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during my thesis. Each paper is preceded by a state-of-the-art chapter that provides background
and motivation to understand them. The thesis ends with a chapter regarding perspectives and
another chapter regarding conclusions.
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Chapter 1

Summary

1.1 English summary

Palaeometagenomics is the study of ancient genetic material by using metagenomic sequencing,
a process that entails the characterisation of the DNA from all the organisms in a sample. By
ancient genetic material we refer to the DNA that comes from a non-living source and that shows
signs of molecular degradation. Dental calculus has proven to be an exceptionally rich source of
ancient DNA (aDNA) and it has been used to investigate the evolution of the oral microbiome, as
well as human oral health and diet. Despite the establishment of rigorous laboratory protocols for
aDNA contamination control, aDNA samples are still highly susceptible to contamination from
environmental sources, which can drastically alter the microbial composition and lead to erroneous
conclusions after downstream analyses. This dissertation proposes two algorithms that rely on k-
mers (sub-sequences of DNA) to address two relevant challenges in the field of palaeometagenomics:
contamination assessment via Microbial Source Tracking and contamination removal at the read
level. The former task resulted in a first-author publication and an open-software called decOM,
while the latter has also been published as a first-author paper accompanied by an open-software
called aKmerBroom. Both methods were tested on ancient oral metagenomic data, yet their utility
can be extended to samples that do not originate from ancient oral sources. Overall, this thesis
has proven that k-mer-based algorithms have an immense potential for contamination removal and
contamination assessment of metagenomes, as they leverage the wealth of metagenomic information
that has been sequenced and made publicly available throughout the years.

1



1. Summary

1.2 Résumé en français

La paléométagénomique est l’étude du matériel génétique ancien à l’aide du séquençage
métagénomique, un processus qui implique la caractérisation de l’ADN de tous les organismes
d’un échantillon. Par matériel génétique ancien, nous entendons l’ADN provenant d’une source
non vivante et présentant des signes de dégradation moléculaire. Le tartre dentaire s’est révélé
être une source exceptionnellement riche d’ADN ancien et a été utilisé pour étudier l’évolution
du microbiome buccal, ainsi que la santé bucco-dentaire et l’alimentation de l’homme. Malgré
la mise en place de protocoles de laboratoire rigoureux pour le contrôle de la contamination de
l’ADN ancien, les échantillons d’ADN ancien court sont encore très sensibles à la contamination par
des sources environnementales, ce qui peut modifier radicalement la composition microbienne et
conduire à des conclusions erronées après les analyses en aval. Cette thèse propose deux algorithmes
qui s’appuient sur les k-mers (sous-séquences d’ADN) pour relever deux défis importants dans
le domaine de la paléométagénomique : l’évaluation de la contamination via le suivi des sources
microbiennes et l’élimination de la contamination au niveau des lectures. La première tâche a
donné lieu à une publication en première auteure et à un logiciel ouvert appelé decOM, tandis que
la seconde a également été publiée en tant qu’article du première auteure accompagné d’un logiciel
ouvert appelé aKmerBroom. Les deux méthodes ont été testées sur des données métagénomiques
orales anciennes, mais leur utilité peut être étendue à des échantillons qui ne proviennent pas de
sources orales anciennes. Dans l’ensemble, cette thèse a prouvé que les algorithmes basés sur k-mer
ont un immense potentiel pour l’élimination de la contamination et l’évaluation de la contamination
des métagénomes, car ils tirent parti de la richesse des informations métagénomiques qui ont été
séquencées et mises à la disposition du public au fil des ans.
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Chapter 2

Introduction
This thesis is the result of my years at the Institut Pasteur, where I started working in October
2020. During my time at the Sequence Bioinformatics group and under the supervision of Dr.
Rayan Chikhi and Dr. Hugues Richard I have worked developing bioinformatic tools that use
k-mers for the following tasks:

• Contamination assessment via Microbial Source Tracking of ancient oral samples.

• Contamination removal at the read level of ancient oral samples.

2.1 Research output

During this thesis, my work on developing tools for the analysis of ancient metagenomic data
resulted in two publications:

• A first author article describing our method for contamination assessment González, C. D.
et al. “decOM: Similarity-based microbial source tracking of ancient oral samples using
k-mer-based methods”. In: Microbiome vol. 11, no. 1 (2023), pp. 243–243.

• A first author article describing our method for contamination removal González, C. D. et al.
“aKmerBroom: Ancient oral DNA decontamination using Bloom filters on k-mer sets”. In:
iScience vol. 26, no. 11 (2023).

2.2 Presentation and posters

• Learning Meaningful Representations for Life (LMRL) Workshop in NeurIPS 2022.

• Proceedings track paper"aKmerBroom: Ancient oral DNA decontamination using Bloom
filters on k-mer sets" in RECOM-Seq 2023.

2.3 Outreach

• decOM was used in the Ancient Metagenomics Summer School 2023 Fellows Yates, J. A. et al.
Introduction to Ancient Metagenomics. 2022. doi: 10.5281/zenodo.8027281.

• decOM was cited in Fernandez-Guerra, A. et al. “A 2-million-year-old microbial and viral
communities from the Kap København Formation in North Greenland”. In: bioRxiv (2023),
pp. 2023–06.

• decOM was cited in a poster by Maria Lopopolo at the 10th Meeting of the ISBA entitled
“New Horizons in Biomolecular Archaeology”.

• decOM was cited in the talk presented for SPAAM5 "Biomolecular perspectives on the uses
of birch bark tar in prehistoric Europe" by Anna White.

2.4 Outline

This thesis is organised as follows:

Chapter 2 An introduction describing the outline of the thesis.

Chapter 3 An introduction of some basic concepts in Palaeomicrobiology and ancient metage-
nomics.

Chapter 4 An overview to chapters 5 (State of the art: Ancient Microbial Source Tracking) and 7
(State of the art: Ancient reads decontamination), that correspond to the chapters dedicated
to explain the concepts required to understand the two papers produced in this thesis. Here I
briefly introduce what is the methodological gap that this thesis addresses, with respect to
current methods for contamination assessment and contamination removal of ancient oral
metagenomes.
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2. Introduction

Chapter 5 First part of state of the art dedicated to explain the bioinformatics concepts required
to understand the paper in Chapter 6.

Chapter 6 decOM: Similarity-based microbial source tracking of ancient oral samples using k-mer-
based methods.

Chapter 7 Second part of state of the art dedicated to explain the bioinformatics concepts required
to understand the paper in Chapter 8.

Chapter 8 aKmerBroom: Ancient oral DNA decontamination using Bloom filters on k-mer sets.

Chapter 9 Perspectives

Chapter 10 Conclusions
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Chapter 3

Palaeomicrobiology

3.1 Microbes, microbiome and the history of palaeomicrobiology

3.1.1 Brief introduction and definitions

Microorganisms, also known as microbes, are a diverse range of unicellular organisms that span all
three domains of life: bacteria, archaea, and a considerable proportion of eukaryotes [1]. Microbes
are estimated to constitute half of the earth’s total biomass [2]. Contrary to common beliefs, most
microbes are not pathogenic, instead, the vast majority of them are either neutral or beneficial [1].
The earliest known forms of life on Earth were microbes [3]. Fossilised remains of some of these
early forms of life were found in Western Australia and are estimated to be older than 3.4 billion
years [4].

The microbiome refers to the biotic1 and abiotic2 factors of an environment, that is to say: the
entire habitat, the organisms in it, their genomes and the surrounding environmental conditions [7].
The human microbiome is composed of the microorganisms of the human body, and that includes a
massive number of bacteria. Some interesting facts regarding the bacteria in the human microbiome
are that the number of bacterial cells (1014) exceeds the number of human cells (1013) [8]. The
number of unique bacterial genes in our "accessory genome"3(∼ 3, 300, 000) exceeds the number of
our genes (∼ 22, 000) [11], and the total weight of the bacteria in our microbiome makes up to 1.2
kg which is almost the size of the human brain (1.4 kg) [12].

3.1.2 History of palaeomicrobiology or the study of ancient microbes

3.1.2.1 Pre-Next Generation Sequencing (NGS) era

Throughout the history of palaeontology, chemical and microscopic techniques have been used
to study microbial fossils. Microscopic techniques were first used in 1977 to test Gram staining
of bacteria coming from fossilised faeces [13]. Concurrently, the first chemical techniques that
were used in the field of palaeomicrobiology date to 1978 [14], when they tried to indirectly detect
microbes by chasing by-products of their metabolism.

As both detection methods evolved, the field of genetics grew too. The first attempt to detect
and identify ancient microbes using genetic techniques occurred in 1984 when the first short DNA
fragments were extracted and sequenced from a museum sample coming from an extinct species
of zebra [15]. This event is considered the birth of ancient DNA (aDNA) and it was a pivotal
moment. It was the first time that humans were able to study genetic information from the past,
creating huge expectations about the possibilities researchers had to understand evolution and the
origins of the modern world [16]. Later on, the fields of medicine and biology were revolutionised
with the appearance of the Polymerase Chain Reaction (PCR), a laboratory technique for rapidly
amplifying a fragment of DNA [17]. Shortly after, protocols using PCR were introduced in the
field of palaeomicrobiology, when in 1988 mitochondrial DNA sequences from a 7000-year-old
brain were amplified by PCR and sequenced [18]. During the upcoming years, subsequent studies
reported several prominent species coming from ancient samples using PCR amplification such
as Saccharomyces cerevisiae [19], Mycobacterium leprae [20], Yersinia pestis [21], among others.
However, problems with reproducibility [22, 23] cast doubt on the PCR technique as a method
accurate enough to prove the presence of a species in a given ancient sample. Moreover, it was the
first time that issues regarding the ubiquitous contamination and challenges in aDNA validation
were raised, questioning the integrity of the conclusions reached in the field [1, 24, 25]. Nonetheless,
these first attempts at genetic characterisation of ancient material were a breaking point in the
study of palaeomicrobiology [24].

1Biotic refers to things related to or involving living organisms [5]
2Abiotic or abiological refers to non-biotic [6]
3The genes that are common to all strains in a population and are involved in essential functions for survival

compose the core genome. In contrast to these conserved regions, the accessory genome is the portion of the genome
that is variably present between individual strains, thus different strains might have different sets of accessory genes
[9, 10].
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3. Palaeomicrobiology

3.1.2.2 Next Generation Sequencing (NGS) era

After the completion of the Human Genome Project (HGP), a landmark global scientific effort to
produce the first sequence of the human genome, it became evident that there was a demand for
high-throughput sequencing technologies at a reduced cost. This necessity induced the advent of
Next Generation Sequencing (NGS) technologies, a term that was coined in the mid-2000s with
the remarkable 50,000-fold reduction of the expense of sequencing the human genome since the
HGP [26]. NGS allowed to perform "massively parallel" sequencing, producing billions of reads at
decreasing costs [27]. Such technologies were ideal for the study of ancient genetic material, as they
could handle and recover DNA that was ultrashort and preserve molecular data despite degradation,
in a way that could not be done simply by using PCR [16, 28]. The first major breakthrough using
this technology in the field was the reconstruction of a complete Yersinia pestis genome [29, 30].
Since then, numerous ancient genomes have been sequenced such as Mycobacterium tuberculosis
(tuberculosis) [31, 32], Mycobacterium leprae (leprosy) [33, 34], Salmonella enterica (enteric fever)
[35, 36, 37], Saccharomyces cerevesiae (budding yeast) [38], among many others.

3.2 Metagenomics

Next Generation Sequencing prompted the study of individual ancient microbial species but also
enabled the study of entire microbial communities or microbiomes. A metagenome is defined as the
collection of genomes and genes from the members of a microbiota, that is, the DNA recovered
from the assemblage of microorganisms existing in a certain environment [7, 39]. Subsequently,
metagenomics is a term used to describe the process to characterise a data set that includes nucleic
acid sequences from all organisms in a sample, in order to gain information on the potential function
of the microbiota [39, 40]. This means that, instead of focusing on a single target gene, species or
genome, the entire biotic content of a sample (including bacteria, archaea, eukaryotes and viruses)
is sequenced by randomly amplifying and sequencing a subset of the total DNA in the sample. This
provides a more complete characterisation of the microbiome by analysing all domains simultaneously.
Metagenomics as a technology is especially useful, as it overcomes the problems of primer bias and
generates whole genome sequencing data; therefore analyses are not limited to questions of taxonomy
or phylogeny, but are extended to questions regarding the functionality of the genes present in
a sample [41]. Furthermore, shotgun metagenomics allows for the retrieval of microbial genomes
without an existing reference and alleviates the challenging task of growing ancient microbes in
a laboratory setting. In contrast, some of the disadvantages of metagenomics is that it presents
challenges such as the need for computationally intensive algorithms, and requires pipelines that have
not yet been widely accepted in the community, part of which may be biased by the use of reference
databases [42]. A thorough database for ancient metagenomic studies is the AncientMetagenomeDir
(https://github.com/SPAAM-community/AncientMetagenomeDir)[43].

3.3 Ancient metagenomics

Genetic material that comes from an organism or tissue that is older than an arbitrary cutoff of
100 years old is also referred to as ancient DNA (aDNA) [44]. Other authors prefer to consider
aDNA as any DNA coming from a non-living source that shows signs of molecular degradation [39].
Ancient metagenomics is the use of shotgun metagenomics on ancient genetic material. The genomic
information that can be generated using metagenomics is highly suitable for aDNA research, since
metagenomic sequencing is not affected by length or sequence variants (unlike PCR) and it is not
as sensitive to very short and degraded DNA fragments [1].

3.3.1 Sources of aDNA

As mentioned before, microorganisms are ubiquitous, yet five main sources of ancient microbes that
are particularly informative: teeth, bones, palaeofeces, cultural artifact residues, and sediments.

3.3.1.1 Teeth

Teeth are especially valuable in the study of ancient microbes because they reveal information
about the oral microbiome present in dental calculus, they have traces of blood-borne pathogens
and the communities of bacteria decomposing the body [1].

Dental calculus, also known as mineralized dental plaque, is particularly interesting because it is
the richest source of aDNA and it is the only part of the body that fossilises during an individual’s
lifetime [45]. Besides, the preservation of endogenous DNA in dental calculus is higher as it is less
susceptible to decay [1]. For this reason there is aDNA recovered from ancient dental calculus
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aDNA degradation

samples that are up to 100.000 years old [46]. One particularly interesting feature of this source
of isolation is the fact that dental calculus is a bio-archive of respiratory pathogens and acts as a
trap for microscopic fragments that include human cells, mineralized bacteria, plant micro-fossils
and chemical and bio-molecular compounds that pass through the mouth when the person from
which the sample was taken was alive [47]. A very recent study proved that archaeological dental
calculus samples coming from regions with high temperature and humidity (despite being factors
that increase DNA decay rates [48, 49]), still preserve a high proportion of DNA from endogenous
oral microbiota, providing more evidence for the relevance of this isolation source in the study of
palaeomicrobiology [50].

Furthermore, as teeth are vascularized during life [1], pathogens that infected the individual
from which the sample was taken, can flow through the blood and go all the way up to the dental
pulp chamber4, leaving traces of their genetic material. Such traces are highly valuable, as they
serve as a footprint for the field of pathogenomics [24, 40]. Due to this, pathogenic microbes such as
the Mycobacterium leprae [34] or Klebsiella pneumoniae [51] have been identified in dental calculus.

3.3.1.2 Bones

Pathological alterations of skeletal tissues are generally caused by long-term chronic infections,
and pathogens identified by ancient DNA analysis of pathological bone lesions include not only
tuberculosis [33] but also leprosy [52] and syphilis [53]. However, when analysing the microbial
composition from archaeological bone, care must be taken to distinguish potential pathogens from
close relatives present in the soil that infiltrates the skeleton after death (i.e. soil contamination)
[1].

3.3.1.3 Palaeofeces

Palaeofeces, or ancient faecal material, can provide valuable information about the gut microbiome
of past populations. By analysing the DNA of microbes present in palaeofeces, also called coprolites,
researchers can gain insights into the diets and health of ancient peoples [12, 38, 54]. Ancient human
faeces can provide direct evidence of health and diet, sanitation practices, and social organisation
in the past, as well as information on the local ecology and environment [55].

3.3.1.4 Cultural artifact residues

Cultural artifacts, such as pottery and dental tools, can also provide information about ancient
microbes. By analysing the residues left on these artifacts, researchers can glean insight into
both the types of microbes present in the environment and how ancient peoples interacted with
them. This source of isolation provides a unique opportunity to better understand the processes of
fermentation, culinary practices, and animal domestication and how they have changed through
time [1].

3.3.1.5 Sediments

Sediments can provide a wealth of information about ancient microbes, including bacteria, archaea,
fungi, microalgae, and phyto and zooplankton [1]. By analysing the DNA of microbes present in
sediments, researchers can gain insights into the environmental conditions of the past and the ways
in which ancient peoples interacted with their surroundings. Most studied sediments include cave
sediments [56], lake sediments [57, 58], ocean sediments [59] and open-air archaeological sites [60].

3.4 aDNA degradation

As mentioned in Section 3.3, the main characteristic of ancient DNA (aDNA) is the fact that it has
been degraded due to the passage of time. Degradation refers to the process of biomolecules being
broken up and damaged through a variety of chemical and mechanical processes [43].

3.4.1 Damage patterns

The most important DNA decay reactions in fossil material are depurination, nick formation, and
cytosine deamination. Interestingly, they both hinder and help the study of palaeometagenomics:
they limit the amount of genetic material to sequence, but they are also used for authentication
(see Section 3.5 for a more thorough view of this term) [62]. However, it is important to note that
post-mortem damage can accumulate with the age of the sample, but the rate at which aDNA

4The highly vascularized inner tooth cavity that is contained within the crown and root portions [40]
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3. Palaeomicrobiology

Figure 3.1: Nucleic acids and nucleotide composition. Nucleic acids and nucleotide
composition. Nucleic acids such as RNA and DNA are composed of nucleotide chains. One single
nucleotide is formed by a nitrogenous base, a phosphate group and a sugar. Image taken from [61].

Figure 3.2: Graphical representation of the N -glycosidic bond and the phosphodiester
bond. Graphical representation of the N -glycosidic bond between the nitrogenous base and the
sugar of a nucleotide (left), and the phosphodiester bond, which links two nucleotides together to
form the sugar-phosphate backbone (also called DNA backbone)

degrades is heavily influenced by local environmental conditions, which is why some newer samples
can appear more damaged than older ones [16].

To begin, it is important to explain some basic biochemistry regarding the DNA molecule. A
nucleotide is the fundamental unit of nucleic acids (DNA or RNA). It consists of a sugar molecule
(deoxyribose for DNA and ribose in RNA), a phosphate group, and a nitrogenous base. DNA uses
adenine, cytosine, guanine, and thymine as bases, while RNA uses uracil instead of thymine. DNA
and RNA are polymers composed of nucleotide chains [61] (See Figure 3.1).

The nitrogenous base is bonded to the sugar by a N -glycosidic bond. Whereas the phosphodiester
bond is a covalent linkage between the phosphate of one nucleotide and the hydroxyl (-OH) group
attached to the 3’ carbon of the sugar in the adjacent nucleotide. The latter forms the "sugar-
phosphate backbone", also called the "DNA backbone" [63] (See Figure 3.2).
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Figure 3.3: Graphical representation of the formation of an abasic site due to
depurination (loss of a purine base). Image taken from [63]

3.4.1.1 Depurination

Depurination is a form of DNA damage where a purine base is lost (adenine or guanine)[64]. When
a purine base is missing, this apurinic site is also called abasic (without a nitrogenous base). This
occurs because the N -glycosidic bond between the nitrogenous base and the sugar is broken (see
Figure 3.3 )

3.4.1.2 Nick formation

Depurination leads to destabilisation of the DNA backbone, which in turn results in nick formations.
This type of fragmentation arises as a consequence of the hydrolysis of phosphodiester bonds in the
sugar-phosphate backbone of DNA. A Single-Strand Break (SSB) occurs when the phosphodiester
bond on one DNA strand is broken, as opposed to a Double-Strand Break (DSB) which involves
both DNA strands. SSB are sometimes referred to as “nicks” in the DNA backbone [63]. The
concrete effect here is that broken DNA results in shorter reads.

3.4.1.3 Cytosine deamination

Deamination is a chemical modification where an amine group (NH2) is removed from a nucleotide
through hydrolysis [28]. Cytosine is the most susceptible nucleotide to this type of damage, and after
deamination, it is converted into a uracil (see Figure 3.5). It is also the most common miscoding
lesion in aDNA, and results in the misreading of cytosine as thymine (T). These C-to-T substitutions
occur most often at the ends of sequences (in the single-stranded overhanging termini of aDNA
fragments, a deeper explanation of DNA fragmentation will come in the following subsection) [65,
66, 16]. Statistical DNA damage models, like mapDamage [67] or PMDtools [68] allow researchers
to explore deamination patterns in their data. The expected deamination profile of a true aDNA
sample shows an enrichment of C/T polymorphisms at the ends of the reads. PMDtools also
estimates an ancient score (PMD score) for each read. Reads with PMD scores greater than 3 are
labelled as reliably ancient, which is why this tool is also useful for separating ancient reads from
modern contaminant sequences at the read level [39, 68].

