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Résumé: On étudie des jeux & deux joueuses
(A et B) sur des graphes. A partir d'un état du
graphe, les joueuses interagissent pour aller d’un
état & un autre. Ceci induit une suite infinie
d’états a laquelle une fonction de gain mesurable
associe une valeur dans [0,1]. La Joueuse A
(resp. B) tente de maximiser (resp. minimiser)
Pespérance de cette fonction de gain.

Les jeux & tours, i.e. les jeux tels qu’a
chaque état une seule joueuse choisit (une loi
de probabilités sur) l'état suivant, ont de nom-
breuses bonnes propriétés. Par exemple, dans
tous les jeux a tours perd/gagne déterministes,
une joueuse a une stratégie gagnante. De plus,
dans les jeux de parité a tours finis, les deux
joueuses ont des stratégies optimales position-
nelles. A contrario, les jeux concurrents, i.e. les
jeux tels qu’a chaque état les deux joueuses con-
courent au choix d’une loi de probabilité sur les
états suivants, se comportent mal. Ainsi, il ex-
iste des jeux concurrents de parité déterministes
tels que : aucune des joueuses n’a de stratégie
gagnante ; aucune joueuse n’a de stratégie opti-
male, méme stochastique. De plus, lorsque c’est
possible, jouer de maniére optimale peut néces-
siter une mémoire infinie.

Le but de ce manuscrit est d’enrichir notre
compréhension du comportement des jeux con-
currents. Pour ce faire, on étudie la notion de
forme de jeu. Les formes de jeu sont les objets
mathématiques qui décrivent les interactions
(locales) des joueuses a chaque état d’un jeu con-
current. Les formes de jeu sont définies par un
ensemble de stratégies locales par joueuse, un
ensemble d’issues et une fonction envoyant une
paire d’une stratégie locale par joueuse sur une
loi de probabilités sur les issues. Généralement,
dans les articles sur les jeux concurrents, les in-
teractions locales sont des formes de jeu stan-
dard (finies) : les ensembles de stratégies locales
sont des lois de probabilités sur les ensembles
(finis) d’actions sous-jacents. Ici, on définit des
formes de jeu plus générales, que l'on appelle
formes de jeu arbitraires. Certains des résultats

établis dans ce manuscrit supposent que les in-
teractions locales sont standard, tandis que les
autres ne font pas de telles hypothéses.

Premiérement, on prouve des résultats
généraux sur les jeux concurrents, avec trés peu
d’hypothéses sur les fonctions de gain et les in-
teractions locales. En particulier, on considére
un résultat crucial sur les jeux concurrents : la
détermination de Blackwell de Martin, qui peut
étre énoncé comme suit. Soit un jeu concurrent
dont toutes les interactions locales sont stan-
dards finies. Depuis chaque état, il existe une
valeur u dans [0, 1] telle que les stratégies de
la Joueuse A (resp. B) peuvent garantir que
I’espérance de la fonction de gain est au moins
(resp. au plus) égal a n’importe quel seuil en-
dessous (resp. au-dessus) de u. On généralise
ce résultat aux jeux dont les formes de jeu sont
arbitraires et en déduisons d’autres résultats
sur les jeux concurrents. On prouve également
d’autres résultats sur les jeux concurrents, en
particulier sur les stratégies optimales en sous-
jeu.

Deuxiémement, on étudie le comportement
des jeux de parité concurrents finis en ter-
mes d’existence et de nature des stratégies
(presque) optimales (en sous-jeu), avec trés peu
d’hypotheses sur les interactions locales.

Troisitmement, on définit des ensembles de
jeux concurrents qui ont certaines des propriétés
des jeux & tours tout en étant plus généraux
que les jeux a tours. Ainsi, étant donnée une
propriété souhaitable sur les jeux concurrents,
on caractérise tout d’abord les formes de jeu
qui garantissent que tous les jeux simples qui
les utilisent comme interactions locales satisfont
cette propriété. On caractérise ainsi les formes
de jeu qui se comportent bien individuellement.
On montre ensuite que tous les jeux concurrents
qui utilisent ces formes de jeu comme interac-
tions locales satisfont également cette propriété.
Ces formes de jeux se comportent également
bien collectivement.
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Abstract: We study games played by two play-
ers, Player A and Player B, on a graph. Starting
from a state of the graph, the players interact
to move from state to state. This induces an
infinite sequence of states, which is mapped to
a value in [0, 1] by a measurable payoff function.
Player A (resp. B) tries to maximize (resp. min-
imize) the expected value of this payoff function.

Turn-based gamnes, i.e. games where at each
state only one player chooses a (probability dis-
tribution over) successor state, enjoy many nice
properties. For instance, in all deterministic
win/lose turn-based games, from each state, one
of the players has a winning strategy. In ad-
dition, in finite turn-based parity games, both
players have positional optimal strategies from
each state. By contrast, concurrent games, i.e.
games where at each state both players inter-
act concurrently, i.e. simultaneously, to gen-
erate a probability distribution over successor
states, behave much more poorly. Indeed, there
are very simple deterministic concurrent parity
games such that: neither player has a winning
strategy; neither player has an optimal strategy,
even a stochastic one. In addition, when opti-
mal strategies do exist, they may require infinite
memory.

The goal of this dissertation is to give signif-
icant insight on how concurrent games behave.
To do so, we study the notion of game form.
Game forms are the mathematical objects that
describe the (local) interactions of the players
at each state of a concurrent game. Game forms
are defined by a set of local strategies per player,
a set of outcomes and a function mapping a pair
of one local strategy per player to a probability
distribution over outcomes. Generally, in the lit-
erature on concurrent games, local interactions
are standard (finite) game forms: the sets of
local strategies are distributions over underly-
ing (finite) sets of actions. In this dissertation,
we define and study more general game forms,
which we call arbitrary game forms. Some of the

results we prove hold even with arbitrary local
interactions, the others use a standard assump-
tion on the local interactions involved.

First, we prove general results on concurrent
games, with very few assumptions on the pay-
off functions and local interactions involved. In
particular, we consider a crucial result on con-
current games: Martin’s result on Blackwell de-
terminacy, which can be stated as follows. Con-
sider a concurrent game where all local interac-
tions are standard finite. From each state, there
is a value w in [0, 1] such that Player A’s (resp.
B’s) strategies can guarantee that the expected
value of the measurable payoff function is above
(resp. below) any threshold below (resp. above)
u. We generalize this result to games with ar-
bitrary game forms. We deduce from this gen-
eralization other results on concurrent games,
possibly using standard local interactions, which
could not have been obtained directly from the
original result by Martin. We also prove other
results on concurrent games, in particular re-
sults related to subgame optimal strategies.

Second, we study how finite-state concur-
rent parity games behave in terms of existence
and nature of (almost and/or subgame) optimal
strategies, with very few assumptions on the lo-
cal interactions involved.

Third, we define subsets of concurrent games
that enjoy some of the nice properties of turn-
based games while being more general than
turn-based games. These subsets are con-
structed via local-global transfers, which is a
novel approach. Specifically, given a desirable
property on concurrent games, we first charac-
terize the game forms that ensure that all simple
games using them as local interactions satisfy
this property. Thus, we characterize the game
forms that behave well individually. We then
show that all concurrent games that use these
game forms as local interactions also satisfy this
property. Thus, we show that these game forms
also behave well collectively, hence globally.
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Introduction

In this introduction, we give the general context motivating the framework
used and the questions tackled in this dissertation.

After we discuss game theory, the path that we take to introduce model
checking is inspired by what is done in |1, 2]. We then give the purpose of this
dissertation and an outline of how this dissertation is structured. We conclude
by several remarks regarding how to read this dissertation.

Game Theory

Gamie theory is a very broad interdisciplinary field that studies interactions
between multiple players in a competitive or cooperative setting. Each of these
players tries to satisfy an individual or common objective. One of the founding
results in game theory dates back to 1928 when von Neumann proved his mini-
max theorem [3]. Tt also appeared in [1] in, arguably, one of the seminal books
on game theory. This result holds in one-shot two-player zero-sum games,
also known as “matrix games”. The study of non-antagonistic matrix games,
where many players have individual objectives which are independent from one
another, essentially started in the early 1950s with Nash’s articles [5, 6]. The
notion of infinite-duration games, where the outcome is induced by the players’
interaction lasting infinitely many rounds, emerged shortly after. For instance,
in 1953, the existence of winning strategies in deterministic turn-based games
with open or closed objectives was proved in [7]. The proof that this actually
holds for all Borel objectives (i.e. Borel determinacy) came much later in [§]
by Martin, in 1975. Stochastic games, in which stochastic transitions occur at
each round of the game, appeared with Shapley [9] in 1953 and with Everett
[10] in 1957. Then, the notion of imperfect information games (which are re-
ferred to as concurrent games in this dissertation) was introduced by Blackwell
in 1969 in |1 1]. The determinacy of Blackwell games was established by Martin
much later, in 1998 [12].

Game theory is applied in various domains from biology to economics or
logic and, more importantly for this dissertation, computer science. The link
between game theory and biology is quite old since evolutionary game theory
essentially started in 1973 with [13], where the ways animal species behave are
modeled in a game theoretic setting. The links between game theory and logic
is even older as it dates back to the 1950s where game semantics started in dif-
ferent areas of logic. See for instance [14] for examples of Ehrenfeucht-Fraissé
games, which are games that are used to prove bisimulation.

The relationship between game theory and automata theory essentially

11



started with [15, 16, 17] where decidability issues were tackled. A few years
later, game theory was used at the intersection of automata theory and model
checking [18] (and therefore computer science). In the remainder of this intro-
duction, and in this dissertation as a whole, we will mostly comprehend game
theory from a model checking perspective. This should not impede the use of
the results established in this dissertation in other areas.

Context

Nowadays, a very large variety of aspects of our daily lives are controlled by
computer systems, which grow rapidly in number and complexity. Our depen-
dence towards these systems often entails handling critical tasks, whether it is
managing banking accounts, controlling power plants or coordinating railway
systems. For such critical tasks, it is essential to be able to either guaran-
tee the safety of already existing systems or build new ones that are safe by
design, thus ensuring that no failure will occur. However, such tasks are in-
herently complex due to the multitude of possible scenarios in which these
systems need to behave properly. In addition, establishing guarantees on com-
puter systems is made all the more difficult by the fact that these systems are
often reactive [19], in the sense that they interact with an external environ-
ment. This environment encompasses both interactions with human agents,
and also unpredictable events. Therefore, it is crucial to be able to synthesize
system controllers whose purpose is to keep reactive systems safe against all
environments, even possibly hostile ones.

Formal method and model checking. Merely testing a reactive system
against many possible environments is not enough to give strong guarantees
on its behavior. Indeed, testing may only exhibit failures, it cannot prove their
absence against possibly infinitely many environments. The purpose of formal
methods is to give formal, mathematical guarantees on how a system behaves
against all possible environments. The system is described by a simplified,
abstract model. How the system should behave is encoded as a specification
on the model. The most natural question we may be asking given a model and
a specification is whether the model satisfies the specification. That is, whether
the system behaves how it is supposed to. This corresponds to verification,
and it is the historical focus of model checking |20, 21|. However, there are
other, harder questions we may consider on models and specifications.

Rather than considering verification, one may be interested in controller
synthesis. That is, in situations where a controller can impact the real reactive
system, the model describing this system is left underspecified. Depending on
the state of the system, several actions are available for the controller to choose;
and to be complete, the model needs a controller’s policy (or strategy), that
is, a way to choose actions depending on the state of the system. Controller
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synthesis then amounts to inquire if there is a controller’s policy that makes
the model satisfy the specification; and if so, synthesize such a policy.

Finally, one may want to perform model design, which is a (very) con-
jectural approach. It consists, from a specification describing in a simplified
(abstract) way how a real system should behave, in designing a model, or a
class of models, that satisfies the specification; or in which there exists a con-
troller’s policy that makes the model satisfy the specification. We can then
build real systems corresponding to this abstract model, and possibly imple-
ment appropriate controller’s policies. That way, the system that we obtain
behaves as desired by design.

Game theory for model checking. As mentioned above, the use of
game theory for model checking is not new, see for instance [22| in which syn-
thesis is seen as a game. In this dissertation, we will be interested in two-player
antagonistic games on graphs. In such a setting, one player represents the con-
troller. She has at her disposal the actions available to her in the reactive
system, depending on the state of the system. The other player represents the
environment. Indeed, the possible ways that the environment can influence
the system are known, but the environment is completely unpredictable. That
is, the way it will impact the system cannot be described with a known prob-
ability distribution. Since the environment may potentially be influenced or
controlled by a malevolent agent, the game is antagonistic, or zero-sum, in the
sense that any outcome of the game is as positive for a player as it is negative
for the other player. The graph on which the game is played then represents
the different states in which the reactive system can be. How the controller
and the environment impact the system differs depending on the current state
of the system. In addition, going from states to states in the system may be
described via stochastic transitions: though the process may be random, the
underlying probability distributions according to which the system evolves is
known a priori. To subsume both terminating and non-terminating behaviors
of the system, the games we consider are infinite-duration, i.e. they last indef-
initely, as long as no stopping state is reached, in which case the game stops
immediately. Furthermore, the specification of the model, which describes how
the system should behave, is encoded as the objective in the game; the con-
troller player tries to ensure that the specification holds, while the environment
player tries to ensure that is does not.

When no transition between states of the graph is stochastic, the game is
said to be deterministic. In that case, the controller seeks a winning strategy,
i.e. a way to choose actions (i.e. a strategy) ensuring that the objective holds
in all cases, regardless of what the environment player does, and reciprocally
for the environment player. However, there are not always winning strategies,
for either of the player. In such cases, the controller player seeks an optimal
strategy, i.e. a strategy that maximizes the probability that the objective holds,
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against all environment player’s strategies. This notion of optimal strategies is
also made all the more relevant when we consider richer specifications that are
not encoded by an objective but rather by a payoff function. In that case, the
controller player tries to maximize its expected value, while the environment
player tries to minimize it.

Finally, for synthesizing purposes, the simpler winning or optimal strategies
are to describe, the better. Hence, when designing a model, a criterion that
could be used to assess a model’s worth could be the existence of simple-to-
describe winning or optimal strategies.

Game Formalism

Let us describe the games that we consider in this dissertation a little
more formally. Before describing games, we describe arenas, that can be seen
as games where the objective or the payoff function is not yet specified. In an
arena, two players, that we will always call Player A and Player B, interact on
a graph. This graph consists of sets of states and transitions between these
states. Furthermore, it is equipped with an arbitrary set of colors. Each state of
the graph is given a color and a set of local strategies' available to the players
at this state. Each time the play reaches this state, the players can choose
among these available local strategies and, as a result of the players’ choices,
a probability distribution over successor states is induced. The process then
proceeds (stochastically) to another state, and this is repeated indefinitely.
This infinite repetition thus generates an infinite sequence of states, which
naturally induces an infinite sequence of colors, which is called a trace. We
can then obtain a game from this arena by defining a payoff function mapping
every trace, i.e. every infinite sequence of colors, to a value in [0,1]. In the
game that we obtain, Player A tries to maximize the expected value of this
payoff function, whereas Player B tries to minimize it. The game is said to be
win/lose if any trace is mapped by the payoff function to either 1 or 0. In that
case, any trace is either winning for Player A and losing for Player B (when it
is mapped to 1) or the other way around (when it is mapped to 0).

Among the states of the graph, there may be some stopping states. When
they are reached, they immediately stop the play and output a value. Similarly
to the expected value of the payoff function, Player A tries to maximize this
output value and Player B tries to minimize. For simplicity, in the remainder
of this introduction, we assume that there is no stopping state.

Playing in graph arenas is done via graph strategies: they prescribe to the
players what to do at each state, depending on the history of the game, i.e. on
the finite sequence of states already visited. In other words, graph strategies

'In fact, in this dissertation, these local strategies will be called GF-strategy. It
will be made clear why in the next section of this introduction.
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map finite sequences of states to local strategies. In the following, we will use
the word “strategy” to refer to graph strategies. They are not to be confused
with local strategies, which are the ones played at each state of the graph. In
win/lose games, the players seek winning strategies. A strategy is winning for a
player if all traces compatible with this strategy are winning for her. However,
in the games that we will study in this dissertation, it will often be the case
that neither player has a winning strategy. Furthermore, the notion of winning
strategy is not applicable in games with richer payoff functions than win/lose.
In such cases, as mentioned above, the players turn to optimal strategies, which
are strategies maximizing, or minimizing depending on the player considered,
the expected value of the payoff function.

As for the notion of simplicity of strategies hinted above (in page 14), the
simplest kind of strategies are positional strategies. What positional strategies
prescribe only depends on the current state of the game, not on the whole
history of visited states. That is, they play only one local strategy per state of
the game. They are therefore much easier to describe than arbitrary strategies.
This is in sharp contrast with what we call infinite-choice strategies, which
are strategies that may play infinitely many different local strategies at some
states of the game. The latter are much harder to describe than positional
strategies. In particular, all infinite-choice strategies are infinite-memory. The
notion of infinite-choice strategies is novel, and will be formally defined in this
dissertation.

Objectives studied. As mentioned above, when a payoff function maps
all traces to either 0 or 1, the game is win/lose. In such cases, the payoff
function is entirely defined by the set of traces mapped to 1. This constitutes
the winning objective (for Player A). In this dissertation, we will often focus
on win/lose games. We will mostly consider prefix-independent objectives, i.e.
objectives disregarding all finite prefixes in infinite traces. Furthermore, among
prefix-independent win/lose games, when considering an explicit objective, it
will always be a parity objective, which is a special kind of prefix-independent
objective. Let us describe the set of traces winning for Player A with a parity
objective. In this case, the set of colors considered is a finite set of integers.
Then, given a trace, which is an infinite sequence of colors (i.e. of integers), we
consider the maximum of the colors seen infinitely often in that sequence. This
maximum exists since there are only finitely many colors. The identity of the
player for whom this trace is winning depends on the parity of this maximal
color, hence the parity terminology. The set of traces winning for Player A are
exactly the ones for which this maximum is even.

The benefit of parity objectives lies in the expressiveness of these objectives
as well as their relative simplicity. Indeed, parity objectives are well-suited to
express w-regular expressions sets [23|. These w-regular sets are very useful
when defining specifications on (reactive) systems, see [21].
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Figure 1: A turn-based game. Figure 2: A concurrent game.

Concurrent Vs Turn-based games. Crucially, when describing how the
players interact in the arenas, we have not detailed how the local strategies
that the players use impact the induced probability distribution over successor
states. On the one hand, if at each state of the arena, only one player is
really playing while the other has no impact on the decision, the game is turn-
based. On the other hand, if there are some states where both players may
have an impact, then the game is truly concurrent, i.e. no longer turn-based.
The difference is exemplified in the two arenas depicted in Figures 1 and 2.
The arena depicted in Figure 1 is turn-based. At the state qg, Player A plays
alone and may choose to go to either x or y. The fact that it is Player A
that plays alone at ¢o can be spotted by the fact that the state ¢ is squared-
shaped. In fact, she can also choose any probability distribution between the
two transitions leading to x or y. The arena depicted in Figure 2 is concurrent.
Indeed, at state qg, Player A and Player B interact. Player A chooses among
the (probability distributions over the) rows of the bi-dimensional table, while
Player B chooses among the (probability distributions over the) columns. As
the result of their concurrent choices, a next state, either x or y, is reached.

Let us make two additional remarks on the arenas depicted in Figures 1
and 2. First, the red numbers appearing near each state of the arenas corre-
spond to their colors. Second, both of these arenas are deterministic because
there is no stochastic transition between states unless the players decide to play
stochastically. In general, we will assume that there are intrinsically stochastic
transitions between the states.

Concurrent games subsume turn-based games as turn-based interactions
can be seen as special cases of concurrent interactions. That is, concurrent
games have more expressive power than their turn-based counterpart. How-
ever, turn-based games have been widely studied in the literature, especially
compared to concurrent games. Take for instance the book [25] dating back to
2011 that gives an overview of game theory (on graphs). A large part of this
book is dedicated to the study of turn-based games. This is also the case of the
very recent book preprint [26], where most models are turn-based. The fact
that turn-based games are much more studied than concurrent games can be
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explained as follows: turn-based games have many nice properties that even
simple concurrent games fail to have. We present two striking examples below.

First example: Borel determinacy [8] ensures that, in all deterministic
win/lose turn-based games with Borel objectives, from any state, either of the
players has a winning strategy, i.e. can ensure winning regardless of what the
other player does. This does not hold in concurrent games in general. In fact,
it does not even hold on a concurrent game obtained from the concurrent arena
of Figure 2. Indeed, consider a win/lose game obtained from this arena such
that Player A wins if and only if the color 1 is seen, i.e. the state x is reached.
Then, no player has a winning strategy. Indeed, regardless of what row Player
A chooses, Player B may choose a column that leads to y. Symmetrically,
regardless of what column Player B chooses, Player A may choose the row that
leads to x.

Second example: the difference in behavior between turn-based and con-
current games is also abundantly clear when considering parity games and
optimal strategies. Consider parity games with finitely many states and pos-
sibly stochastic transitions. In that case, whether the game is turn-based or
not, the players do not a priori have a winning strategy. However, it does
hold that if the game is turn-based, from every state, both players have an
optimal strategy that is positional [27, 28]. This means that the players have
strategies maximizing their probability to win. In concurrent games, however,
optimal strategies may not exist even in very simple games, as will be shown in
Figure 3.1. Furthermore, when optimal strategies do exist, they may require
infinite choice, and therefore infinite memory. In other words, this means that
the strategies considered need to play infinitely many different local strategies
at some states of the game.

However, the inherent intricate behavior of concurrent games should not
deter us from studying them. Indeed, real life systems, in which synchronicity
is involved, are best described with the help of concurrency [29, 30]. Although
turn-based games are more studied than concurrent games, that is not to say
that concurrent games have not been studied. Along this dissertation, we will
cite several papers dealing with concurrent games either to use a result as is, or
to generalize it. Below for the record, we would like to cite additional papers for
their algorithmic and /or complexity contributions related to concurrent games,
which are issues we do not tackle at all in this dissertation. For instance, in
[31], the authors provide algorithms to compute, in concurrent reachability
games, the set of states from which Player A can win surely, almost-surely,
and limit-surely in reachability games. In [32] it is shown that the values, i.e.
the probability with which Player A’s strategies can win, of concurrent parity
games can be computed with quantitative u-calculus. In the same setting, the
author of [33] show that the problem of computing the value is in TENP[NP].
On a more practical note, see [31] for a (very recent) implementation of model
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Figure 3: The local interaction at state gy of the concurrent arena of
Figure 2.

checking algorithms on concurrent games.

Purpose of this dissertation

In this dissertation, we study two-player antagonistic concurrent games
and our goal is to provide insight on how these concurrent games behave.
As mentioned above, concurrent games behave poorly, especially compared
to their turn-based counterpart. What differentiates turn-based games from
concurrent games is the type of local interactions of the players at each state of
the games. Formally, a local interaction is a game form, that is a set of actions
available to both players, a set of outcomes, and a function mapping each pair of
one action per player to a probability distribution over the outcomes. The local
strategies available to the players are then the probability distributions over
their available actions. Game forms are usually represented by bi-dimensional
tables where Player A chooses the rows, while Player B chooses the columns.
For example, the game form in Figure 3 describes the interaction of the players
at the state gp of the concurrent arena of Figure 2.

The notion of game form that we have informally defined above was first
introduced in [35] in the context of social choice theory. However, the first
result established on game forms was proved in [30].

This dissertation has three distinctive traits. However, note that they
do not correspond to the three parts of this dissertation. The first distinctive
trait of this dissertation is that we consider game forms, and by extension local
interactions, as first-class citizens. This mathematical object will be studied
in two different contexts. First, inside concurrent arenas and games where it
appears at each state. Second, for itself outside of a concurrent game context.
In this dissertation, the interaction of the players at each state of a concurrent
arena will be described by game forms. That is, a concurrent arena is a graph
where each state is endowed a game form describing the interaction of the
players at that state. Then, the local interaction at any given state refers to
the game form that this state is endowed with. This is to be compared with
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what is usually done in the literature on concurrent games. Indeed, usually a
concurrent arena is a graph where, at each state, both players have a set of
available actions. There is in addition a function mapping each pair of actions
for both players to a probability distribution over successors states. With such
a definition, the notion of game form is only implicit, and is often not formally
defined (since this notion is not useful to establish the results of these papers).
In this dissertation, what we have called until now local strategies, which is
what (graph) strategies prescribe at each state, are referred to as GF-strategies,
where GF stands for game form.

The second distinctive trait of this dissertation is the game forms that we
consider. Indeed, the game forms that we have described above correspond
to what we call standard game forms in this dissertation. In fact, we con-
sider arbitrary game forms, which subsume standard game forms. Indeed, an
arbitrary game form can be defined as follows. It is a set of GF-strategies
for both players, a set of outcomes and a function mapping each pair of one
GF-strategy per player to a probability distribution over the outcomes. The
crucial difference with standard game forms is that the set of GF-strategies
need not be defined as the set of probability distributions over an underlying
set of available actions. In particular, this set need not be convex. When all
local interactions of a game are standard, the game itself is said to be standard,
otherwise the game is said to be arbitrary. Standard games are the concurrent
games studied in the literature.

We would like to mention a notable exception to this last statement. In his
seminal paper on concurrent (reachability) games [10], Everett implicitly used
non-standard game forms. The only assumption made in that paper is that
the game forms he uses “possess a minimax-solution”. These game forms that
“possess a minimax-solution” correspond exactly to the valuable game forms
defined in this dissertation. Note however that the notion of game form is not
formally introduced in [10].

The purpose of this dissertation is to provide a way to design some well-
behaved concurrent arenas, i.e. concurrent arenas enjoying some of the nice
properties that turn-based games enjoy, while being significantly more general
than turn-based games. Along the way, we will prove several results of var-
ious kinds, including a generalization of Blackwell determinacy. This will be
discussed in the next section.

Restricting the set of game forms used in concurrent games. Our
idea to define such well-behaved concurrent arenas is roughly as follows. Con-
sider a desirable property ¢ that we want to hold on concurrent arenas. For
instance, the property ¢ could be:

e the existence of winning strategies in all obtained win/lose games (with
Borel objectives);
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e the existence of optimal (positional) strategies in obtained reachability
games.

If ¢ does not hold in turn-based arenas, there is no chance that it will hold
on classes of concurrent arenas that include turn-based arenas. Hence, assume
that ¢ holds in turn-based arenas. This is the case of the two examples cited
above. Then, as discussed earlier, without any assumption on the local inter-
actions involved in the arena, this property ¢ may not hold. However, if we
assume that all local interactions are turn-based — and in that case, the arena,
and the games obtained from it, are therefore turn-based — then this property
© holds, by assumption. Therefore, we know that there exists a restriction on
game forms that make the property ¢ hold in all games whose local interactions
all satisfy this restriction. One of the main goal of this dissertation, which is
also the third distinctive trait of this dissertation, is to establish local-global
transfers, i.e. to define restrictions on game forms ensuring that:

e they encompass more interactions than only turn-based ones;

e the property ¢ holds in all arenas where all local interactions satisfy
these restrictions.

Furthermore, the restrictions on local interactions that we define may depend
on the property ¢ at hand. The general method that we will use to define
these restrictions proceeds in two steps:

e First, we define the game forms F that are individually well-behaved
w.r.t. ¢. Such game forms F are such that all simple arenas built on
F satisfy the property ¢. The notion of “simple arenas built on F” is
formally defined in this dissertation. Informally, this corresponds to the
arenas where the only source of concurrency comes from F.

e Second, we check that the property ¢ holds in all the arenas (possibly,
only those with finitely many states) with all local interactions that are
individually well-behaved w.r.t. the property ¢. That is, we check that
these individually well-behaved game forms also behave well collectively.

Assuming that we have achieved both of these steps, this provides a way to
build arenas that are safe (w.r.t. the property ¢) by design. In this dissertation,
we will be particularly interested in properties ¢ involving the existence of
optimal positional strategies in parity games. We believe that this way of
defining safe by design arenas constitutes the most important contribution of
this dissertation.
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Outline

Let us give an outline of the kinds of results that we show in this disser-
tation. We highlight some of these results in this section — those we believe
are the most important — but we do not provide an exhaustive overview of all
our contributions. As mentioned in the next section, more details are given at
the beginning of each part and chapter.

This dissertation contains three parts, preceded by Chapter 1 that presents
the formalism used throughout this dissertation.

Then, in Part I, we establish results on concurrent games with almost no
assumptions on the local interactions and payoff functions. This part contains
two chapters: Chapters 2 and 3. Chapter 2 is dedicated to the determinacy of
Blackwell games [12]. This is a very important result on standard concurrent
games. Indeed, concurrent games, contrary to turn-based games, do not en-
joy Borel determinacy [8], i.e. the existence of winning strategies in win/lose
games. However, informally, concurrent games ensure the following: the supre-
mum of what Player A can guarantee is equal to the infimum of what Player
B can guarantee. More specifically, from each state of the game, a Player-A
strategy along with a Player-B strategy induce an expected value of the pay-
off function. Then, the value of a Player-A strategy is equal to the infimum
of the expected value of the payoff function against all Player-B strategies.
The Player-A value of a state is then equal to the supremum of the values of
Player-A strategies from this state. This is symmetrical for Player B. Then,
the determinacy of Blackwell games ensures, with a quite mild assumption on
the standard local interactions, that from each state, the values of the game for
both players is equal. This is why we summarize this as follows: the supremum
of what Player A can guarantee is equal to the infimum of what Player B can
guarantee. In Chapter 2, we generalize this result, in particular, in arbitrary
(i.e. not necessarily standard) concurrent games. This generalization is then
used several times in this dissertation to establish results on concurrent games.
These results could not have been deduced from the original statement of the
determinacy of Blackwell games.

On the other hand, the other chapter of Part I, Chapter 3, deals with
general properties on concurrent games related to subgame optimal strategies,
a strengthening of optimal strategies. In particular, we would like to mention
a result that we believe gives significant insight as to why concurrent games
behave much more poorly than turn-based games. It is stated as Theorem 3.17.
This theorem is stated in the context of games with finitely many states, with
some assumptions made on the payoff function including prefix-independence.
An informal takeaway from this theorem, from Player-A’s perspective, is the
following. There exists subgame optimal strategies if and only if there exists
a strategy:
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e whose value is positive from every state whose Player-A value is positive;
e that never makes a definitive mistake.

A strategy makes a definitive mistake if at some point, after some finite history,
it plays a GF-strategy that is sub-optimal?. The notion of sub-optimality is de-
fined formally in this dissertation. In other words, the reason why, there are not
always (subgame) optimal strategies in concurrent games (even in very simple
games) is that to approach the Player-A value of a state, Player-A strategies
may need to make a definitive mistake. In fact, in this chapter we exhibit
a concurrent game (depicted in Figure 3.2) where playing optimally requires
making a definitive mistake after the opponent has made one. This phenom-
ena cannot happen in turn-based games (recall that the games considered have
finitely many states). That is, if one only uses strategies that do not make a
definitive mistake, then the Player-A values of the states do not change, i.e.
they do not drop. This chapter also introduces the notion of infinite-choice
strategies, mentioned above. The results of Part I will then be used in the two
other parts.

In Part II, containing two chapters, we study arbitrary, i.e. not-necessarily
standard, concurrent parity games with finitely many states. As mentioned
above, it is not always possible to play optimally in concurrent parity games,
and when it is, it may require infinite-choice strategies. In fact, the situation
is rather heterogeneous when considering various parity objectives (in terms
of the number of colors involved) and flavors of optimality, such as almost-
optimality or subgame optimality. We give an (almost) complete overview
of the situation in terms of the simplest kind of strategies among which we
can find a desirable effect of strategies. A summary is given in page 185.
In particular, one can notice a positional/infinite choice dichotomy on the
strategies necessary or sufficient to achieve any specific flavor of optimality.
This observation is proved in Chapter 3 (in Part I) in standard games.

Finally, Part III is entirely dedicated to the study of game forms and con-
tains four chapters. Three chapters focus on local-global transfers and use
the two-step method described in the previous section to define individually
well-behaved game forms and prove that the induced arenas also behave well.
To achieve these two steps, we use results proved in Chapters 2 and 3, while
also making use of some results proved in Part II. Among these three chap-
ters, two of them, Chapter 7 and 8, are dedicated to parity objectives: with
arbitrary game forms for Chapter 7, and standard game forms for Chapter 8.
A fourth chapter is dedicated to results about complexity /decidability and ex-
pressiveness of game forms. We believe that this part is the most important of
this dissertation: it tackles the novel method described above to appropriately
restrict the class of concurrent arenas.

2This notion is actually called being “thrifty ” in [37].
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On another note, four papers [38, 39, 10, 11] have been published in the
scope of this PhD. Most of what is proved in these papers can be found in this
dissertation. However, this dissertation contains several results that are not yet
published (nor submitted). Note that there is no one-to-one correspondance
between chapters and published articles. In addition, several results proved in
these papers are generalized to a more general context in this dissertation. It
has to be noted that Chapter 8 is entirely based on a single unpublished paper
that will be resubmitted soon.

How to read this dissertation

We would like to conclude this introduction by giving a few tips on how
this dissertation is meant to be read.

Detailed outline. We have given in the previous section a rather brief
outline of what is done in this dissertation. In the body of the dissertation we
also provide more local overviews: First, the purpose of each part is explained
at the beginning of each of these three parts, and we further explain how each
part fits in the broader context of the dissertation. Second, at the beginning
of each chapter, we provide a detailed overview of the chapter and of its main
contributions.

Finally, the general conclusion recalls the main goals and contributions of
the dissertation, and highlights a few research directions that seem promising.

Framed results. We make several contributions in this dissertations. The
results that we believe are most important can be spotted by the frames around
the corresponding environments. Some new results are not framed. Often, this
is because they are stepping stones towards the proof of (what we believe are)
more important results. At the end of this dissertation, on Page 376, one can
find a list of the main new results proved in this dissertation.

Appendices. Due to the stochasticity of the games and strategies consid-
ered in this dissertation, the proof of several results are very technical. That
is why we have included a section called “Appendix” at the end of all chapters
but Chapter 5. These sections contain technical proofs of results stated in the
core of these chapters. Nevertheless, we provide (very often) proof sketches of
the results whose formal proofs are put in an “Appendix” section.

Chapters dependence. Chapter 1 gives definitions and notations that
will be used throughout this dissertation. Chapter 3 is independent of Chap-
ter 2, except that the main result of Chapter 2 (i.e. Theorem 2.3) is used
once in Chapter 3. These two chapters give general results used in subsequent
chapters:

e Chapters 4 and 5 depend mostly on Chapters 3;
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e Chapter 6 depends mostly on Chapter 2;
e Chapters 7 and 8 depend exclusively on Chapters 3;
e Chapter 9 depends on Chapters 6 and 8 (and a little bit on Chapter 2).

In addition, for the readers reading this dissertation on a PDF file, note that
all numerical references (including page references) are clickable. Furthermore,
from the numerical denomination of all definitions, theorems, remarks, etc., one
can infer the chapters they come from. For instance, Theorem 2.3 comes from
Chapter 2 and Definition 7.3 comes from Chapter 7.

Arbitrary Vs Standard terminology. Finally, in this dissertation, we
will consider standard game forms which are a special kind of arbitrary game
forms, and similarly for concurrent games. When the terminology "arbitrary”
is used on game forms (and local interactions) or concurrent games (or arenas),
it should actually be read as "not-necessarily standard”.
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1 - Concurrent games: the formalism

In this chapter, we give the definitions and notations we will use throughout
this dissertation. Later, we will introduce additional definitions, however we
will do so when we need them.

In Section 1.1, we introduce some notations. Most of them are very clas-
sical. In Section 1.2, we give relevant background on probability theory and
stochastic trees (generalization of Markov chains). In Section 1.3, we recall the
central notion of game forms. We state important properties satisfied by game
forms. Finally, in Section 1.4, we present the formalism we use for concurrent
games.

1.1 Notations

We denote by N, Z,Q and R the sets of all non-negative integers, integers,
rationals and reals respectively. For two sets F, E' with ENE’ = (), we denote
by EWE’ the disjoint union of £ and E’. Furthermore, for all pairs of integers
(i,§) € Z2, we denote by [i,j] := {k € Z | i < k < j} the set of integers
between ¢ and j, non-strict. We say that a set is countable if it is either finite
or in bijection with N.

Set of sequences. Consider a non-empty set ). The notations @Q*,
Q™", and Q¥ refer to the set of finite sequences, of non-empty finite sequences
and of infinite sequences of elements of ) respectively. Furthermore, QT :=
Q*UQ" denotes the set of all finite or infinite sequences of elements of Q). The
notation € € Q* refers to the empty sequence (which is defined regardless of
the underlying set @ considered). For @ € {+,w}, A C Q®* and 7 € Q™ the
notation m - A C Q° refers to the set 7+ A:={mw-p|p e A}

For all n € N, the notation Q" (resp. Q=") refers to the set of all sequences
of n (resp. at most n) elements of Q. The length, denoted |r|, of a sequence
T =m0y Tp—1 € Q", is equal to |7| :== n. Furthermore, if 7 € Q“, || := 0.
Given a sequence m = -+ € QT UQY, for i < ||, 7<; € Q* refers to the
finite sequence my...m;. If i« < 0, then m<; = €. For a non-empty sequence
T =mp- Ty € QT, we denote by 7, the last element of the sequence: m, = m,
and by tl(7) the path 7 but its last element: tl(7) = mp - mp—1.

A finite sequence m € Q* is a prefix (resp. strict prefix) of another finite
sequence 7’ € Q*, denoted 7w C 7’ (resp. 7 C «’) if there is some p € Q* (resp.
p € Q1) such that 7’ = 7 - p. The sequence 7’ is called a suffix of 7.

Furthermore, for all @ € {*,+,w, 1} and arbitrary non-empty sets F, any
function f: E — @ is extended into a function f®: E®* — @* such that for all
T =mg--- € E* we have f*(r) := f(m)--- € Q°.

We also define the notion of residual functions. Consider some ® € {*,+,w}.
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Given two non-empty sets F, I, for all functions f : E* — F and finite paths
m € E*, we denote by f™ : E®* — F' the residual function defined by, for all
p € E*, we have f™(p) := f(7-p) € F.

Real functions and sequences. Consider two arbitrary non-empty sets
FE and F and a function f : E — F. For all F/ C F, we let f~1[F'] := {e €
E | f(e) € F'} be the reverse image of F’ by f. For G an arbitrary non-empty
set and f: EF — F and g : F' — G, we denote by go f : E — G the composite
of the functions f and g.

Assume now that ¥ C R. Consider two real functions f,g : £ — F.
We write f < g if, for all z € E, we have f(x) < g(x). Furthermore, we
let ||flloo € RU {00} be equal to || f|lc := sup.cp |f(€e)]. In addition, if the
support {x € E | f(x) # 0} of f is countable, we also let || f|1 € RU {oco} be
equal to [|£]l1 == X,cp 1£(e)]

Consider an arbitrary infinite sequence (fy,)nen of real functions indexed
by N with f, : E — F and F C R'. A function f : E — F is a limit of f,

w.rt. || - ||oo if:
Ve >0, I3n € N,Vk > n, ||f_fk:||oo <e

We can define similarly a limit w.r.t. ||-||; when E is countable. A subsequence
(fn)nen is a sequence (f,(n))nen for an increasing function ¢ : N — N. A
subsequential limit of (f,)nen is the limit of some subsequence of (fy,)nen.
Furthermore, note that if E is finite and F' = [0, 1] then Bolzano-Weierstrass’
theorem ensures that such a subsequential limit exists, as stated below in
Theorem 1.1.

Theorem 1.1. Let E be a finite non-empty set and let x = (fn)nen be
an infinite sequence of real functions with f, : E — [0,1]. Then, z has a
subsequential limit (w.r.t. || - |1 and || - ||o0)-

1.2 Probability measures, distributions and stochastic trees

In this section, we fix a non-empty set Q).

1.2.1 . Probability distribution

The support Sp(u) of a function u into [0, 1] is the set of elements whose
image by j is nonzero: Sp(u) = u~'[ (0,1]]. A discrete probability distribution
(or simply distribution) over @ is a function p : @ — [0,1] with countable
support such that >, o p(z) = 1. The set of all distributions over the set @ is
denoted D(Q). A distribution p is deterministic if |Sp(x)| = 1. In addition, for
all functions f : @ — [0, 1], with an abuse of notations, the sum > 5 11(q)- f(q)
refers to the countable sum 3 o, #(q) - f(g). In the following, an element

'If E is a singleton, the functions f,, can be seen as real numbers.
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q € Q will be seen as the deterministic (Dirac) distribution p: @ — [0, 1] such
that p(q) =1 (and therefore u(q’) = 0 for all ¢’ # q).

Given any valuation over @, v : @ — [0, 1], and distribution d € D(Q), we
consider the expected value of v w.r.t. d: Eq(v) := > o d(q) - v(g). We can
also consider the expected value of distributions. Consider two sets Q and @’
with d € D(Q) and d' : Q — D(Q’). The expected value of d’ w.r.t. d, denoted
Eq(d') € D(Q') is such that, for all ¢ € Q"

Eq(d')(¢) = d(q) - d'(q)(d)
q€Q

1.2.2 . Topology on @“ and probability measure

A o-algebra Q on a set Q“ is such that Q is a set of subsets of Q“ where
Q¥ € Q, and Q is closed under complementation and countable union. That
is, for all E € Q we have Q¥ \ E € Q and for all (E,)nen € ON. we have
UnenFn € Q. A probability measure on a o-algebra Q is a function T : Q —
[0,1] such that Y(0) =0, Y(Q¥) =1, and T is o-additive over Q, that is for
all (Ep)nen € QY pairwise disjoint, we have T (WpenEy) = 3, cn T(En).

Let us now recall the definition of cylinder sets and consequently of Borel
sets. For all finite sequences m € @, the cylinder set Cyl(w) generated by =
is the set Cyl(m) = {m-p € Q¥ | p € Q“}. We denote by Cyl, the set of all
cylinder sets on QQ“. The open sets of Q¥ are the sets equal to an arbitrary
union of cylinder sets. The set of Borel sets on Q“, denoted Borel(Q), is then
equal to the smallest o-algebra containing all open sets. By Carathéodory’s
theorem, a probability measure over Q% is entirely defined by the measure of
all cylinder sets as stated in Theorem 1.2 below.

Theorem 1.2. Consider a function v : Cylg — [0,1] such that v(Q¥) = 1
(note that Q“ = Cyl(e)) and v is o-additive over Cyly. Then, there exists a
unique probability measure T : Borel(Q) — [0, 1] such that, for all C € Cylg,
we have Y(C) = v(C),

We also mention the monotone continuity of the probability measure.
Proposition 1.3. Consider any probability measure Y : Borel(Q) — [0, 1].
For all (Ay)nen € (Borel(Q))N such that, for all n € N, we have A, C
Apt1 (resp. Ap O Aps1), then we have Y (UpenAn) = li_>m T(A,) (resp.

n—oo
T (NpenArn) = lim Y(A,)).
n—oo

Finally, in the following, any subset of finite sequences £ C @* may be seen,
in Q¥, as the set - Q¥ C @Q¥, which is equal to the open set U cpCyl(7) €
Borel(Q).

1.2.3 . Measurable functions and integrals

The definitions we present in this subsection are classical, but we specifi-
cally used the presentation given in [12] where the proofs we do not give here
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can be found.
We define what the measurable functions from Q“ to [0, 1] are (for the

Borel topology we consider).

Definition 1.1 (Measurable function). A function f : Q¥ — [0,1] is mea-
surable if, for all a € [0, 1], we have f~1([0,a]) € Borel(Q).

In fact, all residual functions obtained from a measurable function are also
measurable.

Proposition 1.4 (Proof 1.5.1). Consider a non-empty set (), a measurable
function f : Q¥ — [0,1] and finite path m € Q*. For all Borel sets B €
Borel(Q), the sets m- B € Q¥ and ' - B := {p € Q* | 7-p € B} are also
Borel. Consequently, the residual function f™ : Q¥ — [0, 1] is measurable.

Given a measure of the Borel sets of Q“, we can define the integral (or
equivalently, the expected value) of a measurable function from Q% to [0, 1].
The integral of a function is first defined on the simple step functions defined
below and then extended to arbitrary measurable functions.

Definition 1.2 (Step functions). A step function on Q¥ is a function f :
Q“ — [0, 1] such that there exists a finite collection of pairwise disjoint Borel
sets (E;)i<i<n € (Borel(Q))"™ such that Ul |E; = Q¥ and f = Y " | a; - 1p,
with o € [0,1] for all 1 < i < n. The notation 1, refers to the indicator of
the set E;: 15,[Q%] € {0,1} and for all p € Q“, we have 1g,(p) =1 < p € E;.
Interestingly, we have the following proposition.

Proposition 1.5. Consider a probability measure P on Borel(Q), a step func-
tion f : QY — [0,1] and two finite collections (E;)i<i<n € (Borel(Q))™ and
(E%)1<j<n € (Borel(Q))™ of pairwise disjoint sets such that Ul E; = Q¥ =
Ul Ejand f =370 o1, =370, a;»-]lE;_ with a; € [0,1] forall1 <i<n
and a} € [0,1] for all 1 < j < m. Then, for all Borel sets B € Borel(Q):

m

n
Y ;i PIE;NB] =) o} -P|E;N B
i=1 j=1

This proposition above justifies the definition below of the integral of a
step function w.r.t. to a probability measure.

Definition 1.3. Consider a probability measure P and a step function f =
>oii - 1p,. Then, for all Borel sets B € Borel(Q):

B i=1

Let us now define the integral of an arbitrary measurable function. To do
so, we will approximate it with step functions. Specifically:
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Definition 1.4 (Approximating a measurable function). Consider a measur-
able function f : Q“ — [0,1]. A sequence of step functions (f,)nen such that,
for alln € N: f,, : Q¥ — [0, 1] approximates the function f if, for all p € Q%

e for alln € N, we have f,(p) < fot1(p);

o limy o0 fr(p) = sup,en fnlp) = f(p).

Then, we have the very useful theorem below: the supremum of the integral
of a sequence of step functions approximating a measurable function does not
depend on the sequence of step functions considered (it only depends on the
measurable function approximated).

Theorem 1.6. Counsider a probability measure P and a measurable function
f:Q¥—10,1]. Then:

e There exists a sequence of step functions approximating f;

e For all Borel sets B € Borel(Q), there exists a value vg € [0, 1] such
that, for all sequences of step functions (fn)nen approximating f, we
have limy, o0 [ fndP = vp.

We are now able to define the integral of any measurable function: it is
defined as the limit of any sequence of step functions approximating it.

Definition 1.5 (Integral of a measurable function). Consider a non-empty
set @, a probability measure P and a measurable function f : Q¥ — [0,1].
Consider a sequence of step functions (f,)nen approximating f. Then, for all
Borel sets B € Borel(Q):

/ fdP:= lim [ f,dP
B B

n—o0

Note that in particular if P(B) = 0, then [p fdP = 0 (since this holds for step
functions).

1.2.4 . Stochastic trees and Markov chains

Let us now define the crucial notion of stochastic tree and Markov chain. It
will be extensively used in the remainder of this dissertation as stochastic trees
is what is obtained from a concurrent arena when both players have fixed their
strategies. In Definition 1.6 below, we define formally the notion of stochastic
trees, and the special case of Markov chains.

Definition 1.6 (Stochastic Tree and Markov chain). A stochastic tree 7T is
a pair (Q,P) where Q # () is a non-empty set of states and P : QT — D(Q) is
a probability distribution function.

When the function P ensures that, for all ¢ € Q and p € QT, we have
P(q) = P(p - q), then the tree T is actually a Markov chain M = (Q,P). In
that case, the probability distribution function P can be seen as a function

P:Q — D(Q).
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Alternatively, Markov chains can be defined as sequences of random vari-
ables where the value of the next variable only depends on the value of the
current variable, not all preceding ones. In this dissertation, we use the defi-
nition that we gave above of Markov chains as it is better-suited for the game
formalism we will use in the following.

We now define, in stochastic trees, the probability of occurrence of any
finite sequence, and consequently of any Borel set and deduce the expected
value of any measurable function.

Definition 1.7 (Probability of Borel sets, Expected value in stochastic trees).
Consider a stochastic trees T = (Q,P). Fix a finite sequence of states p € Q.
We define the function P, : Q* — [0, 1] which we then extend into a probability
measure P, : Borel(Q) — [0, 1]. First, the probability of occurrence of a finite
path m € Q* is equal to:

|m|—1
Py(m) =[] Pl m<i1)(mi)
i=0
In particular, P,(€) = 1. Then, for all finite paths m € QQ*, the probability of a
cylinder set Cyl(m) is:
Pp[Cyl(m)] := Py ()

This induces a probability measure over Borel sets, that we denote by IP’Z :
Borel(Q) — [0, 1], via Theorem 1.2.

For all measurable functions f : Q¥ — [0, 1], we denote by EZ[f] € [0,1] the
expected value of the function f w.r.t. the probability measure P,: EZ[f] =
wi fdeP’Z' (recall the notion of residual function Page 26).

In the following, we will sometimes need to relate two stochastic trees,

whose behaviors are different but similar. More specifically, in the following
we will need to add intermediate states in the games we will consider. This
will be useful either to encode some additional information in the states or to
be able to use results on what we will call turn-based games (or both). In that
case, we would like to be able to show that a stochastic tree obtained from the
original game behaves similarly to the one obtained from the modified game.
To do so, we introduce the notion of stochastic tree alternating between two
sets of states @ and @Q’: there is probability 0 to go from a state in Q to
another state in () and similarly for . We can then obtain a payoff function
fo 1 (QUQ")¥ — [0,1] from a payoff function f: Q¥ — [0, 1].
Definition 1.8 (Alternating stochastic trees, Projecting measurable function).
Consider two disjoint sets of states @ and Q'. A stochastic tree T = (QWQ',P)
is (@, Q)-alternating if, for allg € Q and p ¢ Q' - ((Q-Q")*U(Q-Q")*-Q), we
have: Py(p) = 0.

We denote by ¢q ¢ : (Q-Q")" — QT the function that extracts the elements
in @ by considering every other element. Consider a function f : Q¥ — [0, 1].

30



We denote by foq : (QUQ)¥ — [0,1] the function such that, for all p €
(QUQ)¥, we have:

o ifp ¢ (Q-Q)
fQ,Q’ (P) = {f o ¢Q,Q’ (p) otherwise

Note that we consider these definitions even if Q and Q)" are not disjoint.
We have the following lemma.

Lemma 1.7 (Proof 1.5.2). Consider two non-empty sets of states ) and Q'.
For all measurable functions f : Q“ — [0,1], the function fg o : (QUQ")¥ —
[0,1] is also measurable. Consider now two stochastic trees T = (Q,P) and
T ' ={(QUQ ) and let g € Q. For all 7 € Q*, we consider the set T(m) :=
Q' - (¢0.0) H{r}]. Now, assume that T' is (Q,Q’)-alternating and that, for
all m € Q*, we have:

Py[Cyl(7)] = Py [Unret(m) Cyl(7")]

Then, for all measurable functions f : Q“ — [0, 1], we have:

Eq[f9] = Egl(fo.0)]
This lemma will be used in the following in Chapters 2 and 3.
Finally, we define the notion of Bottom strongly connected component in

a Markov chain which informally is a set of states that is strongly connected
and that cannot be exited.

Definition 1.9 (Bottom strongly connected component). Consider a Markov
chain M = (Q,P). A bottom strongly connected component (BSCC for short)
of M is a subset of states B C () such that:

e B is strongly connected, that is for all (q,q') € B?, there is a finite path
7 € B* such that Py(m-¢q') > 0;

e B cannot be exited, that is for all ¢ € B and ¢’ € Q, we have Py(¢') >0
implies ¢’ € B.
We denote by By the set of all BSCCs in the Markov chain M.
In fact, when the set of states @ of a Markov chain is finite, the set of BSCCs
is not empty and almost-surely, regardless of the starting state considered, the
Markov chain eventually settles in a BSCC B. Furthermore, every state in B is

seen infinitely often. This is a well-known result, see for instance [43, Theorem
10.27|, that we recall below in Theorem 1.8.

Theorem 1.8. Consider a Markov chain M = (Q,P) and assume that Q is
finite. Then, By # 0 and, for all ¢ € Q:

Py | J @ B)n| (@ {ah)* =1

BeB qeB
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Disclaimer: game terminology for both players. In the remainder
of this dissertation, we will consider games with two players we will call
Player A and Player B. Often, definitions, lemmas and theorems can
be applied to the two players, but sometimes with slight modifications.
We will often state them only for one of the players (usually Player
A). However, the case for the other player may be either similar, in
which case (almost) no modification needs to be done to be applied to
the other player, or symmetrical, in which case one has to reverse
inequalities and supremum and infimum (when applicable) to obtain the
appropriate definition for the other player.

Moreover, we will define properties w.r.t. one player. Unless otherwise
stated, these can also be ensured w.r.t. the other player. Furthermore,
when we say that such a property is ensured without mentioning any
player, it means that this property holds for both players (see for instance
Definition 1.15).

1.3 Game Forms

In this section, we define and discuss the crucial notion of game forms. A
game form represents an interaction between two players — that we call Player
A and Player B — with a set of strategies for Player A, a set of strategies for
Player B, a set of outcomes and a function mapping from a pair of strategies
(one per player) to a probability distribution over the set of outcomes. A
special class of game forms — that we will call standard game forms — consists
in interactions where the set of strategies of a player is equal to the set of
distributions over an underlying set of actions. We call them standard game
forms because they in fact correspond to the interactions that are almost always
used in games. In particular, in all the articles published in the scope of this
PhD [38, 39, 40, 41], we have used standard game forms. We define them
formally below in Definition 1.10.

Definition 1.10 ((Standard) Game Form). Consider a non-empty set of out-
comes O. A game form (GF for short) F on O is a tuple F = (¥, 3B, 0, 0)
where Y.a (resp. Xg) is the non-empty set of strategies available to Player A
(resp. B) and ¢ : ¥a x g — D(0) maps a pair of strategies to a probability
distribution over outcomes. Recall that all probability distributions that we
consider have a countable support. We denote by Form(O) the set of game
forms on the set of outcomes O.

A game form F on O is standard if ¥o = D(Acta) and ¥g = D(Actp)
for some underlying non-empty sets of actions Acta (resp. Actg) available to
Player A (resp. B) and ¢ : Actpa x Actg — D(O). Furthermore, the map
E(o) : D(Actp) x D(Actg) — D(O) is such that, for all oo € D(Actp) and
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Figure 1.1: Three standard finite game forms on the set of outcomes

{z,y}.

og € D(Actg), for all o € O, we have (recall the beginning of Section 1.2):

E(0)(oa,08)(0) = Eopas(0)(0) = > D oala)-os(b) - e(a,b)(o)

a€Sp(on) bESP(og)

Such a standard game form is described by the tuple F = (Acta, Actg, O, 0)s,
where 4 specifies that the game form is standard.

Below we illustrate the definition of standard game forms.

Example 1.1 (Standard game forms). Some standard game forms are rep-
resented in Figure 1.1. They are represented as bi-dimensional tables where
Player A’s actions are the rows, and Player B’s are the columns. For in-
stance, for the leftmost game form F in Figure 1.1, denoting t,b the top and
bottom rows respectively and l,r the left and right columns, we have F :=
(t. o}, {l,r}{z, v}, 0)s with o(t,1) = o(b,r) = = and o(b,1) := o(t,7) = y.
The colors used for the outcomes x and y are only there to ease the readability
of the game forms. For the remainder of this dissertation, we will omit, when
drawing game forms, the A on the left and the B on the top of the game forms.

We would now like to discuss the benefit of considering non-standard game
forms. Clearly, they are more general than standard game forms. Further-
more, this more general framework allows to define relevant situations. For
instance, with non-standard game forms, one can express that, given a set of
actions, the only possible strategies available to a player are exactly determin-
istic probability distributions, or are exactly probability distributions with a
fixed precision. In addition, there are some players interactions that can be de-
fined more concisely with non-standard game forms than with standard game
forms, as discussed below.

Example 1.2 (Non-standard game form). Consider the standard game form
F in the middle of Figure 1.1. Let us now consider the non-standard game
form F' from F by considering that the strategies available to Player A are
all the distributions that do not play the bottom row with probability 1.
To describe such an interaction with a standard game form, one needs in-
finitely many Player-A actions. For instance, a standard game form defined by
Frn = (N, {*},{z,y}, 0)s where, for alln € N, we have o(n,*) € D({x,y}) such
that o(n,*)(z) := 5 and o(n,*)(y) := 1 — 5=. One can see that the strategies
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available to Player A are the same in F' and Fy, when considering the corre-
sponding distribution over outcomes. However, this is only possible because
there are infinitely many actions for Player A with an increasing probability
to see y, without it being equal to 1.

For the remainder of this dissertation and unless otherwise stated, when the
set of outcomes O is clear from context, the notation F will always refer to the
tuple (Xa, Xg, O, o) if we consider an arbitrary game form. If the game form is
standard, it will also refer to the tuple (Acta, Actg, O, 0)s with o = D(Acta)
and Yg = D(Actg). For the remainder of this section, we fix an arbitrary
non-empty set of outcomes O.

We would like to mention several special classes of game forms. Firstly,
trivial game forms, i.e. game forms such that there is only one possible dis-
tribution over outcomes, regardless of what the players do. Then, among
standard game forms, there are finite game forms, i.e. game forms where the
sets of actions of both players are finite. Turn-based game forms are such that
the set of actions of either of the players is a singleton. Finally, deterministic
game forms are such that each pair of actions is mapped to an outcome with
probability 1. This is defined formally below.

Definition 1.11 (Trivial, turn-based, standard finite, deterministic game forms).
Consider an arbitrary game form F. It is trivial if the function ¢ : ¥a X Xg —
D(0) is constant. Assume now that the game form F is standard. We say
that F is finite if both sets of actions Acta and Actg are finite.

We say that it is a Player-A game form if |Actg| = 1 (no assumption is made
on Acta). In a Player-A game form F, the only Player-B action is denoted *,
and analogously for a Player-B game form. When F is either a Player-A or a
Player-B game form, it said to be a turn-based game form.

The game form F is deterministic if, for all (a,b) € Acta x Actg, we have
ISp(o(a,b))| = 1. Furthermore, a Player-A strategy op € D(Acta) is determin-
istic if |Sp(oa)| = 1. This is similar for Player B.

In Figure 1.1, all three standard game forms are finite and the two rightmost
game forms are turn-based: the middle one is a Player-A game form and the
rightmost one is a Player-B game form.

When the set of outcomes is equal to [0, 1], we call the game form a game
in normal form (this terminology comes from [11]). Note that we can obtain
games in normal form from game forms with a map from the set of outcomes
to [0, 1], as described in Definition 1.12 below.

Definition 1.12 (Game in normal form). A game form F € Form([0,1])
is a game in normal form. Given a game form F = (¥a,%p,0,0) and a
valuation v : O — [0, 1], the notation (F,v) refers to the game in normal form
(F,v) := (XA, 28, [0,1], Ey(. ) (v)) with By y(v) : ¥a x X — [0,1] such that,

for all (oa,08) € Xa x X, we have Ey(. y(v)(0a,08) = Ey(on,05)(v) € [0, 1].

.
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Remark 1.1. In this dissertation, we only consider game in normal forms
as defined above. In particular, the outcomes in games in normal forms are
reals in [0,1]. However, we could consider instead any bounded set of reals
with (almost) identical definitions. Subsequently, the valuations of outcomes
we will consider will also take their values in [0,1]. However, we could also
consider valuations of outcomes taking their values in an arbitrary bounded
real set.

Consider such a game in normal form F. Given a pair of strategies (oa,08) €
YA x Xg — one per player — the corresponding distribution in D([0, 1]) is given
by o. The expected values of the outcomes defines the outcome of the game
in normal form F under the pair of strategies (oa,og), as defined below in
Definition 1.13.

Definition 1.13 (Outcome given two strategies). Consider a game in nor-
mal form F and a pair of strategies (op,08) € Ya X Xg. The outcome
out[F](oa, o) of the game in normal form F under (op,0p) is equal to (re-
calling the notation E from the beginning of Section 1.2):

out[F|(oa,o8) = E(o(oa,08))

In games in normal form, Player A tries to maximize the outcome whereas
Player B tries to minimize it. Then, what we call the value of a Player-A
strategy oa in a game in normal form F is the best that this strategy can
achieve against all Player B strategies. Hence, it is equal to the infimum, over
all Player B strategies og, of the outcome of F under (oa,og). Following, the
Player-A value of F is the supremum of the values of her strategies. This is
defined formally below in Definition 1.14.

Definition 1.14 (Value in games in normal form). Consider a game in nor-
mal form F and a Player-A strategy on € Xa. The value val[F|(op) of the
strategy oa in the game in normal form F is equal to:

val[F](oa) :== inf out[F|(oa,oB)

OBEXR

Then, the Player-A value of the game in normal form F is equal to:

val[F](A) := sup val[F]|(ca)
TAEXA
For all e > 0, a Player-A strategy oa € XA ensuring val[F](oa) > val[F](A) —¢
is said to be e-optimal in F. When € = 0, the strategy op is simply said to be
optimal. We denote by Opta(F) C Xa the set of Player-A strategies optimal
in F. The definitions and notations are symmetrical for Player B. Then,
when the values of the game in normal form F for both players are equal, i.e.
val[F](A) = val[F]|(B), this defines the value of the game in normal form F:
val[F] := val[F](A) = val[F](B).
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Although the values of a game in normal form is not necessarily the same
for both players, it always holds that the value for Player A is at most the
value for Player B, as stated in Lemma 1.9 below.

Lemma 1.9 (Proof Subsection 1.5.3). Consider a game in normal form F.
We have val[F](A) < val[F](B).

Since the outcome of a game in normal form is an expected value, it is in
fact linear in the valuation of the outcomes. Inequality between valuations of
outcomes also propagates to value of games in normal form.

Lemma 1.10 (Proof Subsection 1.5.4). Consider a game form F and a
strategy per player (oa,08) € Xa x ¥g. Consider also (vy)nen € ([0,1]9)N,
(An) € ([0,1])N such that Y, e An - Un : O = [0,1]. Then:

> A out[(F, vn))(oa, 08) = out[(F, > An - va)](0a, 08)

neN neN

Consider any two valuations v,v' : O — [0,1], A > 0 and = € R such that
A-v+x <v. We have:

A - out[(F,v)](oa, 08) + 2 < out[(F,v")](0a, o8)
and, for all s € {A, B, oa, 08}
A -val[(F, v)](s) + 2 < val[(F, )] (s)
If in addition we have - v+ 2 : O — [0,1], then:
A -vall(F, v)](s) + = = val[(F, A - v + 2)](s)

In the following, we will be especially interested in the game forms such
that all games in normal forms that can be induced from them have a value.
Such game forms are called valuable, this is defined below in Definition 1.15.

Definition 1.15 (Valuable game form). Consider a game form F. It is valu-
able if for all valuations of the outcomes v : O — [0,1], the game in normal
form (F,v) has a value.

Furthermore, for a player C € {A,B} and a subset of Player-C strategies
Sc € X¢(F), the game form F is supremized (resp. maximized) by Sc¢ w.r.t.
Player C if for all valuations of the outcomes v : O — [0,1], for all ¢ > 0,
there is a Player-C strategy oc € Sc that is e-optimal (resp. optimal) in the
game in normal form (F,v). A game form is maximizable w.r.t. Player C if it
maximized by a set of strategies w.r.t. Player C.

The above-defined notion of valuable game form is crucial. It will in par-
ticular appear in Chapter 2 in the statement of (the new version of ) Blackwell
determinacy.
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In other words, the fact that a set of strategies S¢ supremizes a game form
F w.r.t. Player C means that the values of the games in normal form that can
be induced from F are identical if Player C restrict herself only to strategies
in Sc. In particular, any valuable game form F is supremized by ¢ (F) w.r.t.
to Player C. We make a straightforward observation below: in any game form
F, a finite set of strategies supremizes F if and only if it maximizes F.

Observation 1.1 (Proof Subsection 1.5.5).  Consider a game form F, a player
C € {A,B} and a finite set of Player-C strategies Sc C YX¢c(F). The set Sc
supremizes F w.r.t. Player C if and only if it maximizes F w.r.t. Player C.

Let us now focus on standard game forms. It is a well-known result that all
standard deterministic finite game forms (recall, game form with finitely many
actions for both players) are valuable and maximizable. This comes from Von
Neuman’s minimax theorem [!1] and it is stated below.

Theorem 1.11. All standard deterministic finite game forms are valuable
and maximizable.

Below in Proposition 1.12, we establish that this holds even if the set
of actions available to one of the players is not finite (it can be arbitrary,
even uncountable). However, note that the strategies we consider still have a
countable support. It was already proved in an unpublished work [15], see also
Sion’s minimax theorem [46].

Proposition 1.12 (Proof Subsection 1.5.6). Consider a standard determin-
istic game form F € Form(O) on a set of outcomes O. If Acta or Actg is finite
then F is valuable and for any player C € {A,B} with Actc finite, the game
form F is maximizable w.r.t. Player C.

Let us now give a proof sketch below of Proposition 1.12, the full proof
(that is quite lengthy due to technical details) can be found in Appendix 1.5.6.

Proof sketch. If both Acta and Actg are finite, we are in the scope of Theo-
rem 1.11. Assume now that only Acta is finite while Actg is not, the other
case being analogous. The proof is in two steps.

First, we show that for any valuation of the outcomes v : O — [0, 1] taking
finitely many values (i.e. such that v[O] is finite), the game in normal form
(F,v) has a value and Player A has an optimal strategy. This comes from the
fact that since Player A has finitely many actions and the outcomes, valued
by v, can take only finitely many values then there are in fact finitely many
different actions for Player B. (Two Player-B actions being different if there
is a Player-A action for which the corresponding outcomes, valued by v, are
different. This is defined formally with an equivalence relation.) Hence, the
game in normal form obtained can be seen as finite.

Second, given an arbitrary valuation of the outcomes v : O — [0,1], we
approximate what happens in the game in normal (F,v) with what happens
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Figure 1.2: A game form that isnot Figure 1.3: A game form that
valuable with the set of actions for is valuable but not maximizable
both players being countable. w.r.t. any player.

in games in normal form (F,v,) where v, : O — [0,1] takes finitely many
values and is closer and closer to v as n — oo. Specifically, by using the
inequalities from Lemma 1.19, we can show that the limit of the values of the
games (F, vy,,) is in fact equal to the value of the game (F,v). Furthermore, we
exhibit a Player-A optimal strategy in (F,v) by considering the limit of Player-
A strategies o, optimal in (F,v,). The existence of this limit is ensured by
Theorem 1.1 (page 26), since Acta is finite. O

Remark 1.2. Proposition 1.12 is already known in the case where the non-
finite set of actions is countable (for instance, this is indirectly mentioned in
[12]). In that case, the result can be obtained by successively approximating
what happens in the whole game in normal form by considering more and more
Player-B actions, but always finitely many. However, this cannot be extended
to the case of uncountably many Player-B actions.

In some way, Proposition 1.12 is tight in the sense that, in standard game
forms, as soon as one allows both players’ actions set to be infinite, then it is
possible to exhibit a game form that is not valuable. This can be witnessed
with a game form with countably many actions for both players. Furthermore,
there are also game forms that are valuable but that are not maximizable w.r.t.
any player. Again, this can be witnessed with a game form with countably
many actions for both players. In both cases, only two different outcomes are
sufficient. We give such examples below in the next example.

Example 1.3 (Non valuable or maximizable game forms among standard
game forms). The game form JFi represented in Figure 1.2 is equal to Fy :=
(N,N, {x,y}, 01) where, for all (i,j) € N?, we have 01(i,j) := x if and only if
i < j, otherwise 01(i,7) := y. Let us show that it is not valuable. Consider the
valuation of the outcomes v : {z,y} — [0,1] with v(z) := 0 and v(y) := 1 and
the induced game in normal form F| := (Fy,v). This game in normal form
does not have a value, as we have val[F]|(A) = 0 and val[F]|(B) = 1. Indeed,
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consider any Player-A strategy op € Ya(F1). For all j € N, we have:

out}"l oA, J ZO’A

1>7

Since ) ;. oa(i) = 1, it follows that out[F{](oa, ) —j—o0 0. Hence, val[Fi](oa) <
inf jen out[Fi](on, j) = 0. As this holds for all Player-A strategies op € Xa(F1),
we have val[F{](A) = sup,,ex,, (7, val[Fil(oa) = 0. The arguments are similar
to show that val[F]](B) = 1. Note that this example of game form that is not
valuable is a folk result.

Consider now the game form F» from Figure 1.3. It is equal to Fy =
(N,N, {z,y}, 02) where, for all (i,j) € N, we have po(i,j) := « if and only if
i = j, otherwise 02(i,j) := y. Let us show that this game form is valuable but
not maximizable w.r.t. any player. Consider a valuation v : {z,y} — [0, 1].
Let Fj) := (Fa,v). If v(z) = v(y), straightforwardly val[F5](A) = val[F}|(B) =
v(z) = v(y). Assume now that v(x) # v(y). In that case, we claim that
val[F5](A) = val[F5](B) = v(y). Indeed, for all n € N, consider a Player-A
strategy op playing uniform]y over the (n + 1)-first integers such that for all

i € [0,n] we have o} (i) := n+1 In fact, for all Player-B strategies og € Yg(F),
we have: o(z) W)
v(x) —o(y
t[ FL1 (o™ _ < 277 PAIJ]
outi (o, 78) — vl)] < M

Hence, val[F3](A) > v(y). By symmetry of the game in normal form F, it
follows that we also have val[F3|(B) < v(y). Since, in any case, by Lemma 1.9,
val[F5](A) < val[F5](B), it follows that v(y) < val[F5](A) < val[F5](B) < v(y).
Hence, val[F}|(A) = val[F})(B) = v(y). However, if v(y) > v(z), Player A
does not have any optimal strategy in JFj since she cannot avoid a positive
probability of x. The same issue arises for Player B when v(y) < v(z).

Note that it is simpler to come up with not valuable game forms or not
maximizable game forms with non-standard game forms, we give examples
below.

Example 1.4 (Non valuable or maximizable game forms among non-standard
game forms). Consider the standard game form on the left of Figure 1.1. If
we consider the non-standard game forms where both players can only play
deterministic probability distributions, then this game form is not valuable.
Indeed, consider the valuation v : {z,y} — [0,1] such that v(z) := 1 and
v(y) := 0. Then, any Player-A strategy has value 0 since Player B can choose
to see y with probability 1 and symmetrically, any Player-B strategy has value
1 since Player A can choose to see x with probability 1. Furthermore, the game
form we have described in Example 1.2 is not maximizable w.r.t. Player A.
This is witnessed by any valuation mapping y to a greater value that x.

Finally, we transfer results on a specific game form F to any game form
that can be obtained from F by mapping every outcome to a distribution
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over another set of outcomes. We define this change formally and state the
corresponding lemma below.

Definition 1.16 (Map from outcome to distribution over outcomes). Con-
sider a non-empty set of outcomes O and a game form F € Form(O). Consider
a non-empty set of outcomes O’ and a map d : O — D(0’). We denote by
Fé € Form(Q') the game form F? := (Sa, X, 0, By (d)).

Lemma 1.13 (Proof 1.5.7). Consider a non-empty sets of outcomes O and
a game form F € Form(O). Assume that F is valuable (resp. maximizable
w.r.t. to Player C € {A,B}). Then, for all non-empty sets of outcomes O’ and
map d: O — D(0’), so is the game form F¢.

As a corollary of Proposition 1.12 and Lemma 1.13, we obtain a state-
ment very close to Proposition 1.12 except that we dropped the deterministic
assumption:

Corollary 1.14 (Proof 1.5.8). Consider a standard game form F € Form(O)
on a set of outcomes O. If Actp or Actg Is finite then F is valuable and for
any player C € {A, B} with Actc finite, the game form F is maximizable w.r.t.
Player C.

For the remainder of this dissertation, strategies in game forms will be
called GF-strategies in order not to confuse them with strategies in concurrent
games on graphs. Furthermore, they will usually be denoted by the letter o,
typically oa (resp. o) for a Player-A (resp. Player-B) strategy. (As opposed
to strategies in concurrent games, that we will usually denoted by s.)

1.4 Concurrent arenas and games

Before defining concurrent games, we need to define the notion of concur-
rent arenas. To gain intuition on what these are, take a look at the (standard)
arena depicted in Figure 1.4. Consider for instance the leftmost state qo. From
there, two players — that we still call Player A and Player B — are going to
interact. The result of their interaction will be a (distribution over) successor
states. Interacting at state qg in fact means playing in the game form depicted
in that state, where the outcomes are states of the arena. In the arena we
have depicted, all game forms are standard. Hence, this means that Player
A chooses a distribution over the rows and concurrently, Player B chooses a
distribution over the columns. A new state is then reached with some probabil-
ity, in that case either q; or gz, and then the process repeats itself indefinitely
thus creating an infinite path (i.e. an infinite sequence of states). Finally, in
addition, we consider colors (i.e. labels) over the states which will be used to
define the payoff function or the winning condition. Note that they do not
relate at all with the colors appearing in the game forms in Figure 1.4.
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Figure 1.4: A standard deterministic concurrent arena. The colors are
there only to facilitate the readability of the arena.

Definition 1.17 (Concurrent arena). A concurrent arena C is a tuple C =
(Q,F, K, col) where @ is a non-empty countable set of states, F : Q — Form(Q)
maps each state to its induced game form, which describes the interaction of
the players at that state, K is a non-empty set of colors and col : Q — K is
the coloring function that maps each state to a color. For all ¢ € Q, the game
form F(q) is called the local interaction at state q.

In the following, when the set of states considered is clear from context,
sequences of states will be called paths.

In the following, we will consider a slightly more general formalism by
considering stopping states with output value, i.e. states that, when visited,
immediately stop the game and induce a specific value in [0, 1]. This is formally
defined below in Definition 1.18.

Definition 1.18 (Stopping states). Consider a concurrent arena C. A stop-
ping state ¢ € @ is a state such that, when reached, the game stops and outputs
a value val(q) € [0,1]. This will be formalized in Definition 1.30 below. The
local interactions at stopping states are trivial and they are self-looping. The
coloring function col need not be defined on stopping states.

We denote by Qs C Q the set of stopping states and by Qns := Q \ Qs the
set of states that are non-stopping.

For the remainder of this dissertation, the notation C will refer to the arena
(Q,F,K,col), unless otherwise stated. Furthermore, in such an arena, for all
q € Q, the set of Player-A GF-strategies available at state ¢ will be referred to
as X% and similarly for Player B. In addition, if the arena C is standard, the
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set of Player-A actions available at state ¢ will be denoted Actj and similarly
for Player B.

We would like to mention several relevant special cases of concurrent are-
nas: standard arenas, in which all local interactions are standard. Arbitrary
arenas will refer to non-necessarily standard arenas. Furthermore, we consider
deterministic arenas — such as the one depicted in Figure 1.4 — turn-based
arenas, i.e. arenas where each game form is turn-based (such as the game
form at state q3 in the arena of Figure 1.4). We will also consider finite-state
arenas, i.e. with finitely many states. Finally, we will consider standard finite
arenas, that is finite-state arenas with standard finite local interactions. This
is defined formally below in Definition 1.19.

Definition 1.19. Consider a concurrent arena C. It is:
e standard: if every local interaction is standard;
e arbitrary: it stands for non-necessarily standard;

o deterministic: if it is standard and all of its local interactions are deter-
ministic;

e turn-based: for all ¢ € Q, the game form F(q) is turn-based (in particu-
lar, all local interactions are standard);

o finite-state: if there are finitely many states;

e finite: if it is finite-state and, if the game is standard, we additionally
require that all standard local interactions are finite (i.e. both players
have finitely many actions).

Remark 1.3. One can see that turn-based arenas are defined only with stan-
dard game forms (since turn-based game forms are by definition standard, re-
call Definition 1.11). We choose to do this instead of defining turn-based games
with non-standard game forms because turn-based games are widely studied
and usually standard in the literature. In the following, we will transfer already
existing and prove new results on them. Hence, we do not want any confusion
as to the object we consider.

Below, we consider the notion of valuable (resp. maximizable) arena, that
is an arena where all local interactions are valuable (resp. maximizable).

Definition 1.20 (Local interactions and valuable arena). Consider a concur-
rent arena C. If, for all ¢ € @), the game form F(q) is valuable, then the arena
C is said to be valuable.

On the other hand, if for all ¢ € @, the game form F(q) is supremized
w.r.t. Player A by a set Sj C X} of GF-strategies, the arena C is said to be
supremized by the collection (S3)qcq. This is similar for Player B. In addition,
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if for all ¢ € Q, the game form F(q) is maximizable w.r.t. to any player, then
the arena C is said to be maximizable w.r.t. that same player. If this holds for
both players, we will simply say that it is maximizable.

Note that, in this dissertation, all the properties we have defined on concur-
rent arenas will be used to refer to concurrent games whose underlying arenas
satisfy these properties.

Finally, we define the notion of concurrent arenas built from a set of game
forms, that is such that all local interactions in that games are obtained from a
game form in that set. We first define below the notion of game forms obtained
from another game form.

Definition 1.21 (Game forms obtained from another game form). Consider
a set of outcomes O and a game form F € Form(O). We say that a game form
F' € Form(Q’) on another set of outcomes O’ is obtained from F if there is
some map m : O — O such that F' = F™ := (Acta, Actg, O', E,,(0)).

We can now define the notion of concurrent arena built from a set of game
forms.

Definition 1.22 (Arena built from a set of Game Forms). Consider a set of
game form E. We say that an arena C is built from E if all local interactions
in C are obtained from a game form in F.

This notion will be particularly useful in Part III since, informally, the goal
of this part is to define subsets of game forms such that all the games built
from them behave well.

1.4.1 . Drawing concurrent arenas

Below, we make a remark about how Definition 1.17 of concurrent arenas
above — which makes use of the notion of game form to describe the interac-
tions of the players at each state — may affect how we draw concurrent arenas
as opposed to how they have been drawn in the literature so far.

Remark 1.4. In other papers studying concurrent arenas (for instance, [17,

, 34, 31, 32, 19, 50]), the formalism used to describe them is different. Es-
pecially, since the notion of game form is not apparent, not defined, the inter-
action of the players at each state is not described with a game form. Instead,
both players have a set of available actions and there is a transition function
mapping each state and pair of actions at that state to a (distribution over)
successors states. One can realize that this exactly corresponds to our formal-
ism with standard game forms, only without having introduced the notion of
game form. However, this way of defining concurrent arenas probably has an
impact on how these arenas are drawn. Indeed, since the notion of game form
is not used, the interactions of the players are not drawn with bi-dimensional
tables — as is done in Figure 1.4. This leads to a representation of concurrent
arenas where the interaction of the players is described by the pairs of actions
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leading to the different states of the arena (see for instance [17, Figure 3|) la-
beling the edges of the arena. We believe — but that is obviously debatable —
that drawing concurrent arenas with game forms represented as bi-dimensional
tables increases the readability of these arenas. This allows to consider local
interactions as first-class citizens in concurrent games. Note that not all of our
results explicitly use the notion of game forms, but many do and in any case
game forms are always an underlying object useful to have at hand.

1.4.2 . Concurrent games

A concurrent game is obtained from a concurrent arena by specifying what
Player A and Player B want to achieve in these arenas. This is done by adding
a payoff function mapping each infinite sequence of colors to a value in [0, 1]. In
this dissertation, we will mostly focus on the special case of win/lose objectives,
that is to payoff functions taking their values in {0,1}. This is defined below.

Definition 1.23 (Concurrent game). A concurrent game is a pair G = (C, f)
where C is a concurrent arena and f : KY — [0,1] is a measurable payoff
function.

When f[K¥] C {0,1} the game G is called win/lose. Win/lose games are
defined by G = (C,W) where the measurable set W := f~1[{1}] C K¥ is
called the objective for Player A. Indeed, an infinite sequence of colors p € W
is winning for Player A (and losing for Player B) whereas an infinite path
p € KY\W is winning for Player B (and losing for Player A), hence the win/lose
terminology. We denote by W€ C Q“ the measurable set W := (col*) ™! [W].

For the remainder of this dissertation, the notation G will refer to the
game (C, f), unless otherwise stated. Furthermore, all the payoff functions we
consider are measurable and into [0, 1].

We define in Definition 1.24 a special kind of payoff function that will be
of particular interest for us in Chapter 3: prefix-independent payoff functions.
Informally, these are payoff functions whose values do not depend on any finite
prefix. This is defined formally below in Definition 1.24.

Definition 1.24 (Prefix-independent games). Consider a set of colors K and
a payoff function f : KY — [0,1]. It is prefix-independent (PI for short) if,
for all p € K¥Y and m € K*; we have f(p) = f(m - p). An objective W C K¥
is prefix-independent if the corresponding payoff function is. That is, for all
peERYandm e K, wehavepe W & m-peW.

We say that a concurrent game G = (C, f) is prefix-independent if its payoff
function is.

Below in Definition 1.25, we define several kinds of win/lose objective of
interest for us, namely parity objectives. They are presented from Player A’s
point of view, the objective for Player B would be the complement (for instance,
when Player A has a Biichi objective, Player B has a co-Biichi objective).
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Definition 1.25 (Parity objectives).

e With a parity objective the colors are non-negative integers, the goal
of Player A is to ensure that the maximum of the colors seen infinitely
often is even. To ensure that a maximum always exists, we consider
a finite subset of non-negative integers: K := [m,n] C N for some
m < n € N. For all p € K¥, we let InfOft(p) := {k € K| Vi €
N, 3j > i, p; = k} C K be the set of colors seen infinitely often
in p. Then, the parity objective with colors Parityx C K“ is equal to
Parityy := {p € K¥ | max InfOft(p) is even }.

e With a Biichi objective, the goal of Player A is that a given set of states
S C @ is seen infinitely often. There are two distinct colors, say K :=
{1,2}, and the Biichi objective is equal to Buchi := {p € K¥ | Vi €
N, 3j >4, pj = 2} (hence, S is exactly the 2-colored states). Note that
this exactly corresponds to the parity objective Parityp o

e With a co-Biichi objective, the goal of Player A is that a given set of
states S C @ is seen only finitely often. There are two distinct colors,
say K := {0,1}, and the co-Biichi objective is equal to coBuchi := {p €
KY| 3 eN, Vj>1i, pj =0} (hence S is exactly the 1-colored states).
Note that this exactly corresponds to the parity objective Parity[q ;.

e With a Reachability objective, the goal of Player A is that a given set
of states S C (@ is seen once. There are two distinct colors, say K :=
{1,2}, and the Reachability objective is equal to Reach := {p € K¥ |
i € N, p; = 2} (hence S is exactly the 2-colored states). This does
not correspond to a parity objective in general. However, this exactly
corresponds to the Biichi objective in arenas where all states q in S are
self-looping sinks i.e. the only outgoing edge of q leads to q: that is,
seeing S once means seeing it infinitely often.

o With a Safety objective, the goal of Player A is that a given set of states
S C @Q is avoided. There are two distinct colors, say K := {0,1}, and
the Safety objective is equal to Safe := {p € K¥ | Vi € N, p; = 0} (hence
S is exactly the 1-colored states). This does not correspond to a parity
objective in general. However, this exactly corresponds to the co-Biichi
objective in arenas where all states q in S are self-looping sinks.

Note that the parity (therefore also Biichi and co-Biichi) objectives are
prefix-independent, but the reachability and safety are not. However, in this
dissertation, we will always consider reachability and safety objectives as spe-
cial cases of parity objectives, for the reason described above.
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1.4.3 . Strategies, induced stochastic trees and values

In concurrent arenas, strategies describe how the players play. More specif-
ically, strategies are functions that map the history of the game (i.e. the finite
sequence of states visited so far) to a GF-strategy in the game form corre-
sponding to the current state of the game. This is formally defined below in
Definition 1.26.

Definition 1.26 (Strategies). Consider a concurrent arena C. A strategy
for Player A is a function sp : QT — UgeX4 such that, for all m € Q*, we
have sa(m) € 3%, We denote by S§ the set of all strategies in the arena C
for Player A. A strategy sp is deterministic if, for all p € Q*, the GF-strategy
sa(p) is deterministic (recall that this is only defined if the game form F(py) is
standard). The definitions are similar for Player B.

A strategy is generated by a collection indexed by @ of sets of GF-strategies
if it always plays a GF-strategy among one of the set of this collection. We
define formally this notion below.

Definition 1.27 (Strategies generated by sets of GF-strategies). Consider a
concurrent arena C and, for each state ¢ € ) consider a subset of GF-strategies
S;?‘ C X4. We say that a Player-A strategy sa is generated by the collection
(S3)geq if, for all p € QT, we have sp(p) € SR*. The definition is similar for
Player B.

The outcome of a game, given a strategy per Player, is a probability mea-
sure over infinite paths. To formalize this, we first define below the probability
to go from a state g to a state ¢’ given two GF-strategies in F(q).

Definition 1.28 (Probability transition given two strategies). Consider a
concurrent arena C, a state ¢ € Q and two strategies (oa,08) € X3 x X&. Let
q € Q. The probability to go from q to ¢’ if the players plays, in q, op and
og, denoted PZ*®(q,q'), is equal to (recalling the last sentence of the first
paragraph Subsection 1.2.1):

PeM7®(q,q') := out[(F(q),¢)](on, oB)

Below, we define, given a strategy per player, the probability of finite paths.
Then, the definition of stochastic tree induced by a pair of strategies follows.

Definition 1.29 (Probability distribution given two strategies). Consider a
concurrent arena C and two arbitrary strategies (sa,sg) € Sé X S?. We denote
by P2 - QT — D(Q) the function giving the probability distribution over
the next state of the arena given the sequence of states already seen. That is,
for all finite path m € QT and q € Q, we have:

P (m)lg) := B2 (e )
The stochastic tree T;**® induced by the pair of strategies (sa,sg) is then
equal to TZA% = (Q,PF™).
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Given two strategies and the stochastic tree induced by them, we have, by
using Definition 1.7, the expected value of the (measurable) payoff function.
Analogously to what happens in game forms (recall Definition 1.14), in a con-
current game on graph, Player A tries to maximize this payoff function whereas
Player B tries to minimize it. The value of a Player-A strategy sa is the best
that this strategy sa can achieve against all Player-B strategies. Therefore, it
is equal to the infimum over all Player-B strategies sg of the expected value of
the payoff function given that pair of strategies (sa,sg). Then, the Player-A
value of the game is equal to the supremum of the values of her strategies.
Before giving the formal definitions in Definition 1.31, we define exactly the
payoff function we consider, that takes into account the stopping states of the
arena.

Definition 1.30 (Payoff function on the sequences of states). Consider a
concurrent game G = (C, f). We denote by fc : Q¥ — [0,1] the function such
that, for all p € Q“:

focol?(p) if p € (Qns)”
val(q) ifp € (Qns)*-q-Q¥, forqe Qs

Interestingly, such a function is measurable.

fe(p) ==

Proposition 1.15 (Proof 1.5.9). For any concurrent game G = (C, f) and
for all p € Q*, the residual function (fc)? : Q¥ — [0, 1] is measurable.

We can now define formally the value of a concurrent game.

Definition 1.31 (Value of strategies and of the game). Let G = (C, f) be a
concurrent game and sp € S3 be a Player-A strategy. The function xg[sa] :
@ — [0,1] mapping each state to the value of the strategy sp from that state
is such that, for all gy € Q, we have:
s = inf B q0

xglsal(qo) oL, B [(fe)™]
The function xg[A] : Q — [0, 1] mapping each state to the value for Player A
from that state is such that, for all gg € Q, we have:

Xg[Al(q0) := sup xglsal(q0)
SAESé
The vector xg[B] : @ — [0,1] giving the value of the game for Player B is
defined symmetrically. When xg[A] = xg|[B], this defines the value of the
game: Xg := xg[A] = xg[B].

For all states ¢ € Q, a Player-A strategy sp such that (resp. for some
positive € > 0), we have xg[A](q) = xglsal(q) (resp. xg[A](q) < xg[sal(q) +¢)
is optimal (resp. e-optimal) from the state q. When this holds from all states
q € Q, the strategy sa is simply said to be optimal (resp. e-optimal). This is
symmetrical for Player B.
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Observation 1.2. In all concurrent games G, we have xg[A] < xg[B]. Fur-
thermore, by definition, for all € > 0, both players have e-optimal strategies.

Below, we state that, for all prefix-independent payoff functions, replacing
states with stopping states of the same value (w.r.t. either of the player) does
not change the value of any state (w.r.t. the same player).

Lemma 1.16 (Proof Subsection 1.5.10).  Consider an arbitrary prefix-independent
concurrent game G, a subset of states S C @ and a Player C € {A,B}. We
denote by G¢ the game where all states ¢ € S are stopping states with
val(q) < xg[C|(q). Then, the Player-C values of all states are the same in the
games G and G5 xgs.c[C] = xg[C|. Hence, if the game G has a value, so has
the game Gg5c¢.

Furthermore, if Player C has an optimal strategy in the game G, then she
also has one in the game GgscC,

Let us introduce below a notation for the set of values occurring in a game.
Furthermore, for all values u € [0, 1], we also consider the set of states of value
u that we call a value slice.

Definition 1.32 (Set of values, value slice). Consider a PI concurrent game
G. We let VAg = xg[A][Q] C [0, 1] be the set of Player-A values occurring in
the game and, for all u € Va, we let Q2 := (xg[A])"'[{u}] be the u-value slice,
i.e. the set of states whose Player-A values are equal to u. The notation is
analogous for Player B. Furthermore, we omit the notation for the player if
they are the same for both players.

Let us focus on the special case of Player-A strategies of value 1 (sym-
metrically, we could focus on Player-B strategies of value 0). Such a Player-A
strategy is said to be almost-surely winning since, regardless of Player-B strat-
egy and almost surely, the produced infinite path has value 1 w.r.t. the payoff
function. When this happens surely, and in a win/lose game, such a strategy
is said to be winning, as defined below in Definition 1.33.

Definition 1.33 (Compatible paths, Winning strategies). Consider a con-
current game G without stopping states, a Player-A strategy sa and a state
q € Q. A (finite or infinite) path p € Q1 is compatible with sa from q if there
is a Player-B strategy sg such that, for all i < |p|, we have:

P (p<i) > 0

We denote by CP¢ 4(sp) € Q¥ the set of infinite paths compatible with sp from

q€Q.
If the game G = (C, W) is win/lose, we say that the strategy sa is winning
from q if CPc 4(sa) € W®. The definition is symmetrical for Player B.

1.4.4 . Positional and finite-memory strategies
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A desirable property in concurrent games is that optimal or winning strate-
gies exist, and that they are as simple as possible. In this context, simpler
strategies are the strategies that can be implemented with a finite automaton
with fewer states. To define how strategies can be implemented with a finite
automaton, we first need to introduce the notion of memory skeleton (see, for
instance, [51]), informally a finite automaton taking as input a finite sequence
of colors. This is formally defined below.

Definition 1.34 (Memory skeleton). For a set of colors K, a finite memory
skeleton on K is a triple M = (M, mipi, 1), where M is a non-empty finite
set called the memory, miniy € M is the initial state of the memory and p :
M x K — M is the update function. Note that the update function ;1 can be
extended inductively into a function p* : M xK* — M in the following way: for
allm € M, p*(m,e) :=m and for all p-k € KT, p*(m, p- k) := u(p*(m, p), k).

Remark 1.5. When considering the memory skeleton, one can see that the
update of the memory is done when a color is seen — it could be called a
"chromatic" memory skeleton. Finite-memory strategies could be alternatively
defined with an update with states seen in the game. The benefit of this
definition of finite memory is that it does not depend on the underlying arena,
only on the colors. Hence, we can talk about a memory skeleton that can be
used with a winning objective in all arenas.

To implement a strategy from a memory skeleton, we need a function
mapping a state of the game along with a memory state into a GF-strategy.
Such a function is called an action map, and it is defined below.

Definition 1.35 (Action map). Consider a concurrent arena C and a set
of memory states M. An action map on M is a function A : M x Q —
Uge@Xa(F(q)) such that for all ¢ € Q and m € M we have A\(m, q) € Xa(F(q)).

With a memory skeleton and an action map, we can now implement a strat-
egy. This defines finite-memory strategies. In the remainder of this dissertation
we will be particularly interested in positional strategies i.e. strategies that can
be implemented from a memory skeleton with only one state. In other words,
what the strategy plays only depends on the current state (or position) of the
game, hence the terminology. This is formally defined below.

Definition 1.36 (Positional, finite-memory strategies). Consider a concur-
rent arena C. A memory skeleton M = (M, minit, 1) on K and an action map
A M x Q — UgegXa(F(q)) implement the strategy sa : QT — UgeZa(F(q))
such that, for all p € QT sa(p) := M(* (Minit, col*(t1(p))), pit) € La(F(q)).
Given a memory skeleton M, a strategy sa is implementable by M if there
is an action map A such that M and X implement sp. A strategy sa is finite
memory if there exists a finite memory skeleton M by which sa is implemented.
If M is a singleton, the strategy sa is said to be positional. It can be seen as
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a function sp : Q — UgeqXa(F(q)). If a strategy is not finite memory, then it
is infinite memory.

Observation 1.3. Consider a concurrent arena C. Given a positional strat-
egy per player sp € Sé and sg € SE, the stochastic tree T;**® induced by sa
and sg is in fact a Markov chain.

1.4.5 . Markov decision process

Finally, we present Markov decision processes. They can be seen as one-
player games since, from every state of the game, exactly one player decides
the next state. However, just like for turn-based game (recall Remark 1.4), we
will only consider standard interactions.

Definition 1.37 (Markov decision process). A Markov decision process (MDP
for short) T is a concurrent arena I := (Q, F, K, col) where all local interactions
are turn-based for the same player. For all ¢ € @), we denote by Act, the set
of actions available at state q and by o4 : Acty — D(Q) the function mapping
each action to a distribution over successor states. (Both Act, and g, are given
by the game form F(q).)

The useful objects in MDPs are the end components [52], informally sub-
MDPs that are strongly connected, similar to BSCC in Markov chains (recall
Definition 1.9).

Definition 1.38 (End component). Consider an MDPT'. An end component
(EC for short) H in T is a pair (Qp, Brr) such that Qg C @ is a subset of states

and, for all ¢ € Qp, we have Sg(q) C Act, the subset of actions compatible
with the EC H such that:

e for all ¢ € Qu and ¢ € Sr(q), we have Sp(oq(c)) C Qu;

e the underlying graph (Qp, E) is strongly connected, where (q,q') € E if
and only if there is some ¢ € B (q) such that ¢ € Sp(gq(c)).

An end component H can be seen as a concurrent arena. In that case, it is
denoted Cgr. We denote by Er the set of all ECs in the MDP T'.

In fact, similarly to what happens in Markov chains (recall Theorem 1.8):
almost-surely the set of states seen infinitely often form a BSCC. Here, for all
deterministic strategies, the set of states seen infinitely often form an EC. This
is a well-known result, see for instance |13, Theorem 10.120], that we recall
below in Theorem 1.17.

Theorem 1.17. Consider a finite-state MDP " where Player B plays. Then,
for all deterministic strategies sg € Sg, we have:

P | U (@ -@pn| ()@ {ah)?] || =1

Heér q€QH
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In any standard game, once Player A chooses a strategy, we obtain a
Markov decision process where Player B plays alone.

Definition 1.39 (Induced Markov decision process). Consider a standard
arena G. Let sp € PSé be a positional strategy. The Markov decision pro-
cess T (MDP for short) induced by the strategy sa is the equal to T :=
(Q,F*, K, col) where, for all ¢ € Q, we have F*A(q) := (x, Act}, Q, 04(sa(q),-)).

1.5 Appendix

1.5.1 . Proof of Proposition 1.4

Proof. Consider an open set B = U,caCyl(p) € Borel(Q) for some A C Q*.
Then, we have m - B = U,cr.aCyl(p) € Borel(Q). Furthermore, if there is a
finite path p € A such that p C 7 then 771 - B = Q% € Borel(Q). Otherwise,
we let A :={pe Q" |n-pe A}. Then, 77! B = U,ca,Cyl(p) € Borel(Q).

Consider now any Borel set B € Borel(Q). We have Q“ \ (7 - B) =
Upeqlrh (3 CYI(p) U - (Q¥ \ B). In addition, Q“\ (=1 B)=7"1.(Q¥\ B).
Finally, for all (B,)nen € (Borel(Q))Y, we have 7 - (UpenBn) = Upen(m - By)
and 771 - (UpenBn) = (Upenm ™! - By). By definition of the set Borel(Q), the
property is ensured for all Borel sets B € Borel(Q).

Furthermore, for all a € [0, 1], we have:

()70, a]) =71+ £71([0,a]) € Borel(Q)
Hence, the residual function f™ is measurable. O

1.5.2 . Proof of Lemma 1.7

Proof. Welet Q:=QUQ’, O, = (Q-Q')*U(Q-Q")"-Q and Qg = (Q-Q")".
Note that (Q - Q)T = Qgq U Q. Let us first show that the function fg ¢ :
Q¥ — [0, 1] is measurable. First, the set Qg C Q¢ is Borel since it is closed.
Indeed we have

09\ QL = U Cyl()
TeQ\((QQ)*U(Q-Q) Q)

Now, let us show that for all Borel sets B € Borel(Q), we have (¢g o) [B] €
Borel(€2). We proceed similarly to what we did in the proof of Proposition 1.4.
Consider first an open set B = UrcaCyl(m) for some A C Q*. For all 7 =
... T € A, we let:

Prim(m) := Up=py.. pu_1e(@)n Y1 (0 - po -+ p—1 - )

Then, we have:

(6g.0) (B = | Prim(m) nQg,
TEA
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Hence, (¢g.o/) '[B] is Borel. Furthermore, for all B € Borel(Q), we have:

(60.) Q¥ \ Bl = 9°\ (¢q.q) ' [B]
and for all (B,,)nen € (Borel(Q))N, we have:

(¢Q,Q/)_1[Un6NBn] = UnEN(ng,Q’)_l[Bn]

It follows that (¢g.q) ' [B] C Q¥ is Borel, for all B € Borel(Q).
Now, consider some « € [0,1]. We have:

fooll0,al] = 9\ Q% U (éq.q) ' [f 1[0, )] € Borel(Q)

Therefore, the function fg o/ is measurable.

Let us now show the equality of the expected values. We let P, : Borel(Q)) —
[0,1] be the function such that, for all Borel sets B € Borel(Q), Py[B] =
P [Ant,[B]] € [0,1] where Anty[B] := ¢! - (¢g,o/) *[q- B] € Borel(Q2). Then,
consider countably many disjoint Borel sets (B, )nen € (Borel(Q))YN. We have:

Anty[WnenBn] = {p € Q“ | q-p € (d0.)) 10 (YnenBn)]}
={p e[ q penen(dgq) g (Bn)]}
= Wnen{p € Q| ¢ p € (d0.) g+ (Bn)]}
= WpenAnt,y[By)

Therefore, since P, is a probability measure on 1 and all sets (Anty[&nenBn])nen
are disjoint, we have Py[WnenBn] = 3,cn Pq[Bn). In addition, Ant,[0] = (
and Ant[Q*] = Q' Qg. Hence P{[Anty[Q~]] = 1 since the stochastic tree T is
(@, Q")-alternating. Therefore, the function Py is a probability measure over

QY.

