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Adaptation de maillage pour la simulation d’écoulements
diphasiques avec coalescence et rupture dans le cadre de la

méthode Front-Tracking

Résumé

Dans le cadre des écoulements diphasiques à phases séparées, ce travail porte sur la gestion dynamique du maillage
de l’interface (constitué de triangles en 3D) et son impact sur l’approximation des propriétés géométriques que sont
la position et la courbure. Les équations de conservation de la mécanique des fluides sont résolues sur des grille
fixes, décalées et structurées. L’interface est suivie de façon lagrangienne au cours du temps avec un maillage mobile
et déformable : on parle de méthode de type « Front-Tracking ». En plus des opérations de remaillage classiques
(suppression et échange d’arêtes, insertion de sommets notamment), on étudiera l’adaptation du maillage à la
courbure de l’interface et l’utilisation d’une approximation polynomiale pour améliorer l’insertion de sommets
ou la suppression d’arêtes. Ces méthodes sont évaluées sur des surfaces analytiques mobiles et déformables, sans
résolution des équations de Navier-Stokes ni changement topologique. Dans les écoulements diphasiques, des
changements topologiques peuvent avoir lieu : la coalescence et la rupture. Nous proposons une méthode de
coalescence et une méthode de rupture d’interface. Ces deux méthodes sont activées selon des critères de distance
et sont basées uniquement sur le maillage de l’interface, sans recourir au maillage eulérien. Ces méthodes sont
utilisées sur des configurations numériques et expérimentales de la littérature pour apprécier leur robustesse et
leurs performances.

Mots-clés : Front-tracking, diphasique, maillage d’interface, cas test analytique instationnaire, courbure,
coalescence, rupture.
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Front-Tracking mesh adaptation for the simulation of
two-phase flows with coalescence and breakup

Abstract

In the context of two-phase flows with separated phases, this work focuses on dynamic management of the interface
mesh (made up of connected triangles in 3D) and its impact on the approximation of geometrical properties
that are position and curvature. The conservation equations of fluid mechanics are solved on fixed, staggered
and structured grids. The interface is tracked in a Lagrangian fashion with a moving and deformable mesh: this
method is known as the "Front-Tracking" method. In addition to classical remeshing operations (edge splitting,
collapsing and swapping for instance), we will study the adaptation of the mesh to the curvature of the interface
and the use of polynomial approximation to improve edge splitting and collapsing. These methods are evaluated
on analytical, mobile and deformable surfaces, with neither the resolution of the Navier-Stokes equations nor
topological changes. In two-phase flows, topological changes may happen: coalescence and breakup. We propose a
method for coalescence and a method for breakup. These two methods are activated by distance criteria and rely
only on the interface mesh, without resorting to the Eulerian mesh. These methods are employed on numerical
and experimental configurations from the literature to appreciate their robustness and performances.

Keywords: Front-Tracking, two-phase flows, interface mesh, unsteady analytical test case, curvature, coales-
cence, breakup.
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1 Introduction

A quick tour of two-phase flows and their dedicated numerical methods is given.

Two-phase flows involve two phases, such as air and water, separated by an interface. A wide variety of such flows
can be encountered in the environment and the industry. It is often important to understand the physics of those
flows and to describe them quantitatively for security or efficiency reasons. Experiments and numerical simulations
are complementary in understanding these flows. Numerical simulation may give access to information otherwise
inaccessible with experiments, since visibility issues may prevent precise measurements: for dense droplet-laden
flows for instance, or even for only one bubble, the difference in refractive indices makes it difficult to see its shape
(Hua and Lou, 2007). Experiments are also necessary to validate the numerical methods.

Atomization is a process where a liquid jet disintegrates into drops and ligaments, thus forming a spray. Sprays
are rife with coalescence and breakup, induced by drop collisions for instance. Sprays have many applications, such
as production of powdered milk (Finotello et al., 2017), agriculture, painting, boilers, and internal combustion.
The atomization of fuel is an important step in most engines, as the drops thus formed strongly influence the
efficiency of combustion and emission of pollutants. Many works aim at describing these processes, such as in
Reitz and Bracco (1982); Desjardins et al. (2008); Fuster et al. (2009); Shinjo and Umemura (2010); Herrmann
(2011); Bo et al. (2011); Le Chenadec and Pitsch (2013); Ling et al. (2015); Janodet et al. (2022).

Two-phase flows have many other applications: for printing, the breakup of asymmetric ligaments plays an
important role, as it generates satellite droplets which may blur the result (Planchette et al., 2019). In heat
exchangers, boiling crisis happens when the local heat flux reaches a maximum, the Critical Heat Flux (CHF),
because of the formation of a film and the temperature of the wall rises, which may damage the exchanger. In all
of these cases, the aim is to get a better understanding of these flows to control the outcome of a process or predict
an event.

Binary drop collision was originally studied in order to better understand rain, when droplets in clouds generate
raindrops (Jayaratne et al., 1997). Then, drop collision was studied for sprays, as the different collision outcomes
influence the drop size distribution in a spray (Ashgriz and Givi, 1987; Brenn and Frohn, 1989). The Weber
number (We) is the ratio of inertia over surface tension, in some collision studies it is defined as We = ρUD/σ,
where ρ is the density of the liquid, U the relative velocity, D the initial drop diameter and σ the surface tension
coefficient. Experiments have revealed five regimes of binary droplet collisions: coalescence with minor deformation,
bouncing, coalescence with major deformation, reflexive separation and stretching separation (Ashgriz and Poo,
1990; Qian and Law, 1997). Pan et al. (2009) went up to a Weber of 5100 for water, and identified new outcomes:
"fingering lamella", "separation after fingering", "breakup of outer fingers", and "prompt splattering into multiple
secondary droplets". Knowing the different collision regimes may help model the spray on a larger scale with Sub-
Grid Scale (SGS) models for instance. Two-phase flows are indeed mostly multi-scale: for instance, a film drainage
process intervenes in drop collision. The difference in scales is such that the simulation of many two-phase flows
proves to be difficult because of the computational power needed. Some numerical works rely on sub-grid models
to include small-scale physics (Kwakkel et al., 2013). Many works rely on Adaptive Mesh Refinement (AMR) to
save up computational resources. In this work, we are concerned with numerical methods to simulate two-phase
flows, and especially interface tracking methods which plays an important role. There are several approaches to
simulate two-phase flows, and they will be shortly described afterwards. We present briefly the Navier-Stokes
equations, the One-Fluid Model (OFM) and the associated interface tracking methods.
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1.1 Hypotheses

We deal with two incompressible and isothermal fluids with different physical properties (density and viscosity).
The two phases are separated. A surface tension coefficient σ is used to express the surface tension force between
the two fluids. The two fluids are considered Newtonian: we suppose that there is a linear relation between the
stress tensor and the strain rate tensor. For instance, we will try to simulate air and water but not polymers. The
two fluids are isothermal in our computations, so their density and viscosity are considered constant in each phase.
The two fluids are considered non-miscible: we suppose that there exist an interface separating them, and we
neglect its thickness.

1.2 Fixed and deformable grids, meshless methods

The methods used to solve multiphase flow problems can be distinguished in two main classes. In the first class,
the interface is used as a boundary between two domains with distinct phases. This approach requires automatic
mesh generators to adapt the mesh to the interface as it deforms, this is a body-fitted mesh. It is also possible
to use a mesh without conforming to the interface, with either structured or unstructured meshes, and fixed
meshes or AMR. We may also cite the Smoothed particle hydrodynamics (SPH) method, a meshless Lagrangian
approach. Eirís et al. (2023) reviews the main approaches and classifies the existing approaches in three categories:
mesh-based, meshless-Finite Volume (FV) and SPH methods. The Lattice Boltzmann (LB) method has also been
applied to two-phase flows (Gunstensen et al., 1991). The eXtreme Mesh deformation approach (X-MESH) relays
the interface between nodes and allows elements with zero measure with a Finite Element Method (FEM) (Moës
et al., 2023).

1.3 Navier-Stokes equations

In this work, we consider separated two-phase flows. In a computational domain, the two phases are separated by
an interface. There are two main approaches for the simulation of two-phase flows. The first, called the two-fluid
model, consists in solving two sets of Navier-Stokes equations, one in each phase. The two solutions are coupled
with jump conditions across the interface. The second approach is called the One-Fluid Model. The Eulerian
mesh does not conform to the topology of the interface, this kind of method belongs to Fictitious Domain (FD)
methods (Khadra et al., 2000).

1.3.1 Two-Fluid model

In each phase k = 1, 2, the Navier-Stokes equations are thus written:

∇ . uk = 0 (1.1a)
∂ρkuk

∂t
+∇ . (ρkuk ⊗ uk) = ρkg +∇ .Tk (1.1b)

with Tk ≡ −pkI+ 2µkDk the stress tensor and Dk = 1
2(∇̄uk + ∇̄uk

T
) the deformation tensor associated

with phase k.

The jump conditions across the interface are thus defined:

u1 = u2 (1.2a)
n · (T1 −T2) · n = σκ (1.2b)
t · (T1 −T2) · n = 0 (1.2c)

with σ the surface tension coefficient, κ twice the mean curvature, n and t the unit normal and tangent to the
interface.
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For instance, the Arbitrary Lagrangian-Eulerian (ALE) adapts at each iteration an unstructured mesh to the
deforming interface, and the mesh does not move at the same velocity as the flow.

1.3.2 One-Fluid model

In this work, the two-phase flow is described by the OFM developed by Kataoka (1986). The Navier-Stokes
equations are solved for a single equivalent fluid, with an additional source term in the momentum equation: the
surface tension. A method is also required to follow the location of the interface between the two fluids. The
most commonly used interface tracking methods are the Volume Of Fluid (VOF) method and the Level-Set (LS)
method. The scalar function C is the color function, the volume fraction locating the interface crossing a given
control volume Ωijk. It equals 1 if the mixture contains only fluid 1 and 0 if it is only comprised of fluid 2. The
properties in the domain such as the density and the viscosity may be determined with an arithmetic average:

ρ = Cρ1 + (1− C)ρ2 (1.3)

µ = Cµ1 + (1− C)µ2 (1.4)

For the viscosity, it may be relevant to use an harmonic average:

µ =
µ1µ2

Cµ2 + (1− C)µ1
(1.5)

We may also cite the discontinuous average:

µ =

{
µ1 C > 0.5

µ2 C ≤ 0.5
(1.6)

Benkenida and Magnaudet (2000) proposed a scheme for viscosity combining arithmetic and harmonic aver-
ages. By splitting the viscous stress tensor, another approach of mixed viscosity average is possible. Caltagirone
and Vincent (2001) proposed a new formulation of the viscous stress tensor, which may be thus written for
incompressible flows, with three pseudo-tensors for elongation, shearing, and rotation:

2µD = κ




∂u
∂x 0 0

0 ∂v
∂y 0

0 0 ∂w
∂z


+ ζ




0 ∂u
∂y

∂u
∂z

∂v
∂x 0 ∂v

∂z
∂w
∂x

∂w
∂y 0


− η




0 ∂u
∂y − ∂v

∂x
∂u
∂z − ∂w

∂x
∂v
∂x − ∂u

∂y 0 ∂v
∂z − ∂w

∂y
∂w
∂x − ∂u

∂z
∂w
∂y − ∂v

∂z 0


 (1.7)

where new viscosity coefficients are defined: κ = 2µ the elongation viscosity, located at the pressure node, ζ = 2µ
the shearing viscosity and η = µ the rotation viscosity. Vincent et al. (2014) used this formulation of the viscous
stress tensor (eq. 1.7) to propose a mixed viscosity average. The elongation viscosity is obtained with an arithmetic
average based on the volume fraction at the pressure nodes. The shearing and rotation viscosities are computed
with an harmonic average, based on a linear interpolation of the volume fraction.

Now, the Navier-Stokes equations can be thus written in the OFM:

∇ .U = 0 (1.8)

∂ρU

∂t
+∇ . (ρU⊗U) = −∇p+∇ · (2µD) + ρg + Sσ (1.9)

with D = 1
2

(
∇U+∇tU

)
and Sσ is the surface tension force.

In the VOF and LS methods, a transport equation is solved for the volume fraction as well (eqs. 1.10 and 1.12,
presented subsequently). It is equivalent to the Lagrangian equation used in the Front-Tracking method to advect
the markers (eq. 1.13, presented below).
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Summary. We suppose that the density ρ and the dynamic viscosity µ are constant in each phase and
that the flow is incompressible. A single set of equations is written for both phases (One-Fluid Model).

In the OFM, interface modelling methods may in turn be divided into two classes: implicit and explicit
representations, respectively called Front-Capturing and Front-Tracking methods. The location of the interface is
known respectively through a scalar field or markers.

1.3.2.1 Front-Capturing

Front-Capturing methods are also referred to as implicit methods because the position of the interface is known
implicitly by the isosurface of a function. A supplementary advection scheme is used to transport the interface.
One issue is to avoid smearing the interface. The VOF and LS methods are Front-Capturing methods, information
about the interface are possessed by the mesh cell.

Volume Of Fluid. The Volume Of Fluid (VOF) method was invented by Hirt and Nichols (1981). It uses an
additional transport equation for the phase function in order to determine the location of the interface:

∂C

∂t
+ U .∇C = 0 (1.10)

The scalar function is the volume fraction, also known as color function, it equals 1 if the mixture is only filled
with fluid 1 and 0 if it is only composed of fluid 2. This method follows the ratio of the volume of both fluids in
each cell, and an additional step is required to reconstruct the interface, but it is not determined precisely in each
cell in the classical VOF method, contrary to the Front-Tracking method. It conserves generally well the volume,
especially in Weymouth and Yue (2010), but the shape of the interface is generally more difficult to retain.

Level-Set method. The classical Level-Set method represents the interface with the signed distance function
Φ:

Φ = ±min
y∈Γ

∥x− y∥ (1.11)

The signed distance is positive on one side of the interface and negative on the other side, and satisfies |∇Φ| = 1.
An additional transport equation is required:

∂Φ

∂t
+ U .∇Φ = 0 (1.12)

It is simpler to implement than the VOF method but the volume of each phase is not conserved in the classical
LS method. In many implementations, the distance function has to be re-initialized. Sussman and Puckett (2000)
proposed to couple the VOF and LS to benefit from their respective advantage: volume conservation and curvature
evaluation. The Conservative Level-Set (CLS) has been developed to improve the volume conservation with a
smeared out Heaviside function and a modification of the reinitialization step (Olsson and Kreiss, 2005; Olsson
et al., 2007). Desjardins et al. (2008) further improved it by developing the Accurate Conservative Level-Set
(ACLS). Chiodi and Desjardins (2017) improved the accuracy of the reinitialization procedure. A variant of the
LS method is the Diffuse Interface Model (DIM) (Yue et al., 2004).

1.3.2.2 Front-Tracking

The Front-Tracking method is a an explicit method. Explicit methods describe the interface between the two fluids
with a representation of lower dimension than the problem. Each vertex of coordinate xm represents the surface
and it is advected by the following transport equation:

dxm

dt
= Vm (1.13)

6



Contrary to the VOF and LS methods, information are possessed by vertices in the Front-Tracking method.
The size of the triangles is a priori independent from the size of the Eulerian mesh, but for numerical reasons
(interpolations, memory cost to cite but a few) it is often limited. An Eulerian grid is used to compute the velocity
field and the velocity is then interpolated on the front.

The main difficulty in 3D is the implementation of a robust algorithm for the merging and breakup of interfaces.
The markers may or not be connected to form elements (segments in 2D and triangles in 3D). The difficulty is
increased with the use of connected markers. Contrary to Shin and Juric (2002), connected markers were used
in this work to simplify the computation of the surface curvature and normal. Coalescence and breakup are not
treated automatically in our implementation.

1.3.3 Ghost-Fluid method

Fedkiw et al. (1999); Kang et al. (2000) developed the Ghost-Fluid Method (GFM) to avoid spreading the interface.
Jump conditions are imposed at the interface instead on the different variables: pressure, density, viscosity. Ghost
cells are used to extrapolate variables on the other of the interface before computing their derivatives. Instead
of including the surface tension as a force in the momentum equation, it is included as a pressure jump in the
discretization of the pressure gradient operator. Terashima and Tryggvason (2009); Bo et al. (2011) simulate
compressible two-phase flow with a Front-Tracking and a GFM.

1.4 Summary

Front-Capturing methods use the Eulerian grid to describe the interface while the Front-Tracking method
uses a deformable mesh to describe the interface explicitly. As a result, Front-Capturing methods in their
simpler implementations treat coalescence automatically. For instance two bubbles at a distance smaller
than the grid size coalesce. We elected to work with the Front-Tracking method, which is an explicit method.
Coalescence and breakup are not treated automatically.

1.5 Numerical framework

We use a Finite Volume Method (FVM) with staggered grids and a Lagrangian mesh as as depicted in fig. 2.1.

1.5.1 Pressure-velocity coupling

The pressure is unknown, it is indirectly specified in the continuity equation. The pressure influences the velocity
field in the momentum equation, and it is correct when the resulting velocity field satisfies the continuity equation.
Thus one may either solve a coupled system (mass and momentum conserving equations) or decouple velocity and
pressure (Chorin, 1968). In this work, we use the fully-coupled solver presented in El Ouafa et al. (2023). It relies
on a simultaneous resolution of the linearized momentum and continuity equations with a BiCGStab(2) iterative
solver (Dongarra et al., 1998). Penalization is employed for the boundary conditions (Angot et al., 1999).