3.4.2 DNA fragmentation

DNA fragmentation is the breakage of the DNA backbone. This is related to depurination (see
subsection 3.4.1.1), since depurination destabilises the DNA backbone and results in nick formations
(see subsection 3.4.1.2). As time passes, these nicks or Single-Strand Break (SSB) breaks in the
DNA backbone become more common, and the resulting aDNA reads shorten up to 30–70 base
pairs (bp) [44].

The length distribution of aDNA can be approximated by a lognormal distribution, showing an
exponential decline in the tail due to random fragmentation of DNA [62]. There is a fragmentation
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Figure 3.4: Graphical representation of the Single-Strand Break (SSB) that occurs in the
DNA, leaving one strand broken. This is also called nick formation. Image taken from [63]

Figure 3.5: Deamination from cytosine to uracil. Image taken from [69]

constant (λ) that represents the fraction of bonds broken in the DNA backbone and is an indicator
of the magnitude of DNA fragmentation [70, 71]. The distribution of undamaged fragment sizes
(x) is modelled with a random Poisson distribution (assuming that the DNA lesions are randomly
distributed). The Poisson distribution that represents DNA damage is: [70, 72, 73]:

f(x) = λ exp−λx (3.1)

λ = − ln AD

A0
(3.2)

Equation 3.1, expresses the distribution of undamaged fragment sizes as an exponential
function that depends on λ and x. Lambda is defined in Equation 3.2 as the negative natural
logarithm of the ratio between the amount of amplification of the damaged template (AD), and the
amplification product from undamaged DNA (A0) [70]. This fragmentation constant is estimated
after experimental measurements.

DNA fragmentation analysis is important for assessing the authenticity of aDNA, as it undergoes
predictable forms of damage and decay. Fragmentation patterns can be visually inspected and are
produced by default in software such as mapDamage [67].
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(a) Read-length profiles

(b) Deamination profiles

Figure 3.6: Plots used to assess read-length profiles and deamination profiles as generated
by the mapDamage software. A typical pattern of DNA fragmentation in ancient samples
should have read lengths ranging from 30 to 70 base pairs. It is observed that most reads from the
ancient sample in Figure 3.6a fall within this range. Reads longer than 100 base pairs are more
likely to be the result of modern contamination. In Figure 3.6b, the plots represent the positions of
specific nucleotide substitutions along the DNA, with the 5’ end on the left-hand side of and the 3’
end on the right-hand side of the x-axis of both plots. The red line indicates C-to-T substitutions,
which are a result of cytosine deamination, while the blue line represents G-to-A substitutions.
Ancient DNA samples are expected to exhibit an excess of C-to-T misincorporations at the 5’ ends
of sequences, and complementary G-to-A misincorporations at the 3’-termini, due to enhanced
cytosine deamination in single-stranded 5’-overhanging ends. The images used in this work are
sourced from [74].

3.5 aDNA authentication

One of the main goals of the study of ancient genetic material is to perform aDNA authentication,
that is, to determine whether a given set of DNA molecules is truly ancient and5 comes from
the sample in question [44, 43]. As mentioned before, authentication can be done by proving
that a sample shows signs of DNA damage patterns (e.g., depurination, nick formation, cytosine
deamination) and DNA fragmentation. Nevertheless, this is not sufficient to prove aDNA data as
being truly ancient, which is why authentication requires additional steps. Some of the reasons
why simply studying damage patterns is not enough for authentication include [62]:

• Different molecular tools used during library construction (e.g certain repair enzymes, DNA
ligases, polymerases etc) can influence the damage patterns observed in aDNA libraries.

• Genetic data is a mixture of ancient and modern DNA contaminants.

• As the decomposition of the sample begins right after death, there will be microbes involved
in the process that also show signs of DNA damage[75]. This is important when researchers

5The emphasis is there to clarify that not only proving that a sample is ancient via different techniques is enough,
one has to prove as well that the isolation source was indeed the origin of the ancient genetic material.
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3. Palaeomicrobiology

investigate microorganisms that are closely related to the composition of the soil microbiome
[62].

• There are pathogens whose DNA-decay rate is lower, for example, M. leprae [33].

This does not mean that DNA fragmentation and damage patterns are not useful signs for
aDNA authentication. However, in the case of significant conservation of the genetic material,
alternatives such as positioning of the ancient genome in a phylogenetic tree, detection of genomic
biomarkers, radiocarbon dating or detection of microbial taxa reflecting the expected sample type
(for instance, palaeofeces should contain mostly gut taxa, instead of soil) are effective and necessary
alternatives too. Ultimately a deep understanding of the biological context of different taxa may
result in falsely attributing the source of an organism of interest [76].

Authentication approaches and guidelines can also involve procedures such as [28, 62]:

• Identifying adequate isolation sources such as dental calculus or petrous bones6. That is
selecting reliable sources for aDNA collection, for instance, petrous bones and dental calculus
have already proven to be rich sources of ancient genetic material [45, 77].

• Verifying damage and fragmentation patterns as described in Section 3.4.

• Molecular procedures such as clean room procedures, as well as the usage and sequencing of
negative controls.

• Evaluating non-damage-dependent methods that rely on the estimation of contaminating
Mitochondrial DNA (mtDNA) (applicable to samples with eukaryotic DNA) or other
population genetics methods.

• Reference-based approaches such as read mapping (for which the user requires a narrow list
of potentially interesting genomes) or taxonomic assignment of reads to a database (which,
in contrast, demands having such a dataset), are subject to biases that have the potential
to influence the obtained results. Additionally, the domain of palaeometagenomics has been
challenged by the lack of an abundant collection of ancient reference genomes, unlike there is
for other fields.

3.6 aDNA contamination

Contamination is used in this thesis as as proposed by [43]: "Ancient and modern DNA not deriving
from the original organism or sample of interest". Contamination is one of the major problems in
microbial archaeology analyses since fractions of exogenous DNA can lead to false biological and
historical conclusions [39]. Reads coming from true aDNA molecules are called "endogenous" in
contrast to contamination or material that is not of interest that is labelled as "exogenous".

There is an important difference between contamination assessment and authentication in
aDNA, which can be illustrated with the following example: One can estimate the presence of
different DNA damage patterns of a presumed ancient sample, and this is a positive indication
that at least some of the sequences in such sample are ancient. However, this validation does not
exclude the presence of other contaminant (exogenous) sequences [78].

3.6.1 Laboratory techniques for aDNA contamination control

Sample and data hygiene standards and precautions are crucial in preventing modern DNA
contamination in ancient microbial research. Some of the recommended practices include [62]:

• Use of isolated and dedicated facilities for aDNA manipulation and research.

• Use of High-Efficiency Particulate Arrestance (HEPA) air filtration.

• Use of UV irradiation.

• Use of NaOCl sterilisation.

• Personal protection measures such as full-body suits, double gloving, and eye shields.

• Usage of reagent blanks and negative controls.

• Setting up unidirectional workflows.
6Densest and most protected portion of the mammalian skull [28]
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Figure 3.7: Decontamination tools classified according to contamination signal: to
sequence difference, expected ploidy and characteristics of aDNA. Image taken from [66]

• Testing the reagents for microbial DNA contamination before using them on ancient samples.

It is important to note that despite having the best contamination reduction practices in
a laboratory setting, it is impossible to fully remove aDNA contamination from Metagenomic
Sequencing (MGS) studies [79, 80].

3.6.2 Computational techniques for aDNA contamination control

Finding solutions to the problem of ancient DNA contamination control remains a primary goal for
the field of palaeomicrobiology over the coming years [44], which is why bioinformatic tools applied
to aDNA bring a significant contribution to the field.

3.6.2.1 Single species

Methods for contamination assessment of genetic material in single species’ genomes from an ancient
sample have been classified based on the signals they use to estimate contamination [78].

Sequence differences: One category used for classification uses sequence differences between
endogenous and exogenous DNA (see contamMix for instance [81]). All methods in this group
require previous knowledge of the relationship between contaminating and ancient individuals,
and they are more powerful if the divergence between the contaminating and ancient genome
sequences is greater [78].

Expected ploidy: Another category is based on expected ploidy, where deviations from the
expected ploidy in sex-chromosomes (applicable to human samples) or regions with large-
scale insertion-deletion differences are used to estimate contamination (for an example see
Mafessoni’s model [82]). In this category, prior information regarding the differences between
exogenous and endogenous DNA is not needed, yet, multiple-fold coverage is necessary [78].

Time-dependent characteristics: A third category for classification is based on time-dependent
characteristics of aDNA, such as cytosine deamination or DNA length. These methods require
few sequences and no previous knowledge of genetic relationships[78] (see AuthentiCT for
example [66]).

Some methods rely on multiple signals, combining sequence differences, expected ploidy, and
characteristics of ancient DNA to estimate contamination (see Schmutzi [83]).
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3.6.2.2 Metagenomics of human samples

As mentioned previously, the advent of NGS technologies brought many advantages to
palaeomicrobiology, as it is a non-selective technique whose laboratory protocols allow the rapid
and high-throughput processing of genetic material [28]. However, metagenomic studies came with
the need for different standards to assess aDNA contamination levels.

Chemical damage is still a useful sign in shotgun palaeometagenomics to computationally
remove non-damaged and presumably contaminant sequences from ancient samples, increasing the
reliability of posterior analysis after contamination removal [28, 68]. However, DNA damage alone
is not enough to authenticate sequences as ancient (for instance when contaminating sequences
also show signs of decay, DNA damage is a confusing signal). Two distinct approaches exist
to computationally estimate contamination in ancient remains: estimating the percentage of
Mitochondrial DNA (mtDNA) sequences originating from a different source or measuring the level
of genome-wide contamination using population genetic methods.

The first method, which is reference-based, consists of gathering haploid Mitochondrial DNA
(mtDNA) sequences to be assembled into partial or complete mitochondrial genomes. Each fragment
is compared against a large database of known contaminants mtDNA [83, 81]. Using this technique
mtDNA contamination can be detected, but nuclear contamination cannot be detected.

The second method, based on nuclear data, evaluates the sex of the individual where the sample
comes from in various ways [28], such as calculating the ratio of sequences mapping to the Y and
X chromosomes [84], estimating the X ratio 7 [85], performing deeper sequencing to study the
proportion of heterozygous positions on the haploid X chromosome in males8 or projecting the
genomic data after performing a form of dimensionality reduction such as Principal Component
Analysis (PCA) or Multidimensional Scaling (MDS) in order to compare female and male samples
from the same site and period [77, 86, 87, 88] .

Metrics such as edit distance, that is, the number of mismatches for each read can be useful to
determine whether a sample is contaminated or it is truly ancient material. The availability of a
reference genome sequence would allow to map potentially ancient reads, one can obtain diagnostic
plots to assess the quality of the data (see Fellows Yates, J. A. et al. Introduction to Ancient
Metagenomics. 2022. doi: 10.5281/zenodo.8027281, section 16.1.4 Alignment quality for more
details)

Other tools such as decontam [89] and cuperdec [46] have been developed more recently and
are widely known in the aDNA community. The former is an R package that is useful when DNA
concentration data is available. Even though it was not tailored or specifically tested in aDNA in
the original publication, it is still useful for Metagenomic Sequencing studies. It is based on two
core hypotheses: sequences from contaminating taxa will have frequencies that inversely correlate
with sample DNA concentration and contaminating sequences will have higher prevalence in control
samples. For this reason decontam requires the user to have sequenced controls or to provide DNA
quantitation data.

The latter, cuperdec, is a R reference-based package for the estimation and visualisation of
the endogenous taxonomic content of ancient metagenomes [43]. Cuperdec’s main idea is to rank
organisms in each sample by their abundance and then compute their enrichment against a reference
database that contains a list of microbial organisms specific to a certain tissue/environment. The
tool produces Cumulative Percent Decay curves and with the visual help of such curves, the user
can identify samples that should be preserved versus samples that should be discarded [39, 43, 90].
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Chapter 4

Overview of state of the art (Chapters 5 and
7)

This chapter gives a brief motivation for the development of this thesis and an overview of the
State of the art chapters 5 and 7.

Ancient metagenomics is a field that faces several prominent challenges: DNA fragmentation,
DNA degradation, and contamination. This thesis focuses on the latter, specifically, on improving
the methodological gap that exists in current bioinformatic methods for contamination assessment
and contamination removal.

Since removing contamination entirely is impossible, researchers have developed computational
tools to account for the contamination of ancient metagenomic samples. Notably, two of the
most prominent methods for contamination assessment in palaeometagenomics, namely FEAST
[1] and mSourceTracker [2, 3], are probabilistic approaches that require a reference database to
construct their input data. However, simply acquiring such a database is challenging because there
is a limited proportion of microbial diversity that has been sequenced in the field (thanks to the
many challenges faced when sequencing DNA coming from scarce and sensitive fossil records). Not
only there is not a clear consensus on what taxa constitutes one microbiome and differentiates
it from another, but also both methods require the use of taxonomic classifiers to create their
input data (specifically called taxonomic abundance tables or OTU tables), which poses several
challenges on its own. For instance, the user needs to select a taxonomic classifier from a large
plethora of options, determine various running parameters, and download or even construct their
reference database of genomic sequences to create such input tables. These inherent heuristics
of reference-based methods open the door to controversies that often deem reproducibility across
experiments impossible. Overall, reference-based methods, as their name suggests, depend on a
reference sequence that significantly impacts the quality of the downstream analysis and must
therefore be as accurate as possible. Unfortunately, many ancient microbial species lack reference
genomes of sufficient quality or have no reference genome at all. Particularly in the context of
palaeometagenomics, reference methods are ill-suited as metagenomes in this context have not been
extensively characterised yet.

In summary, current tools for contamination assessment in paleometagenomics come with the
intrinsic biases of reference-based methods, require parameter optimisation for optimal performance,
do not guarantee convergence due to their Bayesian nature, and are not deterministic. In light of
these limitations, we propose a reference-free method that circumvents the use of taxonomy-based
clustering tables called decOM. Our method uses k-mer representations that leverage the abundance
of metagenomic sequencing data available (at the time) for ancient dental calculus samples. In this
thesis, we aimed to deviate from database-dependent methods and instead employ unsupervised
approaches that exploit the composition of read-level sequences and the wealth of information
encapsulated within previously sequenced metagenomes.

In State of the Art: Ancient Microbial Source Tracking (refer to Chapter 5), I will introduce
some bioinformatic concepts that are essential to understanding the paper presented in Chapter
6. To explain the nature of Microbial Source Tracking (MST), I present the minimal input data
required for any algorithm of this type: a taxonomic abundance table and a sink/source table. Since
the construction of the former is still a source of large controversy and the reason we introduced
several ways to produce them in [4], a full subsection regarding the discussion on how to build
taxonomic abundance tables was included. Finally, I explain the Bayesian theory underpinning the
algorithms for MST that were compared against decOM (FEAST and mSourceTracker), and also
provide a brief introduction to what k-mers and k-mer matrices are, as they are a foundational
component of our contamination assessment method. decOM, which is the paper presented in
chapter 6, emerged as a solution to the unresolved issue of MST tailored for ancient DNA (aDNA)
contamination assessment using a reference-free method. Before delving into the issue of MST,
I introduce the concept of taxonomic classification. The rationale behind this is that competing
methods to decOM require the use of taxonomic classifiers to produce their input data. Moreover, I
concisely explain how three algorithms for taxonomic classification work: Kaiju, KrakenUniq, and
Centrifuge. Subsequently, I mention briefly other more recent and very prominent pipelines in the
field of palaeometagenomics, all of which are reference-based.

Once DNA contamination has been assessed, one could try to remove contaminated (unwanted)
reads from the FASTA/FASTQ files, in order to maximize the usage of the scarce biomaterials
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4. Overview of state of the art (Chapters 5 and 7)

from which the samples are derived. Hence, in the part of the State of the art: Ancient reads
decontamination (refer to Chapter 7), I present the software DeconSeq and Recentrifuge. They are
both competing methods to the algorithm proposed in Chapter 8, a reference-free and novel method
that uses a Bloom Filter to perform ancient DNA contamination removal at the read-level called
aKmerBroom. As explained in Chapter 7, DeconSeq and Recentrifuge require reference databases
or sequences negative controls, their performance depends on parameter optimization that has not
been benchmarked for aDNA and are methods that were not developed or tested specifically on
aDNA data. Furthermore, an explanation is provided regarding the nature of Bloom Filters, which
includes hash functions and the variables that affect the false positive rate of such data structure.

The shortcomings that come with state-of-the-art digital methods for contamination removal
motivated the development of the paper González, C. D. et al. “aKmerBroom: Ancient oral DNA
decontamination using Bloom filters on k-mer sets”. In: iScience vol. 26, no. 11 (2023) (see Chapter
8), an alignment-free method that requires no parameter optimization, was developed and tested
specifically on aDNA data that also offers the flexibility to be potentially used on other types of
metagenomic data.
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Chapter 5

State of the art: Ancient Microbial Source
Tracking

5.1 Taxonomic classifiers

The current production of vast quantities of metagenomic data requires algorithms capable of
assessing microbial content in large datasets with reasonable memory and run-time requirements [1].
Metagenomic Sequencing experiments produce large collections of genomic data from a set of species,
rather than providing genetic information from a single isolated species. Due to this, algorithms for
metagenomic classification are designed to distinguish from a mixture of microbes, create abundance
profiles that indicate which species are present in a metagenomic sample and assess the abundance
of each of those species in such sample (see Figure 5.1). This task is computationally challenging
due to two main reasons: the exponential growth in recent years in the number of sequenced
microbial genomes, and the widespread use of NGS technologies that generate millions of short
sequences. Well-known algorithms such as Basic Local Alignment and Search Tool (BLAST) [2]
have been widely-used by the bioinformatics community, and despite being one of the most sensitive
metagenomic alignment methods, it is infeasible to scale it to the millions of raw sequences present
in today’s metagenomic samples [3].

Tool for taxonomic classification of metagenomic data and estimation of taxon abundance
profiles have been divided into two types according to the task performed: taxonomic binning and
taxonomic profiling. Taxonomic binning refers to the classification of individual sequence reads into
reference taxa. Taxonomic profiling, on the other hand, refers to the quantitative assessment of
relative abundances of taxa within a dataset but not necessarily the classification of individual reads.
Taxonomic profiling produces abundance profiles, which are reports of the estimated abundance of
each taxa in a metagenomic sample [1, 3].

There are many metagenomic classifiers that have been benchmarked throughout the years [3,
4, 5], yet for the sake of understanding the contribution in Chapter 6 and Chapter 8, only three of
them will be briefly introduced: Kaiju [6], KrakenUniq [7] and Centrifuge [8].

5.1.1 Kaiju

Kaiju is a DNA-to-protein classifier1, that implements a search strategy to find Maximal Exact
Matching (MEM) substrings between a query and a database by using a modified version of the
backwards search algorithm in the Burrows–Wheeler Transform (BWT)[3, 6]. The BWT is a
text compression method that converts a reference sequence database into an easily searchable
representation and allows for exact string matching in time proportional to the length of the query.
Kaiju uses MEMs to quickly find sequences in the reference database that share the longest possible
sub-sequence with the query [6]. Backtracking through the BWT has been made faster by using a
lookup table for occurrence counts of each alphabet letter, which was first proposed by [9] and is
called FM-index.

Kaiju translates each read into the six possible reading frames, which are then split at stop
codons into amino acid fragments. These fragments are sorted by length, and searched for Maximal

1Taxonomic classifier that compares DNA sequences against a database of proteins

Figure 5.1: From a metagenomic sample of diverse microbes to an abundance profile.
Image taken from [3]
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Figure 5.2: Kaiju’s graphical representation of its pipeline. Image taken from [6].

Exact Matching (MEM)s in the FM-index from the longest to the shortest fragment. Queries are
taxonomically assigned to the longest MEM. If equally long matches are found for multiple taxa,
Kaiju breaks the tie by determining the Lowest Common Ancestor (LCA)2 and outputting its
taxon identifier. Kaiju also implements a greedy search mode which allows some mismatches at the
left end of fragments, by searching backward in the BWT [3]. This algorithm always classifies each
read to the lowest possible taxonomic level [6].

5.1.2 KrakenUniq

KrakenUniq is an algorithm based on another classification tool called Kraken [11], that additionally
to its predecessor outputs information about the uniqueness of k-mers3 assigned to each taxa [3, 7].

Kraken, on the other hand, is a classification method that searches for k-mers from a DNA
sequence (query) in a pre-computed database that matches such k-mers to the Lowest Common
Ancestor taxon of all genomes that contain that taxon (see Figure 5.3). In other words, Kraken
represents any genomic sequence query as a k-mer set K(S), and then maps each k-mer to the
LCA of all genomes that contain such k-mer. These LCA taxa and their ancestors are represented
as a weighted classification tree, where each node has a weight equal to the number of k-mers
in the sequence associated with the node’s taxon. Then, each Root-To-Leaf (RTL) path in the
classification tree is scored by calculating the sum of all node weights along the path. The maximum
scoring RTL path in the classification tree is the classification path and the initial DNA sequence
(query) is assigned the label corresponding to its leaf. In case there is a tie between paths, the LCA
of all those paths’ leaves is selected [11].