Furthermore, for all 7 € Q*, we have Ant,[Cyl(7)] = Upet () Cyl(7) N Q.
Hence, we have, by assumption of the lemma and since the stochastic tree T
is (Q, Q)-alternating:

Py[Cyl(m)] = Py [Uprerm Cyl()] = By[Cyl(x)]

Hence, by Lemma 1.2, we have that, for all Borel sets B € Borel(Q), Py[B] =
Py[B] = P\ [Ant,[B]]. Now, consider any step function ¢ = 7" j a; - 1p, :
Q¥ — [0,1], where for all i € [1,n], we have B; € Borel(Q). Since T is
(Q, Q")-alternating, we have:

E; [QQ Q/] = E/q{ggg@/ ne'- Qg Z Q- (PQ.q)” ! [Bi]
Furthermore:

9= 0i Polg Bl =) i Pilg" (d) Bl = Eyld o
=1 =1

52



For all measurable functions f : Q¥ — [0,1] and all step functions f, :
Q¥ — [0,1] such that f, < f, we have (f,)g,o < fo.o- Hence, we can
conclude that, for all measurable functions f : Q¥ — [0, 1], we have E,[f9] <
E;[( f0,q7)?] by definition of these expected values. Furthermore, for f: Q¥ —
[0,1] a measurable function, 1 — f is also a measurable function. Hence, 1 —
Eq[f7] = Eg[(1 — f)9] < EL[((1 = f)g.e)- In addition, we have EZ[((1 —
Ha.o) =E 1 - (fo.0) = 1 —E[(fq,q ) since the stochastic tree 7" is
(@, Q")-alternating and the functions ((1 — f)g,¢/)? and 1 — (fg,o/)? coincide
on Q- Q. We obtain: E,[f] = E}[(fq,q/)7]- O

1.5.3 . Proof of Lemma 1.9
Proof. Consider a game in normal form F. Let oa € Xa(F). We have:

val[Fl(ca) = inf out[F](oa,08) < inf su out[F|(cy, o) = val[F]|(B
Fllow) = Juf, ouiFlionos) < il sup outlFl(oh o) = allFI(E)

As this holds for all op € X a(F), it follows that:

val[F|](A) = sup val[F](oa) < val[F]|(B)
oAEXA(F)

1.5.4 . Proof of Lemma 1.10
First, we prove a straightforward lemma that gives explicitely what is the

outcome of a game in normal form.

Lemma 1.18. Consider a game form F, a valuation v : O — [0,1] and a
strategy per player (oa,08) € Xa x Xg. We have:

out[(F,0)](oa,08) = Y v(0)-0(0a,08)(0)

0€Sp(d(oa,08))

Proof. By definition of the expected value, we have:

out[(F,v)](oa,08) = D > z-o(oa,08)(0)

z€[0,1] OESp(((s()O'Aﬂ'B))

— Z € - Hv71[$]<0) : Q(UA;UB)(O)

z€[0,1] 0€Sp(6(oa,08))

— Z Z T - ]lv_l[x](o) -o(oa,08)(0)

0€Sp(d(oa,08)) z€[0,1]

= Y (o) o(oa,08)(0)

0€Sp(d(oa,08))
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The above lemma will be implicitly used in this dissertation when manip-
ulating outcomes of games in normal form.
We can now proceed to the proof of Lemma 1.10.

Proof. We have:
out[(F, ) A wv)l(oaos) = Y. (D An-vn)(0) - o(oa,08)(0)

neN 0€Sp(d(oa,o)) nEN

=Y A D va(0)-oloa,08)(0)

neEN 0€Sp(d(oa,0B))

= Z An, - Out[(F,vpn)] (oA, 0B)

neN
Consider any two valuations v,v" : O — [0,1], A > 0 and = € R such that
Av+x <. We have:

out(F,v)(oa,08) = > '(0)- 0o, 08)(0)

0€Sp(d(oa,08))

> Y (Aota)0)e(on o))

0€Sp(d(op,08))

=\ Z v(0) - o(oa,08)(0) + x
0€Sp(d(aa,08))

= X out[(F,v)](oa,08) + @

> X -val[(F,v)](oa) +

Since this holds for all og € g, it follows that:
A -val[{(F,v)](oa) + z < val[{F,v")](oa) < val[(F,v")](A)

Therefore: 1
ll(F, 0))(on) < 5 - (Vall(F )] (A) — )

Since this holds for all oo € Xa, it follows that:

val[(F, v)](A) < % - (val[(F, v)](A) - 2)

Thus:
A -val[(F,v)](A) + z < val[(F,v")](A)

Finally, assume that A-v+xz : O — [0, 1]. Then, denoting v' :=X-v+z:0 —
[0, 1] we have shown that:

A -val[(F, 0)](A) + x < val[(F,v")](A)
Furthermore, we have %v’ — % = v. Therefore, we have:

1 , T

Tall(F,A) - 5 < vall(F, ) (A)
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That is:
val[(F, A -v-2)](A) = val[(F,v")](A) < X-val[(F,v)](A) + =

We obtain:
val[(F, A - v - 2)](A) = X -val[(F,v)](A) + =

This is analogous if s = og or s = B.

1.5.5 . Proof of Observation 1.1

Proof. Consider such a finite set Sc C Xc(F) of Player-C strategies and assume
that it supremizes F. Let v : O — [0, 1] be a valuation of the outcomes. Since
Sc supremizes the game form F, it follows that for all n € N, there is a
Player-C strategy o, € Xc(F) that is n%rl—optimal in the game in normal
form (F,v). Since the set Sc is finite, there must be a Player-C strategy
oc € Yc(F) such that oc = o, for infinitely many n € N. Therefore, we
have val[(F,v)](oc) = val[(F,v)] since, for infinitely many n € N, we have
lval[(F,v)](oc) — val[(F,v)]| < n%rl That is, the strategy oc € Sc is optimal
in the game in normal form (F,v). As this holds for all valuations of the
outcomes v : O — [0, 1], it follows that the set Sc maximizes the game form F
w.r.t. Player C. O

1.5.6 . Proof of Proposition 1.12

Before considering the proof of Proposition 1.12, let us state and prove the
lemma below:

Lemma 1.19. Consider a standard game form F. Consider two valuations
of the outcomes v,v’ : O — [0, 1], two Player-A strategies op, oy € La(F) and
two Player-B strategies og,0g € Yg(F). Then:

lout[(F, v)](a, o) —out[(F,v")](a, 08)| < [[v—=t'[lsctloa—0oplli+]los =081

Note that |[op — oa|l1 is well defined since both oa and o), have countable
support, and similarly for og and of. Hence:

vall(F, v)](oa) = vall[(F, v)(oa)] < llv = V"o + [loa — oall

and
val[{(F, v)](A) — val[(F, 0")[(A)] < [lv -]l

These inequalities also hold for Player B.

Proof. The proof is quite long while the idea is very simple: it just amounts
to expand Definition 1.13 in the context of standard game forms. However, it
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involves nested sums, hence the length of the proof. We use several times that
> aencty OAl@) =1=3 " . oB(b) and that v(o) <1 for all 0 € O. We have:

[out[(F, v)](ca, 08) — out[(F, ') (ch, o)
=133 Y (0ala) - o8(b) - v(0) - o(a, b)(0) — oh(a) - oh(b) - v'(0) - ola, b)(0))]

0€0 acActp beActy

<D D D loala)-a(b) - v(0) - ola,b)(0) — ohla) - op(b) - ¢'(0) - o(a, b)(0)))|

0€0 a€Actp bEActy

<D > oala)-los(d) - v(o) - e(a,b)(0) — op(b) - v'(0) - o(a, b)(0)]

0€0 a€Actp bEActy

+3°0 5 S Joala) — oala)] - log(b) v (0) - o(a,b)(0)|

0€0 a€Actp beActy

We let:

r=3 3 3 oala)-loa(d) - v(0) - ola,b)(0) — oh(b) - v/(0) - ola,b) (o)

0€0 a€Actp bEActy

and

y= > > loala) —oal(a)l-log(b) - v'(0) - o(a, b)(0)|

0€0 acActp bEActg

Thus, we have |out[(F,v)](oa, o) — out[(F,v)| (o, 05)| < x +y. Let us first
deal with y:

y=3_ >, > loala) —oa(@)]-log(b)-v'(0) - o(a,b)(0)]

0€0 acActp beActy

= Y l(oa(@) —oa(a)|- ( > Ué(b)-zv’(O)@(a,b)(O))

a€Acta

< Y loala) —oala)|- | Y ow(d)
a€Actp bEActy
= > l(oa(a) = oala)| = loa — oallx

a€Acta
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Let us now deal with x:

z=>" 3" 3" oala)|os(b) - v(o0) - ola,b)(0) — op(b) - v'(0) - o(a, b)(0)]

0€0 acActp beActy

< Y oala)- | D os(d)- Y ola,b)(0) - [v(0) = /(o)

a€Actp bEActg 0€0

+ > los(b) —og(d)]- Y ola,b)(0) - v(0) = v'(0)]

beActg 00
< Y aal@- | Y os®) o=Vt D los(d) —op®)- v =]
aEACtA bGACtB bGACtB
= Y oala) (v =l + llos — a[h1) = [l = /|| + o8 — 051

a€Actp

Overall, we do obtain:
lout[(F, v)](oa, o8) —out[(F, v)|(0n, 08)| < [loa—0oali+llos—og[1+]v—0"]

This proves the first inequality of Lemma 1.19. Let us consider the second one.
For all positive € > 0, let og € ¥g(F) be such that

out[(F,v)|(oa,05) < val[(F,v)](oa) + &

Then:

F,o)l(on,08) + [lv = 'llsc + loa — oallx
<vall[(F,v)](oa) + [v = V'l + lloa — ol + &

As this holds for all € > 0, it follows that:
val[(F,v")](oa) < val[(F, v)](0a) + [[v = V'lc + [loa — oallr
By symmetry, we obtain that:
vall[(F,v")](on) — vall[(F, v)](oa)] < +]Jv = V]| + loa — a1

Let us now consider to the third inequality. We proceed similarly to the
previous one: For all positive € > 0, let 03 € Xa(F) be such that

val[(F,v)](og) > val[(F,v)](A) — ¢
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Then:

As this holds for all € > 0, it follows that:
val[(F, v/))(A) = val[(F, v)](A) — [lv — v/l
By symmetry, we obtain that:
val[(F, v")](A) = val{F, v)}(A)] < v =]l
O]

Now, we state and show below that there is a value and optimal strategies
for both players in the case where the valuation takes finitely many values.

Lemma 1.20. Consider a standard deterministic game form F € Form(O)
on a set of outcomes O where either of the players has finitely many actions.
Consider a valuation v : O — [0, 1] such that v[O] C [0, 1] is finite. Then, there
is a value in the game in normal form (F,v) and both players have optimal
strategies.

Proof. We prove the lemma in the case where Actp is finite. The other case
is analogous. For all b,b’' € Actg, we say that b is equivalent to ¢’, denoted
b~V if, voo(-,b) : Acta — [0,1] = v o o(-,b') : Acta — [0,1]. That is,
the columns corresponding to actions b and b’ are identical. Clearly, ~ is an
equivalence relation over Actg x Actg. Let Rg C P(Actg) be the (non-empty)
set of equivalence classes of the equivalence relation ~ where P(Actg) refers to
the set of subsets of Actg. In fact, Rp is finite. Indeed, for all Player-B actions
b € Actg, we have vop(-,b) : Acta — v[O]. Since Acta and v[O] are finite, there
are finitely many functions Acta — v[O]. Since an element of Rg corresponds
to a function Acta — v[O], it follows that Rg is finite. For all T' € Rg, we let
by € T be a representative of the equivalence class T'. Consider now the game
form F' := (Acta, Rg, 0, ¢'), where, for all a € Acta and T € Rg, we have
o (a,T) := o(a,br). This game in normal form is finite and deterministic and
therefore has a value u := val[(F',v)] € [0,1] by Theorem 1.11. Let us show
that w is in fact the value of the game in normal form (F,v).

We let g : Xg(F) — Xg(F’) be such that, for all og € Xg(F), for all
T € Rp, we have g(og)(T) := >y oB(b). We claim that:

Y(oa,08) € Ba(F) x Bg(F), out[(F,v)](oa,08) = out[(F',v)](oa, g(oB))
(1.1)
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Indeed, let (oa,08) € Xa(F) x Xg(F). We have (recall that the game form F
is deterministic):

out[(F,v)](oa,08) = > > oala)-o(b)-voo(a,b)

a€Actp bEActg

= 3 o) | X Y os) vosad)

a€Actp TeRg beT

= Y oal@) | 3 g(os)(T) - voola,br)

a€Acta TeRg
= out[(F',v)](ca, g(oB))

We also let ¢’ : ¥g(F') — Xg(F) be such that, for all o € Xg(F’), for all
b € Actg, we have:

og(T) if b=br for some T € Rg

0 otherwise

g'(op)(b) == {

One can see that for all o € ¥g(F’), we have go ¢'(og) = 0p-

Consider optimal strategies o) and op for both players in the game in
normal form (F',v). We claim that o), € ¥Xa(F) and ¢'(0g) € Xg(F) have
value u in the game in normal form (F,v).

Consider any Player-B strategy og in the game form F. Then, by Equa-
tion 1.1:

out[(F,v)}(oa, o8) = out[(F",v)] (0, g(08))

> val[(F',v)] (o) = u

Hence, val[(F,v)](0) > u. Furthermore, for any Player-A strategy oa in the
game form F, by Equation 1.1:

out[(F,v)](oa, ¢'(0)) = out[(F',v)|(oa, g 0 ¢'(08))
= out[(F',v)](oa, o)
< val[(F',v)](og) = u

Hence, val[(F,v)](g(0g)) < u. Overall, we obtain val[(F,v)](ca) = u =
vall(F, 0)](¢'(o1))- 0

We can proceed to the proof of Proposition 1.12.

Proof. Consider a valuation of the outcomes v : O — [0,1]. For all n € N, we
let v, : O — [0, 1] be the valuation of the outcomes such that, for all outcomes

0€0: on .
vn(0) 1= L.QZ(OH € {;n | i€ [[0,2nﬂ}
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where |-] : R — Z is the floor function, that is, for all x € R, we have
|z] <z < |x] +1. Therefore, we have ||v;, — v||sc < 5. Since v, takes finitely
many values, it follows, by Lemma 1.20, that the game in normal form (F,v,)
has a value and there are optimal strategies for both players in that game.
We denote by wu, := val[(F,v,)] the value of the game in normal form (F,v,)
and by o} € Ya(F) (resp. og € ¥g(F)) a Player-A (resp. Player-B) optimal
strategy in the game in normal form (F,v,).

Let uw € [0,1] be subsequential limit (w.r.t. | - |jco) Of (un)nen, that is

u = nh_)rgo Uy (n) for some increasing  : N — N (that exists by Theorem 1.1).

(n))

Let also oa be a subsequential limit (w.r.t. || - ||o0) of (o4
Kow(n)

neN, that is op =
lim o
n—oo
since Acta is finite). We let h := ¢ o p : N — N. First, let us show that
op € Ya(F). Since, for all a € Actp and n € N, we have Jﬁ(n)(a) € [0,1], it
follows that we also have oa(a) € [0, 1]. Furthermore:

Z oala) = Z lim az(n)(a) = lim Z az(n)(a) =liml1=1

n—oo n—oo
aEActA aEActA aGACtA

for some increasing ¢ : N — N (which is possible by Theorem 1.1

Hence, we do have op € Ya(F).
Let us now show that val[(F,v)](ca) > u. Let og € ¥g(F). For all n € N,
we have, by Lemma 1.19:

outl(F. v)](0a,08) = 0ut((F, v (02", 8) — [vn(m) — vlloe — loa = aa™ s

1

h(n h(n
> vall[(F, o)l (™) = gy — llow = ox™ 1
1

h(n
= wn) ~ gy ~ loa—on "

Thus:

1 n
out[(F, v)](0a, 78) > ) - = lloa —aa™ (1.2)

- 9h(n

Furthermore, since op = lim az(n) , it follows that
n—oo

: _ Ry
Jim [jop =g [l =0

Since (up(n))nen is a subsequence of (uy(y))nen and Y}i_}n;o(u@(n))neN = u, it
follows that:

lim wup) =u
n—oo

Since Equation 1.2 holds for all n € N, we obtain out[(F,v)](oa,0B) > u. As
this holds for all og € ¥g(F), it follows that val[(F, v)](oa) > u.

Let us now show that val[(F,v)](B) < u. Let n € N. We consider the
Player-B strategy ag(n) € Yg(F). Consider any Player-A strategy oy € Xa(F).
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By Lemma 1.19, we have:

out[(F.0))(rh, 75" < out(F, vnu) (oo o) + o) = vl
h(n 1
< val[(F, Uh(n))](UB( )) + oh(n)
1
= Up(n) + Sh(n)

Thus, val[(F,v o™ < Up(ny — s Hence, for all n € N, we have:
B (n) ™ 2R(m)

val[(F,))(B) < vall{F, v))(05™) < (o) + iy

Again, since lim wy(,) = u, we obtain val[(F,v)](B) < u. Overall, we obtain,
n—oo

val[(F,v)] = u = val[(F,v)](oa). O

1.5.7 . Proof of Lemma 1.13

Proof. Consider a non-empty set of outcomes O’ and a map d : O — D(0’).
For all valuations v : O’ — [0, 1], we let e, : O — [0, 1] be equal to e, := E4(v).
For all valuations v : O’ — [0,1] and (oa,08) € XA X Xg, we have:

out[(F,ey)](oa,08) = out[(]—"d,vﬂ(aA, oB) (1.3)
Indeed, we have:

out[(]:, €U>](UA, UB) = EQ(GA,UB) (ev) = EQ(JA,UB)(Ed(U))
=Y 0(0a,98)(0) - Ea(v)(0)

0€0

=" oloa,a8)(0) - Y d(0)(d) - v(d)
0c0 o'eQ’

=33 (0. 08)(0) - d(0)() - v(c)
o’'e0’ 0oe0

= 3" Eylonom)(@)(0) - v(d)
o'eQ’

=Eg,,, o)) = out[(F*,v)](oa, 8)

In fact, Equation 1.3 gives that the game forms (F,e,) and (F% v) are the
same. The lemma follows. O]

1.5.8 . Proof of Corollary 1.14
Proof. We let D := {o(oa,08) | oa € Xa, o € g} C D(0). Consider
the standard deterministic game form F’ defined by F' := (¥a, 2B, D, o)
where, for all op € XA and og € Xg, we have ¢'(oa,08) := 0(oa,08) € D.
Furthermore, considering d : D — D(0O) the identity function, one can realize
that F = (F')%. The result then follows from Proposition 1.12 applied to
and Lemma 1.13 to transfer the result from F to F = (F')<. O
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1.5.9 . Proof of Proposition 1.15

Proof. First, let us show that, for all Borel sets B € Borel(K), we have
(col*)~1[B] € Borel(Q). Consider any open set B = UrecaCyl(m) for some
A C K*. We have:

col![B] = U U Cyl(p) € Borel(Q)

€A pe(colt) 1 [n]

Furthermore, for all Borel sets B € Borel(K), we have (col)}[K¥\ B] = Q¥ \
(col“)~1[B]. In addition, for all (B,,)nen € (Borel(K))Y, we have (col*) ™! [UnenBn] =
Unen(col”)~[B,]. Tt follows that, for all Borel sets B € Borel(K), we have
(col*)~1[B] € Borel.

Then, for all « € [0,1], we have:

(fo'o.al= | U oVr-q)U(col) 1[0, a]] € Borel(Q)

qEQs,val(q)<a mEQ}S

since f is measurable. Therefore, the function fe is measurable. In addition,
by Lemma 1.4, for all p € Q*, we have (f¢)” measurable. O

1.5.10 . Proof of Lemma 1.16

Proof. We prove the result when C = A, the other case being analogous. We
denote by C%” the arena underlying the game G%”. Clearly, for all states
q € Qs US, we have xgsa[A](q) = xg[A]. Consider some state ¢ € Qns \ S.
Consider a Player-A strategy sa € Si. This strategy can be seen as a
strategy in the game G, the game ending as soon as the set S is reached.
Consider now any Player-B strategy sg € SgS’A in the arena C5*. The games
G and G5A coincide on (Q \ S)* and (Q \ S)*. Let € > 0 and let us define a
Player-B strategy sg € S‘é in the game G that coincides with the strategy sg
on (Q\ S)* and that plays a e-optimal strategy — against the strategy sa —
as soon as a state in S is reached. That is, the expected value of f given that
the state ¢’ is eventually reached is at most xg[A](¢’) + . Note that this holds
because the objective is prefix-independent: it does not matter the sequence
of states seen before reaching ¢’. Formallu, we have the following inequality:

e Tigusya) < (xalAl(@) +2) - FZrRI(Q\ )" - ]

As this holds for all ¢’ € S, we obtain:

SERE e Liovs)y gl S+ Y xalAlld) - ERE(QN S) - ¢

qes q'es
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Hence, we have:

B fesa) = B8R Uesa Lquspel + D BAL  [fesa  L@us)-o'

q'esS
= B¢ [fe - Loyl + 2 BErP QN 9)" - - xalAl(d)
q'es
>ESAS [fC H(Q\S ZE fcﬂﬂ (Q\S)*q ] €
q'es

> B3 1fe] — = 2 xglalld) ¢

As this holds for all Player-B strategies sg € SES’A, it follows that xgsa[sa](q) >
Xg(sa](q) — . As this holds for all € > 0, we have xgs.a[A](q) > xgs.alsal(q) >
Xg[sa](gq). Since this holds for all Player-A strategies sp € S, we have
xgsalAl(q) > xg[A](g). Furthermore, for an optimal Player-A strategy sa
in G from ¢, we have xgsa[sal(q) > xg[Al(q)-

Let us now show the other inequality: xgs.a[A](q) < xg[A](q). With what
we have shown above, this will prove that the values of all states are the same
and that if there is an optimal Player-A strategy in G, then there is also one
in G9A. We proceed very similarly than for the other inequality. Let ¢ > 0
and sp € SgS’A be a Player-A strategy such that xgs.a[sal(q) > xgsa[A](q) —e.
Consider a Player-A strategy sp € Sg in the game G that coincides with the
strategy sa on (@ \ S)* and that plays a e-optimal strategy as soon as a state
in S is reached. Consider then any Player-B strategy sg € S%, that can also be
seen as a strategy in C9A. For all states ¢ € S, with strategy s and sg, from
q, we have that the expected value of f given that ¢’ is eventually reached is
at least xg[A](¢') — ¢, that is:

ER (e - Lgusya] 2 (xolAl(@) — ) - BEE[Q\ S)* - ¢

As this holds for all states ¢’ € S, we have :

SUEREle Lgsyal = D xalAl()  PEEIQN ) -] -

q'es q'eS

Hence, we have:

SA,SB [fC] SA,S [fC (Q\8) + Z ESA,SB Q\S) ]
q'esS
> B (fe - Ligusyel + D PESIQN ) - ¢ xglAl(g) —
q'eS
=EZ&R [fesa Lg\s)] + > ECSR Lesa - Ligusy-g] —€
q'eS

=ENR [fesa] — & = xgsalAl(d) — 2¢
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As this holds for all Player-B strategies sg € S, it follows that xg[sa](q) >
xgs.a[A](q) — 2e. As this holds for all € > 0, we have xg[A](q) > xgsa[A](q).
This also holds for C = B. Hence, if the game G has a value, we have
Xgsa[A]l = xg|A] = xg[B] = xgss[B] where the games G5 and G5B are the
same. Therefore, the game G%A has also a value. O
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Part 1

(General results with arbitrary
bounded payoff functions
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In this first part, we study concurrent games while making minor assump-
tions on the local interactions and payoff functions involved. This is in sharp
contrast with what we do in Part II, where we consider only concurrent parity
games; and with what we do in Part III where we define restrictions on the
local interactions occurring in concurrent games.

Among the results that we show in this part, we would like to mention
here two of them that are essential to this dissertation and that we believe are
important results on concurrent games.

The first one deals with, arguably, the most important result on concur-
rent two-player antagonistic games: Martin’s determinacy results of Blackwell
games. The original version of this theorem [12] states that all standard con-
current games with finite local interactions have a value. The main focus of
Chapter 2 is the proof of a generalization of this result to arbitrary (non neces-
sarily standard) games. The idea is that, by von Neuman’s minimax theorem
[1], all standard finite game forms are valuable. This is actually the assump-
tion that Martin uses in his proof?. We show that all (arbitrary) concurrent
games with valuable local interactions have a value. This is stated as part of
Theorem 2.3 in Chapter 2. Note that Theorem 2.3 states other results than the
one described above, without assuming that the local interactions are valuable.

The second result that we would like to highlight is novel and essential to
this dissertation, though it is much easier to prove than the previous one. It
is stated as Theorem 3.12 in Chapter 3, with Corollaries 3.14 and 3.16 being
relevant special cases. Informally, this theorem states a sufficient condition for
the value of a Player-A strategy to be greater than or equal to some threshold,
and symmetrically for Player B. This theorem or one of its corollaries are used
several times in this dissertation, in Chapters 4, 5, 7 and 8.

As mentioned above, in Chapter 2 we focus on the well-known determinacy
result for Blackwell games by Martin. Then, in Chapter 3, we focus on subgame
(e-)optimal strategies (notion to be defined).

2Tn fact, Martin states that the result still holds even if the local interactions are
such that one set of actions is finite, while the other is countable. Even with this
weaker assumption, the local interactions are still valuable.

67



68



2 - Blackwell determinacy

In 1975, Martin showed the determinacy of Borel games: in all deter-
ministic turn-based games with win/lose objectives, one of the players has a
winning strategy [3]. Then, in 1998, Martin used this result to show that all
standard concurrent games where each (standard) local interaction is finite!
have a value [12]. Note that this holds for arbitrary payoff functions (recall
that all the payoff functions we consider are measurable and into [0,1]). This
is a central result in the theory of standard concurrent games since the as-
sumptions are quite mild while the conclusion, i.e. that all games have values,
is very useful when studying concurrent games. In this chapter, we extend
Martin’s result and obtain a (slightly) more general one. The additional power
is invoked several times in this dissertation, in places where Martin’s original
result would not suffice. Informally, this extension follows two directions:

e (1): By closely examining the construction that Martin uses to prove the
result, we show that almost-optimal strategies (i.e. e-optimal strategies,
for all € > 0) can be found among specific subsets of strategies. This is
proved regardless of the local interactions involved (i.e. they need not
be valuable).

e (2): We show that as soon as all local interactions are valuable, the game
has a value.

More formally, we show the following. In an arbitrary game G:

e (1): almost-optimal strategies (i.e. e-optimal for all € > 0) can be chosen
among specific subsets of strategies, namely:

— (1.a): first, without any additional assumption, they can be found
among strategies generated by subsets of GF-strategies that suprem-
ize the corresponding local interactions;

— (1.b): second, if G is win/lose, under a specific condition on the
coloring function, it holds that we can further reduce the subset of
strategies to consider only the ones that depend on the sequence of
colors seen and on the current state of the game, not on the exact
sequence of states seen. (This amounts to some kind of uniformiza-
tion of strategies, see for instance [53] in the context of turn-based
games and winning strategies.)

In fact, Martin mentioned that this also holds if either of the player action set is
finite while the other one is countable.

69



e (2): in addition, if G is valuable, i.e. if all local interactions in G are
valuable, then G has a value.

This is stated formally in Section 2.2 as Theorem 2.3.

The proof. Result (2) generalizes Martin’s result in the context of arbi-
trary concurrent games, and not just standard games. That is, we identify a
sufficient condition on local interactions, namely being valuable, for concur-
rent games whose local interactions satisfy this condition to have a value. As
discussed in Chapter 6, this condition on local interactions is also somehow
necessary, see Proposition 6.1.

One of the key ideas of Martin’s proof is to derive a spoiler/verifier style
turn-based game Gy, from a concurrent game G. By Borel determinacy [8],
from all states of the game Gy, either of the players has a winning strategy.
These winning strategies are translated into almost-optimal strategies in G. If
we only wanted to prove result (2), we could use this idea as is and adapt it
straightforwardly to our framework. However, because we also want to prove
result (1.a), even when the local interactions are not valuable, more work is
required: instead of only defining a unique spoiler/verifier turn-based game,
we define infinitely many. Up to that change, our proof of result (1.a) follows
the footsteps of Martin’s proof. In particular, we also use Borel determinacy.
Moreover, result (2) is a direct consequence of lemmas dedicated to prove result
(1.a). Finally, to prove result (1.b), we need to extract additional properties
from the turn-based games mentioned above.

Furthermore, we prove this new version of Blackwell determinacy with el-
ementary arguments. It is in particular the case for the intermediate results
that we show on stochastic trees. These intermediate results, that we prove
from elementary definitions in probability theory, are existing results on mar-
tingales. We discuss them in Section 2.3. More generally, we have also added
intermediate lemmas and examples to explain and illustrate the ideas behind
the proofs.

Consequences. As mentioned above, Theorem 2.3 extends Martin’s result
in two directions. The benefit of the second direction (stated as result (2)) is
rather straightforward since it extends the set of games to which Martin’s result
can be applied.

Let us now consider the first extension. It contains two results: (1.a) and
(1.b). We will give several applications of these results in this dissertation.

Result (1.a) is used in Chapter 3. In this chapter, we show that sub-
game almost-optimal strategies (notion defined in Definition 3.3) exists and,
with result (1.a), we show that they can be found among a specific subsets
of strategies (see Theorem 3.1). Furthermore, Chapter 6 is entirely dedicated
to applications of result (1.a). These consist in showing that, if the local in-
teractions occurring in a concurrent game G belong to a specific set of game
forms, then the whole concurrent game G enjoys nice properties (see Theo-
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rems 6.4, 6.11, 6.15). In particular, Borel determinacy that Martin proved in
[8] is a logical consequence of Theorem 6.4. However, as stated above, we use
Borel determinacy to prove Theorem 2.3, hence we do not provide a new proof
of Borel determinacy. However, note that Borel determinacy is not a logical
consequence of Martin’s original result [12]. All these applications do not use
result (1.b), they sometimes use result (2).

Consider now result (1.b). In Section 2.5, we use this result to prove the
following. Consider a standard win/lose game with finitely many actions at
each state for both players. Consider also action strategies, i.e. strategies
that may also depend on the actions played by the players, which are formally
defined in that section. Then, the values that can be achieved with action
strategies is the same as the value with the strategies we have considered so
far. The latter are called state strategies: they depend only on the history of
states. This application does not use result (1.a), however it uses result (2).
Finally, in this section, we also exhibit a standard finite game satisfying the
following properties. The values achieved by action and state strategies are the
same, which is a consequence of the above-mentioned result. However, there is
an optimal strategy among action strategies, while there is none among state
strategies. This is stated in Proposition 2.21.

The work presented in this chapter is not published yet.

2.1 Martin’s results

In this section, we recall two of Martin’s theorems. In the original papers
[, 12], the formalism which is used is quite different from the one used in
this dissertation. Specifically, Martin uses the notion of game trees without
considering an underlying graph (i.e. with an explicit set of states). However,
the theorems we state here are equivalent to the ones showed in 8, 12].

First, Martin proved the existence of winning strategies in deterministic
turn-based win/lose games [2]. This is also known as Borel determinacy, and
it is stated below in Theorem 2.1.

Theorem 2.1 (Borel determinacy [2]). Consider a turn-based deterministic
win/lose game G without stopping states. For all ¢ € @, either Player A or
Player B has a winning (deterministic) strategy from state q. This holds even
if the set of states is not countable.

Furthermore, standard concurrent games with specific local interactions
have a value [12]. This is also known as Blackwell determinacy, and it is stated
below in Theorem 2.2.

Theorem 2.2 (Blackwell determinacy [12]). Consider a standard concurrent
game G. Assume that, for all ¢ € Q, in the game form F(q) both action sets
are countable and at least one of them is finite. Then, the game G has a value.
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2.2 Blackwell determinacy: a new version

Before formally stating another version of Theorem 2.2, we need to in-
troduce two definitions. Below in Definition 2.1, we consider the notion of
strategies that only depend on the colors seen. This is also defined for valua-
tions of finite sequences of states.

Definition 2.1 (Color-Uniform strategies and valuations). Consider an ar-
bitrary concurrent arena C. A uniformizing pair is a pair (U, m) where U is
a non-empty set and m : Q — U maps each state to an element in U. (In
particular, the pair (K, col) is a uniformizing pair’.) For such a pair, we say
that two finite sequences of states p,p’ € QT are (U, m)-equivalent if pi = pj,
and m*(p) = m*(p).

A function g : QT — X mapping finite sequences of states to any non-
empty set X is said to be (U, m)-uniform if, for all pairs p,p’ € Q" of (U, m)-
equivalent paths, we have g(p) = g(p'). They can be seen as maps U* xQ — X.

In Definition 2.2 below, we define the notion of coloring function with a
finite representative: the functions such that each color has only finitely many
preimages w.r.t. that function.

Definition 2.2 (Coloring function with a finite representative). Consider an
arbitrary concurrent arena C. We say that (K, col) has a finite representative
in Q if, for all k € K, the set col " [{k}] C Q is finite®.

We can now state our main theorem of this chapter: the new version of
Blackwell determinacy.

Theorem 2.3. Consider an arbitrary concurrent game G. Let C € {A,B} be
a Player. Consider a collection (Sg)qEQ of sets of Player-C GF-strategies that
supremize the game G w.r.t. Player C. Then:

e (1) For alle > 0:
— (1.a) There is a Player-C strategy sz € S¢ generated by (S¢)qeo
that is e-optimal.

— (1.b) If we additionally assume that (K, col) has a finite represen-
tative in ) and that G is win/lose, then the strategy s¢ above can
be chosen (K, col)-uniform.

e (2) If the game G is valuable, then it has a value: xg[A] = xg[B] : Q@ —
[0, 1].

Remark 2.1. It is quite straightforward that Theorem 2.3 implies Theo-
rem 2.2 since, by Proposition 1.12, any standard game form with at least one

2To properly fit this definition, the function col needs to be defined on Qys.
3This does not imply that the set @ is finite if the set of colors K is infinite.
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action set that is finite is valuable. In fact, Theorem 2.3 also implies Theo-
rem 2.1, see Statement 6.1. However, note that Theorem 2.1 is used to prove
Theorem 2.3 (but Theorem 2.2 is not).

Before considering the proof of Theorem 2.3, we need to make a detour via
stochastic trees.

2.3 A result on stochastic trees

In this section, we establish results in stochastic trees that will be used
in this chapter to prove Theorem 2.3. We will also use them in Chapter 3.
We would like to mention that the main results stated in this section (that is
Proposition 2.6 and Proposition 2.9) already exist (see for instance |54, Thm.
3.17]) as the underlying object we consider — namely, non-decreasing valuation
— in fact correspond to sub-martingales. However, the arguments we use in
this section are elementary in the sense that we do not use at all results on
martingales. This has the benefit of being readable by someone who is not
familiar with this notion.

Before considering the few definitions we need to properly state and prove
the results of interest of this section, we first consider superior and inferior
limit functions (given a valuation of finite sequences of states) in stochastic
trees and realize that they are measurable.

Proposition 2.4 (Proof 2.7.1). Consider a stochastic tree T and a valu-
ation v : QT — [0,1] of the finite sequences of states of T. Consider the
superior (resp. inferior) limit function limsup, : Q“ — [0, 1] defined by, for
all p € Q¥: limsup,(p) := limsup (v(p<n))nen € [0,1] (resp. liminf,(p) :=
liminf (v(p<n))nen € [0,1]). Then, this superior (resp. inferior) limit function
is measurable.

Let us also recall that comparing two measurable functions yields a mea-
surable set.

Proposition 2.5 (Proof 2.7.2). Consider a non-empty set Q and two mea-
surable functions f,g: Q¥ — [0,1]. For all 1 € {<,<,>,>,=,#}, the event

{fg} ={p € Q| f(p)=yg(p)} C Q is Borel: {frg} € Borel(Q).

2.3.1 . Comparing superior and inferior limits

Consider a stochastic tree T and a valuation of finite sequences of states
v : QT — [0,1]. By definition, for all infinite paths p € Q“, the superior
limit w.r.t. v of p is greater then or equal to the inferior limit w.r.t. v of p:
limsup,(p) > liminf,(p). Hence, the expected value of the superior limit limsup,,
is greater than or equal to the the expected value of the inferior limit liminf,.
Without any assumption on v, the difference between these expected values
may be equal to 1: that is it could be that almost-surely, the superior limit of
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an infinite path is equal to 1 while the inferior limit is almost-surely equal to
0. The goal of this subsection is to show that, under a specific condition on v,
the difference between the superior and inferior limit is null. More specifically,
we show that if the expected value of the valuation v does not decrease in any
single step, then the superior and inferior limits are equal almost-surely.

Let us define formally the notion of non-decreasing valuation.

Definition 2.3 (Non-decreasing valuation in stochastic trees). Consider a
stochastic tree T = (Q,P), a finite path m € Q" and a valuation v : Q* — [0, 1].
It is non-decreasing from = if, for all p € Q*, we have:

v(p) <Y Pryla) - v(p-q)
qe@

Moreover, a valuation v : QT — [0,1] is said to be non-decreasing if, for all
q € Q, the valuation v? : Q* — [0, 1] is non-decreasing from q.
Remark 2.2. By definition, if a valuation is non-decreasing from some finite
path m € QT, then for all p € Q*, the valuation v” is also non-decreasing from
T p.

With a non-decreasing valuation, infinite paths have a limit (i.e. the inferior

equals the superior limit) almost-surely, as stated below.

Proposition 2.6. Consider a stochastic tree T and a valuation v : Q* —
[0, 1] non-decreasing from some m € Q. Then, we have P (liminf, < limsup,) =
0

Before proving this proposition, let us first show two intermediate results.

Lemma 2.7. Consider a stochastic tree T and a valuation v : Q* — [0,1]
non-decreasing from some = € QV. Then, for all i € N, we have: v(e) <

> peqi Pr(p) - v(p).

Proof. We show this property by induction on ¢. This straightforwardly holds
for ¢ = 0. Assume now that this property holds for some i € N. We have:

> Palp)-v(p) = D D Pr(p) - Pryla) v(-p-q)

peEQiT! PEQ 9€Q
= Pr(p)- > Prp(g)-v(p-q)
PEQ? qeQ
=Y Palp) - vlp) = vle)
pEQ?
Hence, the property holds for all 4 € N. O

Lemma 2.8. Consider a stochastic tree T, a valuation v : Q* — [0, 1] non-
decreasing from some m € Q. Let u := v(¢) and let 0 < v’ < u be a value less
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than w and E := {p € Q* | v(p) < u'} be the set of finite paths whose values

w.r.t. the valuation v are less than or equal to u/. Then, P.[E] < 4=% < 1.

Proof. First, note that e ¢ E. Let A := U,cpp-Q* and B := Q*\ A. Consider
the set D C F of finite sequences of states in F with no strict prefix in E.
This set ensures that:

e A=Upepp Q%
e forall p,p' € D, we have p-Q*Np - Q* =.

Now, let us define a new valuation w : Q* — [0, 1] such that, for all p € Q*:

v(p) ifpeB
w(p) := N e ,
v(p') if pep - Q* for some p' € D

Let us show that the valuation w is non-decreasing from 7. Consider p € Q*.
If p € B, then we have w(p) = v(p) and for all ¢ € Q, w(p-q) = v(p-q). Hence,
we do have w(p) < > o Pr.,(q) - w(p - q) since v is non-decreasing from 7.
Furthermore, if p € p’-Q* for some p’ € D, then w(p) = v(p’) and for all ¢ € Q,
we have w(p-q) = v(p') = w(p). Hence, we have w(p) = >_ o Pr.,(q) w(p-q).
Overall, the valuation w is non-decreasing from .

Consider now some n € N. For all p/ € D N Q=", we have P,(p) =
> pep-Q*NQ™ P.(p). Hence, by applying Lemma 2.7, since w is non-decreasing

from m:

u=w(e) < Y Prlp)-wlp)= > Prlp)-wlp)+ Y. Pr(p)-w(p)
PEQ™ pEANQ™ pPEBNQ™
- > S Prlp)-wlp)+ > Palp) - w(p)
p'EDNQR=™ pEp’-Q*NQ™ pEBNQ™
= ) S Prlp) v+ D Palp)-v(p)
p'EDNQ=™ pEp’-Q*NQ™ pEBNQ™
= > B) o)+ D Balp)-v(p)
peDNQ=" pEBNQ™
< Y B()d+ Y Palr)
p'eDNR=" e BNR™

=P, [DNQ="] v +1—P[DNQ="]

Hence, denoting p,, := P[Q=" N D], we obtain: u < p,, -« + 1 — p,. That is,
Pn < 11_;;5 < 1. Since this holds for all n € N and lim,,,o0 pp, = Pr[@* N D] =
P, [D] = P;[E] by continuity of P and since Pr[E] = P[U,eeCyl(p)], we get
P.[E] < =%, O

—Uu

—_

We can now proceed to the proof of Proposition 2.6.
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Proof. Let p,q € QN[0, 1] be such that ¢ < p. Let d :=p—¢ > 0 and p' := p—
and ¢ == q+ %. Finally, let x := }:i: < 1. Let Vap :={p € Q* | v(p) >y
and Ve, = {p € Q* | v(p) < ¢'}. Now, we have:

{p < limsup, } N {liminf, < ¢} C (] (Vap - Vg )
keN

By Lemma 2.8 and Remark 2.2, for all finite paths p € V>, we have P, [V<y] <
%{g’,@ < z. Hence, P [V - V<y] < 2. Tt follows that, for all £ € N, we have
Pr[(Vop - Vg )] < 2% Since z < 1, we have Pr[Ngen(Vay - Vg )¥] = Ilfier% zk =
0. It follows that P[{p < limsup,} N {liminf, < ¢}] = 0. As this holds for all
p,q € QN [0,1] such that ¢ < p, it follows that P, [liminf, < limsup,] =0. O

2.3.2 . Expected value of the superior limit

In this subsection, we focus on non-decreasing valuations. We show that
for such valuations, the expected value of the superior limit (which is almost-
surely equal to inferior limit, recall Proposition 2.6 above) is at least the value
of the starting state.

Proposition 2.9. Consider a stochastic tree T and a valuation v : Q* — [0, 1]
non-decreasing from some m € Q7. Then:

v(€e) < Eg [limsup,] = E; [liminf,]

In fact, to prove Theorem 2.3, we will only use the inequality. However, we
have also stated the equality so that Proposition 2.9 implies straightforwardly
Proposition 2.6 (though we use Proposition 2.6 to prove Proposition 2.9) since
liminf, < limsup,.

Proof. First, the equality is a direct consequence of Proposition 2.6. Then, we
let P := Pr, E := Er, lsyp := limsup, and liy¢ := liminf,. For all j € N and
subsets I C R, we denote by V (j,I) the open set

ViD= {J i)
pEQ’
v(p)€l
of paths whose j-th value is in the interval I.
For all n € N, we consider the function f, : Q¥ — [0, 1] such that, for all
p € Q¥, we have:
2 olp)] [0
fa(p) = o € g l0<i<2"
where |-] : R — Z is the floor function, that is, for all z € R, we have
|z] <z < |z|+ 1. For all n € N, we have that f,, is a step function (recall
Definition 1.2), f, <ls,p and therefore E[f,] < E [lsyp].
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Now, let € > 0. Consider some n € N such that
— <e¢ (2.1)

For all a < b, let Lqp := {a < lins} N {lsup < b}. Consider some 0 <14 < 2" —1.
We have P(Li_5ﬂ) —s—0 0. This allows us to consider a 0 < §; < ﬁ

such that ]P( 1+1 5272;711) < m We set § := min0<i<2n 1 (5 > 0 and

forall 0 <3< 2” —1,welet L; := L it and L] := L i i+1_s. In addition,

L, := Lon := {lsyp = 1}. These deﬁmtlons are illustrated in Figure 2.1. With
these choices, we have, for all 0 <7 < 2™:

1

N < !
]P)<LZ) — P(LZ) + 2n+1(2n + 1)2

(2.2)

Furthermore:
o1 . .
) 141
=0

Hence, since by Proposition 2.6, almost-surely the superior and inferior limits
coincide, we have:

—P(Q“)ZQHZIP<{2;§I.M} {I5up<i;1})+ﬂ”( lsup = 1}) = Z]P’

i=0
We obtain: o
> P(Li) =1 (2.3)
i=0
Finally, for all 1 <4 < 2"—1, we consider the subsets J; := |55 — g, ol —%[,

Jo =0, 5 — %[, and Jon 1= [1 — g, 1]. These definitions are also illustrated in

Figure 2.1. With these choices, the J; form a partition of the set [0, 1], i.e

on

1] =4 (2.4)
i=0
Let 0 <4 < 2". By definition of the inferior and superior limits, we have:

IEN k>1
Hence: P(L}) = P(L; N Ujen My V (K, i) = zl_igloP(L; N> V (K, Ji)) by

monotone continuity of the probability. Let us consider some [; € N such that:

follows that, for all 0 < i < 2™:
/ / 1
PV, J) 2P| Lin (Y V(kJ) | 2PL}) = sgpor (2.5)

2n+1/9n
e 2 (2n +1)
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Values of v{ E Sk 5k > |

JO Jl J2 JS J4
E — — — H—
Valuesof )" [y "6 Ly T8 oLy T8 o Ly T oL
liminf, limsup oF 3 3 ¥ A
Ly 1 Ly 2 Ly 3 Ls Ly
4 4 4

Figure 2.1: An illustration of the definitions of L;, L, and J; from the
proof of Proposition 2.9 in the case where n = 2.

Let 0 < ¢ < 2", We want to establish the following upper bound on
P(V (1, J;)):

1
P(V (I, Ji) < P(L}) + 5o 2.
We have:
27’1
L= ZP(Lj) by Equation (2.3)
j=0
2m 1 on 1
!/ _ / .
= jz:% <P(LJ’) + 2n+1(2n+1)2> = ]Z:;P(Lj) + 2 (20 1 1) by Equation (2.2)
2" ) )
< P(L] P(V (L, J; by Equation (2.5
<P(L}) +j:%;;i( V1, J5)) + S2ti(an § 1)) + (2 1) y Equation (2.5)
2" 1
< P(L] , - -
<P(L)+ Z BV, T7) + @D
J=0,j#1
1
= ! — . - .
=P(Ly) + (1 =P(V(I, J;))) + (27 + 1) by Equation (2.4)

Overall, we do obtain Equation 2.6. Hence, denoting V; := v[Q!] C [0,1], by
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Lemma 2.7 for the first equality, we have:

o
v(e) <Y Plp)vlp)=> Y PV(I{z}) = by Equation (2.4)

peEQ! i=0 z€J;NV,
S i+1
< Z Z P(V(l,{x})) - ( o > by definition of J;
1=0 z€J;NV;
2" ,
1+1 ..
= Z]P’(V(l, Ji)) - ( o > by definition of V' (I, J;)
=0
< i1
= PV (I, J;)) - on + on by Equation (2.4)
=0
= 1 i1
< P(L! — | =+ = by Equati 2.6
_i:O( ( 1)+2n<2n+1)> 2n+2n y Equation (2.6)
2" .on
1 1 1
< P(L)) - — - L
>3 (L)) - 5 +¢Z;2n(2"+1) + o
= P2
<> P(Li)- on + on since L, C L;
1=0
> i P2
_ -1} v v,z .
= 2 P (fn [{ on H) on + on by Proposition 2.6
2
=E[fa] + on < E[lsup] + ¢ by Equation (2.1)
As this holds for all positive € > 0, it follows that v(e) < E [lgyp]. O

2.4 The proof

This section is devoted to the proof of Theorem 2.3. The first step we take
is to define non-decreasing valuations in concurrent games and to link them to
non-decreasing valuations in stochastic trees so that we can use the results of
the previous Section 2.3.

In concurrent arenas, we consider valuations of the finite sequences of
states. Such valuations induce games in normal forms after each finite se-
quence of states. The notion of being non-decreasing (or non-increasing) can
be defined with respect to different conditions. Specifically, a valuation is non-
decreasing w.r.t. Player A if, after each finite sequence of states p € Q*, the
value w.r.t. Player A of the game in normal form induced by the valuation
after p is at least v(p). We could also define non-decreasing valuation w.r.t.
to a Player-B strategy. Symmetrically, we define the notion of non-increasing
valuation w.r.t. Player B or a Player-A strategy. Before considering the for-
mal definitions of non-decreasing and non-increasing valuations, let us define
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below the notion of guard, that is w.r.t. what we consider the values of local
interactions.

Definition 2.4 (Guard). Consider an arbitrary concurrent arena C. We let
Guarde = Guardé‘ W Guard? where Guardé is the set of Player-A guards with
Guard? := {A} US§ and Guardg is the set of Player-B guards with Guardg :=
{B} US§. Furthermore, for all gd € Guardc, we let Opnt(gd) be the set of
strategies to be considered for the opponent with guard gd. That is:

S¢  ifgd=A
Opnt(gd) := <S¢  ifgd =B
{s} ifgd=seS§USE

Finally, for all gd € Guarde and m € Q%, we let gd(w) := gd if gd € {A, B} and
gd(m) := sa(m) if gd = sp € S§ and gd(7) := sg(m) if gd = sg € S§.

Remark 2.3. A quick remark on the terminologies Player-A guard and
Player-B guard. A Player-A guard gd € Guarde tells what is the game that
Player-A is playing. If gd = A, then Player A tries to maximize the expected
value of the payoff function f against all Player-B strategies (that is against all
strategies in Opnt(A) = S§), whereas if gd = sg € S§, Player A tries to max-
imize the expected value of the payoff function against the Player-B strategy
sg (that is against all strategies in Opnt(sg) = {sg}). The situation is similar
at the local level, with game forms.

In the following, in Page 84, we will informally motivate why we use guards,
but we first need to define important objects.

We define formally the notions of non-decreasing and non-increasing valu-
ations w.r.t. guards.

Definition 2.5 (Non-decreasing valuation in concurrent arenas). Consider a
concurrent arena C and a valuation v : QT — [0,1]. For all p € Q, we denote
by v? : @ — [0, 1] the valuation such that, for all ¢ € Q, v°(q) := v(p-q) € [0,1].

Consider a Player-A guard gd € Guardé. We say that the valuation v :
Q" — [0,1] is non-decreasing w.r.t. gd if, for all p € Q, we have v(p) <
val[(F(pr), v”)][gd(p)].

Symmetrically, for all Player-B guards gd € Guardg , we say that the val-
uation v : QT — [0,1] is non-increasing w.r.t. gd if, for all p € QT, we have
v(p) = val[(F(pr), v”)][gd(p)].

We can now define what it means for a strategy to be dominating a valu-
ation w.r.t. a guard.

Definition 2.6 (Dominating a valuation). Consider a concurrent arena C and
a Player-A guard gd € Guardé. A Player-A strategy sp dominates a valuation
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v:Qt —[0,1] w.r.t. gd if, for all p € Q*, we have:

v(p) < val[(F(me), v”)](sa(p)) ifgd = A
v(p) < out[(F(mi),v")(salp),s6(p))  ifgd =ss € Sg

In particular, the valuation v is non-decreasing w.r.t. guard gd. This is defined
symmetrically for Player B.

It fact, in a concurrent arena, when a Player-A strategy dominates a valu-
ation v, in stochastic trees that can be induced by this strategy, the valuation
v is non-decreasing. This is stated in the lemma below.

Lemma 2.10. Consider an arbitrary concurrent arena C. Let gd € Guardé be
a Player-A guard and sp € Si be a Player-A strategy dominating a valuation
v: QT — [0,1] w.r.t. gd. For all Player-B strategies sg € Opnt(gd), the
valuation v is non-decreasing in the induced stochastic tree T4,

Symmetrically, let gd € Guardg’ be a Player-B guard and sg € S% be a
Player-B strategy dominating a valuation v : QT — [0,1] w.r.t. gd. For all
Player-A strategies sn € Opnt(gd), the valuation v is non-increasing in the
induced stochastic tree Tg**®.

Proof. We prove the result for Player A, the case of Player B being symmetrical.
Let us denote PP by P. Let ¢ € Q and p € Q*. Then, we have, by
Lemma 1.10 (linearity games in normal form) and by Definition 1.29 of P:

D Peold) - v(p-d') =D out[(Fpw),qd)(salq- p).se(q- p)) - v (p-q)

qeqQ q7eqQ

= out[(F(pi), v*”)](salq - p),s8(q - p))
(= val[(F(pr), v"?)](salq - p)))
> v(p)

Recall that ¢’ may be seen as a distribution in D(Q) that maps ¢’ to 1. Further-
more, the last inequality comes from the fact that the strategy sp dominates
the valuation v w.r.t. gd (the inequality in parenthesis may be read if gd = A).
Hence v is non-decreasing (recall Definition 2.3) in 774, O

However, given a Player-A guard gd € Guard’é7 for a valuation v non-
decreasing w.r.t. gd in an arena, there does not always exist a Player-A strategy
dominating v w.r.t. gd. This is due to the fact that the local interactions in
that arena may not be maximizable. However, for all positive ¢ > 0, the
valuation v can be modified into an “e-close” valuation for which there is a
Player-A dominating strategy sa. Furthermore, if the valuation v is (U, m)-
uniform for a uniformizing pair (U, m), then the Player-A strategy sa can also
be chosen (U, m)-uniform. This is formally stated below.
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Lemma 2.11 (Proof 2.7.3). Consider an arbitrary concurrent arena C suprem-
ized w.r.t. Player A by a collection (S )qecq of sets of GF-strategies. Consider a
Player-A guard gd € Guard?. Let v: Qt — [0,1] be a valuation non-decreasing
w.r.t. gd that is (U, m)-uniform for a uniformizing pair (U,m). Let € > 0 be
a positive real. Then, the valuation v. : Q* — [0, 1] such that, for all p € Q,
we have ve(p) 1= max(v(p) — 7=, 0) is such that:

1.v—e<v. <
2. it is (U, m)-uniform;

3. there is a Player-A (U, m)-uniform strategy sa generated by (SqA)qEQ
dominating w.r.t. gd the valuation v..

This is symmetrical for Player B and a non-increasing valuation.

2.4.1 . Winning valuations and e-optimal strategies

There are two main ideas in the proof of Theorem 2.3. The first idea is
the following. Consider Proposition 2.9. It states that in a stochastic tree
with a non-decreasing valuation, the value of a finite path is less than or
equal to the expected value of the (superior) limit of this valuation from that
path. In a game G from a state gop and for a value a € [0,1], consider a
valuation v : Q* — [0, 1] ensuring the following: 1) it is non-decreasing w.r.t
the guard A in the arena C, 2) v(qp) = a and 3) the superior limit w.r.t. v of
all infinite paths, from qo, is less than or equal to their values w.r.t. the payoff
function f. Then, assume that there is a Player-A strategy sa dominating
this valuation. For all Player-B strategies sg € SCB, from ¢, in the stochastic
tree 77**® induced by game G by sa,sg, the expected value of the (superior)
limit of v is less than or equal to the expected value of f, by 3). Furthermore,
Proposition 2.9 and 1) ensure that the value of ¢p w.r.t. the valuation v — i.e.
v(qo) = «, by 2) — is less than or equal to expected value of the (superior)
limit of v. Overall, the value of such a Player-A strategy sa dominating the
valuation v would be at least a (from qp). We will call such a valuation v a
winning valuation (for Player A) w.r.t. (qo,«). Note that it can be defined
symmetrically for Player B. Such winning valuations are defined below in
Definition 2.7.

Definition 2.7 (Winning valuations). Consider a concurrent game G =
(C, f), a starting state qy and a value o € [0, 1]. Let gd € Guardé‘ be a Player-A
guard (resp. gd € Guard® be a Player-B guard). A valuation v : Q* — [0,1] is
winning w.r.t. (qo,«) and gd for Player A (resp. B) if:

e v(qo) = « and v is non-decreasing (resp. non-increasing) w.r.t. gd;

e for all paths p € qo - Q“, we have limsup,v(p<;) < fe(p)
(resp. limsup;v(p<i) > fe(p)).
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Note that, in the above definition, it is important to use a superior limit
for both players instead of a superior limit for Player A and an inferior limit for
Player B. We could instead have used an inferior limit for both players, but this
would modify the remainder of the chapter. Also, we could have only required
that a < v(qo), the interesting properties ensured by winning valuations would
still hold. Furthermore, recall that the function f¢ : Q¥ — [0, 1] takes into
account the stopping states of the game G, see Definition 1.30.

Lemma 2.12. Consider a concurrent game G supremized by a collection
(S%)qeq of GF-strategies w.r.t. Player A. Consider also a starting state qo € Q
and a value « € [0, 1]. Let gd € Guardé be a Player-A guard. Assume that there
is a winning valuation v : Q* — [0,1] w.r.t. (qo,«) and gd for Player A that
is (U, m)-uniform for a uniformizing pair (U, m). Then, for all € > 0, Player A
has a (U, m)-uniform strategy generated by (S3)qeq whose value against any
Player-B strategy in Opnt(gd) is at least a — ¢ from qo.
This is symmetrical for Player B.

Proof. Let v: QT — [0,1] be such a winning (U, m)-uniform valuation w.r.t.
(go, ) and gd for Player A. Let ¢ > 0. Consider the valuation v. from
Lemma 2.11. It is non-decreasing w.r.t. gd and such that v — ¢ < v, < v,
hence a — ¢ < v(qo) — € < ve(qp). Furthermore, it ensures that there is a
(U, m)-uniform Player-A strategy s. generated by (S3)qe@ dominating it w.r.t.
gd. Consider now a Player B strategy sg € Opnt(gd), the stochastic tree 775
induced by both strategies s. and sg and the valuation v : QT — [0, 1] in that
stochastic tree. Since the strategy s. dominates v. w.r.t. gd, it follows that
the valuation v, is non-decreasing in the stochastic tree 7;5758 by Lemma 2.10.
In particular, it is non-decreasing from ¢y. Hence, by Proposition 2.9, we
have v-(qo) = (ve)®(e) < EZi;OB[Iimsup(vs)qo]. Since v, < v, it follows that
limsup(,,ya0 < limsup,q. Furthermore, by assumption, for all paths p € go-Q",
we have limsup, (p) < fe(p). Tt follows that EZ 2 ® [limsup(,,ya] < EF2°[(fe)®].
Overall: a — ¢ < EZ2®[(fc)®]. As this holds for all Player-B strategies sg €
Opnt(gd), the (U, m)-uniform Player-A strategy s. generated by (S3)scq has
value at least o — € from qp. O

2.4.2 . Existence of winning valuations

High level explanations: with valuable local interactions. The
question is now why should there exist such winning valuations. This is where
the second idea comes into play. Let us first give the intuition in the case where
all local interactions are valuable, where the notion of guards is not used. This
is very close to the original idea by Martin. The idea is as follows: we are
going to define a standard deterministic win/lose turn-based game Gy, from
the concurrent game G such that the existence of winning strategies in Gip
relates to the existence of winning valuation in G. The way this game is played
is the following: the game starts at state (qo, ) with ag € [0, 1], it is Player
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A’s turn. She has at her disposal any valuation vy : @ — [0, 1] of the states
in @ such that the value of the game in normal form (F(qo), vo) is at least «ay.
The idea is that she promises that the value of these states is at least the value
she gives to them via the valuation vg. Then, Player B responds by choosing
a state ¢q1. In fact, Player B tries to show that Player A’s promise cannot be
kept: she tries to reach a state whose value w.r.t. the valuation vy is higher
than its actual value. We then visit a new Player-A state (qo - q1, @1) where
a1 := vp(q1). The process then repeats itself indefinitely: Player A chooses a
valuation of the next states, while Player B picks the next state to visit. This
induces an infinite path ((7<;, @) - (7<i, v;))ien. Player A wins this win/lose
game if the superior limit of the values (a;);en is at most the value of the
infinite path m € qg - Q¥ w.r.t. the payoff function fe. In other words, Player
B loses if she is not able to show that Player A broke her promise, i.e. Player
A has not over-estimated the values of the states visited.

The turn-based game Gy, we have described is deterministic (and the ob-
jective is Borel), hence Borel determinacy (i.e. Theorem 2.1) ensures that, for
all u € [0,1], either of the players have a winning strategy in the game Gy,
from the state (qo,u). Furthermore, the higher u is, the more difficult it is for
Player A to win from the state (go,u). This means that there is a threshold
a(qo) € [0,1] such that, for all u < a(qp), Player A has a winning strategy from
the state (qo,u) whereas, for all u > «a(qp), Player B has a winning strategy
from the state (qo,w). Then, for all £ > 0, from a Player-A winning strategy
in the game Gy, from the state (qo, a(go) — €) we are able to build a Player-A
winning valuation w.r.t. (qo,a(go) — ¢). This is in fact rather straightforward
from the definition of the game Gy, and also because a Player-A strategy in the
game Gy, chooses values for the states. Almost symmetrically, from a Player-B
winning strategy in the game Gy, from the state (qo, @(go) + ) we are able
to build a Player-B winning valuation w.r.t. (qo,a(qo) + 2 - €). This, however
is less direct. This is due to the fact that, contrary to Player-A strategies,
Player-B strategies in the game Gy, do not choose values for the states. This
shows that the value of the state qp (in the game G) is at least and at most
a(qo), it is therefore equal to the threshold a(qp).

When local interactions are not valuable: the need for guards.
Let us now consider the case where the local interactions are not necessarily
valuable. We will now use guards, in particular when considering winning val-
uations. We are trying to show result (1.a). In that case, the above-described
turn-based game Gy, is not well-defined anymore. Indeed, when considering
the valuations vy : @ — [0, 1] of the states allowed to Player A at a state
(go, ap), we can no longer talk about the value of the game in normal form
(F(qo),v0) since it does not exist, a priori. A possible way to fix this is to con-
sider a new turn-based game gﬁj in which we consider the Player-A value of the
games in normal form. In that new turn-based game, that mimics the game
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Gib, the valuations vg : @ — [0, 1] of the states allowed to Player A at a state
(qo, o) are the ones such that ag is at least the Player-A value of the game
in normal form (F(qo),vo). Otherwise, the game Gy, is left unchanged. Then,
as before, from all states o, there is a threshold a®(qg) € [0, 1] such that for
all u < a(go,A), Player A has a winning strategy from the state (qo,u) in G4
whereas, for all v > «a(qp,A), Player B has a winning strategy from the state
(qo,u) in ,ﬁJ. Furthermore, as before, for all € > 0, from a Player-A winning
strategy in the game G4 from the state (go, a(qo, A) —€) we are able to build a
Player-A winning valuation ve w.r.t. (go,@(qo,A) — ) and A. Furthermore, we
will then be able to build a Player-A strategy si of value at least a(gg, A) —2-¢
from ¢g that ensures the properties stated in result (1.a) by using Lemma 2.11.
However, we are no longer able to do the (almost) symmetrical thing for Player
B. This is in fact unsurprising since there is no reason for a(qp, A) to be equal
to the value of the state go*. However, we can hope (and it is in fact the
case) that a(qo,A) is equal to the Player-A value of the state gy in the game
G. This would show that the Player-A strategy S/Zf mentioned above is indeed
2e-optimal from the state gqg. We have already shown that the Player-A value
of the state g is at least «(qop, A). However, the question is now: how do we
prove that it is at most a/(qo, A)?

We cannot exhibit Player-B strategies of value arbitrarily close to a(qo, A),
as we did with valuable local interactions, since a(qp, A) is a priori not the value
of the state go. The only way (that we can think of) is to show that for any
Player-A strategy sa, the value of the strategy sa from qg is at most a(qo, A).
However, we need to link the value of the strategy sa from go with a(ggp, A). Our
idea is then to define yet another turn-based game gfg that mimics the game gﬁ)
but changes the local condition: in that game, the valuations vy : @ — [0, 1] of
the states allowed to Player A at a state (qo, ag) are the ones such that oy is at
most the value of the GF-strategy sa(go) in the game in normal form (F(qo), vo).
Then, as before, from all states qo, there is a threshold a®A(qy) € [0,1] such
that for all u < a(qo,sa), Player A has a winning strategy from the state (g, u)
in G2 whereas, for all u > a(qo,sa), Player B has a winning strategy from the
state (qo,u) in tsg‘. Furthermore, it now holds that, for all € > 0, from a
Player-B winning strategy in the game G;p from the state (go, @(go,sa) + €)
we are able to build a Player-B winning valuation w.r.t. (qo,®(qo,sa) +2 - ¢)
and sa. This shows that the sa-value of the state go is at most a(qop,sa). In
addition, from any state (g, u), if Player A wins in the game G}, then she also
wins in the game gﬁ,. This is due to the fact that the local condition in ts@
allows less choices for Player A than the local condition in Qﬁ). Hence, we have
a(qo,sa) < a(qo,A). This shows what we wanted: all Player-A strategies have
value at most (qo, a(qo,A)) from go.

4Otherwise, it would imply that any concurrent game has a value, regardless of
the local interactions involved, which we know is not true
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Overall, in order to show result (1.a) for Player A, we define several turn-
based games: first, the game Q,ﬁ), similar to the game Gy, except that the
valuations allowed to Player A are determined by the Player-A value of the
game in normal forms. By exhibiting Player-A winning valuations w.r.t. A,
we can then show that the Player-A value of any state qo is at least a(qo, A).
To show that a(qo,A) is actually equal to the Player-A value of the state qo,
we define, for all Player-A strategies sa € Sg, the turn-based game G;f. It
is also similar to the game Gy, except that the valuations allowed to Player
A are determined by the value, in games in normal form, of the Player-A
GF-strategies obtained from the strategy sa. By exhibiting Player-B winning
valuations w.r.t. sa, we can then show that the sp-value of any state ¢q is
at most «(qo,sa) which is less than or equal to a(go,A). In terms of guards,
we have that for the Player-A guard gd = A, we exhibit Player-A strategies,
whereas for the Player-B guard gd = spa, we exhibit Player-B strategies.

In the following, we also define turn-based games for the guards gd = B
and gd =sg € S% to do the same for Player B. Furthermore, we will handle at
the same time all Player-A guards, by exhibiting winning valuations for Player
A and all Player-B guards, by exhibiting winning valuations for Player B.

Formal definitions and proofs. For all guards gd € Guard¢, we formally
define the game gtg;’ :

Definition 2.8. Consider an arbitrary concurrent game G and a guard gd €
Guardc. We build the following deterministic turn-based win/lose game thbd =
(C&! Wip(f)). Note that this arena C& need not be colored®, and the winning
objective Wi (f) C (Qu)“ is directly given as a Borel subset of infinite paths.
Recalling Definition 1.11 for the definition of turn-based game forms, we let
Ctg: = (Qup, F&Y) be such that:

* Qw = QAYQB;
o Qa:={(ma)|meQ", aecl0,1]} is the set of Player-A states;

e Qg :={(mh) | meQt, h:Q — [0,1]} is the set of Player-B states;

e For all Player-A states (7, o) € Qa, F&((m,)) := <Move§j\d (m, ), {*}, @B, 0R)

with
Moveid(ﬂ,a) :={h:Q —[0,1] | val[(F(mr), h)][gd(7)] > a}

and o} : Moveid(w, a) — Qg such that, for all h € Moveid(ﬂ,a), we
have o (h) == (m,h) € Q.

If we want the definition to exactly fit in the formalism of Definition 1.23, we
could consider Qyy, itself as set of colors and the identity function as coloring function.
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D ®1D rx 1

Figure 2.2: A deterministic concur- Figure 2.3: The local interaction
rent reachability game G = (C,TW) at state ¢y in the game of Fig-
where Player A wants to reach the ure 2.2 valued with the valuation
target {T}. h:{qg—z, T 1 1L+ 0}

e For all Player-B states (7, h) € Qg, F&((m, h)) := ({*}, Moveg, Qa, gg’h>
with
Moveg := @

and Qg : Moveg — Qa such that, for all ¢ € Moveg, we have gg’h(q) =
(7T g, h(Q)) € QA-

o Wip(f) := {(m0,a0)(m0, ho)- (<1, 1) -+ - € (Qa-QB)"“ | limsup(ay)ien <
fe(m)} € (Qa-QB)%.

Note that the winning set Wy, (f) is Borel since the functions fe¢ and the
superior limit limsup are measurable.

Note that the different games gﬁf indexed by gd only differ by their sets of
moves available to Player A at her states.

Example 2.1. Consider the standard concurrent game G = (C,W) from
Figure 2.2. Note that all local interactions are finite and therefore valuable.
Hence, gf}, = gt% (we will discuss it again below in Observation 2.1). The game
G is win/lose and Player A wins if and only if the state T is reached. (Recall the
reachability objective from Definition 1.25.) Hence, Player B wants to either
loop indefinitely on qq or reach the state L. Let us exemplify Definition 2.8 on
this game. Part of the arena Cﬁ; = CE) is represented in Figure 2.4. Player-A
states are rectangle-shaped, whereas Player-B states are hexagon-shaped®.
From the state (qo, «), Player A chooses a valuation h of successor states.
In what is depicted in Figure 2.4, we only drew valuations h such that h(T) =1
and h(L) = 0. The reason for that is the following: both L and T are self-
looping states. Furthermore, reaching and looping on T is winning for Player
A while reaching and looping on qq is loosing for Player A . Hence, Player
A can safely value T with 1 since that would not lead to her overestimating
its value. However, she cannot” value L with a positive value x > 0. Indeed,

6Note that in Definition 2.8, Player-B states are pairs of state and valuation of
successor states. We did not indicate the state (which is gg) to simplify our drawing.
"More precisely, she can but she should not if she wants to win.
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Figure 2.4: A part of the turn-based arena Cy, from Definition 2.8 built
from the concurrent reachability game of Figure 2.2.

in that case by definition of Moveid(J_, -), it would imply that the superior
limit of the values seen is at least x whereas the target is not reached (i.e. the
corresponding infinite path is losing, in terms of payoff functions, it has value
0). In other words the value of | is 0, hence giving it a positive value would
be overestimating this value. Alternatively, T could be stopping state of value
1 and 1 could be a stopping state of value 0. Furthermore, note that if the
game is at a state (q,-) € Qa, for any state ¢’ € Q such that ¢’ does not appear
in F(q), then Player A should always choose a valuation h such that h(q') :=0
since it is always easier to win for her if the value of the state is smaller.

The only relevant choice for Player A remains in how to value qo. We have
depicted several possibilities (only for o > %, otherwise % < 0). In that case,
%. Indeed, one can check
that in the game in normal form (F(qo),h) with h : {go — =, T — 1, L — 0}

1

— that is depicted in Figure 2.3 — we have val[(F(q),h)] = 5= . Hence,

val[(F(qo), h)] > « if and only if x > 22=1 In particular, if « < 1, then
x = 0 works. Furthermore, the greater « is, the greater x must be. This

can be informally seen at the bottom of Figure 2.4 between states (qo, 22-1)

and (qo, %) Since w > 20;;1’ Player A has more possibilities from

the minimum that Player A can value qq is equal to

(qo, 20?7_1) than from (qo, W), as represented in the arrows exiting from
these states.

We make a central observation below. Note that it is only in the proof of

88



this observation that we use Theorem 2.1 (Borel determinacy: the existence of
winning strategies in deterministic standard turn-based win/lose games).

Observation 2.1. Consider the arbitrary concurrent game G, a guard gd €
Guarde and a starting state qo. For all Borel winning conditions W C (Qa -
Qg)“, there is a value a8 (qg, W) € [0, 1], such that, for all ap < a8 (qo, W) <
ag, Player A has a winning strategy from (qo, aa) and Player B has a winning
strategy from (qo,ag) in the game <Ctg:, W). This value a&(qo, W) is called
the threshold of the parameterized game <CtggJI ,W) from qo. Furthermore, for
all sp € Sg and sg € S(é:

a* (g0, W) < a™(qo, W) < aB(qo, W) < a8 (g, W)

with a”(qo, W) = aB(qo, W) as soon as all local interactions are valuable.
Finally, in the game gﬁf = (Ctg;j , Wi (f)), Player A has a winning strategy
from (qo, 0).

Proof. Consider two thresholds o < o'. Then, in the arena Ctg,f , from (qo, @)
Player A has less strategies available than from (qo, ') while the strategies
available to Player B are the same. Since from every state, either of the play-
ers has winning strategy — by Theorem 2.1, as we consider a deterministic
win/lose turn-based game with a Borel objective — the first result follows.
Furthermore, for all m € Q" and h : Q — [0, 1], letting F := F(m), we have:

val[(F, h)][sa(m)] < val[(F, W][A] < val[(F, 1)][B] < val[{(F, h)][sa()]

In addition, if F is valuable, we have val[(F, h)][A] = val[(F, h)][B] and MoveA (r, o) =
MOVEE(T[’,O[). The second result follows. Finally, in the game gtg;' , from the
state (qo,0), Player A has the winning strategy consisting in always playing
the valuation 0 mapping every state to 0, ensuring that the superior limit is

less than or equal to f. O

Example 2.2. Let us compute the threshold o (qo, Wi (W)) = aB(qo, Wi, (W)
in the game of Figure 2.4. Note that since W — the objective in the original
concurrent game G — is win/lose, the objective Wy, (W) in the turn-based
game Gy, can be reformulated as follows: an infinite path p € (Qa - Q)% is
in W (W) if and only if either a state (T,-) € Qa Is seen or the limit of the
values in states of the shape (qf, ) € Qa is 0. A similar reformulation will be
used in Subsection 2.4.3 to show result (1.b) of Theorem 2.3.

As mentioned in Example 2.1, if a < %, Player A can value qo with 0 and
ensure winning. Indeed, Player B may go to (qo,0) € Qa or (L,0) € Qa and
in both cases Player A will win as mentioned in Observation 2.1. Player B
may also go to (T,1) and in that case Player A will also win. Now, consider
some 1 < a < 1. Let g : [5,1) — [0,1] be such that, for all z € [3,1), we

2
have g(x) = 295;1. From (qo, ), Player A first chooses a valuation hgy such
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that ho(qo) := g(«). Then if Player B has chosen to come back to qy, Player
A chooses a valuation hy such that hi(qy) := g o g(«). This is repeated until a
state (qy,x) € Qa is reached with x < %, after which Player A values qy with
0. (Note that for all z € [§,1), there is some n € N such that g™ (z) < 3,
where ¢g\") refers to the composition n times of g.) Hence, o (qo, Wyp(W)) =
aB(qo, Wip(W)) = 1. However, note that when o = 1, it is Player B who has
a winning strategy from (qo,«). Player A has to value qo with 1 indefinitely,
as depicted in Figure 2.4. Hence, Player B can loop indefinitely on qy (the
state (g5, 1) refers to the set of states {(qg,1) | n > 2}) while ensuring that

the superior limit is positive (in fact, it is equal to 1).

Crucially, the existence of winning strategies in gtg;’ for a starting state
(qo, @) from go € @ and « € [0, 1] implies the existence of winning valuations
w.r.t. (go,) and gd in the game G. Note that although this holds as is for
Player A, we prove a slightly weaker statement for Player B. Furthermore, the
proof for Player A is quite straightforward, while it is harder for Player B. In
addition, with these lemmas, we are able to show results (1.a) and (2) from
Theorem 2.3. We will use an additional lemma — that we discuss in the next
subsection — to obtain result (1.b).

Lemma 2.13. Consider an arbitrary concurrent game G, a starting state qg
and a value « € [0,1]. Let gd € Guardé be a Player-A guard. Assume that
Player A has a winning (deterministic) strategy in the game gﬁf from the state
(go, ). Then, there is a valuation v : QT — [0, 1] that is winning w.r.t. (qo, )
and gd for Player A.

Before proving this lemma, we first introduce below in Definition 2.9 a
useful function mapping finite paths C to finite paths in Cy, that are compatible
with a Player-A strategy in Cy, from a given starting state.

Definition 2.9 (Map to finite paths compatible with a strategy). Consider

an arbitrary concurrent arena C, a Player-A guard gd € Guardé and the turn-

gd
based arena Ctgl;j from Definition 2.8. For all Player-A strategies sp € Si"’ in
the turn-based arena Ctgf and a starting state (go,) € Qa. We let p§§°’°‘) :

qo- Q" = (Qa - Qp)* - Qa be defined inductively by, for all T € qo - Q*:

(q0,) (q0,)

(go,) L (q(]v a) ifm= q0
psy () = (qo,) o
P (p) - (.50 0 BV (0) - (w5 0 P (p) (@) if 7= p-g

This function is then extended to infinite paths (p&y®)* : qo-Q“ — (Qa-QB)%.

Observation 2.2. For all concurrent arenas C, Player-A guards gd € Guardé
and Player-A strategies sa in the turn-based arena Cﬁf , for all infinite paths
p € qo - Q¥, the infinite path (p&*)“(p) € (Qa - Q)* is compatible with
the strategy sa from the state (qo,): (p&®)“(p) € CPe, (g0,0)(sA). (Recall
Definition 1.33.)
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Let us proceed to the proof of Lemma, 2.13.

Proof. Consider a Player-A winning strategy sa in the game gﬁf‘ from the state
(qo, ). Welet p := p§Z°’°“). We define inductively a valuation v : go-Q* — [0, 1]

in the following way:
e v(q) =
e forall p € qp- Q*, we let vP :=sp0p(p): Q — [0,1].

Furthermore, for all p € QT \ qo - Q*, we set v(p) := 0. With this definition,
this valuation v ensures the property:

Vp € qo-Q", p(p) = (p,v(p))

Indeed, p(qo) = (g0, ) = (qo,v(qo)). Furthermore, for all p-q € qo - QT, we
have p(p- @)t = (- g,sn o p(p)(q)) = (p- ¢ v(p- q))-

Let us show that this valuation is winning for Player A w.r.t. (go,«) and
gd in the game G. First, it is non-decreasing w.r.t. gd. Indeed, this holds
for finite paths in QT \ go - Q* and for all finite paths p € qo - Q*, we have
sa 0 p(p) € Movel (p(p)ir) = Move§ ((p, v(p))). That is, v(p) < val[(F(py), sa 0
p(p))lled(p)] = val[(F(pr),v”)][gd(p)]. In addition, the valuation v ensures
that v(qo) = a. Furthermore, consider a path p € go - @“. The infinite path
p(p) is compatible with the strategy sa from (go, ) in gﬁf as mentioned in
Observation 2.2. Since this strategy is winning, it follows that p(p) € W. Since
for all i € N, we have p(p=");; = (p<i, v(p=?)), it follows that limsup v(p=?) <

fe(p). As this holds for all paths p € g - Q“, it follows that the valuation v is
winning w.r.t. (qo, ) and gd for Player A. O

Lemma 2.14 below is the analogue of Lemma 2.13 for Player B.

Lemma 2.14. Consider an arbitrary concurrent game G, a starting state qo
and a value a € [0,1]. Let gd € Guardg be a Player-B guard. Assume that
Player B has a winning (deterministic) strategy in the game ths from the state
(go, ). Then, for all 0 < e < 1 — «, there is a valuation v : Q% — [0,1] that
is winning for Player B w.r.t. (qo,a + ¢) and gd.

The proof is not symmetric compared to the proof of Lemma 2.13. Here, it
is harder to come up with the appropriate valuation since a Player-B winning
strategy sg in the game gﬁf does not choose values for the states but pick states
once Player A has chosen a value for them. The idea to define a value for a
state ¢ is to consider the infimum over the values that Player A can choose for
q that makes the Player-B winning strategy sg go to q.

Proof. Consider a Player-B winning strategy sg from the state (go, ) in the
game thl;j. Let 0 < e < 1—a. We want to define a valuation v : QT — [0, 1].
First, for all p € QT \ qo - Q*, we let v(p) := 1. Then, we define inductively
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in parallel the valuation v on gp - Q@* and a map p: qo- Q* — (Qa - Q)" - Qa
ensuring the following, for all p € ¢o - Q*:

a. if v(p) =1 then for all 7 € Q*, we have v(p- ) = 1;

b. if v(p) < 1, then p(p) € (Qa - @B)* - Qa is compatible with the strategy
sg from (qo, @).

We let v(qo) := a + ¢ and p(qo) := (qo, @) € Qa. Now, assume that v and
p are both defined on a path p € qp - Q*. First, if v(p) = 1, then for all ¢ € Q,
we set v(p - q) := 1, thus ensuring property a. Assume now that v(p) < 1. For
all states ¢ € Q, we define the set of valuations that Player A can choose that
make the Player-B strategy sg go to ¢:

H,(q) := {h € Move' (p(p)) | s&(p(p) - (p. 1)) = ¢}

Then, we define a function h, : Q@ — [0,1] such that, for all states ¢ € Q:

hp(q) = inf{h(q) | h € Hp(q)}

Furthermore H,(q) = 0 means that regardless of what Player A chooses as
value for the state ¢, the Player-B winning strategy sg never goes to q. Hence,
we set h,(q) := 1. Then, we set:

3

P— mi
vP mm<h9+2\p\’

1) L Q — [0, 1] (2.7)
Let us now define p(p - q) € (Qa - Q)" - Qa. If v(p-q) = 1, then we let
p(p-q) = plp)-(p,1)-(p-q1). Assume now that v(p-¢q) < 1. That is,
v(p-q) = hy(q) + 557 < 1 and Hy(q) # 0. In that case, we consider some
hp € Hy such that hi(q) < h,(q) + 551 = v(p- @) — 5. Then, we define:

2lpl+1 "
p(p-q) =p(p) - (p,h}) - (q.h}(q))

Since we have h} € H/, it follows that the finite path p(p - q) is compatible
with the strategy sg. The valuation v and the map p are now entirely defined
and satisfy properties a. and b. In fact, we obtain for all p € g - Q¥, that
either:

e there is some i € N such that, for all j > 4, we have v(p;) = 1; or

e the infinite path p¥(p) € (Qa - Qp)“ is compatible with the strategy sg
from the state (qo, @).

Let us show that the valuation v is non-increasing w.r.t. gd. This holds for
paths in Q1 \qo-Q*. Consider some p € go-Q*. Ifv(p) = 1, it is straightforward
that v(p) > val[(F(pr),v”)][gd(p)]. Assume now that v(p) < 1 and let us write
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p =7y -q. Wehave p(p)r = (p, hg,(q)) with hg,(q) < v(p) — 557 by definition
of hf.

Let us show that hqp,( ) > val[(F(
diction that 17, (q) < val[(F(pr), hy)]
let A}, : Q — [0,1] be such that A/, :
hence by Lemma 1.10, we have:

), hp)llgd(p)]. Assume towards a contra-
d(p)] — 0 for some positive § > 0. Then,
= max(0, h, —J). In that case, b}, > h,—0,

Ot
[

val[(F(p), 1,)]lgd(p)] = vall(F(pr), hp)]lgd(p)] =& = Iy (9)

It follows that A, € MovegAd (p(p)it). Consider now the state ¢’ € @ equal to
q = ss(p(p) - (p,h},)). In particular, we have hj, € H,(q'). Furthermore, it
is not possible that h’p(q’ ) = 0. Indeed, since p(p) is compatible with sg from
(90, ), the path p(p) - (p,h),) - (¢, h,(¢")) also is. However, Player A has a
winning strategy from any state (¢,0) € Qa for ¢ € @ (see Observation 2.1)
and the Player-B strategy sg is winning from (qo, «). Hence, h/(¢') > 0. That
is, h,(q') = hy(q") — 0 < hy(q'). This is in contradiction with the definition
of hy(q') = inf{h'(¢") | b € Hy(q')} since hj, € Hy(q'). In fact, we have
1 a) > wll(F(). ][]

Furthermore, v” — 2‘ r < h, by Equation 2.7. Recall also that v(p) — ﬁ >
h,(q). Hence, we obtain, Wlth Lemma 1.10:
< £
0(p) = 5 = (@) = vall () ) lgd ()] = vall(F(pre). v")] g9 (0)] — 57

That is, v(p) > val[(F(pi), v,)l[gd(p)]. As this holds for all p € go-Q*, it follows
that the valuation v is non-increasing w.r.t gd.

Consider now an infinite path p € qo - Q. If there is some ¢ € N such that
for all j > 4, we have v(p=7) = 1, it follows that limsup v(p=!) = 1 > f(p).
Otherwise, the infinite path p(p) € (Qa - @QB)“ is compatible with the winning
Player-B strategy sg from the state (go, a) with p(p) equal to:

p(p) = (po, ) - (po, hpy) - (p<1, Wt (p1)) - (p<1, h2,) - (p<as g% (p2)) -+

Therefore, since the Player-B strategy sg is winning from (qg, ), we have
limsup hzgl (pit1) > fe(p). Furthermore, for all i € N, we have v(p<; - pit1) >
hptt (piy1) by definition of hpZi'. Hence, limsup v(p<it1) > fe(p). As this
holds for all paths p € qp - Q%, it follows that the valuation v is winning for

Player B w.r.t. (o, + ¢) and gd. O

We have now all the ingredients to prove results 1.a and 2 of Theorem 2.3.
A reader who wants to see the proof of that part of the theorem now can skip
the next subsection — which we need to prove result 1.b — go to Subsec-
tion 2.4.4 and read the corresponding part of the proof.
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2.4.3 . Win/lose objectives with finite representatives for (K, col) in @

In this subsection, we focus on how to prove result 1.b. From a high level
perspective, let us explain what we want to prove in this subsection. Consider
an arbitrary concurrent game G = (C, f) without stopping states. Then, the
payoff function f only depends on the colors seen in the game, not on the
exact sequence of states visited. Hence, it is natural to assume, that to play
almost-optimally, when they make a decision, the players only need to know
their current position and the sequence of colors seen, not the exact sequence
of states visited. This is what we show in this subsection. More precisely, we
prove a lemma that can then be used to prove this result. However, we are
not able to show it in all generality. We will use two additional assumptions:
first, that the game is win/lose (i.e. f[K“] C {0,1}), and second, that the pair
(K, col) has a finite representative. Let us first describe how we use this first
assumption. If the game is win/lose and without stopping states, the winning
condition Wip(f) can reformulated as follows: this consists in the set of infinite
paths in (Qa - @g)“ such that either the infinite sequence of states (in @) has
value 1 w.r.t. f (i.e. it is winning for Player A) or the infimum of the values
seen in states in Qg is 0. Consider now another objective W{ (f) that is the
set of infinite paths in (Qa - @)“ such that either the infinite sequence of
states (in @) has value 1 w.r.t. f (i.e. it is winning for Player A) or p visits a
state in Qa of value 0. In fact, with this slight modification, we do not make it
harder for Player A: o”(q, Wi (f)) < o’ (q, (f)). This is formally proved
in Lemma 2.15 below.

Let us first introduce some useful functions.

Definition 2.10. Consider an arbitrary concurrent arena C and the turn-
based arena Cﬁ;. We denote by Py C QIb the set of finite or infinite paths
visiting the value 0: P := {p € QIb | 3i < |pl, pi = (¢g,0) € Qa}.

Furthermore, we let val : (Qa-Qg)*-Qa — [0,1] andsta: (Qa-QB)*-Qa —
Q) be such that:

p = (40, @0) - (40, 0) -+ (an; @) € (Qa - QB)" - Qs {:;EZ; z g

We let also ¢q : (Qa- Q)" - Qa — QT and ¢p 1) : (Qa-QB)"-Qa — [0,1]" be
such that:
$Q(p) ==q-q---€Q"

Vp = ’ (qo, ho) - - - . T. ,
p = (20,20) - (90 ho) -+ € (Qa- W) - Qn {cb[o,n(p) =ag-ap--- €[0,1]

Let us now formally define this other winning condition for Player A in the
game Gyp.

Definition 2.11 (Another winning condition). Consider an arbitrary con-
current game G, the turn-based arena Cy, from Definition 2.8. We define the
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winning objective:

() == {(po,20) - (po.ho) -~ € (Qa- Q)" | fe(p) =1 or Ji € N, oy = 0}

We let G/, := (CR, W/, (f)) be the corresponding turn-based game.
With this definition, we have:

Lemma 2.15. Consider an arbitrary win/lose concurrent game G = (C, f)
without stopping states. Let gy € Q. Then: o”(go, Wan(f)) < o™ (g0, W}, (f))-

Proof sketch. For a := a™(qo, Wip(f)), we let 0 < € < a and we want to show
that o — e < a(go, W}, (f)). Consider a winning Player-A strategy sa in the
game G4 from the staring state (go,ox — §). Our goal is define a Player-A
strategy s that is winning from the state (go, @ — €) in the game G/,. To do
so, we will define this strategy s from sa by subtracting (when possible) /2
to all values of the states that it chooses. That way, for all infinite paths p
compatible with s, from (go, @ — €), there is going to be an infinite path p(p)
that is compatible with sp from (go,a — 5) such that the sequences of states
(in @) seen in p and p(p) are the same. Furthermore, if p never visits a state
in Qa of value 0, then the infimum of the values seen in p(p) is at least /2.
Therefore, since sa is winning G, from (go, @ — §), then s is winning in Gj,
from (qo, o — €). O

Let us now formally prove this lemma.

Proof. 1f a®(qo, Wi (f)) = 0, this straightforwardly holds. Assume now that
o™ (qo, Win(f)) # 0, which we denote by a := o™ (g, Wip(f)). Let 0 < & < cv.
Let us show that a—e < o (qo, W/,,(f)). Consider a winning Player-A strategy
sa in the game gtAb from the starting state (go,a — §).

Formally, we define inductively a Player-A strategy s, in the arena Ct’?) along
with a map p taking a finite path p in (Qa - @B)* - Qa \ Po that is compatible
with s, from (go,a — €) and returning a finite path p(p) € (Qa - QB)* - Qa
ensuring:

a. ¢g(p(p)) = ¢g(p), i.e. the finite sequence of states in @) seen is the same
in p(p) and p;

b. p(p) ¢ Po is compatible with the strategy sa from (go, @ — £/2);
c. val(p(p)) = val(p) +€/2;
d. for all p € (Qa - QB)* - Qa N Py compatible with sj, we have val(p) = 0;

e. for all p € (Qa - Qs)* - Qa \ Py compatible with s), we have sh(p) :=
max(sp o p(p) — 5,0) : @ — [0,1].
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Initially, we set p((go, —¢)) := (qo, @ —¢/2) and s ((go, «—¢)) := max(sa©
p(go, o —€) — 5,0) : Q@ — [0,1] thus ensuring properties a. — e.

Assume now that s, and p, for some n € N, are defined on paths of length
at most 2 -n + 1 while ensuring properties a. — e.. Consider a path

p=0"(m,s5(0) (7 d,sp(0)(a) € (Qa-QB)"™" - Qa

compatible with si. If p € Py, then by assumption val(p) = 0. Hence, we let
sa(p) == 0:Q — [0,1] € Movea(pyt) ensuring property d. Now, assume that
p ¢ Po. In that case, we have s, (p)(¢) > 0, that is si (p')(q) = sa o p(p")(q) —
5>0. Welet

p(p) = p(p) - (mysaop(p)) - (7 a;sa 0 p(p) (@) € (Qa-QB)" - Qa

thus ensuring properties a.-c. Furthermore, defining sj (p) := max(sa o p(p) —
5,0) : @ — [0,1] ensures property e. This concludes the definitions of the
strategy s and the map p.

Now, let us show that the strategy s, is winning in the game G|, from
the state (qo, — €). Consider some infinite path p € (Qa - @p)“ that is
compatible with sy in C4 from (go, — ). If p € Py, then p € W/ (f). Now,
assume that p ¢ Po. It follows that, for all i € N, we have p<; compatible
with si and p<; ¢ Po. The map p is therefore defined on all prefixes p<;
for i € N. Hence, we can consider the infinite path p(p) € (Qa - @s)“. By
property b., we have p(p) ¢ Py and p(p) compatible with the strategy sa from
the state (go,« — €/2). Furthermore, by property c., for all i € N, we have
Va|(p(p)ggi+1) = val(p(pggzqu)) = Va|(p§22‘+1) + 6/2 > 6/2. It follows that
limsup éj0,11(p(p)) > €/2 > 0. Since the strategy sa is winning from the state
(qo, @ — €/2) for the winning condition Wy, (f), we have p(p) € Wip(f). That
is, 0 < limsup ¢j911(p(p)) < fe(pq(p(p))). We can conclude that, since f is
win/lose and there are no stopping states, fe(ég(p(p))) = 1. As ¢g(p(p)) =
#q(p) (by property a.), it follows that p € W/, (f). As this holds for all infinite
paths p compatible with s, from (go,a — ¢), it follows that this strategy is
winning from (go, a« — ). Hence, a®(qo, Win(f)) —& = a— e < a®(qo, W}, (f))-
Since this holds for all & > 0, it follows that o (g0, Win(f)) < o (g0, Wi, (f))-

O

Lemma 2.16. Consider an arbitrary win/lose concurrent game G. Assume
that (K, col) has finite representatives in Q. Then, for all0 < o < o (qo, Wi (f)),
there is a (K, col)-uniform valuation v : QT — [0, 1] that is winning for Player
A w.r.t. (qo, ) and A.

Proof sketch. To build this valuation v that is winning for Player A w.r.t.

(go, ), by Lemma 2.15, we can use a Player-A strategy that is winning in
the game G/, from the state (go, ). However, since the valuation v has to be
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(K, col)-uniform, we need to define it on K* x Q. To do so, given any pair
(7,q) € K* x Q, we will consider all the possible paths m € @* whose sequence
of colors may be equal to 7. Since (K, col) has finite representatives in @, there
are only finitely many of them. By appropriately choosing the finite path =
to consider, it is possible to define v while ensuring that the valuation v that
we define is non-decreasing w.r.t. A. In addition, for all p € ¢ - Q¥, we can
build an infinite path in the arena Cﬁ) whose sequence of colors corresponds to
the sequence of colors p that is compatible with the strategy sa from (qo, ).
We achieve this by using the finite representatives assumption (with Konig’s
lemma-like argument.). In addition, since we have changed the objective into
Wi (f)', we can show that if f(p) < 1, then there is some 7 € N such that, for
all j > 4, we have v(p<j) = 0. Therefore, the superior limit of v(p<;) is equal
to 0. This allows us to conclude that the valuation v that we have defined is
winning for Player A w.r.t. (qo, @). O

Let us now formally prove this lemma.

Proof. Consider such an a < a(qo, Wip(w)). By Lemma 2.15, we have a <
a®(qo, W/, (w)). Hence, we can consider a Player-A strategy sa that is winning
from (go, ) in the game G[,. Consider the function p = p&™® : ¢o - Q* —
(Qa-QB)* - Qa from Definition 2.9. Then, for all v € K* and ¢ € @, we define
the set:

Cogi={r=7""q€q- Q" -q|col*(7') =~ A p(r) ¢ Po}

Note that for all v € K* and ¢ € Q, the set C,, 4 is finite since (K, col) has finite
representatives in (). Hence, we can define the maximum value a4 € [0, 1]
achieved by paths in C, 4

Qg :=max{a € [0,1] | Im € C 4, val o p(7) = a}

Whenever C, 4 is the empty set, we set a4 := 0. Finally, consider a function
L K*xQ — QT such that, for all (v, q) € K*xQ, if C, 4 # 0, then 1(7y,q) € Cy 4
and:

val o p(u(7,4)) = a4 (2.8)
Note that, by definition of the set C, 4, we have:
col* ou(v,q) = 7 - col(q) (2.9)

We can now define a valuation of finite sequences of states v : QT — [0, 1].
First, we let v(qo) := « and v(q) := 0 for all ¢ € Q \ {qo}. Then, for all
(v-q) € K* x @, we define the valuation v7'?: @ — [0, 1] in the following way:

ot )0 :Q —[0,1]if Cq=10
saop(e(y,q)) :@Q — [0,1] otherwise
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Then, for all p- ¢ € g - Q*, we have v”'? := v (¥)'¢_ Hence, by definition, v is
(K, col)-uniform. Let us show that v is a winning valuation for Player A w.r.t.
(go, ) and A.

First, we show that it is non-decreasing w.r.t. A. We have v% = sa((qo, )) €
MoveR((qgo, @)). Hence, v(qo) = a < out[(F(go),v®)]. Furthermore, v(q) = 0
for all ¢ € @\ {qo}. Hence, the valuation v is non-decreasing at all states
g€ Q. Now,let p:=p'-¢  q€ Q- -QF with p/ € Q*, v := col*(p) € K* and
v = col*(p'-¢') = y-col(¢') € KF. If v(p) = 0, then v(p) < out[(F(p),v”)] holds
straightforwardly. Assume now that v(p) > 0. That is, v*"¢ (q) > 0. It follows
that C, , # 0. Hence, we have i(v,q') € Cyp and v”"7 = sp 0 p(e(v,q')).
Furthermore,

p(t(v,d) - @) = p(e(v.d)) - (v d'),sa 0 p(e(v,d))) - (7. d') - @,5a 0 p(e(y,4)) (@)
=p(u(7.d)) - (v, ), 0"") - (v, d) - 4,077 (q))

with v7'7 (¢) = v(p) > 0. Since p(t(v,¢)) ¢ Po, we have p(c(7,¢) - q) ¢ Po. In
addition, since by Equation 2.9 we have col*ou(y, ¢") = v-col(¢’) = 7/, it follows
that «(v,¢") - ¢ € Cy 4. Hence, by definition, a.y 4 > val o p(c(7,¢") - q) = v(p).
Furthermore, v7°¢ = sp o p(¢(7/,q)) € Moveh (p(t(,q))it) = Mover((¢(v,q) -
4, 4)) by Equation 2.8. Tn other words, v(p) < ., < val[(F(q),v" 9)][A] =
val[(F(q),v”)][A]. That is, v is non-decreasing w.r.t. A at p.

Consider now some p € qo - Q. Let Nxso := {i € N[ Ceop (o) ppn 7 0}
For all k ¢ Nsg, we have v (P<k)Prt1(p o) = v(p<pyn) = 0. Hence, if
N<o is finite, then there is some k£ € N such that v(p<;) = 0 for all i > k.
Hence, limsup(v(p<i))ien = 0. Now, assume that N is infinite. Let us define
inductively a sequence of states m € Q% such that, for all i € N, we have:

a. CO|*(7T§Z‘) = COl*(PSi);
b. p(r<i) ¢ Po;

c. the set N :={j >i| Ceol*( Nm<; - Q* # 0} is infinite.

P<)oPi+1

Initially, m9 = qo and all properties are ensured since N~ is infinite. Let us
now assume that m is defined up to index ¢ € N and that all properties above
are ensured up to that index. Let us define 7,11 € Q. Let Néo ={j>i+1|
Cco|*(P§j)v,0j+1 N7<;- Q" # 0}. By assumption, this set is infinite. Now, let
¢ := col(pi+1) € K. Tor all ¢ € col™![c], we consider the set Ni(q) := {j >
i+ 1] Ceorr( Nm<i-q- Q" # 0}. We have:

~i0: U Nio(Q)

g€col™1[d

P<i)oPi+1

Since (K, col) has finite representatives in @, the set col™1[c] is finite. Hence,
there is some g € col™'[c] such that N (q) is infinite. Then, we set ;41 = g.
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With this choice, we have N2 = N (¢). Hence, it is infinite and property c.
is ensured. It also follows that there is some j > i41, such that Cco|*(p§j)7pj+1 N
T<it1 Q" # (). Consider § = T<it+1 -7l e Ccol*(pgj),pj+1 N T<ip - Q*. By
definition of Ceop(p_ ;) p;41+ We have p(f) ¢ Po. Since m<itq is a prefix of 6, it
follows that p(m<ij+1) ¢ Po. Hence, property b. is ensured. Furthermore, we
have CO|*(7TS1'+1> = Col*(ﬂgi) -CO|(7TZ'+1) = Col*(ﬂ'gi) cC = Col*(pgi) . CO|(,OZ'+1) =
col*(p<i+1) and property a. is ensured. This concludes the definition of 7 € Q“.

The infinite path p(7) € (Qa - @B)“ is compatible with the strategy sa
from (qo, ) (recall Observation 2.2). Hence, since the strategy sa is winning
from (go, @), we have p(w) € W/, (f). However, because of property b., we have
p(m) ¢ Po. Hence, f(m) = f(pg(p(m))) = 1. Since col“(m) = col®(p), it follows
that f(p) = 1. That is, we have limsup(v(p<;))ien < f(p) and the valuation v
is winning for Player A w.r.t. (qo, ) and A. O

2.4.4 . Proof of Theorem 2.3

Proof. Consider an arbitrary concurrent game G and assume that it is suprem-
ized by a collection (SqA)qEQ of GF-strategies w.r.t. Player A and supremized
by a collection (SqB)qEQ of GF-strategies w.r.t. Player B. Note that such col-
lections of GF-strategies always exist since (X3)q.0 (resp. (X§)qeq) works for
Player A (resp. B).

Let ¢ € Q be a starting state. Let a, := o®(q, Wip(f)). Let us show
that oy = xg[A](g). Let 0 < € < a. By definition of a®(q, Wip(f)) (recall
Observation 2.1), Player A is winning from (¢q,oq — 5) in G4. Hence, by
Lemma 2.13, she has a winning valuation w.r.t. (¢,aq — 5) and A. It follows,
from Lemma 2.12 that Player A has a strategy sy® generated by (SqA)qEQ
whose value is at least oy — € from ¢ in G against any Player-B strategy in
Opnt(A) = S§. Hence, a, < xg[Al(q).

