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Titre: Jeux concurrents à deux joueurs antagonistes sur les graphes
Mots clés: Jeu concurrent stochastique, forme de jeu, transfert local-global, stratégie optimale,
Détermination des jeux de Blackwell, Jeu de parité

Résumé: On étudie des jeux à deux joueuses
(A et B) sur des graphes. À partir d'un état du
graphe, les joueuses interagissent pour aller d'un
état à un autre. Ceci induit une suite in�nie
d'états à laquelle une fonction de gain mesurable
associe une valeur dans [0, 1]. La Joueuse A
(resp. B) tente de maximiser (resp. minimiser)
l'espérance de cette fonction de gain.

Les jeux à tours, i.e. les jeux tels qu'à
chaque état une seule joueuse choisit (une loi
de probabilités sur) l'état suivant, ont de nom-
breuses bonnes propriétés. Par exemple, dans
tous les jeux à tours perd/gagne déterministes,
une joueuse a une stratégie gagnante. De plus,
dans les jeux de parité à tours �nis, les deux
joueuses ont des stratégies optimales position-
nelles. A contrario, les jeux concurrents, i.e. les
jeux tels qu'à chaque état les deux joueuses con-
courent au choix d'une loi de probabilité sur les
états suivants, se comportent mal. Ainsi, il ex-
iste des jeux concurrents de parité déterministes
tels que : aucune des joueuses n'a de stratégie
gagnante ; aucune joueuse n'a de stratégie opti-
male, même stochastique. De plus, lorsque c'est
possible, jouer de manière optimale peut néces-
siter une mémoire in�nie.

Le but de ce manuscrit est d'enrichir notre
compréhension du comportement des jeux con-
currents. Pour ce faire, on étudie la notion de
forme de jeu. Les formes de jeu sont les objets
mathématiques qui décrivent les interactions
(locales) des joueuses à chaque état d'un jeu con-
current. Les formes de jeu sont dé�nies par un
ensemble de stratégies locales par joueuse, un
ensemble d'issues et une fonction envoyant une
paire d'une stratégie locale par joueuse sur une
loi de probabilités sur les issues. Généralement,
dans les articles sur les jeux concurrents, les in-
teractions locales sont des formes de jeu stan-
dard (�nies) : les ensembles de stratégies locales
sont des lois de probabilités sur les ensembles
(�nis) d'actions sous-jacents. Ici, on dé�nit des
formes de jeu plus générales, que l'on appelle
formes de jeu arbitraires. Certains des résultats

établis dans ce manuscrit supposent que les in-
teractions locales sont standard, tandis que les
autres ne font pas de telles hypothèses.

Premièrement, on prouve des résultats
généraux sur les jeux concurrents, avec très peu
d'hypothèses sur les fonctions de gain et les in-
teractions locales. En particulier, on considère
un résultat crucial sur les jeux concurrents : la
détermination de Blackwell de Martin, qui peut
être énoncé comme suit. Soit un jeu concurrent
dont toutes les interactions locales sont stan-
dards �nies. Depuis chaque état, il existe une
valeur u dans [0, 1] telle que les stratégies de
la Joueuse A (resp. B) peuvent garantir que
l'espérance de la fonction de gain est au moins
(resp. au plus) égal à n'importe quel seuil en-
dessous (resp. au-dessus) de u. On généralise
ce résultat aux jeux dont les formes de jeu sont
arbitraires et en déduisons d'autres résultats
sur les jeux concurrents. On prouve également
d'autres résultats sur les jeux concurrents, en
particulier sur les stratégies optimales en sous-
jeu.

Deuxièmement, on étudie le comportement
des jeux de parité concurrents �nis en ter-
mes d'existence et de nature des stratégies
(presque) optimales (en sous-jeu), avec très peu
d'hypothèses sur les interactions locales.

Troisièmement, on dé�nit des ensembles de
jeux concurrents qui ont certaines des propriétés
des jeux à tours tout en étant plus généraux
que les jeux à tours. Ainsi, étant donnée une
propriété souhaitable sur les jeux concurrents,
on caractérise tout d'abord les formes de jeu
qui garantissent que tous les jeux simples qui
les utilisent comme interactions locales satisfont
cette propriété. On caractérise ainsi les formes
de jeu qui se comportent bien individuellement.
On montre ensuite que tous les jeux concurrents
qui utilisent ces formes de jeu comme interac-
tions locales satisfont également cette propriété.
Ces formes de jeux se comportent également
bien collectivement.
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Abstract: We study games played by two play-
ers, Player A and Player B, on a graph. Starting
from a state of the graph, the players interact
to move from state to state. This induces an
in�nite sequence of states, which is mapped to
a value in [0, 1] by a measurable payo� function.
Player A (resp. B) tries to maximize (resp. min-
imize) the expected value of this payo� function.

Turn-based games, i.e. games where at each
state only one player chooses a (probability dis-
tribution over) successor state, enjoy many nice
properties. For instance, in all deterministic
win/lose turn-based games, from each state, one
of the players has a winning strategy. In ad-
dition, in �nite turn-based parity games, both
players have positional optimal strategies from
each state. By contrast, concurrent games, i.e.
games where at each state both players inter-
act concurrently, i.e. simultaneously, to gen-
erate a probability distribution over successor
states, behave much more poorly. Indeed, there
are very simple deterministic concurrent parity
games such that: neither player has a winning
strategy; neither player has an optimal strategy,
even a stochastic one. In addition, when opti-
mal strategies do exist, they may require in�nite
memory.

The goal of this dissertation is to give signif-
icant insight on how concurrent games behave.
To do so, we study the notion of game form.
Game forms are the mathematical objects that
describe the (local) interactions of the players
at each state of a concurrent game. Game forms
are de�ned by a set of local strategies per player,
a set of outcomes and a function mapping a pair
of one local strategy per player to a probability
distribution over outcomes. Generally, in the lit-
erature on concurrent games, local interactions
are standard (�nite) game forms: the sets of
local strategies are distributions over underly-
ing (�nite) sets of actions. In this dissertation,
we de�ne and study more general game forms,
which we call arbitrary game forms. Some of the

results we prove hold even with arbitrary local
interactions, the others use a standard assump-
tion on the local interactions involved.

First, we prove general results on concurrent
games, with very few assumptions on the pay-
o� functions and local interactions involved. In
particular, we consider a crucial result on con-
current games: Martin's result on Blackwell de-
terminacy, which can be stated as follows. Con-
sider a concurrent game where all local interac-
tions are standard �nite. From each state, there
is a value u in [0, 1] such that Player A's (resp.
B's) strategies can guarantee that the expected
value of the measurable payo� function is above
(resp. below) any threshold below (resp. above)
u. We generalize this result to games with ar-
bitrary game forms. We deduce from this gen-
eralization other results on concurrent games,
possibly using standard local interactions, which
could not have been obtained directly from the
original result by Martin. We also prove other
results on concurrent games, in particular re-
sults related to subgame optimal strategies.

Second, we study how �nite-state concur-
rent parity games behave in terms of existence
and nature of (almost and/or subgame) optimal
strategies, with very few assumptions on the lo-
cal interactions involved.

Third, we de�ne subsets of concurrent games
that enjoy some of the nice properties of turn-
based games while being more general than
turn-based games. These subsets are con-
structed via local-global transfers, which is a
novel approach. Speci�cally, given a desirable
property on concurrent games, we �rst charac-
terize the game forms that ensure that all simple
games using them as local interactions satisfy
this property. Thus, we characterize the game
forms that behave well individually. We then
show that all concurrent games that use these
game forms as local interactions also satisfy this
property. Thus, we show that these game forms
also behave well collectively, hence globally.
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Introduction

In this introduction, we give the general context motivating the framework
used and the questions tackled in this dissertation.

After we discuss game theory, the path that we take to introduce model
checking is inspired by what is done in [1, 2]. We then give the purpose of this
dissertation and an outline of how this dissertation is structured. We conclude
by several remarks regarding how to read this dissertation.

Game Theory

Game theory is a very broad interdisciplinary �eld that studies interactions
between multiple players in a competitive or cooperative setting. Each of these
players tries to satisfy an individual or common objective. One of the founding
results in game theory dates back to 1928 when von Neumann proved his mini-
max theorem [3]. It also appeared in [4] in, arguably, one of the seminal books
on game theory. This result holds in one-shot two-player zero-sum games,
also known as �matrix games�. The study of non-antagonistic matrix games,
where many players have individual objectives which are independent from one
another, essentially started in the early 1950s with Nash's articles [5, 6]. The
notion of in�nite-duration games, where the outcome is induced by the players'
interaction lasting in�nitely many rounds, emerged shortly after. For instance,
in 1953, the existence of winning strategies in deterministic turn-based games
with open or closed objectives was proved in [7]. The proof that this actually
holds for all Borel objectives (i.e. Borel determinacy) came much later in [8]
by Martin, in 1975. Stochastic games, in which stochastic transitions occur at
each round of the game, appeared with Shapley [9] in 1953 and with Everett
[10] in 1957. Then, the notion of imperfect information games (which are re-
ferred to as concurrent games in this dissertation) was introduced by Blackwell
in 1969 in [11]. The determinacy of Blackwell games was established by Martin
much later, in 1998 [12].

Game theory is applied in various domains from biology to economics or
logic and, more importantly for this dissertation, computer science. The link
between game theory and biology is quite old since evolutionary game theory
essentially started in 1973 with [13], where the ways animal species behave are
modeled in a game theoretic setting. The links between game theory and logic
is even older as it dates back to the 1950s where game semantics started in dif-
ferent areas of logic. See for instance [14] for examples of Ehrenfeucht�Fraïssé
games, which are games that are used to prove bisimulation.

The relationship between game theory and automata theory essentially
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started with [15, 16, 17] where decidability issues were tackled. A few years
later, game theory was used at the intersection of automata theory and model
checking [18] (and therefore computer science). In the remainder of this intro-
duction, and in this dissertation as a whole, we will mostly comprehend game
theory from a model checking perspective. This should not impede the use of
the results established in this dissertation in other areas.

Context

Nowadays, a very large variety of aspects of our daily lives are controlled by
computer systems, which grow rapidly in number and complexity. Our depen-
dence towards these systems often entails handling critical tasks, whether it is
managing banking accounts, controlling power plants or coordinating railway
systems. For such critical tasks, it is essential to be able to either guaran-
tee the safety of already existing systems or build new ones that are safe by
design, thus ensuring that no failure will occur. However, such tasks are in-
herently complex due to the multitude of possible scenarios in which these
systems need to behave properly. In addition, establishing guarantees on com-
puter systems is made all the more di�cult by the fact that these systems are
often reactive [19], in the sense that they interact with an external environ-
ment. This environment encompasses both interactions with human agents,
and also unpredictable events. Therefore, it is crucial to be able to synthesize
system controllers whose purpose is to keep reactive systems safe against all
environments, even possibly hostile ones.

Formal method and model checking. Merely testing a reactive system
against many possible environments is not enough to give strong guarantees
on its behavior. Indeed, testing may only exhibit failures, it cannot prove their
absence against possibly in�nitely many environments. The purpose of formal
methods is to give formal, mathematical guarantees on how a system behaves
against all possible environments. The system is described by a simpli�ed,
abstract model. How the system should behave is encoded as a speci�cation
on the model. The most natural question we may be asking given a model and
a speci�cation is whether the model satis�es the speci�cation. That is, whether
the system behaves how it is supposed to. This corresponds to veri�cation,
and it is the historical focus of model checking [20, 21]. However, there are
other, harder questions we may consider on models and speci�cations.

Rather than considering veri�cation, one may be interested in controller
synthesis. That is, in situations where a controller can impact the real reactive
system, the model describing this system is left underspeci�ed. Depending on
the state of the system, several actions are available for the controller to choose;
and to be complete, the model needs a controller's policy (or strategy), that
is, a way to choose actions depending on the state of the system. Controller
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synthesis then amounts to inquire if there is a controller's policy that makes
the model satisfy the speci�cation; and if so, synthesize such a policy.

Finally, one may want to perform model design, which is a (very) con-
jectural approach. It consists, from a speci�cation describing in a simpli�ed
(abstract) way how a real system should behave, in designing a model, or a
class of models, that satis�es the speci�cation; or in which there exists a con-
troller's policy that makes the model satisfy the speci�cation. We can then
build real systems corresponding to this abstract model, and possibly imple-
ment appropriate controller's policies. That way, the system that we obtain
behaves as desired by design.

Game theory for model checking. As mentioned above, the use of
game theory for model checking is not new, see for instance [22] in which syn-
thesis is seen as a game. In this dissertation, we will be interested in two-player
antagonistic games on graphs. In such a setting, one player represents the con-
troller. She has at her disposal the actions available to her in the reactive
system, depending on the state of the system. The other player represents the
environment. Indeed, the possible ways that the environment can in�uence
the system are known, but the environment is completely unpredictable. That
is, the way it will impact the system cannot be described with a known prob-
ability distribution. Since the environment may potentially be in�uenced or
controlled by a malevolent agent, the game is antagonistic, or zero-sum, in the
sense that any outcome of the game is as positive for a player as it is negative
for the other player. The graph on which the game is played then represents
the di�erent states in which the reactive system can be. How the controller
and the environment impact the system di�ers depending on the current state
of the system. In addition, going from states to states in the system may be
described via stochastic transitions: though the process may be random, the
underlying probability distributions according to which the system evolves is
known a priori. To subsume both terminating and non-terminating behaviors
of the system, the games we consider are in�nite-duration, i.e. they last indef-
initely, as long as no stopping state is reached, in which case the game stops
immediately. Furthermore, the speci�cation of the model, which describes how
the system should behave, is encoded as the objective in the game; the con-
troller player tries to ensure that the speci�cation holds, while the environment
player tries to ensure that is does not.

When no transition between states of the graph is stochastic, the game is
said to be deterministic. In that case, the controller seeks a winning strategy,
i.e. a way to choose actions (i.e. a strategy) ensuring that the objective holds
in all cases, regardless of what the environment player does, and reciprocally
for the environment player. However, there are not always winning strategies,
for either of the player. In such cases, the controller player seeks an optimal
strategy, i.e. a strategy that maximizes the probability that the objective holds,
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against all environment player's strategies. This notion of optimal strategies is
also made all the more relevant when we consider richer speci�cations that are
not encoded by an objective but rather by a payo� function. In that case, the
controller player tries to maximize its expected value, while the environment
player tries to minimize it.

Finally, for synthesizing purposes, the simpler winning or optimal strategies
are to describe, the better. Hence, when designing a model, a criterion that
could be used to assess a model's worth could be the existence of simple-to-
describe winning or optimal strategies.

Game Formalism

Let us describe the games that we consider in this dissertation a little
more formally. Before describing games, we describe arenas, that can be seen
as games where the objective or the payo� function is not yet speci�ed. In an
arena, two players, that we will always call Player A and Player B, interact on
a graph. This graph consists of sets of states and transitions between these
states. Furthermore, it is equipped with an arbitrary set of colors. Each state of
the graph is given a color and a set of local strategies1 available to the players
at this state. Each time the play reaches this state, the players can choose
among these available local strategies and, as a result of the players' choices,
a probability distribution over successor states is induced. The process then
proceeds (stochastically) to another state, and this is repeated inde�nitely.
This in�nite repetition thus generates an in�nite sequence of states, which
naturally induces an in�nite sequence of colors, which is called a trace. We
can then obtain a game from this arena by de�ning a payo� function mapping
every trace, i.e. every in�nite sequence of colors, to a value in [0, 1]. In the
game that we obtain, Player A tries to maximize the expected value of this
payo� function, whereas Player B tries to minimize it. The game is said to be
win/lose if any trace is mapped by the payo� function to either 1 or 0. In that
case, any trace is either winning for Player A and losing for Player B (when it
is mapped to 1) or the other way around (when it is mapped to 0).

Among the states of the graph, there may be some stopping states. When
they are reached, they immediately stop the play and output a value. Similarly
to the expected value of the payo� function, Player A tries to maximize this
output value and Player B tries to minimize. For simplicity, in the remainder
of this introduction, we assume that there is no stopping state.

Playing in graph arenas is done via graph strategies: they prescribe to the
players what to do at each state, depending on the history of the game, i.e. on
the �nite sequence of states already visited. In other words, graph strategies

1In fact, in this dissertation, these local strategies will be called GF-strategy. It
will be made clear why in the next section of this introduction.
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map �nite sequences of states to local strategies. In the following, we will use
the word �strategy� to refer to graph strategies. They are not to be confused
with local strategies, which are the ones played at each state of the graph. In
win/lose games, the players seek winning strategies. A strategy is winning for a
player if all traces compatible with this strategy are winning for her. However,
in the games that we will study in this dissertation, it will often be the case
that neither player has a winning strategy. Furthermore, the notion of winning
strategy is not applicable in games with richer payo� functions than win/lose.
In such cases, as mentioned above, the players turn to optimal strategies, which
are strategies maximizing, or minimizing depending on the player considered,
the expected value of the payo� function.

As for the notion of simplicity of strategies hinted above (in page 14), the
simplest kind of strategies are positional strategies. What positional strategies
prescribe only depends on the current state of the game, not on the whole
history of visited states. That is, they play only one local strategy per state of
the game. They are therefore much easier to describe than arbitrary strategies.
This is in sharp contrast with what we call in�nite-choice strategies, which
are strategies that may play in�nitely many di�erent local strategies at some
states of the game. The latter are much harder to describe than positional
strategies. In particular, all in�nite-choice strategies are in�nite-memory. The
notion of in�nite-choice strategies is novel, and will be formally de�ned in this
dissertation.

Objectives studied. As mentioned above, when a payo� function maps
all traces to either 0 or 1, the game is win/lose. In such cases, the payo�
function is entirely de�ned by the set of traces mapped to 1. This constitutes
the winning objective (for Player A). In this dissertation, we will often focus
on win/lose games. We will mostly consider pre�x-independent objectives, i.e.
objectives disregarding all �nite pre�xes in in�nite traces. Furthermore, among
pre�x-independent win/lose games, when considering an explicit objective, it
will always be a parity objective, which is a special kind of pre�x-independent
objective. Let us describe the set of traces winning for Player A with a parity
objective. In this case, the set of colors considered is a �nite set of integers.
Then, given a trace, which is an in�nite sequence of colors (i.e. of integers), we
consider the maximum of the colors seen in�nitely often in that sequence. This
maximum exists since there are only �nitely many colors. The identity of the
player for whom this trace is winning depends on the parity of this maximal
color, hence the parity terminology. The set of traces winning for Player A are
exactly the ones for which this maximum is even.

The bene�t of parity objectives lies in the expressiveness of these objectives
as well as their relative simplicity. Indeed, parity objectives are well-suited to
express ω-regular expressions sets [23]. These ω-regular sets are very useful
when de�ning speci�cations on (reactive) systems, see [24].
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Figure 1: A turn-based game.

q0,

[
x y
y x

] x

y

0

0

1

Figure 2: A concurrent game.

Concurrent Vs Turn-based games. Crucially, when describing how the
players interact in the arenas, we have not detailed how the local strategies
that the players use impact the induced probability distribution over successor
states. On the one hand, if at each state of the arena, only one player is
really playing while the other has no impact on the decision, the game is turn-
based. On the other hand, if there are some states where both players may
have an impact, then the game is truly concurrent, i.e. no longer turn-based.
The di�erence is exempli�ed in the two arenas depicted in Figures 1 and 2.
The arena depicted in Figure 1 is turn-based. At the state q0, Player A plays
alone and may choose to go to either x or y. The fact that it is Player A

that plays alone at q0 can be spotted by the fact that the state q0 is squared-
shaped. In fact, she can also choose any probability distribution between the
two transitions leading to x or y. The arena depicted in Figure 2 is concurrent.
Indeed, at state q0, Player A and Player B interact. Player A chooses among
the (probability distributions over the) rows of the bi-dimensional table, while
Player B chooses among the (probability distributions over the) columns. As
the result of their concurrent choices, a next state, either x or y, is reached.

Let us make two additional remarks on the arenas depicted in Figures 1
and 2. First, the red numbers appearing near each state of the arenas corre-
spond to their colors. Second, both of these arenas are deterministic because
there is no stochastic transition between states unless the players decide to play
stochastically. In general, we will assume that there are intrinsically stochastic
transitions between the states.

Concurrent games subsume turn-based games as turn-based interactions
can be seen as special cases of concurrent interactions. That is, concurrent
games have more expressive power than their turn-based counterpart. How-
ever, turn-based games have been widely studied in the literature, especially
compared to concurrent games. Take for instance the book [25] dating back to
2011 that gives an overview of game theory (on graphs). A large part of this
book is dedicated to the study of turn-based games. This is also the case of the
very recent book preprint [26], where most models are turn-based. The fact
that turn-based games are much more studied than concurrent games can be
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explained as follows: turn-based games have many nice properties that even
simple concurrent games fail to have. We present two striking examples below.

First example: Borel determinacy [8] ensures that, in all deterministic
win/lose turn-based games with Borel objectives, from any state, either of the
players has a winning strategy, i.e. can ensure winning regardless of what the
other player does. This does not hold in concurrent games in general. In fact,
it does not even hold on a concurrent game obtained from the concurrent arena
of Figure 2. Indeed, consider a win/lose game obtained from this arena such
that Player A wins if and only if the color 1 is seen, i.e. the state x is reached.
Then, no player has a winning strategy. Indeed, regardless of what row Player
A chooses, Player B may choose a column that leads to y. Symmetrically,
regardless of what column Player B chooses, Player A may choose the row that
leads to x.

Second example: the di�erence in behavior between turn-based and con-
current games is also abundantly clear when considering parity games and
optimal strategies. Consider parity games with �nitely many states and pos-
sibly stochastic transitions. In that case, whether the game is turn-based or
not, the players do not a priori have a winning strategy. However, it does
hold that if the game is turn-based, from every state, both players have an
optimal strategy that is positional [27, 28]. This means that the players have
strategies maximizing their probability to win. In concurrent games, however,
optimal strategies may not exist even in very simple games, as will be shown in
Figure 3.1. Furthermore, when optimal strategies do exist, they may require
in�nite choice, and therefore in�nite memory. In other words, this means that
the strategies considered need to play in�nitely many di�erent local strategies
at some states of the game.

However, the inherent intricate behavior of concurrent games should not
deter us from studying them. Indeed, real life systems, in which synchronicity
is involved, are best described with the help of concurrency [29, 30]. Although
turn-based games are more studied than concurrent games, that is not to say
that concurrent games have not been studied. Along this dissertation, we will
cite several papers dealing with concurrent games either to use a result as is, or
to generalize it. Below for the record, we would like to cite additional papers for
their algorithmic and/or complexity contributions related to concurrent games,
which are issues we do not tackle at all in this dissertation. For instance, in
[31], the authors provide algorithms to compute, in concurrent reachability
games, the set of states from which Player A can win surely, almost-surely,
and limit-surely in reachability games. In [32] it is shown that the values, i.e.
the probability with which Player A's strategies can win, of concurrent parity
games can be computed with quantitative µ-calculus. In the same setting, the
author of [33] show that the problem of computing the value is in TFNP[NP].
On a more practical note, see [34] for a (very recent) implementation of model
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Figure 3: The local interaction at state q0 of the concurrent arena of
Figure 2.

checking algorithms on concurrent games.

Purpose of this dissertation

In this dissertation, we study two-player antagonistic concurrent games
and our goal is to provide insight on how these concurrent games behave.
As mentioned above, concurrent games behave poorly, especially compared
to their turn-based counterpart. What di�erentiates turn-based games from
concurrent games is the type of local interactions of the players at each state of
the games. Formally, a local interaction is a game form, that is a set of actions
available to both players, a set of outcomes, and a function mapping each pair of
one action per player to a probability distribution over the outcomes. The local
strategies available to the players are then the probability distributions over
their available actions. Game forms are usually represented by bi-dimensional
tables where Player A chooses the rows, while Player B chooses the columns.
For example, the game form in Figure 3 describes the interaction of the players
at the state q0 of the concurrent arena of Figure 2.

The notion of game form that we have informally de�ned above was �rst
introduced in [35] in the context of social choice theory. However, the �rst
result established on game forms was proved in [36].

This dissertation has three distinctive traits. However, note that they
do not correspond to the three parts of this dissertation. The �rst distinctive
trait of this dissertation is that we consider game forms, and by extension local
interactions, as �rst-class citizens. This mathematical object will be studied
in two di�erent contexts. First, inside concurrent arenas and games where it
appears at each state. Second, for itself outside of a concurrent game context.
In this dissertation, the interaction of the players at each state of a concurrent
arena will be described by game forms. That is, a concurrent arena is a graph
where each state is endowed a game form describing the interaction of the
players at that state. Then, the local interaction at any given state refers to
the game form that this state is endowed with. This is to be compared with
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what is usually done in the literature on concurrent games. Indeed, usually a
concurrent arena is a graph where, at each state, both players have a set of
available actions. There is in addition a function mapping each pair of actions
for both players to a probability distribution over successors states. With such
a de�nition, the notion of game form is only implicit, and is often not formally
de�ned (since this notion is not useful to establish the results of these papers).
In this dissertation, what we have called until now local strategies, which is
what (graph) strategies prescribe at each state, are referred to as GF-strategies,
where GF stands for game form.

The second distinctive trait of this dissertation is the game forms that we
consider. Indeed, the game forms that we have described above correspond
to what we call standard game forms in this dissertation. In fact, we con-
sider arbitrary game forms, which subsume standard game forms. Indeed, an
arbitrary game form can be de�ned as follows. It is a set of GF-strategies
for both players, a set of outcomes and a function mapping each pair of one
GF-strategy per player to a probability distribution over the outcomes. The
crucial di�erence with standard game forms is that the set of GF-strategies
need not be de�ned as the set of probability distributions over an underlying
set of available actions. In particular, this set need not be convex. When all
local interactions of a game are standard, the game itself is said to be standard,
otherwise the game is said to be arbitrary. Standard games are the concurrent
games studied in the literature.

We would like to mention a notable exception to this last statement. In his
seminal paper on concurrent (reachability) games [10], Everett implicitly used
non-standard game forms. The only assumption made in that paper is that
the game forms he uses �possess a minimax-solution�. These game forms that
�possess a minimax-solution� correspond exactly to the valuable game forms
de�ned in this dissertation. Note however that the notion of game form is not
formally introduced in [10].

The purpose of this dissertation is to provide a way to design some well-
behaved concurrent arenas, i.e. concurrent arenas enjoying some of the nice
properties that turn-based games enjoy, while being signi�cantly more general
than turn-based games. Along the way, we will prove several results of var-
ious kinds, including a generalization of Blackwell determinacy. This will be
discussed in the next section.

Restricting the set of game forms used in concurrent games. Our
idea to de�ne such well-behaved concurrent arenas is roughly as follows. Con-
sider a desirable property ϕ that we want to hold on concurrent arenas. For
instance, the property ϕ could be:

• the existence of winning strategies in all obtained win/lose games (with
Borel objectives);
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• the existence of optimal (positional) strategies in obtained reachability
games.

If ϕ does not hold in turn-based arenas, there is no chance that it will hold
on classes of concurrent arenas that include turn-based arenas. Hence, assume
that ϕ holds in turn-based arenas. This is the case of the two examples cited
above. Then, as discussed earlier, without any assumption on the local inter-
actions involved in the arena, this property ϕ may not hold. However, if we
assume that all local interactions are turn-based � and in that case, the arena,
and the games obtained from it, are therefore turn-based � then this property
ϕ holds, by assumption. Therefore, we know that there exists a restriction on
game forms that make the property ϕ hold in all games whose local interactions
all satisfy this restriction. One of the main goal of this dissertation, which is
also the third distinctive trait of this dissertation, is to establish local-global
transfers, i.e. to de�ne restrictions on game forms ensuring that:

• they encompass more interactions than only turn-based ones;

• the property ϕ holds in all arenas where all local interactions satisfy
these restrictions.

Furthermore, the restrictions on local interactions that we de�ne may depend
on the property ϕ at hand. The general method that we will use to de�ne
these restrictions proceeds in two steps:

• First, we de�ne the game forms F that are individually well-behaved
w.r.t. ϕ. Such game forms F are such that all simple arenas built on
F satisfy the property ϕ. The notion of �simple arenas built on F� is
formally de�ned in this dissertation. Informally, this corresponds to the
arenas where the only source of concurrency comes from F .

• Second, we check that the property ϕ holds in all the arenas (possibly,
only those with �nitely many states) with all local interactions that are
individually well-behaved w.r.t. the property ϕ. That is, we check that
these individually well-behaved game forms also behave well collectively.

Assuming that we have achieved both of these steps, this provides a way to
build arenas that are safe (w.r.t. the property ϕ) by design. In this dissertation,
we will be particularly interested in properties ϕ involving the existence of
optimal positional strategies in parity games. We believe that this way of
de�ning safe by design arenas constitutes the most important contribution of
this dissertation.
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Outline

Let us give an outline of the kinds of results that we show in this disser-
tation. We highlight some of these results in this section � those we believe
are the most important � but we do not provide an exhaustive overview of all
our contributions. As mentioned in the next section, more details are given at
the beginning of each part and chapter.

This dissertation contains three parts, preceded by Chapter 1 that presents
the formalism used throughout this dissertation.

Then, in Part I, we establish results on concurrent games with almost no
assumptions on the local interactions and payo� functions. This part contains
two chapters: Chapters 2 and 3. Chapter 2 is dedicated to the determinacy of
Blackwell games [12]. This is a very important result on standard concurrent
games. Indeed, concurrent games, contrary to turn-based games, do not en-
joy Borel determinacy [8], i.e. the existence of winning strategies in win/lose
games. However, informally, concurrent games ensure the following: the supre-
mum of what Player A can guarantee is equal to the in�mum of what Player
B can guarantee. More speci�cally, from each state of the game, a Player-A
strategy along with a Player-B strategy induce an expected value of the pay-
o� function. Then, the value of a Player-A strategy is equal to the in�mum
of the expected value of the payo� function against all Player-B strategies.
The Player-A value of a state is then equal to the supremum of the values of
Player-A strategies from this state. This is symmetrical for Player B. Then,
the determinacy of Blackwell games ensures, with a quite mild assumption on
the standard local interactions, that from each state, the values of the game for
both players is equal. This is why we summarize this as follows: the supremum
of what Player A can guarantee is equal to the in�mum of what Player B can
guarantee. In Chapter 2, we generalize this result, in particular, in arbitrary
(i.e. not necessarily standard) concurrent games. This generalization is then
used several times in this dissertation to establish results on concurrent games.
These results could not have been deduced from the original statement of the
determinacy of Blackwell games.

On the other hand, the other chapter of Part I, Chapter 3, deals with
general properties on concurrent games related to subgame optimal strategies,
a strengthening of optimal strategies. In particular, we would like to mention
a result that we believe gives signi�cant insight as to why concurrent games
behave much more poorly than turn-based games. It is stated as Theorem 3.17.
This theorem is stated in the context of games with �nitely many states, with
some assumptions made on the payo� function including pre�x-independence.
An informal takeaway from this theorem, from Player-A's perspective, is the
following. There exists subgame optimal strategies if and only if there exists
a strategy:
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• whose value is positive from every state whose Player-A value is positive;

• that never makes a de�nitive mistake.

A strategy makes a de�nitive mistake if at some point, after some �nite history,
it plays a GF-strategy that is sub-optimal2. The notion of sub-optimality is de-
�ned formally in this dissertation. In other words, the reason why, there are not
always (subgame) optimal strategies in concurrent games (even in very simple
games) is that to approach the Player-A value of a state, Player-A strategies
may need to make a de�nitive mistake. In fact, in this chapter we exhibit
a concurrent game (depicted in Figure 3.2) where playing optimally requires
making a de�nitive mistake after the opponent has made one. This phenom-
ena cannot happen in turn-based games (recall that the games considered have
�nitely many states). That is, if one only uses strategies that do not make a
de�nitive mistake, then the Player-A values of the states do not change, i.e.
they do not drop. This chapter also introduces the notion of in�nite-choice
strategies, mentioned above. The results of Part I will then be used in the two
other parts.

In Part II, containing two chapters, we study arbitrary, i.e. not-necessarily
standard, concurrent parity games with �nitely many states. As mentioned
above, it is not always possible to play optimally in concurrent parity games,
and when it is, it may require in�nite-choice strategies. In fact, the situation
is rather heterogeneous when considering various parity objectives (in terms
of the number of colors involved) and �avors of optimality, such as almost-
optimality or subgame optimality. We give an (almost) complete overview
of the situation in terms of the simplest kind of strategies among which we
can �nd a desirable e�ect of strategies. A summary is given in page 185.
In particular, one can notice a positional/in�nite choice dichotomy on the
strategies necessary or su�cient to achieve any speci�c �avor of optimality.
This observation is proved in Chapter 3 (in Part I) in standard games.

Finally, Part III is entirely dedicated to the study of game forms and con-
tains four chapters. Three chapters focus on local-global transfers and use
the two-step method described in the previous section to de�ne individually
well-behaved game forms and prove that the induced arenas also behave well.
To achieve these two steps, we use results proved in Chapters 2 and 3, while
also making use of some results proved in Part II. Among these three chap-
ters, two of them, Chapter 7 and 8, are dedicated to parity objectives: with
arbitrary game forms for Chapter 7, and standard game forms for Chapter 8.
A fourth chapter is dedicated to results about complexity/decidability and ex-
pressiveness of game forms. We believe that this part is the most important of
this dissertation: it tackles the novel method described above to appropriately
restrict the class of concurrent arenas.

2This notion is actually called being �thrifty � in [37].

22



On another note, four papers [38, 39, 40, 41] have been published in the
scope of this PhD. Most of what is proved in these papers can be found in this
dissertation. However, this dissertation contains several results that are not yet
published (nor submitted). Note that there is no one-to-one correspondance
between chapters and published articles. In addition, several results proved in
these papers are generalized to a more general context in this dissertation. It
has to be noted that Chapter 8 is entirely based on a single unpublished paper
that will be resubmitted soon.

How to read this dissertation

We would like to conclude this introduction by giving a few tips on how
this dissertation is meant to be read.

Detailed outline. We have given in the previous section a rather brief
outline of what is done in this dissertation. In the body of the dissertation we
also provide more local overviews: First, the purpose of each part is explained
at the beginning of each of these three parts, and we further explain how each
part �ts in the broader context of the dissertation. Second, at the beginning
of each chapter, we provide a detailed overview of the chapter and of its main
contributions.

Finally, the general conclusion recalls the main goals and contributions of
the dissertation, and highlights a few research directions that seem promising.

Framed results. We make several contributions in this dissertations. The
results that we believe are most important can be spotted by the frames around
the corresponding environments. Some new results are not framed. Often, this
is because they are stepping stones towards the proof of (what we believe are)
more important results. At the end of this dissertation, on Page 376, one can
�nd a list of the main new results proved in this dissertation.

Appendices. Due to the stochasticity of the games and strategies consid-
ered in this dissertation, the proof of several results are very technical. That
is why we have included a section called �Appendix� at the end of all chapters
but Chapter 5. These sections contain technical proofs of results stated in the
core of these chapters. Nevertheless, we provide (very often) proof sketches of
the results whose formal proofs are put in an �Appendix� section.

Chapters dependence. Chapter 1 gives de�nitions and notations that
will be used throughout this dissertation. Chapter 3 is independent of Chap-
ter 2, except that the main result of Chapter 2 (i.e. Theorem 2.3) is used
once in Chapter 3. These two chapters give general results used in subsequent
chapters:

• Chapters 4 and 5 depend mostly on Chapters 3;
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• Chapter 6 depends mostly on Chapter 2;

• Chapters 7 and 8 depend exclusively on Chapters 3;

• Chapter 9 depends on Chapters 6 and 8 (and a little bit on Chapter 2).

In addition, for the readers reading this dissertation on a PDF �le, note that
all numerical references (including page references) are clickable. Furthermore,
from the numerical denomination of all de�nitions, theorems, remarks, etc., one
can infer the chapters they come from. For instance, Theorem 2.3 comes from
Chapter 2 and De�nition 7.3 comes from Chapter 7.

Arbitrary Vs Standard terminology. Finally, in this dissertation, we
will consider standard game forms which are a special kind of arbitrary game
forms, and similarly for concurrent games. When the terminology �arbitrary�
is used on game forms (and local interactions) or concurrent games (or arenas),
it should actually be read as �not-necessarily standard�.
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1 - Concurrent games: the formalism

In this chapter, we give the de�nitions and notations we will use throughout
this dissertation. Later, we will introduce additional de�nitions, however we
will do so when we need them.

In Section 1.1, we introduce some notations. Most of them are very clas-
sical. In Section 1.2, we give relevant background on probability theory and
stochastic trees (generalization of Markov chains). In Section 1.3, we recall the
central notion of game forms. We state important properties satis�ed by game
forms. Finally, in Section 1.4, we present the formalism we use for concurrent
games.

1.1 Notations

We denote by N,Z,Q and R the sets of all non-negative integers, integers,
rationals and reals respectively. For two sets E,E′ with E ∩E′ = ∅, we denote
by E]E′ the disjoint union of E and E′. Furthermore, for all pairs of integers
(i, j) ∈ Z2, we denote by Ji, jK := {k ∈ Z | i ≤ k ≤ j} the set of integers
between i and j, non-strict. We say that a set is countable if it is either �nite
or in bijection with N.

Set of sequences. Consider a non-empty set Q. The notations Q∗,
Q+, and Qω refer to the set of �nite sequences, of non-empty �nite sequences
and of in�nite sequences of elements of Q respectively. Furthermore, Q↑ :=

Q∗∪Qω denotes the set of all �nite or in�nite sequences of elements of Q. The
notation ε ∈ Q∗ refers to the empty sequence (which is de�ned regardless of
the underlying set Q considered). For • ∈ {+, ω}, A ⊆ Q• and π ∈ Q+, the
notation π ·A ⊆ Q• refers to the set π ·A := {π · ρ | ρ ∈ A}.

For all n ∈ N, the notation Qn (resp. Q≤n) refers to the set of all sequences
of n (resp. at most n) elements of Q. The length, denoted |π|, of a sequence
π = π0 · · ·πn−1 ∈ Qn, is equal to |π| := n. Furthermore, if π ∈ Qω, |π| := ∞.
Given a sequence π = π0 · · · ∈ Q+ ∪ Qω, for i < |π|, π≤i ∈ Q∗ refers to the
�nite sequence π0 . . . πi. If i < 0, then π≤i = ε. For a non-empty sequence
π = π0 · · ·πn ∈ Q+, we denote by πlt the last element of the sequence: πlt = πn
and by tl(π) the path π but its last element: tl(π) = π0 · · ·πn−1.

A �nite sequence π ∈ Q∗ is a pre�x (resp. strict pre�x) of another �nite
sequence π′ ∈ Q∗, denoted π v π′ (resp. π @ π′) if there is some ρ ∈ Q∗ (resp.
ρ ∈ Q+) such that π′ = π · ρ. The sequence π′ is called a su�x of π.

Furthermore, for all • ∈ {∗,+, ω, ↑} and arbitrary non-empty sets E, any
function f : E → Q is extended into a function f• : E• → Q• such that for all
π = π0 · · · ∈ E•, we have f•(π) := f(π0) · · · ∈ Q•.

We also de�ne the notion of residual functions. Consider some • ∈ {∗,+, ω}.
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Given two non-empty sets E,F , for all functions f : E• → F and �nite paths
π ∈ E∗, we denote by fπ : E• → F the residual function de�ned by, for all
ρ ∈ E•, we have fπ(ρ) := f(π · ρ) ∈ F .

Real functions and sequences. Consider two arbitrary non-empty sets
E and F and a function f : E → F . For all F ′ ⊆ F , we let f−1[F ′] := {e ∈
E | f(e) ∈ F ′} be the reverse image of F ′ by f . For G an arbitrary non-empty
set and f : E → F and g : F → G, we denote by g ◦ f : E → G the composite
of the functions f and g.

Assume now that F ⊆ R. Consider two real functions f, g : E → F .
We write f ≤ g if, for all x ∈ E, we have f(x) ≤ g(x). Furthermore, we
let ‖f‖∞ ∈ R ∪ {∞} be equal to ‖f‖∞ := supe∈E |f(e)|. In addition, if the
support {x ∈ E | f(x) 6= 0} of f is countable, we also let ‖f‖1 ∈ R ∪ {∞} be
equal to ‖f‖1 :=

∑
e∈E |f(e)|.

Consider an arbitrary in�nite sequence (fn)n∈N of real functions indexed
by N with fn : E → F and F ⊆ R1. A function f : E → F is a limit of fn
w.r.t. ‖ · ‖∞ if:

∀ε > 0, ∃n ∈ N, ∀k ≥ n, ‖f − fk‖∞ ≤ ε

We can de�ne similarly a limit w.r.t. ‖·‖1 when E is countable. A subsequence
(fn)n∈N is a sequence (fϕ(n))n∈N for an increasing function ϕ : N → N. A
subsequential limit of (fn)n∈N is the limit of some subsequence of (fn)n∈N.
Furthermore, note that if E is �nite and F = [0, 1] then Bolzano-Weierstrass'
theorem ensures that such a subsequential limit exists, as stated below in
Theorem 1.1.

Theorem 1.1. Let E be a �nite non-empty set and let x = (fn)n∈N be

an in�nite sequence of real functions with fn : E → [0, 1]. Then, x has a

subsequential limit (w.r.t. ‖ · ‖1 and ‖ · ‖∞).

1.2 Probability measures, distributions and stochastic trees

In this section, we �x a non-empty set Q.

1.2.1 . Probability distribution

The support Sp(µ) of a function µ into [0, 1] is the set of elements whose
image by µ is nonzero: Sp(µ) = µ−1[ (0, 1] ]. A discrete probability distribution
(or simply distribution) over Q is a function µ : Q → [0, 1] with countable
support such that

∑
x∈Q µ(x) = 1. The set of all distributions over the set Q is

denoted D(Q). A distribution µ is deterministic if |Sp(µ)| = 1. In addition, for
all functions f : Q→ [0, 1], with an abuse of notations, the sum

∑
q∈Q µ(q)·f(q)

refers to the countable sum
∑

q∈Sp(µ) µ(q) · f(q). In the following, an element

1If E is a singleton, the functions fn can be seen as real numbers.
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q ∈ Q will be seen as the deterministic (Dirac) distribution µ : Q→ [0, 1] such
that µ(q) = 1 (and therefore µ(q′) = 0 for all q′ 6= q).

Given any valuation over Q, v : Q→ [0, 1], and distribution d ∈ D(Q), we
consider the expected value of v w.r.t. d: Ed(v) :=

∑
q∈Q d(q) · v(q). We can

also consider the expected value of distributions. Consider two sets Q and Q′

with d ∈ D(Q) and d′ : Q→ D(Q′). The expected value of d′ w.r.t. d, denoted
Ed(d′) ∈ D(Q′) is such that, for all q′ ∈ Q′:

Ed(d′)(q′) :=
∑

q∈Q
d(q) · d′(q)(q′)

1.2.2 . Topology on Qω and probability measure

A σ-algebra Q on a set Qω is such that Q is a set of subsets of Qω where
Qω ∈ Q, and Q is closed under complementation and countable union. That
is, for all E ∈ Q we have Qω \ E ∈ Q and for all (En)n∈N ∈ QN, we have
∪n∈NEn ∈ Q. A probability measure on a σ-algebra Q is a function Υ : Q →
[0, 1] such that Υ(∅) = 0, Υ(Qω) = 1, and Υ is σ-additive over Q, that is for
all (En)n∈N ∈ QN pairwise disjoint, we have Υ(]n∈NEn) =

∑
n∈N Υ(En).

Let us now recall the de�nition of cylinder sets and consequently of Borel
sets. For all �nite sequences π ∈ Q∗, the cylinder set Cyl(π) generated by π
is the set Cyl(π) = {π · ρ ∈ Qω | ρ ∈ Qω}. We denote by CylQ the set of all
cylinder sets on Qω. The open sets of Qω are the sets equal to an arbitrary
union of cylinder sets. The set of Borel sets on Qω, denoted Borel(Q), is then
equal to the smallest σ-algebra containing all open sets. By Carathéodory's
theorem, a probability measure over Qω is entirely de�ned by the measure of
all cylinder sets as stated in Theorem 1.2 below.

Theorem 1.2. Consider a function υ : CylQ → [0, 1] such that υ(Qω) = 1

(note that Qω = Cyl(ε)) and υ is σ-additive over CylQ. Then, there exists a

unique probability measure Υ : Borel(Q) → [0, 1] such that, for all C ∈ CylQ,

we have Υ(C) = υ(C),

We also mention the monotone continuity of the probability measure.

Proposition 1.3. Consider any probability measure Υ : Borel(Q) → [0, 1].

For all (An)n∈N ∈ (Borel(Q))N such that, for all n ∈ N, we have An ⊆
An+1 (resp. An ⊇ An+1), then we have Υ(∪n∈NAn) = lim

n→∞
Υ(An) (resp.

Υ(∩n∈NAn) = lim
n→∞

Υ(An)).

Finally, in the following, any subset of �nite sequences E ⊆ Q∗ may be seen,
in Qω, as the set E · Qω ⊆ Qω, which is equal to the open set ∪π∈ECyl(π) ∈
Borel(Q).

1.2.3 . Measurable functions and integrals

The de�nitions we present in this subsection are classical, but we speci�-
cally used the presentation given in [42] where the proofs we do not give here
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can be found.
We de�ne what the measurable functions from Qω to [0, 1] are (for the

Borel topology we consider).

De�nition 1.1 (Measurable function). A function f : Qω → [0, 1] is mea-
surable if, for all α ∈ [0, 1], we have f−1([0, α]) ∈ Borel(Q).

In fact, all residual functions obtained from a measurable function are also
measurable.

Proposition 1.4 (Proof 1.5.1). Consider a non-empty set Q, a measurable

function f : Qω → [0, 1] and �nite path π ∈ Q∗. For all Borel sets B ∈
Borel(Q), the sets π · B ∈ Qω and π−1 · B := {ρ ∈ Qω | π · ρ ∈ B} are also

Borel. Consequently, the residual function fπ : Qω → [0, 1] is measurable.

Given a measure of the Borel sets of Qω, we can de�ne the integral (or
equivalently, the expected value) of a measurable function from Qω to [0, 1].
The integral of a function is �rst de�ned on the simple step functions de�ned
below and then extended to arbitrary measurable functions.

De�nition 1.2 (Step functions). A step function on Qω is a function f :

Qω → [0, 1] such that there exists a �nite collection of pairwise disjoint Borel

sets (Ei)1≤i≤n ∈ (Borel(Q))n such that ∪ni=1Ei = Qω and f =
∑n

i=1 αi · 1Ei
with αi ∈ [0, 1] for all 1 ≤ i ≤ n. The notation 1Ei refers to the indicator of

the set Ei: 1Ei [Q
ω] ⊆ {0, 1} and for all ρ ∈ Qω, we have 1Ei(ρ) = 1⇔ ρ ∈ Ei.

Interestingly, we have the following proposition.

Proposition 1.5. Consider a probability measure P on Borel(Q), a step func-

tion f : Qω → [0, 1] and two �nite collections (Ei)1≤i≤n ∈ (Borel(Q))n and

(E′j)1≤j≤n ∈ (Borel(Q))m of pairwise disjoint sets such that ∪ni=1Ei = Qω =

∪mj=1E
′
i and f =

∑n
i=1 αi ·1Ei =

∑m
j=1 α

′
j ·1E′j with αi ∈ [0, 1] for all 1 ≤ i ≤ n

and α′j ∈ [0, 1] for all 1 ≤ j ≤ m. Then, for all Borel sets B ∈ Borel(Q):

n∑

i=1

αi · P[Ei ∩B] =
m∑

j=1

α′j · P[E′j ∩B]

This proposition above justi�es the de�nition below of the integral of a
step function w.r.t. to a probability measure.

De�nition 1.3. Consider a probability measure P and a step function f =∑n
i=1 αi · 1Ei . Then, for all Borel sets B ∈ Borel(Q):

∫

B
fdP :=

n∑

i=1

αi · P[Ei ∩B]

Let us now de�ne the integral of an arbitrary measurable function. To do
so, we will approximate it with step functions. Speci�cally:
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De�nition 1.4 (Approximating a measurable function). Consider a measur-

able function f : Qω → [0, 1]. A sequence of step functions (fn)n∈N such that,

for all n ∈ N: fn : Qω → [0, 1] approximates the function f if, for all ρ ∈ Qω:
• for all n ∈ N, we have fn(ρ) ≤ fn+1(ρ);

• limn→∞ fn(ρ) = supn∈N fn(ρ) = f(ρ).

Then, we have the very useful theorem below: the supremum of the integral
of a sequence of step functions approximating a measurable function does not
depend on the sequence of step functions considered (it only depends on the
measurable function approximated).

Theorem 1.6. Consider a probability measure P and a measurable function

f : Qω → [0, 1]. Then:

• There exists a sequence of step functions approximating f ;

• For all Borel sets B ∈ Borel(Q), there exists a value vB ∈ [0, 1] such

that, for all sequences of step functions (fn)n∈N approximating f , we

have limn→∞
∫
B fndP = vB.

We are now able to de�ne the integral of any measurable function: it is
de�ned as the limit of any sequence of step functions approximating it.

De�nition 1.5 (Integral of a measurable function). Consider a non-empty

set Q, a probability measure P and a measurable function f : Qω → [0, 1].

Consider a sequence of step functions (fn)n∈N approximating f . Then, for all

Borel sets B ∈ Borel(Q):
∫

B
fdP := lim

n→∞

∫

B
fndP

Note that in particular if P(B) = 0, then
∫
B fdP = 0 (since this holds for step

functions).

1.2.4 . Stochastic trees and Markov chains

Let us now de�ne the crucial notion of stochastic tree and Markov chain. It
will be extensively used in the remainder of this dissertation as stochastic trees
is what is obtained from a concurrent arena when both players have �xed their
strategies. In De�nition 1.6 below, we de�ne formally the notion of stochastic
trees, and the special case of Markov chains.

De�nition 1.6 (Stochastic Tree and Markov chain). A stochastic tree T is

a pair 〈Q,P〉 where Q 6= ∅ is a non-empty set of states and P : Q+ → D(Q) is

a probability distribution function.

When the function P ensures that, for all q ∈ Q and ρ ∈ Q+, we have

P(q) = P(ρ · q), then the tree T is actually a Markov chain M = 〈Q,P〉. In

that case, the probability distribution function P can be seen as a function

P : Q→ D(Q).
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Alternatively, Markov chains can be de�ned as sequences of random vari-
ables where the value of the next variable only depends on the value of the
current variable, not all preceding ones. In this dissertation, we use the de�-
nition that we gave above of Markov chains as it is better-suited for the game
formalism we will use in the following.

We now de�ne, in stochastic trees, the probability of occurrence of any
�nite sequence, and consequently of any Borel set and deduce the expected
value of any measurable function.

De�nition 1.7 (Probability of Borel sets, Expected value in stochastic trees).
Consider a stochastic trees T = 〈Q,P〉. Fix a �nite sequence of states ρ ∈ Q+.

We de�ne the function Pρ : Q∗ → [0, 1] which we then extend into a probability

measure Pρ : Borel(Q) → [0, 1]. First, the probability of occurrence of a �nite

path π ∈ Q∗ is equal to:

Pρ(π) :=

|π|−1∏

i=0

P(ρ · π≤i−1)(πi)

In particular, Pρ(ε) = 1. Then, for all �nite paths π ∈ Q∗, the probability of a

cylinder set Cyl(π) is:

Pρ[Cyl(π)] := Pρ(π)

This induces a probability measure over Borel sets, that we denote by PTρ :

Borel(Q)→ [0, 1], via Theorem 1.2.

For all measurable functions f : Qω → [0, 1], we denote by ETρ [f ] ∈ [0, 1] the

expected value of the function f w.r.t. the probability measure Pρ: ETρ [f ] :=∫
Qω f

ρdPTρ (recall the notion of residual function Page 26).

In the following, we will sometimes need to relate two stochastic trees,
whose behaviors are di�erent but similar. More speci�cally, in the following
we will need to add intermediate states in the games we will consider. This
will be useful either to encode some additional information in the states or to
be able to use results on what we will call turn-based games (or both). In that
case, we would like to be able to show that a stochastic tree obtained from the
original game behaves similarly to the one obtained from the modi�ed game.
To do so, we introduce the notion of stochastic tree alternating between two
sets of states Q and Q′: there is probability 0 to go from a state in Q to
another state in Q and similarly for Q′. We can then obtain a payo� function
fQ,Q′ : (Q ∪Q′)ω → [0, 1] from a payo� function f : Qω → [0, 1].

De�nition 1.8 (Alternating stochastic trees, Projecting measurable function).
Consider two disjoint sets of states Q and Q′. A stochastic tree T = 〈Q]Q′,P〉
is (Q,Q′)-alternating if, for all q ∈ Q and ρ /∈ Q′ · ((Q ·Q′)∗ ∪ (Q ·Q′)∗ ·Q), we

have: Pq(ρ) = 0.

We denote by φQ,Q′ : (Q·Q′)↑ → Q↑ the function that extracts the elements

in Q by considering every other element. Consider a function f : Qω → [0, 1].
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We denote by fQ,Q′ : (Q ∪ Q′)ω → [0, 1] the function such that, for all ρ ∈
(Q ∪Q′)ω, we have:

fQ,Q′(ρ) :=

{
0 if ρ /∈ (Q ·Q′)ω
f ◦ φQ,Q′(ρ) otherwise

Note that we consider these de�nitions even if Q and Q′ are not disjoint.

We have the following lemma.

Lemma 1.7 (Proof 1.5.2). Consider two non-empty sets of states Q and Q′.

For all measurable functions f : Qω → [0, 1], the function fQ,Q′ : (Q ∪Q′)ω →
[0, 1] is also measurable. Consider now two stochastic trees T = 〈Q,P〉 and
T ′ = 〈Q ∪ Q′,P′〉 and let q ∈ Q. For all π ∈ Q∗, we consider the set T(π) :=

Q′ · (φQ,Q′)−1[{π}]. Now, assume that T ′ is (Q,Q′)-alternating and that, for

all π ∈ Q∗, we have:
Pq[Cyl(π)] = P′q[∪π′∈T(π)Cyl(π′)]

Then, for all measurable functions f : Qω → [0, 1], we have:

Eq[f q] = E′q[(fQ,Q′)q]

This lemma will be used in the following in Chapters 2 and 3.
Finally, we de�ne the notion of Bottom strongly connected component in

a Markov chain which informally is a set of states that is strongly connected
and that cannot be exited.

De�nition 1.9 (Bottom strongly connected component). Consider a Markov

chainM = 〈Q,P〉. A bottom strongly connected component (BSCC for short)

ofM is a subset of states B ⊆ Q such that:

• B is strongly connected, that is for all (q, q′) ∈ B2, there is a �nite path

π ∈ B∗ such that Pq(π · q′) > 0;

• B cannot be exited, that is for all q ∈ B and q′ ∈ Q, we have Pq(q′) > 0

implies q′ ∈ B.
We denote by BM the set of all BSCCs in the Markov chainM.

In fact, when the set of statesQ of a Markov chain is �nite, the set of BSCCs
is not empty and almost-surely, regardless of the starting state considered, the
Markov chain eventually settles in a BSCC B. Furthermore, every state in B is
seen in�nitely often. This is a well-known result, see for instance [43, Theorem
10.27], that we recall below in Theorem 1.8.

Theorem 1.8. Consider a Markov chainM = 〈Q,P〉 and assume that Q is

�nite. Then, BM 6= ∅ and, for all q ∈ Q:

Pq


 ⋃

B∈BM


(Q∗ ·Bω) ∩


⋂

q∈B
(Q∗ · {q})ω






 = 1
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Disclaimer: game terminology for both players. In the remainder
of this dissertation, we will consider games with two players we will call
Player A and Player B. Often, de�nitions, lemmas and theorems can
be applied to the two players, but sometimes with slight modi�cations.
We will often state them only for one of the players (usually Player
A). However, the case for the other player may be either similar, in
which case (almost) no modi�cation needs to be done to be applied to
the other player, or symmetrical, in which case one has to reverse
inequalities and supremum and in�mum (when applicable) to obtain the
appropriate de�nition for the other player.
Moreover, we will de�ne properties w.r.t. one player. Unless otherwise
stated, these can also be ensured w.r.t. the other player. Furthermore,
when we say that such a property is ensured without mentioning any
player, it means that this property holds for both players (see for instance
De�nition 1.15).

1.3 Game Forms

In this section, we de�ne and discuss the crucial notion of game forms. A
game form represents an interaction between two players � that we call Player
A and Player B � with a set of strategies for Player A, a set of strategies for
Player B, a set of outcomes and a function mapping from a pair of strategies
(one per player) to a probability distribution over the set of outcomes. A
special class of game forms � that we will call standard game forms � consists
in interactions where the set of strategies of a player is equal to the set of
distributions over an underlying set of actions. We call them standard game
forms because they in fact correspond to the interactions that are almost always
used in games. In particular, in all the articles published in the scope of this
PhD [38, 39, 40, 41], we have used standard game forms. We de�ne them
formally below in De�nition 1.10.

De�nition 1.10 ((Standard) Game Form). Consider a non-empty set of out-

comes O. A game form (GF for short) F on O is a tuple F = 〈ΣA,ΣB,O, %〉
where ΣA (resp. ΣB) is the non-empty set of strategies available to Player A

(resp. B) and % : ΣA × ΣB → D(O) maps a pair of strategies to a probability

distribution over outcomes. Recall that all probability distributions that we

consider have a countable support. We denote by Form(O) the set of game

forms on the set of outcomes O.

A game form F on O is standard if ΣA = D(ActA) and ΣB = D(ActB)

for some underlying non-empty sets of actions ActA (resp. ActB) available to

Player A (resp. B) and % : ActA × ActB → D(O). Furthermore, the map

E(%) : D(ActA) × D(ActB) → D(O) is such that, for all σA ∈ D(ActA) and
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A

[
x y
y x

] B
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[
x
y

] B
A
[
x y

]

Figure 1.1: Three standard �nite game forms on the set of outcomes
{x, y}.

σB ∈ D(ActB), for all o ∈ O, we have (recall the beginning of Section 1.2):

E(%)(σA, σB)(o) := EσA,σB(%)(o) =
∑

a∈Sp(σA)

∑

b∈Sp(σB)

σA(a) · σB(b) · %(a, b)(o)

Such a standard game form is described by the tuple F = 〈ActA,ActB,O, %〉s,
where s speci�es that the game form is standard.

Below we illustrate the de�nition of standard game forms.

Example 1.1 (Standard game forms). Some standard game forms are rep-

resented in Figure 1.1. They are represented as bi-dimensional tables where

Player A's actions are the rows, and Player B's are the columns. For in-

stance, for the leftmost game form F in Figure 1.1, denoting t, b the top and

bottom rows respectively and l, r the left and right columns, we have F :=

〈{t, b}, {l, r}, {x, y}, %〉s with %(t, l) := %(b, r) = x and %(b, l) := %(t, r) = y.

The colors used for the outcomes x and y are only there to ease the readability

of the game forms. For the remainder of this dissertation, we will omit, when

drawing game forms, the A on the left and the B on the top of the game forms.

We would now like to discuss the bene�t of considering non-standard game
forms. Clearly, they are more general than standard game forms. Further-
more, this more general framework allows to de�ne relevant situations. For
instance, with non-standard game forms, one can express that, given a set of
actions, the only possible strategies available to a player are exactly determin-
istic probability distributions, or are exactly probability distributions with a
�xed precision. In addition, there are some players interactions that can be de-
�ned more concisely with non-standard game forms than with standard game
forms, as discussed below.

Example 1.2 (Non-standard game form). Consider the standard game form

F in the middle of Figure 1.1. Let us now consider the non-standard game

form F ′ from F by considering that the strategies available to Player A are

all the distributions that do not play the bottom row with probability 1.

To describe such an interaction with a standard game form, one needs in-

�nitely many Player-A actions. For instance, a standard game form de�ned by

FN := 〈N, {∗}, {x, y}, %〉s where, for all n ∈ N, we have %(n, ∗) ∈ D({x, y}) such
that %(n, ∗)(x) := 1

2n and %(n, ∗)(y) := 1− 1
2n . One can see that the strategies
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available to Player A are the same in F ′ and FN, when considering the corre-

sponding distribution over outcomes. However, this is only possible because

there are in�nitely many actions for Player A with an increasing probability

to see y, without it being equal to 1.

For the remainder of this dissertation and unless otherwise stated, when the
set of outcomes O is clear from context, the notation F will always refer to the
tuple 〈ΣA,ΣB,O, %〉 if we consider an arbitrary game form. If the game form is
standard, it will also refer to the tuple 〈ActA,ActB,O, %〉s with ΣA = D(ActA)

and ΣB = D(ActB). For the remainder of this section, we �x an arbitrary
non-empty set of outcomes O.

We would like to mention several special classes of game forms. Firstly,
trivial game forms, i.e. game forms such that there is only one possible dis-
tribution over outcomes, regardless of what the players do. Then, among
standard game forms, there are �nite game forms, i.e. game forms where the
sets of actions of both players are �nite. Turn-based game forms are such that
the set of actions of either of the players is a singleton. Finally, deterministic
game forms are such that each pair of actions is mapped to an outcome with
probability 1. This is de�ned formally below.

De�nition 1.11 (Trivial, turn-based, standard �nite, deterministic game forms).
Consider an arbitrary game form F . It is trivial if the function % : ΣA×ΣB →
D(O) is constant. Assume now that the game form F is standard. We say

that F is �nite if both sets of actions ActA and ActB are �nite.

We say that it is a Player-A game form if |ActB| = 1 (no assumption is made

on ActA). In a Player-A game form F , the only Player-B action is denoted ∗,
and analogously for a Player-B game form. When F is either a Player-A or a

Player-B game form, it said to be a turn-based game form.

The game form F is deterministic if, for all (a, b) ∈ ActA × ActB, we have

|Sp(%(a, b))| = 1. Furthermore, a Player-A strategy σA ∈ D(ActA) is determin-
istic if |Sp(σA)| = 1. This is similar for Player B.

In Figure 1.1, all three standard game forms are �nite and the two rightmost
game forms are turn-based: the middle one is a Player-A game form and the
rightmost one is a Player-B game form.

When the set of outcomes is equal to [0, 1], we call the game form a game
in normal form (this terminology comes from [44]). Note that we can obtain
games in normal form from game forms with a map from the set of outcomes
to [0, 1], as described in De�nition 1.12 below.

De�nition 1.12 (Game in normal form). A game form F ∈ Form([0, 1])

is a game in normal form. Given a game form F = 〈ΣA,ΣB,O, %〉 and a

valuation v : O→ [0, 1], the notation 〈F , v〉 refers to the game in normal form

〈F , v〉 := 〈ΣA,ΣB, [0, 1],E%(·,·)(v)〉 with E%(·,·)(v) : ΣA × ΣB → [0, 1] such that,

for all (σA, σB) ∈ ΣA × ΣB, we have E%(·,·)(v)(σA, σB) = E%(σA,σB)(v) ∈ [0, 1].
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Remark 1.1. In this dissertation, we only consider game in normal forms

as de�ned above. In particular, the outcomes in games in normal forms are

reals in [0, 1]. However, we could consider instead any bounded set of reals

with (almost) identical de�nitions. Subsequently, the valuations of outcomes

we will consider will also take their values in [0, 1]. However, we could also

consider valuations of outcomes taking their values in an arbitrary bounded

real set.

Consider such a game in normal form F . Given a pair of strategies (σA, σB) ∈
ΣA×ΣB � one per player � the corresponding distribution in D([0, 1]) is given
by %. The expected values of the outcomes de�nes the outcome of the game
in normal form F under the pair of strategies (σA, σB), as de�ned below in
De�nition 1.13.

De�nition 1.13 (Outcome given two strategies). Consider a game in nor-

mal form F and a pair of strategies (σA, σB) ∈ ΣA × ΣB. The outcome
out[F ](σA, σB) of the game in normal form F under (σA, σB) is equal to (re-

calling the notation E from the beginning of Section 1.2):

out[F ](σA, σB) := E(%(σA, σB))

In games in normal form, Player A tries to maximize the outcome whereas
Player B tries to minimize it. Then, what we call the value of a Player-A
strategy σA in a game in normal form F is the best that this strategy can
achieve against all Player B strategies. Hence, it is equal to the in�mum, over
all Player B strategies σB, of the outcome of F under (σA, σB). Following, the
Player-A value of F is the supremum of the values of her strategies. This is
de�ned formally below in De�nition 1.14.

De�nition 1.14 (Value in games in normal form). Consider a game in nor-

mal form F and a Player-A strategy σA ∈ ΣA. The value val[F ](σA) of the

strategy σA in the game in normal form F is equal to:

val[F ](σA) := inf
σB∈ΣB

out[F ](σA, σB)

Then, the Player-A value of the game in normal form F is equal to:

val[F ](A) := sup
σA∈ΣA

val[F ](σA)

For all ε > 0, a Player-A strategy σA ∈ ΣA ensuring val[F ](σA) ≥ val[F ](A)−ε
is said to be ε-optimal in F . When ε = 0, the strategy σA is simply said to be

optimal. We denote by OptA(F) ⊆ ΣA the set of Player-A strategies optimal

in F . The de�nitions and notations are symmetrical for Player B. Then,

when the values of the game in normal form F for both players are equal, i.e.

val[F ](A) = val[F ](B), this de�nes the value of the game in normal form F :
val[F ] := val[F ](A) = val[F ](B).
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Although the values of a game in normal form is not necessarily the same
for both players, it always holds that the value for Player A is at most the
value for Player B, as stated in Lemma 1.9 below.

Lemma 1.9 (Proof Subsection 1.5.3). Consider a game in normal form F .
We have val[F ](A) ≤ val[F ](B).

Since the outcome of a game in normal form is an expected value, it is in
fact linear in the valuation of the outcomes. Inequality between valuations of
outcomes also propagates to value of games in normal form.

Lemma 1.10 (Proof Subsection 1.5.4). Consider a game form F and a

strategy per player (σA, σB) ∈ ΣA × ΣB. Consider also (vn)n∈N ∈ ([0, 1]O)N,

(λn) ∈ ([0, 1])N such that
∑

n∈N λn · vn : O→ [0, 1]. Then:

∑

n∈N
λn · out[〈F , vn〉](σA, σB) = out[〈F ,

∑

n∈N
λn · vn〉](σA, σB)

Consider any two valuations v, v′ : O → [0, 1], λ > 0 and x ∈ R such that

λ · v + x ≤ v′. We have:

λ · out[〈F , v〉](σA, σB) + x ≤ out[〈F , v′〉](σA, σB)

and, for all s ∈ {A,B, σA, σB}:

λ · val[〈F , v〉](s) + x ≤ val[〈F , v′〉](s)

If in addition we have λ · v + x : O→ [0, 1], then:

λ · val[〈F , v〉](s) + x = val[〈F , λ · v + x〉](s)

In the following, we will be especially interested in the game forms such
that all games in normal forms that can be induced from them have a value.
Such game forms are called valuable, this is de�ned below in De�nition 1.15.

De�nition 1.15 (Valuable game form). Consider a game form F . It is valu-
able if for all valuations of the outcomes v : O → [0, 1], the game in normal

form 〈F , v〉 has a value.

Furthermore, for a player C ∈ {A,B} and a subset of Player-C strategies

SC ⊆ ΣC(F), the game form F is supremized (resp. maximized) by SC w.r.t.

Player C if for all valuations of the outcomes v : O → [0, 1], for all ε > 0,

there is a Player-C strategy σC ∈ SC that is ε-optimal (resp. optimal) in the

game in normal form 〈F , v〉. A game form is maximizable w.r.t. Player C if it

maximized by a set of strategies w.r.t. Player C.

The above-de�ned notion of valuable game form is crucial. It will in par-
ticular appear in Chapter 2 in the statement of (the new version of) Blackwell
determinacy.
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In other words, the fact that a set of strategies SC supremizes a game form
F w.r.t. Player C means that the values of the games in normal form that can
be induced from F are identical if Player C restrict herself only to strategies
in SC. In particular, any valuable game form F is supremized by ΣC(F) w.r.t.
to Player C. We make a straightforward observation below: in any game form
F , a �nite set of strategies supremizes F if and only if it maximizes F .
Observation 1.1 (Proof Subsection 1.5.5). Consider a game form F , a player
C ∈ {A,B} and a �nite set of Player-C strategies SC ⊆ ΣC(F). The set SC

supremizes F w.r.t. Player C if and only if it maximizes F w.r.t. Player C.

Let us now focus on standard game forms. It is a well-known result that all
standard deterministic �nite game forms (recall, game form with �nitely many
actions for both players) are valuable and maximizable. This comes from Von
Neuman's minimax theorem [44] and it is stated below.

Theorem 1.11. All standard deterministic �nite game forms are valuable

and maximizable.

Below in Proposition 1.12, we establish that this holds even if the set
of actions available to one of the players is not �nite (it can be arbitrary,
even uncountable). However, note that the strategies we consider still have a
countable support. It was already proved in an unpublished work [45], see also
Sion's minimax theorem [46].

Proposition 1.12 (Proof Subsection 1.5.6). Consider a standard determin-

istic game form F ∈ Form(O) on a set of outcomes O. If ActA or ActB is �nite

then F is valuable and for any player C ∈ {A,B} with ActC �nite, the game

form F is maximizable w.r.t. Player C.

Let us now give a proof sketch below of Proposition 1.12, the full proof
(that is quite lengthy due to technical details) can be found in Appendix 1.5.6.

Proof sketch. If both ActA and ActB are �nite, we are in the scope of Theo-
rem 1.11. Assume now that only ActA is �nite while ActB is not, the other
case being analogous. The proof is in two steps.

First, we show that for any valuation of the outcomes v : O→ [0, 1] taking
�nitely many values (i.e. such that v[O] is �nite), the game in normal form
〈F , v〉 has a value and Player A has an optimal strategy. This comes from the
fact that since Player A has �nitely many actions and the outcomes, valued
by v, can take only �nitely many values then there are in fact �nitely many
di�erent actions for Player B. (Two Player-B actions being di�erent if there
is a Player-A action for which the corresponding outcomes, valued by v, are
di�erent. This is de�ned formally with an equivalence relation.) Hence, the
game in normal form obtained can be seen as �nite.

Second, given an arbitrary valuation of the outcomes v : O → [0, 1], we
approximate what happens in the game in normal 〈F , v〉 with what happens
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


x x x x . . .
y x x x . . .
y y x x . . .
y y y x . . .
. . . . . . . . . . . . . . .




Figure 1.2: A game form that is not
valuable with the set of actions for
both players being countable.




x y y y . . .
y x y y . . .
y y x y . . .
y y y x . . .
. . . . . . . . . . . . . . .




Figure 1.3: A game form that
is valuable but not maximizable
w.r.t. any player.

in games in normal form 〈F , vn〉 where vn : O → [0, 1] takes �nitely many
values and is closer and closer to v as n → ∞. Speci�cally, by using the
inequalities from Lemma 1.19, we can show that the limit of the values of the
games 〈F , vn〉 is in fact equal to the value of the game 〈F , v〉. Furthermore, we
exhibit a Player-A optimal strategy in 〈F , v〉 by considering the limit of Player-
A strategies σn optimal in 〈F , vn〉. The existence of this limit is ensured by
Theorem 1.1 (page 26), since ActA is �nite.

Remark 1.2. Proposition 1.12 is already known in the case where the non-

�nite set of actions is countable (for instance, this is indirectly mentioned in

[12]). In that case, the result can be obtained by successively approximating

what happens in the whole game in normal form by considering more and more

Player-B actions, but always �nitely many. However, this cannot be extended

to the case of uncountably many Player-B actions.

In some way, Proposition 1.12 is tight in the sense that, in standard game
forms, as soon as one allows both players' actions set to be in�nite, then it is
possible to exhibit a game form that is not valuable. This can be witnessed
with a game form with countably many actions for both players. Furthermore,
there are also game forms that are valuable but that are not maximizable w.r.t.
any player. Again, this can be witnessed with a game form with countably
many actions for both players. In both cases, only two di�erent outcomes are
su�cient. We give such examples below in the next example.

Example 1.3 (Non valuable or maximizable game forms among standard
game forms). The game form F1 represented in Figure 1.2 is equal to F1 :=

〈N,N, {x, y}, %1〉 where, for all (i, j) ∈ N2, we have %1(i, j) := x if and only if

i ≤ j, otherwise %1(i, j) := y. Let us show that it is not valuable. Consider the

valuation of the outcomes v : {x, y} → [0, 1] with v(x) := 0 and v(y) := 1 and

the induced game in normal form F ′1 := 〈F1, v〉. This game in normal form

does not have a value, as we have val[F ′1](A) = 0 and val[F ′1](B) = 1. Indeed,
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consider any Player-A strategy σA ∈ ΣA(F1). For all j ∈ N, we have:

out[F ′1](σA, j) =
∑

i>j

σA(i)

Since
∑

i∈N σA(i) = 1, it follows that out[F ′1](σA, j)→j→∞ 0. Hence, val[F ′1](σA) ≤
infj∈N out[F ′1](σA, j) = 0. As this holds for all Player-A strategies σA ∈ ΣA(F1),

we have val[F ′1](A) = supσA∈ΣA(F1) val[F ′1](σA) = 0. The arguments are similar

to show that val[F ′1](B) = 1. Note that this example of game form that is not

valuable is a folk result.

Consider now the game form F2 from Figure 1.3. It is equal to F2 :=

〈N,N, {x, y}, %2〉 where, for all (i, j) ∈ N2, we have %2(i, j) := x if and only if

i = j, otherwise %2(i, j) := y. Let us show that this game form is valuable but

not maximizable w.r.t. any player. Consider a valuation v : {x, y} → [0, 1].

Let F ′2 := 〈F2, v〉. If v(x) = v(y), straightforwardly val[F ′2](A) = val[F ′2](B) =

v(x) = v(y). Assume now that v(x) 6= v(y). In that case, we claim that

val[F ′2](A) = val[F ′2](B) = v(y). Indeed, for all n ∈ N, consider a Player-A

strategy σnA playing uniformly over the (n + 1)-�rst integers such that for all

i ∈ J0, nK we have σnA(i) := 1
n+1 . In fact, for all Player-B strategies σB ∈ ΣB(F),

we have:

|out[F ′2](σnA, σB)− v(y)| ≤ |v(x)− v(y)|
n+ 1

Hence, val[F ′2](A) ≥ v(y). By symmetry of the game in normal form F ′2, it
follows that we also have val[F ′2](B) ≤ v(y). Since, in any case, by Lemma 1.9,

val[F ′2](A) ≤ val[F ′2](B), it follows that v(y) ≤ val[F ′2](A) ≤ val[F ′2](B) ≤ v(y).

Hence, val[F ′2](A) = val[F ′2](B) = v(y). However, if v(y) > v(x), Player A

does not have any optimal strategy in F ′2 since she cannot avoid a positive

probability of x. The same issue arises for Player B when v(y) < v(x).

Note that it is simpler to come up with not valuable game forms or not
maximizable game forms with non-standard game forms, we give examples
below.

Example 1.4 (Non valuable or maximizable game forms among non-standard
game forms). Consider the standard game form on the left of Figure 1.1. If

we consider the non-standard game forms where both players can only play

deterministic probability distributions, then this game form is not valuable.

Indeed, consider the valuation v : {x, y} → [0, 1] such that v(x) := 1 and

v(y) := 0. Then, any Player-A strategy has value 0 since Player B can choose

to see y with probability 1 and symmetrically, any Player-B strategy has value

1 since Player A can choose to see x with probability 1. Furthermore, the game

form we have described in Example 1.2 is not maximizable w.r.t. Player A.

This is witnessed by any valuation mapping y to a greater value that x.

Finally, we transfer results on a speci�c game form F to any game form
that can be obtained from F by mapping every outcome to a distribution
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over another set of outcomes. We de�ne this change formally and state the
corresponding lemma below.

De�nition 1.16 (Map from outcome to distribution over outcomes). Con-

sider a non-empty set of outcomes O and a game form F ∈ Form(O). Consider

a non-empty set of outcomes O′ and a map d : O → D(O′). We denote by

Fd ∈ Form(O′) the game form Fd := 〈ΣA,ΣB,O
′,E%(·,·)(d)〉.

Lemma 1.13 (Proof 1.5.7). Consider a non-empty sets of outcomes O and

a game form F ∈ Form(O). Assume that F is valuable (resp. maximizable

w.r.t. to Player C ∈ {A,B}). Then, for all non-empty sets of outcomes O′ and

map d : O→ D(O′), so is the game form Fd.
As a corollary of Proposition 1.12 and Lemma 1.13, we obtain a state-

ment very close to Proposition 1.12 except that we dropped the deterministic
assumption:

Corollary 1.14 (Proof 1.5.8). Consider a standard game form F ∈ Form(O)

on a set of outcomes O. If ActA or ActB is �nite then F is valuable and for

any player C ∈ {A,B} with ActC �nite, the game form F is maximizable w.r.t.

Player C.

For the remainder of this dissertation, strategies in game forms will be
called GF-strategies in order not to confuse them with strategies in concurrent
games on graphs. Furthermore, they will usually be denoted by the letter σ,
typically σA (resp. σB) for a Player-A (resp. Player-B) strategy. (As opposed
to strategies in concurrent games, that we will usually denoted by s.)

1.4 Concurrent arenas and games

Before de�ning concurrent games, we need to de�ne the notion of concur-
rent arenas. To gain intuition on what these are, take a look at the (standard)
arena depicted in Figure 1.4. Consider for instance the leftmost state q0. From
there, two players � that we still call Player A and Player B � are going to
interact. The result of their interaction will be a (distribution over) successor
states. Interacting at state q0 in fact means playing in the game form depicted
in that state, where the outcomes are states of the arena. In the arena we
have depicted, all game forms are standard. Hence, this means that Player
A chooses a distribution over the rows and concurrently, Player B chooses a
distribution over the columns. A new state is then reached with some probabil-
ity, in that case either q1 or q2, and then the process repeats itself inde�nitely
thus creating an in�nite path (i.e. an in�nite sequence of states). Finally, in
addition, we consider colors (i.e. labels) over the states which will be used to
de�ne the payo� function or the winning condition. Note that they do not
relate at all with the colors appearing in the game forms in Figure 1.4.
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q0,

[
q2 q1

q1 q2

]

q3,
[
q0 q2

]

q2,



q0 q0 q2

q0 q3 q3

q2 q3 q2




q1,

[
q0 q1

q1 q2

]

Figure 1.4: A standard deterministic concurrent arena. The colors are
there only to facilitate the readability of the arena.

De�nition 1.17 (Concurrent arena). A concurrent arena C is a tuple C =

〈Q,F,K, col〉 where Q is a non-empty countable set of states, F : Q→ Form(Q)

maps each state to its induced game form, which describes the interaction of

the players at that state, K is a non-empty set of colors and col : Q → K is

the coloring function that maps each state to a color. For all q ∈ Q, the game

form F(q) is called the local interaction at state q.

In the following, when the set of states considered is clear from context,

sequences of states will be called paths.

In the following, we will consider a slightly more general formalism by
considering stopping states with output value, i.e. states that, when visited,
immediately stop the game and induce a speci�c value in [0, 1]. This is formally
de�ned below in De�nition 1.18.

De�nition 1.18 (Stopping states). Consider a concurrent arena C. A stop-
ping state q ∈ Q is a state such that, when reached, the game stops and outputs

a value val(q) ∈ [0, 1]. This will be formalized in De�nition 1.30 below. The

local interactions at stopping states are trivial and they are self-looping. The

coloring function col need not be de�ned on stopping states.

We denote by Qs ⊆ Q the set of stopping states and by Qns := Q \Qs the

set of states that are non-stopping.

For the remainder of this dissertation, the notation C will refer to the arena
〈Q,F,K, col〉, unless otherwise stated. Furthermore, in such an arena, for all
q ∈ Q, the set of Player-A GF-strategies available at state q will be referred to
as Σq

A and similarly for Player B. In addition, if the arena C is standard, the
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set of Player-A actions available at state q will be denoted ActqA and similarly
for Player B.

We would like to mention several relevant special cases of concurrent are-
nas: standard arenas, in which all local interactions are standard. Arbitrary
arenas will refer to non-necessarily standard arenas. Furthermore, we consider
deterministic arenas � such as the one depicted in Figure 1.4 � turn-based
arenas, i.e. arenas where each game form is turn-based (such as the game
form at state q3 in the arena of Figure 1.4). We will also consider �nite-state
arenas, i.e. with �nitely many states. Finally, we will consider standard �nite
arenas, that is �nite-state arenas with standard �nite local interactions. This
is de�ned formally below in De�nition 1.19.

De�nition 1.19. Consider a concurrent arena C. It is:

• standard: if every local interaction is standard;

• arbitrary: it stands for non-necessarily standard;

• deterministic: if it is standard and all of its local interactions are deter-

ministic;

• turn-based: for all q ∈ Q, the game form F(q) is turn-based (in particu-

lar, all local interactions are standard);

• �nite-state: if there are �nitely many states;

• �nite: if it is �nite-state and, if the game is standard, we additionally

require that all standard local interactions are �nite (i.e. both players

have �nitely many actions).

Remark 1.3. One can see that turn-based arenas are de�ned only with stan-

dard game forms (since turn-based game forms are by de�nition standard, re-

call De�nition 1.11). We choose to do this instead of de�ning turn-based games

with non-standard game forms because turn-based games are widely studied

and usually standard in the literature. In the following, we will transfer already

existing and prove new results on them. Hence, we do not want any confusion

as to the object we consider.

Below, we consider the notion of valuable (resp. maximizable) arena, that
is an arena where all local interactions are valuable (resp. maximizable).

De�nition 1.20 (Local interactions and valuable arena). Consider a concur-

rent arena C. If, for all q ∈ Q, the game form F(q) is valuable, then the arena

C is said to be valuable.
On the other hand, if for all q ∈ Q, the game form F(q) is supremized

w.r.t. Player A by a set SqA ⊆ Σq
A of GF-strategies, the arena C is said to be

supremized by the collection (SqA)q∈Q. This is similar for Player B. In addition,
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if for all q ∈ Q, the game form F(q) is maximizable w.r.t. to any player, then

the arena C is said to be maximizable w.r.t. that same player. If this holds for

both players, we will simply say that it is maximizable.

Note that, in this dissertation, all the properties we have de�ned on concur-
rent arenas will be used to refer to concurrent games whose underlying arenas
satisfy these properties.

Finally, we de�ne the notion of concurrent arenas built from a set of game
forms, that is such that all local interactions in that games are obtained from a
game form in that set. We �rst de�ne below the notion of game forms obtained
from another game form.

De�nition 1.21 (Game forms obtained from another game form). Consider

a set of outcomes O and a game form F ∈ Form(O). We say that a game form

F ′ ∈ Form(O′) on another set of outcomes O′ is obtained from F if there is

some map m : O→ O′ such that F ′ = Fm := 〈ActA,ActB,O
′,Em(%)〉.

We can now de�ne the notion of concurrent arena built from a set of game
forms.

De�nition 1.22 (Arena built from a set of Game Forms). Consider a set of

game form E. We say that an arena C is built from E if all local interactions

in C are obtained from a game form in E.

This notion will be particularly useful in Part III since, informally, the goal
of this part is to de�ne subsets of game forms such that all the games built
from them behave well.

1.4.1 . Drawing concurrent arenas

Below, we make a remark about how De�nition 1.17 of concurrent arenas
above � which makes use of the notion of game form to describe the interac-
tions of the players at each state � may a�ect how we draw concurrent arenas
as opposed to how they have been drawn in the literature so far.

Remark 1.4. In other papers studying concurrent arenas (for instance, [47,

48, 34, 31, 32, 49, 50]), the formalism used to describe them is di�erent. Es-

pecially, since the notion of game form is not apparent, not de�ned, the inter-

action of the players at each state is not described with a game form. Instead,

both players have a set of available actions and there is a transition function

mapping each state and pair of actions at that state to a (distribution over)

successors states. One can realize that this exactly corresponds to our formal-

ism with standard game forms, only without having introduced the notion of

game form. However, this way of de�ning concurrent arenas probably has an

impact on how these arenas are drawn. Indeed, since the notion of game form

is not used, the interactions of the players are not drawn with bi-dimensional

tables � as is done in Figure 1.4. This leads to a representation of concurrent

arenas where the interaction of the players is described by the pairs of actions

43



leading to the di�erent states of the arena (see for instance [47, Figure 3]) la-

beling the edges of the arena. We believe � but that is obviously debatable �

that drawing concurrent arenas with game forms represented as bi-dimensional

tables increases the readability of these arenas. This allows to consider local

interactions as �rst-class citizens in concurrent games. Note that not all of our

results explicitly use the notion of game forms, but many do and in any case

game forms are always an underlying object useful to have at hand.

1.4.2 . Concurrent games

A concurrent game is obtained from a concurrent arena by specifying what
Player A and Player B want to achieve in these arenas. This is done by adding
a payo� function mapping each in�nite sequence of colors to a value in [0, 1]. In
this dissertation, we will mostly focus on the special case of win/lose objectives,
that is to payo� functions taking their values in {0, 1}. This is de�ned below.

De�nition 1.23 (Concurrent game). A concurrent game is a pair G = 〈C, f〉
where C is a concurrent arena and f : Kω → [0, 1] is a measurable payo�

function.

When f [Kω] ⊆ {0, 1} the game G is called win/lose. Win/lose games are

de�ned by G = 〈C,W 〉 where the measurable set W := f−1[{1}] ⊆ Kω is

called the objective for Player A. Indeed, an in�nite sequence of colors ρ ∈W
is winning for Player A (and losing for Player B) whereas an in�nite path

ρ ∈ Kω\W is winning for Player B (and losing for Player A), hence the win/lose

terminology. We denote by WQ ⊆ Qω the measurable setWQ := (colω)−1[W ].

For the remainder of this dissertation, the notation G will refer to the
game 〈C, f〉, unless otherwise stated. Furthermore, all the payo� functions we
consider are measurable and into [0, 1].

We de�ne in De�nition 1.24 a special kind of payo� function that will be
of particular interest for us in Chapter 3: pre�x-independent payo� functions.
Informally, these are payo� functions whose values do not depend on any �nite
pre�x. This is de�ned formally below in De�nition 1.24.

De�nition 1.24 (Pre�x-independent games). Consider a set of colors K and

a payo� function f : Kω → [0, 1]. It is pre�x-independent (PI for short) if,

for all ρ ∈ Kω and π ∈ K∗, we have f(ρ) = f(π · ρ). An objective W ⊆ Kω

is pre�x-independent if the corresponding payo� function is. That is, for all

ρ ∈ Kω and π ∈ K∗, we have ρ ∈W ⇔ π · ρ ∈W .

We say that a concurrent game G = 〈C, f〉 is pre�x-independent if its payo�
function is.

Below in De�nition 1.25, we de�ne several kinds of win/lose objective of
interest for us, namely parity objectives. They are presented from Player A's
point of view, the objective for Player B would be the complement (for instance,
when Player A has a Büchi objective, Player B has a co-Büchi objective).
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De�nition 1.25 (Parity objectives).

• With a parity objective the colors are non-negative integers, the goal

of Player A is to ensure that the maximum of the colors seen in�nitely

often is even. To ensure that a maximum always exists, we consider

a �nite subset of non-negative integers: K := Jm,nK ⊆ N for some

m ≤ n ∈ N. For all ρ ∈ Kω, we let InfOft(ρ) := {k ∈ K | ∀i ∈
N, ∃j ≥ i, ρj = k} ⊆ K be the set of colors seen in�nitely often

in ρ. Then, the parity objective with colors ParityK ⊆ Kω is equal to

ParityK := {ρ ∈ Kω | max InfOft(ρ) is even }.

• With a Büchi objective, the goal of Player A is that a given set of states

S ⊆ Q is seen in�nitely often. There are two distinct colors, say K :=

{1, 2}, and the Büchi objective is equal to Buchi := {ρ ∈ Kω | ∀i ∈
N, ∃j ≥ i, ρj = 2} (hence, S is exactly the 2-colored states). Note that

this exactly corresponds to the parity objective ParityJ1,2K.

• With a co-Büchi objective, the goal of Player A is that a given set of

states S ⊆ Q is seen only �nitely often. There are two distinct colors,

say K := {0, 1}, and the co-Büchi objective is equal to coBuchi := {ρ ∈
Kω | ∃i ∈ N, ∀j ≥ i, ρj = 0} (hence S is exactly the 1-colored states).

Note that this exactly corresponds to the parity objective ParityJ0,1K.

• With a Reachability objective, the goal of Player A is that a given set

of states S ⊆ Q is seen once. There are two distinct colors, say K :=

{1, 2}, and the Reachability objective is equal to Reach := {ρ ∈ Kω |
∃i ∈ N, ρi = 2} (hence S is exactly the 2-colored states). This does

not correspond to a parity objective in general. However, this exactly

corresponds to the Büchi objective in arenas where all states q in S are

self-looping sinks i.e. the only outgoing edge of q leads to q: that is,

seeing S once means seeing it in�nitely often.

• With a Safety objective, the goal of Player A is that a given set of states

S ⊆ Q is avoided. There are two distinct colors, say K := {0, 1}, and
the Safety objective is equal to Safe := {ρ ∈ Kω | ∀i ∈ N, ρi = 0} (hence
S is exactly the 1-colored states). This does not correspond to a parity

objective in general. However, this exactly corresponds to the co-Büchi

objective in arenas where all states q in S are self-looping sinks.

Note that the parity (therefore also Büchi and co-Büchi) objectives are
pre�x-independent, but the reachability and safety are not. However, in this
dissertation, we will always consider reachability and safety objectives as spe-
cial cases of parity objectives, for the reason described above.
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1.4.3 . Strategies, induced stochastic trees and values

In concurrent arenas, strategies describe how the players play. More specif-
ically, strategies are functions that map the history of the game (i.e. the �nite
sequence of states visited so far) to a GF-strategy in the game form corre-
sponding to the current state of the game. This is formally de�ned below in
De�nition 1.26.

De�nition 1.26 (Strategies). Consider a concurrent arena C. A strategy
for Player A is a function sA : Q+ → ∪q∈QΣq

A such that, for all π ∈ Q+, we

have sA(π) ∈ Σπlt
A . We denote by SCA the set of all strategies in the arena C

for Player A. A strategy sA is deterministic if, for all ρ ∈ Q+, the GF-strategy

sA(ρ) is deterministic (recall that this is only de�ned if the game form F(ρlt) is

standard). The de�nitions are similar for Player B.

A strategy is generated by a collection indexed by Q of sets of GF-strategies
if it always plays a GF-strategy among one of the set of this collection. We
de�ne formally this notion below.

De�nition 1.27 (Strategies generated by sets of GF-strategies). Consider a

concurrent arena C and, for each state q ∈ Q consider a subset of GF-strategies

SA
q ⊆ Σq

A. We say that a Player-A strategy sA is generated by the collection

(SqA)q∈Q if, for all ρ ∈ Q+, we have sA(ρ) ∈ SρltA . The de�nition is similar for

Player B.

The outcome of a game, given a strategy per Player, is a probability mea-
sure over in�nite paths. To formalize this, we �rst de�ne below the probability
to go from a state q to a state q′ given two GF-strategies in F(q).

De�nition 1.28 (Probability transition given two strategies). Consider a

concurrent arena C, a state q ∈ Q and two strategies (σA, σB) ∈ Σq
A ×Σq

B. Let

q′ ∈ Q. The probability to go from q to q′ if the players plays, in q, σA and

σB, denoted PσA,σBC (q, q′), is equal to (recalling the last sentence of the �rst

paragraph Subsection 1.2.1):

PσA,σBC (q, q′) := out[〈F(q), q′〉](σA, σB)

Below, we de�ne, given a strategy per player, the probability of �nite paths.
Then, the de�nition of stochastic tree induced by a pair of strategies follows.

De�nition 1.29 (Probability distribution given two strategies). Consider a

concurrent arena C and two arbitrary strategies (sA, sB) ∈ SA
C ×SB

C . We denote

by PsA,sB
C : Q+ → D(Q) the function giving the probability distribution over

the next state of the arena given the sequence of states already seen. That is,

for all �nite path π ∈ Q+ and q ∈ Q, we have:
PsA,sB
C (π)[q] := PsA(π),sB(π)

C (πlt, q)

The stochastic tree T sA,sB
C induced by the pair of strategies (sA, sB) is then

equal to T sA,sB
C := 〈Q,PsA,sB

C 〉.
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Given two strategies and the stochastic tree induced by them, we have, by
using De�nition 1.7, the expected value of the (measurable) payo� function.
Analogously to what happens in game forms (recall De�nition 1.14), in a con-
current game on graph, Player A tries to maximize this payo� function whereas
Player B tries to minimize it. The value of a Player-A strategy sA is the best
that this strategy sA can achieve against all Player-B strategies. Therefore, it
is equal to the in�mum over all Player-B strategies sB of the expected value of
the payo� function given that pair of strategies (sA, sB). Then, the Player-A
value of the game is equal to the supremum of the values of her strategies.
Before giving the formal de�nitions in De�nition 1.31, we de�ne exactly the
payo� function we consider, that takes into account the stopping states of the
arena.

De�nition 1.30 (Payo� function on the sequences of states). Consider a

concurrent game G = 〈C, f〉. We denote by fC : Qω → [0, 1] the function such

that, for all ρ ∈ Qω:

fC(ρ) :=

{
f ◦ colω(ρ) if ρ ∈ (Qns)

ω

val(q) if ρ ∈ (Qns)
∗ · q ·Qω, for q ∈ Qs

Interestingly, such a function is measurable.

Proposition 1.15 (Proof 1.5.9). For any concurrent game G = 〈C, f〉 and
for all ρ ∈ Q∗, the residual function (fC)

ρ : Qω → [0, 1] is measurable.

We can now de�ne formally the value of a concurrent game.

De�nition 1.31 (Value of strategies and of the game). Let G = 〈C, f〉 be a
concurrent game and sA ∈ SA

C be a Player-A strategy. The function χG [sA] :

Q → [0, 1] mapping each state to the value of the strategy sA from that state

is such that, for all q0 ∈ Q, we have:

χG [sA](q0) := inf
sB∈SBC

EsA,sB
C,q0 [(fC)

q0 ]

The function χG [A] : Q → [0, 1] mapping each state to the value for Player A

from that state is such that, for all q0 ∈ Q, we have:

χG [A](q0) := sup
sA∈SAC

χG [sA](q0)

The vector χG [B] : Q → [0, 1] giving the value of the game for Player B is

de�ned symmetrically. When χG [A] = χG [B], this de�nes the value of the
game: χG := χG [A] = χG [B].

For all states q ∈ Q, a Player-A strategy sA such that (resp. for some

positive ε > 0), we have χG [A](q) = χG [sA](q) (resp. χG [A](q) ≤ χG [sA](q) + ε)

is optimal (resp. ε-optimal) from the state q. When this holds from all states

q ∈ Q, the strategy sA is simply said to be optimal (resp. ε-optimal). This is
symmetrical for Player B.

47



Observation 1.2. In all concurrent games G, we have χG [A] ≤ χG [B]. Fur-

thermore, by de�nition, for all ε > 0, both players have ε-optimal strategies.

Below, we state that, for all pre�x-independent payo� functions, replacing
states with stopping states of the same value (w.r.t. either of the player) does
not change the value of any state (w.r.t. the same player).

Lemma 1.16 (Proof Subsection 1.5.10). Consider an arbitrary pre�x-independent

concurrent game G, a subset of states S ⊆ Q and a Player C ∈ {A,B}. We

denote by GS,C the game where all states q ∈ S are stopping states with

val(q)← χG [C](q). Then, the Player-C values of all states are the same in the

games G and GS,C: χGS,C [C] = χG [C]. Hence, if the game G has a value, so has

the game GS,C.
Furthermore, if Player C has an optimal strategy in the game G, then she

also has one in the game GS,C.
Let us introduce below a notation for the set of values occurring in a game.

Furthermore, for all values u ∈ [0, 1], we also consider the set of states of value
u that we call a value slice.

De�nition 1.32 (Set of values, value slice). Consider a PI concurrent game

G. We let V GA := χG [A][Q] ⊆ [0, 1] be the set of Player-A values occurring in

the game and, for all u ∈ VA, we let QA
u := (χG [A])−1[{u}] be the u-value slice,

i.e. the set of states whose Player-A values are equal to u. The notation is

analogous for Player B. Furthermore, we omit the notation for the player if

they are the same for both players.

Let us focus on the special case of Player-A strategies of value 1 (sym-
metrically, we could focus on Player-B strategies of value 0). Such a Player-A
strategy is said to be almost-surely winning since, regardless of Player-B strat-
egy and almost surely, the produced in�nite path has value 1 w.r.t. the payo�
function. When this happens surely, and in a win/lose game, such a strategy
is said to be winning, as de�ned below in De�nition 1.33.

De�nition 1.33 (Compatible paths, Winning strategies). Consider a con-

current game G without stopping states, a Player-A strategy sA and a state

q ∈ Q. A (�nite or in�nite) path ρ ∈ Q↑ is compatible with sA from q if there

is a Player-B strategy sB such that, for all i < |ρ|, we have:

PsA,sB
C,q (ρ≤i) > 0

We denote by CPC,q(sA) ⊆ Qω the set of in�nite paths compatible with sA from

q ∈ Q.
If the game G = 〈C,W 〉 is win/lose, we say that the strategy sA is winning

from q if CPC,q(sA) ⊆WQ. The de�nition is symmetrical for Player B.

1.4.4 . Positional and �nite-memory strategies
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A desirable property in concurrent games is that optimal or winning strate-
gies exist, and that they are as simple as possible. In this context, simpler
strategies are the strategies that can be implemented with a �nite automaton
with fewer states. To de�ne how strategies can be implemented with a �nite
automaton, we �rst need to introduce the notion of memory skeleton (see, for
instance, [51]), informally a �nite automaton taking as input a �nite sequence
of colors. This is formally de�ned below.

De�nition 1.34 (Memory skeleton). For a set of colors K, a �nite memory

skeleton on K is a triple M = 〈M,minit, µ〉, where M is a non-empty �nite

set called the memory, minit ∈ M is the initial state of the memory and µ :

M × K→ M is the update function. Note that the update function µ can be

extended inductively into a function µ∗ : M×K∗ →M in the following way: for

all m ∈M , µ∗(m, ε) := m and for all ρ · k ∈ K+, µ∗(m, ρ · k) := µ(µ∗(m, ρ), k).

Remark 1.5. When considering the memory skeleton, one can see that the

update of the memory is done when a color is seen � it could be called a

"chromatic" memory skeleton. Finite-memory strategies could be alternatively

de�ned with an update with states seen in the game. The bene�t of this

de�nition of �nite memory is that it does not depend on the underlying arena,

only on the colors. Hence, we can talk about a memory skeleton that can be

used with a winning objective in all arenas.

To implement a strategy from a memory skeleton, we need a function
mapping a state of the game along with a memory state into a GF-strategy.
Such a function is called an action map, and it is de�ned below.

De�nition 1.35 (Action map). Consider a concurrent arena C and a set

of memory states M . An action map on M is a function λ : M × Q →
∪q∈QΣA(F(q)) such that for all q ∈ Q and m ∈M we have λ(m, q) ∈ ΣA(F(q)).

With a memory skeleton and an action map, we can now implement a strat-
egy. This de�nes �nite-memory strategies. In the remainder of this dissertation
we will be particularly interested in positional strategies i.e. strategies that can
be implemented from a memory skeleton with only one state. In other words,
what the strategy plays only depends on the current state (or position) of the
game, hence the terminology. This is formally de�ned below.

De�nition 1.36 (Positional, �nite-memory strategies). Consider a concur-

rent arena C. A memory skeleton M = 〈M,minit, µ〉 on K and an action map

λ : M ×Q→ ∪q∈QΣA(F(q)) implement the strategy sA : Q+ → ∪q∈QΣA(F(q))

such that, for all ρ ∈ Q+, sA(ρ) := λ(µ∗(minit, col∗(tl(ρ))), ρlt) ∈ ΣA(F(q)).

Given a memory skeleton M, a strategy sA is implementable by M if there

is an action map λ such that M and λ implement sA. A strategy sA is �nite
memory if there exists a �nite memory skeleton M by which sA is implemented.

If M is a singleton, the strategy sA is said to be positional. It can be seen as
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a function sA : Q→ ∪q∈QΣA(F(q)). If a strategy is not �nite memory, then it

is in�nite memory.

Observation 1.3. Consider a concurrent arena C. Given a positional strat-

egy per player sA ∈ SA
C and sB ∈ SB

C , the stochastic tree T sA,sB
C induced by sA

and sB is in fact a Markov chain.

1.4.5 . Markov decision process

Finally, we present Markov decision processes. They can be seen as one-
player games since, from every state of the game, exactly one player decides
the next state. However, just like for turn-based game (recall Remark 1.4), we
will only consider standard interactions.

De�nition 1.37 (Markov decision process). AMarkov decision process (MDP

for short) Γ is a concurrent arena Γ := 〈Q,F,K, col〉 where all local interactions
are turn-based for the same player. For all q ∈ Q, we denote by Actq the set

of actions available at state q and by %q : Actq → D(Q) the function mapping

each action to a distribution over successor states. (Both Actq and %q are given

by the game form F(q).)

The useful objects in MDPs are the end components [52], informally sub-
MDPs that are strongly connected, similar to BSCC in Markov chains (recall
De�nition 1.9).

De�nition 1.38 (End component). Consider an MDP Γ. An end component
(EC for short) H in Γ is a pair (QH , βH) such that QH ⊆ Q is a subset of states

and, for all q ∈ QH , we have βH(q) ⊆ Actq the subset of actions compatible

with the EC H such that:

• for all q ∈ QH and c ∈ βH(q), we have Sp(%q(c)) ⊆ QH ;

• the underlying graph (QH , E) is strongly connected, where (q, q′) ∈ E if

and only if there is some c ∈ βH(q) such that q′ ∈ Sp(%q(c)).

An end component H can be seen as a concurrent arena. In that case, it is

denoted CH . We denote by EΓ the set of all ECs in the MDP Γ.

In fact, similarly to what happens in Markov chains (recall Theorem 1.8):
almost-surely the set of states seen in�nitely often form a BSCC. Here, for all
deterministic strategies, the set of states seen in�nitely often form an EC. This
is a well-known result, see for instance [43, Theorem 10.120], that we recall
below in Theorem 1.17.

Theorem 1.17. Consider a �nite-state MDP Γ where Player B plays. Then,

for all deterministic strategies sB ∈ SCB, we have:

Pq


 ⋃

H∈EΓ


(Q∗ ·QωH) ∩


 ⋂

q∈QH

(Q∗ · {q})ω





 = 1
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In any standard game, once Player A chooses a strategy, we obtain a
Markov decision process where Player B plays alone.

De�nition 1.39 (Induced Markov decision process). Consider a standard

arena G. Let sA ∈ PSA
C be a positional strategy. The Markov decision pro-

cess ΓsA
C (MDP for short) induced by the strategy sA is the equal to ΓsA

C :=

〈Q,FsA ,K, col〉 where, for all q ∈ Q, we have FsA(q) := 〈∗,ActqB, Q, %q(sA(q), ·)〉.

1.5 Appendix

1.5.1 . Proof of Proposition 1.4

Proof. Consider an open set B = ∪ρ∈ACyl(ρ) ∈ Borel(Q) for some A ⊆ Q∗.
Then, we have π · B = ∪ρ∈π·ACyl(ρ) ∈ Borel(Q). Furthermore, if there is a
�nite path ρ ∈ A such that ρ ⊆ π then π−1 · B = Qω ∈ Borel(Q). Otherwise,
we let Aπ := {ρ ∈ Q+ | π · ρ ∈ A}. Then, π−1 ·B = ∪ρ∈AπCyl(ρ) ∈ Borel(Q).

Consider now any Borel set B ∈ Borel(Q). We have Qω \ (π · B) =

∪ρ∈Q|π|\{π}Cyl(ρ) ∪ π · (Qω \B). In addition, Qω \ (π−1 ·B) = π−1 · (Qω \B).

Finally, for all (Bn)n∈N ∈ (Borel(Q))N, we have π · (∪n∈NBn) = ∪n∈N(π · Bn)

and π−1 · (∪n∈NBn) = (∪n∈Nπ−1 · Bn). By de�nition of the set Borel(Q), the
property is ensured for all Borel sets B ∈ Borel(Q).

Furthermore, for all α ∈ [0, 1], we have:

(fπ)−1([0, α]) = π−1 · f−1([0, α]) ∈ Borel(Q)

Hence, the residual function fπ is measurable.

1.5.2 . Proof of Lemma 1.7

Proof. We let Ω := Q∪Q′, Ω∗sq := (Q ·Q′)∗∪ (Q ·Q′)+ ·Q and Ωω
sq := (Q ·Q′)ω.

Note that (Q · Q′)↑ = Ω∗sq ∪ Ωω
sq. Let us �rst show that the function fQ,Q′ :

Ωω → [0, 1] is measurable. First, the set Ωω
sq ⊆ Ωω is Borel since it is closed.

Indeed we have

Ωω \ Ωω
sq =

⋃

π∈Ω∗\((Q·Q′)∗∪(Q·Q′)+·Q)

Cyl(π)

Now, let us show that for all Borel sets B ∈ Borel(Q), we have (φQ,Q′)
−1[B] ∈

Borel(Ω). We proceed similarly to what we did in the proof of Proposition 1.4.
Consider �rst an open set B = ∪π∈ACyl(π) for some A ⊆ Q+. For all π =

π0 . . . πn ∈ A, we let:

PrIm(π) := ∪ρ=ρ0...ρn−1∈(Q′)nCyl(π0 · ρ0 · · · ρn−1 · πn)

Then, we have:
(φQ,Q′)

−1[B] =
⋃

π∈A
PrIm(π) ∩ Ωω

sq
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Hence, (φQ,Q′)
−1[B] is Borel. Furthermore, for all B ∈ Borel(Q), we have:

(φQ,Q′)
−1[Qω \B] = Ωω \ (φQ,Q′)

−1[B]

and for all (Bn)n∈N ∈ (Borel(Q))N, we have:

(φQ,Q′)
−1[∪n∈NBn] = ∪n∈N(φQ,Q′)

−1[Bn]

It follows that (φQ,Q′)
−1[B] ⊆ Ωω is Borel, for all B ∈ Borel(Q).

Now, consider some α ∈ [0, 1]. We have:

f−1
Q,Q′ [[0, α]] = Ωω \ Ωω

sq ∪ (φQ,Q′)
−1[f−1[[0, α]]] ∈ Borel(Ω)

Therefore, the function fQ,Q′ is measurable.
Let us now show the equality of the expected values. We let P̃q : Borel(Q)→

[0, 1] be the function such that, for all Borel sets B ∈ Borel(Q), P̃q[B] :=

P′q[Antq[B]] ∈ [0, 1] where Antq[B] := q−1 · (φQ,Q′)−1[q · B] ∈ Borel(Ω). Then,
consider countably many disjoint Borel sets (Bn)n∈N ∈ (Borel(Q))N. We have:

Antq[]n∈NBn] = {ρ ∈ Ωω | q · ρ ∈ (φQ,Q′)
−1[q · (]n∈NBn)]}

= {ρ ∈ Ωω | q · ρ ∈ ]n∈N(φQ,Q′)
−1[q · (Bn)]}

= ]n∈N{ρ ∈ Ωω | q · ρ ∈ (φQ,Q′)
−1[q · (Bn)]}

= ]n∈NAntq[Bn]

Therefore, since P′q is a probability measure on Ωω and all sets (Antq[]n∈NBn])n∈N
are disjoint, we have P̃q[]n∈NBn] =

∑
n∈N P̃q[Bn]. In addition, Antq[∅] = ∅

and Antq[Q
ω] = Q′ ·Ωω

sq. Hence P′q[Antq[Q
ω]] = 1 since the stochastic tree T is

(Q,Q′)-alternating. Therefore, the function P̃q is a probability measure over
Qω.

Furthermore, for all π ∈ Q∗, we have Antq[Cyl(π)] = ∪π′∈T(π)Cyl(π′)∩Ωω
sq.

Hence, we have, by assumption of the lemma and since the stochastic tree T
is (Q,Q′)-alternating:

Pq[Cyl(π)] = P′q[∪π′∈T(π)Cyl(π′)] = P̃q[Cyl(π)]

Hence, by Lemma 1.2, we have that, for all Borel sets B ∈ Borel(Q), Pq[B] =

P̃q[B] = P′q[Antq[B]]. Now, consider any step function g =
∑n

i=1 αi · 1Bi :

Qω → [0, 1], where for all i ∈ J1, nK, we have Bi ∈ Borel(Q). Since T ′ is
(Q,Q′)-alternating, we have:

E′q[g
q
Q,Q′ ] = E′q[g

q
Q,Q′ ∩Q′ · Ωω

sq] =

n∑

i=1

αi · P′q[q−1 · (φQ,Q′)−1[Bi]]

Furthermore:

Eq[gq] =

n∑

i=1

αi · Pq[q−1 ·Bi] =
n∑

i=1

αi · P′q[q−1 · (φQ,Q′)−1[Bi]] = E′q[g
q
Q,Q′ ]
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For all measurable functions f : Qω → [0, 1] and all step functions fn :

Qω → [0, 1] such that fn ≤ f , we have (fn)Q,Q′ ≤ fQ,Q′ . Hence, we can
conclude that, for all measurable functions f : Qω → [0, 1], we have Eq[f q] ≤
E′q[(fQ,Q′)q] by de�nition of these expected values. Furthermore, for f : Qω →
[0, 1] a measurable function, 1 − f is also a measurable function. Hence, 1 −
Eq[f q] = Eq[(1 − f)q] ≤ E′q[((1 − f)Q,Q′)

q]. In addition, we have E′q[((1 −
f)Q,Q′)

q] = E′q[1 − (fQ,Q′)
q] = 1 − E′q[(fQ,Q′)q] since the stochastic tree T ′ is

(Q,Q′)-alternating and the functions ((1− f)Q,Q′)
q and 1− (fQ,Q′)

q coincide
on Q′ · Ωω

sq. We obtain: Eq[f q] = E′q[(fQ,Q′)q].

1.5.3 . Proof of Lemma 1.9

Proof. Consider a game in normal form F . Let σA ∈ ΣA(F). We have:

val[F ](σA) = inf
σB∈ΣB(F)

out[F ](σA, σB) ≤ inf
σB∈ΣB(F)

sup
σ′A∈ΣA(F)

out[F ](σ′A, σB) = val[F ](B)

As this holds for all σA ∈ ΣA(F), it follows that:

val[F ](A) = sup
σA∈ΣA(F)

val[F ](σA) ≤ val[F ](B)

1.5.4 . Proof of Lemma 1.10

First, we prove a straightforward lemma that gives explicitely what is the
outcome of a game in normal form.

Lemma 1.18. Consider a game form F , a valuation v : O → [0, 1] and a

strategy per player (σA, σB) ∈ ΣA × ΣB. We have:

out[〈F , v〉](σA, σB) =
∑

o∈Sp(δ(σA,σB))

v(o) · %(σA, σB)(o)

Proof. By de�nition of the expected value, we have:

out[〈F , v〉](σA, σB) =
∑

x∈[0,1]

∑

o∈Sp(δ(σA,σB))
v(o)=x

x · %(σA, σB)(o)

=
∑

x∈[0,1]

∑

o∈Sp(δ(σA,σB))

x · 1v−1[x](o) · %(σA, σB)(o)

=
∑

o∈Sp(δ(σA,σB))

∑

x∈[0,1]

x · 1v−1[x](o) · %(σA, σB)(o)

=
∑

o∈Sp(δ(σA,σB))

v(o) · %(σA, σB)(o)
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The above lemma will be implicitly used in this dissertation when manip-
ulating outcomes of games in normal form.

We can now proceed to the proof of Lemma 1.10.

Proof. We have:

out[〈F ,
∑

n∈N
λn · vn〉](σA, σB) =

∑

o∈Sp(δ(σA,σB))

(
∑

n∈N
λn · vn)(o) · %(σA, σB)(o)

=
∑

n∈N
λn ·

∑

o∈Sp(δ(σA,σB))

vn(o) · %(σA, σB)(o)

=
∑

n∈N
λn · out[〈F , vn〉](σA, σB)

Consider any two valuations v, v′ : O → [0, 1], λ ≥ 0 and x ∈ R such that
λ · v + x ≤ v′. We have:

out[〈F , v′〉](σA, σB) =
∑

o∈Sp(δ(σA,σB))

v′(o) · %(σA, σB)(o)

≥
∑

o∈Sp(δ(σA,σB))

(λ · v + x)(o) · %(σA, σB)(o)

= λ ·
∑

o∈Sp(δ(σA,σB))

v(o) · %(σA, σB)(o) + x

= λ · out[〈F , v〉](σA, σB) + x

≥ λ · val[〈F , v〉](σA) + x

Since this holds for all σB ∈ ΣB, it follows that:

λ · val[〈F , v〉](σA) + x ≤ val[〈F , v′〉](σA) ≤ val[〈F , v′〉](A)

Therefore:
val[〈F , v〉](σA) ≤ 1

λ
· (val[〈F , v′〉](A)− x)

Since this holds for all σA ∈ ΣA, it follows that:

val[〈F , v〉](A) ≤ 1

λ
· (val[〈F , v′〉](A)− x)

Thus:
λ · val[〈F , v〉](A) + x ≤ val[〈F , v′〉](A)

Finally, assume that λ · v+x : O→ [0, 1]. Then, denoting v′ := λ · v+x : O→
[0, 1] we have shown that:

λ · val[〈F , v〉](A) + x ≤ val[〈F , v′〉](A)

Furthermore, we have 1
λv
′ − x

λ = v. Therefore, we have:

1

λ
val[〈F , v′〉](A)− x

λ
≤ val[〈F , v〉](A)
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That is:

val[〈F , λ · v · x〉](A) = val[〈F , v′〉](A) ≤ λ · val[〈F , v〉](A) + x

We obtain:

val[〈F , λ · v · x〉](A) = λ · val[〈F , v〉](A) + x

This is analogous if s = σB or s = B.

1.5.5 . Proof of Observation 1.1

Proof. Consider such a �nite set SC ⊆ ΣC(F) of Player-C strategies and assume
that it supremizes F . Let v : O→ [0, 1] be a valuation of the outcomes. Since
SC supremizes the game form F , it follows that for all n ∈ N, there is a
Player-C strategy σn ∈ ΣC(F) that is 1

n+1 -optimal in the game in normal
form 〈F , v〉. Since the set SC is �nite, there must be a Player-C strategy
σC ∈ ΣC(F) such that σC = σn for in�nitely many n ∈ N. Therefore, we
have val[〈F , v〉](σC) = val[〈F , v〉] since, for in�nitely many n ∈ N, we have
|val[〈F , v〉](σC) − val[〈F , v〉]| ≤ 1

n+1 . That is, the strategy σC ∈ SC is optimal
in the game in normal form 〈F , v〉. As this holds for all valuations of the
outcomes v : O→ [0, 1], it follows that the set SC maximizes the game form F
w.r.t. Player C.

1.5.6 . Proof of Proposition 1.12

Before considering the proof of Proposition 1.12, let us state and prove the
lemma below:

Lemma 1.19. Consider a standard game form F . Consider two valuations

of the outcomes v, v′ : O→ [0, 1], two Player-A strategies σA, σ
′
A ∈ ΣA(F) and

two Player-B strategies σB, σ
′
B ∈ ΣB(F). Then:

|out[〈F , v〉](σA, σB)−out[〈F , v′〉](σ′A, σ′B)| ≤ ‖v−v′‖∞+‖σA−σ′A‖1+‖σB−σ′B‖1

Note that ‖σA − σ′A‖1 is well de�ned since both σA and σ′A have countable

support, and similarly for σB and σ′B. Hence:

|val[〈F , v〉](σA)− val[〈F , v′〉](σ′A)| ≤ ‖v − v′‖∞ + ‖σA − σ′A‖1

and

|val[〈F , v〉](A)− val[〈F , v′〉](A)| ≤ ‖v − v′‖∞

These inequalities also hold for Player B.