Kraken was the first taxonomic classification software to introduce exact k-mer matching as
a novel classification algorithm. Kraken provides read counts, while KrakenUniq additionally
determines the k-mer coverage4 for each taxonomic classification, a metric that allows the filtering
out of false-positive reads. Indeed, there exists reads that are miss-classified to a taxonomic group
as present in a sample (also called false-positive reads) when [7] one of the following situations
occurs:

• They are contaminating reads. That is, they are reads that belong to contaminant sequences
coming from the extraction, handling or sequencing of the samples. The issue of contaminating
reads can be even more problematic when there is a scarce amount of input material.

• They are reads that belong to low-complexity regions5 of genomes. For instance, if a certain
number of reads match only a portion of a genome that has low-complexity, then the
species was probably not present in the sample and the read classification corresponds to a
false-positive.

• They are reads classified as hits to a taxon when they are actually the result of contamination
in the database of genomes used by the taxonomic classifier.

The authors demonstrate that by reporting the number of unique k-mers, KrakenUniq can
efficiently tackle the issue of false-positives and accurately identify species. When reads from a
species yield many unique k-mers, it is possible to state more confidently that the taxon is truly
present. Conversely, a scarcity of unique k-mers suggests a possible false-positive identification [7].

2The LCA of nodes u and v in a tree is the ancestor of u and v that is located farthest from the root [10]
3a k-mer is a sub-string of a genomic sequence of length k. More information on this concept will be introduced

in upcoming subsections.
4Here k-mer coverage refers to the number of unique k-mers per clade divided by genome size [12]
5Low-complexity regions are defined as regions of biased composition containing simple sequence repeats [13]
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Figure 5.3: Kraken’s graphical representation of its pipeline. Image taken from [11]

The strategy of unique k-mer counting allows the method to detect reads spread across a genome
without alignment.

It is important to note that the authors of both methods (Kraken and KrakenUniq) recommend
using KrakenUniq instead of Kraken nowadays [14].

5.1.3 Centrifuge

This metagenomics classifier, created by an team that shares a subset of authors with Kraken, uses
the Burrows–Wheeler Transform and FM-index to store and index the genome database [11]. It
was released in 2016, and it addresses the memory limitations of Kraken by generating smaller
databases based on an FM-index and compression of within-species genomes [15].

Contrasting Kraken, Centrifuge employs a completely different classification algorithm. To
begin with, it compresses multiple genomes of the same species by storing near-identical sequences
only once, thereby achieving a substantial space reduction for numerous species. Subsequently, an
FM-index is constructed from these compressed sequences.

Once the FM-index is built, the sequence classification process begins (see Figure 5.4). Centrifuge
takes both the forward and reverse sequences and searches for Maximal Exact Matching (16 bp
minimum) in the FM-index, and extends the matches as far as possible. Based on the identified
exact matches, the algorithm classifies each read using only those mappings with at least one 22-bp
match. Centrifuge scores each species using the formula 5.1, and assigns a sequence to multiple
taxonomic categories (5 by default). However, the algorithm reduces the number of assignments
by traversing up the taxonomic tree and selecting the genus encompassing the largest number of
species. Consequently, if there exists a match for every species from a given genus, the genus is
used as the assignment, rather than every matched species that is part of such genus (See Figure
5.4) [8].

Score(SpeciesX) =
∑

hit∈SpeciesX

(length(hit)− 15)2
(5.1)

In comparison to Kraken 2, this taxonomic classifier has several distinctive characteristics [14]:

• Centrifuge uses slightly less memory thanks to the FM-index within species compression.

• Centrifuge can give multiple assignments per read (unlike Kraken 2 that gives just one
assignment).
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Figure 5.4: Centrifuge’s graphical representation of its pipeline. Species A,B, and C were
found to be a match. Yet, after traversing up the tree, the assignment is attributed to genus I
rather than species A, B and C, all of which belong to genus I. Image taken from [8]

• Kraken 2 analyses all the k-mers of the same length in a read, while Centrifuge starts with a
16 bp minimum exact match as a seed, and extends this as far as possible. When a mismatch
is found, Centrifuge skips the base and tries to find the next exact match.

• Centrifuge is slower in classification, and requires more time for database building.

• Kraken 2 supports more databases than Centrifuge.

5.2 Ancient metagenomic workflows

Several tools and databases that can be employed for meta-taxonomic analyses of ancient samples
[16]. One notable alignment-based method, known as MEGAN ALignment Tool (MALT) [17],
was introduced in 2016 and it is one of the most commonly used tools in aDNA analyses. MALT
combines alignment and taxonomic binning by first generating an index on a reference database
(provided by the user), and subsequently aligning query sequences against said reference database.
Once all alignments for a certain read have been estimated, this software finds the Lowest Common
Ancestor (LCA) to perform taxonomic binning. The output of MALT can be integrated with the
interactive metagenomic analysis software MEGAN6[18].

6Toolbox specifically designed for metagenomic studies, encompassing taxonomic analyses, functional analyses,
visualisations, clustering, dimensionality reduction, and various other functionalities. It is important to note that
MEGAN does not involve any form of alignment.

26



Microbial Source Tracking

Figure 5.5: Example of the composition of a metagenomic sample isolated from dental
calculus as estimated via Microbial Source Tracking (MST). The microbial composition of
a metagenomic sample of interest (also called sink) isolated from dental calculus can be modelled
as a mixture of DNA originating from the following sources: ancient oral (aOral), modern oral
(mOral), skin, soil and unknown microbes. This framing of the problem where the composition of a
sink is modelled based on the contribution of a set of sources is known as Microbial Source Tracking

Published 3 years after MALT, Heuristic Operations for Pathogen Screening (HOPS)[19] is
a pipeline that consists of three steps: MALT alignment with aDNA, usage of MaltExtract to
provide statistics for the evaluation of species identification as well as aDNA authenticity, and a
post-processing script for visualisation.

Another popular general-purpose aDNA pipeline, nf-core/eager [20], incorporates HOPS as an
ancient microbiome profiling module within its framework. In addition to taxonomic profiling, this
pipeline enables pathogen screening, microbiome reconstruction, authentication, and analysis of
microbial genomes [21].

Recently, in 2023, a metagenomic profiling workflow for aDNA called aMeta [22] was released
to minimise false discoveries and reduce computer memory requirements. aMeta demonstrated
superior accuracy and memory efficiency when compared to HOPS (hence better than nf-core/eager
and MALT). This profiling workflow combines taxonomic classification (via KrakenUniq) and
filtering to establish a list of microbial candidates used to build a MALT database, and includes
several validation and authentication steps based on the resulting alignments[22]. The purpose of
this method is to link the capacity of KrakenUniq to work with large databases with the advantages
MALT for result validations via alignment.

It is important to emphasise that all the reference-based methods described in Section 5.1 and
Section 5.2, have the inherent limitation of being unable to identify microbial organisms that are not
present in the reference database used for alignment. As an additional point, a more comprehensive,
yet non-exhaustive, list of computational tools and pipelines for aDNA studies can be found in [21].

5.3 Microbial Source Tracking

Microbial Source Tracking (MST) refers to the modelling of microbial communities in a way that
the composition of a metagenome sink (sample of interest) is the product of different contributing
metagenome sources [16, 23]. For example, the microbial composition of archaeological dental
calculus (sink), can be modelled as a mixture of DNA originating from dental plaque (source), skin
bacteria(source), soil(source), and other unknown sources [24] (see Figure 5.5).
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#OTU SRR1804823 SRR11176636 SRR12557007 SRR988088 ERR687893 SRR2096709
taxa_1 0 5 0 20 100 1
taxa_2 15 5 0 0 44 0
taxa_3 0 13 200 0 3 12
taxa_4 4 5 0 0 0 33

Table 5.1: Example of a taxonomic abundance table.

SampleID Env SourceSink
SRR1804823 Sink
SRR11176636 aOral Source
SRR12557007 aOral Source
SRR988088 Soil/Sediment Source
ERR687893 Soil/Sediment Source
SRR2096709 Skin Source

Table 5.2: Example of a sink/source table required by both FEAST andmSourceTracker. The
environment label for the sink sample (SRR1804823) is unknown and is left to be predicted by the
Microbial Source Tracking method.

5.3.1 Input data

In order to use the MST software described in the following subsections, the user has to supply two
tables:

• A table that indicates the samples to be used as sources and their origin (i.e. different class
environments, for instance, sample A belonging to Soil, sample B belonging to Oral, sample
C belonging to Skin) and the sinks (sequenced samples of interest). See the example in Table
5.2.

• A taxonomic abundance table 7. Such a table can be constructed through the use of taxonomic
classifiers such as Kaiju or KrakenUniq. Given a set of unique taxa O = {o1, o2, o3..., oi, ...om}
of size m, and a set S = {s1, s2, s3, ..., sj , ...sn} of sample identifiers of size n, a taxonomic
abundance table T (m× n) contains on each element T (i, j) the abundance of the taxa i in
the sample j. See example in Table 5.1.

Taxonomic profiling is required for the construction of the taxonomic abundance table used as
input by both FEAST and mSourceTracker, and is this characteristic that makes both methods
reference-based. The need for a genomic database to run the taxonomic classifiers is limiting to
the study of ancient dental calculus: community composition analyses may be missing taxa and
underestimating diversity, especially for samples coming from underrepresented locations [26].

5.3.2 Discussion on how to build taxonomic abundance tables

During the process of writing the paper for decOM, numerous discussions took place among the
co-authors and reviewers regarding the appropriate construction of a taxonomic abundance table
that would serve as input for competing methods such as FEAST and mSourceTracker. As detailed
in Section 5.1, there are several benchmarking papers that compare and evaluate algorithms for
taxonomy classification in modern data exclusively. Yet, to the best of our knowledge, there is only
one benchmarking paper that evaluates the performance of five different metagenomic classifiers
(QIIME/UCLUST, MetaPhLAn2, MIDAS, CLARK-S, MALT) on synthetic data specifically
designed to emulate ancient dental plaque [27]. This study does not exhibit unequivocal
superiority of any one program over another but rather highlights that most program biases
can be attributed to database construction, which is generally dominated by human-associated
bacteria. This further underscores the limitations of using reference-based methods in fields where
samples that are underrepresented in public databases play a crucial role, such as the study of
ancient microbes.

Unfortunately, by the time we encountered this benchmarking paper of taxonomic classifiers
for synthetic ancient dental calculus, we had already constructed the taxonomy-based tables using
KrakenUniq and Kaiju. Not only did this process consume a significant amount of time (see
subsection 6.5.2), but also there is not a clear consensus on how to build a taxonomic abundance
table. In light of this situation, we can’t add much more to the analysis of results by overlapping
our results with that benchmarking. However, it might be possible that in the future someone

7This is often called also Operational Taxonomic Unit (OTU) table. An OTU refers to groups of sequences that
are intended to correspond to taxonomic clades or monophyletic groups [25]
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migh challenge decOM’s capabilities for the multi-class classification task evaluated in our paper, by
using alternative ways to produce the input data for FEAST and/or mSourceTracker. As it will
be later detailed in Chapter 6, we tried out two taxonomic classifiers to produce such tables and
yet showed the superior performance of our method. Additionally, the lack of a clear consensus
on the optimal strategy to construct taxonomic abundance tables, supports our assertion on the
limitations of using MST methods such as FEAST and mSourceTracker and further encourages the
development of methods that do not rely on reference databases.

Lastly, there is an ongoing endeavour by a classifier committee to establish the ultimate
benchmarking framework for aDNA meta-taxonomic classification as part of the Standards,
Precautions, and Advances in Ancient Metagenomics (SPAAM) initiative. This initiative, which
comprises a community of researchers dedicated to ancient metagenomics, aims to advance scientific
knowledge, provide training and support, and foster networking opportunities for individuals in the
field of palaeometagenomics.

5.4 SourceTracker

SourceTracker[28] is a method published in 2011, and it is perhaps the most popular and widely
used tool for Microbial Source Tracking. The core idea of this method is that it considers each
sink to be the product of a mixture of known sources and an unknown source, assigning sequences
to different source environments based on their conditional distribution. SourceTracker estimates
the composition of each sink in an iterative manner. It randomly assigns each taxon to a source
environment and then estimates the current proportions of the source environments in the test
sample. It then reassigns each sequence based on the conditional distribution until convergence is
reached8. Let us first introduce a few concepts before digging into the source tracking algorithm
used by this method.

5.4.0.1 Latent Dirichlet Allocation (LDA)

The authors postulate that Microbial Source Tracking is analogous to inferring the mixing
proportions of conversation topics in a document, a task that has already been tackled with
a probabilistic model called Latent Dirichlet Allocation (LDA) [29]. Originally, LDA was used for
modelling the problem of having a scientific paper that discusses multiple topics, and how the words
that appear in such a paper reflect the particular set of topics it addresses [29]. Latent Dirichlet
Allocation was also introduced in parallel during the 2000s in the context of population genetics, to
infer population structure and assign individuals to populations. In this case, each population is
characterised by a set of allele frequencies at each locus, and individuals in the sample are assigned
probabilistically to populations, or jointly to two or more populations if their genotypes indicate
that they are admixed [30]. Similarly, a sample (sink) can be the result of the contribution of
multiple environments, and the taxa that appear in that sample(sink) reflects the particular set of
contributing environments. Viewing samples as mixtures of probabilistic sequences (taxa) makes it
possible to formulate the problem of discovering the set of taxa that belong to each environment.

Consider the following notation:

• zi is the latent variable indicating the environment from which the ith taxon was drawn.

• P (wi|zi = j) is the probability of the taxon wi under the jth environment.

• P (zi = j) gives the probability of choosing a taxon from environment j in the current sample.
This probability will vary across different samples.

• P (w|z) indicates which taxa are important to an environment.

• P (z) is the prevalence of an environment within a sample.

The probability of the ith taxon in a given sink can be written as [31]:

P (wi) =
V∑

v=1
P (wi|zi = j)P (zi = j) (5.2)

Given D samples containing V environments expressed over W unique taxa, we can:

• Represent P (w|z) with a set of V multinomial distributions ϕ over the W taxa, such that
P (w|z = j) = ϕw

(j).
8This concept will be explained in section 5.4.0.2
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• Represent P (z) with a set of D multinomial distributions θ over the T environments, such
that for a taxon in sample d, P (z = j) = θ

(d)
j .

Latent Dirichlet Allocation combines Equation 5.2 with a prior probability distribution on θ to
provide a generative model for each sink (as a reminder, the sample from which we want to assess
the level of contamination). Sinks are generated by first picking a distribution over environments θ
from a Dirichlet distribution, which determines P (z) for taxa in that sink. The taxa distribution in
the sink is then obtained by picking an environment j from this distribution and then picking a
taxon from that environment according to P (w|z = j), which is determined by a fixed ϕ(j). The
estimation problem consists of maximising [29]:

P (w|ϕ, α) =
∫

P (w|ϕ, θ)P (θ|α)δθ (5.3)

Where P (θ) is a Dirichlet distribution. Because the integral in this expression is intractable9, ϕ
is estimated via techniques such as Gibbs sampling.

The complete LDA can be written as [29]:

wi|zi, ϕ(zi) ∼ Discrete(ϕ(zi))
ϕ ∼ Dirichlet(β)

Zi|θ(di) ∼ Discrete(θ(di))
θ ∼ Dirichlet(α)

(5.4)

The Dirichlet parameters, α and β, are prior counts that "smooth the distributions for low-
coverage source and sink samples, respectively" [28]. In the SourceTracker paper all inferences
performed set both α and β to be 0.0001, yet they are both parameters of the model that are left
for the user to optimise. For LDA, one takes values that are below 1 to enforce that the posterior
discrete distributions are only with a limited number of weights different from 0 (the classical
parametrisation is to take 1% of the number of environments and taxa). Note that it is different
from traditional estimation with Dirichlet prior where α is greater that 1 to avoid zero counts.

5.4.0.2 Gibbs sampling

Markov Chain Monte Carlo (MCMC) methods are computational techniques designed to generate
samples from a given probability distribution P (θ) (also called target density), and/or to estimate
expectations of functions under this distribution. When P (θ) is not from a simple analytical form,
MCMC methods are ideal to overcome the impossibility of evaluating these expectations by exact
methods. Gibbs sampling is an instance of MCMC methods that assumes that even though P (θ) is
too complex to draw samples from it directly, its conditional distributions P (θi|{θi}i ̸=j) might be
tractable (of a simple analytical form). The application of Gibbs sampling to topic modelling for
the LDA model has already been implemented before the application for MST [31]. Gibbs sampling
is used in the context of Microbial Source Tracking to explore the distribution of assignments of
taxa to source environments within a given sink.

The idea in Gibbs sampling is to generate posterior samples sweeping through each variable
and fixing the remaining variables to their current values, this means, the sampling is not done on
P (θ) itself, but samples are simulated by going through all the posterior conditionals, one random
variable at a time [32]. Gibbs sampling is used by SourceTracker by assigning each observation of
each taxon to a random source environment, and leaving one taxon out for estimation. The initial
assumption is that these assignments are correct (even though they are random), and given this
assumption it is fairly easy to estimate that the taxon that we left out came from a known or an
unknown source. After removing the aforementioned taxon and re-selecting its source environment
assignment, SourceTracker updates the tally for the selected source environment, and repeats the
process on another randomly selected taxon.

Because the construction of the sampling is done according to an irreducible10 Markov Chain,
Gibbs sampling guarantees to reach convergence, or reach a stationary state, where the sample
values have the same distribution as if they were sampled from the true posterior joint distribution
[32, 34]. Put differently, the algorithm converges on the actual distribution of true assignments
from the different source environments.

9Solution is computationally prohibitive or the integral has no closed-form solution.
10If a chain has any one state that is reachable from anywhere, then the chain is irreducible. In other words, a

Markov Chain is irreducible if and only if its graph representation is a strongly connected graph [33].
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5.4.1 Main algorithm

SourceTracker considers the following notation:

• Each sink sample x consists of n sequences mapped to taxa.

• Each sequence can be assigned to any of the sources environments v ∈ 1. . . V , including an
unknown source.

• These assignments are treated as hidden variables, denoted as zi=1. . . n ∈ 1. . . V .

.
The initial step of the Gibbs sampling process is to initialise z with random source environment

assignments and then iteratively reassign each sequence based on the conditional distribution [28]:

P (zi = v|z¬i, x) ∝ P (xi|v)× P (v|x¬i) =
(

mxiv + α

mv + αmv

)
×
(

n¬i
v + β

n− 1 + βV

)
(5.5)

In Equation 5.5:

• mtv is the number of training sequences from taxon t in environment v.

• nv is the number of test sequences currently assigned to environment v.

• ¬i excludes the ith sequence.

• α represents a prior count that smooths the distribution for low-coverage source samples.

• β represents a prior count that smooths the distributions for low-coverage sink samples.

The first fraction gives the posterior distribution over taxa in the source environment; the
second gives the posterior distribution over source environments in the test sample.

5.4.2 The contribution of mSourceTracker to SourceTracker

In 2020 metagenomic-SourceTracker (mSourceTracker)[35] appeared as an extension of Source-
Tracker, by testing the effectiveness of the latter in metagenomic data and adding a diagnostic tool
to determine the reliability of the proportion estimates [35]. This option can be used to check if
convergence does not take place due to poor taxonomic coverage [36]. Notice that the algorithm
that assigns abundance estimates for each source environment is the same for SourceTracker and
mSourceTracker. The main contributions of the paper for mSourceTracker were:

• The authors proved the effective application of SourceTracker on metagenomic data

• The convergence tests and visualisations implemented via the diagnostic tool helped identify
when convergence was not occurring, caused mainly due to poor taxonomic coverage.

5.5 FEAST

mSourceTracker and SourceTracker made an important contribution to the field, yet using Gibbs
sampling for parameter estimation is a computationally expensive procedure, only applicable
to small datasets with few sources. To address these limitations, other authors developed Fast
Expectation-Maximization Microbial Source Tracking (FEAST). This method proved to be efficient
on metagenomic datasets and can estimate thousands of source contributions to a sample.

5.5.1 The probabilistic model

The model used by SourceTracker shares many similarities with FEAST, and the main difference
between both methods lies in their optimisation procedure (Gibbs Sampling is used by the former,
and Expectation-Maximization is used by the latter).

Consider the following notation:

• K is the number of known sources. There are a total of K + 1 sources (including the unknown).
Each sink is represented by a vector x, where xj corresponds to the abundance of taxa j,
where 1 ≤ j ≤ N .

• Every known source is represented by a vector yi, where yij is the observed abundance of
taxa j in source i (1 ≤ i ≤ K).
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• Ci =
∑N

j=1 yij is the total taxa counts of the known sources.

• C =
∑N

j=1 xj is the total taxa counts of the sink.

The model can be described by the following terms [23]:

βj =
K+1∑
j=1

αiγij

yi ∼Multinomial(Ci, (γi1, ..., γiN ))
x ∼Multinomial(C, (β1, ..., βN ))

(5.6)

Where:

• α is a vector of length K+1, where αi is to the fraction of source i in the sink. Since the
contribution of all sources to the composition of a sink expressed in proportions should add
up to 1,

∑K+1
i=1 αi = 1. This vector is not observed and it is a parameter of the model.

