1,

Λd,X
0 pBp0,M?

nqq » Θpnd{2q.
Moreover, any particle of Λd,X

0 located at x P R
d with ||x|| " ?

n is too far from A to have
descendants in A at time n. Indeed, a centered random walk with second moment is at distance
O p?

nq from 0 at time n. Moreover, we will prove in Chapter 2 that a particle in Λd,X
0 located

at x P Bp0,M?
nq has descendants which reach A at time n with probability which is of order

Θpn´d{2q. If Zpyq
n p¨q is the occupation measure of the n-th generation of the critical branching

process starting from a particle y in the support of Λd,X
0 , combining both previous approximations,

we get that ż
1tZpyq

n pAq ě 1udΛd,X
0 pyq » Θpnd{2q ˆ Θpn´d{2q “ Θp1q.

Therefore, the number PA of particles in Λd,X
0 whose descendants reach A is of order Θp1q.

Moreover, for each of these particles, the positions of their descendants in A form a point process
distributed as NA. Consequently, Λd,X8 is a layering of PA independent copies of NA.

Remark 1.14. Theorem 1.54 is not totally new. Actually the case of Hypothesis H3 was already
known in a continuous-time setting in [81]. However our result is stated in discrete time. Therefore,
we cannot use PDEs estimates as in [81] which makes necessary to use probabilistic tools. Moreover
the lattice case of Hypothesis H2 was already treated in the discrete-time setting in [49] with
a different formalism. Nonetheless, one advantage of our proof is that we can treat the three
different hypotheses with a unified proof in a modern formalism. (However the proof requires slight
modifications in the case of H3 but the main idea remains the same.)

It is clear that the limiting point processes obtained in Theorem 1.54 are cluster-invariant. In
fact, all cluster-invariant point processes have this form.

Theorem 1.55 (Characterization of cluster-invariant measures). Let us assume hypotheses H1,
H2 or H3. Let Θ be a cluster-invariant point process. Then there exists a non-negative random
variable X such that :

Θ
law“ Λd,X8 .

Moreover Λd,X8 is cluster-invariant for every non-negative random variable X.

Idea of the proof of Theorem 1.55.
Let us consider a cluster-invariant point process Θ. Let f be a non-negative continuous compactly
supported function whose support is included in a closed ball A. By cluster-invariance, we remark
that for every n P N

˚,

E

„
exp

ˆ
´

ż
fpxqΘpdxq

˙j
“ E

„
exp

ˆ
´

ż
fpxqΘnpdxq

˙j
.

Then, we investigate the asymptotics of the right-hand side above in order to describe the
distribution of Θ. We will show that the particles x in the support of Θ such that ||x|| ě M

?
n

can be neglected. That is why,

E

„
exp

ˆ
´

ż
fpxqΘnpdxq

˙j
« E

»– ź
xPΘXBp0,M?

nq
EP

»–exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨fiflfifl
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where under P, S is a branching random walk with offspring law μ and motion law P starting
from 0. Under P, for every set Ã, ZnpÃq denotes the number of particles of the branching random
walk which lie in Ã in generation n. Furthermore, we will prove in Chapter 2 that there exists a
quantity Rf,A such that, uniformly in x P Bp0,M?

nq,

ln

¨̋
EP

»–exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨fifl‚̨« Rf,APpZnpA ´ xq ě 1q.

Therefore, for every n P N
˚,

E

„
exp

ˆ
´

ż
fpxqΘpdxq

˙j
« E rexp pRf,ALnqs (1.11)

where

Ln :“
ż
Bp0,M?

nq
PpZnpA ´ xq ě 1qΘpdxq.

In Chapter 2, we will prove that pLnqnPN˚ is tight. Therefore, by Prokhorov’s theorem, up to
the extraction of a subsequence, pLnqnPN˚ converges in law toward some random variable Y .
Therefore, by making n go to infinity along this subsequence in (1.11), we obtain that

E

„
exp

ˆ
´

ż
fpxqΘpdxq

˙j
“ E rexp pRf,AY qs .

Actually, we will see that the right hand-side is exactly the Laplace transform of Λd,X8 for some
random variable X which is related to Y . It concludes the proof.

1.6 Our main results regarding the VRJP

Most of the results of this thesis concern the VRJP but we focus on different objects including
the martingale pψpnq

β qnPN, the operator Hβ on Z
d, the scaling limits of Hβ on one-dimensional

continuous topological spaces or a system of SDEs which is associated with the random potential
β.

1.6.1 Main results of Chapter 3

In chapter 3, we study the asymptotic behaviour of the martingale pψpnq
β qnPN. It is based on

the paper [141] which has been written under the supervision of my PhD advisors C. Sabot and
X. Chen. The proofs of Theorems 1.56, 1.57, 1.58 and 1.59 below use one-dimensional branching
random walks. By means of different tricks, we adapt the tools which are known about branching
random walks in the particular case of the VRJP on trees.

As explained in Remark 1.10, the Lp-boundedness of pψpnq
β qnPN on Z

d, is crucial in order to

prove diffusivity of the VRJP. We are not able to prove the Lp-boundedness of pψpnq
β qnPN for the

transient VRJP on Z
d. However we can always prove uniform integrability.

Theorem 1.56. We assume that V “ Z
d with d ě 3 and that the weights on the edges of Zd are

constant and equal to some W ą 0. Moreover we assume that W ą Wcpdq. Then the martingale
pψpnq

β p0qqnPN is uniformly integrable with respect to νWV .

Idea of the proof of Theorem 1.56.
Thanks to the stability of the distributions of the form νW,η

V under restriction and conditioning
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which is given by Lemma 1.21, we will prove in Chapter 3 that for every n P N, the law of ψpnq
β p0q

satisfies

L
´
ψ

pnq
β p0q|Gn

¯
“ IG

¨̋
1,

ψ
pnq
β p0q

Ĝ
pnq
β p0, 0q

‚̨ (1.12)

for some σ-field Gpnq
β such that

ψ
pnq
β p0q

Ĝ
pnq
β p0,0q is measurable with respect to Gn. As the VRJP is transient

because W ą Wcpdq, we know that
ψ

pnq
β p0q

Ĝ
pnq
β p0,0q converges almost surely towards ψβp0q

Ĝβp0,0q which is

stricly positive. Therefore, by making n go to infinity in (1.12), we obtain

L pψβp0q|G8q “ IG

˜
1,

ψβp0q
Ĝβp0, 0q

¸

for some σ-field G8 such that ψβp0q
Ĝβp0,0q is measurable with respect to G8. In particular, E rψβp0qs “

1 “ E

”
ψ

pnq
β p0q

ı
for every n P N. By Scheffé’s lemma, it implies that pψpnq

β p0qqnPN converges in L1.

In particular, pψpnq
β p0qqnPN is a uniformly integrable martingale.

Moreover, in the case of Galton-Watson trees, when the VRJP is transient, we are able to
show Lp-boundedness of pψpnq

β qnPN. In the next three theorems o designates the root of the tree.

Theorem 1.57. Let V be a Galton-Watson tree with root o with offspring law μ such that μp0q “ 0
and the mean m of μ satisfies m ą 1. Let W ą Wcpμq. Then, for every p Ps1,`8r, the martingale
pψpnq

β poqqnPN is bounded in Lp with respect to νWV .

On the contrary, when W ď Wcpμq, we know that the VRJP is recurrent which means that
pψpnq

β poqqnPN converges to 0 and therefore is not uniformly integrable. In Chapter 3, we compute

the rate of convergence of pψpnq
β qnPN toward 0.

Theorem 1.58. Let V be a Galton-Watson tree with a supercritical offspring law μ satisfying
mild hypotheses. Let W ă Wcpμq. Then, it holds that, νWV -almost surely,

lim
nÑ`8

lnpψpnq
β poqq
n

“ ´τpm,W q

with τpm,W q ą 0.

Moreover, at the transition point Wcpμq, we found a different behaviour.

Theorem 1.59. Let V be a Galton-Watson tree with a supercritical offspring law μ satisfying
mild hypotheses. Let m be the mean of μ. We assume that W “ Wcpμq. Then, it holds that

lnpψpnq
β poqq
n1{3

a.sÝÝÝÝÑ
nÑ`8 ´�c

where �c “ 1
2

´
3π2σ2

2

¯1{3
with σ2 “ 16m

ż `8

0

a
Wcpμq lnpxq2?

2πx
e´Wcpμq

2
px`1{x´2qdx.

The proof of these three theorems relies on the link between the square of ψ
pnq
β and the

effective resistance of the system. Therefore, controlling the ψ
pnq
β is tantamount to controlling

this effective resistance. To do so, we will use tools coming from the theory of branching random
walks.
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Idea of the proof of Theorem 1.57.
Let W ą Wcpμq. We aim to show that pψpnq

β poqqnPN is bounded in Lp for every p ą 1. First,

pĜpnq
β po, oqqnPN is the bracket of pψpnq

β poqqnPN in the sense that pψpnq
β poq2 ´ Ĝ

pnq
β po, oqqnPN is a

martingale. Therefore, by Burkholder-Davis-Gundy inequality, for every p ą 1, it is enough to
show that there exists C ą 0 such that for every n P N,

E

„´
Ĝ

pnq
β po, oq

¯p{2j
ď C

in order to prove that
´
E

”´
ψ

pnq
β poq

¯pı¯
nPN

is bounded. Now, how can we control Ĝpnq
β po, oq ?

Surprisingly, everything is easier if we make a rank-one perturbation. More precisely, there exists a
potential pβ̃iqiPV on the tree V and a random variable γ with Gamma distribution with parameter
p1{2, 1q which is independent of β̃ such that for every i P V ,

βi “ β̃i ` 1ti “ ouγ.
Moreover, if pAiqiPV ztou are independent Inverse Gaussian random variables with parameters
p1,W q which are independent of γ, we can construct β̃ in the following way : for every i P V ,

β̃i “ W

2

˜ÿ

u“i

Au ` 1ti ‰ ou 1

Ai

¸
.

Now, let us consider the operator H̃β such that for every i, j P V ,

H̃βpi, jq “ 1ti “ ju2β̃i ´ 1tti, ju P EuW.

Remark that H̃β and Hβ differ only at point po, oq. We will show in Chapter 3 that for every
n P N, H̃β |VnˆVn is positive definite almost surely. In particular, we are allowed to define G̃

pnq
β

which is the inverse of H̃β|VnˆVn . By Cramer’s formula, for every n P N, it holds that

Ĝ
pnq
β po, oq “ G̃

pnq
β po, oq

1 ` 2γG̃
pnq
β po, oq

. (1.13)

Moreover, by a direct computation, one can use (1.13) to prove that for every p ą 1, there exists
ap ą 0 such that for every n P N,

E

„´
Ĝ

pnq
β po, oq

¯p{2j
» apE

„´
G̃

pnq
β po, oq

¯pp´1q{2j
.

Thus, in order to conclude the proof, it is enough to prove that for every α ą 0,

lim sup
nÑ`8

E

”´
G̃

pnq
β po, oq

¯αı
ă `8.

Moreover,
´
G̃

pnq
β po, oq

¯
nPN

is increasing. Therefore, it has almost surely a limit G̃
p8q
β po, oq. Conse-

quently, we need that for every α ą 0,

E

”´
G̃

p8q
β po, oq

¯αı
ă `8. (1.14)

Then, in Chapter 3, we will prove the following remarkable fact :

G̃
p8q
β po, oq “ Rpo ÐÑ 8q
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where Rpo ÐÑ 8q is the effective resistance from 0 to infinity on V with the random conductances
pcpx, yqqtx,yuPE such that for every x P V ,

cpx, �xq “ Ax

ź
oăzď 
x

A2
z.

By Proposition 1.11, these conductances are the conductances of the discrete time VRJP. Thus,
as W ą Wcpμq, we know that G̃

p8q
β po, oq “ Rpo ÐÑ 8q ă `8 almost surely. However, we need

(1.14) which is a stronger result than the finiteness Rpo ÐÑ 8q. Actually, by means of the theory
of electrical networks (see [116]), one can prove that Rpo ÐÑ 8q is solution of the following
equation in law :

Rpo ÐÑ 8q “ 1ř

i“x

A2
iW

Ai`WRpiq
(1.15)

where pRpiqq 
i“x are i.i.d copies of Rpo ÐÑ 8q which are independent of pAiq 
i“x. Thanks to the
study of the equation (1.15), we will prove (1.14).

Idea of the proof of Theorem 1.58 and Theorem 1.59.
Let pAzqzPV ztou be i.i.d Inverse Gaussian random variables with parameters p1,W q. For every
x P V ztou, let us define again the local conductance

cpx, �xq “ Ax

ź
oăzď 
x

A2
z.

For every n P N, let Rp0 ÐÑ δnq be the effective conductance between the root o and the point
δn with local conductances c. δn is obtained by a wired contraction of V zVn. The details of the
construction are given in Chapter 3. Besides, when W ď Wcpμq, if γ “ 1

2Ĝβpo,oq , we will prove
that for every n P N the following identity in law does hold

ψ
pnq
β poq2 ˆ 2γ ˆ p1 ` 2γRpo ÐÑ δnqq law“ 2Γp1{2, 1q a.s. (1.16)

Therefore, by means of (1.16) and Borel-Cantelli lemma, it is not difficult to show that, up to
some negligible terms,

lnpψpnq
β poqq » 1

2
lnpRpo ÐÑ δnqq a.s.

Then, it is possible to obtain almost-sure estimates for lnpRpo ÐÑ δnqq thanks to the theory of
branching random walks. In the non-critical case, we will use results of Hu and Shi in [87]. In the
critical case, we have to apply finer estimates. In particular, we will use the results of Faraud, Hu
and Shi in [64].

1.6.2 Main results of Chapter 4

Let W ą 0 and let d P N
˚. Let us denote by νWd the distribution of the random potential β

which is associated with the VRJP on Z
d with constant weights W ą 0. In chapter 4, we study

the integrated density of states nW,d of the operator Hβ on Z
d where β has distribution νWd . We

will show that the spectrum of Hβ is R`. Therefore nW,d is supported on R`. By the property
of Lifschitz tails (see Theorem 1.37), in the case of the Anderson model, the density of states
decreases exponentially fast at the bottom of the spectrum. However, Sabot and Zeng suspected
that Lifschitz tails should not occur for Hβ and that we should have

nW,dpEq » ?
E
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when E goes to 0, at least for certain values of W . During my thesis, I found some partial answers
to this conjecture. Nevertheless, simultaneously, Disertori, Rojas-Molina and Zeng proved results
which are very similar to mine. When we discovered this situation we decided to publish an article
together which yielded the paper [55]. However the original version of my proofs of the results in
[55] was slightly different. In Chapter 4, I present my original proofs of the results of [55]. First, I
proved a universal bound for the density of states of the operator Hβ .

Theorem 1.60. Let d P N
˚. There exists a positive constant K1 which does not depend on d such

that for every W ą 0 and for every E ą 0,

nW,dpEq ď K1E
1{2.

Moreover, when W ą 0 is small, it holds that the upper bound of Theorem 1.60 is the good
asymptotic order up to some logarithmic correction.

Theorem 1.61. Let d P N
˚. There exists W

pdq
´ ą 0 such that for every W ă W

pdq
´ , there exists a

positive constant K2,d,W such that for every E P p0, 1q,

nW,dpEq ě K2,d,W

?
E

| lnpEq|d .

Moreover, in the particular case of the dimension 1, we have W
p1q
´ “ `8.

By Theorems 1.60 and 1.61, when W is small, we have nW,dpEq » ?
E. Nevertheless, it is not

true anymore when W is large.

Proposition 1.62. Let d ě 3. Then, there exists W
pdq
` ą 0 such that for every W ą W

pdq
` , there

exists a positive constant K3,d,W such that for every E ą 0,

nW,dpEq ď K3,d,WE.

Thus, according to Theorem 1.61 and Proposition 1.62, there is a phase transition regarding
the behaviour of the density of states at the bottom of the spectrum. We conjecture that this phase
transition for the density of states may coincide with the phase transition between recurrence
and transience for the VRJP but we do not know how to prove it for now.

Idea of the proof of Theorem 1.60.
Let �˚ be the distribution of β0 conditionally on σpβx, x ‰ 0q. By Wegner’s bound (see Proposition
1.36), if �˚ had a bounded density then it would imply nW,dpEq ď CE for some constant C ą 0.
However, by the conditioning property in Lemma 1.21, one can compute the density of �˚ which
is

1tβ ą Du 1a
πpβ ´ Dqe

´pβ´Dqe
´ 1

4pβ´Dq
ψβp0q2
Ĝβp0,0q2 e

ψβp0q
Ĝβp0,0q (1.17)

where D is a positive random variable which is measurable with respect to σpβx, x ‰ 0q. This
density function is not bounded. Therefore, we cannot apply Proposition 1.36. Nonetheless,
according to a generalization of Wegner’s bound, we can obtain a bound of the type nW,dpEq ď
C

?
E for some constant C ą 0 if there exists C̃ ą 0 such that for every t ě 0 and for every x P R,

�˚prx ´ t, x ` tsq ď C̃
?
t. (1.18)
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Using (1.17), we can show an estimate of the form of (1.18). Indeed, for every x P R and every
t ě 0,

�˚prx ´ t, x ` tsq ď
ż x`t

x´t
1tβ ą Du 1a

πpβ ´ Dqe
´pβ´Dqe

´ 1
4pβ´Dq

ψβp0q2
Ĝβp0,0q2 e

ψβp0q
Ĝβp0,0qdβ

“
ż x`t

x´t
1tβ ą Du 1a

πpβ ´ Dqe
´ 1

4pβ´Dq

ˆ
ψβp0q
Ĝβp0,0q ´2pβ´Dq

˙2

dβ

ď
ż x`t´D

x´t´D
1tβ ą 0u 1?

πβ
dβ

ď
ż 2t

0

1?
πβ

dβ

“ 2
?
2t?
π

which concludes the proof.

Idea of the proof of Theorem 1.61.
For every L P N

˚, let ΛL “ r´L,Lsd X Z
d. Let us denote by HD

L the Dirichlet restriction of Hβ

in the box ΛL. More precisely, for every x, y P ΛL,
— If x and y are neighbours in Z

d, HD
L px, yq “ ´W

— If x and y are not equal and not neighbours in Z
d, HD

L px, yq “ 0.
— If x “ y, HD

L px, yq “ 2βx ` ř
tx,kuPEpZdq,kRΛL

W

where EpZdq is the edge set of Zd. Moreover, the inverse of HD
L is denoted by GpLq,D. In order to

prove Theorem 1.61, we use the Dirichlet-Neumann bracketing which tells us that for any L P N
˚,

nW,dpEq ě 1

|ΛL|EνWd

“
NpHD

L , Eq‰
where NpHD

L , Eq is the number of eigenvalues of HD
L which are lower than E. However, we cannot

control the eigenvalues of HD
L except the first one. Indeed the smallest eigenvalue of HD

L is lower
than GpLq,Dp0, 0q´1 by the min-max principle. Consequently,

nW,dpEq ě 1

|ΛL|ν
W
d

ˆ
1

GpLq,Dp0, 0q ď E

˙
.

Furthermore, if L is large, GpLq,Dp0, 0q is almost Ĝ
pLq
β p0, 0q which converges towards Ĝβp0, 0q.

Therefore, approximately,

nW,dpEq ě 1

|ΛL|ν
W
d

˜
1

Ĝβp0, 0q ď E

¸
.

Besides, if W is small enough, the VRJP is recurrent. By Proposition 1.26, ψβp0q “ 0 almost
surely. By Theorem 1.24, it implies that

Ĝp0, 0q “ Gβ,γp0, 0q ´ 1

2γ
ψβp0q2 “ Gβ,γp0, 0q.

However, by Proposition 1.19, 1{p2Gβ,γp0, 0qq has Γp1{2, 1q distribution. Actually, in Proposition
1.19, the result is stated on finite graphs but one can show that the distribution of diagonal terms
of Gβ,γ remains the same on infinite graphs. Moreover, the cumulative distribution function of
the Γp1{2, 1q distribution behaves as

?
E when E goes to 0. It yields the lower bound in Theorem

1.61. Some work still needs to to be done in order to justify that GpLq,Dp0, 0q » Ĝ
pLq
β p0, 0q for a

good choice of L with L » | lnpEq|. This is the main difficulty of this proof.
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Proof of Theorem 1.62.
We write EνWd

when we integrate with respect to νWd . Let us denote by αW,d the non-integrated
density of states of Hβ . For every η ą 0, we have νWd -a.s,ż `8

0

1

η ` u
dμδ0puq “ pHβ ` ηq´1p0, 0q (1.19)

where μδ0 is the spectral measure of Hβ which is associated with the vector δ0. By Proposition
1.38, we know that pHβ ` ηq´1p0, 0q ÝÑ

ηÑ0
Ĝβp0, 0q, νWd -a.s. Moreover, by monotone convergence

theorem, ż `8

0

1

η ` u
dμδ0puq ÝÑ

ηÑ0

ż `8

0

1

u
dμδ0puq.

Together with (1.19), this implies that, νWd -a.s,ż `8

0

1

u
dμδ0puq “ Ĝβp0, 0q. (1.20)

Taking the expectation we obtain,ż `8

0

1

u
dαW,dpuqdu “ EνWd

”
Ĝβp0, 0q

ı
.

However, recall that pĜpnq
β p0, 0qqnPN is the bracket of the martingale pψpnq

β p0qqnPN. Moreover, by
Theorem 1 in [54] (see Lemma 9 in [154] for a more precise explanation.), if d ě 3, there exists
W

pdq
` ą 0 such that for every W ą W

pdq
` , pψpnq

β p0qqnPN is bounded in L2 and thus

EνWd

”
Ĝβp0, 0q

ı
ă `8.

Consequently, for every W ą W
pdq
` ,

nW,dpEq “
ż E

0
dαW,dpuq

ď E

ż E

0

1

u
dαW,dpuq

ď E

ż `8

0

1

u
dαW,dpuq

“ E ˆ EνWd

”
Ĝβp0, 0q

ı
.

This concludes the proof.

In Chapter 4, we also prove the localization for high energies of the Green function which is
associated with the operator Hβ :

Theorem 1.63. Let d P N
˚. For every W ą 0, there exist K4,d,W ą 0, μd,W ą 0 and Ed,W ą 0

such that for every z P CzR such that |z| ě Ed,W , for every x, y P Z
d,

EνWd

”
|pHβ ´ zq´1px, yq|1{4

ı
ď K4,d,W expp´μd,W ||x ´ y||q.

Proof.
By the finite volume criterion given by (11.5) in Theorem 11.2 of [6] applied just on 1 point, we
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only need to check that for every ε ą 0, there exists c ą 0 such that for every z P C such that
|z| ě c,

EνWd

„
1

|2β0 ´ z|1{4

j
ď ε. (1.21)

In Chapter 4, we will prove something stronger than (1.21). Indeed, there exists C ą 0 such that
for every E ě 1,

EνWd

„
1

|2β0 ´ E|1{4

j
ď CE´1{4.

Actually, the finite volume criterion (11.5) in [6] is stated for an i.i.d potential. However, pβxqxPZd
is not i.i.d. but 1-dependent. Therefore, a part of Chapter 4 is devoted to an adaptation of the
proof of Theorem 11.2 in [6].

1.6.3 Main results of Chapter 5

Chapter 5 is devoted to the study of the scaling limits of the operator Hβ on continuous
topological objects as the line or circles and some related topics. It is based on a work which
has been achieved with my PhD advisor Christophe Sabot. First, we want to understand the
continuous-space version of Hβ and Gβ by considering a fine-mesh limit on discrete graphs. In
[113], Lupu, Sabot and Tarrès managed to find the scaling limit of Gβ{Gβp0, 0q on R but they
mostly focused in this paper on the dynamics of the continuous-space VRJP. Here, we will not
look at the dynamics of the VRJP but we will carry on with the study of the continuous-space
version of Gβ. We will do that on the simplest graph which is not a tree, that is, the circle and
we will make the size of the circle go to infinity. By inverting the continuous-space version of Gβ ,
we will obtain a continuous-space version of Hβ . Several other results stems from this analysis :

— We find a discrete-time version of the so-called Matsumoto-Yor properties and we will
obtain a new proof of continuous-time Matsomoto-Yor properties by taking the limit. This
result is not direcly linked to the continuous-space version of Hβ but the main tools of the
proof are very similar. In particular, it uses the same scaling-limit of the β potential.

— We prove generalizations of the famous Dufresne’s identity (see [57]) which states thatż `8

0
e2αs´sds

law“ 1

2γ

where γ is a Gamma random variable with parameters p1{2, 1q and α is a Brownian motion.
— We compute the density of states of the continuous-space version of Hβ on R which has a

remarkably simple expression.

1.6.3.1 A new approach to Matsumoto-Yor properties

First, we use this scaling limit in order to give a new proof of the Matsumoto-Yor properties.
Matsumoto-Yor properties are beautiful results concerning exponential functionals of the Brownian
motion which were proved in [121] and [122]. Let α be a standard Brownian motion on R`.
Then we can define the associated geometric Brownian motion e as petqtě0 “ pexppαt ´ t{2qqtě0.
Moreover, let us define the related exponential functionals T and Z such that for every t ą 0,

Tt “
ż t

0
e2sds and Zt “ Tt

et
.

For every t ě 0, we define two sigma-fields At “ σ pαs, s ď tq and Zt “ σ pZs, s ď tq. Then,
Matsumoto and Yor proved the following results :
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Theorem 1.64 (Theorem 1.6 and Proposition 1.7 in [122]).
(i) For every t ą 0, Zt Ř At.

(ii) Z is a diffusion process whose infinitesimal generator is

1

2
z2

d2

dz2
` p1 ` zq d

dz
.

(iii) For every t ą 0, the conditional distribution of et knowing Zt is an Inverse Gaussian
distribution with parameter p1, 1{Ztq. More precisely, for every t ą 0, the conditional density
of et knowing Zt is

1tx ą 0u 1?
2πZtx3

e
´ 1
Zt

px´1q2
2x dx.

In chapter 5, we show that some functionals of the β potential on N
˚ furnish a discrete-time

analoguous version of Theorem 1.64. Moreover, by considering a relevant scaling limit of the β
potential we give a new proof of Theorem 1.64.

Idea of the new proof of Theorem 1.64.
Actually, Theorem 1.64 has a discrete counterpart which is given by the VRJP on N

˚. Let
m ą 0 and let Km be a weight operator on the line graph N

˚ such that for every i P N
˚,

Kmpi, i`1q “ Kmpi`1, iq “ m. All other entries of Km are zero. Then we can define the random
operator H

pmq
β on the discrete half-line N

˚ associated with the random field β „ νKm
N˚ . We write

H
pmq
β in bold letters in order to avoid the confusion with H

pλ,nq
β on the discrete circle which shall

be introduced later. Now, for every n P N
˚, let us define Ĝ

pn,mq
β “

´
pHpmq

β q|�1,n�ˆ�1,n�

¯´1
. For

every n P N
˚, we define also

ψ
pn,mq
β “ Ĝ

pn,mq
β p1, nqm and Z

pn,mq
β “ Ĝ

pn,mq
β p1, 1q
ψ

pn,mq
β

.

ψ
pn,mq
β and Z

pn,mq
β will play the same role as et and Zt respectively in the discrete-time setting.

Furthermore, for every n P N
˚, we define

An,m “ σpψpk,mq
β , 1 ď k ď nq and Zn,m “ σpZpk,mq

β , 1 ď k ď nq.
The interest of these discrete objects is that they give a discrete version of the results of Matsumoto
and Yor :

Lemma 1.65. Let m P N
˚ be fixed.

(i) For every n P N
˚, Zn,m Ř An,m.

(ii)
`
Zpn,mq˘

nPN˚ is a Markov process. More precisely, for every n P N
˚, the law of Zpn`1,mq

β

conditionally on Zn,m is
Z

pn,mq
β

m
ˆ 1

IG

¨̋
1

m` 1

Z
pn,mq
β

, 1‚̨.

(iii) For every n ě 1, the conditional distribution of ψpn,mq
β knowing Zn,m is an Inverse Gaussian

distribution with parameter p1, 1{Zpn,mq
β q. More precisely, for every n ě 1 the conditional

density of ψpn,mq
β knowing Zn,m is

1tx ą 0u 1b
2πZ

pn,mq
β x3

e
´ 1

Z
pn,mq
β

px´1q2
2x

dx.
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A remarkable fact is that the space in the context of the VRJP corresponds to the time
in the context of Matsumoto-Yor properties. Then, the main idea of the proof is to take the
limit in (i), (ii) and (iii) of Lemma 1.65. It is possible because ψ

pn,mq
β converges towards the

geometric Brownian motion thanks to a proper renormalisation. More precisely, let pψ̃pmqptqqtě0

and pZ̃pmqptqqtě0 be the continuous linear interpolations of pψtmtu,mq
β qtě0 and pZtmtu,mq

β qtě0. Then,
we will prove that the following convergence does hold for the topology of uniform convergence
on compact sets : ´

ψ̃pmqptq, Z̃pmqptq
¯
tě0

lawÝÝÝÝÝÑ
mÑ`8 pet, Ztqtě0 .

Together with Lemma 1.65, it implies directly (iii) and (i) in Theorem 1.64. However, it still
requires some work in order to deduce (ii) of Theorem 1.64.

1.6.3.2 The space-continuous operator on circles

Another part of Chapter 5 consists in constructing a continuous-space version of Hβ on some
one-dimensional topological spaces as circles. Let n P N

˚. Let λ ą 0. We define the discretized
circle Crλns “ t´rλns, . . . , rλnsu such that ´rλns and rλns `1 are identified. Let W pλq

n be a matrix
on Crλns such that pW pλq

n qi,j is 0 if i and j are not connected and is n otherwise. Let us denote

H
pλ,nq
β the matrix associated with the random potential β with distribution νW

pλq
n

Crλns
. Let Cpλq be

the circle r´λ, λs where the points ´λ and λ are topologically identified. We denote by G
pλ,nq
β

the inverse of Hpλ,nq
β . We define also a continuous bilinear interpolation

´
G̃

pλ,nq
β pt, t1q

¯
t,t1PCpλq of´

G
pλ,nq
β prnts, rnt1sq

¯
t,t1PCpλq .

Moreover, we introduce a limiting continuous version Gpλq of G̃pλ,nq
β as follows : Let B be a

Brownian motion on R such that Bp0q “ 0 almost surely. We define the geometric Brownian
motion M by

pMtqtPR “ peBt´t{2qtPR.
Then, the symmetric random kernel Gpλq on Cpλq is defined by

Gpλqpt, t1q “ Mt1Mt

pMλ ´ M´λq2
˜
M2

λ

ż λ

t1

ds

M2
s

` MλM´λ

ż t1

t

ds

M2
s

` M2´λ

ż t

´λ

ds

M2
s

¸

for every t ď t1 P Cpλq. Then, we proved the following convergence result :

Theorem 1.66. Let λ ą 0. Then
G̃

pλ,nq
β

lawÝÝÝÝÑ
nÑ`8 Gpλq

for the topology of uniform convergence on
`
Cpλq˘2.

Idea of the proof of Theorem 1.66.
Let pAiqiPCrλns

be i.i.d Inverse Gaussian random variables with parameters p1, nq. We will prove

that the random potential β with distribution νW
pλq
n

Crλns
can be constructed in the following way : for

every i P Crλns,

βi “ n

2

ˆ
Ai`1 ` 1

Ai

˙
.

Remark that this representation is not valid on any graph. Here, the unidimensional structure of
the underlying graph is crucial in order to make work this proof. By means of tedious computations
involving this representation of the random potential β, one can get an explicit form for the
inverse G

pλ,nq
β of Hpλ,nq

β . Thus, up to some negligible term, we can write G̃
pλ,nq
β as ΦpλqpY pnqq
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where Φpλq is an explicit functional from the space of continuous functions on Cpλq into the space
of continuous functions on Cpλq ˆ Cpλq and t ÞÑ Y

pnq
t is a random continuous function such that if

j{n ď t ă pj ` 1q{n,

Y
pnq
t “

jź
i“´rλns

Ai ` npt ´ j{nq
¨̋

j`1ź
i“´rλns

Ai ´
jź

i“´rλns

Ai
‚̨.

Moreover, we will prove that pY pnqqnPN converges in law for the topology of uniform convergence
on compact sets toward a geometric Brownian motion X starting from ´λ. Therefore, pG̃pλ,nq

β qnPN˚

converges in law for the topology of uniform convergence on Cpλq ˆCpλq toward ΦpλqpXq. Moreover,
in Chapter 5, the functional Φpλq is computed explicitely. By means of this explicit form, we can
show that

ΦpλqpXq law“ Gpλq.

Besides, Gpλq can be viewed as an operator on L2pr´λ, λsq such that for every f P L2pr´λ, λsq
and every t P Cpλq,

Gpλqfptq “
ż
Cpλq

Gpλqpt, t1qfpt1qdt1.

We will show that Gpλq is positive definite and thanks to the following theorem, we can inverse it
explicitely. Let us define the domain

D
´
Hpλq

¯
“

#
g P L2pr´λ, λsq, `

g
M

˘1 P L2pr´λ, λsq,
´
M2

`
g
M

˘1¯1 P L2pr´λ, λsq,
gp´λq “ gpλq, M´λ

`
g
M

˘1 p´λq “ Mλ

`
g
M

˘1 pλq

+
.

In the definition above the derivation 1 is used in the sense of distributions.

Theorem 1.67. Let λ ą 0. Then the image of Gpλq is D
`
Hpλq˘. Moreover, Gpλq has a bijective

inverse Hpλq from D
`
Hpλq˘ onto L2pr´λ, λsq. For every g P D

`
Hpλq˘,

Hpλqg “ ´ 1

M

ˆ
M2

´ g

M

¯1˙1
.

Furthermore, Hpλq is a positive self-adjoint operator (for the classical inner-product on L2pr´λ, λsq)
with domain D

`
Hpλq˘.

Idea of the proof of Theorem 1.67.
We will just verify that

GpλqHpλq “ IdDpHpλqq and HpλqGpλq “ IdL2pr´λ,λsq

through very heavy computations.

1.6.3.3 New Dufresne type identities

Theorem 1.66 implies also a lot of identities in law involving the geometric Brownian motion
which generalize Dufresne’s identity.

Proposition 1.68. Let f be a deterministic continuous non-negative function on Cpλq. Then, the
following identity in law does hold :

1

pMλ ´ M´λq2
ż λ

´λ

1

M2
u

ˆ
M´λ

ż λ

u
fptqMtdt ` Mλ

ż u

´λ
Mtfptqdt

˙2

du
law“

ˆż λ

´λ
fptqdt

˙2

2γ

where γ is a Gamma distribution with parameter p1{2, 1q.
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Idea of the proof of Proposition 1.68.
Let f be a deterministic continuous non-negative function on Cpλq. By Lemma 8.1 in [77], for
every n P N

˚, for every η P R
Crλns

` ,

ÿ
iPCrλns

ÿ
jPCrλns

G
pλ,nq
β pi, jqηiηj law“

˜ ř
iPCrλns

ηi

¸2

2γ

where γ is distributed like a gamma distribution with parameter p1{2, 1q. Now, let us apply this
fact with ηi “ n´1fpi{nq. Then we obtain that¨̋

1

n

ÿ
iPCrλns

fpi{nq‚̨2

1

2γ
law“ 1

n2

ÿ
iPCrλns

ÿ
jPCrλns

G
pλ,nq
β pi, jqfpi{nqfpj{nq.

The left-hand side converges in law toward
´şλ

´λ fpxqdx
¯2

1
2γ because f is assumed to be continuous.

Now, let us focus on the right-hand side. By Theorem 1.66, in the topology of uniform convergence
on Cpλq ˆ Cpλq it holds that :

G̃
pλ,nq
β

lawÝÝÝÝÑ
nÑ`8 Gpλq

Therefore, it is not difficult to prove that

1

n2

ÿ
iPCrλns

ÿ
jPCrλns

G
pλ,nq
β pi, jqfpi{nqfpj{nq lawÝÝÝÝÑ

nÑ`8

ż λ

´λ

ż λ

´λ
Gpλqpt, t1qfptqfpt1qdtdt1.

Consequently, ż λ

´λ

ż λ

´λ
Gpλqpt, t1qfptqfpt1qdtdt1 law“

ˆż λ

´λ
fpxqdx

˙2
1

2γ
.

Moreover, using the explicit form of Gpλq, one can show thatż λ

´λ

ż λ

´λ
Gpλqpt, t1qfptqfpt1qdtdt1

equals the left hand-side of Proposition 1.68.

1.6.3.4 The density of states on the real line

As Gpλq is a compact self-adjoint operator, one can show that the spectrum of Hpλq is almost
surely a random increasing infinite sequence of eigenvalues which is denoted by pEkpλqqkPN.
Moreover, one can compute the asymptotic density of states of Hpλq when λ goes to infinity. For
every E P R

˚̀ , let us define the random variable NλpEq which is the number of eigenvalues of
Hpλq which are lower than E. Then, we have the following result :

Theorem 1.69. For every E ą 0,

NλpEq
2λ

PÝÝÝÝÑ
λÑ`8

?
E

π
.

Idea of the proof of Theorem 1.69.
The equation HpλqϕE “ EϕE is equivalent to the Sturm-Liouville equation`

M2ϕ1
E

˘1 ` EM2ϕE “ 0



1.6. Our main results regarding the VRJP 53

with ϕp´λq ‰ 0. Some classical results on Sturm-Liouville equations imply that ϕE can be written
as ϕE “ RE sinpθEq where RE never vanishes. Therefore, ϕE vanishes k times in r´λ, λs if and
only if θEpλq P rkπ, pk ` 1qπs. Moreover, Sturm-Liouville oscillation theorem states that ϕEkpλq
vanishes approximately k times. Consequently, if NλpEq “ k, then Ekpλq ď E ă Ek`1pλq which
implies that

NλpEq “ k » θEkpλqpλq
π

» θEpλq
π

.

Therefore, for every fixed E ą 0, we only have to study the asymptotic behaviour of θEpλq when
λ goes to infinity. However, according to the theory of Sturm-Liouville equations, θE is solution
of the following ODE with random coefficients :

θ1
E “ M´2

t cospθEq2 ` EM2
t sinpθEq2.

Moreover a very surprising fact is that ζE :“ ´ cotpθEq
M2 is a Markov process with explosions.

Actually explosions of ζE occur precisely when θE is a multiple of π. Therefore, we only have to
count the explosions of ζE . However, by the Markov property, the explosion times of ζE are i.i.d
random variables. As a consequence, the number of explosions of ζE before time t, that is the
number of times where θE is a multiple of π before t is a renewal process which can be studied
thanks to classical tools. However, one problem of the Sturm-Liouville equation is that M is not
differentiable. Consequently, we cannot apply directly the Sturm-Liouville theory. Nevertheless,
we can apply it with a regularized version of M . That is why, M can be replaced by M pnq which
is a C2 random function which converges uniformly almost surely to M as n goes to infinity. (For
example, M pnq can be taken as a polynomial interpolation of M .) The theory of Sturm-Liouville
equation is robust enough to allow us to make n goes to infinity.

One can remark that this asymptotic density of states is the same as the density of states of
´Δ on R. However the spectrum of ´Δ and Hpλq is very different at a microscopic scale.

1.6.4 Main results of Chapter 6

Chapter 6 comes from a joint paper which has been written with Gerard, Sabot and Zeng.
This paper will be published very soon. Actually, at the beginning, this paper was written only
by Gerard, Sabot and Zeng and was posted on arxiv as a preprint. It consisted in applying a
Lamperti time-scale to a system of SDEs which was found by Sabot and Zeng in [155] and which
is related to the β potential. Thanks to this Lamperti time-scale, they proved a multidimensional
generalization of the Matsumoto-Yor opposite drift theorem which was originally proved in
dimension 1 in [119]. However, the authors were not totally satisfied of their preprint because
they did not manage to relate their results to the Matsumoto-Yor properties given by Theorem
1.64 even if such a link was strongly suspected. My contribution consists in having made this link
rigorous. More precisely, under the supervision of C. Sabot, I proved Theorems 6.4, 6.5 and 6.6 in
Chapter 6.

Let pV,Eq be a finite graph. Let pWi,jqi,jPV be non-negative symmetric weights on V ˆ V
such that Wi,j ą 0 if and only if ti, ju P E. For every t P pR`qV , we denote by Kt the matrix
Kt “ Id ´ tW where t stands for the diagonal matrix whose diagonal entries are given by ptiqiPV .
Let θ, η P p0,`8qV . Let p�, T q be solution of the following system of SDEs :$’’&’’%

�ipvq “ logpθiq ` rBipvq `
ż v

0

ˆ
´1

2
´ e�ipuq

´ĂW puqpe�puq ` T puqηq ` η
¯
i

˙
du,

Tipvq “
ż v

0
e2�ipuqdu,

(1.22)

for i P V and v ě 0, where p rBiqiPV is a |V |-dimensional standard Brownian motion, e�puq denotes
the vector pe�ipuqqiPV , and ĂW puq “ WK´1

T puq “ W
`
Id ´ T puqW ˘´1

.
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Gerard, Sabot and Zeng had already proved the following result which makes a link with the
random potential β :

Theorem 1.70. Let p�, T q be the solution of the previous SDE.
(i) For all i P V , we have

Tipuq “
ż u

0
e2�ipvqdv a.s.ÝÝÝÑ

uÑ8 T8
i ,

where
´

1
2T8
i

¯
iPV

is distributed according to νW,θ,η
V which is a generalization of νW,η

V .
(ii) There exists a standard |V |-dimensional Brownian motion B˚ which is independent of

T8 such that for i P V and u ě 0,

�ipuq “ logpθiq ` Bi̊ puq ` 1

2
u ` log

ˆ
T8
i ´ Tipuq

T8
i

˙
.

In particular, the processes p�i, TiqiPV are independent site by site conditionally on T8.

Theorem 1.70 gives a multidimensional generalization of the Matsumoto-Yor opposite drift
theorem. Indeed the drift ´1

2 in (1.22) becomes 1
2 in piiq of Theorem 1.70. Thanks to Theorem

1.70, we proved the following multidimensional generalization of Theorem 1.64 :

Theorem 1.71. For every u ě 0 and for every i P V , we define Zipuq “ Tipuq expp´�ipuqq. Let
us denote by pZuquě0 the natural filtration associated with pZpuqquě0. Then, it holds that

(i) For every u ą 0,
Zu Ř σp�v, v ď uq.

(ii) The process pZpuqquě0 has independent components and for every i P V , there exists a
Brownian motion pBi such that pZipuqquě0 is solution of the SDE

dZipuq “ Zipuqd pBipuq ` pθi ` Zipuqqdu.

(iii) pZpuqquě0 is independent of T8.

(iv) For every u ą 0, let us define βpuq “ pβipuqqiPV “ p1{p2TipuqqqiPV . Then, for every u ą 0,
the conditional law of βpuq given Zu is

L
˜
βpuq

ˇ̌̌̌
ˇZu, Zpuq “ z

¸
“ ν

W,θ,η`1{z
V

where η ` 1{z is the vector pηi ` 1{ziqiPV .



Chapitre 2

Invariant measures of critical branching
random walks in high dimension

Abstract

This chapter is based on the article [142] which has been written under the supervision of Xinxin
Chen. In this chapter, we characterize cluster-invariant point processes for critical branching
spatial processes on R

d for all large enough d when the motion law is α-stable or has a finite
discrete range. More precisely, when the motion is α-stable with α ď 2 and the offspring law μ of
the branching process has an heavy tail such that μpkq „ k´2´β , then we need the dimension d to
be strictly larger than the critical dimension α{β. In particular, when the motion is Brownian and
the offspring law μ has a second moment, this critical dimension is 2. Contrary to the previous
work of Bramson, Cox and Greven in [32] whose proof used PDE techniques, our proof uses
probabilistic tools only.

2.1 Introduction

2.1.1 Definition of the model and first notation

Let μ be a probability distribution on N called the "offspring law". We assume that μ is critical,
that is,

ř`8
k“0 kμpkq “ 1 and non-trivial, that is, μp1q ă 1. Let P be a probability distribution

on R
d with d P N

˚. P is called the "motion law". We define a discrete-time critical branching
process on R

d in the following way :
We start with one particle at an initial position x P R

d. It is generation 0 of the process. Let
Zn be the set of particles at generation n. Every particle u P Zn gives birth independently to Nu

offsprings where Nu has law μ. The offsprings of u jump independently of each others from the
position of u according to the motion law P . All the offsprings of Zn with their new positions form
the pn ` 1q-th generation of the branching process. We remark that the underlying genealogical
tree Tgen of the model is a Galton-Watson tree with offspring law μ. As μ is critical, Tgen will
die out a.s. For every branching process defined in this article, we use the following notation :

|u| :“ the generation of some particle u
Zn :“ |Zn| “ the total number of particles in generation n
tSu : |u| “ nu :“ the set of particle positions in generation n
ZnpAq :“ the number of particles in the set A in generation n

A special case of this model is when P is a standard Gaussian distribution. In this situation
the model is called the critical Wiener branching process. One can refer to [144], [147] and [145]
for more properties of the critical Wiener branching process. Another particular case is when P
corresponds to the simple random walk on Z

d. In [106], Lalley and Zheng studied this critical
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branching simple random walk conditioned on long survival when d ě 2. In particular, they prove
a spatial generalization of the famous Yaglom’s theorem when d ě 3.

In the previous paragraph, we defined a critical branching process starting from a single
particle. However we can also start from a point process in R

d. Let us consider a point process,
that is, a random locally finite integer valued measure :

Θ “
ÿ
iPI

δxi

where I is finite or countable. For every point xi, it is possible to define a critical branching
process with critical offspring law μ and motion law P starting from an ancestor located at xi.
For every i P I and every n P N, we denote by tSpiq

u , |u| “ nu the set of positions of the n-th
generation of the branching process starting from an ancestor located at xi. We assume that
these branching processes are independent of each other. This collection of critical branching
processes gives us a sequence pΘnqnPN of random integer valued measures on R

d . More precisely
Θ0 “ Θ and at each time n ě 1,

Θn “
ÿ
iPI

ÿ
|u|“n

δ
S

piq
u
.

We have to be careful here because it is possible that for some n, Θn is not locally finite anymore.
For example, let us consider a critical Wiener branching process. If we start with a Poisson point
process Θ0 of intensity e||x||3dx, even Θ1 is not a point process anymore. However pΘnqnPN is a
sequence of locally finite point processes when Θ is a Poisson point process of constant intensity.
Indeed in this situation, if A is a closed ball of Rd, E rΘnpAqs remains constant and proportional
to the volume of A because μ is critical. One can refer to [93] or [124] for more information on
point processes. Moreover, we offer a short warm-up about point processes in subsection 2.2.3 for
this article to be self-contained.

A critical branching process starting from a point process is a special case of a more general
theory known as the theory of cluster fields. This theory was originally developed by Liemant,
Kerstan, Matthes and Prehn in several papers (in German), e.g [111] and [96]. The book [124]
summarizes most of important facts about this theory. (Especially chapters 11 and 12.) A very
important issue about point processes is to know whether pΘnqnPN converges toward a non-trivial
point process or not. This is strongly linked with the concept of stability which is studied in
[94]. It is well-known that in dimension 1 or 2, if the motion P is a Gaussian random variable
with mean 0 and variance 1, pΘnqnPN converges in law in the vague sense toward the trivial null
measure. (See for example sections 7 and 8 of [60] in a continuous time setting.) On the contrary,
if Θ0 is a Poisson point process with constant intensity, in dimension d ě 3,

Θn
lawÝÝÝÝÑ

nÑ`8 Λ

where Λ is non-trivial. (See [50] in a continuous-time setting.) This limiting point process Λ is
cluster-invariant, that is, if Θ0 “ Λ, then Θn is distributed as Λ for every n P N

˚. This raises
the natural question of classification of all cluster-invariant point processes. If we assume spatial
stationarity (that is, Θ0p¨ ` xq law“ Θ0 for every x P R

d) or boundedness of the intensity (that
is, there exists C ą 0 such that E rΘ0pAqs ď CV olpAq for every borel set A in R

d) of the initial
process Θ0, the classification of cluster-invariant point processes is a well-known fact in a very
general setting. For example, on can refer to Theorem 12.4.6 in [124]. However, spatial stationarity
is a very strong hypothesis. The classification of cluster-invariant point processes for critical
branching Brownian motion when d ě 3 is treated without any extra assumption like spatial
stationarity in [32]. Their proof is given in a continuous time setting and is based on PDE’s
techniques. Our article aims to characterize all cluster-invariant point processes in a more general
setting by using only probabilistic tools. We also mention that the method which is used in this
article is inspired by [39] which treats 1-dimensional binary branching Brownian motion with
critical drift.
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2.1.2 Previous results

Let us recall the known result on critical branching Brownian motion in continuous time
which is defined as follows :

— It starts with one particle.
— Each particle dies at rate 1.
— At the end of its life, a particle is replaced by 0 particle with probability 1{2 and by 2

particles with probability 1{2.
— During its lifetime, a particle moves like a d-dimensional standard Brownian motion.

Let us summarize the following results of [60], [50] and [32]. For every random variable X, LpXq
stands for the law of X.

Theorem 2.1 ([60], [50] and [32]). If we consider a critical branching Brownian motion starting
from a Poisson point process Θ0 of constant intensity θ, it induces a continuous time family of
point processes pΘtqtě0 by collecting the positions of the alive particles at time t. Then we have
the following results :

(i) If d P t1, 2u, then pΘtqtě0 converges vaguely toward the null point process.

(ii) If d ě 3, then pΘtqtě0 converges vaguely toward a non-trivial point process Λ̃d,θ8 .
Furthermore, it characterizes the set of cluster-invariant point processes, that is, point processes
Θ such that Θt

law“ Θ for every t P R` if Θ0 “ Θ. Indeed,

tL pΘq ,Θ is cluster-invariantu
is a convex set whose extreme points are

tL
´
Λ̃d,θ8

¯
, θ P R`u.

Remark 2.1. The first point (i) stems from sections 7 and 8 of [60]. The second point (ii) is
Theorem 7.1 in [50]. Moreover, characterization of cluster-invariant point processes is Theorem 1
in [32].

2.1.3 Main results

Now let us state our results which generalize Theorem 2.1 in the discrete time setting. Indeed
we work with a general critical offspring law μ and a quite general motion law P. We consider
the following three cases for P and μ in this paper.

1. Hypothesis H1 : We assume that d ě 3. The distribution P is a d-dimensional Gaussian
random variable with mean 0 and covariance matrix Σ “ Id where Id is the identity matrix.
Moreover σ2 :“ ř`8

k“0 k
2μpkq ă `8.

2. Hypothesis H2 : We assume that P can be written as

P “
ÿ
xPR

ppxqδx

where R is a finite subset of Zd with d ě 3. Moreover p is symmetrical in the sense that
for every x P R, ´x P R and pp´xq “ ppxq. P has a positive definite covariance matrix
Σ. In addition, we assume that the random walk generated by the motion P is aperiodic.
Furthermore σ2 :“ ř`8

k“0 k
2μpkq ă `8.

3. Hypothesis H3 : The motion law P is given by a spherically symmetric α-stable law with
α Ps0, 2s. More precisely for every y P R

d,ż
exp pixy, xyqPpdxq “ exp

¨̋
´

˜
dÿ

k“1

|yk|2
¸α{2‚̨.
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The critical offspring law μ has no second moment anymore. However we assume that there
exists β Ps0, 1s such that for every γ ă β,

ř`8
k“0 k

1`γμpkq ă `8. Moreover, we assume that
d ą α{β.

Now, let X be a non-negative random variable. If we assume hypotheses H1 or H3, let Λd,X
0

be a Poisson point process with distribution

PPP pXλpdxqq
where λ is the Lebesgue measure. If we assume hypothesis H2, let Λd,X

0 be the discrete Poisson
point process

PPP

˜
X

ÿ
xPZd

δx

¸
.

As in subsection 2.1.1, we can define the sequence pΛd,X
n qnPN by considering the critical branching

process starting from Λd,X
0 . pΛd,X

n qnPN is a sequence of locally finite measures because the
underlying Galton-Watson tree is critical and we started from an homogeneous Poisson point
process. In particular, for every n P N

˚,

E

”
Λd,X
n pAq|σpXq

ı
“ E

”
Λd,X
0 pAq|σpXq

ı
“ XV olpAq ă `8

where V olpAq is the Lebesgue measure of A if we assume hypotheses H1 or H3 and the cardinality
of A if we assume hypothesis H2. In this paper, a "closed ball" designates a euclidean closed ball
of Rd. Under hypothesis H2, we always assume that a closed ball contains at least one point of
Z
d.

Theorem 2.2 (Convergence Theorem). We assume hypotheses H1 or H2. Then, there exists a
non-trivial point process Λd,X8 such that

Λd,X
n

lawÝÝÝÝÑ
nÑ`8 Λd,X8

in the vague topology. In addition, the point process Λd,X8 can be described in the following way on
every closed ball A :

Λd,X8 p¨ X Aq “
PAÿ
i“1

N piq
A

where pN piq
A qiě1 are i.i.d copies of a point process NA defined in Proposition 2.16 and PA is a

Poisson random variable of parameter XIA where IA is a constant defined in definition 2.14. PA

and pN piq
A qiě1 are assumed to be independent.

A point process Θ is said to be cluster-invariant if the sequence pΘnqnPN obtained by the
critical branching process starting from Θ0 “ Θ as in subsection 2.1.1 satisfies

Θn
law“ Θ

for every n P N. One sees easily that the limiting point processes obtained in Theorems 2.1 and
2.2 are cluster-invariant. In fact, all cluster-invariant point processes are given by the following
theorem :

Theorem 2.3 (Characterization of cluster-invariant measures). Let us assume hypotheses H1 or
H2. Let Θ be a cluster-invariant point process. Then there exists a non-negative random variable
X such that :

Θ
law“ Λd,X8 .

Moreover Λd,X8 is cluster-invariant for every non-negative random variable X.
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Theorems 2.2 and 2.3 assumed hypothesis H1 or hypothesis H2. Under these hypotheses, the
proofs are quite similar. Under the hypothesis H3, the results of Theorems 2.2 and 2.3 remain
true. However proofs require some slight modifications. We focus on these modifications in section
2.6.

Theorem 2.4. Let us assume hypothesis H3. Then the conclusions of Theorems 2.2 and 2.3
remain true.

Remark 2.2. Actually, assuming hypothesis H2 the convergence of pΛd,X
n qnPN toward Λd,X8 was

already known by combining Theorem 5.1 in [49] and the stability criterion which is given by
Kallenberg in [94]. Moreover, assuming hypotheses H1 and H3, stability of the cluster field was
proved in [81] in a continuous-time setting but not in our discrete setting. It changes a lot of
things because the continuous-time setting enables to use methods involving PDEs. Moreover, some
of these proofs used the notation of the book [124] which are quite difficult to handle. However our
proof unifies all these cases in a unique proof involving probabilistic tools only and which uses the
modern notation of branching random walks.

2.1.4 Organisation of the paper

— In section 2.2, we begin by recalling some results about local limit theorems, heat kernel
estimates and point processes. In subsection 2.2.4, we quickly explain the classical "spine
method" which is a fundamental tool in this article. Finally, in subsection 2.2.5, we study
the branching process starting from a single particle conditionally on survival in a given
set.

— In section 2.3, we prove Theorem 2.2.
— Theorem 2.2 gives us the point process Λd,X8 as a limiting object. We give an independent

proof of the compatibility of Λd,X8 in section 2.4.
— In section 2.5, we prove Theorem 2.3.
— Then, we briefly explain how to prove analoguous versions of Theorems 2.2 and 2.3 under

the hypothesis H3 in section 2.6.
— We finish in section 2.7 by a short discussion about our results.

2.2 Preliminaries

2.2.1 Local-limit Theorem

The motion law P is not always a Gaussian random variable. However all our computations
are easier in this case. The local-limit Theorem is a fundamental tool in order to make a link
between general random walks and Gaussian random walks.

Proposition 2.5 (Local-limit Theorem, Theorem 2.1.1 of [108] ). Let us assume that P satisfies
hypothesis H2. Let pŜnqnPN be a random walk with motion law P starting from 0. Then we have
the following uniform convergence :

lim
nÑ`8 sup

xPZd
nd{2

ˇ̌̌̌
ˇPpŜn “ xq ´ 1

p2πqd{2 detpΣq1{2 ˆ exp

ˆ
´ 1

2n
xx,Σ´1xy

˙ ˇ̌̌̌
ˇ “ 0.

Remark that hypothesis H2 is really strong. Actually we only need the finiteness of the second
moment of P for the local-limit Theorem to be true. (See Theorem 2.3.9 in [108].) Moreover, this
theorem implies the following useful corollary.

Corollary 2.6. Let pŜnqnPN be a random walk whose motion law satisfies hypotheses H1 or H2.
Let A be a closed ball. Then there exists a constant cd, depending only on the dimension d and
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the motion law P, such that for every n P N
˚,

PpŜn P Aq ď cd
|A|
nd{2

where |A| is the Lebesgue measure of A.

2.2.2 Heat kernel estimate

In addition to the local-limit Theorem, we also need the following so-called heat kernel
estimate :

Proposition 2.7 (Heat kernel estimate). Let us assume that P satisfies hypothesis H2. Let
pŜnqnPN be a random walk with motion law P starting from 0. Then there exists a positive constant
C1 such that for every x P Z

d and for every n P N
˚ :

PpŜn “ xq ď C1n
´d{2 exp

ˆ
´||x||2

C1n

˙
.

Moreover there exist positive constants τ and C2 such that for every n P N
˚ and for every x P Z

d

satisfying ||x|| ď τn :

PpŜn “ xq ě C2n
´d{2 exp

ˆ
´||x||2

C2n

˙
.

Proof of Proposition 2.7.
A random walk pŜnqnPN with motion law P under the hypothesis H2 can be interpreted as a
random walk with conductances pcpx, yqqx,yPG where G is a graph whose vertices are given by Z

d

and px, yq is an edge of G iff x ´ y P R. We recall that R is the finite support of P. Moreover,
for every edge px, yq in the graph G, cpx, yq “ ppy ´ xq “ ppx ´ yq. For every R ě 1, we define
BpRq “ tx P G, dp0, xq ď Ru and V pRq “ |BpRq| where d is the graph distance in G. According
to Theorem 3.3.5 and Proposition 3.3.2 of [103], two conditions have to be checked in order to
satisfy heat kernel estimate :

— Condition pV Dq : There exists a positive constant C such that for every R ě 1,

V p2Rq ď CV pRq.
— Condition pWPIp2qq : There exists a positive constant C 1 such that for every R ě 1 and

for every f : BpRq ÞÑ R,ÿ
xPBpRq

pfpxq ´ fRq2 ď C 1R2
ÿ

x,yPBp2Rq
cpx, yqpfpxq ´ fpyqq2

where fR “ 1
V pRq

ř
yPBpRq

fpyq.
Verifying condition pV Dq is straightforward in our case. Moreover Condition pWPIp2qq is a
consequence of Theorem 4.1 in [156] applied with p “ 2.

2.2.3 A warm-up about point processes

For reader’s convenience, we recall a few facts about point processes. One can refer to [93]
and [124] for more details. A point measure m is an integer-valued measure on R

d such that m is
finite on all compact sets of Rd. We denote by N, the set of point measures. We can equip N with
a σ-field N which is the smallest σ-field that makes measurable the applications m ÞÑ ş

fdm for
every f in FcpRdq, the set of compactly supported continuous functions on R

d. A point process
Θ is then defined as a random variable from a probability space pΩ,F ,Pq into pN,Nq. It is a
random collection of positions which is locally finite. Sometimes, we use the following abuse of
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notation : we write x P Θ as x runs through the support of Θ with multiplicity. For example,
if Θptxuq “ 3, x is counted three times. A natural question is to know how to characterize the
distribution of a point process. Let us state the following useful criterion.

Lemma 2.8 (Corollary 2.3 in [93]). Let ξ1 and ξ2 be two point processes. Then the following are
equivalent :

1. ξ1and ξ2 have the same distribution.
2. For every f P Fc̀ pRdq, the set of non-negative compactly supported continuous functions,

E

„
exp

ˆ
´

ż
fpxqdξ1pxq

˙j
“ E

„
exp

ˆ
´

ż
fpxqdξ2pxq

˙j
.

Further, a sequence of point processes pξnqnPN is said to converge in law in the vague topology
toward a point process ξ if and only if

ş
fdξn

lawÝÝÝÝÑ
nÑ`8

ş
fdξ for every f P FcpRdq. One can also say

that ξn converges vaguely toward ξ . Actually, the following criterion characterizes convergence in
law in the vague topology.

Lemma 2.9 (Theorem 4.11 in [93] ). A sequence of point processes pξnqnPN converges in law
toward a point process ξ in the vague topology if and only if

E

„
exp

ˆ
´

ż
fpxqdξnpxq

˙j
ÝÝÝÝÑ
nÑ`8 E

„
exp

ˆ
´

ż
fpxqdξpxq

˙j
for every f P Fc̀ pRdq, the set of non-negative compactly supported continuous functions.

We also need a criterion for the existence of a limit point process :

Lemma 2.10. Let pξnqnPN be a sequence of point processes. Let us assume that for every
f P FcpRdq and for every η P R,

E

„
exp

ˆ
iη

ż
fpxqdξnpxq

˙j
ÝÝÝÝÑ
nÑ`8 Φf pηq

and that η ÞÑ Φf pηq is a continuous function, then pξnqnPN converges in law in the vague topology
toward some point process ξ.

Proof of Lemma 2.10.
We combine Corollary 4.14 in [93] and strong Lévy’s continuity Theorem. (See [69].)

2.2.4 Spine method and change of measure

A key ingredient in our proof is the following spine method which was developed largely
in the study of branching processes. (See [115] or section 2 in [87].) Let us begin with some
useful notation. First, we introduce U :“ tHu Y Ť`8

k“1 pN˚qk which is called Neveu’s space. Every
u “ i1 ¨ ¨ ¨ ir represents the labelling of a particle at generation r. Indeed u is the ir-th offspring of
the ir´1-th offspring of ¨ ¨ ¨ of the i1-th offspring of the root H. The length r of u is denoted by
|u|. The parent of u is denoted by �u. Moreover, we introduce the partial order ď on U by u ď v if
u is an ancestor of v. Observe that the notion of parent gives a natural (not locally finite) graph
structure on U : we put an edge between u and �u for every u P UztHu. Every subset X of U
inherits the graph structure of U . In particular, for every X Ă U and for every x P X , we denote
the connected component of x in X by Cpx,X q. If u, v P U , we denote by uv the concatenation
of u and v. Furthermore, we need the notion of plane tree. A subgraph t of U is a plane tree if
and only if

— H P t,
— t is locally finite,
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— If there exists j P N
˚ such that uj P t, then u P t and ui P t for every i P t1, ¨ ¨ ¨ ju.

Then let us define V :“ tpu, sq : u P U , s P R
du. If T is a subset of V , let us define

Tgen :“ tu P U : Ds P R
d, pu, sq P T u.

Finally we define the set of plane marked trees

E “ tT Ă V : CpH, Tgenq is a plane tree ,@u P Tgen, D!su P R
d such that pu, suq P T u.

For every n P N, we define the σ-field Fn on E by Fn :“ σ ptpu, suq : |u| ď nuq and we denote by
F8 the σ-field σ pŤ

nPNFnq. Let T : E ÞÑ E be the identity map. If we have a probability measure
M on E , T can be seen as a random object of E with distribution M. We use the notation EM to
mean that we integrate functionals of T with respect to M. For every T P E with underlying tree
Tgen, we define a new element T u of E starting from u and its underlying tree as

T u
gen :“ tv P U : uv P Tgenu

and
T u “ tpv, suv ´ suq : v P T u

genu.
Moreover, for every u P U , we define the measurable function Tu from E into E by TupT q “ T u

for every T P E . In the same way, all random variables Su, Zn, ZnpAq which are introduced in
subsection 2.1.1 can be seen as measurable functions from E into R. Let us introduce the measure
P on E which is the probability distribution of the critical branching process starting from an
ancestor located at 0 defined in subsection 2.1.1. Then, we introduce a new measure Q thanks to
the following change of measure :

Q|Fn :“ Zn ¨ P|Fn
where Zn is the number of particles at generation n. One can remark that pZnqnPN is a martingale
with respect to pFnqnPN under P.

Now, let us introduce a "size-biased" branching process. We define a new size-biased law ν on
N by νpkq “ kμpkq for every k P N. This is a probability measure because μ has mean 1. Motions
still have distribution P . Then, we proceed recursively to construct the size-biased version of our
branching process :

We start with one particle called w0 located at 0 in R
d. It defines the generation 0 of the

process. Now let Zn be the set of particles in generation n. We also have a marked particle
wn among Zn. The particle wn gives birth to N̂wn children with N̂wn „ ν. The children of wn

jump independently from the position of wn according to the motion law P . Among the children
of wn, we choose uniformly at random a special particle called wn`1. Moreover, every particle
u P Znztwnu gives birth independently to Nu offsprings where Nu has law μ as in the classical
branching process. The offsprings of u P Znztwnu jump from the position of u according to the
motion law P . The offsprings of Zn with their new positions (including the marked particle wn`1)
form the pn ` 1q-th generation of the branching process.

With this construction we get a distinguished ray of particles pwnqnPN called the spine. Let
us define the set E˚ which consists in elements T of E with an infinite distinguished ray. The
size-biased critical branching process defined above gives us a probability distribution Q˚ on E˚.
Then we have the following proposition establishing a link between Q and Q˚.

Proposition 2.11 ([115]). The marginal of Q˚ with respect to E (that is, we forget the dis-
tinguished ray) is Q. Furthermore, for every n P N

˚ and for every particle u at generation
n,

Q˚ pwn “ u|Fnq “ 1

Zn
.
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We must insist on the fact that, under Q˚, the spine pSwnqnPN is a random walk starting
from 0 with motion law P . We denote by S the σ-field generated by the spine and G the σ-field
generated by the spine and the number of children of particles in the spine and the positions of
the brothers of the spine. Let us denote by B the set of brothers of particles in the spine. It is
clear from our construction that we get the following proposition.