Proof. The proof is quite long while the idea is very simple: it just amounts
to expand De�nition 1.13 in the context of standard game forms. However, it
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involves nested sums, hence the length of the proof. We use several times that∑
a∈ActA σA(a) = 1 =

∑
b∈ActB σB(b) and that v(o) ≤ 1 for all o ∈ O. We have:

|out[〈F , v〉](σA, σB)− out[〈F , v′〉](σ′A, σ′B)|
= |
∑

o∈O

∑

a∈ActA

∑

b∈ActB

(σA(a) · σB(b) · v(o) · %(a, b)(o)− σ′A(a) · σ′B(b) · v′(o) · %(a, b)(o))|

≤
∑

o∈O

∑

a∈ActA

∑

b∈ActB

|(σA(a) · σB(b) · v(o) · %(a, b)(o)− σ′A(a) · σ′B(b) · v′(o) · %(a, b)(o))|

≤
∑

o∈O

∑

a∈ActA

∑

b∈ActB

σA(a) · |σB(b) · v(o) · %(a, b)(o)− σ′B(b) · v′(o) · %(a, b)(o)|

+
∑

o∈O

∑

a∈ActA

∑

b∈ActB

|σA(a)′ − σA(a)| · |σ′B(b) · v′(o) · %(a, b)(o)|

We let:

x :=
∑

o∈O

∑

a∈ActA

∑

b∈ActB

σA(a) · |σB(b) · v(o) · %(a, b)(o)− σ′B(b) · v′(o) · %(a, b)(o)|

and

y :=
∑

o∈O

∑

a∈ActA

∑

b∈ActB

|σA(a)′ − σA(a)| · |σ′B(b) · v′(o) · %(a, b)(o)|

Thus, we have |out[〈F , v〉](σA, σB)− out[〈F , v′〉](σ′A, σ′B)| ≤ x+ y. Let us �rst
deal with y:

y =
∑

o∈O

∑

a∈ActA

∑

b∈ActB

|σA(a)′ − σA(a)| · |σ′B(b) · v′(o) · %(a, b)(o)|

=
∑

a∈ActA

|(σA(a)′ − σA(a))| ·


 ∑

b∈ActB

σ′B(b) ·
∑

o∈O
|v′(o) · %(a, b)(o)|




≤
∑

a∈ActA

|(σA(a)′ − σA(a))| ·


 ∑

b∈ActB

σ′B(b)




=
∑

a∈ActA

|(σA(a)′ − σA(a))| = ‖σ′A − σA‖1
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Let us now deal with x:

x =
∑

o∈O

∑

a∈ActA

∑

b∈ActB

σA(a) · |σB(b) · v(o) · %(a, b)(o)− σ′B(b) · v′(o) · %(a, b)(o)|

≤
∑

a∈ActA

σA(a) ·


 ∑

b∈ActB

σB(b) ·
∑

o∈O
%(a, b)(o) · |v(o)− v′(o)|

+
∑

b∈ActB

|σB(b)− σ′B(b)| ·
∑

o∈O
%(a, b)(o) · |v(o)− v′(o)|




≤
∑

a∈ActA

σA(a) ·


 ∑

b∈ActB

σB(b) · ‖v − v′‖∞ +
∑

b∈ActB

|σB(b)− σ′B(b)| · ‖v − v′‖∞




=
∑

a∈ActA

σA(a) · (‖v − v′‖∞ + ‖σB − σ′B‖1) = ‖v − v′‖+ ‖σB − σ′B‖1

Overall, we do obtain:

|out[〈F , v〉](σA, σB)−out[〈F , v′〉](σ′A, σ′B)| ≤ ‖σ′A−σA‖1+‖σB−σ′B‖1+‖v−v′‖∞

This proves the �rst inequality of Lemma 1.19. Let us consider the second one.
For all positive ε > 0, let σεB ∈ ΣB(F) be such that

out[〈F , v〉](σA, σεB) ≤ val[〈F , v〉](σA) + ε

Then:

val[〈F , v′〉](σ′A) ≤ out[〈F , v′〉](σ′A, σεB)

≤ out[〈F , v〉](σA, σεB) + ‖v − v′‖∞ + ‖σA − σ′A‖1
≤ val[〈F , v〉](σA) + ‖v − v′‖∞ + ‖σA − σ′A‖1 + ε

As this holds for all ε > 0, it follows that:

val[〈F , v′〉](σ′A) ≤ val[〈F , v〉](σA) + ‖v − v′‖∞ + ‖σA − σ′A‖1

By symmetry, we obtain that:

|val[〈F , v′〉](σ′A)− val[〈F , v〉](σA)| ≤ +‖v − v′‖∞ + ‖σA − σ′A‖1

Let us now consider to the third inequality. We proceed similarly to the
previous one: For all positive ε > 0, let σεA ∈ ΣA(F) be such that

val[〈F , v〉](σεA) ≥ val[〈F , v〉](A)− ε
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Then:

val[〈F , v′〉](A) ≥ val[〈F , v′〉](σεA)

≥ val[〈F , v〉](σεA)− ‖v − v′‖∞
≥ val[〈F , v〉](A)− ‖v − v′‖∞ − ε

As this holds for all ε > 0, it follows that:

val[〈F , v′〉](A) ≥ val[〈F , v〉](A)− ‖v − v′‖∞

By symmetry, we obtain that:

|val[〈F , v′〉](A)− val[〈F , v〉](A)| ≤ ‖v − v′‖∞

Now, we state and show below that there is a value and optimal strategies
for both players in the case where the valuation takes �nitely many values.

Lemma 1.20. Consider a standard deterministic game form F ∈ Form(O)

on a set of outcomes O where either of the players has �nitely many actions.

Consider a valuation v : O→ [0, 1] such that v[O] ⊆ [0, 1] is �nite. Then, there

is a value in the game in normal form 〈F , v〉 and both players have optimal

strategies.

Proof. We prove the lemma in the case where ActA is �nite. The other case
is analogous. For all b, b′ ∈ ActB, we say that b is equivalent to b′, denoted
b ∼ b′ if, v ◦ %(·, b) : ActA → [0, 1] = v ◦ %(·, b′) : ActA → [0, 1]. That is,
the columns corresponding to actions b and b′ are identical. Clearly, ∼ is an
equivalence relation over ActB × ActB. Let RB ⊆ P(ActB) be the (non-empty)
set of equivalence classes of the equivalence relation ∼ where P(ActB) refers to
the set of subsets of ActB. In fact, RB is �nite. Indeed, for all Player-B actions
b ∈ ActB, we have v◦%(·, b) : ActA → v[O]. Since ActA and v[O] are �nite, there
are �nitely many functions ActA → v[O]. Since an element of RB corresponds
to a function ActA → v[O], it follows that RB is �nite. For all T ∈ RB, we let
bT ∈ T be a representative of the equivalence class T . Consider now the game
form F ′ := 〈ActA, RB,O, %

′〉, where, for all a ∈ ActA and T ∈ RB, we have
%′(a, T ) := %(a, bT ). This game in normal form is �nite and deterministic and
therefore has a value u := val[〈F ′, v〉] ∈ [0, 1] by Theorem 1.11. Let us show
that u is in fact the value of the game in normal form 〈F , v〉.

We let g : ΣB(F) → ΣB(F ′) be such that, for all σB ∈ ΣB(F), for all
T ∈ RB, we have g(σB)(T ) :=

∑
b∈T σB(b). We claim that:

∀(σA, σB) ∈ ΣA(F)× ΣB(F), out[〈F , v〉](σA, σB) = out[〈F ′, v〉](σA, g(σB))

(1.1)
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Indeed, let (σA, σB) ∈ ΣA(F)×ΣB(F). We have (recall that the game form F
is deterministic):

out[〈F , v〉](σA, σB) =
∑

a∈ActA

∑

b∈ActB

σA(a) · σB(b) · v ◦ %(a, b)

=
∑

a∈ActA

σA(a) ·


∑

T∈RB

∑

b∈T
σB(b) · v ◦ %(a, b)




=
∑

a∈ActA

σA(a) ·


∑

T∈RB

g(σB)(T ) · v ◦ %(a, bT )




= out[〈F ′, v〉](σA, g(σB))

We also let g′ : ΣB(F ′) → ΣB(F) be such that, for all σ′B ∈ ΣB(F ′), for all
b ∈ ActB, we have:

g′(σ′B)(b) :=

{
σ′B(T ) if b = bT for some T ∈ RB

0 otherwise

One can see that for all σ′B ∈ ΣB(F ′), we have g ◦ g′(σ′B) = σ′B.
Consider optimal strategies σ′A and σ′B for both players in the game in

normal form 〈F ′, v〉. We claim that σ′A ∈ ΣA(F) and g′(σ′B) ∈ ΣB(F) have
value u in the game in normal form 〈F , v〉.

Consider any Player-B strategy σB in the game form F . Then, by Equa-
tion 1.1:

out[〈F , v〉](σ′A, σB) = out[〈F ′, v〉](σ′A, g(σB))

≥ val[〈F ′, v〉](σ′A) = u

Hence, val[〈F , v〉](σ′A) ≥ u. Furthermore, for any Player-A strategy σA in the
game form F , by Equation 1.1:

out[〈F , v〉](σA, g′(σ′B)) = out[〈F ′, v〉](σA, g ◦ g′(σ′B))

= out[〈F ′, v〉](σA, σ′B)

≤ val[〈F ′, v〉](σ′B) = u

Hence, val[〈F , v〉](g(σ′B)) ≤ u. Overall, we obtain val[〈F , v〉](σA) = u =

val[〈F , v〉](g′(σ′B)).

We can proceed to the proof of Proposition 1.12.

Proof. Consider a valuation of the outcomes v : O→ [0, 1]. For all n ∈ N, we
let vn : O→ [0, 1] be the valuation of the outcomes such that, for all outcomes
o ∈ O:

vn(o) :=
b2n · v(o)c

2n
∈
{
i

2n
| i ∈ J0, 2nK

}
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where b·c : R → Z is the �oor function, that is, for all x ∈ R, we have
bxc ≤ x < bxc+ 1. Therefore, we have ‖vn− v‖∞ ≤ 1

2n . Since vn takes �nitely
many values, it follows, by Lemma 1.20, that the game in normal form 〈F , vn〉
has a value and there are optimal strategies for both players in that game.
We denote by un := val[〈F , vn〉] the value of the game in normal form 〈F , vn〉
and by σnA ∈ ΣA(F) (resp. σnB ∈ ΣB(F)) a Player-A (resp. Player-B) optimal
strategy in the game in normal form 〈F , vn〉.

Let u ∈ [0, 1] be subsequential limit (w.r.t. ‖ · ‖∞) of (un)n∈N, that is
u = lim

n→∞
uϕ(n) for some increasing ϕ : N → N (that exists by Theorem 1.1).

Let also σA be a subsequential limit (w.r.t. ‖ · ‖∞) of (σ
ϕ(n)
A )n∈N, that is σA =

lim
n→∞

σ
ψ◦ϕ(n)
A for some increasing ψ : N→ N (which is possible by Theorem 1.1

since ActA is �nite). We let h := ψ ◦ ϕ : N → N. First, let us show that

σA ∈ ΣA(F). Since, for all a ∈ ActA and n ∈ N, we have σh(n)
A (a) ∈ [0, 1], it

follows that we also have σA(a) ∈ [0, 1]. Furthermore:

∑

a∈ActA

σA(a) =
∑

a∈ActA

lim
n→∞

σ
h(n)
A (a) = lim

n→∞

∑

a∈ActA

σ
h(n)
A (a) = lim

n→∞
1 = 1

Hence, we do have σA ∈ ΣA(F).
Let us now show that val[〈F , v〉](σA) ≥ u. Let σB ∈ ΣB(F). For all n ∈ N,

we have, by Lemma 1.19:

out[〈F , v〉](σA, σB) ≥ out[〈F , vh(n)〉](σh(n)
A , σB)− ‖vh(n) − v‖∞ − ‖σA − σh(n)

A ‖1
≥ val[〈F , vh(n)〉](σh(n)

A )− 1

2h(n)
− ‖σA − σh(n)

A ‖1

= uh(n) −
1

2h(n)
− ‖σA − σh(n)

A ‖1

Thus:

out[〈F , v〉](σA, σB) ≥ uh(n) −
1

2h(n)
− ‖σA − σh(n)

A ‖1 (1.2)

Furthermore, since σA = lim
n→∞

σ
h(n)
A , it follows that

lim
n→∞

‖σA − σh(n)
A ‖1 = 0

Since (uh(n))n∈N is a subsequence of (uϕ(n))n∈N and lim
n→∞

(uϕ(n))n∈N = u, it

follows that:

lim
n→∞

uh(n) = u

Since Equation 1.2 holds for all n ∈ N, we obtain out[〈F , v〉](σA, σB) ≥ u. As
this holds for all σB ∈ ΣB(F), it follows that val[〈F , v〉](σA) ≥ u.

Let us now show that val[〈F , v〉](B) ≤ u. Let n ∈ N. We consider the

Player-B strategy σh(n)
B ∈ ΣB(F). Consider any Player-A strategy σ′A ∈ ΣA(F).

60



By Lemma 1.19, we have:

out[〈F , v〉](σ′A, σ
h(n)
B ) ≤ out[〈F , vh(n)〉](σ′A, σ

h(n)
B ) + ‖vh(n) − v‖∞

≤ val[〈F , vh(n)〉](σh(n)
B ) +

1

2h(n)

= uh(n) +
1

2h(n)

Thus, val[〈F , v〉](σh(n)
B ) ≤ uh(n) − 1

2h(n) . Hence, for all n ∈ N, we have:

val[〈F , v〉](B) ≤ val[〈F , v〉](σh(n)
B ) ≤ uh(n) +

1

2h(n)

Again, since lim
n→∞

uh(n) = u, we obtain val[〈F , v〉](B) ≤ u. Overall, we obtain,

val[〈F , v〉] = u = val[〈F , v〉](σA).

1.5.7 . Proof of Lemma 1.13

Proof. Consider a non-empty set of outcomes O′ and a map d : O → D(O′).
For all valuations v : O′ → [0, 1], we let ev : O→ [0, 1] be equal to ev := Ed(v).
For all valuations v : O′ → [0, 1] and (σA, σB) ∈ ΣA × ΣB, we have:

out[〈F , ev〉](σA, σB) = out[〈Fd, v〉](σA, σB) (1.3)

Indeed, we have:

out[〈F , ev〉](σA, σB) = E%(σA,σB)(ev) = E%(σA,σB)(Ed(v))

=
∑

o∈O
%(σA, σB)(o) · Ed(v)(o)

=
∑

o∈O
%(σA, σB)(o) ·

∑

o′∈O′
d(o)(o′) · v(o′)

=
∑

o′∈O′

∑

o∈O
%(σA, σB)(o) · d(o)(o′) · v(o′)

=
∑

o′∈O′
E%(σA,σB)(d)(o′) · v(o′)

= EE%(σA,σB)(d)(v) = out[〈Fd, v〉](σA, σB)

In fact, Equation 1.3 gives that the game forms 〈F , ev〉 and 〈Fd, v〉 are the
same. The lemma follows.

1.5.8 . Proof of Corollary 1.14

Proof. We let D := {%(σA, σB) | σA ∈ ΣA, σB ∈ ΣB} ⊆ D(O). Consider
the standard deterministic game form F ′ de�ned by F ′ := 〈ΣA,ΣB, D, %

′〉
where, for all σA ∈ ΣA and σB ∈ ΣB, we have %′(σA, σB) := %(σA, σB) ∈ D.
Furthermore, considering d : D → D(O) the identity function, one can realize
that F = (F ′)d. The result then follows from Proposition 1.12 applied to F ′
and Lemma 1.13 to transfer the result from F ′ to F = (F ′)d.
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1.5.9 . Proof of Proposition 1.15

Proof. First, let us show that, for all Borel sets B ∈ Borel(K), we have
(colω)−1[B] ∈ Borel(Q). Consider any open set B = ∪π∈ACyl(π) for some
A ⊆ K∗. We have:

col−1[B] =
⋃

π∈A

⋃

ρ∈(col+)−1[π]

Cyl(ρ) ∈ Borel(Q)

Furthermore, for all Borel sets B ∈ Borel(K), we have (colω)−1[Kω \B] = Qω \
(colω)−1[B]. In addition, for all (Bn)n∈N ∈ (Borel(K))N, we have (colω)−1[∪n∈NBn] =

∪n∈N(colω)−1[Bn]. It follows that, for all Borel sets B ∈ Borel(K), we have
(colω)−1[B] ∈ Borel.

Then, for all α ∈ [0, 1], we have:

(fC)
−1[[0, α]] =

⋃

q∈Qs,val(q)≤α

⋃

π∈Q∗ns

Cyl(π · q) ∪ (colω)−1[f−1[0, α]] ∈ Borel(Q)

since f is measurable. Therefore, the function fC is measurable. In addition,
by Lemma 1.4, for all ρ ∈ Q∗, we have (fC)

ρ measurable.

1.5.10 . Proof of Lemma 1.16

Proof. We prove the result when C = A, the other case being analogous. We
denote by CS,A the arena underlying the game GS,A. Clearly, for all states
q ∈ Qs ∪ S, we have χGS,A [A](q) = χG [A]. Consider some state q ∈ Qns \ S.

Consider a Player-A strategy sA ∈ SCA. This strategy can be seen as a
strategy in the game GS,A, the game ending as soon as the set S is reached.
Consider now any Player-B strategy sB ∈ SC

S,A

B in the arena CS,A. The games
G and GS,A coincide on (Q \ S)∗ and (Q \ S)ω. Let ε > 0 and let us de�ne a
Player-B strategy sεB ∈ SCB in the game G that coincides with the strategy sB
on (Q \ S)∗ and that plays a ε-optimal strategy � against the strategy sA �-
as soon as a state in S is reached. That is, the expected value of f given that
the state q′ is eventually reached is at most χG [A](q′) + ε. Note that this holds
because the objective is pre�x-independent: it does not matter the sequence
of states seen before reaching q′. Formallu, we have the following inequality:

EsA,s
ε
B

C,q [fC · 1(Q\S)∗·q′ ] ≤ (χG [A](q′) + ε) · PsA,s
ε
B

C,q [(Q \ S)∗ · q′]

As this holds for all q′ ∈ S, we obtain:

∑

q′∈S
EsA,s

ε
B

C,q [fC · 1(Q\S)∗·q′ ] ≤ ε+
∑

q′∈S
χG [A](q′) · PsA,s

ε
B

C,q [(Q \ S)∗ · q′]
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Hence, we have:

EsA,sB
CS,A,q[fCS,A ] = EsA,sB

CS,A,q[fCS,A · 1(Q\S)ω ] +
∑

q′∈S
EsA,sB
CS,A,q′ [fCS,A · 1(Q\S)∗·q′ ]

= EsA,s
ε
B

C,q [fC · 1(Q\S)ω ] +
∑

q′∈S
PsA,s

ε
B

C,q [(Q \ S)∗ · q′] · χG [A](q′)

≥ EsA,s
ε
B

C,q [fC · 1(Q\S)ω ] +
∑

q′∈S
EsA,s

ε
B

C,q [fC ∩ 1(Q\S)∗·q′ ]− ε

≥ EsA,s
ε
B

C,q [fC ]− ε ≥ χG [sA](q′)− ε

As this holds for all Player-B strategies sB ∈ SC
S,A

B , it follows that χGS,A [sA](q) ≥
χG [sA](q)− ε. As this holds for all ε > 0, we have χGS,A [A](q) ≥ χGS,A [sA](q) ≥
χG [sA](q). Since this holds for all Player-A strategies sA ∈ SCA, we have
χGS,A [A](q) ≥ χG [A](q). Furthermore, for an optimal Player-A strategy sA
in G from q, we have χGS,A [sA](q) ≥ χG [A](q).

Let us now show the other inequality: χGS,A [A](q) ≤ χG [A](q). With what
we have shown above, this will prove that the values of all states are the same
and that if there is an optimal Player-A strategy in G, then there is also one
in GS,A. We proceed very similarly than for the other inequality. Let ε > 0

and sA ∈ SC
S,A

A be a Player-A strategy such that χGS,A [sA](q) ≥ χGS,A [A](q)− ε.
Consider a Player-A strategy sεA ∈ SCA in the game G that coincides with the
strategy sA on (Q \ S)∗ and that plays a ε-optimal strategy as soon as a state
in S is reached. Consider then any Player-B strategy sB ∈ SCB, that can also be
seen as a strategy in CS,A. For all states q′ ∈ S, with strategy sεA and sB, from
q, we have that the expected value of f given that q′ is eventually reached is
at least χG [A](q′)− ε, that is:

EsεA,sB
C,q [fC · 1(Q\S)∗·q′ ] ≥ (χG [A](q′)− ε) · PsεA,sB

C,q [(Q \ S)∗ · q′]

As this holds for all states q′ ∈ S, we have :
∑

q′∈S
EsεA,sB
C,q [fC · 1(Q\S)∗·q′ ] ≥

∑

q′∈S
χG [A](q′) · PsεA,sB

C,q [(Q \ S)∗ · q′]− ε

Hence, we have:

EsεA,sB
C,q [fC ] = EsεA,sB

C,q [fC · 1(Q\S)ω ] +
∑

q′∈S
EsεA,sB
C,q [fC · 1(Q\S)∗·q′ ]

≥ EsεA,sB
C,q [fC · 1(Q\S)ω ] +

∑

q′∈S
PsεA,sB
C,q [(Q \ S)∗ · q′] · χG [A](q′)− ε

= EsA,sB
CS,A,q[fCS,A · 1(Q\S)ω ] +

∑

q′∈S
EsA,sB
CS,A,q[fCS,A · 1(Q\S)∗·q′ ]− ε

= EsA,sB
CS,A,q[fCS,A ]− ε ≥ χGS,A [A](q′)− 2ε
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As this holds for all Player-B strategies sB ∈ SCB, it follows that χG [sA](q) ≥
χGS,A [A](q)− 2ε. As this holds for all ε > 0, we have χG [A](q) ≥ χGS,A [A](q).

This also holds for C = B. Hence, if the game G has a value, we have
χGS,A [A] = χG [A] = χG [B] = χGS,B [B] where the games GS,A and GS,B are the
same. Therefore, the game GS,A has also a value.
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Part I

General results with arbitrary

bounded payo� functions
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In this �rst part, we study concurrent games while making minor assump-
tions on the local interactions and payo� functions involved. This is in sharp
contrast with what we do in Part II, where we consider only concurrent parity
games; and with what we do in Part III where we de�ne restrictions on the
local interactions occurring in concurrent games.

Among the results that we show in this part, we would like to mention
here two of them that are essential to this dissertation and that we believe are
important results on concurrent games.

The �rst one deals with, arguably, the most important result on concur-
rent two-player antagonistic games: Martin's determinacy results of Blackwell
games. The original version of this theorem [12] states that all standard con-
current games with �nite local interactions have a value. The main focus of
Chapter 2 is the proof of a generalization of this result to arbitrary (non neces-
sarily standard) games. The idea is that, by von Neuman's minimax theorem
[4], all standard �nite game forms are valuable. This is actually the assump-
tion that Martin uses in his proof2. We show that all (arbitrary) concurrent
games with valuable local interactions have a value. This is stated as part of
Theorem 2.3 in Chapter 2. Note that Theorem 2.3 states other results than the
one described above, without assuming that the local interactions are valuable.

The second result that we would like to highlight is novel and essential to
this dissertation, though it is much easier to prove than the previous one. It
is stated as Theorem 3.12 in Chapter 3, with Corollaries 3.14 and 3.16 being
relevant special cases. Informally, this theorem states a su�cient condition for
the value of a Player-A strategy to be greater than or equal to some threshold,
and symmetrically for Player B. This theorem or one of its corollaries are used
several times in this dissertation, in Chapters 4, 5, 7 and 8.

As mentioned above, in Chapter 2 we focus on the well-known determinacy
result for Blackwell games by Martin. Then, in Chapter 3, we focus on subgame
(ε-)optimal strategies (notion to be de�ned).

2In fact, Martin states that the result still holds even if the local interactions are
such that one set of actions is �nite, while the other is countable. Even with this
weaker assumption, the local interactions are still valuable.
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2 - Blackwell determinacy

In 1975, Martin showed the determinacy of Borel games: in all deter-
ministic turn-based games with win/lose objectives, one of the players has a
winning strategy [8]. Then, in 1998, Martin used this result to show that all
standard concurrent games where each (standard) local interaction is �nite1

have a value [12]. Note that this holds for arbitrary payo� functions (recall
that all the payo� functions we consider are measurable and into [0, 1]). This
is a central result in the theory of standard concurrent games since the as-
sumptions are quite mild while the conclusion, i.e. that all games have values,
is very useful when studying concurrent games. In this chapter, we extend
Martin's result and obtain a (slightly) more general one. The additional power
is invoked several times in this dissertation, in places where Martin's original
result would not su�ce. Informally, this extension follows two directions:

• (1): By closely examining the construction that Martin uses to prove the
result, we show that almost-optimal strategies (i.e. ε-optimal strategies,
for all ε > 0) can be found among speci�c subsets of strategies. This is
proved regardless of the local interactions involved (i.e. they need not
be valuable).

• (2): We show that as soon as all local interactions are valuable, the game
has a value.

More formally, we show the following. In an arbitrary game G:

• (1): almost-optimal strategies (i.e. ε-optimal for all ε > 0) can be chosen
among speci�c subsets of strategies, namely:

� (1.a): �rst, without any additional assumption, they can be found
among strategies generated by subsets of GF-strategies that suprem-
ize the corresponding local interactions;

� (1.b): second, if G is win/lose, under a speci�c condition on the
coloring function, it holds that we can further reduce the subset of
strategies to consider only the ones that depend on the sequence of
colors seen and on the current state of the game, not on the exact
sequence of states seen. (This amounts to some kind of uniformiza-
tion of strategies, see for instance [53] in the context of turn-based
games and winning strategies.)

1In fact, Martin mentioned that this also holds if either of the player action set is
�nite while the other one is countable.
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• (2): in addition, if G is valuable, i.e. if all local interactions in G are
valuable, then G has a value.

This is stated formally in Section 2.2 as Theorem 2.3.
The proof. Result (2) generalizes Martin's result in the context of arbi-

trary concurrent games, and not just standard games. That is, we identify a
su�cient condition on local interactions, namely being valuable, for concur-
rent games whose local interactions satisfy this condition to have a value. As
discussed in Chapter 6, this condition on local interactions is also somehow
necessary, see Proposition 6.1.

One of the key ideas of Martin's proof is to derive a spoiler/veri�er style
turn-based game Gtb from a concurrent game G. By Borel determinacy [8],
from all states of the game Gtb, either of the players has a winning strategy.
These winning strategies are translated into almost-optimal strategies in G. If
we only wanted to prove result (2), we could use this idea as is and adapt it
straightforwardly to our framework. However, because we also want to prove
result (1.a), even when the local interactions are not valuable, more work is
required: instead of only de�ning a unique spoiler/veri�er turn-based game,
we de�ne in�nitely many. Up to that change, our proof of result (1.a) follows
the footsteps of Martin's proof. In particular, we also use Borel determinacy.
Moreover, result (2) is a direct consequence of lemmas dedicated to prove result
(1.a). Finally, to prove result (1.b), we need to extract additional properties
from the turn-based games mentioned above.

Furthermore, we prove this new version of Blackwell determinacy with el-
ementary arguments. It is in particular the case for the intermediate results
that we show on stochastic trees. These intermediate results, that we prove
from elementary de�nitions in probability theory, are existing results on mar-
tingales. We discuss them in Section 2.3. More generally, we have also added
intermediate lemmas and examples to explain and illustrate the ideas behind
the proofs.

Consequences. As mentioned above, Theorem 2.3 extends Martin's result
in two directions. The bene�t of the second direction (stated as result (2)) is
rather straightforward since it extends the set of games to which Martin's result
can be applied.

Let us now consider the �rst extension. It contains two results: (1.a) and
(1.b). We will give several applications of these results in this dissertation.

Result (1.a) is used in Chapter 3. In this chapter, we show that sub-
game almost-optimal strategies (notion de�ned in De�nition 3.3) exists and,
with result (1.a), we show that they can be found among a speci�c subsets
of strategies (see Theorem 3.1). Furthermore, Chapter 6 is entirely dedicated
to applications of result (1.a). These consist in showing that, if the local in-
teractions occurring in a concurrent game G belong to a speci�c set of game
forms, then the whole concurrent game G enjoys nice properties (see Theo-
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rems 6.4, 6.11, 6.15). In particular, Borel determinacy that Martin proved in
[8] is a logical consequence of Theorem 6.4. However, as stated above, we use
Borel determinacy to prove Theorem 2.3, hence we do not provide a new proof
of Borel determinacy. However, note that Borel determinacy is not a logical
consequence of Martin's original result [12]. All these applications do not use
result (1.b), they sometimes use result (2).

Consider now result (1.b). In Section 2.5, we use this result to prove the
following. Consider a standard win/lose game with �nitely many actions at
each state for both players. Consider also action strategies, i.e. strategies
that may also depend on the actions played by the players, which are formally
de�ned in that section. Then, the values that can be achieved with action
strategies is the same as the value with the strategies we have considered so
far. The latter are called state strategies: they depend only on the history of
states. This application does not use result (1.a), however it uses result (2).
Finally, in this section, we also exhibit a standard �nite game satisfying the
following properties. The values achieved by action and state strategies are the
same, which is a consequence of the above-mentioned result. However, there is
an optimal strategy among action strategies, while there is none among state
strategies. This is stated in Proposition 2.21.

The work presented in this chapter is not published yet.

2.1 Martin's results

In this section, we recall two of Martin's theorems. In the original papers
[8, 12], the formalism which is used is quite di�erent from the one used in
this dissertation. Speci�cally, Martin uses the notion of game trees without
considering an underlying graph (i.e. with an explicit set of states). However,
the theorems we state here are equivalent to the ones showed in [8, 12].

First, Martin proved the existence of winning strategies in deterministic
turn-based win/lose games [8]. This is also known as Borel determinacy, and
it is stated below in Theorem 2.1.

Theorem 2.1 (Borel determinacy [8]). Consider a turn-based deterministic

win/lose game G without stopping states. For all q ∈ Q, either Player A or

Player B has a winning (deterministic) strategy from state q. This holds even

if the set of states is not countable.

Furthermore, standard concurrent games with speci�c local interactions
have a value [12]. This is also known as Blackwell determinacy, and it is stated
below in Theorem 2.2.

Theorem 2.2 (Blackwell determinacy [12]). Consider a standard concurrent

game G. Assume that, for all q ∈ Q, in the game form F(q) both action sets

are countable and at least one of them is �nite. Then, the game G has a value.
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2.2 Blackwell determinacy: a new version

Before formally stating another version of Theorem 2.2, we need to in-
troduce two de�nitions. Below in De�nition 2.1, we consider the notion of
strategies that only depend on the colors seen. This is also de�ned for valua-
tions of �nite sequences of states.

De�nition 2.1 (Color-Uniform strategies and valuations). Consider an ar-

bitrary concurrent arena C. A uniformizing pair is a pair (U,m) where U is

a non-empty set and m : Q → U maps each state to an element in U. (In

particular, the pair (K, col) is a uniformizing pair2.) For such a pair, we say

that two �nite sequences of states ρ, ρ′ ∈ Q+ are (U,m)-equivalent if ρlt = ρ′lt
and m+(ρ) = m+(ρ′).

A function g : Q+ → X mapping �nite sequences of states to any non-

empty set X is said to be (U,m)-uniform if, for all pairs ρ, ρ′ ∈ Q+ of (U,m)-

equivalent paths, we have g(ρ) = g(ρ′). They can be seen as maps U∗×Q→ X.

In De�nition 2.2 below, we de�ne the notion of coloring function with a
�nite representative: the functions such that each color has only �nitely many
preimages w.r.t. that function.

De�nition 2.2 (Coloring function with a �nite representative). Consider an

arbitrary concurrent arena C. We say that (K, col) has a �nite representative
in Q if, for all k ∈ K, the set col−1[{k}] ⊆ Q is �nite3.

We can now state our main theorem of this chapter: the new version of
Blackwell determinacy.

Theorem 2.3. Consider an arbitrary concurrent game G. Let C ∈ {A,B} be
a Player. Consider a collection (SqC)q∈Q of sets of Player-C GF-strategies that
supremize the game G w.r.t. Player C. Then:

• (1) For all ε > 0:

� (1.a) There is a Player-C strategy sεC ∈ SCC generated by (SqC)q∈Q
that is ε-optimal.

� (1.b) If we additionally assume that (K, col) has a �nite represen-
tative in Q and that G is win/lose, then the strategy sεC above can
be chosen (K, col)-uniform.

• (2) If the game G is valuable, then it has a value: χG [A] = χG [B] : Q→
[0, 1].

Remark 2.1. It is quite straightforward that Theorem 2.3 implies Theo-

rem 2.2 since, by Proposition 1.12, any standard game form with at least one

2To properly �t this de�nition, the function col needs to be de�ned on Qns.
3This does not imply that the set Q is �nite if the set of colors K is in�nite.
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action set that is �nite is valuable. In fact, Theorem 2.3 also implies Theo-

rem 2.1, see Statement 6.1. However, note that Theorem 2.1 is used to prove

Theorem 2.3 (but Theorem 2.2 is not).

Before considering the proof of Theorem 2.3, we need to make a detour via
stochastic trees.

2.3 A result on stochastic trees

In this section, we establish results in stochastic trees that will be used
in this chapter to prove Theorem 2.3. We will also use them in Chapter 3.
We would like to mention that the main results stated in this section (that is
Proposition 2.6 and Proposition 2.9) already exist (see for instance [54, Thm.
3.17]) as the underlying object we consider � namely, non-decreasing valuation
� in fact correspond to sub-martingales. However, the arguments we use in
this section are elementary in the sense that we do not use at all results on
martingales. This has the bene�t of being readable by someone who is not
familiar with this notion.

Before considering the few de�nitions we need to properly state and prove
the results of interest of this section, we �rst consider superior and inferior
limit functions (given a valuation of �nite sequences of states) in stochastic
trees and realize that they are measurable.

Proposition 2.4 (Proof 2.7.1). Consider a stochastic tree T and a valu-

ation v : Q+ → [0, 1] of the �nite sequences of states of T . Consider the

superior (resp. inferior) limit function limsupv : Qω → [0, 1] de�ned by, for

all ρ ∈ Qω: limsupv(ρ) := limsup (v(ρ≤n))n∈N ∈ [0, 1] (resp. liminfv(ρ) :=

lim inf (v(ρ≤n))n∈N ∈ [0, 1]). Then, this superior (resp. inferior) limit function

is measurable.

Let us also recall that comparing two measurable functions yields a mea-
surable set.

Proposition 2.5 (Proof 2.7.2). Consider a non-empty set Q and two mea-

surable functions f, g : Qω → [0, 1]. For all ./ ∈ {≤, <,≥, >,=, 6=}, the event

{f./g} := {ρ ∈ Qω | f(ρ)./g(ρ)} ⊆ Qω is Borel: {f./g} ∈ Borel(Q).

2.3.1 . Comparing superior and inferior limits

Consider a stochastic tree T and a valuation of �nite sequences of states
v : Q+ → [0, 1]. By de�nition, for all in�nite paths ρ ∈ Qω, the superior
limit w.r.t. v of ρ is greater then or equal to the inferior limit w.r.t. v of ρ:
limsupv(ρ) ≥ liminfv(ρ). Hence, the expected value of the superior limit limsupv
is greater than or equal to the the expected value of the inferior limit liminfv.
Without any assumption on v, the di�erence between these expected values
may be equal to 1: that is it could be that almost-surely, the superior limit of
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an in�nite path is equal to 1 while the inferior limit is almost-surely equal to
0. The goal of this subsection is to show that, under a speci�c condition on v,
the di�erence between the superior and inferior limit is null. More speci�cally,
we show that if the expected value of the valuation v does not decrease in any
single step, then the superior and inferior limits are equal almost-surely.

Let us de�ne formally the notion of non-decreasing valuation.

De�nition 2.3 (Non-decreasing valuation in stochastic trees). Consider a

stochastic tree T = 〈Q,P〉, a �nite path π ∈ Q+ and a valuation v : Q∗ → [0, 1].

It is non-decreasing from π if, for all ρ ∈ Q∗, we have:

v(ρ) ≤
∑

q∈Q
Pπ·ρ(q) · v(ρ · q)

Moreover, a valuation v : Q+ → [0, 1] is said to be non-decreasing if, for all

q ∈ Q, the valuation vq : Q∗ → [0, 1] is non-decreasing from q.

Remark 2.2. By de�nition, if a valuation is non-decreasing from some �nite

path π ∈ Q+, then for all ρ ∈ Q∗, the valuation vρ is also non-decreasing from

π · ρ.
With a non-decreasing valuation, in�nite paths have a limit (i.e. the inferior

equals the superior limit) almost-surely, as stated below.

Proposition 2.6. Consider a stochastic tree T and a valuation v : Q∗ →
[0, 1] non-decreasing from some π ∈ Q+. Then, we have Pπ(liminfv < limsupv) =

0

Before proving this proposition, let us �rst show two intermediate results.

Lemma 2.7. Consider a stochastic tree T and a valuation v : Q∗ → [0, 1]

non-decreasing from some π ∈ Q+. Then, for all i ∈ N, we have: v(ε) ≤∑
ρ∈Qi Pπ(ρ) · v(ρ).

Proof. We show this property by induction on i. This straightforwardly holds
for i = 0. Assume now that this property holds for some i ∈ N. We have:

∑

ρ∈Qi+1

Pπ(ρ) · v(ρ) =
∑

ρ∈Qi

∑

q∈Q
Pπ(ρ) · Pπ·ρ(q) · v(·ρ · q)

=
∑

ρ∈Qi
Pπ(ρ) ·

∑

q∈Q
Pπ·ρ(q) · v(ρ · q)

=
∑

ρ∈Qi
Pπ(ρ) · v(ρ) ≥ v(ε)

Hence, the property holds for all i ∈ N.

Lemma 2.8. Consider a stochastic tree T , a valuation v : Q∗ → [0, 1] non-

decreasing from some π ∈ Q+. Let u := v(ε) and let 0 ≤ u′ < u be a value less
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than u and E := {ρ ∈ Q∗ | v(ρ) ≤ u′} be the set of �nite paths whose values

w.r.t. the valuation v are less than or equal to u′. Then, Pπ[E] ≤ 1−u
1−u′ < 1.

Proof. First, note that ε /∈ E. Let A := ∪ρ∈Eρ ·Q∗ and B := Q∗ \A. Consider
the set D ⊆ E of �nite sequences of states in E with no strict pre�x in E.
This set ensures that:

• A = ∪ρ∈Dρ ·Q∗;

• for all ρ, ρ′ ∈ D, we have ρ ·Q∗ ∩ ρ′ ·Q∗ = ∅.

Now, let us de�ne a new valuation w : Q∗ → [0, 1] such that, for all ρ ∈ Q∗:

w(ρ) :=

{
v(ρ) if ρ ∈ B
v(ρ′) if ρ ∈ ρ′ ·Q∗ for some ρ′ ∈ D

Let us show that the valuation w is non-decreasing from π. Consider ρ ∈ Q∗.
If ρ ∈ B, then we have w(ρ) = v(ρ) and for all q ∈ Q, w(ρ ·q) = v(ρ ·q). Hence,
we do have w(ρ) ≤ ∑q∈Q Pπ·ρ(q) · w(ρ · q) since v is non-decreasing from π.
Furthermore, if ρ ∈ ρ′ ·Q∗ for some ρ′ ∈ D, then w(ρ) = v(ρ′) and for all q ∈ Q,
we have w(ρ ·q) = v(ρ′) = w(ρ). Hence, we have w(ρ) =

∑
q∈Q Pπ·ρ(q) ·w(ρ ·q).

Overall, the valuation w is non-decreasing from π.
Consider now some n ∈ N. For all ρ′ ∈ D ∩ Q≤n, we have Pπ(ρ′) =∑

ρ∈ρ′·Q∗∩Qn Pπ(ρ). Hence, by applying Lemma 2.7, since w is non-decreasing
from π:

u = w(ε) ≤
∑

ρ∈Qn
Pπ(ρ) · w(ρ) =

∑

ρ∈A∩Qn
Pπ(ρ) · w(ρ) +

∑

ρ∈B∩Qn
Pπ(ρ) · w(ρ)

=
∑

ρ′∈D∩Q≤n

∑

ρ∈ρ′·Q∗∩Qn
Pπ(ρ) · w(ρ) +

∑

ρ∈B∩Qn
Pπ(ρ) · w(ρ)

=
∑

ρ′∈D∩Q≤n

∑

ρ∈ρ′·Q∗∩Qn
Pπ(ρ) · v(ρ′) +

∑

ρ∈B∩Qn
Pπ(ρ) · v(ρ)

=
∑

ρ′∈D∩Q≤n
Pπ(ρ′) · v(ρ′) +

∑

ρ∈B∩Qn
Pπ(ρ) · v(ρ)

≤
∑

ρ′∈D∩Q≤n
Pπ(ρ′) · u′ +

∑

π′∈B∩Qn
Pπ(π′)

= Pπ[D ∩Q≤n] · u′ + 1− Pπ[D ∩Q≤n]

Hence, denoting pn := Pπ[Q≤n ∩D], we obtain: u ≤ pn · u′ + 1− pn. That is,
pn ≤ 1−u

1−u′ < 1. Since this holds for all n ∈ N and limn→∞ pn = Pπ[Q∗ ∩D] =

Pπ[D] = Pπ[E] by continuity of P and since Pπ[E] = Pπ[∪ρ∈ECyl(ρ)], we get
Pπ[E] ≤ 1−u

1−u′ .

We can now proceed to the proof of Proposition 2.6.

75



Proof. Let p, q ∈ Q∩[0, 1] be such that q < p. Let d := p−q > 0 and p′ := p− d
4

and q′ := q + d
4 . Finally, let x := 1−p′

1−q′ < 1. Let V≥p′ := {ρ ∈ Q∗ | v(ρ) ≥ p′}
and V≤q′ := {ρ ∈ Q∗ | v(ρ) ≤ q′}. Now, we have:

{p ≤ limsupv} ∩ {liminfv ≤ q} ⊆
⋂

k∈N
(V≥p′ · V≤q′)k

By Lemma 2.8 and Remark 2.2, for all �nite paths ρ ∈ V≥p′ , we have Pρ[V≤q′ ] ≤
1−v(ρ)
1−q′ ≤ x. Hence, Pπ[V≥p′ · V≤q′ ] ≤ x. It follows that, for all k ∈ N, we have

Pπ[(V≥p′ ·V≤q′)k] ≤ xk. Since x < 1, we have Pπ[∩k∈N(V≥p′ ·V≤q′)k] = lim
k∈N

xk =

0. It follows that P[{p ≤ limsupv} ∩ {liminfv ≤ q}] = 0. As this holds for all
p, q ∈ Q ∩ [0, 1] such that q < p, it follows that Pπ[liminfv < limsupv] = 0.

2.3.2 . Expected value of the superior limit

In this subsection, we focus on non-decreasing valuations. We show that
for such valuations, the expected value of the superior limit (which is almost-
surely equal to inferior limit, recall Proposition 2.6 above) is at least the value
of the starting state.

Proposition 2.9. Consider a stochastic tree T and a valuation v : Q∗ → [0, 1]

non-decreasing from some π ∈ Q+. Then:

v(ε) ≤ Eπ [limsupv] = Eπ [liminfv]

In fact, to prove Theorem 2.3, we will only use the inequality. However, we
have also stated the equality so that Proposition 2.9 implies straightforwardly
Proposition 2.6 (though we use Proposition 2.6 to prove Proposition 2.9) since
liminfv ≤ limsupv.

Proof. First, the equality is a direct consequence of Proposition 2.6. Then, we
let P := Pπ, E := Eπ, lsup := limsupv and linf := liminfv. For all j ∈ N and
subsets I ⊆ R, we denote by V (j, I) the open set

V (j, I) :=
⋃

ρ∈Qj
v(ρ)∈I

Cyl(ρ)

of paths whose j-th value is in the interval I.
For all n ∈ N, we consider the function fn : Qω → [0, 1] such that, for all

ρ ∈ Qω, we have:

fn(ρ) :=
b2n · lsup(ρ)c

2n
∈
{
i

2n
| 0 ≤ i ≤ 2n

}

where b·c : R → Z is the �oor function, that is, for all x ∈ R, we have
bxc ≤ x < bxc + 1. For all n ∈ N, we have that fn is a step function (recall
De�nition 1.2), fn ≤ lsup and therefore E [fn] ≤ E [lsup].

76



Now, let ε > 0. Consider some n ∈ N such that

2

2n
≤ ε (2.1)

For all a ≤ b, let La,b := {a ≤ linf} ∩ {lsup < b}. Consider some 0 ≤ i ≤ 2n − 1.
We have P(L i+1

2n
−δ, i+1

2n
) →δ→0 0. This allows us to consider a 0 < δi <

1
4·2n

such that P(L i+1
2n
−δi, i+1

2n
) < 1

2n+1(2n+1)2 . We set δ := min0≤i≤2n−1 δi > 0 and

for all 0 ≤ i ≤ 2n − 1, we let Li := L i
2n
, i+1

2n
and L′i := L i

2n
, i+1

2n
−δ. In addition,

L′2n := L2n := {lsup = 1}. These de�nitions are illustrated in Figure 2.1. With
these choices, we have, for all 0 ≤ i ≤ 2n:

P(Li) ≤ P(L′i) +
1

2n+1(2n + 1)2
(2.2)

Furthermore:

Qω =

2n−1⋃

i=0

({
i

2n
≤ lsup

}
∩
{

lsup <
i+ 1

2n

})
∪ {lsup = 1}

Hence, since by Proposition 2.6, almost-surely the superior and inferior limits
coincide, we have:

1 = P(Qω) =
2n−1∑

i=0

P
({

i

2n
≤ linf

}
∩
{

lsup <
i+ 1

2n

})
+ P ({lsup = 1}) =

2n∑

i=0

P(Li)

We obtain:
2n∑

i=0

P(Li) = 1 (2.3)

Finally, for all 1 ≤ i ≤ 2n−1, we consider the subsets Ji := [ i2n− δ
2 ,

i+1
2n − δ

2 [,
J0 := [0, 1

2n − δ
2 [, and J2n := [1− δ

2 , 1]. These de�nitions are also illustrated in
Figure 2.1. With these choices, the Ji form a partition of the set [0, 1], i.e:

[0, 1] =

2n⊎

i=0

Ji (2.4)

Let 0 ≤ i ≤ 2n. By de�nition of the inferior and superior limits, we have:

L′i ⊆
⋃

l∈N

⋂

k≥l
V (k, Ji)

Hence: P(L′i) = P(L′i ∩
⋃
l∈N
⋂
k≥l V (k, Ji)) = lim

l→∞
P(L′i ∩

⋂
k≥l V (k, Ji)) by

monotone continuity of the probability. Let us consider some li ∈ N such that:
P(L′i ∩

⋂
k≥li V (k, Ji)) ≥ P(L′i) − 1

22n+1(2n+1)
. Now, let l := max0≤i≤2n li. It

follows that, for all 0 ≤ i ≤ 2n:

P(V (l, Ji)) ≥ P


L′i ∩

⋂

k≥li

V (k, Ji)


 ≥ P(L′i)−

1

22n+1(2n + 1)
(2.5)
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δ δ δ δValues of
liminf, limsup

Values of v

Figure 2.1: An illustration of the de�nitions of Li, L
′
i and Ji from the

proof of Proposition 2.9 in the case where n = 2.

Let 0 ≤ i ≤ 2n. We want to establish the following upper bound on
P(V (l, Ji)):

P(V (l, Ji)) ≤ P(L′i) +
1

2n(2n + 1)
(2.6)

We have:

1 =
2n∑

j=0

P(Lj) by Equation (2.3)

≤
2n∑

j=0

(
P(L′j) +

1

2n+1(2n + 1)2

)
=

2n∑

j=0

P(L′j) +
1

2n+1(2n + 1)
by Equation (2.2)

≤ P(L′i) +
2n∑

j=0,j 6=i

(
P(V (l, Jj)) +

1

22n+1(2n + 1)

)
+

1

2n+1(2n + 1)
by Equation (2.5)

≤ P(L′i) +

2n∑

j=0,j 6=i
P(V (l, Jj)) +

1

2n(2n + 1)

= P(L′i) + (1− P(V (l, Ji))) +
1

2n(2n + 1)
by Equation (2.4)

Overall, we do obtain Equation 2.6. Hence, denoting Vl := v[Ql] ⊆ [0, 1], by
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Lemma 2.7 for the �rst equality, we have:

v(ε) ≤
∑

ρ∈Ql
P(ρ) · v(ρ) =

2n∑

i=0

∑

x∈Ji∩Vl

P(V (l, {x})) · x by Equation (2.4)

≤
2n∑

i=0

∑

x∈Ji∩Vl

P(V (l, {x})) ·
(
i+ 1

2n

)
by de�nition of Ji

=
2n∑

i=0

P(V (l, Ji)) ·
(
i+ 1

2n

)
by de�nition of V (l, Ji)

=
2n∑

i=0

P(V (l, Ji)) ·
i

2n
+

1

2n
by Equation (2.4)

≤
2n∑

i=0

(
P(L′i) +

1

2n(2n + 1)

)
· i

2n
+

1

2n
by Equation (2.6)

≤
2n∑

i=0

P(L′i) ·
i

2n
+

2n∑

i=0

1

2n(2n + 1)
+

1

2n

≤
2n∑

i=0

P(Li) ·
i

2n
+

2

2n
since L′i ⊆ Li

=
2n∑

i=0

P
(
f−1
n

[{
i

2n

}])
· i

2n
+

2

2n
by Proposition 2.6

= E [fn] +
2

2n
≤ E [lsup] + ε by Equation (2.1)

As this holds for all positive ε > 0, it follows that v(ε) ≤ E [lsup].

2.4 The proof

This section is devoted to the proof of Theorem 2.3. The �rst step we take
is to de�ne non-decreasing valuations in concurrent games and to link them to
non-decreasing valuations in stochastic trees so that we can use the results of
the previous Section 2.3.

In concurrent arenas, we consider valuations of the �nite sequences of
states. Such valuations induce games in normal forms after each �nite se-
quence of states. The notion of being non-decreasing (or non-increasing) can
be de�ned with respect to di�erent conditions. Speci�cally, a valuation is non-
decreasing w.r.t. Player A if, after each �nite sequence of states ρ ∈ Q∗, the
value w.r.t. Player A of the game in normal form induced by the valuation
after ρ is at least v(ρ). We could also de�ne non-decreasing valuation w.r.t.
to a Player-B strategy. Symmetrically, we de�ne the notion of non-increasing
valuation w.r.t. Player B or a Player-A strategy. Before considering the for-
mal de�nitions of non-decreasing and non-increasing valuations, let us de�ne
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below the notion of guard, that is w.r.t. what we consider the values of local
interactions.

De�nition 2.4 (Guard). Consider an arbitrary concurrent arena C. We let

GuardC := GuardA
C ] GuardB

C where GuardA
C is the set of Player-A guards with

GuardA
C := {A} ∪ SCB and GuardB

C is the set of Player-B guards with GuardB
C :=

{B} ∪ SCA. Furthermore, for all gd ∈ GuardC , we let Opnt(gd) be the set of

strategies to be considered for the opponent with guard gd. That is:

Opnt(gd) :=





SCB if gd = A

SCA if gd = B

{s} if gd = s ∈ SCA ∪ SCB

Finally, for all gd ∈ GuardC and π ∈ Q+, we let gd(π) := gd if gd ∈ {A,B} and
gd(π) := sA(π) if gd = sA ∈ SCA and gd(π) := sB(π) if gd = sB ∈ SCB.

Remark 2.3. A quick remark on the terminologies Player-A guard and

Player-B guard. A Player-A guard gd ∈ GuardC tells what is the game that

Player-A is playing. If gd = A, then Player A tries to maximize the expected

value of the payo� function f against all Player-B strategies (that is against all

strategies in Opnt(A) = SCB), whereas if gd = sB ∈ SCB, Player A tries to max-

imize the expected value of the payo� function against the Player-B strategy

sB (that is against all strategies in Opnt(sB) = {sB}). The situation is similar

at the local level, with game forms.

In the following, in Page 84, we will informally motivate why we use guards,

but we �rst need to de�ne important objects.

We de�ne formally the notions of non-decreasing and non-increasing valu-
ations w.r.t. guards.

De�nition 2.5 (Non-decreasing valuation in concurrent arenas). Consider a

concurrent arena C and a valuation v : Q+ → [0, 1]. For all ρ ∈ Q+, we denote

by vρ : Q→ [0, 1] the valuation such that, for all q ∈ Q, vρ(q) := v(ρ·q) ∈ [0, 1].

Consider a Player-A guard gd ∈ GuardA
C . We say that the valuation v :

Q+ → [0, 1] is non-decreasing w.r.t. gd if, for all ρ ∈ Q+, we have v(ρ) ≤
val[〈F(ρlt), v

ρ〉][gd(ρ)].

Symmetrically, for all Player-B guards gd ∈ GuardB
C , we say that the val-

uation v : Q+ → [0, 1] is non-increasing w.r.t. gd if, for all ρ ∈ Q+, we have

v(ρ) ≥ val[〈F(ρlt), v
ρ〉][gd(ρ)].

We can now de�ne what it means for a strategy to be dominating a valu-
ation w.r.t. a guard.

De�nition 2.6 (Dominating a valuation). Consider a concurrent arena C and
a Player-A guard gd ∈ GuardA

C . A Player-A strategy sA dominates a valuation
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v : Q+ → [0, 1] w.r.t. gd if, for all ρ ∈ Q+, we have:

v(ρ) ≤ val[〈F(πlt), v
ρ〉](sA(ρ)) if gd = A

v(ρ) ≤ out[〈F(πlt), v
ρ〉](sA(ρ), sB(ρ)) if gd = sB ∈ SCB

In particular, the valuation v is non-decreasing w.r.t. guard gd. This is de�ned

symmetrically for Player B.

It fact, in a concurrent arena, when a Player-A strategy dominates a valu-
ation v, in stochastic trees that can be induced by this strategy, the valuation
v is non-decreasing. This is stated in the lemma below.

Lemma 2.10. Consider an arbitrary concurrent arena C. Let gd ∈ GuardA
C be

a Player-A guard and sA ∈ SCA be a Player-A strategy dominating a valuation

v : Q+ → [0, 1] w.r.t. gd. For all Player-B strategies sB ∈ Opnt(gd), the

valuation v is non-decreasing in the induced stochastic tree T sA,sB
C .

Symmetrically, let gd ∈ GuardB
C be a Player-B guard and sB ∈ SCB be a

Player-B strategy dominating a valuation v : Q+ → [0, 1] w.r.t. gd. For all

Player-A strategies sA ∈ Opnt(gd), the valuation v is non-increasing in the

induced stochastic tree T sA,sB
C .

Proof. We prove the result for Player A, the case of Player B being symmetrical.
Let us denote PsA,sB

C by P. Let q ∈ Q and ρ ∈ Q∗. Then, we have, by
Lemma 1.10 (linearity games in normal form) and by De�nition 1.29 of P:
∑

q′∈Q
Pq·ρ(q′) · vq(ρ · q′) =

∑

q′∈Q
out[〈F(ρlt), q

′〉](sA(q · ρ), sB(q · ρ)) · vq(ρ · q′)

= out[〈F(ρlt), v
q·ρ〉](sA(q · ρ), sB(q · ρ))

(≥ val[〈F(ρlt), v
q·ρ〉](sA(q · ρ)))

≥ vq(ρ)

Recall that q′ may be seen as a distribution in D(Q) that maps q′ to 1. Further-
more, the last inequality comes from the fact that the strategy sA dominates
the valuation v w.r.t. gd (the inequality in parenthesis may be read if gd = A).
Hence v is non-decreasing (recall De�nition 2.3) in T sA,sB

C .

However, given a Player-A guard gd ∈ GuardA
C , for a valuation v non-

decreasing w.r.t. gd in an arena, there does not always exist a Player-A strategy
dominating v w.r.t. gd. This is due to the fact that the local interactions in
that arena may not be maximizable. However, for all positive ε > 0, the
valuation v can be modi�ed into an �ε-close� valuation for which there is a
Player-A dominating strategy sA. Furthermore, if the valuation v is (U,m)-
uniform for a uniformizing pair (U,m), then the Player-A strategy sA can also
be chosen (U,m)-uniform. This is formally stated below.
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Lemma 2.11 (Proof 2.7.3). Consider an arbitrary concurrent arena C suprem-

ized w.r.t. Player A by a collection (SqA)q∈Q of sets of GF-strategies. Consider a

Player-A guard gd ∈ GuardA
C . Let v : Q+ → [0, 1] be a valuation non-decreasing

w.r.t. gd that is (U,m)-uniform for a uniformizing pair (U,m). Let ε > 0 be

a positive real. Then, the valuation vε : Q+ → [0, 1] such that, for all ρ ∈ Q+,

we have vε(ρ) := max(v(ρ)− ε
2|ρ|−1 , 0) is such that:

1. v − ε ≤ vε ≤ v;

2. it is (U,m)-uniform;

3. there is a Player-A (U,m)-uniform strategy sA generated by (SA
q )q∈Q

dominating w.r.t. gd the valuation vε.

This is symmetrical for Player B and a non-increasing valuation.

2.4.1 . Winning valuations and ε-optimal strategies

There are two main ideas in the proof of Theorem 2.3. The �rst idea is
the following. Consider Proposition 2.9. It states that in a stochastic tree
with a non-decreasing valuation, the value of a �nite path is less than or
equal to the expected value of the (superior) limit of this valuation from that
path. In a game G from a state q0 and for a value α ∈ [0, 1], consider a
valuation v : Q+ → [0, 1] ensuring the following: 1) it is non-decreasing w.r.t
the guard A in the arena C, 2) v(q0) = α and 3) the superior limit w.r.t. v of
all in�nite paths, from q0, is less than or equal to their values w.r.t. the payo�
function f . Then, assume that there is a Player-A strategy sA dominating
this valuation. For all Player-B strategies sB ∈ SCB, from q0, in the stochastic
tree T sA,sB

C induced by game G by sA, sB, the expected value of the (superior)
limit of v is less than or equal to the expected value of f , by 3). Furthermore,
Proposition 2.9 and 1) ensure that the value of q0 w.r.t. the valuation v � i.e.
v(q0) = α, by 2) � is less than or equal to expected value of the (superior)
limit of v. Overall, the value of such a Player-A strategy sA dominating the
valuation v would be at least α (from q0). We will call such a valuation v a
winning valuation (for Player A) w.r.t. (q0, α). Note that it can be de�ned
symmetrically for Player B. Such winning valuations are de�ned below in
De�nition 2.7.

De�nition 2.7 (Winning valuations). Consider a concurrent game G =

〈C, f〉, a starting state q0 and a value α ∈ [0, 1]. Let gd ∈ GuardA
C be a Player-A

guard (resp. gd ∈ GuardB
C be a Player-B guard). A valuation v : Q+ → [0, 1] is

winning w.r.t. (q0, α) and gd for Player A (resp. B) if:

• v(q0) = α and v is non-decreasing (resp. non-increasing) w.r.t. gd;

• for all paths ρ ∈ q0 ·Qω, we have limsupiv(ρ≤i) ≤ fC(ρ)

(resp. limsupiv(ρ≤i) ≥ fC(ρ)).
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Note that, in the above de�nition, it is important to use a superior limit
for both players instead of a superior limit for Player A and an inferior limit for
Player B. We could instead have used an inferior limit for both players, but this
would modify the remainder of the chapter. Also, we could have only required
that α ≤ v(q0), the interesting properties ensured by winning valuations would
still hold. Furthermore, recall that the function fC : Qω → [0, 1] takes into
account the stopping states of the game G, see De�nition 1.30.

Lemma 2.12. Consider a concurrent game G supremized by a collection

(SqA)q∈Q of GF-strategies w.r.t. Player A. Consider also a starting state q0 ∈ Q
and a value α ∈ [0, 1]. Let gd ∈ GuardA

C be a Player-A guard. Assume that there

is a winning valuation v : Q+ → [0, 1] w.r.t. (q0, α) and gd for Player A that

is (U,m)-uniform for a uniformizing pair (U,m). Then, for all ε > 0, Player A

has a (U,m)-uniform strategy generated by (SqA)q∈Q whose value against any

Player-B strategy in Opnt(gd) is at least α− ε from q0.

This is symmetrical for Player B.

Proof. Let v : Q+ → [0, 1] be such a winning (U,m)-uniform valuation w.r.t.
(q0, α) and gd for Player A. Let ε > 0. Consider the valuation vε from
Lemma 2.11. It is non-decreasing w.r.t. gd and such that v − ε ≤ vε ≤ v,
hence α − ε ≤ v(q0) − ε ≤ vε(q0). Furthermore, it ensures that there is a
(U,m)-uniform Player-A strategy sε generated by (SqA)q∈Q dominating it w.r.t.
gd. Consider now a Player B strategy sB ∈ Opnt(gd), the stochastic tree T sε,sB

C
induced by both strategies sε and sB and the valuation vε : Q+ → [0, 1] in that
stochastic tree. Since the strategy sε dominates vε w.r.t. gd, it follows that
the valuation vε is non-decreasing in the stochastic tree T Csε,sB by Lemma 2.10.
In particular, it is non-decreasing from q0. Hence, by Proposition 2.9, we
have vε(q0) = (vε)

q0(ε) ≤ Esε,sB
C,q0 [limsup(vε)q0 ]. Since vε ≤ v, it follows that

limsup(vε)q0 ≤ limsupvq0 . Furthermore, by assumption, for all paths ρ ∈ q0 ·Qω,
we have limsupv(ρ) ≤ fC(ρ). It follows that Esε,sB

C,q0 [limsup(vε)q0 ] ≤ Esε,sB
C,q0 [(fC)

q0 ].
Overall: α − ε ≤ Esε,sB

C,q0 [(fC)
q0 ]. As this holds for all Player-B strategies sB ∈

Opnt(gd), the (U,m)-uniform Player-A strategy sε generated by (SqA)q∈Q has
value at least α− ε from q0.

2.4.2 . Existence of winning valuations

High level explanations: with valuable local interactions. The
question is now why should there exist such winning valuations. This is where
the second idea comes into play. Let us �rst give the intuition in the case where
all local interactions are valuable, where the notion of guards is not used. This
is very close to the original idea by Martin. The idea is as follows: we are
going to de�ne a standard deterministic win/lose turn-based game Gtb from
the concurrent game G such that the existence of winning strategies in Gtb
relates to the existence of winning valuation in G. The way this game is played
is the following: the game starts at state (q0, α0) with α0 ∈ [0, 1], it is Player
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A's turn. She has at her disposal any valuation v0 : Q → [0, 1] of the states
in Q such that the value of the game in normal form 〈F(q0), v0〉 is at least α0.
The idea is that she promises that the value of these states is at least the value
she gives to them via the valuation v0. Then, Player B responds by choosing
a state q1. In fact, Player B tries to show that Player A's promise cannot be
kept: she tries to reach a state whose value w.r.t. the valuation v0 is higher
than its actual value. We then visit a new Player-A state (q0 · q1, α1) where
α1 := v0(q1). The process then repeats itself inde�nitely: Player A chooses a
valuation of the next states, while Player B picks the next state to visit. This
induces an in�nite path ((π≤i, αi) · (π≤i, vi))i∈N. Player A wins this win/lose
game if the superior limit of the values (αi)i∈N is at most the value of the
in�nite path π ∈ q0 ·Qω w.r.t. the payo� function fC . In other words, Player
B loses if she is not able to show that Player A broke her promise, i.e. Player
A has not over-estimated the values of the states visited.

The turn-based game Gtb we have described is deterministic (and the ob-
jective is Borel), hence Borel determinacy (i.e. Theorem 2.1) ensures that, for
all u ∈ [0, 1], either of the players have a winning strategy in the game Gtb
from the state (q0, u). Furthermore, the higher u is, the more di�cult it is for
Player A to win from the state (q0, u). This means that there is a threshold
α(q0) ∈ [0, 1] such that, for all u < α(q0), Player A has a winning strategy from
the state (q0, u) whereas, for all u > α(q0), Player B has a winning strategy
from the state (q0, u). Then, for all ε > 0, from a Player-A winning strategy
in the game Gtb from the state (q0, α(q0)− ε) we are able to build a Player-A
winning valuation w.r.t. (q0, α(q0)− ε). This is in fact rather straightforward
from the de�nition of the game Gtb, and also because a Player-A strategy in the
game Gtb chooses values for the states. Almost symmetrically, from a Player-B
winning strategy in the game Gtb from the state (q0, α(q0) + ε) we are able
to build a Player-B winning valuation w.r.t. (q0, α(q0) + 2 · ε). This, however
is less direct. This is due to the fact that, contrary to Player-A strategies,
Player-B strategies in the game Gtb do not choose values for the states. This
shows that the value of the state q0 (in the game G) is at least and at most
α(q0), it is therefore equal to the threshold α(q0).

When local interactions are not valuable: the need for guards.

Let us now consider the case where the local interactions are not necessarily
valuable. We will now use guards, in particular when considering winning val-
uations. We are trying to show result (1.a). In that case, the above-described
turn-based game Gtb is not well-de�ned anymore. Indeed, when considering
the valuations v0 : Q → [0, 1] of the states allowed to Player A at a state
(q0, α0), we can no longer talk about the value of the game in normal form
〈F(q0), v0〉 since it does not exist, a priori. A possible way to �x this is to con-
sider a new turn-based game GAtb in which we consider the Player-A value of the
games in normal form. In that new turn-based game, that mimics the game
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Gtb, the valuations v0 : Q → [0, 1] of the states allowed to Player A at a state
(q0, α0) are the ones such that α0 is at least the Player-A value of the game
in normal form 〈F(q0), v0〉. Otherwise, the game Gtb is left unchanged. Then,
as before, from all states q0, there is a threshold αA(q0) ∈ [0, 1] such that for
all u < α(q0,A), Player A has a winning strategy from the state (q0, u) in GAtb
whereas, for all u > α(q0,A), Player B has a winning strategy from the state
(q0, u) in GAtb. Furthermore, as before, for all ε > 0, from a Player-A winning
strategy in the game GAtb from the state (q0, α(q0,A)− ε) we are able to build a
Player-A winning valuation vε w.r.t. (q0, α(q0,A)− ε) and A. Furthermore, we
will then be able to build a Player-A strategy s2ε

A of value at least α(q0,A)−2 ·ε
from q0 that ensures the properties stated in result (1.a) by using Lemma 2.11.
However, we are no longer able to do the (almost) symmetrical thing for Player
B. This is in fact unsurprising since there is no reason for α(q0,A) to be equal
to the value of the state q0

4. However, we can hope (and it is in fact the
case) that α(q0,A) is equal to the Player-A value of the state q0 in the game
G. This would show that the Player-A strategy s2ε

A mentioned above is indeed
2ε-optimal from the state q0. We have already shown that the Player-A value
of the state q0 is at least α(q0,A). However, the question is now: how do we
prove that it is at most α(q0,A)?

We cannot exhibit Player-B strategies of value arbitrarily close to α(q0,A),
as we did with valuable local interactions, since α(q0,A) is a priori not the value
of the state q0. The only way (that we can think of) is to show that for any
Player-A strategy sA, the value of the strategy sA from q0 is at most α(q0,A).
However, we need to link the value of the strategy sA from q0 with α(q0,A). Our
idea is then to de�ne yet another turn-based game GsAtb that mimics the game GAtb
but changes the local condition: in that game, the valuations v0 : Q→ [0, 1] of
the states allowed to Player A at a state (q0, α0) are the ones such that α0 is at
most the value of the GF-strategy sA(q0) in the game in normal form 〈F(q0), v0〉.
Then, as before, from all states q0, there is a threshold αsA(q0) ∈ [0, 1] such
that for all u < α(q0, sA), Player A has a winning strategy from the state (q0, u)

in GsAtb whereas, for all u > α(q0, sA), Player B has a winning strategy from the
state (q0, u) in GsAtb . Furthermore, it now holds that, for all ε > 0, from a
Player-B winning strategy in the game GsAtb from the state (q0, α(q0, sA) + ε)

we are able to build a Player-B winning valuation w.r.t. (q0, α(q0, sA) + 2 · ε)
and sA. This shows that the sA-value of the state q0 is at most α(q0, sA). In
addition, from any state (q, u), if Player A wins in the game GsAtb , then she also
wins in the game GAtb. This is due to the fact that the local condition in GsAtb
allows less choices for Player A than the local condition in GAtb. Hence, we have
α(q0, sA) ≤ α(q0,A). This shows what we wanted: all Player-A strategies have
value at most (q0, α(q0,A)) from q0.

4Otherwise, it would imply that any concurrent game has a value, regardless of
the local interactions involved, which we know is not true
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Overall, in order to show result (1.a) for Player A, we de�ne several turn-
based games: �rst, the game GAtb, similar to the game Gtb, except that the
valuations allowed to Player A are determined by the Player-A value of the
game in normal forms. By exhibiting Player-A winning valuations w.r.t. A,
we can then show that the Player-A value of any state q0 is at least α(q0,A).
To show that α(q0,A) is actually equal to the Player-A value of the state q0,
we de�ne, for all Player-A strategies sA ∈ SCA, the turn-based game GsAtb . It
is also similar to the game Gtb, except that the valuations allowed to Player
A are determined by the value, in games in normal form, of the Player-A
GF-strategies obtained from the strategy sA. By exhibiting Player-B winning
valuations w.r.t. sA, we can then show that the sA-value of any state q0 is
at most α(q0, sA) which is less than or equal to α(q0,A). In terms of guards,
we have that for the Player-A guard gd = A, we exhibit Player-A strategies,
whereas for the Player-B guard gd = sA, we exhibit Player-B strategies.

In the following, we also de�ne turn-based games for the guards gd = B

and gd = sB ∈ SCB to do the same for Player B. Furthermore, we will handle at
the same time all Player-A guards, by exhibiting winning valuations for Player
A and all Player-B guards, by exhibiting winning valuations for Player B.

Formal de�nitions and proofs. For all guards gd ∈ GuardC , we formally
de�ne the game Ggdtb .
De�nition 2.8. Consider an arbitrary concurrent game G and a guard gd ∈
GuardC . We build the following deterministic turn-based win/lose game Ggdtb :=

〈Cgdtb ,Wtb(f)〉. Note that this arena Cgdtb need not be colored5, and the winning

objective Wtb(f) ⊆ (Qtb)ω is directly given as a Borel subset of in�nite paths.

Recalling De�nition 1.11 for the de�nition of turn-based game forms, we let

Cgdtb = 〈Qtb,F
gd〉 be such that:

• Qtb := QA ]QB;

• QA := {(π, α) | π ∈ Q+, α ∈ [0, 1]} is the set of Player-A states;

• QB := {(π, h) | π ∈ Q+, h : Q→ [0, 1]} is the set of Player-B states;

• For all Player-A states (π, α) ∈ QA, Fgd((π, α)) := 〈MovegdA (π, α), {∗}, QB, %
π
A〉

with

MovegdA (π, α) := {h : Q→ [0, 1] | val[〈F(πlt), h〉][gd(π)] ≥ α}

and %πA : MovegdA (π, α) → QB such that, for all h ∈ MovegdA (π, α), we

have %πA(h) := (π, h) ∈ QB.

5If we want the de�nition to exactly �t in the formalism of De�nition 1.23, we
could consider Qtb itself as set of colors and the identity function as coloring function.
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q0,

[
q0 >
> ⊥

] >

⊥

0

0

1

Figure 2.2: A deterministic concur-
rent reachability game G = 〈C,W 〉
where Player A wants to reach the
target {>}.

〈F(q0), h〉 =

[
x 1
1 0

]

Figure 2.3: The local interaction
at state q0 in the game of Fig-
ure 2.2 valued with the valuation
h : {q0 7→ x,> 7→ 1,⊥ 7→ 0}.

• For all Player-B states (π, h) ∈ QB, Fgd((π, h)) := 〈{∗},MoveB, QA, %
π,h
B 〉

with

MoveB := Q

and %hB : MoveB → QA such that, for all q ∈ MoveB, we have %
π,h
B (q) :=

(π · q, h(q)) ∈ QA.

• Wtb(f) := {(π0, α0)·(π0, h0)·(π≤1, α1) · · · ∈ (QA ·QB)ω | limsup(αi)i∈N ≤
fC(π)} ⊆ (QA ·QB)ω.

Note that the winning set Wtb(f) is Borel since the functions fC and the

superior limit limsup are measurable.

Note that the di�erent games Ggdtb indexed by gd only di�er by their sets of
moves available to Player A at her states.

Example 2.1. Consider the standard concurrent game G = 〈C,W 〉 from
Figure 2.2. Note that all local interactions are �nite and therefore valuable.

Hence, GAtb = GBtb (we will discuss it again below in Observation 2.1). The game

G is win/lose and Player A wins if and only if the state > is reached. (Recall the

reachability objective from De�nition 1.25.) Hence, Player B wants to either

loop inde�nitely on q0 or reach the state ⊥. Let us exemplify De�nition 2.8 on

this game. Part of the arena CAtb = CBtb is represented in Figure 2.4. Player-A

states are rectangle-shaped, whereas Player-B states are hexagon-shaped6.

From the state (q0, α), Player A chooses a valuation h of successor states.

In what is depicted in Figure 2.4, we only drew valuations h such that h(>) = 1

and h(⊥) = 0. The reason for that is the following: both ⊥ and > are self-

looping states. Furthermore, reaching and looping on > is winning for Player

A while reaching and looping on q0 is loosing for Player A . Hence, Player

A can safely value > with 1 since that would not lead to her overestimating

its value. However, she cannot7 value ⊥ with a positive value x > 0. Indeed,

6Note that in De�nition 2.8, Player-B states are pairs of state and valuation of
successor states. We did not indicate the state (which is q0) to simplify our drawing.

7More precisely, she can but she should not if she wants to win.

87



(q0, α)

h :





q0 7→ 2α−1
α

> 7→ 1

⊥ 7→ 0

· · · h :





q0 7→ 1.5α−0.5
α

> 7→ 1

⊥ 7→ 0

· · · h :





q0 7→ 1

> 7→ 1

⊥ 7→ 0

(q0 · >, 1) (q0 · ⊥, 0)

(q2
0,

2α−1
α

) (q2
0,

1.5α−0.5
α

) (q∗0, 1)

· · · · · · · · · · · ·

Figure 2.4: A part of the turn-based arena Ctb from De�nition 2.8 built
from the concurrent reachability game of Figure 2.2.

in that case by de�nition of MovegdA (⊥, ·), it would imply that the superior

limit of the values seen is at least x whereas the target is not reached (i.e. the

corresponding in�nite path is losing, in terms of payo� functions, it has value

0). In other words the value of ⊥ is 0, hence giving it a positive value would

be overestimating this value. Alternatively, > could be stopping state of value

1 and ⊥ could be a stopping state of value 0. Furthermore, note that if the

game is at a state (q, ·) ∈ QA, for any state q′ ∈ Q such that q′ does not appear

in F(q), then Player A should always choose a valuation h such that h(q′) := 0

since it is always easier to win for her if the value of the state is smaller.

The only relevant choice for Player A remains in how to value q0. We have

depicted several possibilities (only for α ≥ 1
2 , otherwise

2α−1
α < 0). In that case,

the minimum that Player A can value q0 is equal to
2α−1
α . Indeed, one can check

that in the game in normal form 〈F(q0), h〉 with h : {q0 7→ x,> 7→ 1,⊥ 7→ 0}
� that is depicted in Figure 2.3 � we have val[〈F(q0), h〉] = 1

2−x . Hence,

val[〈F(q0), h〉] ≥ α if and only if x ≥ 2α−1
α . In particular, if α ≤ 1

2 , then

x = 0 works. Furthermore, the greater α is, the greater x must be. This

can be informally seen at the bottom of Figure 2.4 between states (q0,
2α−1
α )

and (q0,
1.5α−0.5

α ). Since 1.5α−0.5
α ≥ 2α−1

α , Player A has more possibilities from

(q0,
2α−1
α ) than from (q0,

1.5α−0.5
α ), as represented in the arrows exiting from

these states.

We make a central observation below. Note that it is only in the proof of
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this observation that we use Theorem 2.1 (Borel determinacy: the existence of
winning strategies in deterministic standard turn-based win/lose games).

Observation 2.1. Consider the arbitrary concurrent game G, a guard gd ∈
GuardC and a starting state q0. For all Borel winning conditions W ⊆ (QA ·
QB)ω, there is a value αgd(q0,W ) ∈ [0, 1], such that, for all αA < αgd(q0,W ) <

αB, Player A has a winning strategy from (q0, αA) and Player B has a winning

strategy from (q0, αB) in the game 〈Cgdtb ,W 〉. This value αgd(q0,W ) is called

the threshold of the parameterized game 〈Cgdtb ,W 〉 from q0. Furthermore, for

all sA ∈ SCA and sB ∈ SCB:

αsA(q0,W ) ≤ αA(q0,W ) ≤ αB(q0,W ) ≤ αsB(q0,W )

with αA(q0,W ) = αB(q0,W ) as soon as all local interactions are valuable.

Finally, in the game Ggdtb = 〈Cgdtb ,Wtb(f)〉, Player A has a winning strategy

from (q0, 0).

Proof. Consider two thresholds α < α′. Then, in the arena Cgdtb , from (q0, α)

Player A has less strategies available than from (q0, α
′) while the strategies

available to Player B are the same. Since from every state, either of the play-
ers has winning strategy � by Theorem 2.1, as we consider a deterministic
win/lose turn-based game with a Borel objective � the �rst result follows.
Furthermore, for all π ∈ Q+ and h : Q→ [0, 1], letting F := F(πlt), we have:

val[〈F , h〉][sA(π)] ≤ val[〈F , h〉][A] ≤ val[〈F , h〉][B] ≤ val[〈F , h〉][sB(π)]

In addition, if F is valuable, we have val[〈F , h〉][A] = val[〈F , h〉][B] and MoveAA(π, α) =

MoveBA(π, α). The second result follows. Finally, in the game Ggdtb , from the
state (q0, 0), Player A has the winning strategy consisting in always playing
the valuation 0 mapping every state to 0, ensuring that the superior limit is
less than or equal to f .

Example 2.2. Let us compute the threshold αA(q0,Wtb(W )) = αB(q0,Wtb(W ))

in the game of Figure 2.4. Note that since W � the objective in the original

concurrent game G � is win/lose, the objective Wtb(W ) in the turn-based

game Gtb can be reformulated as follows: an in�nite path ρ ∈ (QA · QB)ω is

in Wtb(W ) if and only if either a state (>, ·) ∈ QA is seen or the limit of the

values in states of the shape (qn0 , α) ∈ QA is 0. A similar reformulation will be

used in Subsection 2.4.3 to show result (1.b) of Theorem 2.3.

As mentioned in Example 2.1, if α ≤ 1
2 , Player A can value q0 with 0 and

ensure winning. Indeed, Player B may go to (q0, 0) ∈ QA or (⊥, 0) ∈ QA and

in both cases Player A will win as mentioned in Observation 2.1. Player B

may also go to (>, 1) and in that case Player A will also win. Now, consider

some 1
2 < α < 1. Let g : [1

2 , 1) → [0, 1] be such that, for all x ∈ [1
2 , 1), we

have g(x) := 2x−1
x . From (q0, α), Player A �rst chooses a valuation h0 such
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that h0(q0) := g(α). Then if Player B has chosen to come back to q0, Player

A chooses a valuation h1 such that h1(q0) := g ◦ g(α). This is repeated until a

state (qn0 , x) ∈ QA is reached with x ≤ 1
2 , after which Player A values q0 with

0. (Note that for all x ∈ [1
2 , 1), there is some n ∈ N such that g(n)(x) ≤ 1

2 ,

where g(n) refers to the composition n times of g.) Hence, αA(q0,Wtb(W )) =

αB(q0,Wtb(W )) = 1. However, note that when α = 1, it is Player B who has

a winning strategy from (q0, α). Player A has to value q0 with 1 inde�nitely,

as depicted in Figure 2.4. Hence, Player B can loop inde�nitely on q0 (the

state (q∗0, 1) refers to the set of states {(qn0 , 1) | n ≥ 2}) while ensuring that

the superior limit is positive (in fact, it is equal to 1).

Crucially, the existence of winning strategies in Ggdtb for a starting state
(q0, α) from q0 ∈ Q and α ∈ [0, 1] implies the existence of winning valuations
w.r.t. (q0, α) and gd in the game G. Note that although this holds as is for
Player A, we prove a slightly weaker statement for Player B. Furthermore, the
proof for Player A is quite straightforward, while it is harder for Player B. In
addition, with these lemmas, we are able to show results (1.a) and (2) from
Theorem 2.3. We will use an additional lemma � that we discuss in the next
subsection � to obtain result (1.b).

Lemma 2.13. Consider an arbitrary concurrent game G, a starting state q0

and a value α ∈ [0, 1]. Let gd ∈ GuardA
C be a Player-A guard. Assume that

Player A has a winning (deterministic) strategy in the game Ggdtb from the state

(q0, α). Then, there is a valuation v : Q+ → [0, 1] that is winning w.r.t. (q0, α)

and gd for Player A.

Before proving this lemma, we �rst introduce below in De�nition 2.9 a
useful function mapping �nite paths C to �nite paths in Ctb that are compatible
with a Player-A strategy in Ctb from a given starting state.

De�nition 2.9 (Map to �nite paths compatible with a strategy). Consider

an arbitrary concurrent arena C, a Player-A guard gd ∈ GuardA
C and the turn-

based arena Cgdtb from De�nition 2.8. For all Player-A strategies sA ∈ S
Cgdtb
A in

the turn-based arena Cgdtb and a starting state (q0, α) ∈ QA. We let p
(q0,α)
sA :

q0 ·Q∗ → (QA ·QB)∗ ·QA be de�ned inductively by, for all π ∈ q0 ·Q∗:

p
(q0,α)
sA (π) :=

{
(q0, α) if π = q0

p
(q0,α)
sA (ρ) · (ρ, sA ◦ p(q0,α)

sA (ρ)) · (π, sA ◦ p(q0,α)
sA (ρ)(q)) if π = ρ · q

This function is then extended to in�nite paths (pq0,αsA )ω : q0 ·Qω → (QA ·QB)ω.

Observation 2.2. For all concurrent arenas C, Player-A guards gd ∈ GuardA
C

and Player-A strategies sA in the turn-based arena Cgdtb , for all in�nite paths

ρ ∈ q0 · Qω, the in�nite path (pq0,αsA )ω(ρ) ∈ (QA · QB)ω is compatible with

the strategy sA from the state (q0, α): (pq0,αsA )ω(ρ) ∈ CPCtb,(q0,α)(sA). (Recall

De�nition 1.33.)
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Let us proceed to the proof of Lemma 2.13.

Proof. Consider a Player-A winning strategy sA in the game Ggdtb from the state

(q0, α). We let p := p
(q0,α)
sA . We de�ne inductively a valuation v : q0 ·Q∗ → [0, 1]

in the following way:

• v(q0) := α;

• for all ρ ∈ q0 ·Q∗, we let vρ := sA ◦ p(ρ) : Q→ [0, 1].

Furthermore, for all ρ ∈ Q+ \ q0 · Q∗, we set v(ρ) := 0. With this de�nition,
this valuation v ensures the property:

∀ρ ∈ q0 ·Q∗, p(ρ)lt = (ρ, v(ρ))

Indeed, p(q0) = (q0, α) = (q0, v(q0)). Furthermore, for all ρ · q ∈ q0 · Q+, we
have p(ρ · q)lt = (ρ · q, sA ◦ p(ρ)(q)) = (ρ · q, v(ρ · q)).

Let us show that this valuation is winning for Player A w.r.t. (q0, α) and
gd in the game G. First, it is non-decreasing w.r.t. gd. Indeed, this holds
for �nite paths in Q+ \ q0 · Q∗ and for all �nite paths ρ ∈ q0 · Q∗, we have
sA ◦ p(ρ) ∈ MovegdA (p(ρ)lt) = MovegdA ((ρ, v(ρ))). That is, v(ρ) ≤ val[〈F(ρlt), sA ◦
p(ρ)〉][gd(ρ)] = val[〈F(ρlt), v

ρ〉][gd(ρ)]. In addition, the valuation v ensures
that v(q0) = α. Furthermore, consider a path ρ ∈ q0 · Qω. The in�nite path
p(ρ) is compatible with the strategy sA from (q0, α) in Ggdtb as mentioned in
Observation 2.2. Since this strategy is winning, it follows that p(ρ) ∈W . Since
for all i ∈ N, we have p(ρ≤i)lt = (ρ≤i, v(ρ≤i)), it follows that limsup v(ρ≤i) ≤
fC(ρ). As this holds for all paths ρ ∈ q0 ·Qω, it follows that the valuation v is
winning w.r.t. (q0, α) and gd for Player A.

Lemma 2.14 below is the analogue of Lemma 2.13 for Player B.

Lemma 2.14. Consider an arbitrary concurrent game G, a starting state q0

and a value α ∈ [0, 1]. Let gd ∈ GuardB
C be a Player-B guard. Assume that

Player B has a winning (deterministic) strategy in the game Ggdtb from the state

(q0, α). Then, for all 0 < ε < 1 − α, there is a valuation v : Q+ → [0, 1] that

is winning for Player B w.r.t. (q0, α+ ε) and gd.

The proof is not symmetric compared to the proof of Lemma 2.13. Here, it
is harder to come up with the appropriate valuation since a Player-B winning
strategy sB in the game Ggdtb does not choose values for the states but pick states
once Player A has chosen a value for them. The idea to de�ne a value for a
state q is to consider the in�mum over the values that Player A can choose for
q that makes the Player-B winning strategy sB go to q.

Proof. Consider a Player-B winning strategy sB from the state (q0, α) in the
game Ggdtb . Let 0 < ε < 1− α. We want to de�ne a valuation v : Q+ → [0, 1].
First, for all ρ ∈ Q+ \ q0 · Q∗, we let v(ρ) := 1. Then, we de�ne inductively
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in parallel the valuation v on q0 ·Q∗ and a map p : q0 ·Q∗ → (QA ·QB)∗ ·QA

ensuring the following, for all ρ ∈ q0 ·Q∗:

a. if v(ρ) = 1 then for all π ∈ Q∗, we have v(ρ · π) = 1;

b. if v(ρ) < 1, then p(ρ) ∈ (QA ·QB)∗ ·QA is compatible with the strategy
sB from (q0, α).

We let v(q0) := α + ε and p(q0) := (q0, α) ∈ QA. Now, assume that v and
p are both de�ned on a path ρ ∈ q0 ·Q∗. First, if v(ρ) = 1, then for all q ∈ Q,
we set v(ρ · q) := 1, thus ensuring property a. Assume now that v(ρ) < 1. For
all states q ∈ Q, we de�ne the set of valuations that Player A can choose that
make the Player-B strategy sB go to q:

Hρ(q) := {h ∈ MovegdA (p(ρ)lt) | sB(p(ρ) · (ρ, h)) = q}

Then, we de�ne a function hρ : Q→ [0, 1] such that, for all states q ∈ Q:

hρ(q) := inf{h(q) | h ∈ Hρ(q)}

Furthermore Hρ(q) = ∅ means that regardless of what Player A chooses as
value for the state q, the Player-B winning strategy sB never goes to q. Hence,
we set hρ(q) := 1. Then, we set:

vρ := min
(
hρ +

ε

2|ρ|
, 1
)

: Q→ [0, 1] (2.7)

Let us now de�ne p(ρ · q) ∈ (QA · QB)∗ · QA. If v(ρ · q) = 1, then we let
p(ρ · q) := p(ρ) · (ρ, 1) · (ρ · q, 1). Assume now that v(ρ · q) < 1. That is,
v(ρ · q) = hρ(q) + ε

2|ρ|
< 1 and Hρ(q) 6= ∅. In that case, we consider some

hqρ ∈ Hq
ρ such that hqρ(q) ≤ hρ(q) + ε

2|ρ|+1 = v(ρ · q)− ε
2|ρ|+1 . Then, we de�ne:

p(ρ · q) := p(ρ) · (ρ, hqρ) · (q, hqρ(q))

Since we have hqρ ∈ Hq
ρ , it follows that the �nite path p(ρ · q) is compatible

with the strategy sB. The valuation v and the map p are now entirely de�ned
and satisfy properties a. and b. In fact, we obtain for all ρ ∈ q0 · Qω, that
either:

• there is some i ∈ N such that, for all j ≥ i, we have v(ρj) = 1; or

• the in�nite path pω(ρ) ∈ (QA ·QB)ω is compatible with the strategy sB
from the state (q0, α).

Let us show that the valuation v is non-increasing w.r.t. gd. This holds for
paths in Q+\q0 ·Q∗. Consider some ρ ∈ q0 ·Q∗. If v(ρ) = 1, it is straightforward
that v(ρ) ≥ val[〈F(ρlt), v

ρ〉][gd(ρ)]. Assume now that v(ρ) < 1 and let us write
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ρ = ρ′ · q. We have p(ρ)lt = (ρ, hqρ′(q)) with h
q
ρ′(q) ≤ v(ρ) − ε

2|ρ|
by de�nition

of hqρ′ .

Let us show that hqρ′(q) ≥ val[〈F(ρlt), hρ〉][gd(ρ)]. Assume towards a contra-
diction that hqρ′(q) ≤ val[〈F(ρlt), hρ〉][gd(ρ)]− δ for some positive δ > 0. Then,
let h′ρ : Q→ [0, 1] be such that h′ρ := max(0, hρ−δ). In that case, h′ρ ≥ hρ−δ,
hence by Lemma 1.10, we have:

val[〈F(ρlt), h
′
ρ〉][gd(ρ)] ≥ val[〈F(ρlt), hρ〉][gd(ρ)]− δ ≥ hqρ′(q)

It follows that h′ρ ∈ MovegdA (p(ρ)lt). Consider now the state q′ ∈ Q equal to
q′ := sB(p(ρ) · (ρ, h′ρ)). In particular, we have h′ρ ∈ Hρ(q

′). Furthermore, it
is not possible that h′ρ(q

′) = 0. Indeed, since p(ρ) is compatible with sB from
(q0, α), the path p(ρ) · (ρ, h′ρ) · (q′, h′ρ(q′)) also is. However, Player A has a
winning strategy from any state (t, 0) ∈ QA for t ∈ Q (see Observation 2.1)
and the Player-B strategy sB is winning from (q0, α). Hence, h′ρ(q

′) > 0. That
is, h′ρ(q

′) = hρ(q
′) − δ < hρ(q

′). This is in contradiction with the de�nition
of hρ(q′) = inf{h′(q′) | h′ ∈ Hρ(q

′)} since h′ρ ∈ Hρ(q
′). In fact, we have

hqρ′(q) ≥ val[〈F(ρlt), hρ〉][gd(ρ)].

Furthermore, vρ− ε
2|ρ|
≤ hρ by Equation 2.7. Recall also that v(ρ)− ε

2|ρ|
≥

hqρ′(q). Hence, we obtain, with Lemma 1.10:

v(ρ)− ε

2|ρ|
≥ hqρ′(q) ≥ val[〈F(ρlt), hρ〉][gd(ρ)] ≥ val[〈F(ρlt), v

ρ〉][gd(ρ)]− ε

2|ρ|

That is, v(ρ) ≥ val[〈F(ρlt), vρ〉][gd(ρ)]. As this holds for all ρ ∈ q0 ·Q∗, it follows
that the valuation v is non-increasing w.r.t gd.

Consider now an in�nite path ρ ∈ q0 ·Qω. If there is some i ∈ N such that
for all j ≥ i, we have v(ρ≤j) = 1, it follows that limsup v(ρ≤i) = 1 ≥ f(ρ).
Otherwise, the in�nite path p(ρ) ∈ (QA ·QB)ω is compatible with the winning
Player-B strategy sB from the state (q0, α) with p(ρ) equal to:

p(ρ) = (ρ0, α) · (ρ0, h
ρ1
ρ0

) · (ρ≤1, h
ρ1
ρ0

(ρ1)) · (ρ≤1, h
ρ2
ρ≤1

) · (ρ≤2, h
ρ2
ρ≤1

(ρ2)) · · ·

Therefore, since the Player-B strategy sB is winning from (q0, α), we have
limsup h

ρi+1
ρ≤i (ρi+1) > fC(ρ). Furthermore, for all i ∈ N, we have v(ρ≤i · ρi+1) ≥

h
ρi+1
ρ≤i (ρi+1) by de�nition of hρi+1

ρ≤i . Hence, limsup v(ρ≤i+1) ≥ fC(ρ). As this
holds for all paths ρ ∈ q0 · Qω, it follows that the valuation v is winning for
Player B w.r.t. (q0, α+ ε) and gd.

We have now all the ingredients to prove results 1.a and 2 of Theorem 2.3.
A reader who wants to see the proof of that part of the theorem now can skip
the next subsection � which we need to prove result 1.b � go to Subsec-
tion 2.4.4 and read the corresponding part of the proof.
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2.4.3 . Win/lose objectives with �nite representatives for (K, col) in Q

In this subsection, we focus on how to prove result 1.b. From a high level
perspective, let us explain what we want to prove in this subsection. Consider
an arbitrary concurrent game G = 〈C, f〉 without stopping states. Then, the
payo� function f only depends on the colors seen in the game, not on the
exact sequence of states visited. Hence, it is natural to assume, that to play
almost-optimally, when they make a decision, the players only need to know
their current position and the sequence of colors seen, not the exact sequence
of states visited. This is what we show in this subsection. More precisely, we
prove a lemma that can then be used to prove this result. However, we are
not able to show it in all generality. We will use two additional assumptions:
�rst, that the game is win/lose (i.e. f [Kω] ⊆ {0, 1}), and second, that the pair
(K, col) has a �nite representative. Let us �rst describe how we use this �rst
assumption. If the game is win/lose and without stopping states, the winning
conditionWtb(f) can reformulated as follows: this consists in the set of in�nite
paths in (QA ·QB)ω such that either the in�nite sequence of states (in Q) has
value 1 w.r.t. f (i.e. it is winning for Player A) or the in�mum of the values
seen in states in QB is 0. Consider now another objective W ′tb(f) that is the
set of in�nite paths in (QA · QB)ω such that either the in�nite sequence of
states (in Q) has value 1 w.r.t. f (i.e. it is winning for Player A) or ρ visits a
state in QA of value 0. In fact, with this slight modi�cation, we do not make it
harder for Player A: αA(q,Wtb(f)) ≤ αA(q,W ′tb(f)). This is formally proved
in Lemma 2.15 below.

Let us �rst introduce some useful functions.

De�nition 2.10. Consider an arbitrary concurrent arena C and the turn-

based arena CAtb. We denote by P0 ⊆ Q↑tb the set of �nite or in�nite paths

visiting the value 0: P0 := {ρ ∈ Q↑tb | ∃i < |ρ|, ρi = (q, 0) ∈ QA}.
Furthermore, we let val : (QA ·QB)∗ ·QA → [0, 1] and sta : (QA ·QB)∗ ·QA →

Q be such that:

∀ρ = (q0, α0) · (q0, h0) · · · (qn, αn) ∈ (QA ·QB)∗ ·QA,

{
val(ρ) := αn

sta(ρ) := qn

We let also φQ : (QA ·QB)↑ ·QA → Q↑ and φ[0,1] : (QA ·QB)↑ ·QA → [0, 1]↑ be

such that:

∀ρ = (q0, α0) · (q0, h0) · · · ∈ (QA ·QB)↑ ·QA,

{
φQ(ρ) := q0 · q1 · · · ∈ Q↑
φ[0,1](ρ) := α0 · α1 · · · ∈ [0, 1]↑

Let us now formally de�ne this other winning condition for Player A in the
game Gtb.
De�nition 2.11 (Another winning condition). Consider an arbitrary con-

current game G, the turn-based arena Ctb from De�nition 2.8. We de�ne the
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winning objective:

W ′tb(f) := {(ρ0, α0) · (ρ0, h0) · · · ∈ (QA ·QB)ω | fC(ρ) = 1 or ∃i ∈ N, αi = 0}

We let G′tb := 〈CAtb,W ′tb(f)〉 be the corresponding turn-based game.

With this de�nition, we have:

Lemma 2.15. Consider an arbitrary win/lose concurrent game G = 〈C, f〉
without stopping states. Let q0 ∈ Q. Then: αA(q0,Wtb(f)) ≤ αA(q0,W

′
tb(f)).

Proof sketch. For α := αA(q0,Wtb(f)), we let 0 < ε < α and we want to show
that α − ε ≤ αA(q0,W

′
tb(f)). Consider a winning Player-A strategy sA in the

game GAtb from the staring state (q0, α − ε
2). Our goal is de�ne a Player-A

strategy s′A that is winning from the state (q0, α − ε) in the game G′tb. To do
so, we will de�ne this strategy s′A from sA by subtracting (when possible) ε/2
to all values of the states that it chooses. That way, for all in�nite paths ρ
compatible with s′A from (q0, α− ε), there is going to be an in�nite path p(ρ)

that is compatible with sA from (q0, α − ε
2) such that the sequences of states

(in Q) seen in ρ and p(ρ) are the same. Furthermore, if ρ never visits a state
in QA of value 0, then the in�mum of the values seen in p(ρ) is at least ε/2.
Therefore, since sA is winning Gtb from (q0, α − ε

2), then s′A is winning in G′tb
from (q0, α− ε).

Let us now formally prove this lemma.

Proof. If αA(q0,Wtb(f)) = 0, this straightforwardly holds. Assume now that
αA(q0,Wtb(f)) 6= 0, which we denote by α := αA(q0,Wtb(f)). Let 0 < ε < α.
Let us show that α−ε ≤ αA(q0,W

′
tb(f)). Consider a winning Player-A strategy

sA in the game GAtb from the starting state (q0, α− ε
2).

Formally, we de�ne inductively a Player-A strategy s′A in the arena CAtb along
with a map p taking a �nite path ρ in (QA ·QB)∗ ·QA \ P0 that is compatible
with s′A from (q0, α − ε) and returning a �nite path p(ρ) ∈ (QA · QB)∗ · QA

ensuring:

a. φQ(p(ρ)) = φQ(ρ), i.e. the �nite sequence of states in Q seen is the same
in p(ρ) and ρ;

b. p(ρ) /∈ P0 is compatible with the strategy sA from (q0, α− ε/2);

c. val(p(ρ)) = val(ρ) + ε/2;

d. for all ρ ∈ (QA ·QB)∗ ·QA ∩ P0 compatible with s′A, we have val(ρ) = 0;

e. for all ρ ∈ (QA · QB)∗ · QA \ P0 compatible with s′A, we have s′A(ρ) :=

max(sA ◦ p(ρ)− ε
2 , 0) : Q→ [0, 1].
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Initially, we set p((q0, α−ε)) := (q0, α−ε/2) and s′A((q0, α−ε)) := max(sA◦
p(q0, α− ε)− ε

2 , 0) : Q→ [0, 1] thus ensuring properties a.− e.
Assume now that s′A and p, for some n ∈ N, are de�ned on paths of length

at most 2 · n+ 1 while ensuring properties a.− e.. Consider a path

ρ = ρ′ · (π, s′A(ρ′)) · (π · q′, s′A(ρ′)(q)) ∈ (QA ·QB)n+1 ·QA

compatible with s′A. If ρ ∈ P0, then by assumption val(ρ) = 0. Hence, we let
sA(ρ) := 0 : Q → [0, 1] ∈ MoveA(ρlt) ensuring property d. Now, assume that
ρ /∈ P0. In that case, we have s′A(ρ′)(q) > 0, that is s′A(ρ′)(q) = sA ◦ p(ρ′)(q)−
ε
2 > 0. We let

p(ρ) := p(ρ′) · (π, sA ◦ p(ρ′)) · (π · q, sA ◦ p(ρ′)(q)) ∈ (QA ·QB)n+1 ·QA

thus ensuring properties a.-c. Furthermore, de�ning s′A(ρ) := max(sA ◦ p(ρ)−
ε
2 , 0) : Q → [0, 1] ensures property e. This concludes the de�nitions of the
strategy s′A and the map p.

Now, let us show that the strategy s′A is winning in the game G′tb from
the state (q0, α − ε). Consider some in�nite path ρ ∈ (QA · QB)ω that is
compatible with s′A in CAtb from (q0, α − ε). If ρ ∈ P0, then ρ ∈ W ′tb(f). Now,
assume that ρ /∈ P0. It follows that, for all i ∈ N, we have ρ≤i compatible
with s′A and ρ≤i /∈ P0. The map p is therefore de�ned on all pre�xes ρ≤i
for i ∈ N. Hence, we can consider the in�nite path p(ρ) ∈ (QA · QB)ω. By
property b., we have p(ρ) /∈ P0 and p(ρ) compatible with the strategy sA from
the state (q0, α − ε/2). Furthermore, by property c., for all i ∈ N, we have
val(p(ρ)≤2i+1) = val(p(ρ≤2i+1)) = val(ρ≤2i+1) + ε/2 ≥ ε/2. It follows that
limsup φ[0,1](p(ρ)) ≥ ε/2 > 0. Since the strategy sA is winning from the state
(q0, α − ε/2) for the winning condition Wtb(f), we have p(ρ) ∈ Wtb(f). That
is, 0 < limsup φ[0,1](p(ρ)) ≤ fC(φQ(p(ρ))). We can conclude that, since f is
win/lose and there are no stopping states, fC(φQ(p(ρ))) = 1. As φQ(p(ρ)) =

φQ(ρ) (by property a.), it follows that ρ ∈W ′tb(f). As this holds for all in�nite
paths ρ compatible with s′A from (q0, α − ε), it follows that this strategy is
winning from (q0, α− ε). Hence, αA(q0,Wtb(f))− ε = α− ε ≤ αA(q0,W

′
tb(f)).

Since this holds for all ε > 0, it follows that αA(q0,Wtb(f)) ≤ αA(q0,W
′
tb(f)).

Lemma 2.16. Consider an arbitrary win/lose concurrent game G. Assume

that (K, col) has �nite representatives inQ. Then, for all 0 < α < αA(q0,Wtb(f)),

there is a (K, col)-uniform valuation v : Q+ → [0, 1] that is winning for Player

A w.r.t. (q0, α) and A.

Proof sketch. To build this valuation v that is winning for Player A w.r.t.
(q0, α), by Lemma 2.15, we can use a Player-A strategy that is winning in
the game G′tb from the state (q0, α). However, since the valuation v has to be
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(K, col)-uniform, we need to de�ne it on K∗ × Q. To do so, given any pair
(γ, q) ∈ K∗×Q, we will consider all the possible paths π ∈ Q∗ whose sequence
of colors may be equal to γ. Since (K, col) has �nite representatives in Q, there
are only �nitely many of them. By appropriately choosing the �nite path π
to consider, it is possible to de�ne v while ensuring that the valuation v that
we de�ne is non-decreasing w.r.t. A. In addition, for all ρ ∈ q0 · Qω, we can
build an in�nite path in the arena CAtb whose sequence of colors corresponds to
the sequence of colors ρ that is compatible with the strategy sA from (q0, α).
We achieve this by using the �nite representatives assumption (with König's
lemma-like argument.). In addition, since we have changed the objective into
Wtb(f)′, we can show that if f(ρ) < 1, then there is some i ∈ N such that, for
all j ≥ i, we have v(ρ≤j) = 0. Therefore, the superior limit of v(ρ≤i) is equal
to 0. This allows us to conclude that the valuation v that we have de�ned is
winning for Player A w.r.t. (q0, α).

Let us now formally prove this lemma.

Proof. Consider such an α < αA(q0,Wtb(w)). By Lemma 2.15, we have α <

αA(q0,W
′
tb(w)). Hence, we can consider a Player-A strategy sA that is winning

from (q0, α) in the game G′tb. Consider the function p = pq0,αsA : q0 · Q∗ →
(QA ·QB)∗ ·QA from De�nition 2.9. Then, for all γ ∈ K∗ and q ∈ Q, we de�ne
the set:

Cγ,q := {π = π′ · q ∈ q0 ·Q∗ · q | col∗(π′) = γ ∧ p(π) /∈ P0}

Note that for all γ ∈ K∗ and q ∈ Q, the set Cγ,q is �nite since (K, col) has �nite
representatives in Q. Hence, we can de�ne the maximum value αγ,q ∈ [0, 1]

achieved by paths in Cγ,q:

αγ,q := max{α ∈ [0, 1] | ∃π ∈ Cγ,q, val ◦ p(π) = α}

Whenever Cγ,q is the empty set, we set αγ,q := 0. Finally, consider a function
ι : K∗×Q→ Q+ such that, for all (γ, q) ∈ K∗×Q, if Cγ,q 6= ∅, then ι(γ, q) ∈ Cγ,q
and:

val ◦ p(ι(γ, q)) = αγ,q (2.8)

Note that, by de�nition of the set Cγ,q, we have:

col∗ ◦ ι(γ, q) = γ · col(q) (2.9)

We can now de�ne a valuation of �nite sequences of states v : Q+ → [0, 1].
First, we let v(q0) := α and v(q) := 0 for all q ∈ Q \ {q0}. Then, for all
(γ · q) ∈ K∗ ×Q, we de�ne the valuation vγ·q : Q→ [0, 1] in the following way:

vγ,q :=

{
0 : Q→ [0, 1] if Cγ,q = ∅
sA ◦ p(ι(γ, q)) : Q→ [0, 1] otherwise
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Then, for all ρ · q ∈ q0 ·Q∗, we have vρ·q := vcol
∗(ρ)·q. Hence, by de�nition, v is

(K, col)-uniform. Let us show that v is a winning valuation for Player A w.r.t.
(q0, α) and A.

First, we show that it is non-decreasing w.r.t. A. We have vq0 = sA((q0, α)) ∈
MoveAA((q0, α)). Hence, v(q0) = α ≤ out[〈F(q0), vq0〉]. Furthermore, v(q) = 0

for all q ∈ Q \ {q0}. Hence, the valuation v is non-decreasing at all states
q ∈ Q. Now, let ρ := ρ′ · q′ · q ∈ Q · Q+ with ρ′ ∈ Q∗, γ := col∗(ρ′) ∈ K∗ and
γ′ := col∗(ρ′·q′) = γ ·col(q′) ∈ K+. If v(ρ) = 0, then v(ρ) ≤ out[〈F(ρ), vρ〉] holds
straightforwardly. Assume now that v(ρ) > 0. That is, vρ

′·q′(q) > 0. It follows
that Cγ,q′ 6= ∅. Hence, we have ι(γ, q′) ∈ Cγ,q′ and vρ

′·q′ = sA ◦ p(ι(γ, q′)).
Furthermore,

p(ι(γ, q′) · q) = p(ι(γ, q′)) · (ι(γ, q′), sA ◦ p(ι(γ, q′))) · (ι(γ, q′) · q, sA ◦ p(ι(γ, q′))(q))
= p(ι(γ, q′)) · (ι(γ, q′), vγ,q′) · (ι(γ, q′) · q, vγ,q′(q))

with vγ·q
′
(q) = v(ρ) > 0. Since p(ι(γ, q′)) /∈ P0, we have p(ι(γ, q′) · q) /∈ P0. In

addition, since by Equation 2.9 we have col∗◦ι(γ, q′) = γ ·col(q′) = γ′, it follows
that ι(γ, q′) · q ∈ Cγ′,q. Hence, by de�nition, αγ′,q ≥ val ◦ p(ι(γ, q′) · q) = v(ρ).
Furthermore, vγ

′,q = sA ◦ p(ι(γ′, q)) ∈ MoveAA(p(ι(γ′, q))lt) = MoveAA((ι(γ, q′) ·
q, αγ′,q)) by Equation 2.8. In other words, v(ρ) ≤ αγ′,q ≤ val[〈F(q), vγ

′,q〉][A] =

val[〈F(q), vρ〉][A]. That is, v is non-decreasing w.r.t. A at ρ.
Consider now some ρ ∈ q0 · Qω. Let N>0 := {i ∈ N | Ccol∗(ρ≤i),ρi+1

6= ∅}.
For all k /∈ N>0, we have vcol

∗(ρ≤k),ρk+1(ρk+2) = v(ρ≤k+2) = 0. Hence, if
N>0 is �nite, then there is some k ∈ N such that v(ρ≤i) = 0 for all i ≥ k.
Hence, limsup(v(ρ≤i))i∈N = 0. Now, assume that N>0 is in�nite. Let us de�ne
inductively a sequence of states π ∈ Qω such that, for all i ∈ N, we have:

a. col∗(π≤i) = col∗(ρ≤i);

b. p(π≤i) /∈ P0;

c. the set N i
>0 := {j ≥ i | Ccol∗(ρ≤j),ρj+1

∩ π≤i ·Q∗ 6= ∅} is in�nite.

Initially, π0 = q0 and all properties are ensured since N>0 is in�nite. Let us
now assume that π is de�ned up to index i ∈ N and that all properties above
are ensured up to that index. Let us de�ne πi+1 ∈ Q. Let Ñ i

>0 := {j ≥ i+ 1 |
Ccol∗(ρ≤j),ρj+1

∩ π≤i · Q∗ 6= ∅}. By assumption, this set is in�nite. Now, let
c := col(ρi+1) ∈ K. For all q ∈ col−1[c], we consider the set N i

>0(q) := {j ≥
i+ 1 | Ccol∗(ρ≤j),ρj+1

∩ π≤i · q ·Q∗ 6= ∅}. We have:

Ñ i
>0 =

⋃

q∈col−1[c]

N i
>0(q)

Since (K, col) has �nite representatives in Q, the set col−1[c] is �nite. Hence,
there is some q ∈ col−1[c] such that N i

>0(q) is in�nite. Then, we set πi+1 := q.
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With this choice, we have N i+1
>0 = N i

>0(q). Hence, it is in�nite and property c.
is ensured. It also follows that there is some j ≥ i+1, such that Ccol∗(ρ≤j),ρj+1

∩
π≤i+1 · Q∗ 6= ∅. Consider θ = π≤i+1 · π′ ∈ Ccol∗(ρ≤j),ρj+1

∩ π≤i+1 · Q∗. By
de�nition of Ccol∗(ρ≤j),ρj+1

, we have p(θ) /∈ P0. Since π≤i+1 is a pre�x of θ, it
follows that p(π≤i+1) /∈ P0. Hence, property b. is ensured. Furthermore, we
have col∗(π≤i+1) = col∗(π≤i) · col(πi+1) = col∗(π≤i) · c = col∗(ρ≤i) · col(ρi+1) =

col∗(ρ≤i+1) and property a. is ensured. This concludes the de�nition of π ∈ Qω.
The in�nite path p(π) ∈ (QA · QB)ω is compatible with the strategy sA

from (q0, α) (recall Observation 2.2). Hence, since the strategy sA is winning
from (q0, α), we have p(π) ∈W ′tb(f). However, because of property b., we have
p(π) /∈ P0. Hence, f(π) = f(φQ(p(π))) = 1. Since colω(π) = colω(ρ), it follows
that f(ρ) = 1. That is, we have limsup(v(ρ≤i))i∈N ≤ f(ρ) and the valuation v
is winning for Player A w.r.t. (q0, α) and A.

2.4.4 . Proof of Theorem 2.3

Proof. Consider an arbitrary concurrent game G and assume that it is suprem-
ized by a collection (SA

q )q∈Q of GF-strategies w.r.t. Player A and supremized
by a collection (SB

q )q∈Q of GF-strategies w.r.t. Player B. Note that such col-
lections of GF-strategies always exist since (Σq

A)q∈Q (resp. (Σq
B)q∈Q) works for

Player A (resp. B).
Let q ∈ Q be a starting state. Let αq := αA(q,Wtb(f)). Let us show

that αq = χG [A](q). Let 0 < ε < αq. By de�nition of αA(q,Wtb(f)) (recall
Observation 2.1), Player A is winning from (q, αq − ε

2) in GAtb. Hence, by
Lemma 2.13, she has a winning valuation w.r.t. (q, αq − ε

2) and A. It follows,
from Lemma 2.12 that Player A has a strategy sq,εA generated by (SA

q )q∈Q
whose value is at least αq − ε from q in G against any Player-B strategy in
Opnt(A) = SCB. Hence, αq ≤ χG [A](q).

Now, consider any Player-A strategy sA ∈ SCA. Let αsA
q := αsA(q,Wtb(f)).

Let us show that χG [sA](q) ≤ αsA
q . Let 0 < ε < 1 − αsA

q . By de�nition of αsA
q ,

Player B is winning from (q, αsA
q + ε

3) in GsAtb . Hence, by Lemma 2.14, she has a
winning valuation w.r.t. (q, αsA

q + 2·ε
3 ) and sA. It follows, from Lemma 2.12 that

Player B has a strategy generated by (SB
q )q∈Q whose value is at least αsA

q + ε

from q0 against all strategies in Opnt(sA) = sA. Hence, χG [sA](q) ≤ αsA
q + ε.

As this holds for all ε > 0, it follows that χG [sA](q) ≤ αsA
q . Furthermore, by

Observation 2.1, we have αsA
q = αsA(q,Wtb(w)) ≤ αA(q,Wtb(w)) = αq. That

is, χG [sA](q) ≤ αq. As this holds for all Player-A strategies sA ∈ SCA, it follows
that χG [A](q) ≤ αq. Overall, we obtain χG [A](q) = αq = αA(q,Wtb(w)). This
proves result 1.a since, for all ε > 0, the Player-A strategy sεA ∈ SAC such that,
for all q ∈ Q and ρ ∈ Q∗, sεA(q · ρ) := sq,εA (q · ρ) is generated by (SA

q )q∈Q and is
ε-optimal.

We can prove similarly � by using the counterparts of the lemma cited
above for Player B � that χG [B](q) = αB(q,Wtb(f)). Result 2 is then a direct
consequence of Observation 2.1: αA(q,Wtb(f)) = αB(q,Wtb(f)) as soon as all
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local interactions are valuable. Furthermore, result 1.a for Player B can be
deduced from how strategies of values ε-close to αq are built above.

Consider now result 1.b. Assume that (K, col) has �nite representatives
in Q and that the payo� function f is win/lose. Also assume for now that
there is no stopping state in G. We cannot proceed exactly like we did for
result 1.a where, after exhibiting, for each state q ∈ Q, a Player-A strategy
that is ε-optimal from q, we then glue these strategies together to form an ε-
optimal strategy. The issue is that, to establish result 1.b, we need the obtained
strategy to be (K, col)-uniform. Hence, let k ∈ K and Qk := col−1[k] ⊆ Q. We
let nk := |Qk| ∈ N. Let us build a game Gk that is identical to the game G
except that we have added a trivial state qk � whose color is new and has no
impact on the winner of the game � from which there is probability 1

nk
to go

to any state in Qk. We denote by K′ and col′ the set of colors and coloring
function in the game Gk. Consider some ε > 0 and let εk := ε

nk
> 0. By

Lemma 2.16 and what we have shown above applied to the game Gk, Player
A has a winning valuation w.r.t. (qk, χGk [A](qk) − ε

2) and the guard gd = A

that is (K′, col′)-uniform. It follows, from Lemma 2.12 that Player A has a
(K′, col′)-uniform strategy sεkA generated by (SA

q )q∈Q whose value is at least
χGk [A](qk) − εk from qk. By de�nition of the game Gk, the strategy sεk,qkA is
therefore (K, col)-uniform and ε-optimal from all states in Qk. This can be
done for all k ∈ K. It follows that the Player-A strategy sεA ∈ SCA such that, for

all q ∈ Q and ρ ∈ Q∗, we have sεA := s
εcol(q),col(q)

A (q · ρ) is (K, col)-uniform and
ε-optimal. Finally, assume that the game G has stopping states. It su�ces to
add two fresh states > and ⊥ colored with two fresh colors and to modify the
win/lose payo� function f so that reaching > (resp. ⊥) leads to value 1 (resp.
0). Furthermore, we replace each stopping state q ∈ Qs with a trivial state
that leads with probability val(q) to the state > and with probability 1−val(q)

to the state ⊥. This modi�cation does not change the values of any states. We
then can apply the result to this new game.

We proved result 1.b for Player A. However, the assumptions for this result
� recall, that the game is win/lose and that (K, col) has �nite representatives
in Q � do not depend on the player considered. Hence, we can obtain the
same result for Player B (up to reversing the roles of the players in all the
proofs described in this section).

We conclude by an application to turn-based games. Indeed, all turn-based
interactions are supremized by deterministic GF-strategies. Hence, we obtain
the corollary below.

Corollary 2.17. All turn-based games are valuable and for all ε > 0, for both

players, ε-optimal strategies can be found among deterministic strategies.

This result was stated in [55, Theorem 1] and [56, Lemma 11]. In both
cases, the authors suggest that it could be derived by �closely examining�
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Martin's proof and realizing that turn-based game forms are supremized by
deterministic GF-strategies (which is true). What we have done in this chapter
formally proves this result.

2.5 Application: action-strategies

In this section, we consider standard games with richer strategies than the
ones we have considered so far. Recall De�nition 1.26, a strategy is a function
mapping a �nite non-empty sequence of states to a GF-strategy. Here, we
consider strategies that not only depend on the sequence of states but also
on the actions played by the players. These will be called action-strategies,
whereas the strategies we have considered so far in this thesis will be called (in
this section only) state-strategies. The goal of this section is to properly de�ne
action-strategies along with the corresponding notion of outcome. We then use
Theorem 2.3 to show that, under speci�c conditions, concurrent games with
action-strategies have a value and that this value is equal to the value with
state-strategies. However, we exhibit a game where the values of state- and
action-strategies are equal while there is an optimal strategy among action-
strategies, but there is none among state-strategies.

We will use the de�nitions from De�nition 1.8 of the projection function
φQ,QAct

and of the payo� function (fC)Q,QAct
: (Q ∪ QAct)

ω → [0, 1] obtained
from a payo� function fC : Qω → [0, 1].

2.5.1 . De�nitions

We �rst de�ne below the set of admissible sequences on which action-
strategies will be de�ned. Informally, these admissible sequences are the se-
quences of the following shape: q · (q, a, b) · q′ · (q′, a′, b′) · · · with q, q′ ∈ Q,
(a, b) ∈ ActqA × ActqB and (a′, b′) ∈ Actq

′

A × Actq
′

B .

