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Titre : Avancées en apprentissage auto-supervisé : applications et efficacité statistique
Mots clés : Estimation contrastive bruitée, échantillonnage préférentiel, apprentissage auto-supervisé
Résumé : L’apprentissage auto-supervisé a ga-gné en popularité en tant que méthode d’ap-prentissage à partir de données non annotées.Il s’agit essentiellement de créer puis de ré-soudre un problème de prédiction qui utiliseles données ; par exemple, de retrouver l’ordrede données qui ont été mélangées. Ces der-nières années, cette approche a été utiliséeavec succès pour entraîner des réseaux de neu-rones qui extraient des représentations utilesdes données, le tout sans aucune annotation.Cependant, notre compréhension de ce qui estappris et de la qualité de cet apprentissage estlimitée. Ce document éclaire ces deux aspectsde l’apprentissage auto-supervisé.Empiriquement, nous évaluons ce qui estappris en résolvant des tâches auto-supervisés.Nous spécialisons des tâches de prédictionlorsque les données sont des enregistrementsd’activité cérébrale, parmagnétoencéphalogra-phie (MEG) ou électroencephalographie (EEG).Ces tâches partagent un objectif commun :reconnaître la structure temporelle dans lesondes cérébrales. Nos résultats montrent que

les représentations apprises en résolvant cestâches-là comprennent des informations neu-rophysiologiques, cognitives et cliniques, inter-prétables.Théoriquement, nous explorons égalementla question de la qualité de l’appretissage, spé-cifiquement pour les tâches de prédiction quipeuvent s’écrire comme un problème de clas-sification binaire. Nous poursuivons une trâmede recherche qui utilise des problèmes de clas-sification binaire pour faire de l’inférence sta-tistique, alors que cela peut nécessiter de sa-crifier une notion d’efficacité statistique pourune autre notion d’efficacité computationnelle.Nos contributions visent à améliorer l’effica-cité statistique. Nous analysons théoriquementl’erreur d’estimation statistique et trouvonsdes situations lorsque qu’elle peut rigoureuse-ment être réduite. Spécifiquement, nous carac-térisons des hyperparametres optimaux de latâche de classification binaire et prouvons éga-lement que la populaire heuristique de "recuit"peut rendre l’estimation plus efficace,mêmeengrandes dimensions.



Title : Advances in Self-Supervised Learning : applications and sample-efficiency
Keywords : Noise-Contrastive Estimation, Importance Sampling, Self-Supervised Learning
Abstract : Self-supervised learning has gainedpopularity as a method for learning from unla-beled data. Essentially, it involves creating andthen solving a prediction task using the data,such as reordering shuffled data. In recentyears, this approach has been successful in trai-ning neural networks to learn useful represen-tations from data, without any labels. Howe-ver, our understanding of what is actually beinglearned and how well it is learned is still so-mewhat limited. This document contributes toour understanding of self-supervised learningin these two key aspects.Empirically, we address the question ofwhat is learned. We design prediction tasksspecifically tailored to learning from brain re-cordings with magnetoencephalography (MEG)or electroencephalography (EEG). These pre-diction tasks share a common objective : re-cognizing temporal structure within the brain

data. Our results show that representationslearnt by solving these tasks contain interpre-table cognitive and clinical neurophysiologicalfeatures.Theoretically, we explore the quality of thelearning procedure. Our focus is on a specificcategory of prediction tasks : binary classifica-tion. We extend prior research that has high-lighted the utility of binary classification for sta-tistical inference, though it may involve tradingoff some measure of statistical efficiency foranother measure of computational efficiency.Our contributions aim to improve statistical ef-ficiency. We theoretically analyze the statisticalestimation error and find situations when it canbe provably reduced. Specifically, we charac-terize optimal hyperparameters of the binaryclassification task and also prove that the po-pular heuristic of "annealing" can lead to moreefficient estimation, even in high dimensions.
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1 - Introduction

This thesis manuscript explores the topic of self-supervised learning, from practical applications
to cognitive and clinical neuroscience, to its statistical theory.

1.1 . Self-Supervised Learning

Data collection The starting point of a learning algorithm is the dataset of observations it is given
to process. A dataset is made of many x ∈ RD referred to as data points or inputs. The entries of
the vectors are called features or covariates. Sometimes, a data point is paired with an annotation
y, also known as a response variable, output or target. Statistical theory assumes that the dataset
has a certain structure that is described by a probability distribution p(x,y). Pairs of data points and
annotations are assumed to be independently drawn from that distribution : this is signified by the
notation i.i.d. for independent and identically distributed draws.
Learning algorithms There are many ways to categorize learning algorithms [1, Section 1.3] : a
popular criterion is what a learning algorithm is given to process.

1. A supervised learning algorithmprocesses data points and annotations together (xi,yi)i∈J1,NK
iid∼

p(x,y).
The goal is to predict an annotation from its data point. When the annotations are discrete and
finite, they are called labels and the supervised learning algorithm is known as classification.
When the annotations are continuous, the supervised learning algorithm is known as regres-
sion. The term "supervised" is used because the presence of annotations "guide the learning
process" [2].

2. An unsupervised learning algorithm processes data points only (xi)i∈J1,NK
iid∼ p(x). There are no

observed annotations [2, 3].
The goal is to describe "associations and patterns" among data points [2]. This is not so much a
single properly defined goal, as it is a set of possible objectives that need not be compatible [4,
Goals of nonlinear ICA and unsupervised learning].
For example, typical goals in unsupervised learning may include clustering which consists in
grouping similar data points together, or density estimation which consists in approximating
the distribution of data points, or representation learning which consists in projecting the data
to low-dimensional spaces that can be visualized or are useful in some other way [3]. A popular
way formeasuring the "usefulness" of representations, is to check whether or not they correlate
with a variable of interest from another dataset (e.g. if representations of brain activity correlate
with age). This can be determined by solving a linear prediction task from the representation to
the variable of interest [5] and is common practice in computer vision [6–8].

In recent years, a third category known as self-supervised learning (SSL) has emerged. The terminology
is originally from robotics and computer vision [9, 10], although hints can almost be found earlier [11].
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There is no standard definition yet, but defining traits can be pieced from the literature.
3. A self-supervised learning algorithmprocesses data points and annotations together (xi,yi)i∈J1,NK

iid∼
p(x,y).
The goal is also to predict an annotation from its data point.
So far, self-supervised learning shares the exact same definition as supervised learning. Yet, it
is closer to unsupervised learning in two ways.
First, annotations are not observed ; rather, they are obtained from an annotation sampling pro-
cess y ∼ p(y|xi∈J1,NK) that is designed by the user. Different works described this process as ob-taining annotations "automatically" [10, 12], without "any explicit effort" [9], "from the data" [12]
and "often leveraging the underlying structure in the data" [13], and "without human annota-
tors" [12].
Second, the supervised learning task is only a "pretext" for an ulterior goal of unsupervised
learning. This goal can be clustering [14], density estimation [11, 15], or learning representations
that have desirable statistical properties [16–18] or that correlate with a variable of interest from
another dataset "downstream".

This leads us to the following definition : a learning algorithm is self-supervised if it solves a prediction
task that is designed by the user and in so doing achieves an ulterior goal of unsupervised learning. In this
manuscript, we will consider different unsupervised learning goals : learning "useful" representations
in Part I, and learning parameters of a density in Part II.

When is self-supervised learning useful? Having described what self-supervised learning is,
it is natural to ask why and when it is useful. Some claims have already been made to answer a more
specific question :why is self-supervised learning useful in opposition to supervised learning? "As opposed
to supervised learning, which is limited by the availability of labeled data, self-supervised approaches
can learn from vast unlabeled data" [19]. Or "While traditional supervised learning methods are trai-
ned on a specific task often known a priori based on the available labeled data, SSL learns generic
representations useful across many tasks." [19] Yet these advantages of self-supervised learning are
certainly also true of unsupervised tasks that are not prediction-based.

A question remains :why is self-supervised learning useful in opposition to other unsupervised learning
algorithms that are not prediction-based? Anticipating the following sections, we can start teasing out
an answer for a certain self-supervised learning algorithms. Specifically, in Part II we will theoretically
study self-supervised algorithms where the ulterior unsupervised goal is to estimate the parameters
of a density, which is known as parametric statistical inference. This comes with a trade-off between
computational efficiency and statistical efficiency (defined in Section 1.3.1). On one end of the spec-
trum, Maximum-Likelihood Estimation (MLE) is an unsupervised learning algorithm that is not self-
supervised (it does not solve an explicit prediction task). It is known to be statistically efficient but we
will see that it can be computationally inefficient (Section 1.3.2). On the other end of the spectrum,
Noise-Contrastive Estimation (defined in Section 1.2.2) is a self-supervised learning algorithm that es-
timates parameters of a density by solving a binary classification task designed by the user. We will
see that it comes with a computational advantage (Section 1.3.2) that is paid for by a statistical error
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that can be exponentially large in the dimensionality of the data [20]. This trade-off between compu-
tational and statistical efficiency is one way to frame the divide between self-supervised learning and
other unsupervised learning algorithms.

Equipped with a formal definition of what self-supervised learning is, we will next attempt to un-
derstand it through intuitive examples.

1.1.1 . Examples of regression tasks
Many regression tasks in self-supervised learning consist in predicting one part of the data (the

output) based on another (the input). Typically, each part is obtained by applying amask to the data, as
illustrated in Figure 1.1. Different choices ofmasks recover well-established tasks in statistical machine
learning.

Applying a deterministic mask to both input and target future values leads to forecasting, which
consists in predicting the future of a time series based on past values. This has been successfully
applied to Natural Language Processing (NLP) by predicting the next word in a sentence [21].

Applying a random mask that deletes parts of the input only, leads to missing value imputation,
which consists in predicting the values removed by the mask. This has been successfully applied to
NLP by predicting missing words in a sentence [22], or to images by predicting missing patches which
is known as "inpainting" [23].

Applying a random mask which alters the input only, leads to denoising, which consists in predic-
ting the original data from the noisy version. This has been successfully applied to feature extraction
from images [24] or density estimation [25].

Figure 1.1 – Examples of regression tasks that are self-supervised. A mask (in black) is applied to thedata.
One could imagine many more examples of regression tasks for self-supervised learning. Before

moving to a more mathematical understanding in following sections, we suggest an intuitive expla-
nation for these prediction tasks : what they have in common is altering the structure of the original
data (input) and learning to reconstruct it (output). The idea is that the statistical correlations inside
the data are indicative of structure : by altering the correlations, for example by changing a word in
a sentence, the sentence does not "make sense" as it used to. By predicting the original data from
the altered data, the bet that is made is that whatever is learnt will have to contain necessary statis-
tical information for reconstructing the correlations in the original data ; so whatever is learnt would
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therefore be meaningful in some statistical sense.
1.1.2 . Examples of classification tasks

Classification tasks in self-supervised learning consist in assigning labels to different parts of the
data. We first consider binary labels {0, 1}, here referred to as "negative" and "positive" classes in the
terminology of self-supervised learning.

Figure 1.2 – Examples of binary classification tasks that are self-supervised.
A simple task is when the positive class refers to data, and the negative class refers to noise ge-

nerated from a distribution chosen by the user [11].
A related approach is to form pairs of nearby versus random parts of data, and then classify them.

This has been successfully applied to timeseries [16, 26], where pairs of windows that are close in time
are distinguished from pairs of randomly picked windows ; or to images, where pairs of patches that
are close in space are distinguished from pairs of patches that are randomly picked from that image
or even another [27].

We may also consider multi-class classification problems, where there are more than two labels.
When the label designates a permutation of the original order of the data, "re-ordering" the data can
be formulated as a prediction task. This has been applied to images [28].

While the above may appear as a broad catalogue of different tasks, this is exactly how self-
supervised learning has emerged in recent literature. To our salvation, most methods by definition
fall into two well-established categories of supervised learning : classification and regression. In this
manuscript, we will study self-supervised learning when it is formulated as a binary classification task.
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1.2 . Binary Classification

Earlier, we defined self-supervised learning as a prediction task where the annotation creating
process is designed by the user. To understand what self-supervised learning actually learns, wemust
study these prediction tasks, the most basic of which is binary classification.

1.2.1 . Binary Classification as ratio-matching
Given a sample of data points and labels (x, y) ∼ p(x, y), a binary classification task consists in

learning to predict a label y ∈ {0, 1} from its data point x ∈ RD. From a probabilistic viewpoint, this
means learning a model f(x) ∈ [0, 1] of the class-predictive probability p(y = 1|x) ∈ [0, 1] 1.
Classification losses for the class-predictive probability A learning algorithm for p(y = 1|x)
is often obtained by minimizing a loss. It is common to use the logistic loss, defined as

Llogistic(f) := −E(x,y)∼p(x,y)

[
y log f(x) + (1− y) log(1− f(x))

] (1.1)
which is indeed uniquely minimized by p(y = 1|x). In fact, we may consider a generalization of the
logistic loss, by broadening our scope to any loss that is also written as an expectation and has the
same minimizer — such losses are known as strictly proper [29, 30] or well-calibrated [31, Th. 16] in
classification theory. They are explicitly characterized by a Bregman divergence between the model
f(x) and true p(y = 1|x) class-predictive probability [31]

LBregman(f ;ϕ1) = Ex∼p(x)

[
Dϕ1(p(y = 1|x), f(x))

]
. (1.2)

Simply put, a Bregman divergence D between two points a, b ∈ R measures how far apart they
are [32] : the divergence is zero when the points are equal and positive otherwise. Its geometrical
properties are determined by a convex function ϕ which formally defines the divergence as

Dϕ(a, b) = ϕ(a)− ϕ(b)− ϕ
′
(b)(a− b) . (1.3)

For example, the special case of the ϕ(x) = x2 recovers the well-known Euclidean distance (a − b)2.
Another special case ϕ(x) = x log(x)− (1+x) log((1+x)/2) recovers the logistic loss in Eq. 1.1. Finally,
the family of classification losses in Eq. 1.2 is described by the choice of a convex function ϕ1 [31,Corollary 5].
From the class-predictive probability to a density ratio The class-predictive probability we
wish to learn deserves further attention. Using Bayes’ rule, it can be rewritten as

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x|y = 1)p(y = 1) + p(x|y = 0)p(y = 0)
= ψ

Å
p1
νp0

(x)

ã
, (1.4)

1. In the binary setting, the probability of predicting the other class is determined by the normalization ofthe class-predictive distribution : p(y = 0|x) + p(y = 1|x) = 1.
11



so as tomap to the ratio of class-conditional probabilities p1(x) := p(x|y = 1) and p0(x) := p(x|y = 0),
reweighed by the prior-ratio of the two classes ν := p(y = 0)/p(y = 1). The mapping from the class-
predictive probability to the density-ratio is one-to-one and is defined by ψ(x) = 1/(1 + x). In fact,
this is the main argument relating binary classification to unsupervised learning : learning the class-
predictive probability effectively means learning (a ratio of) densities.

Classification losses for the density-ratio Based on the identity Eq. 1.4, we may now redefine
the learning problem in terms of the true (left) and model (right) density-ratio, defined as

r∗(x) = ψ−1(p(y = 1|x)) r(x) = ψ−1(f(x)) .

The logistic loss for the class-predictive probability Eq. 1.1 can now be written in terms of the density-
ratio

Llogistic(r) := −E(x,y)∼p(x,y)

ï
y log

Å
1

1 + r(x)

ã
+ (1− y) log

Å
r(x)

1 + r(x)

ãò
. (1.5)

It is actually a valid loss for the density-ratio, in that it is minimized by p1(x)/νp0(x). The general
family of classification losses in Eq. 1.2 can be similarly expressed in terms of the density-ratio, still as
a Bregman divergence

LBregman(r;ϕ2) = νEx∼p0(x)

ï
Dϕ2

Å
p1
νp0

(x), r(x)

ãò
(1.6)

with another convex function ϕ2(x) [33, Proposition 3]. By expanding the integrand using Eq. 1.3, theloss is equivalently rewritten as
LBregman(r;ϕ2) = νEx∼p0(x)

ï
− ϕ2(r(x)) + ϕ

′
2(r(x))× r(x)

ò
− Ex∼p1(x)

ï
ϕ

′
2(r(x))

ò
(1.7)

up to an additive constant. This expressionof the binary classification losswill define the self-supervised
learning task in all of Part II in this manuscript.

Binary classification as self-supervised learning The takeaway from this exposition is the
equivalence between

• an unsupervised learning problem, specifically learning a density-ratio by minimizing common
losses (e.g. logistic, squared) in Eq. 1.7

• a supervised learning problem, specifically learning the class-predictive probability of a binary
label by minimizing common losses (e.g. logistic, squared) in Eq. 1.2

This fits our definition of self-supervised learning from section 1.1 : a binary classification task can
be used toward the unsupervised goal of learning (a ratio of) densities. The next section will provide
examples where learning a density-ratio is useful.
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1.2.2 . Application to statistical inference
In the previous section, binary classification is formulated as an estimationmethod for the ratio of

the class-conditional distributions p0 and p1, from their samples. Using a parametricmodel of the ratio
is interesting : it allows us to infer parameters of these distributions ; this way, binary classification can
be used for statistical inference. In this section, we will see that estimating parameters from a ratio of
distributions e.g. using binary classification, avoids common computational bottlenecks of estimating
parameters from a single distribution e.g. using maximum-likelihood. The methods covered in this
section are summarized in table 1.1.

Statistical inference with neural networks Statistical inference consists in estimating from
data the distribution that generated them [34, Chapter 6]. It is common to assume that this distribu-
tion is part of a statistical model, that is a family of probability distributions that are identified by a
parameter

p(x;θ) =
exp(−E(x;θ))

Z(θ)
(1.8)

where E(x;θ) is the energy functional and Z(θ) is a normalizing factor
Z(θ) :=

∫
exp(−E(x;θ))dx . (1.9)

The task is then to infer the correct parameter θ∗ from data. Some statistical models have tractable
energy functionals and normalizing constants : for example, a Gaussian distribution has a quadratic
energy E(x; (µ,Σ)) = (x−µ)⊤Σ−1(x−µ)/2 and the integral defining the normalizing constant can
be analytically solved : Z(µ,Σ) = (2π)D/2|Σ|1/2. More complex energy functionals define more ex-
pressive statistical models : in modern applications, they can be parameterized using a deep neural
network with weights θ. This way, a statistical model can benefit from the approximation capabilities
of neural networks [35]. Yet, this comes at a heavy price : the energy functional or the normalizing fac-
tor can lead to important computational bottlenecks. These bottlenecks are specifically two quantities
— the integral or the Jacobian of a neural network — that are expensive or intractable to compute,
yet are necessary to evaluate a distribution from the statistical model.

One strategy to circumvent these computational bottlenecks is by engineering the neural network
architectures so that the problematic quantities become easy to compute : this had led to developing
specific neural networks architectures called "normalizing flows" [36] or to use numerical tricks that
avoid computing the full Jacobian matrix [37].

Another strategy to circumvent these computational bottlenecks is to choose a ratio of distribu-
tions where the problematic quantities disappear, and then to estimate parameters from that ratio
using binary classification, instead of from a single distribution using maximum-likelihood. This is the
route taken by substantial literature on energy-based models [38, 11, 39, 18]. How exactly these ratios
of distributions are chosen is the object of the following paragraphs. Importantly, estimating parame-
ters using binary classification opens the way for neural networks to be used for statistical inference.
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Computational bottleneck in the normalizing factor One way to parameterize a statisti-
cal model with a neural network, is to define the energy functional directly by a real-valued neural
network g(x;θ)

E(x;θ) = g(x;θ) Z(θ) =

∫
exp(−g(x;θ))dx . (1.10)

In this case, the computational bottleneck is in the right hand side of Eq. 1.10 : the normalizing constant
is an intractable integral. Numerical methods such as quadrature can approximate the integral with a
given precision, but their computational cost can be exponential in the dimensionality of the data [40].
This hasmotivated a number ofmethods to estimate the parameters θ of the statisticalmodel without
having to compute the normalizing constant. The general idea is to build a ratio model where the
computationally challenging term disappears.

Conditional Noise-Contrastive Estimation and Score-Matching. For example, the following ratio can
be used to cancel out the intractable normalizing factor

r(x, x̃;θ) :=
p(x;θ)pn(x̃|x)
p(x̃;θ)pn(x|x̃)

=
exp(−E(x;θ))× Z(θ)× pn(x̃|x)
exp(−E(x̃;θ))× Z(θ)× pn(x|x̃)

(1.11)
=

exp(−E(x;θ))pn(x̃|x)
exp(−E(x̃;θ))pn(x|x̃)

. (1.12)
Here, pn(x̃|x) is a tractable proposal distribution of our choosing, that randomly "noises" or "aug-
ments" a point x into x̃ (think of modifying an image by adding random Gaussian noise or applying
a random rotation). Computing this ratio does not require the normalizing constant. Evaluating this
ratio at the correct parameter θ∗ can be done by solving a binary classification task called Conditio-
nal Noise-Contrastive Estimation [39], named thusly because the proposal distribution is conditional
pn(x̃|x). For this binary task, the class-conditional distributions are

p1(x, x̃) = p(x;θ∗)pn(x̃|x) p0(x, x̃) = p(x̃;θ∗)pn(x|x̃) .

A pair from the first class is made of a point x from the data distribution and its perturbation x̃ by
the proposal distribution pn. The second class reverses the ordering. When the proposal distribution
is chosen to be Gaussian with infinitesimal variance, this recovers another estimation method, Score-
Matching [41], as a special case [39, Eq.14].

Noise-Contrastive Estimation. In fact, we may not even need to cancel out the intractable normali-
zing factor. Consider the following ratio model

r(x;θ) :=
p(x;θ)

pn(x)
=

exp(−E(x;θ))

pn(x)× Z(θ)
(1.13)

where pn(x) again denotes a tractable proposal distribution of our choosing. Here, the factor Z(θ)
ensures that p(x;θ) is a normalized density for any parameter θ encountered during a learning algo-
rithm. In theory, we care only that density be normalized when the learning algorithm terminates at
the correct parameter θ∗. This suggests using the ratio model

r(x;θ, Z) :=
p(x;θ, Z)

pn(x)
=

exp(−E(x;θ))

pn(x)× Z
(1.14)
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where the dependency of the factor on the parameters is dropped. Z is now an additional para-
meter of an unnormalized density p(x;θ, Z). In this ratio model Eq. 1.14, the factor Z need not be
known : it is estimated from samples alongside the parameters. When the learning algorithm termi-
nates, r(x;θ, Z) ≈ r(x;θ∗, Z(θ∗)) which implies θ ≈ θ∗ and Z∗ ≈ Z(θ∗) under some identifiability
conditions. Note that recent work has begun to explore identifiability conditions for different para-
meterizations of ratios [42, 18, 43] and using different learning procedures [11, 44]. This particular ratio
can be obtained by solving a binary classification task called Noise-Contrastive Estimation (NCE) [11]
where the class-conditional distributions

p1(x) = p(x;θ∗) p0(x) = pn(x)

are the data and the proposal distributions. More generally, Gutmann and Hirayama [38] showed
that virtually all methods that are currently used to estimate parameters without computing a nor-
malizing constant, are special cases of ratio estimation p1/p0 with a certain loss Eq. 1.7. This loss waslater interpreted by Menon and Ong [33] as a binary classification loss where the class-conditional
distributions are p0 and p1.
Computational bottleneck in the energy functional Another way to parameterize a statisti-
calmodel with a neural network, is towrite the energy functional in terms of a bijective neural network
g(x;θ) as

E(x;θ) = − log ps(g(x;θ))− log |Jg(x;θ)| Z(θ) = 1 . (1.15)
This parameterization corresponds to a statistical model with a latent variable s = g(x;θ) obtained
by a bijective transformation of a data point x and distributed as s ∼ ps. It is the basis of many
representation learning methods including Independent Component Analysis (ICA) [45]. In this case,
the computational bottleneck is in the left hand side of Eq. 1.15 : the energy functional is defined in
terms of the Jacobian of the neural network Jg(x;θ), where derivatives are taken with respect to x.Evaluating the Jacobian [46] and its gradient with respect to the parameters [47] is computationally
costly ; the latter can scale cubically O(D3) with the dimensionality of the data.

Pointwise Mutual Information. The following ratio can be used to cancel out the computationally
challenging Jacobian term

r(x, x̃;θ) :=
p(x, x̃;θ)

p(x;θ)× p(x̃;θ)
=
ps(g(x;θ), g(x̃;θ))× |Jg(x;θ)| × |Jg(x̃;θ)|
ps(g(x;θ))|Jg(x;θ)| × ps(g(x̃;θ))|Jg(x̃;θ)|

(1.16)
=

ps(g(x;θ), g(x̃;θ))

ps(g(x;θ))× ps(g(x̃;θ))
. (1.17)

where p(x, x̃) is the probability of co-occurence of twopoints. This ratio is called the "pointwisemutual
information" between the random variables x and x̃. It can evaluated at the correct parameter θ∗ by
solving a binary classification task where the class-conditional distributions

p1(x, x̃) = p(x, x̃;θ∗) p0(x, x̃) = p(x;θ∗)× p(x̃;θ∗)

are the probabilities of co-occurence (joint distribution) and independent occurence (product of mar-
ginals) of the pair (x, x̃). This method has been used to learn representations of words [48] and of
time series [16].
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Extensions to Bayesian Inference From the Bayesian perspective, the distribution of interest
is the posterior distribution p(θ|x), where the parameters θ are now viewed as a random variable.
Using the Bayes formula, we can write the posterior distribution as

p(θ|x) = exp(−E(θ;x))

Z(x)
(1.18)

where the energy functional is redefined as E(θ;x) = − log p(x|θ)− log p(θ).
Importance Sampling. In traditional Bayesian statistics, the prior p(θ) and the conditional likelihood

p(x|θ) are knownwhichmeans the energy functional is known aswell. There remains only to compute
the normalizing factor Z(x). This can be achieved by estimating the ratio

r(θ,x;Z) :=
p(θ,x)

p(θ)p(x)
=
p(θ|x)
p(θ)

=
exp(−E(θ;x))

p(θ)× Z(x)
. (1.19)

which is the pointwise Mutual Information between two random variables θ and x. This ratio can be
obtained by solving a binary classification task called Conditional Noise-Contrastive Estimation [42],
named thusly because the distribution of interest p(θ|x) is conditional (this method should not be
confused with a different task with the same name [39]). For this binary task, the class distributions
are

p1(θ,x) = p(θ,x) p0(θ,x) = p(θ)p(x) .

In chapter 4, we will justify that solving this classification task is equivalent to computing the norma-
lizing factor Z using a family of importance sampling estimators.

Conditional Noise-Contrastive Estimation In some modern Bayesian statistics, the likelihood p(x|θ)
is no longer known : it can be sampled but not evaluated. This is a more realistic description of the
setting where data is generated from a black-box simulation. With this constraint, Bayesian Inference
is known as Likelihood-Free Inference (LFI) [49], Approximate Bayesian Computation (ABC) [50] or
Simulation-Based Inference (SBI) [51]. Importantly, this means the energy functional of the posterior
is no longer tractable so computing the posterior means estimating the normalizing constant as well
as the energy functional. We can do so using the same binary classification task as in the previous
paragraph. The only difference with the ratio Eq. 1.19 is that the parameter θ is estimated now (it is
after the semicolon)

r(x;θ, Z) :=
p(θ,x)

p(θ)p(x)
=
p(θ|x)
p(θ)

=
exp(−E(θ;x))

p(θ)× Z
. (1.20)

This is known as Likelihood-Free Inference by ratio estimation [49]. This idea of estimating the pos-
terior distribution p(θ|x) as part of a ratio has inspired subsequent work known as Neural Ratio Esti-
mation (NRE) [52, 53].
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Table 1.1 – Ratios can be used to obtain many popular estimators of the parameters θ∗ andnormalizing constant Z(θ∗) of a statistical model.
Name Class 1 Class 0 Ratio Estimand

p1(.) p0(.) r(.)

NCE p(x;θ,Z)
pn(x)

(θ, Z)

ImportanceSampling
p(x;θ∗) pn(x)

p(x;Z)
pn(x)

Z

Conditional NCE p(x;θ∗)pn(x̃|x) p(x̃;θ∗)pn(x|x̃) p(x;θ)pn(x̃|x)
p(x̃;θ)pn(x|x̃) θ

Score-Matching — same with pn(x̃|x) = N (x̃;x, ϵI)— θ

Likelihood-FreeInference
p(θ|x)
p(θ)

PointwiseMutual Infor-mation

p(x,θ) p(x)p(θ)
p(x,θ)

p(x)p(θ)

p(θ|x)
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1.3 . Estimation Theory

1.3.1 . Estimation error
Estimators defined as minimizers of a loss In the previous section, classification theory pro-
vided us with a population loss in Eq. 1.7 for learning a ratio. The term "population" refers to quantities
that are computed using an infinite sample. We then considered in section 1.2.2 applications where it
is useful to identify a ratio model with a parameter θ → r(x;θ). Minimizing the population loss then
provides us with an estimand

θ∗ = argminL(θ) (1.21)
of the correct parameter. In practice, to make the minimization computationally tractable, we resort
to a finite-sample version of the loss by replacing expectations with sample averages. This new loss is
commonly known as an empirical loss, where the term "empirical" refers to quantities that are com-
puted using a finite sample

LN (θ) =
ν

N0

N0∑
i=1

−ϕ(r(xi;θ)) + ϕ
′
(r(xi;θ))× r(xi;θ)−

1

N1

N1∑
j=1

ϕ
′
(r(xj ;θ)) . (1.22)

Here, N0 and N1 are the sample sizes for data from p0 and p1 respectively, and N = N0 + N1 is thetotal sample budget. Minimizing the empirical loss defines an estimator
θ̂N (x1:N ) = argminLN (θ;x1:N ) (1.23)

of the correct parameter. The estimator is a function of the sample x1:N , as shorthand notation for
(xi)i∈J1,NK. It is equivalently defined by the optimality equation

0 = ∇θLN (θ̂N ;x1:N ) . (1.24)
This defines the estimator implicitly. Sometimes, when the loss is "simple enough" so that the mini-
mization is tractable, the estimator can be written explicitly. Under standard technical conditions [54,
Th. 5.14], the estimator θ̂N is consistent : it converges (in probability) to θ∗, mainly because it minimizes
a loss which converges (pointwise) to L. Consistency guarantees that the estimator correctly targets
the estimand when given more data.

Note that this framework is in fact quite general. Estimating a parameter by minimizing a loss
function that is evaluated on a random sample [55, Section 3.2.1], is central to statistical estimation
and machine learning. When the loss function is written as a sample-average as in Eq. 1.22 , the re-
levant theory is called M-estimation [54, Chapter 5] or Empirical Risk Minimization (ERM)[56, Chapter
4]. Moreover, the parameter θ is determined by the loss function it minimizes [54, Eq. 5.1] : it does
not have to identify a statistical model, as is typically the case in classical estimation theory. For ins-
tance, the parameter may include the normalizing factor of a statistical model as in Noise-Contrastive
Estimation Eq. 1.14.

In the following,weuse the abbreviatednotationE[θ̂N ] for averaging over randomsamplesEx1:N [θ̂N (x1:N )].
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Measuring the estimation error A natural question is : how does the estimator θ̂N differ from
the estimand θ∗ ? This difference is known in the literature as the "estimation error", "sample effi-
ciency" or "statistical complexity". Evaluating that difference can be done in a number of ways that
will be familiar to different readerships : looking at the difference in the parameters themselves (top),
or through the intermediary of a functional (middle) or a loss function (bottom) of the parameters

MSEparameters := E[∥θ̂N − θ∗∥2ℓ2 ] (1.25)
MSEfunctional :=

∫
E
[(
f(x; θ̂N )− f(x;θ∗)

)2ò
dx (1.26)

MEloss := E[L(θ̂N )− L(θ∗)] . (1.27)
The error in the parameters (top) is usual in parametric statistical inference, where the endgoal is to
infer parameters from data. It is known as the parametric Mean-Squared Error (MSE) [34, Eq. 6.6]. The
error in a functional (middle) is familiar for non-parametric 2 statistical inference, where the parame-
ters are simply ameans ofmodelling a functional f(.;θ), for example a label-predictor or a probability
density. It is known as the integrated non-parametric MSE [57, Eq.4.12]. The error in the loss (bottom)
is commonly used in Machine Learning as it can easily by approximated in practice : in Eq. 1.27, the
population loss evaluated at θ∗ is constant and the expectation is typically approximated using cross-
validation [57, Eq. 5.29]. This distinguishes the error in the loss from other measures of estimation
error where strong modelling assumptions are required, such as knowing in advance the population
parameters θ∗ in Eq. 1.25 or modelling a functional (a parametric family of densities) in Eq. 1.26. The
error in the loss is also known as the excess risk [56, Def. 2.3] and is related to the generalization
error [56, Section 6.1]. It is here denoted as the Mean Error (ME). Of the three measures of error, we
will focus on the parametric MSE. This choice for the estimation error is usually expanded into two
terms that have a clear interpretation

MSEparameters := ∥θ∗ − E[θ̂N ]∥2 + E[∥θ̂N − E[θ̂N ]∥2] . (1.28)
The second term is the variance which measures the fluctations of the estimator. The first term is the
squared bias : it quantifies how the estimator tracks the estimand on average, despite fluctations.
Howtheestimationerror dependson taskdesign Hiddenwithin the estimation error in Eq. 1.25
are dependencies on design variables that are used to evaluate the loss — the sample sizeN , the di-
mensionalityD of data points, and the configuration of hyperparameters. It is desirable to find cases
where the estimation error is a tractable function of these design variables. Sometimes, this requires
strong modelling assumptions, such as assuming that the parameter identifies a simple statistical
model such as a gaussian family of densities [34, Example 9.11]. Alternatively, finding limits where
the estimation error becomes a tractable function of these hyperparameters has a rich history in
statistics. For example, the limit of an infinite sample size N → ∞ if often considered in classical
statistics [54], the limit of infinite dimensions D → ∞ is often considered in contemporary statis-
tics [58] and combinations of these are even today an active field in deep learning [59]. Finding such

2. the term "non-parametric" does not indicate the absence of parameters : they are simply a means tomodel a functional. The endgoal is to recover the correct functional.
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cases where the estimation error is tractable, allows us to explicitly analyze how the error grows with
hyperparameters and how best to choose them. For example, suppose the estimation error scales
exponentially with the dimensionalityD of the data : this is a common situation known as the "curse
of dimensionality". Such an estimation error is fatal in high dimensions and cannot in theory be fixed
by the choice of optimization algorithm : tooling with the Adam optimizer [60] in high dimensions
which is sometimes a reflex in practical deep learning, will not change the fact that the resulting glo-
bal minimizer θ̂N can be off from the estimand θ∗ by an error that is exponentially large. This suggests
a perhaps unconvential approach to deep learning [61], where attention is payed to the choice of loss
(so that the global minimizer is sample-efficient) as much as the choice of optimizer. Ideally, studying
the estimation error can inform us if a certain configuration of hyperparameters can bring the er-
ror down from an exponential growth in the dimensionality to a polynomial growth, which is more
acceptable.