Proposition 2.12. Under Q˚, conditionally on G (or S), pTuquPB are independent and Tu has
distribution P for every u P B.

Remark 2.3. In the sequel of this paper, we use a lot the measures P,Q and Q˚ and the
associated expectations EP,EQ and EQ˚ . When we work with one branching random walk which
has been constructed in a normal way (that is, as in the introduction), we use P and when we
work with one branching random walk which has been constructed in the size-biased way, we use
Q˚ or Q. Sometimes we use the probability measure P or the associated expectation E. It means
that we integrate with respect to a point process or sometimes with respect to a simple random
walk. (We do not distinguish these two different cases in the notation for sake of convenience but
we always specify it when we consider a simple random walk.)

2.2.5 A critical branching random walk conditioned on survival in a given set

We are now going to prove a key lemma for this article. Let us recall some notation. In every
generation n, tSu, |u| “ nu is the collection of positions of all particles in generation n. Zn is
the total number of particles in generation n and for any closed ball A, we denote by ZnpAq the
number of particles lying in A in generation n. Moreover the set of continuous functions with
compact support is denoted by FcpRdq.
Lemma 2.13 (Key Lemma). Let A be a closed ball. We assume H1 or H2. Let f P FcpRdq whose
values are in R´ or iR and such that supppfq Ă A. Let M ą 0. Then, there exists a constant
IA,f such that, uniformly in x P Bp0,M?

nq, as n goes to infinity,

EP

»–1tZnpA ´ xq ě 1u exp
¨̋ ÿ

|u|“n

fpSu ` xq‚̨fifl
“ p1 ` onp1qq ˆ p2πnq´d{2 detpΣq´1{2 exp

`´ 1
2nxx,Σ´1xy˘

IA,f .

Proof of Lemma 2.13.
We do the proof only under the hypothesis H2. Assuming the hypothesis H1, the proof follows
exactly the same lines but with a few notation changes. We start by using the spine decomposition
and the change of measure described in subsection 2.2.4. This yields that for every n P N

˚ and
for every x P Bp0,M?

nq,

EP

»–1tZnpA ´ xq ě 1u exp
¨̋ ÿ

|u|“n

fpSu ` xq‚̨fifl
“ EP

»–1tZnpA ´ xq ě 1uZnpA ´ xq
ZnpA ´ xq exp

¨̋ ÿ
|u|“n

fpSu ` xq‚̨fifl
“ EQ

»–ZnpA ´ xq
Zn

1tZnpA ´ xq ě 1u
ZnpA ´ xq exp

¨̋ ÿ
|u|“n

fpSu ` xq‚̨fifl
“ EQ˚

»–1tSwn P A ´ xu
ZnpA ´ xq exp

¨̋ ÿ
|u|“n

fpSu ` xq‚̨fifl . (2.1)
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In the second equality, we used the definition of Q and in the last one we used Proposition
2.11. Now, let us introduce some notation. For every k P N, let Bpwk`1q be the set of brothers
of wk`1, that is, the children of wk which are not wk`1. |Bpwk`1q| stands for the number of
individuals in Bpwk`1q. If Z is a set of particles and g a function, let us define :

xZ, gy :“
ÿ
uPZ

gpSuq.

Further, for every particle u, we denote by Zu
k the k-th generation of the branching process Tu

starting from u. Moreover, the positions in Tu are shifted by Su, that is, for every v P Tu
gen, the

position of v is given by Su
v :“ Suv ´ Su. For every set Ã, for every k ě 0 and for every particle

u, we define Zu
k pÃq by

Zu
k pÃq “

ÿ
vPZuk

1tSu
v P Ãu.

Further, for every particle u, we denote by �u the random variable Su ´ S 
u. Then, by spinal
decomposition we know that,

ř
|u|“n

fpSu ` xq “ fpSwn ` xq `
n´1ř
k“0

ř
uPBpwk`1q

xZu
n´k´1, fpSwk ` �u ` x ` ¨qy .

In the same way,

ZnpA ´ xq “ 1tSwn P A ´ xu `
n´1ř
k“0

ř
uPBpwk`1q

Zu
n´k´1pA ´ x ´ Swk ´ �uq.

For sake of clarity, let us introduce for every k P t0, ¨ ¨ ¨ , n ´ 1u and for every z P R
d :

Yf,n´kpzq :“ ř
uPBpwk`1q

xZu
n´k´1, fpz ` �u ` ¨qy

Yn´kpzq :“ ř
uPBpwk`1q

Zu
n´k´1pA ´ z ´ �uq.

Moreover, by convention we define for every z P R
d :

Yf,0pzq :“ fpzq.
With this notation, (2.1) becomes

EP

»–1tZnpA ´ xq ě 1u exp
¨̋ ÿ

|u|“n

fpSu ` xq‚̨fifl

“ EQ˚

»———– 1tSwn P A ´ xu
1 `

n´1ř
k“0

Yn´kpSwk ` xq
exp

˜
nÿ

k“0

Yf,n´kpSwk ` xq
¸fiffiffiffifl

“ EQ˚

»——– 1tSwn P A ´ xu
1 `

nř
k“1

YkpSwn´k ` xq
exp

˜
nÿ

k“0

Yf,kpSwn´k ` xq
¸fiffiffifl . (2.2)

Let K ą 0. We write EQ˚ r¨|Ss when we mean that we condition on the spine. By conditional
Markov inequality we deduce that
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Q˚
˜
Swn P A ´ x,

nÿ
k“K`1

YkpSwn´k ` xq ě 1

¸

ď EQ˚

«
1tSwn P A ´ xuEQ˚

«
nÿ

k“K`1

YkpSwn´k ` xq
ˇ̌̌̌
ˇS

ffff
. (2.3)

However by definition of Q˚ and Ykp¨q and by Proposition 2.12, for any k P tK ` 1, ¨ ¨ ¨ , nu,

EQ˚

«
YkpSwn´k ` xq

ˇ̌̌̌
ˇS

ff
“ EQ˚

«
|Bpwn´k`1q|

ˇ̌̌̌
ˇS

ff
ˆ EP rZk´1pA ´ x ´ y ´ �qs |y“Swn´k

“ σ2 ˆ EP rZk´1pA ´ x ´ y ´ �qs |y“Swn´k

“ σ2 ˆ P

´
Ŝk´1 P A ´ x ´ y ´ �

¯
|y“Swn´k (2.4)

where pŜkqkPN is a random walk whose i.i.d increments have distribution P and � is a random
variable with distribution P which is independent of Zk´1p¨q under P and independent of Ŝ under
P. In the second equality we used the fact that 1 ` |Bpwn´k`1q| has distribution ν under Q˚ and
1 ` σ2 is the mean of ν. To obtain the third equality, we used the fact that the branching process
is critical under P. Consequently, thanks to Corollary 2.6 and identity (2.4), we obtain for any
k P tK ` 1, ¨ ¨ ¨ , nu,

EQ˚

«
YkpSwn´k ` xq

ˇ̌̌̌
ˇS

ff
ď σ2|A|cdk´d{2. (2.5)

Therefore, combining identities (2.5) and (2.3) and Corollary 2.6 again, there exists a constant
C ą 0 such that

Q˚
˜
Swn P A ´ x,

nÿ
k“K`1

YkpSwn´k ` xq ě 1

¸
ď σ2|A|2c2d ˆ n´d{2

`8ÿ
k“K`1

k´d{2

ď C ˆ n´d{2K1´d{2.

We remark that K1´d{2 “ oKp1q if and only if d ě 3. Thus, together with (2.2), it yields

EP

»–1tZnpA ´ xq ě 1u exp
¨̋ ÿ

|u|“n

fpSu ` xq‚̨fifl

“ EQ˚

»———– 1tSwn P pA ´ xqu
1 `

Kř
k“1

YkpSwn´k ` xq
exp

˜
Kÿ
k“0

Yf,kpSwn´k ` xq
¸fiffiffiffifl ` oKp1qn´d{2. (2.6)

Now let us introduce some new notation. For every k P N
˚ and for every z P R

d,

Ỹf,kpzq :“ ř
uPBpwk`1q

xZu
k´1, fpz ` �u ` ¨qy

Ỹkpzq :“ ř
uPBpwk`1q

Zu
k´1pA ´ z ´ �uq.

Moreover, by convention, we define for every z P R
d :

Ỹf,0pzq :“ fpzq.
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With this new notation, by reversing time in the spine, (2.6) yields,

EP

»–1tZnpA ´ xq ě 1u exp
¨̋ ÿ

|u|“n

fpSu ` xq‚̨fifl

“ EQ˚

»———– 1tSwn ´ SwK P pA ´ x ´ SwK qu
1 `

Kř
k“1

ỸkppSwn ´ SwK q ` x ` pSwK ´ Swkqq
exp

˜
Kÿ
k“0

Ỹf,kppSwn ´ Swkq ` xq
¸fiffiffiffifl

` oKp1qn´d{2. (2.7)

For every z P Z
d, let us denote pn´Kpzq “ Q˚pSwn ´ SwK “ zq. Let us define also the function

FK,A : R
K`1 ÝÑ C

py, y1, ¨ ¨ ¨ , yKq ÞÑ EQ˚

»– 1

1` Kř
k“1

Ỹkpy´ykq
exp

ˆ
Kř
k“0

Ỹf,kpy ´ ykq
˙fifl .

Therefore, by (2.7) and the independence under Q˚ between Swn ´ SwK , pSwkq1ďkďK and´
Ỹf,kp¨q

¯
1ďkďK

, it holds that

EP

»–1tZnpA ´ xq ě 1u exp
¨̋ ÿ

|u|“n

fpSu ` xq‚̨fifl
“ EQ˚

»– ÿ
yPAXZd

pn´Kpy ´ x ´ SwK qFK,A py, Swk , 1 ď k ď Kq
fifl ` oKp1qn´d{2. (2.8)

Using Proposition 2.5, it holds that, uniformly in x P Bp0,M?
nq,

EP

»–1tZnpA ´ xq ě 1u exp
¨̋ ÿ

|u|“n

fpSu ` xq‚̨fifl
“ p2πpn ´ Kqq´d{2 detpΣq´1{2

ˆ
ÿ

yPAXZd

EQ˚

„
exp

ˆ
´ 1

2pn ´ KqxVx,y,K ,Σ´1Vx,y,Ky
˙
FK,A py, Swk , 1 ď k ď Kq

j
` oKp1qn´d{2 ` on,Kp1qn´d{2 (2.9)

where for every K P N, on,Kp1q tends to zero as n goes to infinity and Vx,y,K “ y ´ x ´ SwK .
However, we remark that,ˇ̌̌̌

ˇ 1

2pn ´ KqxVx,y,K ,Σ´1Vx,y,Ky ´ 1

2n
xx,Σ´1xy

ˇ̌̌̌
ˇ

ď
ˆ

1

2pn ´ Kq ´ 1

2n

˙
|xx,Σ´1xy| ` 1

2pn ´ Kq

ˇ̌̌̌
ˇxVx,y,K ,Σ´1Vx,y,Ky ´ xx,Σ´1xy

ˇ̌̌̌
ˇ

ď ||Σ´1||
2pn ´ Kq

ˆ
K||x||2

n
` ||y||2 ` ||SwK ||2 ` 2||x||p||y|| ` ||SwK ||q ` 2||y|| ¨ ||SwK ||

˙
ď ||Σ´1||

2pn ´ Kq
ˆ
K||x||2

n
` 2||y||2 ` 2||SwK ||2 ` 2||x||p||y|| ` ||SwK ||q

˙
. (2.10)
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Therefore, on the event t||SwK || ď Ku, we can use (2.10) and the inequality |1 ´ e´t| ď 2|t| in
a neighborhood of 0 to show that there is NK P N

˚ such that for every n ě NK and for every
x P Bp0,M?

nq,ˇ̌̌̌
ˇ exp

ˆ
´ 1

2pn ´ KqxVx,y,K ,Σ´1Vx,y,Ky
˙

´ exp

ˆ
´ 1

2n
xx,Σ´1xy

˙ ˇ̌̌̌
ˇ

ď exp

ˆ
´ 1

2n
xx,Σ´1xy

˙
ˆ 2||Σ´1||

pn ´ Kq
ˆ
K||x||2

n
` ||y||2 ` ||SwK ||2 ` ||x||p||y|| ` ||SwK ||q

˙
ď 2||Σ´1||

pn ´ Kq
ˆ
KM2

2
` C2

A ` K2 ` M
?
npCA ` Kq

˙
(2.11)

where CA “ max
yPA ||y||. Furthermore, by Proposition 2.7,

Q˚p||SwK || ě Kq “ oKp1q. (2.12)

Finally, using inequalities (2.11) and (2.12) in identity (2.9), we know that uniformly in x P
Bp0,M?

nq,

EP

»–1tZnpA ´ xq ě 1u exp
¨̋ ÿ

|u|“n

fpSu ` xq‚̨fifl
“ p2πnq´d{2 detpΣq´1{2 exp

ˆ
´ 1

2n
xx,Σ´1xqy

˙ ÿ
yPAXZd

EQ˚ rFK,A py, Swk , 1 ď k ď Kqs

` oKp1qn´d{2 ` on,Kp1qn´d{2. (2.13)

Now, let us introduce the function GA,f defined by

GA,f : R
d Ñ C

y ÞÑ EQ˚

»———– 1

1 `
`8ř
k“1

Ỹkpy ´ Swkq
exp

˜`8ÿ
k“0

Ỹf,kpy ´ Swkq
¸fiffiffiffifl .

GA,f is well-defined because the infinite sums in its expression are actually finite sums almost
surely. Indeed, we can prove exactly as in (2.5) that for every k P N

˚,

Q˚
´
Ỹkpy ´ Swkq ě 1

¯
ď EQ˚

”
Ỹkpy ´ Swkq

ı
ď σ2|A|cdk´d{2.

As d ě 3, this is summable. Thus, by Borel-Cantelli Lemma, almost surely, there is only a finite
number of integers k P N

˚ such that Ỹkpy ´ Swkq ě 1. As supppfq Ă A, there is also only a finite
number of integers k P N

˚ such that Ỹf,kpy ´ Swkq ‰ 0. Consequently, the random variable inside
the expectation in the definition of GA,f is well-defined. Moreover the modulus of this quantity is
lower than 1. Therefore, GA,f is well-defined. We define also

IA,f :“
ÿ

yPAXZd

GA,f pyq.

Besides, by the dominated convergence theorem,ÿ
yPAXZd

EQ˚ rFK,A py, Swk , 1 ď k ď Kqs “ IA,f ` oKp1q.
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Finally, using this in (2.13), we proved that uniformly in x P Bp0,M?
nq,

EP

»–1tZnpA ´ xq ě 1u exp
¨̋ ÿ

|u|“n

fpSu ` xq‚̨fifl
“ p2πnq´d{2 detpΣq´1{2 exp

ˆ
´ 1

2n
xx,Σ´1xqy

˙
ˆ IA,f

` oKp1qn´d{2 ` on,Kp1qn´d{2. (2.14)

It concludes the proof.

In the proof of Lemma 2.13, the quantity IA,f naturally arises. It is a very important quantity
in the sequel of this article. We often refer to its definition.

Definition 2.14. Let A be a closed ball and let f be a continuous function whose support is in
A and whose values are in ´R or in iR. With the notation which is introduced in the proof of
Lemma 2.13, we recall that :

GA,f : R
d Ñ C

y ÞÑ EQ˚

»———– 1

1 `
`8ř
k“1

Ỹkpy ´ Swkq
exp

˜`8ÿ
k“0

Ỹf,kpy ´ Swkq
¸fiffiffiffifl .

— Under the hypothesis H1, we define IA,f :“ ş
AGA,f pyqdy.

— Under the hypothesis H2, we define IA,f :“ ř
yPAXZd

GA,f pyq.
Moreover, we often use the notation IA :“ IA,0.

We remark that the definition 2.14 is reminiscent of the structure of backward tree introduced
by Kallenberg in [94].

As a particular case of the Lemma 2.13, we can estimate the probability for the branching
process to survive in a specified area of Rd.

Proposition 2.15. Let A be a closed ball. We assume hypotheses H1 or H2. For every n P N
˚,

let us define an “ a
?
n for some a P R

d. Then we have the following asymptotic equivalence

PpZnpA ´ anq ě 1q „
nÑ`8 IA ˆ p2πq´d{2 detpΣq´1{2e´xa,Σ´1ay{2n´d{2

with IA defined in definition 2.14.

Proof of Proposition 2.15.
Apply Lemma 2.13 with f ” 0 and M larger than ||a||.

We are now able to prove our first proposition concerning convergence of point processes.

Proposition 2.16. Let A be a closed ball. We assume hypotheses H1 or H2. For every n P N, let
us define an “ a

?
n for some a P R

d. Then, under probability measure P, we have the following
convergence in law

L

¨̋ ÿ
|u|“n

δSu`an |ZnpA ´ anq ě 1‚̨ lawÝÝÝÝÑ
nÑ`8 NA
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where NA is a point process on A which does not depend on a. Moreover for every f P Fc̀ pRdq
such that supppfq Ă A,

E

„
exp

ˆ
´

ż
fpxqNApdxq

˙j
“ I´1

A IA,´f

where the terms of the right-hand side were defined in definition 2.14.

Proof of Proposition 2.16.
By Lemma 2.10, it is enough to prove that for every f P FcpRdq such that supppfq Ă A, there
exists a continuous function η ÞÑ Φf pηq such that for every η P R,

EP

»–exp

¨̋
iη

ÿ
|u|“n

fpSu ` anq‚̨ˇ̌̌̌
ˇZnpA ´ anq ě 1

fifl ÝÝÝÝÑ
nÑ`8 Φf pηq.

By Lemma 2.13,

EP

¨̋
exp

¨̋
iη

ÿ
|u|“n

fpSu ` anq‚̨1tZnpA ´ anq ě 1u‚̨
is asymptotically

p1 ` onp1qq IA,iηf

p2πqd{2 detpΣq´1{2e´xa,Σ´1ay{2 1

nd{2 .

Combining this with Proposition 2.15 we get that

EP

¨̋
exp

¨̋
iη

ÿ
|u|“n

fpSuq‚̨ˇ̌̌̌
ˇZnpA ´ anq ě 1‚̨ÝÝÝÝÑ

nÑ`8 I´1
A IA,iηf .

Looking at the expression of IA,iηf which is given in definition 2.14, we deduce from dominated
convergence theorem that η ÞÑ IA,iηf is a continuous function. It concludes the proof of the first
part of Proposition 2.16 concerning convergence in law toward a point process NA. The second
part of Proposition 2.16 concerning the Laplace transform of NA is obtained by exactly the same
computations. We just have to replace iηf by ´f .

2.3 Proof of Theorem 2.2

Strategy of the proof of Theorem 2.2
If a critical branching process starts from a single particle and if we condition it to visit a

closed ball A, we proved in the previous section that the limiting point process is NA. However,
most of the critical branching processes starting from particles in Λd,θ

0 will not reach A because
of transience (in dimension d ě 3) or because of extinction of the branching process. Let us make
this intuition more quantitative. By homogeneity of the Poisson point process Λd,θ

0 , for every
M ě 1,

Λd,θ
0 pBp0,M?

nqq » Θpnd{2q.
Moreover, any particle of Λd,θ

0 located at x P R
d with ||x|| " ?

n is too far from A to have
descendants in A at time n. Indeed, a centered random walk with second moment is at distance
O p?

nq from 0 at time n. Moreover, we proved in the previous section that a particle in Λd,θ
0

located at x P Bp0,M?
nq has descendants which reach A at time n with probability

PpZnpA ´ xq ě 1q » Θpn´d{2q.
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If Z
pyq
n p¨q is the occupation measure of the n-th generation of the critical branching process

starting from a particle y in the support of Λd,θ
0 , combining both previous approximations, we get

that ż
1tZpyq

n pAq ě 1udΛd,θ
0 pyq » Θpnd{2q ˆ Θpn´d{2q “ Θp1q.

Therefore, the number PA of particles in Λd,θ
0 whose descendants reach A is of order Θp1q.

Moreover, for each of these particles, the positions of the descendants in A form a point process
distributed as NA. That is why, we will get an independent layering of PA copies of NA.

Now, let us prove the following lemma.

Lemma 2.17. Let A be a closed ball. Let f P FcpRdq whose values are in R´ or in iR and such
that supppfq Ă A. Then, assuming hypothesis H1,

EP

»–ż
Rd

1tZnpA ´ xq ě 1u exp
¨̋ ÿ

|u|“n

fpSu ` xq‚̨dx

fifl „
nÑ`8 IA,f

where the definition of IA,f is given in definition 2.14. Moreover, assuming hypothesis H2,

EP

»– ÿ
xPZd

1tZnpA ´ xq ě 1u exp
¨̋ ÿ

|u|“n

fpSu ` xq‚̨fifl „
nÑ`8 IA,f .

Proof of Lemma 2.17.
Let us prove this lemma under the hypothesis H2. Assuming hypothesis H1, the proof is similar.
For sake of clarity, we do the proof only with f ” 0. Let M ą 0. Let us use the notation BZdp0, tq
for the set of elements of Zd whose euclidean norm is less than t. Bp0, tq denotes the standard
euclidean ball. By Markov inequality and criticality of the branching process under P, we get for
every n P N, ÿ

xPB
Zd

p0,M?
nqc

PpZnpA ´ xq ě 1q ď
ÿ

xPB
Zd

p0,M?
nqc

EP rZnpA ´ xqs

“
ÿ

xPB
Zd

p0,M?
nqc

PpŜn P A ´ xq. (2.15)

where
´
Ŝk

¯
kPN

is a random walk with motion law P . Therefore, by Proposition 2.7, there exists
C ą 0 such that for every n P N :ÿ

xPB
Zd

p0,M?
nqc

PpZnpA ´ xq ě 1q ď Cn´d{2 ÿ
xPB

Zd
p0,M?

nqc
exp

ˆ
´||x||2

Cn

˙
. (2.16)

Thus, by standard inequalities, there exists a constant C 1 ą 0 such that for every n P N,ÿ
xPB

Zd
p0,M?

nqc
PpZnpA ´ xq ě 1q ď C 1n´d{2

ż
Bp0,M?

nqc
exp

ˆ
´||x||2

C 1n

˙
dx

“ C 1
ż
Bp0,Mqc

exp

ˆ
´||x||2

C 1

˙
dx

“ oM p1q. (2.17)

Moreover, by Lemma 2.13,ÿ
xPB

Zd
p0,M?

nq
PpZnpA ´ xq ě 1q

“ p2πnq´d{2 detpΣq´1{2IA ˆ
ÿ

xPB
Zd

p0,M?
nq
exp

ˆ
´ 1

2n
xx,Σ´1xy

˙
` Mdonp1q. (2.18)



2.3. Proof of Theorem 2.2 71

However, one can observe that,

p2πnq´d{2 detpΣq´1{2 ˆ
ÿ

xPB
Zd

p0,M?
nq
exp

ˆ
´ 1

2n
xx,Σ´1xy

˙

“ p2πq´d{2 detpΣq´1{2
ż
Bp0,Mq

exp

ˆ
´1

2
xx,Σ´1xy

˙
dx ` Mdonp1q

“ 1 ` oM p1q ` Mdonp1q.
By substituting this into identity (2.18), we get

ÿ
xPB

Zd
p0,M?

nq
PpZnpA ´ xq ě 1q “ IA ` oM p1q ` Mdonp1q. (2.19)

Then, combining identities (2.19) and (2.17) yieldsÿ
xPZd

PpZnpA ´ xq ě 1q “ IA ` oM p1q ` Mdonp1q (2.20)

which concludes the proof.

Now we are ready to prove Theorem 2.2.

Proof of Theorem 2.2.
We only work on the case where X is a constant θ. The general case is obtained by integrating
the constant case with respect to the law of X, that is, PX , and by using the dominated
convergence theorem. First we prove Theorem 2.2 under the hypothesis H2. We recall that under
this hypothesis, Λd,θ

0 is a point process on Z
d such that each site contains a number of particles

following a Poisson distribution of parameter θ. Let f P FcpRdq. There exists a closed ball A such
that supppfq Ă A. Let η be a real number. Recall that, by a small abuse of notation, for any point
process Θ, ”x P Θ” takes into account the multiplicity of x in Θ. Then, standard computations
yield

E

„
exp

ˆ
iη

ż
fpxqΛd,θ

n pdxq
˙j

“ E

»– ź
xPΛd,θ0

EP

»–exp

¨̋ ÿ
|u|“n

iηfpSu ` xq‚̨fiflfifl
“ exp

¨̋
θ

ÿ
xPZd

EP

»–exp

¨̋ ÿ
|u|“n

iηfpSu ` xq‚̨´ 1

fifl‚̨. (2.21)

Thus, we only need to investigate the asymptotical behaviour of

ÿ
xPZd

EP

»–exp

¨̋ ÿ
|u|“n

iηfpSu ` xq‚̨´ 1

fifl
However, as supppfq Ă A, it holds that

ÿ
xPZd

EP

»–exp

¨̋ ÿ
|u|“n

iηfpSu ` xq‚̨´ 1

fifl
“

ÿ
xPZd

EP

»–1tZnpA ´ xq ě 1u
¨̋
exp

¨̋ ÿ
|u|“n

iηfpSu ` xq‚̨´ 1‚̨fifl . (2.22)
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By Lemma 2.17, this quantity (2.22) converges toward IA,iηf ´ IA. Therefore, together with
identity (2.21), we deduce

E

„
exp

ˆ
iη

ż
fpxqΛd,θ

n pdxq
˙j

“ p1 ` onp1qq exp pθpIA,iηf ´ IAqq .

By the description of IA,iηf given in definition 2.14, the function η ÞÑ exp pθpIA,iηf ´ IAqq is
continuous. That is why, by Proposition 2.10, there exists a point process Λd,θ8 such that

Λd,θ
n

lawÝÝÝÝÑ
nÑ`8 Λd,θ8 .

In order to do the proof under the hypothesis H1, we just need an identity which is similar
to (2.21). This can be obtained thanks to the exponential formula for Poisson Point Process.
(See [93].) If we replace sums by integrals, the rest of the proof follows the same lines. Now, let
g P FcpRdq` such that supppgq Ă A. Following exactly the same computations than above, we
get that,

E

„
exp

ˆ
´

ż
gpxqΛd,θ8 pdxq

˙j
“ exp pθpIA,´g ´ IAqq .

Consequently, by Proposition 2.16,

E

„
exp

ˆ
´

ż
gpxqΛd,θ8 pdxq

˙j
“ exp

ˆ
θIA

ˆ
E

„
exp

ˆ
´

ż
gpxqNApdxq

˙j
´ 1

˙˙
.

Therefore, Λd,θ8 is a Poissonian sum of i.i.d copies of NA, as stated in Theorem 2.2.

In the proof of Theorem 2.2, we obtained the Laplace transform of Λd,X8 .

Proposition 2.18 ( Laplace transform). For every f P Fc̀ pRdq whose support is included in
some closed ball A, we have

E

„
exp

ˆ
´

ż
fpxqΛd,X8 pdxq

˙j
“ E rexp pX ˆ pIA,´f ´ IAqqs

where IA and IA,´f are defined in definition 2.14. Another reformulation is

E

„
exp

ˆ
´

ż
fpxqΛd,X8 pdxq

˙j
“ E rexp pXIARf,Aqs

where
Rf,A “ E

„
exp

ˆ
´

ż
fpxqNApdxq

˙j
´ 1.

Remark 2.4. Let A and B be two closed balls such that A Ă B. By the previous Proposition 2.18
we get two formulas to compute the Laplace transform of Λd,X8 , one with respect to A, the other
one with respect to B. These formulas must be equal. This is discussed in the following section.

2.4 Compatibility of Λd,X8

Theorem 2.2 shows that Λd,X8 , as a limit of
´
Λd,X
n

¯
nPN

, is a point process. In particular, it
must be compatible. Here, we give an independent proof of compatibility of the limiting point
processes of the form Λd,X8 obtained in Theorem 2.2. In all this section, X is a non-negative
random variable.
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Lemma 2.19. Let A1 and A2 be two closed balls such that A1 Ă A2. We assume hypotheses H1

or H2. Then

PpNA2pA1q ě 1q “ IA1

IA2

where IA1 and IA2 are defined in definition 2.14.

Proof of Lemma 2.19.
By Proposition 2.16, we know that under P,

L

¨̋ ÿ
|u|“n

δSu

ˇ̌̌̌
ˇZnpA2q ě 1‚̨ lawÝÝÝÝÑ

nÑ`8 NA2 .

Then, by Lemma 4.1 in [93], we get

PpNA2pA1q ě 1q “ lim
nÑ`8PpZnpA1q ě 1|ZnpA2q ě 1q “ lim

nÑ`8
PpZnpA1q ě 1q
PpZnpA2q ě 1q

The estimate given by Proposition 2.15 concludes the proof.

Lemma 2.20. Let A1 and A2 be two closed balls such that A1 Ă A2. We assume hypotheses H1

or H2.

L
˜
NA2p¨ X A1q

ˇ̌̌̌
ˇNA2pA1q ě 1

¸
law“ NA1 .

Proof of Lemma 2.20.
Let f P Fc̀ pRdq such that supppfq Ă A1. Let us observe that,

E

„
exp

ˆ
´

ż
fpxqNA2pdxq

˙
1tNA2pA1q ě 1u

j
“ E

„
exp

ˆ
´

ż
fpxqNA2pdxq

˙j
´ PpNA2pA1q “ 0q. (2.23)

However by Proposition 2.16,

lim
nÑ`8

EP

«
exp

˜
´ ř

|u|“n

fpSuq
¸

1tZnpA2q ě 1u
ff

PpZnpA2q ě 1q “ E

„
exp

ˆ
´

ż
fpxqNA2pdxq

˙j
. (2.24)

The left-hand side in (2.24) can be rewritten as

EP

«
exp

˜
´ ř

|u|“n

fpSuq
¸

1tZnpA1q ě 1u
ff

` PpZnpA2q ě 1, ZnpA1q “ 0q
PpZnpA1q ě 1q ˆ PpZnpA1q ě 1q

PpZnpA2q ě 1q .

By Lemma 2.19 and Propositions 2.15 and 2.16, this converges towardˆ
E

„
exp

ˆ
´

ż
fpxqNA1pdxq

˙j
` 1

PpNA2pA1q ě 1q ´ 1

˙
PpNA2pA1q ě 1q.
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Consequently, together with (2.24), this implies that

E

„
exp

ˆ
´

ż
fpxqNA2pdxq

˙j
“

ˆ
E

„
exp

ˆ
´

ż
fpxqNA1pdxq

˙j
` 1

PpNA2pA1q ě 1q ´ 1

˙
PpNA2pA1q ě 1q. (2.25)

Therefore, using identities (2.23) and (2.25), we know that

E

«
exp

ˆ
´

ż
fpxqNA2pdxq

˙ ˇ̌̌̌
ˇNA2pA1q ě 1

ff

“ E

„
exp

ˆ
´

ż
fpxqNA1pdxq

˙j
` 1

PpNA2pA1q ě 1q ´ 1 ´ PpNA2pA1q “ 0q
PpNA2pA1q ě 1q .

This is exactly E
“
exp

`´ ş
fpxqNA1pdxq˘‰

. Thus, by Lemma 2.8, this finishes the proof.

Thanks to the two previous lemmas, we are now able to deduce the compatibility of Λd,X8 .

Proposition 2.21. Let A1 and A2 be two closed balls such that A1 Ă A2. We assume hypotheses
H1 or H2. In Theorem 2.2, we get a Poissonian way to define ξA1 :“ Λd,X8 p¨ X A1q and ξA2 :“
Λd,X8 p¨ X A2q. Then,

ξA2p¨ X A1q law“ ξA1 .

Proof of Proposition 2.21.
Let us first construct ξA2 with the construction given in Theorem 2.2. Consider PA2 a Poisson
Random variable of parameter XIA2 and

´
N pkq

A2

¯
kPN

a family of i.i.d copies of NA2 which is
independent of PA2 . Then,

ξA2 “
PA2ÿ
k“1

N pkq
A2

.

With this construction,

ξA2p¨ X A1q “
PA2ÿ
k“1

1tN pkq
A2

pA1q ě 1uN pkq
A2

p¨ X A1q.

By the previous Lemma 2.20, we only have to check that
PA2ř
k“1

1tN pkq
A2

pA1q ě 1u has a Poisson

law with parameter XIA1 . It is a Poissonian sum of independent Bernoulli random variables of
parameter PpNA2pA1q ě 1q. It is well known that this is still a Poisson random variable with
parameter XIA2 ˆ PpNA2pA1q ě 1q. This parameter is equal to XIA1 by Lemma 2.19.

2.5 Characterization of invariant measures

Strategy of the proof of Theorem 2.3 Let us consider a cluster-invariant point process Θ.
Let f P Fc̀ pRdq whose support is included in a closed ball A. By cluster-invariance, we remark
that for every n P N

˚,

E

„
exp

ˆ
´

ż
fpxqΘpdxq

˙j
“ E

„
exp

ˆ
´

ż
fpxqΘnpdxq

˙j
.
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Then, we are looking for the asymptotics of the right-hand side above in order to describe the
distribution of Θ. Remark that particles x of Θ such that ||x|| ě M

?
n can be neglected. That is

why,

E

„
exp

ˆ
´

ż
fpxqΘnpdxq

˙j
« E

»– ź
xPΘXBp0,M?

nq
EP

»–exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨fiflfifl .

However, uniformly in x P Bp0,M?
nq,

ln

¨̋
EP

»–exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨fifl‚̨
“ ln

¨̋
1 ` EP

»–1tZnpA ´ xq ě 1u
¨̋
exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨´ 1‚̨fifl‚̨
« EP

»–1tZnpA ´ xq ě 1u
¨̋
exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨´ 1‚̨fifl
« Rf,APpZnpA ´ xq ě 1q

where the last approximation stems from Lemma 2.13 and

Rf,A “ E

„
exp

ˆ
´

ż
fpxqNApdxq

˙j
´ 1.

Finally, we get that for every n P N
˚,

E

„
exp

ˆ
´

ż
fpxqΘnpdxq

˙j
« E

«
exp

˜
Rf,A

ż
Bp0,M?

nq
PpZnpA ´ xq ě 1qΘpdxq

¸ff
.

In order to conclude the proof, we only need to find a subsequence along which

Ln :“
ż
Bp0,M?

nq
PpZnpA ´ xq ě 1qΘpdxq

converges in distribution. Therefore, it would be enough to show that pLnqnPN˚ is tight and use
Prokhorov’s theorem.

2.5.1 Preliminary Lemmas

In order to make the strategy above more rigorous, we need a few lemmas. The proof of the
following lemma is very similar to the proof of proposition 4.(b) in [32].

Lemma 2.22. Let Θ be a cluster-invariant point process. Let A be a closed ball. Then, for every
n P N

˚, ż
PpZnpA ´ xq ě 1qΘpdxq

is finite almost surely. Moreover,ˆż
PpZnpA ´ xq ě 1qΘpdxq

˙
nPN

is a tight sequence of random variables.
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Proof of Lemma 2.22.
Let t ą 0. By cluster-invariance of Θ, it holds that

E rexpp´tΘpAqqs “ E rexpp´tΘnpAqqs . (2.26)

By definition of Θn, (2.26) yields

E rexpp´tΘpAqqs “ E

«ź
xPΘ

EP rexp p´tZnpA ´ xqqs
ff

“ E

„
exp

ˆż
ln

ˆ
EP rexp p´tZnpA ´ xqqs

˙
Θpdxq

˙j
. (2.27)

However, using inequality lnp1 ` tq ď t for every t ą ´1, one gets that for any x P R
d

ln

ˆ
EP rexp p´tZnpA ´ xqqs

˙
“ ln

ˆ
1 ` EP

„
1tZnpA ´ xq ě 1u

ˆ
exp p´tZnpA ´ xqq ´ 1

˙j ˙
ď EP

„
1tZnpA ´ xq ě 1u

ˆ
exp p´tZnpA ´ xqq ´ 1

˙j
ď pe´t ´ 1qP pZnpA ´ xq ě 1q . (2.28)

Combining (2.27) and (2.28), one gets that

E rexpp´tΘpAqqs ď E

„
exp

ˆ
pe´t ´ 1q

ż
P pZnpA ´ xq ě 1qΘpdxq

˙j
“ E

“
exp

`pe´t ´ 1qWn

˘‰
(2.29)

where

Wn :“
ż
PpZnpA ´ xq ě 1qΘpdxq.

From (2.29), we deduce that for every L ą 0,

E rexpp´tΘpAqqs ď 1 ´ PpWn ě Lq ` PpWn ě Lq expppe´t ´ 1qLq. (2.30)

Therefore, for every L ą 0,

P pWn ě Lq ď 1 ´ E rexpp´tΘpAqqs
1 ´ expppe´t ´ 1qLq . (2.31)

By letting L go toward infinity and t go to 0 in (2.31), we get that

P pWn “ `8q “ 0.

Moreover inequality (2.31) is clearly sufficient to prove tightness.

Lemma 2.23. Let A be a closed ball. We assume hypotheses H1 or H2. Then there exist positive
constants κ and λ such that for every M ě 1, there exists an integer NM such that for every
n ě NM and for every x P Bp0,M?

nqc,

PpZnpA ´ xq ě 1q ď κe´M2{κPpZλnpA ´ xq ě 1q.
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Proof of Lemma 2.23.
Let pb1, b2, ¨ ¨ ¨ q be an infinite sequence of real numbers. Let n P N

˚. Obviously,

EQ˚

»–˜
1 `

nÿ
k“1

Ykpbkq
¸´1

fifl ď 1 (2.32)

where Yk refers to the notation given in the proof of Lemma 2.13. Moreover, by Jensen’s inequality,

EQ˚

»–˜
1 `

nÿ
k“1

Ykpbkq
¸´1

fifl ě
˜
EQ˚

«
1 `

nÿ
k“1

Ykpbkq
ff¸´1

.

However, in a similar manner as in the proof of identity (2.5), it holds that

EQ˚

«
nÿ

k“1

Ykpbkq
ff

ď |A|cdσ2
`8ÿ
k“1

1

kd{2 :“ CA,d,σ ă `8.

Therefore, we get that for every sequence pb1, b2, ¨ ¨ ¨ q and for every n P N
˚,

EQ˚

»–˜
1 `

nÿ
k“1

Ykpbkq
¸´1

fifl ě 1

1 ` CA,d,σ
. (2.33)

However we can recall from the proof of Lemma 2.13 that for every n P N
˚ and for any

x P Bp0,M?
nqc,

PpZnpA ´ xq ě 1q “ EQ˚

»– 1tSwnPpA´xqu
1` nř

k“1

YkpSwn´k`xq

fifl
where the spine pSwkqkPN˚ is a random walk with motion law P. Moreover, by definition of Q˚,
pSwkqkPN˚ is independent of the random variables pYkp¨qqkPN˚ under Q˚. Therefore, for every
n P N

˚ and for every x P Bp0,M?
nqc,

PpZnpA ´ xq ě 1q “ EQ˚

»—–1tSwn P pA ´ xquEQ˚

»–˜
1 `

nÿ
k“1

Ykpbkq
¸´1

fifl
bk“Swn´k`x

fiffifl . (2.34)

Combining identities (2.32), (2.33) and (2.34) yields

p1 ` CA,d,σq´1Q˚ pSwn P A ´ xq ď PpZnpA ´ xq ě 1q ď Q˚ pSwn P A ´ xq . (2.35)

Consequently, under the hypothesis H1, for every n P N
˚ and for every x P Bp0,M?

nqc,

P pZnpA ´ xq ě 1q
P pZ2npA ´ xq ě 1q ď

p1 ` CA,d,σq
ż
A
e´||y´x||2{p2nqdyż

A
e´||y´x||2{p4nqdy

.

Therefore, under the hypothesis H1, there exists a positive constant C 1
A,d,σ such that for every

n P N
˚ and for every x P Bp0,M?

nqc,
P pZnpA ´ xq ě 1q
P pZ2npA ´ xq ě 1q ď C 1

A,d,σe
´||x||2{p4nq

ď C 1
A,d,σe

´M2{4. (2.36)
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Thus, (2.36) proves Lemma 2.23 under the hypothesis H1. Under the hypothesis H2, we will
use Proposition 2.7 to give a similar proof. Let us use constants τ , C1 and C2 introduced in
Proposition 2.7. Moreover, under hypothesis H2, P has a finite range. Therefore there exists a
constant C3 such that P pZnpA ´ xq ě 1q “ 0 for every n P N

˚ and for every x P Bp0, C3nqc. Now
let us define r “ maxpC2C3{pτC1q, 2q. Let n be an integer larger than pM{C3q2 and let x be such
that M

?
n ă ||x|| ď C3n. Then, we get

PpZnpA ´ xq ě 1q ď
ÿ

yPAXZd

Q˚ pSwn “ y ´ xq

ď C1n
´d{2 ÿ

yPAXZd

exp

ˆ
´||x ´ y||2

C1n

˙
(2.37)

where we used identity (2.35) in the first inequality and Proposition 2.7 in the second one. Then,
as ||x|| ě M

?
n, we get

PpZnpA ´ xq ě 1q ď C ˆ n´d{2 exp
ˆ

´pr ´ 1q
C1r

M2

˙ ÿ
yPAXZd

exp

ˆ
´ ||x ´ y||2
C2prC1C

´1
2 nq

˙
(2.38)

where C depends only on A and C1. However, by definition of r, ||x|| ď C3n ď τrC1C
´1
2 n.

Therefore, by the lower bound in Proposition 2.7, there exists C 1 ą 0 such that for every x such
that M

?
n ă ||x|| ď C3n,

PpZnpA ´ xq ě 1q ď C 1 ˆ exp

ˆ
´pr ´ 1q

C1r
M2

˙ ÿ
yPAXZd

Q˚
ˆ
Sw

rC1C
´1
2 n

“ y ´ x

˙

ď C 1 ˆ p1 ` CA,d,σq ˆ exp

ˆ
´pr ´ 1q

C1r
M2

˙
P

´
ZrC1C

´1
2 npA ´ xq ě 1

¯
(2.39)

where we used identity (2.35) in the second inequality. If ||x|| ě C3n, then the left-hand side in
(2.39) is zero. Thus (2.39) is also true in this case. This concludes the proof.

Lemma 2.24. Let A be a closed ball. Let us assume hypotheses H1 or H2. Let Θ be a cluster-
invariant point process. Then,

lim
MÑ`8 lim sup

nÑ`8
P

˜ż
Bp0,M?

nqc
PpZnpA ´ xq ě 1qΘpdxq ě e´M2{p2κq

¸
“ 0.

Proof of Lemma 2.24.
By Lemma 2.23, for every M ě 1 and for every n ě NM ,

P

˜ż
Bp0,M?

nqc
PpZnpA ´ xq ě 1qqΘpdxq ě e´M2{p2κq

¸

ď P

˜ż
Bp0,M?

nqc
PpZλnpA ´ xq ě 1qΘpdxq ě κ´1eM

2{p2κq
¸

ď P

ˆż
PpZλnpA ´ xq ě 1qΘpdxq ě κ´1eM

2{p2κq
˙
.

However, by Lemma 2.22, ˆż
PpZλnpA ´ xq ě 1qΘpdxq

˙
nPN

is tight. This concludes the proof.
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2.5.2 Proof of Theorem 2.3

Proof of Theorem 2.3.
Let A be a closed ball. Let f P Fc̀ pRdq such that supppfq Ă A. Let M ą 0. By cluster-invariance
of Θ, for any n P N

˚,

E

„
exp

ˆ
´

ż
fpxqΘpdxq

˙j
“ E

„
exp

ˆ
´

ż
fpxqΘnpdxq

˙j

“ E

»–ź
xPΘ

EP

»–exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨fiflfifl
“ E

»– ź
xPΘXBp0,M?

nq
EP

»–exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨fifl
ˆ

ź
xPΘXBp0,M?

nqc
EP

»–exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨fiflfifl . (2.40)

First, let us look at the random variable

Jn,M :“
ż
Bp0,M?

nqc
ln

¨̋
EP

»–exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨fifl‚̨Θpdxq. (2.41)

As supppfq Ă A, Jn,M is equal to

ż
Bp0,M?

nqc
ln

¨̋
1 ` EP

»–1tZnpA ´ xq ě 1u
¨̋
exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨´ 1‚̨fifl‚̨Θpdxq. (2.42)

Moreover, we remark that for every x P R
d,ˇ̌̌̌

ˇEP

«
1tZnpA ´ xq ě 1u

˜
exp

˜
´ ř

|u|“n

fpSu ` xq
¸

´ 1

¸ff ˇ̌̌̌
ˇ ď P pZnpA ´ xq ě 1q

ď EP rZnpA ´ xqs
“ PpŜn P A ´ xq

where pŜnqnPN is a random walk with motion law P. Together with Lemma 2.6, this implies :

sup
xPRd

ˇ̌̌̌
ˇEP

»–1tZnpA ´ xq ě 1u
¨̋
exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨´ 1‚̨fifl ˇ̌̌̌
ˇ ď cd

|A|
nd{2 ÝÝÝÝÑ

nÑ`8 0. (2.43)

Therefore, as | lnp1 ` tq| ď 2|t| for every t small enough, the combination of identities (2.42) and
(2.43) implies that there exists an integer Ñ such that for every n ě Ñ ,

|Jn,M | ď 2

ż
Bp0,M?

nqc
PpZnpA ´ xq ě 1qΘpdxq

almost surely. Therefore, using Lemma 2.24,

P

´
|Jn,M | ě 2e´M2{p2κq

¯
“ on,M p1q (2.44)
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where on,M p1q is a function pεn,M qnPN˚,MPR˚
`

such that lim
MÑ`8lim sup

nÑ`8
εn,M “ 0. Furthermore, by

(2.40), for every n ě Ñ ,

E

„
exp

ˆ
´

ż
fpxqΘpdxq

˙j

“ E

»– ź
xPΘXBp0,M?

nq
EP

»–exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨fifl ˆ exppJn,M q
fifl

“ E

»– ź
xPΘXBp0,M?

nq
EP

»–exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨fiflfifl
` E

»– ź
xPΘXBp0,M?

nq
EP

»–exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨fifl ˆ pexppJn,M q ´ 1q
fifl . (2.45)

However, ˇ̌̌̌
ˇE

»– ź
xPΘXBp0,M?

nq
EP

»–exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨fifl ˆ pexppJn,M q ´ 1q
fifl ˇ̌̌̌

ˇ
is lower than,

E r| exppJn,M q ´ 1|s “ E

”
| exppJn,M q ´ 1|1t|Jn,M | ă 2e´M2{p2κqu

ı
` E

”
| exppJn,M q ´ 1|1t|Jn,M | ě 2e´M2{p2κqu

ı
ď on,M p1q ` Pp|Jn,M | ě 2e´M2{p2κqq
“ on,M p1q (2.46)

where the second inequality comes from the fact that Jn,M is non-positive and the last equality
comes from identity (2.44). Consequently, combining (2.45) and (2.46), it holds that,

E

„
exp

ˆ
´

ż
fpxqΘpdxq

˙j
“ E

»– ź
xPΘXBp0,M?

nq
EP

»–exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨fiflfifl ` on,M p1q.

(2.47)

Furthermore, as supppfq Ă A,

E

»– ź
xPΘXBp0,M?

nq
EP

»–exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨fiflfifl “ E

«
exp

˜ż
Bp0,M?

nq
hnpxqΘpdxq

¸ff
(2.48)

where hnpxq “ ln

¨̋
1 ` EP

»–1tZnpA ´ xq ě 1u
¨̋
exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨´ 1‚̨fifl‚̨.

Nevertheless, by Lemma 2.13, uniformly in x P Bp0,M?
nq,

hnpxq “ p1 ` onp1qqRf,APpZnpA ´ xq ě 1q (2.49)

where we recall that

Rf,A “ E

„
exp

ˆ
´

ż
fpxqNApdxq

˙j
´ 1 “ IA,´f

IA
´ 1.
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Consequently, using (2.49) in (2.48) yields

E

»– ź
xPΘXBp0,M?

nq
EP

»–exp

¨̋
´

ÿ
|u|“n

fpSu ` xq‚̨fiflfifl
“ E

«
exp

˜
p1 ` onp1qqRf,A

ż
Bp0,M?

nq
PpZnpA ´ xq ě 1qΘpdxq

¸ff
. (2.50)

Moreover, by Lemma 2.22, we know thatż
Bp0,M?

nq
PpZnpA ´ xq ě 1qΘpdxq

is tight. Therefore, by Prokhorov’s Theorem (see for example [26]), there exists a subsequence
rn “ rnpM,Aq such that ż

Bp0,M?
rnq

PpZrnpA ´ xq ě 1qΘpdxq

converges in law toward some random variable YM,A. Combining this with (2.47), (2.50) and
letting n go toward `8, we deduce that

E

„
exp

ˆ
´

ż
fpxqΘpdxq

˙j
“ E rexp pYM,ARf,Aqs ` oM p1q. (2.51)

Besides, thanks to Lemma 2.22, the tightness of pYM,AqMPR˚
` is easily checked. Thus a subsequence

of pYM,AqMPN˚ converges in law toward some finite, non-negative random variable YA. Letting M
go to infinity in (2.51), we deduce that for every f P Fc̀ pRdq such that supppfq Ă A,

E

„
exp

ˆ
´

ż
fpxqΘpdxq

˙j
“ E rexppYARf,Aqs
“ E rexppXAIARf,Aqs (2.52)

with XA :“ YA ˆ I´1
A where IA is defined in definition 2.14. Then, we can compare the expression

of the Laplace transform given in Proposition 2.18 and the expression given by identity (2.52)
and we get that for every f P Fc̀ pRdq such that supppfq Ă A :

E

„
exp

ˆ
´

ż
fpxqΘpdxq

˙j
“ E

„
exp

ˆ
´

ż
fpxqΛd,XA8 pdxq

˙j
.

Consequently, by Lemma 2.8, Θp¨ XAq has the same law as Λd,XA8 p¨ XAq. At this point, the proof
of Theorem 2.3 is almost complete. The last subtlety is that we only proved our result in A. Of
course we could consider larger and larger balls A but we have to verify that A Ă B implies
XA

law“ XB. Thus, let us consider two closed balls A and B such that A Ă B. Let f P Fc̀ pRdq
such that supppfq Ă A. The two formulas for the Laplace transform given by (2.52) with A and
B are equals :

E rexppXAIARf,Aqs “ E

„
exp

ˆ
´

ż
fpxqΘpdxq

˙j
“ E rexppXBIBRf,Bqs . (2.53)

As supppfq Ă A, we know that

Rf,B “ E

„
exp

ˆ
´

ż
fpxqNBpdxq

˙
´ 1

j
“ E

„
1tNBpAq ě 1u

ˆ
exp

ˆ
´

ż
fpxqNBpdxq

˙
´ 1

˙j
. (2.54)
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Therefore, using (2.54) and Lemmas 2.19 and 2.20, we obtain that

IB
IA

Rf,B “ E

«
exp

ˆ
´

ż
fpxqNBpdxq

˙
´ 1

ˇ̌̌̌
ˇNBpAq ě 1

ff

“ E

„
exp

ˆ
´

ż
fpxqNApdxq

˙j
´ 1

“ Rf,A. (2.55)

Thus IARf,A “ IBRf,B . Together with (2.53), for every f P Fc̀ pRdq such that supppfq Ă A, this
implies that

E rexppXAIARf,Aqs “ E rexppXBIARf,Aqs .
Moreover

IARf,A “ IA ˆ
ˆ
E

„
exp

ˆ
´

ż
fpxqNApdxq

˙j
´ 1

˙
.

It is equal to 0 for f “ 0 and ´IARf,A can be made as close as we want from IA by choosing f
of larger and larger infinite norm. Consequently, for every t P r0, IAr,

E rexpp´tXAqs “ E rexpp´tXBqs .
It is sufficient in order to say that XA and XB have the same distribution because IA ą 0. It
concludes the proof.

2.6 Heavy tail genereralization

2.6.1 New setting

In this section, we prove Theorem 2.4 which states that Theorems 2.2 and 2.3 remain true
under the hypothesis H3. We recall that hypothesis H3 consists in the following assumptions :
The motion law P is given by spherically symmetric α-stable laws with α Ps0, 2s. More precisely,
for every y P R

d, ż
exp pixy, xyqPpdxq “ exp

¨̋
´

˜
dÿ

k“1

|yk|2
¸α{2‚̨.

The critical offspring law μ does not have second moment anymore. However we assume that
there exists β Ps0, 1s such that for every γ ă β,

ř`8
k“0 k

1`γμpkq ă `8. Moreover we assume that
d ą α{β.

In this new setting, α Ps0, 2s. Of course, α “ 2 is the Brownian case which has been treated
under the hypothesis H1 when β “ 1. Assuming hypothesis H3, any particle is following a
spherically symmetric α-stable Lévy process until its death. One can refer to [157] for more
informations about general Lévy processes.

Remark 2.5. The typical example of an offspring law μ satisfying hypothesis H3 is given by

fpsq “ s ` 1
2p1 ´ sq1`β with β Ps0, 1r, where fpsq “

`8ř
k“0

μpkqsk for every s P r0, 1s.
Of course, it would be much too long to modify the entirety of our proofs. In this section, we

just indicate to the reader how to change the key steps in the proofs of Theorem 2.2 and 2.3. In
the sequel, we often use a random variable χ such that for every y P R

d,

E

”
eixy,χy

ı
“ exp

¨̋
´

˜
dÿ

k“1

|yk|2
¸α{2‚̨.

Let us call such a random variable χ "a standard (d-dimensional) α-stable law". We denote by
Lα,d the density of χ. Except for a few values of α, Lα,d has not any closed form.
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2.6.2 Generalized proofs

In order to prove generalized versions of Theorem 2.2 we have to prove a new version of
Lemma 2.13. Under the hypothesis H3, IA and IA,f are defined as in definition 2.14.

Lemma 2.25 ( Key Lemma - generalized version). We assume hypothesis H3. Let A be a closed
ball. Let f P FcpRdq whose values are in iR or in R´ and such that supppfq Ă A. Let M ą 0.
Uniformly in x P Bp0,Mn1{αq, as n goes to infinity,

EP

»–1tZnpA ´ xq ě 1u exp
¨̋ ÿ

|u|“n

fpSu ` xq‚̨fifl “ p1 ` onp1qqLα,dpx{n1{αq
nd{α IA,f .

Remark 2.6. IA,f is defined as in definition 2.14 but the motion is now of Levy type. The
well-definiteness of IA,f can be proved exactly as in the following proof of Lemma 2.25.

Now, let us prove Lemma 2.25.

Proof of Lemma 2.25.
With the same notation as in the proof of Lemma 2.13 we know that

EP

«
1tZnpA ´ xq ě 1u exp

˜ ř
|u|“n

fpSu ` xq
¸ff

“ EQ˚

»– 1tSwnPA´xu
1` nř

k“1
YkpSwn´k`xq

exp

ˆ
nř

k“0

Yf,kpSwn´k ` xq
˙fifl .

Now let us prove that we can resritct the sum above to a finite number of terms, as in the proof
of Lemma 2.13. Let K ą 0. Let us consider γ ą 0 such that γ ă β ď 1. Recall the notation
EQ˚ r¨|Gs when we condition on the spine and on the number of brothers of every particle in the
spine and the positions of the brothers of the spine. Then, by conditional Markov inequality,

Q˚
˜
Swn P A ´ x,

nÿ
k“K`1

Ykpx ` Swn´kq ě 1

¸

ď EQ˚

«
1tSwn P A ´ xuEQ˚

«˜
nÿ

k“K`1

Ykpx ` Swn´kq
¸γ ˇ̌̌̌

ˇG
ffff

.

We know that for any non negative numbers pλiq1ďiďn ,
ˆ

nř
i“1

λi

˙γ

ď
nř

i“1
λγ
i because 0 ă γ ă 1.

Consequently,

Q˚
˜
Swn P A ´ x,

nÿ
k“K`1

Ykpx ` Swn´kq ě 1

¸

ď EQ˚

«
1tSwn P A ´ xu

nÿ
k“K`1

EQ˚

«
Ykpx ` Swn´kqγ

ˇ̌̌̌
ˇG

ffff
. (2.56)

However, for every k P tK ` 1, ¨ ¨ ¨ , nu, by definition of Ykp¨q,

EQ˚

«
Ykpx ` Swn´kqγ

ˇ̌̌̌
ˇG

ff
“ EQ˚

»–¨̋ ÿ
uPBpwn´k`1q

Zu
k´1pA ´ x ´ Swn´k ´ �uq‚̨γ ˇ̌̌̌

ˇG
fifl
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where for every u P Bpwn´k`1q, recall that �u “ Su ´ Swn´k . Then, as 0 ă γ ă 1, by Jensen’s
inequality,

EQ˚

«
Ykpx ` Swn´kqγ

ˇ̌̌̌
ˇG

ff
ď EQ˚

»– ÿ
uPBpwn´k`1q

Zu
k´1pA ´ x ´ Swn´k ´ �uq

ˇ̌̌̌
ˇG

fiflγ

“
¨̋ ÿ

uPBpwn´k`1q
EQ˚

«
Zu
k´1pA ´ x ´ Swn´k ´ �uq

ˇ̌̌̌
ˇG

ff‚̨γ

. (2.57)

However, by construction of Q˚, for every k P tK ` 1, ¨ ¨ ¨ , nu and for every u P Bpwn´k`1q, it
holds that

EQ˚

«
Zu
k´1pA ´ x ´ Swn´k ´ �uq

ˇ̌̌̌
ˇG

ff
“ EP rZk´1pA ´ z ´ �qs |z“x`Swn´k ,�“�u .

Then, by criticality of the branching process under P, for every k P tK ` 1, ¨ ¨ ¨ , nu and for every
u P Bpwn´k`1q,

EQ˚

«
Zu
k´1pA ´ x ´ Swn´k ´ �uq

ˇ̌̌̌
ˇG

ff
“ P

ˆ
pk ´ 1q1{αχ P A ´ z ´ �

˙
|z“x`Swn´k ,�“�u

where χ is a standard d-dimensional α-stable law. Then, as the density Lα,d is bounded, there
exists a constant cα ą 0 such that for every k P tK ` 1, ¨ ¨ ¨ , nu and for every u P Bpwn´k`1q,

EQ˚

«
Zu
k´1pA ´ x ´ Swn´k ´ �uq

ˇ̌̌̌
ˇG

ff
“

ż
A{pk´1q1{α

Lα,d

ˆ
y ´ x ` Swn´k ` �u

pk ´ 1q1{α

˙
dy

ď cα|A|k´d{α. (2.58)

Combining, (2.56), (2.57) and (2.58), we get

Q˚
˜
Swn P A ´ x,

nÿ
k“K`1

Ykpx ` Swn´kq ě 1

¸

ď cγα|A|γ
nÿ

k“K`1

k´dγ{α
EQ˚ r1tSwn P A ´ xu|Bpwn´k`1q|γs . (2.59)

However for every k P t1, ¨ ¨ ¨ , nu, 1 ` |Bpwn´k`1q|, that is, the number of children of wn´k, has
the distribution ν and is independent of the spine under Q˚. We recall that ν is defined by
νpkq “ kμpkq. We assumed that

ş
x1`γμpdxq ă `8. Thus, ĉγ :“ ş

xγνpdxq ă `8. Therefore,
together with (2.59), this yields

Q˚
˜
Swn P A ´ x,

nÿ
k“K`1

Ykpx ` Swn´kq ě 1

¸
ď cγα|A|γ ĉγ

nÿ
k“K`1

k´dγ{α ˆ Q˚ pSwn P A ´ xq

ď c1`γ
α |A|1`γ ĉγn

´d{α
`8ÿ

k“K`1

k´dγ{α. (2.60)

Now, we need the sum to be convergent. For this, we need dγ{α ą 1, that is, d ą α
γ . However

we assumed that d ą α
β . Thus, this is possible to find such a γ ă β. Therefore, uniformly in
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x P Bp0,Mn1{αq, it holds that

EP

»–1tZnpA ´ xq ě 1u exp
¨̋ ÿ

|u|“n

fpSu ` xq‚̨fifl

“ EQ˚

»———– 1tSwn P A ´ xu
1 `

Kř
k“1

YkpSwn´k ` xq
exp

˜
Kÿ
k“0

Yf,kpSwn´k ` xq
¸fiffiffiffifl ` oKp1qn´d{α. (2.61)

Recall that for every m P N
˚ the density of Swm is given by z ÞÑ m´d{αLα,dpm´1{αzq. Therefore,

using (2.61) and following the same lines as in Lemma 2.13, we get

EP

»–1tZnpA ´ xq ě 1u exp
¨̋ ÿ

|u|“n

fpSu ` xq‚̨fifl
“ pn ´ Kq´d{α

EQ˚

„ż
A
Lα,dppn ´ Kq´1{αpy ´ x ´ SwK qqFK,Apy, Swk , 1 ď k ď Kqdy

j
` oKp1qn´d{α. (2.62)

The function FK,A in (2.62) is defined exactly as in the proof of Lemma 2.13. Remark that

pn ´ Kq´1{αpy ´ x ´ SwK q “ ´n´1{αx ` 1 ´ p1 ´ K{nq1{α

pn ´ Kq1{α x ` pn ´ Kq´1{αpy ´ SWK
qlooooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

εn,K,x,y

. (2.63)

On the event t||SWk
|| ď K2{αu, uniformly in x P Bp0,Mn1{αq, the error term εn,K,x,y can be

majorized in the following way

||εn,K,x,y|| ď M ˆ on,Kp1q ` psup
zPA

||z||q ˆ pn ´ Kq´1{α ` K2{αpn ´ Kq´1{α.

“ on,Kp1q (2.64)

where for every K P N
˚, on,Kp1q tends to zero as n goes to infinity. Moreover, Lα,d is continuous

and goes to 0 at infinity. Therefore, this function is uniformly continuous. This implies that,
uniformly in x P Bp0,Mn1{αq, on the event t||SWk

|| ď K2{αu,
|Lα,dpn´1{αxq ´ Lα,dppn ´ Kq´1{αpy ´ x ´ SwK qq| “ on,Kp1q (2.65)

where Lα,dp´n´1{αxq was replaced by Lα,dpn´1{αxq by symmetry of Lα,d. Furthermore, the event
t||SwK || ě K2{αu can be neglected because

Q˚p||SwK || ě K2{αq “ oKp1q. (2.66)

Therefore, combining (2.62), (2.65) and (2.66), we get that, uniformly in x P Bp0,Mn1{αq,

EP

»–1tZnpA ´ xq ě 1u exp
¨̋ ÿ

|u|“n

fpSu ` xq‚̨fifl
“ n´d{αLα,dpn´1{αxqEQ˚

„ż
A
FK,Apy, Swk , 1 ď k ď Kqdy

j
` oKp1qn´d{α ` on,Kp1qn´d{α. (2.67)

Thanks to (2.67), the end of the proof goes along the same lines as in the proof of Lemma 2.13.
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Thanks to this Lemma 2.25, we can derive a generalized version of Theorem 2.2 in the same
way as before. All the proof is the same. We only have to replace Lemma 2.13 by Lemma 2.25.
Moreover, proving Theorem 2.3 under the hypothesis H3 is very similar with proving the same
theorem under hypotheses H1 or H2. We only need slight modifications for the generalization of
Lemma 2.24. Let us adapt this lemma under the hypothesis H3.

Lemma 2.26. Let A be a closed ball. Let us assume hypothesis H3. Let Θ be a cluster-invariant
point process. Then,

lim
MÑ`8 lim sup

nÑ`8
P

˜ż
Bp0,Mn1{αqc

PpZnpA ´ xq ě 1qΘpdxq ě M´α{4
¸

“ 0.

By a careful reading, one can convince oneself that one can prove a generalized version of
Theorem 2.3 thanks to this generalized Lemma 2.26. This Lemma 2.26 is a direct consequence of
Lemma 2.22 and the following Lemma 2.27 which is a generalized version of Lemma 2.23.

Lemma 2.27. We assume hypothesis H3. Let A be a closed ball. There exists C ą 0 such that
for every M ě 1, for every n large enough and for every x P Bp0,Mn1{αqc,

PpZnpA ´ xq ě 1q ď C
PpZMα{2npA ´ xq ě 1q

Mα{2 .

Proof of Lemma 2.27.
As d ą α{β, following the same lines as in the proof of Lemma 2.23, there exists a positive
constant CA,d,α,β such that for every n P N

˚ and for every x P Bp0,Mn1{αqc,

P pZnpA ´ xq ě 1q
P pZMα{2npA ´ xq ě 1q ď CA,d,α,βPpn1{αχ P A ´ xq

PppMα{2nq1{αχ P A ´ xq

“ CA,d,α,β

ż
pA´xq{n1{α

Lα,dpyqdyż
pA´xq{pMα{2nq1{α

Lα,dpyqdy
(2.68)

where we recall that χ is a standard d-dimensional α-stable law and Lα,d is its density. According
to [28], there exists a constant cα,d such that

Lα,dpzq „
||z||Ñ`8

cα,d||z||´d´α.

In particular, there exist c
p1q
α,d ą 0 and c

p2q
α,d ą 0 such that for every z P R

d such that ||z|| ě 1,

c
p1q
α,d||z||´d´α ď Lα,dpzq ď c

p2q
α,d||z||´d´α. (2.69)

However for x P Bp0,Mn1{αqc, ||n´1{αM´1{2x|| ě ?
M . Consequently, if M ě 1, by (2.69), for

every x P Bp0,Mn1{αqc,

c
p1q
α,d||n´1{αM´1{2x||´d´α ď Lα,dpn´1{αM´1{2xq ď c

p2q
α,d||n´1{αM´1{2x||´d´α

and
c

p1q
α,d||n´1{αx||´d´α ď Lα,dpn´1{αxq ď c

p2q
α,d||n´1{αx||´d´α.