De�nition 2.12 (State and action sequences, Admissible sequences). Con-

sider a standard concurrent arena C. We let:

QAct :=
⋃

q∈Q
({q} × ActqA × ActqB)

We let SeqAdmQ
C ⊆ (Q ·QAct)

∗ ·Q be such that:

SeqAdmQ
C :={ρ = q0 · (q0, a0, b0) · q1 · · · (qn−1, an−1, bn−1) · qn ∈ (Q ·QAct)

∗ ·Q
| ∀0 ≤ i ≤ n− 1, qi ∈ Q, (ai, bi) ∈ ActqiA × ActqiB , qn ∈ Q}

and SeqAdmQAct
C ⊆ (Q ·QAct)

+ be such that:

SeqAdmQAct
C :={ρ = q0 · (q0, a0, b0) · q1 · · · (qn−1, an−1, bn−1) ∈ (Q ·QAct)

+

| ∀0 ≤ i ≤ n− 1, qi ∈ Q, (ai, bi) ∈ ActqiA × ActqiB }
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We also let SeqAdmC := SeqAdmQ
C ]SeqAdmQAct

C . Furthermore, we let SeqAdmω
C ⊆

Q ·QωAct be equal to:

SeqAdmω
C := {ρ ∈ (Q ·QAct)

ω | ∀i ∈ N, ρ≤i ∈ SeqAdmC}

We can now de�ne formally the notion of action-strategies.

De�nition 2.13 (Action strategies). Consider a standard concurrent arena

C. Player-A action-strategies are maps

sA : SeqAdmQ
C → ∪q∈QΣA(F(q))

such that, for all ρ ∈ SeqAdmQ
C , we have sA(ρ) ∈ ΣA(F(ρlt)). We denote

by SC,ActA the corresponding set of strategies in the arena C. From a Player-A

strategy sA ∈ SCA, we build the action-strategy sStaA such that sStaA := sA◦φQ,QAct
:

SeqAdmQ
C → ∪q∈QΣA(F(q)). Such a strategy is called a state-strategy. We

denote the set of state-strategies by SC,StaA := {sStaA | sA ∈ SCA} ⊆ SC,ActA . This is

analogous for Player B.

The stochastic tree induced by action-strategies will be (Q,QAct)-alternating
(recall De�nition 1.8). Let us de�ne the probability to go from Q to QAct and
vice versa.

De�nition 2.14 (Probability transition given two GF-strategies). Consider

a standard concurrent arena C, a state q ∈ Q, another state (q′, a, b) ∈ QAct

and two GF-strategies (σA, σB) ∈ ΣA(F(q))× ΣB(F(q)). The probability to go

from q ∈ Q to (q′, a, b) ∈ QAct if the players play, in q, σA and σB, denoted

PσA,σB(q, (q′, a, b)), is equal to:

PσA,σBC,Act (q, (q′, a, b)) :=

{
0 if q 6= q′

σA(a) · σB(b) otherwise

Furthermore, consider a state (q, a, b) ∈ QAct and another q′ ∈ Q. The proba-
bility to go from (q, a, b) to q′ is equal to:

PDC,Act((q, a, b), q′) := %q(a, b)(q
′)

We de�ne below the stochastic trees action-induced by a pair of action-
strategies.

De�nition 2.15 (Probability distribution given two strategies). Consider

a standard concurrent arena C and two arbitrary action-strategies (sA, sB) ∈
SC,ActA ×SC,ActB . We denote by PsA,sB

C,Act : (Q∪QAct)
+ → D(Q∪QAct) the function

giving the probability distribution over the next state of the arena given the

sequence of states already seen. That is, for all �nite admissible paths π ∈
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SeqAdmC and q ∈ (Q ∪QAct), we have:

PsA,sB
C,Act(π)(q) :=





0 if πlt ∈ Q and q ∈ Q
PsA(π),sB(π)
C,Act (πlt, q) if πlt ∈ Q and q ∈ QAct

0 if πlt ∈ QAct and q ∈ QAct

PDC,Act(πlt, q) if πlt ∈ QAct and q ∈ Q

For π ∈ (Q ∪ QAct)
+ \ SeqAdmC , PsA,sB

C,Act(π) : Q ∪ QAct → [0, 1] is de�ned

arbitrarily such that PsA,sB
C,Act(π) ∈ D(Q ∪QAct).

The stochastic tree T sA,sB
C,Act action-induced by the pair of strategies (sA, sB)

is then equal to T sA,sB
C,Act := 〈Q ∪QAct,PsA,sB

C,Act〉.
Observation 2.3. The stochastic tree T sA,sB

C,Act of the above de�nition ensures

that, for all q ∈ Q, and π ∈ (Q ∪QAct)
∗ \ q−1 · SeqAdmC , we have:

PsA,sB
C,Act,q(π) = 0

where q−1 · SeqAdmC := {ρ ∈ (Q ∪ QAct)
∗ | q · ρ ∈ SeqAdmC}. In particular,

the stochastic tree T sA,sB
C,Act is (Q,QAct)-alternating.

One may wonder, given two state-strategies, how do the stochastic trees
induced and action-induced by that pair of strategies relate in terms of the
expected value of any measurable functions. In fact, these expected values
are equal in both stochastic trees, since state-strategies do not depend on the
actions seen, as stated in the lemma below.

Lemma 2.18 (Proof 2.7.4). Consider a standard concurrent game C. Con-

sider a measurable functions f : Qω → [0, 1], and any two strategies sA ∈ SCA
and sB ∈ SCB. Then, for all starting states q ∈ Q:

EsA,sB
C,q [f q] = EsStaA ,sStaB

C,Act,q [(fQ,QAct
)q]

Let us now de�ne the value of the game where (action-)strategies are used.

De�nition 2.16 (XA, XB-values of the game). Consider a concurrent game

G = 〈C, f〉 and let g := (fC)Q,QAct
: (Q ∪QAct)

ω → [0, 1]. For XB ∈ {Sta,Act}
and a Player-A strategy sA ∈ SC,ActA the vector χG,XB

[sA] : Q→ [0, 1] giving the

XB-value of the strategy sA is such that, for all q ∈ Q, we have:

χG,XB
[sA](q) := inf

sB∈S
C,XB
B

EsA,sB
C,Act,q[g

q]

For XA ∈ {Sta,Act}, the vector χG,XA,XB
[A] : Q → [0, 1] giving the XA, XB-

value for Player A is such that, for all q ∈ Q, we have:

χG,XA,XB
[A](q) := sup

sA∈S
C,XA
A

χG,XB
[sA](q)
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That is, Player A uses XA-strategies and Player B uses XB-strategies. The

value can be de�ned symmetrically for Player B. When the XA, XB-values

of both players are the same, this de�nes the XA, XB-value of the game:

χG,XA,XB
:= χG,XA,XB

[A] = χG,XA,XB
[B]. (If XA = XB, one of them is omitted.)

2.5.2 . Expressive power

The existence of Act-value is ensured as soon as, at each state, one of the
players set of actions is �nite. In addition, when, at each state, both of the
players set of actions are �nite and if the game is win/lose, then the Act-value
and the Sta-value are equal. This is the main result of this section stated below
and it is a corollary of Theorem 2.3.

Corollary 2.19. Consider a standard concurrent game G. Assume that, for
all q ∈ Q, we have either ActqA or ActqB �nite (in particular, the game G is
valuable by Proposition 1.12). In that case, the game G has an Act-value.

If we additionally assume that G is win/lose, and that, for all q ∈ Q, both
ActqA and ActqB are �nite, then the Act-value and the Sta-value of G exist and
are equal.

Note that the proof of this corollary is quite long. However, there is no real
di�culty to deduce it from Theorem 2.3. However, the change of formalism
that we consider in this section makes the proof technical.

To prove this corollary, we de�ne a new standard concurrent game where
the actions chosen by the players are encoded in its states. We de�ne below
such a game along with a way to translate strategies from the original game
to this new game.

De�nition 2.17 (Action-encoded-states game). Consider a standard concur-

rent game G. We build the game GAct = 〈CAct, fAct〉 in the following way, for

CAct := 〈Q ∪QAct, ,FAct,KAct, colAct〉:

• for all stopping states q ∈ Qs, q is still a stopping state in GAct with the

same value;

• for all non-stopping states q ∈ Qns, we let FAct(q) := 〈ActqA,ActqB, QAct, %
Act
q 〉

such that, for all (a, b) ∈ ActqA × ActqB, %
Act
q (a, b)(q, a, b) := 1;

• all states (q, a, b) ∈ QAct are trivial, speci�cally, we have FAct((q, a, b)) :=

〈∗, ∗, Q, %Act(q,a,b)〉 with %Act(q,a,b)(∗, ∗) := %q(a, b) ∈ D(Q);

• KAct := Q;

• for all q ∈ Qns, we let colAct(q) := q and for all (q, a, b) ∈ QAct, we let

colAct((q, a, b)) := q;

• We let Qdb := ∪q∈Q{q} · {q} and f sg : Qdb → Q be the canonical

function from Qdb to Q. Then, we let fAct : Qω → [0, 1] be such that,
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for all ρ ∈ Qω:

fAct(ρ) :=

{
0 if ρ /∈ (Qdb)ω

fC ◦ (fsg)ω(ρ) otherwise

We de�ne below how to translate strategies from C to CAct.
De�nition 2.18 (Translating strategies). Consider a standard concurrent

arena C. Consider a Player C ∈ {A,B}. We de�ne fC : SC,ActC → SCActC in the

following way. For all sC ∈ SC,ActC , we have for all π ∈ (Q ∪QAct)
+:

fC(sC)(π) :=

{
is arbitrary if π /∈ SeqAdmC
sC(π) otherwise

Furthermore, we de�ne gC : SCActC → SC,ActC in the following way, for all π ∈
SeqAdmC ⊆ (Q ∪QAct)

+:

gC(sC)(π) := sC(π)

Lemma 2.20 (Proof 2.7.5). Consider a standard concurrent arena C. Let

sStaA ∈ SCActA be a strategy in CAct and let sActB ∈ SC,ActB be an action-strategy in

C. Let sActA := gA(sA) ∈ SC,ActA and let sB := fB(sActB ) ∈ SCActB .

Then, for all q ∈ Q:

EsActA ,sActB
C,Act,q [((fC)Q,QAct

)q] = EsA,sB
CAct,q[((fAct)CAct)

q]

Note that this also holds if we reverse the roles of Player A and Player B

strategies.

We can now proceed to the proof of Corollary 2.19.

Proof. First assume that for all q ∈ Q, we have either ActqA or ActqB �nite. In
that case, the standard game GAct from De�nition 2.17 is valuable. Indeed, for
all q ∈ Qns ∪QAct, the game form FAct(q) has �nitely many actions for at least
one player, hence it is valuable by Proposition 1.12.

In the game GAct, we only consider usual strategies, that is the ones that
we have considered in this dissertation but in this section. Hence, we consider
the usual value of the game and of the strategies. Consider some state q ∈ Q.
Let us show that χG,Act[A](q) ≥ χGAct [A](q). Let ε > 0. Consider a Player-A
strategy sA ∈ SCActA such that χGAct [sA](q) ≥ χGAct(q) − ε. Let sActA := gA(sA) ∈
SC,ActA be an action-strategy in the game G. Let us show that the strategy sActA

has an Act-value at least χGAct(q) − ε in the game G. Consider any Player-B
action-strategy sActB ∈ SC,ActB in the game G. Then, letting sB := fB(sActB ) ∈ SCActB

be a strategy in the game GAct, we have by Lemma 2.20:

EsActA ,sActB
C,Act,q [((fC)Q,QAct

)q] = EsA,sB
CAct,q[((fAct)CAct)

q] ≥ χGAct [sA](q) ≥ χGAct(q)− ε
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As this holds for all Player-B action-strategies sActB ∈ SC,ActB , it follows that:

χG,Act[s
Act
A ](q) ≥ χGAct(q)− ε

and therefore
χG,Act[A](q) ≥ χGAct(q)− ε

As this holds for all ε > 0, it follows that:

χG,Act[A](q) ≥ χGAct(q)

Symmetrically, we also obtain that χG,Act[B](q) ≤ χGAct(q). Hence, the game G
has an Act-value at state q ∈ Q equal to χG,Act(q) = χGAct(q) which holds for
all q ∈ Q.

Assume now that, for all q ∈ Q, we have ActqA and ActqB �nite and that the
objective f is win/lose. It follows straightforwardly that fAct is also win/lose.
Consider now some q ∈ KA = Q. Then, we have (colAct)

−1[{q}] = {q} ∪
{(q, a, b) | (a, b) ∈ ActqA × ActqB} �nite. Hence, the uniformizing pair (KAct =

Q, colAct) has �nite representatives in Q∪QAct. Now, consider some ε > 0. By
Theorem 2.3, there exists a Player-A strategy sA ∈ SCActA that is (KAct, colAct)-
uniform such that χGAct [sA](q) ≥ χGAct(q) − ε = χG,Act(q) − ε. Let sActA :=

gA(sA) ∈ SC,ActA be an action-strategy in the game G. We have shown above
that this action-strategy sActA is ε-optimal in the game G. Let us show that this
strategy sA actually is a state-strategy. Since the strategy sA is (KAct, colAct)-
uniform, it can be seen as a map s′A : K∗Act ·(Q∪QAct)→ ∪q∈Q∪QAct

ΣA(FAct(q)).
Furthermore, KAct = Q. Now, we let tA ∈ SCA be a Player-A strategy in the
game G such that, for all π ∈ Q+, we have tA(π) := sA(π). Let us show that
sActA = tStaA . Consider some π ∈ SeqAdmQ

C . We have:

tStaA (π) = tA ◦ φQ,QAct
(π) = s′A ◦ φQ,QAct

(π) = sA(π) = gA(sA)(π) = sActA (π)

As this holds for all π ∈ SeqAdmQ
C , it follows that sActA = tStaA . We have

exhibited a Player-A strategy sActA in the game G whose value ε-close to the
Act-value of the game and that is a state-strategy. This holds for all ε > 0 and
also for Player B. Hence, by Lemma 2.18, the Act-value and the Sta-value of
G exist and are equal.

Note that Lemma 2.18 ensures that if a Sta-value exists in G and if a value
(as we have considered until this section) exist in G, then they are equal.

We conclude this section by providing an example of a standard game with
�nitely many actions for both players at each state but where �nding optimal
strategies requires to consider action-strategies. This shows that although at
the limit, knowing the actions does not improve what the strategies can do, it
may be that achieving a speci�c value is only possible if the strategy knows
the action played (by the other player in our example).
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q0,



q0 q1 1/2
q1 1 1/2

1/2 1/2 0


 q1

0
1

Figure 2.5: A co-Büchi win/lose game where Player-A optimal strategies
can only be found among action-strategies. The colors are depicted in
red near the states.

De�nition 2.19 (Game described in Figure 2.5). The game G = 〈C,W 〉 of
Figure 2.5 is standard, deterministic and win/lose. They are only two non-

stopping states: q0 whose local interaction is not trivial and q1 whose only

successor state is q0. The stopping states (recall De�nition 1.18) are not drawn

but are referred to by their values in the local interaction at state q0. The set of

colors considered is K := {0, 1} and the colors of the states q0 and q1 are given

in red near them: col(q0) := 0 and col(q1) := 1. This game is win/lose, and

the objective W is a co-Büchi objective (recall De�nition 1.25): if no stopping

state is reached, Player A wins if and only if the state q1 is seen only �nitely

often. The Player-A set of actions at state q0 is Actq0A := {a1, a2, a3} where a1

refers to the top row and a3 refers to the bottom row and similarly we have

Actq0B := {b1, b2, b3} where b1 refers to the leftmost column and b3 refers to the

rightmost column.

We have presented a slight modi�cation of the game described in De�ni-
tion 2.19 above in [40] to illustrate another property ensured by concurrent
games. We will discuss further this example in Chapters 3 and 5.

Proposition 2.21. The co-Büchi standard �nite deterministic game G of
Figure 2.5 is such that:

• the game has value 1
2 and Player B has an optimal positional strategy;

• Player A has an optimal action-strategy but has no optimal state-
strategies.

We decompose this proposition in three lemmas.

Lemma 2.22. The value of the game described in De�nition 2.19 is 1/2.

Furthermore, for all positive ε > 0, the Player-A positional strategy sεA ∈ SCA
such that sεA(q0)(a1) := 1− ε and sεA(q0)(a3) := ε has value 1

2 − ε.
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Proof. Consider a Player-B strategy sB playing positionally b3 with probability
1. Then, regardless of Player-A's strategy, the game will stop after one step
and a stopping state value of at most 1

2 will be reached. Hence, χG(sB)(q0) ≤
1
2 . Now, consider some ε > 0 and the Player-A strategy sεA described in the
statement. Then, regardless of Player-B's strategy, each time the game is at
state q0, a stopping state is reached in the next step with probability at least
ε > 0. Hence, almost-surely a stopping state is reached. Furthermore, the
expected value of the stopping states reached is at least 1

2 − ε. Hence, this
Player-A strategy sεA has value at least 1

2 − ε. In fact, its value is exactly equal
to 1

2 − ε since Player B can play action b3 with probability 1 and ensure that
a stopping state is reached and that their expected value is equal to 1

2 − ε.
That is, χG(sεA)(q0) = 1

2 − ε. As this holds for all ε > 0, it follows that
χG(q0) = 1

2 .

Let us now describe informally an optimal Player-A action-strategy sA.
First, note that it needs not be de�ned after b3 is seen since in that case a
stopping state is necessarily reached. While b2 has not occurred, sA plays with
positive probability a1 and a2 and a1 with very high and increasing probability
such that, if action b2 or b3 never occurs, then almost-surely, the state q1 is
seen only �nitely often. As soon as the action b2 occurs, there is a positive
probability to reach the stopping state of value 1. (This probability may be
arbitrarily small if Player B waits long enough, but it is positive.) In that case,
the strategy sA switches to a strategy sεA for some small enough ε.8 This ε > 0

is chosen so that the mean of the probability to reach the stopping state of
value 1 and 1

2 − ε is at least 1
2 . The formal arguments we give below on how

to construct an optimal strategy have already been given in [40].

Lemma 2.23. Consider the game described in De�nition 2.19. We let ϕAct :

SeqAdmC → (Actq0B )∗ be such that, for all ρ = q · (q, a, b) · q′ · (q′, a′, b′) · · · ∈
SeqAdmC , we have ϕAct(ρ) := b·b′ · · · ∈ (Actq0B )∗. Consider the Player-A action-

strategy sA ∈ SC,ActA such that, for all ρ ∈ SeqAdmC such that ρlt = q0, denoting

π := ϕAct(ρ), we have:

sA(ρ) :=

{
{a1 7→ 1− ε|π|, a2 7→ ε|π|} if π ∈ (b1)∗

s
ε′n
A (ρ) otherwise, for n := max{k ∈ N | (b1)k @ π}

where, for all n ∈ N, we have εn := 1
2n+1 and ε′n is chosen such that:

(1− εn) · (1

2
− ε′n) + εn ≥

1

2

For instance, ε′n := 1
2 −

1
2
−εn

1−εn = εn
2(1−εn) > 0. This Player-A action-strategy sA

is optimal from q0, i.e. it has value
1
2 .

8Note that switching strategy is necessary: if we remove the action a3 for Player
A, then the value of the game is 0 from q0.
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Proof. Consider any Player-B strategy sB. We let Qa := Q ∪ QAct. For all
k ∈ N, we denote by Rk := (Qa)

k · (Qa)∗ · q1 · (Qa)ω the event describing the
in�nite paths for which the state q1 is seen after at least k steps. With some
abuse of notations, all sequences of actions in (Actq0B )↑ are seen as events in
Borel(Qa) where we consider only the Player-B actions seen, similarly to what
we did in the lemma with the function ϕAct.

First, consider what happens assuming that only the action b1 is played.
For all k ∈ N, we have:

PsA,sB
C,Act,q0 [Rk ∩ (b1)ω] ≤

∑

n≥k
εn =

1

2k

Hence:
PsA,sB
C,Act,q0 [(

⋂

k∈N
Rk) ∩ (b1)ω] ≤ lim

k→∞

∑

n≥k
εn = 0

Furthermore, we have coBuchiQ,QAct
= (Qa)

ω \ (
⋂
k∈N Rk). It follows that:

PsA,sB
C,Act,q0 [coBuchiQ,QAct

∩ (b1)ω] = PsA,sB
C,Act,q0 [(b1)ω]

On the other hand, let us consider what happens if at some point the action
b2 occurs. Consider some k ∈ N such that PsA,sB

C,Act,q0 [(b1)k · b2] > 0. Assuming

the event (b1)k · b2, we have that with probability 1 − εk the game proceeds
to q1 and the Player-A strategy switches to a strategy of value 1

2 − ε′k (by
Lemma 2.22) and with probability εk, a stopping state of value 1 is reached.
Hence, we have:

PsA,sB
C,Act,q0 [coBuchiQ,QAct

| (b1)k · b2] = (1− εk) · (
1

2
− ε′k) + εk =

1

2

As this holds for all k ∈ N, it follows that:

PsA,sB
C,Act,q0 [coBuchiQ,QAct

∩ (b1)∗ · b2] ≥ 1

2
· PsA,sB
C,Act,q0 [(b1)∗ · b2]

Finally, considering the case where action b3 occurs after a sequence of
actions b1, we have:

PsA,sB
C,Act,q0 [coBuchiQ,QAct

∩ (b1)∗ · b3] =
1

2
· PsA,sB
C,Act,q0 [(b1)∗ · b3]

Overall, we obtain:

PsA,sB
C,Act,q0 [coBuchiQ,QAct

] = PsA,sB
C,Act,q0 [coBuchiQ,QAct

∩ (b1)ω]

+ PsA,sB
C,Act,q0 [coBuchiQ,QAct

∩ (b1)∗ · b2]

+ PsA,sB
C,Act,q0 [coBuchiQ,QAct

∩ (b1)∗ · b3]

≥ PsA,sB
C,Act,q0 [(b1)ω] + PsA,sB

C,Act,q0 [(b1)∗ · b2] · 1

2

+ PsA,sB
C,Act,q0 [(b1)∗ · b3] · 1

2

≥ 1

2
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Hence, the Player-A strategy sA is optimal.

Let us now proceed to the proof of Proposition 2.21.

Proof. Given what we have proved in Lemma 2.22 and 2.23, it remains to show
that no Player-A strategy sA ∈ SCA (that is, a type of strategy that we have
considered so far in this dissertation) can be optimal in this game. We let
Q := {q0, q1} and W := coBuchiQ,QAct

.
The strategy sA can be seen as a function s′A : Q∗ · q0 → ΣA(F(q0)). Let

us build a Player-B strategy sB such that PsA,sB
C,q0 [coBuchi] < 1

2 . Let Nextq1 :=

{ρ ∈ Q∗ · q0 | sA(ρ)(a1) = 1 ∨ sA(ρ)(a2) = 1}. We also let Adm := {ρ ∈
Q∗ | ∀i < |ρ| − 1, ρ≤i ∈ Nextq1 ⇒ ρ≤i+1 = ρ≤i · q1}. Finally, we also let
Err := {ρ ∈ Q∗ · q0 | sA(q0)(a3) > 0}. We can now de�ne the strategy sB.
First, for all ρ ∈ Nextq1 , we let RespB(ρ) ∈ Actq0B to be equal to RespB := b2 if
sA(q0)(a1) = 1 and RespB := b1 otherwise. Then, there are two cases:

• Assume that Adm ∩ Err 6= ∅. In that case, consider some π ∈ Adm ∩ Err

with no pre�x in Adm∩Err. We let n := π and NoPr(π) := {ρ ∈ Q∗ · q0 |
ρ 6@ π}. We de�ne sB in the following way, for all ρ 6= π ∈ Q∗ · q0:

sB(ρ) :=





{b3 7→ 1} if ρ ∈ NoPr(π)

{RespB(ρ) 7→ 1} otherwise, if ρ @ π, and ρ ∈ Nextq1
{q0 7→ 1} otherwise, if ρ @ π, and ρ /∈ Nextq1

By de�nition of Adm and Err and of π, for all ρ ∈ Q∗ ·q0 such that ρ @ π,
we have:

� if ρ ∈ Nextq1 , then PsA,sB
C (ρ)(q1) = 1 and ρ · q1 v π;

� if ρ /∈ Nextq1 , then sB(ρ)(b0) = 1 and sA(π)(a3) = 0 and sA(a1), sA(a2) >

0. Hence, PsA,sB
C (ρ)(π|ρ|) > 0.

Therefore, PsA,sB
C,q0 (π) > 0. We let pπ := PsA,sB

C,q0 (π). Since, π ∈ Err, we have
sA(π)(a3) > 0. Since sB(π)(a3) = 1, it follows that PsA,sB

C,q0 (ρ)[W | π] < 1
2 .

We obtain:

PsA,sB
C,q0 [W ] = PsA,sB

C,q0 [W ∩ π] + PsA,sB
C,q0 [W ∩ NoPr(π)]

= PsA,sB
C,q0 [W | π] · pπ + PsA,sB

C,q0 [W | NoPr(π)] · (1− pπ)

<
1

2
· pπ +

1

2
· (1− pπ) =

1

2

• Assume now that Adm∩Err = ∅. Consider a sequence (εk)k∈N such that∑
k εk <

1
2 . Then, for all ρ ∈ Q∗ · q0, we let |ρ|1 denote the number of

q1 in ρ. Then, for all ρ ∈ Q∗ · q0, we let:

sB(ρ) :=

{
{RespB(ρ) 7→ 1} if ρ ∈ Nextq1
{b1 7→ 1− εk; b2 7→ εk} otherwise, for k := |ρ|1
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Clearly, for all ρ /∈ Adm, we have PsA,sB
C,q0 (ρ) = 0. Hence, PsA,sB

C,q0 [Q∗ · (0 ∪
1
2)] = 0 (where 0 and 1

2 refer to the stopping states of the same value),
since Adm ∩ Err = ∅. Furthermore (1 referring to the stopping state of
value 1):

PsA,sB
C,q0 [Q∗ · 1] ≤

∑

k∈N
PsA,sB
C,q0 [{ρ ∈ Q∗ | |ρ|1 = k} · 1]

≤
∑

k∈N
εk <

1

2

In addition:

PsA,sB
C,q0 [Q∗ · (q0)ω] ≤

∑

k∈N
PsA,sB
C,q0 [Qk · (q0)ω]

≤
∑

k∈N
lim
n→∞

(1− εk)n = 0

Hence:

PsA,sB
C,q0 [W ] = PsA,sB

C,q0 [Q∗ · 1] + PsA,sB
C,q0 [W ∩ (Q∗ · q1)ω]

PsA,sB
C,q0 [Q∗ · 1] <

1

2

In any case, the Player-A strategy sA is not optimal from q0.

2.6 Discussion and open question

This chapter is mainly devoted to the proof of Theorem 2.3, which is a
generalization of Martin's result [12]. As we discussed in this chapter, the way
we prove this generalization uses Martin's central idea: building, from a con-
current game G, a turn-based game Gtb. Then, from winning strategies in Gtb,
one can design almost-optimal strategies in G. By closely examining how these
almost-optimal strategies are obtained, we were able to establish extensions
(1.a) and (1.b) of Theorem 2.3. Quite frustratingly, though the conclusion of
result (1.b) seems unsurprising, we need two additional assumptions to estab-
lish it. This leaves as open question if, by further exploiting the properties
ensured by the game Gtb, we could prove that this result (1.b) still holds even
if one or two of these additional assumptions are weakened, or even dropped.

Open Question 2.1. Does result (1.b) of Theorem 2.3 still holds if we do

not assume anymore that (K, col) has a �nite representative in Q and/or that

G is win/lose?

We believe that another bene�t of this chapter, besides the results es-
tablished in Theorem 2.3, is how the proof of this theorem, which generally
speaking is not new, is presented. One of our goal was to explain Martin's
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underlying ideas with intermediate lemmas and examples. However, because
we wanted to establish Theorem 2.3 in all its generality, the intermediate lem-
mas we introduced and the turn-based games indexed by guards we de�ned
are heavy on notations and assumptions. This is particularly noticeable when
considering Lemmas 2.11 and 2.12: because we prove result (1.a), we consider
a collection of GF-strategies supremizing the game G; because we prove result
(1.b), we consider a uniformizing pair; and because we prove that both results
(1.a) and (1.b) hold even if the local interactions in G are not valuable, we con-
sider guards. This last constraint is the most apparent when considering the
turn-based games indexed by guards that we consider, instead of only consid-
ering one turn-based game, as Martin did. Hence, it could be relevant to give a
detailed proof only of result (2) from Theorem 2.3. That way, we could detail
the underlying ideas behind the proof, without the burden of, what would then
be, unnecessary complications.

2.7 Appendix

2.7.1 . Proof of Proposition 2.4

Proof. First, for all j ∈ N, ./ ∈ {≤, <,≥, >,=, 6=} and u ∈ R, we denote by
V (j, ./, u) the measurable set:

V (j, ./, u) := ∪ρ∈Qj ,v(ρ)./uCyl(π)

Consider some α ∈ [0, 1]. We have:

(limsupv)
−1([0, α]) =

⋂

n∈N

⋃

k∈N

⋂

j≥k
V (j,≤, α+

1

n
)

Hence, limsup−1
v ([0, α]) is Borel. Furthermore:

(liminfv)
−1([0, α]) =

⋂

n∈N

⋂

k∈N

⋃

j≥k
V (j,≤, α+

1

n
)

Hence, liminf−1
v ([0, α]) is Borel. It follows that limsupv and liminfv are both

measurable functions.

2.7.2 . Proof of Proposition 2.5

Proof. For the strict comparison, we have:

{f < g} =
⋃

q<r∈Q
({f ≤ q} ∩ {r ≤ g})

Furthermore, {f ≤ g} = Qω \ {f > g}. Then, {f 6= g} = {f < g} ∪ {f > g}
and {f = g} = Qω \ {f 6= g}.
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2.7.3 . Proof of Lemma 2.11

Proof. We want to de�ne vε and sA as (U,m)-uniform functions. Hence, it
su�ces to de�ne them on U∗ ×Q. Since the valuation v is (U,m)-uniform, it
is well de�ned as a function from U∗ × Q to [0, 1]. That is, we have for all
(γ, q) ∈ U∗ ×Q:

vε(γ, q) := max(v(γ, q)− ε

2|γ|
, 0)

For all w : U∗ × Q → [0, 1] and (γ, q) ∈ U∗ × Qns, we denote by Fwγ,q the
game in normal form Fwγ,q := 〈F(q), w(γ · col(q), ·)〉. We also let sA(γ, q) ∈ SqA
be a 0 < ε

2|γ|+1 -optimal strategy in the game in normal form Fvγ,q. Note that
we can indeed choose sA(γ, q) in SqA since this set supremizes the game form
F(q). Straightforwardly, the strategy sA is generated by the collection (SqA)q∈Q.
Let us show that it dominates the valuation vε.

Let (γ, q) ∈ U∗×Qns and n := |γ|. If vε(γ, q) = 0, then vε(γ, q) ≤ val[Fvεγ,q]
straightforwardly holds. Assume that it is not the case, i.e. vε(γ, q) = v(γ, q)−
ε

2n . For all Player B GF-strategies σB ∈ ΣB(F(q)), by Lemma 1.10 for the �rst
inequality:

out[Fvεγ,q](sA(γ, q), σB) = out[〈F(q), vε(γ · col(q), ·)〉](sA(γ, q), σB)

≥ out[〈F(q), v(γ · col(q), ·)〉](sA(γ, q), σB)− ε

2n+1

= out[Fvγ,q](sA(γ, q), σB)− ε

2n+1

≥ val[Fvγ,q](sA(γ, q))− ε

2n+1

≥ val[Fvγ,q]−
ε

2n+1
− ε

2n+1
= val[Fvγ,q]−

ε

2n

This last inequality comes from the fact that sA(γ, q) is a ε
2n+1 -optimal strategy

in the game in normal form Fvγ,q. Furthermore, since the valuation v is non-
decreasing, we have val[Fvγ,q] ≥ v(γ, q). Hence, we obtain:

out[Fvεγ,q](sA(γ, q), σB) ≥ v(γ, q)− ε

2n
= vε(γ, q)

As this holds for all (γ, q) ∈ U∗ ×Q, the strategy sA dominates the valuation
vε.

2.7.4 . Proof of Lemma 2.18

Proof. We want to apply Lemma 1.7. We let T := T sA,sB
C and T Act := T sStaA ,sStaB

C,Act .
We use similar notations for the corresponding probability functions and mea-
sures. For instance, the probability measure from any state q ∈ Q is denoted
Pq for the stochastic tree T whereas is denoted PAct

q for the stochastic tree
T ′. As mentioned in Observation 2.3, the stochastic tree T Act is (Q,QAct)-
alternating. For all q ∈ Q and π ∈ Q∗, we denote by PreImq(π) ⊆ (QAct ·Q)∗

the set:

PreImq(π) := ({q} × ActqA × ActqB) · (φQ,QAct
)−1[{π}] ∩ q−1 · SeqAdmQ

C
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Furthermore, let C ∈ {A,B} be a player. Recall that by de�nition of the
strategy sStaC , we have, for all ρ ∈ SeqAdmQ

C :

sStaC (ρ) = sC ◦ φQ,QAct
(ρ) (2.10)

Now, consider some state q ∈ Q. Let us show by induction on n ∈ N the
property P(n): for all π ∈ Q≤n, we have:

Pq[Cyl(π)] = PAct
q [∪ρ∈T(π)Cyl(ρ)]

where T(π) = QAct · (φQ,QAct
)−1[{π}] comes from Lemma 1.7. This holds for

n = 0 since the stochastic tree T Act is (Q,QAct)-alternating.Consider now some
q′ ∈ Q. We have, recalling De�nition 1.28:

Pq[Cyl(q′)] = Pq(q′) = out[〈F(q), q′〉](sA(q), sB(q))

=
∑

(a,b)∈ActA×ActB

sA(q)(a) · sB(q)(b) · %q(a, b)(q′)

=
∑

(a,b)∈ActA×ActB

PAct
q (q, (q, a, b)) · PAct

q ((q, a, b), q′)

= PAct
q [QAct · Cyl(q′)] = PAct

q [∪ρ∈T(π)Cyl(q)]

Hence, P(n) also holds. Assume now that P(n) holds for some n ≥ 1. Consider
some π ∈ Qn+1. By Observation 2.3, for all ρ /∈ q−1 · SeqAdmC , we have
PAct
q (ρ) = PAct

q [Cyl(ρ)] = 0. Hence:

PAct
q [∪ρ∈T(π)Cyl(ρ)] = PAct

q [∪ρ∈PreImq(π)Cyl(ρ)] (2.11)

Furthermore, by de�nition, we have:

PreImq(π) = {ρ · (ρlt, a, b) · πlt | ρ ∈ PreImq(tl(π)), (a, b) ∈ ActρltA × ActρltB }

Since holds because, since n ≥ 1, we have tl(π) 6= ε and therefore, for all
ρ ∈ PreImq(tl(π)), we have ρlt ∈ Q. It follows that:

PAct
q [

⋃

ρ∈PreImq(π)

Cyl(ρ)] =
∑

ρ∈PreImq(tl(π))

∑

(a,b)∈ActρltA ×Act
ρlt
B

PAct
q [Cyl(ρ · (ρlt, a, b) · πlt)]

=
∑

ρ∈PreImq(tl(π))

∑

(a,b)∈ActρltA ×Act
ρlt
B

PAct
q (ρ · (ρlt, a, b) · πlt)

Consider some ρ ∈ PreImq(tl(π)) and (a, b) ∈ ActρltA × ActρltB . In particular, we
have (tl(π))lt = ρlt. We have, recalling De�nition 2.15 and Equation (2.10):

PAct
q (ρ · (ρlt, a, b) · q′) = PAct

q (ρ) · PAct
q·ρ ((ρlt, a, b)) · PAct

q·ρ·(ρlt,a,b)(q
′)

= PAct
q (ρ) · sStaA (q · ρ)(a) · sStaB (q · ρ)(b) · PAct

q·ρ·(ρlt,a,b)(q
′)

= PAct
q (ρ) · sStaA (q · ρ)(a) · sStaB (q · ρ)(b) · %ρlt(a, b)(q′)

= PAct
q (ρ) · sA ◦ φQ,QAct

(q · ρ)(a) · sB ◦ φQ,QAct
(q · ρ)(b) · %(tl(π))lt(a, b)(q

′)

= PAct
q (ρ) · sA(q · tl(π))(a) · sB(q · tl(π))(b) · %(tl(π))lt(a, b)(q

′)
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Furthermore, denoting π′ := tl(π) and q′ := πlt, we have:

∑

(a,b)∈ActρltA ×Act
ρlt
B

sA(q·π′)(a)·sB(q·π′)(b)·%π′lt(a, b)(q
′) = out[〈F(π′lt), q

′〉](sA(q·π′), sB(q·π′))

By De�nitions 1.28 and 1.29:

out[〈F(π′lt), q
′〉](sA(q · π′), sB(q · π′)) = PsA(q·π′),sB(q·π′)

C (π′lt, q
′) = Pq·π′(q′)

Overall, we obtain, by P(n) applied to π′ = tl(π) ∈ Qn, recalling that q′ = πlt:

PAct
q [

⋃

ρ∈PreImq(π)

Cyl(ρ)] =
∑

ρ∈PreImq(tl(π))

∑

(a,b)∈ActρltA ×Act
ρlt
B

PAct
q (ρ · (ρlt, a, b) · πlt)

=
∑

ρ∈PreImq(tl(π))

PAct
q (ρ) · Pq·tl(π)(πlt)

= Pq[Cyl(tl(π))] · Pq·tl(π)(πlt) = Pq(tl(π)) · Pq·tl(π)(πlt)

= Pq(tl(π) · πlt) = Pq[Cyl(π)]

By Equation (2.11), we obtain:

Pq[Cyl(π)] = PAct
q [∪ρ∈T(π)Cyl(ρ)]

Hence, P(n+ 1) holds. We conclude by applying Lemma 1.7.

2.7.5 . Proof of Lemma 2.20

Proof. First, note that the state space in both stochastic trees T sActA ,sActB
C,Act,q and

T sA,sB
CAct,q is the same: it is equal to (Q∪QAct). Let us show by induction on n ∈ N

the property P(n): for all π ∈ (Q ∪QAct)
≤n, we have PsActA ,sActB

C,Act,q (π) = PsA,sB
CAct,q(π).

This straightforwardly holds for n = 0. Assume now that P(n) holds for
some n ∈ N. Let π ∈ (Q ∪ QAct)

n+1. Clearly, if π /∈ q−1 · SeqAdmC , we

have PsA,sB
CAct,q(π) = 0 (recall De�nition 2.17). Similarly, PsActA ,sActB

C,Act,q (π) = 0 (recall
Observation 2.3). Assume now that π ∈ q−1 · SeqAdmC . Let ρ := q · tl(π).
Assume that πlt ∈ Q and ρlt = (q′, a, b) ∈ QAct. In that case:

PsActA ,sActB
C,Act,q (π) = PsActA ,sActB

C,Act,q (tl(π)) · PDAct(ρlt, πlt) by De�nition 2.15

= PsActA ,sActB
C,Act,q (tl(ρ)) · %Actq′ (a, b)(πlt) by De�nition 2.14

= PsA,sB
CAct,q(tl(π)) · %q′(a, b)(πlt) by P(n)

= PsA,sB
CAct,q(tl(π)) · out[〈FAct(ρlt), πlt〉](sA(ρ), sB(ρ)) by De�nition 2.17

= PsA,sB
CAct,q(tl(π)) · PsA(ρ),sB(ρ)

CAct (ρlt, πlt) by De�nition 1.28

= PsA,sB
CAct,q(ρ) by De�nition 1.29
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Assume now that ρlt ∈ Q and πlt = (ρlt, a, b) ∈ QAct. In that case:

PsActA ,sActB
C,Act,q (π) = PsActA ,sActB

C,Act,q (tl(π)) · PsActA (ρ),sActB (ρ)

Act (ρlt, πlt) by De�nition 2.15

= PsActA ,sActB
C,Act,q (tl(π)) · sActA (ρ)(a) · sActB (ρ)(b) by De�nition 2.14

= PsA,sB
CAct,q(tl(π)) · sActA (ρ)(a) · sActB (ρ)(b) by P(n)

= PsA,sB
CAct,q(tl(π)) · sA(ρ)(a) · sB(ρ)(b) by De�nition 2.18

= PsA,sB
CAct,q(tl(π)) · out[〈FAct(ρlt), πlt〉](sA(ρ), sB(ρ)) by De�nition 2.17

= PsA,sB
CAct,q(tl(π)) · PsA(ρ),sB(ρ)

CAct (ρlt, πlt) by De�nition 1.28

= PsA,sB
CAct,q(π) by De�nition 1.29

Overall, P(n + 1) and therefore P(n) holds for all n ∈ N. It follows, by

Theorem 1.2, that PsActA ,sActB
C,Act,q = PsA,sB

CAct,q : Borel((Q∪QAct))→ [0, 1]. Let us denote
by Pq this probability measure.

As mentioned above, for all ρ ∈ (Q∪QAct)
∗ such that ρ /∈ Q−1·SeqAdmC , we

have Pq(ρ) = 0. Hence, P[(Q∪QAct)
ω \q−1 ·SeqAdmω

C ] = 0. Consider some ρ ∈
q−1 ·SeqAdmω

C . Let us write ρ as ρ = (q0, a0, b0)·q1 ·(q1, a1, b1)·q2 ·(q2, a2, b2) · · ·
(with q0 := q). If there is some i ∈ N such that qi ∈ Qs, then considering the
least index is ∈ N such that qis ∈ Qs, then we have:

(fC)Q,QAct
(q · ρ) = fC ◦ φQ,QAct

(q · ρ) by De�nition 1.8

= fC(q0 · q1 · q2 · · · ) by De�nition 1.8

= val(qis) by De�nition 1.30

= (fAct)CAct(q · ρ) by De�nition 1.30

If that is not the case, i.e. for all i ∈ N, we have qi ∈ Qns, then we have:

(fC)Q,QAct
(q · ρ) = fC ◦ φQ,QAct

(q · ρ) by De�nition 1.8

= fC(q0 · q1 · q2 · · · ) by De�nition 1.8

= fC ◦ (fsg)ω(q0 · q0 · q1 · q1 · · · ) by De�nition 2.17

= fAct(q0 · q0 · q1 · q1 · · · ) by De�nition 2.17

= fAct ◦ colωAct(q0 · (q0, a0, b0) · q1 · (q1, a1, b1) · · · ) by De�nition 2.17

= (fAct)CAct(q · ρ) by De�nition 1.30

That is, ((fC)Q,QAct
)q and (fAct ◦ colωAct)

q coincide on SeqAdmω
C . Hence:

EsActA ,sActB
C,Act,q [((fQ)Q,QAct

)q] = EsA,sB
CAct,q[((fAct)CAct)

q], thus proving the lemma.
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3 - On subgame optimal strategies

In this chapter, we study subgame (ε-)optimal strategies. These are strate-
gies that are not only (ε-)optimal from any state, but that also are (ε-)optimal
after any sequence of states is seen. In the speci�c case of games with stopping
states, we only consider sequences of states that stop when reaching a stop-
ping state. Hence, in this chapter, we will frequently use the notations below,
recalling De�nition 1.18: Qs ⊆ Q (resp. Qns ⊆ Q) refers to the set of stopping
states (resp. non-stopping states) in Q.

De�nition 3.1. Given a concurrent arena C, for all n ∈ N, we denote by

Ω∗C , Ω+
C , Ωn

C , Ω≤nC and Ωω
C the following sets: Ω∗C := (Qns)

∗ ∪ (Qns)
∗ · Qs,

Ω+
C := (Qns)

+ ∪ (Qns)
∗ · Qs, Ωn

C := Ω∗C ∩ Qn, Ω≤nC := Ω∗C ∩ Q≤n and Ωω
C :=

(Qns)
ω ∪ (Qns)

∗ ·Qs.

We now de�ne the notion of strategy which guarantees a valuation, which
allows us to de�ne the notion of subgame (ε-)optimal strategies.

De�nition 3.2 (Strategy which guarantees a valuation). Consider a con-

current game G = 〈C, f〉. For all π ∈ (Qns)
∗, we denote by Gπ the game

Gπ := 〈C, f col+(π)〉. Recall that f col
+(π) : Kω → [0, 1] is the residual function

such that, for all ρ ∈ Kω, we have f col
+(π) = f(col+(π) · ρ). (In particular,

Gε = G.) Consider some v : Ω+
C → [0, 1]. A Player-A strategy sA ∈ SCA guar-

antees the valuation v if for all π ∈ Ω+
C , the value of the residual strategy

s
tl(π)
A ∈ SCA from πlt is at least v(π): χGtl(π) [s

tl(π)
A ](πlt) ≥ v(π). This is symmet-

rical for Player B.

De�nition 3.3 (Subgame (ε-)optimal strategies). Consider a concurrent game

G = 〈C, f〉. We extend the Player-A valuation of the states into a valuation of

�nite sequences of states not continuing after a stopping state: χG [A] : Ω+
C →

[0, 1] such that, for all π ∈ Ω+
C , we have χG [A](π) := χGtl(π) [A](πlt). We de�ne

similarly χG [sA] : Ω+
C → [0, 1] for a Player-A strategy sA ∈ SCA.

Then, for all ε ≥ 0, a Player-A strategy sA ∈ SCA is subgame ε-optimal if
it guarantees the valuation max(χG [A] − ε, 0) : (ΩC)

+ → [0, 1]. When ε = 0,

the strategy sA is simply said to be subgame optimal. This is symmetrical for

Player B.

Given an arbitrary strategy, being subgame optimal is stronger than being
optimal since being subgame optimal requires to be optimal after every �nite
sequence of states. The di�erence in strength between these two notions is
particularly visible after �nite histories where the other player has made a
mistake, i.e. has not played optimally against the strategy considered. In
such a situation, an optimal strategy could (and, in fact, sometimes should,
as it will be seen in item 2.b below) also make a mistake as long as it is small
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enough. On the other hand, a subgame optimal strategy cannot do so and
needs to still be optimal. Therefore, subgame optimality can be seen as more
robust than optimality. In addition, since subgame optimal strategies satisfy
more properties than optimal strategies, it is easier to characterize properties
related to them. This is why, in this chapter, we study them, along with
subgame ε-optimal strategies.

Let us �rst give the big picture of what is done in this chapter, we will give
the details afterwards. There are four sections in this chapter. The �rst section
is the only one where we deal with subgame ε-optimal strategies. Contrary to
subgame optimal strategies, subgame ε-optimal always exist, for all ε > 0.
This is formally stated and proved in that section. In the three remaining
sections, we deal with subgame optimal strategies. In the second section, we
give two characterizations related to subgame optimal strategies that will be
used afterwards: one stating at which conditions a strategy is subgame optimal;
another one stating at which conditions there exist subgame optimal strategies.
These characterizations are then used in the two following sections. The last
two sections can be seen as applications of the results proved in this second
section. In the third section, we look at how to use these results in the context
of standard �nite concurrent (possibly turn-based) games. In the fourth and
last section, we study some conditions under which we can transfer results
existing in �nite turn-based games to the context of standard �nite concurrent
games.

Let us be more speci�c. In the following, arbitrary payo� functions will
always refer to measurable functions taking their values in [0, 1]. As mentioned
above, in Section 3.1, we focus on subgame ε-optimal strategies for ε > 0. We
show the following:

1.a. It is already known (see [57, Proposition 11, Lemma 12]) that, if at each
state both players have �nitely many actions, then for all positive ε > 0,
both players have subgame ε-optimal strategies. We generalize this result
to arbitrary games, see Theorem 3.1, while keeping essentially the same
proof, of which we explain the main ideas, namely reset strategies. We
use Theorem 2.3 (item (1.a)) to prove this result.

1.b. We then use Theorem 3.1 to deduce a result on pre�x-independent (PI)
win/lose games. Namely, in all PI win/lose (possibly in�nite) games
where the in�mum of the states values is positive, Player A has subgame
almost-surely winning strategies. We have already proved this result in
[41, Theorem 3] in the context of �nite-state games. In fact, we show
a slightly more general result by only assuming arbitrary PI upward
well-founded (notion to be de�ned) payo� functions, see Corollary 3.6.

In Section 3.2, we focus on subgame optimal strategies in PI games. This
section is almost entirely based on [41] except that we do not only consider
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win/lose objectives, but more general payo� functions: sometimes arbitrary
PI payo� functions, sometimes only upward well-founded PI ones (notion to
be de�ned). We show several results:

2.a. We provide a characterization of subgame optimal strategies in PI games:
a Player-A strategy is subgame optimal if and only if 1) it is locally opti-
mal and 2) for every Player-B deterministic strategy, after every history,
almost-surely the (superior) limit of the Player-A value of the states
visited is less than or equal to the payo� function, see Theorem 3.12.
We then consider what Theorem 3.12 amounts to in the special cases
where the game is �nite-state (Corollary 3.14) and if we additionally as-
sume that the Player-A strategy considered is positional (Corollary 3.16).
These are the results we mentioned at the beginning of this part as being
key results in concurrent games.

2.b. In [58], the authors have shown that in �nite PI win/lose turn-based
games, there always exist optimal strategies and the memory su�cient to
play optimally is equal to the memory su�cient to play almost-surely, in
games where this is possible. We generalize this result to arbitrary �nite-
state concurrent games with PI upward well-founded payo� functions
f . In such a context, subgame optimal strategies do not always exist
(and neither do optimal strategies), however we exhibit necessary and
su�cient conditions for the existence of subgame optimal strategies. We
give the intuition behind these necessary and su�cient conditions with
the help of an example where there is an optimal strategy, but there is
no subgame optimal one, see Page 1341. As a bi-product of the proof
that these conditions are indeed necessary and su�cient, we deduce that
if every game with a win/lose objective obtained from f via a threshold
that has a subgame almost-surely winning strategy also has a positional
one, then every game that has a subgame optimal strategy also has
a positional one. Note that this transfer result also holds with �nite
memory, see Theorem 3.17.

Third, Section 3.4, which is also based on [41], we focus on subgame optimal
strategies in standard concurrent games. We consider two di�erent issues:

3.a. We �rst focus on turn-based games and apply Theorem 3.17 discussed
above to �nite turn-based games. That is, we recover the results proved
in [58] � dealing with the existence of (subgame) optimal strategies.
That is, we show that in �nite turn-based games with PI upward well-
founded payo� function, Player A has a subgame optimal strategy along

1This is a game where, as hinted above, playing optimally requires �making a
mistake�. Formally, this means that no locally optimal strategy (notion to be de�ned)
is optimal.
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with the previously-mentioned memory transfer. We then build a payo�
function from the parity objective to illustrate our result, see Corol-
lary 3.27.

3.b. We then come back to standard �nite concurrent games with PI upward
well-founded payo� functions. In general, it does not hold, as as men-
tioned in item 2.b., that the existence of optimal strategies implies the
existence of subgame optimal strategies. Here, we exhibit a structural
condition � that we call being positively bounded � on strategies so
that the existence of a positively bounded optimal strategies is equiva-
lent to the existence of a positively bounded subgame optimal strategies,
see Theorem 3.28. This structural condition only depends on what the
strategy does in the arena, regardless of the payo� function. In this
case, the structural condition we consider is for a strategy to not play
arbitrarily small yet positive probabilities.

Finally, Section 3.4 is based on [41] but also borrows ideas from [38]. In
that section, we focus on transferring already existing result in turn-based
games to the case of standard concurrent games. We proceed in two steps

4.a. First, in standard concurrent games, we de�ne the notion of sequential-
ization, that is we build a turn-based game from standard concurrent
games where Player A plays �rst, and then Player B responds. We
translate strategies back and forth between the two games, which allows
us to consider how and when the values change between the two games.
Note that the results of this subsection will be used in Chapter 6.

4.b. Then, we introduce another type of strategies, namely �nite-choice strate-
gies. Informally, a strategy has �nite choice if it uses only �nitely
many GF-strategies at each state. This is stronger than being positively
bounded (in �nite-state arenas). We use the sequentialization from item
4.a to show that when such strategies exist, we can transfer already ex-
isting results in turn-based games to concurrent games, for some payo�
functions. Note that the condition on the payo� functions is unrelated
with being PI or upward well founded. As a corollary, we obtain that in
�nite concurrent games with a parity objective, if there is a subgame op-
timal strategy that has �nite choice, then there is one that is positional,
see Corollary 3.38.

3.1 Subgame almost-optimal strategies

In this section, we focus on subgame almost-optimal strategies, that is
subgame ε-optimal strategies for all ε > 0. It is shown in [57, Proposition
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11, Lemma 12] that subgame almost-optimal strategies always exist in stan-
dard concurrent games2 where, at each state, both players have �nitely many
actions. We adapt the proof of [57] to show the existence of subgame almost-
optimal strategies in all concurrent games. Furthermore, one can realize that
in this proof subgame almost-optimal strategies are built from almost-optimal
strategies. Since we have exhibited in Theorem 2.3 a restriction on the class of
strategies we need to consider to �nd almost-optimal strategies, we prove the
theorem below:

Theorem 3.1. Consider an arbitrary concurrent game G. Let C ∈ {A,B}
be a player and assumed that the game G is supremized w.r.t. Player C by a

collection (SqC)q∈Q of sets of GF-strategies. Then, for all positive ε > 0, Player

C has a subgame ε-optimal strategy generated by (SqC)q∈Q.

In the next subsection below, we discuss the proof of this theorem, whereas
Subsection 3.1.2 is dedicated to an application of this theorem.

3.1.1 . Proof of Theorem 3.1

In this subsection, we prove Theorem 3.1. The result is proved for Player A,
the case of Player B being analogous. For the remainder of this subsection we
�x an arbitrary concurrent game G = 〈C, g〉. We also let f := gC : Qω → [0, 1].

The idea behind the construction of subgame ε-optimal strategies is to
make use of reset strategies. Informally, these are strategies that are initialized
at the beginning of the game and updated whenever the property they are
supposed to ensure does not hold after some history (i.e. �nite sequence of
states). The goal is then to show that almost-surely there are only �nitely
many updates. Hence, almost-surely, if we consider long enough history, the
strategy is not changed anymore which means that it ensures the property for
all �nite histories thereafter. For all positive ε > 0 and �nite history ρ ∈ Ω+

C ,
we denote by sε,ρ ∈ SCA a Player-A strategy that is ε-optimal in the game Gtl(ρ)

from the state ρlt. We de�ne formally below the reset strategies we consider.

De�nition 3.4 (Reset strategy). Consider some positive ε > 0. We de�ne

inductively a function Uε : Ω+
C → Ω+

C that ensures that, for all ρ ∈ Ω+
C , we

have Uε(ρ) v ρ. We also denote by Suf(ρ) ∈ Ω∗C the �nite path such that

ρ = Uε(ρ) · Suf(ρ) and by Pl(ρ) := Uε(ρ)lt · Suf(ρ) ∈ Ω+
C . For all q ∈ Q, we let

Uε(q) := q. Furthermore, for all ρ · q ∈ Ω+
C , we let:

Uε(ρ · q) :=

{
Uε(ρ) if χGρ [s

Pl(ρ)
ε,Uε(ρ)](q) ≥ χGρ [A](q)− 2 · ε

ρ · q otherwise

Then, the Player-A reset strategy sε,Rst ∈ SCA is de�ned by, for all ρ ∈ Ω+
C :

sε,Rst(ρ) := sε,Uε(ρ)(Pl(ρ))

2Recall that by de�nition of a concurrent game, a payo� function is bounded and
measurable.
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It is de�ned arbitrarily on �nite paths not in Ω+
C .

This de�nition ensures the lemma below:

Lemma 3.2. For all positive ε > 0, the Player-A reset strategy sε,Rst is

subgame 2ε-optimal.

Proof sketch. Consider some ρ ∈ (Qns)
+. Whenever there is an update after ρ

(i.e. when Uε(ρ ·π) = ρ ·π for π ∈ Ω+
C ), it means that the value of the strategy

at that history ρ · π is less than the value of the history ρ · π w.r.t. Player A

minus 2ε. Furthermore, when there is an update at ρ · π, what the strategy
sε,Rst plays at ρ · π comes from a strategy that is ε-optimal at ρ · π. Hence,
with the update, the value of the residual strategy has increased by at least
ε. From this observation, we can in fact deduce that almost-surely there are
only �nitely many updates (since ε > 0). Furthermore, when there is no more
updates, the residual strategy is at least 2ε-optimal. We can then conclude by
realizing that, from any �nite path ρ · π ∈ Ω+

C , the expected value of the �nite
paths after which there is no more update is, roughly, the value of the residual
strategy at ρ · π.

The formal proof of Lemma 3.2 is very heavy on notations due to the use
of residual strategies and is quite technical. Hence we do not give this proof in
the main sections of this chapter. A complete and detailed proof can be found
in Appendix 3.6.1.

We can now proceed to the proof of Theorem 3.1.

Proof. Consider some Player C ∈ {A,B}. Consider a collection (SqC)q∈Q of GF-
strategies that supremizes the game G w.r.t. Player C. Then, by Theorem 2.3,
for all ρ ∈ Ω+

C , there is a Player-C strategy sε,ρ ∈ SCA generated by (SqC)q∈Q that
is ε-optimal from ρ. Considering such strategies, the Player-C reset strategy
sε,Rst de�ned from sε,ρ is also generated by the collection (SqC)q∈Q. Lemma 3.2
ensures that it is subgame 2ε-optimal.

3.1.2 . Application of Theorem 3.1

In this subsection, we present an application of Theorem 3.1 with PI (recall,
pre�x-independent) upward well-founded payo� functions (we will de�ne this
notion below). First, we consider the probability of PI Borel sets in stochastic
trees. As stated in [59, Theorem 5], we have the adaptation below of Levy's
0-1 Law to the context of stochastic trees:

Theorem 3.3 (Levy's 0-1 Law for PI Borel sets in stochastic trees). Consider

a stochastic tree T = 〈Q,P〉 and a Borel set W ∈ Borel(Q) that is pre�x-

independent. Then, from all �nite paths π ∈ Q+, the sets W and W π
lim 1 :=

{ρ ∈ Qω | limn→∞ Pπ·ρ≤n(W ) = 1} are equal up to a null set. That is, for all

π ∈ Q+, we have Pπ[W ∩W π
lim 1] = Pπ[W ] = Pπ[W π

lim 1].

In particular, this theorem above implies the lemma below:
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Lemma 3.4. Consider a stochastic tree T = 〈Q,P〉 and a Borel set W ∈
Borel(Q) that is pre�x-independent. We have:

inf
ρ∈Q+

Pρ[W ] > 0⇔ inf
ρ∈Q+

Pρ[W ] = 1

Proof. Assume that infρ∈Q+ Pρ[W ] > 0. Consider the set Wlim 0 := {ρ ∈ Qω |
limn→∞ Pρ≤n(W ) = 0}. Clearly, Wlim 0 = ∅. By Theorem 3.3, it follows that
for all ρ ∈ Q+, we have Pρ[Qω \W ] = Pρ[Wlim 0] = 0. That is, for all ρ ∈ Q+,
we have Pρ[W ] = 1.

Note that Lemma 3.4 also comes from Lemma 2 in [49]. In the same paper
[49], the author studies win/lose PI objectives in standard concurrent games
(with standard �nite local interactions). They show [49, Theorem 1] that if
a state3 has value less than 1, then the in�mum of the values of all states is
0. Equivalently, if the in�mum of the states values is positive, then all states
have value 1.

In [58, Theorem 3.2] in the context of (standard) turn-based �nite (recall
with �nitely many states, and �nitely many actions at each state) PI games, the
authors have improved this result: if the in�mum of the state values is positive,
then Player A has an almost-surely winning strategy from every state. That is,
not only all states have value 1, but also there is a strategy that achieves this
value from every state. Interestingly, to prove this result, the authors have
built an almost-surely winning strategy with reset strategies � similarly to
what we presented in the previous subsection. We will discuss further other
results proved in that paper [58] in Section 3.3.

In [41], we have adapted (almost verbatim) the reset-strategies-arguments
from [58] to obtain an analogous result in �nite standard concurrent games
[41, Theorem 3]. In fact, we have even realized that the almost-surely winning
strategy built in [58] was subgame almost-surely winning.

All these results can be generalized to arbitrary concurrent arenas with
more general PI payo� functions than win/lose ones. Speci�cally, this holds
for well-founded4 payo� functions (upward or downward, depending on the
player considered).

De�nition 3.5 (Well-founded payo� functions). Consider a set of colors K

and a payo� function f : Kω → [0, 1] and let E := f [Kω]. The payo� function

f is upward well-founded if there is no in�nite ascending chain in E. That

is, there is no sequence (xn)n∈N ∈ EN such that xn < xn+1 for all n ∈ N.
Symmetrically, the payo� function f is downward well-founded if there is no

in�nite descending chain in E.

3We need not consider all �nite sequences of states since the objective considered
is pre�x-independent.

4The term well-founded comes from its use on order relations.
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In particular, any payo� function taking �nitely many values is upward
well-founded. In fact, well-foundedness can be alternatively de�ned as follows.

Lemma 3.5 (Proof 3.6.2). Consider a set of colors K and a payo� function

f : Kω → [0, 1] and let E := f [Kω]. It is upward (resp. downward) well-founded

if and only if, for all x ∈ [0, 1], there is some ε > 0 such that [x− ε, x)∩E = ∅
(resp. (x, x+ ε] ∩ E = ∅).

We state below the more general version of all the results discussed above in
the context of arbitrary concurrent arenas and PI upward well-founded payo�
function. This result could be proved with reset strategies, but there is no need
as it is in fact a straightforward corollary of Theorem 3.1 (and Theorem 3.3).

Corollary 3.6. Consider a concurrent game G where all stopping states have
value 1 and with a PI upward well-founded payo� function f . Let E := f [Kω] ⊆
[0, 1] and c := infq∈Q χG [A](q). Let

d :=

{
inf E ∩ [c, 1] if E ∩ [c, 1] 6= ∅
c otherwise

Then, Player A has a subgame almost-surely winning strategy w.r.t. the ob-
jective {f ≥ d} = {ρ ∈ Kω | f(ρ) ≥ d} ∈ Borel(K).

This is symmetrical for Player B (upward is replaced by downward).

We state a simpler version with the context of a win/lose objective.

Corollary 3.7. Consider a concurrent game G where all stopping states have
value 1 with a PI win/lose function f . If infq∈Q χG [A](q) > 0, then Player A
has a subgame almost-surely winning strategy in G.

Proof. Since f is upward well-founded and by Lemma 3.5, there is some ε >
0 such that [c − ε, c) ∩ E = ∅. Consider a Player-A subgame ε/2-optimal
strategy sA, whose existence is ensured by Theorem 3.1. Let us show that
this strategy is subgame almost-surely winning w.r.t. the winning objective
Wd := {f ≥ d} ∈ Borel(K) and Xd := (colω)−1[Wq] ⊆ (Qns)

ω. Consider any
Player-B strategy sB and ρ ∈ (Qns)

+. We let W ⊆ Qω be a winning objective
for Player A such that, for all ρ ∈ Qω

• If ρ ∈ Q∗ · (Qns)
ω, then ρ ∈W if and only if a su�x of ρ is in Xd;

• Otherwise, ρ ∈W if and only if there is some q ∈ Qs such that ρ ∈ Q∗·qω.

Note that the set W is pre�x-independent. Since, in the stochastic tree T sA,sB
C

all stopping states are self-looping, we have PsA,sB
C,ρ [W ] = PsA,sB

C,ρ [Xd∪(Qns)
∗ ·Qs].

Furthermore, by choice of the strategy sA, we have EsA,sB
C,ρ [fC ] ≥ c − ε

2 . In
addition, for all ρ ∈ Kω, by de�nition of d, if f(ρ) < d, then f(ρ) ≤ c − ε.
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Hence:

c− ε/2 ≤ EsA,sB
C,ρ [fC ] = EsA,sB

C,ρ [fC · 1Xd∪Q∗·Qs ] + EsA,sB
C,ρ [fC · 1(Qns)ω\Xd ]

≤ PsA,sB
C,ρ [Xd ∪Q∗ ·Qs] + (c− ε) · (1− PsA,sB

C,ρ [Xd ∪Q∗ ·Qs])

= PsA,sB
C,ρ [W ] + (c− ε) · (1− PsA,sB

C,ρ [W ])

We obtain:
PsA,sB
C,ρ [W ] ≥ ε

2 · (1− c+ ε)
> 0

This holds for all ρ ∈ Q+. Hence, by Lemma 3.4, we have that for all ρ ∈ Q+,
1 = PsA,sB

C,ρ [W ] = PsA,sB
C,ρ [Xd ∪Q∗ ·Qs].

If f is win/lose, then for all d > 0, we have {f ≥ d} = {f = 1}.

We conclude this section by providing an example where Corollary 3.6 fails
for a PI payo� function that is not upward well-founded.

Example 3.1. Consider a game G = 〈C, f〉 where C is a turn-based deter-

ministic arena on the set of colors K := {0, 1} with two states q0 and q1 that

are colored with 0 and 1 respectively. Player A plays alone and decides at each

step to which state she wants to go. The payo� function f maps each in�nite

sequences of 0 and 1 to the superior limit of the mean of the values seen, except

if it is 1, in that case it maps it to 0. More formally, for all ρ ∈ Kω, we have:

f(ρ) :=

{
lim supn( 1

n+1

∑n
i=0 ρn) if lim supn( 1

n+1

∑n
i=0 ρn) < 1

0 otherwise

Note that this payo� function is pre�x-independent and not upward well-

founded. Clearly, the value of both states q0 and q1 is 1, since Player A can

ensure that the superior limit is as close as desired to 1 and yet less than 1.

However, she has no almost-surely winning strategy since no in�nite path has

value 1 in this deterministic turn-based arena.

3.2 Subgame optimal strategies in arbitrary concurrent

games

The remainder of this chapter, that is this section and the two following
ones, is based on [41], where we focus on subgame optimal strategies. However,
note that whereas in [41] we considered only PI win/lose objectives, in this sec-
tion we generalize these results to PI payo� functions in arbitrary arenas as
we did in Subsection 3.1.2. More speci�cally, in Subsection 3.2.1, we discuss a
simple (and well-known) example where there is no optimal (subgame) strat-
egy which we will use later to justify the conditions considered for subgame
optimality. Second, in Subsection 3.2.2, we establish a su�cient condition for
a strategy to guarantee a valuation of the states, which turns out to also be
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Figure 3.1: A deterministic standard concurrent reachability game G =
〈C,Reach〉 where Player A wants to reach the target {>}.

necessary if the valuation considered is the value of the game (for Player A). Fi-
nally, in Subsection 3.2.3, we use the previous result to exhibit a necessary and
su�cient condition for the existence of subgame optimal strategies in games
where the PI payo� function is upward well-founded.

3.2.1 . A simple game without optimal strategies

In this subsection, we focus on the reachability game of De�nition 3.6.
Note that we have already considered that game in Chapter 2 to exemplify the
construction used to prove Theorem 2.3. This game is well-known, for instance
called the snow-ball game in [60]. In the remainder of this dissertation, we will
also refer to this game as the snow-ball game.

De�nition 3.6 (Game described in Figure 3.1). Consider the game depicted

in Figure 3.1. This game G = 〈C,Reach〉 is standard. There is only one non-

trivial state: q0. (Alternatively, > could be a stopping state of value 1 and ⊥
could be a stopping state of value 0.) The set of colors considered is K := {0, 1}
and the colors of the states q0,>,⊥ are given in red next to them: col(q0) := 0,

col(⊥) := 0 and col(>) := 1. This game is win/lose, and the objective Reach is

a reachability objective (recall De�nition 1.25): Player A wins if and only if the

state > is reached. The Player-A set of actions at state q0 is Actq0A := {a1, a2}
where a1 refers to the top row and a2 refers to the bottom row and similarly

we have Actq0B := {b1, b2} where b1 refers to the leftmost column and b2 refers

to the rightmost column.

This game ensures the following properties.

Proposition 3.8. The reachability game from De�nition 3.6 is such that:

• the state q0 has value 1: χG(q0) = 1;

• for all positive ε > 0, the Player-A positional strategy sεA such that

sεA(q0)(a1) := 1−ε and sεA(q0)(a2) := ε has value 1−ε: χG [sεA](q0) = 1−ε;

• no Player-A strategy is optimal (i.e. has value 1).
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The proof of this proposition is not complicated, however it is much easier
with the help of the results we will show in the next subsection. Hence, we
prove it at the end of that subsection in Page 133.

Important remark: What we show in the next subsection below is
quite straightforward to prove given the results we have shown in Sub-
section 2.3.1 in Chapter 2. However, note that it is central in this disser-
tation as we will often use the theorems of this subsection to show that
a strategy we have de�ned is optimal, almost-optimal, subgame optimal
(or that it is not).

3.2.2 . Su�cient condition for a strategy to guarantee a valuation

In this subsection, we present a pair of conditions su�cient for a Player-A
strategy to guarantee a valuation, formally stated as Theorem 3.12. Further-
more, when the valuation is equal to the value of the game for Player A (i.e.
for the Player-A strategy to be subgame optimal), this pair of conditions turns
out to be also necessary.

Consider a game with a PI payo� function on an arbitrary concurrent
arena (in particular, it may not be valuable) and a valuation of �nite paths
v : Ω+

C → [0, 1]. Recall De�nition 3.1: Ω+
C refers to the non-empty sequences

of states that stop once a stopping state is reached.

We explain informally the ideas behind Theorem 3.12 below for the case of
the valuation v := χG [A]. The �rst condition is local: it speci�es how a Player-
A strategy sA should behave at each local interaction of the game. First, one
can realize that after a history of non-stopping states ρ ∈ (Qns)

+, the Player-A
value of the game in normal form 〈F(ρlt), v

ρ〉 is equal to the Player-A value
after history ρ. Note that this holds even with a payo� function that is not
PI. We state this formally below in Proposition 3.9.

Proposition 3.9 (Proof 3.6.4). Consider an arbitrary concurrent game G.
For all ρ ∈ (Qns)

+, we have χG [A](ρ) = val[〈F(ρlt), χG [A]ρ〉](A).

This suggests that, for all �nite sequences of non-stopping states ρ ∈
(Qns)

+, the GF-strategy sA(ρ) needs to be optimal in the game in normal

form 〈F(ρlt), v
ρ〉 for the residual strategy s

tl(ρ)
A to be optimal from ρlt. When

considering this property with arbitrary valuations v, strategies ensuring that
property are said to be dominating the valuation v. When v := χG [A], such
strategies are called locally optimal. Note that a de�nition of strategies domi-
nating valuations was given in Chapter 2 in De�nition 2.6 suited for the proof
of Theorem 2.35. We give below a new de�nition of strategies dominating
valuations that coincides with De�nition 2.6 when gd = A.

5Speci�cally, De�nition 2.6 made use of the notion of guards.
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De�nition 3.7 (Dominating a valuation, Locally optimal strategies). Con-

sider an arbitrary concurrent game G and a valuation v : Ω+
C → [0, 1]. A

Player-A strategy sA dominates the valuation v if, for all ρ ∈ (Qns)
+, the GF-

strategy sA(ρ) is such that val[〈F(ρlt), v
ρ〉](sA(ρ)) ≥ v(ρ). When the valuation

v = χG [A], the strategy sA is said to be locally optimal. The de�nition is

symmetrical for Player B.

Although dominating a valuation in general is not necessary for guaran-
teeing it (recall De�nition 3.2), it turns out that being locally optimal is a
necessary condition for being subgame optimal, as stated below.

Lemma 3.10 (Proof 3.6.4). In an arbitrary concurrent game G, for all Player-
A strategies sA ∈ SCA and ρ ∈ Q+, we have χGtl(ρ) [sA](ρlt) ≤ val[〈F(ρlt), χG [sA]ρ〉](sA(ρ)) ≤
val[〈F(ρlt), χG [A]ρ〉](sA(ρ)). As a corollary, if sA is subgame optimal, then for

all ρ ∈ (Qns)
+, we have χG [A](ρ) = χGtl(ρ) [sA](ρlt). Therefore, the strategy sA

is also locally optimal.

Dominating a valuation v does not ensure guaranteeing v. However, it
does ensure nice properties. Indeed, the simple yet crucial remark we can
make is that given a Player-A strategy sA dominating a valuation v, for all
Player-B strategies sB, the valuation v is non-decreasing (recall De�nition 2.3)
in the stochastic tree induced by sA and sB. However, in De�nition 2.3 of non-
decreasing valuation in stochastic trees, the valuations considered are of the
type Q+ → [0, 1] instead of Ω+

C → [0, 1]. Hence, we de�ne below a canonical
way to transform valuations before stating Lemma 3.11.

De�nition 3.8 (Canonical transformation of valuations). Consider an ar-

bitrary concurrent game G and a valuation v : Ω+
C → [0, 1]. We denote by

vs : Q+ → [0, 1] the valuation such that, for all ρ ∈ Q+, denoting πρ ∈ Ω+
C the

longest pre�x of ρ in Ω+
C (which is therefore equal to ρ if ρ ∈ Ω+

C ):

vs(ρ) := v(πρ)

Lemma 3.11 (Proof 3.6.5). Consider an arbitrary concurrent game G, a
valuation v : Ω+

C → [0, 1] and a Player-A strategy sA ∈ SCA dominating the

valuation v. For all Player-B strategies sB ∈ SCB, in the stochastic tree T
sA,sB
C , for

all π ∈ Ω+
C , the valuation (vs)

π is non-decreasing from π. This is symmetrical

for Player B.

By Proposition 2.9, we have that given a Player-A strategy dominating a
valuation v and any Player-B strategy, in the stochastic tree induced by both
strategies, the value v(ρ) of any �nite paths ρ ∈ Ω+

C is less than or equal to
the expected value of limsupvs : Qω → [0, 1] (recall Proposition 2.4) from ρ.

To obtain that sA guarantees the valuation v, it would then su�ce that, for
any Player-B strategy and after any �nite paths ρ ∈ (Qns)

+, almost-surely the
superior limit limsupvs is less than or equal to f . This constitutes the second
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condition that, along with dominating v, is su�cient for the strategy sA to
guarantee the valuation v. This is stated in Theorem 3.12 below.

Interestingly, when v = χG [A], this second condition is also a necessary
condition for subgame optimality. Indeed, assume that sA does not ensure this
condition. That is, there is a Player-B strategy and a �nite path ρ ∈ (Qns)

+

after which there is some r ∈ Q ∩ [0, 1] and δ > 0 for which there is a positive
probability that f ≤ r and r + δ ≤ limsupvs . We denote this event Er,δ ⊆
Qω. Since f and limsupvs are both pre�x-independent, it follows that Er,δ
is pre�x-independent. Hence, by Lemma 3.4 (from the previous section) and
by de�nition of the superior limit function limsupvs , we can show that there
are continuations of this path ρ ending at states of value at least r + δ/2 for
which the probability of Er,δ is arbitrarily close to 1. In particular, there is
probability arbitrarily close to 1 that f ≤ r. It follows that we can exhibit a
path ρ′ ∈ ρ · (Qns)

+ such that, from ρ′ the value of the Player-A strategy sA is
less than the value of ρ′ (w.r.t. χG [A]).

We obtain the theorem below.

Theorem 3.12. Consider an arbitrary PI concurrent game G = 〈C, f〉, a
valuation v : Ω+

C → [0, 1] and a Player-A strategy sA ∈ SA
C . Assume that the

strategy sA satis�es the pair of conditions below:

• sA dominates the valuation v;

• for all ρ ∈ (Qns)
+ and Player-B strategies sB ∈ SB

C , we have:
PsA,sB
C,ρ [limsupvs ≤ fC ] = 1.

Then the Player-A strategy sA guarantees the valuation v.
Conversely, if sA guarantees χG [A] (i.e. sA is subgame optimal), then the

strategy sA satis�es that pair of conditions for v = χG [A].

Proof. First, note that since f is PI, then for all ρ ∈ (Qns)
+, we have (fC)

ρ =

fC . Now, assume that the Player-A strategy sA satis�es that pair of condi-
tions. Let ρ ∈ Ω+

C . If ρlt ∈ Qs, then clearly the strategy sA is optimal from
ρ. Assume now that ρ ∈ (Qns)

+ and consider a Player-B strategy sB ∈ SCB.
By Lemma 3.11, the valuation (vs)

ρ : Q∗ → [0, 1] is non-decreasing from ρ

in the stochastic tree T sA,sB
C . Therefore, Proposition 2.9 ensures that v(ρ) ≤

EsA,sB
C,ρ [limsupvs ]. Furthermore, by assumption EsA,sB

C,ρ [limsupvs ] ≤ EsA,sB
C,ρ [fC ]. Hence,

we obtain v(ρ) ≤ EsA,sB
C,ρ [fC ]. As this holds for all Player-B strategies sB, it fol-

lows that χGtl(ρ) [s
tl(ρ)
A ](ρlt) ≥ v(ρ). In fact, the Player-A strategy sA guarantees

the valuation v.
Assume now that v = χG [A] and that the Player-A strategy sA guaran-

tees the valuation v, i.e. that the Player-A strategy sA is subgame opti-
mal. Lemma 3.10 ensures that this strategy must be locally optimal. As-
sume now that there is some ρ ∈ (Qns)

+ and Player-B strategy sB ∈ SCB such
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that Ps
tl(ρ)
A ,sB
C,ρ [limsupvs ≤ fC ] < 1. We denote the stochastic tree T sA,sB

C,ρ sim-
ply by T , and the corresponding probability function by P. There is some
p, δ ∈ Q ∩ [0, 1] with δ > 0 such that P[Ep,δ] > 0. where Ep,δ := {fC ≤
p ∩ p + δ ≤ limsupvs} ⊆ Qω. However, both fC and limsupvs are not PI since
stopping states are taken into account. Hence, we let E′p,δ := {π · ρ ∈ Qω | π ∈
Q∗, ρ ∈ (Qns)

ω, f ◦colω(ρ) ≤ p∩p+δ ≤ limsupv(ρ)}. This event is measurable
and PI and has the same measure as the event Ep,δ since, once a stopping state
is reached it is never left. Hence: P[E′p,δ] > 0.

Consider now some x, y ∈ [0, 1] such that
1−p− δ

2
1−p < x < y < 1. By

Lemma 3.4, we have that there is some π ∈ (Qns)
+ such that Pπ[E′p,δ] ≥ y.

We let Always≤p+δ/2 := {θ ∈ (Qns)
ω | ∀i ∈ N, vρ(π · θ≤i) ≤ p+ δ/2}. We have

Pπ[E′p,δ ∩ Always≤p+δ/2] = 0 by de�nition of the function limsupv. Therefore,
we have:

Pπ[E′p,δ] ≤ sup
θ∈Q∗

vρ(π·θ)≥p+δ/2

Pπ·θ[E′p,δ]

Hence, there is some θ ∈ Q∗ such that vρ(π · θ) ≥ p+ δ/2 and Pπ·θ[Ep,δ] ≥ x.
In particular, Pπ·θ[fC ≤ p] ≥ x. Then, we have:

Eπ·θ[fC ] ≤ Pπ·θ[fC ≤ p] · p+ 1− Pπ·θ[fC ≤ p] ≤ x · p+ 1− x

< p+
δ

2
≤ v(ρ · π · θ)

Hence, the strategy sA is not optimal from ρ · π · θ, it is therefore not subgame
optimal.

Special cases. We have given in several articles weaker versions of The-
orem 3.12, for instance if we assume that sA is positional. We would like to
recall some of these versions since they will be useful in the following.

First, in [41], we considered the case where the valuation v : Q → [0, 1]

values the states, not the �nite sequences of states, with Q �nite. This implies
that the valuation v takes only �nitely many values. Consider a Player-A
strategy sA dominating this valuation v � straightforwardly extended to �nite
sequences of states by considering the last element of the sequence � and any
Player-B strategy sB. By Lemma 3.11, this valuation v is non-decreasing in
the stochastic tree induced by these strategies. Hence, Proposition 2.6 gives
that almost-surely all in�nite paths have a limit w.r.t. the valuation v. In this
context this implies that almost-surely, all states seen in�nitely often have the
same value [41, Lemma 2]. This is stated formally below in Corollary 3.13,
after the de�nition of valuations considering the last state of a sequence.

De�nition 3.9. Consider an arbitrary concurrent game G and a valuation

of the states v : Q → [0, 1]. This valuation is extended into vlt : Q+ → [0, 1]
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(it can also be seen as vlt : Ω+
C → [0, 1]) such that, for all ρ ∈ Q+, we have

vlt(ρ) := v(ρlt).

Corollary 3.13. Consider an arbitrary concurrent game G and a valuation v :
Q→ [0, 1] taking �nitely many values. For all u ∈ v[Q] we let Qvu := v−1[{u}].
Consider a Player-A strategy dominating the valuation vlt : Ω+

C → [0, 1] and
any Player-B strategy sB. For all ρ ∈ (Qns)

+, we have:

PsA,sB
C,ρ [

⋃

u∈v[Q]

(Q∗ · (Qvu)ω)] = 1

Proof. Consider any q ∈ Q and Player-B strategy sB ∈ SCB. By Lemma 3.11,
the valuation vlt = ((vlt)s)

ρ : Q+ → [0, 1] is non-decreasing from ρ in the
stochastic tree T sA,sB

C . Hence, by Lemma 2.6, almost-surely from ρ the superior
and inferior limit of vlt are equal. Since this valuation vlt takes only �nitely
many values, it follows that almost-surely, the game settles in a unique value
slice Qvu for some u ∈ v[Q].

In this context, Theorem 3.12 amounts to the corollary below, and corre-
sponds to [41, Theorem 1]:

Corollary 3.14. Consider an arbitrary PI concurrent game G = 〈C, f〉 and
a valuation v : Q → [0, 1] taking �nitely many values. For all u ∈ v[Q] we let
Qvu := v−1[{u}]. Let sA ∈ SA

C be a Player-A strategy. Assume that the strategy
sA satis�es the pair of conditions below:

• sA dominates the valuation vlt;

• for all ρ ∈ (Qns)
+ and Player-B strategies sB ∈ SB

C , for all u ∈ v[Q], we
have

PsA,sB
C,ρ [Q∗ · (Qvu)ω ∩ {f ≥ u}] = PsA,sB

C,ρ [Q∗ · (Qvu)ω]

Then the Player-A strategy sA guarantees the valuation v.
Conversely, if sA guarantees χG [A] (i.e. sA is subgame optimal), then it also

satis�es that pair of conditions for v = χG [A].

Proof. Proving this corollary only amounts to proving that the second con-
dition is equivalent to the second condition of Theorem 3.12. Consider some
ρ ∈ (Qns)

+ and a Player-B strategy sB ∈ SCB. By Corollary 3.13, assuming the
condition of this corollary, we have:

PsA,sB
C,ρ [limsup(vlt)s

≤ f ] =
∑

u∈v[Q]

PsA,sB
C,ρ [{limsup(vlt)s

≤ f} ∩Q∗ · (Qvu)ω]

=
∑

u∈v[Q]

PsA,sB
C,ρ [{u ≤ f} ∩Q∗ · (Qvu)ω]

=
∑

u∈v[Q]

PsA,sB
C,ρ [Q∗ · (Qvu)ω] = 1
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Reciprocally, assuming that PsA,sB
C,ρ [limsup(vlt)s

≤ f ] = 1, for all u ∈ v[Q] such
that PsA,sB

C,ρ [Q∗ · (Qvu)ω] > 0, it must be that PsA,sB
C,ρ [{f ≥ u} | Q∗ · (Qvu)ω] = 1

since, as already used above, PsA,sB
C,ρ [{limsup(vlt)s

= u} | Q∗ · (Qvu)ω] = 1.

Let us consider a further special case in the case where a positional Player-A
strategy sA dominates a valuation of the states taking �nitely many values. In
that case, as above almost-surely all states seen in�nitely often have the same
values w.r.t. v. In addition, states q ∈ Q where the local value of the strategy
is more than the value of the state, that is such that v(q) < val[〈F(q), v〉][sA(q)],
are seen only �nitely often. Furthermore, in the special case of a �nite standard
arena, in all end components, all states have the same values. This is stated
below in Corollary 3.15. It is a slight generalization of [39, Proposition 18].

Corollary 3.15. Consider an arbitrary arena C, a valuation of the states
v : Q → [0, 1] taking �nitely many values and a positional Player-A strategy
sA ∈ SCA dominating the valuation vlt : Ω+

C → [0, 1]. For all Player-B strategies
and from all �nite paths π ∈ Ω+

C , almost-surely, the set of states seen in�nitely
often is included in {q ∈ Q | v(q) = val[〈F(q), v〉][sA(q)]}.

If we assume additionally that the arena C is standard and �nite, then in
the MDP ΓsA

C , for all end components H ∈ EΓ
sA
C
, there is a value u(v,H) ∈ [0, 1]

such that v[QH ] = {u(v,H)}.

Proof. For all q ∈ Q, we let dq := val[〈F(q), v〉][sA(q)]−v(q). Since the strategy
sA dominates the valuation vlt, for all q ∈ Q, we have dq ≥ 0. Consider some
state q ∈ Q such that dq > 0 and let u := v(q) ∈ [0, 1). We let Qv>u := {q ∈ Q |
v(q) > u}, Qv≤u := Q \Qv>u and Qvu := {q ∈ Q | v(q) = u}. For any Player-B
GF-strategy σB ∈ Σq

B, recalling De�nition 1.28, we have:

u+ dq ≤ out[〈F(q), v〉](sA(q), σB) =
∑

q′∈Q
%q(sA(q), σB)(q′) · v(q′)

≤
∑

q′∈Qv>u

%q(sA(q), σB)(q′) +
∑

q′∈Qv≤u

%q(sA(q), σB)(q′) · u

= PsA,sB
C,q [Qv>u] · (1− u) + u

Hence, PsA,sB
C,q [Qv>u] ≥ dq

1−u ≥ dq > 0. This holds for all Player-B GF-strategies
σB ∈ Σq

B. Hence, from any �nite path π ∈ Ω+
C , for any Player-B strategy with

the Player-A strategy sA, if the state q is seen in�nitely often, almost surely, the
set Qv>u is seen in�nitely often almost-surely. Furthermore, by Corollary 3.13,
almost-surely all states visited in�nitely often have the same values w.r.t. v.
That is, for any Player-B strategy, almost-surely the state q is seen only �nitely
often.

Assume now that the arena C is standard and consider an EC H ∈ EΓ
sA
C
.

Since it is an end component, all states in it may be seen in�nitely often with
probability 1 for a Player-B strategy playing at each state q ∈ QH uniformly
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over all actions in βH(q). Hence, since Corollary 3.13 ensures that for any
Player-B strategy almost-surely all states seen in�nitely have the same value,
it follows that all states in H have the same value.

Finally, we have below what Theorem 3.12 amounts to in the context of
�nite standard concurrent game for a win/lose objective. We already proved
this result in the context of reachability games [39, Proposition 17] and gen-
eralized it to more general objectives (but still not all PI objectives) in [40,
Lemma 16].

Corollary 3.16. Consider a �nite standard concurrent PI win/lose game G
and a valuation v : Q → [0, 1]. Let sA ∈ SA

C be a positional Player-A strategy.
Assume that the strategy sA satis�es the pair of conditions below:

• it dominates the valuation v;

• for all end components H in the MDP induced by the strategy sA, if
u(v,H) > 0, then for all q ∈ QH , we have χCsAH (q) = 1.

Then the Player-A strategy sA guarantees the valuation v.
Conversely, if sA guarantees χG [A] (i.e. sA is subgame optimal), then it also

satis�es that pair of conditions for v = χG [A].

Proof. As for the proof of Corollary 3.14 which used Theorem 3.12, we prove
this corollary by showing that the second condition is equivalent to the sec-
ond condition of Corollary 3.14. Assume that the above conditions hold. By
Theorem 2.3, since all local interactions in MDPs are supremized by determin-
istic GF-strategies, almost-optimal strategies for Player B against the strategy
sA can be found among deterministic strategies. Furthermore, Lemma 1.17
ensures that for all deterministic Player-B strategies, the game almost-surely
settles in an EC. By assumption, it follows that if the game settles in a value
slice of positive value, then almost-surely Player A wins, which implies the
second condition of Corollary 3.14.

Assume now that the second condition of Corollary 3.14. For any EC H in
the MDP induced by the strategy sA such that u(v,H) > 0, it must be against
all Player-B (deterministic) strategies compatible with that EC, the game has
value at least u(v,H) > 0 from any state in QH . Since the game is win/lose,
this implies that for all q ∈ QH , we have χCsAH (q) = 1.

Proof of Proposition 3.8. With the help of the results proved in this
subsection, let us show Proposition 3.8.

Proof. Consider some positive ε > 0. Let vε : Q→ [0, 1] be such that vε(q0) :=

1 − ε, vε(>) := 1 and vε(⊥) := 0. The strategy sεA dominates this valuation.
Furthermore, the only end components compatible with this strategy are {>}
� the target of value 1 � and {⊥} � of value 0. Hence, the strategy sA
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Figure 3.2: A co-Büchi game.

satis�es the conditions of Corollary 3.16 and therefore guarantees the valuation
vε. Since this holds for all positive ε > 0, it follows that the value of the state
q0 is 1.

Consider now a Player-A strategy sA ∈ SCA. Let us show that its value is less
than 1. There are two cases. First, if, for all n ≥ 1, we have sA(qn0 )(a1) = 1,
then for a Player-B strategy sB ∈ SCB that plays positionally action b1 with
probability 1, then with sA and sB surely the game will loop on q0. Otherwise,
consider the least n0 ≥ 1 such that sA(qn0

0 )(a2) > 0. Consider then a Player-B
strategy sB ∈ SCB such that, for all n ≥ 1:

sB(qn0 ) :=

{
{b1 7→ 1, b2 7→ 0} if n < n0

{b1 7→ 0, b2 7→ 1} otherwise

With both strategies sA, sB, we have:

PsA,sB
C,q0 [qn0

0 ] = 1

and
PsA,sB
C,q0 [qn0

0 · ⊥] = sA(qn0
0 )(a2) > 0

Hence, the value of the strategy sA is less than 1. In fact, Player A has no
optimal strategy in this game.

3.2.3 . Necessary and su�cient condition for the existence of subgame
optimal strategies

In the previous subsection, we have (in particular) studied a necessary and
su�cient pair of conditions for a Player-A strategy to be subgame optimal.
In this subsection, we focus on the existence of subgame optimal strategies in
arbitrary �nite-state games. This section is an adaptation of [41, Section 6] to
the case of arbitrary local interactions.

In [58, Theorem 4.5], the authors have proved a transfer result in PI
win/lose turn-based games: the amount of memory su�cient to play opti-
mally at every state of value 1 of every game is also su�cient to play optimally
in every game. This result does not hold in concurrent games as is. First, al-
though there are always optimal strategies in PI turn-based games (as proved
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in the same paper [58, Theorem 4.3]), there are PI concurrent games without
optimal strategies, as discussed above in Proposition 3.8. Second, although
almost-surely winning strategies can be found among positional strategies in
standard concurrent co-Büchi games (we will discuss it further in Chapter 5),
in�nite memory may be required to play optimally in co-Büchi standard con-
current games. This is witnessed by the game of Figure 3.2. Note that this
game is very close to the co-Büchi game of Figure 2.56. The di�erence with
the game of Figure 2.5 is that there are two states q1 and q′1 instead of only
one state q1. In that way, Player A can now know when Player B has played
action b. Hence, the in�nite-memory Player-A strategy described in the proof
of Lemma 2.23 can be translated in this setting to obtain an optimal strategy
(i.e. a strategy of value 1

2). Let us recall quickly how this strategy plays. To
play optimally, Player A may play the top row with probability 1 − εk and
the middle row with probability εk for εk > 0 that goes (fast) to 0 when k

goes to ∞ (where k denotes the number of steps). The εk is chosen so that,
if Player B always plays the left column with probability 1, then the state q1

is seen �nitely often with probability 1. Furthermore, as soon as the state q′1
is visited, Player A switches to a positional strategy playing the bottom row
with probability ε′k small enough (where k denotes the number of steps before
the state q′1 was seen) and the two top rows with probability (1− ε′k)/2.

Therefore, the transfer of memory from almost-surely winning to optimal
does not hold in concurrent games even if it is assumed that optimal strategies
exist. However, one can note that although the strategy described above is
optimal, it is not subgame optimal. Indeed, when the strategy switches, the
value of the residual strategy is 1/2 − ε′k < 1/2. In fact, there is no subgame
optimal strategy in that game. Actually, if we assume that, not only optimal
but subgame optimal strategies exist, then the transfer of memory will hold.

The aim of this subsection is twofold: �rst, we identify a necessary and
su�cient condition for the existence of subgame optimal strategies7. Second,
we establish the above-mentioned memory transfer that relates the amount of
memory to play subgame optimally and to be subgame almost-surely winning.
Furthermore, this is done with any PI upward well-founded payo� function.
Note that although we generalize some of the results from [58] � that we have
discussed above � the method we use here is di�erent from what the authors
of [58] did to prove the transfer of memory in turn-based games. Namely, they
showed that there is a live and self-consistent permutation of the distribution

6Recall, in the game of Figure 2.5, Player A has an optimal strategy among action-
strategies but none among classical strategies (the ones we consider in this disserta-
tion). A description of this game in provided in De�nition 2.19.

7Note that this is di�erent from what we did in the previous section: there, we
established a necessary and su�cient condition for a speci�c strategy to be subgame
optimal. Here, given a game, we consider necessary and su�cient conditions on the
game for the existence of a subgame optimal strategy.
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over states that both players can agree on. They can then play according to
this permutation (which can be used to specify their preferences over these
distributions over states).

Before formally stating the main theorem of this section, we �rst need to
de�ne the winning objectives that can be obtained from payo� functions. This
is done below.

De�nition 3.10 (Winning objective obtained from a payo� function). For

all sets of colors K, payo� functions f : Kω → [0, 1] and u ∈ [0, 1], the set

{f ≥ u} := {ρ ∈ Kω | f(ρ) ≥ u} is a winning objective obtained from f .

To establish this transfer of memory, we will actually modify the game
forms occurring in the game. Speci�cally, we will keep all Player-B GF-
strategies while disregarding any Player-A GF-strategy that is not optimal in
a speci�c game in normal form. We de�ne this change of game forms below,
we will illustrate it later on a standard game form.

De�nition 3.11 (Only optimal GF-strategies in Game forms). Consider a

set of outcomes O, a game form F ∈ Form(O) on that set of outcomes and

a valuation v : O → [0, 1] such that OptA(〈F , v〉) 6= ∅. We let Opt(F , v) ∈
Form(O) be the game form de�ned by Opt(F , v) := 〈OptA(〈F , v〉),ΣB,O, %〉.

Given a set of outcomes O and any set of game forms E ⊆ Form(O), we

let Opt(E) ⊆ Form(O) denote the set of game forms Opt(E) := {Opt(F , v) |
F ∈ E, v : O → [0, 1], OptA(〈F , v〉) 6= ∅}. Note that Opt(E) is not empty as

soon as E 6= ∅ since, for all F ∈ E, we have OptA(〈F , v〉) 6= ∅ for all constant
valuations v : O→ [0, 1].

Given a set of game forms E and a memory skeleton M, we now introduce
below the de�nition of (E,M)-subgame almost-surely winnable payo� func-
tions, i.e. payo� functions for which, for all win/lose objectives that can be
obtained from them, in all games built on E, subgame almost-surely winning
strategies can be found among strategies that can be implemented with M.

De�nition 3.12 ((E,M)-subgame almost-surely winnable objective). Con-

sider a non-empty �nite set of colorsK, a PI payo� function f : Kω → [0, 1] and

a memory skeleton M = 〈M,minit, µ〉 on K. The payo� function f is said to be

(E,M)-subgame almost-surely winnable ((E,M)-SAW for short) if the following

holds: for all u ∈ [0, 1], in all �nite-state concurrent games G = 〈C, {f ≥ u}〉
built on E where there is a subgame almost-surely winning strategy, there is

one that is M-implementable. If |M | = 1, then the payo� function f is said to

be E-positionally subgame almost-surely winnable (E-PSAW for short).

We can now state the main theorem of this section. Recall the notation
V GA and QA

u from De�nition 1.32.
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Theorem 3.17. Consider an arbitrary �nite-state concurrent game G =
〈C, f〉 with a PI upward well-founded payo� function f : Kω → [0, 1]. The
�ve following assertions are equivalent:

a. there exists a Player-A subgame optimal strategy;

b. there exists a locally optimal Player-A strategy that is optimal;

c. for all positive ε > 0, there exists a locally optimal Player-A strategy
that is ε-optimal;

d. there exists a locally optimal Player-A strategy sA ∈ SCA such that, for
all u ∈ V GA and q ∈ QA

u , we have χ〈C,{f≥u}〉[sA](q) > 0;

e. there exists a locally optimal Player-A strategy sA ∈ SCA such that, for
all u ∈ V GA and q ∈ QA

u , we have χ〈CExit(QA
u)
,{f≥u}〉[sA](q) > 0.

where CExit(QA
u) corresponds to the arena C where all states outside of QA

u are
stopping states of value 1.

If this holds and if, for some �nite memory skeleton M, the payo� function
f is (Opt({F(q) | q ∈ Q}),M)-SAW, then there exists a subgame optimal M-
implementable strategy.

First, note that the equivalence is stated in terms of existence of strategies,
not on the strategies themselves. In particular, any subgame optimal strategy
is both optimal and locally optimal, however, an optimal strategy that is locally
optimal is not necessarily a subgame optimal strategy. An example is provided
in Appendix 3.6.3. We would also like to point out that in the arena C with a
win/lose objective, e.g. {f ≥ u} for some u ∈ V GA , the stopping states are still
taken into account. That is, if a state q ∈ Qs is reached, the game stops and
the value val(q) occurs.

Second, we would like to highlight what we believe is an important take-
away from this theorem. Beside the memory transfer, this theorem tells at
which condition there is a subgame optimal strategy. Although items b., c., d.
and e. are di�erent, they have the same generic form: there is an assumption
that locally optimal strategies satisfy a speci�c property w.r.t. the objective.
This speci�c property obviously matters for the equivalence to hold, however
we would like to focus on the local optimality assumption. What this theorem
suggests is that, the reason why, in concurrent games, there does not always
exist (subgame) optimal strategies is that if one only considers locally optimal
strategies, then the value of the game may drop. For instance, in the snow-ball
game of De�nition 3.6, the value of the state q0 is 1, but if one only considers
locally optimal strategies (i.e. strategies that always play the top row with
probability 1), then the value of that state becomes 0. This can also be wit-
nessed in the co-Büchi game of Figure 3.2 that we discussed above. There is
an optimal strategy in this game, but there is no subgame optimal ones. If one
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only considers locally optimal strategies (i.e. that plays the bottom row with
probability 0), then the value of the game is 0. In other words, for a strategy
to be optimal it must, after some history, switch to a sub-optimal strategy.
Interestingly, as we will discuss in the next section, this cannot occur in stan-
dard �nite turn-based games, which explains why subgame optimal strategies
always exist8 in that setting.

Third, it is straightforward that item a. implies item b. (from Lemma 3.10)
and that item b. implies item c.. It is also straightforward that item d. implies
item e.. However, the implication item c. implies item d. is less direct and uses
the well-foundedness assumption. Note that it is only for this implication that
the well-foundedness assumption is used. Let us formally prove this implication
below.

Lemma 3.18. Consider an arbitrary �nite-state concurrent game G = 〈C, f〉
with a PI upward well-founded payo� function f : Kω → [0, 1]. If for all

positive ε > 0, there is a Player-A ε-optimal strategy that is locally optimal,

then, for all u ∈ V GA and q ∈ QA
u , there is a Player-A locally optimal strategy

sA such that χ〈C,{f≥u}〉[sA](q) > 0.

Proof. Consider some u ∈ V GA and q ∈ QA
u . Because the payo� function f is

upward well-founded, there is some 0 < δ ≤ u such that [u− δ, u)∩ f [Kω] = ∅.
Therefore, we have for all ρ ∈ Kω, f(ρ) ≥ u if and only if f(ρ) ≥ u−δ. Consider
any Player-A strategy sA that is ε-optimal for some 0 < ε < δ. Assume towards
a contradiction that this Player-A strategy is such that χ〈C,{f≥u}〉[sA](q) = 0.
By de�nition of δ, we also have χ〈C,{f≥u−δ}〉[sA](q) = 0. Consider a Player-B
strategy sB ∈ SCB such that, for x := δ−ε

2 > 0, we have:

∑

q∈Qs

PsA,sB
C,q [(Qns)

∗ · {q}] · val(q) + PsA,sB
C,q [{f ≥ u− δ} ∩ (Qns)

ω] ≤ x

Hence, we have:

EsA,sB
C,q [fC ] =

∑

q∈Qs

PsA,sB
C,q [(Qns)

∗ · {q}] · val(q) + EsA,sB
C,q [fC · 1(Qns)ω ]

≤ x− PsA,sB
C,q [{f ≥ u− δ} ∩ (Qns)

ω] + EsA,sB
C,q [fC · 1(Qns)ω ]

≤ x− PsA,sB
C,q [{f ≥ u− δ} ∩ (Qns)

ω] + PsA,sB
C,q [{f ≥ u− δ} ∩ (Qns)

ω]

+ EsA,sB
C,q [f · 1{f<u−δ}∩(Qns)ω ]

≤ x+ u− δ < u− ε

This is in contradiction with the fact that the Player-A strategy sA is ε-optimal
from the state q of Player-A value χG [A](q) = u.

8Assuming the payo� function is PI upward well-founded.
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In the remainder of this subsection, we explain the constructions leading to
the proof of Theorem 3.17, i.e. to the proof that item e. implies item a. The
transfer of memory is a direct consequence of the way this theorem is proven.
We �x an arbitrary �nite-state concurrent game G = 〈C, f〉 with a PI payo�
function f for the remainder of the subsection � the upward well-foundedness
assumption is not used for the implication item e. implies item a.

The idea is as follows. Recall that, given any locally optimal Player-A
strategy, almost-surely the game settles in a value slice QA

u for some u ∈ V GA as
stated in Corollary 3.13. Furthermore, as stated in Corollary 3.14 in �nite-state
arenas, subgame optimal strategies are exactly the strategies that are locally
optimal and such that, for all Player-B strategies almost-surely, the value w.r.t.
f of in�nite paths is at least the value of the value slice in which the game
settles. Our idea is therefore to consider, for all u ∈ V GA \{0}, subgame almost-
surely winning strategies in a derived game Gu := 〈Cu, {f ≥ u}〉 with Cu a
�restriction� of the arena C to Qu. We can then glue together these subgame
almost-surely winning strategies � de�ned for all u ∈ V GA \{0} � into a subgame
optimal strategy. However, there are some issues:

1) there must exist a subgame almost-surely winning strategy in Gu;

2) this subgame almost-surely winning strategy in Gu should be locally
optimal when considered in the whole game G.

Let us �rst deal with issue 2). Let u ∈ V GA . One can ensure that the
almost-surely winning strategies in the game Gu are all locally optimal in G
by properly de�ning the arena Cu. More speci�cally, this is done by enforcing
that the only Player-A possible strategies in Cu are locally optimal in the game
G. To do so, we construct the arena Cu such that its set of states with non-
trivial interaction is Qu and the local interaction at state q ∈ Qu is equal to
Opt(F(q), χG [A]) (recall De�nition 3.11).

We illustrate this construction on a standard �nite game form: a part of a
concurrent game is depicted in Figure 3.3 and the change of the interaction of
the players at state q0 is depicted in Figures 3.4, 3.5, 3.6 and 3.7.

Furthermore, since we want from all the states the existence of subgame
almost-surely winning strategies in Gu � recall issue 1) � we will build the
game Gu such that any edge leading to a state not in Qu in G now leads to a
stopping state of value 1.

De�nition 3.13 (Game Gu). Consider a positive value u ∈ V GA \ {0}. We

de�ne the game Gu = 〈Cu, {f ≥ u}〉 with Cu = 〈Q,FOpt,K, col〉 with:

• all states q ∈ Q \QA
u are stopping states of value 1: val(q)← 1;

• The values of all stopping states in Qs ∩QA
u � whose values in G are all

u since they are in Qu � are changed to 1;
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q0,

[
q0 q1

q0 q2

]
1/2

q1

1/4

. . .

q2

3/4

. . .

Figure 3.3: A part of a deterministic standard concurrent game G with
Actq0A = {a1, a2}. The values are depicted in red near the states.

a1

a2

[
q0 q1

q0 q2

]

Figure 3.4: The local interaction
F(q0) at state q0 in the game of Fig-
ure 3.3.

a1

a2

[
1
2

1
4

1
2

3
4

]

Figure 3.5: The game in normal
form 〈F(q0), χG〉 from the game G
of Figure 3.3.

a1+a2

2

a2

[
1
2

1
2

1
2

3
4

]

Figure 3.6: The game in normal
form from Figure 3.5 with only op-
timal strategies available for Player
A.

a1+a2

2

a2

[
q0

q1+q2
2

q0 q2

]

Figure 3.7: The game form ob-
tained from the game form of
Figure 3.4 with only the optimal
strategies from Figure 3.6.
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u = 1

u = 3/4

u = 1/2

u = 1/4

u = 0

q8 q0

q1

q2

q3

q4

q5

q6

q7

Figure 3.8: The depiction of a
PI concurrent game with its value
slices.

u = 1

u = 3/4

u = 1/2

u = 1/4

u = 0

1

q8

1

q0

q1

1

q2

q3

q4

1

q5

q6

q7

Figure 3.9: The PI concurrent
game after the modi�cations of
De�nition 3.13.

• For all q ∈ Qns ∩QA
u , we set FOpt(q) := Opt(F(q), χG [A]).

An illustration of this construction can be found in Figures 3.8 and 3.9.
The blue dotted arrows are the ones that need to be redirected when the game
is changed. With such a de�nition, we have made some progress w.r.t. the
issue 1) cited previously (regarding the existence of subgame almost-surely
winning strategies): the values of all states of the game Gu are positive (for
positive u).

Lemma 3.19. Consider the game Gu for some positive u ∈ V GA \ {0} and

assume that, in G, there exists a strategy that is locally optimal such that, for

all q ∈ QA
u , we have χ〈C,{f≥u}∪Exit(QA

u)〉[sA](q) > 0. Then, for all states q in Gu
we have χGu [A](q) > 0.

Proof Sketch. Consider a state q ∈ QA
u and a Player-A locally optimal strategy

sA ∈ SCA in G such that χ〈C,{f≥u}∪Exit(QA
u)〉[sA](q) > 0. Then, the strategy sA

(restricted to (QA
u)+) can be seen as a strategy in Gu. Note that this is only

possible because the strategy sA is locally optimal (due to the de�nition of Gu).
Consider a Player-B strategy sB ∈ SCuB . This strategy can be seen as a

strategy in C, assuming it is de�ned arbitrarily once the game has exited QA
u .

Since if the play never reaches a stopping states (of value 1, since all stopping
states in Gu have value 1), what happens in Gu and G is identical, it follows
that PsA,sB

Cu,q [{f ≥ u} ∪ (Qns)
∗ · Qs] = PsA,sB

C
Exit(QA

u)
,q[{f ≥ u}] > 0. Thus, the value

of the state q is positive in Gu.

In fact, Lemma 3.19 su�ces to deal with issue 1). Indeed, as stated in
Corollary 3.7 in the previous subsection, it is a general result that in a �nite-
state PI win/lose concurrent game where all stopping states have value 1, if
all states have positive values, then there is a subgame almost-surely winning
strategy.
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However, there is an additional di�culty when considering the transfer of
memory. Consider some �nite memory skeleton M = 〈M,minit, µ〉 and assume
that the payo� function f is (Opt({F(q) | q ∈ Q}),M) − SAW. Subgame
almost-surely winning strategies in Gu can be found among M-implementable
strategies. However, when we will glue these pieces of strategies together below,
we will need for the strategies to be subgame almost-surely winning strategies
in Gu regardless of their starting memory state. This is due to the fact that,
since the colors will be seen in the whole game, not only in a speci�c value
slice, then the memory state, when entering the value slice QA

u for the last time,
may be di�erent to the initial memory state minit. We �rst introduce below
in De�nition 3.14 the set of memory states reachable from a starting memory
state given the set of colors that could occur.

De�nition 3.14. Consider a �nite memory skeleton M = 〈M,minit, µ〉 on the
set of colors K. For any �nite subset of colors K′ ⊆ K, we let Reach(M,K′) :=

{m ∈ M | ∃ρ ∈ (K′)∗, µ∗(minit, ρ) = m} ⊆ M be the set of memory states of

M reachable from minit with �nite sequences colors in K′.

For all m ∈M , we denote by Mm the memory skeleton Mm := 〈M,m,µ〉.
We now state in Lemma 3.20 below: when subgame almost-surely winning

strategies exist in the game Gu, then there is an action map that implements
a subgame almost-surely winning strategies regardless of the starting memory
state.

Lemma 3.20. Consider a �nite memory skeleton M = 〈M,minit, µ〉 and
assume that the payo� function f is (Opt({F(q) | q ∈ Q}),M) − SAW. Let

u ∈ V GA \{0} and assume that there is subgame almost-surely winning strategy

in the game Gu. Then, for all �nite set of colors K′ ⊆ K, there is an action

map λ : M ×QA
u → ∪q∈QA

u
Σq
A such that, for all m ∈ Reach(M,K′), the strategy

implemented by Mm and λ is subgame almost-surely winning in Gu.

Proof. For all m ∈ Reach(M,K′), we let ρm ∈ K′ be a �nite sequence of colors
from minit to m: µ∗(minit, ρm) = m. We modify the game Gu into a game
G′u as follows. We add, before actually entering the arena Cu, and for all
m ∈ Reach(M,K′), a sequence of states � with trivial local interaction9 �
whose corresponding sequence of colors is equal to ρm. Since the payo� function
f is PI, adding �nitely many colors before entering the game does not change
its value. Hence, there is still a subgame almost-surely winning strategy in the
game G′u. Since the payo� function f is (Opt({F(q) | q ∈ Q}),M)−SAW, there
is an action map λ that, along with M, implements such a subgame almost-
surely winning strategy in G′u. By de�nition of the modi�cation of the game Gu
into G′u, the action map λ ensures that, for all m ∈ Reach(M,K′), the strategy

9Note that a trivial interaction can be obtained from any game form by mapping
every outcome to the same state.
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implemented by Mm and λ is subgame almost-surely winning in Gu.

We can now glue together pieces of strategies suA de�ned in all games Gu
into a single strategy sA[(suA)u∈V GA \{0}

]. Informally, the glued strategy mimics

the strategy on (QA
u)+ and switches strategy when a value slice is left and

another one is reached.

De�nition 3.15 (Gluing strategies). For all values u ∈ V GA \ {0}, consider a
Player-A strategy suA in the game Gu. Then, we glue these strategies into the

strategy sA[(suA)u∈V GA \{0}
] : Q+ → ∪q∈QΣq

A simply written sA such that, for all

ρ ∈ Q+:

sA(ρ) :=

{
suA(π) if u = χG [A](ρlt) > 0 for π the longest su�x of ρ in (QA

u)+

is arbitrary if χG [A](q) = 0

As stated in Lemma 3.21 below, the construction described in De�ni-
tion 3.15 transfers almost-surely winning strategies in Gu into a subgame op-
timal strategy in G.
Lemma 3.21. Consider a Player-A strategy sA locally optimal such that, for

all u ∈ V GA \ {0}, for all ρ ∈ Q+, we have sρA ∈ SCuA subgame almost-surely

winning in Gu. Then, the strategy sA is subgame optimal in G.
It is in particular the case for the glued strategy sA[(suA)u∈VG\{0}] as soon

as, for all u ∈ V GA \ {0}, suA ∈ SCuA is a subgame almost-surely winning strategy

in Gu.

Proof. We apply Corollary 3.14. The strategy sA is locally optimal. In addi-
tion, if the game eventually settles in a value slice QA

u for some u > 0, from
then on the strategy sA is almost-surely winning in Gu, whose win/lose objec-
tive is {f ≥ u}. This holds for all u ∈ V GA \ {0}, so the second condition of
Corollary 3.14 holds.

Now, consider for all u ∈ V GA \ {0}, a Player-A strategy suA ∈ SCuA sub-
game almost-surely winning strategy in Gu. Let sA be the glued strategy
sA[(suA)u∈VG\{0}]. Then, the strategy sA is locally optimal. Indeed, by Lemma 3.9,
for all q ∈ Q, we have χG [A](q) = val[〈F(q), χG [A]〉]. Hence, for all u ∈ V GA \{0},
for all states in QA

u , by the strategy restriction done to de�ne the game Gu, only
optimal GF-strategies are considered at each game in normal form FOpt(q) at
states q ∈ QA

u . Furthermore, any GF-strategy is optimal in a game in normal
form of value 0 (which is the case of the game in normal forms of states in Q0).
In addition, for all u ∈ V GA \ {0} and for all ρ ∈ Q+, we have sρA and suA that
coincide on Cu. Therefore, sρA is subgame almost-surely winning in Gu.

We now have all the ingredients to prove Theorem 3.17.
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Proof. By Lemma 3.10, item a. implies item b., item b. straightforwardly
implies item c., item c. implies item d. by Lemma 3.18 and item d. straight-
forwardly implies item e.

Let us now show that item e. implies item a. By Lemma 3.19, for all
positive values u ∈ V GA \ {0}, all states in Gu have positive values. It follows,
by Corollary 3.7, that there exists a subgame almost-surely winning strategy
in every game Gu for u ∈ V GA \{0}. We then obtain a subgame optimal strategy
by gluing these strategies together, given by Lemma 3.21.

Consider now the transfer of memory. Consider a �nite arbitrary memory
skeleton M and assume that the payo� function f is (Opt({F(q) | q ∈ Q}),M)−
SAW. Let K′ := col[Qns] ⊆ K be the �nite set of colors appearing in C. Let
u ∈ V GA \ {0}. By Lemma 3.20, there exists an action map λu such that, for
all m ∈ Reach(M,K′), the strategy implemented by the action map λu and the
memory skeleton Mm is subgame almost-surely winning strategy in Gu. We
then de�ne the action map λ : Q × K → ∑

q∈Q Σq
A such that, for all q ∈ Q

and k ∈ K, we have λ(q, k) := λχG [A](q)(q, k) ∈ Σq
A. Clearly, if we denote by sA

the strategy implemented by λ and M, the strategy sA satis�es the condition
of Lemma 3.21, it is therefore subgame optimal in G.

Finally, we conclude this section by giving a Corollary of Theorem 3.17.
Speci�cally, we consider standard �nite game forms, possibly turn-based ones.
In fact, such a set of game forms is stable by application of the Opt operator
from De�nition 3.11. This is formally stated below in Proposition 3.22.

Proposition 3.22. Consider a set of outcomes O. Let Stdf (O) (resp. TBf (O))

denote the set of standard �nite game forms (resp. standard �nite turn-based

game forms) on O. Then, Opt(Stdf (O)) = Stdf (O) and Opt(TBf (O)) =

TBf (O).

Proof. Consider any standard �nite game form F = 〈ΣA,ΣB,O, %〉 ∈ Stdf (O).
Let n := |ActA| and k := |ActB|. Consider any valuation of the outcomes
v : O→ [0, 1]. Consider the game in normal form 〈F , v〉.

There exists a �nite setDA ⊆ D(ActA) ⊆ OptA(〈F , v〉) of optimal strategies
such that the optimal strategies in 〈F , v〉 are exactly the convex combinations
of strategies in DA. This is a well known result, argued for instance in [61].
The idea is to write a system of �nitely many inequalities whose set of solutions
is exactly the set of optimal GF-strategies OptA(〈F , v〉). Consider the set in
Rn of vectors whose sum of components is equal to 1. We can express the set
of optimal strategies OptA(〈F , v〉) as the solution of a system of inequalities.
First, with n inequalities we can consider only non-negative values. Further-
more, with another k inequalities � specifying that the weighted sum in each
column is at least u = val[〈F , v〉][A] � we have that the solutions to the system
of inequalities are exactly the vectors of values corresponding to the optimal
strategies in the game in normal form 〈F , v〉. The result then follows from

144



standard system of inequalities arguments as the space of solutions is in fact
a polytope. Therefore, Opt(F , v) = 〈DA,ActB,O, %〉s ∈ Stdf (O).

If in addition, the game form F is turn-based, then so is the game form
Opt(F , v).

We deduce the corollary below.

Corollary 3.23. Consider a set of colors K and a PI upward well-founded
payo� function f : Kω → [0, 1]. Assume that there is a memory skeleton
M such that the payo� function f is (Stdf (O),M)-SAW (resp. (TBf (O),M)-
SAW). Then, in all standard �nite concurrent (resp. turn-based) games G =
〈C, f〉, subgame optimal strategies, when they exist, can be found among M-
implementable strategies.

To obtain a simpler statement, let us write this corollary when f is win/lose,
M is of size 1 (i.e. we consider positional strategies).