1.5.2 Momentum conserving

We use a Momentum Conserving method derived from Nangia et al. (2019), yet where both not only the volume
fraction but also the momentum is transported in a more consistent way to improve the stability of the code
(Elouafa, 2022). The Third-order Strong Stability-Preserving Runge-Kutta method (SSP-RK3) (Gottlieb et al.,
2001) and Convergent and Universally Bounded Interpolation Scheme for the Treatment of Advection (CUBISTA)
(Alves et al., 2003) schemes are used.
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1.5.3 Time step criteria

There are many time-step conditions in the literature aside from the Courant-Friedrichs-Lewy condition (CFL),
based on surface tension, viscosity and gravity. According to Brackbill et al. (1992), there is a stability condition for
the explicit treatment of surface tension:

∆t <

√
(ρ1 + ρ2)∆x3

4πσ
(1.14)

Kang et al. (2000) adapts the timestep ∆t to:

∆t

(
Cconv + Cvisc +

√
(Cconv + Cvisc)

2 + 4
(
Cgrav

2 + Ccapl
2
))

≤ 2CFL (1.15)

with:

Cconv = max

(∥u∥∞
∆x

,
∥v∥∞
∆y

,
∥w∥∞
∆z

)
(1.16)

Cvisc = max

(
µ1

ρ1
,
µ2

ρ2

)(
2

∆x2
+

2

∆y2
+

2

∆z2

)
(1.17)

Cgrav =

√
max

( |gx|
∆x

,
|gy|
∆y

,
|gz|
∆z

)
(1.18)

Ccapl =

√
σ∥κ∥∞

min(ρ1, ρ2)∆x2
(1.19)

1.5.3.1 Summary

We use a Finite Volume Method on a fixed structured grid. A Front-Tracking method is used to track the
interface between the two fluids. A coupled solver is used with a momentum preserving method.

1.5.4 Results

When not mentioned otherwise, we work in SI units.
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1.6 Outline

In the context of two-phase flows with separated phases, this work focuses on dynamic management of the interface
mesh (made up of connected triangles in 3D) and its impact on the approximation of geometrical properties
that are position and curvature. The conservation equations of fluid mechanics are solved on fixed, staggered
and structured grids. The interface is tracked in a Lagrangian fashion with a moving and deformable mesh: this
method is known as the "Front-Tracking" method. In addition to classical remeshing operations (edge splitting,
collapsing and swapping for instance), we will study the adaptation of the mesh to the curvature of the interface
and the use of polynomial approximation to improve edge splitting and collapsing. These methods are evaluated
on analytical, mobile and deformable surfaces, with neither the resolution of the Navier-Stokes equations nor
topological changes. In two-phase flows, topological changes may happen: coalescence and breakup. We propose a
method for coalescence and a method for breakup. These two methods are activated by distance criteria and rely
only on the interface mesh, without resorting to the Eulerian mesh. These methods are employed on numerical and
experimental configurations from the literature to appreciate their robustness and performances. The influence of
the coupling of the Lagrangian mesh with the Navier-Stokes solver is studied on simulations of rising bubbles.
This document is organized in several parts, each part is divided in turn in multiple chapters.

Part I. comprises this introduction and presents a non-exhaustive list of methods to simulate two-phase flows.
The main features of the code are presented. Afterwards, the different steps of the Front-Tracking method are
described.

Part II. presents the remeshing procedure. The remeshing steps and criteria are evaluated on unsteady analytical
test cases.

Part III. presents a comparison of the developed Front-Tracking method with a VOF method to appreciate the
influence of the coupling of the Lagrangian mesh with the Eulerian grid. Numerical methods for coalescence and
breakup are then reviewed. We then present a method for coalescence and breakup and use them in test cases.

Part IV. draws a conclusion from the results and outlines perspectives of of this work.

Part V. contains the appendices, the list of acronyms, the nomenclature and the bibliography.
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2 Front-Tracking method
Previously we elected to work on the Front-Tracking method to simulate two-
phase flows. Now, we will give a quick overview of the Front-Tracking method and
whence it came. We then introduce our notations for a triangle mesh and present
the main features of the Front-Tracking method.

2.1 Front-Tracking introduction

This section provides an overview of the Front-Tracking method and introduces the first choices that were made for
its implementation in the home-made code Fugu, developed by the MSME laboratory at Gustave Eiffel University.
The code uses staggered grids as depicted in fig. 2.1. The Front-Tracking method is an interface tracking method
which gives several alternatives to provide information about the interface, namely its position to compute the
density and viscosity in the domain and the curvatures and normals for the surface tension.

The Front-Tracking method is derived from the Immersed Boundary Method (IBM), which was developed
by Peskin (1977) to simulate elastic boundaries for cardiac applications. Two meshes, an Eulerian mesh and a
Lagrangian mesh, are coupled by a "smoothed approximation to the Dirac delta function" δh, thus enabling
interpolation and spreading of quantities (Peskin, 2002). In our implementation, we use two meshes:

• a structured fixed mesh to solve the Navier-Stokes equations, hereinafter referred to as a "grid", or "Eulerian
mesh", with a mesh spacing h or h1, h2, h3 if the spacing is not the same in the x, y, z directions.

• a moving and deformable mesh to track the front, hereinafter referred to as a "mesh", or "Lagrangian mesh",
with a reference edge length d.

ElementElement

vvi,ji,j

CCi,ji,juui,ji,j

vvi,j+1i,j+1

uui+1,ji+1,j

Fluid 2

Fluid 1

Figure 2.1: Staggered grids and Lagrangian mesh depicted in 2D for simplicity’s sake
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The location of the interface is known explicitly with the Front-tracking method, contrary to implicit methods
such as the VOF or LS methods. The interface is represented by massless markers which are advected in a Lagrangian
fashion. The velocity of the markers is not known, so the Eulerian fixed grid is used to compute the velocity field
and the velocity is then interpolated on the front.

The main difficulty in 3D is the implementation of a robust algorithm for the merging and breakup of interfaces.
The markers may or not be connected to form elements (segments in 2D and triangles in 3D). For instance the Level
Contour Reconstruction Method (LCRM) uses a triangle mesh reconstructed from an isosurface of a variable I
(volume fraction or a distance function), defined by a value Iref , without storing any connectivities (Shin and
Juric (2002), depicted in fig. 2.2). For only one iteration, with the volume fraction, one may use Iref = 0.5.
The topological changes are automatic, not unlike the VOF method, because the topological changes are made
implicitly on the grid with the indicator function and the Lagrangian mesh is reconstructed from the isosurface.
The surface tension is computed without connectivities, with spreading functions (Peskin, 2002) to distribute the
contribution of each triangle of the Lagrangian mesh onto the Eulerian mesh. Another example of Front-Tracking
without connectivities can be found in Torres and Brackbill (2000). The difficulty is increased with the use of
connected markers.

Reconstructed frontReconstructed front

Figure 2.2: Illustration of the Level Contour Reconstruction Method (LCRM), the interface represented in yellow
is reconstructed from the variable I

Chosen implementation. In our implementation, connectivities are stored to have access to a larger array of
methods to compute the surface tension and volume fraction. For each triangle, the indices of its three neighbors
and its three vertices are stored.
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2.2 Notations for a triangle mesh

Let us reintroduce the notations from Koffi Bi et al. (2022). The discrete approximation of the interface consists
of a family T of triangles T . Let X be the set of vertices x of the triangle mesh. The set of vertices of any T ∈ T
are denoted ∂2T ⊂ X . T is conforming: each intersection Ti ∩ Tj , i ̸= j, is reduced to either a vertex or an edge
of the mesh (Balarac et al., 2022), which means there are no "hanging nodes". Each triangle has three neighbors or
less if it is on the boundary in the case of an open mesh. T is valid: the open triangles Ti are mutually disjoint:
Ti ∩ Tj = ∅, i ̸= j. From this point on, an intersection-free mesh will refer to such a mesh, where triangle
intersections are limited to edges for adjacent triangles or vertices. We refer to the coordinate of any vertex x ∈ X
by x and the surface of any triangle T ∈ T by ST . We also introduce:

• the set whose elements are couples of vertices X2 =
{
(xα, xβ) ∈ X × X | ∃ T ∈ T , {xα, xβ} ⊂ ∂2T

}
.

• the first and second neighborhood N1(x) and N2(x) of any vertex x ∈ X (depicted in Figure 2.3) with:

N1(x) =
{
x′ ∈ X | (x, x′) ∈ X2

}
(2.1)

N2(x) =
{
x′ ∈ X \ N1(x) | ∃ x′′ ∈ N1(x), (x

′, x′′) ∈ X2

}
∪N1(x) (2.2)

The valence (or degree) of a vertex is the number of its incident edges. When dealing with closed Lagrangian
grids the valence also equals the number of incident triangles. The valence equals 6 in Figure 2.3.

Figure 2.3: First neighborhood N1 (left), second neighborhood N2 (right)

The markers are ordered in each triangle in order to compute the curvature, normal and surface tension. For a
closed surface, we choose the normal vector to the interface pointing outside denoted n to define the orientation.
We then define a subset X2(T ) of X2. The orientation of any triangle T ∈ T by X2(T ) ⊂ X is defined in eq. 2.3
with × the cross product (right-hand rule).

X2(T ) = {(xα, xβ), (xβ, xγ), (xγ , xα) | ∂2T = {xα, xβ, xγ}, ((xβ − xα)× (xγ − xα)) · n > 0} (2.3)

The unit normal vector nT to any triangle T ∈ T is defined in eq. 2.4 with ∂2T = {xα, xβ, xγ} and
X2(T ) = {(xα, xβ), (xβ, xγ), (xγ , xα)}.

nT =
(xβ − xα)× (xγ − xα)

∥(xβ − xα)× (xγ − xα)∥
(2.4)

eq. 2.5 is an approximation of the unit normal vector to the surface at any vertex x ∈ X denoted by nN1(x).
This expression is proportional to the linear weighted combination by the triangle surfaceST of the normal vectors
nT of all the triangles T sharing the vertex x ∈ X .

nN1(x) =

∑
T∈T |x∈∂2T STnT∥∥∥

∑
T∈T |x∈∂2T STnT

∥∥∥
(2.5)

2.3 Algorithm

The Front-Tracking algorithm is described in algorithm 1. We will now present the methods used in this algorithm.
The Lagrangian mesh is transported to follow the interface. After this transport, a topological method examines
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the new mesh and may perform coalescence or breakup according to predefined criteria. A remeshing operation is
then applied to maintain the mesh at a sufficient quality for the two subsequent steps : surface tension and volume
fraction computation. After that, the discretized Navier-Stokes equations are solved.
Algorithm 1: Front-Tracking algorithm

1 Transport of the front
2 Topology (coalescence/breakup)
3 Remeshing
4 Computation of the surface tension
5 Computation of the volume fraction
6 Solving the Navier-Stokes equations

2.4 Lagrangian-Eulerian coupling

In the Front-Tracking method, the main variables of interest such as the velocity are solved on the Eulerian grid.
The coordinates of the vertices are used to compute the volume fraction for the density and viscosity and sometimes
the surface tension as well on the Eulerian grid. Information need to be transferred from the Lagrangian grid to
the Eulerian grid and vice versa with distribution functions. The stencil depends on the distribution function.
The weights have a finite support to limit the computational cost.

2.4.1 Hypotheses

We take the "smoothed interface approach" and thus suppose that the variables vary smoothly across the interface
and that we can use distribution functions for the coupling (Tryggvason et al., 2011). No modification is made in
the schemes used in the solver: the Front-tracking method is solely used to compute the material properties or
some of the source terms in the conservation equations, mainly the surface tension.

2.4.2 Interpolation

To interpolate a variable Φ on the front at a location l, we identify the grid node closest to l and interpolate on a
stencil as in eq. 2.6, where Φl

f is the quantity on the front at location l, Φi,j,k is its counterpart on the grid point
(i, j, k), wl

i,j,k is the weight of each grid node associated to location l. The weights must verify eq. 2.7, since the
interpolation of a constant velocity field should give the exact velocity.

Φl
f =

∑

i,j,k

wl
i,j,kΦi,j,k (2.6)

∑
wl
i,j,k = 1 (2.7)

2.4.3 Spreading

The "spreading" operation is also referred to as a "smoothing" operation in the literature. The same weighting
functions may be used to interpolate quantities from the Eulerian grid to the Lagrangian grid and to spread
quantities from the Lagrangian grid to the Eulerian grid. We transfer values from a portion of the Lagrangian grid
of surface ∆S to a volume ∆V of Eulerian grid. A necessary condition on the spreading is the conservation of the
quantity Φ (eq. 2.8). The interfacial quantity Φf is expressed in units per area, and its counterpart on the grid
Φi,j,k in units per volume.

∫

∆S
Φf (s)ds =

∫

∆V
Φi,j,k(x)dV (2.8)

The grid value Φi,j,k is obtained by summing the weighted contributions of the surrounding triangles of area
ST as in eq. 2.9, with h1, h2, h3 the grid spacings.
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Φi,j,k =
∑

l

Φl
fw

i,j,k
l

ST

h1h2h3
(2.9)

Numerically, for each triangle of the Lagrangian mesh, information are distributed to the Eulerian grid by
determining a stencil based on the coordinates of the vertices of the triangle. The weighting function wl

i,j,k(x),
also known as δh is often written as a product of 1D functions with a scaled distance r as its variable. The distances
between the vertex of the Lagrangian mesh and the node of the Eulerian grid in the x, y and z directions are scaled
by their respective mesh spacings. For the construction of the Peskin distribution functions such as in eq. 2.11, the
reader may refer to Peskin (2002). This "smoothed approximation to the Dirac delta function" is nonsingular
but converges towards the Dirac function (Peskin, 2002). For a grid node (i, j, k) and a marker x of coordinates
x = (x1, x2, x3):

wl
i,j,k(x) = δ((x1 − ih1)/h1)δ((x2 − jh2)/h2)δ((x3 − kh3)/h3) (2.10)

δ(r) =





δ1(r) |r| ≤ 1

1/2− δ1(2− |r|) 1 < |r| < 2

0 |r| ≥ 2

(2.11)

δ1(r) =
3− 2|r|+

√
1 + 4|r| − 4r2

8
(2.12)

2.5 Transport of the front

When transferring information between the Eulerian grid and the Lagrangian grid, there is a loss of precision, so
a special attention is required for the numerical methods. At the same time, we need to pay special attention to
robustness, where Peskin’s distribution functions may be of help. The coordinates of each marker of the front x is
updated at each time step based on a velocity v reconstructed from the Eulerian grid. The front is advected by
solving eq. 2.13, supposing that there is no phase change.

dx

dt
= v (2.13)

2.5.1 Interpolation of the velocity of the markers

The front is advected by an interpolated velocity of the fluid, which is not necessarily divergence-free even though
the velocity field on the fixed grid may be divergence-free (Tryggvason et al., 2001). Peskin’s smoothing functions
such as eq. 2.11 can be used to interpolate the velocity. The Parabolic Edge Reconstruction Method (PERM)
interpolation presented in McDermott and Pope (2008) is more compact than the Peskin interpolation and uses
the divergence at the cell vertices to interpolate the velocity. A comparison of interpolation methods used with the
Front-Tracking method can be found in Tavares (2019) and Gorges et al. (2022). Some works like du Cluzeau
et al. (2019) use only the component of the velocity normal to the interface.

2.5.2 Temporal scheme

A temporal scheme is required to solve eq. 2.13. The influence of the order of the Runge-Kutta scheme on the
order of the precision was evaluated for orders in the range 1 to 3 in Tavares (2019). We describe four Runge-Kutta
schemes below. A comparison of these schemes is presented in We present in appendix A. For example, with a
first-order Runge-Kutta scheme, the new location of the marker x(n+1) is given in eq. 2.14.

First-order Runge-Kutta.
x(n+1) = x(n) + v∆t (2.14)
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With ∆t the variable timestep at the current iteration.

Second-order Runge-Kutta.
x⋆ = x(n) + v∆t (2.15)

x(n+1) =
1

2

(
x(n) + x⋆

)
+ v(⋆,n+1)∆t

2
(2.16)

However, for a 2nd Runge-Kutta scheme, an extrapolation of the velocity of the marker v(⋆,n+1) is required for
the intermediate step denoted (∗). The following extrapolation scheme is used for this extrapolation in order to
maintain the 2nd accuracy (written here for adaptive timestep):

v(⋆) = (1 +
∆t

∆t(n)
)v(n)(x⋆)− ∆t

∆t(n)
v(n−1)(x⋆) (2.17)

With ∆t the variable timestep at the current iteration and ∆t(n) the previous timestep.