Now, consider any Player-A strategy sa € S§. Let agr = o (g, Wip(f))-
Let us show that xg[sa](¢) < ap. Let 0 < e <1 — a;A. By definition of o,
Player B is winning from (¢, of* + §) in G;). Hence, by Lemma 2.14, she has a
winning valuation w.r.t. (g, agt +2£) and sa. It follows, from Lemma 2.12 that
Player B has a strategy generated by (SE)QEQ whose value is at least ag* + ¢
from g against all strategies in Opnt(sa) = sa. Hence, xglsal(q) < agr +¢.
As this holds for all ¢ > 0, it follows that xg[sa](¢) < aj?. Furthermore, by
Observation 2.1, we have a;p = oA (g, Wip(w)) < a?(q, Wip(w)) = . That
is, xg[sal(q¢) < ag. As this holds for all Player-A strategies sa € S, it follows
that xg[A](q) < ag. Overall, we obtain xg[A](q) = oy = a”(gq, Wip(w)). This
proves result 1.a since, for all € > 0, the Player-A strategy sj € S‘é such that,
for all ¢ € Q and p € Q*, si(q- p) := sy (¢ p) is generated by (S(’?)qEQ and is
g-optimal.

We can prove similarly — by using the counterparts of the lemma cited
above for Player B — that xg[B](q) = aB(q, Wi(f)). Result 2 is then a direct
consequence of Observation 2.1: a®(q, Wip(f)) = aB(q, Wip(f)) as soon as all
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local interactions are valuable. Furthermore, result 1.a for Player B can be
deduced from how strategies of values e-close to oy are built above.

Consider now result 1.b. Assume that (K, col) has finite representatives
in @ and that the payoff function f is win/lose. Also assume for now that
there is no stopping state in G. We cannot proceed exactly like we did for
result 1.a where, after exhibiting, for each state ¢ € @, a Player-A strategy
that is e-optimal from ¢, we then glue these strategies together to form an e-
optimal strategy. The issue is that, to establish result 1.b, we need the obtained
strategy to be (K, col)-uniform. Hence, let k € K and Qy, := col ![k] € Q. We
let ng := |Qk| € N. Let us build a game Gj that is identical to the game G
except that we have added a trivial state gz — whose color is new and has no
impact on the winner of the game — from which there is probability % to go
to any state in Q. We denote by K’ and col’ the set of colors and coloring

g

function in the game Gj. Consider some € > 0 and let g = > 0. By

Lemma 2.16 and what we have shown above applied to the game Gy, Player
€

A has a winning valuation w.r.t. (qx, xg,[A](qx) — §5) and the guard gd = A
that is (K, col’)-uniform. Tt follows, from Lemma 2.12 that Player A has a
(K’, col')-uniform strategy sy* generated by (52')qeq whose value is at least
X, [Al(gr) — ek from gi. By definition of the game Gj, the strategy s is
therefore (K, col)-uniform and e-optimal from all states in Q. This can be
done for all k£ € K. It follows that the Player-A strategy sj € S(A{ such that, for
all ¢ € @ and p € Q*, we have sj = si"'@’co'(q)(q - p) is (K, col)-uniform and
g-optimal. Finally, assume that the game G has stopping states. It suffices to
add two fresh states T and L colored with two fresh colors and to modify the
win/lose payoff function f so that reaching T (resp. L) leads to value 1 (resp.
0). Furthermore, we replace each stopping state ¢ € Qs with a trivial state
that leads with probability val(q) to the state T and with probability 1—val(q)
to the state 1. This modification does not change the values of any states. We
then can apply the result to this new game.

We proved result 1.b for Player A. However, the assumptions for this result
— recall, that the game is win/lose and that (K, col) has finite representatives
in Q — do not depend on the player considered. Hence, we can obtain the
same result for Player B (up to reversing the roles of the players in all the

proofs described in this section). O

We conclude by an application to turn-based games. Indeed, all turn-based
interactions are supremized by deterministic GF-strategies. Hence, we obtain
the corollary below.

Corollary 2.17. All turn-based games are valuable and for alle > 0, for both
players, e-optimal strategies can be found among deterministic strategies.

This result was stated in [55, Theorem 1| and [56, Lemma 11]. In both
cases, the authors suggest that it could be derived by “closely examining”
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Martin’s proof and realizing that turn-based game forms are supremized by
deterministic GF-strategies (which is true). What we have done in this chapter
formally proves this result.

2.5 Application: action-strategies

In this section, we consider standard games with richer strategies than the
ones we have considered so far. Recall Definition 1.26, a strategy is a function
mapping a finite non-empty sequence of states to a GF-strategy. Here, we
consider strategies that not only depend on the sequence of states but also
on the actions played by the players. These will be called action-strategies,
whereas the strategies we have considered so far in this thesis will be called (in
this section only) state-strategies. The goal of this section is to properly define
action-strategies along with the corresponding notion of outcome. We then use
Theorem 2.3 to show that, under specific conditions, concurrent games with
action-strategies have a value and that this value is equal to the value with
state-strategies. However, we exhibit a game where the values of state- and
action-strategies are equal while there is an optimal strategy among action-
strategies, but there is none among state-strategies.

We will use the definitions from Definition 1.8 of the projection function
$Q.0a and of the payoff function (fc)Q.Qa. @ (@ U Qact)” — [0, 1] obtained
from a payoff function f¢ : Q¥ — [0, 1].

2.5.1 . Definitions

We first define below the set of admissible sequences on which action-
strategies will be defined. Informally, these admissible sequences are the se-
quences of the following shape: ¢ - (¢,a,b) - ¢ - (¢/,a’,V') -+ with ¢, € Q,
(a,b) € Act? x Act and (a’, V') € Act] x Act?.

Definition 2.12 (State and action sequences, Admissible sequences). Con-
sider a standard concurrent arena C. We let:

Qact == |J ({g} x Act} x Act})
qEQ

We let Squdm? C(Q-Qact)" - Q be such that:

SeqAdm& :={p = 4o - (40, @0,b0) - q1 - - (Gn—1,An—1,bn—1) - Gn € (Q - Qact)* - Q
|VO <i<n-— 17 gi € Q7 (aiabi) € ACtZi X ACt%» gn € Q}

and SqudmgAct C (Q - Qact)™ be such that:

Squdm?A“ ={p=qo0-(q0,@0,b0) " 1 (qn-1,an—1,bp—1) € (Q - Qact)”
IV0<i<n-—1, ¢ €Q,(a;b;) € Acty x Actl}
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We also let SeqAdm, := SqudmCQ&JSqudmgA“. Furthermore, we let SeqAdmg C
Q - QR be equal to:

SeqAdm¢ = {p € (Q - Qact)” | Vi € N, p<; € SeqAdm, }

We can now define formally the notion of action-strategies.

Definition 2.13 (Action strategies). Consider a standard concurrent arena
C. Player-A action-strategies are maps

SA - Squdm? — Uge@Xa(F(q))

such that, for all p € Squdm?, we have sa(p) € Xa(F(pr)). We denote
by Si’ACt the corresponding set of strategies in the arena C. From a Player-A
strategy sp € S, we build the action-strategy sita such that szta = SACPQ, Ot
Squdmé2 — UgeXa(F(q)). Such a strategy is called a state-strategy. We
denote the set of state-strategies by Si’Sta = {3t | sp € S§} C Si’ACt. This is
analogous for Player B.

The stochastic tree induced by action-strategies will be (@, Qact)-alternating
(recall Definition 1.8). Let us define the probability to go from @ to Qact and
vice versa.

Definition 2.14 (Probability transition given two GF-strategies). Consider
a standard concurrent arena C, a state ¢ € @, another state (¢',a,b) € Qact
and two GF-strategies (oa,08) € Xa(F(q)) x ¥g(F(q)). The probability to go
from q € Q to (¢',a,b) € Qac if the players play, in q, oa and og, denoted
PoA“8(q, (¢, a,b)), is equal to:

0 if !
P (0, (d0.b) = a7
’ oa(a) - og(b)  otherwise
Furthermore, consider a state (q,a,b) € Qac and another ¢’ € Q. The proba-
bility to go from (q,a,b) to ¢’ is equal to:

PE act((¢,a,0),¢) := 0q(a, b)(¢)

We define below the stochastic trees action-induced by a pair of action-
strategies.

Definition 2.15 (Probability distribution given two strategies). Consider
a standard concurrent arena C and two arbitrary action-strategies (sp,sg) €
S(A:’ACt X SE’ACt. We denote by PZ‘:/’SCBt 1 (QUQact)T — D(QUQact) the function
giving the probability distribution over the next state of the arena given the
sequence of states already seen. That is, for all finite admissible paths m €
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SeqAdm, and q € (Q U Qact), we have:

0 ifmy € Q and q € Q
P2RE (m)(q) == P?:é/(;g’sB(ﬂ) (T, q)  if me € Q and q € Qact
Act 0 if my € Qact and q € Qace
PE pct (Tit; @) if mr € QAct and g € Q

For m € (QU Qact)™ \ SeqAdme, PERE (1) : Q U Qace — [0,1] is defined
arbitrarily such that PPae (1) € D(Q U Qact)-
The stochastic tree TCS‘Xif action-induced by the pair of strategies (sa,sg)

is then equal to C:X(S:E = (QU QAct,P‘Z’ffft).

Observation 2.3. The stochastic tree C‘Xi? of the above definition ensures

that, for all ¢ € Q, and m € (Q U Qact)* \ ¢~ - SeqAdm,., we have:
P retq(™) =0

where ¢~ - SeqAdme = {p € (QU Qact)* | ¢- p € SeqAdm¢}. In particular,

the stochastic tree C‘Xif is (Q, Qact)-alternating.

One may wonder, given two state-strategies, how do the stochastic trees
induced and action-induced by that pair of strategies relate in terms of the
expected value of any measurable functions. In fact, these expected values
are equal in both stochastic trees, since state-strategies do not depend on the
actions seen, as stated in the lemma below.

Lemma 2.18 (Proof 2.7.4). Consider a standard concurrent game C. Con-
sider a measurable functions f : Q¥ — [0,1], and any two strategies sp € S(/i
and sg € Sg. Then, for all starting states q € Q:

Sta Sta

sy,
EB (9] = Bl ety [(F.Qne)”)

Let us now define the value of the game where (action-)strategies are used.

Definition 2.16 (Xa, Xg-values of the game). Consider a concurrent game
G=(C,f)andlet g := (fc)Q,Qn: : (QU Qact)” — [0,1]. For Xg € {Sta, Act}
and a Player-A strategy sa € S(/i’ACt the vector xg xg[sa] : @ — [0, 1] giving the
Xg-value of the strategy sp is such that, for all ¢ € @), we have:

Xg.xglsal(q) == inf EXE [g7]
SBESB’ B

For Xa € {Sta,Act}, the vector xg x, xg[A] : @ — [0,1] giving the Xa, Xg-
value for Player A is such that, for all ¢ € Q, we have:

X6.xa,xs[Al(q) = sup  xg,xglsal(q)

C,X
SAGSA' A
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That is, Player A uses Xa-strategies and Player B uses Xpg-strategies. The
value can be defined symmetrically for Player B. When the Xa, Xg-values
of both players are the same, this defines the Xp, Xg-value of the game:
XG,Xa,Xg -= XG,Xa,Xp Al = XQ,XA,XB[B}' (If Xpo = X, one of them is omitted.)

2.5.2 . FExpressive power

The existence of Act-value is ensured as soon as, at each state, one of the
players set of actions is finite. In addition, when, at each state, both of the
players set of actions are finite and if the game is win/lose, then the Act-value
and the Sta-value are equal. This is the main result of this section stated below
and it is a corollary of Theorem 2.3.

Corollary 2.19. Consider a standard concurrent game G. Assume that, for
all ¢ € Q, we have either Act} or Act} finite (in particular, the game G is
valuable by Proposition 1.12). In that case, the game G has an Act-value.

If we additionally assume that G is win/lose, and that, for all ¢ € Q, both
Act} and Act} are finite, then the Act-value and the Sta-value of G exist and
are equal.

Note that the proof of this corollary is quite long. However, there is no real
difficulty to deduce it from Theorem 2.3. However, the change of formalism
that we consider in this section makes the proof technical.

To prove this corollary, we define a new standard concurrent game where
the actions chosen by the players are encoded in its states. We define below
such a game along with a way to translate strategies from the original game
to this new game.

Definition 2.17 (Action-encoded-states game). Consider a standard concur-
rent game G. We build the game Gact = (Cact, fact) in the following way, for
C/—\ct = <Q U QActa , I:Act7 KACt7 COlAct)-'

e for all stopping states q € Qs, q is still a stopping state in Gacy with the
same value;

e for all non-stopping states g € Qns, we let Face(q) := (Acth, Acth, Qact, g?c">
such that, for all (a,b) € Act} x Actd, 0f"(a,b)(q,a,b) :=1;

o all states (q,a,b) € Qact are trivial, specifically, we have Fact((q,a,b)) :=
(o, Qu % ) with g (5,%) 1= 0,(a,b) € D(Q);

® Kact == Q;

o for all ¢ € Qns, we let colact(q) := ¢ and for all (q,a,b) € Qact, we let
colact((q,a,b)) := g¢;

o We let Q% := Uyeq{q} - {q¢} and f€& : Q% — Q be the canonical
function from Q% to Q. Then, we let fact : Q¥ — [0,1] be such that,
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for all p € Q¥:

0 if p & (Q™)~
fco (f8)¥(p) otherwise

fAct(p) = {

We define below how to translate strategies from C to Cact.

Definition 2.18 (Translating strategies). Consider a standard concurrent
arena C. Consider a Player C € {A,B}. We define fC : S%ACt — SgA“ in the
following way. For all sc € Sg’ACt, we have for all m € (QU Qact)™:

is arbitrary  if m ¢ SeqAdm,

fC(sc)(r) = {

sc(m) otherwise

Furthermore, we define g© : Sg’*“ — S%ACt in the following way, for all m €
SeqAdmy C (Q U Qact)™:

g(sc)(m) := sc()

Lemma 2.20 (Proof 2.7.5). Consider a standard concurrent arena C. Let
sxt@ € Si““ be a strategy in Cacy and let s§ € S(é’ACt be an action-strategy in
C. Let sht := gh(sp) € S%Ad and let sg := fB(sg) € S(éAC‘.

Then, for all q € Q:

Act -Act
SA 5B

B nctig [(Fo)@.ane) ™) = B2 [((fact)ca)”]
Note that this also holds if we reverse the roles of Player A and Player B
strategies.

We can now proceed to the proof of Corollary 2.19.

Proof. First assume that for all ¢ € Q, we have either Act} or Act finite. In
that case, the standard game Ga¢; from Definition 2.17 is valuable. Indeed, for
all ¢ € Qns UQact, the game form Faci(q) has finitely many actions for at least
one player, hence it is valuable by Proposition 1.12.

In the game Gac, we only consider usual strategies, that is the ones that
we have considered in this dissertation but in this section. Hence, we consider
the usual value of the game and of the strategies. Consider some state ¢ € Q.
Let us show that xgact[Al(q) > XgalAl(g). Let € > 0. Consider a Player-A
strategy sa € Si’*“ such that xg,.[sa](¢) > Xga.(q) — €. Let si¢t := gh(sa) €
S(Aj’ACt be an action-strategy in the game G. Let us show that the strategy sﬁ‘:t
has an Act-value at least xg,.,(¢) — ¢ in the game G. Consider any Player-B
action-strategy sgt € S(E’;’ACt in the game G. Then, letting sg := fB(sgt) € Sg’*“
be a strategy in the game Gac, we have by Lemma 2.20:

Act cAct

Eace, [((F0)Q.ne)™ = BEE [((fact)ae)!] = XGae[SA1(@) > X6 (0) — €
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As this holds for all Player-B action-strategies st € SE’ACt, it follows that:

Xg.Act[SAT() > Xgau(0) — €

and therefore
XG.ActAl(@) > XGae (@) — €

As this holds for all € > 0, it follows that:

XG,ActlAl(9) > XGae. (9)

Symmetrically, we also obtain that xg act[B](¢) < xg.(¢)- Hence, the game G
has an Act-value at state ¢ € @ equal to xg Act(¢) = XGa.(¢) Which holds for
all ¢ € Q.

Assume now that, for all ¢ € Q, we have Actj and Act}, finite and that the
objective f is win/lose. It follows straightforwardly that fact is also win/lose.
Consider now some ¢ € Ky = Q. Then, we have (colact) '[{¢}] = {q} U
{(g,a,b) | (a,b) € Act} x Acti} finite. Hence, the uniformizing pair (Kact =
@, colact) has finite representatives in QU Qact. Now, consider some € > 0. By
Theorem 2.3, there exists a Player-A strategy sa € Si“c‘ that is (Kact, colact)-
uniform such that xg,.[sa](¢) > Xga.(7) — € = XgAct(q) — &. Let sh<t =
gh(sa) € Si’ACt be an action-strategy in the game G. We have shown above
that this action-strategy sﬁd is e-optimal in the game G. Let us show that this
strategy sa actually is a state-strategy. Since the strategy sa is (Kact, colact)-
uniform, it can be seen as a map sy : Ki_ - (QUQAct) = UgeQugae 2A(Fact(9))-
Furthermore, Kact = Q. Now, we let tp € SCA be a Player-A strategy in the
game G such that, for all 7 € QF, we have ta(w) := sa(w). Let us show that
SAt = t3t. Consider some 7 € Squdmg’). We have:

ER2(7) = tA © 90,0pu (T) = 5h © 90,00 () = sa(T) = 8" (52) () = 53 ()

As this holds for all 7 € SeqAdm¥, it follows that s = t3¥. We have
exhibited a Player-A strategy sﬁCt in the game G whose value e-close to the
Act-value of the game and that is a state-strategy. This holds for all € > 0 and
also for Player B. Hence, by Lemma 2.18, the Act-value and the Sta-value of

G exist and are equal. OJ

Note that Lemma 2.18 ensures that if a Sta-value exists in G and if a value
(as we have considered until this section) exist in G, then they are equal.

We conclude this section by providing an example of a standard game with
finitely many actions for both players at each state but where finding optimal
strategies requires to consider action-strategies. This shows that although at
the limit, knowing the actions does not improve what the strategies can do, it
may be that achieving a specific value is only possible if the strategy knows
the action played (by the other player in our example).
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qo q1 1/2
qo, | 1 1 1/2
1/2 1/2 0

Figure 2.5: A co-Biichi win/lose game where Player-A optimal strategies
can only be found among action-strategies. The colors are depicted in
red near the states.

Definition 2.19 (Game described in Figure 2.5). The game G = (C,W) of
Figure 2.5 is standard, deterministic and win/lose. They are only two non-
stopping states: qo whose local interaction is not trivial and q1 whose only
successor state is qo. The stopping states (recall Definition 1.18) are not drawn
but are referred to by their values in the local interaction at state qy. The set of
colors considered is K := {0, 1} and the colors of the states qo and q; are given
in red near them: col(qop) := 0 and col(q1) := 1. This game is win/lose, and
the objective W is a co-Biichi objective (recall Definition 1.25): if no stopping
state is reached, Player A wins if and only if the state q is seen only finitely
often. The Player-A set of actions at state qg 18 Acth0 :={a1,a2,a3} where a;
refers to the top row and as refers to the bottom row and similarly we have
Act® := {b1, b2, b3} where by refers to the leftmost column and bs refers to the
rightmost column.

We have presented a slight modification of the game described in Defini-
tion 2.19 above in [10] to illustrate another property ensured by concurrent
games. We will discuss further this example in Chapters 3 and 5.

Proposition 2.21. The co-Biichi standard finite deterministic game G of
Figure 2.5 is such that:

e the game has value % and Player B has an optimal positional strategy;

e Player A has an optimal action-strategy but has no optimal state-
strategies.

We decompose this proposition in three lemmas.

Lemma 2.22. The value of the game described in Definition 2.19 is 1/2.
Furthermore, for all positive € > 0, the Player-A positional strategy sa € Sg
such that si(qo)(a1) := 1 — ¢ and s3(qo)(as) := € has value 1 —e.
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Proof. Consider a Player-B strategy sg playing positionally b3 with probability
1. Then, regardless of Player-A’s strategy, the game will stop after one step

and a stopping state value of at most 3 will be reached. Hence, xg(sg)(qo) <

%. Now, consider some € > 0 and the Player-A strategy s described in the
statement. Then, regardless of Player-B’s strategy, each time the game is at
state qg, a stopping state is reached in the next step with probability at least
€ > 0. Hence, almost-surely a stopping state is reached. Furthermore, the
expected value of the stopping states reached is at least % — ¢. Hence, this
Player-A strategy si has value at least % —¢. In fact, its value is exactly equal
to % — ¢ since Player B can play action bs with probability 1 and ensure that
a stopping state is reached and that their expected value is equal to % —&.

That is, xg(si)(q) = % — &. As this holds for all € > 0, it follows that
_ 1
xg(q0) = 3- O

Let us now describe informally an optimal Player-A action-strategy sa.
First, note that it needs not be defined after b3 is seen since in that case a
stopping state is necessarily reached. While bs has not occurred, sp plays with
positive probability a; and as and a; with very high and increasing probability
such that, if action bo or bz never occurs, then almost-surely, the state ¢; is
seen only finitely often. As soon as the action by occurs, there is a positive
probability to reach the stopping state of value 1. (This probability may be
arbitrarily small if Player B waits long enough, but it is positive.) In that case,
the strategy sa switches to a strategy s for some small enough €8 Thise >0
is chosen so that the mean of the probability to reach the stopping state of
value 1 and % — ¢ is at least % The formal arguments we give below on how
to construct an optimal strategy have already been given in [10].

Lemma 2.23. Consider the game described in Definition 2.19. We let ppct :
SeqAdm, — (Acty)* be such that, for all p = q- (¢q,a,b) - ¢ - (¢',d’,b)--- €
SeqAdmg, we have pact(p) := b-b - -+ € (Actf)*. Consider the Player-A action-
strategy sa € Si’ACt such that, for all p € SeqAdm, such that p = qo, denoting

7= pact(p), we have:

sa(p) := {al’_>1_5|7r|aa2'—>€\7r|} ifme (b)*
M SEA/n (p) otherwise, for n := max{k € N | (b))* C 7}

where, for all n € N, we have ¢, := 2,1% and €}, is chosen such that:

1 1
(1_571)'(5_5%)"‘57125

; /.1 _ 27 _ _ en
For instance, €, == 5 — +—/— = oz

is optimal from qq, i.e. it has value %

> 0. This Player-A action-strategy sa

8Note that switching strategy is necessary: if we remove the action az for Player
A, then the value of the game is 0 from ¢q.
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Proof. Consider any Player-B strategy sg. We let Q, := Q U Qac¢- For all
k € N, we denote by Ry, := (Qa)* - (Qa)* - q1 - (Q4)* the event describing the
infinite paths for which the state ¢; is seen after at least k steps. With some
abuse of notations, all sequences of actions in (Act}’)T are seen as events in
Borel(Q,) where we consider only the Player-B actions seen, similarly to what
we did in the lemma with the function pact.

First, consider what happens assuming that only the action b; is played.
For all k£ € N, we have:

Peas o [REN (01)9] <> en = Qik
n>k
Hence:
P, () RO ()] < Jim 3 =0
keN n>k

Furthermore, we have coBuchig ga., = (Qa)” \ ((Ngen Rk). It follows that:

P2 act,q0 [€OBUChiQ Qa 1 (b1)“] = PEIRE 4 [(b1)“]

On the other hand, let us consider what happens if at some point the action

by occurs. Consider some k € N such that PFyE qo[(bl)k - bo] > 0. Assuming

the event (by) - by, we have that with probability 1 — ), the game proceeds
to g1 and the Player-A strategy switches to a strategy of value % — ¢}, (by
Lemma 2.22) and with probability €, a stopping state of value 1 is reached.
Hence, we have:
. 1 1
PE re: g0 [COBUChiQ g, | (b1)" - bo] = (1 — 1) - (5 - e) +er = B
As this holds for all £ € N, it follows that:

PEARS p COBUChiGQu 1 (01)" Ba) = 3PS ()" - b

Finally, considering the case where action b3 occurs after a sequence of
actions by, we have:

1

B [coBuchig o, 1 ()" - ba] = & -BZE L [(0)" -

Overall, we obtain:

PSAaSB

¢ Aet.qo[€0BUChiQ Qac] = PEiag; 4, [cOBuchiq ga, M (b1)”]

C,Act,qo

+ P3 pmy g [cOBUChiQ M (D1)" - bo]

+ P A%, 4 [cOBuchiq g, M (b1)" - 3]

> Pnee g0 [(01)] + Pty 4, [(01) - 2]

N | =

i 1
PR, [0 bo) - 5

1
>
-2
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Hence, the Player-A strategy sa is optimal. O
Let us now proceed to the proof of Proposition 2.21.

Proof. Given what we have proved in Lemma 2.22 and 2.23, it remains to show
that no Player-A strategy sa € Sg (that is, a type of strategy that we have
considered so far in this dissertation) can be optimal in this game. We let

Q = {qo0, q1} and W := coBuchig g,

The strategy sa can be seen as a function sy : Q* - o — Ya(F(qo)). Let

us build a Player-B strategy sg such that P ®[coBuchi] < 5. Let Nexty, :=

{p € Q° q | salp)(ar) = 1Vsa(p)(az) = 1}. We also let Adm := {p €
Q" | Vi < |p| =1, p<i € Nexty, = p<iy1 = p<i - q1}. Finally, we also let
Err := {p € Q* - qo | sa(qo)(az) > 0}. We can now define the strategy sg.
First, for all p € Nexty,, we let Respg(p) € Acty’ to be equal to Respg := by if
sa(qo)(a1) = 1 and Respg := by otherwise. Then, there are two cases:

e Assume that Adm N Err # (). In that case, consider some m € Adm N Err
with no prefix in AdmNErr. We let n := 7 and NoPr(7) := {p € Q*-qo |
p IZ w}. We define sg in the following way, for all p # 7 € Q* - qo:

{b3 — 1} if p € NoPr(m)
sg(p) := { {Respg(p) — 1}  otherwise, if p C 7, and p € Nextg,
{q0 — 1} otherwise, if p C 7w, and p ¢ Nexty,

By definition of Adm and Err and of 7, for all p € Q*- ¢ such that p C m,
we have:

— if p € Nextg,, then P2*8(p)(¢q1) =1 and p- ¢ C 7

— if p ¢ Nextg, , then sg(p)(by) = 1 and sa(7)(a3) = 0 and sa(a1),sa(az) >
0. Hence, PZ*® (p)(m,)) > 0.

Therefore, PZ2% (1) > 0. We let py := P (7). Since, 7 € Err, we have
sa(m)(ag) > 0. Since sg(7)(ag) = 1, it follows that IP’ZAC’;B (p)W | ] < 3.
We obtain:

PSR [IW] = PR 7] + PR [ 1 NoPr(r)]
=PL W 7] pr + PE W | NoPr(m)] - (1 — pr)

<1 —I—l (1 )_1
2p7r 9 pﬂ'_2

e Assume now that AdmNErr = ). Consider a sequence (e)ren such that
dokek < % Then, for all p € Q* - qo, we let |p|; denote the number of
q1 in p. Then, for all p € Q* - qp, we let:

() {Respg(p) — 1} if p € Nexty,
s =
B {b1 = 1 —¢eg;be — e} otherwise, for k := |p|;
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Clearly, for all p ¢ Adm, we have IP’ZA;B( ) = 0. Hence, ]P’SA’SB [Q*-(0U
%)] = 0 (where 0 and % refer to the stopping states of the same value),
since Adm N Err = (). Furthermore (1 referring to the stopping state of

value 1):
PArRQ* 1] < D PR=[{p € Q | |ply = k} - 1]
keN
<Ya<;
> k 9
keN

In addition:

o (@7 < Y FEEIQN - (a0)”]
keN
n— o0
keN
Hence:
P W] = PEPIQ" - 1]+ P W 0 (Q7 - 1)

1

PR 1] <

In any case, the Player-A strategy sa is not optimal from gq. O

2.6 Discussion and open question

This chapter is mainly devoted to the proof of Theorem 2.3, which is a
generalization of Martin’s result [12]. As we discussed in this chapter, the way
we prove this generalization uses Martin’s central idea: building, from a con-
current game G, a turn-based game Gi,. Then, from winning strategies in Gyp,
one can design almost-optimal strategies in G. By closely examining how these
almost-optimal strategies are obtained, we were able to establish extensions
(1.a) and (1.b) of Theorem 2.3. Quite frustratingly, though the conclusion of
result (1.b) seems unsurprising, we need two additional assumptions to estab-
lish it. This leaves as open question if, by further exploiting the properties
ensured by the game Gy,, we could prove that this result (1.b) still holds even
if one or two of these additional assumptions are weakened, or even dropped.

Open Question 2.1. Does result (1.b) of Theorem 2.3 still holds if we do
not assume anymore that (K, col) has a finite representative in (Q and/or that
G is win/lose?

We believe that another benefit of this chapter, besides the results es-
tablished in Theorem 2.3, is how the proof of this theorem, which generally
speaking is not new, is presented. One of our goal was to explain Martin’s
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underlying ideas with intermediate lemmas and examples. However, because
we wanted to establish Theorem 2.3 in all its generality, the intermediate lem-
mas we introduced and the turn-based games indexed by guards we defined
are heavy on notations and assumptions. This is particularly noticeable when
considering Lemmas 2.11 and 2.12: because we prove result (1.a), we consider
a collection of GF-strategies supremizing the game G; because we prove result
(1.b), we consider a uniformizing pair; and because we prove that both results
(1.a) and (1.b) hold even if the local interactions in G are not valuable, we con-
sider guards. This last constraint is the most apparent when considering the
turn-based games indexed by guards that we consider, instead of only consid-
ering one turn-based game, as Martin did. Hence, it could be relevant to give a
detailed proof only of result (2) from Theorem 2.3. That way, we could detail
the underlying ideas behind the proof, without the burden of, what would then
be, unnecessary complications.

2.7 Appendix

2.7.1 . Proof of Proposition 2.4

Proof. First, for all j € N, € {<,<,>,>,=,#} and u € R, we denote by
V (7,0, u) the measurable set:

V(j7[><]7u) e UpEQj,v(p)lxluCyl(ﬂ—)
Consider some « € [0,1]. We have:
. _ ) 1
(timsup,)~*([0,0]) = (Y U (V0. <0+ )
neN keN j>k
Hence, limsup, ([0, o)) is Borel. Furthermore:
1
(liminf,)1([0,0)) = (VN U VG <o+ )
neN keN j>k "

Hence, liminf, 1([0,a]) is Borel. It follows that limsup, and liminf, are both
measurable functions. ]

2.7.2 . Proof of Proposition 2.5

Proof. For the strict comparison, we have:

{r<gt= U {r<apn{r<g}

q<reQ

Furthermore, {f < g} = Q“\ {f > g}. Then, {f # g} = {f < gt U{f > g}
and {f =g} = Q“\ {f # g} O
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2.7.3 . Proof of Lemma 2.11
Proof. We want to define v, and sa as (U, m)-uniform functions. Hence, it
suffices to define them on U* x @). Since the valuation v is (U, m)-uniform, it
is well defined as a function from U* x @ to [0,1]. That is, we have for all
(7:9) € U™ x @ _
~ o7 0)

For all w : U* x @ — [0,1] and (7,q) € U* X Qns, we denote by F, the
game in normal form FY, := (F(q),w(y - col(q),-)). We also let sa(v,q) € Sy
bea 0 < 2|7ﬁ—optimal strategy in the game in normal form F7 . Note that

ve(7,q) := max(v(v, q)

we can indeed choose sa(v,¢) in Si since this set supremizes the game form
F(g). Straightforwardly, the strategy sa is generated by the collection (S3)4ec0-
Let us show that it dominates the valuation v..

Let (77,q) € U X Qns and n := |y|. If ve(v,q) = 0, then v-(v,q) < val[F 2]
straightforwardly holds. Assume that it is not the case, i.e. ve(7y,q) = v(v,q)—
5+ For all Player B GF-strategies og € Xg(F(g)), by Lemma 1.10 for the first
inequality:

out[FI%](sa(7,q), o8) = out[(F(q), ve(y - col(q), ))](sa(7,q), o8)
> out{{F(q), o(7 - col(q),)))(sa (7. 4). 08) ~ vy
= outlF% J(s(7.0): 78) — 577
> vallF )52 (3, 0) — 3o
> vall | = 3oy — gy = vallFy) - 2%

This last inequality comes from the fact that sa(v, q) is a syr-optimal strategy
in the game in normal form F7 . Furthermore, since the valuation v is non-
decreasing, we have val[F /| > v(v,q). Hence, we obtain:
€
OUt[‘F}yj,sq] (SA(’%(Da UB) > U(’% q) - 27 = ,UE(’% q)
As this holds for all (v, q) € U* x @, the strategy sa dominates the valuation
Ve. ]

2.7.4 . Proof of Lemma 2.18
Sta sSta

Proof. We want to apply Lemma 1.7. We let 7 := 75*°® and TA := T4 [ .
We use similar notations for the corresponding probability functions and mea-
sures. For instance, the probability measure from any state ¢ € Q) is denoted
P, for the stochastic tree 7 whereas is denoted P?Ct for the stochastic tree
T’. As mentioned in Observation 2.3, the stochastic tree TA is (Q, Qact)-
alternating. For all ¢ € @ and 7 € Q*, we denote by Prelmy(7) C (Qact - Q)*
the set:

Prelm,(7) :== ({q} x Act} x Act) - (60.0n.) {7} Ng "t Squdmé2
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Furthermore, let C € {A,B} be a player. Recall that by definition of the

3t2 we have, for all p € Squdm?:

&2 (p) = sc © PQ.Qnq (1) (2.10)

Now, consider some state ¢ € (). Let us show by induction on n € N the

strategy sg¢

property P(n): for all 7 € Q<", we have:

Pq[Cyl(m)] = Py [Uper(x) CyI(p)]

where T(7) = Qact * (6Q,Qae) L [{7}] comes from Lemma 1.7. This holds for
n = 0 since the stochastic tree 7A% is (Q, Qact)-alternating. Consider now some
q € Q. We have, recalling Definition 1.28:

Py [Cyl(¢")] = Py(q") = out[(F(q), q")](sa(q),s8(q))
= > sa(q)(a) -s8(q)(b) - 04(a,b)(q)

(a,b)EActa xActg

- Y P (a,b) - PR ((g,a.b).q)

(a,b)EActa xActg
= Py [Qact - CYI(¢)] = Py [Uper(m Cyl(a)]
Hence, P(n) also holds. Assume now that P(n) holds for some n > 1. Consider
some 7 € Q" By Observation 2.3, for all p ¢ ¢! - SeqAdm,, we have
PAt(p) = PA<[Cyl(p)] = 0. Hence:
Py Upet(m) CYI(0)] = By (U pepreim, () CY1(p)] (2.11)
Furthermore, by definition, we have:

Prelmgy(m) = {p- (pi,a,b) - mi | p € Prelmy(tl(n)), (a,b) € Acti® x Actf}

Since holds because, since n > 1, we have tl(r) # e and therefore, for all
p € Prelm,(tl(7)), we have pi; € Q. It follows that:

P Olel= ) > PCyl(p- (pr, a,b) - ie)]

pEPrelmy () pEPrelmg(tl(m)) (a, b)EActplt XActplt

> > B (wab) my)

pEPrelmy (tI()) (a,b)EActylt x Actot

Consider some p € Prelmg(tl(7)) and (a,b) € Acti® x Actg®. In particular, we
have (tl(7))k = pr. We have, recalling Definition 2.15 and Equation (2.10):

Pﬁ“(p-(plt,a,b)#) IP’A“(p) PO ((pie, @,0)) - P ) (@)

(p) - sa2(q- p)(a) - s22(q - p)(D) - LS, oy (d)

Ct(p) sa?(q-p)(a) - s32(q - p)(b) - 0p,(a;b)(q)

(p) - sa 0 0Q.qn:(a- p)(a) - sBochQAct(q P)(b) - oty (a5 )(d)
(p) -salg - ti(m))(a) - se(gq - th(m))(b) - o(timy), (@, b)(¢)

Act
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Furthermore, denoting ' := tl(7) and ¢’ := m, we have:

> sa(qm')(a)-se(q-m) () 0 (a,b)(q") = out[(F(mi), ¢')](salq-7), s (q7))

(a,b) EACER! x Actllt

By Definitions 1.28 and 1.29:

out[(F(rfy), ¢)](salg - ), sa(q - 7)) = PO 0™ (7 gy = B (o)

Overall, we obtain, by P(n) applied to 7’ = tl(r) € Q", recalling that ¢’ = my:

P Olel= D > Pip- (prasb) - my)

pEPrelmy () p€Prelmg(tl(m)) (a, b)EActplt XActplt

- Z ]P)qACt (p) ’ IEDq-tl(ﬂ') (Wlt)

pEPrelmy (ti(m))
= Py[CyI(tl(m))] - Py (71e) = Py (tl()) - Py (1)
= Py (tl() - mi) = Py[Cyl(7)]

By Equation (2.11), we obtain:

Po[Cyl()] = Pr U et(n) Cyl(p)]
Hence, P(n + 1) holds. We conclude by applying Lemma 1.7. O

2.7.5 . Proof of Lemma 2.20

Act Act

Proof First, note that the state space in both stochastic trees 7'C’jkc’t3 and

CA q B is the same: it is equal to (QUQAact). Let us show by induction on n € N

Act cAct
the property P(n): for all 7 € (Q U Qact)=", we have PZA’AZE"(] (m) = IPZici’Bq(ﬂ)
This straightforwardly holds for n = 0. Assume now that P(n) holds for

some n € N. Let 7 € (QU Qac)"™!. Clearly, if 7 ¢ ¢! - SeqAdm,, we

Act cAct
have PZ‘;\qu(W) = 0 (recall Definition 2.17). Similarly, IP’CAA;Sth (m) = 0 (recall

Observation 2.3). Assume now that 7 € ¢! - SeqAdmg. Let p := ¢ - tI(m).
Assume that m; € Q and pi = (¢',a,b) € Qact- In that case:

PZﬁIfﬁ ) = CAXctA:(tI(W)) PAct(plta ) by Definition 2.15
=P ZAAcSth (t1(p)) - & (a, b) (i) by Definition 2.14

aftsq( (7)) - 0q(a, b)(mi) by P(n)
a’csfq(tl(ﬂ)) OUtKFAct(plt) )] (sa(p),sg(p)) by Definition 2.17

= P (t(m) - P =) (g, ) by Definition 1.28

=PE> () by Definition 1.29

115



Assume now that pr € Q and mx = (pr, a,b) € Qact- In that case:

PR (1) = PR (t1(m)) - Py ) (g, )
= PR (1)) - sA (o) (a) - SA () (B)
2% (t1(m)) - %) (a) - S5 () (1)
%8 (tI(m)) - sa(p)(a) - s6(p) (b)
= Z’:’:fq(tl(w))~out[<FAct( t), ie)] (sa(p), sB
= P (tl(m)) - PR ()
= Pea(m)

Overall, P(n + 1) and therefore P(n) holds for all n € N.
: Borel((QU Qact)) —

]P)SA »SB

Theorem 1.2, that PC,Act,q N

by P, this probability measure.

by Definition 2.15

by Definition 2.14

by P(n)
by Definition 2.18
by Definition 2.17
by Definition 1.28
by Definition 1.29

It follows, by

[0,1]. Let us denote

As mentioned above, for all p € (QUQact)* such that p ¢ Q~1-SeqAdm,, we
have Py(p) = 0. Hence, P[(QUQact)* \ ¢ ' -SeqAdm¢] = 0. Consider some p €
q~*-SeqAdm¢. Let us write p as p = (qo, a0, bo)-q1-(q1, a1, b1)-q2- (g2, ag, bg) - - -
(with go := ¢q). If there is some i € N such that ¢; € Qs, then considering the

least index is € N such that ¢;, € Qs, then we have:

(fC)Q7QAct (q ' P)

= val(q,)

= (fACt)CAct(q : p)

= Jc 0 Q.ga:(a " P)
= felgo-q1-q2--

)

by Definition 1.8
by Definition 1.8
by Definition 1.30
by Definition 1.30

If that is not the case, i.e. for all ¢ € N, we have ¢; € Qns, then we have:

(fe)@.ona (@ P) = fe © 0Q.0ns(a - P)
:fC(CIO'CH'QQ"')

=fco(f®)“(q -9 q-q1- ")

= fAct(CIO'QO'Q1 “q1 -

)

= fact © colact(q0 - (g0, ao, bo) - 1

= (fACt)CAct (q ’ P)

by Definition 1.8
by Definition 1.8
by Definition 2.17
by Definition 2.17

-+) by Definition 2.17

by Definition 1.30

That is, ((fc)Q,0ae)? and (fact © colpe)? coincide on SeqAdmg.
t cAct
Edacey [(F9)Q.0pa)"] = EEZ8 [((fact)ene )], thus proving the lemma.
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3 - On subgame optimal strategies

In this chapter, we study subgame (e-)optimal strategies. These are strate-
gies that are not only (e-)optimal from any state, but that also are (e-)optimal
after any sequence of states is seen. In the specific case of games with stopping
states, we only consider sequences of states that stop when reaching a stop-
ping state. Hence, in this chapter, we will frequently use the notations below,
recalling Definition 1.18: Qs C @ (resp. Qns C Q) refers to the set of stopping
states (resp. non-stopping states) in Q.

Definition 3.1. Given a concurrent arena C, for all n € N, we denote by
Q% Qg, O3, Qg" and Qf the following sets: Qf = (Qns)* U (Qns)” - Qs,
QZI = (Qns)T U (Qns)* - Qs, QF := Q5 N Q™, Qg" = Q5N Q=" and QY =
(Qns)w U (Qns)* : Qs-

We now define the notion of strategy which guarantees a valuation, which
allows us to define the notion of subgame (e-)optimal strategies.

Definition 3.2 (Strategy which guarantees a valuation). Consider a con-
current game G = (C, f). For all m € (Qns)*, we denote by G™ the game
G™ := (C, f<" (™). Recall that f<" (™) : K¥ — [0,1] is the residual function
such that, for all p € K, we have fC°'+(”) = f(col™(n) - p). (In particular,
G¢ = G.) Consider some v : Qf — [0,1]. A Player-A strategy sp € S§ guar-
antees the valuation v if for all m € Qér, the value of the residual strategy
sz(w) € S§ from my is at least v(m): X g [SX(W)](mt) > v(m). This is symmet-
rical for Player B.

Definition 3.3 (Subgame (e-)optimal strategies). Consider a concurrent game
G = (C, f). We extend the Player-A valuation of the states into a valuation of
finite sequences of states not continuing after a stopping state: xg[A] : Qér —
[0,1] such that, for all T € Qf, we have xg[A](7) := xgum [Al(m). We define
similarly xg[sa] : Qf — [0,1] for a Player-A strategy sa € S§.

Then, for all € > 0, a Player-A strategy sa € Sg is subgame e-optimal if
it guarantees the valuation max(xg[A] —¢,0) : ()™ — [0,1]. When ¢ = 0,
the strategy sa is simply said to be subgame optimal. This is symmetrical for
Player B.

Given an arbitrary strategy, being subgame optimal is stronger than being
optimal since being subgame optimal requires to be optimal after every finite
sequence of states. The difference in strength between these two notions is
particularly visible after finite histories where the other player has made a
mistake, i.e. has not played optimally against the strategy considered. In
such a situation, an optimal strategy could (and, in fact, sometimes should,
as it will be seen in item 2.b below) also make a mistake as long as it is small
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enough. On the other hand, a subgame optimal strategy cannot do so and
needs to still be optimal. Therefore, subgame optimality can be seen as more
robust than optimality. In addition, since subgame optimal strategies satisfy
more properties than optimal strategies, it is easier to characterize properties
related to them. This is why, in this chapter, we study them, along with
subgame e-optimal strategies.

Let us first give the big picture of what is done in this chapter, we will give
the details afterwards. There are four sections in this chapter. The first section
is the only one where we deal with subgame e-optimal strategies. Contrary to
subgame optimal strategies, subgame e-optimal always exist, for all ¢ > 0.
This is formally stated and proved in that section. In the three remaining
sections, we deal with subgame optimal strategies. In the second section, we
give two characterizations related to subgame optimal strategies that will be
used afterwards: one stating at which conditions a strategy is subgame optimal;
another one stating at which conditions there exist subgame optimal strategies.
These characterizations are then used in the two following sections. The last
two sections can be seen as applications of the results proved in this second
section. In the third section, we look at how to use these results in the context
of standard finite concurrent (possibly turn-based) games. In the fourth and
last section, we study some conditions under which we can transfer results
existing in finite turn-based games to the context of standard finite concurrent
games.

Let us be more specific. In the following, arbitrary payoff functions will
always refer to measurable functions taking their values in [0, 1]. As mentioned
above, in Section 3.1, we focus on subgame e-optimal strategies for € > 0. We
show the following:

l.a. It is already known (see [57, Proposition 11, Lemma 12]) that, if at each
state both players have finitely many actions, then for all positive € > 0,
both players have subgame e-optimal strategies. We generalize this result
to arbitrary games, see Theorem 3.1, while keeping essentially the same
proof, of which we explain the main ideas, namely reset strategies. We
use Theorem 2.3 (item (1.a)) to prove this result.

1.b. We then use Theorem 3.1 to deduce a result on prefix-independent (PI)
win/lose games. Namely, in all PT win/lose (possibly infinite) games
where the infimum of the states values is positive, Player A has subgame
almost-surely winning strategies. We have already proved this result in
[11, Theorem 3| in the context of finite-state games. In fact, we show
a slightly more general result by only assuming arbitrary PI upward
well-founded (notion to be defined) payoff functions, see Corollary 3.6.

In Section 3.2, we focus on subgame optimal strategies in PI games. This
section is almost entirely based on [11] except that we do not only consider
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win/lose objectives, but more general payoff functions: sometimes arbitrary
PI payoff functions, sometimes only upward well-founded PI ones (notion to
be defined). We show several results:

2.a. We provide a characterization of subgame optimal strategies in PI games:
a Player-A strategy is subgame optimal if and only if 1) it is locally opti-
mal and 2) for every Player-B deterministic strategy, after every history,
almost-surely the (superior) limit of the Player-A value of the states
visited is less than or equal to the payoff function, see Theorem 3.12.
We then consider what Theorem 3.12 amounts to in the special cases
where the game is finite-state (Corollary 3.14) and if we additionally as-
sume that the Player-A strategy considered is positional (Corollary 3.16).
These are the results we mentioned at the beginning of this part as being
key results in concurrent games.

2.b. In [58], the authors have shown that in finite PI win/lose turn-based
games, there always exist optimal strategies and the memory sufficient to
play optimally is equal to the memory sufficient to play almost-surely, in
games where this is possible. We generalize this result to arbitrary finite-
state concurrent games with PI upward well-founded payoff functions
f- In such a context, subgame optimal strategies do not always exist
(and neither do optimal strategies), however we exhibit necessary and
sufficient conditions for the existence of subgame optimal strategies. We
give the intuition behind these necessary and sufficient conditions with
the help of an example where there is an optimal strategy, but there is
no subgame optimal one, see Page 134'. As a bi-product of the proof
that these conditions are indeed necessary and sufficient, we deduce that
if every game with a win/lose objective obtained from f via a threshold
that has a subgame almost-surely winning strategy also has a positional
one, then every game that has a subgame optimal strategy also has
a positional one. Note that this transfer result also holds with finite
memory, see Theorem 3.17.

Third, Section 3.4, which is also based on [11], we focus on subgame optimal
strategies in standard concurrent games. We consider two different issues:

3.a. We first focus on turn-based games and apply Theorem 3.17 discussed
above to finite turn-based games. That is, we recover the results proved
in [58] — dealing with the existence of (subgame) optimal strategies.
That is, we show that in finite turn-based games with PI upward well-
founded payoff function, Player A has a subgame optimal strategy along

!This is a game where, as hinted above, playing optimally requires “making a
mistake”. Formally, this means that no locally optimal strategy (notion to be defined)
is optimal.
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3.b.

with the previously-mentioned memory transfer. We then build a payoff
function from the parity objective to illustrate our result, see Corol-
lary 3.27.

We then come back to standard finite concurrent games with PI upward
well-founded payoff functions. In general, it does not hold, as as men-
tioned in item 2.b., that the existence of optimal strategies implies the
existence of subgame optimal strategies. Here, we exhibit a structural
condition — that we call being positively bounded — on strategies so
that the existence of a positively bounded optimal strategies is equiva-
lent to the existence of a positively bounded subgame optimal strategies,
see Theorem 3.28. This structural condition only depends on what the
strategy does in the arena, regardless of the payoff function. In this
case, the structural condition we consider is for a strategy to not play
arbitrarily small yet positive probabilities.

Finally, Section 3.4 is based on [11] but also borrows ideas from [38]. In

that section, we focus on transferring already existing result in turn-based
games to the case of standard concurrent games. We proceed in two steps

4.a. First, in standard concurrent games, we define the notion of sequential-

4.b.

ization, that is we build a turn-based game from standard concurrent
games where Player A plays first, and then Player B responds. We
translate strategies back and forth between the two games, which allows
us to consider how and when the values change between the two games.
Note that the results of this subsection will be used in Chapter 6.

Then, we introduce another type of strategies, namely finite-choice strate-
gies. Informally, a strategy has finite choice if it uses only finitely
many GF-strategies at each state. This is stronger than being positively
bounded (in finite-state arenas). We use the sequentialization from item
4.a to show that when such strategies exist, we can transfer already ex-
isting results in turn-based games to concurrent games, for some payoff
functions. Note that the condition on the payoff functions is unrelated
with being PI or upward well founded. As a corollary, we obtain that in
finite concurrent games with a parity objective, if there is a subgame op-
timal strategy that has finite choice, then there is one that is positional,
see Corollary 3.38.

3.1 Subgame almost-optimal strategies

In this section, we focus on subgame almost-optimal strategies, that is

subgame e-optimal strategies for all ¢ > 0. It is shown in [57, Proposition

120



11, Lemma 12] that subgame almost-optimal strategies always exist in stan-
dard concurrent games? where, at each state, both players have finitely many
actions. We adapt the proof of [57] to show the existence of subgame almost-
optimal strategies in all concurrent games. Furthermore, one can realize that
in this proof subgame almost-optimal strategies are built from almost-optimal
strategies. Since we have exhibited in Theorem 2.3 a restriction on the class of
strategies we need to consider to find almost-optimal strategies, we prove the
theorem below:

Theorem 3.1. Consider an arbitrary concurrent game G. Let C € {A, B}
be a player and assumed that the game G is supremized w.r.t. Player C by a
collection (S¢)qeq of sets of GF-strategies. Then, for all positive € > 0, Player
C has a subgame e-optimal strategy generated by (S¢)qeq-

In the next subsection below, we discuss the proof of this theorem, whereas
Subsection 3.1.2 is dedicated to an application of this theorem.

3.1.1 . Proof of Theorem 3.1

In this subsection, we prove Theorem 3.1. The result is proved for Player A,
the case of Player B being analogous. For the remainder of this subsection we
fix an arbitrary concurrent game G = (C, g). We also let f := g¢: Q¥ — [0, 1].

The idea behind the construction of subgame e-optimal strategies is to
make use of reset strategies. Informally, these are strategies that are initialized
at the beginning of the game and updated whenever the property they are
supposed to ensure does not hold after some history (i.e. finite sequence of
states). The goal is then to show that almost-surely there are only finitely
many updates. Hence, almost-surely, if we consider long enough history, the
strategy is not changed anymore which means that it ensures the property for
all finite histories thereafter. For all positive € > 0 and finite history p € Qg,
we denote by s; , € Si a Player-A strategy that is e-optimal in the game G!(®)
from the state p. We define formally below the reset strategies we consider.

Definition 3.4 (Reset strategy). Consider some positive ¢ > 0. We define
inductively a function U : Qg — Qér that ensures that, for all p € QF, we
have Uc(p) © p. We also denote by Suf(p) € QF the finite path such that
p = U-(p) - Suf(p) and by Pl(p) := U(p)i - Suf(p) € Q}. For all ¢ € Q, we let
Uc(q) := q. Furthermore, for all p-q € Qg, we let:

0pe g oo { V00 X0 L)) > xorlAl() — 2
: p-q otherwise

Then, the Player-A reset strategy s. rst € Si is defined by, for all p € QZT:

Se,Rst (p) == Se,Uc(p) (PI(p))

2Recall that by definition of a concurrent game, a payoff function is bounded and
measurable.
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It is defined arbitrarily on finite paths not in Qér
This definition ensures the lemma below:

Lemma 3.2. For all positive ¢ > 0, the Player-A reset strategy s rst is
subgame 2e-optimal.

Proof sketch. Consider some p € (Qns)™. Whenever there is an update after p
(i.e. when U.(p-7) = p-7 for m € Qf), it means that the value of the strategy
at that history p - 7 is less than the value of the history p- 7 w.r.t. Player A
minus 2¢. Furthermore, when there is an update at p - m, what the strategy
seRst Plays at p - m comes from a strategy that is e-optimal at p - m. Hence,
with the update, the value of the residual strategy has increased by at least
g. From this observation, we can in fact deduce that almost-surely there are
only finitely many updates (since € > 0). Furthermore, when there is no more
updates, the residual strategy is at least 2c-optimal. We can then conclude by
realizing that, from any finite path p- 7 € Qg, the expected value of the finite
paths after which there is no more update is, roughly, the value of the residual
strategy at p - 7. O

The formal proof of Lemma 3.2 is very heavy on notations due to the use
of residual strategies and is quite technical. Hence we do not give this proof in
the main sections of this chapter. A complete and detailed proof can be found
in Appendix 3.6.1.

We can now proceed to the proof of Theorem 3.1.

Proof. Consider some Player C € {A, B}. Consider a collection (Sg)4eq of GF-
strategies that supremizes the game G w.r.t. Player C. Then, by Theorem 2.3,
for all p € Qg, there is a Player-C strategy s. , € Si generated by (S¢)qeq that
is e-optimal from p. Considering such strategies, the Player-C reset strategy
s. rst defined from s, , is also generated by the collection (S¢)4e. Lemma 3.2
ensures that it is subgame 2e-optimal. O

3.1.2 . Application of Theorem 3.1
In this subsection, we present an application of Theorem 3.1 with PI (recall,
prefix-independent) upward well-founded payoff functions (we will define this
notion below). First, we consider the probability of PI Borel sets in stochastic
trees. As stated in [59, Theorem 5|, we have the adaptation below of Levy’s
0-1 Law to the context of stochastic trees:

Theorem 3.3 (Levy’s 0-1 Law for PI Borel sets in stochastic trees). Consider
a stochastic tree T = (Q,P) and a Borel set W & Borel(Q) that is prefix-
independent. Then, from all finite paths m € Q7, the sets W and W[ | :=
{p € Q¥ |limp—00 Pr.p., (W) = 1} are equal up to a null set. That is, for all
T e Qt, we have P [WNWS ] =P [W] =P [WE_,].

In particular, this theorem above implies the lemma below:

122



Lemma 3.4. Consider a stochastic tree T = (Q,P) and a Borel set W €
Borel(Q) that is prefix-independent. We have:

inf P,[W]>0<« inf P,[W]=1

pEQT pEQT
Proof. Assume that inf o+ P,[W] > 0. Consider the set Wi := {p € Q“ |
limy, 00 Py, (W) = 0}. Clearly, Wimo = (). By Theorem 3.3, it follows that
for all p € QT, we have P,[Q“ \ W] = P,[Wiimo] = 0. That is, for all p € Q,

we have P,[W] = 1. O
Note that Lemma 3.4 also comes from Lemma 2 in [49]. In the same paper
[19], the author studies win/lose PI objectives in standard concurrent games

(with standard finite local interactions). They show [19, Theorem 1] that if
a state? has value less than 1, then the infimum of the values of all states is
0. Equivalently, if the infimum of the states values is positive, then all states
have value 1.

In [58, Theorem 3.2] in the context of (standard) turn-based finite (recall
with finitely many states, and finitely many actions at each state) PI games, the
authors have improved this result: if the infimum of the state values is positive,
then Player A has an almost-surely winning strategy from every state. That is,
not only all states have value 1, but also there is a strategy that achieves this
value from every state. Interestingly, to prove this result, the authors have
built an almost-surely winning strategy with reset strategies — similarly to
what we presented in the previous subsection. We will discuss further other
results proved in that paper [58] in Section 3.3.

In [11], we have adapted (almost verbatim) the reset-strategies-arguments
from [58] to obtain an analogous result in finite standard concurrent games
[11, Theorem 3|. In fact, we have even realized that the almost-surely winning
strategy built in [58] was subgame almost-surely winning.

All these results can be generalized to arbitrary concurrent arenas with
more general PI payoff functions than win/lose ones. Specifically, this holds
for well-founded* payoff functions (upward or downward, depending on the
player considered).

Definition 3.5 (Well-founded payoff functions). Counsider a set of colors K
and a payoff function f : K“ — [0,1] and let E := f[K*¥]. The payoff function
f is upward well-founded if there is no infinite ascending chain in E. That
is, there is no sequence (T,)neny € EV such that x, < x,41 for all n € N.
Symmetrically, the payoff function f is downward well-founded if there is no
infinite descending chain in E.

3We need not consider all finite sequences of states since the objective considered
is prefix-independent.
4The term well-founded comes from its use on order relations.
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In particular, any payoff function taking finitely many values is upward
well-founded. In fact, well-foundedness can be alternatively defined as follows.

Lemma 3.5 (Proof 3.6.2). Consider a set of colors K and a payoff function
f:K¥Y = 10,1] and let E := f[K¥]. It is upward (resp. downward) well-founded
if and only if, for all x € [0, 1], there is some € > 0 such that [t —e,x) N E = ()
(resp. (x,z+e]NE=10).

We state below the more general version of all the results discussed above in
the context of arbitrary concurrent arenas and PI upward well-founded payoff
function. This result could be proved with reset strategies, but there is no need
as it is in fact a straightforward corollary of Theorem 3.1 (and Theorem 3.3).

Corollary 3.6. Consider a concurrent game G where all stopping states have
value 1 and with a PI upward well-founded payoff function f. Let E := f[K¥] C
[0,1] and ¢ := infcq xg[A](q). Let

c otherwise

g {infEﬂ [c.1] FEN[e1]#0

Then, Player A has a subgame almost-surely winning strategy w.r.t. the ob-
jective {f > d} = {p e K| f(p) > d} € Borel(K).
This is symmetrical for Player B (upward is replaced by downward).

We state a simpler version with the context of a win/lose objective.

Corollary 3.7. Consider a concurrent game G where all stopping states have
value 1 with a PI win/lose function f. If infoeq xg[A](q) > 0, then Player A
has a subgame almost-surely winning strategy in G.

Proof. Since f is upward well-founded and by Lemma 3.5, there is some € >
0 such that [¢ —e,¢) N E = (. Consider a Player-A subgame &/2-optimal
strategy sa, whose existence is ensured by Theorem 3.1. Let us show that
this strategy is subgame almost-surely winning w.r.t. the winning objective
Wy := {f > d} € Borel(K) and X, := (col*)™1[W,] C (Qns)”. Consider any
Player-B strategy sg and p € (Qns)™. We let W C Q¥ be a winning objective
for Player A such that, for all p € Q¥

o If pe@Q* (Qns)”, then p € W if and only if a suffix of p is in Xy;
e Otherwise, p € W if and only if there is some ¢ € Qs such that p € Q*-¢“.

Note that the set W is prefix-independent. Since, in the stochastic tree T7**
all stopping states are self-looping, we have IP’ZA’F’)SB W] = IP’Z’T;B [XaU(Qns)™ - Qs)-

Furthermore, by choice of the strategy sa, we have EZ‘};’B fe] 2c—5. In
addition, for all p € K¥, by definition of d, if f(p) < d, then f(p) < ¢ —e.
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Hence:

c—e/2 SEX®[fe] = EX P fe - Ix,uer-@] + EXP[fe - Lguyx,]
< IP"‘gjjB [XgUQ" - Qs+ (c— 5) (1 IPSA’SB [XsUQ*" - Q)
=P B W]+ (c—¢)- (1 - P8 [W])

We obtain: .
P W] > o———— >0
o Wz 2-1—c+e) ”
This holds for all p € Q*. Hence, by Lemma 3.4, we have that for all p € Q™
1= IP’ZA;)SB (W] = IP’SA’SB [XqUQ*- Q.
If fis Wln/lose then for all d > 0, we have {f > d} ={f =1}. O

We conclude this section by providing an example where Corollary 3.6 fails
for a PI payoff function that is not upward well-founded.

Example 3.1. Consider a game G = (C, f) where C is a turn-based deter-
ministic arena on the set of colors K := {0,1} with two states qy and ¢ that
are colored with 0 and 1 respectively. Player A plays alone and decides at each
step to which state she wants to go. The payoff function f maps each infinite
sequences of 0 and 1 to the superior limit of the mean of the values seen, except
if it is 1, in that case it maps it to 0. More formally, for all p € K“, we have:

L lim Supn(%ﬂ Z:‘L:o pn) i lim Supn(%ﬂ Z;‘L:o pn) <1
f(p) = .
0 otherwise

Note that this payoff function is prefix-independent and not upward well-
founded. Clearly, the value of both states qy and q1 is 1, since Player A can
ensure that the superior limit is as close as desired to 1 and yet less than 1.
However, she has no almost-surely winning strategy since no infinite path has
value 1 in this deterministic turn-based arena.

3.2 Subgame optimal strategies in arbitrary concurrent
games

The remainder of this chapter, that is this section and the two following
ones, is based on [11], where we focus on subgame optimal strategies. However,
note that whereas in [11] we considered only PI win/lose objectives, in this sec-
tion we generalize these results to PI payoff functions in arbitrary arenas as
we did in Subsection 3.1.2. More specifically, in Subsection 3.2.1, we discuss a
simple (and well-known) example where there is no optimal (subgame) strat-
egy which we will use later to justify the conditions considered for subgame
optimality. Second, in Subsection 3.2.2, we establish a sufficient condition for
a strategy to guarantee a valuation of the states, which turns out to also be
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Figure 3.1: A deterministic standard concurrent reachability game G =
(C,Reach) where Player A wants to reach the target {T}.

necessary if the valuation considered is the value of the game (for Player A). Fi-
nally, in Subsection 3.2.3, we use the previous result to exhibit a necessary and
sufficient condition for the existence of subgame optimal strategies in games
where the PI payoff function is upward well-founded.

3.2.1 . A simple game without optimal strategies

In this subsection, we focus on the reachability game of Definition 3.6.
Note that we have already considered that game in Chapter 2 to exemplify the
construction used to prove Theorem 2.3. This game is well-known, for instance
called the snow-ball game in [60]. In the remainder of this dissertation, we will
also refer to this game as the snow-ball game.

Definition 3.6 (Game described in Figure 3.1). Consider the game depicted
in Figure 3.1. This game G = (C, Reach) is standard. There is only one non-
trivial state: qo. (Alternatively, T could be a stopping state of value 1 and L
could be a stopping state of value 0.) The set of colors considered is K := {0, 1}
and the colors of the states qq, T, L are given in red next to them: col(qgy) := 0,
col(L) := 0 and col(T) := 1. This game is win/lose, and the objective Reach is
a reachability objective (recall Definition 1.25): Player A wins if and only if the
state T is reached. The Player-A set of actions at state qo is Acty := {a1,az}
where a1 refers to the top row and ao refers to the bottom row and similarly
we have Acty := {b1,bo} where by refers to the leftmost column and by refers
to the rightmost column.

This game ensures the following properties.

Proposition 3.8. The reachability game from Definition 3.6 is such that:
e the state qy has value 1: xg(qo) = 1;

e for all positive ¢ > 0, the Player-A positional strategy si such that
sa(qo)(a1) :=1—¢ and s3(qo)(az) := € has value 1—¢: xg[sal(q0) = 1—¢;

e 10 Player-A strategy is optimal (i.e. has value 1).

126



The proof of this proposition is not complicated, however it is much easier
with the help of the results we will show in the next subsection. Hence, we
prove it at the end of that subsection in Page 133.

Important remark: What we show in the next subsection below is
quite straightforward to prove given the results we have shown in Sub-
section 2.3.1 in Chapter 2. However, note that it is central in this disser-
tation as we will often use the theorems of this subsection to show that
a strategy we have defined is optimal, almost-optimal, subgame optimal
(or that it is not).

3.2.2 . Sufficient condition for a strategy to guarantee a valuation

In this subsection, we present a pair of conditions sufficient for a Player-A
strategy to guarantee a valuation, formally stated as Theorem 3.12. Further-
more, when the valuation is equal to the value of the game for Player A (i.e.
for the Player-A strategy to be subgame optimal), this pair of conditions turns
out to be also necessary.

Consider a game with a PI payoff function on an arbitrary concurrent
arena (in particular, it may not be valuable) and a valuation of finite paths
v Qér — [0, 1]. Recall Definition 3.1: Qé’ refers to the non-empty sequences
of states that stop once a stopping state is reached.

We explain informally the ideas behind Theorem 3.12 below for the case of
the valuation v := xg[A]. The first condition is local: it specifies how a Player-
A strategy sa should behave at each local interaction of the game. First, one
can realize that after a history of non-stopping states p € (Qns)™, the Player-A
value of the game in normal form (F(py),v”) is equal to the Player-A value
after history p. Note that this holds even with a payoff function that is not
PI. We state this formally below in Proposition 3.9.

Proposition 3.9 (Proof 3.6.4). Consider an arbitrary concurrent game G.
For all p € (Q@ns)™, we have xg[A](p) = val[(F(p1), xg[AI")](A).

This suggests that, for all finite sequences of non-stopping states p €
(Qns)T, the GF-strategy sa(p) needs to be optimal in the game in normal
form (F(py),v”) for the residual strategy stAI(p) to be optimal from p;. When
considering this property with arbitrary valuations v, strategies ensuring that
property are said to be dominating the valuation v. When v := xg[A], such
strategies are called locally optimal. Note that a definition of strategies domi-
nating valuations was given in Chapter 2 in Definition 2.6 suited for the proof
of Theorem 2.3%. We give below a new definition of strategies dominating

valuations that coincides with Definition 2.6 when gd = A.

5Specifically, Definition 2.6 made use of the notion of guards.
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Definition 3.7 (Dominating a valuation, Locally optimal strategies). Con-
sider an arbitrary concurrent game G and a valuation v : QZ — [0,1]. A
Player-A strategy sa dominates the valuation v if, for all p € (Qns)™, the GF-
strategy sa(p) is such that val[(F(pi), v?)](sa(p)) > v(p). When the valuation
v = xgl|A], the strategy sa Is said to be locally optimal. The definition is
symmetrical for Player B.

Although dominating a valuation in general is not necessary for guaran-
teeing it (recall Definition 3.2), it turns out that being locally optimal is a
necessary condition for being subgame optimal, as stated below.

Lemma 3.10 (Proof 3.6.4). In an arbitrary concurrent game G, for all Player-

A strategiessa € S§ and p € Q, we have xgun [sa](pie) < val[(F(pie), xg[sal?)](sa(p)) <
val[(F(pit), xg[A]?)](sa(p)). As a corollary, if sp is subgame optimal, then for

all p € (Qns)™, we have xg[A](p) = Xgu [sal(pie). Therefore, the strategy sa

is also locally optimal.

Dominating a valuation v does not ensure guaranteeing v. However, it
does ensure nice properties. Indeed, the simple yet crucial remark we can
make is that given a Player-A strategy sa dominating a valuation v, for all
Player-B strategies sg, the valuation v is non-decreasing (recall Definition 2.3)
in the stochastic tree induced by sa and sg. However, in Definition 2.3 of non-
decreasing valuation in stochastic trees, the valuations considered are of the
type QT — [0, 1] instead of QZ — [0, 1]. Hence, we define below a canonical
way to transform valuations before stating Lemma 3.11.

Definition 3.8 (Canonical transformation of valuations). Consider an ar-
bitrary concurrent game G and a valuation v : Qér — [0,1]. We denote by
vs : @7 — [0, 1] the valuation such that, for all p € QT, denoting 7, € QF the
longest prefix of p in Qér (which is therefore equal to p if p € Qg)

vs(p) = v(my)

Lemma 3.11 (Proof 3.6.5). Consider an arbitrary concurrent game G, a
valuation v : Qg — [0,1] and a Player-A strategy sa € SCA dominating the
valuation v. For all Player-B strategiessg € Sg, in the stochastic tree ’7'CSA’SB, for
all m e Qér, the valuation (vs)™ is non-decreasing from m. This is symmetrical
for Player B.

By Proposition 2.9, we have that given a Player-A strategy dominating a
valuation v and any Player-B strategy, in the stochastic tree induced by both
strategies, the value v(p) of any finite paths p € Qg is less than or equal to
the expected value of limsup,_: @“ — [0, 1] (recall Proposition 2.4) from p.

To obtain that sp guarantees the valuation v, it would then suffice that, for
any Player-B strategy and after any finite paths p € (Qns)™, almost-surely the
superior limit limsup,_ is less than or equal to f. This constitutes the second
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condition that, along with dominating v, is sufficient for the strategy sa to
guarantee the valuation v. This is stated in Theorem 3.12 below.

Interestingly, when v = xg[A], this second condition is also a necessary
condition for subgame optimality. Indeed, assume that sp does not ensure this
condition. That is, there is a Player-B strategy and a finite path p € (Qns)™
after which there is some r € QN [0, 1] and § > 0 for which there is a positive
probability that f < r and r + ¢ < limsup,.. We denote this event E,.5 C
Q. Since f and limsup, are both prefix-independent, it follows that E,;
is prefix-independent. Hence, by Lemma 3.4 (from the previous section) and
by definition of the superior limit function limsup,_, we can show that there
are continuations of this path p ending at states of value at least r + ¢/2 for
which the probability of E, ;s is arbitrarily close to 1. In particular, there is
probability arbitrarily close to 1 that f < r. It follows that we can exhibit a
path p’ € p- (Qns)T such that, from p’ the value of the Player-A strategy sa is
less than the value of p' (w.r.t. xg[A]).

We obtain the theorem below.

Theorem 3.12. Consider an arbitrary PI concurrent game G = (C, f), a
valuation v : Qf — [0,1] and a Player-A strategy sp € S5. Assume that the
strategy sa satisfies the pair of conditions below:

e sp dominates the valuation v;

e for all p € (Qns)t and Player-B strategies sg € Sg, we have:
P8 [limsup,, < fe] = 1.

Then the Player-A strategy sa guarantees the valuation v.
Conversely, if sp guarantees xg[A] (i.e. sa is subgame optimal), then the
strategy sa satisfies that pair of conditions for v = xg[A].

Proof. First, note that since f is PI, then for all p € (Qns)™, we have (f¢)? =
fc- Now, assume that the Player-A strategy sa satisfies that pair of condi-
tions. Let p € Qér If pr € Qs, then clearly the strategy sp is optimal from
p. Assume now that p € (Qns)™ and consider a Player-B strategy sg € S§.
By Lemma 3.11, the valuation (vs)? : @* — [0, 1] is non-decreasing from p
in the stochastic tree 754, Therefore, Proposition 2.9 ensures that v(p) <
E > [limsup,,]. Furthermore, by assumption E ™ [limsup,, | < EZ"®[fc]. Hence,

P
we obtain v(p) < EZA;B [fe]. As this holds for all Player-B strategies sg, it fol-

lows that xgu(p) [sz(p)}(ph) > v(p). In fact, the Player-A strategy sa guarantees
the valuation v.

Assume now that v = xg[A] and that the Player-A strategy sa guaran-
tees the valuation v, i.e. that the Player-A strategy sp is subgame opti-
mal. Lemma 3.10 ensures that this strategy must be locally optimal. As-
sume now that there is some p € (Qns)™ and Player-B strategy sg € S‘é such
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that IP)Z‘:ZJ)’SB[Iimsupvs < fe] < 1. We denote the stochastic tree ’7'057‘;’53 sim-
ply by T, and the corresponding probability function by P. There is some
p,0 € QN[0,1] with 6 > 0 such that P[E,;] > 0. where E,; := {f¢ <
pNp+6 < limsup, } € Q. However, both fe and limsup, are not PI since
stopping states are taken into account. Hence, we let EI/7,5 ={r-pe@¥|rwe
Q% p € (Qns)¥, focol®(p) < pNp+d < limsup,(p)}. This event is measurable
and PI and has the same measure as the event I, 5 since, once a stopping state
is reached it is never left. Hence: P[E ;] > 0.

1—

ho| S

Consider now some z,y € [0,1] such that 1_; <z <y<1l By
Lemma 3.4, we have that there is some m € (Qns)* such that PW[EI’) N
We let Alwaysc,,,5/9 := {0 € (Qns)” | Vi € N,v(mr - 0<;) < p+6/2}. We have

Pr[E} s N Always<,, 5/5] = 0 by definition of the function limsup,. Therefore,

we have:

Pr[E, 5] < sup  PrglE 4]
0eQ*
vP(m-0)>p+3/2
Hence, there is some 6 € Q* such that v(7-0) > p+6/2 and Prg[Eps] >
In particular, Prg[fc < p] > 2. Then, we have:

Erolfe]l <Prolfc <pl p+1-Pry[fce <p]<x-p+1-2z
)

p+§§U(P'7T'9)

N

Hence, the strategy sp is not optimal from p- 7 -0, it is therefore not subgame
optimal. 0

Special cases. We have given in several articles weaker versions of The-
orem 3.12, for instance if we assume that sp is positional. We would like to
recall some of these versions since they will be useful in the following.

First, in [41], we considered the case where the valuation v : @ — [0, 1]
values the states, not the finite sequences of states, with Q finite. This implies
that the valuation v takes only finitely many values. Consider a Player-A
strategy sa dominating this valuation v — straightforwardly extended to finite
sequences of states by considering the last element of the sequence — and any
Player-B strategy sg. By Lemma 3.11, this valuation v is non-decreasing in
the stochastic tree induced by these strategies. Hence, Proposition 2.6 gives
that almost-surely all infinite paths have a limit w.r.t. the valuation v. In this
context this implies that almost-surely, all states seen infinitely often have the
same value [11, Lemma 2|. This is stated formally below in Corollary 3.13,
after the definition of valuations considering the last state of a sequence.

Definition 3.9. Consider an arbitrary concurrent game G and a valuation
of the states v : Q — [0,1]. This valuation is extended into vy : QT — [0,1]
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(it can also be seen as vy : Qér — [0,1]) such that, for all p € Q*, we have
uie(p) = v(pr)-

Corollary 3.13. Consider an arbitrary concurrent game G and a valuation v :
Q — [0, 1] taking finitely many values. For all u € v[Q] we let QY := v~ [{u}].
Consider a Player-A strategy dominating the valuation vy : QZ? — [0,1] and
any Player-B strategy sg. For all p € (Qns)™, we have:

PesEl (@ (@) =1
uev(Q]

Proof. Consider any ¢ € () and Player-B strategy sg € S(é. By Lemma 3.11,
the valuation vy = ((uvir)s)? : QT — [0,1] is non-decreasing from p in the
stochastic tree 7'05“’55. Hence, by Lemma 2.6, almost-surely from p the superior
and inferior limit of v are equal. Since this valuation v takes only finitely
many values, it follows that almost-surely, the game settles in a unique value
slice QY for some u € v[Q)]. O

In this context, Theorem 3.12 amounts to the corollary below, and corre-
sponds to [1], Theorem 1]:

Corollary 3.14. Counsider an arbitrary PI concurrent game G = (C, f) and
a valuation v : QQ — [0,1] taking finitely many values. For all u € v[Q] we let
QY := v [{u}]. Letsa € Sé be a Player-A strategy. Assume that the strategy
sa satisfies the pair of conditions below:

e sp dominates the valuation vy;

o for all p € (Qns)" and Player-B strategies sg € SB, for all u € v[Q)], we
have

FEo[Q" - (@u)Y N {2 u}] =P [Q" - (Q1)”]

Then the Player-A strategy sa guarantees the valuation v.
Conversely, if sp guarantees xg[A] (i.e. sa Is subgame optimal), then it also
satisfies that pair of conditions for v = xg[A].

Proof. Proving this corollary only amounts to proving that the second con-
dition is equivalent to the second condition of Theorem 3.12. Consider some
p € (Qns)* and a Player-B strategy sg € S§. By Corollary 3.13, assuming the
condition of this corollary, we have:

PP llimsupq,, < f]= ) PEP[{limsupg,, < f}NQ"- (Q1)°]

uev[Q)]

= > PER{u< f1nQ - (QY)]
u€v[Q]

= > PEEQT- ()] =1
u€v[Q]
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Reciprocally, assuming that IP’ZAb limsup(,,), < f] =1, for all u € v[Q] such
that PE2[Q* - (Q7)] > 0, it must be that szjjB[{f >u} | Q- (QU)¥] =1
since, as already used above, ]P’SA’ [{I|msup =u} | Q*-(QU)*] = 1. O

Let us consider a further special case in the case where a positional Player-A
strategy sa dominates a valuation of the states taking finitely many values. In
that case, as above almost-surely all states seen infinitely often have the same
values w.r.t. v. In addition, states ¢ € @Q where the local value of the strategy
is more than the value of the state, that is such that v(q) < val[(F(q),v)][sa(q)],
are seen only finitely often. Furthermore, in the special case of a finite standard
arena, in all end components, all states have the same values. This is stated
below in Corollary 3.15. It is a slight generalization of [39, Proposition 18|.

Corollary 3.15. Consider an arbitrary arena C, a valuation of the states
v : Q — [0,1] taking finitely many values and a positional Player-A strategy
sa € S§ dominating the valuation vy : Q0 — [0,1]. For all Player-B strategies
and from all finite paths © € Qg, almost-surely, the set of states seen infinitely
often is included in {q € Q | v(q) = val[(F(q), v)][sa(q)]}-

If we assume additionally that the arena C is standard and finite, then in
the MDP '}, for all end components H € EFsCA, there is a value u(v, H) € [0, 1]

such that v[Qu] = {u(v, H)}.

Proof. For all ¢ € Q, we let dg := val[(F(q),v)][sa(q)] —v(q). Since the strategy
sa dominates the valuation vy, for all ¢ € @, we have d, > 0. Consider some
state ¢ € @ such that d; > 0 and let u := v(q) € [0,1). Welet Q%, :={q€ Q|

v(g) > u}, Q%, = Q\Q%, and @} = {g € Q | v(¢q) = u}. For any Player-B
GF-strategy og € E(é, recalling Definition 1.28, we have:

u+dy < out[(F(q), v)](sa(9),o8) = D 04(sa(a),o8) (") - v(d)

7eQ
< D 0g(sal9),o8)(d) + Y 04(sale),oB)(d)
7eqy, ez,

= PARIQY,) - (1) u

Hence, IP’SA’SB[ Cul > 1 —- > dg > 0. This holds for all Player-B GF-strategies
oB € Eq Hence, from any finite path 7 € Q , for any Player-B strategy with
the Player—A strategy sa, if the state ¢ is seen inﬁnitely often, almost surely, the
set @Y, is seen infinitely often almost-surely. Furthermore, by Corollary 3.13,
almost-surely all states visited infinitely often have the same values w.r.t. v.
That is, for any Player-B strategy, almost-surely the state ¢ is seen only finitely
often.

Assume now that the arena C is standard and consider an EC H € & oA
Since it is an end component, all states in it may be seen infinitely often Wlth

probability 1 for a Player-B strategy playing at each state ¢ € Qg uniformly
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over all actions in g (q). Hence, since Corollary 3.13 ensures that for any
Player-B strategy almost-surely all states seen infinitely have the same value,
it follows that all states in H have the same value. O

Finally, we have below what Theorem 3.12 amounts to in the context of
finite standard concurrent game for a win/lose objective. We already proved
this result in the context of reachability games [39, Proposition 17| and gen-
eralized it to more general objectives (but still not all PI objectives) in [10,
Lemma 16].

Corollary 3.16. Consider a finite standard concurrent PI win/lose game G
and a valuation v : Q — [0,1]. Let sp € S2 be a positional Player-A strategy.
Assume that the strategy sa satisfies the pair of conditions below:

e it dominates the valuation v;

e for all end components H in the MDP induced by the strategy sa, if
u(v, H) > 0, then for all ¢ € Qp, we have XCZ\(Q) =1.

Then the Player-A strategy sa guarantees the valuation v.
Conversely, if sp guarantees xg[A| (i.e. sa is subgame optimal), then it also
satisfies that pair of conditions for v = xg[A].

Proof. As for the proof of Corollary 3.14 which used Theorem 3.12, we prove
this corollary by showing that the second condition is equivalent to the sec-
ond condition of Corollary 3.14. Assume that the above conditions hold. By
Theorem 2.3, since all local interactions in MDPs are supremized by determin-
istic GF-strategies, almost-optimal strategies for Player B against the strategy
sa can be found among deterministic strategies. Furthermore, Lemma 1.17
ensures that for all deterministic Player-B strategies, the game almost-surely
settles in an EC. By assumption, it follows that if the game settles in a value
slice of positive value, then almost-surely Player A wins, which implies the
second condition of Corollary 3.14.

Assume now that the second condition of Corollary 3.14. For any EC H in
the MDP induced by the strategy sa such that u(v, H) > 0, it must be against
all Player-B (deterministic) strategies compatible with that EC, the game has
value at least u(v, H) > 0 from any state in Q. Since the game is win/lose,
this implies that for all ¢ € Q g, we have X (q) = 1. O

Proof of Proposition 3.8. With the help of the results proved in this
subsection, let us show Proposition 3.8.

Proof. Consider some positive € > 0. Let v, : Q — [0, 1] be such that v-(go) :=
1 —¢€,v(T):=1and v.(L) := 0. The strategy sp dominates this valuation.
Furthermore, the only end components compatible with this strategy are {T}
— the target of value 1 — and {L} — of value 0. Hence, the strategy sa

133



Figure 3.2: A co-Biichi game.

satisfies the conditions of Corollary 3.16 and therefore guarantees the valuation
vs. Since this holds for all positive € > 0, it follows that the value of the state
qo is 1.

Consider now a Player-A strategy sa € S%. Let us show that its value is less
than 1. There are two cases. First, if, for all n > 1, we have sa(q()(a1) =1,
then for a Player-B strategy sg € S(é that plays positionally action b; with
probability 1, then with sp and sg surely the game will loop on gg. Otherwise,
consider the least ng > 1 such that sa(gy°)(a2) > 0. Consider then a Player-B
strategy sg € Sg such that, for all n > 1:

S(n)'— {bl'_>17b2’—>0} if n < ng
B {b1 — 0, by — 1}  otherwise

With both strategies sa, sg, we have:

PSR gp] = 1

and

P2 la0° - L] = sa(gg°)(az) > 0

Hence, the value of the strategy sa is less than 1. In fact, Player A has no
optimal strategy in this game. O

3.2.3 . Necessary and sufficient condition for the existence of subgame
optimal strategies

In the previous subsection, we have (in particular) studied a necessary and
sufficient pair of conditions for a Player-A strategy to be subgame optimal.
In this subsection, we focus on the existence of subgame optimal strategies in
arbitrary finite-state games. This section is an adaptation of [11, Section 6] to
the case of arbitrary local interactions.

In [58, Theorem 4.5|, the authors have proved a transfer result in PI
win/lose turn-based games: the amount of memory sufficient to play opti-
mally at every state of value 1 of every game is also sufficient to play optimally
in every game. This result does not hold in concurrent games as is. First, al-
though there are always optimal strategies in PI turn-based games (as proved
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in the same paper |58, Theorem 4.3]), there are PI concurrent games without
optimal strategies, as discussed above in Proposition 3.8. Second, although
almost-surely winning strategies can be found among positional strategies in
standard concurrent co-Biichi games (we will discuss it further in Chapter 5),
infinite memory may be required to play optimally in co-Biichi standard con-
current games. This is witnessed by the game of Figure 3.2. Note that this
game is very close to the co-Biichi game of Figure 2.55. The difference with
the game of Figure 2.5 is that there are two states ¢; and ¢} instead of only
one state ¢q;. In that way, Player A can now know when Player B has played
action b. Hence, the infinite-memory Player-A strategy described in the proof
of Lemma 2.23 can be translated in this setting to obtain an optimal strategy
(i.e. a strategy of value %) Let us recall quickly how this strategy plays. To
play optimally, Player A may play the top row with probability 1 — ¢, and
the middle row with probability e for e, > 0 that goes (fast) to 0 when &
goes to oo (where k denotes the number of steps). The ¢ is chosen so that,
if Player B always plays the left column with probability 1, then the state ¢;
is seen finitely often with probability 1. Furthermore, as soon as the state ¢}
is visited, Player A switches to a positional strategy playing the bottom row
with probability ¢} small enough (where k& denotes the number of steps before
the state ¢} was seen) and the two top rows with probability (1 —e}.)/2.
Therefore, the transfer of memory from almost-surely winning to optimal
does not hold in concurrent games even if it is assumed that optimal strategies
exist. However, one can note that although the strategy described above is
optimal, it is not subgame optimal. Indeed, when the strategy switches, the
value of the residual strategy is 1/2 — ¢}, < 1/2. In fact, there is no subgame
optimal strategy in that game. Actually, if we assume that, not only optimal
but subgame optimal strategies exist, then the transfer of memory will hold.
The aim of this subsection is twofold: first, we identify a necessary and
sufficient condition for the existence of subgame optimal strategies”. Second,
we establish the above-mentioned memory transfer that relates the amount of
memory to play subgame optimally and to be subgame almost-surely winning.
Furthermore, this is done with any Pl upward well-founded payoff function.
Note that although we generalize some of the results from [58] — that we have
discussed above — the method we use here is different from what the authors
of [58] did to prove the transfer of memory in turn-based games. Namely, they
showed that there is a live and self-consistent permutation of the distribution

6Recall, in the game of Figure 2.5, Player A has an optimal strategy among action-
strategies but none among classical strategies (the ones we consider in this disserta-
tion). A description of this game in provided in Definition 2.19.

"Note that this is different from what we did in the previous section: there, we
established a necessary and sufficient condition for a specific strategy to be subgame
optimal. Here, given a game, we consider necessary and sufficient conditions on the
game for the existence of a subgame optimal strategy.
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over states that both players can agree on. They can then play according to
this permutation (which can be used to specify their preferences over these
distributions over states).

Before formally stating the main theorem of this section, we first need to
define the winning objectives that can be obtained from payoff functions. This
is done below.

Definition 3.10 (Winning objective obtained from a payoff function). For
all sets of colors K, payoff functions f : KY — [0,1] and u € [0,1], the set
{f>u}:={pe K| f(p) > u} is a winning objective obtained from f.

To establish this transfer of memory, we will actually modify the game
forms occurring in the game. Specifically, we will keep all Player-B GF-
strategies while disregarding any Player-A GF-strategy that is not optimal in
a specific game in normal form. We define this change of game forms below,
we will illustrate it later on a standard game form.

Definition 3.11 (Only optimal GF-strategies in Game forms). Consider a
set of outcomes O, a game form F € Form(O) on that set of outcomes and
a valuation v : O — [0,1] such that Opta((F,v)) # (0. We let Opt(F,v) €
Form(O) be the game form defined by Opt(F,v) := (Optp((F,v)), g, 0, o).

Given a set of outcomes O and any set of game forms E C Form(O), we
let Opt(E) C Form(O) denote the set of game forms Opt(E) := {Opt(F,v) |
FeE, v:0—10,1], Opta((F,v)) # 0}. Note that Opt(E) is not empty as
soon as E # () since, for all F € E, we have Opta((F,v)) # 0 for all constant
valuations v : O — [0, 1].

Given a set of game forms £ and a memory skeleton M, we now introduce
below the definition of (E,M)-subgame almost-surely winnable payoff func-
tions, i.e. payoff functions for which, for all win/lose objectives that can be
obtained from them, in all games built on E, subgame almost-surely winning
strategies can be found among strategies that can be implemented with M.

Definition 3.12 ((E, M)-subgame almost-surely winnable objective). Con-
sider a non-empty finite set of colors K, a PI payoff function f : KY — [0, 1] and
a memory skeleton M = (M, minir, ) on K. The payoff function f is said to be
(E, M)-subgame almost-surely winnable ((E, M)-SAW for short) if the following
holds: for all u € [0,1], in all finite-state concurrent games G = (C,{f > u})
built on E where there is a subgame almost-surely winning strategy, there is
one that is M-implementable. If |M| = 1, then the payoff function f is said to
be E-positionally subgame almost-surely winnable (E-PSAW for short).

We can now state the main theorem of this section. Recall the notation
VAg and QA from Definition 1.32.
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Theorem 3.17. Consider an arbitrary finite-state concurrent game G =
(C, f) with a PI upward well-founded payoff function f : K¥ — [0,1]. The
five following assertions are equivalent:

a. there exists a Player-A subgame optimal strategy;
b. there exists a locally optimal Player-A strategy that is optimal;

c. for all positive ¢ > 0, there exists a locally optimal Player-A strategy
that is e-optimal;

d. there exists a locally optimal Player-A strategy sa € S(/i such that, for
allu € VJ and q € Q% we have X {f>u})[sal(q) > 0;

e. there exists a locally optimal Player-A strategy sa € Sg such that, for
allu € VAg and q € QR we have X{Copon A=) [sal(q) > 0.

where Cg,jy(oa) corresponds to the arena C where all states outside of QA are
stopping states of value 1.

If this holds and if, for some finite memory skeleton M, the payoff function
f is (Opt({F(q) | ¢ € Q}),M)-SAW, then there exists a subgame optimal M-
implementable strategy.

First, note that the equivalence is stated in terms of existence of strategies,
not on the strategies themselves. In particular, any subgame optimal strategy
is both optimal and locally optimal, however, an optimal strategy that is locally
optimal is not necessarily a subgame optimal strategy. An example is provided
in Appendix 3.6.3. We would also like to point out that in the arena C with a
win/lose objective, e.g. {f > u} for some u € VAg, the stopping states are still
taken into account. That is, if a state ¢ € Q)5 is reached, the game stops and
the value val(q) occurs.

Second, we would like to highlight what we believe is an important take-
away from this theorem. Beside the memory transfer, this theorem tells at
which condition there is a subgame optimal strategy. Although items b., c., d.
and e. are different, they have the same generic form: there is an assumption
that locally optimal strategies satisfy a specific property w.r.t. the objective.
This specific property obviously matters for the equivalence to hold, however
we would like to focus on the local optimality assumption. What this theorem
suggests is that, the reason why, in concurrent games, there does not always
exist (subgame) optimal strategies is that if one only considers locally optimal
strategies, then the value of the game may drop. For instance, in the snow-ball
game of Definition 3.6, the value of the state qg is 1, but if one only considers
locally optimal strategies (i.e. strategies that always play the top row with
probability 1), then the value of that state becomes 0. This can also be wit-
nessed in the co-Biichi game of Figure 3.2 that we discussed above. There is
an optimal strategy in this game, but there is no subgame optimal ones. If one
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only considers locally optimal strategies (i.e. that plays the bottom row with
probability 0), then the value of the game is 0. In other words, for a strategy
to be optimal it must, after some history, switch to a sub-optimal strategy.
Interestingly, as we will discuss in the next section, this cannot occur in stan-
dard finite turn-based games, which explains why subgame optimal strategies
always exist® in that setting.

Third, it is straightforward that item a. implies item b. (from Lemma 3.10)
and that item b. implies item c.. It is also straightforward that item d. implies
item e.. However, the implication item c. implies item d. is less direct and uses
the well-foundedness assumption. Note that it is only for this implication that
the well-foundedness assumption is used. Let us formally prove this implication
below.

Lemma 3.18. Consider an arbitrary finite-state concurrent game G = (C, f)
with a PI upward well-founded payoff function f : K“ — [0,1]. If for all
positive € > 0, there is a Player-A e-optimal strategy that is locally optimal,
then, for all u € VAg and q € Q% there is a Player-A locally optimal strategy

sa such that xc ¢ r>u})[sa](q) > 0.

Proof. Consider some u € VAg and ¢ € Q2. Because the payoff function f is
upward well-founded, there is some 0 < ¢ < u such that [u—d,u) N f[K¥] = 0.
Therefore, we have for all p € K¥| f(p) > wif and only if f(p) > u—4. Consider
any Player-A strategy sa that is e-optimal for some 0 < € < §. Assume towards
a contradiction that this Player-A strategy is such that xc ¢>u)[sa](q) = 0.
By definition of ¢, we also have X {f>u—s})[sal(¢) = 0. Consider a Player-B
strategy sg € Sg such that, for x := 5%5 > (0, we have:

7 BAE[(Qns)* - {a}) - vall) + BEP{F = u =0} 0 (Qne)*] <

qEQs

Hence, we have:

EZ B [fe] = Y PA®((Qne) - {a}] - val(g) + B2 [fe - Lq,)-]

qus
<z —PEP{S > u— 0} N (Qns)] + BL B fe - 1(g,0)e]
<o = BEPHS > u =0} 0(Qne)] + PEPI{S > u =6} 0(Qns)”]
+EFE [f L f<u—61n(Qus)*]
<z4+u—6<u-—ce

This is in contradiction with the fact that the Player-A strategy sp is e-optimal
from the state g of Player-A value xg[A](q) = u. O

8 Assuming the payoff function is PT upward well-founded.
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In the remainder of this subsection, we explain the constructions leading to
the proof of Theorem 3.17, i.e. to the proof that item e. implies item a. The
transfer of memory is a direct consequence of the way this theorem is proven.
We fix an arbitrary finite-state concurrent game G = (C, f) with a PI payoff
function f for the remainder of the subsection — the upward well-foundedness
assumption is not used for the implication item e. implies item a.

The idea is as follows. Recall that, given any locally optimal Player-A
strategy, almost-surely the game settles in a value slice Q2 for some u € VAg as
stated in Corollary 3.13. Furthermore, as stated in Corollary 3.14 in finite-state
arenas, subgame optimal strategies are exactly the strategies that are locally
optimal and such that, for all Player-B strategies almost-surely, the value w.r.t.
f of infinite paths is at least the value of the value slice in which the game
settles. Our idea is therefore to consider, for all u € V¢ \ {0}, subgame almost-
surely winning strategies in a derived game G, := (Cy,{f > u}) with C, a
“restriction” of the arena C to ). We can then glue together these subgame
almost-surely winning strategies — defined for all u € V{\ {0} — into a subgame
optimal strategy. However, there are some issues:

1) there must exist a subgame almost-surely winning strategy in Gy;

2) this subgame almost-surely winning strategy in G, should be locally
optimal when considered in the whole game G.

Let us first deal with issue 2). Let u € VAg. One can ensure that the
almost-surely winning strategies in the game G, are all locally optimal in G
by properly defining the arena C,. More specifically, this is done by enforcing
that the only Player-A possible strategies in C,, are locally optimal in the game
G. To do so, we construct the arena C, such that its set of states with non-
trivial interaction is @), and the local interaction at state ¢ € Q) is equal to
Opt(F(g), xg[A]) (recall Definition 3.11).

We illustrate this construction on a standard finite game form: a part of a
concurrent game is depicted in Figure 3.3 and the change of the interaction of
the players at state qg is depicted in Figures 3.4, 3.5, 3.6 and 3.7.

Furthermore, since we want from all the states the existence of subgame
almost-surely winning strategies in G, — recall issue 1) — we will build the
game G, such that any edge leading to a state not in @, in G now leads to a
stopping state of value 1.

Definition 3.13 (Game G,). Consider a positive value u € Vf \ {0}. We
define the game G, = (Cy, {f > u}) with C, = (Q, FOPt, K, col) with:

e all states ¢ € Q \ Q2 are stopping states of value 1: val(q) < 1;

e The values of all stopping states in Qs N Q% — whose values in G are all
u since they are in Q,, — are changed to 1;
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Figure 3.3: A part of a deterministic standard concurrent game G with
Act) = {ay,a2}. The values are depicted in red near the states.

ai
ao

do 41
do 42

Figure 3.4: The local interaction
F(qo) at state go in the game of Fig-
ure 3.3.

ai1+as 1 1
2 2 2

1 3

a2 2 1

Figure 3.6: The game in normal
form from Figure 3.5 with only op-
timal strategies available for Player
A.

1 1
a1 | 3 7
1 3
L

Figure 3.5: The game in normal
form (F(qo), xg) from the game G
of Figure 3.3.

ai1+ao q q1+q2
2 0 2

a2 o 42

Figure 3.7: The game form ob-
tained from the game form of
Figure 3.4 with only the optimal
strategies from Figure 3.6.
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Figure 3.8: The depiction of a Figure 3.9: The PI concurrent
PI concurrent game with its value game after the modifications of
slices. Definition 3.13.

e For all ¢ € Qus N QY, we set FOPt(q) := Opt(F(q), xg[A]).

An illustration of this construction can be found in Figures 3.8 and 3.9.
The blue dotted arrows are the ones that need to be redirected when the game
is changed. With such a definition, we have made some progress w.r.t. the
issue 1) cited previously (regarding the existence of subgame almost-surely
winning strategies): the values of all states of the game G, are positive (for
positive u).

Lemma 3.19. Consider the game G, for some positive u € VY \ {0} and
assume that, in G, there exists a strategy that is locally optimal such that, for
all ¢ € Q%, we have X(C,{f>u}UExit(QA)) [5al(¢) > 0. Then, for all states q in G,
we have xg, [A](¢g) > 0.

Proof Sketch. Consider a state q € Qﬁ and a Player-A locally optimal strategy
sa € S§ in G such that X(C,{ f>ujUsxit(@A)) [5al () > 0. Then, the strategy sa
(restricted to (Q2)1) can be seen as a strategy in G,. Note that this is only
possible because the strategy sa is locally optimal (due to the definition of G,,).

Consider a Player-B strategy sg € Sg“. This strategy can be seen as a
strategy in C, assuming it is defined arbitrarily once the game has exited Qﬁ.
Since if the play never reaches a stopping states (of value 1, since all stopping
states in G, have value 1), what happens in G, and G is identical, it follows
that IP’Z‘;’yqu[{f > u} U (Qns)* - Qs) = P8 [{f > u}] > 0. Thus, the value

Exit(QA)4
of the state ¢ is positive in G,. O

In fact, Lemma 3.19 suffices to deal with issue 1). Indeed, as stated in
Corollary 3.7 in the previous subsection, it is a general result that in a finite-
state PI win/lose concurrent game where all stopping states have value 1, if
all states have positive values, then there is a subgame almost-surely winning
strategy.
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However, there is an additional difficulty when considering the transfer of
memory. Consider some finite memory skeleton M = (M, mini, 1) and assume
that the payoff function f is (Opt({F(¢) | ¢ € @}),M) — SAW. Subgame
almost-surely winning strategies in G,, can be found among M-implementable
strategies. However, when we will glue these pieces of strategies together below,
we will need for the strategies to be subgame almost-surely winning strategies
in G, regardless of their starting memory state. This is due to the fact that,
since the colors will be seen in the whole game, not only in a specific value
slice, then the memory state, when entering the value slice Q% for the last time,
may be different to the initial memory state mjny. We first introduce below
in Definition 3.14 the set of memory states reachable from a starting memory
state given the set of colors that could occur.

Definition 3.14. Consider a finite memory skeleton M = (M, mjpit, 1) on the
set of colors K. For any finite subset of colors K' C K, we let Reach(M, K’) :=
{m e M| 3p € (K')*, u*(mini, p) = m} C M be the set of memory states of
M reachable from mi,y, with finite sequences colors in K'.

For all m € M, we denote by M™ the memory skeleton M™ := (M, m, ).

We now state in Lemma 3.20 below: when subgame almost-surely winning
strategies exist in the game G,, then there is an action map that implements
a subgame almost-surely winning strategies regardless of the starting memory
state.

Lemma 3.20. Consider a finite memory skeleton M = (M, minit, p) and
assume that the payoff function f is (Opt({F(q) | ¢ € Q}),M) — SAW. Let
u € VAg \ {0} and assume that there is subgame almost-surely winning strategy
in the game G,. Then, for all finite set of colors K' C K, there is an action
map A : M x Qb — quQﬁZqA such that, for all m € Reach(M, K’), the strategy
implemented by M™ and X is subgame almost-surely winning in G,.