Corollary 3.24. Consider a set of colors K and a PI objective W ⊆ Kω.
Assume that in all standard �nite concurrent games G = 〈C,W 〉, when there
is a subgame almost-surely winning strategy, there is one that is positional.
Then, in all standard �nite concurrent games G = 〈C,W 〉, subgame optimal
strategies, when they exist, can be found among positional strategies.

For an application of this corollary, see Proposition 5.8 in Chapter 5.

Finally, we conclude this section by mentioning that the slicing technique
� i.e. considering di�erent values slices, and then glue together strategies from
di�erent value slices � was already used in the context of concurrent games in
[50]. The authors focus on parity objectives and establish a memory transfer
result from limit-sure winning (i.e. almost-optimal for the value 1) to almost-
optimal strategies. As an application, they show that, for co-Büchi objectives,
since positional strategies are su�cient to win limit-surely, then they also are
to play almost-optimally. Their construction made heavy use of the speci�c
nature of the parity objectives. Furthermore, the paper contains complexity
results, on which we do not focus in this dissertation.

3.3 Subgame optimal strategies in standard games

In this section, we focus on standard �nite games. Recall, this means
that, in the games we consider, there are �nitely many states and at all local
interactions, both players have �nitely many actions. Furthermore, although
we will not make use of this fact, since standard �nite game forms are valuable
by Lemma 1.14, standard �nite games have a value by Theorem 2.3.
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3.3.1 . Application to �nite turn-based games

The aim of Section 3.2 was to extend an already existing result � from
[58] � on turn-based games to the context of arbitrary concurrent games, with
PI upward well-founded payo� functions. This required an adaptation of the
assumptions. However, it is in fact possible to retrieve the original result on
turn-based games proved in [58] from Theorem 3.17 in a fairly straightforward
manner. Speci�cally, in [58], it is shown � among other results � that there
are always optimal strategies in �nite turn-based games10 with PI objectives
[58, Theorem 4.3] and that the amount of memory su�cient to be almost-surely
winning is also su�cient to be optimal [58, Theorem 4.5]. Note that we do not
prove exactly the same result since we show the existence of subgame optimal
strategies and we transfer the amount of memory from what is su�cient to be
subgame almost-surely winning. On another note, other results � unrelated to
the questions considered in this chapter � are shown in [58], in particular the
authors have provided several algorithmic results, see for instance [58, Theorem
4.4, Theorem 5.1].

We state formally below the existence of subgame optimal strategies in
�nite turn-based games, the transfer of memory can then be deduced from
Corollary 3.23.

Corollary 3.25. In all �nite turn-based games G = 〈C, f〉 with a PI upward

well-founded payo� function f , both players have a deterministic subgame

optimal strategy.

The proof of this corollary is actually quite simple by applying Theo-
rem 3.17 and showing that item c. always holds in �nite turn-based games.
This last part amounts to showing that locally optimal strategies achieve the
same values as all strategies in �nite turn-based games. This was already no-
ticed in [62, Section 4.1.1]11, and it can be proved straightforwardly by using
Theorem 3.1. In addition, we would like to mention that the result for Player A

still holds even if we assume that in the local interactions belonging to Player
B, she has in�nitely many actions. This also works symmetrically for player
B.

Proof. We prove the result for Player A, but the proof is similar for Player B.
Let q ∈ Q and consider the �nite set of actions ActqA available to Player A in
the game form F(q). We let

ηq := min
a∈ActqA\OptA(〈F(q),χG〉)

χG(q)− out[〈F(q), χG〉][a] > 0

be the minimum of how much a sub-optimal action at state q deviates from
an optimal action. We let η := minq∈Q ηq > 0. Then, consider any 0 < ε < η.

10Recall De�nition 1.19: we assume that all local interactions are �nite
11Note that Gimbert is an author of both [58] cited above and [62], though these

two papers seem unrelated.
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Since the game G is turn-based, it is supremized by the collection of the sets
of deterministic GF-strategies. Hence, by Theorem 3.1, since the game is turn-
based, there is a Player-A deterministic strategy sA that is subgame ε-optimal.
Hence, by Lemma 3.10 and Proposition 3.9, we have val[〈F(ρlt), χG〉](sA(ρ)) ≥
χG [sA](ρlt) ≥ χG(ρlt) − ε = val[〈F(ρlt), χG〉] − ε. Since sA is deterministic and
by de�nition η and ε, it must be that sA(ρ) ∈ ActρltA ∩ OptA(〈F(q), χG〉). That
is, the strategy sA is locally optimal. Hence, item c. of Theorem 3.1 holds, and
therefore subgame optimal strategies exist in G for Player A.

Finally, we apply Corollary 3.23 to a speci�c PI upward well-founded func-
tion such that each win/lose objective obtained from it is a parity objective
(this corresponds to the notion of priority game, studied for instance in [28]).
This function will be measurable and Stdf (O)-PSAW. This comes from the
fact that in �nite turn-based games with parity objectives, there are always
positional optimal strategies for both players [27, 28]. Note that this result is
already known, see [28, Lemma 9]

De�nition 3.16. Consider a �nite set of colors K ⊆ N and a map g : K →
[0, 1]. We let fPar(K, g) : Kω → [0, 1] be such that, for all ρ ∈ Kω, we have:

fPar(K, g)(ρ) := g(max InfOft(ρ)) ∈ [0, 1]

where the notation InfOft(ρ) was introduced in De�nition 1.25 and refers to

the set of colors seen in�nitely often in ρ.

Proposition 3.26 (Proof 3.6.6). For all �nite sets of colors K ⊆ N and maps

g : K → [0, 1], the function fPar(K, g) : Kω → [0, 1] is measurable, PI upward

well-founded and Stdf (O)-PSAW (for both players).

Corollary 3.27. Consider a �nite set of colors K ⊆ N and a map g : K →
[0, 1]. In all �nite turn-based games with fPar(K, g) : Kω → [0, 1] as payo�

function, both players have positional optimal strategies.

Proof. Corollary 3.25 ensures that both players have subgame optimal strate-
gies. Furthermore, Corollary 3.23 along with Proposition 3.26 ensure that such
a subgame optimal strategy can be chosen positional.

3.3.2 . When optimality implies subgame optimality

In this subsection, we focus on when the existence of optimal strategies
implies the existence of subgame optimal strategies in standard concurrent
games. This is not always the case as exempli�ed in the game of Figure 3.2.
The goal of this subsection is not to consider the kind of payo� functions for
which this holds but rather to come up with a structural condition on the
optimal strategy considered to ensure this transfer. By structural condition,
we mean a condition that does not depend on the payo� function considered,
only on the arena.

147



Let us give the intuition behind the structural condition we consider. Con-
sider again the co-Büchi game of Figure 3.2. Recall that the optimal strategy
we described �rst plays the top row with increasing probability and the middle
row with decreasing probability and then, once Player B plays the second col-
umn, switches to a positional strategy playing the bottom row with positive,
yet small enough probability. Note that switching strategy is essential. Indeed,
if Player A does not switch, Player B could at some point opt for the middle
column and see inde�nitely the state q′1 with very high probability. In fact,
what happens in that case is rather counter-intuitive: once Player B switches,
there is in�nitely often a positive probability to reach the stopping state of
value 1. However, the probability to ever reach this outcome can be arbitrarily
small, if Player B waits long enough before playing the middle column. This
happens because the probability εk to visit that outcome goes (fast) to 0 when
k goes to ∞. In fact, such an optimal strategy is not �positively bounded� in
the sense that it may prescribe positive and yet arbitrarily small probabilities.

In this subsection, we consider positively bounded strategies, i.e. strategies
for which there is a positive δ > 0 such that any positive probability is at least
δ.

De�nition 3.17 (Positively bounded strategy). Let C be a concurrent arena.
A Player-A strategy sA ∈ SCA is positively bounded if there is some δ > 0 such

that, for all ρ ∈ Q+ and a ∈ ActρltA , we have sA(ρ)(q) ∈ [0] ∪ [δ, 1].

Interestingly, if we assume that there is an optimal strategy that is posi-
tively bounded, then there is a subgame optimal strategy (that is also positively
bounded).

Theorem 3.28. Consider a standard �nite concurrent PI game G and, for
all q ∈ Q, a subset of GF-strategies Λq ⊆ D(ActqA). Let Λ = (Λq)q∈Q. Then,
both assertions below are equivalent:

a. Player-A has a positively bounded subgame optimal strategy generated
by Λ;

b. Player-A has a positively bounded optimal strategy generated by Λ.

Note that, as for Theorem 3.17, the equivalence is stated in terms of existence
of strategies, not on the strategies themselves. Interestingly, the proof of The-
orem 3.28 above uses the notion of reset strategies, as in Section 3.1. We give
a proof sketch here. The complete proof is quite technical and can be found
in Appendix 3.6.7.

Proof Sketch. Consider an optimal positively bounded strategy sA ∈ SCA gen-
erated by Λ. We build a subgame optimal strategy s′A ∈ SCA in the following

way: for all ρ ∈ Q+, if the residual strategy s
tl(ρ)
A is optimal from ρlt, then
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s′A(ρ) := sA(ρ), otherwise s′A(ρ) := sA(ρlt) (i.e. we reset the strategy). Straight-
forwardly, the strategy s′A is positively bounded and is generated by Λ. We
want to apply Corollary 3.14 to prove that it is subgame optimal. One can
see that it is locally optimal (by the criterion chosen for resetting the strategy
and by Lemma 3.10). Consider now some ρ ∈ Q+ and a state q ∈ Q. As-

sume that the residual strategy s
tl(ρ)
A is optimal from ρlt but that the residual

strategy sρA is not from q. Then, similarly to why local optimality is necessary
for subgame optimality (recall Lemma 3.10 cited above), one can show that a
Player B action b ∈ ActρltB leading to q from ρ with positive probability is such
that χG(ρlt) < out[〈F(q), χG〉](sA(ρ), b). Hence, there is a positive probability
from ρ, if Player B opts for the action b, to reach a state of value di�erent
from u = χG(q). And if this happens in�nitely often, a state of value di�erent
from u will be reached almost-surely12. Thus, if a value slice is never left,
almost-surely, the strategy s′A only resets �nitely often.

Consider now some ρ ∈ Q+, a Player-B strategy sB ∈ SCB and a value
u ∈ V G \ {0}. From what we argued above, the probability of the event
Q∗ · (Qu)ω (resp. {f ≥ u} ∩ Q∗ · (Qu)ω) is the same if we intersect it with
the fact that the strategy s′A only resets �nitely often. Furthermore, if the
strategy does not reset anymore from some point on, and all states have the
same value u > 0, then the strategy is, somehow, subgame optimal. It follows
that the probability of {f ≥ u} is 1 by Theorem 3.12. We can then conclude
by applying Corollary 3.14.

3.4 Reduction to turn-based games: �nite-choice strate-

gies

In this section, we focus on how to transfer already existing results on
turn-based games to standard concurrent games. Note that it is di�erent from
what we did in Subsection 3.3.1 since, here we do not prove results on turn-
based games but rather use already existing ones. We establish such transfers
in the second subsection (and also in Chapter 6), whereas the �rst subsection,
which is quite heavy on notations, gives the necessary de�nitions and lemmas
to prove these results.

3.4.1 . Sequentialization of standard concurrent games

To use what already exists in turn-based games, we de�ne how to sequen-
tialize a concurrent game into a turn-based game. That is, we make Player A

play �rst, and then Player B respond � therefore, she has more information

12This holds because the strategy sA is positively bounded: the probability to see
a state of di�erent value is bounded below by the product of the constant δ of Def-
inition 3.17 and the smallest positive probability distribution over states in local
interactions.
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Figure 3.10: A concurrent arena.

when playing than in the original concurrent arena. This transformation is
de�ned on standard games that need not be �nite. Note that we �rst intro-
duced the notion of sequentialization of standard concurrent games in [38],
along with the notions of parallelization of sequentialization of strategies that
we will consider later in this subsection. We will come back to that paper, and
to the results of this section, in Chapter 6.

De�nition 3.18 (Sequentialization of concurrent games). Consider a stan-

dard concurrent arena C, a collection Λ = (Λq)q∈Q ⊆
∏
q∈Q Σq

A of sets of

Player-A GF-strategies, another set of colors K′ and a function η : K → K′.

The turn-based arena C(Λ, η) that is the sequentialization of C w.r.t. Λ and η

is de�ned by C(Λ, η) := 〈QA ∪QB,F
Λ,Kη, colη〉 where:

• QA := Q and QB := ∪q∈Q ∪σA∈Λq (q, σA);

• for all Player-A states q ∈ QA, FΛ(q) := 〈Λq, {∗}, QB,NextΛ
q 〉s where for

all σA ∈ Λq, we have NextΛ
q (σA)((q, σA)) := 1. Note that the strategies

available to Player A at such a state is equal to D(Λq).

• for all Player-B states (q, σA) ∈ QB, FΛ(q) := 〈{∗},ActqB, QA,E(%q(σA, ·))〉s.

• Kη := K]K′, colη coincides with col on Q = QA and, for all (q, σA) ∈ QB,

we have colη((q, σA)) := η ◦ col(q).

Consider now a game G = 〈C, f〉. The sequentialization fη : (Kη)ω → [0, 1] of

the payo� function f w.r.t. η is such that, for all ρ ∈ Kω:

fη(ρ) :=

{
0 if ρ /∈ (K ∪ K′)∗ · (K · K′)ω
fK,K′(ρ

′) otherwise, for ρ′ the longest su�x of ρ ∈ (K · K′)ω

where fK,K′ comes from De�nition 1.8. We denote by G(Λ, η) := 〈C(Λ, η), fη〉
the sequentialization of the game G w.r.t. Λ and η.

Example 3.2. We have depicted in Figure 3.11 two possible sequentializa-

tions of the concurrent arena depicted in Figure 3.10. In both cases, we make

Player A (she owns square-shaped states) play �rst, and then Player B respond
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Figure 3.11: The sequentialization of the arena of Figure 3.10 with Λq0 =
{a1, a2} on the left and with Λq0 = {a1+a2

2
} on the right.

(she owns diamond-shaped states). Note that, in the sequentialization on the

right of Figure 3.11, the choices of Player B lead to the same outcome since

Player A plays both rows with uniform probability. Hence, regardless of what

Player B does, both states x and y are reached with uniform probability.

We would like to relate what happens in a concurrent game and its se-
quentialized version. To do so, we translate strategies back and forth between
the two games. Let us �rst de�ne the parallelization of strategies, that is the
transfer of strategies from the sequentialized version C(Λ, η) of a concurrent
arena C back to that concurrent arena. In the following, we will consider two
cases: the parallelization of Player-A deterministic strategies � along with a
parallelization of Player-B arbitrary strategies, w.r.t. a Player-A determinis-
tic strategy � and the parallelization of Player-A �nite-memory strategies �
which will not induce a parallelization of Player-B strategies. We �rst focus
on the case of Player-A deterministic strategies, we will consider the case of
�nite-memory Player-A strategies at the end of this subsection. We de�ne how
to extend a �nite path in the concurrent arena C into a path in its sequential-
ized version C(Λ, η), given such a Player-A deterministic strategy sA ∈ S

C(Λ,η)
A .

Recall that such a strategy sA is such that, for all ρ ∈ (QA ·QB)∗ ·QA, we have
sA(ρ) ∈ Λρlt , which allows to de�ne such an extension of �nite paths.

De�nition 3.19 (Parallelization of strategies w.r.t. a deterministic Player-A
strategy). Consider a standard concurrent arena C, a collection Λ = (Λq)q∈Q ∈∏
q∈Q Σq

A of sets of Player-A GF-strategies and η : K→ K′ for some set K′. Con-

sider a Player-A deterministic strategy sA ∈ S
C(Λ,η)
A . We de�ne the function

θA(sA) : Q+ → (QA ·QB)∗ ·QA inductively such that, for all ρ ∈ Q+, we have

θA(sA)(ρ)lt = ρlt. Speci�cally, for all q ∈ Q, we set θA(sA)(q) := q. Further-

more, for all ρ · q ∈ Q+, we set:

θA(sA)(ρ · q) := θA(sA)(ρ) · (ρlt, sA(θA(sA)(ρ))) · q
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We then de�ne θB(sA) : Q+ → (QA ·QB)+ by, for all ρ ∈ Q+: θB(sA)(ρ) :=

θA(sA)(ρ) · (ρlt, sA(θA(sA)(ρ))).

Consider now a deterministic Player-A strategy sA ∈ S
C(Λ,η)
A (resp. and

an arbitrary Player-B strategy sB ∈ S
C(Λ,η)
B ). We let PrΛ

A(sA) ∈ SCA (resp.

PrΛ
B(sA, sB) ∈ SCB) be the parallelization of the strategy sA (resp. of the strategy

sB w.r.t. sA) such that, for all ρ ∈ Q+, we have:

PrΛ
A(sA)(ρ) := sA(θA(sA)(ρ)) ∈ Λρlt ⊆ D(ActρltA )

PrΛ
B(sA, sB)(ρ) := sB(θB(sA)(ρ)) ∈ D(ActρltB )

We can then relate the expected value of the payo� functions in a con-
current arena and its sequentialized version w.r.t. to the above-de�ned paral-
lelization of strategies.

Lemma 3.29 (Proof 3.6.8). Consider a standard concurrent game G, a collec-
tion Λ = (Λq)q∈Q ∈

∏
q∈Q Σq

A of sets of Player-A GF-strategies and η : K→ K′

for some set K′. For all Player-A deterministic strategies sA ∈ S
C(Λ,η)
A , Player-B

strategies sB ∈ S
C(Λ,η)
B in C(Λ, η) and states q ∈ Q = QA, we have:

EPrΛA (sA),PrΛB (sA,sB)
C,q [(fC)

q] = EsA,sB
C(Λ,η),q[((fη)C(Λ,η))

q]

Let us now de�ne a way to translate strategies from a concurrent arena to
its sequentialized version, which is called the sequentialization of strategies. In
this direction, it su�ces to consider a projection of the paths (QA ·QB)+ into
paths in Q+

A = Q+. Note that, when doing so for Player B, there is loss of
information since she no longer knows what Player A has played before making
her move � which is the situation in the concurrent setting.

De�nition 3.20 (Sequentialization of strategies). Consider a standard con-

current arena C, a collection Λ = (Λq)q∈Q ∈
∏
q∈Q Σq

A of sets of Player-A

GF-strategies and η : K → K′ for some set K′. Consider a Player C ∈ {A,B}
and a Player-C strategy tC ∈ SCC. We let sC(tC) ∈ S

C(Λ,η)
C be such that, for all

ρ ∈ (QA ·QB)∗ ·QC (where QA := QA and QB := ε), we have:

sC(tC)(ρ) := sC ◦ φQA,QB
(ρ)

The strategy sC(tC) ∈ S
C(Λ,η)
C is de�ned arbitrarily, in a deterministic way, on

any other path.

Interestingly, the sequentialization and parallelization of strategies relate.

Lemma 3.30 (Proof 3.6.9). Consider a standard concurrent arena C, a collec-
tion Λ = (Λq)q∈Q ∈

∏
q∈Q Σq

A of sets of Player-A GF-strategies and η : K→ K′

for some set K′. For all Player-A strategies tA ∈ SCA generated by Λ, the strategy

sA(tA) ∈ S
C(Λ,η)
A is deterministic and we have:

PrΛ
A(sA(tA)) = tA
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Furthermore, for all Player-B strategies tB ∈ SCB, we have sB(tB) ∈ S
C(Λ,η)
B and

for all Player-A deterministic strategies sA ∈ S
C(Λ,η)
A , we have:

PrΛ
B(sA, sB(tB)) = tB

We can now compare the change in values of the games after this sequen-
tialization. Let us �rst consider Player B. After this sequentialization, Player
B has more information when playing than before since she knows the GF-
strategy played by Player A in the current state of the game. Hence, the
Player-B value of the game, after sequentialization, has not increased (i.e. it
has not worsen, from Player B's point of view), as stated in the lemma below.

Proposition 3.31. For all standard concurrent games G, collections Λ =

(Λq)q∈Q ∈
∏
q∈Q Σq

A of sets of Player-A GF-strategies and η : K→ K′ for some

set K′, we have for all q ∈ Q = QA, χG [B](q) ≥ χG(Λ,η)[B](q).

Proof. Consider any Player-B strategy tB ∈ SCB and the Player-B strategy

sB(tB) ∈ S
C(Λ,η)
B in the turn-based arena C(Λ, η). Let us show that χG(tB)(q) ≥

χG(Λ,η)(sB(tB))(q). Consider any Player-A deterministic strategy sA ∈ S
C(Λ,η)
A .

Let tA := PrΛ
A(sA) ∈ SCA be a Player-A strategy in the arena C. By Lemma 3.29,

we have:

EtA,Pr
Λ
B (sA,sB(tB))

C,q [(fC)
q] = EsA,sB(tB)

C(Λ,η),q [((fη)C(Λ,η))
q]

By Lemma 3.30, we have PrΛ
B(sA, sB(tB)) = tB. Hence:

χG(tB)(q) ≥ EtA,tB
C,q [(fC)

q] = EsA,sB(tB)
C(Λ,η),q [((fη)C(Λ,η))

q]

As this holds for all Player-A deterministic strategies sA ∈ S
C(Λ,η)
A and since

deterministic strategies achieve the same values that all strategies in turn-
based games by Corollary 2.17, it follows that χG(tB)(q) ≥ χG(Λ,η)(sB(tB))(q) ≥
χG(Λ,η)[B](q). As this holds for all Player-B strategies tB ∈ SCB, it follows that
χG [B](q) ≥ χG(Λ,η)[B](q).

The case of Player A is not exactly symmetrical. Indeed, she cannot achieve
the same value in G(Λ, η) than in G because she has less available strategies, and
Player B knows what she played before playing. Hence, the Player-A value of
the game, after sequentialization, has not increased. However, this value in the
sequentialization is at least the supremum of the values of strategies generated
by Λ.

Proposition 3.32. Consider a standard game G, a collection Λ = (Λq)q∈Q ∈∏
q∈Q Σq

A of sets of Player-A GF-strategies and η : K→ K′ for some set K′. Let

q ∈ Q = QA. We denote by SCA(Λ) the set of Player-A strategies generated by
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Λ in the arena C. For all deterministic Player-A strategies sA ∈ S
C(Λ,η)
A , the

Player-A strategy PrΛ
A(sA) ∈ SCA is generated by Λ and is such that:

χG(Λ,η)(sA)(q) ≤ χG(PrΛ
A(sA))(q)

In fact, we have:

χG(Λ,η)[A](q) = sup
tA∈SCA(Λ)

χG [tA](q) ≤ χG [A](q)

Proof. Consider such a Player-A deterministic strategy sA ∈ S
C(Λ,η)
A and the

Player-A strategy PrΛ
A(sA) ∈ SCA(Λ) in the concurrent arena C. Note that

PrΛ
A(sA) ∈ S

C(Λ,η)
A straightforwardly from the de�nition. Let us show that

χG(Λ,η)(sA)(q) ≤ χG(PrΛ
A(sA))(q). Consider any Player-B strategy tB ∈ SCB.

Let s′B := sB(tB) ∈ S
C(Λ,η)
B be a Player-B strategy in the arena C(Λ, η). By

Lemma 3.29, we have:

EPrΛA (sA),PrΛB (sA,s
′
B)

C,q [(fC)
q] = EsA,s

′
B

C(Λ,η),q[((fη)C(Λ,η))
q]

Furthermore, we have s′B = sB(tB), hence by Lemma 3.30, we have PrΛ
B(sA, s

′
B) =

tB. Hence:

EPrΛA (sA),tB
C,q [(fC)

q] = EsA,s
′
B

C(Λ,η),q[((fη)C(Λ,η))
q] ≥ χG(Λ,η)(sA)(q)

As this holds for all Player-B strategies tB ∈ SCB, it follows that χG(Λ,η)(sA)(q) ≤
χG(PrΛ

A(sA))(q) ≤ suptA∈SCA(Λ) χG [tA](q), since PrΛ
A(sA) ∈ SCA(Λ).

Furthermore, since this holds for all Player-A deterministic strategies sA ∈
S
C(Λ,η)
A and since deterministic strategies achieve the same values that all strate-

gies in turn-based games by Corollary 2.17, it follows that χG(Λ,η)[A](q) ≤
suptA∈SCA(Λ) χG [tA](q).

Consider now a Player-A strategy tA ∈ SCA generated by Λ (i.e. tA ∈
SCA(Λ)). Consider then the Player-A deterministic strategy sA(tA) ∈ S

C(Λ,η)
A in

the turn-based arena C(Λ, η). Let us show that χG(tA)(q) ≤ χG(Λ,η)(sA(tA))(q).

Consider any Player-B strategy sB ∈ S
C(Λ,η)
B . Let tB := PrΛ

B(sA(tA), sB) ∈ SCB
be a Player-B strategy in the arena C. By Lemma 3.29, we have:

EPrΛA (sA(tA)),tB
C,q [(fC)

q] = EsA(tA),sB
C(Λ,η),q [((fη)C(Λ,η))

q]

By Lemma 3.30, we have PrΛ
A(sA(tA)) = tA. Hence:

χG(tA)(q) ≤ EtA,tB
C,q [(fC)

q] = EsA(tA),sB
C(Λ,η),q [((fη)C(Λ,η))

q]

As this holds for all Player-B strategies sB ∈ S
C(Λ,η)
A , it follows that χG(tA)(q) ≤

χG(Λ,η)(sA(tA))(q) ≤ χG(Λ,η)[A](q). As this holds for all Player-A strategies tA ∈
SCA(Λ) generated by Λ, it follows that suptA∈SCA(Λ) χG [tA](q) ≤ χG(Λ,η)[A](q).

Since SCA(Λ) ⊆ SCA and χG [A](q) = suptA∈SCA
χG [tA](q), it follows that we

also have suptA∈SCA(Λ) χG [tA](q) ≤ χG [A](q).
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Example 3.3. Let us illustrate these lemmas on the sequentializations of

Figure 3.11. Assume that the objective of Player A is to reach x, while Player

B wants to avoid it. In that case, the value of the original concurrent game

of Figure 3.10 is 1
2 and both players have optimal strategies: it su�ces to

play uniformly over their pair of actions. Now, consider the sequentialization

on the left of Figure 3.11. Here, the value of the game is 0. Indeed, since

Player B has the information of the action chosen by Player A, she can enforce

going to state y surely. Note that, in this game, it is useless for Player A to

play non-deterministic strategies. Consider now the sequentialization on the

right of Figure 3.11. In that game, the value is 1
2 since regardless of what

the players do, the states x and y will be reached with probability 1
2 . Note

that the optimal Player-A strategy in the game of Figure 3.11 that consists in

playing both rows with probability 1
2 is generated by Λq0 = {a1+a2

2 }, which
has induced the sequentialization on the right.

Finite-memory strategies. Since we ultimately want to transfer results
from turn-based games to standard concurrent games, we want to be able to
parrallelize �nite-memory strategies � recall De�nition 1.36 � ideally while
keeping the same amount of memory state. Given some set of colors K′ and
some η : K → K′, consider a Player-A �nite-memory strategy sA ∈ S

C(Λ,η)
A (on

the set of color K∪K′). One can notice that, by de�nition of the arena C(Λ, η),
given a state q ∈ QA of color col(q) = colη(q) := k ∈ K, then the color of all
Player-B states reachable from q is the same, and is equal to η(k) ∈ K′. The
parallelization of Player-A �nite-memory strategies sA therefore only amounts
to properly handling the memory update.

De�nition 3.21 (Parallelization of Player-A �nite-memory strategies). Con-

sider a standard concurrent arena C, a collection Λ = (Λq)q∈Q ∈
∏
q∈Q Σq

A of

sets of Player-A GF-strategies and η : K → K′ for some set K′. Consider a

Player-A �nite-memory strategy sA ∈ S
C(Λ,η)
A that is implemented by a memory

skeleton M = 〈M,minit, µ〉 on K∪K′ and an action map λ : M × (QA ∪QB)→
∪q∈QΣA(FΛ(q)).

We denote by PrηA(M) the memory skeleton PrηA(M) := 〈M,minit,PrηA(µ)〉
on K such that, for allm ∈M and k ∈ K, we have PrηA(µ)(m, k) := µ(µ(m, k), η(k)) ∈
M . Then, we denote by PrΛ

A(λ) : M ×Q→ ∪q∈QΣA(F(q)) the action map de-

�ned by, for allm ∈M and q ∈ Q, we have PrΛ
A(λ)(m, q) := λ(m, q) ∈ D(Λq) ⊆

D(ActqA). We denote by Prη,ΛA (sA) ∈ SCA the Player-A strategy implemented by

PrηA(M) and PrΛ
A(λ).

In fact, one has to check that the above de�nition is well-de�ned. Indeed,
a Player-A �nite-memory strategy sA ∈ S

C(Λ,η)
A could be implemented with

di�erent memory skeletons and action maps. One has to check that regardless
of the pair implementing the strategy on which is done the parallelization, the
resulting Player-A strategy in SCA is the same. This is done in the lemma below.
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Lemma 3.33 (Proof 3.6.10). Consider a standard concurrent arena C, a col-
lection Λ = (Λq)q∈Q ∈

∏
q∈Q Σq

A of sets of Player-A GF-strategies and η : K→
K′ for some set K′. Consider a Player-A strategy sA ∈ S

C(Λ,η)
A . For all memory

skeletons M on K′ and action maps λ : M × (QA ∪QB)→ ∪q∈QA∪QB
ΣA(FΛ(q))

implementing sA, the strategy in SCA implemented by PrηA(M) and PrΛ
A(λ) is the

same.

Then, letting tA := Prη,ΛA (sA), for all π ∈ Q∗, there is some ρ ∈ (QA ·QB)∗

such that φQA,QB
(ρ) = π and such that tπA = Prη,ΛA (sρA).

Similarly to what is done in Lemma 3.29, we can relate the expected val-
ues of the payo� functions in a concurrent arena and its sequentialized version
w.r.t. to the parallelization of Player-A �nite-memory strategies and the se-
quentialization of Player-B strategies.

Lemma 3.34 (Proof 3.6.11). Consider a standard concurrent game G, a

collection Λ = (Λq)q∈Q ∈
∏
q∈Q Σq

A of sets of Player-A GF-strategies and η :

K→ K′ for some set K′. For all Player-A �nite-memory strategies sA ∈ S
C(Λ,η)
A

in C(Λ, η), Player-B strategies tB ∈ SCB in C and states q ∈ Q, we have:

EPrη,ΛA (sA),tB
C,q [(fC)

q] = EsA,sB(tB)
C(Λ,η),q [((fη)C(Λ,η))

q]

Interestingly, we can then deduce that the value of the parallelization of a
�nite-memory strategy is at least the value of that �nite-memory strategy.

Proposition 3.35. Consider a standard concurrent game G, a collection Λ =

(Λq)q∈Q ∈
∏
q∈Q Σq

A of sets of Player-A GF-strategies and η : K→ K′ for some

set K′. For all Player-A �nite-memory strategies sA ∈ S
C(Λ,η)
A in C(Λ, η) and

states q ∈ Q = QA, we have:

χG(Λ,η)(sA)(q) ≤ χG(Prη,ΛA (sA))(q)

Proof. Consider any Player-B strategy tB ∈ SCB. By Lemma 3.34, we have

χG(Λ,η)(sA)(q) ≤ EsA,sB(tB)
C(Λ,η),q [((fη)C(Λ,η))

q] = EPrη,ΛA (sA),tB
C,q [(fC)

q]. As this for all

Player-B strategies tB ∈ SCB, it follows that χG(Λ,η)(sA)(q) ≤ χG(Prη,ΛA (sA))(q).

3.4.2 . Finite-choice strategies

Recall that the goal of this section is to retrieve results already existing
in turn-based games in the context of concurrent games. We are especially
interested in results existing in �nite turn-games, since in�nite stochastic turn-
based games are hard to handle. To be able to transfer results from �nite
turn-based games, we focus on a special type of Player-A strategy. To gain
an intuition on what the strategies we will consider are, let us consider the
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q1,

[
q1 q2

q2 q3

]
q2

q3

1

2

3

Figure 3.12: A parity game.

parity game of Figure 3.12. Note that this game was already described in
[47]. We will also come back to that game in Chapter 5 and prove formally, in
Proposition 5.14, the informal statements we make below. This is a parity game
where the objective of Player A is to see q2 in�nitely often, while seeing q3 only
�nitely often. In this game there is a subgame almost-surely winning strategy
for Player A. However, one can realize that all positional Player-A strategies
have value 0. Indeed, if a Player-A positional strategy sA plays the bottom row
with positive probability, then Player-B can positionally play the right column
and ensure seeing q3 in�nitely often almost-surely. Furthermore, if sA does
not play the bottom row with positive probability, Player B can positionally
play the left column with probability 1 and ensure looping inde�nitely on q1

without ever seeing q2.

Let us now informally describe a Player-A subgame almost-surely winning
strategy. Such a strategy could play the top row with probability 1 − εk and
the bottom row with probability εk > 0 with εk going to 0 when k goes to
∞, where k denotes the number of times the states q2 and q3 are seen. Then,
considering any Player-B strategy, the probability to see q3 in�nitely often is
0 if εk goes to 0 su�ciently fast. Furthermore, the probability to ever loop
inde�nitely on q1 without ever seeing q2 is also 0 thanks to the fact that k
counts the number of times a state that is not q1 is seen. Indeed, as long as
the game loops on q1, εk does not change and therefore there is probability
(at least) εk > 0 to see q2. That is, not seeing q2 anymore does not happen,
almost-surely.

What happens in this parity game of Figure 3.12 is frustrating since, al-
though there are subgame optimal strategies, such subgame optimal strategies
prescribe in�nitely many di�erent probability distributions at q1 and cannot
be found among positional optimal. This is strikingly di�erent from the situ-
ation in �nite turn-based games where there are always positional (subgame)
optimal strategies [27, 28].

In fact, the issue in concurrent games lies exactly in the fact that achieving
a value is that complicated � i.e. that it requires such a convoluted strategy
that plays in�nitely many di�erent probability distributions. We introduce
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the opposite notion, that is what we call �nite-choice strategies. These are
strategies that, at each state, may play only among a �nite set of GF-strategies.

De�nition 3.22 (Finite-choice strategy). Let C be a concurrent arena. A

Player-A strategy sA ∈ SCA has �nite choice if, for all q ∈ Q, there is a �nite set
Σq(sA) ⊆ Σq

A such that, for all ρ ∈ Q∗, we have sA(ρ · q) ∈ Σq(sA). Otherwise,

the strategy has in�nite choice. The de�nition is analogous for Player B.

Remark 3.1. Note that �nite-memory � and in particular positional �

strategies have �nite choice. Therefore, all in�nite-memory strategies are not

�nite-choice strategies. It is also the case for deterministic strategies (since

Player A has �nitely many actions). In addition, in �nite-state arenas, �nite-

choice strategies are positively-bounded.

In fact, when �nite-choice strategies achieve a value in a �nite concurrent
standard game with a speci�c objective, then we can use the already existing
results in turn-based games via sequentialization. However, when doing so
we add intermediate states with a color given by col : Q → K and η : K →
K′. Let us de�ne pairs of payo� functions that can be made equal after the
sequentialization.

De�nition 3.23 (Payo� functions equal up to adequate interleaving). Con-

sider two non-empty sets of colors K and K′ along with two PI payo� functions

f : Kω → [0, 1] and g : (K ∪ K′)ω → [0, 1]. We say that f and g are equal up
to adequate interleaving if there is a map η : K → K′ and an a�ne increasing

function ψ : [0, 1]→ [0, 1], such that, for all ρ ∈ Kω:

f(ρ) = ψ ◦ g(ρ0 · η(ρ0) · ρ1 · η(ρ1) · · · )

Given a memory skeleton M, we extend the notion of being (TBf (O),M)-
SAW (recall subgame almost-surely winnable, where TBf (O) refers to the set
of �nite turn-based game forms) to payo� functions after the sequentialization
by using the above de�nition. This is done below in De�nition 3.24.

De�nition 3.24 (Seq-(TBf (O),M)-SAW payo� function). Consider two non-

empty sets of colors K and K′ and a memory skeleton M = 〈M,minit, µ〉 on
K ∪ K′. A PI payo� function f : Kω → [0, 1] is said to be M-subgame almost-
surely winnable after sequentialization (Seq-M-SAW for short) if there is a PI

upward well-founded payo� function g : (K∪K′)ω → [0, 1] that is (TBf (O),M)-

SAW such that f and g are equal up to adequate interleaving. When |M | = 1,

the payo� function f is said to be positionally subgame almost-surely winnable
after sequentialization (Seq-PSAW for short). This last notion does not depend

on the set of colors K′.

Let us apply this de�nition to parity objectives.
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Proposition 3.36. For all sets of colors K := Jm,nK ⊆ N for some m ≤ n ∈
N, the parity objective ParityK � seen as the payo� function f := 1ParityK �

is Seq-PSAW.

Proof. We let K′ := K, η : K → K be such that η[K] := {m} and g := f =

1ParityK . Since positional optimal strategies always exist in �nite turn-based
parity games [27, 28], g is (TBf (O))-PSAW. Furthermore, since the parity
objective only considers the highest color seen in�nitely often, for all ρ ∈ Kω,
we have f(ρ) = g(ρ0 ·m · ρ1 ·m · · · ) since m = min K. Hence, the pair (f, g) is
equal up to adequate interleaving.

Before stating the main result of this section, we need to de�ne below the
notion of B-�nite standard concurrent game.

De�nition 3.25 (B-�nite standard concurrent game). Consider a standard

concurrent game G. We say that it is B-�nite if the set of states Q is �nite

and, for all q ∈ Q, the set of Player-B actions ActqB at state q is �nite.

We can �nally state the memory transfer from turn-based games to stan-
dard concurrent games w.r.t. �nite-choice strategies.

Theorem 3.37. Let K,K′ be two arbitrary sets of colors, M = 〈M,minit, µ〉
be a �nite memory skeleton on K ∪ K′ and f : Kω → [0, 1] be a PI payo�
function that is Seq-(TBf (O),M)-SAW.

Then, for all B-�nite standard concurrent games G = 〈C, f〉, for all Player-
A �nite-choice strategies sA ∈ SCA, there is a Player-A strategy tA ∈ SCA imple-
mentable by a memory skeleton using as many memory states as M such that,

for all π ∈ (Qns)
+, we have χG [s

tl(π)
A ](πlt) ≤ χG [t

tl(π)
A ](πlt).

Proof. First, as the payo� function f : Kω → [0, 1] is Seq-(TBf (O),M)-SAW,
let us consider a PI upward well-founded function g : (K ∪ K′)ω → [0, 1] that
is (TBf (O),M)-SAW such that f and g are equal up to adequate interleaving.
Let us also consider an a�ne increasing (and therefore invertible) function
ψ : [0, 1]→ [0, 1] and η : K→ K′ from De�nition 3.23.

Consider now such a �nite-choice strategy sA ∈ SCA. For all q ∈ Q, we
let Λq := {sA(ρ · q) | ρ ∈ Q∗} ⊆ D(ActqA) be a �nite set � since the
strategy sA has �nite choice � of Player-A GF-strategies at state q. Let
Λ := (Λq)q∈Q. Let us consider the turn-based game G(Λ, η). It is �nite by
de�nition of Λ. Furthermore, by Proposition 3.32, for all q ∈ Q, we have
χG(Λ,η)[A](q) = suptA∈SCA(Λ) χG [tA](q). In particular, for all q ∈ Q and ρ ∈ Q+,

we have χG(Λ,η)[A](q) ≥ χG [sρA](q) since sρA is generated by Λ.
Let us now consider the game G′(Λ, η) := 〈C(Λ, η)′, g〉 where the arena

C(Λ, η)′ is obtained from the arena C(Λ, η)′ by changing the values of the
stopping states from u in C(Λ, η) to ψ−1(u) in C(Λ, η)′13. Otherwise, the arena

13Note that this transformation may induce stopping states of value more than 1.
However, all arguments still hold in that case.
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is unchanged. We denote by SeqAlt ⊆ (QA ·QB)+ the set:

SeqAlt := {ε} ∪ {q0 · (q0, σq0) · q1 · (q1, σq1) · · · qn · (qn, σqn) |
∀0 ≤ i ≤ n, qi ∈ QA, σqi ∈ Λqi}

By de�nition of the arenas C(Λ, η) and C(Λ, η)′, all �nite paths that are not
in SeqAlt (up to omitting the last state of the path) have probability 0 to occur
in the arenas C(Λ, η) and C(Λ, η)′ regardless of the strategies of the players.
Furthermore, for any in�nite path ρ ∈ SeqAltω, we have ψ−1◦fη(ρ) = g(ρ) with
ψ−1 an a�ne function, which therefore commutes with the expected value: for
all states q ∈ Q and pair of strategies (xA, xB) ∈ S

C(Λ,η)
A × S

C(Λ,η)
B , we have:

ψ−1(ExA,xBC(Λ,η),q[((fη)C(Λ,η))
q]) = ExA,xBC(Λ,η)′,q[(gC(Λ,η)′)

q]

Hence, since ψ is increasing and continuous � since it is a�ne, we can
deduce that for all states q ∈ Q, for all Player-A strategies xA ∈ SCA, we have
ψ−1(χG(Λ,η)[xA](q)) = χG(Λ,η)′ [xA](q) and ψ−1(χG(Λ,η)[A](q)) = χG(Λ,η)′ [A](q).

Furthermore, since the PI function g is (TBf (O),M)-SAW, by Corollary 3.25,
there is a subgame almost-surely winning strategy in G(Λ, η)′ and by Corol-
lary 3.23, it can be found among M-implementable strategies. Therefore, we
consider a Player-A strategy xA ∈ S

C(Λ,η)′

A = S
C(Λ,η)
A that is subgame op-

timal in G(Λ, η)′ and M-implementable. Consider then its parrallelization
tA := PrΛ,η

A (xA) ∈ SCA. By de�nition (recall De�nition 3.21), it is implementable
with a �nite memory skeleton with as many memory states as M.

Consider now any �nite path π ∈ (Qns)
+. By (the second part of) Propo-

sition 3.33, there is a �nite path ρ ∈ (QA · QB)∗ such that t
tl(π)
A = PrΛ,η

A (xρA)

such that φQA,QB
(ρ) = π, and therefore ρ does not visit any stopping state

in C(Λ, η), or equivalently in C(Λ, η)′. Furthermore, the strategy xA is sub-
game optimal in the game G(Λ, η)′ with a PI upward well founded payo�
function. Hence, ψ−1(χG(Λ,η)[x

ρ
A](πlt)) = χG(Λ,η)′ [x

ρ
A](πlt) = χG(Λ,η)′ [A](πlt) =

ψ−1(χG(Λ,η)[A](πlt)). Furthermore, we have χG(Λ,η)[A](πlt) ≥ χG [s
tl(π)
A ](πlt). In

addition, by Proposition 3.35, we have χG(C,η)[x
ρ
A](πlt) ≤ χG [PrΛ,η

A (xρA)](πlt) =

χG [t
tl(π)
A ](πlt). Overall, we do obtain, χG [s

tl(π)
A ](πlt) ≤ χG [t

tl(π)
A ](πlt).

We obtain a simpler statement when applying to the special case of parity
objectives.

Corollary 3.38. Consider any B-�nite standard concurrent parity game. For
all Player-A �nite-choice strategies sA ∈ SCA, there is a Player-A positional
strategy tAsuch that, for all ρ ∈ Q+, we have χG [sA](ρ) ≤ χG [tA](ρ). Hence, if
sA is subgame optimal, so is tA.

Proof. This is a direct consequence of Theorem 3.37 and Proposition 3.36.
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3.5 Discussion and open question

In this chapter, we have established various results on subgame optimal
strategies. As mentioned at the beginning of this part, we believe that Theo-
rem 3.12 and its Corollaries 3.14 and 3.16 are important results on concurrent
games and are essential to this dissertation. We also believe that Theorem 3.17
gives signi�cant insight on why concurrent concurrent games behave so much
more badly than turn-based games. Indeed, as discussed in Page 137, this
theorem identi�es exactly the reason why there does not always exist subgame
optimal strategies in concurrent games: when restricting to locally optimal
strategies, the value of some states may drop to 0.

That is not to say that the other results we have shown in this chapter have
no interest. In particular, an important notion we have introduced in this
chapter is the notion of �nite-choice strategies, with the main result proved
on �nite-choice strategies being Theorem 3.37. Roughly, Theorem 3.37 states
that if a �nite-choice strategy achieves a value in a standard �nite concurrent
game with a payo� function f , then a simple strategy can achieve the same
value; where simple means what is required to be optimal in turn-based games
with f as payo� function. This holds for various objectives. As stated in
Corollary 3.38, for a parity objective, simple means positional. Hence, in a
standard �nite concurrent parity game, if there is a subgame optimal strategy
that is �nite-choice, then there is one that is positional. The question then
is: can the �nite choice assumption be weakened? We know that it cannot be
dropped entirely, since, as exempli�ed by the game depicted in Figure 3.12,
subgame optimal strategies may require in�nite choice. However, we believe
that it may hold if �nite choice is replaced by positively bounded.

Open Question 3.1. Does it hold that in all standard �nite concurrent

parity games, if there is a subgame optimal strategy that is positively bounded,

then there is one that is positional?

The reason why we think Open Question 3.1 could be answered positively
is because the parity objective is a qualitative objective, in the sense that
what matters is only what is seen in�nitely often, regardless of the frequency
(contrary to a mean-payo� objective). In addition, with positively bounded
strategies, what occurs in�nitely often in the game is what occurs in�nitely
often in the support of the strategy. Therefore, it seems that what matters
with a positively bounded strategy is not the exact probability distribution
played, but rather the support of this distribution � though this statement
should be taken cautiously. With standard �nite local interactions, there are
only �nitely many di�erent supports; and therefore it may be possible to use
the same kind of arguments we used to prove Theorem 3.37.
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3.6 Appendix

3.6.1 . Proof of Lemma 3.2

We consider a game G = 〈C, g〉 and we let f := gC .

To prove this lemma, we will need the notion of covering formally de�ned
below in De�nition 3.26.

De�nition 3.26 (Covering). For all n ∈ N, an n-covering is a non-empty

subset A ⊆ Ω≤nC of �nite non-empty paths such that ]π∈ACyl(π) = Qω (i.e.

the union is disjoint).

The probability of any covering, given two strategies, is 1. Furthermore,
the expected value of any Player-A strategy does not decrease over coverings,
against all strategies. This is stated formally in the lemma below.

Lemma 3.39. Consider any Player-A strategy sA ∈ SCA and Player-B strategy

sB ∈ SCB. For all n ∈ N, n-coverings A ⊆ Ω≤nC and any �nite path ρ ∈ (Qns)
+,

we have:

∑

π∈A
PsA,sB
C,ρ (π) = 1

and

χGtl(ρ) [sA](ρlt) ≤
∑

π∈A
PsA,sB
C,ρ (π) · χGtl(ρ·π) [s

tl(ρlt·π)
A ]((ρ · π)lt)

Proof. Let us prove this lemma by induction on n ∈ N. This straightforwardly
holds for n = 0 since in that case A = {ε}. Let us show it for n = 1. That
is, let us consider some ρ ∈ (Qns)

+ and a 1-covering {ε} 6= A ⊆ Ω≤1
C and a

Player-B strategy sB ∈ SCB. Since A is a covering, it must be that A = Q.
Hence, we have

∑
q∈Q PsA,sB

C,ρ (q) =
∑

q∈Q out[〈F(ρlt), q〉](sA(ρ), sB(ρ)) = 1. Now
assume towards a contradiction that:

ε := χGtl(ρ) [s
tl(ρ)
A ](ρlt)−

∑

q∈Q
PsA,sB
C,ρ (q) · χGρ [sρA](q) > 0

Consider any Player-B strategy s ∈ SCB such that s(ρlt) = sB(ρ) and such that,
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for all q ∈ Q, we have EsρA,s
ρlt

C,q [fρ·q] ≤ χGρ [sρA](q) + ε
2 . Then, we have:

Es
tl(ρ)
A ,s
C,ρlt [fρ] =

∑

q∈Q
Ps

tl(ρ)
A ,s
C,ρlt (q) · EsρA,s

ρlt

C,q [fρ·q]

=
∑

q∈Q
PsA,sB
C,ρ (q) · EsρA,s

ρlt

C,q [fρ·q]

≤
∑

q∈Q
PsA,sB
C,ρ (q) · (χGρ [sρA](q) +

ε

2
)

=
∑

q∈Q
PsA,sB
C,ρ (q) · χGρ [sρA](q) +

ε

2

= χGtl(ρ) [s
tl(ρ)
A ](ρlt)− ε+

ε

2
< χGtl(ρ) [s

tl(ρ)
A ](ρlt)

This in contradiction with the de�nition of χGtl(ρ) [s
tl(ρ)
A ](ρlt). In fact, we have

χGtl(ρ) [s
tl(ρ)
A ](ρlt) ≤

∑
q∈Q PsA,sB

C,ρ (q) ·χGρ [sρA](q), and therefore the property holds
for n = 1.

Assume now that it holds for all k ≤ n for some n ≥ 1. Consider an
n + 1-covering A ⊆ Ω≤n+1

C and some ρ ∈ (Qns)
+. Let Xn := A ∩ Ω≤nC ⊆ A

and Xn+1 := A \ Xn. We let Yn := {π≤n−1 ∈ (Qns)
n | π ∈ Xn+1}. In fact,

the set An := Xn ∪ Yn ⊆ Ω≤nC is an n-covering. Indeed, for all ρ ∈ Qω, either
there is some i ≤ n − 1 such that ρ≤i ∈ A and therefore ρ≤i ∈ Xn. Or, since
A is a covering, we have ρ≤n ∈ Xn+1, and in that case ρ≤n−1 ∈ Yn. In any
case, we have ρ ∈ ∪π∈AnCyl(π). Furthermore, consider some π 6= π′ ∈ An. If
π, π′ ∈ Xn ⊆ A, we have Cyl(π)∩Cyl(π′) = ∅ since A is a covering. If π, π′ ∈ Yn,
by de�nition of Yn we have |π| = |π′| and therefore Cyl(π)∩Cyl(π′) = ∅. Assume
now that π ∈ Xn ⊆ A and π′ ∈ Yn. Then, |π| ≤ |π′|. Furthermore, there is
some q ∈ Q such that we have π′ · q ∈ A. Hence, it cannot be that π v π′

since A is a covering. Therefore, we also have Cyl(π) ∩ Cyl(π′) = ∅. We can
conclude that the set An is a covering.

In addition, for all π ∈ Yn and for all q ∈ Q, we have π · q ∈ A (since A is
a covering and there is no pre�x of π in A). Furthermore, Q is a 1-covering,
therefore we have: ∑

q∈Q
PsA,sB
C,ρ·π(q) = 1

and
χGtl(ρ·π) [s

tl(ρ·π)
A ](πlt) ≤

∑

q∈Q
PsA,sB
C,ρ·π(q) · χGρ·π [sρ·πA ](q)

Now, for all π ∈ A ∪ An, we let v(π) := χGtl(ρ·π) [s
tl(ρ·π)
A ](ρ · πlt) ∈ [0, 1]. The

above equation therefore rewrites, for all π ∈ Yn:

v(π) ≤
∑

q∈Q
PsA,sB
C,ρ·π(q) · v(π · q)
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By applying our induction hypothesis to An, we obtain:
∑

π∈A
PsA,sB
C,ρ (π) =

∑

π∈Xn

PsA,sB
C,ρ (π) +

∑

π∈Xn+1

PsA,sB
C,ρ (π)

=
∑

π∈Xn

PsA,sB
C,ρ (π) +

∑

π∈Yn

∑

q∈Q
PsA,sB
C,ρ (π · q)

=
∑

π∈Xn

PsA,sB
C,ρ (π) +

∑

π∈Yn

PsA,sB
C,ρ (π) ·


∑

q∈Q
PsA,sB
C,ρ·π(q)




=
∑

π∈Xn

PsA,sB
C,ρ (π) +

∑

π∈Yn

PsA,sB
C,ρ (π)

=
∑

π∈An

PsA,sB
C,ρ (π) = 1

Furthermore:
∑

π∈A
PsA,sB
C,ρ (π) · v(π) =

∑

π∈Xn

PsA,sB
C,ρ (π) · v(π) +

∑

π∈Xn+1

PsA,sB
C,ρ (π) · v(π)

=
∑

π∈Xn

PsA,sB
C,ρ (π) · v(π) +

∑

π∈Yn

∑

q∈Q
PsA,sB
C,ρ (π · q) · v(π · q)

=
∑

π∈Xn

PsA,sB
C,ρ (π) · v(π) +

∑

π∈Yn

PsA,sB
C,ρ (π) ·


∑

q∈Q
PsA,sB
C,ρ·π(q) · v(π · q)




≥
∑

π∈Xn

PsA,sB
C,ρ (π) · v(π) +

∑

π∈Yn

PsA,sB
C,ρ (π · q) · v(π)

=
∑

π∈An

PsA,sB
C,ρ (π) · v(π) =

∑

π∈An

PsA,sB
C,ρ (π) · χGtl(ρ·π) [s

tl(ρ·π)
A ](ρ · πlt)

≥ χGtl(ρ) [s
tl(ρ)
A ](ρlt)

Hence, the inductive hypothesis also holds at index n+ 1. The lemma follows.

We can now proceed to the proof of Lemma 3.2. The proof contains three
parts, that are indicated in bold.

Proof. Let ε > 0 and sA := sε,Rst. Consider any �nite path ρ ∈ Ω+
C and a

Player-B strategy sB ∈ SCB. If ρlt ∈ Qs, then straightforwardly, the Player-A
strategy sA is optimal from ρ. Assume now that ρ ∈ (Qns)

+. For all π ∈ Ω∗C ,
we let NbU(π) := |{π′ ∈ Ω∗C | π′ @ π, Uε(ρ · π′) = ρ · π′}|.

For all θ ∈ Ω+
C , we let v(θ) := χGtl(ρ·θ) [s

Pl(tl(ρ·θ))
ε,Uε(tl(ρ·θ))](θlt). This expression

is complicated but it expresses something simple: consider the last update
x := Uε(tl(ρ · θ)) of the path ρ · θ disregarding if there is an update at ρ · θ.
This value v(θ) is in fact equal to the value of the residual strategy sε,x after
the history Pl(ρ · θ).
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First part: Let us show by induction on k ≥ 1 the property P(k): for all
k-coverings {ε} 6= A ⊆ Ω≤kC , we have:

χGtl(ρ) [A](ρlt)− 2 · ε ≤
∑

π∈A
PsA,sB
C,ρ (π) · (v(π)− NbU(π) · ε) (3.1)

Let us show P(1). Let {ε} 6= A ⊆ Ω≤1
C be a 1-covering. If there is an update

at ρ (i.e. Uε(ρ) := ρ), then for all q ∈ Q, we have NbU(q) = 1 and the strategy
at ρ is ε-optimal. That is, we have χGtl(ρ) [sε,ρ](ρlt) ≥ χGtl(ρ) [A](ρlt) − ε, by
de�nition of the strategy sε,ρ. Hence, by Lemma 3.39, we have:

χGtl(ρ) [sε,ρ](ρlt) ≤
∑

q∈Q
Psε,ρ,s

tl(ρ)
B

C,ρlt (q) · χGρ [sρltε,ρ](q) =
∑

q∈Q
Psε,ρ,s

tl(ρ)
B

C,ρlt (q) · v(q)

Furthermore, since sA(ρ) = sε,ρ(ρlt) and sB(ρ) = s
tl(ρ)
B (ρlt), it follows that for all

q ∈ Q, we have Psε,ρ,s
tl(ρ)
B

C,ρlt (q) = PsA,sB
C,ρ (q). Equation 3.1 follows. Similarly, if there

is no update at ρ (i.e. if Uε(ρ) 6= ρ), we have, for all q ∈ Q, NbU(q) = 0 and, by

de�nition of the update function Uε, χGtl(ρ) [s
Pl(tl(ρ))
ε,Uε(tl(ρ))](ρlt) ≥ χGtl(ρ) [A](ρlt)−2·ε.

Again, by Lemma 3.39 and as for the previous case, we have:

χGtl(ρ) [s
Pl(tl(ρ))
ε,Uε(tl(ρ))](ρlt) ≤

∑

q∈Q
P
s
Pl(tl(ρ))
ε,Uε(tl(ρ))

,s
tl(ρ)
B

C,ρlt (q) · χGρ [sPl(ρ)
ε,Uε(tl(ρ))](q)

=
∑

q∈Q
PsA,sB
C,ρ (q) · v(q)

Indeed, since there was no update at ρ, we have Uε(tl(ρ)) = Uε(ρ) and Pl(ρ) =

Pl(tl(ρ)·ρlt) and therefore sA(ρ) = sε,Uε(tl(ρ))(Pl(tl(ρ)·ρlt)). Hence, Equation 3.1
follows.

In any case, the property P(1) holds.
Assume now that P(k) holds for some k ≥ 1. Consider a k + 1-covering

{ε} 6= A ⊆ Ω≤k+1
C . The covering we de�ne to apply our induction hypothesis

is similar to the one used in the proof of Lemma 3.39. Let Xk := A∩Q≤k ⊆ A
and Xk+1 := A \Xk. We let Yk := {π≤k−1 ∈ (Qns)

k | π ∈ Xk+1}.
In fact, the set Ak := Xk ∪ Yk ⊆ Ω≤kC is a k-covering. Indeed, for all

ρ ∈ Qω, either there is some i ≤ k − 1 such that ρ≤i ∈ A and therefore
ρ≤i ∈ Xk. Or, since A is a covering, we have ρ≤k ∈ Xk+1, and in that case
ρ≤k−1 ∈ Yk. In any case, we have ρ ∈ ∪π∈AkCyl(π). Furthermore, consider
some π 6= π′ ∈ Ak. If π, π′ ∈ Xk ⊆ A, we have Cyl(π) ∩ Cyl(π′) = ∅ since A is
a covering. If π, π′ ∈ Yk, by de�nition of Yk we have |π| = |π′| and therefore
Cyl(π) ∩ Cyl(π′) = ∅. Assume now that π ∈ Xk ⊆ A and π′ ∈ Yk. Then,
|π| ≤ |π′|. Furthermore, there is some q ∈ Q such that we have π′ · q ∈ A.
Hence, it cannot be that π v π′ since A is a covering. Therefore, we also have
Cyl(π) ∩ Cyl(π′) = ∅. We can conclude that the set Ak is a k-covering.
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We can therefore apply P(k) to it. We have:

χGtl(ρ) [A](ρlt)− 2 · ε ≤
∑

π∈Ak

PsA,sB
C,ρ (π) · (v(π)− NbU(π) · ε)

Let π ∈ Ak. Let Aπ := {θ ∈ Q∗ | π · θ ∈ A} be the set of �nite paths leading
from π to a path in A. Let us show that:

v(π) ≤
∑

θ∈Aπ

PsA,sB
C,ρ·π(θ) · (v(π · θ)− (NbU(π · θ)− NbU(π)) · ε) (3.2)

There are two possibilities:

• Either π ∈ Xk, in which case Aπ = {ε} and Equation 3.2 straightfor-
wardly holds.

• Or, π ∈ Yk, in which case Aπ = Q, since A is a covering and no pre�x
of π is in A. There are again two possibilities:

� Either there is an update at ρ ·π ∈ Ω+
C . That is, we have Uε(ρ ·π) =

ρ ·π. This implies that, for all q ∈ Q, NbU(ρ ·π ·q) = NbU(ρ ·π)+1.
In addition, since there is an update at ρ · π, it means that:

v(π) = χGtl(ρ·π) [s
Pl(tl(ρ·π))
ε,Uε(tl(ρ·π))](πlt) < χGtl(ρ·π) [A](πlt)− 2 · ε

Furthermore, we have χGtl(ρ·π) [A](πlt) − ε ≤ χGtl(ρ·π) [sε,ρ·π](πlt), by
de�nition of the strategy sε,ρ·π. In addition, by Lemma 3.39, we
have:

χGtl(ρ·π) [sε,ρ·π](πlt) ≤
∑

q∈Q
Psε,ρ·π ,s

tl(ρ·π)
B

C,πlt (q) · χGρ·π [sπltε,ρ·π](q)

with χGρ·π [sπltε,ρ·π](q) = v(π·q). Since we have sA(ρ·π) = sε,Uε(ρ·π)(Pl(ρ·
π)) = sε,ρ·π(πlt), it follows that, for all q ∈ Q, we have Psε,ρ·π ,s

tl(ρ·π)
B

C,πlt (q) =

PsA,sB
C,ρ·π(q). Overall, we have:

v(π) < χGtl(ρ·π) [A](πlt)− 2 · ε ≤ χGtl(ρ·π) [sε,ρ·π](πlt)− ε
≤
∑

q∈Q
PsA,sB
C,ρ·π(q) · χGρ·π [sπltε,ρ·π](q)− ε =

∑

q∈Q
PsA,sB
C,ρ·π(q) · (v(π · q)− ε)

We obtain Equation 3.2 since, for all q ∈ Q, we have NbU(π · q) =

NbU(π) + 1.

� Or, there is no update at ρ · π, that is Uε(ρ · π) 6= ρ · π. In that
case, for all q ∈ Q, we have NbU(π · q) = NbU(π). By Lemma 3.39,
we have:

v(π) = χGtl(ρ·π) [s
Pl(tl(ρ·π))
ε,Uε(tl(ρ·π))](πlt)

≤
∑

q∈Q
P
s
Pl(tl(ρ·π))
ε,Uε(tl(ρ·π))

,s
tl(ρ·π)
B

C,πlt (q) · χGρ·π [s
Pl(tl(ρ·π))·πlt
ε,Uε(tl(ρ·π)) ](q)
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Furthermore, we have Uε(tl(ρ ·π)) = Uε(ρ ·π) and therefore Pl(tl(ρ ·
π))·πlt = Pl(ρ·π). Hence, for all q ∈ Q, we have χGρ·π [s

Pl(tl(ρ·π))·πlt
ε,Uε(tl(ρ·π)) ](q) =

χGρ·π [s
Pl(ρ·π)
ε,Uε(ρ·π)](q) = v(π · q). In addition, we have:

sA(ρ · π) = sε,Uε(ρ·π)(Pl(ρ · π)) = s
Pl(tl(ρ·π))
ε,Uε(tl(ρ·π))(πlt)

Hence, for all q ∈ Q, we have Ps
Pl(tl(ρ·π))
ε,Uε(tl(ρ·π))

,s
tl(ρ·π)
B

C,πlt (q) = PsA,sB
C,ρ·π(q). That

is:
v(π) ≤

∑

q∈Q
PsA,sB
C,ρ·π(q) · v(π · q)

We obtain Equation 3.2 since, for all q ∈ Q, NbU(π · q) = NbU(π).

We have established Equation 3.2 for all π ∈ Ak. We can deduce that, for all
π ∈ Ak:

v(π)− NbU(π) · ε ≤
∑

θ∈Aπ

PsA,sB
C,ρ·π(θ) · (v(π · θ)− NbU(π · θ) · ε)

Hence:

∑

π∈Ak

PsA,sB
C,ρ (π) · (v(π)− NbU(π) · ε) ≤

∑

π∈Ak

∑

θ∈Aπ

PsA,sB
C,ρ (π · θ) · (v(π · θ)− NbU(π · θ) · ε)

=
∑

π∈A
PsA,sB
C,ρ (π) · (v(π)− NbU(π) · ε)

Overall, with our induction hypothesis, we obtain:

χGtl(ρ) [A](ρlt)− 2 · ε ≤
∑

π∈A
PsA,sB
C,ρ (π) · (v(π)− NbU(π) · ε)

That is, we obtain Equation 3.1, and the property P(k+1) follows. Therefore,
the property P(n) holds for all n ∈ N.

Second part: For all π ∈ Ω+
C , we let UAft(π) := {θ ∈ Q+ | π · θ ∈

Ω+
C , Uε(ρ · π · θ) = ρ · π · θ} be the �nite set of paths for which there is an

update after π. Note that, if πlt ∈ Qs, we have UAft(π) = ∅. Let us show the
equation below:

v(π) ≤ EsA,sB
C,ρ·π[fρ·π · 1(Q+\UAft(π))ω ] + PsA,sB

C,ρ·π[UAft(π)] (3.3)

Let π ∈ Ω+
C . If πlt ∈ Qs, we have v(π) = val(πlt) = EsA,sB

C,ρ·π[fρ·π · 1(Q+\UAft(π))ω ]

with PsA,sB
C,ρ·π[UAft(π)] = 0. Hence, the equation holds. Assume now that πlt /∈

Qs, i.e. π ∈ (Qns)
+. Let sπ := s

tl(Pl(ρ·π))
ε,Uε(ρ·π) . For all θ ∈ Ω∗C \ UAft(π) · Q∗,

we have Uε(ρ · π · θ) = Uε(ρ · π) and Pl(ρ · π · θ) = Pl(ρ · π) · θ. Hence,
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sπ(πlt · θ) = sε,Uε(ρ·π)(Pl(ρ · π · θ)) = sA(ρ · π · θ) = s
tl(ρ·π)
A (πlt · θ). Therefore, we

have:

Es
tl(ρ·π)
A ,s

tl(ρ·π)
B

C,πlt [fρ·π · 1(Q∗\UAft(π))ω ] = Esπ ,s
tl(ρ·π)
B

C,πlt [fρ·π · 1(Q∗\UAft(π))ω ]

and

Ps
tl(ρ·π)
A ,s

tl(ρ·π)
B

C,πlt [UAft(π)] = Psπ ,s
tl(ρ·π)
B

C,πlt [UAft(π)]

Hence:

χGtl(ρ·π) [sπ](πlt) ≤ Esπ ,s
tl(ρ·π)
B

C,πlt [fρ·π]

= Esπ ,s
tl(ρ·π)
B

C,πlt [fρ·π · 1(Q∗\UAft(π))ω ] + Esπ ,s
tl(ρ·π)
B

C,πlt [fρ·π · 1UAft(π)]

≤ Esπ ,s
tl(ρ·π)
B

C,πlt [fρ·π · 1(Q∗\UAft(π))ω ] + Psπ ,s
tl(ρ·π)
B

C,πlt [UAft(π)]

= Es
tl(ρ·π)
A ,s

tl(ρ·π)
B

C,πlt [fρ·π · 1(Q∗\UAft(π))ω ] + Ps
tl(ρ·π)
A ,s

tl(ρ·π)
B

C,πlt [UAft(π)]

= EsA,sB
C,ρ·π[fρ·π · 1(Q+\UAft(π))ω ] + PsA,sB

C,ρ·π[UAft(π)]

Now, as before, there are two cases:

• Either, there is an update at ρ · π. That is, we have Uε(ρ · π) = ρ ·
π. This means that v(π) = χGtl(ρ·π) [s

Pl(tl(ρ·π))
ε,Uε(tl(ρ·π))](πlt) < χGtl(ρ·π) [A](πlt) −

2 · ε. Furthermore, by de�nition of the strategy sπ = sε,ρ·π, we have
χGtl(ρ·π) [A](πlt)− ε ≤ χGtl(ρ·π) [sπ](πlt). Overall, we obtain:

v(π) ≤ χGtl(ρ·π) [sπ](πlt) ≤ EsA,sB
C,ρ·π[fρ·π · 1(Q+\UAft(π))ω ] + PsA,sB

C,ρ·π[UAft(π)]

• Or, there is no update at π, Uε(tl(ρ · π)) = Uε(ρ · π) and therefore
Pl(tl(ρ ·π)) ·πlt = Pl(ρ ·π). Since we also have tl(Pl(ρ ·π)) ·πlt = Pl(ρ ·π),

it follows that Pl(tl(ρ · π)) = tl(Pl(ρ · π)). Therefore, sπ = s
tl(Pl(ρ·π))
ε,Uε(ρ·π) =

s
Pl(tl(ρ·π))
ε,Uε(tl(ρ·π)). Hence, v(π) = χGtl(ρ·π) [s

Pl(tl(ρ·π))
ε,Uε(tl(ρ·π))](πlt) = χGtl(ρ·π) [sπ](πlt).

Hence, we have:

v(π) = χGtl(ρ·π) [sπ](πlt) ≤ EsA,sB
C,ρ·π[fρ·π · 1(Q+\UAft(π))ω ] + PsA,sB

C,ρ·π[UAft(π)]

This proves that Equation 3.3 holds for all π ∈ Q+.
Third part: Since, for all π ∈ Ω+

C , v(π) ∈ [0, 1] it follows directly from
Equation 3.1 that:

lim
n→∞

PsA,sB
C,ρ [NbU ≥ n] = 0 (3.4)

Let δ > 0. We let NoMrUδ ⊆ Ω+
C be the set of �nite paths such that with

probability at most δ that is another update afterwards. That is: NoMrUδ :=

{π ∈ Ω+
C | P

sA,sB
C,ρ·π[UAft(π)] ≤ δ}. In fact, PsA,sB

C,ρ [(Q∗\NoMrUδ)
ω] = 0. Indeed, for

all n ∈ N, we have PsA,sB
C,ρ [(Q∗\NoMrUδ)

ω∩(NbU ≥ n)] = PsA,sB
C,ρ [(Q∗\NoMrUδ)

ω]
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since, given (Q∗ \NoMrUδ)
ω, there is in�nitely often a probability greater than

δ > 0 that there is one more update. We can then deduce from Equation 3.4
that PsA,sB

C,ρ [(Q∗ \ NoMrUδ)
ω] = 0.

Consider now some nδ ∈ N such that PsA,sB
C,ρ [NoMrUδ∩Ω≤nδC ] ≥ PsA,sB

C,ρ [NoMrUδ]−
δ = 1− δ. Let A ⊆ NoMrUδ ∩Ω≤nδC denote the set of �nite paths of NoMrUδ ∩
Ω≤nδC with no pre�x in NoMrUδ. By de�nition, we have PsA,sB

C,ρ [NoMrUδ∩Ω≤nδC ] =

PsA,sB
C,ρ [A] ≥ 1 − δ. We also let X ⊆ Ωnδ

C be the set of �nite paths in Ωnδ
C with

no pre�x in A: X := Ωnδ
C \ (∪π∈Aπ ·Q∗). By construction, the set X ∪ A is a

nδ-covering. We can therefore apply Equation 3.1 to it:

χGtl(ρ) [A](ρlt)− 2 · ε ≤
∑

π∈X∪A
PsA,sB
C,ρ (π) · (v(π)− NbU(π) · ε)

≤
∑

π∈A
PsA,sB
C,ρ (π) · v(π) + (1− PsA,sB

C,ρ [A])

≤
∑

π∈A
PsA,sB
C,ρ (π) · v(π) + δ

Furthermore, for all π ∈ A, we have, by Equation 3.3:

v(π) ≤ EsA,sB
C,ρ·π[fρ·π · 1(Q+\UAft(π))ω ] + δ ≤ EsA,sB

C,ρ·π[fρ·π] + δ

Hence:

χGtl(ρ) [A](ρlt)− 2 · ε ≤
∑

π∈A
PsA,sB
C,ρ (π) · v(π) + δ

≤
∑

π∈A
PsA,sB
C,ρ (π) · (EsA,sB

C,ρ·π[fρ·π] + δ) + δ

≤ EsA,sB
C,ρ [fρ] + 2 · δ

As this holds for all δ > 0, it follows that χGtl(ρ) [A](ρlt)− 2 · ε ≤ EsA,sB
C,ρ [fρ]. As

this holds for all Player-B strategies sB ∈ SCB and �nite paths ρ ∈ (Qns)
+, it

follows that the Player-A strategy sA is subgame 2ε-optimal.

3.6.2 . Proof of Lemma 3.5

Proof. We prove the result for upward well-founded functions, it is symmetrical
for downward well-founded ones. Assume that f is upward well-founded. Let
x ∈ (0, 1]. For all n ∈ N, we let εn := 1

2n+1 > 0. If, for all n ∈ N, we have
[x− εn, x) ∩ E 6= ∅, it follows that can build an in�nite ascending chain in E,
which is not possible by assumption. Hence, there is some n ∈ N such that
[x− εn, x) ∩ E = ∅.

Let us now prove the other direction. Assume towards a contradiction that
there is an in�nite ascending chain (xn)n∈N in E. Let x := supn∈N xn ∈ [0, 1].
Since the chain is ascending, we have x > xn for all n ∈ N. By assumption,
there is some ε > 0 such that [x−ε, x)∩E = ∅. That is, for all n ∈ N, we have
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q0,




1 0 q0

0 1 1
q0 1/2 1/2




Figure 3.13: A reachability game.

xn ≤ x − ε < x. This is in contradiction with the fact that x = supn∈N xn ∈
[0, 1].

3.6.3 . Optimal strategy that is locally optimal but not subgame opti-
mal

Consider the game of Figure 3.13: it is a reachability game, that is if it
loops inde�nitely on q0, the value is 0. The value of the state q0 is 1/2, it
is achieved by a Player A positional strategy playing the two top rows with
probability 1/2 and by a Player B positional strategy playing the two leftmost
columns with probability 1/2.

However, denoting a1, a2 and a3 the three actions available to Player A

at state q0 from top to bottom, consider the following Player-A strategy sA:
sA(q0)(a1) = sA(q0)(a2) := 1/2 and sA(qn+1

0 )(a3) := 1 for all n ≥ 1. Then, this
strategy is locally optimal and it is optimal. Indeed, if the game loops at least
once on q0, then there was the same probability to loop on q0 and to reach
outcome 1. Hence, the mean of the values is at least 1/2 which is the value
of the state q0. However, it is not subgame optimal since after the game loops
once on q0, then Player B can ensure value 0 by playing inde�nitely the left
column with probability 1.

3.6.4 . Proof of Proposition 3.9 and Proposition 3.10

In fact, we �rst prove Proposition 3.10 and then use it to prove Proposi-
tion 3.9.

We prove Proposition 3.10.

Proof. Recall De�nition 3.3, the valuation χG [sA]ρ : Q→ [0, 1] is such that, for
all q ∈ Q, we have χG [sA]ρ(q) = χGρ [s

ρ
A](q). Let ε > 0. Consider a Player-B
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strategy sB ∈ SCB such that the GF-strategy sB(ρ) ∈ Σρlt
B is such that:

out[〈F(ρlt), χG [sA]ρ〉](sA(ρ), sB(ρ)) ≤ val[〈F(ρlt), χG [sA]ρ〉](sA(ρ)) +
ε

2

and for all q ∈ Q, we have

EsA,sB
C,ρ·q [(fC)

ρ·q] ≤ χGρ [sρA](q) +
ε

2
= χG [sA](ρ · q) +

ε

2

We have:

EsA,sB
C,ρ [(fC)

ρ] =
∑

q∈Q
PsA,sB
C,ρ (q) · EsA,sB

C,ρ·q [(fC)
ρ·q]

=
∑

q∈Q
out[〈F(ρlt), q〉](sA(ρ), sB(ρ)) · EsA,sB

C,ρ·q [(fC)
ρ·q]

≤
∑

q∈Q
out[〈F(ρlt), q〉](sA(ρ), sB(ρ)) · (χG [sA](ρ · q) +

ε

2
)

= out[〈F(ρlt), χG [sA]ρ〉](sA(ρ), sB(ρ)) +
ε

2
≤ val[〈F(ρlt), χG [sA]ρ〉](sA(ρ)) + ε

Since this holds for all ε > 0, it follows that χGtl(ρ) [sA](ρlt) ≤ EsA,sB
C,ρ [(fC)

ρ] ≤
val[〈F(ρlt), χG [sA]ρ〉](sA(ρ)). Since χG [sA]ρ ≤ χG [A]ρ by de�nition of the value,
it follows that val[〈F(ρlt), χG [sA]ρ〉](sA(ρ)) ≤ val[〈F(ρlt), χG [A]ρ〉](sA(ρ)).

If sA is subgame optimal, for all ρ ∈ (Qns)
+, we have χG [A](ρ) = χGtl(ρ) [sA](ρlt) ≤

val[〈F(ρlt), χG [A]ρ〉](sA(ρ)), and therefore the Player-A strategy is locally opti-
mal.

We can now prove Proposition 3.9.

Proof. By Proposition 3.10, for all Player-A strategies sA ∈ SCA, we have
χGtl(ρ) [sA](ρlt) ≤ val[〈F(ρlt), χG [A]ρ〉](sA(ρ)) ≤ val[〈F(ρlt), χG [A]ρ〉](A). There-
fore, χG [A](ρ) = χGtl(ρ) [A](ρlt) ≤ val[〈F(ρlt), χG [A]ρ〉](A).

Now, let ε > 0. Consider a Player-A strategy sA ∈ SCA such that the
GF-strategy sA(ρ) ∈ Σρlt

A is such that:

val[〈F(ρlt), χG [A]ρ〉](sA(ρ)) ≥ val[〈F(ρlt), χG [A]ρ〉](A)− ε

2

and for all q ∈ Q, we have

χGρ [sA](q) ≥ χGρ [A](q)− ε

2
= χG [A](ρ · q)− ε

2
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For all Player-B strategies sB ∈ SCB, we have:

EsA,sB
C,ρ [(fC)

ρ] =
∑

q∈Q
PsA,sB
C,ρ (q) · EsA,sB

C,ρ·q [(fC)
ρ·q]

=
∑

q∈Q
out[〈F(ρlt), q〉](sA(ρ), sB(ρ)) · EsA,sB

C,ρ·q [(fC)
ρ·q]

≥
∑

q∈Q
out[〈F(ρlt), q〉](sA(ρ), sB(ρ)) · (χG [A](ρ · q)− ε

2
)

= out[〈F(ρlt), χG [A]ρ〉](sA(ρ), sB(ρ)) +
ε

2
≥ val[〈F(ρlt), χG [A]ρ〉](sA)− ε
≥ val[〈F(ρlt), χG [A]ρ〉](A)− ε

As this holds for all Player-B strategies sB ∈ SCB, it follows that χGtl(ρ) [sA](ρlt) ≥
val[〈F(ρlt), χG [A]ρ〉](sA(ρ))−ε. As this holds for ε > 0, it follows that χG [A](ρ) =

χGtl(ρ) [sA](ρlt) ≥ val[〈F(ρlt), χG [A]ρ〉](A).

3.6.5 . Proof of Lemma 3.11

Proof. Coonsider a Player-B strategy sB ∈ SCB and some π ∈ Ω+
C . Let ρ ∈ Q∗.

If ρ ∈ Q∗ · Qs · Q∗, then the inequality straightforwardly holds. Assume now
that ρ ∈ (Qns)

∗. We have, by Lemma 1.10 and De�nition 1.28:

(vs)
π(ρ) = v(π · ρ) ≤ val[〈F((π · ρ)lt), v

π·ρ〉](sA(π · ρ))

≤ out[〈F((π · ρ)lt), v
π·ρ〉](sA(π · ρ), sB(π · ρ))

=
∑

q∈Q
out[〈F((π · ρ)lt), q〉](sA(π · ρ), sB(π · ρ)) · vπ·ρ(q)

=
∑

q∈Q
PsA,sB
C,π·ρ(q) · v(π · ρ · q)

=
∑

q∈Q
PsA,sB
C,π·ρ(q) · (vs)π(ρ · q)

That is, the valuation (vs)
π is non-decreasing from π.

3.6.6 . Proof of Proposition 3.26

We would like to mention that the transformation of priority games into
parity games that we used in this proof was already introduced in [63, Corollary
3.8].

Proof. Let E := fPar(K, g)[Kω]. The function fPar(K, g) is straightforwardly
upward well-founded since E is �nite. Furthermore, it is PI since it only
depends on the set of colors seen in�nitely often. Now, consider some α ∈ [0, 1].
We have:

fPar(K, g)−1[[0, α]] =
⋃

i∈K, g(i)≤α

{max InfOtf(ρ) = i} ∈ Borel(K)
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Hence, the function fPar(K, g) is measurable.

Let us now de�ne a function hα : K→ N such that, for all i ∈ K, we have:

hα(i) :=

{
2 · i if g(i) ≥ α
2 · i+ 1 otherwise

Then, we have, for all ρ ∈ Kω:

fPar(K, g)(ρ) ≥ α⇔ hα(InfOtf(ρ)) ∈ Parityhα[K]

Indeed, let x := max InfOtf(ρ). First, note that the function hα is monotone
(i.e. for all i, j ∈ K, we have i < j if and only if hα(i) < hα(j)). Therefore,
hα(x) = max InfOtf(ρ). Hence, we have fPar(K, g)(ρ) ≥ α i� g(x) ≥ α i� hα(x)

is even i� hα(InfOtf(ρ)) ∈ Parityhα[K].

Hence, in �nite turn-based games on the set of colors K, playing optimally
for the objective Parityhα[K] where all colors i ∈ K are replaced by the color
hα(i) is also playing optimally for the objective {f ≥ α}. Therefore both
players have positional optimal strategies (this also holds for the objective
{f ≤ α}). Hence, the function fPar(K, g) : Kω → [0, 1] is Stdf (O)-PSAW (for
both players) since in �nite turn-based games with parity objectives, there are
always positional optimal strategies [27, 28].

3.6.7 . Proof of Theorem 3.28

Proof. Let us denote by spb ∈ SCA an optimal positively bounded Player-A
strategy generated by Λ. Let us de�ne a Player-A subgame optimal strategy
sRst ∈ SCA. To do so, we de�ne a map on �nite paths Rst : Q+ → Q+ such that
for all q ∈ Q, we let Rst(q) := q and for all ρ · q ∈ Q+, we let:

Rst(ρ · q) :=

{
Rst(ρ) · q if χG [s

Rst(ρ)
pb ](q) = χG(q)

q otherwise

Note that, this the game is PI, both functions χG : Q → [0, 1] and χGρ : Q →
[0, 1] are the same. Informally, the map Rst resets whenever the strategy spb
is not optimal anymore. We can now de�ne the strategy sRst in the following
way, for all ρ ∈ Q+:

sRst(ρ) := spb(Rst(ρ)) ∈ ΣA(ρlt)

Since the strategy spb is positively bounded and generated by Λ, it follows that
the strategy sRst also is. Let us show that it is subgame optimal by applying
Corollary 3.14.

Let ρ ∈ Q+. We have ρlt = Rst(ρ)lt. Furthermore, the strategy s
tl(Rst(ρ))
pb is

optimal from Rst(ρ)lt. Hence, by Lemma 3.10 � and since the game is PI �
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we have:

χG(ρlt) = χG [s
tl(Rst(ρ))
pb ](ρlt)

≤ val[〈F(ρlt), χG〉](spb(Rst(ρ)))

= val[〈F(ρlt), χG〉](sRst(ρ))

In fact, the strategy sRst is locally optimal.
Let us now show that it ensures the second property of Corollary 3.14. Let

ρ ∈ (Qns)
+ and consider a Player-B deterministic strategy sB ∈ SCB. For all

π ∈ Q∗, we denote by sπA the residual strategy s
tl(ρ·π)
Rst and by sπB the residual

strategy s
tl(ρ·π)
B . We also denote PsRst,sB

C,ρ·π by Pπ � when π = ε, we omit it.
Consider some value u ∈ V G \ {0}. We introduce two notations:

• we denote by MayExu ⊆ Q+ the set of �nite paths ending in Qu with a
positive probability to exit this value slice: MayExu := {π ∈ Q∗ · Qu |
Pπ[Q \Qu] > 0}.

• we also denote by Deviate ⊆ Q+ the set of �nite paths where the strategy
spb is not optimal: Deviate := {π ∈ Q+ | Rst(ρ · π) = πlt}.

Let us show the three following facts:

(a). P[Q∗ · (Qu)ω ∩ (Q∗ ·MayExu)ω] = 0;

(b). P[Q∗ ·(Qu)ω∩Q∗ ·(Q\MayExu)ω] ≤ Ps,sB [Q∗ ·(Qu)ω∩Q∗ ·(Q\Deviate)ω];

(c). P[Q∗ · (Qu \ Deviate)ω] = P[{f ≥ u} ∩Q∗ · (Qu \ Deviate)ω].

If we assume that all these facts hold, then we obtain:

P[Q∗ · (Qu)ω] = P[Q∗ · (Qu)ω ∩Q∗ · (Q \MayExu)ω] by fact (a)

≤ P[Q∗ · (Qu)ω ∩Q∗ · (Q \ Deviate)ω] by fact (b)

= P[Q∗ · (Qu \ Deviate)ω]

= P[{f ≥ u} ∩Q∗ · (Qu \ Deviate)ω] by fact (c)

≤ P[{f ≥ u} ∩Q∗ · (Qu)ω]

≤ P[Q∗ · (Qu)ω]

In fact, all these inequalities are equalities. We can then apply Corollary 3.14
to conclude. Let us now show all these facts one by one.

(a). Consider some π ∈ MayExu. We have Pπ[Q \ Qu] > 0. Let b := sB(ρ ·
π) ∈ ActπltB (recall that sB is a deterministic strategy) and let AQ\Qu :=

{a ∈ ActπltA | %πlt(a, b)[Q \ Qu] > 0}. Then, sπA(πlt)[AQ\Qu ] > 0 hence
sπA(πlt)[AQ\Qu ] ≥ c for some �xed c > 0 (since sRst is positively bounded).
We let:

x := min
q∈Q

min
(a,b)∈ActqA×Act

q
B

min
q′∈Sp(%q(a,b))

%q(a, b)(q
′) > 0
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We have Pπ[Q\Qu] = out[〈F(πlt),1Q\Qu〉](sπA(πlt), b) ≥ c ·x. In fact, this
holds for all π ∈ MayExu. Hence, for all π ∈ Q∗, we have Pπ[(Qu)ω |
(Q∗ ·MayExu)ω] ≤ limn→∞(1− c ·x)n = 0. It follows that P[Q∗ · (Qu)ω ∩
(Q∗ ·MayExu)ω] = 0.

(b). Let us show that P[Q∗ · (Qu)ω∩Q∗ · (Q\MayExu)ω∩ (Q∗ ·Deviate)ω] = 0.
Let θ ∈ Q∗ · (Qu)ω ∩ Q∗ · (Q \ MayExu)ω ∩ (Qns)

ω. Let n ∈ N be an
index such that θ≥n ∈ (Qu \ MayExu)ω. Consider, assuming it exists,
the least index i ≥ n+ 1 such that θi ∈ Deviate. By de�nition, we have

χG [s
Rst(ρ·θ≤i−1)
pb ](θi) < χG(θi) and χG [s

Rst(ρ·θ≤i−2)
pb ](θi−1) = χG(θi−1). We

let ε := χG(θi) − χG [s
Rst(ρ·θ≤i−1)
pb ](θi) > 0. Furthermore, by Lemma 3.10

� and since the game is PI � we have, for b := sB(ρlt · θ≤i−1) (recall
that sB is deterministic):

u = χG(θi−1) = χG [s
Rst(ρ·θ≤i−2)
pb ](θi−1)

≤ val[〈F(θi−1), χG [spb]Rst(ρ·θ≤i−2)〉](spb(Rst(ρ · θ≤i−1)))

= val[〈F(θi−1), χG [spb]Rst(ρ·θ≤i−2)〉](s
θ≤i−1

A (θi−1))

≤ out[〈F(θi−1), χG [spb]Rst(ρ·θ≤i−2)〉](s
θ≤i−1

A (θi−1), b)

=
∑

q∈Q
Pθ≤i−1(q) · χG [spb]Rst(ρ·θ≤i−2)(q)

≤
∑

q∈Q
Pθ≤i−1(q) · χG(q)− ε · Pρ·θ≤i−1(θi)

= out[〈F(θi−1), χG〉](sRst(ρ · θ≤i−1), b)− ε · Pθ≤i−1(θi)

Hence, if Pθ≤i−1 [θi] > 0, we have out[〈F(θi−1), χG〉](s
θ≤i−1

A (θi−1), b) > u.
In that case, at θ≤i−1, there is a non-zero probability to reach a state
of value di�erent from u, i.e. Pθ≤i−1 [Q \ Qu] > 0. That is, θi−1 ∈
MayExu. That is a path � with a positive probability to occur � that
does not visit MayExu does not visit Deviate as well. (Note that, if
at some point a stopping state is seen, then Deviate and MayExu will
not occur anymore). Hence, almost-surely, a path visiting MayExu only
�nitely often visits Deviate only �nitely often. It follows that P[Q∗ ·
(Qu)ω ∩Q∗ · (Q \MayExu)ω ∩ (Q∗ · Deviate)ω] = 0. That is:

P[Q∗ · (Qu)ω ∩Q∗ · (Q \MayExu)ω]

= P[Q∗ · (Qu)ω ∩Q∗ · (Q \MayExu)ω ∩Q∗ · (Q \ Deviate)ω]

≤ P[Q∗ · (Qu)ω ∩Q∗ · (Q \ Deviate)ω]

(c). Consider any π ∈ (Qns)
∗ such that πlt ∈ Qu and π /∈ Deviate. We let

Qch ⊆ (Qns)
+ be such that Qch := {θ ∈ (Qns)

+, θlt /∈ Qu, or π · θ ∈
Deviate}. Let us now de�ne a new game Gstopπ = 〈Cstopπ , f〉 that behaves
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exactly like G (from ρ·π) as long as we stay outside ofQch, while any path
π ∈ Qch is replaced by a stopping state of value χG [A](π). Clearly, for all
π ∈ Qch, we have χG [A](ρ · π · θ) = χGstopπ

[A](θ). It follows that all �nite
paths in Q+ \Qch have the same value u than in the game G. Consider
now the strategy sRst in that game (note that it is uniquely de�ned on
Qch). Clearly, it is optimal from all states in Qch. Furthermore, by
de�nition of Deviate, the strategy sRst is also optimal after every �nite
path in Q+ \ Qch. That is, it is subgame optimal in the game Gstopπ .
Hence, by Theorem 3.12, in the arena Cstopπ , it satis�es that against
all Player-B, the probability that fC is at least u given that the game
stays in Q+ \ Qch is 1. It follows that: Pπ[(Qu \ Deviate)ω] = Pπ[{f ≥
u} ∩ (Qu \Deviate)ω]. Since this holds for all such π ∈ (Qns)

∗ such that
πlt ∈ Qu and π /∈ Deviate, it follows that: P[Q∗ · (Qu \ Deviate)ω] =

P[Q∗ · {f ≥ u} ∩ (Qu \ Deviate)ω].

Note that we can indeed consider only Player-B deterministic strategies since,
once the Player-A strategy is �xed, we obtain an MDP where Player B plays
alone. Hence, ε-optimal Player-B strategies can be found among deterministic
strategies, by Corollary 2.17.

3.6.8 . Proof of Lemma 3.29

We �rst show the lemma below.

Lemma 3.40. Consider a standard concurrent game G, a collection Λ =

(Λq)q∈Q ∈
∏
q∈Q Σq

A of sets of Player-A GF-strategies and η : K → K′ for

some set K′. For all pairs of strategies sA ∈ S
C(Λ,η)
A and sB ∈ S

C(Λ,η)
B , denoting

T C(Λ,η) := T sA,sB
C(Λ,η), we have:

EC(Λ,η)[((fη)C(Λ,η))
q] = EC(Λ,η)[((fC)QA,QB

)q]

Proof. The equality straightforwardly holds if q ∈ Qs. Assume now that q ∈
Qns. Since the stochastic tree T C(Λ,η) is (QA, QB)-alternating, we have:

EC(Λ,η)[((fη)C(Λ,η))
q] = EC(Λ,η)[((fη)C(Λ,η))

q · 1(QB·QA)ω ]

and

EC(Λ,η)[((fC)QA,QB
)q] = EC(Λ,η)[((fC)QA,QB

)q · 1(QB·QA)ω ]

Furthermore, consider some ρ ∈ (QB ·QA)ω. If ρ ever reaches a stopping state,
denoting qs ∈ Qs ∈ QA (since there is no stopping states in QB) the �rst one
reached, we have:

((fη)C(Λ,η))
q(ρ) = (fη)C(Λ,η)(q ·ρ) = val(qs) = (fC)QA,QB

(q ·ρ) = ((fC)QA,QB
)q(ρ)
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Assume now that ρ never reaches any stopping state. We have:

((fη)C(Λ,η))
q(ρ) = (fη)C(Λ,η)(q · ρ) = fη ◦ (colη)(q · ρ)

= fη(col(q) · η ◦ col(ρ0) · col(ρ1) · η ◦ col(ρ2) · · · )
= f(col(q) · col(ρ1) · col(ρ3) · · · )
= f ◦ colω(q · ρ1 · ρ3 · · · ) = fC ◦ φQA,QB

(q · ρ)

= (fC)
q
QA,QB

(ρ)

That is, the functions ((fη)C(Λ,η))
q and ((fC)QA,QB

)q coincide on (QB · QA)ω.
Hence, we have

EC(Λ,η)[((fη)C(Λ,η))
q] = EC(Λ,η)[((fC)QA,QB

)q]

We can now proceed to the proof of Lemma 3.29.

Proof. The equality straightforwardly holds if q ∈ Qs. Assume now that q ∈
Qns. We want to apply Lemma 1.7. We let T C := T PrΛA (sA),PrΛB (sA,sB)

C,q and

T C(Λ,η) := T sA,sB
C(Λ,η),q.

For all π ∈ (QA)∗, we have:

PC(Λ,η)
q [∪π′∈T(π)Cyl(π′)] =

∑

π′∈T(π)∩(QB·QA)∗

PC(Λ,η)
q (π′)

Let us show by induction on n ∈ N the following property: for all π ∈ (QA)≤n,
we have:

PCq (π) =
∑

π′∈T(π)∩(QB·QA)∗

PC(Λ,η)
q (π′) = PC(Λ,η)

q (q−1 · θA(sA)(q · π))

where, for all q ·ρ ∈ (QA∪QB)∗, we let q−1 · (q ·ρ) := ρ. This straightforwardly
holds for n = 0. Assume now that this holds for some n ∈ N. Let π ∈ (QA)n+1.
We have:

T(π) ∩ (QB ·QA)∗ := {ρ · q′ · πlt | ρ ∈ T(tl(π)) ∩ (QB ·QA)∗, q′ ∈ QB}
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Hence, letting p :=
∑

π′∈T(π)∩(QB·QA)∗ P
C(Λ,η)
q (π′), we have:

p =
∑

ρ∈T(tl(π))∩(QB·QA)∗

∑

q′∈QB

PC(Λ,η)
q (ρ · q′ · πlt)

=
∑

ρ∈T(tl(π))∩(QB·QA)∗

PC(Λ,η)
q (ρ) ·

∑

q′∈QB

PC(Λ,η)
q·ρ (q′ · πlt)

= PC(Λ,η)
q (q−1 · θA(sA)(q · tl(π))) ·

∑

q′∈QB

PC(Λ,η)

θA(sA)(q·tl(π))
(q′ · πlt)

= PC(Λ,η)
q (q−1 · θA(sA)(q · tl(π))) · PC(Λ,η)

θA(q·tl(π))
((tl(π)lt, sA(θA(sA)(q · tl(π)))) · πlt)

(= PC(Λ,η)
q (q−1 · θA(sA)(q · π)) )

= PC(Λ,η)
q (q−1 · θA(sA)(q · tl(π))) · out[〈F(tl(π)lt), πlt〉](sA(θA(sA)(q · tl(π))), sB(θB(sA)(q · tl(π))))

= PC(Λ,η)
q (q−1 · θA(sA)(q · tl(π))) · out[〈F(tl(π)lt), πlt〉](PrΛ

A(sA)(q · tl(π)),PrΛ
A(sA, sB)(q · tl(π)))

= PCq (tl(π)) · PCq·tl(π)(πlt) = PCq (π)

Thus the property holds at n+ 1. Therefore, it holds for all n ∈ N. Hence, we
can apply Lemma 1.7 to obtain that EC [(fC)q] = EC(Λ,η)[((fC)QA,QB

)q]. With
Lemma 3.40, it follows that EC [(fC)q] = EC(Λ,η)[((fη)C(Λ,η))

q].

3.6.9 . Proof of Lemma 3.30

Proof. First, for all ρ ∈ (QA ·QB)∗ ·QA, we have sA(tA)(ρ) = tA(ρ0 ·ρ2 · · · ρlt) ∈
Λρlt . Hence, the strategy sA(tA) is indeed deterministic. Furthermore, for

all ρ ∈ Q+, we have, for all Player-A deterministic strategies xA ∈ S
C(Λ,kn)
A �

straightforwardly from the de�nition � φQA,QB
(θA(xA)(ρ)) = φQA,QB

(θB(xA)(ρ)) =

ρ. Hence, for all ρ ∈ Q+,we have:

PrΛ
A(sA(tA))(ρ) = sA(tA)(θA(sA(tA))(ρ)) = tA ◦ φQA,QB

(θA(sA(tA))(ρ)) = tA(ρ)

Similarly, for any deterministic Player-A strategy xA ∈ S
C(Λ,kn)
A , we have:

PrΛ
B(xA, sB(tB))(ρ) = sB(tB)(θB(xA)(ρ)) = tB ◦ φQA,QB

(θB(xA)(ρ)) = tB(ρ)

We obtain the desired equalities.

3.6.10 . Proof of Lemma 3.33

Proof. Consider any memory skeleton M = 〈M,minit, µ〉 and any actions map
λ : M × (QA ∪QB)→∑

q∈QA∪QB
ΣA(q) that implement the strategy sA.

Consider any �nite ρ ∈ Q+ = Q+
A with n := |ρ| ∈ N and, for all 0 ≤ i ≤

n− 2, let ki := col(ρi). Then, for all 0 ≤ i ≤ n− 1, for all σi ∈ Λρi , we have:

Prη,ΛA (sA)(ρ) = Prη,ΛA (λ)(Prη,ΛA (µ)(minit, col∗(tl(ρ))), ρlt)

= λ(µ∗(minit, k0 · η(k0) · · · kn−2 · η(kn−2)), ρlt)

= sA(ρ0 · (ρ, σ0) · · · ρn−2 · (ρn−2, σn−2) · ρn−1)
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Hence, the de�nition of Prη,ΛA (sA) does not depend on the memory skeleton M

or on the action map λ chosen to implement sA, only on the strategy sA itself.
Now, consider some π ∈ Q∗. If π = ε, it su�ces to consider ρ := ε.

Consider assume that π ∈ Q+, we let n := |π| ≥ 1, that is π = π0 · · ·πn−1. We
consider the �nite path ρ := π0(π0, σ0) · · · − πn−1 · (πn−1, σn−1) ∈ (QA ·QB)+,
where for all 0 ≤ i ≤ n − 1, we have σi ∈ Λπi . With this choice, we have
φQA,QB

(ρ) = π. For all 0 ≤ i ≤ n− 1, we let ki := col(πi).
Let us now consider a memory skeleton and action map that implement

the strategy sρA. In fact, for all θ ∈ (QA ∪QB)+, we have:

sρA(θ) = sA(ρ · θ)
= λ(µ∗(minit, (colη)∗(tl(ρ · θ))), θlt)
= λ(µ∗(µ∗(minit, (colη)∗(ρ)), tl(θ))), θlt)

Hence, letting m := µ∗(minit, (colη)∗(ρ)) ∈M , the memory skeleton 〈M,m,µ〉
and the action map λ implement the strategy sρA. Consider now some θ ∈ Q+.
Let k := |θ| ∈ N and for all 0 ≤ j ≤ k− 1, we let cj := col(θj). Then, we have:

(Prη,ΛA (sA))π(θ) = Prη,ΛA (λ)(Prη,ΛA (µ)(minit, col∗(tl(π · θ))), θlt)
= λ(µ∗(minit, k0 · η(k0) · · · kn−1 · η(kn−1) · c0 · η(c0) · · · ck−2 · η(ck−2)), θlt)

= λ(µ∗(m, c0 · η(c0) · · · ck−2 · η(ck−2)), θlt)

= Prη,ΛA (λ)(Prη,ΛA (µ)(m, col∗(tl(θ))), θlt)

= (Prη,ΛA (sρA))(θ)

We obtain the desired result.

3.6.11 . Proof of Lemma 3.34

Proof. This proof is quite similar to the proof of Lemma 3.29.
The equality straightforwardly holds if q ∈ Qs. Assume now that q ∈ Qns.

We want to apply Lemma 1.7. We let T C := T PrΛ,ηA (sA),tB and T C(Λ,η) :=

T sA,sB(tB)
C(Λ,η),q .

We denote by SeqAltA ⊆ (QB ·QA)+ the set:

SeqAltA := {(q0, σq0) · q1 · (q1, σq1) · · · qn | q0 = q, ∀1 ≤ i ≤ n, qi ∈ QA,

∀0 ≤ i ≤ n− 1, σqi ∈ Λqi}

and by SeqAltB ⊆ (QB ·QA)∗ ·QB the set:

SeqAltB := {ρ · (ρlt, σ) | ρ ∈ SeqAltA, σ ∈ Λρlt}

For all π ∈ Q+, we let SeqAltA(π) := {ρ ∈ SeqAltA | φQA,QB
(ρ) = π}.
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For all π ∈ Q∗ and ρ ∈ T(π) ∩ SeqAltA, letting n := |ρ| ∈ N and k2i+1 :=

col(ρ2i+1) = col(πi) for all i ≥ 0 such that 2i+ 1 < n, we have:

sA(q · ρ) = λ(µ∗(minit, colη(tl(q · ρ))), ρlt)

= λ(µ(minit, col(q) · η(col(q)) · k1 · η(k1) · · · kn−3 · η(kn−3) · kn−1), ρlt)

= PrΛ
A(λ)(PrηA(µ)(minit, col(q) · k1 · · · kn−3 · kn−1), ρlt)

= PrΛ
A(λ)(PrηA(µ)∗(minit, col(q · π)), πlt)

= PrΛ,η
A (sA)(q · π)

Similarly, for all ρ ∈ T(π) ∩ SeqAltB, we have:

sB(tB)(q · ρ) = tB ◦ φQA,QB
(q · ρ) = tB(π)

Now, for all π ∈ (QA)∗ and by de�nition of the arena C(Λ, η), we have:

PC(Λ,η)
q [∪π′∈T(π)Cyl(π′)] =

∑

π′∈T(π)∩SeqAltA

PC(Λ,η)
q (π′)

Let us show by induction on n ∈ N the property: for all π ∈ (QA)≤n, we have:

PCq (π) =
∑

π′∈T(π)∩SeqAltA

PC(Λ,η)
q (π′)

This straightforwardly holds for n = 0. Assume now that this holds for some
n ∈ N. Let π ∈ (QA)n+1. We have:

T(π) ∩ SeqAltA := {ρ · ((q · ρ)lt, σ) · πlt | ρ ∈ T(tl(π)) ∩ SeqAltA, σ ∈ Λ(q·ρ)lt}

Hence, letting p :=
∑

π′∈T(π)∩SeqAltA P
C(Λ,η)
q (π′), we have:

p =
∑

ρ∈T(tl(π))∩SeqAltA

∑

σ∈Λ(q·ρ)lt

PC(Λ,η)
q (ρ · ((q · ρ)lt, σ) · πlt)

=
∑

ρ∈T(tl(π))∩SeqAltA

PC(Λ,η)
q (ρ) ·

∑

σ∈Λ(q·ρ)lt

PC(Λ,η)
q·ρ (((q · ρ)lt, σ) · πlt)

=
∑

ρ∈T(tl(π))∩SeqAltA

PC(Λ,η)
q (ρ) ·

∑

σ∈Λ(q·ρ)lt

sA(q · ρ)(σ) · PC(Λ,η)
q·ρ·((q·ρ)lt,σ)(πlt)

=
∑

ρ∈T(tl(π))∩SeqAltA

PC(Λ,η)
q (ρ) ·

∑

σ∈Λ(q·ρ)lt

sA(q · ρ)(σ)

×
∑

b∈ActρltB

sB(tB)(q · ρ · ((q · ρ)lt, σ))(b) · E(%(q·ρ)lt(σ, b))(πlt)

=
∑

ρ∈T(tl(π))∩SeqAltA

PC(Λ,η)
q (ρ) · E(%(q·ρ)lt(PrΛ,η

A (sA)(q · tl(π)), tB(q · tl(π))))(πlt)

= PCq (tl(π)) · PCq·tl(π)(πlt) = PCq (π)

Thus the property holds at n+ 1. Therefore, it holds for all n ∈ N. Hence, we
can apply Lemma 1.7 to obtain that EC [(fC)q] = EC(Λ,η)[((fC)QA,QB

)q]. With
Lemma 3.40, it follows that EC [(fC)q] = EC(Λ,η)[((fη)C(Λ,η))

q].
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Part II

Concurrent parity games
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Contrary to the previous part in which we studied concurrent games with
arbitrary payo� functions (into [0, 1]), in this part, we focus on the existence
and nature of optimal strategies in �nite-state parity games. The situation in
turn-based games is rather simple to describe: in such games, both players have
positional optimal strategies [27, 28]. Recall that these positional strategies
are also subgame optimal since parity objectives are pre�x-independent. The
situation in the more general setting of concurrent parity games is much more
heterogeneous, depending on the exact parity objective considered, i.e. on
the number of colors involved. We study di�erent questions regarding the
existence of, and the simplest type of strategies among which we can �nd,
(subgame and/or ε-)optimal strategies. The goal of this part is to both provide
new results and use them to (almost) complete the picture of how concurrent
parity games behave. In particular, we intend to give an overview of how
concurrent parity games behave, mostly by gathering already-existing results
in the literature. However, it may be interesting as a future work to study in
more detail what exact kind of strategies are necessary and su�cient to play
(subgame or almost) optimally. (More speci�cally, we could go beyond the
in�nite-choice class of strategies.)

The results are summarized in Table 3.1. The rows of this table refer to the
objectives considered, whereas the columns of this table (except the rightmost
one) refer to a property on �nite-state concurrent games with these objectives.
Speci�cally, the two leftmost columns 1 and 2 specify which objective is con-
sidered, and what type of local interactions we are considering: Max. refers
to local interactions which are maximizable w.r.t. Player A, Arb. refers to
arbitrary local interactions that are not necessarily maximizable w.r.t. Player
A. Then, the four middle columns (3, 4, 5, 6) refer to some properties on the
corresponding games. Speci�cally, the ∃ Opt. ? (3) column is a yes-or-no
question about whether there always exist optimal strategies. Furthermore,
the three columns (4, 5, 6) refer to the nature of the �simplest� strategies which
can achieve the requirements of the columns, i.e. being:

4. ε-Opt.: ε-optimal strategy for all positive ε > 0;

5. Optimal: optimal (recall that such strategies are optimal from every
state), when it is possible;

6. SubG. Opt.: subgame optimal, when it is possible.

As one can see, the cells in these three columns are �lled with either positional
� recall, those are strategies that only depend on the current state of the game
� or∞-choice, recall De�nition 3.22: these are strategies that, in at least some
state of the game, play in�nitely many di�erent GF-strategies. Note that, if
we restricted the setting to standard games, this duality positional/∞-choice
would be a direct consequence of Corollary 3.38. This is not the case here since
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we consider general games with arbitrary local interactions. In the following,
we call positive results the cells with (green) �yes� and �positional�. The other
results are called negative.

For k ∈ {c, n}, we call k-results the results with k next to them in Table 3.1.
The novel results that we establish in this part are the n-results. On the other
hand, the c-results are both new and straightforward consequences of n-results.
All the other results of Table 3.1 are straightforward adaptations of results
previously existing in the literature. Speci�cally, they either extend results on
standard �nite concurrent games to the more general setting of arbitrary �nite-
state concurrent games; or strengthen the results in the literature stating that
no �nite-memory strategy has a desirable property, by stating that neither has
any �nite-choice strategy.

There is one positive already existing result with standard �nite game form,
the cell (coBuchi, 4), that we did not extend into the more general case of ar-
bitrary local interaction maximizable w.r.t. Player A, either as a positive or as
a negative result. For all other positive results, including those already known
when all local interactions are standard �nite, we provide complete proofs that
hold even with arbitrary local interactions. We also exhibit examples witness-
ing negative results (most of these examples are already known). Note that all
negative results are witnessed by games with only one non-trivial local interac-
tion that is standard. This local interaction is �nite for most negative results.
However, it is not the case for the three cells (Safety, 4), (co-Büchi, 4) and
(co-Büchi, 6) where, in the non-trivial local interaction, Player A has in�nitely
many actions, while Player B has only �nitely many. As can be read in the
table, it would not have been possible to witness these results with a standard
�nite local interaction. Finally, the rightmost column (7) contains a reference
to the theorem summarizing the results for the corresponding objective. In the
summarizing proof of these theorems at the end of each section, we refer to all
previously known results for the corresponding objective.

This part contains two chapters. In Chapter 4, we focus on the safety and
reachability objectives whereas in Chapter 5 we deal with Büchi, co-Büchi and
parity objectives.
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GF ∃ Opt. ? ε-Opt. Optimal SubG. Opt. Thm.
1 2 3 4 5 6 7

Safety
Max.
Arb.

Yes

No

Positional

∞-choice
Positional Positional 4.5

Reach M./A. No Positional Positionaln Positionalc 4.12
Buchi M./A. No ∞-choice Positionaln Positionalc 5.5

coBuchi
Max.
Arb.

No
Pos*/?
∞-choice

∞-choicen
Pos∗n/∞-choice
∞-choice

5.13

Parity M./A. No ∞-choice ∞-choice ∞-choice 5.15

Table 3.1: A table summarizing the situation in �nite-state concurrent
games with several objectives where the local interactions are maximiz-
able for Player A (rows `Max.') and arbitrary (rows `Arb.'). When there
is only one row for an objective, it means that the results are the same
whether we assume that the local interactions are maximizable or not,
written M./A. The results Pos* hold with standard �nite local interac-
tions, but do not pertain (a priori) to arbitrary local interactions maxi-
mizable w.r.t. Player A. Finally, n-results are the novel results proved in
this part while the c-results are new and are straightforward consequences
of n-results.
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4 - Safety and Reachability objectives

In this chapter, we focus on safety and reachability games. In [48], the
authors study the safety and reachability objectives in in�nite MDPs, turn-
based and standard concurrent games. In particular, they specify in a more
precise way than what we do in this chapter the exact quantity of memory
necessary and su�cient to play optimally1, almost-optimally, etc. On the
other hand, we focus almost entirely on �nite-state games and we study how
the game behaves depending on the type of (non necessarily standard) game
forms occurring in the game, i.e. whether they are maximizable or not.

We �rst focus on safety objectives. In fact, we �rst study the well-known
notion of upper semi-continuous payo� functions, which can be seen as a gen-
eralization of safety objectives. More speci�cally, we characterize such payo�
functions (Proposition 4.1) with subgame optimal strategies and local optimal-
ity in in�nite games. We then use this result to give the complete picture of
how arbitrary �nite-state concurrent safety games behave (Theorem 4.5).

We then consider reachability objectives in �nite-state games. We �rst
show that, in �nite-state reachability games, the Player-A value can be com-
puted with a least �xed point, even with arbitrary game forms (Proposi-
tion 4.7). We then describe a procedure to distinguish from which states
Player A has an optimal strategy, and from which states she does not. This, in
turn, gives that, whenever there is an optimal Player-A strategy in �nite-state
reachability games, there is one that is positional (Theorem 4.11). We are
then able to give the complete picture of how arbitrary �nite-state concurrent
reachability games behave (Theorem 4.12).

4.1 Safety objectives and upper semi-continuous payo�

functions

4.1.1 . Upper semi-continuous functions

Before considering safety objectives, we start by considering those payo�
functions w.r.t. which Player A has always subgame optimal strategies, when
all local interactions are maximizable w.r.t. to Player A. In turns out that
these payo� functions are exactly the ones for which, in all arbitrary games,
a Player-A strategy is subgame optimal if and only if it is locally optimal.
Therefore, let us consider the necessary and su�cient condition for a Player-
A strategy to be subgame optimal stated in Corollary 3.14 (for v := χG [A]).

1In that article, they consider optimal strategies that may not be optimal from all
states whereas we say that a strategy is optimal if it achieves the value of the game
from every state of the game.
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We are looking for those payo� functions for which the second condition of
Corollary 3.14 always holds. Let us �rst introduce below the notion of limit of
a sequence of in�nite sequence of colors.

De�nition 4.1 (Limit of a sequence of in�nite sequences of colors). Consider

a non-empty set K, some in�nite sequence of colors ρ ∈ Kω and (ρn)n∈N ∈
(Kω)N. We say that ρ is the limit of (ρn)n∈N if, for all k ∈ N, there is some

nk ∈ N such that for all n ≥ nk, we have ρ≤k = (ρn)≤k.

We can now de�ne formally the notion of payo� function we are interested
in. These functions f are the ones for which the value f(ρ) of any in�nite path
ρ that is the limit of (ρn)n∈N is at least limsup(f(ρn))n∈N. This corresponds to
the known notion of upper semi-continuous payo� functions. See for instance
[64, 65] for examples of use of this notion in game theory. We de�ne it formally
below in De�nition 4.2.

De�nition 4.2 (Upper semi-continuous payo� functions). Consider a non-

empty set of colors K and a payo� function f : Kω → [0, 1]. It is upper
semi-continuous if, for all ρ ∈ Kω that is the limit of (ρn)n∈N ∈ (Kω)N, we have

limsup(f(ρn))n∈N ≤ f(ρ).

Remark 4.1. We make two remarks here. First, this notion is incomparable

in strength with upward well-foundedness from De�nition 3.5. Furthermore,

we would recover exactly the same functions if upper semi-continuous payo�

functions were de�ned with liminf instead of limsup2.

In fact, as formally stated below, upper semi-continuous payo� functions
are exactly the payo� functions for which, in all games, subgame optimal strate-
gies are exactly locally optimal strategies. Equivalently, upper semi-continuous
payo� functions are exactly the payo� functions for which Player A always has
subgame optimal strategies in games with maximizable (w.r.t. Player A) games
forms. In fact, both these statements remain true if we only consider MDPs
instead of concurrent games. These equivalences hold only when considering
games without stopping states with positives values. This constitutes a one-to-
two-player lift as the result can be read as follows: if a payo� function behaves
properly in all one-player game, then it also does in all two-player games. See
for instance [66] for another (much stronger) one-to-two-player lift.

2The reason why is, given a sequence (ρn)n∈N ∈ (Kω)N, we could extract a sub-
sequence (ρϕ(n))n∈N for some increasing ϕ : N → N such that limsup(f(ρn))n∈N =
lim(f(ρϕ(n)))n∈N = liminf(f(ρϕ(n)))n∈N.
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Proposition 4.1. Consider a set of colors K and a payo� function f : Kω →
[0, 1]. The assertions below are equivalent, assuming that the games and MDPs
we consider are without stopping states with positive value:

a. the function f is upper semi-continuous;

b. in all arbitrary concurrent games 〈C, f〉, Player A subgame optimal
strategies coincide with locally optimal strategies;

c. in all arbitrary MDPs 〈C, f〉, Player A subgame optimal strategies coin-
cide with locally optimal strategies;

d. in all arbitrary concurrent games 〈C, f〉 maximizable w.r.t. to Player A,
Player A has subgame optimal strategies;

e. in all arbitrary MDPs 〈C, f〉 maximizable w.r.t. to Player A, Player A
has subgame optimal strategies.

As a side remark, the equivalences b.⇔ c. and d.⇔ e. provide a one-to-
two-player lift. That is, one can infer properties on two-player games from
properties on one-player games (i.e. MDPs).

Proof. Let us �rst show the implication a. ⇒ b.. Assume that f is upper
semi-continuous. Consider a concurrent game G = 〈C, f〉 without stopping
states of positive value (i.e. all stopping states have value 0) and a Player-
A strategy sA ∈ SCA. By Proposition 3.10, if sA is subgame optimal, then
it is also locally optimal. Assume now that sA is locally optimal. We want
to apply Theorem 3.12 to show that sA is subgame optimal. Consider an
in�nite path ρ ∈ Qω. If it ever reaches a stopping state q, then we have
limsupχG [A](ρ) = val(q) = fC(ρ). Hence, we do have fC(ρ) ≥ limsupχG [A](ρ).
Assume now that ρ does not visit any stopping state. Let u := limsupχG [A](ρ).
If u = 0, then straightforwardly fC(ρ) ≥ limsupχG [A](ρ). Assume now that
u > 0. For all n ∈ N, we let in ∈ N be such that χG [A](ρ≤in) ≥ u− 1

n (which
exists by de�nition limsup). Let πn := col+(ρ≤in) ∈ K+ be the corresponding
�nite sequence of colors. Since there is no stopping states of positive values
and χG [A](ρ≤in) ≥ u − 1

n , it follows that there is some θn ∈ Kω with θn ∈
Cyl(πn) and f(θn) ≥ u − 1

2n . Consider then the sequence (θn)n∈N ∈ (Kω)N of
in�nite sequences of colors. By construction, we have limsup(f(θn))n∈N ≥ u

and colω(ρ) is equal to the limit of (θn)n∈N ∈ (Kω)N. Hence, since f is upper
semi-continuous, it follows that fC(ρ) = f ◦ colω(ρ) ≥ u. Since this holds for
all positive u ∈ (0, 1], it follows that limsupχG [A](ρ) ≤ fC(ρ), which holds for
all ρ ∈ Qω. Hence, the �rst and the second conditions of Theorem 3.12 are
ensured. Therefore, the Player-A strategy sA is subgame optimal.

Clearly, we then have b. ⇒ c. We also have b. ⇒ d. Indeed, consider any
game〈C, f〉 maximizable w.r.t. Player A without stopping states of positive
value. Then, Player A has a locally optimal strategy: it amounts to play opti-
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q0 q1 q2 q3 q4 . . .