Together with (2.68) it implies that there exists a constant C ą 0 such that for every n P N
˚ and

for every x P Bp0,Mn1{αqc,
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P pZnpA ´ xq ě 1q
P pZMα{2npA ´ xq ě 1q ď C

ż
pA´xq{n1{α

||y||´d´αdyż
pA´xq{pMα{2nq1{α

||y||´d´αdy

“ C ˆ M´α{2

where the last equality is obtained by the changes of variable y1 “ n1{αy in the integral above
and y2 “ ?

Mn1{αy in the integral below. It concludes the proof of Lemma 2.27.

2.7 Remarks and further discussion

Let us begin with a few remarks concerning our results.

Remark 2.7. In this paper, we discussed three different hypotheses. Observe that, hypothesis H2

is a generalization of hypothesis H1. Indeed, in both cases, P has a second moment. Consequently
it is in the domain of attraction of a Gaussian distribution. However, having a second moment
is not enough for us. Indeed, in our arguments, we need the random walk associated to P to
meet the heat-kernel estimate stated in Proposition 2.7. Our results hold for any distribution P
which has a finite second moment and satisfies this heat-kernel estimate. For now, we do not
know how to remove this technical assumption. Under hypotheses H1 and H2, as P is in the
domain of attraction of a Gaussian distribution, the critical branching process with motion law
P is analoguous to a binary branching Brownian motion. In particular, assuming H1 or H2, the
critical dimension is always 2 as in Theorem 2.1. On the contrary, under hypothesis H3, P is
no more in the Brownian domain. This leads to a change of the critical dimension, among other
consequences. Indeed, under hypothesis H3, we can prove our results for d ą α{β. Moreover,
assuming hypothesis H3, Gorostiza and Wakolbinger showed in [81] (in a continuous setting but the
qualitative behaviour must be the same.) that if d ď α{β, then the sequence pΛd,X

n qnPN converges
to the null point process. Therefore, α{β is the critical dimension if we assume hypothesis H3.

Remark 2.8. Actually, the heat kernel estimate in H2 is not really necessary for Theorem 2.2.
We see in the proof of Lemma 2.17 that we only need the existence of a positive integrable function
g such that for every x P Z

d and for every n P N
˚, PpŜn “ xq ď n´d{2gpn´1{2xq where Ŝ is the

random walk associated to P. This is possible as soon as P has a moment of order d` 1 thanks to
the asymptotic expansion of the local-limit theorem. (See Theorem 22.1 in [21].) However, the heat
kernel estimate in assumption H2 is crucial in the proof of Theorem 2.3 for technical reasons.

Now, let us try to get another insight about our results. Thanks to Theorem 2.2, we know
a local description of Λd,X8 on every closed ball A. Indeed, if PA is a Poisson random variable
of parameter XIA, then Λd,X8 p¨ X Aq can be constructed as a layering of PA independent copies
of NA. A natural question is to know whether this is possible to describe NA and IA in terms
of Λd,X8 . We prove that there exists another interesting description of Λd,X8 which explains the
meaning of NA and IA. Let us define W the set of measures W on the set N of point measures
on R

d which satisfy :

a) For any closed ball A of Rd, W ptμ P N : μpAq ą 0uq ă `8.

b) W ptHuq “ 0 where H is the null point measure.

If W P W, we can define a Poisson point process Ξ on N with intensity measure W . Ξ can be
written as

Ξ “
ÿ
iPI

δNi
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where tNi, i P Iu is a countable collection of point measures. Then we are able to define a new
point process EW on R

d as
EW “

ÿ
iPI

Ni

where the sum of point measures means that we overlay them. EW is still a locally finite point
process thanks to assumption aq. We mention that the point process EW is introduced in subsection
2.1 of [124] in a slightly different (but equivalent) way.

Proposition 2.28. We assume hypothesis H1, H2 or H3. Then for every θ P R
˚̀ , there exists a

unique measure W d,θ P W such that :

(i)

EW d,θ
law“ Λd,θ8 .

(ii) For any closed ball A, W d,θptμ P N : μpAq ě 1uq “ θIA.

(iii) For any closed ball A, for any borel set U of the set of point measures on A,

W d,θ

˜
tμ : μp¨ X Aq P Uu

ˇ̌̌̌
ˇtμ P N : μpAq ě 1u

¸
“ P pNA P Uq .

(iv) Let f P Fc̀ pRdq whose support is a closed ball A. Then for every interval I Ă R
˚̀ ,

W d,θ

ˆ"
μ P N :

ż
fpxqdμpxq P I

*˙
“ θIAP

ˆż
fpxqdNApxq P I

˙
.

Proof of Proposition 2.28.
Λd,θ8 is infinitely divisible. Indeed, it is obtained through a branching process starting from a
Poisson point process which is infinitely divisible. Then, Theorem 2.1.10 in [124] gives (i). By the
local description of Λd,θ8 given in Theorem 2.2, for any closed ball A, it holds that

e´θIA “ P

´
Λd,θ8 pAq “ 0

¯
“ P pEW d,θpAq “ 0q . (2.70)

Now, let us recall that EW d,θ is defined through a Poisson point process Ξ “ ř
iPI δNi on N with

intensity W d,θ. Then, from (2.70), we deduce

e´θIA “ P pNipAq “ 0,@i P Iq
“ P pΞptμ : μpAq ě 1uq “ 0q .

Therefore, as Ξ is a Poisson point process on N with intensity W d,θ,

e´θIA “ P pΞptμ : μpAq ě 1uq “ 0q “ e´W d,θptμ:μpAqě1uq.

This proves (ii). Now, let us consider a closed ball A and f P Fc̀ pRdq such that supppfq Ă A.
For every point measure μ, let us define Hf pμq “ ş

fpxqdμpxq. Then, by definition of EW d,θ ,

E

ˆ
exp

ˆ
´

ż
fpxqdEW d,θpxq

˙˙
“ E

„
exp

ˆ
´

ż
Hf pμqdΞpμq

˙j
. (2.71)
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However, Ξ is a Poisson point process with intensity W d,θ. Therefore, by Lemma 3.1 in [93], (2.71)
yields

E

ˆ
exp

ˆ
´

ż
fpxqdEW d,θpxq

˙˙
“ exp

ˆ
´

ż
p1 ´ expp´Hf pμqqdW d,θpμq

˙
“ exp

ˆż
exp

ˆ
´

ż
fpxqdμpxq

˙
´ 1dW d,θpμq

˙
“ exp

ˆż ˆ
exp

ˆ
´

ż
fpxqdμpxq

˙
´ 1

˙
1tμpAq ě 1udW d,θpμq

˙
where the last equality stems from the fact that supppfq Ă A. By (ii), this implies that

E

ˆ
exp

ˆ
´

ż
fpxqdEW d,θpxq

˙˙
“ exp

˜
θIA

˜ ż
exp

ˆ
´

ż
fpxqdμpxq

˙
dW d,θpμ|μpAq ě 1q ´ 1

¸¸
. (2.72)

However, by (i), we know that

E

ˆ
exp

ˆ
´

ż
fpxqdEW d,θpxq

˙˙
“ E

ˆ
exp

ˆ
´

ż
fpxqdΛd,θ8 pxq

˙˙
.

Consequently, by Proposition 2.18, we get

E

ˆ
exp

ˆ
´

ż
fpxqdEW d,θpxq

˙˙
“ exp

˜
θIA

˜
E

„
exp

ˆ
´

ż
fpxqdNApxq

˙ j
´ 1

¸¸
. (2.73)

Moreover, the left-hand sides in (2.72) and (2.73) are equals. This implies thatż
exp

ˆ
´

ż
fpxqdμpxq

˙
dW d,θpμ|μpAq ě 1q “ E

„
exp

ˆ
´

ż
fpxqdNApxq

˙ j
. (2.74)

This proves (iii). Moreover, (iv) is a direct consequence of (ii) and (iii).

An interesting property of the measure W d,θ is that it is σ-finite but not finite. This is proved
by the following proposition. We assume H1 for clarity of the discussion.

Proposition 2.29. Assuming hypothesis H1, IBp0,rq converges toward infinity when r is going to
infinity.

Proof of Proposition 2.29.
Let A be a closed ball. Using the notation introduced in definition 2.14, we recall that

IA “
ż
A
EQ˚

»———– 1

1 `
`8ř
k“1

Ỹkpy ´ Swkq

fiffiffiffifl dy.

Therefore, by Jensen’s inequality,

IA ě
ż
A

1

EQ˚

„
1 `

`8ř
k“1

Ỹkpy ´ Swkq
jdy. (2.75)



90 Chapitre 2. Invariant measures of critical branching random walks in high dimension

However, with the notation of the proof of Lemma 2.13, for every k P N
˚,

EQ˚
”
Ỹkpy ´ Swkq

ı
“ EQ˚

»– ÿ
uPBpwk`1q

Zu
k´1pA ´ y ` Swk ´ �uq

fifl .

Then, by construction of Q˚, it holds that

EQ˚
”
Ỹkpy ´ Swkq

ı
“ EQ˚ r|Bpwk`1q|sEQ˚

”
EP rZk´1pA ´ y ` zqs |z“Swk´�

ı
(2.76)

where � is independent of Swk . Moreover � is a standard Gaussian random variable because we
assume hypothesis H1. We know that, under Q˚, 1 ` |Bpwk`1q| has law ν which has expectation
1 ` σ2. Moreover, the branching process is critical under P. Thus, EP rZk´1pA ´ y ` zqs “
PpŜk´1 P A ´ y ` zq where Ŝ is a brownian motion. Therefore, together with (2.76), this yields

EQ˚
”
Ỹkpy ´ Swkq

ı
“ σ2

PpŜ2k P A ´ yq

“ σ2p4πkq´d{2
ż
A
exp

`´||x ´ y||2{4k˘
dx. (2.77)

Consequently, combining (2.75) and (2.77), we get

IA ě
ż
A

˜
1 ` σ2

`8ÿ
k“1

p4πkq´d{2
ż
A
exp

`´||x ´ y||2{p4kq˘
dx

¸´1

dy. (2.78)

Now, if A “ Bp0, rq, a change of variable in (2.78) yields

IBp0,rq ě rd
ż
Bp0,1q

˜
1 ` σ2

`8ÿ
k“1

p4πkq´d{2rd
ż
Bp0,1q

exp
`´r2||x ´ y||2{p4kq˘

dx

¸´1

dy

“
ż
Bp0,1q

˜
r´d ` σ2

`8ÿ
k“1

p4πkq´d{2
ż
Bp0,1q

exp
`´r2||x ´ y||2{p4kq˘

dx

¸´1

dy. (2.79)

However, by the dominated convergence theorem, as d ě 3, for every y P Bp0, 1q,

lim
rÑ`8 r´d ` σ2

`8ÿ
k“1

p4πkq´d{2
ż
Bp0,1q

exp
`´r2||x ´ y||2{p4kq˘

dx “ 0.

Consequently, using Fatou’s Lemma in (2.79),

lim
rÑ`8IBp0,rq “ `8.



Chapitre 3

The asymptotic behaviour of the
martingale associated with the VRJP

Abstract

This chapter is based on the article [141] which has been written under the supervision of
Christophe Sabot and Xinxin Chen. We study the asymptotic behaviour of the martingale
pψnpoqqnPN associated with the Vertex Reinforced Jump Process (VRJP). We show that it is
bounded in Lp for every p ą 1 on trees and uniformly integrable on Z

d in all the transient phase
of the VRJP. Moreover, when the VRJP is recurrent on trees, we have good estimates on the
moments of ψnpoq and we can compute the exact decreasing rate τ such that n´1 lnpψnpoqq „ ´τ
almost surely where τ is related to standard quantities for branching random walks. Besides, on
trees, at the critical point, we show that n´1{3 lnpψnpoqq „ ´�c almost surely where �c can be
computed explicitely. Furthermore, at the critical point, we prove that the discrete-time process
associated with the VRJP is a mixture of positive recurrent Markov chains. Our proofs use
properties of the β-potential associated with the VRJP and techniques coming from the domain
of branching random walks.

3.1 Introduction and first definitions

Let pV,Eq be a locally finite graph. Let W ą 0. In [48], Davis and Volkov introduced a
continuous self-reinforced random walk pYsqsě0 known as the Vertex Reinforced Jump Process
(VRJP) which is defined as follows : the VRJP starts from some vertex i0 P V and conditionally
on the past before time s, it jumps from a vertex i to one of its neighbour j at rate WLjpsq where

Ljpsq “ 1 `
ż s

0
1tYu “ sudu.

In [152], Sabot and Tarrès defined the time-change D such that for every s ě 0,

Dpsq “
ÿ
iPV

`
Lipsq2 ´ 1

˘
.

Then, they introduced the time-changed process pZtqtě0 “ pYD´1ptqqtě0. If V is finite, this process
is easier to analyse than Y because it is a mixture of Markov processes whose mixing field has a
density which is known explicitely. The density of the mixing field of Z was already known as a
hyperbolic supersymmetric sigma model. This supersymmetric model was first studied in [54] and
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[53] and Sabot and Tarrès combined these previous works with their own results in order to make
some important progress in the knowledge of the VRJP. However, their formula for the density of
the environment of the VRJP was true only on finite graphs. This difficulty has been solved in
[153] and [154] where Sabot, Tarrès and Zeng introduced a β-potential with some distribution
νWV which allows to have a representation of the environment of the VRJP on infinite graphs.
Thanks to this β-potential, Sabot and Zeng introduced a positive martingale pψnpoqqnPN which
converges toward some random variable ψpoq. A remarkable fact is that ψpoq “ 0 if and only if
the VRJP is recurrent. Moreover, they proved a 0-1 law for transitive graphs. On these graphs,
the VRJP is either almost surely recurrent or almost surely transient.

We can study the VRJP on any locally finite graph V . However, in this paper, we will focus
only on the two most important cases :

— First, we can consider the case where V “ Z
d. In this case, when d P t1, 2u, the VRJP is

always recurrent. (See [154], [149] and [102].) On the contrary, when d ě 3, Sabot and
Tarrès proved in [152] that the time-changed VRJP is recurrent for small W and that it is
transient for large W . Further, in [139], thanks to a clever coupling of ψnpoq for different
weights, Poudevigne proved there is a unique transition point Wcpdq between recurrence
and transience on Z

d if d ě 3.
— Another interesting case for the VRJP is when V is a tree. In this case, the environment

of the VRJP is easy to describe thanks to independent Inverse Gaussian random variables.
Using this representation of the environment, in [40], Chen and Zeng proved there is a
unique phase transition between recurrence and transience on supercritical Galton-Watson
trees for the time-changed VRJP. (This result was already proved in [15] but the proof of
[15] was very different and did not use the representation of the VRJP as a mixture of
Markov processes.) Furthermore the transition point Wcpμq can be computed explicitely
and depends only on the mean of the offspring law μ of the Galton-Watson tree.

Therefore, if V is a Galton-Watson tree or Z
d with d ě 3, the following dichotomy is known :

there exists Wc P R
˚̀ (depending on V) such that

If W ă Wc, then a.s, ψpoq “ 0, i.e the VRJP is recurrent.
If W ą Wc, then a.s, ψpoq ą 0, i.e the VRJP is transient.

The recurrence of the VRJP can be regarded as a form of "strong disorder". Indeed, if W is
small, the reinforcement, i.e the disorder of the system compared to a simple random walk, is
very strong. Therefore, the martingale pψnpoqqnPN associated with the system vanishes only when
there is strong disorder. This situation is reminiscent of directed polymers in random environment.
One can refer to [44] for more information on this topic. In the case of directed polymers, there
is a positive martingale pMnqnPN which converges toward a random variable M8. pMnqnPN
and pψnpoqqnPN play analoguous roles in different contexts. Indeed, M8 ą 0 a.s if and only if
the system exhibits "weak disorder", exactly as for ψpoq. However, on Z

d or on trees, this is
possible that M8 ą 0 a.s but pMnqnPN is not bounded in L2. (See [35] and [33].) Therefore, a
natural question regarding pψnpoqqnPN is to know when it is bounded in Lp for a fixed value of
p ą 1. Moreover, as shown in the proof of Theorem 3 in [154], Lp boundedness of the martingale
pψnpoqqnPN˚ on Z

d for sufficiently large p implies the existence of a diffusive regime for the VRJP,
i.e the VRJP satisfies a central-limit theorem. We would like to know whether this diffusive regime
coincides with the transient regime or not. This gives another good reason to study the moments
of pψnpoqqnPN. Using [54], [154] and [139], one can prove that, on Z

d with d ě 3, for any p ą 1,
there exists a threshold W ppqpdq such that pψnpoqqnPN is bounded in Lp for every W ą W ppqpdq.
However, we do not know whether W ppqpdq “ Wcpdq for every p ą 1 or not. In this paper, we will
prove that pψnpoqqnPN is uniformly integrable on Z

d as soon as the VRJP is transient. Moreover,
we will prove that pψnpoqqnPN is bounded in Lp for any p ą 1 as soon as W ą Wcpμq on trees.

Furthermore, we will also look at the rate of convergence toward 0 of pψnpoqqnPN on trees
when W ă Wcpμq under mild assumptions. We have a Lp version and an almost sure version of
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the estimate of the decay of pψnpoqqnPN toward 0.
Finally a natural question consists in finding the behaviour of the VRJP at the critical point

Wc. On Galton-Watson trees, it was proved in [40] or [15] that the time-changed VRJP is a
mixture of recurrent Markov processes at the critical point. In this paper, we prove that it is
even a mixture of positive recurrent Markov processes. However the asymptotic behaviour of the
VRJP at the critical point on Z

d remains unknown. We will also compute the rate of convergence
of pψnpoqqnPN on trees when W “ Wcpμq.

3.2 Context and statement of the results

3.2.1 General notation

Let pV,Eq be a locally finite countable graph with non oriented edges. We assume that V has
a root o. We write i „ j when ti, ju P E. For every n P N, we define Vn :“ tx P V, dpo, xq ď nu
where d is the graph distance on pV,Eq. For every n P N

˚, we denote the boundary of Vn, that
is ti P Vn, Dj P V c

n such that ti, ju P Eu, by BVn. Let us denote by En the set of edges of Vn. If
M is a matrix (or possibly an operator) with indices in a set A ˆ B, then for every A1 Ă A and
B1 Ă B, the restriction of M to A1 ˆ B1 is denoted by MA1,B1 “ pMpi, jqqpi,jqPA1ˆB1 . If M is a
symmetric matrix, we write M ą 0 when M is positive definite.

In this article, we use a lot the Inverse Gaussian distribution. For every pa, λq, recall that an
Inverse Gaussian random variable with parameters pa, λq P R

˚̀ 2 has density :

1tx ą 0u
ˆ

λ

2πx3

˙1{2
exp

ˆ
´λpx ´ aq2

2a2x

˙
dx. (3.1)

The law of the Inverse Gaussian distribution with parameters pa, λq P R
˚̀ 2 is denoted by IGpa, λq.

For W ą 0 and t P R, if A „ IGp1,W q, we write QpW, tq “ E
“
At

‰
. A well-known property of

the Inverse Gaussian distribution states that QpW, tq “ QpW, 1 ´ tq.

3.2.2 The β-potential and the martingale pψnqnPN
Let pV,Eq be an infinite countable graph with non-oriented edges. In this paper, the graph

pV,Eq will always have a special vertex o called the root. Actually, in our results, V is a rooted
tree or Z

d with root 0. Let W ą 0. In [154], the authors introduced a random potential pβiqiPV
on V with distribution νWV such that for every finite subset U Ă V , for every pλiqiPU P R

U`,ż
exp

˜
´

ÿ
iPU

λiβi

¸
νWV pdβq

“ exp

¨̊
˚̋´1

2

ÿ
i„j
i,jPU

W
´a

1 ` λi

a
1 ` λj ´ 1

¯
´

ÿ
i„j

iPU,jRU

W
´a

1 ` λi ´ 1
¯‹̨‹‚ 1ś

iPU
?
1 ` λi

. (3.2)

Looking at the Laplace transform in (3.2), we see that pβiqiPV is 1-dependent, that is, if U1 and
U2 are finite subsets of V which are not connected by an edge, then pβiqiPU1 and pβiqiPU2 are
independent under νWV . Moreover, the restriction of this potential on finite subsets has a density
which is known explicitely. We give the expression of this density in subsection 3.3.1. Furthermore,
for every pβiqiPV , let us introduce the operator Hβ on V which satisfies :

@pi, jq P V 2, Hβpi, jq “ 2βi1ti “ ju ´ W1ti „ ju.
By proposition 1 in [154], the support of νWV is

DW
V “ tβ P R

V , pHβqU,U is positive definite for all finite subsets U Ă V u.
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Therefore, under νWV , for every n P N, pHβqVn,Vn is positive definite. In particular, it is invertible.
We denote by Ĝn the inverse of pHβqVn,Vn . Moreover, for n P N and β P DW

V , let us define
pψnpiqqiPV as the unique solution of the equation :" pHβψnqpiq “ 0 @i P Vn

ψnpiq “ 1 @i P V c
n .

(3.3)

The idea behind the definition of pψnqnPN is to create an eigenstate of Hβ when n goes to infinity.
We can make n go to infinity thanks to the following proposition :

Proposition A (Theorem 1 in [154]). For any i, j P V , pĜnpi, jqqnPN˚ is increasing νWV -a.s. In
particular there exists a random variable Ĝpi, jq such that

Ĝnpi, jq ÝÑ
nÑ`8 Ĝpi, jq, νWV -a.s.

Further, for any i, j P V ,

Ĝpi, jq ă `8, νWV -a.s.

Moreover, pψnqnPN is a vectorial martingale with positive components. In particular, for every
i P V the martingale pψnpiqqnPN has an almost sure limit which is denoted by ψpiq. Besides,
pĜnqnPN is the bracket of pψnqnPN in the sense that for every i, j P V , pψnpiqψnpjq ´ Ĝnpi, jqqnPN
is a martingale.

This martingale pψnqnPN is crucial in order to study the asymptotic behaviour of the VRJP.
One reason for this is that a representation of the environment of the discrete random walk
associated with the VRJP starting from i0 is given by pWGpi0, jqGpi0, iqqti,juPE where for every
pi, jq P V 2,

Gpi, jq “ Ĝpi, jq ` 1

2γ
ψpiqψpjq

where γ is random variable with distribution Γp1{2, 1q which is independent of the random
potential β. We will say more about the link between the VRJP and pψnqnPN in Proposition B.
Before this, let us give some notation.

3.2.3 Notation associated with the VRJP

3.2.3.1 General notation for the VRJP

In the previous section, for every deterministic graph pV,Eq, we introduced the measure νWV
associated with the β-potential. We write EνWV

when we integrate with respect to this measure
νWV . Moreover, we defined a martingale pψnpoqqnPN. For a fixed graph V , we say that pψnpoqqnPN
is bounded in Lp if sup

nPN
EνWV

rψnpoqps ă `8. We say that pψnpoqqnPN is uniformly integrable if

lim
KÑ`8 sup

nPN
EνWV

rψnpoq1tψnpoq ě Kus “ 0.

We denote by pZ̃nqnPN the discrete time process associated with the VRJP, that is, the VRJP
taken at jump times. We will see that it is a mixture of discrete random walks. Let us introduce
the probability measure PV RJP

V,W under which pZ̃nqnPN is the discrete time process associated with
the VRJP on a graph V with constant weights W starting from o.
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3.2.3.2 Notation for the VRJP on trees

If V is a rooted tree, there is a natural genealogical order ď on V . For u P V , the parent of u
is denoted by �u and the generation of u is denoted by |u|. If px, uq P V 2 such that x ď u, then
|u|x “ |u| ´ |x|. If V is a Galton-Watson tree with offspring law μ, let us denote by GWμ the law
of V . Then, let us define the probability measure Pμ,W under which we first choose randomly
the graph V with distribution GWμ and then we choose randomly the potential pβiqiPV with
distribution νWV . Moreover, we define PV RJP

μ,W under which we first choose randomly the graph
V with distribution GWμ and then we choose randomly a trajectory on V with distribution
PV RJP

V,W . We write Eμ,W p¨q and EV RJP
μ,W p¨q when we integrate with respect to Pμ,W and PV RJP

V,W

respectively.

3.2.4 The phase transition

The martingale ψ is very important in order to understand the recurrence or transience of
the VRJP as explained by the following proposition :

Proposition B ([152], [154], [139] and [40]). Let us assume that pV,Eq is Z
d. Then there exists

Wcpdq ą 0 depending only on d such that :
— If W ă Wcpdq, νWd -a.s, for every i P Z

d, ψpiq “ 0 and the VRJP is recurrent.
— If W ą Wcpdq, νWd -a.s, for every i P Z

d, ψpiq ą 0 and the VRJP is transient.
Moreover, Wcpdq ă `8 if and only if d ě 3. Now let us assume that pV,Eq is a supercritical
Galton Watson tree with offspring law μ such that μp0q “ 0. Then there exists Wcpμq P R

˚̀
depending only on the mean of μ such that :

— If W ď Wcpμq, Pμ,W -a.s, for every i P V , ψpiq “ 0 and the VRJP is recurrent.
— If W ą Wcpdq, Pμ,W -a.s, for every i P V , ψpiq ą 0 and the VRJP is transient.

3.2.5 Statement of the results

3.2.5.1 Results on Z
d

For now, on Z
d, we are not able to estimate the moments of the martingale pψnpoqqnPN in the

transient phase. However, when d ě 3, we can prove uniform integrability of this martingale in
the transient phase.

Theorem 3.1. We assume that V “ Z
d with d ě 3 and that W ą Wcpdq. Then the martingale

pψnpoqqnPN is uniformly integrable.

3.2.5.2 Results on Galton-Watson trees

Let μ be a probability measure on N. In this paper, we use the following hypotheses for
Galton-Watson trees :

— Hypothesis A1 : μp0q “ 0 and m :“
`8ř
k“1

kμpkq ą 1.

— Hypothesis A2 : μp1q “ 0.

— Hypothesis A3 : There exists δ ą 0 such that
`8ř
k“1

k1`δμpkq ă `8.

Our first theorem on trees states that, if V is a Galton-Watson tree, pψnpoqqnPN is bounded in Lp

as soon as the VRJP is transient.

Theorem 3.2. Let V be a Galton-Watson tree with offspring law μ satisfying hypothesis A1. Let
W ą Wcpμq. Then, for every p Ps1,`8r, the martingale pψnpoqqnPN is bounded in Lp, GWμ-a.s.

In the recurrent phase, we already know that ψnpoq a.sÝÝÑ 0 on any graph as n goes to infinity.
Thanks to the theory of branching random walks and the representation of the VRJP with the
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β-potential, we are able to be much more accurate on trees. Let us introduce some notation
related to branching random walks in order to give the precise asymptotics of pψnpoqqnPN.

For every m ą 1, W ą 0, we define

fm,W : R Ñ R

t ÞÑ ln pmQpW, tqq .
Moreover, we will prove in the step 1 of the proof of Theorem 3.3 that there exists a unique
t˚pm,W q ą 0 such that

f 1
m,W pt˚pm,W qq “ fm,W pt˚pm,W qq

t˚pm,W q . (3.4)

Then, we define τpm,W q “ ´f 1
m,W pt˚pm,W qq. Thanks to these quantities, we are able to describe

the asympotics of pψnpoqqnPN in the two following results. First, we can estimate the moments of
pψnpoqqnPN.

Theorem 3.3. Let V be a Galton-Watson tree with offspring law μ satisfying hypotheses A1, A2

and A3. Let W ă Wcpμq. Then we have the following moment estimates :
(i) @p ą 0, Eμ,W rψnpoq´ps “ Eμ,W

“
ψnpoq1`p

‰ “ enpτpm,W q`opnq.
(ii) @p Ps1 ´ t˚pm,W q, 1r, Eμ,W rψnpoqps “ Eμ,W

“
ψnpoq1´p

‰ ď e´np1´pqτpm,W q`opnq

with τpm,W q ą 0 and 0 ă t˚pm,W q ă 1{2.
Remark 3.1. In Theorem 3.3, remark that we can not estimate all the moments of pψnpoqqnPN.
This is due to the non-integrability of high moments of some quantities related to branching random
walks. We will be more precise in Proposition K.

The previous theorem gives good estimates of the moments of pψnpoqqnPN. Moreover, it is also
possible to give the exact almost sure decreasing rate of pψnpoqqnPN if W ă Wcpμq.
Theorem 3.4. Let V be a Galton-Watson tree with offspring law μ satisfying hypotheses A1 and
A3. Let W ă Wcpμq. Then, it holds that, Pμ,W -a.s,

lim
nÑ`8

lnpψnpoqq
n

“ ´τpm,W q

with τpm,W q ą 0.

The following proposition gives an estimate of the behaviour of the decreasing rate τpm,W q
near the critical point Wcpμq.
Proposition 3.5. Let V be a Galton-Watson tree with offspring law μ satisfying hypothesis A1.
In the neighborhood of the critical point Wcpμq,

τpm,W q „
WÑWcpμq

αpmqpWcpμq ´ W q

where αpmq “ 2 ` 1

Wcpμq ´ 2m
K1pWcpμqq
K1{2pWcpμqq ą 0 where Kα is the modified Bessel function of the

second kind with index α.

Following basically the same lines as in the proofs of the previous estimates on pψnpoqqnPN, we
deduce information on the asympotic behaviour of the VRJP when W ă Wcpμq. More precisely,
we can estimate the probability for the VRJP to touch the generation n before coming back to
the root o when W ă Wcpμq. Remind that pZ̃kqkPN is the discrete-time process associated with
the VRJP on the rooted tree V starting from o. We define τò “ inftk P N

˚, Z̃k “ ou and for
every n P N

˚, we define τn “ inftk P N
˚, |Z̃k| “ nu. Recall that the probability measure PV RJP

μ,W

is defined in the paragraph 3.2.3.2.
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Proposition 3.6. Let V be a Galton-Watson tree with offspring law μ satisfying hypotheses A1,
A2 and A3. Let W ă Wcpμq. Then we have the following estimate :

´2τpm,W q ď lim inf
nÑ`8

ln
´
PV RJP

μ,W pτò ą τnq
¯

n

and

lim sup
nÑ`8

ln
´
PV RJP

μ,W pτò ą τnq
¯

n
ď ´τpm,W q ˆ t˚pm,W q

where 0 ă t˚pm,W q ă 1{2.
Remark 3.2. We suspect that the real decreasing rate in the proposition above is ´2τpm,W q.
Indeed, we only have a problem of integrability of some functionals related to branching random
walks. Up to this technical detail, the upper bound in Proposition 3.6 would be ´2τpm,W q too.

Now, let us look at the behaviour of the martingale pψnpoqqnPN at the critical point Wcpμq.
Theorem 3.7. Let V be a Galton-Watson tree with offspring law μ satisfying hypothesis A1 and
A3. We assume that W “ Wcpμq. Then, under Pμ,W ,

lnpψnpoqq
n1{3

a.sÝÝÝÝÑ
nÑ`8 ´�c

where �c “ 1
2

´
3π2σ2

2

¯1{3
with σ2 “ 16m

ż `8

0

a
Wcpμq lnpxq2?

2πx
e´Wcpμq

2
px`1{x´2qdx.

Remark 3.3. At the critical point, we are not able to have precise Lp bounds for ψnpoq. Indeed, in
the subcritical phase, we have subexponential bounds for some functionals associated with branching
random walks. At the critical point, we would need to be more accurate.

The recurrence of the VRJP on trees at the critical point Wcpμq was already known. The
following theorem states that the VRJP on trees is even positive recurrent at the critical point.
This result is of a different kind than the previous ones. However, the proof requires the same
tools as before.

Theorem 3.8. Let V be a Galton-Watson tree with offspring law μ satisfying hypothesis A1 and
A3. We assume that W “ Wcpμq. Then, the discrete-time VRJP pZ̃nqnPN associated with pZtqtě0

is a mixture of positive recurrent Markov chains.

3.3 Background

3.3.1 Marginals and conditional laws of the β-potential

The law νWV introduced in section 3.1 was originally defined on finite graphs in [153] with
general weights. More precisely, on a finite set S, we can define a β-potential with some law ν̃P,ηS

for every pηiqiPS P R
S` and every P “ pWi,jqi,jPS2 P R

S2

` . One can remark that the weights in the
matrix P are not assumed to be constants anymore. Moreover we allow loops, that is, Wi,i can
be non-zero for every i P S. The term η is a boundary term which represents the weights of some
edges relating S to some virtual vertices which are out of S. The probability measure ν̃P,ηS is
defined in the following way : by Lemma 4 in [154] the function

β ÞÑ 1tHpSq
β ą 0u

ˆ
2

π

˙|S|{2
e´ 1

2
x1,HpSq

β 1y´ 1
2

xη,pHpSq
β q´1ηy`xη,1y 1b

detH
pSq
β

(3.5)
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is a density. HpSq
β is a matrix on S ˆ S defined by

H
pSq
β pi, jq “ 2βi1ti “ ju ´ Wi,j1ti „ ju

and 1 stands for the vector p1, ¨ ¨ ¨ , 1q in R
S in the expression (3.5). Then, we can define a

probability measure with the density (3.5) and we denote it by ν̃P,ηS pdβq. Besides, the Laplace
transform of ν̃P,ηS can be computed and it is very similar to the Laplace transform of νWV . Indeed,
for any λ P R

S`,ż
e´xλ,βyν̃P,ηS pdβq “ e´xη,?λ`1´1y´ 1

2

ř
i„j Wi,jp?p1`λiqp1`λjq´1q ź

iPS
p1 ` λiq´1{2

where
?
1 ` λ is the vector p?

1 ` λiqiPS . Further, the family of distributions of the form ν̃P,ηS

have a very useful behaviour regarding its marginals and conditional laws. Indeed, marginals and
conditional laws are still of the form ν̃P,ηS . The following lemma gives a formula for the law of the
marginals and the conditional laws :

Lemma C (Lemma 5 in [154]). Let S be a finite set. Let U Ă S be a subset of S. Let pηiqiPS P R
S`

and P “ pWi,jqi,jPS2 P R
S2

` . Under ν̃P,ηS ,

(i) βU has law ν̃
PU,U ,η̂
U , where for every i P U , η̂i “ ηi ` ř

jPUc
Wi,j.

(ii) Conditionally on βU , βUc has distribution ν̃P̌ ,η̌
Uc where P̌ and η̌ are defined in the following

way : For every pi, jq P U c ˆ U c,

P̌ pi, jq “ W̌i,j “ Wi,j `
ÿ

k„i,kPU

ÿ
l„j,lPU

Wi,kWj,lpHβq´1
U,U pk, lq.

For every i P U c,
η̌i “ ηi `

ÿ
k„i,kPU

ÿ
lPU

Wi,kpHβq´1
U,U pk, lqηl.

In [154], the infinite potential νWV is defined thanks to a sequence of potentials of the form
ν̃P,ηVn

on the exhausting sequence pVnqnPN which is shown to be compatible. More, precisely, the
restrictions of νWV are given by the following lemma :

Lemma D. Let n P N
˚. Let pβiqiPV be a random potential following νWV . Then pβiqiPVn is

distributed as ν̃P̂
pnq,η̂pnq

Vn
where

— For every i, j P Vn, P̂ pnqpi, jq “ W1ti „ ju.
— For every i P Vn, η̂

pnq
i “ ř

j„i,jRVn
W .

3.3.2 Warm-up about the VRJP

Recall that pZtqtě0 :“ pYD´1ptqqtě0 is a time-changed version of the VRJP with constant
weights W on the graph V . As explained before, pZtqtě0 is easier to analyse than pYtqtě0 because
it is a mixture of Markov processes. In the particular case of finite graphs, Sabot and Tarrès gave
an explicit description of the density of a random field associated with the environment.

Proposition E (Theorem 2 in [152]). Let pV,Eq be a finite graph. Let W ą 0. Then, the
time-changed VRJP pZtqtě0 on V with constant weights W ą 0 starting from i0 P V is a mixture
of Markov processes. Moreover, it jumps from i to j at rate WeUj´Ui where the field pUiqiPV has
the following density on the set tpuiqiPV P R

V , ui0 “ 0u :

1?
2π

|V |´1
exp

¨̋
´

ÿ
iPV

ui ´ W
ÿ

ti,juPE
ppcoshpui ´ ujq ´ 1q‚̨a

DpW,uq
ź

iPV zti0u
dui

with DpW,uq “ ř
TPT

ś
ti,juPT Weui`uj where T is the set of spanning trees of pV,Eq.
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This density was originally studied in [54] in order to study random band matrices. Remark
that the distribution of U does not have any obvious property of compatibility. Therefore, this was
not possible to extend the field U on a general infinite graph. However, in [153], Sabot, Tarrès and
Zeng introduced a smart change of variable which relates the field U and the β-potential. More
precisely, if pV,Eq is a finite graph, then the field U of Proposition E rooted at i0 is distributed
as pGpV qpi0, iq{GpV qpi0, i0qqiPV where GpV q is the inverse of HpV q

β which is the operator associated
with the potential β with distribution ν̃P,0V where P pi, jq “ W1ti „ ju. In order to have a
representation of the environment of the VRJP on infinite graph, Sabot and Zeng extended the
β-potential on infinite graphs thanks to the measure νWV and they proved the following result :

Proposition F (Theorem 1 in [154]). If V is Z
d with d ě 1 or an infinite tree, then the time-

changed VRJP pZtqtě0 on V with constant weights W ą 0 is a mixture of Markov processes.
Moreover, the associated random environment can be described in the following way : if the VRJP
started from i0, it jumps from i to j at rate p1{2qWGpi0, jq{Gpi0, iq where for every i, j P V ,

Gpi, jq “ Ĝpi, jq ` 1

2γ
ψpiqψpjq

where γ is a random variable with law Γp1{2, 1q which is independent from the the β-potential
with distribution νWV .

In [77], Gerard proved that, in the case of trees, in the transient phase, there are infinitely
many different representations of the environment of the VRJP. In this paper, we will often use
a representation which is not the same as the one which is given in Proposition F. Now, let us
describe this other representation.

3.3.3 Specificities of the tree

In the density given in Proposition E, if the graph is a tree, one can observe that the random
variables Ui ´U 
i are i.i.d and distributed as the logarithm of an Inverse Gaussian random variable.
It comes from the fact that the determinant term in the density becomes a product. Therefore,
when the graph pV,Eq is an infinite tree with a root o, this is natural to define an infinite version
of the field U in the following way : for every i P V ,

eUi :“
ź

oăuďi

Au

where pAiqiPV ztou is a family of independent Inverse Gaussian random variables with parameters
p1,W q. This representation implies directly the following result :

Proposition G (Theorem 3 in [40]). If V is a tree with root o, the discrete-time VRJP pZ̃nqnPN
which is associated with pZtqtě0 is a random walk in random environment whose random conduc-
tances are given by

cpi, �iq “ WeUi`U �i “ WAi

ź
oăuď 
i

A2
u

for every i P V ztou.
This representation of the environment of the VRJP on trees is particularly useful because

the conductances are almost products of i.i.d random variables along a branch of the tree. This
situation is very close from branching random walks. This observation is crucial for the proofs in
this paper. In particular, thanks to this representation and its link with branching random walks,
this is much easier to compute the critical point on Galton-Watson trees.
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Proposition H (Theorem 1 in [40] or Theorem 1 in [15]). Let V be a Galton-Watson tree
with offspring law μ satisfying hypothesis A1. Then the VRJP on V with constant weights W is
recurrent if and only if

mQpW, 1{2q ď 1

where m is the mean of μ. In particular, the critical point Wcpμq is the only solution of the
equation

mQpW, 1{2q “ 1.

Now, remind that our goal is to study the martingale pψnpoqqnPN. This martingale is defined
through the potential β. If V is an infinite tree with a special vertex o called the root, we can
couple the field U and the potential β in the following way : for every i P V , we define

β̃i :“ W

2

ÿ
i„j

eUj´Ui “ W

2

˜ÿ

u“i

Au ` 1ti ‰ ou 1

Ai

¸
. (3.6)

For every i P V , β̃i can be interpreted as the total jump rate of the VRJP at i. The potential β̃ is
very important for our purposes. One reason for that is Lemma 3.15 which makes a link between
the effective resistance associated with the VRJP and some quantity defined through pβ̃iqiPV .
Now, let γ be a Gamma distribution with parameter p1{2, 1q which is independent of pAiqiPV ztou.
Then, let us define

β “ β̃ ` 1t¨ “ ouγ. (3.7)

Lemma 3.9. Let us assume that V is a tree. Let W ą 0. Then, the potential pβiqiPV defined by
(3.7) has law νWV .

Proof of Lemma 3.9.
This is a direct consequence of Theorem 3 in [40] and Corollary 2 in [153].

From now on, when we work on a tree V , we always assume that, under νWV , the potential
pβiqiPV is defined by (3.6) and (3.7). This coupling between the field U and the potential pβiqiPV
is very important in order to relate our questions regarding the martingale pψnpoqqnPN to tractable
questions about branching random walks. This allows us to apply techniques coming from the
area of branching random walks in order to study (ψnpoqqnPN.

3.3.4 β-potential and path expansions

In this subsection, we explain how Ĝ can be interpreted as a sum over a set of paths. This
representation of Ĝ will be very useful in the sequel of this paper. A path from i to j in the graph
pV,Eq is a finite sequence σ “ pσ0, ¨ ¨ ¨ , σmq in V such that σ0 “ i and σm “ j and σk „ σk`1

for every k P t0, ¨ ¨ ¨m ´ 1u. Let us denote by P V
i,j the set of paths from i to j in V . Let us also

introduce P
V
i,j the set of paths from i to j which never hit j before the end of the path. More

precisely, it is the set of paths σ “ pσ0, ¨ ¨ ¨ , σmq such that σ0 “ i, σm “ j and σk ‰ j for every
k P t0, ¨ ¨ ¨ ,m ´ 1u. For any path σ “ pσ0, ¨ ¨ ¨ , σmq, we denote its length by |σ| “ m. For any
path σ in V and for any β P DW

V , let us write,

p2βqσ “
|σ|ź
k“0

p2βσkq, p2βqσ́ “
|σ|´1ź
k“0

p2βσkq.

Then, the following lemma stems directly from Proposition 6 in [154] :
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Lemma I (Proposition 6 in [154]). Let pV,Eq be any locally finite graph. Let W ą 0. Let i, j P V .
For any β P DW

V ,

Ĝpi, jq “
ÿ

σPPVi,j

W |σ|
p2βqσ ,

Ĝpi, jq
Ĝpi, iq “

ÿ
σPPVj,i

W |σ|

p2βqσ́ .

In the special case of trees, we can mix this property with the construction given in subsection
3.3.3 in order to obtain the following lemma.

Lemma 3.10. Let V be a Galton-Watson tree with a root o and an offspring law μ satisfying
hypothesis A1. Let us assume that W ď Wcpμq. Then, Pμ,W -a.s, for every i P V ,

Ĝpo, iq
Ĝpo, oq “ eUi .

Proof of Lemma 3.10.
Let us assume that the β-potential is constructed as in subsection 3.3.3. Let us consider the
Markov chain pZ̃kqkPN˚ on V with conductances given by

cpi, �iq “ WA´1
i

ź
oăuďi

A2
u “ WeUi`U �i

for every i P V . Actually, by Proposition G, Z̃ is the discrete-time process associated with the
VRJP. Let us remark that for every i P V ,

πi :“
ÿ
j„i

cpi, jq “ e2Ui2β̃i.

We denote by Pc,i the probability measure associated with this Markov chain Z̃ starting from i
with random conductances c. Let us introduce the stopping time

τo “ inf tn P N, Z̃n “ ou.
If σ is a path, we write tZ̃ „ σu to mean that Z̃0 “ σ0, Z̃1 “ σ1, etc. Then, it holds that Pμ,W -a.s,
for every i P V ,

Pc,ipτo ă `8q “
ÿ

σPPVi,o
Pc,ipZ̃ „ σq

“
ÿ

σPPVi,o

|σ|´1ź
k“0

WeUσk`Uσk`1

πσk

“
ÿ

σPPVi,o

|σ|´1ź
k“0

WeUσk`1
´Uσk

2β̃σk
. (3.8)

There is a telescoping product in (3.8). Consequently, we deduce that Pμ,W -a.s, for every i P V ,

Pc,ipτo ă `8q “ e´Ui
ÿ

σPPVi,o

|σ|´1ź
k“0

W

2β̃σk
. (3.9)

In identity (3.9), remark that σk is always different from o. Therefore, β̃ can be replaced by β
and we obtain that Pμ,W -a.s, for every i P V ,

Pc,ipτo ă `8q “ e´Ui
ÿ

σPPVi,o

|σ|´1ź
k“0

W

2βσk
. (3.10)
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In (3.10), one can observe the same quantity as in Lemma I. Therefore, Pμ,W -a.s, for every i P V ,

Pc,ipτo ă `8q “ e´Ui
Ĝpo, iq
Ĝpo, oq . (3.11)

However, we assumed W ď Wcpμq. Thus, by Propositions G and B, we know that Pc,ipτo ă
`8q “ 1, Pμ,W -a.s. Together with (3.11), this concludes the proof.

3.3.5 Warm-up about branching random walks

In this subsection, we recall the most important facts about one-dimensionnal branching
random walks. Indeed, it is a very important tool in this article. One can refer to [158] for
more information on this topic. We consider a point process L :“ t�i, 1 ď i ď Nu such that
N takes values in N and each point �i is in R. At time 0, there is a unique ancestor called
the root o. We define Spoq “ 0. At time n, each individual u generates independently a point
process Lu :“ t�ui , 1 ď i ď Nuu with the same law as L. Each point in Lu stands for a child of u.
The positions of the children of u are given by the point process t�ui ` Spuq, 1 ď i ď Nuu. The
children of individuals of the n-th generation form the n ` 1-th generation. In this way, we get an
underlying genealogical Galton-Watson tree V with o as a root. For every u P V , we denote the
position of u by Spuq. The set tpu, Spuqq, u P V u is called a branching random walk. Recall that
|u| stands for the generation of u P V .

Throughout this subsection, we assume there exists δ ą 0 such that

E

»—–
¨̋ ÿ

|u|“1

1‚̨1`δ
fiffifl ă `8. (3.12)

Moreover, we assume that for every t P R,

E

»– ÿ
|u|“1

etSpuq
fifl ă `8. (3.13)

Let us introduce the Laplace transform of L which is defined as

f : R Ñ R

t ÞÑ ln

˜
E

« ř
|u|“1

e´tSpuq
ff¸

.

Let us also assume that

fp0q ą 0, fp1q “ f 1p1q “ 0. (3.14)

For every n P N and for every β ą 1, let us define,

Wn :“
ÿ

|u|“n

e´Spuq, Wn,β “
ÿ

|u|“n

e´βSpuq.

In [86], Hu and Shi proved the following results :

Proposition J (Theorem 1.4 of [86]). Assume hypotheses (3.12), (3.13) and (3.14) and let β ą 1.
Conditionally on the system’s survival, we have

lim sup
nÑ`8

ln pWn,βq
lnpnq “ ´β

2
a.s, (3.15)

lim inf
nÑ`8

ln pWn,βq
lnpnq “ ´3β

2
a.s. (3.16)
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Proposition K (Theorem 1.6 in [86]). Assume hypotheses (3.12), (3.13) and (3.14) and let
β ą 1. For any r Ps0, 1{βr,

E
“
Wr

n,β

‰ “ n´3rβ{2`op1q.

In many situations, hypothesis (3.14) is not satisfied. However, in most cases, we can transform
the branching random walk in order to be reduced to hypothesis (3.14). Indeed, if there exists
t˚ ą 0 such that t˚f 1pt˚q “ fpt˚q, then pS̃puqquPV :“ pt˚Spuq ` fpt˚q|u|quPV is a branching
random walk satisfying (3.14). However, one still has to check that such a t˚ ą 0 does exist.

Proposition L (Proposition 7.2, Chapter 3 in [89]). Let us assume that for every M P R,

PpLps ´ 8,´M sq ‰ Hq ą 0.

Then, there exists t˚ ą 0 such that t˚f 1pt˚q “ fpt˚q.
Remark 3.4. Be careful when you look at reference [89]. The result is wrongly stated but the
proof (of the corrected statement) is correct.

Moreover, this is possible to know the sign of fpt˚q and whether t˚ is unique or not.

Proposition 3.11. Let us assume that fp0q ą 0 and that there exists t˚ ą 0 such that t˚f 1pt˚q “
fpt˚q. We assume also that f is strictly convex and that there exists a point tmin such that f
is strictly decreasing on r0, tmins and strictly increasing on rtmin,`8r. Then t˚ is the unique
solution in R

˚̀ of the equation tf 1ptq “ fptq and

sgnpfpt˚qq “ sgnpfptminqq.
Moreover, t˚ ă tmin if fptminq ă 0 and t˚ ą tmin if fptminq ą 0.

Proof of Proposition 3.11.
Let us introduce the function Φ : t ÞÑ tf 1ptq ´ fptq. As f is stricly convex, for every t P R

˚̀ ,
Φ1ptq “ tf2ptq ą 0. Therefore, Φ is stricly increasing on R`. Thus, t˚ must be unique. Moreover,
Φptminq “ tf 1ptminq ´ fptminq “ ´fptminq. Thus, if fptminq ă 0, then Φptminq ą 0. Furthermore,
Φp0q “ ´fp0q ă 0. Therefore, as t˚ is the unique zero of Φ, t˚ must be in s0, tminr. In particular,
fpt˚q “ t˚f 1pt˚q ă 0 because f is strictly decreasing on r0, tmins. The case where fptminq ą 0 can
be treated in the same way.

3.4 Preliminary lemmas

3.4.1 ψnpoq as a mixture of Inverse Gaussian distributions and proof of Theo-
rem 3.1

In this subsection, V is a deterministic countable graph with constant weights W ą 0. For every
n P N, we introduce the sigma-field Gn :“ σ

`pβiqiPVnztou
˘
. (Recall that Vn “ tx P V, dpo, xq ď nu.)

Moreover, for every n P N, let us introduce

Dn :“ 1

2

ÿ
o„j

W
Ĝnpo, jq
Ĝnpo, oq .

Then, it is remarkable that ψnpoq has an Inverse Gaussian distribution conditionally on Gn.

Lemma 3.12. For every n P N, under νWV ,

(i)

Lpβo|Gnq “ Dn ` 1

2 ˆ IG
´
Ĝnpo,oq
ψnpoq , 1

¯
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(ii)

L pψnpoq|Gnq “ IG

˜
1,

ψnpoq
Ĝnpo, oq

¸
where we recall that IGpa, λq stands for an Inverse Gaussian distribution with parameters a and
λ.

The computation achieved in the following proof is basically the same as Proposition 3.4 in
[43] but we use it in a different way.

Proof of Lemma 3.12.
By Lemma D, pβiqiPVn has law ν̃P̂

pnq,η̂pnq
Vn

where

η̂
pnq
i “

ÿ
jPV cn ,i„j

W

for every i P Vn and
P̂ pnqpi, jq “ W1ti „ ju

for every i, j P Vn. Further, by Lemma C, the law of βo conditionally on Gn is ν̃
Wo,o,η̌
tou with :

— Wo,o “ ř
o„j

ř
o„k

W 2ĜVnztoupj, kq where ĜVnztou is the inverse of pHβqVnztou,Vnztou.

— η̌ “ ř
o„j

ř
kPVnztou

WĜVnztoupj, kqη̂pnq
k .

Nevertheless, reasonning on path-expansions (see Lemma I), one remarks that for every k P Vnztou,ÿ
o„j

WĜVnztoupj, kq “ Ĝnpo, kq
Ĝnpo, oq . (3.17)

Consequently, by definition of Dn and ψnpoq, it holds that
— Wo,o “ ř

o„k

W Ĝnpo,kq
Ĝnpo,oq “ 2Dn.

— η̌ “ ř
kPVnztou

Ĝnpo,kq
Ĝnpo,oq η̂

pnq
k “ 1

Ĝnpo,oq ˆ ř
kPBVn

Ĝnpo, kqη̂pnq
k “ ψnpoq

Ĝnpo,oq .

Moreover Dn and ψnpoq
Ĝnpo,oq are Gn measurable. Indeed

Dn “ 1

2

ÿ
o„k

W
Ĝnpo, kq
Ĝnpo, oq and

ψnpoq
Ĝnpo, oq “

ÿ
kPBVn

Ĝnpo, kqη̂pnq
k

Ĝnpo, oq .

Further, for every k P Vn, Ĝnpo,kq
Ĝnpo,oq does not depend on βo by (3.17) and, thus, it is Gn measurable.

Therefore, by (3.5), conditionally on Gn, the law of βo is given by the density

1tβ ą Dnu 1a
πpβ ´ Dnqe

´pβ´Dnqe´ 1
4pβ´Dnq

ψnpoq2
Ĝnpo,oq2 e

ψnpoq
Ĝnpo,oq .

We can recognise the reciprocal of an Inverse Gaussian distribution. More precisely,

L pβo|Gnq “ Dn ` 1

2 ˆ IG
´
Ĝnpo,oq
ψnpoq , 1

¯ .

Besides, as Ĝn is the inverse of pHβqVn,Vn , βo ´ Dn “ 1
2Ĝnpo,oq . Consequently, as Dn is Gn

measurable, this yields

L
´
Ĝnpo, oq|Gn

¯
“ IG

˜
Ĝnpo, oq
ψnpoq , 1

¸
.
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Moreover for every positive numbers pt, a, bq, one can check that tIGpa, bq law“ IGpta, tbq. Further-
more Ĝnpo,oq

ψnpoq is Gn measurable. Thus, it holds that

L pψnpoq|Gnq “ IG

˜
1,

ψnpoq
Ĝnpo, oq

¸
.

Moreover, we can pass to the limit in Lemma 3.12. Let us define G8 :“ σ
´

pβiqiPZdztou
¯
. Let

us recall that pĜnpi, jqqnPN converges toward some finite limit Ĝpi, jq for every pi, jq P V 2. Then,
we introduce D “ 1

2

ř
o„j

W Ĝpo,jq
Ĝpo,oq .

Lemma 3.13. We assume that ψpoq ą 0, νWV -a.s. Then, under νWV ,

(i)

L pβo|G8q “ D ` 1

2 ˆ IG
´
Ĝpo,oq
ψpoq , 1

¯ .

(ii)

L pψpoq|G8q “ IG

˜
1,

ψpoq
Ĝpo, oq

¸
.

Proof of Lemma 3.13.
Let Λ be a finite subset of V including o. Let us define Λ̃ “ Λztou. Let A be a borelian set of RΛ̃.
Let F be a bounded continuous function of Rd. Then, by Lemma 3.12, for every n large enough,

EνWV

“
F pβoq1tpβiqiPΛ̃ P Au‰

“ EνWV

«ż `8

0
F pβ ` Dnq 1?

πβ
e

´ 1
4β

´
ψnpoq
Ĝnpo,oq ´2β

¯2

dβ1tpβiqiPΛ̃ P Au
ff
.

(3.18)

Moreover, the function

px, yq ÞÑ
ż `8

0
F pβ ` xq 1?

πβ
e

´ 1
4β

py´2βq2
dβ

is clearly continuous and uniformly bounded on pR˚̀ q2. Therefore, as˜
Dn,

ψnpoq
Ĝnpo, oq

¸
a.sÝÝÝÝÑ

nÑ`8

˜
D,

ψpoq
Ĝpo, oq

¸
,

by means of the dominated convergence theorem, we can take the limit in (3.18) which implies
the first point of our lemma. Then, the second point of Lemma 3.13 stems from the first point,
exactly in the same way as in the proof of Lemma 3.12.

Now we are able to prove Theorem 3.1.

Proof of Theorem 3.1.
By Lemma 3.13, we know that

L pψpoq|G8q “ IG

˜
1,

ψpoq
Ĝpo, oq

¸
.
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In particular,

EνWV
rψpoqs “ EνWV

«
IG

˜
1,

ψpoq
Ĝpo, oq

¸ff
“ 1 (3.19)

Thus for every n P N
˚, EνWV

rψnpoqs “ EνWV
rψpoqs “ 1. Moreover, ψnpoq a.sÝÝÝÝÑ

nÑ`8 ψpoq. Thus, by
Scheffé’s lemma,

ψnpoq L1ÝÝÝÝÑ
nÑ`8 ψpoq.

Therefore pψnpoqqnPN is uniformly integrable.

Besides, Lemma 3.12 implies the following useful result :

Lemma 3.14. Let p P R. For every n P N,

EνWV
rψnpoqps “ EνWV

“
ψnpoq1´p

‰
.

Proof of Lemma 3.14.
Let us define Yn “ ψnpoq

Ĝnpo,oq . Then, by Lemma 3.12,

EνWV
rψnpoqps “ EνWV

„ż
Y 1{2
n p2πq´1{2xp´3{2 exp

ˆ
´ Ynpx ´ 1q2{p2xq

˙
dx

j
“ EνWV

„ż
Y 1{2
n p2πq´1{2x´p`3{2x´2 exp

ˆ
´ Ynxp1{x ´ 1q2{2

˙
dx

j
“ EνWV

„ż
Y 1{2
n p2πq´1{2xp´p`1q´3{2 exp

ˆ
´ Ynpx ´ 1q2{p2xq

˙
dx

j
“ EνWV

“
ψnpoq1´p

‰
.

3.4.2 Resistance formula on a tree

In this subsection we assume that V is a tree. Let n P N. Let us define the matrix H̃n on
Vn ˆ Vn such that for every pi, jq P Vn ˆ Vn, H̃npi, jq “ 2β̃i1ti “ ju ´ W1ti „ ju. We assume
that the potentials β̃ and β are constructed as in (3.6) and (3.7). We also introduce D

pnq
U which

is the diagonal matrix on Vn ˆ Vn with diagonal entries D
pnq
U pi, iq “ eUi for every i P Vn. We can

observe that D
pnq
U H̃nD

pnq
U “ Mn where for every pi, jq P Vn ˆ Vn,

Mnpi, jq “
ÿ
k„i

WeUi`Uk1ti “ ju ´ WeUi`Uj1ti „ ju.

Mn is almost a conductance matrix with conductances WeUi`Uj between two neighbouring
vertices i and j. However, if i P BVn,

Mnpi, iq “
ÿ
k„i

WeUi`Uk ą
ÿ

k„i,kPVn
WeUi`Uk .

Therefore, Mn is strictly larger than a conductance matrix (for the order between symmetric
matrices). Moreover conductance matrices are non-negative. Thus, Mn and H̃n are symmetric
positive definite matrices. Then, we are allowed to define the inverse G̃n of H̃n. Moreover, for
every n P N, we construct a wired version pṼn, Ẽnq of pVn, Enq in the following way :"

Ṽn “ Vn Y tδnu
Ẽn “ En Y tpδn, iq, i P BVnu
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where δn is a new vertex. For every pi, jq P E, recall from the notation of Proposition G that
cpi, jq “ WeUi`Uj . The conductances c are the environment of the VRJP. Now, let us introduce
a family of conductances cn on Ẽn.# @pi, jq P En, cnpi, jq “ cpi, jq

@i P BVn, cnpδn, iq “ ř
j„i,jPV cn

cpi, jq

We denote by Rpo ÐÑ δnq the effective resistance between o and δn in pṼn, Ẽn, cnq. Then, we
have the following key identity :

Lemma 3.15. If V is a tree, then, for every n P N
˚, G̃npo, oq “ Rpo ÐÑ δnq.

Proof of Lemma 3.15.
For every i P Vn, one defines hpiq “ G̃npo,iqe´Ui

G̃npo,oq and hpδnq “ 0. We are going to prove that h is
harmonic everywhere excepted at o and δn where hpoq “ 1 and hpδnq “ 0. Let i P Vnztou. Then,
it holds that,

ÿ
i„j

cnpi, jqhpjq “
ÿ

i„j,jPVn
WeUi`Uj ˆ G̃npo, jqe´Uj

G̃npo, oq

“ eUi

G̃npo, oq
ÿ

i„j,jPVn
WG̃npo, jq. (3.20)

By definition G̃n “ H̃´1
n . Together with (3.20), this yields

ÿ
i„j

cnpi, jqhpjq “ eUi

G̃npo, oq ˆ 2β̃iG̃npo, iq. (3.21)

Then, by definition of Ui and β̃i, we infer that

ÿ
i„j

cnpi, jqhpjq “ G̃npo, iq
G̃npo, oq ˆ

ÿ
i„j

WeUj

“ G̃npo, iqe´Ui

G̃npo, oq ˆ
˜
cnpi, δnq `

ÿ
i„j,jPVn

cnpi, jq
¸

“ hpiq ˆ
ÿ
i„j

cnpi, jq.

Consequently, h is harmonic. Therefore, by identity (2.3) in [116],

Rpo ÐÑ δnq “ 1ř
o„j

cnpo, jqp1 ´ hpjqq . (3.22)

Besides, it holds that,

ÿ
o„j

cnpo, jqp1 ´ hpjqq “
ÿ
o„j

WeUj ˆ
˜
1 ´ G̃npo, jqe´Uj

G̃npo, oq

¸
“ G̃npo, oq´1

ÿ
o„j

W
´
eUj G̃npo, oq ´ G̃npo, jq

¯
(3.23)
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However G̃n is the inverse of H̃n. Therefore,
ř
o„j

WG̃npo, jq “ ´1 ` 2β̃0G̃npo, oq. Moreover,ř
o„j

WeUj “ 2β̃0. Together with (3.23), this yields

ÿ
o„j

cnpo, jqp1 ´ hpjqq “ G̃npo, oq´1
´
2β̃0G̃npo, oq ´

´
´1 ` 2β̃0G̃np0, 0q

¯¯
“ G̃npo, oq´1. (3.24)

Combining (3.22) and (3.24) concludes the proof.

By means of Lemma 3.15, one can prove the following lemma which shall be useful later in
this paper.

Lemma 3.16. Let V be a Galton-Watson tree whose offspring law satisfies hypothesis A1.

(i) @W Ps0,Wcpμqs, lim
nÑ`8G̃npo, oq “ `8, Pμ,W ´ a.s.

(ii) @W PsWcpμq,`8r, lim
nÑ`8G̃npo, oq :“ G̃po, oq ă `8, Pμ,W ´ a.s.

Proof of Lemma 3.16.
By Propositions G and H, W ď Wcpμq if and only if the random walk with conductances
pci,jqpi,jqPE is recurrent almost surely. By Theorem 2.3 in [116], this is equivalent to say that

lim
nÑ`8 Rpo ÐÑ δnq “ `8.

Therefore, Lemma 3.15 concludes the proof.

3.4.3 Burkholder-Davis-Gundy inequality

As pψnpoqqnPN is a martingale, there is a relation between its moments and the moments of
its bracket pĜnpo, oqqnPN under mild assumptions. This relation is known as the BDG inequality.
This inequality is not always true for discrete martingales. (See [34].) However, this is always true
for continuous martingales. Fortunately, by [155], for every n P N, ψnpoq can be obtained as the
limit of some continuous martingale. That is why we can prove the following lemma :

Lemma 3.17. Let V be a locally finite graph. Let W ą 0. Let p ą 1. Then, there exist positive
constants C1,p and C2,p which do not depend on V and W such that for every n P N,

C1,pEνWV

”
Ĝnpo, oqp{2

ı
ď EνWV

r|ψnpoq ´ 1|ps ď C2,pEνWV

”
Ĝnpo, oqp{2

ı
.

Proof of Lemma 3.17.
By [155], for every n P N, there exists a continuous non-negative martingale pψnpo, tqqtě0 such
that,

ψnpo, tq a.sÝÝÝÝÑ
tÑ`8 ψnpoq and xψnpo, tq, ψnpo, tqy a.sÝÝÝÝÑ

tÑ`8 Ĝnpo, oq (3.25)

where x¨ ¨ ¨ , ¨ ¨ ¨ y is the bracket for semimartingales. For t ě 0, let us introduce ψn̊po, tq “
sup
sďt

|ψnpo, sq ´ 1|. Then, if p ą 1, by BDG inequality for continuous martingales (see Theorem

4.1 in [148]), there exist positive constants κ1,p and κ2,p such that for every n P N, for every t ě 0,

κ1,pEνWV

”
xψnpo, tq, ψnpo, tqyp{2

ı
ď EνWV

rψn̊po, tqps ď κ2,pEνWV

”
xψnpo, tq, ψnpo, tqyp{2

ı
. (3.26)
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As p ą 1, by Doob’s martingale inequality, there exist C1,p ą 0 and C2,p ą 0 such that for every
n P N, for every t ě 0,

C1,pEνWV

”
xψnpo, tq, ψnpo, tqyp{2

ı
ď EνWV

r|ψnpo, tq ´ 1|ps ď C2,pEνWV

”
xψnpo, tq, ψnpo, tqyp{2

ı
.

(3.27)

Let us define ψn̊poq as the increasing limit of ψn̊po, tq when t goes toward infinity. By monotone
convergence theorem in (3.26), for every n P N,

EνWV
rψn̊poqps ď κ2,pEνWV

”
Ĝnpo, oqp

ı
ă `8. (3.28)

Moreover, for any fixed value of n, p|ψnpo, tq ´ 1|pqtě0 is dominated by ψn̊poqp which is integrable
by (3.28). Therefore, by dominated convergence theorem, we can make t go to infinity in (3.27)
which concludes the proof.

3.4.4 Link between Ĝn and G̃n

Let us recall that pĜnpo, oqqnPN is the bracket of the martingale pψnpoqqnPN whose moments
we are seeking an upper bound for. Therefore, it would be very interesting for our purpose to be
able to control the moments of Ĝnpo, oq for n P N. The following lemma shows there is a relation
between the moments of Ĝnpo, oq and the moments of G̃npo, oq for n P N. Remind that G̃npo, oq
has been defined in subsection 3.4.2. For every x ą 0, let us define

Fppxq “
ż `8

0

xp

p1 ` 2yxqp
e´y

?
πy

dy.

Lemma 3.18. We assume that V is a deterministic graph. Then, for every n P N
˚ and for every

p ą 1{2,
EνWV

”
Ĝnpo, oqp

ı
“ EνWV

”
FppG̃npo, oqq

ı
.