Proof. For all m € Reach(M,K’), we let p,, € K’ be a finite sequence of colors
from minit to m: p*(Minit, pm) = m. We modify the game G, into a game
G/ as follows. We add, before actually entering the arena C,, and for all
m € Reach(M,K’), a sequence of states — with trivial local interaction? —
whose corresponding sequence of colors is equal to p,,. Since the payoff function
f is PI, adding finitely many colors before entering the game does not change
its value. Hence, there is still a subgame almost-surely winning strategy in the
game G,,. Since the payoff function f is (Opt({F(q) | ¢ € Q}), M) — SAW, there
is an action map A that, along with M, implements such a subgame almost-
surely winning strategy in G/,. By definition of the modification of the game G,
into G/,, the action map A ensures that, for all m € Reach(M, K’), the strategy

9Note that a trivial interaction can be obtained from any game form by mapping
every outcome to the same state.
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implemented by M™ and A is subgame almost-surely winning in G,. O

We can now glue together pieces of strategies sj defined in all games G,
into a single strategy sa[(sa),cy 0\ (oy]- Informally, the glued strategy mimics
A

the strategy on (Q%)T and switches strategy when a value slice is left and
another one is reached.

Definition 3.15 (Gluing strategies). For all values u € VAg \ {0}, consider a
Player-A strategy si in the game G,. Then, we glue these strategies into the
strategy SA[(SX)uGVAg\{O}] : QT = UgeX} simply written sp such that, for all

peQt:

Sa(p) = {SX(F) if u = xg[A](pir) > 0 for m the longest suffix of p in (Q4)*

is arbitrary  if xg[A](¢) =0

As stated in Lemma 3.21 below, the construction described in Defini-
tion 3.15 transfers almost-surely winning strategies in G, into a subgame op-
timal strategy in G.

Lemma 3.21. Consider a Player-A strategy sa locally optimal such that, for
all u € VY \ {0}, for all p € QF, we have s € SCA“ subgame almost-surely
winning in G,. Then, the strategy sp is subgame optimal in G.

It is in particular the case for the glued strategy sa[(s§)uev;\{0}] as soon
as, for all u € VAg \ {0}, six € Sfi“ is a subgame almost-surely winning strategy

in G,.

Proof. We apply Corollary 3.14. The strategy sa is locally optimal. In addi-
tion, if the game eventually settles in a value slice Q% for some u > 0, from
then on the strategy sa is almost-surely winning in G, whose win/lose objec-
tive is {f > u}. This holds for all u € V{ \ {0}, so the second condition of
Corollary 3.14 holds.

Now, consider for all u € V¥ \ {0}, a Player-A strategy si € Si“ sub-
game almost-surely winning strategy in G,. Let sp be the glued strategy
sal(SR)Juevg\{0}]- Then, the strategy sa is locally optimal. Indeed, by Lemma 3.9,
for all ¢ € Q, we have yg[A](q) = val[(F(q), xg[A])]. Hence, for all u € V¥ \ {0},
for all states in QA, by the strategy restriction done to define the game G,,, only
optimal GF-strategies are considered at each game in normal form FOpt(q) at
states ¢ € Q. Furthermore, any GF-strategy is optimal in a game in normal
form of value 0 (which is the case of the game in normal forms of states in Q).
In addition, for all u € V{ \ {0} and for all p € Q, we have si and s% that
coincide on C,. Therefore, s is subgame almost-surely winning in G,,. O

We now have all the ingredients to prove Theorem 3.17.
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Proof. By Lemma 3.10, item a. implies item b., item b. straightforwardly
implies item c., item c. implies item d. by Lemma 3.18 and item d. straight-
forwardly implies item e.

Let us now show that item e. implies item a. By Lemma 3.19, for all
positive values u € VAg \ {0}, all states in G, have positive values. It follows,
by Corollary 3.7, that there exists a subgame almost-surely winning strategy
in every game G, for u € Vf \{0}. We then obtain a subgame optimal strategy
by gluing these strategies together, given by Lemma 3.21.

Consider now the transfer of memory. Consider a finite arbitrary memory
skeleton M and assume that the payoff function f is (Opt({F(q) | ¢ € Q}),M)—
SAW. Let K’ := col[@ns] € K be the finite set of colors appearing in C. Let
u € VY \ {0}. By Lemma 3.20, there exists an action map A, such that, for
all m € Reach(M, K'), the strategy implemented by the action map A, and the
memory skeleton M™ is subgame almost-surely winning strategy in G,. We
then define the action map A : Q x K — quQ ¥4 such that, for all ¢ € Q
and k € K, we have (g, k) := A\, [a)(q) (2, k) € B4. Clearly, if we denote by sa
the strategy implemented by A and M, the strategy sa satisfies the condition
of Lemma 3.21, it is therefore subgame optimal in G. O

Finally, we conclude this section by giving a Corollary of Theorem 3.17.
Specifically, we consider standard finite game forms, possibly turn-based ones.
In fact, such a set of game forms is stable by application of the Opt operator
from Definition 3.11. This is formally stated below in Proposition 3.22.

Proposition 3.22. Consider a set of outcomes O. Let Std¢(O) (resp. TB#(O))
denote the set of standard finite game forms (resp. standard finite turn-based

game forms) on O. Then, Opt(Std;(0)) = Stds(O) and Opt(TB;(0O)) =

TB(0).

Proof. Consider any standard finite game form F = (¥, g, O, 0) € Std;(0O).
Let n := |Acta| and k := |Actg|. Consider any valuation of the outcomes
v: 0 — [0,1]. Consider the game in normal form (F,v).

There exists a finite set Da C D(Acta) C Opta((F,v)) of optimal strategies
such that the optimal strategies in (F,v) are exactly the convex combinations
of strategies in Dp. This is a well known result, argued for instance in [61].
The idea is to write a system of finitely many inequalities whose set of solutions
is exactly the set of optimal GF-strategies Opta((F,v)). Consider the set in
R"™ of vectors whose sum of components is equal to 1. We can express the set
of optimal strategies Opta((F,v)) as the solution of a system of inequalities.
First, with n inequalities we can consider only non-negative values. Further-
more, with another k inequalities — specifying that the weighted sum in each
column is at least u = val[(F, v)][A] — we have that the solutions to the system
of inequalities are exactly the vectors of values corresponding to the optimal
strategies in the game in normal form (F,v). The result then follows from
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standard system of inequalities arguments as the space of solutions is in fact
a polytope. Therefore, Opt(F,v) = (Da,Actg, O, 0)s € Stds(0).

If in addition, the game form F is turn-based, then so is the game form
Opt(F,v). O

We deduce the corollary below.

Corollary 3.23. Consider a set of colors K and a PI upward well-founded
payoff function f : KY — [0,1]. Assume that there is a memory skeleton
M such that the payoff function f is (Std;(O), M)-SAW (resp. (TB;(O),M)-
SAW). Then, in all standard finite concurrent (resp. turn-based) games G =
(C, f), subgame optimal strategies, when they exist, can be found among M-
implementable strategies.

To obtain a simpler statement, let us write this corollary when f is win/lose,
M is of size 1 (i.e. we consider positional strategies).

Corollary 3.24. Counsider a set of colors K and a PI objective W C K¥.
Assume that in all standard finite concurrent games G = (C, W), when there
is a subgame almost-surely winning strategy, there is one that is positional.
Then, in all standard finite concurrent games G = (C, W), subgame optimal
strategies, when they exist, can be found among positional strategies.

For an application of this corollary, see Proposition 5.8 in Chapter 5.

Finally, we conclude this section by mentioning that the slicing technique
— i.e. considering different values slices, and then glue together strategies from
different value slices — was already used in the context of concurrent games in
[50]. The authors focus on parity objectives and establish a memory transfer
result from limit-sure winning (i.e. almost-optimal for the value 1) to almost-
optimal strategies. As an application, they show that, for co-Biichi objectives,
since positional strategies are sufficient to win limit-surely, then they also are
to play almost-optimally. Their construction made heavy use of the specific
nature of the parity objectives. Furthermore, the paper contains complexity
results, on which we do not focus in this dissertation.

3.3 Subgame optimal strategies in standard games

In this section, we focus on standard finite games. Recall, this means
that, in the games we consider, there are finitely many states and at all local
interactions, both players have finitely many actions. Furthermore, although
we will not make use of this fact, since standard finite game forms are valuable
by Lemma 1.14, standard finite games have a value by Theorem 2.3.
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3.3.1 . Application to finite turn-based games

The aim of Section 3.2 was to extend an already existing result — from
[58] — on turn-based games to the context of arbitrary concurrent games, with
PI upward well-founded payoff functions. This required an adaptation of the
assumptions. However, it is in fact possible to retrieve the original result on
turn-based games proved in [58] from Theorem 3.17 in a fairly straightforward
manner. Specifically, in [58], it is shown — among other results — that there
are always optimal strategies in finite turn-based games'® with PI objectives
[58, Theorem 4.3] and that the amount of memory sufficient to be almost-surely
winning is also sufficient to be optimal [58, Theorem 4.5]. Note that we do not
prove exactly the same result since we show the existence of subgame optimal
strategies and we transfer the amount of memory from what is sufficient to be
subgame almost-surely winning. On another note, other results — unrelated to
the questions considered in this chapter — are shown in [58], in particular the
authors have provided several algorithmic results, see for instance [58, Theorem
4.4, Theorem 5.1].

We state formally below the existence of subgame optimal strategies in
finite turn-based games, the transfer of memory can then be deduced from
Corollary 3.23.

Corollary 3.25. In all finite turn-based games G = (C, f) with a PI upward
well-founded payoff function f, both players have a deterministic subgame
optimal strategy.

The proof of this corollary is actually quite simple by applying Theo-
rem 3.17 and showing that item ¢. always holds in finite turn-based games.
This last part amounts to showing that locally optimal strategies achieve the
same values as all strategies in finite turn-based games. This was already no-
ticed in [62, Section 4.1.1]*!, and it can be proved straightforwardly by using
Theorem 3.1. In addition, we would like to mention that the result for Player A
still holds even if we assume that in the local interactions belonging to Player
B, she hag infinitely many actions. This also works symmetrically for player
B.

Proof. We prove the result for Player A, but the proof is similar for Player B.
Let ¢ € Q and consider the finite set of actions Act} available to Player A in
the game form F(q). We let

Ng 1= min xg(q) — out[(F(q), xg)][a] >0
T aeActi\Opta ((F(a).xa)) ( [{F(@) xg)le

be the minimum of how much a sub-optimal action at state g deviates from
an optimal action. We let 1 := mingeg 1, > 0. Then, consider any 0 < e < 7.

10Recall Definition 1.19: we assume that all local interactions are finite
1Note that Gimbert is an author of both [78] cited above and [62], though these
two papers seem unrelated.
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Since the game G is turn-based, it is supremized by the collection of the sets
of deterministic GF-strategies. Hence, by Theorem 3.1, since the game is turn-
based, there is a Player-A deterministic strategy sa that is subgame e-optimal.
Hence, by Lemma 3.10 and Proposition 3.9, we have val[(F(pi), xg)](sa(p)) >
xg(sal(pie) > xg(pi) — e = val[(F(pi), xg)] — €. Since sp is deterministic and
by definition 7 and €, it must be that sa(p) € Acti® N Opta((F(q), xg)). That
is, the strategy sp is locally optimal. Hence, item c. of Theorem 3.1 holds, and
therefore subgame optimal strategies exist in G for Player A. O

Finally, we apply Corollary 3.23 to a specific PI upward well-founded func-
tion such that each win/lose objective obtained from it is a parity objective
(this corresponds to the notion of priority game, studied for instance in [28]).
This function will be measurable and Std;(O)-PSAW. This comes from the
fact that in finite turn-based games with parity objectives, there are always
positional optimal strategies for both players [27, 28|. Note that this result is
already known, see [28, Lemma 9|

Definition 3.16. Consider a finite set of colors K C N and a map g : K —
[0,1]. We let fpar(K,g) : K — [0, 1] be such that, for all p € K¥, we have:

fear (K, g)(p) := g(maxInfOft(p)) € [0,1]

where the notation InfOft(p) was introduced in Definition 1.25 and refers to
the set of colors seen infinitely often in p.

Proposition 3.26 (Proof 3.6.6). For all finite sets of colors K C N and maps
g : K —[0,1], the function fpa (K, g) : KY — [0, 1] is measurable, PI upward
well-founded and Std¢(O)-PSAW (for both players).

Corollary 3.27. Consider a finite set of colors K C N and a map g : K —
[0,1]. In all finite turn-based games with fpa(K,g) : KY — [0,1] as payoff
function, both players have positional optimal strategies.

Proof. Corollary 3.25 ensures that both players have subgame optimal strate-
gies. Furthermore, Corollary 3.23 along with Proposition 3.26 ensure that such
a subgame optimal strategy can be chosen positional. O

3.3.2 . When optimality implies subgame optimality

In this subsection, we focus on when the existence of optimal strategies
implies the existence of subgame optimal strategies in standard concurrent
games. This is not always the case as exemplified in the game of Figure 3.2.
The goal of this subsection is not to consider the kind of payoff functions for
which this holds but rather to come up with a structural condition on the
optimal strategy considered to ensure this transfer. By structural condition,
we mean a condition that does not depend on the payoff function considered,
only on the arena.
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Let us give the intuition behind the structural condition we consider. Con-
sider again the co-Biichi game of Figure 3.2. Recall that the optimal strategy
we described first plays the top row with increasing probability and the middle
row with decreasing probability and then, once Player B plays the second col-
umn, switches to a positional strategy playing the bottom row with positive,
yet small enough probability. Note that switching strategy is essential. Indeed,
if Player A does not switch, Player B could at some point opt for the middle
column and see indefinitely the state ¢ with very high probability. In fact,
what happens in that case is rather counter-intuitive: once Player B switches,
there is infinitely often a positive probability to reach the stopping state of
value 1. However, the probability to ever reach this outcome can be arbitrarily
small, if Player B waits long enough before playing the middle column. This
happens because the probability € to visit that outcome goes (fast) to 0 when
k goes to oo. In fact, such an optimal strategy is not “positively bounded” in
the sense that it may prescribe positive and yet arbitrarily small probabilities.

In this subsection, we consider positively bounded strategies, i.e. strategies
for which there is a positive § > 0 such that any positive probability is at least
0.

Definition 3.17 (Positively bounded strategy). Let C be a concurrent arena.
A Player-A strategy sa € Sg is positively bounded if there is some § > 0 such
that, for all p € QT and a € Acty", we have sa(p)(q) € [0] U [4, 1].

Interestingly, if we assume that there is an optimal strategy that is posi-
tively bounded, then there is a subgame optimal strategy (that is also positively
bounded).

Theorem 3.28. Consider a standard finite concurrent Pl game G and, for
all ¢ € Q, a subset of GF-strategies Ay C D(Act}). Let A = (Ag)geq. Then,
both assertions below are equivalent:

a. Player-A has a positively bounded subgame optimal strategy generated
by A;

b. Player-A has a positively bounded optimal strategy generated by A.

Note that, as for Theorem 3.17, the equivalence is stated in terms of existence
of strategies, not on the strategies themselves. Interestingly, the proof of The-
orem 3.28 above uses the notion of reset strategies, as in Section 3.1. We give
a proof sketch here. The complete proof is quite technical and can be found
in Appendix 3.6.7.

Proof Sketch. Consider an optimal positively bounded strategy sa € S§ gen-
erated by A. We build a subgame optimal strategy sj € S§ in the following

way: for all p € QV, if the residual strategy sz(p) is optimal from py;, then
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sh(p) :=sa(p), otherwise si (p) := sa(pi) (i.e. we reset the strategy). Straight-
forwardly, the strategy s) is positively bounded and is generated by A. We
want to apply Corollary 3.14 to prove that it is subgame optimal. One can
see that it is locally optimal (by the criterion chosen for resetting the strategy
and by Lemma 3.10). Consider now some p € Q* and a state ¢ € Q. As-
sume that the residual strategy sgl(p ) is optimal from py; but that the residual
strategy si is not from ¢. Then, similarly to why local optimality is necessary
for subgame optimality (recall Lemma 3.10 cited above), one can show that a
Player B action b € ActgIt leading to ¢ from p with positive probability is such
that xg(pi) < out[(F(q), xg)](sa(p),b). Hence, there is a positive probability
from p, if Player B opts for the action b, to reach a state of value different
from u = xg(q). And if this happens infinitely often, a state of value different
from u will be reached almost-surely'?. Thus, if a value slice is never left,
almost-surely, the strategy s, only resets finitely often.

Consider now some p € Q7, a Player-B strategy sg € Sg and a value
u € V9\ {0}. From what we argued above, the probability of the event
Q* - (Qu)¥ (resp. {f > u}NQ*-(Qy)¥) is the same if we intersect it with
the fact that the strategy s only resets finitely often. Furthermore, if the
strategy does not reset anymore from some point on, and all states have the
same value u > 0, then the strategy is, somehow, subgame optimal. It follows
that the probability of {f > u} is 1 by Theorem 3.12. We can then conclude
by applying Corollary 3.14. O

3.4 Reduction to turn-based games: finite-choice strate-
gies

In this section, we focus on how to transfer already existing results on
turn-based games to standard concurrent games. Note that it is different from
what we did in Subsection 3.3.1 since, here we do not prove results on turn-
based games but rather use already existing ones. We establish such transfers
in the second subsection (and also in Chapter 6), whereas the first subsection,
which is quite heavy on notations, gives the necessary definitions and lemmas
to prove these results.

3.4.1 . Sequentialization of standard concurrent games

To use what already exists in turn-based games, we define how to sequen-
tialize a concurrent game into a turn-based game. That is, we make Player A
play first, and then Player B respond — therefore, she has more information

12This holds because the strategy sa is positively bounded: the probability to see
a state of different value is bounded below by the product of the constant § of Def-
inition 3.17 and the smallest positive probability distribution over states in local
interactions.
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Figure 3.10: A concurrent arena.

when playing than in the original concurrent arena. This transformation is
defined on standard games that need not be finite. Note that we first intro-
duced the notion of sequentialization of standard concurrent games in [38],
along with the notions of parallelization of sequentialization of strategies that
we will consider later in this subsection. We will come back to that paper, and
to the results of this section, in Chapter 6.

Definition 3.18 (Sequentialization of concurrent games). Consider a stan-
dard concurrent arena C, a collection A = (Ag)geq C [l,cq ¥4 of sets of
Player-A GF-strategies, another set of colors K' and a function n : K — K.
The turn-based arena C(A,n) that is the sequentialization of C w.r.t. A and n
is defined by C(A,n) := (Q4 U Qp, F*, K", col) where:

® Qa:=Q and Qp 1= Ugeq Uopen, (¢,0n);

e for all Player-A states q € Qa, F(q) := (Ag, {*}, Qs, Nexté,\>s where for
all op € Ay, we have Nextfl\(oA)((q,aA)) := 1. Note that the strategies
available to Player A at such a state is equal to D(A,).

e for all Player-B states (q,0a) € Qg, F*(q) := ({*}, Actk, Qa, E(04(oa, )))s-

e K" := KWK/, col” coincides with col on Q = Qa and, for all (q,0p) € Qg,
we have col”((q,oa)) := n o col(q).

Consider now a game G = (C, f). The sequentialization f, : (K")¥ — [0, 1] of
the payoff function f w.r.t. n is such that, for all p € K¥:

i {0 ifpd (KUK - (K-K')®
e = fkx(p') otherwise, for p' the longest suffix of p € (K- K')¥

where fk k/ comes from Definition 1.8. We denote by G(A,n) := (C(A,n), fr)
the sequentialization of the game G w.r.t. A and n.

Example 3.2. We have depicted in Figure 3.11 two possible sequentializa-
tions of the concurrent arena depicted in Figure 3.10. In both cases, we make
Player A (she owns square-shaped states) play first, and then Player B respond
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Figure 3.11: The sequentialization of the arena of Figure 3.10 with A, =
{a1,as} on the left and with Ay = {9£%} on the right.

(she owns diamond-shaped states). Note that, in the sequentialization on the
right of Figure 3.11, the choices of Player B lead to the same outcome since
Player A plays both rows with uniform probability. Hence, regardless of what
Player B does, both states © and y are reached with uniform probability.

We would like to relate what happens in a concurrent game and its se-
quentialized version. To do so, we translate strategies back and forth between
the two games. Let us first define the parallelization of strategies, that is the
transfer of strategies from the sequentialized version C(A,n) of a concurrent
arena C back to that concurrent arena. In the following, we will consider two
cases: the parallelization of Player-A deterministic strategies — along with a
parallelization of Player-B arbitrary strategies, w.r.t. a Player-A determinis-
tic strategy — and the parallelization of Player-A finite-memory strategies —
which will not induce a parallelization of Player-B strategies. We first focus
on the case of Player-A deterministic strategies, we will consider the case of
finite-memory Player-A strategies at the end of this subsection. We define how
to extend a finite path in the concurrent arena C into a path in its sequential-
ized version C(A,n), given such a Player-A deterministic strategy sa € Si(A’n).
Recall that such a strategy sa is such that, for all p € (Qa-QB)* - Qa, we have
sa(p) € Ap,, which allows to define such an extension of finite paths.

Definition 3.19 (Parallelization of strategies w.r.t. a deterministic Player-A
strategy). Consider a standard concurrent arena C, a collection A = (Ay)q4eq €
quQ 2% of sets of Player-A GF-strategies and n : K — K’ for some set K. Con-
sider a Player-A deterministic strategy sa € Si(A’"). We define the function
07 (sa) : QT — (Qa - QB)* - Qa inductively such that, for all p € QF, we have
02 (sa)(p)i = pie. Specifically, for all ¢ € Q, we set 82(sa)(q) := q. Further-
more, for all p-q € QT, we set:

0™ (sa)(p - q) = 0™(sa)(p) - (pit, s (0 (sn)(p))) -
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We then define 08(sp) : QT — (Qa- Q)™ by, for all p € Q: 68(sa)(p) :=

0% (sa)(p) - (pies sa(0™(sa) (p)))-
Consider now a deterministic Player-A strategy sp € Si(A’n) (resp. and

an arbitrary Player-B strategy sg € SCB(A’W)). We let Pri(sa) € S§ (resp.
Pra(sa,ss) € S§) be the parallelization of the strategy sa (resp. of the strategy
sg w.r.t. sp) such that, for all p € Q" we have:

Pra(sa)(p) :=sa(0"(sa)(p)) € Ay, € D(Acty?)
Pri(sa,s8)(p) :=s8(0°(sa)(p)) € D(Actf)

We can then relate the expected value of the payoff functions in a con-

current arena and its sequentialized version w.r.t. to the above-defined paral-
lelization of strategies.

Lemma 3.29 (Proof 3.6.8). Consider a standard concurrent game G, a collec-
tion A = (Ag)eeq € [l ¥4 of sets of Player-A GF-strategies and 1 : K — K’
for some set K'. For all Player-A deterministic strategies sa € Simm, Player-B
strategies sg € SE(A’W) in C(A,n) and states ¢ € Q = Qa, we have:

Pri ,PrA s ,
Eg A PEE) oy —me | [(F)eam)]

Let us now define a way to translate strategies from a concurrent arena to
its sequentialized version, which is called the sequentialization of strategies. In
this direction, it suffices to consider a projection of the paths (Qa - Q)™ into
paths in QX = @QT. Note that, when doing so for Player B, there is loss of
information since she no longer knows what Player A has played before making
her move — which is the situation in the concurrent setting.

Definition 3.20 (Sequentialization of strategies). Consider a standard con-
current arena C, a collection A = (Ag)geq € [l eq ¥4 of sets of Player-A
GF-strategies and n : K — K’ for some set K'. Consider a Player C € {A,B}
and a Player-C strategy tc € S§&. We let sc(tc) € S(é(A’n) be such that, for all
p€(Qa-Qp)* - QC (where Q* := Qa and QB := ¢), we have:

sc(tc)(p) := sc © P, (P)

The strategy sc(tc) € SE(A’n) is defined arbitrarily, in a deterministic way, on
any other path.

Interestingly, the sequentialization and parallelization of strategies relate.

Lemma 3.30 (Proof 3.6.9). Counsider a standard concurrent arena C, a collec-
tion A = (Ag)geq € [l eq XA of sets of Player-A GF-strategies and 1 : K — K’
for some set K'. For all Player-A strategies ta € S% generated by A, the strategy
sa(ta) € 5<A3(A,77) is deterministic and we have:

Pra(sa(ta)) = ta
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C(A7
€ S ")

Furthermore, for all Player-B strategies tg € S§, we have sg(tg) and

C(Am)

for all Player-A deterministic strategies sp € S, , we have:

Pri(sa,ss(ts)) = ts

We can now compare the change in values of the games after this sequen-
tialization. Let us first consider Player B. After this sequentialization, Player
B has more information when playing than before since she knows the GF-
strategy played by Player A in the current state of the game. Hence, the
Player-B value of the game, after sequentialization, has not increased (i.e. it
has not worsen, from Player B’s point of view), as stated in the lemma below.

Proposition 3. 31 For all standard concurrent games G, collections A =
(Ag)geq € quQ of sets of Player-A GF-strategies and n : K — K’ for some

set K, we have for all ¢ € Q = Qa, xg[B](9) = Xxg(a,)[Bl(q)-

Proof. Consider any Player-B strategy tg € SCB and the Player-B strategy

sg(tg) € S(E’;(A’n) in the turn-based arena C(A,n). Let us show that xg(tg)(q) >
Xg(An)(sB(tB))(q). Consider any Player-A deterministic strategy sa € Si(A’n).
Let ta := Pri(sa) € S§ be a Player-A strategy in the arena C. By Lemma 3.29,

we have:

»PTA ) SA,S
]EE'A,q B (sa SB(tB))[(fC)q] — E A I,B'r];Bq [((fn) C(Am) ) ]

By Lemma 3.30, we have Pr3(sa, sg(tg)) = tg. Hence:

Xo(t8)(9) > EZ®[(fe)"] = B0 [((fy)e(am)]

As this holds for all Player-A deterministic strategies sa € Si(A’n)

and since
deterministic strategies achieve the same values that all strategies in turn-
based games by Corollary 2.17, it follows that x¢(tg)(q) = Xxg(a,) (sB(t8))(q) >

X6(A,)(B](q). As this holds for all Player-B strategies tg € Sg, it follows that
xg(Bl(9) > xg(a,n[Bl(q)- O

The case of Player A is not exactly symmetrical. Indeed, she cannot achieve
the same value in G(A, n) than in G because she has less available strategies, and
Player B knows what she played before playing. Hence, the Player-A value of
the game, after sequentialization, has not increased. However, this value in the

sequentialization is at least the supremum of the values of strategies generated
by A.

Proposition 3.32. Consider a standard game G, a collection A = (Ag)qeq €
quQ of sets of Player-A GF-strategies and n : K — K’ for some set K'. Let
qgeQ = QA. We denote by Sg (A) the set of Player-A strategies generated by
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A in the arena C. For all deterministic Player-A strategies sp € Si(A’n), the
Player-A strategy Pra(sa) € S§ is generated by A and is such that:

Xo(am)(5a)(@) < xg(Pra(sa))(q)

In fact, we have:

Xoam[Al(g) = sup  xgltal(q) < xglAl(q)
tAESg(A)
Proof. Consider such a Player-A deterministic strategy sa € SCA"(A’") and the
Player-A strategy Pri(sa) € S$(A) in the concurrent arena C. Note that
Pri(sa) € Si(A’n) straightforwardly from the definition. Let us show that
Xg(Am (sa)(q) < xg(Pri(sa))(q). Consider any Player-B strategy tg € S§.

C(A,
) c SB( n)

Let sg := sg(tg be a Player-B strategy in the arena C(A,7n). By

Lemma 3.29, we have:

Pr ,Pr , ,
EgOVPEEOR[(fo)) —ERE (o)

Furthermore, we have sy = sg(tg), hence by Lemma 3.30, we have Pr§(sa, sg) =
tg. Hence:

Egrg (sa);te [(fC)q] _ ]ESA SB [((fﬁ) ) ] > XQ(AJ])(SA)((])

As this holds for all Player-B strategies tg € SB, it follows that xg(a,,) (sa)(q) <
Y6 (PrA(s2))(@) < supy,csc ) Xaltal(q), since Pri(sa) € S§(A).

Furthermore, since this holds for all Player-A deterministic strategies sp €
Si(A’") and since deterministic strategies achieve the same values that all strate-
gies in turn-based games by Corollary 2.17, it follows that xg(am[Al(g) <
Supy, es¢(n) X [tal(q)-

Consider now a Player-A strategy ta € Sg generated by A (ie. ta €
S&(A)). Consider then the Player-A deterministic strategy sa(ta) € S%A’") in
the turn-based arena C(A, 7). Let us show that xg(ta)(q) < Xxga,n (sa(ta))(q)-
Consider any Player-B strategy sg € SE(A’T]). Let tg := Pri(sa(ta),sg) € S§
be a Player-B strategy in the arena C. By Lemma 3.29, we have:

Ezf(SA(tA))vtB[(fC)q] ]EZA(S\tAn SB[((fﬁ) ) ]

By Lemma 3.30, we have Pra(sa(ta)) = ta. Hence:

Yo (ta) (@) < EL ()] = EZ (£ )oan)

As this holds for all Player-B strategies sg € SA( ’17), it follows that xg(ta)(q) <
Xg(Am) (Sa(ta)) (@) < Xgan)[Al(q). As this holds for all Player-A strategies ta €
SS(A) generated by A, it follows that SUDy, c5¢(A) XG [tal(@) < Xxgan[Al(Q)-
Since S§(A) C S§ and xg[Al(q) = SUPy, cs¢ x¢[ta](g), it follows that we
also have SUDy, ¢5¢ (1) XG [tal(q) < xg[A](q). O
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Example 3.3. Let us illustrate these lemmas on the sequentializations of
Figure 3.11. Assume that the objective of Player A is to reach x, while Player
B wants to avoid it. In that case, the value of the original concurrent game
of Figure 3.10 is % and both players have optimal strategies: it suffices to
play uniformly over their pair of actions. Now, consider the sequentialization
on the left of Figure 3.11. Here, the value of the game is 0. Indeed, since
Player B has the information of the action chosen by Player A, she can enforce
going to state y surely. Note that, in this game, it is useless for Player A to
play non-deterministic strategies. Consider now the sequentialization on the
right of Figure 3.11. In that game, the value is % since regardless of what
the players do, the states x and y will be reached with probability % Note
that the optimal Player-A strategy in the game of Figure 3.11 that consists in
playing both rows with probability 1 is generated by Ag, = {“$9}, which
has induced the sequentialization on the right.

Finite-memory strategies. Since we ultimately want to transfer results
from turn-based games to standard concurrent games, we want to be able to
parrallelize finite-memory strategies — recall Definition 1.36 — ideally while
keeping the same amount of memory state. Given some set of colors K’ and
some 7 : K — K/, consider a Player-A finite-memory strategy sa € Si(A’n) (on
the set of color KUK’). One can notice that, by definition of the arena C(A,n),
given a state ¢ € Qa of color col(q) = col”(q) := k € K, then the color of all
Player-B states reachable from ¢ is the same, and is equal to n(k) € K'. The
parallelization of Player-A finite-memory strategies sa therefore only amounts

to properly handling the memory update.

Definition 3.21 (Parallelization of Player-A finite-memory strategies). Con-
sider a standard concurrent arena C, a collection A = (Ag)geq € [l eq Xa of
sets of Player-A GF-strategies and n : K — K’ for some set K. Consider a
Player-A finite-memory strategy sa € Si(/\m) that is implemented by a memory
skeleton M = (M, mjyi, ) on KUK’ and an action map X\ : M x (QaUQg) —
Usea=a(FM (@)).

We denote by Pr} (M) the memory skeleton Prj} (M) := (M, mini, Prj (1))
on K such that, for allm € M and k € K, we have Pr}(p)(m, k) := p(pu(m, k), n(k)) €
M. Then, we denote by Pra(\) : M x Q — UyeoXa(F(q)) the action map de-
fined by, for allm € M and q € Q, we have Pra(\)(m, q) := A(m, q) € D(A,) C
D(Act}). We denote by PrZ’A(sA) € S§ the Player-A strategy implemented by
Pri(M) and Pri()).

In fact, one has to check that the above definition is well-defined. Indeed,
a Player-A finite-memory strategy sa € Si(A’") could be implemented with
different memory skeletons and action maps. One has to check that regardless
of the pair implementing the strategy on which is done the parallelization, the

resulting Player-A strategy in Sg is the same. This is done in the lemma below.
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Lemma 3.33 (Proof 3.6.10). Counsider a standard concurrent arena C, a col-
lection A = (Ag)4eq € [1,eq T of sets of Player-A GF-strategies and n : K —

K’ for some set K'. Consider a Player-A strategy sp € Si(A’n). For all memory

skeletons M on K’ and action maps A : M x (QaUQg) — Ugeaugs Za(FA(q))
implementing sa, the strategy in S§ implemented by Pr} (M) and PrA(\) is the
same.

Then, letting ta := Pr} ( A), for all m € Q*, there is some p € (Qa - QB)*
such that ¢g, 0s(p) =7 and such that t} = PrzA(sA)

Similarly to what is done in Lemma 3.29, we can relate the expected val-
ues of the payoff functions in a concurrent arena and its sequentialized version
w.r.t. to the parallelization of Player-A finite-memory strategies and the se-
quentialization of Player-B strategies.

Lemma 3.34 (Proof 3.6.11). Consider a standard concurrent game G, a

collection A = (Ag)qeq € quQ of sets of Player-A GF-strategies and n :

K — K’ for some set K'. For all Player-A finite-memory strategies sp € S A( )

in C(A,n), Player-B strategies tg € S§ in C and states q € @, we have:

ELR V0 [(f)7] = BRSO ((f)eoan)

Interestingly, we can then deduce that the value of the parallelization of a
finite-memory strategy is at least the value of that finite-memory strategy.

Proposition 3.35. Consider a standard concurrent game G, a collection A =
(Ag)geq € [l eq X of sets of Player-A GF-strategies and 1 : K — K’ for some

set K'. For all Player-A finite-memory strategies sp € Si(A’n) in C(A,n) and
states ¢ € Q) = Qa, we have:

Xa(an (5a)(@) < xg(Pri™(sa))(q)

Proof. Consider any Player-B strategy tg € SC By Lemma 3.34, we have

SA,S Pr’ s .
Yotam(a)(@) < R0 ) = EGR PV R[(fe)). As this for al
Player-B strategies tg € S§, it follows that Xg(Am) (sa)(q) < Xg(PrZ’A(sA))(q).
O

3.4.2 . Finite-choice strategies

Recall that the goal of this section is to retrieve results already existing
in turn-based games in the context of concurrent games. We are especially
interested in results existing in finite turn-games, since infinite stochastic turn-
based games are hard to handle. To be able to transfer results from finite
turn-based games, we focus on a special type of Player-A strategy. To gain
an intuition on what the strategies we will consider are, let us consider the
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Figure 3.12: A parity game.

parity game of Figure 3.12. Note that this game was already described in
[17]. We will also come back to that game in Chapter 5 and prove formally, in
Proposition 5.14, the informal statements we make below. This is a parity game
where the objective of Player A is to see ¢o infinitely often, while seeing g3 only
finitely often. In this game there is a subgame almost-surely winning strategy
for Player A. However, one can realize that all positional Player-A strategies
have value 0. Indeed, if a Player-A positional strategy sp plays the bottom row
with positive probability, then Player-B can positionally play the right column
and ensure seeing ¢s infinitely often almost-surely. Furthermore, if sy does
not play the bottom row with positive probability, Player B can positionally
play the left column with probability 1 and ensure looping indefinitely on ¢
without ever seeing g¢o.

Let us now informally describe a Player-A subgame almost-surely winning
strategy. Such a strategy could play the top row with probability 1 — ¢ and
the bottom row with probability e, > 0 with e going to 0 when k goes to
00, where k denotes the number of times the states g2 and g3 are seen. Then,
considering any Player-B strategy, the probability to see g3 infinitely often is
0 if e goes to 0 sufficiently fast. Furthermore, the probability to ever loop
indefinitely on ¢; without ever seeing ¢o is also 0 thanks to the fact that k
counts the number of times a state that is not ¢; is seen. Indeed, as long as
the game loops on ¢i1, € does not change and therefore there is probability
(at least) e > 0 to see go. That is, not seeing ¢go anymore does not happen,
almost-surely.

What happens in this parity game of Figure 3.12 is frustrating since, al-
though there are subgame optimal strategies, such subgame optimal strategies
prescribe infinitely many different probability distributions at ¢; and cannot
be found among positional optimal. This is strikingly different from the situ-
ation in finite turn-based games where there are always positional (subgame)
optimal strategies [27, 28].

In fact, the issue in concurrent games lies exactly in the fact that achieving
a value is that complicated — i.e. that it requires such a convoluted strategy
that plays infinitely many different probability distributions. We introduce
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the opposite notion, that is what we call finite-choice strategies. These are
strategies that, at each state, may play only among a finite set of GF-strategies.

Definition 3.22 (Finite-choice strategy). Let C be a concurrent arena. A
Player-A strategy sa € Si has finite choice if, for all ¢ € Q, there is a finite set
Yq(sa) € X4 such that, for all p € Q*, we have sa(p - q) € Z4(sa). Otherwise,
the strategy has infinite choice. The definition is analogous for Player B.

Remark 3.1. Note that finite-memory — and in particular positional —
strategies have finite choice. Therefore, all infinite-memory strategies are not
finite-choice strategies. It is also the case for deterministic strategies (since
Player A has finitely many actions). In addition, in finite-state arenas, finite-
choice strategies are positively-bounded.

In fact, when finite-choice strategies achieve a value in a finite concurrent
standard game with a specific objective, then we can use the already existing
results in turn-based games via sequentialization. However, when doing so
we add intermediate states with a color given by col : @ — Kand n : K —
K’. Let us define pairs of payoff functions that can be made equal after the
sequentialization.

Definition 3.23 (Payoff functions equal up to adequate interleaving). Con-
sider two non-empty sets of colors K and K’ along with two PI payoff functions
f:+KY =10,1] and g : (KUK")* — [0,1]. We say that f and g are equal up
to adequate interleaving if there is a map n : K — K’ and an affine increasing
function 1) : [0,1] — [0, 1], such that, for all p € K¥:

f(p) =vog(po-nlpo)-p1-n(p1)--)

Given a memory skeleton M, we extend the notion of being (TB;(O), M)-
SAW (recall subgame almost-surely winnable, where TBf(O) refers to the set
of finite turn-based game forms) to payoff functions after the sequentialization
by using the above definition. This is done below in Definition 3.24.

Definition 3.24 (Seq-(TB;(0), M)-SAW payoff function). Consider two non-
empty sets of colors K and K’ and a memory skeleton M = (M, miyi, 1) on
KUK’. A PI payoff function f : KY — [0, 1] is said to be M-subgame almost-
surely winnable after sequentialization (Seq-M-SAW for short) if there is a PI
upward well-founded payoff function g : (KUK')¥ — [0,1] that is (TB¢(O), M)-
SAW such that f and g are equal up to adequate interleaving. When |M| =1,
the payoff function f is said to be positionally subgame almost-surely winnable
after sequentialization (Seq-PSAW for short). This last notion does not depend
on the set of colors K'.

Let us apply this definition to parity objectives.
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Proposition 3.36. For all sets of colors K := [m,n] C N for some m <n €
N, the parity objective Parityx — seen as the payoff function f := Tpaty, —
is Seq-PSAW.

Proof. We let K' := K, n : K — K be such that n[K] := {m} and g := f =
Tparity- Since positional optimal strategies always exist in finite turn-based
parity games [27, 28|, g is (TB(O))-PSAW. Furthermore, since the parity
objective only considers the highest color seen infinitely often, for all p € K¥,
we have f(p) = g(po-m-p1-m---) since m = min K. Hence, the pair (f,g) is
equal up to adequate interleaving. O

Before stating the main result of this section, we need to define below the
notion of B-finite standard concurrent game.

Definition 3.25 (B-finite standard concurrent game). Consider a standard
concurrent game G. We say that it is B-finite if the set of states @ is finite
and, for all ¢ € Q, the set of Player-B actions Act} at state ¢ is finite.

We can finally state the memory transfer from turn-based games to stan-
dard concurrent games w.r.t. finite-choice strategies.

Theorem 3.37. Let K,K' be two arbitrary sets of colors, M = (M, mjpi, i)
be a finite memory skeleton on KU K" and f : K¥ — [0,1] be a PI payoff|
function that is Seq-(TB#(O), M)-SAW.

Then, for all B-finite standard concurrent games G = (C, f), for all Player-
A finite-choice strategies sp € S(/i, there is a Player-A strategy ta € S(/i imple-
mentable by a memory skeleton using as many memory states as M such that,
for all m € (Qns)", we have Xg[sﬂ(ﬁ)}(mt) < xg [tﬂ(w)](mt).

Proof. First, as the payoff function f : K¥ — [0,1] is Seq-(TBf(O), M)-SAW,
let us consider a PI upward well-founded function ¢ : (KUK’)* — [0,1] that
is (TB#(O), M)-SAW such that f and g are equal up to adequate interleaving.
Let us also consider an affine increasing (and therefore invertible) function
¥ :[0,1] = [0,1] and 1 : K — K’ from Definition 3.23.

Consider now such a finite-choice strategy sa € SCA. For all ¢ € @Q, we
let Ay := {salp-q) | p € @} C D(Acty) be a finite set — since the
strategy sa has finite choice — of Player-A GF-strategies at state q. Let
A = (Ag)qeq. Let us consider the turn-based game G(A,n). It is finite by
definition of A. Furthermore, by Proposition 3.32, for all ¢ € @, we have
Xo(an) Al(q) = SUDy, e5¢ (4) XG [ta](¢). In particular, for all ¢ € Q and p € QT
we have xg(a[Al(q) > xg[sa](q) since sj is generated by A.

Let us now consider the game G'(A,n) := (C(A,n)’,g) where the arena
C(A,n)" is obtained from the arena C(A,n) by changing the values of the
stopping states from u in C(A, ) to 1 ~1(u) in C(A,n)*3. Otherwise, the arena

13Note that this transformation may induce stopping states of value more than 1.
However, all arguments still hold in that case.
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is unchanged. We denote by SeqAlt C (Qa - Qg)™" the set:

SeqAlt := {e} U{qo - (90:040) @1+ (q1,04:) - qn * (Gn, 74,,) |
V0 <i<n, g € Qa, 04 € Ay, }

By definition of the arenas C(A, n) and C(A,n)’, all finite paths that are not
in SeqAlt (up to omitting the last state of the path) have probability 0 to occur
in the arenas C(A,n) and C(A,n)" regardless of the strategies of the players.
Furthermore, for any infinite path p € SeqAlt”, we have ¥ ~'o f,(p) = g(p) with
1~ ! an affine function, which therefore commutes with the expected value: for

all states ¢ € @ and pair of strategies (za,zg) € Si(A’n) X SE(A’n), we have:
_1 k) y
ST ERT (o)) = BZE, [(Ge(any)
Hence, since % is increasing and continuous — since it is affine, we can

deduce that for all states ¢ € @, for all Player A strategies xa € Sg, we have
v (Xgam [2al (@) = Xgamy[2al(@) and ¥ (xg(am [Al(@) = Xgamy [Al(9)-

Furthermore, since the PI function g is (TB¢(0O), M)-SAW, by Corollary 3.25,
there is a subgame almost-surely winning strategy in G(A,n)" and by Corol-
lary 3.23, it can be found among M-implementable strategies. Therefore, we
consider a Player-A strategy xza € Si(A’n)/ = Si(A’n) that is subgame op-
timal in G(A,n)" and M-implementable. Consider then its parrallelization
ta 1= Pl’ﬁ’n(.ﬁA) € S§. By definition (recall Definition 3.21), it is implementable
with a finite memory skeleton with as many memory states as M.

Consider now any finite path m € (Qns)™. By (the second part of) Propo-
sition 3.33, there is a finite path p € (Qa - Qg)* such that ti(ﬂ) = Prﬁ’"(azﬁ)
such that ¢g, 0z(p) = 7, and therefore p does not visit any stopping state
in C(A,n), or equivalently in C(A,n)". Furthermore, the strategy xa is sub-

game optimal in the game G(A,n)" with a PI upward well founded payoff

function. Hence, ¢_1(Xg(A,n) [xi](ﬂ'lt)) = Xg(A,n)'[fEf\] (mie) = Xg(A,7)/[A] (i) =

wil(xg(/\ - [A](7)). Furthermore, we have XG(Am) [A](m) > Xg[stA(ﬂ)](mt). In

addition, by Proposition 3.35, we have xg(c [zh](mt) < Xg[Pr/A\’"(xﬁ)](mt) =
I(m)

Xg[ttl(w)](mt) Overall, we do obtain, xg [sA () < xglt tl(ﬂ)](mt). O

We obtain a simpler statement when applying to the special case of parity
objectives.

Corollary 3.38. Consider any B-finite standard concurrent parity game. For
all Player-A finite-choice strategies sp € Sg, there is a Player-A positional
strategy tasuch that, for all p € QF, we have xg[sal(p) < xg[tal(p). Hence, if|
sa Is subgame optimal, so is ta.

Proof. This is a direct consequence of Theorem 3.37 and Proposition 3.36. [
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3.5 Discussion and open question

In this chapter, we have established various results on subgame optimal
strategies. As mentioned at the beginning of this part, we believe that Theo-
rem 3.12 and its Corollaries 3.14 and 3.16 are important results on concurrent
games and are essential to this dissertation. We also believe that Theorem 3.17
gives significant insight on why concurrent concurrent games behave so much
more badly than turn-based games. Indeed, as discussed in Page 137, this
theorem identifies exactly the reason why there does not always exist subgame
optimal strategies in concurrent games: when restricting to locally optimal
strategies, the value of some states may drop to 0.

That is not to say that the other results we have shown in this chapter have
no interest. In particular, an important notion we have introduced in this
chapter is the notion of finite-choice strategies, with the main result proved
on finite-choice strategies being Theorem 3.37. Roughly, Theorem 3.37 states
that if a finite-choice strategy achieves a value in a standard finite concurrent
game with a payoff function f, then a simple strategy can achieve the same
value; where simple means what is required to be optimal in turn-based games
with f as payoff function. This holds for various objectives. As stated in
Corollary 3.38, for a parity objective, simple means positional. Hence, in a
standard finite concurrent parity game, if there is a subgame optimal strategy
that is finite-choice, then there is one that is positional. The question then
is: can the finite choice assumption be weakened? We know that it cannot be
dropped entirely, since, as exemplified by the game depicted in Figure 3.12,
subgame optimal strategies may require infinite choice. However, we believe
that it may hold if finite choice is replaced by positively bounded.

Open Question 3.1. Does it hold that in all standard finite concurrent
parity games, if there is a subgame optimal strategy that is positively bounded,
then there is one that is positional?

The reason why we think Open Question 3.1 could be answered positively
is because the parity objective is a qualitative objective, in the sense that
what matters is only what is seen infinitely often, regardless of the frequency
(contrary to a mean-payoff objective). In addition, with positively bounded
strategies, what occurs infinitely often in the game is what occurs infinitely
often in the support of the strategy. Therefore, it seems that what matters
with a positively bounded strategy is not the exact probability distribution
played, but rather the support of this distribution — though this statement
should be taken cautiously. With standard finite local interactions, there are
only finitely many different supports; and therefore it may be possible to use
the same kind of arguments we used to prove Theorem 3.37.

161



3.6 Appendix

3.6.1 . Proof of Lemma 3.2

We consider a game G = (C, g) and we let f := gc.

To prove this lemma, we will need the notion of covering formally defined
below in Definition 3.26.

Definition 3.26 (Covering). For all n € N, an n-covering is a non-empty
subset A C QCS” of finite non-empty paths such that W,caCyl(m) = Q¥ (i.e.
the union is disjoint).

The probability of any covering, given two strategies, is 1. Furthermore,
the expected value of any Player-A strategy does not decrease over coverings,
against all strategies. This is stated formally in the lemma below.

Lemma 3.39. Consider any Player-A strategy sa € Sg and Player-B strategy
sg € S§. For all n € N, n-coverings A C QCS” and any finite path p € (Qns)™,
we have:

Z ]P)SA ,SB

TEA

and

X [sal(pre) < D PE () - Xguiwm [sa ™ 10+ ™)
TEA

Proof. Let us prove this lemma by induction on n € N. This straightforwardly
holds for n = 0 since in that case A = {e}. Let us show it for n = 1. That
is, let us consider some p € (Qns)t and a l-covering {e} # A C le and a
Player-B strategy sg € SC Since A is a covering, it must be that A = Q.

Hence, we have o PE(q) = ¥ out{(F(pr), 4)](sa(0), ss(s)) = 1. Now
assume towards a contradlctlon that:

€ 1= Xgtl(p) SA Plt ZPSA SB " XGr [SA]((]) >0
q9EQ

Consider any Player-B strategy s € S‘é such that s(pi) = sg(p) and such that,
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P sPlt
for all ¢ € @, we have EZ‘};” [f79] < xgrlshl(q) + 5. Then, we have:

tl(p)

»S , s ,sPIt
C »Plt Z IP)C »Plt A [fp q]
q€Q
— Z ]P)SA:SB SA’S’)'t [£79)
qeQ
<D BER @) - (xorlsh(@) + 5)
qeQ
€
= > _PEP(a) - xorlshl(9) + 5
q€eQ
€
= Xgt(o) [Si(p)](plt) —e+4 = < Xgu [Sz(p)](Plt)

2

This in contradiction with the definition of xgu(p) [sﬂ(p )}(ph). In fact, we have
Xgt(o) [si(p)](ph) < 34 PEP(a) - xgelsal(q), and therefore the property holds
forn = 1.

Assume now that it holds for all £k < n for some n > 1. Consider an
n + l-covering A C Qg"“ and some p € (Qns)T. Let X, := AN Qg" CcCA
and X, 41 := A\ X,,. Welet Y, := {m<p—1 € (Qns)" | ™ € Xpt1}. In fact,
the set A, := X, UY, C Qg” is an n-covering. Indeed, for all p € Q“, either
there is some ¢ < n — 1 such that p<; € A and therefore p<; € X,,. Or, since
A is a covering, we have p<, € X,41, and in that case p<,—1 € Y,. In any
case, we have p € Urea, Cyl(m). Furthermore, consider some m # n’ € A,,. If
m,m" € X, C A, we have Cyl(m)NCyl(n’) = () since A is a covering. If 7,7’ € Yy,
by definition of Y;, we have || = |7’| and therefore Cyl(7)NCyl(x") = (). Assume
now that 7 € X,, C A and ' € Y,,. Then, |r| < |7/|. Furthermore, there is
some g € (Q such that we have 7’ - ¢ € A. Hence, it cannot be that 7 C 7’
since A is a covering. Therefore, we also have Cyl(w) N Cyl(7’) = (). We can
conclude that the set A, is a covering.

In addition, for all 7 € Y;, and for all ¢ € @, we have 7-q € A (since A is
a covering and there is no prefix of 7w in A). Furthermore, @ is a 1-covering,

D () =1

q€eqQ

therefore we have:

and

Xgutom Sa” VN(me) < ST PR () - xger[sh™I(9)
qeQ

Now, for all 1 € AU Ay, we let v(7) := Xgu(om [sz(p'ﬂ)](p -me) € [0,1]. The
above equation therefore rewrites, for all 7 € Y,:

<D PEE(9) u(mq)

q€Q
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By applying our induction hypothesis to A,, we obtain:

YEEm = Y BEm e+ Y B

TEA TeEXn TeEXnt1
= DRI+ Y D ()
TEXn TEYn qEQ
= PEP(m) + D PR | D PEE()
TeXnp TEYn qu
— Z ]I_DSA,SB Z PSA,SB
TI’GXn TI'EYn
— Z PSA758
TEAR
Furthermore:
Yo PR v(m) = Y BESE(m) - o(m) + Y PRE(m) - u(m)
TEA TeXy 7r€XrL+1
SHIL SERTORD ) 3L SRR
TeXn TEYn ¢EQ
— Z PSA,SB ) + Z PSA,SB ZPZNSB
P
meXn TEeYy qeqQ
> 3 PRE(m) v(m) + 3 BAS(n - q) - u(m)
TeXn TEYn

= D BEP(n) u(m) = ) BEP(n)  Xguen[sa 210 me)

TEAy, TEAR
> tl(p)
> Xgu [sp” (1)

Hence, the inductive hypothesis also holds at index n + 1. The lemma follows.
O

We can now proceed to the proof of Lemma 3.2. The proof contains three
parts, that are indicated in bold.

Proof. Let € > 0 and sp := s.rst. Consider any finite path p € Qg and a
Player-B strategy sg € S(é. If pr € Qs, then straightforwardly, the Player-A
strategy sa is optimal from p. Assume now that p € (Qns)™. For all m € Q,
we let NbU(7) := [{n' € Q} |7’ C 7w, U (p-7r) =p-7'}.

For all 0 € QF, we let v(f) := Xxgueols, (tlgﬁ(ep))e))](&t). This expression
is complicated but it expresses something snnple: consider the last update
x := Uc(tl(p - 0)) of the path p - @ disregarding if there is an update at p - 6.
This value v(#) is in fact equal to the value of the residual strategy s. ., after
the history Pl(p - 6).
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First part: Let us show by induction on k > 1 the property P(k): for all
k-coverings {e} # A C O*. we have:

Xgrin Al () =2 & < 3OPRE(n) - (u(m) ~ NbU(r) ) (3.1)
TEA

Let us show P(1). Let {e} # A C le be a 1-covering. If there is an update
at p (i.e. Uc(p) := p), then for all ¢ € @), we have NbU(gq) = 1 and the strategy
at p is e-optimal. That is, we have xgue[se,p](P1t) > Xguw [Al(p1t) — €, by
definition of the strategy s. ,. Hence, by Lemma 3.39, we have:

s pystl(p) Se.pS tl(p)
Xgu(o [se,pl (1) < Pc,’p,t & (q) - xgrsE)(q) = Pqplt ® (q)-v(9)
q€Q q€Q

Furthermore, since sa(p) = s¢ ,(pit) and sg(p) = sB(p) (pit), it follows that for all

tl(p)
q € Q, we have P, oo % (q) = IP’Z‘};B (¢). Equation 3.1 follows. Similarly, if there
is no update at p (1 e if U.(p) # p), we have, for all ¢ € @, NbU(g) = 0 and, by
definition of the update function U, xgue) [s Pl(tIE )() ))](p|t) > Xgto [Al(p1e) —2-€.

Again, by Lemma 3.39 and as for the previous case, we have:

PI(tl(p)) tl(p)
PI(tl S Us (tl(p))’S PI
Xgtl(p) [587[(Jtsgﬁ)(1)))](p|t) < Pq',:t(l(p)) ° () - xge [SE7L(Jp5)(t|(p))](q)
qeQ
=2 FE @) ()
q€Q

Indeed, since there was no update at p, we have U.(tl(p)) = U:(p) and Pl(p) =
PI(tl(p)- pi) and therefore sa(p) = s, u_ (o)) (PI(tl(p)-p1t)). Hence, Equation 3.1
follows.

In any case, the property P(1) holds.

Assume now that P(k) holds for some k& > 1. Consider a k + 1-covering
{e} # A C Q<k+1 The covering we define to apply our induction hypothesis
is similar to the one used in the proof of Lemma 3.39. Let X, := ANQ<F C A
and Xkt1 1= A\Xk We let Yy, = {71'3]9_1 € (Qns)k | e ch+1}~

In fact, the set Ay := X UY, C ng is a k-covering. Indeed, for all
p € Q¥, either there is some ¢ < k — 1 such that p<; € A and therefore
p<i € Xj. Or, since A is a covering, we have p<; € Xj11, and in that case
p<ik—1 € Yi. In any case, we have p € Urea, Cyl(m). Furthermore, consider
some m # 7 € Ap. f m,7" € Xj C A, we have Cyl(7) N Cyl(7’) = () since A is
a covering. If m, 7" € Yy, by definition of Y3, we have |r| = |7’| and therefore
Cyl(w) N Cyl(x") = 0. Assume now that 7 € X C A and ' € Y;. Then,
|7| < |7'|. Furthermore, there is some g € @ such that we have 7’ - ¢ € A.
Hence, it cannot be that m C 7’ since A is a covering. Therefore, we also have
Cyl(m) N Cyl(7") = 0. We can conclude that the set Ay is a k-covering.
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We can therefore apply P(k) to it. We have:

Xguo [Al(pre) =2 < > P () - (v(w) — NbU(r) - €)
TEAL
Let m € Ag. Let Ar :={0 € Q" | m- 6 € A} be the set of finite paths leading
from 7 to a path in A. Let us show that:

< ) PESE(6) - (v(w - 6) — (NbU( - ) — NbU(r)) - €) (3.2)
0cAr

There are two possibilities:

o Either m € X}, in which case A; = {e} and Equation 3.2 straightfor-
wardly holds.

e Or, m € Yy, in which case A; = @, since A is a covering and no prefix
of wisin A. There are again two possibilities:

— Either there is an update at p-m € Q. That is, we have U.(p-7) =
p-m. This implies that, for all ¢ € @, NbU(p-7-q) = NbU(p-7)+1.
In addition, since there is an update at p - 7, it means that:

PI(tl
v(m) = Xgtl(p- w)[ ) Eﬁ(p)zr))](ﬂ'lt) < Xgt(pm) [Al(me) —2-
Furthermore, we have Xgucm [A]l(T1t) — € < Xguom [Se,pn) (M), DY
definition of the strategy s. ;. In addition, by Lemma 3.39, we
have:

tl(p-)
Se,p- ﬂySB

Xgu(om [Se,pn](me) < ) Pe 2 (q) - xge[s2%.x](q)
q€Q
with xger[s.7](q) = v(m-q). Since we have sa(p-m) = s, . (v ) (Pl(p:

tl(p-m)

7)) = Se,px(T), it follows that, for all ¢ € @, we have ]PCE;:I:’SB (q) =

IP’ZALS‘;( ). Overall, we have:

’U( ) < thl(p-n-) [A] (7T|t) —2.¢ < thl(p»w) [557,0 W](Flt) — &

< STEAE(g) - xgor 5T )(0) — e = S BRS(g) - (vl - g) — o)
q€Q 0
We obtain Equation 3.2 since, for all ¢ € @, we have NbU(r - q) =
NbU(7) + 1

— Or, there is no update at p - m, that is Uz(p - m) # p- 7. In that
case, for all ¢ € @, we have NbU(7 - ¢) = NbU(7). By Lemma 3.39,
we have:

Pl(tl(p-m
V() = Xguom [So 4 oy (i)
Pl(tl(p 7)) tl(p )
§ : Se,Ue (tI(p-m)) PI(tl(p-m))-m
P 7lrJ|t( I(p-m))*°B (Q) . Xgp'ﬂ[ss,Ua(fl(p-ﬂ-))l ](Q)
q€Q
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Furthermore, we have U.(tl(p- 7)) = U:(p-7) and therefore Pl(tl(p
7))-me = Pl(p-m). Hence, for all ¢ € Q, we have ygo=|[s Pl(tlgﬁ& ﬂmt](q)

Xger[s Pl(p(7r) )](q) = v(m - q). In addition, we have:

PI(tl(p-m
Sa(p - ) = 0. (pm) (Plp - 7)) = Ly ) (i)

P (o)
Hence, for all ¢ € @, we have IPCE;FJ'E(“(” ) (q) = IP’Z’?;EF(q). That
is:
SA,S
< D P a) v(m-q)
qeQ

We obtain Equation 3.2 since, for all ¢ € Q, NbU(7 - ¢) = NbU(m).

We have established Equation 3.2 for all 7 € Ax. We can deduce that, for all
T E Ap:

v(m) =NbU() -e < >~ P2 (6) - (v(m - ) — NbU( - 6) - €)
0cAr
Hence:
> B (m) - (o(m) = NbU(n) ) < 30 D FEP(m-0) - (v - 6) — NbU(r - 6)
TEAL mEAL 0€AL
=Y PSR (m) - (v(r) — NbU() - )
TEA

Overall, with our induction hypothesis, we obtain:

Xguo [Al(pr) — 2 & < > PE8(x) - (v(m) — NbU(w) - €)
TEA

That is, we obtain Equation 3.1, and the property P(k+ 1) follows. Therefore,
the property P(n) holds for all n € N.

Second part: For all 7 € QF, we let UAft(r) := {# € QT | 7-0 ¢
Qf, Us(p-7-0) = p- -0} be the finite set of paths for which there is an
update after . Note that, if m; € Qs, we have UAft(m) = (). Let us show the
equation below:

o(m) SESE[FPT - Ligruarm)e] + Pers [UAft(r))] (3.3)

Let m € Qf. If my € Qs, we have v(m) = val(my) = EZA’psfr[fp'” - L(@+\UAfe(r))~]

with PZAI’:_?F[UAft(W)] = 0. Hence, the equation holds. Assume now that m; ¢

Qs, i.e. ™ € (Qns)T. Let s = si(upglgﬁ'_:;). For all § € Qp \ UAft(m) - Q*,

we have Us(p-7-0) = U (p-7) and Pl(p-7-60) = Pl(p- ) -60. Hence,
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Sr(Tie - 0) = scu.(pm)(Pl(p-7-0)) =sa(p-7-0) = sﬂ(p'w) (7 - 0). Therefore, we

have:

sﬂ(’)'"),s“(”'”) tl(p-m)

Ecy 0 77 Liga\uaf(n)~] = E?ﬂsf LfP7 - Lo\ uAfe(r))~]
and o™ o) o™
Come [UAft(m)] = PC,mt [UAft(m)]
Hence:
tl(p-m)

Xgutom [57](me) S EZE (7]

tl(p-m) tl(p-m)

Sm,S . Sr,S .
=E.2 "7 Lgnuarmy<] TEcE "7 Luas(n)]
<prs” (™1 |+ Py 5" [UAft(7)]
= TC,my (Q*\UAft(m))« C,mie

52(’”7) ’Stl(p-W) Stiprm) (tpm)

=B, [T Lgnuakm)e] T BE,, E [UAf(m)]

=B 7T Lgrua(m)e] + P UAf(T)]

Now, as before, there are two cases:

e Either, there is an update at p - m. That is, we have Us(p-m) = p -
) PI(tl(p-

7. This means that v(m) = xgu(en [ssﬁéigﬁ&);))](mt) < Xgiom [A] (1) —

2 - e. Furthermore, by definition of the strategy s; = s. ,.r, we have

Xgto-m [A](mie) — € < Xgutpm [S](me). Overall, we obtain:
1)(7'(') < Xgti(p-m) [SWKﬂ'It) < Ezlj;?r[f’o'ﬂ . 1(Q+\UAft(ﬁ))w] + PZé;si[UAft(ﬂ)]

e Or, there is no update at m, Us(tl(p - 7)) = Uc(p - m) and therefore
Pl(tl(p-m))-mr = Pl(p-7). Since we also have tI(Pl(p-7))-my = Pl(p- ),
it follows that PI(tl(p - 7)) = tI(Pl(p - 7)). Therefore, s; = st *™) =

Evuf(p'ﬂ—)
Pl(tl(p-m Pi(tl(p-m
S Uy Hence, v(m) = Xguom [SE () (M) = Xgum se] ().

Hence, we have:
(1) = Xgueem [Se] (M) < ESTELf7™ - Ligruafem)=] + Pere [UAFt(T)]

This proves that Equation 3.3 holds for all 7 € Q.
Third part: Since, for all 7 € QF, v(7) € [0,1] it follows directly from
Equation 3.1 that:
lim PF#[NbU > n] =0 (3.4)

n—oo ’

Let 6 > 0. We let NoMrUs C Qér be the set of finite paths such that with
probability at most § that is another update afterwards. That is: NoMrU; :=
{m € Qf | P22 [UAft(m)] < 6}. In fact, P [(Q*\NoMrUs)“] = 0. Indeed, for
all n € N, we have P2 [(Q*\NoMrU;)“N(NbU > n)] = PA*E[(Q*\NoMrUs)~]
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since, given (Q*\ NoMrU;)¥, there is infinitely often a probability greater than
6 > 0 that there is one more update. We can then deduce from Equation 3.4
that P2 [(Q* \ NoMrUs)“] = 0.

Consider now some n; € N'such that P2 [NoM rUsNQ5"™] > P # [NoMrUs) —
6=1—-9. Let A C NoMrUsnN ana denote the set of finite paths of NoMrUs N
QF"* with no prefix in NoMrUs. By definition, we have P8 [NoMrUsNQ5™] =
]P"Z%SB [A] > 1 —46. We also let X C Q7° be the set of finite paths in Q7° with
no prefix in A: X := Qg% \ (Uream - Q*). By construction, the set X U A is a
ns-covering. We can therefore apply Equation 3.1 to it:

Xguo [Al(pre) =2 -6 < Y B (m) - (v(w) = NbU(r) - €)

TeXUA

< Z ]P)SA»SB ) + (1 _ PZé;)SB [A})
TEA

<Y PSR (m) - v(r) + 6
TEA

Furthermore, for all 7 € A, we have, by Equation 3.3:
v(m) < ESA LT Lgr\uaf(ry)e] +0 < E?f},’fi[fp'ﬂ] +9

Hence:

Xguo) [Al(pre) —2-& < > PEe(m) - v(x) +

TeA
< Z P8 () - (BB [f77] +6) + 0
TEA

<SEQPU 200

As this holds for all 6 > 0, it follows that X gue) [A](prr) —2-€ < ESA’SB [ff]. A
this holds for all Player-B strategies sg € S§ and finite paths p € (Qns) ,
follows that the Player-A strategy sa is subgame 2e-optimal. D

3.6.2 . Proof of Lemma 3.5

Proof. We prove the result for upward well-founded functions, it is symmetrical
for downward well-founded ones. Assume that f is upward well-founded. Let

€ (0,1]. For all n € N, we let g, := 271% > 0. If, for all n € N, we have
[ — en,x) N E # (), it follows that can build an infinite ascending chain in E,
which is not possible by assumption. Hence, there is some n € N such that
[z —en,x)NE = 0.

Let us now prove the other direction. Assume towards a contradiction that
there is an infinite ascending chain (z,)nen in E. Let z := sup, ey 2, € [0, 1].
Since the chain is ascending, we have x > x, for all n € N. By assumption,
there is some € > 0 such that [z —e,z) N E = (). That is, for all n € N, we have
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Figure 3.13: A reachability game.

zn < x —¢e < z. This is in contradiction with the fact that x = sup,eyan €
[0, 1].
O

3.6.3 . Optimal strategy that is locally optimal but not subgame opti-
mal

Consider the game of Figure 3.13: it is a reachability game, that is if it
loops indefinitely on qo, the value is 0. The value of the state gg is 1/2, it
is achieved by a Player A positional strategy playing the two top rows with
probability 1/2 and by a Player B positional strategy playing the two leftmost
columns with probability 1/2.

However, denoting ai,as and as the three actions available to Player A
at state ¢p from top to bottom, consider the following Player-A strategy sa:
sa(go)(a1) = sa(qo)(a2) := 1/2 and sa(g) ") (as) := 1 for all n > 1. Then, this
strategy is locally optimal and it is optimal. Indeed, if the game loops at least
once on g, then there was the same probability to loop on ¢¢ and to reach
outcome 1. Hence, the mean of the values is at least 1/2 which is the value
of the state qg. However, it is not subgame optimal since after the game loops
once on qg, then Player B can ensure value 0 by playing indefinitely the left
column with probability 1.

3.6.4 . Proof of Proposition 3.9 and Proposition 3.10

In fact, we first prove Proposition 3.10 and then use it to prove Proposi-
tion 3.9.
We prove Proposition 3.10.

Proof. Recall Definition 3.3, the valuation xg[sa]? : @ — [0, 1] is such that, for
all ¢ € Q, we have xg[sa]”(q¢) = xgr[shl(q). Let € > 0. Consider a Player-B
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strategy sg € S§ such that the GF-strategy sg(p) € S8 is such that:

out[(F(p). xg[sal”)](sa (). 58(p)) < vall(F(p), xglsal?))(sa(p)) + =

2
and for all ¢ € Q, we have
B 1(f0)" ] < xgrl$3](@) + 5 = xglsal(p- @) + 5
We have:
5A758 Z PSA,SB (SZA;)SE [(fC)P'Q]
qeQ
= > out[(F(pi), 9))(salp), s8(p)) - BEs2[(fe)” )
q€Q
< > outl(F(pre), )l (sa(0): 58(0) - (xalonl (0 @) + )
q€Q

= out[{F(pre). xglsal")] (sa(0) 58 (0) + 5
< vall(F(pn), xglsal”)] (sa(0)) + ¢

Since this holds for all ¢ > 0, it follows that xgu,[sa](pr) < EZ’?;B[( fe)P] <
val[(F(pit), xg[sal?)](sa(p)). Since xg[sal? < xg[A]? by definition of the value,
it follows that val[(F (o), xalsal”)](sa(p)) < vall(F (o), xa[AIV))(sa(0)).

If sa is subgame optimal, for all p € (Qns)™, we have xg[A](p) = Xgu [sal(p1) <
val[(F(pit), xg[A]?)](sa(p)), and therefore the Player-A strategy is locally opti-
mal. O

We can now prove Proposition 3.9.

Proof. By Proposition 3.10, for all Player-A strategies sa € Sg, we have

Xguo [sal(pie) < val[(F(pi), xg[AI)I(sa(p)) < val[(F(pie), xg[A]”)](A). There-
fore, xg[Al(p) = xguw [Al(p1r) < val[(F(pr), xg[A”)](A).

Now, let ¢ > 0. Consider a Player-A strategy sa € Sfi such that the
GF-strategy sa(p) € X" is such that:

val[(F(pie), xg[A”)](sa(p)) = val[(F(p), xg[AI")](A) — g

and for all ¢ € @, we have

xge[sal(q) > xgr[A](q) —

Do M
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For all Player-B strategies sg € S&, we have:

ESA7SB Z PSA’SB EZA;?; [(fC)P‘Q]
q€Q
= >~ outl(F(pe), )l (sa(p), s8(p)) - B (fe)™)
q€eQ
>3 outl(Flp), )l (sa(p): 58(0)) - (xs[Al (- 0) = 5)
q€Q

— out(F(pe) XA (5n(0).sa(0) + &

> val[(F(pr), xg[A]")](sa) —
> val[(F(pi), xg[A]”)](A) — e
As this holds for all Player-B strategies sg € S, it follows that Xgt(o [sa](p1) >
val[(F(pit), xg[A]?)](sa(p))—e. As this holds for € > 0, it follows that xg[A](p) =
Xguo [sal(pie) = val[(F(pr), xg[A]”)](A). O
3.6.5 . Proof of Lemma 3.11
Proof. Coonsider a Player-B strategy sg € S% and some 7 € Qg Let p € Q*.
If p e @ Qs Q*, then the inequality straightforwardly holds. Assume now
that p € (Qns)*. We have, by Lemma 1.10 and Definition 1.28:
(vs)"(p) = v(m - p) < val[(F((m - p)ie), v™ )] (sa(m - p))
< out[(F((m - p)ie), v™ )] (sa(m - p), sg(m - p))
= > out{(F((r - p) )] (sa(m - p).s6(m - p)) - v (g)

q€Q
= _PET @) v(mp-a)
q€q
=) PE(a) (v)"(p-q)
q€Q
That is, the valuation (vs)™ is non-decreasing from 7. O

3.6.6 . Proof of Proposition 3.26

We would like to mention that the transformation of priority games into

parity games that we used in this proof was already introduced in [63, Corollary
3.8].

Proof. Let E = fpa(K,g)[K¥]. The function fpa (K, g) is straightforwardly
upward well-founded since E is finite. Furthermore, it is PI since it only

depends on the set of colors seen infinitely often. Now, consider some « € [0, 1].
We have:

fear(K, ) 7H[[0,0)] = | ] {maxInfOtf(p) = i} € Borel(K)
€K, g(i)<a
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Hence, the function fps (K, g) is measurable.
Let us now define a function hy : K — N such that, for all ¢ € K, we have:

hali) = {2-7; if g(i) >

2-i4+1 otherwise
Then, we have, for all p € K“:

frar(K, 9)(p) > a & ha(InfOtf(p)) € Parity;, )

Indeed, let x := max InfOtf(p). First, note that the function h, is monotone
(i.e. for all 4,5 € K, we have i < j if and only if h(i) < ha(j)). Therefore,
ha(x) = max InfOtf(p). Hence, we have fpar(K, g)(p) > aiff g(z) > a iff ho ()
is even iff ho (InfOtf(p)) € Parity; k-

Hence, in finite turn-based games on the set of colors K, playing optimally
for the objective Parity, ) where all colors ¢ € K are replaced by the color
ha (i) is also playing optimally for the objective {f > «a}. Therefore both
players have positional optimal strategies (this also holds for the objective
{f < a}). Hence, the function fp,(K,g) : K¥ — [0,1] is Std(O)-PSAW (for
both players) since in finite turn-based games with parity objectives, there are
always positional optimal strategies |27, 28]. O

3.6.7 . Proof of Theorem 3.28

Proof. Let us denote by sy, € S(Aj an optimal positively bounded Player-A
strategy generated by A. Let us define a Player-A subgame optimal strategy
srst € S&. To do so, we define a map on finite paths Rst : Q* — Q¥ such that
for all ¢ € Q, we let Rst(q) := ¢ and for all p-q € QT, we let:

Rst(p- @) i— {Rstw 0 il l0) = xo(@)

q otherwise
Note that, this the game is PI, both functions xg : @ — [0,1] and xgr : Q —
[0,1] are the same. Informally, the map Rst resets whenever the strategy spp
is not optimal anymore. We can now define the strategy sre; in the following
way, for all p € Q:

srst(p) 1= spb(Rst(p)) € Ta(pn)

Since the strategy spp, is positively bounded and generated by A, it follows that
the strategy sgrst also is. Let us show that it is subgame optimal by applying
Corollary 3.14.

Let p € Q. We have p;; = Rst(p);. Furthermore, the strategy sSéRSt(p)) is
optimal from Rst(p);;. Hence, by Lemma 3.10 — and since the game is PI —
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we have:

xa (o) = xalshy ) (pre)

< val[{F(pi), xg)](spb (Rst(p)))
= val[(F(pit), xg)](srst(p))

In fact, the strategy sgret is locally optimal.
Let us now show that it ensures the second property of Corollary 3.14. Let

€ (Qns)T and consider a Player-B deterministic strategy sg € S§. For all

T € Q*, we denote by sy the residual strategy SR(p ™

t(p-m)

and by sg the residual
strategy sg We also denote IPSRS“SB by P™ — when m = €, we omit it.
Consider some value u € V9 \ {0}. We introduce two notations:

e we denote by MayEx,, C Q7 the set of finite paths ending in Q,, with a
positive probability to exit this value slice: MayEx, := {7 € Q* - Q,, |
PTQ\ Qu] > 0}

e we also denote by Deviate C Q" the set of finite paths where the strategy
Spb 18 not optimal: Deviate := {m € Q1 | Rst(p - 7) = mi}.

Let us show the three following facts:
(a). P[Q™- (Qu)* N (Q" - MayEx,)*] = 0;
(b). PIQ™-(Qu)*NQ"- (Q\ MayEx,)*] < P**[Q"- (Qu)*NQ"- (Q\ Deviate)“];
(¢). PlQ™- (Qu \ Deviate)*] = P{f > u} N Q" - (Qu \ Deviate)].

If we assume that all these facts hold, then we obtain:

PlQ™ - (Qu)“] =PlQ" - (Qu)* N Q" - (Q \ MayEx,,)”] by fact (a)
<PR™ - (Qu)”N Q* (Q \ Deviate)"] by fact (b)
=P[Q" - (Qy \ Deviate)"]
=P{f >u}NQ*-(Qy\ Deviate)*] by fact (c)
<PHf Zu}nQ" - (Qu)]
< PQ™ - (Qu)*]

In fact, all these inequalities are equalities. We can then apply Corollary 3.14
to conclude. Let us now show all these facts one by one.

(a). Consider some m € MayEx,. We have P™[Q \ Q] > 0. Let b := sg(p-
m) € Actg® (recall that sg is a deterministic strategy) and let Ag\ o, =
{a € Actmt | 0m.(a,0)[Q \ Qu] > 0}. Then, sj(m¢)[Ag\@,] > 0 hence
S [AQ\Qu] > cfor some fixed ¢ > 0 (since sgs; is positively bounded).

We let:

2 1= min min min a,b)(¢') >0
a€Q (avb)EACtZXAct‘é q'€Sp(oq(a,b)) QQ( )(q )
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We have PT[Q\ Qu] = out[(F(m), Lo\, ) (SA(mt), b) > c-z. In fact, this
holds for all 7 € MayEx,. Hence, for all 7 € Q*, we have P™[(Q,)" |
(Q* -MayEx,,)*] < limpoo(1—c-2)™ = 0. It follows that P[Q* - (Qy)¥ N
(Q" - MayEx, )] = 0.

. Let us show that P[Q* - (Q.)“ NQ* - (Q \ MayEx, )* N (Q* - Deviate)*“] = 0.

Let 0 € Q" - (Qu)*” N Q" - (Q \ MayEx,)* N (Qns)¥. Let n € N be an

index such that 0>, € (Q, \ MayEx,)“. Consider, assuming it exists,

the least index ¢ > n + 1 such that 6; € Deviate. By definition, we have
Rst(p-0<;_ Rst(p-0<;_

Xalsie = V)(6:) < xg(6:) and xglshe =) (6,11) = xg(6i1). We

let & := xg(6h) — Xxg[spp Ret(pO<i- 1)](@-) > 0. Furthermore, by Lemma 3.10

— and since the game is PI — we have, for b := sg(pi - 0<i—1) (recall
that sg is deterministic):

Rst(p-0<;_
u=xg(bi1) = xalsyg =) (Bi1)

< val[(F(6i-1), xglspn] =17 7<-2))](spp (Rst(p - 0<i-1)))

= val[(F(6;-1), xg[sp ]Rst p-O<is >]( Oci_ 6,)
< out[(F(0;_1), xg[spb) R 0<i- 2)>]( O<i- {0, ).h)

=Y PP (q) - xglspp) P P=i-2) (g)
qeQ
<D P(g) xgl) e PP (6))
qe@
= out[{F(6i-1). Xg)|(srst (p - f<i—1),b) — & - PU<i=1(¢;)

Hence, if P9<i-1[6;] > 0, we have out[(F(0;_1), xg)](sa="* (6i_1),b) > u.
In that case, at 6<;_1, there is a non-zero probability to reach a state
of value different from wu, ie. PP<i-1[Q \ Q,] > 0. That is, 6,1 €
MayEx,. That is a path — with a positive probability to occur — that
does not visit MayEx, does not visit Deviate as well. (Note that, if
at some point a stopping state is seen, then Deviate and MayEx, will
not occur anymore). Hence, almost-surely, a path visiting MayEx,, only
finitely often visits Deviate only finitely often. It follows that P[Q* -
(Qu)* NQ* - (Q \ MayEx, )“ N (Q* - Deviate)*] = 0. That is:

PlQ™ - (Qu)* NQ™ - (Q \ MayEx, ) ]
=P[RQ" - (Qu,)* NQ" - (Q\ MayEx, ) N Q" - (Q \ Deviate)"]
< PQ™ - (Qu)” N Q* - (Q \ Deviate)"]

. Consider any m € (Qns)* such that my € @, and m ¢ Deviate. We let

Qch C (Qns)T be such that Qe == {0 € (Qns)™, Ot & Qu, orm-0 €
Deviate}. Let us now define a new game Go® = <CSt°p f) that behaves
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exactly like G (from p-7) as long as we stay outside of Qcn, while any path
7 € Qen is replaced by a stopping state of value xg[A](m). Clearly, for all
T € Qch, We have xg[A](p - - 0) = xgsor[A](0). It follows that all finite
paths in Q@ \ Q¢ have the same value u than in the game G. Consider
now the strategy sgrs in that game (note that it is uniquely defined on
Qcn). Clearly, it is optimal from all states in Q. Furthermore, by
definition of Deviate, the strategy sgrs: is also optimal after every finite
path in QT \ Q. That is, it is subgame optlmal in the game G3°P.
Hence, by Theorem 3.12, in the arena Cy°P, it satisfies that against
all Player-B, the probability that fc is at least u given that the game
stays in QT \ Qcp is 1. Tt follows that: Pr[(Q, \ Deviate)*] = P.[{f >
u} N (Qy \ Deviate)“]. Since this holds for all such 7 € (Qns)* such that
my € Qu and m ¢ Deviate, it follows that: P[Q* - (Q, \ Deviate)“] =

PQ* - {f > u} N (Qy \ Deviate)“].

Note that we can indeed consider only Player-B deterministic strategies since,
once the Player-A strategy is fixed, we obtain an MDP where Player B plays
alone. Hence, e-optimal Player-B strategies can be found among deterministic
strategies, by Corollary 2.17. O

3.6.8 . Proof of Lemma 3.29

We first show the lemma below.

Lemma 3.40. Consider a standard concurrent game G, a collection A =

(Ag)geq € [l,eqXp of sets of Player-A GF-strategies and 1 : K — K’ for
C(Am) C(Am)

some set K'. For all pairs of strategies sp € S, and sg € Sg , denoting
TCAM) = C(A/;s;), we have:

AU(F)ewm)™ = ECAPI((fe)ones)’]

Proof. The equality straightforwardly holds if ¢ € QQs. Assume now that ¢ €
Qns. Since the stochastic tree TCAM ig (Qa, @p)-alternating, we have:

CADI(Eeam)™ =ENDU(Feam)?  1s-qn)]

and
ECAD[((fo)anae)™ = ECD[((fo)anae)?  1(@s-n)-]

Furthermore, consider some p € (Qg-Qa)%. If p ever reaches a stopping state,
denoting gs € Qs € Qa (since there is no stopping states in @g) the first one
reached, we have:

((Fdeam)?(p) = (fn)eam (@ p) = val(gs) = (fe)oa,qs(a-p) = (fo)oa.es)?(P)
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Assume now that p never reaches any stopping state. We have:

((Fdeam)?(p) = (fa)eam(a-p) = fyo(col")(q - p)
—fn(col( ) nocol(po) col(p1) -mocol(pa)---)
= f(col(g) - col(p1) - col(p3) -~ -)
= focol®(q-p1-p3 )= fcodoaqe(d-p)
= (fe)bn.0:(P)

That is, the functions ((fy)ca,))? and ((fe)Qa,s)? coincide on (Qp - Qa)”.
Hence, we have

D(Faleam)T = ECND((fe) gnes)]

We can now proceed to the proof of Lemma 3.29.

Proof. The equality straightforwardly holds if ¢ € Qs. Assume now that ¢ €
A A
Qns. We want to apply Lemma 1.7. We let 7€ := C‘?{;A(SA)’PrB (a%8) and
C(A,n) A»SB
Tl Ts Am)q
For all m € (Qa)*, we have:

KONy = Y A
W/ET(W)PI(QB'QA)*

Let us show by induction on n € N the following property: for all m € (Qa)=",
we have:

P (m) = > PCA (r!) = BEM (g1 - 6% (sa) (g - 7))
7 ET(1)N Qs Qa)*

where, for all ¢-p € (QAUQg)*, we let ¢~ -(q-p) := p. This straightforwardly

holds for n = 0. Assume now that this holds for some n € N. Let 7 € (Qa)" .
We have:

T(m)N(Q-Qa) :=={p-¢ -m|peT(tn))N(Qs-Qn)", ¢ € QB}
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Hence, letting p := Zn/eT(n)ﬂ(QB-QA)* pCAm ('), we have:

b 3 S BEAD (. g )

PET(t(m))N(Qr-Qa)* ¢'EQE

= S B ST B (g )

PET(tl(m))N(Qs-Qa)* 7€Qs
— ]pg(A,n) (qfl . HA( ) g - ti(m Z P@A SA)(q n (q’ Tt
7'€Qs
PEA (g1 9 (s0) (g - tl())) - Pﬁﬁ?ﬂi(ﬂ)g(ﬂ(m.t, sa(0(sa) (¢ - tI(7))) - )
(= B{M (g - 04 (sa) (- ) )
= P{AD (g7 07 (sa) (@ - tI(m)) - out[{(F(tI(m)ie), mie)] (sa (6" (s) (a - t1())), s (6%(sa) (g - t1())))
= PO (g7 0 (sa) (g - t1(m)) - out[(F (¢ (m)e), m)](PrA(sa) (q - t1(m))., PrA(sa, s8) (g - t()))

Thus the property holds at n + 1. Therefore, it holds for all n € N. Hence, we
can apply Lemma 1.7 to obtain that E€[(f¢)?] = ECAM[((fo)gaqs)?]- With
Lemma 3.40, it follows that EC[(f¢)9] = EC(A’")[((fn)c(Am))q]. O

3.6.9 . Proof of Lemma 3.30

Proof. First, for all p € (Qa-QB)* - Qa, we have sp(ta)(p) =talpo-p2--- o) €

A,,. Hence, the strategy sa(ta) is indeed deterministic. Furthermore, for

all p € QT, we have, for all Player-A deterministic strategies za € Si(A’k”) —

straightforwardly from the definition — ¢, g (02 (zA)(p)) = d0n.0s (0B (za)(p)) =
p. Hence, for all p € Q" ,we have:

Pra(sa(ta))(p) = sa(ta)(0*(sa(ta))(p)) = ta © P05 (0*(sa(ta))(p)) = ta(p)

C(Akn)

Similarly, for any deterministic Player-A strategy xa € Sy , we have:

Prg(za,s8(t8))(p) = s8(t8)(8°(za)(p)) = tB © P@u s (0° (xa)(p)) = ta(p)
We obtain the desired equalities. O

3.6.10 . Proof of Lemma 3.33

Proof. Consider any memory skeleton M = (M, mini, 1) and any actions map

At M x(QaU@B) = 2 conuge 2A(g) that implement the strategy sa.
Consider any finite p € QT = QX with n := |p| € N and, for all 0 < i <

n — 2, let k; := col(p;). Then, for all 0 <i <n —1, for all o; € A,,, we have:

Prit(sa)(p) = Prg™ (V) (PrR™ (1) (minie, col” (t1(p))), pie)
= A" (Minit, ko - (ko) -+ kn—2 - n(kn—2)), pt)
= SA(PO : (,07 UO) o Pn—2 (pn—z,Un—Q) 'pn—1)
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Hence, the definition of PrZ’A(sA) does not depend on the memory skeleton M
or on the action map A chosen to implement sp, only on the strategy sa itself.

Now, consider some m € Q*. If 7 = ¢, it suffices to consider p := e.
Consider assume that 7 € Q1, we let n:= |r| > 1, thatis7 =70---m,_1. We
consider the finite path p := my(m9,00) - — Tp—1 - (Tn—1,0n-1) € (Qa - QB) ™,

where for all 0 < i < n — 1, we have 0; € A;,. With this choice, we have
®0p,Qs(p) =m. Forall 0 <i<n—1, welet k; := col(m;).

Let us now consider a memory skeleton and action map that implement
the strategy si. In fact, for all € (Qa U Qg)™, we have:

sa(0) =sa(p-0)
= A" (Minit, (col”)*(tl(p - 0))), O1t)
= A" (1" (minig, (col)*(p)), t1(6))), Or)

Hence, letting m := p*(minit, (col?)*(p)) € M, the memory skeleton (M, m, u)
and the action map A implement the strategy si. Consider now some 6 € Q.
Let k:=10] € Nand for all 0 < j <k —1, we let ¢; := col(§;). Then, we have:

(Pri™(sa))™(0) = PrE™ (A ><PrzA<u><mmlt,col (tl( - 0))), Or)
= A" (Minit, ko - (ko) - - 1-N(kn—1) - co-n(co) - - cr—2 - N(cr—2)), k)
= AMp*(m,co-nlco) -+ cr2- 77(% 2)),0h)
= Pey™M ) (P (1) (m, col* (11(6))), b
= (Pri(s3))(0)

We obtain the desired result.

3.6.11 . Proof of Lemma 3.34

Proof. This proof is quite similar to the proof of Lemma 3.29.
The equality straightforwardly holds if ¢ € Qs. Aasume now that ¢ € Qns.
We want to apply Lemma 1.7. We let 7€ := TP (sahte and 7€M =

A,SB(ts)
C(Am).q

We denote by SeqAlta C (Qg - Qa)™T the set:

SquItA = {(quaqo) g1 (Q170q1) *dn ‘ qgo = ¢, V1 < 1 < n, q; QA>
VO<i<n-—1, o4 € Ay}

and by SeqAltg C (@ - Qa)* - @B the set:
SeqAltg :={p- (o, o) | p € SeqAlty, o € Ay}

For all 7 € QT, we let SeqAltp(7) := {p € SeqAlts | pg,.08(p) = 7}
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For all 7 € Q* and p € T(w) N SeqAlt,, letting n := |p| € N and kgjy1 1=
col(p2it+1) = col(m;) for all i > 0 such that 2i + 1 < n, we have:
sa(q - p) = A" (minit, col(tl(q - p))), p1e)
= A(p(minit, col(q) - n(col(q)) - k1 - (k1) - - - kn—3 - n(kn-3) - kn-1), pit)
= Pra(A)(PrA (1) (minit, col(q) - by -+ k3 - kn—1), pie)
= Pra(A)(Pri (1) (minit, col(g - 7)), mie)
= Pry"(sa) (¢ )

Similarly, for all p € T(m) N SeqAltg, we have:

se(te)(q - p) =tB © PQaQs(q - p) = ta(T)
Now, for all m € (Qa)* and by definition of the arena C(A,n), we have:
AUy = Y B
7w €T (w)NSeqAlty
Let us show by induction on n € N the property: for all 7 € (Qa)=", we have:
= Y )
7w €T (w)NSeqAlty
This straightforwardly holds for n = 0. Assume now that this holds for some
n € N. Let m € (Qa)""*. We have:
T(m) N SeqAlta :== {p- ((¢- P, 0) - me | p € T(tl(7)) N SeqAlta, o € Aigp), }

Hence, letting p:= 3 o c1(r)nseqalt, IP’S(A’U) ('), we have:

p= > > P (g p)io) - )

PET(tl(m))NSeqAlty oEA (4. ),

S DS LGP P S A ((C RO T R

pET(tl(7))NSeqAltp UEA(Q'PM
C(A,
- Z P (p) - Z salq- p)(0) 'Pq-(p-(?;-p)mo) ()
PET(tl(m))NSeqAltp o€M(g.p),,
= > P (p) - > salg- p)(o)
PET(tl(m))NSeqAltp TEA (G
x > se(te)(g-p- (@ P, 0)(b) - E0(gp), (0, b)) (mie)
beActy"

= ST PEAD(p) - Eoggp, (Pra™(sa) (g - (7)), te(q - () (i)
pET(tl(m))NSeqAltp

= P (tl(m)) 'P(q:.ﬂ(ﬂ) (i) = P ()
Thus the property holds at n 4+ 1. Therefore, it holds for all n € N. Hence, we

can apply Lemma 1.7 to obtain that E°[(f¢)?] = ECAD[((fe)onqs)?]- With
Lemma 3.40, it follows that EC[(fc)?] = ECAD[((f,)ean). O
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Part 11

Concurrent parity games
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Contrary to the previous part in which we studied concurrent games with
arbitrary payoff functions (into [0, 1]), in this part, we focus on the existence
and nature of optimal strategies in finite-state parity games. The situation in
turn-based games is rather simple to describe: in such games, both players have
positional optimal strategies [27, 28]. Recall that these positional strategies
are also subgame optimal since parity objectives are prefix-independent. The
situation in the more general setting of concurrent parity games is much more
heterogeneous, depending on the exact parity objective considered, i.e. on
the number of colors involved. We study different questions regarding the
existence of, and the simplest type of strategies among which we can find,
(subgame and/or e-)optimal strategies. The goal of this part is to both provide
new results and use them to (almost) complete the picture of how concurrent
parity games behave. In particular, we intend to give an overview of how
concurrent parity games behave, mostly by gathering already-existing results
in the literature. However, it may be interesting as a future work to study in
more detail what exact kind of strategies are necessary and sufficient to play
(subgame or almost) optimally. (More specifically, we could go beyond the
infinite-choice class of strategies.)

The results are summarized in Table 3.1. The rows of this table refer to the
objectives considered, whereas the columns of this table (except the rightmost
one) refer to a property on finite-state concurrent games with these objectives.
Specifically, the two leftmost columns 1 and 2 specify which objective is con-
sidered, and what type of local interactions we are considering: Max. refers
to local interactions which are maximizable w.r.t. Player A, Arb. refers to
arbitrary local interactions that are not necessarily maximizable w.r.t. Player
A. Then, the four middle columns (3,4,5,6) refer to some properties on the
corresponding games. Specifically, the 3 Opt. 7 (3) column is a yes-or-no
question about whether there always exist optimal strategies. Furthermore,
the three columns (4, 5, 6) refer to the nature of the “simplest” strategies which
can achieve the requirements of the columns, i.e. being:

4. e-Opt.: e-optimal strategy for all positive £ > 0;

5. Optimal: optimal (recall that such strategies are optimal from every
state), when it is possible;

6. SubG. Opt.: subgame optimal, when it is possible.

As one can see, the cells in these three columns are filled with either positional
— recall, those are strategies that only depend on the current state of the game
— or co-choice, recall Definition 3.22: these are strategies that, in at least some
state of the game, play infinitely many different GF-strategies. Note that, if
we restricted the setting to standard games, this duality positional/oco-choice
would be a direct consequence of Corollary 3.38. This is not the case here since
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we congider general games with arbitrary local interactions. In the following,
we call positive results the cells with (green) “yes” and “positional”. The other
results are called negative.

For k € {c,n}, we call *-results the results with * next to them in Table 3.1.
The novel results that we establish in this part are the ™-results. On the other
hand, the “-results are both new and straightforward consequences of "-results.
All the other results of Table 3.1 are straightforward adaptations of results
previously existing in the literature. Specifically, they either extend results on
standard finite concurrent games to the more general setting of arbitrary finite-
state concurrent games; or strengthen the results in the literature stating that
no finite-memory strategy has a desirable property, by stating that neither has
any finite-choice strategy.

There is one positive already existing result with standard finite game form,
the cell (coBuchi,4), that we did not extend into the more general case of ar-
bitrary local interaction maximizable w.r.t. Player A, either as a positive or as
a negative result. For all other positive results, including those already known
when all local interactions are standard finite, we provide complete proofs that
hold even with arbitrary local interactions. We also exhibit examples witness-
ing negative results (most of these examples are already known). Note that all
negative results are witnessed by games with only one non-trivial local interac-
tion that is standard. This local interaction is finite for most negative results.
However, it is not the case for the three cells (Safety, 4), (co-Biichi, 4) and
(co-Biichi, 6) where, in the non-trivial local interaction, Player A has infinitely
many actions, while Player B has only finitely many. As can be read in the
table, it would not have been possible to witness these results with a standard
finite local interaction. Finally, the rightmost column (7) contains a reference
to the theorem summarizing the results for the corresponding objective. In the
summarizing proof of these theorems at the end of each section, we refer to all
previously known results for the corresponding objective.

This part contains two chapters. In Chapter 4, we focus on the safety and
reachability objectives whereas in Chapter 5 we deal with Biichi, co-Biichi and
parity objectives.
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GF 4 0pt. 7] &-Opt. Optimal SubG. Opt. Thm.
1 2 3 4 5 6 7
Max.
Safety Arb. No oo-choice .5
Reach | M./A. No ¢ 4.12
Buchi | M./A. No oo-choice ¢ 5.5
. | Max. *7 . " [oo-choice
coBuchi Arh. No so-choice oo-choice so-choice 5.13
Parity | M./A. No oo-choice | oo-choice oo-choice 5.15

Table 3.1: A table summarizing the

situation in finite-state concurrent

games with several objectives where the local interactions are maximiz-
able for Player A (rows ‘Max.”) and arbitrary (rows ‘Arb.”). When there
is only one row for an objective, it means that the results are the same
whether we assume that the local interactions are maximizable or not,
written M./A. The results Pos* hold with standard finite local interac-
tions, but do not pertain (a priori) to arbitrary local interactions maxi-
mizable w.r.t. Player A. Finally, "-results are the novel results proved in
this part while the “-results are new and are straightforward consequences
of ™-results.
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4 - Safety and Reachability objectives

In this chapter, we focus on safety and reachability games. In [18], the
authors study the safety and reachability objectives in infinite MDPs, turn-
based and standard concurrent games. In particular, they specify in a more
precise way than what we do in this chapter the exact quantity of memory
necessary and sufficient to play optimally!, almost-optimally, etc. On the
other hand, we focus almost entirely on finite-state games and we study how
the game behaves depending on the type of (non necessarily standard) game
forms occurring in the game, i.e. whether they are maximizable or not.

We first focus on safety objectives. In fact, we first study the well-known
notion of upper semi-continuous payoff functions, which can be seen as a gen-
eralization of safety objectives. More specifically, we characterize such payoff
functions (Proposition 4.1) with subgame optimal strategies and local optimal-
ity in infinite games. We then use this result to give the complete picture of
how arbitrary finite-state concurrent safety games behave (Theorem 4.5).

We then consider reachability objectives in finite-state games. We first
show that, in finite-state reachability games, the Player-A value can be com-
puted with a least fixed point, even with arbitrary game forms (Proposi-
tion 4.7). We then describe a procedure to distinguish from which states
Player A has an optimal strategy, and from which states she does not. This, in
turn, gives that, whenever there is an optimal Player-A strategy in finite-state
reachability games, there is one that is positional (Theorem 4.11). We are
then able to give the complete picture of how arbitrary finite-state concurrent
reachability games behave (Theorem 4.12).

4.1 Safety objectives and upper semi-continuous payoff
functions

4.1.1 . Upper semi-continuous functions

Before considering safety objectives, we start by considering those payoff
functions w.r.t. which Player A has always subgame optimal strategies, when
all local interactions are maximizable w.r.t. to Player A. In turns out that
these payoff functions are exactly the ones for which, in all arbitrary games,
a Player-A strategy is subgame optimal if and only if it is locally optimal.
Therefore, let us consider the necessary and sufficient condition for a Player-
A strategy to be subgame optimal stated in Corollary 3.14 (for v := xg[A]).

'In that article, they consider optimal strategies that may not be optimal from all
states whereas we say that a strategy is optimal if it achieves the value of the game
from every state of the game.
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We are looking for those payoff functions for which the second condition of
Corollary 3.14 always holds. Let us first introduce below the notion of limit of
a sequence of infinite sequence of colors.

Definition 4.1 (Limit of a sequence of infinite sequences of colors). Consider
a non-empty set K, some infinite sequence of colors p € K¥ and (p")nen €
(KN, We say that p is the limit of (p")nen if, for all k € N, there is some
ny € N such that for all n > ny, we have p<p = (p") <.

We can now define formally the notion of payoff function we are interested
in. These functions f are the ones for which the value f(p) of any infinite path
p that is the limit of (p"),en is at least limsup(f(p™))nen. This corresponds to
the known notion of upper semi-continuous payoff functions. See for instance
[61, 65] for examples of use of this notion in game theory. We define it formally
below in Definition 4.2.

Definition 4.2 (Upper semi-continuous payoff functions). Consider a non-
empty set of colors K and a payoff function f : KY — [0,1]. It is upper
semi-continuous if, for all p € K¥ that is the limit of (p")nen € (K)N, we have

limsup(f(p"))nen < f(p).

Remark 4.1. We make two remarks here. First, this notion is incomparable
in strength with upward well-foundedness from Definition 3.5. Furthermore,
we would recover exactly the same functions if upper semi-continuous payoff
functions were defined with liminf instead of limsup?.

In fact, as formally stated below, upper semi-continuous payoff functions
are exactly the payoff functions for which, in all games, subgame optimal strate-
gies are exactly locally optimal strategies. Equivalently, upper semi-continuous
payoff functions are exactly the payoff functions for which Player A always has
subgame optimal strategies in games with maximizable (w.r.t. Player A) games
forms. In fact, both these statements remain true if we only consider MDPs
instead of concurrent games. These equivalences hold only when considering
games without stopping states with positives values. This constitutes a one-to-
two-player lift as the result can be read as follows: if a payoff function behaves
properly in all one-player game, then it also does in all two-player games. See
for instance [66] for another (much stronger) one-to-two-player lift.