The large sample limit from classical statistics, N → ∞ The limit of a large sample will
simplify the estimator and its error as a function of the sample size N . In this limit, the estimator
which was implicitly defined in Eq. 1.24 can now be explicitly written

θ̂N = θ∗ + ε(x1:N ) +O(∥θ̂ − θ∗∥2) (1.29)
where the first-order term

ε(x1:N ) = ∇2
θLN (θ∗)−1 ×∇θLN (θ∗) (1.30)

is an error whose randomness comes from the sample x1:N . The error’s probability law describes
the dispersion of the estimator around the estimand θ∗. This law is asymptotically Gaussian. This can
be understood by a simple argument. The randommatrix (empirical Hessian) in Eq. 1.30 converges in
probability to a constantmatrix (populationHessian). Hence, the first-order error ε(x1:N ) is equivalent
in probability to a constant matrix multiplying a random vector : this is a sum of random variables and
is asymptotically Gaussian, using the Central Limit Theorem [54]

ε(x1:N ) ∼ N (0, N−1Σ) . (1.31)
This means the estimator θ̂ is centered at the estimand θ∗ (it is asymptotically unbiased) and is scat-
tered in directions and magnitudes given by the covariance matrix

Σ := ∇2
θL(θ∗)−1 ×Varx1:N [∇θLN (θ∗)]×∇2

θL(θ∗)−1 (1.32)
which depends on two terms : the population Hessian, and the covariance matrix of the empirical
gradient. For a scalar parameter, the magnitude of the estimation error given by Eq. 1.32 is smaller
with

• a smaller variance the gradient of the empirical loss
This means that for different samples x1:N , we have roughly the same gradient near the opti-
mum, so the estimator defined in Eq. 1.24 is "robust" across datasets.
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• a higher curvature of the population loss
This means that the estimator is easier to compute in that the landscape defines the minimum
more sharply, which increases the convergence speed of many optimization algorithms for a
convex loss [62].

In the following, we suppose the standard technical conditions of van der Vaart [54, Th. 5.23] apply so
that the remainder term ∥θ̂ − θ∗∥2 can indeed be written independently of the parameterization, as
o(N−1).

Finally, writing the estimation error in the limit of a large sample N → ∞ [54, Eq. 5.20] simplifies
the dependency on N from 1.25 to

MSEparameters :=
1

N
trace(Σ) + o

Å
1

N

ã
. (1.33)

Note that the trace operator naturally arises from the definition of the parametric MSE in Eq. 1.25. It
sums the variances of each component of the estimator θ̂. This scalar quantity will be the centerpiece
of the statistical analysis in chapters 4 and 5.

1.3.2 . Computing the estimation error for binary classification
In the previous section, we established that the estimation error, measured by the parametric

MSE, is described by a covariance matrix defined in Eq. 1.32.
Asymptotic covariancematrix for maximum-likelihood estimation To build intuition on
what that matrix looks like, we first consider an important setup where the parameter identifies a sta-
tisticalmodelθ → p(x;θ), the population loss is the Kullback-Leiber divergenceL(θ) = Ex∼px;θ∗

ï
log p(x;θ∗)

p(x;θ)

ò
,

and the empirical loss replaces the expectation with a finite sum. Recall that the covariance ma-
trix Eq. 1.32 is computed using the population Hessian and the variance of the empirical gradient.
Here, both are equal to the same matrix

∇2
θL(θ∗) = IFisher Varx1:N [∇θLN (θ∗)] = IFisher .

known as the Fisher Information matrix
IFisher := Ex∼p(x;θ∗)

[
∇θ log p(x;θ

∗)×∇θ log p(x;θ
∗)⊤

]
. (1.34)

It follows that the asymptotic covariance matrix from Eq. 1.32 is the inverse Fisher matrix
Σ = I−1

Fisher (1.35)
and the estimation error Eq. 1.33 is

MSEparameters =
1

N
trace(I−1

Fisher) + o

Å
1

N

ã
. (1.36)

This is known as the Cramer-Rao lower bound : it is the minimum MSE achievable by an unbiased
estimator θ̂ of the correct parameter of a statistical model. Beyond this specific situation, it is still
useful to intuitively think of the population Hessian and gradient covariance as being roughly of the
same order of magnitude [20].
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Asymptotic covariance matrix for binary classification We now consider a setup closer to
self-supervised learning. Here, the parameter identifies a ratio model θ → r(x;θ), the population
loss is the binary classification loss defined in Eq. 1.7, and the empirical loss replaces the expectation
with a finite sum in Eq. 1.22. Again, we can write the population Hessian and the variance of the empi-
rical gradient, borrowing their formulae from previous works [63, Equation 8] ; these formulae were
derived for a specific binary classification task but we checked that the proof holds more generally.

∇2
θL(θ∗) = Iw Var[∇θLN (θ∗)] = Iv −

(
1 +

1

ν

)
mwm

⊤
w .

Both quantities are expressed in terms of the vectormw and matrices Iw and Iv , which are the re-
weighted mean and covariances of the parameter-gradient of the log model∇θ log r(x;θ

∗)

mw = Ex∼p1

[
w(x)∇θ log r(x;θ

∗)
] (1.37)

Iw = Ex∼p1

[
w(x)∇θ log r(x;θ

∗)×∇θ log r(x;θ
∗)⊤

] (1.38)
Iv = Ex∼p1

[
v(x)∇θ log r(x;θ

∗)×∇θ log r(x;θ
∗)⊤

]
. (1.39)

Note that the reweighting of points from p1 is done by
w(x) = r(x;θ∗)ϕ

′′
(r(x;θ∗)) (1.40)

v(x) = r(x;θ∗)2ϕ
′′
(r(x;θ∗))2(1 + r(x;θ∗)) . (1.41)

We can now write the asymptotic covariance matrix
Σ = I−1

w

Å
Iv −

(
1 +

1

ν

)
mwm

⊤
w

ã
I−1
w (1.42)

and the estimation error Eq. 1.33 is
MSEparameters =

1

N
trace

Å
I−1
w

(
Iv −

(
1 +

1

ν

)
mwm

⊤
w

)
I−1
w

ã
+ o

Å
1

N

ã
. (1.43)

A few simple observations can be made to make sense of these equations. Similar to maximum-
likelihood estimation, themainmathematical object is the parameter gradient of the logmodel. There
are two differences here : first, the parameter identifies a ratio model r(x;θ), not a statistical model
p(x;θ) ; second, the samples are reweighted by functions w(x) and v(x). Consider for a moment that
these differences are erased. Specifically, suppose that ratio model is parameterized by one of the
class-conditional distributions r(x;θ) = p(x;θ)/p0(x), so that the parameter gradient of the log mo-
del is the same as in maximum-likelihood estimation : ∇θ log r(x;θ

∗) = ∇θ log p(x;θ
∗). This quan-

tity is known as the Fisher score vector. Also, suppose there is no reweighting : w(x) = v(x) = 1.
Then, the asymptotic covariance matrices are the same for maximum-likelihood estimation (Eq. 1.35)
and binary classification (Eq. 1.42). Part II of this manuscript pursues this line of inquiry by finding
situations where we can make definitive conclusions about the estimation error in binary classifica-
tion Eq. 1.43. For example, chapter 5 considers situations where this estimation error’s dependency
on the dimensionality of the problem is explicit, and chapter 4 considers situations where the optimal
hyperparameters can be written explicitly.
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Table 1.2 – Comparison of three non-invasive brain imaging technologies (MEG, EEG, andfMRI) in the year 2023. Positive (green) and negative (red) assessments are made by the au-thor.
MEG EEG fMRI

Temporal Resolution ms ms s
Spatial Resolution mm3 cm3 mm3

Portability no yes no
Cost million $ thousand $ million $

1.4 . Brain Imaging Data

In this document, self-supervised learning is used on both real and synthetic data. Namely, Part I
uses self-supervised learning on human brain recordings, which prompts the fundamental question :
What can we hope to gain from understanding the human brain?

In terms of scientific inquiry, recording brain activity provides a window into our cognitive pro-
cesses, that is, how we think and process information from our environment. From the viewpoint of
a machine learning researcher, the brain can be thought of as a biological neural network that simul-
taneously and efficiently processes different data modalities, such as images, audio, and language.
This has been the case historically, where brain science has inspired, however loosely, concepts in
Machine Learning [64]. Notable examples include Convolutional Neural Networks (CNN) inspired by
the human visual system [65], or Independent Component Analysis (ICA) partially inspired by the fly’s
visual system [66, 67].

On a more practical level, understanding the brain is relevant in a clinical setting where the goal is
to improve a patient’s health, for example bymonitoring and diagnosing their brain state. Applications
include personalized anesthesia, improving sleep, or predicting epileptic seizures, which we will later
discuss in more detail.
What does brain activity look like? The human brain contains an estimated 86 billion neu-
rons that communicate using electrical currents [68]. Imaging technologies allow us to observe the
activity generated by populations of thousands of these neurons. At the population level, the average
activity of individual neurons firing produces an oscillation that is often categorized by its frequency
band [69] and is sometimes associated with a certain brain state [70]. For example, in chapter 2 of this
manuscript, we will explore transient oscillations triggered by visual stimuli and slower oscillations in
the alpha band (8-12 Hz), which modulate brain responses [71]. In this document, "brain activity" will
refer to these oscillations.
How is brain activitymeasured using imaging technologies? Imaging technologies do not
record brain activity itself : they instead detect signals that serve as proxies for these brain oscillations.
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For instance, in functional Magnetic Resonance Imaging (fMRI) [72], the proxy signal is the rapid blood
delivery to neural cells, known as the haemodynamic response. In the case of Magnetoencephalogra-
phy and Electroencephalography (M/EEG) [73, 74], the proxy signals are variations in the magnetic
and electric fields near the scalp, produced by active neuronal populations. Because this manuscript
uses MEG measurements in chapter 2 and EEG measurements in chapter 3, we now describe these
two modalities in more detail.

Using M/EEG for brain science is very much a development of the 20th century. The first recording
of the human brain with EEG dates back to the 1930s [75, 76], and was followed by MEG some 40
years later [77, 76]. As their usage became more widespread, M/EEG have led to an exponentially
increasing number of publications [78, Fig. 1]. Today, EEG recordings are the preferred modality to
detect sleep stages [79] and MEG recordings are precise enough for reconstructing speech a user is
exposed to [80]. This warrants a better understanding of how these technologies actually work. The
practical setup in M/EEG is to place a headset of sensors over the scalp of a human brain and record
variations in the electromagnetic field. It is worth noting that typical magnetic and electric signals
from M/EEG are of the order 10−13 Tesla and 10−4 Volt, respectively. For comparison, these are a
billion times smaller than the steady magnetic field at the earth’s surface, and a million times smaller
than the electric tension of a phone charging in the same room or a city train passing nearby [76].
This makes M/EEG measurements particularly corruptible by environment "noise" : for this reason,
the recordings are often conducted in a Faraday cage that shields the room from local variations in the
electromagnetic field and may justify a cost in the millions of dollars [81]. For MEG, this is a necessary
cost for an already sophiscated device, where sensors are cooled using liquid helium. MEG scanners
are not portable : they are scarce and expensive, with an estimated 200 in use worldwide [81]. On
the other hand, EEG technology can be portably used outside a shielded room, which makes it a less
precise but cheaper option.

Trade-offs between brain imaging technologies Having explained how different brain ima-
ging technologies work, there remains to understand their trade-offs in terms of invasiveness, spatial
resolution, temporal resolution, and practicality. These trade-offs are summarized in Table 1.2. Speci-
fically, the main argument for M/EEG [78, Fig. 1] among different brain imaging modalities is the high
temporal resolution in the millisecond range that it offers. This precision is suitable for measuring
brain oscillations and explains why, among non-invasive imaging technologies, M/EEG have become
the indispensable tool to study brain dynamics. However, their spatial resolution is limited by the
physical setup of tracking the electromagnetic field only at the surface of the scalp. Assessing the
spatial resolution of these methods requires mapping back the scalp measurement unto the three-
dimensional brain which is called an "inverse problem". When there is a single, dominant source of
neural activity, M/EEGmethods can localize it with a precision at a scale of themm3 that is on par with
fMRI. However, when brain activity originates from different sources, possibly close to each other and
with different depths and orientations, the localization error may increase [82]. This is particularly an
issue for EEG due to a lateral blurring of the signal caused by different conductivities in the layers of
the scalp [76], so the spatial resolution may reach the order of the cm3 [83]. To overcome this limita-
tion, invasive technologies like Stereoelectroencephalography (sEEG) and Electrocorticography (ECoG)
place electrodes beneath the scalp and in/on the brain cortex, ensuring accurate measurements but
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at the cost of convenience and safety as there may be a risk of infection [84].
Supervised learning from M/EEG M/EEG techniques record brain activity in real-time, non-
invasively, and importantly with a temporal granularity that is fine enough to capture brain oscillations
that would go otherwise undetected.

MEG is often used for research, in universities and hospitals, into the human brain’s cognitive
processes. The market for MEG is expanding [81] : although the scanner costs in the millions [81], the
combined temporal and spatial resolution of MEG makes it a prime choice among non-invasive ima-
ging technology for studying cognitive processes. A typical experiment in MEG may consist in stimu-
lating the brain with a visual prompt and measuring the brain response. One way to model cognitive
processes in the brain is to predict the brain response from the stimulus (known as "encoding"), or
the stimulus from the brain response (known as "decoding") [70]. These constitute supervised tasks
in MEG.

EEG is also used for research in cognitive neuroscience, but unlike MEG it is often the preferred
imaging modality for clinical neuroscience. EEG headsets can be worn during sleep to monitor brain
oscillations such as sleep spindles that are sometimes associated with memorization [85]. They can
also be used to track sleep disorders such as apnea and narcolepsy [86]. In a clinical setting, EEG head-
sets can be used to measure a patient’s reactivity to anesthesia, by tracking how the anesthetic drug
alters waveforms in the brain that mark the patient’s cognitive state. EEG headsets can also be used
to screen for neurological pathologies such as epilepsy or dementia [87, 88]. Once the brain activity is
recorded with EEG, a typical task is to predict the user’s condition — one of five stages of sleep or the
presence of a pathology — opening possibilities for personalized prevention and treatment. These
constitute supervised tasks in EEG.

While supervised learning is an important part of research usingM/EEGdatamodalities, it requires
annotated datasets. Yet it is time-consuming [89] and expensive for experts to manually annotate
recorded M/EEG signals. Increasingly, datasets of M/EEG recording are being shared in the public
domain but with few annotations. This limits the scope of supervised learning and motivates where
unsupervised learning, including self-supervised learning, has its mark to make.

1.5 . Outline and contributions

This manuscript studies self-supervised learning in a broad way. Part I is more practical : it applies
self-supervisedmethods to learn representations from brain imaging data. Part II is more theoretical :
it analyzes the estimation error of a prototypical self-supervised learning task calledNoise-Contrastive
Estimation.
Part I, Applications to Brain Activity The contributions in this part are practical. We apply two
self-supervised tasks based on recognizing temporal structure in brain imaging data — regression
tasks in chapter 2 and classification tasks in chapter 3 — and interpret what is being learnt.
Part I, Chapter 2 : Regression tasks on MEG data This work studies regression tasks based
on recognizing temporal structure of MEG data. These tasks consists in predicting the brain reponse
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from two covariates : a visual stimulus and past brain activity ; this is known as "neural encoding" and
"forecasting" in the neuroscience and statistics literatures. We highlight the following contribution :

• This work is among the first to use deep neural networks for forecasting brain activity using MEG
data. Forecasting is traditionally done using linear models ; a few works only have investigated
deep models and it remains to be understood what statistical information they capture that
linear models do not. We are among the first to methodologically investigate this question. Our
analysis showed that our deep model used the interaction between the inputs (stimulus and
past brain activity) to modulate the forecast, which linear models did not.

Personal contributions. I wrote the main text and co-wrote the code with co-first author Alexandre
Defossez whose contribution to the project was important. Alexandre proposed using permutation
feature importance as a tool for interpreting a “black-box"model and helped with the practical part of
running experiments with deep neural networks using different hyperparameters. The text was hea-
vily edited by my supervisors and the original idea of combining deep learning and neural decoding
with a focus on interpretability was proposed by J.R. King and J.C. Loiseau.

Publication :O. Chehab*, A. Defossez*, J.C. Loiseau, A. Gramfort, J.R. King. Deep Recurrent Encoder :
A scalable end-to-end network to model brain signals. Journal of Neurons, Behavior, Dataanalysis, and Theory, 2022.(* means shared first-authorship)

Part I, Chapter 3 : Classification tasks on EEG data This work studies a classification tasks
based on recognizing temporal structure of EEG data. They consist in predicting if snapshots of brain
activity are temporally adjacent or not, or if they are ordered or not. We highlight the following contri-
bution :

• This work is among the first to apply self-supervised learning to EEG data. Little prior work existed for
using these classification tasks based on temporal ordering on brain imaging data. This meant
having to find which design choices worked. For example, through trial-and-error, we came up
with a certain parameterization of the classifier which empirically worked and that we analyze
in further detail in section 3.5.

Personal contributions.Here,my contributions weremoreminor : I helped design the experiments and
worked on their theoretical analysis using basic simulations. At the time, the theoretical analysis was
not mature enough to make it to publication ; it has since been revisited and is included in section 3.5
of this thesis as a starting point for future research.

Publication :H. Banville, O. Chehab, A. Hyvärinen, D. Engemann, A. Gramfort. Uncovering the structure
of clinical EEG signals with self-supervised learning. Journal of Neural Engineering, 2021.

Part II, Statistical Analysis The setup here is to infer the parameters or normalizing constant
of a statistical model of the data. This comes with a trade-off between computational efficiency and
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statistical efficiency, here measured by the parameteric MSE defined in Section 1.3.1. On one end of
the spectrum, inferring parameters from a single distribution using Maximum-Likelihood Estimation
(MLE) is statistically efficient but can be computationally inefficient (Section 1.3.2). On the other end of
the spectrum, estimating parameters from a ratio of distributions using binary classification, comes
with a computational advantage (Section 1.3.2) that is paid for by a statistical error that can be expo-
nentially large in the dimensionality of the data [20, 90]. This second part of this thesis is dedicated to
achieving a better trade-off for binary classification by provably reducing the statistical error.

Part II, Chapter 4 : Noise-Contrasive Estimation This work studies the estimation error of
binary classification when the model is identified by the parameters of the target distribution. We
highlight the following contribution :

• We analytically optimized the estimation error. The estimation error (here defined as the asymp-
totic variance of the estimated parameters of the classifier model) is usually provided when
proposing a new estimation method. However, a theoretical analysis of this error [63, 11, 91]
is rarely provided. The entirety of Part II which is half of this thesis, is dedicated to finding si-
tuations where we can derive an interpretable formula of the estimation error and analytically
optimize it with respect to the choice of the proposal distribution.

Personal contributions. I wrote the proofs, code, and text, which were reread and edited by my super-
visors. The initial idea of studying the estimation error of noise-contrastive estimation as a prototype
for self-supervised learning was suggested by Aapo Hyvärinen.

Publications :O. Chehab, A. Gramfort, A. Hyvärinen. The Optimal Noise in Noise-Contrastive Learning Is
Not What You Think. Uncertainty in Artificial Intelligence (UAI), 2022.

Part II, Chapter 5 : Annealed Noise-Contrasive Estimation This work focuses on one a spe-
cific parameterization of the classifiermodel, using the normalizing constant of the target distribution.
We prove that the estimation error can be reduced by annealing, which consists in introducing a path
of distributions between the two original ones to classify. We highlight the following contributions :

• We provide the first proof that annealing (introducing a path between two distributions) can make
noise-contrastive estimation amenable to high-dimensional problems.Our theory provided insights
that could not necessarily be obtained from intuition alone. For example, we proved the optimal
annealing path in high dimensions is made of distributions that are mixtures of the target and
the proposal. We also proved that traversing that path at different speeds can lead to an esti-
mation error that is exponential, polynomial, or constant in the dimensionality of the problem.

• We help unify literatures for estimating the normalizing constant and parameters of a statistical
model, and self-supervised learning. We show that the same self-supervised task of classifying
between data and noise, is at the root of estimating the parameters (using noise-contrastive
estimation) and normalizing constant (using importance sampling) of a statistical model. We
also show that annealing the classification task recovers many Monte-Carlo estimators of the
normalizing constant from the past 50 years.
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Personal contributions. Building on prior work of mine [92], I wrote the blueprint, proofs, code, and
text for this project, which were reviewed by my co-authors. Aapo Hyvärinen and Andrej Risteski hel-
ped frame this paper. Andrej helped with many creative discussions, suggesting research directions
and namely with making the right assumptions (e.g. exponential family distributions with bounded
partition functions) to obtain general results. Andrej also helped review proofs.

Publications :O. Chehab, A. Hyvärinen, A. Risteski. Provable benefits of annealing for estimating normali-
zing constants. Neural Information Processing Systems (NeurIPS), 2023. Spotlight.
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Applications to Brain Activity

29





2 - Regression Tasks on MEG data

This chapter presents the work published in :O. Chehab*, A. Defossez*, J.C. Loiseau, A. Gramfort, J.R. King. Deep Recurrent Encoder :
A scalable end-to-end network to model brain signals. Journal of Neurons, Behavior, Dataanalysis, and Theory, 2022.(* means shared first-authorship)

Only minor changes have been made : additional text is included to explain how the model we
obtained in this paper, relates to self-supervised learning.

2.1 . Summary

Understanding how the brain responds to sensory inputs from non-invasive brain recordings like
magnetoencephalography (MEG) can be particularly challenging : (i) the high-dimensional dynamics
of mass neuronal activity are notoriously difficult to model, (ii) signals can greatly vary across sub-
jects and trials, and (iii) the relationship between these brain responses and the stimulus features
is non-trivial. These challenges have led the community to develop a variety of preprocessing and
analytical (almost exclusively linear) methods, each designed to tackle one of these issues. Instead,
we propose to address these challenges through a specific end-to-end deep learning architecture,
trained to predict the MEG responses of multiple subjects at once. We successfully test this approach
on a large cohort of MEG recordings acquired during a one-hour reading task. Our Deep Recurrent
Encoder (DRE) reliably predicts MEG responses to words with a three-fold improvement over classic
linear methods. We further describe a simple variable importance analysis to investigate the MEG re-
presentations learned by our model and recover the expected evoked responses to word length and
word frequency. Lastly, we show that, contrary to linear encoders, our model captures modulations
of the brain response in relation to baseline fluctuations in the alpha frequency band. The quantita-
tive improvement of the present deep learning approach paves the way to a better characterization
of the complex dynamics of brain activity from large MEG datasets.

2.2 . Context and Contributions

A major goal of cognitive neuroscience consists of identifying how the brain responds to distinct
experimental conditions.While descriptive statistics and statistical tests are classically used to analyze
neural data [93], this approach is not suited to predict how the brain should react to new conditions.
The resulting models of the brain can thus be particularly challenging to compare. By contrast, pre-
dictive encoding models [94, 70] can be directly trained to predict brain responses to various experi-
mental conditions, and compared on their ability to accurately predict novel conditions. For example,
encoding models allow the estimation of integration constants in the brain [95, 96], the hierarchi-
cal organization of visual [97] and speech processing [98, 99]. Beyond MEG, predictive models have
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enabled automatic segmentation [100] and dynamical system identification [101, 102]. In functional
Magnetic Resonance Imaging, predictive encoding models are starting to emulate complex neural
processing [103] and are a step towards discovering new phenomena [104, 105]. Yet, this general ob-
jective of developing encoding models faces three major challenges when working with non-invasive
and time-resolved signals collected by magneto- and electro-encephalography (M/EEG).
Challenge 1 : rich response dynamics M/EEG signals are known and promoted for their ex-
cellent temporal resolution. While this ability to measure cognitive processes at a millisecond time-
scale offers unique opportunities for fine chronometry of neural responses in humans, it also makes
such signals notoriously difficult to analyze. For example, brain responses to audio streams overlap
in time making their identification difficult. To address this issue in the context of encoding models, it
is standard to employ a Temporal Receptive Field (TRF) model [106–115] 1. TRF models are commonly
designed to predict neural responses to exogenous stimulation by fitting a linear regression model
with a fixed time-lag window of past sensory stimuli. By doing so, the predictions derived from TRFs
are only influenced by stimuli descriptors, enabling them to modulate their response based on pre-
vious brain activity. Consequently, unless the basal activity from previous time points is introduced
as an exogenous feature, TRF cannot learn to capture neuronal adaptation responses [118], nor can it
learn to vary an evoked response as a function of the pre-stimulus alpha power [119, 71].
Challenge 2 : inter-trial and inter-subject variability Neuronal recordings in general, and
M/EEG in particular, can be extremely variable across trials and subjects [82, 70, 120, 71, 121]. To reduce
the nuisance factors behind these variations such as eye blinks, head movements, cardiac, and face
muscle activity which corrupt MEG recordings, it is common to make use of multiple sessions and
subjects within a study. For example, several methods based on spatial filtering [122–126] or "hyper-
alignment" use linear models such as canonical correlation analysis (CCA), partial least square regres-
sion (PLS), multi-view ICA and back-to-back regressions (B2B) [127–132] to isolate the brain responses
shared across trials and/or individuals. However, these denoising techniques can also remove rele-
vant signals. For example, VanRullen [71] have repeatedly shown that evoked responses to sensory
input can bemodulated by pre-stimulus alpha activity in a predictableway. Averaging trials, or filtering
out this variability during preprocessing would therefore prevent the identification of such phenome-
non.
Challenge 3 : identifying the relationship between brain responses and stimulus fea-
tures A large part of cognitive neuroscience aims to identify how the brain responds to stimulus
features. For example, are V1 neurons tuned to respond to luminance, contrast, oriented lines, or
faces? When and where does this elicit a response? To tackle this issue, it is common to present
many stimuli to the subject, and fit a general linear model (GLM) to predict brain responses given a
set of hypothetical features [94]. This approach can be limited, as GLMs only reveal brain responses
to features predetermined by the analyst [133, 116, 134, 135] and understanding interactions between

1. also referred to as Finite Impulse Response (FIR) analysis in fMRI [116], and Distributed Lag modeling instatistics [117]
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features often requires explicitly modeling these interactions (e.g. as cross-terms to form a quadratic
polynomial) and feeding them to a linear regression [136].

From supervised to self-supervised learning Here, we propose to simultaneously address
these three core challenges with a unique end-to-end “Deep Recurrent Encoding" (DRE) neural net-
work trained to robustly predict brain responses from both (i) past MEG activity and (ii) current expe-
rimental conditions. We test DRE on 99 subjects recorded with MEG during a one-hour long reading
task, and show that our model (1) better predicts MEG responses than standard models, (2) efficiently
captures inter-trial and inter-subject variability, and (3) identifies feature-specific responses as well as
interactions between basal activity and these evoked responses.

While forecasting is a traditionally supervised task, it is here also used to learn useful, even in-
terpretable, representations of brain activity which is an unsupervised goal. There are many ways to
characterize useful representations, as discussed in section 1.1. Here, we show that representations of
brain activity learnt by our DREmodel capture meaningful information from a cognitive neuroscience
perspective. Specifically, these representations capture the interaction between past brain activity
and external stimuli, which is not the case for representations obtained from other models in this
paper. This is an example of self-supervised learning, where a supervised objective such as forecasting
is used to achieve an unsupervised goal such as learning useful features.

2.3 . Self-Supervised Regression Tasks

We next present, with consistent and self-contained mathematical notations, a methodological
progression from linear to nonlinear encoding models of neural dynamics as observed with MEG.
We also discuss the statistical and computational benefits of recurrent models, as well as the novel
methodological ideas proposed with the DRE model.

Problem formalization In the case of MEG, the measured magnetic fields x reflect a tiny sub-
set of brain dynamics h — specifically a partial and macroscopic summation of the synaptic input
to cortical pyramidal cells. Given the physics of electromagnetic fields propagation, it is standard to
assume that these neuronal magnetic fields have a linear, stationary, and instantaneous relationship
with the magnetic fields measured via MEG sensors [137]. We refer to this “readout operator” as C , a
matrix which is subject-specific because it depends on the location of pyramidal neurons in the cortex
and thus on the anatomy of each subject. Furthermore, the brain dynamics governed by a function f
evolve according to their past and to external stimuli u [138]. In sum, we can formulate the problem
as follows : ®

xcurrent = Chcurrent

hcurrent = f(hpast, ucurrent)

Operational Objective Here, we aim to parameterize f with θ, and subsequently learn θ andC to
obtain a statistical (as opposed to biologically constrained as in [139]) generative model of observable
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brain activity that accurately predicts MEG activity x̂ ∈ Rdx given an initial state and a series of past
stimuli.

Notations We denote by ut ∈ Rdu the stimulus with du encoded features at time t, xt ∈ Rdx

the MEG recording with dx sensors, x̂t its estimation, and by ht ∈ Rdh the underlying brain acti-
vity. Because the true underlying brain dynamics are never known, h will always refer to a model
estimate. To facilitate the parametrization of f , it is common in the modeling of dynamical systems
to explicitly create a “memory buffer" by concatenating successive lags. We adopt the bold notation
ht−1:t−τh := [ht−1, ..., ht−τh ] ∈ Rdhτh for flattened concatenation of τh ∈ N time-lagged vectors. With
these notations, the dynamical models considered in this paper are described as :®

xt = Cht

ht = fθ(ht−1:t−τh ,ut:t−τu)
(2.1)

where
• f : Rdhτh+du(τu+1) → Rdh governs brain dynamics given the preceding brain states and external
stimuli

• C ∈ Rdh×dx is a linear, stationary, instantaneous, and subject-specific observability operator
that makes a subset of the underlying brain dynamics observable to the MEG sensors.

We next list the models considered in this study.
Temporal Receptive Field (TRF) Temporal receptive fields (TRF) [106] are arguably the most
common model for predicting neural time series in response to exogeneous stimulation. The TRF
equation is that of control-driven linear dynamics :

ht = fθ(ht−1:t−τh ,ut:t−τu) = But:t−τu , (2.2)
where B ∈ Rdh×du.(τu+1) is the convolution kernel that maps the stimuli to the brain response and
θ = {B}. By definition, the TRF kernel encodes the input-output properties of the system, namely, its
characteristic time scale, itsmemory, and thus its ability to sustain an input over time. A computational
drawback is that the TRF kernel size scales linearly with the duration of the neural response to the
stimulus. For example, a dampened oscillation evoked by the stimulus could last one hundred time
samples (τu = 99) and would require B ∈ Rdh×100du to reach 100 steps in the past, even though
oscillatory dynamics can be compactly written as a second-order differential equation expressing htin terms of only two of its own past states (ht−1, ht−2)

2. Emulating this, we will introduce a recurrent
component to the TRF model to tackle the issue of dimensionality.
Recurrent Temporal Receptive Field (RTRF) A Recurrent Temporal Receptive Field (RTRF) is a
linear auto-regressivemodel. The RTRFwith exogenous input canmodel time-series from its own past
(e.g., past brain activity) and from exogenous stimuli. Unrolling the recurrence reveals that current
brain activity can be expressed in terms of past activity. This corresponds to recurrent dynamics with
control :

ht = fθ(ht−1:t−τh ,ut:t−τu) = Aht−1:t−τh +But:t−τu , (2.3)
2. A sine wave can be produced by a simple linear auto-regressive (AR) model of order 2
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where the matrix A ∈ Rdh×(dh.τh) encodes the recurrent dynamics of the system and θ = {A,B}.
The dependency of ht on ht−1 in Eq. 2.3means we need to unroll the expression of ht−1 in order tocomputeht. However, it has been shown that linearmodels performpoorly in this case, as termsof the

form At (A to the power t) will appear, with either exponentially exploding or vanishing eigenvalues.
This rules out optimizationwith first ordermethods due to the poor conditioning of the problem [140],
or using a closed-form solution. To circumvent unrolling the expression of ht−1, we need to obtain itfrom what is measured at time t− 1. This however assumes the existence of an inverse relationship
from xt−1 to ht−1, whichwe assumehere to be linear by using the pseudo inverse ofC : ht−1 = C†xt−1.As a result, ht and xt are identifiable to one another, and Eq. 2.3 can be solved in closed form as a
regular linear system [141]. Initializing the RTRF dynamics with the pre-stimulus data can be written
as :

ht = C†xt ∀t ∈ {0, ..., τh − 1} , (2.4)
where τh is chosen to match the pre-stimulus duration τ .