Moreover,

Fppxq „
xÑ`8 apx

p´1{2 with ap “
ż `8

0

dy

pπyq1{2p1 ` 2yqp .

Proof of Lemma 3.18.
Let n P N. Recall that pHβqVn,Vn “ H̃n ` 2γEo,o where Eo,o is the matrix which has only null
coefficients, excepted at po, oq where it has coefficient 1. Then, by Cramer’s formula, we have the
following key-equality :

Ĝnpo, oq “ G̃npo, oq
1 ` 2γG̃npo, oq . (3.29)

Remind that γ is a Gamma random variable with parameters (1/2,1) which is independent of β̃.
Together with (3.29), this implies directly the link between the moments of Ĝnpo, oq and G̃npo, oq.
We only have to look at the asymptotic behaviour of Fp. By a change of variable, for every x ą 0,

Fppxq “ xp´1{2
ż `8

0

e´y{x

p1 ` 2yqppπyq1{2dy. (3.30)

Then, by dominated convergence theorem, if p ą 1{2,ż `8

0

e´y{x

p1 ` 2yqppπyq1{2dy ÝÝÝÝÑ
xÑ`8 ap. (3.31)
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3.5 The transient phase

We are now ready to prove Theorem 3.2. Let us explain quickly the strategy of the proof.
Strategy of the proof : The idea is to find an upper bound for the moments of Ĝnpo, oq. Indeed,
it is enough for us because pĜnpo, oqqnPN is the bracket of pψnpoqqnPN. Consequently, by Lemma
3.18, this is enough to find an upper bound for G̃npo, oq which is also the effective resistance until
level n associated with the environment of the VRJP according to Lemma 3.15. Thus, we only
need to show that the global effective resistance Rpo ÐÑ 8q has moments of order p for every
p ą 0. By standard computations, the effective resistance of the VRJP on a tree satisfies the
equation in law

Rpxq “ 1ř

i“x

A2
iW

Ai`WRpiq

where the random variables Rpiq for �i “ x are i.i.d copies of Rpxq. We will analyse this equation
in law in order to bound the moments of the effective resistance.

Proof of Theorem 3.2.
Step 1 : The potential pβiqiPV on V is constructed as in (3.6). For every x P V , recall that
eUx “ ś

oăuďxAu. For every x P V , let us define the subtree V x :“ tu P V, x ď uu. Moreover, for
any neighbouring i, j P V x, let us define cxpi, jq “ WeUi`Uj´2Ux . Then, for every x P V , let Rpxq
be the electrical resistance between x and 8 in the tree V x with conductances cx. Remark that,
under Pμ,W , pRpxqqxPV is a family of identically distributed random variables. Furthermore, by
Proposition G, as W ą Wcpμq, Rpxq is finite for every x P V , Pμ,W -a.s. The figure 3.1 bellow
explains the situation from an electrical point of view.

Figure 3.1 – Electrical network on a subtree. In this situation, the vertex x has three children, u1, u2,
u3. On each edge the resistance in V x is written.

By standard computations on electrical networks we infer that for every x P V ,

Rpxq “ 1ř

i“x

A2
iW

Ai`WRpiq
.
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For sake of convenience, we define R̃pxq “ WRpxq for every x P V . Therefore, it holds that for
every x P V ,

R̃pxq “ 1ř

i“x

A2
i

Ai`R̃piq
. (3.32)

Step 2 : The following lines are inspired by the proof of Lemma 2.2 in [3]. For every n P N, the
leftest vertex in generation n of V is denoted by vn. We denote by Bpvnq the set of "brothers"
of vn. Remark that this set is possibly empty if μp1q ‰ 0. Let C ą 0. Let α ą 0. We define
cα “ 1 if α ď 1 and cα “ 2α´1 otherwise. For every n P N

˚, let us introduce the event
En “ t@k P t1, ¨ ¨ ¨ , nu,@u P Bpvkq, cα

Aαu
` cαR̃puqα

A2α
u

ą Cu. By convention we write 1tE0u :“ 1. Now,
let us prove the following key-inequality : for every n P N

˚, Pμ,W -a.s,

R̃poqα ď C
n´1ÿ
k“0

1tEku
kź

i“1

ˆ
cα
A2α

vi

˙
`

nÿ
k“1

1tEkuAα
vk

kź
i“1

ˆ
cα
A2α

vi

˙
` 1tEnu

nź
i“1

ˆ
cα
A2α

vi

˙
R̃pvnqα.

(3.33)

Let us prove it for n “ 1. By (3.32), we can observe that for every child u of o,

R̃poqα ď
˜

1

Au
` R̃puq

A2
u

¸α

ď cα
Aα

u

` cα
A2α

u

R̃puqα. (3.34)

If E1 is satisfied, then we can apply (3.34) with u “ v1 which implies

R̃poqα ď 1tE1u
ˆ

cα
Aα

v1

` cα
A2α

v1

R̃pv1qα
˙
. (3.35)

If E1 is not satisfied, then we can apply (3.34) with a brother of v1 which implies

R̃poqα ď C. (3.36)

Therefore, combining (3.35) and (3.36), we infer

R̃poqα ď C ` 1tE1u
ˆ

cα
Aα

v1

` cα
A2α

v1

R̃pv1qα
˙

(3.37)

which is inequality (3.33) with n “ 1. Remark, that the inequality (3.37) is true even if v1 is the
only child of o. The proof of (3.33) for any n is obtained by induction by iterating the inequality
(3.37). Moreover, by construction, the events˜#

@u P Bpvkq, cα
Aα

u

` cαR̃puqα
A2α

u

ą C

+¸
kPN˚

are Pμ,W -independent. In addition, the probability of each of these events is the same and it is
strictly less than 1 because R̃puq ă `8 for every u P V as W ą Wcpμq. Therefore, Pμ,W -a.s,
there exists N P N

˚ such that 1tEnu “ 0 for every n ě N . That is why we can make n go to
infinity in (3.33) which implies, Pμ,W -a.s,

R̃poqα ď C
`8ÿ
k“0

1tEku
kź

i“1

ˆ
cα
A2α

vi

˙
`

8ÿ
k“1

1tEkuAα
vk

kź
i“1

ˆ
cα
A2α

vi

˙
. (3.38)

Now, let us introduce the random set A “ ti P N
˚, Bpviq ‰ Hu and for every k P N

˚ the
random variable Γk “ |AX t1, ¨ ¨ ¨ ku|. Under GWμ, the sequence pΓkqkPN is a random walk whose
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increments are independent Bernoulli random variables with parameter 1 ´ μp1q. Further, A
can be written as tJ1 ď J2 ď J3 ď ¨ ¨ ¨ u. For every i P N

˚, there exists a brother Li of vJi . The
situation is summarized by the figure 3.2 bellow.

Figure 3.2

By construction, conditionally on the underlying Galton-Watson tree, the random variables´
1t@u P Bpvkq, cα

Aαu
` cαR̃puqα

A2α
u

ą Cu
¯
kPN˚ and pAvkqkPN˚ are mutually independent. Therefore,

together with (3.38), this implies that, GWμ-a.s,

EνWV

”
R̃poqα

ı
ď C `

ˆ
C ` QpW,´αq

QpW,´2αq
˙ `8ÿ

k“1

pcαQpW,´2αqqk
Γkź
i“1

νWV

˜
cα
Aα

Li

` cαR̃pLiqα
A2α

Li

ą C

¸
(3.39)

where we recall that QpW, tq is the moment of order t of an Inverse Gaussian random variable
with parameters p1,W q. Remark that, under GWμ, conditionally on pΓkqkPN˚ ,

pPkqkPN˚ :“
˜
νWV

˜
cα
Aα

Lk

` cαR̃pLkqα
A2α

Lk

ą C

¸¸
kPN˚

is an i.i.d sequence. Therefore, by the strong law of large numbers, GWμ-a.s,

Γkź
i“1

Pi “ exp

ˆ
pΓk ` opΓkqqEGWμ rln pP1qs

˙
.

Moreover, by the strong law of large numbers applied with pΓkqkPN˚ , GWμ-a.s,

Γkź
i“1

Pi “ exp

ˆ
p1 ´ μp1qqpk ` opkqqEGWμ rln pP1qs

˙
. (3.40)

Besides, as W ą Wcpμq, we know that R̃puq ă `8 for every u P V , Pμ,W a.s. Consequently, by
monotone convergence theorem,

´EGWμ rlnpP1qs “ ´EGWμ

«
ln

˜
νWV

˜
cα
Aα

L1

` cαR̃pL1qα
A2α

L1

ą C

¸¸ff
can be made as large as we want by making C go toward infinity. Therefore, there exists Cpαq ą 0
such that

ln pcαQpW,´2αqq ` p1 ´ μp1qqEGWμ rlnpP1qs ă 0. (3.41)
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Hence, for every α ą 0, using (3.41) and (3.40) in (3.39) with C “ Cpαq implies that, GWμ-a.s,

Iα :“ EνWV

”
R̃poqα

ı
ă `8. (3.42)

Step 3 : By (3.42), we can control any moment of R̃poq. Together with Lemma 3.15, this implies
that for every α ą 0, for every n P N

˚, GWμ-a.s,

EνWV

”
G̃npo, oqα

ı
“ EνWV

rRp0 ÐÑ δnqαs ď Wα
EνWV

”
R̃poqα

ı
“ WαIα ă `8. (3.43)

Let p ą 1. By Lemma 3.18, for every n P N
˚, GWμ-a.s,

EνWV

”
Ĝnpo, oqp{2

ı
“ EνWV

”
Fp{2pG̃npo, oqq

ı
where Fp{2pxq „ ap{2xp{2´1{2. Therefore, together with (3.43), this shows there exists positive
constants K1 and K2 such that for every n P N

˚, GWμ-a.s,

EνWV

”
Ĝnpo, oqp{2

ı
ď K1 ` K2EνWV

”
G̃npo, oqpp´1q{2

ı
ď K1 ` K2WIpp´1q{2. (3.44)

By Lemma 3.17, it implies that, GWμ-a.s,

sup
nPN˚

EνWV
rψnpoqps ă `8.

Remark 3.5. In the proof of Theorem 3.2, identity (3.32) shows that the distribution of Ĝpo, oq
is directly linked to the solution of the equation in law

R̃poq “ 1ř

i“o

A2
i

Ai`R̃piq
.

A non-trivial solution to this equation must exist in the transient phase. However, we do not know
how to express this solution with standard distributions and if it is even possible.

3.6 The subcritical phase

3.6.1 Proof of Theorem 3.3

In the study of the transient phase, we used the fact that the asymptotic behaviour of
pψnpoqqnPN is related to the effective resistance associated with the environment of the VRJP. We
will also use this crucial property in the recurrent phase. In order to study the effective resistance
of the VRJP between o and the level n, we will use techniques coming from the area of branching
random walks. Indeed the fact that the environment of the VRJP on trees can be expressed as
products of independent Inverse Gaussian random variables along branches of the tree makes our
situation very similar to branching random walks.

Proof of Theorem 3.3.
Step 1 : For every vertex x in the Galton-Watson tree V , let us define

Spxq “ ´
ÿ

oăuďx

lnpAuq.

We recall that fm,W ptq “ ln pmQpW, tqq for every t P R. fm,W is the Laplace transform associated
with the branching random walk tpx, Spxqq, x P V u. In particular, remark that tpx, Spxqq, x P V u
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satisfies (3.13). By assumption A3, it satisfies also (3.12). Remark that fm,W p0q “ lnpmq ą 0
because m ą 1 by assumption A1. Moreover, this is easy to check that fm,W is stricly convex,
strictly decreasing on r0, 1{2s and strictly increasing on r1{2,`8r. In addition, the support of
the point process L which is associated with tpx, Spxqq, x P V u is R because the support of an
Inverse Gaussian distribution is R

˚̀ . Therefore, by Lemma L and Lemma 3.11, there exists a
unique t˚pm,W q ą 0 such that

´τpm,W q :“ f 1
m,W pt˚pm,W qq “ fm,W pt˚pm,W qq

t˚pm,W q .

For every x P V , we define

S̃pxq :“ t˚pm,W qSpxq ` fm,W pt˚pm,W qq|x| “ t˚pm,W q
ˆ
Spxq ´ τpm,W q|x|

˙
.

By definition of t˚pm,W q, the branching random walk tpx, S̃pxqq, x P V u satisfies (3.14). Conse-
quently, with the branching random walk S̃, we are allowed to use the results of Hu and Shi, that
is, Propositions J and K. Moreover W ă Wcpμq. By Proposition H, this is equivalent to say that
QpW, 1{2q ă 1{m. Therefore, fm,W p1{2q ă 0. Thus, by Proposition 3.11, t˚pm,W q ă 1{2 and
τpm,W q ą 0. Now, we are ready to estimate the moments of pψnpoqqnPN. By Lemma 3.14, we
only have to control Eμ,W rψnpoqps when p ą 1 or p Ps0, τpm,W qr.
Step 2 : lower bound in (i). By Lemma 3.15, we know that for every n P N,

G̃npo, oq “ Rpo ÐÑ δnq
where Rpo ÐÑ δnq is the effective resistance between o and δn with conductances c. Recall that
if i P V ztou, then

cpi, �iq “ WA´1
i

ź
oăuďi

A2
u.

By the Nash-Williams inequality (see 2.15 in [116]), for every n P N
˚, Pμ,W -a.s,

G̃npo, oq ě 1

W
ř

|x|“n

A´1
x

ś
oăyďx

A2
y

. (3.45)

Let p ą 0. It holds that, for every n P N
˚

Eμ,W

”
G̃npo, oqp{2

ı
ě 1

W p{2Eμ,W

»—–
¨̋ ÿ

|x|“n

A´1
x

ź
oăyďx

A2
y
‚̨´p{2fiffifl

ě 1

W p{2Eμ,W

»—–min
|x|“n

Ap{2
x ˆ

¨̋ ÿ
|x|“n

ź
oăyďx

A2
y
‚̨´p{2fiffifl

“ 1

W p{2Eμ,W

»—–min
|x|“n

Ap{2
x ˆ

¨̋ ÿ
|x|“n

e´2Spxq‚̨´p{2fiffifl
“ 1

W p{2 e
pτpm,W qn

Eμ,W

„
min
|x|“n

Ap{2
x ˆ W´p{2

n,2{t˚pm,W q

j
(3.46)

where for every β ą 1,
Wn,β “

ÿ
|x|“n

e´βS̃pxq.



3.6. The subcritical phase 115

By (3.16) in Lemma J, as 2{t˚pm,W q ą 4 ą 1, we know that, Pμ,W -a.s,

lim sup
nÑ`8

ln
`
Wn,2{t˚pm,W q

˘
lnpnq “ ´1{t˚pm,W q.

Therefore, Pμ,W -a.s,

W´p{2
n,2{t˚pm,W q ě np{p2t˚pm,W qq`op1q. (3.47)

Moreover, for every n P N
˚,

Pμ,W

ˆ
min
|x|“n

Ax ă n´2

˙
“ Pμ,W

¨̋ ď
|x|“n

tAx ă n´2u‚̨
ď EGWμ

“
Znν

W
V

`
A ă n´2

˘‰
where A has an Inverse Gaussian distribution with parameter p1,W q and Zn “ ř

|x|“n

1. In

addition, the cumulative distribution function of an Inverse Gaussian random variable decreases
exponentially fast at 0. Therefore there exists λ ą 0 such that for every n P N

˚,

Pμ,W

ˆ
min
|x|“n

Ax ă n´2

˙
ď e´λn2

EGWμ rZns

ď mne´λn2
(3.48)

which is summable. Therefore, by Borel-Cantelli lemma, Pμ,W -a.s,

min
|x|“n

Ap{2
x ě n´p`op1q. (3.49)

Consequently, using (3.49) and (3.47) and Fatou’s lemma, we infer that

Eμ,W

„
min
|x|“n

Ap{2
x ˆ W´p{2

n,2{t˚pm,W q

j
ě np{p2t˚pm,W qq´p`op1q. (3.50)

Then (3.50) and (3.46) imply that,

Eμ,W

”
G̃npo, oqp{2

ı
ě epτpm,W qn`opnq. (3.51)

Together with Lemma 3.17 and Lemma 3.18, this yields

Eμ,W

“
ψnpoq1`p

‰ ě epτpm,W qn`opnq. (3.52)

Step 3 : upper bound in (i). This part of the proof is partially inspired from [64]. For every
n P N

˚, let us denote by Cpo ÐÑ δnq the effective conductance between o and δn with respect
to conductances cn. (See subsection 3.4.2 for the definition of the conductances c and cn.) By
Lemma 3.15, for every n P N

˚,

Cpo ÐÑ δnq “ G̃npo, oq´1. (3.53)

Now, we introduce pZ̃kqkPN˚ a Markov chain on V with conductances c starting from o (which
is actually the discrete-time process associated with the VRJP). When we want to integrate
only with respect to this Markov chain, we use the notations Pc,o and Ec,o. By definition of the
effective conductance, we know that

Cpo ÐÑ δnq “ W
ÿ

i“o

Ai ˆ Pc,opτn ă τò q ě W
ÿ

i“o

Ai ˆ max
|x|“n

Pc,opτx ă τò q (3.54)
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where τn “ inftk P N, |Z̃k| “ nu, τx “ inftk P N, Z̃k “ xu and τò “ inftk P N
˚, Z̃k “ ou. For

every x P V ztou, we define x1 the unique child of o which is an ancestor of x. By standard
computations, for every n P N

˚, for every x such that |x| “ n,

W
ÿ

i“o

Ai ˆ Pc,o

`
τx ă τ`

0

˘ “
ř

i“o

AiA
´1
x1ř

oăuďx
cpu, �uq´1

ě 1ř
oăuďx

cpu, �uq´1
. (3.55)

By (3.55) and the expression of c, we infer that

W
ÿ

i“o

Ai ˆ Pc,o

`
τx ă τ`

0 q˘ ě Wř
oăuďx

Au
ś

oăvďu
A´2

v

ě Wř
oăuďx

Aue2Spuq

ě W
e´2Smpxq

n
ˆ min

|z|ďn
A´1

z (3.56)

where Smpxq “ max
oăuďx

Spuq. Therefore, combining identities (3.56), (3.54) and (3.53), we get for

every n P N
˚, Pμ,W -a.s,

G̃npo, oq ď n

W
ˆ max

|z|ďn
Az ˆ e

2 min
|x|“n

Smpxq
. (3.57)

Moreover, as τpm,W q ą 0, it holds that for every x P V ,

Smpxq “ max
oăuďx

Spuq
“ max

oăuďx
S̃puq{t˚pm,W q ` τpm,W q|u|

ď τpm,W q|x| ` p1{t˚pm,W qq max
oăuďx

S̃puq
“ τpm,W q|x| ` p1{t˚pm,W qqS̃mpxq (3.58)

where S̃mpxq “ max
oăuďx

S̃puq. Combining (3.57) and (3.58), it holds that for every n P N
˚, Pμ,W -a.s,

G̃npo, oq ď n

W
ˆ max

|z|ďn
Az ˆ e2τpm,W qn ˆ e

2{t˚pm,W q min
|x|“n

S̃mpxq
. (3.59)

Let p ą 0. By (3.59) and Cauchy-Schwarz inequality, for every n P N
˚,

Eμ,W

”
G̃npo, oqp{2

ı
ď np{2

W p{2 e
pτpm,W qn

Eμ,W

„
max
|z|ďn

Ap{2
z ˆ e

p{t˚pm,W q min
|x|“n

S̃mpxqj
ď np{2

W p{2 e
pτpm,W qn

Eμ,W

„
max
|z|ďn

Ap
z

j1{2

loooooooooomoooooooooon
paq

Eμ,W

„
e
2p{t˚pm,W q min

|x|“n
S̃mpxqj1{2

loooooooooooooooooooomoooooooooooooooooooon
pbq

. (3.60)

If we show that paq and pbq have a subexponential growth, it gives the good upper bound for
Eμ,W

”
G̃npo, oqp{2

ı
. In order to majorize paq, let us introduce a function hp on R` which is

increasing, convex, bijective and such that there exists γp ą 0 such that hppxq “ epW {4qx1{p for
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every x ą γp. Such a function does clearly exist. By Jensen’s inequality, for every n P N
˚, it holds

that

hp

ˆ
Eμ,W

„
max
|z|ďn

Ap
z

j˙
ď Eμ,W

„
max
|z|ďn

hppAp
zq

j
ď hppγpq ` Eμ,W

„
max
|z|ďn

epW {4qAz
j

ď hppγpq ` Eμ,W

»– ÿ
|z|ďn

epW {4qAz
fifl

ď hppγpq ` pm ´ 1q´1mn`1
Eμ,W

”
epW {4qA

ı
where A is an Inverse Gaussian distribution with parameters p1,W q. Remark that Eμ,W

“
epW {4qA‰ ă

`8. Thus, there exist positive constants C1 and C2 such that for every n big enough,

Eμ,W

„
max
|z|ďn

Ap
z

j
ď h´1

p pC1 ` C2m
nq

ď
ˆ

4

W
ln pC1 ` C2m

nq
˙p

. (3.61)

Consequently, paq in (3.60) has a subexponential growth. Now, let us look at pbq in (3.60). Let us
define a˚ :“ 2p{t˚pm,W q. Let ε ą 0. Then, remark that for every n P N

˚,

pbq ď ena
˚ε ` Eμ,W

„
e
a˚ min

|x|“n
max
oăuďx S̃puq

1
"
min
|x|“n

max
oăuďx

S̃puq ě εn

*j

ď ena
˚ε ` Pμ,W

ˆ
min
|x|“n

max
oăuďx

S̃puq ě εn

˙1{2

loooooooooooooooooooomoooooooooooooooooooon
pcq

Eμ,W

»– nÿ
k“1

ÿ
|x|“k

e2a
˚S̃pxq

fifl1{2

. (3.62)

However the term

Eμ,W

»– nÿ
k“1

ÿ
|x|“k

e2a
˚S̃pxq

fifl “
nÿ

k“1

Eμ,W

»– ÿ
|x|“1

e2a
˚S̃pxq

fiflk

grows exponentially fast when n goes toward infinity. Therefore we only have to prove that pcq
decreases faster than any exponential function. Let δ ą 0. The crucial point is to remark that for
every n P N

˚,

Pμ,W

ˆ
min
|x|“n

max
oăuďx

S̃puq ě εn

˙
ď Pμ,W

ˆ
max

|z|“tδnu
max
oăuďz

S̃puq ě εn{2
˙

` Pμ,W

ˆ
@z, |z| “ tδnu, min

|x|z“tp1´δqnu
max
zăuďx

S̃zpuq ` S̃pzq ě εn X S̃pzq ď εn{2
˙

where S̃zpuq “ S̃puq ´ S̃pzq. Therefore, for every n P N
˚,

Pμ,W

ˆ
min
|x|“n

max
oăuďx

S̃puq ě εn

˙
ď Pμ,W

ˆ
max

|z|“tδnu
max
oăuďz

S̃puq ě εn{2
˙

` Pμ,W

ˆ
@z, |z| “ tδnu, min

|x|z“tp1´δqnu
max
zăuďx

S̃zpuq ě εn{2
˙
.

(3.63)
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By the branching property, for every n P N
˚ and hypothesis A2,

Pμ,W

ˆ
@z, |z| “ tδnu, min

|x|z“tp1´δqnu
max
zăuďx

S̃zpuq ě εn{2
˙

ď Pμ,W

ˆ
min

|x|“tp1´δqnu
max
oăuďx

S̃puq ě εn{2
˙2tδnu

.

Therefore, using inequality (2.12) in [64], there exists η ą 0 such that for every integer n which is
large enough,

Pμ,W

ˆ
@z, |z| “ tδnu, min

|x|z“tp1´δqnu
max
zăuďx

S̃zpuq ě εn{2
˙

ď
´
1 ´ e´ηn1{3¯2tδnu

(3.64)

which decreases faster than any exponential function. Now, let t ą 0. By Markov inequality, for
every n P N

˚,

Pμ,W

ˆ
max

|z|“tδnu
max
oăuďz

S̃puq ě εn{2
˙

ď e´nεt{2
δnÿ
k“1

Eμ,W

»– ÿ
|x|“k

etS̃pxq
fifl

“ e´nεt{2
δnÿ
k“1

rptqk

where rptq “ Eμ,W

« ř
|x|“1

etS̃pxq
ff
. Consequently, there exists a constant C ą 0 such that for every

n P N
˚,

Pμ,W

ˆ
max

|z|“tδnu
max
oăuďz

S̃puq ě εn{2
˙

ď C exp pn pδ lnprptqq ´ tε{2qq . (3.65)

If we take t large enough and δ small enough, we get an exponential decay with a decreasing
rate which is as large as we want. Therefore, combining (3.65), (3.64) and (3.63), we know that
pcq in (3.62) decreases faster than any exponential function. Consequently, by (3.62), pbq has a
subexponential growth. Moreover, we also proved that paq has subexponential growth. By (3.60),
this yields

E

”
G̃npo, oqp{2

ı
ď epτpm,W qn`opnq. (3.66)

Together with Lemma 3.17 and Lemma 3.18, this yields

Eμ,W

“
ψnpoq1`p

‰ ď epτpm,W qn`opnq. (3.67)

Step 4 : upper bound in (ii). For every x P V , let us denote by νx the number of children of
x. For every n P N

˚, by definition of ψnpoq we know that

ψnpoq “ W
ÿ

|x|“n

Ĝnpo, xqνx.

Moreover, for every x P V , for every n P N
˚, Ĝnpo, xq ď Ĝpo, xq. This can be proved thanks to

path expansions. (See Lemma I.) Consequently, for every n P N
˚,

ψnpoq ď W
ÿ

|x|“n

Ĝpo, xqνx. (3.68)
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As W ă Wcpμq, by Lemma 3.10, for every n P N
˚, Pμ,W -a.s, it holds that

ψnpoq ď WĜpo, oq
ÿ

|x|“n

eUxνx

“ WĜpo, oq
ÿ

|x|“n

ź
oăuďx

Auνx. (3.69)

Together with the notation introduced in step 1 of this proof, we get that for every n P N
˚,

Pμ,W -a.s,

ψnpoq ď WĜpo, oqe´τpm,W qn ÿ
|x|“n

e´S̃pxq{t˚pm,W qνx (3.70)

By identity (3.29) and Lemma 3.16, as W ă Wcpμq, it holds that Ĝpo, oq “ 1
2γ . Together with

(3.70) this implies that for every n P N
˚, Pμ,W -a.s,

ψnpoq ď W
1

2γ
e´τpm,W qn ÿ

|x|“n

e´S̃pxq{t˚pm,W qνx. (3.71)

Nevertheless, by the construction of the β-potential introduced in subsection 3.9, we know that
γ, pS̃pxqq|x|“n and pνxq|x|“n are independent and γ has a Gamma distribution with parameters
p1{2, 1q. Consequently, for every p Ps0, t˚pm,W qr, for every n P N

˚, it holds that

Eμ,W rψnpoqps ď W pe´pτpm,W qn
ż `8

0

x´p´1{2
?
4pπ

e´xdx ˆ Eμ,W

»–¨̋ ÿ
|x|“n

e´S̃pxq{t˚pm,W qνx‚̨pfifl .

(3.72)

For every p Ps0, 1{2r, we denote

κp “ W p

ż `8

0

x´p´1{2
?
4pπ

e´xdx ă `8.

As t˚pm,W q ă 1{2 ă 1, we are allowed to use concavity in (3.72) which implies that for every
p Ps0, t˚pm,W qr, for every n P N

˚,

Eμ,W rψnpoqps ď κpe
´pτpm,W qn ˆ Eμ,W

»—–
¨̋ ÿ

|x|“n

e´S̃pxq{t˚pm,W qνx‚̨t˚pm,W qfiffifl
p{t˚pm,W q

ď κpe
´pτpm,W qn ˆ Eμ,W

»– ÿ
|x|“n

e´S̃pxqνt˚pm,W q
x

fiflp{t˚pm,W q

. (3.73)

However pS̃pxqq|x|“n and pνxq|x|“n are independent. Therefore, for every n P N
˚ and for every

p Ps0, t˚pm,W qr,

Eμ,W rψnpoqps ď κpe
´pτpm,W qn ˆ Eμ,W rWnsp{t˚pm,W q ˆ Eμ,W

”
νt

˚pm,W q
ıp{t˚pm,W q

(3.74)

where ν has distribution μ and Wn “ ř
|x|“n e

´S̃pxq. Therefore, as Wn is a martingale with mean
1, we get that for every n P N

˚ and for every p Ps0, t˚pm,W qr,

Eμ,W rψnpoqps ď κp ˆ Eμ,W

”
νt

˚pm,W q
ıp{t˚pm,W q ˆ e´pτpm,W qn

In order to conclude the proof, we need the same estimate for p Ps1 ´ t˚pm,W q, 1r. This stems
from Lemma 3.14.
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3.6.2 Proof of Theorem 3.4

First, we need the following lemma which establishes a link "in law" between ψnpoq and the
effective resistance associated with the VRJP.

Lemma 3.19. Let V be a rooted tree with root o. Let W ą 0. Then, under νWV , it holds that for
every n P N

˚,
ψnpoq2 ˆ 2γ ˆ p1 ` 2γRpo ÐÑ δnqq law“ 2Γp1{2, 1q

where γ is the Γp1{2, 1q random variable which was used to define the potential β on a tree
(see identity (3.7)) and Rpo ÐÑ δnq is the effective resistance from o to δn associated with the
conductances c defined in Proposition G.

Proof of Lemma 3.19.
Let n P N. The proof is based on a coupling with a potential on the wired graph Ṽn. (See
subsection 3.4.2 for the definition of the wired graph.) Recall that, under νWV , thanks to (3.7),
the potential β can be decomposed as β “ β̃ ` 1t¨ “ ouγ where γ and β̃ are independent. For
every i P Vn, we write η̂

pnq
i “ ř

j„i,jRVn W . Then, recall that ψnpoq “ Ĝnη̂
pnq. In particular, there

exists a deterministic function Fn from R
|Vn|`1 into R

3 such that

pψnpoq, G̃npoq, 2γq “ Fnpβ̃Vn , γq. (3.75)

Now, let us define a potential β1 on the wired graph Ṽn with distribution ν̃P̃n,0
Ṽn

where P̃n is the

adjacency matrix of the weighted graph Ṽn. We can associate a matrix Hβ1 with the potential
β1 in the usual way and the inverse of Hβ1 is denoted by G1. We define γ1 “ 1{p2G1po, oqq and
β̃1 “ β1 ´ 1t¨ “ ouγ1. By Theorem 3 in [153], γ1 is distributed as Γp1{2, 1q and is independent of
β̃1. Let us define the matrix H̃β1 in the same way as Hβ1 but we replace 2β1

o by 2β̃1
o. Moreover, we

define Ĝ1
n and G̃1

n as the inverse of pHβ1qVn,Vn and pH̃β1qVn,Vn respectively. Further, let us write
ψ1
n “ Ĝ1

nη̂
pnq. Then, by Proposition 8 in [154], it holds that

1

2γ1 “ G1po, oq “ Ĝ1
npo, oq ` G1pδn, δnqψ1

npoq2. (3.76)

The equality (3.76) can be proved by means of the results about path expansions given by Lemma
I. By (3.76), we get

ψ1
npoq2

1{p2γ1q ´ Ĝ1
npo, oq “ 1

G1pδn, δnq . (3.77)

Besides, by Cramer’s formula,

1

2γ1 ´ Ĝ1
npo, oq “ 1

2γ1 ´ G̃1
npo, oq

1 ` 2γ1G̃1
npo, oq “ 1

2γ1p1 ` 2γ1G̃1
npo, oqq .

Together with (3.77), this yields

ψ1
npoq2 ˆ 2γ1 ˆ p1 ` 2γ1G̃1

npo, oqq “ 1

G1pδn, δnq . (3.78)

Further, with the same function Fn as in (3.75), it holds that

pψ1
npoq, G̃1

npoq, 2γ1q “ Fnpβ̃1
Vn , γ

1q. (3.79)

Moreover, the joint law of pβ̃1
Vn
, γ1q is the same as the joint law of pβ̃Vn , γq. It stems from the

restriction properties in Lemma C and Lemma D. Therefore, combining this with (3.75), (3.79)
and (3.78), we obtain that

ψnpoq2 ˆ 2γ ˆ p1 ` 2γG̃npo, oqq law“ ψ1
npoq2 ˆ 2γ1 ˆ p1 ` 2γ1G̃1

npo, oqq “ 1

G1pδn, δnq .
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By Theorem 3 in [153], 1{G1pδn, δnq law“ 2Γp1{2, 1q and by Proposition 3.15, G̃npo, oq “ Rpo ÐÑ
δnq. This concludes the proof.

Now, we are ready to prove Theorem 3.4.

Proof of Theorem 3.4.
For every n P N, it holds that

ψnpoq2 “ 1

2γp1 ` 2γRp0 ÐÑ δnqq ˆ Φn (3.80)

where Φn “ ψnpoq2 ˆ 2γp1 ` 2γRpo ÐÑ δnqq. By Lemma 3.19, we know that for every n P N,
Φn

law“ 2Γp1{2, 1q. Therefore for every n P N,

Pμ,W pΦn ă 2{n4q “
ż 1{n4

0

e´y

?
πy

dy

ď 1?
π

ż 1{n4

0

dy?
y

“ 2?
πn2

which is summable. Moreover, for every n P N,

Pμ,W pΦn ą 2nq “
ż `8

n

e´y

?
πy

dy

ď 1?
πn

e´n

which is summable. Consequently, by Borel-Cantelli lemma, Pμ,W -a.s, for n large enough,

2

n4
ď Φn ď 2n. (3.81)

That is why, in order to conclude, we only have to prove that, Pμ,W -a.s,

Rpo ÐÑ δnq “ e2τpm,W qn`opnq.

Remark that the identity (3.46) is also true without the expectation and remember from Lemma
3.15 that Rpo ÐÑ δnq “ G̃np0, 0q. Therefore, for every n P N.

Rpo ÐÑ δnq ě 1

W
e2τpm,W qn ˆ min

|x|“n
Ax ˆ W´1

n,2{t˚pm,W q. (3.82)

First, min
|x|“n

Ax has at most polynomial decay Pμ,W -a.s. This can be shown exactly as in (3.49).

Furthermore, by Proposition J, W´1
n,2{t˚pm,W q has also polynomial asymptotics. Consequently, this

proves the lower bound of Rpo ÐÑ δnq. More precisely, Pμ,W almost surely,

Rpo ÐÑ δnq ě e2τpm,W qn`opnq.

Now, let us prove the upper bound. By (3.59), it holds that

Rp0 ÐÑ δnq ď n

W
ˆ max

|z|ďn
Az ˆ e2τpm,W qn ˆ e

2{t˚pm,W q min
|x|“n

S̃mpxq
. (3.83)

In the same way as in (3.49), max tAz : |z| ď nu has at most polynomial growth Pμ,W -a.s.
Moreover, by Theorem 1.4 in [64], there exists some constant c ą 0 such that min tS̃mpxq : |x| “
nu „ cn1{3

Pμ,W -a.s. This concludes the proof.
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3.6.3 Proof of Proposition 3.5

Proof of Proposition 3.5.
Let m ą 1. For every W ą 0 and for every t ą 0, let us define

F pW, tq “ lnpmQpW, tqq.
Obviously, F P C8 `

R
˚̀ ˆ R

˚̀ ˘
. We introduce another function G defined by

GpW, tq “ F pW, tq ´ t
BF
Bt pW, tq

for every pt,W q P R
˚̀ ˆ R

˚̀ . Moreover, by step 1 in the proof of Theorem 3.3, we know that for
every W ą 0, there exists a unique t˚pm,W q ą 0 such that GpW, t˚pm,W qq “ 0. Further, for
every pt,W q P R

˚̀ ˆ R
˚̀ ,

BG
Bt pW, tq “ ´t

B2F

Bt2 pW, tq “ ´t
Eμ,W

“
At

‰
Eμ,W

“
lnpAq2At

‰ ´ Eμ,W

“
lnpAqAt

‰2
Eμ,W rAts2 (3.84)

where A is an Inverse Gaussian distribution with parameters p1,W q. From (3.84) and Cauchy-
Schwarz inequality, we deduce that for every pt,W q P R

˚̀ ˆ R
˚̀ ,

BG
Bt pW, tq ă 0. (3.85)

Therefore, we can apply the implicit function theorem which implies that W ÞÑ t˚pm,W q is
smooth. By Proposition H, Wcpμq is the unique W ą 0 such that mQpW, 1{2q “ 1. Moreover, for
every W P R

˚̀ ,

BF
Bt pW, 1{2q “ 0 (3.86)

because the minimum of t ÞÑ QpW, tq is achieved for t “ 1{2. Consequently,

GpWcpμq, 1{2q “ F pWcpμq, 1{2q ´ p1{2qBF
Bt pWcpμq, 1{2q

“ ln pmQpWcpμq, 1{2qq
“ 0.

Therefore,

t˚pm,Wcpμqq “ 1{2. (3.87)

Thus, by Taylor expansion in a neighborhood of Wcpμq, it holds that,

F pW, t˚pm,W qq “ F pWcpμq, 1{2q ` pW ´ Wcpμqq BF
BW pWcpμq, 1{2q

` pt˚pm,W q ´ 1{2qBF
Bt pWcpμq, 1{2q ` o

ˆ
Wcpμq ´ W, t˚pm,W q ´ 1{2

˙
“ pW ´ Wcpμqq BF

BW pWcpμq, 1{2q ` opWcpμq ´ W q (3.88)

where in the last equality, we used the fact that F pWcpμq, 1{2q “ 0 and (3.86). Moreover
opWcpμq ´ W, t˚pm,W q ´ 1{2q becomes opWcpμq ´ W q in the last equality because

t˚pm,W q ´ 1{2 “ t˚pm,W q ´ t˚pm,Wcpμqq “ OpWcpμq ´ W q
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as t˚pm, ¨q is a smooth function. Besides,

τpm,W q “ ´F pW, t˚pm,W qq{t˚pm,W q „ ´2F pW, t˚pm,W qq
in the neighborhood of Wcpμq because t˚pm,Wcpμqq “ 1{2. Together with (3.88), it yields

τpm,W q „
WÑWcpμq

2

ˆ BF
BW pWcpμq, 1{2q

˙
pWcpμq ´ W q (3.89)

Therefore, we only have to compute BF
BW pWcpμq, 1{2q in order to conclude the proof. Let us recall

that for every W ą 0,

F pW, 1{2q “ lnpmq ` 1

2
lnpW q ` ln

˜ż `8

0

e´pW {2qpx`1{x´2q
?
2πx

dx

¸
. (3.90)

Differentiating (3.90), we get

BF
BW pW, 1{2q “ 1

2W
´ 1

2

ż `8

0
px ` 1{x ´ 2qp2πq´1{2x´1e´pW {2qpx`1{x´2qdxż `8

0
p2πq´1{2x´1e´pW {2qpx`1{x´2qdx

“ 1

2W
´ 1

2

QpW, 3{2q ` QpW,´1{2q ´ 2QpW, 1{2q
QpW, 1{2q

“ 1 ` 1

2W
´ QpW, 3{2q

QpW, 1{2q . (3.91)

In the last equality, we used the fact that QpW, 3{2q “ QpW,´1{2q. Moreover, remark that for
every W ą 0,

QpW, 3{2q “
ż `8

1

c
W

2π

px ` 1{xq
x

e´pW {2qpx`1{x´2qdx

“
c

2W

π

ż `8

0
coshpuqe´W pcoshpuq´1qdu

“
c

2W

π
eWK1pW q

“ K1pW q
K1{2pW q (3.92)

where Kα is the modified Bessel function of the second kind with index α. Besides, recall that
mQpWcpμq, 1{2q “ 1. Now, let us evaluate (3.91) at W “ Wcpμq. Together with (3.92), this
implies

BF
BW pWcpμq, 1{2q “ 1 ` 1

2Wcpμq ´ m
K1pWcpμqq
K1{2pWcpμqq . (3.93)

Moreover, we still have to prove that BF
BW pWcpμq, 1{2q ą 0. Actually, it is enough to prove that

for every W ą 0,

1 ` 1

2W
´ QpW, 3{2q

QpW, 1{2q ą 0.

Exactly as in (3.92), one can prove that

QpW, 1{2q “ K0pW q
K1{2pW q .

Therefore, we have to prove that for every W ą 0,

1 ` 1

2W
ą K1pW q

K0pW q .
Nevertheless, it is exactly Corollary 3.3 in [41].
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3.6.4 Proof of Proposition 3.6

Proof of Proposition 3.6.
Recall from Proposition G that the measure PV RJP

μ,W is defined as follows :
— First, under measure Pμ,W , we choose randomly a Galton-Watson tree V and the random

conductances c on V which are given by Proposition G.
— Secondly, we choose randomly a trajectory on V for the discrete-time process pZ̃nqnPN

with distribution Pc,o where Pc,o is the law of a random walk on the tree pV,Eq starting
from o with conductances c.

Step 1 : proof of the lower bound. Let n P N
˚. By Jensen’s inequality, it holds that

1

PV RJP
μ,W pτò ą τnq “ 1

Eμ,W

“
Pc,opτò ą τnq‰

ď Eμ,W

„
1

Pc,opτò ą τnq
j
. (3.94)

However, by definition of the effective resistance, we know that

1

Pc,opτò ą τnq “ W

¨̋ÿ

i“o

Ai
‚̨ˆ Rpo ÐÑ δnq.

Therefore, by Proposition 3.15

1

Pc,opτò ą τnq “ W

¨̋ÿ

i“o

Ai
‚̨ˆ G̃npo, oq.

Combining this with (3.94) and Cauchy-Schwarz inequality, there exists a positive constant C
such that

1

PV RJP
μ,W pτò ą τnq ď C

c
Eμ,W

”
G̃npo, oq2

ı
. (3.95)

Combining (3.66) and (3.95), we obtain

1

PV RJP
μ,W pτò ą τnq ď e2τpm,W qn`opnq.

This is exactly the lower bound in Proposition 3.6.
Step 2 : proof of the upper bound. Let α Ps0, t˚pm,W q{2r. Remark that t˚pm,W q{2 ă 1{4
because W ă Wcpμq. Let n P N

˚. It holds that

PV RJP
μ,W pτò ą τnq “ Eμ,W

“
Pc,opτò ą τnq‰

ď Eμ,W

“
Pc,opτò ą τnqα‰

. (3.96)

Furthermore, by definition of the effective conductance Cpo ÐÑ δnq between o and level n of the
tree, we know that

Pc,opτò ą τnq “ Cpo ÐÑ δnq
W

ř

i“o

Ai
. (3.97)

Let ε ą 0 such that p1 ` 2εqα ă t˚pm,W q{2. Combining Hölder inequality, (3.96) and (3.97),
there exists C ą 0 such that

PV RJP
μ,W pτò ą τnq ď CEμ,W

”
Cpo ÐÑ δnqp1`εqα

ı1{p1`εq
. (3.98)
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However, G̃npo, oq´1 “ Cpo ÐÑ δnq. Consequently, following exactly the same lines as in (3.46),
we get

Cpo ÐÑ δnq ď We´2τpm,W qn ˆ max
|x|“n

A´1
x ˆ Wn,2{t˚pm,W q.

Combining this with (3.98), it yields

PV RJP
μ,W pτò ą τnq ď Ce´2ατpm,W qn

Eμ,W

„
max
|x|“n

A´p1`εqα
x ˆ Wp1`εqα

n,2{t˚pm,W q

j1{p1`εq
. (3.99)

Moreover, by Hölder inequality, we get

Eμ,W

„
max
|x|“n

A´p1`εqα
x ˆ Wp1`εqα

n,2{t˚pm,W q

j
ď Eμ,W

„
max
|x|“n

A´αp1`εqp1`2εq{ε
x

jε{p1`2εq
ˆ Eμ,W

”
Wp1`2εqα

n,2{t˚pm,W q
ı1{p1`2εq

(3.100)

One can prove that the first term in (3.100) has at most polynomial growth by following exactly
the same lines as for the proof of (3.61). Moreover, the second term in (3.100) decreases with a
polynomial decay by Proposition K because αp1 ` 2εq ă t˚pm,W q{2. Together with (3.99), as α
can be taken as close from t˚pm,W q{2 as we want, this concludes the proof.

3.7 The critical point

3.7.1 Proof of Theorem 3.7

Now, we are going to prove Theorem 3.7 which describes the asymptotic behaviour of
pψnpoqqnPN at the critical point.

Proof of Theorem 3.7.
For simplicity of notation, we write W “ Wcpμq in the entirety of this proof. Exactly as in the
proof of Theorem 3.4, by using Lemma 3.19, we only need to find the almost sure behaviour of
Cpo ÐÑ δnq, the effective conductance associated with the VRJP, in order to get the asymptotics
of ψnpoq2. Remember that the local conductance from any vertex x P V ztou to �x is

WA´1
x

˜ ź
oăuďx

A2
u

¸

which is not exactly the effective conductance associated with a branching random walk. Remark
that for every n P N,

W min
|z|ďn

A´1
z �n ď Cpo ÐÑ δnq ď Wmax

|z|ďn
A´1

z �n (3.101)

where �n is the effective conductance from o to level n when the local conductance from any
vertex x P V ztou to �x is given by ˜ ź

oăuďx

A2
u

¸
.

As usual, min
|z|ďn

A´1
z and max

|z|ďn
A´1

z have polynomial asymptotics almost surely. Thus, we only need

to focus on the behaviour of p�nqnPN. For every x P V , let us denote

Ŝpxq “ ´2
ÿ

oăuďx

lnpAuq.
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We write ψ̂ptq “ ln

˜
Eμ,W

« ř
|x|“1

e´tŜpxq
ff¸

“ ln

˜
Eμ,W

« ř
|x|“1

A2t
x

ff¸
.

As we are at the critical point and thanks to Proposition H, ψ̂ strictly decreases on r0, 1{4s
and increases strictly on r1{4, 1s, ψ̂p1{4q “ 0 and ψ̂1p1{4q “ 0. Our �n is exactly the same as the
one defined in [64] with the branching random walk Ŝ. By the proof of Theorem 1.2 in [64], we
get that, Pμ,W -a.s,

lim
nÑ`8

lnp�nq
n1{3 “ ´

ˆ
3π2

2
ˆ 4 ˆ ψ̂1p1{4q

˙1{3
“ ´

¨̋
24π2

Eμ,W

»– ÿ
|x|“1

A1{2
x lnpAxq2

fifl‚̨1{3

.

This concludes the proof.

3.7.2 Positive recurrence at the critical point

Now, let us prove Theorem 3.8.

Proof of Theorem 3.8.
We want to prove the positive recurrence of the discrete process pZ̃nqnPN associated with pZtqtě0.
By Proposition G, pZ̃nqnPN is a Markov chain in random conductances with conductances given
by

cpx, �xq “ WeUx`U �x “ WAx

ź
oăuď 
x

A2
u

for every x P V ztou. For every x P V , let us define

S̃pxq “ ´1

2

ÿ
oăyďx

lnpAuq.

We assumed that W “ Wcpμq, that is, mQpW, 1{2q “ 1 by Proposition H. Therefore, tpx, S̃pxqq, x P
V u is a branching random walk which satisfies hypothesis (3.14). This is easily checked that it
satisfies also (3.13). Moreover it satisfies hypothesis (3.12) by hypothesis A3. Therefore, we are
allowed to use the results of Hu and Shi (Propositions K and J.) with this branching random
walk. Following the notations of Hu and Shi, we define

Wn,4 :“
ÿ

|x|“n

e´4S̃pxq “
ÿ

|x|“n

ź
oăuďx

A2
u

and
Wn :“

ÿ
|x|“n

e´S̃pxq “
ÿ

|x|“n

ź
oăuďx

A1{2
u .

Further, for every n P N
˚, let us define

Λn :“
ÿ

|x|“n

cpx, �xq.

In order to prove Theorem 3.8, this is enough to prove that for some r Ps0, 1r,
`8ÿ
n“1

Eμ,W rΛr
ns ă `8. (3.102)
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Let n P N
˚ and r Ps0, 1r. r shall be made precise later in the proof. First, let us remark that,

Eμ,W rΛr
ns ď Eμ,W

»–¨̋ ÿ
|x|“n

˜ ź
oăuďx

A2
u

¸
A´1

x 1Axě1
‚̨rfifl

` Eμ,W

»–¨̋ ÿ
|x|“n

˜ ź
oăuďx

A2
u

¸
A´1

x 1Axď1
‚̨rfifl

ď Eμ,W

“
Wr

n,4

‰ ` Eμ,W

»–¨̋ ÿ
|x|“n

˜ ź
oăuďx

A2
u

¸
A´1

x 1Axď1
‚̨rfifllooooooooooooooooooooooooooomooooooooooooooooooooooooooon

paq

. (3.103)

For every y P V , let us define the random variable

νy “
ÿ

x“y

1

which is the number of children of y. Then, it holds that,

paq “ Eμ,W

»–¨̋ ÿ
|y|“n´1

˜ ź
oăuďy

A2
u

¸ ÿ

x“y

Ax1Axď1
‚̨rfifl

ď Eμ,W

»–¨̋ ÿ
|y|“n´1

˜ ź
oăuďy

A2
u

¸
νy‚̨rfifl

ď n3r{2
Eμ,W rWr

n´1,4s ` Eμ,W

»–¨̋ ÿ
|y|“n´1

˜ ź
oăuďy

A2
u

¸
νy1νyěn3{2‚̨rfifllooooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

pbq

. (3.104)

Moreover, by Jensen’s inequality, if r ă 1{4, we get,

pbq ď Eμ,W

»—–
¨̋ ÿ

|y|“n´1

˜ ź
oăuďy

A2
u

¸
νy1νyěn3{2‚̨1{4fiffifl

4r

ď Eμ,W

»– ÿ
|y|“n´1

˜ ź
oăuďy

A1{2
u

¸fifl4r

Eμ,W

”
ν1{41νěn3{2

ı4r
“ Eμ,W rWn´1s4r Eμ,W

”
ν1{41νěn3{2

ı4r
“ Eμ,W

”
ν1{41νěn3{2

ı4r
(3.105)

where ν has the same distribution as νy for any y P V . The last equality comes from the fact
that pWnqnPN is a martingale because the branching random walk S̃ satisfies hypothesis (3.14).
Combining identities (3.103), (3.104) and (3.105), in order to make Eμ,W rΛr

ns summable, we need

n3r{2
Eμ,W

“
Wr

n,4

‰
and Eμ,W

”
ν1{41νěn3{2

ı4r
to be summable. Moreover, recall we assumed that r ă 1{4. By Proposition K, we know that

n3r{2
Eμ,W

“
Wr

n,4

‰ “ n3r{2 ˆ n´6r`op1q “ n´9r{2`op1q.
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Moreover by Hölder’s inequality with p “ 4,

Eμ,W

”
ν1{41νěn3{2

ı4r ď n´9r{2.

In order to conclude, we only need to choose r between 2{9 and 1{4 which is possible because
2{9 ă 1{4.



Chapitre 4

The density of states of Hβ

Abstract

This chapter is based on a work which has been achieved under the supervision of Christophe
Sabot. Simultaneously, Disertori, Rojas-Molina and Zeng proved results which were very similar
to mine. Therefore, we decided to work together and we published a joint paper. (See [55].) This
chapter presents my original proofs of the results of [55]. We study properties of the random
Schrödinger operator Hβ on Z

d where β is the random potential introduced in [153] and [154].
This random potential is strongly linked to the asymptotic behaviour of the Vertex Reinforced
Jump Process (VRJP). In this paper we show that when the reinforcement of the VRJP is
very large, then the integrated density of states npEq associated with Hβ is of order

?
E up

to some log-correction. In particular, contrary to the case of the Anderson model, there is no
Lifschitz tail in this regime. Moreover, for d ě 3, when the reinforcement is small enough, we show
that npEq “ OpEq. This means that the density of states of the operator Hβ exhibits a phase
transition. Moreover, it was proved in [43] that the Green function pHβ ´ zq´1 is exponentially
localized for every z P CzR if the reinforcement is large enough. In this paper, we prove that,
whatever the reinforcement, pHβ ´ zq´1 is always exponentially localized if |z| is large enough.

4.1 Introduction

This paper concerns the random Schrödinger operator Hβ introduced in [153] and [154]. This
operator arises in the context of self-reinforced random walks such as the Edge Reinforced Random
Walk (ERRW) and the Vertex Reinforced Jump Process (VRJP). The ERRW was introduced by
Coppersmith and Diaconis in 1986. (See [45].) In this paper, we focus on the VRJP which was
first studied in [47] by Davis and Volkov. The VRJP consists in a continuous self-reinforced walk
pYtqtě0 which is defined on any locally finite graph pV,Eq as follows : Let W ą 0. The VRJP
starts from some vertex i0 and conditionally on the past at time t, if Yt “ i, then the VRJP
jumps to a neighbour j of i at rate

W

ˆ
1 `

ż t

0
1tYs “ juds

˙
.

A natural question is to know whether the ERRW and the VRJP are recurrent or transient. In
[152], Sabot and Tarres showed that the ERRW can be interpreted as a VRJP with independent
random conductances. Moreover, they proved that a time-changed version of the VRJP is a random
walk in random environment. This random environment was already known as a supersymmetric
hyperbolic sigma model and was studied in [54]. Thanks to this relation between the mixing field
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of the VRJP and the supersymmetric sigma model, Sabot and Tarrès proved the recurrence of
the VRJP on Z

d for high reinforcement (small W ) and transience for small reinforcement (large
W ) when d ě 3. Actually, there is a unique phase transition between recurrence and transience if
d ě 3. This was proven by Poudevigne in [139] thanks to a clever coupling argument. In [153]
and [154], the authors showed that the random environment of the VRJP is strongly linked to
another random real field β “ pβxqxPZd which is ergodic and 1-dependent. The distribution νWd of
β is totally determined by the dimension d of the underlying working space Z

d and the disorder
parameter W . Then, let us introduce the operator Hβ on Z

d which satisfies :

@px, yq P pZdq2, Hβpx, yq “ 2βx1tx “ yu ´ W1tx „ yu.
Thanks to properties of the β-field, this is a non-negative operator. Further, remark that the
operator Hβ is of the form ´WΔ ` V where Vx “ 2βx ´ 2dW and Δ is the discrete laplacian,
that is,

@px, yq P pZdq2,´Δpx, yq “ 2d1tx “ yu ´ 1tx „ yu.
Therefore, Hβ is a random Schrödinger operator. The aim of this paper is to analyse the spectral
properties of Hβ and to compare Hβ with the classical Anderson model which is ´Δ`λV 1 where
V 1 is a potential with i.i.d coordinates. The Anderson model has been largely studied since its
introduction in 1958 by P. W. Anderson in his seminal article [7]. When λ is small and d ě 3,
it is conjectured that the Anderson model is delocalized in the bulk of the spectrum, that is,
the existence of continuous spectrum is expected. Further, in any dimension, when λ is large, it
has been proved in a sequence of papers including [70] and [118] that the Anderson model is
localized, that is, there is only pure point spectrum. (See [5] for a short proof.) Moreover in [5],
it is also shown that the Anderson model is localized for extreme energies. In particular, there
is localization for energies which are close of the edges of the spectrum. This is strongly linked
to a phenomenon called "Lifschitz tails" which states that the integrated density of states npEq
decreases exponentially fast at the edges of the spectrum. In this paper, we aim to see whether
these properties are true for the operator Hβ or not.

When W is very small, it has been already proved in [43] that the operator Hβ is totally
localized. In this work, we show that Hβ is also localized for high energies. Besides, the property
of Lifschitz tails is not true anymore for Hβ . Indeed, one result of this paper states that, for W
small enough, we have npEq » ?

E. Moreover, when W is large enough and d ě 3, npEq “ OpEq.
This means there is a phase transition for the behaviour of the density of states of Hβ with
respect to the parameter W .

4.2 Context and statement of the results

4.2.1 Notation

Let us denote by l2pZdq the set of families puxqxPZd P C
Zd such that

ř
xPZd |ux|2 ă `8.

Moreover, we introduce the related scalar product x¨, ¨y such that for every u, v P l2pZdq,

xu, vy “
ÿ
xPZd

uxvx.

We denote by || ¨ || the euclidean norm associated with x¨, ¨y. If Λ is a subset of Zd, we denote by
BΛ the boundary of Λ, that is the set tx P Λ|Dy P Λc, y „ xu. The size of a finite subset Λ of Zd is
denoted by |Λ|. If A is a subset of Zd, we write �EpAq for the set of oriented edges from A into Ac.
Moreover, A` :“ tx P Z

d|Dy P A, ||x ´ y||1 ď 1u. For any L P N
˚, we write ΛL “ r´L,Lsd X Z

d.
For every x P Z

d, we denote by δx the element of l2pZdq whose value is 1 at x and 0 elsewhere.
For every matrix M , we write Mpi, jq for the coefficient of M at indices i, j P Z

d. We also
use this notation if M is an operator on Z

d. The restriction of M (a matrix or an operator) on a
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finite set U is denoted by MU,U . For any vector v, the restriction of v to a subset U is denoted by
vU . If M1 and M2 are two symmetric matrices, we write M1 ě M2 (resp. M1 ą M2) if M1 ´ M2

is a non-negative (positive definite) symmetric matrix.

4.2.2 The β-field and the operator Hβ

Let d P N
˚. Two points x and y in Z

d are linked by an edge if ||x ´ y||1 “ 1. We denote by
Ed, the set of edges of Zd. We write x „ y when tx, yu P Ed. Let W ą 0. In [154], in order to
study the VRJP, Sabot and Zeng introduced a random real field pβxqxPZd P R

Zd` with distribution
νWd such that for every finite subset U Ă Z

d, for every pλxqxPU P R
U`, such that λy “ 0,@y R U ,

ż
exp

˜
´

ÿ
xPU

λxβx

¸
νWd pdβq “ exp

¨̋
´

ÿ
tx,yuPEd,xPU

W
´a

1 ` λx

a
1 ` λy ´ 1

¯‚̨ 1ś
xPU

?
1 ` λx

.

We write EνWd
when we want to integrate with respect to the probability measure νWd . From the

expression of the Laplace transform above, we deduce that the field pβxqxPZd is 1-dependent. It
means that if two subsets U and V of Zd are disjoint and are not linked by an edge, then βU
and βV are independent. Moreover, for every x P Z

d, 1
2βx

is distributed as an inverse Gaussian
distribution with parameter p1{p2dW q, 1q. More generally, the density of βU is known explicitely.
(See subsection 4.3.1.) Now, for every pβxqxPZd P R

Zd , let us define the operator Hβ on Z
d as in

the introduction :

@px, yq P pZdq2, Hβpx, yq “ 2βx1tx “ yu ´ W1tx „ yu.
By Proposition 1 in [154], the support of νWd is

DW
d “ tβ P R

Zd , pHβqU,U is positive definite for all finite subsets U Ă Z
du.

In order to apply the general theory of operators, we observe that the operator Hβ with the right
domain is a self-adjoint operator.

Proposition 4.1. For every W ą 0, the operator Hβ with domain

DpHβq “
#
φ P l2pZdq,

ÿ
xPZd

β2
x|φx|2 ă `8

+

is νWd -a.s a self-adjoint operator for the the scalar product x¨, ¨y. Moreover, νWd -a.s, we have

DpHβq ‰ l2pZdq.
By definition of DW

d , Hβ is a non-negative operator. However, we can be more accurate :
we can compute its spectrum. We recall that the spectrum σpAq of an operator A is the set
tλ P C, A ´ λId is not invertible u.
Proposition 4.2. For every W ą 0, νWd -a.s, the spectrum σpHβq of Hβ is R`.

By definition of DW
d , for every L P N

˚, pHβqΛL,ΛL is invertible νWd -a.s. Therefore, we can
define ĜpLq “ pHβq´1

ΛL,ΛL
. (More generally, for any finite set U Ă Z

d, we can define ĜU as the
inverse of pHβqU,U .) Moreover let us introduce ψpLq P R

Zd` as the unique solution of the equation" pHβψ
pLqqpiq “ 0 @i P ΛL

ψpLqpiq “ 1 @i P Λc
L.

(4.1)

The definition of pψpLqqLPN˚ is motivated by the creation of an eigenstate of Hβ when L goes to
infinity. The following proposition states that such a limit does exist.
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Proposition A (Theorem 1 in [154]). For any x, y P Z
d, pĜpLqpx, yqqLPN˚ is positive and

increasing νWd -a.s. In particular there exists a random variable Ĝpx, yq such that

ĜpLqpx, yq ÝÑ
LÑ`8 Ĝpx, yq, νWd -a.s.

Further, for any x, y P Z
d,

Ĝpx, yq ă `8, νWd -a.s.

Moreover, for every x P Z
d, pψpLqpxqqLPN˚ is a positive martingale whose almost sure limit is

denoted by ψpxq. Further pĜpLqqLPN˚ is the bracket of pψpLqqLPN˚ in the sense that for every
x, y P Z

d, pψpLqpxqψpLqpyq ´ ĜpLqpx, yqqLPN˚ is a martingale.

By Theorem 2 in [154], Ĝ is the inverse of Hβ in the sense that for every px, yq P Z
d,

pHβ ` ηq´1px, yq goes toward Ĝpx, yq as η goes to zero. Besides, the martingale pψpLqqLPN˚ is a
very important tool in order to understand the asymptotic behaviour of the VRJP as explained
by the following proposition :

Proposition B ([154] and [139]). Let d P N
˚. Then, there exists Wcpdq P p0,`8s depending only

on d such that :

(i) If W ă Wcpdq, νWd -a.s, for every x P Z
d, ψpxq “ 0 and the VRJP is recurrent.

(ii) If W ą Wcpdq, νWd -a.s, for every x P Z
d, ψpxq ą 0 and the VRJP is transient.

(iii) Wcpdq ă `8 if and only if d ě 3.

Proposition B states there is a unique transition point Wcpdq between recurrence and transience
of the VRJP when d ě 3. Furthermore, the positivity of ψ enables us to determine whether
W ă Wcpdq or W ą Wcpdq. When W ă Wcpdq, we say that the reinforcement is large or that
the system is highly disordered. Conversely, when W ą Wcpdq, we say that the reinforcement
is small or that the system is weakly disordered. Remark that pψpxqqxPZd satisfies Hβψ “ 0.
Moreover pψpxqqxPZd is ergodic and stationary. Consequently, by Proposition B, for W ą Wcpdq
and d ě 3, pψpxqqxPZd can be interpreted as a delocalized generalized eigenstate (which is not
square summable) of Hβ . Therefore, the phase transition for the VRJP is also a phase transition
for the operator Hβ with respect to this eigenstate ψ associated with Hβ at the ground state
E “ 0. The goal of this article is to enter the bulk of the spectrum of Hβ in order to get some
information about the density of states of Hβ and the Green function pHβ ´ zq´1 for z P CzR.

Further, pψpxqqxPZd and pĜp0, xqqxPZd also give a representation of the environment of the
VRJP. Let us consider a Γ(1/2,1) random variable γ1 which is independent of pβxqxPZd . By a
small abuse of notation, we still denote by νWd the joint measure νWd b Lpγ1q. Then for every
x, y P Z

d, let us define

Φpx, yq “ Ĝpx, yq ` ψpxqψpyq
2γ1

. (4.2)

This operator pΦpx, yqqx,yPZd is fundamental in order to define the random environment of the
VRJP. Indeed, if the VRJP started at 0, then the discrete time process associated with the VRJP
has the law of a random walk in random environment with conductance WΦp0, xqΦp0, yq between
two neighboring vertices x and y. Remark that Φ “ Ĝ if and only if the VRJP is recurrent.
Remark also that Φ is not the standard notation for the environment of the VRJP. For example,
in [154], Φ is denoted by Gβ,γ . However, we do not use the notation Gβ,γ in order to avoid
confusion with the Green function.
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4.2.3 The Green function and the density of states

As σpHβq “ R`, νWd -a.s, we can define the Green function Gz “ pHβ ´ zq´1 for every
z P CzR`. In particular, for every x, y P Z

d it defines Gzpx, yq. By Proposition B.3 in [6], for
almost every E P R, νWd ´ a.s, for every x, y P Z

d,

GE`i0px, yq “ lim
εÑ0
εą0

GE`iεpx, yq

exists and is finite. The Green function Gz is the classical inverse of Hβ ´z. One can ask ourselves
how this is related to Ĝ and Φ. Actually, by Theorem 2 in [154], for every x, y P Z

d, νWd -a.s,

lim
ηÑ0

pHβ ` ηq´1px, yq “ Ĝpx, yq.

Therefore, Ĝ is directly related to the Green function. It can be seen as the Green function
associated with the ground state. However, Φ is more unusual. It is not directly linked to the
Green function but it is a convenient tool in order to study the VRJP. That is why we will also
use Φ a lot in this paper.

Besides, for every E ě 0, let us define NppHβqΛL,ΛL , Eq the number of eigenvalues of pHβqΛL,ΛL
which are smaller than E. Let W ą 0. Then, by Corollary 3.16 in [6], there exists a measure
αW,d with cumulative distribution function nW,d such that νWd -a.s, for all E ě 0 except the
discontinuity points of nW,d,

lim
LÑ`8

1

|ΛL|NppHβqΛL,ΛL , Eq “ nW,dpEq.

The measure αW,d is called the density of states of Hβ and nW,d is called the integrated density
of states of Hβ .

4.2.4 Results about the density of states

First, we state a general upper-bound on the density of states of Hβ .

Theorem 4.3. Let d P N
˚. There exists a positive constant K1 which does not depend on d such

that for every W ą 0 and for every E ą 0,

nW,dpEq ď K1E
1{2.

The upper bound above stems from the classical Wegner bound. We will have to check only
the 1{2-regularity. Besides, in the next theorem we show that at strong disorder, i.e W small,
the previous upper bound gives the good order of the density of states up to some logarithmical
corrections. In particular, in this regime it shows that there is no Lifschitz tails for the operator
Hβ . Moreover the following theorem is true only when W is smaller than some positive constant
W

pdq
´ . Actually, for d ě 2, this constant W

pdq
´ is the same as the one obtained in [43] in order to

prove exponential decrease of the Green function Ĝ associated with the ground state E “ 0 of
Hβ .

