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Résumé
La construction d’un géomodèle numérique est une étape clé dans l’étude et l’exploration
du sous-sol. Ces modèles sont construits à partir de données sismiques ou de puits, qui
forment un ensemble de points de données associés à des valeurs correspondant à leurs âges
géologiques. Cette tâche consiste à construire une fonction implicite, également appelée
fonction stratigraphique, qui interpole cet ensemble de points de données. Souvent, les
données disponibles sont rares et bruitées, ce qui rend cette tâche difficile, principalement
pour les réservoirs où les structures géologiques sont complexes avec plusieurs discontinuités.
Pour résoudre ce problème, le problème d’interpolation est généralement complété par un
terme de régularisation qui impose un comportement régulier de la fonction implicite. Dans
cette thèse, nous proposons une nouvelle méthode pour calculer la fonction stratigraphique
qui représente les couches géologiques dans des contextes arbitraires. Dans cette méthode,
les données sont interpolées par des splines Powell-Sabin C1 quadratiques par morceaux et
la fonction peut être régularisée via de nombreuses énergies de régularisation. La méthode
est discrétisée en éléments finis sur un maillage triangulaire conforme aux failles géologiques.
Par rapport aux méthodes d’interpolation classiques, l’utilisation de splines quadratiques par
morceaux présente deux avantages majeurs. Premièrement, une meilleure approximation des
surfaces stratigraphiques présentant de fortes courbures. Deuxièmement, une réduction de la
résolution du maillage, tout en générant des surfaces plus lisses et plus régulières.

La régularisation de la fonction est la composante la plus difficile de toute approche de
modélisation implicite. Souvent, les méthodes classiques produisent des modèles géologiques
incohérents, en particulier pour les données présentant de fortes variations d’épaisseur, et des
effets de bulles sont généralement observés. Pour résoudre ce problème, nous introduisons deux
nouvelles énergies de régularisation liées à deux EDPs fondamentales, sous leur forme générale
avec des coefficients variants spatialement. Ces EDPs sont l’équation de diffusion anisotrope
et l’équation de flexion d’une plaque mince anisotrope. Dans la première approche, le tenseur
de diffusion est introduit et adapté de manière itérative aux variations et à l’anisotropie des
données. Dans la seconde, le tenseur de rigidité est adapté de manière itérative aux variations
et à l’anisotropie des données. Nous démontrons l’efficacité des méthodes proposées en 2D,
spécifiquement sur des coupes transversales de modèles géologiques avec des réseaux de failles
complexes et des couches géologiques présentant des variations d’épaisseur.
Mots-clés: Modélisation implicite - Modélisation structurelle - Fortes variations d’épaisseur -
Splines - EDP anisotrope - Interpolation.
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Abstract
The construction of a geological numerical model is a key step in the study and exploration
of the subsurface. These models are constructed from seismic or well data, which consist of
data points associated with values corresponding to their geological ages. This task involves
constructing an implicit function, known also as stratigraphic function, which interpolates
this set of data points. Often the available data are sparse and noisy, which makes this
task difficult, mainly for reservoirs where the geological structures are complex with distinct
discontinuities and unconformities. To address this, the interpolation problem is typically
supplemented with a regularization term that enforces a regular behaviour of the implicit
function. In this thesis, we propose a new method to compute the stratigraphic function that
represents geological layers in arbitrary settings. In this method, the data are interpolated by
piecewise quadratic C1 Powell-Sabin splines and the function can be regularized via many
regularization energies. The method is discretized in finite elements on a triangular mesh
conforming to the geological faults. Compared to classical interpolation methods, the use of
piecewise quadratic splines has two major advantages. First, a better handling of stratigraphic
surfaces with strong curvatures. Second, a reduction in mesh resolution, while generating
surfaces of higher smoothness and regularity.

The regularization of the function is the most difficult component of any implicit modeling
approach. Often, classical methods produce inconsistent geological models, in particular for
data with high thickness variation, and bubble effects are generally observed. To handle this
problem, we introduce two new regularization energies that are linked to two fundamental
PDEs, in their general form with spatially varying coefficients. These PDEs are the anisotropic
diffusion equation and the equation that describes the bending of an anisotropic thin plate. In
the first approach, the diffusion tensor is introduced and iteratively adapted to the variations
and anisotropy of the data. In the second, the rigidity tensor is iteratively adapted to the
variations and anisotropy in the data. We demonstrate the effectiveness of the proposed
methods in 2D, specifically on cross-sections of geological models with complex fault networks
and thickness variations in the layers.
Key words: Implicit modeling - Structural modeling - High thickness variations - Splines -
anisotropic PDE - Interpolation.
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Introduction
Geology is a major scientific discipline that describes the structure of the earth on and beneath
its surface and the processes that have shaped that structure. A better comprehension of the
subsurface is vital for various tasks such as resource estimation, numerical simulations, and
risk management. Numerical models known as geomodels are commonly used to describe
subsurface structures, providing a mathematical and computational framework for expressing
geological concepts. Often, these structures can be very complex, with several geological faults
and many stratigraphic layers. An additional challenge arises from the lack of available data.
Nevertheless, the geomodel must faithfully represent the complexity observed in the data.

To build these models, several approaches have been proposed in the past (Mallet 1997,
Sprague and Dekemp 2005, Caumon et al. 2009). The foundational approach in structural
modeling, known as explicit structural modeling, consists of modeling the contact surfaces
between geological units typically with parametric and/or polygonal surfaces (Mallet 1992,
Sprague and Dekemp 2005). An alternative approach, referred to as implicit structural
modeling, consists of representing the stratigraphic layers by an implicit stratigraphic func-
tion. More specifically, the data points are along interfaces delimiting stratigraphic layers,
represented as a set of equipotential surfaces called horizons. Implicit structural modeling has
been widely used to build geomodels from stratigraphic data (Lajaunie et al. 1997, Frank
et al. 2007, Caumon et al. 2013, Hillier et al. 2014). Among the implicit methods, we can
distinguish two main classes of interpolation methods. The first class includes methods based
on dual kriging or radial basis functions, where the interpolation is based on the data points
locations (Lajaunie et al. 1997, Chilès et al. 2007). The second class includes mesh-based
methods, which rely on the discretization of the domain of study using a mesh and then the
function is approximated using piecewise continuous polynomial basis functions supported
around the nodes of the mesh. For example the Discrete Smooth Interpolation methods (DSI)
( Mallet 1997, Frank et al. 2007, Irakarama et al. 2022), where the stratigraphic function is
discretized on a volumetric/surfacic mesh using finite element basis functions.

Over the two last decades, these methods have reached a significant maturity and led
to the development of several modeling softwares in the oil and gas industry, for example
volume based modeling (VBM) by Souche et al. (2014). However, these methods present
common limitations, especially when dealing with models presenting high thickness variations
(Renaudeau 2019, Pizzella 2020). Geological models with strong thickness variations are
models that represent geological structures with high variations in the shape and thickness of
the layers. These variations are often anisotropic, meaning they vary differently along different
directions. These strong variations have long been a concern and a challenge for different
implicit modeling methods (Laurent 2016, Renaudeau 2019, Irakarama et al. 2021).

The stratigraphic data can be sparse and irregularly distributed over the domain. To
address this, the modeling problem is usually posed as sum of two components: fitting and
regularization (Renaudeau 2019, Mallet 1992). The fitting term constrains the implicit
function to honor data. On the other hand, the regularization term is introduced to enforce
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a good behaviour of the implicit function. The term "good" is subjective and its meaning
changes depending on the assumptions made in the modeling problem. The definition of
the regularization depends on the problem to be solved. For example in neural networks,
regularization is defined as any method that enhances the generalization capability of a
network (Santosh et al. 2022). While for inverse ill-posed problems, it is used to introduce
prior knowledge and make the approximation of ill-posed (pseudo-) inverses feasible (Benning
and Burger 2018). In structural modeling, the regularization term is typically chosen as a
measure of smoothness of the implicit function (Renaudeau 2019, Mallet 1992, Irakarama
et al. 2022).

In this thesis, we propose a new method to construct the implicit function that represents
the stratigraphic data. This function interpolates the data using a piecewise quadratic C1

Powell-Sabin (PS) splines, and can be regularized via many regularization energies. For the
discretization, we use PS-splines on triangular meshes. First, we will provide a brief review
of structural modeling and existing techniques in order to contextualize our method as an
implicit mesh-based method. Then, we will suggest a new regularity criteria, which are a set
of mathematical properties that the implicit function should respect in order to be coherent
geologically.

In the context of mesh-based methods, the main component of the implicit modeling
approach is the regularization. Therefore, we will examine a wide range of regularization
techniques that are widely used in the field of implicit structural modeling using the new
regularity criteria we introduced and not only smoothness. We will explore new regularization
energies that are linked to two fundamental PDEs, in their general form with spatially varying
coefficients, the anisotropic diffusion equation and the equation describing the bending of an
anisotropic thin plate. This class of PDEs provides a rich mathematical framework within
which the longstanding implicit structural modeling challenges can be addressed such as
thickness variations and the behavior of the implicit function in the presence of faults.

The contributions of the thesis are:

• The use of a structural modeling method based on splines. We represent the implicit
function using PS-splines, which are C1 quadratic piecewise polynomials, that can be
defined on arbitrary triangulations. In our case, the triangular mesh discretizing the
domain is generated conforming to the geological faults.

• We present a new regularization method based on the diffusion energy. To better
handle the models presenting high thickness variations, we introduce a diffusion term
in the diffusion equation that is iteratively adapted to the shape and the variations
in the data. Our method is based on the essential idea that the diffusion equation
provides solutions respecting the mean value property and the maximum principle at
the boundaries. In this set of solutions, we seek the smoothest solutions, minimizing the
Hessian energy. Furthermore, we propose a simple way to allow natural behaviour near
domain boundaries and faults. For the discretization, we use Powell-Sabin splines, as
an alternative to the standard linear finite elements. They are quadratic splines with
global C1 continuity, defined on triangulation and their use for the discretization of
second-order smoothness energies (e.g. Hessian energy) is straightforward. Our method
unlike the standard diffusion equation produces solutions with higher regularity and
smoothness, free from local extrema and boundary artifacts.

• We present a new regularization method based on the bending energy of an anisotropic
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thin plate. The minimizers of this energy are solutions of a fourth order PDE, and obeys
on the boundaries to high order boundary conditions, which ensures a minimal bias near
the boundaries. We also introduce a rigidity term in the anisotropic thin plate energy
that is iteratively adapted to encode the thickness variations and the anisotropy in data.
Furthermore, we propose a parameterization for this term that guarantees it remains
positive semidefinite. This condition is essential as it ensures the convexity of the
regularization energy. The resulting implicit functions exhibit remarkable smoothness,
but unlike the solutions of the standard bending energy, they respect the regularity
criteria when dealing with models exhibiting strong thickness variations. It is worth
noting that the formulation of the energy is independent of the discretization. We used
Powell-Sabin splines for the discretization to illustrate the results.

The thesis comprises a total of six chapters. In chapter 1, we give a brief review of
structural modeling, and present existing techniques for constructing structural models. We
also compare it to other implicit modeling approaches and we identify its limitations. This
contextualizes the proposed method within the mesh-based methods framework, where the
regularization is the main component. Then, we present a set of regularity criteria that
will be considered to evaluate the regularity of the implicit functions throughout the rest
of the thesis. In chapter 2, we introduce PS-splines basis functions that we will be used to
discretize various regularization energies discussed in this thesis. In chapter 3, we will explore
the main regularization techniques within the mesh-based methods framework. Once again,
we analyze these methods and identify its common limitations, and elucidate the need for
new formulations of the regularization that are able to support the anisotropic behavior, an
essential property when dealing with structural models presenting high thickness variations. In
chapter 4, we will explore new regularization energies that are linked to two fundamental PDEs,
in their general form with spatially varying coefficients, the anisotropic diffusion equation and
the equation describing the bending of an anisotropic thin plate. Lastly, in chapter 5, we
present an application of our method to geological models, that involve thickness variations
and complex faults network.
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Implementations
A MATLAB library has been developed, containing the following features:

• The construction of the PS-splines on arbitrary triangulations and the fitting of a set
data points.

• All the various regularization techniques explored in the rest of the thesis.

• The iterative scheme based on the anisotropic diffusion discretized using PS-splines.

• The iterative scheme based on the anisotropic bending energy using PS-splines.
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Chapter 1
Structural modeling
This chapter provides a brief review of structural modeling and existing techniques to contex-
tualize the implicit mesh-based methods. This class of methods is presented in the second
half of this chapter. Additionally, we compare it to other implicit modeling approaches and
we identify its limitations. Subsequently, we outline the assumption we made and the research
framework we selected.

1.1 Structural modeling

Structural geology modeling simply refers to the set of numerical methods aiming to construct
geological models or geomodels, which are numerical representations of subsurface formations
(such as faults, horizons and intrusions) and their associated features on a scale of meters or
kilometers in the domain of interest (Thornton et al. 2018). These representations help to
understand how these structures form, their orientation, and the history of rock deformation
and tectonic processes. Additionally, structural modeling is used to obtain an estimate of
the true physical property value or class at any location in a region of the subsurface. These
techniques rely on integrating all existing measurements, observations, and knowledge to
obtain a well-informed estimate. Often, many simplification using conceptual models based on
geological rules are considered, because of the incapacity to accurately describe the properties
of the model.

1.1.1 Stratigraphic representation

The stratigraphic approach in structural geology involves applying principles of stratigraphy to
represent the geological structures, which can be related to two main types of geological units:
stratigraphic layers and intrusive geobodies. The subsurface is represented as a sequence
of different stratigraphic layers, also called strata, which are horizontal or sub-horizontal
rock layers that have accumulated over time through various geological processes (Cross and
Homewood 1997), see Fig. 1.1. These layers are typically composed of rocks with common
features. These original deposits, can undergo various deformations over time, caused by many
geological processes, such us tectonic events, sedimentation and erosion. These deformations
play a role in shaping stratigraphic structures with complex geometries. For example, the
tectonic events can lead to the folding and/or shearing of stratigraphic layers, inducing strong
thickness variations in the stratigraphic layers, as well as the faulting that creates zones of
discontinuities in the stratigraphic sequence. Furthermore, the erosion and sedimentation can
expose the stratigraphic layers to disparities between different strata and intrusive bodies.
The stratigraphic modeling step is the process of building the intermediate reservoir horizons
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based on the interpreted depth horizons and thickness data. A fault network can also be
included in order to construct a consistent faulted structural model, see Fig. 1.1.

Figure 1.1: An interpreted outcrop, where geological structures are represented as uniform
units known as layers or strata, which are separated by interfaces referred to as
horizons. These horizons are represented as lines and faults as dashed red lines.
Pictures taken from Bi et al. (2022).

1.1.2 The need for accurate models of the geological structures

We model stratigraphic structures to gain a deeper understanding of geological formations,
their properties, and their spatial distribution. These models help us interpret subsurface
data, make predictions about geological features, and assist in various applications such
as resource exploration, environmental assessment, and hazard mitigation. Additionally, it
holds significant importance for the oil and gas industry as it is essential in evaluating the
geometry of potential layers like source rock, reservoir rock, and cap rock (Yang and Escalona
2011, Legentil et al. 2023). This evaluation is necessary for estimating the volumes of oil
and gas reserves, and simulating fluid flow during extraction to optimize production. Fig.
1.2 illustrates the steps involved in a typical workflow for estimating oil and gas reserves.
The process starts with the processing and interpretation of data acquired from the field.
Subsequently, a structural model is developed, which typically contains fault modeling, horizon
modeling, and the creation of a mesh that conforms to the fault network. This structural
model is used to construct a stratigraphic model that computes a stratigraphic function
which represents the relative geological age of the layers. Following this, a grid is generated,
properties are allocated, and the estimation of oil and gas volumes is carried out. This thesis is
situated within the structural modeling framework. To be more specific, our approach require
as input stratigraphic data, which are a set of points distributed along geological horizons, in
addition to a mesh generated conformal to the fault network. Then, the expected output is
to produce a stratigraphic model, which is achieved by computing the stratigraphic function
honoring the data and should be consistent geologically (Caumon et al. 2013, Irakarama
et al. 2022).

Beyond physical properties, modeling stratigraphic structures can also facilitate the as-
sessment of mineral concentrations, which is vital in the mining industry. In mining, the
search for high concentrations of specific minerals, such as precious metals like gold, silver,
and copper, beneath the earth’s surface is essential for economic purposes (Pizzella 2020).
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a)

b)

c)

d)

Figure 1.2: A structural modeling workflow begins with data acquisition and interpretation,
ending with the extraction of implicit horizons from the isovalues of the strati-
graphic function. a) Seismic data interpretation to determine horizons and identify
fault network. b) Input data including fault network and data points distributed
along horizons. c) Stratigraphic function interpolating data points. d) Extraction
of implicit horizons from the isovalues of the stratigraphic function. Picture of
the structural model taken from Irakarama et al. (2021), and the picture of the
seismic data from Abdul Latiff et al. (2016).
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1.1.3 Geological data

The construction of a geomodel is based on integrating all existing measurements (Fig. 1.3),
observations, and knowledge to obtain a well-informed estimate (Wellmann and Caumon 2018,
Renaudeau 2019). In structural modeling, we generally use points, vectors, and parametric
or polygonal lines and surfaces. Given our current limitations in directly measuring these
properties over the entire domain of interest. The available data of the field are often sparse
and irregularly distributed (Frank et al. 2007).

Seismic data

Seismic data are a valuable source of information in the structural modeling workflow. Seismic
data processing involves evaluating the arrival time and amplitude of seismic profiles covering
entirely or partially the domain of study, and are produced giving a map of impedance
contrasts that can interpreted as contrasts between rock units. Seismic data is particularly
effective in detecting faults (Irakarama et al. 2021, Renaudeau (2019)), which are fractures
in the stratigraphic layers where rocks have moved relative to each other. Faults are critical
in structural modeling since they can influence the movement of fluids (such as oil and water)
and can generate earthquakes (Snell et al. 2020).

Wellbore data

Wellbore data include both well cores and geophysical well logs. They are typically images or
result from a local geophysical measurement, which inform about the geological properties
in the neighborhood of the well. Their interpretation is more difficult, since they do not
allow lateral expansion away from the borehole. In addition, they are sparse and might be
complicated to honor. Overall, they provide valuable structural information for identifying
layer dips and fractures (Wellmann and Caumon 2018), as well as evidences of horizons and
faults (Renaudeau 2019).

Figure 1.3: Geological data that includes well trace, picked horizon tops and some faults.
Picture taken from R and Obiadi (2016).
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1.1.4 Geological knowledge and realism

Beyond geological data, there exists geological knowledge that is challenging to quantify
but has a strong impact on the modeling process (Madsen et al. 2022). For example,
the geological contextual knowledge of the studied zone, or geological concepts like the
stratigraphic representation, or assumptions based on the similarities with previously studied
geological sites (Renaudeau 2019).

A geologically realistic structural model is a representation of the subsurface as a set of
surfaces that define the boundaries of the geological units. It is usually guided by rules of
geological realism . In the context of geological modeling, realism refers to the degree to
which a model honors the numerical data and obeys to some geological rules (Wellmann and
Caumon 2018, Renaudeau 2019). These rules can be based on comparisons with similar
geological structure or acceptable simplifications. For instance, Renaudeau (2019) made the
general assumption that geological structures should not exhibit in the stratigraphic layers
excessively high curvatures. This rule was considered also by Mallet (1992) and Lajaunie
et al. (1997). Nevertheless, creating models that describes a structural model in details is not
feasible. Therefore, other simplifications can be considered according to the objectives of a
particular study (Thornton et al. 2018).

Caumon et al. (2004) and Caumon et al. (2009), established a set of specific criteria for
a boundary representation to be a geologically consistent, introducing the concept of sealed
model. These criteria figure out how horizons and faults interact with each other. Horizons
should not intersect, except if one has been cut by the other (Caumon et al. 2009). However
the faults can intersect any type of surface. These concepts were used in structural modeling,
see Sprague and Dekemp (2005) (Fig. 1.4). These validity conditions guarantee the creation
of a sealed (watertight) model, which is a fundamental concept for the validity of a boundary
representation. In the following, we focus on mesh-based methods and we consider that these
rules should be respected by the horizons and the fault network.
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Figure 1.4: Basic surface intersection rules: Overlapping layers (A, hatched area) and leaking
layers (D) are invalid; whereas (B), (C), (E), (F) are consistent models. Picture
taken from Caumon et al. (2009).

1.2 Explicit structural modeling
The foundational approach in structural modeling, known as explicit structural modeling,
consists of modeling the contact surfaces between geological units typically with parametric
and/or polygonal surfaces (Mallet 1992, Sprague and Dekemp 2005).

1.2.1 Parametric surfaces

In parametric modeling, surfaces are defined using mathematical equations. These equations
are often polynomials and describe the shape of the surface in terms of local parameters.
Beziers curves, B-splines and NURBS (Non-Uniform Rational B-splines) are typically used
to represent the parametric functions (Rogers 2011). In structural modeling, parametric
surfaces were used to model fault blocks (GJØYSTDAL et al. 1985).

1.2.2 Polygonal surfaces

In this method, surfaces are approximated using a set of linked polygons, defining a graph
composed of a set of vertices, that are lined using edges or faces. These polygons are often
homogeneous (of the same type), but can be also heterogeneous (of different types), for
example triangles, quad and arbitrary polygons. In structural modeling, this approach was
used to represent complex structures in the pioneering work of Mallet (1989), who introduced
the DSI (Discrete smooth interpolation). In this approach, a fitting energy is introduced
to fit the numerical data, and a regularization energy called also roughness or fairness is
added to ensure the smoothness and the regularity of the surfaces. These techniques require
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heavy post-processing to generate a valid model. Often, additional truncations, projections
and remeshing are performed to ensure a sealed model with a proper horizon-fault contact.
Additionally, there exist some techniques that can automatically repair and ensure validity of
geologically inconsistent models (Anquez et al. 2017, Anquez et al. 2019).

1.3 Implicit structural modeling (implicit function, Horizons,
Faults, extraction of horizons)

The second approach in structural modeling, known as implicit modeling, offers an alternative
perspective that overcomes the limitations of explicit methods. Implicit modeling takes into
account all available data at once, including all horizons and discontinuities. Moreover, it
enables to express the validity conditions as mathematical constraints that should be respected.

Implicit modeling was used in various fields, including computer graphics (Alliez et al. 2007,
Calakli and Taubin 2011) to reconstruct surfaces, and in structural modeling (Renaudeau
2019, Lajaunie et al. 1997, Irakarama et al. 2021, Frank et al. 2007).

1.3.1 Implicit function and iso-surfaces

We define a scalar field u, also called implicit function or stratigraphic function, defined over
the entire domain of interest as

u : R3 → R (1.1)
x→ u(x).

We define an isovalue, also called iso-surface, of this function hα associated to a constant value
α as

hα = {x ∈ R3, u(x) = α} (1.2)

with α a real constant. In 3D, an isovalue defines a surface, in 2D a curve, while in 1D a point.
The geological surfaces (Horizons) are represented as isovalues of the implicit function u. The
implicit function u is constructed in such a way that all data points sampling a geological
surface have the same isovalue. The implicit function can represent many geological surfaces,
since the function u has an infinity of isovalues (Pizzella 2020, Renaudeau 2019). It is also
possible to define different implicit functions, which enables to describe even more complex
sequences of geological surfaces with unconformities (Renaudeau 2019).

1.3.2 Unconformities in implicit structural modeling

In geological structural modeling, discontinuities such as faults are often encountered. They
represent a surface of contact between several stratigraphic sequences. They need to be
implicitly or explicitly determined before being integrated in the construction of the implicit
function. In their presence, the domain is split into several conformable sequences, and boolean
operations are introduced to create a valid model (Wellmann and Caumon 2018, Renaudeau
(2019), Calcagno et al. (2008), Caumon et al. (2013)). Alternatively, the computational mesh
to discretize the volumetric domain is generated conformal to the fault network, and the faults
are treated as internal boundaries.
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1.4 The meshless formulation
In implicit structural modeling, there are two main classes of numerical methods that have
been introduced for the construction of the implicit function that interpolates the data points:
mesh-based and meshless methods (Wellmann and Caumon 2018, Irakarama 2019). In the
context of meshless formulation, the implicit function is expressed as

u(x) =
Np∑
p=1

upΦp(x) +
M∑

m=1
ampm(x) (1.3)

where Φp(x) are the basis functions, pm(x) are monomials, am are the corresponding drift
coefficients, M is the total number of polynomial terms. The implicit function is expressed as
linear combination of the basis function Φp and monomials pm. There exist a wide range of
choices of basis functions. Two main categories of basis functions are typically used for the
interpolation of data. One is the potential field method introduced by Lajaunie et al. (1997),
and based on dual kriging (Chilès et al. 2007, Calcagno et al. 2008, Autin et al. 2015),
which has its origins in geostatistics. The second is based on the use of radial basis functions
(RBF) (Renaudeau 2019, Pizzella 2020). They are widely used in various fields, including
computer graphics, and machine learning, due their ability to handle irregularly distributed
data and produce smooth interpolations. In general, the basis functions are defined as

Φp(x) = ϕ(∥x− xp∥) (1.4)

where ϕ is the generalized covariance and ∥x − xp∥ is the isotropic distance between the
position to evaluate and the data point xp.

1.4.1 Interpolation of numerical data

Field measurements used for interpolation can be categorized into two distinct types: purely
localized information at a specific point or directional information represented by a vector at
a particular point. These measurements effectively inform on the construction of the implicit
function, through the interpolation of the value of the implicit function, or of its directional
derivatives (Pizzella 2020, Renaudeau 2019, Hillier et al. 2014, Chilès et al. 2007).

Data points

• Reference data points. At a reference point p0, an arbitrary value α0 is assigned to
the implicit function. The constraint is written as

u(p0) = α0 (1.5)

• Increment data points. Often, the field measurements enable to assert that a set of
data points belongs to the same horizon. The value of the implicit function on these
points are unknowns but are equal. Thus, for each pair of points pi, pj of each horizon
H, we can write the constraints as

u(pi)− u(pj) = 0 , ∀(pi, pj) ∈ H, ∀H ∈ Sh, (1.6)

where pi, pj are two points of the horizon H, Sh corresponds to the set of all horizons..
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• Directional data. Field measurements can provide information about the orientation
of the geological surfaces, i.e the gradient of the implicit function. This information can
determine a tangential direction τ to the geological surfaces at a point p. The tangential
data can be written as

uτ (p) = τ · ∇u(p) = 0 (1.7)
Additionally, it can determine the gradient of the implicit function at a point p, which
can be written as

∇u(p) = G (1.8)

where G is a vector that corresponds to the gradient of the implicit function.

