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"If you want to find the secrets of

the universe, think in terms of

energy, frequency and vibration."

Nikola Tesla
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Résumé (French summary)

La dynamique quantique des surfaces est une branche fascinante de la recherche sci-

entifique qui permet d’étudier le comportement complexe des atomes et des molécules

à l’échelle nanoscopique de la surface des matériaux selon les principes de la mé-

canique qui correspond à cette échelle : la mécanique quantique. Cette étude re-

lie les principes de la mécanique quantique, qui expliquent les mouvements des

particules à l’échelle atomique et subatomique, à la science des surfaces, qui ex-

amine les propriétés et les interactions des atomes et des molécules à la surface

des solides et des liquides. Les chercheurs dans ce domaine utilisent, d’une part,

des techniques expérimentales avancées, telles que la microscopie à effet tunnel

(scanning tunneling microscope, STM) [1], la spectroscopie de perte d’énergie des

électrons à haute résolution (high resolution electron energy loss spectroscopy,

HREELS) [2], la diffusion de neutrons ou d’atomes d’hélium [3], et d’autre part, la

modélisation numérique, y compris les simulations classiques de dynamique molécu-

laire pour dévoiler les principes fondamentaux régissant les processus de surface [3].

Les simulations basées sur des approches entièrement quantiques à partir de calculs

de premier principe sont toutefois moins courantes.

L’objectif de cette thèse est d’étudier la dynamique quantique des atomes d’hydro-

gène après leur adsorption sur une surface métallique formée d’atomes de palladium

(Pd). Elle s’inscrit dans un domaine de recherche passionnant au sein de la vaste

discipline de la dynamique quantique des surfaces. Cette étude se concentre sur la

compréhension des interactions à l’échelle quantique entre les atomes d’hydrogène,

les entités les plus simples, et la surface de palladium. Ce type de substrat est

particulièrement intéressant dans ce contexte en raison de ses propriétés uniques

qui en font un excellent catalyseur pour diverses réactions chimiques. Comprendre

ix
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la dynamique quantique des atomes d’hydrogène sur la surface du palladium est

également d’une importance cruciale pour des applications telles que le stockage de

l’hydrogène [4]. En comprenant les processus quantiques impliqués, les scientifiques

visent à améliorer l’efficacité et la performance des applications liées à l’hydrogène,

contribuant ainsi à l’avancement des solutions énergétiques durables.

Nous nous intéressons particulièrement aux situations où un ou deux atomes d’hydro-

gène sont adsorbés sur la surface de Pd(111); les deux systèmes seront désignés

dans cette thèse par H/Pd(111) et H2/Pd(111) respectivement. Les propriétés dy-

namiques de ces systèmes dépendent principalement du type d’interactions inter-

atomiques entre l’adsorbat et les atomes du substrat. Lorsque ces interactions im-

pliquent des couplages de nature quantique, la dynamique des adsorbats peut être

fortement influencée par les phénomènes quantiques induits par ces couplages, tels

que l’effet tunnel, mais non exclusivement. Les atomes d’hydrogène, compte tenu

de leur masse, sont fortement soumis à ce type d’interaction. Dans ce cas, leur mou-

vement sur la surface du métal est principalement soumis aux lois de la mécanique

quantique. Une compréhension complète de leur dynamique nécessite une approche

entièrement quantique; on parle alors de dynamique quantique des adsorbats.

Dans cette thèse, une étude basée sur une telle approche a été réalisée, par laque-

lle des effets non-classiques susceptibles d’impacter le comportement des atomes

d’hydrogène adsorbés à la surface du palladium ont été dévoilés. Le système est alors

défini par sa fonction d’onde, et son évolution temporelle se fait par la résolution de

l’équation de Schrödinger dépendante du temps. Les potentiels interatomiques pos-

sèdent généralement des formulation mathématiques complexes, ce qui rend impos-

sible une résolution analytique exacte de cette équation. Les méthodes numériques

sont les principaux outils permettant d’obtenir des solutions susceptibles de décrire

le système de manière réaliste.

La dissipation en général, et le frottement en particulier, résultent de l’interaction

de la particule, dans ce cas l’atome d’hydrogène, avec toute la pléthore de particules

qui l’entourent, parmi lesquelles nous pouvons compter d’autres atomes d’hydrogène

sur le substrat, mais aussi les atomes du substrat en mouvement ou les électrons

environnants. En raison de la taille de l’espace linéaire contenant tous les états
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du milieu environnant, le traitement théorique direct par l’obtention d’une solution

de la fonction d’onde à plusieurs corps à partir de l’équation de Schrödinger est

pratiquement impossible. Ce fait nous oblige à developper des modèles qui nous

permettent de décrire de façon approximative ces interactions avec l’environement.

Cette thèse fait partie du projet de recherche "Dynamique Quantique de la Diffusion

des Adsorbats (QDDA)", financé par l’Agence Nationale de la Recherche (ANR). Un

des aspects de ce projet est le développement de méthodes pratiques pour traiter

l’effet de dissipation, ce qui a donné lieu à deux publications en relation avec le

présent travail [5, 6]. Ces méthodes sont actuellement en cours d’applicationaux

systèmes étudiés dans cette thèse. Cependant, aucun résultat n’a été au moment

de la rédaction de cette thèse et nous nous abstenons donc de présenter ici cette

partie du projet QDDA. Les effets de la dissipation et de la friction ne sont pas pris

en compte dans le cœur de cette thèse, qui se concentre uniquement sur les aspects

quantiques du mouvement des atomes d’hydrogène.

Une grande partie de ce travail est liée à l’étude des états stationnaires et des én-

ergies des atomes d’hydrogène, lorsqu’ils sont adsorbés sur la surface du palladium.

Cette étude est cruciale pour la compréhension de leur mouvement. Le dihydrogène

s’adsorbe sur le palladium de manière dissociative. Dans le cadre des approxima-

tions susmentionnées, les états stationnaires sont les états vibrationnels des adsor-

bats dans la surface d’énergie potentielle (SEP) multidimensionnelle, ce qui inclut

les translations frustrées et les rotations entravées des espèces diatomiques. Les

états vibrationnels sont associés aux mouvements vibratoires quantifiés des atomes

au sein d’une molécule ou d’un réseau cristallin. Les états propres vibrationnels

révèlent plusieurs effets importants de la dynamique quantique, notamment l’effet

tunnel, l’intrication quantique, l’énergie du point zéro et en particulier les propriétés

thermodynamiques des systèmes quantiques. Leur nature quantifiée et leurs inter-

actions avec d’autres états quantiques les rendent fondamentaux pour comprendre

et prédire le comportement des atomes d’hydrogène adsorbés à l’échelle quantique.

Nous avons pu notamment montrer dans cette étude la présence d’un effet tunnel et

d’un couplage par résonance de Fermi [7] entre certains modes vibrationnels localisés

du système. Plusieurs simulations dynamiques dépendantes du temps ont ensuite

été réalisées, mettant en évidence l’impact majeur de ces effets sur le mouvement
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des atomes d’hydrogène adsorbés à cette surface.

La diffusion de surface, quant à elle, est un domaine d’étude qui se concentre sur

la manière dont les particules, en particulier les atomes et les molécules, interagis-

sent et diffusent à la surface des matériaux. Cette discipline est cruciale pour notre

compréhension des processus qui se produisent à la surface des matériaux, ce qui a

des implications significatives dans des domaines tels que la catalyse, la croissance

des couches minces, la chimie des surfaces, les nanotechnologies et bien d’autres. À

l’échelle atomique, les particules doivent surmonter des barrières énergétiques pour

se déplacer le long de la surface. Ces barrières résultent des interactions entre les

particules adsorbées et les atomes de la surface. Alors qu’en mécanique classique,

la diffusion est le résultat d’un comportement collectif de nombreuses particules

décrites par leurs trajectoires aléatoires individuelles dans l’espace de configuration,

en mécanique quantique, les particules sont décrites par leurs fonctions d’onde, dont

la distribution dans l’espace de configuration est généralement délocalisée à un de-

gré élevé et dont l’interprétation physique contient des éléments fondamentaux de

stochasticité. Par conséquent, l’image quantique d’une particule se déplaçant dans

l’espace de configuration reflète intrinsèquement une diffusion d’un type différent,

peut-être, de la diffusion dans la compréhension classique du terme, et ceci indépen-

damment de son interaction éventuelle avec les particules composant son environe-

ment. Ces dernières pourraient être déduites de la fonction d’onde à plusieurs corps

de particules interagissant de manière aléatoire et nous pourrions conjecturer que ces

effets s’ajouteraient simplement aux effets déjà causés par la nature ondulatoire de

l’état d’une seule particule. Or, les échelles de temps où ces interactions à plusieurs

corps deviennent importantes sont typiquement bien plus longues que les échelles

de temps du mouvement vibratoire des adsorbats, ce qui rend notre approximation

plausible dans l’échelle de temps de celui-ci: la sub-picoseconde (∼ 10−15 à 10−12 s).

Pour étudier la diffusion en surface, les scientifiques utilisent des techniques expéri-

mentales telles que les expériences d’écho de spin de l’hélium 3 [3] pour extraire

les coefficients de diffusion. Cependant, pour extraire ces coefficients des données

mesurées, et même pour en déduire la topographie de la SEP des surfaces cataly-

tiques, de nombreuses étapes de modélisation intermédiaires doivent être réalisées.

Les résultats expérimentaux des expériences d’écho de spin de l’hélium 3 reposent
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sur l’évaluation du facteur de structure dynamique (FSD), introduit pour la pre-

mière fois par van Hove [8], et de sa transformée de Fourier, la fonction de diffusion

intermédiaire (FDI). Plutôt que de déterminer directement le coefficient de diffusion,

la recherche se concentre désormais sur l’évaluation et l’interprétation du FSD et de

la FDI directement observables, comme cela est clairement décrit dans la réf. [3].

L’importance de la nature quantique de la dynamique sous-jacente au mouvement

de diffusion a été soulignée à plusieurs reprises et également dans des travaux publiés

[9, 10, 11, 12, 13]. Une évaluation détaillée de l’approche purement quantique pour

calculer les observables n’a pas été faite avant que les résultats sur le FSD ne soient

obtenus à partir de calculs de premier principe [10]. Cependant, plusieurs questions

sont restées ouvertes depuis lors, parmi lesquelles une question majeure émerge :

comment évaluer théoriquement la FDI directement observée à partir d’un calcul de

dynamique purement quantique ? Une nouvelle méthode de calcul de cette fonction

fait partie intégrante de la proposition de projet QDDA [14] dont est issu le présent

projet de thèse. Elle repose sur une formulation entièrement quantique basée sur

une approche stochastique. Cette méthode a été testée pour la première fois dans

les présents travaux.

Dans ce qui suit, nous présentons quelques aspects généraux des études qui ont été

couvertes dans cette thèse.

Théorie & méthodes

Les systèmes étudiés étant représentés par leurs fonctions d’onde, la dynamique est

réalisée par le biais de l’équation de Schrödinger dépendante du temps. La solution

analytique exacte de cette équation n’est pas possible pour les systèmes étudiés.

Nous avons donc utilisé des méthodes basées sur une approche numérique pour sa

résolution.

La méthode Multi-Configuration T ime-dependent Hartree (MCTDH) [15, 16] a

été utilisée pour la résolution numérique de l’équation de Schrödinger dépendante

du temps. Le programme permet de traiter un large éventail de problèmes de dy-

namique moléculaire quantique, y compris ceux de grande dimension. La puis-
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sance de cette méthode provient du traitement compact multi-configurationnel de

la fonction d’onde à l’aide d’un ensemble de fonctions dépendantes du temps appelé

single particle functions (SPF). Pour un problème avec f degrés de liberté (DL),

la décomposition de la fonction d’onde du système dans cette base s’écrit

Ψ(Q1, .., Qf , t) =
n1∑
i1

...
nf∑
if

Ai1,...,if
(t)

f∏
κ=1

φ
(κ)
iκ

(Qκ, t) (1)

Avec κ = {1, .., f}, φ(κ)
iκ

(Qκ, t) est la iκ-ième SPF utilisée pour décrire le DL Qκ, nκ

est le nombre de SPF utilisées pour chaque DL et Ai1,...,if
(t) représente les coefficients

d’expansion de la fonction d’onde en fonction du temps dans la base SPF.

Une décomposition similaire à celle utilisée pour la fonction d’onde est nécessaire

pour l’ensemble des opérateurs utilisés dans les calculs MCTDH, en particulier

l’Hamiltonien du système. L’opérateur d’énergie cinétique convient généralement

à cette forme. Pour les potentiels interatomiques, cependant, les opérateurs asso-

ciés ne permettent pas une décomposition analytique de cette forme dans la plupart

des cas. MCTDH comprend un module appelé potfit qui permet de représenter

numériquement le potentiel avec la forme requise pour MCTDH.

Pour propager la fonction d’onde d’un système initialement préparé dans un état

Ψ0, une base SPF et un vecteur A sont initialement construits de manière à repro-

duire Ψ0 sous la forme adaptée à MCTDH. Comme la base SPF et le vecteur A

dépendent du temps, ils sont tous les deux propagés dans le temps selon le principe

variationnel de Dirac-Frenkel [17, 18]. Le calcul variationnel conduit aux équations

de mouvement de MCTDH données par :

iȦI =
∑
I′

⟨φI |Ĥ|φI′⟩AI′ (2)

iφ̇(κ) = (1̂ − P̂ (κ))(ρ(κ))−1 ⟨H⟩(κ) φ(κ) (3)

φ(κ) est un vecteur composé des nκ SPF utilisées pour le DL Qκ. L’opérateur

(1 − P̂ (κ)) garantit que la dérivée temporelle de la SPF est orthogonale à l’espace

généré par ces fonctions. ρ(κ) et H(κ) représentent respectivement la matrice de

densité d’une seule particule et la matrice du champ moyen [15].

Pour résoudre l’équation de Schrödinger indépendante du temps, nous avons utilisé

la méthode de relaxation améliorée par blocs implémentée dans MCTDH [19, 20, 21].



Résumé (French summary) xv

Cette approche est basée sur l’idée que si nous propageons un état avec un Hamil-

tonien en temps imaginaire négatif, il convergera vers l’état propre de plus basse

énergie du système étudié. La version en bloc de cette méthode permet de relaxer

simultanément plusieurs états vers les états propres du système. Cette méthode

est non seulement plus rapide en termes de temps de calcul que la relaxation d’un

seul état, mais elle est également cruciale pour traiter les problèmes avec des états

propres dégénérés, comme c’est le cas dans cette étude.

Le choix d’utiliser l’approche MCTDH est fondé sur sa capacité à traiter des sys-

tèmes nécessitant des bases de fonctions mathématiques relativement importantes

pour leur description. Bien que les systèmes étudiés dans cette thèse ne possè-

dent pas de dimensionnalité très élevée, le calcul des états propres vibrationnels

et de la dynamique quantique effectué dans cette étude a représenté un véritable

défi pour le calcul numérique. En effet, les interactions interatomiques entre les

atomes d’hydrogène et les atomes du substrat sont d’une nature très complexe. La

dualité entre la forte corrélation impliquant les degrés de liberté internes et ex-

ternes de chaque atome d’hydrogène rend le calcul numériques très coûteux. Le

choix de "bons" vecteurs de base avec des combinaisons de modes adaptées à ce

type d’interaction était essentiel pour la réalisation des calculs. D’autre part, les

interactions à longue portée entre les atomes d’hydrogène signifient que de grandes

cellules de calcul périodiques sont nécessaires pour modéliser correctement le sys-

tème, ce qui nécessite de très grandes bases primitives. Ceci rend également l’étude

de la dynamique de ces systèmes à l’échelle de temps de la picoseconde extrêmement

coûteuse numériquement pour garantir des calculs précis. L’utilisation de MCTDH

nous a permis de réduire cet effort numérique tout en conservant une description

correcte du système.

Analyse des surfaces d’énergie potentielle

Nous effectuons nos calculs dans l’approximation de Born-Oppenheimer dans laque-

lle les mouvements des électrons et ceux des noyaux sont découplés adiabatique-

ment, les noyaux évoluent alors dans une SEP représentant les interactions entre

les composants du système. La SEP utilisée dans ce travail a été développée par
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W.Dong et al. [22] pour une surface de palladium normale à la direction cristalline

⟨111⟩. Elle a été construite dans l’état électronique fondamental du système. Les

auteurs ont fourni une formulation analytique du potentiel en utilisant des modèles

d’ajustement [23]. Dans cette étude, les atomes de palladium sont considérés comme

fixes dans leur position d’équilibre, et les seuls DLs de la SEP sont ceux des atomes

d’hydrogène. La SEP est donc définie par une fonction tri-dimensionnelle dans le

cas de H/Pd(111) et une fonction six-dimensionnelle dans le cas de H2/Pd(111).

Présentation de la cellule élémentaire

Afin de simuler une surface infinie dans nos calculs, une approche périodique a été

adoptée qui comprend une cellule élémentaire donnée par un bloc de cinq couches de

Pd où chacune contient 3×3 atomes de Pd. L’espace vide correspond à cinq couches

de Pd(111). La cellule élémentaire utilisée dans nos calculs est la même que celle

utilisée par les auteurs pour développer la SEP. La figure 1 présente un schéma de

cette grille montrant uniquement le plan de surface (ligne continue) et le premier

plan inférieur (ligne pointillée).

fcc
hcp

3d

Figure 1: Cellule 3×3 utilisée pour les calculs périodiques.

Cette grille contient 9 sites hcp équivalents et 9 sites fcc équivalents. Ces derniers

correspondent aux sites d’adsorption les plus stables au niveau de la surface. La

périodicité spatiale est appliquée suivant les vecteurs xt et yt formant un angle

α = ( ̂xt,yt) = 120◦ comme le montre la figure 2.
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fcc
hcp

α
xt

yt

d

d/3

−d/3

−d/3

d/3 X

X xc

yc

d/2−d/2

−h
h

Figure 2: Representation des bases "twisted" et cartésienne dans la cellule élémen-

taire 3×3. d ≈ 2.75Å.

Nous définissons un repère non orthogonale dit "twisted" (xt, yt, zt) où l’origine

est située au centre de l’atome de Pd situé au milieu de la couche extérieure de la

cellule élémentaire. La transformation entre les deux systèmes de coordonnées est

donnée par : 

xt=xc + 1√
3
yc

yt=
2√
3
yc

zt= zc

(4)

Les deux systèmes de coordonnées sont utilisés dans ce travail en fonction de la

nature de la tâche effectuée. Dans ce qui suit, nous ferons référence aux coordonnées

cartésiennes en tant que (x, y, z).

SEP de H/Pd(111)

La figure 3 montre une section bidimensionnelle de la SEP dans les coordonnées

cartésiennes du système H/Pd(111). Elle illustre la structure du potentiel perçu par

l’atome d’hydrogène lorsqu’il se déplace dans un plan parallèle au substrat. Cela

permet de visualiser la structure des différents puits de potentiel situés au niveau

de ce plan.

Des lignes d’énergie équipotentielle allant de 0 à 300 meV sont représentées sur la

figure. On constate que tous les puits de potentiel sont situés sur les sites fcc et

hcp de la grille. Ils possèdent une forme trianglaire soulignant la symétrie locale

du type C3v du potentiel. Le minimum global du potentiel est pris comme énergie
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V/meV

x/pm
y/p

m 15 0

fcc
hcp

185

300

150

0

Figure 3: Coupe bidimentionnelle de la SEP de H/Pd(111) dans les coordonnées

cartésiennes avec z = 90 pm.

de référence, il est atteint lorsque l’atome d’hydrogène est situé sur un des sites

fcc. L’énergie du système lorsque l’atome d’hydrogène est situé dans un site hcp

est d’environ 15 meV pour z=90 pm. Les puits de potentiel situés sur les sites hcp

correspondent donc aux minima locaux du potentiel. La cellule périodique contient

alors au niveau de la surface 18 puits de potentiel dont 9 équivalents de chaque type.

Les barrières de potentiel qui séparent les puits de potentiel à z = 90 pm sont toutes

équivalentes et de taille finie avec une hauteur de 185 meV.

SEP de H2/Pd(111)

Les minima du SEP H2/Pd(111) sont atteints lorsque les deux atomes d’hydrogène

occupent des sites fcc ou hcp. Dans ce qui suit, nous symbolisons le site fcc par

la lettre majuscule A et le site hcp par la lettre majuscule B. Nous pouvons ainsi

distinguer trois situations :

• Les deux atomes d’hydrogène sont situés sur des sites fcc (AA).

• Les deux atomes d’hydrogène sont situés sur des sites hcp (BB).

• Un atome d’hydrogène est situé sur un site fcc et l’autre sur un site hcp (AB).

Le tableau 1 donne les énergies de toutes les différentes configurations possibles

avec la dégénérescence "classique" associée. Les indices "I" et "II" sont utilisés pour

désigner les situations dans lesquelles les deux atomes occupent respectivement les

sites des premiers et de seconds voisins. L’indice "NN" (Nearest Neighbors) utilisé

dans la configuration (AB) correspond à la situation où les deux atomes occupent
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les sites fcc et hcp les plus proches. Cette configuration n’est pas incluse dans cette

étude pour cause de son énergie déjà assez elevée.

Configuration dH-H/d E/meV Dégénérescence

(AA)I 1 0 54

(BB)I 1 17 54

(AB)I 2/
√

3 38 54

(AA)II
√

3 67 18

(AB)II

√
7/3 71 54

(BB)II
√

3 99 18

(AB)NN 1/
√

3 357 54

Table 1: Énergies et dégénérescence classique de tous les types de configurations

possibles du système H2 dissociatif sur la surface de Pd. d ≈ 275 pm est la distance

entre deux atomes de Pd voisins et dH−H représente la distance entre les deux atomes

H dans chaque configuration.

La figure 4 montre une représentation bidimensionnelle de la SEP du système

lorsqu’un atome d’hydrogène est fixé à un site fcc (figure 4a) ou à un site hcp (fig-

ure 4b), tandis que le second se déplace dans un plan parallèle au substrat. Cette

représentation illustre les différents types de configuration donnés dans le tableau 1.
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Figure 4: Coupes bidimensionnelles de la SEP de H2/Pd(111) lorsque l’un des deux

atomes d’hydrogène est fixé sur un site fcc (4a) ou hcp (4b), tandis que le second

se déplace dans un plan parallèle au substrat donné par z1 = 87 pm. Les lignes

équipotentielles allant de 0 à 300 meV sont représentées sur la figure.
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Résultats & discussions

L’étude théorique de la spectroscopie vibrationnelle réalisée dans cette thèse a fourni

un moyen puissant de comprendre, d’une part, la structure des états propres vibra-

tionnels d’un et de deux atomes d’hydrogène adsorbés sur la surface de palladium

Pd(111). D’autre part, cette compréhension nous permet de rationaliser le com-

portement dynamique complexe de ces atomes sur la surface. Les points suivants

résument les résultats clés et les implications de cette recherche :

• L’étude théorique de la spectroscopie vibrationnelle d’un seul atome d’hydrogène

adsorbé sur la surface du palladium a révélé la présence d’un effet tunnel affec-

tant tous les états vibrationnels excités. Ce dernier s’est manifesté de diverses

manières à travers différentes barrières de potentiel, conduisant à de multiples

éclatements de plusieurs niveaux d’énergie en sous-niveaux avec des écarts

relatifs allant de 1 meV à 8 meV.

L’étude a également montré l’existence d’une résonance de Fermi entre les

états purs possédant un seul quantum d’excitation vibrationnelle perpendic-

ulaire au substrat et ceux possédant deux quanta d’excitation vibrationnelle

parallèle au substrat. L’interaction entre ces deux états vibrationnels entraîne

la formation de paires de Fermi d’états stationnaires possédant simultanément

des excitations vibrationnelles perpendiculaires et parallèles au substrat.

• L’étude théorique de la spectroscopie vibrationnelle de H2/Pd(111) a montré

que dans les situations où les deux atomes d’hydrogène occupent des sites

d’adsorption voisins de même type, l’excitation du système se manifeste sys-

tématiquement sur les deux atomes. Ces derniers adoptent alors des modes

de vibration concertés en phase et en opposition de phase, démontrant ainsi

la présence d’une forte corrélation entre les deux atomes. Dans les cas où ces

derniers occupent des sites de types différents, les excitations vibrationnelles

sont localisées séparément sur les deux atomes, indiquant une corrélation plus

faible dans ce type de configuration.

Dans les deux cas, la présence d’un second atome d’hydrogène dans le voisi-

nage modifie significativement le spectre du système. En particulier, nous
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avons constaté que les barrières de potentiel séparant les différents sites sont

importantes, conduisant à un effet tunnel beaucoup moins prononcé que celui

observé sur l’atome d’hydrogène isolé.

La résonance de Fermi, telle qu’observée sur un atome d’hydrogène isolé, reste

localement présente sur chaque atome de la diatomique malgré les fortes in-

teractions entre eux lorsqu’ils occupent des sites voisins de même type. Ceci

montre également la persistance de l’intensité des interactions locales entre les

modes vibrationnels internes de chaque atome d’hydrogène.

• L’intégration de la dynamique quantique dans cette étude nous a permis de

mieux comprendre les processus quantiques qui sous-tendent la structure des

états propres vibrationnels des systèmes. Nous avons examiné plusieurs sim-

ulations numériques mettant en évidence la manifestation de l’effet tunnel

et de la résonance de Fermi dans le comportement dynamique des atomes

d’hydrogène à la surface du palladium. Ces études ont permis de dégager trois

grandes conclusions :

– La dynamique des atomes d’hydrogène suite à une excitation dans un

mode parallèle au substrat est principalement gouvernée par l’effet tunnel

à travers les barrières de potentiel. Ceci est beaucoup plus important dans

le cas d’un atome d’hydrogène isolé.

– La résonance de Fermi telle que prédite dans cette étude, couple les mou-

vements de vibration perpendiculaire et parallèle au plan de surface dans

une échelle de temps d’environ 200 fs. Lorsqu’un atome d’hydrogène

est excité dans un mode perpendiculaire au substrat, l’excitation vibra-

tionnelle alterne dans le temps entre les modes parallèles et perpendicu-

laires. La quasi-périodicité de nature quantique observée entre ces vibra-

tions est directement liée à l’écart énergétique entre les états formant les

paires de Fermi au sein du système.

– L’excitation d’un atome d’hydrogène conduit à un transfert systématique

d’énergie vers l’atome d’hydrogène voisin à l’échelle de temps de quelques

centièmes de femtosecondes, si ce dernier occupe un site voisin du même

type. Le temps de transfert de cette énergie est directement lié aux
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énergies des états vibrationnels correspondant au même type d’excitation.

• La méthode de calcul de la fonction de diffusion intermédiaire utilisée dans

cette thèse permet de relier directement les observations expérimentales dans

les expériences d’écho de spin à l’approche quantique de la diffusion. L’étude

préliminaire que nous avons réalisé dans ce projet a permis d’extraire des pre-

mières données pouvant être comparées directement aux résultats expérimen-

taux, tout en décrivant précisément l’ensemble des mécanismes se déroulant à

l’échelle de la femtoseconde.. Elle représente un premier pas vers l’exctraction

des coefficients de diffusion directement de ces simulations numériques à partir

de calculs de premiers principes.

Perspectives

Les connaissances acquises dans le cadre de cette thèse ouvrent de nouvelles per-

spectives de recherches futures. Pour n’en citer que quelques-unes :

• l’évaluation de l’impact de la dissipation et de la friction ; trois sources prin-

cipales peuvent être ciblées, à cet égard, à savoir l’interaction entre plus de

deux atomes d’hydrogène adsorbés, l’interaction avec les atomes de palladium

en mouvement (couplages de phonons), et les interactions avec les électrons

environnants hors de l’approximation de Born-Oppenheimer (couplages avec

les paires électron-trou).

• une évaluation théorique précise du spectre HREELS de l’hydrogène sur le

palladium ; des idées ont été explorées dans cette thèse, les résultats sont

prometteurs mais absents de ce manuscrit, car ils nécessitent des recherches

plus approfondies;

• l’étude des modifications para et ortho de H2 adsorbé, et le mécanisme subtil

de leur interconversion lors de l’adsorption via l’inclusion du couplage hyperfin

faible ; à cette fin, cependant, la précision numérique devra être augmentée

d’au moins deux ordres de grandeur.

En fin de compte, cette recherche met en évidence la profonde interconnexion

entre la spectroscopie vibrationnelle et la dynamique quantique, deux domaines
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qui s’enrichissent mutuellement pour fournir une compréhension plus profonde des

phénomènes moléculaires à l’interface entre les matériaux solides et leur environ-

nement.





Summary

Quantum surface dynamics is a fascinating branch of scientific research that inves-

tigates the complex quantum mechanical behavior of atoms and molecules on the

quantum scale at the surface of materials. This discipline interconnects the prin-

ciples of quantum mechanics, which studies particles on the atomic and subatomic

scales, with surface science, which examines the properties and interactions of atoms

and molecules on the surfaces of solids and liquids. Researchers in this field employ,

on the one hand, advanced experimental techniques, such as Scanning Tunneling Mi-

croscopy (STM) [1], High-Resolution Electron Energy Loss Spectroscopy (HREELS)

[2], neutron or helium atom scattering [3], on the other hand, numerical modeling,

including classical molecular dynamics simulations to unveil the fundamental prin-

ciples governing surface processes [3]. Fully quantum mechanical simulations from

first principle calculations are less common, however.

The aim of this thesis is to study the quantum dynamics of hydrogen atoms following

adsorption onto a metal surface formed by palladium atoms. It is part of an exciting

area of research within the broad discipline of quantum surface dynamics. This

study focuses on understanding the quantum-scale interactions between hydrogen

atoms, the simplest entities, and the palladium surface. The latter is of particular

interest in this context due to its unique properties that make it an excellent catalyst

for various chemical reactions. Understanding the quantum dynamics of hydrogen

atoms on the palladium surface is of crucial importance also for applications such as

hydrogen storage [4]. By understanding the quantum processes involved, scientists

aim to improve the efficiency and performance of hydrogen-related applications,

thereby contributing to the advancement of sustainable energy solutions.

We are particularly interested in situations where one or two hydrogen atoms are

xxv
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adsorbed onto the Pd(111) surface; the two systems will be denoted in this thesis

by H/Pd(111) and H2/Pd(111), respectively. The dynamical properties of these

systems depend mainly on the type of interatomic interactions between the adsor-

bate and the substrate atoms. When the interactions involve couplings of quantum

mechanical nature, the dynamics of the adsorbates can be strongly impacted by

quantum phenomena induced by these couplings, such as the tunneling effect [24].

Hydrogen atoms, given their mass, are strongly subject to this type of interaction.

When this is the case, their motion on the metal surface is mainly subject to the

laws of quantum mechanics. A complete understanding of their dynamics requires

a fully quantum approach; we then speak of adsorbate quantum dynamics.

In this thesis, a study based on such an approach was carried out, by which non-

classical effects likely to impact on the behavior of hydrogen atoms adsorbed on the

palladium surface were unveiled. The system is then defined by its wave functions,

and its temporal evolution is achieved by solving the time dependent Schrödinger

equation. Interatomic potentials generally have complicated forms, making an exact

analytical resolution of this equation unfeasible. Numerical methods are the main

tools to obtain solutions that might describe the system realistically.

Dissipation in general, and friction in particular, result from the interaction of the

particle, in this case the hydrogen atom, with the whole plethora of particles sur-

rounding it, among which we may count other hydrogen atoms on the substrate, but

also the moving substrate atoms or the surrounding electrons. Due to the size of

the linear space containing all the states of the surrounding environment, the direct

theoretical treatment by obtaining a solution for the many body wave function from

the Schrödinger equation is practically impossible. This thesis is part of the research

project "Quantum Dynamics of the Diffusion of Adsorbates (QDDA)", financed by

the Agence National de la Recherche (ANR). One aspect of that project is the de-

velopment of practical methods to tackle the effect of dissipation, out of which two

publications emerged in connection with the present work [5, 6]. Currently these

methods are being implemented. Yet, no results have been obtained so far and we

therefore refrain to report on this part of the QDDA project here. The effects of

dissipation and friction are not considered in the core of this study, the main focus

of which are the quantum mechanical aspects of the motion of the hydrogen atoms.
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A large part of this work is related to the study of the stationary states and energies

of the hydrogen atoms, when they are adsorbed on the palladium surface. This

study is crucial to the project. Dyhydrogen adsorbs on palladium dissociativelly.

Within the aforementioned approximations, stationary states are the vibrational

states of the adsorbates on the multi-dimensional potential energy surface (PES),

which includes frustrated translations and hindered rotations of the diatomic species.

Vibrational states are associated with the quantized vibrational motions of atoms

within a molecule or in a crystal lattice. Vibrational eigenstates reveal several signif-

icant effects of the quantum dynamics, including tunneling, quantum entanglement,

zero-point energy (ZPE) and particularly thermodynamic properties of quantum

systems. Their quantized nature and interactions with other quantum states make

them fundamental to understand and to predict the behavior of adsorbed hydrogen

atoms at the quantum scale. In particular, we were able to show in this study the

presence of tunneling between and Fermi resonance coupling [7] of localized vibra-

tional modes of the system. Several time dependent dynamical simulations have

subsequently been carried out, highlighting the major impact of these effects on the

dynamics of hydrogen atoms at this surface.

Surface diffusion, on the other hand, is a field of study that focuses on how particles,

in particular atoms and molecules, interact and diffuse at the surface of materials.

This discipline is crucial for our understanding of the processes that occur at the

surface of materials, which has significant implications in fields such as catalysis,

thin film growth, surface chemistry, nanotechnology and many others. At the atom-

istic scale, particles must overcome energy barriers to move along the surface. These

barriers are the result of the interactions between the adsorbed particles and the sur-

face atoms, i.e. the topography of the PES. While in classical mechanics diffusion is

the result of a collective behaviour of many particles described by their individual

random trajectories in configuration space, in quantum mechanics particles are de-

scribed by their wave functions, the distribution of which in configuration space is

generally delocalized to a high degree and the physical interpretation of which con-

tains fundamental elements of stochasticity. Consequently the quantum picture of

a particle moving independently of other particles in configuration space inherently

reflects diffusion of a different type, perhaps, than diffusion in classical mechanical
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understanding of the term. The latter could be inferred from the many-body wave

function of randomly interacting particles and we might conjecture that these effects

would just be added to the effects already caused by the wave function of a single

particle on time scales when many-body interactions become important.

To study surface diffusion, scientists use experimental techniques such as helium-

3 spin-echo experiments [3] to extract diffusion coefficients. However, to extract

these coefficients from these measured data, and even to deduce from them on the

topography of the PES of catalytic surfaces, many intermediate modeling steps have

to be carried out. The experimental results from the helium-3 spin-echo experiments

rely on the evaluation of the dynamical structure factor (DSF), first introduced

by van Hove [8], and its Fourier-transform, the intermediate scattering function

(ISF). Rather than determining the diffusion coefficient directly, research is now

concentrated on the evaluation and interpretation of the directly observable DSF

and ISF, as clearly described in ref. [3].

The importance of the quantum nature of the dynamics underlying the diffusion

motion was underlined many times and also in published work [9, 10, 11, 12, 13].. A

detailed assessment of the pure quantum approach to calculate the observables was

not made before results on the DSF were obtained from first principle calculations

[10]. However, several questions have remained open since then, among which one

major questions emerge: How do we evaluate theoretically the directly observed

intermediate scattering function (ISF) from a pure quantum dynamical calculation?

A new method to calculate the ISF is an integral part of the QDDA project proposal

[14] out of which resulted the present thesis project. It relies on a fully quantum

formulation based on a stochastic approach.

In the following, we present some general aspects of the studies that have been

covered in this thesis.

Theory & methods

The systems studied being represented by their wave functions, the dynamics are

carried out by means of the time-dependent Schrödinger equation. The exact an-
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alytical solution of this equation is not possible for the studied systems. We have

therefore used methods based on a numerical approach to solve this equation.

The Multi-Configuration Time-dependent Hartree (MCTDH) [15, 16] method was

used for the numerical resolution of the time-dependent Schrödinger equation. The

program allows to one treat a wide range of problems in quantum molecular dy-

namics including those with large dimension. The power of this method comes from

the multi-configuration compact treatment of the wave function using a set of a

time-dependent vectors called single particle function (SPF). For a problem with f

degrees of freedom (DOF), the decomposition of the system’s wave function in this

basis is as follows

Ψ(Q1, .., Qf , t) =
n1∑
i1

...
nf∑
if

Ai1,...,if
(t)

f∏
κ=1

φ
(κ)
iκ

(Qκ, t) (5)

With κ = {1, .., f}, φ(κ)
iκ

(Qκ, t) is the iκ-th SPF used to describe the DOF Qκ, nκ are

the number of SPF used for each DOF and Ai1,...,if
(t) represent the time-dependent

expansion coefficients of the wave function in the SPF basis.

A similar decomposition to that used for the wave function is required for the set

of operators used in MCTDH calculations, in particular the system Hamiltonian.

The kinetic energy operator is generally suitable for this form. For interatomic

potentials, however, the associated operators do not allow analytical decomposition

of this form in most cases. MCTDH includes a module called potfit which allows to

represent the potential numerically with the required form for MCTDH.

To propagate the wave function of a system initially prepared in a state Ψ0, an SPF

basis and an A-vector are initially constructed so as to reproduce Ψ0 in the form

suited to MCTDH. As the SPF and the A-vector are time-dependent, they are both

propagated in time following the Dirac-Frenkel variational principle [17, 18]. The

variational calculation leads to the MCTDH equations of motion given by :

iȦI =
∑
I′

⟨φI |Ĥ|φI′⟩AI′ (6)

iφ̇(κ) = (1̂ − P̂ (κ))(ρ(κ))−1 ⟨H⟩(κ) φ(κ) (7)

φ(κ) is a vector composed of the nκ SPF used for the DOF Qκ. The operator

(1 − P̂ (κ)) ensures that the time derivative of the SPF is orthogonal to the space
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spanned by the functions. ρ(κ) and H(κ) represent the single-particle density matrix

and mean-field matrix respectively [15].

For solving the time-independent Schrödinger equation, we used the block improved-

relaxation method which is implemented in MCTDH [19, 20, 21]. This approach is

based on the idea that if we propagate a state with a Hamiltonian in negative imag-

inary time, then it will converge to the lowest-energy eigenstate of the Hamiltonian

used. The block version of this method allows to relax simultaneously several states

to eigenstates of the system. This method is not only faster in terms of computa-

tional time than single-state relaxation, it is also crucial for dealing with problems

with degenerate eigenstates, as is the case in this study.

The choice of using the MCTDH approach is based on its ability to handle systems

requiring relatively large bases of mathematical functions for their descriptions. Al-

though the systems studied in this thesis do not possess very high dimensionality,

the calculations of the vibrational eigenstates and quantum dynamics carried out

in this study presented a real challenge for numerical computation, indeed. The

interatomic interactions between hydrogen atoms and the substrate atoms are of

a very complex nature. The duality between the strong correlation involving the

internal and external degrees of freedom of each hydrogen atom renders the calcula-

tion of the time dependent and time independent dynamics very costly. The choice

of ’good’ basis vectors with mode combinations suitable for this type of interaction

was essential for accomplishment of the calculations. The long-range interactions

between the hydrogen atoms mean that large periodic calculation cells are required

to model the system correctly, necessitating very large primitive bases. This makes

the study of the dynamics of these systems on the picosecond time scale extremely

costly numerically, given the time step needed to guarantee accurate calculations.

The use of MCTDH enabled us to reduce the numerical effort while maintaining a

physically sound description of the system.

Potential energy surfaces analysis

We perform our calculations within the Born-Oppenheimer approximation in which

the DOFs of electrons and those of nuclei are decoupled, the nuclei evolve then in a
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PES representing the interactions between the components of the system. The PES

used in this work was developed by W.Dong et al. [22]. It was constructed within the

the ground electronic state of the system. The authors have provided an analytical

formulation of the potential using a some fit models [23]. In this study, the palladium

atoms are considered to be fixed in their equilibrium position, and the only DOFs

of the PES are those of the hydrogen atoms. The PES is therefore defined by a

three-dimensional function in the case of H/Pd(111) and a six-dimensional function

in the case of H2/Pd(111).

Presentation of the elementary cell

In order to simulate an infinite surface in our calculations, a periodic approach was

adopted which includes an elementary cell given by a slab of five Pd layers where each

one contains 3×3 Pd atoms. The vacuum space corresponds to five Pd(111) layers.

We will refer to this as "(3×3)-grid". The elementary cell used in our calculations

is the same as the one used by the authors to develop the PES. Figure 5 shows a

scheme of this grid showing only the surface plane (solid line) and the one below

(dashed line).

fcc
hcp

3d

Figure 5: (3×3)-grid used for periodic calculations.

This grid contains 9 equivalent fcc sites and 9 equivalent hcp sites. The latter

correspond to the most stable adsorption sites at the surface level. The spatial

periodicity is applied following the twisted vectors xt and yt with α = ( ̂xt,yt) =

120◦ as shown in figure 6.
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fcc
hcp
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−d/3

−d/3

d/3 X
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yc

d/2−d/2

−h
h

Figure 6: Twisted and Cartesian coordinates used for the (3×3)-grid. d = 2.75Å.

We define therefore a non-orthogonal basis set (xt,yt,zt) where the origin is located

in the center of the Pd atom located in the middle of the topmost layer of the

elementary cell. The transformation between the two systems coordinate is given

by : 

xt=xc + 1√
3
yc

yt=
2√
3
yc

zt= zc

(8)

Both coordinate systems are used in this work depending on the nature of the

performed task. In the following, we will refer to Cartesian coordinates as (x,y,z).

H/Pd(111) PES

V/meV

x/pm

y/p
m 15 0

fcc
hcp

185

300

150

0

Figure 7: Two-dimensional section of the PES in the Cartesian coordinates (x, y)

with z = 90 pm.

A two-dimensional section of the PES in the Cartesian coordinates of the H/Pd(111)

system is shown in figure 7. It illustrates the structure of the potential perceived by
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the hydrogen atom as it moves in a plane parallel to the substrate. This allows to

visualize the structure of the various potential wells located at this plane level.

Equipotential energy lines ranging from 0 to 300 meV are shown in the figure. One

sees that all potential wells are located at the fcc and hcp sites of the grid. They

have the shape of up-pointing or down-pointing triangles for the fcc and hcp sites

respectively, which gives the potential a local C3v symmetry. The global minima are

shifted to the zero reference energy value, they are reached when the hydrogen atom

is located at fcc sites. The energy of the system when the hydrogen atom is located

in an hcp site is around 15 meV for z=90 pm. The potential wells located at the hcp

sites corresponds then to the local minima of the potential. The (3×3)-grid then

contains 18 potential wells including 9 equivalents of each type. Potential barriers

that separate the potential wells at z = 90 pm are all equivalent and of finite size

with a height of 185 meV.

H2/Pd(111) PES

The minima of the H2/Pd(111) PES are reached when both hydrogen atoms occupy

the fcc or hcp sites. In the following we symbolize the fcc site with the capital letter

A and the hcp site with the capital letter B. We can then distinguish between three

situations:

• Both hydrogen atoms are located on fcc sites (AA).

• Both hydrogen atoms are located on hcp sites (BB).

• One hydrogen atom is located on a fcc site and the other on a hcp site (AB).

Table 2 gives the energies of all the different possible configurations with the as-

sociated "classical" degeneracy. "I" and "II" indices are used to refer to situations

where the two atoms occupy first and second neighbor sites respectively. "NN" index

(Nearest Neighbors) used in configuration (AB) corresponds to the situation where

both atoms occupy the closest fcc and hcp sites. This configuration is not included

in this study.
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Configuration dH-H/d E/meV Degeneracy

(AA)I 1 2 54

(BB)I 1 19 54

(AB)I 2/
√

3 40 54

(AA)II
√

3 69 18

(AB)II

√
7/3 73 54

(BB)II
√

3 101 18

(AB)NN 1/
√

3 359 54

Table 2: Energies and classical degeneracy of all possible types of configurations of

the dissociative H2 system on the Pd surface. d ≈ 275 pm is the distance between

two neighboring Pd atoms and dH−H represent the distance between the two H atoms

in each configuration. z1 = z2 = 87 pm for all these configurationsa.

aThe overall PES minimum is reached when the two hydrogen atoms are out of the crystallo-

graphic position (AA)I.

Figure 8 shows a two-dimensional representation of the system’s PES when one

hydrogen atom is fixed to a fcc site (figure 8a) or to a hcp site (figure 8b), while the

second moves in a plane parallel to the substrate. This representation illustrates the

different types of configuration given in table (ref).
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Figure 8: Two dimensional sections of the potential energy surface when one of the

two hydrogen atoms is fixed to an fcc site (8a) or hcp site (8b), while the second one

moves in a plane parallel to the substrate given by z1 = 87 pm. The equipotential

lines ranging from 0 to 300 meV are represented in the figure.
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Results & discussions

The theoretical study of the vibrational spectroscopy carried out in this thesis has

provided a powerful means to understand on one hand, the structure of the vi-

brational eigenstates of one and two hydrogen atoms adsorbed on the palladium

Pd(111) surface, on the other hand, this understanding allows us to rationalize the

intricate quantum dynamical behaviour of these atoms on the surface. the following

points summarize the key findings and implications of this research:

• The theoretical study of the vibrational spectroscopy of a single hydrogen

atom adsorbed on the palladium surface revealed the presence of tunneling

affecting all excited vibrational states. The latter manifested itself in a variety

of ways across different potential barriers, leading to multiple splittings of

several energy levels into sub-levels with relative gaps ranging from 1 meV to

8 meV.

The study also confirmed the existence of Fermi resonance between local vi-

brational mode of single hydrogen atoms where a state with a single quantum

of vibrational excitation perpendicular to the substrate strongly couples with

a state carrying two quanta of vibrational excitation parallel to the substrate.

The interaction between these two vibrational states results in the formation

of Fermi pairs of stationary states possessing vibrational excitations perpen-

dicular and parallel to the substrate simultaneously.

• The theoretical study of the vibrational spectroscopy of H2/Pd(111) has shown

that in situations where the two hydrogen atoms occupy neighboring adsorp-

tion sites of the same type, excitation of the system systematically manifests

itself on both atoms. The latter then adopt concerted modes of vibration in

phase and out-of-phase, thus demonstrating the presence of a strong correla-

tion between the two atoms. In cases where the latter occupy sites of different

types, the vibrational excitations were observed only on one of the two atoms,

indicating a weaker correlation in this type of configuration.

In both cases, the presence of a second hydrogen atom in the vicinity sig-

nificantly changes the spectrum of the system. In particular, we found that
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the potential barriers separating the different sites are significant, leading to

a much less pronounced tunneling effect than that observed on the isolated

hydrogen atom.

The Fermi resonance, as observed on an isolated hydrogen atom remains locally

present on each atom despite the strong interactions between them when they

occupy neighboring sites of the same type. This also shows the persistence of

the intensity of local interactions between the internal vibrational modes of

each hydrogen atom.

• The integration of quantum dynamics in this study has enabled us to gain

a deeper understanding of the quantum processes underlying the vibrational

eigenstate structure of the systems. We considered several numerical simula-

tions highlighting the manifestation of tunneling and Fermi resonance in the

dynamical behavior of hydrogen atoms on the palladium surface. Three major

findings emerged from these studies:

– The dynamics of hydrogen atoms involving a translational motion parallel

to the substrate toward other adsorption sites on the surface following

excitation is governed mainly by tunneling through potential barriers.

This is much more important in the case of an isolated hydrogen atom.

– Fermi resonance as predicted in this study, couples the perpendicular and

in-plane breathing motion. When a hydrogen atom is excited in a mode

perpendicular to the substrate, the vibrational excitation alternates in

time between parallel and perpendicular modes. The quasi-periodicity

of a quantum nature observed between theses two vibrations is directly

related to the energy gap between the Fermi pair states within the system.

– The excitation of a hydrogen atom leads to a systematic transfer of energy

to the neighboring hydrogen atom on the time scale of a few hundredths

of femtoseconds, if the latter occupies a neighboring site of the same type.

The transfer time of this energy is directly related to the energies of the

vibrational states corresponding to the same type of excitation.

• The method for the calculation of the intermediate scattering function (ISF)
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used in this thesis enables to directly link experimental observations in spin-

echo experiments to the quantum mechanical view of diffusion. The prelimi-

nary study we have carried out in this project represents a first step towards

understanding these mechanisms. Further work is planned to extract scatter-

ing coefficients from numerical simulations, while accurately describing all the

mechanisms taking place on the femtosecond scale.

Outlook

The knowledge gained from this thesis opens up new opportunities for future re-

search. To name but a few:

• the evaluation of the impact of dissipation and friction; three main sources

can be targeted, in this respect, namely the interaction between more than

two adsorbed hydrogen atoms, the interaction with moving palladium atoms

(phonon-couplings), and the interactions with the surrounding electrons from

the break-down of the Born-Oppenheimer approximation (couplings to electron-

hole pairs);

• a precise theoretical assessment of the complicated HREELS spectrum of

hydrogen on palladium; ideas have been explored in this thesis, results are

promising but absent in this manuscript, as they need further investigation;

• the study of the para and ortho modifications of adsorbed H2, and the subtle

mechanism of their interconversion upon adsorption via inclusion of the weak

hyperfine coupling; to this end, however, the numerical accuracy will need to

be increased by at least two orders.

Ultimately, this research highlights the profound interconnection between vibra-

tional spectroscopy and quantum dynamics, two fields that mutually enrich each

other to provide a deeper understanding of molecular phenomena at the interface

between solid materials and their environment.