Theorem 4.4. Let d P N
˚. There exists W

pdq
´ ą 0 such that for every W ă W

pdq
´ , there exists a

positive constant K2,d,W such that for every E P p0, 1q,

nW,dpEq ě K2,d,W

?
E

| lnpEq|d .

Moreover, in the particular case of the dimension 1, we have W
p1q
´ “ `8.
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In the weak disorder regime, i.e for large W , if d ě 3, the Proposition 4.5 below shows that the
behaviour of nW,dpEq is not

?
E. Indeed, the behaviour of nW,dpEq is linked to the integrability

of the ground state Ĝp0, 0q. If W is large enough and d ě 3, in [54], Disertori, Spencer and
Zirnbauer proved an estimate which enables to control Ĝp0, 0q. Combining the proposition below
with Theorem 4.4, we observe a phase transition for the density of states of Hβ .

Proposition 4.5. Let d ě 3. Then, there exists W
pdq
` ą 0 such that for every W ą W

pdq
` , there

exists a positive constant K3,d,W such that for every E ą 0,

nW,dpEq ď K3,d,WE.

4.2.5 Localization for high energies

We shall also prove in this article that the Green function of the operator Hβ is exponentially
localized when the energy E is large enough. This completes the result of [43] which states there
is exponential localization of the Green function for small W .

Theorem 4.6. Let d P N
˚. For every W ą 0, there exist K4,d,W ą 0, μd,W ą 0 and Ed,W ą 0

such that for every z P CzR such that |z| ě Ed,W , for every x, y P Z
d,

EνWd

”
|Gzpx, yq|1{4

ı
ď K4,d,W expp´μd,W ||x ´ y||q.

In particular, for almost every E ě Ed,W , for every x, y P Z
d,

EνWd

”
|GE`i0px, yq|1{4

ı
ď K4,d,W expp´μd,W ||x ´ y||q.

Remark 4.1. By the Simon-Wolff criterion (see [159]), Theorem 4.6 implies that, for every
W ą 0, νWd -a.s, the spectral measure μδ0 associated with Hβ has empty continuous component in
rEW ,`8r. By [43], this property was already known for small W and for almost every E. We
suspect that this is false for large W and small E when d ě 3.

4.3 Background

4.3.1 Restriction properties

An important fact about the distribution νWd is that a lot of information is known about
the restrictions of νWd on finite sets. Actually the restrictions of νWd are in a large family of
distributions which are similar to νWd . These distributions were originaly defined in [153] and
generalized in [110]. More precisely, on a finite set S, we can define a generalized family of
β potentials with law ν̃P,ηS for every pηxqxPS P R

S` and every P “ pWx,yqpx,yqPS2 P R
S2

` . The
distribution ν̃P,ηS is defined in Lemma 4 of [154] through its density which is

ν̃P,ηS pdβq :“ 1tHβ,S ą 0u
ˆ
2

π

˙|S|{2
e´ 1

2
x1,Hβ,S1y´ 1

2
xη,H´1

β,Sηy`xη,1y 1a
detHβ,S

dβS (4.3)

where Hβ,S is a matrix on S ˆ S defined by

Hβ,Spx, yq “ 2βx1tx “ yu ´ Wx,y1tx „ yu.
Moreover, in the density given by (4.3), 1 stands for the vector p1, ¨ ¨ ¨ , 1q in R

S . Besides, the
Laplace transform of ν̃P,ηS is for any λ P R

S`ż
e´xλ,βyν̃P,ηS pdβq “ e

´xη,?λ`1´1y´ 1
2

ř
x„yWx,y

´?p1`λxqp1`λyq´1
¯ ź
xPS

p1 ` λxq´1{2
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where
?
1 ` λ is the vector p?

1 ` λxqxPS . Remark this Laplace transform is very similar to the
one given in subsection 4.2.2 for νWd . However, we do not assume that the weights are constants
anymore and there is a "boundary term" η. Moreover we allow loops, that is, Wx,x ‰ 0 is possible
for any x P S. An important property of these distributions is that marginals and conditional
laws of ν̃PS can be computed thanks to the following lemma :

Lemma C (Lemma 5 in [154]). Let S be a finite set. Let U Ă S be a subset of S. Let pηxqxPS P R
S`

and P “ pWx,yqx,yPS2 P R
S2

` . Let pβxqxPS be a random potential with distribution ν̃P,ηS . Then, it
holds that

(i) βU has law ν̃
PU,U ,η̂
U , where for every x P U , η̂x “ ηx ` ř

yPUc
Wx,y.

(ii) Conditionally on βU , βUc has distribution ν̃P̌ ,η̌
Uc where P̌ and η̌ are defined in the following

way : For every px, yq P U c ˆ U c,

P̌ px, yq “ W̌x,y “ Wx,y `
ÿ

k„x,kPU

ÿ
l„y,lPU

Wx,kWy,lpHβ,Sq´1
U,U pk, lq.

For every x P U c,
η̌x “ ηx `

ÿ
k„x,kPU

ÿ
lPU

Wx,kpHβ,Sq´1
U,U pk, lqηl.

In [154], the infinite-volume measure νWd was obtained by Kolmogorov extension theorem
thanks to a compatible sequence of measures of type ν̃P,ηS . In particular the restriction of νWd on
finite sets is given by the following proposition.

Proposition D. Let L P N
˚. Let pβxqxPZd be a random potential following νWd . Then pβxqxPΛL is

distributed as ν̃P̂L,η̂LΛL
where

— For every x, y P ΛL, P̂Lpx, yq “ W1tx „ yu.
— For every x P ΛL, pη̂Lqx “ ř

y„x,yRΛL
W .

4.3.2 The field β̃

Let us come back to the case where β is defined on the whole set Zd. We denote γ2 “ 1
2Φp0,0q “

1
2Ĝp0,0q`ψp0q2{γ1 . For every, x P Z

d, let us define β̃x “ βx ´ 1tx “ 0uγ2. Then, the law of γ2 can

be computed explicitely and is independent of the field β̃.

Proposition E (Proposition 2.4 in [77]). Under νWd , γ2 has distribution Γ(1/2,1) and is inde-
pendent of pβ̃xqxPZd .

In this paper, the field β̃ will be used frequently. Indeed, thanks to β̃, we can divide pβxqxPZd
into pβ̃xqxPZd and γ2. We write H̃β :“ Hβ̃ “ Hβ´2γ2δ0,0 where δ0,0 is the operator on l2pZdq which
is 1 at p0, 0q and zero elsewhere. Surprisingly, the operator H̃β is more useful than Hβ because the
inverse of the restriction to finite boxes of H̃β has an intepretation in terms of effective resistance.
This interpretation will be made more clear in subsection 4.4.1 for a "Dirichlet" restriction of H̃β .
In order to consider the inverse of restrictions of H̃β we need the following lemma.

Lemma 4.7. For every finite subset U of Zd, pH̃βqU,U is positive definite νWd -a.s.

Proof.
First, let us recall that by (4.2), for every x, y P Z

d,

Φpx, yq “ Ĝpx, yq ` ψpxqψpyq
2γ1

.
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By the definition of Ĝ and ψ, for all ϕ1, ϕ2 P l2pZdq with finite support, we have

xϕ1, HβΦϕ2y “ xϕ1, ϕ2y.
In particular, for every x P Z

d,

xδx, HβΦδ0y “ δx,0. (4.4)

If x “ 0, (4.4) implies that
2β0Φp0, 0q “ W

ÿ
y„0

Φp0, yq ` 1

which implies that

2β̃0 “ 2β0 ´ 1

Φp0, 0q “ W
ÿ
y„0

Φp0, yq
Φp0, 0q .

If x ‰ 0, (4.4) implies that

2β̃xΦp0, xq “ 2βxΦp0, xq “ W
ÿ
y„x

Φp0, yq.

Therefore, for every x P Z
d,

2β̃x “ W
ÿ
y„x

Φp0, yq
Φp0, xq . (4.5)

Now, let U be a finite subset of Zd and let DU be the diagonal matrix whose diagonal entries
are pΦp0, xqqxPU . Then, by p4.5q we can observe that DU pH̃βqU,UDU “ W ¨ M where for every
x, y P U ˆ U ,

Mpx, yq “ 1tx “ yu
ÿ
k„x

Φp0, xqΦp0, kq ´ 1tx „ yuΦp0, xqΦp0, yq.

However, it holds that M ą M 1 where for every x, y P U ˆ U ,

M 1px, yq “ 1tx “ yu
ÿ
k„x
kPU

Φp0, xqΦp0, kq ´ 1tx „ yuΦp0, xqΦp0, yq.

Remark that M 1 is a conductance matrix. Therefore, M 1 ě 0 and M ą M 1 ě 0 which implies
pH̃βqU,U ą 0.

4.4 Preliminaries

4.4.1 A lemma about the Dirichlet operator associated with Hβ

Let L P N
˚. Let us denote by HD

L the squared matrix of size |ΛL| defined in the following
way :

— If x ‰ y, HD
L px, yq “ ´W1tx „ yu

— If x “ y, HD
L px, yq “ 2βx ` ř

k„x,kRΛL
W .

We can also define H̃D
L which is defined as HD

L but we replace β by β̃. Those matrices are
"Dirichlet" restrictions of Hβ and H̃β. They are used many times in this paper because the
Neumann-Dirichlet bracketing gives a comparison between the integrated density of states
and functionals of Dirichlet restrictions. Remark that HD

L ě pHβqΛL,ΛL and H̃D
L ě pH̃βqΛL,ΛL .

However, νWd -a.s, pHβqΛL,ΛL ą 0 by construction of νWd and pH̃βqΛL,ΛL ą 0 by Lemma 4.7.
Therefore, we are able to define GpLq,D and G̃pLq,D the inverse of HD

L and H̃D
L respectively. Now
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let us consider a graph Λ1
L which is defined by the vertex set ΛL Y tδLu where δL is an arbitrary

new vertex and an edge set E1
L. If x, y P ΛL, then tx, yu P E1

L if and only if x and y are connected
in Z

d. Moreover, for every x P ΛL, x and δL are connected if and only if x P BΛL. Furthermore,
for every x, y P ΛL, we define

cpx, yq “ W
Φp0, xqΦp0, yq

Φp0, 0q2 .

Besides, for every x P BΛL, we define

cpx, δLq “
ÿ
y„x
yRΛL

W

ˆ
Φp0, xqΦp0, yq

Φp0, 0q2 ` Φp0, xq2
Φp0, 0q2

˙
.

Let us denote by RLp0 ÐÑ δLq the effective resistance of the random walk associated with the
network pΛL Y tδLu, E1

L, cq. Then, we have the following lemma :

Lemma 4.8. For every L P N
˚,

RLp0 ÐÑ δLq “ G̃pLq,Dqp0, 0q.
Proof.
Let L P N

˚. For every x P ΛL, we define hpxq “ Φp0,0qG̃pLq,Dp0,xq
GpLq,Dp0,0qΦp0,xq and hpδLq “ 0. We are going to

prove that h is harmonic for the conductances c on ΛLzt0u. Let x P ΛLzt0u. Then, it holds that

ÿ
y,tx,yuPE1

L

cpx, yqhpyq “
ÿ
y„x
yPΛL

W
Φp0, xqG̃pLq,Dqp0, yq
Φp0, 0qG̃pLq,Dqp0, 0q

“ Φp0, xq
Φp0, 0qG̃pLq,Dqp0, 0q

ÿ
y„x
yPΛL

WG̃pLq,Dp0, yq. (4.6)

However, by definition, G̃pLq,D is the inverse of H̃D
L . Together with (4.6), this yields

ÿ
y,tx,yuPE1

L

cpx, yqhpyq “ Φp0, xqG̃pLq,Dp0, xq
Φp0, 0qG̃pLq,Dp0, 0q

¨̊
˝2β̃x `

ÿ
y„x
yRΛL

W
‹̨‚. (4.7)

Then, as x ‰ 0, β̃x “ βx. Moreover, for every x P Z
dzt0u,

2βxΦp0, xq “
ÿ
y„x

WΦp0, yq.

Together with (4.7), this implies that

ÿ
y,tx,yuPE1

L

cpx, yqhpyq “ G̃pLq,Dp0, xq
Φp0, 0qG̃pLq,Dp0, 0q

¨̊
˝ ÿ

y„x

WΦp0, yq ` Φp0, xq
ÿ
y„x
yRΛL

W
‹̨‚

“ Φp0, 0qG̃pLq,Dp0, xq
G̃pLq,Dp0, 0qΦp0, xq

¨̊
˝ ÿ

y„x

W
Φp0, yqΦp0, xq

Φp0, 0q2 ` Φp0, xq2
Φp0, 0q2

ÿ
y„x
yRΛL

W
‹̨‚

“ hpxq
¨̊
˝ ÿ

y„x
yPΛL

cpx, yq ` cpx, δLq‹̨‚. (4.8)
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Consequently, h is harmonic, excepted at 0 and δL where it satisfies hp0q “ 1 and hpδLq “ 0.
Thus, by (2.3) in section 2.2 in [116], it holds that

RLp0 ÐÑ δLq “ 1ř
y„0

cp0, yqp1 ´ hpyqq . (4.9)

However, ÿ
y„0

cp0, yqp1 ´ hpyqq “
ÿ
y„0

W
Φp0, yq
Φp0, 0q

˜
1 ´ Φp0, 0qG̃pLq,Dp0, yq

G̃pLq,Dp0, 0qΦp0, yq

¸

“
ÿ
y„0

W
Φp0, yq
Φp0, 0q ´

ÿ
y„0

W
G̃pLq,Dp0, yq
G̃pLq,Dp0, 0q . (4.10)

Nevertheless, 2β0Φp0, 0q´ ř
y„0

WΦp0, yq “ 1 and 2β̃0G̃
pLq,Dp0, 0q´ ř

y„0
WG̃pLq,Dp0, yq “ 1. Together

with (4.10), this impliesÿ
y„0

cp0, yqp1 ´ hpyqq “ 2β0 ´ 1

Φp0, 0q ´
ˆ
2β̃0 ´ 1

G̃pLq,Dp0, 0q
˙
. (4.11)

However, by Proposition E, 2β0 ´ 1
Φp0,0q “ 2β̃0. Together with (4.11), this impliesÿ

y„0

cp0, yqp1 ´ hpyqq “ 1

G̃pLq,Dp0, 0q .

Therefore, thanks to (4.9), this concludes the proof.

4.4.2 The spectral measure and the density of states

In subsection 4.2.3, we defined the density of states as the limit of an empirical distribution of
eigenvalues of Hβ . However, it is also possible to define the density of states through the spectral
measure. This equivalent definition is useful for the needs of this paper.

For any self-adjoint operator A with domain included in l2pZdq, and for every φ1, φ2 P l2pZdq,
there exists a complex measure μφ1,φ2 such that for every z P CzR,ż `8

´8
1

E ´ z
dμφ1,φ2pEq “ xφ1, pA ´ zq´1φ2y.

A´ z is invertible because the spectrum of a self-adjoint operator is included in R. μφ1,φ2 is called
the spectral measure of A at vectors φ1 and φ2. We write μφ1 if φ1 “ φ2. The support of μφ1,φ2 is
always included in the spectrum of A. Now, let f be a bounded function which is defined on the
spectrum σpAq of A. Then we can define the operator fpAq through the following formula :

xφ1, fpAqφ2y “
ż
σpAq

fpEqdμφ1,φ2pEq.

The reader can refer to Appendices A and B in [6] for more information on this topic. If we
apply these ideas in our context, this allows us to define νWd -a.s the operator fpHβq thanks to the
associated (random) spectral measures μφ1,φ2 . Let us define by δ0 the element of l2pZdq which is
1 at 0 and null elsewhere. Then, the density of states αW,d can be interpreted as follows :

Proposition F (Density of states). For every W ą 0, for every continuous bounded function f
defined on R`, the density of states αW,d satisfiesż `8

0
fpEqdαW,dpEq “ EνWd

rxδ0, fpHβqδ0ys .
Morally, αW,d can be interpreted as the "expectation" of the spectral measure μδ0 .
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4.4.3 The iterated resolvant formula

If B is a (possibly infinite) subset of Zd, then we can define the operator Hβ |B by pHβqB,B

on B ˆ B and 0 elsewhere. Hβ|B is self-adjoint. Therefore, for every z P CzR, Hβ |B ´ zId is
invertible. Let us denote by GB,z its inverse which is the partial Green function associated
with B. Let B be a subset of Z

d. Let A be a subset of B such that A` Ř B. Recall that
A` :“ tx P Z

d|Dy P A, ||x ´ y||1 ď 1u. The following formula is also (11.12) in [6].

Proposition G. Let x P A and let y P BzA`. Then, for every z P CzR, νWd -a.s

GB,zpx, yq “ W 2
ÿ

pu,u1qP 
EpAq

ÿ
pv1,vqP 
EpA`q

GA,zpx, uqGB,zpu1, v1qGBzA`,zpv, yq.

Proof.
Just apply the resolvant formula twice.

4.5 Proof of Propositions 4.1 and 4.2

The proof of Proposition 4.1 follows classical lines :

Proof.
The self-adjointness of Hβ is straightforward by definition of the adjoint of an operator. Moreover,
Hβ is self-adjoint and densely defined. Thus, it is closed by Theorem VIII.1.a) in [143]. Furthermore,
let us assume by contradiction there exists a set Ω0 of positive νWd -measure such that DpHβq “
l2pZdq on Ω0. Then, by the closed graph theorem, as Hβ is closed, this would imply that Hβ is
continuous on the event Ω0. Then, this would imply that sup tβx|x P Z

du ă `8 on Ω0. However,
this is false νWd -a.s because pβxqxPZd is 1-dependent. This concludes the proof.

The proof of Proposition 4.2 is very similar to Theorem 3.12 in [6] with some slight modifica-
tions :

Proof.
For every x P Z

d, we denote by τx the operator on C
Zd defined by τxpfq “ fp¨ ` xq for every

f P C
Zd . By Proposition 3 in [154], pβxqxPZd is ergodic for the group of transformations pτxqxPZd .

This implies straightforwardly that Hβ is ergodic as operator (see definition 3.4 in [6]). Recall
that Hβ “ ´WΔ ` 2β ´ 2dW . Therefore, we can apply Theorem 3.12 in [6] which implies that,
νWd -a.s.

r0, 4dW s ` S Ă σpHβq (4.12)

where

S “
#
u P R|@ε ą 0,@L P N

˚, νWd

˜
sup
xPΛL

|2βx ´ 2dW ´ u| ă ε

¸
ą 0

+
.

Remark that

S “ ´2dW ` S 1

where

S 1 “
#
u P R|@ε ą 0,@L P N

˚, νWd

˜
sup
xPΛL

|2βx ´ u| ă ε

¸
ą 0

+
.

For every L P N
˚, by Proposition D, pβxqxPΛL has density :

1tpHβqΛL,ΛL ą 0u
ˆ
2

π

˙|ΛL|{2
e

´ 1
2

x1,pHβqΛL,ΛL1y´ 1
2

xη̂L,pHβq´1
ΛL,ΛL

η̂Ly`xη̂L,1y 1

detppHβqΛL,ΛLq1{2dβΛL
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where 1 is the vector with |ΛL| entries which are equal to one. Therefore, u P S 1 if and only if
u ´ 2dW ` W p´ΔqΛL,ΛL ą 0 for every L P N

˚. However, p´ΔqΛL,ΛL ą 0 for every L P N
˚. That

is why r2dW,`8rĂ S 1. By (4.12), this implies that R` Ă σpHβq, νWd -a.s. The other inclusion
stems from the fact that Hβ is a non-negative operator νWd -a.s.

4.6 Proof of Theorem 4.3

The proof of Theorem 4.3 is an application of Wegner bound. We only have to prove single-site
1{2-regularity. This was already proved in [43] if W is small. In this section, we give a proof of
1{2-regularity for every W ą 0. Let us define D “ 1

2

ř
0„j

W Ĝp0,jq
Ĝp0,0q . Let F0,0 be the sigma-field

σpβy, y ‰ 0q.
Lemma 4.9. Under νWd , it holds that

— If ψp0q ą 0, then

L pβ0|F0,0q “ D ` 1

2 ˆ IG
´
Ĝp0,0q
ψp0q , 1

¯
where we recall that IGpa, λq stands for an inverse Gaussian distribution with parameters
a and λ.

— If ψp0q “ 0, then
L pβ0|F0,0q “ D ` γ

where γ is a Gamma random variable with parameters p1{2, 1q which is independent of
F0,0.

In any of the two cases, conditionally on F0,0, the density of β0 is given by

1tβ ą Du 1a
πpβ ´ Dqe

´ 1
4pβ´Dq

´
ψp0q
Ĝp0,0q ´2pβ´Dq

¯2

dβ.

Proof.
Lemma 4.9 was already proved in Lemma 3.13 in Chapter 3 with a slightly different notation.

Now, we are ready to prove Theorem 4.3.

Proof of Theorem 4.3.
Let us denote by �˚ the distribution of β0 conditionally on F0,0. Let x P R. Let t ą 0. By Lemma
3.13,

�˚prx ´ t, x ` tsq “
ż x`t

x´t
1tβ ą Du 1a

πpβ ´ Dqe
´ 1

4pβ´Dq
´
ψp0q
Ĝp0,0q ´2pβ´Dq

¯2

dβ

ď
ż x´D`t

x´D´t
1tβ ą 0u 1?

πβ
dβ. (4.13)

However, remark that for every y P R,
şy`t
y´t 1tβ ą 0uβ´1{2dβ ď ş2t

0 β´1{2dβ. Together with 4.13,
this implies that

�˚prx ´ t, x ` tsq ď 1?
π

ż 2t

0

1?
β
dβ

“ 2
?
2t?
π

. (4.14)

This proves single-site 1{2-regularity of the potential β. Then, using the Wegner bound concludes
the proof. One can look at Theorem 4.6 in [6] for a statement and a proof of the Wegner bound.
(The proof in [6] is given on a finite graph but the generalization is straightforward.)
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4.7 Proof of Theorem 4.4

Strategy of the proof : In order to prove Theorem 4.4, we use the Dirichlet-Neumann
bracketing which tells us that

nW,dpEq ě 1

|ΛL|EνWd

“
NpHD

L , Eq‰
where NpHD

L , Eq is the number of eigenvalues of HD
L (The Dirichlet restriction of Hβ in the

box ΛL.) which are lower than E. However, we can not control the eigenvalues of HD
L excepted

the first one. Indeed the smallest eigenvalue of HD
L is lower than GpLq,Dp0, 0q´1 by the min-max

principle. Consequently,

nW,dpEq ě 1

|ΛL|ν
W
d

´
GpLq,Dp0, 0q´1 ď E

¯
.

Furthermore, if L is large, GpLq,Dp0, 0q is almost ĜpLqp0, 0q which converges toward Ĝp0, 0q.
Besides, if W is small enough, the VRJP is recurrent and thus Ĝp0, 0q “ Φp0, 0q. Therefore,
approximately,

nW,dpEq ě 1

|ΛL|ν
W
d

ˆ
1

Φp0, 0q ď E

˙
.

However, according to Proposition E, 1{p2Φp0, 0qq has Γp1{2, 1q distribution whose cumulative
distribution function behaves as

?
E when E goes to 0 which explains the lower bound in Theorem

4.4. Some technical details still need to be checked in order to justify that GpLq,Dp0, 0q » ĜpLqp0, 0q
for a good choice of L. This is the main difficulty of the following proof.

Proof.
Let E P p0, 1q. Let L P N

˚. L will be fixed later as a function of E. HD
L is diagonalizable because

it is symmetric. Now, let us consider λ0 the smallest (random) eigenvalue of HD
L . Then, as HD

L is
positive, λ´1

0 is the biggest eigenvalue of GpLq,D. Therefore, νWd -a.s,

λ´1
0 “ max

||x||“1
xx,GpLq,Dxy ě GpLq,Dp0, 0q (4.15)

where the maximum is taken on the euclidean unit ball of CΛL . Besides, let us denote by NpHD
L , Eq

the number of eigenvalues of HD
L which are smaller than E. By Dirichlet-Neumann bracketing

(see Lemma 4.12 in [6])

nW,dpEq ě 1

|ΛL|EνWd

“
NpHD

L , Eq‰
ě 1

|ΛL|ν
W
d pλ0 ď Eq . (4.16)

Combining (4.15) and (4.16), we get

nW,dpEq ě 1

|ΛL|ν
W
d

ˆ
GpLq,Dp0, 0q ě 1

E

˙
. (4.17)

Recall that β “ β̃ ` 1t¨ “ 0uγ2. Then, remark that

νWd

ˆ
γ2 ď E

4

˙
“ νWd

ˆ
1

2γ2
ě 2

E

˙
ď νWd

ˆ
1

2γ2
´ GpLq,Dp0, 0q ě 1

E

˙
` νWd

ˆ
GpLq,Dp0, 0q ě 1

E

˙
. (4.18)
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Then, using (4.18) in (4.17), we obtain

nW,dpEq ě 1

|ΛL|
ˆ
νWd

ˆ
γ2 ď E

4

˙
´ νWd

ˆ
1

2γ2
´ GpLq,Dp0, 0q ě 1

E

˙˙
. (4.19)

First, let us focus on the term νWd

´
1

2γ2
´ GpLq,Dp0, 0q ě 1

E

¯
. We shall prove that this is negligible.

By Cramer’s formula, νWd -a.s it holds that

GpLq,Dp0, 0q “ G̃pLq,Dp0, 0q
1 ` 2γ2G̃pLq,Dp0, 0q .

Therefore, νWd -a.s

1

2γ2
´ GpLq,Dp0, 0q “ 1

2γ2

´
1 ` 2γ2G̃pLq,Dp0, 0q

¯ ď 1

4γ22G̃
pLq,Dp0, 0q . (4.20)

Consequently, by (4.20) and as γ2 is independent of G̃pLq,Dp0, 0q, we get

νWd

ˆ
1

2γ2
´ GpLq,Dp0, 0q ě 1

E

˙
ď νWd

´
4γ22G̃

pLq,Dp0, 0q ď E
¯

“
ż `8

0
νWd

ˆ
G̃pLq,Dp0, 0q ď E

4x2

˙
e´x

?
πx

dx. (4.21)

Let x P R
˚̀ . Now, we have to control νWd

´
G̃pLq,Dp0, 0q ď E

4x2

¯
. Recall from Lemma 4.8 that

G̃pLq,Dp0, 0q can be interpreted as an effective resistance with conductances c on ΛL Y tδLu. For
every k P N

˚, we denote by Πk the set of edges between Λk and Λk`1. Πk is what we call a cutset.
Indeed, it separates Λk and Λk`1. Then, by the Nash-Williams inequality (see (2.15) in [116]),

1

RLp0 ÐÑ δLq ď
ÿ

ePΠL´1

cpeq.

Consequently, by Lemma 4.8, νWd -a.s,

1

G̃pLq,Dp0, 0q ď
ÿ

ePΠL´1

cpeq. (4.22)

By inequality (4.22), we deduce that

νWd

ˆ
G̃pLq,Dp0, 0q ď E

4x2

˙
ď νWd

¨̊
˝

¨̋ ÿ
ePΠL´1

cpeq‚̨1{16

ě p2xq1{8

E1{16
‹̨‚. (4.23)

However, for s P p0, 1q, for any n P N
˚ and for any pλiq1ďiďn P R

n`,˜
nÿ

i“1

λi

¸s

ď
nÿ

i“1

λs
i .

Combining this with (4.23), we obtain

νWd

ˆ
G̃pLq,Dp0, 0q ď E

4x2

˙
ď νWd

¨̋ ÿ
ePΠL´1

cpeq1{16 ě p2xq1{8

E1{16 ‚̨
ď E1{16

p2xq1{8 ˆ
ÿ

ePΠL´1

EνWd

”
cpeq1{16

ı
. (4.24)
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However, by definition, for e “ tx, yu P ΠL´1, cpeq “ WΦp0,xqΦp0,yq
Φp0,0q2 . By (5.2) in [43], there exists

W
pdq
´ ą 0 such that for every W ă W

pdq
´ , there exist positive constants CW and τ̃W such that for

every x P Z
d,

EνWd

”
Φp0, xq1{4

ı
ď CW e´τ̃W ||x||. (4.25)

In the particular case of the dimension 1, by [40], for every x P Z, it holds that

Φp0, xq law“
||x||ź
k“0

Ak

where pAkqkPN are i.i.d random variables with inverse Gaussian distribution with parameters
p1,W q. Consequently, for every x P Z,

EνWd

”
Φp0, xq1{4

ı
“

ˆ
K1{4pW q
K1{2pW q

˙||x||

where for every s P R, Ks is the modified Bessel function of the second type with index s.
Moreover, K1{4pW q

K1{2pW q ă 1 for any W . Thus, W p1q
´ “ `8.

For now, let us assume that W ă W
pdq
´ . By (4.25) and Cauchy-Schwarz inequality, there exist

C ą 0 and τ ą 0 which depend on W but do not depend on L such that for any e P ΠL´1,

EνWd

”
cpeq1{16

ı
ď Ce´τL. (4.26)

Combining, (4.24) and (4.26), there exists C 1 ą 0 such that

νWd

ˆ
G̃pLq,Dp0, 0q ď E

4x2

˙
ď E1{16

p2xq1{8dCLd´1e´τL

ď C 1 E1{16

p2xq1{8 e
´pτ{2qL. (4.27)

Now, we choose L “ 1 ` X
19
8τ | lnpEq|\. Then, for any x ě E2{2,

E1{16

p2xq1{8 e
´pτ{2qL ď E1{16

E1{4 E19{16 “ E. (4.28)

Therefore, if L “ 1 ` X
19
8τ | lnpEq|\, by (4.27) and (4.28), for any x ě E2{2,

νWd

ˆ
G̃pLq,Dp0, 0q ď E

4x2

˙
ď C 1E. (4.29)

Consequently, using (4.29) in (4.21), we deduce there exists a constant C2 ą 0 such that

νWd

ˆ
1

2γ2
´ GpLq,Dp0, 0q ě 1

E

˙
ď C 1E `

ż E2{2

0

e´x

?
πx

dx ď C2E. (4.30)

Recall we chose L “ 1 ` X
19
8τ | lnpEq|\. Then, using (4.30) in (4.19), we get

nW,dpEq ě 1`
19
8τ | lnpEq|˘d `

νWd pγ2 ď E{4q ´ C2E
˘
. (4.31)
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Moreover, as E ď 1,

νWd pγ2 ď E{4q “
ż E{4

0

e´x

?
πx

dx

ě e´1{4
ż E{4

0

1?
πx

dx

“ e´1{4
?
E?
π
. (4.32)

Together with (4.31), this concludes the proof.

4.8 Proof of Proposition 4.5

Strategy of the proof : The proof of Proposition 4.5 is based on the fact that we can control
the Green function Ĝ associated with the ground state E “ 0 of Hβ. This is always true that
Ĝp0, 0q ď Φp0, 0q. Recall from Proposition E that 1{p2Φp0, 0qq has a Γp1{2, 1q distribution. This
random variable has moments 1{2 ´ δ for every δ ą 0. This explains why we have the general
bound

?
E for the density of states. However, when W is very large, by [54], this is possible to

have better upper bounds for Ĝp0, 0q. This enables us to improve the bound on the density of
states.

Proof.
For every η ą 0, we have νWd -a.s,ż `8

0

1

η ` u
dμδ0puq “ pHβ ` ηq´1p0, 0q. (4.33)

By Theorem 2 in [154], we know that pHβ`ηq´1p0, 0q ÝÑ
ηÑ0

Ĝp0, 0q, νWd -a.s. Moreover, by monotone

convergence theorem, ż `8

0

1

η ` u
dμδ0puq ÝÑ

ηÑ0

ż `8

0

1

u
dμδ0puq.

Together with (4.33), this implies that, νWd -a.s,ż `8

0

1

u
dμδ0puq “ Ĝp0, 0q. (4.34)

Taking the expectation we obtain,ż `8

0

1

u
dαW,dpuqdu “ EνWd

”
Ĝp0, 0q

ı
.

However, recall from Theorem A that pĜpLqp0, 0qqLPN is the bracket of the martingale pψpLqp0qqLPN.
Moreover, by Theorem 1 in [54] (see Lemma 9 in [154] for a more precise explanation.), if d ě 3,
there exists W

pdq
` ą 0 such that for every W ą W

pdq
` , pψpLqp0qqLPN is bounded in L2 and thus

EνWd

”
Ĝp0, 0q

ı
ă `8. Moreover, as αW,d is a probability measure, by Markov inequality, for every

W ą W
pdq
` ,

nW,dpEq ď E

ż `8

0

1

u
dαW,dpuq

“ E ˆ EνWd

”
Ĝp0, 0q

ı
.

This concludes the proof.
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4.9 Proof of Theorem 4.6

In this section, we fix W P R
˚̀ . The proof of Theorem 4.6 follows the classical method of

Aizenman which is explained in details in [6]. Thanks to the two first following lemmas, we prove
a property of bidimensional 1{2-regularity for the potential β. Then we can use Theorem 8.3 of
[6] and use a finite volume method which is very similar to the proof of Theorem 11.1 in [6].

For any x, y P Z
d with x ‰ y, let us define Fx,y the sigma field σ pβl, l R tx, yuq. Then we have

the following lemma giving the form of the two-sites conditional density of the β-field. The proof
follows the ideas of the one-site case but it is a little more involved.

Lemma 4.10. Let us assume that pβlqlPZd has distribution νWd . Let x, y P Z
d such that x ‰ y.

Then, there exists random variables W̌x, W̌y, W̌x,y and η̌ “ pη̌x, η̌yq which are Fx,y-measurable
such that, conditionally on Fx,y, pζx, ζyq “ pβx ´ W̌x{2, βy ´ W̌y{2q has density :

1t4vxvy ą W̌ 2
x,yu 2

π
exp

˜
´pvx ` vy ´ W̌x,yq ´ xη̌, Rvη̌y

8vxvy ´ 2W̌ 2
x,y

¸
1b

4vxvy ´ W̌ 2
x,y

exη̌,1ydvxdvy

where 1 stands for the vector p1, 1q and Rv stands for the matrix
ˆ

2vy W̌x,y

W̌x,y 2vx

˙
.

Proof.
Let L P N

˚ such that ΛL includes x and y. For every l P ΛL, let us define

η̂plq “
ÿ

k„l,kPΛcL
W.

Let us write FL
x,y the sigma-field σ pβk, k P ΛL, k R tx, yuq. By Lemma C, conditionally on FL

x,y,

pβx, βyq has distribution ν̃W̌
pLq,η̌L

tx,yu where

W̌ pLq
x,y “ W1tx „ yu ` W 2

ÿ
l„x
l‰y

ÿ
k„y
k‰x

ĜΛLztx,yupk, lq

and if a P tx, yu, then
W̌ pLq

a “ W 2
ÿ
l„a

lRtx,yu

ÿ
k„a

kRtx,yu

ĜΛLztx,yupk, lq.

Moreover , if a P tx, yu,

η̌Lpaq “ W
ÿ
k„a

kRtx,yu

ÿ
lPΛLztx,yu

ĜΛLztx,yupk, lqη̂plq.

Recall that ĜΛLztx,yu is the inverse of Hβ restricted to ΛLztx, yu. By definition of ν̃W̌
pLq,η̌L

tx,yu , the
density of pζx, ζyq has the right form. We only have to justify that W̌ pLq and η̌L converge νWd -a.s
when L goes to infinity. First, let us remark that pW̌ pLqqLPN˚ has increasing components. (This
can be proved thanks to path expansions. See Proposition 6 in [154].) Moreover, the components
of pW̌ pLqqLPN˚ are bounded νWd -a.s. For example, regarding the component of W̌ at point x, for
any L P N

˚,
W̌ pLq

x ď W ` W 2
ÿ
l„x
l‰y

ÿ
k„x
k‰y

Ĝpl, kq ă `8, νWd ´ a.s.
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Of course, we can do the same thing for the component of W̌ at point y. Therefore, pW̌ pLqqLPN˚
converges νWd -a.s. The case of pη̌LqLPN˚ is more complicated. For every L P N

˚ and for every
neighbour k of x or y which is not in tx, yu, let us introduce

ψ
pLq
tx,yupkq “

ÿ
l„x
l‰y

ĜΛLztx,yupk, lqW `
ÿ
l„y
l‰y

ĜΛLztx,yupk, lqW `
ÿ

lPΛLztx,yu
ĜΛLztx,yupk, lqη̂L.

By Lemma 6 in [154], for every neighbour k of x or y which is not in tx, yu, pψpLq
tx,yupkqqLPN˚ is a

positive martingale. Therefore, it converges. Moreover, remark that¨̊
˚̋ÿ

l„x
l‰y

ĜΛLztx,yupk, lqW `
ÿ
l„y
l‰y

ĜΛLztx,yupk, lqW ‹̨‹‚
LPN˚

is almost surely increasing and bounded. (Again, this can be proved thanks to path-expansions.)
Thus it converges. Combining this with the fact that pψpLq

tx,yupkqqLPN˚ converges νWd -a.s, we get
that for every neighbour k of x or y which is not in tx, yu,¨̋ ÿ

lPΛLztx,yu
ĜΛLztx,yupk, lqη̂L‚̨

LPN˚

converges νWd -a.s. This implies directly the convergence of pη̌LqLPN˚ .

Let us denote by �2 the conditional distribution obtained in Lemma 4.10. If vy P R (resp.
vx P R), we denote by �2p¨|vyq (resp. �̂2p¨|vxq) the distribution �2 conditionally on the fact that
the second coordinate equals vy (resp. the first coordinate equals vx). The following lemma states
a property of bidimensional 1{2-regularity for the potential β. Unidimensional 1{2-regularity was
already proved in Lemma 3.13.

Lemma 4.11. There exists C ą 0 such that for every t ě 0, for all vx, vy P R,

�2psvx ´ t, vx ` tr|vyq ď Ct1{2 and �̂2psvy ´ t, vy ` tr|vxq ď Ct1{2.

Proof.
By symmetry, we only need to show one of the inequalities. Let pvx, vyq P R

2. Let t ě 0. Let us
denote by �̃2 the density associated with the measure �2 which has been obtained in Lemma 4.10.
Then, by a change of variable,

ż vx`t

vx´t
�̃2pv, vyqdv “

ż vx´ W̌2
x,y

4vy
`t

vx´ W̌2
x,y

4vy
´t

�̃2pv ` W̌ 2
x,y{p4vyq, vyqdv. (4.35)

However, by Lemma 4.10, �̃2pv ` W̌ 2
x,y{p4vyq, vyq is equal to

1tvvy ą 0u 2

π
a
4vvy

exp

¨̋
´v ´ W̌ 2

x,y

4vy
´ vy ` W̌x,y ´

vyη̌
2
x `

´
v ` W̌x,y

4vy

¯
η̌2y ` W̌x,yη̌xη̌y

4vvy
` η̌x ` η̌y‚̨.

Remark that the expression inside the exponential above can be rewritten as

´1

v

ˆ
v ´ 1

2

ˆ
η̌x ` W̌x,yη̌y

2vy

˙˙2

´ 1

vy

ˆ
vy ´ 1

2

`
η̌y ` W̌x,y

˘˙2

. (4.36)
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Consequently, by (4.36), for every v P R,

�̃2pv ` W̌ 2
x,y{p4vyq, vyq

“ 1tvvy ą 0u 1

π
?
vvy

exp

˜
´1

v

ˆ
v ´ 1

2

ˆ
η̌x ` W̌x,yη̌y

2vy

˙˙2

´ 1

vy

ˆ
vy ´ 1

2

`
η̌y ` W̌x,y

˘˙2
¸
.

(4.37)

However,

1tvy ą 0u 1?
πvy

exp

˜
´ 1

vy

ˆ
vy ´ 1

2

`
η̌y ` W̌x,y

˘˙2
¸

is the density of
1

2 ˆ IG
´

1
W̌x,y`η̌y

, 1
¯

where IGpa, bq is an inverse Gaussian distribution with parameter pa, bq. Further, by Lemma C,
this is exactly the density �̃1 of ζy conditionally on Fx,y. Therefore, combining (4.37) and (4.35),
we get

ż vx`t

vx´t
�̃2pv, vyqdv “ �̃1pvyq ˆ

ż vx´ W̌2
x,y

4vy
`t

vx´ W̌2
x,y

4vy
´t

1tv ą 0u 1?
πv

exp

˜
´1

v

ˆ
v ´ 1

2

ˆ
η̌x ` W̌x,yη̌y

2vy

˙˙2
¸
dv

ď �̃1pvyq ˆ
ż vx´ W̌2

x,y
4vy

`t

vx´ W̌2
x,y

4vy
´t

1tv ą 0u 1?
πv

dv. (4.38)

Moreover, the density of �2p¨|vyq is v ÞÑ �̃2pv, vyq{�̃pvyq. Therefore, (4.38) implies directly that

�2pvx ´ t, vx ` t|vyq ď
ż vx´ W̌2

x,y
4vy

`t

vx´ W̌2
x,y

4vy
´t

1tv ą 0u 1?
πv

dv. (4.39)

Further, remark that a ÞÑ şa`t
a´t 1tv ą 0u 1?

πv
dv is bounded by

ż 2t

0

1?
πv

dv “ 2
?
2?
π

?
t.

Together with (4.39), this concludes the proof.

For every x P Z
d, let us denote by Fx,x, the sigma field σpβl, l P Z

d, l ‰ xq. Lemma 4.11
implies the following lemma :

Lemma 4.12. There exists a constant κ ą 0 such that for any W ą 0, for any z P CzR, for any
x, y P Z

d, for every subset B Ă Z
d, νWd -a.s,

EνWd

”
|GB,zpx, yq|1{4|Fx,y

ı
ď κ.

Proof.
This is a direct consequence of our Lemma 4.11 and Corollary 8.4 in [6].

The following lemma states a finite-volume condition (on only one site) which will be necessary
in the proof of Theorem 4.6.
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Lemma 4.13. For every W ą 0 and for every E ą 0,

EνWd

„
1

|2β0 ´ E|1{4

j
ă `8.

Moreover, for every W ą 0,

lim
EÑ`8 EνWd

„
1

|2β0 ´ E|1{4

j
“ 0.

Proof.
Recall that 2β0 is distributed as 1

IGp1{p2dW q,1q . (By Lemma C.) This means that 2β0 has density

1tx ą 0u 1?
2πx

e´ px´2dW q2
2x . (4.40)

Let E ą 0. The finiteness of EνWd

”
1

|2β0´E|1{4

ı
is straightforward from (4.40). Now, we can write

EνWd

„
1

|2β0 ´ E|1{4

j
“

ż `8

0

1?
2πx

1

|x ´ E|1{4 e
´ px´2dW q2

2x dx

ď e2dW ˆ
ż `8

0

1?
2πx

1

|x ´ E|1{4 e
´x

2 dx

“ e2dW ˆ pI1 ` I2 ` I3q (4.41)

where I1 “ şE{2
0 fpxqdx, I2 “ şE

E{2 fpxqdx and I3 “ ş`8
E fpxqdx with fpxq “ 1?

2πx
1

|x´E|1{4 e
´x

2 .
First, let us majorize I1.

I1 “
ż E{2

0

1?
2πx

1

|x ´ E|1{4 e
´x

2 dx

ď 1

pE{2q1{4 ˆ
ż `8

0

1?
x
e´x{2dx. (4.42)

The bound (4.42) tends to 0 as E goes to `8. Now, let us look at I2.

I2 “
ż E

E{2
1?
2πx

1

|x ´ E|1{4 e
´x

2 dx

ď 1?
2π

pE{2q´1{2e´E{4
ż E{2

0

1

x1{4dx

ď 4

3
?
π
E1{4e´E{4. (4.43)

The bound (4.43) tends to 0 as E goes to `8. Now, let us look at I3.

I3 “
ż `8

E

1?
2πx

1

|x ´ E|1{4 e
´x

2 dx

“
ż `8

0

1a
2πpx ` Eq

1

x1{4 e
´ px`Eq

2 dx

ď 1?
2π

E´1{2e´E{2
ż `8

0

1

x1{4 e
´x{2dx. (4.44)

The upper bound (4.44) also goes to 0. Thus, this concludes the proof.
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Now, we are able to prove Theorem 4.6. The idea of the proof is not new and follows basically
the lines of Theorem 11.1 in [6]. However, our setting is slightly different. Indeed, under νWd ,
pβxqxPZd is not an independent potential as in [6]. For every z P CzR, let us introduce

tp|z|q “ 2dκW 1{2| �Ept0u`q|EνWd

„
1

|2β0 ´ |z||1{4

j
where κ is the constant introduced in Lemma 4.12 and | �Ept0u`q| is the number of oriented edges
going from t0u` to its complement.

Proof.
Let W ą 0. By Lemma 4.13, there exists Ed,W ą 0 such that for every E ě Ed,W , tpEq ď 1{2.
Let z P CzR with modulus |z| ě Ed,W . Let x and y be two points of R

d. We assume that
||x ´ y||1 ě 3. (Otherwise, the following procedure will not make any sense.) Now, let us apply
Proposition G with B “ Z

d and A “ txu and the fact that for s P p0, 1q, for any n P N
˚ and for

any pλiq1ďiďn P R
n`, ˜

nÿ
i“1

λi

¸s

ď
nÿ

i“1

λs
i .

We obtain

EνWd

”
|Gzpx, yq|1{4

ı
ď W 1{2 ÿ

u1„x
pv1,vqP 
Eptxu`q

EνWd

„
1

|2βx ´ z|1{4 |Gzpu1, v1q|1{4|GZdztxu`,zpv, yq|1{4
j
. (4.45)

However, by Lemma 4.12, for every u1, v1 P Z
d, νWd -a.s,

EνWd

”
|Gzpu1, v1q|1{4|Fu1,v1

ı
ď κ. (4.46)

Moreover, for every pu, u1q P �Eptxuq and for every pv1, vq P �E ptxu`q, 2βx and GZdztxu`,zpv, yq are
measurable with respect to Fu1,v1 . Consequently, (4.45) and (4.46) yield

EνWd

”
|Gzpx, yq|1{4

ı
ď W 1{2κ

ÿ
u1„x

pv1,vqP 
Eptxu`q
EνWd

„
1

|2βx ´ z|1{4 |GZdztxu`,zpv, yq|1{4
j
. (4.47)

Moreover, under νWd , the β-field is 1-dependent. Further, remark that the sets txu and Z
dztxu`

are not related by any edge of Zd. Therefore, by (4.47), we get,

EνWd

”
|Gzpx, yq|1{4|

ı
ď 2dW 1{2κEνWd

„
1

|2βx ´ z|1{4

j ÿ
pv1,vqP 
Eptxu`q

EνWd

”
|GZdztxu`,zpv, yq|1{4

ı
ď 2dW 1{2κEνWd

„
1

|2βx ´ |z||1{4

j ÿ
pv1,vqP 
Eptxu`q

EνWd

”
|GZdztxu`,zpv, yq|1{4

ı

ď tp|z|q

ř
pv1,vqP 
Eptxu`q

EνWd

”
|GZdztxu`,zpv, yq|1{4

ı
| �E ptxu`q | . (4.48)

Remark that we can iterate (4.48) at least ||x´y||1
2 times. (We can not iterated this method an

infinite number of times because it is possible that ||v ´ y||1 ă 3.) Then, there exists a finite set
I, a family pviqiPI P pZdqI and a family pAiqiPI of subsets of Zd such that

EνWd

”
|Gzpx, yq|1{4

ı
ď tp|z|q||x´y||1{2 ˆ

ř
iPI

EνWd

“|GAi,zpvi, yq|1{4‰
|I| . (4.49)
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Then, combining (4.46) and (4.49), we get

EνWd

”
|Gzpx, yq|1{4

ı
ď κ ˆ tp|z|q||x´y||1{2. (4.50)

Moreover, recall that tp|z|q ď 1{2 because |z| ě Ed,W . This proves that Gz is exponentially
localized if |z| ě Ed,W . This is exactly what we wanted to prove. Then, the analoguous result
where z is replaced by E ` i0 stems from Fatou’s lemma.



Chapitre 5

One-dimensional scaling limit of the
operator Hβ

Abstract

This chapter is based on a joint work with Christophe Sabot which should be published in a
forthcoming paper. Following the previous approach of Lupu, Sabot and Tarrès in [113], we focus
on the scaling-limit of the potential β associated with the VRJP on one-dimensional graphs as
the line or circles. By considering a relevant scaling of β, we obtain a new suprising proof of the
Matsumoto-Yor properties which were proved in [122]. We use also the scaling-limit of β in order
to prove new identities in law involving exponential functionals of the Brownian motion. Moreover,
by means of the same scaling, we can contruct a continuous-space version of Hβ on circles and on
R whereas in [113] they constructed only the continuous-space version of the random environment
of the VRJP. Furthermore, we compute the integrated density of states of this operator on R.

5.1 Introduction

This paper is concerned with the construction and investigation of scaling limits of the random
Schrödinger operator associated with the Vertex Reinforced Jump Process (VRJP) on some
one-dimensional sets (the one-dimensional torus and the real line). We start by briefly recalling
the definition of the VRJP : let pV,Eq be a non-directed locally finite graph and pWi,jqi,jPV be a
family of non-negative conductances such that Wi,j ą 0 if and only if ti, ju P E. The VRJP is
the continuous self-reinforced random walk pYsqsě0 which is defined as follows : the VRJP starts
from some vertex i0 P V and conditionally on the past before time s, it jumps from a vertex i to
one of its neighbour j at rate Wi,jLjpsq where

Ljpsq “ 1 `
ż s

0
1tYu “ sudu.

In [152], it was shown, firstly, that the VRJP is closely related to the Edge Reinforced Random
Walk, a famous reinforced process introduced by Diaconis and Coppersmith in the 80’s, and
secondly, that after some time change the VRJP can be represented as a mixture of Markov Jump
Processes with a mixing measure given by a marginal of a supersymmetric sigma-field called the
H

2|2 model which was introduced by Zirnbauer in [56, 172] and investigated by Disertori, Spencer
and Zirnbauer in [54, 53]. A complementary, but closely related, representation of the VRJP in
terms of a random Schrödinger operator was provided in [153] on finite graphs. More precisely, if
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pV,Eq is a non-directed finite graph and pWi,jqi,jPV some conductances on the edges, then for any
potential β “ pβiqiPV on the vertices, we define the discrete Schrödinger operator pHβpi, jqqi,jPV
by

Hβpi, jq “ 1ti “ ju2βi ´ 1ti „ juWi,j .

In [153], an explicit probability measure on the set of potentials β is defined (see Proposition 5.1
below). This measures lives on the set where Hβ is positive definite, it has several remarkable
properties which we recall in section 5.2.2, and it gives a representation of the VRJP in the
following sense. After some time-change, the VRJP starting at a vertex i0 is a mixture of Markov
jump process with jump rates from i to j given by :

1

2
Wi,j

Gβpi0, jq
Gβpi0, iq ,

where β is the random potential and Gβ “ pHβq´1. That representation, and its generalization
to infinite graphs (see [154]), has played an important role in order to understand the asymptotic
behavior of the VRJP (see in particular [154, 139]).

In this paper, we will be mainly concerned by that representation and its scaling limits. The
question of the scaling limits of the VRJP and its representation is rather natural, but remains
still quite mysterious. In [113], the scaling limit of the VRJP itself was analysed. With this goal,
the scaling limit of its mixing field, i.e. of the limit of the function pGβp0, tntuq{Gβp0, 0qqtPR was
described on the real line in terms of the geometric Brownian motion. Here, we investigate the
scaling limit of Hβ and Gβ as random operators, both on the one-dimensional torus and the real
line. More precisely, the main results of the paper are summarized below :

— By scaling limits, we construct an explicit continuous-space version of the operator Hβ and
its inverse Gβ on circles, and on the real line. We describe the domains of these operators
on the circle, while we still face some technical difficulties to describe the domains in
the case of the real line. However, we hope to solve this problem in the near future.
Note that the one-dimensional torus is not a tree, which induces specific difficulties (the
representation of the VRJP on trees is considerably simpler), and that in the case of the
real line, we get the full description of the operators, while in [113], only the scaling limit of
pGβp0, tntuq{Gβp0, 0qqtě0 was considered in order to analyse the continuous-space VRJP.

— A natural problem regarding Hβ consists in investigating its spectral properties as a
self-adjoint operator. In particular, spectral properties of self-adjoint operators are very
important, for example if we want to understand the dynamical properties of a quantum
particle whose wave-function follows the Schrödinger equation. In this paper, we compute
the exact density of states of the limiting operator Hβ on R, which has a surprisingly
simple form. To do so, we follow a method which is very similar with what is done in [71]
for the continuous Anderson model.

— In the discrete-space case, many identities in law involving the β potential are known.
Taking the scaling-limit in these formulas, we prove new identities in law involving
exponential functionals of the Brownian motion. These identities generalize the famous
Dufresne identity (originally proved in [57]) which states thatż 8

0
e2αs´sds

law“ 1

2γ

where α is a Brownian motion and γ is a Gamma distribution with parameters p1{2, 1q.
— Considering the scaling limit of the β-potential on N

˚, we give a new proof of the
Matsumoto-Yor properties (see [121] and [122]), which concern exponential functionals of
the Brownian motion. More precisely, we give a discrete time version of the Matsumoto-Yor
properties which involves natural functions of the β-potential. Specified to our context,
the Matsumoto-Yor properties state that the process Zt “ Tt

et
, where e is the geometric
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Brownian motion and Tt “ şt
0 e

2
sds, is a Markov process in its own filtration. Moreover the

filtration of Z is stricly smaller than the filtration of e, and there is an explicit intertwining
between e and Z involving Inverse Gaussian distributions. While somehow mysterious
at first sight, Matsumoto-Yor properties seem to be rather fundamental and have been
generalized in different directions, in particular in relation with properties of Lie groups
and solvable polymer models (see [134, 23, 22]). Note that some Mastumoto-Yor properties
on graphs also appear in a different way in Chapter 6 of this thesis.

Finally, let us mention some related works concerning a different operator, the continuous
Anderson model on R (where the random potential is given by a white noise). In [58], Dumaz and
Labbé gave a very accurate description of the spectrum and of the eigenstates for this operator.
It is probably possible to apply their ideas in order to give the precise behaviour of the spectrum
of the continuous-space version of Hβ . However we do not do it in this article. Furthermore, an
interesting question would be to find continuous versions of Hβ on topological spaces which are
not one-dimensional. In the case of the Anderson model, in [105], Labbé managed to do it on
p´L,Lqd with d P t1, 2, 3u and L ą 0. It would be interesting to know if it is possible to do the
same thing for Hβ but this question remains open for now.

5.2 Context and statement of the results

5.2.1 General notation

For every n P N
˚, Cn denotes the circle graph with 2n ` 1 points. More precisely, the vertex

set of Cn is t´n, ¨ ¨ ¨ , 0, ¨ ¨ ¨ , nu and for every i P t´n, ¨ ¨ ¨ , 0, ¨ ¨ ¨ , n ´ 1u there is an edge between
i and i` 1 and there is an edge between n and ´n. In any graph pV,Eq the fact that two vertices
i and j are related by an edge is denoted by i „ j.

If V1 and V2 are two finite sets and H is a matrix indexed by V1 ˆV2, we denote the coefficient
of H at pi, jq P V1 ˆ V2 by Hpi, jq. If H is a squared symmetric matrix on a set V , then we write
H ą 0 (resp. H ě 0) when H is positive definite (resp. when H is non-negative). If H is a squared
matrix, its determinant is denoted by |H|. If V is a finite set and v1 and v2 are two vectors of
R
V , the standard scalar product between v1 and v2 is denoted by xv1, v2y. If H is a matrix on a

finite set V ˆ V and if V1 and V2 are two subsets of V , the restriction of H to V1 ˆ V2 is denoted
by HV1,V2 . Moreover, if v is a vector of RV and V1 is a subset of V , then the restriction of v to V1

is denoted by vV1 .
We denote by Cpλq the continuous circle R{2λR. For sake of convenience, we will often write

Cpλq as r´λ, λs (for example when we write integrals) where it is implicit that ´λ and λ are
topologically identified. If t, t1 P Cpλq we write sometimes t ď t1 or t ă t1 refering to the natural
order on r´λ, λs.

Recall that an Inverse Gaussian distribution with parameters pμ, λq has density

1tx ą 0u
?
λ?

2πx3
e

´λ px´μq2
2xμ2 dx.

The Inverse Gaussian distribution with parameters pμ, λq will be denoted by IGpμ, λq. Recall
that E rIGpμ, λqs “ μ and E

“
IGpμ, λq2‰ “ μ2 ` μ3

λ .

5.2.2 The random potential β

Let pV,Eq be a finite graph with n vertices. Let W be a matrix of symmetric non-negative
weights pWi,jqi,jPV ˆV such that Wi,j ą 0 if and only if ti, ju P E. For every β P R

V`, let us define
the matrix Hβ on V ˆ V such that for every i, j P V ,

Hβpi, jq “ 1ti “ ju2βi ´ Wi,j . (5.1)
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For every β P R
V` such that Hβ is positive definite, one can define its inverse Gβ which has

only positive entries. In [153], in order to study the VRJP, Sabot, Tarrès and Zeng introduced a
probability measure νWV on R

V` which will be crucial in this paper. It is defined by means of the
following proposition :

Proposition 5.1 (Proposition 1 and Theorem 3 in [153]).

(i) The function

β ÞÑ
ˆ
2

π

˙n{2
1tHβ ą 0ue´ 1

2
x1,Hβ1y 1a|Hβ| (5.2)

is a density. In the formula (5.2), 1 stands for the vector of RV whose entries are all equal
to 1. There exists a probability measure νWV on R

V` which is associated with the density of
equation (5.2).

(ii) One can compute explicitely the Laplace transform of νWV . For every t P R
V`,

ż
e´xt,βyνWV pdβq “ exp

¨̋
´1

2

ÿ
ti,juPE

Wi,j

´b
pti ` 1qptj ` 1q ´ 1

¯‚̨ź
iPV

1?
1 ` ti

. (5.3)

In this article, we will often make a small abuse of notation by using the notation β to designate
a random vector and a variable inside the density of this random vector. Now, let β be a random
vector with distribution νWV .

(iii) For every i P V , 1{p2βi ´ Wi,iq is an Inverse Gaussian ditribution with parameters˜
1ř

i‰j
Wi,j

, 1

¸
.

(iv) The random potential β is 1-dependent, that is, if V1 and V2 are two subsets of V which are
not related by an edge, then pβiqiPV1 and pβiqiPV2 are independent.

(v) For every i P V ,

Gβpi, iq law“ 1

2γ

where γ is a Gamma distribution with parameters p1{2, 1q.
In [153], Sabot, Tarrès and Zeng used the β-potential in order to study the VRJP on any

finite graph V . They showed that the VRJP (actually a time-changed version of the VRJP) on V
starting from i0 P V with weight matrix W is a mixture of random processes which jumps from i
to j at rate

Wi,j

2

Gβpi0, jq
Gβpi0, iq .

It is natural to wonder whether there exists a similar representation of the VRJP on infinite
graphs. In [154], Sabot and Zeng proved that this is possible to extend the measure νWV on an
infinite graph which enables us to look at the interesting case of Zd.

Proposition 5.2 (Section 4.2 in [154]). Let pV,E,W q be an infinite locally finite graph with
conductances where W is a symmetric conductance operator pWi,jqi,jPV such that Wi,j ą 0 if and
only if ti, ju P E. Then, there exists an infinite-volume measure νWV on R

V` such that for every
finite subset V1 which is included in V , for any t P R

V1` ,ż
e´xt,βyνWV pdβq “ e

´ 1
2

ř
ti,juPE

Wi,jp?pti`1qptj`1q´1q´ ř
ti,juPE,jRV1

Wi,jp?
ti`1´1q ź

iPV1

1?
1 ` ti

. (5.4)
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Now, let pVnqnPN be an increasing sequence of boxes such that
Ť
nPN

Vn “ V . For every n P N,

for every i, j P V let us define

Ĝ
pnq
β pi, jq “ pHβq´1

Vn,Vn
pi, jq

if i, j P Vn and Ĝ
pnq
β pi, jq “ 0 otherwise. Moreover, for every n P N, let us define ψ

pnq
β as the

unique solution of the equation

pHβψ
pnq
β qpiq “ 0, for every i P Vn,

ψ
pnq
β piq “ 1, for every i P V c

n .

Note that for every n P N, and for every i P Vn, there is another useful expression of ψpnq
β piq which

is

ψ
pnq
β piq “

ÿ
jPVn

Ĝ
pnq
β pi, jqηpnq

j

where for every j P Vn, ηpnq
j “ ř

k„j,jRVn
Wj,k. These objects were introduced by Sabot and Zeng in

[154] and were crucial in order to study the VRJP on infinite graphs because of the following
proposition :

Proposition 5.3 (Proposition 9 and Theorem 1 in [154]). Let β „ νWV . It holds that,

(i) For every i P V , pψpnq
β piqqnPN is a non-negative martingale. In particular, it has almost surely

a limit ψβpiq.
(ii) The bracket of pψpnq

β qnPN is pĜpnq
β qnPN in the sense that for every i, j P V , pψpnq

β piqψpnq
β pjq ´

Ĝ
pnq
β pi, jqqnPN is a martingale.

(iii) The VRJP is almost surely recurrent if and only if almost surely ψβpiq “ 0 for every i P V .

(iv) The VRJP is almost surely transient if and only if almost surely ψβpiq ą 0 for every i P V .

(v) Let γ be a Gamma random variable with parameters p1{2, 1q which is independent of β. For
every i, j P V , let us define

Gβ,γpi, jq “ Ĝβpi, jq ` 1

2γ
ψβpiqψβpjq.

Then, the VRJP on V starting from i0 P V with weight matrix W is a mixture of random
processes which jumps from i to j at rate

Wi,j

2

Gβ,γpi0, jq
Gβ,γpi0, iq .

In this article, we want to understand what is going on when we consider a scaling limit for
the β-field on a one-dimensional graph. We will show that it is possible to define a continuous
version of Hβ on R or continuous circles. But before that, we prove a discrete-time version of the
Matsumoto-Yor properties by means of the β-field on N

˚, pψpnq
β qnPN and pĜpnq

β qnPN. We will take
a scaling limit in this discrete-time version in order to recover the continuous-time version of the
Matsumoto-Yor properties. This strong connection between the β-field and the Matsumoto-Yor
properties explains the origin of the surprising identities in law in the forthcoming subsection
5.2.4.4.
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5.2.3 A new approach of the Matsumoto-Yor properties in relation with the
mixing measure of the VRJP

First let us recall the Matsumoto-Yor properties. Let α be a standard Brownian motion on R`.
Then we can define the associated geometric Brownian motion e as petqtě0 “ pexppαt ´ t{2qqtě0.
Moreover, let us define the related exponential functionals T and Z such that for every t ą 0,

Tt “
ż t

0
e2sds and Zt “ Tt

et
. (5.5)

For every t ě 0, we define two sigma-fields At “ σ pαs, s ď tq and Zt “ σ pZs, s ď tq. Then,
Matsumoto and Yor proved the following results :

Theorem 5.4 (Theorem 1.6 and Proposition 1.7 in [122].).
(i) For every t ą 0, Zt Ř At.

(ii) Z is a diffusion process whose infinitesimal generator is

1

2
z2

d2

dz2
` p1 ` zq d

dz
.

(iii) For every t ą 0, the conditional distribution of et knowing Zt is an Inverse Gaussian
distribution with parameters p1, 1{Ztq. More precisely, for every t ą 0, the conditional
distribution of et knowing Zt is an Inverse Gaussian distribution with parameter p1, 1{Ztq,
i.e. it has density

1tx ą 0u 1?
2πZtx3

e
´ 1
Zt

px´1q2
2x dx.

Theorem 5.4 will be called "Matsumoto-Yor properties" in the sequel of this paper. Now, let us
give a discrete-time counterpart of those Matsumoto-Yor properties. Now, let m ą 0 and let Km be
a weight operator on the line graph N

˚ such that for every i P N
˚, Kmpi, i`1q “ Kmpi`1, iq “ m.

All other entries of Km are zero. Then we can define the random operator H
pmq
β on the discrete

half-line N
˚ associated with the random field β „ νKm

N˚ . We write H
pmq
β in bold letters in order to

avoid the confusion with H
pλ,nq
β on the discrete circle which shall be introduced later. Now, for

every n P N
˚, let us define Ĝ

pn,mq
β “

´
pHpmq

β q�1,n�,�1,n�

¯´1
. For every n P N

˚, we define also

ψ
pn,mq
β “ Ĝ

pn,mq
β p1, nqm and Z

pn,mq
β “ Ĝ

pn,mq
β p1, 1q
ψ

pn,mq
β

.

For every n P N
˚, we define

An,m “ σpψpk,mq
β , 1 ď k ď nq and Zn,m “ σpZpk,mq

β , 1 ď k ď nq.
By Proposition 5.3, pψpn,mq

β qnPN˚ is a martingale whose bracket is pĜpn,mq
β p1, 1qqnPN˚ . Remark

that it is analoguous to the case of the geometric Brownian motion in equation (5.5) because
petqtě0 is a martingale whose bracket is pTtqtě0. The interest of these discrete objects is that they
give a discrete version of the results of Matsumoto and Yor :

Proposition 5.5 (Discrete version of the Matsumoto-Yor properties). Let m P N
˚ be fixed.

(i) For every n P N
˚, Zn,m Ř An,m.

(ii)
´
Z

pn,mq
β

¯
nPN˚ is a Markov process. More precisely, for every n P N

˚, the law of Zpn`1,mq
β

conditionally on Zn,m is
Z

pn,mq
β

m
ˆ 1

IG

¨̋
1

m` 1

Z
pn,mq
β

, 1‚̨.
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(iii) For every n P N
˚, the conditional distribution of ψpn,mq

β knowing Zn,m is an Inverse Gaussian

distribution with parameters p1, 1{Zpn,mq
β q. More precisely, for every n P N

˚ the conditional

density of ψpn,mq
β knowing Zn,m is

1tx ą 0u 1b
2πZ

pn,mq
β x3

e
´ 1

Z
pn,mq
β

px´1q2
2x

dx.