Third-order Runge-Kutta. The Third-order Strong Stability-Preserving Runge-Kutta method (SSP-RK3)
is one of the 3rd Runge-Kutta schemes (Gottlieb et al., 2001). It is used in this work with extrapolations of the
velocity field, as in Nangia et al. (2019):

x⋆ = x(n) +∆tv(n) (2.18a)

x⋆⋆ =
3

4
x(n) +

1

4

[
x⋆ +∆tv(⋆,n+1)

]
(2.18b)

x̄(n+1)
m =

1

3
x(n) +

2

3

[
x⋆⋆ +∆tv(⋆⋆,n+ 1

2
)
]

(2.18c)

Like in Nangia et al. (2019), we use extrapolated velocities eq. 2.17 and the two-step Adams-Bashforth scheme:

v(⋆⋆) = (2 +
∆t

∆t(n)
)
1

2
v(n)(x⋆)− ∆t

∆t(n)
1

2
v(n−1)(x⋆) (2.19)

Fourth-order Runge-Kutta. A classic 4th Runge-Kutta scheme is given in subsection 2.5.2. Similarly, we
can use eqs. 2.17 and 2.19 to improve the order when using spatial interpolation.

x⋆ = x(n) +
∆t

2
v(n) (2.20a)

x⋆⋆ = x(n) +
∆t

2
v(⋆,n+ 1

2
) (2.20b)

x⋆⋆⋆ = x(n) +∆tv(⋆⋆,n+ 1
2
) (2.20c)

x̄(n+1)
m = x(n) +

∆t

6

(
v(n) + 2v(⋆,n+ 1

2
) + 2v(⋆⋆,n+ 1

2
) + v(⋆⋆⋆,n+1)

)
(2.20d)

2.6 Remeshing

The transport of the interface modifies the distribution of the vertices, and thus its quality. We need to control the
quality of the mesh to represent the interface and compute the curvatures precisely. Remeshing operations are
more complicated in three dimensions. The additions and removals of triangles may be based on the triangle edges,
they are then called edge splitting and collapsing. A few general rules of remeshing for the Front-Tracking method
are given in Tryggvason et al. (2001). In 3D, a better quality can be achieved by using smoothing and swapping
procedures on the surface. While the Front-Tracking method with non-connected markers requires to reconstruct
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the entire interface to maintain the resolution, the use of connectivities gives us control on the mesh on a local
level. Our remeshing procedure is detailed in chapter 4.

2.7 Computing the volume fraction

Solving the Navier-Stokes equations for two-phase flows requires the knowledge of the physical properties in both
phases, such as the density and the viscosity. The volume fraction is necessary to determine these properties. The
volume fraction and/or the phase indicator function may also be used to compute the surface tension. For that
matter, a method is required to transfer information from the Lagrangian grid to the Eulerian grid. One method
to compute a phase indicator function χ uses a Poisson equation:

∇2χ = ∇ ·
∫

Γ(t)δ()ndS (2.21)

Discretized as:
∇2χ = ∇G (2.22)

With :
Gi,j,k =

∑

T∈T
wi,j,k
T STnT (2.23)

The normal times the surface of each triangle is spread on the Eulerian grid with a distribution function D (such
as in eq. 2.10). The interface has a finite thickness because of the distribution functions (Unverdi and Tryggvason,
1992). The numerical method used in Tryggvason et al. (2001) introduces numerical errors such as overshoots and
requires additional steps such as filtering. Ceniceros (2010) uses the Closest Point Transform (Mauch, 2000) to
compute a signed distance function. Geometrical methods can be used to compute the volume fraction in each
cell (Dijkhuizen et al., 2010) or approximate it, such as the Ray-Casting method. The latter consists in computing
the number of intersection between a ray taken in a given direction and the interface to determine which cell is in
which fluid. We implemented the Ray-Casting method and it is presented in appendix B.

2.8 Breakup and coalescence

Contrary to the methods based on the transport of a scalar, such as the VOF or the Level-Set method, topological
changes are not treated automatically in the basic Front-Tracking method. In the LCRM, the topological changes
are automatic, because the topological changes are made implicitly on the grid with the indicator function and the
Lagrangian mesh is reconstructed from the isosurface (Shin et al., 2013). We present a geometrical method for
coalescence and breakup in chapter 7.

2.9 Computation of the curvature and the surface tension

There are several ways to compute curvatures and normals on a triangulated surface, such as the Laplace-Beltrami
Operator (LBO) (Meyer et al., 2003) or local polynomial fittings (Jiao and Zha, 2008). We use the latter in this work.
The surface tension may be computed with the Integral Formulation (IF) (Popinet, 2018), with contributions at
the limits of the control volume, or with a volumetric formulation.

2.9.1 Integral formulation

In 2D, the surface tension is a force tangential to the interface : σt, with t the unit tangent to the interface and σ
the surface tension coefficient (N m−1). For a control volume Ω, intersected by the interface in two points A and
B, the surface tension is:

∫

Ω
fσ =

∮ B

A
σdt (2.24)
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where σA and σB are the surface tension coefficients at A and B.
The second integral is along the interface. In two dimensions, the surface tension is simply the sum of the

tensions at the entry and exit points of the interface in Ω. An advantage is that the contributions on adjacent
control volumes cancel out. Popinet and Zaleski (1999) proposed a new numerical representation of surface
tension and pressure jumps in 2D. They compute intersections Iint between the interface and control volume Ω
and compute a component of the surface tension contribution ±σtIint for the adjacent control volumes along
intersected faces. The computation is done once and added to adjacent cells. The intersection is also used to
modify the pressure gradient discretization.

In 3D, we obtain a line integral: ∫

Ω
fσ =

∮

C
σt× ndl (2.25)

The most encountered model in the literature with the Front-Tracking method employs the Integral Formulation
with Peskin’s functions (eq. 2.11): the surface tension is computed on the Lagrangian mesh and then distributed
onto the fixed Eulerian grid (Shin et al., 2005). Deen et al. (2004) uses a mass-weighted distribution. The surface
tension force can be computed independently for each element.

2.9.2 Volumetric formulation

By using Frenet’s formula, the volumetric formulation is obtained (Popinet, 2018):
∫

Ω
fσ =

∮ B

A
σdt =

∮ B

A
σκnds =

∫

Ω
σκnδS (2.26)

With s the curvilinear cordinate, δS a surface Dirac δ-function which is non-null only on the interface. Here κ
equals twice the mean curvature. In the Continuum Surface Force (CSF) formulation, the volume fraction C is
used to define this Dirac (Brackbill et al., 1992):

σκnδS = σκ∇C (2.27)

Shin et al. (2005) developed a hybrid formulation to compute a curvature with Peskin’s functions to be used in a
CSF formulation. Shin et al. (2018) extended this hybrid formulation to variable surface tension. Popinet (2009)
presented a height-function method to evaluate the curvature for a CSF approach. In this work, we use either the
CSF approach with height functions or the Integral Formulation with Peskin’s functions.

2.10 Issues with volume conservation

The Lagrangian mesh is a discrete approximation of the interface, so the discrete volume is not exact. We cannot
have the exact volume and the exact positions of the vertices at the same time. One of the drawbacks of the
Front-Tracking method is that it does not conserve the volume unlike the VOF method, and the errors cumulate
if no counter-measure is taken. The errors may come from the transport (spatial interpolation and temporal
integration) and remeshing operations (edge splitting, collapsing, swapping, smoothing).

Volume correction. The coordinates of the vertices can be modified to retrieve the initial discrete volume.
This volume correction may be activated every few iterations (Bunner and Tryggvason, 2002; Pivello, 2012). As
pointed out by Roghair et al. (2016), this may cause problems when the reference point for the volume correction
lies outside the interface, with skirted bubbles for instance. They also mention the risk of smoothing out physical
undulations. Generally, the volume error is computed, and if it exceeds a threshold, the coordinates of the markers
are corrected. In Takeuchi and Tryggvason (2020), a volume correction method along the velocity vector is
presented. The total amount of corrections is minimized in terms of l2 norm with the volume conservation
constraint. Roghair et al. (2016) uses the smoothing method of Kuprat et al. (2001) not only to smooth parts of
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the mesh but to correct the volume locally (after an elementary remeshing operation such as element addition or
removal or edge swapping) or globally, on the whole mesh after the transport.

Now, we present two methods to correct the volume for incompressible flows from Tavares (2019) and Koffi Bi
(2021) which we use in this work. It should be possible to add a source term in the case of phase change.

Velocity-Based Correction. The Velocity-Based Correction (VBC) shifts the vertices by a displacement
proportional to the magnitude of their normal velocity along their normals so that the discrete volume equals the
initial discrete volume. Let us define card T . The discrete volume delimited by a closed Lagrangian mesh V may
be decomposed in card T volumes of tetrahedra VT made up of the triangles T ∈ T and a reference point G,
preferably in the surroundings of the interface for numerical reasons. We use the barycenter as a reference point
(eq. 2.28).

xG =
1

card T
∑

x∈X
xx (2.28)

The vertices of a triangle T ∈ T are denoted xT,i, i = 1, 2, 3. We note (n) and (∗) respectively the state of the
interface before and after the volume correction. The volume of the tetrahedron constituted by triangle T and the
reference point G is given by eq. 2.29.

V =
(
(x

(n)
T,1 − xG) ∧ (x

(n)
T,2 − xG)

)
·
(
x
(n)
T,3 − xG

)
/6 (2.29)

For a triangle T , the vertex xT,i of velocity vT,i and unit normal nT,i, is displaced by dT,i (Equation ).

dT,i = |vT,i · nT,i|nT,i (2.30)

The new position of marker xT,i is:

x
(∗)
T,i = x

(n)
T,i + α× d

(n)
T,i , with α ∈ R (2.31)

We determine α by expressing the new volume V with the shifted vertices. For a triangle T , the volume of the
tetrahedron after correction V∗

T is obtained by adding a correction depending on three coefficients AT , BT , CT

and the unknown α (Equations eq. 2.32,2.33).

V(∗)
T = V(n)

T +
(
ATα

3 +BTα
2 + CTα

)
/6 (2.32)

AT =
(
d
(n)
T,1 ∧ d

(n)
T,2

)
· d(n)

T,3

BT =
(
d
(n)
T,2 ∧ d

(n)
T,3

)
·
(
x
(n)
T,1 − xG

)
+
(
d
(n)
T,3 ∧ d

(n)
T,1

)
·
(
x
(n)
T,2 − xG

)
+

(
d
(n)
T,1 ∧ d

(n)
T,2

)
·
(
x
(n)
T,3 − xG

)
(2.33)

CT =
(
(x

(n)
T,2 − xG) ∧ (x

(n)
T,3 − xG)

)
· d(n)

T,1 +
(
(x

(n)
T,3 − xG) ∧ (x

(n)
T,1 − xG)

)
· d(n)

T,2+(
(x

(n)
T,1 − xG) ∧ (x

(n)
T,2 − xG)

)
· d(n)

T,3

The new volume V(∗) delimited by the triangle mesh is:

V(∗) = V(n) +
(
Aα3 +Bα2 + Cα

)
/6 (2.34)

With
A =

∑

T∈T (n)

AT , B =
∑

T∈T (n)

BT , C =
∑

T∈T (n)

CT (2.35)
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The conservation of the volume is expressed by eq. 2.36:

V(∗) = V(0) ⇐⇒ Aα3 +Bα2 + Cα+ 6V(n) − 6V(0) = 0 (2.36)

The unknown α is thus solution to a cubic equation, which we solve directly with Cardano’s formula. Among
the three solutions, the real solution with the smallest absolute value is retained.

Homothetic Rescaling. The Homothetic Rescaling (HR) shifts the vertices by a homothety to retrieve
the initial discrete volume. It is more suited to spherical interfaces. For a given center of homothety xG (such as
the barycenter), the homothety factor is computed so that the new discrete volume V∗ equals the initial discrete
volume V(0) (eq. 2.37). Each marker x is then moved according to eq. 2.38.

kxG =
3

√
V(0)

V(n)
(2.37)

x∗ = xG + kxG(x− xG) (2.38)

Volume deterioration during the transport. Concerning the spatial interpolation, the discrete
velocity field may be divergence-free for incompressible flows but this is not necessarily the case for the interpolated
velocity (Tryggvason et al., 2011). Peskin and Printz (1993) constructed a divergence operator based on the
interpolation scheme, which modifies the projection step in the velocity-pressure coupling, in order to limit the
volume alteration.

Volume deterioration during the remeshing. Concerning the remeshing operations, they can be
designed to limit the volume loss or even conserve exactly the discrete volume. Several authors designed a volume
conserving smoothing (Kuprat et al., 2001; Liu et al., 2002; de Sousa et al., 2004; Toutant et al., 2012). Lindstrom
and Turk (1998) designed the Memoryless Simplification algorithm (MSA) which conserves the discrete volume
locally during edge collapsing.

By using surface reconstruction with remeshing operations (splitting, collapsing, smoothing) or a fine Lagrangian
mesh relatively to the Eulerian one, this issue may be alleviated (Tryggvason et al., 2001). Gorges et al. (2022)
perform no volume corrections yet rely on higher order interpolation and temporal schemes and more precise
remeshing techniques with local surface reconstruction. We investigate the use of local surface reconstruction to
mitigate the alteration of the discrete volume in the next chapter as well.

2.11 Summary

We use the Ray-Casting method to compute the volume fraction and the phase indicator. A volume
correction step is employed at the end of the remeshing algorithm. We use either height functions or the
integral formulation of the surface tension distributed with Peskin’s functions.
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Part II

Unsteady analytical test cases
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3 Remeshing
Now, we will go over remeshing in the literature, after that we will detail our
remeshing procedure, and the remeshing criteria behind it.

The Lagrangian mesh is used to compute the phase indicator, the volume fraction, and in some cases the
curvature and normal for the surface tension. The quality of the computation of the curvature depends on the
quality of the mesh. The objective of remeshing is to maintain the mesh at a sufficient quality throughout the
simulation while mitigating the cumulation of subsequent position errors. Remeshing criteria for meshes are
numerous in the literature. In this work, we are concerned with the size of the edges with regards to the Eulerian
mesh spacing h, the adaptation of the mesh to the curvature, the valence (section 2.2,13) and the shape of the
triangles. These criteria are not always compatible, sometimes a compromise has to be reached. With an Eulerian
mesh, we define an edge length interval [λmin, λmax] based on the mesh spacing h, since the velocity of the
markers is interpolated from the Eulerian mesh and triangles larger than the Eulerian mesh would not represent
the interface correctly if it has a non-null curvature. Because of the transport the triangles may become larger or
smaller than the upper and lower bounds of our edge length interval. When the triangles become too large, we may
split them to maintain a sufficient resolution. Yet when the triangles become too small compared to our predefined
resolution, we may want to delete them to save up memory and computation time. We perform local operations at
each iteration instead of global operations on the whole mesh, like global mesh optimizations. We indeed suppose
that the displacement of the vertices is small at each time step and that performing remeshing operations locally (at
some vertices only) is sufficient.

3.1 A quick overview of the literature

Estimating curvature on a mesh. The methods used to compute curvature can be distinguished in two
main classes: surface fitting and discrete methods. Surface fitting methods search for a function (and thus its
coefficients) that fits the mesh locally. This function can be obtained by interpolating the coordinates of the vertices
of a stencil (the number of vertices is given by the number of unknown coefficients), or by an approximation, the
function then minimizes a measure of distance from the vertices (with a weighted least-squares formulation, the
number of vertices should be superior or equal to the number of unknown coefficients). The second class, discrete
methods, employ approximations based on the definition of curvature, such as Laplace-Beltrami Operator (LBO)
or the IF. The reader may refer to Petitjean (2002) and Gatzke and Grimm (2006) for comprehensive reviews.
According to (Koffi Bi, 2021), the LBO method does not always converge with the mesh size depending on the
vertex distribution.

Remeshing. Frey (2000) developed an anisotropic remeshing method with metrics, based on the principal
curvatures. Principal curvatures can be used to represent a shape more efficiently with regards to the number of
vertices (Alliez et al., 2002, 2003). In this work, we are interested in adapting the mesh to the curvature, which is
one reason why we need a method to compute the curvatures on a triangle mesh.

Preserving features. Remeshing methods can be designed to preserve the features of a shape (Li et al., 2021).
For the Front-Tracking method, when the contact angle is modeled, special care has to be taken to respect the
contact angle when remeshing near a wall (Shang et al., 2018). Eigenvalue analysis can be used to handle features of
the mesh: smooth patches, ridges and corners (Jiao, 2007). This can be used to smooth the mesh while preserving
the features, or prevent the vertices from moving off a ridge for instance when collapsing an edge (Brochu, 2012).

23



3.2 Remeshing algorithm

The remeshing algorithm is described in Algorithm 2. Triangle edges that are too small are deleted, after that a
swapping procedure is applied. Triangle edges are split if they are too large with regards to our remeshing criteria, a
new swapping step is then performed. The mesh is smoothed and badly shaped triangles are deleted. The mesh
data is saved in allocatable arrays, and the addition and removal of triangles and vertices require a step to resize the
arrays for the memory imprint. A volume correction step is applied at the end of the remeshing procedure.

Algorithm 2: Remeshing algorithm
1 Triangle deletion
2 Swapping
3 Triangle addition
4 Swapping
5 Smoothing
6 Bad triangle removal
7 Compacting data structure
8 Volume correction

3.3 Surface Reconstruction

The geometric properties of the interface can be calculated with a global or local reconstruction of the discretized
surface. In this work, for a vertex xP the interface is approximated locally and the curvature is computed on
this approximate surface and serves as an approximation for the curvature at the vertex xp. Jiao and Zha (2008)
proposed a local polynomial fitting method with weighted least-squares. The locality of this surface reconstruction
method is an advantage for the parallelization. Local surface reconstruction methods give good results for the
curvature compared to classical methods, namely LBO, and are more robust for irregular vertex distribution
(Koffi Bi, 2021). Li et al. (2021) uses normals and tangents as well in their least-squares formulation.

Now, we describe the procedure used to compute a local surface reconstruction at a vertex xP . First, a stencil
(for instance N1(xP ) or N2(xP ) section 2.2, page 13) is selected around the vertex xP , the coordinates of these
vertices will be used in the weighted least-squares. These coordinates are expressed in a local orthonormal basis
originating at xP where (X,Y,Z) are its axes. A first approximate normal n(0)

xP to the surface at xP is computed
and serves to define the local basis. The Z axis is aligned with the approximate normal, X and Y are chosen
arbitrarily in the plane passing xP and are normal to n

(0)
xP .