ρi0≥0 ρi1≥1 ρi2≥2 ρi3≥3 ρi4≥4

0 0 0 0 0
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p2

r2

p3

r3

p4

r4

Figure 4.1: An MDP where Player A plays alone, with ri := 1− pi.

mally at each local interaction, which is possible since they are all maximizable
w.r.t. Player A. Then, by assumption b., the Player-A locally optimal strategy
is subgame optimal. Furthermore, we also have straightforwardly that d.⇒ e..

Let us now show that c. ⇒ a. and e. ⇒ a., the construction is the same
for both points. Assume that f is not upper semi-continuous. Hence, there
is some ρ ∈ Kω and (ρn)n∈N ∈ (Kω)N such that ρ is the limit of (ρn)n∈N and
limsup(f(ρn))n∈N > f(ρ). Let δ := limsup(f(ρn))n∈N−f(ρ) > 0. For all n ∈ N,
we let in ∈ N be such that ρin≤n = ρ≤n and f(ρin) ≥ f(ρ)+δ/2. We then de�ne
an MDP Γ = 〈C, f〉 on the set of colors K where Player A plays alone. In
that MDP, there is an in�nite chain of states (qn)n∈N such that, for all n ∈ N,
we have col(qn) := ρn. Furthermore, for all n ∈ N, at state qn, Player A has
two available actions, one, called acontn , that makes the game continue on the
chain to qn+1 with probability 1 and another one, called astopn , that visits with
probability pn ∈ [0, 1] (not yet de�ned) the in�nite path ρinn+1 · ρinn+2 · · · ∈ Kω

with probability pn and that goes to a sink state of value 0 with probability
1−pn. The probability pn ∈ [0, 1] is chosen such that pn ·f(ρin) = f(ρ)+ δ

2− 1
2n .

An illustration of this game is given in Figure 4.1. Then, the value of all states
qn for n ∈ N is equal to f(ρ) + δ/2. Indeed, for all N ∈ N, from any state
qn ∈ Q, Player A can, with a deterministic strategy, play the actions acontk

for k ≤ N − 1 steps until reaching the state qN from which she can play the
action astopN to ensure (at least) the value f(ρ) + δ

2 − 1
2n . However, to be locally

optimal, a Player-A strategy has to play, for all n ∈ N, deterministically the
actions acontn after the sequence q0 · · · qn. However, the value of such a strategy
is equal to f(ρ) < f(ρ)+δ/2. That is, no locally optimal strategy is (subgame)
optimal. Hence, both c. and e. do not hold.

4.1.2 . Safety objectives

Before considering the safety objective, we would like to mention that, in
all the games we will consider later on in this chapter (i.e. the subsequent
safety and reachability games), we will not consider any stopping state. The
reason for that is twofold: �rst, since we want to study speci�c objectives, we
do not want stopping states to interfere with how an objectives behaves � for
instance, in a safety game, once the target is reached, the game should have
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value 0, which may not happen if a stopping state is reached subsequently.
Second, stopping states can be straightforwardly implemented with Nature
states and two self-looping states, one of value 1 and the other of value 0, so
this is without loss of generality.

Let us now come back to the safety objective. In fact, the associated
payo� function is upper semi-continuous. This is a general property ensured
by win/lose payo� functions whose winning set is closed. This is stated in the
lemma below.

Lemma 4.2. Consider a non-empty set of colors K and win/lose payo� func-

tion f : Kω → {0, 1}. It is upper semi-continuous if and only if the set f−1[{1}]
is closed.

Proof. We let W1 := f−1[{1}] and W0 := f−1[{0}]. Now, recall that the set
W1 is closed if and only if its complement W0 is open, that is the set W0 can
be written as an arbitrary union of cylinders.

Let us assume that W0 is open. That is, there is some set A ⊆ K∗ such
that W0 = ∪π∈ACyl(π). Consider an in�nite path ρ ∈ Kω and a sequence
(ρn)n∈N ∈ (Kω)N such that ρ is the limit of (ρn)n∈N. If f(ρ) = 1, then we have
limsup(f(ρn))n∈N ≤ f(ρ). Assume now that f(ρ) = 0, that is ρ ∈ W0. Then,
there is some π ∈ A such that ρ ∈ Cyl(π). Hence, there is some k ∈ N such
that, for all n ≥ k, we have ρn ∈ Cyl(π) ⊆W0. Therefore, limsup(f(ρn))n∈N =

0 ≤ f(ρ). Therefore, f is upper semi-continuous.
Assume now that f is upper semi-continuous. We let A := {π ∈ K∗ |

Cyl(π) ⊆ W0}. We claim that ∪π∈ACyl(π) = W0. By de�nition, we have
∪π∈ACyl(π) ⊆ W0. Consider now some ρ ∈ W0. Assume towards a contradic-
tion that, for all n ∈ N, the �nite path ρ≤n /∈ A. Then, for all n ∈ N, there is
an in�nite path θn ∈ Cyl(ρ≤n) such that θn /∈W0, that is such that f(θn) = 1.
Then, the in�nite path ρ is the limit of the sequence (θn)n∈N ∈ (Kω)N and
limsup(f(θn))n∈N = 1. Hence, since f is upper semi-continuous, f(ρ) = 1 and
ρ /∈ W0. Hence the contradiction. In fact, there is some n ∈ N such that
ρ≤n ∈ A. That is, ρ ∈ ∪π∈ACyl(π). In fact, W0 = ∪π∈ACyl(π), and it is
therefore an open set.

We therefore deduce as a corollary of what is done in the previous sub-
section that in all safety games (without stopping states) where each local
interactions are maximizable w.r.t. Player A, Player A has a subgame optimal
strategy. Moreover, this strategy can be chosen positional. This is stated in
the corollary below.

Corollary 4.3. Consider an arbitrary concurrent safety game G � whose set

of states need not be �nite � without stopping states. Let T := col−1[{1}] ⊆ Q
be the target that Player A wants to avoid. Assume either that all local

interactions outside of T are maximizable w.r.t. Player A, or that there is a
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Player A has an optimal strategy. Then, Player A has a positional strategy

that is subgame optimal in G.

Proof. Since the reachability winning set is an open set � as it can be written
as the union of the cylinders of paths that reach the target � the safety
winning set is a closed set. Therefore, by Lemma 4.2 and Proposition 4.1,
all Player-A locally optimal strategies are subgame optimal. Consider the
valuation χG [A] : Q+ → [0, 1]. Let us argue that there is a positional Player-
A strategy sA that is locally optimal, i.e. such that, for all ρ ∈ Q+, we have
χG [A](ρlt) ≤ val[〈F(ρlt), χG [A]ρ〉](sA(ρlt)). First, note that for all ρ ∈ Q∗ ·T ·Q∗,
we have χG [A]ρ : Q → {0}. In addition, for all ρ ∈ (Q \ T )+, we have
χG [A]ρ = χG [A]. Second, by Proposition 3.9, we have, for all q ∈ Q, χG [A](q) =

val[〈F(q), χG [A]q〉][A]. If we assume that all local interactions outside T are
maximizable w.r.t. Player A, then such a Player-A strategy sA does exist
(note that it can play arbitrarily at states in T , of value 0). Assume now
that Player A has an optimal strategy s′A in G. Then, by Lemma 3.10, we
have, for all q ∈ Q, χG [A](q) = χG [s′A](q) ≤ val[〈F(q), χG [A]q〉](s′A(q)). In fact,
we have χG [A](q) ≤ val[〈F(q), χG [A]〉](s′A(q)). Therefore, a Player-A positional
strategy sA such that, for all q ∈ Q, we have sA(q) := s′A(q) ensures that, for
all q ∈ Q, we have χG [A](q) ≤ val[〈F(q), χG [A]〉](sA(q)). Hence, in any case,
there is a Player-A positional strategy that is locally optimal, and therefore
also subgame optimal.

Note that, as soon as we drop the assumption that all local interactions
are maximizable w.r.t. Player A, then the above corollary fails. Indeed, there
is an MDP where Player A plays alone and where playing ε-optimally requires
in�nite choice. An example is provided in Figure 4.2, formally de�ned in Def-
inition 4.3 below, and argued in Proposition 4.4. Note that a similar example
is given in [48, Prop. 28].

De�nition 4.3. The game of Figure 4.2 is in fact an MDP Γ where Player

A plays alone with two states: Q := {q0,⊥}. The state ⊥ is a self-looping

sink and, at state q0, Player A may play any integer n ∈ N which leads to a

distribution dn := {q0 7→ 1 − 1
2n ;⊥ 7→ 1

2n } ∈ D(Q). Player A has a safety

objective Safe with K = {0, 1} and col(q0) := 0 and col(⊥) := 1, i.e. Player A

wants to avoid the state ⊥.
Proposition 4.4. In the safety game G of De�nition 4.2, the state q0 has

value 1 but Player A has no optimal strategy from q0 and any �nite-choice

strategy has value 0 from q0.

Proof. First, consider any positional Player-A strategy sA. Consider some n ∈
N such that sA(q0)(n) > 0. Then, at each step, there is probability at least
sA(q0)(n)

2n to reach the target ⊥, otherwise the game loops back on q0. Hence,
almost-surely, the state ⊥ is reached. In fact, all Player-A positional strategies
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q0

d0
. . . . . . dn . . .

⊥

1− p0

p0

1− pn

pn

Figure 4.2: An MDP where Player A plays alone and wants to avoid the
state ⊥, with pi := 1

2i
: she does not have an optimal stategy, and playing

almost-optimally requires in�nite choice.

have value 0. Therefore, since this MDP is B-�nite (recall, �nitely many states,
and Player B has �nitely many actions), by Corollary 3.38, all �nite-choice
strategies have value 0 from q0.

Consider some positive ε > 0. Let us build a Player-A strategy sεA of value
at least 1 − ε. Let N ∈ N be such that 1

2N
≤ ε. For all n ∈ N, we have

sA(qn0 ) := {N + n 7→ 1}. That way, denoting sB the only Player-B strategy in
Γ, we have:

PsA,sB
Γ,q0

(q∗0 · ⊥) =
∑

n∈N
PsA,sB

Γ,q0
(qn0 · ⊥) ≤

∑

n∈N

1

2N+n+1
=

1

2N
≤ ε

Therefore, the value of this Player-A strategy sA is at least 1− ε.

Theorem 4.5. In arbitrary �nite-state concurrent safety games without stop-

ping states:

• if the game is maximizable w.r.t. Player A, there is always a subgame

optimal strategy that can be found among positional strategies;

• if not, there may not be optimal strategies and playing almost-optimally

may require in�nite choice;

• in any case if there is an optimal strategy, there is a subgame optimal

positional one.

These results are summarized in Table 4.1.
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GF ∃ Opt. ? ε-Opt. Optimal SubG. Opt.

Safety
Max.
Arb.

Yes

No

Positional

∞-choice
Positional Positional

Table 4.1: Summary of how concurrent safety games behave.

Proof. • This result is already known in the context of standard �nite
game local interactions, see [32, Theorem 1]. Corollary 4.3 above gener-
alizes this result to arbitrary local interactions that are still maximizable
w.r.t. Player A.

• It is already known that, in this context, in�nite memory may be required
for Player A, see [67, Theorem 3]. Note that, by using Corollary 3.38
on the examples provided to prove [67, Theorem 3], we would obtain
that in�nite-choice strategies is required to be almost-optimal. We also
provide an example in De�nition 4.3, argued in Proposition 4.4, where
in�nite-choice is required.

• This is given by Corollary 4.3.

4.2 Reachability games

In this section, we focus on reachability games � without stopping states,
as for safety games � where the local interactions considered are arbitrary.
Recall that, in such games, the goal of Player A is to reach a target, whereas
Player B wants to avoid it. In all this section, given a reachability game G, we
will denote by T := col−1[{1}] ⊆ Q the set of states that Player A wants to
reach and we let WT := (colω)−1(Reach) ⊆ Qω be the corresponding winning
set for Player A. Without loss of generality, we assume that all states in the
target T are self-looping sinks. It does not change the game since, once the
target is reached, Player A has won regardless of what happens afterwards �
since there are no stopping states. Therefore, the game can be seen as PI since
the reachability objective WT can be seen as a Büchi objective (where Player
A wants to see in�nitely often the target T ) without changing the game since
reaching once the target is equivalent to reaching it in�nitely often. Hence, we
may use Corollary 3.14 and Corollary 3.16 from the previous chapter, which
only apply to PI games.

This section is an adaptation of the �rst part of [39] where, instead of
considering only standard game forms with �nitely many actions, we consider
games with arbitrary interactions.
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4.2.1 . Computing the Player-A value of reachability games

It is known for a long time that the values in reachability games can be com-
puted with a least �xed point operator [10, 68], including with non-standard
game forms in [10]. However, even in [10], the game forms considered were
assumed valuable. Therefore, the reachability games considered had a value.
We do not make such an assumption on local interactions in this subsection,
and we show that it still holds that the Player-A value of the game can be
computed with a least �xed point regardless of the local interactions involved.

First, we de�ne the operator on which we will consider a least �xed point.

De�nition 4.4. Consider an arbitrary �nite-state concurrent reachability

game G without stopping states. We let ValT := {v : Q → [0, 1] | v[T ] = {1}}
be the set of valuations mapping each state in the target to 1. We let ∆G :

ValT → ValT be such that, for all v ∈ ValT and q ∈ Q, we have:

∆G(v)(q) :=

{
1 if q ∈ T
val[〈F(q), v〉][A] otherwise

Hence, we do have ∆G(v) ∈ ValT .

This operator ensures several useful properties that we describe below.

Lemma 4.6. For all arbitrary �nite-state concurrent reachability games G
without stopping states, the operator ∆G ensures the following:

• it is non-decreasing, i.e. for all v, v′ ∈ ValT such that v ≤ v′, we have

∆G(v) ≤ ∆G(v′);

• it is 1-Lipschitz, i.e. for all v, v′ ∈ ValT , we have ‖∆G(v)−∆G(v′)‖∞ ≤
‖v − v′‖∞;

• for all n ∈ N and v ∈ ValT , we denote by ∆
(n)
G (v) ∈ ValT the vector

obtained from v after n applications of the operator ∆G . Denoting by

v0 ∈ ValT the valuation such that v0[Q \ T ] := 0, we have that the

sequence (∆
(n)
G (v0))n∈N has a limit in ValT that is equal to the least

�xed point of the operator ∆G .

Proof. The two �rst properties come from Lemma 1.19. The third point comes
from Kleene least �xed point theorem.

De�nition 4.5 (Notation least �xed point ∆G). For all arbitrary �nite-state

reachability games G without stopping states, we denote by mG : Q→ [0, 1] the

least �xed point of the operator ∆G (whose existence is ensured by Lemma 4.6).

In fact, in all reachability games, this least �xed point is equal to the
Player-A value of the game.
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Proposition 4.7. For all arbitrary �nite-state reachability games G without

stopping states, we have mG = χG [A] : Q→ [0, 1].

Proof. Let n ∈ N. Taking the notation of Lemma 4.6, let us show that χG [A] ≥
∆

(n)
G (v0). Let ε > 0. We let v : Q+ → [0, 1] be such that, for all ρ ∈ Q+, letting

k := |ρ| − 1:

v(ρ) :=





1 if ∃i ≤ k, ρi ∈ T
max(∆

(n−k)
G (v0)(ρ)− ε

2k
, 0) otherwise, if k < n

0 = v0(ρ) otherwise

Let us de�ne a Player-A strategy sA ∈ SCA dominating this valuation. Let ρ ∈
Q+ and k := |ρ|−1. If v(ρ) = 0, then sA(ρ) ∈ Σρlt

A is de�ned arbitrarily. Assume
now that v(ρ) > 0. If k ≥ n, sA(ρ) is also de�ned arbitrarily. Indeed, since
v(ρ) > 0, this implies v(ρ) = 1 and therefore v(ρ · q) = 1 for all q ∈ Q. Hence,
1 = val[〈F(ρlt), v

ρ〉][sA(ρ)] ≥ v(ρ) = 1. Assume now that it is not the case, that

is k < n and v(ρ) > 0. This means that v(ρ) = ∆
(n−k)
G (v0)(ρ) − ε

2k
. Further-

more, ∆
(n−k−1)
G (v0)− ε

2k+1 ≤ vρ (with ∆
(0)
G (v0) = v0). Hence, by Lemma 1.19,

we have ∆
(n−k)
G (v0)(ρ) = val[〈F(ρlt),∆

(n−k+1)
G (v0)〉][A] ≤ val[〈F(ρlt), v

ρ〉][A] +
ε

2k+1 . That is, v(ρ) ≤ val[〈F(ρlt), v
ρ〉][A] − ε

2k+1 . We let sA(ρ) ∈ Σρlt
A be such

that val[〈F(ρlt), v
ρ〉][sA(ρ)] ≥ val[〈F(ρlt), v

ρ〉][A]− ε
2k+1 , which therefore ensures

that v(ρ) ≤ val[〈F(ρlt), v
ρ〉][sA(ρ)]. This concludes the de�nition of sA which

indeed dominates the valuation v.
Let us show that this strategy guarantees the valuation v by applying

Theorem 3.12. The �rst condition of this theorem is satis�ed. Furthermore,
for all ρ ∈ Qω, we have limsupv(ρ) ∈ {0, 1} with limsupv(ρ) = 1 if and only
if ρ ∈ WT . Therefore, the second condition of this theorem is also satis�ed.
Hence, the strategy sA guarantees the valuation v with, for all q ∈ Q, v(q) ≥
∆

(n)
G (v0)(q)−ε. As this holds for all ε > 0, it follows that χG [A] ≥ ∆

(n)
G (v0). As

this holds for all n ∈ N and mG = lim
n→∞

∆
(n)
G (v0), it follows that χG [A] ≥ mG .

Let us now show that χG [A] ≤ mG . Fix a Player-A strategy sA ∈ SCA. Con-
sider some ε > 0. For all i ∈ N, we let wi : Q → [0, 1] be such that, we have:
wi := min(mG + ε

2i
, 1) and we let v : Q+ → [0, 1] be such that, for all ρ ∈ Q+,

we have v(ρ) := 1 is ρ has visited T and v(ρ) := w|ρ|−1(ρlt) ∈ [0, 1] other-
wise. Let us de�ne a Player-B strategy sB ∈ SCB. For all ρ ∈ Q+: if v(ρ) = 1,
then sB(ρ) is de�ned arbitrarily and therefore out[〈F(ρlt), v〉](sA(ρ), sB(ρ)) ≤
v(ρ). Otherwise, we have v(ρ) = mG(ρlt) + ε

2|ρ|−1 . In addition, we have
vρ ≤ mG + ε

2|ρ|
. Furthermore, we have mG(ρlt) = val[〈F(ρlt),mG〉][A]. Hence,

val[〈F(ρlt),mG〉](sA(ρ)) ≤ mG(ρlt). We deduce that val[〈F(ρlt), v
ρ〉](sA(ρ)) ≤

val[〈F(ρlt),mG〉](sA(ρ)) + ε
2|ρ|
≤ mG(ρlt) + ε

2|ρ|
< v(ρ). We set sB(ρ) ∈ Σρlt

B such
that out[〈F(ρlt), v

ρ〉](sA(ρ), sB(ρ)) ≤ v(ρ). This concludes the de�nition of the
strategy sB. From its de�nition, we can deduce that in the stochastic tree
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T sA,sB
C induced by sA and sB, the valuation v is non-increasing (recall De�ni-

tion 2.3). Therefore, by Proposition 2.9 with a non-increasing valuation, for all
q ∈ Q, we have mG(q)+ε ≥ v(q) ≥ EsA,sB

C,q [limsupv]. Furthermore, for all in�nite
paths ρ ∈ Qω, we have if ρ ∈WT , then limsupv(ρ) = 1. Hence, limsupv ≥ 1WT

.
Therefore, mG(q) + ε ≥ PsA,sB

C,q [WT ] ≥ χG(sA)[q] ≥ χG(A)[q]. Since this holds
for all positive ε > 0, it follows that mG ≥ χG(A). Hence, mG = χG(A).

We conclude this subsection by stating a very useful proposition that we
will apply in the next subsection to the valuation mG = χG [A]. The proof of
this proposition is not long, but is very technical, and hence is postponed to
the appendix.

Proposition 4.8 (Proof 4.4.1). Let n ≥ 1. Consider a function g : [0, 1]n →
[0, 1]n that is non-decreasing and 1-Lipschitz. Assume that its least �xed point

m ∈ [0, 1] is such that, for all i ∈ J1, nK, we have m(i) > 0. Then, for all ε > 0,

there exists a valuation v ∈ [0, 1]n such that v ≤ m, ‖m− v‖∞ ≤ ε and for all

i ∈ J1, nK: g(v)(i) > v(i).

4.2.2 . Computing the set of maximizable states

Recall that in the snow-ball reachability (standard) game of De�nition 3.6,
Player A does not have an optimal strategy, even if the game has �nitely
many states. The aim of this subsection and the next is, given a �nite-state
concurrent reachability game to determine exactly from which states Player
A has an optimal strategy. This, in turn, will give that whenever she has an
optimal strategy, she has one that is positional. This extends Everett [10]
(the existence of positional ε-optimal strategies). Note that in [10], arbitrary
game forms are considered (not only standard ones), though they are assumed
valuable.

In this subsection, we present the de�nitions and arguments in standard
�nite concurrent games � in particular, all local interactions are standard
and �nite. We also illustrate these de�nitions on examples. This subsection
directly comes from [39]. In the Appendix 4.4.2, we give the formal de�nitions
well suited for arbitrary game forms along with the formal proofs of correctness.
Note that, although the underlying ideas are not too complicated, the formal
proofs are quite technical. This is mainly due to the fact that we need to deal
with in�nite-memory strategies.

For the remainder of this subsection and the next, we consider an arbitrary
�nite-state concurrent reachability game G, without stopping states. We still
denote by T := col−1[{1}] ⊆ Q the set of states that Player A wants to reach,
and by WT := (colω)−1(Reach) ⊆ Qω the set of in�nite sequences of states
reaching the set T . Let us �rst introduce some terminology that is relevant
regardless of the game forms considered.

De�nition 4.6 (Maximizable and sub-maximizable states). A state q ∈ Q
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from which Player A has (resp. does not have) an optimal strategy is called

maximizable (resp. sub-maximizable). The set of such states is denoted OptQA

(resp. SubOptQA).

Remark 4.2. One has to careful here: we have already used the �maximiz-

able� terminology in this dissertation. Recall, this refers to the game forms

where a player has optimal GF-strategies in all the games in normal form in-

duced from that game form. The terminology we have de�ned above refers

to states in a reachability game. In particular, the local interactions of max-

imizable states may not be maximizable for any player. The two notions are

completely unrelated.

For the remainder of this subsection, we assume that the game G is stan-
dard (and that all standard local interactions in G are �nite). We want to
build an optimal (and positional) strategy for Player A when possible. Recall
Corollary 3.16: to be optimal, a Player-A positional strategy sA has to play
optimally at each local interaction F(q) (for q ∈ Q) with respect to the valua-
tion χG [A] : Q→ [0, 1]. However, it is not su�cient: in the snow-ball game of
Figure 3.1, when Player A plays optimally in F(q0) w.r.t. the valuation χG [A]

(that is, plays the top row with probability 1), Player B can enforce the game
never to leave the state q0 /∈ T . Hence, locally, we want to have strategies that
not only play locally optimally but also, regardless of the actions of Player B,
have a non-zero probability to get closer to the target T . Such strategies will
be called progressive strategies. To properly de�ne this notion on standard
game forms, we �rst introduce the notion of optimal Player-B actions.

De�nition 4.7 (Optimal Player-B actions). Let q ∈ Q be a state of the

game. Consider the game in normal form 〈F(q),mG〉. For all GF-strategies

σA ∈ ΣA(F(q)), we de�ne the set RespB
σA

(q) ⊆ ActqB of optimal actions of

Player B w.r.t. the GF-strategy σA by

RespB
σA

(q) := {b ∈ ActqB | out[〈F(q),mG〉](σA, b) = val[〈F(q),mG〉](σA)}

In Figure 4.3, the set RespB
σA

(q) of optimal Player-B actions w.r.t. the
strategy σA are represented in bold purple: the expected values of these actions
is the value of the GF-strategy: 1/2.

We can now de�ne the set of progressive strategies on standard �nite game
forms, see Page 207 for a de�nition on arbitrary game forms.

De�nition 4.8 (Progressive strategies in standard �nite game forms). Con-

sider a state q ∈ Q and a set of good states Gd ⊆ Q that Player A wants

to reach. We let GdD ⊆ D(Q) be the set of distributions over states with a

non-zero probability to reach the set Gd: GdD := {d ∈ D(Q) | Sp(d)∩Gd 6= ∅}.
The set of progressive strategies Progq(Gd) at state q w.r.t. Gd is de�ned by

Progq(Gd) := {σA ∈ OptA(〈F(q),mG〉) | ∀b ∈ RespB
σA

(q),∃a ∈ Sp(σA), δq(a, b) ∈ GdD}
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In Figure 4.3, the distributions over states in GdD are arbitrarily chosen
for the example and circled in green. The depicted Player-A GF-strategy is
progressive as, for all bold purple actions, there is a green-circled outcome in
the support of the strategy (the circled 3/4).

Progressive strategies are not enough. In reachability games in general,
some states may be sub-maximizable. In that case, playing optimally implies
avoiding these states. Given a set Bd ⊆ Q of states to avoid, an optimal GF-
strategy that has a non-zero probability to reach that set of states Bd with
an optimal Player-B action is called risky. We give and illustrate below the
de�nition of risky strategies in standard �nite game forms, see Page 208 for a
de�nition on arbitrary game forms.

De�nition 4.9 (Risky strategy in standard �nite game forms). Let q ∈ Q
be a state of the game and Bd ⊆ Q be a set of states that Player A wants to

avoid. The set of distributions over states BdD ⊆ D(Q) is de�ned similarly to

GdD in De�nition 4.8: BdD := {d ∈ D(Q) | Sp(d) ∩ Bd 6= ∅}. Then, the set of
risky strategies Riskq(Bd) at state q w.r.t. Bd is de�ned by

Riskq(Bd) := {σA ∈ OptA(〈F(q),mG〉) | ∃b ∈ ActqB, ∃a ∈ Sp(σA), δq(a, b) ∈ BdD}

In Figure 4.3, the set of distributions over states BdD are also arbitrarily
chosen for the example and circled in red. The GF-strategy σA is not risky
since no red-squared outcome appears in the intersection of the support of σA
and the purple actions in RespB

σA
(q).

Overall, we want for local strategies to be e�cient, that is both progressive
and not risky.

De�nition 4.10 (E�cient strategies in arbitrary game forms). Let q ∈ Q

be a state of the game and Gd,Bd ⊆ Q be sets of states. The set of e�cient
strategies Effq(Gd,Bd) at state q w.r.t. Gd and Bd is de�ned by Effq(Gd,Bd) :=

Progq(Gd) \ Riskq(Bd).

In Figure 4.3, the GF-strategy σA is e�cient as it is both progressive and
not risky.

We can now compute inductively the set of maximizable and sub-maximizable
states. First, given a set of sub-maximizable states Bd, we de�ne iteratively
below a set of secure states w.r.t. Bd, they are the states with a non-zero prob-
ability to get closer to the target > while avoiding the set Bd. The construction
is illustrated in Figure 4.4.

De�nition 4.11 (Secure states). Consider a set of states Bd ⊆ Q. We

set Sec0(Bd) := T and, for all i ≥ 0, Seci+1(Bd) := Seci(Bd) ∪ {q ∈ Q \
Bd | Effq(Seci(Bd),Bd) 6= ∅}. The set Sec(Bd) of states secure w.r.t. Bd is:

Sec(Bd) := ∪n∈NSecn(Bd) ∪ (mG)−1[0].

Note that, as there are �nitely many states, this procedure terminates in
at most n = |Q| steps. Furthermore, the states of value 0 are added since
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σA :

0

0.5

0.5

0

1/2 1/2 0 0

1 3/4 1/4 1

3/4 1/4 3/4 1/2

0 0 1/2 1







Figure 4.3: A game in normal form
with an optimal GF-strategy de-
picted in brown on the left. Its
value is 1/2 = 1/2 · 3/4 + 1/2 · 1/4.

>

Sec1(Bd)

··
·

Secn(Bd)

m−1[0]

Q \ Sec(Bd)

Bd

Figure 4.4: The construction of
De�nition 4.11 of the set of states
Sec(Bd): it is the reunion of the
blue and green vertical stripe ar-
eas.

any state of value 0 is maximizable. The bene�t of this construction lies in
the lemma below: if all states in Bd are sub-maximizable, then all states in
Q \ Sec(Bd) also are.

Lemma 4.9 (Proof Page 209). Assume that a set of states Bd ⊆ Q is such

that Bd ⊆ SubOptQA. Then, the set of states Q \ Sec(Bd) is such that Q \
Sec(Bd) ⊆ SubOptQA (these correspond to the red horizontal stripe areas in

Figure 4.4).

Proof sketch. For an arbitrary Player A strategy sA ∈ SCA to be optimal, it
roughly needs, on all relevant paths, to be optimal. More precisely, on any
�nite path π ∈ Q+ with a non-zero probability to occur if Player B plays
optimal actions (recall De�nition 4.7) against the strategy sA � the path
π ∈ Q+ is called a relevant path � the strategy sA needs to play an optimal
GF-strategy in the local interaction F(πlt) and the residual strategy s

tl(π)
A has

to be optimal from πlt in the reachability game G. Therefore, on all relevant
paths, the strategy sA has to play optimal GF-strategies that are not risky.
However, in any local interaction of a state q ∈ Q \ Sec(Bd), there is no
e�cient strategies available to Player A. Therefore, if the game starts from a
state q ∈ Q \ Sec(Bd) an optimal strategy sA for Player A (which therefore is
locally optimal but not progressive) would allow Player B to ensure staying in
the set Q\Sec(Bd) while playing optimal actions. In that case, the game never
leaves the set Q \ Sec(Bd), which induces a value of 0, whereas χG [A](q) > 0

since q /∈ Sec(Bd). Thus, there is no optimal strategy for Player A from a state
in Q \ Sec(Bd).

We can now de�ne inductively the set of bad states (which, in turn, will
correspond to the set of sub-maximizable states).
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Figure 4.5: An illustration of the proof of Lemma 4.10 on the MDP
induced by the strategy sA. Labels v1, . . . , v4 is the value of the corre-
sponding states given by the valuation v.

De�nition 4.12 (Set of sub-maximizable states). Let Bad0 := ∅ and, for all
i ≥ 0, Badi+1 := Q \ Sec(Badi). Then, the set Bad of bad states is equal to

Bad := ∪n∈NBadn for n = |Q|.
Note that, as in the case of the set of secure states, since the game G is

�nite, this procedure ends in at most n = |Q| steps.
Lemma 4.9 above ensures that the set of states Bad is included in SubOptQA.

In addition, we have that there exists a Player A positional strategy optimal
from all states q in its complement Sec(Bad) = Q\Bad, as stated in the lemma
below.

Lemma 4.10 (Proof Page 215). For all ε > 0, there is a positional strategy

sA ∈ SCA such that:

• for all q ∈ Sec(Bad), we have χG [sA](q) = χG [A](q);

• for all q ∈ Bad, we have χG [sA](q) ≥ χG [A](q)− ε.

In particular, it follows that Sec(Bad) ⊆ OptQA.

Proof sketch. To prove this lemma, we de�ne a Player-A positional strategy
sA ∈ SCA, a valuation v ∈ [0, 1]Q of the states, we prove that the strat-
egy sA dominates that valuation and we prove that the only ECs compat-
ible with sA that are not the target have value 0. (Recall that all states
in the target T are assumed self-looping sinks.) This will show that the
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strategy sA guarantees the valuation v by applying Corollary 3.16. Recall
that χG [A] = mG by Proposition 4.7. As we want the strategy sA to be
optimal from all secure states, we consider a partial valuation v such that
v|Sec(Bad) := m|Sec(Bad) (we will de�ne it later on Bad). Then, on all secure
states q ∈ Seci(Bad) \ Seci−1(Bad), we set sA(q) to be an e�cient strategy
w.r.t. Seci−1(Bad) and Bad, i.e. sA(q) ∈ Effq(Seci−1(Bad),Bad). In particular,
the GF-strategy sA(q) is optimal in the game form F(q) w.r.t. the valuation
mG . However, we know that no strategy can be optimal from states in Bad.
Hence, we consider a valuation v that is ε-close to the valuation mG on states
in Bad for a well-chosen ε > 0. This ε is chosen such that, for all q ∈ Sec(Bad),
the value of the GF-strategy sA(q) ∈ Σq

A in the game in normal form 〈F(q), v〉
is at least v(q)3. We can now de�ne the valuation v and the strategy sA on
Bad such that ‖v −mG‖∞ ≤ ε and, for all q ∈ Bad, the value of sA(q) in F(q)

w.r.t. v is greater than v(q): val[〈F(q), v〉](sA(q)) > v(q). Note that this is
where Proposition 4.8 comes into play. The valuation v and the strategy sA
are now completely de�ned on Q. By de�nition, the strategy sA dominates the
valuation v.

The MDP induced by the strategy sA is schematically depicted in Fig-
ure 4.5. The di�erent split arrows appearing in the �gure correspond to the
actions (or columns in the local interactions) available to Player B. Black +-
labeled-split arrows correspond to the actions of Player B that increase the
value of v, i.e. in a state q, such that the expected value w.r.t. to the prob-
abilities chosen by the strategy sA � of the values of the successor states of q
given by v is greater than v(q). For instance, we have v2 < p · v4 + (1− p) · 0,
where the probability p ∈ [0, 1] is set by the strategy sA. On the other hand,
purple =-labeled-split arrows correspond to the actions whose values are equal
to the value of the state. For instance v4 = (1 − p′) · 0 + p′ · 1. We can see
that the only split arrows exiting states in Bad (the red horizontal stripe area)
are black (since val[〈F(q), v〉](sA(q)) > v(q) for all q ∈ Bad). However, from
a secure state q ∈ Sec(Bad) (the green and blue vertical stripe areas) there
are also purple split arrows. Note that, in these secure states q ∈ Sec(Bad),
purple split arrows correspond to the optimal actions RespB

sA(q)(q) at the local
interaction F(q). Furthermore, these split arrows cannot exit the set of secure
states Sec(Bad) since the local strategy sA(q) is not risky.

We can then prove that the strategy sA guarantees the valuation v by
applying Corollary 3.16: since sA locally dominates the valuation v, it remains
to show that all the ECs di�erent that are not in the target T have only states
of value 0. In the �gure, this corresponds to having ECs only in the blue upper
circle and dark green bottom right inner circle areas. In fact, Corollary 3.15
gives that any state q in an EC ensures val[〈F(q), v〉](sA(q)) = v(q), which

3Speci�cally, ε has to be chosen smaller than the smallest di�erence between the
values of optimal actions in RespB

sA(q)(q) and non-optimal action.
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∃ Opt. ? ε-Opt. Optimal SubG. Opt.
Reach No Positional Positional Positional

Table 4.2: The summary of the situation in �nite-state arbitrary concur-
rent reachability games.

implies that no state in Bad can be in an EC. This can be seen in the �gure
between the states of value v1 and v2: because of the black arrow from v1 to
v2, we necessarily have v1 < v2. Then, v2 cannot loop (with probability one)
to v1 since this would imply v2 < v1. As all the split arrows are black for states
in Bad, no EC can occur in this region. Furthermore, the optimal actions in
the secure states always have a non-zero probability to get closer to the target
T . In the �gure, this corresponds to the fact that there is always one tip of a
purple split arrow that goes down in the (Seci(Bad))i∈N hierarchy (since the
strategy sA(q) is progressive): in the example, from v3 to v4 and from v4 to
the target T . Therefore, the only loop (with probability one) that can occur
in the set (Seci(Bad))i∈N is at the target T (recall that all states in the target
T are assumed self-looping). We conclude by applying Corollary 3.16.

Overall, we obtain the theorem below summarizing the results proved in
this section. Note that we state it with arbitrary local interactions since it is
what will be proved in Appendix 4.4.2, however we only argued the standard
case in this subsection.

Theorem 4.11. In an arbitrary �nite-state concurrent reachability game G
without stopping states, we have Bad = SubOptQA and Sec(Bad) = OptQA.
Furthermore, for all ε > 0, there is a Player-A positional strategy sA optimal
from all states in OptQA and ε-optimal from all states in SubOptQA.

Proof. Initially, Bad0 = ∅ ⊆ SubOptQA. Then, by Lemma 4.9, for all i ≥ 0,
we have Badi+1 = Q \ Sec(Badi) ⊆ SubOptQA. In particular, Bad = Badn ⊆
SubOptQA. Furthermore, by Lemma 4.10, there exists a Player-A optimal
strategy from all states in Sec(Bad) = Q \ Bad. Hence, Sec(Bad) ⊆ OptQA.
As we have Q = Bad ] Sec(Bad) = OptQA ] SubOptQA, it follows that:
Bad = SubOptQA and Sec(Bad) = OptQA. Then the result is straightforwardly
deduced from Lemma 4.10.

We summarize the results in reachability games in the theorem below.

Theorem 4.12. In arbitrary �nite-state concurrent reachability games with-

out stopping states:

• there does not always exist optimal strategies, which can be witnessed

by a standard �nite game;

• for all positive ε > 0, there is a positional strategy that is ε-optimal;

203



s, 1− s1

⊥

s2

⊥

. . . sn

⊥

. . .

c1,
[
s1 1/2

]
c2,
[
s2 1/2

]
cn,
[
sn 1/2

]

q0 q1 q2 . . . qn . . .

p1

1− p1

p2

1− p2

pn−1 pn

1− pn

pn+1

1

1/2

1/2

1/2

1/2 1/2

1/2

1/2

Figure 4.6: An in�nite concurrent reachability game C (the Nature states
are omitted). The probabilities pk are such that, for all i ≥ 1, the value
of the state si is χ

C(si) = Πi
k=1pk = (1/2 + 1/2i).

• whenever there exists an optimal strategy, there is one that is positional.

This also holds for subgame optimal strategies.

These results can be seen in Table 4.2.

Proof. • This was originally shown in [10]. We provide an example in the
snow-ball game of De�nition 3.6, with its properties detailed in Propo-
sition 3.8.

• This was �rst shown in [10] with valuable local interactions, non-necessarily
standard ones. Theorem 4.11 above generalizes this results to arbitrary
local interactions.

• The existence of a (subgame) optimal strategy implies that all states are
maximizable. Hence, the same Theorem 4.11 gives that there exists a
positional optimal strategy. Note that it is also subgame optimal since
it is positional.

In�nite arenas. We conclude this section and chapter by showing that
Theorem 4.11 fails in concurrent reachability with in�nitely many states. This
is already known, see for instance [48, Proposition 21]. Hence, we give here
only informal explanations.

In Figure 4.6, we have depicted an in�nite concurrent reachability game
where the state q0 is maximizable but, from q0, Player A does not have any
positional optimal strategy. Indeed, in state s is plugged the snow-Ball game
of De�nition 3.6 � the target is therefore denoted > � whose value is 1 but
Player A does not have an optimal strategy. Then, for all i ≥ 0, the probability
to reach s from si is equal to vi = (1/2 + 1/2i) > 1/2. Hence, if Player A plays
an 0 < εi-optimal strategy in s such that (1− εi) · qi > 1/2, then the value of
the state si is greater than 1/2. In that case, in the states ci, Player B plays
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the second columns obtaining the value 1/2. This induces that the value in
all states qi is 1/2. However, this is only possible if Player A has (in�nite)
memory, since the greater the index i considered, the smaller the value of εi
needs to be to ensure (1− εi) · qi ≥ 1/2 while still ensuring εi > 0 (since Player
A does not have an optimal strategy from s). In particular, for any Player A

positional strategy sA from q0 that is 0 < ε-optimal in s, the value � w.r.t. the
strategy sA � of all states si for indexes i such that (1− ε) · qi < 1/2 is smaller
than 1/2. In which case, Player B plays the �rst column in ci, thus obtaining
a value smaller than 1/2. It follows that the value of all states (qn)n≥0 � w.r.t.
the strategy sA � is smaller than 1/2. Hence, any Player A positional strategy
is not optimal from q0.

4.3 Discussion

The main result of this chapter is Theorem 4.11: in �nite-state reachability
games, for all positive ε > 0, Player A has a positional strategy that is optimal
from every state where it is possible to be, and ε-optimal from all other states.
Such a theorem does not hold in safety games, since playing almost-optimally
may require in�nite choice. However, it may be possible to to prove an adap-
tation of this theorem in safety games. We discuss it further in the discussion
of the next chapter, i.e. in Section 5.4.

In fact, with Theorem 4.11, we can actually show that it is decidable if a
given state is maximizable w.r.t. Player A. The reason why is because in a
standard �nite reachability game, given a pair of positional strategies, one for
each player, it can be encoded in a decidable theory what is the outcome of
the game (i.e. what is the probability to reach the target) with these strategies
from any given state. This decidable theory is the �rst order theory of reals4.
We have formally proved this result in [69, Theorem 30], which is the arXiv
version of [39], on which Section 4.2 of this chapter is based.

4.4 Appendix

4.4.1 . Proof of Proposition 4.8

Proof. First, let us show by induction on k the following property P(k): assume
that there exists a vector w ∈ [0, 1]Q such that w ≤ m, w ≤ g(w) and for
all i ∈ J1, nK, w(i) < g(k)(w)(i). Then, there exists w′ ∈ [0, 1]n such that
w ≤ w′ ≤ m and for all i ∈ J1, nK, w′(i) < g(w′)(i).

The property P(1) straightforwardly holds. Consider now some k ≥ 1

4This corresponds to the set of well-formed formulas in �rst order logic using
existential and universal quanti�ers along with logical connectors between polynomial
(in)equalities. We will use the �rst order theory of the reals in Section 9.2, hence we
will give more details in that section.
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and assume that P(k) holds and assume that there is a w ∈ [0, 1]n such that
w ≤ m, w ≤ g(w) and for all i ∈ J1, nK, w(i) < g(k+1)(w)(i). Note that for all
j ∈ N, we have gj(w) ≤ m. Now, let n= = {i ∈ J1, nK | w(i) = g(k)(i)} and
n↑ = J1, nK \ n= = {i ∈ J1, nK | w(i) < g(k)(w)(i)}. We de�ne:

m= := min
i∈n=

g(k+1)(w)(i)− g(k)(w)(i) = min
i∈n=

g(k+1)(w)(i)− w(i) > 0

and:
m↑ := min

i∈n↑
g(k)(w)(i)− w(i) > 0

Let m := min(m=,m↑) and w′ ∈ [0, 1]n be such that:

• w′|n=
= w|n=

= g(k)(w)
∣∣
n=
;

• w′|n↑ = g(k)(w)
∣∣
n↑
−m/2 ≥ w|n↑ .

With this choice, we have w′ ≤ g(k)(w) ≤ m. Furthermore, we have:

• w ≤ w′;

• g(k)(w)−m/2 ≤ w′.

Furthermore, note that:
∥∥∥g(k+1)(w)− g(g(k)(w)−m/2)

∥∥∥
∞
≤
∥∥∥g(k)(w)− (g(k)(w)−m/2)

∥∥∥
∞

= m/2

Hence, for all i ∈ J1, nK, we have: g(k+1)(w)(i) −m/2 ≤ g(g(k)(w) −m/2)(i).
Now, let us show that w′ ≤ g(w′). Let i ∈ J1, nK:

• if i ∈ n=: w′(i) = w(i) ≤ g(w)(i) ≤ g(w′)(i);

• if i ∈ n↑: w′(i) = g(k)(w)(i)−m/2 ≤ g(k+1)(w)(i)−m/2 ≤ g(g(k)(w)−
m/2)(i) ≤ g(w′)(i).

We used the fact that g(k)(w)(i) ≤ g(k+1)(w)(i), which comes from the fact
that w ≤ g(w), and the fat that g is non-decreasing. Finally, let us show that,
for all i ∈ J1, nK, we have w′(i) < g(k)(w′)(i). Let i ∈ J1, nK.

• if i ∈ n=: w′(i) = w(i) ≤ g(k+1)(w)(i) − m < g(k+1)(w)(i) − m/2 ≤
g(g(k)(w)−m/2)(i) ≤ g(w′)(i) ≤ g(k)(w′)(i);

• if i ∈ n↑: w′(i) = g(k)(w)(i)−m/2 < g(k)(w)(i) ≤ g(k)(w′)(i).

Again, we used the fact that g(w′) ≤ g(k)(w′), which comes from the fact that
w′ ≤ g(w′) and g is non-decreasing. We can then apply P(k) on w′ to exhibit
a vector w′′ ∈ [0, 1]Q such that w ≤ w′ ≤ w′′ ≤ m, w′′ ≤ g(w′′) and for all
i ∈ J1, nK, w′′(i) < g(w′′)(i). Overall, P(k + 1) holds and therefore P(j) holds
for all j ∈ N.
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Consider some positive ε > 0. Let η := mini∈J1,nK m(i) > 0, ι := min(η, ε) >

0 and w ∈ [0, 1]n be the valuation such that for all i ∈ J1, nK, we have
w(i) := m(i) − ι < m(i). First, let us argue that w ≤ g(w). Assume to-
wards a contradiction that there is some i ∈ J1, nK such that g(w)(i) < w(i).
Then, g(w)(i) ≤ g(m)(i) since w ≤ m. Furthermore:

m(i) = g(m)(i) ≤ g(w)(i) + ‖m− w‖ < w(i) + ι = m(i)

Hence the contradiction. In fact, w(i) ≤ g(w)(i) for all i ∈ J1, nK. Thus,
w ≤ g(w). Now, consider the sequence (wn)n∈N de�ned by w0 := w and for
all k ∈ N, wk+1 := g(wk) = g(k+1)(w0). We have, for all k ∈ N, wk ≤ wk+1.
Hence, this sequence converges. In fact, its limit is equal to m (this directly
derives from Kleene �xed-point theorem).

We can conclude that there exists a k ∈ N such that, for all i ∈ J1, nK, we
have w(i) < wk(i) = g(k)(w)(i) since w(i) < m(i). We can then apply P(k)

to obtain a valuation v ∈ [0, 1]n such that w ≤ v ≤ m and for all i ∈ J1, nK,
g(v)(i) > v(i). Furthermore, since ‖m− v‖ ≤ ε, we have ‖m− v‖ ≤ ε.

4.4.2 . Computing the set of maximizable states: formal proofs with
arbitrary game forms

In this subsection, we give a detailed proof of Theorem 4.11. To prove
this theorem, we will adapt the de�nitions of the previous subsection to the
case of arbitrary game forms and prove the same intermediate lemmas, that is
Lemmas 4.9 and 4.10.

Progressive strategies

First, we de�ne the notion of progressive Player-A GF-strategy on arbitrary
game forms, as we cannot use De�nition 4.8 as is. Indeed, there is no underlying
action set in arbitrary game forms, hence, we cannot consider optimal Player-B
actions. However, to grasp the idea behind the generalization of De�nition 4.8,
let us consider a standard game form with in�nitely many Player-B actions.
Even in that case, where the notion of optimal Player-B actions is de�ned, there
are still two issues with De�nition 4.8. First, we should not distinguish between
optimal and non-optimal Player-B actions. The reason why is that Player B

could have non-optimal actions, such that the gap between its values and the
value of the Player-A GF-strategy is arbitrarily close to 0 (which cannot happen
if she has only �nitely many actions). Second, only requiring that, regardless
Player-B GF-strategy, there is a positive probability to reach a good state in Gd

is not enough as Player B could have strategies to ensure that this probability is
arbitrarily close to 0. This is solved by requiring that the in�mum, considered
over all Player-B GF-strategies, of the maximum of both of these quantities
is positive. With such a generalization, we do obtain a de�nition that carries
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over to arbitrary game forms. Before formally de�ning it, let us �rst introduce
two notations we will use throughout this subsection.

De�nition 4.13 (Two Notations). Consider a state q ∈ Q. For all Player-A
GF-strategies σA ∈ Σq

A, Player-B GF-strategies σB ∈ Σq
B and subsets S ⊆ Q of

states, we let:

• vq(σA, σB) := out[〈F(q),mG〉](σA, σB)− val[〈F(q),mG〉](σA) ≥ 0;

• pqS(σA, σB) := %q(σA, σB)[S] = out[〈F(q),1S〉](σA, σB).

De�nition 4.14 (Progressive strategies in arbitrary game forms). Consider

a state q ∈ Q. Given a set of good states Gd ⊆ Q that Player A wants to reach,

the set of progressive strategies Progq(Gd) at state q w.r.t. Gd is de�ned by

Progq(Gd) := {σA ∈ OptA(〈F(q),mG〉) | inf
σB∈ΣqB

max(vq(σA, σB), pqGd(σA, σB)) > 0}

In Page 218, we show that both de�nitions of progressive GF-strategies (i.e.
De�nition 4.8 and De�nition 4.14) coincide on standard �nite game forms.

Risky strategies

As for progressive strategies, De�nition 4.9 of risky strategies in standard game
forms does not carry over to arbitrary game forms. Consider a Player-A GF-
strategies σA ∈ Σq

A at a state q ∈ Q. The idea is that, given a Player-B GF-
strategy, for the GF-strategy σA not to be risky, sub-maximizable states may
be seen with positive probability only if the outcome of the game in normal
with both GF-strategies σA, σB is greater than the value of the GF-strategy σA.
However, it is not su�cient to allow that, for any Player-B GF-strategy σB,
a sub-maximizable is reachable with positive probability as soon as there is
an increase in value with σB, since that increase may be arbitrarily small. In
fact, we need to consider the exact ratio between the gap between the outcome
with both GF-strategies σA, σB and the value of the GF-strategy σA and the
probability to reach the set of states Bd. This is formally de�ned below in
De�nition 4.15.

De�nition 4.15 (Risky strategies in arbitrary game forms). Consider a state

q ∈ Q and a set of bad states Bd ⊆ Q that Player A wants to avoid. For

all Player-A GF-strategies σA ∈ Σq
A, we let PosPrbBd(q, σA) := {σB ∈ Σq

B |
pqBd(σA, σB) > 0} be the set of Player-B GF-strategies that induce, with the

GF-strategy σA, a positive probability to reach the set Bd. The set of risky
strategies Riskq(Gd) at state q w.r.t. Bd is de�ned by

Riskq(Bd) := {σA ∈ OptA(〈F(q),mG〉) | inf
σB∈PosPrbBd(q,σA)

vq(σA, σB)

pqBd(σA, σB)
= 0}

In Page 219, we show that the two de�nitions of risky GF-strategies (i.e.
De�nition 4.9 and De�nition 4.15) coincide on standard �nite game forms.
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Proof of Lemma 4.9

The formal proof of Lemma 4.9 is quite technical and we will need two inter-
mediary lemmas. Contrary to the standard �nite game forms case (recall the
proof of sketch of Lemma 4.9), we cannot de�ne relevant paths as paths that
can occur with positive probability with a Player-B strategy that would play
only optimal actions, since we do not consider this notion with arbitrary game
forms. Instead, we de�ne below relevant successors (and consequently relevant
paths) as successors that Player-B can enforce with positive probability while
ensuring an increase in value arbitrarily small.

De�nition 4.16 (Relevant successors). Consider a state q ∈ Q and a Player-

A GF-strategy σA ∈ Σq
A. A state q′ ∈ Q is a relevant successor of q w.r.t. σA

if there is some positive δ > 0 such that for all ε > 0, there is some σB ∈ Σq
B

such that:

vq(σA, σB) ≤ ε and pq{q′}(σA, σB) ≥ δ
We denote by RelSuccq(σA) ⊆ Q the set of all relevant successors of q w.r.t.

σA ∈ Σq
A.

Then, given a Player-A strategy sA ∈ SCA, we let RelPath(sA) ⊆ Q+ denote

the set of relevant paths w.r.t. sA, i.e. the set of �nite sequences of states with

only relevant successors:

RelPath(sA) := {π ∈ Q+ | ∀1 ≤ i < |π| − 1, πi ∈ RelSuccπi−1(sA(π≤i−1))}

We also de�ne the set of �nite paths after which a Player-A strategy does
not play either an optimal GF-strategy nor a non-risky GF-strategy (called a
problematic path).

De�nition 4.17 (Problematic paths). Given a set of states Bd ⊆ Q that

Player A wants to avoid, for all Player-A strategies sA ∈ SCA, we denote by

Prbl(sA) ⊆ Q+ the set of problematic paths, Prbl(sA,Bd) := {π ∈ Q+ | sA(π) /∈
OptA(〈F(πlt),mG〉) \ Riskπlt(Bd)}.

In fact, a Player-A strategy cannot be optimal after any problematic path,
as stated in Lemma 4.13 below.

Lemma 4.13. Assume that a set of states Bd ⊆ Q is such that Bd ⊆
SubOptQA. Consider a Player-A strategy sA. For all π ∈ Prbl(sA,Bd), the

residual strategy s
tl(π)
A is not optimal from πlt.

Proof. By Lemma 3.10, this holds as soon as sA(π) /∈ OptA(〈F(πlt),mG〉). As-
sume now that sA(π) ∈ Riskπlt(Bad). For all states q ∈ Bad, we let εq > 0 be
such that:

εq := χG [A](q)− χG [sπA](q)

Note that εq > 0 since Bd ⊆ SubOptQA. Let ε = minq∈Bd εq > 0 since Q is
�nite. We now de�ne a Player-B strategy sB ∈ SCB as follows:
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Figure 4.7: An illustration of the �nite path π from the proof of
Lemma 4.14.

• Since sA(π) ∈ Riskπlt(Bad) there is some σB ∈ PosPrbBd(q, sA(π)) such
that vπlt (sA(π),σB)

p
πlt
Bd (sA(π),σB)

≤ ε
3 . We set sB(πlt) := σB.

• We let x := ε
3 · p

πlt
Bd(σA, σB). For all q ∈ Q, the residual strategy sπltB

is chosen so that it is x-optimal against the strategy sA, that is for all

q ∈ Q, we have PsπA ,s
πlt
B

C,q [Reach] ≤ χG [sπA](q) + x

We obtain, denoting p := Ps
tl(π)
A ,sB
C,πlt [Reach]:

p =
∑

q∈Q
PsA(π),sB(πlt)
C (πlt, q) · PsπA ,s

πlt
B

C,q [Reach]

≤
∑

q∈Q
out[〈F(πlt), q〉](sA(π), sB(πlt)) · χG [sπA](q) + x by Def. 1.28

≤
∑

q∈Bd
out[〈F(πlt), q〉](sA(π), σB) · (χG [A](q)− ε)

+
∑

q∈Q\Bd

out[〈F(πlt), q〉](sA(π), σB) · χG [A](q) + x by Def. of sB

= out[〈F(πlt), χG [A]〉](sA(π), σB)− pπltBd(sA(π), σB) · ε+ x by Def. of pπltBd

= vπlt(sA(π), σB) + val[〈F(πlt), χG [A]〉](sA(π))− pπltBd(sA(π), σB) · 2ε

3
by Def. of vπlt

≤ vπlt(sA(π), σB) + χG [A](πlt)− pπltBd(sA(π), σB) · 2ε

3
by Prop. 3.9

≤ χG [A](πlt)− pπltBd(sA(π), σB) · ε
3

by Def. of σB

That is, Ps
tl(π)
A ,sB
C,πlt [Reach] < χG [A](πlt) since p

πlt
Bd(σA, σB) > 0 as σB ∈ PosPrbBd(q, σA).

Therefore, the residual strategy s
tl(π)
A is not optimal from πlt.

Furthermore, as soon as for a Player-A strategy, there is a relevant path
w.r.t. that strategy that is problematic, then this strategy is not optimal
(given that the set of states that Player A wants to avoid is a subset of sub-
maximizable states).
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Lemma 4.14. Assume that a set of states Bd ⊆ Q is such that Bd ⊆
SubOptQA. Consider a Player-A strategy sA and a state q0 ∈ Q \ T . As-

sume that Prbl(sA,Bd)∩RelPath(sA)∩ q0 · (Q \ T )∗ 6= ∅. Then, the strategy sA
is not optimal from q0.

Proof. Consider a path π ∈ Prbl(sA,Bd) ∩ RelPath(sA) ∩ q0 · (Q \ T )∗. Let
n := |π|. Recall De�nition 4.16: for all 0 ≤ i ≤ n − 2, we let ri > 0 be such
that, for all θ > 0, there is some σB ∈ Σπi

B such that:

vπi(sA(π≤i), σB) ≤ θ and pπi{πi+1}(sA(π≤i), σB) ≥ ri (4.1)

Let r := Πn−2
i=0 ri > 0. Since, by Lemma 4.13, the residual strategy s

tl(π)
A =

s
π≤n−2

A is not optimal from πlt = πn−1, we let ε := χG [A](πn−1)−χG [s
π≤n−2

A ](πn−1) >

0. Let also η := ε·r
(n−1)·3 > 0 and x := ε·r

3 > 0. For all 0 ≤ i ≤ n − 2, we let

σiB ∈ Σ
πi−1

B as in Equation 4.1 for θ := η. We can now de�ne a Player-B
strategy sB ∈ SCB in the following way:

• for all 0 ≤ i ≤ n− 2, we set sB(π≤i) := σiB;

• for all 0 ≤ i ≤ n − 3, the residual strategy s
π≤i
B is chosen x-optimal

against sA from all states but πi+1: that is, for all q ∈ Q \ {πi+1}, we
have: Ps

π≤i
A ,s

π≤i
B

C,q [Reach] ≤ χG [s
π≤i
A ](q) + x ≤ χG [A](q) + x.

• the residual strategy s
π≤n−2

B is chosen x-optimal against sA: that is, for

all q ∈ Q: Ps
π≤n−2
A ,s

π≤n−2
B

C,q [Reach] ≤ χG [s
π≤n−2

A ](q) + x ≤ χG [A](q) + x.

An illustration of the paths and some quantities involved in this proof is given
in Figure 4.7. Roughly, this can read as follows. From π0, there is probability
at least r0 to go to π1. If another state is reached, then the Player-B strategy
is chosen so that the value from there increases of at most x compared to
the Player-A value of the state. Furthermore, by the choice of the strategy
sB(π0), the expected Player-A value of the successors of π0 has increased by
at most η w.r.t. the Player-A value of π0. This is repeated all along the path
until πlt = πn−1 is reached, from which we know that the Player-A strategy is
not optimal. (The value of the Player-A strategy at πlt is equal to the value
of the Player-A value of πlt minus ε.) These quantities are chosen so that
r · ε > x + (n − 1) · η where r = Πn−2

0 ri, i.e. the expected loss in the value
� due to the Player-A strategy not being optimal at πlt is greater then the
increase in the value due to how the Player-B strategy sB is de�ned.

Now let us show the equation below, for all 0 ≤ i ≤ n− 2:
∑

q∈Q
PsA,sB
C,π0

(π1...i · q) · χG [A](q) ≤ η + PsA,sB
C,π0

(π1...i) · χG [A](πi) (4.2)

where, π1...i refers to the �nite path π1 · · ·πi � it is equal to ε when i = 0.
Informally, this equation states that the expected value of the successors of πi
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is at most the Player-A value of the state πi plus η, which is the margin in the
increase of value that we chose for σiB (since it was chosen from Equation 4.1
with θ = η).

Let 0 ≤ i ≤ n− 2. Letting p :=
∑

q∈Q PsA,sB
C,π0

(π1...i · q) · χG [A](q), we have:

p = PsA,sB
C,π0

(π1...i) ·


∑

q∈Q
PsA(π≤i),sB(π≤i)
C (πi, q) · χG [A](q)




= PsA,sB
C,π0

(π1...i) ·


∑

q∈Q
out[〈F(πi), q〉](sA(π≤i), sB(π≤i)) · χG [A](q)




= PsA,sB
C,π0

(π1...i) · out[〈F(πi), χG [A]〉](sA(π≤i), sB(π≤i))

= PsA,sB
C,π0

(π1...i) · out[〈F(πi), χG [A]〉](sA(π≤i), σ
i
B)

= PsA,sB
C,π0

(π1...i) · (val[〈F(πi), χG [A]〉](sA(π≤i)) + vπi(sA(π≤i), σ
i
B))

≤ PsA,sB
C,π0

(π1...i) · val[〈F(πi), χG [A]〉][A] + η

= PsA,sB
C,π0

(π1...i) · χG [A](πi) + η

where the last equality comes from Proposition 3.9. We do obtain Equa-
tion 4.2. Now, for the readability of the series of (in)equalities below, we let
p := PsA,sB

C,π0
[Reach] and, for all 0 ≤ i ≤ n− 1 and q ∈ Q, pi(q) := PsA,sB

C,π0
(π1...i · q)
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and pi := PsA,sB
C,π0

(π1...i). We have:

p =
n−2∑

i=0

∑

q∈Q\{πi+1}

pi(q) · Ps
π≤i
A ,s

π≤i
B

C,q [Reach] + pn−1 · Ps
π≤n−2
A ,s

π≤n−2
B

C,πn−1
[Reach]

≤
n−2∑

i=0

∑

q∈Q\{πi+1}

pi(q) · (χG [A](q) + x) + pn−1 · (χG [s
π≤n−2

A ](πn−1) + x)

=

n−2∑

i=0

∑

q∈Q\{πi+1}

pi(q) · χG [A](q) + pn−1 · (χG [A](πn−1)− ε) + x (0)

=
n−3∑

i=0

∑

q∈Q\{πi+1}

pi(q) · χG [A](q) +
∑

q∈Q
pn−2(q) · χG [A](q) + x− ε · pn−1 (1)

≤
n−3∑

i=0

∑

q∈Q\{πi+1}

pi(q) · χG [A](q) + pn−2 · χG [A](πn−2) + η + x− ε · pn−1 (1′)

=

n−4∑

i=0

∑

q∈Q\{πi+1}

pi(q) · χG [A](q) +
∑

q∈Q
pn−3(q) · χG [A](q) + η + x− ε · pn−1 (2)

≤
n−4∑

i=0

∑

q∈Q\{πi+1}

pi(q) · χG [A](q) + pn−3 · χG [A](πn−3) + 2 · η + x− ε · pn−1 (2′)

· · ·
≤ p0 · χG [A](π0) + (n− 1) · η + x− ε · pn−1

= χG [A](π0) +
ε · r

3
+
ε · r

3
− ε · pn−1

The equalities from (0) to (1) and from (1′) to (2) are obtained by realizing
that pn−1 = pn−2(πn−1) and pn−2 = pn−3(πn−2). Furthermore, the inequalities
from (1) to (1′) and from for (2) to (2′) are obtained by applying Equation 4.2.
This is by iterating the application of this equation that we obtain the last
inequality. In addition, we have:

pn−1 = PsA,sB
C,q0 (π) = Πn−2

i=0 P
sA(π≤i),sB(π≤i)
C (πi, πi+1)

= Πn−2
i=0 p

πi
{πi+1}(sA(π≤i), σ

i
B) ≥ Πn−1

i=0 ri = r

Overall, we obtain:

PsA,sB
C,π0

[Reach] ≤ χG [A](π0)− ε · r
3

< χG [A](π0)

Hence, the Player-A strategy sA is not optimal from π0 = q0.

We can now proceed to the proof of Lemma 4.9.
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Proof. Consider a state q0 ∈ Q \ Sec(Bd) and a Player-A strategy sA. Let
u := χG [A](q0) > 0. If we have Prbl(sA,Bd) ∩ RelPath(sA) ∩ q0 · (Q \ T )∗ 6= ∅,
then Lemma 4.14 gives that the strategy sA is not optimal from q. Hence, let
us assume that Prbl(sA,Bd) ∩ RelPath(sA) ∩ q0 · (Q \ T )∗ = ∅.

We let Path(sA) := {ρ ∈ (Q \ Sec(Bd))∗ | q0 · ρ ∈ RelPath(sA)}. We also
consider a sequence (εn)n≥1 of positive reals such that

∑
n≥1 εn < u. Let

us de�ne a Player-B strategy sB ∈ SCB, by induction on i ∈ N, on paths in
Qi ∩ Path(sA) starting at state q0 ensuring:

PsA,sB
C,q0 [Qi \ Path(sA)] ≤

i∑

n=1

εn

Informally, this means that Player B is able to ensure that, with very large
probability, only relevant non-secure states are seen. Hence, Player B will be
able to ensure that the probability to reach the target from q0 is less than u.

This straightforwardly holds for i = 0 since ε ∈ Path(sA). Assume now
that this holds for some i ∈ N. Let ρ ∈ Qi ∩Path(sA) and π := q0 · ρ. The goal
is to de�ne a Player-B GF-strategy σB ∈ Σπlt

B such that:

pπltSec(Bd)∪Q\RelSuccπlt (sA(π))(sA(π), σB) ≤ εi+1 (4.3)

Let k := |Q \ RelSuccπlt(sA(π))| + 1 ∈ N. For all q ∈ Q \ RelSuccπlt(sA(π)),
there is some εq > 0 such that, for all σB ∈ Σπlt

B , if vπlt(sA(π), σB) ≤ εq then
pπlt{q}(σA, σB) < εi+1

k . Let ε := minq∈Q\RelSuccπlt (sA(π)) εq.
Furthermore, since π ∈ RelPath(sA)∩ q0 · (Q \ T )∗ (since T ⊆ Sec(Bd)), we

have by assumption π /∈ Prbl(sA,Bd). That is, sA(π) ∈ OptA(〈F(πlt), χG [A]〉) \
Riskπlt(Bd). However, since πlt ∈ Q \ Sec(Bd), it must be that sA(π) /∈
Progπlt(Sec(Bd)). Hence,

inf
σB∈ΣB(F(πlt))

max(vπlt(sA(π), σB), pπltSec(Bd)(sA(π), σB)) = 0

We can therefore consider some σB ∈ Σπlt
B such that:

max(vπlt(sA(π), σB), pπltSec(Bd)(sA(π), σB)) ≤ min(ε,
εi+1

k
)

In particular, this GF-strategy ensures that, we have pπltSec(Bad)(sA(π), σB) ≤
εi+1

k . Furthermore, for all q ∈ Q \ RelSuccπlt(sA(π)), by de�nition of εq and ε,
we also have pπlt{q}(sA(π), σB) ≤ εi+1

k . For such a GF-strategy σB we have:

pπltSec(Bd)∪Q\RelSuccπlt (sA(π))(sA(π), σB) ≤ pπltSec(Bd)(sA(π), σB)

+ pπltQ\RelSuccπlt (sA(π))(sA(π), σB)

≤ εi+1

k
+

∑

q∈Q\RelSuccπlt (sA(π))

pπltq (sA(π), σB)

≤ εi+1

k
+

∑

q∈Q\RelSuccπlt (sA(π))

εi+1

k
= εi+1
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We obtain Equation 4.3. We set sB(π) := σB. This is done for all paths
π := q0 · ρ for ρ ∈ Qi ∩ Path(sA). We obtain:

PsA,sB
C,q0 [Qi+1 \ Path(sA)] = PsA,sB

C,q0 [Q≤i \ Path(sA)]

+
∑

ρ∈Qi∩Path(sA)

∑

q∈Sec(Bd)

∪Q\RelSuccπlt
sA(π)

PsA,sB
C,q0 (ρ) · pρltq (sA(q0 · ρ), sB(q0 · ρ))

≤
i∑

n=1

εn +
∑

ρ∈Qi∩Path(sA)

PsA,sB
C,q0 (ρ) · εi+1 =

i+1∑

n=1

εn

Hence, the property holds at index i+ 1. In fact, it holds for all i ∈ N. With
such a strategy sB, we have:

PsA,sB
C,q0 [Q∗ \ Path(sA)] ≤

∞∑

n=1

εn < u

Furthermore, since Path(sA) ⊆ (Q \ Sec(Bd))∗ and T ⊆ Sec(Bd), we have

PsA,sB
C,q0 [Reach ∩ Path(sA)ω] = 0

That is:

PsA,sB
C,q0 [Reach] ≤ PsA,sB

C,q0 [Q∗ \ Path(sA)] < u = χG [A](q)

That is, the Player-A strategy sA is not optimal from q ∈ Q \ Sec(Bd).

Proof of Lemma 4.10

The idea of the proof of this lemma is close to the informal ideas given as proof
sketch. However, the exact details are quite technical, although we do not need
intermediate lemmas to establish this result.

Proof. Let ε > 0. We de�ne a positional Player-A strategy sA ∈ SCA along with
a valuation of states v : Q → [0, 1]. First, we let v|Sec(Bad) := mG |Sec(Bad).
For all q ∈ Sec(Bad), if mG(q) = 0, we de�ne sA(q) arbitrarily. It is also the
case is q ∈ T , since all states in T are assume self-looping sinks. Otherwise,
we let iq ∈ N be the least integer such that q ∈ Seciq(Bad). We let sA(q) ∈
Effq(Seciq−1(Bad),Bad). Since sA(q) /∈ Riskq(Bad), it follows that:

eq := inf
σB∈PosPrbBad(q,sA(q))

vq(sA(q), σB)

pqBad(sA(q), σB)
> 0

We then let e := minq∈Sec(Bad) eq > 0. We use Proposition 4.8 to de�ne
the valuation v on the states in Bad. Indeed, since the operator ∆G is non-
decreasing and 1-Lipschitz (by Lemma 4.6), it follows that we can de�ne v|Bad
such that:
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• mG |Bad −min(e, ε) ≤ v|Bad ≤ v|mG ;

• for all q ∈ Bad, we have v(q) < ∆G(v)(q).

For all q ∈ Bad, since ∆G(v)(q) = val[〈F(q), v〉](A), we can then de�ne sA(q) ∈
Σq
A such that v(q) < val[〈F(q), v〉](sA(q)).
This concludes the de�nitions of v and sA. Let us show that the strategy sA

guarantees the valuation v by applying Corollary 3.14. First, let us show that
the strategy sA dominates the valuation v. This holds for all states in Bad.
Consider now some state q ∈ Sec(Bad) and Player-B GF-strategy σB ∈ Σq

B.
There are two possibilities:

• Assume that σB /∈ PosPrbBad(q, sA(q)), that is we have pqBad(sA(q), σB) =

%q(sA(q), σB)[Bad] = 0. In that case, we have:

out[〈F(q), v〉](sA(q), σB) =
∑

q′∈Q
%q(sA(q), σB)(q′) · v(q′)

=
∑

q′∈Sec(Bad)

%q(sA(q), σB)(q′) · v(q′)

=
∑

q′∈Sec(Bad)

%q(sA(q), σB)(q′) ·mG(q′)

= out[〈F(q),mG〉](sA(q), σB) ≥ val[〈F(q),mG〉](sA(q))

= val[〈F(q),mG〉](A) = ∆(mG)(q) = mG(q) = v(q)

Note that we have val[〈F(q),mG〉](sA(q)) = val[〈F(q),mG〉](A) because
sA(q) ∈ OptA(val[〈F(q),mG〉]).

• Assume now that σB ∈ PosPrbBad(q, sA(q)). This implies

vq(sA(q), σB) ≥ e · pqBad(sA(q), σB)

with

vq(sA(q), σB) = out[〈F(q),mG〉](sA(q), σB)− val[〈F(q),mG〉](sA(q)) ≥ 0

and val[〈F(q),mG〉](sA(q)) = mG(q) = v(q). Therefore, we have:

out[〈F(q), v〉](sA(q), σB) =
∑

q′∈Q
%q(sA(q), σB)(q′) · v(q′)

≥
∑

q′∈Sec(Bad)

%q(sA(q), σB)(q′) ·mG(q′)

+
∑

q′∈Bad
%q(sA(q), σB)(q′) · (mG(q′)−min(e, ε))

= out[〈F(q),mG〉](sA(q), σB)− pqBad(sA(q), σB) ·min(e, ε)

≥ val[〈F(q),mG〉](sA(q)) + pqBad(sA(q), σB) · (e−min(e, ε))

≥ val[〈F(q),mG〉](sA(q)) = v(q)
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In both cases, we have out[〈F(q), v〉](sA(q), σB) ≥ v(q). As this holds for all
q ∈ Sec(Bad), it follows that the strategy sA dominates the valuation v.

Let us now consider the second condition of Corollary 3.14
By de�nition of the strategy sA, for all q ∈ Bad, we have dq := val[〈F(q), v〉](sA(q))−

v(q) > 0. We let d := minq∈Bad dq > 0. Furthermore, for all u ∈ v[Q], we let
Qv>u := {q ∈ Q | v(q) > u} and Qv≤u := Q \ Qv>u. Consider now some state
q ∈ Bad. Let u := v(q). For any Player-B GF-strategy σB ∈ Σq

B, we have:

u+ d ≤ out[〈F(q), v〉](sA(q), σB) =
∑

q′∈Q
%q(sA(q), σB)(q′) · v(q′)

≤
∑

q′∈Qv>u

%q(sA(q), σB)(q′) +
∑

q′∈Qv≤u

%q(sA(q), σB)(q′) · u

= pqQv>u
(sA(q), σB) + (1− pqQv>u(sA(q), σB)) · u

= pqQv>u
(sA(q), σB) · (1− u) + u

Hence, pqQv>u(sA(q), σB) ≥ d
1−u ≥ d > 0. This holds for all Player-B GF-

strategies σB ∈ Σq
B and state q ∈ Bad. Furthermore, recall De�nition 1.28: for

all q ∈ Bad, letting u := v(q), Player-B GF-strategies σB ∈ Σq
B and Player-B

strategies sB ∈ SCB such that sB(q) = σB, we have:

PsA,sB
C,q [Qv>u] = pqQv>u

(sA(q), σB) ≥ d

Hence, for any Player-B strategy with the Player-A strategy sA, if the state
q ∈ Bad is seen in�nitely often, almost surely, the set Qv>u is seen in�nitely
often almost-surely. Furthermore, by Corollary 3.13, almost-surely all states
visited in�nitely often have the same values w.r.t. v. That is, for any Player-B
strategy, almost-surely the state q ∈ Bad is seen only �nitely often. Note that,
alternatively, we could have invoked Corollary 3.15.

Let us now deal with the states in Sec(Bad). Let q ∈ Sec(Bad)\(T∪v−1[0]).
We have q ∈ Seciq(Bad) (with iq ≥ 1) and sA(q) ∈ Effq(Seciq−1(Bad),Bad).
Therefore, sA(q) ∈ Progq(Seciq−1(Bad)). Hence,

y := inf
σB∈ΣqB

max(vq(sA(q), σB), pqSeciq−1(Bad)(sA(q), σB)) > 0

As above, for all σB ∈ Σq
B, if v

q(sA(q), σB) ≥ y, then pqQv>u(sA(q), σB) ≥ y > 0.

Fix a Player-B strategy sB ∈ SCq . We let IncValq(y) := {ρ ∈ Q+ | vq(sA(q), sB(ρ·
q)) ≥ y} and Progq(y) := {ρ ∈ Q+ | pqSeciq−1(Bad)(sA(q), σB) ≥ y}. As for the

states in Bad, we have that if the set IncValq(y) occurs in�nitely often then
almost-surely the state q is seen in�nitely often and almost-surely the set Qv>u
is seen in�nitely often. Furthermore, as mentioned above for states in Bad, by
Corollary 3.13, almost-surely all states visited in�nitely often have the same
values w.r.t. v. Hence the set IncValq(y) almost-surely is seen �nitely often.

217



Therefore, the de�nition of y implies that, if q is seen in�nitely often, then
so is the set Progq(y) almost-surely. Furthermore, recall De�nition 1.28: for
all Player-B GF-strategies σB ∈ Σq

B and Player-B strategies sB ∈ SCB such that
sB(q) = σB, we have:

PsA,sB
C,q [Seciq−1(Bad)] = pqSeciq−1(Bad)(sA(q), σB)

Therefore, if the set Progq(y) occurs in�nitely often, then almost-surely the
set Seciq−1(Bad) also occurs in�nitely often. Overall, we obtain that if the
state q is seen in�nitely often, then the set Seciq−1(Bad) is also seen in�nitely
often almost-surely. This holds for all q ∈ Sec(Bad) \ (T ∪ v−1[0]). Hence,
it follows that if the game does not settle in Qv0, then almost-surely the set
Sec0(Bad) = T is seen in�nitely often. That is, Player A wins the reachability
game. Hence, the second condition of Corollary 3.14 is satis�ed by the strategy
sA w.r.t. the valuation v. We can therefore apply Corollary 3.14 to obtain that
the strategy sA guarantees the valuation v.

The two de�nitions of progressive GF-strategies coincide

Lemma 4.15. Consider a standard �nite concurrent reachability game G.
Then, for all sets of good states Gd ⊆ Q that Player A wants to reach, for all

q ∈ Q, a Player-A GF-strategy σA ∈ Σq
A is progressive w.r.t. Gd in the sense of

De�nition 4.8 if and only if it is in the sense of De�nition 4.14.

Proof. Recall that, since the standard game G is �nite, then the set of Player-B
actions ActqB at state q is �nite. Furthermore, in both de�nitions of progressive,
the GF-strategy considered is optimal in game in normal form 〈F(q),mG〉.

Now, consider a Player-A GF-strategy σA ∈ Σq
A and assume that it is

progressive w.r.t. Gd in the sense of De�nition 4.8. For all Player-B ac-
tions b ∈ RespB

σA
(q), we let pb :=

∑
a∈Sp(σA) σA(a) · %q(a, b)[Gd] > 0 and

p := minb∈RespBσA (q) pb > 0. Furthermore, for all Player-B actions b ∈ ActqB \
RespB

σA
(q), we let vb := vq(σA, b) > 0 (in the sense of De�nition 4.13) and

v := minb∈ActqB\Resp
B
σA

(q) vb > 0. We let δ := min(v, p)/2. Now, consider any

Player-B GF-strategy σB ∈ D(ActqB). There are two possibilities:

• Assume that σB[RespB
σA

(q)] ≥ 1
2 . Then, we have:

pqGd(σA, σB) = %q(sA(q), σB)[Gd]

≥
∑

b∈RespBσA (q)

σB(b) ·
∑

a∈Sp(σA)

σA(a) · %q(a, b)[Gd]

≥
∑

b∈RespBσA (q)

σB(b) · p

= σB[RespB
σA

(q)] · p ≥ p/2 ≥ δ
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• Assume now that σB[RespB
σA

(q)] < 1
2 . In that case, σB[ActqB\RespB

σA
(q)] ≥

1
2 . Hence:

vq(σA, σB) = out[〈F(q),mG〉](σA, σB)− val[〈F(q),mG〉](σA)

=
∑

b∈ActqB\Resp
B
σA

(q)

σB(b) · (out[〈F(q),mG〉](σA, b)− val[〈F(q),mG〉](σA))

+
∑

b∈RespBσA (q)

σB(b) · (out[〈F(q),mG〉](σA, b)− val[〈F(q),mG〉](σA))

≥
∑

b∈ActqB\Resp
B
σA

(q)

σB(b) · vq(σA, b) ≥
∑

b∈ActqB\Resp
B
σA

(q)

σB(b) · v

= σB[ActqB \ RespB
σA

(q)] · v ≥ v/2 ≥ δ

That is, in any case, we have max(pqGd(σA, σB), vq(σA, σB)) ≥ δ > 0. That is,
the Player-A GF-strategy is progressive w.r.t. Gd in the sense of De�nition 4.8.

Assume now that the GF-strategy σA ∈ Σq
A is not progressive in the sense of

De�nition 4.8. Consider some Player-B action b ∈ RespB
σA

(q) such that, for all
a ∈ Sp(σA), we have %q(a, b)[Gd] = 0. Then, we have out[〈F(q),mG〉](σA, b) =

val[〈F(q),mG〉](σA), hence vq(σA, b) = 0. Furthermore, we have pqGd(σA, b) =∑
a∈Sp(σA) %q(σA, b)[Gd] = 0. That is, max(vq(σA, σB), pqGd(σA, b)) = 0. There-

fore the player-A GF-strategy σA is not progressive in the sense of De�ni-
tion 4.14.

The two de�nitions of risky GF-strategies coincide

Lemma 4.16. Consider a standard �nite concurrent reachability game G.
Then, for all sets of bad states Bd ⊆ Q that Player A wants to avoid, for all

q ∈ Q, a Player-A GF-strategy σA ∈ Σq
A is risky w.r.t. Bd in the sense of

De�nition 4.9 if and only if it is in the sense of De�nition 4.15.

Proof. As for the case of progressive strategies, recall that, since the standard
game G is �nite, then the set of Player-B actions ActqB at state q is �nite.
Furthermore, in both de�nitions of risky, the GF-strategy considered is optimal
in game in normal form 〈F(q),mG〉.

Assume now that the GF-strategy σA ∈ Σq
A is risky in the sense of De�ni-

tion 4.8. Consider some Player-B action b ∈ RespB
σA

(q) such that there is some
ab ∈ Sp(σA) such that %q(ab, b)[Bd] > 0. Then, we have out[〈F(q),mG〉](σA, b) =

val[〈F(q),mG〉](σA), hence vq(σA, b) = 0. Furthermore, pqBd(σA, b) ≥ %q(ab, b)[Bd] >

0. That is, σB ∈ PosPrbBd(q, σA) and vq(σA,b)
pqBd(σA,b))

= 0. Therefore the Player-A

GF-strategy σA is risky in the sense of De�nition 4.14.
Assume now that the GF-strategy σA ∈ Σq

A is not risky in the sense of
De�nition 4.8. Hence, for all Player-B actions b ∈ RespB

σA
(q) and for all a ∈

Sp(σA), we have %q(a, b)[Bd] = 0. For all Player-B actions b ∈ ActqB\RespB
σA

(q),
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we let pb := pqBd(σA, b) =
∑

a∈Sp(σA) %q(a, b)[Bd] and vb := vq(σA, b) > 0. Let
p := maxb∈ActqB\Resp

B
σA

(q) pb and v := minb∈ActqB\Resp
B
σA

(q) vb > 0. If p = 0, then

for all Player-B GF-strategies σB ∈ D(ActqB), we have pqBd(σA, b) = 0, hence
PosPrbBd(q, σA) = ∅ and therefore σA is not risky in the sense of De�nition 4.15.
Assume now that p > 0. We let δ := v

p . Consider any Player-B GF-strategy
σB ∈ D(ActqB). We have:

pqBd(σA, σB) =
∑

b∈RespBσA (q)

σB(b) ·
∑

a∈Sp(σA)

%q(a, b)[Bd]

+
∑

b∈ActqB\Resp
B
σA

(q)

σB(b) ·
∑

a∈Sp(σA)

%q(a, b)[Bd]

=
∑

b∈ActqB\Resp
B
σA

(q)

σB(b) ·
∑

a∈Sp(σA)

%q(a, b)[Bd]

≤
∑

b∈ActqB\Resp
B
σA

(q)

σB(b) · p = σB[ActqB \ RespB
σA

(q)] · p

Furthermore:

vq(σA, σB) = out[〈F(q),mG〉](σA, σB)− val[〈F(q),mG〉](σA)

=
∑

b∈ActqB\Resp
B
σA

σB(b) · (out[〈F(q),mG〉](σA, b)− val[〈F(q),mG〉](σA))

+
∑

b∈RespBσA (q)

σB(b) · (out[〈F(q),mG〉](σA, b)− val[〈F(q),mG〉](σA))

=
∑

b∈ActqB\Resp
B
σA

(q)

σB(b) · vq(σA, b) ≥
∑

b∈ActqB\Resp
B
σA

(q)

σB(b) · v

= σB[ActqB \ RespB
σA

(q)] · v

Hence, whenever σB ∈ PosPrbBd(q, σA), we have σB[ActqB \ RespB
σA

(q)] > 0 and

therefore vq(σA,σB)
pqBd(σA,σB)

≥ v
p > 0. That is, the GF-strategy σA is not risky.
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5 - Büchi, co-Büchi and parity objectives

In this chapter, we study �nite-state concurrent games with arbitrary lo-
cal interactions, with Büchi, co-Büchi and parity objectives. Contrary to the
previous chapter, we now consider games with stopping states. Note that in
this chapter, whenever we exhibit a game to witness a negative result, we will
invoke Corollary 3.38. Indeed, thanks to this result, it su�ces to show that po-
sitional strategies are not enough to achieve a value to show that �nite choice
strategies, and in particular �nite-memory strategies, cannot achieve it either.

We �rst focus on Büchi games. The positive result we show is that, as for
reachability games, whenever there is an optimal strategy, there is one that is
positional (which is therefore also subgame optimal). This is a generalization
of what we did in [40] with standard �nite local interactions. We also exhibit
a standard �nite concurrent game where playing almost-optimally requires
in�nite choice. Note that this game was already used in the litterature to
show that in�nite memory is needed to play almost-optimally. We can then
complete the picture of how arbitrary concurrent Büchi games behave, see
Theorem 5.5.

We then consider co-Büchi games. The main positive result for this objec-
tive is that, with standard �nite game forms, positional strategies are enough
to be almost-optimal. This was proved in [50, Theorem 3.1]. It is an open
question if this still holds in games with arbitrary game forms which are max-
imizable w.r.t. Player A. The other positive result is that playing subgame
optimally in standard �nite games can be done positionally. This is a direct
consequence of Corollary 3.23. As for the negative results, we show that in�nite
choice is required for playing almost-optimally with arbitrary game forms � it
is a direct corollary of the fact that this is already the case for safety objectives.
We also show that playing optimally in standard �nite games requires in�nite
choice. This is exempli�ed by a co-Büchi game we have already discussed twice
in this dissertation. We also exhibit an arbitrary concurrent game, with local
interactions maximizable w.r.t. Player A, where playing subgame optimally
requires in�nite choice. Overall, all the results summarizing how arbitrary
concurrent co-Büchi games behave are gathered in Theorem 5.13.

Finally, we consider parity objectives with at least 3 colors. These objec-
tives inherit all the negative results of the objectives studied before in this
chapter. In fact, it only remains to exhibit a standard �nite game where play-
ing subgame optimally requires in�nite choice. This example is already known,
and we have already brie�y discussed it in Subsection 3.4.2. The results are
gathered in Theorem 5.15.

Seeing �nitely and in�nitely often a set of states. Before diving into
how each objective behaves, we recall how to write with union and intersection

221



q0,

[
q0 >
> ⊥

] >

⊥

0

0

1

Figure 5.1: A deterministic standard concurrent Büchi game G =
〈C,Buchi〉 where Player A wants to visit the state > in�nitely often.

the event that a set of states is seen (in)�nitely often. This will be particularly
useful in this section when considering the probability of such events.

Given a set of states Q and subset of states T ⊆ Q, the event where the
set of states T is seen in�nitely often can be written as follows:

(Q∗ · T )ω =
⋂

n∈N
(Q∗ · T )n

Symmetrically, the event where the set of states T is seen only �nitely often
can be written as follows: ⋃

n∈N
Qn · (Q \ T )ω

5.1 Büchi objectives

Let us �rst deal with Büchi objectives. Recall that we only consider games
with �nitely many states. Since there does not always exist optimal strategies
in reachability games � even when all local interactions are standard �nite
� it is also the case for Büchi games. Furthermore, we have shown in the
previous chapter that almost-optimal strategies can always be found among
positional strategies in reachability games, without any assumptions on the
local interactions. This does not hold in Büchi games, since in general in�nite-
choice strategies may be required to be almost-optimal. We provide a Büchi
game witnessing this fact below in Figure 5.1 and De�nition 5.1. Note that this
Büchi game is very close to the snow ball reachability game of Figure 3.1. The
only di�erence is that the target > that Player A wants to visit in�nitely often
loops back on q0, instead of self-looping. In addition, note that this example
is already known and comes from [47, Figure 1].

De�nition 5.1 (Game described in Figure 5.1). Consider the game depicted

in Figure 5.1. This game G = 〈C,Buchi〉 is standard and deterministic. There

is only one non-trivial state: q0. The set of colors considered is K := {0, 1}
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and the colors of the states q0,>,⊥ are given in red near them: col(q0) := 0,

col(⊥) := 0 and col(>) := 1. This game is win/lose with a Büchi objective

(recall De�nition 1.25): Player A wins if and only if the state > is visited

in�nite often. The Player-A set of actions at state q0 is Actq0A := {a1, a2}
where a1 refers to the top row and a2 refers to the bottom row and similarly

we have Actq0B := {b1, b2} where b1 refers to the leftmost column and b2 refers

to the rightmost column.

Proposition 5.1. The standard �nite concurrent Büchi game G from De�-

nition 5.1 is such that:

• The value of the game from q0 is 1;

• Player A has no optimal strategy;

• All �nite-choice Player-A strategies have value 0 from q0.

Proof. Let us �rst show the third item. Consider any positional Player-A
strategy sA ∈ SCA. Let p := sA(q0)(a1) ∈ [0, 1] be the probability that the
strategy sA plays the top row in q0. If p = 1, then a Player-B deterministic
positional strategy that plays action b1 in q0 (the left column) ensures that the
game never leaves the state q0, and therefore never reaches the state >. Hence,
such a Player-A strategy sA has value 0. Assume now that p < 1. Then, a
Player-B deterministic positional strategy that plays action b2 in q0 (the right
column) ensures that, at each step, there is probability 1− p > 0 to reach the
sink state ⊥ of value 0. Otherwise, the state > is reached, and the game loops
back to q0 and has once again probability 1− p > 0 to reach the sink state ⊥.
Hence, almost surely, with both of these strategies, the sink state ⊥ is reached.
Therefore, this Player-A strategy sA has value 0 from q0. In fact, all Player-A
positional strategies have value 0 from q0. Therefore, by Corollary 3.38, all
Player-A �nite-choice strategies have value 0 from q0.

Consider now the �rst item. Let ε > 0. Let us de�ne a Player-A strategy
sA of value at least 1− ε. Consider a sequence (εk)k∈N such that, for all k ∈ N,
we have εk > 0 and

∑
k∈N εk ≤ ε. Furthermore, for all ρ ∈ {q0,>,⊥}+, we let

|ρ|> ∈ N denote the number of times the state > occurred in ρ. We now de�ne
sA, as follows. For all ρ ∈ {q0,>,⊥}+ such that ρlt = q0, we let

sA(ρ) := {a1 7→ 1− ε|ρ|> , a2 7→ ε|ρ|>}

Clearly, this strategy has in�nite choice. Consider any Player-B strategy sB ∈
SCB. We have:

PsA,sB
C,q0 [(q0 ∪ >)∗ · ⊥] =

∑

k∈N
PsA,sB
C,q0 [(q0 ∪ >)k · ⊥] ≤

∑

k∈N

∑

ρ∈(q0∪>)k

PsA,sB
C,q0 (ρ) · sA(ρ)(a2)

≤
∑

k∈N

∑

ρ∈(q0∪>)k

PsA,sB
C,q0 (ρ) · εk ≤

∑

k∈N
εk ≤ ε
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Furthermore, we have � by Proposition 1.3 (the continuity of probability
function) for the third equality:

PsA,sB
C,q0 [(q0 ∪ >)∗ · qω0 ] =

∑

k∈N

∑

ρ∈(q0∪>)∗, |ρ|>=k

PsA,sB
C,q0 (ρ) · PsA,sB

C,q0·ρ(q
ω
0 )

=
∑

k∈N

∑

ρ∈(q0∪>)∗, |ρ|>=k

PsA,sB
C,q0 (ρ) · PsA,sB

C,q0·ρ(
⋂

n∈N
qn0 )

=
∑

k∈N

∑

ρ∈(q0∪>)∗, |ρ|>=k

PsA,sB
C,q0 (ρ) · ( lim

n→∞
PsA,sB
C,q0·ρ(q

n
0 ))

=
∑

k∈N

∑

ρ∈(q0∪>)∗, |ρ|>=k

PsA,sB
C,q0 (ρ) · ( lim

n→∞
(1− εk)n) = 0

Overall, we obtain that:

PsA,sB
C,q0 [(q∗0 ∪ >)ω] = 1− (PsA,sB

C,q0 [(q0 ∪ >)∗ · ⊥] + PsA,sB
C,q0 [(q0 ∪ >)∗ · qω0 ]) ≥ 1− ε

As this holds for all Player-B strategies sB, it follows that the strategy sA has
value at least 1− ε from q0. In fact, the value of the game from q0 is 1.

As for the second item, since in the snow-ball game of Figure 3.1 Player-A
has no optimal strategy (i.e. strategy of value 1) from q0, then it is also the
case for this game.

Hence, playing almost-optimally can be very costly in Büchi games, whereas
it is not the case in reachability games. However, whenever it is possible to
play optimally in Büchi games, just like in reachability games, it can be done
with a positional strategy.

Proposition 5.2. In all arbitrary �nite-state concurrent Büchi games, when
there is an optimal strategy, there is one that is positional. (This strategy is
therefore subgame optimal.)

To prove this result, we will transform a Büchi game into a reachability
game, and use the result already existing on reachability games. We de�ne
below how to translate a Büchi game into a reachability game. Informally, this
is done by replacing every state q in the target by a trivial state with only
one possible outcome: a probability distribution that goes with probability
χG [A](q) to the new target (in the reachability game) and with probability
1− χG [A](q) to a sink state of value 0.

De�nition 5.2. Consider an arbitrary �nite-state Büchi game G = 〈C,Buchi〉.
We let T := col−1[{1}] ⊆ Q and Qch := T ∪ Qns. We de�ne the reachability

game GReach := 〈CReach,Reach〉 with CReach := 〈Q]{>}]{⊥},FReach,K, colReach〉
as follows:

• {>} and {⊥} are two fresh states not in Q;
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• all states q ∈ Qch are made into trivial states with only one outcome:

FReach(q) := 〈∗, ∗, {> 7→ χG [A](q), ⊥ 7→ 1− χG [A](q)}, ∗〉;

• all states q ∈ Q \Qch are left unchanged: F(q) := FReach(q);

• both states > and ⊥ are self-looping sinks;

• colReach(>) := 1 and colReach[Q ∪ ⊥] := {0};

Remark 5.1. From the de�nition of the arena CReach, one can realize that

there are no stopping states in CReach. This is done so that we can use the

results from Chapter 4 that only apply to games without stopping states.

Furthermore, the game GReach would be identical if we changed it into Büchi
game with the same target, since this target is a self-looping sink.

This transformation ensures the lemma below.

Lemma 5.3. Consider an arbitrary �nite-state Büchi game G = 〈C,Buchi〉
and the reachability game GReach. Then, for all q ∈ Q, we have χG [A](q) =

χGReach [A](q). Furthermore, if Player-A has an optimal strategy in G, then she

also has one in GReach.

Proof. We want to apply Lemma 1.16, Page 48. However, our transformation
does not �t exactly the statement of Lemma 1.16. First, we have replaced the
states in Qch with trivial states instead of stopping states. However, it is rather
straightforward that if we had replaced every state q ∈ Qch by a stopping states
of value χG [A](q), all the values of the states in the game GReach would stay the
same. Second, we changed the objective from Büchi to reachability. However,
since the games G and GReach can be seen as over once a state in Qch is reached,
what matters is what happens if no state in Qch is reached. In both games G
and GReach, what happens in that case is the same: Player A loses. Hence, we
can apply Lemma 1.16 to obtain the desired statement.

Furthermore, we have also the following lemma.

Lemma 5.4. Consider an arbitrary �nite-state Büchi game G = 〈C,Buchi〉
and the reachability game GReach. Assume that there is an optimal strategy

in GReach and, for all q ∈ T \ Qns, Player A has GF-strategies in Σq
A that

are optimal in the game in normal form 〈F(q), χG [A]〉. Then, Player-A has a

positional optimal strategy in G.

Proof. By Theorem 4.11, since Player A has an optimal strategy in the reacha-
bility game GReach, then she has one sReachA that is positional. Let us now de�ne
a Player-A positional strategy sA ∈ SCA that is optimal. For all q ∈ Q \ Qch,
we let sA(q) := sReachA (q) ∈ Σq

A. Furthermore, for all q ∈ T \ Qns, we let
sA(q) be a Player-A GF-strategy that is optimal in the game in normal form
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〈F(q), χG [A]〉. Let us show that the positional Player-A strategy sA is (sub-
game) optimal in G by applying Corollary 3.141. Consider the �rst condition
of this corollary: that is, let us show that the strategy sA is locally optimal.
By Lemma 5.3 and since the Player-A strategy sReachA is optimal in GReach, for
all q ∈ Q \ Qch, we have χG [A](q) ≤ val[〈F(q), χG [A]〉](sA(q)). This also holds
for all q ∈ T \Qns by de�nition of the strategy sA and by Lemma 3.9. Hence,
the Player-A strategy sA is locally optimal in G. Consider now the second
condition of Corollary 3.14. We let V := χG [A][Q] ⊆ [0, 1] and for all u ∈ V ,
we let Qu := {q ∈ Q | χG [A](q) = u}. When applied to a Büchi game, the
second condition of Corollary 3.14 states that, against all Player-B strategies,
if the game loops ever inde�nitely on states of the same positive value, then the
target is seen in�nitely often almost surely. Said otherwise, the probability of,
at some point, always seeing states of the same positive value while avoiding
the target is 0. Since the Player-A strategy sA is positional, this amounts to
show that, from every state q ∈ Q \ Qch of value u > 0, the probability to
always see Qu and never Qch is 0. Formally, we show that, for all Player-B
strategies sB ∈ SCB, for all u ∈ V \ {0} and q ∈ Qu, we have:

PsA,sB
C,q [(Qu \Qch)ω] = 0 (5.1)

This actually comes straightforwardly from Corollary 3.14 applied to the (sub-
game) optimal strategy sReachA in GReach, because the strategies sA and sReachA

coincide on Q \ Qch. Note that Corollary 3.14 only applies to games with PI
payo� functions, however, as mentioned in Remark 5.1, the game GReach can
be seen as a Büchi game since the target is a self-looping sink. Let u ∈ V \{0},
q ∈ Qu and sB ∈ SCB. The Player-B strategy sB can be seen as a strategy in the
arena SC

Reach

B . We have:

PsA,sB
C,q [(Qu \Qch)ω] = PsReachA ,sB

CReach,q [(Qu \Qch)ω]

Furthermore, if PsReachA ,sB
CReach,q [(Qu \Qch)ω] > 0, then the second condition of Corol-

lary 3.14 would not hold for the strategy sReachA in the game GReach, since
PsReachA ,sB
CReach,q [(Qu \ Qch)ω ∩ Q∗ · T ] = 0. In fact, Equation 5.1 does hold, and by

Corollary 3.14 the Player-A positional sA is (subgame) optimal in G.

We can now proceed to the proof of Proposition 5.2.

Proof. By Lemma 5.3, Player A has an optimal strategy in the game GReach.
Furthermore, consider the Player-A optimal strategy tA in G. For all states
q ∈ T \Qns, we have tA(q) ∈ Σq

A. By Lemma 3.10, for all q ∈ T \Qns, we have
χG [A](q) = χG [tA](q) ≤ val[〈F(q), χG [A]q〉](tA(q)) = val[〈F(q), χG [A]〉](tA(q)) ≤
val[〈F(q), χG [A]〉][A] = χG [A](q). This last equality comes from Lemma 3.9.

1Note that we cannot apply Corollary 3.16 since the game G is not standard.
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∃ Opt. ? ε-Opt. Optimal SubG. Opt.
Buchi No ∞-choice Positional Positional

Table 5.1: The summary of the situation in arbitrary �nite-state concur-
rent Büchi games.

Hence, the Player-A GF-strategy tA(q) is optimal in the game in normal form
〈F(q), χG [A]〉. Hence by Lemma 5.4, Player A has an optimal positional strategy
in G.

We summarize the results on Büchi games in the theorem below.

Theorem 5.5. In arbitrary �nite-state concurrent Büchi games:

• there does not always exist optimal strategies;

• almost-optimal strategies may require in�nite choice, which can be wit-

nessed by a standard �nite game;

• whenever there exists an optimal strategy, there is one that is positional.

This also holds for subgame optimal strategies.

These results can be seen in Table 5.1.

Proof. • This is consequence of the fact that this is already the case for
reachability games, see Theorem 4.12.

• It was already known that in�nite memory may be required to play
almost-optimally in Büchi games (see [32, Theorem 2]). We have shown
this result in Proposition 5.1, by reusing an example already known (that
comes from [47, Figure 1]).

• This is given by Proposition 5.2.

5.2 co-Büchi objectives

Let us now consider the case of co-Büchi objectives. Recall that we only
consider games with �nitely many states. Since there does not always exist
optimal strategies in standard �nite reachability games, it is also the case
for co-Büchi objectives. Let us now deal with how to play almost-optimally,
optimally and subgame optimally in co-Büchi games.
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5.2.1 . Almost-optimal strategies

Consider �rst how to play almost-optimally in co-Büchi games. As stated
in Proposition 4.4, if no assumption is made on the local interactions (i.e. if
we do not assume that they are maximizable w.r.t. Player A), in safety games,
in�nite-choice strategies may be required to play almost-optimally. Further-
more, note that safety games can be seen as special cases of co-Büchi games
where the target is self-looping. Hence, it is also the case of co-Büchi games
that playing almost-optimally may require in�nite choice, if no assumption is
made on the local interactions.

However, in co-Büchi games where all local interactions are standard �nite,
then playing almost-optimally can be done positionally.

Theorem 5.6. In all standard �nite concurrent co-Büchi games, for all ε > 0,

Player A has a positional strategy that is ε-optimal.

As mentioned at the end of Subsection 3.2.3, this result is already known, it
was proved in [50, Theorem 3.1]. The proof is quite involved as it is byproduct
a memory transfer result from limit-sure winning (i.e. almost-optimal for the
value 1) to almost-optimal strategies.

However, what happens in arbitrary games with local interactions maxi-
mizable w.r.t. Player A is unknown.

Open Question 5.1. Can playing almost-optimally be done positionally in

arbitrary �nite-state co-Büchi games where all local interactions are maximiz-

able w.r.t. Player A?

5.2.2 . Optimal strategies

Let us now consider how to play optimally in co-Büchi games. Contrary
to the Büchi case where, whenever it can be done, it can be done position-
ally regardless of the local interactions, playing optimally may require in�nite
choice in co-Büchi games even in standard �nite games. This is witnessed by
the co-Büchi game described in Figure 5.2. In fact, we have already discussed
this game twice in this dissertation. Once, in Figure 2.5 as a slightly modi�ed
game, to witness that it is possible that action strategies2 may achieve a value
that regular strategy can only approach. The second time was in Figure 3.2 to
witness that there can be optimal strategies without subgame optimal strate-
gies. For a formal description, one can consider De�nition 2.19 that referred
to the game of Figure 2.5. The di�erence with the game of Figure 5.2 is that,
in Figure 2.5, both states q1 and q′1 are merged into a single state q1. Note

2Action strategy is a notion de�ned in Section 2.5, in the context of standard
games, and used only in that section. These are strategies that take into account the
states and actions played by the strategies. To distinguish the strategy we usually use
from the action strategies of this section, we will sometimes refer to them as regular
strategies.
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
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q0 q′1 1/2
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

q1

q′1
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1

1

Figure 5.2: A co-Büchi game where playing optimally requires in�nite
choice.

that the most complicated properties ensured by this game have already been
proven in Proposition 2.21 and the subsequent lemmas stated to prove it.

Proposition 5.7. The game of Figure 5.2 ensures the following:

• the state q0 has value 1
2 ;

• no �nite-choice Player-A strategy is optimal;

• there is an in�nite-choice Player-A strategy that is optimal.

Proof. • This is given by Lemma 2.22.

• Consider any positional player-A strategy sA ∈ SCA. If sA(q0)(a3) > 0

(i.e. the bottom row is played with positive probability), then Player B

can play the rightmost column with probability 1 and ensure that the
expected value of the stopping states seen is less than 1

2 . Therefore,
such a strategy has value less than 1

2 . Otherwise, if sA(q0)(a1) = 1, then
Player B can play the middle column with probability 1 and ensure that
the state q′1 will be seen in�nitely often. Therefore, such a strategy has
value 0. Finally, if sA(q0)(a3) = 0 and sA(q0)(a2) > 0, then Player B can
play the leftmost column with probability 1 and ensure that, almost-
surely, the state q1 will be seen in�nitely often. Hence, such a strategy
has also value 0. In fact, no positional strategy can achieve the value 1

2 in
this game. Thus, by Corollary 3.38, all Player-A �nite-choice strategies
are not optimal from q0.

• An optimal action strategy is described in Lemma 2.23. With the dif-
ference between the games of Figure 2.5 and of Figure 5.2, this can be
done with a regular in�nite-choice strategy.
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5.2.3 . Subgame optimal strategies

What happens for subgame optimally depends on the local interactions in
the game. First, let us consider the case of standard �nite local interactions.
In this context, subgame optimal strategies can be found among positional
strategies.

Proposition 5.8. In all standard �nite concurrent co-Büchi games, if there
is a subgame optimal strategy, there is one that is positional.

Proof. Let us apply Corollary 3.24. To do so, we need to show that in all
standard �nite co-Büchi games, if there is a subgame almost-surely winning
strategy, there is one that is positional. Hence, consider such standard �nite co-
Büchi game G and assume that Player A has a subgame almost-surely winning
strategy. In that case, all states in G have value 1. By Theorem 5.6, there
is a positional strategy sA ∈ SCA that is 1

2 -optimal (from all states). Consider
any Player-B strategy sB ∈ SCA. Then, from all states, there is probability
at least 1

2 that the PI objective coBuchi holds. Hence, by Proposition 3.53,
the probability of the PI objective coBuchi is 1 from all states. That is, the
positional strategy sA is subgame almost-surely winning. We can therefore
apply Corollary 3.24 to obtain the result.

However, if the local interactions are not maximizable w.r.t. Player A,
playing subgame optimally may require in�nite choice. This is witnessed in
the game of Figure 5.3. Note that it is very close to the game of Figure 4.2 that
witnessed that playing almost-optimally may require in�nite choice in safety
games. The only change is that the state ⊥ that Player A wants to see only
�nitely often loops back to q0.

We described formally this game below.

De�nition 5.3 (Game depicted in Figure 5.3). The game of Figure 5.3 is an

MDP Γ where Player A plays alone with two states: Q := {q0,⊥}. The state
⊥ is trivial and loops back to q0 and, at state q0, Player A may play any integer

n ∈ N which leads to a distribution dn := {q0 7→ 1 − 1
2n ;⊥ 7→ 1

2n } ∈ D(Q).

Player A has a co-Büchi objective coBuchi with K = {0, 1} and col(q0) := 0

and col(⊥) := 1, i.e. Player A wants to see the state ⊥ only �nitely often.

Proposition 5.9. In the co-Büchi game G of De�nition 5.3:

• the state q0 has value 1;

• all �nite-choice Player-A strategies have value 0;

3This proposition applies to stochastic trees for a pre�x-independent Borel objec-
tive. However, in the game G, there could be some stopping states (of value 1), which
make the objective in the stochastic tree not PI. However, it su�ces to replace these
stopping states by a self-looping sink of color 0, which will therefore be of value 1. In
that way, the value of the game in unchanged and the objective is PI.
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q0

d0
. . . . . . dn . . .

⊥

1− p0

p0

1− pn

pn

Figure 5.3: An MDP where Player A plays alone and wants to see the
state ⊥ only �nitely often, with pi := 1

2i
.

• there is an in�nite-choice Player-A strategy that is subgame almost-

surely winning.

Proof. This is quite similar to the proof of Proposition 4.4. First, consider any
positional Player-A strategy sA. Consider some n ∈ N such that sA(q0)(n) > 0.
Then, at each step, there is probability at least sA(q0)(n)

2n to reach the target ⊥,
and in any case the game loops back on q0. Hence, almost-surely, the state
⊥ is reached in�nitely often. In fact, all Player-A positional strategies have
value 0. Therefore, since this MDP is standard and B-�nite (recall, �nitely
many states, and Player B has �nitely many actions), by Corollary 3.38, all
�nite-choice strategies have value 0 from q0.

Let us now build a Player-A in�nite-choice strategy sA ∈ SCA that is subgame
almost-surely winning. For all ρ ∈ Q∗, we let sA(ρ) := {|ρ| + 1 7→ 1}. Let
π ∈ Q+. Denoting sB the only Player-B strategy in Γ, for all n ∈ N, we have:

PsA,sB
Γ,π (Qn · (Q∗ ·⊥)) =

∑

k∈N

∑

ρ∈π·Qn
PsA,sB

Γ,ρ (qk0 ·⊥) =
∑

k∈N

1

2|ρ|+k
≤
∑

k∈N

1

2n+k+1
=

1

2n

Hence, by Proposition 1.3 (the continuity of probability measure), we have:

PsA,sB
Γ,π (

⋂

n∈N
Qn · (Q∗ · ⊥)) = lim

n→∞
PsA,sB

Γ,π (Qn · (Q∗ · ⊥)) = 0

That is, from π, the state ⊥ is seen in�nitely often with probability 0. In
other words, it is seen �nitely often with probability 1. This holds for all
π ∈ Q+. Therefore, the in�nite-choice strategy sA, is subgame almost-surely
winning.

The fact that playing subgame optimally may require in�nite choice with
co-Büchi objectives can be witnessed in games where all local interactions are
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F =

[
[q−0 − q1] >+q1

2

[>− −⊥] >+q1
2

]

Figure 5.4: A standard in�nite local interaction maximizable w.r.t.
Player A.

maximizable w.r.t. Player A. However, the local interactions considered will
not be �nite, otherwise we would be in the scope of Proposition 5.8. We
conclude this subsection by providing an example of such a co-Büchi game.
Let us �rst de�ne the only non-trivial game form occurring in that game. To
do so, let us �rst introduce a notation for game form.

De�nition 5.4 (Notation for a standard game form). Given any two outcome

x and y, the notation [x−−y] refers to the standard game form 〈N, ∗, {x, y}, %〉s
where Player A plays alone and, for all n ∈ N, we have %(n, ∗) := {x 7→
1− 1

2n , y 7→ 1
2n }.

The game form of interest for us is depicted in Figure 5.4 and formally
de�ned in De�nition 5.5 below.

De�nition 5.5 (Game form depicted in Figure 5.4). The game form F =

〈ActA,ActB, {q0, q1,>,⊥}, %〉s of Figure 5.4 is standard, Player A has in�nitely

many actions available, whereas Player B has two. We have ActA := {a1, a2}×
N and ActB := {b1, b2}. The two Player-B actions correspond to the two

columns of the game form, with b1 corresponding to the leftmost column and

b2 corresponding to the rightmost one. If Player B plays b2, then the outcome

is a uniform distribution on > and q1. Otherwise, i.e. if Player B plays b1, for

all n ∈ N, if Player A plays (a1, n), then we obtain the outcome of the game

form [q−0 −q1] for the action n whereas if Player A plays (a2, n), then we obtain

the outcome of the game form [>− −⊥] for the action n.

Let us �rst show that this game form is maximizable.

Proposition 5.10. The game form de�ned in De�nition 5.5 is maximizable

w.r.t. Player A.

Proof. We let O := {q0, q1,>,⊥}. Consider a valuation v : O → [0, 1]. Let
u := val[〈F , v〉]. Clearly, since Player B can play the action b2 we have:

u ≤ v(q1) + v(>)

2

Furthermore, note that if v(>) > u, then Player A has an optimal GF-strategy
in the game in normal form 〈F , v〉. Indeed, it su�ces to play an action (a1, n)

with n ∈ N such that v(>) · (1 − 1
2n ) ≥ u. Assume now that v(>) ≤ u ≤
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q0,F

0

q1

1
> 1

⊥ 0

Figure 5.5: A co-Büchi game where Player A wants to see only �nitely
often the states of color 1: q1 and ⊥. The local interaction at state q0 is
depicted in Figure 5.4.

v(q1)+v(>)
2 . It follows that we have v(q1)+v(>)

2 ≤ v(q1). Therefore, we have
u ≤ v(q1). Hence, Player A can play the action (a1, 0) � if Player B plays b1,
this leads to probability 1 to go to q1 � to be optimal in the game in normal
form 〈F , v〉. In any case, Player A has an optimal GF-strategy in the game in
normal form 〈F , v〉.

We de�ne below in De�nition 5.6 a concurrent co-Büchi game with local
interactions maximizable w.r.t. Player A where playing subgame optimally
requires in�nite choice.

De�nition 5.6 (Game depicted in Figure 5.5). The game of Figure 5.5 has

four states q0, q1,>,⊥. The two states > and ⊥ are stopping states, with

> of value 1 and ⊥ of value 0. The state q1 is looping on q0 and the local

interaction of the state q0 in the game form of De�nition 5.5. In particu-

lar, Qns = {q0, q1}. Player A has a co-Büchi objective with K = {0, 1} and

col(q0) := 0 and col(q1) := 1.

Proposition 5.11. In the co-Büchi game G of De�nition 5.6:

• the state q0 has value 1;

• no �nite-choice Player-A strategy is optimal;

• there is an in�nite-choice Player-A strategy that is subgame optimal.

Proof. • Let ε > 0. Consider a Player-A positional strategy sA such that
sA(q0)((a2, n)) := 1 for some n ∈ N such that 1

2n ≤ ε. Then, if Player-B
plays action b1 (i.e. the left column), there is probability 1− 1

2n ≥ 1− ε
to see the state > of value 1. Furthermore, if Player B plays action b2
(i.e. the right column), then there is probability 1

2 to go the state > and
probability 1

2 to see the state q1 and loop back to q0. Hence, if this action
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is played inde�nitely, the state > is reached almost-surely. In fact, this
Player-A positional strategy sA has value at least 1 − ε. Therefore, the
state q0 has value 1.

• Consider any Player-A positional strategy sA. If it plays an action of the
shape (a2, ·) with positive probability, then if Player B plays action b1
(i.e. the left column) there is a positive probability to reach the state
⊥ of value 0. Therefore, such a strategy is not optimal. Otherwise,
consider some n ∈ N such that sA(q0)((a1, n)) > 0. Then, if Player B

always plays the action b1 (i.e. the left column), at each step there is
probability at least sA(q0)((a1,n))

2n > 0 to see the state q1. Hence, almost-
surely, it seen in�nitely often. Therefore, such a strategy has value 0.
In fact, no positional Player-A strategy is optimal. Therefore, since this
game is standard and B-�nite (recall, �nitely many states, and Player B

has �nitely many actions), by Corollary 3.38, no �nite-choice Player-A
strategy can be optimal from q0.

• Let us describe a Player A subgame optimal strategy. It is very similar to
the one described in the proof of Proposition 5.9. Indeed, for all ρ ∈ Q∗ns,
we let sA(ρ) := {(a1, |ρ|+ 1) 7→ 1}. Let π ∈ Q+

ns. Player B never has an
interest of playing action b2 since this leads to a stopping state of value
1 with probability 1

2 and otherwise it loops back on q0. Hence, let us
denote by sB the Player-B strategy that always plays action b1 in q0, for
all n ∈ N, we have:

PsA,sB
Γ,π (Qnns·(Q∗ns·q1)) =

∑

k∈N

∑

ρ∈π·Qnns

PsA,sB
Γ,ρ (qk0 ·q1) =

∑

k∈N

1

2|ρ|+k
≤
∑

k∈N

1

2n+k+1
=

1

2n

Hence, by Proposition 1.3 (the continuity of probability measures), we
have:

PsA,sB
Γ,π (

⋂

n∈N
Qnns · (Q∗ · q1)) = lim

n→∞
PsA,sB

Γ,π (Qnns · (Q∗ns · q1)) = 0

That is, from π, the state q1 is seen in�nitely often with probability 0.
Therefore, the in�nite-choice Player-A strategy sA is subgame almost-
surely optimal.

It may seem that this result proves that playing almost-optimally in �nite-
state co-Büchi games with maximizable4 local interactions may not be done
with positional strategies. Indeed, assume that it is the case, i.e. that posi-
tional strategies are su�cient to play almost-surely in such co-Büchi games.

4In this paragraph and the next, until Proposition 5.12, we use maximizable for
maximizable w.r.t. Player A.
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F =
[
[q−0 − q1] >+q1

2

]

Figure 5.6: The game form Opt(F , v) for F the game form of De�ni-
tion 5.5 and v : O → [0, 1] such that v(>) = v(q1) = v(q0) := 1 and
v(⊥) := 0.

This would imply, as in the proof of Proposition 5.8, that with maximizable
local interactions, playing subgame almost-surely can be done positionally.
Furthermore, (the second part of) Theorem 3.17 (informally) states that the
amount of memory to be subgame optimal (when possible) corresponds to
the amounts of memory to be subgame almost-surely winning (when possi-
ble). Hence, we would obtain that playing subgame optimally with maximiz-
able local interactions can be done positionally, which is in contradiction with
Proposition 5.11.

The issue with this argument is that the informal statement of Theo-
rem 3.17 that we gave above is true up to a modi�cation of the local interac-
tions. That modi�cation consists in only considering the Player-A GF-strategies
that are optimal w.r.t. some valuations (i.e. the set of local interactions con-
sidered in Opt({F(q) | q ∈ Q}), recall De�nition 3.11). In fact, in the game
of De�nition 5.6, up to this modi�cation, the local interaction at state q0 is
not maximizable, we show this fact below Proposition 5.12. Therefore, even if
positional strategies were enough to play almost-optimally in co-Büchi games
with maximizable local interactions, it would not imply that playing subgame
optimally can be done with positional strategies in co-Büchi games with max-
imizable local interactions.

Proposition 5.12. The game form F of De�nition 5.5 is maximizable w.r.t.