Remark that Theorem 5.4 and Proposition 5.5 are very similar. Actually, we can recover
Theorem 5.4 by taking a scaling limit in Proposition 5.5 thanks to the following proposition :

Proposition 5.6. Let pψ̃pmqptqqtě0 and pZ̃pmqptqqtě0 be the continuous linear interpolations of
pψptmtu,mq

β qtě0 and pZptmtu,mq
β qtě0. Then, the following convergence does hold for the topology of

uniform convergence on compact sets :´
ψ̃pmqptq, Z̃pmqptq

¯
tě0

lawÝÝÝÝÝÑ
mÑ`8 pet, Ztqtě0 .

In section 5.5, we will prove Propositions 5.5 and 5.6. Moreover, we will use these results in
order to give a new proof of Theorem 5.4.

Remark 5.1. Thanks to the discrete processes pψpn,mq
β qnPN˚ and pZpn,mq

β qnPN˚, we were able
to define a discrete one-dimensional analogue of Matsumoto-Yor exponential functionals of the
Brownian motion and we recovered the results of Matsumoto and Yor by taking a scaling limit.
However, the processes pψpn,mq

β qnPN˚ and pZpn,mq
β qnPN˚ can be constructed on any graph and one

could prove (i) and (iii) of Proposition 5.5 on any graph. ( However, we do not know whether (ii) is
true on a general graph.) Consequently, we can define pψpn,mq

β qnPN˚ and pZpn,mq
β qnPN˚ for example

on Z
d with any d ě 2. If one could take a scaling limit on Z

d, it would give new contiuous-time
processes which should exhibit properties like (i) and (iii) in Theorem 5.4.

5.2.4 Scaling limit and continuous version of Hβ on the circle

5.2.4.1 Definition of the discrete operator on the circle

The main goal of this paper is to define a version of Hβ and Gβ on continuous unidimensional
spaces. In order to do this, we define a model on a discretized version of the circle and we
will make the size of the mesh go to 0. Let n P N

˚. Let λ ą 0. Let W
pλq
n be a matrix on the

discretized circle Crλns such that pW pλq
n qi,j is 0 if i and j are not connected and is n otherwise.

Let us denote H
pλ,nq
β the matrix associated with the random potential β with distribution νW

pλq
n

Crλns
.

Moreover, we denote by G
pλ,nq
β the inverse of Hpλ,nq

β . We define also a rescaled continuous bilinear

interpolation pG̃pλ,nq
β qt,t1PCpλq of

´
G

pλ,nq
β prnts, rnt1sq

¯
t,t1PCpλq . More precisely, if i{n ď t ă pi ` 1q{n

and j{n ď t1 ă pj ` 1q{n,

G̃
pλ,nq
β pt, t1q “ G

pλ,nq
β pi, jq ` npt ´ i{nq

´
G

pλ,nq
β pi ` 1, jq ´ G

pλ,nq
β pi, jq

¯
` npt1 ´ j{nq

´
G

pλ,nq
β pi, j ` 1q ´ G

pλ,nq
β pi, jq

¯
` n2pt1 ´ j{nqpt ´ i{nq

´
G

pλ,nq
β pi, jq ` G

pλ,nq
β pi ` 1, j ` 1q ´ G

pλ,nq
β pi, j ` 1q ´ G

pλ,nq
β pi ` 1, jq

¯
.

(5.6)
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5.2.4.2 Definition of the continuous limit

Let B be a Brownian motion on R such that Bp0q “ 0 almost surely. We define the geometric
Brownian motion M by

pMtqtPR “ peBt´t{2qtPR.
Let λ ą 0. Then, we introduce the symetric random kernel Gpλq on Cpλq by

Gpλqpt, t1q “ Mt1Mt

pMλ ´ M´λq2
˜
M2

λ

ż λ

t1

ds

M2
s

` MλM´λ

ż t1

t

ds

M2
s

` M2´λ

ż t

´λ

ds

M2
s

¸

for every t ď t1 P Cpλq.

5.2.4.3 Results of convergence

First, the rescaled continuous interpolation G̃
pλ,nq
β of the matrix G

pλ,nq
β has a limit in law when

n goes to infinity.

Theorem 5.7. Let λ ą 0. Then
G̃

pλ,nq
β

lawÝÝÝÝÑ
nÑ`8 Gpλq

for the topology of uniform convergence on
`
Cpλq˘2.

Moreover, Gpλq can be seen as a bilinear form with the following expression.

Proposition 5.8. Let λ ą 0. Let f P L2pr´λ, λsq. Thenż λ

´λ

ż λ

´λ
fptqGpλqpt, t1qfpt1qdtdt1

“ 1

pMλ ´ M´λq2
ż λ

´λ

1

M2
u

ˇ̌̌̌
M´λ

ż λ

u
fptqMtdt ` Mλ

ż u

´λ
fptqMtdt

ˇ̌̌̌2
du.

In particular, Gpλq is positive definite almost surely.

5.2.4.4 Dufresne’s type identities in law

In [57] (see also [167] for an alternative proof), Dufresne proved the following famous identity
in law : ż `8

0
e2αs´sds

law“ 1

2γ

where γ has Gamma distribution with parameters p1{2, 1q. Recall that, by Proposition (5.1), in
the discrete-time setting, Gpλ,nq

β pi, iq is also distributed as the inverse of a Gamma distribution
for every i P Crλns. Actually, this is not a coincidence and one can recover Dufresne’s identity by
making n go to infinity in G

pλ,nq
β pi, iq. Moreover, by means of the limiting random kernel Gpλq, we

can prove some new identities in law which generalize Dufresne’s identity.

Proposition 5.9. Let t P r´λ, λs. Then, the following identity in law does hold :

Gpλqpt, tq “ M2
t

pMλ ´ M´λq2
ˆ
M2

λ

ż λ

t

ds

M2
s

` M2´λ

ż t

´λ

ds

M2
s

˙
law“ 1

2γ

where γ is a Gamma distribution with parameters p1{2, 1q.
A particular case of Proposition 5.9 implies the following corollary :
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Corollary 5.10. If α is a standard Brownian motion on R`, then for every λ ą 0,ż λ

0
e2αs´sds`

eαλ´λ{2 ´ 1
˘2 law“ 1

2γ

where γ is a Gamma distribution with parameters p1{2, 1q.
Remark 5.2. The identity of Corollary 5.10 is not really new. Actually, it can be deduced
also from the Matsumoto-Yor properties. This second approach is also explained in the proof of
Corollary 5.10. Remark also that making λ go to infinity in Corollary 5.10 gives the Dufresne
identity. The fact that the second proof of Corollary 5.10 involves the Matsumoto-Yor properties
is not very surprising because we explained in section 5.2.3 that the Matsumoto-Yor properties
can be deduced from the β-field.

More generally, we can compute the distribution of xη,Gpλ,nq
β ηy for every η P pR˚̀ qCrλns .

Combining this with the limit obtained in Theorem 5.7 gives new identities for the geometric
Brownian motion.

Proposition 5.11. Let f be a deterministic continuous non-negative function on Cpλq. Then, the
following identity in law does hold :

1

pMλ ´ M´λq2
ż λ

´λ

1

M2
u

ˆ
M´λ

ż λ

u
fptqMtdt ` Mλ

ż u

´λ
fptqMtdt

˙2

du
law“

ˆż λ

´λ
fptqdt

˙2

2γ

where γ is a Gamma distribution with parameters p1{2, 1q.
Remark 5.3. Actually, in Proposition 5.11, the continuity of f is a very strong assumption.
Indeed, we can allow discontinuity points for f but we only focus on the continuous case for sake
of convenience.

5.2.4.5 The continuous random operator Hpλq

Let us define the domain

D
´
Hpλq

¯
“

#
g P L2pr´λ, λsq, `

g
M

˘1 P L2pr´λ, λsq,
´
M2

`
g
M

˘1¯1 P L2pr´λ, λsq,
gp´λq “ gpλq, M´λ

`
g
M

˘1 p´λq “ Mλ

`
g
M

˘1 pλq

+
.

In the definition above, g
M means the random function x ÞÑ gpxq

Mx
. The derivative 1 is defined in

the sense of distributions. Moreover, if g P D
`
Hpλq˘, g and M

`
g
M

˘1 are well-defined at ´λ and λ
because they are actually continuous functions. This stems from Sobolev injections in dimension
1. (Indeed the Sobolev space H1pr´λ, λsq can be injected in the set of continuous functions.) For
every f P L2pr´λ, λsq, we define the function Gpλqf such that for every x P Cpλq,

Gpλqfpxq “
ż λ

´λ
Gpλqpx, tqfptqdt.

Consequently, Gpλq can be viewed as an operator on L2pr´λ, λsq. Now, we can state our next
result :

Theorem 5.12. Let λ ą 0. The image of Gpλq is exactly D
`
Hpλq˘. Therefore, Gpλq has a bijective

inverse Hpλq from D
`
Hpλq˘ onto L2pr´λ, λsq. For every g P D

`
Hpλq˘,

Hpλqg “ ´ 1

M

ˆ
M2

´ g

M

¯1˙1
.

Furthermore, Hpλq is a positive self-adjoint operator (for the classical inner-product on L2pr´λ, λsq)
with domain D

`
Hpλq˘.
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As Cpλq is compact, the operator Hpλq is localized. More precisely, its spectrum σ
`
Hpλq˘, that

is, the set of real numbers E such that Hpλq ´ E is not invertible, consists only in a sequence of
isolated eigenvalues.

Proposition 5.13. Almost surely, there exists an increasing positive random sequence pEkpλqqkě0 P
pR˚̀ qN which diverges toward infinity such that

σ
´
Hpλq

¯
“ pEkpλqqkě0.

Moreover, for every k P N, Ekpλq is an eigenvalue of Hpλq with finite multiplicity. The eigenvalues
of Hpλq are counted with multiplicity.

5.2.5 Continuous version of Hβ on the real line

One can wonder what is the limit of Gpλq and Hpλq when λ goes to infinity. It would define
some operators Gp8q and Hp8q on R which are associated with the VRJP on R. The following
proposition gives a partial answer to this question.

Proposition 5.14. For the topology of uniform convergence on compact sets in R
2, it holds that

Gpλq lawÝÝÝÝÑ
λÑ`8 Gp8q

where Gp8q is a symmetric random kernel on R
2 such that for every t, t1 P R such that t ď t1,

Gp8qpt, t1q “ Mt1Mt

ż t

´8
ds

M2
s

.

Remark 5.4. It is important to notice that Gp8q is not well-defined on the whole Hilbert space
L2pRq. (Contrary to the case of the circle.) We could define for every "nice function" f ,ż `8

´8

ż `8

´8
fptqfpt1qGp8qpt, t1qdtdt1 “

ż 8

´8
1

M2
u

ˇ̌̌̌ż `8

u
fptqMtdt

ˇ̌̌̌2
du.

However, this quantity is not almost surely finite for every f and the problem is to give sense to
these "nice functions". We strongly suspect that the set of "nice functions" is actually L2pRqXL1pRq
(because of Proposition 5.11). However, we are not able to prove it for now. It would also be
possible to define Hp8q as the inverse of Gp8q, that is, by

Hp8qg “ ´ 1

M

ˆ
M2

´ g

M

¯1˙1
.

Nevertheless, this is not clear what should be the domain of Hp8q. We will try to solve this problem
as soon as possible.

Remark 5.5. At first sight, the expression of Gp8q is not symmetrical in the sense that when t1
increases, then only Mt1 changes and when t decreases, only Mt

şt
´8

ds
M2
s

changes. The dissymmetry

between Mt1 and Mt

şt
´8

ds
M2
s

is surprising because the law of Gpλ,nq
β is totally symmetric in the

two directions of the circle. However, recall that we chose an orientation of the circle when we
described the potential β by means of pAiqiPCrλns

which explains this apparent dissymetry. Corollary
5.15 explains why this dissimmetry does not exists "in law". It exists only "almost surely".

Thanks to Proposition 5.14, one can also prove a new functional identity in law :

Corollary 5.15. Let α be a standard Brownian motion on R`. Then the process¨̊
˚̋e´αt`t{2

ż `8

t
e2αs´sdsż `8

0
e2αs´sds

‹̨‹‚
tě0

is a geometric Brownian motion starting from 1.
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5.2.6 The asymptotic density of states

Moreover, one can look for the asymptotic density of states of Hpλq when λ goes to infinity.
For every E P R

˚̀ , let us define the random variable NλpEq which is the number of eigenvalues of
Hpλq which are lower than E. Then, we have the following result :

Theorem 5.16. For every E ą 0,

NλpEq
2λ

PÝÝÝÝÑ
λÑ`8

?
E

π
:“ N8pEq.

In some way, N8 is the integrated density of states of Hp8q. (However Hp8q can not be defined
rigorously as an operator for now.)

Remark 5.6. The behaviour of the density of states around 0 is reminiscent of what is going
on for the operator Hβ on Z

d. Indeed, by Theorem 1 and 3 in [55] (see also Chapter 4), if the
weights W are small enough, then the density of states of the discrete Schrödinger operator Hβ

behaves like
?
E near 0.

Remark 5.7. The density of states E ÞÑ
?
E
π is exactly the density of states of ´Δ on R.

However it is possible to see a difference between the eigenvalues of Hp8q and ´Δ if we look at
the microscopic scale. Moreover, in the case of the Anderson model, the integrated density of
states can be computed explicitely. (see [68], [85] and [71]) Then the behaviour at infinity of the
integrated density of states is also

?
E
π , exactly as for our operator Hp8q and ´Δ.

5.2.7 Organisation of the paper

— In section 5.3, we remind several important facts regarding the β potential.
— Section 5.4 is devoted to the proof of a few lemmas which will be useful in the sequel of

this paper.
— In section 5.5, we give a new proof of Matsumoto-Yor properties by means of the β-potential.

This section is independent from the next ones.
— In other sections, we prove the results concerning the continuous versions of the operator

Hβ .

5.3 Background on the β-potential

Let pV,Eq a finite graph. The β-potential with distribution νWV which is defined in (5.3)
is a special case of a more general family of random potentials which appears naturally when
taking restrictions. Let us consider a symmetric matrix W on V ˆ V with non-negative entries
pWi,jqi,jPV ˆV and let η :“ pηiqiPV be a vector on V with non-negative entries. Recall that for
every β P R

V`, Hβ is a matrix such that for every i, j P V ,

Hβpi, jq “ 1ti “ ju2βi ´ Wi,j .

We can generalize the measure νWV thanks to the following proposition.

Proposition 5.17 (Theorem 2.2 in [110] or Lemma 4 in [154]). Let us define the measure νW,η
V

on R
V` by

νW,η
V pdβq :“ 1tHβ ą 0u

ˆ
2

π

˙|V |{2
e´ 1

2
x1,Hβ1y´ 1

2
xη,pHβq´1ηy`xη,1y dβVa

detpHβq
where 1 stands for a vector whose entries are all equal to 1. Then νW,η

V is a probability measure.
Moreover, its Laplace transform is, for any t P R

V`,ż
e´xt,βyνW,η

V pdβq “ e
´ ř
iPV

ηip?
ti`1´1q´ 1

2

ř
ti,juPE

Wi,jp?p1`tiqp1`tjq´1q ź
iPV

1?
1 ` ti

.
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Remark that the Laplace transform in (5.3) is the same as the Laplace transform of νW,0
V

given in Proposition 5.17. Further, the measures of type νW,η
V are convenient when we want to

manipulate them because they form a family which is stable under restriction and conditioning.

Proposition 5.18 (Lemma 5 in [154] or Proposition 4.3 in [110]). Let U be a subset of V . If
β „ νW,η

V , it holds that

(i) βU follows the distribution ν
WU,U ,η̂
U , where

η̂ “ ηU ` WU,Ucp1Ucq,

(ii) Conditionally on βU , βUc follows the distribution νW̌ ,η̌
Uc , where

W̌ “ WUc,Uc ` WUc,U ppHβqU,U q´1WU,Uc , η̌ “ ηUc ` WUc,U ppHβqU,U q´1ηU .

Let β P R
V` be such that Hβ is positive definite. Let Gβ be the inverse of Hβ. Let i, j P V .

A path in the graph pV,Eq from i to j consists in a finite sequence σ “ pσ0, ¨ ¨ ¨ , σmq in V such
that σ0 “ i, σm “ j and for every k P t0, ¨ ¨ ¨ ,m ´ 1u, tσk, σk`1u P E. The length m of σ will be
denoted by |σ|. Let PV

i,j be the set of paths from i to j. We define also the set PV
i,j which is the

collection of paths σ from i to j such that σk ‰ j for every k P t0, ¨ ¨ ¨ ,m ´ 1u. Moreover, for any
path σ, we define

Wσ “
|σ|´1ź
k“0

Wσk,σk`1
, p2βqσ “

|σ|ź
k“0

p2βσkq, p2βqσ́ “
|σ|´1ź
k“0

p2βσkq.

Then, we have the following useful description of Gβ :

Proposition 5.19. Let pβiqiPV be a random field on V with distribution νW,η
V . Then for every

i, j P V , almost surely,

Gβpi, jq “
ÿ

σPPVi,j

Wσ

p2βqσ ,
Gβpi, jq
Gβpi, iq “

ÿ
σPPVj,i

Wσ

p2βqσ́ .

5.4 Preliminary lemmas

In this section we will prove a few lemmas about Inverse Gaussian random variables which
will be crucial in the sequel of this paper.

Lemma 5.20. Let Apnq be an Inverse Gaussian random variable with parameters p1, nq. Then
we know that

E

”
lnpApnqq

ı
“ ´ 1

2n
` o

ˆ
1

n

˙
and V ar

”
lnpApnqq

ı
“ 1

n
` o

ˆ
1

n

˙
.

Moreover, for any n P Nzt0, 1u and for any v ą 0, it holds that

P

”
| lnpApnqq| ą v

ı
ď 2e

v
a
πpn ´ 1qe

´pn´1qv2{2.

Proof.
This proof is very similar with the proof of Lemma 3.4 in [113] but we do it again here for the
paper to be self-contained. Let n P N

˚. The density of lnpApnqq is
?
n?
2π

e´u{2´2n sinhpu{2q2du.
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Therefore,

E

”
lnpApnqq

ı
“

ż `8

´8

?
n?
2π

ue´u{2´2n sinhpu2 q2du

“
?
n?
2π

ż `8

0

´
ue´u{2 ´ ueu{2

¯
e´2n sinhpu2 q2du

“ ´8
?
n?

2π

ż `8

0
u sinhpuqe´2n sinhpuq2du. (5.7)

(5.8)

Now, let us do the change of variable t “ sinhpuq in (5.7). It yields

E

”
lnpApnqq

ı
“ ´8

?
n?

2π

ż `8

0

t ˆ argsinhptq?
1 ` t2

e´2nt2dt

“ ´ 1

n
ˆ 8?

2π

ż `8

0

?
nt ˆ argsinhpt{?

nqa
1 ` t2{n e´2t2dt. (5.9)

Besides, for every t ą 0 and for every n P N
˚,

?
ntˆargsinhpt{?

nq?
1`t2{n e´2t2 ď t2e´2t2 . Therefore, we can

apply the dominated convergence theorem in (5.9) which implies

E

”
lnpApnqq

ı
“ ´ 1

n
ˆ 8?

2π

ż `8

0
t2e´2t2dt ` o

ˆ
1

n

˙
“ ´ 1

2n
` o

ˆ
1

2n

˙
. (5.10)

Now, let us define Bpnq “ ?
n

`
lnpApnqq ` 1

2n

˘
. Observe that the density of Bpnq is

1?
2π

e
´ 1

2

´
v?
n

´ 1
2n

¯
´2n sinh

´
1
2

´
v?
n

´ 1
2n

¯¯2

dv.

Therefore, as sinhpxq2 ě x2 for every x P R, for any positive function F of R into itself,

E

”
F pBpnqq

ı
“

ż `8

´8
F pvq 1?

2π
e

´ 1
2

´
v?
n

´ 1
2n

¯
´2n sinh

´
1
2

´
v?
n

´ 1
2n

¯¯2

dv

ď 1?
2π

e
1
8n

ż 8

´8
F pvqe´v2{2dv. (5.11)

Consequently, by the dominated convergence theorem,

E

”
Bpnq2

ı
ÝÝÝÝÑ
nÑ`8

1?
2π

ż `8

´8
v2e´v2{2dv “ 1. (5.12)

Combining (5.12) with (5.10), we get

V ar
”
lnpApnqq

ı
“ 1

n
` o

ˆ
1

n

˙
.

Now, let us look at the tail of lnpApnqq. Let v ą 0.

P

´
| lnpApnqq| ą v

¯
“

ż
Rzr´v,vs

?
n?
2π

exp
`´2n sinhpx{2q2 ´ x{2˘

dx

ď
ż
Rzr´v,vs

?
n?
2π

exp
`´nx2{2 ´ x{2˘

dx

ď 2e

ż `8

v

?
n?
2π

exp
`´pn ´ 1qx2{2˘

dx (5.13)
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where in the first inequality we used the fact that sinhpxq ě x for every x ą 0 and in the second
inequality we used the fact that for every x P R, e´x{2 ď e ˆ ex

2{2. Therefore, by (5.13), for every
v ą 0,

P

´
| lnpApnqq| ą v

¯
ď 2e

ż `8

v
?
n´1

?
na

2πpn ´ 1q expp´x2{2qdx

ď 2e?
π

ż `8

v
?
n´1

expp´x2{2qdx

ď 2e

v
a
πpn ´ 1qe

´pn´1qv2{2 (5.14)

where in the second inequality we used the fact that n ď 2pn ´ 1q for every n ě 2 and in the last
inequality we used the fact that for x ě v

?
n ´ 1, it holds that 1 ď x{pv?

n ´ 1q. It conludes the
proof of Lemma 5.20.

Lemma 5.21. Let c ą 0. Let n P N
˚. Let pApnq

i qiPN˚ be a sequence of independent Inverse
Gaussian random variables with parameters p1, nq. Then, for every ε ą 0, it holds that

lim
nÑ`8 P

˜
sup

iP�1,rcns�
| lnpApnq

i q| ą ε

¸
“ 0.

Proof.
Let ε ą 0. By Lemma 5.21, we know that

P

˜
sup

iP�1,rcns�
| lnpApnq

i q| ą ε

¸
“ 1 ´

´
1 ´ P

´
| lnpApnq

1 q| ą ε
¯¯rcns

ď 1 ´
˜
1 ´ 2e

ε
a
πpn ´ 1qe

´pn´1qε2{2
¸rcns

(5.15)

which goes to 0 as n goes to infinity.

Lemma 5.22. Let n P N
˚. Let pApnq

i qiPN˚ be a sequence of independent random variables which
are distributed as an Inverse Gaussian random variable with parameters p1, nq. Let us define the
process t ÞÑ Y

pnq
t which is a random continuous function such that if j{n ď t ă pj ` 1q{nq,

Y
pnq
t “

jź
i“1

A
pnq
i ` npt ´ j{nq

˜
j`1ź
i“1

A
pnq
i ´

jź
i“1

A
pnq
i

¸
.

Then, the following convergence holds for the topology of uniform convergence on compact sets :

pY pnq
t qtě0

lawÝÝÝÝÑ
nÑ`8 peαt´t{2qtě0

where α is a Brownian motion.

Proof.
By Lemma 5.21, for every T ą 0,

´
lnpY pnq

t q
¯
tPr0,T s

“
¨̋

ttnuÿ
i“1

lnpApnq
i q ´ E

”
lnpApnq

i q
ı

`
ttnuÿ
i“1

E

”
lnpApnq

i q
ı‚̨

tPr0,T s
` oPn,T p1q

where oPn,T p1q is a random function whose supremum goes toward 0 in probability when n goes

to infinity. By Lemma 5.20, we know that
ttnuř
i“1

E

”
lnpApnq

i q
ı

converges toward ´t{2. Moreover,
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t ÞÑ
ttnuř
i“1

lnpApnq
i q ´ E

”
lnpApnq

i q
ı

is a martingale. Furthermore, as in the proof of Lemma 3.4 in

[113], one can combine the estimates of Lemma 5.20 and the martingale functional central limit
theorem (see Theorem 1.4, Section 7.1 in [62]) in order to prove that

¨̋
ttnuÿ
i“1

lnpApnq
i q ´ E

”
lnpApnq

i q
ı‚̨

tě0

converges toward a Brownian motion.

Lemma 5.23. Let K ě 1. Let c ą 0. Let A1 be an Inverse Gaussian random variable with
parameters p1,Kq. Then, it is possible to find a coupling with a random variable A2 which has an
Inverse Gaussian distribution with parameters p1,K ` cq such that

| lnpA1q ´ lnpA2q| ď
ˆ

1

A1
` 1

A2

˙
ˆ

˜
cRp1q

K3{2 ` Ber ˆ cRp2q ` ?
cRp3q ` Rp4q

?
K

¸

where for every i P t1, 2, 3, 4u, Rpiq is a positive random variable and conditionally on tRpiq, i P
t1, 2, 3, 4uu, Ber is a Bernoulli random variable whose parameter is smaller than cRp1q

K3{2 . Moreover,
there exists a positive constant κ which does not depend on K and c such that for every i P
t1, 2, 3, 4u, E

”
Rpiq4

ı
ď κ.

Proof.
Following [132], we can construct A1 and A2 in the following way : Let γ be a Gamma random
variable with parameters p1{2, 1q. Let U be a uniform random variable which is independent of γ.
Now, let us consider

X1 “ 1 ` γ

K
´

?
γ

K

a
2K ` γ

and

X2 “ 1 ` γ

K ` c
´

?
γ

K ` c

a
2pK ` cq ` γ.

For every i P t1, 2u, if U ď 1
1`Xi

, then we define Ai “ Xi and if U ą 1
1`Xi

, then we define
Ai “ 1{Xi. According to [132] , A1 „ IGp1,Kq and A2 „ IGp1,K ` cq. Now, let us show that
this coupling satisfies the required estimate.

First remark that

| lnpA1q ´ lnpA2q| “
ˇ̌̌̌
ln

ˆ
A1

A2

˙ˇ̌̌̌
ď ln

ˆ
1 ` |A1 ´ A2|

A1

˙
` ln

ˆ
1 ` |A1 ´ A2|

A2

˙
ď

ˆ
1

A1
` 1

A2

˙
|A1 ´ A2|. (5.16)

Therefore, it is enough to find an upper bound for |A1 ´ A2| in order to prove Lemma 5.23. To
do this, we have to consider three situations.
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Situation 1 : Let us assume that U ď 1
1`X1

and U ď 1
1`X2

. Then, it holds that

|A1 ´ A2| “ |X1 ´ X2|
ď γc

K2
` ?

γ

ˇ̌̌̌
1

K

a
2K ` γ ´ 1

K ` c

a
2pK ` cq ` γ

ˇ̌̌̌
ď γc

K2
` ?

γ
a
2K ` γ

ˆ
1

K
´ 1

K ` c

˙
` ?

γ
1

K ` c

´a
2pK ` cq ` γ ´ a

2K ` γ
¯

ď γc

K2
` c

?
γ

?
2K ` ?

γ

K2
` ?

γ
1

K

2ca
2pK ` cq ` γ ` ?

2K ` γ

ď γc

K2
` c

?
γ

?
2K ` ?

γ

K2
`

?
γc?

2K3{2 . (5.17)

Therefore, by (5.17), in the situation 1, there exists a positive random variable Rp1q whose fourth
moment is bounded by some constant κp1q which does not depend on K and c such that

|A1 ´ A2| ď cRp1q

K3{2 . (5.18)

Rermark that U and Rp1q are independent.
Situation 2 : Now, let us assume that U ą 1

1`X1
and U ą 1

1`X2
. Remark that

1

X1
“ 1 ` γ

K
`

?
γ

K

a
2K ` γ

and
1

X2
“ 1 ` γ

K ` c
`

?
γ

K ` c

a
2pK ` cq ` γ.

Therefore, exactly as in the first situation, one can show that

|A1 ´ A2| ď cRp1q

K3{2 . (5.19)

Situation 3 : Now, let us consider the case where U ď 1
1`X1

and U ą 1
1`X2

or the case where
U ą 1

1`X1
and U ď 1

1`X2
. These two subcases are similar. Thus we will only treat the first one.

If we assume that U ď 1
1`X1

and U ą 1
1`X2

, then

|A1 ´ A2| “
ˇ̌̌̌
X1 ´ 1

X2

ˇ̌̌̌
ď γc

K2
`

?
γ

K

a
2K ` γ `

?
γ

K ` c

a
2pK ` cq ` γ

ď cRp2q ` ?
cRp3q ` Rp4q

?
K

(5.20)

where Rp2q, Rp3q and Rp4q are positive random variables whose fourth moments are bounded by
some constant κp2q which does not depend on c and K. Remark that U is independent from
Rp1q, Rp2q, Rp3q and Rp4q. Moreover, in this situation 3, we know that U P

”
1

1`X1
, 1
1`X2

ı
or

U P
”

1
1`X2

, 1
1`X1

ı
. Therefore, U belongs to some interval I whose size isˇ̌̌̌

1

1 ` X1
´ 1

1 ` X2

ˇ̌̌̌
“ |X1 ´ X2|

p1 ` X1qp1 ` X2q
ď |X1 ´ X2|
ď cRp1q

K3{2 (5.21)
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where in the last inequality, we used (5.18). Together with (5.20), it implies that, in situation 3,

|A1 ´ A2| ď
˜
cRp2q ` ?

cRp3q ` Rp4q
?
K

¸
1tU P Iu (5.22)

where the size of I is lower than cRp1q
K3{2 with Rp1q independent of U . Finally, choosing κ “

maxpκp1q, κp2qq and combining (5.18), (5.19) and (5.22) concludes the proof.

5.5 Proof of the results of section 5.2.3

First, let us prove Proposition 5.5.

Proof of Proposition 5.5.
Step 1 : Proof of (i) and (iii). One remarks that (iii) is just a particular case of Lemma 3.12
in Chapter 3. Actually, in Lemma 3.12 in Chapter 3, we condition with respect to the sigma-field
σpβi, i P �2, n�q and not with respect to Zn,m. Nevertheless, we will see in the proof of piiq that
for every n P N

˚ and for every m P N
˚,

Zn,m Ă σpβi, i P �2, n�q.
Moreover (i) stems directly from (iii).
Step 2 : Proof of (ii). Let m ě 1. For sake of convenience, for every n P N

˚, we denote
Hn “ pHpmq

β q�1,n�,�1,n� and Ĝn “ H´1
n . The strategy of the proof is the following one : first, we

will establish an algebraic relation between pĜn, ψ
pn,mq
β q and pĜn´1, ψ

pn´1,mq
β q by means of the

Schur complements. Then we will condition this algebraic relation with respect to the σ-field
σpβi, i P �2, n ´ 1�q thanks to the conditioning properties of β given by Proposition 5.18. We will
divide this proof into two main lemmas. Here is the first one.

Lemma 5.24. Let n P N
˚zt1u. It holds that,

Z
pn,mq
β “ Z

pn´1,mq
β

m

´
2βn ´ m2Ĝ2,n´1pn ´ 1, n ´ 1q

¯
(5.23)

where Ĝ2,n´1 is the inverse of pHpmq
β q�2,n´1�,�2,n´1�.

Proof of Lemma 5.24.
For every n P N

˚, let Cn be a vector of size n such that

Cn “

¨̊
˚̋̊ 0

...
0

´m

‹̨‹‹‚.

With this notation, remark that for every integer n ě 2,

Hn “
ˆ
Hn´1 Cn´1

CT
n´1 2βn

˙
.

For every n ě 2, let us define Dn “ 2βn ´ CT
n´1Ĝn´1Cn´1. Using the Schur complement, we get

that for every integer n ě 2,

Ĝn “
ˆ

Ĝn´1 ` Ĝn´1Cn´1D
´1
n CT

n´1Ĝn´1 ´Ĝn´1Cn´1D
´1
n

˚ ˚
˙
. (5.24)



168 Chapitre 5. One-dimensional scaling limit of the operator Hβ

Now, let us fix an integer n ě 2. If we apply (5.24) at points p1, 1q and p1, nq, we obtain

Ĝnp1, 1q “ Ĝn´1p1, 1q ` m2D´1
n Ĝn´1p1, n ´ 1q2, (5.25)

ψ
pn,mq
β “ mĜnp1, nq “ m2D´1

n Ĝn´1p1, n ´ 1q “ mD´1
n ψ

pn´1,mq
β . (5.26)

Therefore, combining (5.25) and (5.26), we get

Z
pn,mq
β “ Ĝnp1, 1q

ψ
pn,mq
β

“ Ĝn´1p1, 1q
mD´1

n ψ
pn´1,mq
β

` Ĝn´1p1, n ´ 1q

“ Z
pn´1,mq
β ˆ Dn

m
` Ĝn´1p1, n ´ 1q. (5.27)

Moreover, Dn “ 2βn ´ m2Ĝn´1pn ´ 1, n ´ 1q. Together with (5.27), it yields

Z
pn,mq
β “ Z

pn´1,mq
β

m
ˆ 2βn ´ mZ

pn´1,mq
β Ĝn´1pn ´ 1, n ´ 1q ` Ĝn´1p1, n ´ 1q

“ Z
pn´1,mq
β

m
ˆ 2βn ´ Ĝn´1pn ´ 1, n ´ 1q Ĝn´1p1, 1q

Ĝn´1p1, n ´ 1q ` Ĝn´1p1, n ´ 1q

“ Z
pn´1,mq
β

m
ˆ 2βn ´ Ĝn´1p1, 1q

Ĝn´1p1, n ´ 1q

˜
Ĝn´1pn ´ 1, n ´ 1q ´ Ĝn´1p1, n ´ 1q

Ĝn´1p1, 1q Ĝn´1p1, n ´ 1q
¸

(5.28)

where the second equality comes from the definition of Zpn´1,mq
β . Besides, according to Proposition

5.19, Ĝn´1pn ´ 1, n ´ 1q can be interpreted as a sum over the set of paths from n ´ 1 to n ´ 1

in �1, n ´ 1�. Moreover, thanks to Proposition 5.19 again, Ĝn´1p1,n´1q
Ĝn´1p1,1q Ĝn´1p1, n ´ 1q can be

interpreted as a sum over the set of paths from n ´ 1 to n ´ 1 in �1, n ´ 1� which go through 1.
Therefore the difference,

Ĝn´1pn ´ 1, n ´ 1q ´ Ĝn´1p1, n ´ 1q
Ĝn´1p1, 1q Ĝn´1p1, n ´ 1q

can be interpreted as a sum over the set of paths from n ´ 1 to n ´ 1 in �2, n ´ 1�. Consequently,
by Proposition 5.19 again,

Ĝn´1pn ´ 1, n ´ 1q ´ Ĝn´1p1, n ´ 1q
Ĝn´1p1, 1q Ĝn´1p1, n ´ 1q “ Ĝ2,n´1pn ´ 1, n ´ 1q

where Ĝ2,n´1 is the inverse of pHpmq
β q�2,n´1�,�2,n´1�. Together with (5.28), it implies that

Z
pn,mq
β “ Z

pn´1,mq
β ˆ 2βn

m
´ mZ

pn´1,mq
β Ĝ2,n´1pn ´ 1, n ´ 1q

“ Z
pn´1,mq
β

m

´
2βn ´ m2Ĝ2,n´1pn ´ 1, n ´ 1q

¯
. (5.29)

Now, let us enounce the second fundamental lemma of this proof.

Lemma 5.25. For every n P N
˚zt1u, it holds that

L p2βn|σ pβi, i P �2, n ´ 1�qq “ m2Ĝ2,n´1pn ´ 1, n ´ 1q ` 1

IG

¨̋
1

m` 1

Z
pn´1,mq
β

, 1‚̨.
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Proof of Lemma 5.25.
Now, let us condition βn in Lemma 5.24 with respect to σpβi, i P �2, n ´ 1�q. Recall that we
assumed β „ νKm

N˚ . Thanks to Proposition 5.18, conditionally on σpβi, i P �2, n ´ 1�q, βn is
distributed as ν

ηn,m,Wn,m

tnu where

Wn,m “ m2Ĝ2,n´1pn ´ 1, n ´ 1q
and

ηn,m “ m ` m2Ĝ2,n´1p2, n ´ 1q.
However, thanks to Proposition 5.19,

mĜ2,n´1p2, n ´ 1q “ Ĝn´1p1, n ´ 1q
Ĝn´1p1, 1q .

Consequently,

ηn,m “ m ` m
Ĝn´1p1, n ´ 1q
Ĝn´1p1, 1q “ m ` 1

Z
pn´1,mq
β

.

Therefore,

L p2βn|σ pβi, i P �2, n ´ 1�qq “ Wn,m ` 1

IG
´

1
ηn,m

, 1
¯

“ m2Ĝ2,n´1pn ´ 1, n ´ 1q ` 1

IG

¨̋
1

m` 1

Z
pn´1,mq
β

, 1‚̨.

Combining Lemmas 5.24 and 5.25, it holds that

L
´
Z

pn,mq
β |σ pβi, i P �2, n ´ 1�q

¯
“ Z

pn´1,mq
β

m
ˆ 1

IG

¨̋
1

m` 1

Z
pn´1,mq
β

, 1‚̨. (5.30)

Moreover, by Proposition 5.19, for every k P �1, n ´ 1�,

1

Z
pk,mq
β

“ mĜkp1, kq
Ĝkp1, 1q “ m

ÿ
σPP�1,k�

k,1

Wσ

p2βqσ́ . (5.31)

Remark that the sum in the right-hand side of (5.31) never contains β1. Thus, for every k P
�1, n ´ 1�, Zpk,mq

β is measurable with respect to σ pβi, i P �2, n ´ 1�q. This implies that

Zn´1,m Ă σ pβi, i P �2, n ´ 1�q .
Together with (5.30), it yields

L
´
Z

pn,mq
β |Zn´1,m

¯
“ Z

pn´1,mq
β

m
ˆ 1

IG

¨̋
1

m` 1

Z
pn´1,mq
β

, 1‚̨.

It conludes the proof of (ii).
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Now, we still have to prove that pψpn,mq
β qnPN˚ and pZpn,mq

β qnPN˚ converge toward the exponential
functionals of the Brownian motion introduced by Matsumoto and Yor when we take the scaling
limit as m goes to infinity. To do so, we need first to prove a lemma which gives a useful
representation of the β-field with distribution νKm

N˚ . Note that this construction is very specific to
the one-dimensional structure of the graph.

Lemma 5.26. Let m P N
˚. Let pApmq

i qiPN˚ be a sequence of independent Inverse Gaussian random
variables with parameters p1,mq. We define β1 “ m

2A
pmq
1

and for every i P N
˚zt1u,

βi “ m

2
A

pmq
i´1 ` m

2A
pmq
i

.

Then, β „ νKm
N˚ .

Proof.
For every i P N

˚, let us write Ai for Apmq
i for sake of convenience. Let k P N

˚. Let ptiqiP�1,k� P R
k`.

Then, it holds that

E

„
exp

ˆ
´ t1m

2A1
´

kř
i“2

tim
2

´
Ai´1 ` 1

Ai

¯˙j
“ E

«
exp

˜
´

k´1ÿ
i“1

m

2

ˆ
ti`1Ai ` ti

Ai

˙¸
ˆ exp

ˆ
´m

2

tk
Ak

˙ff

“
k´1ź
i“1

E

„
exp

ˆ
´m

2

ˆ
ti`1Ai ` ti

Ai

˙˙j
ˆ E

„
exp

ˆ
´m

2

tk
Ak

˙j
“

k´1ź
i“1

ż `8

0

?
m?

2πx3
e´mpx´1q2

2x e´m
ti`1x`ti{x

2 dx ˆ
ż `8

0

?
m?

2πx3
e´mpx´1q2

2x e´m
tk
2xdx.

Moreover, for every i P �1, k ´ 1�, remark that

ż `8

0

?
m?

2πx3
e´mpx´1q2

2x e´m
ti`1x`ti{x

2 dx “
ż `8

0

a
mp1 ` tiq?
2πx3

exp

¨̊
˝´mp1 ` tiq

´
x ´

b
1`ti

1`ti`1

¯2

2x 1`ti
1`ti`1

‹̨‚dx

ˆ 1?
1 ` ti

ˆ exp
´

´m
´?

1 ` ti
a

1 ` ti`1 ´ 1
¯¯

“ 1?
1 ` ti

exp
´

´m
´?

1 ` ti
a
1 ` ti`1 ´ 1

¯¯
because in the first equality we recognised the density of an Inverse Gaussian random variable
with parameters

´b
1`ti

1`ti`1
,mp1 ` tiq

¯
for every i P �1, k ´ 1�. Besides, one can prove in the same

way that ż `8

0

?
m?

2πx3
e´mpx´1q2

2x e´m
tk
2xdx “ 1?

1 ` tk
exp

`´mp?
1 ` tk ´ 1q˘

.

Therefore,

E

«
exp

˜
´ t1m

2A1
´

kÿ
i“2

tim

2

ˆ
Ai´1 ` 1

Ai

˙¸ff

“ exp

˜
´

k´1ÿ
i“1

m
´?

1 ` ti
a
1 ` ti´1 ´ 1

¯¸
ˆ exp

`´mp?
1 ` tk ´ 1q˘ ˆ

kź
i“1

1?
1 ` ti

.

This is exactly the Laplace Transform in (5.4).
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Proof of Proposition 5.6.
Let m P N

˚. First, let us use the construction of the β-field given in Lemma 5.26. For every
i P N

˚, we write A
pmq
i “ Ai for sake of convenience. Let n P N

˚. For every i P �1, n�, let us define

Vi “ 1

m

i´1ź
k“1

Ak ˆ
˜
Ai `

n´1ÿ
k“i

kź
r“i

A2
r ˆ Ak`1

¸

where the product on an empty set is 1. Let Vn be the vector of R
n whose coordinates are

pViqiP�1,n�. Then, it is rather tedious but not difficult to check that

pHpmq
β q�1,n�,�1,n�Vn “

¨̊
˚̋̊1
0
...
0

‹̨‹‹‚. (5.32)

We did not write the computation of (5.32) here because it is long and very similar to the
computation which is done in the Proposition 5.28 below. The equality (5.32) implies for every
i P �1, n�,

Ĝnp1, iq “ Vi “ 1

m

i´1ź
k“1

Ak ˆ
˜
Ai `

n´1ÿ
k“i

kź
r“i

A2
r ˆ Ak`1

¸
.

In particular,

ψ
pn,mq
β “

nź
i“1

Ai and Ĝnp1, 1q “ 1

m

˜
A1 `

n´1ÿ
k“1

kź
r“1

A2
r ˆ Ak`1

¸
. (5.33)

Therefore,

Z
pn,mq
β “

1
m

ˆ
A1 `

n´1ř
k“1

kś
r“1

A2
r ˆ Ak`1

˙
nś

i“1
Ai

. (5.34)

Recall that pψ̃pmqptqqtě0 and pZ̃pmqptqqtě0 are respectively the continuous linear interpolations of
pψptmtu,mq

β qtě0 and pZptmtu,mq
β qtě0. Therefore, combining (5.33), (5.34) and Lemma 5.21, for every

T ą 0, for every m P N
˚, it holds that

´
ψ̃pmqptq, Z̃pmqptq

¯
tPr0,T s

“

¨̊
˚̋Y

pmq
t ,

ż t

0
pY pmq

s q2ds
Y

pmq
t

‹̨‹‚
tPr0,T s

` oPm,T p1q (5.35)

where oPm,T p1q is a random function whose supremum on r0, T s goes to 0 in probability and Y pmq
is defined in Lemma 5.22. Thus, we can use Lemma 5.22 in (5.35) in order to conclude the proof
of Proposition 5.6.

Now, we are ready to give a new proof of Theorem 5.4 thanks to the discrete version of the
Matsumoto Yor properties given by Proposition 5.5.

New proof of Theorem 5.4.
First, let us prove point (iii) of Theorem 5.4. Let t ą 0. Let k P N

˚ and let t1 ă t2 ă ¨ ¨ ¨ ă tk ď t
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be k positive real numbers which are smaller than t. Let m P N
˚ and let F be a bounded

continuous function from R
k`1 into R. By (iii) in Proposition 5.5, it holds that,

E

”
F

´
ψ

ptmtu,mq
β , Z

pmq
tmt1u, ¨ ¨ ¨ , Zptmtu,mq

β

¯ı
“ E

»–ż `8

0
F

´
x, Z

ptmt1u,mq
β , ¨ ¨ ¨ , Zptmtku,mq

β

¯ 1b
2πZ

ptmtu,mq
β x3

exp

¨̋
´ 1

Z
ptmtu,mq
β

px ´ 1q2
2x

‚̨dx

fifl .

(5.36)

Thanks to Proposition 5.6, one can make m go to infinity in (5.36) which yields

E rF pet, Zt1 , ¨ ¨ ¨ , Ztkqs “ E

„ż `8

0
F px, Zt1 , ¨ ¨ ¨ , Ztkq 1?

2πZtx3
exp

ˆ
´ 1

Zt

px ´ 1q2
2x

˙
dx

j
.

It proves (iii) in Theorem 5.4. Moreover (i) in Theorem 5.4 is a direct consequence of (iii). Now,
let us prove (ii). Let ε ą 0. Let T ą ε. Let t P rε, T s. Let m P N

˚. Let us define

Mpε,mq
t “ lnpZptmtu,mq

β q ´ lnpZptmεu,mq
β q ´

tmtu´1ÿ
k“tmεu

E

”
lnpZpk`1,mq

β q ´ lnpZpk,mq
β q|Zk,m

ı
.

Remark that
´
Mpε,mq

t , t ě ε
¯

is a martingale. We would like to show that it converges toward a
Brownian motion. First, by (ii) in Proposition 5.5, one can get the following useful representation
of Mpε,mq

t :

Mpε,mq
t “ lnpZptmtu,mq

β q ´ lnpZptmεu,mq
β q `

tmtu´1ÿ
k“tmεu

ln

¨̋
m

m ` 1{Zpk,mq
β

‚̨
`

tmtu´1ÿ
k“tmεu

E

”
lnpIGp1,m ` 1{Zpk,mq

β qq|Zk,m

ı
. (5.37)

Besides, another useful representation of Mpε,mq
t is the following one :

Mpε,mq
t “

tmtu´1ÿ
k“tmεu

Δ
pmq
k (5.38)

where for every k P N
˚,

Δ
pmq
k “ lnpZpk`1,mq

β q ´ lnpZpk,mq
β q ` ln

¨̋
m

m ` 1{Zpk,mq
β

‚̨` E

”
lnpIGp1,m ` 1{Zpk,mq

β qq|Zk,m

ı
.

By (ii) in Proposition 5.5, for every k P N
˚,

Δ
pmq
k “ ´ lnpIGkp1,m ` 1{Zpk,mq

β qq ` E

”
lnpIGkp1,m ` 1{Zpk,mq

β qq|Zk,m

ı
(5.39)

where conditionally on pZpk,mq
β qkPN˚ “ pzkqkPN˚ , pIGkp1,m ` 1{zkqqkPN˚ is a sequence of inde-

pendent random variables such that for every k P N
˚, IGkp1,m ` 1{zkq is an Inverse Gaussian

random variable with parameters p1,m ` 1{zkq. Let δ ą 0. By Proposition 5.6,

sup
kP�tmεu,tmT u�

1

Z
pk,mq
β

lawÝÝÝÝÝÑ
mÑ`8 sup

sPrε,T s
1

Zs
. (5.40)
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Remark that in the limit above, the restriction on rε, T s is crucial. Indeed, ε “ 0 would give
an infinite limit. Furthermore, by (5.40), there exists a positive constant Cδ such that for every
m P N

˚,

P

¨̋
sup

kP�tmεu,tmT u�

1

Z
pk,mq
β

ą Cδ
‚̨ď δ. (5.41)

In the sequel, we use the notation Apδq to designate the event

$&% sup
kP�tmεu,tmT u�

1

Z
pk,mq
β

ď Cδ

,.- .

Conditionally on Apδq, one can use the estimate of the expectation of an Inverse Gaussian random
variable given by Lemma 5.20 to obtain that for every k P �tmε, u, tmT u�,

Δ
pmq
k “ ´ lnpIGkp1,m ` 1{Zpk,mq

β qq ` E rlnpIGkp1,mqqs ` 1

m
om,δp1q (5.42)

where om,δp1q goes to zero when m goes to infinity and does not depend on k. Now, let use the
coupling of Lemma 5.23 in (5.42). Therefore, for every k P �tmε, u, tmT u�, conditionally on Apδq,
there exists random variables pRpiq

k , i P t1, 2, 3, 4uq and Berk exactly as in Lemma 5.23 such that

Δ
pmq
k “ ´ lnpIGkp1,mqq ` E rlnpIGkp1,mqqs ` 1

m
om,δp1q ` J

pmq
k (5.43)

where pIGkp1,mqqkPN˚ is a sequence of independent Inverse Gaussian random variables with
parameters p1,mq and for every k P N

˚

|J pmq
k | ď

¨̋
1

IGkp1,mq ` 1

IGkp1,m ` 1{Zpk,mq
β q

‚̨
ˆ

˜
CδR

p1q
k

m3{2 ` Berk ˆ CδR
p2q
k ` ?

CδR
p3q
k ` R

p4q
k?

m

¸
.

Moreover, for every i P t1, 2, 3, 4u, R
piq
k is a positive random variable and conditionally on

tRpiq
k , i P t1, 2, 3, 4uu, Berk is a Bernoulli random variable whose parameter is smaller than CδR

p1q
k

m3{2 .
Moreover, there exists a positive constant κ which does not depend on m, k and Cδ such that for

every i P t1, 2, 3, 4u, E
„
R

piq
k

4
j

ď κ. Consequently, conditionally on Apδq, using (5.43) in (5.38)

yields for every t P rε, T s,

Mpε,mq
t “

tmtuÿ
k“tmεu

p´ lnpIGkp1,mqq ` E rlnpIGkp1,mqsq `
tmtuÿ

k“tmεu

J
pmq
k ` pT ´ εqom,δp1q. (5.44)
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Now, let us show that the term
tmtuř

k“tmεu

J
pmq
k is negligible under Apδq. Remark that

E

»–1tApδqu
tmtuÿ

k“tmεu

J
pmq
k

fifl ď ?
2

tmtuÿ
k“tmεu

E

»– 1

IGkp1,mq2 ` 1

IGkp1,m ` 1{Zpk,mq
β q2

fifl1{2

ˆ E

»–˜
CδR

p1q
k

m3{2 ` Berk ˆ CδR
p2q
k ` ?

CδR
p3q
k ` R

p4q
k?

m

¸2
fifl1{2

ď 2
?
7

tmtuÿ
k“tmεu

E

»–˜
CδR

p1q
k

m3{2 ` Berk ˆ CδR
p2q
k ` ?

CδR
p3q
k ` R

p4q
k?

m

¸2
fifl1{2

(5.45)

where we used the fact that for every K ě 1, E
“
IGp1,Kq´2

‰ “ p1 ` 1{Kq2 ` 1{K ` 2{K2 ď 7.
Now, in (5.45), we can apply the estimates concerning the random variables Berk and pRpiq

k , i P
t1, 2, 3, 4uq given by Lemma 5.23. Therefore, it holds that

E

»–1tApδqu
tmtuÿ

k“tmεu

J
pmq
k

fifl
ď 4

?
7

tmtuÿ
k“tmεu

E

«
C2
δ pRp1q

k q2
m3

` Ber2k

˜
C2
δ pRp2q

k q2 ` CδpRp3q
k q2 ` pRp4q

k q2
m

¸ff1{2

ď 4
?
7

tmtuÿ
k“tmεu

E

«
C2
δ pRp1q

k q2
m3

` CδR
p1q
k

m3{2

˜
C2
δ pRp2q

k q2 ` CδpRp3q
k q2 ` pRp4q

k q2
m

¸ff1{2

ď 4
?
7pT ´ εq

˜
Cδκ

1{4
?
m

` κ3{8

m1{4
´
C

3{2
δ ` Cδ ` C

1{2
δ

¯¸
. (5.46)

Therefore, we can use the estimate (5.46) in (5.44) which implies that, on the event Apδq, for
every t P rε, T s,

Mpε,mq
t “

tmtuÿ
k“tmεu

p´ lnpIGkp1,mqq ` E rlnpIGkp1,mqsq ` pT ´ εqom,δp1q ` oPm,δ,ε,T p1q (5.47)

where oPm,δ,ε,T p1q is a random function whose supremum on rε, T s goes to 0 in probability when
m goes to infinity. Moreover, exactly as in the proof of Lemma 5.22, we know that the continuous
linear interpolation of¨̋

tmpt`εquÿ
k“tmεu

p´ lnpIGkp1,mqq ` E rlnpIGkp1,mqsq‚̨
tPr0,T´εs

converges in law toward some standard Brownian motion αpεq for the topology of uniform
convergence. Therefore, on the event Apδq, the continuous linear interpolation of pMpε,mq

ε`t qtPr0,T´εs
converges in law toward αpεq. Moreover, the probability of the event Apδq can be made as close as
we want from 1. Therefore, the linear interpolation of pMpε,mq

ε`t qtPr0,T´εs converges in law toward
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αpεq. Moreover, recall from (5.37) that for every t P rε, T s,

Mpε,mq
t “ lnpZptmtu,mq

β q ´ lnpZptmεu,mq
β q `

tmtu´1ÿ
k“tmεu

ln

¨̋
m

m ` 1{Zpk,mq
β

‚̨
`

tmtu´1ÿ
k“tmεu

E

”
lnpIGp1,m ` 1{Zpk,mq

β qq|Zk,m

ı
. (5.48)

Moreover, as before, one can show that sup
kP�tmεu,tmT u�

1

Z
pk,mq
β

is tight and by using a Taylor expansion

of the logarithm, we get that¨̋
tmtu´1ÿ
k“tmεu

ln

¨̋
m

m ` 1{Zpk,mq
β

‚̨̨‚
tPrε,T s

“
¨̋

´ 1

m

tmtu´1ÿ
k“tmεu

1

Z
pk,mq
β

‚̨
tPrε,T s

` oPm,ε,T p1q

“
ˆ

´
ż t

ε

1

Z̃pmqpsqds
˙

tPrε,T s
` oPm,ε,T p1q (5.49)

where oPm,ε,T p1q is a random function whose supremum on rε, T s goes to 0 in probability as m goes
to infinity. In the last equality, we used the definition of Z̃pmq given in Proposition 5.6. Besides,
using Lemma 5.20 and the tightness of sup

kP�tmεu,tmT u�

1

Z
pk,mq
β

again, we obtain that

¨̋
tmtu´1ÿ
k“tmεu

E

”
IG

´
1,m ` 1{Zpk,mq

β

¯
|Zk,m

ı‚̨
tPrε,T s

“ p´pt ´ εq{2qtPrε,T s ` oPm,ε,T p1q. (5.50)

Therefore, one can combine (5.50), (5.49), Proposition 5.6 and the fact that the linear interpolation
of pMpε,mq

ε`t qtPr0,T´εs converges in law toward αpεq to make m go to infinity in equation (5.48). The
convergence in law in equation (5.48) holds on the compact set rε, T s for the topology of uniform
convergence. Actually, we consider this convergence for the continuous linear interpolations of
the random functions in (5.48). However, this does not change anything since the error which is
associated with this approximation goes to 0 in probability uniformly on rε, T s. It implies that,
almost surely, for every t P r0, T ´ εs,

lnpZt`εq “ lnpZεq ` α
pεq
t `

ż t

0

1

Zs`ε
ds ` t

2
. (5.51)

Finally, using Ito formula in (5.51), almost surely, for every t P r0, T ´ εs,

Zt`ε “ Zε `
ż t

0
Zs`εdα

pεq
s `

ż t

0
Zsds ` t. (5.52)

Moreover, the SDE (5.52) is satisfied for every ε ą 0 and for every T ą ε. This gives exactly (ii)
in Theorem 5.4.

5.6 Study of the discrete operator on the circle

In this section, we will give a simple description of Hpλ,nq
β and we will use it to compute G

pλ,nq
β

explicitely. It is the first step in order to construct the continuous-space operator Hpλq.
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5.6.1 A simple description of the random potential β

Recall that an Inverse Gaussian distribution with parameters pμ, λq has density

1tx ą 0u
?
λ?

2πx3
e

´λpx´μq2
2μ2x .

Let λ ą 0. Let n P N. Let us consider a family pApnq
i qiPCrλns

of i.i.d Inverse Gaussian random

variables with parameters p1, nq. Most of the time we will write A
pnq
i “ Ai for sake of convenience.

For every i P Crλns, let us define

βi “ n

2

ˆ
Ai`1 ` 1

Ai

˙
. (5.53)

In the definition above, if i “ rλns, then i ` 1 is ´rλns in order to respect the circular structure
of Crλns. Recall that W

pλq
n is a matrix on the discretized circle Crλns such that pW pλq

n qi,j is 0 if i
and j are not connected and is n otherwise. Then, we have the following result

Lemma 5.27. The distribution of the random potential pβiqiPCrλns
which is defined in (5.53) is

νW
pλq
n

Crλns
.

Proof of Lemma 5.27.
The proof follows the same lines as the proof of Lemma 5.26.

5.6.2 Computation of Gpλ,nq
β

In the sequel of this article, we will assume that the random potential β with distribution
νW

pλq
n

Crλns
is constructed with the random field A introduced in the previous section. A remarkable

fact is that this is possible to compute explicitely the matrix G
pλ,nq
β as a function of the field A.

In order to make the computation simpler, let us make a small change of variables. For every
i P Crλns, let us introduce ui “ ?

AiAi`1 and D the matrix on C2
rλns whose diagonal coefficients area

A´rλns,
a
A´rλns`1, ¨ ¨ ¨ and so on. Moreover, we introduce the matrix R

pλ,nq
u which is defined

by
— R

pλ,nq
u pi, iq “ u2i ` 1 for every i P Crλns.

— R
pλ,nq
u pi, i ` 1q “ ´ui for every i P Crλns.

— R
pλ,nq
u pi, i ´ 1q “ ´ui´1 for every i P Crλns.

— R
pλ,nq
u pi, jq “ 0 elsewhere.

Remark that

H
pλ,nq
β “ nD´1Rpλ,nq

u D´1. (5.54)

Therefore, this is enough to compute the inverse of Rpλ,nq
u . Now, we are going to describe the

inverse of Rpλ,nq
u . However, some new notation is required. Recall that Crλns “ t´rλns, ¨ ¨ ¨ , rλnsu.

This means that the discrete circle Crλns is oriented by the `1 increment. For i, j P Crλns, when

we write �śj

k“i or �řj

k“i, we mean that k is in the set ti, i ` 1, ¨ ¨ ¨ , j ´ 1, ju. Then, the inverse of
R

pλ,nq
u is given by the following proposition.
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Proposition 5.28. Let n P N
˚. Let λ ą 0. Let i, j P Crλns. If j R ti ´ 1, i, i ` 1u, then

pRpλ,nq
u q´1pi, jq “

�śj´1

k“iuk ˆ
´
1 ` �ři´1

k“j`1
�śi´1

l“ku
2
l

¯
` �śi´1

k“juk ˆ
´
1 ` �řj´1

k“i`1
�śj´1

l“ku
2
l

¯
˜ ś

kPCrλns

uk ´ 1

¸2 . (5.55)

If j “ i ` 1, then

pRpλ,nq
u q´1pi, i ` 1q “

ui ˆ
´
1 ` �ři´1

k“i`2
�śi´1

l“ku
2
l

¯
` �śi´1

k“i`1uk˜ ś
kPCrλns

uk ´ 1

¸2 (5.56)

if j “ i ´ 1, then

pRpλ,nq
u q´1pi, i ´ 1q “

ui´1 ˆ
´
1 ` �ři´2

k“i`1
�śi´2

l“ku
2
l

¯
` �śi´2

k“iuk˜ ś
kPCrλns

uk ´ 1

¸2 (5.57)

Moreover,

pRpλ,nq
u q´1pi, iq “ 1 ` �ři´1

k“i`1
�śi´1

l“ku
2
l˜ ś

kPCrλns

uk ´ 1

¸2 . (5.58)

Proof of Proposition 5.28.
Let L

pλ,nq
u be a matrix with the coefficients above. We have to check that R

pλ,nq
u L

pλ,nq
u is the

identity matrix. The computation is quite awful. That is why we will only show that for every
i P Crλns, pRpλ,nq

u L
pλ,nq
u qpi, iq equals 1 and pRpλ,nq

u L
pλ,nq
u qpi, i` 1q equals 0. The other computations

are not more difficult and we omit it in this paper for sake of convenience. Let i P Crλns. Then, by
definition of Rpλ,nq

u ,

pRpλ,nq
u Lpλ,nq

u qpi, iq “ p1 ` u2i qLpλ,nq
u pi, iq ´ ui´1L

pλ,nq
u pi, i ´ 1q ´ uiL

pλ,nq
u pi, i ` 1q. (5.59)

For sake of convenience, we multiply identity (5.59) by

¨̋ ź
kPCrλns

uk ´ 1‚̨2

.
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Then, using the definition of the coefficients of Lpλ,nq
u , we get

pRpλ,nq
u L

pλ,nq
u qpi, iq ˆ

˜ ś
kPCrλns

uk ´ 1

¸2

“ p1 ` u2i q ˆ
´
1 ` �ři´1

k“i`1
�śi´1

l“ku
2
l

¯
´ ui´1 ˆ

´
ui´1 ˆ

´
1 ` �ři´2

k“i`1
�śi´2

l“ku
2
l

¯
` �śi´2

k“iuk

¯
´ui ˆ

´
ui ˆ

´
1 ` �ři´1

k“i`2
�śi´1

l“ku
2
l

¯
` �śi´1

k“i`1uk

¯
“ 1 ` u2i ` �ři´1

k“i`1
�śi´1

l“ku
2
l ` �ři´1

k“i`1
�śi

l“ku
2
l ´ u2i´1 ´ �ři´2

k“i`1
�śi´1

l“ku
2
l ´ ś

kPCrλns

uk

´u2i ´ �ři´1

k“i`2
�śi

l“ku
2
l ´ ś

kPCrλns

uk

“ 1 ´ 2
ś

kPCrλns

uk ´ u2i´1 `
´
�ři´1

k“i`1
�śi´1

l“ku
2
l ´ �ři´2

k“i`1
�śi´1

l“ku
2
l

¯
`

´
�ři´1

k“i`1
�śi

l“ku
2
l ´ �ři´1

k“i`2
�śi

l“ku
2
l

¯
“ 1 ´ 2

ś
kPCrλns

uk ´ u2i´1 ` u2i´1 ` �śi

l“i`1u
2
l

“
˜
1 ´ ś

kPCrλns

uk

¸2

.

Thus, we get that
pRpλ,nq

u Lpλ,nq
u qpi, iq “ 1.

Now, let us look at pRpλ,nq
u L

pλ,nq
u qpi, i ` 1q. By definition of Rpλ,nq,

pRpλ,nq
u Lpλ,nq

u qpi, i ` 1q
“ p1 ` u2i qLpλ,nq

u pi, i ` 1q ´ ui´1L
pλ,nq
u pi ´ 1, i ` 1q ´ uiL

pλ,nq
u pi ` 1, i ` 1q. (5.60)

As previously, we multiply identity (5.60) by

˜ ś
kPCrλns

uk ´ 1

¸2

. Then, using the definition of the

coefficients of Lpλ,nq
u , we get

p1 ` u2i q ˆ
´
ui ˆ

´
1 ` �ři´1

k“i`2
�śi´1

l“ku
2
l

¯
` �śi´1

k“i`1uk

¯
´ui´1 ˆ

´
ui´1ui

´
1 ` �ři´2

k“i`2
�śi´2

l“ku
2
l

¯
` �śi´2

k“i`1uk ˆ p1 ` u2i q
¯

´ui ˆ
´
1 ` �ři

k“i`2
�śi

l“ku
2
l

¯
“ ui ` u3i ` ui �

ři´1

k“i`2
�śi

l“ku
2
l ` ui �

ři´1

k“i`2
�śi´1

l“ku
2
l ` p1 ` u2i q �śi´1

k“i`1uk

´uiu
2
i´1 ´ ui �

ři´2

k“i`2
�śi´1

l“ku
2
l ´ p1 ` u2i q �śi´1

k“i`1uk ´ ui ´ ui �
ři

k“i`2
�śi

l“ku
2
l

“ u3i ´ uiu
2
i´1 ` ui

´
�ři´1

k“i`2
�śi´1

l“ku
2
l ´ �ři´2

k“i`2
�śi´1

l“ku
2
l

¯
`ui

´
�ři´1

k“i`2
�śi

l“ku
2
l ´ �ři

k“i`2
�śi

l“ku
2
l

¯
“ u3i ´ uiu

2
i´1 ` uiu

2
i´1 ´ u3i

“ 0.

This concludes the proof.
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5.7 Convergence of the discretized Green function

Before proving Theorem 5.7, we need to prove a first lemma.

For every t P r´λ, λs and for every n P N
˚, let us define a continuous random fonction

t ÞÑ X
pnq
t such that if j{n ď t ă pj ` 1q{nq,

X
pnq
t “

jź
i“´rλns

ui ` npt ´ j{nq
¨̋

j`1ź
i“´rλns

ui ´
jź

i“´rλns

ui‚̨
where for every i P Crλns, ui “ ?

AiAi`1 where pAiqiPCrλns
is a family of independent Inverse

Gaussian random variables with parameters p1, nq. Then we have the following lemma :

Lemma 5.29. For the topology of uniform convergence on r´λ, λs,

pXpnq
t qtPr´λ,λs

lawÝÝÝÝÑ
nÑ`8 pXtqtPr´λ,λs :“

´
eBt`λ´pt`λq{2

¯
tPr´λ,λs

.