?The reason why is, given a sequence (p™)nen € (K¥)N, we could extract a sub-
sequence (p?(™),cn for some increasing ¢ : N — N such that limsup(f(p™))nen =

Lim(f(p#"™))nen = liminf(f(p?"))nen-
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Proposition 4.1. Consider a set of colors K and a payoff function f : KY —
[0,1]. The assertions below are equivalent, assuming that the games and MDPs
we consider are without stopping states with positive value:

a. the function f is upper semi-continuous;

b. in all arbitrary concurrent games (C, f), Player A subgame optimal
strategies coincide with locally optimal strategies;

c. in all arbitrary MDPs (C, f), Player A subgame optimal strategies coin-
cide with locally optimal strategies;

d. in all arbitrary concurrent games (C, f) maximizable w.r.t. to Player A,
Player A has subgame optimal strategies;

e. in all arbitrary MDPs (C, f) maximizable w.r.t. to Player A, Player A
has subgame optimal strategies.

As a side remark, the equivalences b.< c¢. and d.< e. provide a one-to-
two-player lift. That is, one can infer properties on two-player games from
properties on one-player games (i.e. MDPs).

Proof. Let us first show the implication a. = b.. Assume that f is upper
semi-continuous. Consider a concurrent game G = (C, f) without stopping
states of positive value (i.e. all stopping states have value 0) and a Player-
A strategy sa € Si. By Proposition 3.10, if sa is subgame optimal, then
it is also locally optimal. Assume now that sp is locally optimal. We want
to apply Theorem 3.12 to show that sp is subgame optimal. Consider an
infinite path p € Q“. If it ever reaches a stopping state ¢, then we have
limsup, ;ja(p) = val(q) = fc(p). Hence, we do have fe(p) > limsup,aj(p)-
Assume now that p does not visit any stopping state. Let u := limsup, j1a)(p)-
If w = 0, then straightforwardly fc(p) > limsup, oj(p). Assume now that
u > 0. For all n € N, we let 4, € N be such that xg[A](p<i,) > u— % (which
exists by definition limsup). Let 7" := col®(p<;, ) € KT be the corresponding
finite sequence of colors. Since there is no stopping states of positive values
and xg[Al(p<i,) > u— L, it follows that there is some 0" € K* with 0" €
Cyl(7™) and f(0™) > u — % Consider then the sequence (0"),en € (K“)N of
infinite sequences of colors. By construction, we have limsup(f(6™))nen > u
and col“(p) is equal to the limit of (6,)neny € (K¥)N. Hence, since f is upper
semi-continuous, it follows that fe(p) = f o col”(p) > u. Since this holds for
all positive u € (0,1], it follows that limsup, a(p) < fe(p), which holds for
all p € Q¥. Hence, the first and the second conditions of Theorem 3.12 are
ensured. Therefore, the Player-A strategy sa is subgame optimal.

Clearly, we then have b. = c¢. We also have b. = d. Indeed, consider any
game(C, f) maximizable w.r.t. Player A without stopping states of positive
value. Then, Player A has a locally optimal strategy: it amounts to play opti-
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Figure 4.1: An MDP where Player A plays alone, with r; := 1 — p;.

mally at each local interaction, which is possible since they are all maximizable
w.r.t. Player A. Then, by assumption b., the Player-A locally optimal strategy
is subgame optimal. Furthermore, we also have straightforwardly that d. = e..

Let us now show that ¢. = a. and e. = a., the construction is the same
for both points. Assume that f is not upper semi-continuous. Hence, there
is some p € K¥ and (p")nen € (K“)N such that p is the limit of (p"),en and
limsup(f(p™)nert > f(p)- Let & := limsup(f(p™)neri— f(p) > 0. For all n € N,
we let i, € N be such that p2, = p<, and f(p'*) > f(p)+6/2. We then define
an MDP T' = (C, f) on the set of colors K where Player A plays alone. In
that MDP, there is an infinite chain of states (gy)nen such that, for all n € N,
we have col(gy) := pp. Furthermore, for all n € N, at state ¢,, Player A has
two available actions, one, called aS°", that makes the game continue on the
chain to g,41 with probability 1 and another one, called a3 P, that visits with
probability p,, € [0,1] (not yet defined) the infinite path pi{‘_H -pj{iﬂ e K¥
with probability p, and that goes to a sink state of value 0 with probability
1—p,,. The probability p, € [0,1] is chosen such that p,- f(pi*) = f(p)+3— .
An illustration of this game is given in Figure 4.1. Then, the value of all states
qn for n € N is equal to f(p) + /2. Indeed, for all N € N, from any state
¢n € Q, Player A can, with a deterministic strategy, play the actions af>"
for kK < N — 1 steps until reaching the state gn from which she can play the

é 1

action aic,o" to ensure (at least) the value f(p)+ § — 5. However, to be locally

optimal, a Player-A strategy has to play, for all n € N, deterministically the

cont
n

is equal to f(p) < f(p)+3d/2. That is, no locally optimal strategy is (subgame)
optimal. Hence, both c. and e. do not hold. ]

actions a after the sequence qq - - - ¢, However, the value of such a strategy

4.1.2 . Safety objectives

Before considering the safety objective, we would like to mention that, in
all the games we will consider later on in this chapter (i.e. the subsequent
safety and reachability games), we will not consider any stopping state. The
reagon for that is twofold: first, since we want to study specific objectives, we
do not want stopping states to interfere with how an objectives behaves — for
instance, in a safety game, once the target is reached, the game should have
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value 0, which may not happen if a stopping state is reached subsequently.
Second, stopping states can be straightforwardly implemented with Nature
states and two self-looping states, one of value 1 and the other of value 0, so
this is without loss of generality.

Let us now come back to the safety objective. In fact, the associated
payoff function is upper semi-continuous. This is a general property ensured
by win/lose payoff functions whose winning set is closed. This is stated in the
lemma below.

Lemma 4.2. Consider a non-empty set of colors K and win/lose payoff func-
tion f : K¥ — {0,1}. It is upper semi-continuous if and only if the set f~[{1}]
is closed.

Proof. We let Wy := f~[{1}] and Wy := f~1[{0}]. Now, recall that the set
W1y is closed if and only if its complement Wy is open, that is the set W can
be written as an arbitrary union of cylinders.

Let us assume that Wy is open. That is, there is some set A C K* such
that Wy = UreaCyl(m). Consider an infinite path p € K“ and a sequence
(P™)nen € (K)N such that p is the limit of (p")nen. If f(p) = 1, then we have
limsup(f(p™))nen < f(p). Assume now that f(p) = 0, that is p € Wy. Then,
there is some 7w € A such that p € Cyl(w). Hence, there is some k& € N such
that, for all n > k, we have p"™ € Cyl(mw) C Wy. Therefore, limsup(f(p™))nen =
0 < f(p). Therefore, f is upper semi-continuous.

Assume now that f is upper semi-continuous. We let A := {mr € K* |
Cyl(m) € Wy}, We claim that UrcaCyl(m) = Wy. By definition, we have
UreaCyl(m) € Wy. Consider now some p € Wy. Assume towards a contradic-
tion that, for all n € N, the finite path p<,, ¢ A. Then, for all n € N, there is
an infinite path 8™ € Cyl(p<y,) such that " ¢ Wy, that is such that f(6") = 1.
Then, the infinite path p is the limit of the sequence (6"),en € (K¥)N and
limsup(f(6™))nen = 1. Hence, since f is upper semi-continuous, f(p) = 1 and
p ¢ Wy. Hence the contradiction. In fact, there is some n € N such that
p<n € A. That is, p € UreaCyl(7). In fact, Wy = UrcaCyl(n), and it is
therefore an open set. O

We therefore deduce as a corollary of what is done in the previous sub-
section that in all safety games (without stopping states) where each local
interactions are maximizable w.r.t. Player A, Player A has a subgame optimal
strategy. Moreover, this strategy can be chosen positional. This is stated in
the corollary below.

Corollary 4.3. Consider an arbitrary concurrent safety game G — whose set
of states need not be finite — without stopping states. Let T := col " '[{1}] C Q
be the target that Player A wants to avoid. Assume either that all local
interactions outside of T are maximizable w.r.t. Player A, or that there is a
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Player A has an optimal strategy. Then, Player A has a positional strategy
that is subgame optimal in G.

Proof. Since the reachability winning set is an open set — as it can be written
as the union of the cylinders of paths that reach the target — the safety
winning set is a closed set. Therefore, by Lemma 4.2 and Proposition 4.1,
all Player-A locally optimal strategies are subgame optimal. Consider the
valuation xg[A] : QT — [0,1]. Let us argue that there is a positional Player-
A strategy sa that is locally optimal, i.e. such that, for all p € QT, we have
xg[Al(pr) < val[(F(pi), xg[A]”)](sa(pre))- First, note that for all p € Q*-T-Q",
we have xg[A]” : @ — {0}. In addition, for all p € (Q \ T)", we have
Xg[A]” = xg[A]. Second, by Proposition 3.9, we have, for all ¢ € Q, xg[A](¢) =
val[(F(q), xg[A]D)][A]. If we assume that all local interactions outside T' are
maximizable w.r.t. Player A, then such a Player-A strategy sa does exist
(note that it can play arbitrarily at states in T, of value 0). Assume now
that Player A has an optimal strategy sj in G. Then, by Lemma 3.10, we
have, for all q € Q. xg[Al(q) = xglspl(@) < val[(F(g), xG[AI"](h(g))- In fact,
we have xg[A](q) < val[(F(q), xg[A])](sh(q)). Therefore, a Player-A positional
strategy sa such that, for all ¢ € Q, we have sa(q) := si(¢) ensures that, for
all ¢ € Q, we have xg[A](q) < val[(F(¢), xg[A])](sa(q)). Hence, in any case,
there is a Player-A positional strategy that is locally optimal, and therefore
also subgame optimal. O

Note that, as soon as we drop the assumption that all local interactions
are maximizable w.r.t. Player A, then the above corollary fails. Indeed, there
is an MDP where Player A plays alone and where playing e-optimally requires
infinite choice. An example is provided in Figure 4.2, formally defined in Def-
inition 4.3 below, and argued in Proposition 4.4. Note that a similar example
is given in [18, Prop. 28].

Definition 4.3. The game of Figure 4.2 is in fact an MDP I" where Player
A plays alone with two states: Q := {qo, L}. The state L is a self-looping
sink and, at state qu, Player A may play any integer n € N which leads to a
distribution dy, == {qo — 1 — %;J_ — %} € D(Q). Player A has a safety
objective Safe with K = {0, 1} and col(qp) := 0 and col(L) := 1, i.e. Player A

wants to avoid the state L.

Proposition 4.4. In the safety game G of Definition 4.2, the state qy has
value 1 but Player A has no optimal strategy from qg and any finite-choice
strategy has value 0 from qq.

Proof. First, consider any positional Player-A strategy sa. Consider some n €
N such that sa(qo)(n) > 0. Then, at each step, there is probability at least
SA(%O# to reach the target 1, otherwise the game loops back on gg. Hence,

almost-surely, the state 1 is reached. In fact, all Player-A positional strategies
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Figure 4.2: An MDP where Player A plays alone and wants to avoid the
state L, with p; := 2i she does not have an optimal stategy, and playing
almost-optimally requires infinite choice.

have value 0. Therefore, since this MDP is B-finite (recall, finitely many states,
and Player B has finitely many actions), by Corollary 3.38, all finite-choice
strategies have value 0 from qq.

Consider some positive € > 0. Let us build a Player-A strategy s3 of value
at least 1 —e. Let N € N be such that 2%\, < e. For all n € N, we have
sa(qy) == {N +n+— 1}. That way, denoting sg the only Player-B strategy in
I', we have:

1 1
SA S * _ SA,S _
PR ab - 1) = > PR 1) < 3 sy = gw <€
neN neN

Therefore, the value of this Player-A strategy sa is at least 1 — . O

Theorem 4.5. In arbitrary finite-state concurrent safety games without stop-
ping states:

e if the game is maximizable w.r.t. Player A, there is always a subgame
optimal strategy that can be found among positional strategies;

e if not, there may not be optimal strategies and playing almost-optimally
may require infinite choice;

e in any case if there is an optimal strategy, there is a subgame optimal
positional one.

These results are summarized in Table 4.1.
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GF | 40pt. 7| e-Opt. Optimal | SubG. Opt.
Safet Max.
Y | Arb. No oo-choice

Table 4.1: Summary of how concurrent safety games behave.

Proof. e This result is already known in the context of standard finite
game local interactions, see [32, Theorem 1|. Corollary 4.3 above gener-
alizes this result to arbitrary local interactions that are still maximizable
w.r.t. Player A.

e [t is already known that, in this context, infinite memory may be required
for Player A, see [67, Theorem 3]. Note that, by using Corollary 3.38
on the examples provided to prove [67, Theorem 3|, we would obtain
that infinite-choice strategies is required to be almost-optimal. We also
provide an example in Definition 4.3, argued in Proposition 4.4, where
infinite-choice is required.

e This is given by Corollary 4.3.

4.2 Reachability games

In this section, we focus on reachability games — without stopping states,
as for safety games — where the local interactions considered are arbitrary.
Recall that, in such games, the goal of Player A is to reach a target, whereas
Player B wants to avoid it. In all this section, given a reachability game G, we
will denote by T := col ![{1}] C @ the set of states that Player A wants to
reach and we let Wy := (col“)~!(Reach) C Q“ be the corresponding winning
set for Player A. Without loss of generality, we assume that all states in the
target T are self-looping sinks. It does not change the game since, once the
target is reached, Player A has won regardless of what happens afterwards —
since there are no stopping states. Therefore, the game can be seen as PI since
the reachability objective W can be seen as a Biichi objective (where Player
A wants to see infinitely often the target T') without changing the game since
reaching once the target is equivalent to reaching it infinitely often. Hence, we
may use Corollary 3.14 and Corollary 3.16 from the previous chapter, which
only apply to PI games.

This section is an adaptation of the first part of [39] where, instead of
considering only standard game forms with finitely many actions, we consider
games with arbitrary interactions.
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4.2.1 . Computing the Player-A value of reachability games

It is known for a long time that the values in reachability games can be com-
puted with a least fixed point operator [10, (8], including with non-standard
game forms in [10]. However, even in [10], the game forms considered were
assumed valuable. Therefore, the reachability games considered had a value.
We do not make such an assumption on local interactions in this subsection,
and we show that it still holds that the Player-A value of the game can be
computed with a least fixed point regardless of the local interactions involved.

First, we define the operator on which we will consider a least fixed point.

Definition 4.4. Consider an arbitrary finite-state concurrent reachability
game G without stopping states. We let Valp := {v:Q — [0,1] | v[T] = {1}}
be the set of valuations mapping each state in the target to 1. We let Ag :
Valp — Valp be such that, for all v € Valp and q € @), we have:

1 ifgeT

Ag(v)(q) = {Va|[<F(Q)aU>HA} otherwise

Hence, we do have Ag(v) € Valr.
This operator ensures several useful properties that we describe below.

Lemma 4.6. For all arbitrary finite-state concurrent reachability games G
without stopping states, the operator Ag ensures the following:

e it is non-decreasing, i.e. for all v,v' € Valp such that v < v’, we have
Ag(v) < Ag(v');

e it is 1-Lipschitz, i.e. for all v,v" € Valp, we have ||Ag(v) — Ag(v)]|co <

[0 = v'[|oo;

o for all n € N and v € Valp, we denote by A(gn)(v) € Valr the vector
obtained from v after n applications of the operator Ag. Denoting by
vo € Valp the valuation such that vo[@ \ T| := 0, we have that the
sequence (A(gn) (v0))nen has a limit in Valp that is equal to the least
fixed point of the operator Ag.

Proof. The two first properties come from Lemma 1.19. The third point comes
from Kleene least fixed point theorem. O

Definition 4.5 (Notation least fixed point Ag). For all arbitrary finite-state
reachability games G without stopping states, we denote by mg : Q — [0, 1] the
least fixed point of the operator Ag (whose existence is ensured by Lemma 4.6).

In fact, in all reachability games, this least fixed point is equal to the
Player-A value of the game.
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Proposition 4.7. For all arbitrary finite-state reachability games G without
stopping states, we have mg = xg[A] : Q — [0, 1].

Proof. Let n € N. Taking the notation of Lemma 4.6, let us show that xg[A] >
A(gn) (vo). Let € > 0. Welet v: Q1 — [0,1] be such that, for all p € QT, letting

=lpl -1
1 if 3 <k, peTl
v(p) == max(A(gn_k) (vo)(p) — 5%,0)  otherwise, if k <n
0=wvo(p) otherwise

Let us define a Player-A strategy sa € Sg dominating this valuation. Let p €
QT and k := |p|-1. If v(p) = 0, then sa(p) € XR" is defined arbitrarily. Assume
now that v(p) > 0. If & > n, sa(p) is also defined arbitrarily. Indeed, since
v(p) > 0, this implies v(p) = 1 and therefore v(p - q) = 1 for all ¢ € Q. Hence,
1 =val[(F(pi),v”)][sa(p)] > v(p) = 1. Assume now that it is not the case, that
is k < n and v(p) > 0. This means that v(p) = Aglik) (vo)(p) — 5. Further-
more, Aghk*l)(vo) srrr < vP (with A(O)( 0) = vo). Hence, by Lemma 1.19,
we have AJ ™ (v9)(p) = val[(F(pw), AG ™ (o))][A] < val[(F(pr), v)][A] +
sigr- That is, v(p) < val[(F(pi), v?)][A } — gi57- We let sa(p) € X" be such
that val[(F(pi), v?)][sa(p)] > val[(F(pit), v”)][A] — 557, which therefore ensures
that v(p) < val[(F(pr),v”)|[sa(p)]. This concludes the definition of sp which
indeed dominates the valuation v.

Let us show that this strategy guarantees the valuation v by applying
Theorem 3.12. The first condition of this theorem is satisfied. Furthermore,
for all p € @Q¥, we have limsup,(p) € {0,1} with limsup,(p) = 1 if and only
if p € Wy, Therefore, the second condition of this theorem is also satisfied.
Hence, the strategy sa guarantees the valuation v with, for all ¢ € @, v(q) >
Agl) (v0)(q) —e. As this holds for all € > 0, it follows that xg[A] > A(gn)(vo). As
this holds for all n € N and mg = nl;rgo A(gn)(vo), it follows that xg[A] > mg.

Let us now show that yg[A] < mg. Fix a Player-A strategy sa € Sg. Con-
sider some € > 0. For all i € N, we let w; : Q@ — [0, 1] be such that, we have:
w; := min(mg + 5;,1) and we let v : Q* — [0,1] be such that, for all p € Q,
we have v(p) := 1 is p has visited T and v(p) := wy,—1(p1) € [0,1] other-
wise. Let us define a Player-B strategy sg € S(é. For all p € QT: if v(p) =1,
then sg(p) is defined arbitrarily and therefore out[(F(pi),v)](sa(p),sg(p)) <
v(p). Otherwise, we have v(p) = mg(pi) + p=r-
v? < mg + 5. Furthermore, we have mg(pir) = val[(F(pr), mg)|[A]. Hence,
val[(F(pre), mg)](sa(p) < mg(pr). We deduce that val[(F(pr), v")](sa(p)) <
vall{F (). ma) (sa()) + 5 < ma () + 55 < v(p). We set sa(p) € Sg such
that out[(F(pi), v”)](sa(p),se(p)) < v(p). This concludes the definition of the
strategy sg. From its definition, we can deduce that in the stochastic tree

In addition, we have
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T2 induced by sa and sg, the valuation v is non-increasing (recall Defini-
tion 2.3). Therefore, by Proposition 2.9 with a non-increasing valuation, for all
q € Q, we have mg(q)+¢ > v(q) > IEZ‘:;B[Iimsupv]_ Furthermore, for all infinite
paths p € Q“, we have if p € Wy, then limsup,(p) = 1. Hence, limsup, > Ly,..
Therefore, mg(q) + ¢ > PZ*[Wr] > xg(sa)lg] > xg(A)[g]. Since this holds
for all positive € > 0, it follows that mg > xg(A). Hence, mg = xg(A). O

We conclude this subsection by stating a very useful proposition that we
will apply in the next subsection to the valuation mg = xg[A]. The proof of
this proposition is not long, but is very technical, and hence is postponed to
the appendix.

Proposition 4.8 (Proof 4.4.1). Let n > 1. Consider a function g : [0,1]" —
[0, 1]™ that is non-decreasing and 1-Lipschitz. Assume that its least fixed point
m € [0, 1] is such that, for all i € [1,n], we have m(i) > 0. Then, for all € > 0,
there exists a valuation v € [0,1]" such that v < m, ||m — v||sc < € and for all

i€ [1,n]: g(v)(@) > v(i).

4.2.2 . Computing the set of maximizable states

Recall that in the snow-ball reachability (standard) game of Definition 3.6,
Player A does not have an optimal strategy, even if the game has finitely
many states. The aim of this subsection and the next is, given a finite-state
concurrent reachability game to determine exactly from which states Player
A has an optimal strategy. This, in turn, will give that whenever she has an
optimal strategy, she has one that is positional. This extends Everett [10]
(the existence of positional e-optimal strategies). Note that in [10], arbitrary
game forms are considered (not only standard ones), though they are assumed
valuable.

In this subsection, we present the definitions and arguments in standard
finite concurrent games — in particular, all local interactions are standard
and finite. We also illustrate these definitions on examples. This subsection
directly comes from [39]. In the Appendix 4.4.2, we give the formal definitions
well suited for arbitrary game forms along with the formal proofs of correctness.
Note that, although the underlying ideas are not too complicated, the formal
proofs are quite technical. This is mainly due to the fact that we need to deal
with infinite-memory strategies.

For the remainder of this subsection and the next, we consider an arbitrary
finite-state concurrent reachability game G, without stopping states. We still
denote by T := col"1[{1}] C @ the set of states that Player A wants to reach,
and by Wr := (col”)~!(Reach) C Q¥ the set of infinite sequences of states
reaching the set T'. Let us first introduce some terminology that is relevant
regardless of the game forms considered.

Definition 4.6 (Maximizable and sub-maximizable states). A state ¢ € Q

197



from which Player A has (resp. does not have) an optimal strategy is called
maximizable (resp. sub-maximizable). The set of such states is denoted OptQp
(resp. SubOptQy).

Remark 4.2. One has to careful here: we have already used the “maximiz-
able” terminology in this dissertation. Recall, this refers to the game forms
where a player has optimal GF-strategies in all the games in normal form in-
duced from that game form. The terminology we have defined above refers
to states in a reachability game. In particular, the local interactions of max-
imizable states may not be maximizable for any player. The two notions are
completely unrelated.

For the remainder of this subsection, we assume that the game G is stan-
dard (and that all standard local interactions in G are finite). We want to
build an optimal (and positional) strategy for Player A when possible. Recall
Corollary 3.16: to be optimal, a Player-A positional strategy sa has to play
optimally at each local interaction F(q) (for ¢ € Q) with respect to the valua-
tion xg[A] : @ — [0, 1]. However, it is not sufficient: in the snow-ball game of
Figure 3.1, when Player A plays optimally in F(gy) w.r.t. the valuation xg[A]
(that is, plays the top row with probability 1), Player B can enforce the game
never to leave the state gy ¢ T. Hence, locally, we want to have strategies that
not only play locally optimally but also, regardless of the actions of Player B,
have a non-zero probability to get closer to the target T'. Such strategies will
be called progressive strategies. To properly define this notion on standard
game forms, we first introduce the notion of optimal Player-B actions.

Definition 4.7 (Optimal Player-B actions). Let ¢ € Q be a state of the
game. Consider the game in normal form (F(q),mg). For all GF-strategies
opn € Ya(F(q)), we define the set RespEA(q) C Act} of optimal actions of
Player B w.r.t. the GF-strategy oa by

Respg, (4) := {b € Act} | out[(F(q), mg)](oa, b) = val[(F(q), mg)](oa)}

In Figure 4.3, the set RespEA(q) of optimal Player-B actions w.r.t. the
strategy o are represented in bold purple: the expected values of these actions
is the value of the GF-strategy: 1/2.

We can now define the set of progressive strategies on standard finite game
forms, see Page 207 for a definition on arbitrary game forms.

Definition 4.8 (Progressive strategies in standard finite game forms). Con-
sider a state ¢ € ) and a set of good states Gd C () that Player A wants
to reach. We let Gdp C D(Q) be the set of distributions over states with a
non-zero probability to reach the set Gd: Gdp := {d € D(Q) | Sp(d)NGd # 0}.
The set of progressive strategies Prog,(Gd) at state ¢ w.r.t. Gd is defined by

Prog,(Gd) := {oa € Opta({F(q), mg)) | Vb € RespEA(q),Ha € Sp(oa), dq(a,b) € Gdp}
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In Figure 4.3, the distributions over states in Gdp are arbitrarily chosen
for the example and circled in green. The depicted Player-A GF-strategy is
progressive as, for all bold purple actions, there is a green-circled outcome in
the support of the strategy (the circled 3/4).

Progressive strategies are not enough. In reachability games in general,
some states may be sub-maximizable. In that case, playing optimally implies
avoiding these states. Given a set Bd C @ of states to avoid, an optimal GF-
strategy that has a non-zero probability to reach that set of states Bd with
an optimal Player-B action is called risky. We give and illustrate below the
definition of risky strategies in standard finite game forms, see Page 208 for a
definition on arbitrary game forms.

Definition 4.9 (Risky strategy in standard finite game forms). Let g € Q
be a state of the game and Bd C @) be a set of states that Player A wants to
avoid. The set of distributions over states Bdp C D(Q) is defined similarly to
Gdp in Definition 4.8: Bdp := {d € D(Q) | Sp(d) N Bd # (0}. Then, the set of
risky strategies Risk,(Bd) at state ¢ w.r.t. Bd is defined by

Risky(Bd) := {oa € Opta({F(q),mg)) | 3b € Act}, Ja € Sp(oa), dq(a,b) € Bdp}

In Figure 4.3, the set of distributions over states Bdp are also arbitrarily
chosen for the example and circled in red. The GF-strategy oa is not risky
since no red-squared outcome appears in the intersection of the support of oa
and the purple actions in RespE’A(q).

Overall, we want for local strategies to be efficient, that is both progressive
and not risky.

Definition 4.10 (Efficient strategies in arbitrary game forms). Let ¢ € Q
be a state of the game and Gd,Bd C @ be sets of states. The set of efficient
strategies Eff,(Gd, Bd) at state ¢ w.r.t. Gd and Bd is defined by Eff,(Gd, Bd) :=
Prog,(Gd) \ Risk,(Bd).

In Figure 4.3, the GF-strategy oa is efficient as it is both progressive and
not risky.

We can now compute inductively the set of maximizable and sub-maximizable
states. First, given a set of sub-maximizable states Bd, we define iteratively
below a set of secure states w.r.t. Bd, they are the states with a non-zero prob-
ability to get closer to the target T while avoiding the set Bd. The construction
is illustrated in Figure 4.4.

Definition 4.11 (Secure states). Consider a set of states Bd C Q. We
set Seco(Bd) := T and, for all i > 0, Sec;+1(Bd) := Sec;(Bd) U {qg € Q \
Bd | Eff,(Sec;(Bd),Bd) # 0}. The set Sec(Bd) of states secure w.r.t. Bd is:
Sec(Bd) := U,enSec, (Bd) U (mg)~1[0].

Note that, as there are finitely many states, this procedure terminates in
at most n = |Q| steps. Furthermore, the states of value 0 are added since
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. . Figure 4.4: The construction of
F%gure 4.3: A game in normal form  Definition 4.11 of the set of states
with an optimal GF-strategy de- Sec(Bd): it is the reunion of the

picted in brown on the left. Its plye and green vertical stripe ar-
valueis 1/2=1/2-3/441/2-1/4. ags.

any state of value 0 is maximizable. The benefit of this construction lies in
the lemma below: if all states in Bd are sub-maximizable, then all states in
Q@ \ Sec(Bd) also are.

Lemma 4.9 (Proof Page 209). Assume that a set of states Bd C @ is such
that Bd C SubOptQ,. Then, the set of states @ \ Sec(Bd) is such that Q \
Sec(Bd) C SubOptQp (these correspond to the red horizontal stripe areas in
Figure 4.4).

Proof sketch. For an arbitrary Player A strategy sa € Sf,i to be optimal, it
roughly needs, on all relevant paths, to be optimal. More precisely, on any
finite path @ € Q7 with a non-zero probability to occur if Player B plays
optimal actions (recall Definition 4.7) against the strategy sp — the path
7 € Q7 is called a relevant path — the strategy sa needs to play an optimal
GF-strategy in the local interaction F(m;) and the residual strategy SX(W) has
to be optimal from 7 in the reachability game G. Therefore, on all relevant
paths, the strategy sa has to play optimal GF-strategies that are not risky.
However, in any local interaction of a state ¢ € @ \ Sec(Bd), there is no
efficient strategies available to Player A. Therefore, if the game starts from a
state ¢ € @ \ Sec(Bd) an optimal strategy sa for Player A (which therefore is
locally optimal but not progressive) would allow Player B to ensure staying in
the set @\ Sec(Bd) while playing optimal actions. In that case, the game never
leaves the set @ \ Sec(Bd), which induces a value of 0, whereas xg[A](¢) > 0
since ¢ ¢ Sec(Bd). Thus, there is no optimal strategy for Player A from a state
in @\ Sec(Bd). O

We can now define inductively the set of bad states (which, in turn, will
correspond to the set of sub-maximizable states).
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Bad = @ \ Sec(Bad)

Figure 4.5: An illustration of the proof of Lemma 4.10 on the MDP
induced by the strategy sa. Labels vy, ..., vs is the value of the corre-
sponding states given by the valuation v.

Definition 4.12 (Set of sub-maximizable states). Let Badg := () and, for all
i > 0, Bad;+1 := Q \ Sec(Bad;). Then, the set Bad of bad states is equal to
Bad := UpenBad, for n = |Q)|.

Note that, as in the case of the set of secure states, since the game G is
finite, this procedure ends in at most n = |Q| steps.

Lemma 4.9 above ensures that the set of states Bad is included in SubOptQx.
In addition, we have that there exists a Player A positional strategy optimal
from all states ¢ in its complement Sec(Bad) = @\ Bad, as stated in the lemma
below.

Lemma 4.10 (Proof Page 215). For all ¢ > 0, there is a positional strategy
sa € SCA such that:

e for all ¢ € Sec(Bad), we have xg[sa](q) = xg[A](q);
e for all ¢ € Bad, we have xg[sa)(q) > xg[A](q) — ¢.

In particular, it follows that Sec(Bad) C OptQ,.

Proof sketch. To prove this lemma, we define a Player-A positional strategy
sa € Sg, a valuation v € [0,1]9 of the states, we prove that the strat-
egy sa dominates that valuation and we prove that the only ECs compat-
ible with sp that are not the target have value 0. (Recall that all states
in the target T are assumed self-looping sinks.) This will show that the
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strategy sa guarantees the valuation v by applying Corollary 3.16. Recall
that xg[A] = mg by Proposition 4.7. As we want the strategy sa to be
optimal from all secure states, we consider a partial valuation v such that
Ulsec(Bad) = Mlsec(Bad) (We will define it later on Bad). Then, on all secure
states ¢ € Sec;(Bad) \ Sec;_1(Bad), we set sa(q) to be an efficient strategy
w.r.t. Sec;_1(Bad) and Bad, i.e. sa(q) € Effy(Sec;—1(Bad), Bad). In particular,
the GF-strategy sa(q) is optimal in the game form F(gq) w.r.t. the valuation
mg. However, we know that no strategy can be optimal from states in Bad.
Hence, we consider a valuation v that is e-close to the valuation mg on states
in Bad for a well-chosen £ > 0. This ¢ is chosen such that, for all ¢ € Sec(Bad),
the value of the GF-strategy sa(q) € £3 in the game in normal form (F(q),v)
is at least v(q)3. We can now define the valuation v and the strategy sa on
Bad such that ||[v — mgl||, < € and, for all ¢ € Bad, the value of sa(q) in F(q)
w.r.t. v is greater than v(q): val[(F(q),v)](sa(q)) > v(g). Note that this is
where Proposition 4.8 comes into play. The valuation v and the strategy sa
are now completely defined on ). By definition, the strategy sa dominates the
valuation v.

The MDP induced by the strategy sa is schematically depicted in Fig-
ure 4.5. The different split arrows appearing in the figure correspond to the
actions (or columns in the local interactions) available to Player B. Black +-
labeled-split arrows correspond to the actions of Player B that increase the
value of v, i.e. in a state ¢, such that the expected value w.r.t. to the prob-
abilities chosen by the strategy sa — of the values of the successor states of ¢
given by v is greater than v(g). For instance, we have vo < p-vq + (1 —p) - 0,
where the probability p € [0, 1] is set by the strategy sa. On the other hand,
purple =-labeled-split arrows correspond to the actions whose values are equal
to the value of the state. For instance vy = (1 —p') -0+ p’ - 1. We can see
that the only split arrows exiting states in Bad (the red horizontal stripe area)
are black (since val[(F(q),v)](sa(q)) > v(q) for all ¢ € Bad). However, from
a secure state ¢ € Sec(Bad) (the green and blue vertical stripe areas) there
are also purple split arrows. Note that, in these secure states ¢ € Sec(Bad),
purple split arrows correspond to the optimal actions Resp?A (@) (q) at the local
interaction F(q). Furthermore, these split arrows cannot exit the set of secure
states Sec(Bad) since the local strategy sa(q) is not risky.

We can then prove that the strategy sa guarantees the valuation v by
applying Corollary 3.16: since sa locally dominates the valuation v, it remains
to show that all the ECs different that are not in the target T have only states
of value 0. In the figure, this corresponds to having ECs only in the blue upper
circle and dark green bottom right inner circle areas. In fact, Corollary 3.15
gives that any state ¢ in an EC ensures val[(F(q),v)](sa(¢)) = v(g), which

3Specifically, € has to be chosen smaller than the smallest difference between the
values of optimal actions in Respe, (¢ (@) and non-optimal action.
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3 0pt. 7| e-Opt. Optimal | SubG. Opt.
Reach No

Table 4.2: The summary of the situation in finite-state arbitrary concur-
rent, reachability games.

implies that no state in Bad can be in an EC. This can be seen in the figure
between the states of value v1 and wve: because of the black arrow from vy to
vg, we necessarily have v; < v9. Then, vy cannot loop (with probability one)
to vy since this would imply vo < v1. As all the split arrows are black for states
in Bad, no EC can occur in this region. Furthermore, the optimal actions in
the secure states always have a non-zero probability to get closer to the target
T. In the figure, this corresponds to the fact that there is always one tip of a
purple split arrow that goes down in the (Sec;(Bad));cn hierarchy (since the
strategy sa(q) is progressive): in the example, from v3 to v4 and from vy to
the target T'. Therefore, the only loop (with probability one) that can occur
in the set (Sec;(Bad));en is at the target 7' (recall that all states in the target
T are assumed self-looping). We conclude by applying Corollary 3.16. O

Overall, we obtain the theorem below summarizing the results proved in
this section. Note that we state it with arbitrary local interactions since it is
what will be proved in Appendix 4.4.2, however we only argued the standard
case in this subsection.

Theorem 4.11. In an arbitrary finite-state concurrent reachability game G
without stopping states, we have Bad = SubOptQ, and Sec(Bad) = OptQa.
Furthermore, for all € > 0, there is a Player-A positional strategy sa optimal
from all states in OptQp and e-optimal from all states in SubOptQa.

Proof. Initially, Badg = () C SubOptQ,. Then, by Lemma 4.9, for all ¢ > 0,
we have Bad; 11 = @Q \ Sec(Bad;) C SubOptQ,. In particular, Bad = Bad,, C
SubOptQp. Furthermore, by Lemma 4.10, there exists a Player-A optimal
strategy from all states in Sec(Bad) = @ \ Bad. Hence, Sec(Bad) C OptQ,.
As we have Q = Bad W Sec(Bad) = OptQp W SubOptQ,, it follows that:
Bad = SubOptQp and Sec(Bad) = OptQ,. Then the result is straightforwardly
deduced from Lemma 4.10. O]

We summarize the results in reachability games in the theorem below.

Theorem 4.12. In arbitrary finite-state concurrent reachability games with-
out stopping states:

e there does not always exist optimal strategies, which can be witnessed
by a standard finite game;

e for all positive € > 0, there is a positional strategy that is e-optimal;
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Figure 4.6: An infinite concurrent reachability game C (the Nature states
are omitted). The probabilities p;, are such that, for all i > 1, the value
of the state s; is x¢(s;) = IIi_,pr = (1/2 + 1/29).

e whenever there exists an optimal strategy, there is one that is positional.
This also holds for subgame optimal strategies.

These results can be seen in Table 4.2.

Proof. e This was originally shown in [10]. We provide an example in the
snow-ball game of Definition 3.6, with its properties detailed in Propo-
sition 3.8.

e This was first shown in [10] with valuable local interactions, non-necessarily
standard ones. Theorem 4.11 above generalizes this results to arbitrary
local interactions.

e The existence of a (subgame) optimal strategy implies that all states are
maximizable. Hence, the same Theorem 4.11 gives that there exists a
positional optimal strategy. Note that it is also subgame optimal since
it is positional.

O

Infinite arenas. We conclude this section and chapter by showing that
Theorem 4.11 fails in concurrent reachability with infinitely many states. This
is already known, see for instance [18, Proposition 21|. Hence, we give here
only informal explanations.

In Figure 4.6, we have depicted an infinite concurrent reachability game
where the state g is maximizable but, from qg, Player A does not have any
positional optimal strategy. Indeed, in state s is plugged the snow-Ball game
of Definition 3.6 — the target is therefore denoted T — whose value is 1 but
Player A does not have an optimal strategy. Then, for all ¢ > 0, the probability
to reach s from s; is equal to v; = (1/2+1/2%) > 1/2. Hence, if Player A plays
an 0 < g;-optimal strategy in s such that (1 —¢&;) - ¢; > 1/2, then the value of
the state s; is greater than 1/2. In that case, in the states ¢;, Player B plays
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the second columns obtaining the value 1/2. This induces that the value in
all states ¢; is 1/2. However, this is only possible if Player A has (infinite)
memory, since the greater the index ¢ considered, the smaller the value of ¢;
needs to be to ensure (1 —¢;)-¢g; > 1/2 while still ensuring ¢; > 0 (since Player
A does not have an optimal strategy from s). In particular, for any Player A
positional strategy sp from ¢g that is 0 < e-optimal in s, the value — w.r.t. the
strategy sa — of all states s; for indexes i such that (1 —¢)-¢; < 1/2 is smaller
than 1/2. In which case, Player B plays the first column in ¢;, thus obtaining
a value smaller than 1/2. It follows that the value of all states (¢n)n>0 — W.r.t.
the strategy sa — is smaller than 1/2. Hence, any Player A positional strategy
is not optimal from ¢q.

4.3 Discussion

The main result of this chapter is Theorem 4.11: in finite-state reachability
games, for all positive € > 0, Player A has a positional strategy that is optimal
from every state where it is possible to be, and e-optimal from all other states.
Such a theorem does not hold in safety games, since playing almost-optimally
may require infinite choice. However, it may be possible to to prove an adap-
tation of this theorem in safety games. We discuss it further in the discussion
of the next chapter, i.e. in Section 5.4.

In fact, with Theorem 4.11, we can actually show that it is decidable if a
given state is maximizable w.r.t. Player A. The reason why is because in a
standard finite reachability game, given a pair of positional strategies, one for
each player, it can be encoded in a decidable theory what is the outcome of
the game (i.e. what is the probability to reach the target) with these strategies
from any given state. This decidable theory is the first order theory of reals*.
We have formally proved this result in [69, Theorem 30|, which is the arXiv
version of [39], on which Section 4.2 of this chapter is based.

4.4 Appendix

4.4.1 . Proof of Proposition 4.8
Proof. First, let us show by induction on k the following property P(k): assume
that there exists a vector w € [0,1]9 such that w < m, w < g(w) and for
all i € [1,n], w(i) < g™ (w)(@). Then, there exists w’ € [0,1]" such that
w < w < mand for all i € [1,n], w'(i) < g(w')(7).
The property P(1) straightforwardly holds. Consider now some k > 1

4This corresponds to the set of well-formed formulas in first order logic using
existential and universal quantifiers along with logical connectors between polynomial
(in)equalities. We will use the first order theory of the reals in Section 9.2, hence we
will give more details in that section.
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and assume that P (k) holds and assume that there is a w € [0, 1]" such that
w < m, w< g(w) and for all i € [1,n], w(i) < g**+Y(w)(i). Note that for all
j € N, we have ¢g/(w) < m. Now, let n— = {i € [1,n] | w(i) = ¢ (i)} and
ny = [1,n] \n= = {i € [1,n] | w(i) < ¢ (w)(i)}. We define:

m— := min g%+ (w) (i) — ¢® (w) (i) = min g%+ (w) (i) — w(i) >0

iEn— 1EN=
and:
my = rreung( ) (w) (i) — w(i) > 0
(2 nT

Let m := min(m—, my) and w’ € [0, 1] be such that:
o W, =wl,_ =g"(w)],_;
o u|

ny = g(k)(w)\nT -m/2 > w|,,

With this choice, we have v’ < g(*) (w) < m. Furthermore, we have:
o w<w
o ¢ (w) —m/2 <w'.

Furthermore, note that:

90 @) = g(g® @) = m/2)| < [|g® ) = (¢® ) = m/2)|| =m/2

Hence, for all i € [1,n], we have: g*+tD)(w) (i) —m/2 < g(¢™® (w) — m/2)(3).
Now, let us show that w' < g(w'). Let i € [1,n]:

o if i € n=: w'(i) = w(i) < g(w)(i) < g(w')(i);
o if i € np: w'(i) = g (w) (i) —m/2 < gV (w)(i) — m/2 < g(g™ (w) —
m/2)(i) < g(w')(i).
We used the fact that ¢(*)(w)(i) < g*+Y(w)(i), which comes from the fact
that w < g(w), and the fat that ¢ is non-decreasing. Finally, let us show that,
for all i € [1,n], we have w'(i) < g% (w')(i). Let i € [1,n].
e ificn: w(i) = wi) < g*F D (w)(i) —m < g*D(w)(@) — m/2 <

(g™ (w) —m/2)(i) < g(w')(i) < g™ (w')(0);
o if i € mp: w'(i) = g™ (w) (i) — m/2 < g™ (w)(i) < g™ (w)(0).

Again, we used the fact that g(w') < ¢ (w'), which comes from the fact that
w' < g(w') and g is non-decreasing. We can then apply P(k) on w’ to exhibit
a vector w” € [0,1]9 such that w < v’ < w” < m, w” < g(w”) and for all
i € [1,n], w"(i) < g(w”)(i). Overall, P(k + 1) holds and therefore P(j) holds
for all j € N.
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Consider some positive e > 0. Let 7 := min;c[y ,y m(4) > 0, ¢ := min(n,e) >
0 and w € [0,1]" be the valuation such that for all i € [1,n], we have
w(i) == m(i) —¢ < m(3). First, let us argue that w < g(w). Assume to-
wards a contradiction that there is some i € [1,n] such that g(w)(i) < w(q).
Then, g(w)(i) < g(m)(7) since w < m. Furthermore:

m(i) = g(m)(@) < g(w)(@) + [m — w|| <w(i) + ¢ = m(i)

Hence the contradiction. In fact, w(i) < g(w)(4) for all i € [1,n]. Thus,
w < g(w). Now, consider the sequence (wy,)nen defined by wy := w and for
all k € N, wyy 1 = g(wy) = g%+ (wp). We have, for all k € N, wy, < wp;.
Hence, this sequence converges. In fact, its limit is equal to m (this directly
derives from Kleene fixed-point theorem).

We can conclude that there exists a k € N such that, for all ¢ € [1,n], we
have w(i) < wy(i) = g™ (w)(i) since w(i) < m(i). We can then apply P(k)
to obtain a valuation v € [0, 1]" such that w < v < m and for all ¢ € [1,n],
g(v)(i) > v(i). Furthermore, since |m — v|| < &, we have ||m —v|| <e. O

4.4.2 . Computing the set of maximizable states: formal proofs with
arbitrary game forms

In this subsection, we give a detailed proof of Theorem 4.11. To prove
this theorem, we will adapt the definitions of the previous subsection to the
case of arbitrary game forms and prove the same intermediate lemmas, that is
Lemmas 4.9 and 4.10.

Progressive strategies

First, we define the notion of progressive Player-A GF-strategy on arbitrary
game forms, as we cannot use Definition 4.8 as is. Indeed, there is no underlying
action set in arbitrary game forms, hence, we cannot consider optimal Player-B
actions. However, to grasp the idea behind the generalization of Definition 4.8,
let us consider a standard game form with infinitely many Player-B actions.
Even in that case, where the notion of optimal Player-B actions is defined, there
are still two issues with Definition 4.8. First, we should not distinguish between
optimal and non-optimal Player-B actions. The reason why is that Player B
could have non-optimal actions, such that the gap between its values and the
value of the Player-A GF-strategy is arbitrarily close to 0 (which cannot happen
if she has only finitely many actions). Second, only requiring that, regardless
Player-B GF-strategy, there is a positive probability to reach a good state in Gd
is not enough as Player B could have strategies to ensure that this probability is
arbitrarily close to 0. This is solved by requiring that the infimum, considered
over all Player-B GF-strategies, of the maximum of both of these quantities
is positive. With such a generalization, we do obtain a definition that carries
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over to arbitrary game forms. Before formally defining it, let us first introduce
two notations we will use throughout this subsection.

Definition 4.13 (Two Notations). Consider a state ¢ € Q). For all Player-A
GF-strategies op € X3, Player-B GF-strategies og € X3 and subsets S C Q of
states, we let:

o vi(op,08) = out[(F(q), mg)](oa,o8) — val[(F(g), mg)](oa) > 0;

o p§(oa,08) := 04(0a,08)[S] = out[(F(q), 1s)|(0a, oB).

Definition 4.14 (Progressive strategies in arbitrary game forms). Consider
a state ¢ € Q. Given a set of good states Gd C @) that Player A wants to reach,
the set of progressive strategies Prog,(Gd) at state ¢ w.r.t. Gd is defined by

Prog,(Gd) := {oa € Opta((F(q),mg)) | inf max(v?(oa,08),pgy(oa,08)) > 0}

inf

O'BEZB

In Page 218, we show that both definitions of progressive GF-strategies (i.e.
Definition 4.8 and Definition 4.14) coincide on standard finite game forms.

Risky strategies

As for progressive strategies, Definition 4.9 of risky strategies in standard game
forms does not carry over to arbitrary game forms. Consider a Player-A GF-
strategies oa € ZZ at a state ¢ € Q). The idea is that, given a Player-B GF-
strategy, for the GF-strategy oa not to be risky, sub-maximizable states may
be seen with positive probability only if the outcome of the game in normal
with both GF-strategies oa, op is greater than the value of the GF-strategy oa.
However, it is not sufficient to allow that, for any Player-B GF-strategy opg,
a sub-maximizable is reachable with positive probability as soon as there is
an increase in value with op, since that increase may be arbitrarily small. In
fact, we need to consider the exact ratio between the gap between the outcome
with both GF-strategies oa,op and the value of the GF-strategy oa and the
probability to reach the set of states Bd. This is formally defined below in
Definition 4.15.

Definition 4.15 (Risky strategies in arbitrary game forms). Consider a state
q € Q and a set of bad states Bd C @ that Player A wants to avoid. For
all Player-A GF-strategies oo € X%, we let PosPrbgq(q,0n) = {og € X |
pgy(oa, o) > 0} be the set of Player-B GF-strategies that induce, with the
GF-strategy oa, a positive probability to reach the set Bd. The set of risky
strategies Risk,(Gd) at state ¢ w.r.t. Bd is defined by

Risky(Bd) := {oa € Opta((F(q), mg)) | inf vion, o8)

=0
og€PosPrbgy(q,0a) p%d (oA, 0B) }

In Page 219, we show that the two definitions of risky GF-strategies (i.e.
Definition 4.9 and Definition 4.15) coincide on standard finite game forms.
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Proof of Lemma 4.9

The formal proof of Lemma 4.9 is quite technical and we will need two inter-
mediary lemmas. Contrary to the standard finite game forms case (recall the
proof of sketch of Lemma 4.9), we cannot define relevant paths as paths that
can occur with positive probability with a Player-B strategy that would play
only optimal actions, since we do not consider this notion with arbitrary game
forms. Instead, we define below relevant successors (and consequently relevant
paths) as successors that Player-B can enforce with positive probability while
ensuring an increase in value arbitrarily small.

Definition 4.16 (Relevant successors). Consider a state ¢ € ) and a Player-
A GF-strategy oa € ZZ. A state ¢ € Q) is a relevant successor of ¢ w.r.t. oa
if there is some positive > 0 such that for all € > 0, there is some og € E‘é
such that:

vi(oa,08) < e and p%q,}(aA,aB) >4

We denote by RelSucc?(oa) C @ the set of all relevant successors of q w.r.t.
oA € 2%.

Then, given a Player-A strategy sp € S(/i, we let RelPath(sp) C Q1 denote
the set of relevant paths w.r.t. sa, i.e. the set of finite sequences of states with
only relevant successors:

ReIPath(sA) = {7T S Q+ ’ Vi<i< |7T| -1, m e RelSucc™-! (SA(WSZ'—I»}

We also define the set of finite paths after which a Player-A strategy does
not play either an optimal GF-strategy nor a non-risky GF-strategy (called a
problematic path).

Definition 4.17 (Problematic paths). Given a set of states Bd C @ that
Player A wants to avoid, for all Player-A strategies sp € Sg, we denote by
Prbl(sa) € QT the set of problematic paths, Prbl(sa, Bd) := {m € QT | sa(7) ¢
Opta((F(7it), mg)) \ Riskn, (Bd)}.

In fact, a Player-A strategy cannot be optimal after any problematic path,
as stated in Lemma 4.13 below.

Lemma 4.13. Assume that a set of states Bd C @ is such that Bd C
SubOptQp. Counsider a Player-A strategy sa. For all m € Prbl(sa, Bd), the
()

residual strategy SZI is not optimal from .

Proof. By Lemma 3.10, this holds as soon as sa(m) ¢ Opta((F(mt), mg)). As-
sume now that sa(m) € Risky, (Bad). For all states ¢ € Bad, we let ¢, > 0 be
such that:

gq = xg[Al(a) — xg[sal(a)
Note that ¢, > 0 since Bd C SubOptQ,. Let € = mingepgey > 0 since @ is
finite. We now define a Player-B strategy sg € S% as follows:
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0 +n \,<‘+77 \/<‘
+x +x +x

Figure 4.7: An illustration of the finite path 7 from the proof of
Lemma 4.14.

e Since sap(m) € Risky, (Bad) there is some og € PosPrbgg(q,sa(m)) such
"t (sa(7),08) —
that ;gl}(s‘:\ﬁ < 5. We set sg(m) := oB.
e Welet v := § - pgy(oa, o). For all ¢ € @, the residual strategy sg"

is chosen so that it is x-optimal against the strategy sa, that is for all
It

q € Q, we have IP’ZX;B [Reach] < xg[sAl(q) + =

tl(7)

We obtain, denoting p := ]P’Z‘:mt ’SB[Reach]:

sa(m),sg (i T st
p= Z ]P)CA( ),se(m )(Wlta q) - PZqSB [Reach]

q€eQ
<> out[(F(me), g))(sa(m), se(mr)) - XglsAl(q) + = by Def. 1.28
qeQ
< > out[(F(me), q)](sa(r), o8) - (xglAl(q) — €)
q€eBd
+ > out[(F(me), q))(sa(m), 08) - xg[Al(q) + = by Def. of sg
g€Q\Bd
= out[(F(mk), xg[A])](sa(m), o8) — pgy(sa(m), o) - € + by Def. of pgl
= 0™ (sa(m), o) + val[(F(me), xg[A])](sa(m)) — pg§(sa(m), oB) - % by Def. of v
< v™(sa(m), 08) + Xxg[A](me) — pgg(sa(m), o8) - 2*; by Prop. 3.9
< xg[Al(m) = PE3(sa(m), 08) - = by Def. of og

()

Tt

*8[Reach] < xg|A](m) since pay(oa,08) > 0as og € PosPrbgy(q, oa)-
(™)

tl
. S
That is, ]P’C’f

Therefore, the residual strategy stA[ is not optimal from 7. O

Furthermore, as soon as for a Player-A strategy, there is a relevant path
w.r.t. that strategy that is problematic, then this strategy is not optimal
(given that the set of states that Player A wants to avoid is a subset of sub-
maximizable states).
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Lemma 4.14. Assume that a set of states Bd C @ is such that Bd C
SubOptQp. Consider a Player-A strategy sa and a state ¢qo € Q \ T. As-
sume that Prbl(sa, Bd) N RelPath(sa) Ngo - (Q\T)* # 0. Then, the strategy sa
is not optimal from qq.

Proof. Consider a path m € Prbl(sa, Bd) N RelPath(sp) Nqo - (Q \ T)*. Let
n := |m|. Recall Definition 4.16: for all 0 < i < n — 2, we let r; > 0 be such
that, for all # > 0, there is some og € Xg' such that:

™ (SA(WSi)agB) < f and p?;ri+1}(SA(7T§i),JB) > (4.1)

Let r := H?:_()Qri > 0. Since, by Lemma 4.13, the residual strategy sz(”) =

sx=""* is not optimal from 7y, = 7,1, we let € := xg[A](Tn—1)—Xg[sA~" "] (Tn-1) >
0. Letalson::ﬁ>0andx::%>0. Forall 0 < i <n—2, welet

oh € X5 as in Equation 4.1 for § := . We can now define a Player-B
strategy sg € S§ in the following way:

e forall 0 <i<n—2, we set sg(r<;) = oh;

o for all 0 < ¢ < n — 3, the residual strategy sgsi is chosen z-optimal

against sa from all states but m;11: that is, for all ¢ € Q \ {mi+1}, we
T <

have: IP’Z‘:; 8 [Reach] < xglsa=1(q) + = < xg[Al(q) + =

e the residual strategy sgS”_Q is chosen z-optimal against sa: that is, for

T<n—2 T<n—2
allge @ P, ™ [Reach] < xglsp™ I(@) + 2 < xglAl(@) + .
An illustration of the paths and some quantities involved in this proof is given
in Figure 4.7. Roughly, this can read as follows. From 7g, there is probability
at least rg to go to m. If another state is reached, then the Player-B strategy
is chosen so that the value from there increases of at most x compared to
the Player-A value of the state. Furthermore, by the choice of the strategy
sg(my), the expected Player-A value of the successors of my has increased by
at most n w.r.t. the Player-A value of my. This is repeated all along the path
until my = m,—1 is reached, from which we know that the Player-A strategy is
not optimal. (The value of the Player-A strategy at m is equal to the value
of the Player-A value of 7, minus £.) These quantities are chosen so that

~2r;, L.e. the expected loss in the value

r-e>x+ (n—1)-n where r = IIj
— due to the Player-A strategy not being optimal at m is greater then the
increase in the value due to how the Player-B strategy sp is defined.

Now let us show the equation below, for all 0 <i <n — 2:
> PR (i q) - xalAllg) < 0+ PREE(ma) - xolAl(m)  (4.2)
qeQ

where, w1, ; refers to the finite path 71 ---m; — it is equal to € when 7 = 0.
Informally, this equation states that the expected value of the successors of m;
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is at most the Player-A value of the state m; plus n, which is the margin in the
increase of value that we chose for o (since it was chosen from Equation 4.1
with 6 = n).

Let 0 <i<n—2. Letting p:= quQ P28 (1.5 q) - xg[A](q), we have:

C,mo

p =) - | BT ) xlAl )

q€Q

=PerB(m) - | > out[(F(m), q)l(sa(m<i), se(m<i)) - xg[Al(q)
q€Q

= P20 (m1..) - out[(F(m;), xg[A])](sa(m<i), sB(7<:))

= P8 (m1..) - out[(F(m), xg[A])](sa(m<i), og)

=P e (m1..) - (val[(F(mi), xg[A])](sa (<)) + v™ (sa(7<i), op))

< PEe(mi..q) - val[(F(mi), xg[AD][A] +n

= PEe () - xg[Al(mi) + 1

where the last equality comes from Proposition 3.9. We do obtain Equa-
tion 4.2. Now, for the readability of the series of (in)equalities below, we let
p = ]P’Z’j;ff[Reach] and, for all 0 <i <mn—1and q € Q, pi(q) := P8 (71, q)

Czﬂ-O
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and p; := ]P)ZA;:'(;B (m1..i). We have:

n—2 Sﬂgi Sﬁgi STI'STL72 STI'STL72
p= Z Z pi(q) P&, ™ [Reach] +ppq P2~ 7° [Reach]
=0 geQ\{mi41}

n—2

o> pi@) - (xelAl@) + )+ pai - (xalsp™" ] (mn1) + )
=0 geQ\{mi+1}

n—2

IN

=> pi(@) - X6[AI(@) + P - (xg[Al(Tn—1) — ) + 0)
1=0 geQ\{m; 41}
n—3

=Y pi(a) - xc[Al(Q) + Y pn2(a) - xg[Al(@) +z—e-por (1)
i=0 geQ\{mi41} 9€Q
n—3

<> pi(9) - Xg[Al(@) + Pn-2 Xg[A(Tn2) + 1+ —c puy (1)
=0 geQ\{mi+1}
n—4

= pi(a) - xg[Al(@) + Y pa-3(@) - x[Al(@) + 1+ 7 — € -pu (2)
i=0 geQ\{mi41} 9€Q
n—4

< pi(a) - xg[Al(@) + Pn—3 - Xg[Al(Tn-3) +2-n+ 2 — € po1 (2))
1=0 geQ\{mi+1}

<po-xglAl(mo) + (n—1) -+ —¢c-pp
19

‘rE-r
:XQ[A](WO)+T+T*5'Z%—1

The equalities from (0) to (1) and from (1) to (2) are obtained by realizing
that pp—1 = pn—2(mp—1) and p,—2 = pp—3(mp—2). Furthermore, the inequalities
from (1) to (1’) and from for (2) to (2') are obtained by applying Equation 4.2.
This is by iterating the application of this equation that we obtain the last
inequality. In addition, we have:

Puo1 = B (m) = B "= ()
=57,y (sal(m<i), o) > I i = v
Overall, we obtain:
e-r

P2 Reach] < xg[Al(mo) — =" < xg[Al(mo)

Hence, the Player-A strategy sa is not optimal from 79 = qo. O

We can now proceed to the proof of Lemma 4.9.
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Proof. Consider a state qo € @ \ Sec(Bd) and a Player-A strategy sa. Let
u = xg[Al(qo) > 0. If we have Prbl(sa, Bd) N RelPath(sa) Nqo - (Q\ T)* # 0
then Lemma 4.14 gives that the strategy sa is not optimal from q. Hence, let
us assume that Prbl(sa, Bd) N RelPath(sa) Ngo - (Q\T)* =0

We let Path(sp) := {p € (Q \ Sec(Bd))* | qo - p € RelPath(sa)}. We also
consider a sequence (e,)n>1 of positive reals such that ) ~,e, < u. Let
us define a Player-B strategy sg € S‘é, by induction on i € N, on paths in
Q' N Path(sa) starting at state go ensuring:

P2 [Q" \ Path(sa)] < Zen
n=1

Informally, this means that Player B is able to ensure that, with very large
probability, only relevant non-secure states are seen. Hence, Player B will be
able to ensure that the probability to reach the target from g¢q is less than wu.

This straightforwardly holds for ¢ = 0 since € € Path(sa). Assume now
that this holds for some i € N. Let p € QN Path(sp) and 7 := qq - p. The goal
is to define a Player-B GF-strategy og € Xg" such that:

pgletc(Bd)UQ\ReISucc"lt (sa()) (sa(m),08) < €it1 (4.3)

Let k£ := |@ \ RelSucc™(sa(7))| +1 € N. For all ¢ € @ \ RelSucc™ (sa(7)),
there is some g, > 0 such that, for all og € ¥g*, if v™(sa(7),08) < g4 then
pj{g} (on,08) < EHI - Let e := mlanQ\RelSucc’Tlt(sA(w)) €q-

Furthermore since m € RelPath(sa) Ngo - (Q \ T)* (since T' C Sec(Bd)), we
have by assumption 7 ¢ Prbl(sa, Bd). That is, sa(m) € Opta((F(m1), xg[A])) \
Riskr,(Bd). However, since m; € @Q \ Sec(Bd), it must be that sap(m) ¢
Prog,, (Sec(Bd)). Hence,

. f Tt Tt — O
UBGElsr%F(ﬂ’It)) maX( (SA( ) UB)7psec(Bd)<sA(ﬂ)’JB)>

We can therefore consider some og € Eg‘t such that:

Tt . )

maX(Uﬂlt(SA(ﬂ'),UB),pSLC(Bd)(SA(ﬂ'),UB)) < min(e, Z+1)

In particular, this GF-strategy ensures that, we have pggc(Bad)(SA(’ﬂ),O’B) <
=EL . Furthermore, for all ¢ € @ \ RelSucc™ (sa(7)), by definition of 4 and €,

52+1

we also have p{q} (sa(m),oB) < . For such a GF-strategy og we have:

pgletC(Bd)UQ\ReISuccﬂ'lt(SA(W))(SA<7T), og) < pggc(Bd)(sA(ﬂ)’ oB)
+ DG\ Relsuce™ (sa () (A () 08)

< Ty 3 p3(sa(r), o8)
g€Q\RelSucc™t (sp (7))
E; £
< i+1 + Z z;—l — i

g€Q\RelSucc™t (sp (7))
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We obtain Equation 4.3. We set sg(m) := og. This is done for all paths
7= qo - p for p € QN Path(sp). We obtain:

PE[Q\ Path(sa)] = P2*[Q="\ Path(sa)]

+ > > PRE(p) -t (salao - p)yse(go - p))
pEQNPath(sp)  gE€Sec(Bd)

UQ\ReISucc::(ﬂ,)

7 i+1
SA,S
SE En+ E PCAqOB "Ei+1 = g En
n=1

PEQ'NPath(sp)

Hence, the property holds at index ¢ + 1. In fact, it holds for all 4 € N. With
such a strategy sg, we have:

P2 [Q" \ Path(sa)] an <u

Furthermore, since Path(sa) C (@ \ Sec(Bd))* and T' C Sec(Bd), we have

SA’SB[Reach N Path(sa)“] =0

That is:
P [Reach] < P2 *[Q" \ Path(sa)] < u = xg[A](q)
That is, the Player-A strategy sa is not optimal from ¢ € @ \ Sec(Bd). O

Proof of Lemma 4.10

The idea of the proof of this lemma is close to the informal ideas given as proof
sketch. However, the exact details are quite technical, although we do not need
intermediate lemmas to establish this result.

Proof. Let € > 0. We define a positional Player-A strategy sa € Sg along with
a valuation of states v : Q@ — [0,1]. First, we let v|se(gag) ‘= M&lsec(Bad)-
For all g € Sec(Bad), if mg(q) = 0, we define sa(q) arbitrarily. It is also the
case is ¢ € T, since all states in T are assume self-looping sinks. Otherwise,
we let i; € N be the least integer such that ¢ € Sec;, (Bad). We let sa(q) €
Eff,(Sec;,—1(Bad),Bad). Since sa(q) ¢ Risk,(Bad), it follows that:

q
eq = inf v (SA(%)’UB) >0

og€PosPrbg.q(g,sa(q)) p%ad(SA Q), UB)
We then let e := mingesec(Bad) € > 0. We use Proposition 4.8 to define
the valuation v on the states in Bad. Indeed, since the operator Ag is non-

decreasing and 1-Lipschitz (by Lemma 4.6), it follows that we can define v|g_4
such that:
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d mg’Bad - min(e,g) < U’Bad < v‘mg;

e for all ¢ € Bad, we have v(q) < Ag(v)(q)-

For all ¢ € Bad, since Ag(v)(g) = val[(F(q),v)](A), we can then define sa(q) €
3% such that v(g) < val[(F(q), v)](sa(q))-

This concludes the definitions of v and sa. Let us show that the strategy sa
guarantees the valuation v by applying Corollary 3.14. First, let us show that
the strategy sa dominates the valuation v. This holds for all states in Bad.
Consider now some state ¢ € Sec(Bad) and Player-B GF-strategy og € 2.
There are two possibilities:

e Assume that og ¢ PosPrbgad(¢,sa(q)), that is we have pL_,(sa(q), 08) =
04(sa(q),og)[Bad] = 0. In that case, we have:

out[(F(q),v)](sa(9),08) = Y 04(sa(q), o8)(¢) - v(¢)
7eQ

= > alsal@).o8)(@) - o(d)

q'€Sec(Bad)

= Y osala),o8)(@) - mo(q)

g’ €Sec(Bad)
= out[(F(q), mg)](sa(q), o8) > val[(F(g), mg)](sa(q))
= val[(F(g), mg)](A) = A(mg)(g) = mg(q) = v(q)
);m

Note that we have val[(F(q), mg)](sa(q)) = val[(F(q), mg)](A) because
sa(q) € Opta(val[(F(g), mg)]).

o Assume now that og € PosPrbgag(q,sa(q)). This implies
vi(sa(q),08) > e pg.4(salq),oB)
with
v?(sa(q), o8) = out[(F(q), mg)|(sa(q), o8) — val[(F(q), mg)](sa(q)) = 0
and val[(F(q), mg)](sa(q)) = mg(q) = v(q). Therefore, we have:

out[(F(q),v)](sa(q),08) = D 0q(sa(4), 08)(d) - v(¢)

q'eQ

> Y oglsaa),o8)(d) - mg(d)
g’ €Sec(Bad)

+ > 04(sa(q),08)(¢") - (mg(q') — min(e, e))
q’'€Bad

= out[(F(q), mg)](sa(q), 78) — Paq(sa(q), o) - min(e, ¢)
> val[(F(q), mg)](sa(q)) + Pg,a(sa(q), o8) - (e — min(e, £))
> val[(F(g), mg)](sa(q)) = v(q)
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In both cases, we have out[(F(q),v)](sa(q),o8) > v(g). As this holds for all
q € Sec(Bad), it follows that the strategy sa dominates the valuation v.
Let us now consider the second condition of Corollary 3.14
By definition of the strategy sa, for all ¢ € Bad, we have d, := val[(F(q),v)](sa(q))—
v(g) > 0. We let d := mingegag dg > 0. Furthermore, for all u € v[Q)], we let
Yo ={¢€Q|v(qg) >u} and Q%, == Q\ QY%,. Consider now some state
q € Bad. Let u := v(q). For any Player-B GF-strategy og € ¥, we have:

u+d < out[(F(q),v)](sa(q),o8) = Y 04(sa(q), 08)(¢") - v(¢)

qeqQ
< > oqlsala),oe)(@) + Y og(sale),o8)(d) - u
7€y, 7€z,

=gy (sa(q),08) + (1 = phy (salq),08)) - u
=Gy, (salq)08) - (1 —u) +u

u

1
strategies og € X3 and state ¢ € Bad. Furthermore, recall Definition 1.28: for

all ¢ € Bad, letting u := v(q), Player-B GF-strategies og € X% and Player-B

Hence, p%gu(sA(q),UB) > & > d > 0. This holds for all Player-B GF-

strategies sg € Sg such that sg(q) = og, we have:

]P)ZA:(}SB[ gu] = nggu (SA((]), UB) >d

Hence, for any Player-B strategy with the Player-A strategy sa, if the state
q € Bad is seen infinitely often, almost surely, the set ¥, is seen infinitely
often almost-surely. Furthermore, by Corollary 3.13, almost-surely all states
visited infinitely often have the same values w.r.t. v. That is, for any Player-B
strategy, almost-surely the state ¢ € Bad is seen only finitely often. Note that,
alternatively, we could have invoked Corollary 3.15.

Let us now deal with the states in Sec(Bad). Let ¢ € Sec(Bad)\ (T"Uv~1[0]).
We have ¢ € Sec;,(Bad) (with i; > 1) and sa(q) € Effy(Sec;,—1(Bad), Bad).
Therefore, sa(q) € Prog,(Sec;,—1(Bad)). Hence,

— i q q
y = U;ggg max(v!(sa(4): 08): Psee, _, (Bad) (SA(2);0B)) > 0
As above, for all og € X%, if v9(sa(q), 08) > v, then qu;u(SA(q),O'B) >y >0.
Fix a Player-B strategy sg € Sg. We let IncValy(y) := {p € Q" | vI(sa(q),ss(p-
q)) > y} and Prog,(y) := {p € Q7 | Psec, _,(Bae)(5a(4);08) = y}. As for the
states in Bad, we have that if the set IncVal,(y) occurs infinitely often then
almost-surely the state ¢ is seen infinitely often and almost-surely the set Q¥
is seen infinitely often. Furthermore, as mentioned above for states in Bad, by
Corollary 3.13, almost-surely all states visited infinitely often have the same
values w.r.t. v. Hence the set IncVal,(y) almost-surely is seen finitely often.
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Therefore, the definition of y implies that, if ¢ is seen infinitely often, then
so is the set Progq(y) almost-surely. Furthermore, recall Definition 1.28: for
all Player-B GF-strategies og € X% and Player-B strategies sg € Sg such that
sg(q) = o, we have:

P [Seci, 1(Bad)] = Py, 5oy (5 (), 7B)

)

Therefore, if the set Progq(y) occurs infinitely often, then almost-surely the
set Sec;,—1(Bad) also occurs infinitely often. Overall, we obtain that if the
state ¢ is seen infinitely often, then the set Sec;,—1(Bad) is also seen infinitely
often almost-surely. This holds for all ¢ € Sec(Bad) \ (7' U v~1[0]). Hence,
it follows that if the game does not settle in @, then almost-surely the set
Secp(Bad) = T is seen infinitely often. That is, Player A wins the reachability
game. Hence, the second condition of Corollary 3.14 is satisfied by the strategy
sa w.r.t. the valuation v. We can therefore apply Corollary 3.14 to obtain that
the strategy sa guarantees the valuation v. O

The two definitions of progressive GF-strategies coincide

Lemma 4.15. Consider a standard finite concurrent reachability game G.
Then, for all sets of good states Gd C @) that Player A wants to reach, for all
q € Q, a Player-A GF-strategy oa € EqA is progressive w.r.t. Gd in the sense of
Definition 4.8 if and only if it is in the sense of Definition 4.14.

Proof. Recall that, since the standard game G is finite, then the set of Player-B
actions Act} at state ¢ is finite. Furthermore, in both definitions of progressive,
the GF-strategy considered is optimal in game in normal form (F(q), mg).
Now, consider a Player-A GF-strategy oa € ZqA and assume that it is
progressive w.r.t. Gd in the sense of Definition 4.8. For all Player-B ac-
tions b € RespEA(q), we let py 1= 3 csp(00) A(A) - 0g(a,b)[Gd] > 0 and
p = minycge8 )Py > 0. Furthermore, for all Player-B actions b € Act} \
9A
RespE’A(q), we let v, := v9(oa,b) > 0 (in the sense of Definition 4.13) and
U= My Resp () Vo > O- We let 0 := min(v,p)/2. Now, consider any
9A

Player-B GF-strategy og € D(Act}). There are two possibilities:

e Assume that UB[RespEA(q)] > 1. Then, we have:

p%d (0A7 UB) = Qq(SA(Q)a UB)[Gd]

> Z OB (b) . Z O'A(CL) . gq(a, b) [Gd]

beResp(B,A (9) a€Sp(oa)
> ) os(d)p
bERespCB,A(q)

= og[Respy, (q)] ' p>p/2>6
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e Assume now that UB[RGSPEA (g)] < 1. Inthat case, og [Act‘é\RespEA (q)] >

%. Hence:
vi(oa, o) = out[(F(q), mg)|(oa, o8) — val[(F(q), mg)](coa)

= > g (b) - (out[(F(g), mg)](oa, b) — val[(F(¢), mg)](ca))

bEActh\RespcB,A (q)

+ ) os(b)- (out[(F(g), mg)](aa,b) — val[(F(g), mg)](ca))
beResp?, (9)

> > og(b) - vi(oa,b) > > og(b) - v
I)GActg\Resp(B,A (q) bGActg\Resp(B,A (q)

= og[Act} \ RespEA(q)] v >v/2>06

That is, in any case, we have max(p¢,(ca,o8),v?(ca,08)) > 0 > 0. That is,
the Player-A GF-strategy is progressive w.r.t. Gd in the sense of Definition 4.8.

Assume now that the GF-strategy oa € X7 is not progressive in the sense of
Definition 4.8. Consider some Player-B action b € RespEA(q) such that, for all
a € Sp(oa), we have gq(a,b)[Gd] = 0. Then, we have out[(F(g), mg)|(ca,b) =
val[(F(q), mg)](oa), hence v?(op,b) = 0. Furthermore, we have pg (oa,b) =
> acsp(on) 2a(0A,0)[Gd] = 0. That is, max(v?(oa, 08), pgy(oa, b)) = 0. There-
fore the player-A GF-strategy oa is not progressive in the sense of Defini-
tion 4.14. O

The two definitions of risky GF-strategies coincide

Lemma 4.16. Consider a standard finite concurrent reachability game G.
Then, for all sets of bad states Bd C ) that Player A wants to avoid, for all
q € Q, a Player-A GF-strategy op € X} is risky w.r.t. Bd in the sense of
Definition 4.9 if and only if it is in the sense of Definition 4.15.

Proof. As for the case of progressive strategies, recall that, since the standard
game G is finite, then the set of Player-B actions Act} at state ¢ is finite.
Furthermore, in both definitions of risky, the GF-strategy considered is optimal
in game in normal form (F(gq), mg).

Assume now that the GF-strategy oa € X4 is risky in the sense of Defini-
tion 4.8. Consider some Player-B action b € RespEA(q) such that there is some
ap € Sp(oa) such that g4(ap, b)[Bd] > 0. Then, we have out[(F(q), mg)](oa,b) =
val[(F(g), mg)](oa), hence v9(oa, b) = 0. Furthermore, pg,(ca,b) > 0q(as, b)[Bd] >
0. That is, og € PosPrbgg(q,oa) and vioab) - — (. Therefore the Player-A

pgd(JAvb))
GF-strategy oa is risky in the sense of Definition 4.14.

Assume now that the GF-strategy oa € X% is not risky in the sense of
Definition 4.8. Hence, for all Player-B actions b € RespEA(q) and for all a €
Sp(oa), we have g,4(a, b)[Bd] = 0. For all Player-B actions b € Act‘é\RespEA(q),
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we let py, := pgy(oa,b) = > aesp(on) 2a(@,b)[Bd] and vy, := v¥(oa,b) > 0. Let
p = maxbeActh\RespEA(q) pp and v = mianAct‘é\RespEA(q) vy > 0. If p =0, then
for all Player-B GF-strategies og € D(Act}), we have pg,(oa,b) = 0, hence
PosPrbgg(q, oa) = 0 and therefore oa is not risky in the sense of Definition 4.15.
Assume now that p > 0. We let § := %. Consider any Player-B GF-strategy
og € D(Act}). We have:

phalon,o8)= > os(b): Y oqa,b)[Bd]

bGRespEA(q) a€Sp(oa)

+ > os(d) - Y oq(a,b)[Bd]
beActg\RespEA(q) a€Sp(oa)

= > oB(b)- Y o4(a,b)[Bd]
beAct‘é\Resp(B,A(q) a€Sp(oa)

< >, o8(b) p=oslActy\Resps, (g)]
beAct‘é\RespEA(q)

Furthermore:

vi(oa, o8) = out[(F(q), mg)](oa, o8) — val[(F(g), mg)](oa)

= Y os(b)-(out[(F(g), mg)](oa.b) — val[{F(g), mg)](ca))

bGActg\RespEA

+ Y os(b) - (out[(F(q), mg)](aa.b) — val[(F(q), mg)](ca))
beResp?, (q)

= > og(b) - vi(oa,b) > > og(b) -v
bEActg\RespEA (q) bEActg\RespEA (q)

= og[Act} \ Respg, (4)] - v

Hence, whenever og € PosPrbgg(q, oa), we have og[Acty \ Resp?A (¢)] > 0 and

therefore 1% > % > 0. That is, the GF-strategy oa is not risky. O
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5 - Biichi, co-Biichi and parity objectives

In this chapter, we study finite-state concurrent games with arbitrary lo-
cal interactions, with Biichi, co-Biichi and parity objectives. Contrary to the
previous chapter, we now consider games with stopping states. Note that in
this chapter, whenever we exhibit a game to witness a negative result, we will
invoke Corollary 3.38. Indeed, thanks to this result, it suffices to show that po-
sitional strategies are not enough to achieve a value to show that finite choice
strategies, and in particular finite-memory strategies, cannot achieve it either.

We first focus on Biichi games. The positive result we show is that, as for
reachability games, whenever there is an optimal strategy, there is one that is
positional (which is therefore also subgame optimal). This is a generalization
of what we did in [10] with standard finite local interactions. We also exhibit
a standard finite concurrent game where playing almost-optimally requires
infinite choice. Note that this game was already used in the litterature to
show that infinite memory is needed to play almost-optimally. We can then
complete the picture of how arbitrary concurrent Biichi games behave, see
Theorem 5.5.

We then consider co-Biichi games. The main positive result for this objec-
tive is that, with standard finite game forms, positional strategies are enough
to be almost-optimal. This was proved in [50, Theorem 3.1]. It is an open
question if this still holds in games with arbitrary game forms which are max-
imizable w.r.t. Player A. The other positive result is that playing subgame
optimally in standard finite games can be done positionally. This is a direct
consequence of Corollary 3.23. As for the negative results, we show that infinite
choice is required for playing almost-optimally with arbitrary game forms — it
is a direct corollary of the fact that this is already the case for safety objectives.
We also show that playing optimally in standard finite games requires infinite
choice. This is exemplified by a co-Biichi game we have already discussed twice
in this dissertation. We also exhibit an arbitrary concurrent game, with local
interactions maximizable w.r.t. Player A, where playing subgame optimally
requires infinite choice. Overall, all the results summarizing how arbitrary
concurrent co-Biichi games behave are gathered in Theorem 5.13.

Finally, we consider parity objectives with at least 3 colors. These objec-
tives inherit all the negative results of the objectives studied before in this
chapter. In fact, it only remains to exhibit a standard finite game where play-
ing subgame optimally requires infinite choice. This example is already known,
and we have already briefly discussed it in Subsection 3.4.2. The results are
gathered in Theorem 5.15.

Seeing finitely and infinitely often a set of states. Before diving into
how each objective behaves, we recall how to write with union and intersection
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Qo T
qo, T L O

Figure 5.1: A deterministic standard concurrent Biichi game ¢ =
(C, Buchi) where Player A wants to visit the state T infinitely often.

the event that a set of states is seen (in)finitely often. This will be particularly
useful in this section when considering the probability of such events.

Given a set of states Q and subset of states T' C @, the event where the
set of states T is seen infinitely often can be written as follows:

@ -T) = (@ -1)"

neN

Symmetrically, the event where the set of states T is seen only finitely often
can be written as follows:

Ue-@\1y~

neN

5.1 Biichi objectives

Let us first deal with Biichi objectives. Recall that we only consider games
with finitely many states. Since there does not always exist optimal strategies
in reachability games — even when all local interactions are standard finite
— it is also the case for Biichi games. Furthermore, we have shown in the
previous chapter that almost-optimal strategies can always be found among
positional strategies in reachability games, without any assumptions on the
local interactions. This does not hold in Biichi games, since in general infinite-
choice strategies may be required to be almost-optimal. We provide a Biichi
game witnessing this fact below in Figure 5.1 and Definition 5.1. Note that this
Biichi game is very close to the snow ball reachability game of Figure 3.1. The
only difference is that the target T that Player A wants to visit infinitely often
loops back on qq, instead of self-looping. In addition, note that this example
is already known and comes from [17, Figure 1].

Definition 5.1 (Game described in Figure 5.1). Consider the game depicted
in Figure 5.1. This game G = (C, Buchi) is standard and deterministic. There
is only one non-trivial state: qo. The set of colors considered is K := {0,1}
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and the colors of the states qo, T, L are given in red near them: col(qy) := 0,
col(L) := 0 and col(T) := 1. This game is win/lose with a Biichi objective
(recall Definition 1.25): Player A wins if and only if the state T is visited
infinite often. The Player-A set of actions at state qy is Acth0 = {ay, a2}
where a1 refers to the top row and as refers to the bottom row and similarly
we have Act%O := {b1,ba} where by refers to the leftmost column and by refers
to the rightmost column.

Proposition 5.1. The standard finite concurrent Biichi game G from Defi-
nition 5.1 is such that:

e The value of the game from qq is 1;
e Player A has no optimal strategy;
o All finite-choice Player-A strategies have value 0 from qq.

Proof. Let us first show the third item. Consider any positional Player-A
strategy sa € S§. Let p := sa(go)(a1) € [0,1] be the probability that the
strategy sa plays the top row in qg. If p = 1, then a Player-B deterministic
positional strategy that plays action by in gg (the left column) ensures that the
game never leaves the state qg, and therefore never reaches the state T. Hence,
such a Player-A strategy sa has value 0. Assume now that p < 1. Then, a
Player-B deterministic positional strategy that plays action be in gg (the right
column) ensures that, at each step, there is probability 1 — p > 0 to reach the
sink state L of value 0. Otherwise, the state T is reached, and the game loops
back to go and has once again probability 1 —p > 0 to reach the sink state L.
Hence, almost surely, with both of these strategies, the sink state L is reached.
Therefore, this Player-A strategy sa has value 0 from ¢g. In fact, all Player-A
positional strategies have value 0 from qg. Therefore, by Corollary 3.38, all
Player-A finite-choice strategies have value 0 from qp.

Consider now the first item. Let ¢ > 0. Let us define a Player-A strategy
sa of value at least 1 —e. Consider a sequence (e )gen such that, for all £ € N,
we have e, > 0 and Y, .y éer < . Furthermore, for all p € {go, T, L}T, we let
|p|T € N denote the number of times the state T occurred in p. We now define
sa, as follows. For all p € {qo, T, L} such that py = qo, we let

sa(p) :={a1 = 1 =gy, a2 gy }

Clearly, this strategy has infinite choice. Consider any Player-B strategy sg €
S%. We have:

Pl 1= 3 PERao U L <> . 3 PEar(e)-sale)laz)
keN keN pe(qouUT)k
S Y e asYeace
kEN pe(goUT)k keN
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Furthermore, we have — by Proposition 1.3 (the continuity of probability
function) for the third equality:

PrallouT) al=2_ >, PEr(0) PE,(d)
keN pe(quT)*, |p|T=k
SA,S s S
- Z Z Peay (P) - By ﬂ %)
kEN pe(qoUT)*, |p|T=k neN

=3 > BR®(p) - (lim PR ()

n—oo
keN pe(qoUT)*, |plT=k

=Y > P22 (p) - (lim (1 —ex)") =0

n—oo
keN pe(quT)*, |p|T=k

Overall, we obtain that:

P[0 UT)) = 1~ (B l(a0 U T)" - 1] + B (a0 U T) - a]) > 1~

As this holds for all Player-B strategies sg, it follows that the strategy sa has
value at least 1 — ¢ from qg. In fact, the value of the game from ¢q is 1.

As for the second item, since in the snow-ball game of Figure 3.1 Player-A
has no optimal strategy (i.e. strategy of value 1) from g, then it is also the
case for this game. O

Hence, playing almost-optimally can be very costly in Biichi games, whereas
it is not the case in reachability games. However, whenever it is possible to
play optimally in Biichi games, just like in reachability games, it can be done
with a positional strategy.

Proposition 5.2. In all arbitrary finite-state concurrent Biichi games, when
there is an optimal strategy, there is one that is positional. (This strategy is
therefore subgame optimal.)

To prove this result, we will transform a Biichi game into a reachability
game, and use the result already existing on reachability games. We define
below how to translate a Biichi game into a reachability game. Informally, this
is done by replacing every state ¢ in the target by a trivial state with only
one possible outcome: a probability distribution that goes with probability
Xg[A](g) to the new target (in the reachability game) and with probability
1 — xg[A](g) to a sink state of value 0.

Definition 5.2. Consider an arbitrary finite-state Biichi game G = (C, Buchi).
We let T := col ' [{1}] € Q and Qe := T U Qns. We define the reachability
game gReach <CReach Reach) with CReach .— <QU{T}U{J_} FReach K ColReach>
as follows:

e {T} and {L} are two fresh states not in Q;
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o all states ¢ € Q¢ are made into trivial states with only one outcome:
FReN(g) == (%, %, {T = xg[Al(@), L —1—xglAl(@)},*);

e all states g € Q \ Qe are left unchanged: F(q) := FReah(¢g);
e both states T and L are self-looping sinks;

e colRfeN(T) .= 1 and colR" QU 1] := {0};

Remark 5.1. From the definition of the arena CReach

, one can realize that

there are no stopping states in CR®M. This is done so that we can use the

results from Chapter 4 that only apply to games without stopping states.
Furthermore, the game GR®N would be identical if we changed it into Biichi

game with the same target, since this target is a self-looping sink.
This transformation ensures the lemma below.

Lemma 5.3. Consider an arbitrary finite-state Biichi game G = (C, Buchi)
and the reachability game GR®". Then, for all ¢ € Q, we have xg[A](q) =
Xgreach [A](q). Furthermore, if Player-A has an optimal strategy in G, then she
also has one in GReach,

Proof. We want to apply Lemma 1.16, Page 48. However, our transformation
does not fit exactly the statement of Lemma 1.16. First, we have replaced the
states in Q)¢, with trivial states instead of stopping states. However, it is rather
straightforward that if we had replaced every state ¢ € Q¢, by a stopping states
of value xg[A](q), all the values of the states in the game GRe" would stay the
same. Second, we changed the objective from Biichi to reachability. However,
since the games G and GReach ¢an be seen as over once a state in Qch is reached,
what matters is what happens if no state in Q. is reached. In both games G
and GReM what happens in that case is the same: Player A loses. Hence, we
can apply Lemma 1.16 to obtain the desired statement. O

Furthermore, we have also the following lemma.

Lemma 5.4. Consider an arbitrary finite-state Biichi game G = (C, Buchi)
and the reachability game GR®h Assume that there is an optimal strategy
in GReah and, for all ¢ € T\ Qns, Player A has GF-strategies in ZqA that
are optimal in the game in normal form (F(q), xg[A]). Then, Player-A has a
positional optimal strategy in G.

Proof. By Theorem 4.11, since Player A has an optimal strategy in the reacha-
bility game GRe2" then she has one sﬁeaCh that is positional. Let us now define
a Player-A positional strategy sa € Si that is optimal. For all ¢ € Q \ Qch,
we let sa(q) = sReh(q) € ¥4 Furthermore, for all ¢ € T \ Qns, we let
sa(q) be a Player-A GF-strategy that is optimal in the game in normal form
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(F(q), xg[A]). Let us show that the positional Player-A strategy sa is (sub-
game) optimal in G by applying Corollary 3.14!. Consider the first condition
of this corollary: that is, let us show that the strategy sa is locally optimal.
By Lemma 5.3 and since the Player-A strategy sReaCh is optimal in GRea<h_ for
all ¢ € Q \ Qch, we have xg[A](q) < val[(F(q ),Xg[A]>](sA(q)). This also holds
for all ¢ € T'\ Qns by definition of the strategy sa and by Lemma 3.9. Hence,
the Player-A strategy sa is locally optimal in G. Consider now the second
condition of Corollary 3.14. We let V := xg[A][Q] C [0,1] and for all u € V,
we let Qu = {q¢ € Q | xg|A](¢) = u}. When applied to a Biichi game, the
second condition of Corollary 3.14 states that, against all Player-B strategies,
if the game loops ever indefinitely on states of the same positive value, then the
target is seen infinitely often almost surely. Said otherwise, the probability of,
at some point, always seeing states of the same positive value while avoiding
the target is 0. Since the Player-A strategy sa is positional, this amounts to
show that, from every state ¢ € Q \ Qcn of value u > 0, the probability to
always see @), and never Q¢ is 0. Formally, we show that, for all Player-B
strategies sg € S%, for all w € V '\ {0} and ¢ € Q,, we have:

]P)ZéqSB [(Qu \ Qch)w] =0 (51)

This actually comes straightforwardly from Corollary 3.14 applied to the (sub-
game) optimal strategy sReach in GReach because the strategies sp and sReaCh
coincide on @ \ Q- Note that Corollary 3.14 only applies to games with PI

payoff functions, however, as mentioned in Remark 5.1, the game GReach

can
be seen as a Biichi game since the target is a self-looping sink. Let u € V'\ {0},
q € @, and sg € S(é. The Player-B strategy sg can be seen as a strategy in the

Reach
arena S(é “". We have:

B (Qu\ Qen)®) = Pohea 7 [(Qu\ Qen)”]

ach
Furthermore, if PcReachSB[(Qu \ Qch)®] > 0, then the second condition of Corol-

Reach gReach

lary 3.14 would not hold for the strategy sj in the game , since
CRMSB[(Q” \ Qeh)¥ NQ* - T] = 0. In fact, Equation 5.1 does hold, and by
Corollary 3.14 the Player-A positional sp is (subgame) optimal in G. O

We can now proceed to the proof of Proposition 5.2.

Proof. By Lemma 5.3, Player A has an optimal strategy in the game GReach,
Furthermore, consider the Player-A optimal strategy ta in G. For all states
q € T\ Qns, we have ta(q) € £%. By Lemma 3.10, for all ¢ € T'\ Qps, we have

x6[Al(g) = xgltal(q) < val[(F(q), xg[A]")](ta(q)) = vall(F(a), xg[AD](ta(q)) <
val[(F(q), xg[A])][A] = xg[A](g). This last equality comes from Lemma 3.9.

INote that we cannot apply Corollary 3.16 since the game G is not standard.
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4 0pt. 7| &-Opt. Optimal | SubG. Opt.
Buchi No oo-choice

Table 5.1: The summary of the situation in arbitrary finite-state concur-
rent Biichi games.

Hence, the Player-A GF-strategy ta(g) is optimal in the game in normal form
(F(q), xg[A]). Hence by Lemma 5.4, Player A has an optimal positional strategy
ng. O

We summarize the results on Biichi games in the theorem below.

Theorem 5.5. In arbitrary finite-state concurrent Biichi games:
e there does not always exist optimal strategies;

e almost-optimal strategies may require infinite choice, which can be wit-
nessed by a standard finite game;

e whenever there exists an optimal strategy, there is one that is positional.
This also holds for subgame optimal strategies.

These results can be seen in Table 5.1.

Proof. e This is consequence of the fact that this is already the case for
reachability games, see Theorem 4.12.

e [t was already known that infinite memory may be required to play
almost-optimally in Biichi games (see [32, Theorem 2]). We have shown
this result in Proposition 5.1, by reusing an example already known (that
comes from [17, Figure 1]).

e This is given by Proposition 5.2.

5.2 co-Biichi objectives

Let us now consider the case of co-Biichi objectives. Recall that we only
consider games with finitely many states. Since there does not always exist
optimal strategies in standard finite reachability games, it is also the case
for co-Biichi objectives. Let us now deal with how to play almost-optimally,
optimally and subgame optimally in co-Biichi games.

227



5.2.1 . Almost-optimal strategies

Consider first how to play almost-optimally in co-Biichi games. As stated
in Proposition 4.4, if no assumption is made on the local interactions (i.e. if
we do not assume that they are maximizable w.r.t. Player A), in safety games,
infinite-choice strategies may be required to play almost-optimally. Further-
more, note that safety games can be seen as special cases of co-Biichi games
where the target is self-looping. Hence, it is also the case of co-Biichi games
that playing almost-optimally may require infinite choice, if no assumption is
made on the local interactions.

However, in co-Biichi games where all local interactions are standard finite,
then playing almost-optimally can be done positionally.

Theorem 5.6. In all standard finite concurrent co-Biichi games, for alle > 0,
Player A has a positional strategy that is e-optimal.

As mentioned at the end of Subsection 3.2.3, this result is already known, it
was proved in [50, Theorem 3.1]. The proof is quite involved as it is byproduct
a memory transfer result from limit-sure winning (i.e. almost-optimal for the
value 1) to almost-optimal strategies.

However, what happens in arbitrary games with local interactions maxi-
mizable w.r.t. Player A is unknown.

Open Question 5.1. Can playing almost-optimally be done positionally in
arbitrary finite-state co-Biichi games where all local interactions are maximiz-
able w.r.t. Player A?

5.2.2 . Optimal strategies

Let us now consider how to play optimally in co-Biichi games. Contrary
to the Biichi case where, whenever it can be done, it can be done position-
ally regardless of the local interactions, playing optimally may require infinite
choice in co-Biichi games even in standard finite games. This is witnessed by
the co-Biichi game described in Figure 5.2. In fact, we have already discussed
this game twice in this dissertation. Once, in Figure 2.5 as a slightly modified
game, to witness that it is possible that action strategies? may achieve a value
that regular strategy can only approach. The second time was in Figure 3.2 to
witness that there can be optimal strategies without subgame optimal strate-
gies. For a formal description, one can consider Definition 2.19 that referred
to the game of Figure 2.5. The difference with the game of Figure 5.2 is that,
in Figure 2.5, both states ¢; and ¢} are merged into a single state ¢;. Note

ZAction strategy is a notion defined in Section 2.5, in the context of standard
games, and used only in that section. These are strategies that take into account the
states and actions played by the strategies. To distinguish the strategy we usually use
from the action strategies of this section, we will sometimes refer to them as regular
strategies.
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@ q 1/2
do, q1 1 1/2
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Figure 5.2: A co-Biichi game where playing optimally requires infinite
choice.

that the most complicated properties ensured by this game have already been

proven in Proposition 2.21 and the subsequent lemmas stated to prove it.

Proposition 5.7. The game of Figure 5.2 ensures the following:

°
°
°

Proof.

the state qo has value %;

no finite-choice Player-A strategy is optimal;

there is an infinite-choice Player-A strategy that is optimal.
e This is given by Lemma 2.22.

Consider any positional player-A strategy sa € S§. If sa(qo)(az) > 0
(i.e. the bottom row is played with positive probability), then Player B
can play the rightmost column with probability 1 and ensure that the
expected value of the stopping states seen is less than % Therefore,
such a strategy has value less than % Otherwise, if sp(qo)(a1) = 1, then
Player B can play the middle column with probability 1 and ensure that
the state ¢} will be seen infinitely often. Therefore, such a strategy has
value 0. Finally, if sa(qo)(a3) = 0 and sa(qo)(az) > 0, then Player B can
play the leftmost column with probability 1 and ensure that, almost-
surely, the state g1 will be seen infinitely often. Hence, such a strategy
has also value 0. In fact, no positional strategy can achieve the value % in
this game. Thus, by Corollary 3.38, all Player-A finite-choice strategies

are not optimal from qo.

An optimal action strategy is described in Lemma 2.23. With the dif-
ference between the games of Figure 2.5 and of Figure 5.2, this can be
done with a regular infinite-choice strategy.

O
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5.2.3 . Subgame optimal strategies
What happens for subgame optimally depends on the local interactions in
the game. First, let us consider the case of standard finite local interactions.
In this context, subgame optimal strategies can be found among positional
strategies.

Proposition 5.8. In all standard finite concurrent co-Biichi games, if there
is a subgame optimal strategy, there is one that is positional.

Proof. Let us apply Corollary 3.24. To do so, we need to show that in all
standard finite co-Biichi games, if there is a subgame almost-surely winning
strategy, there is one that is positional. Hence, consider such standard finite co-
Biichi game G and assume that Player A has a subgame almost-surely winning
strategy. In that case, all states in G have value 1. By Theorem 5.6, there
is a positional strategy sa € S§ that is %—optimal (from all states). Consider
any Player-B strategy sg € Sg. Then, from all states, there is probability
at least % that the PI objective coBuchi holds. Hence, by Proposition 3.5,
the probability of the PI objective coBuchi is 1 from all states. That is, the
positional strategy sa is subgame almost-surely winning. We can therefore
apply Corollary 3.24 to obtain the result. O

However, if the local interactions are not maximizable w.r.t. Player A,
playing subgame optimally may require infinite choice. This is witnessed in
the game of Figure 5.3. Note that it is very close to the game of Figure 4.2 that
witnessed that playing almost-optimally may require infinite choice in safety
games. The only change is that the state L that Player A wants to see only
finitely often loops back to qg.

We described formally this game below.

Definition 5.3 (Game depicted in Figure 5.3). The game of Figure 5.3 is an
MDP T where Player A plays alone with two states: @ := {qo, L}. The state
L is trivial and loops back to qy and, at state qg, Player A may play any integer
n € N which leads to a distribution d,, := {qo — 1 — %;J_ > 2%} € D(Q).
Player A has a co-Biichi objective coBuchi with K = {0,1} and col(gp) := 0
and col(L) := 1, i.e. Player A wants to see the state L only finitely often.

Proposition 5.9. In the co-Biichi game G of Definition 5.3:
e the state qo has value 1;

e all finite-choice Player-A strategies have value 0;

3This proposition applies to stochastic trees for a prefix-independent Borel objec-
tive. However, in the game G, there could be some stopping states (of value 1), which
make the objective in the stochastic tree not PI. However, it suffices to replace these
stopping states by a self-looping sink of color 0, which will therefore be of value 1. In
that way, the value of the game in unchanged and the objective is PI.
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do
1—p
l 1—pn
dy d,
Pn
Po
1

Figure 5.3: An MDP where Player A plays alone and wants to see the

state L only finitely often, with p; := %

e there is an infinite-choice Player-A strategy that is subgame almost-
surely winning.

Proof. This is quite similar to the proof of Proposition 4.4. First, consider any

positional Player-A strategy sa. Consider some n € N such that sa(qo)(n) > 0.

sa(qo0)(n)
27L

and in any case the game loops back on qg. Hence, almost-surely, the state
1 is reached infinitely often. In fact, all Player-A positional strategies have
value 0. Therefore, since this MDP is standard and B-finite (recall, finitely

many states, and Player B has finitely many actions), by Corollary 3.38, all

Then, at each step, there is probability at least to reach the target L,

finite-choice strategies have value 0 from qq.

Let us now build a Player-A infinite-choice strategy sa € Si that is subgame
almost-surely winning. For all p € Q*, we let sa(p) := {|p| + 1 — 1}. Let
7 € Q7. Denoting sg the only Player-B strategy in T, for all n € N, we have:

1 1 1
SA ;S * _ SA S k _ —
PRPQQ L) =" D BP L) =Y oo <O serwer = g
keN pem-Qr keN keN
Hence, by Proposition 1.3 (the continuity of probability measure), we have:
SA,SB n * T SA,SB n * o
Py <ﬂN Q" (Q7- 1)) = lim PR2(Q"-(Q"- 1)) =0
ne

That is, from 7, the state L is seen infinitely often with probability 0. In
other words, it is seen finitely often with probability 1. This holds for all
7 € QT. Therefore, the infinite-choice strategy sa, is subgame almost-surely
winning. O

The fact that playing subgame optimally may require infinite choice with
co-Biichi objectives can be witnessed in games where all local interactions are
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F = [QO__Q1] %

_ T+
T-—1] Ta

Figure 5.4: A standard infinite local interaction maximizable w.r.t.
Player A.

maximizable w.r.t. Player A. However, the local interactions considered will
not be finite, otherwise we would be in the scope of Proposition 5.8. We
conclude this subsection by providing an example of such a co-Biichi game.
Let us first define the only non-trivial game form occurring in that game. To
do so, let us first introduce a notation for game form.

Definition 5.4 (Notation for a standard game form). Given any two outcome
x and y, the notation [z~ —y] refers to the standard game form (N, x, {z,y}, 0)s
where Player A plays alone and, for all n € N, we have g(n,*) := {z —
1— o,y = 50}

The game form of interest for us is depicted in Figure 5.4 and formally
defined in Definition 5.5 below.

Definition 5.5 (Game form depicted in Figure 5.4). The game form F =
(Acta, Actg, {q0,q1, T, L}, 0)s of Figure 5.4 is standard, Player A has infinitely
many actions available, whereas Player B has two. We have Acta := {a1, a2} X
N and Actg := {b1,be}. The two Player-B actions correspond to the two
columns of the game form, with by corresponding to the leftmost column and
ba corresponding to the rightmost one. If Player B plays bo, then the outcome
is a uniform distribution on T and q;. Otherwise, i.e. if Player B plays by, for
all n € N, if Player A plays (a1,n), then we obtain the outcome of the game
form [qy, — q1] for the action n whereas if Player A plays (a2, n), then we obtain
the outcome of the game form [T~ — | for the action n.

Let us first show that this game form is maximizable.

Proposition 5.10. The game form defined in Definition 5.5 is maximizable
w.r.t. Player A.

