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Abstract
***

Optimisation algorithms in non-standard Banach
spaces for inverse problems in imaging

This thesis focuses on the modelling, the theoretical analysis and the numerical
implementation of advanced optimisation algorithms for imaging inverse problems
(e.g,., image reconstruction in computed tomography, image deconvolution in mi-
croscopy imaging) in non-standard Banach spaces.

It is divided into two parts: in the former, the setting of Lebesgue spaces with
a variable exponent map Lp(·) is considered to improve adaptivity of the solution
with respect to standard Hilbert reconstructions; in the latter a modelling in the
space of Radon measures is used to avoid the biases observed in sparse regularisation
methods due to discretisation.

In more detail, the first part explores both smooth and non-smooth optimisation
algorithms in reflexive Lp(·) spaces, which are Banach spaces endowed with the so-
called Luxemburg norm. As a first result, we provide an expression of the duality
maps in those spaces, which are an essential ingredient for the design of effective
iterative algorithms. To overcome the non-separability of the underlying norm and
the consequent heavy computation times, we then study the class of modular func-
tionals which directly extend the (non-homogeneous) p-power of Lp-norms to the
general Lp(·). In terms of the modular functions, we formulate handy analogues of
duality maps, which are amenable for both smooth and non-smooth optimisation
algorithms due to their separability. We thus study modular-based gradient des-
cent (both in deterministic and in a stochastic setting) and modular-based proximal
gradient algorithms in Lp(·), and prove their convergence in function values. The
spatial flexibility of such spaces proves to be particularly advantageous in addressing
sparsity, edge-preserving and heterogeneous signal/noise statistics, while remaining
efficient and stable from an optimisation perspective. We numerically validate this
extensively on 1D/2D exemplar inverse problems (deconvolution, mixed denoising,
CT reconstruction).

The second part of the thesis focuses on off-the-grid Poisson inverse problems
formulated within the space of Radon measures. Our contribution consists in the
modelling of a variational model which couples a Kullback-Leibler data term with
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the Total Variation regularisation of the desired measure (that is, a weighted sum of
Diracs) together with a non-negativity constraint. A detailed study of the optimality
conditions and of the corresponding dual problem is carried out and an improved
version of the Sliding Frank-Wolfe algorithm is used for computing the numerical
solution efficiently. To mitigate the dependence of the results on the choice of the
regularisation parameter, an homotopy strategy is proposed for its automatic tuning,
where, at each algorithmic iteration checks whether an informed stopping criterion
defined in terms of the noise level is verified and updates the regularisation parameter
accordingly. Several numerical experiments are reported on both simulated 2D and
real 3D fluorescence microscopy data.

Keywords: non-smooth optimisation, imaging inverse problems, regularisation
in Banach spaces, sparse regularisation, fluorescence microscopy.
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Résumé
***

Algorithmes d’optimisation dans des espaces de
Banach non standard pour problèmes inverses en

imagerie
Cette thèse porte sur la modélisation, l’analyse théorique et l’implémentation

numérique d’algorithmes d’optimisation pour la résolution de problèmes inverses
d’imagerie (par exemple, la reconstruction d’images en tomographie et la déconvo-
lution d’images en microscopie) dans des espaces de Banach non standard.

Elle est divisée en deux parties: dans la première, nous considérons le cadre des
espaces de Lebesgue à exposant variable Lp(·) afin d’améliorer l’adaptabilité de la
solution par rapport aux reconstructions obtenues dans le cas standard d’espaces
d’Hilbert; dans la deuxième partie, nous considérons une modélisation dans l’espace
des mesures de Radon pour éviter les biais dus à la discrétisation observés dans les
méthodes de régularisation parcimonieuse.

Plus en détail, la première partie explore à la fois des algorithmes d’optimisation
lisse et non lisse dans les espaces Lp(·) réflexifs, qui sont des espaces de Banach dotés
de la norme dite de Luxemburg. Comme premier résultat, nous fournissons une ex-
pression des cartes de dualité dans ces espaces, qui sont un ingrédient essentiel pour
la conception d’algorithmes itératifs efficaces. Pour surmonter la non-séparabilité
de la norme sous-jacente et les temps de calcul conséquents, nous étudions ensuite
la classe des fonctions modulaires qui étendent directement la puissance (non homo-
gène) p > 1 des normes Lp au cadre Lp(·). En termes de fonctions modulaires, nous
formulons des analogues des cartes duales qui sont plus adaptées aux algorithmes
d’optimisation lisse et non lisse en raison de leur séparabilité. Nous étudions alors
des algorithmes de descente de gradient (à la fois déterministes et stochastiques)
basés sur les fonctions modulaires, ainsi que des algorithmes modulaires de gradient
proximal dans Lp(·), dont nous prouvons la convergence en termes des valeurs de la
fonctionnelle. La flexibilité de ces espaces s’avère particulièrement avantageuse pour
la modélisation de la parcimonie et les statistiques hétérogènes du signal/bruit, tout
en restant efficace et stable d’un point de vue de l’optimisation. Nous validons cela
numériquement de manière approfondie sur des problèmes inverses exemplaires en
une/deux dimension(s) (déconvolution, débruitage mixte, tomographie).
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La deuxième partie de la thèse se concentre sur la formulation des problèmes
inverses avec un bruit de Poisson formulés dans l’espace des mesures de Radon.
Notre contribution consiste en la modélisation d’un modèle variationnel qui couple
un terme de données de divergence de Kullback-Leibler avec la régularisation de
la Variation Totale de la mesure souhaitée (une somme pondérée de Diracs) et
une contrainte de non-négativité. Nous proposons une étude détaillée des condi-
tions d’optimalité et du problème dual correspondant. Nous considérons une ver-
sion améliorée de l’algorithme de Sliding Franke-Wolfe pour calculer la solution
numérique du problème de manière efficace. Pour limiter la dépendance des ré-
sultats du choix du paramètre de régularisation, nous considérons une stratégie
d’homotopie pour son ajustement automatique où à chaque itération algorithmique,
on vérifie si un critère d’arrêt défini en termes du niveau de bruit est vérifié et on
met à jour le paramètre de régularisation en conséquence. Plusieurs expériences
numériques sont rapportées à la fois sur des données de microscopie de fluorescence
simulées en 1D/2D et réelles en 3D.

Mots-clés: optimisation non lisse, problèmes inverses en imagerie, régularisation
en espaces de Banach, parcimonie, microscopie à fluorescence.
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Abstract
***

Algoritmi di ottimizzazione in spazi di Banach non
standard per problemi inversi di ricostruzione di

immagini
Questa tesi si concentra sulla modellizzazione, l’analisi teorica e l’implementazione
numerica di algoritmi di ottimizzazione avanzati per problemi inversi di imaging (ad
esempio, ricostruzione di immagini in tomografia computerizzata, deconvoluzione di
immagini in microscopia) in spazi di Banach non standard.

È diviso in due parti: nella prima, si considera il contesto degli spazi di Le-
besgue a esponente variabile Lp(·) per migliorare l’adattività della soluzione rispetto
alle ricostruzioni standard di Hilbert; nella seconda, si utilizza una modellizzazione
nello spazio delle misure di Radon per evitare le distorsioni osservate nei metodi di
regolarizzazione sparsi a causa della discretizzazione.

Più in dettaglio, la prima parte esplora algoritmi di ottimizzazione lisci e non
lisci in spazi Lp(·) riflessivi, che sono spazi di Banach dotati della cosiddetta norma di
Luxemburg. Come primo risultato, forniamo un’espressione delle mappe di dualità
in questi spazi, che sono un ingrediente essenziale per la definizione di algoritmi iter-
ativi efficaci. Per superare la non separabilità della norma sottostante e i conseguenti
pesanti tempi di calcolo, studiamo poi la classe di funzionali modulari che estendono
direttamente la potenza p (non omogenea) delle norme Lp al caso generale Lp(·). In
termini dei funzionali modulari, formuliamo degli analoghi delle mappe di dualità,
che, grazie alla loro separabilità, sono utilizzabili per algoritmi di ottimizzazione
sia lisci che non lisci. Studiamo quindi algoritmi di discesa del gradiente basati su
funzioni modulari (sia in un contesto deterministico che stocastico) e algoritmi di
gradiente prossimale basati su funzioni modulari in Lp(·), e dimostriamo la loro con-
vergenza in termini dei valori delle funzioni. La flessibilità spaziale di questi spazi si
rivela particolarmente vantaggiosa per gestire la sparsità, la conservazione dei bordi
e le statistiche eterogenee di segnale/rumore, pur rimanendo efficiente e stabile dal
punto di vista dell’ottimizzazione. Abbiamo validato numericamente questo metodo
su problemi inversi esempi 1D/2D (deconvoluzione, denoising misto, ricostruzione
TC).

La seconda parte della tesi si concentra su problemi inversi con rumore di Pois-
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son formulati nello spazio delle misure di Radon. Il nostro contributo consiste
nell’elaborazione di un modello variazionale che accoppia il termine di fedeltà della
divergenza di Kullback-Leibler con il termine di regolarizzazione della variazione
totale della misura desiderata (cioè una somma pesata di Diracs) insieme a un vin-
colo di non negatività. Viene effettuato uno studio dettagliato delle condizioni di
ottimalità e del corrispondente problema duale e viene utilizzata una versione migli-
orata dell’algoritmo Sliding Franke-Wolfe per calcolare in modo efficiente la soluzione
numerica. Per attenuare la dipendenza dei risultati dalla scelta del parametro di
regolarizzazione, viene proposta una strategia di omotopia per la sua selezione auto-
matica, in cui, a ogni iterazione dell’algoritmo, si verifica se un criterio di arresto
stabilito in termini di livello di rumore è verificato e si aggiorna di conseguenza il
parametro di regolarizzazione. Sono riportati diversi esperimenti numerici su dati
di microscopia a fluorescenza 2D simulati e 3D reali.

Parole chiave: ottimizzazione non liscia, problemi inversi di ricostruzione di
immagini,regolarizzazione in spazi di Banach, regolarizzazione sparsa, microscopia
a fluorescenza.
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This chapter gives a brief introduction on the mathematical theory of inverse
problems, focusing on regularisation methods and variational formulation, high-
lighting links and connections with optimisation techniques. In particular, the
choice of solving inverse problems in Banach spaces will be motivated, providing
some specific examples.
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In many real-world situations, from medicine to geophysics, from neuroscience
to biology, we encounter problems in which the quantities of interest are not directly
observable but it is only possible to infer information on them from observations of
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Chapter 1. Introduction

(a) On the left: section of a human head. On the right: the corresponding sinogram, i.e.
the acquisition obtained with CT. Images from [18].

(b) On the right: acquisition of the ISBI SMLM 2013 dataset. On the left: super-resolved
image from [144]. Dataset now available at this link1.

Figure 1.1: Inverse problems consists in retrieving the underlying signal correspond-
ing to a given acquired data, where the acquisition process can be mathematically
modelled.

other measurable quantities, somehow related to the first ones. In applied mathem-
atics these are known as inverse problems. The goal is to quantify unknown, but
desired, parameters from relevant observed data, as sketched in Figure 1.1.

Inverse problems play a crucial role in modern medical diagnostics. Imaging
techniques such as computed tomography (CT) scans, magnetic resonance imaging
(MRI), and ultrasound are among the most known examples of inverse problems
in medical imaging, see [168] for a complete analysis of these methods. Thanks
to optimisation algorithms and computational modelling, detailed representations
of internal anatomical structures are reconstructed from measurements of X-rays’
attenuation, magnetic field generated by water dipoles in the human body, and
scattered ultrasound waves, respectively.

Inverse problems have many other applications beyond the medical field. To
name a few, in geophysics, a common inverse problem is subsurface imaging [132,
220], which involves inferring the composition and structure of the Earth’s subsur-

1https://github.com/KrakenLeaf/SPARCOM/blob/master/Example/EPFL/epfl_short_1.
tif
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1.1. Inverse problems

face from electrical conductivity profiles reconstructed from electromagnetic induc-
tion measurements. In biology, fluorescence microscopy imaging techniques [76] are
employed to reconstruct high-resolution images with fine scale details from noisy
and blurred measurements. Images obtained through optical microscopes are inher-
ently affected by blur caused by light diffraction. This phenomenon is unavoidable,
no matter the quality of the lenses, and it causes distortions and a significant loss
of resolution in the acquired data. Thus, acquired images need to be processed in
order to enhance their resolution to enable scientists to observe biological structures
with finer details, beyond the diffraction limit. Solving the inverse problem allows
to image subcellular structures, such as proteins and cellular organelles, at a much
finer scale than traditional light microscopy.

In neuroscience, electroencephalography (EEG) measures electrical activity on
the scalp to determine the locations of the neural sources within the brain that
generate these signals, i.e. EEG is a source localisation inverse problem [101]. EEG
is used to study brain functionality, particularly in tasks like cognitive processing,
emotion regulation, and identifying regions involved in various neurological condi-
tions.

In some cases, the space of the solution (source space) and of the acquisition
(measurement space) is the same, such as in deblurring of images (see for example
Figure 1.1b), whilst in others solutions and acquisitions belong to different spaces.
The latter is the classical setting of medical imaging problems, where the data is
acquired outside of the human body to obtain visual information about inaccessible
inside body parts, as in Figure 1.1a.

All the aforementioned scenarios have some common factors: availability of meas-
ured data, need to reconstruct not directly observable images or signals from the
observations, and a known and mathematically modelled relation between event
of interest and its indirect observations. Indeed, the term inverse problem makes
sense only when there is an underlying direct, or forward, problem, describing the
physics of the acquisition process, which can be modelled and parametrised into
mathematical terms. A forward operator maps objects of interest into information
collected about these objects, that is, the measurements or data. Solving an in-
verse problem means to obtain an estimate of the desired unknown parameters of
interest, exploiting the measurements, and some knowledge of the forward model,
when available.

1.1 Inverse problems

Let X , Y be two normed vector spaces and let T : X −→ Y a linear continuous
operator between them, i.e. T ∈ L(X ,Y). The equation

Tx = y, x ∈ X , y ∈ Y (1.1)

3
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(a) Ground truth x (b) Sinogram y (c) T −1y

(d) Noisy yδ (e) T −1yδ

Figure 1.2: Small perturbations in the acquisitions leads to instability in the recon-
structions if the inverse T−1 of the forward operator is considered.

implicitly defines the inverse problem [131] of finding x given y such that (1.1) is
satisfied, for the operator T . An inverse problem is called well-posed in the sense of
Hadamard [108] if the following conditions hold:

• the solution exists, i.e. for any y ∈ Y there exists x ∈ X such that Tx = y;

• the solution is unique, i.e. for any x1, x2 ∈ X such that Tx1 = Tx2 implies
x1 = x2;

• the solution depends with continuity on the data: there exists a constant C > 0
such that ∥x1 − x2∥X ≤ C∥y1 − y2∥Y where Tx1 = y1 and Tx2 = y2.

If at least one of the above conditions is not satisfied, the problem is said to be
ill-posed.

The first condition means that the forward operator T has a full range R(T ) = Y
(T is surjective) and the second one is equivalent to require that the null space of
T is trivial N(T ) = 0 (T is injective). Thus, these two requirements guarantee the
invertibility of the operator T . However, the existence of the inverse is not enough
for the problem to be stable. The forward operator describes natural observable
phenomena, such as the blur affecting image acquisition or the Radon transform for
CT measurements (see Appendix A), and thus the measurement process inherently
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produces small unavoidable errors. Indeed, it is nearly impossible in real applications
to have a noise-free acquisition y. Instead of y, the ideal perfect data, only yδ, a
slightly perturbed version of y is often measured, is available, and (1.1) becomes:

Tx = yδ, ∥yδ − y∥Y ≤ δ for a small δ > 0. (1.2)

Thus, it is reasonable to require that small perturbations of the data, quantified by
δ, correspond to small perturbations of the solutions, that is the map T−1 : Y → X
is continuous, so that a solution of (1.2) is not too far from a solution of (1.1). In
the case of additive noise, i.e. yδ = y + δ, by solving (1.2) just using the inverse
T−1, one gets

T−1yδ = T−1(y + δ) = T−1y + T−1δ = x+ T−1δ.

Thus, if T−1 is unbounded the quantity T−1δ might be very large compromising the
quality of the reconstructed solution. This explains why the existence of the inverse
T−1 does not suffice for the problem to be easily solvable. For a visual representation
of this phenomenon see Figure 1.2.

1.1.1 Least-squares solutions and generalised inverse
The well-posedness of an inverse problem guarantees the existence (and unique-

ness) of a solution but it does not necessarily entail that an explicit expression for
T−1 is known. On the other hand, when the problem is ill-posed the definition of
solution needs to be reformulated. For example, if the solution does not exist, i.e.
given y ∈ Y for any x ∈ X equation (1.1) is not satisfied, one may still look for
a solution that almost satisfies it. In the case of non-uniqueness of the solution,
one may add some constraints to the solution set to ensure uniqueness, including
a priori information of the expected solution (smoothness, sparsity with respect to
some basis, etc.).

A possible way to relax the definition of solution when existence is not guaran-
teed, i.e. y ̸∈ R(T ), is to look for

x̄ ∈ X such that ∥T x̄− y∥Y ≤ ∥Tu− y∥Y ∀u ∈ X . (1.3)

Any such x̄ is called least-squares solution and it is not necessarily unique. The set
of least-squares solutions can be found by computing

argmin
x∈X

1
2∥Tx− y∥2

Y , (1.4)

i.e. the set of minimisers of the smooth and convex functional f : X → R+ defined
by f(x) = 1

2∥Tx − y∥2
Y . To have uniqueness of the solution, one can choose in this

set the generalised solution [91, 103] as

x† ∈ S s.t
∥∥∥x†

∥∥∥
X

≤ ∥x̄∥X ∀x̄ ∈ S, (1.5)

5
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where S is the non-empty, closed and convex set of least-squares solutions, and thus
the existence and uniqueness of x† is guaranteed.

Let now X and Y be Hilbert spaces and consider T ∈ L(X ,Y) with closed range
R(T ). If y ̸∈ R(T ), (1.1) does not admit any solution. Under these hypotheses, a
definition of generalised inverse equivalent to (1.5) relies on relaxing the definition of
solution by considering the orthogonal projection of the acquisition onto the range.
In particular, by denoting with PR̄(T ) : Y → PR̄(T ) ⊆ Y the orthogonal projection
onto the closure of R(T ), the following are equivalent [20, 21]:

• T x̄ = PR̄(T )y;

• ∥T x̄− y∥ ≤ ∥Tu− y∥ ∀u ∈ X ;

• T ∗T x̄ = T ∗y, being T ∗ : Y −→ X the adjoint operator.

In this setting, the least-squares solutions can be equivalently defined with one of
the above. In particular, the generalised solution x† satisfies the equation

T ∗Tx† = T ∗y. (1.6)

If T : X −→ Y is a linear continuous operator such that the dimension of the null
space N(T ) coincides with the dimension of R(T )⊥, the generalised solution can be
equivalently defined as

x† = PN(T )⊥T̃−1y

where

• PN(T )⊥ : X → N(T )⊥ ⊆ X is the orthogonal projection onto N(T )⊥, the
orthogonal space of N(T );

• T̃ : X → Y is an invertible linear operator such that T = PR̄(T )T̃ .

The operator T † := PN(T )⊥T̃−1 : R(T ) ⊕ R(T )⊥ ⊆ Y → N(T )⊥ ⊆ X is called
generalised inverse [91]. If R(T ) is closed, then R(T ) ⊕ R(T )⊥ = Y and, thus,
T † is well-defined everywhere on Y and it is continuous. On the contrary, if the
range of T is not closed, T † may not lead to a good solution. Indeed, being R(T )
non-closed, T † is not continuous and it is well-defined only on R(T ) ⊕ R(T )⊥ ⊊ Y .
Having a non-continuous inversion process is undesirable, since it means that the
solution produced does not depend with continuity on the data. This may lead to
reconstructions far from the desired ones, when dealing with noisy data yδ, as seen
in Figure 1.2.

1.2 Regularisation methods
To tackle the aforementioned problem, a possible strategy is to consider regu-

larisation methods. The idea behind regularisation is to stabilise the solution in
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presence of noisy data by introducing a continuous inversion operator, so that the
noise in the data is not reflected in the reconstruction.

Let T ∈ L(X ,Y), with X ,Y Hilbert spaces, with non-closed range R(T ). Reg-
ularisation methods aim at approximating the discontinuous operator T † with a
family of neighbouring continuous operators Rλ. Specifically, the family of operat-
ors {Rλ}λ>0, with Rλ : Y → X , is said a regularisation algorithm [102] if:

• Rλ is a linear and continuous (hence bounded) operator;

• ∀y ∈ R(T ) ⊕R(T )⊥ limλ→0 Rλy = x† with x† = T †y.

The parameter λ > 0 is referred to as regularisation parameter and xλ = Rλy is
the regularised solution. Regularisation methods approximate T † with an operator
Rλ which is continuous everywhere. In this way, a regularised solution of the noisy
problem (1.2) is not too far from the generalised solution of the noiseless problem
(1.1). This does not happen with the generalised inverse T †, which is not bounded.
Regularisation methods play a crucial role in the presence of noisy data ensuring
stability in their reconstruction. Denoting by x† a generalised solution of the ideal
noise-free inverse problem (1.1), and by xλ the regularised solution of the noisy
problem (1.2), the reconstruction error is bounded by

∥xλ − x†∥ = ∥Rλy
δ − x†∥ ≤ ∥RλTx

† − x†∥ + δ∥Rλ∥,

and it can be split into two parts. The first term is an approximation error due to
the approximation of T † by Rλ and in general it is an increasing function of λ, whilst
the second term measures the propagation error of the noise onto the solution and
it is a decreasing function of λ. The choice of λ is therefore delicate: a good solution
should compromise approximation and propagation errors at the same time.

1.2.1 Tikhonov regularisation
The most common regularisation method is the Tikhonov regularisation [212,

213] algorithm, which is defined by the following minimisation problem

xλ := argmin
x∈X

∥Tx− y∥2
Y + λ∥x∥2

X , λ > 0. (1.7)

Using the notation of the previous section, the family of bounded linear operators
{Rλ}λ>0 defined as Rλ =

(
T ∗T + λI

)−1
T ∗ characterises Tikhonov regularisation.

Indeed, the Tikhonov regularised solution satisfies the Euler-Tikhonov equation(
T ∗T + λI

)
xλ = T ∗y and it is an approximation of the generalised solution x†,

which satisfies (1.6). The above functional is the sum of the residual ∥Tx − y∥2
Y ,

that quantifies the mismatch between the observed data and the model’s predictions,
and the norm squared of the solution itself. By minimising the above functional,
we look for an approximation of the solution with small energy, i.e. small norm,
being this a characteristic associated with smooth, regular, noise free data. Thus,
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(a) xλ with λ ≈ 0 (b) xλ with λ = 0.1 (c) xλ with λ >> 0

Figure 1.3: Effect of the regularisation parameter λ

we seek for a solution with small norm that, at the same time, fits well enough the
acquisition and is a good approximation of the generalised solution.

Tikhonov regularisation also refers to variational model as (1.7), where the pen-
alty is of the form 1

2∥Dx∥2, with an operator D : X → X̃ . If D is the identity we
retrieve exactly (1.7).

The regularisation parameter controls the trade off between having a small resid-
ual and having a solution with a small norm, that is between fitting the observations
and having a regular and smooth solution. Choosing a small parameter might lead
to overfitting of the reconstruction to the acquisition and thus to the noise, whilst a
bigger value of λ might yield to a well-regularised and noise-free reconstruction that
does not fit enough the data, as it is sketched in Figure 1.3.

1.2.2 Iterative regularisation

Another well-known approach to regularisation is the so-called iterative regular-
isation. One-step iterative algorithms, such as the Landweber method [110, 136]
or the Conjugate Gradient method [117], represent the main class of regularisation
schemes for functional equations, see e.g. [88, 174, 182], where the role of the reg-
ularisation parameter is played by the number of iterations of the given algorithm.
It is now briefly presented the Landweber method in Hilbert spaces X and Y .

In order to approximate the generalised solution x†, consider (1.6). Given τ > 0,
it can be rewritten as a fixed-point iteration x = G(x) with G : X → X such that
G(x) = x − τT ∗(Tx − y). Given any starting point x0 ∈ X , its solution can be
approximated by the sequence (xk)k∈N defined by xk+1 = G(xk), i.e.

xk+1 = xk − τT ∗(Txk − y). (1.8)

The latter is referred to as Landweber iteration or Landweber method and it is
a regularisation method [186]. It is important to observe that (1.8) can be also
seen as an iteration of the gradient-descent algorithm [152] minimising the residual
∥Tx− y∥2

Y , with τ ∈
(
0, 2

∥T∥2

)
an appropriately chosen step-size.
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1.3. Bayesian framework and variational approach

To use the formalism about regularisation methods introduced before, we intro-
duce the family of operators

{
R 1

k+1

}
k∈N

, with R 1
k+1

: Y → X defined by

R 1
k+1

(·) = (I − τT ∗T )k+1x0 + τ
k∑
i=0

(I − τT ∗T )iT ∗(·)

to rewrite (1.8) as xk+1 = R 1
k+1
y. It can be proved that

{
R 1

k+1

}
k∈N

is a regularisa-
tion algorithm [102]. The more iterations are computed, the closer the regularised
solution xk+1 will be to the generalised solution, at risk of over-fitting the noise.
By stopping the regularisation algorithm early, this phenomenon is avoided and the
obtained regularised reconstruction xk is less influenced by the noise in the data.
Indeed, an iterative method works as regulariser if an early-stopping strategy pre-
venting over-fitting of the noise in the reconstructions is used according to the well-
known semi-convergence property [167]. This is often being referred to as implicit
regularisation [216], since no penalty term has to be introduced but regularisation
is achieved by performing a relatively small number of iterations, and it is a very
active field of research nowadays in disciplines such as machine and deep learning
[7, 161, 164].

1.3 Bayesian framework and variational approach
In the mathematical theory of inverse problems, a classical approach to their

resolution is the Bayesian one [123, 210]. In this framework, the unknown x and
the data y (or yδ if there is noise) are seen as realisations, respectively, of random
variables X and Y distributed with probability density functions πX(x) and πY(y).

Given an observation y ∈ Y, let πY|X(y|x) be the probability density of the
fact that the observation y is produced by the underlying signal x. πY|X(y|x) is
called likelihood: it is a measure of how likely the realisation y of Y comes from the
realisation x of X and it depends on the operator T . Within this setting, the problem
(1.1) can be interpreted as the problem of maximising the likelihood function, that
is

x̂ ∈ argmax
x∈X

πY|X(y|x), (1.9)

for a fixed realisation y ∈ Y.
Instead of considering the maximum likelihood approach as above, another pos-

sible strategy is to maximise the so called posterior probability πX|Y(x|y), that is the
probability of finding x given the observation y. Thanks to the Bayes formula,

πX|Y(x|y) = πY|X(y|x)πX(x)
πY(y) , (1.10)

it is possible to express the posterior probability in terms of the prior probability
πX(x), the conditional probability or likelihood πY|X(y|x) and the probability distri-
bution πY(y) of the acquisitions, which serves as a normalisation constant. The prior
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Chapter 1. Introduction

probability models a priori knowledge we have on the target solution x, such as its
geometrical characteristics and/or sparsity features. It is independent of the data
y. The likelihood depends on the forward model which maps the data x ∈ X with
the observation y ∈ Y and on the probability distribution of the noise. According
to the Maximum A Posteriori estimation, among all the possible realisation of the
random variable X, it is chosen as best approximation of the unknown x the one
which maximises the posterior probability πX|Y(x|y) or, thanks to (1.10) (neglecting
πY(y)):

argmax
x∈X

πY|X(y|x)πX(x),

which can be formulated as a minimisation problem by applying the logarithm
function, as follows

argmin
x∈X

[
− log

(
πY|X(y|x)

)
− log

(
πX(x)

)]
. (1.11)

Prior density functions are usually assumed to be of the form of Gibbs’ potentials
[98], that is:

πX(x) ∼ e−λR(x)

where R : X −→ R≥0 is an energy functional, usually convex, and λ > 0 is a positive
scalar parameter. A similar structure is assumed for the likelihood πY|X(y|x) as well:

πY|X(y|x) ∼ e−F (Tx,y),

since most standard noise distributions have a negative exponential form. In this
way, (1.11) turns out to be equivalent to the minimisation of the functional

argmin
x∈X

J(x) := F (Tx, y) + λR(x), λ > 0. (1.12)

• The first part of the functional is the fidelity term or data-term. It consists
of a distance-like function F : Y × Y → R+, that measures the discrepancy
between the model observations Tx corresponding to a possible solution x and
the data y, and depends on the probability distribution of the noise.

• The second element is the penalty or regularisation term. It has to be chosen
exploiting the a priori information about the desired solution. Its role is to
stabilise the inversion process and to prevent overfitting or ill-posedness, so
that to small perturbations of the data correspond small perturbations of the
solution. This term has to promote solutions that are smooth or have certain
properties for the sought solution.

• The regularisation parameter λ > 0 controls the trade-off between F and R,
that is between fitting the observations and encouraging a regular solution,
i.e. a solution with the properties enforced by the penalty term R.

10
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This approach to the resolution of inverse problem is called variational regularisa-
tion [202]: it transforms the inverse problem into the minimisation problem of a
structured functional J : X → R+. Under the assumption of Gaussian distribution
for X (with 0 mean and standard deviation σX), i.e.

πX(x) = 1√
2πσ2

X

exp
(

−1
2
x2

σ2
X

)
, (1.13)

and additive white Gaussian noise, that is

πY(y|x, T ) = 1√
2πσ2

Y

exp
(

−1
2

(Tx− y)2

σ2
Y

)
, (1.14)

it can be proven that from (1.12) we retrieve exactly the Tikhonov regularisation
functional (1.7).

Similarly, under the assumption of Gaussian distribution over X (1.9) becomes
(1.4), i.e. we retrieve the least-squares solutions.

1.3.1 Choice of fidelity, penalty and solution space
The choice of the different ingredients of the variational model (1.12) is crucial for

obtaining a good reconstruction of the desired image or signal. The assumption of
Gaussian distribution of the unknown signal (1.13) yielding to a penalty of the form
∥x∥2

X is convenient from a computational point of view, being it convex and smooth,
but it is very often unrealistic. The a priori information about the desired solution
is not well-described by such a penalty when, for example, the sought solution is
sparse, i.e. equal to 0 in the vast majority of its domain Ω ⊆ Rd, d ∈ N. The
squared-norm might lead to an over-smoothed and not-sparse approximation of the
solution. When the prior knowledge on the solution is sparsity-type information,
different penalties have to be introduced. The most common one is the L1-norm
[70, 82] of the solution

∥x∥1 =
∫

Ω
|x|dt

but many other choices are possible. Just to name a few, Lp penalties are proposed
and studied in [70, 188], as clarified better in the next section, in [187] instead the
use of a Besov norm as sparsity-promoting penalty in Tikhonov regularisation is
proposed. In the discrete setting of compressed sensing [48, 81, 90], sparsity of the
solution x with respect to some basis W is also sought, i.e. it is possible to write
x = Wz with z sparse, so that the penalty is ∥z∥1.

If the solution is known to have flat and constant regions with jumps and discon-
tinuities, it means its gradient is sparse and a possible good choice for the penalty
term is the Total-Variation norm, which for functions x ∈ W 1,1(Ω) reads [195]

TV(x) =
∫

Ω
|∇x|dt.
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Other studied penalty terms are the Non Local Total Variation [125], the Total
Generalised Variation [38], the Hessian Schatten norm [150], the Elastic net regu-
lariser [221] and many more.

A similar reasoning lies down the choice of the fidelity term. The assumption
of Gaussian noise on the data (1.14) is often a good approximation of the real, and
sometimes unknown, noise distribution by central limit theorem and leads to an
L2-fidelity [53, 195]

∥Tx− y∥2
2 =

∫
Ω
(Tx− y)2dt.

However, in some circumstances this choice is too unrealistic and a more tailored
choice for the fidelity leads to better quality in the reconstructions, for example,
when dealing with Poisson noise. If the noisy data y is a realisation of a Poisson
distributed random variable with mean Tx, i.e.

πY(y|x, T ) =
exp

(
− Tx

)
y!

(
Tx
)y
,

where the operations are all intended point-wise, the Kullback-Leibler (KL) diver-
gence [149, 201]

DKL(Tx, y) :=
∫

Ω

(
Tx− y + y log(y) − y log(Tx)

)
dt (1.15)

should be considered as fidelity. Alternatively, an approximation of the KL through
Taylor expansions [199] can be considered. Computing the second order Taylor
expansion of (1.15) with respect to the second variable centred in y yields a weighted-
L2 penalty

∥Tx− y∥2
W =

∫
Ω

(Tx− y)2

y
dt,

where again the operations are all point-wise. We considered this fidelity in [143, 144,
147] coupled with a particular sparsity promoting ℓ0-type penalty, called WCEL0,
that we proposed in [144]. This method has been used for the microscopy imaging
reconstruction shown in Figure 1.1b. In presence of impulsive or salt-and-pepper
noise, instead, the L1-norm of the residual [176, 177] is a good option

∥Tx− y∥1 =
∫

Ω
|Tx− y|dt,

since it well describes the sparse nature of the noise.

An ingredient that is sometimes overlooked and not properly taken into consider-
ation is the space where solutions are sought for. Solving inverse problems in Hilbert
spaces has many computational advantages but it can lead to over-smoothness of
the solutions, bad reconstructions of edges and sparse patterns, such as small objects
or impulse signals [37, 204]. For these reasons, it is often a good choice to consider
inverse problems in Banach space setting, as it is sketched in the next section.
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1.4 Why Banach spaces?

As well presented in [204], in a series of different applications models that use
Hilbert spaces are not realistic or appropriate. To name a few, it is worth mention-
ing non-destructive testing, such as X-ray diffractometry [203, 205], phase retrieval
[27, 28, 80, 119, 133, 134], parameter identification for special partial differential
equations [62, 109], inverse problems in finance [113, 119, 120]. The nature of such
applications requires Banach spaces modelling of the problem itself. In X-ray dif-
fractometry, Banach spaces of continuous functions C([α1, α2]) are needed and phase
retrieval problems are defined in terms of a non-linear forward operator between Le-
besgue space Lp(Rd) and its dual Lp′(Rd), with p′ = p/(p − 1). For PDEs, again
Lebesgue spaces are considered as solution and acquisition spaces, or more general
non-Hilbertian Sobolev spaces. We refer to [204, Chapter 1] for an exhaustive de-
scription of all the above examples. Banach spaces not only can be used as solution
and/or acquisition spaces X and Y in the definition of the problem (1.1), as for
the above examples, but also in the formulation of variational models with spe-
cific fidelity and penalty terms defined in terms of Banach norms. Recently, the
use of an Lp-norm to measure the fidelity term and of an Lq-norm to measure the
regularisation term has received considerable attention [43, 122, 137].

Tikhonov-like regularisation with totally convex functions in reflexive Banach
spaces has furthermore been recently studied, for instance, in [99] and in [64], in the
framework of regularised learning schemes in feature Banach spaces.

Another well-known scenario where Banach spaces are known to perform better
than Hilbert spaces is sparse inverse problems, that is when sparse solutions of ill-
posed operator equations are to be determined. In the seminal work [70] by Defrise,
Daubechies and De Mol, they propose the use of Lp-norms

∥x∥p =
(∫

Ω
|x|pdt

)p
, 0 < p < 2,

as sparsity enforcing penalty, also studied in [130]. The effect of such a penalty
is detailed with numerical examples in [204]. We report in Figure 1.4 a simulated
numerical test from [204] on the problem of retrieving the velocity of a vehicle x(t)
given its position y(t) for all t ∈ [0, T ]:

y(t) =
∫ t

0
x(s)ds + y(0) + δ = Tx+ δ,

where δ > 0 is an additive noise. The following variational model is considered

argmin 1
2∥Tx− y∥2

2 + λ∥x∥pp, λ > 0,

for p = 2, p = 1 and p = 1.1. The ground truth velocity of Figure 1.4(a) presents
three sharp peaks. However, due to the physical setting of the problem, the peaks
have steep slopes but are not discontinuous.

13



Chapter 1. Introduction

(a) True velocity

(b) L2 reconstruction with λ >> 0 (c) L2 reconstruction with λ ≈ 0

(d) L1 reconstruction (e) L1.1 reconstruction

Figure 1.4: Tikhonov-type reconstructions for different penalties based on Hilbert
and Banach spaces norm. Images from [204].
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Figure 1.5: Top row: the exact solution (left) and the exact data y (in blue) and
the noisy yδ (red). Middle row: results obtained in L1.5(Ω). Bottom row: result
obtained in L2. Image from [37].

In the case of p = 2, reconstructions cannot recover well the signal: the recon-
struction obtained with a big value of λ is over-smoothed (Figure 1.4(b)), whilst
the one with λ ≈ 0 is affected by the noise (Figure 1.4(c)). Since the true signal
consists of peaks, it can be considered sparse, and thus by taking p = 1 we consider
an L1 sparsity promoting penalty. The corresponding reconstruction is shown in
Figure 1.4(d), significantly improved with respect to the ones obtained with the L2

Hilbertian penalty. A choice of p = 1.1, slightly larger than 1, gives even better
results than p = 1, see Figure 1.4(e). This might be due to the fact that the L1.1

norm is smooth, and thus it encourages not only continuous reconstructions but also
smooth ones. We conclude from Figure 1.4 that the use of non-quadratic penalties
and in particular penalties based on Banach space norms may improve the quality
of the reconstructions [204].

In [37], Banach spaces are not used in the definition of a sparsity regulariser
but instead as solution spaces and the numerical tests, reported in Figure 1.5 show
the effectiveness of this choice. As a last example, we consider an image deblurring
problem for images in Figure 1.6 and in Figure 1.7. We compare here reconstruction
obtained by solving (1.2) in an Hilbert L2 setting with Landweber method (1.8) and
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(a) Ground truth (b) Data (c) L2 rec (d) Lp rec

Figure 1.6: Exemplar deconvolution imaging problem on a test image: ground truth,
acquired data and reconstructions obtained in L2 and in Lp with p = 1.3 spaces.

(a) Ground truth (b) Data (c) L2 rec (d) Lp rec

Figure 1.7: Exemplar deconvolution imaging problem on a satellite image: ground
truth, acquired data and reconstructions obtained in L2 and in Lp with p = 1.3
spaces.

in a Banach Lp setting (p ∈ (1, 2)) with the Banach Landweber method (that will
be presented in Chapter 3). We can observe that in both images the Banach recon-
structions present less artefacts in the background, which results cleaner. Moreover,
especially in Figure 1.7, it is evident that considering a Banach space yields sharper
solutions and better reconstructions of discontinuities.

Inverse problems in Banach spaces have been an extensive object of study. Sev-
eral regularisation techniques and iterative methods, originally defined in a Hilbert
setting, have been successfully extended and re-defined in Banach spaces, see for
example [35, 41, 93, 112, 121, 151, 175, 192, 206, 207].

In this thesis, we often consider Banach spaces as solution space for inverse
problems in imaging and study effective optimisation methods to minimise sparsity-
promoting functionals arising from the variational formulation of the problem. In
particular, this thesis focuses mainly on two particular Banach spaces, variable ex-
ponent Lebesgue spaces and the space of Radon measures, that are now briefly
introduced.
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1.4.1 Variable exponent Lebesgue spaces

Variable exponent Lebesgue spaces Lp(·)(Ω), as name itself suggests, are Lebesgue
spaces on Ω ⊆ Rd, d ∈ N defined in terms of a point-wise variable exponent p(·)
instead of a constant one p ∈ [1,+∞]. More precisely, they are defined in terms
of a Lebesgue measurable function p(·) : Ω → [1,+∞] that assigns coordinate-
wise exponents to all points in the domain Ω. Under mild assumptions, they are
Banach spaces intrinsically endowed with useful space-variant properties. A suitable
variable exponent induces an adaptive regularisation in the reconstruction, having
the possibility to enforce sparsity and preserve edges in certain parts of the domain,
as when considering a constant exponent Lebesgue space Lp(Ω) with 1 < p < 2 [204],
and enforcing high L2 regularity in smoother parts. Variable exponent Lebesgue
spaces have proven to be useful in the design of adaptive regularisation with space-
variant penalties terms to better deal with heterogeneous signals, i.e. signals with
different properties in different parts of its domain. For example in [156] the so-
called F-norm is defined in the discrete setting used as flexible penalty term that
depends on a variable exponent p(·), point-wise defined on the domain. This penalty
coincides to what we will refer to in the following as modular function. However,
in [99, 156] a variable exponent is used in the definition of the penalty but Lp(·)(Ω)
spaces are not considered as solution spaces for the problem. This thesis proposes
Lp(·)(Ω) as solution spaces for inverse problems, sshowing their flexibility in the
modelling of heterogeneous data and complex noise settings, to take advantage of
the natural adaptivity of these spaces.

Previous works have considered Lp(·)(Ω) spaces for applications. For instance,
they have considered in the resolution of partial differential equations [36] and vari-
ational integrals with non-standard growth, see for example [2, 59, 66, 95, 103, 129].
In [153], the authors study a functional with variable exponent, which provides a
model for image denoising, and its corresponding variable exponent heat equation.
Variable exponent Lebesgue spaces have been used as solution spaces in electro-
magnetic non-linear inverse scattering, see [92], for noninvasive and nondestructive
techniques to inspect materials, in [5] for microwave radiometer measurements, and
in [26] for brain stroke microwave imaging.

1.4.2 Banach space of Radon measures
A research topic of particular interest in inverse problems is the recovery of

sparse unknown signals, i.e. signals represented in terms of only a few non-zero
components. This problem is commonly formulated in Hilbert and discrete settings
by imposing an ℓ0-pseudonorm regularisation [47, 81, 83], defined as the number
of non-zero components of x, ∥x∥0 = #{xi such that xi ̸= 0}. However, this
non-continuous and non-convex penalty makes variational problems NP-hard, and
thus convex relaxations of ℓ0 are considered in practice. The first one to mention
is the ℓ1 penalty, used in compressed sensing [90], which leads to the minimisation
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of an ℓ2 − ℓ1 functional in the discrete setting [211]. To get rid of instabilities due
to fine discretisations and to enhance the reconstruction precision without having
to consider fine grids, the prior information on the sparsity of the signal can be
characterised alternatively in the space of Radon measures M(Ω), where a sparse
signal µ ∈ M(Ω) can be modelled as a weighted sum of Dirac deltas, i.e.

µ =
N∑
i=1

aiδxi
, ai ∈ R, xi ∈ Ω.

Sparse inverse problems in the space of Radon measures have been initially proposed
in [39, 49, 72, 96] and studied further in many other works, see for example [34, 74,
85, 184]. In particular, in [39], the author establishes a framework for sparse inverse
problems in general spaces of Radon measures and studies these spaces both as
the solution space for linear inverse problems as well as the underlying space for
numerical algorithms. The following variational model is therein proposed:

argmin
µ∈M(Ω)

1
2∥Tµ− y∥2 + λ|µ|(Ω), (1.16)

where the penalty |µ|(Ω) is the total-variation (TV) norm in the space of Radon
measures M(Ω), which is a Banach space endowed with such norm. The TV norm
is a generalisation of the ℓ1 one to the continuous setting, and, thus, (1.16) is con-
sidered an extension of the ℓ2 − ℓ1 model in the discrete setting. The framework of
inverse problems in the space of Radon measures is often called off-the-grid, since
the positions xi of the Diracs can be anywhere in the domain Ω, which does not need
to be discretised, as it happens when solving inverse problems in standard scenarios.

From an optimisation point of view, this setting is particularly challenging be-
cause M(Ω) is a non-reflexive Banach space, and thus the scalar product and Riesz
theorem’s isomorphism are not available.

1.5 Optimisation methods
In the framework of variational models, the problem then becomes finding a

minimiser of a structured functional as in (1.12), or of a smooth function as in (1.4).
In this section we refer to [54] and report some important definitions and op-

timisation algorithms used to tackle this minimisation problems in Hilbert spaces
X .

Let f : X → R ∪ {±∞} be an extended real valued function. It is said to be
convex if and only if

x1, x2 ∈ dom(f) := {x ∈ X | f(x) < +∞}
⇓

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2) for all t ∈ [0, 1]. (1.17)
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If the above inequality is strict whenever x1 ̸= x2 and 0 < t < 1, f is strictly convex.
The function f is proper if it is not identically +∞, i.e. there exists some x ∈ X

such that f(x) ̸= +∞, and it is nowhere −∞, i.e. for all x ∈ X we have f(x) ̸= −∞.
In this case, f is convex if (1.17) holds for all x1, x2 ∈ X .

The function f is lower semi-continuous (l.s.c.) if for all x ∈ X

if xk → x ⇒ f(x) ≤ lim inf
k→+∞

f(xk).

A well-known example of proper, convex and l.s.c. function is the indicator function
of a convex set C ⊆ X

1C(x) :=
0 x ∈ C

+∞ x ̸∈ C
.

It is really important in the framework of variational methods for inverse problems
as it allows to easily model convex constraints, such as positivity constraints.

The set of f : X → R ∪ {+∞} proper, convex and l.s.c. extended real-valued
functions is often denoted by Γ0(X ).

For f ∈ Γ0(X ), we recall the definition of subdifferential of f at x ∈ X :

∂f(x) := {p ∈ X | f(x̃) ≥ f(x) + ⟨p, x̃− x⟩ for all x̃ ∈ X }.

Any p ∈ ∂f(x) is called subgradient. The above definition allows to generalise
Fermat’s stationary conditions for differentiable functions. Indeed, for non-smooth
functions in Γ0(X ) the following holds:

x ∈ X is a global minimiser of f if and only if 0 ∈ ∂f(x).

A function f is strongly convex with parameter µ if x 7→ f(x) − µ
2 ∥x∥2 is con-

vex. It is coercive if for all sequences (xk)k∈N such that ∥xk∥ → +∞, we have
limk→+∞ f(xk) = +∞.