1.4.2 Structural discontinuities in meshless methods

In meshless methods, the faults are introduced, via adding a polynomial drifts, see Eq. (1.3),
ensuring the discontinuity of the implicit function along the faults (Renaudeau 2019, Wellmann
and Caumon 2018, Calcagno et al. 2008). For each fault, we introduce a polynomial drift.
This polynomial drift, in turn, is associated to a specific jump function associated with that
particular fault. These jump functions are centered around the fault’s center, reaching their
maximum value at it. Away from the fault’s center towards the fault tip, these functions
gradually decrease and become zero at the fault tip. Additionally, these functions vanish in a
direction perpendicular to the fault’s orientation away from the fault. Crucially, these jump
functions are active only on one side of the fault, while they are completely deactivated (set
to zero) on the opposite side.

1.5 Mesh-based formulation
Mesh-based methods, are numerical techniques that rely on expressing the implicit function
using basis functions, which are constructed on a discretized mesh covering the domain Ω. On
the mesh, we define basis functions in the space F of regular functions. The implicit function
u is defined as

u(x) =
Ns∑
i=1

Bi(x)ui = B(x)U ∀x ∈ Ω (1.9)

where B(x) = (Bi(x))Ns
i=1 is a basis of F , U = (ui)Ns

i=1 is a vector of unknowns and Ns is the
dimension of F . The basis functions Bi used to represent the implicit function, can be defined
using any type of mesh. The mesh discretization is usually performed on simplices. In the
context of structural modeling, we commonly use the term Discrete Smooth Interpolation
(DSI) method to describe the class of methods based on domain discretization. These methods
were originally introduced by Mallet (1989). In DSI, triangular meshes are used. It is also
worth noting that DSI was first used in explicit modeling (Mallet 1989, Mallet (1997), Lévy
and Mallet 1999), and based on triangular meshes. In the implicit version, they are used in
2D, and tetrahedra are generally used in 3D (Frank et al. 2007, Souche et al. 2014).

1.5.1 Structural discontinuities

Achieving a discontinuous jump in the implicit function u can be obtained by either modifying
the basis functions to break their continuity or by the topology in a way that naturally leads
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to discontinuities in u (Renaudeau (2019)). Often in the mesh-based methods, the mesh is
created conformal to the faults, ensuring that no mesh element cross them (Fig. 1.5, Fig. 1.6).
To achieve the former condition, all the nodes that are in contact with a fault are duplicated
on both sides of the fault. As a result, the nodes along the faults are not connected to each
other, which also implies that the basis functions associated to these nodes along the faults
are not continuous. The former condition allows to create discontinuities and jumps in the
implicit function u. In 2D, the faults are curves, represented using a set of edges, while in 3D
they are represented using a set of triangles.

(a) (b)

Figure 1.5: Introduction of structural faults. (a) fault introduced in the mesh. (b) Nodes
duplicated on the two sides of the faults. Lines correspond to edges, with red lines
signifying the edges of the fault. Dots represent nodes of the mesh, and those
marked in red are duplicated nodes.
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Figure 1.6: The faulted mesh is generated conformal to the faults. Lines in the mesh represent
edges, and those highlighted in red represent boundary edges.

1.5.2 Interpolation of data points

In mesh-based methods, a wide range of numerical data can be taken into account. For
instance, in DSI, data points are required, and the integration of various types of additional
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numerical data, such as gradient information, is possible if these data are available. Data
points are distributed along horizons. Each horizon, is associated with a specific isovalue. The
constraints related to the data points can be expressed as

u(p) = αH , ∀p ∈ H, ∀H ∈ Sh (1.10)

here, p is a point belonging to the horizon H, and Sh corresponds to the set of all horizons.
Other types of numerical data, like the directional derivatives, are expressed in the same way
as in the meshless formulations, see Sect. 1.4.1.

The data points can be sparse and noisy, while the basis functions are locally supported.
This leads to an underdetermined system with an infinity of possible solutions. The implicit
modeling problem is typically posed as a minimization of a sum of energies (Mallet 1992,
Renaudeau 2019)

min
u

Efit(u) + λEreg(u) (1.11)

where Efit(u) is the fitting energy associated to the data constraints, Ereg(u) is the regulariza-
tion energy associated to the regularity constraints, λ is the regularization weight controlling
the tradeoff between the fitting and regularization constraints. In the regularization formula-
tions, the fundamental assumption is that geological surfaces need to be as smooth as possible
(Mallet 1989, Renaudeau 2019).

Smoothing techniques, based on the minimization of second-order derivatives, are extensively
used as a regularization in the implicit modeling problem, see Irakarama et al. (2022). The DSI
methods consider many smoothing operators according to the choice of the basis functions used
for interpolation. This includes the Hessian operator (Irakarama et al. 2022), smooth gradient
(Souche et al. 2014), constant gradient (Frank et al. 2007) and Laplacian operator (Lévy
and Mallet 1999). In his pioneering work, Mallet (1989) introduced as a global roughness, a
functional expressed using finite differences scheme, involving the minimization of the first
order partial derivatives as well as the second partial derivatives. The Hessian smoothing
energy is used by Renaudeau (2019) as a regularization energy. Their approach involves
constructing the implicit function using locally defined moving least square interpolants and
explicitly minimizing the Hessian energy. In the next chapter, we will discuss in details,
the various regularization formulations in structural modeling, we will also discuss the link
between the the implicit modeling problem formulation Eq. 1.11 and the DSI least square
system.

1.6 Limitations of the meshless methods
The main limit of meshless methods lies in their ability to handle faults. When dealing with a
complex fault network, incorporating these faults can be quite challenging. The process of
addressing faults requires the definition of fault zones, which is a challenging task to automate
especially in 3D (Renaudeau 2019, Pizzella 2020).

In the context of meshless methods, the nature of the resulting linear system to be solved
is mainly depending on the number of data points to interpolate. Additionally, this system
is characterized by its density, since nearly all coefficients are non-zero. Consequently, this
density poses a challenge when it comes to solving this system for a large number of data
points (Wellmann and Caumon 2018, Renaudeau 2019).
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1.7 Limitations of implicit methods

1.7.1 Thickness variations

Geological models with strong thickness variations are models that represent geological
structures with high variations in the shape and thickness of the layers. These variations
are often anisotropic, meaning they vary differently along different directions, which makes
it difficult to obtain a geologically coherent solution that fits the data. Implicit modeling
methods on these models, as shown in Fig. 1.7, produce geologically inconsistent solutions,
where the mean value property and the maximum principle are violated with the presence of
bubbles that are oscillations around local extrema in the resulting implicit function. It is an
undesired artifact, because it is geologically incoherent. Bubbles occur in the regions where
the variation of thickness in the data is the strongest. In Fig. 1.7,b bubbles are present on
the boundaries and around the middle curved horizon, therefore the extraction in red of the
isovalue corresponding to this horizon is geologically inconsistent.

To illustrate common limitations of the implicit modeling methods in two dimensions, we
use synthetic models with high thickness variation introduced in the data. We refer to these
models as bell, extracted layers and faulted synthetic, respectively, as shown in Fig. 1.7, Fig.
1.8, Fig. 1.9d. The thickness variations are present mainly in the y-direction in the extracted
layers model, while, the bell and faulted synthetic models are along x and y. The bell model
has horizons with values of −1, 0, 1, 2, and 3 from bottom to top and is a benchmark model
of Renaudeau (2019). The faulted synthetic model has three horizons with values of 0, 1, and
2 from bottom to top, while the extracted layers model in Fig. 1.8b has horizons with values
of 6, 7, 8, and 9 from bottom to top, the value of the youngest is modified and set equal to 11
in Fig .1.8b.

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(a) (b)



1.7 Limitations of implicit methods 31

(c)

Figure 1.7: Resulting implicit functions using mesh-based and meshless implicit modeling
methods, both regularized with Hessian smoothing energy. (a) Data points, with
colors corresponding to the values of each horizon. (b) DSI, a mesh-based method.
(c) Example of a meshless method, using thin-plate splines for interpolation with
a smoothing constraint as regularization.

In the context of implicit meshless methods, particularly those based on radial basis functions
ones, two notable approaches addressed the integration of the anisotropy. Hillier et al. (2014)
introduced an implicit approach that uses the orientation data to estimate the directions of
anisotropy. Also, Martin and Boisvert (2017) presented a method that is particularly adapted
for cases with abundant data, enabling the extraction of local anisotropic properties. The
technique uses domain decomposition to capture the anisotropic properties, and adjust the
radial basis functions locally. Renaudeau (2019) imposed a direction of anisotropy in the
minimization of the Hessian energy, and used the Moving Least Squares basis functions for
the discretization. Pizzella (2020) addressed the thickness variations problem by enhancing
the implicit modeling problem with anisotropy data that can be available and not used
in the interpolation problem. They introduced additional data such as the integration of
tangency/second derivative data and/or the inclusion of an anisotropy field.

In mesh-based methods, the existing regularization techniques can also fail to produce
geologically coherent solution in models presenting high thickness variations, as it will be shown
in the following of the thesis and also discussed in other works (Laurent 2016, Irakarama et al.
2021). These strong variations have long been a concern and a challenge for different implicit
modeling methods (Laurent 2016, Renaudeau 2019, Irakarama et al. 2021). Additionally,
the values assigned to geological horizons have a strong impact on the resulting implicit
functions that describe the geological surfaces. Fig 1.8 shows two different resulting implicit
functions for two situations, where the value associated to the youngest horizon is changed, it
is equal to 9 in Fig. 1.8a and 11 in Fig. 1.8b. The previous experiment demonstrates that
finding optimal values associated to the horizons can potentially address this problem. In
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this case, it is easy to find optimal values, since the thickness variations are mainly along one
direction. Conversely, it becomes challenging for the bell model, where the thickness of the
layers vary strongly in magnitude and directions all over the domain. In Fig. 1.8a, when we
adjust the value associated to the youngest horizon, we almost align these horizons within
the same plan. This distribution of the horizons is aligned with the smoothing constraints.
These constraints aim to minimize second derivatives and seek to produce solutions that are
as linear as possible. Therefore, adjusting the values attributed to the horizons, can optimize
their distribution in space. In our context, we think that an optimal distribution should be
aligned with the regularization objectives. It is worth noting that in the rest of the thesis, we
do not address this problem, we rather focus on formulating regularization energies that are
able to handle geological data with arbitrary assigned values.

To tackle this issue, heuristic methods based on thickness considerations have been suggested
(Caumon et al. 2013). This is feasible, in the case where enough data are available to estimate
the scalar field increment by computing the differences relative to a reference value (Lajaunie
et al. 1997, Chilès et al. 2007).

In contrast, in meshless formulations like the one described in Lajaunie et al. (1997), there
are no predetermined values assigned to the horizons. Instead, an equality constraint is
formulated for points that belong to the same horizon. This constraint ensures that points
within the same horizon are on the same isovalue. Additionally, only one value is required to
define the implicit function. However, it is important to note that meshless methods typically
require additional orientation data. In places where the orientation of geological structures is
known, the exact value of the gradient’s norm (magnitude) remains unknown, since it is not
always available. These information are normed vectors to interpolate. For models presenting
high thickness variations, the variations of the gradient can be extremely strong and using
a normed vector can be not well adapted (Pizzella 2020). The problem of determining the
optimal values of data gradient remains challenging and hard to estimate, see Pizzella (2020).

(a) (b)

Figure 1.8: When different values are assigned to a single horizon in the same structural model,
it can lead to different resulting implicit functions. (a) geologically coherent. (b)
geologically incoherent.
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1.8 Expected numerical geomodel
In our context, we assume that we start from a stratigraphic representation of the domain of
interest that is a sealed (Waterthight) model (Caumon et al. 2004). As mentioned before
(Sect. 1.4), this representation is validating the two fundamental conditions of validity. Only
faults may have free borders. We also suppose that based on the available geological data,
a fault network and data points along horizons are determined, as well as a bounding box.
Then a mesh, specifically a triangular mesh, in the rest of the thesis, is generated conformal
to the faults. We generate meshes using constrained Delauney algorithm, in order to obtain
elements of good quality (Shewchuk 2002, George and Borouchaki 1998). This condition is
important for constructing regular basis functions, which, in turn, are used to represent the
implicit function over the entire domain. Additionally, we choose to assign arbitrary values,
in the ascending order following the stratigraphic order of the geological sequences. Then, the
goal is to compute a stratigraphic function that interpolates data points and is well-defined
all over the domain. This function is required to fit the horizons and extrapolate between
horizons and far beyond them.

1.8.1 Regularity criteria

The stratigraphic data can be sparse and irregularly distributed over the domain. The
regularization term Eq. (1.11) is introduced to enforce a regular behaviour of the implicit
function all over the domain. In our specific context, we define a regular function as a function
satisfying the following regularity properties:

(i) Mean value property and extrema at the boundaries principle. A regular function must
only contain extrema at the boundaries (e.g. interfaces of the geological layers), whilst
mean values elsewhere, ensuring no local extrema.

(ii) Function must be smooth, through minimizing a conventional smoothness energy.

(iii) Function should adhere to input data particularly in the proximity of faults or boundary
data, with only minimal regularization influence driving the function in these areas.

(iv) Consistent shape of the function far from data.

In order to illustrate the expected properties of a regular function, we present in Fig. 1.9 a
set of resulting implicit functions on two different models. Fig. 1.7b shows a smooth function
that is presenting many local extrema (strong oscillations). While in Fig. 1.9b, the function is
smooth, does not present local extrema, and extrapolate between horizons without violating
the mean value property and maximum at the boundaries. It reaches the maximum on the
horizons and not in-between, which is more geologically plausible, since these inconsistencies
cannot be generated by stratigraphic processes (Wellmann and Caumon 2018).

Smooth surfaces are preferred when representing the geological surfaces. This assumption
is fundamental in implicit modeling approaches (Renaudeau 2019, Mallet 1997, Souche et al.
2014). Hence, the function in Fig. 1.9b is preferred over the one in Fig. 1.9a.

The implicit function is required to present minimal bias near the boundaries. In our
context, the boundaries are either part of the bounding box or parts of the fault network. For
instance, the bounding box has no physical or geological meaning, it is just a virtual box that
encloses the data points and the domain of interest. While for the fault, the stratigraphic
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properties are defined by the sedimentation which occurred before the faulting of the layers.
For example, the presence of faults in Fig. 1.9c implies strong artifacts in the implicit function.
While, the function in Fig. 1.9d evolves along the faults in a natural way without artifacts.
Furthermore, the implicit function far from the data must keep the same trend of data as
much as possible. In Fig. 1.9d, the implicit function keeps the same trend of data.

(a) (b)

(c) (d)

Figure 1.9: Implicit functions computed on two structural models using Eq. (4.17). (b-d)
Regular solutions.(a-c) Irregular solutions.

1.9 Objectives
In the rest of the thesis, the regularity criteria introduced beforehand, will be the set of
criteria considered to evaluate the regularity of the resulting implicit functions using various
techniques. We will focus on mesh-based methods, which means, that we choose to introduce
unconformities in the model, by generating a mesh conformal to the discontinuities. We will
investigate the use of spline functions to represent the implicit function. We consider only,
data points along horizons without directional data.
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In the context of mesh-based methods, the main component of the implicit modeling
approach is the regularization. We will explore various regularization techniques used in
implicit modeling techniques, see Chap. 3. Then, we will focus on formulating regularization
energies, that are adapted to our specific interpolation problem. In Chap. 4, a primary
attention will be on regularization energies that can be connected to well-known PDEs, which
are fundamental mathematical tools for describing a wide range of phenomena in science.
PDEs require boundary conditions, where the function is well-defined along the boundary
of a regularly shaped domain, to ensure that the solution to the problem is unique. In our
context, the implicit function is known only on data points, and it is unknown along the
domain boundaries. Nonetheless, we break the norms, by regularizing the implicit function via
a PDE, that constructs the implicit function over the entire domain, based only on these given
conditions. The focus, will be to enrich the regularization formulation with extra degrees of
freedom that allow encoding thickness variations and the anisotropy present in the data, and
produce solutions validating all the regularity criteria defined beforehand.
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Chapter 2
Powell-Sabin splines
In this chapter, we recall briefly the concepts of Bezier-curves and B-splines representations.
These tools are fundamental mathematical descriptions of both curves and surfaces, when
extended using tensor product. Then, we present Powell-Sabin splines, which are C1 quadratic
piecewise polynomials defined on arbitrary triangulations. PS-splines are the basis functions
that are used for the discretization of the implicit modeling problem in the rest of the thesis.

2.1 B-spline surface

2.1.1 Bezier curves

A Bezier curve (Fig. 2.1) is defined by the linear combination of basis functions and control
points

C(ξ) =
p∑

i=0
Bi,pPi (2.1)

there are a total of p + 1 control points Pi, and the polygon they form is called the control
polygon of C. The functions Bi,p(ξ) are the Bernstein polynomials of degree p. The Bernstein
polynomials are defined as

Bi,p(ξ) = p!
i!(p− i)!ξ

i(1− ξ)p−i (2.2)

with ξ ∈ [0, 1]. Interpolating complex curves using Bezier curves can be challenging, due to
the need to add more control points, since using additional control points leads to an increase
in the degree. Unfortunately, as the degree increases, the algorithms to manipulate these
curves become numerically unstable (Kiendl 2011). These challenges when interpolating
complex curves can be overcome by an alternative curve representation called B-Splines, that
enables independence of degree and number of control points (See Fig. 2.1 and Fig. 2.2).
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Figure 2.1: Interpolation of data points using a Bezier curve. Red dots represent control
points, and black dots represent data points, while dashed lines define the control
polygon.

2.1.2 B-splines curves

B-Spline curves, are defined as a linear combination of control points and basis functions.
These basis functions, known as B-Splines (Basis-Splines), of a given order p are defined with
a recursive relation starting with piecewise constant basis functions (for p = 0),

Bi,0(ξ) =
{

1 ξi ≤ ξ < ξi+1
0 otherwise (2.3)

For p ≥ 1
Bi,p(ξ) = ξ − ξi

ξi+p − ξi
Bi,p−1(ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1,p−1(ξ) (2.4)

where the points ξi are the knots of the spline, i = 1, 2, ..., n + p + 1, and n is the number of
basis functions.

• Local support. B-Spline basis functions have a local support, meaning they are non-zero
only within the specific interval [ξi, ξi+p+1]. This property is crucial for the piecewise
definition of B-spline curves or surfaces. Each basis function is responsible for controlling
the shape of the spline within its local interval.

• Partition of unity. The sum of all B-spline basis functions should sum to one,∑n
i=1 Bi,p(ξ) =

1. This property ensures that any point of the surface can be expressed as a combination
of these basis functions.

• Non-negativity. B-Spline basis functions are always non-negative, Bi,p(ξ) ≥ 0.
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• Linear independence. The basis functions are linearly independent. This means that
no linear combination of basis function can equal zero unless all the coefficients of the
combination are zero.

(a)

(b)

Figure 2.2: Interpolation of one dimensional data points using quadratic B-splines. Black dots
represent data points. (a) Quadratic B-spline basis functions over a particular
sequences of knots. (b) B-spline curve fitting the data points represented using
the B-splines shown in Fig. 2.2a.

Similar to Bezier curves, a B-Spline curve of degree p is defined by the linear combination
of control points and the respective basis functions as

C(ξ) =
n∑

i=1
Bi,pPi (2.5)
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2.1.3 B-Spline surfaces

Starting from the one-dimensional representation Eq. (2.5), B-splines can be extended to
higher dimensions by using a tensor product representation. A B-spline surface is defined
using the tensor product of B-Spline basis functions. Given a net of control points n ×m,
two knot vectors Ξ = ξ1, ..., ξn+p+1 and Θ = η1, ..., ηm+q+1, two polynomial degrees p and q,
a tensor product B-Spline surface is defined as

S(ξ, η) =
n∑

i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Pij (2.6)

Tensor product splines have been widely recognized as very powerfull tools for surface fitting
and CAGD (Dierckx 1997). However, they come with many limitations. They are restricted
to structured rectangular meshes, which does not allow local refinement (Giorgiani et al.
2018). Powell-Splines splines represent an alternative to tensor product splines, which are
piecewise quadratic polynomials that are defined on arbitrary triangulations. In the following,
we will focus only on these splines.

2.2 Powell-Sabin splines
To obtain an interpolant with C1 continuity. We first introduce some basic concepts of Bezier
triangles and the C1 quadratic Powell-Sabin 6-split.

2.2.1 Bezier triangles

Consider a non-degenerate triangle T given by three vertices V1, V2, and V3 in a plane (Fig.
2.3b), having vertices Vi with Cartesian coordinates (xi, yi), i = 1, 2, 3. Any arbitrary point
P in T with coordinate (x, y) ∈ R2 can be uniquely expressed in terms of its barycentric
coordinates τ = (τ0, τ1, τ2) as

P =
2∑

i=0
τiVi,

2∑
i=0

τi = 1, 0 ≤ τi ≤ 1 (2.7)

They can be determined as the unique solution of the systemx1 x2 x3
y1 y2 y3
1 1 1


τ1

τ2
τ3

 =

x
y
1

 . (2.8)

Let Πd denote the linear space of bivariate polynomials of total degree of at most d. Then
any polynomial p(x, y) in Πd can be expressed in the Bernstein-Bezier form

p(x, y) := p(τ) =
∑

i+j+k=d

bi,j,kBd
i,j,k(τ) with i, j, k ≥ 0 (2.9)
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Bd
i,j,k(τ) the so-called Bernstein polynomials of degree d, which form a partition of unity on

T , such that

Bd
i,j,k(τ) = d!

i!j!k!τ
i
1τ j

2 τk
3 (2.10)

Bd
i,j,k(τ) ≥ 0 ∀(x, y) ∈ T (2.11)∑

i+j+k=d

Bd
i,j,k(τ) = 1 ∀(x, y) ∈ T (2.12)

The coefficients bi,j,k are called the Bezier ordinates of the polynomial p(x, y) in the triangle
T . The Bezier ordinates bi,j,k, associated to the points (Xi,j,k, Yi,j,k) having barycentric
coordinates (i, j, k)/d with respect to the triangle T . The points (Xi,j,k, Yi,j,k, bi,j,k) are called
the control points of the quadratic polynomial on T . They constitute the vertices of four
triangles, which is called the Bezier net of the polynomial. The Bezier net has the property
that it is tangent to the polynomial surface at the three vertices (Fig. 2.3b).

(a) (b)

Figure 2.3: Bezier ordinates of a quadratic polynomial. (a) control point and control net. (b)
Bezier ordinates.

Complex surfaces in structural modeling, computer graphics or physical modeling, often
require the use of a large number of Bézier triangles for their representation. However,
maintaining a desired degree of continuity across these patches introduces a large set of
complex conditions between the Bezier ordinates (Speleers 2008). This motivated the use of
piecewise polynomials with inherent global continuity. In this section, we introduce the C1

continuous Powell-Sabin splines.

2.2.2 Powell-Sabin subdivision and continuity conditions

The Powell-Sabin split was introduced to solve the problem of bivariate Hermite interpolation
over triangular meshes Eq. (2.14). Let Ω ⊂ R2 be a domain of interest with a boundary
∂Ω and T a triangulation of Ω. Let NT be the number of elements, and Nv the number of
vertices of the mesh T . Each triangle T of the original mesh T is provided with an inner
split-point C ∈ T and three edge split-points (M12, M23, M31), one on each edge of T , that
introduces a segmentation of T into six micro-triangles ti, i = 1, .., 6, see Fig. 2.4.
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Figure 2.4: The Powell-Sabin 6-split of a triangle T (V1, V2, V3).

The Powell-Sabin refinement (PS-refinement) T ∗ of T partitions each triangle into six
smaller triangles in the following way (Fig. 2.5):

• Choose an interior point Ci inside each triangle Ti.

• Connect the point Ci to the three vertices of Ti.

• For each edge of Ti

– that is shared with a triangle Tj , join Ci to the intersection point Mij of that edge
and the line (CiCj).

– that belongs to the boundary ∂Ω, join Ci to the middle point of that edge.

The resulting PS-refined mesh T ∗ contains 6×NT elements. Each subtriangle of T ∗ is denoted
as tj for j = 1, ..., 6×NT . Many possibilities exist for the choice of the interior point Ci of the
triangle Ti. Typically this point is chosen as centroid (called also barycenter) of Ti (Bartoň
and Kosinka 2019).A discussion concerning the choice of this point can be found in Dierckx
(1997), Kosinka and Cashman 2015, Schumaker and Speleers 2010. We also opted for the
centroid option for practical considerations.

(a) (b)

Figure 2.5: PS-refinement of a triangular mesh. (a) Original mesh. (b) refined mesh.
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The space of piecewise quadratic polynomials on T ∗ with global C1-continuity is called the
Powell-Sabin spline space:

S1
2(T ∗) :=

{
u ∈ C1(Ω) : u|t ∈ Π2, t ∈ T ∗

}
. (2.13)

Each u ∈ S1
2(T ∗) consists of 6 ∗NT quadratic Bezier triangles (one on each subtriangle in

Fig. 2.4 or Fig. 2.5). Powell and Sabin (1977) proved that the following interpolation problem

u(Vk) = fk,
∂u

∂x
(Vk) = fx,k,

∂u

∂y
(Vk) = fy,k, k = 1, ..., Nv (2.14)

has a unique solution u(x, y) ∈ S1
2(T ∗) for any given set of Nv (fk, fx,k, fy,k)-triplets. Hence,

the dimension of the Powell-Sabin spline space S1
2(T ∗) equals 3Nv.