Chapter 1

Introduction

Quantum surface dynamics is a fascinating branch of scientific research that inves-

tigates the complex quantum mechanical behavior of atoms and molecules on the

quantum scale at the surface of materials. This discipline interconnects the prin-

ciples of quantum mechanics, which studies particles on the atomic and subatomic

scales, with surface science, which examines the properties and interactions of atoms

and molecules on the surfaces of solids and liquids. Researchers in this field employ,

on the one hand, advanced experimental techniques, such as Scanning Tunneling Mi-

croscopy (STM) [1], High-Resolution Electron Energy Loss Spectroscopy (HREELS)

[2], neutron or helium atom scattering [3], on the other hand, numerical modeling,

including classical molecular dynamics simulations to unveil the fundamental prin-

ciples governing surface processes [3]. Fully quantum mechanical simulations from

first principle calculations are less common, however.

The aim of this thesis is to study the quantum dynamics of hydrogen atoms following

adsorption onto a metal surface formed by palladium atoms. It is part of an excit-

ing area of research within the broad discipline of quantum surface dynamics. This

study focuses on understanding the quantum-scale interactions between hydrogen

atoms, the simplest entities, and the palladium surface. The latter is of particular

interest in this context due to its unique properties that make it an excellent catalyst

for various chemical reactions. Understanding the quantum dynamics of hydrogen

atoms on the palladium surface is of crucial importance also for applications such as

hydrogen storage [4]. The latter application is in particular relevant for the devel-

1
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opment of clean energy technologies such as hydrogen fuel cells. By understanding

the quantum processes involved, scientists aim to improve the efficiency and perfor-

mance of hydrogen-related applications, thereby contributing to the advancement

of sustainable energy solutions.

We are particularly interested in situations where one or two hydrogen atoms are

adsorbed onto the Pd(111) surface; the two systems will be denoted in this thesis by

H/Pd(111) and H2/Pd(111) respectively. The dynamical properties of these systems

depend mainly on the type of interatomic interactions between the adsorbate and

the substrate atoms. When the interactions involve couplings of quantum mechan-

ical nature, the dynamics of the adsorbates can be strongly impacted by quantum

phenomena induced by these couplings, such as the tunneling effect [24]. Hydrogen

atoms, given their small mass, are strongly subject to this type of interaction. When

this is the case, their motion on the metal surface is mainly subject to the laws of

quantum mechanics. A complete understanding of their dynamics requires a fully

quantum approach; we then speak of adsorbate quantum dynamics.

In this thesis, a study based on such an approach was carried out, by which non-

classical effects likely to impact the behavior of hydrogen atoms adsorbed on the

palladium surface were unveiled. The system is then defined by its wave functions,

and its temporal evolution is achieved by solving the time dependent Schrödinger

equation. Interatomic potentials generally have complicated forms, making an exact

analytical resolution of this equation unfeasible. Numerical methods are the main

tools to obtain solutions that might describe the system realistically.

Researchers use advanced theoretical models and numerical simulations to predict

and explain the behaviour of adsorbates at surface level. These models help to eluci-

date the quantum-scale processes involved in the interactions. The results obtained

in this thesis are based mainly on numerical simulations. These were carried out

using the Multi Configurational Time-Dependant Hartree (MCTDH) method [16].

The choice of using this method is based on its ability to handle systems requiring

relatively large bases of mathematical functions for their descriptions. Although

the systems studied here do not possess very high dimensionality, the long-range

interactions found to exist between hydrogen atoms mean that a sufficiently large
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surface area is required to describe the system’s dynamics correctly, resulting in

an extended surface treatment and higher numerical cost. MCTDH enables us to

reduce the numerical effort while maintaining a physically sound description of the

system.

This work is based on the Born-Oppenheimer approximation. The interactions

between the system’s components are represented via a potential energy surface

(PES) elaborated by W. Dong et al [22, 23] for the H2/Pd(111) system. Several

tests have already been carried out on this surface by these authors, demonstrating

its reliability and accuracy. The palladium atoms are considered to be fixed on their

crystallographic equilibrium positions. The PES is then three-dimensional in the

case of H/Pd(111) and six-dimensional in the case of H2/Pd(111). It depends on

the three spatial coordinates of each hydrogen atom.

Dissipation in general, and friction in particular, result from the interaction of the

particle, in this case the hydrogen atom, with the whole plethora of particles sur-

rounding it, among which we may count other hydrogen atoms on the substrate, but

also the moving substrate atoms or the surrounding electrons. Due to the size of

the linear space containing all the states of the surrounding environment, the direct

theoretical treatment by obtaining a solution for the many body wave function from

the Schrödinger equation is practically impossible. This thesis is part of the research

project "Quantum Dynamics of the Diffusion of Adsorbates (QDDA)", financed by

the Agence National de la Recherche (ANR). One aspect of that project is the de-

velopment of practical methods to tackle the effect of dissipation, out of which two

publications emerged in connection with the present work [5, 6]. Currently these

methods are being implemented. Yet, no results have been obtained so far and we

therefore refrain to report on this part of the QDDA project here. The effects of

dissipation and friction are not considered in the core of this study, the main focus

of which are the quantum mechanical aspects of the motion of the hydrogen atoms.

A large part of this work is related to the study of the stationary states and energies

of the hydrogen atoms, when they are adsorbed on the palladium surface. This study

is crucial to the project. Dihydrogen adsorbs on palladium dissociative. Within the

aforementioned approximations, stationary states are the vibrational states of the
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adsorbates on the multi-dimensional PES, which includes frustrated translations

and hindered rotations of the diatomic species. Vibrational states are associated

with the quantized vibrational motions of atoms within a molecule or in a crystal

lattice. Vibrational eigenstates reveal several significant effects of the quantum dy-

namics, including tunneling, quantum entanglement, zero-point energy (ZPE) and

particularly thermodynamic properties of quantum systems. Their quantized nature

and interactions with other quantum states make them fundamental to understand

and to predict the behavior of adsorbed hydrogen atoms on the quantum scale. In

particular, we were able to show in this study the presence of tunneling between and

Fermi resonance coupling [7] of localized vibrational modes of the system. Several

time dependent dynamical simulations have subsequently been carried out, high-

lighting the major impact of these effects on the dynamics of hydrogen atoms at

this surface.

Surface diffusion, on the other hand, is a field of study that focuses on how particles,

in particular atoms and molecules, interact and diffuse at the surface of materials.

This discipline is crucial for our understanding of the processes that occur at the

surface of materials, which has significant implications in fields such as catalysis,

thin film growth, surface chemistry, nanotechnology and many others. At the atom-

istic scale, particles must overcome energy barriers to move along the surface. These

barriers are the result of the interactions between the adsorbed particles and the sur-

face atoms, i.e. the topography of the PES. While in classical mechanics diffusion is

the result of a collective behaviour of many particles described by their individual

random trajectories in configuration space, in quantum mechanics particles are de-

scribed by their wave functions, the distribution of which in configuration space is

generally delocalized to a high degree and the physical interpretation of which con-

tains fundamental elements of stochasticity. Consequently the quantum picture of

a particle moving independently of other particles in configuration space inherently

reflects diffusion of a different type, perhaps, than diffusion in classical mechanical

understanding of the term. The latter could be inferred from the many-body wave

function of randomly interacting particles and we might conjecture that these effects

would just be added to the effects already caused by the wave function of a single

particle on time scales when many-body interactions become important.
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To study surface diffusion, scientists use experimental techniques such as helium-

3 spin-echo experiments [3] to extract diffusion coefficients. However, to extract

diffusion coefficients from these measured data, and even to deduce from them on the

topography of the PES of catalytic surfaces, many intermediate modeling steps have

to be carried out. The experimental results from the helium-3 spin-echo experiments

rely on the evaluation of the dynamical structure factor (DSF), first introduced

by van Hove [8], and its Fourier-transform, the intermediate scattering function

(ISF). Rather than determining the diffusion coefficient directly, research is now

concentrated on the evaluation and interpretation of the directly observable DSF

and ISF, as clearly described in ref. [3].

The importance of the quantum nature of the dynamics underlying the diffusion

motion was underlined many times and also in published work [10, 13, 11, 12, 9]. A

detailed assessment of the pure quantum approach to calculate the observables was

not made before results on the DSF were obtained from first principle calculations

[10]. However, several questions have remained open since then, among which one

major question emerges: How do we evaluate theoretically the directly observed

intermediate scattering function (ISF) from a pure quantum dynamical calculation?

A new method to calculate the ISF is an integral part of the QDDA project proposal

[14] out of which resulted the present thesis project. It relies on a fully quantum

formulation based on a stochastic approach. This approach will be presented and

discussed in this thesis report and preliminary results will be addressed in compar-

ison with results from spin echo experiments.

In a previous thesis work was achieved on this system [25], problems were noted

in the treatment of the H2/Pd(111) system, which arose from the construction of

the PES representation of the system. The current work is based on a new PES

more suited to our study, built by the same authors. This thesis is to some extent

a continuation of that project.

This manuscript is organized as follows: In Chapter 2, a general presentation of the

theoretical framework used in this project will be given. Some aspects of quantum

molecular dynamics will be discussed, in particular the approximations made in

this work for solving the Schrödinger equation. We will also discuss the numerical
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methods used to solve it, from the standard methods to the MCTDH method. In

Chapter 3, the analysis of the PES of the H/Pd(111) and H2/Pd(111) systems will

be given. We will first recall the geometric parameters of the substrate’s crystallo-

graphic structure, then show some important aspects of the structure of the PES

for the two systems, particularly around the potential wells and barriers. In chapter

4, the results of the study of the vibrational stationary states of these two systems

will be presented. A detailed description of the latter will be given, together with

a discussion of the quantum effects observed at the level of eigenstates. In chapter

5, we will present several simulations of wave function propagation of the prepared

system in various states; in particular, we will highlight the consequences of certain

quantum effects on the dynamics of the hydrogen atoms. In Chapter 6, we discuss

the method proposed in this project to calculate the ISF, followed by a preliminary

study of this function on the H/Pd(111) system. Chapter 7 concludes this work.



Chapter 2

Theory & methods

A theoretical study has been carried out in this work on the dynamics of adsorbates

on metallic surfaces based on a fully quantum approach. The systems studied being

represented by their wave functions, the dynamics are carried out by means of the

time-dependent Schrödinger equation. The exact analytical solution of this equation

is not possible for the studied systems. We have therefore used methods based on

a numerical approach to solve this equation. The numerical tools commonly used

in quantum molecular dynamics are based on several theoretical approximations.

In this chapter, we highlight some general aspects of the methods we have used, in

particular those to which we will often refer in this work.

2.1 Molecular Hamiltonian Operator

2.1.1 General aspects

In this thesis project, a time-dependent and time-independent study was carried

out mainly on the H/Pd(111) and H2/Pd(111) systems. These two systems do not

interact with an external electromagnetic field in the framework of this study, we

therefore treat them as an isolated collection of interacting nuclei and electrons.

The time-independent molecular Hamiltonian of such systems can be defined by the

(non-relativistic) effective Coulomb Hamiltonian given by the following formula [20]:

Ĥmol(r,R) = V̂ e−e(r) + V̂ n−n(R) + V̂ n−e(r,R) + T̂ n(R) + T̂ e(r) (2.1)

7
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Where R = {Rα}1≤α≤N and r = {ri}1≤i≤n define the set of nuclei and electrons

position vectors respectively. The different terms appearing in the Hamiltonian

correspond to :

• V̂ e−e(r) is the electrostatic repulsion potential operator between the electrons

in the system, with e the electron charge. In the SI, it is given by:

V̂ e−e(r) =
n∑

i<j

e2

4πϵ0||ri − rj||
(2.2)

ϵ0 is the dielectric constant, i and j are electron indices and e is the elementary

charge.

• V̂ n−n(R) is the electrostatic repulsion potential operator between the system’s

nuclei. It is given by the formula :

V̂ n−n(r) =
N∑

α<β

ZαZβe
2

4πϵ0||Rα − Rβ||
(2.3)

Zα and Zβ are the atomic numbers of the nuclei α and β respectively.

• V̂ n−e(r): is the electrostatic attraction potential operator between nuclei and

electrons. It is defined analogously to the previous formulas by :

V̂ n−e(r,R) = −
N∑
α

n∑
i

Zαe
2

4πϵ0||Rα − ri||
(2.4)

• T̂ n(R) represents the kinetic energy operator of nuclei. It is given by :

T̂ n(R) = −
N∑
α

h̄2

2Mα

(
∂2

∂X2
α

+ ∂2

∂Y 2
α

+ ∂2

∂Z2
α

)
(2.5)

h̄ = h/2π is the reduced Planck constant, Mα and (Xα, Yα, Zα) are the mass

and the Cartesian coordinates of the nucleus α.

• Finally T̂ e(R) represents the electron kinetic energy operator. It is given by :

T̂ e(r) = −
n∑
i

h̄2

2me

(
∂2

∂x2
i

+ ∂2

∂y2
i

+ ∂2

∂z2
i

)
(2.6)

With me and (xi, yi, zi) the electron mass and the coordinates of the electron

i respectively.
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This molecular Hamiltonian includes the electrostatic interactions between the var-

ious components of the system, but does not consider the magnetic forces, since

we are working in a non-relativistic regime i.e. the magnetic field created by charge

displacement remains negligible. Under this approach, the time-dependent and time-

independent Schrödinger equations can be written as follows:

Ĥmol(r,R)Ψmol(r,R, t) = ih̄∂Ψmol(r,R, t)
∂t

(2.7)

Ĥmol(r,R)Ψmol
l (r,R) = ElΨmol

l (r,R) (2.8)

Ψmol(r,R, t) represents the system’s time-dependent molecular wave function, El

and Ψmol
l (r,R) represent the eigenenergies and the associated eigenfunctions of

Ĥmol(r,R). The resolution of these equations in the current state is extremely

complex and several approximations are generally needed to make it possible. In

the remainder of this section, we will give the various approximations that were

assumed and used in this work.

2.1.2 Approximations

The aim of the approximations that will be presented in this section is to decouple

the motion of the nuclei from that of the electrons, in order to obtain a factorized

form of the wave function that is more computationally manageable.

The first step is to separate the molecular Hamiltonian (2.1) into two terms:

Ĥmol(r,R) = T̂ n(R) + Ĥel(r;R) (2.9)

With Ĥel(r;R) the electronic Hamiltonian defined by:

Ĥel(r;R) = V̂ e−e(r) + V̂ n−n(R) + V̂ n−e(r,R) + T̂ e(r) (2.10)

This Hamiltonian depends parametrically on the position of the nuclei, since the

nuclear kinetic energy term T̂ n(R) has been discarded. This separation takes on

a physical meaning when the motion of nuclei is considered very slow compared to

that of electrons, given the mass difference between these two systems. Although

this picture is based on a "classical" description of electrons and nuclei, it nonetheless

serves to illustrate the origin of the will of separating the two motions.
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Let’s now consider two orthonormal basis sets composed of nuclear functions {Φn
λ(R)}

and electronic functions {Φe
m(r;R)}. The molecular wave function can be decom-

posed in this basis into the following sum of product form:

Ψmol(r,R, t) =
∑
m

∑
λ

cmλ(t)Φn
λ(R)Φe

m(r;R) (2.11)

With cmλ(t) the time-dependent components of this wave function in this basis. The

electronic basis functions depend explicitly on the electron positions and paramet-

rically on the nuclear positions.

If we consider :

Ψm(R, t) =
∑

λ

cmλ(t)Φn
λ(R) (2.12)

The previous formula simplifies to :

Ψmol(r,R, t) =
∑
m

Ψm(R, t)Φe
m(r;R) (2.13)

The time dependence of the molecular wave function is now given through the nu-

clear wave functions Ψm(R, t) associated with the electronic basis function Φe
m(r;R).

Projecting the time-dependent Schrödinger equation into the electronic basis gives

the following system of coupled differential equations:

∑
m

(
T̂ nucl

nm (R) + Ĥe
nm(R)

)
Ψm(R, t) = ih̄

∂Ψn(R, t)
∂t

(2.14)

With :

T̂ nucl
nm (R) = ⟨Φe

n;R|T̂ nuc(R)|Φe
m;R⟩r (2.15)

Ĥe
nm(R) = ⟨Φe

n;R|Ĥe(R)|Φe
m;R⟩r (2.16)

The differential equation (2.14) introduces coupling terms T nucl
nm (R) and He

nm(R)

between the system’s electronic functions1. The couplings induced by the electronic

Hamiltonian He
nm(R) can be reduced if we work in an eigenbasis of the electronic

states and which therefore verify the relation :

Ĥe(r;R)Φe
m(r;R) = Ee

m(R)Φe
m(r;R) (2.17)

1Dirac’s notation ⟨|⟩r indicates integration over electronic coordinates only.
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The eigenstates of the electronic Hamiltonian are called adiabatic electronic states.

In the following, we will denote them by Φe,ad
m (r;R). They form an orthonormal

basis set which allows us to eliminate all off-diagonal terms of Ĥe(R) in this basis.

Equations (2.16) and (2.14) then become :

Ĥe
nm(R) = ⟨Φe

n;R|Ĥe(R)|Φe
m;R⟩r ≡ δnmE

e
m(R) (2.18)

∑
m

(
T̂ nucl

nm (R) + Ee
m(R)

)
Ψm(R, t) = ih̄

∂Ψn(R, t)
∂t

(2.19)

Here, the electronic energy Ee
m(R) is a function of the nuclear coordinates only, and

thus appears as a potential energy surface (PES) with respect to nuclei motion [26].

At this stage we have not yet used any approximations. The use of the adiabatic

electron basis eliminates all coupling terms in the second term of differential equa-

tion (2.14). However, these equations are still coupled through the kinetic energy

term of the nuclei. The coupling terms T̂ nucl
nm (R) can be decoupled under special con-

ditions within the Born-Oppenheimer approximation. This approximation is based

on the fact that, as mentioned above, the large mass difference between nuclei and

electrons means that the motion of nuclei can be considered stationary compared

to that of electrons, while electrons adapt almost instantaneously to the motion of

nuclei. This results into neglecting the action of the kinetic energy operator of the

nuclei T̂ nuc(R) on the electron basis function Φe
m(r;R). Equation (2.15) becomes :

T̂ nucl
nm (R) = ⟨Φe

n;R|T̂ nuc(R)|Φe
m;R⟩r ≈ δnmT̂

nuc(R) (2.20)

This allows us to write the system of equations (2.19) of each nuclear wave function

Ψm(R, t) with completely decoupled terms:

(
T̂ nucl(R) + Ee

m(R)
)

Ψm(R, t) = ih̄
∂Ψm(R, t)

∂t
(2.21)

This equation ultimately reflects the fact that each nuclear wave function Ψm(R, t)

will evolve separately on an associated PES given by Ee
m. When the energies of

the adiabatic electronic states of a system are very close Ee
m(R) ≈ Ee

n(R), this

approximation is no longer correct and one has to follow a different approach for

representing the system’s wave function [20].
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To conclude this section, the Born-Oppenheimer approximation allows to neglect

the electronic couplings within the nuclei kinetic energy operator when describing

the total molecular wave function. When used in an adiabatic electronic basis set, it

allows us a formulation of the Schrödinger equation with uncoupled terms2, which

makes the calculation much more manageable for the considered systems. This

approximation will be assumed in the following.

2.2 Nuclear quantum dynamics

Nuclear dynamics are given by the time evolution of the nuclear wave function

within PES corresponding to the different electronic adiabatic states of the system.

The PES of H/Pd(111) and H2/Pd(111) systems that are studied in this work was

elaborated within the lowest adiabatic electronic state Ee
0 [22, 23]. The Pd atoms

are considered to be fixed at their equilibrium positions, only the degrees of freedom

(DOFs) of the hydrogen atoms are taken into account in our calculations, a more

detailed description is given in chapter 3. The problem is thus three-dimensional in

the case of a single hydrogen atom, and six-dimensional in the case of two hydrogen

atoms. The time-dependent Schrödinger equation reads :

(
T̂ nucl(xi, yi, zi) + Ee

0(xi, yi, zi)
)

Ψ0(xi, yi, zi, t) = ih̄
∂Ψ0(xi, yi, zi, t)

∂t
(2.22)

(xi, yi, zi) represent the Cartesian coordinates of hydrogen i = {1; 2}. Ψ0(xi, yi, zi, t)

represent the wave function evolving in the lowest PES of the system. In the fol-

lowing, T̂ nucl is denoted by T̂ , Ee
0 by Ee and Ψ0 by Ψ. The kinetic energy operator

in Cartesian coordinates takes the simple form given by :

T̂ =
NH∑
i=1

1
2mp

(
∂2

∂x2
i

+ ∂2

∂y2
i

+ ∂2

∂z2
i

)
(2.23)

mp is the proton mass and NH = {1; 2}.

In this study, we worked in the twisted coordinate system (xt, yt, zt) where zt ≡ z

and ( ̂xt,yt) = 120◦3 (see equation 3.1). This is a non-Euclidean basis adapted

2The Born-Oppenheimer approximation applies also to the time-independent Schrödinger

equation[20].

3The symbol (.̂, .) represents the angle measure between two vectors.
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to the periodicity of the potential. A more detailed description of this coordinate

systems is given in section 3.1.2. The expression of the kinetic energy operator in

those coordinate systems becomes :

T̂ =
NH∑
i=1

2
3mp

(
∂2

∂x2
i

+ ∂2

∂y2
i

+ ∂

∂xi

∂

∂yi

)
−

NH∑
i=1

1
2mp

∂2

∂z2
i

(2.24)

Determining the action of the kinetic energy operator on a given state is not difficult

in the general case. The complexity of equation 2.22 therefore depends mainly on

the type of the potential used. In the simplest cases, the resolution of the time-

independent Schrödinger equation can be done analytically and allows to compute

the eigenstates of the system. We can then build a complete eigenstates basis set in

which the time evolution of the wave function simplifies to:

|Ψ(t)⟩ =
∑

k

ck(0)e−iEkt/h̄ |φk⟩ (2.25)

The bra-ket notation was used to simplify notations. Ek and |φk⟩ represent the

eigenenergies and the associated eigenstates of the system. ck(0) are the coefficients

of the initial wave function in this basis. In the general case, the potential term

makes solving Schrödinger equations analytically infeasible. Numerical resolution

becomes the only alternative for approaching the theoretically exact wavefunction

solution. In the following, we will give a general introduction to the numerical

approach, and then present the methods we have particularly used in this work.

2.3 Numerical methods

In this section, we present an introduction to the numerical methods used to solve the

time-(in)dependent Schrödinger equation. A more detailed and complete description

can be found in [27, 20]. we will start by introducing the general standard method.

2.3.1 Standard method

The wave function of a given system is defined by a quantum state that lives in an

infinite-dimensional Hilbert space [28]. Numerical implementation of such a state

is only possible if we consider a truncated basis of finite size. This basis should

be large enough to cover all the quantum states that the system can reach during
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simulation, and small enough to make numerical simulations feasible. The very first

step is therefore to choose a suitable basis set for the calculations we wish to carry

out. For simplicity’s sake, let us assume that we are dealing with a three-dimensional

system that depends on Cartesian coordinates (x, y, z).

Ψ(r, t) = Ψ(x, y, z, t) (2.26)

We can assign to each DOF an orthonormal basis set given by Bx = {ϕ(x)
ix

}1≤ix≤Nx ,

By = {ϕ(y)
iy

}1≤iy≤Ny and Bz = {ϕ(z)
iz

}1≤iz≤Nz with Nx, Ny and Nz the associated

dimensions. The total basis called the primitive basis, is given by the tensor product

B = Bx ⊗ By ⊗ Bz. The total wave function can therefore be decomposed as :

Ψ(x, y, z, t) =
Nx∑

ix=1

Ny∑
iy=1

Nz∑
iz=1

Aix,iy ,iz(t)ϕ(x)
ix

(x)ϕ(y)
iy

(y)ϕ(z)
iz

(z) (2.27)

Aix,iy ,iz(t) represent the time-dependent expansion coefficients of the wave function

in this basis. In the standard method, the basis vectors are not time-dependent, the

time dependence of the wave function is therefore defined through its coefficients.

Numerical basis set

The choice of primitive basis should facilitate the evaluation of the matrix elements

of the Hamiltonien. Commonly used primitive basis vectors are Disctrete Variable

representation (DVR) and Finite Basis Representation (FBR) [29, 30]. Both of

them are numerically complete if the number of vectors chosen is large enough for

the problem under study. The choice of these functions depends on the nature of

the DOFs they represent. We will give an example of two types of FBR function we

have used in this project.

• Exponential FBR

ϕ
(κ)
iκ

(κ) = 1/
√
Lκ exp

(
j2πix

κ− κ0

Lκ

)
(2.28)

• Sine FBR

ϕ
(κ)
iκ

(κ) =


√

2/Lκ sin
(
iκ

(κ− κ0)
Lκ

π

)
for κ0 ≤ κ ≤ κ0 + Lκ

0 elsewhere
(2.29)
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κ = {x, y, z}, Lκ the grid length, j is the imaginary unit, Nκ is the total number

of FBR functions used in the DOF κ and −Nκ − 1
2 ≤ iκ ≤ Nκ − 1

2 for exponential

FBR (Nκ should be odd in this case) and 1 ≤ iκ ≤ Nκ for sine FBR.

Exponential FBRs are adapted by construction to periodic DOFs, while sine FBRs

represent the eigenfunctions of a particle in a box. They are therefore well suited

to bounded DOF that cancel outside the grid. For example, we used sine-type FBR

functions to describe the z coordinates of hydrogen atoms, since they are adsorbed

at the surface and their z coordinates remain confined in space. Then exponential-

type functions to describe the DOFs x and y which represent the lateral motion

of these atoms at the surface and which require periodicity to simulate an infinite

surface. FBR functions are analytical and continuous in space. They are generally

stable by derivative and can therefore be seen as eigenstates of derivative operators

such as kinetic energy. This makes the matrix representation of T̂ diagonal and very

easy to evaluate in this basis. But unlike the DVR basis, these functions have no

particular advantage for evaluating the matrix elements of the potential operator.

One way of constructing DVR functions is to diagonalize the position operator in

an FBR basis. The two bases are then related by a unitary transformation. Let’s

suppose we’re working with Nκ FBR function to describe a κ mode defined on an

interval Iκ =[κmin;κmax]. By unitary transformation, we then obtain Nκ DVR to

describe the same mode. Unlike FBR functions, DVR functions are discrete and

highly localized around some points κiκ uniformly spaced across Iκ with a distance

∆κ = κmax − κmin

Nκ + 1 such that κiκ+1 − κiκ = ∆κ, they are called grid points. Consid-

ering the example of sine DVR, one can obtain in this particular case the analytical

formula of these functions from the sine FBR [20]. Using the same notations as in

the previous example, and this time denoting the basis functions by {χκ}, we obtain

the analytical formulation of sine-DVR :

χ
(κ)
iκ

(κ) = 1
2
√
Lκ(Nκ + 1)

sin
(
(2Nκ + 1)π

2
κ−κiκ

Lκ

)
sin
(

π
2

κ−κiκ

Lκ

) −
sin
(
(2Nκ + 1)π

2
κ+κiκ

Lκ

)
sin
(

π
2

κ+κiκ

Lκ

)
(2.30)

The local spatial nature of DVRs makes the action of the potential operator on

these vectors simply equivalent to the value taken by the potential at the grid point

around which the DVR is located. The potential will therefore have a diagonal
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representation in this basis, which drastically simplifies the evaluation of these ma-

trix elements. On the other hand, because of their discrete nature, the evaluation

of derivative operators becomes more complicated and extrapolation methods are

required to evaluate the action of a derivative on this function.

In general, both basis sets are used in the standard method to evaluate the matrix

elements of the Hamiltonian. The kinetic term is evaluated in the FBR basis and

the potential term in the DVR basis. The unitary transformation between the two

bases allows us to evaluate the matrix representation of the Hamiltonian in any one

of these two basis.

Time (in)dependent numerical study

In the case of a time-independent study, the Schrödinger equation can be solved

by diagonalization of the Hamltonian matrix, for example. This gives access to the

system’s eigenenergies and associated eigenstates. In the case of a time-dependent

study, given that the primitive functions are time-independent, the aim is to deter-

mine only the time-dependent expansion coefficients of the wave function Aix,iy ,iz(t).

One frequently used method is the Dirac-Frenkel variational principle [17, 18]:

⟨δΨ|Ĥ − ih̄
∂

∂t
|Ψ⟩ = 0 (2.31)

Where ⟨δΨ| in the bra-ket notation represents an infinitesimal variation of the wave

function by a varying its parameters. In this case, the parameters correspond to the

expansion coefficients Aix,iy ,iz(t).

δΨ =
∑

ix,iy ,iz

∂Ψ
∂Aix,iy ,iz

δAix,iy ,iz (2.32)

By replacing equation 2.32 in equation 2.31 and after some simplifications, we arrive

at the following equation:

ih̄ȦI =
∑
I′

⟨ϕI |Ĥ|ϕI′⟩AI′ (2.33)

Here we have used the super indices I =(ix, iy, iz) and ϕI = ϕix,iy ,iz = ϕ
(x)
ix
ϕ

(y)
iy
ϕ

(z)
iz

to

simplify notations. This brings us to simple first-order differential equations having

as a formal solution for time-independent Hamiltonian :

A(t) = e− i
h̄

ĤtA(0) (2.34)
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This approach finally allows us to determine the expansion coefficients that give

the most accurate possible representation of the wave function over time in a given

basis. In principle, this approach preserves the norm and the energy of the system if

the numerical integrators used are well chosen. The choice of a good representative

basis for the system is also very important for reducing numerical errors.

Despite that this method gives access to an almost exact representation of the sys-

tem’s wave function, It is highly limited by the dimensionality of the problem.

Indeed, if we take the previous three-dimensional example, equation 2.33 contains

Nx×Ny×Nz coupled differential equations. In the general case, the number of equa-

tions to solve scales exponentially with the size of the problem and quickly becomes

impractical when dealing with systems having several DOFs.

2.3.2 Multi-Configuration Time-Dependent Hartree method

The Multi-Configuration Time-dependent Hartree (MCTDH) is a very efficient method

used for numerical resolution of the time-dependent Schrödinger equation. The pro-

gram allows to treat a wide range of problems in quantum molecular dynamics

including those with large dimension. In the following, we will highlight some gen-

eral aspects of the method to which we will refer in the remaining chapters of this

thesis. A more complete description of the Heidelberg package of MCTDH can be

found in [16, 15].

MCTDH is based on the Time-Dependent Hartree (TDH) approach [31] in which

the basis vectors are time-dependent and given by a single function for each DOF

called single-particle function (SFP). The total wave function is then given by a

single product of the SFP of each DOF called Hartree product. Considering the

example of a three-dimensional system in the previous section, the wave function in

this case can be written as :

Ψ(x, y, z, t) = a(t)φx(x, t)φy(y, t)φz(z, t) (2.35)

Where φx(x, t), φy(y, t) and φz(z, t) represent the SPF associated with the DOF

x, y and z respectively. a(t) represents the time-dependent coefficient of the wave

function in this basis. Each SPF admits a decomposition in the primitive basis
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associated with the same DOF. If we consider the DVR basis set, the decomposition

reads

φκ(κ, t) =
Nκ∑
iκ

c
(κ)
iκ

(t)χ(κ)
iκ

(κ) (2.36)

Where κ = {x, y, z} and c
(κ)
iκ

(t) are the expansion coefficients of the SPF φκ in the

DVR basis associated to the same DOF.

Only three SPF are needed in this case to describe the problem. Each SPF evolves

in time, so as to guarantee a good description of the wave function during propa-

gation. While this approach considerably reduces the number of effectively needed

representation functions compared to the standard method, it remains effective only

for a certain type of problems which do not require the use of multiple configura-

tions. This problem has been overcome in MCTDH by expanding the wave function

in a sum of product of one-dimensional basis vectors as in the standard method,

but considering the basis set to be time-dependent as in the (TDH) method. These

vectors are also called SPF. The idea of making basis vectors time-dependent is

the key behind this effective reduction of dimensionality. Indeed, when we consider

a "frozen" basis set in time, the latter must describe the wave function initially

and after each time step throughout propagation, many vectors are then needed to

guarantee a suitable description of the system within time, contrary to the case of

time-dependent vectors that evolve in time according to the evolution of the wave

function at each time step which requires less basis vectors to give a representation

with the same quality as in the previous one. This finally allows the wave function

to be expressed in a similar way as in the standard method but using a smaller

number of vectors for each DOF. The decomposition of the three dimensional wave

function in the SPF basis used in MCTDH is given by :

Ψ(x, y, z, t) =
nx∑
ix

ny∑
iy

nz∑
iz

Aix,iy ,iz(t)φ(x)
ix

(x, t)φ(y)
iy

(y, t)φ(z)
iz

(z, t) (2.37)

With 1 ≤ nκ ≤ Nκ, κ = {x, y, z}. Aix,iy ,iz(t) represent the time-dependent expansion

coefficients of the wave function in the SPF basis. If we use the super-index I =

(ix, iy, iz), each coefficient AI of the set {AI}1≤I≤nxnynz can be seen as the element

of a vector A of length nx×ny×nz which groups all the expansion coefficients of the

wave function called A-Vector in MCTDH. The number of SPF used for each DOF
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is generally a fraction of the number of associated primitive basis functions, which

considerably reduces the dimensionality of the problem. One can use the standard

method by taking nκ = Nκ, the calculation is then said to be exact. If nκ = 1 (∀κ),

this is equivalent to using the TDH approach.

It is also possible to generate multi-dimensional SPF that combine two or more

DOFs. This technique is known as mode combination. If, for example, we choose to

combine the x and y within a a single mode Q ≡ (x, y) called the logical coordinate.

The expansion of the wave function in the new basis will take the following form :

Ψ(Q, z, t) =
nQ∑
iQ

nz∑
iz

AiQ,iz(t)φ(Q)
iQ

(Q, t)φ(z)
iz

(z, t) (2.38)

This technique is useful when two or more DOFs are strongly coupled which allows

to include the correlations within the same SPF. At the same time, it considerably

reduces the size of the A-vector. The disadvantage is that it could make the propa-

gation of the SPF (now multi-dimensional) slower. The user must therefore make a

choice (often intuitive) on the way to combine modes to make the calculations more

optimal.

Now, to propagate the wave function of a system initially prepared in a state Ψ0, an

SPF basis and an A-vector are initially constructed so as to reproduce Ψ0 in the form

suited to MCTDH. As the SPF and the A-vector are time-dependent, they are both

propagated in time following the Dirac-Frenkel variational principle as explained in

the previous section, but this time taking the A-vector and the SPF as parameters

to optimize. The variational calculation leads to the MCTDH equations of motion

given by :

iȦI =
∑
I′

⟨φI |Ĥ|φI′⟩AI′ (2.39)

iφ̇(κ) = (1̂ − P̂ (κ))(ρ(κ))−1 ⟨H⟩(κ) φ(κ) (2.40)

φ(κ) is a vector composed of the nκ SPF used for the DOF κ = {x, y, z}. The

operator (1 − P̂ (κ)) ensures that the time derivative of the SPF is orthogonal to the

space spanned by the functions. ρ(κ) and H(κ) represent the single-particle density

matrix and mean-field matrix respectively. The derivation of these calculations can

be found in [15].
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To solve equations 2.39 and 2.40, there is a wide range of integrators available in

MCTDH. Each of these integrators has its own specificity, depending on the problem

and the precision required. Even if the calculation scheme used in MCTDH preserves

the norm and energy of the system during propagation, this is only possible if

the integrator parameters are well chosen, such as integration step size and error

tolerance. Chapter 9 of [21] gives a detailed description of the integrators and

diagonalizers available in MCTDH.

The use of a small SPF basis can lead to errors in the wave function propagation,

and therefore in the mean values of observables. It is therefore necessary to check

the convergence of the SPF basis during each calculation. MCTDH indirectly evalu-

ates the populations of SPF called natural populations by diagonalizing the density

matrices ρ(κ). These populations represent the weights of the SPF and thus the de-

gree of importance that each SPF adds to the description of the total wave function

of the system during propagation. The natural populations are ordered in ascend-

ing order. If the weight of the last SPF in the used basis is small enough, we can

conclude that the dimension of the basis used is sufficient for the calculation we’re

performing . If this is not the case, we increase the number of SPF and repeat the

same operation until convergence is achieved. Tolerance errors vary according to

the type of information we wish to extract from the wave function. In general, the

basis is well suited if the weight of the last SPF of each DOF (or combined mode)

is of the order of 10−3.

It is also important to check the convergence of the primitive basis. If the dimension

of the latter is not large enough, the SPF basis will be "poor" by construction.

Checking the quality of the primitive basis is slightly different from that of SPF. We

generally use DVR or FBR functions as primitive functions. In the first case, the

population of the first and last grid points must be small. This would mean that

the grid is sufficiently wide that the wave function does not reach its edges during

propagation. An exception is made when working under periodic conditions. In

this case, the first and last grid points of each DOF concerned by periodicity may

be populated during propagation. However, it will be necessary to check that the

symmetries of the weights are preserved in certain cases. In the case of an FBR

basis, the weight of the last function must be checked in the same way as for the
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natural population of SPF.

To conclude this section, the use of MCTDH, with a judicious choice of the basis set

and integrators, allows us to obtain accurate results with relatively short computa-

tional time. The power of this method comes from the multi-configuration compact

treatment of the wave function using a set of a time-dependent vectors. However,

the sum of product form used for the expansion of the wave function is also required

for the system Hamiltonian. The user is therefore constrained to rewrite the Hamil-

tonian as a sum of product of operators acting on each mode. The kinetic energy

operator is generally suited to this form while the potential term depends on the

complexity of the studied problem. When it is not possible to rewrite it analytically,

one can make use of a program implemented in MCTDH called potential fit (potfit),

which rewrites the potential in the required form using numerical approach similar

to MCTDH. In section 2.3.4, we present the general aspects of this method. But

before that, we will discuss in the next section the numerical methods used to solve

the time-independent Schrödinger equation.

2.3.3 Time-independent study : a discussion about the block

improved relaxation method

There are several numerical methods for solving the time-independent Schrödinger

equation. The most direct one is the diagonalization of the Hamiltonian matrix

in a given basis. The size of the basis to work with depends on the number of

DOFs and on the number of eigenstates we wish to calculate. The diagonalization

of large matrices is time consuming and sometimes not feasible. This makes the

method non optimal for multi-dimensional systems. There are several approaches

in the literature for calculating the eigenvalues and eigenvectors of large matrices,

such as iterative schemes like the Davidson and Lanczos methods [32, 33]. In this

project, we used an approach implemented in MCTDH called Improved-Relaxation

that combines these techniques with the relaxation method. In the following, we will

briefly introduce the general relaxation method and then discuss some improvements

made by MCTDH on the latter.
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Relaxation Method

The relaxation method was developed by R. Kosloff et al. [34]. It solves the time-

independent Schrödinger equation with a time-dependent scheme. The approach is

based on the idea that if we propagate a state with a Hamiltonian in negative imag-

inary time, then it will converge to the lowest-energy eigenstate of the Hamiltonian

used. This idea can be illustrated very simply by looking at the time evolution of

any state in the eigenstates basis. If we consider t = −iτ in equation 2.25 (with

τ ∈ R+), we get :

|Ψ(τ)⟩ =
∑

k

ck(0)e−Ekτ/h̄ |φk⟩ (2.41)

In contrast to equation 2.25, here the wave function components in the eigenstates

basis ck(t) = ck(0)e−Ekτ/h̄ do no longer oscillate in time, each component decreases

exponentially with a rate proportional to its energy Ek. This means that those

associated to the high-energy eigenvectors will decay over time at a much faster

rate than those associated with the less energetic states. If we propagate over a

sufficiently long interval, only the lowest state remains present in equation 2.41 after

renormalization. The system is then relaxed to its ground state. To calculate the

excited states, we project the Hamiltonian onto a Hilbert space not containing the

previously calculated state, and relax the system back to its lowest state, which this

time represents the system’s first excited state, and so on. The choice of initial wave

function can be very important in achieving convergence. Indeed, the calculation

will always lead us to the lowest-energy state included in the initial wave function

we use. It’s important to choose an initial state that covers the part of the spectrum

one wants to determine.

Improved relaxation Method

MCTDH as its name suggests, is designed to treat the time-dependent Schrödinger

equation. It also allows the calculation of stationary states within the improved

relaxation program since the relaxation method is based on the time-dependent

Schrödinger equation. The program improves this method by adding diagonaliza-

tion steps during the relaxation process. In particular, when propagating the A-

vector, the program then adds a few partial diagonalization steps using Davidson’s
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algorithm to speed up the convergence of the calculations. These intermediate steps

also enhance the initial wave function, allowing the determination of eigenstates

not initially included in the wave packet. A block version called block improved

relaxation has also been developed and implemented in MCTDH. It allows to relax

simultaneously several states to eigenstates of the system. When we need to calcu-

late multiple eigenstates of the system, this method is not only faster in terms of

computational time than single-state relaxation, it is also crucial for dealing with

problems with degenerate eigenstates, as we will see in chapter 4. A more detailed

description of the (block)improved method can be found in [19, 20, 21].

2.3.4 Potential representation with potfit

The use of MCTDH requires a structure of the Hamiltonian given by a sum of

products of operators acting on one DOF. Although the kinetic operator can in most

cases be written in this form, the potential term in multi-dimensional problems often

involves non-separable terms, making this decomposition analytically unfeasible.

MCTDH proposes a program called potential fit (potfit) which, using a numerical

procedure, rewrites the potential in the required form. In this section, we will briefly

outline some of the key elements of the potfit approach, which we will refer to in the

remainder of this manuscript. The reader is invited to read [35, 36, 15] for a more

detailed description of the method.

As mentioned above, the evaluation of potential matrix elements is carried out at the

DVR basis defined on the grid points. DVR functions are highly localized in space,

the potential can then be defined only by the values taken on these points. we will

use the notations used in the previous three dimensional example in the Cartesian

coordinates of section 2.3.2. We recall that each DOF κ = {x, y, z} is defined on an

interval Iκ = [κmin, κmax]. If we consider Nκ DVR function for the κth DOF, then

the latter will be defined on grid points {κiκ}1≤iκ≤Nκ spaced by ∆κ = κmax + κmin

Nκ + 1
and evenly distributed over Iκ. since the potential is defined only at these points,

we can write

V (xix , yiy , ziz) ≡ Vix,iy ,iz (2.42)

As in the treatment of the wave function, the use of the full DVR basis gives very ac-
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curate results, but at a very high numerical cost for multi-dimensional systems. The

idea, therefore, is to build a basis with a smaller size than the primitive one, which

can approximate the potential correctly. In the same approach used to build the

SPF basis, potfit generates a compact basis called Single-Particle Potential (SPP).

The vectors of this basis are constructed by diagonalizing the potential density

matrix associated with each DOF. The provided eigenvalues and eigenvertors are

called the natural potential populations {λ(κ)
jκ

}1≤jκ≤mκ and the natural potential

{v(κ)
jκ

(κiκ)}1≤jκ≤mκ respectively, with mκ ≤ Nκ the number of SPP used for each

DOF κ. It generally represents a fraction of the total number Nκ of primitive func-

tions. Given that these vectors are defined only on grid points iκ, we will in the

following simply denote them by v(κ)
jκ

(κiκ) ≡ v
(κ)
iκjκ

. The general decomposition of the

approximate potential V app on the SPP basis is then given by:

V app
ix,iy ,iz

=
mx∑
jx

my∑
jy

mz∑
jz

Cjxjyjzv
(y)
ixjx

v
(y)
iyjy

v
(z)
izjz

(2.43)

The expansion coefficients Cjxjyjz are obtained by minimizing the error on the fit

given by:

∆2 =
Nx∑
ix

Ny∑
iy

Nz∑
iz

(Vix,iy ,iz − V app
ix,iy ,iz

)2 (2.44)

This gives:

Cjxjyjz =
Nx∑
ix

Ny∑
iy

Nz∑
iz

Vix,iy ,izv
(y)
ixjx

v
(y)
iyjy

v
(z)
izjz

(2.45)

Potfit allows to combine modes in a similar way to MCTDH discussed in section 2.3.2

and also to contract over one or more DOFs. Contraction over a DOF is achieved

by summing the expansion coefficients of the latter over the entire associated grid.

If we consider an example where we contract on x :

Djyjz =
Nx∑
jx

Cjxjyjzv
(x)
ixjx

(2.46)

Equation 2.43 becomes :

V app
ix,iy ,iz

=
my∑
jy

mz∑
jz

Djyjzv
(y)
iyjy

v
(z)
izjz

(2.47)

Note that in equation 2.47 the sum has been taken over the entire grid of size Nx,

which improves the quality of the contraction.
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Evaluating the error of the potential approximation is important for assessing the

quality of the fit. Equation 2.44 gives the overall error on the grid. To evaluate

the average error, we calculate the root-mean square (rms) error defined by ∆rms =√
∆2/Ntot with Ntot the total number of primitive functions. When we use a number

of SPP equal to the number of primitive functions (mκ = Nκ), then the rms error is

zero. The calculation is then said to be exact. In the opposite case (mκ < Nκ), the

rms error can be estimated from the natural potential populations {λ(κ)
jκ

}mκ≤jκ≤Nκ

of the neglected SPP. Let’s assume, for example, that we only truncate on one DOF

κ, in which case the rms error is given by:

∆rms =

√√√√√ Nκ∑
jκ=mκ+1

λ
(κ)
jκ
/Nκ (2.48)

If we truncate over several DOFs, this quantity becomes an upper bound on the

error:

∆rms ≤

√√√√√∑
κ

Nκ∑
jκ=mκ+1

λ
(κ)
jκ
/Nκ (2.49)

The populations of natural potentials are ordered in ascending order, and ∆rms then

represents the importance of the SPP that were neglected. This is a very useful tool

for evaluating the quality of the SPP basis set used.

It is also possible to optimize the fit at certain energy intervals, potfit allows weights

{w(κ)
iκ

} to be added to the potential to optimize the fit only in those relevant regions of

space corresponding to the selected energy interval. The rms error is then evaluated

by replacing Ntot by ∑
iκ

∏
iκ

w
(κ)
iκ

. This is referred to as the weighed rms error ∆w
rms.

Minimizing the error on all grid points is numerically very costly and often of no use

when working in a finite energy domain, since it is assumed that the wave function

will not explore high-energy regions during the simulation. It is therefore more

important to reduce errors as much as possible in the regions where most of the

dynamics take place. Often, these regions represent only a part of the total grid, so

at the same time the error is distributed over a smaller set of points, making the

representation of the potential more optimal for the calculations.

The use of potfit in MCTDH was designed to optimize the writing of the potential,

making the determination of the matrix elements much faster than with the primitive
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basis, which considerably reduces the computation time required for the propagation

of a given state. The PES used in this project are multi-dimensional functions with

highly correlated DOFs. Although these PES have been defined analytically by

the authors [23], the presence of non-separable multidimensional terms makes the

separation of this potential into one-dimensional functions unfeasible. The use of

potfit was necessary to adapt the potential to MCTDH calculations. In section

3.2.3, we will give all the technical details about the parameters used to represent

the PES used in this work.



Chapter 3

Potential energy surfaces analysis

for H/Pd(111) and H2/Pd(111)

In this work, we have carried out a time-dependent and time-independent study

based on a fully quantum approach of the H and H2 systems adsorbed on a Pd(111)

surface which are H/Pd(111) and H2/Pd(111) respectively. One of the aims of

this study is to determine the stationary vibrational states of these systems and to

investigate some aspects of their quantum dynamics at the surface level. The time-

(in)dependent study is carried out by solving the time-(in)dependent Schrödinger

equation. We perform our calculations within the Born-Oppenheimer approximation

in which the DOFs of electrons and those of nuclei are decoupled (section 2.1.2), the

nuclei evolve then on a PES representing the interactions between the components

of the system.

The PES used in this work was developed by W.Dong et al. [22]. It was constructed

within the ground electronic state of the system. As we shall see later in this chapter,

the authors have provided an analytical formulation of the potential using a some

fit models [23]. In this study, the palladium atoms are considered to be fixed in

their equilibrium position, and the only DOFs of the PES are those of the hydrogen

atoms. The PES will therefore be defined by a three-dimensional function in the

case of H/Pd(111) and a six-dimensional function in the case of H2/Pd(111).

In the following, we will start by presenting the geometrical aspect of the crystallo-

27
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graphic structure of the system. Then the remainder is dedicated to the analysis of

the PES features of the two studied systems.

3.1 Lattice geometry analysis

We will focus in the following on the crystallographic structure of the fixed Pd atoms

at bulk and surface level since hydrogen atoms can move freely on the surface.

3.1.1 General presentation of the palladium crystal struc-

ture

Palladium is a metal that crystallizes in the fcc (face-centred cubic) structure. The

fcc unit cell is characterized by the presence of an atom on each face and vertex of

the cube called a node. The length of the cube edge is given by a = 389 and called

the lattice parameter. Figure 3.1 illustrates the unit cell of the fcc structure.

a d

Figure 3.1: Face-centered cubic unit cell of the Pd crystal structure. a = 389 pm

represents the lattice parameter and d = a√
2

= 275.114 pm is the nearest neighbour

distance.

As this crystal is anisotropic, the study of hydrogen adsoption on the palladium

surface depends on the direction that we consider. In each direction, we can define

the system as a stack of reticular planes (or atomic planes in our case) where each

plane is defined by 3 nodes. These planes vary in density and configuration according

to the chosen direction. To identify the different directions in the crystal, we use

Miller indices. They are given by a set of three numbers (h, k, l), corresponding to

the inverses of the intersections of the reticular plane with the edges of the unit

cell called lattice vectors [37]. For example, if we take the (111) direction, the first

reticular plane in this direction will be defined by the three nodes numbered 1, 3
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and 6 and the second reticular plane by nodes 7, 9 and 12 as shown in figure 3.2.

The bulk structure of Pd(111) is therefore given by a stacking of these planes along
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(a) Overview.
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(b) Perpendicular view to the

Pd(111) plane.

Figure 3.2: Reticular planes contained in the unit cell of the fcc structure along the

(111) direction.

the (111) direction. They are all spaced by a√
3

(see [25] for more details ).