Player A. However, letting v : O→ [0, 1] such that v(>) = v(q1) = v(q0) := 1

and v(⊥) := 0, the game form Opt(F , v) is not maximizable w.r.t. Player A.

Proof. The game form F is maximizable w.r.t. Player A, by Proposition 5.10.
Then, consider the valuation v. The set of optimal Player-A GF-strategies is
equal to D({a1} × N). Recall that, letting F = 〈D(ActA),D(ActB),O, %〉, we
have Opt(F , v) = 〈OptA(〈F , v〉),D(ActB),O, %〉 where OptA(〈F , v〉) ⊆ D(ActA)

denotes the set of Player-A GF-strategies optimal in the game in normal form
〈F , v〉. The game form Opt(F , v) is depicted in Figure 5.6 and is not maxi-
mizable w.r.t. Player A. This is witnessed, for instance, by a valuation w such
that w(q0) := 1

2 , w(>) := 1 and w(q1) := 0.

We summarize the results on co-Büchi games in the theorem below.

Theorem 5.13. In arbitrary �nite-state concurrent co-Büchi games:
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GF ∃ Opt. ? ε-Opt. Optimal SubG. Opt.

coBuchi
Max.
Arb.

No
Pos1/?
∞-choice

∞-choice
Pos1/∞-choice
∞-choice

Table 5.2: The summary of the situation in arbitrary �nite-state con-
current co-Büchi games. The results 1 hold with standard �nite local
interactions, but a priori does not with arbitrary maximizable local in-
teractions.

• there does not always exist optimal strategies, even in standard �nite

games;

• with standard �nite local interactions, playing almost-optimally can al-

ways be done positionally. With arbitrary local interactions, otherwise

it may require in�nite choice. With arbitrary local interactions maxi-

mizable w.r.t. Player A, the question is still open.

• playing optimally may require in�nite choice, even with standard �nite

local interactions;

• when the local interactions are standard �nite, playing subgame opti-

mally can be done positionally, otherwise it may require in�nite choice.

These results can be seen in Table 5.2.3.

Proof. • that is because this holds in reachability games, see Theorem 4.12;

• this is already known, see [50, Theorem 3.1]. The fact that this does not
hold anymore for arbitrary local interactions is a consequence of the fact
that this is the case for the safety objective, see Proposition 4.4. The
case of arbitrary local interactions maximizable w.r.t. Player A is still
open (see 5.1).

• we have �rst proved this result in [41, Section 6]. We state it in Propo-
sition 5.7;

• We have also proved this result in [41, Corollary 1]. However, it does
not hold with arbitrary local interactions, see Proposition 5.9, even if all
local interactions are maximizable w.r.t. Player A, see Proposition 5.11.

5.3 Parity objectives

Recall that we only consider games with �nitely many states. We already
know that there does not always exist optimal strategies in standard �nite
parity games since this holds in reachability games (see 4.12). We also know
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q1,

[
q1 q2

q2 q3

]
q2

q3

1

2

3

Figure 5.7: A parity game.

that playing almost-optimally may require in�nite choice in standard �nite
parity games since this holds in Büchi games (see 5.5). Furthermore, playing
optimally (when possible) may require in�nite choice in standard �nite parity
games since this holds in co-Büchi games (see 5.13). In fact, playing subgame
optimally (when possible) may also require in�nite choice. That is witnessed
by the game de�ned in De�nition 5.7. Note that we already talked about this
game in Subsection 3.4.2, as it was depicted in Figure 3.12.

De�nition 5.7 (Game depicted in Figure 5.7). The game G of Figure 5.7

has three states: Q = {q1, q2, q3}. The two states q2 and q3 have a trivial

local interaction and loop back to q1. We denote by a1 and a2 the two actions

available to Player A in q1 where a1 refers to the top row and a2 refers to the

bottom row. Similarly, We denote by b1 and b2 the two actions available to

Player B in q1 where b1 refers to the leftmost row and b2 refers to the rightmost

column. Player A has a parity objective with K = {1, 2, 3}, col(q1) := 1,

col(q2) := 2 and col(q3) := 3. That is, Player A wants to see only �nitely often

the state q3 while seeing in�nitely often the state q2.

Proposition 5.14. The game of De�nition 5.7 is such that:

• all �nite-choice Player-A strategies have value 0 from q1;

• there is an in�nite-choice Player-A strategy that is subgame almost-

surely winning.

Proof. • Consider any positional Player-A strategy sA. If sA(q0)(a2) > 0

(i.e. if the bottom row is played with positive probability), then by
playing the action b2 (i.e. the rightmost column) Player B ensures
that almost-surely the state q3 is seen in�nitely often. Otherwise, if
sA(q0)(a1) = 1, then by playing the action b1 (i.e. the leftmost column)
Player B ensures that the state q2 is never seen. In fact, the value of all
Player-A positional strategies is 0. Therefore, since this game is standard
�nite, by Corollary 3.38, all �nite-choice Player-A strategies have value
0 from q1.
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• Let us now describe a Player-A subgame almost-surely winning strategy.
For all ρ ∈ Q+, we let |ρ|2,3 ∈ N denote the number of times the �nite
paths ρ has visited the states q2 and q3. Consider also a sequence (εk)k∈N
such that, for all k ∈ N, we have εk ∈ (0, 1] with

∑
k∈N εk < ∞. We

de�ne a Player-A strategy sA ∈ SCA as follows, for all ρ ∈ Q+, we have:

sA(ρ) := {a1 7→ 1− ε|ρ|2,3 , a2 7→ ε|ρ|2,3}

Consider now any Player-B deterministic strategy sB ∈ SCB and some
π ∈ Q+. Let n ∈ N. We have:

PsA,sB
C,π [Qn · qω1 ] =

∑

ρ∈π·Qn
PsA,sB
C,ρ [qω1 ] =

∑

ρ∈π·Qn
lim
k→∞

PsA,sB
C,ρ [qk1 ]

≤
∑

ρ∈π·Qn
lim
k→∞

(1− ε|ρ|2,3)k = 0

As this holds for all n ∈ N, it follows that, from π, almost-surely, the set
of states {q2, q3} is seen in�nitely often.

Let us now show that almost-surely the state q3 is seen only �nitely
often. Let n ∈ N and consider some ρ ∈ ({q1, q2}∗ · q3)n · {q1, q2}∗. Since
the strategy sB is deterministic, for all i ∈ N, we have:

PsA,sB
C,π·ρ[{q1}i · q3] = 0 or PsA,sB

C,π·ρ[{q1}i+1] = 0

Therefore, there is at most one i ∈ N such that PsA,sB
C,π·ρ[q

i
1 · q3] > 0 with

PsA,sB
C,π·ρ[q

i
1 · q3 | qi1] ≤ εn+k where k denotes the number of times the state

q2 occurs in ρ after the last q3. Therefore, PsA,sB
C,π·ρ[q

∗
1 · q3] ≤ εn+k. It

follows that, for all θ ∈ ({q1, q2}∗ · q3)n:

PsA,sB
C,π·θ[{q1, q2}∗ · q3] =

∑

k∈N
PsA,sB
C,π·θ[(q

∗
1 · q2)k · q∗1 · q3] ≤

∑

k∈N
εn+k

Therefore, by Proposition 1.3 (the continuity of probability measures):

PsA,sB
C,π [

⋂

n∈N
({q1, q2}∗ · q3)n] ≤ lim

n→∞
PsA,sB
C,π [({q1, q2}∗ · q3)n+1]

≤ lim
n→∞

PsA,sB
C,π [{q1, q2}∗ · q3 | ({q1, q2}∗ · q3)n]

≤ lim
n→∞

∑

k∈N
εn+k = 0

This comes from the fact that
∑

k∈N εk < ∞. Therefore, the state q3

is seen in�nitely often with probability 0. That is, against the Player-B
deterministic strategy sB, the parity objective is ensured almost-surely
from π. Since this holds for all Player-B deterministic strategies and
by Corollary 2.17 (since we obtain an MDP once Player A has �xed her
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GF ∃ Opt. ? ε-Opt. Optimal SubG. Opt.
Parity M./A. No ∞-choice ∞-choice ∞-choice

Table 5.3: The summary of the situation in arbitrary �nite-state concur-
rent parity games with at least three colors.

strategy), the value of the Player-A strategy sA is 1 from π. As this holds
for all π ∈ Q+, it follows that the in�nite-choice Player-A strategy sA is
subgame almost-surely winning.

We summarize how concurrent parity games behave below:

Theorem 5.15. In arbitrary �nite-state concurrent parity games:

• there does not always exist optimal strategies;

• playing almost-optimally may require in�nite choice;

• playing optimally, when possible, may require in�nite choice;

• playing subgame optimally, when possible, may require in�nite choice.

All of these results can be witnessed by standard �nite games, with at most

three colors. These results can be seen in Table 5.3.

Proof. • this was already the case for reachability games, see Theorem 4.12;

• this was already the case for Büchi games, see Theorem 5.5;

• this was already the case for co-Büchi games, see Theorem 5.13;

• It was already known that playing subgame optimally may require in�-
nite memory, see [47, Theorem 7]. We have further proved that it may
require in�nite choice in Proposition 5.14 by using the same game used
in [47].

5.4 Discussion and future work

In this chapter, we have studied Büchi, co-Büchi and parity objectives. As
stated in Subsection 5.2.1, we leave Open Question 5.1 unanswered. A possible
direction to try and answer this question could be a local-global transfer. We
discuss this notion extensively in Part III.

In the previous chapter, among other things, we have designed a procedure
to compute, in reachability games, the set of states OptA from which Player A

has an optimal strategy. In turn, this allowed us to establish Theorem 4.11: for
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all positive ε > 0, Player A has a positional strategy that is optimal from all
states in OptA, and ε-optimal from all other states in Q\OptA. It seems natural
to look for a similar result in the Büchi, co-Büchi and parity games we have
studied in this chapter. We believe that it could be possible to obtain one for
Büchi objectives: for all positive ε > 0, Player A has a strategy that is optimal
and positional5 from all states in OptA, and ε-optimal from all other states in
Q \ OptA. The di�erence with the reachability case is that the strategy may
have in�nite choice at states in Q \ OptA. Such a result could be obtained by
using arguments akin to the ones used in Section 5.1 to prove Proposition 5.2.
As a corollary, we would obtain that this also holds with safety objectives,
since safety games can be seen as special cases of Büchi games. However, this
cannot be extended to co-Büchi objectives and to parity objectives, since, with
these objectives, playing optimally may require in�nite choice.

Finally, we would like to discuss a possible future work that extends some of
what we have done in this chapter. In [70], the authors study Muller objectives.
Given a �nite set K of colors, a Muller objective is de�ned by a set S ⊆ 2K of
subsets of colors such that an in�nite sequence of colors is winning for Player
A if and only if the set of colors seen in�nitely often is in S. In particular,
Muller objectives are PI and more general than parity objectives. In that paper
[70], among other things, the authors show that in �nite turn-based games,
for those Muller objectives that are upward-closed, positional strategies are
su�cient to be almost-surely winning for Player A. A Muller objective de�ned
by S ⊆ 2K is upward-closed if, for all C,C ′ ∈ 2K if C ∈ S and C ⊆ C ′, then
C ′ ∈ S. Note that, by [58, Theorem 4.5] � alternatively, Corollary 3.24 �
we can deduce that with upward-closed Muller objectives, Player A always has
positional optimal strategies in �nite turn-based games.

We believe that this could be extended to standard concurrent games, up
to adding the assumption that optimal strategies do exist. We conjecture the
following:

Conjecture 5.16. In all standard �nite concurrent games with an upward-

closed Muller objective, if Player A has an optimal strategy, then she has one

that is positional.

An upward-closed Muller objective can be seen as a disjunction of conjunc-
tions of Büchi objectives. That is, Player A wants to see in�nitely often as many
states as possible. Therefore, we believe that, to play optimally, Player A only
needs to play a locally optimal strategy whose support, at each state, is max-
imal (which is possible because the game is standard). We also believe that
what is stated in Conjecture 5.16 gives a characterization of upward-closed
Muller objectives. That is, given any Muller objective that is not upward-

5In other words, the strategy plays a single GF-strategy at each local interaction
at states in OptA.
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closed, there is a standard �nite game where Player A can play optimally, but
it can only be done with in�nite-choice strategies. Note that upward-closed
Muller objectives are also characterized in [70].

Following a similar idea, we believe that it is possible to characterize those
Muller objectives for which, in standard �nite concurrent games, whenever
there is a subgame optimal strategy, there is a �nite-memory one. As can be
seen in Table 3.1, in �nite parity games with at least three colors, in�nite-choice
strategies may be required to play subgame optimally. Parity objectives with
at least three colors can be written as a conjunction of a Büchi and a co-Büchi
objective. We believe that this is the issue. We make the conjecture below.

Conjecture 5.17. In all standard �nite concurrent games with a Muller

objective that can be written as a disjuntion of either a conjunction of Büchi

or a conjunction of co-Büchi objectives, if Player A has an optimal strategy,

then she has a �nite-memory one.
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Part III

Restricting game forms in

concurrent games

243





This �nal part is arguably the most important one of this dissertation:
here, we adopt an entirely new approach towards concurrent games, which
we believe is promising. The general idea is the following. Since concurrent
(uncolored) arenas behave poorly in general, especially compared to turn-based
(uncolored) arenas, see for instance the previous part, we restrict ourselves to
subsets of concurrent (uncolored) arenas. These subsets will always strictly
include turn-based arenas and contain only arenas enjoying some of the nice
properties that turn-based arenas enjoy. To properly de�ne these subsets, we
consider a set of colors K and a win/lose objectiveW ⊆ Kω � say a reachability
objective � and a type of strategies τ � say optimal positional strategies.
Then, we want to de�ne a subset of (W, τ)-well-behaved concurrent uncolored
arenas. Informally, we de�ne (W, τ)-well-behaved concurrent uncolored arenas
as arenas for which in all colored games with objectiveW that can be obtained
from them, there are τ -strategies, for one or both of the players.

The main novelty lies in the way we de�ne these subsets of concurrent
uncolored arenas. Indeed, they are de�ned via the crucial notion of game

form, and local interaction. That is, given an objective W and a type of
strategies τ , the goal is to identify a set of game forms S(W,τ) such that all the
concurrent uncolored arenas whose local interactions are included in S(W,τ) are
(W, τ)-well-behaved.

To de�ne this set S(W,τ), we proceed in two steps, described below.

• First, we characterize the game forms that are individually well-behaved
w.r.t. (W, τ). More precisely, a game form F is individually well-behaved
w.r.t. (W, τ) if all �simple arenas� that can be built from F are (W, τ)-
well-behaved. Informally, a simple arena built from F is an arena with
only one non-trivial local interaction, F , which occurs in a central state
qinit. Every other state is either stopping or trivial (i.e. with only one
possible distributions over successor states regardless of what the players
do) and looping back to qinit. That way, the only source of interaction,
and therefore concurrency, in the arena comes from F .

• Second, we prove that all concurrent arenas where all local interactions
are individually well-behaved w.r.t. (W, τ) are (W, τ)-well-behaved. We
then de�ne the set S(W,τ) to be equal to the set of game forms individually
well-behaved w.r.t. (W, τ).

When this second step is conclusive, in some cases it will be the case even for
arenas with in�nitely many states, however in some other cases it will be only
for �nite-state arenas.

Assuming that we have achieved both of these steps, the set S(W,τ) of game
forms can be seen as maximal w.r.t. (W, τ). Indeed, we can reformulate the
two steps above as follows:
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• all game forms not in S(W,τ) behave poorly w.r.t. (W, τ), even individ-
ually � since, given any game form that is individually poorly-behaved
(i.e. non individually well-behaved) w.r.t. (W, τ), there is a simple arena
built on F that is not (W, τ)-well-behaved;

• all game forms in S(W,τ) behave well w.r.t. (W, τ), even collectively
� since all concurrent arenas with local interactions individually well-
behaved w.r.t (W, τ) are (W, τ)-well-behaved.

Alternatively, we could say that being individually well-behaved w.r.t. (W, τ) is
a local necessary and su�cient condition for arenas to be (W, τ)-well-behaved.
We formally de�ne this notion in page 247.

As argued above, the set S(W,τ) of game forms can be seen as maximal
w.r.t. (W, τ). However note that for various (W, τ), there exists a concurrent
arena with some individually poorly-behaved local interactions that is still
(W, τ)-well-behaved. The only thing we claim about game forms individually
poorly-behaved w.r.t. (W, τ) is that there are some simple arenas built on
them that are not (W, τ)-well-behaved. However, it is not the case of all the
arenas built on them.

The main purpose of this part is to apply this two-step procedure to de-
�ne sets of game forms S(W,τ) for various win/lose objectives W and types of
strategies τ . In addition, we will perform this transfer not only on win/lose
objectives, but also on more general payo� functions. In fact, we will perform
this transfer with sets S of (non necessarily win/lose) payo� functions. In
that case, a game form will be deemed individually safe w.r.t. (S, τ) if it is
individually safe w.r.t. (f, τ), for all payo� functions f ∈ S.

Bene�ts of this characterization. Let us now give an idea of how the
above characterization can be used in practice. We believe that the main ben-
e�t of characterizing the local interactions that are individually well-behaved
w.r.t. payo� functions and types of strategies lies in the design of games.
Indeed, when designing a game with a speci�cation in mind � for instance,
the existence of positional optimal strategies in �nite-state reachability games
� our characterization provides exactly the safe building blocks (i.e. local
interactions) that can be used to ensure that the desired speci�cation holds
in the compound arenas. Furthermore, as long as they are individually well-
behaved, all building blocks can be used, regardless of the other individually
well-behaved blocks used in the game. Hence, the design of games can be done
locally, without knowing the other local components, or even the number of
components involved.

As mentioned above, the desired speci�cation holds in any compound arena
whose building blocks are individually well-behaved. In addition this arena can
be dynamically modi�ed while maintaining that this speci�cation holds. This
modi�cation may consist in adding an individually well-behaved building block
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to this compound arena, removing one building block or replacing a building
block by another individually well-behaved one.

Arguably, it has a second bene�t, though it may not have a strong practical
value. Indeed, to decide if a game G with objectiveW enjoys the existence of τ -
strategies, one may consider every local interaction occurring in the underlying
arena, decide if they are all individually well-behaved w.r.t. (W, τ) (assuming
it is possible), and if so conclude that τ -strategies exist in G. However, it
has two main drawbacks: �rst, this requires to handle all local interactions,
which may be costly. Second, we can only conclude if all local interactions
are individually well-behaved. Perhaps this approach is promising in contexts
where we already know, a priori, that a large amount of the local interactions
involved are individually well-behaved w.r.t. (W, τ), and there are only a few
of them to check.

Some formal de�nitions. Before we give an overview of what we do
speci�cally in each chapter of this part, let us formally introduce the notion
of simple games built from a game form as we will use this notion throughout
this part. Recall De�nition 1.21: a game form F ′ is obtained from a game
form F if F ′ is equal to F up to a � not necessarily injective � renaming of
the outcomes. Also recall De�nition 1.11: a game form is trivial if both players
have only one available GF-strategy.

De�nition 5.1 (Simple games). Consider a game form F . A simple game
built on F is a game G such that:

• there is a central state qinit ∈ Qns such that F(qinit) is obtained from F ;

• all non-stopping non-central states q ∈ Qns\{qinit} are trivial and looping
on the state qinit.

Note that the game G is indeed built from F according to De�nition 1.22.

In this part, we prove instances of what we call local-global transfers. These
correspond to the (somewhat) necessary and su�cient condition discussed ear-
lier in page 245. We de�ne below how we will formulate these transfers in this
part.

De�nition 5.2 (Necessary and Su�cient Condition Transfer, NSC-Transfer).
Let X denote a set of payo� functions. A game with payo� function in X is

called an X game. Let also Y be a subset of game forms � for instance, it

may be the set of standard game forms. Consider a predicate ϕ on X games

and a predicate ψGF on Y game forms. When we say that: �among Y game

forms, satisfying ψGF is an NSC-transfer for (possibly �nite, possibly without

stopping states) X games to satisfy the property ϕ�, it means that:

1. from any game form F in Y that does not satisfy the predicate ψGF,

one can build on F a simple (possibly �nite, possibly without stopping

states) X game that does not satisfy the predicate ϕ;
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2. all (possibly �nite, possibly without stopping states) X games, whose lo-

cal interactions are game forms in Y satisfying the predicate ψGF, satisfy

the predicate ϕ.

We state several results in this part with the notion of NSC-transfer: Propo-
sition 6.1, Theorem 6.6, Proposition 7.1, Theorem 7.5, Proposition 7.7 and
Corollary 8.10.

Let us argue why what we have de�ned in De�nition 5.2 is called a nec-
essary and su�cient condition. Consider an NSC-transfer statement as in
De�nition 5.2: among Y game forms, satisfying ψGF is an NSC-transfer for X
games to satisfy the property ϕ. This statement hides in fact an equivalence
that could be stated as follows. Consider a non-empty set SGF of Y game
forms. Then, the two following assertions are equivalent:

a. The set SGF only contains game forms satisfying the predicate ψGF;

b. All X games built on SGF satisfy the property ϕ.

Indeed, since it is an NSC-transfer, item a. implies item b. by item 2. of
De�nition 5.2 and item b. implies item a. by item 1. of De�nition 5.2. Thus,
all NSC-transfers hide an equivalence stated with sets of game forms (hence
the NSC terminology).

This part contains four chapters. Chapter 6 deals with the restrictions on
game forms to be used in concurrent games so that they ensure nice properties
that can be directly deduced from Theorem 2.3. In particular, we provide an
NSC-transfer for the existence of winning strategies in concurrent games. In
the next two chapters, we state NSC-transfers for the existence of positional
optimal strategies in parity games. Speci�cally, in Chapter 7, we consider ar-
bitrary local interactions and show NSC-transfers for safety, reachability and
Büchi objectives. In Chapter 8, we consider only standard �nite game forms,
but we prove NSC-transfers for arbitrary parity objectives. Finally, in Chap-
ter 9, we study the di�erent classes of game forms we have de�ned in this part.
Note that these classes are studied outside of any concurrent game context.
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6 - Game forms for general objectives

In this chapter, we make use of the new version of Blackwell determinacy
stated in Theorem 2.3. Speci�cally, we use items (1.a) but also (2) of this
theorem to obtain two things rather straightforwardly. First, somewhat neces-
sary and su�cient conditions on game forms that, when they are ensured by
all the local interactions in a game behaves in a good way, i.e. NSC-transfer.
Second, su�cient conditions on game forms that, when they are ensured by all
the local interactions in a game, ensure that the game behaves in a good way.
In the next two paragraphs, we present the two NSC-transfers of this chapter.

We �rst realize that item (2) alone of Theorem 2.3 gives straightforwardly
an NSC-transfer on arbitrary game forms for in�nite games (with arbitrary
payo� functions) to have a value. This is stated in Proposition 6.1.

We then consider the existence of winning strategies. There are very sim-
ple concurrent games in which no player has a winning strategy. We consider,
among standard deterministic game forms, the ones ensuring the existence of
winning strategies in in�nite concurrent games. These are called determined
game forms. We obtain an NSC-transfer stated in Theorem 6.6. The proof
is direct from Theorem 2.3 (items (1.a), (2)). Note that we have studied de-
termined game forms in [38]. In that paper, we have already shown (see [38,
Theorem 17]) that, when used in concurrent games, determined game forms
ensure the existence of winning strategies from every state for either of the
players. However, in this paper, the proof is more elaborate since could not
use Theorem 2.3 as we had not proved it yet. Instead, we used the notions
of parallelization and sequentialization of games and strategies, that we have
de�ned in this dissertation in Section 3.4.

Nonetheless, in [38], in addition to proving the existence of winning strate-
gies, we also show that the memory requirement to win in concurrent games
with determined local interactions is the same as in (deterministic) turn-based
games. This is stated, without a proof, in Theorem 6.7. As an additional
remark on determined game forms, Theorem 6.6 is a generalization of Borel
determinacy (Theorem 2.1), that uses Borel determinacy as a black box in its
proof.

Finally, we quickly discuss in Subsection 6.2.2 an application of determined
game forms: discrete-bidding games.

The applications of Theorem 2.3 to determined and valuable game forms
actually constitute the only NSC-transfer that we will give in this chapter.
In the remainder of this chapter, we will slightly modify the de�nition of de-
termined game forms to obtain sometimes weaker, sometimes incomparable
restrictions on game forms.

When proving Theorem 6.6, we actually use a de�nition (see Proposi-
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tion 6.5) of determined game forms that is equivalent to the one we gave
in [38], but that is more suited for the application of Theorem 2.3. Another
interest of this equivalent de�nition is that it is easier to generalize. The �rst
generalization we propose makes the determinacy of game forms asymmetric
in the players: we obtain game forms that are semi-determined w.r.t. Player
A (or Player B). When such game forms are used in concurrent games, they
ensure that the game has a value, that the value of every state is either 0 or
1, and that from every state where this value is 1, Player A has a winning
strategy. This is stated in Proposition 6.9.

The second generalization we consider induces the de�nition of game forms
�nitely maximizable w.r.t. a player. These are standard �nite game forms that
are maximized by a �nite set of GF-strategies for Player A (or Player B), see
De�nition 6.3. When these game forms are used in a �nite concurrent arena
C, the arena C behaves, somehow, like a �nite turn-based arena. We give
two applications. In games obtained from such arenas with a payo� function
that is PI upward well-founded, Player A has a subgame optimal strategy,
see Theorem 6.11. This generalizes Corollary 3.25 (the same result in the
context of turn-based games). Furthermore, if this payo� function corresponds
to a parity objective, Player A has a positional strategy that is optimal, see
Corollary 6.12. To prove both these applications, we use the aforementioned
notions of parallelization and sequentialization of games and strategies from
Section 3.4.

Finally, we present a strengthening of the notion of �nitely maximizable
game forms: uniquely maximizable game forms. These are arbitrary game
forms that are maximized by a single Player-A GF-strategy. We �rst show
that, though this requirement is very strong, there is a natural way to construct
uniquely maximizable game forms, see Proposition 6.14. We then show that,
when all local interactions of an arena are uniquely maximizable w.r.t. Player
A, she has a positional strategy that is (subgame) optimal regardless of the
payo� function considered, see Theorem 6.15.

As mentioned above, with these last three classes of game forms, we do
not state an NSC-transfer. Furthermore, everything we prove in this chapter,
except what does concern determined game forms, is unpublished.

6.1 Valuable game forms

We start with a very brief section dealing with valuable game forms. This
�rst local-global transfer in concurrent games is a straightforward consequence
of Theorem 2.3 (item 2). Indeed, if one only considers this item, this theorem
can be read as follows: as soon as all local interactions are valuable, the game
has a value. Furthermore, it is straightforward that from a game form that is
not valuable, one can build a simple form that does not have a value. Hence,
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F1 =



x x z
x y y
z y z




Figure 6.1: A game form (that is
determined).

F2 =



x x z
x z y
z y y




Figure 6.2: A game form (that is
not determined).

we obtain the proposition below:

Proposition 6.1. Among arbitrary game forms, being valuable is an NSC-
transfer for in�nite games (with measurable payo� functions into [0, 1]) to have
a value.

Proof. Consider any game form F that is not valuable. Let v : O→ [0, 1] be a
valuation of the outcomes of F such that the game in normal form 〈F , v〉 does
not have a value. We de�ne an arena C = 〈Q,F,K, col〉 such that Qns := {qinit}
(with qinit /∈ O, up to a renaming of the outcomes) with F(qinit) := F . Fur-
thermore, Qs := O with, for all q ∈ Qs, val(q) ← v(q) ∈ [0, 1]. Furthermore,
K and col are de�ned arbitrarily. With this construction, we have that, re-
gardless of the payo� function f : Kω → [0, 1] considered, for G := 〈C, f〉, we
have χG [A](qinit) = val[〈F , v〉][A] and χG [B](qinit) = val[〈F , v〉][B]. Therefore,
the game G does not have a value.

Conversely, item 2. of Theorem 2.3 gives that all concurrent game whose
local interactions are valuable game forms has a value.

6.2 Determined game forms

In this section, we are looking for a local-global transfer to ensure that,
in in�nite win/lose games without stopping states, from every state, either of
the player has a winning strategy. Since we are considering winning strategies
(recall De�nition 1.33), we only consider deterministic standard game forms.
Recall that, for such a game form F ∈ Form(O) on some set of outcomes O,
we have that for all a ∈ ActA and b ∈ ActB, %(a, b) ∈ O. We have studied this
question in [38]. However, the main result of this section, Theorem 6.4 below,
that was also central in [38] is now a direct consequence of Theorem 2.3 (in
particular, of items 1.a and 2).

Compared to the conditions on game forms we will consider in the next
chapter, the condition we consider in this section is rather simple to explain.
Our goal is to come up with a de�nition of game form that ensures the existence
of winning strategies. Consider some game forms such as the ones depicted in
Figures 6.1, 6.2. A natural way to de�ne win/lose games from these game forms
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〈F1, v〉 =




1 1 1
1 0 0
1 0 1




Figure 6.3: The game form F1 of
Figure 6.1 with the valuation v :
{x, y, z} → {0, 1} such that v(x) =
v(z) := 1, v(y) := 0.

〈F1, v〉 =




1 1 0
1 0 0
0 0 0




Figure 6.4: The game form F1

of Figure 6.1 with the valuation
v : {x, y, z} → {0, 1} such that
v(x) := 1, v(y) = v(z) := 0.

is the following: every outcome is mapped to either 1 (i.e. winning for Player A)
or 0 (i.e. winning for Player B). Then, a Player-A winning (GF-)strategy in this
game is a row on which there are only outcomes winning for her, i.e. mapped
to 1. This is the case of the top row in Figure 6.3. Symmetrically, a Player-
B winning (GF-)strategy in this game is a column on which there are only
outcomes mapped to 0. This is the case of the leftmost column in Figure 6.4.
However, neither of the players has a winning (GF-)strategy in Figure 6.5. In
fact, game forms for which there are always winning GF-strategies as described
above are called determined and are the subject of study of this section. This
notion already exists, see for instance [36], where determinacy is referred to as
(0, 1)-solvable, or [71] where determinacy is referred to as tightness.

De�nition 6.1 (Determined game form). Consider a set of outcomes O and

a standard deterministic game form F ∈ Form(O). It is determined if, for all

w : O→ {0, 1}:

• either Player A has a winning (GF-)strategy, i.e. there is some a ∈ ActA
such that w ◦ %(a,ActB) = {1};

• or Player B has a winning (GF-)strategy, i.e.there is some b ∈ ActB such

that w ◦ %(ActA, b) = {0}.

Concerning the game forms of Figure 6.1 and 6.2, one can realize that F1

is determined. One can check it by looking at all the possible valuations of the
outcomes. (The winning players is the one for whom at least two elements in
{x, y, z} are mapped to her winning outcome.) However, the game form F2 is
not determined, as witnessed in Figure 6.5.

Furthermore, it is straightforward that all turn-based deterministic game
forms are determined.

Proposition 6.2. All turn-based deterministic game forms are determined.

Proof. Consider a turn-based deterministic game form F . Assume Player A

plays alone, the other case being symmetrical. Consider any map O→ {0, 1}.
If all outcomes are mapped to 0, then clearly Player B wins. Otherwise, there is
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〈F2, v〉 =




1 1 0
1 0 1
0 1 1




Figure 6.5: The game form F2 of Figure 6.2 with the valuation v :
{x, y, z} → {0, 1} such that v(x) = v(y) := 1, v(z) := 0.

some outcome in O mapped to 1 that Player A can enforce (as the game form is
turn-based). In any case, either of the players has a winning (GF-)strategy.

It is rather straightforward that any game form that is not determined is
unsafe w.r.t. the existence of winning strategies in win/lose concurrent games.
This is stated below.

Proposition 6.3. Consider a set of outcomes O and a standard deterministic

game form F ∈ Form(O). If the game form F is not determined, then there

is a simple win/lose game without stopping states built from F in which no

player has a winning strategy from the state qinit.

Proof. Let w : O→ {0, 1} be a valuation of the outcomes witnessing that the
game form F is not determined. We de�ne an arena C = 〈Q,F,K, col〉 such
that Q = Qns := {qinit, 1, 0} with K := {0, 1} and col(qinit) = col(0) := 0 and
col(1) := 1. In addition, denoting F = 〈ActA,ActB,O, %〉, the local interaction
at state qinit is equal to F(qinit) := 〈ActA,ActB, {0, 1},Ev(%)〉. That is, given a
pair of actions (a, b) ∈ ActA×ActB, the next state reached after qinit if (a, b) is
played is equal to v ◦ %(a, b). Both states 1 and 0 are trivial and loop back on
qinit. We consider the win/lose objectiveWA ⊆ Kω such thatWA := {0 ·1 ·Kω}.
That is, from q0, Player A wins if and only if the next state seen is of color 1,
i.e. if the next state is 1. Note that the game G is indeed a simple game built
from F , recall De�nition 5.1.

Let us now show that in the game G = 〈C,WA〉, neither of the player has a
(deterministic) winning strategy from qinit. Consider any deterministic Player-
A strategy sA ∈ SCA. By choice of the valuation v, there is an action b ∈ ActB
such that w ◦ %(sA(qinit), b) = 0. A deterministic Player-B strategy sB ∈ SCB
such that sB(qinit) := b wins surely against the Player-A strategy sA from qinit.
In fact, Player A has no winning strategy from qinit. We can show similarly
that Player B has no winning strategy from qinit.

The question now is, are there always winning strategies in win/lose games
where all local interactions are determined. It is in fact the case, as stated in
the theorem below.
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Theorem 6.4. Consider a concurrent win/lose game G without stopping
states such that, for all q ∈ Q, the local interaction F(q) is determined. Then,
from every state q ∈ Q, either of the players have a winning strategy.

This statement corresponds to [38, Theorem 17]. In that paper, we have
proved this theorem by using the notions of parallelization and sequentializa-
tion of strategies that we introduced in Section 3.4 from Chapter 3. The idea
in that paper is to consider winning strategies in the sequentialized version of
the game � which are ensured to exist by Theorem 2.1 (the determinacy of
Borel games) � and translate them back into the original concurrent game by
using the determinacy of the local interactions.

However, with the help of Theorem 2.3, it can be proved in a much quicker
fashion. Speci�cally, we want to use item 1.a of Theorem 2.3. However, to
do so, we need to express the fact that a game form is determined with the
notion of sets of GF-strategies supremizing game forms. This is done in the
proposition below where we give an equivalent de�nition of determined game
forms.

Proposition 6.5. Consider a set of outcomes O and a standard deterministic

game form F ∈ Form(O). It is determined if and only if it is valuable and

supremized w.r.t. Player A by ActA and w.r.t. Player B by ActB (i.e. ε-optimal

GF-strategies can be found among deterministic GF-strategies).

Note that, to prove Theorem 6.4, we do not need an equivalence only the
implication assuming the game form is determined.

Proof. Assume that the game form F is determined. Consider any valuations
of the outcome v : O → [0, 1]. For all u ∈ [0, 1], we let O≥u := {o ∈ O |
v(o) ≥ u} and v≥u : O → {0, 1} such that v−1

≥u[1] := O≥u. We then let
WinA := {u ∈ [0, 1] | ∃a ∈ ActA, v≥u[%(a,ActB)] = {1}}. Note that WinA 6= ∅
since 0 ∈WinA.

Now, we let x := sup WinA and we claim that val[〈F , v〉][A] = x = val[〈F , v〉][B].
Let ε > 0. There is u ∈ WinA such that u ≥ x − ε. Consider some a ∈ ActA
such that v≥u[%(a,ActB)] = {1}. Then, we have val[〈F , v〉][a] ≥ u. Indeed, for
all Player-B actions b ∈ ActB, we have v ◦ %(a, b) ≥ u. As this holds for all
ε > 0, it follows that val[〈F , v〉][A] ≥ x and approaching the value x can be
done with deterministic GF-strategies for Player A.

If x = 1, we indeed have val[〈F , v〉][A] = x = val[〈F , v〉][B]. Assume now
that x < 1. Then, for all 0 < ε ≤ 1 − x, we have x + ε ∈ [0, 1] \ WinA.
Therefore, since the game form F is determined, there is some b ∈ ActB such
that v≥x+ε[%(ActA, b)] = {0}. Then, we have val[〈F , v〉][b] ≤ x+ ε. Indeed, for
all Player-A actions a ∈ ActA, we have v ◦ %(a, b) < x + ε. As this holds for
all ε > 0, it follows that val[〈F , v〉][B] ≤ x and approaching the value x can
be done with deterministic GF-strategies for Player B. Hence, val[〈F , v〉][A] =

x = val[〈F , v〉][B].
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Assume now that F is valuable and supremized w.r.t. Player A by ActA and
w.r.t. Player B by ActB. Consider any valuation v : O→ {0, 1}. Since the game
form F is valuable, we let x := val[〈F , v〉]. Let us show that x ∈ {0, 1}. Assume
towards a contradiction that it is not the case and let ε := min(x,1−x)

2 > 0. By
assumption, Player A (resp. B) has a deterministic GF-strategy a ∈ ActA (resp.
b ∈ ActB) that is ε-optimal in the game in normal form 〈F , v〉. However, we
have v ◦ %(a, b) ∈ {0, 1}. Hence, by de�nition of ε, either a or b is not ε-
optimal. Hence the contradiction. In fact, x ∈ {0, 1}. Assume for instance
that x = 1 and consider a Player A deterministic GF-strategy a ∈ ActA that is
1
2 -optimal in the game in normal form 〈F , v〉. Then, for all b ∈ ActB, we have
|v ◦ %(a, b)− 1| ≤ 1

2 . Since v[%] ⊆ {0, 1}, it follows that v ◦ %(a, b) = 1. In other
words, we have v[%(a,ActB)] = {1}. Symmetrically, if x = 0, we can show that
there is some b ∈ ActB such that v[%(ActA, b)] = {0}.

We can now prove Theorem 6.4.

Proof. This proof is actually somewhat close to the second part of the proof
of Proposition 6.5 but adapted to the case of win/lose graph games.

Consider such a game G and a state q ∈ Q. Since all local interactions
are valuable (since they are determined, by Proposition 6.5), by Theorem 2.3,
the game G has a value. Let x := χG(q). Assume towards a contradiction
that x /∈ {0, 1}. Let ε := min(x,1−x)

2 > 0. By Theorem 2.3, since the local
interactions are supremized, w.r.t. both players, by deterministic GF-strategies
by Proposition 6.5, Player A (resp. B) has a deterministic GF-strategy sA ∈ SCA
(resp. sB ∈ SCB) that is ε-optimal in the game G from q. Since all local
interactions are deterministic, and both strategies sA and sB are deterministic,
it follows that there is a unique path ρ ∈ Qω such that PsA,sB

C,q [ρ] = 1. Since
the game G has no stopping states and is win/lose, it follows that we have
EsA,sB
C,q [(fC)

q] ∈ {0, 1}. Hence, by de�nition of ε, either sA (if EsA,sB
C,q [(fC)

q] = 0)
or sB (if EsA,sB

C,q [(fC)
q] = 1) is not ε-optimal. Hence the contradiction. In

fact, x ∈ {0, 1}. Assume for instance that x = 1 and consider a Player A

deterministic strategy sA ∈ SCA that is 1
2 -optimal in the game G from q. Then,

for all deterministic Player-B strategies sB ∈ ActB, we have |EsA,sB
C,q [(fC)

q] −
1| ≤ 1

2 . Since EsA,sB
C,q [(fC)

q] ∈ {0, 1}, it follows that EsA,sB
C,q [(fC)

q] = 1. In
other words, for all Player-B deterministic strategies sB ∈ SCB, the only path
compatible with sA and sB has value 1. That is, the Player-A deterministic
strategy sA is winning. Symmetrically, if x = 0, we can show that Player B

has a deterministic winning strategy.

Overall, determined game forms ensure the following.

Theorem 6.6. Among standard deterministic game forms, being determined
is an NSC-transfer for the existence of winning strategies in in�nite win/lose
games without stopping states.
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Proof. This a consequence of Proposition 6.3 and Theorem 6.4.

Memory Transfer. In [38] where we have originally considered the use
of determined game forms in concurrent games, in addition to proving Theo-
rem 6.4, we have also proved results on the memory required to play winning
strategies. We recall what was done in [38] here, without giving the formal
proof (which can be found in the arXiv version [72] of [38]).

In [51], the authors proved an equivalence between the shape of a winning
objective and the existence of winning strategies that can be implemented with
a given memory skeletonM in turn-based games. They de�ned the properties
ofM-selectivity andM-monotony (which we recall in Section 6.6) and proved
that for M a memory skeleton and W ⊆ Kω, we have that W and Kω \W
are M-monotone and M-selective is equivalent to every deterministic �nite-
state turn-based game with W as winning objective, winning strategies for
both players that can be found among strategies implemented with memory
skeleton M (see Theorem 6.18 in Section 6.6). This also holds in �nite-state
concurrent games with local interactions that are determined and �nite. This
is stated Theorem 6.7 below, which amounts to [38, Theorem 18].

Theorem 6.7. Let K be a non-empty set of colors,M be a memory skeleton

on K andW ⊆ Kω be an objective. The following two assertions are equivalent:

1. in every �nite-state concurrent game with local interactions that are

�nite and determined, winning strategies for both players that can be

found among strategies implemented with memory skeletonM;

2. W and Kω \W areM-monotone andM-selective.

6.2.1 . Retrieving Theorem 2.1

We want to point out an important fact about that Theorem 6.4.

Informal Statement 6.1. Borel determinacy, that is the existence of win-

ning strategies, from every state, in all deterministic turn-based games without

stopping states (stated in Theorem 2.1) is a logical consequence of Theorem 6.4.

Proof. This comes from Proposition 6.2: deterministic turn-based game forms
are determined.

Remark 6.1. Note that Borel determinacy that we have stated in Theo-

rem 2.1 holds even for a set of states uncountable. On the other hand, the

games we consider in this dissertation have a countable set of states. However,

Theorem 2.3 and Proposition 6.2 would also hold with a set of states that

is not countable. (Note that, even if the set of states is not countable, from

any starting state, once both players have chosen a strategy, the set of states

that can be visited with positive probability is countable. This is because the
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distributions over states that we consider in local interactions always have a

countable support.)

However, it is also very important to note the following. We have used
Theorem 2.3 to prove Theorem 6.4 and we have used Theorem 2.1 to prove
Theorem 2.3. Therefore, we have not given a new proof of Theorem 2.1. The
only thing we can say is that Theorem 2.3 is a strengthening of Theorem 2.1.

In addition, note that we have also proved Theorem 6.4 in [38]. However,
in that paper we directly used Theorem 2.1 to prove it � since we transferred
already existing results in deterministic turn-based games to concurrent games
with determined local interactions. Hence, in that case too, we have not given
a new proof of Theorem 2.1.

6.2.2 . Application: discrete-bidding games

In this subsection, we would like to quickly present an application of deter-
mined game forms. More precisely, determined game forms actually appear in
concurrent games of the literature. We discuss this on discrete-bidding games.
These games were initially introduced in [73]. Here, we consider part of what
is done in [74]. We would like to thank Guy Avni (one of the authors of [74])
for the fruitful discussion we had in Highlights 2022 on the subject of this
subsection.

The games studied in that paper are �nite-state concurrent two-player
antagonistic games with speci�c local interactions. Let us explain exactly how
the players interact at each state. The two players start the game with an
initial budget (i.e. an integer). Then, at each step of the game, both players
bid concurrently some amount of their current budget. The highest bidder
pays the other player what she has bid and gets to choose the next state. The
process repeats inde�nitely, thus creating an in�nite sequence of states. The
games considered are win/lose and without stopping states.

Contrary to continuous bidding, which is another kind of concurrent games
studied in the literature, how discrete-bidding games behave heavily depends
on the tie-breaking mechanism used in the game. In [74], the authors present
three kinds of tie-breaking mechanisms. All these mechanisms induce di�erent
local interactions in the games. Let us �rst consider deterministic tie-breaking
mechanisms, we will discuss brie�y stochastic ones at the end of this subsection.
There are two deterministic tie-breaking mechanisms studied in [74]:

• Transducer-based: the game is given a transducer that, as a function
of the states visited, the winners of the previous ties, the number of
ties that have already occurred and past winning bids choose who is the
winner of the tie.

• Advantaged based: at the start of the game, one player holds the advan-
tage. Then, whenever there is a tie, the player holding the advantage

257



F3,3
bid =




v0,0 v0,1 v0,2 v0,3

v1,0 v1,1 v1,2 v1,3

v2,0 v2,1 v2,2 v2,3

v3,0 v3,1 v3,2 v3,3




Figure 6.6: A bidding interaction where both players have budget 3.

may decide to either win and give the advantage to the other player or
lose and keep the advantage.

Let us �rst discuss transducer-based tie-breaking. In this setting, we are in-
terested in the existence of winning strategies. As stated in [74, Theorem 4.1],
if the transducer has the information of whether or not a tie has occurred,
then there are reachability games where neither player has winning strategies.
Hence, the authors focus on transducer unaware of ties. In this setting, the
authors show in all Muller games (a generalization of parity games), either
player has a winning strategy [74, Theorem 4.5].

In fact, in such a setting, we believe that the local interactions involved
are determined. This would imply these bidding games inherit all the nice
properties that concurrent games with determined local interactions have, see
Theorem 6.4 and Theorems 6.7. In particular, in all win/lose games (with
Borel winning objectives), one of the players has a winning strategy.

Let us give the intuition of why we believe that the local interactions in-
volved are determined. To do so, consider the bidding interaction Fbid depicted
in Figure 6.6 in the case where both players have budget 3. An outcome vi,j
corresponds to a situation where Player A has bid i and Player B has bid j.
The diagonal outcomes of the shape vi,i correspond to ties. Furthermore, be-
cause of how bidding games are played, some of these outcomes are in fact
equal. For instance, v2,0 and v2,1 are the same since in both cases Player A

wins and pays 2 to Player B.

In fact, the bidding interaction has the shape depicted in Figure 6.7 where
the outcome vi,A refers to the fact that Player A has won the bid and has paid
2 to Player B. Let us now consider the ties. This is where we use the unaware
of ties assumption. Assume that, given the history of the game, Player A wins
the next bid. Then, because the transducer considered is unaware of ties, an
outcome vi,i is in fact equal to the outcome vi,A. If the transducer were not
unaware of ties, the outcome vi,i could not be compared, a priori, with either
vi,A or vi,B (this can be seen in the example discussed in [74, Theorem 4.1]).
With the unaware of ties assumption, the bidding interaction has the shape
depicted in Figure 6.8.

Now, it is actually rather straightforward to show that the game form of
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F3,3
bid =




v0,0 v1,B v2,B v3,B

v1,A v1,1 v2,B v3,B

v2,A v2,A v2,2 v3,B

v3,A v3,A v3,A v3,3




Figure 6.7: The same bidding interaction where the relations between
outcomes are made explicit.

F3,3
bid,A =




v0,A v1,B v2,B v3,B

v1,A v1,A v2,B v3,B

v2,A v2,A v2,A v3,B

v3,A v3,A v3,A v3,A




Figure 6.8: The bidding interaction in the case where Player A wins ties.

Figure 6.8 is determined. Indeed, recall De�nition 6.1 and consider a map of
the outcomes into {0, 1}. For the condition of De�nition 6.1 not to be met, it
must be that:

• v3,A is mapped to 0, and v3,B to 1;

• v2,A is mapped to 0, and v2,B to 1;

• v1,A is mapped to 0, and v1,B to 1;

• Finally, if v0,A is mapped to 0, the leftmost column is full of 0, and if
v0,A is mapped to 1, the topmost row is mapped to 1.

Hence, the condition of De�nition 6.1 is necessarily met. That is, the game
form F3,3

bid,A is determined. It seems that this reasoning can be generalized to
any budget of the players, regardless of who wins the current tie. Note that all
the observations and reasoning presented in this subsections are given in [74].
However, they are not used to prove the determinacy of the local interactions
(since this notion is not de�ned). Although, it has to be noted that what is
proved by the authors (called �local determinacy�) is close to the notion of
determinacy.

As mentioned above, there is another type of deterministic tie-breaking
mechanism: advantage-based tie-breaking. In this setting, the authors prove
similar results than for the transducer-based unaware of ties mechanism. It
would be interesting to investigate if, also in this case, we could show that the
local interactions are determined.

Finally, who wins ties may also be decided randomly. We discuss this
further at the end of Section 6.3 below.
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6.2.3 . Semi-determined game forms

In this subsection, we consider a weaker notion of determinacy for game
forms that is asymmetric in the players, in the sense that we make an assump-
tion for one player but not for the other. If we consider De�nition 6.1, it does
not seem possible since the resulting de�nition would be pointless. However,
we may use the characterization of Proposition 6.5. since the notion we want
to de�ne takes the point of view of only one player, say Player A, it su�ces
not to make any assumption w.r.t. ε-optimal GF-strategies for Player B. This
is what we do in the de�nition below.

De�nition 6.2 (Semi determined game form). Consider a set of outcomes O

and a standard deterministic game form F ∈ Form(O). It is semi determined
w.r.t. Player A if it is valuable and supremized w.r.t. Player A by ActA.

This is symmetrical for Player B.

In fact, for standard deterministic game forms with at least one set of
actions which is �nite, being determined is equivalent to being semi determined
for Player A. This is not the case when both action sets are in�nite.

Proposition 6.8. Consider a set of outcomes O and a standard deterministic

game form F ∈ Form(O). If either ActA or ActB is �nite, then F is determined

if and only if it is semi determined w.r.t. Player A (or Player B).

There is a standard deterministic game form where both players have an

in�nite action set that is semi determined w.r.t. Player A but that is not

determined.

Proof. Consider a game form F and assume that it is semi determined w.r.t.
Player A. We do not make any other assumption on F for now. Consider any
valuation v : O→ {0, 1}. Since the game form F is valuable, we may consider
x := val[〈F , v〉] ∈ [0, 1]. Assume towards a contradiction that x /∈ {0, 1}. Let
0 < ε < x. Consider any Player-A deterministic GF-strategy a ∈ ActA that
is ε-optimal in the game in normal form 〈F , v〉. Then, for all b ∈ ActB, it
must be that v ◦ %(a, b) ≥ x − ε > 0. That is, v[%(a,ActB)] = {1}. Hence the
contradiction. In fact, it must be that x ∈ {0, 1}.

Assume that x = 0. Let us now make additional assumptions on F . As-
sume �rst that the set ActA is �nite. Assume towards a contradiction that,
for all b ∈ ActB, there is some a ∈ ActA such that v ◦ %(a, b) = 1. Then,
consider a Player-A GF-strategy σA ∈ D(ActA) that plays all actions in ActA
with uniform probability: for all a ∈ ActA, σA(a) := 1

|ActA| . Then, for all

σB ∈ D(ActB), we have out[〈F , v〉](σA, σB) ≥ 1
|ActA| . Therefore, we would have

x ≥ 1
|ActA| > 0, which is a contradiction. In fact, there is some b ∈ ActB such

that v[%(ActA, b)] = {0}.
Assume now that the set ActB is �nite. Assume again towards a contradic-

tion that, for all b ∈ ActB, there is some ab ∈ ActA such that v ◦ %(ab, b) = 1.
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


y y y y . . .
x y y y . . .
y x y y . . .
y y x y . . .
y y y x . . .
. . . . . . . . . . . . . . .




Figure 6.9: A game form semi determined w.r.t. Player A that is not
determined.

Then, consider a Player-A GF-strategy σA ∈ D(ActA) that plays all actions in
XB := {ab | b ∈ ActB} with uniform probability: for all b ∈ XB, σA(ab) := 1

|XB| .

Then, for all σB ∈ D(ActB), we have out[〈F , v〉](σA, σB) ≥ 1
|XB| . Therefore, we

would have x ≥ 1
|XB| > 0, which is a contradiction. In fact, there is some

b ∈ ActB such that v[%(ActA, b)] = {0}.
Hence, if either ActA or ActB is �nite, then we can conclude that the game

form F is determined.
Consider now the game form F of Figure 6.9. We claim that it is semi

determined w.r.t. Player A. Consider any valuation v : {x, y} → [0, 1]. If
v(y) ≥ v(x), we have val[〈F , v〉] = v(y) and playing deterministically the top
row is optimal for Player A. Assume that v(y) < v(x). Then, we still have
val[〈F , v〉] = v(y). Indeed, for all n ∈ N, a Player-B GF-strategy σB ∈ D(ActB)

that plays uniformly over the �rst n columns has value v(x)+(n−1)·v(y)
n →n→∞

v(y). In that case, any Player-A GF-strategy is optimal. Hence, the game form
F is semi determined w.r.t. Player A. However, it is not determined. Indeed,
for v : {x, y} → {0, 1} such that v(x) := 1 and v(y) := 0, there is clearly no
rows of 1 nor any column of 0.

Let us now consider what happens when we use semi determined game
forms w.r.t. Player A as local interactions in win/lose concurrent games with-
out stopping states. It still holds that the value of any state is 0 or 1. Further-
more Player A has still winning strategies from every state of value 1. However,
Player B does not necessarily have some from states of value 01.

Proposition 6.9. Consider a concurrent win/lose game G without stopping
states such that, for all q ∈ Q, the local interaction F(q) is semi determined
w.r.t. Player A. Then, from every state q ∈ Q, we have χG(q) ∈ {0, 1} and if
χG(q) = 1, then Player A has a winning strategy from q.

1This is witnessed by the game form of Figure 6.9: if it placed in a game at a state
q where reaching x is winning for Player A and reaching y is winning for Player B,
then the state q has value 0, but Player B has no winning strategy.
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Proof. This proof is almost identical to the proof of Theorem 6.4. Consider
such a game G and a state q ∈ Q. Since all local interactions are valuable,
by Theorem 2.3, the game G has a value. Let x := χG(q). Assume towards
a contradiction that x /∈ {0, 1}. Let 0 < ε < x. By Theorem 2.3, since
the local interactions are supremized, w.r.t. Player A, by deterministic GF-
strategies, Player A has a deterministic GF-strategy sA ∈ SCA that is ε-optimal
in the game G from q. Consider any deterministic Player-B strategy sB ∈ SCB.
Since all local interactions are deterministic, and both strategies sA and sB
are deterministic, it follows that there is a unique path ρ ∈ Qω such that
PsA,sB
C,q [ρ] = 1. Since the game G has no stopping states and is win/lose, it

follows that we have EsA,sB
C,q [(fC)

q] ∈ {0, 1}. As this holds for all Player-B
deterministic strategies, there is a contradiction. Indeed, either for all Player-
B deterministic strategies sB ∈ SCB, we have EsA,sB

C,q [(fC)
q] = 1, and in that case

the Player-A strategy sA has value 1. Or, there is some Player-B deterministic
strategy sB ∈ SCB such that we have EsA,sB

C,q [(fC)
q] = 0, and in that case the

Player-A strategy sA has value 0. In fact, x ∈ {0, 1}. Assume now that x = 1

and consider a Player-A deterministic strategy sA ∈ SCA that is 1
2 -optimal in

the game G from q. Then, for all deterministic Player-B strategies sB ∈ ActB,
we have |EsA,sB

C,q [(fC)
q] − 1| ≤ 1

2 . Since EsA,sB
C,q [(fC)

q] ∈ {0, 1}, it follows that
EsA,sB
C,q [(fC)

q] = 1. In other words, for all Player-B deterministic strategies
sB ∈ SCB, the only path compatible with sA and sB has value 1. That is, the
Player-A deterministic strategy sA is winning.

6.3 Finitely-maximizable game forms

In this section, we consider another notion on standard �nite game forms
� not necessarily on deterministic ones � that is weaker than determinacy
on standard �nite game forms. Hence, on standard �nite game forms, this can
be seen as a generalization of the notion of determinacy. Note that, however,
contrary to what we did in Theorem 6.6, we will not state an NSC-transfer in
this section.

To gain an intuition behind this notion, let us consider again the characteri-
zation of determined game forms via Proposition 6.5. In a standard �nite game
form F � which is necessarily valuable, recall Theorem 1.11 � this charac-
terization, from Player A's point of view, amounts to: the set ActA supremizes
the game form F . However, the set ActA, besides being the set of Player-
A deterministic GF-strategies, can simply be seen as a �nite set of Player-A
GF-strategies. However, in this section, we are not particularly interested in
deterministic strategies � which was the case in the previous section since we
considered winning strategies. Hence, there is no reason to limit ourselves to
that speci�c �nite set of Player-A GF-strategies. This suggests the de�nition
below of �nitely maximizable game forms for one player.

262



De�nition 6.3 (Finitely maximizable game forms). Consider a set of out-

comes O and a standard �nite game form F ∈ Form(O). It is �nitely maximiz-
able w.r.t. Player A if there is �nite set SA ⊆ D(ActA) of Player-A GF-strategies

that maximizes it.

The de�nition is analogous for Player B.

Remark 6.2. Consider a game form that is �nitely maximizable w.r.t. Player

A. This game form is valuable by Theorem 1.11. Furthermore, since the

set SA ⊆ D(ActA) is �nite, it maximizes the game form F if and only if it

supremizes it, recall Observation 1.1.

We will give below two applications of �nitely maximizable game forms in
�nite games, but before that we state that any standard game forms with at
most two outcomes is �nitely maximizable. It is also the case of determined
game forms.

Proposition 6.10. Consider a set of outcomes O and a standard �nite game

form F ∈ Form(O). If |O| ≤ 2 or if the game form F is determined (it may be

turn-based), it is �nitely maximizable w.r.t. Player A and Player B.

Proof. If F is determined, this is a direct consequence of Proposition 6.5.
Assume now that |O| ≤ 2. Let us show that it is �nitely maximizable

w.r.t. Player A, this is similar for Player B. If |O| = 1, this is obvious since
any Player-A GF-strategy is optimal in games in normal form that can be
obtained from F . Assume now that |O| = 2. We write O = {x, y}. We let
vx : {x, y} → [0, 1] be such that vx(x) := 1 and vx(y) := 0 and symmetrically,
we let vy : {x, y} → [0, 1] be such that vy(x) := 0 and vy(y) := 1. Let σxA ∈
D(ActA) (resp. σyA ∈ D(ActA)) be a Player-A GF-strategy that is optimal in the
game in normal form 〈F , vx〉 (resp. 〈F , vy〉). We claim that the set {σxA, σ

y
A}

maximizes the game form F . Consider any valuation v : {x, y} → [0, 1]. If
v(x) = v(y), any Player-A GF-strategy is optimal in the game in normal form
〈F , v〉. Assume now that v(x) > v(y). We let w := v − v(y) : {x, y} → [0, 1].
We have:

• v = v(x) · vx + v(y) · vy

• w = (v(x)− v(y)) · vx

Therefore, by Lemma 1.10 and since σxA is optimal in 〈F , vx〉:

val[〈F , v〉](σxA) = val[〈F , w〉](σxA)− v(y)

= (v(x)− v(y)) · val[〈F , vx〉](σxA)− v(y)

= (v(x)− v(y)) · val[〈F , vx〉]− v(y)

= val[〈F , w〉]− v(y)

= val[〈F , v〉]
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That is, the Player-A GF-strategy σxA is optimal in the game in normal form
〈F , v〉. Similarly, if v(x) < v(y), we would have the Player-A GF-strategy σyA
is optimal in the game in normal form 〈F , v〉. In fact, �nite set {σxA, σ

y
A} ⊆

D(ActA) maximizes the game form F for Player A.

With �nitely maximizable local interactions in �nite concurrent games, we
can make use of the results of (the �rst subsection of) Section 3.4 � regarding
the sequentialization and parallelization of strategies � and of Theorem 2.3.
That is, consider a �nite concurrent game G where all local interactions are
�nitely maximizable w.r.t. Player A. In particular, this game is B-�nite, recall
De�nition 3.25. The informal idea is the following: consider De�nition 3.18 and
the turn-based game G(Λ, η) that is the sequentialized version of the concurrent
game G where, for all q ∈ Q, we have Λq := SqA for SqA ⊆ D(ActqA) a �nite
set supremizing the game form F(q) (the function η is de�ned arbitrarily for
now). Since SqA is �nite, the turn-based game G(Λ, η) is �nite. By using
Theorem 2.3 and Proposition 3.32, we can then show that, for all q ∈ Q, we
have χG(q) = χG(Λ,η)(q). This means informally that what happens in the
turn-based game G(Λ, η) is the same as what happens in the game G, from
every state. Stated di�erently, the �nite concurrent game G behaves like a
�nite turn-based games, and therefore enjoys (some of) the nice properties
that �nite turn-based games enjoy. We present two such properties below.

First, just like in �nite turn-based games, there are always subgame optimal
strategies in �nite concurrent games with local interactions which are �nitely
maximizable w.r.t. Player A when the payo� function is PI upward well-
founded.

Theorem 6.11. Consider a �nite concurrent game G with a PI upward well
founded payo� function where all local interactions are �nitely maximizable
w.r.t. Player A. For all q ∈ Q, we let SqA ⊆ D(ActqA) be a �nite set of Player-A
GF-strategies supremizing the game form F(q). Then, Player A has a subgame
optimal strategy in G generated by (SqA)q∈Q.

Remark 6.3. Before proving this theorem, we want to make two quick re-

marks. First, this result generalizes Corollary 3.25, though we use this corollary

to prove this theorem. Second, since for all q ∈ Q, the set SqA is �nite, this

theorem shows the existence of a �nite-choice subgame optimal strategy in G
(recall De�nition 3.22).

Proof. Consider a fresh color k /∈ K and let K′ := {k} and η : K → {k}.
For all q ∈ Q, we let Λq := SqA and Λ := (Λq)q∈Q. Consider now the turn-
based game G(Λ, η) from De�nition 3.18. Since the payo� function of the
game G is PI upward well-founded, so is the payo� function of the turn-based
game G(Λ, η). Hence, by Corollary 3.25, Player A has a subgame optimal

deterministic strategy sA ∈ S
C(Λ,η)
A in the game G(Λ, η).
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Furthermore, by Proposition 3.32, for all q ∈ Q, we have χG(Λ,η)(q) =

suptA∈SCA(Λ) χG [tA](q) where SCA(Λ) refers to the set of Player-A strategies gener-
ated by Λ. By de�nition of Λ and Theorem 2.3, we have suptA∈SCA(Λ) χG [tA](q) =

χG(q). Hence, for all q ∈ Q, we have χG(Λ,η)(q) = χG(q). In addition, Propo-
sition 3.32 also gives that the Player-A strategy PrΛ

A(sA) ∈ SCA (from De�ni-
tion 3.19) is generated by Λ and ensures, for all q ∈ Q, that χG(Λ,η)(q) =

χG(Λ,η)(sA)(q) ≤ χG(PrΛ
A(sA))(q). Therefore, the strategy PrΛ

A(sA) is optimal in
G. We can now conclude by applying Theorem 3.28: since PrΛ

A(sA) is generated
by Λ and is positively bounded (since for all q ∈ Q, Λq is �nite), there is a
Player-A strategy in the game G that is subgame optimal and generated by
Λ.

Second, let us consider the memory necessary and su�cient to be (sub-
game) optimal in such concurrent games. In [38], when dealing with deter-
mined game forms, in addition to proving Theorem 6.4 (from the previous
subsection), we also established memory transfer from turn-based games to
concurrent games with determined local interactions (see [38, Theorem 12,
Corollary 16]). Since this is the main focus in this dissertation, we will state a
similar theorem only for parity objectives. However, note that we could have
similar statements for other objectives, well-behaved in turn-based games.

Corollary 6.12. Consider a �nite concurrent parity game G where all local
interactions are �nitely maximizable w.r.t. Player A. Then, Player A has a
positional strategy that is (subgame) optimal in G.

Proof. By Theorem 6.11, there is a �nite-choice subgame optimal strategy in
G. Corollary 3.38 then gives that there is positional subgame optimal strategy
in G.

Discrete-bidding games. We have discussed earlier in Section 6.2 the
fact that determined game forms appear in the literature. We discussed it
by using part of what is done in [74]. We have not considered yet the case
of random-based tie-breaking mechanism since determined game forms are,
by de�nition, deterministic. In this setting, the authors of [74] show that all
reachability (�nite-state) games have a value when restricted to deterministic
strategies. (More precisely, they show that the games they consider have a
value, and in the games they consider, the players can only play deterministic
strategies.)

In fact, we make the conjecture below about the local interactions occurring
in this setting.

Conjecture 6.13. The local interactions occurring in discrete-bidding games

with random-based tie-breaking mechanisms are supremized by deterministic

GF-strategies. (Since these game forms are standard �nite, it would follow that

these game forms are �nitely maximizable.)
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Figure 6.10: A circular
game form (n = 4).

[
x y
y x

]

Figure 6.11: A circular
game form (n = 2).



x y u
z t u
u u u




Figure 6.12: Another
uniquely maximizable
game form.

This conjectures implies that all games using random-based tie-breaking
mechanisms have a value when restricted to deterministic strategies (regardless
of the Borel objectives or measurable payo� function considered).

6.4 Uniquely maximizable game forms

We can strengthen the notion of �nite maximizability of local interactions
to ensure very strong properties on concurrent games, though it will apply to
(much) fewer games. For a game form to be �nitely maximizable, we require
that there is a �nite set that maximizes it. A natural way to strengthen this
property is to require that this set is not only �nite but a singleton. This de�nes
uniquely maximizable game forms. Note that this is de�ned in arbitrary game
forms, not only standard ones. Furthermore, as in the previous section, we will
not state any NSC-transfer in this section.

De�nition 6.4 (Uniquely maximizable game forms). Consider a set of out-

comes O and an arbitrary game form F ∈ Form(O). It is uniquely maximizable
w.r.t. Player A if there is a Player-A GF-strategy σA ∈ D(ActA) such that the

singleton {σA} maximizes the game form F .
The de�nition is analogous for Player B.

Being uniquely maximizable is a strong property on game forms. However,
we present below a class (namely, circular game forms) of standard �nite game
forms that are uniquely maximizable w.r.t. both players.

De�nition 6.5 (Circular game forms). Consider a �nite set of outcomes O.

Let us denote O by O = {o0, o1, . . . , on−1} for n := |O| ∈ N. A game form F ∈
Form(O) is circular if ActA = ActB := J0, n−1K and for all (i, j) ∈ ActA×ActB,

we have: %(i, j) := oj−i mod n.

In Figure 6.10, we have depicted a circular game form for n = 4, and in
Figure 6.11, we have depicted a circular game form for n = 2. Note that
this game form is also known as the matching pennies interaction. In fact, all
circular game forms are uniquely maximizable w.r.t. both players.
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Proposition 6.14. Consider a �nite set of outcomes O and a game form

F ∈ Form[O]. If F is circular, for both players, a GF-strategy σ that plays

uniformly at random all actions is such that the set {σ} maximizes the game

form F . Hence, the game form F is uniquely maximizable w.r.t. both players.

Proof. Consider v : O → [0, 1]. Let n := |O| and u :=
∑n−1
i=0 v(oi)
n ∈ [0, 1]. We

claim that u = val[〈F , v〉].
Let σA ∈ D(ActA) be the Player-A GF-strategy that plays uniformly over

all actions. Consider any Player-B action j ∈ J0, n− 1K. We have:

out[〈F , v〉](σA, v) =

n−1∑

i=0

σA(i) · v(oj−i mod n) =

∑n−1
i=0 v(oi)

n
= u

Therefore, u = val[〈F , v〉](σA) ≤ val[〈F , v〉]. Symmetrically, denoting σB ∈
D(ActB) the Player-B GF-strategy that plays uniformly over all actions, we
have u = val[〈F , v〉](σB) ≥ val[〈F , v〉]. Therefore, u = val[〈F , v〉] and σA and
σB are optimal GF-strategies in the game in normal form 〈F , v〉.

We want to mention that not all uniquely maximizable game forms are
circular. This is for instance the case of the game form of Figure 6.12.

When all game forms are uniquely maximizable w.r.t. Player A in an
arena, it becomes very easy for Player A to play optimally. Indeed, she has a
positional strategy that is subgame optimal regardless of the payo� function
considered.

Theorem 6.15. Consider an arbitrary concurrent arena C (that need not be
�nite) and assume that all local interactions are uniquely maximizable w.r.t.
Player A. Then, there is a Player-A positional strategy sA ∈ SCA such that, for
all payo� functions f : Kω → [0, 1], the strategy sA is subgame optimal in the
game 〈C, f〉.
Proof. For all q ∈ Q, we let σqA ∈ Σq

A be a Player-A GF-strategy such that the
set {σqA} maximizes the game form F(q). Let sA ∈ SCA be a positional Player-A
strategy such that, for all q ∈ Q, we have sA(q) := σqA.

Consider any payo� function f : Kω → [0, 1]. Let us �rst show that the
strategy sA is optimal in the game G = 〈C, f〉. First, note that the strategy
sA is the only Player-A strategy generated by ({σqA})q∈Q. Furthermore, by
Theorem 2.3, for all ε > 0, for all q ∈ Q, there is a Player-A strategy generated
by ({σqA})q∈Q that is ε-optimal from q in G. In other words, for all ε > 0,
the strategy sA is ε-optimal from all states q ∈ Q. That is, the strategy sA is
optimal in the game G. This holds for all payo� functions f : Kω → [0, 1].

Consider now any payo� function f : Kω → [0, 1] and let us show that the
strategy sA is subgame optimal in the game G = 〈C, f〉. Let ρ ∈ (Qns)

+. We
let γ := col∗(tl(ρ)) ∈ K∗. Then, the strategy sA is optimal from the state ρlt in
the game G = 〈C, fγ〉. Since this holds for all ρ ∈ (Qns)

+, it follows that the
strategy sA is subgame optimal in G = 〈C, f〉.
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Another bene�t of uniquely maximizable game forms is that they behave
well in games, even if not all local interactions are uniquely maximizable.
Indeed, whenever there are uniquely maximizable local interactions in an arena,
Player A should always play, positionally in the corresponding states, a GF-
strategy supremizing the game form. Let us de�ne formally this change of
strategy.

De�nition 6.6. Consider a concurrent arena C. Let S ⊆ Q be any set of

states. Consider any Player-A strategy sA ∈ SCA. We say that another Player-A

strategy s′A S-trivialize sA if:

• for all q ∈ Q \ S and ρ ∈ Q+, we have s′A(ρ · q) = sA(ρ · q);

• for all q ∈ S, there is σA ∈ SCA such that the set {σA} maximizes the

game form F(q). and for all ρ ∈ Q+, we have: s′A(ρ · q) = σA.

We have the proposition below.

Proposition 6.16. Consider a concurrent arena C and a subset S ⊆ Q of

states. Assume that, for all q ∈ S, the game form F(q) is uniquely maximizable

w.r.t. Player A. Let sA ∈ SCA be any Player-A strategy in the arena C. Then,

there are Player-A strategies S-trivializing the strategy sA. For all such Player-

A strategies s′A ∈ SCA, for all payo� functions f : Kω → [0, 1] and for all �nite

paths ρ ∈ (Qns)
+, we have χ〈C,f〉[sA](ρ) ≤ χ〈C,f〉[s′A](ρ) (recall De�nition 3.3).

We only give an informal proof of this statement, as formalizing it properly
would be somewhat lengthy.

Proof. Consider a payo� function f : Kω → [0, 1], a �nite path ρ ∈ (Qns)
+ and

a Player-B strategy sB ∈ SCB. We let γ := col∗(tl(ρ)) ∈ K∗. We build an arena
CUnfold such that CUnfold := 〈Q′,F′,K, col′〉 with:
• Q′ := ρ ·Q∗ with Q′ns := {π ∈ Q′ | πlt ∈ Qns};

• for all π ∈ Q′ns:

F′(π) :=

{
〈Σq

A, {sB(π)}, Q, %πlt〉 if πlt ∈ S
〈{sA(π)}, {sA(π)}, Q, %πlt〉 otherwise

• for all π ∈ Q′ns, col′(π) := col(πlt).

We can make several observations about the arena CUnfold. First, this arena
is in fact an MDP where Player A plays alone. We denote by tB the only
Player-B strategy in that arena. Second, for the Player-A positional strategy
tA ∈ SC

unfold

A (resp. t′A ∈ SC
unfold

A ) such that for all π ∈ Q′, we have tA(π) := sA(π)

(resp. t′A(π) := s′A(π)), we have2:

EsA,sB
C,ρ [fγ ] = EtA,tB

Cunfold,ρ[f
γ ]

2This is where the proof is informal, since this would require a formal proof, for
instance by applying Lemma 1.2.
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and
Es′A,sB
C,ρ [fγ ] = Et′A,tB

Cunfold,ρ[f
γ ]

Third, all the local interactions in the arena CUnfold are uniquely maximiz-
able. Hence, by Theorem 6.15, the Player-A positional strategy t′A ∈ SC

unfold

A

is subgame optimal in the game 〈Cunfold, f〉. In particular, it is optimal from

ρ. Hence, EtA,tB
Cunfold,ρ[f

γ ] ≤ Et′A,tB
Cunfold,ρ[f

γ ]. Therefore, EsA,sB
C,ρ [fγ ] ≤ Es′A,sB

C,ρ [fγ ]. Since

this holds for all Player-B strategies sB ∈ SCB, it follows that χ〈C,f〉[sA](ρ) ≤
χ〈C,f〉[s

′
A](ρ).

6.5 Discussion, open questions and future work

In this chapter, we have given several applications of item (1.a) of Theo-
rem 2.3. That is, we have provided restrictions on game forms such that, when
all local interactions of a game satisfy these restrictions, the game satis�es
desirable properties.

In Subsection 6.2.2, we have discussed the use of the notion of determined
game forms in discrete-bedding games. We have also brie�y discussed discrete-
bidding games in Section 6.3 with random tie-breaking mechanisms. It would
be interesting to formally prove both what we have informally explained in Sub-
section 6.2.2 (along with exploring the case of advantage-based tie-breaking)
and Conjecture 6.13 we made in Section 6.3.

Furthermore, we have not stated an NSC-transfer (we have only stated a
su�ciency result) for game forms that are semi-determined, �nitely maximiz-
able and uniquely maximizable. We believe that it should not be too di�cult
to retrieve some kind of NSC-transfer for semi-determined game forms and
uniquely maximizable game forms. However, the case of �nitely maximizable
game forms (for Player A) seems more complicated. That is, we do not know
if being �nitely maximizable w.r.t. Player A is an NSC-transfer for either of
the two applications that we presented in this chapter. This is stated as an
open question below.

Open Question 6.1. Does Theorem 6.11 and/or Corollary 6.12 still hold if

the �nitely maximizable assumption is weakened?

Finally, we would like to mention that we believe that Proposition 6.5
stated in this chapter, that gives an alternate de�nition of determined game
forms, can be stated at a graph game level. This constitutes the conjecture
below.

Conjecture 6.17. Consider a standard deterministic concurrent arena C
without stopping states. Then, for all states q ∈ Q, the two propositions

below are equivalent:

• for all Borel sets W ∈ Borel(Q), in the win/lose game G = 〈C,W 〉, either
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of the players has a (deterministic) winning strategy from q;

• for all payo� functions f : Qω → [0, 1], the game G = 〈C, f〉 has a value

from q. Furthermore, from q, for all ε > 0, ε-optimal strategies can be

found among deterministic strategies and at least one of the players has

an optimal strategy.

6.6 Appendix

We recall here the condition for the existence of �nite-memory strategy in
turn-based games established in [51]. This comes from the Appendix of [72].

First, in [51], the authors do not consider a winning objective W ⊆ Kω

but rather a preference relation �: Kω × Kω for Player A and the antagonistic
preference �−1 for Player B. Hence, we need to translate a winning objective
into a preference relation. For W ⊆ Kω, we consider the preference relation
�W : Kω × Kω de�ned by ρ ≺W ρ′ for all ρ 6∈W and ρ′ ∈W .

Let us now focus on the condition stated in [51] for the existence of optimal
�nite-memory strategies. Let us �rst recall a few de�nitions. Consider a non-
empty set of colors K and a language L ⊆ K∗. The language [L] := {ρ ∈ Kω |
∀n ∈ N, ∃π ∈ L, ρ≤n @ π} refers to the set of in�nite words whose pre�xes
are also the pre�xes of a word in L. Furthermore, the notation R(K) refers
to the regular languages on a �nite subset of K. In addition, for a preference
�⊆ Kω × Kω, and two languages L,L′ ⊆ Kω, L � L′ refers to ∀ρ ∈ L, ∃ρ′ ∈
L′, ρ � ρ′ and L ≺ L′ refers to ∃ρ′ ∈ L′, ∀ρ ∈ L, ρ ≺ ρ′. Note that
L ≺ L′ ⇔ ¬(L′ � L). Finally, for a memory skeleton 〈M,minit, µ〉 on K, and
two memory states m,m′ ∈ M , we denote LMm,m′ := {ρ ∈ K∗ | µ(m, ρ) = m′}.
Let us consider the de�nitions ofM-monotony andM-selectivity from [51]:

De�nition 6.7 (M-monotone preference). LetM = 〈M,minit, µ〉 be a mem-

ory skeleton. A preferences �⊆ Kω×Kω isM-monotone if, for all m ∈M and

L1, L2 ∈ R(K): (∃ρ ∈ LMminit,m, [ρ ·L1] ≺ [ρ ·L2])⇒ (∀ρ′ ∈ LMminit,m, [ρ′ ·L1] �
[ρ′ · L2]).

De�nition 6.8 (M-selective preference). LetM = 〈M,minit, µ〉 be a mem-

ory skeleton. A preference �⊆ Kω × Kω isM-selective if, for all ρ ∈ K∗, m =

µ(minit, ρ) ∈ M , for all L1, L2 ∈ R(K) such that L1, L2 ⊆ LMm,m, for all

L3 ∈ R(K), [ρ · (L1 ∪ L2)∗ · L3] � [ρ · L∗1] ∪ [ρ · L∗2] ∪ [ρ · L3].

By extension, we say that an objectiveW isM-monotone andM-selective
if the preference relation �W is. We have the theorem below.

Theorem 6.18 (Theorem 9 in [51]). LetM be a memory skeleton and W ⊆
Kω. The two following assertions are equivalent:

1. in every deterministic turn-based game with �nitely many actions at

each state and W winning objective, winning strategies for both players
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can be found among strategies implemented with memory skeletonM;

2. W and Kω \W areM-monotone andM-selective.
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7 - Arbitrary game forms for Safety, Reachability and

Büchi objectives

In this chapter and the next, contrary to the previous Chapter 6, we focus
on the following question. Which classes of game forms is allowed to build
�nite-state parity games in which there are positional optimal strategies for
Player A? Hence, the restrictions that we de�ne are tailored for the very
objective that we consider. In particular, we will see that depending on the
parity objective that is considered (i.e. on the number of colors involved), the
restrictions may di�er. In each of these cases, the restrictions will be not only
su�cient but also necessary. However, contrary to the next chapter where we
restrict the setting to standard �nite game forms, in this chapter, we consider
arbitrary game forms. (Note that, since we consider �nite-state parity games,
we will always assume that there are �nitely many outcomes.) As can be seen
in Table 3.1, without any assumption on the local interactions occurring in a
parity game, it is not always possible to play optimally, as it is already the case
for Büchi games. Even when it is possible to play optimally, it may require
in�nite choice, and therefore in�nite memory. As hinted above, the goal of this
chapter is to characterize � and therefore to establish NSC-transfers � the
arbitrary game forms ensuring the existence of positional optimal strategies
when used in �nite-state parity games. However, manipulating strategies in
arbitrary �nite-state concurrent games is quite involved, as it can be seen
in Appendix 4.4.2 already in the case of reachability games. Hence, in this
chapter, we decide to handle only three special cases. On the other hand, parity
objectives with arbitrarily many colors will be handled in the next chapter, but
only with standard game forms.

First, we consider safety games. In this case, it is straightforward to char-
acterize the game forms ensuring the existence of positional optimal strategies.
Indeed, these exactly correspond to the game forms maximizable w.r.t. Player
A. (This holds even for in�nite games.) This is stated in Proposition 7.1.

Second, we focus on reachability games. We use the results stated in Sec-
tion 4.2 with standard �nite game forms and proved in Appendix 4.4.2 with
arbitrary game forms, and in particular Lemmas 4.9 and 4.10. With the help of
these results, we characterize the game forms ensuring the existence of optimal
strategies in reachability games. They are called reach-maximizable (RM for
short) game forms. This is stated in Theorem 7.5. It turns out that they are
strictly included in game forms maximizable w.r.t. Player A. This generalizes
what we did in [39] (Theorem 36) where we only dealt with standard �nite
game forms.

Finally, we consider Büchi games. The characterization of the game forms
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ensuring the existence of optimal strategies in Büchi games is rather straight-
forward by combining what we have done already in this chapter and what we
have shown in Section 5.1, in particular Lemma 5.4. We �rst obtain an NSC-
transfer in Proposition 7.6. We then re�ne it into a more subtle NSC-transfer
in Proposition 7.7. In that proposition, the kind of local interactions consid-
ered at each state of the game depends on the colors of the states. Recall, in
a Büchi game, all states are colored with 0 or 1 and Player A wants to see
in�nitely often the color 1. Then, Proposition 7.7 states that for states of color
1, the game forms should be maximizable w.r.t. Player A: they ensure the
existence of optimal strategies in safety games. However, for states of color 0,
the game forms should be RM: they ensure the existence of optimal strategies
in reachability games. This also generalizes what we did in [40] (Theorem 19)
where we only dealt with standard �nite game forms.

Note that, in Section 7.4, we explain why the NSC-transfers that we proved
in [40] are not handled in this dissertation.

7.1 Safety objectives

First, as in Section 4.1, we only consider safety games without stopping
states. Then, we seek those (arbitrary) game forms ensuring the existence of
optimal strategies in �nite-state safety games. It is rather straightforward to
realize that, from a game form F that is not maximizable w.r.t. Player A,
we can build a simple safety game where Player A does not have an optimal
strategy. Furthermore, if all local interactions of a safety game are maximizable
w.r.t. Player A, then by Corollary 4.3, Player A has a positional optimal
strategy. Since this holds for in�nite games, we may consider arbitrary game
forms with in�nitely many outcomes. We obtain the NSC-transfer below.

Proposition 7.1. Among arbitrary game forms, being maximizable w.r.t.
Player A is an NSC-transfer for the existence of Player-A positional optimal
strategies in all in�nite safety games without stopping states.

Proof. Consider a set of outcomes O and a game form F = 〈ActA,ActB,O, %〉 ∈
Form(O) that is not maximizable w.r.t. Player A. Consider a valuation v : O→
[0, 1] such that Player A has no optimal GF-strategy in the game in normal
form 〈F , v〉. We build a simple game G = 〈C, Safe〉 on F as follows: the set of
states is equal to {qinit,>,⊥} ∪ v[O]. The local interaction at qinit is equal to
〈ActA,ActB, v[O], v ◦ %〉. Furthermore all other states are trivial: all states x ∈
v[O] have as outcome dx ∈ D({>,⊥}) where dx := {> 7→ x, ⊥ 7→ 1−x}. Both
states > and ⊥ are self-looping sinks. Finally, the only state of color 1, that
Player A wants to avoid, is ⊥. This concludes the de�nition of the game G1.

1Note that the simple game that we have built from F does not exactly �t De�-
nition 5.1. However, we would have obtained an equivalent game if all trivial states
x ∈ v[O] were replaced by stopping states of value x.
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Clearly, all states x ∈ v[O] have value x. Consider any Player-A strategy sA ∈
C. By Lemma 3.10, we have, χG [sA](qinit) ≤ val[〈F(qinit), χG [A]〉](sA(qinit)) =

val[〈F , v〉](sA(qinit)) < val[〈F , v〉][A]. This inequality comes from the fact that,
by assumption, Player A has no optimal GF-strategy in the game in normal
form 〈F , v〉. Furthermore, we have by Proposition 3.9 for the last equality,
val[〈F , v〉][A] = val[〈F(qinit), χG [A]〉][A] = χG [A](qinit). That is, the Player-A
strategy sA is not optimal from qinit, and this holds for Player-A strategy sA.

Consider now a safety game without stopping states where all local inter-
actions are maximizable w.r.t. Player A. Then, by Corollary 4.3, Player A has
a positional optimal strategy.

7.2 Reachability objectives

Let us now focus on reachability games. As for safety games, the games we
consider are without stopping states. However, contrary to safety games we
will only consider �nite-state games (since there does not always exist optimal
strategies in in�nite games, even turn-based ones). The proofs being quite
technical for this objective, they are provided in appendix, we only give proof
sketches in this section.

The goal is to characterize the game forms (with �nitely many outcomes)
ensuring the existence of positional optimal strategies in �nite-state reacha-
bility games. The �rst step consists in de�ning the simple reachability games
that we will use to properly de�ne the well-behaved game forms. The simple
games we consider are as follows: there is a central state qinit that is not in the
target. From that central state, we can either loop, or reach a trivial state with
a given probability to win, i.e. to reach the target. The color of this central
state is 0, therefore looping inde�nitely on it is loosing for Player A. This is
formally de�ned below.

De�nition 7.1 (Simple reachability games). Consider a �nite set of outcomes

O and a game form F = 〈ΣA,ΣB,O, %〉 ∈ Form(O) on that set of outcomes O.

Consider some function m : O → {qinit} ∪ [0, 1]. We de�ne the reachability

game GReachF ,m := 〈CF ,m,Reach〉 such that CF ,m := 〈QO,m,FF ,m, {0, 1}, col〉 with:
• QO,m := SuccO,m ∪ {>,⊥} with SuccO,m := {qinit} ∪m[O];

• All states x ∈ QO,m ∩ [0, 1] are trivial states with dx ∈ D({>,⊥}) as

only outcome where dx := {> 7→ x, ⊥ 7→ 1− x};

• FF ,m(qinit) := Fm = 〈ΣA,ΣB, SuccO,m,Em(%)〉;

• col(⊥) = col(qinit) := 0, col(>) := 1.

We let αF ,m := χGReachF,m
(qinit) and, for all u ∈ [0, 1], vuF ,m : QO,m → [0, 1] such

that vuF ,m(qinit) := u, for all x ∈ QO,m ∩ [0, 1], vuF ,m(x) := x and vuF ,m(>) = 1

and vuF ,m(⊥) = 0. When u = αF ,m, it is omitted.
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[
x y
y z

]

Figure 7.1: A standard �-
nite game form F .

q0,

[
q0 1
1 0

] >

⊥

1

0

Figure 7.2: The reachability game GReachF ,m
without the states 1 and 0.

A simple reachability game GReachF ,m is depicted in Figure 7.2 form(x) := qinit,
m(y) := 1 and m(z) := 0, though we have not depicted the intermediate states
1 and 0. It is built on the game form F of Figure 7.1.

We consider the existence of Player-A positional optimal strategies in reach-
ability games. A positional strategy in a simple reachability game GReachF ,m is
entirely de�ned by a Player-A GF-strategy in F . We de�ne below the optimal
Player-A GF-strategies in simple reachability games.

De�nition 7.2 (Optimal GF-strategies). Consider a �nite set of outcomes

O, a game form F ∈ Form(O) on that set of outcomes O and some function

m : Q → {qinit} ∪ [0, 1]. For all Player-A GF-strategies σA ∈ ΣA, the Player-A

positional strategy sA ∈ S
CF,m
A is de�ned by σA if sA(qinit) := σA. A Player-

A GF-strategies σA ∈ ΣA is optimal w.r.t. (F ,m) if the Player-A positional

strategy sA ∈ SCA de�ned by σA is (subgame) optimal in the game GReachF ,m .

The safe game forms for the existence of positional optimal strategies are
then the game forms F for which, for all functions m : O → {qinit} ∪ [0, 1],
there is a Player-A optimal GF-strategy w.r.t. (F ,m). Such game forms are
said to be reach maximizable (RM for short). This is de�ned below.

De�nition 7.3 (Reach-maximizable game forms). Consider a �nite set of

outcomes O and a game form F ∈ Form(O) on that set of outcomes O. It is

reach-maximizable (RM for short) if for all functions m : Q → {qinit} ∪ [0, 1],

there is a Player-A GF-strategy σA ∈ ΣA that is optimal w.r.t. (F ,m).

The de�nition, given in De�nition 7.2, of optimal Player-A GF-strategies
is not very practical in the sense that we do not know exactly how such GF-
strategy behaves against Player-B GF-strategies. In particular, we would like
to express how the GF-strategy behaves with similar notions than the ones used
in Subsection 4.4.2. We give below a necessary and su�cient condition for a
Player-A GF-strategy to be optimal that we will manipulate in the following.

Proposition 7.2 (Proof 7.5.1). Consider a �nite set of outcomes O, a game

form F ∈ Form(O) on that set of outcomes O and some function m : O →
{qinit}∪ [0, 1]. A Player-A GF-strategy σA ∈ ΣA is optimal w.r.t. (F ,m) if and
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only if we have αF ,m = 0 or:

1. The GF-strategy σA is optimal in 〈Fm, vF ,m〉; and

2. Mimicking the notations of De�nition 4.13 and letting, for all σB ∈ ΣB,

pF ,m(σA, σB) := out[〈F ,1m−1[[0,1]]〉](σA, σB), the GF-strategy σA ensures

that:

inf
σB∈ΣB

pF ,m(σA, σB) > 0

Proof sketch. Assume that the GF-strategy σA is optimal w.r.t. (F ,m) and
that αF ,m > 0. Then, the positional Player-A strategy sA ∈ S

CF,m
A de�ned by

σA is subgame optimal in the game GReachF ,m . Therefore, it is locally optimal by
Theorem 3.122. This implies that the GF-strategy σA satis�es item 1. Fur-
thermore, if it does not satisfy item 2., it means that, against the strategy sA,
Player B has strategies to ensure that the probability to ever see a state in
[0, 1] (and therefore the target) is arbitrarily close to 0. Hence, the value of
the strategy sA would be 0, which is not possible since αF ,m > 0.

Assume now that αF ,m > 0 and that the GF-strategy σA satis�es items 1.
and 2. Let δ := infσB∈ΣB

pF ,m(σA, σB) > 0. Consider any Player-B strategy

sB ∈ S
CF,m
B against the Player-A strategy sA ∈ S

CF,m
A generated by the GF-

strategy σA. As long as the game loops on qinit, there is probability at least δ
to exit to a state in [0, 1], by de�nition of δ. Therefore, the game loops indef-
initely on qinit with probability 0. Furthermore, whenever there is a positive
probability to exit to a state in [0, 1], the expected value of the states reached
is at least αF ,m, by item 1. Hence, the Player-A strategy sA has value αF ,m,
it is therefore optimal in GReachF ,m .

Let us now consider what happens when RM game forms are used in �nite-
state reachability games.

Theorem 7.3. Consider a �nite-state reachability game G = 〈C,Reach〉, and
assume that, for all q ∈ Q such that col(q) = 0, the game form F(q) is RM.
Then, Player A has a positional (subgame) optimal strategy.

To prove this theorem, we are going to extract simple reachability games from
the global game G. Let us de�ne formally this operation.

De�nition 7.4. Consider a �nite-state reachability game G = 〈C,Reach〉.
Consider a subset of states S ⊆ Q. Then, for all q ∈ Q, we let mS

q : Q →
{qinit} ∪ [0, 1] such that, for all q′ ∈ Q:

mS
q (q′) :=

{
χG [A](q′) ∈ [0, 1] if q′ ∈ Q \ S
qinit otherwise

2Since the target in the reachability game GReachF,m is self-looping, the objective can
be seen as being a Büchi objective, and therefore as being PI.
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This extraction satis�es a crucial property: when all the state in S have
the same Player-A value u ∈ [0, 1] and are not in the target, then the maximum
of the values of the simple games is at least u. This is formally stated in the
lemma below.

Lemma 7.4 (Proof 7.5.2). Consider a �nite-state reachability game G =

〈C,Reach〉. Consider some u ∈ [0, 1] and a non-empty subset of states ∅ 6= S ⊆
Q such that, for all q ∈ Q, we have χG [A](q) = u. If S ∩ T = ∅, we have:

max
q∈Q

αF(q),mSq
≥ u

Proof sketch. Assume towards a contradiction that it is not the case, i.e. that
x := maxq∈Q αF(q),mSq

< u. Then, we can show that for all states q ∈ Q and

Player-A strategies sA ∈ SCA, the value of this Player-A strategy from state q is
at most x. Indeed, consider some ε > 0. Then, for all ρ ∈ S+, we have sA(ρ) ∈
Σρlt
A . Then, at state ρlt, either Player B can ensure to loop on states in S with

probability arbitrarily close to 1. This occurs when infσB∈ΣB
pF ,m(σA, σB) = 0

(from Proposition 7.2). Or, there is some δ > 0 such that, regardless of what
Player B plays in F(ρlt), the probability to see states outside S is at least δ.
But in that case, Player B has a GF-strategy to ensure that, against sA(ρ), the
expected Player-A value of the states seen (outside of S) is at most x + ε, by
de�nition of m. Furthermore, from all states q ∈ Q \ S outside of S, Player B

can play against the strategy sA to ensure that the value from q is ε-close to
the Player-A value of q. Since looping inde�nitely in S is losing for Player A,
it follows that the value of the Player-A strategy sA from q is at most x. Hence
the contradiction.

We can now give an informal proof of Theorem 7.3. The formal proof is
given in Subsection 7.5.3.

Proof sketch. Let us assume that all states in the target are self-looping sinks.
This does not change the game since there are no stopping states, once the
target is reached, the game has value 1. Consider De�nition 4.11: we want to
show that Sec(∅) = Q. In turn, with Lemma 4.10, this will show that there is
a Player-A positional optimal strategy in G.

Assume towards a contradiction that we have Sec(∅) 6= Q. Let B :=

Q \ Sec(∅) 6= ∅. Note that col[B] = {0}. Consider the greatest u ∈ (0, 1] such
that Bu := {q ∈ B | χG [A](q) = u} 6= ∅. Let us apply Lemma 7.4 to the set Bu:
there is some state q ∈ Bu such that α

F(q),mBuq
≥ u. By assumption, the local

interaction F(q) is RM. Therefore, there is a Player-A GF-strategy σA ∈ Σq
A that

is optimal w.r.t. (F(q),mBu
q ). Let us argue that this GF-strategy is progressive

w.r.t. Sec(∅) (recall De�nition 4.14). First, it is indeed optimal in the game in
normal form 〈F(q), χG [A]〉 by item 1. of Proposition 7.2 and by de�nition of the
function mBu

q . Furthermore, by item 2. of that same Proposition 7.2, letting
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δ := infσB∈ΣB
p
F(q),mBuq

(σA, σB), we have δ > 0. Furthermore, it can be shown

(since σA satis�es item 1. of Proposition 7.2), that with the GF-strategy σA
and for all Player-B GF-strategies in the game form F(q), if there is probability
p to see states of values di�erent from u, then there is probability at least
p · y to see states of value more than u, for y := minx∈χG [A][Q], x<u

u−x
1−x > 0.

Since all states of value u outside of S are in Sec(∅) and, by de�nition of u, all
states of value more than u are also in Sec(∅), it follows that for all Player-B
GF-strategies in F(q), with the GF-strategy σA, there is probability at least
δ · y > 0 to see a state in Sec(∅). Therefore the Player-A GF-strategy σA is
progressive w.r.t. Sec(∅). This is in contradiction with the fact that the state
q is not in Sec(∅).

Overall, we obtain the following NSC-transfer:

Theorem 7.5. Among arbitrary game forms with �nitely many outcomes,
being RM is an NSC-transfer for the existence of Player-A positional optimal
strategies in �nite-state reachability games without stopping states.

Proof. This is a direct consequence of Proposition 7.2 and Theorem 7.3.

7.3 Büchi objectives

Let us now consider �nite-state Büchi games. In fact, for the Büchi objec-
tive, it su�ces to use RM game forms. This is stated as an NSC-transfer in
the proposition below.

Proposition 7.6. Among arbitrary game forms with �nitely many outcomes,

being RM is an NSC-transfer for the existence of Player-A positional optimal

strategies in �nite-state Büchi games without stopping states.

We do not provide a proof of this statement for now since we state and
prove a slightly more subtle (and stronger) statement. Indeed, we can combine
both the RM game forms characterized for reachability games and the game
forms maximizable w.r.t. Player A characterized for safety games. We obtain
straightforwardly an NSC-transfer by applying Lemma 5.4 that is di�erent
from the ones we have stated so far. Indeed, the class of game forms to be
used depends on the colors of the states considered. Let us formally state the
result, we will explain afterwards exactly what it means.

Proposition 7.7. Among arbitrary game forms with �nitely many outcomes,
being:

• maximizable w.r.t. Player A when colored with 1;

• RM when colored with 0;

is an NSC-transfer for the existence of Player-A positional optimal strategies
in �nite-state Büchi games.
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What this theorem means is the following: given any game form that is not
maximizable w.r.t. Player A, we can build a simple Büchi game where the
central state qinit is colored with 1 and where Player A has no positional optimal
strategy. Similarly, from any game form that is not RM, we can build a simple
Büchi game where the central state qinit is colored with 0 and where Player A

has no positional optimal strategy. Conversely, in any �nite-state Büchi game
where all local interactions at states colored with 1 (resp. 0) are maximizable
w.r.t. Player A (resp. RM), Player A has a positional optimal strategy.

Note in particular that Proposition 7.6 is a direct corollary of Proposi-
tion 7.7 because all RM game forms are maximizable w.r.t. Player A.

Proof. Consider a game form F that is not maximizable w.r.t. Player A. Then,
the simple game built on F to prove Proposition 7.1 can be seen as a Büchi
game up to reversing the roles of the colors 0 and 1. In that game, Player A

has no positional optimal strategy.

Consider now a game form F that is not RM. Then, the simple game built
on F to prove Theorem 7.5 from De�nition 7.1 can be seen as a Büchi game
(since the target is self-looping). In that game, Player A has no positional
optimal strategy.

Now, consider a �nite-state Büchi game G where all local interactions at
states colored with 1 (resp. 0) are maximizable w.r.t. Player A (resp. RM).
We want to apply Lemma 5.4. First, in all non-trivial states of the reachability
game GReach, all local interactions are RM, therefore by Theorem 7.3, there is
an optimal strategy in the game GReach. Second, all local interactions at states
of color 1 are maximizable w.r.t. Player A. It follows that we can indeed
apply Lemma 5.4. We obtain that Player A has a positional optimal strategy
in G.

7.4 Discussion and future work

In this chapter, we have proved NSC-transfers, among arbitrary game
forms, for the existence of positional optimal strategies in �nite-state safety,
reachability and Büchi games. This extends, to the case of arbitrary game
forms, what we have done previously: [39, Theorem 36] for reachability games
and [40, Theorem 19] for Büchi games. However, we have not extended, or
even stated, arguably the two main results we have shown in [40]: Theorem
22 and 25 which give NSC-transfers (though this terminology is not used)
for the existence of positional almost-optimal strategies in �nite Büchi games
and for the existence of positional optimal strategies in �nite co-Büchi games,
respectively, restricting to standard �nite game forms.

The ideas behind the proofs of these theorems lie in how the value is ob-
tained in standard �nite parity games, namely �xed points. Recall, we proved
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in Proposition 4.7 that the Player-A value of reachability games can be com-
puted with a least �xed point, even with non-standard game forms. In fact,
with standard �nite local interactions, it was shown in [32] that the value of
parity games could be computed with nested �xed points, i.e. a greatest �xed
point, nested with a least �xed point, etc. Furthermore, if the highest color
appearing in the parity game is n, then the number of nested �xed points con-
sidered is n. In [40, Theorem 22, 25], the de�nitions of the safe game forms
considered is based on the �xed points needed to compute the values in Büchi
and co-Büchi games, i.e. nested least and greatest �xed points, the order de-
pending on the objective. The proofs of these theorems were quite intricate
as it involves linking the �xed points on the concurrent game and on the local
interactions.

As a future work, we want to extend [40, Theorem 22, 25] to the case of
arbitrary game forms, while avoiding the nested �xed points arguments. One
of the main di�culty that will arise is to properly state a proposition detailing
what being safe amounts to (w.r.t. the objective/type of strategies considered),
as we did in Proposition 7.2 for the reachability objective. This needs to hold
even with arbitrary game forms. As witnessed in De�nitions 4.8, 4.14 and
De�nitions 4.9, 4.15, de�nitions compatible with arbitrary game forms are more
intricate compared to their counterparts well-suited for the case of standard
�nite game forms, that we gave in [40].

7.5 Appendix

7.5.1 . Proof of Proposition 7.2

First, we make a quick remark: αF ,m is equal to the Player-A value of the
game in normal form 〈Fm, vF ,m〉.
Lemma 7.8. Consider a �nite set of outcomes O, a game form F ∈ Form(O)

on that set of outcomes O and some function m : O→ {qinit}∪ [0, 1]. We have:

αF ,m = val[〈Fm, vF ,m〉][A]

Proof. By de�nition, we have αF ,m = χGReachF,m
[A](qinit), FF ,m(qinit) = Fm and

vF ,m = χGReachF,m
[A]qinit . The result is therefore given by Proposition 3.9.

Let us now express exactly what is the value of a Player-A positional strat-
egy generated by a GF-strategy in a simple reachability game.

Lemma 7.9. Consider a �nite set of outcomes O, a game form F ∈ Form(O)

on that set of outcomes O and some function m : O → {qinit} ∪ [0, 1]. Let

sA ∈ S
CF,m
A be the Player-A positional strategy generated by some Player-A

GF-strategy σA ∈ ΣA. If:

inf
σB∈ΣB

pF ,m(σA, σB) = 0
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then χGReachF,m
[sA](qinit) = 0. Otherwise:

χGReachF,m
[sA](qinit) = sup{u ∈ [0, 1] | val[〈Fm, vuF ,m〉][σA] ≥ u}

Proof. Let W := col−1[Reach] be the Player-A winning set. First, assume
that infσB∈ΣB

pF ,m(σA, σB) = 0 and let ε > 0. Let us de�ne a Player-B strat-

egy sB ∈ S
CF,m
B such that, for all n ∈ N, we have sB(qninit) ∈ ΣB such that

pF ,m(σA, sB(qninit)) ≤ ε
2n+1 . Then, we have by De�nition 1.28 and 1.29 for the

second equality:

PsA,sB
CF,m,qinit [W ] ≤ PsA,sB

CF,m,qinit [(qinit)
∗ · [0, 1]] =

∑

n∈N
PsA,sB
CF,m,qinit [(qinit)

n · [0, 1]]

≤
∑

n∈N
PsA,sB
CF,m,qninit

[[0, 1]] =
∑

n∈N
out[〈FF ,m(qinit),1[0,1]〉](sA(qninit), sB(qninit))

=
∑

n∈N
out[〈F ,1m−1[[0,1]]〉](σA, sB(qninit)) =

∑

n∈N
pF ,m(σA, sB(qninit))

≤
∑

n∈N

ε

2n+1
= ε

As this holds for all ε > 0, it follows that the value of the Player-A strategy sA
is 0 from qinit.

Assume now it is not the case, i.e that δ := infσB∈ΣB
pF ,m(σA, σB) is posi-

tive: δ > 0. Then, regardless of the Player-B strategy, almost-surely the game
does not loop inde�nitely on qinit by de�nition of δ > 0: each time the game
loops on qinit there is probability at least δ to exit to a trivial state. Therefore,
almost-surely, the game ends up in {>,⊥}.

Let x := sup{u ∈ [0, 1] | val[〈F , vuF ,m〉][σA] ≥ u}. Consider some ε > 0 and
let u ≥ x− ε such that val[〈F , vuF ,m〉][σA] ≥ u. Let us apply Corollary 3.143 to
show that the Player-A strategy sA guarantees the valuation vuF ,m. It satis�es
the �rst condition of that corollary by assumption. Furthermore, as mentioned
above, almost-surely, the game loops on > (and Player A wins), or loops on
⊥ of value 0. Hence, it also satis�es the second condition of Corollary 3.14.
Therefore, it dominates the valuation vuF ,m, with v

u
F ,m(qinit) = u. Hence the

value of the Player-A strategy sA from qinit is at least u ≥ x− ε.
Consider some ε > 0 and let u ≤ x + ε such that val[〈F , vuF ,m〉][σA] < u.

Consider then a Player-B positional strategy sB ∈ S
CF,m
B such that:

out[〈F , vuF ,m〉](sA(qinit), sB(qinit)) = out[〈F , vuF ,m〉](σA, sB(qinit)) ≤ u

Then, in the stochastic tree T sA,sB
CF,m,qinit , the valuation vuF ,m is non-increasing

(recall De�nition 2.3). Hence, by Proposition 2.9, since the game almost-surely

3This only applies to PI games, however since the target is a self-looping sink, the
game GReachF,m can be seen as a Büchi game.
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ends up in {>,⊥}, it follows that:

u = vuF ,m(qinit) ≥ PsA,sB
CF,m,qinit(q

∗
init · [0, 1] · >) · vuF ,m(>) + PsA,sB

CF,m,qinit(q
∗
init · [0, 1] · ⊥) · vuF ,m(⊥)

= PsA,sB
CF,m,qinit(q

∗
init · [0, 1] · >) = PsA,sB

CF,m,qinit [W ]

Hence the value of the Player-A strategy sA from qinit is at most u ≤ x+ ε.

The proof of Proposition 7.2 is now direct.

Proof. Assume that the Player-A GF-strategy σA is optimal w.r.t. (F ,m) and
that αF ,m > 0. Then, by Lemma 7.9, it must be that infσB∈ΣB

pF ,m(σA, σB) >

0. Furthermore, we have αF ,m = χGReachF,m
[sA](qinit) = sup{u ∈ [0, 1] | val[〈Fm, vuF ,m〉][σA] ≥

u}. Hence, for all u < αF ,m, we have u ≤ val[〈Fm, vuF ,m〉][σA] ≤ val[〈Fm, vF ,m〉][σA].
Therefore, αF ,m ≤ val[〈Fm, vF ,m〉][σA]. In addition, αF ,m = val[〈Fm, vF ,m〉][A]

by Lemma 7.8. Therefore, the Player-A GF-strategy σA is optimal in the game
in normal form 〈Fm, vF ,m〉.

Conversely, if αF ,m = 0 then any Player-A strategy is optimal from qinit
in the game GReachF ,m and therefore the GF-strategy σA is optimal w.r.t. (F ,m).
Assume now that the Player-A GF-strategy σA satis�es items 1. and 2. Since
αF ,m = val[〈Fm, vF ,m〉][A] and σA satis�es item 1., it follows that val[〈Fm, vF ,m〉][σA] =

αF ,m. Then, by Lemma 7.9 and since σA satis�es item 2., we obtain that
χGReachF,m

[sA](qinit) ≥ αF ,m. Therefore, it is optimal w.r.t. (F ,m).

7.5.2 . Proof of Lemma 7.4

Proof. We let W := (colω)−1[Reach] ⊆ Qω be the Player-A winning set. Let
x := maxq∈S αF(q),mSq

∈ [0, 1] and assume towards a contradiction that x < u.

Consider any state q ∈ S and Player-A strategy sA ∈ SCA. Let us show that
χG [sA](q) ≤ x. For all q ∈ S, we let pq denote the function pF(q),mSq

from
Proposition 7.2. Let ε > 0.

Consider some ρ ∈ q · S∗. Since αF(ρlt),mSρlt
≤ x, it follows that, by

Lemma 7.9, that:

• infσB∈Σ
ρlt
B
pρlt(sA(ρ), σB) = 0; or

• for all x < z, we have:

val[〈F(ρlt)
mSρlt , vxF(ρlt),mSρlt

〉][sA(ρ)] ≤ val[〈F(ρlt)
mSρlt , vzF(ρlt),mSρlt

〉][sA(ρ)] < z

Therefore: val[〈F(ρlt)
mSρlt , vx

F(ρlt),mSρlt
〉][sA(ρ)] ≤ x.

We let SLp := {ρ ∈ S∗ | infσB∈Σ
q·ρlt
B

pρlt(sA(q · ρ), σB) = 0} and S≤x := S∗ \ SLp.
Let us now de�ne a Player-B strategy sB ∈ SCB:

• For all ρ ∈ S+, we de�ne sρB such that, for all q′ ∈ Q \ S:
PsA,sB
C,ρ·q′ [W ] ≤ χG [A](q′) + ε

3 ;
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• For all ρ ∈ q · SLp, we let sB(ρ) ∈ Σρlt
B be such that

pρlt(sA(ρ), sB(ρ)) ≤ ε
3·|S||ρ|−1·2|ρ| ;

• For all ρ ∈ q · S≤x, we let sB(ρ) ∈ Σρlt
B be such that

out[〈F(ρlt)
mSρlt , vx

F(ρlt),mSρlt
〉](sA(ρ), sB(ρ)) ≤ x+ ε

3·|S||ρ|−1·2|ρ| .

Then, consider some ρ ∈ q · SLp. We have, by De�nition 1.28 and De�ni-
tion 7.4:

PsA,sB
C,ρ [Q \ S] = out[〈F(ρlt),1Q\S〉](sA(ρ), sB(ρ))

= out[〈F(ρlt),1(mSρlt
)−1[0,1]〉](sA(ρ), sB(ρ))

= pρlt(sA(ρ), sB(ρ)) ≤ ε

3 · |S||ρ|−1 · 2|ρ|

We obtain:

PsA,sB
C,q [SLp ·Q \ S] =

∑

n∈N

∑

ρ∈Sn∩SLp

PsA,sB
C,q (ρ) · PsA,sB

C,q·ρ[Q \ S]

≤
∑

n∈N

∑

ρ∈Sn∩SLp

ε

3 · |S|n · 2n+1
≤
∑

n∈N

ε

3 · 2n+1
=
ε

3

Furthermore, for all z ∈ [0, 1] \ {u}, we let Qz := χG [A]−1[{z}] and Qu :=

χG [A]−1[{u}] \ S. That way, Q \ S = ∪z∈[0,1]Qz. Then, for all ρ ∈ q · S≤x, we
have:

x+
ε

3 · |S||ρ|−1 · 2|ρ| ≥ out[〈F(ρlt)
mSρlt , vxF(ρlt),mSρlt

〉](sA(ρ), sB(ρ))

=
∑

z∈[0,1]

out[〈F(ρlt)
mSρlt ,1(vx

F(ρlt),m
S
ρlt

)−1[{z}]〉](sA(ρ), sB(ρ)) · z

= x · out[〈F(ρlt),1S〉](sA(ρ), sB(ρ)) +
∑

z∈[0,1]

out[〈F(ρlt),1Qz〉](sA(ρ), sB(ρ)) · z

= x · PsA,sB
C,ρ [S] +

∑

z∈[0,1]

PsA,sB
C,ρ [Qz] · z

Therefore, we have:

PsA,sB
C,ρ [Q \ S] · x+

ε

3 · |S||ρ|−1 · 2|ρ| ≥
∑

z∈[0,1]

PsA,sB
C,ρ [Qz] · z
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Hence:

∑

z∈[0,1]

PsA,sB
C,q [S≤x ·Qz] · z ≤

∑

n∈N

∑

ρ∈Sn∩S≤x

PsA,sB
C,q (ρ) ·


 ∑

z∈[0,1]

PsA,sB
C,q·ρ[Qz] · z




≤
∑

n∈N

∑

ρ∈Sn∩S≤x

PsA,sB
C,q (ρ) ·

(
PsA,sB
C,q·ρ[Q \ S] · x+

ε

3 · |S|n · 2n+1

)

≤ PsA,sB
C,q [S≤x · (Q \ S)] · x+

∑

n∈N

∑

ρ∈Sn∩S≤x

ε

3 · |S|n · 2n+1

≤ PsA,sB
C,q [S≤x · (Q \ S)] · x+

ε

3

Overall, since we have reachability objective, staying inde�nitely in S is losing
for Player A. Hence, we have:

PsA,sB
C,q [W ] = PsA,sB

C,q [W ∩ Sω] + PsA,sB
C,q [W ∩ SLp · (Q \ S)] + PsA,sB

C,q [W ∩ S≤x · (Q \ S)]

≤ ε

3
+
∑

z∈[0,1]

∑

q′∈Qz

PsA,sB
C,q [W ∩ S≤x · q′]

=
ε

3
+
∑

z∈[0,1]

∑

q′∈Qz

∑

ρ∈S≤x

PsA,sB
C,q (ρ · q′) · PsA,sB

C,q·ρ·q′ [W ]

≤ ε

3
+
∑

z∈[0,1]

∑

q′∈Qz

∑

ρ∈S≤x

PsA,sB
C,q (ρ · q′) · (χG [A](q′) +

ε

3
)

=
ε

3
+
∑

z∈[0,1]

PsA,sB
C,q [S≤x ·Qz] · z + PsA,sB

C,q [S∗ · (Q \ S)] · ε
3

≤ 2 · ε
3

+ PsA,sB
C,q [S≤x · (Q \ S)] · x+

ε

3
≤ x+ ε

As this holds for all ε > 0, the value, from q, of the Player-A strategy sA is at
most x, hence the contradiction.

7.5.3 . Proof of Theorem 7.3

Proof. Let us assume that all states in the target are self-looping sinks. This
does not change the game since there are no stopping states, hence once the
target is reached, the game has value 1.

We proceed as in the proof sketch. That is, considering De�nition 4.11: we
want to show that Sec(∅) = Q, which in turn, with Lemma 4.10, will show that
there is a Player-A positional optimal strategy in G. Hence, assume towards
a contradiction that we have Sec(∅) 6= Q. Let B := Q \ Sec(∅) 6= ∅. Note
that col[B] = {0}. Consider the greatest u ∈ [0, 1] such that Bu := {q ∈ B |
χG [A](q) = u} 6= ∅. It must be that u > 0 since no state in B is of value 0.
Let us apply Lemma 7.4 to the set Bu: there is some state q ∈ Bu such that
α
F(q),mBuq

≥ u. By assumption, the local interaction F(q) is RM. Therefore,

there is a Player-A GF-strategy σA ∈ Σq
A that is optimal w.r.t. (F(q),mBu

q ).
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Let us show that this GF-strategy is progressive w.r.t. Sec(∅) (recall Def-
inition 4.14). First, we show that σA is optimal in the game in normal form
〈F(q), χG [A]〉. For all q′ ∈ Q, we have:

• If q′ ∈ Bu, then mBu
q (q′) = qinit and vF(q),mBuq

(qinit) = α
F(q),mBuq

≥ u =

χG [A](q′);

• Otherwise, we have χG [A](q′) = v
F(q),mBuq

◦mBu
q (q′).

For all z ∈ [0, 1]\{u}, we let Qz := χG [A]−1[{z}] and Qu := χG [A]−1[{u}]\Bu.
That way, Q \Bu = ∪z∈[0,1]Qz. Then, for all Player-B GF-strategies σB ∈ Σq

B,
we have, denoting y := out[〈F(q), χG [A]〉](σA, σB):

y =
∑

q′∈Q
χG [A](q′) · out[〈F(q), q′〉](σA, σB)

= u · out[〈F(q),1Bu〉](σA, σB) +
∑

z∈[0,1]

∑

q′∈Qz

χG [A](q′) · out[〈F(q), q′〉](σA, σB)

≥ (u− α
F(q),mBuq

) + α
F(q),mBuq

· out[〈F(q),1Bu〉](σA, σB)

+
∑

z∈[0,1]

∑

q′∈Qz

v
F(q),mBuq

◦mBu
q (q′) · out[〈F(q), q′〉](σA, σB)

= (u− α
F(q),mBuq

) + v
F(q),mBuq

(qinit) · out[〈F
F(q),mBuq

(qinit), qinit〉](σA, σB)

+
∑

z∈[0,1]

v
F(q),mBuq

(z) · out[〈F
F(q),mBuq

(qinit), z〉](σA, σB)

= u− α
F(q),mBuq

+ out[〈F
F(q),mBuq

(qinit), vF(q),mBuq
〉](σA, σB)

≥ u− α
F(q),mBuq

+ val[〈F
F(q),mBuq

(qinit), vF(q),mBuq
〉](σA)

= u− α
F(q),mBuq

+ val[〈F
F(q),mBuq

(qinit), vF(q),mBuq
〉]

= u− α
F(q),mBuq

+ α
F(q),mBuq

= u

This second to last equality comes from the fact that the Player-A GF-strategy
σA satis�es item 1. of Proposition 7.2. The last equality comes from Lemma 7.8
and the fact that F

F(q),mBuq
(qinit) = F(q)m

Bu
q . Hence, the Player-A GF-strategy

σA is optimal in the game in normal form 〈F(q), χG [A]〉, since val[〈F(q), χG [A]〉][A] =

χG [A](q) = u by Proposition 3.9.
Furthermore, since the Player-A GF-strategy also ensures item 2. of that

same Proposition 7.2, letting δ := infσB∈ΣqB
p
F(q),mBuq

(σA, σB), we have δ > 0.