1.5.1 Proximal operator and resolvent
A crucial role in optimisation is played by the so-called proximal operator [180]

or proximal map of a convex function. Given f ∈ Γ0(X ), it is defined as follows

proxf (x) := argmin
u∈X

1
2∥x− u∥2

X + f(u). (1.18)

It is well-defined since the functional given by the sum of f and the squared norm
term is strongly convex and proper, and thus has a unique minimiser. Subdifferential
calculus computations [194] shows that

y = proxf (x) ⇔ 0 ∈ ∂f(y) + (y − x) ⇔ y = (I + ∂f)−1(x), (1.19)

which shows that, from an operator perspective, y = proxf (x) is the resolvent of the
maximal monotone operator ∂f at x [163].
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1.5.2 Smooth optimisation methods
A first important class of optimisation methods is the family of smooth first-

order methods,which are used to find a minimiser of a smooth convex function f ,
that is

argmin
x∈X

f(x). (1.20)

The most straightforward algorithm to solve (1.20) numerically is a gradient descent
scheme

x0 ∈ X , xk+1 = xk − τ∇f(xk), (1.21)

with a fixed step-size τ > 0 such that 0 < τL < 2 with L being the Lipschitz
constant of ∇f(x), that is

∥∇f(x1) − ∇f(x2)∥X ≤ L∥x1 − x2∥X ∀x1, x2 ∈ X .

With τ < 2
L

, the sequence
(
f(xk)

)
k∈N

is strictly decreasing, and, if in addition f is
coercive it is possible to prove that f(xk) converges to a critical value of f . Moreover,
in [173] the convergence rate in function values for the iterative scheme defined by
(1.21) with τ < 2/L is proved and reads as

f(xk) − f(x∗) ≤ 1
2τk∥x∗ − x0∥2, (1.22)

where x∗ is any minimiser of f .
The rate of convergence (1.22) of order O(1/k) is sub-optimal and can be im-

proved by considering Nesterov’s acceleration [172]

tk+1 =
1 +

√
1 + 4t2k
2

yk = xk + tk − 1
tk+1

(xk − xk−1)

xk+1 = yk − τ∇f(yk).

In this scenario, the rate of convergence with τ < 1/L reads

f(xk) − f(x∗) ≤ 2
τ(k + 1)2 ∥x∗ − x0∥2,

that is of order O(1/k2). Such rate is interesting as it almost matches (up to
constants) the worst case error bound of first order methods [172]. For more general
results, see [107, 197].

1.5.3 Forward-backward splitting
Consider now minimisation problems in the more general form

argmin
x∈X

f(x) + g(x), (1.23)
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where g ∈ Γ0(X ) is possibly non-smooth and f ∈ Γ0(X ) is a smooth function with
L-Lipschiz gradient. To deal with such a minimisation problem, a possibility is
to consider the forward-backward splitting algorithm, also called proximal gradient
algorithm. They have been studied in a vast number of works, see for instance
[13, 56, 63, 65, 155, 181]. The main idea of the forward-backward splitting scheme
is to combine an explicit gradient descent step in the smooth part f , and an implicit
step of descent on g. The iterations are defined by

x0 ∈ X , xk+1 = proxτg
(
xk − τ∇f(xk)

)
(1.24)

with τ < 2/L. Using (1.19), iteration (1.24) can be equivalently defined as

xk+1 = argmin
x∈X

(I + τ∂g)−1(I − τk∇f)(xk). (1.25)

Forward-backward splitting has a rate of convergence of O(1/k). Similarly as in the
case of gradient step, a rate of convergence of order O(1/k2) has been proved in [13]
with τ < 1/L for the modified scheme given by

tk+1 =
1 +

√
1 + 4t2k
2

yk = xk + tk − 1
tk+1

(xk − xk−1)

xk+1 = proxτg
(
yk − τ∇f(yk)

)
.

This method is known with the name of FISTA, which stands for Fast Iterative
Soft Thresholding Algorithm, being a fast version of ISTA, the forward-backward
splitting (1.24) with g(·) = ∥ · ∥1, and the soft-thresholding being the proximal
operator of ∥ · ∥1.

Several other variants with/without accelerating strategies have been proposed.
For instance in [173], the strong-convexity of the functions f and g is taken into
account to improve convergence. In [217], strategies for inexact proximal computa-
tions are studied, since an explicit expression of the proximal operator is not always
availbale. In [45], an adaptive backtracking strategy for the choice of the step-size
of the algorithm studied in [55] is presented. In [191], the authors present a version
of FISTA for strongly convex functions, with inexact proximal computations, the
adaptive backtracking strategy proposed in [55], and a scaled metric is used in the
definition of the proximal map. In [148], we applied this algorithm for some micro-
scopy imaging problems. Proximal algorithms can be used in a myriad of situations.
Extension of proximal algorithms to multicomponent signal and image recovery
problems has been proposed in [42] and applied, for instance, to multispectral im-
age denoising, and image decomposition into texture and geometry components.
Proximal algorithms have also been defined to solve the minimisation problems of
more than two terms that, i.e,. arise when regularisation including several terms
not necessarily acting in the same domain is considered to deal with complex noise
models [185].
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1.5.4 Mirror descent
A possible extension of proximal descent methods consist in replacing the dis-

tance induced by the L2 norm in the definition of proximal operator (1.18) with
other distances. There can be many reasons for this, such as the need to define a
distance that blows up when approaching certain parts of the domain (and acts as
a barrier or constraint), or the fact that the proximity operator of a function is not
easily computable according to the standard definition (1.18) but it is simple in some
non-quadratic metrics. Another possible reason, which we will investigate further
in this thesis, is that the ambient space X is neither Hilbertian nor Euclidean [171].

By using a different metric in the definition of (1.18), it is possible to character-
ise mirror descent, an algorithm suited for the minimisation problem (1.20). The
distance function considered in mirror descent algorithms is the Bregman distance.
Given a convex and smooth function h : X → R, the Bregman distance Bh

X between
x, u ∈ X is defined by

Bh
X (u, x) = h(u) −

(
h(x) + ⟨∇h(x), u− x⟩

)
, ∀u ∈ X .

The iterative scheme of mirror descent is defined in terms of the Bregman distance
by

x0 ∈ X , xk+1 ∈ argmin
x∈X

Bh
X (x, xk) + ⟨τ∇f(xk), x− xk⟩. (1.26)

Iteration (1.26) can be equivalently formulated as

xk+1 ∈ argmin
x∈X

Bh
X (x, xk) + f(xk) + ⟨τ∇f(xk), x− xk⟩ (1.27)

0 = ∇h(xk+1) − ∇h(xk) + τ∇f(xk)
∇h(xk+1) = ∇h(xk) − τ∇f(xk). (1.28)

From (1.27), we see that xk+1 corresponds to a minimiser of the linear approximation
of f at xk summed to the Bregman distance between the two points. Basically,
mirror descent replaces the standard gradient descent (1.21) with (1.28), an unusual
gradient step.

We refer the reader to the monograph [14] for many possible variants of mirror
descent strategies, accompanied by their convergence rates.

1.6 Outline and contribution
In this thesis, we explore advanced smooth and non-smooth optimisation al-

gorithms for imaging inverse problems in non-standard Banach spaces, which prove
to be an effective and valid setting for the resolution of inverse problems. This thesis
consists of two parts, corresponding to the two main different topics of research which
has been investigated by the author during his Ph.D. studies, carried out as part of
a joint PhD program between Università di Genova (Dipartimento di Matematica)
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and Université Côte d’Azur (I3S Lab.-CNRS-INRIA (Morphéme team)) under the
supervision of Luca Calatroni (UniCA) and Claudio Estatico (UniGE).

This thesis is based on the following publications:

[147] Stochastic Gradient Descent for Linear Inverse Problems in Variable Exponent
Lebesgue Spaces. Lazzaretti M., Kereta Z., Estatico C., Calatroni L. In Scale
Space and Variational Methods in Computer Vision. SSVM 2023. Lecture
Notes in Computer Science, vol 14009. Springer, Cham. (2023)

[31] Dual descent regularization algorithms in variable exponent Lebesgue spaces
for imaging. Bonino B., Estatico C., Lazzaretti M.Springer Numerical Al-
gorithms Vol. 92. (2023)

[145] Modular-proximal gradient algorithms in variable exponent Lebesgue spaces.
Lazzaretti M., Calatroni L., Estatico C.SIAM Journal on Scientific Computing
Vol.44, Iss.6. (2022)

[146] Off-the-grid regularisation for Poisson inverse problems. Lazzaretti M., Es-
tatico C., Melero A., Calatroni L. Submitted to Computational Optimization
and Applications, Springer.

Other publications, not included in this thesis, are:

[148] A Scaled and Adaptive FISTA Algorithm for Signal-Dependent Sparse Image
Super-Resolution Problems. Lazzaretti M., Rebegoldi S., Calatroni L., Es-
tatico C. In Scale Space and Variational Methods in Computer Vision - 8th
International Conference, SSVM 2021. Lecture Notes in Computer Science,
vol 12679. Springer, Cham. (2021)

[144] Weighted-CEL0 sparse regularisation for molecule localisation in super-resolution
microscopy with Poisson data. Lazzaretti M., Calatroni L., Estatico C. In 18th
IEEE International Symposium on Biomedical Imaging, ISBI 2021. (2021)

[143] A continuous, non-convex and sparse super-resolution approach for fluores-
cence microscopy data with Poisson noise. Lazzaretti M., Calatroni L., Es-
tatico C. In 21st International Conference on Computational Science and its
Applications, ICCSA 2021. IEEE CPS. (2021)

The first part of this thesis focuses on optimisation strategies in general re-
flexive Banach spaces and proposes smooth and non-smooth algorithms in variable
exponent Lebesgue spaces. The peculiarity of these spaces requires alternative al-
gorithmic strategies, defined in terms of space specific functionals. The second part
considers the non-reflexive Banach space of Radon measures as solution space for
off-the-grid sparse imaging inverse problems, which are usually formulated with a
Gaussian noise assumption. Here, a Poisson noise modelling is considered and a new
variational formulation suited to this noise setting is studied both analytically and
numerically.
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Part I. Modular-based optimisation in variable exponents Lebesgue spaces.
This part is divided into three chapters. Chapter 2 gives a general introduction on
variable exponent Lebesgue spaces Lp(·)(Ω), reviewing the main definitions and prop-
erties and the role of the space-variant exponent p(·). A particular interest is given
to the modular functions, since they are used to define the norm in Lp(·)(Ω), and
hence the space itself. The dual space of Lp(·)(Ω) is analysed, underlying the differ-
ences with respect to the constant exponent case, and, in particular, an expression
of the duality mappings in these spaces is explicitly computed. Our contribution is
the proposal of a modular-based alternative to duality maps, motivated by the fact
that duality maps in Lp(·)(Ω) have some undesirable properties, i.e. they are not
separable. A study on the separability of the modular concludes the chapter.

In Chapter 3, we present a review of gradient-based minimisation strategies
in Banach spaces, namely primal and dual (Landweber) methods. We show how
they can be equivalently formulated in terms of suitably defined proximal oper-
ators in Banach spaces, making a link between regularisation theory and convex
optimisation. These algorithms, though, cannot be easily implemented in a variable
exponent Lebesgue setting, due to the heavy-computations required by the non-
separable norm and duality maps. Thus, we propose to replace the role played by
duality maps by the modular-based alternative, analysed in Chapter 2, and we define
a novel modular-based gradient descent algorithm in Lp(·)(Ω). Numerical tests on
simple image deblurring show the advantages of the proposed method with respect
to the standard Landweber method for Banach spaces adapted to this scenario in
terms of computational times. Another contribution in this chapter is the definition
of a stochastic variant of the algorithm described above, which is again based on the
modular, and it reduces significantly computational costs by Kaczmarz-type split-
ting of the problem. We validate the proposed methods with numerical experiments
on CT reconstruction, both on simulated and real data.

Chapter 4 focuses on non-smooth optimisation in Lp(·)(Ω). We first review
forward-backward strategies in general Banach spaces, and then outline the reasons
why they are hard to use in our variable exponent Lebesgue spaces modelling. We
then propose two different modular-based proximal gradient algorithms and prove
their convergence in function values, with rates. Exemplar 1D and 2D numerical
tests prove that the spatial flexibility of Lp(·)(Ω) spaces is particularly advantage-
ous in addressing sparsity and heterogeneous signal/noise statistics, while remaining
efficient and stable from an optimisation perspective.

Part II. Sparse optimisation in the Banach space of Radon measures
with Poisson noise. The second part of this thesis addresses optimisation in the
space of Radon measures, a non-reflexive Banach space. This setting is particularly
interesting for the so-called sparse off-the-grid methods in imaging. In Chapter 5,
we review the main notions about the space of Radon measures M(Ω). We recall the
definition of Total-Variation norm of a measure and of its subdifferential, and present
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the off-the-grid inverse problem formulation. In particular, we analyse the BLASSO
variational problem, a generalisation of LASSO to this continuous setting, that is
particularly suited to retrieve sparse signals, modelled in M(Ω) as finite weighted
sum of Diracs, under a Gaussian noise hypothesis. We conclude this chapter by
reviewing some of the standard algorithms used for the resolution of the BLASSO
problem, with a focus on Frank-Wolfe and Sliding Frank-Wolfe algorithms.

Our contribution for this second part of the thesis is outlined in Chapter 6.
Since many off-the-grid methods are applied in microscopy imaging problems, as-
suming that the noise distribution is Gaussian is often unrealistic, due to the photon
counting nature of the noise in this application. A more realistic assumption is Pois-
son noise, for which, following the Bayesian perspective, the Kullback-Leibler data
term is the natural choice. We propose a novel variational model that couples the
Kullback-Leibler divergence with the TV norm of measures and a non-negativity
constraint, and provide a detailed theoretical analysis of its optimality conditions
obtained by studying the corresponding dual problem. For its numerical resolution,
we propose to consider the Sliding Frank-Wolfe algorithm, as for BLASSO, which is,
however, quite sensitive to the choice of the regularisation parameter λ. To mitigate
this undesirable effect, we propose an homotopy strategy for its automatic tuning.
We validate the proposed Poisson off-the-grid model and compare it with BLASSO
with several simulated numerical experiments, showing the effectiveness of the ho-
motopy strategy considered. We conclude by showing the reconstruction of a real
3D fluorescence microscopy data obtained with the proposed Poisson off-the-grid
model and the homotopy algorithm.
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In this chapter, the main definitions and properties about Lebesgue spaces with a
variable exponent are introduced, with a particular focus on their norm and mod-
ular functions. In Section 2.2, the dual space of Lp(·)(Ω) is discussed alongside
the definition of duality mappings. In Section 2.3, we propose a modular-based
alternative to duality mappings and study some of its properties, making a com-
parison with the standard definition.

2.1 Modular and Luxemburg norm . . . . . . . . . . . . . . . . . . . . . 30
2.1.1 Inequalities between norm and modular . . . . . . . . . . . . . 32
2.1.2 Properties of Lp(·)(Ω) and immersions . . . . . . . . . . . . . . 35

2.2 Dual space and duality mappings . . . . . . . . . . . . . . . . . . . . 36
2.2.1 Definition of dual and associate space . . . . . . . . . . . . . . 36
2.2.2 Duality mappings . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.2.1 Duality mappings in Lp(·)(Ω) . . . . . . . . . . . . . 38
2.2.2.2 Inverse of duality mappings . . . . . . . . . . . . . . 42

2.3 Modular-based alternative to duality maps . . . . . . . . . . . . . . . 42
2.3.1 Separability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Final discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Let Ω ⊆ Rd, with d ∈ N, d ≥ 1, be a Lebesgue measurable subset with positive
measure. In classical Lebesgue spaces Lp(Ω) with a constant exponent p ∈ [1,+∞),
for any Lebesgue measurable function x : Ω −→ R ∪ {+∞}, its norm is defined as

∥x∥p =
( ∫

Ω
|x(t)|pdt

)1/p
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and, consequently, the Lebesgue space Lp(Ω) is naturally defined as the set of Le-
besgue measurable functions with finite p-norm:

x ∈ Lp(Ω) ⇐⇒ ∥x∥p < +∞.

In variable exponent Lebesgue spaces, as the name itself suggests, instead of a
constant exponent p ∈ [1,+∞), a point-wise variable one is considered to measure
the norm of elements and, hence, in the definition of the spaces. Any Lebesgue
measurable function p(·) : Ω −→ [1,+∞] can thus be taken as variable exponent.
When considering a point-wise variable exponent p(·), the definition of the norm is
not straightforward. Indeed, comparing to the above classical definition, it is only
possible to compute the quantity ∫

Ω
|x(t)|p(t)dt

but it is not clear which specific value of p(·) should be used to compute its radical.
The computation of the radical, if possible, is crucial for the homogeneity property
of the norm. In Lp(·)(Ω) spaces, an alternative way to ensure homogeneity has to be
considered. For this reason, the definition of norm in Lp(·)(Ω) spaces has to be given
in a different way; for that it is necessary to first introduce the so-called modular
functions.

2.1 Modular and Luxemburg norm
Let the set of all possible exponents be

P(Ω) := {p(·) : Ω −→ [1,+∞] | p(·) is Lebesgue measurable}.

Given an exponent function p(·) ∈ P(Ω), the essential infimum and essential su-
premum of p(·) are denoted by

p− := ess inf
u∈Ω

p(u) and p+ := ess sup
u∈Ω

p(u).

Throughout this work, the following assumptions on the exponent are considered:

p− > 1 and p+ < +∞. (2.1)

As better specified in the next sections, under these hypotheses Lp(·)(Ω) spaces
satisfy important properties of Banach spaces. Moreover, if the set {t ∈ Ω| p(t) =
+∞} has positive measure, the definition of norm in Lp(·)(Ω) spaces has a more
complicated expression than the one provided in this chapter. Since in practical
applications one always has p+ < +∞, we decided to limit the discussion on Lp(·)(Ω)
spaces to the hypothesis (2.1).

For the general case, see [68, 77] where a comprehensive dissertation about these
spaces is carried out.
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The characterisation of Lp(·)(Ω) spaces is based on the key concept of modular
function, whose definition is now reported. Let F(Ω) be the set of all Lebesgue
measurable functions x : Ω −→ R ∪ {+∞}.

Definition 2.1.1. Given an exponent p(·) ∈ P(Ω) with p+ < +∞, the functional
ρp(·) : F(Ω) −→ [0,+∞] defined by

ρp(·)(x) =
∫

Ω
|x(t)|p(t)dt (2.2)

is called modular associated to the exponent function p(·). An alternative definition
of modular function consists in considering ρ̄p(·) : F(Ω) −→ [0,+∞] defined by

ρ̄p(·)(x) =
∫

Ω

1
p(t) |x(t)|p(t)dt, (2.3)

called normalised modular.

We will equivalently refer to (2.2) and (2.3) as modular functions, as needed.

Proposition 2.1.1. [68, Proposition 2.7] Let p(·) ∈ P(Ω) and x, y ∈ F(Ω). The
following properties of the modular function ρp(·)(·) holds true:

• For all x ∈ F(Ω), ρp(·)(x) ≥ 0 and ρp(·)(x) = ρp(·)(|x|).

• ρp(·)(x) = 0 if and only if x(t) = 0 for almost every t ∈ Ω.

• If ρp(·)(x) < +∞, then |x(t)| < +∞ for almost every t ∈ Ω.

• ρp(·) is convex, that is

ρp(·)(αx+ (1 − α)y) ≤ αρp(·)(x) + (1 − α)ρp(·)(y), 0 ≤ α ≤ 1.

• ρp(·) is order preserving, i.e.

|x(t)| ≥ |y(t)| a.e. ⇒ ρp(·)(x) ≥ ρp(·)(y).

As a consequence of the convexity property, it can be easily shown that given a
scalar α > 0, for any x ∈ F(Ω):

• if α > 1, then αρp(·)(x) ≤ ρp(·)(αx);

• if 0 < α < 1, then ρp(·)(αx) ≤ αρp(·)(x).

The above consideration shows that the modular does not satisfy the homogeneity
property. Moreover, it is important to observe that the modular ρp(·) does not satisfy
the triangle inequality either but instead it satisfies the following substitute. For
any x, y ∈ F(Ω):

ρp(·)(x+ y) ≤ 2p+−1
(
ρp(·)(x) + ρp(·)(y)

)
.
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Chapter 2. Variable Exponent Lebesgue Spaces

Notice that the modular ρp(·)(x) is the generalisation of the p-power of the norm
∥x∥pp =

∫
Ω |x(t)|pdt in Lp(Ω) with constant exponent p ∈ (1,+∞). Similarly, the

modular ρ̄p(·)(x) generalises the quantity 1
p
∥x∥pp. Modular functions are used to

characterise the variable exponent space Lp(·)(Ω) and to define its norm, in the
general framework of the Luxemburg norms of Orlicz spaces [77].

Definition 2.1.2. The space Lp(·)(Ω) is the set of functions x ∈ F(Ω) such that

ρp(·)

(
x

λ

)
≤ 1,

for some λ > 0. For any x ∈ Lp(·)(Ω), we define ∥ · ∥Lp(·) : Lp(·)(Ω) −→ R as

∥x∥Lp(·) := inf
{
λ > 0 : ρp(·)

(
x

λ

)
≤ 1

}
. (2.4)

Theorem 2.1.1. [68, Theorem 2.17] The function ∥ · ∥Lp(·) defined in (2.4) is a
norm on the Lp(·)(Ω). Moreover, the space Lp(·)(Ω) endowed with such norm, that is
the couple

(
Lp(·)(Ω), ∥ · ∥Lp(·)

)
, is a Banach space.

By extending the definition of the function ∥ · ∥Lp(·) to any Lebesgue measurable
function x ∈ F(Ω) as follows

∥x∥Lp(·) = +∞ if ρp(·)

(
x

λ

)
> 1 for any λ > 0,

we retrieve the standard characterisation of Lebesgue spaces in terms of the norm,
that is:

x ∈ Lp(·)(Ω) ⇐⇒ ∥x∥Lp(·) < +∞.

The norm defined in (2.4) is often referred to as Luxemburg norm, after W. A. J.
Luxemburg, who studied these concepts in his PhD thesis [157] in 1955. It can be
considered as a more general definition of norm. Indeed, it is possible to retrieve the
classical definition of norm ∥x∥p in Lebesgue spaces Lp(Ω) with a constant exponent
p ∈ [1,+∞). If p(·) ≡ p ∈ [1,+∞), for any λ > 0

ρp(·)

(
x

λ

)
= ρp

(
x

λ

)
= 1
λp
ρp(x) = 1

λp
∥x∥pp,

so that the infimum in (2.4) is equal to ∥x∥p.

2.1.1 Inequalities between norm and modular
It may seem that the Luxemburg norm and the modular are somewhat inter-

changeable but, if it is true to a certain extent that they have similar properties, it
is also important to point out that they are truly different objects.
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2.1. Modular and Luxemburg norm

ρp(·)(x) ρp(·)(x)1/p− ρp(·)(x)1/p+ ∥x∥Lp(·) ∥x∥p− ∥x∥p+ p̃(x)

Fig. 1.6a 1.3365 0.5635 0.0885 0.1275 0.6125 0.0864 · 104 1.3238
Fig. 1.6b 1.2235 0.5200 0.0831 0.1325 0.59274 0.0785 · 104 1.3092

Fig. 1.7a 0.0570 0.0739 0.1292 0.1152 0.4544 0.0844 1.3255
Fig. 1.7b 0.0635 0.0816 0.1395 0.1114 0.3962 0.0565 1.2561

Table 2.1: Comparison between the values of Luxembourg norm, modular and clas-
sical p-norms for x being the image in Figures 1.6a, 1.6b and Figures 1.7a, 1.7b.

A first very important difference is that the modular function does not satisfy
homogeneity property, i.e. ρp(·)(αx) ̸= αρp(·)(x) for any α ∈ R, that is satisfied
by the norm ∥αx∥Lp(·) = |α|∥x∥Lp(·) , as expected. In the classical case of constant
Lebesgue spaces Lp(Ω), the computation of the p-radical of the modular ρp(·) ensures
that the homogeneity property is satisfied by the p-norm. With a variable exponent,
such computation is obviously not possible and in turn the one-dimensional (1D)
minimisation problem (2.4) has to be solved. However, the Luxemburg norm is
bounded by the p− and p+ radicals of the modular.

Lemma 2.1.1. [77, Lemma 3.2.5, Lemma 3.4.2] Let p(·) ∈ P(Ω) with p+ < +∞.

1. If ∥x∥Lp(·) > 1, then ρp(·)(x)1/p+ ≤ ∥x∥Lp(·) ≤ ρp(·)(x)1/p− .

2. If 0 < ∥x∥Lp(·) ≤ 1, then ρp(·)(x)1/p− ≤ ∥x∥Lp(·) ≤ ρp(·)(x)1/p+ .

At a certain extent, the norm can be viewed as p̃(x)-radical (which depends on
x) of the modular with p− ≤ p̃(x) ≤ p+, defined by

p̃(x) =
log

(
ρp(·)(x)

)
log

(
∥x∥Lp(·)

) ,
so that ∥x∥Lp(·) =

(
ρp(·)

)1/p̃(x)
.

As an example of Luxemburg norm computation, we report in Table 2.1 the
values of the variable exponent norm for the ground truths and acquired images
of Figures 2.1 and 2.2. In particular, the variable exponents used are shown in
Figure 2.1c and Figure 2.2c respectively. The reason why they resemble the acquired
solution will be explained in Chapter 3, Section 3.3.4 and it is not relevant for the
comparison between norm and modular computation here discussed. In Table 2.1,
it is also shown a comparison with the classical p-norms for p = p− = 1.1 and
p = p+ = 1.4, and with the modular and its p− and p+ radicals. Moreover, the value
p̃(x) is reported for the tested images. It is important to consider the computational
time needed for the computation of the Luxemburg norm. For the image in Figures
2.1a and 2.1b the CPU time amounts to 4.2s and 9.1s respectively, while for the
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Chapter 2. Variable Exponent Lebesgue Spaces

(a) Ground truth (b) Data (c) p(·)

Figure 2.1: Test image: ground truth, acquired data, variable exponent.

(a) Ground truth (b) Data (c) p(·) for Fig.1.7

Figure 2.2: Satellite image: ground truth, acquired data, variable exponent.

satellite images in Figures 2.2a and 2.2b the CPU time is 2.2s and 10.4s respectively.
On the other hand, the computation of the modular is very fast and amounts to
almost 0s of CPU time.

Another property that is worth mentioning is the fact that the unit ball computed
with respect to the Lp(·)(Ω) norm is equivalent to the unit ball computed with the
modular ρp(·).

Proposition 2.1.2. [77, Lemma 2.1.14] Let x ∈ Lp(·)(Ω) with p(·) ∈ P(Ω). Then:

• ∥x∥Lp(·) < 1 and ρp(·)(x) < 1 are equivalent.

• ∥x∥Lp(·) = 1 and ρp(·)(x) = 1 are equivalent.

Moreover, as one can deduce from Lemma 2.1.1, the unit ball splits the space
into two regions, one where the norm is smaller than the modular and the other
where the vice-versa holds.

Proposition 2.1.3. [77, Lemma 3.2.4] Let x ∈ Lp(·)(Ω) with p(·) ∈ P(Ω). Then:

1. If ∥x∥Lp(·) ≤ 1, then ρp(·)(x) ≤ ∥x∥Lp(·).

2. If ∥x∥Lp(·) > 1, then ρp(·)(x) ≥ ∥x∥Lp(·).
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2.1. Modular and Luxemburg norm

2.1.2 Properties of Lp(·)(Ω) and immersions

Some important properties about Lp(·)(Ω) spaces are reported here. It is import-
ant to stress that the hypothesis made on the exponent function (2.1) are funda-
mental to prove the following properties for Lp(·)(Ω).

Recall that for a Banach space X , the notation ⟨x∗, x⟩X ∗×X , or simply ⟨x∗, x⟩, is
used to indicate the duality product, defined as

⟨x∗, x⟩X ∗×X = x∗(x), ∀x∗ ∈ X ∗, x ∈ X .

It can be considered as a generalisation of the scalar product in Hilbert spaces.
Moreover, a Banach space X is:

i) reflexive if (X ∗)∗ = X ;

ii) uniformly convex if for any ε ∈ (0, 2], the inequalities ∥x∥X ≤ 1, ∥y∥X ≤ 1 and
∥x−y∥X ≥ ε imply there exists a δ = δ(ε) > 0 such that ∥(x+y)/2∥X ≤ 1−δ;

iii) strictly convex if for any x, y ∈ X such that ∥x∥X = ∥y∥X = 1 and x ̸= y there
holds ∥(x+ y)/2∥X < 1;

iv) smooth if, for every x ̸= 0, there exists an unique x∗ ∈ X ∗ such that ∥x∗∥X ∗ = 1
and ⟨x∗, x⟩ = ∥x∥X .

Theorem 2.1.2. [77, Theorem 3.4.7] Given p(·) such that 1 < p− ≤ p+ < +∞,
then Lp(·)(Ω) is reflexive.

Theorem 2.1.3. [77, Theorem 3.4.9] Given p(·) such that 1 < p− ≤ p+ < +∞,
then Lp(·)(Ω) is uniformly convex, and hence strictly convex.

Theorem 2.1.4. [79, Lemma 1] Given p(·) such that 1 < p− ≤ p+ < +∞, then
Lp(·)(Ω) is smooth.

As a last result of this section, we focus on immersions between any two Lebesgue
spaces with variable exponents. To prove the following, one needs the boundedness
of the domain Ω.

Proposition 2.1.4. [68, Corollary 2.48] Given p(·) ∈ P(Ω) and q(·) ∈ P(Ω), with
p+ < +∞ and q+ < +∞, if the domain Ω is bounded, then the following natural
immersion holds

Lq(·)(Ω) ↪→ Lp(·)(Ω)
if and only if

p(t) ≤ q(t) a.e. in Ω.
Moreover, it holds ∥x∥Lp(·) ≤ (1 + |Ω|) ∥x∥Lq(·) being |Ω| < +∞ the finite Lebesgue
measure of the bounded domain.

In particular, for any p(·) ∈ P(Ω) with p+ < +∞ the following inclusions follow
from the previous proposition:

Lp+(Ω) ⊆ Lp(·)(Ω) ⊆ Lp−(Ω).
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Chapter 2. Variable Exponent Lebesgue Spaces

2.2 Dual space and duality mappings
In this section, the definition of dual spaces in the context of variable expo-

nent Lebesgue spaces is analysed and a definition of duality mapping in Lp(·)(Ω)
spaces is provided, highlighting the differences between variable and constant expo-
nent spaces. In particular, differing from the constant exponent case, an isometric
isomorphism between (Lp(·)(Ω))∗ and Lp

′(·)(Ω) does not hold true in general.
For a comprehensive review of these arguments, see [77].

2.2.1 Definition of dual and associate space

Definition 2.2.1. Let G : Lp(·)(Ω) −→ R be a linear functional. G is bounded if

sup
u∈Lp(·)(Ω),∥u∥

Lp(·) ≤1
|G(u)| < +∞.

The dual space of Lp(·)(Ω) can thus be defined as the set of linear and bounded
functionals from Lp(·)(Ω) to R:

(Lp(·)(Ω))∗ = {G : Lp(·)(Ω) −→ R : G is linear and bounded} ,

which is a Banach space with the norm

∥G∥(Lp(·)(Ω))∗ := sup
u∈Lp(·)(Ω),∥u∥

Lp(·) ≤1
|G(u)|.

For 1 < p− ≤ p+ < +∞, the Hölder conjugate of p(·) is a Lebesgue measurable
function p′(·) ∈ P(Ω) such that

1
p(t) + 1

p′(t) = 1 a.e. in Ω. (2.5)

With the notation p′ the conjugate of a constant exponent p will consistently be
denoted. For a variable exponent p(·), the operations of taking the infimum and
supremum do not commute with forming the conjugate exponent. In fact, the
following relation holds:(

p′(·)
)

−
= (p+)′,

(
p′(·)

)
+

= (p−)′. (2.6)

To avoid ambiguous expressions, omitting one set of parentheses, the following nota-
tion will be adopted:

(
p′(·)

)
−

= (p′)− and
(
p′(·)

)
+

= (p′)+.
With a strong formal analogy to the constant exponent case, for any z ∈ Lp

′(·)(Ω),
it can be shown, see [77], that there exists a unique Gz ∈ (Lp(·)(Ω))∗ such that

Gz(u) =
∫

Ω
z(t)u(t)dt ∀ u ∈ Lp(·)(Ω). (2.7)

Thus, the mapping Gz ∈ (Lp(·)(Ω))∗ 7−→ z ∈ Lp
′(·)(Ω) is injective. In the following

the duality pairing notation Gz(x) = ⟨z, x⟩ or Gz(x) = ⟨Gz, x⟩ will be thus adopted.
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2.2. Dual space and duality mappings

Definition 2.2.2. [77, Definition 2.7.1] The associate space of Lp(·)(Ω), denoted by
A(Lp′(·)(Ω)), is the space of functions z ∈ Lp

′(·)(Ω) such that

sup
{∫

Ω
|z(t)||u(t)|dt : u ∈ Lp(·)(Ω), ∥u∥Lp(·) ≤ 1

}
< +∞. (2.8)

The function ∥ · ∥′
p′(·) : A(Lp′(·)(Ω)) −→ R defined by

∥z∥′
p′(·) := sup

{∫
Ω

|z(t)||u(t)|dt : u ∈ Lp(·)(Ω), ∥u∥Lp(·) ≤ 1
}

is a norm on A(Lp′(·)(Ω)).

First of all, observe that A(Lp′(·)(Ω)) might happen to be a proper subset of
Lp

′(·)(Ω). The supremum in (2.8) is finite if and only if the linear operator Gz

is bounded according to Definition 2.2.1. Moreover, the operator norm of Gz ∈
(Lp(·)(Ω))∗ and the associate norm of z ∈ A(Lp′(·)(Ω)) coincides:

∥Gz∥(Lp(·)(Ω))∗ = sup
{

|Gz(u)| : u ∈ Lp(·)(Ω), ∥u∥Lp(·) ≤ 1
}

=

= sup
{∫

Ω
|z(t)||u(t)|dt : u ∈ Lp(·)(Ω), ∥u∥Lp(·) ≤ 1

}
= ∥z∥′

p′(·).

(2.9)

Thus, there exists an isometric embedding A(Lp′(·)(Ω)) ↪→ (Lp(·)(Ω))∗ between the
associate space and the dual space of Lp(·)(Ω). However, the following proposition
combined with (2.9) shows that Lp′(·)(Ω) and (Lp(·)(Ω))∗ are not isometrically iso-
morphic. Due to this, the expression of the inverse of duality mappings remains
unknown, as it will be better explained in the following section.

Proposition 2.2.1. [77, Corollary 3.2.14] For all z ∈ A(Lp′(·)(Ω)), there holds

1
2∥z∥Lp′(·) ≤ ∥z∥′

p′(·) ≤ 2∥z∥Lp′(·) ,

and the bounds are optimal.

2.2.2 Duality mappings

Before analysing the concept of duality mappings in Lp(·)(Ω) spaces, the general
definition of duality mapping for a Banach space X is here reported.

Definition 2.2.3. [60] Let X be a Banach space and let a scalar r > 1. Then the
duality map Jr

X with gauge function t 7→ tr−1 is the operator Jr
X : X → 2X ∗ such

that

Jr
X (x) =

{
x∗ ∈ X ∗ | x∗(x) = ⟨x∗, x⟩ = ∥x∥X ∥x∗∥X ∗ , ∥x∗∥X ∗ = ∥x∥r−1

X

}
∀x ∈ X .
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In general, duality maps are multi-valued operators. However, if (and only if) the
Banach space X is smooth the duality map Jr

X is single valued, that is Jr
X : X → X ∗

a function between the space X and its dual X ∗. In addition, it is important to point
out that the only case when the duality map reduces to the identity operator is if
X is a Hilbert space H and the gauge function has parameter r = 2. By virtue
of the Riesz theorem, the duality map becomes J2

H(x) = x, where the isometric
isomorphism between H and H∗ has been implicitly considered. On the other hand,
when choosing r ̸= 2, in the Hilbert setting, it means an unusual metric is considered.

In general, the following result gives a more intuitive characterisation of duality
maps, providing a practical way to analytically compute them.

Theorem 2.2.1 ((Asplund) [60]). Let X be a Banach space, and let r > 1. The
r-duality map Jr

X is the subdifferential of the convex functional h : X −→ R, h(x) =
1
r
∥x∥rX :

Jr
X = ∂h = ∂

(1
r

∥ · ∥rX
)
.

Duality maps satisfy important properties, see [60] for details. A particular
property is that being the subdifferential of a convex functional, Jr

X is a monotone
operator, that is

⟨Jr
X (x) − Jr

X (y), x− y⟩ ≥ 0, ∀x, y ∈ X , ∀r > 1

and it be can proven that Jr
X (−x) = −Jr

X (x) and Jr
X (λx) = λr−1Jr

X (x) for any
x ∈ X and for λ ≥ 0.

2.2.2.1 Duality mappings in Lp(·)(Ω)

In [78, 79] the authors proved that the Luxemburg norm ∥ · ∥Lp(·) is Gateaux-
differentiable for any exponent p(·) such that 1 < p− ≤ p+ < +∞, providing an
analytical expression for its Gateaux derivative. This shows that hence the space
(Lp(·)(Ω), ∥ · ∥Lp(·)) is smooth. In addition, in [159, 160], it is shown that the norm
in Lp(·)(Ω) is Fréchet differentiable too, for any x ̸= 0. From these results, it follows
that the functional 1

r
∥ · ∥r

Lp(·) for r > 1 is Fréchet differentiable for any x ∈ X .
Following arguments similar to those of [78, 79], we provided in [31] the analytical
expression for the duality mapping Jr

Lp(·) , Gateaux derivative of 1
r
∥ · ∥r

Lp(·) .

Theorem 2.2.2. Let the exponent function p(·) ∈ P(Ω) be such that 1 < p− ≤ p+ <

+∞. Then, for each x ∈ Lp(·)(Ω) and for any r ∈ (1,+∞), the duality mapping
Jr
Lp(·) : Lp(·)(Ω) −→ (Lp(·)(Ω))∗ is the linear operator with expression

⟨JrLp(·)(x), h⟩ = 1∫
Ω
p(t)|x(t)|p(t)

∥x∥p(t)
Lp(·)

dt

∫
Ω

p(t) sign
(
x(t)

)
|x(t)|p(t)−1

∥x∥p(t)−r
Lp(·)

h(t)dt (2.10)

for any h ∈ Lp(·)(Ω).
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Proof. This proof is based on arguments similar to those of [78, 79], for the proof of
Gateaux-differentiability of the Luxembourg norm in Lp(·)(Ω) spaces. We presented
this result in [31].

By Theorem 2.2.1, we know that Jr
Lp(·) = ∂

(
1
r
∥ · ∥r

Lp(·)

)
. Taking into account

the smoothness of (Lp(·)(Ω), ∥ · ∥Lp(·)), in the following of the proof we will focus on
the computation of the Gâteaux derivative the functional x ∈ Lp(·)(Ω) 7−→ ∥x∥r

Lp(·)

(without the fixed scaling factor 1
r

for simplicity), for any x0 ∈ Lp(·)(Ω).
We now first consider x0 ̸= 0. We have to prove that, for any possible direction

h ∈ Lp(·)(Ω), the real function σ 7→ ∥x0 + σh∥rLp(·) , with σ ∈ R, is differentiable at
σ = 0. We will use the implicit function theorem as follows.

Let k > 1 be a fixed real number, D = (−1, 1) ×
(

1
k

∥x0∥rLp(·) , k ∥x0∥rLp(·)

)
and

consider the function ϕ : D → R defined by means of the convex modular function
ρp(·) which characterises the Luxembourg norm (2.4)

ϕ(σ, λ) = ρp(·)

(
x0 + σh

λ1/r

)
− 1 =

∫
Ω

|x0(t) + σh(t)|p(t)

λp(t)/r dt− 1. (2.11)

In the sequel, we will demonstrate the following statements, which are the hypothesis
of the implicit function Theorem:

i) ϕ ∈ C1(D);

ii) ϕ (0, ∥x0∥rLp(·)) = 0;

iii) ∂ϕ
∂λ

(0, ∥x0∥rLp(·)) < 0.

Indeed, once proven i), ii) and iii), the implicit function Theorem guarantees that
there exist neighbourhoods U of 0 and V of ∥x0∥rLp(·) such that U × V ⊂ D and a
unique C1-mapping λ : U → V which satisfies λ(0) = ∥x0∥rLp(·) , ϕ(σ, λ(σ)) = 0 for
any σ ∈ U , and

λ′(σ) = −
∂ϕ
∂σ

(σ, λ(σ))
∂ϕ
∂λ

(σ, λ(σ))
, ∀σ ∈ U . (2.12)

The equality ϕ(σ, λ(σ)) = 0 ∀σ ∈ U , rewritten as

ρp(·)

(
x0 + σh

λ(σ)1/r

)
= 1, ∀σ ∈ U ,

together with Definition 2.1.2 of the norm in Lp(·)(Ω), allows us to derive that

λ(σ) = ∥x0 + σh∥rLp(·) , ∀σ ∈ U. (2.13)

Hence, from (2.12) and (2.13) we have that λ′(0) exists and

λ′(0) = lim
σ→0

∥x0 + σh∥rLp(·) − ∥x0∥rLp(·)

σ
= −

∂ϕ
∂σ

(0, ∥x0∥rLp(·))
∂ϕ
∂λ

(0, ∥x0∥rLp(·))
. (2.14)

The functional ∥ · ∥r
Lp(·) is thus Gâteaux differentiable at x0 ̸= 0, and the explicit

computation of the ratio (2.14) will provide expressions (2.10) too.
We can now prove the statements i), ii) and iii).
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i) To prove that ϕ ∈ C1(D), let us consider the integrand f : Ω × D → R of
(2.11)

f(t; (σ, λ)) = |x0(t) + σh(t)|p(t)

λp(t)/r , t ∈ Ω, (σ, λ) ∈ D. (2.15)

It is easy to show that, for any fixed (σ, λ) ∈ D, the map t 7→ f(t; (σ, λ))
is integrable in Ω. Indeed, by definition of D, there hold |σ| < 1 and λ ≥
1
k

∥x0∥rLp(·) = λmin > 0, which yields to

|x0(t) + σh(t)|p(t)

λp(t)/r ≤ kp(t)/r(|x0(t)| + |h(t)|)p(t)

∥x0∥p(t)
Lp(·)

≤ kp+/r

c
(|x0(t)| + |h(t)|)p(t)

with c = min
(
∥x0∥p−

Lp(·) , ∥x0∥p+
Lp(·)

)
and (|x0(t)| + |h(t)|)p(t) being integrable

since x0, h ∈ Lp(·)(Ω) and p+ < +∞. Consequently, the function ϕ of (2.11)
is well-defined.

We now show that for a.e. t ∈ Ω, the map (σ, λ) 7→ f(t; (σ, λ)), with (σ, λ) ∈
D, is a C1-mapping. By formal computation, the partial derivatives of (2.15)
are

∂f

∂σ
(t; (σ, λ)) = p(t) |x0(t) + σh(t)|p(t)−1 sign (x0(t) + σh(t)) h(t)

λp(t)/r (2.16)

∂f

∂λ
(t; (σ, λ)) = −p(t) |x0(t) + σh(t)|p(t)

sλp(t)/r+1 , ∀(σ, λ) ∈ D. (2.17)

Since p− > 1 and λ > 0, it is evident from (2.16) and (2.17), that (σ, λ) 7→
∂f
∂σ

(t; (σ, λ)) and (σ, λ) 7→ ∂f
∂λ

(t; (σ, λ)) are continuous mappings in D. Anyway,
to explicitly compute both the numerator and the denominator of (2.12), that
is, the partial derivatives of (2.11), we need to commute differentiation and
integration operators. To this aim, we apply the Dominated Convergence
Theorem, by searching for a function g : Ω −→ R, integrable on Ω, such that∣∣∣∣∣∂f∂σ (t; (σ, λ))

∣∣∣∣∣ ≤ g(t),
∣∣∣∣∣∂f∂λ(t; (σ, λ))

∣∣∣∣∣ ≤ g(t).

Similarly as before for the estimation of |f(t; (σ, λ))|, (σ, λ) ∈ D implies that
∣∣∣∣∣∂f∂σ (t; (σ, λ))

∣∣∣∣∣ ≤ kp(t)/rp(t) (|x0(t)| + |h(t)|)p(t)

∥x0∥p(t)
Lp(·)

≤ p+ · kp+/r

c
(|x0(t)| + |h(t)|)p(t) ,

with c = min
(
∥x0∥p−

Lp(·) , ∥x0∥p+
Lp(·)

)
, and that

∣∣∣∣∣∂f∂λ(t; (σ, λ))
∣∣∣∣∣ ≤ p+ · kp+/r+1

c1
(|x0(t)| + |h(t)|)p(t)
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with c1 = min
(
∥x0∥p−+r

Lp(·) , ∥x0∥p++r
Lp(·)

)
. Thus, we can now consider

g(t) = max
(
p+ · kp+/r

c
,
p+ · kp+/r+1

c1

)
(|x0(t)| + |h(t)|)p(t) ,

as dominating function, which is integrable on Ω, as already stated before.
Hence differentiation and integration in ϕ commute, leading to

∂ϕ

∂σ
(σ, λ) = ∂

∂σ

[∫
Ω
f(t; (σ, λ)) dt− 1

]
=
∫

Ω

[
∂

∂σ
f(t; (σ, λ))

]
dt

=
∫

Ω
p(t) |x0(t) + σh(t)|p(t)−1 sign (x0(t) + σh(t))

λp(t)/r h(t)dt (2.18)

∂ϕ

∂λ
(σ, λ) = ∂

∂λ

[∫
Ω
f(t; (σ, λ))dt− 1

]
=
∫

Ω

[
∂

∂λ
f(t; (σ, λ))

]
dt

= −
∫

Ω

p(t) · |x0(t) + σh(t)|p(t)

rλp(t)/r+1 dt. (2.19)

From (2.18) and (2.19), the continuity of ∂ϕ
∂σ

and ∂ϕ
∂λ

is straightforward.

ii) By Definition 2.1.2 of Luxembourg norm,

ϕ (0, ∥x0∥rLp(·)) =
∫

Ω

∣∣∣∣∣ x0(t)
∥x0∥Lp(·)

∣∣∣∣∣
p(t)

dt− 1 = 0.

iii) We have similarly

∂ϕ

∂λ
(0, ∥x0∥rLp(·)) = −

∫
Ω
p(t) |x0(t)|p(t)

∥x0∥p(t)+r
Lp(·)

dt

≤ − p−

∥x0∥rLp(·)

∫
Ω

∣∣∣∣∣ x0(t)
∥x0∥Lp(·)

∣∣∣∣∣
p(t)

dt = − p−

∥x0∥rLp(·)
< 0.

We can now obtain formula (2.10) from (2.14), plugging σ = 0 into (2.18) and
(2.19). Recall that we are computing the gradient of ∥ · ∥r

Lp(·) , thus a multiplication
by 1

r
is needed to obtain (2.10).