We will now consider that the plane at the surface level is the one that includes

atoms {1..6} and the one that contains atoms {7..12} lies just below. Figure 3.2b

shows these planes from a view with perpendicular direction to the surface. We

will see later in the PES analysis (section 3.2) that for a hydrogen atom moving at

the surface level, the minima of the potential are located around some geometrical

points such as site A and B shown on figure 3.2b. They represent the most stable

adsoption sites for hydrogen on the Pd(111) surface. Each of these sites are located

between three Pd atoms. The arrangement of Pd atoms in the reticular planes varies

from one plane to another. We can see from fig 3.2 that there is a Pd atom located

directly below site B, unlike site A (a Pd atom will be located below site A only at

the 2nd plane below the surface). Therefor, the different configuration of Pd atoms

on each reticular plane differentiates A-type sites from B-type sites. They are called

fcc site (face-centred cubic) and hcp site (hexagonal closed-packed) for A and B

respectively. We will see later that there’s a significant energy difference between

these two situations.
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3.1.2 Grid presentation

In order to simulate an infinite surface in our calculations, a periodic approach was

adopted which includes an elementary cell given by a slab of five Pd layers where

each one contains 3×3 Pd atoms. The vacuum space corresponds to five Pd(111)

layers. We will refer to this as "(3×3)-grid". A more detailed description of this grid

will be given in section 3.2.3. The elementary cell used in our calculations is the same

as the one used by the authors to develop the PES. Figure 3.3 shows a scheme of

this grid showing only the surface plane (solid line) and the one below (dashed line).

As can be seen directly from the figure, this grid contains 9 equivalent fcc sites and 9

fcc
hcp

3d

Figure 3.3: (3×3)-grid used for periodic calculations.

equivalent hcp sites. The spatial periodicity is applied following the twisted vectors

xt and yt with α = ( ̂xt,yt) = 120◦ as shown in figure 3.4. We define therefore a

non-orthogonal basis set (xt,yt,zt) where the origin is located in the center of the

Pd atom located in the middle of the topmost layer of the elementary cell. A set

of twisted coordinates (xt,yt,zt) will be used in the following. The transformation

fcc
hcp

α
xt

yt

d

d/3

−d/3

−d/3

d/3 X

X xc

yc

d/2−d/2

−h
h

Figure 3.4: Twisted and Cartesian coordinates used for the (3×3)-grid.
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between the twocoordinate systems is given by :

xt=xc + 1√
3
yc

yt=
2√
3
yc

zt= zc

(3.1)

Figure 3.4 shows the coordinates of one fcc and one hcp site surrounding the central

Pd of the grid. The set of coordinates of all possible fcc and hcp sites contained in

the (3×3)-grid are given in table 3.1. A detailed calculation of these coordinates is

given in [25].

Twisted coordinates Cartesian coordinates
xt yt xc yc

fcc d/3 ± d −d/3 ± d d/2 ± d −h± 3h
hcp −d/3 ± d d/3 ± d −d/2 ± d h± 3h

Table 3.1: Twisted and Cartesian coordinates parallel to the surface for all fcc and

hcp sites of the (3×3)-grid.

In table 3.1, we have only considered coordinates parallel to the surface. The fcc

and hcp sites are actually located at the minima of the PES which are reached a few

tens of pm above the surface level. They will be given in the next section treating

the PES analysis. Both coordinate systems will be used in this work depending

on the nature of the performed task. In the following, we will refer to Cartesian

coordinates as (x,y,z).

3.2 Potential energy surfaces analysis

The periodic cell used in our calculations contains two H atoms and 45 Pd atoms

(5(planes)×9(Pd)). The dimension of the PES is extremely high if we consider

the DOFs of all its components. The energy range in which we performed our

calculations does not include situations where the hydrogen atoms are highly excited.

Their presence at the surface level has therefore a very low impact on the motion of

Pd nuclei given the large mass difference between the two elements. Pd atoms will

remain very close to their equilibrium positions. Consequently, we consider in all
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our calculations that the Pd atoms remain fixed in their equilibrium positions over

time. The PES will be defined by a six-dimensional hypersurface that depends on

the six space coordinates of the hydrogen atoms only. This assumption allows us to

considerably reduce the dimensionality of the problem without losing any significant

precision in the calculations we have carried out. The construction of the PES

allows also transferability to the three-dimensional case of a single H atom adsorbed

on a Pd(111) surface. It was implemented numerically in a program written with

FORTRAN 90. The program allows to choose the number of hydrogen atoms (1 or

2) to study either H/Pd(111) or H2/Pd(111) systems.

The construction of this PES was done in two steps : First, the generation of the

database which consists in calculating the system energy along several well-chosen

pathways of the dissociative adsorption of H2 on Pd(111) by using the density func-

tional theory (DFT). Then fitting the obtained database on an adequate interatomic

potential. The type of interatomic potential they have chosen is based on the Reac-

tive Force Fields (RFFs) approach developed by Brenner [38], which confers to the

potential a fully analytical formula. The technical details concerning the develop-

ment and configuration of this surface are given in Appendix A.

The PES as presented in the author’s papers [22, 23] was originally developed on

a periodic cell containing 10×10 Pd atoms at each layer. The size of this cell is

relatively large and does not allow us to perform calculations optimally by exploiting

the full periodicity of the grid. Similar work has been carried out in the past [25]

and showed erroneous results when using this PES on a smaller grids. A new PES

based on the (3×3)-grid was constructed and shared by the authors. Several tests

have been carried out on the latter and have shown it to be highly reliable. In

the following we will present the analysis of this PES used for the H/Pd(111) and

H2/Pd(111) systems. Aspects that are directly related to the calculations that was

carried out in this work will be particularly highlighted.

3.2.1 H/Pd(111) PES

In this section, the analysis of the three-dimensional PES for the H/Pd(111) system

will be presented. We will be particularly interested in the various potential wells
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present at the surface level and the potential barriers that separate them. For

subsurface interactions, I refer the reader to the analysis by Saalfrank and Tremblay

[39]. Subsurface interactions are outside the scope of this thesis. The analysis of

these elements provides crucial information for studying the stationary states of the

system and for understanding the dynamical behaviour of hydrogen atoms on the

palladium surface.

The PES analysis shows that all global minima are located at around 90 pm from

the surface. A two-dimensional section of the PES in the Cartesian coordinates is

shown in figure 3.5. It allows to visualize the structure of the various potential wells

located at this plane level.

V/meV

x/pm

y/p
m 15 0

fcc
hcp

185

300

150

0

Figure 3.5: Two-dimensional section of the H/Pd(111) PES in the Cartesian coor-

dinates (x, y) with z = 90 pm.

Equipotential lines ranging from 0 to 300 meV are shown in the figure. One sees

that all potential wells are located at the fcc and hcp sites of the grid. They have the

shape of up-pointing or down-pointing triangles for the fcc and hcp sites respectively,

which gives the potential a local C3v symmetry. The global minima are shifted to

the zero reference energy value, they are reached when the hydrogen atom is located

at fcc sites. The energy of the system when the hydrogen atom is located in an hcp

site is around 15 meV for z=90 pm. The potential wells located at the hcp sites

corresponds then to the local minima of the potential. The analysis of the PES

shows that actually the minimum value of the energy in the hcp site is about 14
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meV, this energy is reached when the hydrogen atom is located at z=91.6 pm above

the surface. The atomic environment for a hydrogen atom located on these sites is

different due to the presence of a Pd atom in the subsurface plane in the case of

the hcp site, which slightly increases the energy at that site. The (3×3)-grid then

contains 18 potential wells including 9 equivalents of each type.

Figure 3.5 shows that all potential barriers that separate the potential wells1 at

z = 90 pm are equivalent and of finite size with a height of 185 meV. Figure 3.6

shows the shape of the potential barrier in a plane perpendicular to the surface.

fcc hcp V/meV

y/pm

z/p
m

Figure 3.6: Two-dimensional section of the PES in the Cartesian coordinates (y, z)

with −d/2 ≤ y ≤ d/2, 40 pm ≤ z ≤ 150 pm and x = d/2.

The equipotential lines show that the barrier decreases when the hydrogen atom

goes away from the surface. To better visualize this barrier variation, figure 3.7

shows one-dimensional cuts along the line joining an fcc and an hcp site for z fixed

at z=90 pm (solid line) then for z relaxed (dashed line). The latter was done by

minimizing the energy along the z coordinate on each point of the line joining the

fcc and hcp sites. One sees that the potential barrier drops to 120 meV at z=106

pm, which represents almost 35%. This would mean that the hydrogen atom will

always tend to move slightly away from the surface as it moves from one site to

another.

1Here we consider only the lateral potential barriers separating the different sites at the surface

level. The barrier in the z direction which prevents the H atom to penetrate the Pd bulk is about

937 meV at the fcc site. This value is above the energy range of our calculations and of no particular

interest in our studies.
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185
120

Figure 3.7: One-dimensional sections of the H/Pd(111) PES along the line joining

fcc and hcp site with z fixed at 90 pm (solid lines) and z relaxed (dashed lines).

The regions with the lowest energies are mainly concentrated around the various

potential wells located around 90 pm from the surface. Most of the dynamics of

interest in this thesis will therefore take place in these regions. Analysis of these

different geometrical aspects of the PES provides some preliminary information of

the system dynamics. We will conclude this section by citing some of the direct

consequences we can draw from the preceding analysis.

• Given that there are 9 equivalent potential wells located on the fcc sites and 9

other equivalent wells located on the hcp sites, several vibrational stationary

states will be degenerate (or quasi-degenerate) with a degeneracy factor of at

least 9.

• Figure 3.6 shows that the potential is much more "contracted" in the direction

perpendicular to the surface than in the parallel direction. This can be seen

directly by observing the density of the equipotential lines in the z direction

or by looking directly at the curvature of the potential. A direct consequence

of this property of the potential is that vibrational excited states in the per-

pendicular direction to the surface will have much higher energies than the

parallel ones.

• The finite potential barrier may allow hydrogen to tunnel from one site to

another, even in relatively low energy domains. Analysis of the height and

width of the potential barrier gives an idea of the importance that tunneling
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may have on the dynamics of the system.

3.2.2 H2/Pd(111) PES

In this section, following a similar approach to the previous one, we present some

important aspects of the PES of the H2/Pd(111) system. In particular, the analysis

of the different potential wells and the different potential barriers separating them

as well as the resulting equilibrium configurations and their degeneracy.

The minima of the PES correspond to the most favorable situations for the adsorp-

tion of H2 on the Pd(111) surface. These minima are reached when both hydrogen

atoms occupy one of the fcc or hcp sites of the grid. In order to facilitate the naming

of the different possible situations, we will in the following symbolize the fcc site

with the capital letter A and the hcp site with the capital letter B. We can then

distinguish between three situations:

• Both hydrogen atoms are located on fcc sites (AA).

• Both hydrogen atoms are located on hcp sites (BB).

• One hydrogen atom is located on a fcc site and the other on a hcp site (AB).

Given that the grid we used in our periodic calculations contains 9 fcc sites and

9 hcp sites, then there are 2 ×
(

9
2

)
= 72 different combinations of placing the two

hydrogen on fcc sites, 2 ×
(

9
2

)
= 72 combination of placing the two hydrogen on hcp

sites and 2 ×
(

9
1

)
×
(

9
1

)
= 162 combination of placing one hydrogen on a fcc site and

the other on a hcp site. The energy of the system is different between these three

configurations, given that the potential wells at the fcc and hcp sites are different.

The PES analysis also showed that, within each configuration, several energetically

different subconfigurations are possible. Figure 3.8 shows some examples. For the

(AA) and (BB) configuration types, we distinguish between two different situations:

the two atoms occupy two neighboring sites (figure (a) and (c)) which we will call

(AA)I and (BB)I, then the situation where they occupy non-neighboring sites (figures

(b) and (d)) which we will call (AA)II and (BB)II. Then for the configuration of

type (AB), there are three cases with different energies. We will only consider

situations (e) and (f), because the last configuration (AB)NN (Near Neighbors) is very
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fcc
hcp

d

(a) (AA)I

fcc
hcp

d 3

(b) (AA)II

fcc
hcp

d

(c) (BB)I

fcc
hcp

d 3

(d) (BB)II

fcc
hcp

2d/ 3

(e) (AB)I

fcc
hcp

d 7/3

(f) (AB)II

fcc
hcp

d/ 3

(g) (AB)NN

Figure 3.8: Examples of each possible type of configuration for placing the two H

atoms on fcc and hcp sites.

energetic (≈ 359 meV) given that the two H atoms are close and repel each other.

As a result, this configuration will be very sparsely populated within the dynamical

calculations we wish to perform in this work. It is therefore of little interest for

the following. We will represent the remaining configurations by (AB)I and (AB)II

as shown in the figure. Some situations in 3.8 seem to be energetically equivalent.

If we take the example of the two configurations (AA)I and (AA)II, despite the

fact that the hydrogen atoms in these two configurations have the same atomic

environment if we restrict ourselves only to the first neighbors, these situations

present a significant energy difference as shown in table 3.2. This is due to the fact

that the development of this PES takes into account the three-body interactions

between the system’s components. W.Dong has calculated additional three-body

terms between the hydrogen and palladium atoms and incorporated them into his
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calculations2 (see appendix A ). Table 3.2 gives the energies of all the different

possible configurations with the associated "classical"3 degeneracy.

Configuration dH-H/d E/meV Degeneracy

(AA)I 1 2 54

(BB)I 1 19 54

(AB)I 2/
√

3 40 54

(AA)II
√

3 69 18

(AB)II

√
7/3 73 54

(BB)II
√

3 101 18

(AB)NN 1/
√

3 359 54

Table 3.2: Energies and classical degeneracy of all possible types of configurations

of the dissociative H2 system on the Pd surface. d ≈ 275 pm is the distance between

two neighboring Pd atoms and dH−H represent the distance between the two H atoms

in each configuration. z1 = z2 = 87 pm for all these configurationsa.

aThe overall PES minimum is reached when the two hydrogen atoms are out of the crystallo-

graphic position (AA)I (see table 3.3).

The degeneracy given in the previous table simply lists the number of equivalent

configurations on the (3×3)-grid that we use in our calculations. If we consider the

situation (AA)I as an example, by placing one hydrogen atom on an fcc site, the

second hydrogen has 6 possibilities to occupy a neighboring fcc site. Given that there

are 9 fcc sites in this grid, this makes a total of 9×6=54 different configurations. A

similar procedure can be used to find all the other4 values in table 3.2.

2One of these terms is dH−H−Pd, which represents the situation where two H atoms and one Pd

atom interact. This term, is considered only when these three atoms are close to each other for

example in the configuration (AA)I and equal to zero in the configuration (AA)II.

3This degeneracy is considered to be classical because if we consider the tunneling through the

system’s potential barriers may induce an energy splitting and partially lift the degeneracy on

these states. We will see this later in the section of the stationary states calculation of this system.

4The periodic conditions of the grid must also be taken into account to obtain the complete

degeneracy.
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Actually, the minima of the potential do not coincide exactly with the christa-

lographic coordinates of the fcc and hcp sites. By relaxing the hydrogen atoms

around their equilibrium positions on the fcc and hcp sites, we reach slightly lower

energies. Table 3.3 gives an example of the energies reached after after relaxation

of the hydrogen atom coordinates around the positions of the configurations shown

in figure 3.8.

First hydrogen Second hydrogen

Relaxed configurations x1/pm y1/pm z1/pm x2/pm y2/pm z2/pm E/meV

(AA)I 135.2 -80.4 87.8 -135.2 -80.4 87.8 0.0

(BB)I 135.2 80.4 87.5 -135.2 80.4 87.5 17.1

(AB)I 136.7 -78.8 86.9 -136.7 78.8 86.9 39.3

(AA)II 137.2 -79.7 89.0 -274.9 159.3 89.0 67.1

(AB)II 137.9 -79.1 89.7 -00.4 317.3 89.7 70.0

(BB)II 137.4 78.9 90.3 -274.8 318.0 90.3 95.8

Table 3.3: Energies of the configurations shown in 3.8 after relaxation. The optimal

value is dH−H = 270.4 pm.

The neighboring potential wells are separated by finite potential barriers. In the

case of a single hydrogen atom, the potential barriers "seen" by the hydrogen atom

are time-independent, since the Pd atoms are all fixed at their equilibrium positions.

But if a second hydrogen atom is present at the surface, these barriers will no longer

be constant and depend on the position of the second hydrogen atom. So it is not

possible to give exact potential barrier values. We can, however, study the cases

where one of the two hydrogen atoms is fixed to an fcc or hcp site of the surface.

This will enable us to extract information on the potential barriers "perceived" by

the two hydrogen atoms when they are near to their equilibrium positions.

We have therefore considered the situation where the first hydrogen atom is fixed

to an fcc site and the second one is free to move in a plane parallel to the surface.

the second situation is similar to the first one but with a hydrogen fixed to an hcp

site. The PES corresponding to these two situations are therefore two-dimensional
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(a) Two dimensional section of the PES along (Lk, z1).
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(b) Two dimensional section of the PES along (x1, y1) with

z1 = z2 = 87 pm.

Figure 3.9: Two dimensional sections of the H2/Pd(111) PES when one of the two

hydrogen atoms is fixed to an fcc site. The equipotential lines ranging from 0 to 300

meV are represented in the figure.

functions, covering all the possible configurations given in table 3.2. Figures 3.9 and

3.10 show two-dimensional sections of these reduced PES that we will call PES-A

and PES-B referring to a fixed hydrogen to an fcc or hcp site respectively.

The global minimum of the PES has been shifted to 0.0 meV, corresponding to

the situation where the two hydrogen atoms occupy neighboring fcc sites but are

slightly displaced from these positions, as shown in the table 3.3. The energies given

in figures 3.9b and 3.10b (the same as in table 3.2) are therefore slightly above these

values, given that in PES-A and PES-B one of the two hydrogen atoms is fixed

exactly on the crystallographic coordinates of the fcc or the hcp site. This figure

explicitly illustrates some examples of the configurations given in figure 3.8. For

instance, it shows that when the second H is located on a non-neighboring fcc site,
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z1 = z2 = 87 pm.

Figure 3.10: Two dimensional sections of the H2/Pd(111) PES when one of the two

hydrogen atoms is fixed to an hcp site. The equipotential lines ranging from 0 to

300 meV are represented in the figure.

its energy is 69 meV, whereas it is 2 meV in the opposite case5. The figure also

shows the values of the potential barriers in these two situations. The barriers are

all higher than that of a single hydrogen atom. To better visualize these barriers,

figures 3.9a and 3.10a show two-dimensional sections perpendicular to the surface

along the lines joining the different sites. These barriers give us information about

the dynamical behavior of H2 system on the Pd(111) surface. For example, if both

hydrogen atoms are located on fcc sites, it is more favorable for one hydrogen to

pass through the barrier L1 to the neighboring hcp site compared to the others. The

same reasoning could be applied to other sites on the grid. This allows us to identify

5The energy of the system increases when a hydrogen atom approaches the nearest site where

the other one is fixed. In figures (3.9,3.10), the PES section has been limited to 300 meV. No

potential lines therefore appear around this site.
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the most "favorable" diffusion channels for a given configuration.

To conclude this section, analysis of the PES structure of H2/Pd(111) has enabled

us to identify the various possible minima of the potential. Each minimum cor-

responds to several energetically equivalent situations. The direct consequence of

this finding is that our system will be highly degenerate, and this degeneracy will

evidently emerge in the calculations of stationary states. In addition, analysis of the

PES has shown an important difference between the potential barriers surrounding

the different potential wells of the surface. This will have a significant impact on

the dynamics of the system and also on the "intensity" of the tunneling that can

occur. All these elements are necessary to understand correctly the behaviour of the

adsorbed hydrogen atoms on the palladium surface.

3.2.3 Product form of the potential using potfit

The analytical formula of the potential as defined by Dong [23] contains non-

separable multidimensional terms, making its decomposition into the sum of prod-

ucts of one-dimensional terms required for MCTDH calculations infeasible. We

therefore used the potfit program presented in section 2.3.4 to approximate the PES

of H/Pd(111) and H2/Pd(111) systems with a representation of the desired form.

In this section, we give some technical details of the different parameters used for

the representation of the potentials with potfit.

As mentioned in the previous section, we use a periodic approach to simulate an

infinite surface. Given that periodicity is defined at the level of the twisted basis,

we define the Hamiltonian modes by the twisted coordinates of the hydrogen atoms.

The formulation of the kinetic energy operator in this basis was given in equation

2.24. The PES were already formulated using those coordinates by the authors. The

very first step is to define the grid in which we wish to perform our calculations.

Since we wish to study the dynamics of hydrogen atoms adsorbed at the Pd surface

in an energy range from 0 to 500 meV, the wave functions of these systems will

mainly occupy regions of space close to the surface where the potential is relatively

low. We saw in the previous section that the minima of the potential are located

around zt = 90 pm from the surface. The grid should contain all these minima as
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Figure 3.11: Schematic representation of the grid used for periodic calculation.

well as all the more energetic regions located below and above this plane that the

wave function can reach during simulation. We therefore considered a grid height

zt ∈ [zmin
t , zmax

t ] with zmin
t = 20 pm and zmax

t = 170 pm. This region of space largely

encompasses the energy domain of our study, to ensure that the system wavefunction

vanishes systematically at the grid edge in the zt coordinate. The coordinates xt

and yt were naturally chosen to occupy the entire periodic cell used in the PES6.

They are therefore given by xt ∈ [−3d/2, 3d/2] and yt ∈ [−3d/2, 3d/2] where the

center of the reference frame coincides with the center of the Pd atom located in the

middle of the grid as shown in figure 3.11.

The next step is to define the number and type of primitive basis functions to be

used. As mentioned in section 2.3.1, exponential-type primitive functions are well

suited to periodic DOFs, while sine-type primitive functions are well suited to DOFs

describing the motion of a particle confined to a segment of space. For each hydrogen

atom, we have therefore chosen exponential DVR functions for the xt and yt modes,

and sine DVR functions for the zt mode. The number of primitive functions should

be chosen to match the variation in potential. The grid we use contains 18 potential

wells located at the fcc and hcp sites separated by potential barriers. The grid points

where the DVRs are located are homogeneously distributed, and the distribution

of these points should be dense enough to correctly describe the system’s potential

wells and potential barriers, and small enough to avoid very long calculation times.

The dimensions of the H/Pd(111) and H2/Pd(111) systems are different, so we have

6It is possible to construct a periodic grid smaller than the one used, but this can lead to

situations where hydrogen atoms interact with their ’images’ giving non-physical results.
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chosen a parameterization for the potential representation adapted to each situation.

In the following, we will describe the potfit parameters used for these two systems.

Potfit for H/Pd(111)

In the case of a single hydrogen atom, the PES is a three-dimensional function,

which does not represent a major difficulty for numerical calculations. We have

therefore chosen a primitive basis that is amply sufficient to represent the potential.

The grid length of xt and yt is greater than that used for zt. We considered fewer

primitive functions for the latter and we chose a basis containing 61×61×31 DVRs

as shown in table 3.4.

coordinate (κ) xt yt zt

DVR EXP EXP SIN

Nκ 61 61 31

mκ 30 30 contr

Table 3.4: Primitive functions used for potential representation of H/Pd(111). EXP

and SIN denote exponential and sine DVRs respectively. Nκ and mκ represent the

number of DVR and SPP functions used for each DOF κ.

Once the primitive grid has been defined, we proceed to build an SPP basis set

which will be used to directly represent the potential. The use of potfit requires a

contraction on one of the modes used. We have chosen to contract over the zt mode

and work with 30 SPP for the xt and yt modes. There is no direct way of estimating

the number of SPP required for the system’s DOFs, the only way to assess the quality

of the basis is to look at the natural potential populations λ(κ) which represent the

weights of the SPP (see section 2.3.4). These are ordered in ascending order, the

sum over the weights of the neglected SPP gives an idea of the total contribution

of these vectors to the representation of the potential. When this quantity becomes

small, we truncate the primitive basis with the number of SPP selected. In the case

of the basis we have used, this quantity is :
Nx∑

mx=31
λ(x)

mx
≈

Ny∑
my=31

λ(y)
my

≈ 10−10 which is

completely negligible for our calculations. The rms error ∆rms on the fit can then

be evaluated on all grid points by comparing the values of the original potential and

those obtained with the program. We saw in section 2.3.4 that weights can be added
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to the SPP in order to reduce the error mainly in relevant regions, in which case

we speak of weighted rms-error ∆w
rms. These weights can be introduced separately

for each DOF or in a correlated way. In the latter case, a condition is imposed

directly on the energy interval on which we want to optimize the potential called

relevent regions. The weights are then set to 1 within relevant region and are 0

otherwise. To illustrate this, we carried out a calculation without the use of weights

and another with the addition of a constraint on the optimization of regions defined

by V ≤ 500 meV. Figure 3.12 shows the difference in absolute values between the

representation of the potential with the program and the exact values taken on the

grid point belonging to the plane of equation zt = 90 pm in both calculations.
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(a) Without using weights.
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(b) With correlated weights for V ≤ 500 meV.

Figure 3.12: Two-dimensional representation giving |V − V app| at each grid point

located at zt=90 pm. V and V app represent the original potential and that obtained

with potfit.
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In the first case (figure 3.12a), the error is distributed almost homogeneously over

the grid, while in the second it is mainly concentrated in regions of high potential

values. Here we have only considered a single plane of the total grid, but that’s

enough to illustrate the impact of weights on the approximation. The total number

of grid points where V ≤ 500 meV represents around 31% of the total grid. The

potential error is then considerably reduced in restricted regions that are frequently

occupied by the wavefunction during propagation. In this example, however, even

if ∆w
rms ≤ ∆rms, we can see that the error in both examples is already very small,

on the order of a few hundredths of a meV in both cases. The use of correlated

weights becomes indispensable for systems with a very large primitive basis, as

we shall see later in the potential representation of the H2/Pd(111) system. In

the present case, the potfit calculation was very fast (less than a minute) and the

results sufficiently precise without the use of weights and with an SPP basis of

dimension 30×30 only. One should recall that subsequent propagation or relaxation

calculations with MCTDH become substantially faster, if the SPP basis is small.

Potfit for H2/Pd(111)

The PES of the H2/Pd(111) system is a six-dimensional function that depends on

the three twisted coordinates of each hydrogen atom. The grid used to describe each

DOF should be minimized as much as possible to avoid a large total grid dimension.

In this case, we chose to work with 41 exponential DVRs for the xt and yt modes

and 15 sine DVRs for the zt modes of each H. Table 3.5 summarizes the parameters

for the H2/Pd(111) potfit.

The total dimension of the grid is given by (41×41×15)2, which represents hundreds

of millions of primitive basis functions. Reducing the basis size is therefore essential

to make numerical calculations feasible. As a first step, we proceeded to combine the

system’s DOFs. This means using multidimensional SPP that treat several DOFs

as a single mode. In this situation, we have six DOFs, so there are several possible

combinations. In principle, all combinations are feasible, but one needs to choose the

one that is adapted to the correlations between the system’s DOFs. We considered

two types of combination in the course of this project: firstly, a combination based

on the idea that individuel modes of the two hydrogens are strongly correlated. In



Chapter 3 Potential energy surfaces analysis for H/Pd(111) and H2/Pd(111) 47

First hydrogen Second hydrogen

coordinate (κ) xt yt zt xt yt zt

DVR EXP EXP SIN EXP EXP SIN

Nκ 41 41 15 41 41 15

mode combination (xt,yt,zt) (xt,yt,zt)

mκ 5000 contr

Table 3.5: Primitive functions used for potential representation of H2/Pd(111). EXP

and SIN denote exponential and sine DVRs respectively. Nκ and mκ represent the

number of DVR and SPP functions used for each DOF κ. The DOFs of each

hydrogen atom have been combined into a single mode.

this case, we combined the DOFs with the same coordinate for both hydrogens,

resulting in three modes of the type Q1 = (x1, x2), Q2 = (y1, y2) and Q3 = (z1, z2),

where the index relates to the twisted coordinate of hydrogen atom 1 or 2. In the

second configuration, we consider that there are more correlations between the DOFs

of the same hydrogen atom than between the others. We then combined the three

DOFs of each atom separately, giving Q1 = (x1, y1, z1) and Q2 = (x2, y2, z2). Both

representations of the potential were made, but it turned out during the eigenstate

calculations that the second type of combination is much more suitable for the

potential we’re using. We will discuss this point later in the time-(in)dependent

studies. This type of combination allows us to drastically reduce the number of

expansion coefficients given in equation 2.43, the disadvantage being that the SPP

are now multidimensional and defined on a grid of size (41×41×15), which can slow

down their construction. We then selected m1=5000 SPP to represent the Q1 mode

and contracted over the Q2 mode. The number of SPP is chosen so as to reduce

the rms error, which is exactly equal to the sum of the natural populations of the

SPP that we neglect, given that the contracted mode is not counted. The number

of mode 1 SPP we used represents around 5000/(41×41×15)≈25% of the associated

primitive basis. The sum of the natural potential population of the remaining 75%

is around 70 meV, which represents a non-negligible amount. To reduce this error,

we have optimized only those regions of the grid where the potential is less than 500

meV, representing only 1.9% of the total grid points. Potfit allows to add several
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iterations after the end of the calculation to re-optimize the SPP and to better

represent the potential in these regions. This finally enabled us to reduce the ∆w
rms

error to less than 1 meV which is still very reasonable given the size of the grid.

The representation of the potential in the sum of product form required for MCTDH

calculations was done finally with a very reasonable number of basis vectors. The

calculation took around 75 h. However, The dimension of the SPP are relatively

large and this combination mode should be identical to that used in MCTDH cal-

culations. The SPF will therefore have the same dimensionality, which could slow

down their propagation. When the dimensionality of the SPF is large, MCTDH sug-

gest a Multi Layer version (ML-MCTDH) where the SPF are themselves propagated

with MCTDH. But in our case, the computation time was generally reasonable and

we finally refrained from using the Multi Layer version.



Chapter 4

Study of vibrational stationary

states of H/Pd(111) and

H2/Pd(111)

The eigenstates of the hydrogen atoms adsorbed on the palladium Pd(111) surface

will be discussed and analyzed in this chapter. As mentioned previously, a periodic

approach is used with an elementary cell containing 9 fcc sites and 9 hcp sites. The

latter represent the regions where the potential wells are located. They therefore

correspond to the most stable adsorption sites at the surface, around which the

atoms may move. Such a motion is of vibrational nature and therefore stationary

states are naturally referred to as being vibrational. The study we have carried

out concerns the case of a single or two hydrogen atoms contained in this periodic

cell. These two systems correspond to a substrate coverage of around 5.55 % and

11.1 % respectively if we consider that the coverage is given by the number of the

occupied adsorption sites by hydrogen atoms. This study has also revealed the

presence of an important tunneling impact on most of vibrational states, as well as

a strong Fermi resonance [7] between some system modes. In the following, we’ll

start by discussing some of the technical tips we’ve used to realise the calculations

we’ve carried out, then we’ll present the obtained results for the calculations of the

vibrational stationary states of these systems.

49
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4.1 Methods and calculation details

4.1.1 About the initial wave function

The calculation of eigenstates of a system using the relaxation method is performed

by propagating a given state in negative imaginary time t = −iτ with τ ∈ R+ (section

2.3.3). Its use therefore requires the construction of an initial wave function (IWF)

as in a propagation calculation. The latter should be adapted to the eigenstate

to be determined. Let us denote the eigenenergies and eigenvectors of a given

Hamiltonian Ĥ by {Ek} and {|φk⟩} respectively. The evolution in imaginary time

of a state initially prepared in |Ψ(0)⟩ in the eigenbasis is given by :

|Ψ(τ)⟩ =
∑

k

ck(0)e−Ekτ/h̄ |φk⟩ (4.1)

Such that ck(0) = ⟨φk|Ψ(0)⟩. Relaxation will therefore lead the system to evolve to-

wards the lowest-energy eigenstate of those initially contained in |Ψ(0)⟩, i.e.

⟨φk|Ψ(0)⟩ ̸= 0. We must therefore systematically ensure that the overlap between

the IWF and the target eigenstate we wish to calculate does not vanish1. In the case

of the H/Pd(111) and H2/Pd(111) systems, the various potential wells are located

around the fcc and hcp sites. The low lying eigenstates of these two systems are

thus mainly located around these sites. The nature of the IWF should then be de-

localized to cover all these regions at the surface level. In its simples use, MCTDH

requires the IWF to be given as a Hartree product of one dimensional functions for

individual DOF. The program offers a choice of analytically predefined functions,

such as Gaussian functions or harmonic oscillators [21]. It is also possible to con-

struct the initial state numerically, such as in equation 2.36 as a superposition of

primitive basis functions, giving the value ciκ of the wave function at each grid point

we use. For each DOF κ a function f (κ)(κ) may then be defined on the associated

grid such that :

f (κ)(κ) =
Nκ∑
iκ

ciκχ
(κ)
iκ

(κ) (4.2)

With Nκ the number of primitive functions used for the κ-th degree of freedom

and {χ(κ)
iκ

}1≤iκ≤Nκ the associated DVR-type primitive basis. As this function is

1Otherwise the system may converge to another eigenstate.
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defined only on grid points, it can be represented by a vector with Nκ components

{ciκ = f (κ)(κiκ)| iκ = 1, . . . , Nκ} taken at each grid point iκ. The total IWF is given

by the product of these functions:

Ψ({κ}, 0) =
∏
κ

f (κ)(κ) (4.3)

We therefore followed this numerical approach to construct the IWF since it allows

greater flexibility in its construction. A trivial choice of functions f (κ)(κ) are the

constant (normalized) functions defined homogeneously on all grid points, giving

the total wave function a flat shape that systematically ensures the occupancy of

the entire surface.

f (κ)(κ) = 1√
Nκ

Nκ∑
iκ

χ
(κ)
iκ

(κ) (4.4)

Although such a state fulfills the condition of spatial delocalization, the latter may

still be orthogonal to some of the system’s eigenstates2. Therefore, its decomposition

in the system’s eigenbasis may not cover some of the eigenstates we wish to calculate,

leading to biased results. One way to fix this is to add random phases to each

component of f (κ)(κ) in the primitive basis. To do this, we define a normalized

complex random number eiθ
(κ)
iκ constructed by drawing a random angle θ(κ)

iκ
∈ [0, 2π]

associated with each grid point. The functions f (κ)(κ) are now defined by:

f (κ)(κ) = 1√
Nκ

Nκ∑
iκ

eiθ
(κ)
iκ χ

(κ)
iκ

(κ) (4.5)

This allows us to "destroy" the spatial homogeneity of this state without modifying

its norm. Figure 4.1 shows a two-dimensional representation of such a state. In this

example, we have considered 61 grid points for each DOF (x and y), where each

point is defined by a different random phase, giving this disordered and delocalized

aspect to the wave function.

The use of this type of random states to define IWFs in the relaxation calculation has

enabled us to determine a part of the spectrum of the H/Pd(111) system, with the

correct degeneracy of each level. However, these states are initially very energetic

2Because this state has a constant sign and the overlap with eigenstates that change sign on

the grid can vanish in some cases.



52 4.1 Methods and calculation details
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Figure 4.1: Two-dimensional representation in the xy-plane of the real part of an

initial state defined with random coefficients in the primitive basis. 61 grid points

were considered for each DOF.

(on average 15 eV), firstly because they are extended over the entire grid, including

regions of high potential, and secondly because of the abrupt variation in the wave

function, which tends to increase the kinetic energy of this state, too. The relaxation

process therefore takes a long time to lower the system’s energy towards stationary

states, making this approach less practical, especially for the higher-dimensional

system H2/Pd(111).

A new model of the IWF more suited for our calculations was constructed where

the latter have large amplitudes only around potential wells such as to cover only

relevant regions. The construction of a wave function with amplitudes on both fcc

and hcp potential wells cannot be written in the form of a single Hartree product

required for MCTDH calculations, as the different potential wells are not aligned

along a single direction including a single DOF of the system. However, it is possible

to construct a Hartree product wave function having large amplitudes only around

the potential barriers located at the middle of the segments connecting the fcc and

hcp sites. The thus chosen f (κ)(κ) functions used for each hydrogen atom are given

by: 

f (x)(x)=Cx

3∑
k=1

e−1/4((x−xk)/∆x)2

f (y)(y)=Cy

4∑
k=1

e−1/4((y−yk)/∆y)2

f (z)(z)= Cze
−1/4((z−z0)/∆z)2

(4.6)

f (κ)(κ) are Gaussian functions defined in the twisted coordinates (x, y, z) ≡ (xt, yt, zt)
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with xk=-d+(k−1)d, yk=−3d/2+(k−1)d and z0=90 pm. Cκ and ∆κ represent nor-

malization constants and Gaussian widths respectively. The ∆κ widths have been

chosen to be sufficiently large (∆x = ∆y = d/6 and ∆z = 50 pm) to simultaneously

cover a part of the two potential wells around each barrier. This ensures the IWF to

overlap with all stationary states of the system. Figure 4.2 shows a two-dimensional

section in the xy-plane of the IWF used for the H/Pd(111) system. The energy of

this state is around 0.9 eV and 2.7 meV for a single hydrogen atom and two hydrogen

atoms respectively, which is much smaller than the energy of the previous model.
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Figure 4.2: Two-dimensional representation of the initial wave function used in relax-

ation calculations. The latter is defined by the superposition of Gaussian functions

constructed in the twisted coordinates with maxima localized at the level of each

potential barrier. The functions used to construct the IWF are given in equation

4.6.

The improved relaxation method in its block form used in this project has the

advantage of enriching the configuration space generated by the IWF. But despite

this, the use of predefined functions in MCTDH such as Gaussian functions or

harmonic oscillators like IWF led to incomplete results. The good choice of the

IWF was crucial to cover systematically all the desired eigenstates with complete

degeneracy of each level.

4.1.2 About the use of the block improved relaxation method

The block improved relaxation method allows to propagate simultaneously a set of

initial vectors collectively called vector block to the system’s eigenstates. The IWF
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can indeed be seen as a ’super wave function’, a vector valued wave function, where

each individual component function is treated as the projection of the super wave

function on an electronic state [19]. The numerical resources required to propagate

such a state are far greater than those required to propagate a single state with

improved relaxation. But when we want to determine a large number of eigenstates

of a system, the block form turns out to be much faster and more efficient. In this

section, we discuss some technical tricks used to ensure and improve the convergence

of the calculation with this program.

Vector block

Let’s consider for a given system Lk spectral levels with energy Ek; gk is the asso-

ciated degeneracy or near-degeneracy, as illustrated in the figure 4.3. In the case of

the H/Pd(111) and H2/Pd(111) systems, the degeneracy of each level can be esti-

mated by counting the different energetically equivalent configurations that result

from the grid symmetry as given in table 3.23.

E

L0E0 (g0)
L1E1 (g1)

LkEk (gk)

…

Emin
k

Vector block

Figure 4.3: Schematic diagram showing the procedure used in the block improved

relaxation method for the determination of the various degenerate levels of vibra-

tional states.

The eigenstates of the system are computed starting from the lowest level. There

is no particular constraint on the number of states to be used in a block improved

relaxation and it is in principle possible to calculate hundreds of states at once.

3Although this approach is based on classical picture and does not take into account quantum

effects, it allows us to estimate preliminary values for the gk.
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However, the SPF used in such a calculation are optimized such as to represent all

the eigenstates we wish to calculate. These states may have very different structures,

which may require a large number of SPF to represent them correctly. We have

therefore taken a local approach, dividing the total number of eigenstates we wish

to determine into several blocks targeting one or more levels of the spectrum. We

start by calculating the states belonging to the L0 level, by relaxing a block of size

N states which includes all the states of the target level such that g0 < N states. The

program ensures orthogonality between these states, allowing us to determine all

linearly independent eigenstates of the L0 level.

To compute higher energy states, the program allows us to fix an energy value Emin
k

as the minimum energy of the eigenstates one wishes to calculate. This makes it

possible to target a given energy interval and filter out all states with energies below

Emin
k . To evaluate the energy Emin

1 for the first level, we use a vector block with a size

strictly larger than the degeneracy g0 in the previous calculation. Any additional

states calculated will belong to the next level, and their energy will serve as a

lower bound for the next calculation. Then the same procedure is repeated for the

calculation of subsequent levels. Figure 4.3 illustrates this procedure schematically.

When the level degeneracy is not large, several levels can be computed together

using a single vector block.

SPF basis set

The size of the SPF basis set, as mentioned in section 2.3.2, should be chosen to be

large enough to correctly describe the system’s wave function and small enough to

avoid slowing down numerical simulations. In a dynamics calculation, the system’s

wavefunction must be correctly represented throughout the propagation in order

to correctly reproduce the time evolution of the system’s dynamic properties. In

a relaxation calculation, the only property of interest is the system’s final energy.

The optimal representation of the wave function at the beginning of relaxation is not

necessary, and only the final structure of the eigenstates is important in determining

the system’s eigenenergies. We followed an approach based on this idea to optimize

the structure of the SPF basis as much as possible in our calculations. We subdivide

each relaxation calculation into several parts. We start by relaxing the initial system
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for a certain time with a small SPF basis, then we resume the relaxation with a larger

SPF basis and using as IWF the final state of the previous calculation, then we repeat

this scheme until convergence is reached. During the first relaxation calculation, the

energies of the various states used decrease and start to oscillate after a certain time.

The oscillatory behavior is in fact specific to the use of small SPF and disappears

as the size of the basis increases. At the end of the last relaxation calculation, the

energies of the vector block stabilize and converge towards those of the system’s

eigenstates. A number of tests have been carried out to verify the efficiency of this

approach, using as a reference example a single block relaxation with the same basis

as that used for the last relaxation calculation run of the convergence series. Both

calculations give the same results, except that in the case of a single shot relaxation,

the simulation time is almost three times longer. We finally followed this approach

to progressively determine the spectra of the H/Pd(111) and H2/Pd(111) systems.

In addition to the block size used, SPF basis sizes vary depending on the system

and also on the calculated level energies. Describing the system’s excited eigenstates

generally requires more SPF. Table 4.1 summarizes information on the SPF used

for each system.

SPF [nmin
κ , nmax

κ ]
H/Pd(111) H2/Pd(111)

nx ny nz nx1y1z1 nx2y2z2

[30, 40] [30, 40] [4, 8] [30, 100] [30, 100]

Table 4.1: Number of SPF used to describe the different system modes during

relaxation calculations. The average minimum and maximum wall time required for

each relaxation calculation ranges from 3h to 31h.

The eigenstate calculation of the two studied systems was focused mainly on the

ground and the first exited levels. This represents 10 energy levels containing around

140 vibrational states for the H/Pd(111) system and 24 energy levels containing

around 1500 eigenstates for the H2/Pd(111) (including the degeneracy). For the

first system, two vector blocks of 75 states were used. The maximum dimension

of the SPF basis used represents around 11% of the total primitive basis (table

4.1). The natural population of the weakest populated SPF generated in each final
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relaxation calculation is less than 10−3, which is considered by the developers of

the MCTDH program to be a very accurate description of the system’s stationary

states.

When calculating the eigenstates of the H2/Pd(111) system, we used the same type

of mode combination used to represent the potential with the potfit program. The

DOFs of each hydrogen atom have been combined into a single mode. The second

type of combination cited in section 2.3.4, i.e. the Q1 = (x1, x2), Q2 = (y1, y2) and

Q3 = (z1, z2) combination, allowed us to merely determine the ground states, as

convergence was not reached when calculating excited states even with very large

SPF basis. As we’ll see in the next section, the DOFs of each hydrogen atom are

highly correlated within the same atom. It makes sense to integrate them within the

same mode in order to reduce the correlated terms and the dimension of the A-vector.

Because the number of eigenstates we calculated is relatively large, we subdivided

the relaxation into several parts. In each calculation, a block of 160 states was used.

We found that a smaller block size does not lead to convergence, especially when

calculating excited states. One gets oscillatory behaviour of eigenenergies even for

large SFPs basis. We are currently unable to explain this behavior. The relatively

large block size allowed to stabilize the results. We used a sufficiently large number

of SPF to ensure an accurate description of all block states. The natural population

of the weakest populated SPF generated in each last relaxation calculation is less

than 10−3. The maximum size of the SPF basis used in the relaxation calculations

is about 10−3% of the total primitive basis, which extremely reduces the numerical

dimension of the problem.

Integrators

Both the SPF and the A-vector are propagated in time during relaxation according

to the equations of motion given in 2.40. The Hamiltonian matrix elements, as well

as the density matrix and mean field in the equations of motion of the A-vector

and SPF are recalculated either after each iteration in time or kept constant for

some time and then recalculated after a certain number of time steps. These two

schemes are called Variable Mean-Field (VMF) and Constant Mean-Field (CMF),
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respectively [15]. Both schemes have advantages depending on the situation, but in

the case of a relaxation calculation, the CMF scheme is required in MCTDH. The

user can choose the number of time steps in which the above-mentioned quantities

are kept constant and inspect the calculations manually to check the efficiency of

the scheme. Alternatively, one can choose a variable number of steps in time and

define a constraint directly on the desired accuracy. The latter should normally be

evaluated from errors coming from the A-vector and the SPF, but in the case of

relaxation the A-vector varies discontinuously and only the variation in the SPF is

taken into account in the evaluation of the number of tolerated steps. This scheme

is generally the one recommended by the developers of the program, so we used it

in all our relaxation calculations, defining an initial step of 0.5 fs and an accuracy

of 10−8, which corresponds to the recommendation given for the use of the program

[21].

Integrators (CMF)
SPF A-vector

RK8
 accuracy =10−8

initial stepsize= 0.1
rrDAV

 maximal order≤ dim({SPF})
accuracy = 10−9

Table 4.2: Integrator parameters used to propagate SPF and A-vector within the

block improved relaxation.

The SPF and the A-vector are propagated separately in the CMF scheme. There

are several types of integrators proposed in MCTDH [15, 21]. For the calculation

of a block relaxation, the most suitable integrators are the Range Kutta method

of order 8 (RK8) for SPF and the Davidson method for A-vector diagonalization

(rrDAV). The latter is used for real and Hermitian matrices, which corresponds

to the Hamiltonian used in our calculations. Both routines take parameters like

those of the CMF. The maximum order used in the Davidson routine represents the

number of iterations required for convergence in each time step. This number is

always smaller than the size of the SPF basis by definition, and it must be large

enough to prevent diagonalization processes from failing during the iterations. As a

general rule, we take it almost equal to the basis size to avoid this kind of numerical

problems.
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The use of the block-improved relaxation program showed a very high performance

for calculating the stationary states of the two studied systems. However, the correct

parameterization of the program and the use of the tricks mentioned in this section,

such as the choice of the IWF and the type of mode combinations, were necessary

to ensure convergence and the smooth running of the calculation.

4.2 Vibrational stationary states of H/Pd(111)

A detailed analysis of the energies of the vibrational stationary states of the hy-

drogen atom adsorbed on the Palladium Pd(111) surface and the structure of the

corresponding wave functions will be presented in this section. The focus is on the

ground (non-excited) level and other levels of the system, which can be identified

as having a single quantum of vibrational motion along one of the modes. We call

these levels singly excited. Some doubly excited levels will also be discussed. To

support this analysis, we considered to study two model systems. Details of these

studies are given in the appendices B and C, respectively, and ensuing results will

be addressed in due course in this section.

The vibrational states of the hydrogen atom on the palladium surface can be sepa-

rated, in zeroth order, into those with vibrational excitation parallel or perpendicular

to the substrate. Perpendicular vibration coincides with the z mode, while parallel

vibration includes both x and y modes. To label these states, we adopt a nomen-

clature of the form N v
{A/B}, N ∈ {0; 1; 2} where 1 and 2 refer to vibrational states

perpendicular and parallel to the surface, respectively, and 0 stands for non-excited

states. The integer v gives the vibrational quantum excitation number of the state

under consideration. The indices A and B stand for fcc and hcp, see section 3.1,

and refer to the location of the state in the fcc and hcp sites, respectively.

This labeling of states is motivated by the local C3v symmetry of the potential which

holds approximately in either the fcc or hcp sites (see figure 3.5). The perpendic-

ular mode is of A1 type, while the parallel mode is two-fold degenerate of type E.

Following [40], the A1 mode is attributed the mode number 1, the E mode is mode

2.
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For example, 21
B refers to a state located on an hcp potential well having a single

vibrational quantum excitation parallel to the substrate. When a given eigenstate

has a probability density occupying both the fcc and hcp wells, the labels used for

each type of site are added together. For example, 21
B +21

A represents a state similar

to the previous one, but delocalized on both potential wells. The same notation

applies to a state with several different types of excitation. For instance 22
A + 11

A

represents a state localized on a fcc site while mixing two zeroth order states, one

with two quanta of vibrational excitation parallel and the other with one quantum

of vibration perpendicular to the substrate. The sum notation actually indicates

that zeroth order vibration modes cannot be separated4, rather the parallel and

perpendicular modes of the system are strongly correlated, as we shall see later, and

the resulting vibrational probability density represented by such a state is given by

a strong mixing of the two zeroth order vibrational modes. This mixing of zeroth

order states reflect a strong coupling between the latter and is a purely quantum

mechanical effect. The example 21
A + 21

B reflects the state of a particle tunneling

under the barrier separating the sites A and B, while the particle has one quantum

of vibration in mode 2 in either site; the example 22
A + 11

A reflects a so-called Fermi

resonance [7], as will be explained below.

We recall in this context that vibrational states of type 22 split into two different

types, A1 and E [41]. To distinguish between these states, we shall denote them by

22(A1) and 22(E). The combination of these different terms finally allows us to label

the set of all vibrational eigenstates of the system computed in this study. Table 4.3

gives the vibrational eigenenergies of the system obtained with the block improved

relaxation routine of the MCTDH program.