Though the recurrent component of the RTRF is able to reduce the receptive field τu of TRF, it isnevertheless constrained to maintain a ‘sufficiently big’ receptive field τh to initialize over τh steps.
The following model, DRE, will avoid this issue, and will also not require that ht and xt are identifiablevia linear inversion.
Deep Recurrent Encoder (DRE) DRE is an architecture based on the Long-Short-Term-Memory
(LSTM) computational block [142]. It is useful to think of the LSTM as a “black-box nonlinear dynamical
model”, which composes the RTRF building block with nonlinearities and a memory module which
reduces the need for receptive fields, so that τh = 1 and τu = 0. It is employed here to capture
nonlinear dynamics evoked by a stimulus. A single LSTM layer can be formulated as [142] :

ht = fθ(ht−1:t−τh ,ut:t−τu) = ot ⊙ tanh(mt)

mt = dt ⊙mt−1 + it ⊙ m̃t

m̃t = tanh(Aht−1 +But)

, (2.5)

where the tanh nonlinearity is applied element-wise,⊙ is the Hadamard (element-wise) product, and
(dt, it, ot) ∈ (Rdm)3 are data-dependent vectors with values between 0 and 1 modeled as forget (or
drop) input and output gates, respectively. Thememory modulemt ∈ Rdm thus interpolates between
a “past term"mt−1 ∈ Rdm and a “prediction term" m̃t ∈ Rdm , taking ht as input. The “prediction term"
(See Eq. 2.5 last equation) resembles that of the previous RTRF model except that it is here composed
with a tanh nonlinearity which conveniently normalizes the signals.

Again, the dependency of ht on ht−1 in Eq. 2.3 meant that we needed to unroll the expression
of ht−1 to compute ht. While this is numerically unstable for the RTRF, the LSTM is designed such
that ht and its gradient are stable even for large values of t. As a result, ht and xt do not need to
be identifiable to one another. In other words, contrary to RTRF, the LSTM allows ht to represent a
hidden state containing potentially more information than its corresponding observation xt.We now motivate three modifications made to the standard LSTM.

First, we help it recognize when (not) to sustain a signal, by augmenting the control ut with a
mask embedding pt ∈ {0, 1} indicating whether the provided MEG signal generates the current brain
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response (i.e. 1 before word onset and 0 thereafter). Second, we automatically learn to align subjects
with a dedicated subject embedding layer. Indeed, a shortcoming of standard brain encoding analyses
is that they are commonly performed on each subject separately. However, this implies that one
cannot exploit potential similarities across subjects. Here, we adapt the LSTM in the spirit of Défossez
et al. [143] so that a singlemodel is able to leverage information across multiple subjects. We do this
by augmenting the control ut with a “subject embedding” s ∈ Rds , that is learned for each subject.
Note that this amounts to learning a matrix in Rds×ns that is applied to the one-hot-encoding of the
subject number. In order words, each subject has a vectorized representation that is one column of
the embedding matrix. Setting ds < ns allows us to use the same LSTM block to model subject-wise
variability, and to train across subjects simultaneously while leveraging similarities across subjects.

Third, for comparability purposes, RTRF and LSTM should access the same pre-stimulus MEG in-
formation xτ :1. Incorporating the initial MEG, before word onset, is done by augmenting the control
with pt⊙xt. The extended control reads : ũt = [ut, s, pt, pt ⊙ xt], and the LSTMwith augmented control
ũt finally reads :

ht = fθ(ht−1:t−τh , ũt:t−τu) = LSTMθ(ht−1, ũt) = LSTMθ(LSTMθ(ht−2, ũt−1), ũt) . (2.6)
In practice, to maximize expressivity, two modified LSTM blocks are stacked on top of one another
(Figure 2.1).

Having introduced a nonlinear dynamical system for the brain response ht, we can also extend
the model Eq. 2.1 by challenging the linear instantaneous mixing from the brain response ht to the
measurements xt. Introducing two new nonlinear functions d and e, respectively parametrized by θ2and θ3, a more general model formally reads :®

xt:t−τx+1 = dθ2(ht)

ht = fθ1(ht−1:t−τh , eθ3(ũt:t−τu))
, (2.7)

where τx allows us to capture a small temporal window of data around xt, and τu is taken to be much
larger than τx. Indeed Eq. 2.7 corresponds to Eq. 2.1 if one sets τx = 1 and dθ2(ht) = Cht, as well as
eθ3(ũt:t−τu) = ut:t−τu . In more intuitive terms, the DRE model generalizes the linear instantaneous
measurement of the previous models with a “convolutional autoencoder" [144]. The e (encoder) func-
tion is formed by convolutions and the d (decoder) function uses transposed convolutions, where
both functions are two layers deep (Figure 2.1) 3.

In practice, we use a kernel sizeK = 4 for the convolutions. This impacts the receptive field of the
network and the parameter τx. Equation Eq. 2.7 implies that the number of time samples in h and x
are the same. However, a strong benefit of the convolutional auto-encoder is to perform a reduction
of the number of time steps by using a stride S larger than 1. By using a stride of 2, one reduces the
temporal dimension by 2. Indeed it boils down to taking every other time sample from the output
of the convolved time series. Given that the LSTM module is by nature sequential, this reduces the
number of time steps it has to considerwhen learning, which accelerates both training and evaluation.
Further, there is evidence that LSTMs can only pass information over a limited number of time steps
[146]. In practice, we use dh output channels for the convolutional encoder.

3. While “encoding” typically means outputting the MEG with respect to the neuroscience literature, we use“encoder” and “decoder” in the context of deep learning auto-encoders [145] in this paragraph.
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ReLU(ConvTranspose1d(Cin = dh, Cout = dh, K, S))

ConvTranspose1d(Cin = dh, Cout = dx, K, S)

[p1 ⊙ x1, u1, s] [p2 ⊙ x2, u2, s] [p3 ⊙ x3, u3, s] [. . .]

x̂1 x̂2 x̂3
. . .

Figure 2.1 – Representation of the Deep Recurrent Encoder (DRE) model used to predict MEG ac-tivity. The masked MEG pt ⊙ xt enters the network from the bottom, along with the control re-presentation ut and the subject embedding s. The encoder transforms the input with convolu-tions and ReLU nonlinearities. Then, the LSTM models the sequence of hidden states ht, which areconverted back to the MEG activity estimate x̂t. Conv1d(Cin, Cout,K, S) represents a convolutionover time with Cin input channels, Cout output channels, a kernel size K , and a stride S. Similarly,
ConvTransposed1d(Cin, Cout,K, S) represents a transposed convolution over time.

In summary, our DRE model generalizes TRF and RTRF models by using nonlinearities both in the
dynamics of the brain response ht and in its measurement xt Eq. 2.1. It is done respectively with LSTMcells and a convolutional auto-encoder. Importantly, the DRE is equipped with a subject embedding
allowing us to learn a joint model for the group of subjects.
Optimization losses The dynamics for the above three models (TRF, RTRF, DRE) are given by
different expressions of fθ as well as the mappings between x and h via C for TRF and RTRF, or c and
e for DRE.

At test time, the models aim to accurately forecast MEG data from initial steps combined with
subsequent stimuli. Consequently, one should train the models in the same setup. This boils down to
minimizing a “multi-step-ahead" ℓ2 prediction error :

minimize θ1,θ2,θ3

∑
t ∥xt − x̂t∥22

s.t. xt:t−τx+1 = dθ2(ht)

ht = fθ1(ht−1:t−τh , eθ3(ũt:t−τu))

Because the prediction task uses initial brain activity (in the augmented stimulus ũt) to predict futurebrain activity, this it is specified as "filtering" in probabilistic literature [147]. This “multi-step-ahead"
minimization requires unrolling the recurrent expression of ht over the preceding time steps, which
the LSTM-based DREmodel is able to do [148]. The DREmodel takes as input the observedMEG at the
beginning of the sequence, and must predict the future MEG measurements using the (augmented)
stimulus ũt. Note that the mapping to and from the latent space, eθ3 and dθ2 , are learned jointly with
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the dynamical operator fθ1 . Furthermore, the DRE has reduced temporal receptive fields, thus the
computational load is lightened and allows for a low or high-dimensional latent space.

Given that the RTRF model is linear and can suffer from numerical instabilities (see above), it is
trained with the “one-step-ahead” version of the predictive loss with squared ℓ2 regularization :

minimize θ
∑

t ∥xt − x̂t∥22 + λ∥θ∥22
s.t. x̂t = Cht

ht = fθ(ht−1:t−τh ,ut:t−τu)

ht−1:t−τh = C†xt−1:t−τh

TRF models are also trained with this “one-step-ahead” loss. As mentioned above, the linear mo-
dels (TRF) require a larger receptive field than the nonlinear DRE. Large receptive fields induce a com-
putational burden, because each time lag comes with a spatial dimension of size dh or du. To tacklethis issue, C is chosen to reduce this spatial dimension. In practice, we choose to learn C separately
from the dynamics to simplify the training procedure of the linear models. Given a participant, we fit
a Principal Component Analysis (PCA) with 40 components on their averaged (evoked) MEG data : the
resulting PCA map is taken to be the matrix C ∈ Rdx×40. The resulting latent space will thus explain
most of the variance of the original recording. Indeed, when training the TRF model on all 270 MEG
sensors with no hidden state (6.4± 0.22%, MEAN and SEM across subjects) or using a 40-component
PCA (6.43 ± 0.17%), we obtained similar performances. The pseudo-inverse C† required to compute
the previous latent state ht−1 is also obtained from the PCAmodel. Note that dimensionality reduction
via linear demixing is a standard preprocessing step in MEG analysis [123, 149, 150].
Model Evaluation Following seminal works (e.g.by Kay et al. [151], Güçlü andGerven [152]),models
are evaluated using the Pearson Correlation R (between -1 and 1) between themodel prediction x̂ and
the true MEG signals x for each channel and each time sample (after the initial state) independently 4.
When comparing the overall performance of the models, we average over all time steps after the
stimulus onset, and over all MEG sensors for each subject independently.
Feature Importance To investigate what a model actually learns, we use Permutation Feature
Importance [153] which measures the drop in prediction performance when the jth input feature uj
is shuffled :

∆Rj = R−Rj , (2.8)
By tracking∆R over time and across MEG channels, we can locate in time and space the contribution
of a particular feature (e.g. word length) to the brain response.
Experiment The model weights are optimized with the training and validation sets, while the pe-
nalization λ for the linear models (TRF and RTRF) is optimized with a grid search over five values

4. Figure 2.5 in the Appendix 2.7 reports the same evaluations, using a different metric : the explained va-riance quantified by the coefficient of determination R2 of the brain response by the model predictions.
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distributed logarithmically between 10−3 and 103. Training of the DRE is performed with ADAM [154]
using a learning rate of 10−4 and PyTorch’s default parameters [155] for the running averages of the
gradient and its square. The training is stopped when the error on the validation set increases. In
practice, the DRE and the DRE-PCA were trained over approximately 20 and 80 epochs, respectively.

Statistics Each subject score is obtained using the model prediction on held-out trials, using the
learned subject embeddings as the “alignment function", similar to Chen et al. [156], Zhang et al.
[157], Haxby et al. [158], Bazeille et al. [131], Richard et al. [132]. To test the reliability of our effects
(e.g. prediction performance, feature importance, model comparison), we assess confidence inter-
vals and p-values across subjects using a non-parametric Wilcoxon rank test across subjects. When
applicable, we correct these estimates for multiple comparisons using a false discovery rate (FDR)
across time samples and channels. Note that subjects can be treated as independent observations
to derive meaningful p-values since the statistics are based on held-out data independent from the
training set.

Noise Ceiling Noise ceilings are typically estimated using batches of repeated conditions [159, 160,
152], to evaluate the maximal amount of explainable variance. This involves multiple presentations of
the same stimulus characterized by a given feature set. In our case, however, sentences are presented
only once to each subject. Further, we cannot control one of the variables input to our encoding
models : namely, the baseline brain activity.

2.4 . Experiment on MEG data

Experimental design We analyze 99 subjects from theMother Of Unification Studies (MOUS) da-
taset [161] who performed a one-hour reading task while being recorded with a 273-channel CTF MEG
scanner. The task consisted of reading approximately 2,700 words flashed on a screen in rapid series.
Words were presented sequentially in groups of 10 to 15, with a mean inter-stimulus interval of 0.78
seconds (min : 300ms, max : 1,400ms). Sequences were either random word lists or actual sentences
(50% each). For this study, both conditions were used to obtain a larger data sample. However, this
study does not investigate the differences obtained across these two conditions and instead focuses
on word attributes (e.g. visual length and frequency of use in language) that are independent of the
sentence context. Out of the original 102 subjects, 3 were discarded from the study because we could
not reliably parse their stimulus channels.

Stimulus preprocessing We focus on four well-known features associated with reading, namely
word length (i.e., the number of letters in a word), word frequency in natural language (as derived
by the wordfreq Python package [162], and measured on a logarithmic scale), and a binary indicator
for the first and last words of the sequence. At a given time t, each stimulus ut ∈ R4 is therefore
encoded with four values, fed to the models as a square function that is non-zero for the duration
of the stimulus. Each feature is standardized to have zero mean and unit variance. Word length is
expected to elicit an early (from t=100 ms) visual response in posterior MEG sensors, whereas word
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frequency is expected to elicit a late (from t=400 ms) left-lateralized response in anterior sensors. In
the present task, word length and word frequency are correlated R=-0.48.

MEG Preprocessing As we are primarily interested in evoked responses [163], we band-pass fil-
tered between 1 and 30Hz and downsampled the data to 120Hz using the MNE software [164] with
default settings : i.e. a FIR filter with a Hamming window, a lower transition bandwidth of 1Hz with
-6 dB attenuation at 0.50 Hz and a 7.50Hz upper transition bandwidth with an attenuation of -6 dB at
33.75Hz.

To limit the interference of large artefacts on model training, we use Scikit-learn’s RobustScaler
with default settings [165] to normalize each sensor using the 25th and 75th quantiles. Following this
step, most of the MEG signals will have a scale around 1. Since we observed a few large scale outliers,
we chose to reject any segment of 3 seconds that contains amplitudes higher than 16 in absolute value
(fewer than 0.8% of the time samples).

These continuous data are then segmented between 0.5 s before and 2 s after word onset, yielding
a three-dimensional MEG tensor per subject : words, sensors, and time samples relative to word
onset. For each subject, we form a training, validation, and test set using respectively 70%, 10%, and
20% of these segments, ensuring that two segments from different sets do not originate from the
same word sequence to avoid information leakage. This corresponds to 191K, 27K, and 53K segments
used for the train, validation, and test sets, respectively. Each segment has a spatial dimension of 273
sensors and a temporal dimension of 300 time points (2.5 s sampled at 120Hz).

For clarity, some figures use global field power (GFP) to summarize effects over time. GFP refers
to the standard deviation across MEG channels of an average evoked response.

Model hyper parameters We compare the three models introduced in Section 2.3 over ns = 99

subjects. For the TRF, we use a lag on the control of τu = 250 time steps (about 2 s). This corresponds
to the duration of the signal after the stimulus onset. For the RTRF, we use τu = τh = 40 time steps.
This lag is close to the minimum inter-word duration of 300ms, and corresponds to the part of the
initial MEG (i.e. 333ms out of 500ms, at 120Hz) that is passed to the model to predict the 2.5 s MEG
sequence during the evaluation.

For the DREmodel, we use a subject embedding of dimension ds = 16, a latent state of dimension
dh = 512, a kernel sizeK = 4, and a stride S = 2. The subject embeddings are initialized as Gaussian
vectors with zero mean and unit variance, while the weights of the convolutional layers and the LSTM
are initialized using the default “Kaiming” initialization [166]. Like its linear counterpart, the DRE is
given the first 333ms of the MEG signal to predict the complete 2.5 s of a training sample.

Ablation study To investigate the importance of the different components of the DRE model, we
implement an ablation study by fitting the model with all but one of its components. To this end, we
compare the DRE to i) the DRE without using the 333ms of pre-stimulus initial MEG data (DRE NO-
INIT), ii) the DRE trained in the 40-dimensional PCA space used for the linear models (DRE PCA), iii) the
DRE devoid of a subject embedding (DRE NO-SUBJECT), and to iv) the DRE devoid of the convolutional
auto-encoder (DRE NO-CONV).
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The code developed for the present study is available at :
https://github.com/facebookresearch/deepmeg-recurrent-encoder.

2.5 . Results

We first evaluate the DRE’s ability to predict brain responses to written words presented in rapid
serial visual presentation and measured with MEG, and compare these brain predictions to those
of linear encoding models (TRF, RTRF). Then, we show with ablation experiments which elements
of the DRE help address the challenges of rich dynamics, inter-subject, and inter-trial variability. Fi-
nally, we show how feature importance helps address the third challenge introduced above, namely :
identifying the relationship between brain responses and stimulus features. Our feature importance
analysis shows that representations learnt by our DRE model are useful beyond the supervised task
of forecasting brain activity. They capture meaningful interactions between brain activity and exter-
nal stimuli, which makes them interpretable as an unsupervised goal. Using a supervised objective to
achieve an unsupervised goal falls within our definition of self-supervised learning from section 1.1.
Modeling rich MEG dynamics : model comparison. DRE outperforms the baseline TRF and
RTRF models with up to a three-fold improvement (Figure 2.2). To provide a fair comparison between
the models, we also compare TRF to a NO-INIT DRE, i.e. to a DRE architecture that ignores the pre-
stimulus MEG activity. The results show that DRE NO-INIT consistently outperforms TRF (mean corre-
lation score R = 0.077 on average across all subjects, time samples, and all channels ; standard error
of themean across subjects :± 0.002 for DRE NO-INIT vs.R = 0.064±0.002 for TRF). This difference is
strongly significant (p < 10−17) under a Wilcoxon test across subjects. Similarly, DRE (R=0.20± 0.003)
significantly (p < 10−17) outperforms RTRF (R=0.10 ± 0.003), when both of these models are given as
input the pre-stimulus MEG activity. To verify that this gain is not trivially accounted for by the limited
dimensionality of RTRF (trainedwith 40-dimensional Principal Components because of computational
limitations), we trained DRE with the same PCA-reduced data as RTRF. The results confirm that DRE
obtains a higher performance (R=0.16 ± 0.003, p < 10−16) than RTRF. Overall, these results suggest
that DRE better models the rich M/EEG dynamics than linear models.
Subject embeddings efficiently capture inter-individual variability To evaluate the im-
portance of the subject-embedding layer in capturing inter-individual variability, we trained the DRE
without a subject embedding layer (DRE NO-SUB). The comparison between DRE and DRE NO-SUB
reveals a clear difference (∆R = 0.038, p < 10−17). This result shows that the subject embedding
layer efficiently re-aligns subjects’ brain responses to model the dynamics specific to each – or shared
across – subject(s).
Recurrence efficiently captures inter-trial variability. Brain responses to sensory input
are known to vary with ongoing brain activity[71, 167]. Recurrent models (RTRF, DRE) are thus well
suited to capture such phenomenon : initialized with 333ms of pre-stimulus MEG, they can use basal
brain activity to modulate the post-stimulus MEG predictions. Our results confirm this prediction :
TRF is outperformed by RTRF (0.10 ± 0.003, p < 10−16) with an average performance increment of

41

https://github.com/facebookresearch/deepmeg-recurrent-encoder


0.0 0.1 0.2 0.3 0.4
Pearson R

TRF
Linear                  

RTRF

DRE 
 (NO-INIT)

Nonlinear                  
DRE

< 10 17

< 10 17

< 10 16

< 10 17

A No init.
Init.

-0.05 0.0 0.05 0.1 0.15 0.2
Pearson R with the DRE

DRE 
 (PCA)

DRE 
 (NO-SUB)

DRE 
 (NO-CONV)

< 10 16

< 10 17

< 10 5

B
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∆R = 0.03, and DRE (0.20 ± 0.003) outperforms DRE NO-INIT (0.077 ± 0.002%, p < 10−17) with an
average performance increment of∆R = 0.12.
DRE’s recurrence specifically captures alpha-dependent evoked responses. To further
explore howDRE learns inter-trial variability, we investigate a well-known interaction between evoked
responses and pre-stimulus activity. Specifically, brain responses to sensory input are known to be
modulated by pre-stimulus oscillatory activity in the “alpha" frequency range (8 - 13Hz) [71]. To test
whether this phenomenon can be detected in the present dataset, we compared the average evoked
responses to words for “high pre-stimulus alpha" versus “low alpha" trials, using a median split for
each subject separately. The results (Figure 2.3) show an effect of up to 50×10−12T in fronto-temporal
channels, peaking around 400ms after word onset. Critically, while the single-trial predictions of DRE
capture this phenomenon, neither TRF nor RTRF learn tomodulate their evoked responses depending
on the alpha power (Figure 2.3B. Bottom).

This interaction between pre-stimulus alpha activity and evoked responses varies with the content
of words, and more specifically, with their frequency in natural language : a factorial split between
“high alpha" versus “low alpha" trials and “high word frequency" versus “low word frequency" trials
resulted in both main and interaction effects (Figure 2.3C-D). Specifically, the comparison between
these 2x2 conditions reveals three main phases. First, a main effect of alpha can be observed before
the evoked response (light vs. dark lines in Figure 2.3C, p < 10−3). Second, the main effect of word
frequency starts to become significant from ≈ 200ms (blue vs. red lines, p < 10−4). Finally, the main
effect of alpha starts to fade away after≈ 500ms (p > 10−2 for high-frequency words), but its interac-
tion with the stimulus continues to be significant (p < 10−2). Critically, DRE learns these interactions
between pre-stimulus alpha power and stimulus responses, while the linear models do not.
Feature importance helps interpreting the links between brain responses and stimu-
lus features Interpreting nonlinear and/or high-dimensional models is notoriously challenging
[168]. This issue poses strong limitations on the application of deep learning to neural recordings,
where interpretability remains a major goal [70, 169]. While DRE faces the same types of issues as any
deep neural network, we show below that a simple feature importance analysis of the predictions of
this model (as opposed to its parameters) yields results that are consistent with those obtained by
linear models, and with those described in neuroscientific literature (cf. Section 2.3).

Feature importance quantifies the loss of prediction performance ∆R when a unique feature
is shuffled across words as compared to a non-shuffled prediction. Here, we focus our analysis on
word length and word frequency, as these two features have been repeatedly associated with early
sensory responses in the visual cortex and late lexical responses in the temporal cortex, respectively
[170, 171]. As expected, the feature importance for word length in Figure 2.4 peaked around 150ms in
posterior MEG channels, whereas the feature importance of word frequency peaked around 400ms
in fronto-temporal MEG channels, for both the TRF and the DRE models. Furthermore, we recover
a second phenomenon known in the literature : the lateralization of lexical processing in the brain.
Indeed, Figure 2.4 shows, for the word frequency, an effect similar in shape across hemispheres, but
significantly higher in amplitude for the left hemisphere (e.g. p < 10−10 in the frontal region, p < 10−12

in the temporal region, for the DRE).
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These results suggest that, in spite of being high dimensional and nonlinear, DRE can be interpre-
ted similarly to linear models in the present context.

2.6 . Discussion

The present study demonstrates that DRE outperforms several of its linear counterparts to predict
MEG time series. In particular, it addresses the three challenges introduced above. First, the complex,
nonlinear and non-stationary dynamics can be efficientlymodeled by deep convolutional LSTM layers.
Second, inter-trial and inter-individual variability can be addressed with recurrence (i.e. MEG-INIT)
and subject embeddings, respectively. Finally, the relationship between stimulus features and brain
responses can be interpreted in light of a permutation-based feature importance analyses.

Overall, the present study shows that the gain in prediction performance obtained by deep lear-
ning algorithms may not necessarily come at the price of interpretability. Indeed, we show here that
DRE can be probed a posteriori to reveal how evoked responses relate to each stimulus feature and/or
to pre-stimulus brain activity. This feature importance supplements ongoing efforts to open black-
box models of brain activity. For example, Güçlü and Gerven [152] used a recurrent neural network to
predict fMRI recordings, and quantified the impact of stimulus features by correlating them with the
model’s hidden state. Similarly, Keshishian et al. [96], analyzed the activations of a deep convolutional
network with TRF to show how they captured “dynamical receptive fields". In both of these cases, ho-
wever, these post-hoc analyses are based on (i) linear assumptions and (ii) the inner activations of the
model. By contrast, the permutation feature importance used here focuses on probabilistic depen-
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dencies between input features and the models’ predictions, which generalize linear dependencies
measured by correlation [153]. This approach can thus be applied to any black-box predictive model.

Deep neural networks have not yet emerged as the go-to method for neuroimaging [172, 173]. Ne-
vertheless, several studies have successfully used deep learning architectures to model brain signals
[174–177, 134]. In particular, deep nets trained onnatural images [178–180], sounds [96], or text [181] are
being increasingly used as an encoding model for predicting neural responses to sensory stimulation
[97, 182, 98, 99]. Conversely, deep nets have also been trained to decode sensory-motor signals from
neural activity, successfully reconstructing text [183] from Electrocorticography (ECoG) recordings, or
images [184] from functional magnetic resonance imaging (fMRI). Despite these successes, we would
like to argue that what possibly limits a wider impact of deep learning in human cognitive neuros-
cience is a combination of factors including : (i) low signal-to-noise ratio, (ii) small datasets, and (iii) a
lack of high temporal resolution, where nonlinear dynamics may be themost prominent. The present
experimental results make a step in this direction, and could thus open an avenue towards leveraging
the many existing shorter naturalistic stimulus datasets collected on many subjects. This could be an
alternative to making new long recordings of many hours of data from a handful of subjects [185].

While the DRE’s architecture may be efficient at handling the dynamical structure of brain data,
the dynamics assessed in this study are driven by specific linguistic features (i.e. word-length and
word frequency). By contrast, recent ECoG and MEG studies have used more complex word features,
represented as activations of a deep network pretrained on visual or language tasks [186–188], and
then predict the brain response in a way that is unaware of the dynamics (using a linear classifier
for each time sample independently). Given the successes independently observed with these two
approaches, a natural extension of this work would be to combine the two and learn to map complex
stimuli to brain responses using (1) rich representations for the stimuli (such as the activations of a
pretrained deep network), followed by (2) a rich dynamical model such as the DRE. It is however worth
pointing out that this approach would naturally lead to more high-dimensional parameter spaces,
which would require larger datasets to limit potential overfitting.

The present work is based on a deterministic and predictive framework using deep learning. Other
complementary approaches such as Hidden Markov Models (HMMs) and Gaussian Processes (GPs)
have also been proposed to model brain data in a probabilistic framework. Such approaches have
been exploited to explore the spatio-temporal statistics of fMRI or MEG data [189, 190], but also in
an encoding context [191, 192]. In particular, [189] combine GPs and dynamical system modeling to
account for MEG responses to tactile input and shows that it captures meaningful modulations of
oscillatory activity. This approach may offer a promising avenue to further clarify the interaction bet-
ween baseline alpha oscillations and visual responses captured by DRE (see Figure 2.3). Similarly, [192]
show that Gaussian modeling efficiently learns to predict fMRI responses to visual stimuli, and, im-
portantly, can be inverted to achieve zero-shot decoding of individual characters. By contrast, our
encoding approach would necessitate additional fine-tuning to transfer DRE to a novel decoding task.
Overall, a key advantage of probabilistic models like GP is the ability to quantify uncertainty in the
predictions, which in the present forecasting scenario would likely increase when looking at late la-
tencies. While the proposed approach does not offer this possibility, the present study benefits from
the highly-optimized ecosystem of deep learning, which allows us to efficiently deal with the large size
of raw MEG data (273 MEG channels sampled at 1,200Hz and recorded for 60 min in 99 subjects).
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It is worth noting that because the losses used to train themodels in this paper areMSEs evaluated
in the time domain, the TRF, RTRF, and DRE are solely trained and evaluated on their ability to predict
the amplitude of the neural signal at each time sample. Consequently, the objective solely focuses on
“evoked" activity, i.e. neural signals that are strictly phase-locked to stimulus onset or to past brain
signals [163]. A quick time-frequency decomposition of themodels suggest that none of them capture
“induced" activity, e.g. changes in the amplitude of neural oscillations with a non-deterministic phase.
A fundamentally distinct loss would be necessary to capture such non phase-locked neural dynamics.

As for many other scientific disciplines, deep neural networks will undoubtedly complement – if
not shift – themyriad of analytical pipelines developed over the years toward standardized end-to-end
modeling. While such methodological development may improve our ability to predict how the brain
responds to various exogenous stimuli, the present attempt already highlights the many challenges
that this approach entails. Nevertheless, the present results hopefully clearly demonstrate that deep
networks are a very relevant technology to capture complex neural dynamics collected non-invasively
by MEG and certainly EEG.
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2.7 . Supplemental Material

Figure 2.5 reports an alternative scoring of the main models using the R2 score instead of the
Pearson correlation R. It is interpretable as explained variance is a quantity upper bounded by 1, as
opposed to MSE which depends on the input scaling of the data. Due to the very small SNR of single
trial and unaveraged MEG recordings, we obtain low values as expected. Indeed, some variance in
the signal is explained by noise only, whose amplitude is on a scale 10 times larger that of the evoked
response. However, the ordering of model performance and the conclusions are left unchanged.
Note on convolution and computational efficiency The introduction of convolutional layers
is here mainly motivated by computational efficiency : convolutional layers reduced training time on
an NVIDIA V100 GPU from 2.6h for a DRE devoid of convolutional layers down to 1.4 h for our DRE. The
performance between these two models is relatively similar, although with a slight benefit in favour
of DRE :(NO-CONV : 0.194± 0.003% ; DRE : 0.197± 0.003%, p < 10−5).
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3 - Classification Tasks on EEG data

This chapter presents the work published in :H. Banville, O. Chehab, A. Hyvarinen, D. Engemann, A. Gramfort. Uncovering the structure
of clinical EEG signals with self-supervised learning. Journal of Neural Engineering, 2021.

This version is shortened form of the original article. We also include some unpublished theoreti-
cal investigations in section 3.5.

3.1 . Summary

Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalo-
graphy (EEG), where labeling can be costly in terms of specialized expertise and human processing
time. Consequently, deep learning architectures designed to learn on EEG data have yielded relatively
shallow models and performances at best similar to those of traditional feature-based approaches.
However, inmost situations, unlabeled data is available in abundance. By extracting information from
this unlabeled data, it might be possible to reach competitive performancewith deep neural networks
despite limited access to labels. We investigated self-supervised learning (SSL), a promising technique
for discovering structure in unlabeled data, to learn representations of EEG signals. Specifically, we
explored two tasks based on temporal context prediction as well as contrastive predictive coding on
two clinically-relevant problems : EEG-based sleep staging and pathology detection. We conducted
experiments on two large public datasets with thousands of recordings and performed baseline com-
parisons with purely supervised and hand-engineered approaches. Linear classifiers trained on SSL-
learned features consistently outperformed purely supervised deep neural networks in low-labeled
data regimeswhile reaching competitive performancewhen all labels were available. Additionally, the
embeddings learned with each method revealed clear latent structures related to physiological and
clinical phenomena, such as age effects. We demonstrate the benefit of SSL approaches on EEG data.
Our results suggest that self-supervision may pave the way to a wider use of deep learning models
on EEG data.

3.2 . Self-Supervised Classification Tasks

In the following, we describe the three Contrastive tasks used in Banville et al. [197]. A visual expla-
nation of the tasks can be found in Fig. 3.1. An implementation of one of the proposed tasks (Relative
Positioning) is available in the braindecode 1 Python library [198].

1. https://github.com/braindecode/braindecode
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Electroencephalography (EEG) is a non-invasive technique for recording brain activity. Typi-
cally, the electric activity of the brain is recorded from a few subjects in a controlled setting. Such a
controlled experiment enables annotations (e.g. stimulus presented to a subject) [70] and metadata
(e.g. age) [199] to be collected and statistically analysed in the framework of supervised statistical
learning. However, it does not scale well to a large cohort of subjects : it can be both time-consuming
and expensive for experts to manually annotate the recorded signals. This motivates looking beyond
classical supervised approaches where few labels are available. Increasingly, EEG datasets are being
shared in the public domain and larger quantities of data aremade available butwith few annotations.
This is where unsupervised methods such as Contrastive Learning have their mark to make.
Notation Wedenote by JqK the set {1, . . . , q} and by Jp, qK the set {p, . . . , q} for any integer p, q ∈ N.
The index t refers to time indices in themultivariate time series S ∈ RC×M , whereM is the number of
time samples and C is the dimension of samples (e.g., channels). We assume for simplicity that each
S has the same size. We denote by y ∈ {−1, 1} a binary label used in the learning task.
Relative Positioning To produce labeled samples from the multivariate time series S, we pro-
pose to sample pairs of time windows (xt,xt′) where each window xt, xt′ is in RC×T and T is the
duration of each window, and where the index t indicates the time sample at which the window starts
in S. The first window xt is referred to as the “anchor window”. Our assumption is that an appropriate
representation of the data should evolve slowly over time (akin to the driving hypothesis behind Slow
Feature Analysis (SFA) [200, 201]) suggesting that time windows close in time should share the same
label. In the context of sleep staging, for instance, sleep stages usually last between 1 to 40 minutes
[202] ; therefore, nearby windows likely come from the same sleep stage, whereas faraway windows
likely come from different sleep stages. Given τpos ∈ N, which controls the duration of the positive
context, and τneg ∈ N, which corresponds to the negative context around each window xi, we sample
N labeled pairs :

ZN = {((xti ,xt′i
), yi) | i ∈ JNK, (ti, t′i) ∈ T , yi ∈ Y},

where Y = {−1, 1} and T = {(t, t′) ∈ JM − T + 1K2 | |t− t′| ≤ τpos or |t− t′| > τneg}. Intuitively, Tis the set of all pairs of time indices (t, t′) which can be constructed from windows of size T in a time
series of sizeM , given the duration constraints imposed by the particular choices of τpos and τneg 2.Here yi ∈ Y is specified by the positive or negative contexts parameters :

yi =

®
1, if |ti − t′i| ≤ τpos

−1, if |ti − t′i| > τneg (3.1)
.