To conclude the proof, it remains to consider the case x0 = 0. The real function
σ 7→ ∥x0 + σh∥rLp(·) , with σ ∈ R, becomes σ 7→ ∥σh∥rLp(·) . We have

lim
σ→0

∥x0 + σh∥rLp(·) − ∥x0∥rLp(·)

σ
= lim

σ→0

∥σh∥r
Lp(·)

σ
= lim

σ→0

|σ|r∥h∥r
Lp(·)

σ
= 0,

since r > 1, which proves the differentiability at the origin as well.

From (2.10), it is possible to retrieve the expression of the Gateaux derivative of
the Luxemburg norm ∥ · ∥Lp(·) of [78, 79], by plugging r = 1. In addition, it is easy
to check that, if p(·) ≡ p is constant, with 1 < p < +∞, then Jr

Lp(·) coincides with
the duality map of constant exponent Lebesgue spaces Lp(Ω):

⟨JrLp(x), h⟩ = ∥x∥r−pp

∫
Ω

sign
(
x(t)

)
|x(t)|p−1h(t)dt. (2.20)
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2.2.2.2 Inverse of duality mappings

In general, for any reflexive and strictly convex Banach space X , Jr
X is invertible

and its inverse is given by
(JrX )−1 = Jr′

X ∗ , (2.21)

where Jr′
X ∗ : X ∗ → X is the duality mapping of the dual space X ∗.

In Lp(Ω) spaces, the isometric isomorphism between (Lp(Ω))∗ and Lp′(Ω) is fun-
damental to have an explicit expression for the inverse of the duality map JrLp . In
fact, it leads to

(JrLp)−1 = Jr′

(Lp)∗ = Jr′

Lp′ , (2.22)

so that we have an analytical expression of the inverse duality map.
In Lp(·)(Ω) spaces, such isomorphism does not hold true, as shown in Proposition

2.2.1, so this fact cannot be used to obtain the inverse of Jr
Lp(·) , whose analytical

expression remains unknown.

2.3 Modular-based alternative to duality maps
In this section, a modular-based alternative to duality maps is presented and

some of its properties are shown and proved, see also [145]. The main idea is the fact
that the computation of the Luxemburg norm is computationally expensive, since a
one-dimensional minimisation problem has to be solved for each norm computation,
and, moreover, the norm is not separable, in the meaning specified in the following.
These undesirable characteristics are reflected also in the duality map Jr

Lp(·) defined
in Theorem 2.2.2, since its expression requires a norm computation. Inspired by
Theorem 2.2.1 and recalling that the modular is a generalisation of the p-power
of the p-norm in Lp(Ω), in [145] we propose to substitute duality maps with the
subdifferential of the modular functions.

Proposition 2.3.1. Let p(·) ∈ P(Ω) be such that p− > 1 and p+ < +∞. For each
x ∈ Lp(·)(Ω), the modular functions ρp(·)(·) and ρ̄p(·)(·) are Gateaux differentiable.
Their derivatives are respectively the linear operators Jρp(·) : Lp(·)(Ω) → (Lp(·)(Ω))∗

defined by
⟨Jρp(·)(x), h⟩ =

∫
Ω
p(t) sign(x(t))|x(t)|p(t)−1h(t)dt

and Jρ̄p(·) : Lp(·)(Ω) → (Lp(·)(Ω))∗ with expression

⟨Jρ̄p(·)(x), h⟩ =
∫

Ω
sign(x(t))|x(t)|p(t)−1h(t)dt,

for any h ∈ Lp(·)(Ω).

Proof. Let x, h ∈ Lp(·)(Ω). The Gateaux derivative of ρp(·) at x along direction h is
given by

lim
t→0

ρp(·)(x+ th) − ρp(·)(x)
t

=
[
∂

∂t
ρp(·)(x+ th)

]
t=0
. (2.23)
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2.3. Modular-based alternative to duality maps

First, note that ρp(·)(x+ th) =
∫

Ω |x(s) + th(s)|p(s)ds < +∞. Indeed x, h ∈ Lp(·)(Ω),
then x+ th ∈ Lp(·)(Ω) and consequently ∥x+ th∥Lp(·) < +∞ by definition of Lp(·)(Ω)
space. Since p+ < +∞ and by Lemma 2.1.1, ∥x + th∥Lp(·) < +∞ implies ρp(·)(x +
th) < +∞. We can thus compute the partial derivative of ρp(·)(x+ th) with respect
to t by “differentiating under the integral sign.” To do so, we first need to verify the
regularity of the integrand function. Let f : Ω × (−1, 1) −→ R be defined by

f(s, t) := |x(s) + th(s)|p(s), s ∈ Ω, t ∈ (−1, 1).

By direct computations, we obtain
∂f

∂t
(s, t) = p(s)|x(s) + th(s)|p(s)−1 sign

(
x(s) + th(s)

)
h(s) (2.24)

and, since |t| < 1,∣∣∣∣∂f∂t (s, t)
∣∣∣∣ ≤ p+|x(s) + th(s)|p(s)−1|h(s)| ≤ p+|x(s) + th(s)|p(s)−1(|h(s)| + |x(s)|)

≤ p+(|h(s)| + |x(s)|)p(s) =: g(s),

with g(s) integrable.
Thanks to the dominated convergence theorem, we have

∂

∂t
ρp(·)(x+ th) = ∂

∂t

∫
Ω
f(s, t)ds =

∫
Ω

∂

∂t
f(s, t)ds. (2.25)

Thus, by combining (2.23), (2.24) and (2.25) we conclude the proof.

Remark 2.3.1. We stress that although Jρp(·) and Jρ̄p(·) are not duality mappings,
we nonetheless adopt a similar notation for consistency.

It is interesting to observe the following property of the modular function and
its gradient.

Lemma 2.3.1. For any x ∈ Lp(·)(Ω),

⟨Jρ̄p(·)(x), x⟩ = ρp(·)(x). (2.26)

Proof. By direct computation:

⟨Jρ̄p(·)(x), x⟩ =
∫

Ω
sign(x(t)) |x(t)|p(t)−1x(t) dt = ρp(·)(x).

Note that this is the analogue of a general property of duality mappings in
Banach spaces. Indeed, by Definition 2.2.3 of duality mapping, if X is a smooth
Banach space, then for any r > 1 and x ∈ X there holds

⟨JrX (x), x⟩ = ∥x∥X ∥x∗∥X ∗ = ∥x∥X ∥x∥r−1
X = ∥x∥rX . (2.27)

Differently from the duality maps Jr
Lp(·) , it is possible to compute explicitly the

inverse of their modular-based alternative Jρp(·) and Jρ̄p(·) , as we first showed in [147].
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Chapter 2. Variable Exponent Lebesgue Spaces

Proposition 2.3.2. The functional Jρ̄p(·) is invertible. For all Gz ∈ (Lp(·)(Ω))∗ with
z ∈ A(Lp′(·)(Ω)), its inverse reads

(Jρ̄p(·))
−1(Gz) = |z|

1
p(·)−1 sign(z) ∈ Lp(·)(Ω). (2.28)

Proof. By using the expression of (Jρ̄p(·))−1 (2.28), we show that both (Jρ̄p(·))−1Jρ̄p(·)

and Jρ̄p(·)(Jρ̄p(·))−1 are the identity operator.
First of all, observe that for any x ∈ Lp(·)(Ω) the action of the linear operator

Jρ̄p(·) can be expressed as

Jρ̄p(·)(x) = Gz ∈ (Lp(·)(Ω))∗, z = sign(x)|x|p(·)−1 ∈ A(Lp′(·)(Ω)),

with Gz defined as in (2.7). With a slight abuse of notation, we write here Jρ̄p(·)(x) =
sign(x)|x|p(·)−1. By straightforward computation, we have(

Jρ̄p(·)

)−1(
Jρ̄p(·)(x)

)
=
∣∣∣Jρ̄p(·)(x)

∣∣∣ 1
p(·)−1 sign(Jρ̄p(·)(x))

=
∣∣∣Jρ̄p(·)(x)

∣∣∣ 1
p(·)−1 −1

Jρ̄p(·)(x) =
∣∣∣Jρ̄p(·)(x)

∣∣∣ 2−p(·)
p(·)−1 Jρ̄p(·)(x)

=
∣∣∣|x|p(·)−1 sign(x)

∣∣∣ 2−p(·)
p(·)−1 |x|p(·)−1 sign(x) = x.

It can also be shown that Jρ̄p(·)

(
(Jρ̄p(·))−1(Gz)

)
= Gz:

Jρ̄p(·)

(
(Jρ̄p(·))

−1(Gz)
)

= Jρ̄p(·)

(
|z|

1
p(·)−1 sign(z)

)
=
〈 ∣∣∣∣|z| 1

p(·)−1 sign(z)
∣∣∣∣p(·)−1

sign
(

|z|
1

p(·)−1 sign(z)
)
, ·
〉

= ⟨|z| sign(z), ·⟩ = ⟨z, ·⟩ = Gz.

Proposition 2.3.3. The functional Jρp(·) is invertible. For all Gz ∈ (Lp(·)(Ω))∗ with
z ∈ A(Lp′(·)(Ω)), its inverse reads

(Jρp(·))
−1(Gz) = p(·)

1
1−p(·) |z|

1
p(·)−1 sign(z) ∈ Lp(·)(Ω).

2.3.1 Separability
As it will be more evident through the rest of this work and , in particular, better

explained in Sections 3.4.1 and 4.4, it is handy having functionals and operators
defined in Banach spaces that are separable, that is, their global computation can be
decomposed into the sum of low-dimensional functionals. This fact usually allows
component-wise computations, which are easier and more efficient. To be more
precise, we consider the following definition of domain additive separability.
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2.3. Modular-based alternative to duality maps

Definition 2.3.1. Let X be a functional Banach space on Ω. An operator S : X →
X ∗ or a functional S : X → R is domain additively separable, if, for any finite
family of Lebesgue measurable subsets (Ωi)ni=1 of Ω such that Ω̊i ∩ Ω̊j = ∅ for i ̸= j,
and Ω = ⋃n

i=1 Ωi, there holds S(x) = ∑n
i=1 S (χi x) for any x ∈ X , where χi ∈ X

is the characteristic function of Ωi, that is χi(t) = 1 for t ∈ Ωi, and χi(t) = 0 for
t ̸∈ Ωi.

In the following, domain additive separability will often be referred to simply
as separability. It is quite evident that in Lebesgue spaces Lp(Ω) with a constant
exponent, the norm functional ∥ · ∥pp, as well as the p-duality map Jpp(·), are domain
additively separable, since, for any suitable family of subsets (Ωi)ni=1, there holds

∥x∥pp =
n∑
i=1

∥χi x∥pp and ⟨Jpp(x), u⟩ =
n∑
i=1

⟨Jpp(χi x), u⟩ = ⟨
n∑
i=1

Jpp(χi x), u⟩ .

On the contrary, norms and duality maps in variable exponent spaces are not sep-
arable.

Lemma 2.3.2. The norm and the duality mapping in Lp(·)(Ω) are not domain ad-
ditively separable in the sense of Definition 2.3.1.

Proof. It is quite evident that the Luxemburg norm (2.4) requires the solution of
a 1D minimization problem on the entire domain Ω, which, in general, cannot
be divided into the solutions on single sets of the partition, that is, ∥x∥Lp(·) ̸=∑n
i=1 ∥χi x∥Lp(·) . As the duality mapping is concerned, the two norms in the de-

nominators of JLp(·) (2.10) show that its computation cannot be decomposed into
the computation of n integrals involving only the restriction of the function x onto
single sets of the partition, or, in other words, Jr

Lp(·)(Ω)(x) ̸= ∑n
i=1 Jr

Lp(·)(Ω)(χi x) .

The modular functions introduced in Definition 2.2 as well as their gradients
turn out instead to satisfy the separability property.

Lemma 2.3.3. The modular functions in Lp(·)(Ω) and their gradients are domain
additively separable, in the sense of Definition 2.3.1.

Proof. We consider the modular function ρ̄p(·)(x) =
∫

Ω
1
p(t) |x(t)|p(t)dt defined in (2.3)

(for (2.2), the proof is similar). By direct computation, by the linearity property of
the integral w.r.t. the integration domain, we have

ρ̄p(·)(x) =
n∑
i=1

∫
Ωi

1
p(t) |x(t)|p(t)dt =

n∑
i=1

∫
Ω

1
p(t) |χi(t)x(t)|p(t)dt =

n∑
i=1

ρ̄p(·)(χix).

Similarly, for Jρ̄p(·) , we can write

⟨Jρ̄p(·)(x), u⟩ =
∫

Ω
sign(x(t))|x(t)|p(t)−1u(t)dt =

n∑
i=1

∫
Ωi

sign(x(t))|x(t)|p(t)−1u(t)dt

=
n∑
i=1

∫
Ω

sign(x(t))|χi(t)x(t)|p(t)−1u(t)dt =
n∑
i=1

⟨Jρ̄p(·)(χi x), u⟩ = ⟨
n∑
i=1

Jρ̄p(·)(χi x), u⟩

which concludes the proof.
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2.4 Final discussion
In this chapter, an overview on variable exponents Lebesgue spaces is given.

Lp(·)(Ω) spaces, as the name suggests, are defined in terms of a point-wise variable
exponent function instead of a constant one, as in standard Lp(Ω) spaces. We
mainly focused on the definition of the norm (2.4) in this context and of the so-
called modular functions. The norm does not have a closed form expression and
its computation requires the resolution of a 1-dimensional minimisation problem,
and, thus, it is quite computationally expensive, as we have seen in the provided
examples. Modular functions, defined in (2.2) and (2.3), on the other hand, maintain
some of the properties of the norm but having an analytical closed form expression
their computation is much faster than the norm’s one.

Variable exponent Lebesgue spaces endowed with the Luxemburg norm are
Banach spaces. In Section (2.2.2), we thus defined duality mappings, which al-
low to associate to any element of the primal space an element of the dual space
(and vice-versa), firstly for a general Banach space X , and then in the specific case of
Lp(·)(Ω). The duality map Jr

Lp(·) is defined in (2.10): it requires norms computations
and it is thus heavy to compute. Moreover, the lack of an isometric isomorphism
between Lp(·)(Ω) and Lp′(·)(Ω) causes the impossibility to have an expression for the
inverse of the duality map in Lp(·)(Ω), using standard strategies. To the best of
our knowledge, its expression remains unknown. Recalling that duality maps can
be seen, thanks to the Asplund’s Theorem 2.2.1, as the subdifferential of the norm
(elevated to some constant r), we proposed a modular-based alternative to duality
mappings in Section 2.3, defined as the derivatives of the modulars (instead of the
norm). They do not require any norm computation and they are invertible with
inverses given in Propositions 2.3.2 and 2.3.3.

In the last Section, we focused on the concept of separability (Definition 2.3.1)
showing that the norm and duality maps are not additively separable in Lp(·)(Ω)
while modular functions and their derivatives are separable.

In the following, we will consider Lp(·)(Ω) spaces as solution spaces for inverse
problems and we will define optimisation strategies in this setting, making use of the
modular functions and their derivatives instead of the norm and duality mappings,
having the latter some undesirable properties to devise minimisation algorithms
(non-separability, heavy-computational times, lack of an exact expression for the
inverse of duality maps).

46



3

Ch
ap

te
r

Smooth optimisation in Lp(·)(Ω)
***

In this chapter, we analyse gradient-based minimisation strategies, which depend
on the definition of a gradient descent step, such as the Landweber algorithm,
from a different point of view, making a link between regularisation theory and
convex optimisation in Banach spaces. Specifically, we interpret Landweber al-
gorithms in the context of proximal methods, defined in terms of an appropriate
distance function. This novel reinterpretation allows a full understanding of the
role of the geometrical properties of the Banach spaces X and Y. A modular-
based version of gradient descent in variable exponent Lebesgue spaces is then
presented, both in the deterministic and stochastic settings.
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We start introducing the concept of proximal operators in Banach spaces, as they
will be used to provide a new interpretation of gradient-based iterative strategies in
this setting.

3.1 Proximal operators in Banach spaces

Let X be a reflexive, smooth and strictly convex Banach space and let Γ0(X ) be
the set of proper, lower semi-continuous, convex functions g : X → R ∪ {+∞}. In
general, a proximal operator of a possibly non-smooth function g ∈ Γ0(X ) depends
on a chosen distance function d. Given d : X × X → R such that d(x, ·) ∈ Γ0(X )
for any x ∈ X , the proximal operator of g with respect to d is defined as

proxdg(x) = argmin
u∈X

d(x, u) + g(u). (3.1)

The functional h(·) = infu∈X d(·, u) + g(u) can be seen as a regularised version of
g(·), which share the same infimum as g, since:

inf
x∈X

h(x) = inf
x∈X

inf
u∈X

(
d(x, u) + g(u)

)
= inf

u∈X
inf
x∈X

(
d(x, u) + g(u)

)
= inf

u∈X
g(u).

This shows they play a huge role in devising minimisation algorithms, as better
explained by the following results.

Proposition 3.1.1. Let g ∈ Γ0(X ). Then for all x ∈ X

g
(
proxdg(x)

)
≤ g(x).

Moreover, g
(
proxdg(x)

)
= g(x) ⇐⇒ x ∈ proxdg(x).

Proof. Let x ∈ X and z ∈ proxdg(x). Define hx(u) := d(x, u) + g(u) so that z ∈
argminu∈X hx(u) and, in particular, hx(z) = infu∈X hx(u). Thus

g(z) ≤ d(x, z) + g(z) = hx(z) = inf
u∈X

hx(u) ≤ hx(x) = g(x).

Moreover, from the above inequality it is clear that

g(z) = g(x) ⇐⇒ hx(z) = hx(x) ⇐⇒
d(x, z) + g(z) = d(x, x) + g(x) ⇐⇒ d(x, z) = d(x, x) ⇐⇒ x = z,

that is x ∈ proxdg(x).
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Lemma 3.1.1. If x̄ minimises g, then x̄ ∈ proxdg(x̄).

Proof. Let x̄ ∈ argminx∈X g(x), then

g(x̄) = d(x̄, x̄) + g(x̄) ≤ d(x̄, u) + g(u) for all u ∈ X .

Hence g(x̄) ∈ infu∈X d(x̄, u) + g(u), i.e. x̄ ∈ proxdg(x̄).

As a last result of this section, the separability property of general proximal
operators as defined in (3.1) is addressed, which depend on the separability property
of the considered distance function d.

Lemma 3.1.2. Let X = ⋃n
i=1 Ωi such that Ω̊i∩Ω̊j = ∅ for i ̸= j. Suppose g ∈ Γ0(X )

is additively separable in the sense specified by Definition 2.3.1. Suppose the distance
function d : X ×X → R such that d(x, ·) ∈ Γ0(X ) for any x ∈ X satisfies the property

d(x, u) =
n∑
i=1

d(χix, χiu),

where χi ∈ X is the characteristic function of Ωi. Then, the proximal operator
defined by (3.1) is separable.

Proof. By hypothesis, g is separable thus g(u) = ∑n
i=1 g(χi). Consider the definition

of proximal operator (3.1) together with the separability of g and d:

proxdg(x) = argmin
u∈X

n∑
i=1

d(χix, χiu) + g(χiu) =
n∑
i=1

argmin
u∈X

d(χix, χiu) + g(χiu)(3.2)

We adopt now the following notation ui = χiu ∈ Ωi and g(χiu) = gi(ui) with gi :
Ωi → R∪{+∞}. Similarly, for the distance function we write d(χix, χiu) = di(xi, ui)
with di : Ωi × Ωi → R, so that d(x, u) = ∑n

i=1 di(xi, ui). Thus, (3.2) becomes

proxdg(x) =
n∑
i=1

argmin
u∈X

di(xi, ui) + gi(ui) =
n∑
i=1

proxdi
gi

(xi),

which concludes the proof.

In the following, two instances of proximal operators in Banach spaces will be
presented.

3.1.1 Definition of the p-norm proximal operator
Following [8], as a first instance of distance d(·, ·) we consider d(x, u) = 1

p
∥u−x∥pX

for p > 1.

Definition 3.1.1 (p-norm proximal operator). Given g ∈ Γ0(X ) and p > 1, the
p−proximal operator of g in the Banach space X is

prox1/p∥·∥p

g (x) := argmin
u∈X

1
p

∥u− x∥pX + g(u). (3.3)
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A similar definition has been used in [6, 135] in metric spaces and a corresponding
definition can be found in [11]. It is easy to show that the operator defined by (3.3)
is single-valued, that is the minimiser of the functional appearing in (3.3) is unique.

Lemma 3.1.3. For p > 1, the p-norm proximal operator (3.3) is well defined, i.e.
the mapping u ∈ X 7−→ 1

p
∥u− x∥pX + g(u) admits minimisers and the minimiser is

unique for each x ∈ X .

Proof. Let x ∈ X . Since g is convex, it is bounded from below by g(u) ≥ g(x) +
⟨∂g(x), u− x⟩. Thus,

1
p

∥u− x∥pX + g(u) ≥ 1
p

∥u− x∥pX + (g(x) + ⟨∂g(x), u− x⟩)

= ∥u∥X

(1
p

∥u− x∥pX
∥u∥X

+ g(x) + ⟨∂g(x), u− x⟩
∥u∥X

)
∥u∥X −→+∞−−−−−−−→ +∞,

which means that the mapping is coercive. Moreover, it is strictly convex in u

because p > 1 and thus it has a unique minimizer.

The following lemma and proposition further clarify the role played by the p-
norm proximal operator in minimisation problems, and as well as in devising optim-
isation algorithms.

Lemma 3.1.4. The following statements are equivalent:

1. x̄ = prox1/p∥·∥p

g (x)

2. 0 ∈ Jp
X (x̄− x) + ∂g(x̄)

Proof. Note that x̄ = prox1/p∥·∥p

g (x) if and only if it minimises u ∈ X 7−→ 1
p
∥u −

x∥pX + g(u) and thus x̄ = prox1/p∥·∥p

g (x) implies 0 ∈ Jp
X (x̄ − x) + ∂g(x̄), since for

Theorem 2.2.1 it holds that ∂
(

1
p
∥ · ∥pX

)
= Jp

X (·).

Lemma 3.1.5. x̄ minimises g if and only if prox1/p∥·∥p

g (x̄) = x̄.

Proof. By Lemma 3.1.1, we know that x̄ minimises g implies prox1/p∥·∥p

g (x̄) = x̄.
Consider now that prox1/p∥·∥p

g (x̄) = x̄ holds. Thus x̄ minimises u ∈ X 7−→
1
p
∥u − x̄∥pX + g(u) and therefore 0 ∈ [Jp

X (· − x̄) + ∂g(·)](x̄) = ∂g(x̄). Hence, x̄
minimises g.

3.1.2 Bregman-proximal operator
In this section, as distance function in the definition of proximal operator (3.1) we

consider the Bregman distance associated to a convex functional. It is known that,
in Banach spaces Bregman distances are more appropriate than norm distances,
since they inherit the rich geometrical properties of the involved Banach space [44].
Indeed, Bregman distances are widely used to measure the distance between k-th
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iteration and the generalised solution in many proofs of convergence and have been
used a lot in the field of optimisation for defining proximal gradient algorithms under
relaxed convergence assumptions [10, 29, 30, 166].

The Bregman distance is defined as the difference between the functional and its
linear approximation as follows [40].

Definition 3.1.2. Let h : X −→ R be a convex and continuously-differentiable
functional on a Banach space X . The Bregman distance Bh

X (·, x) : X −→ [0,+∞)
of h at x ∈ X is defined as

Bh
X (u, x) = h(u) −

(
h(x) + ⟨∇h(x), u− x⟩

)
, ∀u ∈ X . (3.4)

For h(·) = 1
p
∥ · ∥pX , with p > 1, the Bregman distance will be denoted simply as

Bp
X . Since in this case ∇h = Jp

X by Theorem 2.2.1, (3.4) becomes

Bp
X (u, x) = 1

p
∥u∥pX − 1

p
∥x∥pX − ⟨Jp

X (x), u− x⟩,

or, equivalently,

Bp
X (u, x) := 1

p
∥u∥pX + 1

p′ ∥x∥pX − ⟨Jp
X (x), u⟩.

The latter equivalence can be shown by direct computations using (2.27), indeed:

−1
p

∥x∥pX − ⟨Jp
X (x), u−x⟩ = −1

p
∥x∥pX + ∥x∥pX − ⟨Jp

X (x), u⟩ = 1
p′ ∥x∥pX − ⟨Jp

X (x), u⟩.

In general, Bregman distances and norm-induced distances 1
p
∥u − x∥pX are dif-

ferent. Bregman distances do not satisfy either symmetry or the triangle inequal-
ity. Some basic results about Bregman distance in a smooth and uniformly convex
Banach space X can be found in [204, 207]. Note that, in a Hilbert space H,
B2

H(u, x) = 1
2∥u− x∥2

H.
It is now possible to define the proximal operator in terms of the Bregman

distance Bp
X .

Definition 3.1.3 (Bregman-proximal operator). Given g ∈ Γ0(X ), the Breg-
man proximal operator of g in the Banach space X is

proxB
p
X

g (x) := argmin
u∈X

Bp
X (u, x) + g(u). (3.5)

A corresponding definition has been introduced in [3]. It is possible to show,
similarly to Lemma 3.1.3, that the proxB

p
X

g operator is single-valued and well-defined,
being 1

p
∥ · ∥pX strictly convex for p > 1. Moreover, one can easily show the following

results.

Lemma 3.1.6. The following statements are equivalent:
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1. x̄ = proxB
p
X

g (x)

2. 0 ∈ Jp
X (x̄) − Jp

X (x) + ∂g(x̄)

3. x̄ =
(

Jp
X + ∂g

)−1(
Jp

X (x)
)

Proof. Using the definition of proxB
p
X , from 1 of the statement we have:

x̄ = proxB
p
X

g (x) = argmin
u∈X

Bp
X (u, x) + g(u)

= argmin
u∈X

1
p

∥u∥pX − 1
p

∥x∥pX − ⟨Jp
X (x), u− x⟩ + g(u)

0 ∈ ∂
(1
p

∥ · ∥pX − 1
p

∥x∥pX − ⟨Jp
X (x), · − x⟩ + g(·)

)
(x̄)

0 ∈ Jp
X (x̄) − Jp

X (x) + ∂g(x̄),

which is 2 of this lemma. Then, equivalently, we can write

Jp
X (x) ∈ Jp

X (x̄) + ∂g(x̄)

x̄ =
(

Jp
X + ∂g

)−1(
Jp

X (x)
)

Observe that the operation (Jp
X + ∂g)−1 is well defined, since Jp

X + ∂g is maximal
monotone operator being the subdifferential of a convex, lower semi-continuous func-
tion [194].

Lemma 3.1.7. x̄ minimises g if and only if proxB
p
X

g (x̄) = x̄.

Proof. By Lemma 3.1.1, we know that x̄ minimises g implies proxB
p
X

g (x̄) = x̄.
Consider now that proxB

p
X

g (x̄) = x̄ holds. Thus x̄ minimises u ∈ X 7−→ 1
p
∥u∥pX −

1
p
∥x̄∥pX −⟨Jp

X (x̄), u− x̄⟩+g(u) and therefore 0 ∈ [Jp
X (·)−Jp

X (x̄)+∂g(·)](x̄) = ∂g(x̄).
Hence, x̄ minimises g.

3.2 Landweber methods in Banach spaces
In this section, we claim a connection between the popular Landweber iterative

regularisation method and a suitable proximal operator, starting our analysis in
Hilbert spaces. Then, we present the primal and dual methods in Banach spaces,
both generalising gradient-descent strategies, with the dual method being considered
the Landweber algorithm in Banach spaces.

3.2.1 Hilbert spaces setting
Recall that the Landweber method in Hilbert spaces is defined by the iteration

x0 ∈ X , xk+1 = xk − τT ∗(Tx− y), (3.6)
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and is often used as a regularisation algorithm to solve (1.1), where T : X → Y is
a linear and bounded operator between two Hilbert spaces X and Y [91, 110] and
T ∗ : Y∗ → X ∗ is its adjoint operator, defined by

⟨T ∗y∗, x⟩X ∗×X = ⟨y∗, Tx⟩Y∗×Y ∀y∗ ∈ Y∗, ∀x ∈ X .

In an Hilbert spaces setting, the isometric isomorphism between X and X ∗,
and Y and Y∗, allows to consider the adjoint operator T ∗ : Y∗ → X ∗ simply as
T ∗ : Y → X . As briefly mentioned in Section 1.2.2, the algorithm can be indeed
interpreted as a gradient descent method (1.21) for the minimisation of the least
square residual functional f : X −→ R defined as

f(x) = 1
2∥Tx− y∥2

Y .

Indeed, since f is convex and differentiable, with ∇f(xk) = T ∗(Txk − y) ∈ X ,
iteration (3.6) is nothing but (1.21), that for simplicity we report here

xk+1 = xk − τ∇f(xk). (3.7)

Moreover, it is worth recalling that only in Hilbert spaces for all x ∈ X the element
∇f(x) ∈ X ∗ is identified with a unique element in X itself, up to the canonical
isometric isomorphism, so that the design of gradient-type schemes is significantly
simplified, being ∇f(x) ∈ X . Iteration (3.7) can be equivalently written as

xk+1 = argmin
x∈X

1
2∥x−

(
xk − τ∇f(xk)

)
∥2

X

= argmin
x∈X

{1
2∥x− xk∥2

X + τ⟨∇f(xk), x⟩
}
, (3.8)

where the terms expanding on xk and constant with respect to x have been neglected.
It is quite evident that the latter minimisation problem is well defined, since the
functional is strongly convex. Minimisation problem (3.8) can be thus recast in the
framework of the theory of proximal operators as

xk+1 = proxτ⟨∇f(xk),·⟩(xk) ,

where the prox operator in Hilbert spaces is defined by (1.18). This shows that
iteration (3.6) corresponds to the computation of a point which decreases ⟨∇f(xk), x⟩
and simultaneously is close (i.e., proximal) to the previous iteration. The step size τ
can be here thought as the weight which balances between the two terms 1

2∥x−xk∥2
X

and ⟨∇f(xk), x⟩.
The Landweber method in Hilbert spaces converges to the generalised inverse x†

(1.5) of the problem (1.1) in the noisy free case.

Theorem 3.2.1. [182] If y ∈ R(T )⊕R(T )⊥ and τ satisfies o < τ < 2
∥T∥2 , the

sequence (xk)k given by (3.6) is strongly convergent for any initialisation x0 ∈ X :

lim
k→+∞

xk = x† + PN(T )x
0,
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Algorithm 1 Landweber algorithm (dual method) in Banach spaces [207]
Parameters: p, r > 1, {τk}k specific real sequence with τk > 0.
Initialisation: Start with x0 ∈ X .
repeat

xk+1 = Jr′

X ∗

(
Jr

X (xk) − τkT
∗Jp

Y(Txk − y)
)

(3.9)

until convergence

where PN(T ) is the orthogonal projection onto N(T ). Moreover, with x0 = 0 we have

lim
k→+∞

∥xk − x†∥X = 0.

In the case of noisy data the method, in general, does not converge because yδ
does not satisfy the condition required by the theorem. In such a case, however, the
method has a property of semi-convergence. In this case, it is interesting to study
the reconstruction error

∥xk − x∥X

where x is the unknown signal defined in equation (1.1). As k increases, the re-
construction error is decreasing first and increasing afterwards, meaning that the
choice of the number of iteration is crucial in order to have a good reconstructed
signal. A possible criterion for the stopping rule in case of noisy data is given by
the discrepancy principle [91]

k(δ, yδ, τ) = min
{
k ∈ N| ∥T (xk)δ − yδ∥Y ≤ αδ

}
for a given α > 1,

where
(
(xk)δ

)
k

is the sequence of Landweber iterates applied for the resolution of
the noisy problem (1.2).

3.2.2 Dual method in Banach spaces
Consider now a different framework, where the forward operator T : X → Y

acts between reflexive, strictly convex and smooth Banach spaces. In [207], a gener-
alisation of the Landweber method to non-Hilbertian Banach spaces has been first
proposed. Such a generalisation is not straightforward, because a non-Hilbertian
Banach space is not always isometrically isomorphic to its dual, so that the it-
eration scheme (3.8) is no longer formally consistent, being xk ∈ X summed to
∇f(xk) ∈ X ∗ with X ∗ ̸∼= X [41]. The key tool for the generalisation of the iteration
scheme (3.8) to Banach spaces are the duality maps, which associate an element of
a Banach space X with an element of its dual X ∗.

On these grounds, for fixed parameters p, r > 1, the Landweber-type iteration
scheme of the seminal paper [207] for the solution of (1.1) reads as in Algorithm
1, where x0 ∈ X is the initial guess and τk > 0 is a proper variable step-size. By
analogy with Hilbertian Landweber iteration (3.6), we notice that the descent step
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in (3.9) is performed in the dual space X ∗, since both Jr
X (xk) and T ∗Jp

Y(Txk − y)
of (3.9) belong to X ∗. Hence, this algorithm will be referred to as dual method
[204]. The result of the gradient-descent step computation in the dual space is then
associated with its corresponding element of the primal space thanks to the inverse
of Jr

X , that is (Jr
X )−1 = Jr′

X ∗ by (2.21).
The dual method defined by (3.9) has been introduced by a pure formal approach.

Anyway, its relation with gradient methods is evident, as sketched in [204]. Indeed,
it is easy to show that it can be interpreted as suitable gradient-descent steps. By
simple application of the chain rule for differentiation of the p-power residual

f(x) = 1
p

∥Tx− y∥pY , (3.10)

we have

∇f(x) =
((

∇
(1
p

∥ · ∥pY
)
|Tx−y

)∗
∇(Tx− y)

)∗

=
((

Jp
Y(Tx− y)

)∗
T
)∗

= T ∗Jp
Y(Tx− y) , (3.11)

where
((

Jp
Y

)∗)∗
= Jp

Y because Y is reflexive. This shows that iterative step (3.9)
can be written as

Jr
X (xk+1) = Jr

X (xk) − τk∇f(xk),
which is a gradient descent step computed in the dual space X ∗, in analogy with
the iterative step (3.7) of Hilbert setting. The duality mappings are crucial in the
definition of the gradient-descent step in Banach spaces. The map Jp

Y of Y appears
only in the definition of the gradient of the residual function (3.10) and the parameter
p of the duality map is linked to the way the discrepancy between data y and model
observations Tx is measured. On the other hand, the duality map Jr

X of X and
its inverse Jr′

X ∗ make the computation of the gradient descent step possible, moving
the iterates xk to the dual space X ∗ where ∇f(xk) lives and then the new iterate
back to the primal space X . The parameter r refers only to the space X and to
how the distance between iterates is measured. If X = Y it might be a good option
to consider p = r. Moreover, in Lebesgue spaces with a constant exponent it is
reasonable to take for p and r the same value of the constant exponent.

The dual method is also known as the generalisation of the Landweber regu-
larisation method in Banach spaces. In this regard, we report here the result on
the convergence of the Landweber algorithm in Banach spaces, see [204], for the
resolution of the noise-free problem (1.1).

Theorem 3.2.2. Algorithm 1 either stops after a finite number of iterations with
x† or the sequence of the iterates (xk)k converges strongly to x†.

In the noisy case of (1.2), the following termination rule has to be applied

k(δ, yδ, D) = min
{
k ∈ N| ∥Axkδ − yδ∥Y <

δ

D

}
for some D ∈ (0, 1). (3.12)
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This ensures that (xk+1)δ is a better approximation to the generalised inverse x†

than (xk)δ as long as k < k(δ, yδ, D). Algorithm 1 together with the discrepancy
principle (3.12) as stopping rule is a regularisation method for problem (1.2). See
[204] for more details.

3.2.3 Primal method in Banach spaces
Another possible way to consider gradient-based approaches in Banach spaces

are the so-called primal methods, where the gradient step is directly computed in
the primal space X . In [204], the primal method is presented and analysed as a
minimisation algorithm to minimise the residual functional (3.10). The iteration
scheme is reported in Algorithm 2. Iteration (3.13) can be expressed as

Algorithm 2 Primal method in Banach spaces
Parameters: p, r > 1, {τk}k specific real sequence with τk > 0.
Initialisation: Start with x0 ∈ X .
repeat

xk+1 = xk − τkJr′

X ∗

(
T ∗Jp

Y(Txk − y)
)

(3.13)

until convergence

xk+1 = xk − τkJr′

X ∗

(
∇f(xk)

)
(3.14)

where it becomes evident that the primal method is a gradient-descent based method
for f defined in (3.10), with gradient descent step computed in the primal space X
as for (3.7). As for the dual method, the gradient-descent step is possible thanks to
the duality mappings. In particular, in (3.13) the map Jr′

X ∗ allows to compute the
descent step in the primal space X , moving the gradient of the residual, that is an
element of X ∗, to X .

3.2.4 Primal and dual method as proximal point algorithms

The role of the duality maps Jr
X and Jr′

X ∗ in the definition of Algorithms 1 and
2 is related to the particular geometry induced by the r-norm of the Banach space
X and its dual X ∗ with the dual r′-norm. To better clarify the role of the norms,
we present a simple explanation of the dual method (3.9) and of the primal method
(3.13), in terms of suitable proximal operators introduced in Sections 3.1.1 and 3.1.2.

We start considering the functional (3.10) and its subdifferential (3.11) in smooth,
reflexive and strictly convex Banach spaces, inspired by (3.8) we write

xk+1 = argmin
x∈X

{1
r

∥x− xk∥rX + τk⟨∇f(xk), x⟩
}
, (3.15)

which by differentiation leads to the optimality condition

Jr
X (xk+1 − xk) + τk∇f(xk) = 0 ,
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The latter can be solved explicitly, since (Jr
X )−1 = Jr′

X ∗ by (2.21), leading to

xk+1 = xk − τ̃kJr′

X ∗(∇f(xk)),

where τ̃k = τ r
∗−1
k , that is exactly the primal method iteration (3.14). Thus, the

minimisation problem (3.15) allows to interpret the primal method as a proximal
point algorithm for the functional (3.10) with the proximal operator defined by (3.3),
that is

xk+1 = prox1/r∥·∥r

τk⟨∇f(xk),·⟩(x
k).

Analogously, by using the Bregman distance Br
X instead of the norm distance

1
r
∥ · ∥rX in (3.15), we can write

xk+1 = argmin
x∈X

{
Br

X (x, xk) + τk⟨∇f(xk), x⟩
}

(3.16)

where the objective is strictly convex and differentiable, so that

∇
(1
r

∥ · ∥rX + 1
r∗ ∥xk∥rX −

〈
Jr

X (xk), ·
〉

+ τk
〈
∇f(xk), ·

〉)
(xk+1) = 0 .

The latter equality leads to the following iterative gradient-type iteration

Jr
X (xk+1) − Jr

X (xk) + τk∇f(xk) = 0 ,

which can be written as

xk+1 = Jr′

X ∗

(
Jr

X (xk) − τk∇f(xk)
)
.

We notice that this is exactly the Landweber dual method in Banach spaces (3.9) for
the minimisation of the p-power residual functional (3.10). This novel interpretation
allows us to write the dual method in Banach spaces in terms of Bregman proximal
operators. More precisely, the basic Landweber iteration (3.9) can thus be written
as

xk+1 = proxB
r
X

τk⟨∇f(xk),·⟩(x
k) ,

which provides a useful interpretation of the dual algorithm in the context of convex
optimisation.

3.3 Modular-based dual method in Lp(·)(Ω)

We present in this section the problems that arise when trying to use primal and
dual methods in Lp(·)(Ω) spaces and we propose a modular-based alternative to the
dual method in this scenario.
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3.3.1 Primal and dual methods in Lp(·)(Ω): main issues

The primal and dual methods can be effectively used in Lebesgue spaces with
constant exponents. Indeed, when X = Ls(Ω) with s ∈ (1,+∞) and Y = Lq(Ω)
with q ∈ (1,+∞), the dual method (3.9) becomes

xk+1 = Jr′

Ls′

(
JrLs(xk) − τkT

∗JpLq(Txk − y)
)
,

with duality maps defined by (2.20). Similarly, the primal method (3.13) reads as

xk+1 = xk − τkJr
′

Ls′

(
T ∗JpLq(Txk − y)

)
.

In the above equations, the inverse of JrLs , which by (2.21) is equal to Jr′

(Ls)∗ , is given
by Jr′

Ls′ thanks to (2.22) and to the isometric isomorphism between (Ls(Ω))∗ and
Ls

′(Ω). Thus, as already introduced in Section 2.2.2, such isometric isomorphism is
crucial to obtain an exact and explicit expression for the inverse of the duality maps
given by (2.22).

We now consider Lebesgue spaces with a variable exponent Lp(·)(Ω).

3.3.1.1 Approximation of the inverse of the duality map

As stated in Proposition 2.2.1, there is not an isometric isomorphism between
(Lp(·)(Ω))∗ and Lp′(·)(Ω) and thus the inverse of Jr

Lp(·) cannot be obtained as in (2.22).
As a consequence of this fact, the inverse of Jr

Lp(·) does not directly relate to the
point-wise conjugate exponents of p(·). The following approximation is nevertheless
considered in [5, 26, 31, 92]

(JrLp(·))−1 = Jr′

(Lp(·))∗ ≈ Jr′

Lp′(·) (3.17)

to use the Landweber method (Algorithm 1) in Lp(·)(Ω) spaces. It gives an inexact
but explicit formula of the duality maps for the dual space (Lp(·)(Ω))∗. Proposition
2.2.1 states that the norms of Lp′(·)(Ω) and (Lp(·)(Ω))∗ are not isometric, and it
provides optimal and finite bounds among them. Unfortunately, since the duality
maps are the Fréchet derivative of the r-power of the norm, these bounds do not give
any quantitative information about the goodness of the approximations. Anyway,
due to continuity arguments, we can say that the approximation should be good for
small ranges [p−, p+] of exponent values, since for p− = p+, which coincides with the
constant exponent case, the equality holds. Both the duality maps Jr

Lp(·) and Jr′

Lp′(·)

can be computed by (2.10), so that Algorithm 1 with the approximation given by
(3.17) is completely implementable in closed form.

We refer the reader to [31], where we performed some numerical tests on simple
imaging deblurring problems solved in variable exponents Lebesgue spaces with the
dual Landweber method (Alg. 1) with the approximation given by (3.17).
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3.3. Modular-based dual method in Lp(·)(Ω)

Algorithm 3 Modular-based Gradient Descent in Lp(·)(Ω)
Parameters: {τk}k s.t. 0 < τ̄ ≤ τk ≤ pc(1−δ)

K
with 0 < δ < 1, for all k ≥ 0.

Initialisation: x0 ∈ Lp(·)(Ω).
repeat

xk+1 = (Jρ̄p(·))
−1
(
Jρ̄p(·)(x

k) − τk∇f(xk)
)

(3.18)

until convergence

3.3.1.2 Heavy computational times

However, the computation of the duality map Jr
Lp(·) defined by (2.10) requires

the computation of the Luxemburg norm (2.4) which, as previously discussed in
Section 2.3, is not-separable and hence quite heavy to compute, since it requires the
resolution of a one-dimensional minimisation problem. This fact makes the definition
of gradient-descent iterative schemes rather inefficient in terms of computational
times, since both Algorithm 1 and Algorithm 2 involve duality maps, and hence
long norm computations. As a consequence, the expression (2.10) is not suited to
be used in a computational optimisation framework.

3.3.2 Modular-based alternative to dual method in Lp(·)(Ω)
The computation of the Luxemburg norm (2.4) is quite heavy, as shown also in

Section 2.1.1. On the other hand, the modular function, as seen in Definition 2.1.1,
has a closed form expression, similar to the norm in the conventional constant case
of Lp spaces, and thus its computation is more efficient than the Luxemburg norm’s
one. In Section 2.3, we observed that the modular is separable and differentiable and
its gradient is invertible with expression provided in Propositions 2.3.2 and 2.3.3. We
thus follow [147] and define in Algorithm 3 a more efficient modular-based gradient
descent iteration in the general setting of variable exponent Lebesgue spaces for the
minimisation of a proper, convex and smooth function f : Lp(·)(Ω) → R ∪ {+∞}.
The following set of assumptions needs to hold:

A1. ∇f : Lp(·)(Ω) → (Lp(·)(Ω))∗ is (p − 1)−Hölder-continuous with exponent 1 <
p ≤ 2 and constant K > 0, i.e.:

∥∇f(u) − ∇f(v)∥(Lp(·))∗ ≤ K∥u− v∥p−1
Lp(·) ∀ u, v ∈ Lp(·)(Ω).

A2. There exists c > 0 such that, for all u, v ∈ Lp(·)(Ω) ,

⟨Jρ̄p(·)(u) − Jρ̄p(·)(v), u−v⟩ ≥ cmax
{
∥u− v∥p

Lp(·) , ∥Jρ̄p(·)(u) − Jρ̄p(·)(v)∥p∗

(Lp(·))∗

}
.

The latter bound was previously used in [105, 145]. It is a compatibility condition
between the ambient space Lp(·)(Ω) and the Hölder smoothness properties of the
residual function to minimise to achieve algorithmic convergence.
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Chapter 3. Smooth optimisation in Lp(·)(Ω)

The minimisation of the specific function f is achieved solving at each iteration
(3.18) the following minimisation problem

xk+1 = argmin
u∈Lp(·)(Ω)

Jρ̄p(·)(u) − ⟨Jρ̄p(·)(x
k), u⟩ + τk⟨∇f(xk), u⟩ (3.19)

which can be equivalently formulated in terms of the Bregman distance of the mod-
ular Jρ̄p(·) , that we will denote with Bρ̄p(·) . Indeed, by summing constant terms to
(3.19), we obtain

xk+1 = argmin
u∈Lp(·)(Ω)

Jρ̄p(·)(u) − Jρ̄p(·)(x
k) − ⟨Jρ̄p(·)(x

k), u− xk⟩ + τk⟨∇f(xk), u⟩

= argmin
u∈Lp(·)(Ω)

Bρ̄p(·)(u, x
k) + τk⟨∇f(xk), u⟩ = prox

Bρ̄p(·)
τk⟨∇f(xk),·⟩(x

k),

which gives an interpretation of Algorithm 3 in terms of Bregman proximal operat-
ors, as carried out for Algorithm 1.