In other words, a spline function in the space S1
2(T ∗) is fully determined, only if we know

the value of this function and its gradients on all the vertices of the mesh T . In contrary
of classical linear interpolants, where only the values of the function are needed. Also given
our context, where the gradient of the implicit function is usually not available and the data
points do not cover all the mesh vertices, a legitimate question that can arise at this point
is why we are seeking an interpolant that asks for more conditions to fully determine the
solution. In the rest of the thesis, we will show that the behaviour of the solution all over
the domain is mainly determined by the choice of the regularization considered and that an
appropriate choice of the regularization is the way to overcome the undetermined nature of
our problem. Furthermore, we will also illustrate that using PS-splines, we are able to produce
surfaces of higher smoothness and regularity using meshes with reduced number of vertices.

2.2.3 A B-spline representation

Dierckx (1997) presented a geometric method to construct a normalized basis for the spline
space S1

2(T ∗). Every spline function in this space can be represented as

u(x, y) =
Nv∑
i=1

3∑
j=1

ui,jBj
i (x, y) (2.15)

The functions Bj
i (x, y) are called Powell-Sabin B-splines. To construct these PS B-splines

Bj
i (x, y), j = 1, 2, 3, with support on the molecule Mi of vertex Vi. This molecule is defined

as the union of all triangles of the original triangulation that contains Vi. The basis functions
Bj

i (x, y) are uniquely defined by specifying their values and gradients at each vertex of T .
The structure of the support Mi implies that

Bj
i (Vk) = 0,

∂Bj
i

∂x
(Vk) = 0,

∂Bj
i

∂y
(Vk) = 0, (2.16)

for any vertex Vk ̸= Vi, and we set

Bj
i (Vi) = αij ,

∂Bj
i

∂x
(Vi) = βij ,

∂Bj
i

∂y
(Vi) = γij . (2.17)

The values (αi,j , βi,j , γi,j), j = 1, 2, 3, should be carefully chosen so that the corresponding
basis functions, constructed by Eq. (2.14) and Eq. (2.17)-Eq. (2.16), form a convex partition
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of unity. For each vertex Vi, we associate three points Qi,j = (Xi,j , Yi,j), j = 1, 2, 3, such
that, for i = 1, ..., Nv αi,1 αi,2 αi,3

βi,1 βi,2 βi,3
γi,1 γi,2 γi,3


Xi,1 Yi,1 1

Xi,2 Yi,2 1
Xi,3 Yi,3 1

 =

xi yi 1
1 0 0
0 1 0

 (2.18)

It follows that the corresponding basis function Bj
i sum up to one. Moreover, for every point

P of coordinates (x, y) we have

P =
Nv∑
i=1

3∑
j=1

Qi,jBj
i (P) (2.19)

The points Qi,j are Greville points or domain points of the functions Bj
i , see for more details

Buffa and Sangalli (2016). The triangle tc
i = (Qi,1, Qi,2, Qi,3) is referred to as the PS triangle

associated with the vertex Vi. Eq. (2.18) it implies that for each vertex Vi three functions
Bj

i are uniquely determined by the points Qi,j , j = 1, 2, 3 (Fig. 2.10). Furthermore,

• αi = (αi,1, αi,2, αi,3) are the barycentric coordinates of Vi with respect to tc
i .

• βi = (βi,1, βi,2, βi,3) and γi = (γi,1, γi,2, γi,3) are the barycentric directional coordinates
with respect to tc

i , respectively, in the x− and y−direction.

• at the vertex Vi, the basis functions Bj
i has a directional derivative equal to zero in the

direction of the edge of tc
i opposite to Qi,j .

Then, for each vertex Vi we define its PS points as the vertex itself and the midpoints of
all the edges of the PS refinement T ∗ containing Vi. Moreover, Dierckx (1997) showed that
basis functions Bj

i , j = 1, 2, 3, are positive if and only if the PS triangle tc
i contains all the PS

points associated with the vertex Vi.
Finally, the PS B-splines associated with each vertex Vi are uniquely determined using the

triple of points Qi,j , j = 1, 2, 3, that constitutes the PS triangle. Therefore, the PS triangles
are used to geometrically describe the PS B-splines and their properties instead of αi, βi, γi

(See Fig. 2.6 and Fig. 2.7). Fig. 2.7 shows three linearly independent PS B-splines around
the same vertex.

Figure 2.6: PS refinement and PS triangle around a vertex of a given triangulation.
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(a) (b) (c)

Figure 2.7: Three Basis functions around the vertex in Fig. 2.6.

PS triangles are not uniquely defined since the only condition is that it contains all the
PS points (Maes and Bultheel 2006, Speleers et al. 2012). Giorgiani et al. (2018) showed
that as the area of the PS triangles increases the three basis functions become more alike.
An optimal PS triangle is a triangle of minimal area that contains all the PS points (Dierckx
1997, Maes and Bultheel 2006, Speleers et al. 2012, Giorgiani et al. 2018). This results in
finding the minimal area triangle that encloses a convex polygon. For this problem an optimal
algorithm exits, with a computational cost O(n), with n the number of PS points, proposed by
O’Rourke et al. (1986). Giorgiani et al. (2018) considered this algorithm for the construction
of optimal PS triangles. In this thesis, we also used this algorithm for the construction of
minimal area PS triangles (Fig. 2.8). Giorgiani et al. (2018) considered specific conditions
on PS triangle for the vertices along the boundaries to simplify the imposition of boundary
conditions. Also, Chen et al. (2021) used a special choice PS triangle for the vertices along
the boundaries for the imposition of Dirichlet boundary conditions. More discussion on the
construction of optimal PS triangles can be found in (Speleers 2008, Speleers et al. 2012.

Figure 2.8: PS triangles of minimal area and PS points. PS points that are Bezier domain
points, are depicted using black dots. The PS triangles that are highlighted in
red, are triangles of minimal area. Each is associated to a vertex and contains the
set of PS points around it.
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2.2.4 PS control triangles

Referring to the representation Eq. (2.15), control points are defined as

ci,j = (Qi,j , ui,j) (2.20)

These points define the PS control triangles T c
i = (ci,1, ci,2, ci,3), which are tangent to the

spline surface z = u(x, y) at the vertices Vi. The projection of the control triangles T c
i in the

(x, y)−plane are simply the PS triangles tc
i .

Figure 2.9: PS-spline surface and its control triangles.

Fig. 2.9 shows a PS spline and its tangent control triangles. Using these control triangles,
the PS spline surface can be edited locally. This property is very usefull in structural modeling,
since often the constructed model need to updated after new data become available.

2.2.5 The Bezier ordinates of a PS-spline

We consider the triangle T (V1, V2, V3) in the triangulation T . We assume that the points in
Fig. 2.4 have the following barycentric coordinates

V1(1, 0, 0), V2(0, 1, 0), V3(0, 0, 1), C(c1, c2, c3)
M12(λ12, λ21, 0), M23(0, λ23, λ32), M31(λ13, 0, λ31)
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Figure 2.10: PS refinement of a triangle T (V1, V2, V3), with the PS triangle tc
1 =

(Q1,1, Q1,2, Q1,3) around the vertex V1.

On each of the six triangles T ∗ the Powell-Sabin spline is a quadratic polynomial, that can
be represented in the Bezier representation.

s1 = α1,1u1,1 + α1,2c1,2 + α1,3u1,3 (2.21)
b1 = L1,1u1,1 + L1,2u1,2 + L1,3u1,3 (2.22)
d1 = L∗

1,1u1,1 + L∗
1,2u1,2 + L∗

1,3u1,3 (2.23)
c1 = L

′
1,1u1,1 + L

′
1,2u1,2 + L

′
1,3u1,3 (2.24)

where (α1,1, α1,2, α1,3) are the barycentric coordinates of vertex V1 with respect to the PS
triangle tc

1, while the triplets (L1,1, L1,2, L1,3), (L∗
1,1, L∗

1,2, L∗
1,3) and (L′

1,1, L
′
1,2, L

′
1,3) are the

barycentric coordinates of the PS points around the vertex V1, S1, S∗
1, S′

1, respectively,
with respect to the PS triangle tc

1 (Fig. 2.10). Similarly, we can compute (s2, b2, d2, c2) and
(s3, b3, d3, ck) (Fig . 2.11). The rest of the Bezier ordinates are derived from the inherent
continuity conditions, for example

m1 =λ12b1 + λ21b2 (2.25)
e1 =λ12d1 + λ21d2 (2.26)
ω =c1d1 + c2d2 + c3d3 (2.27)
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Figure 2.11: The Bezier ordinates of a PS spline on the triangle T (V1, V2, V3).

2.3 PS-splines for finite element analysis
The Finite Element Method (FEM) is an effective technique for solving partial differential
equations (PDEs). It achieves this, by approximating the PDE solution within a chosen
subspace of the solution space through a suitable projection. Typically, this involves selecting
a basis for the approximation space and then solving a resulting linear system of equations
to determine the coefficients associated with this basis. Consequently, the selection of an
appropriate approximation space is crucial, since it directly affects the quality of the solution
and the computational efficiency (Speleers 2008).

Using splines as basis functions in FEM methods has many advantages. For example, the
additional global smoothness of the spline interpolant introduces stability to the numerical
solution (Hughes et al. 2005, Speleers et al. 2012, Bazilevs et al. 2007). Concerning
the use of PS-splines in Finite element, the foundational work of Speleers (2008) explains
how to generate the basis functions and to treat boundary conditions for the resolution of
second order elliptic problems. Speleers et al. (2012) also used the PS splines for solving the
advection-diffusion-reaction problems. Later in Veiga et al. (2015) and May et al. (2015), it
was used for solving the equation of bending of thin plate, where C1 continuity of the basis
is needed to deal with second derivatives of the displacement that arise in the strain energy
expression. Giorgiani et al. (2016) analyzed the finite element methods based on PS-splines, for
PDEs in two dimensions. Later, Giorgiani et al. (2018) presented a finite element scheme based
on PS-splines for the 2D Euler equations in supersonic regime and introduced a stabilization
to reduce oscillations. Chen et al. (2021) used PS-Splines to discretize high-order phase-field
models for brittle fracture in anisotropic materials, which results in a fourth order PDE for
the damage evolution and necessitates C1 continuity of the basis functions.

Tensor product splines are typically defined on rectangular meshes and do not allow local
refinement of the mesh. In contrast, PS-splines are defined on arbitrary triangulations, which
allow adaptive refinement. This property is essential when discretizing anisotropic equation
(Giorgiani et al. 2018). PS-splines allow straightforward adaptive refinement of the mesh.
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2.4 A spline-based method for implicit structural modeling
In the context of mesh-based methods, the optimization problem for the construction of the
implicit functions is expressed as a sum of two energies, see Eq. (1.11). First, the fitting
energy that constrains the implicit function to honor the data as much as possible. In this
context, splines emerge as powerfull tool for accurately fitting the data point (Speleers 2008,
Dierckx 1997). Second, the regularization energy that imposes a regular behaviour of the
implicit function across the entire domain. It can be chosen as Hessian or Laplacian energies,
and discretized using a finite element scheme (Irakarama et al. 2022). In this case, the
discretization of second order derivatives used in the Hessian energy minimization with splines
is straightforward compared to the classic linear discretization. Furthermore, the smoothness
assumption of the stratigraphic layers is usually considered (Renaudeau 2019, Mallet 1997,
Souche et al. 2014). Thus, the inherent C1 continuity of the PS-splines aligns with this
assumption.

Over the decades, mesh generation techniques using triangulations has become mature,
with the development of many robust and efficient meshing algorithms and softwares (Druyor
2011, George et al. 2007). Several modeling softwares have been developed in the oil and
gas industry based on implicit mesh-based methods based on simplices, for example volume
based modeling (VBM) by Souche et al. (2014). In this context, PS-splines are a good choice
since they can be constructed on arbitrary meshes. Furthermore, in 2D for example, the
PS-refinement of the mesh involves dividing each triangle to six sub-triangles, where each
sub-triangle is a quadratic Bezier-surface. Remarkably, this expansion increases the degrees of
freedom by a factor of only three, due to the inherent C1 continuity. This condition enhances
the smoothness and the regularity of the solutions, and reduces the dimensions of the PS-space
compared to working with the full space of quadratic polynomials (Speleers 2008).

2.5 Extension of Powell-Sabin splines to 3D

Speleers (2013) presented a method for constructing a normalized basis for the multivariate
quadratic spline space defined over a generalized Powell-Sabin refinement of a triangulation in
RS , s ≥ 1. This method provides a generalization of the normalized B-spline representation
of Dierckx (1997) for s = 2 and Sbibih et al. (2012) for s = 3, and the basis functions share
the same properties, nonnegativity, local support and partition of unity. Geometrically, the
construction is equivalent to determining a set of small simplices that must contain a specific
set of points (Fig. 2.12). Furthermore, the univariate PS-splines using the multivariate
representation in Speleers (2013) corresponds to the classical quadratic normalized B-splines.
In the rest of the thesis, we will use these univariate PS-splines, for fitting one dimensional
data points.



50 Chapter 2 Powell-Sabin splines

(a) (b)

Figure 2.12: PS-split and PS triangle in three dimensions. (a) PS-tetrahedral containing the
set of PS-points (Picture of Sbibih et al. 2012). (b) PS-split of a tetrahedral in
three dimensions (Picture of Speleers 2013).

While it appears to be a feasible option, it is worth noting that we did not conduct
experiments on the construction of Speleers 2013 in 3D. In the rest of the thesis, the
formulations of the implicit modeling problem Eq. (1.11) will be presented using generic
notations for basis function.
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Chapter 3
Regularization
The regularization of the implicit function is the main ingredient of any implicit modeling
approach. Regularization techniques are used for selecting a specific set of functions, in the
solution space, which satisfy the regularity criteria desired in the resulting function. In this
chapter, we introduce a wide range of regularization techniques that are widely used in the
field of implicit structural modeling. We start by posing the implicit structural modeling
as a regularized data fitting problem. Then, we recall the Discrete Smooth Interpolation
(DSI) generic framework for the interpolation of geological models, and we discuss the
classical regularization techniques considered in DSI using linear interpolation basis functions.
Additionally, we recall classical regularization energies and we demonstrate the results on
some models presenting thickness variations. We conclude by discussing common challenges
such as strong oscillations in the presence of high thickness variations.

3.1 Implicit modeling problem as a minimization of a sum of
quadratic energies

We consider a domain Ω ⊂ R2 with Np stratigraphic data points (xp, yp, zp) for p = 1 : Np,
and an implicit function u interpolating the data: u(xp, yp) = zp. Each subset of points with
equal value zp represents a horizon. The domain Ω is discretized with a mesh conformal to
the discontinuities (geological faults). On the mesh, we define Ns basis functions in the space
F of regular functions. The implicit function u is defined as

u(x) =
Ns∑
i=1

Bi(x)ui = B(x)U ∀x ∈ Ω (3.1)

where B(x) = (Bi(x))Ns
i=1 is a basis of F , U = (ui)Ns

i=1 is a vector of unknowns and Ns is the
dimension of F . To obtain a solution of the interpolation problem of the geological data points
over the domain Ω, we minimize the fitting energy Efit, with ηp fitting weights associated to
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each of the data points.

Efit(u) =
Np∑
p=1

η2
p(u(xp, yp)− zp)2 (3.2)

=
Np∑
p=1

η2
p(B(xp, yp)U− zp)T (B(xp, yp)U− zp) (3.3)

=
Np∑
p=1

η2
p(UT B(xp, yp)T B(xp, yp)U− 2UT B(xp, yp)T zp + z2

p) (3.4)

To obtain a minimizer of the fitting energy, we set the gradient with respect to U to zero,
and the equivalent linear system to solve is

Np∑
p=1

η2
pB(xp, yp)T B(xp, yp)U =

Np∑
p=1

η2
pB(xp, yp)T zp (3.5)

which can be written as a linear system

Afit
T AfitU = Afit

T Z (3.6)

where Afit is a matrix of size (Np, Ns) and Z a column vector of size Np. Each row p in Afit
corresponds to a constraint associated with a data point that has coordinates (xp, yp) and a
corresponding value zp. The matrix Afit and the vector Z are expressed as

(Afit)p,j = ηpBj(xp, yp), Z(p) = ηpzp for 1 ≤ p ≤ Np, 1 ≤ j ≤ Ns (3.7)

Solving the linear system Eq. (3.6) is equivalent to minimizing

min
U
∥AfitU− Z∥2 (3.8)

In our context, the data can be sparse and noisy, and basis functions are locally supported.
This leads to an underdetermined system with an infinity of possible solutions. To restrict
the space of solutions a regularization term is introduced. The implicit modeling problem is
posed as a minimization of a sum of energies

min
u

Efit(u) + λEreg(u) (3.9)

where Efit(u) is the fitting energy associated to the data constraints, Ereg(u) is the regulariza-
tion energy associated to the regularity constraints, λ is the regularization weight controlling
the tradeoff between the fitting and regularization constraints.

3.1.1 Resulting linear systems to solve for the minimization of a
regularization energy

Let Ereg(u) be a regularization energy on u, that we assume quadratic and convex in u. We
can then represent it using a symmetric semi-definite positive matrix D as

Ereg(u) = UT DU− 2UT B + c (3.10)
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where D ∈ RNs×Ns , B ∈ RNs×1, c ∈ R. The fitting energy is discretized as

Efit(u) = UT Afit
T AfitU− 2UT Afit

T Z + ZT Z (3.11)

The regularized fitting problem 3.9 is then minimized by setting the gradient vector to zero,
and the equivalent linear system to solve is

Afit
T AfitU + λDU = Afit

T Z + λB (3.12)

An alternative way to formulate problem 3.9 is to pose the system as least square minimization
of [

Afit√
λR

]
U =

[
Z
0

]
(3.13)

where R is a matrix of the set of the linear constraints related to a given regularization
operator. Then, the equivalent minimized quadratic energy problem on U is

min
U
∥AfitU− Z∥2 + λUT RT RU (3.14)

Minimizing the fitting linear constraints ∥AfitU− Z∥2 with respect to U, is equivalent to
minimizing the fitting energy Efit. However, to ensure equivalence for the regularization
parts the equality RT R = D must be guaranteed. Understanding the equivalent quadratic
energy formulation enables to link the set of regularization constraints to a specific quadratic
regularization energy in order to better interpret the effect of these constraints on the resulting
solutions of the minimization problem 3.13.

3.2 Discrete Smooth Interpolation methods
Discrete Smooth Interpolation (DSI) is a class of methods widely used in structural modeling,
that provides a generic framework for the interpolation of geological data. These methods
are based on the discretization of the domain of interest Ω using a mesh. In 2D problems,
triangular elements, while in 3D, tetrahedral elements are commonly employed (Irakarama
et al. (2022), Lévy and Mallet (1999)). Alternatively, grids can also be utilized for discretization
(Mallet (1989), Irakarama et al. (2021)). The implicit function is then expressed using a set of
basis functions constructed on the mesh. The basis functions choice is customary the classical
piecewise linear finite elements on simplices (Frank et al. (2007), Souche et al. (2014)). The
degrees of freedom are the values of the function at the vertices of the mesh.

∀x ∈ Ω, u(x) =
∑

i∈Nv

ϕvi(x)ui = Φ(x)U (3.15)

with Nv number of meh nodes, the vector Φ(x) = (ϕvi)i=1,Nv and ϕvi is the piecewise linear
Lagrange basis function associated to the node vi, such that ϕvi(vj) = δij for vertices vi, vj

and ui is the corresponding coefficient. Each data constraint u(xp, yp) = zp is discretized as

u(xp, zp) =
∑

i∈Nv

ϕvi(xp, yp)ui = Φ(xp, yp)U = zp (3.16)
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in the vector Φ(xp, yp) at maximum only 3 basis functions are not null, the three basis
functions related to the mesh nodes where the point is located. To obtain a solution which
best interpolates data, we solve in a least square sense the system 3.4 by minimizing

min
U
∥AfitU− Z∥2 (3.17)

The discretization of the geological data constraints in DSI methods is equivalent to the
minimization of the fitting energy in addition to regularization energies, that we are going to
describe.

3.2.1 DSI regularizations

The geological data are often sparse and irregularly distributed on the domain. Since the
interpolation is mesh-based, roughness factors (Mallet (1989)) are added to select a specific
set of solutions in the space of all functions. These roughness terms are discretized as well,
and assembled into a linear system that is added to the geological data constraints. The DSI
system is then expressed as

Efit(u) = ∥AfitU− Z∥2 + R(U) (3.18)

where R corresponds to the discretized roughness constraints, which is a quadratic term with
respect to U of the form R(U) = UT WU, with W a positive semidefinite matrix. The
previous energy is then minimized to find a solution satisfying the data fitting constraints, as
well as the roughness constraints. The DSI system is equivalent to the minimization problem
we considered in Eq. (3.9). The choice of roughness/regularization criteria in the DSI methods
does not follow a general rule. It is determined by the properties desired in the resulting
implicit function. Various roughness penalizations were considered in DSI methods. For
example in his pioneering work, Mallet (1989) considered a global roughness term R expressed
as a sum of a set criterions (Ri)i=1:5 involving, respectively, the minimization of first order
derivatives of the implicit functions with respect to x and y, as well as, the second order
derivatives with respect to xx, xy and yy over all the domain, respectively denoted, Ri, for
i = 1 : 5. The roughness criterions are positive semidefinite quadratic energies with respect to
the vector of unknowns U. The roughness criteria discretized over all the nodes as

R(u) =
∑

i=1:5
ciRi(u) = γ(R1(u) + R2(u)) + (1− γ)(R3(u) + R4(u) + R5(u)) (3.19)

where
Ri(u) =

∑
k∈Ki

µi(k)Ri(u | k) (3.20)

with ci are weights associated to each roughness criteria Ri and µi(k) are weights associated
to each node. The terms

Ri(u | k) = (
∑

α∈Ni(k)
vα

i (k)uα)2 (3.21)

can be written as
Ri(u | k) = uT

α [Wi(k)]uα (3.22)

vα
i (k) here are the coefficients associated to the unknowns related to the set Ni(k) of nodes

connected to the node k and N the total number of the nodes.
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As an example, we develop the matrix W3(k) associated to the roughness criteria R3(u | k)
for nodes on a grid. The operator ρ here, approximates the partial second derivative with
respect to xx at the node k using the difference finite scheme as

ρxx(u)(k) =
[
1 −2 1

] uk−1
uk

uk+1

 (3.23)

(ρxx(u)(k))2 =
[
uk−1 uk uk+1

]  1
−2
1

 [1 −2 1
] uk−1

uk

uk+1

 (3.24)

=
[
uk−1 uk uk+1

]
W

uk−1
uk

uk+1

 (3.25)

W3(k) is a sparse squared symmetric matrix of size (N, N), the entries [k−1 : k+1, k−1 : k+1]
of this matrix, are simply the elements of the matrix W of size (3, 3). Then the regularization
criterion is globally defined as

R3(u) =
∑

k∈Ki

µi(k)UT W3(k)U (3.26)

Mallet (1989) neglected the cross partial derivative to decrease the number of nonnull elements
in the resulting global linear system to solve, since it has little influence.

R(u) = γ(R1(u) + R2(u)) + (1− γ)(R3(u) + R4(u)) (3.27)

Lévy and Mallet (1999) considered a discrete squared Laplacian functional as fairness energy
for smoothing arbitrary meshes based on the DSI formulation, namely

F∆2(u) =
∫

Ω
µ(x)(∆u(x))2dx (3.28)

They proposed a simple discretization for this energy, based on the following insight

∆u(vk) ≃ 1
| D(k) |

∫
D(k)

div(∇u)dx (3.29)

≃ 1
| D(k) |

∫
∂D(k)

∇u(s) ·N(s)ds (3.30)

where D(k) is the domain of vertex of index k and | D(k) | denotes the area of D(k), see
Fig. 3.1. The vector N denotes the normal to the border ∂D(k) of D(k). By choosing the
linear piecewise finite elements for interpolation, the gradient is constant over each triangle
T (k, α1, α2). The length of the edge E(α1, α2) is denoted by | E(α1, α2) |. Then the integral
is transformed to the following sum

≃ 1
| D(k) |

∑
T (k,α1,α2)⊂D(k)

| E(α1, α2) | ∇u(T ) ·N(T ) (3.31)
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(a) (b)

Figure 3.1: Approximating the Laplacian on a triangulated surface, figures from Lévy and
Mallet (1999).

Let τ(α̂ | T ) denote the absolute value of the contangent of the angle at the vertex α in the
triangle T (see Fig. 3.1):

τ(α̂ | T ) =| cotg(α̂) | (3.32)

Then, the expression | E(α1, α2) | ∇u(T ) ·N(T ) can be rewritten as

| E(α1, α2) | ∇u(T ) ·N(T ) = u(α1)τ(α̂2 | T ) + u(α2)τ(α̂1 | T ) + u(vk)(−τ(α̂2 | T ) + τ(α̂1 | T )

The discrete Laplacian is then computed as

Du(vk) = 3√
| D(k) |

∑
α∈N(k)

vα(k)u(α) (3.33)

where, ∀α ∈ N(k)− k {
vα(vk) = 1

3τ(α̂R | TR) + τ(α̂L | TL) + Bα(vk)
vk(vk) = −∑α∈N(k)−k vα(vk) (3.34)

Bα(vk) is a coefficient for the vertices on the boundaries of the domain, see Lévy and Mallet
(1999) for more details. The functional Eq. (3.28), is then approximated using the discrete
Laplacian Eq. (3.33) as

FD2(u) =
∑
k∈Ω

µ(k)(Du(k))2 1
3 | D(k) | (3.35)

Irakarama et al. (2021) introduced a regularization operator based on the minimization of the
second derivatives forming the Hessian matrix, defined as

h(u)(x) =


χxx(u)(x)√
2χxy(u)(x)
χyy(u)(x)

(3.36)
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The operators χij approximates the partial second derivative ∂2

∂ij , using linear finite elements
on a tetrahedral mesh. The minimization problem to solve in a least square sense is[

Afit
H

]
U =

[
Z
0

]
(3.37)

where H corresponds to the discretized set of constraints related to the regularization operator
h.

H =

 Dxx√
2Dxy

Dyy

 (3.38)

Dij are the discretized constraints corresponding to the operator χij(u)(x). Then, solving Eq.
(3.36) is equivalent to solving the following linear system

(Afit
T Afit + HT H)U = Afit

T Z (3.39)

(Afit
T Afit +

[
DT

xx

√
2DT

xy DT
yy

]  Dxx√
2Dxy

Dyy

U = Afit
T Z (3.40)

(Afit
T Afit + DT

xxDxx + 2DT
xyDxy + DT

yyDyy)U = Afit
T Z (3.41)

This discretization considered here can be seen as equivalent to the discretization of the
Hessian energy on a uniform Cartesian grids. The partial second derivatives are approximated
using the finite difference operators and the integral is discretized simply by multiplying by
the cell surface/volume, see Renaudeau (2019).