Proof. We let O := {qo,q1, T, L}. Consider a valuation v : O — [0,1]. Let
u := val[(F,v)]. Clearly, since Player B can play the action by we have:

v(gq1) +o(T)

<
v= 2

Furthermore, note that if v(T) > u, then Player A has an optimal GF-strategy
in the game in normal form (F,v). Indeed, it suffices to play an action (a1, n)
with n € N such that v(T) - (1 — 5) > u. Assume now that v(T) < u <
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0

Figure 5.5: A co-Biichi game where Player A wants to see only finitely
often the states of color 1: ¢; and L. The local interaction at state ¢, is
depicted in Figure 5.4.

M' It follows that we have M < v(q1). Therefore, we have
u < v(q1). Hence, Player A can play the action (a;,0) — if Player B plays by,
this leads to probability 1 to go to g1 — to be optimal in the game in normal
form (F,v). In any case, Player A has an optimal GF-strategy in the game in
normal form (F,v). O

We define below in Definition 5.6 a concurrent co-Biichi game with local
interactions maximizable w.r.t. Player A where playing subgame optimally
requires infinite choice.

Definition 5.6 (Game depicted in Figure 5.5). The game of Figure 5.5 has
four states qo,q1, 1,1. The two states T and L are stopping states, with
T of value 1 and L of value 0. The state ¢ is looping on qy and the local
interaction of the state qg in the game form of Definition 5.5. In particu-
lar, Qns = {q0,q1}. Player A has a co-Biichi objective with K = {0,1} and
col(qo) := 0 and col(qy) := 1.

Proposition 5.11. In the co-Biichi game G of Definition 5.6:
e the state qo has value 1;
e 1o finite-choice Player-A strategy is optimal;
e there is an infinite-choice Player-A strategy that is subgame optimal.

Proof. e Let ¢ > 0. Consider a Player-A positional strategy sa such that
sa(go)((az,n)) := 1 for some n € N such that 5 < e. Then, if Player-B
plays action by (i.e. the left column), there is probability 1 — 2% >1—c¢
to see the state T of value 1. Furthermore, if Player B plays action by
(i.e. the right column), then there is probability % to go the state T and
probability % to see the state ¢; and loop back to gy. Hence, if this action
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is played indefinitely, the state T is reached almost-surely. In fact, this
Player-A positional strategy sa has value at least 1 — &. Therefore, the
state gg has value 1.

Consider any Player-A positional strategy sa. If it plays an action of the
shape (ag,-) with positive probability, then if Player B plays action by
(i.e. the left column) there is a positive probability to reach the state
1 of value 0. Therefore, such a strategy is not optimal. Otherwise,
consider some n € N such that sa(qo)((a1,n)) > 0. Then, if Player B
always plays the action by (i.e. the left column), at each step there is
SA(QO)Q(Slal,n))

surely, it seen infinitely often. Therefore, such a strategy has value 0.

probability at least > 0 to see the state q;. Hence, almost-
In fact, no positional Player-A strategy is optimal. Therefore, since this
game is standard and B-finite (recall, finitely many states, and Player B
has finitely many actions), by Corollary 3.38, no finite-choice Player-A
strategy can be optimal from gq.

Let us describe a Player A subgame optimal strategy. It is very similar to
the one described in the proof of Proposition 5.9. Indeed, for all p € Q7
we let sa(p) := {(a1,|p| + 1) — 1}. Let 7 € Q. Player B never has an
interest of playing action by since this leads to a stopping state of value
1 with probability % and otherwise it loops back on ¢g. Hence, let us
denote by sg the Player-B strategy that always plays action by in ¢q, for
all n € N, we have:

| 1
SA S| SA,S|
PR (Qne (Qnear)) = ) Z P”%ql) > gk <2 g

keN pem- keN keN

Hence, by Proposition 1.3 (the continuity of probability measures), we
have:

SA7SB ﬂ Qns - (Q"-q1)) = hm P%SB( s (Qns 1)) =0

neN

That is, from 7, the state g; is seen infinitely often with probability 0.
Therefore, the infinite-choice Player-A strategy sa is subgame almost-
surely optimal.

O

It may seem that this result proves that playing almost-optimally in finite-
state co-Biichi games with maximizable* local interactions may not be done
with positional strategies. Indeed, assume that it is the case, i.e. that posi-
tional strategies are sufficient to play almost-surely in such co-Biichi games.

“In this paragraph and the next, until Proposition 5.12, we use maximizable for
maximizable w.r.t. Player A.
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F =l — ] %}

Figure 5.6: The game form Opt(F,v) for F the game form of Defini-
tion 5.5 and v : O — [0, 1] such that v(T) = v(¢1) = v(q) := 1 and
v(Ll):=0.

This would imply, as in the proof of Proposition 5.8, that with maximizable
local interactions, playing subgame almost-surely can be done positionally.
Furthermore, (the second part of) Theorem 3.17 (informally) states that the
amount of memory to be subgame optimal (when possible) corresponds to
the amounts of memory to be subgame almost-surely winning (when possi-
ble). Hence, we would obtain that playing subgame optimally with maximiz-
able local interactions can be done positionally, which is in contradiction with
Proposition 5.11.

The issue with this argument is that the informal statement of Theo-
rem 3.17 that we gave above is true up to a modification of the local interac-
tions. That modification consists in only considering the Player-A GF-strategies
that are optimal w.r.t. some valuations (i.e. the set of local interactions con-
sidered in Opt({F(q) | ¢ € @}), recall Definition 3.11). In fact, in the game
of Definition 5.6, up to this modification, the local interaction at state qq is
not maximizable, we show this fact below Proposition 5.12. Therefore, even if
positional strategies were enough to play almost-optimally in co-Biichi games
with maximizable local interactions, it would not imply that playing subgame
optimally can be done with positional strategies in co-Biichi games with max-
imizable local interactions.

Proposition 5.12. The game form F of Definition 5.5 is maximizable w.r.t.
Player A. However, letting v : O — [0, 1] such that v(T) = v(q1) = v(qo) := 1
and v(L) := 0, the game form Opt(F,v) is not maximizable w.r.t. Player A.

Proof. The game form F is maximizable w.r.t. Player A, by Proposition 5.10.
Then, consider the valuation v. The set of optimal Player-A GF-strategies is
equal to D({a1} x N). Recall that, letting F = (D(Acta), D(Actg), O, g), we
have Opt(F,v) = (Opta((F,v)), D(Actg), O, 0) where Optp ((F,v)) C D(Actp)
denotes the set of Player-A GF-strategies optimal in the game in normal form
(F,v). The game form Opt(F,v) is depicted in Figure 5.6 and is not maxi-
mizable w.r.t. Player A. This is witnessed, for instance, by a valuation w such
that w(qo) := %, w(T) := 1 and w(q:) := 0. O

We summarize the results on co-Biichi games in the theorem below.

Theorem 5.13. In arbitrary finite-state concurrent co-Biichi games:
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GF | 40pt. 7| &-Opt. Optimal SubG. Opt.
. | Max. 177 . T /oo-choice
coBuchi | a No oo-choice oo-choice oo-choice

Table 5.2: The summary of the situation in arbitrary finite-state con-
current co-Biichi games. The results ! hold with standard finite local
interactions, but a priori does not with arbitrary maximizable local in-
teractions.

e there does not always exist optimal strategies, even in standard finite
games;

e with standard finite local interactions, playing almost-optimally can al-
ways be done positionally. With arbitrary local interactions, otherwise
it may require infinite choice. With arbitrary local interactions maxi-
mizable w.r.t. Player A, the question is still open.

e playing optimally may require infinite choice, even with standard finite
local interactions;

e when the local interactions are standard finite, playing subgame opti-
mally can be done positionally, otherwise it may require infinite choice.

These results can be seen in Table 5.2.3.
Proof. e that is because this holds in reachability games, see Theorem 4.12;

e this is already known, see [50, Theorem 3.1]. The fact that this does not
hold anymore for arbitrary local interactions is a consequence of the fact
that this is the case for the safety objective, see Proposition 4.4. The
case of arbitrary local interactions maximizable w.r.t. Player A is still
open (see 5.1).

e we have first proved this result in [11, Section 6]. We state it in Propo-
sition 5.7;

e We have also proved this result in |11, Corollary 1]. However, it does
not hold with arbitrary local interactions, see Proposition 5.9, even if all
local interactions are maximizable w.r.t. Player A, see Proposition 5.11.

O

5.3 Parity objectives

Recall that we only consider games with finitely many states. We already
know that there does not always exist optimal strategies in standard finite
parity games since this holds in reachability games (see 4.12). We also know
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) 5

Figure 5.7: A parity game.

that playing almost-optimally may require infinite choice in standard finite
parity games since this holds in Biichi games (see 5.5). Furthermore, playing
optimally (when possible) may require infinite choice in standard finite parity
games since this holds in co-Biichi games (see 5.13). In fact, playing subgame
optimally (when possible) may also require infinite choice. That is witnessed
by the game defined in Definition 5.7. Note that we already talked about this
game in Subsection 3.4.2; as it was depicted in Figure 3.12.

Definition 5.7 (Game depicted in Figure 5.7). The game G of Figure 5.7
has three states: Q = {qi1,q2,q3}. The two states qo and g3 have a trivial
local interaction and loop back to q1. We denote by a1 and as the two actions
available to Player A in q1 where ay refers to the top row and ag refers to the
bottom row. Similarly, We denote by by and by the two actions available to
Player B in q; where by refers to the leftmost row and by refers to the rightmost
column. Player A has a parity objective with K = {1,2,3}, col(q1) := 1,
col(g2) := 2 and col(g3) := 3. That is, Player A wants to see only finitely often
the state g3 while seeing infinitely often the state go.

Proposition 5.14. The game of Definition 5.7 is such that:
e all finite-choice Player-A strategies have value 0 from qq;

e there is an infinite-choice Player-A strategy that is subgame almost-
surely winning.

Proof. e Consider any positional Player-A strategy sa. If sa(qo)(az2) > 0
(i.e. if the bottom row is played with positive probability), then by
playing the action be (i.e. the rightmost column) Player B ensures
that almost-surely the state g3 is seen infinitely often. Otherwise, if
sa(qo)(a1) = 1, then by playing the action b; (i.e. the leftmost column)
Player B ensures that the state go is never seen. In fact, the value of all
Player-A positional strategies is 0. Therefore, since this game is standard
finite, by Corollary 3.38, all finite-choice Player-A strategies have value
0 from q;.
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e Let us now describe a Player-A subgame almost-surely winning strategy.
For all p € QT, we let |pla3 € N denote the number of times the finite
paths p has visited the states g2 and g3. Consider also a sequence (g )ken
such that, for all £ € N, we have ¢;, € (0,1] with ), yer < oo. We
define a Player-A strategy sp € Si as follows, for all p € QT, we have:

S/-\(p> = {al = 1— €lpla,zr @2 = 6|P‘2,3}

Consider now any Player-B deterministic strategy sg € Sg and some
7 € Q". Let n € N. We have:

PARQ - qf] = Y PAE[gr]= ) lim PRtlel]

k—o0
pET-Q™ pET-Q"
< D Jim(1-gp,) =0

pET-Q™

As this holds for all n € N, it follows that, from 7, almost-surely, the set
of states {q2,¢3} is seen infinitely often.

Let us now show that almost-surely the state g3 is seen only finitely
often. Let n € N and consider some p € ({q1,¢2}* - q3)" - {q1, ¢2}*. Since
the strategy sg is deterministic, for all ¢ € N, we have:

ZA;TS?:[{‘II} ¢3] =0 or PZ,A;in[{ql}i—&-l] _

Therefore, there is at most one ¢ € N such that ]P"ZA;TS';[ql g3] > 0 with
ZA:‘Z[qI q3 | ¢4] < €1k where k denotes the number of times the state
g2 occurs in p after the last g3. Therefore, IPZ’T;i‘Z[qi‘ cq3] < epgg. It

follows that, for all € ({q1,q2}* - g3)™:

Pess{an, a2} - 3] = > Pessl(ar - 2)* - < et

keN keN

Therefore, by Proposition 1.3 (the continuity of probability measures):

A1) (@2} - 00)"] < lim B (({an, g2} - 05)" "]

neN
< lim P2 ({q1, g2} a3 | ({a1, 02} - 43)"]
n—oo 7
< 1 —
< nh_{gozemk 0
keN

This comes from the fact that ), yex < oo. Therefore, the state g3
is seen infinitely often with probability 0. That is, against the Player-B
deterministic strategy sg, the parity objective is ensured almost-surely
from 7. Since this holds for all Player-B deterministic strategies and
by Corollary 2.17 (since we obtain an MDP once Player A has fixed her
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GF 4 O0pt. 7| e-Opt. Optimal | SubG. Opt.
Parity | M./A. No oo-choice | oo-choice | oo-choice

Table 5.3: The summary of the situation in arbitrary finite-state concur-
rent parity games with at least three colors.

strategy), the value of the Player-A strategy sa is 1 from 7. As this holds
for all T € Q™, it follows that the infinite-choice Player-A strategy sa is
subgame almost-surely winning.

O

We summarize how concurrent parity games behave below:

Theorem 5.15. In arbitrary finite-state concurrent parity games:
e there does not always exist optimal strategies;
e playing almost-optimally may require infinite choice;
e playing optimally, when possible, may require infinite choice;
e playing subgame optimally, when possible, may require infinite choice.

All of these results can be witnessed by standard finite games, with at most
three colors. These results can be seen in Table 5.3.

Proof. e this was already the case for reachability games, see Theorem 4.12;
e this was already the case for Biichi games, see Theorem 5.5;
e this was already the case for co-Biichi games, see Theorem 5.13;

e It was already known that playing subgame optimally may require infi-
nite memory, see [17, Theorem 7|. We have further proved that it may
require infinite choice in Proposition 5.14 by using the same game used
in [47].

O

5.4 Discussion and future work

In this chapter, we have studied Biichi, co-Biichi and parity objectives. As
stated in Subsection 5.2.1, we leave Open Question 5.1 unanswered. A possible
direction to try and answer this question could be a local-global transfer. We
discuss this notion extensively in Part III.

In the previous chapter, among other things, we have designed a procedure
to compute, in reachability games, the set of states Opta from which Player A
has an optimal strategy. In turn, this allowed us to establish Theorem 4.11: for
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all positive € > 0, Player A has a positional strategy that is optimal from all
states in Optp, and e-optimal from all other states in Q\Opt,. It seems natural
to look for a similar result in the Biichi, co-Biichi and parity games we have
studied in this chapter. We believe that it could be possible to obtain one for
Biichi objectives: for all positive € > 0, Player A has a strategy that is optimal
and positional® from all states in Opt,, and e-optimal from all other states in
Q@ \ Opty. The difference with the reachability case is that the strategy may
have infinite choice at states in @ \ Opta. Such a result could be obtained by
using arguments akin to the ones used in Section 5.1 to prove Proposition 5.2.
As a corollary, we would obtain that this also holds with safety objectives,
since safety games can be seen as special cases of Biichi games. However, this
cannot be extended to co-Biichi objectives and to parity objectives, since, with
these objectives, playing optimally may require infinite choice.

Finally, we would like to discuss a possible future work that extends some of
what we have done in this chapter. In [70], the authors study Muller objectives.
Given a finite set K of colors, a Muller objective is defined by a set S C 2K of
subsets of colors such that an infinite sequence of colors is winning for Player
A if and only if the set of colors seen infinitely often is in S. In particular,
Muller objectives are PI and more general than parity objectives. In that paper
[70], among other things, the authors show that in finite turn-based games,
for those Muller objectives that are upward-closed, positional strategies are
sufficient to be almost-surely winning for Player A. A Muller objective defined
by S C 2K is upward-closed if, for all C,C’ € 2K if C € S and C C C’, then
C’ € S. Note that, by [58, Theorem 4.5] — alternatively, Corollary 3.24 —
we can deduce that with upward-closed Muller objectives, Player A always has
positional optimal strategies in finite turn-based games.

We believe that this could be extended to standard concurrent games, up
to adding the assumption that optimal strategies do exist. We conjecture the
following;:

Conjecture 5.16. In all standard finite concurrent games with an upward-
closed Muller objective, if Player A has an optimal strategy, then she has one
that is positional.

An upward-closed Muller objective can be seen as a disjunction of conjunc-
tions of Biichi objectives. That is, Player A wants to see infinitely often as many
states as possible. Therefore, we believe that, to play optimally, Player A only
needs to play a locally optimal strategy whose support, at each state, is max-
imal (which is possible because the game is standard). We also believe that
what is stated in Conjecture 5.16 gives a characterization of upward-closed
Muller objectives. That is, given any Muller objective that is not upward-

5In other words, the strategy plays a single GF-strategy at each local interaction
at states in Opt,.
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closed, there is a standard finite game where Player A can play optimally, but
it can only be done with infinite-choice strategies. Note that upward-closed
Muller objectives are also characterized in [70].

Following a similar idea, we believe that it is possible to characterize those
Muller objectives for which, in standard finite concurrent games, whenever
there is a subgame optimal strategy, there is a finite-memory one. As can be
seen in Table 3.1, in finite parity games with at least three colors, infinite-choice
strategies may be required to play subgame optimally. Parity objectives with
at least three colors can be written as a conjunction of a Biichi and a co-Biichi
objective. We believe that this is the issue. We make the conjecture below.

Conjecture 5.17. In all standard finite concurrent games with a Muller
objective that can be written as a disjuntion of either a conjunction of Biichi
or a conjunction of co-Biichi objectives, if Player A has an optimal strategy,
then she has a finite-memory one.
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Part 111

Restricting game forms in
concurrent games
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This final part is arguably the most important one of this dissertation:
here, we adopt an entirely new approach towards concurrent games, which
we believe is promising. The general idea is the following. Since concurrent
(uncolored) arenas behave poorly in general, especially compared to turn-based
(uncolored) arenas, see for instance the previous part, we restrict ourselves to
subsets of concurrent (uncolored) arenas. These subsets will always strictly
include turn-based arenas and contain only arenas enjoying some of the nice
properties that turn-based arenas enjoy. To properly define these subsets, we
consider a set of colors K and a win/lose objective W C K“ — say a reachability
objective — and a type of strategies 7 — say optimal positional strategies.
Then, we want to define a subset of (W, 7)-well-behaved concurrent uncolored
arenas. Informally, we define (W, 7)-well-behaved concurrent uncolored arenas
as arenas for which in all colored games with objective W that can be obtained
from them, there are 7-strategies, for one or both of the players.

The main novelty lies in the way we define these subsets of concurrent
uncolored arenas. Indeed, they are defined via the crucial notion of game
form, and local interaction. That is, given an objective W and a type of
strategies 7, the goal is to identify a set of game forms S(yy,-) such that all the
concurrent uncolored arenas whose local interactions are included in Sy, are
(W, 7)-well-behaved.

To define this set S(y,;), we proceed in two steps, described below.

e First, we characterize the game forms that are individually well-behaved
w.r.t. (W, 7). More precisely, a game form F is individually well-behaved
w.r.t. (W, ) if all “simple arenas” that can be built from F are (W, 7)-
well-behaved. Informally, a simple arena built from F is an arena with
only one non-trivial local interaction, J, which occurs in a central state
Ginit- Every other state is either stopping or trivial (i.e. with only one
possible distributions over successor states regardless of what the players
do) and looping back to ginit. That way, the only source of interaction,
and therefore concurrency, in the arena comes from F.

e Second, we prove that all concurrent arenas where all local interactions
are individually well-behaved w.r.t. (W, 7) are (W, 7)-well-behaved. We
then define the set Sy, ;) to be equal to the set of game forms individually
well-behaved w.r.t. (W, 7).

When this second step is conclusive, in some cases it will be the case even for
arenas with infinitely many states, however in some other cases it will be only
for finite-state arenas.

Assuming that we have achieved both of these steps, the set Sy, of game
forms can be seen as maximal w.r.t. (W, 7). Indeed, we can reformulate the
two steps above as follows:
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e all game forms not in S(yy,,) behave poorly w.r.t. (W, 7), even individ-
ually — since, given any game form that is individually poorly-behaved
(i.e. non individually well-behaved) w.r.t. (W, 7), there is a simple arena
built on F that is not (W, 7)-well-behaved;

e all game forms in Sy, behave well wr.t. (W, 7), even collectively
— since all concurrent arenas with local interactions individually well-
behaved w.r.t (W, 1) are (W, 7)-well-behaved.

Alternatively, we could say that being individually well-behaved w.r.t. (W, 1) is
a local necessary and sufficient condition for arenas to be (W, 7)-well-behaved.
We formally define this notion in page 247.

As argued above, the set Sy, of game forms can be seen as maximal
w.r.t. (W, 7). However note that for various (W, 7), there exists a concurrent
arena with some individually poorly-behaved local interactions that is still
(W, 7)-well-behaved. The only thing we claim about game forms individually
poorly-behaved w.r.t. (W,7) is that there are some simple arenas built on
them that are not (W, 7)-well-behaved. However, it is not the case of all the
arenas built on them.

The main purpose of this part is to apply this two-step procedure to de-
fine sets of game forms S(yy,;) for various win/lose objectives W and types of
strategies 7. In addition, we will perform this transfer not only on win/lose
objectives, but also on more general payoff functions. In fact, we will perform
this transfer with sets S of (non necessarily win/lose) payoff functions. In
that case, a game form will be deemed individually safe w.r.t. (S,7) if it is
individually safe w.r.t. (f,7), for all payoff functions f € S.

Benefits of this characterization. Let us now give an idea of how the
above characterization can be used in practice. We believe that the main ben-
efit of characterizing the local interactions that are individually well-behaved
w.r.t. payoff functions and types of strategies lies in the design of games.
Indeed, when designing a game with a specification in mind — for instance,
the existence of positional optimal strategies in finite-state reachability games
— our characterization provides exactly the safe building blocks (i.e. local
interactions) that can be used to ensure that the desired specification holds
in the compound arenas. Furthermore, as long as they are individually well-
behaved, all building blocks can be used, regardless of the other individually
well-behaved blocks used in the game. Hence, the design of games can be done
locally, without knowing the other local components, or even the number of
components involved.

As mentioned above, the desired specification holds in any compound arena
whose building blocks are individually well-behaved. In addition this arena can
be dynamically modified while maintaining that this specification holds. This
modification may consist in adding an individually well-behaved building block
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to this compound arena, removing one building block or replacing a building
block by another individually well-behaved one.

Arguably, it has a second benefit, though it may not have a strong practical
value. Indeed, to decide if a game G with objective W enjoys the existence of 7-
strategies, one may consider every local interaction occurring in the underlying
arena, decide if they are all individually well-behaved w.r.t. (W, 7) (assuming
it is possible), and if so conclude that 7T-strategies exist in G. However, it
has two main drawbacks: first, this requires to handle all local interactions,
which may be costly. Second, we can only conclude if all local interactions
are individually well-behaved. Perhaps this approach is promising in contexts
where we already know, a priori, that a large amount of the local interactions
involved are individually well-behaved w.r.t. (W, ), and there are only a few
of them to check.

Some formal definitions. Before we give an overview of what we do
specifically in each chapter of this part, let us formally introduce the notion
of simple games built from a game form as we will use this notion throughout
this part. Recall Definition 1.21: a game form F’ is obtained from a game
form F if F'is equal to F up to a — not necessarily injective — renaming of
the outcomes. Also recall Definition 1.11: a game form is trivial if both players
have only one available GF-strategy.

Definition 5.1 (Simple games). Consider a game form F. A simple game
built on F is a game G such that:

e there is a central state gnit € Qns such that F(ginit) is obtained from F;

e all non-stopping non-central states ¢ € Qns\{¢init} are trivial and looping
on the state ginjt.

Note that the game G is indeed built from F according to Definition 1.22.

In this part, we prove instances of what we call local-global transfers. These
correspond to the (somewhat) necessary and sufficient condition discussed ear-
lier in page 245. We define below how we will formulate these transfers in this
part.

Definition 5.2 (Necessary and Sufficient Condition Transfer, NSC-Transfer).
Let X denote a set of payoff functions. A game with payoff function in X is
called an X game. Let also Y be a subset of game forms — for instance, it
may be the set of standard game forms. Consider a predicate ¢ on X games
and a predicate ygp on Y game forms. When we say that: “among Y game
forms, satisfying g is an NSC-transfer for (possibly finite, possibly without
stopping states) X games to satisfy the property ¢”, it means that:

1. from any game form F in Y that does not satisfy the predicate Vg,
one can build on F a simple (possibly finite, possibly without stopping
states) X game that does not satisfy the predicate p;
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2. all (possibly finite, possibly without stopping states) X games, whose lo-
cal interactions are game forms in Y satisfying the predicate Ygp, satisfy
the predicate .

We state several results in this part with the notion of NSC-transfer: Propo-
sition 6.1, Theorem 6.6, Proposition 7.1, Theorem 7.5, Proposition 7.7 and
Corollary 8.10.

Let us argue why what we have defined in Definition 5.2 is called a nec-
essary and sufficient condition. Consider an NSC-transfer statement as in
Definition 5.2: among Y game forms, satisfying ¥gg is an NSC-transfer for X
games to satisfy the property . This statement hides in fact an equivalence
that could be stated as follows. Consider a non-empty set Sgr of Y game
forms. Then, the two following assertions are equivalent:

a. The set Sgr only contains game forms satisfying the predicate 1gF;
b. All X games built on Sgf satisfy the property ¢.

Indeed, since it is an NSC-transfer, item a. implies item b. by item 2. of
Definition 5.2 and item b. implies item a. by item 1. of Definition 5.2. Thus,
all NSC-transfers hide an equivalence stated with sets of game forms (hence
the NSC terminology).

This part contains four chapters. Chapter 6 deals with the restrictions on
game forms to be used in concurrent games so that they ensure nice properties
that can be directly deduced from Theorem 2.3. In particular, we provide an
NSC-transfer for the existence of winning strategies in concurrent games. In
the next two chapters, we state NSC-transfers for the existence of positional
optimal strategies in parity games. Specifically, in Chapter 7, we consider ar-
bitrary local interactions and show NSC-transfers for safety, reachability and
Biichi objectives. In Chapter 8, we consider only standard finite game forms,
but we prove NSC-transfers for arbitrary parity objectives. Finally, in Chap-
ter 9, we study the different classes of game forms we have defined in this part.
Note that these classes are studied outside of any concurrent game context.
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6 - Game forms for general objectives

In this chapter, we make use of the new version of Blackwell determinacy
stated in Theorem 2.3. Specifically, we use items (1.a) but also (2) of this
theorem to obtain two things rather straightforwardly. First, somewhat neces-
sary and sufficient conditions on game forms that, when they are ensured by
all the local interactions in a game behaves in a good way, i.e. NSC-transfer.
Second, sufficient conditions on game forms that, when they are ensured by all
the local interactions in a game, ensure that the game behaves in a good way.
In the next two paragraphs, we present the two NSC-transfers of this chapter.

We first realize that item (2) alone of Theorem 2.3 gives straightforwardly
an NSC-transfer on arbitrary game forms for infinite games (with arbitrary
payoff functions) to have a value. This is stated in Proposition 6.1.

We then consider the existence of winning strategies. There are very sim-
ple concurrent games in which no player has a winning strategy. We consider,
among standard deterministic game forms, the ones ensuring the existence of
winning strategies in infinite concurrent games. These are called determined
game forms. We obtain an NSC-transfer stated in Theorem 6.6. The proof
is direct from Theorem 2.3 (items (1.a),(2)). Note that we have studied de-
termined game forms in [38]. In that paper, we have already shown (see [38,
Theorem 17|) that, when used in concurrent games, determined game forms
ensure the existence of winning strategies from every state for either of the
players. However, in this paper, the proof is more elaborate since could not
use Theorem 2.3 as we had not proved it yet. Instead, we used the notions
of parallelization and sequentialization of games and strategies, that we have
defined in this dissertation in Section 3.4.

Nonetheless, in [38], in addition to proving the existence of winning strate-
gies, we also show that the memory requirement to win in concurrent games
with determined local interactions is the same as in (deterministic) turn-based
games. This is stated, without a proof, in Theorem 6.7. As an additional
remark on determined game forms, Theorem 6.6 is a generalization of Borel
determinacy (Theorem 2.1), that uses Borel determinacy as a black box in its
proof.

Finally, we quickly discuss in Subsection 6.2.2 an application of determined
game forms: discrete-bidding games.

The applications of Theorem 2.3 to determined and valuable game forms
actually constitute the only NSC-transfer that we will give in this chapter.
In the remainder of this chapter, we will slightly modify the definition of de-
termined game forms to obtain sometimes weaker, sometimes incomparable
restrictions on game forms.

When proving Theorem 6.6, we actually use a definition (see Proposi-
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tion 6.5) of determined game forms that is equivalent to the one we gave
in [38], but that is more suited for the application of Theorem 2.3. Another
interest of this equivalent definition is that it is easier to generalize. The first
generalization we propose makes the determinacy of game forms asymmetric
in the players: we obtain game forms that are semi-determined w.r.t. Player
A (or Player B). When such game forms are used in concurrent games, they
ensure that the game has a value, that the value of every state is either 0 or
1, and that from every state where this value is 1, Player A has a winning
strategy. This is stated in Proposition 6.9.

The second generalization we consider induces the definition of game forms
finitely maximizable w.r.t. a player. These are standard finite game forms that
are maximized by a finite set of GF-strategies for Player A (or Player B), see
Definition 6.3. When these game forms are used in a finite concurrent arena
C, the arena C behaves, somehow, like a finite turn-based arena. We give
two applications. In games obtained from such arenas with a payoff function
that is PI upward well-founded, Player A has a subgame optimal strategy,
see Theorem 6.11. This generalizes Corollary 3.25 (the same result in the
context of turn-based games). Furthermore, if this payoff function corresponds
to a parity objective, Player A has a positional strategy that is optimal, see
Corollary 6.12. To prove both these applications, we use the aforementioned
notions of parallelization and sequentialization of games and strategies from
Section 3.4.

Finally, we present a strengthening of the notion of finitely maximizable
game forms: uniquely maximizable game forms. These are arbitrary game
forms that are maximized by a single Player-A GF-strategy. We first show
that, though this requirement is very strong, there is a natural way to construct
uniquely maximizable game forms, see Proposition 6.14. We then show that,
when all local interactions of an arena are uniquely maximizable w.r.t. Player
A, she has a positional strategy that is (subgame) optimal regardless of the
payoff function considered, see Theorem 6.15.

As mentioned above, with these last three classes of game forms, we do
not state an NSC-transfer. Furthermore, everything we prove in this chapter,
except what does concern determined game forms, is unpublished.

6.1 Valuable game forms

We start with a very brief section dealing with valuable game forms. This
first local-global transfer in concurrent games is a straightforward consequence
of Theorem 2.3 (item 2). Indeed, if one only considers this item, this theorem
can be read as follows: as soon as all local interactions are valuable, the game
has a value. Furthermore, it is straightforward that from a game form that is
not valuable, one can build a simple form that does not have a value. Hence,
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Figure 6.1: A game form (that is Figure 6.2: A game form (that is
determined). not determined).

we obtain the proposition below:

Proposition 6.1. Among arbitrary game forms, being valuable is an NSC-
transfer for infinite games (with measurable payoff functions into [0,1]) to have
a value.

Proof. Consider any game form F that is not valuable. Let v : O — [0, 1] be a
valuation of the outcomes of F such that the game in normal form (F,v) does
not have a value. We define an arena C = (Q, F, K, col) such that Qns := {qinit}
(with ginit ¢ O, up to a renaming of the outcomes) with F(gint) := F. Fur-
thermore, Qs := O with, for all ¢ € Qs, val(q) < v(q) € [0,1]. Furthermore,
K and col are defined arbitrarily. With this construction, we have that, re-
gardless of the payoff function f : KY — [0, 1] considered, for G := (C, f), we
have xg[A](ginit) = val[(F,v)][A] and xg[B](ginit) = val[(F,v)][B]. Therefore,
the game G does not have a value.

Conversely, item 2. of Theorem 2.3 gives that all concurrent game whose
local interactions are valuable game forms has a value. O

6.2 Determined game forms

In this section, we are looking for a local-global transfer to ensure that,
in infinite win/lose games without stopping states, from every state, either of
the player has a winning strategy. Since we are considering winning strategies
(recall Definition 1.33), we only consider deterministic standard game forms.
Recall that, for such a game form F € Form(O) on some set of outcomes O,
we have that for all a € Actp and b € Actg, o(a,b) € O. We have studied this
question in [38]. However, the main result of this section, Theorem 6.4 below,
that was also central in [38] is now a direct consequence of Theorem 2.3 (in
particular, of items l.a and 2).

Compared to the conditions on game forms we will consider in the next
chapter, the condition we consider in this section is rather simple to explain.
Our goal is to come up with a definition of game form that ensures the existence
of winning strategies. Consider some game forms such as the ones depicted in
Figures 6.1, 6.2. A natural way to define win/lose games from these game forms
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Figure 6.3: The game form F; of Figure 6.4: The game form F;
Figure 6.1 with the valuation v : of Figure 6.1 with the valuation
{z,y,2} — {0,1} such that v(z) = v : {x,y,2} — {0,1} such that
v(z) :=1,v(y) :=0. v(x) :=1v(y) =v(z) :=0.

is the following: every outcome is mapped to either 1 (i.e. winning for Player A)
or 0 (i.e. winning for Player B). Then, a Player-A winning (GF-)strategy in this
game is a row on which there are only outcomes winning for her, i.e. mapped
to 1. This is the case of the top row in Figure 6.3. Symmetrically, a Player-
B winning (GF-)strategy in this game is a column on which there are only
outcomes mapped to 0. This is the case of the leftmost column in Figure 6.4.
However, neither of the players has a winning (GF-)strategy in Figure 6.5. In
fact, game forms for which there are always winning GF-strategies as described
above are called determined and are the subject of study of this section. This
notion already exists, see for instance [36], where determinacy is referred to as
(0,1)-solvable, or [71] where determinacy is referred to as tightness.

Definition 6.1 (Determined game form). Consider a set of outcomes O and
a standard deterministic game form F € Form(O). It is determined if, for all
w:0 —{0,1}:

o either Player A has a winning (GF-)strategy, i.e. there is some a € Actp
such that w o g(a,Actg) = {1};

e or Player B has a winning (GF-)strategy, i.e.there is some b € Actg such
that w o p(Acta, b) = {0}.

Concerning the game forms of Figure 6.1 and 6.2, one can realize that F;
is determined. One can check it by looking at all the possible valuations of the
outcomes. (The winning players is the one for whom at least two elements in
{z,y, z} are mapped to her winning outcome.) However, the game form F3 is
not determined, as witnessed in Figure 6.5.

Furthermore, it is straightforward that all turn-based deterministic game
forms are determined.

Proposition 6.2. All turn-based deterministic game forms are determined.

Proof. Consider a turn-based deterministic game form F. Assume Player A
plays alone, the other case being symmetrical. Consider any map O — {0, 1}.
If all outcomes are mapped to 0, then clearly Player B wins. Otherwise, there is
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Figure 6.5: The game form JF, of Figure 6.2 with the valuation v :
{z,y,2z} — {0,1} such that v(z) = v(y) := 1,v(z) := 0.
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some outcome in O mapped to 1 that Player A can enforce (as the game form is
turn-based). In any case, either of the players has a winning (GF-)strategy. [

It is rather straightforward that any game form that is not determined is
unsafe w.r.t. the existence of winning strategies in win/lose concurrent games.
This is stated below.

Proposition 6.3. Consider a set of outcomes O and a standard deterministic
game form F € Form(O). If the game form F is not determined, then there
is a simple win/lose game without stopping states built from F in which no
player has a winning strategy from the state gnjt-

Proof. Let w: O — {0, 1} be a valuation of the outcomes witnessing that the
game form F is not determined. We define an arena C = (@, F, K, col) such
that @ = Qns := {¢init, 1,0} with K := {0,1} and col(ginit) = col(0) := 0 and
col(1) := 1. In addition, denoting F = (Acta, Actg, O, o), the local interaction
at state ginit is equal to F(ginit) := (Acta, Actg, {0,1},E,(0)). That is, given a
pair of actions (a,b) € Acta x Actg, the next state reached after gnit if (a,b) is
played is equal to v o p(a,b). Both states 1 and 0 are trivial and loop back on
Ginit- We consider the win/lose objective Wa C K* such that Wa := {0-1-K“}.
That is, from qg, Player A wins if and only if the next state seen is of color 1,
i.e. if the next state is 1. Note that the game G is indeed a simple game built
from F, recall Definition 5.1.

Let us now show that in the game G = (C, Wa), neither of the player has a
(deterministic) winning strategy from ¢ni;. Consider any deterministic Player-
A strategy sa € S§. By choice of the valuation v, there is an action b € Actg
such that w o o(sa(ginit),b) = 0. A deterministic Player-B strategy sg € S%
such that sg(ginit) := b wins surely against the Player-A strategy sa from ginit.
In fact, Player A has no winning strategy from gjnj;. We can show similarly
that Player B has no winning strategy from ginjt. O

The question now is, are there always winning strategies in win/lose games
where all local interactions are determined. It is in fact the case, as stated in
the theorem below.
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Theorem 6.4. Consider a concurrent win/lose game G without stopping
states such that, for all ¢ € Q, the local interaction F(q) is determined. Then,
from every state q € @, either of the players have a winning strategy.

This statement corresponds to [38, Theorem 17]|. In that paper, we have
proved this theorem by using the notions of parallelization and sequentializa-
tion of strategies that we introduced in Section 3.4 from Chapter 3. The idea
in that paper is to consider winning strategies in the sequentialized version of
the game — which are ensured to exist by Theorem 2.1 (the determinacy of
Borel games) — and translate them back into the original concurrent game by
using the determinacy of the local interactions.

However, with the help of Theorem 2.3, it can be proved in a much quicker
fashion. Specifically, we want to use item 1.a of Theorem 2.3. However, to
do so, we need to express the fact that a game form is determined with the
notion of sets of GF-strategies supremizing game forms. This is done in the
proposition below where we give an equivalent definition of determined game
forms.

Proposition 6.5. Consider a set of outcomes O and a standard deterministic
game form F € Form(O). It is determined if and only if it is valuable and
supremized w.r.t. Player A by Acta and w.r.t. Player B by Actg (i.e. e-optimal
GF-strategies can be found among deterministic GF-strategies).

Note that, to prove Theorem 6.4, we do not need an equivalence only the
implication assuming the game form is determined.

Proof. Assume that the game form F is determined. Consider any valuations
of the outcome v : O — [0,1]. For all u € [0,1], we let O>, = {0 € O |
v(o) > u} and vs, : O — {0,1} such that v3![1] := Os,. We then let
Wina := {u € [0,1] | 3a € Acta, v>ulo(a, Actg)] = {1}}. Note that Wina # 0
since 0 € Wina.

Now, we let z := sup Wina and we claim that val[(F, v)][A] = = = val[(F, v)][B].
Let € > 0. There is u € Winp such that ©u > x — . Consider some a € Actp
such that vsy[o(a, Actg)] = {1}. Then, we have val[(F,v)][a] > u. Indeed, for
all Player-B actions b € Actg, we have v o p(a,b) > u. As this holds for all
e > 0, it follows that val[(F,v)][A] > z and approaching the value x can be
done with deterministic GF-strategies for Player A.

If © = 1, we indeed have val[(F,v)][A] = z = val[(F,v)][B]. Assume now
that < 1. Then, for all 0 < ¢ < 1 — 2, we have 2 + ¢ € [0,1] \ Wina.
Therefore, since the game form F is determined, there is some b € Actg such
that v>z4c[0(Acta,b)] = {0}. Then, we have val[(F,v)|[b] < z+ ¢. Indeed, for
all Player-A actions a € Acta, we have v o g(a,b) < x + . As this holds for
all ¢ > 0, it follows that val[(F,v)][B] < x and approaching the value = can
be done with deterministic GF-strategies for Player B. Hence, val[(F,v)][A] =
x = val[(F,v)][B].
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Assume now that F is valuable and supremized w.r.t. Player A by Acta and
w.r.t. Player B by Actg. Consider any valuation v : O — {0,1}. Since the game
form F is valuable, we let = := val[(F,v)]. Let us show that € {0,1}. Assume
towards a contradiction that it is not the case and let € := w > 0. By
assumption, Player A (resp. B) has a deterministic GF-strategy a € Acta (resp.
b € Actg) that is e-optimal in the game in normal form (F,v). However, we
have v o p(a,b) € {0,1}. Hence, by definition of e, either a or b is not e-
optimal. Hence the contradiction. In fact, z € {0,1}. Assume for instance
that x = 1 and consider a Player A deterministic GF-strategy a € Acta that is
%—optimal in the game in normal form (F,v). Then, for all b € Actg, we have
lvoo(a,b)—1| < % Since v[g] C {0, 1}, it follows that vo go(a,b) = 1. In other
words, we have v[g(a, Actg)] = {1}. Symmetrically, if z = 0, we can show that

there is some b € Actg such that v[p(Acta,b)] = {0}. O
We can now prove Theorem 6.4.

Proof. This proof is actually somewhat close to the second part of the proof
of Proposition 6.5 but adapted to the case of win/lose graph games.

Consider such a game G and a state ¢ € Q. Since all local interactions
are valuable (since they are determined, by Proposition 6.5), by Theorem 2.3,
the game G has a value. Let z := xg(¢q). Assume towards a contradiction
that x ¢ {0,1}. Let ¢ := w > 0. By Theorem 2.3, since the local
interactions are supremized, w.r.t. both players, by deterministic GF-strategies
by Proposition 6.5, Player A (resp. B) has a deterministic GF-strategy sa € S§
(resp. sg € S§) that is e-optimal in the game G from ¢. Since all local
interactions are deterministic, and both strategies sp and sg are deterministic,
it follows that there is a unique path p € Q% such that ]PZ‘}I’;B [p] = 1. Since
the game G has no stopping states and is win/lose, it follows that we have
EZ#[(fe)9] € {0,1}. Hence, by definition of ¢, either sa (if Eg"*[(fc)?] = 0)
or sg (if ER®[(fe)?] = 1) is not e-optimal. Hence the contradiction. In
fact, = € {0,1}. Assume for instance that z = 1 and consider a Player A
deterministic strategy sa € S(/i that is %—optimal in the game G from ¢. Then,
for all deterministic Player-B strategies sg € Actg, we have [EZ;®[(fc)?] —
1] < 1. Since EZ’?&SB[(fC)q] € {0,1}, it follows that EZ’TZISB[(fC)q] =1 In
other words, for all Player-B deterministic strategies sg € S%, the only path
compatible with sa and sg has value 1. That is, the Player-A deterministic
strategy sa is winning. Symmetrically, if £ = 0, we can show that Player B
has a deterministic winning strategy. O

Overall, determined game forms ensure the following.

Theorem 6.6. Among standard deterministic game forms, being determined
is an NSC-transfer for the existence of winning strategies in infinite win/lose
games without stopping states.

255




Proof. This a consequence of Proposition 6.3 and Theorem 6.4. ]

Memory Transfer. In [38] where we have originally considered the use
of determined game forms in concurrent games, in addition to proving Theo-
rem 6.4, we have also proved results on the memory required to play winning
strategies. We recall what was done in [38] here, without giving the formal
proof (which can be found in the arXiv version [72] of [38]).

In [51], the authors proved an equivalence between the shape of a winning
objective and the existence of winning strategies that can be implemented with
a given memory skeleton M in turn-based games. They defined the properties
of M-selectivity and M-monotony (which we recall in Section 6.6) and proved
that for M a memory skeleton and W C K%, we have that W and K¥ \ W
are M-monotone and M-selective is equivalent to every deterministic finite-
state turn-based game with W as winning objective, winning strategies for
both players that can be found among strategies implemented with memory
skeleton M (see Theorem 6.18 in Section 6.6). This also holds in finite-state
concurrent games with local interactions that are determined and finite. This
is stated Theorem 6.7 below, which amounts to |38, Theorem 18|.

Theorem 6.7. Let K be a non-empty set of colors, M be a memory skeleton
on K and W C K* be an objective. The following two assertions are equivalent:

1. in every finite-state concurrent game with local interactions that are
finite and determined, winning strategies for both players that can be
found among strategies implemented with memory skeleton M;

2. W and KY \ W are M-monotone and M-selective.

6.2.1 . Retrieving Theorem 2.1

We want to point out an important fact about that Theorem 6.4.

Informal Statement 6.1. Borel determinacy, that is the existence of win-
ning strategies, from every state, in all deterministic turn-based games without
stopping states (stated in Theorem 2.1) is a logical consequence of Theorem 6.4.

Proof. This comes from Proposition 6.2: deterministic turn-based game forms
are determined. O

Remark 6.1. Note that Borel determinacy that we have stated in Theo-
rem 2.1 holds even for a set of states uncountable. On the other hand, the
games we consider in this dissertation have a countable set of states. However,
Theorem 2.3 and Proposition 6.2 would also hold with a set of states that
is not countable. (Note that, even if the set of states is not countable, from
any starting state, once both players have chosen a strategy, the set of states
that can be visited with positive probability is countable. This is because the
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distributions over states that we consider in local interactions always have a
countable support.)

However, it is also very important to note the following. We have used
Theorem 2.3 to prove Theorem 6.4 and we have used Theorem 2.1 to prove
Theorem 2.3. Therefore, we have not given a new proof of Theorem 2.1. The
only thing we can say is that Theorem 2.3 is a strengthening of Theorem 2.1.

In addition, note that we have also proved Theorem 6.4 in [38]. However,
in that paper we directly used Theorem 2.1 to prove it — since we transferred
already existing results in deterministic turn-based games to concurrent games
with determined local interactions. Hence, in that case too, we have not given
a new proof of Theorem 2.1.

6.2.2 . Application: discrete-bidding games

In this subsection, we would like to quickly present an application of deter-
mined game forms. More precisely, determined game forms actually appear in
concurrent games of the literature. We discuss this on discrete-bidding games.
These games were initially introduced in [73]. Here, we consider part of what
is done in [71]. We would like to thank Guy Avni (one of the authors of [74])
for the fruitful discussion we had in Highlights 2022 on the subject of this
subsection.

The games studied in that paper are finite-state concurrent two-player
antagonistic games with specific local interactions. Let us explain exactly how
the players interact at each state. The two players start the game with an
initial budget (i.e. an integer). Then, at each step of the game, both players
bid concurrently some amount of their current budget. The highest bidder
pays the other player what she has bid and gets to choose the next state. The
process repeats indefinitely, thus creating an infinite sequence of states. The
games considered are win/lose and without stopping states.

Contrary to continuous bidding, which is another kind of concurrent games
studied in the literature, how discrete-bidding games behave heavily depends
on the tie-breaking mechanism used in the game. In [74], the authors present
three kinds of tie-breaking mechanisms. All these mechanisms induce different
local interactions in the games. Let us first consider deterministic tie-breaking
mechanisms, we will discuss briefly stochastic ones at the end of this subsection.
There are two deterministic tie-breaking mechanisms studied in [7]:

e Transducer-based: the game is given a transducer that, as a function
of the states visited, the winners of the previous ties, the number of
ties that have already occurred and past winning bids choose who is the
winner of the tie.

e Advantaged based: at the start of the game, one player holds the advan-
tage. Then, whenever there is a tie, the player holding the advantage
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Figure 6.6: A bidding interaction where both players have budget 3.

may decide to either win and give the advantage to the other player or
lose and keep the advantage.

Let us first discuss transducer-based tie-breaking. In this setting, we are in-
terested in the existence of winning strategies. As stated in |74, Theorem 4.1],
if the transducer has the information of whether or not a tie has occurred,
then there are reachability games where neither player has winning strategies.
Hence, the authors focus on transducer unaware of ties. In this setting, the
authors show in all Muller games (a generalization of parity games), either
player has a winning strategy [74, Theorem 4.5].

In fact, in such a setting, we believe that the local interactions involved
are determined. This would imply these bidding games inherit all the nice
properties that concurrent games with determined local interactions have, see
Theorem 6.4 and Theorems 6.7. In particular, in all win/lose games (with
Borel winning objectives), one of the players has a winning strategy.

Let us give the intuition of why we believe that the local interactions in-
volved are determined. To do so, consider the bidding interaction Fyq depicted
in Figure 6.6 in the case where both players have budget 3. An outcome v; ;
corresponds to a situation where Player A has bid ¢ and Player B has bid j.
The diagonal outcomes of the shape v;; correspond to ties. Furthermore, be-
cause of how bidding games are played, some of these outcomes are in fact
equal. For instance, v and wvp; are the same since in both cases Player A
wins and pays 2 to Player B.

In fact, the bidding interaction has the shape depicted in Figure 6.7 where
the outcome v; o refers to the fact that Player A has won the bid and has paid
2 to Player B. Let us now consider the ties. This is where we use the unaware
of ties assumption. Assume that, given the history of the game, Player A wins
the next bid. Then, because the transducer considered is unaware of ties, an
outcome v;; is in fact equal to the outcome v; o. If the transducer were not
unaware of ties, the outcome v;; could not be compared, a priori, with either
v; A Or v; g (this can be seen in the example discussed in |74, Theorem 4.1]).
With the unaware of ties assumption, the bidding interaction has the shape
depicted in Figure 6.8.

Now, it is actually rather straightforward to show that the game form of
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Figure 6.7: The same bidding interaction where the relations between
outcomes are made explicit.
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Figure 6.8: The bidding interaction in the case where Player A wins ties.

Figure 6.8 is determined. Indeed, recall Definition 6.1 and consider a map of
the outcomes into {0, 1}. For the condition of Definition 6.1 not to be met, it
must be that:

e v3 A is mapped to 0, and vz g to 1;
e v A is mapped to 0, and va g to 1;
e v A is mapped to 0, and v; g to 1;

e Finally, if vga is mapped to 0, the leftmost column is full of 0, and if
vp A is mapped to 1, the topmost row is mapped to 1.

Hence, the condition of Definition 6.1 is necessarily met. That is, the game
form fs’i’j a is determined. It seems that this reasoning can be generalized to
any budgét of the players, regardless of who wins the current tie. Note that all
the observations and reasoning presented in this subsections are given in [74].
However, they are not used to prove the determinacy of the local interactions
(since this notion is not defined). Although, it has to be noted that what is
proved by the authors (called “local determinacy”) is close to the notion of
determinacy.

As mentioned above, there is another type of deterministic tie-breaking
mechanism: advantage-based tie-breaking. In this setting, the authors prove
similar results than for the transducer-based unaware of ties mechanism. It
would be interesting to investigate if, also in this case, we could show that the
local interactions are determined.

Finally, who wins ties may also be decided randomly. We discuss this
further at the end of Section 6.3 below.
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6.2.3 . Semi-determined game forms

In this subsection, we consider a weaker notion of determinacy for game
forms that is asymmetric in the players, in the sense that we make an assump-
tion for one player but not for the other. If we consider Definition 6.1, it does
not seem possible since the resulting definition would be pointless. However,
we may use the characterization of Proposition 6.5. since the notion we want
to define takes the point of view of only one player, say Player A, it suffices
not to make any assumption w.r.t. e-optimal GF-strategies for Player B. This
is what we do in the definition below.

Definition 6.2 (Semi determined game form). Consider a set of outcomes O
and a standard deterministic game form F € Form(O). It is semi determined
w.r.t. Player A if it is valuable and supremized w.r.t. Player A by Acta.

This is symmetrical for Player B.

In fact, for standard deterministic game forms with at least one set of
actions which is finite, being determined is equivalent to being semi determined
for Player A. This is not the case when both action sets are infinite.

Proposition 6.8. Consider a set of outcomes O and a standard deterministic
game form F € Form(O). If either Acta or Actg is finite, then F is determined
if and only if it is semi determined w.r.t. Player A (or Player B).

There is a standard deterministic game form where both players have an
infinite action set that is semi determined w.r.t. Player A but that is not
determined.

Proof. Consider a game form F and assume that it is semi determined w.r.t.
Player A. We do not make any other assumption on F for now. Consider any
valuation v : O — {0,1}. Since the game form F is valuable, we may consider
x = val[(F,v)] € [0,1]. Assume towards a contradiction that = ¢ {0,1}. Let
0 < € < z. Consider any Player-A deterministic GF-strategy a € Acta that
is e-optimal in the game in normal form (F,v). Then, for all b € Actg, it
must be that v o g(a,b) >z —e > 0. That is, v[o(a, Actg)] = {1}. Hence the
contradiction. In fact, it must be that x € {0, 1}.

Assume that z = 0. Let us now make additional assumptions on F. As-
sume first that the set Actp is finite. Assume towards a contradiction that,
for all b € Actg, there is some a € Acta such that v o g(a,b) = 1. Then,
consider a Player-A GF-strategy oa € D(Acta) that plays all actions in Acta
‘Ac—ltA'. Then, for all

og € D(Actg), we have out[(F,v)](oa,08) > ﬁ. Therefore, we would have

with uniform probability: for all a € Acta, oa(a) :=

x> ﬁ > 0, which is a contradiction. In fact, there is some b € Actg such
that v[o(Acta, b)] = {0}.
Assume now that the set Actg is finite. Assume again towards a contradic-

tion that, for all b € Actg, there is some a; € Acta such that v o g(ap, b) = 1.
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Figure 6.9: A game form semi determined w.r.t. Player A that is not
determined.

Then, consider a Player-A GF-strategy oa € D(Acta) that plays all actions in
Xg :={ap | b € Actg} with uniform probability: for all b € X, oa(ap) := ﬁ.

Then, for all og € D(Actg), we have out[(F,v)|(oa,08) > ﬁ. Therefore, we

would have z > |X% > 0, which is a contradiction. In fact, there is some

b € Actg such that v[o(Acta,b)] = {0}.

Hence, if either Acta or Actg is finite, then we can conclude that the game
form F is determined.

Consider now the game form F of Figure 6.9. We claim that it is semi
determined w.r.t. Player A. Consider any valuation v : {z,y} — [0,1]. If
v(y) > v(x), we have val[(F,v)] = v(y) and playing deterministically the top
row is optimal for Player A. Assume that v(y) < v(z). Then, we still have
val[(F,v)] = v(y). Indeed, for all n € N, a Player-B GF-strategy og € D(Actg)
that plays uniformly over the first n columns has value w — 00
v(y). In that case, any Player-A GF-strategy is optimal. Hence, the game form
F is semi determined w.r.t. Player A. However, it is not determined. Indeed,
for v : {z,y} — {0,1} such that v(z) := 1 and v(y) := 0, there is clearly no

rows of 1 nor any column of 0. O

Let us now consider what happens when we use semi determined game
forms w.r.t. Player A as local interactions in win/lose concurrent games with-
out stopping states. It still holds that the value of any state is 0 or 1. Further-
more Player A has still winning strategies from every state of value 1. However,
Player B does not necessarily have some from states of value 0'.

Proposition 6.9. Consider a concurrent win/lose game G without stopping
states such that, for all ¢ € Q, the local interaction F(q) is semi determined
w.r.t. Player A. Then, from every state q € Q, we have xg(q) € {0,1} and if|
Xxg(q) = 1, then Player A has a winning strategy from q.

I This is witnessed by the game form of Figure 6.9: if it placed in a game at a state
q where reaching x is winning for Player A and reaching y is winning for Player B,
then the state ¢ has value 0, but Player B has no winning strategy.
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Proof. This proof is almost identical to the proof of Theorem 6.4. Consider
such a game G and a state ¢ € (). Since all local interactions are valuable,
by Theorem 2.3, the game G has a value. Let x := xg(q). Assume towards
a contradiction that = ¢ {0,1}. Let 0 < ¢ < z. By Theorem 2.3, since
the local interactions are supremized, w.r.t. Player A, by deterministic GF-
strategies, Player A has a deterministic GF-strategy sa € Sﬁ that is e-optimal
in the game G from ¢. Consider any deterministic Player-B strategy sg € S(é.
Since all local interactions are deterministic, and both strategies sy and sg
are deterministic, it follows that there is a unique path p € Q¥ such that
P [p] = 1. Since the game G has no stopping states and is win/lose, it
follows that we have EZ’TC’[SB[(fc)q] € {0,1}. As this holds for all Player-B
deterministic strategies, there is a contradiction. Indeed, either for all Player-
B deterministic strategies sg € S§, we have EZ’?;B[(fc)q] =1, and in that case
the Player-A strategy sa has value 1. Or, there is some Player-B deterministic
strategy sg € S§ such that we have EZ®[(fe)?] = 0, and in that case the
Player-A strategy sa has value 0. In fact, x € {0,1}. Assume now that z =1
and consider a Player-A deterministic strategy sa € Sg that is %—optimal in
the game G from ¢. Then, for all deterministic Player-B strategies sg € Actpg,
we have \EE‘};B[(fc)q} — 1] < . Since EZ’TZISB[(fc)q] € {0,1}, it follows that
EZ’T(’;B[( fe)?] = 1. In other words, for all Player-B deterministic strategies
s € Sg, the only path compatible with sp and sg has value 1. That is, the

Player-A deterministic strategy sa is winning. O

6.3 Finitely-maximizable game forms

In this section, we consider another notion on standard finite game forms
— not necessarily on deterministic ones — that is weaker than determinacy
on standard finite game forms. Hence, on standard finite game forms, this can
be seen as a generalization of the notion of determinacy. Note that, however,
contrary to what we did in Theorem 6.6, we will not state an NSC-transfer in
this section.

To gain an intuition behind this notion, let us consider again the characteri-
zation of determined game forms via Proposition 6.5. In a standard finite game
form F — which is necessarily valuable, recall Theorem 1.11 — this charac-
terization, from Player A’s point of view, amounts to: the set Acta supremizes
the game form F. However, the set Acta, besides being the set of Player-
A deterministic GF-strategies, can simply be seen as a finite set of Player-A
GF-strategies. However, in this section, we are not particularly interested in
deterministic strategies — which was the case in the previous section since we
considered winning strategies. Hence, there is no reason to limit ourselves to
that specific finite set of Player-A GF-strategies. This suggests the definition
below of finitely maximizable game forms for one player.
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Definition 6.3 (Finitely maximizable game forms). Consider a set of out-
comes O and a standard finite game form F € Form(O). It is finitely maximiz-
able w.r.t. Player A if there is finite set Sa C D(Acta) of Player-A GF-strategies
that maximizes it.

The definition is analogous for Player B.

Remark 6.2. Consider a game form that is finitely maximizable w.r.t. Player
A. This game form is valuable by Theorem 1.11. Furthermore, since the
set Sa C D(Acta) is finite, it maximizes the game form F if and only if it
supremizes it, recall Observation 1.1.

We will give below two applications of finitely maximizable game forms in
finite games, but before that we state that any standard game forms with at
most two outcomes is finitely maximizable. It is also the case of determined
game forms.

Proposition 6.10. Consider a set of outcomes O and a standard finite game
form F € Form(O). If |O| < 2 or if the game form F is determined (it may be
turn-based), it is finitely maximizable w.r.t. Player A and Player B.

Proof. If F is determined, this is a direct consequence of Proposition 6.5.

Assume now that |O] < 2. Let us show that it is finitely maximizable
w.r.t. Player A, this is similar for Player B. If |O| = 1, this is obvious since
any Player-A GF-strategy is optimal in games in normal form that can be
obtained from F. Assume now that |O] = 2. We write O = {z,y}. We let
vg : {z,y} — [0,1] be such that vy(z) := 1 and v,(y) := 0 and symmetrically,
we let vy : {x,y} — [0,1] be such that vy(x) := 0 and v,(y) := 1. Let o} €
D(Actp) (resp. o3 € D(Actp)) be a Player-A GF-strategy that is optimal in the
game in normal form (F,vy) (resp. (F,vy)). We claim that the set {o%, 0%}
maximizes the game form F. Consider any valuation v : {z,y} — [0,1]. If
v(z) = v(y), any Player-A GF-strategy is optimal in the game in normal form
(F,v). Assume now that v(z) > v(y). We let w :=v —v(y) : {z,y} — [0, 1].
We have:

e v=0(x) vy +v(y)- vy
o w=(v(x) —v(y)) v

Therefore, by Lemma 1.10 and since o} is optimal in (F, v.):



That is, the Player-A GF-strategy o} is optimal in the game in normal form
(F,v). Similarly, if v(z) < v(y), we would have the Player-A GF-strategy oy
is optimal in the game in normal form (F,v). In fact, finite set {o%,0x} C
D(Acta) maximizes the game form F for Player A. O

With finitely maximizable local interactions in finite concurrent games, we
can make use of the results of (the first subsection of) Section 3.4 — regarding
the sequentialization and parallelization of strategies — and of Theorem 2.3.
That is, consider a finite concurrent game G where all local interactions are
finitely maximizable w.r.t. Player A. In particular, this game is B-finite, recall
Definition 3.25. The informal idea is the following: consider Definition 3.18 and
the turn-based game G(A, n) that is the sequentialized version of the concurrent
game G where, for all ¢ € Q, we have Ay := S3 for Si C D(Act}) a finite
set supremizing the game form F(q) (the function n is defined arbitrarily for
now). Since Sj is finite, the turn-based game G(A,n) is finite. By using
Theorem 2.3 and Proposition 3.32, we can then show that, for all ¢ € Q, we
have xg(q) = Xg(a;)(q). This means informally that what happens in the
turn-based game G(A,n) is the same as what happens in the game G, from
every state. Stated differently, the finite concurrent game G behaves like a
finite turn-based games, and therefore enjoys (some of) the nice properties
that finite turn-based games enjoy. We present two such properties below.

First, just like in finite turn-based games, there are always subgame optimal
strategies in finite concurrent games with local interactions which are finitely
maximizable w.r.t. Player A when the payoff function is PI upward well-
founded.

Theorem 6.11. Consider a finite concurrent game G with a PI upward well
founded payoff function where all local interactions are finitely maximizable
w.r.t. Player A. For all ¢ € Q, we let S C D(Act}) be a finite set of Player-A
GF-strategies supremizing the game form F(q). Then, Player A has a subgame
optimal strategy in G generated by (S3)qcq-

Remark 6.3. Before proving this theorem, we want to make two quick re-
marks. First, this result generalizes Corollary 3.25, though we use this corollary
to prove this theorem. Second, since for all ¢ € Q, the set Sj is finite, this
theorem shows the existence of a finite-choice subgame optimal strategy in G
(recall Definition 3.22).

Proof. Consider a fresh color k ¢ K and let K' := {k} and n : K — {k}.
For all ¢ € Q, we let Ay := Si and A := (Ag)geq- Consider now the turn-
based game G(A,n) from Definition 3.18. Since the payoff function of the
game G is Pl upward well-founded, so is the payoff function of the turn-based
game G(A,n). Hence, by Corollary 3.25, Player A has a subgame optimal
deterministic strategy sa € Si(A’") in the game G(A,n).
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Furthermore, by Proposition 3.32, for all ¢ € Q, we have xg(q) =
SUDy, e5¢(A) XG [ta](q) where S§ (A) refers to the set of Player-A strategies gener-
ated by A. By definition of A and Theorem 2.3, we have sup,, csc (1) Xg [ta](q) =
Xg(q)- Hence, for all ¢ € Q, we have xg(a,,)(q) = xg(g). In addition, Propo-
sition 3.32 also gives that the Player-A strategy Pra(sa) € S§ (from Defini-
tion 3.19) is generated by A and ensures, for all ¢ € @, that xg,)(q) =
Xg(Am (sa)(q) < xg(Pra(sa))(q). Therefore, the strategy Pra(sa) is optimal in
G. We can now conclude by applying Theorem 3.28: since Prﬁ(sA) is generated
by A and is positively bounded (since for all ¢ € @, A, is finite), there is a
Player-A strategy in the game G that is subgame optimal and generated by
A. O

Second, let us consider the memory necessary and sufficient to be (sub-
game) optimal in such concurrent games. In [38], when dealing with deter-
mined game forms, in addition to proving Theorem 6.4 (from the previous
subsection), we also established memory transfer from turn-based games to
concurrent games with determined local interactions (see [38, Theorem 12,
Corollary 16]). Since this is the main focus in this dissertation, we will state a
similar theorem only for parity objectives. However, note that we could have
similar statements for other objectives, well-behaved in turn-based games.

Corollary 6.12. Consider a finite concurrent parity game G where all local
interactions are finitely maximizable w.r.t. Player A. Then, Player A has a
positional strategy that is (subgame) optimal in G.

Proof. By Theorem 6.11, there is a finite-choice subgame optimal strategy in
G. Corollary 3.38 then gives that there is positional subgame optimal strategy
ing. O

Discrete-bidding games. We have discussed earlier in Section 6.2 the
fact that determined game forms appear in the literature. We discussed it
by using part of what is done in [71]. We have not considered yet the case
of random-based tie-breaking mechanism since determined game forms are,
by definition, deterministic. In this setting, the authors of [74] show that all
reachability (finite-state) games have a value when restricted to deterministic
strategies. (More precisely, they show that the games they consider have a
value, and in the games they consider, the players can only play deterministic
strategies.)

In fact, we make the conjecture below about the local interactions occurring
in this setting.

Conjecture 6.13. The local interactions occurring in discrete-bidding games
with random-based tie-breaking mechanisms are supremized by deterministic
GF-strategies. (Since these game forms are standard finite, it would follow that
these game forms are finitely maximizable.)
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game form.

This conjectures implies that all games using random-based tie-breaking
mechanisms have a value when restricted to deterministic strategies (regardless
of the Borel objectives or measurable payoff function considered).

6.4 Uniquely maximizable game forms

We can strengthen the notion of finite maximizability of local interactions
to ensure very strong properties on concurrent games, though it will apply to
(much) fewer games. For a game form to be finitely maximizable, we require
that there is a finite set that maximizes it. A natural way to strengthen this
property is to require that this set is not only finite but a singleton. This defines
uniquely maximizable game forms. Note that this is defined in arbitrary game
forms, not only standard ones. Furthermore, as in the previous section, we will
not state any NSC-transfer in this section.

Definition 6.4 (Uniquely maximizable game forms). Consider a set of out-
comes O and an arbitrary game form F € Form(O). It is uniquely maximizable
w.r.t. Player A if there is a Player-A GF-strategy oa € D(Acta) such that the
singleton {oa} maximizes the game form F.

The definition is analogous for Player B.

Being uniquely maximizable is a strong property on game forms. However,
we present below a class (namely, circular game forms) of standard finite game
forms that are uniquely maximizable w.r.t. both players.

Definition 6.5 (Circular game forms). Consider a finite set of outcomes O.
Let us denote O by O = {0g,01,...,0n—1} forn :=|0| € N. A game form F €
Form(O) is circular if Acta = Actg := [0,n— 1] and for all (i, j) € Acta x Actg,
we have: 0(%,7) := 0j—i mod n-

In Figure 6.10, we have depicted a circular game form for n = 4, and in
Figure 6.11, we have depicted a circular game form for n = 2. Note that

this game form is also known as the matching pennies interaction. In fact, all
circular game forms are uniquely maximizable w.r.t. both players.
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Proposition 6.14. Consider a finite set of outcomes O and a game form
F € Form[O]. If F is circular, for both players, a GF-strategy o that plays
uniformly at random all actions is such that the set {o} maximizes the game
form F. Hence, the game form F is uniquely maximizable w.r.t. both players.

Proof. Consider v : O — [0,1]. Let n := |O| and u := w € [0,1]. We
claim that u = val[(F,v)].
Let oa € D(Acta) be the Player-A GF-strategy that plays uniformly over

all actions. Consider any Player-B action j € [0,n — 1]. We have:

n—1 n—1

out[(F,v)](oa,v) = > oa(i) - 0(0j—i modn) = Zizo (%) _

i=0 "
Therefore, u = val[(F,v)](oca) < val[(F,v)]. Symmetrically, denoting og €
D(Actg) the Player-B GF-strategy that plays uniformly over all actions, we
have u = val[(F,v)|(og) > val[(F,v)]. Therefore, u = val[(F,v)] and oa and
og are optimal GF-strategies in the game in normal form (F,v). O

We want to mention that not all uniquely maximizable game forms are
circular. This is for instance the case of the game form of Figure 6.12.

When all game forms are uniquely maximizable w.r.t. Player A in an
arena, it becomes very easy for Player A to play optimally. Indeed, she has a
positional strategy that is subgame optimal regardless of the payoff function
considered.

Theorem 6.15. Consider an arbitrary concurrent arena C (that need not be
finite) and assume that all local interactions are uniquely maximizable w.r.t.
Player A. Then, there is a Player-A positional strategy sa € Sg such that, for
all payoff functions f : K¥ — [0, 1], the strategy sa is subgame optimal in the

game (C, f).

Proof. For all ¢ € Q, we let o € X% be a Player-A GF-strategy such that the
set {o} maximizes the game form F(g). Let sp € S§ be a positional Player-A
strategy such that, for all ¢ € Q, we have sa(q) := o}a.

Consider any payoff function f : K — [0,1]. Let us first show that the
strategy sa is optimal in the game G = (C, f). First, note that the strategy
sa is the only Player-A strategy generated by ({o}})seq. Furthermore, by
Theorem 2.3, for all ¢ > 0, for all ¢ € @Q, there is a Player-A strategy generated
by ({o4})gcq that is e-optimal from ¢ in G. In other words, for all € > 0,
the strategy sp is e-optimal from all states ¢ € Q). That is, the strategy spa is
optimal in the game G. This holds for all payoff functions f : K“ — [0, 1].

Consider now any payoff function f : KY — [0, 1] and let us show that the
strategy sa is subgame optimal in the game G = (C, f). Let p € (Qns)T. We
let v := col*(tl(p)) € K*. Then, the strategy sa is optimal from the state py in
the game G = (C, f7). Since this holds for all p € (Qns)™, it follows that the
strategy sa is subgame optimal in G = (C, f). O
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Another benefit of uniquely maximizable game forms is that they behave
well in games, even if not all local interactions are uniquely maximizable.
Indeed, whenever there are uniquely maximizable local interactions in an arena,
Player A should always play, positionally in the corresponding states, a GF-
strategy supremizing the game form. Let us define formally this change of
strategy.

Definition 6.6. Consider a concurrent arena C. Let S C ) be any set of
states. Consider any Player-A strategy sa € Sg. We say that another Player-A
strategy sy S-trivialize s if:

o forallge Q\ S and p € QT, we have sh(p-q) =salp-q);

o for all ¢ € S, there is op € S§ such that the set {oa} maximizes the
game form F(q). and for all p € Q, we have: sh(p - q) = oa.

We have the proposition below.

Proposition 6.16. Consider a concurrent arena C and a subset S C @ of
states. Assume that, for all ¢ € S, the game form F(q) is uniquely maximizable
w.r.t. Player A. Let sp € Sg be any Player-A strategy in the arena C. Then,
there are Player-A strategies S-trivializing the strategy sp. For all such Player-
A strategies s € S, for all payoff functions f : K¥ — [0,1] and for all finite
paths p € (Qns)*, we have x(c p[sal(p) < x(c,p)[sal(p) (recall Definition 3.3).

We only give an informal proof of this statement, as formalizing it properly
would be somewhat lengthy.

Proof. Consider a payoff function f : K¥ — [0, 1], a finite path p € (Qns)™ and
a Player-B strategy sg € S§. We let v := col*(tl(p)) € K*. We build an arena
cUnfeld such that cYnfld .= (@', F/, K, col’) with:

o Q :=p-Q* with Q' :={r e Q| mt € Qus};
o forall m e Ql:

F(r) := {@qu {ss(m)}, @, 0™) if me e S
({sa(m)}, {sa(m)}, @, 0™) otherwise

e for all m € Ql, col'(m) := col(my).

We can make several observations about the arena CU™°!d First, this arena
is in fact an MDP where Player A plays alone. We denote by tg the only
Player-B strategy in that arena. Second, for the Player-A positional strategy
ta € Sgunfom (resp. t) € Siunfom) such that for all 7 € Q’, we have ta(m) := sa(m)
(vesp. th(m) :=sy(m)), we have?:

B 1 = Bl 117

- Cunfold’p

2This is where the proof is informal, since this would require a formal proof, for
instance by applying Lemma 1.2.
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and

sh,s th,t
E(ﬁp ° (] = EcAunfEId 7p[f’y]

Third, all the local interactions in the arena CYU°! are uniquely maximiz-
able. Hence, by Theorem 6.15, the Player-A positional strategy t) € Siunmd
is subgame optimal in the game <C””f°'d, f). In particular, it is optimal from
p. Hence, EASS, [f7] < Egint, (/7] Therefore, B (7] < E™[f7]. Since
this holds for all Player-B strategies sg € S§, it follows that X, plsal(p) <
X(c,f)[sal(p)- O

6.5 Discussion, open questions and future work

In this chapter, we have given several applications of item (1.a) of Theo-
rem 2.3. That is, we have provided restrictions on game forms such that, when
all local interactions of a game satisfy these restrictions, the game satisfies
desirable properties.

In Subsection 6.2.2, we have discussed the use of the notion of determined
game forms in discrete-bedding games. We have also briefly discussed discrete-
bidding games in Section 6.3 with random tie-breaking mechanisms. It would
be interesting to formally prove both what we have informally explained in Sub-
section 6.2.2 (along with exploring the case of advantage-based tie-breaking)
and Conjecture 6.13 we made in Section 6.3.

Furthermore, we have not stated an NSC-transfer (we have only stated a
sufficiency result) for game forms that are semi-determined, finitely maximiz-
able and uniquely maximizable. We believe that it should not be too difficult
to retrieve some kind of NSC-transfer for semi-determined game forms and
uniquely maximizable game forms. However, the case of finitely maximizable
game forms (for Player A) seems more complicated. That is, we do not know
if being finitely maximizable w.r.t. Player A is an NSC-transfer for either of
the two applications that we presented in this chapter. This is stated as an
open question below.

Open Question 6.1. Does Theorem 6.11 and/or Corollary 6.12 still hold if
the finitely maximizable assumption is weakened?

Finally, we would like to mention that we believe that Proposition 6.5
stated in this chapter, that gives an alternate definition of determined game
forms, can be stated at a graph game level. This constitutes the conjecture
below.

Conjecture 6.17. Consider a standard deterministic concurrent arena C
without stopping states. Then, for all states ¢ € @, the two propositions
below are equivalent:

e for all Borel sets W € Borel(Q), in the win/lose game G = (C, W), either
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of the players has a (deterministic) winning strategy from q;

e for all payoff functions f : Q¥ — [0, 1], the game G = (C, f) has a value
from q. Furthermore, from q, for all € > 0, e-optimal strategies can be
found among deterministic strategies and at least one of the players has
an optimal strategy.

6.6 Appendix

We recall here the condition for the existence of finite-memory strategy in
turn-based games established in [51]. This comes from the Appendix of [72].

First, in [51], the authors do not consider a winning objective W C K¥
but rather a preference relation <: K“ x K“ for Player A and the antagonistic
preference <~! for Player B. Hence, we need to translate a winning objective
into a preference relation. For W C K%, we consider the preference relation
<w: K¥ x K defined by p <y p' for all p ¢ W and p' € W.

Let us now focus on the condition stated in [51] for the existence of optimal
finite-memory strategies. Let us first recall a few definitions. Consider a non-
empty set of colors K and a language L C K*. The language [L] := {p € K“ |
Vn €N, 3r € L, p<,, T 7} refers to the set of infinite words whose prefixes
are also the prefixes of a word in L. Furthermore, the notation R(K) refers
to the regular languages on a finite subset of K. In addition, for a preference
<C K¥ x K, and two languages L, L' C K¥ L < L' refers to Vp € L, 3p' €
L', p 2 p and L < L' refers to 3p' € L', Vp € L, p < p/. Note that
L < L' & —~(L' < L). Finally, for a memory skeleton (M, m;p, p) on K, and
two memory states m, m’ € M, we denote Lf‘n/fm, ={p € K*| u(m,p) =m'}.
Let us consider the definitions of M-monotony and M-selectivity from [51]:

Definition 6.7 (M-monotone preference). Let M = (M, mjpn, p) be a mem-
ory skeleton. A preferences <C K¥ x K¥ is M-monotone if, for allm € M and
Li,Ly € R(K): Bpe Lyt . [p-Li] < [p-La]) = (Vp' € LYt .10/ L1] <
[0+ La]).
Definition 6.8 (M-selective preference). Let M = (M, mipn;t, 1) be a mem-
ory skeleton. A preference <C K¥ x K¥ is M-selective if, for all p € K*, m =
(minit, p) € M, for all Li,Ly € R(K) such that Li, Ly C L%m, for all
Lz € R(K), [p- (L1 U La)* - L] = [p- L] U [p- L3] U [p - Lg].

By extension, we say that an objective W is M-monotone and M-selective
if the preference relation <y is. We have the theorem below.

Theorem 6.18 (Theorem 9in [51]). Let M be a memory skeleton and W C
K¥. The two following assertions are equivalent:

1. in every deterministic turn-based game with finitely many actions at
each state and W winning objective, winning strategies for both players
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can be found among strategies implemented with memory skeleton M;

2. W and KY \ W are M-monotone and M-selective.
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7 - Arbitrary game forms for Safety, Reachability and
Biichi objectives

In this chapter and the next, contrary to the previous Chapter 6, we focus
on the following question. Which classes of game forms is allowed to build
finite-state parity games in which there are positional optimal strategies for
Player A? Hence, the restrictions that we define are tailored for the very
objective that we consider. In particular, we will see that depending on the
parity objective that is considered (i.e. on the number of colors involved), the
restrictions may differ. In each of these cases, the restrictions will be not only
sufficient but also necessary. However, contrary to the next chapter where we
restrict the setting to standard finite game forms, in this chapter, we consider
arbitrary game forms. (Note that, since we consider finite-state parity games,
we will always assume that there are finitely many outcomes.) As can be seen
in Table 3.1, without any assumption on the local interactions occurring in a
parity game, it is not always possible to play optimally, as it is already the case
for Biichi games. Fven when it is possible to play optimally, it may require
infinite choice, and therefore infinite memory. As hinted above, the goal of this
chapter is to characterize — and therefore to establish NSC-transfers — the
arbitrary game forms ensuring the existence of positional optimal strategies
when used in finite-state parity games. However, manipulating strategies in
arbitrary finite-state concurrent games is quite involved, as it can be seen
in Appendix 4.4.2 already in the case of reachability games. Hence, in this
chapter, we decide to handle only three special cases. On the other hand, parity
objectives with arbitrarily many colors will be handled in the next chapter, but
only with standard game forms.

First, we consider safety games. In this case, it is straightforward to char-
acterize the game forms ensuring the existence of positional optimal strategies.
Indeed, these exactly correspond to the game forms maximizable w.r.t. Player
A. (This holds even for infinite games.) This is stated in Proposition 7.1.

Second, we focus on reachability games. We use the results stated in Sec-
tion 4.2 with standard finite game forms and proved in Appendix 4.4.2 with
arbitrary game forms, and in particular Lemmas 4.9 and 4.10. With the help of
these results, we characterize the game forms ensuring the existence of optimal
strategies in reachability games. They are called reach-maximizable (RM for
short) game forms. This is stated in Theorem 7.5. It turns out that they are
strictly included in game forms maximizable w.r.t. Player A. This generalizes
what we did in [39] (Theorem 36) where we only dealt with standard finite
game forms.

Finally, we consider Biichi games. The characterization of the game forms
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ensuring the existence of optimal strategies in Biichi games is rather straight-
forward by combining what we have done already in this chapter and what we
have shown in Section 5.1, in particular Lemma 5.4. We first obtain an NSC-
transfer in Proposition 7.6. We then refine it into a more subtle NSC-transfer
in Proposition 7.7. In that proposition, the kind of local interactions consid-
ered at each state of the game depends on the colors of the states. Recall, in
a Biichi game, all states are colored with 0 or 1 and Player A wants to see
infinitely often the color 1. Then, Proposition 7.7 states that for states of color
1, the game forms should be maximizable w.r.t. Player A: they ensure the
existence of optimal strategies in safety games. However, for states of color 0,
the game forms should be RM: they ensure the existence of optimal strategies
in reachability games. This also generalizes what we did in [10] (Theorem 19)
where we only dealt with standard finite game forms.

Note that, in Section 7.4, we explain why the NSC-transfers that we proved
in [10] are not handled in this dissertation.

7.1 Safety objectives

First, as in Section 4.1, we only consider safety games without stopping
states. Then, we seek those (arbitrary) game forms ensuring the existence of
optimal strategies in finite-state safety games. It is rather straightforward to
realize that, from a game form F that is not maximizable w.r.t. Player A,
we can build a simple safety game where Player A does not have an optimal
strategy. Furthermore, if all local interactions of a safety game are maximizable
w.r.t. Player A, then by Corollary 4.3, Player A has a positional optimal
strategy. Since this holds for infinite games, we may consider arbitrary game
forms with infinitely many outcomes. We obtain the NSC-transfer below.

Proposition 7.1. Among arbitrary game forms, being maximizable w.r.t.
Player A is an NSC-transfer for the existence of Player-A positional optimal
strategies in all infinite safety games without stopping states.

Proof. Consider a set of outcomes O and a game form F = (Acta, Actg, O, 0) €
Form(O) that is not maximizable w.r.t. Player A. Consider a valuation v : O —
[0,1] such that Player A has no optimal GF-strategy in the game in normal
form (F,v). We build a simple game G = (C, Safe) on F as follows: the set of
states is equal to {ginit, T, L} Uv[O]. The local interaction at gint is equal to
(Acta, Actg, v[O], v 0 ). Furthermore all other states are trivial: all states x €
v[O] have as outcome d, € D({T, L}) where d, :={T — =, L — 1—z}. Both
states T and L are self-looping sinks. Finally, the only state of color 1, that
Player A wants to avoid, is L. This concludes the definition of the game G'.

!Note that the simple game that we have built from F does not exactly fit Defi-
nition 5.1. However, we would have obtained an equivalent game if all trivial states
x € v[0] were replaced by stopping states of value x.
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Clearly, all states x € v[O] have value x. Consider any Player-A strategy sa €
C. By Lemma 3.10, we have, xg[sa](ginit) < val[(F(ginit), xg[A])](sa(ginit)) =
val[(F, v)](sa(ginit)) < val[(F,v)][A]. This inequality comes from the fact that,
by assumption, Player A has no optimal GF-strategy in the game in normal
form (F,v). Furthermore, we have by Proposition 3.9 for the last equality,
val[(F, v)][A] = val[(F(ginic), Xg[ADJIA] = Xg[Al(ginit). That is, the Player-A
strategy sa is not optimal from gjnt, and this holds for Player-A strategy sa.
Consider now a safety game without stopping states where all local inter-
actions are maximizable w.r.t. Player A. Then, by Corollary 4.3, Player A has
a positional optimal strategy. O

7.2 Reachability objectives

Let us now focus on reachability games. As for safety games, the games we
consider are without stopping states. However, contrary to safety games we
will only consider finite-state games (since there does not always exist optimal
strategies in infinite games, even turn-based ones). The proofs being quite
technical for this objective, they are provided in appendix, we only give proof
sketches in this section.

The goal is to characterize the game forms (with finitely many outcomes)
ensuring the existence of positional optimal strategies in finite-state reacha-
bility games. The first step consists in defining the simple reachability games
that we will use to properly define the well-behaved game forms. The simple
games we congider are as follows: there is a central state gjn;; that is not in the
target. From that central state, we can either loop, or reach a trivial state with
a given probability to win, i.e. to reach the target. The color of this central
state is 0, therefore looping indefinitely on it is loosing for Player A. This is
formally defined below.

Definition 7.1 (Simple reachability games). Consider a finite set of outcomes
O and a game form F = (¥, 2B, 0, 0) € Form(O) on that set of outcomes O.
Counsider some function m : O — {qinit} U [0,1]. We define the reachability
game Q;_-‘fsfh := (Cx m, Reach) such that Cr y, := (Q0.m, FFm, {0, 1}, col) with:

® Qo,m := Succo , U {T, L} with Succo = {ginit} Um[O];

o All states x € Qo,m N [0,1] are trivial states with d, € D({T,L}) as
only outcome where d, :=={T —x, L —1—xa};

L4 F]—‘,m(qmit) =F" = <EA7 EBaSUCCO,maEm(Q»;
e col(L) = col(ginit) := 0, col(T) := 1.
We let ar = Xg;each(qin;t) and, for all u € [0,1], v, : Qom — [0,1] such

that v% ,, (ginit) == u, for all ¥ € Qom N [0,1], v, (z) ==z and v, (T) =1
and v% (L) = 0. When u = oz, it is omitted.
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Figure 7.1: A standard fi- Figure 7.2: The reachability game g;‘f;’jfh
nite game form F. without the states 1 and 0.

A simple reachability game g;‘fjjfh is depicted in Figure 7.2 for m(x) := ginit,

m(y) := 1 and m(z) := 0, though we have not depicted the intermediate states
1 and 0. It is built on the game form F of Figure 7.1.

We consider the existence of Player-A positional optimal strategies in reach-
ability games. A positional strategy in a simple reachability game g;‘fﬁ;fh is
entirely defined by a Player-A GF-strategy in F. We define below the optimal
Player-A GF-strategies in simple reachability games.

Definition 7.2 (Optimal GF-strategies). Consider a finite set of outcomes
O, a game form F € Form(O) on that set of outcomes O and some function
m: Q — {qgnit} U[0,1]. For all Player-A GF-strategies op € Xa, the Player-A
positional strategy sa € Sif’m is defined by op if spa(ginit) := oa. A Player-
A GF-strategies op € X is optimal w.r.t. (F,m) if the Player-A positional
strategy sa € S§ defined by o is (subgame) optimal in the game g;f;fh.

The safe game forms for the existence of positional optimal strategies are
then the game forms F for which, for all functions m : O — {gnit} U [0, 1],
there is a Player-A optimal GF-strategy w.r.t. (F,m). Such game forms are
said to be reach maximizable (RM for short). This is defined below.

Definition 7.3 (Reach-maximizable game forms). Consider a finite set of
outcomes O and a game form F € Form(O) on that set of outcomes O. It is
reach-maximizable (RM for short) if for all functions m : Q — {gnit} U [0, 1],
there is a Player-A GF-strategy oa € Xa that is optimal w.r.t. (F, m).

The definition, given in Definition 7.2, of optimal Player-A GF-strategies
is not very practical in the sense that we do not know exactly how such GF-
strategy behaves against Player-B GF-strategies. In particular, we would like
to express how the GF-strategy behaves with similar notions than the ones used
in Subsection 4.4.2. We give below a necessary and sufficient condition for a
Player-A GF-strategy to be optimal that we will manipulate in the following.

Proposition 7.2 (Proof 7.5.1). Consider a finite set of outcomes O, a game
form F € Form(O) on that set of outcomes O and some function m : O —
{gnit} U[0,1]. A Player-A GF-strategy op € Xa is optimal w.r.t. (F,m) if and
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only if we have ar,, = 0 or:
1. The GF-strategy oa is optimal in (F™,vF m,); and

2. Mimicking the notations of Definition 4.13 and letting, for all og € ¥,
prm(oa,08) = out[(F, L,,-1(0,1)))|(oa, 08), the GF-strategy oa ensures
that:

in

f on,0g) >0
agezspf’m( AsOB)

Proof sketch. Assume that the GF-strategy oa is optimal w.r.t. (F,m) and
that ar,, > 0. Then, the positional Player-A strategy sa € Sif’m defined by
op is subgame optimal in the game QJREffrfh. Therefore, it is locally optimal by
Theorem 3.122. This implies that the GF-strategy oa satisfies item 1. Fur-
thermore, if it does not satisfy item 2., it means that, against the strategy sa,
Player B has strategies to ensure that the probability to ever see a state in
[0,1] (and therefore the target) is arbitrarily close to 0. Hence, the value of
the strategy sa would be 0, which is not possible since ax ;,, > 0.

Assume now that ar,, > 0 and that the GF-strategy oa satisfies items 1.
and 2. Let 0 := inf, ey, prm(oa,o8) > 0. Consider any Player-B strategy
s € ng’m against the Player-A strategy sa € Sif’m generated by the GF-
strategy oa. As long as the game loops on ¢init, there is probability at least ¢
to exit to a state in [0, 1], by definition of §. Therefore, the game loops indef-
initely on @it with probability 0. Furthermore, whenever there is a positive
probability to exit to a state in [0, 1], the expected value of the states reached
is at least ar,, by item 1. Hence, the Player-A strategy sa has value ar p,,

it is therefore optimal in gféegfh. O

Let us now consider what happens when RM game forms are used in finite-
state reachability games.

Theorem 7.3. Counsider a finite-state reachability game G = (C, Reach), and
assume that, for all ¢ € @ such that col(q) = 0, the game form F(q) is RM.
Then, Player A has a positional (subgame) optimal strategy.

To prove this theorem, we are going to extract simple reachability games from
the global game G. Let us define formally this operation.

Definition 7.4. Consider a finite-state reachability game G = (C, Reach).
Consider a subset of states S C ). Then, for all ¢ € Q, we let mqs Q=
{ginit} U [0, 1] such that, for all ¢ € Q:
xglAl(d) €10,1] ifdeQ\S
() = { 6Al(q) € [0.1] \

Qinit otherwise

2Since the target in the reachability game gjif;’;h is self-looping, the objective can

be seen as being a Biichi objective, and therefore as being PI.
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This extraction satisfies a crucial property: when all the state in S have
the same Player-A value u € [0, 1] and are not in the target, then the maximum
of the values of the simple games is at least u. This is formally stated in the
lemma below.

Lemma 7.4 (Proof 7.5.2). Consider a finite-state reachability game G =
(C,Reach). Consider some u € [0,1] and a non-empty subset of states () # S C
Q such that, for all g € Q, we have xg[A](¢) = u. If SNT = (), we have:

MAX A (g),mg = U
Proof sketch. Assume towards a contradiction that it is not the case, i.e. that
T = MAXgeQ OF(q)mg < U Then, we can show that for all states ¢ € Q) and
Player-A strategies sp € S%, the value of this Player-A strategy from state ¢ is
at most x. Indeed, consider some € > 0. Then, for all p € ST, we have sa(p) €
YR, Then, at state py, either Player B can ensure to loop on states in S with
probability arbitrarily close to 1. This occurs when inf, e pFm(ca, o8) =0
(from Proposition 7.2). Or, there is some § > 0 such that, regardless of what
Player B plays in F(pi), the probability to see states outside S is at least 9.
But in that case, Player B has a GF-strategy to ensure that, against sa(p), the
expected Player-A value of the states seen (outside of S) is at most x + ¢, by
definition of m. Furthermore, from all states ¢ € @ \ S outside of S, Player B
can play against the strategy sa to ensure that the value from ¢ is e-close to
the Player-A value of ¢q. Since looping indefinitely in .S is losing for Player A,
it follows that the value of the Player-A strategy sa from ¢ is at most . Hence
the contradiction. O

We can now give an informal proof of Theorem 7.3. The formal proof is
given in Subsection 7.5.3.

Proof sketch. Let us assume that all states in the target are self-looping sinks.
This does not change the game since there are no stopping states, once the
target is reached, the game has value 1. Consider Definition 4.11: we want to
show that Sec()) = Q. In turn, with Lemma 4.10, this will show that there is
a Player-A positional optimal strategy in G.

Assume towards a contradiction that we have Sec()) # Q. Let B :=
Q \ Sec(0) # 0. Note that col[B] = {0}. Consider the greatest u € (0, 1] such
that B, := {q € B| xg[Al(q) = u} # 0. Let us apply Lemma 7.4 to the set By:
there is some state ¢ € B, such that O (g),m B > u. By assumption, the local
interaction F(q) is RM. Therefore, there is a Player-A GF-strategy oa € ¥} that
is optimal w.r.t. (F(q), mf“). Let us argue that this GF-strategy is progressive
w.r.t. Sec()) (recall Definition 4.14). First, it is indeed optimal in the game in
normal form (F(q), xg[A]) by item 1. of Proposition 7.2 and by definition of the
function mf”. Furthermore, by item 2. of that same Proposition 7.2, letting
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0 :=inf, exng PE (g mB (oa,0B), we have 6 > 0. Furthermore, it can be shown
(since op satisfies item 1. of Proposition 7.2), that with the GF-strategy oa
and for all Player-B GF-strategies in the game form F(q), if there is probability
p to see states of values different from w, then there is probability at least
p -y to see states of value more than u, for y := minge,;(A)[Q], 2<u 1=¢ > 0-
Since all states of value u outside of S are in Sec(()) and, by definition of u, all
states of value more than u are also in Sec(0), it follows that for all Player-B
GF-strategies in F(q), with the GF-strategy oa, there is probability at least
0 -y > 0 to see a state in Sec(()). Therefore the Player-A GF-strategy op is
progressive w.r.t. Sec()). This is in contradiction with the fact that the state
q is not in Sec((). O

Overall, we obtain the following NSC-transfer:

Theorem 7.5. Among arbitrary game forms with finitely many outcomes,
being RM is an NSC-transfer for the existence of Player-A positional optimal
strategies in finite-state reachability games without stopping states.

Proof. This is a direct consequence of Proposition 7.2 and Theorem 7.3. 0O

7.3 Biichi objectives

Let us now cousider finite-state Biichi games. In fact, for the Biichi objec-
tive, it suffices to use RM game forms. This is stated as an NSC-transfer in
the proposition below.

Proposition 7.6. Among arbitrary game forms with finitely many outcomes,
being RM is an NSC-transfer for the existence of Player-A positional optimal
strategies in finite-state Biichi games without stopping states.

We do not provide a proof of this statement for now since we state and
prove a slightly more subtle (and stronger) statement. Indeed, we can combine
both the RM game forms characterized for reachability games and the game
forms maximizable w.r.t. Player A characterized for safety games. We obtain
straightforwardly an NSC-transfer by applying Lemma 5.4 that is different
from the ones we have stated so far. Indeed, the class of game forms to be
used depends on the colors of the states considered. Let us formally state the
result, we will explain afterwards exactly what it means.

Proposition 7.7. Among arbitrary game forms with finitely many outcomes,
being:

e maximizable w.r.t. Player A when colored with 1;
e RM when colored with 0;

is an NSC-transfer for the existence of Player-A positional optimal strategies
in finite-state Biichi games.
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What this theorem means is the following: given any game form that is not
maximizable w.r.t. Player A, we can build a simple Biichi game where the
central state ginit is colored with 1 and where Player A has no positional optimal
strategy. Similarly, from any game form that is not RM, we can build a simple
Biichi game where the central state gt is colored with 0 and where Player A
has no positional optimal strategy. Conversely, in any finite-state Biichi game
where all local interactions at states colored with 1 (resp. 0) are maximizable
w.r.t. Player A (resp. RM), Player A has a positional optimal strategy.

Note in particular that Proposition 7.6 is a direct corollary of Proposi-
tion 7.7 because all RM game forms are maximizable w.r.t. Player A.

Proof. Consider a game form F that is not maximizable w.r.t. Player A. Then,
the simple game built on F to prove Proposition 7.1 can be seen as a Biichi
game up to reversing the roles of the colors 0 and 1. In that game, Player A
has no positional optimal strategy.

Consider now a game form F that is not RM. Then, the simple game built
on F to prove Theorem 7.5 from Definition 7.1 can be seen as a Biichi game
(since the target is self-looping). In that game, Player A has no positional
optimal strategy.

Now, consider a finite-state Biichi game G where all local interactions at
states colored with 1 (resp. 0) are maximizable w.r.t. Player A (resp. RM).
We want to apply Lemma 5.4. First, in all non-trivial states of the reachability
game GRe2h all local interactions are RM, therefore by Theorem 7.3, there is
an optimal strategy in the game GReh Second, all local interactions at states
of color 1 are maximizable w.r.t. Player A. It follows that we can indeed
apply Lemma 5.4. We obtain that Player A has a positional optimal strategy
ingG. O

7.4 Discussion and future work

In this chapter, we have proved NSC-transfers, among arbitrary game
forms, for the existence of positional optimal strategies in finite-state safety,
reachability and Biichi games. This extends, to the case of arbitrary game
forms, what we have done previously: |39, Theorem 36| for reachability games
and [10, Theorem 19| for Biichi games. However, we have not extended, or
even stated, arguably the two main results we have shown in [10]: Theorem
22 and 25 which give NSC-transfers (though this terminology is not used)
for the existence of positional almost-optimal strategies in finite Biichi games
and for the existence of positional optimal strategies in finite co-Biichi games,
respectively, restricting to standard finite game forms.

The ideas behind the proofs of these theorems lie in how the value is ob-
tained in standard finite parity games, namely fixed points. Recall, we proved
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in Proposition 4.7 that the Player-A value of reachability games can be com-
puted with a least fixed point, even with non-standard game forms. In fact,
with standard finite local interactions, it was shown in [32]| that the value of
parity games could be computed with nested fixed points, i.e. a greatest fixed
point, nested with a least fixed point, etc. Furthermore, if the highest color
appearing in the parity game is n, then the number of nested fixed points con-
sidered is n. In [10, Theorem 22, 25|, the definitions of the safe game forms
considered is based on the fixed points needed to compute the values in Biichi
and co-Biichi games, i.e. nested least and greatest fixed points, the order de-
pending on the objective. The proofs of these theorems were quite intricate
as it involves linking the fixed points on the concurrent game and on the local
interactions.

As a future work, we want to extend |10, Theorem 22, 25| to the case of
arbitrary game forms, while avoiding the nested fixed points arguments. One
of the main difficulty that will arise is to properly state a proposition detailing
what being safe amounts to (w.r.t. the objective/type of strategies considered),
as we did in Proposition 7.2 for the reachability objective. This needs to hold
even with arbitrary game forms. As witnessed in Definitions 4.8, 4.14 and
Definitions 4.9, 4.15, definitions compatible with arbitrary game forms are more
intricate compared to their counterparts well-suited for the case of standard
finite game forms, that we gave in [10].

7.5 Appendix

7.5.1 . Proof of Proposition 7.2
First, we make a quick remark: ar,, is equal to the Player-A value of the

game in normal form (F™, vr ).

Lemma 7.8. Consider a finite set of outcomes O, a game form F € Form(O)
on that set of outcomes O and some function m : O — {ginit} U[0, 1]. We have:

arm = val[(F™, vrm)][A]

Proof. By definition, we have ar,, = XgReach [Al(ginit), Frm(ginit) = F™ and
UF m = XgReach [A]%nit. The result is therefore given by Proposition 3.9. d

Let us now express exactly what is the value of a Player-A positional strat-
egy generated by a GF-strategy in a simple reachability game.

Lemma 7.9. Consider a finite set of outcomes O, a game form F € Form(O)
on that set of outcomes O and some function m : O — {gnit} U [0,1]. Let
sa € Sif"m be the Player-A positional strategy generated by some Player-A
GF-strategy oa € Xa. If:

inf =0
oinf PFm (oa,0B)
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then Xg;_eexlh [SA](qin;t) = 0. Otherwise:
Xgasen[5al(Ginie) = sup{u € [0,1] [ val[(F™, v ,)|[oa] > u}

Proof. Let W := col™![Reach] be the Player-A winning set. First, assume
that inf,pexg PFm(oa,08) = 0 and let € > 0. Let us define a Player-B strat-
egy sg € ng'm such that, for all n € N, we have sg(qlt,) € ¥ such that
prm(oa,sB(dli)) < snrr- Then, we have by Definition 1.28 and 1.29 for the
second equality:

Psé@;iiuqinit [W] S ]:EDZ/;;,SE‘HQinit [(qinlt ’ Z Péﬁsj’u%mt qmit)n ’ I:O, 1]]
neN

<Y OBE L ([0.1]] =D out[(Frm(ginie), 1o 1)) (sA (Ghaie) s (dhnie))
neN neN

=Y out[(F, Ly-1j0,1)](0a; 58 (@) = D prm(oa; se(glni))
neN neN

— on+1 =
neN

As this holds for all € > 0, it follows that the value of the Player-A strategy sa
is 0 from gjnit.

Assume now it is not the case, i.e that § := inf, exg pFm(0a, oB) is posi-
tive: 0 > 0. Then, regardless of the Player-B strategy, almost-surely the game
does not loop indefinitely on ¢j,x by definition of § > 0: each time the game
loops on gnit there is probability at least § to exit to a trivial state. Therefore,
almost-surely, the game ends up in {T, L}.

Let z := sup{u € [0,1] | val[{(F,v% ,)|loa] > u}. Consider some € > 0 and
let u > x — ¢ such that val[(F,v% ,)][oa] > u. Let us apply Corollary 3.143 to
show that the Player-A strategy sa guarantees the valuation v% . It satisfies
the first condition of that corollary by assumption. Furthermore, as mentioned
above, almost-surely, the game loops on T (and Player A wins), or loops on
L of value 0. Hence, it also satisfies the second condition of Corollary 3.14.
Therefore, it dominates the valuation v, with v%m(qin;t) = u. Hence the
value of the Player-A strategy sa from ginit is at least u > x —e.