An important remark is that whenever ∇f(xk) = 0 at some k ≥ 0, a stationary
point xk+1 = (Jρ̄(pn))−1

(
Jρ̄(pn)(xk)

)
= xk is found, as expected. This cannot be

obtained using Algorithm 1 with approximation (3.17), since the duality map Jr
Lp(·)

is not coupled with its exact inverse but only with an approximation.
Note that when not only the solution space is a variable exponent Lebesgue

spaces X = Lp(·)(Ω), but also the measurement space is a variable exponent Lebesgue
space Y = Lq(·)(Ω), a more natural and consistent choice for the objective function
for the resolution of (1.1) is the modular of the discrepancy between the model
observation and the data, i.e. f(x) = ρ̄q(·)(Tx − y). In this way, instead of (3.11),
the gradient of f becomes ∇f(xk) = T ∗Jρ̄q(·)(Txk − y): the heavy computations of
the norm ∥ · ∥Lq(·) are not required, making the iteration scheme faster.

3.3.3 Comparison between Landweber and modular-based
gradient descent

To further motivate the choice of the modular to devise optimisation algorithms,
we present here a brief analysis to compare Algorithm 1 with the approximation
given by (3.17), i.e. norm-based gradient descent in Lp(·)(Ω) with the needed ap-
proximation for the inverse of duality maps, and modular-based gradient descent in
Lp(·)(Ω) described in Algorithm 3.

To this aim, we consider the blurred and noisy images shown in Figures 3.1c and
3.2c and tackle the deblurring problem by norm-based and modular-based gradient
descent in Lp(·)(Ω). The forward operator T : Lp(·)(Ω) → Lp(·)(Ω) is a blurring
operator given by a Gaussian Point-Spread-Function (PSF). The PSF for the test
image in Figure 3.1c is shown in Figure 3.1b, while the one for the satellite image
(Figure 3.2c) is shown in Figure 3.2c. The variable exponents used for the deblurring
are shown in Figures 3.1d and 3.2d, respectively. We will comment on and motivate
their selection in the next section.
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3.3. Modular-based dual method in Lp(·)(Ω)

(a) Ground truth (b) PSF (c) Acquisition

(d) p(·) (e) Alg.1 with (3.17) (f) Alg.3

Figure 3.1: Deblurring of test image in Lp(·)(Ω) spaces. The restored images, here
shown, are attained in correspondence with the minimum of the reconstruction error.

∥xrec−xgt∥
Lp(·)

∥xgt∥
Lp(·)

ρp(·)(xrec−xgt)
ρp(·)(xgt) PSNR SSIM CPU time #iter

Alg.1 approx 0.4836 0.4053 18.674 0.61975 9266 528
Alg.3 0.3602 0.2624 18.876 0.62435 48 618

Table 3.1: Comparison between norm-based and modular-based gradient descent for
images in Figure 3.1.

We solve the minimisation of ∥Tx − yδ∥Lp(·) with Algorithm 1 with approxima-
tion (3.17) and the minimisation of ρ̄p(·)(Tx− yδ) with Algorithm 3. In Figure 3.1,
the reconstruction error of both regularisation algorithms is shown and the semi-
convergence behaviour is quite evident. We then consider to stop both algorithms
when the minimum of the reconstruction error is attained and report it in Tables
3.1 and 3.2 the number of iterations needed to reach the minimum, alongside with
the corresponding values of reconstruction error, residual, PSNR, SSIM, CPU time.
The difference in terms of CPU time between the use of the norm and the modu-
lar is quite striking. It is interesting to point out that in terms of reconstruction
quality, modular-based gradient descent yields better values of relative reconstruc-
tion error computed both in terms of the norm and of the modular, PSNR and
SSIM. The approximation (3.17) introduced in Algorithm 1 to make it applicable
in Lp(·)(Ω) spaces introduces small errors slightly affecting the reconstructed images
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Chapter 3. Smooth optimisation in Lp(·)(Ω)

(a) Ground truth (b) PSF (c) Acquisition

(d) p(·) (e) Alg.1 with (3.17) (f) Alg.3

Figure 3.2: Deblurring of satellite image in Lp(·)(Ω) spaces. The shown restored
images are attained in correspondence of the minimum of the reconstruction error.

∥xrec−xgt∥
Lp(·)

∥xgt∥
Lp(·)

ρp(·)(xrec−xgt)
ρp(·)(xgt) SNR PSNR CPU time #iter

Alg.1 approx 0.3133 0.1832 7.83 93.42 85345 1143
Alg.3 0.3168 0.1839 9.49 95.08 106.97 1606

Table 3.2: Comparison between norm-based and modular-based gradient descent for
images in Figure 3.2.

and a slightly oscillating behaviour in the reconstruction error, as one can see from
Figure 3.1.

We recall that in Chapter 1, in Figure 1.7 and in Figure 1.6 the reconstruction
obtained in L2 and in Lp of the test image (Fig.3.1a) and of the satellite image
(Fig.3.2a) are shown.

3.3.4 How to choose variable exponents

In this section, some possible strategies to select variable exponents are detailed.
Consider the resolution of an inverse problems (1.1) in variable exponent Le-

besgue spaces, with the forward operator T : Lp(·)(Ω) → Lq(·)(Ω) being a bounded
linear operator between X = Lp(·)(Ω) and Y = Lq(·)(Ω) and with the acquisition
y ∈ Y = Lq(·)(Ω). In general, there are two variable exponent maps to be chosen,
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3.3. Modular-based dual method in Lp(·)(Ω)

(a) Test image in Figure 3.1c (b) Satellite image in Figure 3.2c

Figure 3.3: Semi-convergence of Landweber method and modular-based GD in
Lp(·)(Ω) spaces.

namely p(·) for the solution space X = Lp(·)(Ω) and q(·) for the acquisition space
Y = Lq(·)(Ω).

It is difficult (and somehow undesirable) to have a unified configuration as the
selection of both p(·) and q(·) is strictly problem-related. Parameters q(·) are related
to the regularity of the measured data as well as the different noise distributions
considered on the acquisitions. For instance, with impulsive noise, values of q−

and q+ closer to 1 are preferred while for Gaussian noise values closer to 2 are
more effective. Solution space parameters p− and p+ relate to the regularity of
the solution to retrieve. As a consequence, their choice is intrinsically harder. A
possible strategy for informed pixel-wise variable exponents consists in basing them
on observed data for q(·) and an approximation of the reconstruction for p(·), as we
did in [5, 31, 145]. In particular, given z ∈ Lp(·)(Ω) an approximation of the desired
solution, the exponent map p(·) is chosen in the following as

p(t) = p− + (p+ − p−) Υ
(

|z(t)|
maxt∈Ω |z(t)|

)
, t ∈ Ω, (3.20)

where Υ : R → R is an interpolation function. Similarly, for the variable exponent
q(·) of the measurement space, given w ∈ Lq(·)(Ω) the exponent map q(·) is chosen
as

q(t) = q− + (q+ − q−) Υ
(

|w(t)|
maxt∈Ω |w(t)|

)
, t ∈ Ω, (3.21)

where w can be the acquisition y directly, or Tz, where z is the approximation of the
solution used in (3.20), or T

(
p(·)

)
with p(·) given by (3.20). We refer the reader to

[31], where a comparison between different choices for p−, p+, q−, q+ and different
interpolation strategies Υ is carried out for image deblurring with gradient descent
(3.9) in Lp(·)(Ω). It is shown that the interpolation strategy used does not affect the
reconstruction quality significantly, but the latter is more sensitive to the choice of
a good interval [p−, p+]. However, the tuning of p−, p+, q−, q+ remains heuristic
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Chapter 3. Smooth optimisation in Lp(·)(Ω)

(a) Phantom (b) Sinogram (c) p(·) (d) q(·)

(e) GD2 (f) GDp (g) GDp(·),q(·)

Figure 3.4: Numerical test on simulated CT data with gradient descent algorithms.
Comparison between Hilbert and non-Hilbertian Lebesgue spaces reconstructions
with constant and variable exponents after 500 iterations.

and specific to the particular problem and image considered. This will be object of
further study.

3.3.5 Numerical tests with modular-based gradient descent

In Section 3.3.3, a numerical comparison between norm-based and modular-based
gradient descent is presented and shows that the latter performs way better in terms
of computational times.

Here, we present experimental results of the proposed modular-based strategy
(Alg.3) on a Computed Tomography (CT) imaging problem in a simulated setting
using a simulated dataset provided by the python CIL library [128]. The synthetic
ground truth phantom is shown Figure 3.4a. We consider (1.2) where the forward
operator T ∈ L(X ,Y) is given by the discrete Radon transform. Due to the nature
of the CT problem, acquisitions and unknown images have two distinct spatial
domains. For example, formulating the problem in a Hilbert setting we should
consider X = L2(ΩX ) and Y = L2(ΩY). However, in the following for simplicity we
denote with Ω both the spatial domain both over X and Y , with a slight abuse of
notation. The acquisition is obtained using a 2D parallel beam geometry, with 180
projection angles on a 1 angle separation, 256 detector elements, and pixel size of
0.1. Further details on the mathematical modelling and on the 2D parallel beam
geometry can be found in Appendix A. After applying the forward operator, a high
level (15%) of salt-and-pepper noise is applied to the sinogram. The noisy sinogram
is shown in Figure3.4b. The goal of this section is to quantitatively compare the
performance of Algorithm 3 with the corresponding Hilbert (3.7) and Banach space

64



3.3. Modular-based dual method in Lp(·)(Ω)

versions (3.9):

• GD2: X = Y = L2(Ω), f(x) = 1
2∥Tx− y∥2

2 by GD (3.7);

• GDp: X = Y = Lp(Ω), f(x) = 1
p
∥Tx− y∥pp by Banach SGD (3.9) with r = p;

• GDp(·),q(·): X = Lp(·)(Ω), Y = Lq(·)(Ω) for appropriately chosen exponent
maps, f(x) = ρ̄q(·)(Tx− y) with modular-based GD Algorithm 3.

Recall that GD2 and GDp are constant exponents methods while GDp(·),q(·) de-
pends on variable exponents.

The choice of the exponents is now discussed. In the constant case, we set
p = 1.1 because of the salt-and-pepper noise present in the sinogram. The most
suited fidelity for this noise setting is an L1-fidelity, which however is non-smooth
and thus not-suited for our modelling. Thus, the choice of a constant value p close
to 1 allows to approximate such non-smooth fidelity with a smooth one. In Lebesgue
spaces with variable exponents, exponents are maps sensitive to local assumptions
on both the solution and the measured data. The considered selection strategy is
given by (3.20) for the exponent map p(·) of the solution space X = Lp(·)(Ω) and
(3.21) for the exponent map q(·) of the acquisition space Y = Lq(·)(Ω). To this end,
we first compute an approximate reconstruction x̃ by running GDp in L1.1(Ω) for
70 iterations with a constant step-size regime. The map p(·) is then computed via
a linear interpolation of x̃ between p− = 1.05 and p+ = 1.25 and it is shown in
Figure 3.4c. The map q(·) is chosen as the linear interpolation between q− = 1.05
and q+ = 1.25 of T

(
p(·)

)
and it is reported in Figure 3.4d. The bounds p−, p+

and q−, q+ are chosen by prior assumptions on y (sparse phantom) and on the noise
(impulsive).

The Hilbert reconstruction obtained with GD2 after 500 iterations is shown in
Figure 3.4e and, as expected, it is very poor. In Figures 3.4f and 3.4f, reconstruc-
tion obtained after 500 iterations of GDp and GDp(·),q(·) respectively are reported.
Considering a Banach space setting drastically improves the reconstruction quality
and using a variable exponent yields particularly sharp solutions. This behaviour is
particularly evident analysing quality metrics (MAE, PSNR and SSIM) computed
after 500 iterations in Table 3.3.

The variable exponent setting also allows an heuristic, but effective, modification
in the utilised solution space exponents. Assuming that the iterates are improving
the quality of the reconstruction, an adaptive strategy would be to correspondingly
update the solution space exponents p(·), based on the current iteration. To this end,
we update p(·) based on the current solution estimate once every βupdates epochs to
adapt the exponents along the iterations. We will refer to this strategy as GDp(·),q(·)

adaptive.
In Figure 3.5, we study the semi-convergence property and we report the mean

absolute error (MAE), peak signal to noise ratio (PSNR) and structural similarity
index (SSIM) of the iterates xk w.r.t. the known ground-truth phantom along the
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(a) MAE (b) PSNR (c) SSIM

Figure 3.5: Quality metrics of GD2, GDp, GDp(·),q(·) and GDp(·),q(·) adaptive.

Algorithm It. Tot. MAE PSNR SSIM

GD2 0.44s 1324s 1.619e-1 61.81 0.0387
GD1.1 0.43s 1297s 1.247e-2 73.43 0.9452
GDp(·),q(·) 0.44s 1317s 3.101e-3 84.23 0.9947
GDp(·),q(·) adapt. 0.47s 1403s 3.386e-3 83.33 0.9939

Table 3.3: CPU times after 3000 iterations. MAE, PSNR, and SSIM values after
500 iterations (before noise over-fitting).

first 1000 iterations. GD2 is omitted from MAE to improve the readability of
the plots, due to its poor performance. We underline that Banach methods makes
the algorithms more stable and less sensitive to the stopping rule considered, since
the quality of the reconstructions obtained with GDp and GDp(·),q(·) remains high
increasing the number of iterations. This property to investigate further from a
theoretical point of view is very useful in practice, since a definition of a univocal
stopping rule is hard to attain.

3.4 A Modular-based Stochastic variant

The key challenge for the viability of many deterministic iterative methods for
real-world image reconstruction problems is their scalability to data-size. The use of
deterministic iterative algorithms, such as Algorithms 1 and 3, may be prohibitively
expensive in large-size applications. For example, the highest per-iteration cost
in emission tomography lies in the application of the entire forward operator at
each iteration, whereas each image domain datum in computed tomography often
requires several gigabytes of storage space. The same could thus be a bottleneck in
the application of Algorithm 3. The stochastic gradient descent (SGD) paradigm
addresses this issue [193].

Thus, following the strategy performed by the seminal work of Robbins and
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3.4. A Modular-based Stochastic variant

Monro [193] we adapt a stochastic gradient descent (SGD) strategy to the non-
standard setting of variable exponent Lebesgue space, in order to reduce the per-
iteration complexity costs. In [193], to minimise a smooth function f : H → R in H
Hilbert space, the following SGD scheme is proposed:

xk+1 = xk − τkh(xk, ξk), (3.22)

where h(·, ξ) is an unbiased estimator of the gradient of f , i.e.

Eξ [h(x, ξ)] = ∇f(x),

and the sequence of positive step-sizes (τk)k satisfies the following conditions to
ensure convergence: ∑

k∈N
τ 2
k < +∞,

∑
k∈N

τk = +∞. (3.23)

An unbiased estimator for the gradient of the residual function is usually obtained
by defining a suitable decomposition of the original problem into (finitely many)
sub-problems, and by implementing an iterative scheme where only a batch of data,
typically one, is used to compute the current update. This greatly reduces the
computational complexity per-iteration, and enjoys excellent scalability with respect
to data size. Note that the use of SGD schemes is popular within the mathematical
imaging community [126, 127] due to its applicability in large-scale applications such
as medical imaging [116, 170, 214]. However, its extension to variable exponent
Lebesgue setting is not trivial.

3.4.1 Stochastic Gradient Descent in Banach spaces
Let the forward operator of the model T : X → Y be a linear and bounded

operator between the reflexive, strictly convex and smooth Banach spaces X and Y .
We partition the forward operator T : X → Y into a finite number of block-type
operators T1, . . . , TNs with Ti : X → Yi, where Ns ∈ N is the number of subsets
of data, and the family of Lebesgue measurable subsets (Yi)ni=1 of Y is such that
Y̊i ∩ Y̊j = ∅ for i ̸= j, and Y = ⋃n

i=1 Yi (as in the hypothesis of Definition 2.3.1).
This results in a partition of the forward model, i.e. the same partition is applied
to the observations

Tix = yi, yi = χi(y)
where χi is the characteristic function of Yi. Classical examples of this methodology
include Kaczmarz methods [116, 170, 189], as sketched in Figure 3.6 in the case
of Computed Tomography (CT). Though the vast majority of existing stochastic
methods operate in Hilbert, and in particular Euclidean spaces, there has recently
been a renewed interest in stochastic methods in Banach spaces and, in particular,
Lp(Ω) spaces, see [126]. The SGD version of the iteration (3.9) in Banach spaces
takes naturally the form

xk+1 = Jr′

X ∗

(
Jr

X (xk) − τkT
∗
ik

JpYik

(
Tikx

k − yik
))

(3.24)
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(a) y ∈ Y (b) χi(y) ∈ Y (c) yi ∈ Yi

Figure 3.6: Partition of the observation y ∈ Y into yi ∈ Yi with Ns = 30

where the indices ik ∈ {1, . . . , Ns} are sampled uniformly at random.
Note that (3.24) is the standard form of SGD to minimise separable norm-based

objectives as in (3.10). In particular, the partition of the forward operator results
in the following splitting of the residual

fi(x) = ∥Tix− yi∥pYi
⇒ f(x) = 1

Ns

Ns∑
i=1

fi(x) = 1
Ns

∥Tx− y∥pY . (3.25)

The last equality is true only when the norm in Y is separable. Moreover, by
Theorem 2.2.1, decomposition (3.25) ensures that ∇fi(x) = T ∗

i JpYi

(
Tix

k − yi
)

is an
unbiased estimator for the gradient of f and it shows that each step of (3.24) can
thus be computed by simply taking a sub-differential of a single sum-function fi:

xk+1 = Jr′

X ∗

(
Jr

X (xk) − τk∇fik(xk)
)
. (3.26)

From (3.26), it becomes evident that this is a generalisation of the standard form of
SGD (3.22). Indeed, if X is an Hilbert space, taking r = 2, (3.26) reduces to:

xk+1 = xk − τk∇fik(xk).

Sampling reduces the per-iteration computational cost in Y by a factor of Ns.
In [126] convergence of the iterates to a least-squares solution is shown, under

conditions on the step-sizes similar to (3.23) in the standard SGD in Hilbert spaces.
Before reporting the convergence result, we recall here the definition of p-convexity
for Banach spaces.

Definition 3.4.1. Let X be a Banach space and p > 1. The space X is p-convex if
there exists a constant cp > 0 such that

1
p

∥x− y∥pX ≥ 1
p

∥x∥pX − ⟨z, y⟩ + cp
p

∥y∥pX

for all x, y ∈ X and all z ∈ Jp
X (x).
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3.4. A Modular-based Stochastic variant

Theorem 3.4.1. Let X be a p-convex and smooth Banach space and Y a Banach
space with separable norm. Let S be the set of least-squares solutions (1.3) of (1.1).

If (µk)k∈N satisfy the following conditions
∞∑
k=1

µp
∗

k < ∞,
∞∑
k=1

µk = ∞,

then the sequence
(
xk
)
k∈N

given by (3.24) converges almost surely to a least-squares
solution (1.3) of (1.1):

P
(

lim
k→∞

inf
x̄∈S

∥∥∥xk − x̄
∥∥∥

X
= 0

)
= 1.

For noisy measurements and in standard Lp(Ω) spaces, the regularising property
of SGD has been established in [126] by defining suitable stopping criteria. However,
early stopping strategies are hard to use in practice and providing methods that are
less sensitive to data over-fitting is crucial for their practical use.

3.4.2 Variable exponents modular-based SGD

We consider now the setting where both X = Lp(·)(Ω) and Y = Lq(·)(Ω) are
variable exponents Lebesgue spaces. To define a suitable SGD in this scenario, we
take as objective function the modular of the residual

f(x) = 1
Ns

ρ̄q(·)(Tx− y).

The choice of a norm-based objective function, in this setting, is not possible because
the Luxemburg norm ∥ · ∥Lp(·) is not separable, as shown by Lemma 2.3.2, and, thus,
splitting (3.25) cannot be achieved. Partitioning the space Y into subsets Yi as
described above, the same splitting of the exponent q(·) is implicitly considered as
well, namely qi(·) = χi(q(·)). The modular-based objective is splitted into Ns ≥ 1
sub-objectives

fi(x) = ρ̄qi(·)(Tix− yi),
so that ∇fi(x) = T ∗

i Jρ̄qi(·)(Tix− yi) is an unbiased estimator of ∇f(x).
Then, at iteration k and a randomly sampled index 1 ≤ ik ≤ Ns, the corres-

ponding stochastic iterates are given by (3.28). Moreover, similarly as before, one
can show that (3.28) can be equivalently defined as

xk+1 = argmin
u∈Lp(·)(Ω)

ρ̄p(·)(u) − ⟨Jρ̄p(·)(x
k), u⟩ + τk⟨∇fik(xk), u⟩

= argmin
u∈Lp(·)(Ω)

Bρ̄p(·)(u, x
k) + τk⟨∇fi(xk), u⟩ = prox

Bρ̄p(·)
τk⟨∇fik

(xk),·,⟩(x
k).

The pseudocode of the resulting stochastic modular-based gradient descent in Lp(·)(Ω)
is reported in Algorithm 4. We expect that through minimal modifications an ana-
logous result to Theorem 3.4.1 can be proved in this setting too, as well the regu-
larisation properties of Algorithm 4, as in [126] for Banach SGD defined by (3.24).
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Algorithm 4 Stochastic Modular-based Gradient Descent in Lp(·)(Ω)
Parameters: τ0 s.t. 0 < τ̄ ≤ τ0 ≤ pc(1−δ)

K
, 0 < δ < 1, Ns ≥ 1, γ > 0, η > 0.

Initialisation: x0 ∈ Lp(·)(Ω).
repeat

Select uniformly at random ik ∈ {1, · · · , Ns}.

Set the step-size
τk = τ0

1 + η(k/Ns)γ
(3.27)

Compute
xk+1 = (Jρ̄p(·))

−1
(
Jρ̄p(·)(x

k) − τk∇fik(xk)
)

(3.28)

until convergence

A detailed convergence proof, however, is left for future research. The main issue
in carrying out this analysis in Lp(·)(Ω) lies in the fact that these spaces are not
p-convex.

3.4.3 Numerical results
We now present experimental results of the proposed Algorithm 4 on two exem-

plar problems in CT (see Appendix A).
Similarly as in Section 3.3.5, we compare the performance of Algorithm 4 with

the corresponding Hilbert and Banach space versions (3.24):

• SGD2: X = Y = L2(Ω), f(x) = 1
2∥Tx− y∥2

2 by SGD;

• SGDp: X = Y = Lp(Ω), f(x) = 1
p
∥Tx − y∥pp by Banach SGD (3.24) with

r = p;

• SGDp(·),q(·): X = Lp(·)(Ω), Y = Lq(·)(Ω) for appropriately chosen exponent
maps, f(x) = ρ̄q(·)(Tx− y) with modular-based SGD Algorithm 4.

The first set of experiments uses the same simulated setting of Section 3.3.5,
whilst in the second set of experiments we consider the dataset of real-world CT
scans of a walnut taken from https://doi.org/10.5281/zenodo.4279549 [162],
with a fan beam geometry. For this data, we utilise the insights from the first
numerical tests on simulated data and apply Algorithm 4 in a setting with different
noise modalities across the sinogram space. The experiments were conducted in
python, using the open source package [128] for the tomographic back-end.

3.4.3.1 Hyper-parameter selection

In the following experiments, we employ a decaying step-size regime such that it
satisfies (3.27), which has been shown to be a sufficient condition for the convergence

70

https://doi.org/10.5281/zenodo.4279549


3.4. A Modular-based Stochastic variant

(a) Sinogram (b) GT (c) q(·) map (d) p(·) map

(e) SGD2 (f) SGDp (g) SGDp(·),q(·) (h) SGDp(·),q(·) adapt.

Figure 3.7: Simulated CT data: noisy acquisition, ground truth, exponent maps
p(·) and q(·), reconstructions (after 40 epochs) with SGD2, SGDp, SGDp(·),q(·)

and SGDp(·),q(·) adaptive.

of SGD in Banach spaces [126]. A need for a decaying step-size regime is common
for stochastic gradient descent to mitigate the effects of inter-iterate variance. Spe-
cifically, we use (3.27), where τ0 > 0 is the initial step-size, and γ > 0 and c > 0
control the decay speed. For the Hilbert space setting, SGD2, initial step-size τ0

is given by the Lipschitz constant of the gradient of the objective function, namely
τ0 = 0.95/maxi ∥Ti∥2. For SGDp and SGDp(·),q(·) the estimation of the respective
Hölder continuity constant is more delicate and τ0 has to be tuned to guarantee con-
vergence. However, its tuning is rather easy and the employ of a decaying strategy
makes the choice of τ0 less critical.

3.4.3.2 Simulated data

We consider again the phantom of Figure 3.4a and the sinogram of Figure 3.4b,
obtained using a 2D parallel beam geometry, with 180 projection angles on a 1 angle
separation, 256 detector elements, and pixel size of 0.1, and with high level (15%)
of salt-and-pepper noise.

To compute subset data Ti and yi, the forward operator and the sinogram are
pre-binned according to equally spaced views (w.r.t. the number of subsets) of the
scanner geometry. Subsequent subset data are offset from one another by the subset
index i, as sketched in Figure 3.6. We consider Ns = 30 batches.

As mentioned above, the goal is to compare the Hilbert, Banach and Lp(·)(Ω)
settings to see the role played by the choice of the solution space in the quality
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(a) MAE (b) PSNR (c) SSIM

Figure 3.8: Quality metrics along the first 100 epochs of SGD2; SGD1.1;
SGDp(·),q(·) with and without adapting the exponent maps p(·), q(·).

Deterministic Stochastic (· = S)

Algorithm It. Tot. It. Epoch Tot. MAE PSNR SSIM

·GD2 0.44s 1324s 0.02s 0.74s 74.4 s 2.582e-1 57.89 0.0304
·GD1.1 0.43s 1297s 0.03s 0.81s 81.3s 3.671e-3 82.64 0.9897

·GDp(·),q(·) 0.44s 1317s 0.03s 0.91s 91.2s 2.887e-3 84.05 0.9927
·GDp(·),q(·) adapt. 0.47s 1403s 0.03s 0.96s 96.5s 1.777e-3 88.10 0.9965
Compute p(·), q(·) 0.45s 16s 0.03s 0.8s 4.0s - - -

Table 3.4: Comparison of per iteration cost and total CPU times after 3000 iterations
for determistic algorithms and after 100 epochs for stochastic algorithms with Ns =
30. MAE, PSNR and SSIM values for stochastic algorithms are computed after 40
epochs (before noise over-fitting).

of the reconstructions. The algorithmic choices are SGD2, SGDp for p = 1.1
that will be denoted directly as SGD1.1 and SGDp(·),q(·) for appropriately chosen
variable exponents p(·) and q(·). The following choices for the step-sizes parameters
τ0 and γ are made depending on the specific algorithm. For SGD2, τ0 is set as
0.95/maxi ∥Ti∥2 and γ = 0.51. For SGDp and SGDp(·),q(·), we use τ0 = 0.015 with
γ = (p− 1)/p+ 0.01 and γ = (p− − 1)/p− + 0.01 respectively.

The choice of the exponents has already been discussed in Section 3.3.5 for this
same dataset. We just recall that as far as the variable exponents are concerned, we
consider again the selection strategy given by (3.20) and (3.21) and we first compute
an approximate reconstruction x̃ by running SGDp in L1.1(Ω) for 5 epochs with a
constant step-size regime. The map p(·) is then computed via a linear interpolation
of x̃ between p− = 1.05 and p+ = 1.25 and it is shown in Figure 3.7(d). The map q(·)
is chosen as the linear interpolation between q− = 1.05 and q+ = 1.25 of T

(
p(·)

)
.

Recall that the parameters p−, p+ and q−, q+ are selected taking into account prior
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assumptions on y (sparse phantom) and on the noise (impulsive).
In Figure 3.7 all the reconstructions of the noisy sinogram by the considered

strategies are shown. In particular, as before, the SGD2 classical Hilbertian solution
presents many artefacts and has very poor quality. All the other reconstructions
obtained with Banach spaces methods appear to be very close to the ground truth
phantom. In particular, SGDp(·),q(·) (with and without adaptive strategy) yields
solutions with a more truthful range than SGDp with a constant exponent p = 1.1.
It is hard to notice differences visually but it is more interesting to have a look
at the MAE, PSNR and SSIM of the iterates xk w.r.t. the known ground-truth
phantom along the first 100 epochs, Figure 3.8. Since PSNR favours smoothness,
it is thus beneficial for SGD2, whereas MAE promotes sparsity hence is beneficial
for both SGDp and SGDp(·),q(·). SGD2 is omitted from MAE and SSIM in Figure
3.8 to improve the readability of the plots, due to its poor performance. Figure 3.8
shows that Banach space algorithms provide better performance than SGD2 with
respect to all three quality metrics. Note that all the results show the well-known
semi-convergence behaviour with respect to the metrics considered. A theoretical
result on the selection of an early stopping strategy is needed for stopping the
iterations appropriately. We observe that not only the use of variable exponents
improves all quality metrics, but also makes the algorithm more stable: the quality
of the reconstructed solutions is significantly less sensitive to the number of epochs,
making possible early stopping strategies more robust.

In Table 3.4, the CPU times for deterministic (GD2, GDp and GDp(·),q(·))
approaches and stochastic ones (SGD2, SGDp and SGDp(·),q(·)) are compared. It
is worth observing that, as expected, the stochastic paradigm significantly reduces
computational costs and CPU times. Moreover, the variable exponents setting has a
similar CPU time than the others scenarios, thanks to the choice of a modular-based
algorithm.

3.4.3.3 Real CT dataset

As real test, we now consider a fan beam CT dataset of a walnut taken from
https://doi.org/10.5281/zenodo.4279549 [162], from which we take a 2D fan
beam sinograms from the centre plane of the cone. The fan beam data uses 0.5
angle separation over the range [0, 360]. The used sinogram is obtained by pre-
binning the raw data by a factor of 8, resulting in 280 effective detector pixels. See
Appendix A for a brief description of CT with 2D fan geometry.

We consider a more difficult noise setting that requires exponential maps which
vary in the acquisition domain. Here, we assume that noise has a different effect
on the background (zero entries) and the foreground (non-zero entries) of the clean
sinogram. Namely, we apply 10% salt and pepper noise to the background, and
speckle noise with mean 0 and variance 0.01 to the foreground, see Figure 3.9(a)
for the resulting noisy sinogram. Notably, since this noise model has a non-uniform
effect across the measurement data, it requires Banach space methods favouring the
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Figure 3.9: Real CT data: noisy sinogram and different reconstructions obtained
with SGD strategies.

adjustment of the Lebesgue exponents are expected to perform better than those
making use of a constant value.

Taking as a baseline the result obtained by SGD2, shown in Figure 3.9(b), we
compare here the effect of allowing variable exponents in the solution space only
with the effect of allowing both maps p(·) and q(·) to be chosen. By choosing p(·)
based on the initial image and interpolating it between p− = 1.2 and p+ = 1.3 we
then compare SGDp(·),1.1 (i.e., fixed exponent q = 1.1 in the measurement space)
with SGDp(·),q(·) where p(·) is as before while q(·) is chosen from the sinogram
by interpolating between q− = 1.1 and q+ = 1.9. The reconstruction obtained
with SGDp(·),1.1 is reported in Figure 3.9(c), while in Figure3.9(d) we see the one
obtained with SGDp(·),q(·). The results show that a flexible framework where both
maps p(·) and q(·) adapt to local contents are more suited for dealing with this
challenging scenario. Given the lack of ground-truth data, only a visual assessment
is done here.

As step-size we used (3.27), with Ns = 10 subsets, and suitable τ0 and γ. For
SGD2 , τ0 = 0.95/maxi ∥Ti∥2, γ = 0.51. For SGDp(·),q(·) we τ0 = 0.001, γ = 0.58.

3.5 Final discussion
In this chapter, we analysed regularisation methods in Banach spaces highlight-

ing their links to optimisation theory and proximal operators. Indeed, we showed
that the Landweber method in Banach spaces can be equivalently defined in terms of
Bregman proximal operators as a proximal point algorithm for the residual function
(3.10). The primal method is instead a proximal point algorithm for the smooth
function (3.10) with respect to the p-norm proximal operator. We discuss the com-
plications arising when trying to use such algorithms in Lp(·)(Ω) spaces and propose
an alternative method whose definition is based on the modular. The proposed al-
gorithm consists of a modular-based gradient descent in Lp(·)(Ω). We compared its
performance with the approximation of the Landweber algorithm in Lp(·)(Ω) given
by (3.17), which validates the choice of the modular against the norm in the defin-
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ition of optimisation strategies in this setting. In the last section, we presented a
stochastic variant of the modular-based gradient descent algorithms and showed its
performance in the reconstruction of both simulated and real CT data.
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Proximal gradient algorithms in
Lp(·)(Ω)

***

In order to minimise functionals that result from the sum of a smooth part and
a possibly non-smooth one, an effective strategy is the use of proximal gradient
descent algorithms, also called forward-backward algorithms. After a brief re-
view of these methods in Banach spaces, we present two possible way to define
algorithms of this form in the setting of variable exponent Lebesgue spaces, mak-
ing use of the modular instead of the norm in the definition of both the forward,
i.e. gradient, and the backward, i.e. proximal, steps. We then focus on sparse
reconstruction models and present some 1D and 2D numerical tests in mixed-
noise scenarios or heterogeneous signals, in order to highlight the flexibility of
the variable exponent spaces. To conclude, we present a numerical study on
convergence rates.
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Algorithm 5 Proximal primal-gradient algorithm in Banach spaces
Parameters: {τk}k s.t.

0 < τ̄ ≤ τk ≤ p(1 − δ)
K

(4.1)

with τ̄ > 0, 0 < δ < 1, p ∈ (1, 2], K > 0.
Initialisation: x0 ∈ X .
repeat

xk+1 ∈ argmin
x∈X

1
p

∥x− xk∥p
X + τk

〈
∇f(xk), x

〉
+ τkg(x) (4.2)

until convergence

In this chapter, we analyse and propose a study on proximal-gradient algorithms
to solve the composite optimisation problem

argmin
x∈Lp(·)(Ω)

ϕ(x) := f(x) + g(x) (P)

where f : Lp(·)(Ω) −→ R ∪ {+∞} is a proper, convex, and Gateaux differentiable
function while g : Lp(·)(Ω) −→ R∪{+∞} is a lower semi-continuous, proper, convex,
and possibly non-smooth one.

4.1 Norm-based proximal-gradient algorithms in
Banach spaces

The generalisation of forward-backward strategies, initially formulated in Hilbert
spaces, to the minimisation of a composite problem as in (1.23) and (P) but over
a Banach space X is not straightforward. As in the generalisation of Landweber
method seen in Chapter 3 Section 3.2, there is the need to introduce duality maps,
which link primal and dual spaces, to overcome the lack of isometric isomorphism
between X and X ∗. Duality maps allow to perform the forward gradient step either
in the dual or in the primal space. The intrinsic non-linearity of their duality maps,
however, introduces new challenges in the definition of a backward step in terms of
the proximal operator of g. In [37, 105, 106], forward-backward algorithms have been
proposed to solve composite minimisation problems in a general reflexive, strictly
convex and smooth Banach space X , by means of suitably defined notions of duality
mappings and proximal operators.

We review in this section the main tools used in these works, which will be useful
to extend these approaches to Lp(·)(Ω) [145] in the next sections of this chapter, in
which we highlight our contribution .
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Algorithm 6 Proximal dual-gradient algorithm in Banach spaces
Parameters: {τk}k s.t.

0 < τ̄ ≤ τk ≤ pc(1 − δ)
K

with 0 < δ < 1. (4.3)

with τ̄ > 0, 0 < δ < 1, p > 1, K > 0, c > 0.
Initialisation: x0 ∈ X .
repeat

xk+1 = argmin
x∈X

1
p′ ∥x

k∥p
X + 1

p
∥x∥p

X −
〈
Jp

X (xk), x
〉

+ τk
〈
∇f(xk), x

〉
+ τkg(x) (4.4)

until convergence

4.1.1 Proximal primal-gradient algorithm
In [37] Bredies introduced the iterative procedure defined in Algorithm 5 for

smooth functions f : X → R ∪ {+∞} with (p − 1)-Hölder continuous gradient ∇f
on bounded sets with 1 < p ≤ 2 with constant K > 0, i.e.

∥∇f(u) − ∇f(v)∥X ∗ ≤ K∥u− v∥p−1
X ∀ u, v ∈ X ,

and lower semi-continuous, proper, convex functions g : X → R ∪ {+∞}, with
appropriately chosen step-sizes τk as in (4.1). Notice that, for g ≡ 0, the updating
rule just (4.2) becomes (3.15) with r = p, retrieving hence the primal method
defined in Algorithm 2, suited for smooth optimisation procedures. Algorithm 5
can thus be seen as a generalisation of the primal method. Such interpretation is
not obvious from (4.2), where forward and backward steps are defined as one single
minimisation problem, so that they cannot be distinguished. Moreover, note that
iteration (4.2) can be interpreted in terms of the p-norm proximal operator of the
functional x ∈ X 7→ τk⟨∇f(xk), ·⟩ + τkg(·):

xk+1 ∈ prox1/p∥·∥p

τk⟨∇f(xk),·⟩+τkg
(xk),

according to the definition of proximal operator given by (3.3).
In the following section, this interpretation allows us to enhance the iteration by

introducing a different proximal operator, namely the Bregman-proximal operator.

4.1.2 Proximal dual-gradient algorithm
In [105], the authors consider a different forward-backward splitting algorithm in

Banach spaces, where the proximal step is defined in terms of a Bregman distance,
as reported in Algorithm 6 for suitably chosen step-sizes (4.3). In this second case,
differing from Algorithm 5, the algorithm requires the computation of the forward
step in the dual space. This can be seen in (4.4) by putting together the third
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and the fourth addenda, yielding to −
〈
Jp

X (xk) − τk∇f(xk), x
〉
. Moreover, similarly

as before, for g ≡ 0 (4.4) becomes exactly (3.16) with r = p, which means that
Algorithm 6 is a generalisation of the dual method defined in Algorithm 1. Another
interesting fact to notice is that iteration (4.4) can be equivalently defined in terms
of the Bregman proximal operator of the functional x ∈ X 7→ τk⟨∇f(xk), ·⟩ + τkg(·)
as follows

xk+1 ∈ proxB
p
X

τk⟨∇f(xk),·⟩+τkg
(xk),

according to the definition of Bregman-proximal operator given by (3.5). In Al-
gorithm 5, it is not possible to split the gradient step from the proximal one as
they are defined together in (4.2). Instead, in Algorithm 6, the use of a Bregman
distance in the definition of the algorithm (indeed, its proximal step) allows to do
so. Observe indeed that xk+1 defined by (4.4) satisfies

0 ∈ ∂
( 1

p′ ∥x
k∥p

X + 1
p

∥ · ∥p
X −

〈
Jp

X (xk), ·
〉

+ τk
〈
∇f(xk), ·

〉
+ τkg(·)

)
(xk+1)

0 ∈ Jp
X (xk+1) − Jp

X (xk) + τk∇f(xk) + τk∂g(xk+1) (Theorem 2.2.1)
Jp

X (xk) − τk∇f(xk) ∈ Jp
X (xk+1) + τk∂g(xk+1)

xk+1 =
(
Jp

X + τk∂g
)−1(

Jp
X (xk) − τk∇f(xk)

)
, (4.5)

thus generalising the standard forward-backward structure of (1.25).

4.2 Modular-based proximal primal-gradient al-
gorithm

Algorithms 5 and 6 have been proposed for reflexive, strictly convex and smooth
Banach spaces, hence they can a priori be applied to solve (P) in the variable
exponent Lebesgue spaces Lp(·)(Ω). However, as previously discussed in Chapter 2
at the beginning of Sections 2.3 and 2.3.1 and in Chapter 3 in Section 3.3.1, the
definitions of ∥·∥Lp(·) and of duality maps in Lp(·)(Ω) make their use impracticable in
real applications. To overcome this issue, we propose to replace the role of the norm,
naturally appearing in the definition of both the gradient step and the proximal
one, by the normalised modular function (2.3). Inspired by Algorithm 5, proposed
in [37], and Algorithm 6, studied in [105], we devise two instances of modular-based
proximal gradient algorithms in Lp(·)(Ω) spaces, which we have proposed in [145].

First, we propose an iterative procedure to solve the minimisation problem (P),
in which the gradient step is implicitly performed in the primal space.

We set ϕ̄ := infx∈Lp(·)(Ω) ϕ(x), and define

Sol(P) := {x ∈ Lp(·)(Ω) : ϕ(x) = ϕ̄} ≠ ∅. (4.6)

We consider the following set of assumptions:

A1. The exponent function p(·) is such that 1 < p− ≤ p+ ≤ 2.
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Algorithm 7 Modular-based proximal primal gradient algorithm in Lp(·)(Ω) spaces
Parameters: ρ ∈ (0, 1), {τk}k s.t.

0 < τ̄ ≤ τk ≤ p(1 − δ)
K

with 0 < δ < 1. (4.8)

Initialisation: Start with x0 ∈ Lp(·)(Ω).
repeat

repeat

1. Set τk = ρiτk.
2. Compute the next iterate as:

xk+1 = argmin
x∈Lp(·)(Ω)

ρ̄p(·)(x− xk) + τk⟨∇f(xk), x⟩ + τkg(x). (4.9)

3. i = i+ 1.

until ρp(·)(xk − xk+1) < 1

until convergence

A2. ∇f : Lp(·)(Ω) −→ (Lp(·)(Ω))∗ is (p − 1)Hölder-continuous with exponent p+ ≤
p ≤ 2 and constant K > 0, i.e.:

∥∇f(u) − ∇f(v)∥(Lp(·))∗ ≤ K∥u− v∥p−1
Lp(·) ∀ u, v ∈ Lp(·)(Ω). (4.7)

The first instance of modular-proximal gradient algorithm is reported in Algorithm
7. The inner loop over i is needed to select at each k-th iteration of the outer loop
a sufficiently small step-size τk such that ρp(·)(xk − xk+1) < 1, which is required in
the following convergence analysis, as we will see in Proposition 4.2.3 and Lemma
4.2.2. It should be thought of as a backtracking-like procedure affecting just the
first algorithmic iterations where the quantity ρp(·)(xk − xk+1) is likely to be large.

Observe that the iteration step defined by (4.2) can be interpreted as the com-
putation of a proximal operator defined with respect to the distance induced by the
modular ρ̄p(·) of the functional x ∈ Lp(·)(Ω) 7→ τk⟨∇f(xk), ·⟩ + τkg(·):

xk+1 = proxρ̄p(·)
τk⟨∇f(xk),·⟩+τkg

(xk).

The analysis of Algorithm 7 is related to the study of fixed points of iterations of
(4.10). We have the following result.

Proposition 4.2.1. The solutions of (P) coincide with the fixed points of the iter-
ation defined by Algorithm 7.
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Proof. Suppose that, for some k ≥ 0, xk is a solution of (P), i.e. xk ∈ Sol(P) defined
in (4.6). Then, by optimality condition, −∇f(xk) ∈ ∂g(xk). Note that, in general,
u solves (4.9) if and only if the following inclusion holds

−τk∇f(xk) ∈ Jρ̄p(·)(u− xk) + τk∂g(u) ,

where Jρ̄p(·) is the derivative of ρ̄p(·), according to Proposition 2.3.1. Clearly, u = xk

is thus a solution of (4.9), hence xk+1 = xk, so xk is a fixed point of the iteration
process.

Conversely, suppose now that xk is a fixed point, that is xk = xk+1 ∈ Lp(·)(Ω),
then

−τk∇f(xk) ∈ Jρ̄p(·)(x
k+1 − xk) + τk∂g(xk+1) = τk∂g(xk+1) = τk∂g(xk),

meaning that xk is optimal, that is, xk ∈ Sol(P).

We start our analysis discussing the well-definition of the step (4.9), e.g. the
existence and uniqueness of the minimizer of the functional defined by (4.9).

Proposition 4.2.2. For each x ∈ Lp(·)(Ω), v∗ ∈ (Lp(·)(Ω))∗ and τ > 0, the problem

argmin
u∈Lp(·)(Ω)

ρ̄p(·)(u− x) + τ⟨v∗, u⟩ + τg(u) (4.10)

has a unique solution.

Proof. Let τ > 0. Note that when ∥u− x∥Lp(·) > 1, by Lemma 2.1.1 we can write:

ρ̄p(·)(u− x) ≥ 1
p+
ρp(·)(u− x) ≥ 1

p+
∥u− x∥p−

Lp(·) .

Let now x̄ ∈ Sol(P). The optimality condition reads as 0 ∈ ∇f(x̄) + ∂g(x̄) or,
equivalently, ω̄ := −∇f(x̄) ∈ ∂g(x̄). By definition of subdifferential, there holds
g(u) ≥ g(x̄) + ⟨ω̄, u− x̄⟩ = g(x̄) + ⟨ω̄, u⟩ − ⟨ω̄, x̄⟩ for all u ∈ Lp(·)(Ω). By combining
such inequality with the Cauchy-Schwarz inequality, we get

ρ̄p(·)(u− x) + τ⟨v∗, u⟩ + τg(u)

≥ 1
p+

∥u− x∥p−
Lp(·) + τ⟨v∗ + ω̄, u⟩ + τg(x̄) − τ⟨ω̄, x̄⟩

≥ ∥u∥Lp(·)

[ 1
p+

∥u− x∥p−
Lp(·)

∥u∥Lp(·)
+ τ

⟨v∗ + ω̄, u⟩
∥u∥Lp(·)

+ τg(x̄) − τ⟨ω̄, x̄⟩
∥u∥Lp(·)

]

≥ ∥u∥Lp(·)

[ 1
p+

∥u− x∥p−
Lp(·)

∥u∥Lp(·)
− τ∥v∗ + ω̄∥(Lp(·))∗ + τ

g(x̄) − ⟨ω̄, x̄⟩
∥u∥Lp(·)

]
≥ L∥u∥Lp(·)

for some L > 0 and all u ∈ Lp(·)(Ω) such that ∥u∥Lp(·) is large enough. Note, in
particular, that 1

p+

∥u−x∥p−
Lp(·)

∥u∥
Lp(·)

→ +∞ as ∥u∥Lp(·) → +∞ since p− > 1 and x is fixed.
Hence, the functional in (4.10) is coercive. Moreover, it is convex, proper and lower
semi-continuous in Lp(·)(Ω), which, by Theorem 2.1.2, is reflexive, and thus at least
one solution exists. Moreover, since 1 < p− ≤ p+ ≤ 2, the functional is strictly
convex, and hence the solution is unique.
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4.2.1 Convergence analysis
We provide here a detailed convergence analysis of Algorithm 7 and provide an

insight on its convergence speed in function values. Our analysis is inspired by
the one conducted in [37], although it relies on different properties related to the
modular function ρ̄p(·) rather than to ∥ · ∥Lp(·) .