3.2.2 Gradient based regularization

Several software and algorithms in geomodeling developed by and for the oil and gas industry
heavily rely on DSI methods. For example, Volume Based Modeling algorithm for the software
Petrel by Souche et al. (2014). In Volume Based Modeling (VBM) the domain is discretized
using a triangular mesh and the basis functions to represent the implicit function are the
classical linear finite elements. The choice of the regularization technique is based on the
assumption that the smoothest possible solutions are preferred. Two regularization operators
were used to obtain smooth resulting implicit functions: the constant gradient constraint
Frank et al. (2007) and the smooth gradient Souche et al. (2014).

Constant gradient constraints

The constant gradient constraint can be described as

ni · ∇u(t)− ni · ∇u(t′) = 0 ∀t ∈ T (Ω), ∀t′ ∈ N(t) (3.42)

T (Ω) is the set of mesh elements and N(t) is the set of adjacent elements to t, while ni is
the unit normal vector of the edge ei shared between t and t′. This constraint applied for
each triangle of the mesh, aims to minimize the discontinuities of the gradients on a triangle
and its neighbours. These discretized set of constraints are related to the discretization of the
Laplacian operator. Another advantage of the previous discretization is that enables to get
rid of the integration term on the boundaries, leading to a boundary free interpolation using
the Laplacian operator, see Irakarama et al. (2022) for more details.
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Smooth gradient regularizations

The smooth gradient constraint is expressed as

∇ut −
1
nb

∑
t′∈N(t)

∇ut′ = 0 (3.43)

where N(t) is the set of adjacent elements to the element t, nb is the number of the elements
in N(t). The basis functions are piecewise linear, the gradients are piecewise constant on each
triangle. The smooth gradient regularization constrains the gradient to be the average of the
neighbouring gradients in the two directions x and y, leading to smoother solutions.

For comparison between the resulting implicit functions using different regularization
techniques, we create models with different level of thickness variations. In Fig. 3.2 d, the
thickness variations are introduced in the data along the radial direction. The data points
along the rings have the same isovalue, and the three rings have 1, 2, 10 as values. In Fig.
3.2c, the data points are along five horizons, four of which are flat, while the middle has
curved shape resembling a bell. The horizons have as values −1, 0, 1, 2, 3, respectively, from
the bottom to the top. We consider in Fig. 3.2b only two rings and three horizons in Fig.
3.2a, for two reasons. First, the data points are positioned far from the boundaries which
encourages the natural boundary conditions to appear. Secondly, the thickness variations are
weaker than the cases in Fig. 3.2c,d. We refer to the models represented in Figs. 3.2a, b, c, d,
respectively, as Bell, Rings, Bell Hv and Rings Hv.



3.2 Discrete Smooth Interpolation methods 59

(a) (b)

(c) (d)

Figure 3.2: Resulting implicit functions using the smooth gradient regularization. (a) Bell
(λ = 1). (b) Rings (λ = 1). (c) Bell Hv (λ = 1). (d) Rings Hv (λ = 1).

Figs.3.2 shows the resulting implicit functions obtained using the smooth gradient regular-
ization on models with varying levels of thickness variations. Figs.3.2a, b, represent models
with moderate thickness variations, while Figs.3.2c, d, represents models with high thickness
variations. The resulting implicit function in Fig. 3.2b appears smooth and regular. This
smoothness is maintained until the boundaries, and the same trend of the data is preserved.
While, in Fig. 3.2a, the solution is regular but lacks smoothness due to the low refinement level
of the mesh used and the linearity of the interpolation basis functions. However the solutions
in Fig. 3.2c, d, exhibit oscillations and violates the regularity criteria. These oscillations arise
as a consequence of the high thickness variations present in the data.
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3.2.3 Mean value coordinates

Mean value coordinates Floater (2003) are a generalization of barycentric coordinates which
are used to express a value of a vertex in a planar triangulation as a convex combination of
values at neighbouring vertices. In barycentric coordinates, any point inside a triangle can be
expressed as a linear combination of the triangle vertices, where the weights are proportional
to the areas of the respective sub-triangles formed by the point and the triangle vertices. Mean
value coordinates extend this concept to k-sided polygons, and any vertex of the triangulation
can be expressed as convex combination of its neighbouring vertices. Mean value coordinates
and barycentric coordinates have applications in various fields, including computer graphics,
mesh parametrization, see Nieto and Susin (2013) for a survey. They provide a discrete
analog to the Laplacian differential operator within a triangulated domain based on the local
properties of the mesh. As example in Fig. 3.3 the vertex v0 inside the polygon formed by
the set of its k neighbouring vertices.

Figure 3.3: Star-shaped polygon (figure from Floater 2003)

Floater (2003) presented a set of positive coordinates λi verifying{∑k
i=1 λivi = v0∑k

i=1 λi = 1 (3.44)

λi = ωi∑k
j=1 ωj

, ωi = tan(αi−1/2) + tan(αi/2)
∥vi − v0∥

(3.45)

These weights were motivated by the approximation of solutions of the harmonic equation by
piecewise linear elements. A linear function u ∈ S0

1(T ) verifying u(v) = ∑k
i=1 λiu(vi) for all

the interior vertices of the triangulation, is approximating a harmonic function in Ω, which
means respecting the mean value property and the maximum principle at the boundaries, see
Floater (2003) for more details.

The mean value coordinates can be used to construct a regularization operator RMv ensuring
the mean value property of the implicit function (i.e. free from local extrema), that is expressed
as

RMv (u)(v) = u(v)−
k∑

i=1
λiu(vi) ∀v ∈ T (3.46)

expressing these constraints using the linear classical finite elements is straightforward, since
the degrees of freedom are the values of the implicit function on the nodes of the mesh. Let
Mv be a squared matrix of size (Nv, Nv), be the resulting linear system of RMv , with Nv the
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number of mesh vertices. Each row of Mv corresponds to the constraint 3.46, for a given
vertex v. However, for the vertices on the boundaries, we can not have a closed polygon.
A different linear constraint is added on all the vertices of the boundary, constraining the
function to be the average of the two neighbouring vertices on the boundary, weighted by the
length of their adjacent edges. For instance, the constraint on the vertex v7 in Fig. 3.4 is
expressed as

u(v7) = ∥v6 − v7∥
∥v6 − v1∥

u(v1) + ∥v1 − v7∥
∥v6 − v1∥

u(v6) (3.47)

Figure 3.4: Star-shaped polygon with vertices on the boundary of the domain. Red lines for
the edges on the boundary.

Then, the equivalent linear system to solve is

(Afit
T Afit + Mv)U = Afit

T Z (3.48)

In Fig. 3.5a, the solution is well defined on the boundaries, due to the presence of the two
horizons near the boundaries, at the bottom and the top. While, in Fig. 3.5b and c, the
function is exhibiting wild oscillations on the boundaries, because of the lack of data near the
boundaries. To uniquely determine the weights associated to each vertex of the interior, we
need to fix the values of the function on the boundaries. Then, the linear system solved is

(Afit
T Afit + Mv)U = Afit

T Z + B (3.49)

The right-hand vector B of size Nv is added to include the contributions of fixing the values of
the function on the boundaries as Dirichlet boundary conditions. However, in our context the
implicit function is not known on the boundaries. Instead, we suggest to fix the values of the
function on the boundaries, by setting it equal to a given regular function on the boundaries,
that is not necessarily fitting well the data. Then, we use the mean value coordinates, to
construct a regular solution fitting better data based on the fixed values on the boundaries.
Iteratively, we fix the last solution on the boundaries, and we solve the same system again to
improve the data fitting while ensuring the regularity of the function by using the mean value
coordinates.
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(a) (b)

(c)

Figure 3.5: Mean value coordinates for interpolation (Eq. 3.46). (a) Bell Hv. (b) Bell. (c)
Rings Hv.

The idea behind this method is to start with an initial guess that is regular and not
necessarily fitting well the data, as shown in Fig. 3.6a and Fig. 3.7a. Then, through an
iterative process, we update the values on the boundaries, based on the previous solutions.
Usually in few iterations we converge to a fixed point solution, that is fitting better data,
while maintaining the mean value property, see Figs. 3.6b and 3.7b.
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(a) (b)

Figure 3.6: Resulting implicit functions using the iterative process (Sect. 3.2.3). (a) Initial
solution . (b) Final solution.

(a) (b)

Figure 3.7: Resulting implicit functions using the iterative process (Sect. 3.2.3). (a) Initial
solution . (b) Final solution.

3.3 PS splines based regularization operators
Powell Sabin splines are piecewise quadratic basis functions, that are locally supported.
When used for interpolating sparse and irregularly distributed data, the problem to solve is
under-determined. A smoothness term is then introduced as regularization to select smooth
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solutions, in the solution space. In this section, we introduce a set of regularization operators
that are based on the PS-splines representation.

3.3.1 C2 continuity

DIERCKX et al. (1992) introduced the C2 continuity constraints for the PS-splines inspired
from the continuity constraints for tensor product splines. The idea is to obtain of a smooth
spline that respects the compromise between fitting data and presents minimal discontinuities
in its second derivatives. We consider two triangles Tb = T (P1R12Z) and Tc =T(P2ZR12)
sharing the edge ZR12, with (λ1, λ2, 0) the barycentric coordinates of the point Z in the
triangle T (P1P2Z). In Fig. 3.8, bijk and ci,j,k are the coefficients of the implicit function in
the Bézier basis of degree 2, respectively on, Tb and Tc. Then, the continuity constraints on
the implicit function across the edge ZR12, see Fig. 3.8, can be written as:

C0 continuity: c002 = b002, c011 = b011, c022 = b020 (3.50)
C1 continuity: λ1(b101 − b011) + λ2(c101 − c011) = 0 (3.51)

λ1(b110 − b020) + λ2(c110 − c020) = 0 (3.52)
C2 continuity: λ2

1(b200 − 2b110 + b020)− λ2
2(c200 − 2c110 + c020) = 0 (3.53)

Figure 3.8: Bézier coefficients on two Bézier triangles (Tb, Tc) sharing the edge (ZR12).

The conditions Eq. (3.50), Eq. (3.51) and Eq. (3.52) are verified by construction for the
implicit function defined using the PS-splines. The C2 continuity condition Eq. (3.53) is
not necessarily verified since PS-splines are only C1. Adding this constraint will ensure C2

continuity across the edge ZR12. For the triangles of the original mesh sharing an intern
edge, the C2 continuity condition is written using the Bézier coefficients located on the line
joining the centers of the two triangles T (P1P2P3) and T (P2P4P3). In Fig. 3.9, the two
triangles T(P4P3P2) and T (P1P2P3) share the edge (P3P2). R32 is the intersection point
of the edge P3P2 and the line joining the centers of the triangles. The Bézier coefficients
located at the centers are w1 and w2, m at R32, θ1 and θ2 at the middle points of R32 and the
triangles centers, while (λ′

1, λ
′
2, 0) are the barycentric coordinates with respect to the triangle

T(w1, w2, P3). Then the C2 continuity condition across the edge (P3P2) can be written as:

λ
′2
1 (w1 − 2θ1 + m)− λ

′2
2 (w2 − 2θ2 + m) = 0 (3.54)
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Figure 3.9: Bézier coefficients on two macro triangles sharing the edge (P2P3).

To ensure C2 continuity, we write Eq. (3.53) across all the edges of the triangulation
and Eq. (3.54) across intern edges of the triangulation which are shared by two triangles.
These equations are assembled in a matrix R2 of the size (n,Ns), where Ns is the dimension
of the Powell-Sabin splines space and n = ebd + 2ei, such that ebd is the number of edges
on the boundaries of the domain and ei is the number of the interior edges. Likewise DSI
methods where the fitting constraints are discretized on a discrete domain, and assembled into
a least-squares system of linear equations supplemented with a smoothing regularization, R2
smoothing operator can be added to the fitting constraints and to solve a linear least-square
system to find a smooth solution fitting data. Let ω be a coefficient controlling the tradeoff
between the fitting constraints and the smoothing effect of the C2 continuity regularization.

The C2 smoothing regularization depends on the PS-splines basis functions representation
unlike the Hessian or the Dirichlet energy that can be expressed independently of the choice
of the basis functions. It tends to constrain the spline function to be C2 while it is only C1

by construction.
The C2 continuity regularization produces smooth and regular solution in Fig. 3.10b. While,

in Fig. 3.10a, the solution appears flat because it minimizes the curvature, but fails to be
regular near the boundaries. However the solutions in Fig. 3.10c, d, are smooth but exhibit
oscillations and violates the regularity criteria.
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(a) (b)

(c) (d)

Figure 3.10: Resulting implicit functions using the C2 continuity regularization. (a) Bell
(λ = 1). (b) Rings (λ = 1). (c) Bell Hv (λ = 1). (d) Rings Hv (λ = 1).

3.3.2 Null second derivatives

PS-splines are piecewise quadratic splines with C1 continuity. Therefore, the second partial
derivatives are piecewise constant and non continuous per subtriangle of the PS refinement.
We introduce a regularization operator similar to the regularization operator of Irakarama et al.
(2022) based on the minimization of the components of the Hessian matrix independently.

R(u)(x) =


uxx = 0√
2uxy = 0
uyy = 0

(3.55)
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Figure 3.11: Piecewise constant second derivatives of PS-splines

A major advantage of the use of the PS-splines is the straightforward discretization of
second order partial derivatives. To discretize Eq. 3.55, we constrain each subtriangle to have
null second partial derivatives in the three directions xx, xy and yy. The same constraints
are applied on all the subtriangles of the PS refinement, giving a linear system D of the size
3× nt × 6, with nt the number of the mesh elements.[

Afit
λD

]
U =

[
Z
0

]
(3.56)

By searching for a solution in a least square sense of the fitting constraints supplemented with
the discretized regularization operator D, we look for a solution fitting data while having
minimal second derivatives. The coefficient λ controls the tradeoff between the two constraints.
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(a) (b)

(c) (d)

Figure 3.12: Resulting implicit functions using the null second derivative regularization. (a)
Bell (λ = 1). (b) Rings (λ = 1). (c) Bell Hv (λ = 1). (d) Rings Hv (λ = 1).

The null second derivatives regularization successfully produces smooth and regular solutions
in Fig. 3.12a, b. While in Fig. 3.12c, d, the solutions are indeed smooth, but they exhibit
oscillations and do not respect the regularity criteria.
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3.3.3 Mean value constraint on second derivatives

Figure 3.13: Set of subtriangles N(t) =(t1, t2, t3) sharing an edge with the subtriangle t

R(u)(x) =


uxx,t − 1

nb

∑
t′∈N(t) uxx,t′ = 0

uxy,t − 1
nb

∑
t′∈N(t) uxy,t′ = 0

uyy,t − 1
nb

∑
t′∈N(t) uyy,t′ = 0

(3.57)

The partial second derivatives of the implicit function u on each subtriangle t is constrained
to be the average of the second derivatives of the neighbouring subtriangles in all directions.
These constraints attempts to minimize the discontinuities in the second derivatives, pushing
the second derivatives to vary smoothly across subtriangles. To discretize 3.57, we constrain
the second order partial derivatives in the three directions xx, xy and yy, on each subtriangle
to be the average of the second order partial derivatives of the neighbouring subtriangles.
The same constraints are applied on all the subtriangles of the PS refinement, giving a linear
system Mv of the size 3× nt × 6, with nt the number of the mesh elements.[

Afit
λMv

]
U =

[
Z
0

]
(3.58)

By searching for a solution in a least square sense of the fitting constraints supplemented with
the discretized regularization operator Mv, we look for a solution fitting data while having
smooth second derivatives. The coefficient λ controls the tradeoff between the two constraints.
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(a) (b)

(c) (d)

Figure 3.14: Resulting implicit functions using the mean value constraint on the second
derivatives. (a) Bell (λ = 1). (b) Rings (λ = 1). (c) Bell Hv (λ = 1). (d) Rings
Hv (λ = 1).

The regularization method imposing mean value constraints on the second derivatives,
generates smooth and regular solutions in Fig. 3.14b. However, in Fig. 3.12a, the solution is
failing to be maintain regularity in the region under the dome. Meanwhile, in Fig. 3.14c, d,
the solutions are smooth but present wild oscillations. For instance, in the center of the rings,
the value of the function is greater than two, while it should be inferior to one.
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3.3.4 Mean value coordinates on PS-splines gradients

The mean value coordinates are based on approximating the Laplace operator by piecewise
linear functions. Whereas, for other discretizations, such as PS-splines, which are piecewise
quadratic polynomials, constraining a quadratic basis functions using discrete constraints
derived for linear piecewise finite elements might fail to produce smooth solutions and do not
allow to take advantage of the smoothness properties of these splines. On the other hand, the
first order derivatives of PS-splines are linear and piecewise continuous. Therefore, we can
apply the mean value coordinates constraints on the first order derivatives with respect to x
and y. Then, the fitting constraints discretized using the PS-splines and supplemented with
the regularization operator on the first order derivatives with respect to x and y, are solved
in a least square sense to find a solution fitting the data points, while ensuring smoothness
via the minimization of the first order derivatives.

3.4 Harmonic functions and Dirichlet energy
Harmonic functions are solutions of the standard Laplace equation

∆u = 0 (3.59)

which describes the stationary state of the heat diffusion phenomenon. They benefit from
interesting properties, including maximum principle and mean value, which are desirable in
our problem. A harmonic function interpolating geological data, will vary between consecutive
horizons without any local extrema. The maximum principle at the boundaries guarantees
that the maximum of the implicit function is at the boundaries, data points along horizons can
be seen as Dirichlet boundary conditions. For example, between two horizons the maximum
are reached on the horizons. While the mean value ensures that between consecutive horizons,
the function is free from local extrema. The weak form of Laplace equation, using integration
by parts is∫

Ω
∆uv ds = 0⇔

∫
Ω
∇u · ∇v ds−

∫
∂Ω

(∇u · n)v dx = 0 ∀v ∈ H1(Ω) (3.60)

where n is the unit normal vector to the boundaries ∂Ω. The Neumann boundary condition,
∇u ·n = g(x), specifies the normal derivative of u on the boundaries. It is also called a natural
boundary condition. The Dirichlet energy of a function u ∈ H1(Ω) is defined as

E∇2(u) = 1
2

∫
Ω
∥∇u∥2 dΩ−

∫
∂Ω

g(x)udx (3.61)

We define the set
H1

n(Ω) = {u ∈ H1(Ω) | ∇u · n = g(x) on ∂Ω} (3.62)

Proposition 3.4.1. A function u minimizing the Dirichlet energy over H1(Ω) Eq. (3.61), is
a solution of the Laplace equation subject to ∇u · n = g(x).
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Proof. Consider u a minimizer of Eq. (3.61) over H1(Ω), we choose v ∈ H1(Ω), we write
i(h) = E∇2(u + hv) with h ∈ R, thus

i(h) = 1
2

∫
Ω
∥∇u + h∇v∥2 dΩ−

∫
∂Ω

g(x)(u + hv)dx

=
∫

Ω

1
2 ∥∇u∥2 + h∇u · ∇v + h2

2 ∥∇v∥2) dΩ−
∫

∂Ω
g(x)(u + hv)dx

Since u minimizes E∇2 over H1(Ω), and u + hv ∈ H1(Ω)

0 = i′(0) =
∫

Ω
∇u · ∇v dΩ−

∫
∂Ω

g(x)vdx (3.63)

This is exactly the weak formulation Eq. (3.60), with ∇u · n = g(x).

The Dirichlet energy is commonly used as smoothness energy in geometry processing. For
examples, Alliez et al. (2007) introduced an anisotropic discrete Dirichlet energy for surface
reconstruction. Pinkall and Polthier (1993) used the Dirichlet energy to compute discrete
minimal surfaces. In our case, the Dirichlet energy is introduced as regularization energy in
the Implicit modeling problem as

min
u

Efit(u) + λE∇2(u) (3.64)

The resulting solutions of the minimization problem Eq. (3.64) are fitting the data and
benefiting of the regularity properties of the Dirichlet energy. The penalization of the gradient
via the minimization of the L2 norm of the gradient of the function all over the domain, filters
solutions presenting wild variations. Additionally, the Dirichlet energy is also related to the
minimization of the area, producing a minimal surface interpolating the data, see Courant
(1977).

In Figs. 3.15, we consider the Dirichlet energy as regularization, specifying as Neumann
boundary condition g(x) = 0. The resulting implicit functions are maintaining the regularity
criteria between the horizons, even in the cases with high thickness variations in Fig. 3.15. It
can be attributed to the properties of the harmonic functions, such as mean value property
and the strong maximum principle. However, they lack smoothness, and along the boundaries
strong artifacts are observed. When minimizing the Dirichlet energy Eq. (3.61) over all
the space H1(Ω), the natural boundary condition that emerges is the vanishing Neumann
boundary condition, . It implicitly imposes that the normal component on the boundaries
of the gradient of the implicit function vanishes, which leads to contours of the function
terminating perpendicular to the boundary. These conditions introduce a strong bias in
the solutions near the boundaries. In the model Fig. 3.15b, the solution is constant on
the boundaries, while a solution keeping the same circular trend of the data is preferred.
This undesired effect makes the use of Dirichlet energy with vanishing Neumann boundary
condition unsuitable for our application.
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(a) (b)

Figure 3.15: Resulting implicit functions using the Dirichlet energy as a regularization. (a)
Bell Hv (λ = 1). (b) Rings Hv (λ = 1).

Optimizing the Dirichlet energy over H1(Ω) in 1D is simply
∫

Ω(u′)2dx. The resulting
function in Fig. 3.16, tends to be linear between the data points to fit, since the functional
is based on minimizing the first order derivative. Far from the data points and near the
boundaries, the function is constant, which means that the first derivative is null, thus the
function is constant. This condition is aligned with the minimization objectives. The behaviour
that exhibits the 1D solution is repeated in the 2D example in Fig. 3.15a, which can be seen
simply as translation of this solution on the points in 2D along the horizons.

(a)

Figure 3.16: 1D interpolation using Dirichlet energy.
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3.5 Natural boundary conditions
Natural boundary conditions, also known as implicit boundary conditions, are the conditions
that emerge when minimizing a regularization energy over the space of all functions (i.e without
specifying boundary conditions). These implicit boundary conditions arise from the properties
of the regularization term considered and the functional space in which the minimization
problem is solved. For example, regularization terms based on differential equations, might
encourage smoothness or impose constraints on the derivatives of the function. This can lead
to natural boundary conditions that enforce smoothness or other properties at the boundaries
of the domain. In some cases, these properties might align with the desired properties along
the boundaries, leading to an appropriate behaviour, and sometimes might not, leading to
undesired artifacts. Therefore, it is crucial to be aware of the potential effects and ensure
that the implicit boundary conditions enforced by the regularization align with the regularity
criteria introduced beforehand.

3.6 Laplacian energy
The Laplacian is a well-known smoothness energy, that is related to the Biharmonic equation.
It involves high order partial derivatives. The Laplacian energy is widely used in geometry
processing, data interpolation and mesh fairing. For examples, Jacobson et al. (2011) computes
weights for interpolating geometric data using the Laplacian energy subject to bounds
constraints. Alliez et al. (2007) uses it for surface construction from a set of data points, by
optimizing the anisotropic Dirichlet energy subject to the minimization of the Bilaplacian
operator. The Laplacian energy is defined as

E∆2(u) = 1
2

∫
Ω

(∆u)2 dΩ = 1
2

∫
Ω

(uxx + uyy)2 dΩ (3.65)

The Biharmonic equation is
∆2u = 0 (3.66)

Proposition 3.6.1. Minimizers of the Laplacian energy over H2(Ω) are solutions of the
Biharmonic equation.

Proof. To deduce the weak form of the biharmonic equation, we integrate by parts∫
Ω

∆2uv dΩ =
∫

Ω
div(∇(∆u))v dΩ ∀v ∈ H2(Ω) (3.67)

=
∫

Ω
∇(∆u) · ∇v dΩ−

∫
∂Ω

(∇(∆u) · n)vdx ∀v ∈ H2(Ω) (3.68)

Using integration by parts∫
Ω

∆u∆v dΩ =
∫

Ω
∆v∆u dΩ =

∫
Ω
∇v · ∇(∆u) dΩ−

∫
∂Ω

(∇v · n) ∆u dx (3.69)

we deduce that ∫
Ω
∇v · ∇(∆u) dΩ =

∫
Ω

∆u∆v dΩ +
∫

∂Ω
(∇v · n) ∆u dx (3.70)
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We substitute the previous term in Eq. (3.68) to obtain the weak form∫
Ω

∆2uv dΩ =
∫

Ω
∆u∆v dΩ +

∫
∂Ω

∆u (∇v · n)− (∇(∆u) · n)v dx ∀v ∈ H2(Ω) (3.71)

Now, consider u a minimizer of Eq. (3.65) over H2(Ω), we choose v ∈ H2(Ω), we write
i(h) = E∆2(u + hv) with h ∈ R, thus

i(h) = 1
2

∫
Ω

(∆u + h∆v)2 dΩ

=
∫

Ω

1
2(∆u)2 + h∆u∆v + h2

2 (∆v)2 dΩ

Since u minimizes E∆2 over H2(Ω), and u + hv ∈ H2(Ω)

0 = i′(0) =
∫

Ω
∆u∆v dΩ (3.72)

This becomes ∫
Ω
∇v · ∇(∆u) dΩ−

∫
∂Ω

(∇v · n) ∆u dx = 0 ∀v ∈ H2(Ω) (3.73)

This equality is holding for any choice of v. Thus, ∆2u = 0 in Ω, which ends the proof of the
proposition.

Furthermore, the natural boundary conditions emerging when minimizing the Laplacian
energy are (Stein (2020), Courant (1977)){

∇(∆u) · n = 0
∆u = 0 (3.74)

In Fig. 3.17a, b, a boundary artifact appears along the boundaries, which is due to the natural
boundary conditions of the Laplacian energy. Solutions of the Laplacian energy satisfy on the
boundaries the condition ∆u = 0, which is not enough restrictive and introduce a lot of noise,
since many noisy harmonic functions satisfy ∆u = 0 on the boundary. On the other hand,
the solutions of the Laplacian energy, are smooth since they are solutions of the Biharmonic
equation in the interior of the domain. However, in the cases of high thickness variations in
Fig. 3.17c, d, these solutions present oscillations and do not respect the regularity criteria.
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(a) (b)

(c) (d)

Figure 3.17: Resulting implicit function using Laplacian energy as regularization energy. (a)
Bell. (b) Rings. (c) Bell Hv. (d) Rings Hv.