Recall that, for all σB ∈ Σq
B, we have

p
F(q),mBuq

(σA, σB) = out[〈F(q),1Q\Bu〉](σA, σB)

We let V := χG [A][Q] ⊆ [0, 1], V<u := {z ∈ V | z < u} and V≥u := V \ V<u.
We also let xu := maxV<u < u and y := u−xu

1−xu > 0. Consider any Player-B
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GF-strategy σB ∈ Σq
B. We have:

u ≤ out[〈F(q), χG [A]〉](σA, σB)

= u · out[〈F(q),1Bu〉](σA, σB) +
∑

z∈[0,1]

z · out[〈F(q),1Qz〉](σA, σB)

Therefore:

u · p
F(q),mBuq

(σA, σB) ≤
∑

z∈[0,1]

z · out[〈F(q),1Qz〉](σA, σB)

We then have:

u · p
F(q),mBuq

(σA, σB) ≤
∑

z∈[0,1]

z · out[〈F(q),1Qz〉](σA, σB)

=
∑

z∈V<u

z · out[〈F(q),1Qz〉](σA, σB) +
∑

z∈V≥u

z · out[〈F(q),1Qz〉](σA, σB)

≤
∑

z∈V<u

xu · out[〈F(q),1Qz〉](σA, σB) +
∑

z∈V≥u

out[〈F(q),1Qz〉](σA, σB)

= xu · out[〈F(q),1∪z∈V<uQz〉](σA, σB) + out[〈F(q),1∪z∈V≥uQz〉](σA, σB)

Hence, letting p≥u := out[〈F(q),1∪z∈V≥uQz〉](σA, σB), we have out[〈F(q),1∪z∈V<uQz〉](σA, σB) =

p
F(q),mBuq

(σA, σB)− p≥u. Therefore:

p≥u ≥ pF(q),mBuq
(σA, σB) · u− xu

1− xu
≥ δ · y

In addition, note that, for all z ∈ V≥u, we have Qz ⊆ Sec(∅) by de�nition of
u. Hence out[〈F(q),1Sec(∅)〉](σA, σB) ≥ p≥u. It follows that we have:

out[〈F(q),1Sec(∅)〉](σA, σB) ≥ δ · y

This holds for all σB ∈ Σq
B. Hence, recalling De�nition 4.16, it follows that

the GF-strategy σA is progressive w.r.t. Sec(∅) (i.e. σA ∈ Progq(Sec(∅))) since
infσB∈ΣqB

pqSec(∅)(σA, σB) = δ · y > 0. Hence the contradiction with the fact that
q /∈ Sec(∅), recall De�nition 4.11.

287



288



8 - Standard game forms for parity objectives

In this chapter, we characterize the standard �nite game forms ensuring
the existence of positional optimal strategies for both players in �nite parity
games. This is stated as an NSC-transfer in Corollary 8.10. The main di�culty
consists in proving Theorem 8.3, which states that if all standard �nite local
interactions of a �nite concurrent parity game are individually well-behaved
(in a speci�c sense, the formal de�nition is given in De�nition 8.7), then both
players have positional optimal strategies. This chapter is almost entirely
devoted to the proof of this theorem.

Contrary to what we did in the previous chapter, the result we show deals
with both players at the same time. Indeed, as mentioned above, we charac-
terize the game forms ensuring the existence of positional optimal strategies
for both players. The reason why we do that is the same reason why we only
consider standard �nite game forms instead of arbitrary game forms: we want
to manipulate only positional strategies for the players. If we only had an
assumption for one player (as in the previous chapter), we would also need to
consider in�nite-choice strategies for the other player, a priori. Since positional
strategies su�ce, the di�culty of the proof lies mainly on the intricate nature
of the parity objective itself.

The core of this chapter gives informal explanations of the de�nitions and
statements (with proof sketches) used to prove Theorem 8.3. Additionally, we
illustrate the de�nitions and statements on examples and, once all the relevant
de�nitions are given, provide a big picture of the proof in Subsection 8.4.1.
We proceed that way because the technical details are quite heavy and may
obfuscate the underlying ideas behind the proof. We give all technical details
in Section 8.6.

Finally, note that since we only consider standard �nite local interactions,
the concurrent parity games we consider in this chapter all have a value (by
Theorems 2.3 and 1.11).

This work is not yet published, but will be resubmitted soon.

8.1 Dominating and guaranteeing a valuation

As mentioned above, in this section, we will only manipulate positional
strategies. Furthermore, as stated in Observation 1.3, in a concurrent game,
two positional strategies induce a Markov chain. Furthermore, in the following,
we will be especially interested in the BSCCs that can occur in the Markov
chain induced by two positional strategies. We de�ne the relevant notions for
us below.
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De�nition 8.1 (BSCCs compatible with a strategy). Consider a standard

�nite parity game G = 〈C, col〉. Let sA ∈ SCA be a positional Player-A strategy.

We let HsA denote the set of BSCCs compatible with sA, i.e. the BSCCs

of some Markov chain T sA,sB , where sB ∈ SCB ranges over Player-B positional

deterministic strategies.

This is analogous for a Player-B strategy sB ∈ SCB.

A BSCC H ∈ HsA is even-colored if max col[H] is even. Otherwise, it is

odd-colored.

A subset of states S ⊆ Q occurs in a BSCC H if H ∩S 6= ∅. A state q ∈ Q
occurs in a BSCC H if q ∈ H.

The reason why we only consider positional deterministic strategy for
Player B given a Player-A positional strategy is because, once such a strat-
egy is �xed, we obtain a �nite MDP. Furthermore, positional deterministic
strategies are enough to play optimally in �nite MDPs with parity objectives
[27].

Recall De�nition 3.7: we de�ned the notion of strategy dominating a valua-
tion v : Q+ → [0, 1]. In the context of this chapter, we only consider positional
strategies and valuations v : Q→ [0, 1]. Hence, we recall the notion of domina-
tion in this context, along with the notion of guaranteeing a valuation (recall
De�nition 3.2). We also de�ne a stronger notion that dominating a valuation:
parity dominating a valuation.

De�nition 8.2 (Parity dominating a valuation). Let G be a standard �nite

concurrent parity game and v : Q → [0, 1] be a valuation over its states.

Consider a positional Player-A strategy sA (resp. Player B strategy sB). The

strategy sA (resp. sB):

• dominates the valuation v if for all q ∈ Q, it holds that v(q) ≤ val[〈F(q), v〉](sA(q))

(resp. v(q) ≥ val[〈F(q), v〉](sB(q)));

• parity dominates the valuation v if it dominates v and all BSCCs H

compatible with sA (resp. sB) such that min v[H] > 0 (resp. max v[H] <

1) are even-colored (resp. odd-colored);

• guarantees the valuation v if, for all q ∈ Q, it holds v(q) ≤ χG [sA](q)

(resp. v(q) ≥ χG [sB](q)).

Parity dominating a valuation implies guaranteeing it. This is a direct
consequence of Corollary 3.16.

Proposition 8.1 (Proof 8.6.2). Consider a standard �nite concurrent game

G, a Player-A positional strategy sA ∈ SCA and a valuation v : Q→ [0, 1]. If the

strategy sA dominates v, then for all BSCCs H ∈ HsA , there is vH ∈ [0, 1] such

that v[H] = {vH}. If in addition sA parity dominates v, it also guarantees v.

290



Finally, let us introduce a few notations we will use throughout because we
are tackling the parity objective with arbitrarily many colors.

De�nition 8.3. As stated in Section 1.1, for all (i, j) ∈ N2, we denote by

Ji, jK := {k ∈ N | i ≤ k ≤ j} the set of integers between i and j. However,

in this chapter only, for convenience, we assume that this set is typed in the

sense that the integers in Ji, jK are not seen as real numbers. In particular,

J0, 1K ∩ [0, 1] = ∅. Furthermore, for all e ∈ N, we let Ke := {ki | i ∈ J0, eK}.
In addition, for all �nite subsets S ⊆ N, we let Even(S) (resp. Odd(S))

be the smallest even (resp. odd) integer that is greater than or equal to all

elements in S. Similarly, for all n ⊆ N, we let Even(n) (resp. Odd(n)) be the

smallest even (resp. odd) integer that is greater than or equal to n.

8.2 Local Environment

The goal of this section is to de�ne simple parity games with a single
non-trivial local interaction. This will allow us to de�ne exactly the game
forms that should be used in parity games if one requires positional optimal
strategies for both players. We �rst de�ne what a (parity) environment on a
given set of outcomes is. We can then de�ne the parity game induced by such
an environment (along with a game form).

De�nition 8.4 (Parity environment). Consider a non-empty �nite set of

outcomes O. An environment E on O is a tuple E := 〈c, e, p〉 where c, e ∈ N
with c ≤ e and p : O → {qinit} ]Ke ] [0, 1]. We let p[0,1] := p[O] ∩ [0, 1]. The

size w.r.t. Player A (resp. B) SzA(E) (resp. SzB(E)) of the environment E is

equal to SzA(E) := Even(e) − c (resp. SzB(E) := Odd(e) − c). We denote by

Env(O) the set of all environments on the set of outcomes O.

Remark 8.1. A quick note on the size of an environment. From Player A's

perspective, the size of an environment E := 〈c, e, p〉, assuming that c = 0, is

equal to: 0 if e = 0, 2 if e = 1 or e = 2, etc. Informally, when c = 0, if e = 0

this corresponds to safety game, if e = 1 this corresponds to a co-Büchi game,

etc. This will become more apparent with De�nition 8.5 below.

We can then de�ne the simple parity game corresponding to a parity envi-
ronment.

De�nition 8.5 (Parity game induced by an environment). Consider a non-

empty �nite set of outcomes O, a standard �nite game form F ∈ Form(O) and

an environment E = 〈c, e, p〉 ∈ Env(O). Let Y := (F , E). The local arena

CY = 〈Q,F,K, col〉 induced by Y is such that:

• Q := {qinit} ∪ Ke ∪ p[0,1], Qs := p[0,1], and for all u ∈ p[0,1], we set the

value of the stopping state u to be u itself: val(u)← u;

291



• F(qinit) := Fp = 〈ActA,ActB, Q,Ep(%)〉s, and for all i ∈ J0, eK, the set ki
is trivial, its only outcome is the state qinit;

• K := J0, eK, col(qinit) := c and for all i ∈ J0, eK, we have col(ki) := i.

For all u ∈ [0, 1], we denote by vuY : Q → [0, 1] the valuation such that:

vuY (qinit) = vuY (ki) := u for all i ∈ J0, eK and vuY (x) := x for all x ∈ p[0,1]. Fur-

thermore, for all Player-A GF-strategies σA ∈ ΣA(F), we denote by sYA (σA) ∈
SCYA the Player-A positional strategy de�ned by σA in the arena CY .

The game GY is then equal to GY := 〈CY ,ParityK〉.
Example 8.1. De�nition 8.5 above is illustrated in Figures 8.1. Note that

the colors of the non-stopping states are depicted in red next to the states.

As in the previous chapter, we can de�ne the notion of Player-A GF-strategy
being optimal in a parity environment.

De�nition 8.6 (Optimal GF-strategies). Consider a non-empty �nite set of

outcomes O, a game form F ∈ Form(O), an environment E = 〈c, e, p〉 ∈
Env(O), and let Y := (F , E). A Player-A GF-strategy σA ∈ ΣA(F) is said to

be optimal w.r.t. Y if the Player-A positional strategy sYA (σA) is optimal in

GY . The de�nition is analogous for Player B.

Given a �nite set of outcomes O, we can now de�ne the game forms on O

ensuring the existence of optimal strategies w.r.t. all environments.

De�nition 8.7 (Game forms with optimal strategies). Consider a non-empty

�nite set of outcomes O, a standard �nite game form F ∈ Form(O) and some

n ∈ N.
Consider a Player C ∈ {A,B}. The game form F is said to be positionally

maximizable up to n w.r.t. Player C if, for each environment E ∈ Env(O) with

SzC(E) ≤ n, there is an optimal GF-strategy for Player C w.r.t. (F , E).

When this holds for both Players, F is said to be positionally optimizable
up to n. The corresponding set of game forms is denoted ParO(n). If this

holds for all n ∈ N, F is simply said to be positionally optimizable, and the

corresponding set of game forms is denoted ParO.

Remark 8.2. First, note that all standard �nite game forms are positionally

optimizable up to 0. This is because environement of size 0 induce safety games.

However, there are some standard �nite game forms that are not positionally

maximizable w.r.t. any player up to 1. This is for instance the case of the

game form of Figure 7.1.

Furthermore, by de�nition, from a game form F ∈ Form(O) that is not

positionally optimizable up to some n ∈ N, there exists an environment E ∈
Env(O) such that either of the players has no positional optimal strategy in

the simple parity game G(F ,E) where the di�erence between col(qinit) and the

maximum of the colors appearing in G(F ,E) is at most n.
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In the game G(F ,E) depicted on the right of Figure 8.1, Player A has posi-
tional optimal strategies: it su�ces to play both rows with positive probability.
(This is similar for Player B.) As a side remark, the game form in the left of
Figure 8.1 is positionally optimizable.

In Lemma 8.2 below, we formulate more explicitly (using the notion of
parity domination from De�nition 8.2) what optimal GF-strategies are.

Lemma 8.2 (Proof 8.6.3). Consider a non-empty �nite set of outcomes O,

a standard �nite game form F ∈ Form(O), an environment E = 〈c, e, p〉 ∈
Env(O) and Y := (F , E). A Player-A GF-strategy σA ∈ ΣA(F) is optimal
w.r.t. Y if and only if, letting u := χGY (qinit), either (i) u = 0, or (ii) the

positional Player-A strategy sYA (σA) parity dominates the valuation vuY .

Furthermore (ii) is equivalent to: (1) the Player-A positional strategy

sYA (σA) dominates the valuation vuY , i.e. σA is optimal in the game in nor-

mal form 〈F , vuY ◦ p〉 and (2) for all b ∈ ActB, if out[〈F ,1p−1[0,1]〉](σA, b) = 0

(i.e. the probability under σA and b to reach a stopping state is null), then

max(Color(F , p, σA, b) ∪ {c}) is even where Color(F , p, σA, b) := {i ∈ J0, eK |
out[〈F ,1p−1[ki]〉](σA, b) > 0} is the set of colors that can be seen with positive

probability under σA and b. This is symmetrical for Player B.

Remark 8.3. Informally, this proposition states that for a Player-A GF-

strategy σA to be optimal in a simple game GY with positive value, it must be

the case that for every Player-B action b: either there is a positive probability

(w.r.t. σA and b) to exit qinit and the expected value of the stopping states

visited is at least u; or the game loops on qinit with probability 1, and the

maximum of the colors that can be seen with positive probability (w.r.t. σA
and b) is even. In particular, if c ≤ max Color(F , p, σA, b) or if c is odd, then

max Color(F , p, σA, b) is even.

8.3 The main theorem

The goal of this section is to formally state the main theorem of this chap-
ter, Theorem 8.3 below. Informally, this theorem consists in extracting, for
every state of a game and for each Player, a local environment which will sum-
marize the context of the state to the Player, and tell her how to play optimally
(and positionally).

Before stating this theorem, let us recall and de�ne below some useful
notations, in particular we recall the notation for value slices, a notion we have
already used in Chapter 3.

De�nition 8.8 (Value slice). Consider a standard �nite parity game G. For
all subsets of states S ⊆ Q, we denote by VS := {u ∈ [0, 1] | ∃q ∈ S, χG(q) = u}
the �nite set of values of states in S. Furthermore, for all u ∈ VQ, we let

Qu := {q ∈ Q | χG(q) = u} be the set of states whose value is u: it is

293



F :=

[
y x
x y

] • E := 〈2, 4, p〉;

• p(x) := 1/2;

• p(y) := k3.

2

qinit,

[
k3 1/2

1/2 k3

]

0

k0

1

k1

2

k2

3

k3

4

k4

1/2

Figure 8.1: On the left, a game form on the set of outcomes O := {x, y},
in the middle the description of an environment on O and on the right
the parity game G(F ,E) obtained from what is depicted on the left. The
dashed state is a stopping of value 1/2.

the u-slice of G. Finally, for all u ∈ VQ, we let eu := Even(col[Qu]) and

ou := Odd(col[Qu]).

We also introduce the notion of positional strategies generated by an en-
vironment function: this is a strategy that, at each state, plays a GF-strategy
that is optimal in the corresponding environment.

De�nition 8.9 (Positional strategy generated by an environment function).
For all environment functions Ev : Q→ Env(O), a Player-A positional strategy

sA is generated by Ev if for all q ∈ Q, the GF-strategy sA(q) is optimal w.r.t.

(F(q),Ev(q)) (and similarly for Player B).

We can now state the main result of this chapter: Theorem 8.3.

Theorem 8.3. Let G = 〈C,ParityK〉 be a standard �nite parity game. Assume
that for all q ∈ Q, the game form F(q) is positionally maximizable up to
eχG(q)−col(q) w.r.t. Player A and positionally maximizable up to oχG(q)−col(q)
w.r.t. Player B. Then, there is a function EvA : Q→ Env(O) (resp. EvB) such
that all Player-A (resp. Player-B) positional strategies sA (resp. sB) generated
by EvA (resp. EvB) are optimal in G; and such strategies exist.

Remark 8.4. Given some u ∈ VQ, one can realize that the requirement at

states q, q′ ∈ Qu changes depending on the color of q and q′. More speci�cally,

if col(q) < col(q′), then the requirement at state q is (a priori) stronger than

the requirement at state q′ since the game form F(q) should behave well for

environments of larger size than the game form F(q′).

The remainder of this chapter is almost-entirely devoted to the explana-
tion of the construction of the environment function EvA (the construction
being similar for Player B), hence we are taking the point of view of Player
A. First, let us argue that we can restrict ourselves to a speci�c u-slice Qu for
some u ∈ VQ. Such a restriction is properly de�ned (using stopping states) in
De�nition 8.10 below.
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De�nition 8.10 (Game restricted to a u-slice). For all u ∈ VQ, we let Gu be

the concurrent game G where all states outside Qu are made stopping states:

for every q ∈ Q \ Qu, we set val(q) ← χG(q). The states, game forms and

coloring function on Qu are left unchanged.

Interestingly, a Player-A positional strategy optimal in G can be obtained
by merging appropriate positional strategies suA in the games Gu for all u ∈
VQ \ {0}, which is actually a straightforward consequence of Proposition 8.1.

Lemma 8.4 (Proof 8.6.4). For all u ∈ VQ\{0}, consider a positional Player-A
strategy suA that parity dominates the valuation χG in Gu. Then, the Player-A
positional strategy sA such that sA(q) := suA(q) for all u ∈ VQ \ {0} and q ∈ Qu
guarantees the valuation χG in G (i.e. it is optimal).

8.4 The proof

In Appendix 8.6.5, we give a quick overview of the technical properties and
lemmas we show in the appendix that we will use to prove the lemmas (we will
state later in this chapter) leading to the proof of Theorem 8.3.

In this section, we �x a standard �nite parity game G = 〈C,ParityK〉. In
particular, the set of states Q is �xed and recall that Q is also the set of
outcomes of all game forms occurring in G. Also, Lemma 8.4 above justi�es
that we focus on a given u-slice Qu for some positive u ∈ (0, 1]. We also let
e := eu, o := ou and K := Ke = {ki | i ∈ J0, eK} and for all n ∈ J0, eK, we let
Kn := {kni | i ∈ J0, eK}.

8.4.1 . Big picture of the proof

In order to give an idea of the steps we take to prove Theorem 8.3, let us
�rst consider the very simple case of �nite turn-based deterministic reacha-
bility games. Computing the area LA from which Player A wins can be done
inductively. That is, initially we set LA := T where T denotes the target that
Player A wants to reach. Then, the inductive step is handled with a (deter-
ministic) attractor: we add to LA any Player-A state with a successor in LA

and any Player-B state with all successors in LA. After �nitely many steps,
there is no more state to add in LA: this exactly corresponds to the states
from which Player A has a winning strategy.

Computing a single attractor is not merely enough to take into account
the intricate behavior of parity objectives, which is what Theorem 8.3 deals
with. Therefore, we are going to iteratively compute several layers of (virtual)
colors, with a local update to change the (virtual) color (and therefore the
layer it belongs to) of a state. This local update can be seen as an attractor
except in a concurrent stochastic setting. Hence, when we update the (virtual)
color of a state, we take into account the concurrent interaction of the players
at each state along with the probability to see stopping states or states with
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Figure 8.2: A (deterministic turn-based) game.

di�erent (virtual) colors. We de�ne this local update in Subsection 8.4.3. Let
us describe below the steps we take to capture the behavior of the parity
objective.

We compute layers of successive probabilistic attractors with leaks towards
the stopping states. Although we compute a strategy, e.g., for Player A, we
alternate players to build layers, then move the last non-empty layer into the
closest layer with same parity, then backtrack the attractor computation from
this layer downwards, and start over again the full attractor computation on
the new layer structure. In a more concrete way, let us assume below that the
highest color in the u-slice is 6. We proceed as follows:

1. Add the states colored with 6 to layer L6.

2. Recursively add to L6 the states where Player A can guarantee that with
positive probability (pp) either a leak towards stopping states occurs now
and its expected explicit value is u or more (Leak≥u), or with pp the next
state is in L6, i.e. with pp color 6 or Leak≥u will occur.

3. Add the remaining states colored with 5 to layer L5.

4. Recursively add to L5 the states where Player B can guarantee that
either Leak<u occurs now with pp, or the next state is surely not in L6

and with pp in L5; i.e. if Leak<u occurs with probability 0, then color 6

will not occur but color 5 will eventually occur with pp.

5. Add the remaining states colored with 4 to layer L4.

6. Recursively add to L4 the states where Player A can guarantee that
either Leak≥u will occur with pp, or the maximal layer index of the next
states seen with pp is 4 or 6, i.e. even and at least 4.

7. And so on, from color 3 to 0. The layers so far only give information
about what can happen at �nite horizon.

8. For instance, from L2, Player A can guarantee that either Leak≥u will
occur with pp, or the maximal color that will be seen with pp is in
{2, 4, 6}. Now, if e.g. L0 = L1 = ∅, we merge L2 into L4. This is,
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arguably, the most surprising step, let us try to give a conceptual intu-
ition behind this step, we will then illustrate it on a concrete example.
Consider what happens in the L2 layer, assuming L0 = L1 = ∅. From
states in that layer, either:

• Leak≥u occurs with pp;

• otherwise, L3 ∪ L4 ∪ L5 ∪ L6 occurs with pp, and the maximum
index seen with pp is even;

• otherwise, the game loops surely in L2, and with pp the maximum
color seen is 2. In that case, Player A wins the (real) parity game
almost-surely.

In other words, either the game loops in L2 and Player A wins, or what
happens is alike to what happens in the layer L4. In Figure 8.2 without
dotted state q1 where Player B plays alone, L4 = {q4}, then L3 = {q3},
then L2 = {q2}, but if the play stays in L2, Player A wins, so Player
B may just as well go to q4 since there is no L0, L1 below to escape.
However, in Figure 8.2 with dotted state q1, Player B can leave L2 via
L1 6= ∅, avoid color 4, and win. There L2 and L4 are not alike. Hence,
we do not merge them.

9. Earlier, some states of color 1 may have been added to L3 since L3

"overruled" L2 w.r.t indices, but since L2 has just been merged into L4,
it now overrules L3, so some states from L3 may have to go back to L1.
Therefore we reset the layers below L4 and repeat the above attractor
alternation all over again, until all the states are eventually in L6 as we
shall prove.

The key property that is growing throughout the above computation and will
hold in the �nal L6 involves layer games: the Ln-game is derived from the u-
slice by abstracting each Li with i 6= n via one state kni from which the player
who dislikes the parity of n chooses any next state in Ln, making it harder
for the other to win. If i > n then kni is i-colored, else (n − 1)-colored, also
making it harder for the other to win. And states in Ln bear their true colors.
See for instance Figure 8.5. The Ln game is only seemingly harder to win: it
is actually equivalently hard, but its useful properties are easier to prove.

The key growing property is as follows: between two merges, the attractor
computation from the top layer down to Ln ensures that Player A has a posi-
tional strategy of value at least u in each Li for even i ≥ n, and Player B less
than u for odd i ≥ n. In the very end, there is only one even layer with all
states bearing their true colors, and no abstract states, so the last layer game
equals the u-slice game, for which we have thus computed a positional optimal
strategy.
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Let us hint at how to show positional optimality in the Ln-games when it
holds: we break Ln each into one simple parity game built on F(q) per state
q in Ln, abstracting the other states in Ln into one. Our theorem assumption
yields an optimal GF-strategy for Player A or B in the simple parity game.
Gluing them does the job.

Now recall the above example of computation, where Player A for even
indices, and Player B for odd ones, guarantees (assuming neither Leak≥u nor
Leak<u occurs):

• in L6, that a next state is of color 6 with pp;

• in L5, that the next state is surely not of color 6, and with pp a next
state is of color 5;

• in L4, that a next state is of color 6 with pp or surely the next state is
not of color 5, and with pp a next state is of color 4;

• in L3, that the next state is surely not of color 6 and that the next state
is of color 5 with pp or surely the next state is not of color 4, and with
pp a next state is of color 3; etc.

One can realize that the furthest the layer is from the maximal color (that
is 6), the more complex the requirement is at that layer. That is why the
strength of our assumption on the game form induced at some state increases
with the di�erence between maximal true color in the u-slice and the true color
(at most n) of the state, as stated in Remark 8.4. We will discuss this further
in the next chapter. In particular, we will show that there is an in�nite strict
hierarchy between these assumptions.

8.4.2 . Extracting an environment function from a parity game

Once restricted to the game Gu, the method we use to prove Theorem 8.3
consists in iteratively building a pair of (virtual) coloring and environment
functions ensuring a nice property (namely faithfulness, de�ned below in Def-
inition 8.17). For the remainder of this section, we illustrate the de�nitions
and lemmas on the game depicted in Figures 8.3 and 8.4.

Example 8.2. We explain the notations used to depict this game (it is in fact

the same arena in both Figures 8.3 and 8.4, with di�erent coloring functions

� real or virtual). On the sides in green are the slices Q0, Q1/4, Q3/4 and Q1

from left to right. We focus on the central slice Q1/2. In Q1/2, there are seven

states, �ve of which (the square-shaped ones) are turn-based for Player B, that

is, Player A has only one available action. On the other hand, the two circled-

shaped states q0 and q5 are �truly� concurrent in the sense that both players

have several actions available. Furthermore, note that only one stochastic

outcome (of a local interaction) is drafted as a black dot: from q4, Player B
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Figure 8.3: The depiction of a
game restricted to the 1/2-slice
Q1/2 with the initial coloring func-
tion col.
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Figure 8.4: The same game re-
stricted toQ1/2 with a di�erent col-
oring function vcol.

may either loop on q4 or go with equal probability to q0 and q6. The other

arrows lead to a single state and the outcomes of the game forms in q0 or q5 is

a single state or a value: 1 or 1/2. These formally refer to a (distribution over)

stopping states outside of the 1/2-slice Q1/2. The horizontal layers depict the

colors of the states. In Figure 8.3, the coloring function considered is the initial

one col whereas in Figure 8.4 we have depicted a (virtual) coloring function

vcol. For instance, col(q6) = 3 whereas col(q5) = 2. Similarly, vcol(q6) = 3

whereas vcol(q5) = 4. Note that, in Figure 8.4, the real colors (given by col)

are reminded next to some states with circled numbers. Finally, note that

e := e1/2 = 4.

Given a (virtual) coloring function, we need to extract local environments
from the parity game G, which summarize how the Players see their neighboring
states via the virtual coloring function. This is (partly) done in De�nition 8.11.

De�nition 8.11 (Probability function extracted from an arena and a (virtual)
coloring function). Consider a virtual coloring function vcol : Qu → J0, eK.
For all n ∈ J0, eK, we let Qn := vcol−1[n]. We then de�ne the map pn,vcol :

Q→ D(Qn ]Kn ] VQ\Qu) such that, for all q ∈ Q:

• if q ∈ Qn, pn,vcol(q) := q;

• if q ∈ Qu \Qn, pn,vcol(q) := knvcol(q);

• if q ∈ Q \Qu, pn,vcol(q) := χG(q).
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Given a (virtual) coloring function vcol : Qu → J0, eK and a color n ∈ J0, eK,
we can now extract a smaller parity game from G where the states with non-
trivial game forms are the states in vcol−1[n], the states in Q\Qu are stopping
states and the arena loops back to vcol−1[n] when a state in Qu \ vcol−1[n] is
seen. This is done below in De�nition 8.12.

De�nition 8.12 (Parity game extracted from the u-slice). Consider a virtual

coloring function vcol : Qu → J0, eK and a color n ∈ J0, eK. Let C ∈ {A,B} be
a Player: A if n is odd and B if n is even. The arena Cnvcol = 〈Q′,F′,K, vcoln〉
is such that, denoting Qn := vcol−1[n]:

• Q′ := Qn ∪ Kn ∪ VQ\Qu where all x ∈ VQ\Qu are stopping states with

val(x)← x;

• for all q ∈ Qn, F′(q) := F(q)pn,vcol = 〈ActqA,ActqB, Q
′,Epn,vcol〉s and for all

k ∈ Kn, we set F′(k) as a Player-C state where the outcomes are all the

states in Qn;

• for all q ∈ Qn, we let vcoln(q) := col(q) and for all i ∈ J0, eK, we have

vcoln(kni ) := max(i, n− 1).

For t ∈ [0, 1], we de�ne the valuation vtn,vcol : Q′ → [0, 1]: vtn,vcol[Qn∪Kn] := {t}
and for all x ∈ VQ\Qu , vtn,vcol(x) := x.

The game Lnvcol is then equal to Lnvcol = 〈Cnvcol,ParityK〉.
Remark 8.5. First, the notation Lnvcol comes from the fact that the game is

extracted for the n-colored layer w.r.t. the coloring function vcol. The idea

behind De�nition 8.12 is the following: the states of interest are those of Qn,

that is, those for which the virtual color given by vcol is n. Note however that

the colors of these states in Lnvcol are given by the real coloring function col.

On the other hand, for all i ∈ J0, eK, the state kni in Lnvcol correspond to the

states in Gu colored with i w.r.t. vcol. In the case where n is even, as formally

de�ned later in De�nition 8.16, we will require that any Player-A positional

strategy generated by a given environment has value at least u, in the game

Lnvcol, from all states in Qn. However, all states kni for i ∈ J0, eK are Player-

B's, who can then choose to loop back to any state in Qn. Therefore, given a

Player-A positional strategy sA, if the game cannot exit to any stopping state,

for the strategy sA not to have value 0, the game may loop on some kni only at

the condition that the highest color seen with positive probability is even. In

addition, note that the color of the state kni for i ∈ J0, n − 1K is n − 1 (which

is odd). Hence, all other things being equal, the game is harder for Player A

when n = 4 than when n = 2 or 0. Finally, note that, when n is odd, we will

require that any Player-B positional strategy generated by a given environment

has value less than u.
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Figure 8.5: The game L3
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Figure 8.6: The game G0
q0,vcol

with vcol the coloring function depicted in
Figure 8.4.
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Example 8.3. The game L3
vcol is partly depicted in Figure 8.5 (the virtual

coloring function vcol being the one depicted in Figure 8.4). The colors of

the states are depicted in red. Although the arrows are not depicted, from all

states k3
0, k

3
1, k

3
2, k

3
3 and k3

4 Player A can decide to which state among {q4, q6}
to loop back (since n = 3 is odd). In an even-colored layer, it would have been

Player B to decide.

Given a virtual coloring function, we also associate a local environment
with each state.

De�nition 8.13 (Local environment induced by a virtual coloring function
and a color). Consider a state q ∈ Qu, a coloring function vcol : Qu → J0, eK.
We de�ne pq,vcol : Q→ {qinit} ∪Ke ∪ [0, 1] similarly to how we de�ne pn,vcol in

De�nition 8.11. That is, for all q′ ∈ Q, we have:

• if q′ = q, pq,vcol := qinit;

• if q′ ∈ Qu \ {q}, pq,vcol := kvcol(q′);

• if q′ ∈ Q \Qu, pq,vcol(q) := χG(q).

Then, for all n ∈ J0, eK, the environment Enq,vcol associated with state q

w.r.t. vcol and n is such that Enq,vcol := 〈max(cn, vcol(q)), e, pq,vcol〉 where
cn = n + 1 if n is odd and cn := n − 1 if n is even. We say that the coloring

function vcol is associated with the environment Enq,vcol. The corresponding

(local) game G(F(q),Enq,vcol)
(see De�nition 8.5) is denoted Gnq,vcol. For all x ∈ [0, 1],

we set vxq,vcol := vx
(F(q),E0

q,vcol)
(see De�nition 8.5).

The de�nition of cn may seem ad hoc. We give an explanation below in
Page 303 of this de�nition.

Example 8.4. The game Gnq5,col is depicted on the right of Figure 8.1 for

n = 0, 1, 2. However, if n = 3, the color of qinit would be 4, and if n = 4, it

would be 3. The game Gnq0,vcol is depicted in Figure 8.6 for n = 0. However, if

n = 1, the color of qinit would be 2, if n = 2, the color would be 1, if n = 3,

the color would be 4 and if n = 4 the color would be 3.

8.4.3 . Local Operator

We want to de�ne a way to update a (virtual) coloring function vcol. This
will be done via a local operator mapping a given state q to the best color k for
which Player A can achieve the value u in the corresponding local parity game
Gkq,vcol. Note that �best� is to be understood considering an ordering compatible
with the parity objective. Speci�cally, taking the point-of-view of Player A,
any even number is better than any odd number, and when they increase,
odd numbers get worse whereas even numbers get better. This induces a new
ordering.
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De�nition 8.14 (Parity order). We de�ne a total strict order relation ≺par

on N such that, for all m,n ∈ N, we have m ≺par n if: m is odd and n is even;

or m > n and m and n are odd; or m < n and m and n are even.

De�nition 8.15 (Local operator). Consider a state q ∈ Qu and a (possibly

virtual) coloring function vcol : Qu → J0, eK. The color NewCol(q, vcol) ∈ N
induced by vcol at q is de�ned by:

NewCol(q, vcol) := max
≺par
{n ∈ J0, eK | χGnq,vcol(qinit) ≥ u}

The meaning of a new virtual color n assigned to a state q via NewCol is
the following: in the game Gu with the coloring function vcol, from state q and
in at most one step, the highest color w.r.t. vcol seen with positive probability
when both players play optimally is n (and no stopping state is seen).

Let us now explain the choice of cn in De�nition 8.13. In a local envi-
ronment parameterized by n, the integer n induces a shifted parity objective
for Player A: her objective is that the maximal color seen in�nitely often is
at least n w.r.t. ≺par; in particular n = 0 induces the usual parity objective.
The value cn encodes that winning condition. For instance, if n = 2, assuming
vcol(q) = 0 for simplicity, then cn = 1, which implies that seeing 0 in�nitely
often is not enough, but seeing 2 in�nitely often is enough to win. Similarly,
if n = 1, cn = 2, which implies that seeing 1 in�nitely often is now enough to
win, but seeing 3 in�nitely often is still losing.

Remark 8.6. Assume for instance that NewCol(q, vcol) = 2 for some state

q ∈ Q and some (virtual) coloring function vcol1. In particular, Player A has a

GF-strategy σA optimal w.r.t. (F , E2
q,vcol), which yields a value at least u, and

Player B has a GF-strategy σB optimal w.r.t. (F , E4
q,vcol), which yields a value

less than u. Remember that all games Gkq,vcol (where k ranges over J0, eK) share
the same structure and that only the color of qinit changes. Consider what

happens in the game G0
q,vcol (where the state qinit is colored by vcol(q)) when

playing strategies σA and σB. Recalling Remark 8.3, the game cannot exit

to any stopping state since the expected value of the stopping states reached

would be both at least u (since σA is optimal in G2
q,vcol) and less than u (since

σB is optimal in G4
q,vcol); hence this cannot happen. Furthermore, if some color

of value at least 3 is seen with positive probability, then the highest such color

must be both even (since σA is optimal in G2
q,vcol) and odd (since σB is optimal in

G4
q,vcol). In fact, the highest color seen with positive probability in G0

q,vcol under

σA and σB is 2 and neither of the players can do better (w.r.t. the ordering

≺par). From this, we can infer the semantics of a virtual color n assigned to a

state q via operator NewCol (i.e. a color given by a virtual coloring function):

in the game Gu with coloring function vcol, from state q and in at most one

1In particular, it must be the case that vcol(q) ≤ 2, see Proposition 8.13.
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step, the highest color w.r.t. vcol seen with positive probability is n (and no

stopping state can be seen).

Let us exemplify this operator on an example.

Example 8.5. First, consider Figure 8.1 and let us compute NewCol(q5, col).

We can realize that, regardless of the color of state qinit, Player A can (posi-

tionally) play both rows with positive probability and ensure reaching (almost-

surely) the stopping state 1/2. In fact, for all n ∈ J0, 4K, we have χGnq5,col(qinit) =

1/2. Hence, NewCol(q5, col) = 4.

Consider now Figure 8.6 and let us compute NewCol(q0, vcol). As men-

tioned in Example 8.4, the game G4
q0,vcol

corresponds to the game depicted in

Figure 8.6 except that qinit is colored with 3. One can realize that, with this

choice (of coloring of the state qinit), if the highest color i ∈ J0, 4K such that

ki is seen in�nitely often is such that i ≺par 4, then Player A loses. The value

of this game is 0 as Player B can ensure looping on k0 and qinit (by playing,

positionally and deterministically, the middle column) thus ensuring that the

highest color seen in�nitely often is 3. Thus, NewCol(q0, vcol) ≺par 4. In the

game G2
q0,vcol

, qinit is colored with 1. Again, with this choice (of coloring of

the state qinit), if the highest color i ∈ J0, 4K such that ki is seen in�nitely

often is such that i ≺par 2, then Player A loses. The value of this game is

also 0 as Player B can still play the middle column ensuring that the high-

est color seen in�nitely often is 1. Thus, NewCol(q0, vcol) ≺par 2. Consider

now the game G0
q0,vcol

, the one depicted in Figure 8.6. The value of the state

qinit is now 1. Indeed, if Player A plays the two rows with equal probability,

one can see that this strategy parity dominates (see De�nition 8.2) the valu-

ation v1
q0,vcol

(recall De�nition 8.13). Indeed, the BSCCs compatible with this

strategy are {qinit, k3, k4} and {qinit, k0} and they are even-colored. Hence, by

Proposition 8.1, χG0
q1,col

(qinit) = 1 ≥ 1/2 and NewCol(q0, vcol) �par 0. That is,

NewCol(q0, vcol) = 0.

Some of the properties enjoyed by the local operator NewCol are given in
the appendix in Page 316.

8.4.4 . Faithful coloring function

To prove Theorem 8.3, we iteratively build a (virtual) coloring function
and a local environment. We want to de�ne the desirable property that the
pair of coloring and environment functions should satisfy that will be preserved
step by step. First, we need to de�ne the notion of an environment function
witnessing a color.

De�nition 8.16 (Environment witnessing a color). Consider a coloring func-

tion vcol : Qu → J0, eK, a color n ∈ J0, eK and an environment function

Ev : Qn → Env(Q) with Qn := vcol−1[n].

Assume that n is even. We say that the pair (vcol,Ev) witnesses the color
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n if for all q ∈ Qn, SzA(Ev(q)) ≤ e− col(q) and all positional Player-A strate-

gies sA ∈ SCA generated by Ev (recall De�nition 8.9) in the game Lnvcol parity
dominate the valuation vun,vcol (recall De�nition 8.12).

Assume that n is odd. We say that the pair (vcol,Ev) witnesses the color

n, if for all q ∈ Qn, SzB(Ev(q)) ≤ o − col(q) and for all positional Player-B

strategies sB ∈ SCB generated by Ev in the game Lnvcol, there is some u′ < u,

such that sB parity dominates the valuation vu
′
n,vcol.

Remark 8.7. The condition on the size of the environments considered along

with the assumptions of Theorem 8.3 ensures that the quanti�cation over the

strategies generated by the environment function are not over the empty set.

This de�nition was hinted in Remark 8.5. Informally, it means that, in the

(virtual) games given by vcol, in the even-colored layers, Player A can achieve

at least what she should be able to achieve in this u-slice (i.e. the value of the

states is at least u). Whereas, in the odd-colored layers, Player B can prevent

Player A from achieving this.

We can now de�ne the notion of faithful pair of coloring and environment
functions.

De�nition 8.17 (Faithful pair of coloring and environment functions). Con-

sider a coloring function vcol : Qu → J0, eK, some n ∈ J0, e + 1K and a partial

environment function Ev : Qu → Env(Q) de�ned on vcol−1[Jn, eK]. We say that

(vcol,Ev) is faithful down to n if:

• for all k ∈ Jn, eK, the pair (vcol,Ev) witnesses color k;

• for all q ∈ Qu, if vcol(q) < n, then col(q) = vcol(q) and NewCol(q, vcol) <

n;

If n = 0, we say that the pair (vcol,Ev) is completely faithful.

Only the �rst condition for faithfulness is really of interest to us. For
instance, this �rst condition su�ces to show the crucial proposition below.
However, the second condition is used in the proofs. (It is also helpful as it
guides us in how to build a completely faithful pair, as discussed below.) Note
that, in the proofs, we use an even stronger notion of faithfulness with a third
condition. However, we do not present it here in order not to complexify too
much the approach, and the two �rst conditions are su�cient for the (informal)
explanation of Theorem 8.3. It can however be found in Appendix 8.6.5.

The bene�t of faithful environments and coloring functions lies in the
proposition below: if all states are mapped w.r.t. the coloring function to
e, then the environment function guarantees the value u in the whole u-slice
Qu.

Proposition 8.5. For a coloring function vcol : Qu → J0, eK and an environ-

ment function Ev : Qu → Env(Q), assume that (vcol,Ev) is completely faithful
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and that colu[Qu] = {e}. Then, all Player-A positional strategies generated

by the environment function Ev parity dominate the valuation χG in the game

Gu.

Proof. This is direct from the de�nitions. Indeed, as (vcol,Ev) is completely
faithful, it follows that (vcol,Ev) witnesses the color e (see De�nition 8.17).
That is, all Player-A positional strategies sA generated by Ev in the game Levcol
parity dominate the valuation vue,vcol (see De�nition 8.16). Since vcol[Qu] =

{e}, both games Levcol and Gu are identical (see De�nitions 8.10 and 8.12).
Similarly, the valuation vue,vcol is equal to the valuation χG in the game Gu
(also see De�nition 8.16).

8.4.5 . Computing a completely faithful pair

Given Lemma 8.5, our goal is to come up with a pair of an environment
function and a coloring function completely faithful such that all states are
colored with e. Let us �rst consider how to obtain a completely faithful pair
from the initial coloring function and the empty environment function (i.e. no
state is mapped to an environment). Note that this initial pair of coloring and
environment functions is faithful down to e+1. Hence, our goal is, given a pair
(vcol,Ev) faithful down to some n ∈ J1, e+1K, to build a new pair that is faithful
down to n−1. To do so, let us be guided by the second property for faithfulness:
to be faithful down to n− 1, no state q ∈ Qu such that vcol(q) ≤ n− 2 should
be such that NewCol(q, vcol) = n − 1. Hence, the idea is, for all such states
q ∈ Qu, to change their colors to n−1 until no state q ∈ Qu with vcol(q) ≤ n−2

satis�es2 NewCol(q, vcol) = n − 1. The environment associated to each such
state q newly colored by n − 1 will be given by the coloring function vcol for
which NewCol(q, vcol) = n − 1 for the �rst time (crucially, this is done before
the color of q is updated to n−1). The procedure we have described is formally
given in the Appendix as Algorithm 8.12. Interestingly, the update done in the
algorithm preserves the faithfulness of environment and coloring functions.

Lemma 8.6 (Proof Page 328). Consider a coloring function vcol : Qu →
J0, eK, n ∈ J1, e + 1K, and a partial environment function Ev : Qu → Env(Q)

de�ned on vcol−1[Jn, eK]. Assume that (vcol,Ev) is faithful down to n. Let

(vcol′,Ev′) ← UpdateColEnv(n − 1, vcol,Ev) be the pair computed by Algo-

rithm 8.12 for index n − 1. (Only states q such that vcol′(q) = n − 1 may

have changed their colors and be newly mapped to an environment.) Then,

(vcol′,Ev′) is faithful down to n− 1.

Before giving a proof sketch of this lemma, let us illustrate it on an example.

2This can seen as computing a �probabilistic attractor with leaks towards the
stopping states� that we mentioned above.
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Example 8.6. Let us illustrate this algorithm on Figures 8.3 and 8.4. The

�rst step is to build a pair that is faithful down to e = 4. As mentioned above

in Example 8.5, we have NewCol(q5, col) = 4. Hence, the color of this state is

changed to 4 (we obtain a virtual coloring function vcolq5) and we set Ev(q5) :=

E4
q5,col

. Note that a Player-A GF-strategy σA is optimal in this environment

if and only if it plays both rows with positive probability. Furthermore, note

that, in the extracted game L4
vcolq5 , a Player-A positional strategy playing such

a GF-strategy σA in q5 parity dominates the valuation v
1/2
Q4,col

q5 . Hence, the

pair (vcolq5 ,Ev) is faithful down to 4.

Consider now the layer 3. First, the state q6 already has color 3, so it

only remains to set its environment: Ev(q6) := E3
q6,vcol

q5 . We then realize that

NewCol(q4, vcolq5) = 3. Indeed, q4 is colored with 2 and may go with equal

probability to a state colored with 0 and to a state colored with 3. The color of

this state is therefore changed, thus obtaining a new virtual coloring function

vcolq5,q6,q4 . We set its environment: Ev(q4) := E3
q4,vcol

q5 . One can realize that

the pair (vcolq5,q6,q4 ,Ev) witnesses the color 3 : a positional Player-B strategy

generated by this environment would be so that (i) from q6, it goes to q4 with

probability 1 (to avoid k4 that is colored with 4) and (ii) from q5, it goes to q6

with positive probability (to see the color 3 with positive probability). Such

a strategy has value 0 in the game L3
vcolq5 = L3

vcol from Figure 8.5, hence the

pair (vcolq5,q6,q4 ,Ev) witnesses the color 3.

We illustrate on this step why the environment needs to be set before

changing the new color and not after. That is, we explain why it would not

be correct to set Ev(q4) := E3
q4,col

q5,q6,q4 instead of what we do above. In this

environment, the state q4 has color 3. Hence, looping with probability 1 on

q4 is an optimal GF-strategy for Player B w.r.t. (F(q4),Ev(q4)). Then, the

corresponding pair of coloring and environment functions would not witness

the color 3. Indeed, a Player B strategy that loops with probability 1 on q4 is

generated by this environment, and it has value 1 ≥ u (because the real color

of this state is 2, and not 3).

This process is then repeated down to 0. In Figure 8.4, the depicted color-

ing function (with the appropriate environment function that is not shown in

Figure 8.4) are in fact completely faithful (this is what outputs Algorithm 8.12

on the coloring function of Figure 8.3).

We give a proof sketch of Lemma 8.6, which explains the ideas for the �rst
phase of the procedure for computing a �rst completely faithful pair, before
Algorithm 8.13 is called � which we will discuss right after.

Proof sketch. We want to prove that the pair (vcol′,Ev′) witnesses the color
n − 1 (the other condition for faithfulness is ensured by the construction).
We consider the case where n − 1 is even, the other case is similar (but one
needs to take the point-of-view of Player B). Consider a Player-A positional
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strategy sA generated by the environment function Ev′ in the game Ln−1
vcol′

. Let
Qn−1 := vcol′−1[n − 1] and let v := vu

n−1,vcol′
. For every q ∈ Qn−1, let Yq :=

(F(q),Ev′(q)) be the local environment at state q and let Ev′(q) = 〈cq, e, pq〉.
From the characterization of Lemma 8.2 (item (ii.1)), by carefully analyzing
the links between the local games GYq for all q ∈ Qn−1 and the game Ln−1

vcol′
, we

deduce that the strategy sA dominates the valuation v.
It remains to show that all BSCCs (that are not reduced to a stopping

state and are) compatible with sA are even-colored. Consider such a BSCC H

and a Player-B deterministic positional strategy sB which induces H. For
every state q ∈ H, since no stopping state occurs in H, it must be that
the probability to reach a stopping state is 0. That is, it amounts to have
out[〈F(q),1Q\Qu〉](σA, b) = 0. For every state q ∈ Qn−1, the coloring func-
tion vcolq associated with environment Ev′(q) is such that vcolq(q) ≤ n − 1.3

Hence, the color cq is such that cq = max(n − 2, vcolq(q)) ≤ n − 1. Now,
assume that some state ki is in H for some i > n − 1 ≥ cq. In that case,
as explained in Remark 8.3, the highest i such that ki is in H must be even.
Hence, H is even-colored. Assume now that no state ki in H is such that
i > n − 1. In that case, if a state in H has color n − 1 (like the state q6 in
Figure 8.4 in the case where n − 1 = 3), then n − 1 is the highest color in
H and H is even-colored. Consider the �rst state q whose color is now n − 1

(w.r.t. vcol′) but whose previous color was not n − 1. In that case, we have
cq = max(n−2, vcolq(q)) = n−2 is odd. Furthermore, the state q has changed
its color because NewCol(q, vcolq) = n − 1. With Remark 8.3, since sA(q) is
optimal w.r.t. Yq, it follows that there is a positive probability to reach, in
the game GYq the state kn−1. In the game Ln−1

vcol′
, this corresponds to a positive

probability to reach a state q′ ∈ H colored with n− 1 w.r.t. vcolq (recall De�-
nition 8.11). Since q is the �rst state to have changed its color, we can deduce
that q′ already had color n− 1 w.r.t. vcol. Furthermore, one can show that q′

is colored with n− 1 w.r.t. the real coloring function col. Overall, in the game
Ln−1
vcol′

, with the GF-strategy sA(q), there is a positive probability to reach in
one step a state q′ colored with n− 1. Iteratively, we obtain that, considering
the k-th state whose color is now n−1 (i.e. w.r.t. vcol′) but whose initial color
was not n − 1, there is a positive probability to reach (in at most k steps) a
state colored with n − 1. Hence, the highest color appearing in H is n − 1,
which is even. We obtain that sA parity dominates the valuation v.

Overall, applying iteratively Algorithm 8.12 on all colors from e down to
0 starting with the initial coloring function induces a completely faithful pair
(vcol,Ev). However, it may be the case that some states are mapped to an
odd number, which does not allow to apply Lemma 8.5. The question is then:

3This is because all states q ∈ Qn−1 satisfy col(q) ≤ n − 1. This is one of the
additional conditions for faithfulness that we did mention, but that is used in the
Appendix in De�nition 8.22.
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from that completely faithful con�guration, how can one make some progress
towards a situation where Lemma 8.5 can be applied?

Example 8.7. Consider the coloring function of Figure 8.4. As mentioned

in Example 8.6, with an appropriate environment function (that is not shown

in Figure 8.4), we can have a pair which is completely faithful. To gain some

intuition on what should be done next, let us focus only on the states q1, q2, q3.

A simpli�ed version is presented in Figure 8.7 (with a slight modi�cation:

instead of going to q0, q1 loops on itself): the initial (and true) colors of the

states are in circles next to them and their color w.r.t. the current (virtual)

coloring function (that is completely faithful with an appropriate environment

function) is written in red. In this game, Player B plays alone, but it is obvious

that Player A wins surely from q2: indeed, either the game stays inde�nitely

in q2, or it eventually reaches and settles in q1.

The current virtual color 1 assigned to both q2 and q3 does not properly

re�ect the fact that if the game reaches q3, even though Player B plays opti-

mally according to the local game associated with q2, it will end up looping in

q1, which will be losing for Player B. In a way, we would like to propagate the

information that reaching q1 is bad for Player B. Since 0 is the smallest color,

there is no harm in increasing it to 2, the game from q1 will be the same: it will

be won by Player A by looping. Player B will now be able to know that going

to q1 is dangerous for him, which will be obtained by applying the previous

iterative process.

In a more general concurrent game, the next step of the process when

we have a completely faithful con�guration not satisfying the assumptions of

Lemma 8.5 consists in changing all the states with the least (virtual) color n to

the color n+2. However, note that there is a (very important) second step: the

colors of all states (virtually) colored with n+ 1 should be reset to their initial

colors. The reason why can be seen again in Figure 8.7. After the color of q1

becomes 2, the color of q3 will also become 2. However, if the color of the state

q2 is not reset, then it is not going to change since Player B can choose to loop

to q2 and see the color 1 for ever (in game G0
q2,vcol

). That is, from Player B's

perspective, looping inde�nitely on q2 is winning, which is not what happens

in the real game (i.e. the coloring function does not faithfully describes what

happens in the game). The changes made to the coloring function vcol from

Figure 8.4 can be seen in Figure 8.8. Note that the process of increasing the

colors of some states by 2 can only be done with the least color (otherwise

faithfulness will not be preserved).

The process described in Example 8.7 is implemented as Algorithm 8.13 in
the Appendix, it ensures the lemma below.

Lemma 8.7 (Proof Page 332). Let vcol : Qu → J0, eK, Ev : Qu → Env(Q)

be a coloring and an environment functions. Let n := min vcol[Q]. Assume
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Figure 8.7: A (deterministic turn-based) game with only three states.
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Figure 8.8: The same arena as in Figures 8.3,8.4 but with a di�erent
coloring function.

that n ≤ e − 2 and the pair (vcol,Ev) is completely faithful. If (vcol′,Ev′) ←
IncLeast(vcol,Ev) is the result of increasing the least-colored layer by 2 and

resetting the environment of the last but least-colored layer (Algorithm 8.13),

then (vcol′,Ev′) is faithful down to n+ 2.

Proof sketch. Let Qn := vcol−1[n] and Qn+2 := vcol−1[n + 2]. The algorithm
has three steps: �rst, it increases the least color by 2; then it resets the en-
vironments of the (n + 1)-colored states; �nally it applies Algorithm 8.11 to
these reset states. Let us argue that (vcol′′,Ev) (obtained after the �rst step)
witnesses the color n+ 2.

Consider a Player-A positional strategy sA generated by the environment
Ev in the game Ln+2

vcol′′
. Let v := vu

n+1,vcol′′
. Similarly to the proof of Lemma

8.6, sA dominates the valuation v. Consider a BSCC H compatible with sA. If
H ∩ Qn+2 = ∅, then H is even-colored. Indeed, (vcol,Ev) witnesses the color
n. In addition, the probability to go to a state kn+2

i that is (n+ 1)-colored in
the game Ln+2

vcol′′
is exactly the probability to go to a state kni that is (n + 1)-

colored in the game Lnvcol (since n is the least color). Furthermore, H is also
even-colored as soon as H ∩Qn = ∅ since (vcol,Ev) witnesses the color n+ 2.
Now, assume that none of these cases occur. Then, one can show that: either
a state ki is seen for some i ≥ n + 2, and H is even-colored; or, from some
states in Qn+2, there is a positive probability to exit Qn+2 and no state ki is
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seen for i ≥ n+ 2. Now, looking at what happens in game Ln+2
vcol , some states

ki are seen for i ≤ n+ 1, and such states are colored with n+ 1. Hence, since
(vcol,Ev) witnesses the color n + 2, it must be that the highest color in H is
n+ 2, which is even. Therefore it is also the case in the game Ln+2

vcol′′
. In all the

cases, H is even-colored.

As stated in Lemma 8.7, the update of colors described in Example 8.7
can be done only if, for a completely faithful pair, the least (virtual) color n
appearing is at most e−2. If n = e, we are actually in the scope of Lemma 8.5
since in that case all states have (virtual) color e. However, there remains the
case where we have n = e− 1. In fact, this case cannot happen.

Lemma 8.8 (Proof Page 333). Consider a coloring function vcol : Qu →
J0, eK, an environment function Ev : Qu → Env(Q). Assume that (vcol,Ev) is

completely faithful. Then, for C := vcol[Q], we have minC 6= e− 1.

Proof sketch. Let Qe−1 := vcol−1[e − 1]. Towards a contradiction, let sB be
a Player-B positional strategy generated by Ev in the game Le−1

vcol . It parity
dominates the valuation vu

′
e−1,vcol for some u′ < u. Hence, all BSCCs compatible

with sB are odd-colored: they all stay in the layer Qe−1. Indeed, since e −
1 = minC, exiting Qe−1 while staying in Qu means seeing Qe := vcol−1[e]

with e even and the highest color in the game. Hence, either the game stays
inde�nitely in Qe−1 and Player B wins almost surely, or there is some positive
probability to visit stopping states, and in that case their expected values is
at most u′. Hence, in the game Gu, the strategy sB has values less than u from
the states Qe−1 ⊆ Qu, which is a contradiction.

Finally, all these pieces are put together in Algorithm 8.14 in the Appendix,
whose output is a completely faithful pair where all states are mapped to e.
The only remaining step is to prove the termination of this algorithm. Let
us consider the (virtual) coloring functions as vectors in Ne+1 indicating the
number of states mapped to each color. Then, one can realize that each step
of Algorithm 8.14 increases this vector for a lexicographic order (i.e. we �rst
compare the number of states mapped to e, then the number of states mapped
to e− 1, etc). Hence, Algorithm 8.14 does terminate in �nitely many steps.

Lemma 8.9 (Proof Page 335). Algorithm 8.14 computes a completely faith-

ful pair of environment and coloring functions mapping each state to e in

�nitely many steps.

We can now proceed to the (informal) proof of Theorem 8.3.

Proof sketch. Let us prove Theorem 8.3 for Player A. Consider some u ∈
VQ \ {0}. By Lemma 8.9, there is a completely faithful pair of environment
and coloring functions (vcolu,EvuA) mapping each state in Qu to eu. Hence, by
Lemma 8.5, all Player-A positional strategies generated by the environment

311



function EvuA parity dominate the valuation χG in the game Gu. Since we as-
sume that all game forms occurring in Qu are positionally maximizable up to
eu − col(q) w.r.t. Player A, such positional strategies generated by EvuA do ex-
ist. Then, considering the environment function EvA : Q→ Ev(D) that merges
all the environment functions (EvuA)u∈VG\{0} together (and that is de�ned arbi-
trarily on Q0), it follows by Lemma 8.4, that all Player-A positional strategies
generated by that environment function Ev are optimal. (And such strategies
exist.)

We �nally state below an NSC-transfer.

Corollary 8.10. Among standard �nite game forms with �nitely many out-
comes, being positionally optimizable is an NSC-transfer for the existence of
positional optimal strategies for both players in �nite parity games.

Proof. From a game form that is not positionally optimizable, one can build a
simple parity game where one of the players has no positional optimal. This
is by de�nition of positionally optimizable game forms (De�nition 8.7) and by
De�nition 8.6. The other direction comes from Theorem 8.3.

Note that, for simplicity, we have not stated an NSC-transfer as we did
in Proposition 7.7 where the conditions on each state depends on the color of
the state. It is plausible that such an NSC-transfer could be stated for the
�nite-state parity games that we have considered in this chapter. However, it
would probably involve introducing the maximal color appearing in the parity
games considered.

8.5 Discussion and future work

In this chapter, we have proved an NSC-transfer, among standard �nite
game forms, for the existence of positional optimal strategies in �nite par-
ity games for both players. A natural future work would be to prove the
result for any one player, independently of the other player. As mentioned
in the introduction of this chapter, this would require, a priori, to manipu-
late in�nite-choice strategies for the player we are not handling, which is why
we have not done it yet. One of the main di�culties would then be to glue
in�nite-choice local strategies (i.e. strategies in simple parity games induced
by the di�erent game forms F(q)) together into a single global strategy, which
is straightforward when all local strategies are positional. Furthermore, we
could no longer use Proposition 8.2, which comes from Corollary 3.16 since it
only applies to positional strategies. Instead, we would have to use the more
general Corollary 3.14.

In a somewhat similar fashion than for Chapter 2 with Theorem 2.3, we
believe that the bene�t of this chapter does not only lie in the results stated
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in Theorem 8.3 and Corollary 8.10, but also in the method we took to prove
Theorem 8.3. Due the the concurrent stochastic setting of this dissertation,
the arguments are quite technical. It may be interesting to restrict the setting
to �nite turn-based stochastic games, which would (greatly) simplify the proof,
or at least remove its most technical aspects. We believe that it could provide a
new proof of the existence of positional optimal strategies in �nite turn-based
parity games for both players, which was originally proved in [27, 28], as it
is straightforward to show that �nite turn-based game forms are positionally
optimizable.

8.6 Appendix

8.6.1 . Algorithms

The algorithms we mentioned in this chapter are gathered in this subsec-
tion. Let us quickly describe what each of them does:

• Consider a color k ∈ J0, eK, a state q ∈ Qu and a virtual coloring function
vcol : Qu → J0, eK. Then, the algorithm CreateEnv(k, q, vcol) builds an
environment, at state q, for either of the players: A if k is even, B if it
is odd.

• Consider a color k ∈ J0, eK, a virtual coloring function vcol : Qu →
J0, eK and an environment function de�ned on vcol−1[Jk + 1, eK]. Then,
the algorithm UpdCurSta(k, vcol,Ev) sets the environment of all states
virtually colored by k by calling algorithm CreateEnv(k, q, vcol).

• Consider a color k ∈ J0, eK, a virtual coloring function vcol : Qu →
J0, eK and an environment function de�ned on vcol−1[Jk + 1, eK]. Then,
the algorithm UpdNewSta(k, vcol,Ev) changes the colors and sets the
environment of all the states q ∈ Qu virtually colored by some i < k for
which the operator NewCol is equal to k.

• Consider a color k ∈ J0, eK, a virtual coloring function vcol : Qu → J0, eK
and an environment function de�ned on vcol−1[Jk+1, eK]. Then, the algo-
rithm UpdateColEnv(k, vcol,Ev) calls successively algorithms UpdCurSta(k, vcol,Ev)

and UpdNewSta(k, vcol,Ev).

• Consider a virtual coloring function vcol : Qu → J0, eK and an envi-
ronment function de�ned on Qu. Then, the algorithm IncLeast(vcol,Ev)

increases the colors of states virtually colored by the least color cmin by
2. Then, it resets the color and environment of all states colored by
cmin + 1.

• Finally, consider a coloring function col : Qu → J0, eK. Then, the al-
gorithm ComputeEnv(col) iteratively computes a pair of virtual coloring
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function and a environment function by successively calling algorithms
UpdateColEnv and IncLeast until all states are colored by e.

8.6.2 . Proof of Proposition 8.1

Proof. The �rst observation we can make is that, if sA dominates the valuation
v : Q → [0, 1], then it also dominates the valuation vlt : Ω+

C → [0, 1] (recall
De�nition 3.9) in the sense of De�nition 3.7.

We can therefore apply Corollary 3.15: for all ECs H in the �nite MDP
ΓsA
C induced by the strategy sA, there is a value u(v,H) ∈ [0, 1] such that
v[QH ] = {u(v,H)}. This proves the �rst part of the proposition.

As for the second part of the proposition, this is a direct consequence
of Corollary 3.16. Indeed, consider any EC H with u(v,H) > 0 and state
q ∈ QH . Consider any Player-B positional deterministic strategy sB. Then,
all the BSCCs that can occur in QH , in the Markov chain induced by sB, are
even-colored. That is, from q, the parity objective holds almost-surely. Since
this holds against all Player-B positional deterministic strategies and since
positional deterministic strategies are enough to play optimally in �nite MDPs
with parity objectives [27], this proves that χCsAH

(q) = 1.

8.6.3 . Proof of Lemma 8.2

Proof. As in the proof of Proposition 8.1, the �rst equivalence comes Corol-
lary 3.16 (the other direction) and the fact that positional deterministic strate-
gies are enough to play optimally in �nite MDPs with parity objectives [27].
Now assume that u > 0. Assume that the strategy sAY (σA) parity dominates
the valuation vuY in the game GY . In particular, it dominates this valuation,
i.e. item (ii.1) of Lemma 8.2 is satis�ed. Note that this e�ectively amounts to
have σA optimal in the game in normal form 〈F , vuY ◦ p〉, since u = vuY (qinit) =

val[〈Fp, vuY 〉] by Lemma 3.9. Consider now some action b ∈ ActB such that
out[〈F ,1p−1[0,1]〉](σA, b) = 0 and a Player-B positional and deterministic strat-
egy sB such that sB(q0) := b. Since out[〈F ,1p−1[0,1]〉](σA, b) = 0, no stop-
ping state can be reached under sAY (σA) and sB. Consider the Markov chain

T sAY (σA),sB
CY . Besides stopping states, it is reduced to a BSCC H whose states are
qinit and all states ki reachable with that action b. That is, H = {qinit} ∪ {ki |
i ∈ J0, eK, out[〈F ,1p−1[ki]〉](σA, b) > 0}. Furthermore, qinit is colored with c.
The value of any state in this BSCC H is equal to either 0 or 1 and it is equal
to 1 if and only if H is even-colored (since every state in a BSCC is almost-
surely seen in�nitely often). Since u > 0, the value of H cannot be 0, thus H
is even-colored and the maximum of the colors seen with that action is even.
This exactly corresponds to item (ii.2) of Lemma 8.2.

Assume now that the GF-strategy σA satis�es both items (ii.1) and (ii.2).
Consider a positional deterministic Player-B strategy sB in the game GY . Let
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if k is even then
return Ek

q,vcol;

end
if k is odd then

m← max(k − 2, 0);
return Em

q,vcol;

end

Figure 8.9: CreateEnv(k, q, vcol)

for q ∈ Qu do
if vcol(q) = k then

Ev(q)← CreateEnv(k, q, vcol) ;
end

end
return Ev;

Figure 8.10: UpdCurSta(k, vcol,Ev)

change← True;
while change do

change← False;
for q ∈ Qu do

if NewCol(q, vcol) = k then
Ev′(q)← CreateEnv(k, q, vcol);
vcol(q)← k;
change← True; break;

end

end

end
return (vcol,Ev′);

Figure 8.11: UpdNewSta(k, vcol,Ev)

Ev← UpdCurSta(k, vcol,Ev);
UpdNewSta(k, vcol,Ev);

Figure 8.12:
UpdateColEnv(k, vcol,Ev)

cmin ← min vcol;
for q ∈ Qu do

if vcol(q) = cmin then
vcol(q)← cmin + 2;

end
if vcol(q) = cmin + 1 then

vcol(q)← col(q);
Ev′(q)← NoEnv;

end

end
UpdNewSta(cmin + 2, vcol,Ev′);

Figure 8.13: IncLeast(vcol,Ev)

vcol← col;
Ev← EmptyEnv;
for k = e down to 0 do

(vcol,Ev)← UpdateColEnv(k, vcol,Ev);
end
while vcol[Qu] 6= {e} do

(vcol,Ev)← IncLeast(vcol,Ev);
for k = e down to 0 do

(vcol,Ev)← UpdateColEnv(k, vcol,Ev);
end

end
return (vcol,Ev)

Figure 8.14: ComputeEnv(col)
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b := sB(q0) ∈ ActB. Consider a BSCC H in the induced Markov chain

T sAY (σA),sB
CY that is not reduced to a stopping state. In particular, this im-

plies that out[〈F ,1p−1[0,1]〉](σA, b) = 0. Then, as previously, we have H =

{qinit} ∪ {ki | i ∈ J0, eK, out[〈F ,1p−1[ki]〉](σA, b) > 0}. The fact that σA satis-
�es item (ii.2) ensures that the BSCC H is even-colored. It follows that the
strategy sAY (σA) parity dominates the valuation vuY .

8.6.4 . Proof of Lemma 8.4

Proof. Consider such a Player-A strategy sA ∈ SCA. Let us show that it parity
dominates the valuation χG . First, note that it dominates the valuation χG
since, for all u ∈ VQ \ {0}, the strategy suA dominates χG in Gu (recall that the
stopping states in Gu have the values of the original states in G). Consider now
a BSCC H compatible with sA such that minχG [H] > 0. By Proposition 8.1,
there is a value uH ∈ (0, 1] such that χG [H] = {uH}. That is, H ⊆ QuH .
It follows that H is compatible with suHA . Since suHA parity dominates the
valuation χG in GuH , we can deduce that H is even-colored. Overall, the
strategy sA parity dominates the valuation χG . By Proposition 8.1, the strategy
sA guarantees it (i.e. it is optimal).

8.6.5 . Proof of Theorem 8.3

In this section, we give all the technical details necessary to prove Theo-
rem 8.3. The proof of this theorem is given in Page 311, provided that Lem-
mas 8.6, 8.7, 8.8 and 8.9 hold. We already stated and argued why these lemmas
hold, however we have not given a detailed proof of them. This is what we do
in this subsection. However, we �rst state and prove results that we use for
the remainder of this chapter.

We �rst state and prove properties on the update of colors NewCol. This
is done in Page 316. Then, we give the complete de�nition of faithfulness, see
Page 322. We also state and prove three lemmas, that link the local and global
behaviors, , see Page 323. We �nally prove the lemmas mentioned above: we
prove Lemma 8.6 in Page 328, Lemma 8.7 in Page 332, Lemma 8.8 in Page 333
and Lemma 8.9 in Page 335.

Properties ensured by the local operator NewCol

We introduce a useful notation which will allow us to rewrite Lemma 8.2 in
our context.

De�nition 8.18. Consider a state q ∈ Q, a virtual coloring function vcol :

Qu → J0, eK, a color n ∈ J0, eK and two GF-strategies (σA, σB) ∈ ΣA(F(q)) ×
ΣB(F(q)). We denote by Col(q, vcol, σA, σB) the set of colors reachable in one

step with positive probability w.r.t. (σA, σB) in the local game Gnq,vcol (regard-
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less of the color n ∈ J0, eK considered). That is:

Col(q, vcol, σA, σB) := {i ∈ J0, eK | out[〈F(q),1p−1
q,vcol[ki]

〉](σA, σB) > 0}

In particular, Col(q, vcol, σA, b) = Color(F(q), pq,vcol, σA, b) for all b ∈ ActB (no-

tation from Lemma 8.2).

Then, the set of colors ColBSCC(q, vcol, n, σA, σB) is de�ned by:

ColBSCC(q, vcol, n, σA, σB) := Col(q, vcol, σA, σB) ∪ {max(vcol(q), cn)}

with cn := n− 1 is n is even and cn := n+ 1 is n is odd.

We obtain a corollary of Lemma 8.2 (which only consists in writing Lemma 8.2
in the context of a local game Gnq,vcol).
Corollary 8.11. Consider a state q ∈ Q, a virtual coloring function vcol :

Qu → J0, eK, a color n ∈ J0, eK and a local strategy σA ∈ ΣA(F(q)). A Player-A

GF-strategy σA ∈ ΣA(F) is optimal w.r.t. Y := (F(q), Enq,vcol) if and only if,

letting u := χGY (qinit), either (i) u = 0, or (ii) the positional Player-A strategy

sYA (σA) parity dominates the valuation vuY .

Furthermore (ii) is equivalent to: (1) the Player-A positional strategy

sYA (σA) dominates the valuation vuY and (2) for all b ∈ ActB, if out[〈F ,1p−1[0,1]〉](σA, b) =

0, then max ColBSCC(q, vcol, n, σA, σB) is even.

This is symmetrical for Player B.

Let us now state a proposition we will use to prove that the update of
colors cannot decrease the colors of the states.

Proposition 8.12. Let q ∈ Qu and some virtual coloring function vcol :

Qu → J0, eK, some color n ∈ J0, eK and a positive value z ∈ (0, 1]. Let p :=

pq,vcol and Y := (F(q), Enq,vcol). For all Player-A GF-strategies σA ∈ ΣA(F(q)),

the positional Player-A strategy sAY (σA) dominates the valuation vzY if and only

if for all b ∈ ActB: if out[〈F(q),1Q\Qu〉](σA, b) > 0, then:

out[〈F(q), µz〉](σA, b) ≥ 0

where µz : Q→ [0, 1] is such that, for all q ∈ Q:

µz(q) :=

{
0 if q ∈ Qu
x− z otherwise, if q ∈ Qx ⊆ Q \Qu

Proof. In the game GY , the Player-A strategy sAY (σA) dominates the valuation
vzY � property we denote (1) � if and only if:

z = vzY (qinit) ≤ val[〈F(q), vzY 〉](sAY (σA)(qinit))

= val[〈F(q), vzY 〉](σA)
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In addition, val[〈F(q), vzY 〉](σA) = minb∈ActB out[〈F(q), vzY 〉](σA, b). Further-
more, for all b ∈ ActB, we have that

out[〈F(q), vzY 〉](σA, b) = out[〈F(q),1p−1[{qinit}∪Ke]〉](σA, b) · z
+

∑

x∈VQ\Qu

out[〈F(q),1p−1[x]〉](σA, b) · x

It follows that, if out[〈F(q),1Q\Qu〉](σA, b) = 0, we have out[〈F(q), vzY 〉](σA, b) =

z. However, if out[〈F(q),1Q\Qu〉](σA, b) > 0, we have that

z ≤ out[〈F(q), vzY 〉](σA, b)⇔ 0 ≤
∑

x∈VQ\Qu

out[〈F(q),1p−1[x]〉](σA, b) · (x− z)

0 ≤ out[〈F(q),
∑

x∈VQ\Qu

1p−1[x] · (x− z)〉](σA, b)

0 ≤ out[〈F(q), µz〉](σA, b)
The result follows.

The update of colors does not decrease the color. We de�ne a
successor operation compatible with the order ≺par.

De�nition 8.19 (Parity successor). For all n ∈ N, we have Succ(n) := n− 2

if n ≺par 1, Succ(1) := 0 and Succ(n) := n+ 2 if 1 ≺par n.

Let us show that the local operator NewCol does not decrease (w.r.t. the
usual order < on natural numbers) the previous color of the state q given by
a (virtual) coloring function vcol.

Proposition 8.13. Consider a state q ∈ Qu and a coloring function vcol :

Qu → J0, eK. We have NewCol(q, vcol) ≥ vcol(q).

Proof. We let p := pq,vcol and, for all n ∈ J0, eK, we let Yn := (F(q), Enq,vcol).
Note that p[0,1] ⊆ VQ\Qu .

There are two cases: either vcol(q) = e or vcol(q) < e. First, assume
that vcol(q) = e. Let us show that in that case NewCol(q, vcol) = e. Assume
towards a contradiction that χGYe (qinit) = u′ < u for some u′ ∈ [0, 1]. Consider
a Player-B GF-strategy σB that is optimal w.r.t. Ye. For all a ∈ ActA, we
have out[〈F ,1Q\Qu〉](a, σB) > 0. Indeed, otherwise, in the game Geq,vcol where
Player B plays the strategy de�ned by σB, Player A could loop inde�nitely on
qinit thus ensuring winning with probability 1 (since the color of the state qinit
is e � as vcol(q) = e � which is both the highest color appearing in the game
and even). We let pExit := mina∈ActA out[〈F ,1Q\Qu〉](a, σB) > 0.

Now, consider some a ∈ ActA. By Proposition 8.12 for Player B, we have:
out[〈F , µu′〉](a, σB) ≤ 0 where µu

′
: Q → [0, 1] comes from Proposition 8.12.

Hence, we have:
∑

x∈X
out[〈F ,1Qx〉](a, σB) · x ≤

∑

x∈X
out[〈F ,1Qx〉](a, σB) · u′
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Now, Letting v := χG the value vector in the game G, we have:
∑

q′∈Q
Pq,q

′
(a, σB) · v(q′) =

∑

q′∈Q
out[〈F , q′〉](a, σB) · v(q′)

= out[〈F ,1Qu〉](a, σB) · u+
∑

x∈VQ\Qu

out[〈F ,1Qx〉](a, σB) · x

≤ out[〈F ,1Qu〉](a, σB) · u+
∑

x∈VQ\Qu

out[〈F ,1Qx〉](a, σB) · u′

= out[〈F ,1Qu〉](a, σB) · u+ out[〈F ,1Q\Qu〉](a, σB) · u′

= u− out[〈F ,1Q\Qu〉](a, σB) · (u− u′)
≤ u− pExit · (u− u′) < u = v(q)

Hence, letting δ := pExit · (u− u′)/2 > 0 and considering, in the original game
G, a Player-B strategy sB ∈ SCB such that sB(q) := σB and for all q′ ∈ Q, we
have sB(q · q′) a δ-optimal Player-B strategy from q′, it follows that, for all
Player-A strategy sA in the game G, we have:

PC,qsA,sB
[W ] =

∑

q′∈Q
Pq,q

′
(sA(q), σB) · PC,q′

sqA,s
q
B
[W ]

≤
∑

q′∈Q
Pq,q

′
(sA(q), σB) · (v(q′) + δ) ≤ v(q)− 2δ + δ = v(q)− δ

where W := (colω)−1[ParityK] ⊆ Qω. Thus, the value from q is less than u =

v(q). Hence the contradiction. In fact, χGeq,vcol(qinit) ≥ u and NewCol(q, vcol) =

e.
Consider now the case where vcol(q) < e. Assume towards a contradiction

that NewCol(q, vcol) < vcol(q). Let n := NewCol(q, vcol).
Assume that n is even. By assumption, we have χGYn (qinit) ≥ u. Consider a

Player-A GF-strategy σA that is optimal w.r.t. Yn. First, the positional Player-
A strategy sA := sAYn(σA) = sAYn+2

(σA) de�ned by σA dominates the valuation
vuYn = vuYn+2

in the game GYn and it also does in the game GYn+2 . Consider now
an action b ∈ ActB and assume that out[〈F ,1p−1[0,1]〉](σA, b) = 0. By Corol-
lary 8.11, it follows that, in the game GYn , we have max ColBSCC(q, vcol, n, σA, b)

even with ColBSCC(q, vcol, n, σA, b) = Col(q, vcol, σA, b)∪{en} with en = max(vcol(q), cn)

and cn = n−1 since n is even. Since n < vcol(q), we have en = max(vcol(q), cn) =

vcol(q). Furthermore, en+2 = max(vcol(q), cn+2) with cn+2 = n + 1 since n
is even. Since n < vcol(q), we also have en+2 = vcol(q) = en. That is,
ColBSCC(q, vcol, n, σA, b) = ColBSCC(q, vcol, n+2, σA, b). Hence, ColBSCC(q, vcol, n+

2, σA, b) is also even. By Corollary 8.11, the Player-A GF-strategy σA strongly
dominates the valuation vuYn+2

. Hence, by Proposition 8.1, the Player-A posi-

tional strategy sAYn+2
(σA) guarantees the valuation vuYn+2

. Hence the contradic-
tion since this implies NewCol(q, vcol) ≥ n+ 2.
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When n is odd, the reasoning is symmetrical, by taking the point-of-view
of Player B: we compare what happens in the games GYm and GYm for m :=

Succ(n).

The update of colors is not a�ected by small changes of colors.

Let us now tackle another property ensured by the local operator NewCol.
Assume that the new color of a state q is n ∈ J0, eK w.r.t. a coloring function
vcol. Now, consider another coloring function vcol′ that coincide with vcol on
colors at least n, and may di�er for smaller colors. In that case, the new color
of q will still be n w.r.t. the coloring function vcol′. This is (almost) what we
prove here. First, we introduce the notion of equivalent and prevailing coloring
functions.

De�nition 8.20 (Equivalent and Prevailing coloring functions). Consider

two coloring functions vcol, vcol′ : Qu → J0, eK and some color n ∈ J0, eK. The
coloring functions vcol, vcol′ are equivalent down to n if, for all k ∈ Jn, eK, we
have vcol−1[k] = vcol′−1[k].

Furthermore, vcol′ is said to be (n− 1)-prevailing compared to vcol if vcol

and vcol′ are equivalent down to n and vcol−1[n− 1] ⊆ vcol′−1[n− 1].

Let us �rst state a lemma that we will use to prove the proposition (of
interest for us) that we state below.

Lemma 8.14. Consider a state q ∈ Qu and some color n ∈ J0, eK. Let

vcol, vcol′ : Qu → J0, eK be two virtual coloring functions with vcol′ n-prevailing

compared to vcol. Consider a pair of GF-strategies (σA, σB) ∈ ΣA(F(q)) ×
ΣB(F(q)). We have:

max ColBSCC(q, vcol, n, σA, σB) ≥ n⇒
max ColBSCC(q, vcol, n, σA, σB) = max ColBSCC(q, vcol′, n, σA, σB)

Proof. Letting cn := n − 1 if n is even and cn := n + 1 if n is odd, we have
(recall De�nition 8.18):

ColBSCC(q, vcol, n, σA, σB) = Col(q, vcol, σA, σB) ∪ {max(vcol(q), cn)}

and

ColBSCC(q, vcol′, n, σA, σB) = Col(q, vcol′, σA, σB) ∪ {max(vcol′(q), cn)}

By assumption, we have that, for all i ∈ Jn+ 1, eK:

vcol−1[i] = vcol′−1[i]

Thus:

out[〈F(q),1p−1
q,vcol[ki]

〉](σA, σB) = out[〈F(q),1p−1
q,vcol[ki]

〉](σA, σB)
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Furthermore:
vcol−1[n] ⊆ vcol′−1[n]

Thus:

out[〈F(q),1p−1
q,vcol[kn]〉](σA, σB) > 0⇒ out[〈F(q),1p−1

q,vcol′ [kn]〉](σA, σB) > 0

We therefore obtain that for any k ∈ Jn, eK:

(i) If max Col(q, vcol, σA, σB) ≤ k, then max Col(q, vcol′, σA, σB) ≤ k;

(ii) If max Col(q, vcol, σA, σB) = k, then max Col(q, vcol′, σA, σB) = k.

Furthermore:

(i') If vcol(q) ≤ k, then vcol′(q) ≤ k;

(ii') If vcol(q) = k, then vcol′(q) = k.

We have three cases, letting n ≤ j := max ColBSCC(q, vcol, n, σA, σB) =

Col(q, vcol, σA, σB) ∪ {max(vcol(q), cn)}:

• If j = cn, then max Col(q, vcol, σA, σB), vcol(q) ≤ j. Hence, by (i) and
(i'), we have max Col(q, vcol′, σA, σB), vcol′(q) ≤ j.
That is, max ColBSCC(q, vcol′, n, σA, σB) = j.

• If j = vcol(q) then max Col(q, vcol, σA, σB), cn ≤ j. Hence, by (ii'), we
have j = vcol′(q) and, by (i), we have max Col(q, vcol′, σA, σB) ≤ j.
That is, max ColBSCC(q, vcol′, n, σA, σB) = j.

• If j = max Col(q, vcol, σA, σB) then vcol(q), cn ≤ j. Hence, by (ii), we
have j = max Col(q, vcol′, σA, σB) and, by (i'), we have vcol′(q) ≤ j. That
is, max ColBSCC(q, vcol′, n, σA, σB) = j.

The lemma follows.

Proposition 8.15. Consider a state q ∈ Qu and a coloring function vcol :

Qu → J0, eK. Let n := NewCol(q, vcol) ∈ J0, eK. Assume that another coloring

function vcol′ : Qu → J0, eK is n-prevailing compared to vcol. In that case,

NewCol(q, vcol′) = n.

Proof. Let us consider two such coloring functions vcol and vcol′. We have n =

NewCol(q, vcol) ∈ J0, eK. Consider a Player-A GF-strategy σA that is optimal
w.r.t. Y for Y := (F(d), Enq,vcol). Let Y ′ := (F(d), En

q,vcol′
), p := pq,vcol and

p′ := pq,vcol′ . Let us show that n �par NewCol(q, vcol′). This straightforwardly
holds if n = e− 1. Assume now that n 6= e− 1. The Player-A strategy sAY (σA)

dominates the valuations vuY = vuY ′ .
Consider an action b ∈ ActB and assume that out[〈F(q),1p−1[0,1]〉](σA, b) =

0. By Corollary 8.11, we have j := max ColBSCC(q, vcol, n, σA, b) is even
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with max ColBSCC(q, vcol, n, σA, b) ≥ max(vcol(q), cn) for cn = n − 1 if n
is even and cn = n + 1 otherwise. Since n − 1 is odd, it follows that, in
any case, max ColBSCC(q, vcol, n, σA, b) ≥ n. Then, by Lemma 8.14, we have
max ColBSCC(q, vcol′, n, σA, b) = max ColBSCC(q, vcol, n, σA, b), which is even.
As this holds for all b ∈ ActB, the GF-strategy σA strongly dominates the val-
uation vuY ′ , hence, by Proposition 8.1, the value of the state qinit in the game
GY ′ is at least u: χGY ′ [qinit] ≥ u. Hence, n �par NewCol(q, vcol′).

Let us now show that NewCol(q, vcol′) �par n, which straightforwardly
holds if n = e. Hence, assume that n 6= e and let m := Succ(n) ∈ J0, eK.
The proof is very similar than in the previous case. Let Z := (F(d), Emq,vcol).
Let also Z ′ := (F(d), Em

q,vcol′
). The value of the state qinit in the game GZ

is at most u′ for some u′ < u: χGZ [qinit] ≤ u′ < u. Consider a Player-B
GF-strategy σB that is optimal w.r.t. Z. The Player-B strategy sBZ(σB) domi-
nates the valuation vu

′
Z = vu

′
Z′ . Consider an action a ∈ ActA and assume that

out[〈F(q),1p−1[0,1]〉](a, σB) = 0. We have max ColBSCC(q, vcol,m, a, σB) odd
with j := max ColBSCC(q, vcol,m, a, σB) ≥ max(vcol(q), cm) for cm = m− 1 if
m is even and cm = m+ 1 otherwise. Let us show that j ≥ n.

• If m is odd (and n = m+ 2), we have cm = m+ 1 = n− 1 which is even.
Hence, j ≥ n.

• If m = 0 (and n = 1), since j is odd, it must be that j ≥ n.

• If m ≥ 2 is even (and therefore n = m−2), we have cm = m−1 = n+1.
Hence, we have j ≥ n+ 1.

We can therefore apply Lemma 8.14 to obtain that max ColBSCC(q, vcol′,m, a, σB) =

max ColBSCC(q, vcol,m, a, σB), which is odd. As this holds for all a ∈ ActA,
we have that the GF-strategy σB strongly dominating the valuation vu

′
Z′ , hence,

by Proposition 8.1, the value of the state qinit in the game GZ′ is at most u′:
χGZ′ [qinit] ≤ u′. Hence, NewCol(q, vcol′) ≺par m.

In any case, we have n = NewCol(q, vcol′).

Complete de�nition of faithfulness

We want to formally give the de�nition of faithfulness that we will use in
the proof. First, we de�ne the notion of coherent coloring and environment
functions. Informally, for each state q ∈ Qu: the colors given by the coloring
function correspond to the environment provided at each state (the environ-
ments being de�ned from coloring functions as in De�nition 8.13).

De�nition 8.21 (Coherent coloring and environment functions). Consider

a virtual coloring function vcol : Qu → J0, eK, some color n ∈ J0, eK and let

Qn := vcol−1[n]. Consider an environment function Ev : Qn → Env(Q) and,

for all q ∈ Qn, let vcolq : Qu → J0, eK be the coloring function associated with
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the environment Ev(q). Let q ∈ Qn. We say that (vcol,Ev) is coherent at state
q if, letting nq := NewCol(q, vcolq):

• col(q), vcolq(q), nq ≤ n and the coloring function vcol is n-prevailing com-

pared to the coloring function vcolq;

• n ≡ nq mod 2 and Ev(q) = CreateEnv(nq, q, vcolq) where CreateEnv

corresponds to Algorithm 8.9.

If this holds for all q ∈ Qn, (vcol,Ev) is coherent at color n.

De�nition 8.22 (Faithful pair of coloring and environment functions). Con-

sider a virtual coloring function vcol : Qu → J0, eK, some n ∈ J0, e + 1K and a

partial environment function Ev : Qu → Env(Q) de�ned on vcol−1[Jn, eK]. We

say that (vcol,Ev) is faithful down to n if:

1f. for all k ∈ Jn, eK, the pair (vcol,Ev) witnesses the color k;

2f. for all k ∈ Jn, eK, the pair (vcol,Ev) is coherent at color k;

3f. for all q ∈ Qu, if vcol(q) < n, then we have col(q) = vcol(q) and

NewCol(q, vcol) < n;

When n = 0, we say that the pair (vcol,Ev) is completely faithful.

Three central lemmas

In the following, we state three lemmas that we will use in remainder of this
chapter. The �rst lemma relates probability distributions in a local game and
in a global game. This is particularly useful as it allows to use the assumptions
made on the local strategies to obtain various properties on global games where
such local strategies are used.

The second lemma states that any Player-A positional strategy generated
by an environment such that the new color (w.r.t. that environment) is even
dominates a speci�c valuation. This is analogous for Player B.

Finally, the third lemma states that any Player-A local strategy de�ned by
local strategies that are optimal w.r.t. to an even color ensure that in a BSCC
H compatible with such a strategy, if some high enough color occurs in H,
then H is even-colored. This is analogous for Player B.

Lemma 8.16. Consider a virtual coloring function vcol : Qu → J0, eK, some

color n ∈ J0, eK and a partial environment function Ev : Qu → Env(Q) de�ned

over Qn for Qn := vcol−1[{n}]. Let q ∈ Qn and vcolq : Qu → J0, eK be the

coloring function associated with environment Ev(q). We also let p := pq,vcolq .

Then, for all Player-A and Player-B strategies sA and sB in the arena Cnvcol, we
have:

∀x ∈ VQ\Qu , P
sA,sB
Cnvcol,q

[x] = out[〈F(q),1p−1[x]〉](sA(q), sB(q)) (8.1)
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and

PsA,sB
Cnvcol,q

[Qn ∪Kn] = out[〈F(q),1p−1[{qinit}∪Ke]〉](sA(q), sB(q)) (8.2)

Furthermore, if vcol is equivalent down to n+ 1 to vcolq:

∀i ∈ Jn+ 1, eK, PsA,sB
Cnvcol,q

[kni ] = out[〈F(q),1p−1[ki]〉](sA(q), sB(q)) (8.3)

and if, in addition, vcol is n-prevailing compared to vcolq:

PsA,sB
Cnvcol,q

[vcol−1
q [n] \ {q}] = out[〈F(q),1p−1[kn]〉](sA(q), sB(q)) (8.4)

Proof. By De�nition 8.11, we have:

• for all q′ ∈ Qn, p−1
n,vcol[q

′] = {q′};

• for all i ∈ J0, eK: p−1
n,vcol[k

n
i ] = vcol−1[i] \Qn;

• for all x ∈ VQ\Qu , p−1
n,vcol[x] = Qx.

Furthermore, from De�nition 8.13, we have:

• p−1[qinit] = {q};

• for all i ∈ J0, eK: p−1[ki] = vcol−1[i] \ {q};

• for all x ∈ VQ\Qu , p−1[x] = Qx = p−1
n,vcol[x].

By De�nition 8.12, for all x ∈ VQ\Qu . We have:

PsA,sB
Cnvcol,q

(x) = out[〈F(q),1p−1
n,vcol[x]〉](sA(q), sB(q))

= out[〈F(q),1p−1[x]〉](sA(q), sB(q))

This proves Equation (8.1).
Furthermore, using this Equation for the second equality, we have:

PsA,sB
Cnvcol,q

[Qn ∪Kn] = 1− PsA,sB
Cnvcol,q

[VQ\Qu ]

= 1− out[〈F(q),1p−1[VQ\Qu ]〉](sA(q), sB(q))

= out[〈F(q), 1− 1p−1[VQ\Qu ]〉](sA(q), sB(q))

= out[〈F(q),1p−1[{qinit}∪Ke]〉](sA(q), sB(q))

This proves Equation (8.2).
Assume now that vcol is equivalent down to n+1 to vcolq. Let i ∈ Jn+1, eK.

We have vcol−1[i] = vcol−1
q [i] (recall De�nition 8.20). Furthermore, for all q′ ∈

Qn, we have vcol(q′) = n 6= i. Hence, vcol−1[i]\Qn = vcol−1[i] = vcol−1[i]\{q}.
Hence we have, again by De�nition 8.12, for all i ∈ Jn+ 1, eK:

PsA,sB
Cnvcol,q

(kni ) = out[〈F(q),1p−1
n,vcol[k

n
i ]〉](sA(q), sB(q))

= out[〈F(q), vcol−1[i]〉](sA(q), sB(q))

= out[〈F(q),1p−1[ki]〉](sA(q), sB(q))
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This gives Equation (8.3). Assume in addition that vcol is n-prevailing
compared to vcolq (recall De�nition 8.20). That is, vcol−1

q [n] ⊆ vcol−1[n] = Qn
. Hence, vcol−1

q [n] \ {q} ⊆ Qn. It follows that:

PsA,sB
Cnvcol,q

[vcol−1
q [n] \ {q}] =

∑

q′∈vcol−1
q [n]\{q}

out[〈F(q),1p−1
n,vcol[q

′]〉](sA(q), sB(q))

=
∑

q′∈vcol−1
q [n]\{q}

out[〈F(q), q′〉](sA(q), sB(q))

= out[〈F(q),1vcol−1
q [n]\{q}〉](sA(q), sB(q))

= out[〈F(q),1p−1[kn]〉](sA(q), sB(q))

We obtain Equation (8.4).

Lemma 8.17. Consider a virtual coloring function vcol : Qu → J0, eK, some

color n ∈ J0, eK and let Qn := vcol−1[n]. Consider an environment function

Ev : Qn → Env(Q). Assume that (vcol,Ev) is coherent at color n. In the arena

Cnvcol:
• if n is even, then all positional Player-A strategies generated by the

environment Ev dominate the valuation vun,vcol in the arena Cnvcol (see
De�nition 8.16);

• if n is odd, then there is some y < u such that, for all z ≥ y, all

positional Player-B strategies generated by the environment Ev dominate

the valuation vzn,vcol in the arena Cnvcol (see De�nition 8.16).

Proof. For all states q ∈ Qn, we let vcolq : Qu → J0, eK be the coloring function
associated with the environment Ev(q) and we let p := pq,vcolq . Let q ∈ Qn.
For all Player-A and B strategies sA, sB in the arena Cnvcol, for all z ∈ [0, 1], we
have:

out[〈F(q), vzn,vcol〉](sA(q), sB(q)) = z · PsA,sB
Cnvcol,q

[Qn ∪K] +
∑

x∈VQ\Qu

x · PsA,sB
Cnvcol,q

(x)

Assume that n is even and consider a Player-A positional strategy sA gen-
erated by the environment function Ev. Letting Yq := (F(q),Ev(q)), in the
game GYq , the positional Player-A strategy sAYq(sA(q)) dominates the valuation

vu
′
Yq

for u′ := χGYq [qinit] ≥ u (recall Lemma 8.2) since (vcol,Ev) is coherent at
color n. Hence:

u′ ≤ out[〈F(q), vu
′
Yq〉](sA(q), sB(q))

= out[〈F(q),1p−1[{qinit}∪Ke]〉](sA(q), sB(q)) · u′

+
∑

x∈VQ\Qu

out[〈F(q),1p−1[x]〉](sA(q), sB(q)) · x

= u′ · PsA,sB
Cnvcol,q

[Qn ∪ Kn] +
∑

x∈VQ\Qu

x · PsA,sB
Cnvcol,q

[x]

325



Then, we have (since u′ ≥ u):

u = u′ + (u− u′) ≤ u′ · PsA,sB
Cnvcol,q

[Qn ∪Kn] +
∑

x∈VQ\Qu

x · PsA,sB
Cnvcol,q

[x] + (u− u′)

≤ u′ · PC
n
vcol,q

sA,sB [Qn ∪Kn] +
∑

x∈VQ\Qu

x · PsA,sB
Cnvcol,q

[x] + (u− u′) · PsA,sB
Cnvcol,q

[Qn ∪Kn]

= u · PsA,sB
Cnvcol,q

[Qn ∪Kn] +
∑

x∈VQ\Qu

x · PsA,sB
Cnvcol,q

[x]

= out[〈F(q), vun,vcol〉](sA(q), sB(q))

Since this holds for all Player-B positional strategies strategies sB and for all
q ∈ Qn, it follows that the Player-A strategy sA dominates the valuation vun,vcol
in the arena Cnvcol.

In the case where n is odd, the proof is analogous, from Player-B's point-
of-view.

Lemma 8.18. Consider a virtual coloring function vcol : Qu → J0, eK, some

n ∈ J0, eK and Qn := vcol−1[{n}]. Consider an environment function Ev :

Qn → Env(Q) and assume that (vcol,Ev) is coherent at the color n. Then,

denoting K≥n := {kni | i ∈ Jn, eK}:

• if n is even, then in the arena Cnvcol, all positional Player-A strategies

generated by the environment Ev ensure that for all BSCCsH compatible

with sA, if K
≥n occurs in H, then H is even-colored;

• if n is odd, then in the arena Cnvcol, all positional Player-B strategies

generated by the environment Ev ensure that for all BSCCsH compatible

with sB, if K
≥n occurs in H, then H is odd-colored.

Proof. Assume that n is even and consider a Player-A positional strategy sA
generated by the environment Ev in the game Lnvcol (recall De�nition 8.12).
Consider a Player-B positional deterministic strategy sB and consider a BSCC
H compatible with sA and sB.

For all q ∈ Qn, let vcolq : Qu → J0, eK be the coloring function associated
with the environment Ev(q). Let q ∈ Qn and nq := NewCol(q, vcolq). Since
(vcol,Ev) is coherent at n, nq is even and less than or equal to n. Recall
that Gnqq,vcol = GYq , for Yq := (F(q), E

nq
q,vcolq

) (see De�nition 8.13). Recall also

that Enqq,vcolq = 〈max(cnq , vcolq(q)), e, p{q},vcolq〉 (also see De�nition 8.13) with
cnq = nq − 1 as nq is even. Let pq := pq,vcolq . Note that pq[0,1] ⊆ VQ\Qu
(recall De�nition 8.13). By Equation (8.1) from Lemma 8.16, if q is in H,
then out[〈F(q),1Q\Qu〉](sA(q), sB(q)) = 0. In that case, since the Player-A GF-
strategy sA(q) is optimal w.r.t. Yq (recall Lemma 8.2), we have the following.:

max(Color(F(q), pq, sA(q), sB(q)), nq − 1, vcolq(q)) is even (8.5)
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Since (vcol,Ev) is coherent (see De�nition 8.21) at n, we have col(q) ≤ n for
all q ∈ Qn. Hence, our goal is to show that:

K≥n occurs in H ⇒ maxM is even

with M := {i ∈ Jn, eK | kni occurs in H}.
To prove this, we use the following characterization: for all colors i ∈

Jn+ 1, eK, by Equation (8.3) in Lemma 8.16 since vcol and vcolq are equivalent
down to n+ 1, we have the following equivalence:

kni occurs in H ⇔ ∃q ∈ H, i ∈ Color(F(q), pq, sA(q), sB(q)) (8.6)

Furthermore, for all q ∈ H, by assumption (the pair (vcol,Ev) being co-
herent), vcolq(q) ≤ n. Hence, since nq ≤ n, Equation (8.5) gives that, for all
q ∈ H:

max Color(F(q), pq, sA(q), sB(q)) ≥ n+1⇒ max Color(F(q), pq, sA(q), sB(q)) is even
(8.7)

Furthermore, if maxM = n, then n is the highest color appearing in H

(since vcol and Ev are coherent at n) and H is then even-colored. Otherwise:

K≥n occurs in H ⇔M 6= ∅
⇒M 6= ∅ ∧ knm occurs in H for m := maxM

⇒M 6= ∅ ∧ ∃qm ∈ H, m ∈ Color(F(qm), p, sA(qm), sB(qm))

by Equation (8.6)

⇒M 6= ∅ ∧ ∃qm ∈ H, max Color(F(qm), pqm , sA(qm), sB(qm)) = m

since m = maxM and by Equation (8.6)

⇒M 6= ∅ ∧m = maxM is even

since m ≥ n+ 1 and by Equation (8.7)

We obtain the desired result.
The case of n odd is analogous by reversing the instances of 'odd' and 'even'.

However, the arguments for obtaining the analogue of Equation (8.5) is slightly

di�erent. Indeed, letting Yq := (fsf(q), E
Succ(nq)
{q},vcolq ), the Player-B GF-strategy

sB(q) is optimal w.r.t. Yq (recall Lemma 8.2 and the de�nition of CreateEnv

(i.e. Algorithm 8.9)). Recall that ESucc(nq)
{q},vcolq = 〈max(cSucc(nq), vcolq(q)), e, vcolq〉

where cSucc(nq) = −1 if nq = 1 and cSucc(nq) = nq − 1 otherwise (i.e. if nq ≥ 3).
Overall, from Lemma 8.2, we do obtain:

max(Color(F(q), p, sA(q), sB(q)), nq − 1, vcolq(q)) is odd (8.8)

with nq − 1 even.
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Proof of Lemma 8.6

Let us de�ne a notion which is slightly weaker then being faithful: being non-
deceiving.

De�nition 8.23 (Non-deceiving environment and coloring functions). Con-

sider a virtual coloring function vcol : Qu → J0, eK, a partial environment

function Ev : Qu → Env(Q) and some color n ∈ J0, e + 1K. We say that the

pair (vcol,Ev) is non-deceiving down to n if:

1n-d. for all k ∈ Jn, eK, the pair (vcol,Ev) witnesses the color k;

2n-d. for all k ∈ Jn, eK, the pair (vcol,Ev) is coherent at color k;

3n-d. for all q ∈ Qu, if vcol(q) < n, then we have col(q) = vcol(q) and

NewCol(q, vcol) ≤ n.

The di�erence with being faithful lies in the fact that some state q ∈ Qu with

vcol(q) < n could be such that NewCol(q, vcol) = n (which is not possible with

a faithful pair). When n = 0, being non-deceiving down to n is equivalent to

being faithful down to n (i.e. to being completely faithful).

Then, Algorithm 8.12 is composed of Algorithm 8.10 and Algorithm 8.11.
In fact, Algorithm 8.10 transforms a faithful pair into a non-deceiving one
(one level below). And Algorithm 8.11 transforms a non-deceiving pair into a
faithful one (at the same level). We state one lemma per algorithm formally
stating the speci�cations of these algorithms.

Lemma 8.19. Consider a virtual coloring function vcol : Qu → J0, eK, some

color n ∈ J1, e + 1K and a partial environment function Ev : Qu → Env(Q)

de�ned on vcol−1[Jn, eK]. Assume that (vcol,Ev) is faithful down to n. Let

Ev′ ← UpdCurSta(n − 1, vcol,Ev). Then, (vcol,Ev′) is non-deceiving down to

n− 1.

Proof. For all q ∈ Qu, such that vcol(q) ≥ n−1, we denote by vcolq the coloring
function corresponding to the environment Ev′(q).

2n-d. Let us show that (vcol,Ev′) is coherent at n − 1. We let Qn−1 :=

vcol−1[n − 1] and q ∈ Qn−1. Since (vcol,Ev) is faithful down to n, we
have vcol(q) = col(q) = n−1. Furthermore, vcolq = vcol. Hence, vcolq =

(q) = col(q) = n−1. In addition, since the pair (vcol,Ev) is faithful down
to n, we have NewCol(q, vcol) < n. By Proposition 8.13, we have n−1 =

vcol(q) ≤ NewCol(q, vcol) < n. Hence, vcol(q) = NewCol(q, vcol) = n−1.
By de�nition of Algorithm 8.9, we have Ev′(q) = CreateEnv(n−1, q, vcol).
As this holds for all q ∈ Qn−1, (vcol,Ev) is coherent at n− 1.

3n-d. This condition straightforwardly holds since the coloring function has
not changed and the pair (vcol,Ev) is faithful down to n.
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1n-d. This condition straightforwardly holds for k ≥ n since the pair (vcol,Ev)

is faithful down to n. Note that since (vcol,Ev′) is coherent at n − 1,
both Lemma 8.17 and Lemma 8.18 can be applied to (vcol,Ev′) at n−1.

Assume that n − 1 is even. Consider a Player-A positional strategy sA
generated by the environment Ev in the game Ln−1

vcol . By Lemma 8.17, this
strategy dominates the valuation vun−1,vcol in the arena Cn−1

vcol . Consider
a Player-B positional deterministic strategy sB and consider a BSCC H

in Cn−1
vcol compatible with sA and sB. By Lemma 8.18, if K≥n−1 occurs

in H, then H is even-colored. Assume now that K≥n−1 does not occur
in H. In that case, there are some states in H in Qn−1 ⊆ col−1[n − 1]

and possibly some states in {kn−1
i | i ∈ J0, n − 2K} occur in H with

coln−1(kn−1
i ) = n − 2 for all i ∈ J0, n − 2K. Hence, the highest color

appearing in H is n−1 and therefore H is even-colored. Thus, sA parity
dominates the valuation vun−1,vcol.

The case where n− 1 is odd is analogous, from Player-B point-of-view.

Lemma 8.20. Consider a virtual coloring function vcol : Qu → J0, eK, some

color n ∈ J0, eK, and a partial environment function Ev : Qu → Env(Q) de�ned

on Jn, eK. Assume that the pair (vcol,Ev) is non-deceiving down to n. Let

(vcol′,Ev′)← UpdNewSta(n, vcol,Ev). Then, (vcol′,Ev′) is faithful down to n.

Proof. For all q ∈ Qu such that vcol(q) ≥ n, we denote by vcolq the coloring
function associated with the environment Ev′(q). Let Qn := (vcol′)−1[n].

2f. For all k ∈ Jn+ 1, eK, the pair (vcol′,Ev′) is coherent at k since the pair
(vcol,Ev) is non-deceiving down to n. Now, let q ∈ Qn. If vcol(q) = n,
then straightforwardly, (vcol′,Ev′) is coherent at state q since (vcol,Ev)

is non-deceiving down to n, hence vcol is n-prevailing compared to vcolq
and vcol′ is also n-prevailing compared to vcol. Consider now a state
q ∈ Qn such that vcol(q) < n. By de�nition of Algorithm 8.11, we
have vcol(q) = vcolq(q) ≤ NewCol(q, vcolq) = n (by Proposition 8.13).
That is, vcolq(q) ≤ n − 1. Since (vcol,Ev) is non-deceiving down to n,
we have col(q) = vcol(q) = vcolq(q) ≤ n − 1. Furthermore, by de�ni-
tion of Algorithm 8.11, the colors of the states in vcol−1[Jn, eK] is not
changed and more and more states are colored with n. Hence, vcol′ is
n-prevailing compared to vcolq. In addition, n = NewCol(q, vcolq) and
Ev(q) = CreateEnv(n, q, vcolq). It follows that the pair (vcol′,Ev′) is co-
herent at state q, and this holds for all q ∈ Qn.

3f. By de�nition of Algorithm 8.11, for all k < n and state q ∈ Qu such that
vcol′(q) = k, we have NewCol(q, vcol′) 6= n and vcol′(q) = vcol(q) = col(q)
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(since (vcol,Ev) is non-deceiving down to n). Furthermore, assume to-
wards a contradiction that a state q ∈ Qu is such that vcol′(q) =

k = vcol(q) and NewCol(q, vcol′) = m > n. In that case, by Propo-
sition 8.15, since vcol and vcol′ are equivalent down to m, we would
have NewCol(q, vcol) = m > n, which is not possible since (vcol,Ev) is
non-deceiving down to n. In fact, NewCol(q, vcol′) < n.

1f. Let k ≥ n+1. We have vcol−1[k] = (vcol′)−1[k] and for all q ∈ vcol−1[k],
we have Ev(q) = Ev′(q). Hence, the �rst condition for faithfulness holds
for k since (vcol,Ev) is non-deceiving down to n. We consider now the
case where k = n. Assume that n is even. Consider a Player-A positional
strategy sA generated by the environment function Ev in the game Ln

vcol′
.

Let us show that this strategy parity dominates the valuation vu
n,vcol′

in
the game Ln

vcol′
. By Lemma 8.17, this strategy dominates the valuation

vu
n,vcol′

. Now, �x a Player-B positional deterministic strategy sB and

consider a BSCCH compatible with sA and sB in Ln
vcol′

. IfK≥n occurs in
H, then by Lemma 8.18, the BSCC H is even-colored. Assume now that
K≥n does not occur in H. Let X0

n := vcol−1[n] and let j := |Qn| − |X0
n|.

For all 1 ≤ i ≤ j, we denote by qi the i-th element of Qn whose color was
changed by Algorithm 8.11 and Xi

n := X0
n ∪ ∪1≤k≤i{qi}. In particular,

Xj
n = Qn and:

∀i ∈ J1, jK, vcol−1
qi [n] = Xi−1

n (8.9)

First, assume thatH ⊆ X0
n. In that case, this is a BSCC compatible with

the strategy sA in the game Lnvcol in which this strategy, by assumption,
parity dominates the valuation vun,vcol. Hence, this BSCC is even-colored.
Second, assume that H 6⊆ X0

n and let Cn := Qn ∩ col−1[n]. For all
i ∈ J0, jK, let Hi := H ∩Xi

n. Let us show by induction on i ∈ J0, jK the
following property P(i): for all q ∈ Hi\Cn, there is a positive probability
to visit Cn from q while only visiting states in Hi, that is:

PsA,sB
Cn
vcol′ ,q

[H∗i · Cn] > 0

Assume towards a contradiction that P(0) does not hold. That is, there
is some q ∈ H0 \ Cn such that PsA,sB

Cn
vcol′ ,q

[H∗0 · Cn] = 0. Let Z ⊆ H0 be the

set of states in H0 such that Z := {q} ∪ {q′ ∈ H0 | PsA,sB
Cn
vcol′ ,q

[H∗0 · q′] >
0}. Note that Z ∩ Cn = ∅. Our goal is now to exhibit a BSCC in
Lnvcol that is compatible with sA and that is odd-colored. This will be
a contradiction with the fact that sA parity dominates the valuation
vun,vcol in the game Lnvcol. Consider a Player-B strategy s′B such that,
for all q′ ∈ X0

n, s′B(q′) := sB(q′) and for all i ∈ J0, n − 1K, we have
sB(kni ) playing deterministically to reach q. By construction, we do
have a BSCC H ′ compatible with sA and s′B in Lnvcol that is included in
Z ∪ {kni | i ∈ J0, n − 1K}. Furthermore, since the BSCC H in the game
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Ln
vcol′

is not equal to H0 (because this would imply H ⊆ X0
n), it must be

that at least one state in {kni | i ∈ J0, n− 1K} is in H ′. Then, since each
state in {kni | i ∈ J0, n− 1K} is colored with n− 1 and no state in Z is in
Cn, it follows that the highest color in H is n − 1, which is odd. That
is, the BSCC H ′ his odd-colored, which is a contradiction. In fact, P(0)

holds.

Assume now that P(i) holds for some 0 ≤ i ≤ j − 1. Consider some
state q ∈ Hi+1 \ Cn. If q ∈ Hi, then we can apply P(i). Assume now
that q /∈ Hi, that is q /∈ Xi

n. Hence, q = qi+1. Since q /∈ Cn, we
have col(q) 6= n, and therefore col(q) ≤ n − 14. Furthermore, letting
Yq := (F(q), En{q},vcolq), the Player-A GF-strategy sA(q) is optimal w.r.t.
Yq (recall Lemma 8.2). Hence, letting pq := pq,vcolq , we have:

max(Color(F(q), pq, sA(q), sB(q)), n− 1) is even (8.10)

with n − 1 odd. Recall that Color(F(q), pq, sA(q), sB(q)) := {i ∈ J0, eK |
out[〈F(q),1(pq)−1[ki]〉](sA(q), b) > 0}. In addition, since we assume that
K≥n does not occur in H, we have max Color(F(q), pq, sA(q), sB(q)) ≤ n

by Equation (8.3) from Lemma 8.16. We can conclude that we have
max Color(F(q), pq, sA(q), sB(q)) = n. Hence, by de�nition, we have that
out[〈F(q),1(pq)−1[kn]〉](sA(q), b) > 0. It follows that, by Equation (8.4) in
Lemma 8.16 and since vcol′ is n-prevailing compared to vcolq, we have
PsA,sB
Cn
vcol′ ,q

[vcol−1
q [n] \ {q}] > 0. Since vcol−1

q [n] = Xi
n (by Equation 8.9),

this is equivalent to: PsA,sB
Cn
vcol′ ,q

[Xi
n] > 0. That is, from q, there is a pos-

itive probability to reach a state q′ ∈ Xi
n for which, by P(i), we have:

PsA,sB
Cn
vcol′ ,q

′ [H∗i ·Cn] > 0. It follows that PsA,sB
Cn
vcol′ ,q

[H∗i+1 ·Cn] > 0 and P(i+ 1)

holds. We can conclude that from all states in H there is a positive
probability to reach Cn, that is H ∩ Cn 6= ∅. Hence, n is the highest
color in H and it is even. Thus, H is even-colored.

The case where n is odd is symmetrical, from Player-B's point-of-view.

The proof of Lemma 8.6 is now straightforward.

Proof. Indeed, by Lemma 8.19, we have (vcol,Ev′) non-deceiving down to n−
1. Then, by Lemma 8.20, the pair of coloring and environment functions
that Algorithm UpdNewSta (i.e. Algorithm 8.11) outputs is faithful down to
n− 1.

4We have shown that (vcol,Ev) is coherent at n, hence all states in Qn are such
that col(q) ≤ n.
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Proof of Lemma 8.7

Proof. Recall that C := vcol[Q], k := minC and assume that k ≤ e− 2.
In fact, we consider (vcol′,Ev′) to be the new environment and coloring

functions obtained with Algorithm 8.13 before calling Algorithm 8.11. Let us
show that (vcol′,Ev′) is non-deceiving down to n := k + 2. First, note that
vcol′ is n-prevailing compared to vcol. Let Qn := (vcol′)−1[n]. For all q ∈ Qn,
we let vcolq be the virtual coloring function associated with the environment
Ev′(q).

2n-d. Let q ∈ Qn. We have either vcol(q) = n − 2 or vcol(q) = n. In both
cases, since (vcol,Ev) is completely faithful and therefore coherent at
colors n− 2 and n, it holds that col(q) ≤ n, vcolq(q) ≤ n, nq ≤ n (with
nq := NewCol(q, vcol)). Furthermore, vcol′ is n-prevailing compared to
vcol, which is n-prevailing compared to vcolq. Finally, n ≡ n− 2 mod 2

and therefore this condition for being non-deceiving holds.

3n-d. This condition for being non-deceiving also straightforwardly holds. In-
deed, assume towards a contradiction that a state q ∈ Qu such that
col(q) = k = vcol′(q) < n is such that NewCol(q, vcol′) = m > n.
We have vcol that is equivalent down to m to vcol′. This implies by
Lemma 8.15, that we have NewCol(q, vcol) = m > n, which is not possi-
ble since (vcol,Ev) is assumed completely faithful.

1n-d. Consider now the �rst condition for being non-deceiving. It holds for all
k > n, since vcol−1[k] = (vcol′)−1[k], and in both games Lkvcol and Lkvcol′ ,
the states in vcol−1[J0, k−1K] = vcol′−1[J0, k−1K] are colored with k−1.

Assume that n is even. Consider a Player-A positional strategy sA gen-
erated by the environment function Ev in the game Ln

vcol′
. Let us show

that this strategy parity dominates the valuation vu
n,vcol′

in the game
Ln
vcol′

. By Lemma 8.17, this strategy dominates the valuation vu
n,vcol′

.
Now, �x a Player-B positional deterministic strategy sB and consider a
BSCC H compatible with sA and sB in Ln

vcol′
. If K≥n occurs in H, by

Lemma 8.18, H is even-colored. Assume now that K≥n does not oc-
cur in H. Let Sn := (vcol)−1[n] (before running the algorithm, the set
colored by n) and Tn := Qn \ Sn = vcol−1[n − 2] (before running the
algorithm, the set colored by n− 2). Assume that H ∩ Sn = ∅. In that
case, this is a BSCC compatible with the strategy sA in the game Ln−2

vcol

in which this strategy, by assumption, parity dominates the valuation
vun−2,vcol. Furthermore, consider the state knn−1 in Lnvcol and the state

kn−2
n−1 in Ln−2

vcol . These states are colored by n − 1 and exactly the same
edges in both games Lnvcol and Ln−2

vcol lead to these states. (These corre-
spond to the states q ∈ Qu such that vcol(q) = n− 1.) Hence, since the
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BSCC H is even-colored in Ln−2
vcol , it also is in Lnvcol5. Assume now that

H ∩ Tn = ∅. In that case, this is a BSCC compatible with the strategy
sA in the game Lnvcol in which this strategy, by assumption, parity dom-
inates the valuation vun,vcol. Hence, this BSCC is even-colored. Finally,
assume that H ∩ Tn 6= ∅ and H ∩ Sn 6= ∅. Let Cn := Qn ∩ col−1[n]. Let
us show that for all q ∈ (H ∩ Sn) \Cn, there is a positive probability to
visit Cn from q while only visiting states in H ∩ Sn, that is:

PsA,sB
Cn
vcol′ ,q

[(H ∩ Sn)∗ · Cn] > 0

Assume towards a contradiction that this does not hold. That is, there
is some q ∈ (H ∩ Sn) \ Cn such that PsA,sB

Cn
vcol′ ,q

[(H ∩ Sn)∗ · Cn] = 0. Let

Z ⊆ H ∩ Sn be the set of states in H ∩ Sn such that Z := {q} ∪ {q′ ∈
H ∩ Sn | PsA,sB

Cnvcol,q
[(H ∩ Sn)∗ · q′] > 0}. Note that Z ∩ Cn = ∅. Our goal

is now to exhibit a BSCC in Lnvcol that is compatible with sA and odd-
colored. This is a contradiction with the fact that sA parity dominates
the valuation vun,vcol in the game Lnvcol. Consider a Player-B strategy s′B
such that, for all q ∈ Sn, s′B(q) := sB(q) and for all i ∈ J0, n−1K, we have
sB(kni ) playing in a deterministic way to reach q. By construction, we
do have a BSCC H ′ compatible with sA and s′B in Lnvcol that is included
in Z ∪ {kni | i ∈ J0, n − 1K}. Furthermore, since the BSCC H in the
game Ln

vcol′
is not equal to H ∩ Sn, it must be that at least one state in

{kni | i ∈ J0, n−1K} is inH ′. Then, since each state in {kni | i ∈ J0, n−1K}
is colored with n−1 and no state in Z is in Cn, it follows that the highest
color in H ′ is n− 1, which is odd. That is, the BSCC H ′ is odd-colored.
This is a contradiction. In fact, from all states q ∈ (H ∩ Sn) \ Cn, we
have PsA,sB

Cn
vcol′ ,q

[(H ∩ Sn)∗ · Cn] > 0. Furthermore, the colors of all states

in H are at most n (recall what we shown above in 2n-d). Hence, the
highest color in H is n, which is even (the color of the states in Cn).
Therefore the BSCC H is even-colored. That is, the Player-A strategy
sA parity dominates the valuation vu

n,vcol′
in the game Ln

vcol′
.