First approximation of the normal n(0)
xP . In Wang et al. (2013), the normal is approximated with an

area-weighted average of face normals. In Max (1999), larger weights are assigned to smaller triangles (eq. 3.1).
Zinchenko et al. (1997) performs several iterations of the whole reconstruction to get a better correspondence
between the normal used in the local basis and the computed normal.

nm(xi) =

∑
T∈T ⋆

i

(xj−xi)×(xk−xi)
∥xj−xi∥2∥xk−xi∥2

∥∥∥∥∥
∑

T∈T ⋆
i

(xj−xi)×(xk−xi)
∥xj−xi∥2∥xk−xi∥2

∥∥∥∥∥

(3.1)

with T ⋆
i =

{
T ∈ T |∂2T = {xi, xj , xk}, (xj , xk) ∈ X2(T )

}

Weighting in the least-squares. In Jiao and Zha (2008), larger weights are assigned to vertices close to
the origin xP , and if their normals are similar to the approximate normal of the stencil n(0)

xP . Including the normal
in the weight is useful to preserve sharp features or if the mesh is coarse. Li et al. (2021) use the tangents instead of
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the normals in their new weighting and Wendland functions instead of the "inverse-distance-weighting" scheme
(Jiao and Zha, 2008) noting that if the origin is not a vertex, an asymmetry might be introduced.

System resolution. The resolution of the system involves issues about the rank of the matrix which may be
alleviated by using larger stencils which in turn may smooth out the reconstructed surface (Cazals and Pouget,
2005). For instance, some issues can arise with the N1 stencil, if the number of vertices is not superior or equal to
the number of unknown coefficients in the polynomial, the system is underdetermined and the stencil must be
completed (Du et al., 2006). Koffi Bi (2021) shows that when supplementary vertices are used, this may produce
an alignment of three vertices, which deteriorates the approximation of the surface. Switching to the N2 stencil
becomes thus necessary. Jiao and Zha (2008) scale their matrix to improve the resolution of the least-squares and
solve the system with a QR method, which gives access to a condition number. This number gives an indication of
the quality of the reconstruction, enabling them to switch to lower order fittings should the need arise.

In our implementation. We use the local surface reconstruction method implemented in Koffi Bi (2021) at
the vertices only. The steps to compute the geometric properties with local surface reconstruction are summarized in
algorithm 3. The local basis is constructed with the normal introduced by Max (1999). The surface is approximated
locally by the equation Z = f(X,Y ) with f the height function given in eq. 3.2. The local coordinates are
denoted by X , Y and Z , and aij are unknown real coefficients which we determine by a least-squares formulation.
It is possible to impose a00 = 0, so that the vertex xP belongs to the reconstructed surface, but keeping a00 as an
unknown gave better results for N2 (Koffi Bi, 2021).

f(x, y) = a20x
2 + a11xy + a02y

2 + a10x+ a01y + a00 (3.2)

The local equation is obtained by minimizing:
∑

mi∈N ⋆
k (xP )

ωi[f(Xi, Yi)− Zi]
2 (3.3)

In this weighted least-squares formulation, ωi is the weight associated with mi, of local coordinates Xi, Yi, Zi,
k ∈ {1, 2} indicates the first and second neighborhood. The weight ωi, is in the form 1/(1 + x2), as in eq. 3.4.
An integer parameter N is employed to set the weighting: the vertices of the stencil have then less influence in
the resulting coefficients if they are more distant from P . We use N = 1, which tends to improve the results for
coarse meshes, as recommended in (Koffi Bi, 2021).

ωi =
1

1 +




∥xQ − xP ∥ ×N

min
mi∈N ⋆

k (m)
∥xQ − xP ∥




2 (3.4)

We use the Gauss method for the resolution of the system. Low valency and aligned vertices are detrimental to
the surface reconstruction with N1 (Koffi Bi, 2021), which is one of the reasons why we elected to use N2 for
our computations. Another reason is that N2 gives smoother contours of curvature, which is more suited as the
curvature is one of our remeshing criteria. The geometric properties are then computed with the polynomial f .

Algorithm 3: Local surface reconstruction algorithm
1 Fetching stencil (N1 or N2)
2 Local basis construction
3 Weighted least-square formulation
4 System resolution
5 Computation of geometric properties
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We denote the Hessian of the function F (X,Y, Z) = Z − f(X,Y ) by H(F ). As detailed in Goldman (2005),
the mean curvature κ and normal to an implicit surface can be computed with an analytical formula (eqs. 3.5
and 3.7).

n =
∇F

∥∇F∥ (3.5)

κ = −∇ · n (3.6)

κ =
∇F ·H(F ) · ∇F T − ∥∇F∥2Tr(H)

2∥∇F∥3 (3.7)

κG =
det(H(F ))

(∥∇F∥2 + 1)2
(3.8)

The Gaussian curvature is denoted by κG (eq. 3.8). We denote by κ1 and κ2 the principal curvatures when
they exist. The principal curvatures are the maximal and minimal values of the normal curvature (a real number
that measures how the surface bends in a direction tangential to the surface, Gray et al. (2017)). We can retrieve
κ1 and κ2 with the mean and Gaussian curvature: κ1 = κ +

√
κ2 − κG and κ2 = κ −

√
κ2 − κG. As

mentioned in Meyer et al. (2003), with machine error we must pay attention to the sign of the discriminant when
the principal curvatures are almost equal at the machine precision with κ1 = κ +

√
max(0, κ2 − κG) and

κ2 = κ−
√
max(0, κ2 − κG).

3.4 Remeshing criteria in the literature

In this paragraph we give a quick overview of the remeshing criteria used in Front-tracking algorithms. The most
common criterion for adding or deleting triangles is the triangle edge length l. The edge length is typically chosen
with regards to the Eulerian mesh spacing h as illustrated in fig. 3.1, in an interval [lmin, lmax] such as 1

3h < l < h
Tryggvason et al. (2001), 1

5h < l < 1
2h (Roghair et al., 2016).

Eulerian mesh spacing hEulerian mesh spacing h

Lagrangian mesh spacing hLagrangian mesh spacing h

Figure 3.1: Eulerian and Lagrangian meshes

However, with fixed upper and lower limits for the edge length, the mesh will be homogeneous spatially which
means there will be the same resolution in the less curved areas and in the more curved areas. This takes up more
disk space and CPU time. The number of triangles may be reduced by using adaptive remeshing criteria. Roghair
et al. (2016) define a "roughness" (eq. 3.9). This roughness characterizes local undulations, by evaluating the
inclination of adjacent triangles with one another, also known as the dihedral angle, on the N1 neighborhood.

r(P ) =
1

2
min

(P1,P2,P3)∈C
(1 + n(PP1P2) · n(PP2P3)) (3.9)
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With C = {P ̸= P1 ̸= P2 ̸= P3 | P1 ∈ N1(P ), P2 ∈ N1(P ) ∩ N1(P1), P3 ∈ N1(P ) ∩ N1(P2)} and
n(PP1P2), n(PP2P3) are the vectors normal to the two triangles constituted of the corresponding vertices.

If 1− r > 10−2 and l/2 > lmin (the new edge would still be within the remeshing edge interval), then the
edge is split (Roghair et al., 2016). If the mesh is flat: 1 − r ≤ 10−3 and 2l < lmax, the edge is collapsed. In
Galaktionov et al. (2000), the remeshing criteria are based on edge lengths and dihedral angles.

3.5 Our remeshing criteria

In our code, we selected the following criteria: non-dimensionalized curvature, edge length, similarity to an
equilateral triangle and roughness. Instead of using the roughness to define the edge length in the edge collapsing
and splitting, we prefer a smoothed curvature which gives a better transition for the edge lengths on the mesh. The
aim of using the non-dimensionalized curvature is to refine automatically the front where the curvature is high
compared to the edge length. It would enable us to describe properly the front at a subgrid scale and especially
for the curvature computation granted that the velocity used to transport the interface is precise enough. The
advantage is that it would not require to specify a reference length as a parameter before running the simulation.
However, if the mesh presents large undulations, we may have large variations of curvature which result in an
overly refined mesh because of the non-dimensionalized curvature criterion. This problem is mitigated with the
N2 neighborhood, as opposed to the N1 neighborhood, the mean curvature contour is smoother, which limits
this problem of refining at unnecessary places due to oscillations.

3.5.1 Mesh adaptation to curvature

The lagrangian mesh is adapted with the edge length andκmax, the maximum of the absolute value of the principal
curvatures of the interface. This value is non-dimensionalized by the edge length. If the numerical curvature is
used as is, large variations in edge length are to be expected, as depicted in fig. 3.2, which is problematic for surface
reconstruction and transport.
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Figure 3.2: Remeshing with curvature, Enright test case (Enright et al., 2002), with numerical curvature (top),
with pseudo-curvature: λ = 0.5 (bottom)

To avoid large variations in edge length, this curvature κmax is replaced by a pseudo-curvature defined at the
marker P by

κ̃(P ) = max

(
κmax(P ), λ max

Q∈N1(P )
[κ̃(Q)] + (1− λ)κmax(P )

)
(3.10)

where λ ∈ [0; 1] is an adjustable parameter and N1(P ) is the set of markers on the first neighborhood N1 of P
(fig. 2.3). If λ = 0, the pseudo-curvature at the point P is simply κmax(P ). If λ = 1, the pseudo-curvature P is
the maximum betweenκmax(P ) and the pseudo-curvatures of the neighborhoodN1(P ), which tends to generate
a fine mesh of constant edge length, adapted to the largest principal curvature of all markers. An intermediate value
of λ smooths the large curvatures to neighboring markers and ensures a better transition between edge lengths.

By denoting l the length of the edge linking the markers P and Q ∈ N1(P ), it will be split in two if κ̃(P )l >
κdmax and the markers will be merged if κ̃(P )l < κdmin, with for instance κdmax = 0.25 and κdmin = 0.1.
When κd ̸= 0, its inverse may be interpreted as a number of segments per radius of curvature, where the curvature
is a smoothed approximate curvature.

3.5.2 Additional criteria for mesh management

In order to avoid that the edges created by this algorithm become too small (for computational cost and relevance
with the Eulerian resolution) or too large (poor resolution), the edge length is limited between λmin and λmax.
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These limits are linked to the size of the Eulerian grid h: λmin = h/4 and λmax = h when κd < κdmin (when
the surface is nearly flat), and otherwise λmin = h/n, with n = 20 for example.

In addition to these criteria based on edge length, the state of the surface and valence must be controlled.
Remeshing operations are cancelled if they worsen the roughness r(P ) at the vertex P eq. 3.9. If the valence of a
vertex involved in a potential edge collapse equals 5, the edge collapse is cancelled, since it is detrimental to the
computation of the curvature, at least for a N1 reconstruction. The N1 neighborhoods of the two vertices are
checked for shared vertices. If they share more than two vertices, the collapsing is cancelled since it would create an
invalid mesh (edge shared by more than two triangles). Such a situation may arise when a ligament stretches.

3.6 Computing a new vertex position

When splitting an edge constituted by two vertices xP1 and xP2 , a new vertex and two new triangles are created
(the reader may refer to Koffi Bi (2021) for more details about the modifications of the connectivities during the
remeshing procedures). When collapsing an edge, a vertex and two triangles are removed. In both cases, a new
position is defined for the new vertex (edge splitting) or the existing vertex (edge collapsing). This new position
may alter the volume, shape and curvature of the interface. For the edge splitting, the most basic method consists
in taking the average of the coordinates of the two vertices constituting the edge being refined, as in table 3.1, which
we refer to as edge middle. For the edge collapsing, the edge middle or the coordinates of one of the two vertices
may be used. The latter would have the advantage of mitigating the cumulation of the position errors, although
the triangles modified by the edge collapsing would not be as well shaped as with the former.

Yet when splitting or collapsing an edge, there are other alternatives, such as interpolation with butterfly subdi-
vision (Brochu and Bridson, 2009), interpolation with barycentric coordinates (system of coordinates which may
be applied to a triangle, as depicted in fig. 3.3) (Tryggvason et al., 2011), quadric errors to minimize the distance to
the planes formed by neighboring triangles (Garland and Heckbert, 1997), the MSA as mentioned in chapter 2
(Lindstrom and Turk, 1998), and local surface reconstruction.

(0, 0, 1)

(0, 1, 0) (1, 0, 0)

(0, 1/2, 1/2)

(1/2, 1/2, 0)

(1/2, 0, 1/2)

Figure 3.3: Barycentric coordinates

We described a local reconstruction of the surface, centered on a vertex of the mesh in section 3.3. Now, each
reconstruction is independent, even though neighboring vertices include shared vertices in their stencils and
we may use a weight in our least-squares formulation. Jiao and Wang (2012) introduce two methods based on
weighted least squares polynomial fittings: the Weighted Averaging of Local Fittings (WALF) and Continuous
Moving Frames (CMF) methods. They use the barycentric coordinates (fig. 3.3) of the vertices to define a new
position. According to Jiao and Wang (2012), the WALF method constructs a C0 continuous surface. They argue
that the distance between a point obtained with the WALF method and the closest point on the exact surface
is due to the "discrepancy of local coordinate systems at different vertices" but above all linked to the degree of
polynomials used in the least-squares fittings. On that matter, we observed that it is more difficult to use a N1

neighborhood for the fittings with the WALF method (in some cases the surface became non-smooth with time in
some of our simulations, i.e. the method gave more errors than a basic edge middle position) than withN2 which is
smoother. The CMF method defines local bases and weights for the local fittings. A recent investigation was done
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on an expanding sphere (Gorges et al., 2022) comparing edge refinement with or without surface reconstruction
or with barycentric interpolation. The Surface Reconstruction used in Gorges et al. (2022) is reconstructed at the
middle of the edge while in the work of Jiao and Wang (2012), an average of two projected points is computed. In
our case, we mostly use the WALF method, i.e. we average the projections over an edge. Table 3.1 summarizes the
three edge refinement methods used in this work. The notation Pi[p] means the projection of point p onto the
surface reconstructed at the vertex i/edge ij. Figure 3.4 illustrates the two N2 stencils and their associated surface
reconstructions used in WALF method (Jiao and Wang, 2012). The edge middle is projected on each reconstructed
surface and the projections are averaged. Figure 3.5 illustrates the stencil used in the edge fit (Gorges et al., 2022).
The edge middle is projected on the reconstructed surface.

Method Edge middle WALF Edge fit

Formula (xP1 + xP2)/2 (P1[((xP1 + xP2)/2)] + P2[((xP1 + xP2)/2)])/2 P12[((xP1 + xP2)/2)]

Table 3.1: Edge refinement methods

Figure 3.4: The two N2 stencils and their associated surface reconstructions used in WALF method (Jiao and
Wang, 2012); left: stencils with the surface reconstruction, right: top view of the stencils. The edge
middle is projected on each reconstructed surface and the projections are averaged.
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Figure 3.5: The stencil for the edge fit (Gorges et al., 2022); left: stencil with the reconstructed surface, right: top
view of the stencil. The edge middle is projected on the reconstructed surface.

3.7 Swapping

The swapping procedure consists in modifying the connectivity of two adjacent triangles, as depicted in fig. 3.6a.
It can have several objectives, such as improving the valence of the mesh. Like other operations, we need criteria to
determine if the operation improves or deteriorates the quality of the mesh. The advantage of swapping is that
it does not modify the position of the vertices yet it does modify the curvature and volume. Some authors swap
edges only if the dihedral angle is smaller than a predefined value (Frey, 2000; Jiao et al., 2010; Koffi Bi, 2021;
Gorges et al., 2022). In Brochu and Bridson (2009), swapping is performed if the potential new edge length is
smaller than the current one (there is a criterion on the improvement of the edge length to prevent swapping the
same edges back and forth), and cancelled if the volume change exceeds a threshold or causes an intersection. The
swapping is iterated several times so that there are no longer edges to be swapped. Roghair et al. (2016) swap edges
if either the balance between the valences is improved or if the triangles become more equilateral (by computing a
ratio (eq. 3.11) for the two current triangles and the potential new triangles). They restore the lost volume in a
smoothing step, with the algorithm from Kuprat et al. (2001). In Ray (2013), edges are swapped either to improve
valence or so that the incident triangles become more equilateral.

(a) Swapping

a = -2.5a = -2.5

PP

PP

(b) laplacian smoothing

Figure 3.6: Remeshing operations

Our implementation. Swapping modifies the connectivities so we make sure that swapping two triangles
does not reduce the valence of a vertex to less than 5. We perform two swapping steps, one after edge collapsing
and one after edge splitting (algorithm 2), as in Koffi Bi (2021). We use a quality criterion for the swapping QT , it
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is a measure of how similar a triangle is to an equilateral triangle. It is the ratio of the diameter of the inscribed
circle Di and the radius of the circumscribed circle Rc :

QT = Di/Rc (3.11)

For a triangle T ∈ T , and its edge lengths dT,i, i = 1, 2, 3:

QT =
(dT,1 + dT,2 − dT,3)× (dT,2 + dT,3 − dT,1)× (dT,3 + dT,1 − dT,2)

dT,1 × dT,2 × dT,3
(3.12)

For an equilateral triangle QT = 1 and for a flat one, QT = 0. One of the objectives of edge swapping is to
improve this quality. Let T1, T2 be two triangles which we may swap, the average quality after the operation (
denoted by (∗)) should be improved. We use the implementation of (Koffi Bi, 2021), where the harmonic average
is used (k = −1): [(

Q
(∗)k
T1

+Q
(∗)k
T2

)
/2
]1/k

>
[(

Q
(n)k

T1
+Q

(n)k

T2

)
/2
]1/k

(3.13)

We check the roughness of the vertices whose connections are modified before and after the swapping is applied
and if a roughness goes under the roughness threshold, we cancel the swapping operation. That way, the change in
roughness induced by the swapping is controlled. However, in our approach, we cannot have both an adaptive
mesh and equilateral triangles, because there is a transition in edge size which cannot be achieved with equilateral
triangles and a conforming mesh (a triangle has three neighbors at most along its edges).