We ignore window pairs where xt′ falls outside of the positive and negative contexts of the anchorwindow xt. In other words, the label indicates whether two timewindows are closer together than τposor farther apart than τneg in time. Noting the connection with the task in [203], we call this pretext task
“relative positioning” (RP).

2. The values of τpos and τneg can be selected based on prior knowledge of the signals and/or with a hyper-parameter search.
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Figure 3.1 – Visual explanation of the three proposed Contrastive pretext tasks (RP, TS and CPC). Thefirst column illustrates the sampling process by which examples are extracted from a time series
S (EEG recording) in each pretext task. The second column describes the training process, wheresampled examples are used to train a feature extractor hΘ end-to-end. RP : Pairs of windows aresampled from S such that the two windows of a pair are either close in time (“positive pairs”) orfarther away (“negative pairs”). hΘ is then trained to predict whether a pair is positive or negative.
TS : Triplets of windows (rather than pairs) are sampled from S. A triplet is given a positive label if itswindows are ordered or a negative label if they are shuffled. hΘ is then trained to predict whetherthe windows of a triplet are ordered or shuffled. CPC : Sequences of Nc + Np consecutive windowsare sampled from S along with random distractor windows (“negative samples”). Given the first Ncwindows of a sequence (the “context”), a neural network is trained to identify which window out of aset of distractor windows actually follows the context.
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In order to learn end-to-end how to discriminate pairs of time windows based on their relative
position, we introduce two functions hΘ and gRP . hΘ : RC×T → RD is a feature extractor with
parameters Θ which maps a window x to its representation in the feature space. Ultimately, we
expect hΘ to learn an informative representation of the raw EEG input which can be reused in dif-
ferent downstream tasks. A contrastive module gRP is then used to aggregate the feature represen-
tations of each window. For the RP task, gRP : RD × RD → RD combines representations from
pairs of windows by computing an elementwise absolute difference, denoted by the | · | operator :
gRP (hΘ(x),hΘ(x

′)) = |hΘ(x) − hΘ(x
′)| ∈ RD. The role of gRP is to aggregate the feature vectors

extracted by hΘ on the two input windows and highlight their differences to simplify the contrastive
task. Finally, a linear context discriminative model with coefficients w ∈ RD and bias term w0 ∈ R is
responsible for predicting the associated target y. Using the binary logistic loss on the predictions of
gRP we can write a joint loss function L(Θ,w,w0) as

L(Θ,w,w0)

=
∑

(xt,xt′ ,y)∈ZN

log(1 + exp(−y[w⊤gRP (hΘ(xt),hΘ(xt′)) +w0])) (3.2)

which we assume to be fully differentiable with respect to the parameters (Θ,w,w0). Given the
convention used for y, the predicted target is the sign ofw⊤g(hΘ(xt),hΘ(xt′)) +w0.
Temporal shuffling We also introduce a variation of the RP task that we call “temporal shuffling”
(TS), in which we instead sample two anchor windows xt and xt′′ from the positive context, and a
third window xt′ that is either between the first two windows or in the negative context. We then
construct window triplets that are either temporally ordered (t < t′ < t′′) or shuffled (t < t′′ < t′

or t′ < t < t′′). We augment the number of possible triplets by also considering the mirror image of
the previous triplets, e.g., (xt,xt′ ,xt′′) becomes (xt′′ ,xt′ ,xt). The label yi then indicates whether thethree windows are ordered or have been shuffled, similar to [204].

The contrastive module for TS is defined as gTS : RD × RD × RD → R2D and is implemented by
concatenating the absolute differences :

gTS(hΘ(x),hΘ(x
′),hΘ(x

′′)) = (|hΘ(x)− hΘ(x
′)|, |hΘ(x

′)− hΘ(x
′′)|) ∈ R2D .

Moreover, Eq. 3.2 is extended to TS by replacing gRP by gTS and introducing xt′′ to obtain :
L(Θ,w,w0)

=
∑

(xt,xt′ ,xt′′ ,y)∈ZN

log(1 + exp(−y[w⊤gTS(hΘ(xt),hΘ(xt′),hΘ(xt′′)) +w0])) . (3.3)

TS shares similarities with the unsupervised metric learning approach of [205], however the sampling
procedure and loss function both differ.
Contrastive Predictive Coding The contrastive predictive coding (CPC) pretext task, introduced
byOord et al. [206], is defined here in comparison to RP and TS, as all three tasks share key similarities.
Indeed, CPC can be seen as an extension of RP, where the single anchor window xt is replaced by a
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sequence of Nc non-overlapping windows that are summarized by an autoregressive encoder gAR :

RD×Nc → RDAR with parameters ΘAR
3. This way, the information in the context can be represented

by a single vector ct ∈ RDAR . gAR can be implemented for example as a recurrent neural network
with gated-recurrent units (GRU).

The context vector ct is paired with not one, butNp future windows (or “steps”) which immediately
follow the context. Negative windows are then sampled in a similar way as with RP and TS when
τneg = 0, i.e., the negative context is relaxed to include the entire time series. For each future window,
Nb negative windowsx∗ are sampled inside eachmultivariate time seriesS (“same-recording negative
sampling”) or across all available S (“across-recording negative sampling”). For the sake of simplicity
and to follow the notation of the original CPC article, we modify our notation slightly : we now denote
a time window by xt where t is the index of the window in the list of all non-overlapping windows of
size T that can be extracted from a time series S. Therefore, the procedure for building a dataset with
N examples boils down to sampling sequencesXc,Xp andXn in the following manner :

Xc
i = (xti−Nc+1, . . . ,xti) (Nc context windows)

Xp
i = (xti+1, . . . ,xti+Np) (Np future windows)

Xn
i = (xt∗i1,1

, . . . ,xt∗i1,Nb

, . . . ,xt∗iNp,1
, . . . ,xt∗iNp,Nb

) (NpNb random negative windows)
where ti ∈ JNc,M −NpK. We denote with t∗ time indices of windows sampled uniformly at random.
The dataset then reads :

ZN = {(Xc
i , X

p
i , X

n
i ) | i ∈ JNK} . (3.4)

As with RP and TS, the feature extractor hΘ is used to extract a representation of size D from a
window xt. Finally, whereas the contrastive modules gRP and gTS explicitly relied on the absolute
value of the difference between embeddings h, here for each future window xt+k where k ∈ JNpK abilinear model fk parametrized byWk ∈ RD×DAR is used to predict whether the window chronologi-
cally follows the context ct or not :

fk(ct,hΘ(xt+k)) = hΘ(xt+k)
⊤Wkct (3.5)

Thewhole CPCmodel is trained end-to-endusing the InfoNCE loss [26] (a categorical cross-entropy
loss) defined as

L(Θ,ΘAR,Wk, . . . ,Wk+Np−1)

= −
∑

(Xc
i ,X

p
i ,X

n
i )∈ZN

cti=gAR(Xc
i )

Np∑
k=1

log

 exp(fk(cti ,hΘ(xti+k)))

exp(fk(cti ,hΘ(xti+k))) +
∑

j∈JNbK

exp(fk(cti ,hΘ(xt∗ik,j
)))

 (3.6)

While in RP and TS the model must predict whether a pair is positive or negative, in CPC the model
must pick which of Nb + 1 windows actually follows the context. In practice, we sample batches of
Nb +1 sequences and for each sequence use theNb other sequences in the batch to supply negativeexamples.

3. CPC’s encoder gAR has parameters ΘAR, however we omit them from the notation for brevity.
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3.3 . Evaluation setup

Downstream Tasks We performed empirical benchmarks of EEG-based contrastive tasks on two
clinical problems that are representative of the current challenges inmachine learning-based analysis
of EEG : sleepmonitoring and pathology screening. These two clinical problems commonly give rise to
classification tasks, albeit with different numbers of classes anddistinct data-generatingmechanisms :
sleepmonitoring is concernedwith biological events (event level) while pathology screening is concer-
ned with single patients as compared to the population (subject level). These two clinical problems
have generated considerable attention in the research community, which has led to the curation of
large public databases. To enable fair comparisons with supervised approaches, we benchmarked
the contrastive tasks on the Physionet Challenge 2018 [207, 208] and the TUH Abnormal EEG [209]
datasets.

First, we considered sleep staging, which is a critical component of a typical sleep monitoring
assessment and is key to diagnosing and studying sleep disorders such as apnea and narcolepsy
[86]. Sleep staging has been extensively studied in the machine (and deep) learning literature [210–
212] (approximately 10% of papers reviewed in [212]), though not through the lens of SSL. Achieving
fully automated sleep staging could have a substantial impact on clinical practice as (1) agreement
between human raters is often limited [213] and (2) the annotation process is time-consuming and
still largely manual [214]. Sleep staging typically gives rise to a 5-class classification problemwhere the
possible predictions are W (wake), N1, N2, N3 (different levels of sleep) and R (rapid eye movement
periods). Here, the task consists of predicting the sleep stages that correspond to 30-s windows of
EEG.

Second, we applied contrastive learning to pathology detection : EEG is routinely used in a clini-
cal context to screen individuals for neurological conditions such as epilepsy and dementia [87, 88].
However, successful pathology detection requires highly specialized medical expertise and its quality
depends on the expert’s training and experience. Automated pathology detection could, therefore,
have amajor impact on clinical practice by facilitating neurological screening. This gives rise to classifi-
cation tasks at the subject level where the challenge is to infer the patient’s diagnosis or health status
from the EEG recording. In the TUH dataset, medical specialists have labeled recordings as either pa-
thological or non-pathological, giving rise to a binary classification problem. Importantly, these two
labels reflect highly heterogeneous situations : a pathological recording could reflect anomalies due to
various medical conditions, suggesting a rather complex data-generating mechanism. Again, various
supervised approaches, some of them leveraging deep architectures, have addressed this task in the
literature [215–217], although none has relied on contrastive learning formulated as a self-supervised
task.

The two aforementioned EEG datasets are described in Tables 3.1 and 3.2.

3.4 . Results

Results : all three Contrastive Tasks recover physiologically meaningful features The
three tasks we consider – Relative Positioning (RP), Temporal Shuffling (TS), and Contrastive Predictive
Coding (CPC) – learn representations of the data that encode the same sleep-stage structure that is
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Figure 3.2 – UMAP visualization of Contrastive Learning features on the PC18 dataset. The subplotsshow the distribution of the 5 sleep stages as scatterplots for RP (first row), TS (second row) and CPC(third row) features. Contour lines correspond to the density levels of the distribution across all stagesand are used as visual reference. Finally, each point corresponds to the features extracted from a 30-s window of EEG by the RP, TS and CPC embedders with the highest downstream performance. Allavailable windows from the train, validation and test sets of PC18 were used. In each case, there isclear structure related to sleep stages although no labels were available during training.

57



PC18 (train)
# windowsW 158,020 # unique subjects 994N1 136,858 # recordings 994N2 377,426 Sampling frequency 200 HzN3 102,492 # EEG channels 6R 116,872 Reference M1 or M2Total 891,668

Table 3.1 – Description of the Physionet Challenge 2018 (PC18) dataset used in this study forsleep staging experiments.
TUHab

train eval # unique subjects 2329# recordings # recordings # recordings 2993Normal 1371 150 Sampling frequency 250, 256, 512 HzAbnormal 1346 126 # EEG channels 27 to 36Total 2717 276 Reference Common average
Table 3.2 – Description of the TUH Abnormal (TUHab) dataset used in this study for EEGpathology detection experiments.
known to practitioners. This is seen in Figure 3.2. The difference is, instead of a discrete partition into
five stages (W, N1, N2, N3, R), the Contrastive Tasks learn a continuous geometry in the latent space,
opening up the possibility of amore fine-grained organization of sleep.What ismore, Figure 3.3 shows
that RP, as well as TS and CPC (not shown), organize the latent space in such a way that physiologically
meaningful features, such as age, gender, pathology and apnea, can be discriminated. These would
typically be labels in a supervised setting : it is remarkable that a Contrastive Task designedwith only a
general notion of structure, basically recognizing temporal order, is able to learn finer structures such
as age and sleep stages as summary statistics of sorts. While it is not clear the minimization of the RP,
TS and CPC losses drive a similar latent space geometry, Figure 3.2 shows that as far as sleep-stage
clustering goes, the features are semantically similar. In part II , we will choose to focus then on a
simplified version of RP, the simplest of the three Contrastive Tasks considered here.
How to choose the Contrastive Hyperparameters Having empirically established the suc-
cess of the Contrastive Tasks at recovering features that are useful for various downstream tasks
(e.g. sleep-staging), the next step is to ask : how can we optimize these methods? Given an anchor
xt, the most obvious hyperparameters are perhaps the time lags τpos and τneg, from which to sample
positive and negative samples. Figure 3.5 shows that τpos is best chosen so that the positive pair is
closest in time : this is most striking in the top-left graph. Interestingly, this supports the choice made
by Permutation-Contrastive Learning (PCL) [16], where the positive windows are (xt,xt+1). What of
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Figure 3.3 – Structure learned by the embedders trained on the RP task. The models with the highestdownstream performance were used to embed the combined train, validation and test sets of thePC18 and TUHab datasets. The embeddings were then projected to two dimensions using UMAP anddiscretized into 500 x 500 “pixels”. For binary labels (“apnea”, “pathological” and “gender”), we visualizethe probability as heatmaps, i.e., the color indicates the probability that the label is true (e.g., that awindow in that region of the embedding overlaps with an apnea annotation). For age, the subjectsof each dataset were divided into 9 quantiles, and the color indicates which group was the mostfrequent in each bin. The features learned with Contrastive Learning capture physiologically-relevantstructure, such as pathology, age, apnea and gender. Note that the different clusters in the secondrow correspond to different experimental setups, as seen in Figure 3.4.
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Figure 3.4 – Structure related to the original recording’s number of EEG channels and measurementdate in learned features on the entire TUHab dataset. The overall different number of EEG channelsand measurement date in each cluster reveals that the cluster-like structure reflects differences inexperimental setups.

the negative pair ? Figure 3.5 provides little insight into the optimal negative pair of samples, given
that different choices of τneg yield roughly equivalent performances on the downstream task. Inter-
estingly, the Figure (row : CPC; columns : ‘sampling’) does show that downstream performance can
remain constant as the Pretext Contrastive Tasks yield greatly varying performances. This ‘disconnect’
between Pretext and Downstream performance, suggesting that they may not vary proportionally to
each other, is a topic we have just started to explore.

Let us conclude this chapter with a question that remains unanswered : what is the optimal noise
distribution for the Relative Positioning Task? Chapter 4 tackles this question in a simplified but prin-
cipled framework.
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A B

Figure 3.5 – Impact of principal hyperparameters on pretext (blue) and downstream (yellow) taskperformance, measured with balanced accuracy on the validation set of (A) PC18 and (B) TUHab. Eachrow corresponds to a different Contrastive Learning pretext task. For both RP and TS, we varied thehyperparameters that control the length of the positive and negative contexts (τpos, τneg , in seconds) ;the exponent “all” indicates that negative windows were sampled across all recordings instead ofwithin the same recording. For CPC, we varied the number of predicted windows and the type ofnegative sampling. Finally, the best hyperparameter values in terms of downstream task performanceare emphasized using vertical dashed lines.
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3.5 . Toward a Probabilistic Interpretation of Classification Tasks

We here sketch out how the self-supervised tasks presented in Banville et al. [197] could be mo-
tivated as probabilistic objectives. This work is not included in the publication but may serve as a
starting point for future research.
Relative Positioning This task is a classification task between pairs of windows from a timeseries
x(t). Nearby windows form a class Y = 1 and random windws form the other class Y = 0. The
decision model F (x) that was used in the experiments [197, Eq. 2] was

F (x1,x2;w,w0,Θ) =

D∑
d=1

wd|hΘ(x1)
d − hΘ(x2)

d|+ wd
0 (3.7)

using the notations from the paper. Recall that d indexes the components of a vector. We know from
classification theory that the optimal decision function is

F ∗(x1,x2) = log(p(x1,x2|Y = 1)/p(x1,x2|Y = 0)) (3.8)
We know from classification theory that the logistic loss used in the paper corresponds to matching
themodel and true ratios, exp(F ) and exp(F ∗), with a Bregman divergence.Wewant to equalize these
expressions, to find the statistical model p on the sources. We now make assumptions on p that will
conveniently make these expressions equal, and later discuss the validity of these assumptions.

Assumption 1 : bijective forward model The timeseries is generated by a forward model x(t) =

f(z(t))where themapping f is bijective andz(t) is a “source" timeseries. Thismeans that p(x1,x2|Y =

1) = pz(z1, z2|Y = 1)× |Jg(x1)| × |Jg(x2)| where g = f−1. And implies that
r∗(x1,x2) =

pz(z1, z2|Y = 1)

pz(z1, z2|Y = 0)
(3.9)

Assumption 2 : independence The components of the representation (
zi(t)

)
i∈J1,DK are mutually

independent processes. This implies
r∗(x1,x2) =

D∏
d=1

pz(z
d
1 , z

d
2 |Y = 1)

pz(zd1 , z
d
2 |Y = 0)

(3.10)
Assumption 3 : stationarity The components of the representation each follow a stationary process :

the marginal distribution is the same pz(zd1 |Y = 1) = pz(z
d
2 |Y = 0). This implies

r∗(x1,x2) =
D∏

d=1

pz(z
d
2 |zd1 |Y = 1)

pz(zd2 |zd1 |Y = 0)
(3.11)

Assumption 4 : Laplace innovations The components of the representation are conditionally driven
by Laplace innovations zd2 |zd1 , Y = y ∼ Laplace(location = zd1 , scale = sdy). Note that we suppose thatthe location and scale are respectively data-dependent and label-dependent, only. We then obtain

r∗(x1,x2) =

D∏
d=1

(1/2s1) exp(−|zd2 − zd1 |/sd1)
(1/2s0) exp(−|zd2 − zd1 |/sd0)

(3.12)
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Assumption 5 : identifiability We assume that ratio model being used satisfies some identifiability
conditions, so that equalizing r∗ and r leads to term-to-term identification. Then,

wd
0 = log sd0/s

d
1 (3.13)

wd =
1

sd0
− 1

sd1
(3.14)

the coefficient wd
0 recovers the relative scale between classes, and the sign of the coefficient wd says

which scale is bigger.
These five assumptions define a statistical model of sources for which the choice of classifier

in Eq. 3.7 is not mis-specified. There remains to check whether these assumptions are mutually com-
patible, or if some contradict others. We do not check this here and instead leave this as an intial
sketch-of-proof that could be used for a future project.
Temporal Shuffling This task is a classification task between triplets of windows from a timese-
ries x(t). Each class Y = 1 and Y = 0 is obtained by sampling triplets of windows in a different way ;
we refer the reader to section 3.2 for details on the sampling strategy that are not necessary to un-
derstand our sketch of proof. The decision model F (x) that was used in the experiments [197, Eq. 3]
was

F (x1,x2;w,w0,Θ) (3.15)
=

D∑
d=1

w
′d|hΘ(x2)

d − hΘ(x1)
d|+ w

′′d|hΘ(x3)
d − hΘ(x2)

d|+ w
′d
0 + w

′′d
0 (3.16)

using the notations from the paper. We know from classification theory that the optimal decision
function is

F ∗(x1,x2,x3) = log(p(x1,x2,x3|Y = 1)/p(x1,x2,x3|Y = 0)) (3.17)
We know from classification theory that the logistic loss used in the paper corresponds to matching
themodel and true ratios, exp(F ) and exp(F ∗), with a Bregman divergence.Wewant to equalize these
expressions, to find the statistical model p on the sources. We now make assumptions on p that will
conveniently make these expressions equal, and later discuss the validity of these assumptions.

Assumption 1 : bijective forward model The timeseries is generated by a forward model x(t) =

f(z(t))where themapping f is bijective andz(t) is a “source" timeseries. Thismeans that p(x1,x2,x3|Y =

1) = pz(z1, z2, z3|Y = 1)× |Jg(x1)| × |Jg(x2)| × |Jg(x3)| where g = f−1. And implies that
r∗(x1,x2,x3) =

pz(z1, z2, z3|Y = 1)

pz(z1, z2, z3|Y = 0)
(3.18)

Assumption 2 : independence The components of the representation (
zi(t)

)
i∈J1,DK are mutually

independent processes. This implies
r∗(x1,x2,x3) =

D∏
d=1

pz(z
d
1 , z

d
2 , z

d
3 |Y = 1)

pz(zd1 , z
d
2 , z

d
3 |Y = 0)

(3.19)
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Assumption 3 : stationarity and graphical model The components of the representation each follow
a stationary process : themarginal distribution is the same pz(zd1 |Y = 1) = pz(z

d
1 |Y = 0). Additionally,

we suppose a graphical model z1 → z2 → z3 which implies that p(z3|z1, z2, Y = j) does not depend
on z1. It follows,

r∗(x1,x2,x3) =

D∏
d=1

pz(z
d
3 |zd2 |Y = 1)× pz(z

d
2 |zd1 |Y = 1)

pz(zd3 |zd2 |Y = 0)× pz(zd2 |zd1 |Y = 0)
(3.20)

Assumption 4 : Laplace innovations The components of the representation are conditionally dri-
ven by Laplace innovations zd2 |zd1 , Y = y ∼ Laplace(location = zd1 , scale = s

′d
y ) and zd3 |zd2 , Y = y ∼

Laplace(location = zd2 , scale = s
′′d
y ). Note that we suppose that the location and scale are respectively

data-dependent and label-dependent, only.
r∗(x1,x2,x3) =

D∏
d=1

(1/2s
′d
1 ) exp(−|zd2 − zd1 |/s

′d
1 )× (1/2s

′′
1) exp(−|zd3 − zd2 |/s

′′d
1 )

(1/2s
′d
0 ) exp(−|zd2 − zd1 |/s

′d
0 )× (1/2s

′′d
0 ) exp(−|zd3 − zd2 |/s

′′d
0 )

(3.21)
Assumption 5 : identifiability We assume that ratio model being used satisfies some identifiability

conditions, so that equalizing r∗ and r leads to term-to-term identification. Then,
w

′d
0 = log s

′d
0 /s

′d
1 (3.22)

w
′d =

1

s
′d
0

− 1

s
′d
1

(3.23)
w

′′d
0 = log s

′′d
0 /s

′′d
1 (3.24)

w
′′d =

1

s
′′d
0

− 1

s
′′d
1

(3.25)
similar to Relative Positioning.

Again, these five assumptions define a statistical model of sources for which the choice of classi-
fier in Eq. 3.16 is not mis-specified. There remains to check whether these assumptions are mutually
compatible, or if some contradict others. We do not check this here and instead leave this as an intial
sketch-of-proof that could be used for a future project.
Contrastive Predictive Coding This task uses a classification objective that is different to binary
classification, but can nevertheless be interpreted asmatching log density ratios [26]. In the following,
we assume the integer k > 0 is fixed, for simplicity. The decision model used in the experiments was

F (zt, zt+k;Wk+1) = z
⊤
t Wkzt+k (3.26)

and the true decision model is
F ∗(xt,xt+k) = log

p(xt,xt+k|Y = 1)

p(xt,xt+k|Y = 0)
(3.27)

We can re-write the model ratio as
r(zt, zt+k;Wk+1) = exp

Åï
zt
zt+k

ò⊤ ï
ϵId Wk

Wk ϵId

ò ï
zt
zt+k

òã
. (3.28)
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We know from the classification theory in section 1.2 that the loss used in the paper corresponds
to matching the model and true ratios, exp(F ) and exp(F ∗), with a Bregman divergence. We want to
equalize these expressions, to find the statistical model p on the sources. We nowmake assumptions
on p that will conveniently make these expressions equal, and later discuss the validity of these as-
sumptions.

Assumption 1 : bijective forward model The timeseries is generated by a forward model x(t) =

f(z(t))where themapping f is bijective andz(t) is a “source" timeseries. Thismeans that p(x1,x2|Y =

1) = pz(z1, z2|Y = 1)× |Jg(x1)| × |Jg(x2)| where g = f−1. And implies that
r∗(x1,x2) =

pz(z1, z2|Y = 1)

pz(z1, z2|Y = 0)
(3.29)

Assumption 2 : stationarity and graphical model The components of the representation follow a
stationary, gaussian process, such that (zt, zt+k)|y ∼ N (0,Λy). Note that the covariance depends onthe label (which defines the sampling of time indices) only, not the time, hence stationarity. The ratio
is then

r∗(x1,x2) ∝ exp

Å
− 1

2

ï
zt
zt+k

ò⊤
(Λ1 −Λ0)

ï
zt
zt+k

òã
(3.30)

Assumption 3 : identifiability We assume that ratio model being used satisfies some identifiability
conditions, so that equalizing r∗ and r leads to term-to-term identification. Then,

Λ0 −Λ1 =

ï
ϵId Wk

Wk ϵId

ò
. (3.31)

In the limit of ϵ → 0, which means that (zt, zt+k) have a marginal variances but high co-variance, the
model and true ratios match.

Again, these five assumptions define a statisticalmodel of sources for which the choice of classifier
in Eq. 3.26 is notmis-specified. There remains to check whether these assumptions aremutually com-
patible, or if some contradict others. Importantly, there is no assumption on independence between
sources. We do not check these assumptions here and instead leave this as an intial sketch-of-proof
that could be used for a future project.
Discussion It was observed in Figure 3.2 that the representations learnt using RP and TS have a
similar UMAP reduction, while CPC does not. This could be due to the UMAP reduction itself, which
is inconsistent across seeds [218]. Another explanation however, could be that the representations
learnt using RP and TS are similarly distributed, whereas those learnt with CPC are not. This would
be supported by the proof-sketches which suggest that the representations learnt with RP and TS are
both autoregressive processes driven by Laplace innovations, whereas those learnt with CPC follow a
Gaussian process.What is clear is that the choice of analytical formula for the classifier(Eq. 3.7, Eq. 3.16,
Eq. 3.26) makes an assumption on the density ratio between classes. This is particularly relevant as
these classifier models were chosen by trial-and-error, as we had noticed during experiments that
using the “absolute value of the difference" (Eq. 3.7, Eq. 3.16) was crucial for learning compared with
other classifier choices.
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Deuxième partie

Statistical Analysis
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4 - Noise-Contrastive Estimation

This section presents the works published in :O. Chehab, A. Gramfort, A. Hyvarinen. The Optimal Noise in Noise-Contrastive Learning Is
Not What You Think. Uncertainty in Artificial Intelligence (UAI), 2022.

4.1 . Summary

Learning a parametric model of a data distribution is a well-known statistical problem that has
seen renewed interest as it is brought to scale in deep learning. Framing the problem as a self-
supervised task, where data samples are discriminated from noise samples, is at the core of state-
of-the-art methods, beginning with Noise-Contrastive Estimation (NCE). Yet, such contrastive learning
requires a good noise distribution, which is hard to specify ; domain-specific heuristics are therefore
widely used. While a comprehensive theory is missing, it is widely assumed that the optimal noise
should in practice be made equal to the data, both in distribution and proportion ; this setting un-
derlies Generative Adversarial Networks (GANs) in particular. Here, we empirically and theoretically
challenge this assumption on the optimal noise. We show that deviating from this assumption can ac-
tually lead to better statistical estimators, in terms of asymptotic variance. In particular, the optimal
noise distribution is different from the data’s and even from a different family.

4.2 . Introduction

Learning a parametricmodel of a data distribution is at the core of statistics andmachine learning.
Once amodel is learnt, it can be used to generate new data, to evaluate the likelihood of existing data,
or be introspected for meaningful structure such as conditional dependencies between its features.
Among an arsenal of statistical methods developed for this problem,Maximum-Likelihood Estimation
(MLE) has stood out as the go-tomethod : given data samples, it evaluates amodel’s likelihood to have
generated them and retains the best fit. However, MLE is limited by the fact that the parametricmodel
has to be properly normalized, which may not be computationally feasible.

In recent years, an alternative has emerged in the form of Noise-Contrastive Estimation (NCE) [11] :
given data samples, it generates noise samples and trains a discriminator to learn the data distribution
by constrast. Its supervised formulation, as a binary prediction task, is simple to understand and easy
to implement. In fact, NCE can be seen as one of the first and most fundamental methods of self-
supervised learning, which has seen a huge increase of interest recently [26, 219].

Crucially, NCE can handle unnormalized, i.e. energy-based, models. It has shown remarkable suc-
cess in Natural Language Processing [220, 221] and has spearheaded an entire family of contrastive
methods [63, 38, 222, 42, 223, 26].

While MLE is known to be optimal in the asymptotic limit of infinite samples, NCE is a popular
choice in practice due to its computational advantage. In fact, NCE outperforms Monte Carlo Maxi-
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mum Likelihood (MLE-MC) [224] - an MLE estimation procedure where normalization is performed by
importance sampling.

Nevertheless, NCE’s performance is however dependent on two hyperparameters : the choice of
noise distribution and the noise-data ratio (or, proportion of noise samples) [11]. A natural question
follows : what is the optimal choice of noise distribution, and proportion of noise (or, noise-data ratio)
for learning the data distribution? There are many heuristics for choosing the noise distribution and
ratio in the NCE setting. Conventional wisdom in the related setting of GANs and variants [223, 225] is
to set both the proportion and the distribution of noise to be equal to those of the data. The underlying
assumption is a game-theoretic notion of optimality : the task of discriminating data from noise is
hardest, and therefore most "rewarding", when noise and data are virtually indistinguishable. The
noise would then be optimal when the discriminator is no longer able to distinguish noise samples
from data samples.

However, such an adversarial formof trainingwhere a noise generator aims to fool the discrimina-
tor suffers from instability and mode-collapse [226, 227]. Furthermore, while the above assumptions
(optimal noise equals data) have been supported by numerous empirical successes, it is not clear
whether such a choice of noise (distribution and ratio) achieves optimality from a statistical estima-
tion viewpoint. In fact, the original NCE paper [11] already challenges this assumption by empirically
showing that an unbalanced noise-data proportion can reduce the estimation error. Since NCE is fun-
damentallymotivated by parameter estimation, the optimization of hyperparameters should logically
be based on that same framework.

In this work, we propose a principled approach for choosing the optimal noise distribution and
ratio while challenging, both theoretically and empirically, the current practice. In particular, wemake
the following claims that challenge conventional wisdom :

1. The optimal noise distribution is not the data distribution ; in fact, it is of a very different family
than the model family.

2. The optimal noise proportion is generally not 50%; the optimal noise-data ratio is not one.
The paper is organized as follows. First, we present NCE and related works in Section 4.3, as well as
the theoretical framework of asymptotic MSE that we use to optimize the NCE estimator. We start
Section 4.4 by empirically showing that the optimal noise distribution is not the data distribution. Our
main theoretical results describing the optimal noise distribution are in Section 4.4. Specifically, we
analytically provide the optimal noise for NCE in two interesting limits, and numerically verify how
optimal that optimal noise remains outside these limits. We further show empirically that the optimal
noise proportion is not 50% either. Finally we discuss the limitations of this work in Section 4.6 and
conclude in Section 4.6.
Notation We denote with pd a data distribution, pn a noise distribution, and (pθ)θ∈Θ a parametric
family of distributions assumed to contain the data distribution pd = pθ∗ . All distributions are nor-
malized, meaning that the NCE estimator does not consider the normalizing constant as a parameter
to be estimated to simplify the analysis : in this setup, NCE can be fairly compared to MLE and the
Cramer-Rao bound is well-defined and applicable. The logistic function is denoted by σ(x). We will de-
note by ν the ratio between the number of noise samples and data samples : ν = Tn/Td. The notation
⟨x, y⟩A := ⟨x,Ay⟩ refers to the inner product with metricA. The induced norm is ∥x∥A := ∥A

1
2x∥.
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4.3 . Background

Definition of NCE Noise-Contrastive Estimation consists in approximating a data distribution pdby training a discriminator D(x) to distinguish data samples (xi)i∈[1,Td] ∼ pd from noise samples
(xi)i∈[1,Tn] ∼ pn [11]. This defines a binary task where Y = 1 is the data label and Y = 0 is the noise
label. The discriminator is optimal when it equals the (Bayes) posterior

D(x) = P (Y = 1|X) = σ

Å
pd(x)

νpn(x)

ã
(4.1)

i.e. when it learns the density-ratio pd
pn

[11, 228]. The basic idea in NCE is that replacing in the ratio the
data distribution by pθ and optimizing a discriminator with respect to θ, yields a useful estimator θ̂NCEbecause at the optimum, the model density has to then equal the data density.