Lemma 4.2.1. For each u ∈ Lp(·)(Ω), the following inequality holds true:〈
Jρ̄p(·)(xk − xk+1)

τk
, u− xk+1

〉
≤ g(u) − g(xk+1) +

〈
∇f(xk), u− xk+1

〉
. (4.11)

Moreover, denoting by D(xk, xk+1) the quantity

D(xk, xk+1) := g(xk) − g(xk+1) +
〈
∇f(xk), xk − xk+1

〉
, (4.12)

we have that
ρp(·)(xk − xk+1) ≤ τkD(xk, xk+1). (4.13)

Proof. Note that, by optimality condition, xk+1 solves (4.9) if and only if

0 ∈ Jρ̄p(·)(x
k+1 − xk) + τk∇f(xk) + τk∂g(xk+1) ⇐⇒

Jρ̄p(·)(xk − xk+1)
τk

− ∇f(xk) ∈ ∂g(xk+1).

By definition of subdifferential, we thus have that, for all u ∈ Lp(·)(Ω),〈
Jρ̄p(·)(xk − xk+1)

τk
− ∇f(xk), u− xk+1

〉
≤ g(u) − g(xk+1),

which, by rearranging, coincides with (4.11). Choosing now u = xk above and
recalling (4.12), we get

〈
Jρ̄p(·) (xk−xk+1)

τk
, xk − xk+1

〉
≤ D(xk, xk+1). Applying now

(2.26) entails 〈
Jρ̄p(·)(xk − xk+1)

τk
, xk − xk+1

〉
= ρp(·)(xk − xk+1)

τk
,

by which (4.13) follows directly.

The following proposition shows that the iteration scheme (4.9) leads to a de-
crease of the functional ϕ of our minimization problem (P). This will be crucial for
the following convergence analysis.

Proposition 4.2.3. For every k ≥ 0, if ρp(·)(xk − xk+1) < 1, then the iteration
defined by Algorithm 7 satisfies

ϕ(xk+1) ≤ ϕ(xk) −
(

1 − Kτk
p

)
D(xk, xk+1). (4.14)
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Proof. By (4.12), we have

ϕ(xk) − ϕ(xk+1) = D(xk, xk+1) + f(xk) − f(xk+1) −
〈
∇f(xk), xk − xk+1

〉
. (4.15)

Considering the last three terms, we can write

f(xk) − f(xk+1) −
〈
∇f(xk), xk − xk+1

〉
=
∫ 1

0

〈
∇f(xk + t(xk+1 − xk)) − ∇f(xk), xk − xk+1

〉
dt.

(4.16)

By applying now the (p − 1)-Hölder continuity of ∇f (4.7), we can provide an
estimate of the absolute value of the right-hand side of (4.16), since∣∣∣∣∫ 1

0

〈
∇f(xk + t(xk+1 − xk)) − ∇f(xk), xk − xk+1

〉
dt
∣∣∣∣

≤
∫ 1

0
∥∇f(xk + t(xk+1 − xk)) − ∇f(xk)∥(Lp(·))∗∥xk − xk+1∥Lp(·)dt

≤
∫ 1

0
K∥xk − xk+1∥p

Lp(·)t
p−1dt ≤ K

p
∥xk − xk+1∥p

Lp(·)

Since we have ρp(·)(xk − xk+1) < 1 by assumption, by Proposition 2.1.2 there holds
∥xk − xk+1∥Lp(·) < 1 and ∥xk − xk+1∥Lp(·) < ρp(·)(xk − xk+1)1/p+ ≤ ρp(·)(xk − xk+1)1/p

by Lemma 2.1.1. Hence, by (4.13) we obtain∣∣∣∣∫ 1

0

〈
∇f(xk + t(xk+1 − xk)) − ∇f(xk), xk − xk+1

〉
dt
∣∣∣∣

≤ K

p
∥xk − xk+1∥p

Lp(·) ≤ K

p
ρp(·)(xk − xk+1) ≤ Kτk

p
D(xk, xk+1) ,

which concludes the proof by combining this with (4.15) and (4.16).

For each k ≥ 1, let us now define for simplicity the k-th residual

rk := ϕ(xk) − ϕ̄, ϕ̄ = inf
x∈Lp(·)(Ω)

ϕ(x). (4.17)

Note that rk ≥ 0 by definition. We can thus rewrite (4.14) as

rk − rk+1 ≥
(

1 − Kτk
p

)
D(xk, xk+1). (4.18)

Thanks to the bounds on the step-sizes τk, there holds rk − rk+1 ≥ 0, hence the
descent of the functional ϕ = f + g is guaranteed.

The following lemma shows that, by assuming the boundedness of the sequence
(xk)k, an estimate of the right-hand side of (4.18) can be found. This estimate
depends on the conjugate exponent p′(·) ∈ P(Ω) defined by (2.5). Since 1 < p(·) ≤ 2
and 1

p(t) + 1
p′(t) = 1 a.e., there holds 2 ≤ p′(·) < +∞.

Lemma 4.2.2. If (xk)k is bounded, then rk − rk+1 ≥ c0r
(p−)′

k with c0 > 0.
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Proof. Since (xk)k is bounded, for some x̄ ∈ Sol(P) there exists C1 > 0 such that,
for all k ≥ 1, ∥xk − x̄∥Lp(·) ≤ C1. The convexity of f as well as (4.11) with u = x̄

gives

rk = f(xk) + g(xk) − f(x̄) − g(x̄) ≤ g(xk) − g(x̄) +
〈
∇f(xk), xk − x̄

〉
=
〈
∇f(xk), xk − xk+1

〉
+ g(xk) − g(x̄) +

〈
∇f(xk), xk+1 − x̄

〉
= D(xk, xk+1) + g(xk+1) − g(x̄) +

〈
∇f(xk), xk+1 − x̄

〉
≤ D(xk, xk+1) +

〈
Jρ̄p(·)(xk − xk+1)

τk
, xk+1 − x̄

〉
≤ D(xk, xk+1) + τ−1

k ∥Jρ̄p(·)(x
k − xk+1)∥(Lp(·))∗∥xk+1 − x̄∥Lp(·)

≤ D(xk, xk+1) + τ−1
k ∥Jρ̄p(·)(x

k − xk+1)∥(Lp(·))∗C1. (4.19)

Recalling now that ⟨Jρ̄p(·)(u), v⟩ =
∫

Ω sign(u(t))|u(t)|p(t)−1v(t)dt for any u, v ∈
Lp(·)(Ω), by(2.9) and Proposition 2.2.1 we have

∥Jρ̄p(·)(u)∥(Lp(·))∗ = ∥ sign(u)|u|p(·)−1∥′
p′(·) ≤ 2∥ sign(u)|u|p(·)−1∥Lp′(·) .

Observe now that the following equality holds true:

ρp′(·)(sign(u)|u|p(·)−1) =
∫

Ω

(
sign(u(t))|u(t)|p(t)−1

)p′(t)
dt

=
∫

Ω

(
sign(u(t))|u(t)|

)p(t)
=
∫

Ω
|u(t)|p(t)dt = ρp(·)(u).

Hence it follows that ρp′(·)

(
sign(xk−xk+1)|xk−xk+1|p(·)−1

)
< 1, since by construction

we have ρp(·)(xk − xk+1) < 1. Together with Lemma 2.1.1, this leads to ∥ sign(xk −
xk+1)|xk − xk+1|p(·)−1∥Lp′(·) < 1. Furthermore, keeping in mind that (p′)+ = (p−)′ as
in (2.6), Lemma 2.1.1 entails

∥ sign(u)|u|p(·)−1∥Lp′(·) ≤
(
ρp′(·)(sign(u)|u|p(·)−1)

)1/(p−)′

for all u ∈ Lp(·)(Ω),

which can now be evaluated in u = xk − xk+1 and combined with the previous
inequalities to get from (4.19)

rk ≤ D(xk, xk+1) + τ−1
k ∥Jρ̄p(·)(x

k − xk+1)∥(Lp(·))∗C1

≤ D(xk, xk+1) + τ−1
k C12∥ sign(xk − xk+1)|xk − xk+1|p(·)−1∥Lp′(·)

≤ D(xk, xk+1) + τ−1
k C12

(
ρp′(·)(sign(xk − xk+1)|xk − xk+1|p(·)−1)

)1/(p−)′

= D(xk, xk+1) + τ−1
k C12

(
ρp(·)(xk − xk+1)

)1/(p−)′

,

so that, by (4.13), we have rk ≤ D(xk, xk+1) + 2C1τ
−1
k

(
τkD(xk, xk+1)

)1/(p−)′

. The
step-size constraints (4.8) together with (4.14) entail rk−rk+1 ≥ δD(xk) and τk ≥ τ̄ .
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Plugging these quantities into the last inequality above, we obtain

rk ≤ rk − rk+1

δ
+ 2C1τ̄

− (p−)′−1
(p−)′

(
rk − rk+1

δ

)1/(p−)′

.

Note that since rk is a nonnegative decreasing sequence, then rk − rk+1 is bounded,
so that we can write

δrk ≤ (rk − rk+1)1/(p−)′
(
R

− (p−)′−1
(p−)′ + 2C1τ̄

− (p−)′−1
(p−)′ δ

(p−)′−1
(p−)′

)
,

for a sufficiently large R > 0, which finally gives

rk − rk+1 ≥ δ(p−)′(
R

− (p−)′−1
(p−)′ + 2C1τ̄

− (p−)′−1
(p−)′ δ

(p−)′−1
(p−)′

)(p−)′ r
(p−)′

k .

Thanks to the previous lemma, we obtain the following convergence result.

Proposition 4.2.4. If (xk)k is bounded, then the following convergence rate in
function values can be found for the iterates of Algorithm 7

rk ≤ η
1

kp−−1 , (4.20)

where η = η(τ̄ , δ, p−, x
0, K, ϕ̄) and the residual rk is defined by (4.17).

Proof. The proof is based on analogous arguments as in [37, Proposition 4].
Apply the mean value theorem to get the identity

1
r

(p−)′−1
k+1

− 1
r

(p−)′−1
k

= r
(p−)′−1
k − r

(p−)′−1
k+1

(rk+1rk)(p−)′−1 = ((p−)′ − 1)ϑ(p−)′−2 (rk − rk+1)
(rk+1rk)(p−)′−1

with rk+1 ≤ ϑ ≤ rk. Thus, ϑ(p−)′−2 ≥ r
(p−)′−1
k+1 r−1

k and, by Lemma 4.2.2,

1
r

(p−)′−1
k+1

− 1
r

(p−)′−1
k

≥
((p−)′ − 1) c0r

(p−)′−1
k+1 r

(p−)′−1
k

(rk+1rk)(p−)′−1 = ((p−)′ − 1) c0.

Summing up the above telescopic sequence, then yields

1
r

(p−)′−1
k

− 1
r

(p−)′−1
0

=
k−1∑
i=0

1
r

(p−)′−1
i+1

− 1
r

(p−)′−1
i

≥ k ((p−)′ − 1) c0

and consequently,

r
(p−)′−1
k ≤

(
r

1−(p−)′

0 + c0 ((p−)′ − 1) k
)−1

⇒ rk ≤ Cn1−p−

since 1/ (1 − (p−)′) = 1 − p−.
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Such convergence rate is related to the smoothness of the considered space
Lp(·)(Ω) and, in particular, to the infimum exponent value p− appearing in the
analytical proof of Lemma 4.2.2, where it is used in a majorisation as worst case
analysis. It can thus be read as the worst-case convergence speed. It is highly ex-
pected that such convergence result can be improved and that, practically, faster
convergence could be achieved, as our numerical tests will effectively show.

We now provide a result relative to the convergence of the sequence (xk)k itself.

Proposition 4.2.5. If (xk)k is bounded, then the sequence (xk)k has at least one
accumulation point. All accumulation points belong to Sol(P). If Sol(P) = {x̄}, then
(xk)k converges weakly to x̄.

Proof. The proof is based on similar arguments to [37, Proposition 5] and [105,
Proposition 3.4 (iii)].

Since rk ≤ k1−p− , the sequence is a minimising sequence, thus, due to the weak
lower semi-continuity of the functional ϕ, each weakly convergent sub-sequence is a
minimiser. Moreover, it also follows that (xk)k is a bounded sequence in the reflexive
Banach space Lp(·)(Ω), meaning that there is a weakly-convergent sub-sequence. The
statement that (xk)k converges weakly to x̄ in case of uniqueness follows by the usual
sub-sequence argument.

We conclude this section recalling the definition of totally convex and r-convex
functions. Under the further hypothesis that f or g in (P) are totally convex or
r-convex, it is possible to show that the sequence of iterates defined by Algorithm
7 converges strongly to a solution of the minimisation problem (P) and, moreover,
that (P) has a unique solution, as we prove in Proposition 4.2.6.

Definition 4.2.1. Let h : Lp(·)(Ω) −→ R ∪ {+∞} be proper, convex and lower
semi-continuous The functional h is said to be totally convex in û ∈ Lp(·)(Ω) if for
all ω ∈ ∂h(û) and for each (un)n such that

h(un) − h(û) − ⟨ω, un − û⟩ → 0,

there holds
∥un − û∥Lp(·) → 0, for n → +∞.

We say that h is totally convex if it is totally convex in û for all û ∈ Lp(·)(Ω).
Similarly, h is convex of power-type r (or r-convex) in û ∈ Lp(·)(Ω), with r ≥ 2,

if for all M > 0 and ω ∈ ∂h(û) there exists β > 0 such that for all ∥u− û∥Lp(·) ≤ M

h(u) − h(û) − ⟨ω, u− û⟩ ≥ β∥u− û∥rLp(·) .

We say that h is convex of power-type r if it is convex of power-type r in û for all
û ∈ Lp(·)(Ω).

Proposition 4.2.6. If f or g is totally convex or r-convex with r ≥ 2, the solution
of problem (P) is unique. In this case, denoting it by x̄ ∈ Lp(·)(Ω), we further have
that the sequence (xk)k defined by (4.9) converges strongly to x̄.
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Proof. First, note that r-convexity implies total convexity. Then, focus on the case
that f is totally convex. Suppose now by contradiction that there exists x̃ ∈ Sol(P)
with x̃ ̸= x̄. Thus ∥x̃− x̄∥Lp(·) > 0. By defining

R(x) := f(x) − f(x̄) − ⟨∇f(x̄), x− x̄⟩, (4.21)

we have that R(x) ≥ 0 for all x ∈ Lp(·)(Ω). Moreover, by the optimality of x̄ and
the subgradient inequality, there holds ϕ(x) − ϕ(x̄) ≥ R(x) for all x ∈ Lp(·)(Ω).
Choosing x = x̃ , we thus get 0 = ϕ(x̃) − ϕ(x̄) ≥ R(x̃) ≥ 0, whence R(x̃) = 0.
Taking now un = x̃ for all n ≥ 1, we find a contradiction as the total convexity
property is violated, whence we deduce x̃ = x̄, that is the solution of (P) is unique.

To complete the proof, let us consider (4.21) once again. By optimality of x̄ and
thanks to the subgradient inequality, there holds rk ≥ R(xk), whence, by Proposition
4.2.4, we deduce that R(xk) ≤ η 1

kp−−1 . Letting now k → +∞ we thus infer that
R(xk) → 0 and, by the total convexity of f , that ∥xk − x̄∥Lp(·) → 0, which completes
the proof.

In the case that g is totally convex, the proof is analogous by defining R(x) :=
g(x) − g(x̄) + ⟨∇f(x̄), x− x̄⟩.

4.3 Modular-based proximal dual-gradient algorithm
In this section, we introduce a different modular-based proximal gradient al-

gorithm solving (P) where the proximal step is defined in terms of a modular
Bregman-like distance. Our study is here inspired by the analysis carried out in
[105] where Algorithm 6 is studied for a general Banach space X . Similarly as
above, we start this section by stating the required assumptions:

A1. ∇f : Lp(·)(Ω) −→ (Lp(·)(Ω))∗ is (p − 1)Hölder-continuous with 1 < p ≤ 2 with
constant K, as in (4.7).

A2. There exists c > 0 such that for all u, v ∈ Lp(·)(Ω)

⟨Jρ̄p(·)(u) − Jρ̄p(·)(v), u − v⟩ ≥ c max
{

∥u − v∥p
Lp(·) , ∥Jρ̄p(·)(u) − Jρ̄p(·)(v)∥p′

(Lp(·))∗

}
. (4.22)

Condition (4.22) links the geometrical properties of the space Lp(·)(Ω) with the
Hölder smoothness properties of f . It has to be interpreted as a sufficient compatib-
ility condition between the ambient space Lp(·)(Ω) and the function f for achieving
the desired convergence result. Notice that Condition (4.22) is similar to Xu-Roach
inequalities for p-convex spaces (see [204]). The pseudocode of the proposed al-
gorithm is reported in Algorithm 8 with iteration step defined by (4.23) or, equival-
ently, by

xk+1 = argmin
x∈Lp(·)(Ω)

Bρ̄p(·)(u, x
k) + τk⟨∇f(xk), x⟩ + τkg(x),

since Bρp(·)(u, xk) = ρ̄p(·)(u) − ρ̄p(·)(xk) − ⟨Jρ̄p(·)(xk), u − xk⟩, by neglecting constant
terms with respect to u. From the last equation, it result evident that (4.23)
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Algorithm 8 Modular-based proximal dual gradient algorithm in Lp(·)(Ω) spaces
Parameters: {τk}k s.t.

0 < τ̄ ≤ τk ≤ pc(1 − δ)
K

with 0 < δ < 1.

Initialisation: Start with x0 ∈ Lp(·)(Ω).
repeat

Compute the next iterate as:

xk+1 = argmin
u∈Lp(·)(Ω)

ρ̄p(·)(u) − ⟨Jρ̄p(·)(x
k), u⟩ + τk⟨∇f(xk), u⟩ + τkg(u) (4.23)

until convergence

can be interpreted by means of the proximal operator defined in terms of the
Bregman distance induced by the modular ρ̄p(·) of the functional x ∈ Lp(·)(Ω) 7→
τk⟨∇f(xk), ·⟩ + τkg(·):

xk+1 = prox
Bρ̄p(·)
τk⟨∇f(xk),·⟩+τkg

(xk).

Moreover, the iteration (4.23) can be equivalently formulated as

0 ∈ Jρ̄p(·)(x
k+1) − Jρ̄p(·)(x

k) + τk∇f(xk) + τk∂g(xk+1)
Jρ̄p(·)(x

k) − τk∇f(xk) ∈ Jρ̄p(·)(x
k+1) + τk∂g(xk+1)

xk+1 =
(
Jρ̄p(·) + τk∂g

)−1(
Jρ̄p(·)(x

k) − τk∇f(xk)
)
. (4.24)

This result is similar to the one shown by Lemma 3.1.6 for the proximal operator
defined in terms of the norm and of the one in (4.5) for the proximal dual-gradient
algorithm. It allows to better identify and split the forward gradient step and the
backward proximal one of the iterative strategy. To clarify further this fact, it
is useful to introduce the following notion which shows analogies to the standard
scheme of the Moreau envelope (see, e.g., [9, Chapter 12]).

Definition 4.3.1. Given h : Lp(·)(Ω) −→ R ∪ {+∞} smooth, convex, proper, lower
semi-continuous, we define the Moreau-like envelope eh : (Lp(·)(Ω))∗ −→ R and the
modular-proximal mapping πh : (Lp(·)(Ω))∗ −→ Lp(·)(Ω) as follows

eh(x∗) := inf
u∈Lp(·)(Ω)

∆(x∗, u) + h(u), x∗ ∈ (Lp(·)(Ω))∗

πh(x∗) := argmin
u∈Lp(·)(Ω)

∆(x∗, u) + h(u), x∗ ∈ (Lp(·)(Ω))∗ (4.25)

where ∆(x∗, u) = ρ̄p(·)(u) − ⟨x∗, u⟩ denotes the Bregman-like distance associated to
ρ̄p(·).
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Note that the minimum in (4.25) is uniquely attained as ρ̄p(·) is a strictly convex
function. Moreover, the unique point πh(x∗) satisfies

0 ∈ Jρ̄p(·)(πh(x
∗)) − x∗ + ∂h(πh(x∗)) ⇐⇒

x∗ ∈ Jρ̄p(·)(πh(x
∗)) + ∂h(πh(x∗)) ⇐⇒

πh(x∗) =
(
Jρ̄p(·) + ∂h

)−1
(x∗). (4.26)

This allows to write (4.24), which coincides with (4.23), equivalently as

xk+1 = πτkg

(
Jρp(·)(x

k) − τk∇f(xk)
)
. (4.27)

Thus, this shows that the iteration of Algorithm 8 can be equivalently formulated
as (4.23), (4.24) or (4.27). The next proposition shows that we can interpret the
proposed iteration as a fixed-point iteration scheme.

Proposition 4.3.1. For any γ > 0, there holds

x̄ ∈ Sol(P) ⇐⇒ x̄ = πγg
(
Jρ̄p(·)(x̄) − γ∇f(x̄)

)
.

Proof. Since x̄ solves (P), we have

0 ∈ ∇f(x̄) + ∂g(x̄) ⇐⇒ 0 ∈ γ∇f(x̄) − Jρ̄p(·)(x̄) + Jρ̄p(·)(x̄) + γ∂g(x̄) ,

that is Jρ̄p(·)(x̄) − γ∇f(x̄) ∈ Jρ̄p(·)(x̄) + γ∂g(x̄) =
(
Jρ̄p(·) + γ∂g

)
(x̄) . By (4.26),

since πγg =
(
Jρ̄p(·) + γ∂g

)−1
, we thus deduce as required that x̄ = πγg

(
Jρ̄p(·)(x̄) −

γ∇f(x̄)
)
.

We now report the analogue of Proposition 4.2.2, omitting the proof since the
reasoning is straightforwardly similar. It shows that the minimisation problem (4.23)
has a unique solution at each iteration, and thus each new iteration xk+1 is well
defined.

Proposition 4.3.2. The problem

argmin
u∈Lp(·)(Ω)

ρ̄p(·)(u) − ⟨Jρ̄p(·)(x), u⟩ + τ⟨v∗, u⟩ + τg(u)

has a unique solution for each x ∈ Lp(·)(Ω), v∗ ∈ (Lp(·)(Ω))∗ and τ > 0.

Similarly as in Proposition 4.2.4, it is possible to prove the convergence in func-
tion values for the iterates of Algorithm 8 and achieve a convergence rate. Here, we
omit the proof, as it follows verbatim the one in [105] which is itself inspired by [37].

Proposition 4.3.3. If (xk)k is bounded, then the following convergence rate in
function values can be found for the iterates of Algorithm 8

rk ≤ η
1

kp−1 , (4.28)

where η = η(τ̄ , δ, p, x0, K, c, ϕ̄).
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It is interesting to compare the rate (4.28) with the analogous one in (4.20)
obtained for Algorithm 7. The dependence on the Hölder exponent p in (4.28) links
the speed of convergence to the smoothness of the smooth function f rather than
to the one of the underlying Lp(·)(Ω) space, which appears in (4.20). For reasonably
smooth problems, we thus expect Algorithm 8 to show better performance than
Algorithm 7.

Remark 4.3.1. Algorithm 8 can be equivalently formulated in terms of the modu-
lar function ρp(·) maintaining the same convergence rate and convergence analysis.
However, ρ̄p(·) intuitively better generalises the norm 1

p∥ · ∥X used in the definition of
Guan and Song’s algorithm [105]. On the other hand, we underline that Algorithm 7
is defined in terms of ρ̄p(·), and it cannot be defined with ρp(·), since the convergence
analysis cannot be carried out otherwise. In particular, in the proof of Lemma 4.2.1,
(2.26) is necessary and it requires the use of ρ̄p(·).

Remark 4.3.2. It is important to notice that Proposition 4.3.3 allows to obtain
a convergence rate in function values for Algorithm 3 as well. Indeed, simply by
considering g ≡ 0 in Algorithm 8 we retrieve Algorithm 3, which, thus, enjoys the
same convergence rate, in the framework of smooth optimisation algorithms.

4.4 Sparse reconstruction and thresholding func-
tions

In this section, we consider a popular sparse reconstruction model used in a
variety of signal/image inverse problems and discuss the application of the al-
gorithms presented in the previous sections of this chapter for the computation
of its numerical solution. Given a Lebesgue measurable map p(·) : Ω −→ (1, 2],
we consider a bounded linear operator A : Lp(·)(Ω) −→ Lp+(Ω) and an observation
y ∈ Lp+(Ω), p+ ≤ 2. For λ > 0, we consider the Tikhonov-like functional

argmin
x∈Lp(·)(Ω)

1
p+

∥Ax− y∥p+
p+ + λ∥x∥1

in the Banach space Lp(·)(Ω), where f(x) = 1
p+

∥Ax − y∥p+
p+ is proper, convex and

smooth, while g(x) = λ∥x∥1 is proper, l.s.c, convex and non-smooth.
The gradient of f can be computed as ∇f(x) = A∗Jp+

p+(Ax− y) ∈ (Lp(·)(Ω))∗. In
agreement with the assumption on the Hölder continuity of the gradient of f made
for Algorithm 7 and for Algorithm 8, we start with the study of this property of
∇f . We claim that ∇f is (p+ − 1)-Hölder continuous. To show this, we recall the
following useful definitions and properties.

Definition 4.4.1. [204] A Banach space X is called smooth of power-type r (or
r-smooth) with r ∈ (1, 2] if there exists a constant C > 0 such that for all u, v ∈ X
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it holds that
∥v∥rX
r

− ∥u∥rX
r

− ⟨JrX (u), v − u⟩ ≤ C∥v − u∥rX ,

where JrX (·) denotes the duality mapping between X and X ∗.

Proposition 4.4.1. [37] If a Banach space X is smooth of power-type r, then ∥·∥r
X
r

is continuously differentiable with derivative JrX , which is (r−1)-Hölder continuous.
Furthermore, for s ≥ r, the functional ∥·∥s

X
s

is continuously differentiable. Its
derivative is given by JsY , which is still (r − 1)-Hölder continuous on each bounded
subset of X .

Lemma 4.4.1. [204] Lebesgue spaces Lr(Ω) are min{2, r}-smooth.

In the following, we will denote JrLp defined by (2.20) simply as Jrp. The space
Lp+(Ω) is by Lemma 4.4.1 p+-smooth and Jp+

p+ is (p+ − 1)-Hölder continuous, i.e.

∃K1 > 0 s.t. ∀y1, y2 ∈ Lp+(Ω) ∥Jp+
p+(y1) − Jp+

p+(y2)∥(p+)∗ ≤ K1∥y1 − y2∥p+−1
p+ .

Using this combined with the linearity of A and the sub-multiplicativity of the norm,
we can thus write

∥∇f(u) − ∇f(v)∥(Lp(·))∗ =
∥∥∥∥A∗

[
Jp+
p+(Au− y) − Jp+

p+(Av − y)
]∥∥∥∥

(Lp(·))∗

≤ ∥A∗∥(Lp(·))∗∥Jp+
p+(Au− y) − Jp+

p+(Av − y)∥(Lp(·))∗ ≤ ∥A∗∥(Lp(·))∗K1∥A(u− v)∥p+−1
p+

≤ K1∥A∗∥(Lp(·))∗∥A∥p+−1
p+ ∥u− v∥p+−1

Lp(·) ≤ K∥u− v∥p+−1
Lp(·) ∀ u, v ∈ Lp(·)(Ω),

showing that ∇f is (p+ − 1)-Hölder continuous, as needed for Algorithms 7 and 8.
We can thus focus now on the computation of the solutions of (4.9) in the discrete

setting, where the domain Ω is discretised into the disjoint sum of n nonempty
measurable subsets, i.e. Ω = ⋃n

i=1 Ωi and Ω̊i ∩ Ω̊j = ∅ for i ̸= j. By considering a
single real value on each subset Ωi, with a slight abuse of notation we simply denote
by ℓp(·)(Rn), the n-th dimensional subspace of the sequence space ℓp(·) generated by
the first n elements e1, e2, . . . , en of the canonical basis. To allow effective numerical
resolution, we heavily exploit the separability property of the operators involved in
the sense of Definition 2.3.1. By setting σk := A∗Jp+

p+(Axk − y) ∈ Rn, the iteration
(4.9) of Algorithm 7 reads as

xk+1 = argmin
u∈ℓp(·)(Rn)

{
ρ̄p(·)(u− xk) + τk⟨σk, u⟩ + τkλ∥u∥1

}
(4.29)

= argmin
u∈ℓp(·)(Rn)

n∑
i=1

{
1
pi

|ui − (xk)i|pi + τkσ
k
i ui + τkλ|ui|

}
,

where the separability property of each term leads to the sum with respect to i =
1, . . . , n. In other words, thanks to the additive separability property, at each k-th
iteration, with k ≥ 1, the n-dimensional minimisation problem in (4.29) corresponds
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4.4. Sparse reconstruction and thresholding functions

(a) Thresh. functions (b) T Alg.P(·, s, t, p) (c) T Alg.D(·, s, t, p)

Figure 4.1: 1D thresholding functions for proximal-gradient algorithms in Banach
spaces. (a) TAlg.P(·, s, t, p), TAlg.D(·, s, t, p) and T ISTA(·, s, t) with p = 1.3, s = 0.3,
t = 0.4. (b) TAlg.P(·, s, t, p) with s = 0.3, t = 0.4 and p ∈ {1.2, 1.4, 1.6, 1.8, 2}. (c)
TAlg.D(·, s, t, p) with s = 0.3, t = 0.4 and p ∈ {1.2, 1.4, 1.6, 1.8, 2}.

to the sum of n 1D problems. Hence, each component can be treated independently,
so one can consider the independent minimisation of the 1D functions:

ΨAlg.P
x,s,t,p(u) := 1

p
|u− x|p + su+ t|u|,

with x = (xk)i, s = τkσ
k
i , t = τkλ and p = pi, where the superscript Alg.P stands

for primal algorithm. The minimisers of ΨAlg.P
x,s,t,p can be computed by optimality as(

∂ΨAlg.P
x,s,t,p

)−1
(0) and can be expressed in a compact form in terms of the thresholding

function (see [37] for an analogous study in conventional Lp(Ω) spaces):

TAlg.P(x, s, t, p) =


x− sign(s+ t)|s+ t|

1
p−1 if x > sign(s+ t)|s+ t|

1
p−1

x− sign(s− t)|s− t|
1

p−1 if x < sign(s− t)|s− t|
1

p−1

0 otherwise.
(4.30)

We can similarly focus on Algorithm 8, for which the Hölder continuity of the
gradient of f (4.7) holds with p = p+. The assumption defined by (4.22) is hard to
verify in practice, although numerical tests show that it is not that challenging to
find a step-size for which convergence is guaranteed. Proceeding similarly as above,
we exploit again the separability of the modular appearing in the computation of
the k-th iteration (4.23) of Algorithm 8, which leads to the computation of the
minimisers of the following 1D function

ΨAlg.D
x,s,t,p(u) = 1

p
|u|p − |x|p−1 sign(x)u+ su+ t|u|

where, as before, x = (xk)i, s = τkσ
k
i , t = τkλ, p = pi and the superscript

Alg.D stands for dual algorithm. Similarly, such minimisers are now given by
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(
∂ΨAlg.D

x,s,t,p

)−1
(0) and correspond to the following thresholding function:

TAlg.D(x, s, t, p) =


(|x|p−1 sign(x) − s− t)

1
p−1 if |x|p−1 sign(x) > s+ t

−(s− t− |x|p−1 sign(x))
1

p−1 if |x|p−1 sign(x) < s− t

0 otherwise.
(4.31)

Figure 4.1a shows a comparison between the thresholding functions (4.30) and (4.31)
with the classical soft-thresholding function

T ISTA(x, s, t) =


x− s− t if x > s+ t

x− s+ t if x < s− t

0 otherwise,
(4.32)

which corresponds to the minimisation of the 1D function

ΨISTA
x,s,t (u) = 1

2(u− x+ s)2 + t|u|

appearing in the solution of the ℓ2 − ℓ1 LASSO optimisation problem in the Hilbert
space ℓ2 by means of the standard ISTA algorithm [70]. It is interesting to point
out that differently from the ISTA thresholding function (4.32), both thresholding
functions (4.30) and (4.31) are no longer symmetrical with respect to the vertical
line x = s. Moreover, TAlg.P(·, s, t, p) remains linear in x similarly to T ISTA(·, s, t), as
shown in Figure 4.1b for some exemplar values of p, while the thresholding function
TAlg.D is, in general, nonlinear, as shown in Figure 4.1c. Note that for p = 2,
both TAlg.P(·, s, t, 2) and TAlg.D(·, s, t, 2) coincide with the standard soft-thresholding
T ISTA(·, s, t) operator.

The thresholding functions TAlg.P and TAlg.D are respectively used in the imple-
mentation of Algorithms 5 and 6 for the resolution of (4.4) in constant exponent
Lebesgue spaces Lp(Ω), since therein the p-power of the norm and the modular
coincides.

4.5 Numerical tests
In this section, we provide some numerical tests showing how the proposed model

adapts to deal with a variety of signal and image deconvolution and denoising prob-
lems. We include additional tests providing a numerical verification of the compu-
tational convergence properties of Algorithms 7 and 8.

4.5.1 Spike reconstruction
As a first example, we consider a 1D signal reconstruction problem where we

seek for spikes defined on Ω = [0, 1] to be reconstructed from blurred measurements
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(a) Data and p(·) map (b) L1.7(Ω) reconstruction (c) Lp(·)(Ω) reconstruction

Figure 4.2: Spike reconstruction in Lebesgue spaces: comparison between constant
L1.7(Ω) and variable Lp(·)(Ω) exponent Lebesgue spaces. Parameters: τk ≡ 0.5;
λ = 10−2. Stopping criterion based on the normalised relative change between xk

and xk+1: ∥xk − xk+1∥2/∥xk∥2 < 10−4.

corrupted with Gaussian noise, see Figure 4.2a. In order to favour sparse reconstruc-
tions and reduce possible over-smoothing, the formulation of a reconstruction model
in a Banach space X is considered, see, e.g., [37, 204]. Denoting by A : X −→ L2(Ω)
the blurring operator and by y ∈ L2(Ω) the measured data, we thus aim to solve

argmin
x∈X

1
2∥Ax− y∥2

2 + λ∥x∥1, λ > 0 (4.33)

where, in particular, we set X = Lp(·)(Ω) with p− = 1.6 and p+ = 2, as shown in
orange in Figure 4.2a. The idea is to choose a higher value of p(·) where it is more
likely to have a (spike) signal, while lower values are preferred elsewhere, so that,
for these points, sparsity is enforced to a stronger extent. Note that the choice of
the exponent map p(·) acts in fact as a prior model on the signal, together with
the penalty term. To incorporate such prior knowledge, one can look directly at
the shape of the data y, or, for instance, to the structure of a standard ℓ2 − ℓ1

reconstruction computed after a small number of iterations, in order to have a
variable exponent p(·) consistent with an approximated (possibly over-smoothed)
solution of the problem. The choice of p(·) has been already discussed in Section
3.3.5 of Chapter 3. Having chosen the exponent map p(·), we can thus solve (4.33)
on X = Lp(·)(Ω) by means, e.g., of Algorithm 7.

In order to provide a comparison with existing models, we further consider prob-
lem (4.33) on X = Lp(Ω) for p = 1.7 and solve it by means of Algorithm 5. We
observe that using Lp(·)(Ω) modelling improves the quality of the reconstruction
with respect to a fixed Lp(Ω) modelling. In particular, we observe that the spikes
look much more enhanced in the variable exponent reconstruction with respect to
the constant one, which denoises well the acquisition but it does not manage to
significantly deblur it.

In this test we have considered Algorithms 5 and 7, which both entail an im-
plicit primal gradient-descent step. In the following, however, Algorithms 6 and
8 are considered, which are defined in terms of a Bregman proximal operator and
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(a) Data and p(·) map (b) A : L2 → L2, ISTA

(c) A : Lp(·) → L2, Alg. 8 (d) A : L1.5 → L1.5, Alg. 6 (e) A : Lp(·) → L1.5, Alg. 8

Figure 4.3: Deconvolution of heterogeneous signals in Hilbert L2(Ω), classical
Banach L1.5(Ω) and variable exponent Lebesgue space Lp(·)(Ω) settings. Parameters:
τk ≡ 0.5; λ = 5 ∗ 10−3. Stopping criterion based on the relative distance between xk
and xk+1: ∥xk − xk+1∥2/∥xk∥2 < 4 ∗ 10−6.

entail dual gradient-descent. We will see that the latter choices are faster in terms
of convergence speed than the former primal algorithms and, thus, preferable in
practice.

4.5.2 Deconvolution of heterogeneous signals

We now consider the signal deconvolution problem of a blurred and noisy data
y ∈ L2(Ω) corrupted by Gaussian noise of a 1D heterogeneous signal x ∈ X with
Ω = [0, 1], that is sparse in some intervals and smooth in others, as shown in Figure
4.3a. As in the previous example, the blurring operator A : X −→ L2(Ω) acts
between X , which will vary depending on the considered scenario, and the Hilbert
space L2(Ω). We consider the L2 norm of the residual as data fitting term, so that
model (4.33) is again used as reconstruction criterion. In Figures 4.3b and 4.3c we
report the reconstructions obtained by solving (4.33) with solution spaces X = L2(Ω)
using ISTA algorithm [70], and X = Lp(·)(Ω) using Algorithm 8, respectively, for
the particular choice of exponent map p(·) having p− = 1.5 and p+ = 2 shown in
orange in Figure 4.3a. We observe that the spikes in the left-hand side are better
reconstructed when considering Lp(·)(Ω) as solution space, see Figure 4.3c, due to
its locally enhanced sparsifying property, while the Hilbert reconstruction of Figure
4.3b present loss of intensities in the spikes.
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∥xrec−xgt∥2
∥xgt∥2

∥Axrec−yδ∥2
∥yδ∥2

SNR SSIM

A : L2 → L2, ISTA 0.3436 0.1169 9.28 0.64
A : Lp(·) → L2, Alg. 8 0.2298 0.1152 12.77 0.70
A : L1.5 → L1.5, Alg. 6 0.2287 0.1023 12.81 0.54
A : Lp(·) → L1.5, Alg. 8 0.2194 0.1031 13.18 0.70

Table 4.1: Deconvolution of heterogeneous signals in Hilbert L2(Ω), classical Banach
L1.5(Ω) and variable exponent Lebesgue space Lp(·)(Ω) settings. Quantitative results.

∥xrec−xgt∥2
∥xgt∥2

∥Axrec−yδ∥2
∥yδ∥2

SNR SSIM

A : L2 → L2, ISTA 0.5806 0.7989 4.72 1.08 ∗ 10−2

A : L2 → Lp(·), ISTA 0.4050 0.8226 7.85 1.50 ∗ 10−2

A : Lp(·) → Lp(·), Alg. 8 0.3813 0.8234 8.37 1.67 ∗ 10−2

A : L1.4 → L1.4, Alg. 6 0.7178 0.8294 2.88 0.76 ∗ 10−2

A : Lp(·) → L1.4, Alg. 8 0.4089 0.8296 7.77 1.58 ∗ 10−2

Table 4.2: 1D mixed noise removal in Hilbert L2(Ω), classical Banach L1.5(Ω) and
variable exponent Lebesgue space Lp(·)(Ω) settings. Quantitative results.

Similarly as in [37], we could also consider an Lp, 1 < p < 2, fidelity to better
restore spikes. Consistently, we can consider A : X −→ Lp(Ω) with p = 1.5 and the
following associated variational model

argmin
x∈X

1
p

∥Ax− y∥pp + λ∥x∥1, λ > 0.

In this case, Figures 4.3d and 4.3e show the reconstructions obtained with X =
L1.5(Ω) using Algorithm 6 and X = Lp(·)(Ω) using Algorithm 8 respectively. We
observe that smooth regions are better restored with reduced ringing effect artifacts
in Figure 4.3e thanks to the flexible choice of the solution space. Similar observations
can be made by looking at the quantitative results reported in Table 4.1, where for
instance, we observe that the reconstruction of Figure 4.3e is the closest to the
ground truth, among the computed reconstructions.

As a general comment, by these first numerical results we can say that working
with a variable exponent allows us to deal with the different nature of the signal in
a more flexible way.

4.5.3 1D and 2D mixed noise removal
We now focus on a mixed noise removal problem for blurred signals and images

affected by Gaussian and impulsive (salt-and-pepper) noise, in different and disjoint
parts of their spatial domain Ω, with Ω = [0, 1] and Ω being a compact of R2, re-
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(a) Data and p(·) map (b) A : L2 → L2, ISTA (c) A : L2 → Lp(·), ISTA

(d) A : Lp(·) → Lp(·), Alg. 8 (e) A : L1.4 → L1.4, Alg. 6 (f) A : Lp(·) → L1.4, Alg. 8

Figure 4.4: 1D mixed noise removal: different choices for the solution and output
spaces. Parameters: τk ≡ 0.1, λ = 2 ∗ 10−2. Stopping criterion based on the relative
distance between xk and xk+1: ∥xk − xk+1∥2/∥xk∥2 < 4 ∗ 10−6.

spectively. We exploit here the flexibility of Lebesgue spaces with variable exponent
by effectively treating the different noise nature at the same time.

Let X = Lp(·)(Ω) and Y = Lq(·)(Ω) be two Lebesgue spaces with exponents p(·)
and q(·), and let A : Lp(·)(Ω) → Lq(·)(Ω). To retrieve the sparse underlying signal,
let us consider the following problem:

argmin
x∈Lp(·)(Ω)

ρ̄q(·)(Ax− y) + λ∥x∥1, λ > 0. (4.34)

For the 1D example, the measured blurred and noisy signal is shown in blue
in Figure 4.4a: Gaussian noise is artificially added on the left part of the domain
while impulsive noise is added on the right part. Choosing p(·) = q(·) ≡ 2 in (4.34)
(and thus naturally setting X = Y = L2(Ω)) forces the fidelity term to reduce to
∥Ax−y∥2

2 which is well-known to be the most appropriate term to describe Gaussian
noise degradation. Hence, in this case, an L2 − L1 variational model formulated in
L2(Ω) is obtained and the standard ISTA algorithm [70] is used for its numerical
solution, shown in Figure 4.4b. We note that the reconstruction on the left part
is good, while several artefacts can be observed on the right side, due to the poor
adaptivity of the model to the different noise nature there. A data term more
suited to describe the sparse nature of impulsive noise should be considered for the
right part, such as, ideally, an L1 fidelity; see [177]. In our modelling, however,
exponents p = 1 cannot be chosen as they would correspond to a non-smooth data
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∥xrec−xgt∥2
∥xgt∥2

∥Axrec−yδ∥2
∥yδ∥2

PSNR SSIM CPU time # iterations

L2(Ω) 3.751 0.5115 21.82 0.78 249.84s 2292
L1.4(Ω) 1.143 0.5243 29.24 0.87 433.84s 2556
Lp(·)(Ω) 0.8554 0.6017 30.52 0.94 300.59s 2186

Table 4.3: 2D mixed denoising in Hilbert L2(Ω), classical Banach L1.5(Ω) and vari-
able exponent Lebesgue space Lp(·)(Ω) settings. Quantitative results.

term defined in a non-reflexive Banach space. However, exponents p ≈ 1 can still be
chosen. We thus consider as output space a Lebesgue space Y with variable exponent
map q(·) = p(·) shown in orange in Figure 4.4a: it is equal to 2 in the part of the
domain where the signal is corrupted by Gaussian noise, that is on the left side, and
equal to 1.4 elsewhere. The corresponding space-variant modular-based fidelity is,
therefore, differentiable and locally adapted to both natures of the noise thanks to
the choice of Y = Lp(·). In Figure 4.4c we show the ISTA reconstruction obtained
by choosing the solution space as X = L2(Ω). In this case, although our choice
of fidelity and measurement space Y is better adapted to both noise distributions
and favours the removal of impulsive noise from data, the spikes on the right-hand
side suffer from some intensity loss. To improve upon this drawback, we propose
a variable exponent in the definition of the solution space X too, namely the same
choice of variable exponent map p(·) of the output space is considered. In Figure
4.4d, we show the reconstruction obtained by solving (4.34) with X = Y = Lp(·)(Ω)
via Algorithm 8. The choice of an adaptive solution space improves the quality of
the reconstruction and endows the model with enough flexibility to provide a good
reconstruction of the signal over the whole domain. In this way, Gaussian noise and
impulsive noise can be treated simultaneously.

A final comparison with Y = Lp(Ω) with p = 1.4 again in the problem (4.34)
is reported in Figures 4.4e and 4.4f. They show the reconstructions obtained by
solving (4.34) with Y = L1.4(Ω) and solution spaces X = Lp(·)(Ω) and X = L1.4(Ω),
respectively. Note that the reconstruction in Figure 4.4d is more accurate than
the one in Figure 4.4f, in particular on the left-hand side since the spikes there
are better reconstructed. In Table 4.2, we show a quantitative comparison of all
the reconstructions obtained with the considered modellings. It is quite evident
that, considering variable exponent Lebesgue spaces as solution spaces, the quality
of the reconstructed signal improves significantly. In particular, considering the
same Gaussian L2 fidelity (that corresponds to Y = L2(Ω) with solution space X =
Lp(·)(Ω) instead of X = L2(Ω) results in a significant improvement in terms of SNR
and SSIM. The same consideration applies for the reconstructions obtained with
the same acquisition space Y = L1.4(Ω) and different solution spaces X = L1.4(Ω)
and X = Lp(·)(Ω). The reconstruction obtained using a variable exponent in both
solution and acquisition space results the best among the ones we computed.
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(a) Noisy data (b) X = Y = L2(Ω) (c) X = Y = L1.4(Ω) (d) X = Y = Lp(·)(Ω)

Figure 4.5: 2D mixed denoising. Parameters: τk ≡ 0.1, λ = 0.1. Stopping criterion
based on the normalized relative change between xk and xk+1: ∥xk−xk+1∥2/∥xk∥2 <

10−4.