3.8 Removing badly shaped triangles

If a triangle has an angle θ > 160°, we refer to it as a "cap", and its largest edge is swapped if it does not spawn
configurations with low valence (<5) or foldings. If a triangle has an angle smaller than 10° and an edge ratio
mini∈J1,3K(dT,i)/maxi∈J1,3K(dT,i) ≤ 0.3, we refer to it as a "needle" and the smallest edge is collapsed if the
conditions on valence and non-folding are met as well.

3.9 Smoothing

The smoothing operation can have several purposes: improving the distribution of the points on the surface
(have a more homogeneous mesh) or reduce the spikes or undulations which may arise from coupling errors with
Navier-Stokes for example.

3.9.1 Laplacian smoothing

Laplacian smoothing shifts every vertex toward a weighted average of its neighboring vertices. Aside from smooth-
ing out some of the geometric features, it has the effect of equalizing edge lengths, which gives a better vertex
distribution. On the other hand, it has undesirable effects like shrinking the volume enclosed by the surface and
vertex sliding: even if the surface is flat, the vertices are shifted. This problem can be mitigated by applying the
smoothing only when necessary, by checking the roughness for instance. There is also a limit on how much we
want to smooth sharp features, some may be due to numerical errors, others may be physical.

The mesh can be interpreted as a signal, where the high frequencies would be the noise and the low frequencies
the features we wish to retain. As pointed out by Desbrun et al. (1999), the noise of the mesh can be attenuated
with a diffusion equation:

∂x

∂t
= λL(x) (3.14)

With a discrete Laplacian operator for graphs:

L(xP ) =
1

cardN1

∑

Q∈N1(P )

(xQ − xP ) (3.15)
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Which gives

x∗
p = 1 + λdt

1

cardN1

∑

Q∈N1(P )

(xQ − xP ) (3.16)

According to Desbrun et al. (1999), the stability criterion requires λdt < 1, otherwise oscillations appear on
the surface. The explicit Laplacian smoothing is thus written for a vector X containing the coordinates of the
vertices of the mesh:

Xn+1 = (I + λdtL)Xn (3.17)

He then proposes an implicit procedure over the mesh X which removes the stability issues:

(I − λdtL)Xn+1 = Xn (3.18)

Taubin (1995) proposes a smoothing method without shrinkage, by applying two steps with a positive and
negative factor λ and µ. Different weights can also be assigned to the vertices on the N1 neighbourhood: as in the
"scale-dependent umbrella operator" (Fujiwara, 1995; Desbrun et al., 1999).

3.9.2 Other smoothing methods

Desbrun et al. (1999) uses a mean curvature flow equation (eq. 3.19), to smooth the surface without the vertices
sliding. Kuprat et al. (2001) develops methods based on vertices or edges which conserve the discrete volume
locally. In Toutant et al. (2012), a curvature-based volume conserving smoothing is presented. Meyer et al. (2003)
developed a smoothing with weights based on the principal curvatures to keep features while smoothing out
noise. Jiao (2007) developed a procedure called "null-space smoothing", which tends to preserve the features of
the interface and limits volume deterioration (compared to a basic Laplacian smoothing) while smoothing the
mesh thanks to an eigenvalue analysis. If the vertex is on a smooth part of the mesh, the null space corresponds to
the plane tangential to the surface at the vertex. If a vertex is on a ridge, it is moved along the line tangent to the
ridge and if a vertex is on a corner, it stays on the corner. In the same line of work, a "variational smoothing" is
presented in Jiao et al. (2011), the aim is to get closer to ideal triangles (for instance equilateral) by minimizing two
energy functions while keeping the displacement virtually tangential to the surface with the "null-space".

∂x

∂t
= λκn (3.19)

3.9.3 Related to smoothing

The use of a smoothing algorithm can also be partly avoided by modifying the transport equation, using only
the normal component of the velocity for the simulation of bubbly flows (du Cluzeau et al., 2019). However, it
supposes that the normal is well computed and it raises the issue of crossflows, the remeshing algorithm would
need to handle the tangential movement of the interface somehow.

3.9.4 Our implementation

We use either the edge-based smoothing from Kuprat et al. (2001) or a Laplacian smoothing combined with
a projection on a reconstructed surface (section 3.3). The latter needs more caution as it may fold the mesh.
Smoothing can be applied implicitly or explicitly. Since the mesh T (n−1) is supposed to have a sufficient quality,
we deem the explicit smoothing sufficient, and it can prove useful in case the code is parallelized, instead of
smoothing the whole mesh implicitly. In our implementation, we smooth the mesh explicitly, by projecting the
barycenter (eq. 3.20, fig. 3.6b in 2D) on the reconstructed surface Pxp

(
x∗p

)
, which limits the volume shrinkage. If

we have adaptive remeshing, smoothing can add more work to the collapsing and splitting steps though by moving
vertices from their desired location. By placing the vertex to the barycenter, it is equivalent to setting λdt = 1
in eq. 3.20, where it is unstable for a global explicit smoothing step. The difference here is that we smooth one
vertex at a time, which is different from a simultaneous operation on the mesh and that we project the averaged
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position onto the reconstruction surface. In that procedure, it is expected that the vertices slide. We may smooth
vertices with a given roughness to limit the accumulation of errors or at a given frequency (every n iteration). We
check that the roughness does not become smaller than a threshold such as r = 0.9. We may also perform an
intersection check before each vertex displacement.

x∗
p =

1

cardN1

∑

Q∈N1(P )

xQ (3.20)

3.10 Mesh validity

During the remeshing operations or the transport, the following issues can arise: mesh folding, also known as
tangling, and mesh intersections. The mesh can be checked before (remeshing) or after (transport) so that no such
event occurs.

3.10.1 Intersection handling

Brochu and Bridson (2009) implemented a collision resolution procedure which rolls back some operations or
perturbs the mesh to maintain an intersection-free mesh. In Roghair et al. (2016) no particular test is made for the
transport of the front. They argue that with the pressure increase in the liquid film and a sufficiently small time step
meshes will not intersect in their computations. They perform a volume correction step and in case of intersections,
move the intersecting vertices back and redistribute the volume to the non-intersecting vertices. Du et al. (2006)
developed a topological method which can be used to repair tangled meshes by computing intersections of the
triangles with an Eulerian cell. Some authors add an artificial force to prevent drops from colliding (Bois, 2017).

Our implementation. In our simulations, we may either test intersections after some local remeshing step
(when a vertex is moved or edge is swapped for instance), or after global remeshing steps (all triangles refined)
or not at all. The detection of intersections is accelerated by keeping a localization of the Lagrangian mesh on
the Eulerian mesh, we may thus check only the triangles in the vicinity (by checking the triangles located in the
surrounding Eulerian cells) and not the whole triangle mesh. If there is an intersection during the mesh refinement
with projection on a reconstructed surface, the new point is placed on the edge instead of the reconstruction. For
the transport or volume correction, the code returns an error if the test returns an intersection, for it is likely due
to a resolution error with the Navier-Stokes equations or a too large time step.

3.10.2 Folded triangles

In several operations, such as edge collapsing (with or without projection), splitting (with projection), swapping,
smoothing (with projection), it is not guaranteed that the mesh will not fold, characterized by two triangles T1, T2

where nT1 · nT2 < 0. In the case of surface reconstruction, folding may be prevented for coarse meshes with the
weights from Jiao and Wang (2012): if a normal is too different from the first normal approximation, it is filtered
out (section 3.3). Ray (2013) uses weighted Laplacian smoothing constrained in the "null-space" (Jiao, 2007) to
resolve mesh tangling.

3.10.3 Limiters

Ray et al. (2014) use surface reconstruction in some of their remeshing operations. Geometrical limiter based on a
mean edge length are applied to decide if a point should be projected on the reconstructed surface. If it exceeds the
threshold value, they resort to the volume conserving smoothing from Kuprat et al. (2001).

In our implementation. If we use limiters based on a length, sometimes we prevent the appearance of spikes.
However, it can also introduce dimples in the surface because at some parts the offset to the surface of the mesh
is null and next to it there are points which were projected on a reconstructed surface. These dimples could
then trigger the curvature-based remeshing criteria and add more vertices. This behaviour is undesirable, and we
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check the improvement of the roughness (or at least that the roughness is maintained above a threshold value like
r = 0.9) instead before using surface reconstruction or swapping an edge (eq. 3.9).

3.11 Summary

In addition to classical remeshing operations (edge splitting, collapsing, swapping, smoothing), we presented
a criterion to adapt the mesh to the curvature of the interface and the use of polynomial approximation to
improve edge splitting and collapsing. During the remeshing and the transport, foldings or intersections
may occur, so the validity of the mesh needs to be verified.

Now that we have presented our remeshing methods and criteria, we use them in the next chapter in two test
cases to evaluate the level of errors that can be attained for curvature and position when a surface deforms and
position errors cumulate.
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4 Curvature of a surface

In this chapter, the influence of the remeshing procedure on the position and cur-
vature errors is evaluated on two analytical cases. The volume error is investigated
for the first case as well.

Remeshing operations serve the purpose of improving the representation of the surface and/or to improve
the mesh for the curvature evaluation. However, they also introduce errors. For instance, edge collapsing may
alter the volume, shape and curvature. We study two cases of transported surface, where the shape and curvatures
are known with analytical functions. We can see the effect of accumulated errors from transport combined with
remeshing. In this study, the numerical curvatures are computed on the triangle mesh with surface reconstruction
on a N2 stencil (section 3.3, on page 24).

Presentation of the results. For the sake of visibility, the markers of the figures are slightly shifted left and
right to avoid overlappings when studying the influence of a parameter, like in fig. 4.4 (on page 43). When a circular
marker is empty, the remeshing was done without adaptation to the curvature with the non-dimensionalized
curvature κd, otherwise κd is used and its target value κdmax is the value indicated in the legend, and we choose
κdmin = κdmax/4 (section 3.5). For the abscissa, N is the total number of vertices at the end of the simulation,
κ is the maximum mean curvature in absolute value, h is the reference edge length at the start of the computation.
The minor ticks in the log-log figures are of the form i× 10j , i ∈ [2, 3, 4, 5, 6, 7, 8, 9].

4.1 Expanding and shrinking sphere

The aim of this test is to evaluate the errors due to mesh refinement for a simple case: a sphere of radius R = 1/10
expands with a constant radial velocity v = V er, with V = 1, until it reaches a radius R = 3/10 at t = 2R/V
and then the motion is reversed until the sphere returns to its original radius at t = 4R/V like in Gorges
et al. (2022). They compared an edge fit method with the basic edge middle and barycentric interpolation (an
interpolation method based on barycentric coordinates (fig. 3.3), introduced in Tryggvason et al. (2011)). The
vertices are transported with exact velocities, so the errors are due to the remeshing procedure and the time
integration. The remeshing method is employed at every time step.

Temporal integration. In our study, we use a first order Runge-Kutta scheme. The time step is ∆t =
0.5R/V , except at the last iteration before the reversal: we set ∆t = 2R/V − t(n) so that t(n+1) = 2R/V and
the exact radius is R = 0.3. After that, the time step is ∆t = 0.5R/V with the reversed velocity v = −V er. We
also set the last time step so that the last instant is t = 4R/V .

Mesh. We do a mesh convergence with four initial meshes comprised of 320, 1280, 5120 and 20480 triangles.
The reference edge length is the mean initial edge length l

(0)
m , computed with the discretization of a sphere of radius

R = 0.1. The edge length interval is: [λmin, λmax], with λmin = l
(0)
m /2 and λmax = 4l

(0)
m /3. The reference

edge lengths are given in table 4.1. In this case the exact interface is a sphere, the mean curvature is constant. The
curvature-based remeshing criterion κd is deactivated in this study to concentrate on the influence of the edge
splitting, collapsing and volume correction methods.
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card T 320 1280 5120 20480

l
(0)
m 3.0 × 10−2 1.5 × 10−2 7.5 × 10−3 3.8 × 10−3

Table 4.1: Expanding and shrinking sphere, reference edge lengths for the four triangle mesh

Plan of the study. In the first part, we study the influence of the edge splitting methods only, for a mesh
discretizing a sphere which expands and then shrinks. The errors (curvature, radius and volume) are computed
for all vertices of the mesh Xϵ = X at the middle of the simulation, when the radius is maximal, and at the
end of the simulation. Usually, almost the whole mesh (i.e. the majority of the triangle edges) should be refined
homogeneously at the same time in the first test since only the edge splitting is activated, the initial mesh is quite
homogeneous and the magnitude of the velocity is spherically symmetric. In the second part, the only difference
is that edge collapsing is activated. In the third part, the edge collapsing is deactivated but the influence of the
volume correction procedure is examined. Finally, we run simulations with edge collapsing and volume correction.

Errors computed on the vertices. In Cohen-Steiner et al. (2004) the lp "distance" (the definition here is
one-sided, only from X to Y, and should be symmetrized with a contribution from Y to X to be a true distance)
between a surface X and an approximating surface Y is defined as:

lp =
1

SX

∫∫

x∈X

distp(x, Y ) dx (4.1)

with dist(x, Y ) = inf
y∈Y

∥x− y∥, where ∥·∥ is the Euclidean distance, and SX is the area of the surface X. In our

work, we associate each vertex i with the area Si, which is the sum of the third of the area of each adjacent triangle:
Si =

1
3

∑
T∈N1(i)

ST , as illustrated in fig. 4.1.

Figure 4.1: Area associated to the vertex, a third of the sum of the areas of the adjacent triangles, delimited by the
polyline linking the barycenters of the adjacent triangles and the midpoints of the adjacent edges

We denote by κi the mean curvature computed at the vertex i with the surface reconstruction with the N2

stencil (section 3.3, page 24). At any time of the simulation, the exact surface is a sphere, so the reference value for
the vertex i, denoted κei , is simply −1/R(t) since we chose the exterior normal for the orientation of the surface.
For each vertex i of radius ri, the reference position is the point on the sphere at the minimal Euclidean distance:
rei = R(t). In this work, we study the relative errors in the discrete l2 and l∞ norms:

l2 =

√∑
Si(κi − κei )

2

∑
Si(κei )

2 (4.2)
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l∞ =
max|κi − κei |
|max(κei )|

(4.3)

Volume error... We have seen in section 2.10 that volume conservation is an issue and that it may be mitigated
by improving the computation of the new vertex position during edge collapsing and splitting (section 3.6), or
by applying a volume correction step. Gorges et al. (2022) examined a relative volume error for their test case of
expanding and shrinking sphere. The volume at the start of the simulation is generally an approximation when it
is computed based on the Lagrangian mesh (eq. 2.29), we will denote it by V as depicted in fig. 4.2.

...relative to the exact volume In this study, we define the volume error as the relative
error between the discretized volume V and the exact volume of the sphere Ve : |V − Ve|/Ve.
For instance, we have initially |V(0) − Ve|/Ve ≈ 0.8% for a mesh approximating a sphere of
radius R = 0.1 with 1280 faces (the vertices are exactly at the radius R = 0.1, which we denote
ri = rei ). This volume error diminishes as the number of triangles increases when the position is
exact. In this case, we have to decide if we prefer correct vertex positions or a correct volume, the
latter requiring to use a larger radius than the radius of the actual sphere R(t) to have V = Ve

as illustrated by fig. 4.2.

...relative to the discretized volume We also compute the relative error between
the final and initial discrete volumes V and V(0). If we want to preserve the numerical volume
V during the edge splitting (useful during the expansion phase only), the best way to remesh
is to use the most basic remeshing method, which places the new vertex at the middle of the
edge. This prevents mesh intersections as well when running simulations with several bubbles
for instance. However the discrete volume is not conserved at the end of the simulation with the
edge middle since the new points no longer are on the planes of the original triangles of T (0).

Figure 4.2: Exact and discrete volume, the discrete volume V is represented in gray (left). The vertices can be
moved to retrieve the exact volume but the position is no longer exact (right).

4.1.1 Comparison of edge refinement methods, without collapsing, without volume
correction (fig. 4.4, on page 43)

4.1.1.1 Qualitative comparison

We compare the edge refinement method presented in Gorges et al. (2022), which we refer to as "edge fit" (sec-
tion 3.6) with the basic edge refinement at the middle of the edge and an edge refinement based on averaging two
positions from reconstructed surface called WALF (Jiao and Wang, 2012). We only perform edge splitting, no
volume correction step is applied. During the shrinking phase, since the edge collapsing is deactivated, both the old
and new vertices are kept. The mesh is therefore comprised of vertices with lower position errors (initial vertices
which were only transported to and fro) and new vertices which were either placed on the middle of a triangle
edge or on a reconstructed surface. The result of the three methods at the end of the simulation are presented in
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fig. 4.3, page 40. For the mesh with 1280 triangles, we can clearly see a difference between the basic edge refinement
method and the two other methods based on local surface reconstruction. The surface from the former method is
dimpled because of the position errors of the newly created vertices during the expansion, which do not lie on the
sphere. From this illustration we can therefore expect larger errors on the radius and curvature for the splitting at
the middle of the edge. The edge fit and WALF give similar results visually, hence the subsequent comparison with
the l∞ and l2 norms.