Importantly, there is no need for the model to be normalized ; the normalization constant (parti-
tion function) can be input as an extra parameter, in stark contrast to MLE.
Asymptotic analysis We consider here a very well-known framework to analyze the statistical
performance of an estimator. Fundamentally, we are interested in the Mean-Squared Error (MSE),
generally defined as

Eθ[(θ̂ − θ)2] = Varθ(θ̂) + Biasθ(θ̂,θ)
2

It canmainly be analyzed in the asymptotic regime, with the number of data points Td being very large.For (asymptotically) unbiased estimators, the estimator’s statistical performance is in fact completely
characterized by its asymptotic variance (or rather, covariance matrix) because the bias squared is of
a lower order for such estimators. The asymptotic variance is classically defined as

Σ = lim
Td→∞

Td Eθ[(θ̂ − Eθ[θ̂])(θ̂ − Eθ[θ̂])
⊤] (4.2)

where the estimator is evaluated for each sample size Td separately. Thus, we use the asymptotic
variance to compute an asymptotic approximation of the total Mean-Squared Error which we define
as

MSE =
1

Td
tr(Σ) . (4.3)

In the following, we talk about MSE to avoid any confusion regarding the role of bias : we empha-
size that the MSE is given by the asymptotic variance since the bias squared is of a lower order (for
consistent estimators, and under some technical constraints). Furthermore, theMSE is always defined
in the asymptotic sense as in Eqs. (4.2) and (4.3).

When considering normalized distributions, classical statistical theory tells us that the best attai-
nableMSE (among unbiased estimators) is the Cramer-Rao bound, achieved byMaximum-Likelihood
Estimation (MLE). This provides a useful baseline, and implies thatMSENCE ≥ MSEMLE necessarily.

In contrast to a classical statistical framework, however, we consider here the case where the
bottleneck of the estimator is the computation, while data samples are abundant. This is the case in
manymodernmachine learning applications. The computation can be taken proportional to the total
number of data points used, real data and noise samples together, which we denote by T = Td + Tn.Still, the same asymptotic analysis framework can be used.
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An asymptotic analysis of NCE has been carried out by Gutmann and Hyvärinen [11]. The MSE of
NCE depends on three design choices (hyperparameters) of the experiment :

• the noise distribution pn• the noise-data ratio ν = Tn/Td, from which the noise proportion can be equivalently calculated
• the total number of samples T = Td + Tn, corresponding here to the computational budget

Building on theorem 3 of Gutmann and Hyvärinen [11], we can writeMSENCE as a function of T (not
Td) to enforce a finite computational budget, giving

MSENCE(T, ν, pn) =
ν + 1

T
tr(I−1 − ν + 1

ν
(I−1mm⊤I−1)) (4.4)

wherem and I are a generalized score mean and covariance, where the integrand is weighted by the
term (1−D(x)) involving the optimal discriminatorD(x) :

m =

∫
g(x)(1−D(x))p(x)dx

I =

∫
g(x)g(x)⊤(1−D(x))p(x)dx (4.5)

The (Fisher) score vector is the gradient (or derivative in one dimension) of the log of the data dis-
tribution with respect to its parameter g(x) = ∇θ log pθ(x)|θ=θ∗ . Its actual (without the discrimina-
tor weight term) mean is null and its covariance is the Fisher Information matrix, written as IF =∫
g(x)g(x)⊤p(x)dx for the rest of the paper.
The question of statistical efficiency of NCE to bridge the gap with MLE therefore becomes to

optimize Eq. 4.4 with respect to the three hyperparameters.
Previous work Despite some early results, choosing the best noise distribution to reduce the
variance of the NCE estimator remains largely unexplored. Gutmann and Hyvärinen [11] and Pihlaja
et al. [63] remark that setting pn = pd offers a MSE (1 + 1

ν ) times higher than the Cramer-Rao bound.
Therefore, with an infinite budget T → ∞, taking all samples from noise ν → ∞ brings theMSENCEdown to the Cramer-Rao bound.

Motivated by the same goal of improving the statistical efficiency of NCE, Pihlaja et al. [63], Gut-
mann and Hirayama [38] and Uehara et al. [91] have looked at reducing the variance of NCE. They
relax the original NCE objective by writing it as an M-divergence between the distributions pd and pθ[91] or as a Bregman-divergence between the density ratios pd

νpn
and pθ

νpn
. Choosing a divergence boils

down to the use of specific non-linearities, which when chosen for the Jensen-Shannon f-divergence
leads to the NCE estimator. Pihlaja et al. [63] numerically explore which non-linearities lead to the
lowest MSE, but they explore estimators different from NCE.

More recently, Uehara et al. [91] show that the asymptotic variance of NCE can be further reduced
by using the MLE estimate of the noise parameters obtained from the noise samples, as opposed to
the true noise distribution. A similar idea underlies Flow-Contrastive Estimation [225]. While this is
useful in practice, it does not address the question of finding the optimal noise distribution.

When the noise distribution is fixed, it remains to optimize the noise-data ratio ν and samples
budget T . The effect of the samples budget on the NCE estimator is clear : it scales asMSENCE ∝ 1

T .Consequently and remarkably, the optimal noise distribution and noise-data ratio actually do not
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depend on the budget T . As for the noise-data ratio ν, while Gutmann and Hyvärinen [11] and Pihlaja
et al. [63] report that NCE reaches Cramer-Rao when both ν and T tend to infinity, it is of limited
practical use due to finite computational resources T . In the limit of finite samples, Pihlaja et al. [63]
offers numerical results touching on this matter, although it considers the noise prior is 50% which
greatly simplifies the problem as the MSE here becomes linearly dependent on ν.

4.4 . Optimizing noise in NCE

In this work we aim to directly optimize the MSE of the original NCE estimator with respect to
the noise distribution and noise-data ratio. Analytical optimization of theMSENCE with respect to thenoise distribution pn or ratio ν is a difficult task : both terms appear nonlinearly within the integrands.
Even in the simple case where the data follows a one-dimensional Gaussian distribution parameteri-
zed by variance, as specified in Section 2 of the Supplementary Material, the resulting expression is
intractable. This motivates the need for numerical methods.

In the following, we pursue two different strategies for finding the optimal pn. Either pn can be
chosenwithin the sameparametric family as the data distribution (we use the sameparametricmodel
for simplicity) as in Section 4.4 ; this leads to a simple one-dimensional optimization problem (e.g.
optimizing a Gaussian mean or variance θ). Or one can relax this assumption and use more flexible
“non-parametric" methods as in Sections 4.4 and 4.5, such as a histogram-based expression for pn. Inthe latter case, assuming the bins of histograms are fixed, one has in practice a higher-dimensional
optimization problem with one weight per histogram bin to estimate.

Optimization within the same parametric family We use here simple data distributions to
illustrate the difficulty of finding the optimal distribution. We work with families of a single scalar
parameter to make sure that the numerical calculations can be performed exactly.

The data distributions considered from now on are picked among three generative models with
a scalar parameter :
(a) a univariate Gaussian parameterized by its mean and whose variance is fixed to 1,
(b) a univariate zero-mean Gaussian parameterized by its variance,
(c) a two-dimensional zero-mean Gaussian parameterized by correlation, i.e. the off-diagonal en-

tries of the covariance matrix. The variables are taken standardized.
While the Gaussian distribution is simple, it is ubiquitous in generative models literature and re-

mains a popular choice in state-of-the-art deep learning algorithms, such as Variational Auto-Encoders
(VAEs). Yet, to our knowledge, it remains completely unknown to date how to design the optimal noise
to infer the parameters of a Gaussian using NCE.

Assuming the same parametric distribution for the noise as for the data, Figure 4.1 presents the
optimal noise parameter as a function of the data parameter. Details on numerical methods are ex-
plained below. For the three models above and setting ν = 1, one can observe that the noise para-
meter systematically differs from the data parameter. They are equal only in the very special case of
estimating correlation (case c) for uncorrelated variables. This means that the optimal noise distribu-
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Figure 4.1 – Relationship between the (optimal) noise parameter and the data parameter. (left) Optimalvariance in model (a) as function of the data mean. Note that the noise parameter has two symmetriclocal minima, given by the individual points, which are joined by a manually drawn line. (center) Opti-mal variance in model (b) as function of the data variance. (right) Optimal noise correlation in model(c) as a function of the data correlation.
tion is not equal to the data distribution, even when the noise and the data are restricted to be in the
same parametric family of distributions.

Looking more closely, one can notice that the relationship between the optimal noise parameter
and the data parameter highly depends on the estimation problem. For model (a), the optimal noise
mean is (randomly) above or below the datamean, while at constant distance (cf. the two localminima
of the MSE landscape shown in Section 1 of the Supplementary Material). For model (b), the optimal
noise variance is obtained from the data variance by a scaling of 3.84. This linear relationship is co-
herent with the symmetry of the problem with respect to the variance parameter. Interestingly for
model (c), the optimal noise parameter exhibits a nonlinear relationship to the data parameter : for
a very low positive correlation between variables the noise should be negatively correlated, whereas
when data variables are strongly correlated, the noise should also be positively correlated.

Having established how different the optimal parametric noise can be, a question naturally fol-
lows : what does the optimal, unconstrained noise distribution look like?
Theory While the analytical optimization of the noise model is intractable, it is possible to study
some limit cases, and by means of Taylor expansions, obtain analytical results which hopefully shed
some light to the general behaviour of the estimator even far away from those limits.

In what follows, we study an analytical expression for the optimal noise distribution in three limit
cases : (i) when the noise distribution is a (infinitesimal) perturbation of the data distribution pd

pn
≈ 1 ; as

well aswhen the noise proportion (ratio) is chosen so that training uses either (ii) all noise samples ν →
∞ or (iii) all data samples ν → 0. The following Theorem is proven in Section 4 of the Supplementary
Material.
Theorem 1 In either of the following two limits :

(i) the noise distribution is a (infinitesimal) perturbation of the data distribution pd
pn
(x) = 1 + ϵ(x) ;
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(ii) in the limit of all noise samples ν → ∞ ;

the noise distribution minimizing asymptotic MSE is

poptn (x) ∝ pd(x)∥g(x)∥I−2
F

. (4.6)

Interestingly, this is the same as the optimal noise derived by Pihlaja et al. [63] for another, related
estimator (Monte Carlo MLE with Importance Sampling). For example, in the case of estimating Gaus-
sian variance : poptn (x) ∝ 1√

2πθ
e−

x2

2θ |x2 − θ| which is highly non-Gaussian unlike the data distribution.
Similar derivations can be easily done for the cases of Gaussian mean or correlation.

In Section 4 of the Supplementary Material, we further derive a general formula for the gap bet-
ween the MSE for the typical case pn = pd and the optimal case pn = poptn . It is given by

∆MSE =
1

T
Varx∼pd(∥g(x)∥I−2

F
) . (4.7)

This quantity seems to be positive for any reasonable distribution, which implies (in the all-noise limit)
that the optimal noise cannot be the data distribution pd. Furthermore, we can compute the gap to
efficiency in the all noise limit, i.e. between pn = poptn and the Cramer-Rao lower bound ∆optMSE =
1
T Ex∼pd(∥g(x)∥I−2

F
)2.

In the third case, the limit of all data, we have the following conjecture :
Conjecture 1 In case (iii), the limit of all data samples ν → 0, the optimal noise distribution is such that it
is all concentrated at the set of those ξ which are given by

argmax
ξ

pd(ξ)tr

Å
(g(ξ)g(ξ)⊤)−1

ã−1

s.t. g(ξ) = constant . (4.8)

This is typically a degenerate distribution since it is concentrated on a low-dimensional manifold,
in the sense of a Dirac delta. For a scalar parameter, the function whose maxima are sought is simply
pd(ξ)∥g(ξ)∥2. An informal proof of this conjecture is given in Section 4 of the Supplementary Mate-
rial. The "proof" is not quite rigorous due to the singularity of the optimal "density", which is why we
label this as conjecture only. Indeed, this closed-form formula (Eq. 4.8) was obtained using a Taylor
expansion up to the first order. This formula is well-defined in one dimension but is challenging in
higher dimensions as it involves the inversion of a rank-one matrix, which we accomplish by regula-
rization (provided at the end of Section 4 of the Supplementary Material). While this is in apparent
contradiction to having the noise distribution’s support include the data distribution’s, this result can
be understood as a first-order approximation of what one should do with few noise data points avai-
lable.

Specifically, in the case of estimating a Gaussian mean (for unit variance), the maximization in
the first line of Eq. 4.8 yields two candidates for poptn (x) to concentrate its mass on : δ−√

2 and δ√2.
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(b) Optimal noise for model (a) (Gaussian mean).
Figure 4.2 – Histogram-based optimal noise distributions. Each row gives a different ν or noise pro-portion. The pink bars give the numerical approximations. The theoretical approximation of optimalnoise is given by the dashed lines : the all-noise limit in the bottom panel, and the all-data limit in thetop panel. In the top panel, the optimal noise is given by single points (Diracmasses) which are chosensymmetric for the purposes of illustration, but as explained in the text, they are two global minimain the case of Gaussian mean estimation, whereas when estimating the variance, any distribution ofprobability on those two points is equally optimal.

Moreover, the second line of Eq. 4.8 predicts how theprobabilitymass should bedistributed to the two
candidates : because they have different scores g(−√

2) ̸= g(
√
2), they are two distinct global minima.

This is coherent with the twominima observed for the Gaussianmean in Figure 4.1 (top-left). Similarly,
when estimating a Gaussian variance, the maximization in the first line of Eq. 4.8 yields candidates
δ−

√
5 and δ√5 for poptn (x). In this case however, both candidates have the same score g(−√

5) = g(
√
5).

The theory above does not say anything about how the probability mass should be distributed to
these two points : it can be 50-50 or all on just one point. A possible solution is poptn (x) = 1

2(δ−
√
5+δ

√
5)as observed in Figure 4.2a. Throughout, the optimal noise distributions are highly non-Gaussian unlike

the data distribution.
So far, we have obtained the optimal noise which minimizes the (asymptotic) estimation error

E
[
∥θ̂T − θ∗∥2

]
= 1

Td
tr(Σ) of NCE for the data parameter. However, sometimes estimating the parame-

ter is only a means for estimating the data distribution— not an end in itself. We therefore consider
the (asymptotic) estimation error induced by the NCE estimator θ̂T in the distribution space using the
Kullback-Leibler divergence which is well-known to equal

E
[
DKL(pd, pθ̂T )

]
=

1

2Td
tr(ΣIF ) (4.9)

(shown in Section 5 of the Supplementary Material). We are thus able to obtain the optimal noise for
estimating the data distribution in cases (i), (ii) and (iii).
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Theorem 2 In the two limit cases of Theorem 1, the noise distribution minimizing the expected Kullback-
Leibler divergence is given by

poptn (x) ∝ pd(x)∥g(x)∥I−1
F

. (4.10)

In the third case, the limit of all data, we have the following conjecture :
Conjecture 2 In the limit of Conjecture 1 the noise distribution minimizing the expected Kullback-Leibler
divergence is such that it is all concentrated at the set of those ξ which are given by

argmax
ξ

pd(ξ)tr

Å
(g(ξ)g(ξ)⊤)−

1
2

ã−1 (4.11)
s.t. g(ξ) = constant .

These optimal noise distributions resemble those from Theorem 1 and Conjecture 1 : only the
exponent on the Fisher Information matrix changes. This is predictable, as the new cost function
1

2Td
tr(ΣIF ) is obtained by scaling with the Fisher Information matrix. More specifically, when the data

parameter is scalar, the optimal noises from Theorems 1 and 2 coincide, as the Fisher Information
becomes a multiplicative constant ; those from Conjectures 1 and 2 do not coincide but are rather
similar. The scope of this paper is to investigate the already rich case of a one-dimensional parameter,
hence the following focuses on the optimal noise distributions from Theorem 1 and Conjecture 1.

4.5 . Experiments

We now turn to experiments to validate the theory above. Specifically, we verify our formulae
for the optimal noise distribution in the all-data (Eq.4.8) and all-noise (Eq.4.6) limits, by numerically
minimizing the MSE (Eq.4.4). Outside these limits, we show that our formulae are competitive against
a parametric approach, and that the general-case optimal noise is an interpolation between both
limits. We first describe numerical strategies.
Numerical Methods The integrals from Eq. 4.5 involved in evaluating the asymptotic MSE can
be approximated using numerical integration (quadrature) or Monte-Carlo simulations. While both
approaches lead to comparable results, quadrature is significantly faster andmore precise, especially
in low dimension. However, using Monte-Carlo leads to an estimate that is fully differentiable with
respect to the parameters of pn.To tackle the one-dimensional parametric problem, we simply employed quadrature for evalua-
ting the function to optimize over a dense grid and then selected the minimum. This appeared as the
most computationally efficient strategy and allows for visualizing the MSE landscape reported in Sec-
tion 1 of the Supplementary Material. In the multi-dimensional non-parametric case, the histogram’s
weights can be optimized by first-order methods using automatic differentiation.
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In the following experiments, the optimization strategy consists in obtaining the gradients of the
Monte-Carlo estimate using PyTorch [155] and plugging them into a non-linear conjugate gradient
scheme implemented in Scipy [229]. We chose the conjugate-gradient algorithm as it is determinis-
tic (no residual asymptotic error as with SGD), and as it offered fast convergence. None of the ex-
periments below required more than 100 iterations of conjugate-gradient. Note that for numerical
precision, we had to set PyTorch’s default to 64-bit floating-point precision. Our code is available at
https://github.com/l-omar-chehab/nce-noise-variance.

Results Figure 4.2a shows the optimal histogram-based noise distribution for estimating the va-
riance of a zero-mean Gaussian, together with our theoretical predictions (Theorem 1 and Conjec-
ture 1). We can see that our theoretical predictions in the all-data and all-noise limits match numerical
results. It is apparent in Figure 4.2a that the optimal noise places its mass where the data distribution
is high, and where it varies most when θ∗ changes. Furthermore, the noise distribution in the all-data
limit has higher mass concentration, which also matches our predictions. Interestingly, in a case not
covered by our hypotheses, when there are as many noise samples as data samples i.e. noise pro-
portion of 50% or ν = 1, the optimal noise in Figure 4.2a (middle) is qualitatively not very different
from the limit cases of all data or all noise samples.

Figure 4.2b gives the same results for the estimation of a Gaussian’s mean. The conclusions are
similar ; in this case, the optimal distributions in the two limits resemble each other even more. It
is here important to take into account the indeterminacy of distributing probability mass on the two
Diracs, which is coherent with initial experiments in Figure 4.1 as well as theMSE landscape included in
Section 1 of the SupplementaryMaterial. Figure 4.2b is a perfect illustration of a complex phenomenon
occurring in a setup as simple as Gaussian mean estimation. Our conjecture in Eq. 4.8 predicts the
equivalent optimal noises seen in our experiments, in Figure 1 (top-left) and Figure 2.b., where the
noise concentrates its mass on either point of the set {−√

2,
√
2}. Indeed, Eq. 4.8 shows that any

noise which concentrates its mass on a set of points where the score is constant is (equally) optimal.
So despite its approximative quality, Eq. 4.8 is able to explain what we observed empirically : in the
all-data limit, there can be many equivalent optimal noises.

Figure 4.3 shows the numerically estimated optimal noise distribution for model (c) using a Gaus-
sian correlation parameter. Here, the distributions are perhaps evenmore surprising than in previous
figures. This can be partly understood by the extremely nonlinear dependence of the optimal noise
parameter from the data parameter shown in Fig. 4.1.

We next ask : how robust to ν is the analytical noise we derived in these limiting cases? Figure 4.4
shows the Asymptotic MSE achieved by two noise models, across a range of noise proportions. The
first noisemodel is the optimal noise in the parametric family containing the data distribution pn = pθ,optimized for ν = 1, while the second noise model is the optimal analytical noise poptn derived in the
all-noise limit (Eq.4.6). They are both compared to the Cramer-Rao lower bound. For all models (a)
(b) and (c), the optimal analytical noise poptn (red curve) is empirically useful even far away from the
all-noise limit, and across the entire range of noise proportions. In fact, pn = poptn empirically seems a
better choice than using the data distribution pn = pd, and is (quasi) uniformly equal to or better than
a parametric noise pn = pθ optimized for ν = 1.
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Figure 4.3 – Optimal noise for a 2D Gaussian parameterized by correlation. 2D Gaussian with correla-tion 0 (top) and 0.3 (bottom three) are considered. Left panel is data density, right panel is the optimalhistogram-based noise density. The theoretical approximation of optimal noise is given by the blacklevel lines : the case of Theorem 1 the bottom panel, and the Conjecture 1 in the second panel. Here,the optimal noise in the latter limit is given by a softmax relaxation with temperature 0.01. It makesthe choice of placing its mass symmetrically on the single points (Dirac masses), but as explained inthe text, any distribution of probability on those two points could be equally optimal.
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Optimizing Noise Proportion Next, we consider optimization of the noise proportion. It is often
heuristically assumed that having 50% noise, i.e. ν = 1 is optimal. On the other hand, Pihlaja et al. [63]
provided a general analysis, although it didn’t quite answer this question from a practical viewpoint
and uses a slightly different NCE estimator. To see this, compare the NCE estimator defined in Pihlaja
et al. [63, Eq. 15] with the estimator we use from Gutmann and Hyvärinen [11, Eq. 10]. Note that ν =

Tn/Td represents only the ratio of samples used to approximate the expectations in the objective
of Pihlaja et al. [63, Eq. 15]. In particular, it appears linearly in the objective minimized by the NCE
estimator. In contrast, in Gutmann and Hyvärinen [11, Eq. 10] this quantity represents also the ratio
of prior distributions on the noise and data ν = P (Y = 0)/P (Y = 1). In particular, it appears non-
linearly in the objective minimized by the NCE objective.

In the special case where pd = pn, we can actually show (see Section 3 of the Supplementary
Material) that the optimal noise proportion is 50%. This is obtained for a fixed computational budget
T , as the noise proportion varies between 0 and 1. When this constraint on the budget is relaxed,
the optimal noise proportion is ν → ∞ as in Corollary 7 and Figure 4.d. of [11]. The reciprocal for the
theoretical result above does not hold : a noise proportion of 50% does not ensure that the noise
distribution equals the data’s, as shown by counter-examples in Figures 4.1 and 4.5.

However, in the general case pn ̸= pd, the optimal proportion is not 50%. We can again look
at Figure 4.4 which analyses the MSE as a function of noise proportion for simple one-parameter
families. It is not optimized, in general, at 50%, for the noise distributions considered here. In fact,
the parameter of the noise distribution is here optimized for a proportion of 50%, so the results are
skewed towards finding that proportion optimal, but still that is not the optimum for most cases.

A closer look at this phenomenon is given by Figure 4.5 which shows the optimal noise proportion
as a function of a Gaussian’s parameter (mean, variance, or correlation). We see that while it is 50%
for when the data parameter is used for noise, it is in general less.

4.6 . Discussion

We have shown that choosing an optimal noise means choosing a noise distribution that is dif-
ferent to the data’s. An interesting question is what implications does this have for GANs, which ite-
ratively guide the noise distribution to match the data’s ? Both NCE and GANs in fact solve the binary
task of discriminating data from noise. While the optimal discriminator for the binary task recovers
the density ratio between data and noise, GANs parameterize the entire ratio (as well as the noise
distribution), while NCE only parameterizes the ratio numerator. Hence they do not learn the same
object, though GANs do claim inspiration from NCE [223]. Moreover, of course, the goals of the two
methods are completely different : GANs do not perform estimation of parameters of a statistical
model but focus on the generation of data.

Nevertheless, GAN updates have inspired the choice of NCE noise as in Flow-Contrastive Estima-
tion (FCE) by Gao et al. [225], which parameterizes both the discriminator numerator and discrimina-
tor, providing a bridge between NCE and GANs. Results on FCE by Gao et al. [225] empirically demons-
trate that the choice of noise matters : NCE is made quicker by iterative noise updates à la GAN, pre-
sumably because setting the noise distribution equal to the data’s reduces asymptotic variance com-
pared to choosing a generic noise distribution such as the best-matching Gaussian. Noise-updates
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based on the optimal noise in this paper, could perhaps accelerate convergence even further, avoi-
ding the numerical difficulties of an adversarial game while still increasing the statistical efficiency.

However, using the optimal noise distributions we present in Section 4.4 can be numerically chal-
lenging, especially when the parametric model pθ is higher-dimensional and unnormalized (e.g. θ is
a dense covariance matrix along with the normalization term as a parameter). Evaluating an optimal
noise involves the Fisher score (and therefore access to the very data distribution we seek to esti-
mate) and a Monte-Carlo method may be needed for sampling. We hope that these questions can be
resolved in practice by having a relatively simple noise model which is still more statistically efficient
than alternatives typically used with NCE, and whose choice is guided by our optimality results.
Conclusion We studied the choice of optimal design parameters in Noise-Contrastive Estimation.
These are essentially the noise distribution and the proportion of noise. We assume that the total
number of data points (real data + noise) is fixed due to computational resources, and try to optimize
those two hyperparameters. It is easy to show empirically that, in stark contrast to what is often
assumed, the optimal noise distribution is not the same as the data distribution, thus extending the
analysis by Pihlaja et al. [63]. Our main theoretical results derive the optimal noise distribution in limit
cases where either almost all samples to be classified are noise, or almost all samples are real data,
or the noise distribution is an (infinitesimal) perturbation of the data distribution. The optimal noise
distributions in two of these cases are different but have in common the point of emphasizing parts
of the data space where the Fisher score function changes rapidly. We hope these results will improve
the performance of NCE in demanding applications.
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4.7 . Supplemental Material

4.7.1 . Visualizations of the MSE landscape
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Figure 4.6 – MSE vs. the noise parameter. Top left panel for model (i), Gaussian mean; Top right panelfor model (ii), Gaussian variance ; Bottom left for model (iii), Gaussian correlation.
We provide visualizations of the MSE landscape of the NCE estimator, when the noise is constrai-

ned within a parametric family containing the data.
We draw attention to the two local minima symmetrically placed to the left and to the right of the

Gaussian mean. This corroborates the indeterminacies observed in this paper (Conjecture on limit of
zero noise), as to where the optimal noise should place its mass for this estimation problem.

4.7.2 . Intractability of the 1D Gaussian case
Suppose the data distribution pd is a one-dimensional standardized zero-mean Gaussian. The

model and noise distributions are of the same family, parameterized by mean and/or variance (we
write these together in one model) :

pθ(x) =
1√
2πα

e−
1
2

(x−µ)2

α , pn(x) =
1√
2πβ

e
− 1

2
(
(x−π)2

β x ∈ R

We can write out the relevant functions, evaluated at α = 1, µ = 0 as the 2D score :
g(x) =

Å
∂µ log pθ
∂α log pθ

ã ∣∣∣∣
µ=0,α=1

=

Å
x

−1 + x2

ã
and its “pointwise covariance" : g(x)g(x)⊤ =

Å
x2 −x+ x3

−x+ x3 x4 − x2 + 1

ã
In the following, we consider estimation of variance only. i.e. only the second term inm and the

second diagonal term in the Fisher information matrix I . Now we can compute the generalized score
meanm andmean of square I as they intervene in theMSE formula for Noise-Contrastive Estimation :
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m =

∫
g(x)(1−D(x))p(x)dx

= − 1

2
√
2π

∫ Ñ
e

−x2

2
1

1 + 1
ν

√
βe

−x2

2
(1− 1

β
)

é
dx+

1

2
√
2π

∫
x2

Ñ
e

−x2

2
1

1 + 1
ν

√
βe

−x2

2
(1− 1

β
)

é
dx

and

I =

∫
g(x)2(1−D(x))p(x)dx

=
1

4
√
2π

∫
x4

Ñ
e

−x4

2
1

1 + 1
ν

√
βe

−x2

2
(1− 1

β
)

é
dx

− 1

2α3
√
2π

∫
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Ñ
e

−x2
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1 + 1
ν

√
βe

−x2

2
(1− 1

β
)

é
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+
1

4
√
2π

∫ Ñ
e

−x2

2
1

1 + 1
ν

√
βe

−x2

2
(1− 1

β
)

é
dx

We see that even in a simple 1D Gaussian setting, evaluating the asymptotic MSE of the Noise-
Contrastive Estimator is untractable in closed-form, given the integrals in I , where the integrand in-
cludes the product of a Gaussian density with the logistic function compounded by the Gaussian
density, further multiplied by monomials. While here we considered the case of variance, the intrac-
tability is seen even in the case of the mean. Optimizing the asymptotic MSE with respect to β and π
(noise distribution) or ν (identifiable to the noise proportion) yields similarly intractable integrals.

4.7.3 . Optimal Noise Proportion when the Noise Distribution matches the Data Distri-
bution : Proof

We wish to minimize the MSE given by
MSENCE(T, ν, pn) =

ν + 1

T
tr(I−1 − ν + 1

ν
(I−1mm⊤I−1))

when pn = pd. In that case,
D(x) =

pd
pd + νpn

(x) =
pd

pd + νpd
(x) =

1

1 + ν

and the integrals involved become
m =

∫
g(x)(1−D(x))p(x)dx
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=
ν

1 + ν

∫
g(x)p(x)dx

= 0

given the score has zero mean, and
I =

∫
g(x)g(x)⊤(1−D(x))p(x)dx

=
ν

1 + ν

∫
g(x)g(x)⊤p(x)dx

=
ν

1 + ν
IF .

The objective function thus reduces to
MSENCE(T, ν, pn) =

ν + 1

T
tr(I−1) =

(ν + 1)2

νT
tr(I−1

F ) ∝ (ν + 1)2

ν
.

The derivative with respect to ν is proportional to 1
ν2

− 1 and is null when ν = 1 so when the noise
proportion is 50%.

Note that in that case where pn = pd, we can compare the MSE achieved by NCE (using Td datasamples and Tn noise samples) with theMSE achieved my MLE (using Td data samples) :
MSENCE(T, ν, pn)

MSEMLE(Td)
=

(ν+1)2

νT tr(I−1
F )

1
Td
tr(I−1

F )
=

(ν+1)2

νT tr(I−1
F )

ν+1
T tr(I−1

F )
= 1 +

1

ν

which is known from [11, 63].
4.7.4 . Optimal Noise for Estimating a Parameter : Proofs

We here prove the theorem and conjecture for the optimal noise distribution in three limit cases
ν → 0 (all data samples), ν → ∞ (all noise samples), and pd

pn
(.) = 1+ϵ(.) as ϵ(.) → 0 (noise distribution

is an infinitesimal perturbation of the data distribution).
The goal is to optimize theMSENCE(T, ν, pn) with respect to the noise distribution pn, where

MSENCE(T, ν, pn) =
ν + 1

T
tr(I−1 − ν + 1

ν
(I−1mm⊤I−1)) (4.12)

where the integrals
m =

∫
g(x)(1−D(x))p(x)dx

I =

∫
g(x)g(x)⊤(1−D(x))p(x)dx

depend non-linearly on pn via the optimal discriminator :
1−D(x) =

νpn(x)

pd(x) + νpn(x)

The general proof structure is :
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• Perform a Taylor expansion of 1−D(x) in the ν → 0 or ν → ∞ limit
• Plug into the integralsm, I and evaluate them (up to a certain order)
• Perform a Taylor expansion of I−1 (up to a certain order)
• Evaluate theMSENCE (up to a certain order)
• Optimize theMSENCE w.r.t. pn• Compute the MSE gaps at optimality

Theorem 1 In either of the following two limits :

(i) the noise distribution is a (infinitesimal) perturbation of the data distribution pd
pn

= 1 + ϵ(x) ;

(ii) in the limit of all noise samples ν → ∞ ;

the noise distribution minimizing asymptotic MSE is

poptn (x) ∝ pd(x)∥I−1
F g(x)∥ . (4.13)

Proof : case where ν → ∞.
We start with a change of variables γ = 1

ν → 0 to bring us to a zero-limit.
The MSE in terms of our new variable γ = 1

ν can be written as :
MSENCE(T, γ, pn)

=
γ + 1

γT
tr(I−1)− (γ + 1)2

Tγ
tr(I−1mm⊤I−1)

=

Å
γ−1T−1 + γ0T−1

ã
tr(I−1)−

Å
γ−1T−1 + γ02T−1 + γ1T−1

ã
tr(I−1mm⊤I−1)

Given the term up until γ−1 in the MSE, we will use Taylor expansions up to order 2 throughout
the proof, in anticipation that the MSE will be expanded until order 1.

• Taylor expansion of the discriminator

1−D(x) =
νpn(x)

pd(x) + νpn(x)
=

1

1 + γ pd
pn
(x)

= 1− γ
pd
pn

(x) + γ2
p2d
p2n

(x) + ◦(γ2)

• Evaluating the integralsm, I

m =

∫
g(x)pd(x)

Å
1−D(x)

ã
dx

=

∫
g(x)pd(x)

Å
1− γ

pd
pn

(x) + γ2
p2d
p2n

(x) + ◦(γ2)
ã
dx

=mF − γa+ γ2b+ ◦(γ2) (4.14)
87



wheremF is the Fisher-scoremean of the (possibly unnormalized)model andwe use shorthand
notations a and b for the remaining integrals :

mF =

∫
g(x)pd(x)dx = 0

a =

∫
g(x)

p2d
pn

(x)dx

b =

∫
g(x)

p3d
p2n

(x)dx .

Similarly,

I =

∫
g(x)g(x)⊤pd(x)

Å
1−D(x)

ã
dx

=

∫
g(x)g(x)⊤pd(x)

Å
1− γ

pd
pn

(x) + γ2
p2d
p2n

(x) + ◦(γ2)
ã
dx

= IF − γA+ γ2B + ◦(γ2)

where the Fisher-score covariance (Fisher information) is IF and we use shorthand notationsA
and B for the remaining integrals :

IF =

∫
g(x)g(x)⊤pd(x)dx

A =

∫
g(x)g(x)⊤

p2d
pn

(x)dx

B =

∫
g(x)g(x)⊤

p3d
p2n

(x)dx .