3.7 Hessian energy
The Hessian energy also called squared Hessian (Stein et al. 2018), roughness, bending
or thin-plate energy, depending on the field of application, is a well-known regularization
technique in data smoothing, image processing and many other engineering fields. Renaudeau
(2019) considered the Hessian energy as regularization energy for the implicit modeling
problem Eq. (3.9). The assumption made is that the regularity criteria is smoothness. It is a
smoothing energy based on the minimization over all the domain Ω of the squared partial
second derivatives entries of the Hessian matrix, Hu ∈ Rd×d. Moreover, we have the following
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result for minimizers of the Hessian energy, see Stein et al. (2018).

EH2(u) =
∫

Ω
∥Hu∥2F =

∫
Ω

(u2
xx + 2u2

xy + u2
yy) dΩ (3.75)

Proposition 3.7.1. Minimizers of the Hessian energy are solutions of the biharmonic
equation.

Proof. Let u be a minimizer

EH2(u) = 1
2

∫
Ω

Hu : Hu dΩ (3.76)

where X : Y = tr(XT Y ) is the Frobenius inner product which generates the Frobenius norm
X : X = ∥X∥F . Then, for every smooth variation u + hv with h > 0, one takes the derivative
with respect to h and evaluates at h = 0. This gives

EH2(u + hv) = 1
2

∫
Ω

Hu+hv : Hu+hv dΩ (3.77)

= 1
2

∫
Ω

(Hu + hHv) : (Hu + hHv) dΩ (3.78)

∂

∂h
(1
2

∫
Ω

(Hu + hHv) : (Hu + hHv) dΩ) = 1
2

∫
Ω

2(Hu : Hv) + 2h(Hv : Hv) dΩ (3.79)

By setting h = 0, we get ∫
Ω

Hu : Hv dΩ = 0 (3.80)

Now, we show that the minimizer u verify the weak form of the biharmonic equation for every
v. Starting from ∫

Ω
(∆u)v dΩ = −

∫
Ω
∇u · ∇v dΩ +

∫
∂Ω

(∇u · n)v dx (3.81)

Then, by replacing u and v by ∇uT and ∇vT in Eq. (3.81):∫
Ω
∇∆u · ∇v dΩ = −

∫
Ω

Hu : Hv dΩ +
∫

∂Ω
(Hu · n) · ∇v dx (3.82)

Replacing u by ∆u in Eq. (3.81):∫
Ω

(∆2u)v dΩ = −
∫

Ω
∇∆u · ∇v dΩ +

∫
∂Ω

(∇∆u · n)v dx (3.83)

From Eq. (3.82) and Eq. (3.83) we get∫
Ω

(∆2u)v dΩ =
∫

Ω
Hu : Hv dΩ−

∫
∂Ω

(Hu · n) · ∇v dx +
∫

∂Ω
(∇∆u · n)v dx (3.84)

∫
Ω

(∆2u)v dΩ +
∫

∂Ω
(Hu · n) · ∇v dx−

∫
∂Ω

(∇∆u · n)v dx =
∫

Ω
Hu : Hv dΩ (3.85)

Now, using Eq. (3.80), we have that u is a solution of the biharmonic equation regardless of
the boundary conditions

∆2u = 0 in Ω (3.86)
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Furthermore, Stein et al. (2018) showed that the natural boundary conditions are{
nT Hun = 0 on ∂Ω

∇∆u · n +∇(tT Hun) = 0 on ∂Ω (3.87)

They present higher smoothness and satisfy on the boundaries, a specific natural boundary
condition, studied and analyzed by Stein et al. (2018), forcing the function to be only linear
in the normal direction to the boundaries. This behaviour is interesting in our application,
since no explicit boundary condition is available.
Solutions of the Hessian energy minimization are solutions of the Biharmonic equation in the
interior and satisfy a specific natural boundary conditions that encourages the function to be
linear in the normal direction. Fig. 3.18b illustrates the natural behaviour of the function
near boundaries, keeping the same trend of the data and free from boundary artifact. In the
cases of high thickness variations in Figs. 3.18c, d, the solutions are smooth, but present
oscillations.
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(a) (b)

(c) (d)

Figure 3.18: Resulting implicit functions using the Hessian energy. (a) Bell (λ = 1). (b) Rings
(λ = 1). (c) Bell Hv (λ = 1). (d) Rings Hv (λ = 1).

To solve the Bilaplacian in 1D, let us first derive the weak formulation∫
Ω

u′′′′(x)vdx = 0 (3.88)∫
Ω

u′′′(x)v′dx− [u′′′(x)v(x)] = 0 (3.89)∫
Ω

u′′(x)v′′dx− [u′′v′(x)] + [u′′′(x)v(x)] = 0 (3.90)

Then, the natural boundary conditions in 1D are on the two extremities of the domain:

u′′(e) = u′′′(e) = 0 (3.91)
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On the other hand, in 1D the Hessian energy and the Laplacian energy are identical, and
expressed as

min
u

∫
Ω

(u′′)2 dΩ (3.92)

if u is a minimizer then is a minimizer for all smooth variation u + hv with h > 0. Then one
takes the derivative with respect to h and evaluates at h = 0. This gives

∂

∂h
(1
2

∫
Ω

(u′′ + hv′′)2 dΩ) = ∂

∂h

∫
Ω

(u′′ + hv′′)v′′ dΩ (3.93)

By setting h = 0 in Eq. (3.93), we obtain∫
Ω

u′′v′′ dΩ (3.94)

which means that u is a solution of u′′′′(x) = 0. The resulting function (Fig. 3.19) tends
to be linear between the data points to fit, since the functional is based on minimizing the
second order derivatives. Far from the data points and near from the boundaries, the function
is linear, which means that the second derivative is null. The behaviour that exhibits the
1D solution far from the boundaries, is aligned with the natural boundary conditions of the
Hessian energy, that implicitly implies that second order derivative is null.

(a)

Figure 3.19: 1D interpolation using the Hessian energy

3.7.1 Adapted Hessian smoothing

In the pioneering works of (Mallet 1989, Lévy and Mallet 1999), the roughness criterions are
associated with a weight that is expressed as a function varying over the domain, to control
the importance of smoothing of certain zones. However, the use of a uniform weighting was
suggested, by setting setting the value of the weighting function equal to 1 throughout the
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domain. Another choice, is to consider a positive weight, expressed as the squares of the
discrepancies between the value of the function on each node and the mean value of the
neighbors, see Mallet (1992) for more details. Renaudeau (2019) introduced the Weighted
Curvature Minimization (WCM), that locally adaptes the minimization of the Hessian energy,
by weighting the smoothing differently in space using a function λ(r), with r the distance of
data points.

1
2

∫
Ω

λ(r) ∥Hu∥2F dΩ (3.95)

The idea behind this method is to heavily penalize the curvature of the function far from
data, and allow high curvature near the data points. A more general form of this energy can
be obtained by setting the weighting function λ as a piecewise smooth function, that can
be expressed using the same basis functions space, where the function u is represented, see
Merchel et al. (2023). The concept is to apply different curvature penalization in the domain,
to preserve some sharp features present in the data. Lenz et al. (2022) introduced a positive
weight function, to smooth out only the control points that are poorly constrained. However,
the formulation Eq. (3.95) is only isotropic since only the intensity of smoothing is modulated
(i.e. the same smoothing intensity applied to all directions). Renaudeau (2019) also introduced
a minimization of the Hessian energy in a certain anisotropy direction d, expressed as

1
2

∫
Ω

λd(dT Hud)2 dΩ (3.96)

The aim of minimizing this term is to adapt the penalization of the curvature in the anisotropy
direction. This vector can change direction, which enables to locally adapt the direction of
the penalization to address the problem of thickness variations.

The previous methods add several extra parameters to the modeling problem. These
parameters includes an additional weight function that determines how the smoothing weight
varies, and the range of its influence around data points, se Renaudeau (2019). Additionally, it
necessitates a refined discretization to ensure the weighting function produces the desired effect
on the resulting implicit function. On the other hand, despite the benefits and improvements
that the additional parameters might offer, there is a challenge in determining the weighting
function. Currently, there is no automated or standardized approach to compute these
weighting functions. For more details, see Renaudeau (2019) and Martin and Boisvert (2017).

To illustrate the opportunities that promises the adaptative smoothing, we introduce an
extra term minimizing the Hessian energy in the main direction of anisotropy in this model,
in the y-diretion.

EReg(u) =
∫

Ω
(∥Hu∥2F + 10(eT

y Huey)2) dΩ (3.97)

In Fig. 3.20a, the penalization of the curvature in the y-direction, produces a solution
that presents a different behaviour compared to the isotropic Hessian energy 3.18a. The
implicit function presents more regularity in the distances between consecutives isovalues,
along the y-direction. This example illustrates the opportunities to produce smoother solutions
with higher regularity, that are adapted to the geometry of the data, while maintaining the
regularity criteria.
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(a) (b)

Figure 3.20: Resulting implicit functions using the adapted Hessian energy (Eq .3.97) as
regularization. (a) Bell (λ = 1). (b) Bell Hv (λ = 1).

3.8 Weak formulation associated to the implicit structural
modeling problem

To find the weak form associated to the energy minimzation problem we presented beforehand,
see Eq. 3.9. We derive the weak form associated to the fitting energy and the regularization
energy.

ϕ(h) = Efit(u + hv) =
Np∑
p=1

η2
p((u + hv)(xp, yp)− zp)2 (3.98)

If u is a minimizer, the function ϕ must have a minimum at 0. Then

ϕ′(0) = ∂Efit(u + hv)
∂h

|h=0=
Np∑
p=1

η2
pv(xp, yp)(u(xp, yp)− zp) (3.99)

Let consider the case where the regularization term is the Dirichlet energy

EReg(u) = 1
2

∫
Ω
∥∇u∥2 dΩ (3.100)

Similarly to Eq. (3.99), the weak form of the Dirichlet energy is

∂EReg(u + hv)
∂h

|h=0=
∫

Ω
∇u · ∇v dΩ (3.101)

Thus the weak form of the minimization problem Eq. (3.9) is

λ

∫
Ω
∇u · ∇v dΩ +

Np∑
p=1

η2
pu(xp, yp)v(xp, yp) =

Np∑
p=1

η2
pzpv(xp, yp) ∀v ∈ H1(Ω) (3.102)
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The obtained weak form is a sum of discrete and continuous operator. If we consider that we
have high density of data points to interpolate, likewise image smoothing where the input is a
noisy image known all over the domain, we can replace the sums with integrals. Thus, we can
rewrite Eq. (3.102) as

λ

∫
Ω
∇u · ∇v dΩ +

∫
Ω

η2
pu(xp, yp)v(xp, yp) =

∫
Ω

η2
pzpv(xp, yp) (3.103)

This weak formulation can be linked to the following Diffusion-reaction equation

λ∆u + αu = f (3.104)

subject to ∇u · n = 0 on ∂Ω, and α is positive coefficient. The solution of this minimization
problem depends on the weight of the regularization considered. When the regularization
weight is high, the solutions tends to be solutions of the Diffusion equation. Conversely, when
the regularization weight is weak, the solutions are determined mainly by the fitting energy.

3.9 Different discretizations of the Hessian energy
The solutions of the minimization problem 3.9 are mainly determined by the choice of the
regularization, rather than the discretization method used. As shown in Fig. 3.21a, a solution
using Thin-plate splines subject to the minimization of the Hessian energy, exhibits oscillations
similar to the solutions of the minimization of the Hessian energy, using different discretizations.
In Fig. 3.21b, linear piecewise P1 finite elements on a triangular mesh, are used to represent
the implicit function, and to discretize the Hessian energy using a mixed finite element method
(Stein et al. (2022)). We observe that using different discretizations, solutions of the Hessian
energy are exhibiting similar oscillatory behaviour, especially on the models presenting high
thickness variations.

(a) (b)

Figure 3.21: Resulting implicit functions using the Hessian energy as regularization with
different discretizations. (a) Thin-plate splines. (b) P 1 piecewise linear elements.
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3.10 Conclusions
We presented in this chapter a set of regularization techniques that are widely used in the
field of implicit structural modeling specifically, and in the fields of computer graphics, shape
modeling and surface reconstruction, where obtaining smooth solutions is important. We can
distinguish two main classes in these regularization techniques. First, techniques based on
expressing the set of regularization constraints as linear constraints on the degrees of freedom
associated to the basis functions where the implicit function is represented. For instance,
the smooth gradient constraint or the mean value constraint on second derivatives. In the
case of the smooth gradient constraint, the basis functions are linear, and the gradients are
constant piecewise. Then we apply a mean value constraint on the gradient to obtain smoother
solutions. Similarly, the second derivatives of the PS-splines are piecewise constant, and a
mean value on the second derivatives is applied to obtain solutions with higher smoothness.
These techniques are specific to these representations and might not be adapted to other
discretizations.

The second class of regularization methods, includes methods that are independent of the
basis functions used to represent the implicit function. For instance, regularization energies
such as Dirichlet energy, Laplacian energy or Hessian energy. These methods involve the
minimization of a functional expressed as an integral of the partial order derivatives of the
implicit function over the domain.

The formulation of the regularization constraints as a regularization energy of the second
class presents many advantages. First, it is easier to link it with known PDE. Finding the
PDE related to the energy minimization, will enable to characterize the behaviour of its
solutions, in the interior, to describe the order of smoothness of the resulting solutions, as well
as the behaviour near the boundaries, by determining the type of natural boundary conditions
implicitly assumed. When we consider a technique based on the basis representation in
which the implicit function is expressed, it is not obvious, to analyze the equivalent energy
minimization problem, and which PDE it relates to. For instance, using the mean value on the
second derivatives on PS-splines, enables to obtain smooth solutions, but it is not clear which
conventional smoothing energy it is equivalent to and what implicit boundary conditions are
implicitly applied.

The existing regularization techniques can fail to reproduce geologically coherent solution
in models presenting high thickness variations. In the models Fig. 3.18c, d, strong oscillations
were observed in the resulting implicit functions, often called bubble effect. High order
smoothing techniques produces solutions presenting stronger oscillations. The assumption
of smoothness and isotropy is not adapted to the anisotropy present in data. Therefore, the
formulation of a new regularization technique is necessary in order to achieve solutions that
respects all the regularity criteria desired, see Sect.1.8.1.
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Chapter 4
New formulations of the
regularization
PDEs with spatially varying coefficients are powerful mathematical tools used to describe a
wide range of phenomena in various fields of science and engineering. For instance, in heat
conduction problems involving heterogeneous composite materials, the thermal conductivity
may vary spatially. This variation influences how heat is conducted within the material,
and it is essential to accurately model these variations to design energy-efficient systems.
In aerospace engineering, anisotropic composite materials are extensively used in various
components, including aircraft wings, spacecraft components, and satellite structures. The
continuous advancement of composite materials and manufacturing processes continues to push
the boundaries of aerospace design and performance, leading to more efficient, lighter, and
stronger aerospace vehicles. In all these applications, the use of spatially varying coefficients
in PDEs allows for a more accurate and realistic representation of the underlying physical
processes. This, in turn, motivated our interest for this class of PDEs. In this chapter we
present two novel formulations of the regularization energy. First, we present our formulation
of the regularization based on the nonlinear anisotropic diffusion with an iterative scheme in
which the diffusion tensor is iteratively adapted to the variations and the anisotropy of data.
Second, we introduce a new regularization energy based on the bending energy of anisotropic
thin plates.

4.1 Diffusion equation
A PDE is a matheamtical equation that involves partial derivatives of an unknown function
with respect to multiple independent variables. It describes how the function and its derivatives
are related. In this section, we study the steady diffusion equation, that refers to a state
in which the diffusion process remains constant with respect to time. In other words, the
derivative with respect of time is null. It is a 2nd order linear elliptic equation of the form

div(C∇u) = f(x) in Ω
u = d on ∂Ω

C∇u · n = g on ∂Ω
(4.1)

here C(x) : Ω −→ Rd×d is a symmetric diffusion tensor field, and d is the dimension of Ω.
While f(x) : Ω −→ R is the source term. The Dirichlet and Neumann boundary conditions,
are respectively, d(x) : ∂Ω −→ R and g(x) : ∂Ω −→ R. The boundary condition d(x) specifies
the values of the function, and g(x) instead specify derivatives (e.g. heat flow through the
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boundary). The Dirichlet boundary condition is often called essential boundary conditions,
while Neumann boundary condition is called a natural boundary condition (Cheng and Cheng
2005). The source term f(x) can represent various physical phenomena depending on the
specific application. In electrostatics, for instance, it represents the charge density distribution.
In heat diffusion, it represents the heat source. For C(x) = Id, Eq. (4.1) reduces to the
Poisson equation that has the form

∆u = f (4.2)

subject to Dirichlet or Neumann boundary conditions.

4.1.1 Smoothing the solutions of the Diffusion equation

In his pioneering work, Mallet (1989) introduced as regularization, a functional expressed
using finite differences scheme, involving the minimization of the first order partial derivatives
as well as the second partial derivatives. This choice of regularization, was motivated by the
fact that the layers are generally horizontal (i.e. flat), which corresponds to minimal first
order partial derivatives. The minimal second derivatives can be linked to the hypothesis that
the layers were deformed under the action of geological stresses, and that the shearing stresses
are related to second order derivatives. We will establish a clear link between the Hessian
smoothing energy and the potential energy of a bended thin plate in Sect. 4.5

In surface reconstruction from point cloud, which are not oriented. Alliez et al. (2007),
considered the biharmonic energy as smoothness term in this fitting problem. By incorporating
this term, the aim is to add extra regularity to the solutions. It can be seen as measure of
the smoothness of the gradients. Thus, it enhances the regularity of the gradients, leading
to smoother solutions. Calakli and Taubin (2011) instead added the Hessian energy as
smoothness term, to obtain a smooth distance function, that is interpolating the values and
the gradients of a function on a set of data points.

Barrera et al. (2008) presented a method to construct a surface approximating a set of
Lagrangian data (i.e known values of the function only or with known derivatives), and
formulated this problem as minimization of a fitting energy supplemented with the Dirichlet
and the Hessian energy. They considered the Dirichlet energy as a measure of the surface area.
While the Hessian energy is added to ensure the minimal energy condition of the functions in
the minimization space. They considered the space of C1 quadratic polynomials, constructed
on a triangulation via the Powell-Sabin refinement.

Smith and Wessel (1990) introduced as regularization a partial differential equation com-
bining the Laplacian and bilaplacian operators. For seismic data regularization, Fomel and
Claerbout (2001) suggested the use of a diffusion tensor allowing for an anisotropic smoothing
in some predefined directions. Wang and Solomon (2021), considered the Bilaplacian energy
as smoothness energy, to obtain smoother solutions of the anisotropic diffusion equation.

Harmonic functions that are obtained by solving the Laplace equation, Eq. (3.59), or
minimizing the Dirichlet energy Eq. (3.61), produces solutions respecting the mean value
property and the maximum principle at the boundaries, ensuring no local extrema (Fig. 4.3a).
However, these solutions lack smoothness, and present some oscillations in the region of high
thickness variations as illustrated in Fig. 4.3a. Smoother Harmonic solutions can be obtained
by adding a smoothness term to the minimization problem using the Dirichlet energy. Many
conventional high order smoothness energies can be added to obtain smoother harmonic
solutions. For example, the Bilaplacian energy or the Hessian energy. Smoothness energies,
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that are dependent on the basis functions of the discretization space can be considered as
well, as long as they tend to minimize second or higher derivatives. To obtain the smoothest
harmonic solutions honoring the fitting constraints, we consider the following minimization
problem

min
u

Efit(u) + λE∇2(u) + µEH2(u) (4.3)

which can be expanded as

min
u

Efit(u) + λ

2

∫
Ω
∥∇u∥21 dΩ + µ

2

∫
Ω

∥∥∥∇2u
∥∥∥2

F
dΩ (4.4)

Fig. 4.1a shows the solution of the Dirichlet energy regularization discretized using PS-
splines, while Fig. 4.1b shows the solution of the minimization problem Eq. (4.3), discretized
using the PS-splines. This solution is smoother, while maintaining the mean value property
and maximum principle at the boundaries, which are properties of the harmonic functions.

(a) (b)

Figure 4.1: Smoother harmonic solution obtained by adding the Hessian energy term, and
discretized using the PS-splines. (a) Harmonic solution of Eq. (3.61) (λ = 1). (b)
Smooth harmonic solution of Eq. (4.3) (λ = 1, µ = 1).

In Figs. 4.2, we conduct the same experiment, using a the P1 linear finite elements. In
this case, the proposed formulation in Eq. (4.3) enables to obtain smoother solutions of the
harmonic equation.
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(a) (b)

Figure 4.2: Smoother harmonic solution obtained with the additional Hessian energy term
discretized using the P1 linear elements. (a) Harmonic (λ = 1). (b) Smooth
harmonic (λ = 1, µ = 1).

The weak oscillations, that are still present in the smooth solutions, are due to the isotropic
nature of the Laplace equation. In the next sections, we investigate the use of the parameters
of the anisotropic diffusion equation to obtain solutions that present higher smoothness, while
respecting the regularity criteria.

4.1.2 Handling the boundaries

When minimizing the Dirichlet energy or solving the standard Laplace equation Eq. (3.59),
the natural boundary condition that emerges is the vanishing Neumann condition. It implicitly
imposes that the normal derivative on the domain boundaries of the implicit function vanishes,
which results in contours of the implicit function ending perpendicular to the domain boundaries
to fulfill this condition. This is an undesired effect that makes the use of the diffusion equation
unsuitable for our application.
Irakarama et al. (2022) proposed a free boundary discretization for the Laplacian avoiding
this bias at the boundary. They use linear Lagrange elements as basis functions, and
Crouzeix-Raviart nonconforming linear elements as test functions. Their method is based on
a specific choice of basis functions and test functions spaces. In our work we avoid restricting
ourselves to a specific choice of discretization. We propose a simpler technique to avoid
the implicit vanishing Neumann boundary condition by constructing an approximation of
Neumann boundary condition instead of neglecting the integral of the normal derivative on
the boundaries. The normal derivative on the boundaries, is the rate of change of the implicit
function along the normal direction to the boundaries. It describes how the implicit function
contours finish on the boundaries. To obtain an estimation of Neumann boundary condition,
we propose to construct a first approximation u0 using the Hessian smoothing energy as
regularization with a high regularization weight λ, in order to obtain a regular solution on
the boundaries. Then, we use the normal derivative on the boundaries of the solution u0 as a
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Neumann condition such that∫
Ω
∇u · ∇v ds =

∫
∂Ω

(∇u0 · n)v dx ∀v ∈ H1(Ω) (4.5)

Solving Eq. (4.5) is equivalent to minimizing the following diffusion energy (Evans 2010)

EDif (u) = 1
2

∫
Ω
∥∇u∥21 dΩ−

∫
∂Ω

gu dx with g = ∇u0 · n on ∂Ω (4.6)

A solution of the problem Eq. (4.6) with the diffusion energy as regularization, inherits good
behaviour near the domain boundaries and presents the regularity properties of the diffusion
equation.

The use of the diffusion equation implies implicitly a vanishing Neumann boundary condition,
leading to contours finishing perpendicular to the boundaries, as shown in Fig. 4.3a. This
strong artifact is undesired for our application due to the presence of discontinuities inside
the domain in Fig. 4.3a. To overcome this limitation, we first construct a function obtained
using the Hessian smoothing with a high weight in Fig. 4.3b, giving a regular function inside
the domain and naturally finishing on the boundaries. We use its normal component of
the gradient on the boundaries as Neumann initial boundary condition and to compute the
first solution in both the iterative schemes that we will introduce in the next sections, Eq.
(4.18)-Eq. (4.12). For the next iterations in both schemes, we use the normal component of the
gradient of the previous solution to update the Neumann boundary condition. Our solution
finally respects all the regularity criteria and fitting constraints with a natural behaviour near
boundaries, free from the artifact shown in Fig. 4.3c.

(a) (b)
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(c)

Figure 4.3: (a) Resulting implicit function with implicit vanishing Neumann condition on
the boundaries (Eq. 4.17) (λ = 1, µ = 1). (b) Resulting implicit function with a
high smoothing weight using the Hessian energy (λ = 1). (c) Resulting implicit
function free from boundary artifact using our method (Eq. 4.17) (λ = 1, µ = 1).

The Diffusion PDE Eq. (4.1) provides a rich framework to describe various physical
phenomenon. It includes various boundary conditions, and various degrees of freedom, such
as the source term and the diffusion tensor. We will investigate its use as regularization for
the implicit modeling problem. First, a method based on Poisson equation, where the source
term is involved in an optimization problem (Sect. 4.1.3). Second, a formulation that is based
on optimization with respect to the diffusion tensor (Sect. 4.2).