Proof of lemma 5.29.
First, remark that for every t P r´λ, λs and for every n P N

˚,

X
pnq
t “ Y

pnq
t ` E

pnq
t (5.61)

where t ÞÑ Y
pnq
t is a continuous function such that if j{n ď t ă pj ` 1q{nq,

Y
pnq
t “

jź
i“´rλns

Ai ` npt ´ j{nq
¨̋

j`1ź
i“´rλns

Ai ´
jź

i“´rλns

Ai
‚̨

and t ÞÑ E
pnq
t is a random error function. By Lemma 5.21, sup

tPr´λ,λs
E

pnq
t goes to zero in probability

as n goes to infinity. Consequently, we only have to focus on Y pnq. It converges toward a Brownian
motion according to Lemma 5.22.

Now, we are ready to prove Theorem 5.7.

Proof of Theorem 5.7.
Let us define a rescaled bilinear continuous interpolation pĨpλ,nq

u q of pRpλ,nq
u q´1 exactly as in (5.6).

Besides, recall that by Lemma 5.29

pXpnq
t qtPr´λ,λs

lawÝÝÝÝÑ
nÑ`8 pXtqtPr´λ,λs (5.62)

where the convergence holds for the topology of uniform convergence. Now, the idea of the proof
is to write 1

n Ĩ
pλ,nq
u as a function of Xpnq. Remark that

— If j ą i (for the usual order in t´rλns, ¨ ¨ ¨ , rλnsu) then

�źi

l“j
ul “ X

pnq
i{n

X
pnq
rλns{n

X
pnq
pj´1q{n

.

— If j ă i, then

�źi

l“j
ul “ X

pnq
i{n

X
pnq
pj´1q{n

.
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Therefore, by Proposition 5.28, it holds that :
— From (5.58), if t P r´λ, λs,

1

n
Ĩpλ,nq
u pt, tq “

ż λ

t

˜
X

pnq
λ X

pnq
t

X
pnq
s

¸2

ds `
ż t

´λ

˜
X

pnq
t

X
pnq
s

¸2

ds

pXpnq
λ ´ 1q2

` oPnp1q (5.63)

where oPnp1q is a random variable which goes to zero in probability uniformly in t. (The
uniformity in t comes from Lemma 5.21.)

— From (5.55), if t, t1 P r´λ, λs with t ă t1,

1

n
Ĩpλ,nq
u pt, t1q “

X
pnq
t1

X
pnq
t

¨̋ż λ

t1

˜
X

pnq
λ X

pnq
t

X
pnq
s

¸2

ds `
ż t

´λ

˜
X

pnq
t

X
pnq
s

¸2

ds‚̨` X
pnq
λ X

pnq
t

X
pnq
t1

ż t1

t

˜
X

pnq
t1

X
pnq
s

¸2

ds

pXpnq
λ ´ 1q2

` oPnp1q (5.64)

where oPnp1q goes to 0 in probability uniformly in t and t1 thanks to Lemma 5.21.
Remark that (5.63) is just a special case of (5.64). Therefore, in the rest of the proof, we will only
focus on (5.64). From (5.64) and (5.62) and the fact that the Lebesgue integral is a continuous
functional for the topology of uniform convergence, we obtain that 1

n Ĩ
pλ,nq
u p¨, ¨q converges in law for

the topology of uniform convergence toward some symmetric random kernel pRpλqpt, t1qqpt,t1qPpCpλqq2
which is defined for t, t1 P r´λ, λs such that t ď t1 by the formula

Rpλqpt, t1q “
Xt1

Xt

˜ż λ

t1

ˆ
XλXt

Xs

˙2

ds `
ż t

´λ

ˆ
Xt

Xs

˙2

ds

¸
` XλXt

Xt1

ż t1

t

ˆ
Xt1

Xs

˙2

ds

pXλ ´ 1q2

“ Xt1Xt

pXλ ´ 1q2
˜
X2

λ

ż λ

t1

ds

X2
s

` Xλ

ż t1

t

ds

X2
s

`
ż t

´λ

ds

X2
s

¸
. (5.65)

Now, let us remark that pXt{X0qtPr´λ,λs is distributed as pMtqtPr´λ,λs where M was defined in
subsection 5.2.4.2. Moreover, by (5.65), for every t, t1 P r´λ, λs such that t ď t1

Rpλqpt, t1q

“ pXt1{X0qpXt{X0q
pXλ{X0 ´ 1{X0q2

˜
pXλ{X0q2

ż λ

t1

X2
0

X2
s

ds ` pXλ{X0qX´1
0

ż t1

t

X2
0

X2
s

ds ` X´2
0

ż t

´λ

X2
0

X2
s

ds

¸
.

Consequently, it holds that´
Rpλqpt, t1q

¯
´λďtďt1ďλ

law“
˜

Mt1Mt

pMλ ´ M´λq2
˜
M2

λ

ż λ

t1

ds

M2
s

` MλM´λ

ż t1

t

ds

M2
s

` M2´λ

ż t

´λ

ds

M2
s

¸¸
´λďtďt1ďλ

.

Therefore, Rpλq has the same distribution as Gpλq which is introduced in subsection 5.2.4.2. In
order to conclude the proof, we only have to justify that 1

n Ĩ
pλ,nq
u p¨, ¨q has the same limit as

G̃
pλ,nq
β p¨, ¨q. Recall that, by (5.54)

G
pλ,nq
β “ 1

n
DpRpλ,nq

u q´1D
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where D is a diagonal matrix whose entries are p?
AiqiPCrλns

and pAiqiPCrλns
are independent Inverse

Gaussian random variables with parameters p1, nq. However by Lemma 5.21, sup t| lnpAiq|, i P
Crλnsu goes to 0 in probability as n goes to infinity. Therefore, D goes to the identity matrix in
probability uniformly in its coefficients as n goes to infinity. Consequently, the limits in law of
n´1Ĩ

pλ,nq
u and G̃

pλ,nq
β are the same, that is, Rpλq law“ Gpλq. This concludes the proof.

5.8 Study of Gpλq

Proof of Proposition 5.8.
Remark that for every t ă t1, Gpλqpt, t1q can be divided into three parts as follows

pMλ ´ M´λq2G
pλqpt, t1q
MtMt1

“ M2
λApt, t1q ` MλM´λBpt, t1q ` M2´λCpt, t1q (5.66)

with

Apt, t1q “
ż λ

t1

ds

M2
s

, Bpt, t1q “
ż t1

t

ds

M2
s

and Cpt, t1q “
ż t

´λ

ds

M2
s

.

Therefore, we have three symmetric kernels A, B and C. Let f P L2pr´λ, λsq. We can observe
thatż λ

´λ

ż λ

´λ
Apt, t1qfptqfpt1qdtdt1 “

ż λ

´λ

ż t1

´λ

ż λ

t1

ds

M2
s

fptqfpt1qdtdt1 `
ż λ

´λ

ż λ

t1

ż λ

t

ds

M2
s

fptqfpt1qdtdt1.

By Fubini’s theorem, this implies thatż λ

´λ

ż λ

´λ
Apt, t1qfptqfpt1qdtdt1 “

ż λ

´λ

1

M2
s

ż s

´λ

ż t1

´λ
fptqfpt1qdtdt1ds `

ż λ

´λ

1

M2
s

ż s

´λ

ż s

t1
fptqfpt1qdtdt1ds

“
ż λ

´λ

1

M2
s

ˇ̌̌̌ż s

´λ
fptqdt

ˇ̌̌̌2
ds. (5.67)

In the same way, one can show that,ż λ

´λ

ż λ

´λ
Cpt, t1qfptqfpt1qdtdt1 “

ż λ

´λ

1

M2
s

ˇ̌̌̌ż λ

s
fptqdt

ˇ̌̌̌2
ds. (5.68)

By Fubini’s theorem again, we getż λ

´λ

ż λ

´λ
Bpt, t1qfptqfpt1qdtdt1 “

ż λ

´λ

ż t1

´λ

ż t1

t

ds

M2
s

fptqfpt1qdtdt1 `
ż λ

´λ

ż λ

t1

ż t

t1

ds

M2
s

fptqfpt1qdtdt1

“
ż λ

´λ

1

M2
s

ż s

´λ
fptqdt

ż λ

s
fptqdtds `

ż λ

´λ

1

M2
s

ż s

´λ
fptqdt

ż λ

s
fptqdtds.

(5.69)

These identities hold for every f P L2pr´λ, λsq. Let f P L2pr´λ, λsq. Combining identities (5.67),
(5.68), (5.69) and (5.66), we get

pMλ ´ M´λq2
ż λ

´λ

ż λ

´λ
Gpλqpt, t1qfptqfpt1qdtdt1

“ M2
λ

ż λ

´λ

1

M2
s

ˇ̌̌̌ż s

´λ
fptqMtdt

ˇ̌̌̌2
ds ` MλM´λ

ż λ

´λ

1

M2
s

ż s

´λ
fptqMtdt

ż λ

s
fptqMtdtds

`MλM´λ

ż λ

´λ

1

M2
s

ż s

´λ
fptqMtdt

ż λ

s
fptqMtdtds ` M2´λ

ż λ

´λ

1

M2
s

ˇ̌̌̌ż λ

s
fptqMtdt

ˇ̌̌̌2
ds

“
ż λ

´λ

1

M2
s

ˇ̌̌̌
Mλ

ż s

´λ
fptqMtdt ` M´λ

ż λ

s
fptqMtdt

ˇ̌̌̌2
ds.
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This proves that Gλ is non-negative. Now, let us check that it is positive. Let f P L2pr´λ, λsq
such that ż λ

´λ

1

M2
s

ˇ̌̌̌
Mλ

ż s

´λ
fptqMtdt ` M´λ

ż λ

s
fptqMtdt

ˇ̌̌̌2
ds “ 0.

Then, for almost every s P r´λ, λs,

Mλ

ż s

´λ
fptqMtdt ` M´λ

ż λ

s
fptqMtdt “ 0.

Thus, by Lebesgue differentiation theorem, we get that for almost every s P r´λ, λs,
MλfpsqMs ´ M´λfpsqMs “ 0.

Moreover Mλ ´ M´λ ‰ 0 almost surely. Therefore, almost surely, f is zero almost everywhere.
This concludes the proof.

5.9 Proof of identities in law

Proof of Proposition 5.9.
Let t P Cpλq. By Theorem 5.7,

G
pλ,nq
β prtns, rtnsq lawÝÝÝÝÝÑ

nÝÑ`8 Gpλqpt, tq.

However, by Theorem 3 in [153], for every n P N
˚, Gpλ,nq

β prtns, rtnsq is distributed as 1{p2γq where
γ is a Gamma distribution with parameters p1{2, 1q. Therefore, we get that

M2
t

pMλ ´ M´λq2
ˆ
M2

λ

ż λ

t

ds

M2
s

` M2´λ

ż t

´λ

ds

M2
s

˙
“ Gpλqpt, tq law“ 1

2γ
.

Proof of corollary 5.10.
First proof : Let us use Proposition 5.9 with t “ ´λ. This gives that

M2´λM
2
λ

pMλ ´ M´λq2
ż λ

´λ

ds

M2
s

law“ 1

2γ

where γ is a Gamma distribution with parameters p1{2, 1q. However, we can rewrite the left-hand
side as

M2´λM
2
λ

pMλ ´ M´λq2
ż λ

´λ

ds

M2
s

“ 1´
Mλ
M´λ ´ 1

¯2

ż 2λ

0

M2
λ

M2
s´λ

ds

“ 1´
Mλ
M´λ ´ 1

¯2

ż 2λ

0

M2
λ

M2
λ´s

ds.

However, recall that for every s P r´λ, λs, Ms “ eBs´s{2 where B is a Brownian motion such that
Bp0q “ 0. Consequently, we get that

M2´λM
2
λ

pMλ ´ M´λq2
ż λ

´λ

ds

M2
s

“ 1`
eBλ´B´λ´λ ´ 1

˘2 ż 2λ

0
e2pBλ´Bλ´sq´sds.
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Remark that B̃ :“ pBλ ´ Bλ´sqsě0 is a standard Brownian motion such that B̃p0q “ 0. This
gives exactly the formula in Corollary 5.10 with B̃ and 2λ. This first proof of Corollary 5.10 uses
directly the new tools developped in this paper. However, this is also possible to prove it thanks
to the Matsumoto-Yor properties whose a new proof is given in this paper.
Second proof : Let λ ą 0. Let us consider a Brownian motion α on R` such that α0 “ 0. For
every t ě 0, we define et “ eαt´t{2, Tt “ şt

0 e
2
sds and Zt “ Tt{et. By (iii) in Theorem 5.4, the law

of et conditionally on Zt is an Inverse Gaussian distribution with parameters p1, 1{Ztq. Therefore,
conditionally on Zt “ z,

pet ´ 1q2
Tt

“ pet ´ 1q2
zet

is distributed as
pX ´ 1q2

zX

where X is an Inverse Gaussian distribution with parameters p1, 1{zq. However, it is true generally
that if Y is an Inverse Gaussian distribution with parameters pμ, rq, then

r
pY ´ μq2

μ2Y
law“ 2γ

where γ is a Gamma distribution with parameters p1{2, 1q. (This stems from a direct computation
involving the density of an Inverse Gaussian distribution.) Consequently, pet´1q2

Tt
is distributed

like 2γ. This is exacly what we wanted to prove.

Now, let us prove functional identities in law.

Proof of Proposition 5.11.
Let f be a deterministic continuous non-negative function on Cpλq. By Lemma 8.1 in [77], for
every n P N

˚, for every η P R
Crλns

` ,

ÿ
iPCrλns

ÿ
jPCrλns

G
pλ,nq
β pi, jqηiηj law“

˜ ř
iPCrλns

ηi

¸2

2γ

where γ is distributed like a gamma distribution with parameters p1{2, 1q. Now, let us apply this
fact with ηi “ n´1fpi{nq. Then we obtain that¨̋

1

n

ÿ
iPCrλns

fpi{nq‚̨2

1

2γ
law“ 1

n2

ÿ
iPCrλns

ÿ
jPCrλns

G
pλ,nq
β pi, jqfpi{nqfpj{nq.

The left-hand side converges in law toward
´şλ

´λ fpxqdx
¯2

1
2γ because f is assumed to be continuous.

Now, let us focus on the right-hand side. By Lemma 5.21, it holds that,

1

n2

ÿ
iPCrλns

ÿ
jPCrλns

G
pλ,nq
β pi, jqfpi{nqfpj{nq

“
ÿ

iPCrλns

ÿ
jPCrλns

ż pi`1q{n

i{n

ż pj`1q{n

j{n
G̃

pλ,nq
β pt, t1qdtdt1fpi{nqfpj{nq ` oPnp1q (5.70)
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where oPnp1q goes to 0 in probability. Moreover, by (5.70) and the continuity of f , we get that

1

n2

ÿ
iPCrλns

ÿ
jPCrλns

G
pλ,nq
β pi, jqfpi{nqfpj{nq “

ż λ

´λ

ż λ

´λ
G̃

pλ,nq
β pt, t1qfptqfpt1qdtdt1 ` oPnp1q. (5.71)

We know that G̃pλ,nq
β converges in law toward Gpλq. Besides, if W pCpλq ˆCpλqq is the normed vector

space of continuous functions on Cpλq ˆ Cpλq with the uniform norm, then

H ÞÑ
ż λ

´λ

ż λ

´λ
Hpt, t1qfptqfpt1qdtdt1

is a continuous function on W pCpλq ˆ Cpλqq. Together with (5.71), this implies that

1

n2

ÿ
iPCrλns

ÿ
jPCrλns

G
pλ,nq
β pi, jqfpi{nqfpj{nq lawÝÝÝÝÝÑ

nÝÑ`8

ż λ

´λ

ż λ

´λ
Gpλqpt, t1qfptqfpt1qdtdt1.

Moreover, by Proposition 5.8,ż λ

´λ

ż λ

´λ
Gpλqpt, t1qfptqfpt1qdxdy

“ 1

pMλ ´ M´λq2
ż λ

´λ

1

M2
u

ˆ
M´λ

ż λ

u
fptqMtdt ` Mλ

ż u

´λ
Mtfptqdt

˙2

du.

It concludes the proof.

5.10 Study of Hpλq

Proof of Theorem 5.12.
Step 1 : First let us show that the range of Gpλq is included in D

`
Hpλq˘. Let f P L2pr´λ, λsq.

For every x P Cpλq, it holds that

pMλ ´ M´λq2Gpλqfpxq “ pMλ ´ M´λq2
ˆż x

´λ
fptqGpλqpx, tqdt `

ż λ

x
fptqGpλqpx, tqdt

˙
“

ż x

´λ
fptqMxMt

ˆ
M2

λ

ż λ

x

ds

M2
s

` MλM´λ

ż x

t

ds

M2
s

` M2´λ

ż t

´λ

ds

M2
s

˙
dt

`
ż λ

x
fptqMxMt

ˆ
M2

λ

ż λ

t

ds

M2
s

` MλM´λ

ż t

x

ds

M2
s

` M2´λ

ż x

´λ

ds

M2
s

˙
dt. (5.72)

Therefore, Gpλqf is continuous. In particular it is in L2pr´λ, λsq. Besides, by looking at (5.72),
one can remark that Gpλqfp´λq and Gpλqfpλq are both equal to

1

pMλ ´ M´λq2
ż λ

´λ
fptqMt

ˆ
M2

λM´λ

ż λ

t

ds

M2
s

` MλM
2´λ

ż t

´λ

ds

M2
s

˙
dt.

Now, we have to look at the derivative of
´
Gpλq
M

¯
. By differentiating (5.72), we get that for every

x P Cpλq

pMλ ´ M´λq2
˜
Gpλqf
M

¸1
pxq

“ 1

M2
x

ˆ
MλpM´λ ´ Mλq

ż x

´λ
fptqMtdt ` M´λpM´λ ´ Mλq

ż λ

x
fptqMtdt

˙
. (5.73)
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By (5.73), It is clear that
´
Gpλqf
M

¯1
is continuous. In particular, this is in L2pr´λ, λsq. Moreover,

by looking at (5.73), one can remark that M´λ

´
Gpλf
M

¯1 p´λq and Mλ

´
Gpλf
M

¯1 pλq are both equal
to

1

M´λ ´ Mλ

ż λ

´λ
fptqMtdt.

Finally, one can differentiate also (5.73). This gives that for almost every x P Cpλq,˜
M2

˜
Gpλqf
M

¸1¸1
pxq “ ´fpxqMx. (5.74)

Recall that f P L2pr´λ, λsq. Together with (5.74), this implies that
ˆ
M2

´
Gpλqf
M

¯1˙1
P L2pr´λ, λsq.

Therefore, Gpλqf P D
`
Hpλq˘.

Step 2 : Now, we have to show that D
`
Hpλq˘ is included in the range of Gpλq. Let g P D

`
Hpλq˘.

Let us define

f “ ´ 1

M

ˆ
M2

´ g

M

¯1˙1
.

Let us show that g “ Gpλqf . Exactly as in (5.72), it holds that for every x P Cpλq,

pMλ ´ M´λq2Gpλqfpxq “ pMλ ´ M´λq2
ˆż x

´λ
fptqGpλqpx, tqdt `

ż λ

x
fptqGpλqpx, tqdt

˙
“

ż x

´λ
´ 1

Mt

ˆ
M2

´ g

M

¯1˙1
ptqMxMt

ˆ
M2

λ

ż λ

x

ds

M2
s

` MλM´λ

ż x

t

ds

M2
s

` M2´λ

ż t

´λ

ds

M2
s

˙
dt

`
ż λ

x
´ 1

Mt

ˆ
M2

´ g

M

¯1˙1
ptqMxMt

ˆ
M2

λ

ż λ

t

ds

M2
s

` MλM´λ

ż t

x

ds

M2
s

` M2´λ

ż x

´λ

ds

M2
s

˙
dt

“ ´
ż x

´λ

ˆ
M2

´ g

M

¯1˙1
ptqMx

ˆ
M2

λ

ż λ

x

ds

M2
s

` MλM´λ

ż x

t

ds

M2
s

` M2´λ

ż t

´λ

ds

M2
s

˙
dt

´
ż λ

x

ˆ
M2

´ g

M

¯1˙1
ptqMx

ˆ
M2

λ

ż λ

t

ds

M2
s

` MλM´λ

ż t

x

ds

M2
s

` M2´λ

ż x

´λ

ds

M2
s

˙
dt. (5.75)

Thanks to integration by parts, on can check that for every x P Cpλq,

pMλ ´ M´λq2
Mx

Gpλqfpxq “ ´M2
λ

ż λ

x

ds

M2
s

ˆ
M2

x

´ g

M

¯1 pxq ´ M2´λ

´ g

M

¯1 p´λq
˙

´ MλM´λ

ż x

´λ

´ g

M

¯1 ptqdt ` MλM
3´λ

´ g

M

¯1 p´λq
ż x

´λ

ds

M2
s

` M2´λ

ż x

´λ

´ g

M

¯1 ptqdt ´ M2´λM
2
x

´ g

M

¯1 pxq
ż x

´λ

ds

M2
s

´ M2
λ

ż λ

x

´ g

M

¯1 ptqdt ` M2
λM

2
x

´ g

M

¯1 pxq
ż λ

x

ds

M2
s

` MλM´λ

ż λ

x

´ g

M

¯1 ptqdt ´ M3
λM´λ

´ g

M

¯1 pλq
ż λ

x

ds

M2
s

´ M2´λ

ż x

´λ

ds

M2
s

ˆ
M2

λ

´ g

M

¯1 pλq ´ M2
x

´ g

M

¯1 pxq
˙
. (5.76)

This expression seems to be quite awful. However, recall from the definition of D
`
Hpλq˘ that

M´λ

`
g
M

˘1 p´λq “ Mλ

`
g
M

˘1 pλq. Therefore, we can simplify many terms in (5.76) and we obtain
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that for every x P Cpλq,

pMλ ´ M´λq2
Mx

Gpλqfpxq “ ´MλM´λ

ż x

´λ

´ g

M

¯1 ptqdt ` M2´λ

ż x

´λ

´ g

M

¯1 ptqdt

´ M2
λ

ż λ

x

´ g

M

¯1 ptqdt ` MλM´λ

ż λ

x

´ g

M

¯1 ptqdt
“ Mλ pgpλq ´ gp´λqq ` M´λ pgpλq ´ gp´λqq

` gpxq
Mx

`´MλM´λ ` M2´λ ´ MλM´λ ` M2
λ

˘
“ gpxq

Mx
pMλ ´ M´λq2 (5.77)

where in the last equality, we used the fact that gpλq “ gp´λq. Finally, we proved that for every
x P Cpλq,

Gpλqfpxq “ gpxq.
Therefore, g is in the range of Gpλq. This concludes the proof of the fact that D

`
Hpλq˘ is exactly

the image of Gpλq.
Step 3 : We know that Gpλq is a surjection from L2pr´λ, λsq onto D

`
Hpλq˘. Moreover, by

Proposition 5.8, Gpλq is positive definite. In particular it is injective. Therefore, Gpλq is a one-to-one
mapping from L2pr´λ, λsq onto D

`
Hpλq˘. Let us denote its inverse by Hpλq. The computation in

the two first steps implies directly that for every g P D
`
Hpλq˘,

Hpλqg “ ´ 1

M

ˆ
M2

´ g

M

¯1˙1
.

Now, let us show that Hpλq is self-adjoint. On the first hand, Hpλq is clearly symmetric. In
particular, D

`
Hpλq˘ Ă D

`
Hpλq˚˘

. On the second hand, let φ P D
`
Hpλq˚˘

. By definition, there
exists η P L2pr´λ, λsq such that for every g P D

`
Hpλq˘,ż λ

´λ
Hpλqgpxqφpxqdx “

ż λ

´λ
gpxqηpxqdx.

As the image of Gpλq is included in D
`
Hpλq˘, it holds that for every f P L2pr´λ, λsq,ż λ

´λ
HpλqGpλqfpxqφpxqdx “

ż λ

´λ
Gpλqfpxqηpxqdx

“
ż λ

´λ
fpxqGpλqηpxqdx

where in the second equality we used the fact that Gpλq is self-adjoint. Therefore, for every
f P L2pr´λ, λsq, ż λ

´λ
fpxqφpxqdx “

ż λ

´λ
fpxqGpλqηpxqdx.

Consequently, φ “ Gpλqη. Thus, φ is in the image of Gpλq, that is, D
`
Hpλq˘. Finally, we proved

that D
`
Hpλq˘ “ D

`
Hpλq˚˘

which means that Hpλq is self-adjoint. Moreover, Hpλq is positive
definite because it is the inverse of Gpλq which is itself positive definite by Proposition 5.8.

Now, let us show that the spectrum of Hpλq consists in a sequence of increasing positive
eigenvalues.
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Proof of Proposition 5.13.
Recall that the operator Gpλq on L2pr´λ, λsq comes from a continuous kernel on the compact set
Cpλq ˆ Cpλq. Then, a classical proof using Arzelà-Ascoli Theorem shows that Gpλq is a compact
operator on L2pr´λ, λsq. (See the beginning of section VI.5 in [143].) Moreover, we know that
Gpλq is self-adjoint on L2pr´λ, λsq. Therefore, by the theorem of diagonalization of self-adjoint
compact operators (see Theorem VI.16 in [143]), there exists a random sequence pAkpλqqkě0 which
represents the eigenvalues of Gpλq which are counted with multiplicity. The sequence pAkpλqqkě0

is bounded, decreasing and converges to 0 when k goes to infinity. Moreover,

σpGpλqq “ t0u Y tpAkpλqqkě0u.
Indeed, 0 is also a spectral value of Gpλq but not an eigenvalue because we know by Theorem
5.12 that Gpλq is injective but not surjective because its image is D

`
Hpλq˘ Ř L2pr´λ, λsq. Now,

remark that E is a spectral value of Hpλq if and only if Id ´ EGpλq is invertible. Therefore,

σ
´
Hpλq

¯
X R

˚ “ tp1{Akpλqqkě0u :“ tpEkpλqqkě0u.

Moreover, 0 is not a spectral value of Hpλq because it is a bijection from its domain onto L2pr´λ, λsq
by Theorem 5.12.

5.11 Proof of asymptotic results on Hpλq

Now, let us prove Proposition 5.14.

Proof of Proposition 5.14.
By subsection 5.2.4.2 for every λ ą 0 and for every t, t1 P r´λ, λs such that t ě t1,

Gpλqpt, t1q “ Mt1Mt

pMλ ´ M´λq2
˜
M2

λ

ż λ

t1

ds

M2
s

` MλM´λ

ż t1

t

ds

M2
s

` M2´λ

ż t

´λ

ds

M2
s

¸

“ Mt1Mt

pMλ{M´λ ´ 1q2
˜

M2
λ

M2´λ

ż λ

t1

ds

M2
s

` Mλ

M´λ

ż t1

t

ds

M2
s

`
ż t

´λ

ds

M2
s

¸
. (5.78)

We know that Mλ{M´λ goes to 0 when λ goes to infinity. Therefore, we can replace the term
1

pMλ{M´λ´1q2 by 1 when λ goes to infinity. Moreover, for every λ ą 0, for every t1 P r´λ, λs, it
holds almost surely that

M2
λ

M2´λ

ż λ

t1

ds

M2
s

“ e2Bλ´2B´λ´2λ

ż λ

t1
e´2Bs`sds “ Ope´λq

because |Bt| o
tÑ`8pt

3{4q. In the same way, one can show that

Mλ

M´λ

ż t1

t

ds

M2
s

a.sÝÝÝÝÝÑ
λÝÑ`8 0.

Using this in (5.78) implies that for every T ą 0,

sup
´Tďtďt1ďT

ˇ̌̌̌
Gpλqpt, t1q ´ Mt1Mt

ż t

´8
ds

M2
s

ˇ̌̌̌
a.sÝÝÝÝÝÑ

λÝÑ`8 0. (5.79)

It concludes the proof.

Thanks to Proposition 5.14, we can prove a surprising identity in law.
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Proof of Corollary 5.15.
By Proposition 5.14, ˜

Gp8qp0, tq
Gp8qp0, 0q

¸
tě0

“ pMtqtě0 (5.80)

and

˜
Gp8qp0,´tq
Gp8qp0, 0q

¸
tě0

“

¨̊
˚̋̊
M´t

ż ´t

´8
ds

M2
sż 0

´8
ds

M2
s

‹̨‹‹‚
tě0

. (5.81)

Besides, ˜
Gp8qp0, tq
Gp8qp0, 0q

¸
tě0

law“
˜
Gp8qp0,´tq
Gp8qp0, 0q

¸
tě0

. (5.82)

Indeed, the law of the discrete process Gpλ,nq is clearly symmetric and this property remains true
when we take the limit. Recall that Mt “ eBt´t{2 for every t P R. Therefore, combining (5.80),
(5.81) and (5.82), we get that ¨̊

˚̋eB´t`t{2

ż `8

t
e´2B´s´sdsż `8

0
e´2B´s´sds

‹̨‹‚
tě0

is a geometric Brownian motion starting from 1. Moreover, p´B´tqtě0 is a standard Brownian
motion starting from 0. Therefore, we proved Corollary 5.15.

Now, let us prove the asymptotic behaviour of the density of states of Hpλq. Our proof is
inspired from a paper of Fukushima and Nakao (see [71]) and it is based on the study of a
Sturm-Liouville equation.
Strategy of the proof : The equation HpλqϕE “ EϕE is equivalent to the Sturm-Liouville
equation `

M2ϕ1
E

˘1 ` EM2ϕE “ 0.

Some classical results on Sturm-Liouville equations imply that ϕE can be written as ϕE “
RE sinpθEq where RE never vanishes. Therefore, ϕE vanishes k times in r´λ, λs if and only if
θEpλq P rkπ, pk ` 1qπs. Moreover, Sturm-Liouville oscillation theorem states that ϕEkpλq vanishes
approximately k times. Consequently, if NλpEq “ k, then Ekpλq ď E ă Ek`1pλq which implies
that

NλpEq “ k » θEkpλqpλq
π

» θEpλq
π

.

Therefore, for every fixed E ą 0, we only have to study the asymptotic behaviour of θEpλq when
λ goes to infinity. However, according to the theory of Sturm-Liouville equations, θE is solution
of the following ODE with random coefficients :

θ1
E “ M´2

t cospθEq2 ` EM2
t sinpθEq2.

Moreover a very surprising fact is that ζE :“ ´ cotpθEq
M2 is a Markov process with explosions.

Actually explosions of ζE occur precisely when θE is a multiple of π. Therefore, we only have to
count the explosions of ζE . However, by the Markov property, the explosion times of ζE are i.i.d
random variables. As a consequence, the number of explosions of ζE before time t, that is the
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number of times where θE is a multiple of π before t is a renewal process which can be studied
thanks to classical tools. However, one problem of the Sturm-Liouville equation is that M is not
differentiable. Consequently, we can not apply directly the Sturm-Liouville theory. However, we
can apply it with a regularized version of M . Let us replace M by M pnq which is a C2 random
function such that M pnq converges uniformly to M almost surely. (For example, M pnq can be
taken as a polynomial interpolation of M .) Let us prove the following lemma about the effects of
this approximation on the spectrum.

Lemma 5.30. Let λ ą 0. Let pM pnqqnPN˚ be a sequence of C2 functions which converges almost
surely uniformly to M on r´λ, λs. Let Hpλq

n be a random self-adjoint positive operator defined by

Hpλq
n g “ ´ 1

M pnq

ˆ
pM pnqq2

´ g

M pnq
¯1˙1

where g is in the domain D
´
Hpλq

n

¯
which is defined by

$’&’%g P L2pr´λ, λsq,
´

g
Mpnq

¯1 P L2pr´λ, λsq,
ˆ

pM pnqq2
´

g
Mpnq

¯1˙1
P L2pr´λ, λsq,

gp´λq “ gpλq, M
pnq
´λ

´
g

Mpnq

¯1 p´λq “ M
pnq
λ

´
g

Mpnq

¯1 pλq

,/./- .

Then, the spectrum of Hpλq
n is a random increasing positive sequence pEn,kpλqqkě0 which diverges to

infinity. Moreover, these spectral values of Hpλq
n are eigenvalues which are counted with multiplicity.

Furthermore, for every k P N,
En,kpλq a.sÝÝÝÝÑ

nÑ`8 Ekpλq.

In particular, if Nn,λpEq is the number of eigenvalues of Hpλq
n which are lower than E, then for

every E ą 0

Nn,λpEq a.sÝÝÝÝÑ
nÑ`8 NλpEq.

Proof of Lemma 5.30.
The fact that Hpλq

n is positive and self-adjoint can be proved exactly as for Hpλq. Moreover,
exactly as for Hpλq in the proof of Proposition 5.13, the eigenvalues of Hpλq

n are the inverse of the
eigenvalues of Gpλq

n where Gpλq
n pt, t1q is defined by

M
pnq
t1 M

pnq
t

pM pnq
λ ´ M

pnq
´λ q2

˜
pM pnq

λ q2
ż λ

t1

ds

pM pnq
s q2

` M
pnq
λ M

pnq
´λ

ż t1

t

ds

pM pnq
s q2

` pM pnq
´λ q2

ż t

´λ

ds

pM pnq
s q2

¸

for every t ď t1 P Cpλq. By the expression above, this is clear that pt, t1q ÞÑ Gpλq
n pt, t1q converges uni-

formly toward pt, t1q ÞÑ Gpλqpt, t1q. This implies that Gpλq
n f converges almost surely in L2pr´λ, λsq

toward Gpλqf uniformly in f P L2pr´λ, λsq such that ||f ||2 “ 1. Furthermore, by the min-max
principle,

1

En,kpλq “ max
Vk

min
fPVk,||f ||2“1

ż λ

´λ

ˇ̌̌
Gpλq
n fptq

ˇ̌̌2
dt

where Vk is in the set of vector spaces of dimension k in L2pr´λ, λsq. This implies directly that
En,kpλq converges toward Ekpλq when n goes to infinity.

Proof of Theorem 5.16.
Step 1 : Link with the Sturm-Liouville equation. Let λ ą 0. Let M pnq be a C2 sequence
of random functions which converges almost surely uniformly toward M and let Hpλq

n be the
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operator which is associated with M pnq. Let En,kpλq be some eigenvalue of Hpλq
n . There exists an

eigenvector ψEn,kpλq P D
´
Hpλq

n

¯
such that

˜
pM pnqq2

ˆ
ψEn,kpλq
M pnq

˙1¸1
` En,kpλqM pnqψEn,kpλq “ 0. (5.83)

Then, let us define ϕn,k “ ψEn,kpλq{M pnq. We omit the dependence in λ for sake of convenience.
Then, ϕn,k belongs to the set#

g P L2pr´λ, λsq, g1 P L2pr´λ, λsq, `pM pnqq2g1˘1 P L2pr´λ, λsq,
M

pnq
´λ gp´λq “ M

pnq
λ gpλq, M

pnq
´λ g

1p´λq “ M
pnq
λ g1pλq

+
.

Moreover, ϕn,k is solution of´
pM pnqq2ϕ1

n,k

¯1 ` En,kpλqpM pnqq2ϕn,k “ 0. (5.84)

Remark that the ODE in (5.84) is a Sturm-Liouville equation. By Theorem 2.1 in Chapter 8 of
[42], there exists an increasing sequence of real numbers pμn,kpλqqkě0 which goes to infinity such
that for every k P N, there exists a non trivial C2 function ξn,k such that´

pM pnqq2ξ1
n,k

¯1 ` μn,kpλqpM pnqq2ξn,k “ 0

and ξn,kp´λq “ ξn,kpλq “ 0. These numbers pμn,kpλqqkě0 are called the Dirichlet eigenvalues of
our Sturm Liouville equation. pξn,kqkPN are the Dirichlet eigenstates which are associated with
pμn,kpλqqkě0. For every E ą 0, let us define Ñn,λpEq be the number of Dirichlet eigenvalues which
are lower than E. Moreover, by the Liouville transformation (see 4.3 in [63]) the eigenvalues of
the Sturm-Liouville problem

pIq
$’&’%

ppM pnqq2ϕ1q1 ` EpM pnqq2ϕ “ 0

M
pnq
´λϕp´λq “ M

pnq
λ ϕpλq

M
pnq
´λϕ

1p´λq “ M
pnq
λ ϕ1pλq

are the same as the eigenvalues of the Sturm-Liouville problem

pIIq

$’’&’’%
Φ2 ´ QΦ ` EΦ “ 0

Φp´λq “ Φpλq
Φ1p´λq “ Φ1pλq `

ˆ
M

pnq
λ

´
1

Mpnq

¯1
λ

´ M
pnq
´λ

´
1

Mpnq

¯1
´λ

˙
Φpλq

where Q “ 1 ´ 1
Mpnq

ˆ
pM pnqq2

´
1

Mpnq

¯1˙1
. Besides, by Theorem 1.3 in [138], the eigenvalues of

pIIq are interlaced with the eigenvalues of the following Sturm-Liouville problem :

pIIIq
"

Φ2 ´ QΦ ` EΦ “ 0
Φp´λq “ Φpλq “ 0

.

Furthermore, by the Liouville tranformation again, the eigenvalues of pIIIq are the same as the
eigenvalues of the following Sturm-Liouville problem :

pIV q
" ppM pnqq2ϕ1q1 ` EpM pnqq2ϕ “ 0

ϕp´λq “ ϕpλq “ 0
.
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Therefore, the eigenvalues of pIq and pIV q are interlaced. In particular, almost surely, for every
E ą 0

|Nn,λpEq ´ Ñn,λpEq| ď 1. (5.85)

Now, let μn,kpλq be an eigenvalue of the Sturm Liouville equation with Dirichlet condition. Let ξn,k
be the associated eigenstate. According to chapter 8 in [42], there exists two functions Rn,μn,kpλq
and θn,μn,kpλq such that

ξn,k “ Rn,μn,kpλq sin
´
θn,μn,kpλq

¯
(5.86)

R2
n,μn,kpλq “ ppM pnqq2ξ1

n,kq2 ` ξ2n,k (5.87)

θ1
n,μn,kpλq “ 1

pM pnqq2 cospθn,μn,kpλqq2 ` μn,kpλqpM pnqq2 sinpθn,μn,kpλqq2 (5.88)

where θn,μn,kpλqp´λq “ 0. Remark that for any μ ą 0, the function θn,μ depends also on λ
but we omit this dependence in the notation for sake of convenience. By (5.87), Rn,μn,kpλq can
never be zero at any point. Otherwise, this would imply that there exists some point t0 such
that ξ1

n,kpt0q “ ξn,kpt0q “ 0. By Cauchy-Lipschitz theorem, this would imply that ξn,k is zero
everywhere which is false because this is an eigenvector. Therefore, as Rn,μn,kpλq never vanishes,
(5.86) implies that ξn,k vanishes when θn,μn,kpλq is a multiple of π. Moreover, by Theorem 2.1 in
chapter 8 of [42], the number of zeros of ξn,k in r´λ, λs is always k ` 2. Now, let E P R

˚̀ . There
exists some k P N such that Ñn,λpEq “ k, that is, μn,k´1pλq ď E ă μn,kpλq with the convention
stating that μn,´1pλq “ 0. We said that ξn,k´1 vanishes exactly k ` 1 times in r´λ, λs. Therefore,

θn,μn,k´1pλqpλq “ kπ.

Consequently,

Ñn,λpEq “ θn,μn,k´1pλqpλq
π

ď θn,Epλq
π

where the inequality stems from the increasingness of E ÞÑ θn,Epλq where θn,E is solution of

θ1
n,E “ 1

pM pnqq2 cospθn,Eq2 ` E ˆ pM pnqq2 sinpθn,Eq2.

with θn,Ep´λq “ 0. We can obtain a lower bound in the same way which yields

´1 ` θn,Epλq
π

ď Ñn,λpEq ď θn,Epλq
π

. (5.89)

Together with (5.85), this yields

´2 ` θn,Epλq
π

ď Nn,λpEq ď 1 ` θn,Epλq
π

. (5.90)

As M pnq converges uniformly to M on r´λ, λs, θn,E converges uniformly on r´λ, λs toward θE
which is the solution of the random ODE

θ1
E “ 1

M2
cospθEq2 ` EM2 sinpθEq2

with θEp´λq “ 0. This solution is well-defined on r´λ, λs for every initial condition because
pt, θq ÞÑ 1

M2
t
cospθq2 ` EM2

t sinpθq2 is continuous and globally lipischitz in the second variable
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on any set of the type r´r, rs ˆ R. Now, let us assume that E and λ are fixed. By Lemma
5.30, Nn,λpEq converges toward NλpEq almost surely. Moreover, we proved that θn,E converges
uniformly toward θE almost surely. As a consequence, we can take the limit in (5.90) which
implies that for every E ą 0 and every λ ą 0, almost surely,

´2 ` θEpλq
π

ď NλpEq ď 1 ` θEpλq
π

. (5.91)

Step 2 : Study of θE. Let us shift θE in order to start from 0. For every t ě 0, let us define θ̃E
such that for every t ě 0, θ̃Eptq “ θEpt ´ λq. This implies that θ̃E is a solution of the random
ODE

θ̃1
Eptq “ 1

M2´λM̃
2
t

cospθ̃Eq2 ` EM2´λM̃
2
t sinpθ̃Eq2 (5.92)

where M´λ “ eB´λ`λ{2 and M̃t “ eBt´λ´B´λ´t{2 which is a geometric Brownian motion which is
equal to 1 at 0. Moreover, M̃ is independent of M´λ. Of course, θ̃E depends on λ (as well as θE
actually) but we omit this in the notation for sake of convenience. For every t ě 0, we define Ft as
the right-continuous completion of σpM´λ, M̃s, s ď tq. This is clear that θ̃E is adapted with the
filtration pFtqtě0. By (5.92), remark that θ̃E is stricly increasing. Therefore, it goes to infinity or
it has a finite random limit Θ˚. As p1{M̃tqtě0 goes to infinity at exponential speed almost surely,
(5.92) implies that Θ˚ must be of the form π{2 ` K˚π with K˚ which is random and possibly
infinite. For every k P N, let us define the stopping times

Tk “ inftt ě 0, θ̃Eptq “ kπu and τk “ inftt ě 0, θ̃Eptq “ π{2 ` kπu.
By definition we have a sequence of inequalities

0 “ T0 ă τ0 ă T1 ă τ1 ă ¨ ¨ ¨ ă TK˚ ă τK˚ “ `8.

In order to prove that θ̃E goes to infinity almost surely, we will prove that for every k P N
˚,

E pτkq ă `8. Further, for technical purposes, we need to introduce other stopping times : for
every k P N and for every n P N

˚, let us define

T`
k,n “ inftt ě 0, θ̃Eptq “ kπ ` 1{nu and T´

k,n “ inftt ě 0, θ̃Eptq “ kπ ´ 1{nu.
Now, we need a lemma whose proof is postponed to the end of this section.

Lemma 5.31. For every n P N
˚, E

”
T`
0,n

ı
ă `8.

Thanks to this lemma, let us show that E rτ0s ă `8 and E rT1s ă `8. Let us introduce
jE :“ ´ cotpθ̃Eq. Observe that jEptq explodes when t is some stopping time Tk for any k and
vanishes when t is some stopping time τk for any k. Moreover, on each interval of type sTk, Tk`1r,
jE is solution of the following Riccati equation :

j1
E “ 1

M2´λM̃
2
j2E ` EM2´λM̃

2. (5.93)

Now, consider n P N
˚ and let us work on the interval sT`

0,n, τ0r. (For now, we do not know whether
τ0 is finite or not.) Then, we define the stochastic process ζE :“ jE

M2´λM̃2
. This stochastic process

explodes at some times. However, it is a continuous locally bounded process on sT`
0,n, τ0r almost

surely. Therefore, we can use stochastic calculus on this interval. Recall that M̃ is a geometric
Brownian motion on r0, 2λs which is 1 at time 0. In particular, M̃ satisfies the SDE

dM̃t “ M̃tdBt. (5.94)
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Therefore, on sT`
0,n, τ0r, it holds that

dζEptq “ 1

M2´λ

ˆ
jE ¨ d

´
M̃´2

t

¯
` j1

Eptq
M̃2

t

dt

˙
.

Then, using Ito’s formula together with (5.93) and (5.94), we get

dζEptq “ 1

M2´λ

˜
´2jEptq

M̃3
t

dM̃t ` 3jEptq
M̃4

t

dxM̃yt ` 1

M̃2
t

˜
jEptq2
M2´λM̃

2
t

` EM2´λM̃
2
t

¸
dt

¸

“ ´2
jEptq

M2´λM̃
2
t

dBt ` 3
jEptq

M2´λM̃
2
t

dt ` jEptq2
M4´λM̃

4
t

dt ` Edt

“ ´2ζEptqdBt ` pζEptq2 ` 3ζEptq ` Eqdt.
Finally, on sT`

0,n, τ0r, ζE is solution of the SDE :

dζEptq “ ´2ζEptqdBt ` pζEptq2 ` 3ζEptq ` Eqdt. (5.95)

Therefore, until its explosion, this is a Markov process with generator,

Lf “ 2z2f2pzq ` pz2 ` 3z ` Eqf 1pzq
for any regular function f . Now, let us define a function f´ on R´ such that for every z P R´,

f´pzq “ ´
ż 0

z

e´u{2`E{p2uq

2|u|3{2

ż u

´8
1

|t|1{2 e
t{2´E{p2tqdtdu. (5.96)

One can check that f´ is well-defined (the singularity at 0 in the integral is not a real one) and
smooth on R

˚́ , that f´ is bounded and has a finite limit at ´8. Besides f´ satisfies Lf´ “ 1 on
R

˚́ . Then, by Propositions 2.6 and 2.2 in Chapter VII of [148], conditionally on FT`
0,n

, it holds
that ´

f´
´
ζEppT`

0,n ` tq ^ τ0q
¯

´ pT`
0,n ` tq ^ τ0

¯
tě0

is a martingale with respect to the filtration
´
FT`

0,n`t

¯
tě0

. (The integrability of this martingale

comes from the boundedness of f´ and Lemma 5.31.) This implies that

E

”
pT`

0,n ` tq ^ τ0

ı
“ E

”
T`
0,n

ı
` E

”
f´

´
ζEppT`

0,n ` tq ^ τ0q
¯ı

´ E

”
f´

´
ζEpT`

0,nq
¯ı

. (5.97)

By monotone convergence and dominated convergence (recall that f´ is bounded), we can make
t go toward infinity in (5.97) which implies that

E rτ0s “ E

”
T`
0,n

ı
` E rf´ pζEpτ0qqs ´ E

”
f´

´
ζEpT`

0,nq
¯ı

.

Thanks to Lemma 5.31 and the boundedness of f´, this implies that E rτ0s ă `8. Actually, this
is not difficult to iterate this method in order to prove that E rτks ă `8 for every k P N

˚. In
particular, this yields

lim
tÑ`8θ̃Eptq “ `8 a.s. (5.98)

Step 3 : Link with a renewal process. On any interval of the form rT`
k,n, T

´
k`1,ns, ζE is a

continuous stochastic process which is the solution of the SDE (5.95). This is very tempting to say
that ζE is a Markov diffusion process on R whose values are in R Y t8u which would imply that
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the lengths of time Tk`1 ´ Tk are i.i.d as the succesive hitting times of 8 by a Markov process.
However, to our knowledge, the case of a process whose values can be 8 is not contained in the
theory of Markov diffusions. In order to avoid this theoritical problem, let us make a change
of variable. We define ΓE :“ ζE´i

ζE`i . The idea under this transformation is to map R Y t8u on
the unit circle. Remark that ΓE “ 1 when ζE “ 8. Moreover, ζE is continuous on intervals of
the form sTk, Tk`1r. Furthermore, for every k P N, ζEptq goes to `8 when t goes to Tk on the
left and ζEptq goes to ´8 when t goes to Tk on the right. Therefore, ΓE is continuous on R`.
Further, remark that ζE “ ´iΓE`1

ΓE´1 . Then, on each interval of the form rT`
k,n, T

´
k`1,ns, by (5.95)

and Ito’s formula,

dΓEptq “ 2i

pζEptq ` iq2dζEptq ´ 2i

pζEptq ` iq3dxζEyt

“ 4i
ζEptq

pζEptq ` iq2dBt ` 2i

ˆ
ζEptq2 ` 3ζEptq ` E

pζEptq ` iq2 ´ 4
ζEptq2

pζEptq ` iq3
˙
dt. (5.99)

Moreover, by a straightforward computation :

1

pζE ` iq2 “ ´p1 ´ ΓEq2
4

,
ζE

pζE ` iq2 “ ´ i

4
p1 ´ Γ2

Eq, ζ2E
pζE ` iq2 “ p1 ` ΓEq2

4

and
ζ2E

pζE ` iq3 “ ´ i

8
p1 ` ΓEq2p1 ´ ΓEq.

Together with (5.99), this implies that on each interval of the form sT`
k,n, T

´
k`1,nr,

dΓEptq
“ p1 ´ Γ2

EqdBt ` 2i

ˆ
1

4
p1 ` ΓEq2 ´ 3i

4
p1 ´ Γ2

Eq ´ E

4
p1 ´ ΓEq2 ` i

2
p1 ` ΓEq2p1 ´ ΓEq

˙
dt.

(5.100)

Besides, ΓE is a continuous and uniformly bounded stochastic process. Therefore, we can prove
that ΓE satisfies the SDE (5.100) on the whole set R` and not only on intervals of the form
rT`

k,n, T
´
k`1,ns by using the continuity of ΓE and the dominated convergence theorem for the

stochastic integral. (See Theorem 2.12 in [148].) Now, we want to apply Definition 7.1.1 of [135]
in order to say that ΓE is an Ito diffusion. However, Definition 7.1.1 in [135] requires that the
functions inside the SDE are globally lipschitz. Here, this is not true at first sight. Nevertheless,
|ΓE | is bounded by 1. Consequently, we can consider compactly supported functions which coincide
with γ ÞÑ 1 ´ γ2, γ ÞÑ p1 ` γq2, γ ÞÑ p1 ´ γq2 and γ ÞÑ p1 ` γq2p1 ´ γq on the unit circle. Then,
these compactly supported functions are lipschitz and we can consider a modified version of the
SDE (5.100) with lipschitz coefficients which is satisfied by ΓE . Therefore, according to Definition
7.1.1 in [135], ΓE is a complex Itô diffusion. Now, recall that the stopping times pTkqkě0 are
the successive hitting times of kπ by θ̃E . This implies that the stopping times pTkqkě0 are the
successive hitting times of 8 by ζE , that is, the successive hitting times of 1 by ΓE . As ΓE is an
Itô diffusion, by Theorem 7.2.4 in [135] it satisfies the strong Markov property. Then, by classical
arguments, this implies that pTk`1 ´ TkqkPN is an i.i.d sequence of random variables. Therefore˜[

θ̃Eptq
π

_¸
tě0

“ p#tk P N
˚, Tk ď tuqtě0 “: pRtqtě0 (5.101)

where pRtqtě0 is a renewal process whose k-th interarrival time is Tk ´ Tk´1 for every k P N
˚.

One can refer to chapter 10 in [83] for more information on renewal processes. Combining (5.101)
with (5.91) implies that for every E ą 0,

NλpEq
2λ

“ R2λ

2λ
` oPλp1q (5.102)
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where oPλp1q is a random variable which goes to 0 in probability when λ goes to infinity. Therefore,
by Theorem 10.2(1) and (5.102), we know that

NλpEq
2λ

PÝÝÝÝÑ
λÑ`8

1

E rT1s .

Finally, we only have to compute explicitely E rT1s.
Step 4 : Computation of E rT1s. Let n P N

˚. By (5.95), on the interval rT`
0,n, T

´
1,ns, recall that

ζE is a solution of the SDE

dζEptq “ ´2ζEptqdBt ` pζEptq2 ` 3ζEptq ` Eqdt.

As before, the generator associated with this SDE is given by

Lf “ 2z2f2pzq ` pz2 ` 3z ` Eqf 1pzq

for any function f which is enough regular. Now, for every z P R´, we define as before

f˚pzq “ f´pzq “ ´
ż 0

z

e´u{2`E{p2uq

2|u|3{2

ż u

´8
1

|t|1{2 e
t{2´E{p2tqdtdu.

Moreover, for any z P R`, let us define

f˚pzq :“
ż z

0

e´u{2`E{p2uq

2u3{2

ż u

0

1?
t
et{2´E{p2tqdtdu.

This is not difficult to check that f˚ is well-defined, bounded, smooth everywhere, excepted at 0
where it may be only C1. Moreover, Lf˚ “ 1 on R

˚. Consequently, conditionally on FT`
0,n

,

´
f˚

´
ζEppT`

0,n ` tq ^ T´
1,nq

¯
´ pT`

0,n ` tq ^ T´
1,n

¯
tě0

is a martingale with respect to the filtration
´
FT`

0,n`t

¯
tě0

. In particular, for every n P N
˚ and for

every t ě 0,

E

”
f˚

´
ζEppT`

0,n ` tq ^ T´
1,nq

¯ı
´ E

”
f˚

´
ζEpT`

0,nq
¯ı

“ E

”
pT`

0,n ` tq ^ T´
1,n

ı
´ E

”
T`
0,n

ı
. (5.103)

By monotone convergence and dominated convergence theorem (recall that f˚ is bounded), we
can make t go to infinity in (5.103). This yields for every n P N

˚

E

”
f˚

´
ζEpT´

1,nq
¯ı

´ E

”
f˚

´
ζEpT`

0,nq
¯ı

“ E

”
T´
1,n

ı
´ E

”
T`
0,n

ı
. (5.104)

Then, by monotone convergence and by dominated convergence again, we can make n go to
infinity in (5.104) which yieldsż 0

´8
e´u{2`E{p2uq

2|u|3{2

ż u

´8
1

|t|1{2 e
t{2´E{p2tqdtdu `

ż 8

0

e´u{2`E{p2uq

2u3{2

ż u

0

1?
t
et{2´E{p2tqdtdu

“ lim
nÑ`8 E

”
f˚

´
ζEppT´

1,nq
¯ı

´ E

”
f˚

´
ζEpT`

0,nq
¯ı

“ lim
nÑ`8 E

”
T´
1,n

ı
´ E

”
T`
0,n

ı
“ E rT1s .
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Moreover, by using the change of variable pu1, t1q “ p˘1{u,˘1{tq, then by using Fubini’s theorem
and finally by making a simple translation change of variables, one can check that for every
E ą 0,ż 0

´8
e´u{2`E{p2uq

2|u|3{2

ż u

´8
1

|t|1{2 e
t{2´E{p2tqdtdu `

ż 8

0

e´u{2`E{p2uq

2u3{2

ż u

0

1?
t
et{2´E{p2tqdtdu

“ 1

2

ż `8

0

ż `8

0

e
´ t

2upt`uq ´Et{2
?
u

?
t ` u

ˆ 2u ` t

upt ` uqdudt. (5.105)

Now, we are going to compute explicitely the integral of (5.105). Let us make the change of
variables

t “ s

E
,

t

upt ` uq “ s

v2

which maps pR˚̀ q2 onto itself. This is equivalent to

pt, uq :“ φpv, sq “
ˆ

s

E
,
1

2E

´
´s `

a
s2 ` 4Ev2

¯˙
.

We can compute the Jacobian of φ which is

Jacpφq “ 2v

E
?
s2 ` 4Ev2

.

Moreover, we can remark that

upu ` tq “ v2

E
and 2u ` t “ 1

E

a
s2 ` 4Ev2.

Therefore,

1

2

ż `8

0

ż `8

0

e
´ t

2upt`uq ´Et{2
?
u

?
t ` u

ˆ 2u ` t

upt ` uqdudt

“ 1

2

ż `8

0

ż `8

0
e´s{p2v2q´s{2 1

pv2{Eq3{2 ˆ 1

E

a
s2 ` 4Ev2 ˆ 1

E

2v?
s2 ` 4Ev2

dsdv

“ 1?
E

ż `8

0

ż `8

0

e´s{p2v2q´s{2
v2

dsdv

“ 1?
E

ż `8

0

2

1 ` v2
dv

“ π?
E
.

This completes the proof of Theorem 5.16.

Now, let us prove Lemma 5.31.

Proof of lemma 5.31.
Let n P N

˚. By (5.92),

θ̃EpT`
0,nq ´ θ̃Ep0q ě 1

M2´λ

ż T`
0,n

0

cospθ̃Epsqq2
M̃2

s

ds.

Therefore,

M2´λ

n
ě cosp1{nq2

ż T`
0,n

0
e´2B̃s`sds

ě cosp1{nq2 inf
sPr0,`8s

e´2B̃s`s{2 ˆ 2
´
eT

`
0,n{2 ´ 1

¯
. (5.106)
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Then, (5.106) and the independence between M´λ and B̃ yield

E

„´
eT

`
0,n{2 ´ 1

¯1{8j
ď

E

”
M

1{4
´λ

ı
p2nq1{8 cosp1{nq1{4E

„
sup
sě0

eB̃s{4´s{16
j

“
E

”
M

1{4
´λ

ı
p2nq1{8 cosp1{nq1{4E

„
sup
sě0

eB̃s´s

j
(5.107)

where in the equality, we used a change of time for the Brownian motion. Then, by Girsanov’s
theorem (see Theorem VIII.1.7 in [148]), it holds that for every t ě 0,

E

«
sup
sPr0,ts

eB̃s´s

ff
“ e´t{2

E

«
e

sup
sPr0,ts

B̃s´B̃t
ff

“ e´t{2
E

”
e|B̃t|

ı
ď e´t{2

E
“
eBt ` e´Bt

‰
ď 2 (5.108)

where in the second equality we used Theorem 2.23 in [133]. The combination of (5.107) and
(5.108) concludes the proof of Lemma 5.31.
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Chapitre 6

A multi-dimensional version of the
Matsumoto-Yor properties

Abstract

This paper is based on a joint work with Thomas Gerard, Christophe Sabot and Xiaolin Zeng.
Actually, at the beginning, this paper was written only by Gerard, Sabot and Zeng and was posted
on arxiv as a preprint. (See [78].) It consisted in applying a Lamperti time-scale to a system of
SDEs which was found by Sabot and Zeng in [155] and which is related to the β potential. Thanks
to this Lamperti time-scale, they proved a multidimensional generalization of the Matsumoto-Yor
opposite drift theorem which was originally proved in dimension 1 in [119]. However, they were
not totally satisfied of their preprint because they did not manage to relate their results to the
Matsumoto-Yor properties given by Theorem 1.64 even if such a link was strongly suspected. My
contribution consists in having made this link rigorous. More precisely, under the supervision of
Christophe Sabot, I proved Theorems 6.4, 6.5 and 6.6 in this chapter. These new results will be
published soon in a new version of [78].

6.1 Introduction

We start with a discussion on several classical properties of one-dimensional Brownian motion,
for which we provide their multi-dimensional counterparts. Let θ ą 0 and η ě 0 be fixed and
let pBptqqtě0 be a standard 1-dimensional Brownian motion. Further, let us consider the drifted
Brownian motion

pXptqqtě0 “ pθ ` Bptq ´ ηtqtě0.

Then, by [165, 162], the distribution of the first hitting time τ of 0 by X has a density which is
known explicitely and conditionally on τ , pXptqq0ďtďτ is a 3-dimensional Bessel bridge. We will
give more details in Proposition A. Another important result is the Matsumoto-Yor opposite drift
theorem [120]. This theorem concerns a Brownian motion with negative drift ´μ which, when
conditioned on some exponential functional of its sample path, can be represented as a Brownian
motion with opposite drift μ, with an additional explicit corrective term. A version of this result
is stated in Theorem B, in the special case where μ “ 1

2 . One proof of the theorem relies on
applying Lamperti’s relation to the classic result on hitting times of Brownian motion. Lamperti’s
relation, presented in Proposition C, provides a way to write any Bessel process with index μ as
the exponential of a time-changed Brownian motion with drift μ. Moreover, in [121] and [122],
Matsumoto and Yor proved another interesting results concerning exponential functionals of the
Brownian motion. More precisely, if B is a standard Brownian motion and μ P R, let us define for
every t ą 0,

e
pμq
t “ exppBt ` μtq, Apμq

t “
ż t

0
pepμq

s q2ds and Z
pμq
t “ A

pμq
t {epμq

t .
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Then, the conditional distribution of e
pμq
t knowing Z

pμq
t “ z is known explicitely and is a

generalized Inverse Gaussian distribution. This result implies a property of intertwinnings between
the processes e and Z. Moreover, Z is a diffusion with respect to a filtration which is strictly
smaller than the filtration of B.

In [155], Sabot and Zeng gave a multivariate version of the process X which is presented
above. This multivariate version concerns a family of Brownian motions indexed by a finite graph
with interacting drifts, defined as the solution of a system of stochastic differential equations
(SDEs). The hitting times of 0 for this family are related to a random potential, which we denote
β, introduced by Sabot, Tarrès and Zeng in [153] and generalized in [110]. The distribution of
this random potential can be interpreted as a multi-dimensional version of the Inverse Gaussian
distribution. It is closely related to the supersymmetric hyperbolic sigma model studied by
Disertori, Spencer and Zirnbauer in [54] and [53], and was central in the analysis of the Vertex
Reinforced Jump Process in [152], [153] and [154]. See also [113, 17, 16, 43, 36, 130] for related
models in statistical mechanics and random operators.

The goal of this paper is two-fold :

1. Our first goal is to obtain a multi-dimensional version of the opposite drift theorem, by
applying an analogue of Lamperti’s time change to the family of interacting Brownian
motions given in Theorem G. Difficulties arise in applying a time change to the interaction
term, since the time change is different on every coordinate of the process. We can overcome
this problem in two different ways : either by using the representation given in Theorem
G, and applying the time change to each independent 3-dimensional Bessel bridge ; or by
using a form of strong Markov property verified by these interacting Brownian motions (c.f.
Theorem H or Theorem 2 in [155]).

2. Another goal of this paper is to prove a multidimensional version of the conditional Matsu-
moto Yor property for μ “ ´1{2. The proof of this property will use the multidimensional
version of the opposite drift theorem. Furthermore, thanks to the multidimensional version
of the conditional Matsumoto Yor property, we can prove some intertwinnings and identities
in law which generalize previous results of Matsumoto and Yor in [121], [122] and [123].

Organisation of the paper :

— In section 6.2.1, we recall several results for one-dimensional Brownian motion.
— In section 6.2.2, we recall previous results of Sabot, Zeng and Tarrès about the random

potential β and its realisation as the limit of interacting Brownian motions.
— In section 6.2.3, we give multi-dimensional counterparts of the results of section 6.2.1.
— In section 6.2.4, we focus on two open questions.
— The remaining sections are devoted to the proofs.

6.2 Context and statement of the results

6.2.1 Results in dimension one

Proposition A. Let θ ą 0 and η ě 0 be fixed, and let B “ pBptqqtě0 be a standard one-
dimensional Brownian motion. We define the Brownian motion X “ pXptqqtě0 with drift η
by

Xptq “ θ ` Bptq ´ ηt, t ě 0.

If τ is the first hitting time of 0 by X, i.e.

τ “ inftt ě 0, Bptq ` θ ´ ηt “ 0u, (6.1)
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then the distribution of τ is given by an inverse Gaussian distribution IGp θη , θ2q, its density is

θ?
2πt3

exp

ˆ
´1

2

pθ ´ ηtq2
t

˙
1tt ě 0udt. (6.2)

Moreover, conditionally on τ ,
`
Xptq˘

0ďtďτ
has the same distribution as a 3-dimensional Bessel

bridge from θ to 0 on the time interval r0, τ s.
In particular, when η “ 0, i.e. X is a Brownian motion without drift, then (6.2) is the density

of inverse Gamma, i.e. it has the distribution of 1
2γ , where γ is a Gamma random variable with

parameter p12 , θ2q.
Now, let us present a version of the Matsumoto-Yor opposite drift theorem from [120], in the

specific case where the drift μ is 1
2 , and with an added term depending on η.

Theorem B. [Theorem 2.2 and Proposition 3.1 in [120]] Let θ ą 0 and η ě 0 be fixed, and let B
be a standard one-dimensional Brownian motion. We define the process � as the solution of the
following SDE :

�puq “ logpθq ` Bpuq ´ 1

2
u ´

ż u

0
ηe�pvqdv (6.3)

for u ě 0.
Let us define T puq “ şu

0 e
2�pvqdv. Then :

(i) We have
T puq a.s.ÝÝÝÑ

uÑ8 T8,

where T8 has the same distribution as τ in Proposition A : it is distributed according to

θ?
2πt3

exp

ˆ
´1

2

pθ ´ ηtq2
t

˙
1tt ě 0udt.

(ii) Conditionally on T8, there exists a standard one-dimensional Brownian motion B˚ such
that for u ě 0,

�puq “ logpθq ` B˚puq ` 1

2
u ` log

ˆ
T8 ´ T puq

T8

˙
. (6.4)

Note that Theorem B holds for any μ ą 0, except that the law of T8 needs to be adjusted
accordingly. One proof of Theorem B relies on applying a time change to the result on hitting
times of the Brownian motion introduced in Proposition A. The relevant time change is the one
that appears in Lamperti’s relation, presented below (see e.g. [148] p.452) :

Proposition C. [Lamperti’s relation] Let p�puqquě0 be a drifted Brownian motion with drift
μ P R. For u ě 0, define

T puq “
ż u

0
expp2�pvqqdv.