4Separable modes would have been denoted in this case by 22
A11

A.
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Level Sub-level State number Label En/meV g

1 - 1 ... 9 0A 0.0 9

2 - 10 ... 18 0B 6.1 9

3.a 19 ... 28 21
A+21

B 73.9 10
3 3.b 29 ... 34 21

A+21
B 74.5 6

3.c 35 ... 36 21
A 74.9 2

4.c 37 ... 38 21
B 78.0 2

4 4.b 39 ... 44 21
B+21

A 78.6 6
4.a 45 ... 54 21

B+21
A 79.7 10

5.a 55 {22
A(A1)+11

A}+{22
B(A1) + 11

B} 99.5 1
5 5.b 56 ... 61 {22

A(A1)+11
A}+{22

B(A1) + 11
B} 102.1 6

5.c 62 ... 63 22
A(A1) + 11

A 105.4 2

6.c 64 ... 65 22
B(A1) + 11

B 106.5 2
6 6.b 66 ... 71 {22

B(A1)+11
B}+{22

A(A1) + 11
A} 110.2 6

6.a 72 {22
B(A1)+11

B}+{22
A(A1) + 11

A} 114.1 1

7.a 73 ... 82 22
A(E) + 22

B(E) 125.5 10
7 7.b 83 ... 88 {22

A(E) + 22
B(E)}a) 127.8 6

7.c 89 ... 90 22
A(E)a) 129.3 2

8.c 91 ... 92 {22
A(A) + 11

A}b) 130.2 2
8 8.b 93 ... 98 {22

A(A1) + 11
A} + {22

B(A1) + 11
B} 130.9 6

8.a 99 {22
A(A1) + 11

A} + {22
B(A1) + 11

B} 131.4 1

9.a 100 {22
B(A1) + 11

B} + {22
A(A1) + 11

A} 149.1 1
9 9.b 101 ... 106 {22

B(A1) + 11
B} + {22

A(A1) + 11
A} 150.6 6

9.c 107 ... 108 {22
B(A1) + 11

B}b) 152.4 2

10.c 109 ... 110 22
B(E)a) 153.3 2

10 10.b 111 ... 116 22
B(E) + 22

A(E) 155.0 6
10.a 117 ... 126 22

B(E) + 22
A(E) 156.3 10

Table 4.3: Vibrational eigenenergies of H/Pd(111) in the (3×3)-grid. The last

column of the table gives the near-degeneracy associated with each level. Footnotes:

a) states contain some mixing of states of the A1 type located on the opposite site;

b) states contain some mixing of states of the E type located on the opposite site.
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The elementary cell we used for our periodic calculations (see figures 3.5 and 3.11)

contains 18 potential wells, 9 of which are located around fcc sites and 9 around hcp

sites. The potential wells located around the same type of sites are all equivalent.

This induces a configurational degeneracy for each individual level in the table given

by multiples of 9, which was already addressed from a ’classical’ analysis in section

3.2.1. Strictly, this degeneracy holds only approximately for low energy stationary

states; it tends to break apart when level energies approach or exceed the tunnel-

ing barriers. To obtain a reference for the energy of a given level, we conducted

additional calculations using a reduced elementary cell which contains both an fcc

and an hcp site, a single one of each type. In the discussion following below, we

shall refer to these calculations as the “1 × 1”-calculations. Parameters for these

calculations are given as in section 3.2.3, with the difference that xt ∈ [−d/2, d/2]

and yt ∈ [−d/2, d/2]. In a 1 × 1-calculation, configurational degeneracy is reduced

to 1.

The origin of remaining degeneracy g of sub-levels indicated in table 4.3 will be

addressed below. We estimate the numerical error of the sub-level energies given

in the table to of the order of ±0.2 meV. This error results essentially from the

block improved relaxation method with the chosen parameters, in particular the

sizes of the PBF and SPF bases. Individual state energies do actually vary within

this error interval, and in this sense we rather speak of an "essential", "quasi-” or

"near" degeneracy, as any potentially additional splitting of the level is not resolved

within the present calculations.

The quantum effects present in the system tend to mix the localized vibrational

modes in addition to lifting the degeneracy of certain levels. These quantum effects

also become manifest within the structure of the corresponding wave functions.

The label attribution proposed in table 4.3 relies on the inspection of the spatial

distribution of the probability densities.

MCTDH allows us to calculate the reduced probability density (RPD) P of the wave

function of a given system. The latter is obtained by integrating the total proba-

bility density over one or more DOFs of the system to obtain a two-dimensional

representation. For example, the reduced probability density of an eigenstate |φk⟩
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in the xy-plane is given by Pk(x, y) =
∫ zmax

zmin
|φk(x, y, z)|2dz. By calculating the RPDs

at the various DOFs of the system, we can visualize the shape of the total proba-

bility density of a given vibrational state, in particular its nodal structure, which

potentially tells us about the type of vibrational excitation of this state. The nodal

structure of densities generally has the same characteristics as the wave function,

except detailed phase relationships. Figures 4.4 to 4.10 show two-dimensional rep-

resentations in the Cartesian coordinates (x, y) and (x, z) of the RPDs of selected

vibrational eigenstates given in table 4.3. In the following, we analyze the data

contained in this table while referring line by line to the individual figures.

4.2.1 Levels 1 and 2

The vibrational states of the levels labeled 0A and 0B are degenerate within the

numerical accuracy with a degeneracy factor g = 9 for both. This degeneracy is in

agreement with the ’classical’ analysis given in section 3.2.1, from which we deduced

that the energy of the hydrogen atom is the same in any of the 9 sites of the same

type. Energies given in bold face indicate that the same energy value is obtained,

within the numerical errors mentioned above, from the 1 × 1-calculation inferred

above. Bold faced energies are thus the reference energies for the given level.

The zero point energy at the lowest fcc site is around 160 meV. The 0B level is 6.1

meV higher than the 0A level. This energy difference is smaller that the 15 meV

between the two potential well minima (see figures 3.5 and 3.7). This is due to the

difference in the local curvature of the fcc and hcp potential wells. As the potential

is less contracted along z at the hcp well level (figure 3.6), the wavefunction broadens

and lowers its energy, thus reducing the initial energy gap between the two wells.

The RPD of two selected states, one of each in levels 1 and 2, respectively, are

shown in figure 4.4. The wave function of these states is normally completely

delocalized over all wells of the same type, as they correspond to Bloch waves [42].

Being essentially degenerate, any linear combination of these states is also, to an

excellent approximation, an eigenstate of the system. This can result in states with

distributions of the probability density that are more localized on some potential
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Figure 4.4: Two-dimensional representation of the reduced probability densities

(RPD) of two selected eigenstates in levels 1 (state 7, left hand side) and 2 (state 18,

right hand side). RPD are superimposed on equipotentials represented by dashed

yellow lines corresponding to those shown in figure 3.5.

wells than in others.5 Other states in these levels have differently distributed, yet

always somewhat localized probability densities. The selection shown in figure 4.4

is just exemplary. We conclude from this figure, that levels 1 and 2 contain ground

states with node-less probability densities that are localized on either the fcc or the

hcp sites, which justifies the given labels.

4.2.2 Levels 3 and 4

Level 3 is a cluster of 18 close lying states gathered in groups of 10, 6 and 2 states.

Individually, these sub-levels, termed 3.a, 3.b and 3.c are essentially degenerate,

where ’essential’ has the same meaning as discussed above. Sub-level 3.a has the

same energy as in the 1 × 1-calculation and is consequently the reference of level

3. Sub-level 3.c has the highest energy in the cluster and is separated from 3.a by

about 1 meV. This energy difference is the width of the energy band pertaining to

a continuum of Bloch waves that would be obtained when the grid was enlarged

5In general, we can observe that for levels having a smaller degeneracy, the stationary state

calculated by the program is ’forced’ to delocalize over all equivalent potential wells (states 36 and

38 for example, discussed in figure 4.7).
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from the 1 × 1 elementary cell to the infinitely large grid. The band width can be

readily obtained from a calculation using a 2 × 2 elementary cell, but also from the

calculation on the basis of the 3 × 3 elementary cell. For energy levels lying below

the barrier separating stable sites in neighboring 1 × 1 elementary cells, the band

width is a direct manifestation of the tunneling through that barrier.

Level 4 is, similarly to level 3, a cluster of 18 close lying states grouped in sub-

levels 4.c, 4.b and 4.a of 2, 6 and 10 essentially degenerate states. The ordering

of sub-levels of level 4 is given in the table as rightly opposed to that of level 3,

with the highest energy in sub-level 4.a being the reference energy (bold-faced).

Indeed, inspection of the RPD unveils the sub-level correspondence suggested by

the ordering in table 4.3.

Ρ(x,z) / Å
−2state  28

−3  0  3

 0

 1

 2

z
/Å

 0

 1

−6 −3  0  3  6
x/Å

−3

 0

 3

y
/Å

 0

 0.35

Ρ(x,y) / Å
−2

−6 −3  0  3  6
x/Å

−3

 0

 3

y
/Å

Ρ(x,z) / Å
−2state  54

−3  0  3

 0

 1

 2

z
/ 
Å

 0

 1.5

−6 −3  0  3  6
x / Å

−3

 0

 3

y
 /
 Å

 0

 0.42

Ρ(x,y) / Å
−2

−6 −3  0  3  6
x / Å

−3

 0

 3

y
 /
 Å

Figure 4.5: Two-dimensional representation of the RPD of eigenstates 26 (left hand

side) and 54 (right hand side), lying in sub-levels 3.a and 4.a, respectively. See also

the caption of figure 4.4.

Figure 4.5 shows the RPD of stationary states 26 and 54 as two typical members of

sub-levels 3.a and 4.a. Both show the presence of a single node at the equilibrium

sites in the xy−plane parallel to the substrate, while the z-axis remains node-less.

Closer inspection shows that state 26 has non-zero probability density at the saddle

points linking the fcc and hcp stable sites, while state 54 has additional nodes at these

points. Finally, state 26, of lower energy, has predominant probability density on

fcc sites and some minor probability density on hcp sites, while the higher energetic

state 54 has the exactly opposite distribution.
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The RPD from the 1×1-calculation correspond to the reference states of levels 3 and

4, respectively. They present essentially the same features as in figure 4.5. Plots are

not shown here, for simplicity. In a 1 × 1 elementary cell, the hydrogen atom may

occupy a single fcc (A) or a single hcp (B) site, or tunnel between both sites. From

the 1 × 1-calculation we can clearly infer that the lower energy state, corresponding

to state 26 in figure 4.5, is a lower component of a tunneling doublet, while the higher

energy state, corresponding to state 54, is the upper component. We may therefore

speak of an "AB"-tunneling doublet while referring to a state in sub-level 3.a and a

second state in level 4.a. Because the two sites do not have the same energy, some

preponderance for the occupation of a given site remains in the tunneling states. The

clear attribution of state 26 as being the corresponding tunneling partner state of

state 54 is blurred by the fact that sub-levels are themselves essentially degenerate, so

that any linear combination of states in a given sub-level is also a stationary state.

The RPD shown in figure 4.5 reflect numerically this ambiguity, which could in

principle be removed by an appropriate orthogonal transformation in the respective

vector spaces. The question is, what causes the remaining degeneracy.

The local C3v symmetry around the potential wells at the stable sites suggests that

the stationary states depicted in figure 4.5 are locally of E type. If the C3v symmetry

were exactly extendable over the entire 3×3-grid, each E type state would be doubly

degenerate, giving rise to 18 states per type of stable adsorption site. These levels

split under the symmetry group of the lattice underlying the calculation, however.

This splitting gives rise to the sub-levels of degeneracy 2, 6 and 10. No further

attempt was made here to determine either the actual lattice symmetry group used

for the calculation, or the reduction of its representation in the space of vibrational

states of the adsorbate. It is possible that irreducible representations may even lead

to an additional lifting of the degeneracy that is not resolved within the accuracy of

the present calculations.

Figure 4.6 shows the RPD of stationary states 32 and 43 as two typical members of

sub-levels 3.b and 4.b. While we cannot obtain corresponding states from a 1 × 1-

calculation, the shape of the functions depicted in this figure allows us to draw similar

conclusions as we did from figure 4.5, with a a more pronounced preponderance of the

density on the original sites: state 32 is more strongly occupying fcc sites than state
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26 and, reciprocally, state 43 is more important on hcp sites than the states of sub-

level 4.a. We may nevertheless still state that state 32 is a typical lower component

of an AB-tunneling doublet, whereas state 43 is a typical upper component thereof.
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Figure 4.6: Two-dimensional representation of the RPD of eigenstates 32 (left hand

side) and 43 (right hand side), lying in sub-levels 3.b and 4.b, respectively. See also

the caption of figure 4.4.

Figure 4.7 shows the RPD of stationary states 36 and 38 as two typical members of

sub-levels 3.c and 4.c. Again, there are no corresponding states obtainable from a

1 × 1-calculation. Yet, the shape of the functions depicted in this figure allows us

to draw very similar conclusions as we did from figures 4.5 and 4.6, with the main

differences being that the densities seem to be fully delocalized, occupying either fcc

(A) or hcp (B) sites, but not both of them simultaneously.

States 36 and 38, as well as states 35 and 37 (not shown here), at first sight appar-

ently lack any mixing of A and B sites. Naively, they could therefore be considered

as uncoupled zeroth order states with respect to AB-tunneling. Uncoupled states

would more likely be localized on single well of a given type, however, instead of

being fully delocalized as in figure 4.7. And if they were zeroth order states, there

should be 9 of each type on a 3 × 3 grid. Rather, the extreme delocalization shown

in the figure suggests that these states result from a strong tunneling between all fcc

sites, in the case of state 36 (and 35), or tunneling between all hcp sites, in the case

of state 38 (and 37). Because a tunneling from one fcc to its nearest fcc neighbor
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Figure 4.7: Two-dimensional representation of the RPD of eigenstates 36 (left hand

side) and 38 (right hand side), lying in sub-levels 3.c and 4.c, respectively. See also

the caption of figure 4.4.

site across the high energy regions at the position of the palladium atoms is quite

improbable, the tunneling is more likely taking place via an intermediate site of the

opposite type, i.e. a hydrogen atom might tunnel from an A to an A site via a B

site, and inversely. We may thus speak of an "ABA" or a "BAB" tunneling.

All states in level 3 may be viewed as being tunneling states of the ABA type, with

increasing preponderance of the A over the B site from sub-level 3.a to 3.c. Level 3,

seen as a band of Bloch waves, is therefore likely generated via tunneling between

the A sites, where tunneling paths are multiple and involve intermediate B sites.

Reciprocally, all states in level 4 may be viewed as being tunneling states of the

BAB type, with increasing preponderance of the B over the A site from sub-level

4.a to 4.c; level 4, seen as a band of Bloch waves, is similarly generated via tunneling

between the B sites with multiple tunneling paths involving intermediate A sites.

States 35 and 36 in level 3.c have the largest energy separation from the states in

the reference sub-level 3.a. Similarly, states 37 and 38 are furthest away from the

reference level 4.a. It is interesting to note that the level 3 band is formed towards

higher energies with respect to the reference energy, while the level 4 band is formed

just in the opposite direction, towards lower energies with respect to the reference

level. The same behavior can be seen in some higher energy level bands, but not in
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all cases, as discussed below.

In summary, states in levels 3 and 4 are characterized by nodal structures at the

equilibrium sites in the xy-plane, which we relate to the presence of one quantum of

vibrational motion parallel to the surface, and for which the notation 21 applies in

local C3v symmetry; states of level 3 are preponderantly located on the fcc (A) site,

those of level 4 on the hcp (B) site, each with some mixing of probability density in

the other site due to tunneling under the barrier separating the sites of different type,

dubbed AB-tunneling; each level itself spreads in energy due to tunneling under a

barrier separating sites of the same type, which takes very likely place via the site of

the opposite type and therefore dubbed ABA or BAB-tunneling; the spreading of a

level occurs in clusters of degenerate sub-levels of finite size, when elementary cells

of finite size are considered ,1 × 1 and 3 × 3 cells in this study, and evolves into the

formation of continuous bands of Bloch waves for infinitely large periodic lattices.

The labeling proposed in table 4.3 grasps this summary.

4.2.3 Levels 5, 6, 8 and 9

We will now proceed with the analysis of levels 5 and 6 which, as we shall see, are

strongly related to levels 8 and 9. All four levels contain each 9 states which cluster

in three sub-levels of different energies with degeneracies 1, 2 and 6. The sub-levels

with a sub-label "a" contain a single state; they are reference levels, as they are

obtained also from the 1 × 1-calculation. These are the states 55, 72, 99 and 100.

Figure 4.8 shows the RPD of each one of these states.

All four states are characterized by the complete delocalization of the RPD over the

entire grid. Furthermore, the RPD in the zx-plane are indicative of a nodal structure

along the z-axis, which leads us to conclude that these states involve states with

one quantum of vibration perpendicular to the substrate. In local C3v symmetry,

this motion transforms as an irreductible representation of type A1 and has the

mode number 1. However, the RPD also spreads in a highly symmetric way at

each individual equilibrium site in the xy-plane which indicates the involvement of

vibrations in parallel direction. Indeed, the second excited vibrational state of mode
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Figure 4.8: Two-dimensional representation of the RPD of eigenstates 55 and 99 (left

hand side), as well as 72 and 100 (right hand side). These are the states composing

levels L.a, with L = 5, 6, 8 and 9. See also the caption of figure 4.4.

2, in local C3v symmetry, reduces to one state of type A1 and one doubly degenerate

level of type E. The 22(A1) state may couple with state 11 and form a mixed state.

This quantum phenomenon is known as Fermi resonance [7]. The doublet of states

formed may be called a Fermi pair.

These states are thus characterized by both a global and a local spreading of the

RPD. While the former can be related to tunneling between the different equilibrium

adsorption sites, the latter is due to a Fermi resonance between vibrations perpen-

dicular and parallel to the substrate. The states are related one to each other, but

the detailed relationship does not become evident from inspection of the figure. The

Fermi resonance is a local property and therefore one should gain more information
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on its effect on the spectrum from the investigation of a local model potential mim-

icking the essence of the potential hypersurface in the vicinity of the equilibrium

sites. Such a model is proposed in the study of appendix C.

That study shows the formation of a Fermi pair between two vibrational states

with energies of 102.7 meV and 129.6 meV. We may hence conclude firmly that

state 55 is the lower component of the Fermi resonance doublet, while state 99 is

its upper component. Simultaneously, states 72 and 100 are the lower and upper

energy components of a second Fermi resonance pair. From the energies, states 55

and 99 are more likely related to the fcc (A) site, while states 72 and 100 might

be attributed to the hcp (B) site. RPD are delocalized over both sites, however.

Closer inspection of figure 4.8 allows us to notice that states 55 and 99 have non-

vanishing probability densities at the saddle points between the fcc and hcp sites,

whereas states 72 and 100 have a nodal structure at these sites, from which we may

conclude that state 99 is simultaneously the upper energy Fermi resonance partner

of state 55 and the lower energy tunneling partner of state 100, while state 72 is

simultaneously the lower energy Fermi resonance partner of state 100 and the upper

energy tunneling partner of state 55.

Figure 4.9 shows RPD of typical states in the levels 5.b, 6.b, 8.b and 9.b. As

these levels are essentially degenerate, some ambiguity remains from the numerical

evaluation and an exact attribution and labeling is awkward. We may nevertheless

deduce by comparison with the attributions drawn for levels 5.a, 6.a, 8.a and 9.a,

that levels 5.b with 8.b on one hand, and 6.b with 9.b on the other hand contain

respectively lower and upper energy components of a Fermi pair, while 5.b with 6.b

on one hand, and 8.b with 9.b on the other hand contain respectively lower and

upper energy components of tunneling doublets.

Similar conclusions can be drawn for the states in levels 5.c, 6.c, 8.c and 9.c. A full

set of plots of all RPD up to level 10 is given in the appendix, and we refer to it

for further details. We should mention that, in addition to the ambiguity caused by

the numerical evaluation of eigenstates in (near) degenerate levels, with increasing

energy the local C3v symmetry no longer holds, and hence some mixing of E and

A1 type states become apparent in the densities.
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Figure 4.9: Two-dimensional representation of the RPD of eigenstates 59 and 97

(left hand side), as well as 69 and 104 (right hand side), as typical states composing

levels L.b, with L as in figure 4.8. See also the caption of figure 4.4.

From the calculations we cannot extract sufficient information to actually define the

zeroth order states, and hence we cannot deduce a value for the Fermi resonance

coupling strength. In appendix B we discuss simple analytical models that allow us

to extract such pieces of information from the model potentials. In particular, the

interplay between Fermi resonance and tunneling coupling is investigated there. As

shown in that study, tunneling can reduce or enhance the effective Fermi resonance

coupling strength, and vice-versa. Indeed, while the states in levels 5 and 8 may be

considered to be nearly equal weight mixtures of 11 and 22 zeroth order states, the

states in level 6 seem to have a slight preponderance of 11 states, and states in level

9 of 22 states. Because level 6 also has some preponderance of zeroth order states
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localized on the fcc site, and level 9 of states localized on the hcp site, one might

say that the Fermi resonance coupling between zeroth order states located in the

hcp site is slightly weaker than at the fcc site.

The lifting of configurational degeneracy in all four levels can be surely related to

ABA or BAB tunneling. A detailed rationale for the remaining quasi degeneracies

might be deduced from group theoretical investigations, as already pointed out in

the discussion of levels 3 and 4. Interestingly, the reference sub-levels in levels 8 and

9 are close to each other, while in levels 3 and 4, or 5 and 6 they have the largest

energy separation. In the {8, 9} pair of levels, ABA or BAB tunneling bands are

thus formed in the opposite direction compared to the pairs {4, 5} and {5, 6}.

To summarize: level 5 is an ABA, level 8 is a BAB tunneling level; they respectively

collect lower and upper energy components of Fermi resonance pairs of zeroth or-

der vibrational states containing one quantum of perpendicular and two quanta of

parallel vibration; levels 6 and 9 are related one to the other similarly. Simultane-

ously, levels 5 and 6 on one hand, and levels 8 and 9 on the other hand are pairs of

AB-tunneling levels.

4.2.4 Levels 7 and 10

The remaining two levels to be discussed in table 4.3 can be attributed to states

essentially composed of the E-type of zeroth order states with two vibrational quanta

in parallel direction, and tunneling mixtures thereof. Figure 4.10 shows the RPD

of typical members of the reference sub-levels 7.a and 10.a. States in the other

sub-levels are less well delocalized and also contain some ad-mixture of zeroth order

vibrational states of the A1 type, which become possible, as already discussed above,

due to the gradual breakdown of the C3v symmetry with increasing energy. General

trends can still be recognized, however.

Level 7 collects lower energy components of AB tunneling pairs of zeroth order

vibrational states containing two quanta of parallel vibration, while level 10 contains

the corresponding upper energy components. The relation between these levels is

similar to that between levels 3 and 4, but both their average energy gap as well
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Figure 4.10: Two-dimensional representation of the RPD of eigenstates 74 (left hand

side) and 118 (right hand side), lying in sub-levels 7.a and 10.a, respectively. See

also the caption of figure 4.4.

as their internal ABA or BAB tunneling band spread are larger than in the case

of the lower energy levels. The average energy of level 7 is of the same order than

the barrier of ∼ 120 meV to AB-tunneling on the electronic potential from figure

3.7, that of level 10 is even beyond. This does not mean that the hydrogen atoms

move more freely over the barrier, as there will still be a zero point energy from

the motion orthogonal to the tunneling path that is added to the electronic barrier,

by which the effective barrier is increased. In multidimensional systems, tunneling

can indeed occur "over the barrier" [43, 24], and can even be inhibited far above the

barrier [44].

4.3 Comparison with other work and assessment

of the experimental spectrum

Calculated levels may be compared with results from previous work [45, 39], in

particular with results obtained in Firmino’s thesis [46]. In [45, 46], contrary to

the study carried out in the present work, vibrational eigenstates were calculated

using a variant of the PES from [23] that was parameterized on the basis of periodic

grid DFT calculations relying on cells containing 10 × 10 Pd atoms, see also section
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2.2. In the following, we shall refer to that PES parameterization as being the

"10x10-PES", while the parameterization used in the present work, see also sections

3.2.1 and 3.2.2, will be called "3x3-PES", for brevity. The analytical form and the

parameters of the 3x3-PES are given in appendix A

Quite generally, we note here that the eigenvalues reported by Firmino [46] and

Firmino et al [45] were systematically calculated by multiplying the raw MCTDH

data with the factor 2/
√

3. This factor corresponds to the Jacobian of the coordinate

transformation from the Cartesian to the twisted coordinates defined in section

3.1.2. It was argued there, that this factor had to be considered in the calculation

of matrix elements ensuing the MCTDH calculations. Indeed, the Jacobian needs

to be considered in the evaluation of probability densities, but not in the calculation

of matrix elements.

This misinterpretation of the MCTDH working equations led to incorrect eigenvalues

in [45, 46]. For instance, the eigenvalues for the lowest excited vibrational level

reported in table 7 of Firmino’s thesis for the H/Pd(111) system is 743.6 hc cm−1 ,

corresponding to 92.2 meV. This value must be corrected to (92.2 ×
√

3/2) meV =

79.8 meV. The tunneling band with for this level given in column “grid 3” of that

table given as 0.06 meV, should rather be 0.05 meV. The corresponding values from

the evaluation of the 3x3-PES in table 4.3 are about 74.5 and 1 meV, respectively.

Similarly, the average energy in level 5 is about 102 meV, for the 3x3-PES, the

corresponding band width is 5 meV, while these values are 112.5 and 1.3 meV for the

10x10-PES. Even by considering the correction factor of
√

3/2 for all levels reported

in the work of Firmino et al, we find that the vibrational eigenvalues obtained from

the evaluation of the 10x10-PES are larger, the tunneling splittings smaller than the

corresponding values for the 3x3-PES. This comparison, as well as the comparison

of the barrier energies and curvatures of the potential energy surfaces show that the

10x10-PES is clearly "stiffer” than the 3x3-PES.

The PES derived in [47] used by Saalfrank and Tremblay in [39] leads to even

larger vibrational eigenvalues. These authors obtain from calculations on a 1 × 1-

grid roughly 89 and 114 meV for the corresponding levels 3 and 5 in table 4.3.

As reported by Tremblay [48], the wave function structure of the higher energetic
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vibrational eigenvalues also reveal the typical form a Fermi resonance between zeroth

order modes of the type 11 and 22.

The accuracy of the calculated eigenvalues, and consequently the underlying PES as

well as the complete quantum dynamics, is ultimately to be validated by comparison

with experimental data. Experimental data is available from measurements using

the High Resolution Electron Energy Loss Spectroscopy (HREELS) method. These

measurements were carried out by Conrad et al. [2] and enabled the extraction

of two peaks at 96 meV and 124 meV to be associated to states with parallel and

perpendicular excitation, respectively. Several aspects hamper the direct comparison

between these experimental and the theoretical data investigated in this work.

First, a detailed theory for the intensity distribution of the HREELS spectrum as

a function of the loss energy is at least highly complicated, if ever existant [49, 50].

In particular, selection rules are not clear or difficult to be assessed. Secondly, the

experimental approach followed to extract this information does not allow us to know

whether these energies correspond to that of an essentially isolated hydrogen atom

located on a fcc or hcp site, or whether the latter is surrounded by other hydrogen

atoms adsorbed in the surface. The HREELS spectrum of H2/Pd(111) cannot be

treated completely in this report. The theory for its calculation is based on the DSF

discussed in chapter 6, but detailed calculations are still in work. Preliminary results

indicate that it clearly differs from that of the H/Pd(111) system, but confirm the

quality of the underlying PES.

4.4 Vibrational stationary states of H2/Pd(111)

The presence of two adsorbed hydrogen atoms in close proximity on the palladium

surface affects the spectrum of the stationary states. The interaction between these

two atoms remains important even after adsoption on the surface, and correla-

tions between them can take place leading this system to adopt a different behavior

compared to the situation of an isolated hydrogen atom. We have specifically in-

vestigated the stationary states of two hydrogen atoms adsorbed on the periodic

(3×3)-grid. In this section, we present the results obtained for this study.

The wave function of the total system is now represented by a six-dimensional func-
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tion depending on the three DOF (xi, yi, zi) of each hydrogen atom i ∈ {1; 2}. We

saw in section 3.2.2 that this system possesses multitudes of energetically equiva-

lent configurations to place the two hydrogen atoms on the fcc and hcp sites at the

surface, leading to an important configurational degeneracy, see table 3.2. As in the

case of a single adsorbed hydrogen atom, stationary states inherit this degeneracy.

Non-excited, singly and doubly excited stationary states corresponding to the con-

figurations (AA)I, (BB)I, (AB)I, (AA)II and (BB)II given in table 3.2 were calculated.

This nomenclature was introduced in section 4.2. For excited states, we are mainly

interested in configurations where the two hydrogen atoms occupy neighboring sites.

This represents 22 levels with distinct energies.

Table 4.4 gives the eigenenergies of these levels. The first and second column of

the table give the numbers of the level and the lowest state in that level. The

third column gives the label used for each level. The fourth column gives a literal

description of the typical motion of the two atoms in relation to the corresponding

motion in the gas phase. The fifth column gives the eigenenergies of the lowest state

in each level. The two remaining columns give the width and the number of states

g associated to each level. The width is the energy difference between the highest

and the lowest energy in each level. It is of the order of the numerical error reported

in section 4.2 and, in the spirit of the discussion carried out there, we may term g

a “quasi-”degeneracy factor.

Labels are assigned by looking at the structure of the reduced probability densities

(RPD) of the states of each level. A two-dimensional representation of the latter is

obtained by integrating the total probability density of the system over the other

four unrepresented DOFs. For example,

P (x1, y1) =
∫

z1

∫
x2

∫
y2

∫
z2
P (x1, y1, z1, x2, y2, z2) dz1dx2dy2dz2 (4.7)

This makes it possible to determine the spatial location of the two hydrogen atoms

separately, and thus the type of configuration of the vibrational states at each level.

The labels listed in table 4.4 conform to the nomenclature used in table 3.2 to label

the possible stable “classical” configurations of hydrogen atoms adsorbed on the

palladium substrate. In general, the label (ϕXϕY)K refers to linear combinations of

Hartree products of monoatomic functions (MAF) ϕX(i) and ϕY(i), located at the
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sites X and Y, where X and Y can both take the values A and B. The index K can

take the values I, II, III, etc and gives the possible classical configurations referred

to in table 3.2. The monoatomic functions ϕ(i) ≡ ϕ(xi, yi, zi) are evaluated at the

coordinates of particle i, where i = 1, 2.

The order of the MAF appearing in the symbol is irrelevant. The label ϕXϕY may

indeed refer to a diatomic wave function of the type

Φ(1, 2) = cos(α)ϕX(1)ϕY(2) + sin(α)ϕX(2)ϕY(1) (4.8)

It may thus specifically also refer to wave functions of the dihydrogen system that

are symmetrical (α = π/4) or anti-symmetrical (α = −π/4) under permutation of

the nuclei, corresponding to para- and ortho-dihydrogen.

More specifically the label symbol ϕ for a MAF stands for another symbol of the type

N v, which was used to describe the H/Pd(111) system in section 4.2. It denotes

the nature of an underlying local zeroth order vibrational wave function, where

N ∈ 0, 1, 2 and v = 0, 1, 2, . . .. Labels convey hence information on properties of

preponderant zeroth order functions. A possible label may for instance be (11
A 22

B)I,

which indicates that the states are mainly composed of states with one quantum in

local mode 1 at site A and states with two quanta of mode 2 at site B, where sites A

and B are in the (AB)I configuration. Mode numbers 1 and 2 refer to the local C3v

symmetry group inferred for the H/Pd(111) system. A monoatomic function can

also contain a mode combination, e.g. the label ([11 + 22]A 22
B)II indicates that the

states it describes are mainly composed of Fermi resonance states with one quantum

in local mode 1 and two quanta in local mode 2 at site A and states with two quanta

of mode 2 at site B, where sites A and B are in the (AB)II configuration. In the

latter example, it is understood that the 22(A1) component of the 22 overtone state

of local mode 2 is mixed with the 11 fundamental state of local mode 1.
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Level nmin label description Enmin/meV ∆E/meV g

1 1 (0A 0A)I 0.00 ≤ 0.1 54

2 55 (0B 0B)I 5.88 ≤ 0.1 54

3 109 (0A 0B)I 28.20 ≤ 0.1 54

4 163 (0A 0B)II 51.34 ≤ 0.1 54

5 217 (0A 0A)II 56.34 ≤ 0.1 18

6 235 (0B 0B)II 71.64 ≤ 0.1 18

7 253 (0A 21
A)∥+

I tra h ∥ AA 79.98 0.15 54

8 307 (0A 21
A)⊥−

I helicopter AA 84.07 0.26 54

9 361 (0B 21
B)∥+

I tra h ∥ BB 85.01 0.31 54

10 415 (0A 21
A)⊥+

I tra h ⊥ AA 85.43 0.24 54

11 469 (0B 21
B)⊥−

I helicopter BB 88.13 0.14 54

12 523 (0B 21
B)⊥+

I tra h ⊥ BB 88.79 0.16 54

13 577 (0A 21
A)∥−

I stretch AA 91.09 0.22 54

14 631 (0B 21
B)∥−

I stretch BB 96.32 0.33 54

15 685 (0A 21
B)⊥

I tra h ⊥ B 104.45 0.19 54

16 739 (21
A 0B)⊥

I tra h ⊥ A 106.11 0.38 54

17 793 (0A 21
B)∥

I tra h ∥ B 108.60 0.23 54

18 847 (21
A 0B)∥

I tra h ∥ A 112.54 0.24 54

19 901 (0A [11 + 22]A)+
I tra v AA 116.43 0.53 54

20 955 (0A [11 + 22]A)−
I cartwheel AA 117.19 0.37 54

21 1009 (0B [11 + 22]B)+
I tra v BB 117.98 0.49 54

22 1063 (0B [11 + 22]B)−
I cartwheel BB 118.79 0.63 54

Table 4.4: Vibrational eigenenergies of H2/Pd(111) in the (3×3)-grid. The number of

the state with the lowest energy in a level is given by nmin, the difference between the

highest and lowest energies is given by ∆E; it is also referred to as the width of the level.

The last column of the table gives the near-degeneracy associated with each level. Atomic

motions of adsorbed atoms can be associated to corresponding motions of desorbed atoms

(either A or B) or molecules (either AA or BB) in the gas phase as follows: translational

motion (“tra”), horizontal (“h”), i.e. parallel to the substrate - and here along (“∥”) or at

a certain angle (“⊥”) with the interatomic axis, or vertical (“v”), i.e. perpendicular to the

substrate; rotational motion either parallel (“helicopter”) or perpendicular (“cartwheel”)

to the substrate; vibrational motion of the diatomic (“stretching”).
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This choice of labeling bears the caveat that MAF are supposed to be localized

at a single site. Tunneling states of the AB, ABA or BAB type are delocalized

states. They are prominent in the H/Pd(111) system. At first sight one could

think that such states cannot be represented by the labels given here. As a matter

of fact, inspection of the RPD, which is the basis of the label attribution, often

does not provide us with sufficient information regarding the delocalized nature of

the MAF. Consequently, despite the formally local nature of the MAF used in the

labeling of the levels, simple labels remain ambiguous on the actual localization or

delocalization of the monoatomic functions composing the total wave functions of

the diatomic system, although a diatomic wave function such as given in equation 4.8

is delocalized6. In other cases, however, some RPD allow us to clearly state on the

delocalization of states. This occurs, in particular, when the motion of two hydrogen

atoms becomes strongly correlated and the use of MAF is no longer suitable to label

the label. In such a case, additional superscript indices of the type “+” and “-” are

added to the label. Other superscript indices of the type ⊥ and ∥ will also be used

to differentiate directions of vibrations along the substrate.

The various levels formed have a large number of states, given the degeneracy of

the system. Nevertheless, the states of each level have common characteristics. In

the following, we present for each level the RPD of a typical state in that level, the

analysis of which will be used to rationalize the label attributions.

We start by analyzing the non-excited states. They all lie in the six first levels

{L1...L6}.

4.4.1 Analysis of non-excited states

Figure 4.11 shows two-dimensional reduced probability densities P (xi, yi) and P (xi, zi)

for i = 1 (left hand side panel (a)) and i = 2 (right hand side panel (b)), represen-

tative of a typical vibrational state of the first level. Figure 4.11a shows presence

probabilities mainly at one fcc site, with small amplitudes at other neighboring fcc

6A diatomic wave function such as given in equation 4.8 is composed of MAF, yet it is delocal-

ized.
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sites7. Figure 4.11b shows also non-zero probabilities of finding of the second hydro-

gen atom only on fcc sites. The latter are mainly attributed to fcc sites neighboring

the ones in which the RPD are maximal for the first atom.
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Figure 4.11: Two-dimensional representation of the reduced probability densities

(RPD) of state 1 as a typical eigenstate in level 1. The dotted yellow lines show

the regions of the adsoption sites on the surface. Left hand panel (a): atom 1; right

hand panel (b): atom 2.

In the following, the terms “neighbor” and “non-neighbor” have a special meaning

introduced in section 3.2.2. Neighboring atoms are in the configurations labeled by

the capitalized roman I index, see figure 3.8. The “next-neighbor” configuration

labeled by the capitalized NN index in figure 2.8e is highly energetic and will not

be investigated further here.

Both representations are node-less, indicating that both hydrogen atoms are in a

non-excited state. According to the label definitions outlined above we label this

level by (0A 0A)I indicating that the two hydrogen atoms occupy neighboring fcc

7Delocalized vibrational states are given by the linear combination of localized states, and vice

versa. Since these states all have essentially the same energy within the numerical accuracy, the

MCTDH program renders wave functions with various degrees of delocalization within the same

level.
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sites and are non-excited. The energy of the first state of this level is 332.25 meV

above the minimum of the PES. This energy is the global zero-point energy of

the H2/Pd(111) system and will hereafter be taken as the energy reference for all

reported energies. The L1 level has a degeneracy factor of 54, which corresponds

to the configurational degeneracy resulting from placing the two hydrogen atoms in

two neighboring fcc sites (see table 3.2).

Level 2
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Figure 4.12: Two-dimensional representation of the RPD of eigenstate 55 in level 2.

See also the caption of figure 4.11.

The RPD of a typical state in level 2 have the same characteristics as those of the

previous one, except that now only the hcp sites have non-zero amplitudes. We

have labeled this level by (0B 0B)I indicating configurations where two non-excited

hydrogen atoms are located on neighboring hcp sites. The energy of the states of

this level is about 5.9 meV higher than that of the states of level (0A 0A)I located

on the fcc sites.

The difference in energy between the minima of the potentials in the (AA)I and

(BB)I configurations is around 17 meV (table 3.2). The decrease of the gap between

the energies of the states in these two configurations is related to the local shape of

the PES at the respective sites, as revealed by figure 3.9: the relaxed local PES is
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somewhat shallower at the hcp than at the fcc site, which results in wave functions

for vibrational states localized at hcp sites that are broadened with respect to those

localized on the fcc sites. The consequence is that the effective one-particle zero

point energy at the hcp site is smaller that that at the fcc site.

Level 3
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Figure 4.13: Two-dimensional representation of the RPD of eigenstate 111 in level

3. See also the caption of figure 4.11.

Figure 4.13 shows the RPD of a typical state of the third level. Figure 4.13a shows

that the first hydrogen atom is likely to be found only on fcc sites, while the second

hydrogen atom (figure 4.13b) is probably found only on hcp sites. This indicates

a configuration in which the two hydrogen atoms occupy sites of different types.

Reduced probability density analysis does not always tell us whether the two atoms

are located on neighboring sites or not. But given the significant difference in energy

between the two configurations (AB)I and (AB)II (table 3.2), we can safely assign

this level to neighboring (AB)I configurations and label it (0A 0B)I.

Level 4

Figure 4.14 shows the RPD of a typical state of the fourth level. The probability

density of the first hydrogen atom (figure 4.14a) appears only at hcp sites, while that
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of the second atom (figure 4.14b) is present only at fcc sites. This suggests that this

is another (AB) type configuration. The energy of this state is about 23 meV higher

than that of the previous level. This indicates that these are the higher-energy

configuration states where the two atoms are further apart in a non-neighboring

configuration. We have labelled this level by (0A 0B)II indicating the two hydrogen

atoms are non-excited and occupy non-neighboring fcc and hcp sites.
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Figure 4.14: Two-dimensional representation of the RPD of eigenstate 180 in level

4. See also the caption of figure 4.11.

Level 5

The RPD of this state, shown in figure 4.15, indicate that the two hydrogen atoms are

probable only at the fcc sites. The structure of this state is highly localized. Clearly,

the two hydrogen atoms occupy non-neighboring fcc sites. We thus label this level

(0A 0A)II. The energies of the states of this level are about 5 meV higher than those

of the (0A 0B)II level. Classically, this configuration is 3 meV higher than the (AA)II

configuration (table 3.3). Similarly to the situation discussed above for level 2, this

is due to the shape of the local potential in each one of these two configurations.

The two-dimensional cuts of the potential given in figure 3.9b (section along line

4) show that the potential is slightly more contracted in the (AA)II configuration

than in the (AB)II configuration (this can be seen by looking at the gap between the

equipotential energy lines around the potential wells). This tends to increase the
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effective one-particle vibrational energies in these (AA)-type configurations relative

to those in the (AB)-type configurations.

Ρ(x1,z1) / Å
−2

−3  0  3

 0

 1

 2

z
1
/ 
Å

 0

 1.4

−6 −3  0  3  6
x1 / Å

−3

 0

 3

y
1
 /
 Å

 0

 1.4

Ρ(x1,y1) / Å
−2

−6 −3  0  3  6
x1 / Å

−3

 0

 3

y
1
 /
 Å

(a)

Ρ(x2,z2) / Å
−2

−3  0  3

 0

 1

 2

z
2
/ 
Å

 0

 1.4

−6 −3  0  3  6
x2 / Å

−3

 0

 3

y
2
 /
 Å

 0

 1.4

Ρ(x2,y2) / Å
−2

−6 −3  0  3  6
x2 / Å

−3

 0

 3

y
2
 /
 Å

(b)

Figure 4.15: Two-dimensional representation of the RPD of eigenstate 229 in level

5. See also the caption of figure 4.11.

Level 6
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Figure 4.16: Two-dimensional representation of the RPD of eigenstate 236 in level

6. See also the caption of figure 4.11.
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The RPD of this state show that the two hydrogen atoms are localized in non-

neighboring hcp sites. We have labeled this level (0B 0B)II. This is the last level of

non-excited states in what we call neighboring and non-neighboring configurations,

as defined in section 3.2.2. There will be non-excited states in the “nearest-neighbor”

ABNN configuration. Their energy is considerably higher, though, to be of interest

in the present study (see table 3.2).

We thus determined all non-excited vibrational states of the H2/Pd(111) in a (3 ×

3)-grid. The quasi-degeneracy of these levels corresponds to the configurational

degeneracy obtained with the classical analysis based on the minima of the PES.

The widths of these levels are rather small (≤ 0.1 meV). They are even smaller

than the nominal numerical accuracy of 0.2 meV. In this sense calculations of these

levels are effectively more accurate than for more energetic levels. One reason for

this is that the- SPF we use in each relaxation calculation block are automatically

adapted by the MCTDH program to all vibrational states targeted on that block.

This renders calculations of higher lying states more difficult and less accurate.

Any degeneracy lifting of these levels by tunneling or any other coupling would in

principle be smaller than 0.1 meV. This concludes the set of non-excited vibrational

states calculated in this study.

We will now proceed to the analysis of the excited states. For the sake of clarity, we

start with levels {L15...L18}.

4.4.2 Analysis of mode 2 excited states in the (AB)I config-

uration

Level 15

We refer to figure 4.17. The RPD of the first hydrogen atom have amplitudes at the

fcc and hcp sites (figure 4.17a). These densities are node-less at the fcc sites and

show a single nodal structure at the hcp sites. The RPD of the second hydrogen

atom have similar characteristics. This indicates that this configuration corresponds

to a situation in which one non-exited hydrogen atom is located at an fcc site, while
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the second one is located at a hcp site and has one quantum of vibrational excitation

in a mode parallel to the substrate.
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Figure 4.17: Two-dimensional representation of the RPD of eigenstate 690 in level

15. See also the caption of figure 4.11.

Typical for the states of this level is that the nodal planes found locally at the hcp

sites in both x1, y1 and x2, y2-planes are aligned with the interatomic axis, suggesting

that the hydrogen atoms at the hcp sites move in a direction that is perpendicular

to the interatomic axis. Because the first atom is non-excited at the fcc site, this

motion corresponds rather to a pendulum motion of the interatomic axis. If the

hydrogen atom at the hcp site was singly desorbed, this motion would go over into

a translational motion perpendicular to the interatomic axis.

The probability density distribution does not allow us to know with certainty whether

these atoms are occupying neighboring sites or not. But given the energy difference

between the (AB)I and (AB)II configurations (33 meV from table 3.2), we may firmly

assert the (AB)I-labeling.

Consequently, we have labeled this level (0A 21
B)⊥

I . The direction of the motion

perpendicular to the interatomic axis is indicated by the symbol “⊥” on the label.

In the following, we shall use the acronym “IAA” to refer to the interatomic axis.

The fact that the RPD of an individual atom show some probability for it to be found
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simultaneously at both next-neighbor hcp and fcc sites does not necessarily indicate

the possibility that it tunnels under the barrier that separates these potential wells.

Consider as a possible state representative of the (0A 21
B)⊥

I level the state given by

the diatomic wave function of equation 4.8 with real MAF ϕ0A and ϕ21
B
. The RPD

of atom 1 would then be

P (1) = cos2(α)ϕ2
0A

(1) + sin2(α)ϕ2
21

B
(1) + sin(2α)ϕ21

B
(1)ϕ0A(1) (4.9)

Clearly, such a RPD could yield figure 4.17. However, the same holds for the

following function, in which the MAF represent delocalized tunneling states between

two next-neighboring fcc and hcp sites:

Φ(1, 2) =
[
cos(α)ϕ0A(1) + sin(α)ϕ21

B
(1)
] [

cos(α)ϕ0A(2) − sin(α)ϕ21
B
(2)
]
(4.10)

Such a tunneling process occurs in the H/Pd(111) system. It might also occur in

the H2/Pd(111) system, and we shall discuss this possibility below.

Level 16
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Figure 4.18: Two-dimensional representation of the RPD of eigenstate 741 in level

16. See also the caption of figure 4.11.

We refer now to figure 4.18. The RPD of this state show similar structures to

the previous one, but this time the excitation is located on the hydrogen atom at
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the fcc site. As for level 15, the orientation of the nodal planes at the fcc sites

suggest that the hydrogen atoms vibrate at this site in a direction perpendicular to

the interatomic axis in a (AB)I configuration. Following a similar approach to the

previous one, we have labeled the states of this level by (21
A 0B)⊥

I .

Level 17

The structure of the RPD of a typical state in this level, given in figure 4.19, shows

once again a configuration in which one non-exited hydrogen atom is located at an

fcc site, while the second one is located at an hcp site and has one quantum of

local vibrational excitation in a mode parallel to the substrate. The excitation-type

of this level is similar to that of level 15, but the orientation of the nodal pattern

suggests that the excited atom now moves along the IAA. We therefore denote this

level by (0A 21
B)∥

I .

In the case of a single hydrogen atom, the two vibrations of the 21 mode are essen-

tially degenerate, as we saw in section 4.2, due to the local C3v symmetry of the

potential. This symmetry is more strongly broken by the presence of the second

hydrogen atom at an equivalent excitation energy, which lifts the degeneracy.
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Figure 4.19: Two-dimensional representation of the RPD of eigenstate 795 in level

17. See also the caption of figure 4.11.
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Level 18

A typical state of this level is represented in figure 4.20.
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Figure 4.20: Two-dimensional representation of the RPD of eigenstate 849 in level

18. See also the caption of figure 4.11.

The RPD of this state show that the two hydrogen atoms are in the (AB)I con-

figuration similar to the previous one, where this time the excited hydrogen atom

is on the fcc site and moves along the IAA. We label this level (21
A 0B)∥

I . This is

the last level completing the quadruplet of the first excited states corresponding to

configurations of (AB)I-type.

4.4.3 Tunneling of mode 2 states in the (AB)I configuration

The analysis of the vibrational states in the four levels discussed in the previous

section has shown that, when the two hydrogen atoms occupy neighboring sites

of different types, excitation in the local mode 2 parallel to the substrate leads to

independent vibrations of the individual atoms. The question now arises regarding

the possibility of tunneling of the excited atom.

In the H/Pd(111) system, the levels 3 and 4 have been identified as containing

21
A + 21

B AB-tunneling states (see table 4.3). Additionally, they give rise to 18 states
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each, which split into three sub-levels because of tunneling of the ABA or BAB type,

as discussed in section 4.2. The corresponding levels in the H2/Pd(111) system com-

pose the joint set of levels {L15, L16, L17, L18} discussed in the present section. Here,

however, we count 54 energetically equivalent states in the configuration (AB)I con-

forming to table 3.2. Each hydrogen atom has two vibrational components in mode 2

parallel to the substrate. Contrary to the H/Pd(111) system, these two components

give rise to energetically different levels (21
A 0B)⊥

I (level 16) and (21
A 0B)∥

I (level 18),

on one hand for the atom at the fcc site, and (0A 21
B)⊥

I (level 15) and (0A 21
B)∥

I (level

17) for the atom at the hcp site on the other hand, each 54-fold degenerate. The

energy differences E17 − E15≈ 4 meV and E18 − E16≈ 6 meV are pieces of evidence

that the local C3v symmetry is more strongly broken in the H2/Pd(111) system than

in the H/Pd(111) system at comparable energies.