• γij represents the relative abundance of taxa j in source i. For each source there is a vector
γ, where

∑N
j=1 γij . This vector is not observed and it is a parameter of the model.

5.5.1.1 Expectation-Maximization (EM) algorithm

This algorithm alternates between the steps of guessing a probability distribution over completions
of missing data given the current model (known as the E-step) and then re-estimating the model
parameters using these completions (known as the M-step). The EM algorithm attempts to find
the parameters that maximise the probability of observing the data, in other words, we want to
estimate the model parameters ( γ and α in expression 5.6) for which the observed data are most
likely [37, 38].

Let X be a random vector that results from a parameterised family. We wish to find θ such
that P (X|θ) is a maximum. This is known as the Maximum Likelihood (ML) estimate for θ. To to
estimate θ, it is typical to introduce the log-likelihood function defined as:

L(θ) = ln P (X|θ) (5.7)

Since ln(x) is a strictly increasing function, the value of θ which maximises P (X|θ) also maximises
L(θ). The Expectation-Maximization (EM) algorithm is a two-step iterative procedure for
maximising L(θ). Denote the hidden random vector by Z and a given realisation by z, which is
used to express the total probability P(X|θ)[38].

The Expectation-Maximization algorithm consists of iterating the [38]:

1. E-step: Determine the conditional expectation EZ|X,θn
{lnP(X, z|θ)}. In this step, the

missing data are estimated given the observed data and the current estimate of the model
parameters.
The expected complete log-likelihood function Q(t)11 is given by [23]:

Q(t) =
K+1∑
i=1

N∑
j=1

xjp(i|j) ˙log(αiγi,j) +
K+1∑
i=1

N∑
j=1

yij log(γij) + const

Where p(i|j) =
α

(t)
i γ

(t)
ij∑K

i=1 α
(t)
i γ

(t)
ij

(5.8)

2. M-step: Maximise the conditional expectation with respect to θ. In other words, the
likelihood function is maximised under the assumption that the missing data are known. The
estimate of the missing data from the E-step is used in place of the missing data.
The update for the mixing proportions is given by [23]:

α
(t+1)
i =

N∑
j=1

xj

C

α
(t)
i γ

(t)
ij∑K+1

i=1 α
(t)
i γ

(t)
ij

(5.9)

Convergence of the algorithm is guaranteed only to a local maxima, so FEAST is certainly
faster but it might provide different results for different runs. The Expectation and Maximisation
steps for FEAST are fully derived in the Methods and Supplementary Material of their paper[23].

11Log likelihood function Q at step t
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Figure 5.6: Graphical representation of an example of a binary k-mer matrix. This was
the type of matrix used for decOM’s implementation. In the matrix Mi,j , each row corresponds to
a distinct k-mer, and each column to a distinct metagenomic sample. If there is a 1 in the entry
Mi,j , then the k-mer i is present in the sample j, else there is a zero in that position.

5.6 k-mers and k-mer matrices

5.6.1 k-mers

Given a biological sequence S of length L, a k-mer of S is a sub-string of S of length k, usually
with 20 ≤ k ≤ 40 [39]. One common way to file genomic collections is to store and index data
sets as sets of k-mers. Any genomic sequence or genomic dataset (set of reads resulting from the
sequencing an individual sample) can be represented as a k-mer set [39, 40].

Algorithms that rely on k-mers are commonly used in bioinformatics to construct an index
of all k-mer sets and facilitate basic presence/absence queries. This is achieved by dividing the
query sequence into k-mers and determining their presence or absence in the index. A k-mer
representation of genomic sequences is a succinct solution, and it is an efficient way of dealing
with sequencing errors compared to exact alignment. Unlike aligners that perform inexact pattern
matching, k-mer-based methods can examine the matching fraction of k-mers within the query.
Consequently, the bioinformatics community has embraced these type of methods, since they enable
large comparisons between extensive datasets [40].

5.6.2 k-mer matrices

A k-mer matrix is a data structure that allows the representation of sequence content across multiple
experiments, via presence/absence or abundance of each sub-sequence of fixed size in all samples.
Given a collection S of N samples and size of k-mers of k, a k-mer matrix M contains on each
element M(i, j) the abundance or presence/absence (binary) of the k-mer i in the sample j. Since
a k-mer matrix represents presence/absence or abundance of k-mers across several samples, its
construction relies on k-mer counting [39].

For the construction of the k-mer matrices discussed throughout this thesis, we made use of
a tool called kmtricks [41]. This software was designed to construct k-mer matrices by relying
on disk-based12 k-mer counting techniques, and it is the first to formalise the concept of k-mer
matrices. kmtricks consists of a pipeline composed of successive stages that allow step-by-step
construction of the matrix of interest [39]. In few words, kmtricks takes as input several genomic
datasets (that can occupy up to terabytes of memory), and counts k-mers across those samples in
a way that is four times faster than state-of-the-art tools [41], producing among other things 13, a
k-mer matrix representation of the data. This method performs k-mer counting across multiple
metagenomic samples, and creates the base data structure used in decOM.

To obtain optimal performance, kmtricks uses the concept of partitions. Partitions are sample
divisions that are ideal for parallelization, and in kmtricks there is a mandatory condition of having
all partitions contain roughly equal total number of k-mers. decOM relies on kmtricks and benefits
from several of its features, notably, each input sink is counted using the same partitioning scheme
as the sources (represented by a k-mer matrix such as the one in Figure 5.6). The comparison

12Disk-based approaches are based on the divide-and-conquer paradigm. The notion behind this is to form groups
of k-mers, and process these groups successively or in parallel depending on memory allocation [39].

13kmtricks can also output a collection of Bloom Filter, one per sample. This concept will be explained later in
7.4
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relies on the fact that identical k-mers from the sources and sinks belong to the same partition
[39]. Interestingly, we managed to prove that despite considering only one partition, the Microbial
Source Tracking results for decOM were good enough to beat competing methods (see results the
performance of decOM when taking a larger number of partitions in Figure A.11, and section 6.6).

Notably, the construction of the k-mer matrix used by decOM, with approximately 14 million
unique k-mers (the size of one partition), required 2336 MB of memory and 16.4 hours of running
time. Larger matrices were tested, yet once the results achieved were optimal, a smaller matrix
size was preferred. There were two additional parameters used in the construction of the k-mer
matrix of sources: k-mers were kept if they were present in at least 3 samples of the collection
(recurrence_min), and all k-mers that were seen only once in a sample (abundance_min) were
removed, as they were most likely sequencing errors.
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I

6.1 Motivation

This paper emerged as a solution to the unresolved issue of Microbial Source Tracking (MST)
tailored for aDNA contamination assessment using a method that is reference-free. The field of
palaeometagenomics has long been aware of the recurring problem of contamination with exogenous
DNA is recurrent in their genomic data, and the estimation of such contamination might help
mitigate bias in downstream bioinformatic analyses. Current reference-based methods to assess
contamination levels, which are based of the MST paradigm, employ taxonomic classifiers such as
the ones described in Section 5.1. These methods have the fundamental limitation in that they
are unable to identify microbial organisms that are not present in the reference database used for
alignment. Furthermore, there is a lack of consensus on the optimal approach for constructing
taxonomic abundance tables, despite studies that benchmark such taxonomic classifiers on simulated
ancient oral data (see section 5.3.2).

Given these circumstances, we have proposed an algorithm based on k-mers and have framed
the Microbial Source Tracking problem as a multi-class classification problem. In this approach, we
compare the vector representation of a sample of interest (referred to as the “sink”) against a matrix
of k-mers derived from contaminant and non-contaminant metagenomic samples. This innovative
method, named decOM, performs MST and classification of ancient and modern metagenomic
samples using k-mer matrices. Notably, decOM surpasses two state-of-the-art machine learning
methods for source tracking, namely FEAST and mSourceTracker. We anticipate that decOM will
prove to be a valuable tool for studies involving ancient metagenomics.

Abstract

Background: The analysis of ancient oral metagenomes from archaeological human and animal
samples is largely confounded by contaminant DNA sequences from modern and environmental
sources. Existing methods for Microbial Source Tracking (MST) estimate the proportions of
environmental sources, but do not perform well on ancient metagenomes. We developed a
novel method called decOM for Microbial Source Tracking and classification of ancient and
modern metagenomic samples using k-mer matrices.

Results: We analysed a collection of 360 ancient oral, modern oral, sediment/soil and skin
metagenomes, using stratified five-fold cross-validation. decOM estimates the contributions
of these source environments in ancient oral metagenomic samples with high accuracy,
outperforming two state-of-the-art methods for source tracking, FEAST and mSourceTracker.

Conclusions: decOM is a high-accuracy microbial source tracking method, suitable for
ancient oral metagenomic data sets. The decOM method is generic and could also be adapted
for MST of other ancient and modern types of metagenomes. We anticipate that decOM will
be a valuable tool for MST of ancient metagenomic studies.
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6.3 Background

Ancient metagenomics is the study of multi-species genomic data from samples that have degraded
over relatively long time periods[1]. Analysing ancient DNA (aDNA) is particularly challenging due
to deterioration and contamination with environmental and modern contaminant DNA sequences.
Deterioration refers to DNA damage, which in genetic material from fossil records usually comes
in the form of depurination, nick formation and cytosine deamination [2]. Contamination refers
to genetic material (ancient or modern) that does not derive from the sample of interest [3].
It can come from the microbes that are present in decaying tissue, from the soil or sediment
where the samples were taken, or be an unintended consequence of manipulation during and after
excavation [4, 5]. Despite following well-established standards and precautions to prevent modern
DNA contamination and reduce the proportion of environmental microbial taxa [5, 6], a certain
level of unwanted genetic material in the samples is unavoidable [4]. Under these circumstances,
contamination assessment of aDNA samples is crucial not only to avoid misleading results after
downstream analysis, but also to decide which samples are worth to be further sequenced [7].

The task of Microbial Source Tracking (MST) is to quantify the proportion of different microbial
environments (sources) in a target microbial community (sink) [8]. MST enables quantification of
contamination [9] in metagenomics sequencing data and to predict the metadata class of a given
microbial sample. That is to say, if a researcher has sequenced their ancient metagenomic sample
(sink) and collected a set of sources from environments where the sample might originate, an MST
software estimates the contribution of each source to the sink, and optionally report a proportion
for unknown sources. For example, if the user has sequenced sink X which is a sample composed of
source environments A,B and C, MST should output percentages for the contribution made by
source environments A, B and C (and an optional Unknown) that sum up to 100%.

Two of the most widely used methods today for MST in metagenomic data are metagenomic-
SourceTracker (mSourceTracker)[10] and Fast Expectation-Maximization Microbial Source Tracking
(FEAST) [8], which depend on previously annotated data using taxonomic abundance profiles.
mSourceTracker is a metagenomic extension of the popular SourceTracker [9], a method that
estimates contamination proportions using a mixture model of taxonomic profiles via Gibbs
sampling. It is known that the sensitivity of SourceTracker can be improved through parameter
adjustments [11], however more rigorous evaluations are still needed to fully understand the effect
of adjusting multiple parameters and hyperparameters on its performance [12]. FEAST, released 8
years after SourceTracker, uses an expectation-maximisation approach that reduced the running
time of SourceTracker by a factor of 30 or more. It has been reported to require parameter tuning
to achieve optimal performance [13], which is a resource intensive procedure when handling large
data sets.

FEAST and mSourceTracker require a reference database which is necessary to build the
taxonomy-based clustering tables that both methods use as input. Indeed, in both cases,
metagenomic data must be grouped into bins or clusters of sequences sharing the same taxonomic
classification, an information that is not only highly dependent on the database used, but also
highly biased by the limited proportion of the microbial diversity that has been already sequenced
and taxonomically annotated. [14].

Finally, these taxonomy-based clustering tables can also lead to misleading results depending on
the sequence similarity metric and the threshold used to define them [15]. To our knowledge, there
are no reported reference-free methods for contamination assessment that use MST for large-scale
metagenomic analyses [13]. In this work we seek to move away from database-dependent methods
and use unsupervised approaches exploiting read-level sequence composition and the wealth of
information contained in metagenomes that were previously sequenced.

Over the past years and with the decrease of sequencing costs, large databases of metagenomic
collections from all sorts of environments have become available [16, 17, 18]. These metagenomic raw
reads collectively require petabases of storage, which prohibits their re-analysis by most labs. This
prompted the development of efficient methods for exploring the sequence information contained in
these collections, via searching substrings of length k (k-mers) [19]. Such methods build an index of
all k-mers and their counts over a collection of samples in the form of a k-mer matrix, where each
cell of the matrix represents the abundance (or presence/absence) of a k-mer in a sample. Such
matrices are a concise representation of genomic data that deals more efficiently with sequencing
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errors and genetic variation [19]. Tools such as kmtricks [20] allow the rapid construction of k-mer
matrices from massive collections of sequencing data sets.

In this study we developed a novel reference-free and k-mer-based method called decOM to
perform MST and environmental type prediction of a given microbial sample. decOM was evaluated
in a collection of ancient oral metagenomes with variable contamination levels. Our results show that
decOM outperforms two of the most commonly used MST methods in the multi-class classification
task of finding the most abundant source environment in a sink. We tested our methodology on a
collection of 360 metagenomic data sets of ancient oral samples and its possible contaminants, in an
external validation set of 254 ancient oral samples and on a simulated ancient calculus metagenome.

6.4 Implementation

6.4.1 Evaluation setting

Dental calculus or tartar is mineralized dental plaque that contains remnants of microorganisms
located in the oral cavity [3], and has been established over the past few years as one of the richest
sources of aDNA in the archaeological record [21]. Ancient dental calculus is a great source of
biomolecules (including genetic material) that originate from the host, microbes, food and the
environment [6]. Dental calculus is an important reservoir of ancient human oral microbiomes,
and it offers a unique possibility to examine the links between human health, diet, lifestyle and
the environment throughout the course of human evolution [22]. Due to the proven relevance
of aOral samples isolated from calculus in the field of ancient paleogenomics, we decided to
perform our evaluations on a collection of aOral metagenomic samples and their possible sources of
contamination.

The microbial composition of a given aOral sample isolated from dental calculus has been
modelled in previous studies as a mixture of DNA originating from dental plaque, skin bacteria,
soil and other sources [23, 24]. For this reason, we gathered 360 metagenomic data sets of diverse
environment types: ancient oral (aOral), sediment/soil, skin, or modern oral (mOral) (Figure 6.1).
We used this collection of real metagenomic data to model the contribution of possible contaminants
coming from sediment/soil and skin sources in a group of aOral samples. In addition, we included
a set of mOral samples to assess whether our method can tell apart modern and ancient oral
environments.

The run accession codes for every aOral sample were retrieved from AncientMetagenomeDir
[1](v20.12: Ancient City of Nessebar), a community-curated collection of annotated ancient
metagenomic sample lists and standardised metadata. Samples other than aOral were selected
either because they had been used by competing MST methods or because they were labelled as
aforementioned classes in well-known metagenomic databases such as curatedMetagenomicData
[25], the HumanMetagenomeDB [26] or MGnify [27].

We rely on the metadata of each metagenomic sample to assign a true label (i.e. environment
type), however, there is no ground truth as to what is the true proportion of aOral, mOral,
sediment/soil or skin content in any of them. Several variables accessible through the metadata of
each run accession are plotted in the Supplementary File (Figures 1, 2, 3 and 4).

6.4.2 Input data

Both mSourceTracker and FEAST require taxonomy-based clustering tables as input. We built
these tables using Kaiju [28] and the reference database NCBI BLAST nr+euk (2021-02-24 release),
a non-redundant protein database of bacteria, archaea, viruses, fungi, and microbial eukaryotes
(information to download it in Supplementary File, Section 1). To exclude the possibility that
the lower performance of competing methods was due to the poor quality of the input taxonomic
profiles, we repeated the analyses using KrakenUniq (see Supplementary File Section 2). Also in
this case, decOM improves over FEAST and mSourceTracker. Moreover, the latter two provide
worse results compared to using Kaiju (see ROC and AUC plots in Supplementary Figure 10 and
11, respectively).

On the other hand, decOM takes as input a binary k-mer matrix of distinct k-mers across a
collection of metagenomic samples. We used kmtricks (v1.1.1) to build a presence/absence k-mer
matrix from the 360 metagenomic samples in the collection. In order to find patterns that helped
us distinguish between samples from different source environments, we kept only k-mers that were
present in at least 3 samples in the collection. The k-mer size in kmtricks was set to 31. We
removed all k-mers seen only once in a sample, which were likely to be sequencing errors. The rest
of the parameters of kmtricks were set by default.

The complete k-mer matrix contains around 9 billion k-mers, represented by 700 disjoint sets of
k-mers called partitions. Omitting some technical aspects [29] for clarity, partitions can be seen
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Figure 6.1: Geographical location of samples coloured by environmental type. Labels
for each sample were retrieved from their metadata. The final collection of metagenomic samples
included 116 (32.2%) aOral, 81 skin (22.5%), 79 sediment or soil (21.9%) and 84 mOral (23.3%)
samples.

as a random subset of the rows of the k-mer matrix, created to avoid loading the entire matrix
in memory [20]. It has been independently shown that partitions enable accurate comparisons
between samples [30]. In this work we configure kmtricks to only construct a single partition out
of the 700, i.e. we consider only a subset of around 14 million k-mers (0.1% of total) for subsequent
analysis. We also tested with 7 partitions (Figures 13 and 14 in Supplementary File), and while it
improves results marginally, the marked performance improvement when using only 1 partition
justifies keeping this regime.

6.4.3 Mathematical formulation

We consider a binary k-mer matrix M (as output by kmtricks) that indicates the presence/absence
of each k-mer found across several metagenomic data sets, with N number of unique samples
(columns) and K number of unique k-mers (rows). Each sample j is represented by a column
vector m(j) = (m1j , m2j , m3j , ..., mKj) where mi,j corresponds to the presence/absence of k-mer i
in sample j. We will use the terminology of sink and sources to respectively denote the sample we
want to evaluate the composition of, and the set of samples used as a database.

Consider that the matrix M contains jointly all sources and potential sinks. Let a sample s
(where s ∈ {1, 2, . . . , N}) be a sink and m(s) be its column vector. A source is a collection of
L > 0 column vectors used to build a matrix of sources Ms of dimensions K × (L − 1). Each
column vector in the sources matrix Ms has an associated label that comes from a finite ordered
set of environments (classes) C = {c1, c2, c3, ..., cn} determined by the user. In our case |C| = 4, as
C = {aOral, mOral, skin, sediment/soil}. The vector of labels for each sample in the sources of
length L− 1 is represented by ℓ = (ℓ1, ℓ2, ℓ3, ..., ℓL−1), and each entry of the vector can only take
one of the values from C as in a multi-class classification problem. The vector of categorical labels
ℓ can be further encoded as a highly sparse one-hot binary matrix H of size (L− 1)× |C| where :

Hi,j =
{

1 if ℓi = cj

0 otherwise
(6.1)

Making an analogy with bins (source environments) and balls (k-mers present in a certain
source environment), we are interested in counting the number of balls that fall into each bin. The
core idea of decOM is that if a k-mer is present in the sink represented by the vector m(s) and in
the source vector m(j) with environment label ℓj , then a ball is added to the bin with label ℓj . We
then compare the sink vector m(s) against every source vector until all sources are exhausted. The
output of this comparison is the vector w of length |C|, where every entry corresponds to the total
number of balls in a certain bin, that is, the contribution of each source environment to the sink s.

40



Implementation

Counting k-mers of sinks in sources amounts to performing the following matrix vector operation:

w = m(s)⊺ ·Ms ·H (6.2)

In order to produce proportions instead of raw counts, we estimate the percentage based on
the total number of balls counted per bin (of all known sources) . Such proportions correspond
to every element in the vector p = ⟨w1, w2, w3..., w|C|⟩ when multiplied by a scalar, as seen in the
following operation:

p′ = p
|C|∑
i=1

pi
(6.3)

To analyse a new metagenomic sample, one need only compute a presence/absence vector of k-mers
for this sample using kmtricks, then this new sink is compared against the pre-computed collection
of sources. decOM incorporates a kmtricks module so that the user can give as input a simple
FASTQ/FASTA file of their sink of interest, rather than a presence/absence vector. Figure 6.4
provides a graphical representation of our pipeline.

Finally, we are working to include the contribution of an unknown source by characterising it
as the number of k-mers that are present in the sink and absent in all of the sources.

decOM was implemented in Python 3.6 as a conda package and the installation instructions are
available in a GitHub repository[31].

6.4.4 Microbial Source Tracking evaluated in four different experimental settings

We perform a metagenomic Microbial Source Tracking to benchmark decOM, mSourceTracker, and
FEAST, which all rely on an input matrix. For mSourceTracker and FEAST the input matrix
corresponds to a taxonomy-based clustering table, whereas decOM takes as input a binary k-mer
matrix across metagenomic data sets.