• Taylor expansion of I−1

I−1 =

Å
IF − γA+ γ2B + ◦(γ2)

ã−1

=

Å
IF (Id− γI−1

F A+ γ2I−1
F B) + ◦(γ2)

ã−1

= I−1
F

Å
Id− γI−1

F A+ γ2I−1
F B

ã−1

+ ◦(γ2)

= I−1
F

Å
Id+ γI−1

F A+ γ2((I−1
F A)2 − I−1

F B) + ◦(γ2)
ã
+ ◦(γ2)

= I−1
F + γI−2

F A+ γ2(I−1
F (I−1

F A)2 − I−2
F B) + ◦(γ2) (4.15)

• Evaluating theMSENCE

I−1mm⊤I−1
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= I−1
F mFm

⊤
F I

−1
F + γ2(I−1

F aa⊤I−1
F + I−2

F AmFmF⊤I−2
F A) + ◦(γ2)

by plugging in the Taylor expansions of I−1 andm and retaining only terms up to the second
order. Hence, the second term of the MSE without the trace isÅ

γ−1T−1 + γ02T−1 + γ1T−1

ã
I−1mm⊤I−1

= γ−1 1

T
(I−1

F mFm
⊤
F I

−1
F ) + γ0

2

T
(I−1

F mFm
⊤
F I

−1
F )+

γ1
1

T
(I−1

F mFm
⊤
F I

−1
F + I−1

F aa⊤I−1
F + I−2

F AmFm
⊤
F I

−2
F A) + ◦(γ)

and the first term of the MSE without the trace isÅ
γ−1T−1 + γ0T−1

ã
(I−1)

=

Å
γ−1T−1 + γ0T−1

ãÅ
I−1
F + γI−2

F A+ γ2(I−1
F (I−1

F A)2 − I−2
F B) + ◦(γ2)

ã
= γ−1 1

T
I−1
F + γ0

1

T
(I−2

F A+ I−1
F ) + γ1

1

T
[I−1

F (I−1
F A)2 − I−2

F B + I−2
F A] + ◦(γ) .

Subtracting the second term from the first term and applying the trace, we finally write theMSE :
MSENCE = tr

Å
γ−1 1

T

(
I−1
F − I−1

F mFm
⊤
F I

−1
F

)
+ (4.16)

γ0
1

T

(
I−2
F A+ I−1

F − 2I−1
F mFm

⊤
F I

−1
F

)ã
+ ◦(γ) (4.17)

• Optimize theMSENCE w.r.t. pnTo optimize w.r.t. pn, we need only keep the two first orders of theMSENCE, which depends on
pn only via the term tr(I−2

F A) =
∫
∥I−1

F g(x)∥2 p2d
pn
(x)dx. Hence, we need to optimize

J(pn) =
1

T

∫
∥I−1

F g(x)∥2
p2d
pn

(x)dx (4.18)
with respect to pn. We compute the variational (Fréchet) derivative together with the Lagrangian
of the constraint ∫ pn(x) = 1 (with λ denoting the Lagrangian multiplier) to obtain

δpnJ = −∥I−1
F g∥2

p2d
p2n

+ λ . (4.19)
Setting this to zero and taking into account the non-negativity of pn gives

pn(x) = ∥I−1
F g(x)∥pd(x)/Z (4.20)

where Z =
∫
∥I−1

F g(x)∥pd(x)dx is the normalization constant. This is thus the optimal noise
distribution, as a first-order approximation.

89



• Compute the MSE gaps at optimality
Plugging this optimal pn into the formula of MSENCE and subtracting the Cramer-Rao MSE
(which is a lower bound for a normalized model), we get :

∆optMSENCE = MSENCE(pn = poptn )−MSECramer−Rao

=
1

T

Å∫
∥I−1

F ψ∥pd
ã2

.

This is interesting to compare with the case where the noise distribution is the data distribution,
which gives

∆dataMSENCE = MSENCE(pn = pd)−MSECramer−Rao

=
1

T

∫
∥I−1

F ψ∥2pd

where the squaring is in a different place. In fact, we can compare these two quantities by the
Cauchy-Schwartz inequality, or simply the fact that

∆MSENCE = ∆dataMSENCE −∆optMSENCE

= MSENCE(pn = pd)−MSENCE(pn = poptn )

=
1

T
VarX∼pd{∥I

−1
F g(X)∥}

This implies that the two MSEs, when when the noise distribution is either poptn or pd, can be
equal only if ∥I−1

F g(.)∥ is constant in the support of pd. This does not seem to be possible for
any reasonable distribution.

Proof : case where pn ≈ pdWe consider the limit case where pd
pn
(x) = 1 + ϵ(x) with |ϵ(x)− 0| < ϵmax ∀x.

Note that in order to use Taylor expansions for terms containing ϵ(x) in an integral, we assume
for any integrand h(x) that ∫ h(x)ϵ(x)dx ≈ ϵ

∫
h(x)dx, where ϵ would be a constant.

• Taylor expansion of the discriminator
1−D(x) =

νpn(x)

pd(x) + νpn(x)
=

1

1 + 1
ν + pd

pn
(x)

=
1

1 + 1
ν + 1

ν ϵ(x)

=
ν

1 + ν
ϵ0(x)− ν

(1 + ν)2
ϵ1(x) +

ν

(1 + ν)3
ϵ2(x) + ◦(ϵ2)

• Evaluating the integralsm, I
m =

∫
g(x)pd(x)

Å
1−D(x)

ã
dx

=

∫
g(x)pd(x)

Å
ν

1 + ν
ϵ0(x)− ν

(1 + ν)2
ϵ1(x) +

ν

(1 + ν)3
ϵ2(x) + ◦(ϵ2)

ã
dx
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=
ν

1 + ν
mF − ν

(1 + ν)2
a(ϵ) +

ν

(1 + ν)3
b(ϵ2) + ◦(ϵ3)

where the Fisher-score meanmF is null and we use shorthand notations a and b for the remai-
ning integrals :

mF =

∫
g(x)pd(x)dx

a(ϵ) =

∫
g(x)pdϵ(x)dx

b(ϵ2) =

∫
g(x)pdϵ

2(x)dx .

Similarly,
I =

∫
g(x)g(x)⊤pd(x)

Å
1−D(x)

ã
dx

=

∫
g(x)g(x)⊤pd(x)

Å
ν

1 + ν
ϵ0(x)− ν

(1 + ν)2
ϵ1(x) +

ν

(1 + ν)3
ϵ2(x)

+ ◦(ϵ2)
ã
dx =

ν

1 + ν
IF − ν

(1 + ν)2
A(ϵ) +

ν

(1 + ν)3
B(ϵ2) + ◦(ϵ3)

where the Fisher-score covariance (Fisher information) is IF and we use shorthand notationsA
and B for the remaining integrals :

IF =

∫
g(x)g(x)⊤pd(x)dx

A(ϵ) =

∫
g(x)g(x)⊤pdϵ(x)dx

B(ϵ2) =

∫
g(x)g(x)⊤pdϵ

2(x)dx .

• Taylor expansion of I−1

I−1 =

Å
ν

1 + ν
IF − ν

(1 + ν)2
A(ϵ) +

ν

(1 + ν)3
B(ϵ2) + ◦(ϵ3)

ã−1

=
1 + ν

ν
I−1
F +

1

ν
I−2
F A(ϵ) +

ν

1 + ν
I−2
F

(
I−1
F A2(ϵ)−B(ϵ2)

)
+ ◦(ϵ3)

• Evaluating theMSENCE

I−1mm⊤I−1 = I−1
F mFm

⊤
F I

−1
F +

1

(1 + ν)2

Å
I−2
F A(ϵ)mFm

⊤
F I

−2
F A(ϵ)+

I−1
F a(ϵ)a(ϵ)⊤I−1

F

ã
+ ◦(ϵ3)
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by plugging in the Taylor expansions of I−1 andm and retaining only terms up to the second
order. Finally, the MSE becomes :

MSENCE(T, ν, pn)

=
ν + 1

T
tr(I−1 − ν + 1

ν
(I−1mm⊤I−1))

= tr

Å
(1 + ν)2

Tν
(I−1

F − I−1
F mFm

⊤
F I

−1
F ) +

1 + ν

Tν
I−2
F A(ϵ)+

1

Tν

(
I−3
F A2(ϵ)− I−2

F B(ϵ2)− I−1
F a(ϵ)a(ϵ)⊤I−1

F −

I−2
F A(ϵ)mFm

⊤
F I

−2
F A(ϵ)

)ã
+ ◦(ϵ3)

• Optimize theMSENCE w.r.t. pnTo optimize w.r.t. pn, we need only keep theMSENCE up to order 1, which depends on pn onlyvia the term
tr(I−2

F A(ϵ)) = tr

Å
I−2
F

( ∫
g(x)g(x)⊤

p2d
pn

(x)dx− IF
)ã

. where we unpacked pn from ϵ = pd
pn

− 1. Hence, we need to optimize
J(pn) =

1

T

∫
∥I−1

F g(x)∥2
p2d
pn

(x)dx (4.21)
with respect to pn. This was already done in the all-noise limit ν → ∞ and yielded

pn(x) = ∥I−1
F g(x)∥pd(x)/Z (4.22)

where Z =
∫
∥I−1

F g(x)∥pd(x)dx is the normalization constant. This is thus the optimal noise
distribution, as a first-order approximation.

In the third case, the limit of all data, we have the following conjecture :
Conjecture 1 In case (iii), the limit of all data samples ν → 0, the optimal noise distribution is such that it
is all concentrated at the set of those ξ which are given by

argmax
ξ

pd(ξ)tr

Å
(g(ξ)g(ξ)⊤)−1

ã−1

s.t. g(ξ) = constant (4.23)
Informal and heuristic “proof" :
We have theMSENCE(T, ν, pn) =

ν+1
T tr(I−1 − ν+1

ν (I−1mm⊤I−1)).
Given the term up until ν−1 in the MSE, we will use Taylor expansions up to order 2 throughout

the proof, in anticipation that the MSE will be expanded until order 1.
Note that in this no noise limit, the assumption made by Gutmann and Hyvärinen (2012) that pnis non-zero whenever pd is nonzero is not true for this optimal pn, which reduces the rigour of this

analysis. (This we denote by heuristic approximation 1.)
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• Taylor expansion of the discriminator

1−D(x) =
νpn(x)

pd(x) + νpn(x)
=

1

1 + 1
ν
pd
pn
(x)

= ν
pn
pd

(x)− ν2
p2n
p2d

(x) + ◦(ν2)

• Evaluating the integralsm, I

m =

∫
g(x)pd(x)

Å
1−D(x)

ã
dx

=

∫
g(x)pd(x)

Å
ν
pn
pd

(x)− ν2
p2n
p2d

(x) + ◦(ν2)
ã
dx

= νmn − ν2b+ ◦(ν2)

where
mn =

∫
g(x)pn(x)dx

b =

∫
g(x)

p2n
pd

(x)dx .

Similarly,

I =

∫
g(x)g(x)⊤pd(x)

Å
1−D(x)

ã
dx

=

∫
g(x)g(x)⊤pd(x)

Å
ν
pn
pd

(x)− ν2
p2n
p2d

(x) + ◦(ν2)
ã
dx

= νIn − ν2B + ◦(ν2)

where the Fisher-score covariance (Fisher information) is IF and we use shorthand notationsA
and B for the remaining integrals :

In =

∫
g(x)g(x)⊤pn(x)dx

B =

∫
g(x)g(x)⊤

p2n
pd

(x)dx .

• Taylor expansion of I−1

I−1 =

Å
νIn − ν2B + ◦(ν2)

ã−1

=

Å
νIn(Id− νI−1

n B) + ◦(ν2)
ã−1

= ν−1I−1
n

Å
Id+ νI−1

n B + ν2(I−1
n B)2 + ν3(I−1

n B)3 + ◦(ν3)
ã
+ ◦(ν2)

= ν−1I−1
n + ν0I−2

n B + ν1I−1
n (I−2

n B)2 + ν2I−1
n (I−2

n B)3 + ◦(ν2)
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• Evaluating theMSENCE

I−1mm⊤I−1 =

ν0(I−1
n mnm

T
nI

−1
n ) + ν2(I−1

n bbT I−1
n + I−2

n Bmnm
T
nI

−2
n B) + ◦(ν2)

by plugging in the Taylor expansions of I−1 andm and retaining only terms up to the second
order. Hence, the second term of the MSE without the trace isÅ

ν1T−1 + ν02T−1 + ν−1T−1

ã
I−1mm⊤I−1

=

Å
ν1T−1 + ν02T−1 + ν−1T−1

ãÅ
ν0(I−1

n mnm
⊤
n I

−1
n )+

ν2(I−1
n bb⊤I−1

n + I−2
n Bmnm

⊤
n I

−2
n B) + ◦(ν2)

ã
= ν−1 1

T
(I−1

n mnm
⊤
n I

−1
n ) + ν0

1

T
(2I−1

n mnm
⊤
n I

−1
n )+

ν1
1

T
(I−1

n bnb
⊤
n I

−1
n + I−2

n Bmnm
⊤
n I

−2
n B + I−1

n mnm
⊤
n I

−1
n ) + ◦(ν)

and the first term of the MSE without the trace isÅ
ν0T−1 + ν1T−1

ã
tr(I−1)

=

Å
ν0T−1 + ν1T−1

ãÅ
ν−1I−1

n + ν0I−2
n B + ν1I−1

n (I−2
n B)2+

ν2I−1
n (I−2

n B)3 + ◦(ν2)
ã

= ν−1 1

T
I−1
n + ν0

1

T
(I−2

n B + I−1
n ) + ν1

1

T
[I−1

n (I−1
n B)2 + I−2

n B] + ◦(ν) .

Subtracting the second term from the first term and applying the trace, we finally write theMSE :

MSENCE = tr(ν−1 1

T
(I−1

n − I−1
n mnm

T
nI

−1
n ) + ν0

1

T
(I−2

n B + I−1
n

− 2I−1
n mnm

T
nI

−1
n ) + ν1

1

T
[I−1

n (I−1
n B)2 + I−2

n B − I−1
n bnb

T
nI

−1
n −

I−2
n Bmnm

T
nI

−2
n B − I−1

n mnm
T
nI

−1
n ] + ◦(ν)) .

Rewriting I−1
n = I−1

n InI
−1
n , using the circular invariance of the trace operator and stopping at

order ν0, we get :

MSENCE = ν−1 1

T
⟨I−2

n , In −mnm
⊤
n ⟩+ ν0

1

T
⟨I−2

n ,B + In − 2mnm
⊤
n ⟩+ ◦(1)

= ν−1 1

T
⟨I−2

n ,VarN∼png(N)⟩+ ν0
1

T
⟨I−2

n ,B + In − 2mnm
⊤
n ⟩+ ◦(1) . (4.24)
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• Optimize theMSENCE w.r.t. pnLooking at the above MSE, the dominant term of order ν−1 is ⟨I−2
n ,VarN∼png(N)⟩ ≥ 0 is mini-

mized when it is 0, that is, when g is constant in the support of pn. Typically this means that pnis concentrated on a set of zero measure. In the 1D case, such case is typically the Dirac delta
pn = δz , or a distribution with two deltas in case of symmetrical g.
We can plug this in the terms of the next order ν0, which remain to be minimized :

⟨I−2
n ,B + In − 2mnm

T
n ⟩ = ⟨I−2

n ,B − In + 2In − 2mnm
T
n ⟩

= ⟨I−2
n ,B − In + 2VarN∼png(N)⟩

= ⟨I−2
n ,B − In⟩

given we chose pn so that the variance is 0.The integrands ofB and I respectively involve p2n and pn. Because pn is concentrated on a set ofzero measure (Dirac-like), the term inB dominates the term in I . This is because if we consider
the pn as the limit of a sequence of some proper pdf’s, the value of the pdf gets infinite in the
support of that pdf in the limit, and thus p2n is infinitely larger than pn. Hence we are left with
⟨I−2

n ,B⟩.
The integral with respect to pn simplifies to simply evaluating the g(x)g(x)⊤/pd(x) the supportof pn. Since we know that g(x) is constant in that set, themain question is whether pd is constantin that set as well. Here, we heuristically assume that it is ; this is intuitively appealing in many
cases, if not necessarily true. (This we denote by heuristic approximation 2.)
Thus, we have ∫

g(x)g(x)⊤
δ2z
pd

(x)dx ≈ c g(z)g(z)⊤
1

pd(z)

for some constant c taking into account the effect of squaring of pn (it is ultimately infinite, but
the reasoning is still valid in any sequence going to the limit.)
Next wemake heuristic approximation 3 : we neglect any problems of inversion of singular, rank
1 matrices (note this is not a problem in the 1D case), and further obtain

⟨I−2
n ,B⟩ ≈ tr

Å
(g(z)g(z)⊤)−1g(z)g(z)⊤

1

pd(z)
(g(z)g(z)⊤)−1

ã
≈ 1

pd(z)
tr

Å
(g(z)g(z)⊤)−1

ã
. (4.25)

Minimizing this term is equivalent to the following maximization setup (still applying heuristic
approximation 3) :

argmax
ξ

pd(ξ)tr

Å
(g(ξ)g(ξ)⊤)−1

ã−1

.

Those points z obtained by the above condition are the best candidates for pn to concentrate
its mass on.
We arrived this result by making three heuristic approximations as explained above ; we hope
to be able to remove some of them in future work.
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Numerically, evaluating the optimal noise in the all-data limit requires computing a weight
w(x) = tr

Å
(g(ξ)g(ξ)⊤)−1

ã−1 that is intractable in dimensions bigger than 1, due to the sin-
gularity of the rank 1 matrix. We can avoid this numerically by introducing an (infinitesimal) per-
turbation ϵ > 0 which removes the singularity problem. Using the Sherman-Morrison formula,

wϵ(ξ) = tr

Å
(g(ξ)g(ξ)⊤ + ϵId)−1

ã−1

= tr

Å
ϵ−1Id− 1

ϵ2 + ϵg(ξ)⊤Idg(ξ)
g(ξ)g(ξ)⊤

ã−1

=

Å
ϵ−1d− 1

ϵ2 + ϵ∥g(ξ)∥2
∥g(ξ)∥2

ã−1

=

Å
ϵ−1(d− 1) + ϵ0

1

∥g(ξ)∥2
+ ϵ1

−1

∥g(ξ)∥4
+O(ϵ2)

ã−1

= ϵ
1

d− 1
+ ϵ2

−1

∥g(ξ)∥2(d− 1)2
+ ϵ3

(2− d)

∥g(ξ)∥4(d− 1)3
+O(ϵ4)

where we go up to order 3 in the Taylor expansion to ensure the weightwϵ(ξ) is positive. Finally,
we can approximate the argmax operator with its relaxation soft argmaxϵ(x) = e

x
ϵ∫

e
x
ϵ dx

, so that
pn(x) ≈ soft arg

ϵ1
max

(
pd(x)wϵ2(x)

)
where (ϵ1, ϵ2) ∈ (R∗

+)
2 are two hyperparameters taken close to zero.

4.7.5 . Optimal Noise for Estimating a Distribution : Proofs
So far, we have optimized hyperparameters (such as the noise distribution) so that the reduce

the uncertainty of the parameter estimation, measured by the Mean Squared Error E[∥θ̂T − θ∗∥2
]
=

1
Td
tr(Σ).
Sometimes, we might wish to reduce the uncertainty of the distribution estimation, which we can

measure using the Kullback-Leibler (KL) divergence E
[
DKL(pd, pθ̂T )

].
We can specify this error, by using the Taylor expansion of the estimated θ̂T near optimality, given

in [11] :
θ̂T − θ∗ = z +O(∥θ̂T − θ∗∥2) (4.26)

where z ∼ N (0, 1
Td
Σ) andΣ is the asymptotic variance matrix.

We can similarly take the Taylor expansion of the KL divergence with respect to its second argu-
ment, near optimality :

J(θ̂T ) := DKL(pd, pθ̂T )

= J(θ∗)+ < ∇θJ(θ
∗), θ̂T − θ∗ > +

1

2
< (θ̂T − θ∗),∇2

θJ(θ
∗) (θ̂T − θ∗) >

+O(∥θ̂T − θ∗∥3)
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= J(θ∗)+ < ∇θJ(θ
∗), θ̂T − θ∗) > +

1

2

∥∥θ̂T − θ∗
∥∥2
∇2

θJ(θ
∗)
+O(∥θ̂T − θ∗∥3)

Note that some simplifications occur :
• J(θ∗) = DKL(pθ∗ , pθ∗) = 0

• ∇θJ(θ
∗) = 0 as the gradient the KL divergence at θ∗ is the mean of the (negative) Fisher score,

which is null.
• ∇2

θJ(θ
∗) = IFPlugging in the estimation error 4.26 into the distribution error yields :

J(θ̂T ) =
1

2

∥∥∥∥z +O(∥θ̂T − θ∗∥2)
∥∥∥∥2
IF

+O(∥θ̂T − θ∗∥3)

=
1

2

Å
∥z∥2IF + 2 < z, O(∥θ − θ∗∥2) >IF +

∥∥O(∥θ − θ∗∥2)
∥∥2
IF

ã
+O(∥θ̂T − θ∗∥3)

=
1

2
∥z∥2IF +O(∥θ̂T − θ∗∥2)

by truncating the Taylor expansion to the first order. Hence up to the first order, the expectation
yields :

E
[
DKL(pd, pθ̂T )

]
=

1

2
E
[
∥z∥2IF

]
=

1

2
E
[
zT IFz

]
=

1

2
E
[
tr(zT IFz)

]
=

1

2
E
[
tr(IFzz

T )
]

=
1

2
tr(IFE[zzT ]) =

1

2
tr(IFVar[z]) =

1

2Td
tr(IFΣ)

Note that this is a general and known result which is applicable beyond the KL divergence : for any
divergence, the 0th order term is null as it measures the divergence between the data distribution
and itself, the 1st order term is null in expectation if the estimator θ̂T is asymptotically unbiased, which
leaves an expected error given by the 2nd-order term 1

2Td
tr(∇2JΣ) where J is the chosen divergence.

Essentially, one would replace the Fisher Information above, which is the Hessian for a forward-KL
divergence, by the Hessian for a given divergence.

Finding the optimal noise thatminimizes the distribution errormeansminimizing 1
Td
tr(ΣIF ). Contrastthat with the optimal noise that minimizes the parameter estimation error (asymptotic variance)

1
Td
tr(Σ). We can reprise each of the three limit cases from the previous proofs, and derive novel

optimal noise distributions :
Theorem 2 In the two limit cases of Theorem 1, the noise distribution minimizing the expected Kullback-
Leibler divergence is given by

poptn (x) ∝ pd(x)∥I
− 1

2
F g(x)∥ . (4.27)

Proof : case of ν → ∞
We recall the asymptotic variance 1

Td
Σ in the all-noise limit is given by equation 4.17 at the first

order and without the trace. Multiplying by IF introduces no additional dependency in pn, hence we
retain the only term dependent that was dependent on pn, I−2

F

∫
g(x)g(x)⊤

p2d
pn
(x)dx, multiply it with

IF and take the trace. This yields the following cost to minimize :
J(pn) =

1

T

∫
∥I−

1
2

F g(x)∥2
p2d
pn

(x)dx (4.28)
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with respect to pn. As in previous proofs, we compute the variational (Fréchet) derivative together with
the Lagrangian of the constraint ∫ pn(x) = 1 (with λ denoting the Lagrangian multiplier) to obtain

δpnJ = −∥I−
1
2

F g∥2
p2d
p2n

+ λ . (4.29)
Setting this to zero and taking into account the non-negativity of pn gives

pn(x) = ∥I−
1
2

F g(x)∥pd(x)/Z (4.30)
where Z =

∫
∥I−

1
2

F g(x)∥pd(x)dx is the normalization constant. This is thus the optimal noise distri-
bution, as a first-order approximation.

In the third case, the limit of all data, we have the following conjecture :
Conjecture 2 In the limit of Conjecture 1 the noise distribution minimizing the expected Kullback-Leibler
divergence is such that it is all concentrated at the set of those ξ which are given by

argmax
ξ

pd(ξ)tr

Å
(g(ξ)g(ξ)⊤)−

1
2

ã−1

s.t. g(ξ) = constant (4.31)
Proof : case of ν → 0

By the same considerations, we can obtain the optimal noise that minimizes the asymptotic error
in distribution space in the all-data limit, using equation 4.25 with a multiplication by IF inside the the
trace. This leads to the result.

4.7.6 . Numerical Validation of the Predicted Distribution Error

.
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Figure 4.7 – KL vs. the noise parameter (Gaussian Mean). The noise proportion is fixed at 50%.
We here numerically validate our formulae predicting the asymptotic estimation error in distri-

bution spaceDKL(pd, pθ̂NCE
), when the noise is constrained within a parametric family containing the

data ; here, the model is a one-dimensional centered Gaussian with unit variance, parameterized by
its mean.
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5 - Annealed Noise-Contrastive Estimation

This section presents the work published in :O. Chehab, A. Hyvarinen, A. Risteski. Provable benefits of annealing for estimating normali-
zing constants. Neural Information Processing Systems (NeurIPS), 2023. Spotlight.

5.1 . Summary

Recent research has developed several Monte Carlo methods for estimating the normalization
constant (partition function) based on the idea of annealing. This means sampling successively from
a path of distributions which interpolate between a tractable “proposal" distribution and the unnor-
malized “target" distribution. Prominent estimators in this family include annealed importance sam-
pling and annealed noise-contrastive estimation (NCE). Such methods hinge on a number of design
choices : which estimator to use, which path of distributions to use and whether to use a path at
all ; so far, there is no definitive theory on which choices are efficient. Here, we evaluate each design
choice by the asymptotic estimation error it produces. First, we show that using NCE is more efficient
than the importance sampling estimator, but in the limit of infinitesimal path steps, the difference
vanishes. Second, we find that using the geometric path brings down the estimation error from an
exponential to a polynomial function of the parameter distance between the target and proposal dis-
tributions. Third, we find that the arithmetic path, while rarely used, can offer optimality properties
over the universally-used geometric path. In fact, in a particular limit, the optimal path is arithmetic.
Based on this theory, we finally propose a two-step estimator to approximate the optimal path in an
efficient way.

5.2 . Introduction

Recent progress in generative modeling has sparked renewed interest in models of data that are
defined by an unnormalized distribution. A prominent example is energy-based models, which are
increasingly used in deep learning [232], and for which there are a variety of parameter estimation
procedures [41, 11, 233, 225]. Another example comes from Bayesian statistics, where the posterior
model of parameters given data is frequently known only up to a proportionality constant. Such mo-
dels can be evaluated and compared by the probability they assign to a dataset, yet this requires
computing their normalization constants (partition functions) which are typically high-dimensional,
intractable integrals.

Monte-Carlo techniques have been successful at computing these integrals using sampling me-
thods [234]. The most common is importance sampling [234] which draws a sample from a tractable,
"proposal" distribution to integrate the unnormalized "target" density. Noise-contrastive estimation
(NCE) [11] uses a sample from both the proposal and the target, to compute the integral. Yet such me-
thods suffer from high variance, especially when the "gap" between the proposal and target densities
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is large [235, 20, 236]. This has motivated various approaches to gradually bridge the gap with inter-
mediate distributions, which is loosely referred to as "annealing". Among them, annealed importance
sampling (AIS) [237–239] is widely adopted : it has been used to compute the normalization constants
of deep stochastic models [240, 241] or to motivate a lower-bound for learning objectives [242, 243].
To integrate the unnormalized "target" density, it draws a sample from an entire path of distributions
between the proposal and the target. While annealed importance sampling has been shown to be
effective empirically, its theoretical understanding remains limited [244, 245] : it is yet unclear when
annealing is effective, for which annealing paths, and whether AIS is a statistically efficient way to do
it.

In this paper, wedefine a family of annealed Bregman estimators (ABE) for the normalization constant.
We show that it is general enough to recover many classical estimators as a special case, including
importance sampling, noise-contrastive estimation, umbrella sampling [246], bridge sampling [247]
and annealed importance sampling. We provide a statistical analysis of its hyperparameters such as
the choice of paths, and show the following :

1. First, we establish that using NCE is more asymptotically statistically efficient — in the sense of
howmany samples from the intermediate distribution need to be generated— than the impor-
tance sampling estimator, but in the limit of infinitesimal path steps, the difference vanishes.

2. Second, we find that the near-universally used geometric path brings down the estimation error
from an exponential to a polynomial function of the parameter distance between the target and
proposal distributions.

3. Third, we find that using the recently introduced arithmetic path [248] is exponentially inefficient
in its basic form, yet it can be reparameterized to be in some sense optimal. Based on this opti-
mality result, we finally propose a two-stage estimation procedure which first finds an approxi-
mation of the optimal (arithmetic) path, then uses it to estimate the normalization constant.

5.3 . Background

Importance sampling and NCE The problem considered here is computing the normalization
constant 1, i.e. the integral of some unnormalized density f1(x) called "target".Importance sampling and noise-contrastive estimation are two common estimators for that inte-
gral which use a random sample drawn from a tractable density p0(x) called "proposal"(Table 5.1,
column 3). In fact, they are part of a larger family of Monte-Carlo estimators of the normalizing
constant which can be interpreted as solving a binary classification task, aiming to distinguish bet-
ween a sample drawn from the proposal and another from the target [92], originating from a line of
research by Pihlaja et al. [63]. These estimators are summarized in Table 5.1. Each estimator is ob-
tained by minimizing a specific binary classification loss that is identified by a convex function ϕ(x).
For example, minimizing the classification loss identified by ϕIS(x) = x log x yields the importance
sampling estimator. Similarly, ϕRevIS(x) = − log x leads to the reverse importance sampling estima-
tor [249], and ϕNCE(x) = x log x− (1 + x) log((1 + x)/2) to the noise-contrastive estimator.

1. in this paper we also say we "estimate" the normalization constant, though in classical statistics it is moretraditional to use "estimation" when referring to parameters of a statistical model
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Table 5.1 – Some estimators of the normalization obtained byminimizing a classification loss,and their estimation error in terms of well-known divergences [92]. For details and defini-tions, see Appendix 5.8.1.
Name Loss identified by ϕ(x) Estimator Ẑ1 MSE
IS x log x Ep0

f1
p0

1+ν
νN

Dχ2(p1, p0)

RevIS − log x
(
Ep1

p0
f1

)−1 1+ν
N

Dχ2(p0, p1)

NCE x log x− (1 + x) log(1+x
2
) implicit (1+ν)2

νN
DHM(p1,p0)

1−DHM(p1,p0)

Annealed estimators Annealing extends the above "binary" setup, by introducing a sequence of
K+1 distributions from the proposal to the target (included). The idea will be to draw a sample from
all these distributions to estimate the integral of the target f1(x).

These intermediate distributions are obtained from a path (ft)t∈[0,1], defined by interpolating bet-ween the proposal p0 and unnormalized target f1 : this path is therefore unnormalized. Different
interpolation schemes can be chosen. A general one, explained in Figure 1, is to take the q-mean of
the proposal and target [248]. Two values of q are of particular interest : q → 0 defines a a near-
universal path [245], obtained by taking the geometric mean of the target and proposal, while q = 1

defines a path obtained by the arithmetic mean.
Once a path is chosen, it can be uniformly 2 discretized into a sequence of K + 1 unnormali-

zed densities, denoted by (fk/K)k∈[0,K] with corresponding normalizations (Zk/K)k∈[0,K]. In practice,samples are drawn from the corresponding normalized densities (pk/K)k∈[0,K] using Markov Chain
Monte Carlo (MCMC). This sampling step incurs a computational cost, which is paid in the hope of
reducing the variance of the estimation. It is common in the literature [244, 245] to assume perfect
sampling, meaning the MCMC has converged and produced exact and independent samples from the
distributions along the path, which simplifies the analysis.

Estimation error Ameasure of "quality" is required to compare different estimation choices, such
aswhether to anneal andwhich path to use. Such ameasure is given by theMean Squared Error (MSE),
which is generally tractable when written at the first order in the asymptotic limit of a large sample
size [54, Eq. 5.20]. These expressions have been derived for estimators obtained by minimimizing a
classification loss [92] and are included in Table 5.1. They measure the "gap" between the proposal
and target distributions using statistical divergences. Note also that the estimation error depends on
the normalized target density (column 4), while the estimators are computed using the unnormalized
target density (column 3). Further details are available in Appendix 5.8.1.

5.4 . Annealed Bregman Estimators of the normalization constant

2. other discretization schemes can be equivalently achieved by re-parameterizing the path [244]
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General (q ∈]0, 1]) ft(x) =
(
(1− t)p0(x)

q + tf1(x)
q
) 1

q

Geometric (q → 0) ft(x) = p0(x)
1−t × f1(x)

t

Arithmetic (q = 1) ft(x) = (1− t)p0(x) + tf1(s)

q 0

q = 1

p0 p1

Figure 5.1 – q-mean paths between the proposal and target distributions. The geometric and arith-metic paths are obtained as limit cases. Here, the proposal (red) is a standard Gaussian. The target(blue) is a Gaussian mixture with two modes, and same first and second moments as the proposal.The path of distributions interpolates between blue and red.