To identify the potentially corresponding tunneling doublets formed with these lev-

els, we follow a different line of reasoning to that used in the case of the H/Pd(111)

system, since inspection of the RPD does not allow us to identify as clearly the man-

ifestation of tunneling. The case of two hydrogen atoms in the (AB)I configuration

is illustrated in the two dimensional sections of the potential given in figures 3.9 and

3.10. We can see from these figures that, when one hydrogen atom is located at an

fcc (A) site, the second hydrogen atom located at a corresponding neighboring hcp

(B) site configuration will have three possibilities to move to a nearest-neighboring

fcc site: for two of them, along directions perpendicular to the IAA (symbol ⊥) the

potential barriers to overcome are 231 meV( section along line 1 in figure 3.9 ), while

in the third one, aligned with the IAA (symbol ∥, section along line 3 in figure 3.9),

the barrier is 267 meV. If tunneling is to be considered, it will be more favorable in

the first case (⊥ vibration). The same observation can be made for the hydrogen

atom located at the fcc site (see sections along line 8 and 6 in figure 3.10), with

barriers 268 and 284 meV, respectively. These representations are based on the fact

that one of the two atoms is fixed in space. The actual effective barriers perceived

by the two atoms are different. But this analysis allows us to identify the potential

barriers that are most favorable for tunneling. In any case, given the height of these

barriers compared to those for the AB-tunneling in the H/Pd(111) system 8 , we

8The minimum potential energy at the hcp site is 40 meV. This has not been taken into account
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might expect a significantly smaller tunneling effect in the H2/Pd(111) system.

If tunneling affects only one of the two hydrogen atoms, then that atom would

tunnel to a site of the different type, which would entail a change of configuration

from (AB)I to (AA)I or (BB)I. If tunneling affects both atoms simultaneously, then

the configuration is unaltered. For example, if we consider the situation of a state in

a level (0A 21
B)⊥

I , the corresponding tunnel doublet would be (21
A 0B)⊥

I . This second

scenario seems to be much more probable than the first one. We therefore might

tentatively assign the pair of levels {L15, L16} as containing tunnel doublet states.

Correspondingly, {L17, L18} would be the other pair of tunneling doublet states.

One has, E16 − E15 ≈ 1.7 meV, and E18 − E17 ≈ 3.9 meV. It therefore seems that

in the (AB)I configuration, tunneling of one hydrogen atom to a next-neighboring

site is likely to occur while conditioned by the simultaneous tunneling of the second

hydrogen atom. We will refer to this as correlated tunneling.

The widths of the excited levels are larger than those of the non-excited levels. The

numerical error introduced into the calculations increases with the energy of the

system’s states, as the latter require more SPF for an accurate evaluation of the wave

functions. We re-optimized the bases used for these calculations by systematically

increasing the size of the SPF bases, even after the achievement of a presumable

convergence, in order to reduce the numerical error introduced in the calculations

as much as possible. This slightly reduced the width of these levels, resulting in

the optimum widths shown in table 4.4. One sees for instance that L16 has a

maximum width of around 0.38 meV, which is not negligible. The broadening of

these levels is still within the error bars of the numerical treatment. Yet, it could

also be due to tunneling, very likely of the ABA or BAB type, such as calculated

in the H/Pd(111) system. Given that the effective barriers for tunneling to the

next-neighbor adsorption sites are much higher in the H2/Pd(111) system than in

the H/Pd(111) system, the corresponding tunneling band widths of the former may

indeed be expected to be much smaller than in the latter.

Next, we move to the analysis of the vibrational states of levels {L7, L8, L10, L13}.

We start with the levels L8 and L10, then L7 and L13.

in the relative barrier height for ease of reading.
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4.4.4 Analysis of mode 2 excited states in the (AA)I config-

uration

Level 8
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Figure 4.21: Two-dimensional representation of the RPD of eigenstate 313 in level

8. See also the caption of figure 4.11.

The RPD of a typical state are shown in figure 4.21. They have amplitudes only at

the fcc potential wells, indicating a (AA)-type configuration. The representations

of the latter have no clear nodal structure at the DOF of an individual hydrogen

atom. Given that the RPDs are obtained by integrating the total probability density

of the system over the remaining coordinates, nodal structures might appear more

clearly in representations involving the DOF of different atoms. In the following,

we analyze the structures of the RPD at corresponding DOF of the two atoms, i.e.

P (xt1, xt2), P (yt1, yt2) and P (zt1, zt2). The twisted coordinates (xt, yt, zt) of the two

atoms will be used for the representation of those RPD.

The RPD shown in figure 4.22a has some nodal structures located along the diagonal

of the xt1xt2-plane. This reflects that this state possesses vibrational excitation that

simultaneously involves the xt DOF of the two hydrogen atoms. The fact that the

nodes occur only on the diagonal shows that the excited atoms share the same
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equilibrium xt-coordinate, i.e. xeq
t1 = xeq

t2∈{−2d
3 ; 4d

3 }9. This situation is only possible

if both atoms occupy fcc sites aligned along a direction parallel to the axis of the

twisted coordinate yt, as illustrated in figure 4.23a. A state with such an excitation

therefore corresponds to a situation where the two atoms vibrate along a direction

in the xt, yt-plane that makes an angle α = 60◦ (or 120◦) with respect to the line

joining the two fcc sites (dotted line in figure 4.23), i.e. the interatomic axis (IAA).
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Figure 4.22: Two-dimensional representation of the RPD of the same selected eigen-

state 313 as in figure 4.21, now in the xt1, xt2 (panel a) and yt1, yt2 (panel b) planes.

Figure 4.22b shows a similar structure at the DOF (y1, y2) where both excited atoms

move around yeq
t1 = yeq

t2 ∈{−4d
3 ; 2d

3 }. Using the same reasoning as above, this corre-

sponds to the situation where the two atoms are placed in two neighboring potential

wells in a line parallel to the twisted axis xt from where they move along the twisted

coordinates yt1 and yt2. In this case, the vibrational motion of both atoms is also

concerted along a line making an angle of 60◦ with the IAA, as illustrated in figure

4.23b.

We notice that the RPD in figure 4.22a have a node-less structure at the sites

outside the diagonal. To understand this, consider the two situations sketched in

figure 4.2310. In the first configuration (figure 4.23a), P (xt1, xt2) will have a node at

a point on the diagonal given by xt1 = xt2 = 4d/3, while in the second case (figure

9These terms correspond to the coordinates of certain fcc sites in twisted coordinates (see table

3.1). With d = 2.75Å

10These two configurations correspond only schematically to the state given in figure 4.22.
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4.23b), P (xt1, xt2) will present a node-less structure at the point with coordinates

xt1 = d/3 and xt2 = 4d/3, because the vibrational excitation in this configuration is

totally localized on the yt modes. And conversely, the representation of P (yt1, yt2)

will have a node at yt1 = yt2 = 2d/3 in the configuration shown in figure 4.23b and

a node-less structure at yt1 = −d/3 and yt2 = 2d/3 in the configuration sketched in

figure 4.23a.
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Figure 4.23: Schematic representation of two hydrogen atoms vibrating out-of-phase

along a direction making an angle α = 60◦ with the IAA.

The sketches considered in figure 4.23 relate to spatially localized states, whereas

the system’s eigenstates are often delocalized in nature. The latter are given by

linear combinations of these localized states. We then observe this multitude of pos-

sibilities simultaneously, which translates on RPD P (xt1, xt2) and P (yt1, yt2) having

several nodal structures at the diagonal and node-less structures at off-diagonal sites

simultaneously.

Looking at the nodal structure of P (xt1, xt2) (respectively P (yt1, yt2)) along the

diagonal, we see that the excitation between the two modes follows a direction in

which x1 decreases and x2 increases (respectively y1 decreases and y2 increases),

and vice versa. This results into a motion in which the two atoms vibrate out-of-

phase. We illustrated this using arrows to indicate schematically the motion of each

hydrogen atom in figure 4.23. If the molecule was desorbed, i.e. in the gas phase,

this motion would resemble the rotational motion of the helices of a helicopter;

the corresponding vibration is thus a frustrated rotation which may be dubbed

“helicopter” mode.
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The RPD in the z1, z2-plane (figure 4.24) shows a node-less structure. The latter is

located around an equilibrium point given by z1 = z2 = zeq ≈ 0.91Å. This leads to

the conclusion that the excitation energy considered for this state is concentrated

in the vibrational mode parallel to the substrate.
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Figure 4.24: Two-dimensional representation of the RPD of the same selected eigen-

state 313 as in figure 4.21, here in the z1, z2-plane.

Similar structural properties of the RPD result for all vibrational states of the level

L8 we could inspect in detail. This leads us to the following conclusion: the vibra-

tional states of the L8 level possess vibrational excitations distributed in a correlated

way between the two hydrogen atoms; the latter vibrate out-of-phase (symbol "-")

along a line making an angle of 60◦ with the IAA; atomic displacements are thus es-

sentially perpendicular to the IAA, for which the symbol "⊥" is used. Consequently,

we attribute the label (0A 21
B)⊥−

I to level 8.

The "-" symbol is related to the out-of-phase concerted vibrational motion of the two

hydrogen atoms. It does not relate to the anti-symmetric irreducible representation

of the diatomic wave function under permutation of the two atoms. The symbol

can indeed be understood as relating to a specific linear combination of products of

monoatomic wave functions localized at two different sites A and A′, respectively,

both of type A. Let these functions be ϕA0, ϕA1, ϕA′0 and ϕA′1, where 1 and 0 refer

respectively to excited and non-excited, e.g. in local mode 2. A typical diatomic

wave function in level 8 would then be given as

ΦAA′
− (1, 2) = 1√

2
(ϕA1(1)ϕA′0(2) − ϕA0(1)ϕA′1(2)) (4.11)

This function is not symmetrized with respect to the permutation of the two atoms,
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as atom 1 always occupies site A and atom 2 site A′. Another typical function would

be

ΦA′A
− (1, 2) = 1√

2
(ϕA′1(1)ϕA0(2) − ϕA′0(1)ϕA1(2)) (4.12)

The linear combinations

Φs(1, 2) = 1√
2
(
ΦAA′

− (1, 2) + ΦA′A
− (1, 2)

)
(4.13)

Φa(1, 2) = 1√
2
(
ΦAA′

− (1, 2) − ΦA′A
− (1, 2)

)
(4.14)

yield, however, symmetric and anti-symmetric total wave functions with respect to

permutation, respectively.

Level 10

Taking up the discussion for level 8 on the previous pages, we now assemble the dif-

ferent representations of the RPD of a typical state of level 10 in a single figure 4.25.

In this state atoms are likely to be found at fcc sites, only (figure 4.25a), indicating

an (AA) configuration. RPD show nodal structures similar to the states of level 8,

for which excitation is delocalized on both atoms.

Figure 4.25b shows the RPD P (xt1, xt2) and P (yt1, yt2) of this state. The nodal

structures are again positioned on the diagonal of these representations, whereas

the off-diagonal structures are node-less. We can apply the same reasoning used in

the analysis of the previous level, from which we conclude that the two atoms vibrate

along a direction making an angle α = 60◦ with the IAA. The difference with the

previous level is that this time atomic displacements along xt1 and xt2 (respectively

yt1 and yt2) have the same sense of variation. This indicates that the vibrations of

the two atoms are in-phase. Figure 4.26 sketches schematically classical situations

that correspond to the states of this level. In these diagrams, we have positioned

arrows in the same direction to indicate in-phase displacements of the two atoms.

If atoms were desorbed, i.e. at very large values of the z coordinates, the motion

would be a translation of the diatomic in a direction essentially perpendicular to the

IAA.
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Figure 4.25: Two-dimensional representation of the RPD of an eigenstate 416 in

level 10. For the upper panel (a) see also the caption of figure 4.11. For the lower

panel (b) see the caption of figure 4.22.
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Figure 4.26: Schematic representation of two hydrogen atoms vibrating in-phase

along a direction making an angle α = 60◦ with the IAA.

All states we investigated in this level have the same characteristics regarding the
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shape of their RPD, i.e. the nodes occur only along the diagonal, and the DOF of

the two atoms have the same sense of variation. We have not represented the RPD

in the z1,z2-plane, which is very similar to that shown in figure 4.24. We label this

level (0A 21
A)⊥+

I , to refer to states with the same characteristics as those of the L8

level, with exception of the relative phase, which is positive here (symbol "+").

Level 7
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Figure 4.27: Two-dimensional representation of the RPD of eigenstate 253 in level

7. See also the captions of figures 4.11 and 4.22.

RPD shown in figure 4.27a have amplitudes only at the fcc sites, indicating an

(AA) configuration. P (xt1, xt2) (figure 4.27b) shows nodal structures at off-diagonal

sites; structures are node-less on the diagonal. This means that in situations where

xt1 = xt2, the vibrational excitation is entirely localized in the yt1 and yt2 DOF

(P (z1, z2) is node-less). Consequently, atoms move concertedly along the interatomic
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axis, here parallel to the yt axis. Figure 4.28a illustrates this situation.
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Figure 4.28: Schematic representation of two hydrogen atoms vibrating in-phase

along the interatomic axis IAA.

When xt1 ̸= xt2 nodal structures appear at P (x1, x2). This means that vibrational

excitation in the xt1 and xt2 DOF only occurs when the two hydrogen atoms oc-

cupy fcc sites with different xt coordinates. A typical example is when the two

hydrogen atoms occupy neighboring fcc sites aligned with the twisted coordinate xt.

For instance, the situation illustrated in figure 4.28b leads to a nodal structure in

P (xt1, xt2) located around a point with coordinates xt1 = d/3 and xt2 = 4d/3. Here,

too, one sees that each hydrogen atom moves along the IAA.

The RPD P (yt1, yt2) (figure 4.27b) show similar properties; when the two atoms are

located at sites with the same value of yt, excitation is delocalized between xt1 and

xt2 ̸= xt1 (no nodal structure at the diagonal), whereas in the case where y1 ̸= y2

excitation will appear at these DOF. This again indicates configurations where both

atoms vibrate along the IAA.

Furthermore, the local nodal structure of the RPD around the fcc sites indicates

that the two atoms are vibrating in-phase (following a reasoning analogous to that

used in the analysis of level 10). Arrows were used in figure 4.28 to indicate the

in-phase vibrations. If the diatomic was desorbed, this motion would correspond to

its free translation along the IAA.

All inspected eigenstates of the L7 level have the same properties. Which leads us

to conclude that these states describe in-phase vibrational motion parallel to the

interatomic axis. Accordingly, we label this level (0A 21
A)∥+

I .
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Level 13
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Figure 4.29: Two-dimensional representation of the RPD of eigenstate 578 in level

13. See also the captions of figures 4.11 and 4.22.

This state has presence probability only at fcc sites, indicating an (AA)I configura-

tion. The RPD P (xt1, xt2) and P (yt1, yt2) given in figure 4.29b show nodal struc-

tures similar to the L7 level discussed above, except that the two atoms vibrate

out-of-phase. We have labeled this level (0A 21
A)∥−

I , indicating states where the two

hydrogen atoms vibrate out-of-phase along the IAA, as illustrated in figure 4.30. In

the gas phase, the corresponding motion is the intramolecular stretching vibration.
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Figure 4.30: Schematic representation of two hydrogen atoms vibrating out-of-phase

along the IAA.

Analysis of the vibrational state structure of these levels has shown that when two

hydrogen atoms occupy neighboring fcc sites in the (AA)I configuration, vibrational

excitation of the system in the local mode 2 results in their concerted vibrational

motion parallel to the substrate, forming four levels with distinct vibrational ener-

gies. Levels 7 and 10 contain states that describe concerted and oriented in-phase

vibrations of the atoms; in level 7 these are oriented along the IAA, in level 10 the

orientation is essentially perpendicular to it; the former are labeled by the symbol

"∥" and correspond to a frustrated translation along the IAA, the latter by "⊥",

corresponding a frustrated translation in the perpendicular direction to the IAA;

both translations are parallel to the substrate.

Levels 8 and 13 contain states that describe out-of-phase concerted vibrations with

displacements oriented along the IAA (level 13, symbol "∥"), or essentially perpen-

dicular to it (level 8, symbol "⊥"); level 13 states correspond to stretching vibrations

of the diatomic in the gas phase, level 8 to hindered rotations of the helicopter type.

It is difficult to correlate the energy differences in the parallel and perpendicular

motions to the breakdown of the local C3v symmetry, or to the (harmonic) coupling

causing the atoms to move concertedly and, on the same token, to split the energy

level of zeroth order local modes. They likely correlate to both. Quite obviously,

the concerted motion is related to the resonance condition of zeroth order states,

which is absent in the AB-type configurations discussed so far.

A direct consequence of the concerted motion is that the states describing a single

excited hydrogen atom in the classical sense are not stationary states of the system.

These types of states are in fact given by a superposition of states in which the
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two atoms vibrate in phase with states where the two atoms vibrate out-of-phase

in the same direction. We have illustrated this in the study carried out on a one-

dimensional model given in appendix D. To illustrate this in the actual system, let us

consider two typical states of the L7 and L13 levels (figure 4.31). Like all the states

of these levels, the RPD of the latter show no significant nodal structure in planes

defined by the DOF of individual atoms. In both states hydrogen atoms move along

the interatomic axis. In level 7 motion is in-phase, in level 13 it is out-of-phase. We

will denote these two states by Φ7 and Φ13.
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Figure 4.31: Two-dimensional representation of the RPD of two selected eigenstates

in level 7 (panel (a), state 260) and level 13 (panel (b), state 601). See also the

caption of figure 4.11.
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Let us now consider two states Ψ1 and Ψ2 given by :

Ψ1 = Φ7 + Φ13√
2

Ψ2 = Φ7 − Φ13√
2

(4.15)

Figure 4.32a shows the RPD of Ψ1. It can be seen that the first hydrogen atom has

a very clear nodal structure at an fcc site, while the second is totally node-less. This

indicates a configuration in which only hydrogen atom 1 has vibrational excitation.
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Figure 4.32: Two-dimensional representation of the RPD of Ψ1 (a) and Ψ2 (b). See

equations 4.15 as well as the caption of figure 4.11.

The RPD of Ψ2, given in figure 4.32b, show the opposite situation where excitation

is entirely localized on hydrogen atom 2. Ψ1 and Ψ2 are henceforth non-stationary

states of the system, and will evolve essentially periodically between these two states,
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giving rise to an energy transfer mechanism between the two atoms. A study of the

dynamical behavior of such states is presented in chapter 5.

4.4.5 Analysis of mode 2 excited states in the (BB)I config-

uration

Similar results hold for the configurations of the (BB)I type where the two hydrogen

atoms occupy neighboring hcp sites. The corresponding levels are {L6, L9, L11, L12}.

We have used the same nomenclature to label the latter (table 4.4). We will now

conclude this analysis section with the remaining levels {L19, L20} (and {L21, L22}).

4.4.6 Analysis of mode 1 excited states in the (AA)I and

(BB)I configuration

Levels 19 and 20
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Figure 4.33: Two-dimensional representation of the RPD of eigenstates 940 in level

19 (a) and 960 in level 20 (b). See also the caption of figure 4.11.
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Figure 4.33 show the RPD of two selected states from levels 19 and 20, respectively.

Both of them possess presence probability of the two hydrogen atoms mainly at the

fcc sites, indicating a predominantly (AA)-type configuration. There are no clear

nodal structures visible on the DOF of individual atoms parallel to the substrate.

Figure 4.34 shows the representations of the RPD P (x1, x2) and P (y1, y2) of these

two states. The latter have no particular nodal structure and do not allow us to

deduce the nature of the vibrational excitation of this state.
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Figure 4.34: Two-dimensional representation of the RPD of the same two selected

eigenstates as in figure 4.33, here in the xt1, xt2 and yt1, yt2-planes on the left and

right hand side, respectively.

Figure 4.35 shows the representation of the RPD in the z1z2-plane. The latter shows

the presence of a node localized at the diagonal around z1 = z2 = zeq ≈ 90 pm. This

indicates the presence of a concerted vibrational excitation between the z1 and z2

DOF, shared by the two hydrogen atoms. Following a similar line of reasoning to

that used in the analysis of excitation in mode 2 parallel to the substrate, we can

deduce from the location of the nodal structure at the diagonal that both atoms

vibrate concertedly in a direction perpendicular to the interatomic axis.
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Figure 4.35: Two-dimensional representation of the RPD of eigenstates 940 (a) and

960 (b) as in figure 4.33, here in the z1, z1-plane.

Following the same reasoning to explain the mode 2 excited states in the (AA)I

configuration, figure 4.35 suggests that state 940 of level 19 represents in-phase

vibrations of the two hydrogen atoms, while in state 960 atoms vibrate out-of-phase.

A schematic representation of the two vibrational modes is shown in figure 4.36.

z

(a)

z

(b)

Figure 4.36: Schematic representation of two hydrogen atoms vibrating in-phase (a)

and out-of-phase (b) along a direction perpendicular to the IAA.

Furthermore, the RPD of these states possess some small amplitudes at some hcp

sites. This can be seen in particular at the P (xi, zi) representation of the two atoms.

This feature might be related to tunneling of the atoms to neighboring hcp sites.

Most importantly, the RPD reveal the existence of a local 11 + 22(A1) Fermi reso-

nance, as in the H/Pd(111) system. The resonance coupling is perhaps weakened

here by the strong (harmonic) coupling between the two atoms. It might be stronger

at the level of local states, i.e. by taking the superposition of two states similar to
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those in equations 4.15. Figure 4.37 shows the RPD of a state resulting from such

a superposition of states 940 and 960 in levels 19 and 20.
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Figure 4.37: Two-dimensional representation of the RPD of the superposition Ψ =

(Φ940 + Φ960) /
√

2 of the two selected states in levels 19 and 20. Panel (a) shows the

RPD of atom 1, panel (b) that of atom 2. See also the caption of figure 4.11.

Excitation is clearly more important on the second atom. The latter shows the

typical pattern of a 1:2 Fermi resonance between the local modes 1 and 2, similar

to the case of a single hydrogen atomdiscussed in section 4.2.

Analysis of other states in these two levels show similar results. To summarize,

in the case where the two hydrogen atoms are located at two neighboring fcc sites

in the (AA)I configuration, the excitation in the local mode 1 perpendicular to

the substrate results in a concerted vibrational motion of both atoms. The latter

then vibrate in-phase or out-of-phase. The energies of these two global vibrational

modes differ by 0.76 meV. This gives rise to two energetically almost overlapping

levels 19 and 20, yet with distinct energies. Vibrations in level 19 are in-phase and

correspond, in the gas phase, to a translational motion of the diatomic molecule

perpendicular to the substrate; this mode also describes the direct adsorption or

desorption process. Vibrations in level 20 are out-of-phase and can be related to a

cartwheel rotation of the diatomic molecule in the gas phase.

The Fermi resonance between the locally perpendicular and parallel modes 1 and 2

of each hydrogen atom is still present. The correlation between the two hydrogen



Chapter 4 Study of vibrational stationary states of H/Pd(111) and H2/Pd(111) 109

atoms leads via the harmonic coupling somehow to a sharing of the Fermi resonance

coupling between the two atoms. We will discuss these effects further in the quantum

dynamics study of this system in chapter 5. This summary rationalizes the chosen

labels (0A [11 + 22]A)+
I for level 19 and (0A [11 + 22]A)−

I for level 20.

Analysis of the levels 21 and 22 shows that these states are localized at hcp sites and

possess the same properties as the levels 19 and 20. We have labeled these levels

analogously. Some states of these levels have non-zero presence probabilities in the

fcc sites, which might be indicative of tunneling. Level widths are 0.49 meV and 0.63

meV, respectively. We might attribute this broadening to possible AB-tunneling11.

4.4.7 Discussion about Para and Ortho hydrogen

MCTDH makes it possible to (anti-)symmetrize the spatial wave function of a given

system. In the following, we will explain the numerical procedure we followed to

achieve this.

As the DOFs of each hydrogen atom are grouped into combined modes Qi =

{xti, zti, zti}, the wave function of the system reads

Ψ(Q1, Q2, t) =
NQ1∑
i1=1

NQ2∑
i2=1

Ai1,i2(t)Φ(Q1)
i1 (Q1, t)Φ(Q2)

i2 (Q2, t) (4.16)

(Anti-)symmetrization is achieved by imposing the condition

Ai1,i2(t) = ±Ai2,i1(t), ∀t (4.17)

This is achieved by using the command "(a)symcoeff=persist, dav" when creating

the initial wave function, which (anti-)symmetrizes the A-Vector initially and after

each orbital relaxation. The "dav" argument additionally symmetrizes the Davidson

vectors used in the calculation [21]. The set of SPF used to describe the modes of

the two hydrogen atoms must be identical for equation 4.16 to be meaningful. The

"id" command is used in the declaration of the SPF in order to instruct the program

to use the same SPF to describe the Qi modes12

11These states are not pure perpendicular modes because of the Fermi resonance. The latter have

a non-zero lateral component. They can therefore also tunnel through lateral potential barriers.

12We found during the calculations that a large number of SPFs is required to achieve conver-

gence. 150 identical SPF were used for each combined mode.
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Since a combined mode is used to describe each hydrogen atom, the A-Vector sym-

metry reflects the permutation symmetry of the two atoms. Using the above pa-

rameters, symmetrization is then systematic at every time step, guaranteeing the

conservation of permutation symmetry during the relaxation process.

Symmetric wave functions correspond to para-H2 (with total nuclear spin 0), and

antisymmetric wave functions to ortho-H2 (with total nuclear spin 1).

Discussion

We evaluated symmetric and antisymmetric wave functions for all levels up to level

10. So far, no significant energy discrimination could be made between symmetric

and antisymmetric states: they are all essentially degenerate. Table 4.5 below gives

values obtained for level 8 of table 4.4 (the helicopter AA mode). Symmetrized

calculations are naturally more stable than non-symmetrized ones, as the SPF bases

are relatively larger with regard to the block size.

state E/meV

non-sym sym asym

307 84.1 84.0 84.0
... ... ... ...

360 84.4 84.3 84.3

Table 4.5: Eigenvalues H2/Pd(111); lowest and highest energy states in level 8; state

numbers from non-symmetrized calculations (54 states); symmetrized calculations

yield each 27 states that could be in principle attributed to individual states from

the non-symmetrized calculations (see text).

In each level discussed so far, half of the states are symmetric, half of them are anti-

symmetric. In principle, if numerical accuracy is improved, one could use the results

from the present work to calculate reaction rates for the ortho-para interconversion

governed by the potentially very small hyperfine splitting of adsorbed dihydrogen.

At higher energies, symmetric and antisymmetric levels should split in energy. This
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is expected to occur upon desorption, as gas phase dihydrogen has energetically well

distinguished levels: para-H2 correlates with even J rotational quantum numbers,

ortho-H2 with odd J values.

4.4.8 Concluding remarks on the eigenstates of the H2/Pd(111)

system

The spectrum of a single hydrogen atom is strongly affected by the presence of other

atoms of the same species. When these atoms occupy neighboring sites of the same

type, a strong correlation is established between them. Vibrational excitation of the

system in such a configuration results in concerted motion of the two atoms. The

latter then adopt correlated modes of vibration with distinct vibrational energies.

When the two atoms are located at two neighboring sites of different type, this

correlation is weaker. We then observe vibrational excitations that are essentially

localized on only one atom. This difference in the behavior of hydrogen atoms is

related to resonances which promote coupling and correlation between the local

vibrational modes of the two atoms when they occupy sites of the same type. The

correlation between the two atoms is weaker when they occupy sites of different

types. Atoms then behave more independently.

The presence of tunneling is confirmed in the spectrum of the H2/Pd(111) system.

Tunneling likely takes place in a correlated way with the two hydrogen atoms tun-

neling simultaneously to next-neighboring sites. However, this tunneling processes

are less important than in the spectrum of a single hydrogen atom. It manifests

itself in level shifts (AB-tunneling) and eventually in the broadening of levels. Level

shifts and widths remain relatively small, however, and no conclusive quantitative

results on level widths can be drawn from the present calculations due to numerical

error limitations.

Vibrational excitations in configurations where the two atoms occupy non-neighboring

sites in the (AB)II and (AA)II or (BB)II configurations are more energetic. Although

it would be possible to treat these cases here, too, the energy range in which we have

optimized the PES representation with POTFIT is limited to 500 meV. Beyond this

energy range, the potential representation becomes less accurate. The total energy
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of the last level calculated in table 4.4 is already near to the limits of the optimal

potential. Beyond this level we began to observe a very significant broadening of the

bands, which did not correspond to any physical situation. A re-optimization of the

potential representation over larger energy domains would enable to determine the

behavior of the vibrational states of hydrogen atoms when they are further apart.

It would be very interesting to see whether this correlation persists even at great

distances. Such a study is, however, beyond the scope of the present thesis.



Chapter 5

Time-dependent study : Quantum

dynamics of H/Pd(111) and

H2/Pd(111)

When hydrogen atoms adsorb on a palladium surface, they most often remain

trapped on the surface level without penetrating into the bulk. They may, how-

ever, have a lateral motion along the surface, either spontaneously or as a result of

energy gain through interaction with an external system. The resulting dynamics

depends only on the nature of the interaction between the hydrogen and palladium

atoms. In quantum mechanics, a system’s dynamics is expressed in terms of the time

evolution of its wave function. The squared modulus of the latter gives the prob-

ability density of the system under study. The quantum nature of atoms does not

allow us to evaluate their trajectories in the classical sense, but the analysis of the

probability density of their presence at given points in space gives us an indication

of the type of dynamical behavior that atoms can or cannot adopt over time. The

advantage of this approach is that it allows us to take into account all the quantum

phenomena likely to influence the dynamics of atoms beyond the classical approach.

In the eigenstate basis |φk⟩ of a time-independent, non-dissipative Hamiltonian, the

time evolution of the state of the system |Ψ(t)⟩ is given by:

|Ψ(t)⟩ =
∑

k

ck(0)e−iEkt/h̄ |φk⟩ (5.1)

113
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With Ek the eigenenergy associated to |φk⟩ and ck(0) = ⟨φk|Ψ(0)⟩ are the coefficient

of |Ψ(0)⟩ in this basis. Since the eigenstates are stationary, each component of

|Ψ(t)⟩ will oscillate in time with a period given by Tk = 2πh̄
Ek

. The dynamics of a

system then appears in this picture as the consequence of the time evolution of the

superposition of these individual states evolving with different phase velocities. On

the other hand, we have highlighted in the previous chapter that quantum effects

such as tunneling or Fermi resonance have a significant impact on both the spatial

structure of the eigenstates and their energies. Consequently, these quantum effects

will be visible in any state that includes in its spectral decomposition eigenstates

impacted by them.

In the following, we present a study of the dynamics of hydrogen atoms following

excitation in local modes 1 and 2 discussed in the previous chapter, which can be

parallel or perpendicular to the substrate. This type of excitation can arise, for

example, from interaction with neutrons or helium atoms in spin echo experiments

[3], or directly from interaction of hydrogen atoms with external photons or just

thermally. In particular, we will investigate situations in which a single quantum of

vibrational excitation is transferred to the system.

The study carried out in this chapter is based on a non-dissipative, frictionless model

in which the Pd atoms are all considered to be fixed at their equilibrium positions.

We wish to highlight mainly the consequence of the quantum character of hydrogen

atoms in their motion on the Pd(111) surface.

5.1 Technical details on the propagation calcula-

tions

All propagation calculations were performed using the MCTDH program. In each

calculation, the initial wave function (IWF) used is defined as a sum of products of

one-dimensional SPF. We work within the constant mean field (CMF) scheme de-

scribed in section 4.1.2. Both the SPFs and the A-vector are propagated separately

in time according to equation 2.40. Bulirsch-Stoer (BS) extrapolation scheme with

polynomial extrapolation with variable order and stepsize was used for SPF propaga-
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tion, and a short iterative Lanczos (SIL) algorithm with variable order and stepsize

for the ntegration of the A-vector. The latter are more suitable for propagation

calculations[21]. Table 5.1 summarizes the parameters used for each integrator.

Integrators (CMF)
SPF A-vector

BS
 accuracy =10−7

maximalorder= 8
SIL

 accuracy =10−7

maximalorder= 20

Table 5.1: Integrator parameters used to propagate SPF and A-vector.

For a given propagation time interval, the time required for each calculation depends

mainly on the size of the grid, the size of the SPF basis and the accuracy of the

calculation. The propagation calculations we have carried out require a considerable

amount of numerical resources. The use of parallel shared memory hardware was

essential in order to make the simulation times feasible. Information about the wall

simulation time and the number of SPF used is given in table 5.2.

SPFs [nmin
κ , nmax

κ ]
H/Pd(111) H2/Pd(111)

nx ny nz nx1y1z1 nx2y2z2

[30, 40] [30, 40] [10, 15] [15, 30] [15, 30]

Table 5.2: Number of SPFs used to describe the different system modes during

propagation calculations. The average minimum and maximum wall time required

for 1 ps of propagation calculation ranges from 2h to 250h on the HPC cluster at

Strasbourg university.

5.2 Quantum dynamics of H/Pd(111)

In this section, we present two studies of the dynamics of a single hydrogen atom

following a vibrational excitation on a parallel mode (study 1) and a perpendicular

mode (study 2) to the substrate.
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5.2.1 Propagation of a local state with one quantum of vi-

brational excitation in the parallel mode

The study on the H/Pd(111) spectrum showed that the levels including states with

one quantum of vibrational excitation in the parallel modes are affected by tunneling

splitting, leading to a change in their local vibrational behaviour. In this study, we

aim to assess the impact of this splitting on the dynamics of the system initially

excited in the local mode parallel to the substrate.

We will consider in the following the situation where the hydrogen atom is in a

state initially localized at an fcc site and has a single quantum of vibrational exci-

tation in one of the components parallel to the substrate. There are several ways

of constructing such a state, the simplest of which is to consider a wave function

defined by a harmonic oscillator and which has a node at the x or y DOF. This

state involves uncorrelated DOF and can easily be put in the form of products of

one-dimensional functions adapted to MCTDH. Several propagation tests have been

carried out with states of this type, and we have found that their average energy

is very high compared with the targeted energy interval. The drawback with pre-

constructed states is that they are not necessarily well adapted to the local structure

of the potential well and do not represent all characteristics of a locally excited state.

A better alternative is to use the local PES eigenstates presented in appendix C.

These states reflect the local C3v symmetry of the potential and can represent to a

better approximation the state of a hydrogen atom excited locally at an fcc site by

an external interaction.

In this first study, we have used state number 3 of the local PES (see figure 5.1 at

t=0 fs) as the initial state of the system1. Its total energy is 235.5 meV, or around

80 meV when the ZPE is subtracted2. As the system is non-dissipative, the total

energy of this state must remain constant during propagation, if the choice of the

SPF basis and integrators is optimal. We propagated this state over 4 ps. Figure

5.1 shows snapshots of the time evolution of the RPD over this time interval.

1This state is not stationary under the action of the system’s global Hamiltonian.

2Here and in the remainder of this section, state energies are given with respect to the ZPE of

the system.
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Figure 5.1: Snapshots of the time evolution of the RPD of a state with one quantum

of vibrational excitation in a given component of the parallel mode. The latter is

initially localized in an fcc site.

At the initial instant, the system’s wavefunction is entirely localized around an fcc

site. The structure of RPD shows a nodal structure corresponding to excitation in

one of the two components parallel to the substrate. At 100 fs, presence probabilities

at neighboring hcp sites appear, indicating that during this time the hydrogen atom

is able to pass through the potential barrier separating it from these sites. At 400 fs,
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the system’s wavefunction has spread across the potential barriers and significant

presence probabilities appear at next neighboring hcp sites. The nodal structure

of the RPD at these sites shows that the hydrogen atom retains its vibrational

excitation during this passage. Between 400 fs and 730 fs, a large part of the

wave function returns to the initial fcc site, while a fraction of it appears at other

nearby fcc sites. Further propagation shows a repetition of this process over time,

leading the system’s wave function to spread out over all the sites at the surface.

Nevertheless, at 4 ps, the probability of the hydrogen atom being present at the

initial fcc site is zero, indicating that it has left this site.

The presence probability of the hydrogen atom at the initial fcc site seems to be

oscillatory. This is due to the wave nature of the state defining the hydrogen atom.

A qualitative way of interpreting this behavior is to say that, as a result of excita-

tion, the system gains energy, and its wave function spreads over the energetically

accessible region. Part of the wave function is reflected at the potential barrier sep-

arating the fcc and hcp sites, as well as at the wall to the Pd atom, resulting in a

reversed dynamics leading to the relocation of the wave function to the initial site.

In order to understand the origin of these oscillatory dynamics in a more quantita-

tive way, we evaluated the presence probability of the hydrogen atom at the initial

fcc site. More specifically, we calculated the probability to find the hydrogen atom

in a well defined volume V delimiting the initial fcc potential well. Its time evolu-

tion is then evaluated by integrating the time dependent probability density in the

restricted space defined by V . Let

P (t) =
∫

V
|Ψ(x, y, z, t)|2dxdydz (5.2)

The volume V can be chosen in any way as long as it initially contains the entire

area around the fcc potential well. A simple choice is a parallelepiped box (in the

twisted coordinates) with xt ∈ [0; d/2], yt ∈ [−d/2; 0] and zt ∈ [0.2 Å;1.7 Å]. We

evaluated this quantity in MCTDH using an operator defined by

P̂ =
∏
κ

(1̂ − Θ̂κmin)Θ̂κmax (5.3)

With Θ̂κ is the operator of the step function that acts only on the DOF κ ∈
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{xt, yt, zt} such that :

Θ̂κm =

 0̂ if κ < κm

1̂ if κ ≥ κm

(5.4)

κm ∈ {κmin;κmax} correspond to the values that delimit the box of volume V . In

the following, we will refer to P̂ as the box operator.

The probability P (t) of finding the hydrogen atom in volume V is then given by the

expectation value of this operator, i.e.

P (t) = ⟨Ψ(t)|P̂ |Ψ(t)⟩ (5.5)

Where |Ψ(t)⟩ is the state defining the system. This approach finally allows us to

numerically evaluate the integral given in equation 5.2 within the MCTDH program

suite using the "expect" keyword.

In order to cover a wider time interval, we extended the propagation of the system

wavefunction over 17 ps. Figure 5.2 shows the time evolution of this function.
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Figure 5.2: Presence probability at the initial fcc site.

The figure shows the presence of essentially two types of oscillations with quasi-

periods T1 ≈ 0.7 ps and T2 ≈ 9.8 ps. The hydrogen atom is initially contained

in volume V , resulting in P (0) = 1. The oscillation of period T1 first causes this

probability to drop below 0.5 at around 0.39 ps, corresponding approximately to the

third snapshot in figure 5.1 Then it increases again, but only partially, to around

0.73 ps, corresponding to the fourth snapshot in figure 5.1, where the amplitude of

the RPD is again significant at the initial fcc site. The function then continues to
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oscillate with almost the same periodicity while being slowly damped to zero. At half

the period of T2, the probability has fallen to zero, i.e. at around 4 ps, corresponding

to the last snapshot in figure 5.1 where the hydrogen atom has completely left the

initial potential well.

As we pointed out in the introduction to this chapter, the dynamics of the system

is governed by the way in which the stationary states composing the system’s wave

function interfere with each other over time. To identify this composition, we de-

termined the spectral decomposition of the system’s wave function over the set of

eigenstates calculated in section 4.2. To this and, an auxiliary analysis program of

the MCTDH program suite called "crosscorr" was used which projects the system’s

state on a reference state.
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Figure 5.3: Populations of sub-levels. The latter are obtained by summing the

populations of all the (quasi-)degenerate states belonging to each sub-level.

Figure 5.3 shows the population of each sub-level given in table 4.33. We can see that

this state contains mainly components in levels 3 and 4. Given that the IWF is an

eigenfunction of the local PES including a single quantum of vibrational excitation

in the parallel mode, its decomposition in the total eigenbasis of the system mainly

involves the state of the corresponding level L3 of the global PES as well as the

states forming tunnel doublets with the latter (L4). The populations of the other

3The population pk of an eigenstate component |φk⟩ is given by pk = |ck|2 = | ⟨φk|Ψ(0)⟩ |2.

The population of each sub-level Li is then obtained by summing the populations of all the (quasi-

)degenerate states belonging to it, i.e. pLi
=

∑
k∈{Li}

pk.
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levels are considered negligible in the following. We therefore consider the eigenstate

decomposition of the system’s wave function given by :

|Ψ(t)⟩ =
∑

k∈{L3,L4}
ck(0)e−iEkt/h̄ |φk⟩ (5.6)

To identify the contribution of these states to the presence probability in figure 5.2,

we will evaluate the analytical formulation of P (t) in this basis using equation 5.6.

P (t) = ⟨Ψ|P̂ |Ψ⟩ = ⟨Ψ|Ψ⟩V

=
∑

k∈{L3,L4}
ck(0)2 ⟨φk|φk⟩V

+ 2
∑

k,k′∈{L3,L4}
k ̸=k′

ck(0)ck′(0) ⟨φk′|φk⟩V cos((Ek′ − Ek)t/h̄)

(5.7)

With4

⟨f |g⟩V =
∫

V
f ∗gdV (5.8)

The second term of equation 5.7 shows that the amplitude of the oscillation of the

presence probability of the hydrogen atom in the fcc site comes from the eigen-

states of different energies that have a non-zero local overlap in the volume V ,

i.e. ⟨φk′|φk⟩V ̸= 0 and Ek ̸= Ek′ 5. The period of each oscillation is given by

T = 2πh̄/(Ek − Ek′). Several properties can be deduced from equation 5.7:

• Since states of L3 have a large local overlap in V and close energies, the second

term of equation 5.7 yields slow oscillations with large amplitudes6.

• The states of L4 have a relatively small local overlap in V and close energies.

In the second term of equation 5.7, this translates into slow oscillations with

small amplitudes.

• The states belonging to these two different levels have a non negligible overlap,

their energy difference is large. This results in fast oscillations and small

amplitudes.

4|φk⟩ and ck(0) are real.

5This term naturally cancels out if integrated over the total space, given the orthogonality

between the system’s eigenstates.

6Provided that the ck are not very small
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The periods of oscillation T1 and T2 observed in figure 5.2 correspond to energy

differences of ∆E1 = 2πh̄/T1 ≈ 5.8 meV and ∆E2 = 2πh̄/T2 ≈ 0.4 meV, which can

be related to the average energy difference between the states of levels L3 and L4

(T1) and between the sub-levels of the latter (T2). We can therefore deduce that

the breathing motion initially observed for the RPD is due to the superposition of

states of levels L3 and L4, which form tunneling doublets within the system which we

termed AB-tunneling. A slower tunneling process is superimposed on this motion,

leading the hydrogen atom’s wave function to progressively leave the initial fcc site,

we related this to a ABA-tunneling process.

We conclude this study with a discussion of the contribution of the tunneling effect

to the dynamics of the system. Following excitation of the hydrogen atom in a

parallel mode to the substrate, the latter does not acquire sufficiently high energy

to ’classically’ overcome the potential barrier separating the fcc and hcp sites. We

have seen in this study that the driving force behind this dynamic is the energy

gap between the eigenstates of levels (and sub-levels) 3 and 4. This gap is due in

part to the difference in potential structure in the fcc and hcp wells, but also to the

tunneling splitting that has affected the spectrum of the system. The dynamics of

the hydrogen atom is therefore governed by tunneling to two different types : first a

tunneling to the nearest neighbor site (AB-tunneling), then a subsequent tunneling

to sites of the same type further away (ABA-tunneling).

5.2.2 Propagation of a local state with one quantum of vi-

brational excitation in the perpendicular mode

In the following, a propagation study will be presented of the hydrogen atom pre-

pared in a state with one quantum of vibrational excitation in the perpendicular

mode. The latter is considered to be initially localizd at an fcc site. The aim of

this study is to highlight the impact of the Fermi resonance coupling between the

perpendicular and parallel modes on the overall dynamics of the system.

To construct such a state, we have modified the local PES given in appendix C so as

to suppress the coupling between the parallel and perpendicular modes in equation

C.1. Removing this term from the potential results in eigenstates where the pure
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states 11 and 22(A1) are decoupled. Figure 5.4 shows the RPD of these two states.
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Figure 5.4: Two-dimensional representation of the RPD of the pure states 11 (a)

and 22(A1)(b).

We can see from figure 5.4a a presence of a node in the z DOF and a node-less

structure in the xy-plane, indicating a 11 pure state, while the state given in 5.4b

has a nodal structure in the xy-plane corresponding to a doubly excited state, its

structure in the xz-plane is node-less, indicating a pure state of type 22(A1).

The state shown in figure 5.4a has been used as the IWF in this simulation. It has

the advantage of being better adapted to the local structure of the potential and

allows us to represent the situation we wish to study here. The total energy of this

state is 155 meV. Figure 5.5 shows snapshots of the time evolution of the RPD over

2 ps.

Time evolution of the RPD shows that after 44 fs, the system’s wavefunction presents

an important component in the pure state 22(A1). It also begins to spread symmet-

rically across the three potential barriers around the fcc site. This process continues

until 68 fs, at which point the system has lost the shape of the initial 11 pure state

component, and significant presence probabilities appear at nearby hcp sites. At

124 fs, nodal structures appear at the hcp sites, indicating the presence of non-zero

components belonging to the 11 and 22(A1) states. At 160 fs, the amplitudes of the

RPD at the initial fcc site are once again significant, while a fraction of these remain

localized at nearby hcp sites. Part of the system’s wave function seems to have re-
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turned to a configuration close to its initial state. Further propagation shows that

this breathing motion repeats over time, in parallel with a progressive spreading of

the wave function over the other sites. At 2 ps, presence probabilities appear at all

sites on the surface.
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Figure 5.5: Snapshots of the time evolution of the RPD of a state with initially one

quantum of vibrational excitation in the pure perpendicular mode, localized in an

fcc site.

Analysis of the time evolution of the RPD shows that, following excitation of the
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hydrogen atom mode 1, a periodic population transfer between the latter and the

22(A1) pure state takes place, which directly manifests the Fermi resonance coupling

between these modes.

As mentioned in the previous study, the origin of the oscillations observed in the

wave function is due to the superposition of certain spectral components over time.

The resulting quasi-periods are directly linked to the energy difference between them.

Initially, the 11 mode population appears to oscillate with a period of around 160 fs.

This oscillation is due to a superposition of states that differ by ∆E ≈ 25 meV. To

determine the set of eigenstates contributing to the system dynamics, we calculated

the spectral decomposition of this state on the eigenbasis. Figure 5.6 shows the

population of each (sub)level.
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Figure 5.6: Populations of sub-levels. The latter are obtained by summing the

populations of all the (quasi-)degenerate states belonging to each sub-level.

The eigenstate decomposition of this state is relatively broad, involving almost all

the levels in which the 1A mode appears (table 4.3). On one hand, the periodicity

observed in the population transfer time between the perpendicular and parallel

modes could be due to the superposition of several components at the same time,

since several levels here have an energy difference of approximately 25 meV.

On the other hand, analysis of the RPD shows that this breathing motion is accom-

panied by a spreading of the wave function at the surface, which is itself periodic.

This periodicity can be seen directly by inspecting of the time evolution of the pres-
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ence probability P (t) at the initial fcc site7. Figure 5.7 shows the representation of

this function over 2 ps.
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Figure 5.7: Presence probability at the initial fcc site.

The figure shows a damped oscillation of P (t) with a quasi-period of around 200 fs.

A superposition between states with an energy difference of around 20 meV could

cause this type of oscillation. But given the large spectral decomposition of this

state, we cannot identify which components of this state in the eigenbasis directly

contribute to this behavior. Damping leads P to steadily while converging towards

an asymptotic value of around 0.25, indicating a high probability that the hydrogen

atom quits definitively the initial fcc site during this period. This significant drop in

overall amplitude of P (t) is due to the superposition of a large number of states in the

same level with large overlap, resulting in many oscillations with non-commensurate

periods which tend to mutually cancel out. The number of periods involved in the

superposition is large. Nevertheless, it is finite. By Liouvilles’s recurrence theorem

for finite dynamical systems, we can expect that for a longer propagation time, the

probability of finding the hydrogen atom at the initial fcc site could again increase,

although the theorem does not asset when the recurrence time will be.

From figure 5.6 one could suppose that states in sublevels 6.b and 8.b are more

prominently involved in the dynamics than others. Their energy difference from

table 4.3 is about 20 meV. States in sublevel 8.b are upper components of the Fermi

7The presence probability was defined in equation 5.3
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resonance pair, the lower components of which are in level 5. States in sublevel 6.b

are upper components of AB tunneling doublets, the lower component of which are

level 5, too.

The dynamics investigated in this example seem to involve both tunneling and in-

tramolecular vibrational redistribution (IVR) via common intermediate states, in

level 5, specifically. While IVR would be at the origin of the (quasi-)periodic be-

haviour of the probability density, tunneling to nearby lying hcp sites would effec-

tively lead to the damping of P (t) toward a remaining occupation probability of

the initially occupied fcc site of about 25 %. This is still much larger than the

statistical value at thermal equilibrium (≈ 10%, in the 3×3-grid, if only fcc sites

are considered, or 5%, H atoms occupy all fcc and hcp sites). Yet, probability den-

sity is broadly distributed over the entire configuration space. subsequent evolution

might eventually show a recurrent particle concentration at the initial fcc site, but

we cannot say when this happens. The dynamics shown here is totally coherent

and reversible; yet it resembles a statistical and effectively irreversible diffusion of

particles.

5.3 Quantum dynamics of H2/Pd(111)

In this section, we present three studies on the dynamics of two hydrogen atoms

following the excitation of a single atom. In the first and second study, the two

atoms are initially localized at neighboring fcc sites. One of the two atoms is then

excited in a parallel mode (study 1) or a perpendicular mode (2). In the third study,

we consider a situation similar to that of the first study, where this time the two

atoms occupy neighbouring fcc and hcp sites.

5.3.1 Propagation of a local AA-state with one quantum of

vibrational excitation in the parallel mode

In this section, we present a study of the dynamics of the two hydrogen atoms fol-

lowing the excitation of one of them in a parallel mode to the substrate. The study

we have carried out on the stationary states of H2/Pd(111) has shown the presence

of a strong coupling between the hydrogen atoms when they are located at neigh-
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boring sites of the same type. The aim of this study is to assess the effect of this

coupling on the individual dynamics of each hydrogen atom. In particular, we wish

to investigate two properties: firstly, the time evolution of the vibrational excitation

carried by the first atom, in particular if there is an excitation transfer between the

two atoms; secondly, if the excitation of one hydrogen atom is likely to cause one or

two atoms to leave their initial sites.