Consider the set X = {m(1), m(2), m(3), ...m(N)}, where X contains all the column vectors of
the aforementioned k-mer matrix. Let A = {m(s)} be a set of sink vectors, and B = {X \m(s)} a
set of sources. In order to estimate the proportion of source environments in each data set in our
collection we run our method in a leave-one-out fashion, i.e., every run of our method uses one
different sample as sink and leaves the rest of the samples as sources. One run of this experimental
setup is described by Algorithm 1.

Algorithm 1 Pseudocode of our method used to estimate proportions of sources in sink s

1: for mj ∈ B do
2: for k = 1, 2, . . . , K do
3: if mks = 1 and mkj = 1 then
4: Add one ball to the bin for class lj
5: end if
6: end for
7: end for
8: Store proportion of sources in sink s
9: Store predicted label for sink s as the source environment with highest value

Additionally, we performed a 5-fold cross-validation experiment by splitting the collection of
metagenomic samples into 5 stratified folds with non-overlapping groups. The groups were defined
by the BioProject from which each data set originated. A BioProject is a collection of biological
data related to a single initiative originating from a single organisation or from a consortium [32].
The folds were made trying to preserve the percentage of samples for each class, given the constraint
that the same group (BioProject) will not appear in two different folds. The idea behind this
additional group stratification is to account for the possible bias that might appear when classifying
a sink that is very similar to a set of sources simply because they come from the same BioProject
and not because there is an underlying sequence similarity between the samples.

For the leave-one-out and cross-validation experiments we evaluated all methods using the
Reciever Operating Characteristic (ROC) and Precision-Recall curves, and a hard label was set
using as threshold the environment class with the highest contribution to the sink. Performance
metrics used were Accuracy, Precision, Recall and F1-score as they are implemented in scikit-learn
[33]. Because the framework of evaluation was a multi-class classification task, the performance
metrics reported here were estimated for each label and then averaged across classes. Definitions
for each performance metric used are specified in Section 5 of the Supplementary File.
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Table 6.1: Environment type prediction performance of decOM, FEAST and mSource-
Tracker. Accuracy, precision, recall and F1-score for were estimated as an average across all classes
in a leave-one-out fashion.

Method Accuracy Precision Recall F1-score
decOM 0.8703 0.9184 0.8703 0.8753
FEAST 0.6816 0.5516 0.7452 0.5479
mSourceTracker 0.8388 0.8388 0.8388 0.8289

We also tested decOM on a validation set of 254 aOral samples, none of which belonged to
the collection of 360 samples we used to construct the k-mer matrix. For this experiment, the
aforementioned matrix is used as sources, whereas the 254 external aOral samples are used as
sinks. Because all samples belong to the same class, Precision and F1-score are not well-defined,
whereas Recall and Accuracy are equivalent (See Section 5 in Supplementary File), which is why
performance is measured using Recall only. Finally we tested decOM and its competitors on an
uncontaminated simulated ancient oral data set and presented the estimated proportions.

6.5 Results

We created decOM as reference-free and open-source Microbial Source Tracking method that is
adapted to ancient metagenomic experiments. Our method takes as input a set of source vectors in
the form of a presence/absence k-mer matrix (built from a collection of metagenomic data sets
ready for the user to download), and one or more FASTA/FASTQ files to be used as sinks. It
outputs a set of proportions (percentages) and a predicted metadata class per sink.

6.5.1 decOM robustly predicts metagenome sample labels

6.5.1.1 Leave-one-out experiment

We compared the performance of decOM with FEAST [8] and mSourceTracker [9] based on their
ability to correctly predict the environmental type of a sample, defined as the highest proportion
among the four possible sample types (ancient oral, model oral, skin, soil). For all methods, we
used the same collection of 360 metagenomic experiments as sources.

All methods output a set of proportions for each sample. We ran them in a leave-one-out
fashion (one sample was used as sink, and the rest were left out as sources). In order to perform a
multi-class classification task, we mapped the set of continuous proportions into a hard label, by
simply assigning a label to the sample corresponding to the environmental type with the largest
proportion among all the predicted sources. The performance metrics presented were calculated
using the hard labels.

Table 6.1 shows that decOM outperforms both mSourceTracker (+3% Accuracy, +8% Precision,
+3% Recall, +5% F1 score) and FEAST (+19% Accuracy, +37% Precision, +12% Recall, +33%
F1 score) in the multi-class classification task of predicting source environment with the largest
contribution in a sink, when such contribution is estimated using a MST framework. Precision-Recall
and ROC curves are shown in the Supplementary File (See Figure 10 and 11).

6.5.1.2 Cross-validation

To further validate that decOM does not solely rely on closely related samples for its predictions,
we performed a 5-fold cross-validation experiment by dividing the collection into 5 stratified folds
with non-overlapping BioProjects. This constraint means that a sink is classified without any
other samples from the same BioProject in the sources. This data stratification is relevant because
it controls for the possible bias that might come from classifying a sink that is similar to the
sources simply because they come from the same sequencing initiative and not because there is
some underlying biological similarity between the samples (see Figure 12 in Supplementary File for
visualisation of the data splitting).

decOM outperforms mSourceTracker and FEAST in each of the five sink/sources folds for
performance metrics such as Accuracy, Precision, Recall and F1 Score (see Figure 6.2) and when
metrics are averaged across groups (see Table 2 in Supplementary File). The performance estimates
dropped with respect to the leave-one-out MST, which is expected since cross-validation results
give a less biased estimate of the model (see also Table 1 and 2 in Supplementary File).
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Figure 6.2: Bioproject stratified 5-fold cross-validation performance of every method.
The performance from every fold was evaluated using accuracy, precision, recall and F1-score

Table 6.2: Performance of decOM in the aOral validation set. As only one class is present in
the validation data set (aOral), performance is measured using precision for this highly imbalanced
setting.

Method Recall
decOM 0.8654
FEAST 0.6692
metaSourceTracker 0.6346

6.5.1.3 Validation set

We evaluated decOM in an external validation set with 254 aOral samples that were present in
the AncientMetagenomeDir [1] but were not part of the matrix of sources previously described.
Samples in the validation set belonged to 6 different BioProjects and ranged from 100 to 14800 years
old. Furthermore they were isolated from 12 different countries in mostly 2 continents. For more
information regarding the metadata of the samples in the validation data set see Supplementary
Figures 5 and 6.

Here also decOM outperforms mSourceTracker and FEAST by classifying most of the samples
as aOral. See Table 6.2 for results in the validations set of only aOral samples.

6.5.1.4 Simulated data set

As a final experiment we tested each of the methods on a simulated ancient dental calculus
metagenome generated by other authors [34]. A mock oral microbial community is created using
representative genomes of microbes found in the human oral microbiome, further processed to
appear similar to an ancient metagenomic sample. As in the validation set, we estimated the
source environment contribution of the aOral, mOral, skin and sediment/soil microbial communities
by using the samples from the 360 collection as sources. Results for all methods are in Figure
6.3. Given that the synthetic metagenome comes from an uncontaminated mock oral microbial
community that has been adapted to appear similar to an ancient calculus sample the expected
content is to be 100% oral, decOM provides the highest estimation of oral contribution (ancient
or modern), followed by mSourceTracker and lastly by FEAST. We encountered reproducibility
problems for FEAST that are further explained in the Supplementary Figure 7.

6.5.2 Running times

We measured the running time for decOM and mSourceTracker using 250 GB of memory and 10
cores. FEAST did not allow for multithreading. We estimated the time it takes to produce an
input matrix for each of the methods (whether it is a taxonomy-based clustering table or k-mer
matrix of sources). We also estimated the time it takes to analyse a new sample by splitting
the process in two steps: the time it takes to produce a new vector to represent the sample, and
the time it takes to perform MST. For the two previously mentioned steps, the average running
time was estimated on the 254 samples from the validation set. The consolidated running times
can be seen in Table 6.3. decOM is considerably faster than the two other methods for creating a
source matrix as we selected one partition of the large k-mer matrix produced by kmtricks and
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Figure 6.3: MST on a simulated ancient dental calculus metagenome. Bar plots for the
source environment proportion estimation obtained after evaluating each method using as sources
all the samples from the 360 metagenomic collection, and using as sink a synthetic ancient oral
data set. The expected content of this synthetic sample is 100% oral

Table 6.3: Running times of MST. Wall-clock time was measured in different parts of the
pipeline: Time to build the input matrix, time to produce a new vector from an input FASTQ
file and time to perform the MST of one sample. Except for the process named “Build source
matrix", the average time was estimated on the results from the validation set. MST done by
FEAST does not allow for multithreading and was run using 2GB of memory and 1 core, whereas
mSourceTracker can not split one sink into multiple jobs, so 1 core and 250GB of memory were
allocated for each sink. Every other process was run using 250GB of memory and 10 cores. Results
for decOM are presented in bold.

Method Process Time (h)
decOM Build source matrix 6.60
decOM Produce new vector 0.04
decOM MST 0.02
FEAST Build source matrix 99
FEAST Produce new vector 0.28
FEAST MST 0.07
mSourceTracker Build source matrix 99
mSourceTracker Produce new vector 0.28
mSourceTracker MST 0.01

offered the pre-computed matrix in a Zenodo file for users to implement in their analyses. When
producing a new vector, since decOM relies on kmtricks, it is also considerably faster than FEAST
and mSourceTracker. However our evaluation of the time here was based on Kaiju’s running times.
Optimising the creation of taxonomy-based clustering tables using faster alignment-free methods
could improve time performance, potentially at the expense of results quality. Finally, all methods
show comparable running times when performing the MST step.
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Figure 6.4: Graphical representation of decOM. Our method preprocesses an input k-mer matrix
of aOral metagenomic samples and its possible contaminants, divides it into sinks and sources and
then estimates and outputs the proportions of each source environment in the sink. The core idea
in the classification step is that if a k-mer is present in the sink s represented by the vector m(s),
and in the source vector m(j) with environment label lj , then a ball is added to the bin with label
lj (Ex: k-mer AAACG is present in the input sink S and in source S1 labelled as skin, S5 labelled
as aOral and S7 labelled as mOral, hence one ball is added to the bin of skin, aOral and mOral
respectively). After every entry in the the sink vector is compared against every entry of every
vector in the sources, decOM outputs the estimated environment proportions and the hard label
assigned to the sink s is that of the environment with the highest contribution.

6.5.3 Ancient oral metagenomic samples come from various environments
(multi-source)

After predicting the metadata class of each of the 360 samples in the collection, we also plotted
the source proportions according to the estimation done by decOM, mSourceTracker and FEAST
(Figure 6.5). The proportion bar plots for mSourceTracker and decOM are visibly more similar to
each other than to FEAST, which seems to output more variable results.

According to the estimation done by decOM, there are 4 main predicted groups in the collection
with distinct source composition as seen in Figure 6.5a: there is a group of samples that have
a higher sediment/soil content, another class of samples with a higher skin content and with a
considerable presence of mOral k-mers, a third group that corresponds to the aOral samples and
that also share a part of the mOral content. Finally, there is a fourth group of samples in which
the contribution of the mOral sequences is considerably higher, however these samples also have
some k-mers in common with the skin and aOral metagenomic samples.

Both decOM and mSourceTracker find a certain level of skin contamination on mOral samples,
as seen in Figure 5a and 5b respectively. We further investigated the issue by plotting a PCA on
the k-mer matrix of sources (See Supplementary Figure 18) and saw that effectively some of the
mOral samples appear close to the Skin samples. This might be the reason why there was some
skin contamination in the mOral samples to begin with.

In additional analyses (see Figure in Supplementary File 15), we divided the samples after
decOM’s MST estimation into two categories: samples that come mostly from one source environment
(mono-source) or samples that come from several environments (multi-source). In addition to the
hard label assigned by decOM, we further categorised the classification of each sample, qualifying
the upper quartile (> 75%) of each class as mostly mono-source samples, and the first and second
quartile (< 75%) as samples of diverse origins (more contaminated). According to this threshold,
there are 78 mono-source samples (22% of the total collection). These are samples whose recovered
label corresponds to the label predicted by decOM, and which are not as contaminated by other
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(a) decOM

(b) mSourceTracker

(c) FEAST

Figure 6.5: Bar plots of the source environment contribution on each sink after the
leave-one-out experiment as estimated by decOM, mSourceTracker and FEAST. Samples
in Figure 6.5a are first sorted by true label, and then sorted by ascending order of the proportion
value for such label. Sample order in the x axis for Figures 6.5b and 6.5c is sorted according to the
order from 6.5a

.

sources. A collection of low-contaminated and mono-source samples as this could be used as a high-
quality multi-class data set of aOral (36%), mOral (27%), sediment/soil (24%) and skin (13%) for
benchmarking with a relatively low imbalance (see Figure 16 in Supplementary File). Interestingly,
91% of the samples we call mono-source are also correctly predicted by mSourceTracker and 78%
are correctly predicted by FEAST (Figure 17 in Supplementary File). Nearly a quarter of the aOral
samples in the collection have contamination levels that are low enough to have them categorised
as mono-source, while the remainder of the ancient oral samples, as expected, have varying levels
of contamination.

6.6 Discussion

We have proposed and evaluated decOM as a tool predict the metadata class of a given metagenomic
sample by using a Microbial Source Tracking framework, in order to help paleogeneticists better
assess the source content of their ancient samples. Because it was built using a Microbial Source
Tracking framework, it can also help determine the composition of any other microbial community
(not necessarily ancient or of oral origin), which is a common question in microbiome studies. Let
us clarify that our goal is not to define an ancient oral microbial community per se, but to give the
user an indication on the quality of their sample in terms of ancient genetic material. We leave for
immediate future work the extensions of decOM to other MST tasks, which could be readily done
by creating a k-mer matrix of metagenomic samples of interest with their associated labels and
estimating the source proportions using decOM.

The utility of decOM was established on a collection of aOral metagenomic samples and their
possible contamination sources, in a leave-one-out set up experiment where every sample was
compared against all others. To control for an overly optimistic performance, we performed a
stratified 5-fold cross-validation experiment making sure all the samples from the same BioProject
belonged to the same fold. Finally, decOM was tested on an external validation data set of 254 aOral
samples that were not part of initial collection of metagenomic aOral samples and metagenomes of
other contaminants and in a simulated ancient calculus metagenome. We acknowledge that our
method would classify the synthetic sample tested on this paper as an mOral sample instead of
aOral despite having predicted the largest proportion of aOral source contribution when compared
to mSourceTracker or FEAST. However, considering decOM has already proven to be useful on real
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data, we leave further tuning of the method on synthetic data to be part of the upcoming work. In
almost every setting, decOM outperformed two of the most widely-used techniques in the field of
MST in the multi-class classification task of predicting the label of a metagenomic samples as the
source environment with the highest proportion.

Ideally we would test decOM on a collection of ancient oral samples with known proportions
for each source environment, unfortunately, to our knowledge, such a data set does not exist. The
task of creating a synthetic data set with such characteristics poses additional challenges regarding
how to avoid overlapping species (originating genomes) between each source environment, and
would ultimately not be a good representation of a real sample. For this reason we focused on the
evaluation of each method by using the metadata class prediction of a hard label rather than by
confirming the proportion predictions were the most accurate.

It could be argued that the lower performance of mSourceTracker and FEAST compared to
decOM in the multi-class classification task described in this study was due to limitations of the
input taxonomy-based clustering table given to the methods. Better results might be achieved by
using a larger database or a tool other than Kaiju to estimate taxonomic abundances. To evaluate
this, we conducted an additional experiment in which we constructed another taxonomy-based
clustering table with KrakenUniq [35] (see Supplementary File, Section 2). Results in this paper
are shown only for the taxonomic abundance profile based on Kaiju, which can also be replicated
using public data sets and which, in any case, yielded the best results for the competing methods.
The results for the taxonomic abundance profile constructed with KrakenUniq are shown in the
Supplementary File information (see Figure 10 and 11).

An important hyperparameter of our model is the size of the input k-mer matrix Ms. We
explored the effect of using multiple partitions on the performance metrics for the single- and 5-fold
cross-validation experiment, but to speed up computations and reduce the memory required, we
decided to use only one partition (0.1% of the total k-mer found by kmtricks). Remarkably, the
performance of decOM is still better than that of competing methods (see Figures 13 and 14, Table
1 and 2 in the Supplementary File). In the future it would be interesting to study the impact on
the classification performance of varying the hyperparameters for the construction of the k-mers
matrix, such as the size of the k-mers, minimum recurrence or minimum abundance.

6.7 Conclusions

We propose a novel and reference-free method to perform Microbial Source Tracking and predict
the metadata class of a given (meta)genomic sample. We tested our method on a collection of real
metagenomic data sets of aOral origin and its possible contaminants and provided an estimation of
the contribution of each source environment on each sample. We anticipate that the incorporation
of decOM into paleogenomic analyses will prevent erroneous results and help identify contaminated
metagenomic samples and ensure their validity.
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6.8 Perspectives

The work conducted in this chapter has raised several inquiries for future investigation. One potential
avenue for future research involves the construction of a larger and more comprehensive k-mer
matrix of sources. It would be intriguing to incorporate metagenomic samples that were not included
in this thesis but were subsequently released, particularly those related to aOral and potential
contaminants. Moreover, it would be worthwhile to examine the impact of varying hyperparameters
on the construction of the k-mer matrix. These hyperparameters include the size of the k-mers
used (denoted as k), the minimum recurrence, and the minimum abundance. Additionally, it would
be of interest to assess the scalability of decOM by expanding the number of sinks and sources used,
and to compare its performance against mSourceTracker and FEAST. The potential sources could
come from a gold standard set established by the community of users in palaeomicrobiology or
from the samples uploaded in the most recent release of the AncientMetagenomeDir.

On the other hand, one interesting aspect that could enhance decOM’s capabilities is to explore
different forms of count normalisations or assign varying weights to the counts based on the
significance of each source environment to the researcher.

In contrast to other existing methods such as FEAST and mSourceTracker, the algorithm
developed in this thesis for assessing contamination via MST (decOM) has demonstrated the ability
to distinguish between mOral and aOral samples. It would be advantageous to further investigate the
underlying factors that contribute to decOM’s success in achieving this aOral/mOral differentiation.

Finally, it would be valuable to determine the minimum number of k-mers that must be identified
in a sink sample in order for decOM to yield useful results. Possible enhancements to the software
could include introducing this threshold and improving the visual representations, output metrics
or taxonomic assignment to the k-mers found in the sink sample.
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Chapter 7

State of the art: Ancient reads
decontamination

7.1 Contamination removal tools

The study of human aDNA, requires authentication procedures as described in Section 3.5, due to
the recurrent challenge in palaeometagenomic field studies, in which contamination from scientists
can occur at any stage, from excavation to DNA library preparation [1]. In the study of ancient
microbial genomes, it is often very difficult to re-sample from biomaterials that were very difficult
to obtain [2, 3], which is why contamination assessment and reduction procedures are fundamental
to ensure the best use of available genetic information. Apart from wet-lab based methods for
contamination control (see Section 3.6.1), bioinformatic tools such as DeconSeq [4] or Recentrifuge [5]
aim to remove genomics sequences that correspond to negative control samples. They are however
not specifically tailored for aDNA and require either a database of negative controls or an index
of reference genomes to distinguish contamination (that should be removed) from endogenous
material.

7.2 DeconSeq

DeconSeq is a framework developed for the rapid and automated identification and removal
of sequence contamination in longer-read datasets(≤ 150 bp mean read length), available as a
standalone tool or a web-based application. This method categorises possible contamination
sequences, eliminates redundant hits, and provides graphical visualisations of the alignment results
and classifications. In [4] the authors carried out an analysis of 202 metagenomes which revealed
significant contamination of non-human associated metagenomes, suggesting its suitability for
metagenomic screening. DeconSeq was written in Perl and its last update was released in May
2013.

7.2.1 Pipeline

DeconSeq accepts as input FASTA/FASTQ files containing genomic or metagenomic reads. The
workflow of the method is shown in Figure 7.1. The basic idea of the method is to compare an
input dataset against a Remove database (set of contaminating samples) and identify the sequences
with significant similarities to this database. More precisely, sequences are classified as contaminant
if they have a match above a (user-defined) threshold against the remove database. DeconSeq uses
coverage and identity thresholds to determine if a match is possibly caused by contamination or
not. There is an optional Retain database that the user might provide, in order to obtain other
labels such as sequences that exist in either one of the databases or both of them. This allows to
finally classify as contaminants the sequences that are unique to the Remove database.