The case where n is odd is identical.

Hence, the pair (vcol′,Ev′) is non-deceiving down to n. The result then follows
from Lemma 8.20.

Proof of Lemma 8.8

We can proceed to the proof of Lemma 8.8.

5Note that this is why we increase the least color, and not an intermediate color.
Indeed, if there were a state colored by the coloring function vcol by n− 3, then the
state kn−2n−3 would be colored by n−3 in Ln−2

vcol , whereas its counterpart k
n
n−3 would be

colored by n− 1 in Ln
vcol. Hence, we could not deduce anymore that since the BSCC

H is even-colored in Ln−2
vcol , it also is in Ln

vcol.
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Proof. Assume towards a contradiction that minC = e − 1. Let Qe−1 :=

vcol−1[e − 1]. Consider a Player-B strategy sB generated by the environment
function Ev. Because the pair (vcol,Ev) is completely faithful and e−1 is odd,
it follows that sB parity dominates the valuation vu

′
e−1,vcol in the game Le−1

vcol

for some u′ ≤ u. Consider the game GQe−1 from Lemma 1.5.10 (we do not
mention any player since the game has a value). This lemma also gives that
all states have the same values in G and GQe−1 . Let us show that there is some
x ∈ [0, 1] such that x < u and such that the strategy sB parity dominates
the valuation vxQe−1

. First, note that for all y ∈ [0, 1], if sB dominates the
valuation vyQe−1

, then it also parity dominates it (since sB parity dominates the

valuation vu
′
e−1,vcol in the game Le−1

vcol ). Now, consider some state q ∈ Qe−1. Let
vcolq be the coloring function associated with the environment Ev(q). Denoting
Yq := (F(q),Ev(q)) and pq := pq,vcolq , we have that the Player-B GF-strategy
sB(q) is optimal w.r.t. Yq. Hence, by Lemma 8.2 for Player B, we have that
for all Player-A actions a ∈ ActA, if out[〈F ,1(pq)−1[pq

[0,1]
]〉](a, sB(q)) = 0 then

Color(F(q), pq, a, sB(q)) ∪ {e − 2} is odd with Color(F(q), pq, a, sB(q)) := {i ∈
J0, eK | out[〈F(q),1(pq)−1[ki]〉](a, sB(q)) > 0}. Since e is even, it must be that,
for all states q ∈ Qe−1 and a ∈ ActqA:

out[〈F ,1(pq)−1[pq
[0,1]

]〉](a, sB(q)) = 0⇒ out[〈F(q),1(pq)−1[ke]〉](a, sB(q)) = 0

(8.11)
For q ∈ Qe−1, let NZ(q) := {a ∈ ActqA | out[〈F(q),1(pq)−1[pq

[0,1]
]〉](a, sB(q)) >

0}. Then, we let:

pm := min
q∈Qe−1

min
a∈NZ(q)

out[〈F ,1(pq)−1[pq
[0,1]

]〉](a, sB(q)) > 0 (8.12)

and

x := u+ pm · (u′ − u) < u (8.13)

Let us show that the strategy sB dominates the valuation vxQe−1
in the game

GQe−1 . Let q ∈ Qe−1. We have val[〈F(q), v〉](sB(q)) = maxa∈ActqA
out[〈F(q), v〉](a, sB(q)).

Consider some a ∈ ActqA and a Player-A strategy sA with sA(q) := a. Denoting

Pa[T ] := PC
e−1
vcol ,q

sA,sB [T ] for T ⊆ Qe−1 ∪ {ke−1
e } ∪ VQ\Qu , we have:

out[〈F(q), vxQe−1
〉](a, sB(q)) = x · out[〈F(q),1Qe−1〉](a, sB(q))

+ u · out[〈F(q),1Qe〉](a, sB(q))

+
∑

y∈VQ\Qu

y · out[〈F(q),1Qy〉](a, sB(q))

= x · Pa[Qe−1] + u · Pa[{ke−1
e }] +

∑

y∈VQ\Qu

y · Pa[y]

In addition, since the strategy sB dominates the valuation vu
′
e−1,vcol in the
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game Le−1
vcol , we have:

u′ ≥ out[〈F(q), vu
′
e−1,vcol〉](a, sB(q))

= u′ · Pa[Qe−1 ∪ {ke−1
e }] +

∑

y∈VQ\Qu

y · Pa[y]

That is: ∑

y∈VQ\Qu

y · Pa[y] ≤ u′ · Pa[VQ\Qu ]

By Equation (8.1) in Lemma 8.16, for all y ∈ VQ\Qu , we have:

Pa[y] = out[〈F(q),1(pq)−1[y]〉](a, sB(q))

Furthermore, by Equation (8.3) in Lemma 8.16 which can be applied since
(vcol,Ev) is faithful down to e− 1, it also is coherent at e− 1, we have:

Pa({kee−1}) = out[〈F(q),1(pq)−1[ke]〉](a, sB(q))

Now, assume that out[〈F(q),1(pq)−1[VQ\Qu ]〉](a, sB(q)) = 0. That is, for all
y ∈ VQ\Qu , we have Pa(y) = 0. By Equation (8.11) it follows that Pa[{kee−1}] =

0. Hence: vxQe−1
(q) = x = out[〈F(q), vxQe−1

〉](a, sB(q)).
Assume now that out[〈F(q),1(pq)−1[VQ\Qu ]〉](a, sB(q)) > 0 (i.e. a ∈ NZ(q)).

By Equation (8.12), it implies that Pa[VQ\Qu ] ≥ pm. It follows that, by Equa-
tion (8.13):

out[〈F(q), vxQe−1
〉](a, sB(q)) = x · Pa[Qe−1] + u · Pa[{kee−1}] +

∑

y∈VQ\Qu

y · Pa[y]

≤ u · Pa[Qe−1] + u · Pa[{kee−1}] + u′ · Pa[VQ\Qu ]

= u · (1− Pa[VQ\Qu ]) + u′ · Pa[VQ\Qu ]

= u+ Pa[VQ\Qu ] · (u′ − u) ≤ u+ pm · (u′ − u)

= x = vxQe−1
(q)

As this holds for all x ∈ Qe−1, it follows that the Player-B strategy sB
dominates the valuation vxQe−1

, and therefore parity dominates it. Hence, for
all q ∈ Qe−1, we have χGQe−1 [q] ≤ x < u. That is a contradiction with
Lemma 1.5.10.

8.6.6 . Proof of Lemma 8.9

First, let us formally de�ne a way to compare coloring functions.

De�nition 8.24. We de�ne the (transitive) relation ≺J0,eK on coloring func-

tions which corresponds to the lexicographic order. Speci�cally, for all virtual

coloring functions vcol1, vcol2 : Qu → J0, eK, we have vcol1 ≺J0,eK vcol2 if and

only if there is some k ∈ J0, eK such that:
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• for all i ∈ Jk + 1, eK, we have |vcol−1
1 [i]| = |vcol−1

2 [i]|;

• |vcol−1
1 [k]| < |vcol−1

1 [k]|.

We write vcol1 =J0,eK vcol2 when such a property is ensured for k = −1.

We also write vcol1 �J0,eK vcol2 for vcol1 =J0,eK vcol2 or vcol1 ≺J0,eK vcol2.

Straightforwardly, this relation ensures the following proposition.

Proposition 8.21. Let n ∈ N. There is no in�nite sequence (ck)k∈N ∈
(J0, eKn)N such that ck ≺J0,eK ck+1 for all k ∈ N.

Proof. This is because the relation ≺J0,eK corresponds to a lexicographic order
on vectors taking their values in J0, eK.

We can then consider all steps of Algorithm 8.14 one by one.

Lemma 8.22. Consider a virtual coloring function vcol : Qu → J0, eK and

some k ∈ J0, eK. For all partial environment functions Ev : Qu → Env(Q)

de�ned on Jk + 1, eK:

• for (vcolupd,Evupd) ← UpdateColEnv(k, vcol,Ev), we have vcol �J0,eK
vcolupd;

For all environment functions Ev : Qu → Env(Q):

• for (vcolInc,EvInc)← IncLeast(vcol,Ev), we have vcol ≺J0,eK vcolInc;

Proof. The procedure UpdateColEnv consists in two part. First, the call Al-
gorithm 8.10. This does not change the coloring function. Then, there is
the call to Algorithm 8.11. By Proposition 8.13, if NewCol(q, vcol) = k, then
vcol(q) ≤ k. Hence, the change of colors of the states does not decrease the
colors of the states. It follows that the resulting coloring function vcolupd is
such that vcol �J0,eK vcolupd .

Consider now the procedure IncLeast. By de�nition, before the call of this
algorithm, some states are colored with cmin. Hence, the coloring function
resulting of the call to Algorithm 8.13 has more states colored with cmin + 2,
whereas states colored with a color higher than cmin + 2 are left unchanged.
Hence: vcol ≺J0,eK vcolInc.

We can now proceed to the proof of Lemma 8.9.

Proof. By Lemma 8.22, each call to the procedure IncLeast strictly increase
(w.r.t. ≺J0,eK) the coloring function. Furthermore, each call to the procedure
UpdateColEnv does not decrease (w.r.t. ≺J0,eK) the coloring function. Hence,
by Proposition 8.21, the call to the procedure IncLeast is done only �nitely
many times.
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9 - Study of standard �nite game forms

In this part of the dissertation, we have de�ned several classes of game
forms, such as the class of determined (De�nition 6.1), �nitely/uniquely maxi-
mizable (De�nitions 6.3, 6.4), or positionally optimizable (De�nition 8.7) game
forms. Each of these classes is associated with transfers (though, not necessar-
ily NSC-transfers). See Chapters 6, 7 and 8 for more details.

In this �nal chapter, we focus on standard �nite game forms. The classes of
game forms we study are the above mentioned classes of game forms restricted
to standard �nite game forms. We will state two kinds of results. First, we
state decidability/complexity results on class membership problems: given a
game form F , if F belongs to one of the classes mentioned above. The stan-
dard �nite assumption facilitates the reasoning about decidability/complexity
issues. When considering this issue, for the same reason, we also only con-
sider deterministic game forms. Second, we state expressiveness results, that
is we compare the di�erent classes of game forms de�ned in this part, i.e. we
establish which class subsumes which.

More speci�cally, in Section 9.1, we study the complexity of deciding if a
standard �nite deterministic game form is determined. It is straightforward
that this decision problem is in co-NP. We show that it is equivalent, under
polynomial time reduction, to the decision problem MonotoneDual (the dual-
ization of monotone CNF formulas), see Proposition 9.4. It is an open problem
whether this decision problem MonotoneDual is in P or is co-NP-complete.

Then, in Section 9.2, we encode the decision problems w.r.t. some classes
mentioned above with formulas of the �rst order theory of the reals. These
formulas consist in (existential or universal) quanti�cations over (real) variables
followed by a combination, using the classical logical operators such as and,
or, etc., of inequalities between multi-variate polynomials. This is formally
de�ned in De�nition 9.5. Interestingly for us, the �rst order theory of the reals
is decidable. Using this fact, we are then able to show that it is decidable
(resp. semi-decidable) if a game form is uniquely (resp. �nitely) maximizable
w.r.t. Player A, see Corollary 9.7. Furthermore, we show that the assertion
that a game form is positionally optimizable (resp. up to some n ∈ N) can be
encoded in the �rst order theory of the reals, see Proposition 9.9, thus showing
that the corresponding decision problem is decidable.

Finally, in Section 9.3, Theorem 9.10 gives the complete picture of how
the sets of determined, �nitely/uniquely maximizable w.r.t. Player A and
positionally optimizable game forms compare. The results are summarized in
Figure 9.3. The main di�culty lies in establishing a strict hierarchy: for all
n ∈ N, the set of game forms positionally optimizable up to n + 1 is strictly
included in the set of game forms positionally optimizable up to n. This is
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done in Proposition 9.12.

9.1 Determined game forms

In this section, we study the complexity of deciding if a standard �nite
deterministic game form is determined (recall De�nition 6.1). This section
comes from [38]. We formally de�ne below the decision problem we will study in
this section, along with the de�nition of the size of standard �nite deterministic
game forms.

De�nition 9.1. The decision problem DetGF is as follows:

• Input: a standard �nite deterministic game form F ;

• Output: yes if and only if the game form F is determined.

Such a game form F = 〈ActA,ActB,O, %〉s is represented as a bi-dimensional

table where O is inferred from the contents of the cells of the table (i.e. O =

%(ActA,ActB)). We assume that ActA = J1, |ActA|K and similarly for ActB
(where |ActA| refers to the cardinal of ActA).

The size |F| of such a game form F is equal to |F| := |ActA| × |ActB|.
It is straightforward that this decision problem is in co-NP. Indeed, if a

game form is not determined, it su�ces to guess a valuation v : O→ {0, 1} and
check � in polynomial time � that there is no row full of 1 nor any column full
of 0. In fact, in [71] (where determinacy is refered to as tightness), the authors
mentioned that DetGF could be solved in quasi-polynomial time via a reduction
to the dualization of monotone CNF formulas (called MonotoneDual), which
can be solved in quasi-polynomial time [75]. Note that it is an open problem
whether MonotoneDual is in P or is coNP-complete [76].

The goal of this section is to show that DetGF is equivalent, under polyno-
mial time reduction, to MonotoneDual, thus showing that answering if DetGF

is in P or coNP-complete directly answers the same question for MonotoneDual.
To do so, we will actually show that DetGF is equivalent, under polynomial
time reduction, to the decision problem co-IMSAT, which is equivalent, under
polynomial time reduction, to MonotoneDual [77, Corollary 1, Theorem 2].

Let us de�ne this decision problem IMSAT. In the classical decision problem
SAT, a logical formula given in conjunctive normal form is given as input, the
output being yes if and only if this formula is satis�able. The problem IMSAT

refers to a version of SAT where the formula taken as input is monotone � i.e.
in each clause, either all variables are positive (not negated) or all variables are
negative (negated) � and intersecting � each pair of positive and negative
clauses has at least one variable in common. Positive and negative clauses are
formally de�ned below.

338



De�nition 9.2 (Positive and negative clauses). Consider a non-empty set of

variables X 6= ∅. A positive clause C+ on X represented by a subset XC+ ⊆ X
of X is equal to:

C+ :=
∨

x∈XC+

x

The set of all positive clauses on the setX of variables is denoted PosClause(X).

Similarly, a negative clause C− on X represented by a subset XC− ⊆ X of X

is equal to:

C− :=
∨

x∈XC−

¬x

The set of all negative clauses on the setX of variables is denoted NegClause(X).

We de�ne below the notion of intersecting monotone formula.

De�nition 9.3 (Intersecting Monotone formula). Consider a non-empty set

of variables X 6= ∅. An intersecting monotone formula ϕ (IM-formula for short)

on the set of variables X is a CNF formula:

ϕ :=
∧

1≤i≤n
C+
i ∧

∧

1≤j≤k
C−j

where, for all i ∈ J1, nK, we have C+
i ∈ PosClause(X) a positive clause and for

all j ∈ J1, kK, we have C−j ∈ NegClause(X) a negative clause, with k, n ≥ 1.

Furthermore, for all i ∈ J1, nK and j ∈ J1, kK, we have XC+
i
∩XC−j

6= ∅.

This induces the decision problem co-IMSAT.

De�nition 9.4. The decision problem co-IMSAT is as follows:

• Input: a non-empty set of variables X and an intersecting monotone

formula ϕ and X;

• Output: yes if and only if no valuation of the variables in X satis�es ϕ.

As mentioned above, co-IMSAT is equivalent to MonotoneDual.

Theorem 9.1. The decision problem MonotoneDual is equivalent, under

polynomial time reductions, to the decision problem co-IMSAT.

The remainder of this section is devoted to the proof that DetGF is equiv-
alent, under polynomial time reduction, to co-IMSAT, which in turns, shows
that DetGF is equivalent, under polynomial time reduction, to MonotoneDual.
In the proof of the following two lemmas, {0, 1}-valuations of the outcomes
will be seen as {False,True}-valuations where False corresponds to 0 and True

corresponds to 1.

Lemma 9.2. The decision problem co-IMSAT is at least as hard, under poly-

nomial time reduction, as DetGF.
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F1 =



x x z
x y y
z y z




Figure 9.1: A determined game form (already depicted in Figure 6.1).

Proof. We exhibit a polynomial time reduction from DetGF to co-IMSAT.
Speci�cally, consider a standard game form F = 〈StA,StB,O, %〉s and assume
that ActA = J1, kK and ActB = J1, nK for some n, k ≥ 1. We consider the set of
variables X = O and the IM-formula ϕF , de�ned by:

ϕF :=
∧

1≤i≤n
C+
i ∧

∧

1≤j≤k
C−j

where, for all i ∈ ActB = J1, nK, we have C+
i ∈ PosClause(X) and XC+

i
:=

%(ActA, i) ⊆ O = X and for all j ∈ J1, kK, we have C−j ∈ NegClause(X) and
XC−j

:= %(j,ActB) ⊆ O = X. That is, the positive clauses encode the columns

whereas the negative clauses encode the rows.
Note that the formula ϕ is indeed an IM-formula as it is monotone by

de�nition and, for all i ∈ J1, nK and j ∈ J1, kK, we have %(j, i) ∈ XC+
i
∩XC−j

6= ∅.
It is also clear that this transformation is computable in polynomial time. As
an example, the formula ϕF1 corresponding to the game form F1 of Figure 9.1
is equal to:

ϕF = (x ∨ z) ∧ (x ∨ y) ∧ (y ∨ z) ∧ (¬x ∨ ¬z) ∧ (¬x ∨ ¬y) ∧ (¬y ∨ ¬z)

In that case, the formula ϕF1 is not satis�able and the game form F1 is deter-
mined.

We now have to show that the formula ϕF is not satis�able if and only if
the game form F is determined. First, assume that ϕF is not satis�able and
let v : O → {0, 1} be a {0, 1}-valuation of the outcomes O. Note that it can
be seen as a {False,True}-valuation v of the variables in X = O. Since ϕF is
not satis�able, there exists a clause C that is not satis�ed by the valuation
v. Assume for instance that it is a positive clause C = C+

i for some i ∈
J1, nK = ActB. Then, for all x ∈ XC+

i
, we have v(x) = 0. That is, {0} =

v[XC+
i

] = v[%(ActA, i)]. Similarly, if C is a negative clause C = C−j for some

j ∈ J1, kK = ActA, then, for all x ∈ XC−j
, we have v(x) = 1, i.e. {1} =

v[XC−j
] = v[%(j,ActB)]. As this holds for all {0, 1}-valuations, the game form

F is determined.
It is analogous to show that if F is determined then ϕF is not satis�able:

for any {False,True}-valuation of the outcomes v : O → {False,True}, which
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Fϕ =




b a a x1 x1
d a e x1 x1
b c x x0 x1
x0 x0 x1 x1 x1
x0 x0 x0 x0 x0




Figure 9.2: The game form that is the translation of the formula ϕ.

can be seen as a {0, 1}-valuation, if there is a row full of 1 in 〈F , v〉, then the
corresponding negative clause is unsatis�ed by v, and similarly if there is a
column full of 0 in 〈F , v〉, then the corresponding positive clause is unsatis�ed
by v. This proves the desired result.

Let us now show the other direction, i.e. that the decision problem DetGF

is at least as hard as the decision problem co-IMSAT. This is stated in the
lemma below.

Lemma 9.3. The decision problem DetGF is at least as hard under polyno-

mial time reduction as co-IMSAT.

Proof. We de�ne a polynomial time reduction from co-IMSAT to DetGF. Specif-
ically, consider an IM-formula ϕ on a non-empty set of variables X such that:

ϕ :=
∧

1≤i≤n
C+
i ∧

∧

1≤j≤k
C−j

with k, n ≥ 1. We want to build a game form Fϕ that is determined if and
only if ϕ is not satis�able. The idea of the reduction is close to what we have
done in the proof of the previous lemma: the positive clauses are encoded in
the columns and the negative clauses are encoded in the rows, the intersection
of a row and a column being well de�ned since the formula ϕ is intersecting.
However, some technical di�culties arise from the fact that if, for instance, a
negative clause has more variables than the number of positive clauses, then
there will be some outcomes in Fϕ in a row corresponding to a negative clause
but whose column does not correspond to any positive clause. Hence, this col-
umn should be made so that it cannot be full of 0s (for the relevant valuations)
as to not a�ect the determinacy of Fϕ. Let us illustrate this on an example.
Consider the following IM-formula:

ϕ := (b ∨ d) ∧ (a ∨ c) ∧ (¬a ∨ ¬b) ∧ (¬a ∨ ¬d ∨ ¬e)

Figure 9.2 depicts the game form Fϕ we build from ϕ (the variables x, x0, x1

are fresh, the variable x is only added to �ll the game form). The negative
clauses are encoded in the red rows and the positive clauses are encoded in the
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blue columns. The variables x0 and x1 are added so that only the red rows and
the blue lines are of interest for the determinacy of the game form Fϕ. More
precisely, it is straightforward that for any {0, 1}-valuation v : O→ {0, 1} with
either v(x0) = 1 or v(x1) = 0, there is either a row full of 1 or a column full
of 0. Furthermore, for any {0, 1}-valuation v : O→ {0, 1} such that v(x0) = 0

and v(x1) = 1, there is a row full of 1 or a column full of 0 if and only if a red
row is full of 1 or a blue column is full of 0.

Formally, let mk := maxj∈J1,kK |XC−j
| and mn := maxi∈J1,nK |XC+

i
| be the

maximum number of variables occurring, respectively, in a positive and a neg-
ative clause. We de�ne the game form F := 〈ActA,ActB,O, %〉 by:

• ActA := J1, k +mk + 2K;

• ActB := J1, n+mn + 2K;

• O := X ∪ {x, x0, x1} for three fresh outcomes x, x0, x1 /∈ X;

• Let j ≤ k. Let us de�ne the row corresponding to j. For all i ≤ n, we
set %(j, i) ∈ O such that %(j, i) ∈ C−j ∩C+

i . Then, %(j, i) for n+ 1 ≤ i ≤
n + mn is de�ned such that %(j, J1, n + mnK) = XC−j

(note that this is

possible since |XC−j
| ≤ mn). Furthermore, %(j, n + mn + 1) := x1 and

%(j, n+mn + 2) := x1.

Consider the column corresponding to i ∈ J1, nK, its value for j ≤ k is
already de�ned. Then, %(j, i) for k+1 ≤ j ≤ k+mk is de�ned such that
%(J1, k + mkK, i) = XC+

i
(note that this is possible since |XC+

i
| ≤ mk).

Furthermore, %(i, k +mk + 1) := x0 and %(i, k +mk + 2) := x0.

Furthermore, for all n + 1 ≤ i ≤ n + mn and k + 1 ≤ j ≤ k + mk, we
set %(j, i) := x. In addition, %(k+mk + 1, Jn+ 1, n+mn + 1K) := {x1},
%(Jk+1, k+mkK, n+mn+1) := {x0}. Finally, %(k+mk+2,ActB) := {x0}
and %(ActA \ {k +mk + 2}, n+mn + 2) := {x1}.

First, note that this reduction can indeed be computed in polynomial time.
Consider now a {0, 1}-valuation v : O → {0, 1} and the game in normal form
〈F , v〉. We have the following:

• Assume that v(x0) = 1 or v(x1) = 0. Then, we have v[%(k + mk +

2,ActB)] = {v(x0)} and v[%(ActA, n+ mn + 2)] := {v(x0), v(x1)}. That
is, if v(x0) = 1 there is a row full of 1, and if v(x0) = v(x1) = 0, then
there is a column full of 0.

• Assume now that v(x0) = 0 and v(x1) = 1. Let j ∈ ActA \ J1, kK. If
j ≤ k +mk, then %(j, n+mn + 1) = x0, hence the row j is not full of 1
(w.r.t. the valuation v). Similarly, if j = k +mk + 1 or j = k +mk + 2,
then %(j, 1) = x0 and the row j is also not full of 1. Furthermore, for all
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i ∈ ActB \ J1, nK, we have %(k +mk + 1, i) = x1. Hence, the column i is
not full of 1.

Furthermore, for all a ∈ J1, kK, v[%(a,ActB\J1, n+mnK)] = {v(x1)} = {1}
and for all b ∈ J1, nK, v[%(ActA \ J1, k + mkK, b)] = {v(x0)} = {0}.
Therefore, there is a row full of 1 or a column full of 0 in 〈F , v〉 if and only
if there is a ∈ J1, kK ⊆ ActA such that v[%(a, J1, n + mnK)] = v[XC−a

] =

{1} or b ∈ J1, nK ⊆ ActB such that v[%(J1, k +mkK, b)] = v[XC+
b

] = {0}.

Proving that ϕF is not satis�able if and only if Fϕ is determined is now
direct. Indeed, if ϕ is not satis�able, then for all valuations v : O→ [0, 1], there
is either: some a ∈ J1, kK such that the negative clause C−a is not satis�ed, i.e.
v[XC−a

] = {1}, and in that case the row a is full of 1 in 〈F , v〉; or some b ∈ J1, nK
such that the positive clause C+

b is not satis�ed, i.e. v[XC+
b

] = {0}, and in that

case the column b is full of 0 in 〈F , v〉. The other direction is very similar.

We obtain the proposition below.

Proposition 9.4. The decision problem DetGF is equivalent under polyno-
mial time reductions to the decision problem MonotoneDual.

Proof. This comes from Lemmas 9.2 and 9.3 and Theorem 9.1.

9.2 First-order theory of the reals

In this section, we use the �rst order theory of the reals to show that it is
possible to decide if a game form is (�nitely or uniquely) maximizable or if it is
positionally maximizable. We restrict ourselves to standard �nite deterministic
game forms, though we use the deterministic assumptions only to simplify the
proofs.

9.2.1 . De�nition

Let us �rst formally de�ne the �rst order theory of the reals formulas we
will consider.

De�nition 9.5 (First-order theory of the reals). In the �rst order theory of

the reals (FO-R for short), we consider formulas Φ of the shape:

Φ = Q1 x1 ∈ R, . . . , Qn xn ∈ R, ϕ(x1, . . . , xn)

where n ∈ N and

• for all i ∈ J1, nK, Qi ∈ {∃, ∀}. That is, it is either an existential or a

universal quanti�er;
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• ϕ(x1, . . . , xn) is a classical formula without quanti�ers, with ∧ (and),

∨ (or) and ¬ (negation) as logical connectors. The atomic propositions

considered in ϕ(x1, . . . , xn) are of the shape:

P (x1, . . . , xn) ./ 0

where ./ ∈ {=, 6=,≥, >,≤, <} and P : Rn → R is a real multi-variate

polynomial with integer coe�cients.

When all quanti�ers Qi for i ∈ J1, nK are existential quanti�ers, the formula Φ

belongs to the existential theory of the reals (∃-R for short).

The semantics behind the �rst order theory of the reals is quite intuitive,
though it would take some space to formally de�ne. Instead, let us illustrate
it on a couple of examples.

Example 9.1. Consider the FO-R formula below.

∀x ∈ R, ∃y ∈ R, x+ y ≥ 0

This FO-R formula is true since it does hold that, for all x ∈ R, taking y :=

−x ∈ R, we have x+ y = 0. However, the FO-R formula

∃x ∈ R, ∀y ∈ R, x+ y ≥ 0

is false in FO-R since there is no x ∈ R, such that, for all y ∈ R, we have

x+ y ≥ 0.

Let us now consider the decision problem associated with FO-R formulas.

De�nition 9.6. We denote by TrueFO−R the set of all �rst-order theory of

the reals formulas that evaluate to true. The decision problem IsFO−R is as

follows:

• Input: an FO-R formula Φ;

• Output: yes if and only if the formula Φ is in TrueFO−R.

Theorem 9.5. The decision problem IsFo−R is decidable.

This result was �rst shown in [78]. It was then improved in [79, Theorem
1.1] it as it was shown that IsFO−R could be decided in doubly-exponential time
via a quanti�er elimination procedure.

As a side remark, in [80], it was shown that the decision problem IsFo−R for
those formulas belonging to the existential theory of the reals can be decided
in polynomial space.
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9.2.2 . Finitely and uniquely maximizable game forms

Let us �rst focus on game forms �nitely and uniquely maximizable w.r.t.
Player A (recall De�nitions 6.3 and 6.4). Given some n ∈ N, we encode in
FO-R the fact that a standard �nite deterministic game form is maximizable
w.r.t. Player A by a set of cardinal n. We formally de�ne below this notion.

De�nition 9.7 (n-maximizable game forms). Consider a game form F ∈
Form(O) on a set of outcomes O. For all n ∈ N, we say that the game form

F is n-maximizable w.r.t. Player A if there is a set of GF-strategies SA ⊆ ΣA

that maximizes the game form F such that |SA| ≤ n. We denote by n-MaxA
the set of game forms n-maximizable w.r.t. Player A.

By de�nition, a game form is uniquely maximizable if and only if it is in

1-MaxA.

The fact that standard �nite deterministic game form is in 1-MaxA can be
encoded in the �rst-order theory of the reals.

Proposition 9.6. Consider a standard �nite deterministic game form F . For
all l ∈ N, the fact that F ∈ l-MaxA can be encoded, with a formula whose size
is polynomial in l and |F| (as de�ned in De�nition 9.1), in FO-R.

Proof. Consider some l ∈ N. We encode the fact that a standard �nite de-
terministic game form F = 〈ActA,ActB,O, %〉 is in l-MaxA. Without loss
of generality, since the game form F is deterministic, we assume that O =

%(ActA,ActB). We assume that ActA = J1, nK, ActB = J1,mK and we consider
the formula Φl−MaxA

F below, that we will explain line by line in the following.

Φl−MaxA
F := ∃(σk = σ1

k, . . . , σ
n
k )1≤k≤l,

∧

1≤k≤l
IsStrategyA(σk) ∧

∀v = (vo)o∈O, RealBetweenZeroOne(v) ∧
∃u, (0 ≤ u ≤ 1) ∧

∃σB = σ1
B, . . . , σ

m
B , IsStrategyB(σB) ∧ ValB(σB, v, u)∧

∨

1≤k≤l
ValA(σk, v, u)

Before detailing all the predicates occurring in the formula Φl−MaxA
F , note that

the formula Φl−MaxA
F does not �t exactly the formalism of De�nition 9.5: all

the quanti�ers are not at the beginning of the formula. However, the semantics
of the formula does not change if these quanti�ers are moved at the beginning.
We present the formula Φl−MaxA

F in that way for readability.

The �rst line encodes the existence of a set of l Player-A GF-strategies
among which we will later �nd optimal GF-strategies for Player A. For all
1 ≤ k ≤ l, the predicate IsStrategy(σk) checks that σk is indeed a Player-A

345



GF-strategy in F . That is:

IsStrategyA(σk) :=
∧

1≤i≤n
((0 ≤ σik ≤ 1) ∧ (

n∑

i=1

σik = 1))

Then, we quantify over all the possible valuations v of the outcomes. This is
checked by the predicate RealBetweenZeroOne(v):

RealBetweenZeroOne(v) :=
∧

o∈O
(0 ≤ vo ≤ 1)

The value of the game in normal form 〈F , v〉 is then equal to u (which is in
[0, 1]), which will be checked by the following predicates. First, we exhibit a
Player-B GF-strategy σB ∈ ΣB(F) whose value is at most u. The predicate
IsStrategyB(σB) checks that σB is indeed a Player-B GF-strategy:

IsStrategyB(σB) :=
∧

1≤j≤m
((0 ≤ σjB ≤ 1) ∧ (

m∑

j=1

σjB = 1))

The predicate ValB(σB, v, u) checks that the value of this Player-B GF-strategy
σB in the game in normal form 〈F , v〉 is at most u:

ValB(σB, v, u) :=
∧

1≤i≤n
(
m∑

j=1

σjB · v%(i,j) ≤ u)

Finally, we check that there is a Player-A GF-strategy σk for some 1 ≤ k ≤ l

whose value is at least u in the game in normal form 〈F , v〉. This is checked
by the predicate ValA(σk, v, u):

ValA(σk, v, u) :=
∧

1≤j≤m
(
n∑

i=1

σik · v%(i,j) ≥ u)

Therefore, we have that F is l-MaxA if and only if Φl−MaxA
F ∈ TrueFO−R. In

addition, the size of the formula Φl−MaxA
F is polynomial in the size of F and

l.

We can therefore conclude that deciding if a game form is uniquely (resp.
�nitely) maximizable is decidable (resp. semi-decidable).

Corollary 9.7. It is decidable if a standard �nite deterministic game form
is uniquely maximizable w.r.t. Player A and it is semi-decidable if a standard
�nite deterministic game form is �nitely maximizable w.r.t. Player A.

Proof. This is direct consequence of Proposition 9.6 for game forms uniquely
maximizable w.r.t. Player A . Consider now the case of game forms �nitely
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maximizable w.r.t. Player A. Recall that a decision problem L is semi-
decidable if there is an algorithm terminating on all positive instances of L
(but that does not necessarily terminate on all instances) such that, whenever
it terminates, it accepts all positives instances of L and rejects all negative
instances. Let us design such an algorithm. Given a game form F , one can
check, for all n ∈ N, if F is n-maximizable, in which case one accepts F .
The correctness of the algorithm is a direct consequence of the fact that all
game forms �nitely maximizable w.r.t. Player A are n-maximizable for some
n ∈ N.

Open Question 9.1. It is not known if it can be decided that a standard

�nite deterministic game form is �nitely maximizable w.r.t. Player A.

The reason why we cannot encode this problem in the �rst order theory of
the reals as we did above is the following. We do not know any bound in the
size of the �nite set maximizing a game form, assuming there is one that does.
Hence, encoding a set of arbitrary, yet �nite, size seems to require in�nitely
many variables.

9.2.3 . Relevant environments and positionally optimizable game forms

Let us now focus on positionally optimizable game forms. Recall that these
are the game forms we de�ned in in the previous chapter. The formal de�nition
is given in De�nition 8.7. The de�nition of environments (i.e. De�nition 8.4)
will be extensively used in this subsection (and the next). Before encoding the
corresponding decision problem in the �rst order theory of the reals, let us �rst
state that, to prove that a game form is positionally optimizable, one does not
need to consider all possible environments. In fact, it is su�cient to consider
relevant environments, de�ned below.

De�nition 9.8 (Relevant environments). For a set of outcomes O, an en-

vironment E = 〈c, e, p〉 ∈ Env(O) is relevant if c ∈ {0, 1}, p−1[{c − 1}] =

p−1[{qinit}] = ∅ and, for all i ∈ Jc, eK, there is o ∈ O such that p(o) = ki. The

size of a relevant environment E is equal to Sz(E) := e− c.
As mentioned above, we may only consider relevant environment to decide

if a game form is positionally maximizable.

Proposition 9.8 (Proof 9.5.1). Consider a set of outcomes O and a game

form F ∈ Form(O). Consider a Player C ∈ {A,B}. For all n ∈ N, the game

form F is positionally maximizable w.r.t. Player C up to n if and only if, for all

relevant environments E with Sz(E) ≤ n− 1, there is an optimal GF-strategy

in F for Player C w.r.t. (F , E).

The bene�t of considering only relevant environment is that, given any
l ∈ N, deciding if a game form is positionally optimizable up to l can be done
by considering environments where all the outcomes are mapped to the indices
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at most l. Then, the fact that a standard �nite deterministic game form is
positionally optimizable can be encoded in the �rst-order theory of the reals.

Proposition 9.9. Consider a standard �nite deterministic game form F .
The fact that F ∈ ParO (resp. F ∈ ParO(n), for some n ∈ N) can be encoded,
with formula of size polynomial in |F| (resp. and n), in FO-R.

Proof. Consider some l ∈ N. We encode the fact that a standard �nite deter-
ministic game form F = 〈ActA,ActB,O, %〉 is positionally optimizable up to l.
Without loss of generality, since the game form F is deterministic, we assume
that O = %(ActA,ActB). To do so, we use the characterization of Proposi-
tion 9.8 and we express in FO-R the fact that, for all relevant environments
E = 〈c, e, p〉 of size at most l−1, both players have an optimal GF-strategy. We
use the characterization given by Lemma 8.2. We assume that ActA = J1, nK,
ActB = J1,mK and we consider the formula Φ

ParO(l)
F below, that we will explain

line by line in the following.

Φ
ParO(l)
F := ∀c, ZeroOrOne(c) ∧
∀α = (αo)o∈O, ZeroOrOne(α) ∧
∀v = (vo)o∈O, RealBetweenZeroOne(v) ∧
∀k = (ko)o∈O, IntBetweenZeroL(k, c) ∧

∃u, (0 ≤ u ≤ 1) ∧
∃SA = S1

A, . . . , S
n
A,

∃σA = σ1
A, . . . , σ

n
A, IsIndicator(SA) ∧ IsStrategyA(σA) ∧ IsSupp(σA, SA) ∧ ValA(σA, α, v, u)∧

∧

1≤j≤m
MaxIntegerEven(SA, k, j, c) ∧

∃SB = S1
B, . . . , S

m
B ,

∃σB = σ1
B, . . . , σ

n
B, IsIndicator(SB) ∧ IsStrategyB(σB) ∧ IsSupp(σB, SB) ∧ ValB(σB, α, v, u)∧

∧

1≤i≤n
MaxIntegerOdd(SB, k, i, c)

As in the proof of Proposition 9.6, the formula Φ
ParO(l)
F does not �t exactly the

formalism of De�nition 9.5, since all the quanti�ers are not at the beginning of
the formula. However, as the proof of Proposition 9.6, the semantics is changed
if these quanti�ers are moved at the beginning of the formula. We presented
Φ
ParO(l)
F in that way for readability.
The �rst four lines encode the relevant environment E. Speci�cally:

ZeroOrOne(c) := (c = 0) ∨ (c = 0)

Since the environment E is relevant, c is equal to either 0 or 1. Furthermore:

ZeroOrOne(α) :=
∧

o∈O
((αo = 0) ∨ (αo = 1))
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where, for all o ∈ O, αo = 1 means that p(o) ∈ [0, 1] and αo = 0 means that
p(o) ∈ Kl. Furthermore:

RealBetweenZeroOne(v) :=
∧

o∈O
(0 ≤ vo ≤ 1)

where, for all o ∈ O, vo ∈ [0, 1] corresponds to the value of o w.r.t. p (assuming
p(o) ∈ [0, 1]). Furthermore:

IntBetweenZeroL(k, c) :=
∧

o∈O
(
∨

0≤p≤l
ko = p) ∧ ((c = 0)⇒ (ko ≤ l − 1))

where, for all o ∈ O, ko ∈ J0, lK is the index of o given by p (assuming that
p(o) ∈ Kl). Furthermore, since the size of E is at most l− 1, if c = 0, then the
maximum of the colors should be at most l − 1.

Then, u is the value of the game G(F ,E) from the state qinit. This is ensured
by the remainder of the formula: it exhibits a GF-strategy per player whose
corresponding positional strategy parity dominates the valuation vuY for Y :=

(F , E). The predicates are used for both players, we give them only for Player
A, the case of Player B being analogous.

IsIndicator(SA) :=
∧

1≤i≤n
((SiA = 0) ∨ (SiA = 1))

where SA encodes the support of the GF-strategy σA. The fact that it is indeed
a Player-A GF-strategy is ensured by the predicates below:

IsStrategyA(σA) :=
∧

1≤i≤n
((0 ≤ σiA ≤ 1) ∧ (

n∑

i=1

σiA = 1))

In addition:

IsSupp(σA, SA) :=
∧

1≤i≤n
((σiA > 0)⇔ (SiA = 1))

This predicate ensures that SA does indeed correspond to the support of the
GF-strategy σA. Furthermore:

ValA(σA, α, v, u) :=
∧

1≤j≤k
(
n∑

i=1

σiA · (α%(i,j) · v%(i,j) + (1− α%(i,j)) · u) ≥ u)

This predicates encodes the fact that the Player-A GF-strategy σA dominates
the valuation vuY . Indeed, note that for all o ∈ O, if αo = 1, then p(o) ∈ [0, 1],
and therefore vuY (o) = p(o) = vo. Similarly, if αo = 0, then p(o) ∈ Kl, and
therefore vuY (o) = u. Finally, when l is even, denoting l = 2 · x with x ∈ N:

MaxIntegerEven(SA, k, j, c) :=
∨

1≤i≤n
(SiA = 1 ∧ α%(i,j) = 1)∨

∨

0≤e≤x
(2e ≥ c) ∧ ((

∨

1≤i≤n
(SiA = 1) ∧ (k%(i,j) = 2e)) ∧

(
∧

1≤i≤n
(SiA = 1)⇒ (k%(i,j) ≤ 2 · e)))

349



It is similar if l is odd, up to small changes. This predicate encodes item (ii.2)

of Lemma 8.2: for all columns j ∈ ActB, either there is positive probability to
see an outcome mapped to a value in [0, 1] (i.e. out[〈F ,1p−1[0,1]〉](σA, j) > 0)
or the maximum of the colors in the support of the strategy σA is even (i.e.
max(Color(F , p, σA, j) ∪ {c}) is even).

By Lemma 8.2 and Proposition 9.8, we have that F ∈ ParO(l) if and only

if Φ
ParO(l)
F ∈ TrueFO−R. Furthermore, the size of Φ

ParO(l)
F is polynomial in the

size of F (and in l).

Finally, since given an environment, an outcome is mapped to at most
one index, and since in relevant environments of size n ∈ N, the outcomes are
mapped to at least n−1 di�erent indices, we have F ∈ ParO⇔ F ∈ ParO(n+2)

for n := |O|. The proposition follows.

9.3 Comparing classes of game forms

In this section, we compare the strengths of the game form properties we
have de�ned in this part. For these properties to be well de�ned, we need to
restrict ourselves to standard �nite game forms (note however that we do not
restrict ourselves to deterministic game forms). In addition, when applicable,
the properties we consider on game forms hold for both players. This is the case
for �nitely/uniquely maximizable and positionally optimizable game forms.
That way, how all these properties compare is not too complicated to describe.
More speci�cally, the goal of this section is to prove the results summarized in
Figure 9.3, and stated formally in Theorem 9.10 below.
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All = ParO(0)

ParO(1)

ParO(2)

·
·
·

ParO

Fin. Max.

Det.

T.B.

1-Max.

Figure 9.3: This summarizes how properties on standard �nite game
forms compare in strength, that is formally stated in Theorem 9.10. If
an ellipse (or an intersection of ellipses) labeled with X is contained in
another ellipse labeled with X, this means that the set of Y game forms
is strictly included in the set of X game forms.
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Theorem 9.10. Among the set of all standard �nite game forms, denoting
All the set of such game forms, Det. the set of deterministic game forms that
are determined, Fin. Max. (resp. 1-Max.) the set of game forms �nitely (resp.
uniquely) maximizable for both players, and T.B. the set of turn-based game
forms, from top to bottom in Figure 9.3, we have:

1. All = ParO(0);

2. for all n ∈ N, ParO(n) ) ParO(n+ 1);

3. for all n ∈ N, ParO(n) ) ∩k∈NParO(k) = ParO;

4. ParO ) Fin.Max.;

5. Fin.Max. ) Det. ∪ 1-Max. ∪ T.B.;

6. ∀X ∈ {Det., 1-Max.}, X ) Det. ∩ 1-Max.;

7. ∀X ∈ {Det.,T.B.}, X ) Det. ∩ T.B.;

8. ∀X ∈ {T.B., 1-Max.}, X ) T.B. ∩ 1-Max.;

9. ∀X ∈ {Det. ∩ 1-Max.,Det. ∩ T.B.,T.B. ∩ 1-Max.},
X ) Det. ∩ T.B. ∩ 1-Max..

Among all these items, there are only two that are not straightforward
to prove: items 2 and 4. We state and prove propositions corresponding to
these items and then formally prove Theorem 9.10. Let us �rst start with the
simplest of these items: item 4.

Proposition 9.11. The set of standard �nite game forms positionally opti-

mizable (i.e. ParO) strictly contains the set of game forms �nitely maximizable

w.r.t. both players (i.e. Fini. Max.). That is, ParO ) Fini. Max..

Proof. The inclusion ParO ⊇ Fin. Max. is a direct corollary of Corollary 6.12
applied to both players: in a �nite concurrent parity game where all local
interactions are �nitely maximizable w.r.t. both players, both players have an
optimal positional strategy.

Let us now show that this inclusion is strict, that is let us exhibit a standard
�nite game form that is positionally optimizable but not �nitely maximizable
for any player. Consider the standard �nite game form F ∈ Form(O) depicted
in Figure 9.4 where O := {x, y, z}. Both players have two available actions, we
let ActA := {at, ab} where at (resp. ab) is the Player-A action corresponding
to the top (resp. bottom) row in F . Similarly, we let ActB := {bl, br} where bl
(resp. br) is the Player-B action corresponding to the left (resp. right) column
in F . Let us show that this game form is positionally optimizable.

Consider any environment E = 〈c, e, p〉 ∈ Env(O) and the corresponding
parity game G(F ,E) (recall De�nition 8.5). We let u := χG(F,E)

(qinit). For all
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F =




2x+y+z
4

3y+z
4

3y+z
4

y+3z
4




Figure 9.4: A game form F that
is positionally optimizable but not
�nitely maximizable.

〈F , v〉 =




2α+1
4

3
4

3
4

1
4




Figure 9.5: The game in normal
form 〈F , vα〉 obtained from the
game form F of Figure 9.4.

t ∈ O, if p(t) /∈ [0, 1], we let nt ∈ J0, eK denote the integer that t is mapped to
w.r.t. p, i.e. the integer ensuring p(t) = knt . There are two cases:

• Assume that p(y), p(z) /∈ [0, 1]. Then, u ∈ {0, 1}. Indeed, by playing
actions ab ∈ ActA and br ∈ ActB at state qinit in the game G(F ,E), both
players can ensure that: 1) surely, no stopping state is reached and, 2)
almost surely, the highest color seen in�nitely often is max(c, ny, nz).
Hence, if max(c, ny, nz) is even, we have that u = 1, the Player-A GF-
strategy ab ∈ D(ActA) is optimal w.r.t. (F , E) and any Player-B GF-
strategy is optimal w.r.t. (F , E). This is symmetrical if max(c, ny, nz)

is odd.

• Assume that p(y) ∈ [0, 1] or p(z) ∈ [0, 1]. In that case, one can re-
alize that, for all Player-A GF-strategies σA ∈ D(ActA) and Player-
B action b ∈ ActB, we have: out[〈F ,1p−1[0,1]〉](σA, b) ≥ 1

4 . In other
words, in the parity game G(F ,E), regardless of what the players do,
there is probability at least 1

4 to exit to a stopping state. Therefore, by
Lemma 8.2, any Player-A GF-strategy σA optimal in the game in normal
form 〈F , vu(F ,E) ◦p〉 is optimal w.r.t. (F , E), and such GF-strategies exist
since F is standard �nite. This is similar for Player B.

In any case, both players have an optimal GF-strategy. Thus, the game form
F is positionally optimizable.

Let us now show that F is not �nitely maximizable w.r.t. any player.
For all α ∈ [0, 1], we let vα : O → [0, 1] be a valuation of the outcomes such
that v(y) := 1, v(z) := 0 and v(x) := α. The game in normal form 〈F , vα〉
that we obtain is depicted in Figure 9.5. Then, one can check that the value
uα := val[〈F , vα〉] ∈ [0, 1] of the game in normal form 〈F , vα〉 is equal to:

uα =
4− α
8− 4α

Furthermore, the only Player-A GF-strategy σαA that is optimal in the game in
normal form 〈F , v〉 is such that:

σαA(at) :=
1

2− α
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and similarly the only Player-B GF-strategy σαB that is optimal in the game in
normal form 〈F , v〉 is such that:

σαB(bl) :=
1

2− α
Therefore, for both players, playing optimally in all games in normal form
that can be obtained from F requires playing in�nitely many di�erent GF-
strategies.

We can now consider item 2 of Theorem 9.10. It is formally stated as
Proposition 9.12 below.

Proposition 9.12. For all n ∈ N, the set of game forms positionally optimiz-

able up to n (i.e. ParO(n)) strictly contains the set of game forms optimizable

up to n+ 1 (i.e. ParO(n+ 1)). That is, we have ParO(n) ) ParO(n+ 1).

The inclusion ParO(n) ⊇ ParO(n+ 1) comes directly from the de�nition of
positionally optimizable game forms (i.e. De�nition 8.7). Then, for all n ≥ 1,
we exhibit a standard �nite game form Fn that is in ParO(n − 1) but not in
ParO(n). This is done in De�nition 9.9 below, where we describe a game form
that is ParO(n) but not in ParO(n− 1) in the case where n is even.

De�nition 9.9. Consider some even n ≥ 2. We consider the set of outcomes

On := {x0, x1, . . . , xn−1, y, z} and we consider the standard �nite game form

Fn = 〈ActnA,ActnB,On, %n〉s depicted in Figure 9.6. Let us describe the set of ac-

tions of the players.We set ActnA := {at, ab, a1, . . . , an−1, a1,0, . . . , an−1,n−2, aEx}
and ActnB := {bl, br, b0, . . . , bn−2, b2,1, . . . , bn−2,n−3, bEx}. The actions at, ab (resp.
bl, br) refer to the two topmost rows (resp. leftmost columns): at (resp. bl) leads

to x0+...+xn−1

n , 3y+z
4 whereas ab (resp. br) leads to

3y+z
4 , y+3z

4 . Then, for all odd

i ≤ n − 1 (resp. even j ≤ n − 2) ai and ai,i−1 (resp. bj and bj,j−1 � only if

j ≥ 2) correspond to the rows leading to xi and
xi+xi−1

2 (resp. columns leading

to xj and
xj+xj−1

2 ) respectively. Finally, action aEx (resp. bEx) correspond to

the bottommost row (resp. rightmost column).

The game forms described in De�nition 9.9 satis�es the lemma below.

Lemma 9.13 (Proof 9.5.2). Consider some even n ≥ 2. The game form of

Fn De�nition 9.9 is:

• positionally maximizable w.r.t. Player B;

• positionally maximizable w.r.t. Player A up to n− 1 but not up to n.

That is: Fn ∈ ParO(n) \ ParO(n− 1).

The proof of this lemma is very tedious since it requires to consider a lot
of di�erent possibilities in terms of which outcome is mapped to which value
or color. Let us �rst give below an informal proof of this lemma in the case
where n = 2. The game form F2 is depicted in Figure 9.7.
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Fn =




x0+x1+...+xn−2+xn−1

n
3y+z

4

3y+z
4

y+3z
4

x1

. . .

xn−1

x1+x0

2

. . .

xn−1+xn−2

2

x0 . . . xn−2
x2+x1

2 . . . xn−2+xn−3

2

y+3z
4

3y+z
4




bl br b0 bn−2 b1,2 bn−3,n−2 bEx

at

ab

a1

ah

a1,0

ah,h′

aEx

Figure 9.6: The game form Fn. Due to a lack of space, h refers to n− 1
and h′ to n− 2.

Proof sketch. Consider a relevant environment E = 〈c, e, p〉 ∈ Env(O) and
the corresponding parity game G(F ,E) (recall De�nition 8.5). We let u :=

χG(F2,E)
(qinit). For all t ∈ O, if p(t) /∈ [0, 1], we let nt ∈ J0, eK denote the integer

that t is mapped to w.r.t. p, i.e. the integer ensuring p(t) = knt . We want to
show that, in any case, Player B has a GF-strategy that is optimal w.r.t. (F , E)

and that this also holds for Player A as long as c = e (i.e. if Sz(E) = 0 = n−2).
However, there is a relevant environment E with Sz(E) = 1 such that Player
A has no GF-strategy optimal w.r.t. (F , E). Let us explain what happens for
Player A. There are several cases, we detail some of them.

• Assume that p(y), p(z) /∈ [0, 1]. As in the proof of Proposition 9.11, this
implies u ∈ {0, 1} and playing action aEx for Player A and action bEx for
Player B is optimal w.r.t. (F , E).

• Assume now that p(y) ∈ [0, 1] and p(z) /∈ [0, 1]. Then, we have u = p(y).
The reason is because, by playing action aEx, Player A ensures that
almost surely a stopping state of value p(y) is reached. Furthermore,
Player B can ensure the same thing by playing action bEx. Then, playing
action aEx for Player A and action bEx for Player B is optimal w.r.t.
(F , E). This is similar if p(y) /∈ [0, 1] and p(z) ∈ [0, 1].

• Assume now p(y), p(z) ∈ [0, 1]. If p(y) < p(z), then we have u =
3p(y)+p(z)

4 , and as before playing action aEx for Player A and action bEx
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F2 =




x0+x1

2
3y+z

4

3y+z
4

y+3z
4

x1

x1+x0

2

x0

y+3z
4

3y+z
4




bl br b0 bEx

at

ab

a1

a1,0

aEx

Figure 9.7: The game form F2.




k0+k1

2
3
4

3
4

1
4

k1

k1+k0

2

k0

1
4

3
4




Figure 9.8: The game form F2 in a
speci�c environment.

for Player B is optimal w.r.t. (F , E).

• Assume now that p(y), p(z) ∈ [0, 1] and p(y) ≥ p(z). If p(x0) ∈ [0, 1]

or p(x1) ∈ [0, 1], we can also exhibit an optimal GF-strategy for both
players.

• Let us now assume that p(y), p(z) ∈ [0, 1] with p(y) ≥ p(z). For simplic-
ity, we assume that p(y) = 1 and p(z) = 0. In that case, we have:

1

4
=

3p(z) + p(y)

4
≤ u ≤ p(z) + 3p(y)

4
=

3

4

Assume also that p(x0), p(x1) /∈ [0, 1]. Assume �rst that nx0 is odd. In
that case, u = 1

4 . A Player-B strategy playing positionally action b0
achieves this value in the game G(F2,E). Thus, the Player-A GF-strategy
aEx is optimal w.r.t. (F2, E).

Assume now that nx0 is even. Then, in any case, we have u = 3
4 .

Indeed, for all ε > 0, a Player-A positional strategy playing action at
with probability 1−ε and action ab with probability ε has value at least
3
4−ε in the game G(F2,E). Therefore, playing action bEx is always optimal
for Player B. It will also be the case for Player A if Sz(E) = 0, i.e. if
c = e. Indeed, in that case, we have either nx0 = nx1 = 0, in which
case u = 3

4 and the Player-A GF-strategy a1 is optimal w.r.t. (F2, E); or
nx0 = nx1 = 1, in which case we are in the scope of the previous case of
this item since nx0 is odd. However, if Sz(E) = 1, there may be an issue
for Player A, as we show below.

Consider now a relevant environment E = 〈c, e, p〉 of size 1 such that c := 0,
p(y) := 1, p(z) := 0, p(x0) = k0 and p(x1) = k1. We do have Sz(E) = 1. What
we obtain is depicted in Figure 9.8. In that case, we have u := χGF2,E

(qinit) = 3
4 ,
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as argued above in the last item. Consider any Player-A GF-strategy σA ∈
ΣA(F2). If it plays action ab or action aEx with positive probability, then the

strategy s
(F2,E)
A (σA) does not dominate the valuation vu(F2,E). However, if it

does not play these actions with positive probability, the strategy s
(F2,E)
A (σA)

has value 0 in χG(F2,E)
from qinit. Indeed, by positionally playing action bl,

Player B ensures that: 1) surely, no stopping state is seen, and 2) almost
surely, the state k1 (of color 1) is seen in�nitely often, while c = 0.

Let us now consider the proof of Proposition 9.12.

Proof. Let n ≥ 1. The inclusion ParO(n−1) ⊇ ParO(n) is direct. Lemma 9.13
ensures that these two sets are not equal when n is even. A similar lemma
could be stated in the case where n is odd.

We can now proceed to the proof of Theorem 9.10. Note that we will refer
several times to game forms depicted in Chapter 6.

Proof. Let us prove all these items one by one. Recall that we only consider
standard �nite game forms.

1. Consider any standard �nite game form F . By the characterization of
Proposition 9.8, and since no relevant environment has size −1, we have
F ∈ ParO(0).

2. This is given by Proposition 9.12.

3. This a direct consequence of the previous item.

4. This is given by Proposition 9.11.

5. By de�nition, if a game form is uniquely maximizable, it is also �nitely
maximizable. In addition, by Proposition 6.5, any (deterministic) de-
termined game form F is maximized w.r.t. Player C ∈ {A,B} by ActC,
which is �nite. In addition, any game form F where Player A plays alone
is maximized by ActA w.r.t. Player A. This is similar for Player B.

6. The game form depicted in Figure 6.1 is determined, but is not uniquely
maximizable since, depending on the valuation, Player A should deter-
ministically play on either of her three available actions.

Furthermore, the matching pennies interaction, depicted in Figure 6.11
is uniquely maximizable, but not determined.

7. The game form depicted in Figure 6.1 mentioned in the previous item is
determined, but not turn-based.

Furthermore, all deterministic turn-based game forms are determined.
However, any turn-based game form that is not deterministic (recall
De�nition 1.11) is not determined.

357



8. A game form where Player A plays alone and chooses an action among
two that leads to two di�erent outcomes (for instance depicted in the
middle of Figure 1.1) is turn-based, but not uniquely maximizable.

In addition, the game form depicted in Figure 6.12 is uniquely maximiz-
able, but not turn-based.

9. The game form depicted in Figure 6.12 mentioned in the previous item
is both determined and uniquely maximizable but not turn-based.

A trivial game form that is not deterministic is both turn-based and
uniquely maximizable but not determined.

Finally, the turn-based deterministic game form with two possible out-
comes described in the previous item (that is depicted in the middle of
Figure 1.1) is both turn-based and determined but not uniquely maxi-
mizable.

9.4 Discussion, open questions and future work

This chapter was devoted to the study of the classes of game forms we have
de�ned in the previous chapters of this part. As mentioned in the introduction
of this chapter, we have given two kinds of results, some related to decidabil-
ity/complexity, and the others related to comparing the di�erent classes of
game forms. As stated above, we leave unanswered Open Question 9.1: we do
not know whether or not it is decidable that a standard �nite deterministic
game form is �nitely maximizable w.r.t. Player A.

One can notice that, when encoding di�erent problems in the �rst order
theory of the reals, we did not look carefully at the exact complexity it entailed.
However, as stated in this chapter (below Theorem 9.5), �rst order theory of
the reals formulas can be decided in doubly exponential time, though one needs
to be careful with this statement since the precise complexity is doubly expo-
nential is some parameters, and polynomial in others. However, interestingly,
this complexity of deciding those formulas belonging to the existential theory
of the reals (i.e. with only existential quanti�ers), can be done in polynomial
space, as stated below Theorem 9.5. The FO-R formulas we have exhibited in
this chapter all use both universal and existential quanti�ers. However, we be-
lieve that the fact that a standard �nite deterministic game form is in ParO(1)

can be encoded in the existential theory of the reals, as stated in the conjecture
below.

Conjecture 9.14. The fact that a standard �nite deterministic game form is

in ParO(1) can be encoded, with a polynomial size formula, with ∃-R formulas.
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This would show that deciding whether a standard �nite game form belongs

to ParO(1) can be done in polynomial space.

A natural future work is to study the di�erent properties that the di�er-
ent classes of game forms we have de�ned in this part enjoy. We have given
some in Chapter 6. For instance, a standard deterministic game form with
at least one underlying action set that is �nite is determined if and only if it
is semi-determined for either of the players (recall Proposition 6.8). However,
there are still a lot of open questions relating these properties, and in partic-
ular maximizable game forms. We give one below, but many others could be
inquired.

Open Question 9.2. Given a standard �nite deterministic game form F ,
does it hold that if F is uniquely (or �nitely) maximizable w.r.t. Player A,

then F is �nitely maximizable w.r.t. Player B.

Finally, consider any standard �nite deterministic game form ensuring any
of the properties de�ned in this part, e.g. being positionally optimizable.
Assume that we replace one of its outcomes with a standard �nite deterministic
game form that is itself positionally optimizable. This would require a formal
de�nition, in particular we would have to handle properly the number of rows
and columns of the new game form. Assuming that it is properly de�ned,
we believe that the obtained standard �nite deterministic game form would
still be positionally optimizable. In fact, we believe that such a transformation
would preserve all classes of game forms de�ned in this part. Hence, we believe
that it constitutes the most relevant future work to inquire, since this allows
to e�ectively build new well-behaved game forms from already existing ones.

9.5 Appendix

9.5.1 . Proof of Proposition 9.8

We prove the result for Player A, the arguments are similar for Player B.
In the remainder of this section, we �x a set of outcomes O, a standard �nite
game form F = 〈ActA,ActB,O, %〉s ∈ Form(O) (that need not be deterministic).

De�nition 9.10. Consider some n ≥ 1. Consider an (arbitrary) environment

E = 〈c, e, p〉 ∈ Env(O) with p : O → {qinit} ∪ [0, 1] ∪ Ke with SzA(E) = n.

Assume that no outcome o ∈ O is such that p(o) = qinit. Let ẽ := Even(e) ≥ 2.

By de�nition, we have n = ẽ − c. Let us de�ne a relevant environment E′ =

〈c′, e′, p′〉 ∈ Env(O) of size n− 1.

We let:

c′ :=

{
0 if c is even

1 otherwise
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We also let Imp := {n ∈ Jc + 1, ẽ − 1K | ∃o ∈ O, p(o) = ki} and c = a0 <

a1 < a2 < . . . < ak be such that Imp = {a1, a2, . . . , ak}. In particular, we have

ẽ − 1 ≥ c + k. Let us de�ne the function fE : {a0, . . . , ak} → N such that,

letting fE(a0) := c′, for all 1 ≤ i ≤ k:

fE(ai) :=

{
fE(ai−1) if ai−1 ≡ ai mod 2

fE(ai−1) + 1 otherwise

Since for all 1 ≤ i ≤ k, we have fE(ai) ≤ fE(ai−1)+1, we have fE(ak) ≤ c′+k.
We set e′ := fE(ak). Note also that, for all 1 ≤ i ≤ k, we have f(ak) ≥ c′.

With this choice, we have Sz(E′) = e′−c′ ≤ k ≤ ẽ−1−c = SzA(E)−1 = n−1.

We can now de�ne the function p′. We let u := χGY (qinit) for Y := (F , E).

Then, for all o ∈ O, we let:

p′(o) :=





p(o) ∈ [0, 1] if p(o) ∈ [0, 1]

u ∈ [0, 1] if p(o) = ẽ

kfE(max(c,n)) ∈ Ke′ if p(o) = kn ∈ Kẽ−1

Let us now show a useful property about the function fE from De�ni-
tion 9.10.

Lemma 9.15. Consider an (arbitrary) environment E = 〈c, e, p〉 ∈ Env(D)

and the function fE : {a0, . . . , ak} → N from De�nition 9.10. It ensures the

following: for all 0 ≤ i ≤ k, ai and fE(ai) have the same parity. In addition,

for all X ⊆ {a0, . . . , ak}, maxX has the same parity as max fE(X).

Proof. Let us show by induction on i ∈ J0, kK the following property P(i): ai
and f(ai) have the same parity. The property P(0) straightforwardly holds
since a0 = c and fE(a0) = c′ have the same parity. Assume now that P(i− 1)

holds for some 1 ≤ i ≤ k. If ai has the same parity as ai−1, then fE(ai) =

fE(ai−1) which has the same parity as ai−1. Similarly, if ai does not have the
same parity as ai−1, then fE(ai) = fE(ai−1) + 1. Hence, ai and f(ai) have the
same parity. Overall, the property P(i) holds for all i ∈ J0, kK. The second
part of the lemma comes from the fact that fE is non-decreasing.

Let us now show that the value of local parity games with an arbitrary
environment E is equal to the value of the parity game with the corresponding
relevant environment.

Lemma 9.16. Consider an (arbitrary) environment E = 〈c, e, p〉 ∈ Env(O)

and the relevant environment E′ = 〈c′, e′, p′〉 from De�nition 9.10. Let Y :=

(F , E) and Y ′ := (F , E′). Then, χGY (qinit) ≤ χGY ′ (qinit).

Proof. We let Qy and qY ∈ QY (resp. QY ′ and qY ′) denote the set of non-
stopping states in CY and the state qinit ∈ QY (resp. CY ′ and the state qinit ∈
QY ′).
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Recall the function fE from De�nition 9.10. We let f := fE and we also
let f(ẽ) := d with d of the same parity than e such that d ≥ e′ + 1. Then, we
de�ne an alternate game GfY = 〈CfY ,ParityJ0,dK〉 which di�ers from the game GY
only in the coloring function and in the objective. The coloring function colf

in the arena CfY is such that, for all states q in CfY , we have:

colf (q) := f(max(c, col(q)))

where col refers to the coloring function in the arena CY . We let WY :=

(colω)−1[Parity0,e] ⊆ (QY )ω (resp. W f
Y := ((colf )ω)−1[Parity0,d] ⊆ (QfY )ω,

WY ′ := ((col′)ω)−1[Parity0,e′ ] ⊆ (QY ′)
ω) be the Player-A winning set of in-

�nite paths in GY (resp. GfY , GY ′). Let also gY := (ParityJ0,eK)CY , g
f
Y :=

(ParityJ0,dK)CfY
and gY ′ := (ParityJ0,e′K)CY ′ .

Let us show that the value of both games GfY and GY is the same. Consider

a pair of strategies (sA, sB) ∈ SCYA × SCYB = S
CfY
A × S

CfY
B . First, we have:

∑

x∈[0,1]

PsA,sB
CY ,qY [Q∗Y · x] · x =

∑

x∈[0,1]

PsA,sB
CfY ,qY

[Q∗Y · x] · x

In addition, since all states ki loop back to qY in CY and CfY , we have:

PsA,sB
CY ,qY [QωY \ (Q∗Y · qY )ω] = 0 = PsA,sB

CfY ,qY
[(QfY )ω \ ((QfY )∗ · qY )ω]

Furthermore, consider some in�nite path ρ ∈ (Q∗Y · qY )ω visiting in�nitely
often the central state qY . Let Xρ := {col[InfOft(ρ)] ∩ Jc, eK} denote the set
of colors, at least c, seen in�nitely often in ρ in GY . Note that Xρ 6= ∅ since
col(qY ) = c. We also let Xf

ρ := {colf [InfOft(ρ)] ∩ Jc′, dK} denote the set of
colors, at least c′, seen in�nitely often in ρ in GfY . By de�nition of colf , we
have Xf

ρ = f [Xρ]. Therefore, we have, by Lemma 9.15 and by de�nition of d:

ρ ∈WY ⇔ maxXρ is even

⇔ max f(Xρ) is even

⇔ maxXf
ρ is even

⇔ ρ ∈W f
Y

It follows that:

PsA,sB
CY ,qY [QωY ∩WY ] = PsA,sB

CfY ,qY
[(QfY )ω ∩W f

Y ]

Overall, we obtain:

EsA,sB
CY ,qY [gY ] = EsA,sB

CfY ,qY
[gfY ]

As this holds for all pair of strategies (sA, sB) ∈ SCYA × SCYB = S
CfY
A × S

CfY
B , it

follows that χGY (qY ) = χGfY
(qY ).
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Let us now relate the games GfY and GY ′ by using Theorem 2.3 (item
1.b). First, we denote by col′ the coloring function in the arena CY ′ Then, by
Theorem 2.3 (item 1.b), almost-optimal strategies in GfY and GY ′ can be found
among (Jc′, dK, colf )-uniform strategies in GfY and among (Jc′, e′K, col′)-uniform
strategies in GY ′ , with d > e′. Therefore, any strategy (Jc′, dK, colf )-uniform
strategy in CfY can be seen as a strategy in CY ′ . However, a (Jc′, e′K, colf )-
uniform strategy in CY ′ can be seen as a strategy in CfY up to de�ning what it
does once a state (kẽ) colored with d occurs.

Consider any Player-A strategy sA ∈ S
CfY
A that is (Jc′, dK, colf )-uniform in

CfY . As mentioned above, it can be seen as a Player-A strategy in CY ′ . Let
δ > 0 and consider a (Jc′, e′K, col′)-uniform Player-B strategy in CY ′ . Consider
the Player-B strategy sδB ∈ S

CfY
B that mimics the strategy sB as long as kẽ is not

seen. Once it is seen, the Player-B strategy sδB switches to a δ-optimal strategy
in the game GfY . By de�nition of sδB, and since u = χGY (qY ) = χGfY

(qY ), we

have:

EsA,s
δ
B

CfY ,qY
[gfY · 1(QfY )∗·kẽ

] = PsA,s
δ
B

CfY ,qY
[(QfY )∗ · kẽ] · (u+ δ)

Since the outcomes leading to kẽ in Cfy lead to the stopping state u ∈ [0, 1]

in CY ′ , and all outcomes leading to a stopping state in Cfy lead to the same
stopping state in CY ′ , it follows that:

EsA,s
δ
B

CfY ,qY
[fY · 1(QY )∗·(kẽ∪[0,1])] ≤ EsA,sB

CY ′ ,qY ′
[fY ′ · 1(QY ′ )

∗·[0,1]] + δ

In addition, we have:

PsA,s
δ
B

CfY ,qY
[(QY \ {kẽ})ω] = PsA,sB

CY ′ ,qY ′
[(QY ′)

ω]

In addition, consider any outcome o ∈ O such that p′(o) /∈ [0, 1] or equivalently
such that p(o) /∈ [0, 1] ∪ {kẽ}. Then, we have p′(o) = kf(max(c,n)) where n ∈
J0, ẽ− 1K is such that p(o) = kn. Then, we have col′ ◦ p′(o) = f(max(c, n)) =

colf ◦ p(o). Furthermore, we have col′(qY ′) = c′ = colf (qY ). It follows that,
assuming that [0, 1] ∪ {kẽ} is not reached in CfY and that [0, 1] is not reached
in CY ′ , the colors seen with sA and sδB are the same as the colors seen with sA
and sB in CfY (because the strategies sA, sB, s

δ
B only depend on the colors seen).

Therefore:

PsA,s
δ
B

CfY ,qY
[W f

Y ∩ (QY \ {kẽ})ω] = PsA,sB
CY ′ ,qY ′

[WY ′ ∩ (QY ′)
ω]
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Overall, we obtain that:

χGY [sA](qY ) ≤ EsA,s
δ
B

CfY ,qY
[gfY ] = EsA,s

δ
B

CfY ,qY
[gfY · 1(QY )∗·(kẽ∪[0,1])]

+ PsA,s
δ
B

CfY ,qY
[W f

Y ∩ (QY \ ([0, 1] ∪ {kẽ}))ω]

≤ EsA,sB
CY ′ ,qY ′

[gY ′ · 1(QY ′ )
∗·[0,1]] + δ

+ PsA,sB
CY ′ ,qY ′

[WY ′ ∩ (QY ′)
ω]

= EsA,s
δ
B

CY ′ ,qY ′
[gY ′ ]

Since this holds for all δ > 0 and since Player-B (Jc′, e′K, col′)-uniform strategies
are enough to play almost optimally against the strategy sA, by Theorem 2.3
(item 1.b), it follows that χGfY

[sA](qY ) ≤ χGY ′ [sA](qY ′) ≤ χGY ′ (qY ′). Since this
holds for all Player-A (Jc, dK, col)-uniform strategies sA ∈ SCYA , and since, by
Theorem 2.3 (item 1.b), (Jc, dK, col)-uniform strategies achieve the value of the
game GfY , it follows that χGY (qY ) = χGfY

(qY ) ≤ χGY ′ (qY ′).

We can now proceed to the proof of Proposition 9.8.

Proof. Consider some n ∈ N. First, consider the case where n = 0. Then, an
environment E = 〈c, e, p〉 with SzA(E) = 0 is such that c = e is even. That
is, the corresponding parity game G(F ,E) is, from Player A's point-of-view, a
safety game. Hence, positional optimal strategies exists for Player A in G(F ,E)

by Theorem 4.5. This is similar for Player B. Furthermore, there is no relevant
environment of size at most -1. Hence, the equivalence holds for n = 0.

Assume now that n ≥ 1. Consider any relevant environment E with
Sz(E) ≤ n − 1. Then, we have SzA(E) ≤ n. Therefore, if F is position-
ally maximizable w.r.t. Player A up to n, then there is an optimal GF-strategy
in F for Player A w.r.t. (F , E).

Consider now an (arbitrary) environment E = 〈c, e, p〉 ∈ Env(O) with
SzA(E) = n ≥ 1. Let ẽ := Even(e). Clearly, the outcomes in O leading, w.r.t.
p, to qinit of color c, can be redirected to kc of color c (which then loops back to
qinit) without changing the outcome of the parity game induced by E. Hence,
without loss of generality, we assume that no outcome o ∈ O is such that
p(o) = qinit. We can therefore consider the relevant environment E′ ∈ Env(O)

from De�nition 9.10 of size Sz(E′) = n−1. Let Y := (F , E) and Y ′ := (F , E′)
and assume that there is a Player-A GF-strategy σA ∈ ΣA(F) that is optimal
w.r.t. Y ′. Let us show that σA is also optimal w.r.t. to Y . We let qY denote
the state qinit in the game GY and qY ′ denote the state qinit in the game GY ′ .
Let u := χGY (qY ) and u′ := χGY ′ (qY ′). By Lemma 9.16, we have u ≤ u′. We
want to apply Lemma 8.2.

Let us show that the Player-A positional strategy sYA (σA) ensures item (i)

of this lemma, i.e. that it dominates the valuation vuY in the game GY . This
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amount to show that val[〈F , vuY ◦p〉](σA) ≥ u. Note that, again by Lemma 8.2,
we have that val[〈F , vu′Y ′ ◦ p′〉](σA) ≥ u′. Furthermore, we have:

vuY ◦ p+ (u′ − u) ≥ vu′Y ′ ◦ p′

Therefore, by Lemma 1.10, for any Player-B GF-strategy σB ∈ D(ActB), we
have:

out[〈F , vuY ◦ p〉](σA, σB) + u′ − u ≥ out[〈F , vu′Y ◦ p′〉](σA, σB)

≥ val[〈F , vu′Y ◦ p′〉](σA) ≥ u′

Since this holds for all Player-B GF-strategies σB ∈ ΣB(F), it follows that

val[〈F , vuY 〉](σA) ≥ u

Consider now item (ii) from Lemma 8.2. Consider some Player-B ac-
tion b ∈ ActB and assume that out[〈F ,1p−1[0,1]〉](σA, b) = 0. If we have
out[〈F ,1p−1[kẽ]〉](σA, b) > 0, then it follows that max(Color(F , p, σA, b)∪{c}) is
even since ẽ is even and is the highest integer appearing the game GY . Assume
now that out[〈F ,1p−1[kẽ]〉](σA, b) = 0. Then, it follows that, by de�nition of
p′, we have out[〈F ,1(p′)−1[0,1]〉](σA, b) = 0. Therefore, by Lemma 8.2, it follows
that max(Color(F , p′, σA, b) ∪ {c′}) is even. Furthermore, by de�nition of p′:

fE [{i ∈ Jc, ẽ− 1K | out[〈F ,1p−1[ki]〉](σA, b) > 0} ∪ {c}]
={i ∈ Jc′, e′K | out[〈F ,1(p′)−1[ki]〉](σA, b) > 0} ∪ {c′}

We have max{i ∈ Jc′, e′K | out[〈F ,1(p′)−1[ki]〉](σA, b) > 0}∪{c′} = max(Color(F , p′, σA, b)∪
{c′}) is even. Therefore, by Lemma 9.15, we have max{i ∈ Jc, ẽ − 1K |
out[〈F ,1p−1[ki]〉](σA, b) > 0} ∪ {c} = max(Color(F , p, σA, b)∪ {c}) is also even.

In fact, the Player-A GF-strategy σA ∈ ΣA(F) satis�es item (ii) of Lemma 8.2.
Therefore, it is optimal w.r.t. Y .

9.5.2 . Proof of Lemma 9.13

Proof. Consider a relevant environment E = 〈c, e, p〉 ∈ Env(On) and Yn :=

(Fn, E). We let u := χGYn (qinit). Note that since E is relevant, we have
c ∈ {0, 1} and p : On → [0, 1] ∪ Kn. For all o ∈ O, if p(o) /∈ [0, 1], we let
no ∈ J0, eK denote the integer that t is mapped to w.r.t. p, i.e. the integer
ensuring p(o) = kno . Note that, since E is relevant, for all o ∈ On, we have
no ≥ c.

Let us introduce some notations. We let X[0,1] := {o ∈ On | p(o) ∈ [0, 1]},
Xeven := {o ∈ On | no is even} and Xodd := p−1[Kn] \ Xeven. We let XLp :=

p−1[Kn] = Xeven ]Xodd. Note that we have On = X[0,1] ]XLp. We de�ne the
valuation v : On → [0, 1] mapping each outcome to its value in the game GYn
such that, for all o ∈ On:

v(o) :=

{
p(o) if o ∈ X[0,1]

u otherwise
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Tn =




x0+x1+...+xn−2+xn−1

n
3y+z

4

3y+z
4

y+3z
4




bl br

at

ab

Figure 9.9: The game form Tn.

That is, v = vuyn ◦ p. For all x ∈ On, we let:

w(x) :=





1 if x ∈ Xeven

0 if x ∈ Xodd

p(x) if x ∈ X[0,1]

For all x ∈ On, the value w(x) ∈ [0, 1] corresponds to the value of the game
GYn if x is seen (inde�nitely, if it is in XLp). This can be generalized to a pair
of outcomes: for all x, x′ ∈ On, we let:

w(x, x′) :=





w(x) if x, x′ ∈ XLp and nx ≤ nx′
w(x′) if x, x′ ∈ XLp and nx′ � nx
p(x) if x ∈ X[0,1], x

′ ∈ XLp

p(x′) if x′ ∈ X[0,1], x ∈ XLp

1
2 · (p(x) + p(x′)) if x, x′ ∈ X[0,1]

Finally, we let Tn denote the 2 × 2 game form at the top left of the game
form Fn from Figure 9.6. It is depicted in Figure 9.9. We let u′ := val[〈Tn, v〉].
Now, there are several cases:

• Assume that y, z ∈ XLp. Then, u ∈ {0, 1}, as in the proof of Propo-
sition 9.11, and playing aEx ∈ ActnA (resp. bEx ∈ ActnB) is optimal for
Player A (resp. B) w.r.t. Yn.

• Assume now that y ∈ XLp and z ∈ X[0,1]. Then, u = p(z), as argued in
the proof sketch, and playing aEx ∈ ActnA (resp. bEx ∈ ActnB) is optimal
for Player A (resp. B) w.r.t. Yn. This is similar if y ∈ X[0,1] and z ∈ XLp.

• Assume that p(y), p(z) ∈ [0, 1] and p(y) ≤ p(z). In that case, we have
u = 3p(y)+p(z)

4 and playing action aEx (resp. bEx) is optimal for Player A

(resp. B) w.r.t. Yn.
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• Let us now assume that y, z ∈ X[0,1] and p(z) < p(y). In that case, we
have:

3p(z) + p(y)

4
≤ u ≤ p(z) + 3p(y)

4

We argue that Player B always has an optimal GF-strategy w.r.t. Yn.

� If u = p(z)+3p(y)
4 , then positionally playing action bEx is optimal for

Player B. We now assume that u < p(z)+3p(y)
4 .

� If, for some even i ∈ J0, n − 1K, we have w(xi) ≤ u, then playing
action bi is optimal. We now assume that for all even i ∈ J0, n−1K,
we have w(xi) > u (i.e. xi is mapped to either a real greater then
u or even index). Furthermore, if for any even i ∈ J2, n − 1K, we
have w(xi, xi−1) ≤ u, then playing action bi,i−1 is optimal. We now
assume that for all even i ∈ J2, n− 1K, we have w(xi, xi−1) > u.

� It follows that, for any odd i ∈ J0, n−1K, w(xi) ≤ u and w(xi, xi−1) ≤
u � otherwise Player A could ensure that the value of the game
is more than u by playing the corresponding row, i.e. action ai or
ai,i−1. It also implies that u′ ≤ u. Indeed, assume that it is not the
case, i.e. u′ > u. Consider a Player-A GF-strategy σA ∈ D({at, ab})
whose value in the game in normal form 〈Tn, v〉 is greater than u.
Then, the Player-A positional strategy sA in the game GYn that
plays the GF-strategy σA in qinit parity dominates the valuation
vr(Fn,E) for some r > u, due to the assumptions we made in the
previous item. In fact, u′ ≤ u.
Note that this implies XEx 6= ∅. Indeed, assume that XEx = ∅.
Let ε > 0. Consider a Player-A GF-strategy σA in the game form
Tn that plays action at with probability 1 − ε and action ab with
probability ε. Then, for some small enough, yet positive, ε > 0 and
since p(z)+3p(y)

4 > u and v(x0), . . . , v(xn−1) = u, such a GF-strategy
has value more than u in the game in normal form 〈Tn, v〉. Hence,
XEx = ∅.

� Let us exhibit a Player-B GF-strategy that is optimal w.r.t. Yn.
Consider a Player-B GF-strategy σB ∈ D({bl, br}) that is optimal in
that game in normal form 〈Tn, v〉. Let sB be the Player-B positional
strategy in the game GYn that plays the GF-strategy σB at qinit.
Recall that we assume that for any odd i ∈ J0, n − 1K, w(xi) ≤ u

and w(xi, xi−1) ≤ u, 3p(z)+p(y)
4 ≤ u and XEx 6= ∅. Therefore, the

strategy sB dominates the valuations vuYn and no Player-A action
can, against the strategy sB, make the game loop inde�nitely on
qinit while ensuring that the highest color seen is even, almost-
surely. In fact, this strategy sB parity dominates the valuations
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vuYn . Hence, the Player-B GF-strategy σB is optimal w.r.t. (Yn),
recall Lemma 8.2.

Let us now consider the case of Player A.

� If u = 3p(z)+p(y)
4 , then playing action aEx is optimal. We now

assume that 3p(z)+p(y)
4 < u.

� It follows that, for all even i ∈ J0, n − 1K, we have w(xi) ≥ u and
for all even i ∈ J2, k− 1K, we have w(xi,i−1) ≥ u. Otherwise Player
B could play the action bi or bi,i−1 and ensure that the value of the
game GYn , from qinit, is less than u.

� Furthermore, for any odd i ∈ J1, n − 1K, if either w(xi) ≥ u or
w(xi, xi−1) ≥ u, then playing action ai or action ai,i−1 is optimal.
We now assume that, for all odd i ∈ JA, k − 1K, w(xi) < u and
w(xi, xi−1) < u.

� Assume that XEx 6= ∅. Then, we have u′ ≥ u. This is analogous to
the previous case for Player B. Indeed, assume that u′ < u. Then,
consider a Player-B GF-strategy σB ∈ D({bl, br}) whose value in
the game in normal form 〈Tn, v〉 is less than u. Then, a Player-B
positional strategy sB in the game GYn that plays the GF-strategy
σB in qinit parity dominates the valuation vrYn for some r < u, due
to the assumptions we made in the previous item and since we
assume that 3p(z)+p(y)

4 < u. In fact, u′ ≥ u.
Therefore, in the case where XEx 6= ∅, Player A has an optimal GF-
strategy w.r.t. Yn that consists in playing optimally (in D(at, ab))
in the game in normal form val[〈Tn, v〉], due to the assumptions of
the previous item.

� Let us now assume that XEx = ∅. Since, for all even i ∈ J0, n− 1K,
we have w(xi) ≥ u, it follows that nxi is even and at least equal to c.
Similarly, since for all odd i ∈ J1, n− 1K, we have w(xi) < u. That
is, mxi is odd or less than c. In addition, for all even i ∈ J2, n− 1K,
we have w(xi,i−1) ≥ u. That is, nxi > nxi−1 . Similarly, for all odd
i ∈ J1, n−1K, we have w(xi, xi−1) < u, it follows that nxi > n(xi−1).
We have c ≤ nx0 < nx1 < . . . < nxn−2 < nxn−1 ≤ e. This cannot
happen if e− c ≤ n− 2.

Let us now exhibit a relevant environment E of size n− 1 w.r.t. which Player
A has no optimal strategy. Consider the environment where c := 0, e := n− 1,
p(z) := 0, p(y) := 1 and for all i ∈ J0, n− 1K, we have p(xi) := ki. We do have
Sz(E) = n − 1. Furthermore, the value u of the parity game GYn from qinit is
equal to p(z)+3p(y)

4 = 3
4 . Indeed, Player B ensures that u ≤ 3

4 by playing action

367



bEx. Furthermore, for all ε > 0, Player A can play with probability 1−ε action
at and with probability ε action ab, thus ensuring that u ≥ 3

4 − ε.
Consider now an arbitrary Player-A GF-strategy σA and the corresponding

positional strategy sA in the game GYn . If σA plays with positive probability
action ab or action aEx, then the value of sA is less that u since p(y)+3p(z)

4 <
p(z)+3p(y)

4 (Player B can play the action br). However, if σA does not play these
actions with positive probability, then consider the Player B strategy sB that
plays action bl with probability 1. It ensures that the value of the strategy
sA is 0. The reason why is the following: the highest index that the variables
x0, x1, . . . , xn−1 are mapped to w.r.t. p is n − 1 and it is odd. Furthermore,
all variables x1, x3, . . . , xn−1 are mapped to odd indices. Finally, the highest
index that the variables (x1, x0) are mapped to is 1 and it is odd. This is also
the case for (x3, x2), ...,(xn−1, xn−2). Hence, the highest color seen in�nitely
often with sA and sB is almost-surely odd, and surely no stopping state is
reached..
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Conclusion

The goal of this dissertation was to give signi�cant insight on how concur-
rent games behave. Our �rst contribution is conceptual: we introduced the
notion of arbitrary game forms, which generalize standard game forms. Usu-
ally, in the literature, standard game forms are the underlying structure of the
(local) interactions of the players in concurrent games. A priori, using arbi-
trary game forms instead of standard game forms as local interactions makes
concurrent games harder to handle. However, we have provided in this disser-
tation several new results that hold even with non-standard local interactions.
The most notable example of this fact is the new version of Blackwell deter-
minacy (i.e. Theorem 2.2). However, Theorems 3.1, 3.12 and 3.17, which we
believe are also important results on concurrent games, are also relevant ex-
amples. Remarkably, the proofs of the above-mentioned results are not made
any harder by the fact that non-standard game forms may appear as local
interactions. By contrast, the proof of Theorem 4.11, and especially the in-
termediate de�nitions used to prove it, are more intricate when considering
arbitrary game forms than when considering standard �nite game forms. This
shows that, although manipulating arbitrary game forms may prove tricky, sig-
ni�cant results can still be established on concurrent games when using them
as local interactions.

We would now like to highlight some of the aspects we believe are the most
important takeaways from this dissertation. First, let us discuss the general-
ization of Blackwell determinacy, stated in Theorem 2.3. Interestingly, both
the original result on the determinacy of Blackwell games [12] and Borel deter-
minacy [8] are logical consequences of this generalization of Blackwell determi-
nacy. Furthermore, as mentioned above, another bene�t of this generalization
is that it holds even with arbitrary game forms. In addition, as discussed in
Chapter 2, this generalization extends Martin's determinacy of Blackwell in
two directions (items 1.a and 1.b in Chapter 2). We believe that both of these
directions are interesting; we have provided in this dissertation applications of
both of them. Notably, these applications have been established with the help
of the generalization stated as Theorem 2.3 and, a priori, the original result
on Blackwell determinacy by Martin would not have been enough to establish
them.

Second, in Chapter 3, we have introduced the notion of �nite-choice strate-
gies (De�nition 3.22). Recall, these are strategies that, at every state of a game,
play only �nitely many di�erent GF-strategies. We believe that this notion is
very useful when studying concurrent parity games, especially standard �nite
ones. For instance, in such a setting with a parity objective, as stated in Corol-
lary 3.38, any value achieved by a �nite-choice strategy can also be achieved
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by a positional one. Said otherwise, if a positional strategy cannot achieve a
value, then no �nite-choice (and in particular, no �nite-memory) strategy can
achieve it either. In fact, we have extensively used Corollary 3.38 in Part II
to establish that in�nite choice is required to achieve some optimal values in
several parity games.

Third, although we have already done it in the introduction and in the
beginning of Part III, we would like to highlight once more the local-global
transfers that we established in Part III. Recall that our approach consisted
in de�ning classes of concurrent arenas by restricting the game forms that
could be used as local interactions. These sets of game forms are de�ned such
that the arenas built from them ensure some desirable properties. We have
established several NSC-transfers, which all correspond to underlying necessary
and su�cient conditions, as mentioned in page 248. Also, we have established
merely su�cient conditions on game forms for the arenas built on them to
behave in a desirable way. We believe that the various results that we have
established in Part III show that this approach is viable to build concurrent
arenas that are well-behaved by design.

Future leads

We have already discussed at the end of each chapter (except Chapter 1)
natural future work and open questions on the technical contents of the chap-
ters. To conclude this dissertation, we would like to mention possible research
prospects beyond what has been studied in this dissertation.

More objectives. First, when dealing with speci�c win/lose objectives,
in this dissertation, we have only considered parity objectives. A very natural
research lead would consist in exploring concurrent games with other kinds of
win/lose objectives. The main characteristics of parity objectives are twofold.
First, these objectives are pre�x-independent. Second, they are qualitative in
the sense that what matters is what colors are seen in�nitely often regardless of
how often these colors are seen. We believe that the most interesting questions
would arise when considering quantitative objectives, i.e objectives where it
matters how often colors occur. In this case, we believe that the easiest objec-
tives to consider would be related to discounted sum w.r.t. a discount factor
smaller than 1, either as payo� functions or win/lose objectives de�ned by
threshold. The reason why studying these speci�c objectives should be track-
able is because the discounted sum payo� functions are upper semi-continuous
(recall De�nition 4.2). In particular, one could apply Proposition 4.1.

We believe that more challenging questions would arise when studying
mean-payo� objectives. Contrary to discounted sum, mean-payo� objectives
are pre�x-independent. Therefore, several general results that we have shown
in this dissertations can be applied to mean-payo� objectives, such as The-
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orem 3.12 or Theorem 3.37. We believe that the most interesting question
would be to look for a similar result than the one stated in Theorem 8.3 in
the case of mean-payo� objectives. However, the fact that these objectives are
quantitative instead of qualitative seems a tricky issue to handle.

Non-antagonistic games. In this dissertation, we have only considered
antagonistic objectives for the two players involved in the game. It could be
interesting to allow for non-antagonistic player preferences over the traces, i.e.
in�nite sequence of colors. In such a setting, we would not consider (subgame)
optimal strategies anymore but rather (subgame perfect) Nash equilibria. Not
many results are known in this framework. For instance, consider a �nite
concurrent arena where both players have (non-antagonistic) reachability ob-
jectives. In this rather simple context, it is not known whether there always
exist (ε-)Nash equilibria. This is partly discussed in the second paragraph of
the second page of [81]. We believe that the notion of �nite-choice strategies
may prove useful also in this setting.

Finally, one could also be interested in investigating even more involved
questions, related to games with more than two players. Let us mention that,
in the early times of this PhD, we have explored questions related to Nash
equilibria with deterministic strategies in multi-player games (with arbitrarily
many payers). The purpose of this work was to extend in a concurrent set-
ting what is done in [82]. This is unpublished, but opens the way to various
interesting research directions.

371



372



Summary of the main results

2.3 Theorem
New version of Blackwell determinacy . . . . . . . . . . . . . . 72

2.19 Corollary
In standard games with �nitely many actions at each state,
action-strategies achieve the same values as state-strategies . . 104

2.21 Proposition
An example of a �nite standard game where there is an optimal
strategy among action-strategies, but there is none among state-
strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.6 Corollary
In games with a pre�x-independent (PI) upward well-founded
payo� function, there exist subgame almost-surely winning strate-
gies w.r.t. a win/lose objective obtained from the payo� function124

3.7 Corollary
Corollary 3.6 in the case where the payo� function is win/lose . 124

3.12 Theorem
In PI games, a necessary and su�cient condition for a strategy
to be subgame optimal . . . . . . . . . . . . . . . . . . . . . . . 129

3.13 Corollary
If a strategy dominates a valuation v taking �nitely many values,
almost-surely, the set of states seen in�nitely often have the same
values w.r.t. v . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.14 Corollary
Theorem 3.12 with a valuation of the states taking �nitely many
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.15 Corollary
Corollary 3.13 in the case where the strategy is positional and
there are �nitely many states . . . . . . . . . . . . . . . . . . . 132

3.16 Corollary
Corollary 3.14 in the case where the game is standard, the strat-
egy is positional and there are �nitely many states . . . . . . . 133

3.17 Theorem
A necessary and su�cient condition for the existence of subgame
optimal strategies, along with a memory transfer from subgame
almost-surely winning strategies to subgame optimal strategies 137

373



3.23 Corollary
A memory transfer from subgame almost-surely winning strate-
gies to subgame optimal strategies in standard games. . . . . . 145

3.24 Corollary
Corollary 3.23 in a win/lose game without memory (the strate-
gies considered are positional) . . . . . . . . . . . . . . . . . . . 145

3.28 Theorem
In standard �nite games, if there is an optimal strategy that is
positively bounded, then there is also a subgame optimal strat-
egy that is positively bounded. . . . . . . . . . . . . . . . . . . 148

3.37 Theorem
A memory transfer in standard games when there are �nite
choice strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . 159

3.38 Corollary
Application of Theorem 3.37 to the case of parity objectives. . . 160

4.1 Proposition
Characterization of upper semi-continuous functions with the
existence of subgame optimal strategies in induced games . . . 189

4.11 Theorem
In �nite-state reachability games, Player A has positional strate-
gies that are optimal wherever possible and almost-optimal wher-
ever they cannot be optimal . . . . . . . . . . . . . . . . . . . . 203

5.2 Proposition
In �nite-state Büchi games, whenever there is an optimal strat-
egy, there is one that is positional . . . . . . . . . . . . . . . . . 224

5.8 Proposition
In �nite-state co-Büchi games, whenever there is a subgame op-
timal strategy, there is one that is positional . . . . . . . . . . . 230

6.1 Proposition
Necessary and Su�cient Condition (NSC)-transfer for valuable
game forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

6.4 Theorem
In win/lose concurrent games without stopping states, if all local
interactions are determined, from any state, either of the players
has a winning strategy . . . . . . . . . . . . . . . . . . . . . . . 254

6.6 Theorem
NSC-transfer for determined game forms . . . . . . . . . . . . . 255

6.9 Proposition
Theorem 6.4 with local interactions which are semi-determined
w.r.t. Player A instead of determined game forms . . . . . . . . 261

374



6.11 Theorem
In �nite PI concurrent games where all local interactions are
�nitely maximizable w.r.t. Player A, Player A has a subgame
optimal strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 264

6.12 Corollary
In �nite concurrent parity games where all local interactions are
�nitely maximizable w.r.t. Player A, Player A has a positional
(subgame) optimal strategy. . . . . . . . . . . . . . . . . . . . . 265

6.15 Theorem
In a concurrent arena where all local interactions are uniquely
maximizable w.r.t. Player A, Player A has a positional strategy
that is subgame optimal in all concurrent games that can be
obtained from this concurrent arena, regardless of the payo�
function involved. . . . . . . . . . . . . . . . . . . . . . . . . . . 267

7.1 Proposition
NSC-transfer for game forms valuable w.r.t. Player A . . . . . . 274

7.3 Theorem
In �nite arbitrary concurrent reachability games where all lo-
cal interactions outside of the target are RM, Player A has a
positional optimal strategy . . . . . . . . . . . . . . . . . . . . . 277

7.5 Theorem
NSC-transfer for RM game forms (w.r.t. reachability games) . . 279

7.7 Proposition
A more accurate NSC-transfer for RM game forms (w.r.t. Büchi
games) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

8.3 Theorem
In �nite parity games, if all local interactions are positionally
optimizable, then both players have positional optimal strategies 294

8.10 Corollary
NSC-transfer for positionally optimizable game forms . . . . . . 312

9.4 Proposition
Deciding if a game form is determined is equivalent, under poly-
nomial time reduction, to the decision problem MonotoneDual . 343

9.6 Proposition
For all l ∈ N, the fact that a game form is maximized by a set
of size at most l can be encoded in the �rst order theory of the
reals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

9.7 Corollary
It is decidable if a game form is uniquely maximizable, and
semi-decidable if a game form is �nitely maximizable . . . . . . 346

375



9.9 Proposition
For all l ∈ N, the fact that a game form is positionally opti-
mizable up to l can be encoded in the �rst order theory of the
reals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

9.10 Theorem
The summary of how the di�erent classes of game forms de�ned
in Chapters 6 and 8 compare . . . . . . . . . . . . . . . . . . . 352

376



Bibliography

[1] P. Vandenhove, Strategy complexity of zero-sum games on graphs. (Com-
plexité des stratégies des jeux sur graphes à somme nulle). PhD thesis,
University of Mons, Belgium, 2023.

[2] M. Randour, Synthesis in Multi-Criteria Quantitative Games. PhD thesis,
Université de Mons, Belgium, 2014.

[3] J. v. Neumann, �Zur theorie der gesellschaftsspiele,� Mathematische an-
nalen, vol. 100, no. 1, pp. 295�320, 1928.

[4] J. von Neumann and O. Morgenstern, Theory of Games and Economic
Behavior. Princeton: Princeton Univ. Press, 1944.

[5] J. F. Nash Jr, �Equilibrium points in n-person games,� Proceedings of the
national academy of sciences, vol. 36, no. 1, pp. 48�49, 1950.

[6] J. Nash, �Non-cooperative games,� Annals of mathematics, pp. 286�295,
1951.

[7] D. Gale and F. M. Stewart, 13. In�nite Games with Perfect Information,
pp. 245�266. Princeton: Princeton University Press, 1953.

[8] D. A. Martin, �Borel determinacy,� Annals of Mathematics, vol. 102,
pp. 363�371, 1975.

[9] L. S. Shapley, �Stochastic games,� Proceedings of the national academy
of sciences, vol. 39, no. 10, pp. 1095�1100, 1953.

[10] H. Everett, �Recursive games,� Annals of Mathematics Studies � Contri-
butions to the Theory of Games, vol. 3, pp. 67�78, 1957.

[11] D. Blackwell, �In�nite gδ-games with imperfect information,� Applica-
tiones Mathematicae, vol. 1, no. 10, pp. 99�101, 1969.

[12] D. A. Martin, �The determinacy of Blackwell games,� The Journal of
Symbolic Logic, vol. 63, no. 4, pp. 1565�1581, 1998.

[13] J. M. Smith and G. R. Price, �The logic of animal con�ict,� Nature,
vol. 246, no. 5427, pp. 15�18, 1973.

[14] A. Ehrenfeucht, �An application of games to the completeness problem
for formalized theories,� Fund. Math, vol. 49, no. 129-141, p. 13, 1961.

377



[15] L. H. Landweber, �Finite state games-a solvability algorithm for restricted
second-order arithmetic,� Notices Amer. Math. Soc, vol. 14, pp. 129�130,
1967.

[16] J. R. Büchi and L. H. Landweber, �Solving sequential conditions by �nite-
state strategies,� Transactions of the American Mathematical Society,
vol. 138, pp. 295�311, 1969.

[17] J. R. Büchi, �Using determinancy of games to eliminate quanti�ers,� in
International Symposium on Fundamentals of Computation Theory, 1977.

[18] Y. Gurevich and L. Harrington, �Trees, automata, and games,� in Pro-
ceedings of the fourteenth annual ACM symposium on Theory of comput-
ing, pp. 60�65, 1982.

[19] D. Harel and A. Pnueli, �On the development of reactive systems,� in
Logics and Models of Concurrent Systems - Conference proceedings, Colle-
sur-Loup (near Nice), France, 8-19 October 1984 (K. R. Apt, ed.), vol. 13
of NATO ASI Series, pp. 477�498, Springer, 1984.

[20] E. M. Clarke and E. A. Emerson, �Design and synthesis of synchronization
skeletons using branching-time temporal logic,� in Logics of Programs,
Workshop, Yorktown Heights, New York, USA, May 1981 (D. Kozen,
ed.), vol. 131 of Lecture Notes in Computer Science, pp. 52�71, Springer,
1981.

[21] M. Y. Vardi and P. Wolper, �An automata-theoretic approach to auto-
matic program veri�cation (preliminary report),� in Proceedings of the
Symposium on Logic in Computer Science (LICS '86), Cambridge, Mas-
sachusetts, USA, June 16-18, 1986, pp. 332�344, IEEE Computer Society,
1986.

[22] W. Thomas, �On the synthesis of strategies in in�nite games,� in An-
nual Symposium on Theoretical Aspects of Computer Science, pp. 1�13,
Springer, 1995.

[23] W. Thomas, Handbook of Formal Languages, Volume 3: Beyond Words.
Springer, 1997.

[24] Z. Manna and A. Pnueli, The temporal logic of reactive and concurrent
systems - speci�cation. Springer, 1992.

[25] K. R. Apt and E. Grädel, eds., Lectures in Game Theory for Computer
Scientists. Cambridge University Press, 2011.

378



[26] N. Fijalkow, N. Bertrand, P. Bouyer-Decitre, R. Brenguier, A. Carayol,
J. Fearnley, H. Gimbert, F. Horn, R. Ibsen-Jensen, N. Markey, B. Mon-
mege, P. Novotný, M. Randour, O. Sankur, S. Schmitz, O. Serre, and
M. Skomra, �Games on graphs,� CoRR, vol. abs/2305.10546, 2023.

[27] K. Chatterjee, M. Jurdzinski, and T. A. Henzinger, �Quantitative stochas-
tic parity games,� in Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana,
USA, January 11-14, 2004, pp. 121�130, SIAM, 2004.

[28] B. Karelovic and W. Zielonka, �Nearest �xed points and concurrent prior-
ity games,� in Fundamentals of Computation Theory - 20th International
Symposium, FCT 2015, Gda«sk, Poland, August 17-19, 2015, Proceed-
ings (A. Kosowski and I. Walukiewicz, eds.), vol. 9210 of Lecture Notes
in Computer Science, pp. 381�393, Springer, 2015.

[29] L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang, �The control of syn-
chronous systems,� in CONCUR 2000 - Concurrency Theory, 11th In-
ternational Conference, University Park, PA, USA, August 22-25, 2000,
Proceedings (C. Palamidessi, ed.), vol. 1877 of Lecture Notes in Computer
Science, pp. 458�473, Springer, 2000.

[30] L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang, �The control of syn-
chronous systems, part II,� in CONCUR 2001 - Concurrency Theory, 12th
International Conference, Aalborg, Denmark, August 20-25, 2001, Pro-
ceedings (K. G. Larsen and M. Nielsen, eds.), vol. 2154 of Lecture Notes
in Computer Science, pp. 566�582, Springer, 2001.

[31] L. de Alfaro, T. Henzinger, and O. Kupferman, �Concurrent reachability
games,� Theoretical Computer Science, vol. 386, no. 3, pp. 188�217, 2007.

[32] L. de Alfaro and R. Majumdar, �Quantitative solution of omega-regular
games,� Journal of Computer and System Sciences, vol. 68, pp. 374�397,
2004.

[33] S. K. S. Frederiksen, Semi-algebraic tools for stochastic games. PhD thesis,
PhD thesis, Aarhus Universitet, Aarhus, Denmark, 7 2015, 2015.

[34] M. Kwiatkowska, G. Norman, D. Parker, G. Santos, and R. Yan, �Prob-
abilistic model checking for strategic equilibria-based decision making,�
LIPIcs, Leibniz-Zentrum für Informatik, 2022. To appear; Available as
arXiv:2206.15148.

[35] A. Gibbard, �Manipulation of voting schemes: a general result,� Econo-
metrica: journal of the Econometric Society, pp. 587�601, 1973.

379



[36] V. Gurvich, �The solvability of positional games in pure strategies,� USSR
Computational Mathematics and Mathematical Physics, vol. 15, no. 2,
pp. 74�87, 1975.

[37] A. P. Maitra and W. D. Sudderth, Discrete gambling and stochastic
games, vol. 32. Springer Science & Business Media, 2012.

[38] B. Bordais, P. Bouyer, and S. Le Roux, �From local to global determi-
nacy in concurrent graph games,� in 41st IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2021, December 15-17, 2021, Virtual Conference (M. Bojanczyk
and C. Chekuri, eds.), vol. 213 of LIPIcs, pp. 41:1�41:14, Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021.

[39] B. Bordais, P. Bouyer, and S. Le Roux, �Optimal strategies in concurrent
reachability games,� in 30th EACSL Annual Conference on Computer Sci-
ence Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany (Vir-
tual Conference) (F. Manea and A. Simpson, eds.), vol. 216 of LIPIcs,
pp. 7:1�7:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[40] B. Bordais, P. Bouyer, and S. Le Roux, �Playing (almost-)optimally in
concurrent büchi and co-büchi games,� in 42nd IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2022, December 18-20, 2022, IIT Madras, Chennai, In-
dia (A. Dawar and V. Guruswami, eds.), vol. 250 of LIPIcs, pp. 33:1�33:18,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[41] B. Bordais, P. Bouyer, and S. L. Roux, �Subgame optimal strategies in
�nite concurrent games with pre�x-independent objectives,� in Founda-
tions of Software Science and Computation Structures - 26th International
Conference, FoSSaCS 2023, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2023, Paris, France,
April 22-27, 2023, Proceedings (O. Kupferman and P. Sobocinski, eds.),
vol. 13992 of Lecture Notes in Computer Science, pp. 541�560, Springer,
2023.

[42] M. Löwe, �Theory of measure and integration.� Available On Webpage.
Consulted 13/02/23 at https://www.uni-muenster.de/Stochastik/

loewe/measure.pdf.

[43] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
2008. http://mitpress.mit.edu/catalog/item/default.asp?ttype=

2&tid=11481.

[44] J. von Neumann and O. Morgenstern, Theory of Games and Economic
Behavior. Princeton University Press, 1944.

380

https://www.uni-muenster.de/Stochastik/loewe/measure.pdf
https://www.uni-muenster.de/Stochastik/loewe/measure.pdf
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11481
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11481


[45] C. Calabro, �Extension of minimax to in�nite matrices.� Available On
Webpage, 2004. Consulted 13/02/23 at https://cseweb.ucsd.edu/

~ccalabro/essays/minimax.pdf.

[46] M. Sion, �On general minimax theorems.,� 1958.

[47] L. de Alfaro and T. A. Henzinger, �Concurrent omega-regular games,�
in 15th Annual IEEE Symposium on Logic in Computer Science, Santa
Barbara, California, USA, June 26-29, 2000, pp. 141�154, IEEE Computer
Society, 2000.

[48] S. Kiefer, R. Mayr, M. Shirmohammadi, and P. Totzke, �Strategy com-
plexity of reachability in countable stochastic 2-player games,� CoRR,
vol. abs/2203.12024, 2022.

[49] K. Chatterjee, �Concurrent games with tail objectives,� Theor. Comput.
Sci., vol. 388, no. 1-3, pp. 181�198, 2007.

[50] K. Chatterjee, L. de Alfaro, and T. A. Henzinger, �The complexity of
quantitative concurrent parity games,� in Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006,
Miami, Florida, USA, January 22-26, 2006, pp. 678�687, ACM Press,
2006.

[51] P. Bouyer, S. Le Roux, Y. Oualhadj, M. Randour, and P. Vandenhove,
�Games where you can play optimally with arena-independent �nite mem-
ory,� in 31st International Conference on Concurrency Theory, CON-
CUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Conference),
pp. 24:1�24:22, 2020.

[52] L. de Alfaro, Formal Veri�cation of Probabilistic Systems. PhD thesis,
Stanford University, 1997.

[53] S. Le Roux, �Time-aware uniformization of winning strategies,� in Be-
yond the Horizon of Computability - 16th Conference on Computability
in Europe, CiE 2020, Fisciano, Italy, June 29 - July 3, 2020, Proceedings
(M. Anselmo, G. D. Vedova, F. Manea, and A. Pauly, eds.), vol. 12098 of
Lecture Notes in Computer Science, pp. 193�204, Springer, 2020.

[54] J.-F. Le Gall, Brownian motion, martingales, and stochastic calculus.
Springer, 2016.

[55] K. Chatterjee, L. Doyen, H. Gimbert, and T. A. Henzinger, �Randomness
for free,� Inf. Comput., vol. 245, pp. 3�16, 2015.

381

https://cseweb.ucsd.edu/~ccalabro/essays/minimax.pdf
https://cseweb.ucsd.edu/~ccalabro/essays/minimax.pdf


[56] K. Chatterjee, R. Majumdar, and M. Jurdzinski, �On Nash equilibria in
stochastic games,� in Computer Science Logic, 18th International Work-
shop, CSL 2004, 13th Annual Conference of the EACSL, Karpacz, Poland,
September 20-24, 2004, Proceedings (J. Marcinkowski and A. Tarlecki,
eds.), vol. 3210 of Lecture Notes in Computer Science, pp. 26�40, Springer,
2004.

[57] A. Mashiah-Yaakovi, �Correlated equilibria in stochastic games with Borel
measurable payo�s,� Dyn. Games Appl., vol. 5, no. 1, pp. 120�135, 2015.

[58] H. Gimbert and F. Horn, �Solving simple stochastic tail games,� in Pro-
ceedings of the Twenty-First Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010
(M. Charikar, ed.), pp. 847�862, SIAM, 2010.

[59] S. Kiefer, R. Mayr, M. Shirmohammadi, P. Totzke, and D. Wojtczak,
�How to play in in�nite MDPs (invited talk),� in 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020,
July 8-11, 2020, Saarbrücken, Germany (Virtual Conference) (A. Czumaj,
A. Dawar, and E. Merelli, eds.), vol. 168 of LIPIcs, pp. 3:1�3:18, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[60] L. de Alfaro, T. A. Henzinger, and O. Kupferman, �Concurrent reachabil-
ity games,� Theor. Comput. Sci., vol. 386, no. 3, pp. 188�217, 2007.

[61] L. S. Shapley and R. Snow, �Basic solutions of discrete games,� Contribu-
tions to the Theory of Games, vol. 1, no. 24, pp. 27�27, 1950.

[62] H. Gimbert and E. Kelmendi, �Two-player perfect-information shift-
invariant submixing stochastic games are half-positional,� CoRR,
vol. abs/1401.6575, 2014.

[63] S. Le Roux, �From winning strategy to nash equilibrium,� Math. Log. Q.,
vol. 60, no. 4-5, pp. 354�371, 2014.

[64] R. A. Purves and W. D. Sudderth, �Perfect information games with upper
semicontinuous payo�s,� Mathematics of Operations Research, vol. 36,
no. 3, pp. 468�473, 2011.

[65] J. Flesch, P. J.-J. Herings, J. Maes, and A. Predtetchinski, �Individual up-
per semicontinuity and subgame perfect epsilon-equilibria in games with
almost perfect information,� Economic Theory, vol. 73, no. 2-3, pp. 695�
719, 2022.

[66] H. Gimbert and W. Zielonka, �Games where you can play optimally with-
out any memory,� in Proc. 25th International Conference on Concurrency

382



Theory (CONCUR'14), vol. 3653 of Lecture Notes in Computer Science,
pp. 428�442, Springer, 2005.

[67] S. Kiefer, R. Mayr, M. Shirmohammadi, and D. Wojtczak, �Parity objec-
tives in countable MDPs,� in 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23,
2017, pp. 1�11, IEEE Computer Society, 2017.

[68] J. Filar and K. Vrieze, Competitive Markov decision processes. Springer
Science & Business Media, 2012.

[69] B. Bordais, P. Bouyer, and S. Le Roux, �Optimal strategies in concurrent
reachability games,� CoRR, vol. abs/2110.14724, 2021.

[70] K. Chatterjee, L. de Alfaro, and T. A. Henzinger, �Trading memory for
randomness,� in 1st International Conference on Quantitative Evaluation
of Systems (QEST 2004), 27-30 September 2004, Enschede, The Nether-
lands, pp. 206�217, IEEE Computer Society, 2004.

[71] E. Boros, O. Cepek, and V. Gurvich, �Separable discrete functions: Recog-
nition and su�cient conditions,� Discret. Math., vol. 342, no. 5, pp. 1275�
1292, 2019.

[72] B. Bordais, P. Bouyer, and S. Le Roux, �From local to global determinacy
in concurrent graph games,� CoRR, vol. abs/2107.04081, 2021.

[73] M. Develin and S. Payne, �Discrete bidding games,� Electron. J. Comb.,
vol. 17, no. 1, 2010.

[74] G. Avni, T. A. Henzinger, and D. Zikelic, �Bidding mechanisms in graph
games,� in 44th International Symposium on Mathematical Foundations
of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany
(P. Rossmanith, P. Heggernes, and J. Katoen, eds.), vol. 138 of LIPIcs,
pp. 11:1�11:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[75] M. L. Fredman and L. Khachiyan, �On the complexity of dualization
of monotone disjunctive normal forms,� J. Algorithms, vol. 21, no. 3,
pp. 618�628, 1996.

[76] T. Eiter, K. Makino, and G. Gottlob, �Computational aspects of mono-
tone dualization: A brief survey,� Discret. Appl. Math., vol. 156, no. 11,
pp. 2035�2049, 2008.

[77] T. Eiter and G. Gottlob, �Hypergraph transversal computation and re-
lated problems in logic and AI,� in Logics in Arti�cial Intelligence, Eu-
ropean Conference, JELIA 2002, Cosenza, Italy, September, 23-26, Pro-
ceedings (S. Flesca, S. Greco, N. Leone, and G. Ianni, eds.), vol. 2424 of
Lecture Notes in Computer Science, pp. 549�564, Springer, 2002.

383



[78] A. Tarski, A decision method for elementary algebra and geometry.
Springer, 1998.

[79] J. Renegar, �On the computational complexity and geometry of the �rst-
order theory of the reals, part III: quanti�er elimination,� J. Symb. Com-
put., vol. 13, no. 3, pp. 329�352, 1992.

[80] J. F. Canny, �Some algebraic and geometric computations in PSPACE,� in
Proceedings of the 20th Annual ACM Symposium on Theory of Comput-
ing, May 2-4, 1988, Chicago, Illinois, USA (J. Simon, ed.), pp. 460�467,
ACM, 1988.

[81] P. Bouyer, N. Markey, and D. Stan, �Stochastic equilibria under impre-
cise deviations in terminal-reward concurrent games,� in Proceedings of
the Seventh International Symposium on Games, Automata, Logics and
Formal Veri�cation, GandALF 2016, Catania, Italy, 14-16 September 2016
(D. Cantone and G. Delzanno, eds.), vol. 226 of EPTCS, pp. 61�75, 2016.

[82] S. Le Roux and A. Pauly, �Equilibria in multi-player multi-outcome in�-
nite sequential games,� Inf. Comput., vol. 276, p. 104557, 2021.

384


	Introduction
	Concurrent games: the formalism
	Notations
	Probability measures, distributions and stochastic trees
	Game Forms
	Concurrent arenas and games
	Appendix


	I General results with arbitrary bounded payoff functions
	Blackwell determinacy
	Martin's results
	Blackwell determinacy: a new version
	A result on stochastic trees
	The proof
	Application: action-strategies
	Discussion and open question
	Appendix

	On subgame optimal strategies
	Subgame almost-optimal strategies
	Subgame optimal strategies in arbitrary concurrent games
	Subgame optimal strategies in standard games
	Reduction to turn-based games: finite-choice strategies
	Discussion and open question
	Appendix


	II Concurrent parity games
	Safety and Reachability objectives
	Safety objectives and upper semi-continuous payoff functions
	Reachability games
	Discussion
	Appendix

	Büchi, co-Büchi and parity objectives
	Büchi objectives
	co-Büchi objectives
	Parity objectives
	Discussion and future work


	III Restricting game forms in concurrent games
	Game forms for general objectives
	Valuable game forms
	Determined game forms
	Finitely-maximizable game forms
	Uniquely maximizable game forms
	Discussion, open questions and future work
	Appendix

	Arbitrary game forms for Safety, Reachability and Büchi objectives
	Safety objectives
	Reachability objectives
	Büchi objectives
	Discussion and future work
	Appendix

	Standard game forms for parity objectives
	Dominating and guaranteeing a valuation
	Local Environment
	The main theorem
	The proof
	Discussion and future work
	Appendix

	Study of standard finite game forms
	Determined game forms
	First-order theory of the reals
	Comparing classes of game forms
	Discussion, open questions and future work
	Appendix


	Conclusion
	Summary of the main results