The IWF is given by a six-dimensional function depending on the DOFs of each

atom. The latter are initially located at two neighbouring fcc sites. A quantum

of vibrational excitation is then introduced on only one hydrogen atom, while the

second remains in its ground state. There are several ways of constructing such a

state. In the following, we present the approach we have taken to achieve this.

The state ψ1 shown in figure 4.32 is given by a superposition of two eigenstates, one

in level 7, the other in level 13. In this state, one quantum of vibrational excitation

is entirely localized on the first atom. We used a state similar to the latter, where

all the presence probabilities of each atom are initially localized at a single site. To

do this, we used the box operator defined by :

P̂ = P̂1 ⊗ P̂2 (5.9)

P̂i is the box operator acting only on the atom i ∈ {1; 2}. The latter has been

defined in equation 5.3. In MCTDH, this definition can be expressed by the entries

given in table 5.3.

xt1 yt1 zt1 xt2 yt2 zt2

P̂1 (Î − Θ̂0)Θ̂−d (Î−Θ̂−d)Θ̂−3d
2

Î Î Î Î

P̂2 Î Î Î (Î − Θ̂ 3d
2

)Θ̂d (Î − Θ̂d)Θ̂ d
2

Î

Table 5.3: MCTDH definition of the box operator in equation 5.9.

Î is the identity operator acting on a single DOF. These parameters have been chosen

so as to build a box around each potential well in which we wish the hydrogen atom

to remain localized. By applying this operator to the |ψ1⟩ state, the amplitudes

of its wave function outside these regions are all reduced to zero. The resulting
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normalized state |Ψ0⟩ has presence probability of both hydrogen atoms only in the

targeted fcc sites. The latter is given by:

|Ψ0⟩ = 1
⟨ψ1| P̂ ∗P̂ |ψ1⟩

P̂ |ψ1⟩ (5.10)

This state is now given by the superposition of several states of levels 7 and 13. Its

total energy is 94 meV. We have therefore used |Ψ0⟩ as the initial wave function for

a propagation study over 400 fs. Figure 5.8 shows snapshots of the time evolution

of these RPD over this period.

Initially, the first hydrogen atom is located at an fcc site and possesses a single

quantum of vibrational excitation in a parallel mode to the substrate. The second

atom is in its ground state. At 100 fs, the nodal structure of the RPD on the first

hydrogen atom disappears, and a local spreading of the wave function of the second

atom is observed. At 200 fs, the nodal structure at the second hydrogen atom

indicates that the latter has a quantum of vibrational excitation in a parallel mode

to the substrate, while the first atom is in its ground state. At 400 fs, vibrational

excitation reappears on the first atom, while the second returns to its ground state.

The analysis of the RPD shows that a quantum of vibrational excitation has been

transferred between the two hydrogen atoms. The latter appears to oscillate between

them with a period of less than 400 fs. The auto-correlation function given by

f(t) = | ⟨ψ(0)|Ψ(t)⟩ | allows us to determine this period more precisely. Indeed, the

time required for a double transfer of excitation corresponds to the time during which

the system returns to a state close to its initial state. The periodicity observed in the

auto-correlation function reflects this characteristic time. We have calculated this

function over the 400 fs of propagation. Figure 5.9 shows a graphical representation

of the obtained function.
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Figure 5.8: Snapshots of the time evolution of the RPD of a state with one quantum

of vibrational excitation in the parallel mode. The two hydrogen atoms are initially

localized in neighbouring fcc sites.
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Figure 5.9: Autocorrelation function.

The auto-correlation function8 has a quasi-period T ≈ 390 fs. In the system’s eigen-

state basis, this periodic character is due to the time evolution of the superposition

of two (or more) eigenstates with different vibrational energies. In fact, if we first

consider that the initial state is given solely by the superposition of two states from

levels 7 and 13, which we denote respectively by |φL7⟩ and |φL7⟩, i.e.

|Ψ(0)⟩ = cL7 |φL7⟩ + cL13 |φL13⟩ (5.11)

The evaluation of f(t) in this case is immediate:

f(t) =
(

|cL2|4 + |cL13|4 + 2|cL7|2|cL13|2 cos
(
(E13 − E7)t/h̄

))1/2
(5.12)

This function will then oscillate with a periodic T = 2πh̄
∆E , where ∆E is the energy

difference between levels 7 and 13. The "quasi-"period of 390 fs given in figure 5.9

corresponds to an energy difference ∆E ≈ 10.5 meV. This corresponds to the energy

difference between levels 7 and 13 (table 4.4) and shows that the excitation transfer

time between the two hydrogen atoms mirrors the energy gap between these levels.

However, the minimum of this function does not coincide perfectly with zero. This

minimum is reached when the excitation is entirely localized on the second hydrogen

atom. This means that the two states are not perfectly orthogonal. In a two-level

system, this orthogonality is preserved and the excitation evolves coherently between

the two hydrogen atoms. In the problem treated here, the decomposition of the

initial state in the eigenbasis involves several states of the same level. The latter are

8The latter is initially equal to unity, given that the IWF is normalized.
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not perfectly degenerate and may possess a non-negligible energy gap, as we pointed

out in section 4.4. A rewriting of the initial state is therefore given by:

|Ψ(0)⟩ =
∑

k∈L7

ck
L7 |φk

L7⟩ +
∑

k′∈L13

ck′

L13 |φk′

L13⟩ (5.13)

Some of the components of the same level will therefore vary with very close lying

periods, causing them to interfere and create a beating phenomenon. This perturbs

otherwise the periodic evolution of vibrational excitation between the two atoms,

as in the case of a two-level system9, which explains the term "quasi-"period used

above.

The multiple beating between states of the same level also leads to the gradual

delocalization of the system’s wave function onto the other potential wells of the

surface, supposedly inducing a tunneling process, under the hypothesis that the

energy difference between these states comes from a tunneling splitting. The larger

the width of a level, the faster the process. This is 0.13 and 0.25 meV for levels 7

and 13 respectively. These quantities are still relatively small and, strictly within

the numerical accuracy of the calculations, leading to a very slow tunneling process

compared to our propagation time scale. Calculation of the presence probability

of the two hydrogen atoms at their initial site showed a drop of around 3% after

400fs. We can speculate that, after about ten picoseconds, non-negligible presence

probabilities may appear at other fcc sites on the surface10.

This study allows us to conclude that when the two hydrogen atoms are localized

at neighboring fcc sites, the excitation of one of the two atoms in a mode parallel

to the substrate is accompanied by an energy transfer mechanism between the two

atoms, this leads to a complete transport of a quantum of vibrational excitation

from one atom to the other. The characteristic time of this transfer is about 195

fs. The latter depends directly on the energy difference between the levels of states

vibrating in phase and in out-of-phase (table 4.4)11. Additional tunneling processes

9This can also be observed on the value of this function after one period. This is less than 1.

10Tunneling to hcp sites remains negligible in this example. In fact, the spectral decomposition

of the system state involves exclusively level 7 and 13 states, which have no amplitude at hcp sites.

11We can deduce by analogy from this study that in the case of excitation in the second parallel
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toward other fcc sites might occur, but only on a longer time scale, and were not

resolved by the present calculation.

5.3.2 Propagation of a local AA-state with one quantum of

vibrational excitation in the perpendicular mode

This study will focus on the dynamics of two hydrogen atoms following excitation

of one of them in a pure perpendicular mode to the substrate. The two atoms are

assumed to be initially located at two neighboring fcc sites. The vibrational exci-

tation is carried entirely by the second hydrogen atom, the first one being in its

ground state. The aim of this study is to investigate three aspects of the system’s

dynamics: the consequence of the Fermi resonance coupling between perpendicular

and parallel modes on the motion of the excited hydrogen atom in the presence of a

second hydrogen atom in a neighboring fcc site; the dynamical correlation between

the two atoms; the impact of tunneling.

Our approach to constructe the initial state is similar to that used for a single

hydrogen atom. We used the local PES given in appendix C, cancelling out the

coupling term between the pure modes parallel and perpendicular to the substrate.

The eigenstates obtained are three-dimensional states of a single hydrogen atom.

To construct a six-dimensional state in the configuration we wish to study in this

example, we built a new local six-dimensional PES using a local three-dimensional

PES for each hydrogen atom separately. Each of these then evolves in a potential

well surrounding the fcc site in which it is located. No interaction between the two

atoms is taken into account in this PES, so the eigenstates obtained are completely

decoupled. The total wave function is therefore given by the tensor product of the

individual states. Among the obtained eigenstates, we have selected the one in

which the first atom is in its ground state, and the second possesses a quantum of

vibrational excitation in the pure mode perpendicular to the substrate. Using the

mode, the characteristic time of the excitation transfer is given by the energy difference between

levels 8 and 10, i.e. T/2 ≈ 1500 fs.
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same notation as in section 4.2, the initial state writes:

|Ψ0⟩ = N0 |0A⟩ ⊗ |11
A⟩ (5.14)

Such a state is not stationary under the action of the system’s Hamiltonian. Its

total energy is 152 meV. It represents a typical state in which the system may exists

following excitation of one of the two hydrogen atoms in a mode perpendicular to

the substrate.

We propagated this state over 400 fs. Figure 5.10 shows snapshots of the time

evolution of these RPD during this time interval.

Initially, the presence probabilities of both atoms are entirely localized at the two fcc

potential wells. The RPD of the second hydrogen atom has a node in the DOF z in-

dicating a single quantum of vibrational excitation in the pure perpendicular mode.

During this propagation, the first hydrogen atom remains in a quasi-stationary state

at the fcc site. In the following, we first discuss only the time evolution of the RPD

of the second hydrogen atom, a discussion about the dynamics of the first atom will

be given later. At 40 fs, nodal structures appear in the xy-plane indicating a double

excitation in the parallel mode. The local state representing the system at this mo-

ment seems to be given by the superposition of the two pure states 11 and 22(A1).

At 80 fs, presence probabilities appear at two neighbouring hcp sites. We note that

the amplitudes of the RPD at the two sites are not equivalent, being slightly larger

on the hcp site neighbouring to first hydrogen atom12. At the same time, the com-

ponent in the pure state 22(A1) increases, while that on 11 decreases. At 140 fs, the

RPD are again localized mainly around the initial fcc site showing a nodal structure

in the direction perpendicular to the substrate. Nevertheless, presence probabilities

are still noticeable at the neighboring hcp site. The structure of the RPD at this site

is somewhat spread out in the z direction. A more detailed analysis of this structure

(not visible on the figure) shows the presence of a node in the direction perpendicu-

lar to the substrate. Between 140 and 280 fs, the same mechanism seems to repeat,

but with a higher presence probability at next neighboring sites. At 280 fs, nodal

structures in the parallel mode appear at hcp sites that are opposite to the first atom.

12These two potential barriers are not equivalent (figure 3.10).
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Figure 5.10: Snapshots of the time evolution of the RPD of a state with one quantum

of vibrational excitation in the perpendicular mode. The two hydrogen atoms are

initially localized in neighbouring fcc sites.

From the analysis of the time evolution of the system’s RPD, it appears that fol-

lowing excitation of the second hydrogen atom in the pure perpendicular mode, a

population transfer process between the pure states 11 and 22(A1) is rapidly taking

place. This is a direct manifestation of the Fermi resonance coupling between the

latter. To quantify this process more precisely, we calculated the populations of

these two pure modes during propagation. The population of the 22(A1) mode is

obtained by evaluating the square modulus of the projection of the system wave

function onto this mode. This state has been constructed in a similar way to the

initial wave function. The 11 mode population is obtained directly by calculating

the autocorrelation function. Figure 5.11 shows the obtained results.



Chapter 5 Time-dependent study : Quantum dynamics of H/Pd(111) and H2/Pd(111)137

 0

 0.5

 1

 0  200

P
o

p
u

la
ti
o

n
 

t (fs)

Mode 1
1

Mode 2
2

Figure 5.11: Time evolution of the pure states 11 and 22(A1) populations.

At t=0, the population of state 22(A1) is zero, since the latter is orthogonal to the

pure state 11. The variation in the populations of the two states over time appears to

be complementary (with a slight shift). This demonstrates the process of population

transfer between the two pure states. The fact that the latter do not vary perfectly

in phase opposition shows that population transfer to other modes also takes place

during propagation. Both populations have a quasi-oscillatory character, with a

quasi-period of 140 fs. This corresponds to the breathing motion observed on the

system’s RPD in figure 5.10. The origin of these oscillations, as we pointed out in

section 5.2, potentially comes from the time evolution of the superposition of two

(or more) eigenstates of the system. The latter must possess an energy gap given by

∆E = 2πh̄/T ≈ 29.3 meV. A spectral decomposition is required to identify the set

of eigenstates involved in the system dynamics. To this end, we have evaluated the

projection of this state onto the set of eigenstates we have calculated in this study.

Figure 5.12 shows the population corresponding to each level, the latter is obtained

by summing over the populations of the 54 states in each level.

This decomposition shows that the system’s wave function contains mainly compo-

nents on the eigenstates of levels 19 (0A [11 + 22]A)+
I and 20 (0A [11 + 22]A)−

I . The

latter correspond to states located mainly at fcc sites and possessing a quantum of

vibrational excitation in the perpendicular mode. The energy difference between

the levels of all non vanishing components in the spectral decomposition of this

state do not correspond to the energy gap causing the oscillation observed during

the propagation. Furthermore, the sum of all populations calculated is 0.47, which

represents 47% of the total population. This shows that the eigenstate basis we have
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Figure 5.12: Populations of sub-levels. The latter are obtained by summing the

populations of all the (quasi-)degenerate states belonging to each sub-level.

calculated is not complete for the description of this state. The latter has probably

non-zero components on higher-energy eigenstates.

The Fourier transform of the autocorrelation function gives the spectral energy den-

sity of the system [51] , which has peaks around the eigenstate energies that con-

tribute most to the system’s dynamics during propagation. Figure 5.13 shows the

result obtained by calculating the latter over an energy range between 400 and 500

meV13.
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Figure 5.13: Energy spectral density (arbitrary units) obtained by the Fourier trans-

form of the autocorrelation function.

The function obtained has two significant signals located around 448 meV and 477

meV14. After subtracting the ZPE, the energy of the first band is around 116 meV

13The aim is to cover the complementary part of the spectrum up to the optimum value for

potential representation, i.e. 500 meV.

14The Fourier transform of the autocorrelation function gives spectral densities that are all the
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and that of the second is around 145 meV. The first value corresponds to the average

energy of levels 19 and 2015, which is in agreement with the spectral decomposition

shown in figure 5.12. The second value is above the energy range covered by our cal-

culations of eigenstates. In particular, the energy difference between the two bands

is 29 meV. This corresponds roughly to the energy gap between the two presumably

oscillation-inducing states in the system’s wave function. This energy might corre-

spond to the energy gap of the states forming the Fermi resonance diad, of which

levels 19 and 20 are the lowest components. As highlighted in the study of a single

hydrogen atom, the dynamics of the latter following excitation in a perpendicular

mode will be governed primarily by an oscillatory behavior with period related to

the energy gap between states forming Fermi resonance pairs.

The damping of the oscillation amplitude in the system’s autocorrelation function

implicitly reflects a tunneling process whereby part of the wave function is trans-

ferred to neighboring hcp sites via tunneling each time it hits a potential barrier.

This leads to the progressive delocalization of the probability density on the other

adsoption sites of the substrate as function of time.

To conclude, the excitation of one of the two hydrogen atoms in a mode perpendic-

ular to the substrate is accompanied by the dynamics similar to that of an isolated

hydrogen atom in short propagation times. This is mainly governed by a Fermi

resonance coupling mechanism, linking the in-plane breathing motion to the motion

of the hydrogen atom along the z DOF perpendicular to the substrate. This motion

is simultaneously accompanied by a tunneling process leading to the progressive

spreading of the wave function on other nearby sites. The unexcited hydrogen atom

remains in a quasi-stationary state during this time interval. We have not observed

any significant correlation between the two atoms involving energy transfer simi-

lar to that described in the previous study. These correlations might actually still

be present, but on a longer time scale compared to the propagation done in this

study. Indeed, in the previous study, we showed that the energy gap between levels

more precise the longer the integration domain, i.e. the longer the propagation. Integration over

several ps transforms broadband signals into peaks centered around discrete energies.

15A more accurate representation should reveal two distinct peaks
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7 and 13 is directly related to the time required to transfer a quantum of vibrational

excitation from one atom to another. The larger the gap, the shorter the energy

exchange time. In the system studied here, we estimate that the time required to

transfer a quantum of vibrational excitation in the perpendicular mode is linked to

the energy difference between levels 19 and 20, which is around 0.66 meV. A char-

acteristic time related to this energy difference is around 6.2 ps16. We estimate that

beyond 3 ps, a vibrational excitation transfer mechanism could take place between

the perpendicular modes of two hydrogen atoms.

5.3.3 Propagation of a local AB-state with one quantum of

vibrational excitation in the parallel mode

In this last section, we present a study on the dynamics of two hydrogen atoms

following excitation of one of them in a mode parallel to the substrate. Initially,

the two atoms are considered to be located at neighboring fcc and hcp sites, and

the vibrational excitation is carried by the atom located at the fcc site. We saw

in section 4.4 that when the two atoms occupy neighboring fcc and hcp sites (AB

configuration), on one hand they are less strongly coupled than in the case of the AA

(or BB) configuration. On the other hand, we saw that tunneling could potentially

affect both atoms, leading to a double tunneling process. The aim of this study

is to investigate the dynamics of the two atoms in this type of configuration. In

particular, we wish to investigate the possibility of excitation transfer between the

two atoms, as well as the concerted tunneling process.

The initial wave function was constructed from the individual eigenfunctions of an

isolated hydrogen atom. The approach used for its construction is similar to that

described in the previous study. Using the same labels as in section 4.2, the initial

state is defined as

|Ψ0⟩ = N0 |21
A⟩ ⊗ |0B⟩ (5.15)

With N0 a normalization constant.

The total energy of this state is 124 meV. It is propagated over 700 fs. Figure 5.14

16Propagation of this system took around 100h of computation time on relatively powerful

machines. A 4 ps propagation, for example, will require at least 1000h of computation time.
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shows snapshots of the evolution of the RPD of the two hydrogen atoms during

propagation.

At t=0, the RPD in the xy-plane of the first atom has a nodal structure corre-

sponding to a single quantum of vibrational excitation in the parallel mode to the

substrate. The RPD of the second atom have a node-less structure corresponding to

a non-excited state. After 80 fs, the RPD of the first atom begin to exhibit non-zero

amplitudes at the two next neighboring hcp potential wells. This indicates a proba-

bilities for the hydrogen atom to move towards the two hcp sites next neighbouring

the first atom. During this time, the second atom remains localized at its initial site.

At 160 fs, the RPD of the first atom show higher presence probabilities at the two

next neighbouring hcp sites, and a nodal structure appears in the z mode, indicating

that this hydrogen atom is likely to be excited in the mode perpendicular to the

substrate at these sites. The wave function of the second hydrogen atom begins to

delocalize towards the fcc sites neighbouring the initial site in which the first atom is

initially localized. At 300 fs, the RPD of the first atom seem to stagnate, but there

is an increase of presence probability at both hcp sites. The RPD of the second

hydrogen atom show non-zero amplitudes at the two fcc sites adjacent to the first

atom. There is also a small presence probability at the potential barrier leading to

a non-neighboring fcc site. At 520 fs, the amplitudes of the RPD of the first atom

begin to decrease again at the hcp sites, indicating the start of reverse dynamics

returning the first atom wave function to its initial site. Meanwhile, the probability

of the second hydrogen atom continues to increase at its initial site. It can be seen

that the structures of the RPD at neighboring fcc sites all have nodal structures.

This indicates that the passage of this atom to neighboring sites is accompanied by

a gain of a quantum of vibrational excitation in a mode parallel to the substrate.

At 700 fs, the RPD of the first atom again show presence probabilities concentrated

exclusively around the initial fcc site. However, the initial nodal structure is less

present.



142 5.3 Quantum dynamics of H2/Pd(111)

Ρ(x1,z1) / Å
−2

 0 fs 

−3  0  3

 0

 1

 2

z
1
/ 

Å

 0

 0.75

−6 −3  0  3  6
x1 / Å

−3

 0

 3

y
1
 /

 Å

 0

 0.75

Ρ(x1,y1) / Å
−2

−6 −3  0  3  6
x1 / Å

−3

 0

 3

y
1
 /

 Å

Ρ(x2,z2) / Å
−2

 0 fs 

−3  0  3

 0

 1

 2

z
2
/ 

Å

 0

 0.75

−6 −3  0  3  6
x2 / Å

−3

 0

 3

y
2
 /

 Å

 0

 0.75

Ρ(x2,y2) / Å
−2

−6 −3  0  3  6
x2 / Å

−3

 0

 3

y
2
 /

 Å

Ρ(x1,z1) / Å
−2

 80 fs 

−3  0  3

 0

 1

 2

z
1
/ 

Å

 0

 0.75

−6 −3  0  3  6
x1 / Å

−3

 0

 3

y
1
 /

 Å

 0

 0.75

Ρ(x1,y1) / Å
−2

−6 −3  0  3  6
x1 / Å

−3

 0

 3

y
1
 /

 Å

Ρ(x2,z2) / Å
−2

 80 fs 

−3  0  3

 0

 1

 2

z
2
/ 

Å

 0

 0.75

−6 −3  0  3  6
x2 / Å

−3

 0

 3
y

2
 /

 Å

 0

 0.75

Ρ(x2,y2) / Å
−2

−6 −3  0  3  6
x2 / Å

−3

 0

 3
y

2
 /

 Å

Ρ(x1,z1) / Å
−2

 160 fs 

−3  0  3

 0

 1

 2

z
1
/ 

Å

 0

 0.75

−6 −3  0  3  6
x1 / Å

−3

 0

 3

y
1
 /

 Å

 0

 0.75

Ρ(x1,y1) / Å
−2

−6 −3  0  3  6
x1 / Å

−3

 0

 3

y
1
 /

 Å

Ρ(x2,z2) / Å
−2

 160 fs 

−3  0  3

 0

 1

 2

z
2
/ 

Å

 0

 0.75

−6 −3  0  3  6
x2 / Å

−3

 0

 3

y
2
 /

 Å

 0

 0.75

Ρ(x2,y2) / Å
−2

−6 −3  0  3  6
x2 / Å

−3

 0

 3

y
2
 /

 Å

Ρ(x1,z1) / Å
−2

 300 fs 

−3  0  3

 0

 1

 2

z
1
/ 

Å

 0

 0.75

−6 −3  0  3  6
x1 / Å

−3

 0

 3

y
1
 /

 Å

 0

 0.75

Ρ(x1,y1) / Å
−2

−6 −3  0  3  6
x1 / Å

−3

 0

 3

y
1
 /

 Å

Ρ(x2,z2) / Å
−2

 300 fs 

−3  0  3

 0

 1

 2

z
2
/ 

Å

 0

 0.75

−6 −3  0  3  6
x2 / Å

−3

 0

 3

y
2
 /

 Å

 0

 0.75

Ρ(x2,y2) / Å
−2

−6 −3  0  3  6
x2 / Å

−3

 0

 3

y
2
 /

 Å



Chapter 5 Time-dependent study : Quantum dynamics of H/Pd(111) and H2/Pd(111)143

Ρ(x1,z1) / Å
−2

 520 fs 

−3  0  3

 0

 1

 2

z
1
/ 

Å

 0

 0.75

−6 −3  0  3  6
x1 / Å

−3

 0

 3

y
1
 /

 Å

 0

 0.75

Ρ(x1,y1) / Å
−2

−6 −3  0  3  6
x1 / Å

−3

 0

 3

y
1
 /

 Å

Ρ(x2,z2) / Å
−2

 520 fs 

−3  0  3

 0

 1

 2

z
2
/ 

Å

 0

 0.75

−6 −3  0  3  6
x2 / Å

−3

 0

 3

y
2
 /

 Å

 0

 0.75

Ρ(x2,y2) / Å
−2

−6 −3  0  3  6
x2 / Å

−3

 0

 3

y
2
 /

 Å

Ρ(x1,z1) / Å
−2

 700 fs 

−3  0  3

 0

 1

 2

z
1
/ 

Å

 0

 0.75

−6 −3  0  3  6
x1 / Å

−3

 0

 3

y
1
 /

 Å

 0

 0.75

Ρ(x1,y1) / Å
−2

−6 −3  0  3  6
x1 / Å

−3

 0

 3

y
1
 /

 Å

Ρ(x2,z2) / Å
−2

 700 fs 

−3  0  3

 0

 1

 2

z
2
/ 

Å

 0

 0.75

−6 −3  0  3  6
x2 / Å

−3

 0

 3

y
2
 /

 Å

 0

 0.75

Ρ(x2,y2) / Å
−2

−6 −3  0  3  6
x2 / Å

−3

 0

 3

y
2
 /

 Å

Figure 5.14: Snapshots of the time evolution of the RPD of a state with one quantum

of vibrational excitation in the parallel mode 2. The two hydrogen atoms are initially

localized in neighbouring fcc and hcp sites.

Analysis of the time evolution of the RPD shows that, following excitation of the

hydrogen atom located at the fcc site, the latter can initiate a dynamic towards one

of the fcc sites neighbouring the second atom in less than 100 fs. The probability of

the second atom leaving its initial site seems to vary more slowly than that of the

first. To assess these quantities more accurately, we calculated the probability that

each atom occupies the two neighbouring sites over time. To do this, we constructed

two box operators in a similar way to that given in equation 5.3. In the first case,

we positioned two boxes around the two neighbouring hcp sites of the first atom, as

shown in figure 5.15a.
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Figure 5.15: Schematic representations of the box of volume V in which presence

probabilities are evaluated.

The average value of this operator therefore gives us the probability of occupation

of the two hcp sites by the first hydrogen atom. In the second case, we positioned

the latter around the other two fcc sites (figure 5.15b). The average value of this

operator gives the probability of occupation of the two fcc sites by the second atom.

Figure 5.16 shows the results obtained for both operators.
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Figure 5.16: Time evolution of the presence probability at the hcp (a) and fcc (b)

sites indicated in figures 5.15a and 5.15b respectively.

The figure 5.16a shows that for the first hydrogen atom, the occupancy probability

of the two neighboring hcp sites peaks at around 280 fs, while that of the second

atom reaches its maximum around 500 fs (figure 5.16b). This indicates that, in

terms of probabilities, the dynamics is first triggered by the hydrogen atom initially

excited at an fcc site, and is then accompanied by the dynamics of the second atom

towards neighbouring fcc sites. If we restrict ourselves to the structures of RPD
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only at the two next neighbouring sites, we can see that, for each atom, the proba-

bility of moving to any one of these two sites is totally equivalent over this period

of time. This simply reflects the local symmetry of the potential, which means

that the two potential barriers are initially equivalent, as illustrated in figure 3.10

in section 3.2.2. The quantum nature of these atoms does not allow us to deter-

mine the trajectory they may follow over time. The structure of RPD suggests a

multitude of possibilities for the simultaneous motion of the two hydrogen atoms.

The information we can extract by analyzing these functions can help us to con-

struct certain classical dynamical scenarios. One possible scenario is that the first

hydrogen atom initially leaves an fcc site for a next neighboring hcp site. This is

accompanied by the passage of the second atom either to an fcc site diametrically

opposite the new hcp site occupied by the first atom which we termed neighbouring

fcc site, or to the other non-neighbouring fcc site. The delay observed between the

dynamics of the two atoms is the time needed for energy transfer to occur : the first

one is transferring energy to the second one after moving to the neighbouring fcc

site. Indeed, the passage of the second hydrogen atom from one site to the other

is accompanied by a gain of a quantum of vibrational excitation in a mode paral-

lel to the substrate, which is a vibrational excitation transfer between the two atoms.

This study gives an insight into the dynamics that hydrogen atoms can exhibit

following excitation in this type of configuration. As the spectral decomposition

of this state is relatively broad, we cannot directly deduce the contribution of the

individual eigenstates in each level in the system’s dynamical behavior. However,

we can conclude that the excitation of the hydrogen atom located at the fcc site

generates via tunneling of the AB-type a high probability of dynamics for both

atoms, leading them to leave their initial sites and diffuse along the surface.





Chapter 6

Diffusion of hydrogen atoms on

the Pd(111) surface : The

Intermediate Scattering Function

The diffusion of adsorbed particles on solid surfaces is an important kinematic pro-

cess occurring at the gas/solid interface. It is relevant for technological applications

of current interest such as molecular storage [4] and machines working at the scale of

nanometers [52]. In particular, its importance to heterogeneous catalysis has been

evoked for decades [53, 54]. The main and obvious reason is that when adsorbed

reactants first meet the solid interface catalyst, they do not necessarily attach on the

most favourable coordination sites and have hence to move there before the actual

catalytic reaction step takes place. Unless this motion is controlled or guided by an

external means, it is governed by diffusion.

Surface diffusion is a two dimensional stochastic motion of particles, whose mean

square displacement, is in Brownian regime, a linearly increasing function of time

t: ⟨r2⟩ (t) = 4Dt [55]. In this equation, D is the diffusion coefficient. The diffusion

coefficient of an adsorbate is a material property that is essentially governed by the

stochastic interaction of particle with its environment; one aspect of this interaction

is dictated by the topography of the potential energy surfaces (PES) underlying

the dynamics of the adsorbates. The other aspect is friction. In the present study,

we shall neglect friction. This is an approximation of the real situation which is

147
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expected to hold well for times much shorter than typical collision times rendering

friction. For hydrogen on palladium, these times are on the order of the picosecond

or beyond [25, 56].

The experimental determination of diffusion coefficients is not easy. The perhaps

most accurate method currently applied to assess experimentally diffusion coeffi-

cients are helium-3 spin-echo experiments (3HeSE) [3]. However, to extract them

from the measured data, and beyond that to deduce from data on the topography of

the PES of catalytic surfaces, many intermediate modeling steps have to be carried

out. The experimental results from the 3HeSE experiments rely on the evaluation

of the dynamical structure factor (DSF), first introduced by van Hove [8], or on its

Fourier-transform, the intermediate scattering function (ISF). Rather than focusing

on the diffusion coefficient directly, research is now concentrated on the evaluation

and interpretation of the directly observable DSF and ISF, as clearly described in

ref. [3].

In this chapter, we present a method for calculating the ISF function using a fully

quantum mechanical approach. The latter will be discussed mainly for the case of a

single scattering particle suitable for the treatment of the H/Pd(111) system. The

generalization of the approach can be established without difficulty. We will first

present the theoretical approach used, then give the results of a preliminary study

carried out in this project for the H/Pd(111) system.

6.1 Quantum mechanical expression for the ISF

from stochastic thermal wave packets

6.1.1 Theoretical model

The ISF I(q, t) measured in 3HeSE experiments is the temporal Fourier transform of

the DSF S(q, E), where q stands for the momentum transferred from the scattered
3He atoms to the hydrogen atom moving on the surface, E and t are energy and

time respectively. For the latter, van Hove [8] derived the following formula

S(q, E) =
∑

n

Pn

∑
m

∣∣∣∣ ⟨m|eiqr|n⟩
∣∣∣∣2δ(E − (Em − En)) (6.1)
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In this equation, |n⟩ and |m⟩ are eigenstates of the scattering center at energies En

and Em; Pn is the Boltzmann population distribution at temperature T ; r is the

coordinate of the scattering center, in our case the hydrogen atom.

Hence, we write for the ISF:

I(q, t) = 1
2π
∑

n

Pn

∑
m

∣∣∣∣ ⟨m|eiqr|n⟩
∣∣∣∣2ei(Em−En)t/h̄ (6.2)

Following van Hove we interpret

|n(t)⟩ = e−iEnt/h̄ |n⟩ = e−iĤt/h̄ |n(0)⟩ (6.3)

where |n(0)⟩ ≡ |n⟩, and Ĥ is the Hamiltonian of the scattering center. Equation 6.3

is true, as long as |n⟩ are eigenstates and En the corresponding eigenvalues of Ĥ.

Still following van Hove we then write

I(q, t) =
∑

n

Pn

∑
m

⟨n| e−iqr |m⟩ ⟨m| eiĤt/h̄eiqre−iĤt/h̄ |n⟩

=
∑

n

Pn ⟨n| e−iqreiĤt/h̄eiqre−iĤt/h̄ |n⟩

= tr
{
ρ̂(T )e−iqr̂eiĤt/h̄eiqr̂e−iĤt/h̄

}
(6.4)

where ρ̂(T ) = ∑
n
Pn |n⟩ ⟨n| is the density operator of a thermal state.

Equation 6.4 can be evaluated by averaging over an ensemble of stochastic thermal

wave packets. This idea was suggested by Tolman [57] and has been used in the past,

for instance in refs. [58, 59]. We consider wave functions Ψk (k = 1, . . . , K) defined

as linear combinations of the eigenstates of the Hamiltonian, where the coefficients

are given by the square root of the Boltzmann distribution with random phases

θ
(r)
k (n):

|ψ(T )
k ⟩ =

∑
n

eiθk(n)
√

1
Q(T )e

−(En−E1)/kBT |n⟩ , (6.5)

where Q(T ) is the partition function, kB is the Boltzmann constant and T is the

temperature. For a given k, θk(n) is one realization of random phases. Thermal ex-

pectation values of observables are then evaluated as average values of the quantum

expectation value of the given hermitian operator Â in the given random thermal
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wave packet, which is denoted as
〈
Â
〉

k
, where k is the set of random realizations:

tr {ρ̂(T ) Â} =
〈
Â
〉

k
(T ) (6.6)

= 1
K

K∑
k=1

⟨ψ(T )
k | Â |ψ(T )

k ⟩ (6.7)

In this approach, equation 6.4 becomes

I(q, t) = tr
{
ρ̂(T ) e−iqr̂ eiĤt/h̄eiqr̂e−iĤt/h̄

}
=

〈
e−iqr̂ eiĤt/h̄eiqr̂e−iĤt/h̄

〉
k

= 1
K

∑
k

Ik(q, t) (6.8)

where

Ik(q, t) = ⟨ψ(T )
k | e−iqr̂eiĤt/h̄eiqr̂e−iĤt/h̄ |ψ(T )

k ⟩ (6.9)

|ψ(T )
k ⟩ is a stochastic thermal wave packet at temperature T , and k is one realization

of random phases1.

The evaluation of equation 6.9 relies on the determination of a set of stochastic

thermal wave packets. The procedure for constructing these states is described

below.

6.1.2 Construction of a stochastic thermal wave packet

The higher the temperature of a state, the larger the decomposition given in equation

6.5. For states with relatively high temperatures, the use of the eigenstate basis we

calculated for the H/Pd(111) system may be insufficient for a good description of

the state under consideration. We followed a more general method for constructing

such states. This will be briefly discussed in this section.

Gelman and Kosloff have proposed a method for constructing such states without

going through the determination of an eigenstates basis in the first place [59]. This

is a stochastic approach based on the idea that relaxation of an infinite tempera-

ture state |ψ(∞)
k ⟩ over a period of time τ = h̄/(2kbT ) leads to a thermal state at

temperature T .

1In practice, the expectation value might already converge for a few K ≈ 3 ∼ 8 realizations of

random phases.
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To better understand this approach. We will present a brief analytical demonstration

of this method in the eigenstates basis set. Consider the spectral decomposition of

a stochastic infinite temperature state2 in the eigenstates basis {|φ1⟩ , . . . , |φN⟩}

|ψ(∞)
k ⟩ = 1√

N

∑
n

eiθk(n) |φn⟩ , (6.10)

Relaxation is achieved by propagating the wave function with the Schrödinger equa-

tion in negative imaginary time t = −iτ . The time evolution of this state in the

eigenstates basis is given by :

1√
⟨Ψ(τ)|Ψ(τ)⟩

|Ψ(τ)⟩ = 1
(∑

k′
e−2Ek′ τ/h̄)1/2

∑
k

eiθk(n)e−Ekτ/h̄ |φk⟩ (6.11)

By multiplying the numerator and denominator by e2E1τ/h̄ and propagating to τ =

h̄/(2kbT ) we arrive at the expression for a stochastic thermal state

|Ψ(T )⟩ =
∑

k

eiθk(n)
√

1
Q(T )e

−(Ek−E1)/kbT ) |φk⟩ (6.12)

With Q(T ) = ∑
k
e−(Ek−E1)/kbT ) the partition function and kb the Boltzmann constant.

We thus obtain the Boltzmann distribution corresponding to a stochastic thermal

state of temperature T .

For the construction of an infinite temperature state in the general case, it is irrel-

evant whether the thermal density operator is expanded in a basis of eigenstates or

in any other complete basis set. In such a state, all basis states will have the same

weight:

|ψ̃(∞)
k ⟩ = 1√

N

∑
n

eiθ
k (n) |χn⟩ , (6.13)

where {|χ1⟩ , . . . , |χN⟩} is a complete set of basis states in a finite subspace of dimen-

sion N . The approach is numerical and convergence must be secured by increasing

the value of N .

Gelman and Kosloff showed that with propagation in the negative imaginary time

−ih̄/(2kBT ),

|ψ̃(T )
k ⟩ = e−iĤ/(i2kB T ) |ψ̃(∞)

k ⟩ → |ψ(T )
k ⟩ , (6.14)

for K → ∞, while the error decreases with 1/
√
K.

2An infinite temperature state is defined by homogeneous populations over all eigenstates.
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6.2 Numerical implementation

In this section, we present the details of the calculations we followed to evaluate

equation 6.8.

All these calculations were performed on MCTDH. The primitive basis and other

parameters used for these calculations are the same as those used for the time

(in)dependent study of the H/Pd(111) system (section 4.2).

The first step is to construct |ψ(∞)
k ⟩ in the primitive basis. The latter must be given

in the form of a Hartree product involving functions depending on the three DOFs

separately. For each realization k, we construct a unique set of random phases

associated with the grid of each DOF. We then use a similar procedure to that

presented in section 4.1.1 (equation 4.5) to construct the total wave function.

The resulting state is then propagated in negative imagine time given by t = −iτ =

−ih̄/(2kbT ), allowing the system to relax until reaching the temperature T . The

resulting state will serve as the initial state for propagation in real time, and will be

denoted in the following by |ψ(T )
k (0)⟩.

To evaluate equation 6.8, we proceed as follows:

• A first propagation is done on |ψ(T )
k (0)⟩ with the Hamiltonian of the system,

the obtained state is given by |ψ(T )
k (t)⟩ = e−iĤt/h̄ |ψ(T )

k (0)⟩.

• We initially apply the operator eiqr̂ to |ψ(T )
k (0)⟩, then propagate the resulting

state a with the Hamiltonian of the system. The latter is then given by3

|ψk(t)⟩ = e−iĤt/h̄eiqr̂ |ψ(T )
k (0)⟩.

• For each realization k, we evaluate the ISF by calculating the cross integral

given by :

Ik(q, t) =

⟨ψk(t)|︷ ︸︸ ︷
⟨ψ(T )

k (0)| e−iqr̂eiĤt/h̄ eiqr̂ e−iĤt/h̄ |ψ(T )
k (0)⟩︸ ︷︷ ︸

|ψ(T )
k (t)⟩

(6.15)

= ⟨ψk(t)|eiqr̂|ψ(T )
k (t)⟩ (6.16)

3The resulting state by application of the operator eiqr̂ is no longer thermal, it may be "kicked"

thermal state, as it results from a thermal state that received a momentum transfer q.
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• The final ISF result is then obtained by averaging over all realizations K, i.e.

I(q, t) = 1
K

∑
k

Ik(q, t) (6.17)

The evaluation of the ISF given by equation 6.8 has been proposed in the context

of the project QDDA [14] of which this thesis is a part. This formulation from a

fully quantum mechanical approach, provides a method to calculate the ISF directly

without any preliminary knowledge of the system’s eigenbasis. The main ingredient

of this method is the set of stochastic thermal states. The latter present no particular

difficulty for their construction. However, if we wish to evaluate the ISF for several

values of the momentum transfer q, a new calculation of the bra propagation given

in equation 6.16 must be made for each value of q. This can be time-consuming if

an individual propagation requires a lot of numerical resources.

An alternative formulation of the ISF was proposed as part of this project [14], with

the intention to reduce computation time. Here, we briefly discuss a few important

points about this alternative formula. Keeping the same notation as before, the ISF

can be written as

I(q, t) ≈ N
〈〈
J∗

k′,k(q, 0) Jk,k′(q, t)
〉

k

〉
k′

(6.18)

Where N is the number of realizations and

Jk,k′(q, t) = ⟨ψ(∞)
k (0)| eiĤt/h̄eiqr̂e−iĤt/h̄ |ψ(T )

k′ (0)⟩ (6.19)

= ⟨ψ(∞)
k (t)| eiqr̂ |ψ(T )

k′ (t)⟩ (6.20)

The determination of the ISF with this formula relies mainly on the evaluation of

the cross integral Jk,k′(q, t). The advantage of this formulation is that for a single

set of thermal stochastic state realizations, we can evaluate the ISF for any amount

of momentum transfer q between helium atoms and hydrogen atoms. Evaluation of

the bra of equation 6.16, on one hand, requires the propagation of a wave packet

at infinite temperature. These states are energetic, and their propagation generally

takes a long time. On the other hand, this formulation remains more practical for

systems defined on non-large computing grids, where we wish to evaluate the ISF

for a wide range of q. Also equation 6.18 is expected to yield approximate results
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only, that rely on a large number of stochastic realisations. The conditions under

which this equation is valid could not be conclusively verified during this thesis.

The ISF study we carried out on the H/Pd(111) system in this work is based ex-

clusively on equation 6.8. This approach remains the most suitable for this system,

given the size of the grid we use.

6.3 Results & discussion

xt

yt

fcchcp
xa

ay

u

Figure 6.1: Representation of the two Bravais lattice vectors vectors ax and ay in the

hexagonal lattice.u is a unitary direction vector of the momentum transfer q = qu.

In this study, we will consider the situation in which the interaction of the helium

atom with the hydrogen atom induces a momentum transfer in a direction parallel

to a straight line connecting a neighboring fcc and hcp site. Given the local C3v

symmetry of the potential, there are three directions compatible with this type

of interaction. We consider the situation given by q = qu where u is a unitary

direction vector defined in the Cartesian basis by u = (
√

3/2,−1/2, 0). The latter is

illustrated in figure 6.1. The lattice vectors ax and ay are defined along the twisted

axes in the hexagonal lattice of the Bravais representation [60], the crystallographic

direction of the momentum transfer is given by ⟨11̄00⟩. We considered the modulus

q ≈ 0.77Å−1 in this study as representative value of experimental data [61].

Additionally, we considered the situation where the system is thermalized at T = 300

K. As we mentioned in the previous section, the evaluation of the thermal average

of the ISF requires several realizations, each of which involves the propagation of

a non-interacting thermal state with the external system and the propagation of

the thermal state following interaction with the helium atom (the "kicked" thermal
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state). 5 realizations were made in total, for each realization two states were prop-

agated over 30 ps. Each propagation took 80h wall time on 30 nodes in parallelized

mode.

In the following, we will show the dynamics of two typical states used in the set of

realizations. In the last section, we discuss the results obtained for the evaluation

of the ISF of this system.

6.3.1 Quantum dynamics of the stochastic thermal states

Relaxation of an infinite temperature state over a time τ = h̄/(2kbT ) ≈ 12.73 fs

leads to a state at temperature T ≈ 300 K. Figure 6.2 shows the two-dimensional

representation of the RPD of a typical stochastic thermal state we used.
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Figure 6.2: Two-dimensional representation of the RPD of a typical stochastic ther-

mal state at temperature T=300 K.

The energy of this state is 18 meV. It has a rather homogeneous distribution prob-

ability density occupying similarly well almost all adsoption sites on the surface4.

This reflects the thermal character of this state.

To verify the thermal distribution of this state, the eigenstates populations were

evaluated by projecting the thermal wave packet from equation 6.14 on the eigenbasis

already calculated in this work. The populations for each sub-level containing a

4We note that the RPD at some sites are quite small. This is due to the level degeneracy, which

eventually leads the program to localize certain eigenstates of the system, as highlighted in section

4.2.
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set of quasi-degenerate eigenstates was evaluated. These must follow a Boltzmann

distribution for a temperature T = 300 K. Thus:

pk = p1e
−(Ek−E1)/kbT (6.21)

Or

ln
(
pk

p1

)
= − 1

kbT
(Ek − E1) (6.22)

In the second formulation, the logarithm of the population varies linearly with the

energies relative to the ground state, so the slope gives access to the system tem-

perature. This formulation is more suitable for graphical representation. Figure 6.3

shows the results obtained for the state under consideration.

-10
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 0  50  100  150

ln
(p

k
 /
p

1
) 

Ek-E1 / meV

300 K

Figure 6.3: Populations of the stochastic thermal state in the basis of eigenstates

of the H/Pd(111) potential. Circles give level energies and populations, degeneracy

included. The line gives the expected slope at 300 K.

The red line in figure 6.3 shows the population distribution of a perfectly thermal

state at temperature T = 300 K. The populations of the stochastic thermal state

are mainly distributed around the straight line. The relative difference represents

the error in each realization. The latter is stochastic and disappears as soon as

it is averaged over several realizations. The populations of non-excited states (the

first two circles from the origin) and the populations of states with one quantum of

vibrational excitation in the parallel mode (circles around 75 meV) represent around

97% of the total populations of this state (87%+10% respectively). This proportion

is nearly the same for all the stochastic thermal states used in this study. A state at

temperature T = 300 K is still populated mainly in its lowest levels. Stochastic errors

at higher-energy states negligibly affect the description of the system wave function
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over time. We found in this study that after three realizations, the thermal average

of the ISF quickly stabilizes. Five realizations were sufficient to reach convergence.

Evaluating the ISF for each realization requires calculating the time evolution of the

stochastic thermal states with and without interaction with the helium atom. In

the following, an overview of the dynamics of these two states will be given.

Time evolution of the non-interacting stochastic thermal state

Figure 6.4 shows the time evolution of the RPD of the stochastic thermal state

presented in the previous section over the first two picoseconds.

Ρ(x,z) / Å
−2 0 fs 

−3  0  3

 0

 1

 2

z
/ 
Å

 0

 0.3

−6 −3  0  3  6
x / Å

−3

 0

 3

y
 /

 Å

 0

 0.3

Ρ(x,y) / Å
−2

−6 −3  0  3  6
x / Å

−3

 0

 3

y
 /

 Å

Ρ(x,z) / Å
−2 500 fs 

−3  0  3

 0

 1

 2
z
/ 
Å

 0

 0.3

−6 −3  0  3  6
x / Å

−3

 0

 3

y
 /

 Å

 0

 0.3

Ρ(x,y) / Å
−2

−6 −3  0  3  6
x / Å

−3

 0

 3

y
 /

 Å

Ρ(x,z) / Å
−2 1000 fs 

−3  0  3

 0

 1

 2

z
/ 
Å

 0

 0.3

−6 −3  0  3  6
x / Å

−3

 0

 3

y
 /

 Å

 0

 0.3

Ρ(x,y) / Å
−2

−6 −3  0  3  6
x / Å

−3

 0

 3

y
 /

 Å

Ρ(x,z) / Å
−2 2000 fs 

−3  0  3

 0

 1

 2

z
/ 
Å

 0

 0.3

−6 −3  0  3  6
x / Å

−3

 0

 3

y
 /

 Å

 0

 0.3

Ρ(x,y) / Å
−2

−6 −3  0  3  6
x / Å

−3

 0

 3

y
 /

 Å

Figure 6.4: Snapshots of the time evolution of the RPD of a stochastic thermal state

at temperature T=300 K.

During propagation, the RPD remain delocalized at almost all adsoption sites on the

surface. However, the presence probability at each site varies over time, reflecting the

non-stationary nature of this state. We also note that all RPD structures are node-

less, indicating that at this temperature the hydrogen atom remains predominantly

on non-excited levels. Yet, a detailed population analysis of this state shows that

it has non-negligible components in the eigenstates of levels 3 and 4. The latter are
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split into several sub-levels due to tunneling. The dynamics of the hydrogen atom

at this temperature will therefore be partially governed by tunneling.

Time evolution of the interacting stochastic thermal state

As a result of the interaction of the thermal hydrogen atom with the helium atom,

a momentum transfer takes place between the latter, which also modifies the energy

of the system. This leads to a different dynamics than the one presented above. In

the example considered here, the energy of the system after interaction is 37 meV,

representing an energy gain of around 19 meV for the system.

Ρ(x,z) / Å
−2 0 fs 

−3  0  3

 0

 1

 2

z
/ 
Å

 0

 0.3

−6 −3  0  3  6
x / Å

−3

 0

 3

y
 /

 Å

 0

 0.3

Ρ(x,y) / Å
−2

−6 −3  0  3  6
x / Å

−3

 0

 3

y
 /

 Å

Ρ(x,z) / Å
−2 500 fs 

−3  0  3

 0

 1

 2

z
/ 
Å

 0

 0.3

−6 −3  0  3  6
x / Å

−3

 0

 3

y
 /

 Å

 0

 0.3

Ρ(x,y) / Å
−2

−6 −3  0  3  6
x / Å

−3

 0

 3

y
 /

 Å

Ρ(x,z) / Å
−2 1000 fs 

−3  0  3

 0

 1

 2

z
/ 
Å

 0

 0.3

−6 −3  0  3  6
x / Å

−3

 0

 3

y
 /

 Å

 0

 0.3

Ρ(x,y) / Å
−2

−6 −3  0  3  6
x / Å

−3

 0

 3

y
 /

 Å

Ρ(x,z) / Å
−2 2000 fs 

−3  0  3

 0

 1

 2

z
/ 
Å

 0

 0.3

−6 −3  0  3  6
x / Å

−3

 0

 3

y
 /

 Å

 0

 0.3

Ρ(x,y) / Å
−2

−6 −3  0  3  6
x / Å

−3

 0

 3

y
 /

 Å

Figure 6.5: Snapshots of the time evolution of the RPD of a stochastic thermal

state following interaction with a helium atom. The latter is initially prepared at

temperature T=300 K.