This contamination removal method relies on an alignment algorithm called Burrows-Wheeler
Aligner’s Smith-Waterman Alignment (BWA-SW) [6], an algorithm designed to align long sequences
(up to 1Mb) against a large sequence database with few gigabytes of memory. In few words,
BWA-SW builds FM-indices for reference and query sequences. It uses a prefix trie1 and a prefix
Direct Acyclic Word Graph (DAWG) to represent each of the sequences, respectively. Moreover,
it speeds up the process of mapping via dynamic programming and heuristics. Although there
exists a faster, and generally more accurate version of this aligner (BWA-MEM [7]), the authors
claim that BWA-SW may have better sensitivity when alignment gaps are frequent. Interestingly,
several benchmarking and parameter optimisation papers of different mappers have been tested
specifically on aDNA data [8, 9, 10]. In [9], authors state that Bowtie2 shows better computational
time and increased sensitivity with respect to BWA. On the other hand, authors of [8] authors
compare 4 different mapping software to conclude that despite all of them showing some level of
reference bias, BWA-aln and NovoAlign and BWA-MEM are recommended as they manage to
achieve high mapping precision and reduce bias, particularly after filtering reads with low mapping
qualities. Interestingly, NovoAlign requires the use of an International Union of Pure and Applied
Chemistry (IUPAC) reference genome. Finally, authors of [10] recommend NovoAlign and BWA-aln

1The prefix trie of a string X is a tree with each edge labelled with a symbol such that the concatenation of
symbols on the path from a leaf to the roots gives a unique prefix of X (definition from [6])
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Figure 7.1: DeconSeq’s pipeline. Image taken from [4].

for research using short reads (as it is the case for ancient DNA research), in particular, they
suggest BWA-aln is “still the gold-standard for aDNA read alignment”.

The BWA-SW algorithm was modified to fit the needs of DeconSeq, yet the default behaviour
of the algorithm does not change.

7.3 Recentrifuge

Recentrifuge [5] is a tool that removes negative-control and crossover taxa, allowing researchers to
analyse taxonomic classifications with interactive charts that emphasise confidence levels. It also
provides shared and exclusive taxa per sample, enabling contamination removal and comparative
analyses in metagenomics. The pipeline of Recentrifuge to remove contaminant reads consists of
two steps:

1. Populating and folding logical taxonomic tree.

2. Retrieving set of candidate from control samples.

7.3.1 Populating and folding a logical taxonomic tree

Recentrifuge populates a logical taxonomic tree, and recursively “folds the tree” for any of the
samples if the number of assigned reads to a taxon is below a used-defined threshold.

First, for each sample, Recentrifuge populates a taxonomic tree according to the NCBI Taxonomy
[11], wherein the terminal nodes correspond to lower taxonomic levels. Subsequently, Recentrifuge
performs a recursive process known as “tree folding”, wherein the leaves of the tree are aggregated
in their parent node until at least one of the following conditions are met:

• The number of assigned reads is below mintaxa.

• The corresponding taxonomic tank is below minrank.

where mintaxa and minrank are user-defined parameters.
The new score of parent taxa σ′

p is estimated according to the following equation [5]:

σ′
p = 1

np +
∑D

i ni

(
σpnp +

D∑
i

σini

)
∀(σi, ni) (7.1)

where:
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Figure 7.2: Recentrifuge’s first part of the pipeline: populating and folding a logical
taxonomic tree. In this example mintaxa is set to 10 and minrank is set to genus. The leaves of
the tree are recursively accumulated in the parent node until at least one of the necessary conditions
is met. The parent score is updated according to Equation 7.1. Image taken from [5].

• ni are the counts of a taxon i. Where 0 ≤ ni ≤ mintaxa.

• np are the counts of parent taxon p.

• σp is the score of parent taxon p.

• σi is the score of the taxon i.

• σ′
p is the new score of parent taxon p.

• D is the number of descendant taxa that are to be accumulated in the parent taxa.

See Figure 7.2 for an example of this initial part of the pipeline.

7.3.2 Retrieving contaminant sequences

After the “tree folding”, Recentrifuge’s algorithm retrieves the set of candidates from control
samples. Depending on the relative frequency of these taxa in these samples, and if they are also
present in other specimens, the algorithm classifies them in one of three contamination levels:
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critical, severe, mild and other. All except the members of the other group are removed from
non-control samples.

To account for crossover contamination, the algorithm removes any taxon in the aforementioned
other group from a non-control sample unless it passes a crossover check that includes: a statistical
test screening for outliers and an order of magnitude test against control samples. More precisely:

Outliers statistic test(tk
s) : ftk

s
> median{ft

k
1 , ..., ftk

s
}+ δQn

Order of magnitude test(tk
s) : ftk

s
> 10ξ max{ftk

1
, ftk

2
, ..., ftk

N
}

(7.2)

In Equation 7.2:

• Qn is a scale estimator.

• δ is an outliers cutoff factor that ranges from 3 < δ < 5.

• ξ is a parameter that sets the difference in order of magnitude between the relative frequency
of the candidate to crossover contaminated in a sample s and the greatest of such values
among the control samples. Usually 2 < ξ < 3.

7.4 Bloom Filters

I hereby introduce Bloom Filters, a well-known data structure originally developed in 1970 by
Burton H. Bloom. It is at the base of the paper presented in Chapter 8.

A Bloom Filter (BF) [12] is a probabilistic data structure that allows two operations: insertion
and lookup. A Bloom Filter is part of a set of data structures called approximate membership
query filters: probabilistic data structures designed to address the membership problem in a
space-efficient way [13]. Some applications of Bloom Filters in bioinformatics include classification
of DNA sequences [14], k-mer counting [15], scaling metagenomic sequence assembly [16], de Bruijn
graph compaction [17], k-mer matrix construction [18] among others.

7.4.1 Hash functions

Hash functions are the building block of probabilistic filters such as the Bloom Filter [19].
Suppose you have a dynamic set2 S in which each element has a key k drawn from a universe U .

We could use an array to represent such a dynamic set, in which each slot or position corresponds
to an element of U . However, if U is large, storing an array of size |U | becomes computationally
prohibitive. By using a hash function h to compute the slot from the key k, we introduce a
technique called hashing, where an element k ∈ S is stored in a table T at the index corresponding
to the hash value h(k). Formally, a hash function is a surjective function h : U → {0, 1, ..., m− 1}

From the previous definition, an element with key k hashes to slot h(k), and h(k) is the hash
value of key k. The point of the hash function is to reduce the range of array indices that need to
be handled, going from |U | to m (where m ≪ |U |). The downside of this, is that two keys may
hash to the same slot. This situation is called a collision and could be handled with techniques
known as chaining or open addressing [20].

7.4.2 Formal definition of Bloom Filters

Definition 7.4.1 (Bloom Filter). A Bloom Filter (BF) for representing a set S = {s1, s2, s3, ...sn}
of n elements is described by an array of m bits. Initially, they are all set to 0. Bloom Filters also
require the use of k independent hash functions h1, h2, ..., hk with range {0, ..., n − 1}. For each
element si ∈ S the bits hi(x) are set to 1 for 1 ≤ i ≤ k [21]. The following two operations are
defined:

• Insertion: B[hi(x)]← 1,∀i ∈ [1...k]

• Lookup:
∧k

i=1 B[hi(x)]

See Figure 7.3 for a graphical representation of what a Bloom Filter is.

Notice that a location in the BF can be set multiple times to 1, but only the first change has
an effect [19]. Because Bloom Filters “ignore” collisions, the lookup operation may return false

2Mathematical sets are unchanging, yet in computer science sets can be manipulated by algorithms (they can
grow, shrink, and change over time). Hence they are called dynamic sets [20].
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Figure 7.3: Graphical representation of a Bloom Filter (BF). Bloom Filter constructed on
a set E = {x, y, z}, where |E| = 3. And two hash functions that are part of a set H = {h1, h2},
where |H | = k = 2. Notice that h1(y) and h2(z) cause a collision. Image taken from [13].

positives but not false negatives. That is, a query has always two possible answers: “possibly in set”
or “definitely not in set”.

Other authors have extensively discussed how to estimate the probability to get a false positive
after n elements have been added to a Bloom Filter [19]. Such a probability for a presence/absence
query for a Bloom Filter built from n elements, with k hash functions and a filter of size m (number
of bits in the BF) can be approximated as:

p ≈ (1− 1
e

kn
m

)k (7.3)

Notice that in Equation 7.3:

• If there are more elements n to store in the BF, then the false positive rate will increase.

• If k increases, there will me more computations and a lower false positive rate as k approaches
kopt. Minimising the probability of false positives with respect to k, for a given m and n
values gives the following optimal number of hash functions:

kopt = m

n
ln 2 (7.4)

• The larger m is, the more space in memory is needed and the lower the false positive rate.
Assuming the use of the optimal number of hash functions, the number of bits m for a desired
number of elements n and a false positive rate p is defined as:

m = − n ln p

(ln 2)2 (7.5)
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8.1 Motivation

After having proposed a successful solution for the problem of contamination assessment in ancient
oral metagenomic samples using decOM, an intuitive consecutive question emerged regarding
the process of eliminating contaminant reads once it is established (via MST for contamination
assessment, for example) that a sequenced sample contains endogenous DNA. The removal of
contamination at the read-level posed an intriguing challenge to overcome, given that the study
of ancient microbial genomes involves extracting from limited biomaterials that are exceedingly
difficult to resample. Therefore, employing digital contamination removal measures could potentially
optimise the utilisation of the available genetic data.

Existing methods for contamination removal such as DeconSeq (see Section 7.2 and Recentrifuge
(see Section 7.3) are not tailored for aDNA. Moreover, they require sequenced negative controls
or an index of reference genomes to distinguish contaminant from non contaminant material. For
these reasons we proposed a novel method called aKmerBroom, a reference-free decontamination
tool tailored for the removal of contaminant DNA. Our tool performs a two-step lookup in a Bloom
Filter (BF) (see section 7.4) constructed from oral k-mers, followed by a lookup in a a set of “anchor
reads”. This method shows high specificity and sensitivity on real and synthetic data, which is why
we anticipate it will be a valuable tool. By avoiding the wastage of useful material that happens to
be contaminated and by mitigating the potential for misleading outcomes in subsequent analyses,
aKmerBroom optimises the processing of ancient microbial metagenomic samples.

Abstract

Dental calculus samples are modelled as a mixture of DNA coming from dental plaque and
contaminants. Current computational decontamination methods such as Recentrifuge and
DeconSeq require either a reference database or sequenced negative controls, and therefore
have limited use cases. We present a reference-free decontamination tool tailored for the
removal of contaminant DNA of ancient oral sample called aKmerBroom. Our tool builds a
Bloom Filter of known ancient and modern oral k-mers, then scans an input set of ancient
metagenomic reads using multiple passes to iteratively retain reads likely to be of oral origin.
On synthetic data, aKmerBroom achieves over 89.53% sensitivity and 94.00% specificity. On real
datasets, aKmerBroom shows higher read retainment (+60% on average) than other methods.
We anticipate aKmerBroom will be a valuable tool for the processing of ancient oral samples as
it will prevent contaminated datasets from being completely discarded in downstream analyses.
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Figure 8.1: Graphical abstract for aKmerBroom.

8.3 Introduction

Ancient human dental calculus is a rich source of information on the oral microbial community
that allows the study of the oral microbiome evolution, human oral health and diet [1]. It is one of
the most relevant sources of isolation in the field of paleometagenomics as it is one of the richest
sources of ancient DNA (aDNA) and a crucial reservoir of ancient microbial communities [2, 3].
However, such samples are highly susceptible to contamination from environmental sources, which
can drastically alter the microbial composition and lead to erroneous conclusions after downstream
analyses [4]. Several studies have shown that contaminant DNA and cross-contamination can
confound metagenomic studies, and low microbial biomass samples are particularly vulnerable
to contamination[5, 6, 7]. Under these circumstances, contamination estimation and removal are
fundamental to avoid the aforementioned risks [8, 5]. In this work, we focus on the removal of
contaminated sequences in ancient oral metagenomes.

There are standardised laboratory protocols for the decontamination of ancient DNA (aDNA)
samples, guidelines to minimize contamination [1, 9], as well as bioinformatics pipelines for aDNA
authentication [10, 11, 12]. For human aDNA, authentication requires to single out genuine ancient
human DNA (normally based on characteristic damage patterns and endogenous content [13]),
as contamination from field scientists can occur at any stage, from the excavation to the DNA
library preparation [10]. In paleometagenomics, it is often very difficult to resample from rare and
precious biomaterials[13, 4]. This makes decontamination procedures crucial to ensure the best use
of available genetic information, while maintaining low levels of contamination. Apart from wet-lab
based methods for contamination control (e.g experimental methods), tools such as DeconSeq[14] or
Recentrifuge[15] have digital procedures to remove genomics sequences that correspond to negative
control samples. They are however not tailored for aDNA and require either a database of negative
controls or an index of reference genomes to distinguish the contamination that should be removed
from endogenous material. Moreover, due to the nature of the biosamples processed in aDNA
studies, researchers face the challenge of having small sample sizes, a typical feature of the ancient
metagenomics field that often leads to underpowered studies [13].

58



Introduction

In principle one could also perform read decontamination by read mapping, for instance, to
a database of oral microbiota reference genomes while keeping only the reads that align with
sufficient identity. However such a reference database does not exist, and the diversity of ancient
oral microbiomes is not yet well characterized[16]. Alternatively, one could decontaminate a sample
by taking out reads that align to a database of known contaminant reference genomes, such as
soil and skin microbes – however also no such database exists and is unlikely to be created given
the extensive diversity of these environments[17]. Hence, mapping-based approaches are currently
unsuitable for the decontamination of ancient metagenomes, and one must rely on alternative
approaches, such as the one presented here.

Terabytes of ancient metagenomic data exist in public repositories, and also petabytes of
metagenome data have been produced over diverse environments. As an attempt to globally
make this huge amount of data accessible, bioinformaticians have developed efficient algorithmic
methods to aggregate substrings of genomic sequences of length k, called k-mers, within these
collections. Using tools such as kmtricks[18] one can rapidly construct a matrix of k-mers from
large metagenomic collections, allowing to jointly analyze all k-mers present within hundreds to
thousands of metagenomic samples. However, such aggregation of k-mer information over hundreds
of metagenomes has never been applied to the problem of decontaminating ancient DNA reads yet.

We developed aKmerBroom, the first method able to decontaminate ancient oral DNA samples
without the need for a control sample nor an extensive set of reference genomes. Our method
leverages the wealth of existing ancient oral metagenomes by constructing a database of ancient oral
k-mers used to capture reads likely to be of ancient oral origin. In essence, aKmerBroom projects
the k-mers from an input sample onto a database of reference k-mers and then selects the reads
with enough coverage. Technically aKmerBroom performs a two-step lookup in a Bloom Filter (BF)
of oral k-mers, and then in a set of “anchor" reads. We evaluate aKmerBroom on three distinct
synthetic datasets and on two real datasets and compare the results with current computational
methods for contamination removal. Given its high sensitivity and specificity, aKmerBroom is
expected to be a useful tool for decontaminating ancient oral samples.

8.3.1 Related work

The advent of large scale metagenomic projects such as the Human Microbiome Project [19, 20], the
Earth Microbiome Project [21], Tara Ocean [22] or MetaSub [23] among others, has generated large
collections of modern metagenomic sequencing data that has fundamentally changed the study of
microbial ecology. Other studies, at a smaller scale, still produced considerable amounts of ancient
metagenomic data (approximately 1,000 sequencing runs)[24]. All these sequencing efforts came
with increasing amounts of experimental noise, e.g. contamination which plagues both modern and
ancient metagenomics. By contamination, we refer here to the observation of sequenced reads in a
sample coming from microorganisms that were not originally part of that sample of interest[25].

There are several computational pipelines tailored for the detection of contaminating DNA
after sequencing has been performed [26]. Yet we are not aware of tools developed specifically for
contamination removal in ancient oral DNA at the read level, despite this sample type being one of
the most prevalent source of ancient DNA.

DeconSeq [14], published in 2011, is a method built to detect and identify contamination in
microbial metagenomes[27]. It takes as input a set of reads, and compares it against a reference
database using a modified version of the BWA-SW algorithm[28]. DeconSeq uses different databases
depending on whether the user wants to remove or retain reads. None of the databases were built
for ancient oral metagenomic decontamination. The user might create their own ancient index for
contaminant screening but this requires having a reference of control samples and increases the
running time for contamination removal.

A previous study suggested that the use of negative controls alone is insufficient to inform
researchers of measures to minimize contaminants[6]. Tools such as decontam[29] use pre-sequenced
quantification data such as Operational Taxonomic Unit (OTU) tables, and remove contaminant
taxa from such tables but do not remove contaminants at the read level. On the other hand,
microDecon[30] uses proportions of contaminant OTUs from blank samples (negative sequencing
controls processed with the same DNA/ PCR amplification kits as the real samples, sequenced on
the same run [31]), and also adjust read counts in OTU tables but does not decontaminate the
reads themselves. As they are control-based those methods do not account for cross-contamination.

Finally another tool, Recentrifuge [15], identifies cross-contaminations, i.e. DNA exchange
between samples within one same study that can create batch effects [29, 32]. It is based on
Centrifuge[33], a taxonomic classifier that uses the Burrows–Wheeler Transform (BWT) and a
FM-index to store and index a reference database. Recentrifuge reads the score given to the reads
by a taxonomic classification software (such as Centrifuge), and uses this information to calculate an
average confidence level for each taxon in the taxonomic tree associated with the sample analysed.
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Figure 8.2: Reciever Operating Characteristic (ROC) curve for selection of anchor
proportion threshold. We optimised the threshold to decide if a read would be classified as
ancient or not by running aKmerBroom with different values of the parameter τ (the proportion
of k-mers found in the anchor k-mers set) and evaluating every run with sample Synthetic 1. As
seen on the left panel, the value of τ that has the best trade-off between a high True Positive Rate
(TPR) and a low False Positive Rate (FPR) is 0.5. We additionally evaluated an earlier version of
aKmerBroom that did not include matches against anchor reads and performed only one lookup
step in the BF, represented with the blue marker called 1 Pass. Results for samples Synthetic 2
and Synthetic 3 are presented in the middle and right panel respectively.

Tools of this kind rely on sequencing blank samples (controls) to determine baseline contaminant
levels of microbes.

To summarise, existing methods are not tailored for the decontamination of ancient oral
metagenomic projects, as they are reference-based, and have not been recently updated to scale
up to modern dataset sizes (such as DeconSeq) or rely on the sequencing of controls which has
limited uses (such as microDecon or Recentrifuge). To remedy this, we propose aKmerBroom as a
fast, reference-free and precise tool for the decontamination of ancient dental calculus samples.

8.4 Results

8.4.1 Datasets

To evaluate aKmerBroom in a controlled setting with known levels of contamination, we constructed
three distinct synthetic datasets, corresponding to various scenarios. The Synthetic 1 and Synthetic
2 datasets correspond to the case where all or part of the reads observed in the target sample are
from samples used to construct the trusted oral k-mer set, and are thus easier to decontaminate.
The Synthetic 3 dataset corresponds to a case where we observe a completely new and unseen
sample. Each dataset is built with an equal number of reads belonging to each of the three categories
aOral, Sediment/Soil, and Skin, in a 1/3:1/3:1/3 proportion. We also used two real datasets from
an ancient oral microbiome study. Table 8.1 presents the datasets.

• Synthetic 1: We collected 2 million reads from a source soil dataset, 2 million reads from an
aOral sample and 2 million reads from a skin sample. All these source samples were present
in the k-mer matrix used to create the trusted k-mers set, hence this is a best-case scenario
for decontamination.

• Synthetic 2: A second dataset was built by sampling 2 million reads from an external
aOral sample that was not used to create the trusted k-mers set. We added the 2 million
reads from the skin and sediment/soil datasets used for Synthetic 1. Hence this dataset is a
semi-artificial best-case scenario.

• Synthetic 3: A third and final synthetic dataset was built by sub-sampling reads from
aOral, soil and skin datasets that were not used to create the trusted k-mers set. For the
construction of this dataset, 2 million reads were sub-sampled from am aOral sample, a
sediment/soil sample, and a skin sample, respectively.

• Real data: Lastly, we evaluated decontamination on two real datasets: First, an aOral
sample (accession ERR5670971), isolated from Trentino-South Tyrol, Italy, and dating from
the Early Middle Ages (400–1000 CE). Second, a real dataset (accession ERR5670966) isolated
from Venosta Valley and dating from the Early Middle Ages too[16]. None of these datasets
were used to create the set trusted k-mers. A negative control sequenced and published in
the same study was used to run Recentrifuge and DeconSeq, but not aKmerBroom.
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Dataset aOral source Skin source Sediment/Soil source nReads (M) Used to build BF
Synthetic 1 SRR12462946 SRR1620017 ERR671934 6 Entirely
Synthetic 2 SRR13355797 SRR1620017 ERR671934 6 Partially
Synthetic 3 ERR3003655 SRR11426385 ERR3458820 6 No

Real 1 ERR5670971 ERR5670972 64.6 No
Real 2 ERR5670966 ERR5670972 47.8 No

Table 8.1: Composition of synthetic and real datasets. For the real dataset, the accession
reported for the aOral source corresponds to the sample likely to contain ancient oral microbes, to
be decontaminated. The sample reported in the real datasets Sediment/Soil source is a negative
control.

8.4.2 Evaluation method

As we know the exact number of reads coming from the aOral sample in each of the three balanced
synthetic datasets, we estimated specificity and sensitivity by calculating the True Positive Rate
(TPR) and False Positive Rate (FPR). We considered as true ancient oral any read recovered by
aKmerBroom coming from the aOral samples, and considered as false aOral the reads coming from
the soil/skin samples. On the other hand, as we do not know the true number of contaminant
reads for the real dataset, we evaluated performance by measuring read retainment, that is the
percentage of original reads that were kept after contamination removal.