Then there exists a Bessel process pXptqqtě0 with index μ, starting from 1, such that for u ě 0,

e�puq “ XpT puqq.
Let us sketch the proof of Theorem B using this time change. We use the same notations as in

the introduction : fix θ ą 0, η ą 0, and let Xptq “ θ ` Bptq ´ ηt where B is a standard Brownian
motion. Let Uptq “ şt

0
1

Xpsq2ds, and denote T “ U´1. Note that T is the analogue of the time
change featured in Lamperti’s relation, where X plays the role of a drifted Bessel process with
index ´1

2 .
If �puq “ logpXpT puqqq, then e�puq “ XpT puqq, and � has the same distribution as the solution

of Equation (6.3). Moreover, when u Ñ 8, we have T puq Ñ τ , where τ is the first hitting time of
0 by X. By Proposition A, conditionally on τ , X has the distribution of a 3-dimensional Bessel
bridge, i.e. a Bessel bridge with index 1

2 , consequently the conditional law of � equals the law of
the solution to Equation (6.4).
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Remark 6.1. In [120], the opposite drift theorem is stated in a different form, where η “ 0 and
the drift μ can be different from 1

2 . Its proof still relies on applying Lamperti’s relation, but this
time to a result concerning hitting times of Bessel processes with any index ´μ (see [107] and
[137]).

Now, let us recall the conditional Matsumoto-Yor property [121, 122]. For every α P R, Kα is
the modified Bessel function of the second kind with index α.

Theorem D. Let μ P R. Let B be a Brownian motion. For every t ą 0, define

e
pμq
t “ exppBt ` μtq, Apμq

t “
ż t

0
pepμq

s q2ds and Z
pμq
t “ A

pμq
t {epμq

t .

Let pZpμq
t qtě0q be the natural filtration associated with the process pZpμq

t qtě0.

(i) For every t ą 0,
Zpμq
t Ř σpBs, s ď tq.

(ii) There exists a Brownian motion B̃ such that pZpμq
t qtě0 is solution of the SDE

dZ
pμq
t “ Z

pμq
t dB̃t `

ˆ
1

2
´ μ

˙
Z

pμq
t dt ` K1`μ

Kμ

˜
1

Z
pμq
t

¸
dt.

(iii) For any t ą 0,

Ppepμq
t P dx|Zpμq

t , Z
pμq
t “ zq “ xμ´1

2Kμp1{zq exp
ˆ

´ 1

2z

ˆ
1

x
` x

˙˙
dx.

Moreover, in [122], Matsumoto and Yor showed that Theorem D implies the following property
of intertwinnings.

Theorem E. Let μ P R. Let pP̃ pμq
t qtě0 be the semigroup of epμq and let pQ̃pμq

t qtě0 be the semigroup
of the diffusion Zpμq. Then, for every t ě 0,

Q̃tK̃
pμq “ K̃pμqP̃t

where for every measurable function g from R into R`,

K̃pμqpgqpzq “
ż `8

0
gpxq xμ´1

2Kμp1{zq exp
ˆ

´ 1

2z

ˆ
1

x
` x

˙˙
dx.

The aim of this article is now to obtain a multi-dimensional version of Theorem B , D and E, by
applying the time change from Lamperti’s relation to Theorem G, which gives a multi-dimensional
counterparts to these three theorems.

6.2.2 Brownian motions with interacting drifts and the random β potential

Let G “ pV,Eq be a finite, connected, and non-oriented graph, endowed with conductances
pWeqePE P pR˚̀ qE . For i, j P V , we denote by Wi,j “ Wti,ju if ti, ju P E, and Wi,j “ 0 otherwise.
Note that it is possible to have Wi,i ą 0. For β P R

V , we define Hβ “ 2β ´ W , where W is
the graph adjacency matrix W “ pWi,jqi,jPV , and β denotes here abusively the diagonal matrix
with diagonal coefficients pβiqiPV ; in particular, Hβ is a V ˆ V matrix. Notation : For a vector
x “ pxiqiPV P R

V , we sometimes simply write x for the diagonal matrix with diagonal coefficients
xi, there will be no ambiguity thanks to the context by considering dimension.
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Proposition F (Theorem 4 in [153], Theorem 2.2 in [110]). For all θ P pR˚̀ qV and η P pR`qV ,
the measure νW,θ,η

V defined by

νW,θ,η
V pdβq “ 1tHβ ą 0u

ˆ
2

π

˙|V |{2
exp

ˆ
´1

2
xθ,Hβθy ´ 1

2
xη, pHβq´1ηy ` xη, θy

˙ ś
iPV θia|Hβ | dβ

is a probability distribution. Moreover, for all i P V , the random variable 1
2βi´Wi,i

has Inverse

Gaussian distribution with parameter p θi
ηi`ř

j‰iWi,jθj
, θ2i q. Furthermore, for every pλiq P R

V`,

ż
exp

˜
´

ÿ
iPV

λiβi

¸
dνW,θ,ηpβq “ e´ 1

2
x?

θ2`λ,W
?
θ2`λy` 1

2
xθ,Wθy`xη,θ´?

θ2`λy ˆ
ź
iPV

θib
θ2i ` λi

.

For t P pR`qV , we also denote by Kt the matrix Kt “ Id ´ tW , where t still denotes the
diagonal matrix with coefficients ptiqiPV . Note that if t P pR˚̀ qV , we have Kt “ tH 1

2t
, where

1
2t “

´
1
2ti

¯
iPV

. Finally, for t P pR`qV and T P pR`qV , we define the vector t ^ T “ pti ^ TiqiPV .

Theorem G. [Lemma 1 and Theorem 1 in [155]] Let θ P pR˚̀ qV and η P pR`qV be fixed, and let
pBiptqqiPV,tě0 be a standard |V |-dimensional Brownian motion.

(i) The following stochastic differential equation (SDE) has a unique pathwise solution :

Xiptq “ θi `
ż t

0
1ts ă τiudBipsq ´

ż t

0
1ts ă τiuppWψqpsq ` ηqids (EW,θ,η

V pXq)

for i P V and t ě 0, where for i P V , τi is the first hitting time of 0 by Xi, and for t ě 0,

ψptq “ K´1
t^τ pXptq ` pt ^ τqηq.

(ii) If pXiqiPV is solution of (EW,θ,η
V pXq), the vector

´
1
2τi

¯
iPV

has distribution νW,θ,η
V , and

conditionally on pτiqiPV , the paths pXiptqq0ďtďτi are independent 3-dimensional Bessel
bridges.

To obtain an analogue of the opposite drift theorem as in Section 6.2.1, we want to apply the
time change from Lamperti’s relation to solutions pXiqiPV of (EW,θ,η

V pXq). A problem will arise
in the interaction term, since the time change will be different on every coordinate of X. To solve
this, we will use a form of strong Markov property verified by solutions of (EW,θ,η

V pXq), which is a
consequence of Theorem G(ii). This Markov property will be true with respect to multi-stopping
times, defined as follows.

Definition 6.1. Let X be a multi-dimensional càdlag process indexed by V . A random vector
T “ pTiqiPV P R`

V is called a multi-stopping time with respect to X if for all t P R
V`, the event

XiPV tTi ď tiu is FX
t -measurable, where

FX
t “ σ

`pXipsqq0ďsďti , i P V
˘
.

In this case, we denote by FX
T the σ-algebra of events anterior to T , i.e.

FX
T “ 


A P FX8 ,@t P R
V`, A X tTi ď tiu P FX

t

(
Let us now formulate the strong Markov property for solutions of (EW,θ,η

V pXq).
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Theorem H. [Theorem 2 (iv) in [155]] Let X be a solution of (EW,θ,η
V pXq), and T “ pTiqiPV be

a multi-stopping time with respect to X.
Define the shifted process Y by

Yiptq “ XipTi ` tq
for i P V and t ě 0. Moreover, we denote

ĂW pT q “ W pKT^τ q´1 , rηpT q “ η ` ĂW pT q`pT ^ τqη˘
, and XpT q “ pXipTiqqiPV .

Then on the event XiPV tTi ă 8u, conditionally on T and FX
T , the process Y has the same

distribution as the solution of
`
E

ĂW pT q,XpT q,rηpT q
V pXq˘

.

6.2.3 Main results : A multi-dimensional version of the opposite drift theorem,
the conditional Matsumoto-Yor property and consequences

Let pXiqiPV be a solution of (EW,θ,η
V pXq). As in the usual case of Lamperti’s relation, let us

introduce the functional that will define the time change. For i P V and t ě 0, we set

Uiptq “
ż t

0

1ts ă τiu
Xipsq2 ds.

It turns out that for any i P V , limtÑτi Uiptq “ `8 a.s. It will be proved in Lemma 6.7. Therefore,
for all i P V , we can define Ti “ pUi|r0,τirq´1. In particular, for all u ě 0, Tipuq ă τi. Moreover
limuÑ8 Tipuq “ τi. Thus, in this time scale, it is natural to prefer the notation T8

i :“ τi for every
i P V .

We will show that the time-changed solution
`
Xi ˝ Ti

˘
iPV can be written as

XipTipuqq “ e�ipuq

for u ě 0, where p�iqiPV is solution of a new system of stochastic differential equations :

Theorem 6.2. (i) For i P V and u ě 0, let us define �ipuq “ log
`
XipTipuqq˘

. Then p�, T q
is solution of the following system of SDEs :$’’&’’%

�ipvq “ logpθiq ` rBipvq `
ż v

0

ˆ
´1

2
´ e�ipuq

´ĂW puqpe�puq ` T puqηq ` η
¯
i

˙
du,

Tipvq “
ż v

0
e2�ipuqdu,

(EW,θ,η
V p�q)

for i P V and v ě 0, where p rBiqiPV is a |V |-dimensional standard Brownian motion, e�puq
denotes the vector pe�ipuqqiPV , and

ĂW puq “ WK´1
T puq “ W

`
Id ´ T puqW ˘´1

.

(ii) The equation (EW,θ,η
V p�q) admits a unique pathwise solution u ÞÑ `

�puq, T puq˘
, which is

a.s. well defined on all of R`.

As a consequence of Theorems G(ii) and 6.2, we can relate the solutions of (EW,θ,η
V p�q) to

time-changed Bessel bridges and the distribution νW,θ,η
V . This is stated in Theorem 6.3 below,

which is the multi-dimensional version of Theorem B.

Theorem 6.3. Let p�, T q be solution of (EW,θ,η
V p�q).
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(i) For all i P V , we have

Tipuq “
ż u

0
e2�ipvqdv a.s.ÝÝÝÑ

uÑ8 T8
i ,

where
´

1
2T8
i

¯
iPV

is distributed according to νW,θ,η
V .

(ii) There exists a standard |V |-dimensional Brownian motion B˚ which is independent of
T8 such that for i P V and u ě 0,

�ipuq “ logpθiq ` Bi̊ puq ` 1

2
u ` log

ˆ
T8
i ´ Tipuq

T8
i

˙
.

In particular, the processes p�i, TiqiPV are independent conditionally on T8.

The multidimensional counterpart of Theorem D is as follows.

Theorem 6.4. Let p�, T q be a solution of EW,θ,η
V p�q. For every u ě 0 and for every i P V , we

define Zipuq “ Tipuq expp´�ipuqq. Let us denote by pZuquě0 the natural filtration associated with
pZpuqquě0. Then, it holds that

(i) For every u ą 0,
Zu Ř σp�v, v ď uq.

(ii) The process pZpuqquě0 has independent components and for every i P V , there exists a
Brownian motion pBi such that pZipuqquě0 is solution of the SDE

dZipuq “ Zipuqd pBipuq ` pθi ` Zipuqqdu.
(iii) pZpuqquě0 is independent of T8.
(iv) For every u ą 0, let us define βpuq “ pβipuqqiPV “ p1{p2TipuqqqiPV . Then, for every u ą 0,

the conditional law of βpuq given Zu is

L
˜
βpuq

ˇ̌̌̌
ˇZu, Zpuq “ z

¸
“ ν

W,θ,η`1{z
V

where η ` 1{z is the vector pηi ` 1{ziqiPV .

If � be a solution of EW,θ,η
V p�q, for every u ě 0 and for every i P V , we define Zipuq “

Tipuq expp´�ipuqq. An important consequence of the previous result is that p�, T q and Z are
related via Markov intertwinings which generalize Theorem E. In order to make this more precise,
let us introduce some notations. By Theorem 6.4, pZpuqquě0 is a Markov process in its own
sigma-field pZuquě0. Let us denote its semigroup by pQuquě0. Moreover, by Theorem 6.2, p�, T q
is also a Markov process. Let us denote its semigroup by pPuquě0.

Theorem 6.5. Let θ P pR˚̀ qV and η P pR`qV . Let p�, T q be a solution of EW,θ,η
V p�qq and let

Z “ Te´�. Then, p�, T q and Z are intertwinned in the following sense : for every u P R`,

Qu ˝ K “ K ˝ Pu

where for every measurable function g from pRV q2 into R`,

Kpgqpzq “
ż
g

ˆ´
´ lnp2βiziq

¯
iPV

,

ˆ
1

2βi

˙
iPV

˙
dν

W,θ,η`1{z
V pβq.

The kernel K in Theorem 6.5 comes from (iv) in Theorem 6.4. Moreover, thanks to Theorem
6.4, we are able to give some new identities involving the measure νW,θ,η

V . These identities look
like other identities in law which are known in the 1-dimensional case. We give more details in
the next section.
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Theorem 6.6. Let θ P pR˚̀ qV , η P R
V` and z P pR˚̀ qV . On the one hand, let pβiqiPV be a random

potential with distribution ν
W,θ,η`1{z
V . Conditionally on β, let pαiqiPV be a random potential with

distribution ν
ĂW,rθ,rη
V where ĂW “ WK´1

1{p2βq, rη “ η`WH´1
β η and for every i P V , rθi “ 1{p2βiziq. On

the other hand, let pδiqiPV be a random potential with distribution νW,θ,η
V . Let pAiqiPV be a family

of independent random variables such that for every i P V , Ai is distributed like IGp1{pθiziq, 1{z2i q.
Moreover we assume that pAiqiPV is independent of δ. Then it holds that,ˆ

p2βiqiPV ,

ˆp2βiq2
2αi

˙
iPV

˙
law“

ˆ
p2δi ` AiqiPV ,

ˆ
Ai ` A2

i

2δi

˙
iPV

˙
.

6.2.4 Two open questions

The Matsumoto-Yor property

The Gamma and Inverse Gaussian distributions, as well as the inverse Gamma and reciprocal
Inverse Gaussian distributions, all fall into the family of the so-called generalized Inverse Gaussian
distributions.

A random variable is said to have generalized Inverse Gaussian distribution with parameter
pq, a, bq where q P R and a, b ą 0, and denoted GIGpq, a, bq if it has the following density :´a

b

¯q{2 1

2Kqp?
abq t

q´1e´ 1
2

pat`b{tq1tą0. (6.5)

In particular, we have the following special cases (where zero parameter is understood as in [91]) :

IG

ˆ
θ

η
, θ2

˙
“ GIG

ˆ
´1

2
,
η2

2
,
θ2

2

˙
, Gamma

ˆ
1

2
, θ2

˙
“ GIG

ˆ
1

2
, 0,

θ2

2

˙
and

X „ GIG

ˆ
´1

2
,
η2

2
,
θ2

2

˙
ô 1{X „ GIG

ˆ
1

2
,
θ2

2
,
η2

2

˙
.

Define the last visit of 0 of our drifted Brownian motion to be rτ “ suptt ě 0 : Bt ` θ ´ ηt “ 0u.
By a time inversion argument, i.e. setting

rBt “
#

´tB1{t t ą 0

0 t “ 0
,

the Gaussian process rB is also a Brownian motion and we deduce that rτ´1 is the first visit
time to 0 of rBt ` η ´ θt, hence rτ is GIGp12 , η

2

2 ,
θ2

2 q distributed, moreover, rτ ´ τ is Gammap12 , θ2q
distributed and by Strong Markov property of Brownian motion, it is independent of τ . There
exists also an interpretation of the generalized Inverse Gausian distribution with any index q as
stopping time of some diffusion process [14, 162] but we focus on the case q “ ˘1{2 in this paper.

More generally, we have the following identity in distribution, which is known as the Matsumoto-
Yor property [164, 123] :

Proposition I. Let pτ, rτq be a random vector, then there is equivalence between the following
statements :

(i)
ˆ
1

τ
, rτ ´ τ

˙
„ GIGp12 , θ

2

2 ,
η2

2 q b Gammap12 , θ2q

(ii)
ˆ
1

τ
´ 1rτ , rτ˙

„ Gammap12 , η2q b GIGp12 , η
2

2 ,
θ2

2 q.
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This is not clear how we can get a multi-dimensional generalization of Proposition I. However,
the identity of Theorem 6.6 can be rewritten asˆ

1

Ai ` 2δi
,
1

Ai
´ 1

Ai ` 2δi

˙
iPV

law“
ˆ

1

2βi
,

2αi

p2βiq2
˙

iPV
.

This identity can be viewed as a weaker form of (i) in Proposition I where we lost the independence
property. Recall that for every i P V , 1{p2βiq is the first hitting time of zero of Xi (that is, a
drifted Brownian motion with interaction). Moreover, 1{Ai is distributed like GIG

´
1{2, 1

2z2i
,
θ2i
2

¯
,

that is, like the last hitting time of zero by a Brownian motion with drift 1{zi without interaction.
Perhaps the identity of Theorem 6.6 can be interpreted in term of a coupling between interacting
and non-interacting Brownian motions.

Properties in Proposition I has been called the Matsumoto–Yor (MY) property by Stirzaker
[160] p. 43. Letac and Wesolowski [109] provided a characterization theorem related to MY
property, namely, if τ, rτ are random variables s.t. 1

τ , rτ ´ τ are independent and 1
τ ´ 1rτ , rτ are

independent, then they necessarily follow the law prescribed in Proposition I. It is tempting to
say that a multi-dimensional counterpart of such characterization law also holds.

An opposite-drift theorem for other values of the drift

The multi-dimensional opposite-drift theorem proved in this paper is limited to the case of
the drift ´1

2 , since it results from Theorem G, which concerns Bessel processes with index ´1
2

and 1
2 (i.e. Brownian motion and 3-dimensional Bessel bridges). We could try to obtain a similar

result for other values of the drift μ. This necessitates the use of a random potential analogous
to β, whose marginals would relate to the hitting times of Bessel processes with other indices,
that is, generalized Inverse Gaussian distributions. A natural candidate for the distribution of the
potential associated with the drift ´μ with μ ą 0 is the measure νW,η

V,μ with density :

νW,θ,η
V,μ pdβq “ Cpμ,W, ηq1tHβ ą 0u

ˆ
2

π

˙|V |{2
exp

ˆ
´1

2
xθ,Hβθy ´ 1

2
xη, pHβq´1ηy

˙ ś
iPV θi

|Hβ|μ´1
dβ

where Cpμ,W, ηq is a normalizing constant. Nonetheless, the explicit density of β plays an
important role in our proof. When μ ‰ 1

2 , its normalizing constant Cpμ,W, ηq is no longer a
constant, but depends on the underlying graph and our proof does not apply directly to such
cases.

The case of index μ “ 3
2 might be solvable thanks to recent developments by Bauerschmidt,

Crawford, Helmuth and Swan in [18], and by Crawford in [46]. These articles concern other sigma
models, in particular H2|4, which is related to random spanning forests, The normalizing constant
Cp3{2,W, ηq of β associated to this model is the partition function of random forests. It might be
a candidate if one looks for a generalization of the β potential corresponding to index 3

2 . Moreover,
the SDE given by piq in Theorem 6.2 should be much more complicated.

6.3 Multi-dimensional time change : Proof of Theorem 6.2 and
Theorem 6.3

6.3.1 Justification of the Lamperti time change

Recall that

Uiptq “
ż t

0

1ts ă τiu
Xipsq2 ds

where pXiqiPV is a solution of (EW,θ,η
V pXq).
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Lemma 6.7. For any i P V ,
lim
tÑτi

Uiptq “ `8,

consequently Ui : r0, τir Ñ r0,`8r is a.s. a bijection.

Proof.
Let X “ pXiqiPV be a solution of (EW,θ,η

V pXq). According to Theorem G, conditionally on pτiqiPV ,
the trajectories pXiptqq0ďtďτi are independent three-dimensional Bessel bridges. As a consequence,
to prove Lemma 6.7, it suffices to show the same result for a three-dimensional Bessel bridge.

Fix θ ą 0 and τ ą 0, let X be a three-dimensional Bessel bridge from θ to 0 in the time
interval r0, τ s. Since X is a three-dimensional Bessel bridge, there exists a standard Brownian
motion B such that

dXptq “ dBptq ` 1

Xptqdt ´ Xptq
τ ´ t

dt,

therefore by Ito’s lemma, for t ă τ ,

d logpXptqq “ dBptq
Xptq ` dt

Xptq2 ´ dt

τ ´ t
´ 1

2

dt

Xptq2
“ dMptq ` 1

2
dUptq ` d log pτ ´ tq ,

where Mptq “ şt
0
dBptq
Xptq is a martingale, and xMyt “ Uptq. Therefore, there exists a standard

Brownian motion pB such that Mptq “ pBpUptqq. Thus, for t ě 0, we have

logpXptqq “ logpθq ` pBpUptqq ` 1

2
Uptq ` log

ˆ
τ ´ t

τ

˙
, (6.6)

i.e.
Xptq
τ ´ t

“ θ

τ
e

pBpUptqq` 1
2
Uptq.

On the other hand, since X is a three-dimensional Bessel bridge, there exists (see [148] p.467) a
three-dimensional Bessel process Y such that for t ě 0,

Xptq “ pτ ´ tqY
ˆ

t

τpτ ´ tq
˙
.

Therefore, when t Ñ τ , we have a.s. Xptq
τ´t Ñ `8. Since u ÞÑ pBpuq ` 1

2u cannot explode in finite
time, we have necessarily

Uptq a.s.ÝÝÑ
tÑτ

`8.

6.3.2 Proof of Theorem 6.2

Proof of Theorem 6.2 (ii).
Assume that Theorem 6.2 (i) is proven, i.e. that (EW,θ,η

V p�q) has almost surely a unique pathwise
solution defined on all of R`. Let rB be a |V |-dimensional Brownian motion. Thanks to Theorem
6.2 (i), we know that (EW,θ,η

V p�q) admits a solution that is well defined on R`. Let us now show
that this solution is necessarily unique.

Let p�˚, T ˚q be another solution of (EW,θ,η
V p�q) with the Brownian motion rB. Let also K be a

compact subset of RV ˆ tt P R
V`,Kt ą 0u containing plogpθiq, 0qiPV . Then the function$&%K Ñ R

V ˆ R
V

p�, tq ÞÑ
ˆ

´ 1
2 ´ e�i

´
WK´1

t pe� ` tηq ` η
¯
i
, e2�i

˙
iPV
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is bounded and Lipschitz. Therefore, up to the stopping time UK “ inftu ě 0, p�puq, T puqq R Ku,
we have p�puq, T puqq “ p�˚puq, T ˚puqq from Theorem 2.1, p.375 of [148]. Since this is true for all
compact subset K of RV ˆ tt P R

V`,Kt ą 0u, we have a.s. p�, T q “ p�˚, T ˚q. This concludes the
proof of Theorem 6.2 (ii).

Let’s prove Theorem 6.2 (i). Let B be a standard |V |-dimensional Brownian motion, and let
pXiqiPV be a solution of (EW,θ,η

V pXq). For i P V , recall that Ti is the inverse function of

Ui :

#
r0, T8

i r Ñ r0,`8r
t ÞÑ şt

0
ds

Xipsq2

and �ipuq “ log
`
XipTipuqq˘

for u ě 0. In order to show that p�, T q is solution of (EW,θ,η
V p�q),

we want to apply the same time change as in Lamperti’s relation. However, in the equation
(EW,θ,η

V pXq), the interactive drifts provided by ψptq to each coordinates Xiptq are calculated at
the same time t ě 0, while in Lamperti’s time scale, i.e. for Xiptq “ e�ipUiptqq, the times Uiptq are
different at each coordinates i P V .

We present here two different ways to overcome this problem. The first proof relies on
identifying the infinitesimal generator of the process p�i, TiqiPV , using the strong Markov property
presented in Theorem H. The second one uses Theorem G (ii), i.e. X is a mixture of independent
Bessel bridges, to which we can apply the time change separately, and then identify the law of
the annealed process using Girsanov’s theorem.

6.3.3 First proof of (i) : using the strong Markov property of Theorem H

Proof of Theorem 6.2 (i).
Firstly, let u ě 0 be fixed, and f : RV ˆ R

V Ñ R be a compactly supported C2 function. To
identify the infinitesimal generator of p�, T q, let us compute

lim
vÑu`

Erfp�pvq, T pvqq|F p�,T q
u s ´ fp�puq, T puqq
v ´ u

.

Note that pTipuqqiPV is a multi-stopping time in the sense of Definition 6.1 and that F p�,T q
u “ FX

T puq.
Define ĂW puq “ W

`
KT puq

˘´1
, rKpuq

t “ Id ´ tĂW puq, and rηpuq “ η ` ĂW puqpT puqηq.
Thanks to Theorem H, conditionally on FX

T puq, the shifted process

Y “ Y puq : t ÞÑ `
XipTipuq ` tq˘

iPV
is the solution of$&%dYiptq “ 1tt ď pT 0

i ud pBiptq ´ 1tt ď pT 0
i u

´ĂW puqp rKpuq
t q´1

´
Y ptq ` pt ^ pT 0qrηpuq

¯
` rηpuq

¯
i
dt, i P V, t ě 0

Yip0q “ XipTipuqq, i P V

where pB is a |V |-dimensional standard Brownian motion, independent of FX
T puq, and pT 0

i is the
first hitting time of 0 by Yi.

Fix v ą u, define the interrupted process

Z “ Zpu,vq : t ÞÑ
´
Xi

`pTipuq ` tq ^ Tipvq˘¯
iPV

.

For all i P V and t ě 0, we have Ziptq “ Yi

´
t ^ pTipvq

¯
, where pTipvq “ Tipvq ´ Tipuq. Therefore,

Z is the solution of$&%dZiptq “ 1tt ď pTipvqud pBiptq ´ 1tt ď pTipvqu
´ĂW puqp rKpuq

t q´1
´
Y ptq ` pt ^ pT 0qrηpuq

¯
` rηpuq

¯
i
dt, i P V, t ě 0

Zip0q “ XipTipuqq, i P V.
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Moreover, since pTipvq ă pT 0
i ă 8 a.s. for all i P V , there exists a.s. pT8 large enough so that

Ziptq “ Yip pTipvqq “ XipTipvqq for all i P V and t ě pT8.
By Ito’s lemma, for all t ě 0 we have

d logpZiptqq “ 1tt ď pTipvqud pBiptq
Ziptq ´ 1tt ď pTipvqu dt

2Ziptq2
´ 1tt ď pTipvqu

´ĂW puqp rKpuq
t q´1

´
Y ptq ` pt ^ pT 0qrηpuq

¯
` rηpuq

¯
i

dt

Ziptq ,

where we can replace t ^ pT 0 with t, as pTipvq ă pT 0. For i P V , let xMi be the martingalexMiptq “ şt
0
d pBipsq
Zipsq for t ě 0.

If we denote
Φptq “ `

logpZiptqq, pTipuq ` tq ^ Tipvq˘
iPV P R

V ˆ R
V

for t ě 0, then, applying Ito’s lemma to t ÞÑ fpΦptqq, we get

fpΦptqq ´ fpΦp0qq “
ÿ
iPV

ż t^ pTipvq

0

Bf
B�i pΦpsqqdxMipsq `

ÿ
iPV

ż t^ pTipvq

0

1

2

B2f

B�2i
pΦpsqq ds

Zipsq2

`
ÿ
iPV

ż t^ pTipvq

0

Bf
B�i pΦpsqq

ˆ
´1

2
´ Zipsq

´ĂW puqp rKpuq
s q´1

`
Y psq ` srηpuq˘ ` rηpuq

¯
i

˙
ds

Zipsq2

`
ÿ
iPV

ż t^ pTipvq

0

Bf
Bti pΦpsqqds.

Taking t ě pT8, we get t ^ pTipvq “ pTipvq for all i P V , and

fpΦptqq ´ fpΦp0qq “ fp�pvq, T pvqq ´ fp�puq, T puqq,
since �ipwq “ log pXipTipwqqq for w P R` and i P V . For all i P V , we can now use the
following time change in the corresponding integrals above : s “ Tipwq ´ Tipuq “ pTipwq, i.e.
w “ UipTipuq ` sq. Note that for 0 ď s ď pTipvq,

d

ds
UipTipuq ` sq “ 1

XipTipuq ` sq2 “ 1

Zipsq2 ,

and for u ď w ď v,
d

dw
pTipwq “ XipTipwqq2 “ e2�ipwq.

Thus,

f
`
�pvq,T pvq˘ ´ f

`
�puq, T puq˘

“
ÿ
iPV

ˆ ż v

u

Bf
B�i

`
�pwq, T pwq˘

dxMip pTipwqq `
ż v

u

1

2

B2f

B�2i
`
�pwq, T pwq˘

dw

`
ż v

u

Bf
B�i

`
�pwq, T pwq˘ ˆ

´1

2
´ e�ipwq

´ĂW puqp rKpuqpTipwqq´1
`
XpTipwqq ` pTipwqrηpuq˘ ` rηpuq

¯
i

˙
dw

`
ż v

u

Bf
Bti

`
�pwq, T pwq˘

e2�ipwqdw
˙
.

Note that, the vector XpTipwqq “ `
XjpTipwqq˘

jPV is different from e�pwq “ `
XjpTjpwqq˘

jPV . This
is why we need to take v Ñ u and identify the generator.

Since pB is independent from FX
T puq, we have

E

„ż v

u

Bf
B�i

`
�pwq, T pwq˘

dxMip pTipwqq
ˇ̌̌̌
F p�,T q
u

j
“ E

«ż pTipvq

0

Bf
B�i pΦptqqd pBipsq

Zipsq

ˇ̌̌̌
ˇFX

T puq

ff
“ 0
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for all i P V , and therefore

E

”
f

`
�pvq, T pvq˘ ´ f

`
�puq, T puq˘ˇ̌̌

F p�,T q
u

ı
“E

« ÿ
iPV

˜ ż v

u

1

2

B2f

B�2i
`
�pwq, T pwq˘

dw

`
ż v

u

Bf
B�i

`
�pwq, T pwq˘ ˆ

´1

2
´ e�ipwq

´ĂW puqp rKpuqpTipwqq´1
`
XpTipwqq ` pTipwqrηpuq˘ ` rηpuq

¯
i

˙
dw

`
ż v

u

Bf
Bti

`
�pwq, T pwq˘

e2�ipwqdw
¸ˇ̌̌̌

ˇ�puq, T puq
ff
.

By continuity and dominated convergence, we conclude that

lim
vÑu`

1

v ´ u
E

”
f

`
�pvq, T pvq˘ˇ̌̌

F p�,T q
u

ı
´ f

`
�puq, T puq˘

“
ÿ
iPV

˜
1

2

B2f

B�2i
`
�puq, T puq˘

` Bf
B�i

`
�puq, T puq˘ˆ

´ 1

2
´ e�ipuq`ĂW puqe�puq ` rηpuq˘

i

˙
` Bf

Bti
`
�puq, T puq˘

e2�ipuq
¸
,

which is Lfpuq, where L is the infinitesimal generator associated with the system of SDEs
(EW,θ,η

V p�q).

6.3.4 Second proof of (i) : using the mixing measure and Girsanov’s theorem

This proof follows the same structure as that of Theorem G. We start from the distribution
of the process as a mixture of simpler quenched processes, and we compute the integral in order
to identify the annealed distribution, using Girsanov’s theorem.

Alternative proof of Theorem 6.2 (i).
Let X “ pXiptqqiPV,tě0 be the canonical process in CpR`,RV q, and P be the distribution on
CpR`,RV q under which X is solution of (EW,θ,η

V pXq). According to Theorem G (ii), the vector
pβiqiPV “

´
1
2τi

¯
iPV

“
´

1
2T8
i

¯
iPV

has distribution νW,θ,η
V . Moreover, conditionally on pT8

i qiPV , the
marginal processes Xi for i P V are independent 3-dimensional Bessel bridges from θi to 0 on
r0, T8

i s. In other words, we can write

Pr¨s “
ż ˜â

iPV
P
βi
i r¨s

¸
νW,θ,η
V pdβq,

where for i P V , Pβi
i is the distribution on CpR`,Rq under which the canonical process Xi is a

3-dimensional Bessel bridge from θi to 0 on r0, T8
i s.

Conditionally on pβiqiPV , we can apply the time change independently to each marginal Xi.
According to the computations done in the proof of Lemma 6.7, In particular, Equation (6.6), we
know that under P

βi
i , there exists a standard Brownian motion pBi such that

�ipuq “ logpθiq ` pBipuq ` 1

2
u ` log

ˆ
T8
i ´ Tipuq

T8
i

˙
, u ě 0

where T8
i “ 1

2β and Tipuq “ şu
0 e

2�ipvqdv, i.e.

�ipuq “ logpθiq ` pBipuq ` 1

2
u ` log

ˆ
1 ´ 2βi

ż u

0
e2�ipvqdv

˙
.
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For each i P V , define a martingale Li by

Lipuq “
ż u

0

˜
´1

2
` 2βie

2�ipvq

1 ´ 2βi
şv
0 e

2�ipsqds

¸
d pBipvq, u ě 0.

Clearly �ipuq “ pBipuq ´ x pBi, Liyu. We can then introduce a probability distribution pPi such that
for all u ě 0,

E

«
dpPi

dPβi
i

ˇ̌̌̌
ˇF i

u

ff
“ EpLiqpuq,

where F i
u “ σ

´ pBipvq, 0 ď v ď u
¯
, and EpLiqpuq “ eLipuq´ 1

2
xLi,Liyu is the exponential martingale

associated with Li. By Girsanov’s theorem, �i is a standard Brownian motion under pPi. Note
that pPi does not depend on βi.

From now on, let us write φipuq “ 1 ´ 2βi
şu
0 e

2�ipvqdv “ T8
i ´Tipuq

T8
i

for u ě 0 and i P V . The
following lemma gives an expression of EpLiq.
Lemma 6.8. For i P V and u ě 0, define

Eipuq “ exp

˜
´θ2i βi ` βie

2�ipuq
φipuq ´ 1

2
�ipuq ` 1

8
u

¸
φipuq3{2a

θi.

We have EpLiq “ Ei.

Proof of Lemma 6.8.
Since Eip0q “ 1 almost surely, it suffices to show that dEipuq

Eipuq “ dLipuq for all u ě 0. Note that

�ipuq “ pBipuq ` 1
2u ` logpφipuqq, therefore

Eipuq “ exp

ˆ
´θ2i βi ` βiφipuqe2 pBipuq`u ´ 1

2
pBipuq ´ 1

8
u

˙
φipuqa

θi.

By Ito’s lemma, for u ě 0 we have

dEipuq “
ˆ
2βiφipuqe2 pBipuq`u ´ 1

2

˙
Eipuqd pBipuq

` 1

2

˜ˆ
2βiφipuqe2 pBipuq`u ´ 1

2

˙2

` 4βiφipuqe2 pBipuq`u

¸
Eipuqdu

`
ˆ
βi

`
φipuq ` φ1

ipuq˘
e2

pBipuq`u ´ 1

8
` φ1

ipuq
φipuq

˙
Eipuqdu.

Since φ1
ipuq “ ´2βie

2�ipuq “ ´2βiφipuq2e2 pBipuq`u, we get

dEipuq
Eipuq “

˜
´1

2
` 2βie

2�ipuq
φipuq

¸
d pBipuq `

ˆ
2β2

i φipuq2e4 pBipuq`2u ` 1

8
` βiφipuqe2 pBipuq`u

`βiφipuqe2 pBipuq`u ´ 2β2
i φipuq2e4 pBipuq`2u ´ 1

8
´ 2βiφipuqe2 pBipuq`u

˙
du

“ dLipuq.
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Fix u ě 0, for any event Au P F�
u “ σ p�pvq, 0 ď v ď uq, we have

PrAus “
ż ˜â

iPV
P
βi
i rAus

¸
νW,θ,η
V “

ż ż
Au

ź
iPV

´
Eipuq´1dpPi

¯
νW,θ,η
V pdβq

“
ż
Au

DpuqdpP
where pP “ Â

iPV pPi and for u ě 0,

Dpuq “
ż ˜ź

iPV
Eipuq´1

¸
νW,θ,η
V pdβq.

Let’s compute Dpuq now, and express it as an exponential martingale, so as we can apply
Girsanov’s theorem once again, and identify the distribution of � under P.

For u ě 0, we have

Dpuq “
ż
exp

˜ÿ
iPV

˜
θ2i βi ´ βie

2�ipuq
φipuq ` 1

2
�ipuq ´ 1

8
u

¸¸
1ś

iPV φipuq3{2?
θi

1tHβ ą 0u
ˆ
2

π

˙|V |{2
exp

ˆ
´1

2
xθ,Hβθy ´ 1

2
xη, pHβq´1ηy ` xη, θy

˙ ś
iPV θidβia|Hβ| .

In order to compute this integral, we will introduce a change of variables, and obtain an integral
against the distribution ν

ĂW puq,rθpuq,rηpuq
V , where ĂW puq, rθpuq and rηpuq are new parameters depending

on the trajectory of � up to time u defined below.
Let us introduce the following notations : for u ě 0,$’&’%

β
puq
i “ 1

2Tipuq for i P V,

Hpuq “ 2βpuq ´ W,

Kpuq “ T puqHpuq “ Id ´ T puqW.

Now, we define the new following parameters$’&’%
ĂW puq “ W pKpuqq´1 “ W ` W pHpuqq´1W,rηpuq “ ĂW puqT puqη ` η,rθpuq
i “ e�ipuq for i P V

as well as the following associated quantities$’’’’&’’’’%
rTipuq “ 1

2βi
´ Tipuq “ φipuq

2βi
for i P V,rβpuq

i “ 1

2 rTipuq “ βi
φipuq for i P V,rHpuq “ 2rβpuq ´ ĂW puq,rKpuq “ rT puq rHpuq “ Id ´ rT puqĂW puq.

Using these new notations, we can write

ÿ
iPV

βie
2�ipuq

φipuq “
ÿ
iPV

prθpuq
i q2 rβpuq

i “ 1

2

Arθpuq,
´ rHpuq ` ĂW puq

¯ rθpuq
E

(6.7)

for u ě 0. The following technical lemma will allow us to express Dpuq as an integral against
ν

ĂW puq,rθpuq,rηpuq
V .
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Lemma J (Lemma 2 in [155]). For u ě 0, with the quantities defined just above, we have

(i) K1{2β “ rKpuqKpuq

(ii) rηpuq “ T puq´1pHpuqq´1η

(iii) xrηpuq, p rHpuqq´1rηpuqy “ xη,H´1
β ηy ´ xη, pHpuqq´1ηy.

Using Lemma J (i), we get that for u ě 0,

Hβ “ 2βK1{2β “ 2β rKpuqKpuq “ 2β rT puq rHpuqKpuq,

where 2βi rTipuq “ 1 ´ βi

β
puq
i

“ φipuq for i P V . Therefore, we have

ź
iPV

φipuq3{2
b

|Hβ| “
ź
iPV

φipuq2
b

| rHpuq|
b

|Kpuq|, (6.8)

where

drβpuq
i

dβi
“ 1´

1 ´ βi

β
puq
i

¯2 “ 1

φipuq2 .

Moreover, for all u ě 0 we have

1tHβ ą 0u “ 1tHpuq ą 0u1t rHpuq ą 0u. (6.9)

Combining equations (6.7), (6.8) and (6.9), as well as Lemma J (iii), we finally obtain :

Dpuq “
«ż

1t rHpuq ą 0u
ˆ
2

π

˙|V |{2
exp

ˆ
´1

2
xrθpuq, rHpuqrθpuqy ´ 1

2
xrηpuq, p rHpuqq´1rηpuqy ` xrηpuq, rθpuqy

˙
ś

iPV rθpuq
ib

| rHpuq|
ź
iPV

drβpuq
i

dβi
dβi

fifl 1tHpuq ą 0u exp
ˆ
1

2
xθ,Wθy ` xη, θy

˙ ź
iPV

a
θi

exp

ˆ
´1

2
xrθpuq, ĂW puqrθpuqy ´ 1

2
xη, pHpuqq´1ηy ´ xrηpuq, rθpuqy

˙ ś
iPV exp

`
1
2�ipuq ´ 1

8u
˘a|Kpuq| ś

iPV rθpuq
i

“ 1tHpuq ą 0u exp
ˆ

´1

2
xrθpuq, ĂW puqrθpuqy ´ 1

2
xη, pHpuqq´1ηy ´ xrηpuq, rθpuqy

˙
ś

iPV exp
`
1
2�ipuq ´ 1

8u
˘a|Kpuq| exp

ˆ
1

2
xθ,Wθy ` xη, θy

˙ ź
iPV

a
θi,

since the integral between brackets becomes

ż
ν

ĂW puq,rθpuq,rηpuq
V pdrβpuqq “ 1.

We are ready to show that D is the exponential martingale associated with a certain F�
u-
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martingale. By Ito’s lemma, for u ě 0 we have

dDpuq “
ÿ
iPV

ˆ
´pĂW puqe�puqqie�ipuq ´ rηpuq

i e�ipuq ´ 1

2

˙
Dpuqd�ipuq

` 1

2

ÿ
iPV

˜ˆ
´pĂW puqe�puqqie�ipuq ´ rηpuq

i e�ipuq ´ 1

2

˙2

`
´

´pĂW puqe�puqqie�ipuq ´ ĂW puq
i,i e2�ipuq ´ rηpuq

i e�ipuq
¯¸

Dpuqdu

`
ˆ

´1

2
xe�puq, BupĂW puqqe�puqy ´ 1

2
xη, BupHpuqq´1ηy

´xBurηpuq, e�puqy ´ |V |
8

´ 1

2

Bu|Kpuq|
|Kpuq|

¸
Dpuqdu.

Since Hpuq “ 2βpuq ´ W “ 1{T puq ´ W , we have

BupHpuqq´1 “ pHpuqq´1T puq´1BupT puqqT puq´1pHpuqq´1,

using Lemma J (ii), we get

xη, BupHpuqq´1ηy “ xT puq´1pHpuqq´1η, e2�puqT puq´1pHpuqq´1ηy
“ xrηpuq, e2�puqrηpuqy “

ÿ
iPV

prηpuq
i q2e2�ipuq.

Moreover, ĂW puq “ W ` W pHpuqq´1W , therefore

xe�puq, BupĂW puqqe�puqy “ xe�puq,W pHpuqq´1T puq´1e2�puqT puq´1pHpuqq´1We�puqy
“ xe�puq, ĂW puqe2�puqĂW puqe�puqy “

ÿ
iPV

pĂW puqe�puqq2i e2�ipuq,

and rηpuq “ ĂW puqT puqη ` η, thus

xBurηpuq, e�puqy “ xBupĂW puqqT puqη ` ĂW puqBupT puqqη, e�puqy
“ xĂW puqe2�puqĂW puqT puqη ` ĂW puqe2�puqη, e�puqy
“ xĂW puqe2�puqrηpuq, e�puqy “

ÿ
iPV

´ĂW puqe�puq
¯
i

rηpuq
i e2�ipuq.

Finally, we have

Bu|Kpuq| “ Tr
`|Kpuq|pKpuqq´1BuKpuq˘ “ ´|Kpuq|Tr`W pKpuqq´1e2�puq˘

“ ´|Kpuq|
ÿ
iPV

ĂW puq
i,i e2�ipuq.

Plug in the above computations in dDpuq, we get that

dDpuq
Dpuq “

ÿ
iPV

ˆ
´

´ĂW puq
´
e�puq ` T puqη

¯
` η

¯
i
e�ipuq ´ 1

2

˙
d�ipuq

` 1

2

ÿ
iPV

ˆ
pĂW puqe�puqq2i e2�ipuq ` prηpuq

i q2e2�ipuq ` 1

4
` 2

´ĂW puqe�puq
¯
i

rηpuq
i e2�ipuq

` pĂW puqe�puqqie�ipuq ` rηpuq
i e�ipuq ´ pĂW puqe�puqqie�ipuq ´ ĂW puq

i,i e2�ipuq ´ rηpuq
i e�ipuq

´pĂW puqe�puqq2i e2�ipuq ´ prηpuq
i q2e2�ipuq ´ 2

´ĂW puqe�puq
¯
i

rηpuq
i e2�ipuq ´ 1

4
` ĂW puq

i,i e2�ipuq
˙
du

“
ÿ
iPV

ˆ
´

´ĂW puq
´
e�puq ` T puqη

¯
` η

¯
i
e�ipuq ´ 1

2

˙
d�ipuq “ drLpuq,
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where for i P V and u ě 0,

rLipuq “
ż u

0

ˆ
´1

2
´

´ĂW puq
´
e�puq ` T puqη

¯
` η

¯
i
e�ipuq

˙
d�ipuq.

Therefore, D is the exponential martingale associated with rL.
Recall that for u ě 0 and any event Au P F�

u “ σ p�pvq, 0 ď v ď uq, we have

PrAus “
ż
Au

DpuqdpP,
i.e. P is such that

E

„
dP

dpP
ˇ̌̌̌
F�
u

j
“ EprLqpuq

for all u ě 0. Moreover, pP “ Â
iPV pPi, therefore � is a |V |-dimensional standard Brownian motion

under pP. By Girsanov’s theorem, the process rBpuq “ �puq ´ x�, rLyu is a standard Brownian
motion under P. In other words, under P, the process � verifies the following SDE : for all i P V
and u ě 0,

d�ipuq “ d rBipuq ´ 1

2
du ´

´ĂW puqpe�puq ` T puqηq ` η
¯
i
e�ipuqdu.

6.3.5 Time change on the conditional process

Proof of Theorem 6.3.
Let p rBiqiPV be a |V |-dimensional standard Brownian motion. According to Theorem 6.2, there
exists a |V |-dimensional standard Brownian motion pBiqiPV such that, if pXiqiPV is the solution
of (EW,θ,η

V pXq) with the Brownian motion B, and Ti is the inverse function of Ui : t ÞÑ şt
0

ds
Xipsq2

for all i P V , then p�, T q is the solution of (EW,θ,η
V p�q) with the Brownian motion rB, where

�ipuq “ log
`
XipTipuqq˘

for u ě 0.
Therefore, according to Lemma 6.7, we have a.s. for all i P V :

lim
uÑ`8Tipuq “ τi,

where τi is the hitting time of 0 by Xi. In this coupling between p�, T q and X, it is natural to
prefer the notation T8 “ τ . Moreover, we can apply Theorem G (ii) to X : the vector

´
1

2T8
i

¯
iPV

is distributed according to νW,θ,η
V , and conditionally on pT8

i qiPV , the trajectories pXiptqq0ďtďT8
i

are independent three-dimensional Bessel bridges from θi to 0 respectively.
Since �ipuq “ log

`
XipTipuqq˘

for u ě 0, conditionally on pT8
i qiPV , the processes p�i, TiqiPV

are independent, and their distribution is given by applying the time change from Lamperti’s
relation to a three-dimensional Bessel bridge. This time-change was already realized in the proof
of Lemma 6.7, see Equation (6.6), and the result is as follows : conditionally on pT8

i qiPV , for all
i P V , there exists a standard Brownian motion Bi̊ such that for u ě 0.$’’&’’%

�ipuq “ logpθiq ` Bi̊ puq ` 1

2
u ` log

ˆ
T8
i ´ Tipuq

T8
i

˙
Tipuq “

ż u

0
e2�ipwqdw.
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6.4 Conditioning in Lamperti time scale : Proof of Theorem 6.4,
6.5 and 6.6

6.4.1 Proof of Theorem 6.4

In this section, we prove Theorem 6.4 by using the multidimensional opposite drift Theorem
obtained in Theorem 6.3. Besides, our proof follows the same computations as in the one
dimensional case which is treated by Matsumoto and Yor in [122].

Proof of Theorem 6.4.
By piiq in Theorem 6.3, there exists a |V |-dimensional Brownian motion B˚ which is independent
of T8 such that for every u ě 0,

�puq “ logpθq ` B˚puq ` 1

2
u ` log

ˆ
T8 ´ T puq

T8

˙
.

For every i P V and for every u ě 0, let us define

ei̊ puq :“ eB
˚
i puq`u{2.

Therefore, for every i P V , for every u ě 0,

T8
i

T8
i ´ Tipuq

e�ipuq
θi

“ ei̊ puq. (6.10)

Furthermore, for every i P V and for every u ě 0, let us define

Ti̊ puq “
ż u

0
ei̊ pvq2dv.

Integrating the square of identity (6.10), we have, for every i P V and for every u ě 0,

θ2i Ti̊ puq “ pT8
i q2

ż u

0

e2�ipvq
pT8

i ´ Tipvqq2dv

“ pT8
i q2

„
1

T8
i ´ Tipvq

ju

0

“ pT8
i q2

ˆ
1

T8
i ´ Tipuq ´ 1

T8
i

˙
.

Therefore, almost surely, for every i P V and for every u ě 0,

θ2i Ti̊ puq “ T8
i Tipuq

T8
i ´ Tipuq . (6.11)

For every i P V and for every u ě 0, identity (6.11) yields

1

T8
i

` 1

θ2i Ti̊ puq “ 1

Tipuq . (6.12)

Let us differentiate (6.12). This gives that for every i P V and for every u ě 0,

1

θ2i

ei̊ puq2
Ti̊ puq2 “ e2�ipuq

Tipuq2 . (6.13)

For every i P V and for every u ě 0, we denote Zi̊ puq “ T˚
i puq
e˚
i puq . Thus, by (6.13), for every i P V ,

almost surely
pθiZi̊ puqquě0 “ pZipuqquě0. (6.14)



218 Chapitre 6. A multi-dimensional version of the Matsumoto-Yor properties

The components of Z˚ are independent. Moreover, by Theorem D with μ “ 1{2, for every i P V ,
pZi̊ puqquě0 is solution of

dZi̊ puq “ Zi̊ puqd pBipuq ` K3{2
K1{2

ˆ
1

Zi̊ puq
˙
du

for some Brownian motion pB which is different from B˚. However, it is not difficult to see that
for every x P R, K3{2pxq

K1{2pxq “ 1 ` 1
x . Therefore, for every i P V , pZi̊ puqquě0 is solution of the SDE :

dZi̊ puq “ Zi̊ puqd pBipuq ` p1 ` Zi̊ puqqdu.

Together with (6.14), this yields (ii) of Theorem 6.4. By (6.12) and (6.14), we know that
almost surely,ˆ

Zipuq, 1

Tipvq
˙

uě0,vě0,iPV
“

ˆ
θiZi̊ puq, 1

T8
i

` 1

θ2i Ti̊ pvq
˙

uě0,vě0,iPV
. (6.15)

Remark that T8 is independent of pZ˚puqquě0 because pZ˚puqquě0 depends only on B˚. Therefore,
making v go to infinity in (6.15), we get that pZpuqquě0 is independent of T8 which is (iii) in
Theorem 6.4.

Now, let pλiqiPV P R
V`. Let z P pR˚̀ qV . Recall that for every i P V and for every u ě 0,

βipuq “ 1
2Tipuq . Let us look at the Laplace transform of βpuq, conditionally on Zpuq “ z. By

(6.15), we get

E

«
exp

˜
´

ÿ
iPV

λiβipuq
¸ ˇ̌̌̌

ˇZu, Zu “ z

ff
“

E

«
exp

˜
´

ÿ
iPV

λi

2T8
i

¸
ˆ exp

˜
´

ÿ
iPV

λi

2θ2i Ti̊ puq

¸ ˇ̌̌̌
ˇZu, Zpuq “ z

ff
.

By (i) in Theorem 6.3, we know that the random vector 1{p2T8q is distributed according to
νW,θ,η
V . Moreover, we know that T8 is independent of B˚, that is, of pZ˚, T ˚q. By (6.14), this

implies that T8 is independent of pZ, T ˚q. Therefore, by Proposition F,

E

«
exp

˜
´

ÿ
iPV

λiβipuq
¸ ˇ̌̌̌

ˇZu, Zu “ z

ff
“e´ 1

2
x?

θ2`λ,W
?
θ2`λy` 1

2
xθ,Wθy`xη,θ´?

θ2`λyˆ
ź
iPV

θib
θ2i ` λi

ˆ E

«
exp

˜
´

ÿ
iPV

λi

2θ2i Ti̊ puq

¸ ˇ̌̌̌
ˇZu, Zpuq “ z

ff
.

Besides, by (6.14), θZ˚ “ Z. Therefore,

E

«
exp

˜
´

ÿ
iPV

λiβipuq
¸ ˇ̌̌̌

ˇZu, Zu “ z

ff
“e´ 1

2
x?

θ2`λ,W
?
θ2`λy` 1

2
xθ,Wθy`xη,θ´?

θ2`λy ˆ
ź
iPV

θib
θ2i ` λi

ˆ E

«
exp

˜
´

ÿ
iPV

λi

2θ2i Ti̊ puq

¸ ˇ̌̌̌
ˇZu, Zi̊ puq “ zi{θi

ff
.

(6.16)

Furthermore, we know that pZi̊ , Ti̊ qiPV is site by site independent because for every i P V ,
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pZi̊ , Ti̊ q is a functional of Bi̊ . Consequently, we get that

E

«
exp

˜
´

ÿ
iPV

λiβipuq
¸ ˇ̌̌̌

ˇZu, Zu “ z

ff
“e´ 1

2
x?

θ2`λ,W
?
θ2`λy` 1

2
xθ,Wθy`xη,θ´?

θ2`λy ˆ
ź
iPV

θib
θ2i ` λi

ˆ
ź
iPV

E

«
exp

ˆ
´ λi

2θ2i Ti̊ puq
˙ ˇ̌̌̌

ˇZu, Zi̊ puq “ zi{θi
ff
.

(6.17)

Now, for every i P V , let us compute

E

«
exp

ˆ
λi

2θ2i Ti̊ puq
˙ ˇ̌̌̌

ˇZu, Zpuq “ z

ff
“ E

«
exp

ˆ
´ λi

2θ2i Ti̊ puq
˙ ˇ̌̌̌

ˇZu, Zi̊ puq “ zi{θi
ff
.

Recall that IGpμ, rq designates an Inverse Gaussian distribution with parameter pμ, rq. By (iii)
in Theorem D, the distribution of ei̊ puq conditionally on Zi̊ puq “ zi{θi is

L pei̊ puq|Zu, Zi̊ puq “ zi{θiq “ 1

IG
´
1, θizi

¯ .

Moreover, for every t, μ, r P p0,`8q,

t ˆ IGpμ, rq law“ IGptμ, trq.

Therefore, as T ˚ “ e˚Z˚, it holds that

L
˜

1

2θ2i Ti̊ puq

ˇ̌̌̌
ˇZu, Zi̊ puq “ zi{θi

¸
“ IG

ˆ
1

2θizi
,

1

2z2i

˙
. (6.18)

It is well known that the Laplace transform of an Inverse Gaussian random variable X with
parameters pμ, rq is given by

E
`
e´tX

˘ “ exp

˜
r

μ

˜
1 ´

c
1 ` 2μ2t

r

¸¸
.

Consequently,

E

«
exp

ˆ
´ λi

2θ2i Ti̊ puq
˙ ˇ̌̌̌

ˇZu, Zpuq “ z

ff
“ exp

ˆ
1

zi

ˆ
θi ´

b
θ2i ` λi

˙˙
.

Combining this with (6.17) yields

E

«
exp

˜
´

ÿ
iPV

λiβipuq
¸ ˇ̌̌̌

ˇZu, Zu “ z

ff

“ e´ 1
2

x?
θ2`λ,W

?
θ2`λy` 1

2
xθ,Wθy`xη` 1

z
,θ´?

θ2`λy ˆ
ź
iPV

θib
θ2i ` λi

.

This is exactly the Laplace Transform of νW,θ,η`1{z
V . This proves (iv) in Theorem 6.4. Remark

that (iv) implies directly (i).
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6.4.2 Proof of Theorem 6.5

Let us prove the link between the solution p�, T q of EW,θ,η
V p�q and Z via intertwinnings.

Proof of Theorem 6.5.
Let v, u P R` such that v ă u. Let f be a measurable function from pRV q2 into R`. On the one
hand, it holds that,

E rfp�puq, T puqq|Zvs “ E rE rfp�puq, T puqq|σp�pwq, T pwq, w ď vqs |Zvs
“ E rPu´vfp�pvq, T pvqq|Zvs .

Consequently, by (iv) in Theorem 6.4,

E rfp�puq, T puqq|Zvs “ E

«
Pu´vf

ˆ´
´ lnp2βipvqZipvqq

¯
iPV

,

ˆ
1

2βipvq
˙

iPV

˙ ˇ̌̌̌
ˇZv

ff
“ KPu´vfpZpvqq.

On the other hand, by (iv) in Theorem 6.4 again remark that,

E rfp�puq, T puqq|Zvs “ E rE rfp�puq, T puqq|Zus |Zvs
“ E rKfpZpuqq|Zvs
“ Qu´vKfpZvq.

Therefore, almost surely,
Qu´vKfpZpvqq “ KPu´vfpZpvqq.

6.4.3 Proof of Theorem 6.6

In the proof of Theorem 6.6, we use the same notation as in the beginning of the proof of
Theorem 6.4. For example, B˚, e˚, T ˚ and Z˚ are defined in the same way as before.

Proof of Theorem 6.6.
Recall that, by (6.15),ˆ

Zipuq, 1

Tipvq
˙

uě0,vě0,iPV
“

ˆ
θiZi̊ puq, 1

T8
i

` 1

θ2i Ti̊ pvq
˙

uě0,vě0,iPV
.

Let u ě 0. By (6.15) and the fact that for every i P V , Tipuq “ Zipuqe�ipuq and Ti̊ puq “
Zi̊ puqei̊ puq, we get

1

ei̊ puq “ θi

e�ipuq ´ θiZipuq
T8
i

. (6.19)

Following [123], remark that by (6.19) it holds that

θ2i
Zi̊ puq
ei̊ puq ` T8

i

ei̊ puq2 “ θ2i
Zipuq
θi

ˆ
θi

e�ipuq ´ θiZipuq
T8
i

˙
` T8

i

ˆ
θi

e�ipuq ´ θiZipuq
T8
i

˙2

“ θ2i

ˆ
T8
i

e2�ipuq ´ Zipuq
e�ipuq

˙
.

As Tipuqe´�ipuq “ Zipuq, this entails

θ2i
Zi̊ puq
ei̊ puq ` T8

i

ei̊ puq2 “ θ2i
T8
i ´ Tipuq
e2�ipuq

“ θ2i

ż `8

0
e2�ipu`vq´2�ipuqdv. (6.20)
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Therefore, combining (6.15) and (6.20) yieldsˆ
1

Tipuq ,
ż `8

0
e2�ipu`vq´2�ipuqdv

˙
iPV

“
ˆ

1

T8
i

` 1

θ2i Ti̊ puq ,
Zi̊ puq
ei̊ puq ` T8

i

θ2i ei̊ puq2
˙

iPV
. (6.21)

Now, the idea is to condition both sides of (6.21) on Zpuq “ z and to use (iv) in Theorem 6.4.
Let us begin with the left-hand side. This term can be rewritten asˆ

1

Tipuq ,
Zipuq2
Tipuq2

ż `8

0
e2�ipu`vqdv

˙
iPV

. (6.22)

First, let us condition on σp�pvq, v ď uq. By Theorem H in the exponential scale, conditionally on

σp�pvq, v ď uq, p�pu`vqqvě0 is distributed as a solution of E
ĂW puq,rθpuq,rηpuq
V where ĂW puq “ WK´1

T puq,rηpuq “ η ` WK´1
T puqT puqη and for every i P V , rθipuq “ e�ipuq “ 1{p2βipuqZipuqq. Thus, by (i) in

Theorem 6.3, conditionally on σp�pvq, v ď uq,˜ˆ
2

ż `8

0
e2�ipu`vqdv

˙´1
¸

iPV

is distributed as α „ ν
ĂW puq,rθpuq,rηpuq
V . Recall that, by pivq in Theorem 6.4, conditionally on Zu,

1{p2T puqq is distributed as β „ νW,θ,η
V . Therefore, if we condition (6.22), first on σp�pvq, v ď uq

and then on Zpuq “ z, we obtain ˆ
p2βiqiPV ,

ˆ
z2i p2βiq2

2αi

˙
iPV

˙

where β „ ν
W,θ,η`1{z
V and conditionally on β, α „ ν

ĂW,rθ,rη
V .

Now, let us look at the right-hand side in (6.21). This right-hand side can be rewritten asˆ
1

T8
i

` 1

θ2i Ti̊ puq ,
Zi̊ puq2
Ti̊ puq ` T8

i Zi̊ puq2
θ2i Ti̊ puq2

˙
iPV

.

We know that T8 is independent of B˚, thus of pZ˚, T ˚q. By (6.14), this implies that T8 is
independent of pZ, T ˚q. Moreover, by (i) in Theorem 6.3, δ “ 1{p2T8q is distributed as νW,θ,η

V .
Thus, conditionally on pZipuq “ ziqiPV , that is, pZi̊ puq “ zi{θiqiPV , we haveˆ

1

T8
i

` 1

θ2i Ti̊ puq ,
Zi̊ puq2
Ti̊ puq ` T8

i Zi̊ puq2
θ2i Ti̊ puq2

˙
iPV

law“
ˆ
2δi ` 1

θ2i Ti̊ puq ,
z2i

θ2i Ti̊ puq ` z2i
2δipθ2i Ti̊ puqq2

˙
iPV

(6.23)

where pTi̊ puqqiPV is independent of pδiqiPV . Moreover, by (6.18), conditionally on pZi̊ puq “
zi{θiqiPV , pTi̊ puqqiPV are independent site by site and for every i P V , 1{pθ2i Ti̊ puqq is distributed
as

IGp1{pθiziq, 1{z2i q.
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Annexe A

In this appendix, we show numerical simulations of the non-integrated density of states which
has been studied in Chapter 4.

A.1 Simulations

Let us simulate the non-integrated density of states of the restriction of the operator Hβ on a
box of size 15 ˆ 15 ˆ 15. We change the value of W in the different figures.

Figure A.1 – Non-integrated density of states of the restriction of Hβ on a grid 15 ˆ 15 ˆ 15 with
W “ 0, 009
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Figure A.2 – Non-integrated density of states of the restriction of Hβ on a grid 15 ˆ 15 ˆ 15 with
W “ 0, 05

Figure A.3 – Non-integrated density of states of the restriction of Hβ on a grid 15 ˆ 15 ˆ 15 with
W “ 0, 11
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Figure A.4 – Non-integrated density of states of the restriction of Hβ on a grid 15 ˆ 15 ˆ 15 with
W “ 0, 18

Figure A.5 – Non-integrated density of states of the restriction of Hβ on a grid 15 ˆ 15 ˆ 15 with
W “ 0, 4
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Figure A.6 – Non-integrated density of states of the restriction of Hβ on a grid 15 ˆ 15 ˆ 15 with
W “ 0, 9

Figure A.7 – Non-integrated density of states of the restriction of Hβ on a grid 15 ˆ 15 ˆ 15 with
W “ 5
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A.2 Interpretation

When W is small, we observe a singularity at 0 of the non-integrated density of states. It is
consistent with Theorem 4.4 in Chapter 4. In this regime, we proved that the integrated density
of states E ÞÑ npEq behaves roughly as npEq » ?

E when E goes to 0. It implies that the
non-integrated density of states E ÞÑ αpEq should behave as αpEq » 1{?

E which explains the
singularity at 0 in the pictures above when W is small. On the contrary, when W is large, we
observe that the singularity of the non-integrated density of states disappears. It is consistent
with Theorem 4.5 in Chapter 4. Indeed, in this regime, we proved that npEq “ OpEq when E
goes to 0 which suggests that αpEq “ Op1q when E goes to 0. We conjecture that when d ě 3 and
W is large, Hβ could exhibit Van Hove asymptotics, that is, npEq » Ed{2 and αpEq » Ed{2´1.
Indeed, when W is large, Hβ{W should be very similar with the opposite of the discrete Laplacian
on Z

d which is known to exhibit such asymptotics at the bottom of its spectrum. Moreover, we
conjecture that the phase transition with respect to the density of states of Hβ on Z

d with d ě 3
should coincide with the phase transition between recurrence and transience for the VRJP.
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Étude de quelques problèmes liés aux marches aléatoires branchantes et aux
marches aléatoires renforcées.

Résumé : Dans cette thèse nous étudions des marches aléatoires branchantes spatiales critiques partant
de processus ponctuels et un processus renforcé nommé VRJP. Nous donnons une nouvelle preuve de la
caractérisation des mesures invariantes pour les marches branchantes spatiales en grande dimension. Par
ailleurs, nous nous intéressons au comportement asymptotique d’une martingale associée au VRJP. Nous
étudions également la densité d’état d’un opérateur de Schrödinger aléatoire lié au VRJP. De plus, en
considérant des limites d’échelle du potentiel aléatoire associé au VRJP, nous fournissons une nouvelle
preuve des propriétés de Matsumoto-Yor concernant des fonctionnelles exponentielles du mouvement
Brownien. A l’aide des mêmes limites d’échelle, nous construisons une version continue de l’opérateur de
Schrödinger associé au VRJP. Enfin, nous prouvons une version multidimensionnelle des propriétés de
Matsumoto-Yor.

Mots clés : Marches aléatoires branchantes ; Marches aléatoires renforcées ; Opérateurs aléatoires ;
Propriétés de Matsumoto-Yor.

Study of several problems linked to branching random walks and reinforced
random walks.

Abstract : In this thesis we study spatial critical branching random walks starting from point processes
and a reinforced process called the VRJP. We give a new proof of the characterization of invariant measures
for spatial branching random walks in high dimension. Moreover, we look at the asymptotic behaviour
of some martingale which is related with the VRJP. We also study the density of states of a random
Schrödinger operator which is associated with the VRJP. Furthermore, considering the scaling limits
of a random potential which is linked to the VRJP, we give a new proof of Matsumoto-Yor properties
regarding some exponential functionals of the Brownian motion. By means of these scaling limits, we also
construct a continuous version of the Schrödinger operator associated with the VRJP. Finally, we prove a
multidimensional version of the Matsumoto-Yor properties.

Keywords : Branching random walks ; Reinforced random walks ; Random operators ; Matsumoto-Yor
properties.

Image en couverture : L’arbre de vie, Gustav Klimt, 1909.
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