The state given in figure 6.2 is used as an IWF to which we apply the operator eiqr̂

with the parameter defined above. This state is then propagated in time with the

system’s Hamiltonian. Figure 6.5 shows the time evolution of the RPD during the

first two picoseconds.

The RPD of this state have larger amplitudes in the more energetic regions of the
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surface. In particular, there is a non-negligible probability to find hydrogen atoms

at potential barriers over time. At 1 ps, nodal structures appear at certain fcc sites,

indicating the probability of excitation of the hydrogen atom in a parallel mode to

the substrate.

We can thus see that the interaction of the hydrogen atom with the helium atom

leads to a different dynamics from the one it would have adopted in this time frame

in the absence of external perturbation (the "kick"). This difference in this behaviour

of the hydrogen atom is the key element in the evaluation of the ISF, which implicitly

infers correlations between the "kicked" and "unkicked" state evolution.

6.3.2 Results for the ISF

The ISF is calculated by averaging over all realisations. We are particularly inter-

ested in the real part of the normalized ISF

Px(q, t) = Re
[
I(q, t)
I(q, 0)

]
(6.23)

This function is related to the loss of polarization at helium atoms scattered at the

surface, that can be measured directly in spin echo experiments. Detailed explana-

tions of this relation and a thorough description of this method are given in [3]. In

the following, we will only recall some key points concerning the meaning of this

quantity.

In spin echo experiments, the nuclear spins of helium atoms are initially polarized in

a given direction. The two spin components are then separated by a magnetic field so

that the wave packet representing each atom is given by a coherent superposition of

spin components parallel and anti-parallel to the applied field. As they have different

energies, the two components move at different speeds and reach the surface with a

relative delay. If the surface does not change during this time, the two components

of the wave packet will scatter identically and recombine to regenerate their original

spin orientation, so there will be no loss of polarization. Otherwise, the two spin

components will be scattered differently and the recombined wave packet will not

have the same final state, so a loss of polarization is observed. In these experiments,

measurements are made on many helium atoms belonging to the same beam. By
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averaging the results obtained, a component of the polarization is evaluated over

this time, corresponding to Px(q, t), which we evaluate with equation 6.23.

The polarization Px(q, t) is evaluated in this study over 30 ps. The obtained result

is shown in figure 6.6.
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Figure 6.6: Polarization decays Px(q, t) for H/Pd(111) along ⟨11̄00⟩ (q = |q| =

0.77Å−1). Theoretical results from Eq. 6.8 using K = 5 random initial states

(continuous line). T = 300 K. Broken lines are exponential decaying functions

used to rationalize the data (see text): the long dashed line is for a decay constant

kenv ≈ 0.05 ps−1, the short dashed line is for a decay constant kdiss = 1.9 ps−1.

The variations in Px(q, t) show short-term oscillations, which decrease relatively

rapidly; they generally correspond to vibrational modes of the hydrogen atom [3].

Negative values of the polarization are observed between 6 ps and 20 ps. The

general shape of the function is aperiodic and decreasing with time, probably tending

towards a zero value at longer times. This reflects aperiodic loss of surface correlation

with time which can generally be related to diffusion.

The speed rate at which this function decreases with time depends on the diffusion

mechanism. In the situation where the decay of this function is exponential, diffusion

coefficients D can be extracted from these simulations. The example we have taken

in this study is a first attempt to determine the ISF in the formulation proposed in

this project. Further tests on longer timescales and different values of q and T need
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to be carried out to compare the results of this model fully with the experimental

data.

However, some very preliminary comparison can be carried out at this stage of the

investigation. First of all, it is conceivable that the two maximal values of the ISF

shown in the time interval of figure 6.6 lie on an exponential decay function. Indeed,

in the analysis of the experimental data, mono- or multi-exponential decay functions

are adjusted to the decay of the ISF in order to determine the so-called dephasing

rate α. That rate is in fact a rather complex function of several factors, including

friction coefficients. The rate determined from adapting a single exponential decay

to the envelope function from figure 6.6 yields kenv ≈ 0.05 ps−1.

Peter Townsend investigated the hydrogen on palladium system in his thesis [62].

In figure 6.30 of his thesis manuscript he reports on values for the dephasing rate as

a function of q at a surface temperature of 350 K. For the direction corresponding

to the ⟨11̄00⟩ direction investigated here (the ⟨11⟩ azimuth in Townsend’s thesis),

one finds at the value q ≈ 0.8Å−1 the value α ≈ 0.05 ps−1. Indeed, the source

data for this value are reproduced in figure 6.27a of Townsend’s thesis in the form

of a decaying ISF function. The experimental function misses the negative values

calculated in figure 6.6 above, but is otherwise rather consistent with theory in

respect to the time scales and also the initial oscillatory behavior.

In the present theory friction is neglected. It is highly reasonable to say that friction

will lead to an additional damping of the ISF. The short dashed exponential decay

function plotted in superposition to the numerical function in figure 6.6 represents

one possibility of such an additional decay with a friction rate of about 2 ps−1,

which was calculated to hold for hydrogen on palladium [56]. This friction rate

might be unrealistically large, yet it shows that additional damping can lead to a

more monotonous decay of the ISF.

The exact matching of the decay rate of the ISF enveloping function and the exper-

imental dephasing rate is very likely fortuitous. Further investigation is needed in

any case at this point to elucidate the behavior disclosed by the present calculations

and to compare them with experimental data. The essential aspect of the present

findings is, however, that the ISF decays, despite the absence of friction, in a time
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scale that is comparable with experimental findings. And that this decay is entirely

due to the quantum mechanical evolution of thermal wave packets.



Chapter 7

Conclusion

The theoretical study of the vibrational spectroscopy carried out in this thesis has

provided a powerful means to understand on one hand, the structure of the vi-

brational eigenstates of one and two hydrogen atoms adsorbed on the palladium

Pd(111) surface, on the other hand, this understanding allows us to rationalize the

intricate quantum dynamical behaviour of these atoms on the surface. the following

points summarize the key findings and implications of this research:

• The theoretical study of the vibrational spectroscopy of a single hydrogen

atom adsorbed on the palladium surface revealed the presence of tunneling

affecting all excited vibrational states. The latter manifested itself in a variety

of ways across different potential barriers, leading to multiple splittings of

several energy levels into sub-levels with relative gaps ranging from 1 meV to

8 meV.

The study also confirmed the existence of Fermi resonance between local vi-

brational mode of single hydrogen atoms where a state with a single quantum

of vibrational excitation perpendicular to the substrate strongly couples with

a state carrying two quanta of vibrational excitation parallel to the substrate.

The interaction between these two vibrational states results in the formation

of Fermi pairs of stationary states possessing vibrational excitations perpen-

dicular and parallel to the substrate simultaneously.

• The theoretical study of the vibrational spectroscopy of H2/Pd(111) has shown
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that in situations where the two hydrogen atoms occupy neighboring adsorp-

tion sites of the same type, excitation of the system systematically manifests

itself on both atoms. The latter then adopt concerted modes of vibration in

phase and out-of-phase, thus demonstrating the presence of a strong correla-

tion between the two atoms. In cases where the latter occupy sites of different

types, the vibrational excitations were observed only on one of the two atoms,

indicating a weaker correlation in this type of configuration.

In both cases, the presence of a second hydrogen atom in the vicinity sig-

nificantly changes the spectrum of the system. In particular, we found that

the potential barriers separating the different sites are significant, leading to

a much less pronounced tunneling effect than that observed on the isolated

hydrogen atom.

The Fermi resonance, as observed on an isolated hydrogen atom remains locally

present on each atom despite the strong interactions between them when they

occupy neighboring sites of the same type. This also shows the persistence of

the intensity of local interactions between the internal vibrational modes of

each hydrogen atom.

• The integration of quantum dynamics in this study has enabled us to gain

a deeper understanding of the quantum processes underlying the vibrational

eigenstate structure of the systems. We considered several numerical simula-

tions highlighting the manifestation of tunneling and Fermi resonance in the

dynamical behavior of hydrogen atoms on the palladium surface. Three major

findings emerged from these studies:

– The dynamics of hydrogen atoms involving a translational motion parallel

to the substrate toward other adsorption sites on the surface following

excitation is governed mainly by tunneling through potential barriers.

This is much more important in the case of an isolated hydrogen atom.

– Fermi resonance as predicted in this study, couples the perpendicular and

in-plane breathing motion. When a hydrogen atom is excited in a mode

perpendicular to the substrate, the vibrational excitation alternates in

time between parallel and perpendicular modes. The quasi-periodicity
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of these purely quantum motions is directly related to the energy gap

between the Fermi pair states within the system.

– The excitation of a hydrogen atom leads to a systematic transfer of energy

to the neighboring hydrogen atom on the time scale of a few hundredths

of femtoseconds, if the latter occupies a neighboring site of the same type.

The transfer time of this energy is directly related to the energies of the

vibrational states corresponding to the same type of excitation.

• The method for the calculation of the intermediate scattering function (ISF)

used in this thesis enables to directly link experimental observations in spin-

echo experiments to the quantum mechanical view of diffusion. The prelimi-

nary study we have carried out in this project represents a first step towards

understanding these mechanisms. Further work is planned to extract scatter-

ing coefficients from numerical simulations, while accurately describing all the

mechanisms taking place on the femtosecond scale.

The calculation of the vibrational eigenstate and quantum dynamics carried out

in this study presented a real challenge for numerical computation, indeed. The

interatomic interactions between hydrogen atoms and the substrate atoms are of

a very complex nature. The duality between the strong correlation involving the

internal and external degrees of freedom of each hydrogen atom renders the calcula-

tion of the time dependent and time independent dynamics very costly. The choice

of ’good’ basis vectors with mode combinations suitable for this type of interaction

was essential for accomplishment of the calculations. The long-range interactions

between the hydrogen atoms mean that large periodic calculation cells are required

to model the system correctly, necessitating very large primitive bases. This makes

the study of the dynamics of these systems on the picosecond time scale extremely

costly numerically, given the time step needed to guarantee accurate calculations.

The knowledge gained from this thesis opens up new opportunities for future re-

search. To name but a few:

• the evaluation of the impact of dissipation and friction; three main sources

can be targeted, in this respect, namely the interaction between more than

two adsorbed hydrogen atoms, the interaction with moving palladium atoms
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(phonon-couplings), and the interactions with the surrounding electrons from

the break-down of the Born-Oppenheimer approximation (couplings to electron-

hole pairs);

• a precise theoretical assessment of the complicated HREELS spectrum of

hydrogen on palladium; ideas have been explored in this thesis, results are

promising but absent in this manuscript, as they need further investigation;

• the study of the para and ortho modifications of adsorbed H2, and the subtle

mechanism of their interconversion adsoption upon adsorption via inclusion of

the weak hyperfine coupling; to this end, however, the numerical accuracy will

need to be increased by at least two orders of magnitude.

Ultimately, this research highlights the profound interconnection between vibra-

tional spectroscopy and quantum dynamics, two fields that mutually enrich each

other to provide a deeper understanding of molecular phenomena at the interface

between solid materials and their environment.



Appendix A

Details on construction of the

H2/Pd(111) PES

The strategy adopted in many quantum molecular dynamical studies is to build first

a potential energy surface (PES) from a database obtained from DFT calculations

then carry out quantum dynamics calculations with it. In its most general form, the

PES of the H2/Pd(111) system is a six-dimensional hypersurface. It was developed

by W. Dong et al. [22]. The construction of this PES was done in two steps. First,

the generation of the database which consists in calculating the system energy along

several well-chosen pathways of the dissociative adsorption of H2 on Pd(111) by

using the density functional theory (DFT). Then fitting the obtained database on an

adequate interatomic potential. The type of interatomic potential they have chosen

is based on the Reactive Force Fields (RFFs) approach developed by Brenner [38],

which confers to the potential a fully analytical formula.

In the following, we will give some important details about the construction of this

PES. A more detailed description is given in [22, 23]

A.1 Energy calculations and database

The calculation of the system energies used for fitting was carried out using an

approach based on DFT calculations with the generalized gradient approximation

(GGA) of Perdew and Wang (PW91) [63]. Plane waves basis were used for expand-
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ing the wave functions and the electron-ion interaction is described by ultrasoft

pseudopotentials proposed by Vanderbilt [64]. The calculations were made on a

slab of five Pd layers with a (3×3) Pd(111) surface cell and a vacuum space cor-

responding to five Pd layers used to avoid the interaction between the slab and its

periodic images. The displacements of the Palladium atoms were taken into account

in these calculations, more particularly the displacement outward (to the gas phase)

of either one Pd atom or all the Pd atoms in the topmost layer by 0.1 Å from their

equilibrium positions. The set of the computed energies constitute the database

used for the fit.

A.2 Analytical representation of the PES

An approach based on the reactive bond order (REBO) force field was used by the

authors to the parametrization of the PES. In the following, the analytical formula

including the parameters used to describe the PES will be exposed.

In its most general form, the potential energy of a system can be written as

E = Enr + Er (A.1)

Er if the RFF contribution and Enr correponds to a non-bonding potential. The

RFF term is also given by the sum of two terms

Er = Erep + Ebond (A.2)

Erep and Ebond are the repulsive part and the bond energy respectively. The bond

energy, Ebond, describes the bonding between atoms and is the crucial part of a RFF.

Dong showed that the use of the REBO force field approach leads to a significantly

better description of reaction dynamics for the H2/Pd(111) system compared to

other approaches like the Second Moment Approximation (SMA) [65, 66]. In this

case, the RFF term of the potential can be expressed in terms of bond order using

Brenner’s REBO potential

Er =
n∑

α=1

n∑
β=α

Nα∑
i=1

Nβ∑
j=1

(j>i, if α=β)

[
V R

αβ(rαβ
ij ) − b

αβ

ij hαβ(rαβ
ij )

]
(A.3)
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V R
αβ(rαβ

ij ) and hαβ(rαβ
ij ) represent respectively the repulsive potential and hopping

integral. They are given by the following

V R
αβ(rαβ

ij ) = Aαβfαβ(rαβ
ij )

1 + Bαβ

rαβ
ij

 e−σαβrαβ
ij (A.4)

hαβ(rαβ
ij ) = Cαβfαβ(rαβ

ij )e−ωαβrαβ
ij (A.5)

Aαβ, Bαβ, Cαβ, σαβ and ωαβ are constant parameters to be calculated by fitting.

fαβ(rαβ
ij ) are the cutoff functions defined by

fαβ(rαβ
ij ) =


1,

1
2

(
1 + cos[π(rαβ

ij − rαβ
s1 )/(rαβ

s2 − rαβ
s1 )]

)
,

0,

rαβ
ij ≤ rαβ

s1

rαβ
s1 < rαβ

ij ≤ rαβ
s2

rαβ
ij > rαβ

s2

(A.6)

rαβ
s1 is the starting cutoff distance from which the potential is attenuated gradually

and rαβ
s2 if the cutoff distance beyond which there is no interaction.

b
αβ

ij is the symmetrized bond order term that describes the effect of chemical envi-

ronment on the bonding strength between the ith atoms of species α and the jth

atom of species β. This term is defined by

b
αβ

ij = 1
2(bαβ

ij − bβα
ji ) (A.7)

where

bαβ
ij =

1 +
n∑

γ=1

Nγ∑
k=1

(k ̸=i, if γ=α)
(k ̸=j, if γ=β)

fαβ(rαγ
ik )gαβγ(cos θijk)e−λαβγ (rαγ

ik − rαβ
ij )



− 1
2

(A.8)

θijk is the bond angle between the bonds ij and ik and gαβγ(cos θijk) is defined by

a third-degree polynomial given by

gαβγ(y) = aαβγ
0 + aαβγ

1 (1 + y) + aαβγ
2 (1 + y)2 + aαβγ

3 (1 + y)3 (A.9)

The set of the total parameters used for the REBO potentials are given in table A.1.

One sees that fifteen parameters are needed for the two-body interactions : Pd-Pd,

Pd-H and H-H needed for Eqs. A.4 and A.5 , twenty parameters for the three-body
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Interaction A (eV) B (Å) C (eV) σ (Å−1) ω (Å−1) rs1 (Å) rs2 (Å)

Pd–Pd 127.968 33.893 88.164 2.937 1.108 3.2 3.3

Pd–H 38.030 13.360 62.288 3.479 2.421 3.5 3.9

H–H 6.848 13.051 13.212 6.732 0.814 1.9 2.2

(a) Two-body terms.

Interaction a0 a1 a2 a3 λ (Å−1)

Pd–Pd-Pd 0.186 0.406 0.157 0.000 1.073

Pd–Pd-H 0.285 0.641 -0.547 0.272 2.421

H–Pd-H 0.538 2.181 -2.872 1.215 2.421

H-H-Pd 0.906 -0.0808 -0.608 0.362 2.421

Pd-H-Pd 0.661 0.755 -1.406 0.437 2.421

(b) Three-body terms.

Table A.1: REBO force field parameters.

terms : Pd-Pd-Pd, Pd-Pd-H, Pd-H-Pd, H-Pd-H and H-H-Pd needed for Eq. A.9

and two parameters for λαβγ. That makes a total of a set of 37 parameters.

The long range adsorbate-surface interaction (beyond a distance of 4.0 Å to the

surface) are included in the nonbonding term of the potential Enr (Eq). This term

can be described by a simple potential as a function of only the distance Z between

the adsorbate’s center of mass and the surface1

Enr = fL(Z)
(
c0 − c1

Z2

)
(A.10)

c0 and c1 are the two parameters to be determined by fitting and fL(Z) is a window

function given by

fL(Z) =


0,

1
2 (1 − cos[π(Z − Z1/(Z2 − Z1)]) ,

1,

Z ≤ Z1

Z1 < Z ≤ Z2

Z > Z2

(A.11)

1This is justified by the fact that the surface corrugation effect is negligible when the adsorbate

is far from the surface.
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with Z1 = 3.5 Å and Z2 = 4.5 Å. The energy of H2 at a point far from the surface

(Z = 7.0 Å) is taken as the zero of the potential energy of the system.

Ez c0 (eV) c1 (eV-Å2)

0.0188 0.291

Table A.2: Long range interaction parameters.





Appendix B

Study of some simple analytical

models

The study of the spectrum of hydrogen atoms adsorbed on the Pd(111) surface

revealed that the vibrational stationary states of these systems are strongly impacted

by tunneling across the potential barriers and also by the local coupling between

the DOFs of the system inducing, in particular, a Fermi resonance between the

zeroth order perpendicular mode and modes parallel to the substrate. These two

effects manifested in the structure of the vibrational states of the system and in their

energies, leading in particular to the degeneracy lifting of several energy levels. These

two quantum phenomena are well described in the literature [7, 67, 44, 43, 24, 68],

but there is few documentation on systems including both effects simultaneously.

We investigated a simple three-dimensional model of an asymmetric double-well

potential, integrating the tunneling effect and a Fermi resonance coupling between

certain modes of the system. In the model, both zeroth order states and coupling

strengths can be explicitly defined, which allows us to understand the nature and

intensity of the coupling between the DOFs when it is affected by these two quantum

effects simultaneously. Three examples are presented below. In the first example,

we consider a system affected only by the tunneling effect, then in the second and

third examples we include a Fermi resonance coupling between the modes of the

system.
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B.1 Asymmetric double-well potential (uncoupled)

In this example, we consider a three-dimensional system in Cartesian coordinates

κ ≡ {x, y, z} defined by an asymmetric double-well potential. In this model, no cor-

relations have been integrated, so the DOFs of the system are considered completely

decoupled. The potential V is given by :

V (x, y, z) = ax4 + bx3 + cx2 + 1
2mω

2
yy

2 + 1
2mω

2
zz

2 + d (B.1)

m is the mass of the system, ωκ represents the proper pulsation along the κ= y, z

coordinates, the potentials of which are considered to be harmonic. The parameters

a, b and c are real numbers (c ≤ 0) chosen numerically to adjust the potential

curvature and the energy difference between the minima of the two wells along x. d

is a constant chosen to make the potential V positive. All the parameters used are

given in table C.1.

Parameters Values

a (meV/Å4) 2.72
b (meV/Å3) 0.54
c (meV/Å2) -21.76

m (u) 1.00
ωy/h̄ (meV) 31.2
ωz/h̄ (meV) 62.4
d (meV) 48.14

Table B.1: Parameters used for the potential.

The double-well potential is defined along the x coordinate by a fourth-degree poly-

nomial. Figure B.1 shows a one-dimensional section of the potential along this

coordinate (y = z = 0).

We will note in the following the potential well around the global minimum by

A and the other by B. The potential barrier with a height of about 50 meV and

the energy difference between the two wells is around 10 meV. The potential is

chosen to be harmonic along the y and z coordinates, with proper pulsation verifying

ωz = 2ωy. The nomenclature used to label the eigenstates is of the form1 Nκ
A/B where
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Figure B.1: (a) One-dimensional sections of the potential along the line joining A

and B sites with z and y fixed at 0 Å. (b) Two-dimensional section of the PES in

the xy-plane (z = 0) and xy-plane (y = 0).

N represents the number of quantum excitation along the κ coordinate. The indices

A and B refer to the well at which the eigenstate is located. For example, the state

1x
B represents an eigenstate localized on well A with a quantum excitation in the

x mode. If this state is delocalized over both wells, then we add the two labels

corresponding to each well. For example, 1x
B + 1x

A represents a state similar to the

previous one, but present on both potential wells simultaneously. Finally, when an

eigenstate has two or more excitations in different modes separately, we multiply

the two labels. For example, 1x
A1y

A is a state located only in well A and having

one quantum excitation in mode x and one quantum excitation in mode y. The

combination of these terms allows us to label the various eigenstates of the system.

The type of excitations can be deduced by looking at the spatial and nodal structure

of the wave function. The presence of a node along a κ mode represents a quantum

excitation at the latter. Eigenstates are calculated as explained in the main part

using the improved relaxation method (section 2.3.3). Details are omitted, here.

Results for eigenenergies are converged and given in table B.2.

1We’ve used a different nomenclature from that used in other systems. The numbers 1 and

2 represent the excitation numbers and no longer refer to the perpendicular and parallel modes.

This way of labeling states is more appropriate to the problem addressed in this appendix.
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State number State label En/meV

1 0A 0.0
2 0B 7.9
3 1x

A 28.0
4 1y

A 31.2
5 1x

B(+1x
A) 36.7

6 1y
B 39.1

7 2x
A + 2x

B 53.4
8 1x

A1y
A 59.2

9 1z
A 62.4

10 2y
A 62.4

11 1x
B1y

B(+1x
A1y

A) 67.9
12 1z

B 70.3
13 2y

B 70.3
14 2x

B + 2x
A 71.3

Table B.2: Eigenenergies of the uncoupled double-well potential.

To visualize the structure of the eigenstates, figure B.2 shows the 2D reduced prob-

ability densities (RPD) Pk of the eigenstates |φk⟩ associated to the eigenergies Ek

given in table B.2. The RPD are obtained by integrating the system’s total prob-

ability density of presence on the third one of the three coordinates. For example,

Pk(x, y) =
∫ zmax

zmin
|φk(x, y, z)|2dz. By representing the different RPD, we can visualize

the spatial structure of the state under consideration.

Analysis of these results shows that the y and z modes defined by a quadratic term

give energies corresponding to those of the harmonic oscillator. These are all spaced

by ∆Eκ = h̄ωκ for κ = {y, z}. Given that ωz = 2ωy, at each potential well, the

transition energy between the ground state and an excited state in the z mode

coincides with that of a doubly excited state in y. This choice has been made to

optimize coupling in the next example. Excited states in the x mode are affected

by the tunneling that occurs across the potential barrier separating the two wells.

By looking at the structure of state pairs {3, 5} or {7, 14}, we can see that they

have been coupled in such a way as to form two states with a tendency towards a

(quasi)symmetrical or (quasi)antisymmetrical spatial representation with respect to
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the plane perpendicular to the potential barrier2. These two coupled modes form

two eigenstates called tunnel doublets.

The symmetry of these states manifests itself at the amplitude of their wave function

around the potential barrier. In the first case, the amplitude of the wave function

is large in this region, while in the second case it is almost zero, since the wave

function cancels out to preserve antisymmetry at this plane. This criterion is very

useful for identifying tunneling doublets within the system.

The tunneling effect tends to shift the energies of the modes concerned, so that if

the zeroth order states localized on either well have the same energy, we speak of

tunneling splitting. But here the two wells are not symmetrical, and the energy dif-

ference between these states is partly due to this difference and partly to tunneling3.

In the following, we refer to this potential as the zeroth order, uncoupled system,

with energies and eigenstates denoted by E(0)
k and |φ(0)

k ⟩.

2This observation is clearly more visible for states 7 and 14.

3As with many systems affected by tunneling, the anti-symmetrical eigenstates tend to have

higher kinetic energies than the symmetrical ones. The symmetric state usually has a higher

potential energy than the antisymmetric one.
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Figure B.2: Two-dimensional representation of the reduced probability densities

(RPD) of the eigenstates of the uncoupled double-well potential. The latter are

superimposed on equipotentials represented by dashed red lines.
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B.2 Asymmetric double-well potential (coupled)

Coupling between y and z modes

We will now add a coupling term to the potential of the form Ŵ1 = ϵy2z with ϵ a

real number chosen to be small (≈ 2.7) to remain within the limit of perturbative

treatment. The potential is now given by :

V (x, y, z) = ax4 + bx3 + cx2 + 1
2mω

2
yy

2 + 1
2mω

2
zz

2 + ϵy2z + d (B.2)

The Ŵ1 term induces a coupling only between y and z modes, and more specifically

between modes with at least two quanta of excitation in y and modes with at least

one quantum of excitation in z. This can be identified to be a Fermi resonance

coupling term. We calculated the eigenenergies of this perturbed system, denoted

by E(1)
k , using an approach similar to that employed in section B.1. The results are

shown in table B.3.

State number State label E(1)
n /meV

1 0A 0.0
2 0B 7.9
3 1x

A 28.0
4 1y

A 31.2
5 1x

B(+1x
A) 36.7

6 1y
B 39.1

7 2x
A + 2x

B 53.4
8 1x

A1y
A 59.2

9 2yz
A− 62.1

10 2yz
A+ 62.7

11 1x
B1y

B(+1x
A1y

A) 67.9
12 2yz

B− 70.0
13 2yz

B+ 70.6
14 2x

B + 2x
A 71.3

Table B.3: Eigenenergies of the yz-coupled modes double-well potential.

The nomenclature used for these states is based on the structure of their wave

functions. Figure B.3 shows the reduced probability densities in the (x, y) and (y, z)
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planes. We can see that all eigenstates were only slightly affected by the coupling,

except for states {9, 10} and {12, 13}. The wavefunction structure of the latter shows

that there are no nodes proper to the y and z modes separately. The excitiation

is now somehow shared between the two modes. We have therefore labeled these

states by grouping the indices of both coordinates in the same term. For example,

states 9 and 10 are labeled by 2yz
A− and 2yz

A+ to indicate two states with excitation

distributed between modes y and z and located at potential well A, the symbol ± is

used to distinguish between them. States {9, 10} and {12, 13} form conjugate pairs

called Fermi pairs.

In a perturbative approach, first order eigenstates are very little affected by the

perturbation, except for those included in Fermi pairs. These are given by the

linear combination of the two parent modes 1z and 2y of the zeroth order system

that constitutes them4.

Diagonalization of the zeroth order Hamiltonian matrix in the vector sub-space

composed of the two parent modes involved in the coupling gives the corresponding

first order eigenstates and their energies. If we consider, the sub-pace restricted to

the zeroth order modes 2y
A and 1z

A, this matrix is given by :

E(0)
9 C

C E
(0)
10

 (B.3)

With E
(0)
9 and E

(0)
10 are the zeroth order energies of these modes given in table B.2

and C = ⟨2y
A|Ŵ1|1z

A⟩ which represents a real coupling constant in this example. By

diagonalizing this matrix, we arrive at the first order energies given by :

 E
(1)
9 =E(0)

9 − |C|

E
(1)
10 =E(0)

10 + |C|
(B.4)

4When the coupling is strong, the first order states may have a spectral decomposition in the

larger zeroth order basis, and other parent modes may appear in the coupled states
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Figure B.3: Two-dimensional representation of the reduced probability densities

of the eigenstates of the yz-coupled modes double-well potential. The latter are

superimposed on equipotentials represented by dashed red lines.
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The Fermi resonance shifts the energies of these two states, and the coupling constant

is identified as half the energy difference between them. It is therefore a quantity

that can be measured experimentally. It is often referred to as the ’Fermi resonance

coupling constant’. It directly expresses the strength of the Fermi resonance coupling

between the system’s zeroth order modes. Subtracting the two equations, we can

deduce that the smaller the energy difference E(0)
10 − E

(0)
9 , the greater is C. In this

example, both modes are initially degenerate, the coupling is therefore optimal. The

energy difference between states 9 and 10 is 0.6 meV, corresponding to C = 0.3 meV.

Since coupling is introduced identically at both potential wells, the same energy

difference is observed between states 12 and 13. When the system is affected by

tunneling, the local structure of certain modes and their energies can change, as

highlighted in the previous example. If these are also involved in Fermi resonance,

then this can impact on the value of the Fermi resonance coupling constant. We

then observe couplings with different intensities, as illustrated in the next example.

Coupling between x and z modes

In this last example, we’ll introduce a term into the potential similar to the previous

one, but this time coupling the x and z modes. The system potential is given by:

V (x, y, z) = ax4 + bx3 + cx2 + 1
2mω

2
yy

2 + 1
2mω

2
zz

2 + ϵx2z + d (B.5)

We have taken ωz/h̄ ≈ 53.4 meV and all other parameters remain unchanged. The

value of ωz has been lowered so as to bring the energy of zeroth order eigenstates

with one quantum of excitation in the z mode closer to the energy of the state with

two quanta of excitation in the x mode localized (mainly) at the potential well A.

The eigenenergies and eigenstates of the new system (also those of the non-perturbed

system) are given in table B.4 and figure B.4.

We now see that coupling has induced an energy gap between states {7, 8} of 1.2

meV, and that the two energy levels {10, 14} have moved closer by 0.4 meV. States

{7, 8} were strongly affected by the coupling and formed a Fermi pair, whereas states

{10, 14} were only slightly affected and do not show the characteristics associated

with Fermi resonance5. The difference in coupling intensity between the two pairs is

5Fermi resonance increases the energy gap between the coupled zeroth order states (see equa-
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State number State label(1) E(1)
n /meV State label(0) E(0)

n /meV

1 0A 0.0 0A 0.0
2 0B 7.9 0B 7.9
3 1x

A 28.1 1x
A 28.0

4 1y
A 31.2 1y

A 31.2
5 1x

B(+1x
A) 36.7 1x

B(+1x
A) 36.7

6 1y
B 39.2 1y

B 39.1
7 1z

A + 2x
A + 2x

B 52.8 2x
A + 2x

B 53.4
8 1z

A + 2x
A 54.0 1z

A 53.4
9 1x

A1y
A 59.3 1x

A1y
A 59.2

10 1z
B 61.5 1z

B 61.3
11 2y

A 62.4 2y
A 62.4

12 1x
B1y

B(+1x
A1y

A) 67.9 1x
B1y

B(+1x
A1y

A) 67.9
13 2y

B 70.4 2y
B 70.3

14 2x
B + 2x

A 71.1 2x
B + 2x

A 71.3

Table B.4: Eigenenergies of the xz-coupled modes double-well potential.

due to the initial energy difference of the zeroth order states. This can be identified

as being around 10 meV for states {10, 14}, whereas it is zero for states {7, 8}.

This difference in coupling intensity is not only due to the tunneling effect in this

example, but also in part to the difference in local structure between the two wells

at the x mode. If we considered a perfectly symmetrical double-well potential with

optimal coupling in both wells, the introduction of tunneling through the barrier

would have created tunneling doublets and shifted their energy in opposite direc-

tions. This energy shift will then reduce or increase the energy gap with the modes

to which they are coupled by the Fermi resonance. We would then have observed

here a variation in coupling intensity similar to the previous one, but this time due

to the tunneling only.

tion B.4).
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Figure B.4: Two-dimensional representation of the reduced probability densities

of the eigenstates of the xz-coupled modes double-well potential. The latter are

superimposed on equipotentials represented by dashed red lines.
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In the case of interatomic potentials, there are different types of anharmonic cou-

pling between the system modes. This simple model cannot report on all the phe-

nomena that can occur within the system. But it does provide a basis on which

to rationalize and describe the structure of the spectrum and stationary states of

certain systems affected by these two types of coupling. We see in particular in the

study of the spectra of the H/Pd(111) and H2/Pd(111) systems that these phenom-

ena have a strong impact on the vibrational states of the system. The simultaneous

presence of these two effects leads to the creation of both tunnel doublets and Fermi

pairs of different kinds between some modes.





Appendix C

Local potential study of the

H/Pd(111) system

The time (in)-dependent calculations we have carried out on the H/Pd(111) system

are based on a periodic approach with an elementary cell containing 18 potential

wells, 9 of which are of the fcc type and 9 of the hcp type (figure 3.6). The latter

are separated by a potential barrier of finite size, allowing the possibility of tunnel-

ing through it. The presence of tunneling has an impact not only on the surface

dynamics of the adsorbates, but also on the structure of their vibrational stationary

states. It is interesting to study the local properties of the vibrational states of the

hydrogen atom in the vicinity of a single potential well in the absence of tunneling.

To this end, an analytical three-dimensional potential was constructed by collabo-

rators within the framework of the ANR project of which this thesis is a part, to

reproduce locally the shape of the global potential from ref. [23] at an fcc site. We

will refer to these two potentials as the local PES and global PES in the following.

The local PES is designed to fit the global PES at low energies around the fcc

potential well. As energy increases, the global PES tends to fall off in certain

directions to form a potential barrier, while the local PES continues to increase. The

common vibrational states of the two systems will then begin to show differences

as they approach the potential barrier. All the local properties of the global PES

have been integrated into this potential to preserve the local C3v symmetry of the

vibrational states, as well as the different correlations between the DOFs of the
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system.

In the following, we first give the technical details of the construction of this local

PES and its implementation in MCTDH, then discuss the results from calculations

of the obtained local vibrational hydrogen states at the fcc site.

C.1 Details about the construction of the local

PES

C.1.1 Model

The analytical expression of the function used to reproduce the PES contains ele-

ments chosen to match the shape of the potential and its symmetry. In the following,

we will work in the Cartesian coordinate system (x, y, z) to locate the position of

the hydrogen atom. The potential model used is of the form :

V (x, y, z) = V⊥(z) + V∥(x, y)fdamp(z) (C.1)

Where

V⊥(z) = 1
2f⊥y

2
⊥(z) (C.2)

V∥(x, y) = 1
2f∥R

2(x, y)

× exp[−a∥2R2(x, y) − a∥3R3(x, y) sin(3φ(x, y))

+ a∥6aR
6(x, y) sin2(3φ(x, y)) + a∥6bR

6(x, y) sin2(3φ(x, y))]

(C.3)

With 
y⊥(z) = e−a⊥(z − zeq)

a⊥

R2(x, y)=(x− xeq)2 + (y − yeq)2

φ(x, y) = arctan
(
y − yeq
x− xeq

) (C.4)

xeq, yeq and zeq are the equilibrium coordinates of a fcc site. The function fdamp is

given by

fdamp(z) = eadamp(ebdamp(z − zeq) − 1)) (C.5)

and has a double role: first, in the case that the parameters adamp and bdamp are

positive, it leads to a damping of the parallel potential V∥ for large distances from
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the substrate, i.e. the parallel potential becomes a flat potential for large values of

z. Secondly, because of the low order expansion :

V (x, y, z) ≈ 1
2f⊥∆z2 + 1

2f∥(∆x2 + ∆y2) + 1
2f∥adampbdamp(∆x2 + ∆y2)∆z2 (C.6)

where ∆κ = κ − κeq for κ = {x, y, z}. The term ∝ f∥adampbdamp is potentially

generating a Fermi resonance coupling between the first overtone of the parallel and

the fundamental of the perpendicular mode.

By judiciously setting f∥ = elf∥ , f⊥ = elf⊥ , adamp = eladamp and bdamp = elbdamp ,

and letting the logarithmic parameters lf∥ , lf⊥ , ladamp and lbdamp be actual fitting

parameters, one naturally ensures positive definiteness of the potential and the said

damping behavior.

The terms

R3 sin(3φ)=y3 − 3xy2

R3 cos(3φ)=x3 − 3yx2
(C.7)

are respectively A1 and A2 labeled cubic terms of C3v-symmetry [41]. The factor

exp
(
−a∥2R

2...
)

in equation C.1 is hence a lowest order C3v-symmetric modulation

of the otherwise cylindrical potential. By setting a∥2 = el∥2 , one additional enforces

a damping of the modulation with larger displacements from the stable equilibrium

site, avoiding in this way side minima. The various parameters given in this model

are obtained by adjustment to the global PES around one of the fcc wells on the

surface. We have taken the region of space defined by:

0.9756 Å ≤ x ≤ 1.8756 Å

−1.3756 Å ≤ y ≤ 0.0 Å

0.6 Å ≤ z ≤ 1.5 Å

(C.8)

The model is fitted to the 600 data points with the simple version of the Marquardt-

Levenberg algorithm [69] by which the optimum set of parameters is obtained and

given in Table B.4.

The root mean square deviation of this fit is 277 hc cm−1 over all points. The total

energy reached in the spatial volume used for the fit is 50,000 hc cm−1. The energy

interval in which the energy difference between the two potentials must be minimal
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Parameters Values

f⊥ × Å2
/hc cm−1 23 412

f∥ × Å2
/hc cm−1 23 790

a∥2 × Å2
/hc cm−1 2.22

a∥3 × Å3 9.5
a∥6a × Å6 -4.2
a∥6b × Å6 4.0
adamp 3.56

bdamp × Å−1 1.34

Table C.1: Optimal parameter values for the model potential equation C.1.

is below that of the potential barrier, i.e. around 1 500 hc cm−1 (majoring). The

vast majority of points showing significant deviation are all above this value. A two-

dimensional representation of the local PES (solid line) superimposed on the global

PES (dashed line) is given in figure C.1. The various parameters were calculated in

units of corresponding wave numbers, i.e. hc cm−1. We use however meV units in

the following calculations.

V / meV

−600 −400 −200 0 200 400 600
x/ pm

−300

−100

100

300

y/
 p

m

0

150

300

V / meV

−600 −400 −200 0 200 400 600
x/ pm

−300

−100

100

300

y/
 p

m

0

150

300

Figure C.1: Two dimensional section of the PES along the substrate coordinates

(z = 90Å). The local PES (solid line) is superimposed on the global PES (dashed

line).
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C.2 Results and discussion

The vibrational stationary states of this system are calculated with MCTDH using

the block improved relaxation program. The analytical model of the local PES

does not allow decomposition as a sum of product a one-dimensional operator. We

therefore used POTFIT to represent the potential in a form suitable for MCTDH

calculations. The same primitive basis used for the global potential (section 4.2)

is used for these calculations. The rms error on the fit is totally negligible for this

system.

We are only interested in the vibrational states corresponding to those calculated

in the global potential in section 4.2. That is ground state, the levels of excited

states with a single excitation, then part of the levels of doubly-excited states.

This corresponds to a total of 7 vibrational states. Table C.2 and figure C.2 show

the vibrational eigenenergies and two-dimensional representations of the reduced

probability densities of the local vibrational states.

Level State number State label En/meV Degeneracy g

1 1 0 0.0 1
2 2, 3 21 80.0 2
3 4 22(A1)+11 102.7 1
4 5 22(A1)+11 129.6 1
5 6, 7 22(E) 132.4 2

Table C.2: Vibrational eigenenergies of H/Pd(111) in the local PES.

To label the vibrational states of the system, we have adopted a nomenclature given

by N i. Where N= {0; 1; 2} refers to the direction of vibrational excitation: vibra-

tions perpendicular and parallel to the substrate are denoted by 1 and 2 respectively.

The ground state is denoted by 0. The integer i refers to the number of vibrational

excitations of the considered state. For example, 21 refers to a state with a single

vibrational excitation parallel to the surface. In this nomenclature, no distinction

is made between vibrational modes parallel to the substrate separately. These two

modes are degenerate because of the local C3v symmetry of the potential, so we

speak only of excitation parallel or perpendicular to the substrate.
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The structure of the reduced probability density of state 1 is node-less, indicating a

non-excited state. This state is considered to be the ground state of the system. Its

energy is around 155 meV (with respect to the potential minimum), and is taken as

a reference in table C.2.

The first level of excited states contains two vibrational states excited in the parallel

modes. Figure C.2 shows that the wave function of these two states has a node

localized at the center of the potential well, with two anti-node structures (states

2 and 3). Given the C3v symmetry of the potential, partial or total degeneracy

results in excited modes parallel to the substrate. Here, states 2 and 3 are perfectly

degenerate, with an energy of 80 meV.

This degeneracy appears partially in the doubly excited state level 22, which contains

two degenerate states and a third one with a slightly lower energy1. These three

states differ in their C3v symmetry labels. The two degenerate states have E label

and are denoted by 22(E) (states 6 and 7), while the third one has an A1 label

denoted by 22(A1).

The latter appears, together with state 11, in states 4 and 5. The reduced probability

density of these states in the xz-plane also shows the presence of a node at this plane.

These states therefore simultaneously have one quantum of vibrational excitation

in mode 1 and two quanta of vibrational excitation in mode 2. In a harmonic

approximation, this would correspond to the coupling between the fundamental of

the perpendicular mode and and the first overtone of parallel mode. This is akin to a

Fermi resonance between these two modes. The latter belong to the same symmetry

representation group (A1) and may thus couple. Given that the potential is more

contracted in the perpendicular mode, a state with one quantum of excitation in

mode 1 could have an energy close to that with two quanta of excitation in mode

2. They are therefore susceptible to couple resonantly. The resulting vibrational

states, known as Fermi pairs, are given by the combination of these two modes. We

use this image here for the nomenclature of these states. States 4 and 5 are therefore

both labeled by 22(A1)+11.

1The A1 component is not necessarily always the lowest energy component of the triplet formed

by an E ⊗ E reduction.
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Figure C.2: Two-dimensional representation of the reduced probability densities

of the vibrational eigenstates of the lcoal PES. The latter are superimposed on

equipotentials represented by dashed red lines.
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If we now consider a second neighboring potential well located at the hcp site with

vibrational states that possess the same local properties as those of the fcc well,

then the presence of the finite-size potential barrier between the two wells can lead

certain vibrational states at the fcc site to couple with those located at the hcp

site and form tunnel doublets. If states 4 and 5 are also affected by tunneling,

then each of them will form a tunnel doublet with a corresponding state in the hcp

well. We thus have 4 vibrational states forming two Fermi pairs and two tunnel

doublets simultaneously. To illustrate this in a similar spirit to the approach used

in appendix B, figure C.3 shows schematically the impact of successively introducing

the tunneling effect between the two potential wells, then Fermi resonance between

the 22(A1) and 1 modes localized at each well. In the following, we refer to the fcc

and hcp potential wells as A and B respectively, and the 2 mode symmetry label

will be omitted for the sake of simplicity.

11A

22A

11B

22B

11A

22A

11B

22B
Tunneling

11A

22A

11B

22B
Tunneling

Fermiresonance
11A

22A

11B

22B

(a)

(c)

(b)

(d)

Tunneldoublet
Fermipair Fermipair

Tunneldoublet

Figure C.3: Schematic representation showing the tunnel doublets and Fermi pairs

that can be formed between a quadruplet of states.

Figure C.3.a shows a system where the vibrational states at each well are assumed to

be fully decoupled. Introducing tunneling between the parallel modes located at A

and B shifts their energies and leads to the formation of a first tunnel doublet. If we

also introduce a local coupling that induces Fermi resonance between modes 1 and

22 (figure C.3.c), this will lead to the formation of two Fermi pairs localized at each

well. The 11
A and 11

B modes are now also impacted by tunneling indirectly through
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coupling with the 22 modes, forming a second tunnel doublet. The four vibrational

states thus obtained contain two Fermi pairs (blue) and two tunnel doublets (red),

as illustrated in figure C.3.d. If the system contains 9 equivalent potential wells of

each type, then each of these states will be ’in principle’ 9 fold times degenerate.

Coupling will take place between 4 levels, each containing 9 vibrational states. We

refer to these levels as tunnel doublet and Fermi pair levels.

Tunneling is generally followed by a change in the wavefunction of the involved state,

as well as its energy. If this state is part of a Fermi pair, tunneling can weaken

or strengthen the intensity of the local resonance. Inversely, the Fermi resonance

can modify considerably the local structure of the wavefunction, leading thus to

a weakening or enhancement of the tunneling effect. Depending on the relative

strength of the tunneling and Fermi resonance coupling, the resulting vibrational

state will be dominated by the ’parent’ mode that constitutes it, and by looking

at the structure of the reduced probability densities of these states, we can trace

them back to the ’parent’ mode of the vibrational state under consideration, as

illustrated in appendix B. When both the tunneling and Fermi resonance coupling

are strong, i.e. at close to optimal resonance conditions, it becomes difficult to

extract the dominant character of one coupling scheme, given that the nodes are

perfectly shared between the two coupled modes.

This desire to distinguish between these coupled states is of no particular interest

when studying the spectrum of this local PES, as it contains only one easily iden-

tifiable Fermi pair. But in the case of the global PES, where the latter are mixed

with tunneling doublets, it becomes complicated to find the different conjugate pairs

formed within the spectrum of the system. The structure of vibrational states that

have been less affected by the Fermi resonance informs us about the primary nature

of the levels to which they belong, and this makes it easier to identify the different

tunneling doublets and Fermi pairs in the spectrum.

Finally, by making the comparison with the vibrational states of the global PES

given in chapter 4.2 (table 4.3), we identify the following correspondence between

the local and global PES levels (the first number refers to the local, the second to the

global PES): 1 ↔ 1, 2 ↔ 3, 3 ↔ 5, and 4 ↔ 8. Energies are not exactly comparable
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due to the approximate character of the local PES, which departs from the global

PES at higher energies, and tunneling, which is absent in the local PES model. It

is therefore difficult to extract the exact contribution of tunneling to the energy gap

between the two levels based on these elements only.

In addition to providing information on the local aspect of the vibrational states

of the hydrogen atom in fcc potential wells, the local PES has been useful in

several dynamical simulations to initialize the hydrogen wavefunction at an fcc site

as reported in chapter 5.



Appendix D

One-dimensional adsoption model

for a diatomic molecule

The procedure we have followed to determine the nature of the stationary states of

hydrogen atoms adsorbed on the palladium Pd(111) surface is based mainly on the

analysis of the structure of their reduced probability densities (RPDs). In the study

of the H2/Pd(111) system, we found that when the two hydrogen atoms are located

on neighboring sites of the same type, the stationary states having one quantum of

excitation are given by four vibrational modes adopted by the two hydrogen atoms.

The latter oscillate simultaneously in certain directions and with varying phases.

These findings were made by looking at the structure of RPDs involving DOFs of

the same type from both atoms, i.e., P(xt1, xt2), P(yt1, yt2) and P(zt1, zt2). In partic-

ular, our analysis was based on the nodal structures of diagonal (and off-diagonal)

RPDs in these representations to deduce the nature of the vibrational states of the

corresponding levels. In this appendix, we present a simple one-dimensional prob-

lem to illustrate the links between the type of vibrational excitation adopted by two

atoms and the structure of their RPDs involving DOFs of the same type. Despite

the simplicity of this model, it allows us to deduce certain general properties that

can be applied to the situation of the two hydrogen tomes adsorbed on the palladium

surface.
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D.1 1D model

We’ll consider a one-dimensional problem where two identical atoms are adsorbed

onto a periodic metal surface. Figure D.1 illustrates the potential created by the

substrate atoms by a simple periodic function, in which two atoms are placed at

neighboring potential wells.

xeq
1 xeq

2 x

V

Figure D.1: Schematic representation of adsoprtion of two atoms in a one-

dimensional potential.

In the following, we’ll use the harmonic approximation to simplify the calculations.

The total potential is two-dimensional and depends on the x1 and x2 coordinates of

the two atoms. Rather than working on these coordinates, we’ll consider the (xd, yd)

modes defined in equation D.1. 
xd=x2 − x1

xc=
x1 + x2

2
(D.1)

These coordinates represent the distance between the center of the two atoms and

the center-of-mass coordinate respectively. They are adapted to a molecular de-

scription of the system, in particular to a situation where the two atoms maintain

a strong interaction even after adsoption.

In a harmonic approximation in which the two modes xd and xc are decoupled. The

Hamiltonian of the system can be written as:

Ĥ(xd, xc) = 1
2mω

2
d(xd − xeq

d )2 + 1
2mω

2
c (xc − xeq

c )2 (D.2)
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With


xeq

d =xeq
2 − xeq

1

xeq
c =x

eq
1 + xeq

2
2

(D.3)

Where ωd and ωc are the eigenpulsations of each mode. m is the mass of each atom.

xeq
i is the equilibrium position of each atom.

The eigenstates of such a system are given by the product of the general harmonic

oscillator solutions for each mode:

{ψk(xd, xc)}k∈N = {φm
d (xd)φn

c (xc)}m,n∈N (D.4)

Where φn is the nth excited state of a one-dimensional harmonic oscillator. The

ground state and the first two excited states of the total system are given by:


ψ0(xd, xc) = C0Gd(xd)Gc(xc)

ψ1(xd, xc) = C1
(
xd − xeq

d

)
Gd(xd)Gc(xc)

ψ2(xd, xc) = C2
(
xc − xeq

c

)
Gd(xd)Gc(xc)

(D.5)

With Ck normalization constants, and G Gaussian functions given by :

Gl(X) = e
−mωl

2h̄
(X−Xeq)2 (D.6)

Returning now to the (x1, x2) representation, D.5 becomes:


ψ0(x1, x1)=C0Gd(x2 − x1)Gc(x2+x1

2 )

ψ1(x1, x2)=C1

((
x2 − xeq

2

)
−
(
x1 − xeq

1

))
Gd(x2 − x1)Gc(x2+x1

2 )

ψ2(x1, x2)=C2/2
((
x2 − xeq

2

)
+
(
x1 − xeq

1

))
Gd(x2 − x1)Gc(x2+x1

2 )

(D.7)

Let us now look at the spatial representation of the first two excited states ψ1 and ψ2

in the x1x2−plane. Figure D.2 shows a two-dimensional representation of the latter

where the parameters xeq
1 and xeq

2 have been arbitrarily chosen such that xeq
1 ̸= xeq

2 .
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Figure D.2: Two-dimensional representation in the x1x2-plane of the first two excited

states.