(a) Edge middle (b) WALF (c) Edge fit

Figure 4.3: Comparison of edge refinement methods: edge middle, WALF (Jiao and Wang, 2012), edge fit (Gorges
et al., 2022), table 3.1 (on page 30)

4.1.1.2 Quantitative comparison

Figure 4.4 illustrates the results of the simulation at the middle and end of the simulation. For a given abscissa, the
markers of the figure are shifted left and right so there is no overlap, which could make it difficult to distinguish
the three methods. The results are presented with the l∞ norm here, since the l2 norm gives similar trends as
illustrated in fig. C.1, on page 116.

Middle of the simulation. At the middle of the simulation, when the exact radius equals 3/10, all the edge
refinements are performed since there is no other remeshing procedure such as edge collapsing afterwards and
then the sphere shrinks. The curvature error in l∞ norm seems to saturate already for the middle of the edge, as
illustrated by the black markers in fig. 4.4, on page 43. For the four meshes, the WALF and edge fit methods do
not seem to saturate for the curvature errors, and the edge fit method performs better. The edge middle splitting
does not saturate for the radius error in l∞ norm for the four meshes, its error is higher than the WALF and edge
fit splittings. The edge fit performs better for the radius error. For the relative volume error, the edge middle gives
worse results but does not saturate. The WALF and edge fit have similar error levels, except for the mesh with 320
triangles where the WALF has an error nearly a decade lower. The WALF and edge fit methods display 2nd and 4th

order convergence for curvature and radius. The edge middle presents a 2nd order convergence for the radius.

End of the simulation. The error levels are higher at the end of the simulation (fig. 4.4, page 43). The
trends are the same for the curvature and radius errors at the end and middle of the simulation. The edge middle
splitting saturates, while the other two do not. The edge fit gives lower errors. If we take the exact volume Ve as
the reference, the volume error of the edge middle method is higher than the WALF and edge fit methods. If we
take the initial discrete volume V(0) as the reference, the trends are more regular and the error levels are similar for
the three methods. When comparing the edge refinement methods, the new vertices indeed do not have the same
position and do not form the same edge. Then the different edge lengths are treated differently in the subsequent
remeshing procedures. The number of triangles are thus not exactly the same at the end of the simulation, but
they are close. The approximate number of triangles at the end of the simulation T f , here without collapsing, is
given in table 4.2. We can see here the usefulness of a collapsing procedure: the cost in memory and computation
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time (indicated here by the number of triangles) can increase greatly without it. We have for example a mean edge
length of 7.79 × 10−3 at the end of the simulation with the initial mesh of 320 triangles, while the reference length
was 2.98 × 10−2 as indicated in table 4.1.

card T 320 1280 5120 20480

card T f 5110 19720 80600 325640

Table 4.2: Expanding and shrinking sphere, approximate number of triangles at the beginning (T ) and end of the
simulation (T f ) without collapsing

4.1.1.3 Summary

Here several procedures were deactivated, the result would be quite different if the other procedures were
activated: collapsing, swapping and smoothing. The edge middle saturates for curvature error. The surface
reconstruction (WALF or edge fit) improves curvature, position and volume (relative toVe) errors compared
to the edge middle, and the edge fit performs slightly better for the curvature and radius errors.

4.1.2 Comparison of edge refinement methods, with collapsing, without volume
correction (fig. 4.5, on page 44)

Middleof the simulation. Edge collapsing mostly occurs after the velocity reversal, so we see little difference
with the results without collapsing at the middle of the simulation (fig. 4.5, on page 44).

Endofthe simulation. With our edge length interval [λmin, λmax], edge collapsing is effectively applied, the
number of triangles at the end of the simulation (table 4.3) is reduced by 89 % when comparing to the simulations
without edge collapsing (table 4.2).

card T 320 1280 5120 20480

card T f 570 2220 9110 35170

Table 4.3: Expanding and shrinking sphere, approximate number of triangles at the beginning and end of the
simulation without collapsing

With collapsing, the errors on curvature are lower than without collapsing for all three methods, and the errors
of WALF and edge fit are more similar (fig. 4.5, page 44). The edge middle still saturates for curvature error.
There is little difference for the radius error with and without edge collapsing. The volume errors are higher with
collapsing than without collapsing, for instance, the errors of WALF and edge fit are nearly a decade higher. The
volume errors are higher for the edge middle method than for surface reconstruction methods.

4.1.3 Comparison of edge refinement methods, with collapsing, with volume
correction (fig. 4.6, on page 45)

Now, we consider the edge fit method and study the influence of volume correction while keeping the edge
collapsing activated. We compare three computations without and with volume correction (HR and VBC, see
section 2.10, on page 18) in fig. 4.6. When volume correction is activated and the edge collapsing is not, the results
are similar (fig. C.2, on page 117). The volume errors with volume correction are not represented since they are
smaller than the predefined activation threshold ϵ = 10−14 for the volume correction. The VBC is applied with
almost homogeneous velocities (v = er except for newly created vertices, where we compute the average of the
velocities of the vertices constituting the edge being refined) on an almost spherical surface so it gives similar results
to the homothety (HR) in this test case.
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Middle of the simulation. The volume correction does not seem to influence much the curvature error
(fig. 4.6, on page 45). There is little difference for the position errors for the first mesh for the three cases, yet their
order of convergence is halved when volume correction is activated. Both the exact volume and the exact position
cannot be maintained, as illustrated by fig. 4.2: when the exact volume is conserved, the vertices no longer lie on
the exact surface. The volume error without volume correction is of the order of 10−5–10−3 when comparing to
the exact volume.

End of the simulation. The volume correction does not seem to influence much the curvature error at
the end of the simulation either (fig. 4.6, on page 45). All errors are higher at the end of the simulation, when
comparing with the middle of the simulation with the edge fit method.

4.1.4 Summary

We have seen with this test case that surface reconstruction helps mitigate the position, curvature and
volume error due to edge splitting when no volume correction is used. The curvature error saturates for the
edge middle method while it does not for surface reconstruction methods for the four meshes. The edge
fit method from Gorges et al. (2022) performs mostly better than the WALF method with N2. The error
on curvature does not seem affected by volume correction in this test case. The order of convergence on
position error is however affected. With this case the exact curvature is constant at each timestep, the shape
is simple, the mesh is virtually homogeneous. The next test case will allow us to test the adaptive remeshing
criteria along with the three edge splitting methods on a surface with spatially varying curvature.
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Figure 4.4: Sphere case, no edge collapsing, no volume correction, errors at the middle (left) and end of the
simulation (right), edge middle, WALF (Jiao and Wang, 2012), edge fit (Gorges et al., 2022), table 3.1
(on page 30)

43



10−1
κh

10−3

10−2

10−1

m
ax
|κ
i
−
κ
e i
|/
|m

ax
(κ
e i
)|

Slopes 0.03 1.95 2.07

R2 0.93 1.00 1.00

10−1
κh

Slopes 0.18 1.99 2.02

R2 0.67 1.00 1.00

10−7

10−6

10−5

10−4

10−3

10−2

m
ax
|r i
−
re i
|/
|m

ax
(r
e i
)|

Slopes 2.00 3.94 3.98

R2 1.00 1.00 1.00

Slopes 2.00 3.90 3.95

R2 1.00 1.00 1.00

10−4

10−3

10−2

10−1

|V
−
Ve
|/
Ve

Slopes 2.00 1.29 1.86

R2 1.00 0.95 1.00

Slopes 1.99 1.62 1.94

R2 1.00 0.99 1.00

10−4

10−3

10−2

|V
−
V(

0
)
|/
V(

0
)

Slopes 2.00 2.40 2.13

R2 1.00 1.00 1.00

10−1
κh

10−3

10−2

10−1

m
ax
|κ
i
−
κ
e i
|/
|m

ax
(κ
e i
)|

Slopes 0.03 1.95 2.07

R2 0.93 1.00 1.00

10−1
κh

Slopes 0.18 1.99 2.02

R2 0.67 1.00 1.00

10−7

10−6

10−5

10−4

10−3

10−2

m
a
x
|r i
−
re i
|/
|m

ax
(r
e i
)|

Slopes 2.00 3.94 3.98

R2 1.00 1.00 1.00

Slopes 2.00 3.90 3.95

R2 1.00 1.00 1.00

10−4

10−3

10−2

10−1

|V
−
Ve
|/
Ve

Slopes 2.00 1.29 1.86

R2 1.00 0.95 1.00

Slopes 1.99 1.62 1.94

R2 1.00 0.99 1.00

10−4

10−3

10−2

|V
−
V(

0
)
|/
V(

0
)

Slopes 2.00 2.40 2.13

R2 1.00 1.00 1.00

Parameter: Edge middle WALF Edge fit

Figure 4.5: Sphere case, with edge collapsing, no volume correction, errors at the middle (left) and end of the
simulation (right), edge middle, WALF (Jiao and Wang, 2012), edge fit (Gorges et al., 2022), table 3.1
(on page 30)
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Figure 4.6: Sphere case, with edge collapsing, with volume correction, errors at the middle (left) and end of the
simulation (right), velocity-based volume correction (VBC), no volume correction and homothety
(HR) see section 2.10, on page 18
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4.2 Curvature estimation and remeshing of a surface deformed in a
radial velocity field

The aim of this section is to examine the remeshing procedure, especially the adaptation of the mesh to the curvature
for a test case with an analytical solution from Koffi Bi et al. (2022). The mesh is adapted to the curvature with κd:
κ is the curvature and d the edge length (section 3.5, on page 27). We can also see the influence of the transport:
the errors may be accumulated, combining transport and remeshing. We continue the comparison of the three
edge refinement methods (section 3.6, on page 29).

A divergence-free velocity field is imposed in a spherical coordinate system (er, eθ, eϕ) either analytically or on
the Eulerian grid (eq. 4.4) with q = 1/30. The constant q may be associated with the algebraic volume flow rate
through the sphere of radius r: 4πq. The initial interface is a plane sheet at z0 = 1/100 in the Cartesian coordinate
system (ex, ey, ez). The orientation of this open surface is given by the normal n so that n = ez = (0, 0, 1).
The initially flat surface inflates with time with a positive flow rate.

v =
q

r2
er, θ > π/2 (4.4)

4.2.1 Curvatures and normal of a surface of revolution

For a surface of revolution, the curvatures and normal can be computed analytically (Gray et al., 2017) in the
Cartesian coordinate system. The angle θ belongs to [0, π/2[. The mean curvature isκ, κ1 andκ2 are the principal
curvatures and κG is the Gaussian curvature. With the analytical velocity we can retrieve the analytical position.
By integrating eq. 4.4 we obtain the radius:

r(θ, t) =
3

√
3qt+

(
z0

cos(θ)

)3

(4.5)

By denoting a(θ) = r(θ) sin(θ) and b(θ) = r(θ) cos(θ), the curve can be parametrized in 2D in the Cartesian
coordinate system by:

θ 7→ (a(θ), b(θ)) (4.6)

The 3D surface is generated by rotating the two-dimensional curve (eq. 4.6) about the z-axis.

(θ, ϕ) 7→ (a(θ) cos(ϕ), a(θ) sin(ϕ), b(θ)) (4.7)

We introduce x = (x, y, z) the parametrization:

x(ϕ, θ) = r(θ)(cos(ϕ) sin(θ), sin(ϕ) sin(θ), cos(θ)) (4.8)

The formulae for the curvatures and normal of a surface of revolution are given in Gray et al. (2017) where a ̸= 0
and a′2 + b′2 ̸= 0:

κ =
a′(a′′b′ − a′b′′)− b′(a′2 + b′2)

2|a|(a′2 + b′2)3/2
(4.9)

κG =
−b′2a′′ + a′b′b′′

a(a′2 + b′2)2
(4.10)

κ1 =
sgn(a)(a′′b′ − a′b′′)

(a′2 + b′2)3/2
(4.11)

κ2 =
−b′

|a|
√
a′2 + b′2

(4.12)
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n =
sgn(a)√
a′2 + b′2

(
cos(ϕ)b′, sin(ϕ)b′, a′

)
(4.13)

In our case, we have a′2 + b′2 ̸= 0 (eq. 4.14) and a(0) = 0. However, the expressions of κ, κG, κ1 and κ2 are
defined at θ = 0.

a′2 + b′2 =
z6 + 6qt cos5(θ)z3 + 9q2t2 cos8(θ)

cos4(θ)(z3 + 3qt cos3(θ))4/3
(4.14)

We take the orientation where the normal is pointing upward at t = 0 and thus the mean curvature is negative
at θ = 0 for t > 0. Since θ ∈ [0, π/2[ the expressions in our case simplify to:

κ(θ) =
−3qt cos5(θ)(3 sin2(θ)z6 − 2 cos2(θ)z6 + 12qt cos3(θ) sin2(θ)z3 − 12qt cos5(θ)z3 − 18q2t2 cos8(θ))

(z3 + 3qt cos3(θ))1/3(z6 + 6qt cos5(θ)z3 + 9q2t2 cos8(θ))3/2

(4.15)

κG(θ) =
−9q2t2 cos(θ)10(z3 + 3qt cos3(θ))1/3(4 sin2(θ)z3 − cos2(θ)z3 − 3qt cos5(θ))

(z6 + 6qt cos5(θ)z3 + 9q2t2 cos8(θ))2
(4.16)

κ1(θ) =
3qt cos5(θ)(4 sin2(θ)z3 − cos2(θ)z3 − 3qt cos5(θ))(z3 + 3qt cos3(θ))2/3

(z6 + 6qt cos5(θ)z3 + 9q2t2 cos8(θ))3/2
(4.17)

κ2(θ) =
−3qt cos5(θ)√

z6 + 6qt cos5(θ)z3 + 9q2t2 cos8(θ)(z3 + 3qt cos3(θ))1/3
(4.18)

Note that κ1 and κ2 can also be obtained with the mean and Gaussian curvature: κ1 = κ +
√
κ2 − κG and

κ2 = κ−
√

κ2 − κG. The unit normal to the surface (initially pointing upward n · ez > 0) is given by:

n =
1√

a′2 + b′2

(
cos(ϕ)

(
r sin(θ)− r′ cos(θ)

)
, sin(ϕ)

(
r sin(θ)− r′ cos(θ)

)
, r cos(θ) + r′ sin(θ)

)

(4.19)

Principaldirections. The principal directions (directions in which the normal curvature equals the maximal
and minimal curvatures) are the partial derivatives xϕ and xθ for a surface of revolution when they exist (θ ̸= 0 in
our case) (Gray et al., 2017), as depicted in fig. 4.7:

xϕ = r(θ)(− sin(ϕ) sin(θ), cos(ϕ) sin(θ), 0) (4.20)

xθ =
(
cos(ϕ)

(
r(θ) cos(θ) + r′(θ) sin(θ)

)
, sin(ϕ)

(
r(θ) cos(θ) + r′(θ) sin(θ)

)
,−r(θ) sin(θ) + r′(θ) cos(θ))

)

(4.21)

4.2.2 Transport of the mesh

4.2.2.1 Transport scheme

The mesh is transported with three different schemes to appreciate the combination of transport and remeshing
errors: exact position, exact transport and interpolated velocity.

Exact position. The vertices are placed at the exact position along their radius at eachtime t: each vertex xi
of coordinates xi =

(
r(t(n)), θ(t(n)), ϕ(t(n))

)
is moved to xe

i =
(
r(t(n+1), θ(t(n))), θ(t(n)), ϕ(t(n))

)
with

eq. 4.5, as depicted in fig. 4.8a. The vertices are placed at the exact position at the end of the remeshing as well,
with their new angles θ(t(n+1)) and ϕ(t(n+1)): xe

i =
(
r(t(n+1), θ(t(n+1))), θ(t(n+1)), ϕ(t(n))

)
.
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(a) xθ (b) xϕ

Figure 4.7: Normalized principal directions
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Exact transport. This is equivalent to a transport with the exact velocity since the velocity is constant.
With this transport scheme, transport and remeshing errors are combined. Each vertex xi of coordinates xi =(
r(n), θ(n), ϕ(n)

)
is moved to:

x∗
i =

(
3

√
3q∆t+

(
r(n)

)3
, θ(n), ϕ(n)

)
(4.22)

Interpolation. From t = t(n) to t = t(n+1) = t(n) + ∆t, each vertex xi is transported according to
(eq. 2.13, on page 15) by a second-order Runge-Kutta scheme. The velocity vi of the vertex xi is interpolated
from the Eulerian grid with the Parabolic Edge Reconstruction Method (McDermott and Pope, 2008). The exact
velocities are set on the Eulerian grid with eq. 4.4.

4.2.2.2 Time stepping

Each vertex is transported at each iteration with a given time step ∆t. The time step can be determined with the
exact maximal velocity magnitude v = q

(
3qt+ z0

3
)−2/3 and either:

• an Eulerian Courant number Co = v∆t/h = 1/2 where h the Eulerian mesh spacing is the reference
length.

• a Lagrangian Courant number Co = v∆t/d = 1/2, the minimal edge length of the Lagrangian mesh
serves as the reference length.

The Lagrangian Courant number is mostly used when both the transport with interpolation and adaptive refine-
ment to the curvature are used in the comparisons. However, with more iterations, errors may accumulate more.
Otherwise we employ the Eulerian Courant number.