Consider some £ > 0 and let u < x + ¢ such that val[(F, v, }[oa] < u.

Consider then a Player-B positional strategy sg € ng’m such that:

out[(F, v ;)| (sa(dinit), B (Ginit)) = OUt[(F, v )] (04, 5B (dinit)) < u

. . S|
Then, in the stochastic tree T,27°% |
F,m>qinit

(recall Definition 2.3). Hence, by Proposition 2.9, since the game almost-surely

the valuation v% , is non-increasing

3This only applies to PI games, however since the target is a self-looping sink, the

game G322 can be seen as a Biichi game.
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ends up in {T, L}, it follows that:

w=VE p (Ginit) = P2 (qiie - [0, 1]+ T) v (T) +PE - (Ginie - [0,1] - L) - 0 (L)
— PSA7SB (qiTqit . [O, 1] . T) — PSA,SB [W]

CF m Ginit CF,m Ginit

Hence the value of the Player-A strategy sa from ginjt is at most v < x+¢e. O
The proof of Proposition 7.2 is now direct.

Proof. Assume that the Player-A GF-strategy oa is optimal w.r.t. (F, m) and
that oz, > 0. Then, by Lemma 7.9, it must be that inf, exg prm(oa, o) >
0. Furthermore, we have oz m = Xggeacn [sa](ginit) = sup{u € [0,1] | val[(F™, v}, )[oa] >
u}. Hence, for all u < ar ,y,, we have u< val[(F™, v )lloa] < val{(F™, vrm)][oal.
Therefore, ar m, < val[(F™, vr m)][oa]. Inaddition, ar », = val[(F™, vrm)][A]
by Lemma 7.8. Therefore, the Player-A GF-strategy oa is optimal in the game
in normal form (F™, vr ).

Conversely, if ar,, = 0 then any Player-A strategy is optimal from ginit
in the game g;‘fﬁfh and therefore the GF-strategy oa is optimal w.r.t. (F,m).
Assume now that the Player-A GF-strategy oa satisfies items 1. and 2. Since
arm = val[(F™, vy m)|[A] and oa satisfies item 1., it follows that val[(F™, vr ,)][oa] =
arm. Then, by Lemma 7.9 and since oa satisfies item 2., we obtain that
Xgheah [sal(ginit) > @F m. Therefore, it is optimal w.r.t. (F,m). O

7.5.2 . Proof of Lemma 7.4

Proof. We let W := (col“)~![Reach] C @“ be the Player-A winning set. Let
T 1= MaXges OF(g)ms € [0,1] and assume towards a contradiction that = < w.
Consider any state ¢ € S and Player-A strategy sa € S(/i. Let us show that
xglsal(q) < x. For all ¢ € S, we let p, denote the function PF(q),ms from
Proposition 7.2. Let € > 0.

Consider some p € ¢ - S5*. Since ag
Lemma 7.9, that:

s < x, it follows that, by

p|t)7mp|t

b infUBezglt Ppy (SA(p)7 UB) - 07 or

e for all x < z, we have:

Vall(F (p) "%, 0 ) s Misa()) < VaIF ()™, 0 ) s MIsa(0)] < 2

mS x
Therefore: val[(F(pi) 715 UE (o) )Nlsalp)] < .

7P
We let Sip, :={p e S*| infUBeEcé-mt Po(sa(q - p),o8) = 0} and S<; := S*\ Sip.
Let us now define a Player-B strategy sg € SCB:

e For all p € S, we define s§ such that, for all ¢ € Q \ S:

P W] < xglAl(d) + §;
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e For all p € ¢- Sip, we let sg(p) € 8" be such that
Pp(a(p):38(P)) < 3157 =T gm0

e For all p € ¢- S<,, we let sg(p) € Bf* be such that
S
OUE[(F 1) 02, 158 (0),58(0)) < 2+ g

Then, consider some p € g -Si,. We have, by Definition 1.28 and Defini-
tion 7.4:

P21Q \ 5] = outl(F(pr), 1o\s)](5a(0). 58())
= outl(F(p1e), Limg, 10,1} )5 (0), 58(6)

£
= ppi(sa(p);sB(p)) < 3. |S|lel=1 2lel

We obtain:

PRS- Q\SI =Y > FEE(p)-PREQ\ S

neN pesSm NSy,

<Z Z ‘S’n.2n+1§ZNg.2€n+1:§

neN peS™NS,

Furthermore, for all z € [0,1] \ {u}, we let Q, := xg[A]"'[{z}] and Q, :=
xg[A] 7 [{u}] \ S. That way, Q\ S = U.efo,1)@=- Then, for all p € ¢ - S<;, we
have:

e mgt
+ m > Out[<F(plt) | ’UF(plt) mplt>](SA(p),SB(p))

= 3 outl(F(pe)™ s, 1x e (sal)ss(p) - 2

F
z€[0,1] (e

=z - out[(F(pn), Ls)](salp) sa(p)) + D out[(F(pr), Lq.)](sa(p).s8(p)) - =

z€[0,1]
— . PSA,SB + Z ]P)SA7SB z .

z€[0,1]

Therefore, we have:

SA,SB SAvsB
z€|
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Hence:

Z PSA,SB S<z Qz 2 < Z Z PSA,SB( ) Z ZA(}S/B)[QZ].

z€[0,1] neN peS™"NS<, z€[0,1]
SA,S SA,S €
<Y X R0 (PERI\S) o+ g )
neN p€S”ﬁS<z

SA,S 3

<PYP[S<r (Q\S) a+ Y. Y G
neN peSTNS<,

SA,S €

<P PIS<e - (Q\S)] -2+ 3

Overall, since we have reachability objective, staying indefinitely in .S is losing
for Player A. Hence, we have:

PR IW] = IP’Z“;SB (WA ST+ PLEW NS, - (Q\ )]+ FABW N S<, - (Q\ S)]

—§+ > D BN S<d]

2€[0,1] ¢'€Q-

=5 X 3T R ) P W)

2€[0,1] ¢'€Q: pES<y

€ S s €
Syt X D D E(ed) (WAl + )
2€[0,1] ¢'€Q: pES<,
€ SA S| SA,S &
=S+ ) PRS- Qi 2+ PEIST(Q\S)- 5
z€[0,1]
2
< S APEIS< (Q\S)] 3+ ¢
<zx+4e¢

As this holds for all € > 0, the value, from ¢, of the Player-A strategy sa is at
most x, hence the contradiction. ]

7.5.3 . Proof of Theorem 7.3

Proof. Let us assume that all states in the target are self-looping sinks. This
does not change the game since there are no stopping states, hence once the
target is reached, the game has value 1.

We proceed as in the proof sketch. That is, considering Definition 4.11: we
want to show that Sec(()) = @, which in turn, with Lemma 4.10, will show that
there is a Player-A positional optimal strategy in G. Hence, assume towards
a contradiction that we have Sec(()) # Q. Let B := @ \ Sec()) # 0. Note
that col[B] = {0}. Consider the greatest u € [0, 1] such that B, := {q € B |
x¢lA](q) = u} # 0. It must be that v > 0 since no state in B is of value 0.
Let us apply Lemma 7.4 to the set B,: there is some state ¢ € B, such that
O (g).mBu > u. By assumption, the local interaction F(q) is RM. Therefore,

there is a Player-A GF-strategy oa € X4 that is optimal w.r.t. (F(q), mfu).
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Let us show that this GF-strategy is progressive w.r.t. Sec(()) (recall Def-
inition 4.14). First, we show that oa is optimal in the game in normal form
(F(q), xg[A]). For all ¢ € Q, we have:

o If ¢ € By, then mP(¢') = ginix and VF (g mB (Ginit) = Qp (g mbu 2 U=
xg[Al(d);

e Otherwise, we have xg[A](¢') = VR (g),mPu © mf ()

For all z € [0,1]\ {u}, we let Q. := xg[A] '[{#}] and Q. := xg[A] "1 [{u}]\ Bu.
That way, Q \ By = U¢[0,1)Q=- Then, for all Player-B GF-strategies og € X,
we have, denoting y := out[(F(q), xg[A])](ca, 0B):

y=_ xqlAl(¢) - out[{F(9),¢"](0a, 08)

q'eqQ
=u-out[(F(q), 1s,)](oa,08) + > Y xglAl(d) - out[(F(q),q)|(ca, 08)
2€[0,1] ¢'€Q
mpu - out[(F(g), 15,)](oa; o8)
+ 30 D Ve 0 M (d) - out[{F(g), ¢))(on, o8)
2€[0,1] ¢’€Q=

= (U= gy Bu) + V(g

)

+ Z VE(g)m ) - out[(F (q)7quu(Qinit)az>](0AaUB>

z€[0,1]

= 4= (g mpa T OUEFeg) i (dinic): Vg )1 (7a o)

2 (U= agg ) + g

Bu (Ginit) - OUt[(Fe( ) 5 (Ginit), Ginit) ] (9A; 0B)

)

2 u — aF(q)’ By, + Va|[<FF(q)7quu (qinit)7 UF(q)7quu>](0-A)
By + Va|[<FF(q),m(}13“ (qmit)» vF(q),mf“ >]

= UuU-—
F(g),mq

= U= Qg mBu T Op(g)mBu = U

This second to last equality comes from the fact that the Player-A GF-strategy
op satisfies item 1. of Proposition 7.2. The last equality comes from Lemma 7.8
By

and the fact that FF(qufu (ginit) = F(q¢)™a . Hence, the Player-A GF-strategy
op is optimal in the game in normal form (F(gq), xg[A]), since val[(F(q), xg[AD][A] =
X¢[A](q¢) = u by Proposition 3.9.

Furthermore, since the Player-A GF-strategy also ensures item 2. of that
same Proposition 7.2, letting § := infagez‘é Pr(g),mBu (oa,08B), we have § > 0.
Recall that, for all og € X%, we have

5. (oA, 08) = out[(F(q), 1g\p,) (oA, 08)

pF(‘])vmq

We let V := xg[A][Q] C [0,1], Vo := {z eV |z<u}and Vs, =V \ Ve
We also let x,, := max V., < u and y := §=* > 0. Consider any Player-B
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GF-strategy og € X§. We have:

u < out[(F(q), xg[A])] (oA, oB)

= u-out[{F(q), I,)](oa,08) + Y z-out[(F(q), 1q.)](oa, 08)
z€[0,1]

Therefore:
U Ppigy i (On,08) < Y 2 out[(F(q), 1q.)] (o4, o8)

We then have:

U Ppigy e (0A,08) < Y 2 out[(F(g), 1q.)](0a, 08)

= Y z-out[(F(g),1g.)(oa,08) + »_ z-out[(F(q),1¢.)](ca, 08)

2€Ven 2€V>y,
< 37 2, -outl(F(g). 1g.)](oa 08) + 3 outl(F(g), 1q.)](ea, o)
2€Vey, 2€V>y

= &y - out[(F(g), Lu.cy_,@.)l(9a, 78) + out[(F(9), 1u.cy. @.)](0A, 08)

Hence, letting p>,, := out[(F(q), ﬂuzevquz>](UA, o), we have out[(F(q), ]leev<qu>](UA, o) =
Pr(q),mBe (oA, 08) — p>y. Therefore:

U — Ty

P>u 2 Pe(g) me (04, 08) - T >0y

In addition, note that, for all z € V5, we have @, C Sec(0)) by definition of
u. Hence out[(F(q), Lsec(g))](0a,08) > p>u- It follows that we have:

out[(F(q), Lsec(n))](0a,08) > 6y

This holds for all og € EqB. Hence, recalling Definition 4.16, it follows that
the GF-strategy o is progressive w.r.t. Sec(f) (i.e. oa € Prog,(Sec(()))) since
inf, cxa Peecpy(on;08) = 0y > 0. Hence the contradiction with the fact that
q ¢ Sec((), recall Definition 4.11. O
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8 - Standard game forms for parity objectives

In this chapter, we characterize the standard finite game forms ensuring
the existence of positional optimal strategies for both players in finite parity
games. This is stated as an NSC-transfer in Corollary 8.10. The main difficulty
consists in proving Theorem 8.3, which states that if all standard finite local
interactions of a finite concurrent parity game are individually well-behaved
(in a specific sense, the formal definition is given in Definition 8.7), then both
players have positional optimal strategies. This chapter is almost entirely
devoted to the proof of this theorem.

Contrary to what we did in the previous chapter, the result we show deals
with both players at the same time. Indeed, as mentioned above, we charac-
terize the game forms ensuring the existence of positional optimal strategies
for both players. The reason why we do that is the same reason why we only
consider standard finite game forms instead of arbitrary game forms: we want
to manipulate only positional strategies for the players. If we only had an
assumption for one player (as in the previous chapter), we would also need to
consider infinite-choice strategies for the other player, a priori. Since positional
strategies suffice, the difficulty of the proof lies mainly on the intricate nature
of the parity objective itself.

The core of this chapter gives informal explanations of the definitions and
statements (with proof sketches) used to prove Theorem 8.3. Additionally, we
illustrate the definitions and statements on examples and, once all the relevant
definitions are given, provide a big picture of the proof in Subsection 8.4.1.
We proceed that way because the technical details are quite heavy and may
obfuscate the underlying ideas behind the proof. We give all technical details
in Section 8.6.

Finally, note that since we only consider standard finite local interactions,
the concurrent parity games we consider in this chapter all have a value (by
Theorems 2.3 and 1.11).

This work is not yet published, but will be resubmitted soon.

8.1 Dominating and guaranteeing a valuation

As mentioned above, in this section, we will only manipulate positional
strategies. Furthermore, as stated in Observation 1.3, in a concurrent game,
two positional strategies induce a Markov chain. Furthermore, in the following,
we will be especially interested in the BSCCs that can occur in the Markov
chain induced by two positional strategies. We define the relevant notions for
us below.
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Definition 8.1 (BSCCs compatible with a strategy). Consider a standard
finite parity game G = (C,col). Let sp € S(A: be a positional Player-A strategy.
We let Hs, denote the set of BSCCs compatible with sa, i.e. the BSCCs
of some Markov chain T*A%8 where sg € S(é ranges over Player-B positional
deterministic strategies.

This is analogous for a Player-B strategy sg € S(é.

A BSCC H € H;, is even-colored if maxcol[H] is even. Otherwise, it is
odd-colored.

A subset of states S C Q occurs in a BSCC H if HNS # (). A state q € Q
occurs in a BSCC H ifqg € H.

The reason why we only consider positional deterministic strategy for
Player B given a Player-A positional strategy is because, once such a strat-
egy is fixed, we obtain a finite MDP. Furthermore, positional deterministic
strategies are enough to play optimally in finite MDPs with parity objectives
[27].

Recall Definition 3.7: we defined the notion of strategy dominating a valua-
tion v : Q1 — [0,1]. In the context of this chapter, we only consider positional
strategies and valuations v : @ — [0, 1]. Hence, we recall the notion of domina-
tion in this context, along with the notion of guaranteeing a valuation (recall
Definition 3.2). We also define a stronger notion that dominating a valuation:
parity dominating a valuation.

Definition 8.2 (Parity dominating a valuation). Let G be a standard finite
concurrent parity game and v : Q — [0,1] be a valuation over its states.
Consider a positional Player-A strategy sa (resp. Player B strategy sg). The
strategy sa (resp. sg):

e dominates the valuation v if for all ¢ € @, it holds that v(q) < val[(F(q),v)](sa(q))
(resp. v(q) > val[(F(q),v)](s8(q)));

e parity dominates the valuation v if it dominates v and all BSCCs H
compatible with sa (resp. sg) such that minv[H] > 0 (resp. maxv[H] <
1) are even-colored (resp. odd-colored);

e guarantees the valuation v if, for all ¢ € Q, it holds v(q) < xglsal(q)
(resp. v(q) = xgls](q))-

Parity dominating a valuation implies guaranteeing it. This is a direct
consequence of Corollary 3.16.

Proposition 8.1 (Proof 8.6.2). Consider a standard finite concurrent game
G, a Player-A positional strategy sp € ScA and a valuation v : Q — [0, 1]. If the
strategy sp dominates v, then for all BSCCs H € Hs,, there is vy € [0,1] such
that v[H] = {vg}. If in addition sa parity dominates v, it also guarantees v.
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Finally, let us introduce a few notations we will use throughout because we
are tackling the parity objective with arbitrarily many colors.

Definition 8.3. As stated in Section 1.1, for all (i,j) € N?, we denote by
li, 7] := {k € N |i < k < j} the set of integers between i and j. However,
in this chapter only, for convenience, we assume that this set is typed in the
sense that the integers in [i,j] are not seen as real numbers. In particular,
[0,1] N [0,1] = 0. Furthermore, for all e € N, we let K. := {k; | i € [0,¢€]}.

In addition, for all finite subsets S C N, we let Even(S) (resp. Odd(S5))
be the smallest even (resp. odd) integer that is greater than or equal to all
elements in S. Similarly, for all n C N, we let Even(n) (resp. Odd(n)) be the
smallest even (resp. odd) integer that is greater than or equal to n.

8.2 Local Environment

The goal of this section is to define simple parity games with a single
non-trivial local interaction. This will allow us to define exactly the game
forms that should be used in parity games if one requires positional optimal
strategies for both players. We first define what a (parity) environment on a
given set of outcomes is. We can then define the parity game induced by such
an environment (along with a game form).

Definition 8.4 (Parity environment). Consider a non-empty finite set of
outcomes O. An environment F on O is a tuple E := (c,e,p) where c,e € N
with ¢ < e and p: O — {ginit} W K. W [0,1]. We let pp ) := p[O] N [0,1]. The
size w.r.t. Player A (resp. B) Sza(E) (resp. Szg(F)) of the environment E is
equal to Sza(F) := Even(e) — ¢ (resp. Szg(FE) := Odd(e) — ¢). We denote by
Env(O) the set of all environments on the set of outcomes O.

Remark 8.1. A quick note on the size of an environment. From Player A’s
perspective, the size of an environment E := (c, e, p), assuming that ¢ = 0, is
equal to: 0ife=0, 2ife =1 or e =2, etc. Informally, when ¢ =0, ife =10
this corresponds to safety game, if e = 1 this corresponds to a co-Biichi game,
etc. This will become more apparent with Definition 8.5 below.

We can then define the simple parity game corresponding to a parity envi-
ronment.

Definition 8.5 (Parity game induced by an environment). Consider a non-
empty finite set of outcomes O, a standard finite game form F € Form(O) and
an environment E = (c,e,p) € Env(0). Let Y := (F,E). The local arena
Cy = (Q,F,K,col) induced by Y is such that:

e Q := {qinit} U Ke Upjo 1), Qs := pjo), and for all u € pyg ), we set the
value of the stopping state u to be u itself: val(u) < u;
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o F(ginit) :== F? = (Acta,Actg, Q,E,(0))s, and for all i € [0, €], the set k;
is trivial, its only outcome is the state ginit;

o K:=[0,e], col(ginit) := c and for all i € [0, e], we have col(k;) := 1.

For all w € [0,1], we denote by vy : Q — [0,1] the valuation such that:
vy (Ginit) = vy (ki) == u for all i € [0, e] and v{-(x) := x for all x € pjy ). Fur-
thermore, for all Player-A GF-strategies op € Xa(F), we denote by sk (oa) €
Sﬁy the Player-A positional strategy defined by oa in the arena Cy .

The game Gy is then equal to Gy := (Cy, Parityy).

Example 8.1. Definition 8.5 above is illustrated in Figures 8.1. Note that
the colors of the non-stopping states are depicted in red next to the states.

As in the previous chapter, we can define the notion of Player-A GF-strategy
being optimal in a parity environment.

Definition 8.6 (Optimal GF-strategies). Consider a non-empty finite set of
outcomes O, a game form F € Form(O), an environment E = (c,e,p) €
Env(O), and let Y := (F,E). A Player-A GF-strategy oa € Xa(F) is said to
be optimal w.r.t. Y if the Player-A positional strategy sk (oa) is optimal in
Gy . The definition is analogous for Player B.

Given a finite set of outcomes O, we can now define the game forms on O
ensuring the existence of optimal strategies w.r.t. all environments.

Definition 8.7 (Game forms with optimal strategies). Consider a non-empty
finite set of outcomes O, a standard finite game form F € Form(O) and some
n € N.

Consider a Player C € {A,B}. The game form F is said to be positionally
maximizable up to n w.r.t. Player C if, for each environment E € Env(O) with
Szc(E) < n, there is an optimal GF-strategy for Player C w.r.t. (F,E).

When this holds for both Players, F is said to be positionally optimizable
up to n. The corresponding set of game forms is denoted ParO(n). If this
holds for all n € N, F is simply said to be positionally optimizable, and the
corresponding set of game forms is denoted ParQO.

Remark 8.2. First, note that all standard finite game forms are positionally
optimizable up to 0. This is because environement of size 0 induce safety games.
However, there are some standard finite game forms that are not positionally
maximizable w.r.t. any player up to 1. This is for instance the case of the
game form of Figure 7.1.

Furthermore, by definition, from a game form F € Form(O) that is not
positionally optimizable up to some n € N, there exists an environment E €
Env(O) such that either of the players has no positional optimal strategy in
the simple parity game G(r gy where the difference between col(ginit) and the
maximum of the colors appearing in G(r ) is at most n.
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In the game G(r ) depicted on the right of Figure 8.1, Player A has posi-
tional optimal strategies: it suffices to play both rows with positive probability.
(This is similar for Player B.) As a side remark, the game form in the left of
Figure 8.1 is positionally optimizable.

In Lemma 8.2 below, we formulate more explicitly (using the notion of
parity domination from Definition 8.2) what optimal GF-strategies are.

Lemma 8.2 (Proof 8.6.3). Consider a non-empty finite set of outcomes O,
a standard finite game form F € Form(O), an environment E = (c,e,p) €
Env(O) and Y := (F,E). A Player-A GF-strategy oa € Xa(F) is optimal
w.r.t. Y if and only if, letting u := Xg, (qinit), either (i) w = 0, or (ii) the
positional Player-A strategy SX (oa) parity dominates the valuation vy

Furthermore (ii) is equivalent to: (1) the Player-A positional strategy
sk (oa) dominates the valuation v, i.e. oa is optimal in the game in nor-
mal form (F,vy o p) and (2) for all b € Actg, if out[(F,1,-1917)](oa,b) = 0
(i.e. the probability under oa and b to reach a stopping state is null), then
max(Color(F,p,oa,b) U {c}) is even where Color(F,p,oa,b) := {i € [0,¢] |
out[(F, 1,,-1p,,)](oa,b) > 0} is the set of colors that can be seen with positive
probability under oa and b. This is symmetrical for Player B.

Remark 8.3. Informally, this proposition states that for a Player-A GF-
strategy oa to be optimal in a simple game Gy with positive value, it must be
the case that for every Player-B action b: either there is a positive probability
(w.r.t. oa and b) to exit ¢nix and the expected value of the stopping states
visited is at least u; or the game loops on ginix with probability 1, and the
maximum of the colors that can be seen with positive probability (w.r.t. oa
and b) is even. In particular, if ¢ < max Color(F,p,oa,b) or if ¢ is odd, then
max Color(F, p,oa,b) is even.

8.3 The main theorem

The goal of this section is to formally state the main theorem of this chap-
ter, Theorem 8.3 below. Informally, this theorem consists in extracting, for
every state of a game and for each Player, a local environment which will sum-
marize the context of the state to the Player, and tell her how to play optimally
(and positionally).

Before stating this theorem, let us recall and define below some useful
notations, in particular we recall the notation for value slices, a notion we have
already used in Chapter 3.

Definition 8.8 (Value slice). Consider a standard finite parity game G. For
all subsets of states S C @, we denote by Vg := {u € [0,1] | 3¢ € S, xg(q) = u}
the finite set of values of states in S. Furthermore, for all uw € Vg, we let
Qu = {q € Q| xg(q) = u} be the set of states whose value is u: it is
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Figure 8.1: On the left, a game form on the set of outcomes O := {xz, y},
in the middle the description of an environment on O and on the right
the parity game G r gy obtained from what is depicted on the left. The
dashed state is a stopping of value 1/2.

the u-slice of G. Finally, for all u € Vg, we let e, = Even(col[Q,]) and
0y = 0dd(col[Qy]).

We also introduce the notion of positional strategies generated by an en-
vironment function: this is a strategy that, at each state, plays a GF-strategy
that is optimal in the corresponding environment.

Definition 8.9 (Positional strategy generated by an environment function).
For all environment functions Ev : Q — Env(O), a Player-A positional strategy
sa is generated by Ev if for all ¢ € Q, the GF-strategy sa(q) is optimal w.r.t.
(F(q),Ev(q)) (and similarly for Player B).

We can now state the main result of this chapter: Theorem 8.3.

Theorem 8.3. Let G = (C, Parityk) be a standard finite parity game. Assume
that for all ¢ € @, the game form F(q) is positionally maximizable up to
€xg(q)—c0l(q) w.r.t. Player A and positionally maximizable up to o, (4 —col(q)
w.r.t. Player B. Then, there is a function Evp : Q — Env(O) (resp. Evg) such
that all Player-A (resp. Player-B) positional strategies sa (resp. sg) generated
by Eva (resp. Evg) are optimal in G; and such strategies exist.

Remark 8.4. Given some u € Vg, one can realize that the requirement at
states q,q € Q. changes depending on the color of q and ¢'. More specifically,
if col(q) < col(q’), then the requirement at state q is (a priori) stronger than
the requirement at state ¢’ since the game form F(q) should behave well for
environments of larger size than the game form F(q).

The remainder of this chapter is almost-entirely devoted to the explana-
tion of the construction of the environment function Eva (the construction
being similar for Player B), hence we are taking the point of view of Player
A. First, let us argue that we can restrict ourselves to a specific u-slice @, for
some u € V. Such a restriction is properly defined (using stopping states) in
Definition 8.10 below.
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Definition 8.10 (Game restricted to a u-slice). For all u € Vi, we let G* be
the concurrent game G where all states outside @), are made stopping states:
for every q € Q \ Qu, we set val(q) < xg(q). The states, game forms and
coloring function on @, are left unchanged.

Interestingly, a Player-A positional strategy optimal in G can be obtained
by merging appropriate positional strategies sy in the games G“ for all u €
Vo \ {0}, which is actually a straightforward consequence of Proposition 8.1.

Lemma 8.4 (Proof 8.6.4). Forallu € Vy\{0}, consider a positional Player-A
strategy sy that parity dominates the valuation xg in G“. Then, the Player-A
positional strategy sa such that sa(q) :=si(q) for allu € Vg \ {0} and g € Q,,
guarantees the valuation xg in G (i.e. it is optimal).

8.4 The proof

In Appendix 8.6.5, we give a quick overview of the technical properties and
lemmas we show in the appendix that we will use to prove the lemmas (we will
state later in this chapter) leading to the proof of Theorem 8.3.

In this section, we fix a standard finite parity game G = (C, Parityk). In
particular, the set of states @ is fixed and recall that @ is also the set of
outcomes of all game forms occurring in G. Also, Lemma 8.4 above justifies
that we focus on a given wu-slice @,, for some positive u € (0,1]. We also let
e:=ey, 0: =0, and K := K, = {k; | 1 € [0,€]} and for all n € [0,e], we let
K" :={k|ie[0,e]}.

8.4.1 . Big picture of the proof

In order to give an idea of the steps we take to prove Theorem 8.3, let us
first consider the very simple case of finite turn-based deterministic reacha-
bility games. Computing the area La from which Player A wins can be done
inductively. That is, initially we set La := T where T denotes the target that
Player A wants to reach. Then, the inductive step is handled with a (deter-
ministic) attractor: we add to La any Player-A state with a successor in La
and any Player-B state with all successors in La. After finitely many steps,
there is no more state to add in La: this exactly corresponds to the states
from which Player A has a winning strategy.

Computing a single attractor is not merely enough to take into account
the intricate behavior of parity objectives, which is what Theorem 8.3 deals
with. Therefore, we are going to iteratively compute several layers of (virtual)
colors, with a local update to change the (virtual) color (and therefore the
layer it belongs to) of a state. This local update can be seen as an attractor
except in a concurrent stochastic setting. Hence, when we update the (virtual)
color of a state, we take into account the concurrent interaction of the players
at each state along with the probability to see stopping states or states with
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Figure 8.2: A (deterministic turn-based) game.

different (virtual) colors. We define this local update in Subsection 8.4.3. Let
us describe below the steps we take to capture the behavior of the parity
objective.

We compute layers of successive probabilistic attractors with leaks towards

the stopping states. Although we compute a strategy, e.g., for Player A, we

alternate players to build layers, then move the last non-empty layer into the
closest layer with same parity, then backtrack the attractor computation from

this layer downwards, and start over again the full attractor computation on

the new layer structure. In a more concrete way, let us assume below that the

highest color in the u-slice is 6. We proceed as follows:

1.

2.

Add the states colored with 6 to layer Lg.

Recursively add to Lg the states where Player A can guarantee that with
positive probability (pp) either a leak towards stopping states occurs now
and its expected explicit value is u or more (Leaks,,), or with pp the next
state is in Lg, i.e. with pp color 6 or Leak>, will occur.

Add the remaining states colored with 5 to layer Ls.

Recursively add to Ls the states where Player B can guarantee that
either Leak<, occurs now with pp, or the next state is surely not in Lg
and with pp in Ls; i.e. if Leak<, occurs with probability 0, then color 6
will not occur but color 5 will eventually occur with pp.

Add the remaining states colored with 4 to layer Ly.

Recursively add to L, the states where Player A can guarantee that
either Leak>, will occur with pp, or the maximal layer index of the next
states seen with pp is 4 or 6, i.e. even and at least 4.

And so on, from color 3 to 0. The layers so far only give information
about what can happen at finite horizon.

For instance, from Lo, Player A can guarantee that either Leak>, will
occur with pp, or the maximal color that will be seen with pp is in
{2,4,6}. Now, if e.g. Ly = L1 = (), we merge Lo into L4. This is,
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arguably, the most surprising step, let us try to give a conceptual intu-
ition behind this step, we will then illustrate it on a concrete example.
Consider what happens in the Ly layer, assuming Lo = Ly = (). From
states in that layer, either:

e Leaks, occurs with pp;

e otherwise, L3 U Ly U L5 U Lg occurs with pp, and the maximum
index seen with pp is even;

e otherwise, the game loops surely in Lo, and with pp the maximum
color seen is 2. In that case, Player A wins the (real) parity game
almost-surely.

In other words, either the game loops in Ly and Player A wins, or what
happens is alike to what happens in the layer Ly. In Figure 8.2 without
dotted state ¢; where Player B plays alone, Ly = {q4}, then L3 = {3},
then Lo = {2}, but if the play stays in Lo, Player A wins, so Player
B may just as well go to g4 since there is no Lo, L1 below to escape.
However, in Figure 8.2 with dotted state g1, Player B can leave Lo via
Ly # (), avoid color 4, and win. There Lo and L4 are not alike. Hence,
we do not merge them.

9. Earlier, some states of color 1 may have been added to L3 since L3
"overruled" Lo w.r.t indices, but since Lo has just been merged into Ly,
it now overrules L3, so some states from L3 may have to go back to L;.
Therefore we reset the layers below L4 and repeat the above attractor
alternation all over again, until all the states are eventually in Lg as we
shall prove.

The key property that is growing throughout the above computation and will
hold in the final Lg involves layer games: the L,-game is derived from the u-
slice by abstracting each L; with ¢ # n via one state k' from which the player
who dislikes the parity of n chooses any next state in L,, making it harder
for the other to win. If i > n then k] is i-colored, else (n — 1)-colored, also
making it harder for the other to win. And states in L,, bear their true colors.
See for instance Figure 8.5. The L, game is only seemingly harder to win: it
is actually equivalently hard, but its useful properties are easier to prove.

The key growing property is as follows: between two merges, the attractor
computation from the top layer down to L,, ensures that Player A has a posi-
tional strategy of value at least u in each L; for even ¢ > n, and Player B less
than w for odd 7 > n. In the very end, there is only one even layer with all
states bearing their true colors, and no abstract states, so the last layer game
equals the u-slice game, for which we have thus computed a positional optimal
strategy.
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Let us hint at how to show positional optimality in the L,-games when it
holds: we break L, each into one simple parity game built on F(q) per state
q in L,, abstracting the other states in L, into one. Our theorem assumption
yields an optimal GF-strategy for Player A or B in the simple parity game.
Gluing them does the job.

Now recall the above example of computation, where Player A for even
indices, and Player B for odd ones, guarantees (assuming neither Leak>, nor
Leak<, occurs):

e in Lg, that a next state is of color 6 with pp;

e in L5, that the next state is surely not of color 6, and with pp a next
state is of color 5;

e in L4, that a next state is of color 6 with pp or surely the next state is
not of color 5, and with pp a next state is of color 4;

e in L3, that the next state is surely not of color 6 and that the next state
is of color 5 with pp or surely the next state is not of color 4, and with
pp a next state is of color 3; etc.

One can realize that the furthest the layer is from the maximal color (that
is 6), the more complex the requirement is at that layer. That is why the
strength of our assumption on the game form induced at some state increases
with the difference between maximal true color in the u-slice and the true color
(at most n) of the state, as stated in Remark 8.4. We will discuss this further
in the next chapter. In particular, we will show that there is an infinite strict
hierarchy between these assumptions.

8.4.2 . Extracting an environment function from a parity game

Once restricted to the game G%, the method we use to prove Theorem 8.3
consists in iteratively building a pair of (virtual) coloring and environment
functions ensuring a nice property (namely faithfulness, defined below in Def-
inition 8.17). For the remainder of this section, we illustrate the definitions
and lemmas on the game depicted in Figures 8.3 and 8.4.

Example 8.2. We explain the notations used to depict this game (it is in fact
the same arena in both Figures 8.3 and 8.4, with different coloring functions
— real or virtual). On the sides in green are the slices Q, Q1/4, Q374 and Q1
from left to right. We focus on the central slice Q3. In )y, there are seven
states, five of which (the square-shaped ones) are turn-based for Player B, that
is, Player A has only one available action. On the other hand, the two circled-
shaped states qg and g5 are “truly” concurrent in the sense that both players
have several actions available. Furthermore, note that only one stochastic
outcome (of a local interaction) is drafted as a black dot: from q4, Player B
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Figure 8.3: The depiction of a
game restricted to the 1/2-slice
(012 with the initial coloring func-
tion col.

Figure 8.4: The same game re-
stricted to ()2 with a different col-
oring function vcol.

may either loop on q4 or go with equal probability to qo and gs. The other
arrows lead to a single state and the outcomes of the game forms in qq or gs is
a single state or a value: 1 or 1/2. These formally refer to a (distribution over)
stopping states outside of the 1/2-slice Q1/2- The horizontal layers depict the
colors of the states. In Figure 8.3, the coloring function considered is the initial
one col whereas in Figure 8.4 we have depicted a (virtual) coloring function
veol. For instance, col(qgs) = 3 whereas col(gs) = 2. Similarly, vcol(gs) = 3
whereas veol(qs) = 4. Note that, in Figure 8.4, the real colors (given by col)
are reminded next to some states with circled numbers. Finally, note that
e:=eypp =4

Given a (virtual) coloring function, we need to extract local environments
from the parity game G, which summarize how the Players see their neighboring
states via the virtual coloring function. This is (partly) done in Definition 8.11.

Definition 8.11 (Probability function extracted from an arena and a (virtual)
coloring function). Consider a virtual coloring function vcol : @, — [0, ¢€].
For all n € [0,¢€], we let Q, := vcol™![n]. We then define the map Pnoveol
Q — D(Qn ¥ K" W Vg\q,) such that, for all ¢ € Q:

o ifge @, pn,vcol(Q) =4q;
o ifgec @y, \ Qn, pn,vcol(Q) = k\T/LcoI(q)’.

o ifge @\ Qu, pn,vcol(‘]) = xg(q)-
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Given a (virtual) coloring function veol : @, — [0, e] and a color n € [0, e],
we can now extract a smaller parity game from G where the states with non-
trivial game forms are the states in vcol*[n], the states in Q \ Q,, are stopping
states and the arena loops back to vcol ™! [n] when a state in @, \ vcol™1[n] is
seen. This is done below in Definition 8.12.

Definition 8.12 (Parity game extracted from the u-slice). Consider a virtual
coloring function veol : Q, — [0,¢] and a color n € [0,¢]. Let C € {A,B} be
a Player: A if n is odd and B if n is even. The arena C!'. | = (Q',F', K, vcol,)
is such that, denoting Q,, := vcol ! [n]:

e Q =Q,UK"U Vo\q. where all x € V\q, are stopping states with
val(z) < z;

e forall g € Qn, F'(q) := F(q)Prv = (Acty,Acty, Q' Ep, . ,)s and for all
k € K™, we set F'(k) as a Player-C state where the outcomes are all the
states in Qy;

e for all ¢ € @, we let vcol,(q) := col(q) and for all i € [0,e], we have
veoly, (k') := max(i,n — 1).
Fort € [0,1], we define the valuation v}, . : Q" — [0,1]: v}, , )[@uUK"] := {t}
and for all x € Vi\q,,; V), el () = .
The game L] is then equal to L, (Cr,, Parityy).

vcol = \Mvcol?

Remark 8.5. First, the notation L], comes from the fact that the game is
extracted for the n-colored layer w.r.t. the coloring function vcol. The idea
behind Definition 8.12 is the following: the states of interest are those of Q)y,
that is, those for which the virtual color given by vcol is n. Note however that
the colors of these states in L] | are given by the real coloring function col.
On the other hand, for all i € [0,¢], the state k' in L, correspond to the
states in G* colored with ¢ w.r.t. vcol. In the case where n is even, as formally
defined later in Definition 8.16, we will require that any Player-A positional
strategy generated by a given environment has value at least u, in the game
LY, from all states in Q,. However, all states k' for i € [0,e] are Player-
B’s, who can then choose to loop back to any state in QQ,,. Therefore, given a
Player-A positional strategy sa, if the game cannot exit to any stopping state,
for the strategy sa not to have value 0, the game may loop on some k' only at
the condition that the highest color seen with positive probability is even. In
addition, note that the color of the state k' for i € [0,n — 1] is n — 1 (which
is odd). Hence, all other things being equal, the game is harder for Player A
when n = 4 than when n = 2 or 0. Finally, note that, when n is odd, we will
require that any Player-B positional strategy generated by a given environment

has value less than u.
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Figure 8.5: The game L3 . For readability, exiting arrows from
k3 k3, k3 k3 and k3 are not depicted: they would all loop back to both

qs and gg.

Figure 8.6: The game G, ., with vcol the coloring function depicted in
Figure 8.4.
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Example 8.3. The game L’gcd is partly depicted in Figure 8.5 (the virtual
coloring function vcol being the one depicted in Figure 8.4). The colors of
the states are depicted in red. Although the arrows are not depicted, from all
states ki, k3, k3, k3 and ki Player A can decide to which state among {q4, g}
to loop back (since n = 3 is odd). In an even-colored layer, it would have been
Player B to decide.

Given a virtual coloring function, we also associate a local environment
with each state.

Definition 8.13 (Local environment induced by a virtual coloring function
and a color). Consider a state ¢ € @, a coloring function vcol : Q, — [0, e].
We define pqyeol : Q@ = {qinit} U K U [0, 1] similarly to how we define py, yeol inn
Definition 8.11. That is, for all ¢ € Q), we have:

o if q/ = {, Pq,vcol ‘= init;
o if q/ € Qu \ {Q}7 Pq,vcol ‘= kvcol(q’);

o ifgd €Q \ Qu, pq,vcol(Q) = xg(q)-

Then, for all n € [0,¢€], the environment E},., associated with state g

w.r.t. vcol and n is such that E;vcol =

cn=n+1ifnisodd and ¢, :=n — 1 if n is even. We say that the coloring

(max(cy, veol(q)), e, Pgveol) Where

function veol is associated with the environment EJ', . The corresponding

(local) game Q(F(Q)E;«L ) (see Definition 8.5) is denoted G;' For all z € [0, 1],
. ,vcol

q,vcol”
we set v” (see Definition 8.5).

gveol = YU(F(),EY,.,)

q,veol
The definition of ¢, may seem ad hoc. We give an explanation below in
Page 303 of this definition.

n

Example 8.4. The game G ,
n = 0,1,2. However, if n = 3, the color of ¢+ would be 4, and if n = 4, it
would be 3. The game Q;)’Vcol is depicted in Figure 8.6 for n = 0. However, if

n = 1, the color of gnix would be 2, if n = 2, the color would be 1, if n = 3,
the color would be 4 and if n = 4 the color would be 3.

| is depicted on the right of Figure 8.1 for

8.4.3 . Local Operator

We want to define a way to update a (virtual) coloring function vcol. This
will be done via a local operator mapping a given state ¢ to the best color k for
which Player A can achieve the value w in the corresponding local parity game
gz];,vcol‘ Note that “best” is to be understood considering an ordering compatible
with the parity objective. Specifically, taking the point-of-view of Player A,
any even number is better than any odd number, and when they increase,
odd numbers get worse whereas even numbers get better. This induces a new

ordering.
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Definition 8.14 (Parity order). We define a total strict order relation <par
on N such that, for all m,n € N, we have m <par n if: m is odd and n is even;
or m >n and m and n are odd; or m < n and m and n are even.

Definition 8.15 (Local operator). Consider a state q € Q,, and a (possibly
virtual) coloring function vcol : @, — [0,¢e]. The color NewCol(g,vcol) € N
induced by vcol at q is defined by:

NewCol(g, veol) i= max{n € [0.€] | xgj.,, (gm) = u}

The meaning of a new virtual color n assigned to a state ¢ via NewCol is
the following: in the game G“ with the coloring function vcol, from state ¢ and
in at most one step, the highest color w.r.t. vcol seen with positive probability
when both players play optimally is n (and no stopping state is seen).

Let us now explain the choice of ¢, in Definition 8.13. In a local envi-
ronment parameterized by n, the integer n induces a shifted parity objective
for Player A: her objective is that the maximal color seen infinitely often is
at least n w.r.t. <par; in particular n = 0 induces the usual parity objective.
The value ¢, encodes that winning condition. For instance, if n = 2, assuming
veol(g) = 0 for simplicity, then ¢, = 1, which implies that seeing 0 infinitely
often is not enough, but seeing 2 infinitely often is enough to win. Similarly,
if n =1, ¢, = 2, which implies that seeing 1 infinitely often is now enough to
win, but seeing 3 infinitely often is still losing.

Remark 8.6. Assume for instance that NewCol(q, vcol) = 2 for some state
q € Q and some (virtual) coloring function vcol'. In particular, Player A has a
GF-strategy oa optimal w.r.t. (F, Eivcol),
Player B has a GF-strategy og optimal w.r.t. (F, E;l

which yields a value at least u, and

,ch|)¢ which yields a value

less than u. Remember that all games ggvcd (where k ranges over [0, e] ) share

the same structure and that only the color of gt changes. Consider what

0
q,VvCco

playing strategies op and og. Recalling Remark 8.3, the game cannot exit

happens in the game G| (where the state gnit is colored by vcol(q)) when

to any stopping state since the expected value of the stopping states reached

gvcol) and less than u (since

og Is optimal in Q;l veol); hence this cannot happen. Furthermore, if some color

of value at least 3 is seen with positive probability, then the highest such color

2
q,vco

g;vcd). In fact, the highest color seen with positive probability in ngvcol under

would be both at least u (since op is optimal in G

must be both even (since oa is optimal in G ;) and odd (since og is optimal in
oa and og is 2 and neither of the players can do better (w.r.t. the ordering
~par). From this, we can infer the semantics of a virtual color n assigned to a
state q via operator NewCol (i.e. a color given by a virtual coloring function):
in the game G" with coloring function vcol, from state q and in at most one

In particular, it must be the case that vcol(q) < 2, see Proposition 8.13.
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step, the highest color w.r.t. vcol seen with positive probability is n (and no
stopping state can be seen).

Let us exemplify this operator on an example.

Example 8.5. First, consider Figure 8.1 and let us compute NewCol(gs, col).
We can realize that, regardless of the color of state gnit, Player A can (posi-
tionally) play both rows with positive probability and ensure reaching (almost-
surely) the stopping state 1/2. In fact, for alln € [0,4], we have Xgr. (Ginit) =
1/2. Hence, NewCol(gs, col) = 4.

Consider now Figure 8.6 and let us compute NewCol(qg, vcol). As men-

,col

tioned in Example 8.4, the game g;lwcol corresponds to the game depicted in
Figure 8.6 except that gt is colored with 3. One can realize that, with this
choice (of coloring of the state gnit), if the highest color i € [0,4] such that
k; is seen infinitely often is such that ¢ <par 4, then Player A loses. The value
of this game is 0 as Player B can ensure looping on ko and ¢nix (by playing,
positionally and deterministically, the middle column) thus ensuring that the
highest color seen infinitely often is 3. Thus, NewCol(qo, vcol) <par 4. In the
game ngwcol, Ginit is colored with 1. Again, with this choice (of coloring of
the state ginit), if the highest color i € [0,4] such that k; is seen infinitely
often is such that i <par 2, then Player A loses. The value of this game is
also 0 as Player B can still play the middle column ensuring that the high-
est color seen infinitely often is 1. Thus, NewCol(qo,vcol) <par 2. Consider
now the game ggo’vcol, the one depicted in Figure 8.6. The value of the state
Ginit 18 now 1. Indeed, if Player A plays the two rows with equal probability,
one can see that this strategy parity dominates (see Definition 8.2) the valu-
ation v;(wcol (recall Definition 8.13). Indeed, the BSCCs compatible with this
strategy are {qinit, k3, ka} and {qinit, ko} and they are even-colored. Hence, by
Proposition 8.1, Xgo (Ginit) = 1 > 1/2 and NewCol(qo, vcol) >par 0. That is,

ol

NewCol(gp, vcol) = 0.

Some of the properties enjoyed by the local operator NewCol are given in
the appendix in Page 316.

8.4.4 . Faithful coloring function

To prove Theorem 8.3, we iteratively build a (virtual) coloring function
and a local environment. We want to define the desirable property that the
pair of coloring and environment functions should satisfy that will be preserved
step by step. First, we need to define the notion of an environment function
witnessing a color.

Definition 8.16 (Environment witnessing a color). Consider a coloring func-
tion veol : @, — [0,e], a color n € [0,e] and an environment function
Ev:Q, — Env(Q) with Q, := vcol }[n].

Assume that n is even. We say that the pair (vcol, Ev) witnesses the color
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n if for all ¢ € Qn, Sza(Ev(q)) < e — col(q) and all positional Player-A strate-
gies sa € S§ generated by Ev (recall Definition 8.9) in the game L .\ parity
dominate the valuation vy, . (recall Definition 8.12).

Assume that n is odd. We say that the pair (vcol, Ev) witnesses the color
n, if for all ¢ € Qn, Szg(Ev(q)) < o — col(q) and for all positional Player-B

strategies sg € Sg generated by Ev in the game L, there is some u' < u,

'U//
n,vcol*

such that sg parity dominates the valuation v
Remark 8.7. The condition on the size of the environments considered along
with the assumptions of Theorem 8.3 ensures that the quantification over the
strategies generated by the environment function are not over the empty set.

This definition was hinted in Remark 8.5. Informally, it means that, in the
(virtual) games given by vcol, in the even-colored layers, Player A can achieve
at least what she should be able to achieve in this u-slice (i.e. the value of the
states is at least u). Whereas, in the odd-colored layers, Player B can prevent
Player A from achieving this.

We can now define the notion of faithful pair of coloring and environment
functions.

Definition 8.17 (Faithful pair of coloring and environment functions). Con-
sider a coloring function vcol : Q,, — [0, €], some n € [0,e + 1] and a partial
environment function Ev : Q,, — Env(Q) defined on vcol*[[n, €]]. We say that
(veol, Ev) is faithful down to n if:

e for all k € [n,e], the pair (vcol, Ev) witnesses color k;

e forallq € Q,, ifvcol(q) < n, then col(q) = vcol(q) and NewCol(g, vcol) <
n;

If n = 0, we say that the pair (vcol, Ev) is completely faithful.

Only the first condition for faithfulness is really of interest to us. For
instance, this first condition suffices to show the crucial proposition below.
However, the second condition is used in the proofs. (It is also helpful as it
guides us in how to build a completely faithful pair, as discussed below.) Note
that, in the proofs, we use an even stronger notion of faithfulness with a third
condition. However, we do not present it here in order not to complexify too
much the approach, and the two first conditions are sufficient for the (informal)
explanation of Theorem 8.3. It can however be found in Appendix 8.6.5.

The benefit of faithful environments and coloring functions lies in the
proposition below: if all states are mapped w.r.t. the coloring function to
e, then the environment function guarantees the value u in the whole u-slice

Qu-

Proposition 8.5. For a coloring function vecol : Q, — [0, e] and an environ-
ment function Ev : Q, — Env(Q), assume that (vcol, Ev) is completely faithful
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and that col,[Q,] = {e}. Then, all Player-A positional strategies generated
by the environment function Ev parity dominate the valuation xg in the game

g".

Proof. This is direct from the definitions. Indeed, as (vcol, Ev) is completely
faithful, it follows that (vcol, Ev) witnesses the color e (see Definition 8.17).
That is, all Player-A positional strategies sp generated by Ev in the game L¢_,
parity dominate the valuation vy, (see Definition 8.16). Since vcol[Q.] =

{e}, both games LS, and G" are identical (see Definitions 8.10 and 8.12).
Similarly, the valuation vY ., is equal to the valuation xg in the game G“

(also see Definition 8.16). O

8.4.5 . Computing a completely faithful pair

Given Lemma 8.5, our goal is to come up with a pair of an environment
function and a coloring function completely faithful such that all states are
colored with e. Let us first consider how to obtain a completely faithful pair
from the initial coloring function and the empty environment function (i.e. no
state is mapped to an environment). Note that this initial pair of coloring and
environment functions is faithful down to e+ 1. Hence, our goal is, given a pair
(veol, Ev) faithful down to some n € [1, e+1], to build a new pair that is faithful
down to n—1. To do so, let us be guided by the second property for faithfulness:
to be faithful down to n — 1, no state ¢ € @, such that vcol(q) < n — 2 should
be such that NewCol(g,vcol) = n — 1. Hence, the idea is, for all such states
q € Qu, to change their colors to n—1 until no state ¢ € Q,, with veol(q) < n—2
satisfies? NewCol(q, vcol) = n — 1. The environment associated to each such
state ¢ newly colored by n — 1 will be given by the coloring function vcol for
which NewCol(g,vcol) = n — 1 for the first time (crucially, this is done before
the color of ¢ is updated to n—1). The procedure we have described is formally
given in the Appendix as Algorithm 8.12. Interestingly, the update done in the
algorithm preserves the faithfulness of environment and coloring functions.

Lemma 8.6 (Proof Page 328). Consider a coloring function vcol : Q, —
[0,e], n € [1,e + 1], and a partial environment function Ev : Q, — Env(Q)
defined on vcol™![[n,e]]. Assume that (vcol, Ev) is faithful down to n. Let
(veol’, EV') < UpdateColEnv(n — 1,vcol, Ev) be the pair computed by Algo-
rithm 8.12 for index n — 1. (Only states q such that vcol'(q) = n — 1 may
have changed their colors and be newly mapped to an environment.) Then,
(veol’, EV') is faithful down ton — 1.

Before giving a proof sketch of this lemma, let us illustrate it on an example.

2This can seen as computing a “probabilistic attractor with leaks towards the
stopping states” that we mentioned above.
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Example 8.6. Let us illustrate this algorithm on Figures 8.3 and 8.4. The
first step is to build a pair that is faithful down to e = 4. As mentioned above
in Example 8.5, we have NewCol(gs, col) = 4. Hence, the color of this state is
changed to 4 (we obtain a virtual coloring function vcol® ) and we set Ev(gs) :=

E;"&CO'. Note that a Player-A GF-strategy opa is optimal in this environment
if and only if it plays both rows with positive probability. Furthermore, note

4
vcol95

that, in the extracted game L a Player-A positional strategy playing such

a GF-strategy oa in g5 parity dominates the valuation Ué)/jcol% Hence, the
pair (vcol® Ev) is faithful down to 4.

Consider now the layer 3. First, the state qg already has color 3, so it
only remains to set its environment: Ev(gg) := quﬁ,vcolqs- We then realize that
NewCol(g4,vcol®) = 3. Indeed, q4 is colored with 2 and may go with equal
probability to a state colored with 0 and to a state colored with 3. The color of
this state is therefore changed, thus obtaining a new virtual coloring function
veol?:96:94 - We set its environment: Ev(qq) := Eg4,vco|‘15' One can realize that
the pair (vcol?-96:9 Ev) witnesses the color 3 : a positional Player-B strategy
generated by this environment would be so that (i) from gg, it goes to q4 with
probability 1 (to avoid k4 that is colored with 4) and (ii) from g5, it goes to qg
with positive probability (to see the color 3 with positive probability). Such
a strategy has value 0 in the game E?col% = Lgcol from Figure 8.5, hence the
pair (vcol?96:9 'Ev) witnesses the color 3.

We illustrate on this step why the environment needs to be set before
changing the new color and not after. That is, we explain why it would not
be correct to set Ev(qy) := E347c0|q5,q6,q4 instead of what we do above. In this
environment, the state q4 has color 3. Hence, looping with probability 1 on
q4 Is an optimal GF-strategy for Player B w.r.t. (F(q4),Ev(qs)). Then, the
corresponding pair of coloring and environment functions would not witness
the color 3. Indeed, a Player B strategy that loops with probability 1 on q4 is
generated by this environment, and it has value 1 > u (because the real color
of this state is 2, and not 3).

This process is then repeated down to 0. In Figure 8.4, the depicted color-
ing function (with the appropriate environment function that is not shown in
Figure 8.4) are in fact completely faithful (this is what outputs Algorithm 8.12
on the coloring function of Figure 8.3).

We give a proof sketch of Lemma 8.6, which explains the ideas for the first
phase of the procedure for computing a first completely faithful pair, before
Algorithm 8.13 is called — which we will discuss right after.

Proof sketch. We want to prove that the pair (vcol’,EV') witnesses the color
n — 1 (the other condition for faithfulness is ensured by the construction).
We consider the case where n — 1 is even, the other case is similar (but one
needs to take the point-of-view of Player B). Consider a Player-A positional
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strategy sa generated by the environment function Ev' in the game /“c‘:;ll’ Let

Qn_1 := veol"}[n — 1] and let v := U ol

For every ¢ € Qn—1, let Yy :=
(F(g),EV'(q)) be the local environment at state ¢ and let EV/(q) = (cq, €,pq)-
From the characterization of Lemma 8.2 (item (ii.1)), by carefully analyzing
the links between the local games Gy, for all ¢ € Q-1 and the game E\ch—oll,, we
deduce that the strategy sp dominates the valuation v.

It remains to show that all BSCCs (that are not reduced to a stopping
state and are) compatible with sa are even-colored. Consider such a BSCC H
and a Player-B deterministic positional strategy sg which induces H. For
every state ¢ € H, since no stopping state occurs in H, it must be that
the probability to reach a stopping state is 0. That is, it amounts to have
out[(F(q), Ig\,)|(oa,b) = 0. For every state ¢ € Q,—1, the coloring func-
tion vcol, associated with environment Ev/(g) is such that vcoly(¢) < n — 1.3
Hence, the color ¢, is such that ¢, = max(n — 2,vcol,(¢)) < n — 1. Now,
assume that some state k; is in H for some ¢ > n — 1 > ¢,. In that case,
as explained in Remark 8.3, the highest ¢ such that k; is in H must be even.
Hence, H is even-colored. Assume now that no state k; in H is such that
i > n — 1. In that case, if a state in H has color n — 1 (like the state g in
Figure 8.4 in the case where n — 1 = 3), then n — 1 is the highest color in
H and H is even-colored. Consider the first state ¢ whose color is now n — 1
(w.r.t. vcol’) but whose previous color was not n — 1. In that case, we have
¢q = max(n—2,vcoly(¢)) = n—2 is odd. Furthermore, the state ¢ has changed
its color because NewCol(g, vcol,) = n — 1. With Remark 8.3, since sa(q) is
optimal w.r.t. Y, it follows that there is a positive probability to reach, in
the game Gy, the state k,_1. In the game Ec;ll,,
probability to reach a state ¢’ € H colored with n — 1 w.r.t. vcol, (recall Defi-
nition 8.11). Since q is the first state to have changed its color, we can deduce

this corresponds to a positive

that ¢’ already had color n — 1 w.r.t. vcol. Furthermore, one can show that ¢’
is colored with n — 1 w.r.t. the real coloring function col. Overall, in the game
E\’fc_oll,, with the GF-strategy sa(q), there is a positive probability to reach in
one step a state ¢’ colored with n — 1. Iteratively, we obtain that, considering
the k-th state whose color is now n—1 (i.e. w.r.t. vcol’) but whose initial color
was not n — 1, there is a positive probability to reach (in at most k steps) a
state colored with n — 1. Hence, the highest color appearing in H is n — 1,
which is even. We obtain that sp parity dominates the valuation v. O

Overall, applying iteratively Algorithm 8.12 on all colors from e down to
0 starting with the initial coloring function induces a completely faithful pair
(vcol, Ev). However, it may be the case that some states are mapped to an
odd number, which does not allow to apply Lemma 8.5. The question is then:

3This is because all states ¢ € Q,,_1 satisfy col(q) < n — 1. This is one of the
additional conditions for faithfulness that we did mention, but that is used in the
Appendix in Definition 8.22.
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from that completely faithful configuration, how can one make some progress
towards a situation where Lemma 8.5 can be applied?

Example 8.7. Consider the coloring function of Figure 8.4. As mentioned
in Example 8.6, with an appropriate environment function (that is not shown
in Figure 8.4), we can have a pair which is completely faithful. To gain some
intuition on what should be done next, let us focus only on the states q1, g2, q3.
A simplified version is presented in Figure 8.7 (with a slight modification:
instead of going to qo, q1 loops on itself): the initial (and true) colors of the
states are in circles next to them and their color w.r.t. the current (virtual)
coloring function (that is completely faithful with an appropriate environment
function) is written in red. In this game, Player B plays alone, but it is obvious
that Player A wins surely from qo: indeed, either the game stays indefinitely
in qo, or it eventually reaches and settles in q;.

The current virtual color 1 assigned to both qo and g3 does not properly
reflect the fact that if the game reaches q3, even though Player B plays opti-
mally according to the local game associated with qo, it will end up looping in
q1, which will be losing for Player B. In a way, we would like to propagate the
information that reaching q; is bad for Player B. Since 0 is the smallest color,
there is no harm in increasing it to 2, the game from q; will be the same: it will
be won by Player A by looping. Player B will now be able to know that going
to q1 is dangerous for him, which will be obtained by applying the previous
iterative process.

In a more general concurrent game, the next step of the process when
we have a completely faithful configuration not satisfying the assumptions of
Lemma 8.5 consists in changing all the states with the least (virtual) color n to
the color n+2. However, note that there is a (very important) second step: the
colors of all states (virtually) colored with n+ 1 should be reset to their initial
colors. The reason why can be seen again in Figure 8.7. After the color of q;
becomes 2, the color of g3 will also become 2. However, if the color of the state
@2 is not reset, then it is not going to change since Player B can choose to loop
to q2 and see the color 1 for ever (in game ggwco,). That is, from Player B’s
perspective, looping indefinitely on qo is winning, which is not what happens
in the real game (i.e. the coloring function does not faithfully describes what
happens in the game). The changes made to the coloring function vcol from
Figure 8.4 can be seen in Figure 8.8. Note that the process of increasing the
colors of some states by 2 can only be done with the least color (otherwise
faithfulness will not be preserved).

The process described in Example 8.7 is implemented as Algorithm 8.13 in
the Appendix, it ensures the lemma below.

Lemma 8.7 (Proof Page 332). Let vcol : @, — [0,¢], Ev: Q, — Env(Q)
be a coloring and an environment functions. Let n := minvcol[Q]. Assume
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Y g

Figure 8.7: A (deterministic turn-based) game with only three states.

Figure 8.8: The same arena as in Figures 8.3,8.4 but with a different
coloring function.

that n < e — 2 and the pair (vcol, Ev) is completely faithful. If (vcol’, EV') «
IncLeast(vcol, Ev) is the result of increasing the least-colored layer by 2 and
resetting the environment of the last but least-colored layer (Algorithm 8.13),
then (vcol’,EV') is faithful down to n + 2.

Proof sketch. Let Q, := vcol™![n] and Q42 := vcol ' [n + 2]. The algorithm
has three steps: first, it increases the least color by 2; then it resets the en-
vironments of the (n + 1)-colored states; finally it applies Algorithm 8.11 to
these reset states. Let us argue that (vcol”, Ev) (obtained after the first step)
witnesses the color n + 2.

Consider a Player-A positional strategy sa generated by the environment
Ev in the game LC;IQ,,. Let v := UZ+1,vcol“‘ Similarly to the proof of Lemma
8.6, sp dominates the valuation v. Consider a BSCC H compatible with sp. If
HNQni2 =0, then H is even-colored. Indeed, (vcol, Ev) witnesses the color
n. In addition, the probability to go to a state k7" that is (n + 1)-colored in
the game E\’/";)Ig,, is exactly the probability to go to a state k] that is (n + 1)-
colored in the game L, (since n is the least color). Furthermore, H is also
even-colored as soon as H N Q, = () since (vcol, Ev) witnesses the color n + 2.
Now, assume that none of these cases occur. Then, one can show that: either
a state k; is seen for some ¢ > n + 2, and H is even-colored; or, from some

states in Qn12, there is a positive probability to exit @,,+2 and no state k; is
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seen for ¢ > n + 2. Now, looking at what happens in game EC:ZIQ, some states
k; are seen for i < n + 1, and such states are colored with n 4+ 1. Hence, since
(veol, Ev) witnesses the color n + 2, it must be that the highest color in H is
n + 2, which is even. Therefore it is also the case in the game [,3;2/,. In all the
cases, H is even-colored. ]

As stated in Lemma 8.7, the update of colors described in Example 8.7
can be done only if, for a completely faithful pair, the least (virtual) color n
appearing is at most e — 2. If n = e, we are actually in the scope of Lemma 8.5
since in that case all states have (virtual) color e. However, there remains the
case where we have n = e — 1. In fact, this case cannot happen.

Lemma 8.8 (Proof Page 333). Consider a coloring function vcol : Q, —
[0, €], an environment function Ev : Q,, — Env(Q). Assume that (vcol, Ev) is
completely faithful. Then, for C := vcol[Q], we have minC # e — 1.

Proof sketch. Let Q. 1 := vcol '[e — 1]. Towards a contradiction, let sg be
/ \e/c_cj It parity
dominates the valuation v, ., for some v’ < u. Hence, all BSCCs compatible

with sg are odd-colored: they all stay in the layer Qc—1. Indeed, since e —

a Player-B positional strategy generated by Ev in the game L

1 = minC, exiting Q._; while staying in @, means seeing Q. := vcol ~![e]
with e even and the highest color in the game. Hence, either the game stays
indefinitely in Q.—1 and Player B wins almost surely, or there is some positive
probability to visit stopping states, and in that case their expected values is
at most u’. Hence, in the game G, the strategy sg has values less than u from
the states Q._1 C @, which is a contradiction. O

Finally, all these pieces are put together in Algorithm 8.14 in the Appendix,
whose output is a completely faithful pair where all states are mapped to e.
The only remaining step is to prove the termination of this algorithm. Let
us consider the (virtual) coloring functions as vectors in N¢*! indicating the
number of states mapped to each color. Then, one can realize that each step
of Algorithm 8.14 increases this vector for a lexicographic order (i.e. we first
compare the number of states mapped to e, then the number of states mapped
to e — 1, etc). Hence, Algorithm 8.14 does terminate in finitely many steps.

Lemma 8.9 (Proof Page 335). Algorithm 8.14 computes a completely faith-
ful pair of environment and coloring functions mapping each state to e in
finitely many steps.

We can now proceed to the (informal) proof of Theorem 8.3.
Proof sketch. Let us prove Theorem 8.3 for Player A. Consider some u €
Vo \ {0}. By Lemma 8.9, there is a completely faithful pair of environment

and coloring functions (vcol,, Evy) mapping each state in @, to e,. Hence, by
Lemma 8.5, all Player-A positional strategies generated by the environment
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function Evj parity dominate the valuation yg in the game G". Since we as-
sume that all game forms occurring in @,, are positionally maximizable up to
ey, — col(q) w.r.t. Player A, such positional strategies generated by Evi do ex-
ist. Then, considering the environment function Eva : @ — Ev(D) that merges
all the environment functions (Evj)yev;\ 0} together (and that is defined arbi-
trarily on Qy), it follows by Lemma 8.4, that all Player-A positional strategies
generated by that environment function Ev are optimal. (And such strategies
exist.) O

We finally state below an NSC-transfer.

Corollary 8.10. Among standard finite game forms with finitely many out-
comes, being positionally optimizable is an NSC-transfer for the existence of|
positional optimal strategies for both players in finite parity games.

Proof. From a game form that is not positionally optimizable, one can build a
simple parity game where one of the players has no positional optimal. This
is by definition of positionally optimizable game forms (Definition 8.7) and by
Definition 8.6. The other direction comes from Theorem 8.3. O

Note that, for simplicity, we have not stated an NSC-transfer as we did
in Proposition 7.7 where the conditions on each state depends on the color of
the state. It is plausible that such an NSC-transfer could be stated for the
finite-state parity games that we have considered in this chapter. However, it
would probably involve introducing the maximal color appearing in the parity
games considered.

8.5 Discussion and future work

In this chapter, we have proved an NSC-transfer, among standard finite
game forms, for the existence of positional optimal strategies in finite par-
ity games for both players. A natural future work would be to prove the
result for any one player, independently of the other player. As mentioned
in the introduction of this chapter, this would require, a priori, to manipu-
late infinite-choice strategies for the player we are not handling, which is why
we have not done it yet. One of the main difficulties would then be to glue
infinite-choice local strategies (i.e. strategies in simple parity games induced
by the different game forms F(q)) together into a single global strategy, which
is straightforward when all local strategies are positional. Furthermore, we
could no longer use Proposition 8.2, which comes from Corollary 3.16 since it
only applies to positional strategies. Instead, we would have to use the more
general Corollary 3.14.

In a somewhat similar fashion than for Chapter 2 with Theorem 2.3, we
believe that the benefit of this chapter does not only lie in the results stated
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in Theorem 8.3 and Corollary 8.10, but also in the method we took to prove
Theorem 8.3. Due the the concurrent stochastic setting of this dissertation,
the arguments are quite technical. It may be interesting to restrict the setting
to finite turn-based stochastic games, which would (greatly) simplify the proof,
or at least remove its most technical aspects. We believe that it could provide a
new proof of the existence of positional optimal strategies in finite turn-based
parity games for both players, which was originally proved in [27, 28], as it
is straightforward to show that finite turn-based game forms are positionally
optimizable.

8.6 Appendix

8.6.1 . Algorithms

The algorithms we mentioned in this chapter are gathered in this subsec-
tion. Let us quickly describe what each of them does:

e Consider a color k € [0, ¢], a state ¢ € Q,, and a virtual coloring function
veol : @, — [0,€e]. Then, the algorithm CreateEnv(k, ¢, vcol) builds an
environment, at state ¢, for either of the players: A if k is even, B if it
is odd.

e Consider a color k € [0,e], a virtual coloring function vcol : @, —
[0,¢] and an environment function defined on vcol ![[k + 1,¢]]. Then,
the algorithm UpdCurSta(k, vcol, Ev) sets the environment of all states
virtually colored by k by calling algorithm CreateEnv(k, g, vcol).

e Consider a color k£ € [0,e], a virtual coloring function vcol : @, —
[0,¢] and an environment function defined on vcol *[[k + 1,¢]]. Then,
the algorithm UpdNewSta(k, vcol, Ev) changes the colors and sets the
environment of all the states ¢ € @,, virtually colored by some ¢ < k for
which the operator NewCol is equal to k.

e Consider a color k € [0, €], a virtual coloring function vcol : @, — [0, €]
and an environment function defined on vcol “}[[k+1, e]]. Then, the algo-
rithm UpdateColEnv(k, vcol, Ev) calls successively algorithms UpdCurSta(k, veol, Ev)
and UpdNewSta(k, vcol, Ev).

e Consider a virtual coloring function vecol : @, — [0,¢e] and an envi-
ronment function defined on @,,. Then, the algorithm IncLeast(vcol, Ev)
increases the colors of states virtually colored by the least color ¢y, by
2. Then, it resets the color and environment of all states colored by
Cmin + 1.

e Finally, consider a coloring function col : @, — [0,¢e]. Then, the al-
gorithm ComputeEnv(col) iteratively computes a pair of virtual coloring
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function and a environment function by successively calling algorithms
UpdateColEnv and IncLeast until all states are colored by e.

8.6.2 . Proof of Proposition 8.1

Proof. The first observation we can make is that, if sp dominates the valuation
v : Q — [0,1], then it also dominates the valuation vy : Qf — [0,1] (recall
Definition 3.9) in the sense of Definition 3.7.

We can therefore apply Corollary 3.15: for all ECs H in the finite MDP
I'? induced by the strategy sa, there is a value u(v, H) € [0,1] such that
v[Qp] = {u(v, H)}. This proves the first part of the proposition.

As for the second part of the proposition, this is a direct consequence
of Corollary 3.16. Indeed, consider any EC H with u(v, H) > 0 and state
q € Q. Consider any Player-B positional deterministic strategy sg. Then,
all the BSCCs that can occur in Q g, in the Markov chain induced by sg, are
even-colored. That is, from ¢, the parity objective holds almost-surely. Since
this holds against all Player-B positional deterministic strategies and since
positional deterministic strategies are enough to play optimally in finite MDPs
with parity objectives [27], this proves that Xcon (q) =1.

O

8.6.3 . Proof of Lemma 8.2

Proof. As in the proof of Proposition 8.1, the first equivalence comes Corol-
lary 3.16 (the other direction) and the fact that positional deterministic strate-
gies are enough to play optimally in finite MDPs with parity objectives [27].
Now assume that u > 0. Assume that the strategy sj(oa) parity dominates
the valuation vy, in the game Gy. In particular, it dominates this valuation,
i.e. item (i7.1) of Lemma 8.2 is satisfied. Note that this effectively amounts to
have oa optimal in the game in normal form (F, vy o p), since u = v{(ginit) =
val[(FP,v}:)] by Lemma 3.9. Consider now some action b € Actg such that
out[(F, 1,-110.1)](oa, b) = 0 and a Player-B positional and deterministic strat-
egy s such that sg(qo) := b. Since out[(F, 1,-1/017)](oa,b) = 0, no stop-
ping state can be reached under s (oa) and sg. Consider the Markov chain

A
C:(UA)’SB. Besides stopping states, it is reduced to a BSCC H whose states are

ginit and all states k; reachable with that action b. That is, H = {¢nit} U {k; |
i € [0,e], out[(F,1,-1j,)](oa,b) > 0}. Furthermore, ginit is colored with c.
The value of any state in this BSCC H is equal to either 0 or 1 and it is equal
to 1 if and only if H is even-colored (since every state in a BSCC is almost-
surely seen infinitely often). Since u > 0, the value of H cannot be 0, thus H
is even-colored and the maximum of the colors seen with that action is even.
This exactly corresponds to item (4i.2) of Lemma 8.2.

Assume now that the GF-strategy oa satisfies both items (i7.1) and (ii.2).
Consider a positional deterministic Player-B strategy sg in the game Gy . Let
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if k is even then

‘ return E*

q,vcol?

end
if k is odd then
m < max(k — 2,0);
return B o
end

Figure 8.9: CreateEnv(k, ¢, vcol)

change « True;
while change do
change <+ False;
for ¢ € Q, do
if NewCol(g,vcol) = k then
Ev'(q) < CreateEnv(k, g, vcol);

veol(q) + k;
change < True; break;
end
end
end

return (vcol, EV');

Figure 8.11: UpdNewSta(k, vcol, Ev)

Cmin < min vcol;

for ¢ € Q, do

if vcol(g) = ¢min then

| veol(q) <= cmin + 2

end

if vcol(q) = ¢min + 1 then
veol(q) + col(q);
Ev'(q) < NoEnv;

end

end
UpdNewSta(cmin + 2, veol, EvV');

Figure 8.13: IncLeast(vcol, Ev)
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for ¢ € Q, do
if veol(q) = k then
‘ Ev(q) < CreateEnv(k, g, vcol) ;
end
end
return Ev;

Figure 8.10: UpdCurSta(k, vcol, Ev)

Ev + UpdCurSta(k, vcol, Ev);
UpdNewSta(k, vcol, Ev);

Figure 8.12:
UpdateColEnv(k, vcol, Ev)

vcol «+ col;
Ev < EmptyEnv;
for k = e down to 0 do
‘ (veol, Ev) < UpdateColEnv(k, vcol, Ev);
end
while vcol[Q,] # {e} do
(veol, Ev) <« IncLeast(vcol, Ev);
for k = e down to 0 do
| (veol, Ev) < UpdateColEnv(k, vcol, Ev);
end
end
return (vcol, Ev)

Figure 8.14: ComputeEnv(col)



b := sg(qo) € Actg. Consider a BSCC H in the induced Markov chain

ﬁf(aA)’sB that is not reduced to a stopping state. In particular, this im-
plies that out[(F, 1,-191})](oa,b) = 0. Then, as previously, we have H =
{a@init} U{ki | i € [0,¢€], out[(F, 1p-1p,1)](oa,b) > 0}. The fact that oa satis-
fies item (74.2) ensures that the BSCC H is even-colored. It follows that the
strategy s@,(aA) parity dominates the valuation vy.

O

8.6.4 . Proof of Lemma 8.4

Proof. Consider such a Player-A strategy sa € Sg. Let us show that it parity
dominates the valuation yg. First, note that it dominates the valuation xg
since, for all u € Vg \ {0}, the strategy si dominates xg in G* (recall that the
stopping states in G* have the values of the original states in G). Consider now
a BSCC H compatible with sp such that min yg[H] > 0. By Proposition 8.1,
there is a value uy € (0,1] such that xg[H] = {ug}. That is, H C Qu,-
It follows that H is compatible with sy. Since s)” parity dominates the
valuation yg in G“#, we can deduce that H is even-colored. Overall, the
strategy sa parity dominates the valuation xg. By Proposition 8.1, the strategy
sa guarantees it (i.e. it is optimal). O

8.6.5 . Proof of Theorem 8.3

In this section, we give all the technical details necessary to prove Theo-
rem 8.3. The proof of this theorem is given in Page 311, provided that Lem-
mas 8.6, 8.7, 8.8 and 8.9 hold. We already stated and argued why these lemmas
hold, however we have not given a detailed proof of them. This is what we do
in this subsection. However, we first state and prove results that we use for
the remainder of this chapter.

We first state and prove properties on the update of colors NewCol. This
is done in Page 316. Then, we give the complete definition of faithfulness, see
Page 322. We also state and prove three lemmas, that link the local and global
behaviors, , see Page 323. We finally prove the lemmas mentioned above: we
prove Lemma 8.6 in Page 328, Lemma 8.7 in Page 332, Lemma 8.8 in Page 333
and Lemma 8.9 in Page 335.

Properties ensured by the local operator NewCol

We introduce a useful notation which will allow us to rewrite Lemma 8.2 in
our context.

Definition 8.18. Consider a state q € @), a virtual coloring function vcol :
Qv — [0,€], a color n € [0,¢] and two GF-strategies (oa,08) € Xa(F(q)) X
Ys(F(q)). We denote by Col(q,vcol,on,0p) the set of colors reachable in one
step with positive probability w.r.t. (oa,og) in the local game Q;ﬁvcol (regard-
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less of the color n € [0, e] considered). That is:
COI(qv\/COlv OA, O'B) = {Z € [[07 €ﬂ ’ OUt[<F(q)7 ﬂp;\}col[ki}ﬂ(aA’ UB) > 0}

In particular, Col(g,vcol,op,b) = Color(F(q), Pg.vcol, oA, b) for all b € Actg (no-
tation from Lemma 8.2).
Then, the set of colors ColBSCC(q, vcol,n,op,0p) is defined by:

ColBSCC(gq, veol,n,op,0p) := Col(g, vecol, oa, o) U {max(vcol(q), c)}

with ¢, :=n — 1 isn is even and ¢, :=n + 1 is n is odd.

We obtain a corollary of Lemma 8.2 (which only consists in writing Lemma 8.2

in the context of a local game ngcol).

Corollary 8.11. Consider a state q € Q), a virtual coloring function vcol :
Qu — [0, €], a color n € [0,e] and a local strategy oa € Xa(F(q)). A Player-A
GF-strategy on € Xa(F) is optimal w.r.t. Y = (F(q), E ) if and only if,
letting u := xgy (¢init), either (i) w =0, or (ii) the positional Player-A strategy
sk (oa) parity dominates the valuation vi.
Furthermore (ii) is equivalent to: (1) the Player-A positional strategy
sk (oa) dominates the valuation v and (2) for allb € Actg, if out[(F, Ly-10,1 (oA, b) =
0, then max ColBSCC(q, vcol,n,ona,0p) is even.

This is symmetrical for Player B.

Let us now state a proposition we will use to prove that the update of
colors cannot decrease the colors of the states.

Proposition 8.12. Let ¢ € @, and some virtual coloring function vcol :
Qu — [0,¢€], some color n € [0,¢e] and a positive value z € (0,1]. Let p :=
Pgveol and Y = (F(q), B ). For all Player-A GF-strategies oa € Ya(F(q)),
the positional Player-A strategy S}A/(O'A) dominates the valuation v§- if and only

if for all b € Actg: if out[(F(q), 1o\0,)](oA,b) > 0, then:

out[(F(q), u")|(oa,b) = 0

where p* : @ — [0, 1] is such that, for all ¢ € Q:

“(q) = 0 if g € Qu
pAD = x —z otherwise, if ¢ € Q, C Q\ Qy

Proof. In the game Gy, the Player-A strategy SlA/(O'A) dominates the valuation
v§, — property we denote (1) — if and only if:

z = vy (ginir) < val[(F(q), vy
= val[(F(g), vy)](ona)



In addition, val[(F(q),v{)](ca) = minpeacts out[(F(q),v5)](oa,b). Further-
more, for all b € Actg, we have that

out[(F(q), vy)](oa,b) = out[(F(q), L1 (g jur.])] (@A, D) - 2
+ Y out[(F(q), Ly-1ju)](0a,b) -

ZEVO\Qu
It follows that, if out[(F(q), 1g\g,)](oa,b) = 0, we have out[(F(q), v{-)] (oA, b) =
z. However, if out[(F(q), 1o\, )|(oa,b) > 0, we have that

z < out[(F(q),v5)](0a,b) © 0< > out[(F(q), Iy-1z))](oa,b) - ( — 2)
2€VQ\Qu

0 <out[(F(q), Y Ly (z—2)))(oa,b)
TEVQ\Qu
0 < out[(F(q), n*)|(oa,b)

The result follows. O

The update of colors does not decrease the color. We define a
successor operation compatible with the order <par.

Definition 8.19 (Parity successor). For all n € N, we have Succ(n) :=n—2
if n <par 1, Succ(1l) := 0 and Succ(n) :=n+ 2 if 1 <par 1.

Let us show that the local operator NewCol does not decrease (w.r.t. the
usual order < on natural numbers) the previous color of the state ¢ given by
a (virtual) coloring function vcol.

Proposition 8.13. Consider a state ¢ € Q,, and a coloring function vcol :
Qv — [0,e]. We have NewCol(g, vcol) > vcol(q).

Proof. We let p := pgycol and, for all n € [0, €], we let Y, := (F(q), E,))-
Note that Plo,1] & VQ\Qu'

There are two cases: either vcol(q) = e or veol(q) < e. First, assume
that vcol(q) = e. Let us show that in that case NewCol(g,vcol) = e. Assume
towards a contradiction that xg,. (ginit) = v’ < u for some v’ € [0,1]. Consider
a Player-B GF-strategy og that is optimal w.r.t. Y.. For all a € Acta, we
have out[(F, 1g\q,)](a,08) > 0. Indeed, otherwise, in the game G¢ | where
Player B plays the strategy defined by og, Player A could loop indefinitely on
Ginit thus ensuring winning with probability 1 (since the color of the state ginit
is e — as vcol(q) = e — which is both the highest color appearing in the game
and even). We let peyt := mingeact, out[(F, 1g\g,)l(a,o8) > 0.

Now, consider some a € Acta. By Proposition 8.12 for Player B, we have:
out[(F, u*)](a, o) < 0 where u* : Q@ — [0,1] comes from Proposition 8.12.
Hence, we have:

> out[(F, 1g,)(a,08) -2 < Y out[(F, 1g,)](a, o8) -

zeX zeX

318



Now, Letting v := xg the value vector in the game G, we have:

> P (a,08) v(g) = Y out[(F,q)](a,08) - v(q)
qeqQ qeQ
= out((F, 1o )(a,08) -u+ > out[(F,1q,)|(a,08) - x
TEVQ\Qu
<out[(F,1o,)](a,08) -u+ Y out[(F,1g,))(a o) u’
TeVQ\Qu
= out[(F, 1g,)](a,0o8) - u + out[(F, HQ\Quﬂ(a,UB) U
= u — out[(F, ]lQ\Q“>](a, og) - (u—u)
<u—pegit - (u—u') <u=nuv(q)

!/

Hence, letting 6 := pexit - (u — u’)/2 > 0 and considering, in the original game
G, a Player-B strategy sg € S§ such that sg(q) := og and for all ¢’ € Q, we
have sg(q - ¢') a d-optimal Player-B strategy from ¢’, it follows that, for all
Player-A strategy sa in the game G, we have:

/

PLAL W] =D PY7 (sa(g), o) - PG, (V]

SASB
q'€qQ
< " P (sa(q), 08) - (v(d) +8) < v(q) — 25+ 6 =v(q) &
q'eQ

where W := (col“)~![Parityx] C @“. Thus, the value from ¢ is less than u =
v(q). Hence the contradiction. In fact, XGE o (ginit) > uw and NewCol(qg, vcol) =
e.

Consider now the case where vcol(q) < e. Assume towards a contradiction
that NewCol(g, veol) < vcol(g). Let n := NewCol(qg, vcol).

Assume that n is even. By assumption, we have xg,. (ginit) > u. Consider a
Player-A GF-strategy oa that is optimal w.r.t. Y,. First, the positional Player-
A strategy sp = s{}n (oa) = S{}n+2(O‘A) defined by oa dominates the valuation
vy, = vy, ., in the game Gy, and it also does in the game Gy, ,,. Consider now
an action b € Actg and assume that out[(F, 1,-1j01])](oa,b) = 0. By Corol-
lary 8.11, it follows that, in the game Gy;,, we have max ColBSCC(q, vcol, n, oa, b)
even with ColBSCC(g, veol, n, oa, b) = Col(g, vcol, oa, b)U{e, } with e, = max(vcol(q), ¢;,)
and ¢, = n—1 since n is even. Since n < vcol(q), we have e,, = max(vcol(q), ¢,,) =
veol(q). Furthermore, e,19 = max(vcol(q), cpt2) with ¢pp0 = n + 1 since n
is even. Since n < vcol(g), we also have e,12 = vcol(¢) = e,. That is,
ColBSCC(g, veol, n, oa, b) = ColBSCC(q, veol, n+2, oa, b). Hence, ColBSCC(g, veol, n+
2,0p,b) is also even. By Corollary 8.11, the Player-A GF-strategy oa strongly
dominates the valuation vgﬁnﬂ. Hence, by Proposition 8.1, the Player-A posi-
tional strategy SXA’n+2 (oa) guarantees the valuation ’l)#;n+2. Hence the contradic-
tion since this implies NewCol(g, vcol) > n + 2.
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When n is odd, the reasoning is symmetrical, by taking the point-of-view
of Player B: we compare what happens in the games Gy, and Gy,, for m :=
Succ(n). O

The update of colors is not affected by small changes of colors.
Let us now tackle another property ensured by the local operator NewCol.
Assume that the new color of a state ¢ is n € [0, €] w.r.t. a coloring function
veol. Now, consider another coloring function vcol’ that coincide with vcol on
colors at least n, and may differ for smaller colors. In that case, the new color
of ¢ will still be n w.r.t. the coloring function vcol’. This is (almost) what we
prove here. First, we introduce the notion of equivalent and prevailing coloring
functions.

Definition 8.20 (Equivalent and Prevailing coloring functions). Consider
two coloring functions vcol,veol’ : Q, — [0, €] and some color n € [0,¢e]. The
coloring functions vcol,vcol” are equivalent down to n if, for all k € [n,e], we
have veol 1 [k] = veol " 1[k].

Furthermore, veol’ is said to be (n — 1)-prevailing compared to vcol if vcol
and veol” are equivalent down to n and vcol™[n — 1] C veol' ™! [n — 1].

Let us first state a lemma that we will use to prove the proposition (of
interest for us) that we state below.

Lemma 8.14. Consider a state ¢ € @, and some color n € [0,e]. Let
veol, veol’ : Q. — [0, €] be two virtual coloring functions with vcol’ n-prevailing
compared to vcol. Consider a pair of GF-strategies (oa,08) € Xa(F(g)) x
¥(F(q)). We have:

max ColBSCC(q, vcol, n,op,08) > n =
max ColBSCC(q, vcol, n, oa, og) = max ColBSCC(q, vcol’, n, on, o)

Proof. Letting ¢, :=n — 1 if n is even and ¢, := n+ 1 if n is odd, we have
(recall Definition 8.18):

ColBSCC(gq, veol,n, op, 08) = Col(g, veol, oa, o) U {max(vcol(q), cyn)}
and
ColBSCC(g, veol’,n, oa,08) = Col(g,vcol’, op, o) U {max(vcol'(q), cn)}
By assumption, we have that, for all i € [n + 1, ¢]:
veol ~1[i] = veol i
Thus:

out[(F(q), 1,-1 y.)l(oa,08) =out[(F(q),1,-1 ; )](oa,08)

q,vcol q,vcol
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Furthermore:
veol ™1 [n] C veol’ ™1 [n]

Thus:

out[(F(¢), 1,-1 o »](oa,08) > 0= out[(F(q), 1,1 . »](oa,08) >0

q,veol pq,vcol’

We therefore obtain that for any k € [n,e]:
(i) If max Col(q, vcol, oa, o) < k, then max Col(q, vcol’,op,08) < k;
(ii) If max Col(q,vcol,oa,08) = k, then max Col(q,vcol’,oa,08) = k.
Furthermore:
(") If veol(q) < k, then veol'(q) < k;
(ii”) If veol(q) = k, then vcol'(q) = k.

We have three cases, letting n < j := max ColBSCC(q,vcol,n,on,08) =
Col(g, veol, oa, o) U {max(vcol(q), c,)}:

e If j = ¢,, then max Col(g, vcol,oa,0B),vcol(q) < j. Hence, by (i) and
(i), we have max Col(q, vcol’, oa, o), veol'(q) < j.
That is, max ColBSCC(q, vcol’,n, op,08) = j.

e If j = vcol(q) then max Col(q,vcol,on,08),¢, < j. Hence, by (ii’), we
have j = vcol’(q) and, by (i), we have max Col(q,vcol’, oa,08) < j.
That is, max ColBSCC(q,vcol’, n,on,08) = j.

e If j = max Col(q,vcol,op,08) then vcol(q),c, < j. Hence, by (ii), we
have j = max Col(q,vcol’,op, o) and, by (i), we have vcol’(¢) < j. That
is, max ColBSCC(q, vcol’, n, oa, 08) = j.

The lemma follows. O

Proposition 8.15. Consider a state ¢ € Q,, and a coloring function vcol :
Qu — [0,€]. Let n := NewCol(g, vcol) € [0, e]. Assume that another coloring
function veol’ : Q, — [0, €] is n-prevailing compared to vcol. In that case,
NewCol(g, vcol’) = n.

Proof. Let us consider two such coloring functions vcol and vcol. We have n =
NewCol(g,vcol) € [0,¢]. Consider a Player-A GF-strategy oa that is optimal
wrt. Y for Y = (F(d)’E;l,vcol)' Let Y/ = (F(d)’E;l,vcoll)’ P = Pgvcol and
P’ := Pyueor- Let us show that n <., NewCol(g, veol’). This straightforwardly
holds if n = e — 1. Assume now that n # e — 1. The Player-A strategy s (o)
dominates the valuations vy = vy.

Consider an action b € Actg and assume that out[(F(g), 1,-1(917)](0a,b) =

0. By Corollary 8.11, we have j := max ColBSCC(q,vcol,n,oa,b) is even
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with max ColBSCC(g, vcol,n,oa,b) > max(vcol(q),cy) for ¢, = n—1if n
is even and ¢, = n + 1 otherwise. Since n — 1 is odd, it follows that, in
any case, max ColBSCC(q, vcol,n,oa,b) > n. Then, by Lemma 8.14, we have
max ColBSCC(q, vcol’, n, oa, b) = max ColBSCC(q, vcol, n, oa, b), which is even.
As this holds for all b € Actg, the GF-strategy oa strongly dominates the val-
uation vy, hence, by Proposition 8.1, the value of the state ginit in the game
Gy is at least u: XGyr [ginit) > u. Hence, n =<par NewCoI(q,vcoI’).

Let us now show that NewCol(g,vcol’) <par m, which straightforwardly
holds if n = e. Hence, assume that n # e and let m := Succ(n) € [0,e€].
The proof is very similar than in the previous case. Let Z := (F(d), E™,,)-

» q,vcol

Let also Z' := (F(d), E™ ). The value of the state ¢t in the game Gz

is at most u' for some ?tlyco'< w: XgylGinit] < v < u. Consider a Player-B
GF-strategy og that is optimal w.r.t. Z. The Player-B strategy s5(og) domi-
nates the valuation U%/ = U%l, Consider an action a € Acta and assume that
out[(F(q), 1,-1p0,1)](a,08) = 0. We have max ColBSCC(g, vcol, m,a,08) odd
with j := max ColBSCC(g, vcol, m, a, o) > max(vcol(q), ¢,) for ¢, = m — 1 if

m is even and ¢, = m + 1 otherwise. Let us show that j > n.

e If m is odd (and n = m+2), we have ¢,;, = m+1 = n— 1 which is even.
Hence, 7 > n.

e If m =0 (and n = 1), since j is odd, it must be that j > n.

e If m > 2is even (and therefore n = m—2), we have ¢, =m—1=n+1.
Hence, we have j > n + 1.

We can therefore apply Lemma 8.14 to obtain that max ColBSCC(q, vcol’, m, a,0p) =
max ColBSCC(q, vcol, m, a, o), which is odd. As this holds for all a € Acta,
we have that the GF-strategy og strongly dominating the valuation U%/,, hence,
by Proposition 8.1, the value of the state g, in the game Gz is at most u':
X6, [ainit] < u'. Hence, NewCol(g, vcol’) <par m.
In any case, we have n = NewCol(g, vcol’). O

Complete definition of faithfulness

We want to formally give the definition of faithfulness that we will use in
the proof. First, we define the notion of coherent coloring and environment
functions. Informally, for each state ¢ € @,: the colors given by the coloring
function correspond to the environment provided at each state (the environ-
ments being defined from coloring functions as in Definition 8.13).

Definition 8.21 (Coherent coloring and environment functions). Consider
a virtual coloring function vcol : Q, — [0, €], some color n € [0,e] and let
Qn = vcolfl[n]. Consider an environment function Ev : @, — Env(Q) and,
for all ¢ € Qy, let veoly : @, — [0, €] be the coloring function associated with
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the environment Ev(q). Let q € Q,,. We say that (vcol, Ev) is coherent at state
q if, letting ng := NewCol(g, vcoly):

e col(q), vcoly(q), ng < n and the coloring function vcol is n-prevailing com-
pared to the coloring function vcoly;

e n = ng mod 2 and Ev(q) = CreateEnv(ngy,q,vcol,) where CreateEnv
corresponds to Algorithm 8.9.

If this holds for all ¢ € @y, (vcol, Ev) is coherent at color n.

Definition 8.22 (Faithful pair of coloring and environment functions). Con-
sider a virtual coloring function vcol : @, — [0, ¢e], some n € [0,e + 1] and a
partial environment function Ev : Q, — Env(Q) defined on vcol ! [[n, e]]. We
say that (vcol, Ev) is faithful down to n if:

1f. for all k € [n, €], the pair (vcol, Ev) witnesses the color k;
2f. for all k € [n,e], the pair (vcol, Ev) is coherent at color k;

3f. for all ¢ € Q, Iif veol(q) < mn, then we have col(q) = vcol(q) and
NewCol(g, veol) < n;

When n = 0, we say that the pair (vcol, Ev) is completely faithful.

Three central lemmas

In the following, we state three lemmas that we will use in remainder of this
chapter. The first lemma relates probability distributions in a local game and
in a global game. This is particularly useful as it allows to use the assumptions
made on the local strategies to obtain various properties on global games where
such local strategies are used.

The second lemma states that any Player-A positional strategy generated
by an environment such that the new color (w.r.t. that environment) is even
dominates a specific valuation. This is analogous for Player B.

Finally, the third lemma states that any Player-A local strategy defined by
local strategies that are optimal w.r.t. to an even color ensure that in a BSCC
H compatible with such a strategy, if some high enough color occurs in H,
then H is even-colored. This is analogous for Player B.

Lemma 8.16. Consider a virtual coloring function vcol : Q,, — [0, €], some
color n € [0, ] and a partial environment function Ev : Q, — Env(Q) defined
over Q, for Q, := vcol™1[{n}]. Let ¢ € Q, and veolg : @, — [0, €] be the
coloring function associated with environment Ev(q). We also let p := pg ycol, -
Then, for all Player-A and Player-B strategies sp and sg in the arena C
have:

n

veolr W€

Vo € Vo\qu» Pe® [2] = out[(F(q), 1,-114))] (sa(9), s8(q)) (8.1)

veol?
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and
P, [Qn U K™ = out[(F(9), Ty (gnpurc ) (sa(0),s8(a)  (8:2)

veol ’q

Furthermore, if vcol is equivalent down to n + 1 to vcol,:

Vie [n+1,¢e], Pz%iﬁq[k?] = out[(F(q), Ilpﬂ[kdﬂ(sA(q),sB(q)) (8.3)

and if, in addition, vcol is n-prevailing compared to vcoly:

Pe®, [veoly [n] \ {g}] = out[(F(q), 1-1ps,,))](sa(a), s (a)) (8.4)

col’q

Proof. By Definition 8.11, we have:
e forall ¢ € Qp, pgico,[q’] ={q'};

e for all i € [0, ¢]: pn reoilk] = veol i)\ Qu;

o forall z € Vg0, p,;vcol [7] = Qu-
Furthermore, from Definition 8.13, we have:

o p Mainie) = {a};

o for all i € [0,e]: p~t[k;] = veol71[i] \ {g};

e forall z € VQ\Qu7 pil[ﬂ =Qr = pr_L}/col [CL‘]

By Definition 8.12, for all z € Vj\¢,. We have:
B () = outl(F(a), 1,1 0] (5n(0). 58 (a)
- OUt[<F(q)7 ILp*l[aﬂ]”(sl’-\(q)? SB(q))

This proves Equation (8.1).
Furthermore, using this Equation for the second equality, we have:

PE [QnU K" =1 - P [Vo\g,]

veol 4 Cleonrd
=1—out[(F(q), Ly-11v,,,, 1) (sa(a), s8(q))
= out[(F(q),1 — L1y, 1)l (sa(a),s8(q))

(%]
vy
—
)
~—
~—

= out[(F(q), Lp-1({gnjurc.))(sa(q)

This proves Equation (8.2).

Assume now that veol is equivalent down to n+1 to veol,. Let i € [n+1,€].
We have vcol ! [i] = vcolq_1 [i] (recall Definition 8.20). Furthermore, for all ¢’ €
Qn, we have vcol(¢') = n # i. Hence, vcol ! [i]\Q,, = vcol ~1[i] = veol ~[i]\ {g}-
Hence we have, again by Definition 8.12, for all ¢ € [n + 1, ¢€]:

P (ki) = outl(F(9), 1,1 pinp))(sa(0), 58(9))

= out[(F(q), VCO|71[im(SA(q)a sg(q))
= out[(F(q), L-11,)](sa(q), s8(q))
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This gives Equation (8.3). Assume in addition that vcol is n-prevailing
compared to veol, (recall Definition 8.20). That is, vcolq_l[n} C veol ™t n] = Q,
. Hence, vcolq_l[n] \ {¢} C Q,. It follows that:

]P’SA’SB [vcol(;l[n] \{qg}] = Z out[(F(q), ﬂp;,lvcm[q’]”(sA(q)’SB(Q))

vcol’q n
q'€veoly *[n]\{q}

= > out[(F(g), ¢)(sa(),s8(q))

q'€veoly ' [n]\{q}
= out[(F(q), Lycol 1 n)\ (q3)) (52 (), sB(9))
= out[(F(q), 1p-1px,))](sa(q), s8(2))
We obtain Equation (8.4). O

Lemma 8.17. Counsider a virtual coloring function vcol : Q,, — [0, €], some
color n € [0,¢] and let Q,, := vcol™'[n]. Consider an environment function
Ev: @, — Env(Q). Assume that (vcol, Ev) is coherent at color n. In the arena
C\?col.
e if n is even, then all positional Player-A strategies generated by the
environment Ev dominate the valuation v" ., in the arena Cl.  (see

n,vco
Definition 8.16);

vcol

e if n is odd, then there is some y < wu such that, for all z > y, all
positional Player-B strategies generated by the environment Ev dominate

the valuation v}, .. in the arena Cy (see Definition 8.16).

Proof. For all states ¢ € Q,, we let veol, : @, — [0, €] be the coloring function
associated with the environment Ev(q) and we let p := pgyeol,- Let ¢ € Qn.

For all Player-A and B strategies sa,sg in the arena C[. |, for all z € [0,1], we

have:
Qut{(F(4). v vea] (52 (0). 58(0)) = 2 PH™,[Qu U K]+ 3z PR, (2)
TEVO\Qu

Assume that n is even and consider a Player-A positional strategy sa gen-
erated by the environment function Ev. Letting Y, := (F(q),Ev(q)), in the
game Gy, , the positional Player-A strategy séq (sa(q)) dominates the valuation

v%‘,; for u" := xgy, [ginit] > u (recall Lemma 8.2) since (vcol, Ev) is coherent at
color n. Hence:

v’ < out[(F(q), U%ﬁl”( A(q),s8(q))
= out[(F(q), 1,- 1[{qm,t}uKe )(sa(q),se(q)) - v’
+ Z out[(F(q), 1-1(41)](sa(q),s8(q)) - =

TEVQ\Qu
SA,SB n SA,SB
=u - PEP[QuUK + Y x PE []

TEV\Qu
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Then, we have (since u’ > u):

=1+ u—u) <u PEE[QuUK™ + Y z-PE® [z]+ (u—u)

vcol’q vcol’q
TEVO\Qu
cn o
<u P [QuUEK™ + Y a - PR 2]+ (uw— o) P
’ vcol’q vcol’q
TEVO\Qu
SA,S SA,S
=u- P [Qn UK"] + > P8, o]
TEVO\Qu

= 0Ut[<F(Q)7 U:LL,VCOIH (SA(q)7 SB (Q))

Since this holds for all Player-B positional strategies strategies sg and for all

u
n,vcol

q € Qn, it follows that the Player-A strategy sp dominates the valuation v

n
vecol*

In the case where n is odd, the proof is analogous, from Player-B’s point-

in the arena C

of-view. n

Lemma 8.18. Consider a virtual coloring function vcol : Q,, — [0, €], some
n € [0,e] and Q, := vcol '[{n}]. Consider an environment function Ev :
Qn — Env(Q) and assume that (vcol, Ev) is coherent at the color n. Then,
denoting K=" := {k | i € [n,€]}:

e if n is even, then in the arena C_,, all positional Player-A strategies

vcol?
generated by the environment Ev ensure that for all BSCCs H compatible
with sp, if K=" occurs in H, then H is even-colored;

e if n is odd, then in the arena C|,

generated by the environment Ev ensure that for all BSCCs H compatible
with sg, if K=" occurs in H, then H is odd-colored.

all positional Player-B strategies

Proof. Assume that n is even and consider a Player-A positional strategy sa
generated by the environment Ev in the game L], (recall Definition 8.12).
Consider a Player-B positional deterministic strategy sg and consider a BSCC
H compatible with sp and sg.