The two eigenstates have two symmetry axes given by equation D.81.

(x2 − xeq
2 ) = ±(x1 − xeq

1 ) (D.8)

In what follows, we’ll consider only the symmetry axis with a positive slope. The

same reasoning given below could be applied to the second symmetry axis.

ψ1 and ψ2 have one quantum of excitation in the xd and xc modes respectively.

When excitation is localized on the xc mode, this results in concerted motion of both

atoms, i.e. in-phase vibration. When the excitation is localized on the xd mode,

this results in a stretching motion leading to an out-of-phase vibration between the

two atoms. This can be seen directly in the structure of these states. In figure D.2a

the antinodes and node of the wave function are aligned along a line of equation

(x2 −xeq
2 ) = (x1 −xeq

1 ). This indicates that this excitation is constraining the x1 and

x2 modes to have the same variation. Whereas in figure D.2b, the antinodes and node

of the wave function are aligned along a line of equation (x2 − xeq
2 ) = −(x1 − xeq

1 ).

This indicates that this excitation constrains the x1 and x2 modes to evolve in

opposite variation. These two types of excitation implicitly induce both in-phase

1This can also be deduced directly from equations D.9.
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and out-of-phase motion. These two vibration modes are illustrated schematically

in the figure. D.3. The (R)PDs of these states have the same nodal structure as

their wave functions. By looking at the structure of the latter along this line, we

can deduce the relative motion between the two atoms.

(a) (b)

Figure D.3: Scheme showing the resulting vibration motion following excitation at

xc mode (a), and at xd mode (b).

On the other hand, when xeq
1 = xeq

2 , the axis of symmetry coincides with the diag-

onal. This situation is not possible in the one-dimensional case, as the two atoms

cannot be superimposed in the same potential well. But if we consider a two-

dimensional situation in Cartesian coordinates (x, y), the above situation becomes

possible. Figure D.1 shows schematically a typical example of this configuration.

xeq
1 = xeq

2 x

y

V

Figure D.4: Schematic representation of the configuration where xeq
1 = xeq

2

In this example, we’ve considered the situation where the two hydrogen atoms oc-

cupy sites aligned along the y direction. Given that the latter have the same equi-

librium position with respect to the x axis, the RPDs in the (x1, x2) representation

of a state having a quantum of excitation in the xd and xc modes will now have
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nodal structures located on the diagonal (since xeq
1 and xeq

2 simplify)2. In contrast

to the previous situation, each atom will vibrate systematically in a direction per-

pendicular to the equilibrium system axis3. Figure D.1 shows an illustration of this

situation.

Figure D.5: Scheme showing the resulting vibration motion following excitation at

xc mode, and at xd mode when xeq
1 = xeq

2 .

Finally, by combining these various remarks, we arrive at the following conclusions:

• When both atoms vibrate perpendicular to the equilibrium system axis, the

nodal structures of their RPDs involving the same DOFs are located on the

diagonal. When both atoms vibrate parallel to the equilibrium system axis,

the nodal structures of the RPDs are located around a straight line different

from the diagonal.

• When the two atoms vibrate in phase, the nodes and antinodes of the RPDs

are located on the diagonal. When they vibrate out-of-phase, the latter are

located on a line perpendicular to the latter.

Note

In this type of problem, configurations where the excitation is carried separately by

a single atom (the second remains in its ground state) are given by the linear combi-

nation of states vibrating in phase and out-of-phase. For example, the superposition

2while the RPDs of states with excitations in the yd and yc will exhibit nodal structures localized

around the line defined by (y2 − yeq
2 ) = (y1 − yeq

1 ) different from the diagonal.

3The equilibrium system axis is defined as the straight line joining the two atoms when the

latter are located at the center of the potential wells.
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of ψ1 and ψ2 in equation D.9 gives: aψ1(x1, x2) + bψ2(x1, x2)≡(x2 − xeq
2

)
Gd(x2 − x1)Gc(x2+x1

2 )

aψ1(x1, x2) − bψ2(x1, x2)≡(x1 − xeq
1

)
Gd(x2 − x1)Gc(x2+x1

2 )
(D.9)

In the first equation, we observe a nodal structure localized only on the second atom,

while in the second case, the nodal structure is localized on the first atom. Such

a state is not an eigenstate of the system; it evolves over time, oscillating between

these two modes of vibration.





Appendix E

Some calculation files

E.1 Example of input files used in MCTDH cal-

culations

E.1.1 Typical input file used for a block improved relaxation

calculation

RUN−SECTION

usepthreads=16

name=block −75 s ta t e s −3x3−1

r e l a x a t i o n =0, o l s en precon=2000

r l x u n i t=cm−1 , 1284.912567671

s p l i t −r s t

t f i n a l =60 tout=a l l t p s i =10.00

t i t l e=Test

gr idpop s t ep s orben

end−run−s e c t i o n

OPERATOR−SECTION

opname = HPd111

end−operator−s e c t i o n

SPF−BASIS−SECTION

packet =75, s i n g l e −s e t

205
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x = 30

y = 30

z = 4

end−spf−bas i s −s e c t i o n

PRIMITIVE−BASIS−SECTION

x exp 61 −4.12671 , Angst 4 .12671 , Angst s−p e r i o d i c

y exp 61 −4.12671 , Angst 4 .12671 , Angst s−p e r i o d i c

z s i n 31 0 . 2 , Angst 1 . 7 , Angst long

end−pr imi t ive −bas i s −s e c t i o n

INTEGRATOR−SECTION

CMF = 1 .0 , 3 . 0 d−3

RK8/ sp f = 1 .0 d−8, 0 . 1

RRDAV/A =4000 , 1 . 0 d−9

energyorb eps_inv =1.d−9

end−in t eg ra to r −s e c t i o n

INIT_WF−SECTION

bui ld

x r eadsp f Gauss−fcc −hcp−x−61

y readsp f Gauss−fcc −hcp−y−61

z gauss 0 .9000 , Angst 0 . 0 d0 0 .50 d0

end−bu i ld

autoblock

end−init_wf−s e c t i o n

end−input

E.1.2 Typical input file used for a propagation calculation

RUN−SECTION

propagat ion

output

usepthreads=30

name=HO−pop2−x−f c c

t f i n a l =1000 tout= 2.00 t p s i =2.00
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t i t l e=Test

p s i #= double

gr idpop s t ep s

end−run−s e c t i o n

OPERATOR−SECTION

opname = HPd111

end−operator−s e c t i o n

SPF−BASIS−SECTION

x = 42

y = 42

z = 14

end−spf−bas i s −s e c t i o n

PRIMITIVE−BASIS−SECTION

x exp 61 −4.12671 , Angst 4 .12671 , Angst s−p e r i o d i c

y exp 61 −4.12671 , Angst 4 .12671 , Angst s−p e r i o d i c

z s i n 31 0 . 2 , Angst 1 . 7 , Angst long

end−pr imi t ive −bas i s −s e c t i o n

INTEGRATOR−SECTION

CMF/ varphi = 0 . 5 , 1 . 0 d−6

BS/ sp f = 8 , 1 . 0 d−7

SIL/A = 20 , 1 . 0 d−6

end−in t eg ra to r −s e c t i o n

INIT_WF−SECTION

bui ld

x HO 0.91704 , Angst 0 . 0 d0 0 . 1 , eV 1 .007825 ,AMU pop=2

y HO −0.91704 , Angst 0 . 0 d0 0 . 1 , eV 1 .007825 ,AMU

z HO 0.9000 , Angst 0 . 0 d0 0 . 1 , eV 1.007825 ,AMU

end−bu i ld

end−init_wf−s e c t i o n

ALLOC−SECTION

maxkoe=15000

maxhtm=15000
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maxhop=15000

maxsub=400

end−a l l o c −s e c t i o n

end−input

E.2 Example of input files used for the ISF cal-

culations

E.2.1 Generation of the ensemble of stochastic thermal wave-

packets

Script file

#!/ bin /bash

# command f i l e f o r running f o r t r a n code

i f t e s t $# −eq 0

then

echo " Usage : generate−mctdh−ISF−eva luat ion −f i l e s . com T i s e e d "

e x i t 1

f i

export CurrDir=$ (pwd)

export WorkDir=$1K

i f [ ! −d $WorkDir ] ; then

mkdir $WorkDir

f i

cd $WorkDir

T=$1
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l e t nxstate=61 #$ n c e l l ∗ $nstpc

l e t nystate=61

l e t nz s ta t e=31

i s e e d=$2

#l e t j s e ed=$ i s e ed +1000

cp . . / r lx −Therm . f .

cp . . / HPd111 . op .

g f o r t r an r lx −Therm . f −o r lx −Therm . exe −fno−automatic

# i f [ ! −e OPERATOR. op ] ; then

# ln −s operators −without−CAP. op OPERATOR. op

# f i

echo "T: " > INPUT

echo $T >> INPUT

echo " I s e ed :">> INPUT

echo $ i s e ed >> INPUT

echo "Nx : " >> INPUT

echo $nxstate >> INPUT

echo "Ny : " >> INPUT

echo $nystate >> INPUT

echo "Nz : " >> INPUT

echo $nzs ta t e >> INPUT

# echo " Nce l l " >> INPUT

# echo $ n c e l l >> INPUT

./ r lx −Therm . exe < INPUT

echo " r lx −Therm done "

rm INPUT

rm −f r lx −Therm . f r lx −Therm . exe
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i f [ ! −d KG−THERMALISATION ] ; then

mkdir KG−THERMALISATION

f i

cd KG−THERMALISATION

i f t e s t −d i s e ed $ i s e e d −KG−r e l a x a t i o n ; then

echo " i s e e d$ i s e ed −KG−r e l a x a t i o n e x i s t s . "

rm −f . . / i s e ed $ i s e e d −KG−r e l a x a t i o n . inp

e l s e

mv . . / i s e ed $ i s e e d −KG−r e l a x a t i o n . inp .

mv . . /RANDOMVECTOR∗ $ i s e ed .

mv . . / Therm−$ i s e ed .

sbatch Therm−$ i s e ed

f i

cd . . /

watch squeue −u obindech

e x i t

FORTRAN file

program grv

c gene ra t e s a normal ized vec to r o f l ength N with random phases

c as we l l as mctdh input f i l e s f o r r e l a x a t i o n f o l l o w i n g Kos lo f f −Gelman

c and propagat ion f i l e s at f i n i t e and i n f i n i t e temperatures

c 190528 non−exact propagat ion

c 190529 exact propagat ion t e s t ed and then discarded ,

c as c r o s s c o r r needs MCTDH type WF, not exact WF
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i m p l i c i t r e a l ∗8 (a−h , o−z )

parameter ( n s ta t e =8049)

parameter ( i s e ed0 =1729)

parameter ( fsK =3819.116289)

parameter ( a0 =0.5291772107)

parameter ( ac =1.278)

dimension br ( n s ta t e ) , b i ( n s ta t e )

cha rac t e r ∗80 com , i o f , r lx ,RANDx,RANDy,RANDz, f i l ename

charac t e r ∗50 z e i l e

cha rac t e r ∗20 s t r

t p i=acos ( −1.d0 ) ∗ 2 .

read (5 , ∗ ) com

read (5 , ∗ ) T

read (5 , ∗ ) com

read (5 , ∗ ) i s e e d

read (5 , ∗ ) com

read (5 , ∗ ) nxmax

read (5 , ∗ ) com

read (5 , ∗ ) nymax

read (5 , ∗ ) com

read (5 , ∗ ) nzmax

C i f (nxmax . gt . n s ta t e ) stop ’n out o f range . ’

C read (5 , ∗ ) com

C read (5 , ∗ ) n c e l l

p=1./ sq r t (nxmax ∗1 . 0 )

i f ( i s e e d . l t . 10) then

wr i t e (RANDx, " ( A13 , I1 ) " ) ’RANDOMVECTORx’ , i s e e d

wr i t e (RANDy, " ( A13 , I1 ) " ) ’RANDOMVECTORy’ , i s e e d
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wr i t e (RANDz, " ( A13 , I1 ) " ) ’RANDOMVECTORz’ , i s e e d

e nd i f

i f ( i s e e d . gt . 9 . and . i s e e d . l t . 100) then

wr i t e (RANDx, " ( A13 , I2 ) " ) ’RANDOMVECTORx’ , i s e e d

wr i t e (RANDy, " ( A13 , I2 ) " ) ’RANDOMVECTORy’ , i s e e d

wr i t e (RANDz, " ( A13 , I2 ) " ) ’RANDOMVECTORz’ , i s e e d

e nd i f

i f ( i s e e d . gt . 90) then

stop ’Max o f r e a l i s a t i o n s reached . See Iq . f f i l e ’

e nd i f

open (2 ,FILE=trim (RANDx) ,

&form=’ formatted ’ , s t a tu s =’unknown ’ )

c a l l srand ( i s e e d )

do n=1,nxmax

phi=t p i ∗ rand ( )

br (n)=p∗ cos ( phi )

b i (n)=p∗ s i n ( phi )

wr i t e (2 , ∗ ) br (n ) , b i (n)

enddo

c l o s e (2 )

C RandVecy

p=1./ sq r t (nymax ∗1 . 0 )
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open (2 ,FILE=trim (RANDy) ,

&form=’ formatted ’ , s t a tu s =’unknown ’ )

j s e ed=i s e e d +1000

c a l l srand ( j s e ed )

do n=1,nymax

phi=t p i ∗ rand ( )

br (n)=p∗ cos ( phi )

b i (n)=p∗ s i n ( phi )

wr i t e (2 , ∗ ) br (n ) , b i (n)

enddo

c l o s e (2 )

j s e ed=j s e ed +1000

p=1./ sq r t (nzmax ∗1 . 0 )

open (2 ,FILE=trim (RANDz) ,

&form=’ formatted ’ , s t a tu s =’unknown ’ )

c a l l srand ( j s e ed )

do n=1,nzmax

phi=t p i ∗ rand ( )

br (n)=p∗ cos ( phi )

b i (n)=p∗ s i n ( phi )

wr i t e (2 , ∗ ) br (n ) , b i (n)

enddo
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c l o s e (2 )

c gene ra t i on o f MCTDH input f i l e s

c r e l a x a t i o n

t f=fsK/T

i t ape =11

com=’ i s eed ’// trim ( s t r ( i s e e d ))// ’ −KG−re l axa t i on ’

i o f=trim (com ) / / ’ . inp ’

r l x=com

open ( i tape , f i l e=i o f , form=’ formatted ’ , s t a tu s =’unknown ’ )

wr i t e ( i tape , ∗ ) ’RUN−SECTION’

wr i t e ( i tape , ∗ ) ’ name = ’//com

wr i t e ( i tape , ∗ ) ’ r e l axa t i on ’

wr i t e ( i tape , ∗ ) ’ usepthreads =16’

wr i t e ( i tape , ∗ ) ’ t f i n a l = ’ , t f , ’ tout = ’ , t f /20 , ’ t p s i = ’ , t f /20

wr i t e ( i tape , ∗ ) ’ s t ep s auto p s i gridpop ’

wr i t e ( i tape , ∗ ) ’ end−run−sec t i on ’

wr i t e ( i tape , ∗ ) ’PRIMITIVE−BASIS−SECTION’

wr i t e ( i tape , ∗ ) ’ x exp ’ , nxmax , ’ −4.12671 , Angst 4 .12671 , Angst ’ ,

1 ’ s−pe r i od i c ’

wr i t e ( i tape , ∗ ) ’ y exp ’ , nymax , ’ −4.12671 , Angst 4 .12671 , Angst ’ ,

1 ’ s−pe r i od i c ’

wr i t e ( i tape , ∗ ) ’ z s i n ’ , nzmax , ’ 0 . 2 , Angst 1 . 7 , Angst ’ ,

1 ’ long ’

wr i t e ( i tape , ∗ ) ’ end−pr imi t ive −bas i s −sec t i on ’

wr i t e ( i tape , ∗ ) ’SPF−BASIS−SECTION’
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wr i t e ( i tape , ∗ ) ’ x=25’

wr i t e ( i tape , ∗ ) ’ y=25’

wr i t e ( i tape , ∗ ) ’ z=15’

wr i t e ( i tape , ∗ ) ’ end−spf−bas i s −sec t i on ’

wr i t e ( i tape , ∗ ) ’OPERATOR−SECTION’

wr i t e ( i tape , ∗ ) ’ opname=HPd111 ’

wr i t e ( i tape , ∗ ) ’ oppath =. ./ ’

C 1 /EIGENSTATES’

wr i t e ( i tape , ∗ ) ’ end−operator−sec t i on ’

wr i t e ( i tape , ∗ ) ’INIT_WF−SECTION’

wr i t e ( i tape , ∗ ) ’ bui ld ’

wr i t e ( i tape , ∗ ) ’ x r eadsp f ’ , RANDx

wr i t e ( i tape , ∗ ) ’ y r eadsp f ’ , RANDy

wr i t e ( i tape , ∗ ) ’ z r eadsp f ’ , RANDz

wr i t e ( i tape , ∗ ) ’ end−bui ld ’

wr i t e ( i tape , ∗ ) ’ end−init_wf−sec t i on ’

wr i t e ( i tape , ∗ ) ’INTEGRATOR−SECTION’

wr i t e ( i tape , ∗ ) ’ VMF’

wr i t e ( i tape , ∗ ) ’ RK8 = 1 .0 d−7, 1 . 0 d−7’

wr i t e ( i tape , ∗ ) ’ proj−h ’

wr i t e ( i tape , ∗ ) ’ end−in t eg ra to r −sec t i on ’

wr i t e ( i tape , ∗ ) ’ALLOC−SECTION’

wr i t e ( i tape , ∗ ) ’ maxkoe=15000 ’

wr i t e ( i tape , ∗ ) ’ maxhtm=15000 ’

wr i t e ( i tape , ∗ ) ’ maxhop=15000 ’

wr i t e ( i tape , ∗ ) ’ maxsub=780 ’

wr i t e ( i tape , ∗ ) ’ maxham=1000 ’

wr i t e ( i tape , ∗ ) ’ end−a l l o c −sec t i on ’
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wr i t e ( i tape , ∗ ) ’ ’

wr i t e ( i tape , ’ (A) ’ ) ’ end−input ’

c l o s e ( i t ape )

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Generate s c r i p t s f o r HPC c a l c u l a t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗

C∗∗∗∗∗ Thermal i sat ion

i t ape =14

i o f =’Therm−’// trim ( s t r ( i s e e d ) )

open ( i tape , f i l e=i o f , form=’ formatted ’ , s t a tu s =’unknown ’ )

wr i t e ( i tape , ’ (A) ’ ) ’#! / bin /bash ’

wr i t e ( i tape , ’ (A) ’ ) ’#SBATCH −p grant ’

wr i t e ( i tape , ’ (A) ’ ) ’#SBATCH −A ∗∗∗∗∗∗∗∗∗∗ ’

wr i t e ( i tape , ’ (A) ’ ) ’#SBATCH −−exc lu s i v e ’

wr i t e ( i tape , ’ (A) ’ ) ’#SBATCH −N 1 ’

wr i t e ( i tape , ’ (A) ’ ) ’#SBATCH −−mem=20G ’

wr i t e ( i tape , ’ (A) ’ ) ’#SBATCH −−mail−type=END ’

wr i t e ( i tape , ’ (A) ’ ) ’ source ~/. bashrc ’

wr i t e ( i tape , ’ (A) ’ ) ’ hostname ’

! wr i t e ( f i l ename , " ( A13 , I2 ) " ) ’RANDOMVECTORx’ , i s e e d

com=’ f i l ename=iseed ’// trim ( s t r ( i s e e d ))// ’ −KG−r e l a x a t i o n . inp ’

wr i t e ( i tape , ’ (A) ’ ) com
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wr i t e ( i tape , ∗ ) ’ sed −i " s / usepthreads =.∗/ usepthreads = ’ , ’ $ ’ , ’SLURM’

1 , ’_CPUS_ON_NODE/ " ’ , ’ $ f i l ename ’

wr i t e ( i tape , ’ (A) ’ ) ’ mctdh86 −mnd $f i l ename ’

c l o s e ( i t ape )

c

stop ’ Normal conc lu s i on . ’

end

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

charac t e r (20) func t i on s t r ( k )

! " Convert an i n t e g e r to s t r i n g . "

! i n t ege r , i n t en t ( in ) : : k

wr i t e ( s t r , ∗) k

s t r = a d j u s t l ( s t r )

end

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

E.2.2 Propagation of the non-interacting stochastic thermal

wave-packets

Script file

#!/ bin /bash

# command f i l e f o r running f o r t r a n code

i f t e s t $# −eq 0

then

echo " Usage : prop−Ket . com T i s e e d "

e x i t 1

f i
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export CurrDir=$ (pwd)

export WorkDir=$1K

i f [ ! −d $WorkDir ] ; then

mkdir $WorkDir

f i

cd $WorkDir

#ln −s . . / HPd111 . op HPd111 . op

T=$1

#n c e l l =24

#nstpc=24

t f =10000.

l e t nxs tate=61 #$ n c e l l ∗ $nstpc

l e t nys tate=61

l e t nz s ta t e=31

i s e e d=$2

cp . . / prop−Ket . f .

#cp . . / HPd111 . op .

g f o r t r an prop−Ket . f −o prop−Ket . exe −fno−automatic

# i f [ ! −e OPERATOR. op ] ; then

# ln −s operators −without−CAP. op OPERATOR. op

# f i

echo "T: " > INPUT

echo $T >> INPUT

echo " I s e ed :">> INPUT

echo $ i s e ed >> INPUT
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echo "Nx : " >> INPUT

echo $nxstate >> INPUT

echo "Ny : " >> INPUT

echo $nystate >> INPUT

echo "Nz : " >> INPUT

echo $nzs ta t e >> INPUT

# echo " Nce l l " >> INPUT

# echo $ n c e l l >> INPUT

echo " t f i n a l ">> INPUT

echo $ t f >> INPUT

./ prop−Ket . exe < INPUT

echo " prop−Ket done "

rm INPUT

rm −f prop−Ket . f prop−Ket . exe

#export oper=Ek6th

#i f [ ! −d $oper ] ; then

# mkdir $oper

#f i

#cd $oper

i f [ ! −d PROPAGATION ] ; then

mkdir PROPAGATION

f i

cd PROPAGATION

ln −s . . / HPd111 . op HPd111 . op

i f [ ! −d prop−Ket ] ; then

mkdir prop−Ket
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f i

cd prop−Ket

i f t e s t −d i s e ed $ i s e e d −KG−propagation−Ket ; then

echo " i s e e d$ i s e ed −KG−propagation−Ket e x i s t s . "

e l s e

mv . . / . . / i s e e d $ i s e e d −KG−propagation−Ket . inp .

mv . . / . . / Ket−$ i s e ed .

sbatch Ket−$ i s e ed

f i

watch squeue −u obindech

e x i t

FORTRAN file

program grv

c gene ra t e s a normal ized vec to r o f l ength N with random phases

c as we l l as mctdh input f i l e s f o r r e l a x a t i o n f o l l o w i n g Kos lo f f −Gelman

c and propagat ion f i l e s at f i n i t e and i n f i n i t e temperatures

c 190528 non−exact propagat ion

c 190529 exact propagat ion t e s t ed and then discarded ,

c as c r o s s c o r r needs MCTDH type WF, not exact WF

i m p l i c i t r e a l ∗8 (a−h , o−z )

parameter ( n s ta t e =8049)

parameter ( i s e ed0 =1729)

parameter ( fsK =3819.116289)

parameter ( a0 =0.5291772107)

parameter ( ac =1.278)

dimension br ( n s ta t e ) , b i ( n s ta t e )

cha rac t e r ∗80 com , i o f , r lx ,RANDx,RANDy,RANDz, f i l ename
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cha rac t e r ∗50 z e i l e

cha rac t e r ∗20 s t r

t p i=acos ( −1.d0 ) ∗ 2 .

read (5 , ∗ ) com

read (5 , ∗ ) T

read (5 , ∗ ) com

read (5 , ∗ ) i s e e d

read (5 , ∗ ) com

read (5 , ∗ ) nxmax

read (5 , ∗ ) com

read (5 , ∗ ) nymax

read (5 , ∗ ) com

read (5 , ∗ ) nzmax

C i f (nxmax . gt . n s ta t e ) stop ’n out o f range . ’

C read (5 , ∗ ) com

C read (5 , ∗ ) n c e l l

read (5 , ∗ ) com

read (5 , ∗ ) t f i n a l

r l x =’ i s eed ’// trim ( s t r ( i s e e d ))// ’ −KG−re l axa t i on ’

c propagat ion

t f=t f i n a l

dt=t f /100

i t ape =12

com=’ i s eed ’// trim ( s t r ( i s e e d ))// ’ −KG−propagation−Ket ’

i o f=trim (com ) / / ’ . inp ’
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open ( i tape , f i l e=i o f , form=’ formatted ’ , s t a tu s =’unknown ’ )

wr i t e ( i tape , ∗ ) ’RUN−SECTION’

wr i t e ( i tape , ∗ ) ’name = ’//com

wr i t e ( i tape , ∗ ) ’ propagation ’

wr i t e ( i tape , ∗ ) ’ usepthreads =16’

wr i t e ( i tape , ∗ ) ’ t i n i t =0.0 t f i n a l = ’ , t f ,

&’ tout = ’ , dt , ’ t p s i = ’ , dt

wr i t e ( i tape , ∗ ) ’ no−timing no−speed no−update p s i gridpop ’

wr i t e ( i tape , ∗ ) ’ end−run−sec t i on ’

wr i t e ( i tape , ∗ ) ’PRIMITIVE−BASIS−SECTION’

wr i t e ( i tape , ∗ ) ’ x exp ’ , nxmax , ’ −4.12671 , Angst 4 .12671 , Angst ’ ,

1 ’ s−pe r i od i c ’

wr i t e ( i tape , ∗ ) ’ y exp ’ , nymax , ’ −4.12671 , Angst 4 .12671 , Angst ’ ,

1 ’ s−pe r i od i c ’

wr i t e ( i tape , ∗ ) ’ z s i n ’ , nzmax , ’ 0 . 2 , Angst 1 . 7 , Angst ’ ,

1 ’ long ’

wr i t e ( i tape , ∗ ) ’ end−pr imi t ive −bas i s −sec t i on ’

wr i t e ( i tape , ∗ ) ’SPF−BASIS−SECTION’

wr i t e ( i tape , ∗ ) ’ x=25’

wr i t e ( i tape , ∗ ) ’ y=25’

wr i t e ( i tape , ∗ ) ’ z=15’

wr i t e ( i tape , ∗ ) ’ end−spf−bas i s −sec t i on ’

wr i t e ( i tape , ∗ ) ’OPERATOR−SECTION’

wr i t e ( i tape , ∗ ) ’ opname=HPd111 ’

wr i t e ( i tape , ∗ ) ’ oppath =. ./ ’

C 1 /EIGENSTATES’

wr i t e ( i tape , ∗ ) ’ end−operator−sec t i on ’
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wr i t e ( i tape , ∗ ) ’INIT_WF−SECTION’

wr i t e ( i tape , ∗ ) ’ f i l e = . . / . . /KG−THERMALISATION/ ’// r l x

wr i t e ( i tape , ∗ ) ’ end−init_wf−sec t i on ’

wr i t e ( i tape , ∗ ) ’INTEGRATOR−SECTION’

wr i t e ( i tape , ∗ ) ’CMF/ varphi = 0 . 5 , 1 . 0 d−6’

wr i t e ( i tape , ∗ ) ’BS/ sp f = 8 , 1 .0 d−7’

wr i t e ( i tape , ∗ ) ’ SIL/A = 20 , 1 . 0 d−6’

wr i t e ( i tape , ∗ ) ’ end−in t eg ra to r −sec t i on ’

wr i t e ( i tape , ∗ ) ’ALLOC−SECTION’

wr i t e ( i tape , ∗ ) ’ maxkoe=15000 ’

wr i t e ( i tape , ∗ ) ’ maxhtm=15000 ’

wr i t e ( i tape , ∗ ) ’ maxhop=15000 ’

wr i t e ( i tape , ∗ ) ’ maxsub=780 ’

wr i t e ( i tape , ∗ ) ’ maxham=1000 ’

wr i t e ( i tape , ∗ ) ’ end−a l l o c −sec t i on ’

wr i t e ( i tape , ∗ ) ’ ’

wr i t e ( i tape , ’ (A) ’ ) ’ end−input ’

c l o s e ( i t ape )

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Generate s c r i p t s f o r HPC c a l c u l a t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗

C∗∗∗∗∗ Propagation Ket

i t ape =14

i o f =’Ket−’// trim ( s t r ( i s e e d ) )
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open ( i tape , f i l e=i o f , form=’ formatted ’ , s t a tu s =’unknown ’ )

wr i t e ( i tape , ’ (A) ’ ) ’#! / bin /bash ’

wr i t e ( i tape , ’ (A) ’ ) ’#SBATCH −p grant ’

wr i t e ( i tape , ’ (A) ’ ) ’#SBATCH −A ∗∗∗∗∗∗∗∗∗∗ ’

wr i t e ( i tape , ’ (A) ’ ) ’#SBATCH −−exc lu s i v e ’

wr i t e ( i tape , ’ (A) ’ ) ’#SBATCH −N 1 ’

wr i t e ( i tape , ’ (A) ’ ) ’#SBATCH −−mem=20G ’

wr i t e ( i tape , ’ (A) ’ ) ’#SBATCH −−mail−type=END ’

wr i t e ( i tape , ’ (A) ’ ) ’ source ~/. bashrc ’

wr i t e ( i tape , ’ (A) ’ ) ’ hostname ’

com=’ f i l ename=iseed ’// trim ( s t r ( i s e e d ))// ’ −KG−propagation−Ket . inp ’

wr i t e ( i tape , ’ (A) ’ ) com

wr i t e ( i tape , ∗ ) ’ sed −i " s / usepthreads =.∗/ usepthreads = ’ , ’ $ ’ , ’SLURM’

1 , ’_CPUS_ON_NODE/ " ’ , ’ $ f i l ename ’

wr i t e ( i tape , ’ (A) ’ ) ’ mctdh86 −mnd $f i l ename ’

c l o s e ( i t ape )

c

stop ’ Normal conc lu s i on . ’

end

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

charac t e r (20) func t i on s t r ( k )

! " Convert an i n t e g e r to s t r i n g . "
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! i n t ege r , i n t en t ( in ) : : k

wr i t e ( s t r , ∗) k

s t r = a d j u s t l ( s t r )

end

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

E.2.3 Propagation of the interacting stochastic thermal wave-

packets

Script file

#!/ bin /bash

# command f i l e f o r running f o r t r a n code

i f t e s t $# −eq 0

then

echo " Usage : prop−Bra . com T i s e e d Ekth−Number "

e x i t 1

f i

export CurrDir=$ (pwd)

export WorkDir=$1K

i f [ ! −d $WorkDir ] ; then

mkdir $WorkDir

f i

cd $WorkDir

#ln −s . . / HPd111 . op HPd111 . op

T=$1

#n c e l l =24

#nstpc=24
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t f =10000.

l e t nxs tate=61 #$ n c e l l ∗ $nstpc

l e t nys tate=61

l e t nz s ta t e=31

i s e e d=$2

op=Ek$3th

cp . . / prop−Bra . f .

#cp . . / HPd111 . op .

g f o r t r an prop−Bra . f −o prop−Bra . exe −fno−automatic

# i f [ ! −e OPERATOR. op ] ; then

# ln −s operators −without−CAP. op OPERATOR. op

# f i

echo "T: " > INPUT

echo $T >> INPUT

echo " I s e ed :">> INPUT

echo $ i s e ed >> INPUT

echo "Nx : " >> INPUT

echo $nxstate >> INPUT

echo "Ny : " >> INPUT

echo $nystate >> INPUT

echo "Nz : " >> INPUT

echo $nzs ta t e >> INPUT

# echo " Nce l l " >> INPUT

# echo $ n c e l l >> INPUT

echo " t f i n a l ">> INPUT

echo $ t f >> INPUT

echo " Ekth " >> INPUT

echo $op >> INPUT
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. / prop−Bra . exe < INPUT

echo " prop−Bra done "

rm INPUT

rm −f prop−Bra . f prop−Bra . exe

#export oper=Ek6th

#i f [ ! −d $oper ] ; then

# mkdir $oper

#f i

#cd $oper

i f [ ! −d PROPAGATION ] ; then

mkdir PROPAGATION

f i

cd PROPAGATION

i f [ ! −d prop−Bra ] ; then

mkdir prop−Bra

f i

cd prop−Bra

# ln −s . . / HPd111 . op HPd111 . op

i f [ ! −d $op ] ; then

mkdir $op

f i

cd $op

i f t e s t −d i s e ed $ i s e e d −KG−propagation−Bra ; then

echo " i s e e d$ i s e ed −KG−propagation−Bra e x i s t s . "
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e l s e

mv . . / . . / . . / i s e e d $ i s e ed −KG−propagation−Bra . inp .

mv . . / . . / . . / Bra−$ i s e ed .

sbatch Bra−$ i s e ed

f i

watch squeue −u obindech

e x i t

i f t e s t −d i s e ed $ i s e e d −KG−propagation−Bra ; then

echo " i s e e d$ i s e ed −KG−propagation−Bra e x i s t s . "

rm −f . . / i s e ed $ i s e e d −KG−propagation−Bra . inp

i f t e s t −d i s e ed $ i s e e d −KG−propagation−Bra ; then

echo " i s e e d$ i s e ed −KG−propagation−Bra e x i s t s . "

e l s e

mv . . / . . / i s e e d $ i s e e d −KG−propagation−Bra . inp .

mv . . / . . / Bra−$ i s e ed .

sbatch Bra−$ i s e ed f i

#

cd . . / . . /

e x i t
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FORTRAN file

program grv

c gene ra t e s a normal ized vec to r o f l ength N with random phases

c as we l l as mctdh input f i l e s f o r r e l a x a t i o n f o l l o w i n g Kos lo f f −Gelman

c and propagat ion f i l e s at f i n i t e and i n f i n i t e temperatures

c 190528 non−exact propagat ion

c 190529 exact propagat ion t e s t ed and then discarded ,

c as c r o s s c o r r needs MCTDH type WF, not exact WF

i m p l i c i t r e a l ∗8 (a−h , o−z )

parameter ( n s ta t e =8049)

parameter ( i s e ed0 =1729)

parameter ( fsK =3819.116289)

parameter ( a0 =0.5291772107)

parameter ( ac =1.278)

dimension br ( n s ta t e ) , b i ( n s ta t e )

cha rac t e r ∗80 com , i o f , r lx ,RANDx,RANDy,RANDz, f i l ename , op

cha rac t e r ∗50 z e i l e

cha rac t e r ∗20 s t r

i n t e g e r t t

read (5 , ∗ ) com

read (5 , ∗ ) T

read (5 , ∗ ) com

read (5 , ∗ ) i s e e d

read (5 , ∗ ) com

read (5 , ∗ ) nxmax

read (5 , ∗ ) com

read (5 , ∗ ) nymax

read (5 , ∗ ) com

read (5 , ∗ ) nzmax

C i f (nxmax . gt . n s ta t e ) stop ’n out o f range . ’

C read (5 , ∗ ) com



230 E.2 Example of input files used for the ISF calculations

C read (5 , ∗ ) n c e l l

read (5 , ∗ ) com

read (5 , ∗ ) t f i n a l

read (5 , ∗ ) com

read (5 , ∗ ) t i n i t i a l

r l x =’ i s eed ’// trim ( s t r ( i s e e d ))// ’ −KG−propagation−Bra ’

c propagat ion

t i=t i n i t i a l

t f=t f i n a l

dt=( t f −t i )/100

t t=t f /1000

i t ape =13

com=trim ( r l x )// ’− cont −’// trim ( s t r ( t t ) ) // ’ ps ’

i o f=trim (com ) / / ’ . inp ’

open ( i tape , f i l e=i o f , form=’ formatted ’ , s t a tu s =’unknown ’ )

wr i t e ( i tape , ∗ ) ’RUN−SECTION’

wr i t e ( i tape , ∗ ) ’name = ’//com

wr i t e ( i tape , ∗ ) ’ propagation ’

wr i t e ( i tape , ∗ ) ’ usepthreads =16’

wr i t e ( i tape , ∗ ) ’ t i n i t = ’ , t i , ’ t f i n a l = ’ , t f ,

&’ tout = ’ , dt , ’ t p s i = ’ , dt

wr i t e ( i tape , ∗ ) ’ no−timing no−speed no−update p s i gridpop ’

wr i t e ( i tape , ∗ ) ’ end−run−sec t i on ’

wr i t e ( i tape , ∗ ) ’PRIMITIVE−BASIS−SECTION’
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wr i t e ( i tape , ∗ ) ’ x exp ’ , nxmax , ’ −4.12671 , Angst 4 .12671 , Angst ’ ,

1 ’ s−pe r i od i c ’

wr i t e ( i tape , ∗ ) ’ y exp ’ , nymax , ’ −4.12671 , Angst 4 .12671 , Angst ’ ,

1 ’ s−pe r i od i c ’

wr i t e ( i tape , ∗ ) ’ z s i n ’ , nzmax , ’ 0 . 2 , Angst 1 . 7 , Angst ’ ,

1 ’ long ’

wr i t e ( i tape , ∗ ) ’ end−pr imi t ive −bas i s −sec t i on ’

wr i t e ( i tape , ∗ ) ’SPF−BASIS−SECTION’

wr i t e ( i tape , ∗ ) ’ x=35’

wr i t e ( i tape , ∗ ) ’ y=35’

wr i t e ( i tape , ∗ ) ’ z=20’

wr i t e ( i tape , ∗ ) ’ end−spf−bas i s −sec t i on ’

wr i t e ( i tape , ∗ ) ’OPERATOR−SECTION’

wr i t e ( i tape , ∗ ) ’ opname=HPd111 ’

wr i t e ( i tape , ∗ ) ’ oppath = . . / . . / ’

C 1 /EIGENSTATES’

wr i t e ( i tape , ∗ ) ’ end−operator−sec t i on ’

wr i t e ( i tape , ∗ ) ’INIT_WF−SECTION’

wr i t e ( i tape , ∗ ) ’ f i l e = ’ , r l x

! wr i t e ( i tape , ∗ ) ’ operate = ’ , op

wr i t e ( i tape , ∗ ) ’ end−init_wf−sec t i on ’

wr i t e ( i tape , ∗ ) ’INTEGRATOR−SECTION’

wr i t e ( i tape , ∗ ) ’CMF/ varphi = 0 . 5 , 1 . 0 d−6’

wr i t e ( i tape , ∗ ) ’BS/ sp f = 8 , 1 .0 d−7’

wr i t e ( i tape , ∗ ) ’ SIL/A = 20 , 1 . 0 d−6’

wr i t e ( i tape , ∗ ) ’ end−in t eg ra to r −sec t i on ’

wr i t e ( i tape , ∗ ) ’ALLOC−SECTION’
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wr i t e ( i tape , ∗ ) ’ maxkoe=15000 ’

wr i t e ( i tape , ∗ ) ’ maxhtm=15000 ’

wr i t e ( i tape , ∗ ) ’ maxhop=15000 ’

wr i t e ( i tape , ∗ ) ’ maxsub=780 ’

wr i t e ( i tape , ∗ ) ’ maxham=1000 ’

wr i t e ( i tape , ∗ ) ’ end−a l l o c −sec t i on ’

wr i t e ( i tape , ∗ ) ’ ’

wr i t e ( i tape , ’ (A) ’ ) ’ end−input ’

c l o s e ( i t ape )

C∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Generate s c r i p t s f o r HPC c a l c u l a t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗

C∗∗∗∗∗ Propagation Bra

i t ape =14

i o f =’Bra−’// trim ( s t r ( i s e e d ) )

open ( i tape , f i l e=i o f , form=’ formatted ’ , s t a tu s =’unknown ’ )

wr i t e ( i tape , ’ (A) ’ ) ’#! / bin /bash ’

wr i t e ( i tape , ’ (A) ’ ) ’#SBATCH −p grant ’

wr i t e ( i tape , ’ (A) ’ ) ’#SBATCH −A ∗∗∗∗∗∗∗∗∗∗ ’

wr i t e ( i tape , ’ (A) ’ ) ’#SBATCH −−exc lu s i v e ’

wr i t e ( i tape , ’ (A) ’ ) ’#SBATCH −N 1 ’

wr i t e ( i tape , ’ (A) ’ ) ’#SBATCH −−mem=20G ’

wr i t e ( i tape , ’ (A) ’ ) ’#SBATCH −−mail−type=END ’

wr i t e ( i tape , ’ (A) ’ ) ’ source ~/. bashrc ’
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wr i t e ( i tape , ’ (A) ’ ) ’ hostname ’

! com=’ f i l ename=iseed ’// trim ( s t r ( i s e e d ))// ’ −KG−propagation−Bra−cont . inp ’

wr i t e ( i tape , ’ (A) ’ ) ’ f i l ename =’// trim (com ) / / ’ . inp ’

wr i t e ( i tape , ∗ ) ’ sed −i " s / usepthreads =.∗/ usepthreads = ’ , ’ $ ’ , ’SLURM’

1 , ’_CPUS_ON_NODE/ " ’ , ’ $ f i l ename ’

wr i t e ( i tape , ’ (A) ’ ) ’ mctdh86 −mnd $f i l ename ’

c l o s e ( i t ape )

c

stop ’ Normal conc lu s i on . ’

end

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

charac t e r (20) func t i on s t r ( k )

! " Convert an i n t e g e r to s t r i n g . "

! i n t ege r , i n t en t ( in ) : : k

wr i t e ( s t r , ∗) k

s t r = a d j u s t l ( s t r )

end

C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

E.2.4 Averaging over all realisations

Script file

#!/ bin /bash

# command f i l e f o r running f o r t r a n code
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i f [ $# −eq 0 ]

then

echo " Usage : c a l cu l a t e −ISF . com <k> iseed_min iseed_max

T Nt( f s ) "

e x i t 1

f i

OPER=Ek$1th

#Nseed=$2+1

iseed_min=$2

iseed_max=$3

Nt=$5

#Nseed=$iseed_min+$iseed_max

export CurrDir=$ (pwd)

export WorkDir=$4K

export ADir=$CurrDir " / " $WorkDir

i f [ ! −d $WorkDir ] ; then

mkdir $WorkDir

f i

cd $WorkDir

# c r ea t e c r o s s c o r r e l a t i o n f i l e s with MCTDH ( formula 11 r epor t Roberto )

i f [ ! −d CC−FILES ] ; then

mkdir CC−FILES

f i

i f [ ! −d CC−FILES/$OPER ] ; then

mkdir CC−FILES/$OPER
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cd $ADir/PROPAGATION

f o r ( ( i t =1;Nt−i t +1; i t ++))

do

f o r ( ( i c=$iseed_min ; iseed_max−i c + 1 ; i c ++))

do

i ="prop−Bra /"$OPER"/ i s e e d " $ i c "−KG−propagation−Bra−" $ i t "0 ps "

echo $ i

cd $ i

# f o r ( ( j c=$iseed_min ; iseed_max −j c + 1 ; j c ++))

# do

j = " . . / . . / . . / prop−Ket/ i s e e d " $ i c "−KG−propagation−Ket−" $ i t "0 ps "

echo $ j

i f [ ! −e $ADir "/CC−FILES/"$OPER/ $ic−$ic−$ i t "0 ps " ] ; then

c r o s s c o r r 8 6 −f $ j / −o CC −M −O $OPER ps i

# rm −f $ j / ch i

mv CC $ADir/CC−FILES/$OPER/ $ic−$ic−$ i t "0 ps "

f i

# done

cd $ADir/PROPAGATION

done

done

f i

cd $ADir/

# c a l c u l a t e average

i f [ ! −d ISF−FILES ] ; then
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mkdir ISF−FILES

f i

i f [ ! −d ISF−FILES/$OPER ] ; then

mkdir ISF−FILES/$OPER

f i

cp . . / averg−Iq . f CC−FILES/$OPER/ .

cd CC−FILES/$OPER

g fo r t r an averg−Iq . f −o averg−Iq . exe −fno−automatic

echo $Nt >> INPUT

echo $iseed_min >> INPUT

echo $iseed_max >> INPUT

./ averg−Iq . exe < INPUT

echo " average Iq done "

rm INPUT

rm −f averg−Iq . f averg−Iq . exe

plgen −u 1 :2 ISF−FINAL. pld

mv ISF−FINAL. pld . . / . . / ISF−FILES/$OPER/ .

rm −f averg−Iq . ∗

e x i t

FORTRAN file

program CISF

i n t e g e r i , j , k , tt , Ntstep , i i
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r e a l ∗8 x (100 ,1000) , y (100 ,1000) ! , x ( Nseed , Nt)

r e a l ∗8 t , dt , a , b , tmax , ax0 , ay0 , ax , ay , Px

charac t e r ∗50 com , z e i l e

read (5 , ∗ ) Nt ! Nt in f s

read (5 , ∗ ) iseedMin

read (5 , ∗ ) iseedMax

Nseed=iseedMax−iseedMin+1

C wr i t e (∗ , ∗ ) iseedMin , iseedMax

OPEN(12 ,FILE=’ISF−FINAL. pld ’ , a c t i on = ’ write ’ )

do t t =1,Nt

do k=iseedMin , iseedMax

i f ( k . l t . 10) then

wr i t e (com , " ( I1 , A1 , I1 , A1 , I1 , A3 ) " ) k , ’ − ’ , k , ’ − ’ , tt , ’ 0 ps ’

e nd i f

i f ( k . gt . 9 . and . k . l t . 1 00 ) then

wr i t e (com , " ( I2 , A1 , I2 , A1 , I1 , A3 ) " ) k , ’ − ’ , k , ’ − ’ , tt , ’ 0 ps ’

en d i f

i f ( k . gt . 99) then

wr i t e (∗ , ∗ ) ’ Error : iseedmax =99. See averg−Iq . f ’

goto 1700



238 E.2 Example of input files used for the ISF calculations

e nd i f

OPEN(10 ,FILE=trim (com) , ac t i on = ’ read ’ )

do i =1 ,12

read (10 ,∗ ) z e i l e

enddo

Ntstep=100

do i =(tt −1)∗100+1 , t t ∗100

read (10 ,∗ ) t , a ,b ,dummy,dummy

x(k , i )=a

y (k , i )=b

enddo

c l o s e (10)

enddo

enddo

Nstep=Nt∗100

tmax=t

t =0.

dt=tmax/( Ntstep −1)

ax0=0.

ay0=0.
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do i =1, Ntstep

ax=0.

ay=0.

do k=1,Nseed

i f ( i . eq . 1) then

ax0= ax0+x(k , i )

ay0= ay0+y(k , i )

en d i f

ax= ax+x(k , i )

ay= ay+y(k , i )

enddo

Px=(ax∗ax0+ay∗ay0 )/ ( ax0∗∗2+ay0 ∗∗2)

wr i t e (12 ,∗ ) t , Px

t=t+dt

enddo

1700 cont inue

end

c com=’new−’//com

c OPEN(11 ,FILE=trim (com) , ac t i on = ’ write ’ )

c do i =1 ,12
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c wr i t e (11 ,∗ ) z e i l e

c enddo

c do i =1,Nt

c wr i t e (11 ,∗ ) t , x (k , i ) , y (k , i ) ,dummy,dummy

c enddo

c c l o s e (11)

c c l o s e (10)
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Oussama Bindech
Quantum dynamics of the diffusion of

adsorbates.

Résumé
Cette thèse a pour but d’étudier la dynamique des adsorbats avec une approche
théorique entièrement quantique. Nous nous intéressons particulièrement aux sys-
tèmes H/Pd(111) et H2/Pd(111). Une grande partie de ce travail est liée à l’étude
des états vibrationnels et des énergies propres des atomes d’hydrogène sur la surface
de palladium. Cette étude a montré la présence d’un couplage par effet tunnel et
résonance de Fermi des modes vibrationnels localisés du système. Des simulations
numériques mettant en évidence la manifestation de ces deux effets quantiques dans
le comportement dynamique des atomes d’hydrogène à la surface du palladium sont
présentées. Nous proposons enfin une nouvelle méthode de calcul de la fonction
de diffusion intermédiaire qui repose sur une approche stochastique quantique. Un
résultat préliminaire est comparé à des expériences de spin écho.

Mots-clés : Adsorption dissociative, spectroscopie vibrationnelle, diffusion quantique,

Multi-Configuration Time-Dependent Hartree (MCTDH), résonance de Fermi, fonc-

tion de diffusion intermédiaire (ISF).

Abstract
The present thesis aims at studying the dynamics of adsorbates following a fully
quantum theoretical approach. We are particularly interested in the H/Pd(111) and
H2/Pd(111) systems. A large part of this work is related to the study of the vibra-
tional states and eigenenergies of the hydrogen atoms on the palladium surface. This
study showed the presence of tunneling and Fermi resonance coupling of localized
vibrational modes of the system. Numerical simulations highlighting the manifes-
tation of these two quantum effects in the dynamical behavior of hydrogen atoms
on the palladium surface are presented. We finally propose a new method to calcu-
late the intermediate scattering function (ISF) which relies on a quantum stochastic
approach. A preliminary result is confronted with spin echo experiments.

Keywords : Dissociative adsorption, vibrational spectroscopy, quantum diffusion,

Multi-Configuration Time-Dependent Hartree (MCTDH), Fermi resonance, the in-

termediate scattering function (ISF).
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