4.1.3 Source term/Poisson method

Laplace equation corresponds to Eq. (4.2) with a vanishing source term f(x). In the context
of implicit structural modeling the source term is unknown. This term can be rewritten as

f(x) = div(N(x)) (4.7)

where N(x) is a determined vector field describing the implicit function to reconstruct, we
call it guiding field. We propose to approximate this field using the numerical data. Then, the
Poisson approach can be adapted to our problem to construct the unknown implicit function.
Furthermore, solving the following Poisson equation

∆u = div(N) (4.8)

subject to ∇u · n = g(x), gives the equivalent weak formulation∫
Ω
∇u · ∇v dΩ−

∫
∂Ω

g(x)vdx =
∫

Ω
N · ∇v dΩ (4.9)

which is equivalent to minimizing the following energy

E∇2(u, g, N) = 1
2

∫
Ω
∥∇u−N∥2 dΩ−

∫
∂Ω

g(x)udx (4.10)

Crane et al. (2013), introduced a novel method for distance computation. using the heat
flow, instead of solving the eikonal equation, which is of the form

| ∇ϕ(x) |= 1, ∀x ∈ Ω (4.11)
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subject to a Dirichlet boundary condition ϕ|γ = 0 on a subset γ of the domain. This equation
is non linear and hyperbolic, hence difficult to discretize and to solve. Instead, Crane et al.
(2013) converted this equation to a quadratic convex minimization problem on the gradient of
u. The problem of finding the function with the closest gradient to the vector field X, which
is a unit vector obtained by normalizing the opposite heat flow vector. The heat flow vector
is obtained simply by diffusing heat along the subset γ for some amount of time. Inspired by
this method, we construct a vector field all over the domain that approximates the gradient of
the implicit function. Then, to regularize the implicit function, we solve the Poisson equation
Eq. (4.2) with the divergence of this vector field as source term. We propose the following
non linear problem with respect to u and N

min
u,N

Efit(u) + λE∇2(u, g, N) + µEH2(u) (4.12)

In words, we seek for the smoothest solution, that is guided by the vector field N(x). Near
the boundaries, its behavior is determined by g(x). To solve this non linear problem, we
propose the iterative scheme Algorithm. 1. We suggest to start from a regular solution u0,
that can be obtained using a high smoothing weight associated to the Hessian energy. For
initial values, we set N0(x) = ∇u0 and g0(x) = ∇u0 · n. Iteratively, we solve the following
algorithm

Algorithm 1 Iterative algorithm for nonlinear anisotropic diffusion energy minimization.
Require: Initial solution u0 ← minu Efit(u) + λ0EH2(u) for a high regularization weight λ0.

while dif ≥ ε do
g = ∇uk−1 · n, Nk−1 = ∇uk−1;
uk = minu Efit(u) + λE∇2(u, gk−1, Nk−1) + µEH2(u);
dif = Efit(uk−1)− Efit(uk);

end while

Figs. 4.4 show the results of the iterative scheme we introduced in Algorithm. 1. The
figures on the left, show the initial solution u0, that we construct using a heavy smoothing
weight associated to the Hessian energy. These initial solutions, present high regularity, due
to the high smoothing weight. Also, they give the right directions along which the gradient
of the implicit function should be aligned, eventhough they are not fitting the data. In the
regularization formulation Eq. (4.12), only the gradient of the function is constrained. It
is done in a weak sense via the source term. The final solution in Fig. 4.4c, is regular and
fitting data, and presents a natural behaviour near the domain boundaries. In this model, the
thickness variations, are mainly along the y-direction. In the two other models, Figs. 4.4f, i,
the solutions are not regular, particularly in regions where the thickness variations are strong.
In the first iterations Fig. 4.4b, d, h, the solutions successfully, fit the data, and are regular.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.4: Resulting implicit functions using the iterative scheme Algorithm. 1. (a)-(d)-(g)
regular solution. (b)-(e)-(h) first iteration (λ = 1, µ = 1). (c)-(f)-(i) final solution
(λ = 1, µ = 1).

Figs. 4.5 show the resulting solution using the iterative scheme without the Hessian energy
term in the Eq. (4.12). In this case, the first solutions contains some small oscillations. In
the next iterations, these small oscillations are amplified and introduce strong artifacts in the
final solutions.

These experiments, illustrate that the solutions, of the iterative scheme Eq. (4.12), can
produce regular solutions in models where the thickness variations are strong. However, it is
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very sensitive to the oscillations of the vector field N. To overcome this issue, other constraints
can be added on the guiding vector field to ensure on each iteration it is presenting minimal
oscillations. For instance, Knöppel et al. (2013) presented a method to obtain the smoothest
direction field on surfaces based on solving the Poisson equation. Although this option seems
interesting, we did not explore it.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Resulting implicit functions using the iterative scheme Algorithm. 1 without the
Hessian smoothing term. (a)-(c)-(e) first iteration (λ = 1, µ = 1). (b)-(d)-(f) final
solution (λ = 1, µ = 1).
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4.1.4 Isotropic and anisotropic diffusion

Anisotropic nonlinear diffusion is a powerful technique in image and geometry processing. It
was introduced by Perona and Malik (1990) to smooth and denoise images while preserving
sharp edges, based on the equation div(c∇u) = 0, with diffusion coefficient c = g(∇u) such as
g(∇u) = 1

1+∥∇u∥2 or other functions inverting the norm of the gradient. This method is only
isotropic, since it uses a scalar diffusion coefficient, and may not be sufficient to accurately
describe models presenting anisotropic thickness variations.

The anisotropic diffusion process can be described using a variant of the heat diffusion
partial differential equation (PDE)

∆C = div(C∇u) = 0. (4.13)

The anisotropic Laplacian ∆C = div(C∇u) has spatially varying coefficients that weight
the derivatives along different directions, specified by a diffusion tensor field C, such that
C = (cij) with cji = cij for i, j = 1 : d.

Andreux et al. (2015) introduced an anisotropic Laplace-Beltrami operator, for shape
analysis, using a diagonal tensor encoding some geometrical extrinsic quantities. Expressed in
the orthonormal basis of principal curvature directions, the diagonal entries of their tensor
chosen as function of the principal curvatures, privileging diffusion in one of the principal
curvature directions. The diffusion tensor C can be also defined

C = c∥b⊗ b + c⊥(Id − b⊗ b), (4.14)

where the vector b ∈ Rd represents the anisotropy direction, c∥ and c⊥ are the parallel
and perpendicular diffusion coefficients, respectively, and Id is the identity matrix. This
representation is used in the context of magnetized plasmas in Tokamak (Giorgiani et al.
2020), where the parallel diffusion c∥ is chosen several orders of magnitude higher (up to
109) than the perpendicular diffusion coefficient k⊥, favoring the diffusion in the anisotropy
direction. Wang and Solomon (2021) proposed optimization on the diffusion tensor to construct
an optimal weights for geometric data interpolation, based on a positive semidefinite tensor
representation where the coefficients of this tensor are unknowns of the problem.

In our context, models can exhibit a high anisotropy, where data present thickness variations
along different directions. The anisotropy directions are unknowns unlike the other fields
of applications of the anisotropic diffusion equation. There exist techniques for estimating
global directions; however obtaining information about local anisotropy in data remains a very
challenging task. Inspired by the success of the anisotropic diffusion in all these application
fields, we propose an iterative scheme in which the diffusion tensor is iteratively adapted
to the anisotropy present in data. We consider the anisotropic Laplacian ∆C defined by
the symmetric diffusion tensor field C(x) : Ω −→ Rd×d, where d is the dimension of Ω. For
d = 2, we use c1, c2, c3 scalar functions to denote the diffusion coefficients, respectively, in the
directions: xx, xy, yy.

∆C = div(C∇u) with C =
(

c1 c2
c2 c3

)
. (4.15)

The tensor representation of the diffusion generalizes the standard Laplacian for C = Id and
the isotropic nonhomogeneous diffusion for C = c(x)Id, with c(x) a scalar-value diffusion
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function. Solving the anistropic diffusion equation is equivalent to minimizing the following
energy (Evans 2010)

EDif(C)(u, g) = 1
2

∫
Ω
∇uT (x)C(x)∇u(x) dΩ−

∫
∂Ω

g(x)u(x)dx, (4.16)

where g(x) corresponds to the Neumann condition g(x) = ∇u0(x)T Cn for x ∈ ∂Ω and n is
the interior normal to ∂Ω with u0 a regular solution on the domain boundaries constructed
using the technique described in Sect. 4.1.2.

4.2 A fitting method with diffusion regularization
In this section, we investigate the use of the anisotropic diffusion PDEs as regularization.
Then we propose a new formulation based on the nonlinear anisotropic diffusion with an
iterative scheme in which the diffusion tensor is iteratively adapted to the variations and the
anisotropy in data.

4.2.1 New formulation of regularization based on diffusion PDE

We consider the following nonlinear minimization problem with respect to the unknowns u
and C

min
u,C

Efit(u) + λEH2(u) + µEDif(C)(u, g). (4.17)

The regularization term in our new formulation is a sum of two energies, weighted by two
scalars µ and λ, controlling respectively the tradeoff between the diffusion and the smoothing.
The diffusion energy is based on the anisotropic diffusion PDE, providing anisotropic solutions
that respect the mean value property and the maximum principle, ensuring no local extrema.
The Hessian energy term is added to ensure smoothness of the solution. In the set of solutions
of the anisotropic diffusion equation with the diffusion tensor C, the smoothest solutions are
selected by minimizing the Hessian energy. The diffusion energy defined with the anisotropic
diffusion tensor C, generates solutions that are adapted to the anisotropy present in data,
providing extra degrees of freedom for the modeling problem. Thus, the formulation of our
problem is nonlinear regarding the two variables: the implicit function u and the diffusion
tensor C.

To solve this nonlinear minimization problem, we propose an iterative scheme that involves
the two problem unknowns u and C. In our scheme we solve first for u, then for C and we
repeat until the difference between the fitting energies of consecutive iterations is less than
a chosen threshold ε. The diffusion energy is quadratic in u and is convex if the tensor C
is positive semi-definite. In this case, the solution is unique. However, the diffusion energy
with respect to the coefficients of the diffusion tensor C is linear and can be either positive or
negative. Thus, minimizing this energy with respect to C can be challenging as the solution
is not well-defined. To address this issue, we introduce a proxy problem that replaces the
original diffusion energy when optimizing for C. We propose to minimize instead a quadratic
convex energy with respect to C. To do so, we first optimize the following objective function
with respect to C for a given u

min
C

(
∫

Ω
∥C∇u∥2 dΩ + ω1EH2(C) + ω2

∫
Ω
∥C− Id∥2F dΩ). (4.18)
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We then inject C solution of Eq. (4.18) and we optimize with respect to u

min
u

(Efit(u) + λEH2(u) + µEDif(C)(u, g)). (4.19)

Minimizers of the quadratic energy
∫

Ω ∥C∇u∗∥2 dΩ with respect to the components of the
diffusion tensor C for a given u∗, give minimal quantity C∇u∗. Thus, the diffusion tensor C
is adapted based on the intensity and the direction of the gradient ∇u∗. In regions where the
gradient ∇u∗ is strong, we minimize strongly the tensor C in the direction of the gradient
∇u∗, allowing less diffusion regularization to permit strong variations of the implicit function.
Conversely, where ∇u∗ is small, we minimize less the tensor C and therefore regularize
more reducing the variations of the implicit function in the direction of ∇u∗. The Hessian
smoothing term ω1EH2(C) on the components of the diffusion tensors is added to obtain
smooth diffusion coefficients with minimal oscillations. A third term ω2

∫
Ω ∥C− Id∥2F dΩ of a

distance penalization from the standard diffusion where the diffusion tensor is the identity
matrix Id, to avoid the trivial null tensor as solution for this problem.

To construct an initial solution u0, we only use the Hessian energy as regularization
associated with a high regularization weight λ0, favoring regularity over a good fitting of data.
C is then obtained via optimizing Eq. (4.18) with u = u0. Using C and g(x) = ∇u0(x)T Cn as
Neumann boundary condition we obtain the next u. At step (i), Ci is obtained via minimizing
the Eq. (4.18) based on ui−1. In the same way ui is obtained via minimizing Eq. (4.19) based
on Ci−1 and g(x) = ∇ui−1(x)T Cin on the boundaries as Neumann boundary condition. We
keep iterating until the difference between the fitting energies of the current and the previous
iteration is less than a chosen threshold ε.

Algorithm 2 Iterative algorithm for nonlinear anisotropic diffusion energy minimization.
Require: Initial solution u0 ← minu Efit(u) + λ0EH2(u) for a high regularization weight λ0.

while dif ≥ ε do
Ci ← minC EDif (C, ui−1) + ω1EH2(C) + ω2

∫
Ω ∥C− Id∥2F dΩ;

g = ∇uT
i−1Cin;

ui ← minu Efit(u) + λEH2(u) + µEDif(Ci)(u, g);
dif = Efit(ui−1)− Efit(ui);

end while

4.2.2 Tangential diffusion along faults

Discontinuities such as faults are often encountered in geological structural modeling. The
generated mesh is conformal to the faults in discrete implicit approaches. The nodes on the
faults are duplicated from either sides allowing a jump in the implicit function. Faults are
considered as inner boundaries of the domain Ω. We note ∂Ωin ⊂ ∂Ω the set of faults. Each
fault is composed of a set of edges. In cases where the stratigraphic layers exhibit a large
thickness variation along the faults, solutions of our method might not respect the mean value
property and no local extrema along the faults. For this reason, we add an extra constraint
to our regularization formulation Eq. (4.16) only on faults. Along the faults ∂Ωin, in the
tangential direction to the edges composing the faults, we apply the anisotropic diffusion PDE

(ctut)t = 0, (4.20)
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where ct = tT Ct and ut is the derivative of the implicit function u in the direction t. The
weak formulation is derived by multiplying Eq. (4.20) by a test function v and integrating
over ∂Ωin ∫

∂Ωin

ctutvt ds = [ct(x)ut(x)v(x)]x∈E , ∀v ∈ H1(Ω), (4.21)

E is the set of nodes on the extremities of the faults. As illustrated in Fig. 4.6, we integrate
Eq. (4.21) over the fault first from e1 towards e2 and then in the opposite direction from the
other side.

Figure 4.6: Fault inside the mesh with extremities e1, e2. Red line represents the fault, blue
arrows represent the direction of the fault edges in both sides.

The resulting implicit boundary condition is a vanishing derivative in the direction t at the
extremities of the faults. In order to avoid ut(x) = 0 for x ∈ E, we set
u(x) = ui−1(x) and ∇u(x) = ∇ui−1(x) for x ∈ E as Dirichlet and Neumann boundary
condition, leading to solving over all Ω the following PDE system

div(C∇u) = 0 in Ω,
∇uT Cn = g on ∂Ω,
(ctut)t = 0 on ∂Ωin,

u(x) = ui−1(x) , ∇u(x) = ∇ui−1(x) for x ∈ E.

(4.22)

Equivalently we minimize the following modified diffusion energy

EDif(C)(u, g) = 1
2

∫
Ω
∇uT (x)C(x)∇u(x) dΩ−

∫
∂Ω

g(x)u(x)dx + 1
2

∫
∂Ωin

ct(ut(x))2dx

(4.23)
s.t u(x) = ui−1(x), ∇u(x) = ∇ui−1(x) for x ∈ E.

4.2.3 Discretization

In this section, we discretize the energies used in the iterative scheme Eqs. (4.18)-(4.19) as well
as the fitting energy Eq. (3.4). Our formulation is generic (i.e. it works for any choice of basis
functions (Bi)i=1:Ns of F where one is able to discretize the diffusion and squared Hessian
energy). The implicit function u is defined as ∀x ∈ Ω, u(x) = ∑Ns

i=1 Bi(x)ui = B(x)U, where
B(x) = (B1(x), ..., BNs(x)) is a basis of F and U = (u1, ..., uNs)T is the vector of unknowns.
Minimizing the fitting energy Eq. (3.4) is equivalent to solving the following linear system

Np∑
p=1

ηpB(xp, yp)T B(xp, yp)U =
Np∑
p=1

ηpB(xp, yp)T zp. (4.24)
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We write this system as
AfitU = Z (4.25)

In order to discretize EH2(u) over the domain Ω, we consider the bilinear form h over F

h(u, v) =
∫

Ω
(uxxvxx + 2uxyvxy + uyyvyy) dΩ. (4.26)

We define a sparse matrix H ∈ R(Ns×Ns)

EH2(u) =
∫

Ω
∥Hu∥2F = UT HU s.t Hij = h(Bi, Bj) for i, j = 1 : Ns. (4.27)

Minimizing EH2(u) gives the linear system HU = 0. We also express the diffusion energy
using the basis functions as

EDif(C)(u, g) = 1
2

∫
Ω

UT∇B(x)T C(x)∇B(x)U dΩ−
∫

∂Ω
g(x)B(x)Udx (4.28)

+ 1
2

∫
∂Ωin

UT (tT Ct)(Bt(x)T Bt(x))Udx,

where Bt(x) = (∂t(Bi)) is the derivative of the basis functions in the tangential direction to
the faults. Therefore, minimizing Eq. (4.28) with respect to u, gives a linear system of the
form ∆CU = NC , where

∆C
ji =

∫
Ω

C(x)∇Bi · ∇Bj dΩ +
∫

∂Ωin

(tT C(x)t)∂t(Bi)∂t(Bj) dx, i, j = 1 : Ns, (4.29)

NC
j =

∫
∂Ω

g(x)Bj dx. (4.30)

To discretize the anisotropy symmetric tensor C =
(

c1 c2
c2 c3

)
, each diffusion coefficient c1, c2, c3

is discretized using the basis functions (Bi(x))Ns
i=1 in F such that

∀x ∈ Ω cj(x) =
Ns∑
i=1

Bi(x)cj,i = B(x)Cj , j = 1 : 3. (4.31)

We use the flat vector C =

C1
C2
C3

 to store the degrees of freedom of the three diffusion

coefficients. The terms of the minimization problem (ii) are discretized as follows

∥C∇u∥2 = (C∇u)T (C∇u) for a given u. (4.32)

C∇u =
[
c1ux + c2uy

c2ux + c3uy

]
=
[
ux uy 0
0 ux uy

]c1
c2
c3

 =
[[

ux uy 0
0 ux uy

]
⊗B(x)

]
C. (4.33)

Using the formulation above, we get

∫
Ω
∥C∇u∥2 dΩ =

∫
Ω

CT


 u2

x uxuy 0
uxuy u2

x + u2
y uxuy

0 uxuy u2
y

⊗ [B(x)T B(x)]

C dΩ. (4.34)
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The Hessian energy for the diffusion coefficients is simply

EH2(C) = EH2(c1) + EH2(c2) + EH2(c3) =
∫

Ω
CT (I3 ⊗H)C dΩ. (4.35)

The distance from the identity matrix explained in Sect. 4.2.1 can be expressed as∫
Ω
∥C− Id∥2F dΩ =

∫
Ω

(c1 − 1)2 + (c3 − 1)2 + 2c2
2 dΩ. (4.36)

Then we minimize it by solving the following linear system
1 0 0

0 2 0
0 0 1

⊗M

C =

1
0
1

⊗ ∫
Ω

B(x)T dΩ, with M =
∫

Ω
B(x)T B(x) dΩ. (4.37)

4.2.4 Linear system weighting

The minimization problem Eq. (4.19) gives rise to a linear system of the form

AU = B, (4.38)

where the matrix A and the column vector B are expressed as

A = Afit + λH + µ∆C and B = Z + µNC . (4.39)

The weights λ and µ associated, respectively, with the diffusion and Hessian energy, control
the tradeoff between fitting the data and regularizing the solution, as well as the tradeoff
between the diffusion properties and smoothness.

We use the weighting function m that gives the average of the absolute values of the matrix
elements, defined from RNs×Ns −→ R as

m(M) = 1
N2

s

Ns∑
i,j=1
|Mij |. (4.40)

We apply this function to the matrices Afit, H, ∆C resulting, respectively, from the fitting,
Hessian and diffusion energies. The quantities m(Afit)

m(H) and m(Afit)
m(∆C) estimate, respectively, the

average relative weight of Afit to H and to ∆C . We introduce two coefficients 0 ≤ α ≤ 1 and
β ≥ 0 such that λ = (1− α)β m(Afit)

m(H) ,

µ = αβ m(Afit)
m(∆C) .

(4.41)

The values of α and β define the solutions of Eq. (4.18): β is controlling the tradeoff between
fitting and regularization, while α the balance between the diffusion and the Hessian smoothing
effect. For α = 0.5 and β = 2, the three components have an equal contribution. A small
value of β is privileging the fitting but can compromise the regularity of the surface mostly for
models with high thickness variations. Taking 0 ≤ α ≤ 1 ensures staying in between the two
extrema: the regularization is complete smoothing for α = 0 and only a diffusion for α = 1.
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4.3 Comparison of diffusion schemes
In this section, we present a comparison between three diffusion schemes. Standard diffusion
with the diffusion tensor set as the identity matrix, isotropic diffusion as introduced in Sect.
4.1.4 and anisotropic diffusion as introduced in Eq. (4.16). We consider the iterative scheme
on u and C, respectively, Eqs. (4.19)-(4.18) for the isotropic and the anisotropic diffusion.
The final solutions obtained are shown for comparison. For comparison, we create models
with thickness variations introduced in the data along one direction (y direction) in Figs. 4.7a,
b, c first model and along two directions in the second and third, respectively, in Figs. 4.7d, e,
f and Figs. 4.7g, h, i. In Figs. 4.7d, e, f data points along the rings have the same isovalue,
and the three rings have 1, 2, 10 as values. In Figs. 4.7g, h, i the values on the horizons are:
−1, 0, 1, 2, 3, respectively, from the bottom to the top.
The three diffusion schemes produce regular and globally smooth solutions, respecting the
mean value property and the maximum principle at the boundaries. In the first model, where
the thickness variation is only along the y-direction, almost no difference is visually observed
between the three different solutions. However, significant differences are observed in the
regions with anisotropic high thickness variations: the flat region under the curved horizon
in the bell model and between the rings with isovalue 1 and 2 in the rings model. In these
regions the standard diffusion fails to produce smooth curves and some undesired oscillations
are observed. The isotropic diffusion produces fewer oscillations and the curves are smoother
than the standard diffusion. The anisotropic diffusion using the diffusion tensor is visually
producing solutions with higher smoothness and respecting the regularity criteria, with a
perfect fitting as well of the curved horizon in the middle highlighted in red; see Fig. 4.7i.
Decreasing the regularization weight improves the fitting of this horizon in the standard and
isotropic case, as shown in Figs. 4.7g, h, respectively; however, it introduces more oscillations.



102 Chapter 4 New formulations of the regularization

Standard Isotropic Anisotropic

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.7: Resulting implicit functions using diffusion schemes in a high thickness variations
models
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Mesh refinement effect

The level of refinement of the mesh highly determines the quality of fitting and the regularity
of the solutions of the minimization problem Eq. (4.17). Our method, shown in Fig. 4.8c,
produces successfully smooth solution respecting all the regularity constraints and fitting data,
on meshes with a coarse level of refinement as shown in the previous comparison section. On
the three examples shown in Fig. 4.8, the mesh refinement increases the quality of data fitting.
For the standard diffusion (Fig. 4.8a) and isotropic diffusion (Fig. 4.8b), the refinement
improved the fitting but some oscillations in the flat region under the top of the curved horizon
are introduced. Meanwhile, the anisotropic diffusion provides higher smoothness and regularity
and the nonlocal extrema property is holding. The main difference is in the smoothness of
the curves in the flat region, where the thickness variation is strong and the implicit function
varies weakly. In the case of interest in this region, a high refinement is necessary to maintain
the good properties of the solutions of our method. Advanced refinement techniques, such
as adaptative mesh, can be an effective way to improve the quality of solutions. Adaptive
refinement techniques allow the mesh to be more refined in areas where the high thickness
variations are present and in the anisotropy directions. We refer to the model in Fig. 4.8 as
bell refined.

(a) (b) (c)

Figure 4.8: Resulting implicit function on a refined mesh of (a) standard diffusion, (b) isotropic
diffusion, (c) anisotropic diffusion

4.4 Diffusion tensor parameterization
The minimization of Eq. (4.18) on tensor C aims to minimize the diffusion coefficients
(ci)i=1:3, while keeping c1 and c3 within the range of 0 to 1. However, this approach does
not guarantee that the resulting tensor C will be positive semidefinite. We also considered
a proxy problem that replaces the diffusion energy when optimizing with respect to C. We
aim here to introduce a parameterization of the diffusion tensor in order minimize the same
convex quadratic energy with respect to u and C.

Wang and Solomon (2021) introduced a parameterization of the diffusion tensor using
the Cholesky factorization, which guarantees that tensors are p.s.d. We apply the same
parametrization in our method to ensure that tensors stay positive semidefinite. We decompose
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the diffusion tensor C using the Cholesky factorization as[
c1 c2
c2 c3

]
=
[
a 0
b c

] [
a b
0 c

]
=
[
a2 ab
ab b2 + c2

]
(4.42)

We use the parameters (a, b, c) instead of the initial parameters of the tensor C∫
Ω

[
ux uy

] [a 0
b c

] [
a b
0 c

] [
ux

uy

]
(4.43)

To define the energy functional to optimize with respect to the functions a, b and c, we rewrite
the system as ∫

Ω

[
a b c

] ux 0
uy 0
0 uy

[ux uy 0
0 0 uy

]a
b
c

 (4.44)

which can expanded as ∫
Ω

[
a b c

]  u2
x uxuy 0

uxuy u2
y 0

0 0 u2
y


a

b
c

 (4.45)

We define the functional energy to minimize with respect to C using the parameters (a, b, c)
as

∫
Ω

[
a b c

]  u2
x uxuy 0

uxuy u2
y 0

0 0 u2
y


a

b
c

+ ωaEH2(a) + ωbEH2(b) + ωcEH2(c) (4.46)

+
∫

Ω
λa(a− 1)2 + λc(c− 1)2 + λbb

2 dΩ

Similarly to the Eq. (4.19), the Hessian smoothing terms ωiEH2(i) for i = a, b, c on each of the
parameters are added to obtain smooth diffusion coefficients with minimal oscillations. The
term

∫
Ω λa(a− 1)2 + λc(c− 1)2 + λbb

2 dΩ penalizes the deviation from the standard diffusion
condition, for which the C = Id. The previous condition enables to avoid the trivial null
tensor as solution for this problem. We associated different weights (ωi, λi) for i = a, b, c to
each parameter of the optimization, in order to provide better control of the tradeoff between
the penalization on deviation from the standard case and the smoothness of each parameter.

Using the new parameterization explained above, we finally expressed the problem of finding
the smoothest solution of the anisotropic diffusion energy as an iterative resolution of a single
convex quadratic problem with respect to the implicit function u, and the parameters a, b
and c, forming the tensor diffusion C. Fig. 4.9 shows the resulting implicit using the diffusion
energy with the parameterization Eq. (4.43). The solution of the Diffusion equation with the
new parameterization present higher regularity and smoothness. Based on experimentations,
the main observation is that on most of the models we obtained visually similar results to the
non parameterized energy, however on some models where the data presents high curvature,
they exhibit a different behaviour. For instance the solution in Fig. 4.9, where the distances
between the iso-contours are more regular than the solution in Fig. 4.8c. The both solutions
are respecting the regularity criteria, but presents two different profiles, which is due to the
effect of the new parameterization.
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Figure 4.9: Resulting implicit using the diffu-
sion energy with the parameteriza-
tion Eq. (4.43).