The question that we try to answer in this paper is : How should we choose the K + 1 distributions
in annealing, and how are their samples best used? To answer this, we will study the error produced by
different estimation choices. But first we define the set of estimators for which the analysis is done.
Definition of Annealed Bregman Estimators We now define a new family of estimators,
which we call annealed Bregman estimators (ABE) ; the motivation for this terminology will become
clear in the coming paragraphs. We will show that this is a general class of estimators for computing
the normalization using a sample drawn from the sequence of K + 1 distributions. For ABE, the log
normalization logZ1 is estimated additively along the sequence of distributions÷logZ1 =

K−1∑
k=0

¤�
log

Ç
Z(k+1)/K

Zk/K

å
+ logZ0 . (5.1)

Defining the estimation in log-space is analytically convenient, as it is easier to analyze a sum of es-
timators than a product. Exponentiating the result leads to an estimator of Z1. We naturally extend
the binary setup (K = 1) of Chehab et al. [92] and propose to compute each of the intermediate
log-ratios, by solving a classification task between samples drawn from their corresponding densities
pk/K and p(k+1)/K . This is a specific case of a more general framework where each (log) ratio of densi-
ties (not just their normalizing constants) is estimated by solving a binary classification task [61]. Each
binary classification loss is now identified by a convex function ϕk(x) and defined as

Lk(βk) := Ex∼pk/K [ϕ
′
k(rk(x;βk))× rk(x;βk)− ϕk(rk(x;βk))]− Ex∼p(k+1)/K

[ϕ
′
k(rk(x;βk))], (5.2)

where the regression function rk(x;βk) is parameterized by the unknown log-ratio βk
rk(x;βk) = exp(−βk)× f(k+1)/K(x)/fk/K(x) . (5.3)

For the true β∗k , it holds β∗k = log(Z(k+1)/K/Zk/K) and rk(x;β∗
k) = p(k+1)/K(x)/pk/K(x). The convex

functions (ϕk)k∈[0,K−1] which identify the classification losses are called "Bregman" generators, hence
ABE. As mentioned above, we assume perfect sampling and allocate the total sample size N equally
among theK estimators in the sum.
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Hyperparameters The annealed Bregman estimator depends on the following hyperparame-
ters : (1) the choice of path q ; (2) the number of distributions along that path K + 1 (including the
proposal and the target) ; (3) the classification losses identified by the convex functions (ϕk)k∈[0,K−1].Different combinations of these hyperparameters recover several common estimators of the log-
partition function. In binary case of K = 1 this includes importance sampling, reverse importance
sampling, and noise-contrastive estimation, each obtained for a different choice of the classification
loss [92]. To build intuition, considerK = 2 so thatwe add a single intermediate distribution p1/2 to thesequence. Minimizing the importance sampling loss (ϕ0 = x log x) provides a closed-form estimator
of the first ratio log(Z1/Z1/2), and minimizing the reverse importance sampling loss (ϕ1 = − log x)
provides a closed-form estimator of the second ratio log(Z1/2/Z0). Combining these recovers the
bridge sampling estimator as a special case [247]÷logZ1 = − logEp1

f1/2

f1
+ logEp0

f1/2

f0
+ logZ0 . (5.4)

Alternatively, we can use these classification losses in reverse order : reverse importance sampling
(ϕ0 = − log x) for the first ratio, and importance sampling (ϕ1 = x log x) for the second ratio, and
recover the umbrella sampling estimator [246] also known as the ratio sampling estimator [250]÷logZ1 = logEp1/2

f1
f1/2

− logEp1/2

f0
f1/2

+ logZ0 . (5.5)
Another option yet, is to use the same classification loss for all ratios. With importance sampling
(ϕk = x log x, ∀k ∈ J0,K − 1K), we recover the annealed importance sampling estimator [237–239]÷logZ1 =

K∑
k=1

logEx∼pk−1

ï
fk
fk−1

(x)

ò
+ logZ0 . (5.6)

The family of annealed Bregman estimators is visibly large enough to include many existing estima-
tors, obtained for different hyperparmeter choices. This raises the fundamental question of how these
hyperparameters should be chosen, in particular in the challenging casewhere the target and proposal
have little overlap and the data is high dimensional. To answer this question, wewill study the estimation
error produced by different hyperparameter choices.

5.5 . Statistical analysis of the hyperparameters

We consider a fixed data budgetN and investigate how the remaining hyperparameters are best
chosen for statistical efficiency. The starting point for the analysis is that as ABE estimates the norma-
lization in log-space, the estimator is obtained by a sum of independent and asymptotically unbiased
estimators [91] given in Eq. 5.1 and thus the mean squared errors written in table 5.1 are additive.
(Recall, the independence of these estimators is because new samples are drawn for each estimation
task.) Each individual error actuallymeasures an overlap between two consecutive distributions along
the path, and annealing integrates these overlaps.
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Classification losses, ϕk Given the popularity of annealed importance sampling, we should first
ask if the importance sampling loss is really an acceptable default. We recall an important limitation
of importance sampling : its estimation error is notoriously sensitive to distribution tails [251]. Without
annealing, it is infinite when the target p1 has a heavier tail than the proposal p0. When annealing with
a geometric path, for example between two Gaussians with different covariances p0 = N (0, Id) and
p1 = N (0, 2 Id), the geometric path produces Gaussians with increasing variancesΣt = (1− t/2)−1 Id
and therefore increasing tails. Hence, the same tail mismatch holds along the path. Note that this
concern is a realistic one for natural image data, as the target distribution over images is typically
super-Gaussian [252] while the proposal is usually chosen as Gaussian.

This warrants a better choice for the loss : In the binary setup (K = 1), the NCE loss is optimal [247,
92] and its error can be orders of magnitude less than importance sampling [247]. This optimality
result has been extended to a sequence of distributions K > 1 [253, eq. 16]. We further show that
in the limit of a continuous path, the gap between annealed IS and annealed NCE is closed and we
provide their estimation error :
Theorem 3 (Estimation error and the Fisher-Rao path length) For a finite value ofK , the optimal loss is
NCE

MSE(p0, p1; q,K,N, ϕNCE) ≤ MSE(p0, p1; q,K,N, ϕ), ∀q,K,N, ϕ . (5.7)
In the limit of K → ∞ (such that K2/N → 0), NCE, IS, and revIS converge to the same estimation error,
given by the Fisher-Rao path length from the proposal to the target

MSE(p0, p1; q,K,N, ϕ) =
1

N

∫ 1

0
I(t)dt+ o

Å
1

N

ã
+ o

Å
K2

N

ã
,∀ϕ ∈ {ϕNCE, ϕIS, ϕRevIS} (5.8)

where the Fisher-Rao metric I(t) := Ex∼p(x,t)[(
d
dt log pt(x))

2] defined as the Fisher information over the
path, using time t as the parameter.

This is proven in Appendix 5.8.2.Note that in this theorem, to take limits successively in N → ∞
then in K → ∞, we assume that N grows at least as fast as K2. While the NCE estimator requires
solving a (potentially non-convex) scalar optimization problem in Eq. 5.2 which itself requires samples
from the target distribution and IS does not, this is the (possibly steep) computational price to pay
for statistical optimality. In the following we will keep the optimal NCE loss and will indicate the de-
pendency of the estimation error on ϕNCE with a subscript, instead. We highlight that our theorems
in this paper apply to the MSE in the limit of K → ∞ : their results hold the same for the IS and
RevIS losses by virtue of theorem 3. Just as in the binary case, while the estimator is computed with
the unnormalized path of densities (Eq. 5.2), the estimation error depends on the normalized path of
densities (Eq. 5.8).
Number of distributions, K + 1 It is known that estimating the normalization constant using
plain importance sampling (K = 1) can produce a statistical error than is exponential in the distance
between the target and the proposal [254]. We show that in the binary case, NCE also suffers from
an estimation error that scales exponentially with the parameter-distance between the target and
proposal dimension.
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In the following, we consider a proposal p0 and target p1 that are in an exponential family with
sufficient statistics t(x). Note that certain exponential families have universal approximation capabi-
lities [255, 256]. The exponential family is defined as

p(x;θ) := exp(⟨θ, t(x)⟩ − logZ(θ)) (5.9)
where Z(θ) =

∫
exp(⟨θ1, t(x)⟩) is the partition function. We will consider that the (unnormalized)

target density f1 is what we call a simply unnormalized model defined as
f1(x) = exp(⟨θ1, t(x)⟩) (5.10)

Note that in general, a pdf can be unnormalized in many ways : one can multiply an unnormalized
density by any positive function of θ and it will still be unnormalized. However, the simple and intuitive
case defined above is what we base the analysis below on.

For exponential families, the log-normalization logZ(θ) is a convex function (“log-sum-exp") of the
parameter θ [257], which implies 0 ≼ ∇2

θ logZ(θ). In our theorems we use the further assumptions
of strong convexity with constantM , and/or smoothness with constant L (gradient is L-Liptschitz) :

∇2
θ logZ(θ) ≽M Id (5.11)

∇2
θ logZ(θ) ≼ L Id (5.12)

For exponential families, the derivatives of the log partition function yield moments of the sufficient
statistics, and the Hessian ∇2

θ logZ(θ) = Covx∼p[t(x)] is in fact the Fisher matrix. We can interpret
our two assumptions : Eq. 5.11 can be seen as a form of “strong identifiability". Namely, positive-
definiteness is required of the Fisher matrix, for the Maximum-Likelihood loss to have a unique mini-
mum : we further assume a lower-bound on the smallest eigenvalue, which can be viewed as a strong
identifiability condition. Eq. 5.12 can be interpreted as a bound on the second-order moments of the
distribution p(x;θ), which is equivalent to the variance in every direction being bounded, which will
be the case for parameters in a bounded domain θ ∈ Θ. An example along with the proofs of the
following Theorems 4 and 5, are provided in Appendix 5.8.2.
Theorem 4 (Exponential error of binary NCE) Assume the proposal p0 is from the normalized exponential
family, while the (unnormalized) target f1 is from the simply unnormalized exponential family (Eq. 5.10). The
log-partition function logZ(θ) is assumed to be strongly convex (Eq. 5.11).
Then in the binary caseK = 1, the estimation error of NCE is (at least) exponential in the parameter-distance
between the proposal and the target :

MSENCE(p0, p1; q,K,N) ≥ 4

N
exp

Å
1

8
M∥θ1 − θ0∥2

ã
− 1 + o

Å
1

N

ã
, whenK = 1 (5.13)

whereM is the strong convexity constant of logZ(θ).

Annealing the importance sampling estimator (increasing K) was proposed in hope that we can
trade the statistical cost in the dimension for a computational cost (number of classification tasks)
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which is more acceptable. Yet, there is no definitive theory on the ability of annealing to reduce the
statistical cost in a general setup [245, 248]. For both importance sampling and noise-contrastive es-
timation, we prove that annealing with the near-universally used geometric path brings down the
estimation error, from exponential to polynomial in the parameter-distance between the proposal
and target. Given that we expect ∥θ1 − θ0∥2 to scale as √D with the dimension, using these paths
effectively makes annealed estimation amenable to high-dimensional problems. This corroborates
empirical [258] and theoretical [244] results which suggested in simple cases that annealing with an
appropriate path can reduce the estimator error up to several orders of magnitude.
Theorem 5 (Polynomial error of annealed NCE with a geometric path) Assume the proposal p0 is from
the normalized exponential family, while the (unnormalized) target f1 is from the simply unnormalized ex-
ponential family (Eq. 5.10). The log-partition function logZ(θ) is assumed to be strongly convex and smooth
(Eq. 5.11, Eq. 5.12).
Then in the annealing limit of a continuous path K → ∞, the estimation error of annealed NCE with the
geometric path is (at most) polynomial in the parameter-distance between the proposal and the target

MSENCE(p0, p1; q,K,N) ≤ L2

MN
∥θ1 − θ0∥2 + o

Å
1

N

ã
+ o

Å
K2

N

ã
, when q = 0 (5.14)

whereM and L are respectively the strong convexity and smoothness constants of logZ(θ).

To our knowledge, this is the first result building on Gelman and Meng [244, Table 1] and Grosse
et al. [245] which showcases the benefits of annealed estimation for a general target distribution.

We conclude that annealingwith thenear-universally used geometric path provably benefits noise-
contrastive estimation, as well as importance sampling and reverse importance sampling, when the
proposal and target distributions have little overlap.
Path parameter, q — geometric vs. arithmetic Despite the near-universal popularity of the
geometric path (q → 0), it is worth asking if there are other simple paths that are more optimal. Inter-
polating moments of exponential families was shown to outperform the geometric path by Grosse
et al. [245], yet building such a path requires knowing the exponential family of the target. Other
paths based on the arithmetic mean (and generalizations) of the target and proposal, were proposed
in Masrani et al. [248], without a definitive theory of the estimation error.

Next, we analyze the error of the arithmetic path. We prove that the arithmetic path (q = 1) does
not exhibit the same benefits as the geometric path : in general, its estimation error grows exponen-
tially in the parameter-distance between the target and proposal distributions. However, in the case
where an oracle gives us the normalization Z1 to be used only in the construction of the path (we willdiscuss what this means in practice below), the arithmetic path can be reparameterized so as to bring
down the estimation error to polynomial, even constant, in the parameter-distance. We start by the
negative result.
Theorem6 (Exponential error of annealed NCEwith an arithmetic path) Assume the proposal p0 is from
the normalized exponential family, while the (unnormalized) target f1 is from the simply unnormalized
exponential family (Eq. 5.10). The log-partition function logZ(θ) is assumed to be strongly convex (Eq. 5.11).
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Consider the annealing limit of a continuous path K → ∞ path and a far-away target with large enough
∥θ1−θ0∥ > 0. For estimating the log normalization of the (unnormalized) target density f1, the estimation
error of annealed NCE with the arithmetic path is (at least) exponential in the parameter-distance between
the proposal and the target.

MSENCE(p0, p1; q,K,N) >
C

N
exp

Å
M

2
∥θ1 − θ0∥2

ã
+ o

Å
1

N

ã
+ o

Å
K2

N

ã
, when q = 1 (5.15)

where C is constant defined in Appendix 5.8.2.

We suggest an intuitive explanation for this negative result. We begin with the observation that
the estimation error (Eq. 5.8) depends on the normalized path of densities. Suppose the target model
is rescaled by a constant 100, so that the new unnormalized target density is f1(x) × 100 and its
new normalization is Z1 × 100. Looking at table 5.2, this rescaling does not modify the geometric
path of normalized densities, while it does the arithmetic path of normalized densities. Because the
estimation error depends on path of normalized densities, this makes the arithmetic choice sensitive
to target normalization, even more so as the parameter distance grows and the log-normalization
with it, as a strongly convex function of it (Appendix, Eq. 5.94). This suggests making the arithmetic
path of normalized distributions "robust" to the choice of Z1. We will show this can be achieved by
re-parameterizing the path in terms of Z1.We next prove that certain reparameterizations can bring down the error to a polynomial and
even constant function of the parameter-distance between the target and proposal. The following
theorems may seem purely theoretical, as if necessitating an oracle for Z1, but they will actually leadto an efficient estimation algorithm later.
Theorem 7 (Polynomial error of annealed NCE with an arithmetic path and oracle) Assume the same
as in Theorem 6, replacing the strong convexity of the log-partition by smoothness (Eq. 5.12). Additionally,
suppose an oracle gives the normalization constant Z1 to be used only in the reparameterization of the
arithmetic path with t → t

t+Z1(1−t) (see Table 5.2). This brings down the estimation error of annealed NCE
to (at most) polynomial in the parameter-distance

MSENCE(p0, p1; q,K,N) ≤ 1

N
(2 + L∥θ1 − θ0∥2) + o

Å
1

N

ã
+ o

Å
K2

N

ã
, when q = 1 (5.16)

where L is the smoothness constant of logZ(θ).

In fact, supposing we have (oracle) access to the normalizing constant Z1, the arithmetic path
can even be reparameterized such that it is the optimal path in a certain limit. We next prove such
optimality in the limits of a continuous pathK → ∞ and "far-away" target and proposal [244] :
Theorem 8 (Constant error of annealed NCE with an arithmetic path and oracle) Consider the limits of
a continuous annealing path K → ∞, and of a target distribution whose overlap with the proposal goes
to zero. Namely, consider the quantities :

ϵ
′
(x) :=

»
p0(x)p1(x) ϵ :=

∫
RD

ϵ
′
(x)dx (5.17)
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Table 5.2 – Geometric and arithmetic paths, defined in the space of unnormalized densities(second column) ; “oracle" and “oracle-trig" are reparameterizations of the arithmetic pathwhich depend on the true normalization Z1. The corresponding normalized densities (thirdcolumn) produce an estimation error (fourth column) which we quantify.
Path name Unnormalized density Normalized density Error
Geometric ft(x) = p0(x)

1−tf1(x)
t pt(x) ∝ p0(x)

1−tp1(x)
t poly

Arithmetic ft(x) = (1− wt)p0(x) + wtf1(x) pt(x) = (1− w̃t)p0(x) + w̃tp1(x)vanilla wt = t w̃t =
tZ1

(1−t)+tZ1
exp

oracle wt =
t

t+Z1(1−t)
w̃t = t poly

oracle-trig wt =
sin2

(
πt
2

)
sin2

(
πt
2

)
+Z1 cos2

(
πt
2

) w̃t = sin2
(
πt
2

) const

ϵ
′′
(x) :=

ϵ
′
(x)− ϵ sin(πt)poraclet (x)

poracle−trig
t (x)

ϵ
′′′
:=

∫
RD

∫ 1

0
ϵ
′′
(x)

Å
1 +

(
∂tp

oracle−trig
t (x)

)2
poracle−trig
t (x)

ã
dtdx . (5.18)

Assume supx∈RD ϵ′(x) → 0, supx∈RD ϵ′′(x) → 0, ϵ → 0, ϵ′′′ → 0, and consider the distributions parith−trig
t

and poraclet as defined in Table 5.2.
Then, the optimal annealing path convergences pointwise to an arithmetic path reparameterized trigo-

nometrically with t→ t
sin2(πt

2
)+Z1(1−sin2(πt

2
))
and the estimation error tends to the optimal estimation error

(which is constant with respect to the parameter-distance) :

MSENCE(p0, p1; q,K,N) =
1

N
π2 +O

Å
ϵ+ ϵ

′′′

N

ã
+ o

Å
1

N

ã
+ o

Å
K2

N

ã
when q = 1 . (5.19)

By way of remarks, we note that the assumptions that the quantities sup ϵ′(x), sup ϵ′′(x), ϵ, ϵ′′′ go
to 0 aremutually incomparable (i.e. none of them implies the others). For example, supx∈RD ϵ′(x) and
ϵ going 0 require that the function√

p0(x)p1(x) goes to 0 in the L∞ and L1 sense, respectively — and
these two norms are not equivalent in the Lebesgue measure.
Two-step estimation Thus, we see that, perhaps unsurprisingly, the "optimal"mixture weights in
the space of unnormalized densities depends on the trueZ1 : however, this dependency is simple. We
propose a two-step estimation method : first, Z1 is pre-estimated, for example using the geometric
path ; second, the estimate of Z1 is plugged into the "oracle" or "oracle-trig" weight of the arithmetic
path (table 5.2, column 2), and which is used to obtain a second estimation of Z1. Note that pre-
estimating a problematic (hyper)parameter, here Z1, has proved beneficial to reduce the estimation
error of NCE in a related context [259].

5.6 . Numerical results

We now present numerical evidence for our theory and validate our two-step estimators. Impor-
tantly, we do not claim to achieve state of the art in terms of practical evaluation of the normalization

108



constants ; our goal is to support our theoretical analysis. We follow the evaluation methods of im-
portance sampling literature [245] and evaluate our methods on synthetic Gaussians. This setup is
specially convenient for validating our theory : the optimal estimation error can conveniently be com-
puted in closed-form, so too can the geometric and arithmetic paths which avoids a sampling error
from MCMC algorithms. These derivations are included in the Appendix 5.8.2. We specifically consi-
der the high-dimensional setting, where the computation of the determinant of a high-dimensional
(covariance) matrix which appears in the normalization of a Gaussian, can in fact be challenging [260].
Numerical Methods The proposal distribution is always a standard Gaussian, while the target
differs by the second moment : p1 = N (0, 2 Id) in Figure 5.2, p1 = N (0, 0.25 Id) in Figure 5.3b and
p1 = N (0, σ2 Id) in Figure 5.3a, where the target variance decreases as σ(i) = i−1 so that the (natural)
parameter distance grows linearly [257, Part II-4]. We use a sample size ofN = 50000 points, and, un-
less otherwise mentioned,K +1 = 10 distributions from the annealing paths and the dimensionality
is 50. To compute an estimator of the normalization constant using the non-convex NCE loss, we used
a non-linear conjugate gradient scheme implemented in Scipy [229]. We chose the conjugate-gradient
algorithm as it is deterministic (no residual variance like in SGD). The empirical Mean-Squared Error
was computed over 100 random seeds, parallelized over 100 CPUs. The longest experiment was for
Figure 5.3b and took 7 wall-clock hours to complete. For the two-step estimators ("two-step" and
"two-step (trig)"), a pre-estimate of the normalization was first computed using the geometric path
with 10 distributions. Then, this estimate was used to to re-parameterize an arithmetic path with 10

distributions which produced the second estimate.
Results Figure 5.2 numerically supports the optimality of the NCE loss for a finite K (here, K = 2

so three distributions are used) proven in Theorem 3. Figure 5.3 validates our main results for an-
nealing paths. It shows how the estimation error scales with the proposal and target distributions
growing apart, either with the parameter-distance in Figure 5.3a or with the dimensionality in Fi-
gure 5.3b. Using no annealing path (K = 1) produces an estimation error which grows linearly in
log space ; this numerically supports the exponential growth predicted by Theorem 4. Meanwhile,
annealing (K → ∞) sets the estimation error on different trends, depending on the choice of path.
Choosing the geometric path brings the growth down to sub-exponential, as predicted by Theorem 5,
while choosing the (basic) arithmetic path does not as in Theorem 6. To alleviate this, our two-step es-
timation methods consist in reparameterizing the arithmetic path so that it actually does bring down
the estimation error. In fact, our two-step estimators in table 5.2 empirically approach the optimal
estimation error in Figure 5.3. While this requires more computation, it has the appeal of making the
estimation error constant with respect to the parameter-distance between the target and proposal
distributions. Practically, this means that in Figure 5.3a, regular Noise-Contrastive Estimation (black,
full line) fails when the parameter-distance between the target and proposal distributions is higher
than 20, while our two-step estimators remain optimal.

We next explain interesting observations in Figure 5.3 which are actually coherent with our theory.
First, in Figure 5.3a, the "two-step (trig)" estimator is only optimal when the parameter-distance bet-
ween the target and proposal distributions is larger than 10. This is because the optimality of this
two-step estimator was derived in Theorem 8 conditionally on non-overlapping distributions, here
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achieved by a large parameter-distance. Second, in both Figures 5.3a and 5.3b, the "two-step" esti-
mator empirically achieves the optimal estimation error that was predicted for the "two-step (trig)"
estimator. This suggests our polynomial upper bound from Theorem 7may be loose in certain cases.
This further explains why, in Figure 5.3a, the arithmetic path is near-optimal for a single value of the
parameter-distance. At this value of 20, the partition function happens to be equal to one Z(θ1) = 1,
so that the arithmetic path is effectively the same as the "two-step" estimator.

0.2 0.0 0.2
Estimates

IS
RevIS

NCE

Figure 5.2 – Optimality of the NCE loss, using the geometric path with K = 2. NCE has the smallestdeviation from zero, the true value of the log normalizing constant.
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Figure 5.3 – Estimation error as the target and proposal distributions grow apart. Without annealing,the error is exponential in the parameter distance (diagonal in log-scale). Annealing with the geo-metric path and our two-step methods brings down the error to slower growth, as predicted by ourtheorems.

5.7 . Discussion

Previous work has mainly focused on annealed importance sampling [245, 261], which is a spe-
cial case of our annealed Bregman estimator. They have evaluated the merits of different paths em-
pirically, using an approximation of the estimation error called Effective Sample Size (ESS) and the
consistency-gap. In our analysis, we consider consistent estimators and derive and optimize the exact
estimation error of the optimal Noise-Contrastive Estimation. Liu et al. [251] considered the NCE es-
timate for Z (not logZ) with the name "discriminance sampling", and annealed the estimator using
an extended state-space construction similar to Neal [237]. Their analysis of the estimation error is
relevant but does not deal with hyperparameters other than the classification loss.
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We made the common assumption of perfect sampling [244, 245, 262, 263] in order to make the
estimation error tractable and obtain practical guidelines to reduce it. We note however, that this
leaves a gap to bridge with a practical setup where the sampling error cannot be ignored ; in fact,
annealed importance sampling [237] was originally proposed such that the samples can be obtai-
ned from a Markov Chain that has not converged. In this original formulation, AIS is a special case
of a larger framework called Sequential Monte Carlo (SMC) [264] in which the path of distributions
is implicitly defined (by Markov transitions), sometimes even "on the go" [263]. Yet even within that
theory, it seems that analyzing the estimation error for an inexplicit path of distributions is challen-
ging [265, Eq. 38]. In particular, samples from MCMC will typically follow marginal distributions that
are not analytically tractable, thus the stronger assumption of "perfect sampling" is often used to
make estimation error depend explicitly on the path of distributions [266, Eq. 3.2]. Even then, results
on how the estimation error scales with dimensionality are heuristic [237] or limited by assumptions
such as an essentially log-concave path of distributions or a factorial target distribution [266].

It might also be argued that the limit of almost no overlap between proposal and target, which
we use a lot, is unrealistic. To see why it can be realistic, consider the case of natural image data. A
typical proposal in high dimensions is a Gaussian, since it is both tractable and principled : it is the
distribution which spreads the most mass among those sharing the same (finite) mean and variance
as the target [147, Section 4.1.4]. However, there is almost no overlap between Gaussian data and
natural images, which is seen in the fact that a human observer can effortlessly discriminate between
the two.

More generally, note that a number of methods based on "annealing" were developed to deal
with sampling issues. In fact, the path costs for two such methods, parallel tempering [267, eq. 17]
and tempered transitions [268, eq. 18], are equal (or upper bounded) by a a sum of f-divergences
which in the limit of a continuous path is the same cost function as in our Theorem 3. This suggests
our results may be applicable to more practical methods in the literature.
Conclusion We defined a class of estimators of the normalization constant, annealed Bregman es-
timation (ABE), which relies on a sampling phase froma path of distributions, and an estimation phase
where these samples are used to estimate the log-normalization of the target distribution. Our results
suggest a number of simple recommendations regarding hyperparameter choices in annealing. First,
if the path has very few intermediate distributions, it is better to choose NCE due to its statistical
optimality (Theorem 3). If however, the path has many intermediate distributions and approaches
the annealing limit, then IS enjoys the same statistical optimality as NCE but has the advantage of its
computational simplicity. Annealing can always provide substantial benefits (Theorem 4). Moreover,
if we have a reasonable a priori estimate of Z1, the arithmetic path achieves very low error (Theorem
7) — sometimes even approaching optimality (Theorem 8). On the other hand, even absent an initial
estimate of Z1, the geometric path can exponentially reduce the estimation error compared with no
annealing (Theorems 4 and 5).
Acknowledgemenets This work was supported by the French ANR-20-CHIA-0016. Aapo Hyväri-
nen was supported by funding from the Academy of Finland and a Fellowship from CIFAR. Andrej
Risteski was supported in part by NSF awards IIS-2211907, CCF-2238523, and an Amazon Research
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5.8 . Supplemental material

In the following, wewill study the estimation error of of annealed Bregman estimation (ABE) in two
important setups : the log-normalization is computed using two distributions (K = 1), the proposal
and the target, or else using a path of distributions (K → ∞).

The anonymized codeused for the experiments is available at https://github.com/l-omar-chehab/
annealing-normalizing-constants.

5.8.1 . No annealing,K = 1

We use [92, Eq.21] for the estimation error of any suitably parameterized 3 classifier F (x;β) bet-
ween two distributions p1 and p0. The estimation error is measured by the asymptotic Mean-Squared
Error (MSE)

MSEβ̂(pn, ν, ϕ,N) =
ν + 1

N
tr(Σ) + o

Å
1

N

ã
(5.20)

which depends on the sample sizes N = N1 +N0, their ratio ν = N1/N0, the Bregman classification
loss indexed by the convex function ϕ(x), and the asymptotic variance matrix

Σ = I−1
w

(
Iv − (1 +

1

ν
)mwm

⊤
w

)
I−1
w . (5.21)

We suppose the standard technical conditions of van der Vaart [54, Th. 5.23] apply so that the remain-
der term ∥β̂ − β∗∥2 can indeed be written independently of the parameterization, as o(N−1). Here,
mw(β

∗), Iw(β∗) and Iv(β∗) are the reweighted mean and covariances of the paramete-gradient of
the classifier, also known as the “relative" Fisher score∇βF (x;β

∗),
mw(β

∗) = Ex∼pd

[
w(x)∇βF (x;β

∗)
] (5.22)

Iw(β
∗) = Ex∼pd

[
w(x)∇βF (x;β

∗)∇βF (x;β
∗)⊤

] (5.23)
Iv(β

∗) = Ex∼pd

[
v(x)∇βF (x;β

∗)∇βF (x;β
∗)⊤

] (5.24)
where the reweighting of data points is byw(x) := p1

νp0
(x)ϕ

′′( p1
νp0

(x)
) and by v(x) = w(x)2 νp0(x)+p1(x)

νp0(x)
,

which are all evaluated at the true parameter value β∗.
Scalar parameterization We now consider a specific parameterization of the classifier :

F (x;β) = log

Å
f1(x)

νf0(x)

ã
− β (5.25)

where the optimal parameter is the log-ratio of normalizations β∗ = log(Z1/Z0). Consequently, wehave∇βF (x;β
∗) = −1 and plugging this into the above quantities yields

MSE =
1 + ν

T

ÅEx∼p1

[
w2(x)νp0(x)+p1(x)

νp0(x)

]
Ex∼p1 [w(x)]

2
− (1 +

1

ν
)

ã
+ o

Å
1

N

ã
3. technically, the formula was derived in [63, 11] assuming the classifier was parameterized as F (x;β) =

log p1(x;β)/νp0(x) but the proof seems to generalize to any well-defined parameterization F (x;β).
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which matches the formula found in [247, Eq 3.2]. For different choices of the Bregman classification
loss, the estimation error is written using a divergence between the two distributions

Name Loss identified by ϕ(x) Estimator MSE up to o(N−1)

IS x log x logEp0
f1
f0

1+ν
νN Dχ2(p1, p0)

RevIS − log x − logEp1
f0
f1

1+ν
N Dχ2(p0, p1)

NCE x log x− (1 + x) log(1+x
2 ) implicit (1+ν)2

νN
DHM(p1,p0)

1−DHM(p1,p0)

IS-RevIS (1−
√
x)2 logEp0

f1
f0

− logEp1
f0
f1

(1+ν)2

νN

1−(1−DH2 (pd,pn))
2

(1−DH2 (pd,pn))2

where
Dχ2(p1, p0) :=

( ∫ p21
p0

)
− 1 is the chi-squared divergence

DH2(p1, p0) := 1−
( ∫ √

p1p0
)
∈ [0, 1] is the squared Hellinger distance

DHM(p1, p0) := 1−
∫ (
πp−1

1 + (1− π)p−1
0

)−1
= 1− 1

πEp1
πp0

(1−π)p1+πp0
∈ [0, 1]

is the harmonic divergence with weight π ∈ [0, 1].
Here, the weight π = P (Y = 0) = Tn

T = ν
1+ν .

Proof of Theorem 4 Exponential error of binary NCE
In the following, we will drop the remainder term in o(N−1) given that no other limits are taken

and that we will study the dominant term only. The estimation error of binary NCE is expressed in
terms of the harmonic divergence

MSE =
4

N

DHM(p1, p0)

1−DHM(p1, p0)
(5.26)

which is intractable for general exponential families. Instead, we can lower-bound the estimation
error. To do so, we lower-bound the harmonic divergence using the inequality of means (harmonic
vs. geometric)

DHM(p1, p0) = 1−
∫

2p0p1
p0 + p1

≥ 1−
∫

√
p0p1 = DH2(p0, p1) (5.27)

and therefore
MSELB =

4

N

DH2(p1, p0)

1−DH2(p1, p0)
. (5.28)

This lower bound is expressed in terms of the squared Hellinger distance, that is tractable for expo-
nential families :

DH2(p1, p0) := 1−
∫
x∈RD

√
p1p0dx (5.29)

= 1−
∫
x∈RD

1

Z(θ1)
1
2Z(θ0)

1
2

exp

Å
1

2
(θ1 + θ0)

⊤t(x)

ã
dx (5.30)
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= 1−
Z(12θ1 +

1
2θ0)

Z(θ1)
1
2Z(θ0)

1
2

(5.31)
= 1− exp

Å
logZ

Å
1

2
θ1 +

1

2
θ0

ã
− 1

2
logZ(θ1)−

1

2
logZ(θ0)

ã
. (5.32)

We now wish to lower bound MSELB, and therefore DH2(p1, p0), by an expression which is expo-
nential in the parameter distance ∥θ1 − θ0∥. To do so, we note that for exponential families, the
log-normalization is convex in the parameters. Here, we further assume strong convexity, so that

logZ

Å
1

2
θ1 +

1

2
θ0

ã
≤ 1

2
logZ(θ1) +

1

2
logZ(θ0)−

1

8
M∥θ1 − θ0∥2 (5.33)

whereM is the strong convexity constant. Plugging this back into the squared Hellinger distance, we
obtain

DH2(p1, p0) ≥ 1− exp

Å
− 1

8
M∥θ1 − θ0∥2

ã
(5.34)

so that the MSE
MSE ≥ 4

N

DH2(p1, p0)

1−DH2(p1, p0)
≥ 4

N
exp

Å
1

8
M∥θ1 − θ0∥2

ã
− 1 (5.35)

grows exponentially with the euclidean distance between the parameters.
5.8.2 . Annealing limit,K → ∞

Wenow consider annealing paths (pt)t∈[0,1] that interpolate between between the proposal p0 andthe target p1.
Estimation error

We first show the optimality of the NCE loss within the family of Annealed Bregman Estimators,
in the sense that it produces the smallest estimation error. We then study the estimation error of
different annealed Bregman estimators in the annealing limit of a continuous path (K → ∞).
Proof of Theorem3 Optimality of the NCE loss and the estimation error in the annealing limitK → ∞

• Optimality of the NCE loss
Because the annealed Bregman estimator is built by adding independent estimators÷logZ1 =

K−1∑
k=0

¤�
log

Ç
Z(k+1)/K

Zk/K

å
+ logZ0 . (5.36)

the total Mean Squared Error (MSE) is the sum of each MSEs for each estimator (indexed by
k ∈ J0,K − 1K)

MSE((ϕk)k∈J0,KK) =

K−1∑
k=0

MSEk(ϕk) (5.37)
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where we highlighted the dependency on the classification losses identified by (ϕk)k∈J0,KK. TheMSEs follow Eq. 5.26. It was shown by Meng and Wong [247] that for any of these MSEs, the
optimal loss is identified by ϕk(x) = x log x − (1 + x) log(1+x

2 ) and is in fact the NCE loss [92].
Thus the sum of MSEs is minimized for the same loss.