As a similar test, we considered a mixed 2D denoising problem for the blurred
and noisy image in Figure 4.5a, again with Gaussian noise on the left half and
impulsive noise on the right half of the image domain. We solved again (4.34) for
p(·) = q(·) ≡ 2 by the ISTA algorithm (Fig. 4.5b), for p(·) = q(·) ≡ p = 1.4
by Algorithm 6 (Fig. 4.5c), and for p(·) = q(·) = p(·), where p(·) is a variable
exponent with p− = 1.4 and p+ = 2 such that it is equal to 2 on the Gaussian
noisy half and on the impulsive noisy half it has value 1.4, by Algorithm 8 (Fig.
4.5d). Observations analogous to those discussed for the 1D case can still be made.
Reconstruction artefacts are significantly reduced in the case of variable exponent
modelling. From Table 4.3, we see that the values of the reconstruction error, PSNR
and SSIM are better when considering a variable exponent setting. In particular,
the reconstruction error drops significantly with p = 1.4 instead of p = 2 and again
when taking a variable exponent p(·) instead of a constant one.

The flexibility of the model given by the choice of point-wise variable maps
allows one to simultaneously reconstruct signals with different spatial properties
on the whole domain. No domain decomposition techniques or domain splitting
methods are required.

4.5.4 A numerical study on convergence rates
The numerical examples reported so far in this chapter show that the use of a

variable exponent can help in improving reconstruction quality. It is thus natural to
ask which algorithm – Algorithm 7 and Algorithm 8 – should be used in practice.
As remarked already in [37], and as it can be observed from the convergence rate
in function values (4.20), Algorithm 7 is expected to be very slow in practice, in
particular, slower than a gradient-type algorithm whose well-known convergence
speed is of the order O(1/k).

In this section, we numerically compare the speed of convergence of different
algorithms when used as solvers for the deblurring problem (4.33) in the different
Hilbert and Banach scenarios discussed in Section 4.5.1. In particular, we compare
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convergence speed of the ISTA algorithm used to solve (4.33) in X = L2(Ω), with
Algorithms 5 and 6 for solving the same problem on X = Lp(Ω) with p = 1.7 and
with Algorithms 7 and 8 proposed in this work for X = Lp(·)(Ω). As exponent map
p(·), we stick with the choice shown in orange Figure 4.2a.

Given x∗ ∈ X , solution of (4.33) in each different space X considered, we recall
the convergence rates in function values (4.20) and (4.28) for Algorithms 7 and 8, re-
spectively. In principle, to compare the speed of convergence in a precise way, a pre-
computation of (a suitable approximation of) x∗ by means of benchmark algorithms
should be done for all the different scenarios discussed above. However, since to our
knowledge there is no existing algorithm for solving (4.33) in X = Lp(·)(Ω), instead
of computing x∗ we computed as a reference the value of x̃, solution of (4.33) with
X = L2(Ω), by running ISTA for 2 ∗ 104 iterations. Note that by simple algebraic
manipulations, from (4.20) we have for Algorithm 7

ϕ(xk) − ϕ(x̃) = ϕ(xk) ± ϕ(x∗) − ϕ(x̃) ≤ η1

(1
k

)p−−1
+ c

and, similarly, from (4.28) for Algorithm 8

ϕ(xk) − ϕ(x̃) ≤ η2

(1
k

)p−1
+ c

with p = 2 for the smooth part of (4.33), so that rates can still be compared up to
an additive constant. We use x̃ also for the computation of the convergence rates
for Algorithms 5 and 6 having

ϕ(xk) − ϕ(x̃) ≤ η3,4

(1
k

)p−1
+ c′,

again with p = 2 for (4.33). Finally, recall that for ISTA the convergence rate in
function values is

ϕ(xk) − ϕ(x̃) ≤ η5
1
k
,

where no additive constant to correct the rate is needed, being x̃ computed with
ISTA for X = L2(Ω). As stopping criterion, for all the tested algorithms we use the
normalised relative rates with respect to x̃ up to a tolerance parameter ϵ = 10−4:

|ϕ(xk) − ϕ(x̃)|/ϕ(x̃) < ϵ.

The results reported in Figure 4.6 and Table 4.4 show several interesting numer-
ical convergence properties. First, we note that although Algorithm 5 (violet line)
and Algorithm 6 (green line) are supposed to have the same convergence rate in the-
ory for the specific problem at hand, they clearly have a very different behaviour.
While the first needs more than 5 ∗ 105 iterations and more than 1000 seconds of
CPU time to reach convergence, the second converges with a much faster speed.
The same behaviour is observed also for the modular Algorithms 7 and 8 too, with
the first (red line) being very slow and the second (yellow line) much faster. With
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(a) Iterations (b) CPU times

Figure 4.6: Numerical study on convergence rates in function values ϕ(xk) − ϕ(x̃)
for proximal gradient algorithms in Banach spaces. (a) Relative rates along the first
4 ∗ 104 iterations. (b) Normalised relative rates along the first 60 seconds of CPU
time.

ISTA Alg. 5 Alg. 6 Alg. 7 Alg. 8

# iterations 17768 5 ∗ 105 5352 37850 12849
CPU time (s) 16.5 1025.7 11.9 58.5 20.0

Table 4.4: Algorithmic comparison: iterations required and CPU time till conver-
gence.

respect to standard ISTA (blue line), we observe that the modular-based (Alg. 8)
(yellow line) and the norm-based proximal dual-gradient algorithms (Alg. 6) (green
line) are faster in terms of number of iterations and comparable in terms of compu-
tational time, whilst the modular-based (Alg. 7) (red line) and norm-based (Alg. 5)
(violet line) proximal primal-gradient algorithms are very slow. This fact suggests
that the computation of the gradient step in the primal space is rather inefficient
in terms of computational times, whilst performing it in the dual space speed the
convergence of the algorithms. As a general comment, we can devise that this nu-
merical study on convergence rates motivates the choice of Algorithm 8 instead of
Algorithm 7 in Sections 4.5.2 and 4.5.3, as well as the choice of Algorithm 6 over
Algorithm 5.

It is also important to address that the analytical convergence rate obtained for
Algorithm 7 is a worst-case convergence speed, as already noticed after the proof
of Proposition 4.2.4. Indeed, as expected, numerical tests show that the actual
convergence speed does not depend just on p−, the infimum value of p(·), but rather
on the whole distribution of the exponent function. We studied the convergence
behaviour of Algorithm 7 with respect to the choice of the exponent for problem
(4.33) for the spike deconvolution problem presented in Section 4.5.1 and shown
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(a) Relative rates (b) p1(·) (c) p2(·)

(d) p3(·) (e) p4(·) (f) p5(·)

Figure 4.7: Numerical study of the convergence rate in function values of Algorithm
7. Relative rates along the first 14000 iterations and different choices of variable
exponents functions p(·) with p− = 1.7.

in Figure 4.2, with X = Lp(·)(Ω) and different choices of variable exponent p(·).
We report in Figure 4.7 the convergence rate histories obtained with five different
exponents, all having p− = 1.7, together with ISTA convergence rate of O

(
1
k

)
and

Algorithm 5 convergence rate of O
(

1
kp−−1

)
with p− = 1.7. We can observe that

for the constant exponent p2(·) ≡ 1.7 empirically we obtain the estimated rate. A
similar behaviour is observed for p4(·), which is equal to (p4)− = 1.7 in the vast
majority of the domain. However, different choices of the variable exponent leads
to a better empirical convergence. For example with p3(·) which is equal to 2 in
almost all the interval Ω = [0, 1], we obtain an empirical rate comparable with the
rate of ISTA, corresponding to the constant choice of p = 2. This shows that, even
if (p3)− = 1.7, the convergence speed (which theoretically should be the same as
the one obtained with p2(·)) is not affected by the small part of the domain where
p3(·) = 1.7 and, instead, we retrieve ISTA convergence rate. For p5(·), which takes
the value of 1.7 in half of the domain, we observe a convergence speed which is in
between the ISTA’s and Algorithm 5’s one. The choice of p1(·) (which takes up the
shape of the blurred data) significantly improves the convergence speed, even if it
assumes the value p− in the majority of the domain. This is a further motivation to
such a choice for the variable exponent, that we detailed in Section 3.3.4.

These numerical validations suggest that the choice of the exponent map should
take into account the whole structure, i.e. the regularity, of the data.
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4.6 Final discussion
In this chapter, we presented two different ways to define forward-backward

algorithms in general Banach spaces. A possible strategy is to follow [37] and define
an algorithm that implicitly performs a gradient step in the primal space and a
proximal step based on the p-norm proximal operator. Another definition is given
in [105], where the gradient step is explicitly computed in the dual space and the
proximal step is defined in terms of the Bregman proximal operator. Similarly as
in the case of smooth optimisation, these algorithms are hard to use in practice in
variable exponent Lebesgue spaces Lp(·)(Ω), since they are all norm-based and the
Luxemburg norm has many undesirable properties from a numerical point of view.
Thus, similarly as for the definition of a gradient descent algorithms, we proposed
to define forward-backward algorithms in Lp(·)(Ω) by using the modular function
and its derivative instead of the norm and the duality maps. We hence presented
two instances of modular-based proximal gradient algorithms in Lp(·)(Ω), adapting
the conventional norm-based algorithms of general Banach spaces. We studied in
both cases the convergence of the algorithms in function values and, under stronger
hypothesis on the functional to minimise, to the minimiser of such functional.

Numerical tests to show the good performance of the proposed methods and
to highlight the advantages that using a variable exponent versus a constant one
yields have been computed and analysed. This is especially evident in mixed-noise
scenarios and with heterogeneous signals.

To conclude, we showed with some simple 1-dimensional tests that the attained
analytical convergence rates consist of worst-case estimates, as expected. Moreover,
it resulted evident that Algorithm 8 is much faster than Algorithm 7, similarly to
what happens to their constant exponents counterparts Algorithm 6 and Algorithm
5. It seems that computing the gradient descent step in the dual space improves the
convergence speed and it is thus more desirable than doing it in the primal space,
as well as for the simple Landweber primal and dual methods (Alg.2 and Alg.1) of
[204]. Moreover, the choice of a good exponent appears to have an influence, not
only in the reconstruction quality, but also in terms of convergence speed. This
interesting behaviour will be object of further study.
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In this chapter, the mathematical theory of sparse off-the-grid optimisation is
presented. Off-the-grid methods arise when formulating inverse problems in the
continuous setting of the space of Radon measures M(Ω), which is desirable
in order to avoid discretisation biases and numerical instabilities of variational
discretised approaches. In this context, the standard L2 − L1 LASSO regular-
isation takes the form of the so-called BLASSO problem, where an L2 fidelity
is coupled with a penalty consisting of the total-variation norm in M(Ω). This
penalty term promotes the reconstruction of discrete measures, i.e. finite linear
combinations of weighted Diracs. We will review here optimality conditions for
the BLASSO problem, obtained considering the corresponding dual problem, and
the Sliding Frank Wolfe algorithm used for its resolution.
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In this second part of the thesis, we focus on imaging inverse problems defined
in the space of Radon measures M(Ω). This formulation is called off-the-grid or
gridless, since images are not modelled anymore as vectors x ∈ RN with N ∈ N
being the number of pixels of the grid that discretises the domain Ω, but instead
they are seen as measures in the continuous domain Ω ⊆ Rd, d ≥ 1.

5.1 Inverse problems in the space of measures
Inverse problems in the space of measures and off-the-grid optimisation methods

have been first proposed in [39, 72, 96] and since then they have been a topic of
intense research for the mathematical community [34, 74, 75, 85, 184]. Off-the-
grid methods are particularly useful for reconstructing fine-scale details from noisy
acquisitions, with application to the localisation of spikes in a continuous domain Ω
in astronomy or microscopy [75], to the parameter estimation for a super-positions
of point sources in spectroscopy [84] and to density mixture estimation [52].

We start by briefly outlining discrete on-the-grid approaches and giving an intu-
itive description of their off-the-grid extensions. We sketch the motivation behind
their first introduction taking the example of sparse spikes deconvolution.

5.1.1 Going off-the-grid for sparse spikes deconvolution
In off-the-grid approaches, the spatial domain is not discretised with a grid. The

inverse problem is thus tackled directly in the continuous domain Ω and the desired
solution is modelled as a Radon measure in M(Ω) and not as a vectorised image
x ∈ RN with N pixels.

The application of interest in this thesis will be the sparse deconvolution prob-
lem of point-sources arising in fluorescence microscopy imaging, see Appendix B for
more details on the topic. This problem has been widely studied in the conventional
discrete setting, i.e. on-the-grid. The goal here is to estimate molecules’ intensit-
ies and positions from blurred acquisitions of sparse samples of molecules, that is
to reconstruct an image x from a blurred and noisy image y. To attain fine-scale
details and a higher precision in the reconstructions two different grid are usually
considered: the coarse grid of the acquisition y ∈ RM and a finer grid for recon-
struction x ∈ RN , as in Figure 5.1, with N = L2M , where the parameter L > 0
controls how much finer the grid of the reconstruction is. Then, given y ∈ RM , the
ill-posed inverse problem of reconstructing x ∈ RN consists in solving

y = RLHx+ ω,
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(a) L = 1 (b) L = 2 (c) L = 4 (d) L → +∞

Figure 5.1: From on-the-grid to off-the-grid formulation. In red, the coarse grid of
the acquisition y ∈ RM . In blue, the fine grid of the reconstruction x ∈ RN with
N = L2M . In green, the point-sources to localise.

where H ∈ RN×N is the blurring operator corresponding to the microscope PSF,
RL ∈ RM×N is the under-sampling operator, mapping images in the finer grid to
the coarse one, and ω ∈ RM is, in the basic scenario, an additive white Gaussian
noise component, i.e. ω ∈ N (0, σ2Id). Nonetheless, other noise distributions are
in general possible. Gaussian noise is often considered since it yields to simpler
variational models than other hypotheses on the noise distribution. However, in the
setting of fluorescence microscopy the Poisson distribution is more realistic, since
in the measurement of light noise has a photon-counting nature [16]. The factor
L > 0 controls the size of the finer grid: as the factor L increases, the grid is finer.
In Figure 5.1 it is evident that with a coarse grid point-sources that are too close
cannot be separated, thus a high value for L is desirable. In these cases, however,
by increasing the size of the reconstruction grid the problem becomes more and
more under-determined, causing instabilities in the reconstructions [87], and the
dimensions of the inverse problem increase, making its resolution computationally
expensive. One can thus think of off-the-grid approaches as the limit for L that goes
to +∞ of on-the-grid formulations [86, 141].

5.1.2 The space of Radon measures
We start now by introducing in a more formal way the space of Radon measures

M(Ω) and the off-the-grid inverse problem formulation. This section gathers some
important definitions and properties of M(Ω) from [75, 141, 183]. For more details
on Radon measures see [61, 196].

Let Ω ⊆ Rd, with d ∈ N, d ≥ 1, be a compact subset of Rd with non-empty
interior. We denote by C0(Ω,R) the space of real continuous functions on Ω that
vanish at infinity, namely all the continuous maps ψ : Ω → R such that:

∀ε > 0, ∃K ⊂ Ω compact, sup
x∈Ω\K

|ψ(x)| ≤ ε.

It is now possible to give the following definition of the space of Radon measure
through duality.
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(a) Acquisition y ∈ RM (b) Discrete reconstruction x ∈ RM

(c) Discrete reconstruction x ∈ RN (d) Off-the-grid rec. µa,x ∈ M(Ω)

Figure 5.2: Comparison between conventional discrete (on-the-grid) and off-the-grid
reconstructions. In black: the ground-truth spikes to retrieve. In Fig.5.2a: in blue,
the acquired blurred and noisy signal. In Fig.5.2b: in red, discrete reconstruction
with support constrained on a grid with M pixels. In Fig.5.2c: in red, discrete
reconstruction with support constrained on a grid with N > M pixels. In Fig.5.2d:
in green, the off-the-grid reconstruction. The green spikes are the reconstruction
without an a priori fixed grid, so they can move continuously on the line.

Definition 5.1.1. The Banach space of real signed Radon measures on Ω M(Ω) is
the topological dual of C0(Ω,R) endowed with the supremum norm ∥ · ∥∞,Ω, defined
by ∥ψ∥∞,Ω := supx∈Ω |ψ(x)|.

This interpretation allows to define a measure as a linear form on C0(Ω,R).

Definition 5.1.2. A Radon measure µ ∈ M(Ω) is a continuous linear form evalu-
ated on functions ψ ∈ C0(Ω,R), with duality pairing denoted by

⟨ψ, µ⟩C0(Ω,R)×M(Ω) =
∫

Ω
ψdµ. (5.1)

A Radon measure µ ∈ M(Ω) is a positive measure if ⟨ψ, µ⟩C0(Ω,R)×M(Ω) is positive
for any non-negative function ψ. This specifies the meaning of the term signed in
the above definition: the quantity ⟨ψ, µ⟩C0(Ω,R)×M(Ω) can be also negative.
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It is possible to define analogously the space of complex Radon measures MC(Ω)
as the dual of C0(Ω,C). On the other hand, the space of positive (non-negative)
Radon measures M+(Ω) cannot be defined as the topological dual of C0(Ω,R+),
since the latter is not a vector space.

Some classic examples of real Radon measures are:

• the Lebesgue measure of dimension d ∈ N;

• the Dirac measure δz centred in z ∈ Ω. For all ψ ∈ C0(Ω,R), one has
⟨ψ, δz⟩C0(Ω,R)×M(Ω) = ψ(z);

• discrete measures with N ∈ N, a ∈ RN , x ∈ ΩN

µa,x =
N∑
i=1

aiδxi
. (5.2)

M(Ω) is a non-reflexive Banach space endowed with its dual norm, called the
total-variation (TV) norm, defined by:

|µ|(Ω) = sup
( ∫

Ω
ψdµ

∣∣∣∣ ψ ∈ C0(Ω,R), ∥ψ∥∞,Ω ≤ 1
)

∀µ ∈ M(Ω).

The TV norm is non-differentiable but it is possible to consider its subdifferential
[85]:

∂|µ|(Ω) =
{
ψ ∈ C0(Ω,R)| ∥ψ∥∞,Ω ≤ 1 and

∫
Ω
ψdµ = |µ|(Ω)

}
. (5.3)

In particular, for discrete measures (5.2), its TV norm coincides with the L1 norm
of the vector a:

|µa,x|(Ω) = ∥a∥1.

This explains why the TV norm is considered to be a generalisation of the L1 norm.
Moreover, in this special case the subdifferential has the following expression

∂|µa,x|(Ω) = {ψ ∈ C0(Ω,R)| ∥ψ∥∞,Ω ≤ 1, ∀i = 1, . . . , N ψ(xi) = sign(ai)} . (5.4)

5.1.3 Inverse problems in M(Ω)
We focus now on the formulation of inverse problems of the form (1.1) in M(Ω).

We will consider as acquisition space a Hilbert space H.
Let µ ∈ M(Ω) be the continuous source measure, we call acquisition y ∈ H

the result of the forward operator Φ : M(Ω) → H evaluated on µ, with a fixed
measurement kernel φ : Ω → H:

y := Φµ =
∫

Ω
φ(x)dµ(x). (5.5)

This last integral should not be confused with the concept of duality pairing (5.1),
which is defined as the integral over Ω of a continuous real function with respect
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(a) Blurred data (b) Blurred and noisy data

Figure 5.3: Discrete ground truth measure (black) and acquisition (blue) attained
with the convolution with a Gaussian PSF (and Gaussian noise in Fig.5.3b).

to a measure µ ∈ M(Ω). In (5.5), the integral is then a Böchner integral [61] for
vector-valued functions φ(x) ∈ H, that is φ(x) is not a real value but an element of
H, and it is well-defined if φ is continuous and bounded [58, 75].

The choice of the kernel φ and of the acquisition space H depends on the physical
process of acquisition considered. For the scope of our analysis, we consider here a
convolution kernel, being the one of interest in fluorescence microscopy imaging [75].
In this setting, a natural choice for acquisition space is H = L2(Ω). The convolution
kernel φ : Ω → L2(Ω) with PSF φ̃ : Ω → L2(Ω) is defined as follows:

φ(x) := (s 7→ φ̃(s− x)) ∈ L2(Ω). (5.6)

Depending on the microscopy technique used one can have different PSFs. For
instance, the Gaussian PSF, centred in c ∈ Ω with radius σ > 0, is defined by

s 7→ φ̃(s− c) := 1/ d/2
√

2πσ2e−∥s−c∥2
2/2σ2

.

Other possible measurement kernels are

• the Fourier kernel, used i.e. in Nuclear Magnetic Resonance spectroscopy [84],
where the kernel φ : Ω → H with acquisition space H = C2fc+1 and with
cut-off frequency fc ∈ N is

φ(x) =
(
e2iπkx

)
|k|≤fc

. (5.7)

• the Laplace kernel, used i.e. in MA-TIRF microscopy techniques [75], where
the kernel is defined by

φ(x) =
(
s 7→ ξ(x)e−sx

)
∈ H,

with respect to a non-negative weighting function ξ ∈ C(Ω) specific to the
physical acquisition process.
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(a) Credit: Leila Muresan (b) Image from [114] (c) Image from [218]

Figure 5.4: Examples of biological fluorescent microscopy images. From left to right:
molecules, cells, microtubules.

It is interesting to observe the action of the forward operator on finite linear
combination of Dirac measures (5.2):

Φµa,x =
∫

Ω
φ(x)dµ(x) =

N∑
i=1

aiφ(xi).

For simplicity, the following notation will be used Φx(a) = ∑N
i=1 aiφ(xi), instead of

Φµa,x.
In fluorescence microscopy imaging, the objects of interest are images of mo-

lecules, i.e. point-sources emitting fluorescent light. In this particular biological
application, the unknown is well-described by discrete measures of the form (5.2),
where N ∈ N is the number of molecules and any Dirac δxi

represents one molecule
in the space Ω with position xi ∈ Ω and amplitude ai ∈ R. Hence, ai can only
be positive (or null), since in a given position xi either there is a source of light,
and hence ai is positive, or there is not, and hence ai = 0. For this reason, the
source measures µa,x are non-negative measures. Other possible objects of interest
in microscopy images are microtubules, 1-dimensional curve structures, and cells
(2-dimensional), that can be modelled as piece-wise constant functions, see Figure
5.4. In the following, we will focus only on sparse deblurring to recover point sources
(0-dimensional), giving a brief description of the other two cases.

5.2 The BLASSO problem
The sparse spikes deconvolution problem, that we approach now, consists in

recovering a (small) finite linear combination of Diracs µa,x = ∑N
i=1 aiδxi

from a
blurred and noisy acquisition

y = Φµa,x + ω,

where Φ : Ω → L2(Ω) is a convolution operator, as defined in (5.6), and ω is an
additive noise, typically white Gaussian noise.
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A natural variational formulation of this problem is

argmin
µ∈M(Ω)

1
2∥Φµ− y∥2 + λ|µ|(Ω), λ > 0. (L2 − | · |)

This convex functional is often called BLASSO, which stands for Beurling-LASSO
after the work of the mathematician Beurling [19]. It is considered the generalisation
of the LASSO L2 − L1 variational problem in the discrete setting, that is

argmin
x∈RN

1
2∥Tx− y∥2 + λ∥x∥1, (5.8)

with T = RLH ∈ RM×N and y ∈ RM , as in Section 5.1.1. It can be seen indeed
as the functional limit of LASSO (5.8) on a finer and finer grid, as sketched in
Figure 5.1. In Figure 5.2, we show a visual comparison between reconstructions
obtained with on-the-grid approaches with LASSO and off-the-grid approaches with
BLASSO.

In [39], the functional associated to (L2 − | · |)

Tλ(µ) := 1
2∥Φµ− y∥2 + λ|µ|(Ω) (5.9)

is proved to be proper, convex and coercive. This fact also proves the existence
of solutions of (L2 − | · |). Under injectivity assumptions on the forward operator,
uniqueness of the solution is also guaranteed [39].

Off-the-grid deblurring of curves. The reconstruction of images which are the
superposition of a few 1D curves is an interesting task in fluorescence microscopy.
Even if the images are sparse, it is not realistic to model them as sums of Diracs
(5.2), since this yields to dotted reconstructions [142]. This task is investigated in
the recent works [139, 140], which propose the penalty

R : M(Ω)2 → R ∪ {+∞}
µ 7→ |µ|(Ω) + |div(µ)|(Ω),

with div(µ) being the divergence of µ (defined in the sense of distributions), and the
associated CROC (Curves Represented On Charges) functional

argmin
µ∈V

1
2∥Φµ− y∥2 + λR(µ)

to implement the curve reconstruction problem, with V ⊆ M(Ω)2 space of charges,
i.e. the set of µ ∈ M(Ω)2 with finite divergence div(µ). In this way it is possible to
obtain measures supported on a curve, i.e. µγ such that ⟨ψ, µγ⟩ =

∫ 1
0 ψ(γ(t))γ′(t)dt

with ψ ∈ C0(Ω,R2) and γ(·) a regular curve onto [0, 1].
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Off-the-grid reconstructions of piece-wise constant functions. For com-
pleteness we briefly introduce here the imaging task in microscopy of precise loc-
alisation of cells, modelled as piece-wise constant functions, namely u(·) = a1E(·)
with E ⊂ R2, support regions of the cells. This problem has been studied in the
off-the-gird setting in [50, 51, 71], where the authors propose to tackle the recon-
struction of piece-wise constant images via total-variation regularisation with the
functional

argmin
u∈L2(R2)

1
2∥Φu− y∥2 + λ|Du|(R2),

where |Du|(R2) denotes the total variation of the gradient of u

|Du|(R2) = sup
{

−
∫
R2
udiv(ψ)

∣∣∣ψ ∈ C∞
c (R2,R2), ∥ψ∥∞ ≤ 1

}
.

We stress that this problem is not defined in the space of Radon measures but
instead in L2(R2), but it is interesting to mention since it is a continuous off-the-
grid problem.

Returning to the analysis of the BLASSO (L2 − | · |) problem, in the following,
we discuss its optimality conditions, which can be obtained by studying its corres-
ponding dual problem. Then, we present some algorithmic strategies that can be
used for its minimisation in the non-reflexive Banach space M(Ω).

5.2.1 Optimality conditions

Since the functional Tλ is convex, µ minimises Tλ if and only if 0 ∈ ∂Tλ(µ), i.e.

0 ∈ Φ∗(Φµ− y) + λ∂|µ|(Ω) ⇐⇒ 1
λ

Φ∗(y − Φµ) ∈ ∂|µ|(Ω),

which can be written as
η ∈ ∂|µ|(Ω), (5.10)

by defining the so-called dual certificate η as

η := 1
λ

Φ∗(y − Φµ). (5.11)

The dual certificate plays a crucial role in the characterisation of optimality condi-
tions for (L2 − | · |) and in devising optimisation algorithms in this setting, as better
specified in the following sections.

If µ is a finite linear combination of Dirac masses (5.2), the subdifferential of the
TV norm, defined in (5.3), takes the form (5.4). Hence, (5.10) becomes simply as

η(xi) = sign(ai) ∧ ∥η∥∞ ≤ 1. (5.12)
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5.2.2 Dual problem and extremality conditions
The optimality conditions (5.12) can be also derived by studying the dual prob-

lem of (L2 − | · |). This will give a further interpretation to the meaning of the dual
certificate η. Before detailing the dual problem of (L2 − | · |), we recall the basic
definition of convex conjugate [194] and a standard result from [89].
Definition 5.2.1. Given f : X −→ R, with X real Banach space, the convex
conjugate of f is the function f ∗ : X ∗ −→ R ∪ {+∞} defined by

f ∗(x∗) := sup
x∈X

⟨x∗, x⟩X ∗×X − f(x), x∗ ∈ X ∗. (5.13)

Lemma 5.2.1. (Fenchel-Rockafellar duality.) Let V, Y be two Banach spaces.
For Λ : V → Y linear operator, F : V → R and G : Y → R convex functionals, we
consider the following primal problem:

argmin
u∈V

F (u) +G(Λu). (5.14)

The corresponding dual problem reads

argmax
p∗∈Y ∗

−F ∗(Λ∗p∗) −G∗(−p∗), (5.15)

where Λ∗ : Y ∗ → V ∗ is the adjoint operator of Λ and F ∗ : V ∗ → R ∪ {+∞},
G∗ : Y ∗ → R ∪ {+∞} are the convex conjugate of F and G.

Moreover, if u ∈ V and p∗ ∈ Y ∗ are respectively solutions of the primal (5.14)
and dual (5.15) problems, the following extremality conditions hold: Λ∗p∗ ∈ ∂F (u)

−p∗ ∈ ∂G(Λu)
. (5.16)

In the formulation of the BLASSO (L2 − | · |) problem, we have V = M(Ω),
Y = L2(Ω), F (µ) = |µ|(Ω) and G(p) = 1

2λ∥y − p∥2. To write the dual problem,
as defined in (5.15), it is necessary to determine the expressions for the convex
conjugate of the TV norm and of G.

5.2.2.1 Convex conjugate of the fidelity

We start by detailing the computation of the convex conjugate for the Gaussian
L2 fidelity given by G(p) = 1

2λ∥y − p∥2. By Definition 5.2.1, we need to compute

G∗(p∗) = sup
p∈L2(Ω)

⟨p∗, p⟩ − 1
2λ∥y − p∥2.

Being the function p ∈ L2(Ω) 7→ ⟨p∗, p⟩ − 1
2λ∥y − p∥2 concave, its supremum is

attained at p such that 0 ∈ ∂
(
⟨p∗, ·⟩ − 1

2λ∥y − ·∥2
)

(p) = p∗ − 1
λ
(y − p), i.e. for

p = λp∗ + y. Thus, the convex conjugate has expression

G∗(p∗) = ⟨p∗, y⟩ + λ

2 ∥p∗∥2, p∗ ∈ L2(Ω). (5.17)
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5.2.2.2 Convex conjugate of the TV norm

To conclude and obtain the dual problem of (L2 − | · |), we report now the com-
putation of the convex conjugate of F : V → R, defined by F (µ) = |µ|(Ω) with
V = M(Ω). Thus, by Definition 5.1.1, the dual space is V ∗ = C0(Ω,R). In order to
determine F ∗ : V ∗ → R ∪ {+∞}, let ψ ∈ C0(Ω,R):

F ∗(ψ) = sup
µ∈M(Ω)

⟨ψ, µ⟩C0(Ω,R)×M(Ω) − |µ|(Ω)

≥ ⟨ψ, µ⟩C0(Ω,R)×M(Ω) − |µ|(Ω), ∀µ ∈ M(Ω).

Let x ∈ Ω, and µ = αδx with α > 0. Then, we can write:

sup
µ∈M(Ω)

⟨ψ, µ⟩C0(Ω,R)×M(Ω) − |µ|(Ω) ≥ α(ψ(x) − 1).

Taking the limit for α → ∞ of the latter inequality yields F ∗(ψ) ≥ +∞ if ψ(x) > 1.
A similar result for ψ(x) < 1 is obtained with the measure µ = −αδx, with α > 0.
Thus, we have F ∗(ψ) = +∞ if ∥ψ∥∞,Ω > 1.

Assume now that ∥ψ∥∞,Ω ≤ 1. First notice that

F ∗(ψ) = sup
µ∈M(Ω)

⟨ψ, µ⟩C0(Ω,R)×M(Ω) − |µ|(Ω) ≥ 0

by considering µ = 0. Moreover,

⟨ψ, µ⟩C0(Ω,R)×M(Ω) − |µ|(Ω) ≤ ∥ψ∥∞,Ω|µ|(Ω) − |µ|(Ω)
≤ |µ|(Ω) (∥ψ∥∞,Ω − 1) ≤ 0

since ∥ψ∥∞,Ω ≤ 1. By taking the sup on both sides of the last inequality, one finally
gets F ∗(ψ) = 0 if ∥ψ∥∞,Ω ≤ 1. Altogether, this yields to

F ∗(ψ) =
0 ∥ψ∥∞,Ω ≤ 1

+∞ ∥ψ∥∞,Ω > 1
. (5.18)

5.2.2.3 Dual problem and extremality conditions

We now have all the elements to write the dual problem formulation (5.15) for
the BLASSO problem (L2 − | · |), putting together the result in Lemma 5.2.1 with
(5.17) and (5.18):

argmax
∥Φ∗p∗∥∞,Ω≤1

⟨y, p∗⟩ − λ

2 ∥p∗∥2. (5.19)

Moreover, from Lemma 5.2.1, the extremality conditions can be obtained. Given
µλ ∈ M(Ω) solution of the primal problem (L2 − | · |) with regularisation parameter
λ > 0 and denoting by p∗

λ ∈ L2(Ω) the solution of the dual problem (5.19), by (5.16)
we get  Φ∗p∗

λ ∈ ∂|µλ|(Ω)
−p∗

λ = 1
λ

(Φµλ − y)
. (5.20)
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From the extremality conditions (5.20), we retrieve the optimality conditions (5.12),
expressed in terms of the dual certificate (5.11). In addition, when the dual certi-
ficate satisfies (5.12) we can interpret it as η = Φ∗p∗

λ with p∗
λ being a solution of

(5.19).
Optimality conditions characterise the solution(s) of the BLASSO problem (L2 − | · |)

and they are crucial in devising algorithms for its minimisation and, in particular,
in the definition of stopping rules, since a good stopping criterion stops at an iterate
that satisfies the optimality conditions. In the next section, we present a possible
algorithmic strategy to solve the BLASSO problem (L2 − | · |).

5.3 Frank-Wolfe and Sliding Frank-Wolfe algorithms

The BLASSO (L2 − | · |) is an optimisation problem over the space of Radon
measures, an infinite dimensional and non-reflexive Banach space. Due to the non-
reflexivity of M(Ω), it is not clear how to define proximal strategies in this context.
A preliminar result has recently been proposed in [215].

A possible solver for BLASSO has to take into account the infinite dimensional
nature of M(Ω). The most used algorithms in this setting are semi-definite pro-
gramming approaches (for Fourier measurements (5.7)) [96], conditional gradient
algorithms [75, 97] and particle gradient descent [57, 58], which is an optimal trans-
port based algorithm. For a complete review of all these methods, we refer to [141].

A sketch of the Conic Particle Gradient Descent algorithm is shown in Figure
5.5. It proposes to solve BLASSO through optimal transport with gradient flows.
Basically, starting from an initial over-parametrised measure, with particles that
cover the domain Ω, it discretises the measure and, by performing a non-convex
gradient descent on the positions and weights of the particles, approximates the
gradient flow, which is proved to converge to a solution of BLASSO. Conic Particle
Gradient Descent estimated the gradient flow through a gradient descent on both
amplitudes and positions computed with respect to a specific cone metric.

In the next sections, we will present the conditional gradient method, initially
proposed in 1956 in [97] by Frank and Wolfe, showing how it can be used as a
solver for BLASSO (L2 − | · |). Then, we describe the Sliding Frank-Wolfe algorithm
proposed in [75], for off-the-grid optimisation.

5.3.1 Frank-Wolfe algorithm
The Frank-Wolfe (FW) algorithm, or conditional gradient method, has been

proposed in [97] to solve the following optimisation problem

min
m∈C

f(m) (5.21)

where C is a weakly compact convex set of a Banach space, and f is a differentiable
convex function. It relies on the iterative minimisation of a linearised version of
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(a) Initialisation (b) Mid-computation (c) End of computation

Figure 5.5: Conic particle gradient descent applied for 2D sparse spike deconvolution
with Gaussian kernel. White dots are the source measure and red dots are the
measures at iterations k with k = 0 in (a), k = 150 in (b) and k = 1000 in (c). The
background image is the acquisition y. The black lines are the paths of the particles
and constitute the gradient flow. Images from [141].

f without requiring any Hilbertian structure. This is a key advantage of FW with
respect to most first order optimisation schemes, such as gradient descent or proximal
splitting method, which on the contrary rely on an underlying Hilbertian structure.
This fact makes the FW algorithm particularly interesting to work in M(Ω). The
pseudo-code of the FW algorithm is detailed in Algorithm 9.

Observe that the FW algorithm is naturally endowed with a stopping criterion
for the iterates mk which is equivalent to the standard optimality condition for
constrained convex problems [73, 75], i.e.

∀s ∈ C, df(mk)(s−mk) ≥ 0.

In this section, we denote with df the directional derivative of f . Moreover, the stop-
ping criterion of Algorithm 9 ensures that the method stops at a global minimiser.
Indeed, since f is convex, for any s, t ∈ C there holds

f(s) ≥ f(t) + df(t)(s− t). (5.22)

Then, since sk is a minimiser of (5.25) the convexity property (5.22) implies that,
for all s ∈ C,

f(s) ≥ f(mk) + df(mk)(s−mk) ≥ f(mk) + df(mk)(sk −mk). (5.23)

If the stopping criterion is satisfied by mk, that is if

df(mk)(sk −mk) = 0, (5.24)

then (5.23) together with (5.24) ensures that mk is a global minimiser of f , i.e.
f(s) ≥ f(mk) for all s ∈ C.

Another interesting property of this method is that it is possible to replace mk+1

in (5.27) by any element of m̃ ∈ C such that f(m̃) ≤ f(mk+1) without losing the
convergence properties of this algorithm [33, 124].
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Algorithm 9 Frank-Wolfe (FW) algorithm [97]
Initialisation: m0 ∈ C.
repeat

Solve
sk ∈ argmin

s∈C
f
(
mk
)

+ df
(
mk
) [
s−mk

]
(5.25)

if df
(
mk
) [
sk −mk

]
= 0

mk is a solution of (5.21) ⇒ stop

else

Step research:

γk = 2
k + 2 ∨ γk ∈ argmin

γ∈[0,1]
f
(
mk + γ

(
sk −mk

))
(5.26)

Update:
mk+1 = mk + γk

(
sk −mk

)
(5.27)

until convergence

5.3.2 Frank-Wolfe for the minimisation of BLASSO
The FW algorithm cannot be applied straightforwardly to the BLASSO problem

because (L2 − | · |) is an optimisation problem over M(Ω), which is not bounded,
and the objective function (5.9) is not differentiable. Instead, following an idea of
[111], in [75] the authors propose to consider an equivalent problem to the BLASSO
by defining a differentiable epigraphical lift, which shares the same minimum as Tλ.

Lemma 5.3.1. The BLASSO problem (L2 − | · |) is equivalent to

argmin
(t,µ)∈C

T̃λ(µ, t) := 1
2∥Φµ− y∥2 + λt, (5.28)

where
C :=

{
(t, µ) ∈ R+ × M(Ω)| |µ|(Ω) ≤ t ≤ M

}
(5.29)

with M := ∥y∥2

2λ .

Proof. Let µλ be a minimiser of Tλ. Then,

|µλ|(Ω) ≤ 1
λ
Tλ(µλ) ≤ 1

λ
Tλ(0) ≤ ∥y∥2

2λ .

Therefore, it suffices to restrict the minimisation of BLASSO over the set of measures
with |µ|(Ω) ≤ t ≤ ∥y∥2

2λ .
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The equivalence stated in Lemma 5.3.1 is to be understood in the following
sense: µ is a solution to (L2 − | · |) if and only if (t, µ) is a solution to (5.28) for
some t ≥ 0. Moreover, if this is the case then t = |µ|(Ω) and T̃λ(µ, t) = Tλ(µ).
As a result, Lemma 5.3.1 allows to rewrite the minimisation of Tλ over M(Ω) into
the form (5.21), since the two problems are equivalent, C is bounded and T̃λ is a
differentiable functional on the Banach space R× M(Ω), with differential

dT̃λ(t, µ) : (t′, µ′) 7−→
∫

Ω
Φ∗(Φµ− y)dµ′ + λt′. (5.30)

In [73], a linear rate of convergence in function values has been shown for any
minimising sequence for the BLASSO.

Lemma 5.3.2. Let (tk, µk)k∈N be the sequence generated by Algorithm 9 applied to
T̃λ (5.28). Then, there exists D > 0 such that for any solution µ∗ of BLASSO we
have

Tλ(µk) − Tλ(µ∗) ≤ D

k
∀k ∈ N.

5.3.2.1 Greedy approach

Now we detail how the algorithmic steps of FW applied to (5.28) for the minim-
isation of BLASSO yields a greedy approach.

Consider the minimisation step (5.25) of Algorithm 9. First of all, note that
(5.25), neglecting terms which are constant with respect to s, reads as

sk ∈ argmin
s∈C

df(mk)(s). (5.31)

Moreover, since the function to minimise in (5.31) is a linear form and C is convex,
it achieves a minimum at an extremal point of C.

Applying Algorithm 9 to (5.28), we have f(s) = T̃λ(s) with s = (t, µ). In our
case, C is defined by (5.29) and has extremal points of the form s = (M,±Mδx) with
x ∈ Ω. Thus, (5.31) (which is equivalent to the first step (5.25) of each iteration of
Algorithm 9), by denoting mk = (tk, µk), becomes

argmin
(t,µ)∈C

dT̃λ(tk, µk)(t, µ) = argmin
x∈Ω

±M(Φ∗(Φµk − y))(x) + λM

= argmin
x∈Ω

(
±(Φ∗(Φµk − y))(x) + 1

)
λM

= argmin
x∈Ω

∓ηk(x) + 1 where ηk = Φ∗(y − Φµk)

= argmax
x∈Ω

∣∣∣ηk(x)
∣∣∣ .

This shows that

sk = mk + (M,σMδxk
∗
) = (tk, µk) + (M,σMδxk

∗
) with σ = sign

(
ηk(xk∗)

)
. (5.32)
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Therefore, at each iteration of the algorithm a new support point

xk∗ = argmax
x∈Ω

∣∣∣ηk(x)
∣∣∣ (5.33)

is introduced, resulting in a new spike at position xk∗, with amplitude σM .
It is interesting to notice the similarity between ηk, introduced above, and the

dual certificate (5.11). Recalling that dT̃λ is given by (5.30), the stopping criterion
(5.24) here becomes

dT̃λ(tk, µk)(sk −mk) = 0 where by (5.32) sk −mk = (M,σMδxk
∗
)

σMΦ∗(Φµk − y)(xk∗) + λM = 0
− σηk(xk∗) + 1 = 0∣∣∣ηk(xk∗)

∣∣∣ = 1.

By definition of xk∗ (5.33), it means that∣∣∣ηk(x)
∣∣∣ ≤ 1 for any x ∈ Ω,

and thus ηk is a dual certificate and satisfies optimality conditions (5.12). The
algorithm iteratively constructs such a dual certificate.

Let analyse now the line-search step (5.26) of Algorithm 9. Without loss of
generality, we can assume µk = ∑k

i=1 a
k
i δxk

i
with ak = (ak1, . . . , akk) and tk = ∥ak∥1,

then
mk + γ(sk −mk) = (tk, µk) + γ(M,σMδxk

∗
) = (tk + γM, µγ),

where µγ = µk + γσMδxk
∗
. Then, (5.26) reads as

argmin
γ∈[0,1]

1
2∥Φµγ − y∥2 + (1 − γ)λ∥ak∥1 + γλM. (5.34)

Note that since this step can be replaced with any (t, µ) which improves the objective
value [124], it seems sensible to simply perform a LASSO step in the form

ak+1 = argmin
a∈Rk+1

1
2 ∥Φµa − y∥2 + λ∥a∥1, (5.35)

where

µa =
k∑
i=1

aiδxk
i

+ ak+1δxk
∗

(5.36)

This is a finite dimensional non-smooth convex optimisation problem and can be
tackled using a variety of algorithms such as Forward Backward or FISTA [13].

Basically, by (5.36) at each step a new Dirac is added to the reconstruction. In
this sense, FW can be described as a greedy approach that iteratively finds a better
approximation to the desired solution adding just one spike per iteration.
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(a) FW with λ = 0.5 (b) FW with λ = 1000 (c) SFW with λ = 0.5

Figure 5.6: Reconstruction of 1D peaks from a blurred and noisy signal obtained
using Frank-Wolfe algorithm for λ = 0.5 and λ = 1000, and with Sliding Frank-
Wolfe with λ = 0.5.

5.3.3 Sliding Frank-Wolfe algorithm
Applying directly Algorithm 9 yields a sequence of measures (µk)k∈N which con-

verges towards a solution in a greedy way. However, numerical tests show that the
generated measures µk tend to be less sparse compared to the desired solution. In-
deed, one can practically observe that each Dirac mass of the ground truth measure
is approximated in µk by a cluster of Dirac masses with inexact positions, as shown
in Figure 5.6 (and this undesired phenomenon does not disappear by changing λ).
In [33, 39], the authors thus suggests to modify the Frank-Wolfe iterations for the
resolution of the BLASSO and to let the Dirac positions slightly move.

To this aim, the fact that one can replace the update of step (5.27) in Frank-
Wolfe algorithm (Alg. 9) by any value which improves the objective [124] is very
useful. Before, this idea allowed to replace (5.34) with (5.35), for the estimation of
the amplitudes. Similarly, one can further boost this step by optimising over the
positions and the amplitudes simultaneously. This consideration allows to define
the modified version of Frank-Wolfe in Algorithm 10that has been proposed and
studied in [75], namely the Sliding Frank-Wolfe (SFW) algorithm. The non-convex
update step (5.38) of Algorithm 10 effectively decreases more the energy than the
standard convex optimisation over the spikes amplitudes (5.37), as done in (5.35)
with Frank-Wolfe, which in turn decreases the functional Tλ more than performing
(5.34) using γk. Indeed,

Tλ
(
µk+1

)
≤ Tλ

(
µk+1/2

)
≤ Tλ

(
(1 − γk)µk + γkσMδxk

∗

)
.

The non-convex step drastically improves the convergence property of the algorithm
[32, 33]. Indeed, this tweak yields a theoretical convergence to a solution of BLASSO
in a finite number of iterations [75]. Moreover, Figure 5.7 highlights the importance
of the sliding step in the recovery of precise localised Diracs. Allowing the positions
to slightly change at the end of each iteration corrects the position estimated in
the insertion step with the argmax of the certificate, which does not necessarily
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(a) FW k = 0 (b) FW k = 1 (c) FW k = 2

(d) SFW k = 0 (e) SFW k = 1 (f) SFW k = 2

Figure 5.7: Frank-Wolfe and Sliding Frank-Wolfe algorithms for 2D sparse spike
deconvolution with Gaussian kernel. White dots are the ground truth measure and
red dots the reconstructed measure at iterate k. The background image is the
acquisition y, obtained with a 2D Gaussian PSF with σ = 0.1 and Poisson noise.
Results with λ = 0.001 on the domain Ω = [0, 1]2. The importance of the sliding
step appears evident in this 2D example with 3 Diracs.

correspond to a spike position in the ground truth. Comparing the results given by
FW and SFW in Figure 5.7, we observe that the localisation precision of SFW is
way higher.