4.2.3 Remeshing

Eulerian resolution. In all simulations we define an Eulerian grid spacing h (fig. 4.9). For the transport
with interpolation, the velocities are computed on the Eulerian grid with this spacing h and then interpolated at
the marker positions. In the interval [λmin, λmax], with λmin = h/2 and λmax = 3h/2, based on the Eulerian
grid spacing h, there is no splitting or collapsing of triangle edges when the curvature criterion is not involved.

Figure 4.9: Eulerian and lagrangian meshes

Curvature-based criterion. In this test case, the numerical curvature κi of a vertex xi of coordinates
(r, θ, ϕ) can be replaced with the exact curvature κei (θ) (eqs. 4.17 and 4.18) in the curvature-based remeshing
criterion (eq. 3.10, on page 28). In a first part of this study, the exact curvature is used and then we can appreciate
the influence of the approximation of the curvature in the remeshing criterion.
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Procedures. The edge collapsing, splitting, swapping and removal of bad triangles are activated. Volume
correction is not activated for the surface is open. The smoothing procedure is not activated either. A basic
Laplacian smoothing would not give satisfactory results since the lost volume cannot be recovered, though this
loss is mitigated when combining it with surface reconstruction.

4.2.4 Surface initialization

4.2.4.1 Flat surface

For this test case, the simulation is performed in two steps. First, the surface is initialized as a homogeneously
discretized (equilateral triangles) hexagonal sheet at t = 0 at z = 10−2. The initial mesh resolution is denoted
d ∈ [λmin, λmax], with λmin = h/2 and λmax = 3h/2. Since the surface is flat, the curvature criterion, when
it is activated, does not yet come into play.

4.2.4.2 Spike generated by the first transport

Next, the mesh should be transported for the first time. Nevertheless, because of the position of the sheet z = 10−2,
there is a large angle between the position vector of the vertex at

(
0, 0, 10−2

)
(always present by construction

of the homogeneous mesh) and that of the neighboring vertices, resulting in an important difference in velocity
(eqs. 4.4 and 4.5). At the first time step, the surface may thus appear almost flat if not for a spike at its center. With
such a mesh the criterion of refinement based on the curvature κd would not be respected when it is activated.
With a spike, the curvature-based remeshing would tend to overly refine the mesh around the spike, which could
lead to large errors, especially when creating new vertices with the WALF or the edge fit. We indeed do not filter
the undulations or weight with the normal in the surface reconstruction (section 3.3, on page 24). We perform an
initialization procedure with a succession of remeshing and repositioning to handle this spike, which is described
below.

4.2.4.3 Succession of remeshing and repositioning

We choose a time t = tinit > 0 so that the surface is no longer flat and we adapt the mesh. We remesh and
reposition the vertices on the exact surface at t = tinit as long as the curvature-based remeshing criterion κd is not
respected for the whole mesh:

(κd)X = max
xP∈X

(
κmax(xP ) max

P1∈N1(P )
∥xP1 − xP ∥

)
< κdmax (4.23)

Here the curvature is non-dimensionalized by the maximal edge length on the N1 stencil. Once the mesh cor-
responds to the remeshing criterion κd, the surface can be transported up to t = 9s with the transport scheme
under study (exact position, exact transport, interpolated velocity). The maximal curvature of the exact surface
evolves through time, as depicted in fig. 4.10. We initialize the mesh based on the exact curvatures computed at
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discrete positions to respect the criterion κd. We do not have access to the exact maximal principal curvature
in absolute value over the whole continuous surface. For different initialization times, the curvatures, reference
lengths and meshes are different and so are the curvature errors in l∞ and l2 norms that vary as we can see in
table 4.4. We chose arbitrarily tinit = 10−4s. The influence of κd is illustrated in fig. 4.11 and the curvature errors

tinit κd l∞ l2 Vertices

0.01 1/4 0.120 0.07 4627
0.001 1/4 0.215 0.104 2747

0.0001 1/4 0.121 0.124 1657

Table 4.4: Curvature errors at several initializations for radial case

are given in table 4.5. We can see here that the minimal roughness is not very helpful in this case to analyse the
results. At this instant, max(z) ≈ 2.2× 10−2, and we have κ(θ = 0) ≈ κ1(θ = 0) ≈ κ2(θ = 0) ≈ −40.876.
We chose this initialization time because it is relatively small and gives a small number of vertices so that a large part
of the simulation time is simulated outside of this initialization procedure, and the maximal principal curvature is
high already. In this case, we can see that when the curvature-based refinement is deactivated (κd = 0), the error is
larger at the end of this initialization procedure. Note that we still impose a minimum mesh resolution based on
the Eulerian grid, even when the criterion κd is deactivated, which can be observed in fig. 4.11a.

Y X

Z

(a) 0 segments per radius of curva-
ture

Y X

(b) 2 segments per radius of curva-
ture

Y X

Z

(c) 4 segments per radius of curva-
ture

Figure 4.11: Initialization at t = 10−4s

κd 1/(κd)X l∞ l2 Roughness Vertices

0 0.242 0.992 0.992 0.998 1261
1/2 2.291 0.294 0.393 0.988 1401
1/4 4.489 0.120 0.124 0.996 1657

Table 4.5: Curvature errors at t = 10−4s for several κd, (κd)X is the numerical value computed with eq. 4.23

4.2.5 Zones of computation

The errors are computed up to θ < θ0 = arctan(L0/z0), with L0 = 1 and z0 = 10−2 (zone limit x1 in
table 4.6). The boundaries of the open mesh are thus not included in the error computations. We define three
zones Z1, Z2, Z3 within this computation domain, delimited by θ2 = 89° and θ3 = 83°, as illustrated in fig. 4.8b.
The aim of delimiting these zones is to appreciate the influence of the curvature of the surface on the computation
of errors. The mean and principal curvatures are depicted in fig. 4.8a. The values of the principal and mean
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curvatures at the zone limits are given in table 4.6. We are especially interested in zones 2 and 3, the former has the
largest curvature, the latter is almost spherical. We could expect similar trends as in section 4.1 for the errors in
zone 3. The principal directions are not defined at θ = 0.

Abscissa κ1 κ2 κ 90− θ(°)

x1 5,518E-02 -7,264E-03 2,396E-02 5,729E-01
x2 1,849E+00 -8,078E-02 8,843E-01 1
x3 -8,664E-01 -1,035E+00 -9,506E-01 7

argmax|κ(θ)| 4.419E+01 -7.619E-01 2.171E+01 1.927E+00
argmax|κ1(θ)| 4.419E+01 -7.637E-01 2.171E+01 1.930E+00
argmax|κ2(θ)| -1.036E+00 -1.036E+00 -1.036E+00 [89, 90]

Table 4.6: Zone definitions, the mean and principal curvatures are indicated for the zone limits (between zones
Z1, Z2, Z3 and Z0), the approximated location of the maximal curvatures in absolute values and their
values are indicated

4.2.6 Comparison of remeshing methods

We compare the remeshing methods by the meshes they produce. Theses meshes went through different remeshing
operations and perhaps even different number of time steps if the time-step is set with the minimal edge length
(subsection 4.2.2.2). The meshes are compared with curvature and position errors since our purpose in the long
run is to know the position of an interface precisely and to be able to evaluate the surface tension accurately while
keeping down the computation and memory cost.

4.2.6.1 Possible causes of differences in errors

When comparing two remeshing methods, if one method presents larger errors in l∞ and l2 norms, several factors
may come into play. The distribution of the vertices of the N2 neighborhood may influence the curvature errors.
A vertex and its neighbors may have a larger position error, decreasing the precision of the surface reconstruction.
One method may employ more remeshing operations or time steps in the case of the Lagrangian Courant number,
thus accumulating more position errors. Larger errors may also stem from the angle θ of the vertex. It is possible
that depending on the zone (zones 1: almost flat, 2: higher curvature, 3: almost spherical depicted in fig. 4.8b), the
error level may be different. It is often difficult to draw conclusions as to why one remeshing method fared better,
especially for the l∞ norm. The relative error in l2 norm oscillates less than its counterpart in l∞ norm.

4.2.6.2 Abscissa in the figures

In the next figures such as fig. 4.13, we chose the Eulerian grid spacing h as the reference length, it is the maximal
edge length over the whole mesh. We approximate numerically the (absolute) maximal mean curvature to compute
the abscissa κh with h the Eulerian grid spacing. The abscissa κh is different from κd, with d the edge length,
related to the Lagrangian mesh and used to control the mesh with the curvature. We also draw relative errors
against the number of vertices N at the end of the computation, which is an indication of the memory cost.
Depending on the parameter κd, the remeshing procedure may produce quite different numbers of vertices since
the edge length is allowed to be lower than h/2.

4.2.6.3 Reference values

To compute the errors on the vertices in l2 and l∞ norms, like in eqs. 4.2 and 4.3, we need to define a reference
position on the exact surface for each vertex. In the case of the expanding and shrinking sphere, the reference
position was easily defined because the exact surface was a sphere at the middle and end of the simulation. For
each vertex of radius ri, the reference position is the point on the sphere at the minimal Euclidean distance, the

52



position error is simply: |ri − R|, and the mean curvature error is simply |κi − (−1/R)|. In this test case, we
have a mesh at the end of the simulation and we want to compare it to the exact surface. The closest point on the
exact surface to the vertex xi is not found as easily as in the case with the sphere 1. When using the transport with
exact positions, we simply compute the reference values at the same angle θ(n) for the vertex xi of coordinates
xi =

(
r(n), θ(n), ϕ(n)

)
like in Koffi Bi et al. (2022). However, when the transport is not exact, the vertices

do not necessarily lie on the exact surface. We define a first reference position: each vertex xi(t) of coordinates
xi =

(
r(n), θ(n), ϕ(n)

)
is associated with the point xe,1i located on the analytical surface Se(t), of coordinates

xe,1
i =

(
r(θ(t(n)), t(n)), θ(t(n)), ϕ(t(n))

)
with eq. 4.5 (on page 46), as illustrated in figs. 4.8a and 4.12. This

is the same procedure as in the "exact transport" (subsection 4.2.2.1). The vertex xi is associated with the point
xe,1i on the exact surface, they have the same angle θ(t(n)). It should be noted that when computing the position
error with xe,1i , along er(xi), xe,1i is not necessarily the closest point on the exact surface as illustrated by fig. 4.12.
We can approximate the cooordinates of the closest point, denoted xe,2i , on the exact surface to the vertex xi by

0.975 1.000 1.025 1.050

x

0.02

0.04

0.06

0.08

z

xe,1i

∼ n
(
xe,1i

)

∼ er (xi)
∼ n

(
xe,2i

)
xe,2i

xi

Figure 4.12: Minimal distance and radial distance to the exact surface: xe,1i is not the position at the minimal dis-
tance, contrary toxe,2i , whose normal to the surface is colinear to the vector (xi−xe,2

i )/
∥∥∥xi − xe,2

i

∥∥∥

minimizing g(θ) = (r(θ) cos(ϕ) sin(θ)− xi(1))
2+(r(θ) sin(ϕ) sin(θ)− xi(2))

2+(r(θ) cos(θ)− xi(3))
2

with xi = (xi(1), xi(2), xi(3)) the coordinates of the vertex xi of the Lagrangian mesh. With Newton’s method
and the angle θ(0) = θ(t(n)) as the initial value, we can estimate the angle of the closest point on the exact surface.
The surface is continuous and differentiable, with no corner (the initial surface extends infinitely in xy plane) or
sharp point, so the minimal distance from one point to the surface is obtained by solving f(θ) = 0, with:

f(θ) =
∂g(θ)

∂θ
(4.24)

We solve for f(θ) = 0 with Newton’s method: θ(m+1) = θ(m) − f(θ(m))/f ′(θ(m)). If θ(m+1) < 0 we take
θ(m+1) = 0 and θ(m+1) > π/2 we take θ(m+1) = π/2. The stopping criterion is

(
θ(m+1) − θ(m)

)
/θ(m+1) <

ϵ with ϵ = 10−14. At convergence (by denoting θ the angle with the smallest distance), we should have a smaller
position error:

√
g(θ) <

√
g(θ(0)) and n

(
θ(0)

)
· xi−x(θ(0))

∥xi−x(θ(0))∥ < n(θ) · x−x(θ)
∥x−x(θ)∥ . We keep the angle with the

lowest distance from the vertex xi to the exact surface (we do not check the improvement on the normal, which
should be colinear to the vector x−x(θ)

∥x−x(θ)∥ ).

1With our test case, we could define a reference dicretized surface Tn from a computation with a fine Lagrangian mesh transported with
exact positions and compute a "distance" between the two meshes. We could then compute a distance between the reference mesh and
the discretized surface under study like in Garland and Heckbert (1997); Hu et al. (2017), as mentioned in appendix D.1.
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4.2.7 Plan of the study

The curvature is computed with the weighted least-squares formulation presented in section 3.3. The curvature
and position errors are computed for all vertices of the mesh in zones Z1 ∪ Z2 ∪ Z3, Z2 and Z3 at the end of the
simulation at t = 9s. The main parameters employed in this study are summarized in table 4.7. In the first part,
we study the curvature error with exact positions, to appreciate the influence of the curvature-based remeshing
criterion κd, the parameter λ involved in smoothing the curvature information for the adaptation of the mesh to
the curvature and the effect of weighting in the least-squares formulation for the evaluation of the curvature. In
the second part, we employ the exact transport to appreciate the performance of the edge refinement methods
(section 3.6, on page 29) when position errors accumulate. We also appreciate the influence of weighting on WALF
and the edge fit method. In the third part, we employ the transport with interpolated velocities. The reader may
find supplementary information in appendix D.

q(m3/s) z(m) ti(s) tf (s)

1/30 0.01 0.0001 9

Table 4.7: Main parameters used in the radial transport case

Presentation of the results. In the subsequent figures (such as fig. 4.13), when a circular marker is empty,
the remeshing was done without adaptation to the curvature with the non-dimensionalized curvature κd, with κ
the curvature and d the edge length. Otherwise κd is used and its target value κdmax is the value indicated in the
caption, and we take κdmin = κdmax/4 (section 3.5). The computations with a small κd criterion (especially
κd = 1/32) which use more computational resources are not presented. The total number of vertices at the
end of the simulation is denoted N , κ is the maximal mean curvature in absolute value, h is the reference edge
length corresponding to the Eulerian grid. For a given error, we plot two figures on a row: on the left, we plot
against κh, and on the right against 1/

√
N . For the figure on the left, the markers are aligned on a vertical,

corresponding to the number of Eulerian grid cells in the x-direction: κh ≈ 10.8, 5.4, 2.7, 1.3, 0.67, 0.34, that
is nx = 8, 16, 32, 64, 128, 256 (fig. 4.13). When reading curvature errors for a given simulation, the reader may
read the size of the mesh on the right with the equivalent point (at the same ordinate), as illustrated in fig. 4.13. For
the sake of visibility, the markers of the figures on the left are slightly shifted left and right to avoid overlappings
when studying the influence of a parameter, such as in fig. 4.15.

4.2.8 Exact position

The exact position is used here (eq. 4.5), so the errors come only from the surface reconstruction method (section 3.3,
on page 24) and the distribution of the vertices along the surface.

4.2.8.1 Influence of number of segments per radius (fig. 4.13, on page 55)

We only study the classic edge refinement at the middle, since the position is exact, the difference would be in the
distribution of the points on the surface with the WALF and edge fit methods. Indeed, the improvement of the
position of the new vertex with surface reconstruction cannot be observed when the vertices are placed on the
exact surface. Figure 4.13 shows the influence of the number of segments per radius in Z1 ∪ Z2 ∪ Z3, which we
call the whole domain.

Curvature error against κh (left figure). The relative error in both l2 and l∞ (fig. D.1, on page 119)
norms generally decreases with the number of segment per radius in the case of the exact position: for a given
Eulerian resolution, indicated byκh, we have here ϵ− > ϵ1/2 > ϵ1/4 and so on. With a fine enough homogeneous
mesh, the criteria κd = 1/2i should be satisfied, and we should have ϵ− ≈ ϵ1/2i , which can be noticed with the
highest resolution (κh ≈ 0.3): we have ϵ− ≈ ϵ1/2, this homogeneous nearly satisfies κd < 1/2. In zone 3, this
is more noticeable for the two finest Eulerian resolutions (fig. D.2, on page 120). For coarse Eulerian resolution
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Figure 4.13: Transport with exact position, whole domain (Z1 ∪ Z2 ∪ Z3), on the left κh with κ the maximal
mean curvature, h the Eulerian grid spacing, the more a marker is filled, the smaller κd is, with d the
edge length (when curvature adaptation is deactivated, we denote it by ’-’ or κd = 0), N the number
of vertices, the figure is in log-log scale; as illustrated by the dashed line, one may read the inverse of
the square root of the number of vertices by reading the plot on the right, with the abscissa of the
point at the same ordinate, l∞ norm in fig. D.1 (on page 119)

h, the Eulerian resolution h has little influence once the curvature criterion is activated. In l∞, the error level
oscillates more for the same κd and varying κh.