Competing decontamination methods such as Recentrifuge and DeconSeq were only evaluated
on real data since they require negative controls or reference databases which were not available for
our 3 synthetic samples. Recentrifuge relies on Centrifuge [33] for taxonomic classification of an
input set of reads. We used Centrifuge version 1.0.4-beta on a pre-made index of RefSeq bacteria,
archaeal, viral, human sequences [34]. DeconSeq standalone version 0.4.3 was used for performance
comparison against aKmerBroom on real data. To evaluate the composition of the samples before
and after decontamination, we performed a contamination assessment with SourceTracker and
using as sources our reference database of 360 metagenomic samples.

8.4.3 Evaluation of decontamination on synthetic data

Dataset Sensitivity (%) Specificity (%)
Synthetic 1 97.85 98.00
Synthetic 2 90.84 97.96
Synthetic 3 89.53 94.00

Table 8.2: Performance of aKmerBroom on synthetic samples. Sensitivity is the percentage of
aOral reads that were successfully retained. Specificity is the percentage of non-aOral reads that
were successfully removed.

Table 8.2 reports that aKmerBroom has excellent performance (≥ 93% sensitivity and specificity)
on synthetic datasets 1 and 2. Synthetic dataset 3 was built by sub-sampling from datasets that
were not seen during construction of the trusted k-mers set, hence it is a more realistic case. Here
aKmerBroom still performs remarkably well with 89.57% sensitivity and 94.00% specificity, albeit
shows lower sensitivity than in the first two synthetic datasets. Contamination assessment analyses
using SourceTracker (Figure 8.3) show that after decontamination with aKmerBroom the final oral
composition is above 80% in the three synthetic datasets. This proves that also with alternative
metrics to sensitivity and specificity, such as source environment proportions given by MST analyses,
our method performs contamination removal effectively.

8.4.4 Evaluation of decontamination on real data

When evaluating aKmerBroom on real data, we measured performance with read retainment and
compared results with two competing methods: DeconSeq and Recentrifuge. We took two aOral
metagenomic samples isolated from the dental calculus microbiome of two people buried in Italy in
the Early Middle Ages (400–1000 CE) [16]. Researchers of this study also published a sequenced
blank, which we used to create the database for contaminant screening and run DeconSeq with.
That same blank was used as negative control when running Recentrifuge, in order to have a
reference of taxa that needs to be removed.

The group that collected, sequenced and published those real datasets performed several
aDNA authentication analyses to prove their samples were representative of the ancient calculus
microbiome. Among others, they ran SourceTracker[35] on the aOral samples and showed that
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Figure 8.3: aKmerBroom performance on synthetic data as evaluated by SourceTracker.
We evaluated the source environment composition of each synthetic sample before and after
decontamination with aKmerBroom using SourceTracker and our reference collection of 360
metagenomic samples as sources.

Figure 8.4: aKmerBroom performance on real data as evaluated by SourceTracker. Bar
plots were scaled according to the percentage of reads retained per decontamination method.

the reads stemming from a known source were predominantly coming from modern calculus and
plaque [16], i.e. oral sources. Thus we expect a highly reliable ancient oral content in the real
sample evaluated, and a low level of contamination. For this reason we used read retainment and
confirmed that aKmerBroom preserves most of the reads of the original aOral sample (92.56%),
whereas Recentrifuge and DeconSeq remove most of the sequences (see Table 8.3).

We additionally performed an evaluation of the real samples of ancient oral origin, by running
mSourceTracker on each of the samples and against a set of sources represented with an OTU
table built from our reference collection of 360 metagenomic samples (sources: ancient oral (aOral),
modern oral (mOral), Sediment/Soil and Skin) (further details on the OTU table construction and
taxonomic classifier used are detailed in the Supplementary material of decOM [36]). Results are
presented in Figure 8.3.

62



Discussion

Dataset Run accession Method Reads retained (%) O.C. after(%) O.C before(%)

Real dataset 1 ERR5670971

DeconSeq 8.16 84.00

76.69Recentrifuge 46.64 23.78
aKmerBroom 92.56 75.11

Real dataset 2 ERR5670966

DeconSeq 22.63 75.89

71.89Recentrifuge 40.00 51.19
aKmerBroom 87.42 83.09

Table 8.3: Decontamination performance on two real datasets. Four methods were run to
decontaminate two samples. For DeconSeq and Recentrifuge, corresponding negative controls were
provided as input too. The nReads column shows the total number of reads in case and control
samples. The column O.C. (Oral Content) refers to the proportion of oral source environment
in the sample after and before contamination removal with each of the methods, as estimated by
SourceTracker.

8.4.5 Computational performance

Using the pre-constructed Bloom Filter of oral k-mers, aKmerBroom has a runtime of around 1
hour for a dataset with fewer than 10 million reads, while using approximately 10 Gb of memory.
Beyond this input size, the run time and memory requirement scales linearly with the number of
unique anchor k-mers in the input reads. Note that if a new Bloom Filter has to be constructed
from scratch, this one-time step would take around 6 hours for a file of 1 billion k-mers.

Leaving out the time to build the Bloom Filter or index the control/reference database and
evaluating running time on Real dataset 2, a FASTA file of almost 48 million reads, DeconSeq took
around 1 day to run, aKmerBroom took around 4 hours and Recentrifuge 2 hours. Both DeconSeq
and Recentrifuge were run using 2 Gb of memory.

8.5 Discussion

Decontaminating ancient oral metagenomes is a challenging computational problem, currently
poorly performed using off-the-shelf tools. This work highlights that current ancient metagenomic
studies are hindered by suboptimal decontamination methods. We propose aKmerBroom, a tool for
contamination removal of ancient oral datasets using a Bloom Filter constructed on a set of trusted
oral k-mers, using a large collection of metagenomes.

We evaluated aKmerBroom with three distinct synthetic metagenomic datasets subsampling from
sample sources that were fully, partially and non included in the construction of the Bloom Filter,
and obtained 97.85%, 93.39% and 89.53% sensitivity and 98.00%, 97.96% and 94.00% specificity
(respectively). We further measured aKmerBroom performance on two real samples and quantified
the percentage of ancient oral sample preserved. aKmerBroom effectively preserves most of the
original sample, and removes contaminant reads as estimated by SourceTracker, whereas other
methods (Recentrifuge, DeconSeq) discard over 53% of the sequences and remove true ancient oral
content, also as estimated by SourceTracker.

k-mer-based methods such as aKmerBroom are relevant to modern day DNA analyses because
they are reference-free (e.g. they do not require a database of reference genomes) and they make
use of the large corpus of genomic information that has been gathered over the years. Since
we use a k-mer-based consensus of samples to decide what to keep, but we do not decide which
species specifically are present/absent in the input sample, our method does not suffer from biases
coming from using OTU tables or reference databases. Others have reported using k-mers to
assess contamination in human whole-genome samples by doing meta analyses across different
datasets [37]. Thus a trend emerges on using stored genetic information to tackle the problem of
contamination assessment and removal, instead of making it a matter that is unique to each study.

As it simplified the implementation, the second round of lookups was performed using an exact
membership data structure (set). Yet as a future step, performance improvements can be made to
reduce the memory requirement for large input files with a significant proportion of ancient reads.
For example, this second round could also be implemented using a Bloom Filter. This way the
memory required can then be independent of the size of the input reads dataset.

The fact that ancient metagenomic samples are rare and have low biomass of ancient remains
often translates into underpowered aDNA studies. As more and more ancient metagenomic projects
are published, tools such as aKmerBroom emerge as a novel and efficient way of incorporating
data from previous studies by concisely storing information in the form of a Bloom Filter. Unlike
other methods, aKmerBroom represents the variety of ancient oral metagenomic material across
several BioProjects, while not making specific assumptions about the microbial species that
should be expected or ignored. It mitigates the effect of small sample size (as the output of
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several metagenomics studies are put together to construct the Bloom Filter) while still making
computationally manageable analyses.

aKmerBroom brings usability improvements to decontamination methods. Prior to it, users had
to make decisions on how to properly carry out analyses. For instance, in the case of Recentrifuge,
one needs to estimate whether to run the taxonomic classifier Centrifuge with default or modified
parameters, selecting for a pre-made index or building an index with the criteria of the user, which
is equivalent to curating a database that ideally would be tailored for ancient oral decontamination.
In the case of DeconSeq, users have to select either a ”retain" and/or a “remove" database, plus
other alignment options that affect BWA-SW results. All these decisions are required even for
non-expert users, and they have not been properly benchmarked for aDNA analysis, ultimately
leading to sub-optimal results. Although it is out of the scope of this paper to do parameter
optimization on all methods to tailor them for ancient oral datasets, we introduce here a method
that overcomes much of the parameter selection and database creation burdens that exist in the
other decontamination tools.

Some researchers have often emphasised the importance of including negative controls to
understand background contamination [38]. While others have focused on implementing the
strategy of identifying a “contaminome" profile or list of possible contaminant taxa, to then remove
it from the studied sample [31, 37]. The latter, however, rises doubts on whether it can really
take into account the possibility that contaminants may come from other samples within the
same study[25]. One interesting future work would be to specifically test for this between-sample
contamination using aKmerBroom and compare performance with methods such as Recentrifuge
that are tailored specifically to tackle cross-contamination.

8.6 Limitations of the study

We rely on the metadata of each metagenomic sample to assign a true label (i.e. environment
type), however, there is no ground truth as to what is the true proportion of aOral, mOral,
Sediment/Soil or skin content in any of them. Overall, one of the biggest challenges in the field of
paleometagenomics is that there is not a straightforward (taxonomic) characterisation of an ancient
oral metagenome, modern oral metagenome or a contaminant metagenome. Following that line of
thought, we acknowledge that our creation of a set of trusted oral k-mers is only an approximation
to what a "clean" ancient oral set of k-mers might look like, but there is no way to know for sure
that this set of k-mers only contains ancient oral DNA. On the other hand, we allow users to input
their own set of k-mers for the construction of their own BF, with the hope that experts in the field
might be able to come up with their own trusted set of oral k-mers validated by their biological
understanding of the problem.

We acknowledge read retainment (percentage of original reads that were kept after contamination
removal) is a proxy for how clean a sample is after decontamination, but there might be additional
analyses that can be done to authenticate the true content of an ancient oral sample after using
aKmerBroom, that take into account additional biological information such as deamination or
fragmentation patterns.

As most of the k-mers that were used for the construction of the trusted set of oral k-mers
come from Illumina HiSeq reads, we know that a limitation of aKmerBroom is that it may not show
the same performance with higher error rates.

Despite having effectively used a two-round lookup using a Bloom Filter and a set to construct
aKmerBroom and decontaminate synthetic and real ancient oral data, there might be more memory-
efficient data structures to effectively perform the same task that are worth exploring in the
future.

8.7 Methods

8.7.1 Key Resources Table

8.7.2 Resource availability

8.7.2.1 Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the
lead contact, Camila Duitama González (cduitama@pasteur.fr)

8.7.2.2 Materials availability

This study did not generate new unique reagents.
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Figure 8.5: aKmerBroom pipeline. First, an offline step is performed: a collection of samples
representative from diverse sources is used to create a trusted set of oral k-mers. The trusted
collection indexes k-mers that appear exclusively in modern and ancient oral samples, but not
other samples from contaminant sources (see panel on the left called Collection of datasets). Then
this set of oral k-mers is used to decontaminate an input set of reads. The algorithm proceeds by
looking up each read k-mer inside the Bloom Filter of trusted oral k-mers, and marking positions
of matches. Reads having at least two consecutive matches to the Bloom Filter get passed to the
construction of a set containing all k-mers from such reads. Finally, the same input reads are
scanned again using the aforementioned set, and reads having a proportion of k-mer matches over
a certain threshold are reported to be of ancient oral origin.

REAGENT or RESOURCE SOURCE IDENTIFIER
Biological Samples
aOral source for Synthetic 1 (Jacobson et al. 2020) SRR12462946
Skin source for Synthetic 1 (Turnbaugh et al. 2007) HMP SRR1620017
Sediment/Soil source for Synthetic 1 (Bissett et al. 2016) BASE Project ERR671934
aOral source for Synthetic 2 (Farrer et al. 2021) SRR13355797
aOral source for Synthetic 3 (Velsko et al. 2017) ERR3003655
Skin source for Synthetic 3 (Kim et al. 2022) SRR11426385
Sediment/Soil source for Synthetic 3 (Cribdon et al. 2020) ERR3458820
Real 1 aOral sample (Farrer et al. 2021) ERR5670971
Negative control for real samples (Farrer et al. 2021) ERR5670972
Real 2 aOral sample (Farrer et al. 2021) ERR5670966
Deposited Data

test_1 this paper doi:
10.5281/zenodo.7590899

test_2 this paper doi:
10.5281/zenodo.7590899

test_3 this paper doi:
10.5281/zenodo.7590899

Software and Algorithms
aKmerBroom this paper https://zenodo.org/record/7156306

Table 8.4: Key Resources Table

8.7.2.3 Data and code availability

• Data:
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– This paper analyses existing, publicly available data. These accession numbers for the
datasets are listed in the key resources table.

– Synthetic data have been deposited in a Zenodo repository https://zenodo.org/
record/7590899#.Y9lQ_y9w0Us and are publicly available as of the date of publication.
DOIs are listed in the key resources table.

• Code:

– All original code has been deposited at https://github.com/CamilaDuitama/
aKmerBroom and is publicly available as of the date of publication. DOIs are listed in
the key resources table.

• Any additional information required to reanalyze the data reported in this paper is available
from the lead contact upon request.

8.7.3 Method details

We have developed aKmerBroom, the first method able to perform read-level decontamination on
ancient oral metagenomes. As an input to aKmerBroom, the user provides a set of reads to be
decontaminated. aKmerBroom then scans the input reads against a set of oral k-mers, using two
passes to iteratively retain reads likely to be of ancient origin.

The main steps are described below, and a high-level summary is provided here. First a set of
high quality oral k-mers is determined from a database of ancient and modern oral samples as well
as environmental samples. Then, a Bloom Filter is constructed to represent this set approximately
in memory. The tool then scans input reads and retains those that have at least 2 consecutive
k-mer matches against the filter. Those reads enable us to enrich the set of ancient k-mers by
incorporating new putative ancient k-mers. We refer to those reads as “anchor reads”. We then
perform another pass over the input reads and identify matching reads against this new subset of
k-mers. Reads are finally classified as ancient when ≥ 50% of their k-mers match the set of k-mers
generated from anchor reads.

8.7.3.1 Creating a set of trusted oral k-mers

To construct a set of trusted oral k-mers for aKmerBroom, we use a resource from decOM [36], a
method for contamination assessment of ancient oral metagenomic samples. decOM constructs a
k-mer matrix from 360 metagenomic samples covering a wide range of environments around the
world, labelled as ancient oral (aOral), modern oral (mOral), and their possible contaminants
(Sediment/Soil and Skin samples). Sample accession numbers are provided in the supplementary
material of the decOM publication[36]. The decOM matrix is built over distinct k-mers of size 31,
filtered by retaining k-mers that were present in at least 3 samples in the collection and by removing
all k-mers seen only once in a sample, which were likely to be sequencing errors. In order to reduce
memory usage, we start by subsampling 10% of the k-mers present in the decOM matrix, we select a
set of a high quality oral k-mers by filtering each k-mer that satisfies all of the following conditions:

• Present in any of the aOral samples or,

• Present in any of the mOral samples and,

• Absent in all Skin samples and,

• Absent in all Soil samples.

In a boolean formula the conditions could be read as (inAOral or inMOral) and not(inSkin or
inSoilSediment).

We obtain over 1.5 billion k-mers, which corresponds to roughly 25% of the subsampled set
of k-mers matrix (2.5% of whole set of k-mers of the decOM matrix of sources). These k-mers are
referred to as trusted oral k-mers.

We would like to emphasise that our method is reference-free as it does not require a database
or index of reference genomes, however, in the construction of the Bloom Filter, there must be
a reference of k-mers considered to be of ancient oral origin. We have defined this set after the
conditions previously explained, but the user might come up with their own input set of k-mers too.
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8.7.3.2 Constructing a Bloom filter from oral k-mers

A Bloom Filter is a space-efficient probabilistic data structure that enables to query the membership
of an element within a set, with false positives but no false negatives[45]. As a preprocessing step,
aKmerBroom constructs a Bloom Filter (BF) from a set of k-mers (using pybloomfiltermmap[46]).
In aKmerBroom, the user may provide their own set of k-mers, or alternatively use the pre-
constructed table of trusted oral k-mers provided with the software and constructed as described
in the previous section (see Zenodo file [47]). In the upcoming section, we discuss how we mitigate
the issue of false positives.

8.7.3.3 Pass 1: Finding anchor reads

In the first pass, aKmerBroom scans each read and looks for k-mer matches in the Bloom Filter. If
two consecutive k-mer matches are found, a read is marked as an “anchor” read. These anchors
will be used in the next pass to identify reads with ancient origin. Note that requiring only two
consecutive k-mer matches has the advantage of being permissive, while also avoiding cases when a
single false positive match might result in the read being falsely included as an anchor read.

8.7.3.4 Pass 2: Identifying ancient reads

All anchor reads from the first pass are k-merized and stored into a new anchor k-mer set. The full
input dataset is scanned again, and reads having a proportion ≥ 50% of k-mers present in this new
anchor k-mer set are retained as likely to be of ancient origin. Note that non-anchor reads may be
retained, as some will satisfy this criteria. The final output of aKmerBroom consists of the set of
retained reads.

8.7.3.5 Parameter selection

The aKmerBroom method relies on one main parameter: the anchor proportion threshold τ . In
addition, the Bloom Filter implementation requires two other parameters: the capacity and the
error rate. There is a trade-off between these two parameters: adding less than capacity items
ensures that the Bloom Filter will have an error rate less than error rate[46]. In aKmerBroom, we
set the error rate to be 0.001, and set the Bloom Filter capacity to be at least as large as the
number of trusted k-mers to be stored. By default, we set it to be 2 billion so that it is larger
than the 1.5 billion pre-computed trusted k-mers. One could increase the capacity of the Bloom
Filter (or decrease the tolerated error rate), but that would result in a larger Bloom Filter and
therefore increase memory requirements. To determine an appropriate value for the anchor k-mer
proportion threshold τ , we performed a standard grid search from 10% to 90% over Synthetic
dataset 1 (see results). As shown in Figure 8.2, we chose a threshold of 50% because it gives us a
suitable trade-off between having a high true positive rate (greater than 85%) while also having a
low false positive rate (less than 5%). However, the user can also set τ according to their desired
sensitivity/specificity trade-off.

Originally we had tried out only one pass over the initial Bloom Filter built from the set of
high quality oral k-mers, and we further improved the results by implementing a second pass based
on matches against anchor reads identified from the first pass. Results for this one-step version of
aKmerBroom are also shown in Figure 8.2 (“1 pass”). Notice that the method with only one pass
performs worse than any of the thresholded two-pass methods.

8.7.3.6 Output description

aKmerBroom outputs an annotated FASTQ file with 4 fields in the record header:

• SeqId: sequence identifier

• ReadLen: length of the read

• isConsecutiveMatchFound: a binary variable to indicate if 2 consecutive k-mers were found
in the first lookup.

• AnchorProportion: percentage of k-mers that were found in the anchor k-mers set.

Software availability. https://github.com/CamilaDuitama/aKmerBroom
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8.8 Data availability.

The real datasets as well as the metagenomic samples from which the synthetic samples were built
are all available with the corresponding accessions seen in Table 8.2. Synthetic datasets 1, 2 and 3
are available in the following link: https://zenodo.org/record/7590899#.Y9lQ_y9w0Us
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8.9 Perspectives

The decontamination of ancient oral metagenomes presents a computational challenge, which is
currently not properly addressed by bioinformatic methods. As a response, we created aKmerBroom,
a contamination removal tool that works at the read level and was specifically designed for ancient
oral datasets.

In the future, it would be worthwhile to explore the implementation of alternative data
structures, potentially ones that are more memory-efficient, consider alternatives for assessing
cross-contamination, including additional authentication methods (for example adding deamination
and fragmentation patterns), as well as taxonomic labelling for the reads that are removed or
retained after each run of aKmerBroom on a new sample.

Further enhancements include the creation of a more reliable or biologically informed set of
trusted k-mers, as well as demonstrating the advantage of removing contamination at the read-level
rather than from a taxonomic table (for example, by comparing aKmerBroom with decontam).
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Chapter 9

Perspectives

9.1 Contamination assessment via Microbial Source Tracking

The construction of the k-mer matrix used for decOM included data from the 2020 release
from AncientMetagenomeDir [1] (v20.12: Ancient City of Nessebar), however, as of 2023 there
are over 2400 host associated metagenomes and over 500 environmental metagenomic samples
from everywhere in the world (see bar plots and location). The most updated release of the
AncientMetagenomeDir (v23.09: Historic Centre of Cienfuegos) has 4 times as many host-associated
metagenomes and 2 times as many environmental samples as the v20.12: Ancient City of Nessebar
release. An interesting future direction would be to incorporate the metagenomic samples included
subsequent to the release used in this thesis for aOral and potential contaminants.