5.4 Final discussion

In this chapter, we presented an overview on the mathematical theory of sparse
off-the-grid optimisation in imaging. The formulation of sparse inverse problems
in an off-the-grid setting entails working in the space of Radon measures M(Ω)
and, in the case of a quadratic data term, yields to the BLASSO variational prob-
lem. BLASSO combines an L2 fidelity with the TV norm of measures as penalty.
Moreover, since the TV norm in M(Ω) is a generalisation of the L1 norm, BLASSO
can be interpreted as a generalisation of the LASSO problem in Rd, used in discrete
settings, to the continuous scenarios of off-the-grid inverse problems. The TV norm
enforces sparsity and, in particular, it favours the reconstruction of finite linear
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Algorithm 10 Sliding Frank-Wolfe (SFW) algorithm [75]
Initialisation: µ0 = 0.
repeat

µk = ∑Nk

i=1 a
k
i δxk

i
, aki ∈ R, xki ∈ Ω, find xk∗ ∈ Ω s.t.:

xk∗ ∈ argmax
x∈Ω

∣∣∣ηk(x)
∣∣∣ where ηk = 1

λ
Φ∗
(
y − Φµk

)

if
∣∣∣ηk (xk∗)∣∣∣ ≤ 1

µk is a solution of (L2 − | · |) ⇒ stop

else

– insertion step:
Add support for the new spike:

xk+1/2 =
(
xk1, . . . , x

k
Nk, x

k
∗

)
Estimation of amplitudes:

ak+1/2 ∈ argmin
a∈RNk+1

1
2 ∥Φxk+1/2a− y∥2

H + λ∥a∥1 (5.37)

Update:

µk+1/2 =
Nk∑
i=1

a
k+1/2
i δxk

i
+ a

k+1/2
Nk+1δxk

∗

– sliding step:
Using a non-convex solver initialised with

(
ak+1/2, xk+1/2

)
(
ak+1, xk+1

)
∈ arg min

(a,x)∈RNk+1×ΩNk+1

1
2 ∥Φxa− y∥2

H + λ∥a∥1 (5.38)

µk+1 =
Nk+1∑
i=1

ak+1
i δxk+1

i

– pruning: eventually remove zero amplitudes Dirac masses from µk+1

until convergence

combinations of Diracs, which is particularly suited for applications. In the next
chapter, we will consider fluorescence microscopy (see Appendix B) as a biological
application for corresponding numerical tests.

From the optimisation point of view, BLASSO can be solved using conditional
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gradient algorithms or particle gradient descent strategies. We discussed here only
conditional gradient algorithms and, more precisely, the Frank-Wolfe and Sliding
Frank-Wolfe algorithms.
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Off-the-grid methods are usually formulated in the standard additive Gaussian
noise setting, i.e. with an L2 data fidelity term. However, in many scenarios
other noise statistics better describe the underlying acquisition process. In this
chapter, we aim to investigate the Poisson noise modelling for inverse problems
in the space of Radon measures. We thus propose a variational model which
couples a Kullback-Leibler data fitting term with the Total Variation of meas-
ures, as penalty term, together with a non-negativity constraint and study its
optimality conditions by analysing the corresponding dual problem. The import-
ance of the choice of a good regularisation parameter is addressed through an
automatic selection strategy, based on the homotopy criterion. We conclude the
chapter providing numerical experiments on both 1D/2D simulated and real 3D
fluorescent microscopy data.
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In this chapter, we study inverse problems in the space of Radon measures M(Ω)
under the hypothesis of signal dependent Poisson noise in the data. This choice is
motivated by the particular biological application of interest, that is fluorescence
microscopy. We refer to Appendix B for more details on this imaging problem. Due
to the photon emission nature of the light, in microscopy imaging Poisson noise
is better suited than the Gaussian one to describe the photon counts on acquired
images [16, 144]. However, a Gaussian noise modelling is often preferred, as it is in
general easier to work with, from both an analytical and a computational point of
view. In the space of Radon measures M(Ω), it leads to the well studied variational
formulation of BLASSO, presented in the previous chapter. The contribution of this
chapter is the definition and detailed analytical and numerical study of off-the-grid
regularisation coupled with a Poisson data term.

6.1 Off-the-grid Poisson inverse problems
Similarly as in Section 5.2, we aim at solving the spike deconvolution problem

under a Poisson noise hypothesis. To this aim, some adjustments to the inverse
problem formulation are required and now discussed.

Let Φ : M(Ω) → L2(Ω) the forward operator in (5.5). In the following, Φ is
assumed to be a positive definite operator, i.e.

µ ∈ M+(Ω) positive measure ⇒ Φµ(x) ≥ 0 ∀x ∈ Ω. (6.1)

Observe that, with Φ defined as in (5.5), this is attained whenever the convolution
kernel ψ is non-negative. We remark that in deblurring imaging problem the con-
volution kernel ψ is naturally non-negative, hence the forward operator Φ is always
positive definite. We adopt the notation L2(Ω)+ meaning

L2(Ω)+ = {f ∈ L2(Ω) such that f(x) > 0 a .e. x ∈ Ω}.
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The Poisson sparse spike deconvolution problem in an off-the-grid setting consists
in finding a positive discrete measure µ ∈ M+(Ω) such that

y = P(Φµ+ b),

where b ∈ L2(Ω)+ is a strictly positive background term, and y ∈ L2(Ω) is a realisa-
tion of a Poisson distributed random variable Y with mean Φµ+ b > 0.

We want to define a variational formulation well-suited to Poisson noise scenarios
and thus the Kullback-Leibler divergence is now considered as fidelity term [4, 15,
17, 154, 200].
Definition 6.1.1. The Kullback-Leibler divergence DKL : L2(Ω)+ × L2(Ω)+ −→ R
is defined by

DKL(s, t) :=
∫

Ω
s(x) − t(x) + t(x) log(t(x)) − t(x) log(s(x)) dx. (6.2)

We would like to consider DKL(Φµ + b, y) as data fidelity term, but we observe
that this is not well-defined since

• if µ is not a positive measure, then ϕµ+ b might not be positive;

• although the assumption that Φ is a positive definite operator (6.1), together
with the strict positivity of the background b, ensures that Φµ+ b > 0 almost
everywhere when µ is positive, the noisy acquisition might still be null in a non
negligible region of the domain Ω, that is y ≥ 0. This is due to the fact that
a Poisson random variable with mean α assumes the value of 0 with positive
probability equal to e−α, and thus y might be equal to 0. For this reason, for
(6.2) to be well defined it is required that y > 0 almost everywhere.

To solve the first issue, we introduce the function D̃KL : L2(Ω) × L2(Ω)+ −→
R ∪ {+∞} which extends the definition of (6.2) as

D̃KL(s, t) =
DKL(s, t) s ∈ L2(Ω)+

+∞ s ̸∈ L2(Ω)+
. (6.3)

Moreover, we just restrict our study to a positive acquisition y for being able to
formulate a Poisson noise equivalent to BLASSO, namely we require

y ∈ L2(Ω)+. (6.4)

Under hypothesis (6.1) and (6.4) and using the Kullback-Leibler defined by (6.3)
the quantity D̃KL(Φµ+ b, y) is well-defined for all µ ∈ M(Ω).

Hence, we can now introduce the following variational problem

argmin
µ∈M(Ω)

D̃KL(Φµ+ b, y) + λ|µ|(Ω) + 1{M+(Ω)}(µ), λ > 0, (D̃KL − | · |)

where the Poisson fidelity term, given by the Kullback-Leibler (6.3), is coupled with
the TV norm, being a sparsity enforcing penalty, together with the indicator function
of the positive measures M+(Ω), to enforce µ to be non-negative.

In the next section, we study the corresponding dual problem and we obtain
optimality conditions for (D̃KL − | · |).
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6.2 Dual problem and optimality conditions

Similarly as in Section 5.2.2, we analyse here the dual problem of (D̃KL − | · |)
and we provide an analytical expression of the convex conjugate of the involved
functions.

Following Lemma 5.2.1, for the definition of the dual problem we need to com-
pute:

• G∗ : L2(Ω) → R∪{+∞}, convex conjugate of G : L2(Ω) → R∪{+∞} defined
as G(·) := 1

λ
D̃KL(·, y);

• F ∗ : C0(Ω,R) → R ∪ {+∞}, convex conjugate of the sum of the penalty and
the indicator function of M+(Ω), i.e. of F (·) := | · |(Ω) + 1{M+(Ω)}(·), with
F : M(Ω) → R ∪ {+∞}.

6.2.1 Convex conjugate of the Kullback-Leibler divergence

To compute the convex conjugate of the Kullback-Leibler G(·) = 1
λ
D̃KL(·, y), we

start by considering the one-dimensional Kullback-Leibler function, defined by

gt(s) = 1
λ

(
s− t+ t log(t) − t log(s)

)
, s, t > 0 and λ > 0.

Applying the definition of convex conjugate (5.13) to gt yields

g∗
t (s∗) = sup

s>0
ss∗ − gt(s) = sup

s>0
ss∗ − 1

λ

(
s− t+ t log(t) − t log(s)

)
=

= sup
s>0

s
(
s∗ − 1

λ

)
+ t

λ
log(s) + t

λ
− t

λ
log(t)︸ ︷︷ ︸

h(s)

.

We have two cases:

(i) If s∗ ≥ 1
λ
, then lims→+∞ h(s) = +∞ implies sups>0 h(s) = +∞ ⇒ gt

(
s∗
)

=
+∞.

(ii) If 0 < s∗ < 1
λ
, then lims→±∞ h(s) = −∞. Thus, being h a convex and

differentiable function its supremum is attained at ŝ such that h′(ŝ) = 0,
which can be computed

h′(ŝ) = s∗ − 1
λ

+ t

λŝ
= λŝs∗ − ŝ+ t

λŝ
= 0

⇐⇒ λŝs∗ − ŝ+ t = 0 ⇐⇒ ŝ = t

1 − λs∗ .

Thus,
g∗
t (s∗) = h

(
t

1 − λs∗

)
= − t

λ
log(1 − λs∗).

Observe that g∗
t (s∗) is well defined since 1 − λs∗ > 0 ⇐⇒ s∗ < 1

λ
, which is

exactly the case (ii) we are considering.
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Hence, the convex conjugate g∗
t of gt is defined by

g∗
t (s∗) =

+∞ s∗ ≥ 1
λ

− t
λ

log(1 − λs∗) s∗ < 1
λ

. (6.5)

Since D̃KL(·, t) is defined also for non-positive functions, its 1-dimensional counter-
part is given by g̃t : R −→ R ∪ {+∞} defined by

g̃t(s) =
gt(s) s > 0

+∞ s ≤ 0
.

Its convex conjugate coincides with (6.5),

g̃∗
t (s∗) = sup

s∈R
ss∗ − g̃t(s) = sup

s>0
ss∗ − gt(s) =

+∞ s∗ ≥ 1
λ

− t
λ

log(1 − λs∗) s∗ < 1
λ

. (6.6)

It is now possible to state the following lemma.

Lemma 6.2.1. Consider the function G : L2(Ω) → R ∪ {+∞} defined by

G(·) := 1
λ

D̃KL(·, y),

where D̃KL is given by (6.3).
The convex conjugate of G is given by G∗ : L2(Ω) → R ∪ {+∞} defined by

G∗(p∗) =
+∞ p∗ ≥ 1

λ

− y
λ

log(1 − λp∗) p∗ < 1
λ

= −y

λ
log(1 − λp∗)1{z<1/λ}(p∗), (6.7)

where − y
λ

log(1 − λp∗) = ⟨− y
λ
, log(1 − λp∗)⟩ ∈ R.

Proof. The computation of (6.7) is straightforwardly analogous to the 1-dimensional
case given by (6.6).

6.2.2 Convex conjugate of the sum of penalty and indicator
function

We compute now the convex conjugate of the sum of the TV penalty and the
indicator function of non-negative measures, that is the convex conjugate of

F : M(Ω) → R ∪ {+∞}, F (·) = | · |(Ω) + 1{M+(Ω)}(·). (6.8)

To simplify the notation, we denote in the following the TV norm and the indicator
function of positive measures respectively as A,B : M(Ω) → R ∪ {+∞}

A(·) = | · |(Ω), B(·) = 1{M+(Ω)}(·).

It is possible to obtain the convex conjugate of the sum of functions as infimal
convolution of the convex conjugate of each singular function. We report here a
result from [94, 118].
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Proposition 6.2.1. Let f1, . . . , fn : X → R with X real Banach space. Suppose
there exists at least a point x ∈ X such that f1, . . . , fn are continuous in x. Then,

(f1 + . . .+ fn)∗ (x∗) = min
x∗

1+...+x∗
n=x∗

f ∗
1 (x∗

1) + . . .+ f ∗
n(x∗

n).

Thus, following the proposition above we need to compute A∗, B∗ first and then
their infimal convolution:

F ∗(ψ) = min
ψ1+ψ2=ψ

A∗(ψ1) +B∗(ψ2). (6.9)

In Section 5.2.2, we reported the convex conjugate of A(·), the TV-norm, which is
given by (5.18). Thus, we only need to compute the convex conjugate of B(·), the
indicator function.

Lemma 6.2.2. Let B : M(Ω) → R ∪ {+∞}, B(·) = 1{M+(Ω)}(·), be the indicator
function of M+(Ω). The convex conjugate of B is the function B∗ : C0(Ω,R) →
R ∪ {+∞} given by

B∗(ψ) =
0 ψ(x) ≤ 0 ∀x ∈ Ω

+∞ ∃x ∈ Ω s.t. ψ(x) > 0
. (6.10)

Proof. By Definition 5.2.1 of convex conjugate, for any ψ ∈ C0(Ω,R) we write

B∗(ψ) = sup
µ∈M(Ω)

⟨ψ, µ⟩C0(Ω,R)×M(Ω) −B(µ)

= sup
µ∈M+(Ω)

⟨ψ, µ⟩C0(Ω,R)×M(Ω)

≥ ⟨ψ, µ⟩C0(Ω,R)×M(Ω) ∀µ ∈ M+(Ω).

If there exists x̄ ∈ Ω such that ψ(x̄) > 0, consider µ̄ = αδx̄ with α > 0. Then,

B∗(ψ) ≥ ⟨ψ, µ̄⟩ = αψ(x̄) α→+∞−−−−→ +∞ ⇒ B∗(ψ) = +∞.

On the other hand, if ψ(x) ≤ 0 ∀x ∈ Ω, then ⟨ψ, µ⟩ =
∫

Ω ψdµ ≤ 0 ∀µ ∈ M+(Ω).
Moreover, ⟨ψ, 0⟩ = 0. Thus, B∗(ψ) = 0 if ψ(x) ≤ 0 ∀x ∈ Ω.

We can now combine the two results.

Lemma 6.2.3. Let F : M(Ω) → R ∪ {+∞} be the function defined in (6.8). Its
convex conjugate F ∗ : C0(Ω,R) → R ∪ {+∞} for all ψ ∈ C0(Ω,R) is defined by

F ∗(ψ) =
0 if ψ(x) ≤ 1 ∀x ∈ Ω

+∞ otherwise
. (6.11)
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Proof. Recall that thanks to Proposition 6.2.1, the convex conjugate of F (6.8) is
given by the infimal convolution (6.9) of A∗, defined in (5.18), with B∗, given by
(6.10). Thus, we can write

F ∗(ψ) = min
ψ1+ψ2=ψ

A∗(ψ1) +B∗(ψ2)

= min
ψ1+ψ2=ψ

0 ∥ψ1∥∞,Ω ≤ 1
+∞ ∥ψ1∥∞,Ω > 1

+
0 ψ2(x) ≤ 0 ∀x ∈ Ω

+∞ ∃x ∈ Ω s.t. ψ2(x) > 0
.

Notice that F ∗(ψ) ≥ 0 ∀ψ ∈ C0(Ω,R) and we have either F ∗(ψ) = 0 or F ∗(ψ) = +∞.
Thus, F ∗(ψ) = 0 if and only if there exist ψ1, ψ2 ∈ C0(Ω,R) such that ψ = ψ1 + ψ2

with A∗(ψ1) = 0 and B∗(ψ2) = 0. On the contrary, F ∗(ψ) = +∞ if for all ψ1, ψ2 ∈
C0(Ω,R) such that ψ = ψ1 + ψ2 it holds A∗(ψ1) = +∞ or B∗(ψ2) = +∞.

• If ∥ψ∥∞,Ω ≤ 1, consider ψ1 = ψ, which implies A∗(ψ1) = 0, and ψ2 = 0, which
implies B∗(ψ2) = 0. Thus F ∗(ψ) = 0.

• If ∥ψ∥∞,Ω > 1 and there exists x̄ such that ψ(x̄) > 1, we have F ∗(ψ) =
+∞. Indeed, assume by contradiction there exist ψ1, ψ2 ∈ C0(Ω,R) such that
ψ1 + ψ2 = ψ and ∥ψ1∥∞,Ω ≤ 1 and ψ2(x) ≤ 0 ∀x ∈ Ω. We would have

1 < ψ(x̄) = ψ1(x̄)︸ ︷︷ ︸
≤1

+ψ2(x̄)︸ ︷︷ ︸
≤0

≤ 1 ⇒ 1 < 1,

which is absurd. Then, ∀ψ1, ψ2 such that ψ1 + ψ2 = ψ either ∥ψ1∥∞,Ω > 1 or
ψ2(x) > 0 for some x ∈ Ω. Hence, F ∗(ψ) = +∞.

• If ∥ψ∥∞,Ω > 1 and ψ(x) ≤ 1 ∀x ∈ Ω, consider ψ1 = ψ+ and ψ2 = ψ−, with

ψ+(x) =
ψ(x) ψ(x) ≥ 0

0 ψ(x) < 0
ψ−(x) =

0 ψ(x) > 0
ψ(x) ψ(x) ≤ 0

.

It is evident that ψ = ψ+ + ψ−. Moreover, ∥ψ+∥∞,Ω ≤ 1, thus A∗(ψ+) = 0,
and ∀ x ∈ Ω ψ−(x) ≤ 0, thus B∗(ψ−) = 0. We have proved that F ∗(ψ) = 0.

6.2.3 Dual problem formulation and extremality conditions
The study of the dual problem with non-negativity constraints has been car-

ried out in [169, 219] in the discrete setting of LASSO, with a Gaussian L2 fidelity,
and in [69] for the discrete counterpart of (D̃KL − | · |), with the Kullback-Leibler
divergence as fidelity and the L1 penalty. The analysis of (D̃KL − | · |), and of
its optimality conditions and dual problem, that we present in this thesis, repres-
ents a novelty being in the continuous off-the-grid setting of M(Ω) and having the
Kullback-Leibler as Poisson noise fidelity term.

133



Chapter 6. Off-the-grid regularisation for Poisson inverse problems

Following Lemma 5.2.1, we can obtain the dual problem corresponding to the
primal problem (D̃KL − | · |) by plugging (6.7) and (6.11) into (5.15):

argmax
p∗∈L2(Ω)

−F ∗(Φ∗p∗) −G∗(−p∗)

= argmax
p∗∈L2(Ω)

−F ∗(Φ∗p∗) +
−∞ −p∗ ≥ 1

λ

− b
λ
(1 + λp∗) + y

λ
log(1 + λp∗) −p∗ < 1

λ

= argmax
p∗∈L2(Ω)

−F ∗(Φ∗p∗) +
−∞ p∗ ≤ − 1

λ

− b
λ
(1 + λp∗) + y

λ
log(1 + λp∗) p∗ > − 1

λ

= argmax
p∗∈L2(Ω) s.t. p∗>− 1

λ

−F ∗(Φ∗p∗) − b

λ
(1 + λp∗) + y

λ
log(1 + λp∗)

= argmax
p∗∈L2(Ω) s.t. p∗>− 1

λ

0 ∀x ∈ Ω Φ∗p∗(x) ≤ 1
−∞ ∃x ∈ Ω Φ∗p∗(x) > 1

− b

λ
(1 + λp∗) + y

λ
log(1 + λp∗)

= argmax
p∗∈D

− b

λ
(1 + λp∗) + y

λ
log(1 + λp∗), (6.12)

where D = {p∗ ∈ L2(Ω) : p∗ > − 1
λ

and ∀x ∈ Ω, Φ∗p∗(x) ≤ 1}.
Moreover, from Lemma 5.2.1, the extremality conditions can be obtained. Given

µλ ∈ M(Ω) solution of the primal problem (D̃KL − | · |) with regularisation para-
meter λ > 0 and p∗

λ ∈ L2(Ω) solution of the dual problem (6.12), the extremality
conditions (5.16) in this case read as

Φ∗p∗
λ ∈ ∂F (µλ) = ∂|µλ|(X ) + ∂1M+(Ω)(µλ)

−p∗
λ ∈ 1

λ
∂1D̃KL(Φµλ + b, y) = 1

λ

(
I − y

Φµλ+b

)
,

(6.13)

where ∂1D̃KL(Φµλ, y) denotes the subdifferential of D̃KL(·, ·) computed with respect
to the first variable and evaluated in (Φµλ, y).

Remark 6.2.1. If µλ ∈ M(Ω) is solution of the primal problem (D̃KL − | · |) and
p∗
λ ∈ L2(Ω) is solution of the dual (6.12), then from the extremality conditions

(6.13)we have
−p∗

λ = 1
λ

(
I − y

ϕµλ + b

)
⇒ p∗

λ = y − Φµλ − b

λ(Φµλ + b) .

It follows that p∗
λ > − 1

λ
⇐⇒ y > 0, which holds by hypothesis (6.4).

In the extremality conditions (6.13), the meaning of ∂|µλ|(Ω) + ∂1M+(Ω)(µλ)
needs further explanation. First of all, observe that, in general, for two proper
convex functions f1, f2 : X → R ∪ {+∞} it holds

∂(f1 + f2) ⊆ ∂f1 + ∂f2,

and the equality holds if and only if int(dom(f1)) ∩ int(dom(f2)) ̸= ∅. In particular,
we have ∂F (·) = ∂| · |(Ω) + ∂1M+(Ω)(·). Recall that the subdifferential of the TV
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norm is given by (5.3), and it assumes the form (5.4) for finite linear combinations
of Diracs. We need to study the subdifferential of the indicator function ∂1M+(Ω)(·)
of M+(Ω), and then analyse the sum of the two subdifferentials.

6.2.3.1 Subdifferential of the indicator function of positive measures

Recall that the indicator function of positive measures is defined by

B(µ) = 1{M+(Ω)}(µ) =
0 µ ≥ 0

+∞ otherwise
.

Let µ ∈ M+(Ω). By definition, the subdifferential of B at µ ∈ M+(Ω) is

∂B(µ) = {η ∈ C0(Ω,R)| B(µ̃) ≥ B(µ) + ⟨η, µ̃− µ⟩ ∀µ̃ ∈ M(Ω)}
= {η ∈ C0(Ω,R)| ⟨η, µ̃− µ⟩ ≤ 0 ∀µ̃ ∈ M+(Ω)}, (6.14)

that is the normal cone to M+(Ω) at µ.
Now, we consider (6.14) for some scenarios of interest.

• If µ = 0, we have η ∈ ∂B(0) ⇐⇒ ⟨η, µ̃⟩ ≤ 0 ∀µ̃ ∈ M+(Ω). Since µ̃ is
a positive measure, we have that ⟨η, µ̃⟩ =

∫
Ω ηdµ̃ ≤ 0 for any η such that

η(x) ≤ 0 for all x ∈ Ω. Thus,

∂B(0) = {η ∈ C0(Ω,R)| ∀x ∈ Ω η(x) ≤ 0}.

• If µ = āδx̄ with ā > 0, x̄ ∈ Ω, we have that η ∈ ∂B(µ) if and only if
∀µ̃ ∈ M+(Ω) it holds

⟨η, µ̃− µ⟩ ≤ 0 ⇐⇒
∫

Ω
ηdµ̃ = ⟨η, µ̃⟩ ≤ ⟨η, µ⟩ =

∫
Ω
ηdµ = āη(x̄)

Consider µ̃ = 2µ. Hence,
∫

Ω ηdµ̃ =
∫

Ω η2dµ = 2āη(x̄) and 2āη(x̄) ≤ āη(x̄) if
and only if η(x̄) = 0. Thus, η ∈ ∂B(µ) implies η(x̄) = 0.
Let η ∈ ∂B(µ), which entails η(x̄) = 0, and suppose ∃x̃ ∈ Ω s.t. η(x̃) > 0.
Then,

∀µ̃ ∈ M+(Ω)
∫

Ω
ηdµ̃ ≤

∫
Ω
ηdµ = āη(x̄) = 0.

Consider the above inequality with µ̃ = ãδx̃, ã > 0:

0 ≥
∫

Ω
ηdµ̃ = ãη(x̃) > 0,

which is absurd. Thus, η(x) ≤ 0 ∀x ∈ Ω and

∂B(µ) = {η ∈ C0(Ω,R)| ∀x ∈ Ω η(x) ≤ 0 and η(x̄) = 0}

• Similarly, if µ = ∑N
i=1 aiδxi

with ai > 0 and xi ∈ Ω for i = 1, . . . , N , we have:

∂B(µ) = {η ∈ C0(Ω,R)| ∀x ∈ Ω η(x) ≤ 0 and η(xi) = 0, i = 1, . . . , N}.
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6.2.3.2 Extremality conditions

We now have an analytical expression for both ∂| · |(Ω) and ∂1M+(Ω)(·), at
least for finite linear combinations of Diracs. Thus, we can now state the following
proposition, which helps to understand the extremality conditions (6.13).

Proposition 6.2.2. If µ = ∑N
i=1 aiδxi

with ai > 0, xi ∈ Ω we have

∂|µ|(Ω)+∂1M+(Ω)(µ) = {η ∈ C0(Ω,R) : ∀x ∈ Ω η(x) ≤ 1 and η(xi) = 1, i = 1, . . . , N}.
(6.15)

Proof. If µ = ∑N
i=1 aiδxi

with ai > 0, xi ∈ Ω we have

∂|µ|(Ω) = {η1 ∈ C0(Ω,R) : ∥η1∥∞ ≤ 1 and η1(xi) = 1, i = 1, . . . , N}

∂1M+(Ω)(µ) = {η2 ∈ C0(Ω,R) : ∀x ∈ Ω η2(x) ≤ 0 and η2(xi) = 0, i = 1, . . . , N}

Thus,

∂|µ|(Ω)+∂1M+(Ω)(µ) ⊆ {η ∈ C0(Ω,R) : ∀x ∈ Ω η(x) ≤ 1 and η(xi) = 1, i = 1, . . . , N}.

We consider now the opposite inclusion. Let η ∈ C0(Ω,R) such that for all x ∈
Ω η(x) ≤ 1 and η(xi) = 1, i = 1, . . . , N . Our aim is to prove that there exist
η1 ∈ ∂|µ|(Ω) and η2 ∈ ∂1M+(Ω)(µ) such that η = η1 + η2.

• If ∥η∥∞ ≤ 1, one can take η1 = η, η2 = 0.

• If ∥η∥∞ > 1, consider

η1(x) =
η(x) −1 ≤ η(x) ≤ 1

−1 η(x) ≤ −1
η2(x) =

0 −1 ≤ η(x) ≤ 1
η(x) + 1 η(x) ≤ −1

.

In both cases, we have found η1 ∈ ∂|µ|(Ω) and η2 ∈ ∂1M+(Ω)(µ) such that η = η1+η2.
This concludes the proof.

Thanks to (6.15) of the latter proposition, it is now possible to better charac-
terise the extremality conditions (6.13), under the assumption that µλ, solution of
(D̃KL − | · |), is a discrete measure. Indeed, if µλ = ∑Nλ

i=1(aλ)iδ(xλ)i
we have that

∀x ∈ Ω Φ∗p∗
λ(x) ≤ 1 and Φ∗p∗

λ

(
(xλ)i

)
= 1, i = 1, . . . , Nλ, (6.16)

with p∗
λ solution of the dual problem (6.12).
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6.2.4 Optimality conditions
It is possible to obtain a result similar to (6.16), analysing the optimality condi-

tions of (D̃KL − | · |). In (D̃KL − | · |), the functional

TKLλ (µ) := D̃KL(Φµ+ b, y) + λ|µ|(Ω) + 1{M+(Ω)}(µ)

is convex. Hence µ minimises TKLλ if and only if 0 ∈ ∂TKLλ (µ), i.e.

0 ∈ Φ∗∂1D̃KL(Φµ, y) + λ∂|µ|(Ω) + ∂1M+(Ω)(µ)

0 ∈ Φ∗
(
I − y

Φµ+ b

)
+ λ∂|µ|(Ω) + ∂1M+(Ω)(µ)

Φ∗
(

y

Φµ+ b
− I

)
∈ λ∂|µ|(Ω) + ∂1M+(Ω)(µ)

1
λ

Φ∗
(

y

Φµ+ b
− I

)
∈ ∂|µ|(Ω) + 1

λ
∂1M+(Ω)(µ)

which can be written as

η ∈ ∂|µ|(Ω) + 1
λ
∂1M+(Ω)(µ), (6.17)

by defining the dual certificate

η := 1
λ

Φ∗
(

y

Φµ+ b
− I

)
. (6.18)

If µ is a finite linear combination of Dirac masses, Proposition 6.2.2 yields an
expression for the sum of subdifferentials in (6.15). Hence, (6.17) becomes

∀x ∈ Ω η(x) ≤ 1 and η(xi) = 1, i = 1, . . . , N. (6.19)

Note the similarity between (6.19) and (6.16), and of the dual certificate (6.18) and
the quantity Φ∗p∗

λ in the extremality conditions (6.13).

6.3 Algorithmic choices

For the minimisation of (D̃KL − | · |), we propose to consider the Frank-Wolfe
algorithm (Algorithm 9), endowed with a similar epigraphic lift as for BLASSO (see
Section 5.3.2).

Lemma 6.3.1. The problem (D̃KL − | · |) is equivalent to

argmin
(t,µ)∈C

T̃KLλ (µ, t) := D̃KL(Φµ+ b, y) + λt+ 1{M+(Ω)}(µ), (6.20)

where

C :=
{
(t, µ) ∈ R+ × M(Ω); |µ|(Ω) ≤ t ≤ M

}
with M := D̃KL(b, y)

2λ .
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Some small changes with respect to the Gaussian case have to be considered.
Indeed, step (5.31) of Algorithm 9 becomes

xk∗ = argmax
x∈Ω

ηk(x), ηk = 1
λ

Φ∗
(

y

Φµk + b
− I

)
. (6.21)

This results in a change of the stopping criterion (5.24), that reads

ηk(x) ≤ 1 for any x ∈ Ω,

in accordance with the optimality conditions (6.19).
Moreover, the line-search step (5.26) of Algorithm 9 applied to the minimisation

of TKLλ (6.20) becomes

ak+1 = argmin
a∈Rk+1

D̃KL(Φµa + b, y) + λ∥a∥1 + 1≥0(a) (6.22)

where µa = ∑k
i=1 aiδxk

i
+ ak+1δxk

∗
, and xk∗ is the support, defined by (6.21), of the

new spike to be added to µk = ∑k
i=1 a

k
i δxk

i
.

Similarly, the Sliding Frank-Wolfe algorithm can be adapted to the resolution of
(D̃KL − | · |) with the same modifications. The sliding step (5.38) of Algorithm 10
now reads as(

ak+1, xk+1
)

∈ arg min
(a,x)∈RNk+1×ΩNk+1

D̃KL(Φxa+ b, y) + λ∥a∥1 + 1≥0(a). (6.23)

6.3.1 Boosted Sliding Frank Wolfe algorithm
Sliding Frank Wolfe computational complexity increases significantly throughout

the iterations as more spikes are added. This affects especially the non-convex sliding
step on both amplitudes and positions, since it is a minimisation problem over
R(d+1)k at iteration k, with d ∈ N being the dimension of Ω. In [67], it is observed
that most computational time is spent in the sliding step to finely optimise all the
parameters, which are again updated and modified afterwards in the next iteration,
for all iterations except the last one. Based on this, they propose an accelerated
version of SFW, called Boosted SFW, which removes most of the costly non-convex
minimisation steps. Boosted SFW core structure is the same as for SFW, but the
following changes are made to accelerate the algorithm preserving its convergence
properties.

1. The certificate ηk is computed to obtain the position xk∗ of a potential new
spike.

2. If the stopping condition - ∥ηk∥∞ ≤ 1 for BLASSO (L2 − | · |), and ∥(ηk)+∥∞ ≤
1 for the Poisson model (D̃KL − | · |) - of SFW is not met, then the insertion
step - (5.37) for (L2 − | · |), and (6.22) for (D̃KL − | · |) - is performed and the
new amplitudes are estimated. Then, the algorithm proceeds again with (1)
and a new iteration of BSFW commences. Note that, in this case, no sliding
step is performed.
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(a) λ ≈ 0 (b) λ = 1 (c) λ = 3000

Figure 6.1: Reconstructions obtained using SFW in a 1D sparse deconvolution nu-
merical example with Poisson noise. In black, the ground truth spikes and in green
the reconstructed ones are shown. With λ close to 0, the number and intensities of
spikes are overestimated, while with a much higher value they are underestimated.

3. Otherwise the sliding step - (5.38) for (L2 − | · |), and (6.23) for (D̃KL − | · |)
- finely re-estimates amplitudes and positions. Then, the new dual certificate
ηk+1 is computed to check if the stopping condition is still met, after the
performed sliding step. Namely,

• If ∥ηk+1∥∞ ≤ 1 for (L2 − | · |) and ∥(ηk+1)+∥∞ ≤ 1 for (D̃KL − | · |), the
algorithm stops.

• Otherwise the algorithm continues again from (1).

Thus, BSFW performs the sliding step when needed and not systematically, thanks
to the insight given by the dual certificate. In the worst case scenario, the sliding
step is computed at each iteration of BSFW retrieving exactly the SFW algorithm.
In the best case scenario, instead, the sliding step is performed only once at the very
last iteration. In [67], the finite termination of BSFW is proved.

6.4 Homotopy algorithm

Note that in Frank-Wolfe and Sliding Frank-Wolfe algorithms, as well as in the
just described Boosted SFW, the choice of the regularisation parameters is crucial.
Indeed, it plays a fundamental role in the characterisation of the stopping criterion,
defined as

argmax
x∈Ω

|ηk(x)| ≤ 1, ηk = 1
λ

Φ∗
(
y − Φµk

)
for BLASSO (L2 − | · |), and as

argmax
x∈Ω

ηk(x) ≤ 1, ηk = 1
λ

Φ∗
(

y

Φµk + b
− I

)
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Figure 6.2: Pareto frontier

for the proposed Poisson model (D̃KL − | · |). The choice of high value for λ results
in only few iterations of the algorithms, before the dual certificate ηk satisfies the
above stopping rules. On the other hand, small values of λ yields to more algorithmic
iterations before convergence. Moreover, the regularisation parameter has an impact
on the estimation step of FW and SFW and on the sliding step of SFW, being
associated with the L1 penalty of the amplitudes vector. Altogether, with high values
of λ the reconstruction usually presents fewer spikes with smaller intensities values,
whilst small λs provide a better data fit, with more spikes and higher intensities,
see Figure 6.1.

In [67], the authors propose a method to search for the best regularisation para-
meter, for the resolution of BLASSO (L2 − | · |) exploiting the idea of homotopy.
Homotopy algorithms have been first proposed in [178, 179] to solve LASSO prob-
lem, the discrete counterpart of BLASSO, for some known (or estimated) noise value
δ > 0 for a sequence of decreasing regularisation parameters λ, appropriately chosen,
until a stopping rule defined in terms of δ is met.

We provide more detail by introducing the concept of Pareto frontier, which
helps to better visualise the meaning of the homotopy strategy.

Definition 6.4.1. Let X be a Banach space and let f, g : X → R ∪ {+∞} such
that f and g are proper, lower semi-continuous and convex functions. Consider the
minimisation problem

xλ ∈ argmin
x∈X

f(x) + λg(x), λ > 0. (6.24)

The set defined by {(
g(xλ), f(xλ)

)
∈ R× R|λ > 0

}
is called Pareto frontier or Pareto front.
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In the context of variational approaches for inverse problems (1.12), the Pareto
Frontier is the plot of the values of the fidelity against the ones of the penalty for
each solution (6.24) obtained by varying λ, as shown in blue in Figure 6.2. Basically,
it is equivalent to the concept of L-curve, studied for instance in [46] to define a way
to select the regularisation parameter, that is the plot of the values of the penalty
against the ones of the fidelity, i.e. it is the L-curve can be obtained from the Pareto
frontier with symmetry with respect to the bisector of the axes.

A possible way to select an optimal regularisation parameter λ is to perform a
fine discretisation of the Pareto front and then select as best λ the one minimising
the reconstruction error ∥xλ −x†∥, or an estimate of this quantity. This approach is
time consuming since it requires minimising the variational problem for an elevated
number of parameters λ. Moreover, this strategies fails whenever a good estimate
of ∥xλ − x†∥ is hard to find.

Instead of exploring the Pareto frontier by grid search, the idea behind homotopy
algorithms is to explore the Pareto frontier iteratively [67, 179], only for a few values
of λ > 0. Starting from an initial and overestimated value λ1 > 0 used at the first
iteration, the solution xλ1 of the corresponding variational problem is computed.
Then, at each homotopy iteration, λ is updated if the solution does not fit well
the data up to some tolerance σtarget(δ), which depends on the noise value δ. A
new solution xλ2 for the new value λ2 of the regularisation parameter has thus to be
computed in the next homotopy step. Homotopy algorithms thus explore the Pareto
frontier for a small set of λ and select the biggest value for which the solution of the
variational formulation, computed with respect to that value, meets a convergence
criterion typically defined in terms of the noise value δ. This process is sketched in
Figure 6.2, where one can see in red the discrete discontinuous jumps produced by
the homotopy strategy we are going to describe, which stops when the fidelity term
goes under the value of σtarget(δ), plotted in grey.

Each homotopy iteration t ∈ N performs the following steps:

• Compute xtλt
, solution of (6.24) with λ = λt.

• Check if xtλt
is a good data fit, i.e. if

f(xtλt
) ≤ σtarget(δ), (6.25)

where the target value for the fidelity σtarget(δ) depends on the noise level
δ > 0.

• If not, decrease λ
λt+1 = h(λt) < λt

with h : R → R pre-assigned decreasing function, until (6.25) is satisfied.

Observe that when computing xt+1
λt+1 one already has computed xtλt

, which can be
used as warm start to reduce computations. Thus, for the design of a good homotopy
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Algorithm 11 Homotopy algorithm for off-the-grid inverse problems
Input: y ∈ L2(Ω), b ∈ L2(Ω), b ≥ 0, Φ ∈ L(M(Ω), L2(Ω)

Parameters: γ ∈ (0, 1), c > 0, σtarget > 0

Output: estimation µ̂ ∈ M(Ω)

Initialisation: µ̂0 ∈ M(Ω) and λ1 = γ ∥η(1, µ̂0)∥∞

repeat

1. Compute µ̂t solution of (P(λ)) with λ = λt with warm start µ[0]
t = µ̂t−1.

2. Compute σt from the residual:

σt = fyδ,b(Φµ̂t) (6.26)

3. if σt < σtarget

µ̂t is a solution ⇒ stop

4. else if σt ≥ σtarget

Update λt+1 = λt ∥η(λt, µ̂t)∥∞
c+ 1 (6.27)

until σt < σtarget

algorithm the choice of the starting value for λ, its updating rule for λ, how to take
into account for past knowledge and the choice of a suitable noise representative
value σtarget have to be discussed.

6.4.1 Homotopy algorithm for off-the-grid methods

We follow [67], where an homotopy version of Sliding Frank-Wolfe is proposed
for the resolution of BLASSO (L2 − | · |) problem for automatic parameter selection,
and extend its definition to, in principle, a general fidelity term in an off-the-grid
setting.

Consider the noisy data yδ ∈ L2(Ω) and the inverse problem yδ = Φµ + b with
b ∈ L2(Ω) such that b ≥ 0. In this section, we allow b to be equal to 0 to describe
scenarios where the background is not needed, or where it can be zero with positive
measure. Anyway, we remark that for the formulation (D̃KL − | · |) a strictly positive
background is necessary, as well as yδ > 0.

Given a convex and smooth fidelity fyδ,b : M(Ω) → R we define the following
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(L2 − | · |) (D̃KL − | · |)

λ1 γ∥Φ∗yδ∥∞ γ

∥∥∥∥(Φ∗
(
y−b
b

))
+

∥∥∥∥
∞

σt
1
2∥Φµ̂t − yδ∥2 D̃KL(Φµ̂t, yδ)

σtarget(δ) 1
2∥y − yδ∥2 = δ2

2 D̃KL(y, yδ)

Table 6.1: Homotopy algorithmic choices for BLASSO and for the Poisson off-the-
grid models.

variational problem in the space of Radon measures:

argmin
µ∈M(Ω)

fyδ,b(Φµ) + λ|µ|(Ω) + α1M+(Ω)(µ), λ > 0, α ∈ {0, 1}. (P(λ))

The parameter α ∈ {0, 1} allows to consider, at the same time, problems with and
without positivity constraints. We propose to solve (P(λ)) by Algorithm 11. The
dual certificate of (P(λ)) is a function η(λ, µ) ∈ L2(Ω) defined by

η(λ, µ) = 1
λ
η̃(µ) with η̃(µ) :=

−Φ∗ ∂
∂µ
fyδ,b(Φµ) α = 0(

−Φ∗ ∂
∂µ
fyδ,b(Φµ)

)
+

α = 1
. (6.28)

Optimality conditions for (P(λ)) read as

∥η(λ, µ)∥∞ ≤ 1, (6.29)

and, under the hypothesis that the solution is a finite linear combination of Diracs,
the dual certificate of the solution satisfies η(λ, µ)(xi) = 1 where the points xi ∈ Ω
are the support of µ.

We will consider Algorithm 11 for the BLASSO problem (L2 − | · |) and for the
Poisson off-the-grid problem (D̃KL − | · |). BLASSO can be retrieved by means of
(P(λ)) by considering b = 0, fyδ,b(Φµ) = 1

2∥Φµ−y∥2 and α = 0. Instead, the Poisson
off-the-grid problem (D̃KL − | · |) is obtained with fyδ,b(Φµ) = D̃KL(Φµ + b, y) and
α = 1. In Table 6.1, we outline the different algorithmic choices made applying the
homotopy algorithm (Alg.11) to (L2 − | · |) and (D̃KL − | · |).

Observe that η(λ, µ) is crucial in the definition of Algorithm 11 as it allows to
define a good starting value for λ and the updating rule.

6.4.1.1 Starting value

We propose to initialise the homotopy strategy with the initial value

λ1 := γ ∥η(1, µ̂0)∥∞ = γ ∥η̃(µ̂0)∥∞ , γ ∈ (0, 1) (6.30)

where µ̂0 ∈ M(Ω) is the initialisation of the solution and η is defined by (6.28).
This choice is motivated by the optimality conditions (6.29). Indeed, if one takes at
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the first iteration λ1 ≥ ∥η(1, µ̂0)∥∞ then µ̂0 is an optimal solution for (P(λ)) with
λ = λ1:

∥η(λ1, µ̂0)∥∞ =
∥∥∥∥ 1
λ1
η̃(µ̂0)

∥∥∥∥
∞

= 1
λ1

∥η(1, µ̂0)∥∞ ≤ 1 ⇐⇒ λ1 ≥ ∥η(1, µ̂0)∥∞ .

In this case the algorithm does not improve upon the initialisation µ̂0 since it does
not perform any iteration. On the contrary, choosing λ1 < ∥η(1, µ̂0)∥∞ ensures that
the initial measure µ̂0 will be updated since it is not optimal for (P(λ)) with the
value λ = λ1. Indeed, at the first iteration of the homotopy algorithm, the dual
certificate computed with respect to the initialisation µ̂0 and λ1 > 0 given by (6.30)
has supremum norm that satisfies

∥η(λ1, µ̂0)∥∞ = 1
λ1

∥η(1, µ̂0)∥∞ = 1
γ ∥η(1, µ̂0)∥∞

∥η(1, µ̂0)∥∞ = 1
γ
> 1,

since γ ∈ (0, 1). Note that a similar starting point for λ is used in [158, 179] in the
discretised case of LASSO and, here, generalised for a generic fidelity f and to the
off-the-grid setting.

6.4.1.2 Updating rule

It is now worth discussing the updating rule (6.27) . Indeed, (6.27) together
with the choice of a strictly positive parameter c > 0 ensures that the measure µ̂t,
by which the algorithm initialises (Pλt+1) as µ[0]

t+1 = µ̂t, is not already an optimal
solution for the problem. Indeed, the dual certificate with respect to λt+1 and the
initialisation µ̂t reads

η(λt+1, µ̂t) = λt
λt+1

η(λt, µ̂t) = 1 + c

∥η(λt, µ̂t)∥∞
η(λt, µ̂t),⇒ ∥η(λt+1, µ̂t)∥∞ = 1 + c > 1.

Thus, µ[0]
t+1 = µ̂t does not satisfy the optimality condition (6.29) for (P(λ)) with

λ = λt+1 and hence the homotopy step t+1 computes a new µ̂t+1. This is consistent
with the choice of rejecting µ̂t at the previous step t.

6.4.1.3 Descent property of the homotopy algorithm

In this section, we discuss the descent properties of the proposed homotopy
algorithm, showing that it produces a strictly decreasing sequence of residual errors
(σt)t. This properties gives insight on the good convergence of the algorithm.

Proposition 6.4.1. The homotopy algorithm (Alg.11) for the resolution of (P(λ))
produces a strictly decreasing sequence (σt)t provided that fyδ,b is twice differentiable
with ∂2fyδ,b > 0.

Proof. Let us denote

µ∗(λ) ∈ argmin
µ

C(y, λ, µ) = fyδ,b(Φµ) + λ|µ|(Ω),
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where the argmin is computed over M(Ω) if α = 0 in (P(λ)) and over M+(Ω) if
α = 1. Being µ∗(λ) the minimiser, then we have

∂C(y, λ, µ)
∂µ

∣∣∣∣
µ=µ∗

= Φ∗∂fyδ,b(Φµ∗) + λ = 0, (6.31)

and thus deriving again with respect to λ yields

0 = ∂

∂λ

(
∂C(y, λ, µ)

∂µ

∣∣∣∣
µ=µ∗

)
= ∂

∂λ

(
Φ∗∂fyδ,b(Φµ∗) + λ

)

0 = ∂

∂µ

(
Φ∗∂fyδ,b(Φµ)

)∣∣∣∣
µ=µ∗

· ∂µ
∗(λ)
∂λ

+ 1

0 = Φ∗Φ · ∂2fyδ,b(Φµ∗) · ∂µ
∗(λ)
∂λ

+ 1.