• Annealed Noise-Contrastive Estimation (NCE)
We are interested in the estimation error (asymptotic MSE) obtained for the NCE loss. Based off
table 5.1, it is written as

MSE =
K−1∑
k=0

Å
4K

N

DHM(pk/K , p(k+1)/K)

1−DHM(pk/K , p(k+1)/K)
+ o

Å
K

N

ãã
(5.38)

=
4K

N

K−1∑
k=0

DHM(pk/K , p(k+1)/K)

1−DHM(pk/K , p(k+1)/K)
+ o

Å
K2

N

ã
. (5.39)

where a sample budget ofN/K is used for each estimator that is summed. The estimation error
of balanced (ν = 1) NCE-JS between two “close" distributions pt and pt+h, is

MSE(pt, pt+h) ∝
DHM(pt, pt+h)

1−DHM(pt, pt+h)
(5.40)

up to the remainder term. The estimation error can be simplified using a Taylor expansion. To
do so, we recall thatDHM is an f-divergence generated by ϕ(x) = 1− x

π+(1−π)x [269, 270] (π = 1
2here) and its expansion is therefore [271, Eq.7.64]

DHM(pt, pt+h) =
1

2
h2∇2

tDHM(pt, pt+h) + o(h2) (5.41)
=

1

2
ϕ

′′
(1)h2I(t) + o(h2) =

1

4
h2I(t) + o(h2) . (5.42)

It follows that
DHM(pt, pt+h)

1−DHM(pt, pt+h)
=

1

4
I(t)h2 + o(h2) . (5.43)

Summing these estimation errors along the path of distributions with h = 1/K ,
MSE =

4K

N

K−1∑
k=0

Å
1

4
I(t)

1

K2
+ o

Å
1

K2

ãã
+ o

Å
K2

N

ã
(5.44)

=

Å
1

NK

K−1∑
k=0

I(t)

ã
+ o

Å
1

N

ã
+ o

Å
K2

N

ã
(5.45)

=
1

N

∫ 1

0
I(t)dt+ o

Å
1

N

ã
+ o

Å
K2

N

ã
. (5.46)

In the case of a parametric path p(x|θ(t))t∈[0,1], the proof is the same. Simply, the second-order
term in the Taylor expansion of Eq. 5.42 is computed using the chain rule

∇2
tMSE(pθ(t), pθ(t+h)) (5.47)
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= θ̇(t)⊤∇2
θMSE(pθ(t), pθ(t+h))θ̇(t) + θ̈(t)

⊤∇θMSE(pθ(t), pθ(t+h)) (5.48)
= θ̇(t)⊤∇2

θMSE(pθ(t), pθ(t+h))θ̇(t)
⊤ + 0 (5.49)

= θ̇(t)⊤I(θ(t))θ̇(t) (5.50)
• Annealed importance sampling (IS)
Similarly, for the choice of the importance sampling base estimator,

MSE =

K−1∑
k=0

Å
2K

N
Dχ2(p(k+1)/K , pk/K) + o

Å
K

N

ãã
(5.51)

=
2K

N

K−1∑
k=0

Dχ2(p(k+1)/K , pk/K) + o

Å
K2

N

ã
(5.52)

=
2K

N

K−1∑
k=0

Drevχ2(pk/K , p(k+1)/K) + o

Å
K2

N

ã
(5.53)

=
2K

N

K−1∑
k=0

Å
1

2
ϕ

′′
(1)I(t)

1

K2
+ o

Å
1

K2

ãã
+ o

Å
K2

N

ã
(5.54)

=
1

NK

K−1∑
k=0

ϕ
′′
(1)I(t) + o

Å
1

N

ã
+ o

Å
K2

N

ã
(5.55)

=
1

N

∫ 1

0
I(t)dt+ o

Å
1

N

ã
+ o

Å
K2

N

ã
. (5.56)

given that ϕ(x) = − log(x) and therefore ϕ′′
(1) = 1 for the reverse χ2 divergence.

• Annealed reverse importance sampling (RevIS)
Similarly, for the choice of the reverse importance sampling base estimator,

MSE =

K−1∑
k=0

Å
2K

N
Dχ2(pk/K , p(k+1)/K) + o

Å
K

N

ãã
(5.57)

=
2K

N

K−1∑
k=0

Å
1

2
ϕ

′′
(1)I(t)

1

K2
+ o

Å
1

K2

ãã
+ o

Å
K2

N

ã
(5.58)

=
1

NK

K−1∑
k=0

I(t) + o

Å
1

N

ã
+ o

Å
K2

N

ã
=

1

N

∫ 1

0
I(t)dt+ o

Å
1

N

ã
+ o

Å
K2

N

ã
. (5.59)

given that ϕ(x) = x log(x) and therefore ϕ′′
(1) = 1 for the χ2 divergence.

Examples of paths

Geometric path The geometric path is defined in the space of unnormalized densities by
ft(x) := p0(x)

1−tf1(x)
t = p0(x)

1−tp1(x)
tZt

1 ∝ p0(x)
1−tp1(x)

t (5.60)
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so in the space of normalized densities, the path is
pt :=

p0(x)
1−tp1(x)

t

Zt
(5.61)

where the normalization is
Zt :=

∫
x∈Rd

p0(x)
1−tp1(x)

tdx = Ex∼p1

ïÅ
p0(x)

p1(x)

ãtò
= Ex∼p0

ïÅ
p1(x)

p0(x)

ã1−tò
. (5.62)

Arithmetic path The arithmetic path is defined in the space of unnormalized densities by
ft(x) := (1− t)p0(x) + tf1(x) = (1− t)p0 + tZ1p1 (5.63)

∝ (1− t)

(1− t) + tZ1
p0 +

tZ1

(1− t) + tZ1
p1 (5.64)

so in the space of normalized densities, the path is actually a mixture between the target and the
proposal, where the weight of the mixture is a nonlinear function of the target normalization

pt := (1− w̃t)p0 + w̃tp1, w̃t =
tZ1

(1− t) + tZ1
. (5.65)

Optimal path We know (e.g. from Gelman and Meng [244, Eq. 49]) that the optimal path is
pt(x) =

(
a(t)

»
p0(x) + b(t)

»
p1(x)

)2 (5.66)
where the coefficients a(t) and b(t)

a(t) =
cos((2t− 1)αH)

2 cos(αH)
− sin((2t− 1)αH)

2 sin(αH)
(5.67)

b(t) =
cos((2t− 1)αH)

2 cos(αH)
+

sin((2t− 1)αH)

2 sin(αH)
(5.68)

are simple functions of the squared Hellinger distance DH2(p0, p1) between the proposal and the
target 4

αH = arctan

Å  DH2(p0, p1)

2−DH2(p0, p1)

ã
∈ [0,

π

4
] . (5.69)

The estimation error produced by that optimal path is [244, Eq. 48]
MSE =

1

N

∫ 1

0
I(t)dt =

1

N
16α2

H . (5.70)
4. In Gelman and Meng [244, Eq. 49], the Hellinger distance is defined such that it is in [0,

√
2]. We hereinstead use the conventional definition of the squared Hellinger distance which is normalized so that it is in

[0, 1].
117



For two Gaussians
p0 := N (µ0,Σ0) (5.71)
p1 := N (µ1,Σ1) (5.72)

the squared Hellinger distance can be written in closed-form
DH2(p0, p1) = 1− |Σ0|

1
4 |Σ1|

1
4

|12Σ0 +
1
2Σ1|

1
2

exp

Å
− 1

8
(µ1 − µ0)

⊤(1
2
Σ0 +

1

2
Σ1

)−1
(µ1 − µ0)

ã
(5.73)

and plugs into the optimal path formula, which is also obtained in closed-form.
Estimation error from taking different paths

Proof of Theorem 5 Polynomial error of annealed NCE with the geometric path
We next study the estimation error produced by the geometric path (Figure 1). In the annealing

limitK → ∞, the MSE is written as
MSE =

1

N

∫ 1

0
I(t)dt+ o

Å
1

N

ã
+ o

Å
K2

N

ã
. (5.74)

We recall fromGrosse et al. [245] that the geometric path is closed for distributions in the exponential
family : all distributions along the path remain in the exponential family. Furthermore, their Fisher
information can be written in terms of the terms parameters [245, Eq. 17] ; this is based off a a result
of exponential families from [272, Section 3.3]

I(t) = θ̇(t)⊤I(θ(t))θ̇(t) = θ̇(t)⊤µ̇(t) (5.75)
where µ(t) are the generalized moments, defined as µ(t) = Ex∼pt(x)[t(x)] = ∇θ logZt(θ). It follows,

1

N

∫ 1

0
I(t)dt =

1

N

∫ 1

0
θ̇(t)⊤µ̇(t)dt . (5.76)

The geometric path is defined in parameter space by θt = tθ1 + (1− t)θ0, therefore
1

N

∫ 1

0
I(t)dt =

1

N
(θ1 − θ0)⊤

∫ 1

0
µ̇(t)dt =

1

N
(θ1 − θ0)⊤(µ1 − µ0) (5.77)

as in [245, Eq. 17]. For exponential families, logZ(θ) is convex in θ. Here, we further assume strong
convexity (with constantM ) and smoothness (with constant L) so that

(θ1 − θ0)⊤(µ1 − µ0) = (θ1 − θ0)⊤(∇θ logZt(θ1)−∇θ logZt(θ0)) (5.78)
≤ 1

M
∥∇θ logZt(θ1)−∇θ logZt(θ0)∥2 ≤

L2

M
∥θ1 − θ0∥2 (5.79)

so that the MSE
MSE ≤ L2

MN
∥θ1 − θ0∥2 + o

Å
1

N

ã
+ o

Å
K2

N

ã
(5.80)

is polynomial in the euclidean distance between the parameters.
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Proof of Theorem6 Exponential error of annealedNCEwith the arithmetic path and "vanilla" schedule
Wenowstudy the estimation error producedby the arithmetic pathwith “vanilla" schedule (table 5.2,

line 3). Similarly, we start with the formula of the estimation error of NCE in the limit of a continuous
path

MSE =
1

N

∫ 1

0
I(t)dt+ o

Å
1

N

ã
+ o

Å
K2

N

ã
(5.81)

where I(t) = Ex∼p(x,t)[(
d
dt log p(x, t))

2] is the Fisher information over the path, using time t as the
parameter. The arithmetic path is a Gaussian mixture (see table 5.2) so we will conveniently use the
parametric form of the path to compute the Fisher information

I(t) = ˙̃w⊤
t I(w̃t) ˙̃wt (5.82)

where the parameter here is the weight of the Gaussian mixture w̃t = tZ1/(tZ1+1− t). We will need
to compute two quantites : the Fisher information to that mixture parameter (not the time), and the
parameter speed ˙̃

tw.
I(w̃t) := Ex∼pw̃t

ïÅ
∂ log pw̃t

∂w̃t
(x)

ã2ò
= Ex∼pw̃t

ïÅ
1

pw̃t(x)

∂pw̃t

∂w̃t
(x)

ã2ò (5.83)
=

∫
x∈RD

(p1(x)− p0(x))
2

pw̃t(x)
dx =

∫
x∈RD

(p1(x)− p0(x))
2

(1− w̃t)p0(x) + w̃tp1(x)
dx (5.84)

≥
∫
x∈RD

(p1(x)− p0(x))
2

p0(x) + p1(x)
dx =

∫
p0(x)

(
1− p1(x)

p0(x)

)2
1 + p1(x)

p0(x)

= Dϕ(p1, p0) (5.85)

which is an f-divergence with generator ϕ(x) = (1− x)2/(1 + x) that provides a t-independent lower
bound. This will allow us to factor this quantity out of the integral defining the MSE, and simplify
computations. We also have

˙̃
tw :=

∂

∂t
w̃t =

1

t(1− t)
× σ

Å
log

tZ1

1− t

ã
×
Å
1− σ

Å
log

tZ1

1− t

ãã
(5.86)

=
1

t(1− t)
× tZ1

(1− t) + tZ1
× (1− t)

(1− t) + tZ1
=

Z1

((1− t) + tZ1)2
. (5.87)

where we choose to keep the dependency on t. The intuition is that integrating this quantity will yield
a function of Z1, which will drive the MSE toward high values. We next show this rigorously and finally
compute the estimation error.

1

N

∫ 1

0
I(t)dt =

1

N

∫ 1

0

˙̃w(t)I(w̃(t)) ˙̃w(t)dt (5.88)
≥ 1

N
×Dϕ(p1, p0)×

∫ 1

0

˙̃w(t)2dt (5.89)
=

1

N
×Dϕ(p1, p0)× Z2

1 ×
∫ 1

0

1

(t(Z1 − 1) + 1)4
dt (5.90)
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=
1

N
×Dϕ(p1, p0)× Z2

1 × Z2
1 + Z1 + 1

3Z3
1

(5.91)
=

1

3N
×Dϕ(p1, p0)× (Z−1

1 + 1 + Z1) . (5.92)
We would like to write Z1 in terms of the parameters. To do so, we now suppose the unnormalized
target is in a simply unnormalized exponential family. Consequently,

Z1 := exp(logZ(θ1)− logZ(θ0) + logZ(θ0)) (5.93)
≥ exp

Å
∇ logZ(θ0)(θ1 − θ0) +

M

2
∥θ1 − θ0∥2 + logZ(θ0)

ã
. (5.94)

using the strong convexity of the log-partition function. For large enough ∥θ1−θ0∥ > 0, the quadratic
term in the exponential is larger than the linear term, and the divergence Dϕ(p1, p0) is larger than a
constant. It follows that for large enough ∥θ1 − θ0∥ > 0, there exists a constant C > 0 such that the
MSE grows (at least) exponentially with the parameter-distance

MSE >
C

3N
× exp

Å
M

2
∥θ1 − θ0∥2

ã
+ o

Å
1

N

ã
+ o

Å
K2

N

ã
. (5.95)

Proof of Theorem 7 Polynomial error of annealed NCE with the arithmetic path and "oracle" schedule
Wenowstudy the estimation error producedby the arithmetic pathwith "oracle" schedule (table 5.2,

line 4). Similarly, we start with the formula of the estimation error of NCE annealed over a continuous
path

MSE =
1

N

∫ 1

0
I(t)dt+ o

Å
1

N

ã
+ o

Å
K2

N

ã
(5.96)

where I(t) = Ex∼p(x,t)[(
d
dt log p(x, t))

2] is the Fisher information over the path, using time t as the
parameter. The arithmetic path is the Gaussian mixture pt(x) = tp1(x) + (1− t)p0(x) (see table 5.2).The Fisher information is therefore

I(t) := Ex∼pt

ïÅ
∂ log pt
∂t

(x)

ã2ò
= Ex∼pt

ïÅ
1

pt(x)

∂pt
∂t

(x)

ã2ò (5.97)
=

∫
x∈RD

(p1(x)− p0(x))
2

pt(x)
dx =

∫
x∈RD

(p1(x)− p0(x))
2

(1− t)p0(x) + tp1(x)
dx (5.98)

≤
∫
x∈RD

p1(x)
2 + p0(x)

2

(1− t)p0(x) + tp1(x)
dx (5.99)

where we choose to keep the dependency on t in the bound.
We briefly justify this choice. We had first tried a t-independent bound, which led to an upper

bound of the MSE that was too loose. We share insight as to why : first, recognize that the fraction can
be broken in two terms, each of them a chi-square divergence between an endpoint of the path (p0or p1) and the mixture pt. Each of them admits a t-independent upper bound given by the chi-square
divergence between the endpoints p0 and p1, using lemma 1. However, the chi-square divergence
between two Gaussians, for example, is exponential (not polynomial) in the natural parameters [271,
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eq 7.41]. In fact, plotting I(t) for a univariate Gaussian model revealed that it took high values at the
endpoints t = 0 and t = 1, and was near zero almost everywhere else in the interval t ∈ [0, 1], which
again suggested that dropping the dependency on t was unreasonable.

Now we can compute the estimation error, as
1

N

∫ 1

0
I(t)dt ≤ 1

N

∫
Rd

∫ 1

0

p1(x)
2 + p0(x)

2

(1− t)p0(x) + tp1(x)
dtdx =

1

N
(J1 + J2) . (5.100)

Let us try to solve one of these integrals, say J1.
J1 =

∫
Rd

∫ 1

0

p1(x)
2

(1− t)p0(x) + tp1(x)
dtdx =

∫
Rd

p1(x)
2

p0(x)

Å∫ 1

0

1

1 + t(p1(x)p0(x)
− 1)

dt

ã
dx (5.101)

=

∫
Rd

p1(x)
2

p0(x)

Å
1

p1
p0

− 1
log

p1
p0

ã
dx = 1 + Ep1

ï
1

1− p0
p1

log
p1
p0

− 1

ò
= 1 +Dϕ(p0, p1) . (5.102)

which we rewrote using an f-divergence defined by ϕ(x) = − log(x)
1−x − 1. Similarly, we obtain

J2 =

∫
Rd

∫ 1

0

p0(x)
2

(1− t)p0(x) + tp1(x)
dtdx =

∫
Rd

p0(x)
2

p1(x)

Å∫ 1

0

1
p0(x)
p1(x)

+ t(1− p0(x)
p1(x)

)
dt

ã
dx (5.103)

=

∫
Rd

p0(x)
2

p1(x)

Å
1

p0
p1

− 1
log

p0
p1

ã
dx = 1 + Ep0

ï
1

1− p1
p0

log
p0
p1

− 1

ò
= 1 +Dϕ(p1, p0) . (5.104)

Putting this together, we get
1

N

∫ 1

0
I(t)dt ≤ 1

N
(2 +Dϕ(p0, p1) +Dϕ(p1, p0)) . (5.105)

How does this divergence depend on the parameter-distance ∥θ1 − θ0∥ ? Does it bring down the
dependency from exponential to something lower? We next analyze this :

Dϕ(p0, p1) + 1 = Ep1

1

1− p0
p1

log
p1
p0

which looks like a Kullback-Leibler divergence, where the integrand is reweighted by 1

1− p0(x)
p1(x)

. Note
that 

1

1− p0(x)
p1(x)

≥ 1 p0(x) ≤ p1(x)

1

1− p0(x)
p1(x)

< 1 p0(x) > p1(x)
(5.106)

which motivates separating the integral over both domains
1 +Dϕ(p0, p1) =

∫
{x∈RD|p0(x)≤p1(x)}

p1(x) log
p1(x)

p0(x)

1

1− p0(x)
p1(x)

(5.107)

+

∫
{x∈RD|p0(x)>p1(x)}

p1(x) log
p1(x)

p0(x)

1

1− p0(x)
p1(x)

(5.108)
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≤
∫
{x∈RD|p0(x)≤p1(x)}

p1(x) +

∫
{x∈RD|p0(x)>p1(x)}

p1(x) log
p1(x)

p0(x)
(5.109)

≤ 1 +DKL(p1, p0) (5.110)
Hence we get

1

N

∫ 1

0
I(t)dt ≤ 1

N
× (2 +DKL(p0, p1) +DKL(p1, p0)) . (5.111)

We now suppose the proposal and target are distributions in an exponential family. The KL divergence
between exponential distributions with parameters θ0 and θ1, is given by the Bregman divergence of
the log-partition on the swapped parameters [257, Eq. 29]

DKL(p0, p1) = DBregman
logZ (θ1,θ0) := logZ(θ1)− logZ(θ0)−∇ logZ(θ0)(θ1 − θ0) (5.112)

≤ L

2
∥θ1 − θ0∥2 (5.113)

Hence
MSE ≤ 1

N
× (2 + L∥∥θ1 − θ0∥2) + o

Å
1

N

ã
+ o

Å
K2

N

ã
(5.114)

using the L-smoothness of the log-partition function logZ(θ).
Discussion on the assumptions for theorems 4, 5, 6, 7 For these theorems, we have sup-
posed that the target and proposal distributions are in an exponential family with a log parition that
verifies

M Id ≼ ∇2
θ logZ(θ) ≼ L Id . (5.115)

We now look at the validity of this assumption for a simple example : the univariate Gaussian, which
is in an exponential family. The canonical parameters are its mean and variance (µ, v). Written as an
exponential family,

p(x) := exp(⟨θ, t(x)⟩ − logZ(θ)) (5.116)
the natural parameters areθ = (µ/v,−1/(2v)), associatedwith the sufficient statistics t(x) = (x, x2) [257].
The log-partition function and its derivatives are

logZ(θ) = − θ21
4θ2

− 1

2
log(−2θ2) (5.117)

∇ logZ(θ) = Ex∼p[t(x)] =

Å
− θ1
2θ2

,− 1

2θ2
+

θ21
4θ22

ã
(5.118)

∇2 logZ(θ) = Varx∼p[t(x)] =
1

2θ2

Ç
−1 θ1

θ2
θ1
θ2

1
θ2

− 1
2
θ21
θ2

å
=

Å
v 2µv

2µv 2v2 − µ2

ã
(5.119)

When the mean is zero, the eigenvalues of the Hessian are in fact the diagonal values (v, 2v2), and
they are bounded if and only if the variance v is bounded.
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Proof of Theorem 8 Constant error of annealed NCE with the arithmetic path and “oracle-trig" sche-
dule

We now study the estimation error produced by the arithmetic path with "oracle-trig" schedule
(table 5.2, line 5). We write the optimal path of Eq. 5.66 in the limit when the distributions have little
overlap, pointwise (with error ϵ′ ) and on average (with error ϵ) :»

p0(x)p1(x) = ϵ
′
(x) (5.120)∫ »

p0(x)p1(x)dx = ϵ (5.121)
We briefly note that there exist certain conditions, given by the dominated convergence theorem,
where the first error (pointwise) going to zero implies the second (on average) going to zero as well,
but this is outside the scope of this proof. Now, many relevant quantities involved in the optimal
distribution and its estimation error simplify as ϵ′(x) → 0 pointwise and ϵ→ 0. The notation O(·) will
hide dependencies on absolute constants only.

DH2(p0, p1) := 1−
∫

√
p0p1 = 1− ϵ (5.122)

αH := arctan

Å  DH2(p0, p1)

2−DH2(p0, p1)

ã
=
π

4
− ϵ

2
+ o(ϵ) (5.123)

at :=
cos((2t− 1)αH)

2 cos(αH)
− sin((2t− 1)αH)

2 sin(αH)
= cos

(πt
2

)
+ ϵ(t− 1) sin

(πt
2

)
+ o(ϵ) (5.124)

bt =
cos((2t− 1)αH)

2 cos(αH)
+

sin((2t− 1)αH)

2 sin(αH)
= sin

(πt
2

)
− ϵt cos

(πt
2

)
+ o(ϵ) (5.125)

∂tat := −αH

Å
sin((2t− 1)αH)

cos(αH)
+

cos((2t− 1)αH)

sin(αH)

ã
(5.126)

= −π
2
sin

(πt
2

)
+ ϵ

Å
sin

(πt
2

)
+
π

2
(t− 1) cos

(πt
2

)ã
+ o(ϵ) (5.127)

∂tbt := −αH

Å
sin((2t− 1)αH)

cos(αH)
− cos((2t− 1)αH)

sin(αH)

ã
(5.128)

=
π

2
cos

(πt
2

)
+ ϵ

Å
π

2
t sin

(πt
2

)
− cos

(πt
2

)ã
+ o(ϵ) (5.129)

at × ∂tat := −π
4
sin(πt) + ϵ

Å
1

2
sin(πt) +

π

2
(t− 1) cos(πt)

ã
+ o(ϵ) (5.130)

at × ∂tbt :=
π

2
cos2

(πt
2

)
+ ϵ

Å
π

2
(1− 2t) sin(πt) + cos(πt) + 1

ã
+ o(ϵ) (5.131)

bt × ∂tat := −π
2
sin2

(πt
2

)
+ ϵ

Å
1

2
− 1

2
cos(πt) +

1

2

π

2
sin(πt)(2t− 1)

ã
+ o(ϵ) (5.132)

bt × ∂tbt :=
π

4
sin(πt) + ϵ

Å
− 1

2
sin(πt)− π

2
t cos(πt)

ã
+ o(ϵ) (5.133)

This leads to the following simplification of the optimal path
poptt (x) :=

(
at
»
p0(x) + bt

»
p1(x)

)2
= a(t)2p0(x) + b(t)2p1(x) + 2a(t)b(t)ϵ

′
(x) (5.134)
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= a(t)2p0(x) + b(t)2p1(x) + 2a(t)b(t)ϵ
′
(x) (5.135)

= cos2
(πt
2

)
p0(x) + sin2

(πt
2

)
p1(x) + ϵ

′
(x) sin(πt) (5.136)

+ ϵ sin(πt)(p0(x)(t− 1)− p1(x)t) + ϵ ϵ
′
(x)((1− 2t) cos(πt)− 1) + o(ϵ) (5.137)

= parith−trig
t (x) +O(ϵ

′
(x)) +O(ϵg1(x)) (5.138)

where we denoted by
parith−trig
t (x) := cos2

(πt
2

)
p0(x) + sin2

(πt
2

)
p1(x) (5.139)

the arithmetic path with "oracle-trig" schedule defined in table 5.2 (line 5) ; the trigonometric weights
in evolve slowly at the end points t = 0 and t = 1. We also define g1(x) = sin(πt)(p0(x)(t−1)−p1(x)t)which is an integrable function. This proves the first part of this theorem, which is that the optimal
path popt is close to a certain arithmetic path (with trigonometric weights) parith−trig, and that closeness
is controlled by how little overlap there is between the endpoint distributions p0 and p1, on average
and pointwise.

Similarly, we can control how close these two paths are in terms of estimation errors. The estima-
tion error in Eq. 5.70 produced by a path is

MSE :=
1

N

∫ 1

0
I(t)dt+ o

Å
1

N

ã
+ o

Å
K2

N

ã
(5.140)

=
1

N

∫
RD

∫ 1

0

(
∂t log pt(x)
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We denote by MSEoptimal and MSEarith−trig the estimation errors produced respectively by the op-
timal path and the arithmetic path with trigonometric weights. The estimation error of the optimal
path can be Taylor-expanded in terms of the overlap (ϵ and ϵ′(x)) as well. We next compute the inter-
mediate quantities that are required to obtain the estimation error.
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where g2(x) = p0(x)
(
sin(πt)+π(t−1) cos(πt)

)
+p1(x)

(
−sin(πt)−πt cos(πt)

) is an integrable function.
It follows, (

∂tpt(x)
)2

=
(
∂tp

arith−trig
t (x) +O(ϵ

′
(x)) +O(ϵg2(x))

)2 (5.152)
=

(
∂tp

arith−trig
t (x)

)2
+O(ϵ

′
(x)) +O(ϵg2(x)) (5.153)

by expanding andusing that ∂tparith−trig
t (x) = π sin(πt)
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Denoting by ϵ′′(x) := (O(ϵ
′
(x)) +O(ϵg1(x)))/p

arith−trig
t (x) a third quantity which we assume goes to

zero, we get
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We can now write
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by expanding. We can then write
MSEoptimal (5.160)
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Additionally, we assume that the remainder term denoted by
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is integrable and also goes to zero. On the other hand, the estimation error produced by the optimal
path is known [244, Eq. 48] and the result can be Taylor-expanded as well
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This means that
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5.8.3 . Useful Lemma
Lemma 1 (Chi-square divergence of between a density and a mixture) We wish to upper bound the
chi-square divergence between a distribution p(x) and a mixture wp(x) + (1−w)q(x), where 0 < w < 1.
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Conclusion

This thesis manuscript studies self-supervised learning as a topic of increasing interest inmachine
learning literature. In section 1, we explained that self-supervised learning effectively reframes an un-
supervised problem into a supervised problem, so a prediction task (classification or regression). Part I
explored what prediction tasks are able to learn on brain imaging data, using deep neural networks
with a focus on interpretability. Part II pays greater interest to the question of what self-supervised
learning actually learns. We chose a basic prediction task, binary classification that is related to es-
timating an unnormalized density model. We analyzed how the estimation error is impacted by the
design of the task and howannealing can formally help. Yetmuch remains to be done : we next discuss
some research questions and lay out the blueprint to naturally extend this manuscript.
Extension to other prediction tasks In this manuscript we focused on binary classification
which despite its apparent simplicity, is shown to be a very rich framework. The main argument rela-
ting binary classification to unsupervised learning is the Bayes-predictor learns (a ratio of) densities.
A natural question is : can the Bayes-predictor for other prediction tasks be used for unsupervised
learning?

Extension to multi-class classification. Similar to the binary case, a multi-class classification loss
that is a proper and composite can also be expressed in terms of a Bregman divergence bet-
ween the true and model class-probabilities [273] or equivalently between the true and model
density-ratios [274, Eq.7] (with respect to the reference distribution for class 0). From that view-
point, our estimation error analysis could be extended to popular losses (e.g. InfoNCE [26] and
RankingNCE [42]) in the multi-class case.
Extension to regression. Other popular losses in self-supervised learning (e.g. InfoNCE [26] and
RankingNCE [42]) are based on a multi-class classification problem. The Bayes-predictor for re-
gression tasks with a Bregman loss is the conditional expectation of the target given the input
f(x) = E[Y |X = x] [275]. This is a well-known setup where this Bayes-regressor is tractable :
when the input is a gaussian-noised version of the data and the target is the original data.
For this denoising task, the Bayes-regressor is related to the Stein score of the noised density
∇y log p(y) by Tweedie’s formula [276, 277]. Hence, solving the regression task can be used to
learn an unnormalized model of the perturbed data distribution. Works by collaborators are
proving how this estimation method, like NCE, can suffer from an error that is exponentially
large in relevant quantities [278] and that annealing this estimation method provably brings
down that error [279].

Last, we note that self-supervised learning is a broad field that extends well beyond the scope
of this thesis. Its success has been explored [280, 281], even questioned [282], through the lens of
information theory, representation learning [26, 283], statistical inference [42, 16–18, 284], and from
other perspectives aswell. Future theorywill be needed to determine how relevant these perspectives
are to explain the practical success of self-supervised learning.
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Synthèse en français

L’apprentissage auto-supervisé a gagné en popularité en tant que méthode d’apprentissage à
partir de données non annotées. Il s’agit essentiellement de créer puis de résoudre un problème de
prédiction qui utilise les données ; par exemple, de retrouver l’ordre de données qui ont été mélan-
gées. Ces dernières années, cette approche a été utilisée avec succès pour entraîner des réseaux de
neurones qui extraient des représentations utiles des données, le tout sans aucune annotation. Ce-
pendant, notre compréhension de ce qui est appris et de la qualité de cet apprentissage est limitée.
Ce document éclaire ces deux aspects de l’apprentissage auto-supervisé.

Empiriquement, nous évaluons ce qui est appris en résolvant des tâches auto-supervisés. Nous
spécialisons des tâches de prédiction lorsque les données sont des enregistrements d’activité céré-
brale, par magnétoencéphalographie (MEG) ou électroencephalographie (EEG). Ces tâches partagent
un objectif commun : reconnaître la structure temporelle dans les ondes cérébrales. Nos résultats
montrent que les représentations apprises en résolvant ces tâches-là comprennent des informations
neurophysiologiques, cognitives et cliniques, interprétables.

Théoriquement, nous explorons également la question de la qualité de l’appretissage, spécifi-
quement pour les tâches de prédiction qui peuvent s’écrire comme un problème de classification
binaire. Nous poursuivons une trâme de recherche qui utilise des problèmes de classification binaire
pour faire de l’inférence statistique, alors que cela peut nécessiter de sacrifier une notion d’efficacité
statistique pour une autre notion d’efficacité computationnelle. Nos contributions visent à améliorer
l’efficacité statistique. Nous analysons théoriquement l’erreur d’estimation statistique et trouvons des
situations lorsque qu’elle peut rigoureusement être réduite. Spécifiquement, nous caractérisons des
hyperparametres optimaux de la tâche de classification binaire et prouvons également que la popu-
laire heuristique de "recuit" peut rendre l’estimation plus efficace, même en grandes dimensions.
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