For all ¢ € @y, let veol, : Q, — [0, €] be the coloring function associated
with the environment Ev(q). Let ¢ € @, and n, := NewCol(g, vcol,). Since
(veol, Ev) is coherent at m, ng is even and less than or equal to m. Recall
that G | = Gy,, for Yy := (F(q),E?_, ) (see Definition 8.13). Recall also

q,vcol » q,vcolq
that EZ[\I/colq = (max(cp,, veoly(q)), €, Pfg}.veol,) (also see Definition 8.13) with

Cn, = ng — 1 as ng is even. Let p? 1= pyycol,- Note that p‘[zo 1] - VQ\Qu
(recall Definition 8.13). By Equation (8.1) from Lemma 8.16, if ¢ is in H,
then out[(F(q), 1g\0,)](sa(q),s(¢)) = 0. In that case, since the Player-A GF-

strategy sa(q) is optimal w.r.t. Y; (recall Lemma 8.2), we have the following.:
max(Color(F(q), p?,sa(q),s8(q)), ng — 1,vcoly(q)) is even (8.5)
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Since (vcol, Ev) is coherent (see Definition 8.21) at n, we have col(q) < n for
all ¢ € Q. Hence, our goal is to show that:

K=" occurs in H = max M is even

with M := {i € [n,e] | k" occurs in H}.

To prove this, we use the following characterization: for all colors i €
[n+1,e], by Equation (8.3) in Lemma 8.16 since vcol and vcol, are equivalent
down to n 4+ 1, we have the following equivalence:

k' occurs in H < 3q € H, i € Color(F(q),p?,sa(q),s8(q)) (8.6)

Furthermore, for all ¢ € H, by assumption (the pair (vcol, Ev) being co-
herent), vcoly(¢) < n. Hence, since n, < n, Equation (8.5) gives that, for all
g€ H:

max Color(F(q), p?,sa(q),ss(q)) > n+1 = max Color(F(q), p?,sa(q),ss(q)) is even
(8.7)
Furthermore, if max M = n, then n is the highest color appearing in H
(since vecol and Ev are coherent at n) and H is then even-colored. Otherwise:

K=" occurs in H < M # ()
= M # 0 Ak}, occurs in H for m := max M
= M # 0 A 3qmn € H, m € Color(F(¢m), p, sa(gm),ss(qm))
by Equation (8.6)
= M # 0 A 3qy, € H, max Color(F(¢m), 2%, sa(gm),ss(qm)) = m
since m = max M and by Equation (8.6)
= M # ) Am = max M is even

since m > n + 1 and by Equation (8.7)

We obtain the desired result.

The case of n odd is analogous by reversing the instances of ’odd’ and ’even’.
However, the arguments for obtaining the analogue of Equation (8.5) is slightly
different. Indeed, letting Y, := (fsf(q) ESUCC(NQ)), the Player-B GF-strategy

’ {Q}7VCO|
sg(g) is optimal w.r.t. Y; (recall Lemma 8.2 and the definition of CreateEnv

(i.e. Algorithm 8.9)). Recall that E?;ff/(zfj = (max(Csyce(ng)s VCOlq(q)), €, veoly)

where syce(n,) = —1if ng = 1 and csyec(n,) = ng — 1 otherwise (i.e. if ng > 3).
Overall, from Lemma 8.2, we do obtain:

max(Color(F(q), p,sa(q),ss(q)),nqg — 1,vecoly(q)) is odd (8.8)

with ngy — 1 even. O
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Proof of Lemma 8.6

Let us define a notion which is slightly weaker then being faithful: being non-
deceiving.

Definition 8.23 (Non-deceiving environment and coloring functions). Con-
sider a virtual coloring function vcol : @, — [0,¢e], a partial environment
function Ev : @, — Env(Q) and some color n € [0,e + 1]. We say that the
pair (vcol, Ev) is non-deceiving down to n if:

In-d. for all k € [n, €], the pair (vcol, Ev) witnesses the color k;
2n-d. for all k € [n,e], the pair (vcol, Ev) is coherent at color k;

3n-d. for all ¢ € @Q,, if vcol(q) < n, then we have col(q) = vcol(q) and
NewCol(g, veol) < n.

The difference with being faithful lies in the fact that some state q € ), with
veol(q) < m could be such that NewCol(q, vcol) = n (which is not possible with
a faithful pair). When n = 0, being non-deceiving down to n is equivalent to
being faithful down to n (i.e. to being completely faithful).

Then, Algorithm 8.12 is composed of Algorithm 8.10 and Algorithm 8.11.
In fact, Algorithm 8.10 transforms a faithful pair into a non-deceiving one
(one level below). And Algorithm 8.11 transforms a non-deceiving pair into a
faithful one (at the same level). We state one lemma per algorithm formally
stating the specifications of these algorithms.

Lemma 8.19. Consider a virtual coloring function vcol : Q,, — [0, €], some
color n € [1,e + 1] and a partial environment function Ev : Q, — Env(Q)
defined on vcol™![[n,e]]. Assume that (vcol, Ev) is faithful down to n. Let
Ev' < UpdCurSta(n — 1,vcol, Ev). Then, (vcol, EV') is non-deceiving down to
n— 1.

Proof. Forall ¢ € Q,, such that vcol(¢) > n—1, we denote by vcol, the coloring
function corresponding to the environment Ev/(q).

2n-d. Let us show that (vcol, EV') is coherent at n — 1. We let Q,_1 =
veolt[n — 1] and ¢ € Q,,_1. Since (vcol,Ev) is faithful down to n, we
have vcol(g) = col(q) = n—1. Furthermore, vcol, = vcol. Hence, vcol, =
(q) = col(q) = n—1. In addition, since the pair (vcol, Ev) is faithful down
to n, we have NewCol(g, vcol) < n. By Proposition 8.13, we have n—1 =
veol(g) < NewCol(g, veol) < n. Hence, veol(g) = NewCol(g, vcol) = n—1.
By definition of Algorithm 8.9, we have Ev/(q) = CreateEnv(n—1, g, vcol).
As this holds for all ¢ € @,,—1, (vcol, Ev) is coherent at n — 1.

3n-d. This condition straightforwardly holds since the coloring function has
not changed and the pair (vcol, Ev) is faithful down to n.
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1n-d.

This condition straightforwardly holds for & > n since the pair (vcol, Ev)
is faithful down to n. Note that since (vcol, EV') is coherent at n — 1,
both Lemma 8.17 and Lemma 8.18 can be applied to (vcol, EV') at n—1.

Assume that n — 1 is even. Consider a Player-A positional strategy sa
generated by the environment Ev in the game ,C\’}C_Oll By Lemma 8.17, this
strategy dominates the valuation v;_; ., in the arena \’fa_)ll. Consider
a Player-B positional deterministic strategy sg and consider a BSCC H
in C\’fcgll compatible with sy and sg. By Lemma 8.18, if K="~! occurs
in H, then H is even-colored. Assume now that K=""! does not occur
in H. In that case, there are some states in H in Q,_1 C colfl[n —1]
and possibly some states in {k'""* | i € [0,n — 2]} occur in H with
col™ (k1) = n — 2 for all 4 € [0,n — 2]. Hence, the highest color

appearing in H is n— 1 and therefore H is even-colored. Thus, sp parity

u

dominates the valuation U1 veol-

The case where n — 1 is odd is analogous, from Player-B point-of-view.

O

Lemma 8.20. Consider a virtual coloring function vcol : Q,, — [0, ], some

color n € [0, €], and a partial environment function Ev : Q, — Env(Q) defined

on [n,e]. Assume that the pair (vcol, Ev) is non-deceiving down to n. Let
(veol’, EV') < UpdNewSta(n, veol, Ev). Then, (vcol’, EV') is faithful down to n.

Proof. For all ¢ € Q, such that vcol(g) > n, we denote by vcol, the coloring
function associated with the environment Ev/(g). Let Q,, := (vcol’)~1[n].

2f.

3t.

For all k € [n + 1,e¢], the pair (vcol’, EV) is coherent at k since the pair
(veol, Ev) is non-deceiving down to n. Now, let ¢ € Q. If veol(q) = n,
then straightforwardly, (vcol’, EV') is coherent at state ¢ since (vcol, Ev)
is non-deceiving down to n, hence vcol is n-prevailing compared to vcol,
and vcol’ is also n-prevailing compared to vcol. Consider now a state
q € @ such that vcol(q) < n. By definition of Algorithm 8.11, we
have vcol(g) = veoly(¢) < NewCol(g,vecol,) = n (by Proposition 8.13).
That is, veoly(¢) < n — 1. Since (vcol, Ev) is non-deceiving down to n,
we have col(q) = vcol(q) = veoly(¢) < n — 1. Furthermore, by defini-
tion of Algorithm 8.11, the colors of the states in vcol™[[n,e]] is not
changed and more and more states are colored with n. Hence, vcol’ is
n-prevailing compared to vcol,. In addition, n = NewCol(g, vcol,) and
Ev(q) = CreateEnv(n, g, vcoly). It follows that the pair (vcol’, EV') is co-
herent at state ¢, and this holds for all ¢ € @,,.

By definition of Algorithm 8.11, for all £ < n and state ¢ € @,, such that
veol'(q) = k, we have NewCol(q, vcol’) # n and vcol’(¢) = vcol(q) = col(q)
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1f.

(since (vcol, Ev) is non-deceiving down to n). Furthermore, assume to-
wards a contradiction that a state ¢ € Q, is such that vcol'(q) =
k = vcol(q) and NewCol(g,vcol’) = m > n. In that case, by Propo-
sition 8.15, since vcol and vcol’ are equivalent down to m, we would
have NewCol(g,vcol) = m > n, which is not possible since (vcol, Ev) is
non-deceiving down to n. In fact, NewCol(g, vcol’) < n.

Let k> n+1. We have vcol "![k] = (vcol’)"![k] and for all ¢ € vcol "1 [k],
we have Ev(q) = EV/(¢). Hence, the first condition for faithfulness holds
for k since (vcol, Ev) is non-deceiving down to n. We consider now the
case where k = n. Assume that n is even. Consider a Player-A positional
strategy sa generated by the environment function Ev in the game £ /.
Let us show that this strategy parity dominates the valuation v;‘ivcol, in
the game L) . By Lemma 8.17, this strategy dominates the valuation

u
v /.
n,vcol
n

consider a BSCC H compatible with sa and sg in £ . If K=" occurs in
H, then by Lemma, 8.18, the BSCC H is even-colored. Assume now that
K=" does not occur in H. Let X0 := vcol™![n] and let j := |Q,| — | X?|.
For all 1 <i < j, we denote by ¢; the i-th element of ,, whose color was
changed by Algorithm 8.11 and X} := X0 U Uj<k<;{¢;}. In particular,
XJ = @ and:

Now, fix a Player-B positional deterministic strategy sg and

Vi € [1, 4], veol ! [n] = X! (8.9)
First, assume that H C X0. In that case, this is a BSCC compatible with

the strategy sa in the game L7
parity dominates the valuation Up veol- Hemnce, this BSCC is even-colored.
Second, assume that H ¢ X9 and let C,, := Q, N col™*[n]. For all
i € [0, 4], let H; := HN X!. Let us show by induction on i € [0, 5] the
following property P(i): for all ¢ € H;\ C,,, there is a positive probability

to visit C), from ¢ while only visiting states in H;, that is:

i in which this strategy, by assumption,

P?Ezz.?q[H; -Cp] >0
Assume towards a contradiction that P(0) does not hold. That is, there
is some ¢ € Hy \ C), such that PZ’?JSF,‘&[HS -Cy] =0. Let Z C Hy be the
set of states in Hp such that Z = {¢} U{¢ € Hy | IP)Z’Z’SlEj’q[HS -] >
0}. Note that ZNC, = . Our goal is now to exhibit a BSCC in

veol that is compatible with sp and that is odd-colored. This will be
a contradiction with the fact that sp parity dominates the valuation
U o i the game L7 . Consider a Player-B strategy sg such that,
for all ¢ € X2, sg(¢) = sg(¢’) and for all i € [0,n — 1], we have
sg(k]') playing deterministically to reach ¢. By construction, we do
have a BSCC H’ compatible with sp and sg in L7, that is included in

veol

ZJ{k!' | i€ [0,n—1]}. Furthermore, since the BSCC H in the game

v,
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L" s isnot equal to Ho (because this would imply H C X9), it must be
that at least one state in {k' | i € [0,n — 1]} is in H'. Then, since each
state in {k}" | i € [0,n — 1]} is colored with n — 1 and no state in Z is in
Ch, it follows that the highest color in H is n — 1, which is odd. That
is, the BSCC H' his odd-colored, which is a contradiction. In fact, P(0)
holds.

Assume now that P(i) holds for some 0 < ¢ < j — 1. Consider some
state ¢ € Hipq \ Cn. If ¢ € H;, then we can apply P(i). Assume now
that ¢ ¢ H;, that is ¢ ¢ X!. Hence, ¢ = ¢;+1. Since ¢ ¢ C,, we
have col(q) # n, and therefore col(q) < n — 1*. Furthermore, letting
Y, = (F(q)’E?q},vcolq)7 the Player-A GF-strategy sa(q) is optimal w.r.t.
Y, (recall Lemma 8.2). Hence, letting p? := py vcol,, We have:

max(Color(F(q),p?,sa(q),ss(q)),n — 1) is even (8.10)

with n — 1 odd. Recall that Color(F(q),p?,sa(q),ss(q)) := {i € [0,¢] |
out[(F(q), Tpay-111)](salq),b) > 0}. In addition, since we assume that
K=" does not occur in H, we have max Color(F(q), p?,sa(q),ss(q)) < n
by Equation (8.3) from Lemma 8.16. We can conclude that we have
max Color(F(q),p?,sa(q),ss(q)) = n. Hence, by definition, we have that
out[(F(q), 1(pay-1[,1)](sa(q), b) > 0. Tt follows that, by Equation (8.4) in
Lemma, 8.16 and since vcol’ is n-prevailing compared to vcoly, we have
Pzzjl‘iq[vcolgl[n] \ {¢}] > 0. Since vcolq_l[n] = X! (by Equation 8.9),

this is equivalent to: P

veol”’ .
itive probability to reach a state ¢’ € X}, for which, by P(i), we have:
PZ’}C’j# [H - Cy] > 0. It follows that PZ’Eijq[HE‘H -Cp] >0and P(i+1)
holds. We can conclude that from all states in H there is a positive
probability to reach C,, that is H N C, # 0. Hence, n is the highest

color in H and it is even. Thus, H is even-colored.

q[XfL] > 0. That is, from ¢, there is a pos-

The case where n is odd is symimetrical, from Player-B’s point-of-view.

O]

The proof of Lemma 8.6 is now straightforward.

Proof. Indeed, by Lemma 8.19, we have (vcol, Ev') non-deceiving down to n —

Then, by Lemma 8.20, the pair of coloring and environment functions

that Algorithm UpdNewSta (i.e. Algorithm 8.11) outputs is faithful down to

O]

*We have shown that (vcol, Ev) is coherent at n, hence all states in Q,, are such
that col(q) < n.
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Proof of Lemma 8.7

Proof. Recall that C := vcol[Q], k := min C and assume that k < e — 2.

In fact, we consider (vcol’,EV') to be the new environment and coloring
functions obtained with Algorithm 8.13 before calling Algorithm 8.11. Let us
show that (vcol’,EV') is non-deceiving down to n := k + 2. First, note that

veol’ is n-prevailing compared to vcol. Let Q,, := (vcol’)~![n]. For all ¢ € Q,,
we let vcol, be the virtual coloring function associated with the environment

Ev'(q)-

2n-d.

3n-d.

1n-d.

Let ¢ € @,. We have either vcol(q) = n — 2 or vcol(q) = n. In both
cases, since (vcol, Ev) is completely faithful and therefore coherent at
colors n — 2 and n, it holds that col(q) < n, vcol,(q) < n, ng < n (with
ng := NewCol(g, vcol)). Furthermore, veol is n-prevailing compared to
veol, which is n-prevailing compared to vcol,. Finally, n =n —2 mod 2
and therefore this condition for being non-deceiving holds.

This condition for being non-deceiving also straightforwardly holds. In-
deed, assume towards a contradiction that a state g € @, such that
col(q) = k = veol'(g) < n is such that NewCol(q,vcol') = m > n.
We have vcol that is equivalent down to m to vcol’. This implies by
Lemma 8.15, that we have NewCol(g, vcol) = m > n, which is not possi-
ble since (vcol, Ev) is assumed completely faithful.

Consider now the first condition for being non-deceiving. It holds for all
. —1 _ .

k > n, since vcol "' [k] = (vcol’)"1[k], and in both games £¥_ | and £\Ifco|,,

the states in vcol [0, & — 1]] = vcol’ " [[0, k — 1]] are colored with k — 1.

Assume that n is even. Consider a Player-A positional strategy sa gen-
erated by the environment function Ev in the game £ . Let us show
that this strategy parity dominates the valuation v ., in the game
n,VCo

L) - By Lemma 8.17, this strategy dominates the valuation v

vCco T,VCO!
Now, fix a Player-B positional deterministic strategy sg and consider a
BSCC H compatible with sa and sg in £ . If K=" occurs in H, by

Lemma 8.18, H is even-colored. Assume now that K=" does not oc-

I

cur in H. Let S, := (vcol)~![n] (before running the algorithm, the set
colored by n) and T}, := Q,, \ S, = vcol™![n — 2] (before running the
algorithm, the set colored by n — 2). Assume that H N S,, = 0. In that
case, this is a BSCC compatible with the strategy sa in the game L2

veol
in which this strategy, by assumption, parity dominates the valuation

u

Unf2,vco|'

Furthermore, consider the state k;;_; in £ | and the state

k"2 in EC‘;}? These states are colored by n — 1 and exactly the same

edges in both games L], and L’GC;% lead to these states. (These corre-

spond to the states ¢ € Q,, such that vcol(q) =n — 1.) Hence, since the
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BSCC H is even-colored in Effc—o?, it also is in E\’}ml‘r’. Assume now that
HNT, =0. In that case, this is a BSCC compatible with the strategy
sa in the game £, in which this strategy, by assumption, parity dom-
inates the valuation Up veol- Hence, this BSCC is even-colored. Finally,
assume that HN Ty, # 0 and HN S, # 0. Let C,, := Q,, Ncol™![n]. Let
us show that for all ¢ € (HNS,) \ Cy, there is a positive probability to
visit C, from ¢ while only visiting states in H N.S,, that is:
P [(HNSp)*-Cpl >0

veol’ 9

Assume towards a contradiction that this does not hold. That is, there
is some ¢ € (HN S,) \ Cyp, such that Péﬁss’q[(}[ NS,)*-Cyl = 0. Let
Z C HN S, be the set of states in H ﬂg?n such that Z := {q} U{{ €
HNS, | }P’Z‘ijﬁq[(ﬂ' NS,)*-¢] > 0}. Note that ZN C,, = 0. Our goal
is now to exhibit a BSCC in L], that is compatible with sy and odd-
colored. This is a contradiction with the fact that sp parity dominates
the valuation vy . in the game L7 . Consider a Player-B strategy Sg
such that, for all ¢ € Sy, sg(¢) :=sg(gq) and for all i € [0,n—1], we have
sg(k') playing in a deterministic way to reach ¢q. By construction, we
do have a BSCC H' compatible with sa and sg in L7 | that is included
in ZU{k? | i € [0,n —1]}. Furthermore, since the BSCC H in the
game L7 ', is not equal to H N .Sy, it must be that at least one state in
{k? |i € [0,n—1]} isin H'. Then, since each state in {k]' | i € [0,n—1]}
is colored with n—1 and no state in Z is in C,,, it follows that the highest
color in H' is n — 1, which is odd. That is, the BSCC H' is odd-colored.
This is a contradiction. In fact, from all states ¢ € (H N S,) \ C),, we
have PZ‘}{Ssyq[(H N Sp)* - Cp] > 0. Furthermore, the colors of all states

VCO!

in H are at most n (recall what we shown above in 2n-d). Hence, the
highest color in H is n, which is even (the color of the states in C,).
Therefore the BSCC H is even-colored. That is, the Player-A strategy

n

sa parity dominates the valuation v . in the game L7 .

The case where n is odd is identical.

Hence, the pair (vcol’, EV') is non-deceiving down to n. The result then follows
from Lemma 8.20. O

Proof of Lemma 8.8

We can proceed to the proof of Lemma 8.8.

5Note that this is why we increase the least color, and not an intermediate color.
Indeed, if there were a state colored by the coloring function vcol by n — 3, then the
state k!'_3 would be colored by n—3 in £!'_?, whereas its counterpart k”_, would be
colored by n — 1 in £ . Hence, we could not deduce anymore that since the BSCC

. . n—2 . .. n
H is even-colored in £ °, it also is in L], .
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Proof. Assume towards a contradiction that minC' = e — 1. Let Q._1 =
vcol_l[e — 1]. Consider a Player-B strategy sg generated by the environment
function Ev. Because the pair (vcol, Ev) is completely faithful and e — 1 is odd,
it follows that sg parity dominates the valuation ve 1veol 11 the game [’scoll
for some u/ < u. Consider the game GP-1 from Lemma 1.5.10 (we do not
mention any player since the game has a value). This lemma also gives that
all states have the same values in G and G@<—1. Let us show that there is some
x € [0,1] such that x < w and such that the strategy sg parity dominates
the valuation v§ . First, note that for all y € [0,1], if sg dominates the
valuation v%ﬁl, then it also parity dominates it (since sg parity dominates the

valuation vg/_chd in the game £Sco}) Now, consider some state ¢ € Q._1. Let

veoly be the coloring function associated with the environment Ev(g). Denoting
Y, := (F(q),Ev(q)) and p? := pyycol,, We have that the Player-B GF-strategy
sg(q) is optimal w.r.t. Y,. Hence, by Lemma 8.2 for Player B, we have that
for all Player-A actions a € Actp, if out[(F, H(pq)—l[pﬁ)’l]]>](a,SB(q)) = 0 then
Color(F(g),p?, a,sg(q)) U {e — 2} is odd with Color(F(q),p? a,sg(q)) := {i €
[0, €] | out[(F(q), Lipay—1r))](a,s8(q)) > 0}. Since e is even, it must be that,
for all states ¢ € Qc—1 and a € Act}:

out[{F, Lpa)-1p  1)](as8(q)) = 0= out[(F(q), Lpa)-1x))] (a, s8(q)) = 0

(8.11)
For ¢ € Qc—1, let NZ(q) := {a € Act} | out[(F(q), ]l(pq)q[pt[zo’llp](a,SB(q)) >
0}. Then, we let:

Dm = qe%lenl aerﬁlzlz )out[(]—" L (pay -1t 71]])](a,53(q)) >0 (8.12)

and
Ti=u+pp - (W —u) <u (8.13)

Let us show that the strategy sg dominates the valuation vg) | in the game

G@-1. Let ¢ € Qe—1. We have val[(F(q), v)](sg(q)) = max,eacs OUut[(F(q), v)](a, se(q)).
Consider some a € Act} and a Player-A strategy sa with sa(¢) := a. Denoting

P,[T] := IP)SXCE'B’q[ ] for T C Qe—1 U{kE™} U Vi g, we have:

out[(F(q), v§, ,)](a.58(9)) = = - out[(F(a), L, _,))(a, se(a))
+ u - out[(F(q), ﬂQe”(a ss(q))
4 Z y - out[(F(q), 1g,)](a,ss(q))

YEVQ\Qu

=2 PlQe 1] +u-P[{kST N+ D y-Paly

YEVQ\Qu

In addition, since the strategy sg dominates the valuation v* | in the

e— lvco
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game LS . we have:

vcoI ’

o’ >0Ut[<F( )» Ve— 1vco|>](a SB(q))
= PQea UL+ Yy Paly
YEVQ\Qu

That is:

Y. y-Palyl < PulVol]
YEVO\Qu

By Equation (8.1) in Lemma 8.16, for all y € Vo, , we have:

Paly] = out[(F(q), L(pay-1(y))](a;s8(q))

Furthermore, by Equation (8.3) in Lemma 8.16 which can be applied since
(veol, Ev) is faithful down to e — 1, it also is coherent at e — 1, we have:

Pa({ke_1}) = out[(F(q), L(pa)-1[k,)](a, sB(9))

Now, assume that out[(F(q), L(pe)-11v,,,1)l(a;s8(q)) = 0. That is, for all
Y € Vo\Q.» we have P,(y) = 0. By Equation (8.11) it follows that P,[{k{_;}] =

0. Hence: U5671(q) =z = out[(F(q), véeilﬂ(a, s8(q))-

Assume now that out[(F(q), Lye)-1(v;, o, 1)](a,58(q)) > 0 (i.e. a € NZ(g)).
By Equation (8.12), it implies that P,[Viy\g,] = pm- It follows that, by Equa-
tion (8.13):

out[(F(q),vd, ))(a,s8(q)) = - PalQe—1] +u- Pal{ki_}+ >y Paly

YEVQ\Qu
S PolQe] +u Pal{k 1} + 0" Pa[Vi\0,]
=u-(1— Pa[VQ\Qu}) + - Pa[VQ\Qu]
=u+ Pi[Vo\,] - (W' —u) Su+pp - (v —u)
=z =15, ,(q)

As this holds for all x € Q._1, it follows that the Player-B strategy sg
dominates the valuation g and therefore parity dominates it. Hence, for
all ¢ € Q._1, we have Xng,l[q] < x < u. That is a contradiction with
Lemma 1.5.10. O

8.6.6 . Proof of Lemma 8.9
First, let us formally define a way to compare coloring functions.
Definition 8.24. We define the (transitive) relation <. on coloring func-
tions which corresponds to the lexicographic order. Specifically, for all virtual

coloring functions vcoly,veoly : Qy — [0, €], we have vcoly <[] vcolz if and
only if there is some k € [0, e] such that:
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e foralli € [k+1,e], we have |vcol; '[i]| = |vcoly '[i];

o |vcol; Hk]| < |veol; K]

We write vcoly =[g ¢ veola when such a property is ensured for k = —1.
We also write vcoly =[0.] vcols for veolp =[0,e] vcols or veoly <[0,e] vcols.

Straightforwardly, this relation ensures the following proposition.

Proposition 8.21. Let n € N. There is no infinite sequence (ci)reN €
([0, €]™" such that c <o) ck+1 for all k € N.

Proof. This is because the relation <o ] corresponds to a lexicographic order
on vectors taking their values in [0, e]. O

We can then consider all steps of Algorithm 8.14 one by one.

Lemma 8.22. Consider a virtual coloring function vcol : Q, — [0,e] and
some k € [0,e]. For all partial environment functions Ev : Q, — Env(Q)
defined on [k + 1, ¢]:

e for (vcolypd, Evypd) < UpdateColEnv(k,vcol, Ev), we have vcol =g
vcolypd;

For all environment functions Ev : Q,, — Env(Q):
e for (vcoline, Evine) <= IncLeast(vcol, Ev), we have vcol <[g ¢ vCOlinc;

Proof. The procedure UpdateColEnv consists in two part. First, the call Al-
gorithm 8.10. This does not change the coloring function. Then, there is
the call to Algorithm 8.11. By Proposition 8.13, if NewCol(g, vcol) = k, then
veol(q) < k. Hence, the change of colors of the states does not decrease the
colors of the states. It follows that the resulting coloring function vcolypqg is
such that vcol =[0,¢] vcolypd -

Consider now the procedure IncLeast. By definition, before the call of this
algorithm, some states are colored with cpi,. Hence, the coloring function
resulting of the call to Algorithm 8.13 has more states colored with cpin + 2,
whereas states colored with a color higher than cpi, + 2 are left unchanged.
Hence: vcol <[0,e] vCOljne. L]

We can now proceed to the proof of Lemma 8.9.

Proof. By Lemma 8.22, each call to the procedure InclLeast strictly increase
(w.r.t. <[o,) the coloring function. Furthermore, each call to the procedure
UpdateColEnv does not decrease (w.r.t. <o) the coloring function. Hence,
by Proposition 8.21, the call to the procedure IncLeast is done only finitely
many times. O
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9 - Study of standard finite game forms

In this part of the dissertation, we have defined several classes of game
forms, such as the class of determined (Definition 6.1), finitely /uniquely maxi-
mizable (Definitions 6.3, 6.4), or positionally optimizable (Definition 8.7) game
forms. Each of these classes is associated with transfers (though, not necessar-
ily NSC-transfers). See Chapters 6, 7 and 8 for more details.

In this final chapter, we focus on standard finite game forms. The classes of
game forms we study are the above mentioned classes of game forms restricted
to standard finite game forms. We will state two kinds of results. First, we
state decidability /complexity results on class membership problems: given a
game form F, if F belongs to one of the classes mentioned above. The stan-
dard finite assumption facilitates the reasoning about decidability /complexity
issues. When considering this issue, for the same reason, we also only con-
sider deterministic game forms. Second, we state expressiveness results, that
is we compare the different classes of game forms defined in this part, i.e. we
establish which class subsumes which.

More specifically, in Section 9.1, we study the complexity of deciding if a
standard finite deterministic game form is determined. It is straightforward
that this decision problem is in co-NP. We show that it is equivalent, under
polynomial time reduction, to the decision problem MonotoneDual (the dual-
ization of monotone CNF formulas), see Proposition 9.4. It is an open problem
whether this decision problem MonotoneDual is in P or is co-NP-complete.

Then, in Section 9.2, we encode the decision problems w.r.t. some classes
mentioned above with formulas of the first order theory of the reals. These
formulas consist in (existential or universal) quantifications over (real) variables
followed by a combination, using the classical logical operators such as and,
or, etc., of inequalities between multi-variate polynomials. This is formally
defined in Definition 9.5. Interestingly for us, the first order theory of the reals
is decidable. Using this fact, we are then able to show that it is decidable
(resp. semi-decidable) if a game form is uniquely (resp. finitely) maximizable
w.r.t. Player A, see Corollary 9.7. Furthermore, we show that the assertion
that a game form is positionally optimizable (resp. up to some n € N) can be
encoded in the first order theory of the reals, see Proposition 9.9, thus showing
that the corresponding decision problem is decidable.

Finally, in Section 9.3, Theorem 9.10 gives the complete picture of how
the sets of determined, finitely/uniquely maximizable w.r.t. Player A and
positionally optimizable game forms compare. The results are summarized in
Figure 9.3. The main difficulty lies in establishing a strict hierarchy: for all
n € N, the set of game forms positionally optimizable up to n 4+ 1 is strictly
included in the set of game forms positionally optimizable up to n. This is
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done in Proposition 9.12.

9.1 Determined game forms

In this section, we study the complexity of deciding if a standard finite
deterministic game form is determined (recall Definition 6.1). This section
comes from [38]. We formally define below the decision problem we will study in
this section, along with the definition of the size of standard finite deterministic
game forms.

Definition 9.1. The decision problem DetGF is as follows:
e Input: a standard finite deterministic game form F;
e Qutput: yes if and only if the game form F is determined.

Such a game form F = (Acta, Actg, O, 0)s is represented as a bi-dimensional
table where O is inferred from the contents of the cells of the table (ie. O =
o(Acta,Actg)). We assume that Acta = [1,|Acta|] and similarly for Actg
(where |Actp| refers to the cardinal of Actp).

The size |F| of such a game form F is equal to |F| := |Acta| X |Actg|.

It is straightforward that this decision problem is in co-NP. Indeed, if a
game form is not determined, it suffices to guess a valuation v : O — {0,1} and
check — in polynomial time — that there is no row full of 1 nor any column full
of 0. In fact, in [71] (where determinacy is refered to as tightness), the authors
mentioned that DetGF could be solved in quasi-polynomial time via a reduction
to the dualization of monotone CNF formulas (called MonotoneDual), which
can be solved in quasi-polynomial time [75]. Note that it is an open problem
whether MonotoneDual is in P or is coNP-complete [76].

The goal of this section is to show that DetGF is equivalent, under polyno-
mial time reduction, to MonotoneDual, thus showing that answering if DetGF
is in P or coNP-complete directly answers the same question for MonotoneDual.
To do so, we will actually show that DetGF is equivalent, under polynomial
time reduction, to the decision problem co-IMSAT, which is equivalent, under
polynomial time reduction, to MonotoneDual [77, Corollary 1, Theorem 2].

Let us define this decision problem IMSAT. In the classical decision problem
SAT, a logical formula given in conjunctive normal form is given as input, the
output being yes if and only if this formula is satisfiable. The problem IMSAT
refers to a version of SAT where the formula taken as input is monotone — i.e.
in each clause, either all variables are positive (not negated) or all variables are
negative (negated) — and intersecting — each pair of positive and negative
clauses has at least one variable in common. Positive and negative clauses are
formally defined below.
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Definition 9.2 (Positive and negative clauses). Consider a non-empty set of
variables X # (). A positive clause C™ on X represented by a subset Xo+ C X

ct .= \/ T

xEXC+

of X is equal to:

The set of all positive clauses on the set X of variables is denoted PosClause(X).
Similarly, a negative clause C'~ on X represented by a subset Xo- C X of X

C™ = \/ -

z€X -

is equal to:

The set of all negative clauses on the set X of variables is denoted NegClause(X).
We define below the notion of intersecting monotone formula.

Definition 9.3 (Intersecting Monotone formula). Consider a non-empty set
of variables X # (). An intersecting monotone formula ¢ (IM-formula for short)
on the set of variables X is a CNF formula:

Y= /\C’Z*/\ /\Cj_

1<i<n 1<j<k

where, for all i € [1,n], we have C;~ € PosClause(X) a positive clause and for
all j € [1,k], we have C; € NegClause(X) a negative clause, with k,n > 1.
Furthermore, for all i € [1,n] and j € [1,k], we have X+ N X - # .

i J

This induces the decision problem co-IMSAT.
Definition 9.4. The decision problem co-IMSAT is as follows:

e Input: a non-empty set of variables X and an intersecting monotone
formula ¢ and X;

e Qutput: yes if and only if no valuation of the variables in X satisfies .

As mentioned above, co-IMSAT is equivalent to MonotoneDual.

Theorem 9.1. The decision problem MonotoneDual is equivalent, under
polynomial time reductions, to the decision problem co-IMSAT.

The remainder of this section is devoted to the proof that DetGF is equiv-
alent, under polynomial time reduction, to co-IMSAT, which in turns, shows
that DetGF is equivalent, under polynomial time reduction, to MonotoneDual.
In the proof of the following two lemmas, {0, 1}-valuations of the outcomes
will be seen as {False, True}-valuations where False corresponds to 0 and True
corresponds to 1.

Lemma 9.2. The decision problem co-IMSAT is at least as hard, under poly-
nomial time reduction, as DetGF.
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Figure 9.1: A determined game form (already depicted in Figure 6.1).

Proof. We exhibit a polynomial time reduction from DetGF to co-IMSAT.
Specifically, consider a standard game form F = (Sta, Stg, O, 0)s and assume
that Acta = [1, k] and Actg = [1,n] for some n,k > 1. We consider the set of
variables X = O and the IM-formula ¢z, defined by:

OF = /\ CZ»+ A /\ o

1<i<n 1<j<k

where, for all i € Actg = [1,n], we have C;" € PosClause(X) and Xe =
o(Acta,i) € O = X and for all j € [1,k], we have C} € NegCIause(X)/ and
ch_ := 0(j,Actg) € O = X. That is, the positive clauses encode the columns
whereas the negative clauses encode the rows.

Note that the formula ¢ is indeed an IM-formula as it is monotone by
definition and, for all ¢ € [1,n] and j € [1, k], we have o(j,7) € XerNXe- # 0.
It is also clear that this transformation is computable in polynomial tir]?le. As
an example, the formula ¢z, corresponding to the game form F; of Figure 9.1
is equal to:

pr=(@xV2))AN(@xVyY) AyVz)A(—zV-2)A(zV-y)A(-yV-—z)

In that case, the formula ¢z, is not satisfiable and the game form F; is deter-
mined.

We now have to show that the formula @£ is not satisfiable if and only if
the game form F is determined. First, assume that ¢ is not satisfiable and
let v: 0O — {0,1} be a {0, 1}-valuation of the outcomes O. Note that it can
be seen as a {False, True}-valuation v of the variables in X = O. Since ¢ is
not satisfiable, there exists a clause C' that is not satisfied by the valuation
v. Assume for instance that it is a positive clause C = C’;’ for some ¢ €
[1,n] = Actg. Then, for all z € X+, we have v(z) = 0. That is, {0} =
v[X+] = v[o(Acta, ). Similarly, if Cis a negative clause C' = C for some
Jj € T[Lk;]] = Actp, then, for all z € XC;, we have v(z) = 1, ie. {1} =
v[X -] = v[o(j, Actg)]. As this holds for all {0, 1}-valuations, the game form
F is determined.

It is analogous to show that if F is determined then ¢ r is not satisfiable:
for any {False, True}-valuation of the outcomes v : O — {False, True}, which
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Figure 9.2: The game form that is the translation of the formula ¢.

can be seen as a {0, 1}-valuation, if there is a row full of 1 in (F,v), then the
corresponding negative clause is unsatisfied by v, and similarly if there is a
column full of 0 in (F,v), then the corresponding positive clause is unsatisfied
by v. This proves the desired result. O

Let us now show the other direction, i.e. that the decision problem DetGF
is at least as hard as the decision problem co-IMSAT. This is stated in the
lemma below.

Lemma 9.3. The decision problem DetGF is at least as hard under polyno-
mial time reduction as co-IMSAT.

Proof. We define a polynomial time reduction from co-IMSAT to DetGF. Specif-
ically, consider an IM-formula ¢ on a non-empty set of variables X such that:

p = /\C’f/\ /\CJ_

1<i<n 1<j<k

with k,n > 1. We want to build a game form F, that is determined if and
only if ¢ is not satisfiable. The idea of the reduction is close to what we have
domne in the proof of the previous lemma: the positive clauses are encoded in
the columns and the negative clauses are encoded in the rows, the intersection
of a row and a column being well defined since the formula ¢ is intersecting.
However, some technical difficulties arise from the fact that if, for instance, a
negative clause has more variables than the number of positive clauses, then
there will be some outcomes in F, in a row corresponding to a negative clause
but whose column does not correspond to any positive clause. Hence, this col-
umn should be made so that it cannot be full of Os (for the relevant valuations)
as to not affect the determinacy of F,. Let us illustrate this on an example.
Consider the following IM-formula:

= (bVd)A(aVec)A(—aV-b)A(-aV-dV—e)

Figure 9.2 depicts the game form F, we build from ¢ (the variables x, zo, 21
are fresh, the variable x is only added to fill the game form). The negative
clauses are encoded in the red rows and the positive clauses are encoded in the
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blue columns. The variables xy and x; are added so that only the red rows and
the blue lines are of interest for the determinacy of the game form F,. More
precisely, it is straightforward that for any {0, 1}-valuation v : O — {0, 1} with
either v(zp) = 1 or v(z1) = 0, there is either a row full of 1 or a column full
of 0. Furthermore, for any {0, 1}-valuation v : O — {0, 1} such that v(zp) =0
and v(x1) = 1, there is a row full of 1 or a column full of 0 if and only if a red
row is full of 1 or a blue column is full of 0.

Formally, let my, 1= max;cp p) [Xo-| and my, 1= maxieqy ] |Xci+| be the
maximum number of variables occurrin';g, respectively, in a positive and a neg-
ative clause. We define the game form F := (Acta, Actg, O, ) by:

o Acta :=[1,k+ my + 2];
e Actg:=[1,n+m, +2];
e O:= X U{x,xz0,x1} for three fresh outcomes z, zo,z1 ¢ X;

o Let j < k. Let us define the row corresponding to j. For all ¢ < n, we
set 0(j,7) € O such that o(j,7) € Cy NC;". Then, o(j,4) forn+1<i <
n + my, is defined such that o(j, [1,n 4+ m,]) = X - (note that this is

J
possible since |X-| < m,,). Furthermore, o(j,n + my + 1) := x1 and
J

o(4,n 4+ my +2) := x1.

Consider the column corresponding to i € [1,n], its value for j < k is
already defined. Then, o(j,%) for k+1 < j < k+my is defined such that
o([1,k +my],i) = X+ (note that this is possible since | X +| < my,).
Furthermore, o(i,k + my + 1) := xg and o(i, k + my + 2) := zp.

Furthermore, foralln +1 <i<n+4+my, and k+1 < j < k+ my, we
set 0(7,1) := x. In addition, o(k +my + 1,[n+ 1,n+m, + 1)) := {z1},
o([k+1, k+mg], n+mp+1) := {zo}. Finally, o(k+mp+2,Actg) := {x0}
and o(Acta \ {k +my + 2}, n+my, + 2) := {x1}.

First, note that this reduction can indeed be computed in polynomial time.
Consider now a {0, 1}-valuation v : O — {0,1} and the game in normal form
(F,v). We have the following:

e Assume that v(zg) = 1 or v(x1) = 0. Then, we have v[o(k + my +
2,Actg)] = {v(zo)} and v[p(Actp,n + my + 2)] := {v(xo),v(z1)}. That
is, if v(zp) = 1 there is a row full of 1, and if v(z¢) = v(x1) = 0, then
there is a column full of 0.

e Assume now that v(zg) = 0 and v(z1) = 1. Let j € Acta \ [1,k]. If
Jj < k+ myg, then o(j4,n + m, + 1) = x, hence the row j is not full of 1
(w.r.t. the valuation v). Similarly, if j =k+mp+1or j =k + my + 2,
then o(j,1) = xo and the row j is also not full of 1. Furthermore, for all
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i € Actg \ [1,n], we have o(k + my, + 1,7) = x1. Hence, the column i is
not full of 1.

)} = {1}

Furthermore, for all a € [1, k], v[o(a, Actg\[1, n+m,])] = {v(z
(z0)} = {0}
v) if

and for all b € [1,n], v[o(Acta \ [1,k + mi],b)] = {v

Therefore, there is a row full of 1 or a column full of 0 in (F, and only
if there is a € [1,k] C Acta such that v[o(a, [1,n 4+ m,])] = v[X,-] =
{1} or b € [1,n] C Actg such that v[o([1, k + my], )] = v[ X, ] = {0}

Proving that ¢r is not satisfiable if and only if F, is determined is now
direct. Indeed, if ¢ is not satisfiable, then for all valuations v : O — [0, 1], there
is either: some a € [1, k] such that the negative clause C is not satisfied, i.e.
v[X-] = {1}, and in that case the row a is full of 1 in (F, v); or some b € [1, 7]
such that the positive clause C;' is not satisfied, i.e. v[XC;] = {0}, and in that
case the column b is full of 0 in (F,v). The other direction is very similar. [J

We obtain the proposition below.

Proposition 9.4. The decision problem DetGF is equivalent under polyno-
mial time reductions to the decision problem MonotoneDual.

Proof. This comes from Lemmas 9.2 and 9.3 and Theorem 9.1. O

9.2 First-order theory of the reals

In this section, we use the first order theory of the reals to show that it is
possible to decide if a game form is (finitely or uniquely) maximizable or if it is
positionally maximizable. We restrict ourselves to standard finite deterministic
game forms, though we use the deterministic assumptions only to simplify the
proofs.

9.2.1 . Definition

Let us first formally define the first order theory of the reals formulas we
will consider.

Definition 9.5 (First-order theory of the reals). In the first order theory of
the reals (FO-R for short), we consider formulas ® of the shape:

d=0Q1 711 €R,...,Qnxy ER o(x1,...,2p)
where n € N and

e for all i € [1,n], Q; € {3,V}. That is, it is either an existential or a
universal quantifier;
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o o(r1,...,x,) Is a classical formula without quantifiers, with A (and),
V (or) and — (negation) as logical connectors. The atomic propositions
considered in o(z1,...,xy) are of the shape:

P(z1,...,2,) 0

where 1 € {=,#,>,>,<,<} and P : R" — R is a real multi-variate
polynomial with integer coefficients.

When all quantifiers Q; for i € [1,n] are existential quantifiers, the formula ®
belongs to the existential theory of the reals (3-R for short).

The semantics behind the first order theory of the reals is quite intuitive,
though it would take some space to formally define. Instead, let us illustrate
it on a couple of examples.

Example 9.1. Consider the FO-R formula below.
VeeR, dJyeR, z+y >0

This FO-R formula is true since it does hold that, for all x € R, taking y :=
—x € R, we have x + y = 0. However, the FO-R formula

JreR, VyeR, z4+y>0

is false in FO-R since there is no x € R, such that, for all y € R, we have
x+y>0.

Let us now consider the decision problem associated with FO-R formulas.

Definition 9.6. We denote by Truepo_gr the set of all first-order theory of
the reals formulas that evaluate to true. The decision problem Ispo_Rr Is as
follows:

e Input: an FO-R formula ®;
e Qutput: yes if and only if the formula ® is in Truepo_g.

Theorem 9.5. The decision problem Isg,_r is decidable.

This result was first shown in [78]. It was then improved in [79, Theorem
1.1] it as it was shown that Ispo_r could be decided in doubly-exponential time
via a quantifier elimination procedure.

As a side remark, in [80], it was shown that the decision problem Isg,_gr for
those formulas belonging to the existential theory of the reals can be decided
in polynomial space.
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9.2.2 . Finitely and uniquely maximizable game forms

Let us first focus on game forms finitely and uniquely maximizable w.r.t.
Player A (recall Definitions 6.3 and 6.4). Given some n € N, we encode in
FO-R the fact that a standard finite deterministic game form is maximizable
w.r.t. Player A by a set of cardinal n. We formally define below this notion.

Definition 9.7 (n-maximizable game forms). Consider a game form F €
Form(O) on a set of outcomes O. For all n € N, we say that the game form
F is n-maximizable w.r.t. Player A if there is a set of GF-strategies Sa4 C Ya
that maximizes the game form F such that |Sa| < n. We denote by n-Maxa
the set of game forms n-maximizable w.r.t. Player A.

By definition, a game form is uniquely maximizable if and only if it is in
1-Maxa.

The fact that standard finite deterministic game form is in 1-Maxa can be
encoded in the first-order theory of the reals.

Proposition 9.6. Consider a standard finite deterministic game form F. For
all I € N, the fact that F € [-Maxa can be encoded, with a formula whose size
is polynomial in | and |F| (as defined in Definition 9.1), in FO-R.

Proof. Consider some | € N. We encode the fact that a standard finite de-
terministic game form F = (Acta,Actg, O, 0) is in [-Maxa. Without loss
of generality, since the game form F is deterministic, we assume that O =
o(Acta, Actg). We assume that Acta = [1,n], Actg = [1,m] and we consider
the formula @;MEXA below, that we will explain line by line in the following.

<I>ZJ_TM3XA = 3ok = Thy oo, O 1<kl /\ IsStrategya(o%) A
1<k<l

Vv = (v5)0c0, RealBetweenZeroOne(v) A
Ju, (0 <u<1)A
Jog = 03, ...,08, IsStrategyg (o) A Valg(og, v, u)A

\/ Vala(og, v, u)

1<k<l

Before detailing all the predicates occurring in the formula @?Max“, note that
the formula @l]?MaXA does not fit exactly the formalism of Definition 9.5: all
the quantifiers are not at the beginning of the formula. However, the semantics
of the formula does not change if these quantifiers are moved at the beginning.
We present the formula <I>l];MaxA in that way for readability.

The first line encodes the existence of a set of [ Player-A GF-strategies
among which we will later find optimal GF-strategies for Player A. For all
1 < k < I, the predicate IsStrategy(oy) checks that oy is indeed a Player-A
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GF-strategy in F. That is:

n

IsStrategya (o) := /\ (0<op <A (Z op = 1))

1<i<n i=1

Then, we quantify over all the possible valuations v of the outcomes. This is
checked by the predicate RealBetweenZeroOne(v):

RealBetweenZeroOne(v) := /\ (0<v,<1)
0€0

The value of the game in normal form (F,v) is then equal to w (which is in
[0,1]), which will be checked by the following predicates. First, we exhibit a
Player-B GF-strategy og € Yg(F) whose value is at most u. The predicate
IsStrategyg (0 ) checks that og is indeed a Player-B GF-strategy:

IsStrategyg(og) := [\ (0<of <1)A(D ol =1)
j=1

1<j<m

The predicate Valg(og, v, u) checks that the value of this Player-B GF-strategy
og in the game in normal form (F,v) is at most u:

Valg(og,v,u) = [\ O ot vy < u)

1<i<n j=1

Finally, we check that there is a Player-A GF-strategy oy for some 1 < k <
whose value is at least u in the game in normal form (F,v). This is checked
by the predicate Vala(og, v, u):

Vala (o, v,u) := /\ (Z Ulic “Ug(ij) = u)

1<j<m i=1

Therefore, we have that F is [-Maxp if and only if @lf_MaXA € Truepo_gr. In

addition, the size of the formula @l}TMaXA is polynomial in the size of F and
l. O

We can therefore conclude that deciding if a game form is uniquely (resp.
finitely) maximizable is decidable (resp. semi-decidable).

Corollary 9.7. It is decidable if a standard finite deterministic game form
is uniquely maximizable w.r.t. Player A and it is semi-decidable if a standard
finite deterministic game form is finitely maximizable w.r.t. Player A.

Proof. This is direct consequence of Proposition 9.6 for game forms uniquely
maximizable w.r.t. Player A . Consider now the case of game forms finitely
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maximizable w.r.t. Player A. Recall that a decision problem L is semi-
decidable if there is an algorithm terminating on all positive instances of L
(but that does not necessarily terminate on all instances) such that, whenever
it terminates, it accepts all positives instances of L and rejects all negative
instances. Let us design such an algorithm. Given a game form F, one can
check, for all n € N, if F is n-maximizable, in which case one accepts F.
The correctness of the algorithm is a direct consequence of the fact that all
game forms finitely maximizable w.r.t. Player A are n-maximizable for some
n € N. O

Open Question 9.1. It is not known if it can be decided that a standard
finite deterministic game form is finitely maximizable w.r.t. Player A.

The reason why we cannot encode this problem in the first order theory of
the reals as we did above is the following. We do not know any bound in the
size of the finite set maximizing a game form, assuming there is one that does.
Hence, encoding a set of arbitrary, yet finite, size seems to require infinitely
many variables.

9.2.3 . Relevant environments and positionally optimizable game forms

Let us now focus on positionally optimizable game forms. Recall that these
are the game forms we defined in in the previous chapter. The formal definition
is given in Definition 8.7. The definition of environments (i.e. Definition 8.4)
will be extensively used in this subsection (and the next). Before encoding the
corresponding decision problem in the first order theory of the reals, let us first
state that, to prove that a game form is positionally optimizable, one does not
need to consider all possible environments. In fact, it is sufficient to consider
relevant environments, defined below.

Definition 9.8 (Relevant environments). For a set of outcomes O, an en-
vironment E = (c,e,p) € Env(0) is relevant if ¢ € {0,1}, p~1[{c — 1}] =
p Y {qinit}] = 0 and, for all i € [c,e], there is o € O such that p(o) = k;. The
size of a relevant environment E is equal to Sz(FE) := e — c.

As mentioned above, we may only consider relevant environment to decide
if a game form is positionally maximizable.

Proposition 9.8 (Proof 9.5.1). Consider a set of outcomes O and a game
form F € Form(O). Consider a Player C € {A,B}. For all n € N, the game
form F is positionally maximizable w.r.t. Player C up ton if and only if, for all
relevant environments E with Sz(E) < n — 1, there is an optimal GF-strategy
in F for Player C w.r.t. (F,E).

The benefit of considering only relevant environment is that, given any
[ € N, deciding if a game form is positionally optimizable up to [ can be done
by considering environments where all the outcomes are mapped to the indices
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at most [. Then, the fact that a standard finite deterministic game form is
positionally optimizable can be encoded in the first-order theory of the reals.

Proposition 9.9. Consider a standard finite deterministic game form F.
The fact that F € ParO (resp. F € ParO(n), for some n € N) can be encoded,
with formula of size polynomial in |F| (resp. and n), in FO-R.

Proof. Consider some [ € N. We encode the fact that a standard finite deter-
ministic game form F = (Acta, Actg, O, g) is positionally optimizable up to .
Without loss of generality, since the game form F is deterministic, we assume
that O = p(Acta,Actg). To do so, we use the characterization of Proposi-
tion 9.8 and we express in FO-R the fact that, for all relevant environments
E = {(c,e,p) of size at most [— 1, both players have an optimal GF-strategy. We
use the characterization given by Lemma 8.2. We assume that Acta = [1,n],
Actg = [1, m] and we consider the formula @;fro(l) below, that we will explain
line by line in the following.

@;aro(l) := Ve, ZeroOrOne(c) A

Va = (a)oc0, ZeroOrOne(a) A
Vv = (vo)0c0, RealBetweenZeroOne(v) A
Vk = (ko)oco, IntBetweenZeroL (k, c) A
Ju, (0<u<I)A
3Sa = S, ..., SR,
Joa =04, ...,0%, Isindicator(Sa) A IsStrategy(oa) A IsSupp(aa, Sa) A Vala(oa, o, v, u)A
/\ MaxIntegerEven(Sa, k, j,c) A
1<j<m
3Sg = Sg, ..., S8,
Jog = 03, ...,08, Isindicator(Sg) A IsStrategyg (o) A IsSupp(og, Sg) A Valg(og, a, v, u)A
/\ MaxIntegerOdd(Sg, k, i, ¢)
1<i<n

As in the proof of Proposition 9.6, the formula q);aro(l)

does not fit exactly the
formalism of Definition 9.5, since all the quantifiers are not at the beginning of
the formula. However, as the proof of Proposition 9.6, the semantics is changed
if these quantifiers are moved at the beginning of the formula. We presented
@?ro(l) in that way for readability.

The first four lines encode the relevant environment F. Specifically:

ZeroOrOne(c) := (c

Il
(e}
~
<
—
o
Il
(a=)
~

Since the environment F is relevant, ¢ is equal to either 0 or 1. Furthermore:

ZeroOrOne(a) := A ((a =0) V (0 = 1))
0e0
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where, for all 0 € O, a, = 1 means that p(o) € [0,1] and a, = 0 means that
p(o) € K;. Furthermore:

RealBetweenZeroOne(v) := /\ (0<v,<1)
0€0

where, for all 0 € O, v, € [0, 1] corresponds to the value of 0 w.r.t. p (assuming
p(0) € [0,1]). Furthermore:

IntBetweenZeroL (k, ¢) /\ \/ ko = =0)= (k, <1l-1))
0€0 0<p<l
where, for all o € O, k, € [0,1] is the index of o given by p (assuming that
p(o) € K;). Furthermore, since the size of F is at most [ — 1, if ¢ = 0, then the
maximum of the colors should be at most [ — 1.

Then, wu is the value of the game Q(;E) from the state gjn;;. This is ensured
by the remainder of the formula: it exhibits a GF-strategy per player whose
corresponding positional strategy parity dominates the valuation vy for ¥V :=
(F, E). The predicates are used for both players, we give them only for Player
A, the case of Player B being analogous.

IsIndicator(Sa) == /\ ((Sh=0)V (Sh = 1))
1<i<n
where Sa encodes the support of the GF-strategy oa. The fact that it is indeed
a Player-A GF-strategy is ensured by the predicates below:

IsStrategya(0a) == [\ (0< ol <1)A (Z oh =1))

1<i<n
In addition:
IsSupp(oa, Sa) = [\ (04 > 0) & (Sp =1))
1<i<n
This predicate ensures that Sa does indeed correspond to the support of the
GF-strategy oa. Furthermore:

Vala(oa, a,v,u) = /\ ZUA o(irj) * Volij) T (1 — apiz)) - 1) = u)

This predicates encodes the fact that the Player-A GF-strategy oa dominates
the valuation v§:. Indeed, note that for all o € O, if o, = 1, then p(0) € [0, 1],
and therefore v§:(0) = p(0) = v,. Similarly, if , = 0, then p(o) € K;, and
therefore vy (o) = u. Finally, when [ is even, denoting [ = 2 -z with z € N:

MaxIntegerEven(Sa, k, j, ¢) := \/ (Sh=1A Qi) = 1)V

1<i<n
V @e> AN (Sh=1)A (hyy) = 20)) A
0<eLz 1<i<n
( /\ (Sa =1) = (ko) <2-€)))
1<i<n
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It is similar if [ is odd, up to small changes. This predicate encodes item (7i.2)
of Lemma 8.2: for all columns j € Actg, either there is positive probability to
see an outcome mapped to a value in [0, 1] (i.e. out[(F,1,-1(91))](ca, ) > 0)
or the maximum of the colors in the support of the strategy oa is even (i.e.
max(Color(F,p,ona,j) U{c}) is even).

By Lemma 8.2 and Proposition 9.8, we have that F € ParO(l) if and only
if q)]PfrO(l) € Truepo_gr. Furthermore, the size of <I>]Pfro(l) is polynomial in the

size of F (and in [).

Finally, since given an environment, an outcome is mapped to at most
one index, and since in relevant environments of size n € N, the outcomes are
mapped to at least n—1 different indices, we have F € ParO < F € ParO(n+2)
for n :=|0|. The proposition follows. O

9.3 Comparing classes of game forms

In this section, we compare the strengths of the game form properties we
have defined in this part. For these properties to be well defined, we need to
restrict ourselves to standard finite game forms (note however that we do not
restrict ourselves to deterministic game forms). In addition, when applicable,
the properties we consider on game forms hold for both players. This is the case
for finitely/uniquely maximizable and positionally optimizable game forms.
That way, how all these properties compare is not too complicated to describe.
More specifically, the goal of this section is to prove the results summarized in
Figure 9.3, and stated formally in Theorem 9.10 below.
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Fin. Max.

A

BN
&

Figure 9.3: This summarizes how properties on standard finite game
forms compare in strength, that is formally stated in Theorem 9.10. If
an ellipse (or an intersection of ellipses) labeled with X is contained in
another ellipse labeled with X, this means that the set of Y game forms
is strictly included in the set of X game forms.
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Theorem 9.10. Among the set of all standard finite game forms, denoting
All the set of such game forms, Det. the set of deterministic game forms that
are determined, Fin. Max. (resp. 1-Max.) the set of game forms finitely (resp.
uniquely) maximizable for both players, and T.B. the set of turn-based game
forms, from top to bottom in Figure 9.3, we have:

1. All = ParO(0);
for all n € N, ParO(n) 2 ParO(n + 1);

for all n € N, ParO(n) 2 NgenParO(k) = ParO;

N

ParO D Fin.Max.;

5. Fin.Max. 2 Det. U 1-Max. U T.B.;

Sl

VX € {Det.,1-Max.}, X D Det. N 1-Max.;
VX € {Det.,T.B.}, X D Det.NT.B.;
VX € {T.B.,1-Max.}, X D T.B.N 1-Max.;

© ™ N

VX € {Det.N1-Max., Det. N T.B., T.B. N 1-Max.},
X D Det.N T.B.N 1-Max..

Among all these items, there are only two that are not straightforward
to prove: items 2 and 4. We state and prove propositions corresponding to
these items and then formally prove Theorem 9.10. Let us first start with the
simplest of these items: item 4.

Proposition 9.11. The set of standard finite game forms positionally opti-
mizable (i.e. ParO) strictly contains the set of game forms finitely maximizable
w.r.t. both players (i.e. Fini. Max.). That is, ParO 2 Fini. Max..

Proof. The inclusion ParO D Fin. Max. is a direct corollary of Corollary 6.12
applied to both players: in a finite concurrent parity game where all local
interactions are finitely maximizable w.r.t. both players, both players have an
optimal positional strategy.

Let us now show that this inclusion is strict, that is let us exhibit a standard
finite game form that is positionally optimizable but not finitely maximizable
for any player. Consider the standard finite game form F € Form(O) depicted
in Figure 9.4 where O := {z,y, z}. Both players have two available actions, we
let Acta := {at,ap} where a; (resp. ap) is the Player-A action corresponding
to the top (resp. bottom) row in F. Similarly, we let Actg := {bj, by} where b,
(resp. by) is the Player-B action corresponding to the left (resp. right) column
in F. Let us show that this game form is positionally optimizable.

Consider any environment E = (c,e,p) € Env(O) and the corresponding
parity game Gz g) (recall Definition 8.5). We let u := xg,, , (¢init). For all
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2z4+y+=z 3y+z 20041 3
4 4 4 4
F = (F,v) =
3y+z y+3z 3 1
4 4 4 4

Figure 9.4: A game form F that Figure 9.5: The game in normal
is positionally optimizable but not form (F, v,) obtained from the
finitely maximizable. game form F of Figure 9.4.

t € O, if p(t) ¢ [0, 1], we let n; € [0, e] denote the integer that ¢ is mapped to
w.r.t. p, i.e. the integer ensuring p(t) = ky,. There are two cases:

o Assume that p(y),p(z) ¢ [0,1]. Then, u € {0,1}. Indeed, by playing
actions ap, € Actp and b, € Actg at state ginit in the game Q(].-yE), both
players can ensure that: 1) surely, no stopping state is reached and, 2)
almost surely, the highest color seen infinitely often is max(c,ny,n.).
Hence, if max(c,ny,n;) is even, we have that u = 1, the Player-A GF-
strategy ap € D(Acta) is optimal w.r.t. (F,E) and any Player-B GF-
strategy is optimal w.r.t. (F,E). This is symmetrical if max(c, ny,n.)
is odd.

e Assume that p(y) € [0,1] or p(z) € [0,1]. In that case, one can re-
alize that, for all Player-A GF-strategies oao € D(Acta) and Player-
B action b € Actg, we have: out[(F, 1,-191))](0a,b) > 1. In other
words, in the parity game §(r ), regardless of what the players do,
there is probability at least i to exit to a stopping state. Therefore, by
Lemma 8.2, any Player-A GF-strategy oa optimal in the game in normal
form (F, Ui B) op) is optimal w.r.t. (F, E), and such GF-strategies exist
since F is standard finite. This is similar for Player B.

In any case, both players have an optimal GF-strategy. Thus, the game form
F is positionally optimizable.

Let us now show that F is not finitely maximizable w.r.t. any player.
For all o € [0,1], we let vy : O — [0,1] be a valuation of the outcomes such
that v(y) := 1, v(z) := 0 and v(x) := a. The game in normal form (F,v,)
that we obtain is depicted in Figure 9.5. Then, one can check that the value
uq = val[(F,vq)] € [0, 1] of the game in normal form (F,v,) is equal to:
_d-a
- 8—4da
Furthermore, the only Player-A GF-strategy oy that is optimal in the game in

U,

normal form (F,v) is such that:




and similarly the only Player-B GF-strategy og that is optimal in the game in
normal form (F,v) is such that:

1
g8(bh) =
og(b) 2 _ o
Therefore, for both players, playing optimally in all games in normal form
that can be obtained from F requires playing infinitely many different GF-
strategies. 0

We can now consider item 2 of Theorem 9.10. It is formally stated as
Proposition 9.12 below.

Proposition 9.12. For alln € N, the set of game forms positionally optimiz-
able up ton (i.e. ParO(n)) strictly contains the set of game forms optimizable
up ton+ 1 (i.e. ParO(n 4+ 1)). That is, we have ParO(n) 2 ParO(n + 1).

The inclusion ParO(n) 2 ParO(n + 1) comes directly from the definition of
positionally optimizable game forms (i.e. Definition 8.7). Then, for all n > 1,
we exhibit a standard finite game form F,, that is in ParO(n — 1) but not in
ParO(n). This is done in Definition 9.9 below, where we describe a game form
that is ParO(n) but not in ParO(n — 1) in the case where n is even.

Definition 9.9. Consider some even n > 2. We consider the set of outcomes
O, := {xo,x1,...,Tn-1,Yy, 2} and we consider the standard finite game form
Fn = (Acty, Actg, Oy, 0n)s depicted in Figure 9.6. Let us describe the set of ac-
tions of the players.We set Acty := {at, ap,a1,...,0n—1,010,--.,0n—1n—2, GEx}
and Actg = {b|7 be,bgy ...y by_a, b271, ey bn—2,n—37 bEx}' The actions ay, ay, (resp.
by, by ) refer to the two topmost rows (resp. leftmost columns): ay (resp. b)) leads
to z°+“':x"’l, Syjz whereas ay, (resp. b,) leads to Sy%, %3‘2. Then, for all odd
i <n—1 (resp. even j < n —2) a; and a;;—1 (resp. b; and b;j_1 — only if
j > 2) correspond to the rows leading to x; and % (resp. columns leading

to x; and %) respectively. Finally, action agy (resp. bgy) correspond to
the bottommost row (resp. rightmost column).

The game forms described in Definition 9.9 satisfies the lemma below.

Lemma 9.13 (Proof 9.5.2). Consider some even n > 2. The game form of
Fy Definition 9.9 is:

e positionally maximizable w.r.t. Player B;
e positionally maximizable w.r.t. Player A up ton — 1 but not up to n.
That is: F, € ParO(n) \ ParO(n — 1).

The proof of this lemma is very tedious since it requires to consider a lot
of different possibilities in terms of which outcome is mapped to which value
or color. Let us first give below an informal proof of this lemma in the case
where n = 2. The game form F3 is depicted in Figure 9.7.
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Figure 9.6: The game form F,,. Due to a lack of space, h refers ton — 1
and h' ton — 2.

Proof sketch. Consider a relevant environment E = (c,e,p) € Env(O) and
the corresponding parity game Gz g) (recall Definition 8.5). We let u :=
XG5, i) (@init). For all t € O, if p(t) ¢ [0, 1], we let n; € [0, e] denote the integer
that t is mapped to w.r.t. p, i.e. the integer ensuring p(t) = k,,. We want to
show that, in any case, Player B has a GF-strategy that is optimal w.r.t. (F, F)
and that this also holds for Player A as long as ¢ = e (i.e. if Sz(E) = 0 = n—2).
However, there is a relevant environment E with Sz(E) = 1 such that Player
A has no GF-strategy optimal w.r.t. (F, E). Let us explain what happens for
Player A. There are several cases, we detail some of them.

e Assume that p(y),p(z) ¢ [0,1]. As in the proof of Proposition 9.11, this
implies u € {0,1} and playing action agy for Player A and action bg, for
Player B is optimal w.r.t. (F, E).

e Assume now that p(y) € [0,1] and p(z) ¢ [0, 1]. Then, we have u = p(y).
The reason is because, by playing action agy, Player A ensures that
almost surely a stopping state of value p(y) is reached. Furthermore,
Player B can ensure the same thing by playing action bg,. Then, playing
action agy for Player A and action bgy for Player B is optimal w.r.t.
(F, E). This is similar if p(y) ¢ [0, 1] and p(z) € [0, 1].

e Assume now p(y),p(z) € [0,1]. If p(y) < p(z), then we have u =

w, and as before playing action ag, for Player A and action bgy
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Figure 9.7: The game form Fs.
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Figure 9.8: The game form F; in a
specific environment.

for Player B is optimal w.r.t. (F,E).

Assume now that p(y),p(z) € [0,1] and p(y) > p(z). If p(zg) € [0,1]
or p(x1) € [0,1], we can also exhibit an optimal GF-strategy for both
players.

Let us now assume that p(y),p(z) € [0, 1] with p(y) > p(z). For simplic-
ity, we assume that p(y) = 1 and p(z) = 0. In that case, we have:

LB ) 0430 3

4 4 4 4

Assume also that p(xo),p(x1) € [0,1]. Assume first that ng, is odd. In

that case, u = %. A Player-B strategy playing positionally action b

achieves this value in the game Gz, g). Thus, the Player-A GF-strategy
agy is optimal w.r.t. (Fa, E).

Then, in any case, we have u = %.

Indeed, for all € > 0, a Player-A positional strategy playing action a

Assume now that ng, is even.

with probability 1 —e and action ap, with probability € has value at least
%—E in the game Gz, g). Therefore, playing action bgx is always optimal
for Player B. It will also be the case for Player A if Sz(F) = 0, i.e. if
¢ = e. Indeed, in that case, we have either n,, = n,, = 0, in which
case u = % and the Player-A GF-strategy a; is optimal w.r.t. (Fa, E); or
Ng, = Ny, = 1, in which case we are in the scope of the previous case of
this item since ng, is odd. However, if Sz(E) = 1, there may be an issue
for Player A, as we show below.

Consider now a relevant environment E = (c, e, p) of size 1 such that ¢ := 0,
p(y) :=1, p(z) :=0, p(xo) = ko and p(x1) = k1. We do have Sz(F) = 1. What

we obtain is depicted in Figure 9.8. In that case, we have u := X675 (Ginit) = 3

47
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as argued above in the last item. Consider any Player-A GF-strategy oa €
Ya(F2). If it plays action ap or action agx with positive probability, then the
strategy ngz,E) (oa) does not dominate the valuation U(r, py- However, if it

does not play these actions with positive probability, the strategy sffz’E) (oa)

has value 0 in XG(7y.5) from ginit- Indeed, by positionally playing action by,
Player B ensures that: 1) surely, no stopping state is seen, and 2) almost
surely, the state k1 (of color 1) is seen infinitely often, while ¢ = 0. O

Let us now consider the proof of Proposition 9.12.

Proof. Let n > 1. The inclusion ParO(n —1) D ParO(n) is direct. Lemma 9.13
ensures that these two sets are not equal when n is even. A similar lemma
could be stated in the case where n is odd. O

We can now proceed to the proof of Theorem 9.10. Note that we will refer
several times to game forms depicted in Chapter 6.

Proof. Let us prove all these items one by one. Recall that we only consider
standard finite game forms.

1. Consider any standard finite game form F. By the characterization of
Proposition 9.8, and since no relevant environment has size —1, we have

F € ParO(0).
2. This is given by Proposition 9.12.
3. This a direct consequence of the previous item.
4. This is given by Proposition 9.11.

5. By definition, if a game form is uniquely maximizable, it is also finitely
maximizable. In addition, by Proposition 6.5, any (deterministic) de-
termined game form F is maximized w.r.t. Player C € {A,B} by Actc,
which is finite. In addition, any game form F where Player A plays alone
is maximized by Acta w.r.t. Player A. This is similar for Player B.

6. The game form depicted in Figure 6.1 is determined, but is not uniquely
maximizable since, depending on the valuation, Player A should deter-
ministically play on either of her three available actions.

Furthermore, the matching pennies interaction, depicted in Figure 6.11
is uniquely maximizable, but not determined.

7. The game form depicted in Figure 6.1 mentioned in the previous item is
determined, but not turn-based.

Furthermore, all deterministic turn-based game forms are determined.
However, any turn-based game form that is not deterministic (recall
Definition 1.11) is not determined.
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8. A game form where Player A plays alone and chooses an action among
two that leads to two different outcomes (for instance depicted in the
middle of Figure 1.1) is turn-based, but not uniquely maximizable.

In addition, the game form depicted in Figure 6.12 is uniquely maximiz-
able, but not turn-based.

9. The game form depicted in Figure 6.12 mentioned in the previous item
is both determined and uniquely maximizable but not turn-based.

A trivial game form that is not deterministic is both turn-based and
uniquely maximizable but not determined.

Finally, the turn-based deterministic game form with two possible out-
comes described in the previous item (that is depicted in the middle of
Figure 1.1) is both turn-based and determined but not uniquely maxi-
mizable.

9.4 Discussion, open questions and future work

This chapter was devoted to the study of the classes of game forms we have
defined in the previous chapters of this part. As mentioned in the introduction
of this chapter, we have given two kinds of results, some related to decidabil-
ity /complexity, and the others related to comparing the different classes of
game forms. As stated above, we leave unanswered Open Question 9.1: we do
not know whether or not it is decidable that a standard finite deterministic
game form is finitely maximizable w.r.t. Player A.

One can notice that, when encoding different problems in the first order
theory of the reals, we did not look carefully at the exact complexity it entailed.
However, as stated in this chapter (below Theorem 9.5), first order theory of
the reals formulas can be decided in doubly exponential time, though one needs
to be careful with this statement since the precise complexity is doubly expo-
nential is some parameters, and polynomial in others. However, interestingly,
this complexity of deciding those formulas belonging to the existential theory
of the reals (i.e. with only existential quantifiers), can be done in polynomial
space, as stated below Theorem 9.5. The FO-R formulas we have exhibited in
this chapter all use both universal and existential quantifiers. However, we be-
lieve that the fact that a standard finite deterministic game form is in ParO(1)
can be encoded in the existential theory of the reals, as stated in the conjecture
below.

Conjecture 9.14. The fact that a standard finite deterministic game form is
in ParO(1) can be encoded, with a polynomial size formula, with 3-R formulas.
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This would show that deciding whether a standard finite game form belongs
to ParO(1) can be done in polynomial space.

A natural future work is to study the different properties that the differ-
ent classes of game forms we have defined in this part enjoy. We have given
some in Chapter 6. For instance, a standard deterministic game form with
at least one underlying action set that is finite is determined if and only if it
is semi-determined for either of the players (recall Proposition 6.8). However,
there are still a lot of open questions relating these properties, and in partic-
ular maximizable game forms. We give one below, but many others could be
inquired.

Open Question 9.2. Given a standard finite deterministic game form F,
does it hold that if F is uniquely (or finitely) maximizable w.r.t. Player A,
then F is finitely maximizable w.r.t. Player B.

Finally, consider any standard finite deterministic game form ensuring any
of the properties defined in this part, e.g. being positionally optimizable.
Assume that we replace one of its outcomes with a standard finite deterministic
game form that is itself positionally optimizable. This would require a formal
definition, in particular we would have to handle properly the number of rows
and columns of the new game form. Assuming that it is properly defined,
we believe that the obtained standard finite deterministic game form would
still be positionally optimizable. In fact, we believe that such a transformation
would preserve all classes of game forms defined in this part. Hence, we believe
that it constitutes the most relevant future work to inquire, since this allows
to effectively build new well-behaved game forms from already existing ones.

9.5 Appendix

9.5.1 . Proof of Proposition 9.8

We prove the result for Player A, the arguments are similar for Player B.
In the remainder of this section, we fix a set of outcomes O, a standard finite
game form F = (Acta, Actg, O, g)s € Form(O) (that need not be deterministic).

Definition 9.10. Consider somen > 1. Consider an (arbitrary) environment
E = {(c,e,p) € Env(0O) with p : O — {ginit} U [0,1] U K. with Sza(F) = n.
Assume that no outcome o € O is such that p(0) = ginir- Let € := Even(e) > 2.
By definition, we have n = € — c¢. Let us define a relevant environment E' =
(c,e,p") € Env(O) of size n — 1.

We let:

Cc =

, {O if ¢ is even

1 otherwise
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We also let Imy, := {n € [c+ 1,6 —1] | Jo € O, p(o) = k;} and ¢ = ap <
a1 < ag < ...<a besuch that Im, = {ai,ag,...,ax}. In particular, we have
¢ —1 > c+ k. Let us define the function fg : {ag,...,ar} — N such that,
letting fp(ag) :== ¢, for all 1 <i < k:

fe(ai-1) ifa;_1 =a; mod 2
felai) = ,
fe(a;—1) +1  otherwise

Since for all 1 < i < k, we have fg(a;) < fr(ai—1)+1, we have fg(ay) < +k.
We set €' := fg(ax). Note also that, for all 1 < i < k, we have f(ay) > ¢
With this choice, we have Sz(E') =€/ —¢ <k <é—1—c=Sza(E)—1=n—1.

We can now define the function p'. We let u := xg, (¢init) for Y := (F, E).
Then, for all o € O, we let:

p(o) €10, 1] if p(o)
p'(0) =< uel01] if plo) =¢
ka(max(c,n)) € Ke pr(o) = kn € K51

m

0,1]

Let us now show a useful property about the function fr from Defini-
tion 9.10.

Lemma 9.15. Consider an (arbitrary) environment E = (c,e,p) € Env(D)
and the function fg : {ao,...,ar} — N from Definition 9.10. It ensures the
following: for all 0 < i < k, a; and fg(a;) have the same parity. In addition,
for all X C {ay,...,ar}, max X has the same parity as max fg(X).

Proof. Let us show by induction on ¢ € [0, k] the following property P(i): a;
and f(a;) have the same parity. The property P(0) straightforwardly holds
since ag = ¢ and fg(ag) = ¢ have the same parity. Assume now that P(i — 1)
holds for some 1 < i < k. If a; has the same parity as a;_1, then fg(a;) =
fe(a;—1) which has the same parity as a;—1. Similarly, if a; does not have the
same parity as a;—1, then fg(a;) = fr(a;—1)+ 1. Hence, a; and f(a;) have the
same parity. Overall, the property P () holds for all ¢ € [0,k]. The second
part of the lemma comes from the fact that fg is non-decreasing. O

Let us now show that the value of local parity games with an arbitrary
environment F is equal to the value of the parity game with the corresponding
relevant environment.

Lemma 9.16. Consider an (arbitrary) environment E = (c,e,p) € Env(O)
and the relevant environment E' = (¢, €/, p’) from Definition 9.10. Let Y :=
(F,E) andY':= (F,E"). Then, xgy (ginit) < X6y (qinit)-

Proof. We let Qy and gy € Qy (resp. Qy and gy’) denote the set of non-
stopping states in Cy and the state gnit € Qy (resp. Cy+ and the state ginix €

Qy).

360



Recall the function fg from Definition 9.10. We let f := fr and we also
let f(€) := d with d of the same parity than e such that d > €’ 4+ 1. Then, we
define an alternate game g{; = <C{i, Parity[o qy) which differs from the game Gy
only in the coloring function and in the objective. The coloring function col/
in the arena C{; is such that, for all states ¢ in C{j, we have:

col/ (q) := f(max(c, col(q)))

where col refers to the coloring function in the arena Cy. We let Wy :=

(col‘*’)_l[ParityOﬁ] C (Qy)¥ (resp. W{; = ((colf)w)_l[Parity07d] C (Qé)“’,
Wy := ((col')®)~!Parityy .] C (Qy+)¥) be the Player-A winning set of in-

finite paths in Gy (resp. Q{;, Gy). Let also gy := (Paritypoq)cy g{; =
(ParitY[[o,d}])c{/ and gy = (Paritypo o7)c,. -

Let us show that the value of both games Q{C, and GY is the same. Consider
a pair of strategies (sa,sg) € Siy X S(éy = Si{“ X Sg{;. First, we have:

PsAss SA,S
> PARQy el e = ) P oy @y 2l

z€[0,1] z€]0,1]
In addition, since all states k; loop back to gy in Cy and C{i, we have:
Py [QF \ (@5 - ay)*] = 0 =Py [(Qf) \ (@) - av)“]

Furthermore, consider some infinite path p € (Q3 - qy ) visiting infinitely
often the central state gy. Let X, := {col[InfOft(p)] N [c,e]} denote the set
of colors, at least ¢, seen infinitely often in p in Gy. Note that X, # () since
col(gy) = c¢. We also let Xg := {col/ [InfOft(p)] N [¢/,d]} denote the set of
colors, at least ¢/, seen infinitely often in p in g{;. By definition of col/, we
have Xg = f[X,]. Therefore, we have, by Lemma 9.15 and by definition of d:

p € Wy & max X, is even
& max f(X,) is even
< max Xg is even
S pe W{;
It follows that:

P, @ N W] = B [(Q))° N ]

Overall, we obtain:

) _ : f
a, lovl =E%™ [of)

s s
As this holds for all pair of strategies (sa,sg) € Siy X SEY = Siy X SCBYv it
follows that xg, (qv) = Xg! (qy).
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Let us now relate the games g{; and Gy: by using Theorem 2.3 (item
1.b). First, we denote by col’ the coloring function in the arena Cy+ Then, by
Theorem 2.3 (item 1.b), almost-optimal strategies in Qlf, and Gy can be found
among ([¢, d], col/)-uniform strategies in g{; and among ([, €], col’)-uniform
strategies in Gy, with d > €/. Therefore, any strategy ([¢,d], col/)-uniform
strategy in C{i can be seen as a strategy in Cys. However, a ([¢, €], colf)-
uniform strategy in Cys can be seen as a strategy in C{i up to defining what it
does once a state (kz) colored with d occurs.

f
Consider any Player-A strategy sa € Siy that is ([¢/, d], col/ )-uniform in
C{i. As mentioned above, it can be seen as a Player-A strategy in Cys. Let
§ > 0 and consider a ([, €'], col’)-uniform Player-B strategy in Cy+. Consider

f
the Player-B strategy s‘é € Sgy that mimics the strategy sg as long as ks is not
seen. Once it is seen, the Player-B strategy sg switches to a d-optimal strategy
in the game g{;. By definition of s§, and since u = xg, (gy) = Xgs (ay), we
Y
have:

S
SASB f SA’SB . ‘
el a9 L)y = Fes © @) ke - (u+9)

Since the outcomes leading to kz in C{; lead to the stopping state u € [0, 1]
in Cy, and all outcomes leading to a stopping state in C{j lead to the same
stopping state in Cy, it follows that:

SA,SB

B o v L@y taupoa] < BT [y L@y ol +9

In addition, we have:

% [(Qy \ {he})] = PR [(Qy1)]

C{/,q

In addition, consider any outcome o € O such that p'(o) ¢ [0, 1] or equivalently
such that p(o) ¢ [0,1] U {ke}. Then, we have p'(0) = kf(max(c,n)) Where n €
[0,é — 1] is such that p(o) = ky. Then, we have col’ o p’(0) = f(max(c,n)) =
col/ o p(0). Furthermore, we have col’(gy+) = ¢ = col/(qy). It follows that,
assuming that [0, 1] U {ks} is not reached in C{; and that [0, 1] is not reached
in Cyv, the colors seen with sp and sg are the same as the colors seen with sp
and sg in C{j (because the strategies sa, sg, s‘é only depend on the colors seen).
Therefore:

P W0 @y \ {keh)) = PE, Wy 0 (@y)°)

Cé 4y CY/ ay’

362



Overall, we obtain that:

) )
Xay [sal(ay) S EX® [gf] = EX™ (o] - Lioy)r heup)]

CY qy C{/ Yy

F B W (@v \ (0,10 {ke})”

SA,SB

< Eo i 19y Ligyno] +6
SBR[ (@)

&
_ TSASB
Cy1,qyt

l9y/]

Since this holds for all § > 0 and since Player-B ([, €'], col’)-uniform strategies
are enough to play almost optimally against the strategy sa, by Theorem 2.3
(item 1.b), it follows that Xg{ [sal(ay) < xg,.[sal(av") < xg,. (qy’). Since this

holds for all Player-A ([c,d], col)-uniform strategies sp € S¢¥, and since, by
Theorem 2.3 (item 1.b), ([¢, d], col)-uniform strategies achieve the value of the

game g{;, it follows that xg, (¢v) = Xgf (av) < X6y (qy)- O
We can now proceed to the proof of Proposition 9.8.

Proof. Consider some n € N. First, consider the case where n = 0. Then, an
environment £ = (c,e,p) with Sza(E) = 0 is such that ¢ = e is even. That
is, the corresponding parity game G(r gy is, from Player A’s point-of-view, a
safety game. Hence, positional optimal strategies exists for Player A in G(r p)
by Theorem 4.5. This is similar for Player B. Furthermore, there is no relevant
environment of size at most -1. Hence, the equivalence holds for n = 0.

Assume now that n > 1. Consider any relevant environment FE with
Sz(E) < mn — 1. Then, we have Sza(E) < n. Therefore, if F is position-
ally maximizable w.r.t. Player A up to n, then there is an optimal GF-strategy
in F for Player A w.r.t. (F, E).

Consider now an (arbitrary) environment E = (c,e,p) € Env(O) with
Sza(E) =n > 1. Let € := Even(e). Clearly, the outcomes in O leading, w.r.t.
D, 10 @init of color ¢, can be redirected to k. of color ¢ (which then loops back to
Ginit) without changing the outcome of the parity game induced by E. Hence,
without loss of generality, we assume that no outcome o € O is such that
p(0) = ginit. We can therefore consider the relevant environment E’ € Env(O)
from Definition 9.10 of size Sz(E') =n—1. Let Y := (F,E) and Y' := (F, E’)
and assume that there is a Player-A GF-strategy oa € Xa(F) that is optimal
w.r.t. Y. Let us show that o is also optimal w.r.t. to Y. We let gy denote
the state gnit in the game Gy and qy+ denote the state gjnix in the game Gy-.
Let u := xgy (qv) and v’ := xg,, (¢y"). By Lemma 9.16, we have u < u’. We
want to apply Lemma 8.2.

Let us show that the Player-A positional strategy sk (oa) ensures item (i)
of this lemma, i.e. that it dominates the valuation v§. in the game Gy. This
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amount to show that val[(F,v§: op)](ca) > u. Note that, again by Lemma 8.2,
we have that val[(F,v¥ o p/)](oa) > «. Furthermore, we have:

o op+(u —u) 2 vf opf

Therefore, by Lemma 1.10, for any Player-B GF-strategy og € D(Actg), we
have:

out[(F, v o p)](oa, 08) + u' — u > out[(F,vi¥ o p')](oa, oB)
> val[(F, v op/)](oa) > o/
Since this holds for all Player-B GF-strategies og € Xg(F), it follows that
val[(F,vy)](oa) > u

Consider now item (i) from Lemma 8.2. Consider some Player-B ac-
tion b € Actg and assume that out[(F,1,-1j01])](0a,0) = 0. If we have
out[(F, 1 ,,-11,)] (o, b) > 0, then it follows that max(Color(F, p, oa,b)U{c}) is
even since € is even and is the highest integer appearing the game Gy. Assume
now that out[(F, 1,-1p)|(oa,b) = 0. Then, it follows that, by definition of
p', we have out[(F, 1 -1j0.1])](0a,b) = 0. Therefore, by Lemma 8.2, it follows
that max(Color(F,p’,oa,b) U{c'}) is even. Furthermore, by definition of p':

fel{i € [c,é = 1] | out[(F, L,-1p,)] (oA, b) > 0} U {c}]
={i e[, €] | out[(F, L -1l (oA, b) > 0} U {'}

We have max{i € [/, €'] | out[{(F, Liy-1,1)](0a,b) > 0}U{c'} = max(Color(F,p’,on, b)U
{c'}) is even. Therefore, by Lemma 9.15, we have max{i € [c,é — 1] |
out[(F, T,-1p,)] (o, b) > 0} U {c} = max(Color(F, p,oa,b) U{c}) is also even.

In fact, the Player-A GF-strategy oa € Y a(F) satisfies item (4¢) of Lemma 8.2.
Therefore, it is optimal w.r.t. Y. O

9.5.2 . Proof of Lemma 9.13

Proof. Consider a relevant environment E = (c,e,p) € Env(0O,,) and Y,, :=
(Fn, E). We let u := xg,, (Ginit)- Note that since E is relevant, we have
c € {0,1} and p : O,, — [0,1] U K,,. For all 0o € O, if p(o) ¢ [0,1], we let
no, € [0,e] denote the integer that ¢ is mapped to w.r.t. p, i.e. the integer
ensuring p(o) = k,,. Note that, since E is relevant, for all o € O,,, we have
No > C.

Let us introduce some notations. We let X[gq := {o € O, | p(o) € [0,1]},
Xeven := {0 € Oy, | np is even} and Xogd := p 1 [Kp] \ Xeven- We let X\, 1=
p K] = Xeven W Xogd. Note that we have O,, = Xo,1) W Xp. We define the
valuation v : O,, — [0, 1] mapping each outcome to its value in the game Gy,
such that, for all o € O,:

o(0) = {p(o) if 0 € Xjoq

U otherwise
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Figure 9.9: The game form 7,.

That is, v = vy, op. For all z € Oy, we let:

1 if £ € Xeven
w(x) =<0 if x € Xodd
p(z) ifxe Xy

For all z € O,, the value w(z) € [0,1] corresponds to the value of the game
Gy, if x is seen (indefinitely, if it is in X ). This can be generalized to a pair
of outcomes: for all z, 2’ € O, we let:

x) it z,2" € X, and ny < ny
x') if z,2' € X, and ny < ng
x) if v € Xpoq),2" € Xip

x) if ' € Xp 1,7 € Xip

3 (p(x) +p(') if z,2" € X

Finally, we let T, denote the 2 x 2 game form at the top left of the game
form F,, from Figure 9.6. It is depicted in Figure 9.9. We let «’ := val[(Ty, v)].
Now, there are several cases:

e Assume that y,z € X|p. Then, u € {0,1}, as in the proof of Propo-
sition 9.11, and playing agx € Act} (resp. bex € Actg) is optimal for
Player A (resp. B) w.r.t. Y.

e Assume now that y € X, and 2z € Xg ). Then, u = p(z), as argued in
the proof sketch, and playing agx € Acty (resp. bgx € Actg) is optimal
for Player A (resp. B) w.r.t. ;. This is similar if y € X[ ;) and 2 € X,.

e Assume that p(y),p(z) € [0,1] and p(y) < p(z). In that case, we have
U = W and playing action ag, (resp. bgy) is optimal for Player A
(resp. B) w.r.t. Yy,.
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e Let us now assume that y,z € Xg 1) and p(2) < p(y). In that case, we
have:
3p(2) :p(y) << P Z 3p(y)

We argue that Player B always has an optimal GF-strategy w.r.t. Y.

— Ifu= M, then positionally playing action bg, is optimal for

1
Player B. We now assume that u < M.

— If, for some even i € [0,n — 1], we have w(x;) < w, then playing
action b; is optimal. We now assume that for all even i € [0,n—1],
we have w(z;) > u (i.e. z; is mapped to either a real greater then
u or even index). Furthermore, if for any even i € [2,n — 1], we
have w(x;, z;—1) < u, then playing action b; ;_; is optimal. We now
assume that for all even i € [2,n — 1], we have w(z;, xi—1) > u.

— It follows that, for any odd i € [0,n—1], w(z;) < wand w(x;, z;—1) <
u — otherwise Player A could ensure that the value of the game
is more than u by playing the corresponding row, i.e. action a; or
a;i—1. It also implies that v’ < u. Indeed, assume that it is not the
case, i.e. u' > u. Consider a Player-A GF-strategy oa € D({at, ap})
whose value in the game in normal form (7,,v) is greater than w.
Then, the Player-A positional strategy sa in the game Gy, that
plays the GF-strategy oa in ginit parity dominates the valuation
szn, E) for some r > u, due to the assumptions we made in the
previous item. In fact, v’ < u.

Note that this implies Xg, # 0. Indeed, assume that Xg, = 0.
Let € > 0. Consider a Player-A GF-strategy oa in the game form
T, that plays action a; with probability 1 — ¢ and action a}, with
probability . Then, for some small enough, yet positive, € > 0 and

since %ﬁ’p(y) > uwand v(xg), ..., v(x,—1) = u, such a GF-strategy
has value more than u in the game in normal form (7,,v). Hence,
Xex = 0.

— Let us exhibit a Player-B GF-strategy that is optimal w.r.t. Y.
Consider a Player-B GF-strategy og € D({by, b;}) that is optimal in
that game in normal form (7,,v). Let sg be the Player-B positional
strategy in the game Gy, that plays the GF-strategy o at ginjt-
Recall that we assume that for any odd ¢ € [0,n — 1], w(x;) < u
and w(x;, vi—1) < u, W < u and Xg, # (. Therefore, the
strategy sg dominates the valuations vy and no Player-A action
can, against the strategy sg, make the game loop indefinitely on
Qinit While ensuring that the highest color seen is even, almost-
surely. In fact, this strategy sg parity dominates the valuations
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vy, . Hence, the Player-B GF-strategy op is optimal w.r.t. (Y3,),
recall Lemma 8.2.

Let us now consider the case of Player A.

—If u = %ﬂ)(y), then playing action agy is optimal. We now

assume that M < u.

— It follows that, for all even i € [0,n — 1], we have w(z;) > u and
for all even i € [2,k — 1], we have w(z;;—1) > u. Otherwise Player
B could play the action b; or b; ;—1 and ensure that the value of the
game Gy, , from ginit, is less than w.

— Furthermore, for any odd i € [1,n — 1], if either w(z;) > u or
w(z, xi—1) > u, then playing action a; or action a;;—1 is optimal.
We now assume that, for all odd ¢ € [A,k — 1], w(z;) < u and
w(zi, i—1) < u.

— Assume that Xg, # (. Then, we have v/ > u. This is analogous to
the previous case for Player B. Indeed, assume that u' < u. Then,
consider a Player-B GF-strategy og € D({b, b }) whose value in
the game in normal form (7,,v) is less than w. Then, a Player-B
positional strategy sg in the game Gy, that plays the GF-strategy
o in ginjy parity dominates the valuation v{,n for some r < u, due
to the assumptions we made in the previoué item and since we
assume that w < u. In fact, v/ > u.

Therefore, in the case where Xg, # (), Player A has an optimal GF-
strategy w.r.t. Y, that consists in playing optimally (in D(ax, ap))
in the game in normal form val[(7,,v)], due to the assumptions of
the previous item.

— Let us now assume that Xg, = (). Since, for all even i € [0,n — 1],
we have w(z;) > u, it follows that n,, is even and at least equal to c.
Similarly, since for all odd i € [1,n — 1], we have w(z;) < u. That
is, my, is odd or less than c. In addition, for all even i € [2,n —1],
we have w(z;;—1) > u. That is, ng, > ng, ,. Similarly, for all odd
i € [[1,n—1], we have w(x;, z;—1) < u, it follows that n,, > n(z;_1).
We have ¢ < ngy < ng, <...<ng, , <ng, , < e This cannot
happenife—c<n—2.

Let us now exhibit a relevant environment E of size n — 1 w.r.t. which Player
A has no optimal strategy. Consider the environment where ¢ := 0, e :=n—1,
p(z) :==0, p(y) := 1 and for all i € [0,n — 1], we have p(x;) := k;. We do have
Sz(F) = n — 1. Furthermore, the value u of the parity game Gy, from ginit is

p(2)+3p(y)
il

equal to = %. Indeed, Player B ensures that u < % by playing action
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bex. Furthermore, for all € > 0, Player A can play with probability 1 —e action
ar and with probability € action ap, thus ensuring that u > % — €.

Consider now an arbitrary Player-A GF-strategy oa and the corresponding
positional strategy sa in the game Gy, . If oa plays with positive probability

action ap or action agy, then the value of sp is less that u since W <

M (Player B can play the action b,). However, if oa does not play these
actions with positive probability, then consider the Player B strategy sg that
plays action b with probability 1. It ensures that the value of the strategy
sa is 0. The reason why is the following: the highest index that the variables
To,T1,...,Tn_1 are mapped to w.r.t. p is n — 1 and it is odd. Furthermore,
all variables z1,x3,...,z,—1 are mapped to odd indices. Finally, the highest
index that the variables (z1,xg) are mapped to is 1 and it is odd. This is also
the case for (z3,x2), ...,(xn—1,2n—2). Hence, the highest color seen infinitely
often with sp and sg is almost-surely odd, and surely no stopping state is
reached.. O
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Conclusion

The goal of this dissertation was to give significant insight on how concur-
rent games behave. Our first contribution is conceptual: we introduced the
notion of arbitrary game forms, which generalize standard game forms. Usu-
ally, in the literature, standard game forms are the underlying structure of the
(local) interactions of the players in concurrent games. A priori, using arbi-
trary game forms instead of standard game forms as local interactions makes
concurrent games harder to handle. However, we have provided in this disser-
tation several new results that hold even with non-standard local interactions.
The most notable example of this fact is the new version of Blackwell deter-
minacy (i.e. Theorem 2.2). However, Theorems 3.1, 3.12 and 3.17, which we
believe are also important results on concurrent games, are also relevant ex-
amples. Remarkably, the proofs of the above-mentioned results are not made
any harder by the fact that non-standard game forms may appear as local
interactions. By contrast, the proof of Theorem 4.11, and especially the in-
termediate definitions used to prove it, are more intricate when considering
arbitrary game forms than when considering standard finite game forms. This
shows that, although manipulating arbitrary game forms may prove tricky, sig-
nificant results can still be established on concurrent games when using them
as local interactions.

We would now like to highlight some of the aspects we believe are the most
important takeaways from this dissertation. First, let us discuss the general-
ization of Blackwell determinacy, stated in Theorem 2.3. Interestingly, both
the original result on the determinacy of Blackwell games [12] and Borel deter-
minacy [3] are logical consequences of this generalization of Blackwell determi-
nacy. Furthermore, as mentioned above, another benefit of this generalization
is that it holds even with arbitrary game forms. In addition, as discussed in
Chapter 2, this generalization extends Martin’s determinacy of Blackwell in
two directions (items 1.a and 1.b in Chapter 2). We believe that both of these
directions are interesting; we have provided in this dissertation applications of
both of them. Notably, these applications have been established with the help
of the generalization stated as Theorem 2.3 and, a priori, the original result
on Blackwell determinacy by Martin would not have been enough to establish
them.

Second, in Chapter 3, we have introduced the notion of finite-choice strate-
gies (Definition 3.22). Recall, these are strategies that, at every state of a game,
play only finitely many different GF-strategies. We believe that this notion is
very useful when studying concurrent parity games, especially standard finite
ones. For instance, in such a setting with a parity objective, as stated in Corol-
lary 3.38, any value achieved by a finite-choice strategy can also be achieved
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by a positional one. Said otherwise, if a positional strategy cannot achieve a
value, then no finite-choice (and in particular, no finite-memory) strategy can
achieve it either. In fact, we have extensively used Corollary 3.38 in Part II
to establish that infinite choice is required to achieve some optimal values in
several parity games.

Third, although we have already done it in the introduction and in the
beginning of Part ITI, we would like to highlight once more the local-global
transfers that we established in Part III. Recall that our approach consisted
in defining classes of concurrent arenas by restricting the game forms that
could be used as local interactions. These sets of game forms are defined such
that the arenas built from them ensure some desirable properties. We have
established several NSC-transfers, which all correspond to underlying necessary
and sufficient conditions, as mentioned in page 248. Also, we have established
merely sufficient conditions on game forms for the arenas built on them to
behave in a desirable way. We believe that the various results that we have
established in Part IIT show that this approach is viable to build concurrent
arenas that are well-behaved by design.

Future leads

We have already discussed at the end of each chapter (except Chapter 1)
natural future work and open questions on the technical contents of the chap-
ters. To conclude this dissertation, we would like to mention possible research
prospects beyond what has been studied in this dissertation.

More objectives. First, when dealing with specific win/lose objectives,
in this dissertation, we have only considered parity objectives. A very natural
research lead would consist in exploring concurrent games with other kinds of
win/lose objectives. The main characteristics of parity objectives are twofold.
First, these objectives are prefix-independent. Second, they are qualitative in
the sense that what matters is what colors are seen infinitely often regardless of
how often these colors are seen. We believe that the most interesting questions
would arise when considering quantitative objectives, i.e objectives where it
matters how often colors occur. In this case, we believe that the easiest objec-
tives to consider would be related to discounted sum w.r.t. a discount factor
smaller than 1, either as payoff functions or win/lose objectives defined by
threshold. The reason why studying these specific objectives should be track-
able is because the discounted sum payoff functions are upper semi-continuous
(recall Definition 4.2). In particular, one could apply Proposition 4.1.

We believe that more challenging questions would arise when studying
mean-payoff objectives. Contrary to discounted sum, mean-payoff objectives
are prefix-independent. Therefore, several general results that we have shown
in this dissertations can be applied to mean-payoff objectives, such as The-
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orem 3.12 or Theorem 3.37. We believe that the most interesting question
would be to look for a similar result than the one stated in Theorem 8.3 in
the case of mean-payoff objectives. However, the fact that these objectives are
quantitative instead of qualitative seems a tricky issue to handle.

Non-antagonistic games. In this dissertation, we have only considered
antagonistic objectives for the two players involved in the game. It could be
interesting to allow for non-antagonistic player preferences over the traces, i.e.
infinite sequence of colors. In such a setting, we would not consider (subgame)
optimal strategies anymore but rather (subgame perfect) Nash equilibria. Not
many results are known in this framework. For instance, consider a finite
concurrent arena where both players have (non-antagonistic) reachability ob-
jectives. In this rather simple context, it is not known whether there always
exist (e-)Nash equilibria. This is partly discussed in the second paragraph of
the second page of [81]. We believe that the notion of finite-choice strategies
may prove useful also in this setting.

Finally, one could also be interested in investigating even more involved
questions, related to games with more than two players. Let us mention that,
in the early times of this PhD, we have explored questions related to Nash
equilibria with deterministic strategies in multi-player games (with arbitrarily
many payers). The purpose of this work was to extend in a concurrent set-
ting what is done in [82]. This is unpublished, but opens the way to various
interesting research directions.
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