Since Φ is positive definite and by hypothesis on fyδ,b, from the computations above
it follows that ∂µ∗(λ)

∂λ
< 0. Consider now the following:

∂

∂λ
fyδ,b

(
Φµ∗(λ)

)
= Φ∗∂fyδ,b(Φµ∗) · ∂µ

∗(λ)
∂λ

.

Returning to (6.31), we can see that ∂
∂µ
fyδ,b(Φµ∗) = −λ. Moreover, since ∂µ∗(λ)

∂λ
< 0,

then ∂
∂λ
fyδ,b

(
Φµ∗(λ)

)
> 0. Recalling that for any t we have λt+1 < λt and denoting

by µ̂t = µ∗(λt), we can write

σt = fyδ,b(Φµ̂t) < σt+1 = fyδ,b(Φµ̂t+1),

which concludes the proof.

Remark 6.4.1. For BLASSO (L2 − | · |), the fidelity fyδ,b(Φµ) = 1
2∥Φµ − y∥2 sat-

isfies the hypothesis required to prove Proposition 6.4.1. Indeed,

∂2fyδ,b = ∂2
(1

2∥ · −yδ∥2
)

= 1.

For the Poisson off-the-grid problem (D̃KL − | · |) the fidelity fyδ,b(Φµ) = D̃KL(Φµ+
b, y) is twice differentiable with positive second derivative

∂2fyδ,b = ∂D̃KL(· + b, y) = yδ

∥ · +b∥2 .

Remark 6.4.2. It is interesting to observe that in the proof of Proposition 6.4.1,
the explicit expression of the updating rule (6.27) is not needed. It is only necessary
to have a strictly decreasing sequence of (λt)t in order to have a strictly decreasing
sequence of (σt)t. However, with a different updating rule there is no guarantee that
at iteration t + 1 of Algorithm 11 the initialisation measure given by warm start
µ

[0]
t+1 = µ̂t might be already an optimal solution for the problem P(λt+1), requiring to

immediately update again λ. For this reason the updating rule 6.27 is preferable.
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Figure 6.3: Regularisation path for LASSO (discrete setting). Plot of λ 7→ xλ(j)
with different colours for each different j ∈ J .

6.4.1.4 Regularisation path in the discrete setting

The homotopy algorithm has a link with the concept of regularisation path,
defined in the discrete setting of Section 5.1.1 as follows.

Definition 6.4.2. Let x ∈ RN be sparse. Let xλ be a reconstruction of x obtained
with a regularisation algorithm with parameter λ > 0 given an acquisition y ∈ RM .
Then, it is called component-wise regularisation path the set of functions

λ ∈ R 7→ xλ(j) ∈ R, j ∈ J,

where J ⊂ {1, . . . , N} is the set of indices corresponding to the non-zero components
of the desired solution x.

The regularisation path has been mainly studied in the discrete setting with an
L2 fidelity and L1 penalty. In particular, in [158] authors considered the LASSO
problem and proved that its regularisation path is piece-wise linear, as shown visually
in Figure 6.3. The piece-wise linearity of the regularisation path has to be intended
as follows. Let xλ1 ∈ RN and xλ2 ∈ RN solutions of LASSO with λ1 ̸= λ2. By
optimality, the (discrete) dual certificate η(λ1, xλ1) ∈ RN satisfies

|η(λ1, xλ1)(i)| ≤ 1 for all i = 1, . . . , N
η(λ1, xλ1)(j) = sign (xλ1(j)) for j such that xλ1(j) ̸= 0

and the same applies to η(λ2, xλ2) ∈ RN . If we assume η(λ1, xλ1) ∈ RN and
η(λ2, xλ2) ∈ RN to be such that
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• for all i, there holds

|η(λ1, xλ1)(i)| < 1 ⇐⇒ |η(λ2, xλ2)(i)| < 1 (6.32)

• for all j ∈ {1, . . . , N} such that (6.32) is not met it holds

η(λ1, xλ1)(j) = η(λ2, xλ2)(j),

which implies sign (xλ1(j)) = sign (xλ2(j)),

then, for each θ ∈ [0, 1] the image xθ = θxλ1 + (1 − θ)xλ2 is a solution for (P(λ))
with λ̄ = θλ1 + (1 − θ)λ2, i.e.

xλ̄ = x(θλ1+(1−θ)λ2) = θxλ1 + (1 − θ)xλ2 .

Moreover, its dual certificate has the same properties as: for all i it satisfies

|η(λ̄, xλ̄)(i)| < 1 ⇐⇒ |η(λ1, xλ1)(i)| < 1 ⇐⇒ |η(λ2, xλ2)(i)| < 1

and for all j such that η(λ̄, xλ̄)(j) = 1

η(λ̄, xλ̄)(j) = η(λ1, xλ1)(j) = η(λ2, xλ2)(j),

which entails sign (xλ̄) = sign (xλ1(j)) = sign (xλ2(j)).
Using an homotopy algorithm with an updating rule analogous to (6.27), in the

discrete setting, every homotopy step thus produces a solution xλt on a different
linear segment of the regularisation path [67]. For this problem, homotopy tech-
niques explore the Pareto frontier jumping between different linear segments of the
regularisation path.

In the discrete setting, the study of the regularisation path has been investig-
ated for more general variational problems in [25]. More specifically, when a smooth
and convex fidelity term f is coupled with the L1 norm, it is proven that the reg-
ularisation path of the general (f − L1) problem is piece-wise smooth. Its precise
geometrical structure depends on the fidelity f .

6.4.1.5 Homotopy and regularisation path of BLASSO

The study of regularisation paths in the continuous setting of off-the-grid prob-
lems is a bit more delicate. We start our analysis of the link between homotopy and
regularisation paths with BLASSO (L2 − | · |) problem.

Similarly as in the discrete setting, it is possible to show that the regularisation
path of BLASSO is piece-wise linear. For µλ = ∑N

i=1 a
λ
i δxλ

i
solution of BLASSO

(L2 − | · |), we denote with J(µλ) the support of the Diracs of µλ, that is J(µλ) =
{xλi | i = 1, . . . , N} and we recall that, by (5.12), its dual certificate η(λ, µλ) =
1
λ
Φ∗(y − Φµλ) satisfies η(λ, µλ)(xλj ) = sign(aλj ) for all xλj ∈ J(µλ).

Let µλ1 and µλ2 be two solutions of BLASSO with λ1 ̸= λ2 such that
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(a) Regularisation path of BLASSO

(b) Regularisation path for the Poisson off-the-grid problem

Figure 6.4: Regularisation path in the off-the-grid setting

• J(µλ1) = J(µλ2);

• η(λ1, µλ1)(xj) = η(λ2, µλ2)(xj), and thus sign(aλ1
j ) = sign(aλ2

j ), for all xj ∈
J(µλ1) = J(µλ2).

Then, the measure defined by µθ = θµλ1 + (1 − θ)µλ2 is a solution of BLASSO with
regularisation parameter λ̄ = θλ1 + (1 − θ)λ2 and it moreover satisfies

• J(µθ) = J(µλ1) = J(µλ2);

• η(λ̄, µθ)(xj) = η(λ1, µλ1)(xj) = η(λ2, µλ2)(xj) for all xj ∈ J(µθ), which implies
that sign(aλ̄j ) = sign(aλ1

j ) = sign(aλ2
j ) for all xj ∈ J(µθ).

Indeed, since µθ is obtained as a convex combination of two measures that are
weighted sum of the same Diracs, by construction J(µθ) coincides with the support
of µλ1 and µλ2 . Then, consider

Φ∗(y − µθ) = Φ∗(y − Φ[θµλ1 + (1 − θ)µλ2 ]) = θΦ∗(y − µλ1) + (1 − θ)Φ∗(y − µλ2)
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evaluated at xj ∈ J(µθ):

Φ∗(y − µθ)(xj) = θΦ∗(y − µλ1)(xj) + (1 − θ)Φ∗(y − µλ2)(xj), xj ∈ J(µθ)
= θλ1 sign(aλ1

j ) + (1 − θ)λ2 sign(aλ2
j )

= (θλ1 + (1 − θ)λ2) sign(aλ̄j ) = λ̄ sign(aλ̄j )
⇒ η(λ̄, µθ)(xj) = sign(aλ̄j ).

The latter shows that µθ is a solution of (L2 − | · |) with λ̄ = θλ1 + (1 − θ)λ2 and
that it satisfies the properties listed above.

In Figure 6.4 (a), the regularisation path for a 1-dimensional spike deconvolution
problem is presented in the case of BLASSO. Being in a continuous domain, the
analytical illustrations have to be analysed carefully. Namely, changing λ does not
only cause a change in the intensities and number of spikes in the reconstruction
(or number of non-zero pixels) but also in their positions. On the left, the functions
λ 7→ aj(λ), with aj being the amplitudes corresponding to the j − th spike of the
reconstruction, are shown. Note that this is slightly different from the regularisation
path that corresponds to the functions that map λ to the intensities of the spikes in
the positions of the spikes in the ground truth. In the centre, we report the plot of
the TV norm of the reconstructed spikes. On the right, we plot instead the functions
λ 7→ xj(λ), being xj the position of the j − th spike of the reconstruction: as just
described, the spikes are allowed to move in the continuous domain. The piece-wise
linearity of the regularisation path is quite evident from the plot of λ 7→ aj(λ) on
the left.

In Figure 6.4 (b), we report the same plots in the case of a Poisson off-the-grid
sparse deconvolution problem (D̃KL − | · |). Studying analytically the regularisation
path in this scenario is challenging due to the presence of the Kullback-Leibler fi-
delity, which introduces non-linearity in the problem. Nonetheless, we can observe
numerically that it is not piece-wise linear but it seems to have a piece-wise hyper-
bolic geometrical structure. This interesting claim has to be further investigated.

Recalling Algorithm 11, we thus observe that each homotopy iteration t produces
a solution µ̂t belonging to a different linear segment of the piece-wise linear regular-
isation path. Thanks to the updating rule (6.27), the dual certificates η(λt, µ̂t) and
η(λt+1, µ̂t+1) cannot satisfy the conditions, defined at the beginning of this section,
that characterise a linear segment of the path.

Without an analytical expression for the regularisation path in the Poisson
(D̃KL − | · |) case, we cannot come to the same conclusion. However, the discussion
about the updating rule (6.27) in Section 6.4.1.2 ensures that at each iteration we
are improving the reconstruction and the numerical tests of the next section shows
the good performance of Algorithm 11 in the resolution of (D̃KL − | · |). Moreover,
Figure 6.2 refers to a 1D sparse deblurring problem with Poisson noise. We com-
puted the Pareto frontier with SFW and the homotopy iterations with Algorithm
11 for the minimisation of (D̃KL − | · |). It is worth mentioning that the homotopy
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Figure 6.5: 1D comparison between Gaussian and Poisson noise modelling. In black:
ground truth spikes. In green: reconstructed spikes. For both models, λ = 8.82.

algorithm in this case produces a sequence of iterations that moves along the Pareto
frontier towards an optimal solution, as expected.

6.5 Numerical tests
In this section, we present numerical results of the proposed SFW algorithm

plus homotopy step, on Poisson off-the-grid sparse deconvolution problems. We
consider simulated 1-dimensional and 2-dimensional data and a real 3-dimensional
dataset of fluorescent microscopy. In the following numerical experiments, the results
computed by solving the (D̃KL − | · |) model were compared only with the ones
obtained by solving the BLASSO model (L2 − | · |) as we are not aware of any other
off-the-grid model relevant for comparisons in the non-Gaussian noise setting.

As a first study, we consider a simulated dataset of 1-dimensional blurred ac-
quisitions with Poisson noise and reconstruct the 1-dimensional sparse signals with
the off-the-grid models (D̃KL − | · |) and BLASSO (L2 − | · |), which is better suited
for Gaussian noise, to compare the results. We consider in both cases the Sliding
Frank-Wolfe algorithm (Alg. 10). Then, we discuss results obtained by the homo-
topy algorithm (Alg. 11) with SFW as an inner solver. In a 2-dimensional setting,
we consider a blurred acquisition with Poisson noise of a sparse signal to study a
practical way to choose a good value for σtarget and a strategy to estimate the back-
ground as spatially constant. We conclude our tests with the deconvolution of a
3D real image dataset where (D̃KL − | · |) is solved by means of the Boosted Sliding
Frank Wolfe with the homotopy algorithm.

6.5.1 Comparison between Gaussian and Poisson modelling

The aim of the first set of experiments on simulated 1D blurred signals corrup-
ted with Poisson noise is to validate our model (D̃KL − | · |) and to compare its
performance with BLASSO (L2 − | · |).
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Figure 6.6: True Positives, False Positives, False Negatives spikes with respect to a
tolerance radius δ > 0.

We simulate 10 different ground truths with 6 randomly located spikes in the
1D domain Ω = [0, 1]. The position of each spike of each simulated ground truth
signal is sampled from a uniform distribution over Ω. The spikes’ amplitudes are
themselves sampled from a uniform distribution over [1 − d, 1 + d] with d = 0.4.
The corresponding acquisitions are blurred by a Gaussian 1D PSF with σ = 0.07,
a spatially constant background b = 0.01 is considered, and then Poisson noise
realisations are generated as acquired data. In Figure 6.5, one of the simulated
ground truth signals µgt is shown (black) with the corresponding Poisson noisy and
blurred data (blue).

We then reconstruct all 1D signals using both the Poisson noise model (D̃KL − | · |)
and the Gaussian noise model BLASSO (L2 − | · |) with λ ∈ (0, 10]. Figure 6.5 shows
an example of the two reconstruction µrec (green) for λ = 8.82. It is evident that,
in this particular case, the Poisson model separates better the spikes in the ground
truth. In particular, with BLASSO only 3 out of 6 spikes are reconstructed whilst
our proposed model (D̃KL − | · |) manages to retrieve 5 spikes, with an accurate
localisation.

To evaluate the goodness of the reconstructions, we consider the Jaccard index
defined in terms of the number of True Positive, False Positive and False Negative
spikes as follows

Jacδ(µgt, µrec) = #TP
#TP + #FP + #FN ∈ [0, 1]

with tolerance radius δ > 0. In Figure 6.6, the meaning of True Positive, False
Positive and False Negative is visually explained. We call TP the reconstructed
spikes that are at a distance less than δ from a spike in the ground truth, while
reconstructed spikes that are more than δ distant from each ground truth spikes
are called FP. FN are spikes in the ground truth which have not been associated
to any TP. Another good metric for the reconstruction quality is the RMSE of the
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(a) False Positive, False Negatives, True Positives

(b) Jaccard index and RMSE over amplitudes and positions

Figure 6.7: Mean values over 100 different randomly generated ground truths with 6
spikes and their corresponding reconstructions. Shaded area corresponds to standard
deviation. Maximum number of iterations of SFW: 2Nmolecules. Tolerance radius
δ = 0.05.

amplitudes a and positions x of the TP spikes:

RMSEx(µgt, µrec) =
√√√√ 1

#TP
∑
i∈TP

(
(xrec)i − (xgt)i

)2

RMSEa(µgt, µrec) =
√√√√ 1

#TP
∑
i∈TP

(
(arec)i − (agt)i

)2
.

In Figure 6.7(a),In Figure 6.7(a), we plot TP, FN and FP with respect to λ and
in Figure 6.7(b) the Jaccard index (computed with δ = 0.05) and the RMSE of
amplitudes and positions. Note that the Poisson model (D̃KL − | · |) has a better
performance in terms of TP and FN spikes and in terms of Jaccard index and RMSE
of amplitudes and positions. Only for the number of FP, BLASSO (L2 − | · |) results
slightly better than (D̃KL − | · |) for small values of λ. This is due to the fact that
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Parameters L2 − |µ| D̃KL − |µ|

Max. number of homotopy iterations 2Nmolecules 2Nmolecules

Max. number of inner SFW iterations 1 1
Homotopy parameter c 15 40
Homotopy parameter γ 0.9 0.9
Choice of σtarget 1.5 × 1

2∥Φµgt + b− y∥2 1.5 × DKL(Φµgt + b, y)

Table 6.2: Parameters used with the homotopy algorithm (Alg.11) in the 1D simu-
lated comparison tests

(D̃KL − | · |) usually requires more iterations of SFW before reaching convergence. It
results in a better estimation of the number of molecules, with TP being closer to the
actual number of spikes in the ground truth and it may cause an overestimation of
the number of spikes with a consequently higher value of FP. However, this behaviour
of (D̃KL − | · |) has overall a positive impact on the quality of the reconstructions,
with all the other considered indices showing its better performance with respect to
BLASSO (L2 − | · |).

With the same dataset, we then compare the results obtained after running
the homotopy algorithm (Alg. 10) for the automatic selection of the regularisation
parameter λ for both methods (L2 − | · |) and (D̃KL − | · |), with the parameters
specified in Table 6.2. Algorithm 11 requires that at each homotopy iteration the
problem with λ = λt is solved to convergence with SFW. However, to avoid excessive
computational time, we observed that one iteration of SFW has been always enough,
since the estimated spikes at each homotopy iteration are then updated again in the
next one. Then, for the same reason we set the maximum number of homotopy
outer iterations to be equal to twice the number of peaks in the ground truth. As
far as σtarget is concerned, we observe that, being in a simulated environment, it is
possible to compute exactly the value of (6.26) as fyδ,b(Φµgt). However, since this is
not possible in real situations, we will discuss a possible strategy to estimate σtarget

in the next section. In Table 6.3, we report the values of TP,FN,FP, Jaccard index
and RMSE of the reconstruced signals obtained using homotopy for (L2 − | · |) and
(D̃KL − | · |). The final estimated λ is also reported in Table 6.3, together with the
number of performed homotopy iterations and of the value σtarget. First, we observe
that using homotopy we retrieve values which are comparable with the best ones
obtained using SFW with grid search. This shows the effectiveness of the homotopy
strategy for the selection of a good λ. Similarly as above, (D̃KL − | · |) yields better
results than (L2 − | · |) in the presence of Poisson noise, with a reduction of the
number of FN and an improvement of the accuracy in terms of Jaccard index.
These first results confirm the advantage of (D̃KL − | · |) model for Poisson noisy
acquisitions, which aimed our proposal.
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L2 − |µ| D̃KL − |µ|

Jaccard index 0.74 0.76
Number of TP 4.50 4.80
Number of FN 1.50 1.20
Number of FP 0.10 0.40
RMSE on amplitudes of TP 0.41 0.44
RMSE on positions of TP 0.014 0.015

Final estimated λ 6.09 40.21
Number of homotopy iterations 4.55 3.93
Value of σtarget 4.09 77.16

Table 6.3: Homotopy algorithm: comparison between BLASSO and the Poisson
off-the-grid modelling. Mean values over 100 different randomly generated ground
truths with 6 spikes and their corresponding reconstructions.

Figure 6.8: 2D sparse ground truth image (white crosses) and its corresponding
noisy blurred acquisition yδ on Ω = [0, 1]2 (obtained with a 2D Gaussian PSF with
σ = 0.07, constant background b = 0.05, Poisson noise). On the right, visualisation
of yδ|Ωbg corresponding to background noise, i.e. the external square-ring.

6.5.2 Homotopy algorithm: choice of σtarget

As mentioned above, in the case of real data, the choice of σtarget obviously must
not require the knowledge of the ground truth image. In this section, we discuss
a way to estimate a reasonable value σtarget that only relies on the acquisition and
on the assumption that the signal is sparse. We make this discussion in a 2D
fluorescence microscopy simulated setting, which is better for visualisation purposes.
Under a suitable sparsity level of the ground truth image, it is safe to assume that
its corresponding noisy and blurred acquisition yδ presents regions containing only
background noise, that we denote with Ωbg ⊂ Ω. In Figure 6.8, we show on the left
yδ and on the right yδ|Ωbg , i.e. the acquisition restricted to the area of background
noise in the external square-ring. We propose to estimate the value of σtarget as
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Theoretical value (based on the ground truth) D̃KL(Φµgt + b, yδ) 842.3
Poisson discrepancy principle (6.35) [17] |Ω|

2 8192
Estimation based only on yδ and Ωbg (6.33) D̃KL(b, ybg) |Ω|

|Ωbg| 846.4

Table 6.4: Different estimates of σtarget.

Figure 6.9: 2D reconstruction with homotopy Alg.11 with parameters: max. number
outer homotopy iterations 20, max. number inner SFW iterations 1, c = 1, γ = 0.2.

follows
σtarget = fyδ,b(0)

∣∣∣
Ωbg

|Ω|
|Ωbg|

, (6.33)

where the restriction of the fidelity term to µ = 0 is due to the fact we assume
the desired image µ to be null in Ωbg, i.e. µ|Ωbg = 0. If we considered σtarget =
fyδ,b(0)

∣∣∣
Ωbg

, it would be equivalent to assuming the noise to be null in Ω\Ωbg, which
obviously is not true. Then we adjust (6.33) in order to account for noise not only in
Ωbg but on the whole domain Ω. Thanks to Ωbg, it is also possible to approximately
estimate the background b ∈ L2(Ω) when it is not known. Indeed, we propose a
spatially constant estimate of b as mean integral value

b = 1
|Ωbg|

∫
Ωbg

yδ(t)dt. (6.34)

For the image shown in Figure 6.8, we compare in Table 6.4 different choices
of σtarget for (D̃KL − | · |) with fyδ,b being the Kullback-Leibler fidelity term. In
particular, we consider in the second row the estimate proposed in [17], where a
discrepancy principle for Poisson data is studied under the following approximation

D̃KL(Φµgt + b, yδ) ≈ |Ω|
2 . (6.35)
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This value is obtained by computing the expected value for Kullback-Leibler fidelity
and by approximating it with a first order Taylor expansion. As observed also in
[17], the estimate (6.35) might not be optimal and, indeed, one should consider

D̃KL(Φµgt + b, yδ) ≈ 1 − ϵ

2 |Ω|,

where ϵ is a small positive or negative number. When Ω is big, this might lead to bad
estimates even if ϵ is small. Indeed, Table 6.4 shows that in our modelling (6.35)
does not give an accurate estimation of σtarget. On the contrary, the estimation
given by (6.33), on the last row of Table 6.4, is very close to the real value (in the
first row), computed exploiting the knowledge of the ground truth. In [22, 23, 24]
other strategies have been considered and, in particular, in [23] a similar masking
approach is studied.

By using the homotopy algorithm (Alg.11) with SFW for the reconstruction of
the image in Figure 6.8 with background and σtarget estimated by (6.34) and (6.33)
respectively, we obtain the results shown in Figure 6.9.

6.5.3 Numerical test with 3D real dataset
In this last section, we consider a 3D real blurred and noisy volume acquired

by means of a widefield microscope. I have been given access to this real dataset
by Jerome Boulanger (MRC Laboratory of Molecular Biology, Cambridge) during
my visiting period at Cambridge Image Analysis group at DAMPT, University of
Cambridge, between May and June 2022. The image was acquired in widefiled
microscopy with a 100x/1.49 objective, a Hamamatsu Flash 4 camera with 6.5um
pixels, by Alejandro Melero Carrillo from Liz Miller’s group at the MRC-LMB and
was used in [100]. It is an acquisition of yeasts expressing fluorescent proteins
(*SEC16-sfGFP* and a *SEC24-sfGFP*) localised at the Endoplasmic Reticulum
exit sites (ERES). The acquired volume yδ is shown in Figure 6.13 (first row) with
maximum intensities projections over the xz, yz, yx planes. The 3D volume blurred
and noisy acquisition has 190 × 190 × 17 voxels with voxel size of 65nm in yz and
250nm in z. Signal dependency of the noise is observed.

To reconstruct a sparse volume from the acquisition yδ, we use the homotopy al-
gorithm (Alg. 11) with the Boosted SFW as an inner solver to minimise (D̃KL − | · |).
We prefer the accelerated version of SFW, since in 3D the computational costs are
significantly higher than in lower dimensions.

As forward operator, we consider a 3D convolution kernel (5.6) estimated as a
3D Gaussian PSF (as in Figure 6.10),

φ
(
(x, y, z)

)
= 1√

(2π)3σxσyσz
exp

[
− x2

2σ2
x

]
exp

[
− y2

2σ2
y

]
exp

[
− z2

2σ2
z

]
.

The standard deviation σx, σy of the 3D PSF can be estimated from the Full Width
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Figure 6.10: 3D Gaussian PSF

Parameters (D̃KL − | · |)

Max. number of homotopy iterations 10
Max. number of inner SFW iterations 50
Homotopy parameter c 0.5
Homotopy parameter γ 0.9
σtarget given by (6.33) 1102067.75
σtarget given by (6.35) 306850
Constant background estimate (6.34) b = 337.77

Table 6.5: Parameters used for Algorithm 11 for the reconstruction of the 3D volume

Half Maximum, which is given by

FWHM = 0.61λwavelength

NA ,

where λwavelength is the emission wavelength of the fluorescent proteins and NA is
the numerical aperture of the microscope (see Appendix B for more details). If
the FWHM is known, then it is possible to retrieve information about the variance
parameters of the PSF since FWHM = 2.355 · σx and FWHM = 2.355 · σy. For
the standard deviation in the z-axis, we assume σz = 2 · σx. Since the value of
the numerical aperture is known, NA = 1.49, and λwavelength = 508nm for the green
fluorescent proteins used, we obtain a PSF estimation with σx = σy = 89nm and
σz = 178nm shown in the second row of Figure 6.13, which appears to be a good
estimate for the underlying blur model.

To use the homotopy algorithm for the regularisation parameter automatic se-
lection, we need to choose some important parameters that are reported in Table
6.5. In particular, for σtarget we observe that (6.35) and (6.33) give very different
results and we consider the estimate given by (6.33), as in the previous section it
proved to be more accurate. The background, whose restriction to Ωb is shown in
the third row (c) of Figure 6.13, is estimated by (6.34) with b = 337.77. In Figure
6.13 (forth row) and Figure 6.12, we show the reconstructed volume obtained with
Algorithm 11. We computed this reconstruction up to 50 homotopy iterations fixing
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Figure 6.11: ERES 3D data. Values of λt, σtarget and cost functional along the
homotopy iterations.

to 10 the maximum number of inner loops for the BSFW algorithm, using Google
Colab CPUs for about 10 hours. We obtained a reconstructed volume µrec with 274
spikes. We assume this number to be underestimated, comparing the acquisition
yδ (top row) with the blurred Φµrec + b (bottom row) in Figure 6.13, and compar-
ing the value of σtarget of Table 6.5 with the one attained along the iterations (see
Figure 6.11). However, this first result is promising, since the use of Algorithm 11
yields very precise localisation of spikes automatically, with no need of estimating
the regularisation parameter, and no information about the data.

6.6 Final discussion
In this chapter, we considered off-the-grid Poisson inverse problems in the space

of Radon measures. Our contribution is the study of a variational model com-
bining a Kullback-Leibler fidelity term, a TV norm of measures as penalty and
non-negativity constraints. We presented a detailed study of the optimality condi-
tions and of the corresponding dual problem. Then, we discussed how to implement
the Sliding Frank-Wolfe algorithm to solve the Poisson off-the-grid model and the
importance of the choice of a good regularisation parameter λ. For this last reason a
tailored homotopy algorithm is presented. It provides a way to automatically select
the parameter by decreasing it subsequently at each iteration if a certain informed
condition is not met. We discussed the properties of the homotopy algorithm, which
are linked to the concepts of Pareto frontier and regularisation path. Finally, we
presented numerical experiments on simulated data to validate the proposed Poisson
model regularisation, to compare its performance with BLASSO and to verify the
proposed homotopy strategy yields good reconstructions. Concerning the estimation
of important parameters of Algorithm 11, we proposed to estimate the background
and the noise level on a masked region of the acquisition yδ, where it is safe to assume
no signal has been measured. To conclude, we reported a numerical experiment on a
3D real data of fluorescence microscopy, that we reconstructed using the homotopy
algorithm with an accelerated version of SFW, the Boosted SFW, as inner solver.
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Figure 6.12: Sparse reconstruction of the 3D real volume acquisition. Visualisation
from different angles. The colours corresponds to the depth along the z direction.
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(a)

(b)

(c)

(d)

(e)

Figure 6.13: ERES 3D real data. From top to bottom: (a) acquired volume yδ, (b)
estimated Gaussian 3D PSF, (c) yδ|Ωb

, (d) reconstructed volume with 130 iterations
of the homotopy algorithm µrec, (e) blurred observation Φµrec + b corresponding to
the reconstruction µrec.
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This thesis focused on the resolution of inverse problems in Banach spaces via
variational approaches. Tailored optimisation techniques have been defined, since
Banach spaces lack of the Riesz isomorphism and scalar product, which are often
explicitly or implicitly used in the design of classical minimisation algorithms in
Hilbert spaces. The first part of this thesis is concerned with Lebesgue spaces with
variable exponents Lp(·)(Ω) and on the use of gradient-based algorithms in this set-
ting for smooth and non-smooth optimisation. In Chapter 2, we presented the main
tools that we used for these methods in Lp(·)(Ω), namely the modular functions and
their derivatives, which we proposed to use instead of the Luxemburg norm and the
duality maps in Lp(·)(Ω), respectively. We showed both analytically and numerically
that modulars allow much faster computations, having a closed form explicit expres-
sion and being separable. The same applies to their derivatives, that we proposed as
modular-based alternatives to duality maps. In Chapter 3, in particular, we defined
novel modular-based gradient-descent algorithms in Lp(·)(Ω), where the descent step
is computed in the dual space, and we further design its stochastic variant whose
advantages are validated on CT data. Chapter 4 is, instead, focused on non-smooth
optimisation proximal gradient methods in Lp(·)(Ω). We proposed two instances of
modular-based proximal gradient algorithms, where in the first gradient descent is
performed in the primal space and in the second it is performed in the dual, as for
Chapter 3. Extensive numerical validations confirmed that the choice of employ-
ing these algorithms tailored for the specific Banach spaces at hand is particularly
suited to deal with mixed noise statistics, heterogeneous or sparse signals and to
reconstruct discontinuities with more precision.

In the second part of this thesis, inverse problems in the Banach space of Radon
measures M(Ω) are considered. Chapter 5 presented a literature review on sparse
off-the-grid problems, on the BLASSO variational problem proposed for Gaussian
noise settings, and on standard optimisation algorithms to solve BLASSO in M(Ω).
Chapter 6 outlined our contribution on this topic. Motivated by fluorescence micro-
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Chapter 7. Conclusions

scopy applications, where the noise observed is rarely purely Gaussian, we considered
a Poisson noise hypothesis on the data and proposed a variational approach where
the total-variation norm is coupled with the Kullback-Leibler fidelity term and a pos-
itivity constraint. We analytically derived its optimality conditions and we studied
its corresponding dual problem. We showed that Sliding Frank-Wolfe algorithm can
be adapted to solve the minimisation of the new Poisson variational functional and
we considered an homotopy strategy to automatically and iteratively select a good
regularisation parameter for our problem. Numerical tests demonstrated that the
use of the Poisson fidelity effectively improves the reconstruction quality and that
the homotopy algorithm reduces the dependence of the reconstruction on the choice
of regularisation parameter, providing a good estimate for the best λ, according to
the noise intensities.

In both parts, some interesting questions remain open. In particular, concerning
Part I:

• In Section 3.3.4, we detailed some possible strategies for an informed vari-
able exponent p(·) selection for the resolution of inverse problems in Lp(·)(Ω).
The exponent map p(·) can be obtained interpolating an approximation of the
desired solution between two fixed values p− and p+. This method presents
two main problems. It requires another reconstruction method to obtain an
approximate solution to select p(·), and thus this strategy is not self-sufficient.
Moreover, parameters p− and p+ have to be manually tuned and their choice
is strictly problem dependent. Even though this selection method has been
proved quite effective both in terms of reconstruction quality and in terms
of convergence speed, we lack of theoretical guarantees. Since p(·) and the
unknown solution x are related, a possibility could be to consider a minim-
isation problem on both exponent and solution, and to solve it with bi-level
optimisation techniques.

• In Chapter 3, we proposed modular-based gradient descent and stochastic
modular-based gradient descent algorithms in Lp(·)(Ω). For the determin-
istic one, we observed in Chapter 4 that it is possible to retrieve a result
of convergence in function values because it follows from Proposition 4.3.3,
in the framework of smooth optimisation. However, for both deterministic
and stochastic modular-based gradient descent it would be meaningful to also
prove convergence to x†, in the noiseless case. We attempted to adapt standard
descent lemmas to the variable exponent setting, but the lack of p-convexity
of Lp(·)(Ω) makes it almost impossible to obtain the same bounds and major-
isations. If Lp(·)(Ω) were p-convex, then it would be possible to conclude the
convergence proofs. Thus, we suggest the following strategies: either to prove
the p-convexity for some p, or to formulate some versions of the descent lemma
in a more problem-specific way.

Concerning Part II:
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• As far as the homotopy strategy presented in Chapter 6 is concerned, we recall
that the proposed updating scheme for λ along the homotopy steps ensures
that they happen on different linear segment of the solution path for the
BLASSO problem. Differently from BLASSO, we observe that the solution
path for (D̃KL − | · |) is not piece-wise linear but has a piece-wise structure
too, then again the homotopy steps happen each on a different piece of the
frontier. However, we have not been in able to prove analytically which is
the exact shape of the regularisation path. Our claim is that in the Poisson
fidelity scenario it has a piece-wise hyperbolic structure. By further analysing
this aspect, one would have more insights on the nature of the problem and on
alternative updating rule for λ, more adapted to the structure of the problem
at hand.

• Referring to the homotopy algorithm, in Chapter 6 we showed that the se-
quence of σt, which is the residual at each homotopy step, is strictly decreas-
ing. We would like to show that the algorithm has a finite termination rule. A
sufficient condition is σt → 0. Although this is something that we observe in
practice, from a theoretical standpoint it can happen only in absence of noise,
hence leaving an open question.
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Computed Tomography: forward
model and geometries

***

In Chapter 3, numerical tests on Computed Tomography imaging problems have
been carried out to validate the proposed Algorithms 3 and 4, that are modular-
based strategies for smooth optimisation in Lp(·)(Ω). In particular, experiments
in a 2D parallel beam geometry simulated setting and in a 2D fan beam geometry
real case are shown. Here, we briefly detail the functioning and the forward
model of CT, describing in particular the aforementioned geometries.

Computed Tomography (CT) is a medical imaging technique that uses X-rays to
create detailed cross-sectional images of the body, scanned with X-ray beams. CT
scanners consist of an X-ray source and a detector array mounted on opposite sides
of a rotating structure. They make two measurements: the initial intensity of each
X-ray beam at the radiation source and the final intensity of each beam, at the
radiation detector, as sketched in Figure A.1. The changes in intensity for a single
beam are dependent on the internal density of the body along the line the X-ray

Figure A.1: CT scanner. Image from [12]
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Appendix A. Computed Tomography: forward model and geometries

Figure A.2: 2D Parallel Beam Geometry. Image from [12]

passes through. The goal is to determine the attenuation coefficients of the X-rays
caused by body absorption, which being related to the body’s density, provide an
image of the scanned region. The rotation of both the X-ray source and the detector
array is a key aspect of this process, as it allows to measure attenuation coefficients
from multiple angles around the body. For each considered angle, CT scanners
collect multiple measurements, each corresponding to different beams.

A forward operator based on the Radon transform mathematically describes
how X-rays interact with the body and how the acquired data are formed. Given a
compact support Ω ⊂ Rd, consider an object of interest with density f ∈ L2(Ω). The
trajectory of the X-ray beam through the object usually depends on two parameters,
the angle θ of rotation of the beam and the offset t, as shown in Figures A.2 and
A.3. For each angle θ ∈ Ω̃ = [0, 2π]d−1 and for each offset t ∈ I ⊂ R, the trajectory
is a curve (generally a straight line) γt,θ : R → Ω, s 7→ γt,θ(s) ∈ Ω. Then, the Radon
transform of f is defined for all t ∈ R and θ ∈ Ω̃ as

Rf(t, θ) =
∫
R
f
(
γt,θ(s)

)
ds. (A.1)

In CT imaging, two common geometries for data acquisition are the 2D parallel
beam and the 2D fan beam geometries.

2D Parallel Beam Geometry. In this configuration, a collimated X-ray beam is
projected through the patient, and detectors are arranged in a straight line opposite
the X-ray source, see Figure A.2. The X-ray source and detectors remain parallel
during the rotation. As the X-ray source and detectors rotate around the patient,
measurements are taken at each angle θ ∈ Ω̃ ⊂ [0, 2π]. The detectors, placed at
positions t ∈ I ⊂ R, record the attenuation of X-rays as they straightly pass through
the body at various positions. As a result of this process, the acquired data is an
element of L2(I × Ω̃) obtained by (A.1) with

γt,θ(s) =
(
t cos(θ) − s sin(θ), t sin(θ) + s cos(θ)

)
, s ∈ R.

By considering the simulated setting of Section 3.4.3, we have Ω̃ =
{
kπ
180 , k = 1, 2, . . . , 180

}
and I = {1, 2, . . . , 256}.
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2D Fan Beam Geometry. In fan beam geometry, the X-ray source emits a
diverging beam, and the detectors are arranged in an arc or fan shape opposite the
source, as in Figure A.3. This geometry is closer to the natural divergence of X-rays
as they pass through the body. Similar to parallel beam geometry, measurements are
taken at various angles as the source and detectors rotate together. The detectors
then record the attenuation of X-rays along fan-shaped straight paths through the
body.

Figure A.3: 2D Fan Beam Geometry. Image from this link1.

1https://it.mathworks.com/help/images/ref/fan2para.html
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Fluorescence microscopy imaging
***

In the second part of the this thesis, we often refer to fluorescence microscopy
imaging, which is our chosen application of interest for off-the-grid methods,
namely for BLASSO (L2 − | · |) detailed in Chapter 5 and for (D̃KL − | · |) pro-
posed in Chapter 6 for sparse Poisson deconvolution. We sketch here some
general concepts about microscopy imaging. We focus on the description of
fluorescence microscopy techniques providing some useful insight. Fluorescence
microscopy is a popular imaging technique that allows the study of living cells
and cellular organelles. However, the resolution of images obtained by fluores-
cence microscopes is physically limited due to the diffraction of visible light.

In biology, the observation of very small structures, such as cells or proteins,
is crucial for the study of the behaviour of a bacteria or of a disease development.
In this scenario, the use of conventional optical microscopes has played a key role
in better understanding the phenomena involved at this scale. Over the years, the
quality of the images produced by means of optical microscopes has improved dra-
matically thanks to technological advances and manufacturing breakthroughs. An
optical microscope contains one or a series of lenses which create an enlarged image
of a sample that is placed in the focal plane of the lens, that is the vertical plane
in which the focal point lies, that is the point behind the lens at which the light
from a far away object is brought to. However, despite the computer-aided optical
design and automated methodology utilised to produce modern lens components,
glass-based microscopes are still affected by an intrinsic limit in spatial resolution,
due to the well-known physical barriers imposed by diffraction of visible light. In
consequence, the highest achievable resolution that can be obtained in fluorescence
microscopy is governed by some fundamental physical laws that cannot be over-
come by physical means. These diffraction barriers restrict the ability of the optical
instrument to distinguish between two objects which are too close to each other.

Diffraction limit. Passing through an optical system, the light wavefronts are
distorted, which results in the perturbation of a point source into a diffraction figure.
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Appendix B. Fluorescence microscopy imaging

Figure B.1: Resolution limit imposed by wave nature of light. Image from this link1.

The transmitted light wavefronts emanating from a point in the specimen plane of
the microscope become diffracted at the edges of the objective aperture. Basically,
the lens spreads the wavefronts to produce an image of the point source that is
broadened into a diffraction pattern having a central disk of finite, but larger size
than the original point. In Figure B.1, the two waves in red (green, respectively)
give rise to constructive (destructive) interference, leading to the diffraction pattern.
Therefore, due to diffraction, the image of a specimen never perfectly represents the
real specimen, because there is a lower bound below which the microscope optical
system cannot resolve structural details. In the case of a perfect optical instrument,

Figure B.2: Airy disk. The grayscale intensities have been adjusted to enhance the
brightness of the outer rings of the diffraction pattern.

a single wavelength light from a point sources generates a diffraction pattern, shown
in Figure B.2, called Airy disk (after Sir George B. Airy, a nineteenth century English
astronomer), characteristic of this phenomenon, with radius

r = λ

2 NA

where λ is the wavelength of the light and NA the characteristic numerical aper-
ture of the microscope. The intensity profile of the Airy disk is called Point Spread
Function (PSF). The ideal PSF is the diffraction light pattern emitted by a point
source in the specimen and transmitted to the image plane through the object-
ive of the microscope. It represents the impulse response of the microscope to a

1https://www.microscopyu.com/techniques/super-resolution/
the-diffraction-barrier-in-optical-microscopy
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Figure B.3: Overlapping of two point sources approaching near. The Rayleigh
criterion: two points are considered as just resolved when the maximum of one
diffraction pattern coincides with the first minimum of the other. Image from [209].

single bright pixel (or a single fluorescent protein in fluorescence microscopy) and
it is characteristic of any specific optical system. Due to the fast vanishing of the
central disk of the Airy pattern, which represents the PSF, we usually estimate it
by a Gaussian function. The PSF is the fundamental unit of an image in theoret-
ical models of image formation, as it models the blur in acquisitions caused by the
diffraction phenomenon. Rational alternations in objective lenses and/or changes
to the numerical aperture design cannot overcome the physical laws governing op-
tical microscopy. Thus, the highest achievable point-to-point resolution that can be
obtained has severe limitations, often referred to as the diffraction barrier, which
restricts the ability of optical instruments to distinguish between two objects. The
physicist Ernst Abbe advanced the diffraction-limited resolution theory in 1873 [1],
and Lord Rayleigh established a standard formula to characterise the spatial resolu-
tion of an optical device [[190]. According to Rayleigh, the resolution limit is equal
to the minimum resolvable distance of two point sources, and two point sources are
considered just resolved when the maximum of one diffraction pattern coincides with
the first minimum of the other, as shown in Figure B.3. This results to a lateral
resolution:

d = 0.61 λ

NA ,

where λ is the emission wavelength and NA is the numerical aperture of the objective.
The numerical aperture is given by the formula NA = n sin θ and depends on the
refractive index n of the objective immersion medium and the half-angle θ of the
cone of light collected by the lens [115]. The lateral resolution d is also identical to
the Full-Width at Half-Maximum (FWHM) of the microscope’s PSF. According to
Abbe’s and Rayleigh’s theory, the images obtained by optical microscopes consist of
many overlapping diffraction-limited spots with different intensities. The only way to
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Appendix B. Fluorescence microscopy imaging

Figure B.4: Fluorescent labelled cell. Each colour represents a different emission
wavelenght of the emitted light. Image from this link 2.

improve the lateral resolution is to minimise the size of the diffraction-limited spots
either by increasing the NA of the objective lens or by decreasing the wavelength of
the emitted light. However, even under ideal conditions, when imaging with visible
light, the lateral resolution cannot drop under the level of 200 nm.

Fluorescence microscopy. A very powerful technique developed in the early
20th century is fluorescence microscopy, that allows the observation of cells, tissues
and dynamics of structures with high precision in 3D and in vivo. This strategy
takes advantage of the fluorescent nature of certain molecules which, when excited
by a photon of a certain energy, return to a stable state by emitting a lower en-
ergy photon, and allows the acquisition of spatial and temporal information about
objects that are either intrinsically fluorescent or coupled to extrinsic fluorescent
molecules in samples [115, 198]. In practice, fluorescent molecules absorb some spe-
cific light wavelengths (or colours) and emit some others with longer wavelengths.
It is thus possible to dissociate emission light from absorption light by filtering the
wavelengths. The main function of fluorescence microscopes is, therefore, to deliver
excitation energy to the fluorescent species in the sample and to separate the much
weaker emitted fluorescence light from the brighter excitation light so that it reaches
the detector and, finally, a high contrast image is generated. The light separation is
usually achieved by optical filters.

Certain substances within cells are naturally fluorescent (fluorochromes), oth-
ers, to benefit from this property, must be combined with a fluorescent protein. In
this latter case, it is necessary to introduce fluorophores into the samples under
observation, i.e. fluorescent chemical compounds that can re-emit light upon light
excitation. They are physically attached to the structures of interest using cer-
tain labelling methods (such as antibody antigen pair, modification genomics, cell
tracers...). The marked structures appear coloured by a different intensity, depend-
ing on the wavelength of the fluorescence emitted, as shown in Figure B.4. This is
particularly useful to mark and locate specific structures of interest.

Over the past several decades, fluorescence microscopy has become an essential
2www.leica-microsystems.com/science-lab/the-fundamentals-and-history-of-fluorescence-and-quantum-dots/
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tool for examining a wide variety of biological molecules, pathways and dynamics
in living cells and tissues. Currently, modern and well-established techniques can
resolve a variety of features in isolated cells and tissues, such as the nucleus, mito-
chondria, Golgi complex, cytoskeleton and endoplasmic reticulum, as in Figure 6.13
of Chapter 6. Various imaging modes in fluorescence are often used to dynamic-
ally track proteins and signal peptides, as well as for monitoring other interactions
in living cells. However, the spatial resolution limitations due to light diffraction
precludes the ability to resolve very small structures (such as synaptic vesicles, ri-
bosomes...) and the investigation of biological processes close to the molecular scale,
which lie beneath the limits of detection.

However, a sample generally contains many thousands of fluorescent molecules,
which inevitably overlap and are hard or impossible to locate from the acquisition
obtained, without any further post-processing. The localisation of the underlying
molecules can be tackled by the design of a precise localisation method, capable to
deal with medium-to-high density scenarios, and the challenge then is to find a good
numerical method (in both time and memory complexity), capable of dealing with
high-density scenarios improving the quality of the obtained images.

Different microscopy techniques can be used to enhance the visualisation and
contrast of an image depending on the application. Each method has advantages
and disadvantages, but all use the same fluorescence mechanism to observe a biolo-
gical process. The most well-known fluorescence microscopy techniques are widefield
microscopy [208], confocal microscopy [104], Total Internal Reflection Fluorescence
(TIRF) microscopy [165], light sheet microscopy or Selective Plane Illumination Mi-
croscopy (SPIM) [138]. A brief overview only of widefield modality is now given, as
we use it in the 3D real data experiments of Chapter 6.

Widefield microscopy is the most common fluorescence microscopy modality. It
took its name because the whole (wide) field of view is illuminated. Observation
and excitation of fluorescence are done from only one side of the sample and the
entire sample is exposed at the same time to light, making it the simplest and
fastest fluorescence modality. However, because fluorescence signals from all focal
planes are detected, contrast is poor in thick samples, while thinner samples, such
as adherent cells, are preferred.
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