Moreover, in the forthcoming work for this thesis, a valuable line of research would be to examine
the impact on the multi-class classification performance as described in Chapter 6 when varying
the hyperparameters for the construction of the k-mer matrix. These hyperparameters include the
size of the the k-mers used (value of k), the minimum recurrence and the minimum abundance1.
Additionally, it would be interesting to evaluate the scalability of decOM with a larger number of
sinks and sources, and compare it to mSourceTracker [3] and FEAST [4]. The potential sources
could come from either a gold standard set of sources established by the community of users, or
from the samples uploaded in the latest release from the AncientMetagenomeDir. Furthermore,
one could speculate that an increase in the k-mer size might be problematic considering ancient
genetic samples are highly fragmented, and a much smaller k-mer size might end up being not
so informative. Nonetheless, I expect that tuning hyperparameters such as minimum recurrence
and minimum abundance might end up having an overall positive impact of the performance of
decOM, by reducing the size of the k-mer matrix of sources, reducing running times and memory
requirements, and ultimately having a positive or neutral impact on the classification performance.

Another interesting perspective for decOM’s potential improvement would be to test different
forms of count normalisations or give different weights to the counts, depending on the importance
of each source environment to the researcher. This would broaden the scope of the method but
might bring additional usability to users.

The algorithm developed in this thesis for contamination assessment via MST, decOM, in
contrast to competing methods such as FEAST and mSourceTracker, exhibited the ability to
differentiate between mOral samples from aOral samples. During the revision of decOM’s paper
for the Microbiome journal, several supplementary experiments along those lines were conducted,
but further investigation into the reason behind this distinction was not pursued. A prospective
area of interest would be to elucidate the underlying factors that enable decOM to achieve this
aOral/mOral distinction. Recent studies [5] describe the problem there is for distinguishing ancient
from modern genetic data as an “authentication error”, that is, the error which arises from the
ancient status of detected organisms and is caused by modern contamination that is commonly
present in archaeological samples. Consequently, modern contaminants are erroneously identified
as endogenous samples of ancient origin, and vice versa.

Another compelling discovery is that, despite its status as a highly-cited paper, the FEAST
algorithm did not achieve convergence when executed on our data. Furthermore, when repeatedly
executing FEAST using the sample data provided in their GitHub repository and the same command
line parameters, this approach exhibited issues with reproducibility. Specifically, after multiple
iterations with identical input data and command line parameters, the results varied significantly
from one another (refer to Figure A.7). Bayesian methods, such as the one employed in FEAST, are
anticipated to demonstrate a certain degree of variability in the outcomes. However, the disparity
observed in the results was notable. We tried to contact the authors and it would be worthwhile
to explore the convergence problems of MST methods that employ a Bayesian framework in the
future. We hypothesise that the Expectation-Maximization algorithm used by FEAST to decrease
running times is only guaranteed to converge to a local maximum, so although faster, FEAST
provides different results for different runs.

1The last two hyperparameters are command line options of the software kmtricks [2]
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9. Perspectives

9.2 Contamination removal at the read-level

The decontamination of ancient oral metagenomes poses a complex computational challenge, which
is inadequately addressed by the algorithmic tools currently available. Our research emphasises
the limitations of current methods employed in ancient metagenomic studies for decontamination
purposes. In response, we propose aKmerBroom, a contamination removal tool that works at the
read level and was specifically designed for ancient oral datasets. This tool uses a two-round
lookup by constructing a Bloom Filter from a collection of trusted oral k-mers and draws upon a
substantial assortment of metagenomes.

In the future, it would be worthwhile to explore the implementation of alternative data structures,
possibly more memory-efficient, for aKmerBroom that are not an exact membership data structure
like the set used in the second round of look-ups. Additionally, it could be beneficial to consider
methods to assess cross-contamination, such as the approach used by Recentrifuge [6], which could
be incorporated as an additional module to test for contamination between samples. On the other
hand, an improvement to aKmerBroom could involve the inclusion of additional authentication
methods, such as the analysis of deamination and fragmentation patterns, to further validate the
results obtained by the algorithm.

More enhancements include the construction of a more reliable or biologically informed set of
trusted k-mers, as well as proving the advantage of taking out the contamination at the read-level
versus taking it out from a taxonomic table (for instance by comparing aKmerBroom with decontam
[7]). Another interesting test would be to compare aKmerBroom with PMDtools [8], a method that
compute postmortem damage patterns and decontaminates ancient genomes at the read-level which
was not tested in Chapter 8.

There are significant advantages to not relying on taxonomic classifiers such as Kaiju or
KrakenUniq for contamination assessment and contamination removal, particularly in terms of
parameter selection and the bias associated with the use of a reference database. However, one
interesting addition to aKmerBroom and decOM would be to try to map the k-mers that appeared
as contaminant/non-contaminant to a specific taxa.
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Chapter 10

Conclusions
This written manuscript is the result of a three year doctoral path that began with a discussion
between computational scientists and palaeontologists. The core idea of this meeting was to
discuss the challenges faced by paleogeneticists when trying to implement Metagenomic Sequencing
techniques to the samples they obtained from fossil records. At the time, contamination assessment
of their samples, even though partially solved by several Microbial Source Tracking algorithms, had
yet to be explored in a reference-free way.

For this purpose, we suggested a reference-free method to perform MST and predict the metadata
class of a given (meta)genomic sample using k-mer matrices. We tested our method on a collection of
real metagenomic data sets of aOral origin and its possible contaminants and provided an estimation
of the contribution of each source environment on each sample. We performed experiments on
real and synthetic data and compared decOM’s results with state-of-the-art competing methods to
prove that the performance of our algorithm, measured through different quantitative metrics, is
considerably better. We believe that the incorporation of decOM into paleogenomic analyses will
allow to identify contaminated metagenomics samples, to ensure their validity, and possibly exclude
them from downstream analyses.

Not only is decOM an alignment-free method, but it is also adaptable to other types of
metagenomic data. As a result of discussions with potential users of the method, we implemented a
module of decOM that would allow to create a custom matrix of sources (see decOM-MST). This is
the first Microbial Source Tracking method to be developed and tested specifically on aDNA data,
more specifically, in metagenomics samples isolated from ancient dental calculus. Moreover there is
no need for parameter tuning and it is not a probabilistic method, in contrast to competing methods
such as FEAST and mSourceTracker that depend on parameter adjustments and are probabilistic
methods (see Table C.1 for a thorough qualitative comparison of the three MST methods described
in this thesis). Finally, k-mer-based methods such as decOM do not rely on taxonomic profiles
(which often leave a large proportion of the reads unclassified). decOM therefore is not affected by
the incompleteness of databases used to compute the taxonomic abundance tables.

The alignment-free contamination removal method proposed in this thesis, aKmerBroom, might
also be adjustable to the user needs, if they create their own Bloom Filter using a pre-defined set of
trusted aOral k-mers, or any reference k-mers. This flexibility is not unique to our method, yet it
has the advantage of not requiring negative controls nor a reference database to index as opposed
to Recentrifuge and DeconSeq respectively. Interestingly, aKmerBroom was developed and tested
specifically for aDNA samples coming from ancient oral fossil records, yet it is adaptable to other
types of metagenomic data. For a full qualitative comparison of our method and the competing
algorithms see Table C.2.

In the future, it would be exciting to see how palaeogeneticists with more specific research
questions and a more knowledgeable approach for constructing a k-mer matrix of sources, would
effectively use the adaptability of decOM to estimate the extent of contamination in their own ancient
samples. Furthermore, they can subsequently integrate this k-mer information with aKmerBroom
to establish a set of trusted k-mers, use them to construct the Bloom Filter, and decontaminate
their own data.

Finding solutions to the issue of ancient DNA authentication remains a primary goal for
the field of palaeometagenomics in the upcoming years, which is why bioinformatic tools for
the contamination assessment and contamination removal of ancient genetic samples is of great
significance. The complexity of this problem is compounded by the challenges associated with the
study of aDNA, such as molecular degradation, sequence fragmentation, and inevitable exogenous
contamination. The lack of a definitive ground truth for determining the extent of contamination
in a given sample or the impossibility to taxonomically characterise in a straightforward manner an
ancient oral metagenome, further complicate matters. Consequently, there is still a considerable
challenge in getting more reliable data labels before implementing supervised machine learning
models with palaeometagenomic data. Nonetheless, both of the methods developed during this
thesis, namely decOM and aKmerBroom, have made valuable contributions to the field by using large
collections of of aDNA datasets. These methods have the potential to make better generalisations
as more samples are used for the construction of the input data (e.g., k-mer matrix, trusted oral
k-mers) and researchers continue to make their data publicly available.
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Appendix A

Appendix A

A.1 Kaiju taxonomic-based clustering table

Reference database NCBI BLAST nr+euk (2021-02-24 release), is a 64GB non-redundant protein
database of bacteria, archaea, viruses, fungi, and microbial eukaryotes can be downloaded at
https://kaiju.binf.ku.dk/database/kaiju_db_nr_euk_2021-02-24.tgz.

To download and unzip the DB:

wget https://kaiju.binf.ku.dk/database/kaiju_db_nr_euk_2021-02-24.tgz
tar -xf kaiju_db_nr_euk_2021-02-24.tgz

For every sample analysed (depending whether it single-end or paired-end):

kaiju -t nodes.dmp -f kaiju_db_nr_euk.fmi -i reads.fastq
[-j reads2.fastq]

kaiju2table -t nodes.dmp -n names.dmp -r genus -o kaiju.table
input1.tsv [input2.tsv ...]

Then simply parse the results from the resulting .tsv files in an OTU table format suitable for
FEAST or SourceTracker.

The results presented in the manuscript were obtained with the taxonomy abundance profile
built with this reference database.
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A. Appendix A

A.2 KrakenUniq taxonomic-based clustering table

The commands used to produce the database using with KrakenUniq were:

krakenuniq-download --db DBDIR taxonomy
krakenuniq-download --db DBDIR --dust refseq/bacteria refseq/archaea
krakenuniq-download --db DBDIR
refseq/vertebrate\_mammalian/Chromosome/species\_taxid=9606
krakenuniq-download --db DBDIR refseq/viral/Any viral-neighbors
krakenuniq-download --db DBDIR --dust microbial-nt
krakenuniq-download --db DBDIR contaminants

For every sample analysed:

krakenuniq --db DBDIR --threads 10
--report-file report_files/{}_unmapped.tax.report.tsv.gz
--output output_files/{}_unmapped.report.tsv.gz --gzip-compressed
--fastq-input {}

The symbol {} in this section corresponds to a run accession (sample name)
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Commands used to perform Microbial Source Tracking

A.3 Commands used to perform Microbial Source Tracking

The file metagenome_OTU.txt corresponds to the species abundance profile (taxonomic-based
clustering table) that results from parsing the results from Section A.1 or A.2.

The file map.txt is the additional metadata file used as input by SourceTracker and FEAST with
three columns (at least): Sample ID with the unique identifier for each sample, SourceSink with the
assignment of the sample to either the category source or sink, and finally a column with the name
of environment from which each source comes (NA for sink). See documentation of each specific
method for their input formats (SourceTracker : https://github.com/biota/sourcetracker2 ,
FEAST : https://github.com/cozygene/FEAST)

The symbol {} in this section corresponds to a run accession (sample name)

A.3.1 FEAST

The script Run_FEAST.R :

#!/usr/bin/env Rscript
args = commandArgs(trailingOnly=TRUE)

#Load libraries
library(FEAST)
library(readr)

#Parse arguments
map <- Load_metadata(metadata_path=args[1])
metagenome_OTU <- Load_CountMatrix(CountMatrix_path=args[2])
accession<-args[3]
dir_path<-args[4]
setwd(dir_path)

FEAST_output <- FEAST(C = metagenome_OTU, metadata = map,
different_sources_flag = 0,
outfile=accession,
dir_path = dir_path)

Can be run from the command line in the following manner:

Rscript Run_FEAST.R map.txt metagenome_OTU.txt {} ./

A.3.2 mSourceTracker

sourcetracker2 -m map.txt -i metagenome_OTU.txt -o output_{}

A.3.3 decOM

For every sample analysed run the following command:

decOM -s {} -p_sources decOM_sources/ -k {}.fof -mem 25GB -t 10

See details on the format of the key.fof file in https://github.com/CamilaDuitama/decOM
depending on whether the sample comes from a single-end or paired-end experiment.
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A. Appendix A

A.4 Software versions and run accession codes of samples used

Versions of the software used:

• Kaiju 1.7.3

• KrakenUniq 0.5.8

• decOM 1.0.0

• FEAST 0.1.0

• mSourceTracker 2.0.1-dev

Accession codes are available in https://github.com/CamilaDuitama/decOM/tree/master/
data, specifically:

• Collection_accessions.csv: Accessions for the collection of 360 metagenomic samples that
compose the sources of decOM.

• ValidationSet.csv: Accessions for the collection of 254 ancient oral metagenomic samples
used sinks in validation experiment with an external data set.
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Definition of performance metrics

A.5 Definition of performance metrics

Consider TP as number of true positives, FN as number of false negatives, ŷi the predicted value
of the i-th sample and yi the corresponding true value. If we have n samples:

Accuracy(y, ŷ) = 1
n

n−1∑
i=0

1(ŷi = yi) (A.1)

Precision = TP
(TP + FP) (A.2)

Recall = TP
(TP + FN) (A.3)

F1-score = 2 ∗ (Precision ∗ Recall)
(Precision + Recall) (A.4)
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A.6 Figures
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Figure A.1: Metadata barcharts for collection of 360 metagenomic data sets (sources).
Additional metadata associated to all of the samples in the collection of data sets used to train the
method (this includes aOral, mOral, sediment/soil and Skin samples). Barcharts are presented
for metadata features such as Assay Type, BioProject, Platform, Instrument, Library Layout and
Center Name.
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A. Appendix A

Figure A.3: Average read length for collection of 360 metagenomic data sets (sources).
Samples are grouped by ancient metagenomes (aOral) and modern metagenomes. The thinner part
of the boxplot on top indicates the median of the distribution.
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A. Appendix A

Figure A.5: Origin of samples in validation data set. All samples in validation set were
ancient oral samples obtained from the AncientMetagenomeDir
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Figure A.6: Metadata barcharts of validation data set. All samples in validation set are
labelled as ancient oral. Barcharts are presented for metadata features such as Assay Type,
BioProject, Platform, Instrument, Library Layout and Center Name.

87



A. Appendix A

Figure A.7: Microbial source tracking results by using FEAST on the simulated ancient
oral data set. We ran and plotted the source environment bar plots of every output after using
FEAST under the same parameters (10 iterations in total) by using as sources all the samples in
the 360 metagenomic collection and as sink a simulated ancient calculus data set. As results for this
method vary, we selected the first iteration of the outputs to be part of the main text of the paper.
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Figures

Figure A.8: Microbial source tracking results by using mSourceTracker on the simulated
ancient oral data set. We ran and plotted the source environment bar plots of every output
after using mSourceTracker under the same parameters (10 iterations in total) by using as sources
all the samples in the 360 metagenomic collection and as sink a simulated ancient calculus data set.
See in comparison with Figure A.7
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Figure A.9: PCA of OTU table built with Kaiju vs KrakenUniq. Colour-coding for upper
plots: yellow for sediment/soil, green for Skin, blue for aOral and red for mOral samples. Notice
that no clear clusters between source environments are seen for either of the OTU tables.
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Figures

Figure A.12: 5-fold cross-validation data split. Graphic representation of 5-fold cross-validation
data split where all samples belonging to the same BioProject are either part of the training or the
test set.
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Figure A.13: Performance in 5-fold cross-validation experiment including decOM + 7
partitions. Box plots for the performance metrics such as Accuracy, F1-Score, Precision and
Recall obtained after the the 5-fold cross-validation experiment using decOM + 1 partition, decOM
+ 7 partitions, mSourceTracker and FEAST.
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Figures

Figure A.14: Running times in leave-one-out experiment. Box plots built with the running
times for each method when analysing each of the samples from the collection (points to the left of
the box plot correspond to each measurement). As seen, using one partition is faster on average
than using seven partitions.
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Figures

Figure A.16: Class composition of monosource samples as predicted by decOM. Samples
from the collection that we further categorised as monosource samples belong to the classes aOral,
mOral, Skin and sediment/soil.
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Figure A.17: Percentage of monosource samples according to decOM. After doing a
categorisation of decOM predictions we find some samples in the collection to be composed of mostly
one source environment. We distinguish them as monosource. Interestingly, from the monosource
samples 61/78(78%) are also correctly predicted by FEAST, whereas 71/78(91%) are correctly
predicted by mSourceTracker. TP = True positive
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Figure A.18: PCA of k-mer matrix of sources We performed a Principal Component Analysis
(PCA) on the input k-mer matrix of sources by reducing the number of rows (k-mers) and drawing
the 360 samples in a scatterplot built with the two first principal components. Although the variance
explained by each of the components is not very large, aOral samples often overlap with mOral
samples. Furthermore, some of the mOral samples appear closer to the Skin samples which might
explain why some of them seem contaminated and have a higher proportion of Skin contribution,
as seen in Figure 5 from the main text.
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(a) decOM

Figure A.19: Bar plots of the source environment contribution on each sink after the
leave-one-out experiment as estimated by decOM Samples are first sorted by true label. The
correction implemented corresponds to counting only the k-mers that are unique to each class, that
is, to leave out the k-mers that belong to one or more classes. Notice that for this version of decOM,
unknowns are estimated as number of k-mers present in sink and absent in all of the sources.
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Tables

A.7 Tables

Table A.1: Performance metrics for all three methods compared after leave-one-out
experiment. Performance scores were estimated as the average score across all classes. The result
in bold is the one shown in the paper for decOM

Method Accuracy Precision Recall F1-score
decOM + 1 partition 0.8703 0.9184 0.8703 0.8753
decOM + 7 partitions 0.8791 0.9216 0.8791 0.8809
FEAST 0.6816 0.5516 0.7452 0.5479
metaSourceTracker 0.8388 0.8388 0.8388 0.8289
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Table A.2: Performance metrics for all three methods compared after stratified 5-fold
cross-validation experiment. Performance scores were estimated as the average score across all
classes. The result in bold is the one shown in the paper for decOM

Method Accuracy Precision Recall F1-score
decOM + 1 partition 0.8450 0.9101 0.8528 0.8421
decOM + 7 partitions 0.8553 0.9156 0.8542 0.8419
FEAST 0.5387 0.6992 0.4809 0.5050
metaSourceTracker 0.7516 0.7996 0.7111 0.7049
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Tables

Table A.3: Cardinality of different sets for the k-mer matrix of sources used by decOM
Percentages are estimated using the total number of k-mers in the k-mer matrix of sources that is
public as a Zenodo file (aprox 14M). If a k-mer is present in at least one sample labelled as class A,
then this k-mer is considered to be a member of the set A. If a k-mer is present in at least one
sample labelled as class A and is present in at least one sample labelled as class B, then such k-mer
is a member of the set called A AND B.

k-mer set % of k-mers in set
Sediment/Soil 52.817
Skin 20.044
aOral 16.389
mOral 40.292
Sediment/Soil AND aOral 0.338
Sediment/Soil AND mOral 0.147
Sediment/Soil AND Skin 0.560
aOral AND mOral 11.444
aOral AND Skin 1.314
mOral AND Skin 17.093
aOral AND mOral AND Skin 1.191
aOral AND mOral AND Sediment/Soil 0.072
mOral AND Skin AND Sediment/Soil 0.057
aOral AND Skin AND Sediment/Soil 0.057
aOral AND mOral AND Skin AND Sediment/Soil 0.022
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Acronyms
aDNA ancient DNA.

aOral ancient oral.

AUC Area Under the ROC Curve.

BF Bloom Filter.

BLAST Basic Local Alignment and Search Tool.

BWA-SW Burrows-Wheeler Aligner’s Smith-Waterman Alignment.

BWT Burrows–Wheeler Transform.

DAWG Direct Acyclic Word Graph.

DSB Double-Strand Break.

EM Expectation-Maximization.

FEAST Fast Expectation-Maximization Microbial Source Tracking.

FPR False Positive Rate.

HEPA High-Efficiency Particulate Arrestance.

HGP Human Genome Project.

HOPS Heuristic Operations for Pathogen Screening.

IUPAC International Union of Pure and Applied Chemistry.

LCA Lowest Common Ancestor.

LDA Latent Dirichlet Allocation.

MALT MEGAN ALignment Tool.

MCMC Markov Chain Monte Carlo.

MDS Multidimensional Scaling.

MEM Maximal Exact Matching.

MGS Metagenomic Sequencing.

ML Maximum Likelihood.

mOral modern oral.

mSourceTracker metagenomic-SourceTracker.

MST Microbial Source Tracking.

mtDNA Mitochondrial DNA.

NGS Next Generation Sequencing.

OTU Operational Taxonomic Unit.

PCA Principal Component Analysis.
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Acronyms

PCR Polymerase Chain Reaction.

ROC Reciever Operating Characteristic.

RTL Root-To-Leaf.

SPAAM Standards, Precautions, and Advances in Ancient Metagenomics.

SSB Single-Strand Break.

TPR True Positive Rate.
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