Figs. 4.10c, d, show the resulting implicit functions and the black vectors are the gradients
of the implicit function. Figs. 4.10a, e, show the principal directions of the parameterized
diffusion tensor, the green vector corresponds to the smallest eigenvalue and the black vector
is associated to the largest eigenvalue. Figs. 4.10b, f, exhibit the ratio of the largest eigenvalue
by the smallest, which measures ratio of anisotropy and the condition number of the diffusion
tensor as well. The main observation is that the principal direction associated to the weakest
eigenvalue is aligned with the vector gradient of the implicit function, which means that the
diffusion energy highly penalizes the perpendicular part of the gradient and allows variations
only along the gradient direction. The diffusion tensor can be physically assimilated to a
resistance or a filter, that allows variations mainly along the gradient direction. A correction
criteria on the diffusion tensors to ensure that they are aligned with the gradient vector, can
be added as criteria to ensure that the tensors are faithfully representing the variations and
the anisotropy of the implicit function. The ratio of the largest eigenvalue to the smallest
eigenvalue, present a measure of the anisotropy in the model. It is varying over the domain,
taking the highest values in the regions of high thickness variations and takes the value 1 in the
isotropic regions. It is also the condition number of the diffusion tensor. The implicit function
is represented using basis functions, which are constructed on arbitrary meshes. Wang and
Solomon (2021) used adapted meshes to solve anisotropic Laplacian since it enhances the
quality of the solutions. In our experiments, the meshes used do not encode the alignment
with the anisotropy directions. Our solutions will more likely not benefit of a an anisotropy
tensor with a high ratio between the smallest and largest eigenvalues. A large condition
number indicates that the tensor is ill-conditioned, which can lead to numerical instability. We
suggest to bound the condition number of the tensor. Assuming that the optimized tensors
encode the right directions of anisotropy, this can be achieved simply by keeping the directions
and bounding only the ratio of anisotropy k(C) by a reasonable value.
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(a) (b)

(c)
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(d)

(e) (f)

Figure 4.10: (c)-(d) Resulting implicit functions using the ansiotropic diffusion energy. (a)-(e)
Principal directions of diffusion over all the domain, green the direction associated
to the smallest eigenvalue and in black the direction of the largest eigenvalue.
(b)-(f) Condition number of the diffusion tensor κ(C) over all the domain.

4.4.1 Discussion

Our method depends on the initial solution u0 obtained using the Hessian smoothing energy.
We use this solution to compute the initial diffusion tensor. For some models where curvature
is important, starting from a very penalized solution u0 (i.e. with high smoothing weight) can
result in a final solution where some regions of the model are flat. In this case a less penalized
solution u0 should be privileged.
Our approach is based on approximating the Neumann boundary condition to prevent the issue
of vanishing implicit Neumann boundary condition. We first consider as an approximation
the normal on the boundaries component of the gradient of the initial solution u0. During
the iterative process, we use the normal component of the gradient of the previous solution
as Neumann boundary condition. In regions where there are no data, the final solution will
tend to have the same trend of the initial solution. Irakarama et al. (2022) proposed a free
boundary discretization for the Laplacian, by using a specific choice of the space of basis
functions and test function. A similar approach can be applied to obtain a free boundary



108 Chapter 4 New formulations of the regularization

discretization for the anisotropic Laplacian. Our method as well can be adapted to get rid
of the integral on the boundary. We suggest to consider a diffusion tensor, with coefficients
represented using constant piecewise function associated to the center of each element. For
the implicit function, we could use P1 elements as basis functions to represent the implicit
function and for test function we choose the Crouzeix-Raviart elements. Starting from the
weak form of the anisotropic diffusion equation∫

Ω
div(C∇u)v dΩ =

∫
Ω

C∇u · ∇v dΩ−
∫

∂Ω
(C∇u) · n v dx (4.47)

We can reformulate the boundary term as∫
∂Ω

(C∇u) · n v dx =
∑

tj∈TB

(C∇ϕi) · ni

∫
tj

w(x) dx = 0 (4.48)

where tj is a triangle belonging to the set of triangles on the boundaries, denoted as TB.
While, ϕi are the linear P1 basis functions and w(x) are the Crouzeix-Raviart elements as
test functions. In this setting, the gradient of the basis functions is constant as well as the
diffusion tensor coefficient and we can take them out of the integral on the boundary. The
integral along the boundary on the test functions is remaining, which is vanishing for the
Crouzeix-Raviart test functions. It is worth noting, we did not discretize the problem, so we
did not verify whether this approach effectively eliminates the integral on the boundary.
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4.5 The anisotropic bending energy
In this section, we explore the use of the bending energy of anisotropic thin plates as
regularization. Then, we propose a new formulation based on the anisotropic bending energy
with an iterative scheme in which the anisotropic rigidity tensor is iteratively adapted to
encode the thickness variations and the anisotropy in data.

4.5.1 The bending energy of anisotropic plate

The bending energy (or thin plate energy) measures the global curvature of a thin plate being
bended to fit spatially distributed data points. In implicit structural modeling, this energy
smooths globally the stratigraphic function and its iso-surfaces. In 2D, the implicit function
interpolating data points (x, y, u(x, y)) represents a surface in 3D and can be considered
as a thin plate to bend to fit data points (Renaudeau 2019). The thin plates theory is a
two-dimensional mathematical model that is used to determine the stresses and deformations
in thin plates subjected to forces and moments (Love 1888, Reddy 2006). The theory assumes
that a mid-surface plane can be used to represent a three-dimensional plate in two-dimensional
form. A plate is a structural element defined by two flat parallel surfaces, where loads are
applied transversely. The distance between these two surfaces defines the thickness of the
plate, which is small compared with other dimensions of the plate. Depending on its material
properties, a plate can be either anisotropic, with different properties in different directions,
or isotropic, with similar properties in all directions. For anisotropic plates, the resistance to
mechanical actions is different for different directions. Thus, the formulations intended for
isotropic bodies are irrelevant (Lekhnitskii et al. 1968). In implicit structural modeling the
data to interpolate, exhibits strong variations and anisotropy. Therefore, it is necessary to
encode the anisotropy in the bending energy to minimize. The theory of bending of anisotropic
thin plates Lekhnitskii et al. (1968) is based on the following assumptions (Fig. 4.11)

(i) Straight sections which are normal to the middle surface in the undeformed state remain
straight and normal to the deformed middle surface after loading.

(ii) The normal stresses σz in cross-sections parallel to the middle plane of the plate are
small compared with the stresses in the transverse cross-section, σx, σy, and σxy.

Figure 4.11: Thin plate, figure from Albuquerque et al. (2006) .

Consider a plate following the assumptions defined above. Lekhnitskii et al. (1968) showed
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that the lateral mid-surface deflection w satisfies the following differential equation:

D11
∂4w

∂4x
+ 4D16

∂4w

∂3x∂y
+ 2(D12 + 2D66) ∂4w

∂2x∂y2 + 4D26
∂4w

∂x∂y3 + D22
∂4w

∂4y
= 0 (4.49)

For an orthotropic plate where the x−and y−axes are coinciding with the principal axes
(Lekhnitskii et al. 1968){

D11 = D1, D22 = D2, D12 + 2D66 = D3
D16 = D26 = 0 (4.50)

then, Eq. (4.49) is reduced as

D1
∂4w

∂4x
+ 2D3

∂4w

∂2x∂y2 + D2
∂4w

∂4y
= 0 (4.51)

While for an isotropic plate (Lekhnitskii et al. 1968)

D1 = D2 = D3 = Eh3

12(1− v2) (4.52)

and Eq. (4.49) becomes simply
D∆2u = 0 (4.53)

The equivalent expression for the potential energy of bending for the anisotropic plate is
(Lekhnitskii et al. 1968)

V =
∫

Ω
[D11(∂2w

∂2x
)2+2D12

∂2w

∂2x
+D22(∂2w

∂2y
)2+4D66( ∂2w

∂x∂y
)2+4(D16

∂2w

∂2x
+D26

∂2w

∂2y
) ∂2w

∂x∂y
]∂x∂y

(4.54)
which can be rewritten as

∫
Ω

[
wxx wxy wyy

]  D11 2D16 D12
2D16 4D66 2D26
D12 2D26 D22


wxx

wxy

wyy

 dΩ (4.55)

In the orthotropic case it becomes

∫
Ω

[
wxx wxy wyy

] D1 0 0
0 2D3 0
0 0 D2


wxx

wxy

wyy

 dΩ (4.56)

While in the isotropic case it is simply

∫
Ω

[
wxx wxy wyy

] D 0 0
0 2D 0
0 0 D


wxx

wxy

wyy

 dΩ (4.57)

The deflection w is only along the z direction and is simply the implicit function u that
describes the surface considered as a bended thin plate. The thin plate is bent by forces
acting at points so that the deflections at these points are the zp values of the data points to



4.5 The anisotropic bending energy 111

be fit. On can imagine that the fitting energy corresponds to the deformation energy applied
to the plate. In the ideal scenario where all data points lie on a plane, there is no need to
bend the plate. The thin plate in its initial state is flat (Fig. 4.12a). However, when the
data points to fit define a surface of strong curvatures, the plate must undergo a bending
process (Fig. 4.12b). In this context, the promising optimization parameter appears to be
the rigidity of the plate. Adjusting the rigidity of the plate means modifying its resistance
to the bending. Subsequently, it affects the response of the plate to bending and ultimately
the resulting shape of the plate. Thus, the rigidity of the plate must adapted to the data
points. For regions where the data presents high curvature, the plate must be softer to allow
maximal deflection. Conversely, the regions with weak curvature corresponds to regions with
weak deflections, which means the rigidity must be high.

(a) (b)

Figure 4.12: (a) A thin plate is initially flat . (b) A thin plate is bended subject to deformations.

In the following, we will simplify our analysis by neglecting the physical aspect of certain
factors associated to the rigidities Dij of the anisotropic plate. For example, in the Eq. (4.54),
that describes the anisotropic case, there are factors of 2 and 4 associated to D16 and D66,
respectively. We will neglect these factors and consider the entries of the rigidity tensor T as
functions to be determined. Therefore, Eq. (4.54) can be reformulated and simplified as

∫
Ω

[
uxx uyy uxy

]
T

uxx

uyy

uxy

 dΩ (4.58)

We consider the generalized anisotropic bending energy defined by the symmetric rigidity
tensor field T(x) : Ω −→ R3×3, for d = 2, is the dimension of Ω. We use Tij(x), i, j = 1 : 3,
scalar functions to denote the rigidity, respectively, in the directions ij of deformations. The
tensor representation of the rigidity term generalizes the bending energy of an isotropic plate

for T =

1 0 0
0 1 0
0 0 2

 and the isotropic nonhomogeneous plate for T = d(x)

1 0 0
0 1 0
0 0 2

, with d(x)

a scalar-value rigidity function. In the formalism of Lekhnitskii et al. (1968), the materials
are supposed homogeneous and the rigidity coefficients are constant, while in our formulation
Eq. (4.58), the rigidity functions are scalar functions varying over the domain. The linear
elasticity hypothesis is supposed and the formalism of Lekhnitskii et al. (1968) is holding.
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4.5.2 Generalized Hooke’s Law and Voigt notation

In the formalism of Lekhnitskii et al. (1968), the material model is supposed elastic, which
means that a linear relation between strains and stresses is assumed. In this context, the
generalized Hooke’s law relates strains S and stress E by the elasticity tensor C as (Kiendl
2011)

S = C : E (4.59)
Sij = CijklEkl (4.60)

where S and E are second order tensors. While C is a linear map from Rd×d → Rd×d. Thus, it
is a tensor of 4th order and contains d4 coefficients, which means 81 in 3D and 16 in 2D. Using
the symmetry properties of the stress and strain tensor and the properties of the material,
the number of independent coefficients can be tremendously reduced. As the stress and strain
tensors are symmetric σij = σji and εkl = εlk, there are only 6 unknown stress and strain
components rather than 9. The symmetry of stress tensor induces that Cijkl = Cjikl. Similarly
the symmetry of the strain tensor: Cijkl = Cjilk. Thus the number of coefficients can be
reduced to 36 in 3D. In addition to the elasticity assumption this number reduces to 21 and
to 6 in 2D. In 2D, we can develop the stress tensor S and the strain tensor E as:

S =
[
σxx σxy

σxy σyy

]
, E =

[
εxx εxy

εxy εyy

]
(4.61)

The strain tensor describes the deflection or deformation of a material body. It characterizes
how the shape of the material changes due to applied forces or displacements. The strain
tensor can be obtained from the displacements field of the material, which represents how
each point in the material has moved from its original position. Under the assumptions of the
formalism of Lekhnitskii et al. (1968) introduced beforehand, a simple relationship between
deflection of the center plane w(x, y) and the displacements d1(x, y, z) and d2(x, y, z):

d1 = −z
∂w

∂x
(4.62)

d2 = −z
∂w

∂y
(4.63)

Then, strains can be expressed as:

εxx = −z
∂2w

∂x2 (4.64)

εyy = −z
∂2w

∂y2 (4.65)

εxy = −z
∂2w

∂x∂y
(4.66)

The strain εxy in the formalism of Lekhnitskii et al. (1968) is associated with a factor 2. We
choose to include it in the rigidity associated to this strain, in order to show the link with the
Hessian of the deflection.

E = −z

[
wxx wxy

wxy wyy

]
(4.67)
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the coordinates z will be eliminated when integrating along the thickness of the plate. The
strain tensor is related to the second derivatives of the deflection w and in this case is simply
the Hessian matrix of w. Thus, the potential energy due to bending can be expressed as

EP = 1
2

∫
Ω

E : C : E (4.68)

= 1
2

∫
z

z2dz

∫
x,y

E : C : E (4.69)

= 1
2

t3

12

∫
x,y

Hw : C : Hw (4.70)

We derived the strain energy using the constitutive law that links stress strain and integrating
over the domain. The integral of the thickness multiplied by the elasticity constants are
flexual rigidities of the material and the deflection is simply the implicit function. Then, we
can rewrite as

Ep = 1
2

∫
Ω

Hu : Th : Hu dΩ (4.71)

where Hu is the Hessian of u and Th is a fourth order tensor. We introduce the Voigt notation,
to reduce the dimensions of the quadratic form Eq. (4.70). We suppose that Th is the
representation of T as fourth order tensor, and we can reduce the Hessian second order tensor
to a vector as uxx

uyy

uxy

 (4.72)

This leads to the formulation of the anisotropic bending energy introduced in Eq. (4.58). In
the following, we choose to use the form of the anisotropic bending energy in Eq. (4.58), due
to the reduced number of indices. This choice simplifies the discretization. Alternatively, the
form in Eq. (4.71) can be used. Palmer et al. (2021) introduced an operator that generalizes
the fourth-order Bilaplacian operator to support anisotropic behavior. The anisotropy is
parameterized by a symmetric frame field, that allows the control of local directions of
variations. They defined the following variational problem

ΣT,ε(u) = 1
2

∫
Ω
∇2u : Tε : ∇2u dΩ (4.73)

Tε := ∥Tp∥I− (1− ε)Tp (4.74)

where I denotes the fourth order identity tensor whose characteristics property is that
I : Sp = Sp for any symmetric second order tensor Sp, ε ∈ [0, 1] to ensure the ellipticity
of the formulation. This functional measures the alignment to the frame field Tε . It is an
optimization problem on the Hessian of a scalar field, for which the primary directions of
curvature occur along the component of the frame field Tp. It is worth noting, that we
kept the same notations as Palmer et al. (2021). To facilitate comparisons, we just add an
underscored letter p to their notations.

4.5.3 Rigidity tensor parameterization

The anisotropic bending energy, through the rigidity tensor T, can be used to encode the
anisotropy present in data. Physically, one can imagine that the data points to fit, apply a
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deformation on the thin plate, and that the surface to construct is a thin plate. The shape
of the surface to construct is based on the regularization energy considered. If the classical
isotropic bending energy is considered, the assumption made is that our material is isotropic,
and perhaps the state with oscillations is minimizing the bending energy. Our problem,
physically, is the problem of finding a thin plate with a specific anisotropic rigidity, that leads
to a regular surface, when it is deformed under the stress applied by the data points. The
rigidity is the resistance of a thin plate against bending deformation. Changing the rigidity
tensor is changing the resistance of the material, therefore changing the material response to
the stress applied.

The anisotropic bending energy defined with the anisotropic rigidity tensor T provides an
extra degree of freedom for the modeling problem. Thus, the formulation of our problem
Eq. (4.58) is nonlinear regarding the two variables: the implicit function u and the rigidity
tensor T. To solve this nonlinear minimization problem, we propose an iterative scheme that
involves the two problem unknowns u and T. In our scheme we solve first for u, then for T
and we repeat while the difference between the fitting energies of consecutive iterations is
less than a chosen threshold ε. The bending energy is quadratic in u and is convex if the
tensor T is positive semi-definite. In this case, the solution is unique. However, the diffusion
energy with respect to the coefficients of the tensor T is linear and can be either positive or
negative. Thus, minimizing this energy with respect to T can be challenging as the solution is
not well-defined. The anisotropic bending energy Eq. (4.58), is well defined when the tensor
T is psd.

T =

T11 T12 T13
T12 T22 T23
T13 T23 T33

 ≥ 0 (4.75)

Using a Cholesky factorization we can rewrite the tensor T asa 0 0
b c 0
d e f


a b d

0 c e
0 0 f

 =

a2 ab ad
ab b2 + c2 bd + ce
ad bd + ce d2 + e2 + f2

 ≥ 0 (4.76)

To define the energy functional to optimize with respect to the functions a, b and c, d, e, f ,
we rewrite the system as

[
a b c d e f

]


u2
xx uxxuxy 0 uxxuyy 0 0

uxxuxy u2
xy 0 uyyuxy 0 0

0 0 u2
xy 0 uxyuyy 0

uxxuyy uyyuxy 0 u2
yy 0 0

0 0 uxyuyy 0 u2
yy 0

0 0 0 0 0 u2
yy





a
b
c
d
e
f


(4.77)

We use the Hessian energy for each rigidity scalar functions, and the sum of the constraints is
denoted by EH2(T). The aim is to obtain smooth functions, in order to construct rigidity
coefficients that are smoothly varying over the domain

EH2(T) = ωaEH2(a) + ωbEH2(b) + ωcEH2(c) + ωdEH2(d) + ωeEH2(e) + ωf EH2(f) (4.78)

A penalization over the function is applied, by minimizing the distance to the parameters,
that corresponds to the isotropic case. The sum of the constraints is denoted by Iiso(T).

Iiso(T) =
∫

Ω
λa(a− 1)2 + λc(c−

√
2)2 + λf (f − 1)2 + λbb

2 + λdd2 + λee2 dΩ (4.79)
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Natural boundary conditions

Taking the first variation of ΣT,ε with respect to u gives the following Euler-Lagrange equations:∫
Ω

∑
i,j,k,l

Tε
ijkl(∂i∂ju)(∂k∂lv) = 0 (4.80)

for any smooth test function v ∈ H2(Ω). Integrating by parts yields:∫
Ω

∂k(Tε
ijkl(∂i∂ju)∂lv dΩ−

∫
∂Ω

Tε
ijkl(∂i∂ju)∂lvnk dΩ = 0 (4.81)

∫
Ω

∂k∂l(Tε
ijkl(∂i∂ju)v dΩ−

∫
∂Ω

[Tε
ijkl(∂i∂ju)∂lvnk − ∂k(Tε

ijkl(∂i∂ju))nlv] = 0 (4.82)

Eliminating the test functions v, we obtain the following PDE with natural boundary condi-
tions:

∂k∂l(Tε
ijkl(∂i∂ju) = 0 in Ω (4.83)

Tε
ijkl(∂i∂ju)∂lvnk = 0 on ∂Ω (4.84)

∂k(Tε
ijkl(∂i∂ju))nlv = 0 on ∂Ω (4.85)

Solutions of the anisotropic thin plate energy minimization are solutions of a fourth order
anisotropic operator in the interior and satisfy a specific natural boundary conditions that
involves normal second derivatives on the boundaries to vanish. This encourages the function
to be as linear as possible on the boundaries. These solutions presents higher smoothness and
faithfully able to represent the anisotropic behaviour that the data exhibit, which is encoded
in the anisotropic rigidity tensor. Furthermore, Palmer et al. (2021) showed that if the tensor
T is boundary aligned, the reduced second-order boundary conditions is

(∇2u)n = 0 on ∂Ω (4.86)

Intuitively, when T is boundary-aligned, the natural boundary condition says that u is linear
along the normal direction at the boundary, similarly to the natural boundary conditions
studied by Stein et al. (2018).

We propose to analyse the the anisotropic thin plate energy in 1D, and derive its natural
boundary conditions. The aim is to illustrate its behaviour when fitting one dimensional data
points and the effect of the natural boundary conditions. The anisotropic thin plate energy in
1D is simply:

min
u,t

∫
Ω

(t(x)u′′(x))2 dΩ (4.87)

which is equivalent to solving the following partial differential equation

(tu′′)′′ = 0 (4.88)

with the following natural boundary conditions on the two extremities of the domain:

tu′′(e) = (tu′′)′(e) = 0 (4.89)
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It can be deduced from the weak form of Eq. (4.88). For any test function v∫
Ω

(tu′′)′′(x)vdx = 0 (4.90)∫
Ω

(tu′′)′(x)v′dx− [(tu′′)′(x)v(x)] = 0 (4.91)∫
Ω

tu′′(x)v′′dx− [tu′′v′(x)] + [(tu′′)′(x)v(x)] = 0 (4.92)

Fig. 4.13 shows one dimensional interpolation using the thin plate energy. Fig. 4.13a, is
obtained using the standard isotropic form of the thin plate energy, while Fig. 4.13b is
obtained using the anisotropic thin plate energy Eq. (4.87). The solution in Fig. 4.13a
interpolate well the data points, but violates the mean value property and the maximum at
the boundaries. It exhibits strong oscillations, even though measures minimal Hessian energy
which is aligned with the minimization constraints. This example, confirms the idea that
regular solutions when interpolating data presenting high thickness variations, are unlikely to
be obtained through the use of smoothing energies, for which the isotropy assumption is made.
Therefore, it justifies the essential need to alternative smoothness measures to better capture
the underlying variations in the data, leading to more accurate and effective regularization
results. The resulting functions (Fig. 4.13b) tends to be linear between the data points to
fit, however present strong curvatures where the data points change trend. Far from the
data points and near the boundaries, the function is linear, which means that the second
derivative is null. The behaviour that exhibits the 1D solution far from the boundaries, is
aligned with the natural boundary condition of Eq. (4.87), that implicitly implies that second
order derivative is null.
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(a) EH2 = 6.46

(b) EH2 = 31.20

Figure 4.13: One dimensional interpolation using PS-splines in 1D with the following regu-
larizations (a) Isotropic homogeneous thin plate energy. (b) Anisotropic non
homogeneous thin plate energy. Red lines are second derivatives. EH2 is measur-
ing the Hessian energy of the solutions.
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4.5.4 Discretization of the anisotropic bending energy

In this section, we discretize the energies used in the iterative scheme Eqs. (4.58)-(4.77).
Our formulation is generic (i.e. it works for any choice of basis functions (Bi)i=1:Ns of
F ). The implicit function u is defined as ∀x ∈ Ω, u(x) = ∑Ns

i=1 Bi(x)ui = B(x)U, where
B(x) = (B1(x), ..., BNs(x)) is a basis of F and U = (u1, ..., uNs)T is the vector of unknowns.
We first express the Bending energy using the basis functions as

EB(u, T) = 1
2

∫
Ω

UT VB(x)T T(x)VB(x)U dΩ = UT HAU (4.93)

We define VB(x) based on the Voigt notation as a flat vector containing the second derivatives
of the basis functions as

VB(x) =

Bxx(x)
Byy(x)
Bxy(x)

 (4.94)

where HA ∈ R(Ns×Ns) is the resulting matrix. To discretize the anisotropy symmetric rigidity

tensor T =

T11 T12 T13
T12 T22 T23
T13 T23 T33

, we consider the auxiliary parameters of the optimization problem

Eq. (4.77). Using the Cholesky factorizationa 0 0
b c 0
d e f


a b d

0 c e
0 0 f

 =

a2 ab ad
ab b2 + c2 bd + ce
ad bd + ce d2 + e2 + f2

 ≥ 0 (4.95)

Each parameter a, b, c, d, e, f is represented using the basis functions (Bi(x))Ns
i=1 such that

∀x ∈ Ω a(x) = B(x)A, b(x) = B(x)B, c(x) = B(x)C (4.96)
d(x) = B(x)D, e(x) = B(x)E, f(x) = B(x)F (4.97)

Then, the Eq. (4.77) can be expressed

[
uxx uyy uxy

] a 0 0
b c 0
d e f


a b d

0 c e
0 0 f


uxx

uyy

uxy

 (4.98)

a b d
0 c e
0 0 f


uxx

uyy

uxy

 =

uxx uyy 0 uxy 0 0
0 0 uxx 0 uyy 0
0 0 0 0 0 uxy




a
b
c
d
e
f


(4.99)


uxx uyy 0 uxy 0 0

0 0 uxx 0 uyy 0
0 0 0 0 0 uxy

⊗B(x)

Θ (4.100)
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We use the flat vector Θ =



A
B
C
D
E
F


to store the degrees of freedom of all the auxiliary optimization

parameters. Thus, the Eq. (4.77) can be expressed as

∫
Ω

ΘT





u2
xx uxxuyy 0 uxxuxy 0 0

uxxuyy u2
yy 0 uxyuyy 0 0

0 0 u2
xx 0 uxxuyy 0

uxxuxy uxyuyy 0 u2
xy 0 0

0 0 uxxuyy 0 u2
yy 0

0 0 0 0 0 u2
xy


⊗
[
B(x)T B(x)

]


Θ dΩ (4.101)

We consider that the weights wi are equal to one in Eq. (4.78). Then, the Hessian energy to
smooth the optimization parameters is simply

EH2(T) =
∫

Ω
ΘT (I6 ⊗H)Θ dΩ, (4.102)

We also consider that the weights λi are equal to one in Eq. (4.79). Thus, the distance from
the isotropic homogeneous state can be expressed as

Iiso(T) =
∫

Ω
(a− 1)2 + (c− 1)2 + (f −

√
2)2 + b2 + d2 + e2 dΩ (4.103)

Then, we minimize it by solving the following linear system

[
I6 ⊗M

]
Θ =



1
0
1
0
0√
2


⊗
∫

Ω
B(x)T dΩ , with M =

∫
Ω

B(x)T B(x) dΩ (4.104)

Algorithm 3 Iterative minimization scheme of the anisotropic thin plate energy
Require: Initial solution u0 ← minu Efit(u) + λ0EH2(u) for a high regularization weight λ0.

while dif ≥ ε do
Ti ← minT EB(T, ui−1) + EH2(T) + Iiso(T) ;
ui ← minu Efit(u) + λEB(u, Ti);
dif = Efit(ui−1)− Efit(ui);

end while

To determine the regularization weight denoted λ in Algorithm. 3, which is associated to
the anisotropic bending energy, we set

λ = p
m(Afit)
m(HA) (4.105)
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with p a positive scalar. When p = 1, the influence of fitting and smoothing is equivalent.
Similarly, to determine the regularization weight associated to the standard Hessian energy, we
use Eq. (4.105) by replacing HA with H. In the following, we will specify only the coefficient
p, that is used to compute the regularization weight λ for the standard Hessian energy and
the anisotropic bending energy.

Fig. 4.14 shows a comparison between two forms of the thin plate energy: the standard
form and the anisotropic form. The comparison is performed on models characterized by
strong thickness variations. Specifically, in Fig. 4.14c, where the two lower horizons were
intentionally tilted to introduce higher levels of anisotropy. Figs. 4.14a, c, show the solutions
of the standard thin plate energy (Hessian energy) as regularization. The standard Hessian
energy solutions violates the regularity criteria and presents strong oscillations. Figs. 4.14b,
d, show solutions of the anisotropic thin plate energy. The effect of the anisotropic rigidity
tensor is remarkable, since it iteratively encodes the anisotropy and variations present in the
data. Similarly to the previous one dimensional example, the solutions of our anisotropic thin
plate energy present visually greater smoothness and regularity. The former is attributed to
the ability of the anisotropic rigidity tensor to better adapt to data by effectively aligning the
curvature of the implicit function to the directional variations of curvature encoded in the
anisotropic rigidity tensor. The former is attributed to the ability of the anisotropic rigidity
tensor to better adapt to the strong curvatures that the horizons exhibit. Then, our method
is effectively aligning the curvature of the implicit function to the directional variations of
curvature encoded in the anisotropic rigidity tensor. Additionally, the solutions of the thin
plate energy preserve better the sharp features present in data compared to the solutions of
the anisotropic diffusion energy Fig. 4.9, while validating all the regularity criteria. These
results demonstrates that the failure of high order smoothness energies such as the standard
Hessian energy Eq. (3.75) to produce regular solutions in the context of strong thickness
variations, is not due to the smoothness assumption. Instead, we believe it is because of the
isotropic assumption that is implicitly made when using the standard form of these energies.
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(a) (b)

(c) (d)
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(e)

(f)

Figure 4.14: Resulting implicit function using the thin plate energy on models presenting high
thickness variations. (a)-(c) Isotropic standard thin plate energy (λ = 1). (b)-(d)
Anisotropic thin plate energy (λ = 1). (e)-(f) 3D surfaces of the solutions plot in
2D respectively (b) and (d).
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4.6 Extension of the new formulations of the regularization to
3D

In this section we provide the extension of the regularization formulations to 3D, for the
anisotropic diffusion energy Eq. (4.16) and the anisotropic bending energy Eq. (4.58). The
anisotropic diffusion energy is

EDif(C)(u, g) = 1
2

∫
Ω
∇uT (x)C(x)∇u(x) dΩ−

∫
∂Ω

g(x)u(x)dx (4.106)

In 3D, we add the variable z

∇u =
[
ux uy uz

]
, C =

cxx cxy cxz

cxy cyy cyz

cxz cyz czz

 =

c1 c4 c5
c4 c2 c6
c5 c6 c3

 (4.107)

Then, the formulation becomes
∫

Ω

[
ux uy uz

] c1 c4 c5
c4 c2 c6
c5 c6 c3


ux

uy

uz

 dxdydz −
∫

∂Ω
g(s)u(s)ds (4.108)

The boundaries of the domain, denoted as ∂Ω, includes both the boundaries of the domain
and fault surfaces. Concerning the extension to 3D of the tangential diffusion introduced in
Eq. (4.23). In 2D, faults are simply lines and represented as a set of edges. Subsequently, the
tangential diffusion along the faults is integrated edge by edge and the boundary conditions
are introduced at the extremities of the faults. Similarly in 3D, where the faults become
surfaces, we integrate triangle by triangle and the boundary conditions are introduced along
the boundaries of the faults.

To extend the formulation of the anisotropic bending energy to 3D, we first define the

operator L(u) =

uxx

uyy

uxy

. Then, the anisotropic bending energy can be expressed as

∫
Ω

[
uxx uyy uxy

]
T

uxx

uyy

uxy

 dΩ =
∫

Ω
L(u)T TL(u) dΩ (4.109)

Then, we add the variable z and the operator L(u) in 3D becomes

L(u) =



uxx

uyy

uzz

uxy

uxz

uyz


(4.110)

In 3D, the tensor T is a symmetric tensor field T(x) : Ω −→ R6×6. This tensor contains Tij(x),
i, j = 1 : 6, 36 scalar functions in total. However, because it is symmetric the number of
independent coefficients is given by

n∑
i=1

i−1∑
j=1

j (4.111)
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which results in 21 independent coefficients. It is worth noting that the Cholesky parameteri-
zation, which is applied for both rigidity and diffusion tensors in 2D, can also be employed in
3D.
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Chapter 5
Applications
In this chapter, we aim to demonstrate the effectiveness of the proposed methods on complex
geological models. We will conduct a comparative analysis of the resulting implicit functions
using three regularization energies: the standard Hessian energy, the anisotropic diffusion
energy, and the anisotropic bending energy.

5.1 Handling high thickness variations in complex geological
models

In this section, we show the effectiveness of our methods on complex geological models that
contain faults. We first evaluate our methods on a faulted model presenting no significant
thickness variation and another presenting strong thickness variation. The faulted model in
Fig. 5.1 contains seven horizons. The values assigned to the horizons are in the ascending
order from the bottom to the top, ranging from one to seven. The thickness variation in this
model is not pronounced, since the thickness of the layers between these horizons is relatively
uniform.

Figs. 5.1 show resulting implicit functions using the standard Hessian energy and our
anisotropic methods as regularization; Fig. 5.1a illustrates the generated solution using the
standard Hessian energy, while Figs. 5.1 b and c illustrate, solutions generated using the
anisotropic diffusion and anisotropic bending energy, respectively. Our methods produce a
regular solution throughout the entire domain, displaying good behaviour near the boundaries
and faults. Similarly, the Hessian smoothing solution respects all the regularity criteria.
Visually, the solutions are similar, except near the fault inside the domain due to the use of
the tangential diffusion constraint introduced on the faults for the anisotropic diffusion (See
Figs. 5.1d, e and f).
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(a)

(b)

(c)

(d) (e)
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(f)

Figure 5.1: Geological benchmark model of Renaudeau (2019). (a) Resulting implicit function
using the Hessian energy, (b) Resulting implicit function using anisotropic diffusion.
(c) Resulting implicit function using anisotropic bending energy. (d) A zoomed-in
view of the area within the black frame in Figure (a), (e) A zoomed-in view of
the area within the black frame in Figure (b). (f) A zoomed-in view of the area
within the black frame in Figure (c).

The model in Fig. 5.2 has been obtained by removing horizons 4, 5 and 7. To further
complicate the problem, the value associated with the horizon 6 has been changed to 4. These
modifications induce a very strong thickness variations, particularly along the fault inside the
domain. We refer to the models Fig. 5.1 and Fig. 5.2 respectively as Geo and Geo refined.

The Hessian smoothing fails to produce a regular solution (Fig. 5.2a). The maximum
principle and the mean value property are violated throughout the domain. The resulting
implicit function increases until it reaches the value 4, and then decreases, which induces a
wrong extraction of the horizon 4, being extracted twice. The method Eq. (4.16) with no
tangential diffusion along the faults, generates a regular solution within the domain. However,
along the faults it is not maintaining the mean value and the maximum principle, resulting in
the formation of bubbles. To overcome this limitation, we introduced the tangential diffusion
along the faults in the diffusion energy Eq. (4.23). It ensures the respect of the regularity
criteria along the faults, thereby eliminates the bubbles as shown in Fig. 5.2d.

In Fig .5.2c, the anisotropic bending energy produces a regular solution, but violates the
regularity criteria along the faults. It is worth noting that we had to refine the mesh to obtain
this solution, and the refined mesh contains 3 times the number of vertices as the initial one.
We also believe that introducing an additional constraint that controls the bending energy
along the faults, similar to the tangential diffusion, might address this limitation.
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(a)

(b)

(c)

(d)

Figure 5.2: (a) Resulting implicit function using the Hessian energy (Eq .3.76), (b) resulting
implicit function using our method without the tangential diffusion constraint
(Eq. 4.17), (c) resulting implicit function using our method with the tangential
diffusion constraint (Eq. 4.17).
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5.2 Handling complex fault network
In the following, we examine two 3D geological models. The first one is Gullfaks, an oil and
gas field located in the Norwegian sector of the North Sea (structurae (2023)). The second
model is the Thrust-Belt model, which is characterized by the presence of folded layers and
thrust faults (McClay et al. (2004)). Figs. 5.3a and b show, respectively, the Gullfaks model
and the Thrust-Belt model. Given that the proposed methods in this thesis are developed
only for 2D applications, we will consider selected cross-sections of the 3D models shown in
Fig. 5.3. This involves initially selecting a specific plane, that we intersect with the fault
surfaces, resulting in a set of segments in 2D that represent the faults. Then, we generate a
mesh that conforms to these lines, we also project the data points onto this plane.

(a)

(b)

Figure 5.3: 3D geological models. (a) Gullfaks. (b) Thrust-Belt. Black dots are data points
and the red surfaces represent faults.
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Figs. 5.4 show the resulting implicit functions in a model obtained as a cross section of
the 3D Gullfaks model. The values are assigned to the horizons as follows: 1 to the bottom
horizon, 2 is assigned to the middle horizon, and 3 is assigned to the top horizon. The aim here
is to examine the behaviour of the regularization methods when the fault network includes a
set of finite faults (i.e. a fault that ends inside the domain boundary), and the horizons are
far from the domain boundaries. The three resulting implicit functions are regular all over the
domain, however they present different behaviours near the faults. The anisotropic diffusion
along the faults yields a solution that exhibits a better regularity as shown in Fig. 5.4b. This
is due to the tangential diffusion term that ensures a better control in that direction. In
Fig. 5.5a, we can observe the principal directions of the diffusion tensor associated with this
solution. We can also see that the direction associated to the smallest eigenvalue is aligned
with the gradient of the solution. The condition number of the diffusion tensor over all the
domain is shown in Fig. 5.5b. We remark that the ratio of anisotropy is nearly constant
all over the domain. This indicates that this model does not present significant thickness
variations.

In Fig. 5.4c, the generated solution using the anisotropic bending energy is shown. This
solution presents more curvature and seems to reverse the trend, exhibiting non monotonicity
along the faults, especially the finite fault at the bottom of the domain. This experiment
confirms the idea that an additional constraint, along the tangential direction for the anisotropic
bending energy, can provide a better control along the faults. The solution obtained using the
standard Hessian energy shown in Fig. 5.4a also lacks regularity along the faults.

(a)
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(b)

(c)

Figure 5.4: Resulting implicit functions using: (a) Standard Hessian energy (Eq. 3.76). (b)
Anisotropic diffusion (Eq. 4.17). (c) Anisotropic bending energy (Eq. 4.58).
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(a)

(b)

Figure 5.5: Principal directions and the condition number of the diffusion tensor associated
with the solution shown in Fig. 5.4a. (a) Principal directions of diffusion over
all the domain, green the direction associated to the smallest eigenvalue and in
black the direction of the largest eigenvalue. (b) Condition number of the diffusion
tensor over all the domain.
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5.3 Handling noisy data
While testing the proposed methods on the Thrust-Belt model, we focused on a specific
cross-section shown in Fig. 5.6. However, within this cross-section, the number of data points
available was very limited and does not include all the horizons in this model. To address
this, we projected a set of points that are at a specific distance from this cross-section plane.
As a result, the collected points are very noisy. Furthermore, in some regions, we can observe
that the data points are inaccurately distributed within the domain. We seek here to test the
sensitivity of the regularization methods to the noise that is present in the data. Figs. 5.6c,
d and e, show the resulting implicit functions using the anisotropic diffusion, respectively,
for β = 1, 10, 100, and α = 0.9. The solution for β = 1 is presenting strong oscillations,
however it remarkably maintains the mean value property and the maximum principle at the
boundaries. The strong oscillations in this case can be attributed to the iterative process of
the anisotropic diffusion scheme, which means that if we obtain a solution with poor regularity,
subsequent solutions are likely to exacerbate the issue. When we increase the regularization
weight, starting from β = 10, we observe an improvement in the regularity of the solutions.
Nevertheless, it comes at the expense of the precision of fitting the data points.

In Fig. 5.6a, we see the generated solution using the standard Hessian energy with p = 10000,
see Eq. (4.105). This solution is regular, obtained using a strong smoothing weight, which
leads to erase the features of the model. While, in Fig. 5.6b, we see the solution obtained using
the anisotropic bending energy with p = 10000. In both cases, where data points are very
noisy, we observe that regular solutions are obtained only when using very high smoothing
weight computed using p = 10000.

We observe that for a high regularization weight the three regularization methods shown,
respectively, in Fig. 5.6a, b and e, are very similar. This is due to the use of a high
regularization weight, which effectively filter the noise but also erase features in the data.
These experiments show the effectiveness of the proposed methods for noise filtering. When
dealing with data that is very noisy and present geologically inconsistent trends, taking a
high regularization weight is an effective approach to generate regular solutions. It is worth
noting that our proposed methods involves a higher computational cost compared to the
standard Hessian energy. We believe that in cases where the data is extremely noisy and the
main objective is to obtain a regular solution at the expense of erasing the data features, the
standard Hessian energy might be a better solution.

Using the solution obtained with the anisotropic diffusion for a β = 100, shown in Figure
5.6e, we randomly sample a set of data points along the extracted horizons, which are
represented by the green lines. These data points are then used for interpolation. In Figs. 5.7,
we present the resulting implicit functions, using the standard Hessian energy, anisotropic
diffusion energy, and the anisotropic bending energy as regularization. The generated solutions
using our proposed methods are regular and effectively handle a complex fault network.
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(a)

(b)

(c)
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(d)

(e)

Figure 5.6: Regularization effect when interpolating a set of highly noisy data points. Resulting
implicit functions using various settings: (a) Standard Hessian energy with p =
10000 (Eq. 3.76). (b) Anisotropic Hessian energy with p = 10000 (Eq. 4.58). (c)
Anisotropic diffusion with α = 0.9 and β = 1 (Eq. 4.17). (d) Anisotropic diffusion
with α = 0.9 and β = 10 (Eq. 4.17). (e) Anisotropic diffusion with α = 0.9 and
β = 100 (Eq. 4.17).
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(a)

(b)

(c)

Figure 5.7: Interpolation of filtered data points. Resulting implicit functions using: (a)
Standard Hessian energy with p = 1 (Eq. 3.76). (b) Anisotropic diffusion with
α = 0.9 and β = 1 (Eq .4.17). (c) Anisotropic bending energy with p = 1 (Eq
.4.58).
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5.4 Handling decimated data
In the Gullfaks model, we extracted a cross-sectional slice. The set of points projected onto
this plane exhibits noise and sparsity. Figs. 5.8 shows resulting implicit functions using the
Hessian energy, the anisotropic diffusion and the anisotropic bending energy. This model
contains five finite faults. The rightmost part of the model contains two horizons, where big
parts are decimated because of the projection. In this region, the middle horizon is partially
decimated, while the bottom one is severely decimated, particularly in the region after the
strong curvature. A desired behaviour in this region is that the contours keep the same trend
of data and stay as straight as possible until finishing on the fault. However, all the solutions
in this region exhibit oscillations and do not keep the trend of data as shown in Fig. 5.8. On
the other hand, in the remaining part of the domain the solutions exhibit a behavior that can
be considered reasonable, taking into account the sparsity and noise in the data. This is likely
due to the fact that the horizons in this region present similar trends which simplifies the
interpolation process.

In Fig. 5.8b, the solution obtained using the diffusion energy presents a superior regularity
along the faults compared to the standard Hessian energy and the anisotropic bending energy.
The solution of the anisotropic bending energy shown in Fig. 5.8d, with a low regularization
weight p = 0.1, is better fitting the data. In this case, we observe that the Hessian energy
and the anisotropic diffusion when taking a weak regularization weight leads to extremely
oscillating solutions.
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(a)

(b)
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(c)

(d)

Figure 5.8: Interpolation of sparse data. Resulting implicit function using: (a) Standard
Hessian energy with p = 1 (Eq. 3.76). (b) Anisotropic diffusion energy with
α = 0.9 and β = 1 (Eq. 4.17). (c) Anisotropic bending energy with p = 1 (Eq.
4.58). (c) Anisotropic bending energy with p = 0.1 (Eq. 4.58).
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Regarding anisotropic diffusion, we observe that for all the models, we converge after
three or four iterations. In our experiments, we opt for a parameter α = 0.5 for the models
exhibiting moderate thickness variations and 0.9 for models with strong thickness variations.
The parameter β is typically set equal to one, while we choose small value for the models
with sparse density of data points and a very refined mesh. On the other hand, we use higher
values to filter noisy data.

Model Number of iterations α β

Extracted layers (Fig. 4.7d) 4 0.5 1
Faulted synthetic (Fig. 4.3d) 4 0.5 1
Bell refined (Fig. 4.8) 3 0.9 1
Bell (Fig. 4.7i) 4 0.9 0.1
Rings (Fig. 4.7f) 3 0.9 1
Geo (Fig. 5.1b) 4 0.5 1
Geo refined (Fig. 5.2c) 4 0.9 0.001
Fig. 5.4a 3 0.9 1
Fig. 5.6c 3 0.9 100
Fig. 5.7b 3 0.9 1
Fig. 5.8b 3 0.9 1

Table 5.1: Number of iterations, and the parameters (α,β) per model for the anisotropic
diffusion regularization.

Concerning the anisotropic bending energy, we observe that for all the models, we typically
converge after two or three iterations. In our experiments, we choose a coefficient p = 1 to
compute the regularization weights. Only when data is noisy (Fig. 5.6e), we used p = 10000.

For the remaining solutions presented in the thesis, the regularization weight is determined
using the method described Eq. (4.105), where the coefficient p is set to 1.

The solution U of Eq. (4.38) is used to evaluate the implicit function all over the domain.
In models without faults, we discretize the domain using a regular grid, and the implicit
function is evaluated on the grid’s nodes. The isovalues are then extracted linearly on each
grid element using marching squares. However, in presence of discontinuities, we refine the
mesh generated conformal to the faults for interpolation, and we use a marching triangles
method for the extraction of the isovalues. It is worth nothing, that the evaluation mesh used
for the extraction of the isovalues, is refined up to three times compared to the mesh used for
interpolation.
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Conclusion and perspectives
In this thesis, we introduced a new definition of the regularity of the stratigraphic function,
which are a set of mathematical properties that the implicit function should respect in order
to maintain geological coherence. These properties necessitate adequate quantification. Then
energies are carefully formulated to measure to what extent these properties are respected.
Subsequently, they are integrated into the implicit modeling problem as regularization.
Therefore, these criteria are a strong tool to examine to what extent the existing regularization
objectives intersect with the desired regularity criteria. Furthermore, they can guide the
formulation of new regularization energies that can fulfill these criteria.

We presented new formulations of the regularization that lead to solutions validating all
these criteria. The two novel regularization techniques are independent of the choice of the
discretization, and can be used with any chosen discretization as long as one is able to discretize
first and second partial derivatives. First, an iterative scheme based on the anisotropic diffusion
equation. Second, an iterative scheme based on the equation of the bending of an anisotropic
thin plate. In both schemes, we tackle nonlinearity by iteratively solving a set of quadratic
energies, that are guaranteed to be convex due to the parameterization of diffusion and rigidity
tensors. Additionally, the two schemes require only an initial solution, which needs to be
regular and not necessarily perfectly fitting the data.

In this thesis, we represented the implicit function using splines, which are piecewise
polynomials of high order degree and continuity. The power of splines lies in enabling the
use of piecewise polynomials of high order degree and extra inherent degree of continuity for
discretization, while the optimization constraints come down simply as linear constraints on
the control points of these splines, resulting in a sparse linear system to inverse.

The construction of geological models relies on a diverse set of tools that come from various
sciences like statistics, physics, and, more recently, artificial intelligence. This interdisciplinary
aspect presents challenges to each scientific discipline, but it also offers an opportunity to create
connections among scientists from different backgrounds. As it is the case in this work, where
we explored and then introduced new tools coming from image processing, computer graphics,
physics and mechanics. Nevertheless, geologists, practitioners, and users of geomodeling tools
all demand intuitive and straightforward formulations, while being robust and deals with any
arbitrary settings. However, the complexity of geology calls for more complex mathematical
equations and formulations. In this context, we proposed technique to estimate the weights
associated to the energies associated to the various degrees of freedom of the modeling problem.
We simplified the rigidity tensor, using the Voight engineering notation. The methods we
presented are autoadaptative and require simply a regular initial solution.

In the following, the contributions of the thesis are summarized and discussed, and some
perspectives are given for future developments.



142 Chapter 5 Applications

Powell-Sabin splines
In this work, we used Powell-Sabin splines, which has been constructed on triangular meshes
discretizing geological domains. These splines have been used for the interpolation of geological
data and also for discretizing the regularization energies.

This work might encourage, in the context of structural mesh-based methods, the use
of high order interpolants, either on tetrahedral or hexahedral meshes. For instance, the
Clough-Tocher cubic C1 splines on triangulations, can be a notable option. In the case of
hexahedral meshes, box splines, Tensor products, hierarchical splines can be used to locally
enhance the approximation power of the splines (Giannelli et al. 2012).

Classically, in high-order finite element methods, what is gained on the precision and the
regularity of the solution is often lost on the performance. We did not compare the computation
time of the method using Powell-Sabin splines with a method using standard linear finite
elements. A computational analysis is needed to evaluate the industrial applicability of these
splines.

When constructing geological models, it is common to encounter situations where new data
become available after the initial model has been computed. In such cases, a local update
technique can be employed to enrich specific regions in the model using the new data, without
making significant changes to the rest of the model. In this context, PS-splines allow a local
editing of the implicit function.

New formulations of the regularization
In the Chap. 4, we introduced a new regularization method based on autoadaptive anisotropic
diffusion. Our method is an iterative scheme, where a diffusion tensor is adapted to the
variations present in the data. Contrary to existing methods, our approach is data driven
and no preprocessing is needed to assign values to geological horizons. Instead, our iterative
scheme adapt the diffusion tensor to the anisotropy and thickness variations present in the
data to obtain a regular solution.

The iterative scheme we introduced, enables a framework, where many degrees of freedom
can be exploited. For example, the ability to impose a specific behaviour of the implicit
function near the boundaries. In this scheme, the tensor is parameterized to remain positive
semidefinite.

In Chap. 4, we introduced a new regularization method based on autoadaptive anisotropic
thin plate energy. Our method is an iterative scheme, where a rigidity tensor is adapted to the
variations present in the data. We provided a parameterization of the rigidity tensor ensuring
that it remains positive semidefinite. Subsequently, the convexity and the uniqueness of the
problem.

In both regularization schemes, the anisotropic behaviour of the implicit function is encoded
via a tensor. In the anisotropic diffusion scheme, it is a second order tensor of diffusion, while
in the anisotropic bending energy, it is a fourth order tensor that it is reduced using the Voight
notation to a second order tensor. We discretized these tensor by representing each of the
components of the tensor using basis functions, the PS-splines in this thesis. These tensors
are parameterized to remain positive semidefinte. Alternatively, they can be represented
using other representations of vector fields or directional fields of any dimension. Various
representations, discretizations, and optimization strategies have been developed (Vaxman
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et al. 2016). These representations might allow easier discretization of the directional
fields, which in turn will allow to express the smoothness energies that are more adapted to
directional fields (Pinkall and Polthier 1993). Perhaps also an easier parameterization of the
tensors to remain positive semidefinite.

These tensors represent new tools for structural modeling to integrate anisotropy. A further
testing in real geological cases, might guide the introduction of criteria that can enhance the
stability of these tools. Such criteria might involve prior knowledge of prior directions of
anisotropy or bounding of conditioning number of these tensors.

Anisotropic adaptive meshing is a key ingredient in the context of solving anisotropic PDEs.
Additionally, the anisotropy tensors that are constructed and discretized can be used to guide
an effective adaptive meshing all over the domain.

Open questions
Extending our iterative scheme to three dimensions using Powell-Sabin splines is feasible.
Speleers (2013) presented a method for constructing a normalized basis for the multivariate
quadratic spline space defined over a generalized Powell-Sabin refinement of a triangulation
in RS , s ≥ 1. The extension of our new regularization formulations to three dimensions is
possible, as well as to other discretizations as long as one as long as one is able to discretize
first and second order partial derivatives. However, it is worth noting that we did not conduct
experiments in the volumetric context.

In Chap. 1, we highlighted how the values assigned to geological horizons strongly influence
the resulting implicit functions. Optimal values associated to these horizons can potentially
address the problem of thickness variations. It is worth noting that in this thesis, we did not
address this problem, we rather focused on formulating regularization energies that are able to
handle geological data with arbitrary assigned values. We believe that optimizing these values
to find an optimal distribution of the data points should be aligned with the regularization
objectives. For future works, it would be interesting to explore this optimization problem.

In the experiments conducted in Chap. 5, we noticed that when data points are very
sparse, the interpolation task becomes challenging. In some regions, we observed that the
regularization energies fail to generate reasonable solutions. In similar cases, a solution might
involve enriching the model with extra data points. In future research work, we consider it is
necessary to investigate these specific cases.
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