Curvature error against κh (left figure) and 1/
√
N (right figure). For a homogeneous mesh

(κd = 0), using a finer resolution (smaller κh) implies a higher number of vertices at the end of the simulation
as illustrated on the left figure (fig. 4.13) and by fig. 4.14. For the same Eulerian resolution (κh), adapting the
mesh more to the curvature with κd implies a cost (regarding the number of vertices) superior or similar to a
simulation with a smaller adaptation to the curvature. An Eulerian grid of κh ≈ 0.67 with κd = 0 requires more
vertices to reach the same resolution as a mesh with κh ≈ 10.8 and κd = 1/2. For the same κd and different
κh, we could expect the difference in the number of vertices to come from zone 1 and 3, which are respectively
flat and virtually spherical. From Koffi Bi et al. (2022), we know that the error on the curvature estimation with
surface reconstruction converges for an exact position and an homogeneous mesh, up to κh ≈ 2·10−2 at least.
The difference here is that the mesh is virtually homogeneous if our curvature criterion is deactivated and adapted
to the curvature otherwise, so there are more points in zone 2, the zone with the largest mean curvature. For coarse
Eulerian resolutions, an equivalent number of vertices and exact positions, we could expect a mesh refined with a
given κd to give a lower error in l2 norm. We can see that an Eulerian grid nx = 8 (κh ≈ 10.8) with κd = 2 has
nearly 7·103 vertices and a lower error level in both l2 and l∞ than a homogeneous mesh nx = 128 and 2·104
vertices. Figures D.2 and D.3 show the influence of the number of segments per radius in zones 3 and 2. Zone 3 is
virtually spherical and generally presents less errors than zone 2 in l2 norm, but in some cases it is the other way
around in l∞ norm.

Summary. With exact position, refining with curvature can improve the evaluation of curvature for
coarse meshes.
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Figure 4.14: Transport with exact position, nx = 8, κd = 0 (left) and κd = 1/2 (right)

4.2.8.2 Influence of refinement diffusion (fig. 4.15, on page 56)

The refinement diffusion is controlled with a parameter λ: with λ = 1, it tends to produce a mesh homogeneously
adapted to the largest curvature, while with λ = 0, the mesh is coarser and more heterogenous (eq. 3.10). With
the exact position, when we diffuse the information of the curvature (for the mesh adaptation with κd) less with
the parameter λ, as expected we generally use less vertices and get a larger error for coarse Eulerian resolutions
(figs. 4.15, D.5 and D.6). For finer Eulerian resolutions (κh), the refinement diffusion should have less influence,
which is already for zone 3. We chose arbitrarily λ = 1/2.
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Figure 4.15: Exact position, whole domain, influence of refinement diffusion λ, l∞ norm in fig. D.4 (on page 122)

4.2.8.3 Influence of weighting in least-squares (fig. 4.16, on page 57)

We study the influence of the weighting for the surface reconstruction when computing the curvature (section 3.3,
on page 24). The weighting proves useful (fig. 4.16), especially in l∞ norm (fig. D.7, on page 125) when curvature

56



adaptation is activated (κd ̸= 0), which means the mesh is more heterogenous. The weighting with one of
Wendland’s Radial Basis Functions (RBFs) (Ψ3,1 = (1− r)4+(r + 1)), where (1− r)+ = max(0, 1− r)
Wendland (1995) and r = ∥xPi − xP ∥/R, with R a reference length for the stencil, performs better than eq. 3.4
for the evaluation of the curvature with exact positions for the whole domain, but sometimes it is worse for zone 3
(fig. D.8, on page 126). We define Rmax and Rmean the maximal and average distance of the vertices of the stencil
S to the origin:

Rmax = max
Q∈N2(P )

∥xQ − xP ∥ (4.25)

Rmean =
1

cardS
∑

xQ∈N2(xP )

∥xQ − xP ∥ (4.26)

For the second neighborhood, cardS = cardN2 +1 (N2 does not include the origin of the stencil). The weight
is null for the farthest point with R = Rmax. The radius should be large enough to include enough points to
determine the six coefficients of the polynomial (eq. 3.2, on page 25), but it is also expected that with larger radius
of normalization, the accuracy is reduced. A comparison with different reference lengths is given in figs. D.10
and D.11, on pages 128 and 129, R = 3Rmean/2 improves the results slightly. Larger radii such as R = 2Rmean

or R = 2Rmax perform worse. From now on, the computation of the curvature with N2 is performed with RBF
weighting with R = 3Rmean/2.
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Figure 4.16: Exact position, whole domain, influence of weighting, Wendland’s RBF (Wendland, 1995)R =
3Rmean/2, l∞ norm in fig. D.7 (on page 125)

4.2.8.4 Summary

Up until now, adapting the mesh to the curvature with κd reduces the curvature error when compared to a
homogeneous mesh with exact positions, for coarse Eulerian resolutions (κh). The curvature error can
generally be reduced by diffusing more the curvature criterion and using a weighting with the least-squares.
From now on, we use RBF weighting with R = 3Rmean/2 for the computation of the curvature with N2,
as well as a refinement diffusion λ = 0.5.

Now, we will study the computation of curvature with an exact transport.
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4.2.9 Exact transport

With the exact transport (eq. 4.22), the vertices no longer lie on the exact surface. With this transport method,
remeshing errors accumulate and have an effect on the position and curvature errors. As shown in fig. 4.12, we may
define at least two reference positions on the exact surface for a vertex. The reference position along er is referred to
as xe,1, the distance is called ’radial distance’. The numerical minimal distance is referred to as xe,2, the distance is
called ’minimal distance’. The curvature is computed with N2 with RBF weighting with R = 3Rmean/2. When
the transport is not exact, the remeshing operations accumulate errors and may be amplified by the transport. In
this section, we will compare the edge middle, WALF and edge fit (section 3.6, on page 29). We found that the edge
fit performed better without weighting and WALF performed better with RBF weighting with R = 3Rmean/2
as shown later in subsection 4.2.9.2. From now on, edge fit refers to edge fit without weighting and WALF to
WALF with RBF weighting.

4.2.9.1 Influence of the definition of the reference position (fig. 4.17, on page 59)

We compare the errors with the reference position along the radius xe,1i and at the minimal distance xe,2i for the
edge fit without weighting (Gorges et al., 2022), depicted in fig. 4.17. There is little difference in the curvature
error in l2 and l∞ norms fig. D.12 (on page 130). The position error is quite different in l2 and l∞ norms, except
when κd = 0. There is little difference in position errors between the two reference positions zone 3 (fig. D.13).
The position error is lower with the minimimal distance in l2 and l∞ norm, especially for zone 2 (fig. D.14), where
points with small position errors (< 10−14) were not presented (κh ≈ 10, κd = 0). This may be due to the fact
that few vertices belong to zone 2 for low resolutions and in some cases there is no remeshing so the vertices are
only transported.
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Figure 4.17: Exact transport, whole domain, edge fit (Gorges et al., 2022), influence of the definition of the
reference position, l∞ norm in fig. D.12 (on page 130)

From now on, the reference position will be defined with the minimal distance if not mentioned otherwise. We
denote the reference values for the i-th vertex rei = re,2i and κei = κe,2i .

4.2.9.2 Influence of weighting for the new vertex position (fig. 4.18, on page 60)

We have seen previously that weighting the coordinates of the vertices may improve the evaluation of curvature
with surface reconstruction when the positions are exact. We will now attempt to improve the new vertex position
by using weighting in surface reconstruction (section 3.6, on page 29). WALF with the exact transport works
generally better with RBF weighting (fig. 4.18), for the curvature and position error. In l∞ norm, κd = 1/2 with
RBF weighting still improves the evaluation of the curvature while it is not the case for the other two alternatives
(fig. D.15, on page 133). Edge fit with exact transport works better without weighting for the position error in l2
norm (fig. D.16). This may be explained by the fact that the stencil of the edge fit method includes only eight points
while there are six coefficients to be determined for the surface reconstruction and for surface reconstruction, the
number and distribution of points is important. The computations crash with RBF weighting and edge fit in
some cases, when position errors accumulate and provoke self-intersections during the transport.
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Figure 4.18: Exact transport, whole domain, reference position with minimal distance, WALF (Jiao and Wang,
2012), influence of weighting for the new vertex position, l∞ norm in fig. D.15 (on page 133). Only
κd = 0 and κd = 1/2 are presented.

4.2.9.3 Comparison of edge refinement methods with minimal distance (fig. 4.19, on page 61)

We compare the three edge refinement methods (section 3.6): the edge middle, WALF (Jiao and Wang, 2012) and
edge fit Gorges et al. (2022). This comparison of the three edge refinement methods with minimal distance is also
presented with the radial reference position in figs. D.17 to D.20 (on pages 135, 136, 137 and 138). The edge middle
generally gives the worst results (fig. 4.19), aside from curvature error in l2 norm when κd = 0: the results are
similar for the three edge refinement methods. The position error is always higher with the edge middle than with
surface reconstruction (WALF and edge fit). Using curvature refinement with the edge middle may improve the
curvature and position errors in some cases but the results are not improved much or worsened from κd ≈ 1.35.
For coarse meshes (κd ≈ 10.8), using curvature refinement may lead to self-intersections such as with κd = 1/2.
For the same resolution, surface reconstruction does not produce self-intersections. Therefore, me may conclude
that the curvature refinement alone is not a guarantee of lower error levels. As we saw earlier with the expanding
and shrinking sphere (section 4.1, on page 37), the edge middle tends to saturate for the curvature error before
methods based on surface reconstruction do.
Surface reconstruction without adaptation to the curvature (κd = 0) reduces the position error compared to the
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edge middle, but not the curvature error generally. Combining surface reconstruction with a curvature-based
remeshing criterion, here κd, may help reduce error levels with the exact transport.
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Figure 4.19: Exact transport, whole domain, reference position with minimal distance, edge middle, WALF (Jiao
and Wang, 2012), edge fit (Gorges et al., 2022), table 3.1 (on page 30), l∞ norm in fig. D.21 (on
page 139)

Lowering κd combined with surface reconstruction improves the curvature and position error in l2 norm, at
the cost of increasing the number of vertices at the end of the simulation denoted N , except when the Eulerian
resolution is fine enough (the criteria κd = 1/2i should be satisfied, and we should have ϵ− ≈ ϵ1/2i , as we can
see at κh ≈ 0.3 for the curvature and position error). At some point, for a fine enough Eulerian resolution, the
criterion κd does not influence the mesh anymore, it proves useful only for coarse Eulerian grids. In l∞ norm
(fig. D.21, on page 139), with increasing κd, the improvement on curvature error is small and the improvement on
position error is not guaranteed, sometimes it is worse.
The edge fit method is mostly better than WALF for the position error, aside from (κh ≈ 0.7, κd = 0), but the
difference is less noticeable for the curvature error. From κd ≤ 1/4, WALF seems to perform better for curvature
error. The curvature error is lower in l∞ norm with WALF when curvature refinement is activated, but one must
keep in mind that the cost is not always equivalent when comparing two simulations with the same Eulerian
resolution.
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Figures D.22 and D.23 present the results for zones 3 and 2. With κd = 0, the curvature error with surface
reconstruction is lower than with the edge middle in zone 3 (from κh ≈ 1.34 in l2 norm and at κh ≈ 0.67 in l∞
norm) but not in zone 2 aside from κh ≈ 0.67 in l∞ norm. We may compare the results of zone 3 when κd = 0
which is nearly spherical with the results of the expanding sphere (section 4.1, on page 37). There seems to be a
saturation for curvature error when placing the new vertex at the middle of the edge, which happens earlier (at
higher κh) than with surface reconstruction. This saturation of the curvature error does not appear in zone 2 at
κh ≈ 0.3. Since zone 2 presents larger errors than zone 3, there is no improvement of curvature error for surface
reconstruction without curvature adaptation in the whole domain. Edge fit with the exact transport generally gives
lower position errors than WALF and edge middle in zone 3. The low position errors in zone 2 for the coarsest
Eulerian resolution with surface reconstruction were not represented. They may be explained by the small number
of vertices: these vertices may have not been modified by remeshing operations and only transported with exact
increments of position.

When surface reconstruction is used (WALF or edge fit), (κh ≈ 10.8, κd = 1/2) is interesting compared to
(κh ≈ 0.3 i.e. nx=128, κd = 0) without surface reconstruction for the curvature error. There are less vertices
for a similar curvature error in l2 norm. κd = 1/2 improves the position and curvature errors in l2 norm yet the
computational cost indicated by the number of vertices at the end of the simulation is great. In l∞ norm, using
more segments per radius of curvature does not always decrease the curvature or position error.

4.2.9.4 Summary

WALF can be improved with RBF weighting, however edge fit often gives better results with exact curvatures.

4.2.9.5 With numerical curvatures for the remeshing criteria (fig. 4.20, on page 63)

Previously, the curvature used in the remeshing criterion was computed at the closest point (subsection 4.2.6.3,
on page 52) on the exact surface with the analytical formula (eq. 4.17). From now on, the curvature is computed
numerically, with aN2 neighborhood with RBF weighting (fig. 4.20). When using the numerical curvature instead
of analytical curvatures for the remeshing criterion (fig. 4.19), the results may be worse. While some simulations
still present an improvement in position and curvature errors in l2 norm when using surface reconstruction with
curvature adaptation (κd) compared to a simulation without curvature adaptation, other simulations present
larger errors in curvature and position such as κh ≈ 10.8 and κh ≈ 5.4 (especially κh ≈ 5.4, stemming from
zone 2 (fig. D.26)). In l∞ norm, the curvature is mostly worsened by curvature adaptation, even with surface
reconstruction, while position error is still reduced, aside from coarse meshes with WALF (fig. D.24, on page 142).
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Figure 4.20: Exact transport, whole domain, reference position with minimal distance, adaptation to numerical
curvature, edge middle, WALF (Jiao and Wang, 2012), edge fit (Gorges et al., 2022), table 3.1 (on
page 30), l∞ norm in fig. D.24 (on page 142)

4.2.9.6 Influence of the time-step with numerical curvatures for the remeshing criteria

We observed that adapting the mesh to numerical curvature can worsen the error in curvature. In some cases,
adapting the time-step with a reference length based on the smallest edge length d instead of the Eulerian mesh
spacing h (subsection 4.2.2.2, on page 49) may alleviate this issue as depicted in fig. 4.21 for the WALF method.
In other cases, making more iterations may be detrimental by accumulating more errors.
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CFL: Lagrangian Eulerian

Figure 4.21: Exact transport, whole domain, reference position with minimal distance, adaptation to numerical
curvature edge middle, Lagrangian and Eulerian CFL, WALF (Jiao and Wang, 2012), l∞ norm in
fig. D.27 (on page 145)

4.2.9.7 Summary

The results are worse with numerical curvatures. Using a Lagrangian CFL does not necessarily improve the
curvature and position errors.

4.2.10 Interpolation

Now we use spatial interpolation instead of the exact transport. The computations with PERM interpolation
need a more strict CFL condition if curvature-based remeshing is used. With CFL = 0.5, based on the Eulerian
grid, the computations with curvature-based mesh refinement crash (fig. 4.22): the precision of the transport with
interpolation is not enough with curvature adaptation and the remeshing procedure refines the mesh at ’unphysical
features’ generated by the interpolation scheme, which produces many small triangles and mesh intersections
eventually, at which point the simulation is stopped. We may then need to use a CFL based on the Lagrangian mesh
with the edge fit method which seems to be the most precise edge refinement method out of the three methods we
tested.
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Figure 4.22: Interpolation with Parabolic Edge Reconstruction Method (PERM), whole domain, reference posi-
tion with minimal distance, adaptation to numerical curvature, edge middle, WALF (Jiao and Wang,
2012), edge fit (Gorges et al., 2022), table 3.1 (on page 30)

Even with a Lagrangian CFL, there is no guarantee the simulation will not crash with PERM. Only the
simulations with κd = 0 ran without intersections (fig. 4.23). Because of the interpolation, the position error is
larger than with exact transport and the curvature is no longer exact and it serves as a criterion for the remeshing.
Peskin and Q1 interpolations gave better results with curvature adaptation, as depicted in fig. 4.25. For the
presented results with κd = 0, there is no intersection, contrary to the simulations with PERM. Adapting the
mesh to the curvature with κd = 1/2 reduces the errors for position and curvature on finer meshes in l2 norm.
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Figure 4.23: Interpolation, example of crash due to mesh intersections, adaptation to numerical curvature (κd =
1/2), nx = 32,Lagrangian CFL, edge fit (Gorges et al., 2022)
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Figure 4.24: Interpolation with PERM, Lagrangian CFL, whole domain, reference position with minimal distance,
adaptation to numerical curvature edge middle, edge fit (Gorges et al., 2022)
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Figure 4.25: Interpolation with Peskin and Q1 compared to exact transport, whole domain, reference position
with minimal distance, adaptation to numerical curvature, edge fit (Gorges et al., 2022)

4.3 Conclusion

First, we saw that when the vertices lie on the exact surface, adapting the mesh to the curvature withκd improves the
evaluation of the curvature. The results may further be improved by considering the weighting of the coordinates
for the least-squares and the diffusion of the curvature in the remeshing criterionκd. We now evaluate the curvature
with RBF weighting with R = 3Rmean/2 since it gave better results with the exact position.
With the exact position or transport, κd = 1/2 generally improves the results for position and curvature error
but it is not always worth using more segments per radius of curvature. Adapting the mesh to the curvature
entails important costs regarding the number of vertices. The results are not regular once the position is not exact,
even in l2 norm: adapting the mesh with more than κd = 1/2 does not guarantee a more precise evaluation of
the curvature and position. Several reasons may explain the differences: accumulated errors in position (due to
remeshing operations and transport), valence, distribution of the vertices on the surface and their location may be
more difficult to represent (the errors are not computed at the same positions).
When the transport is not exact, the edge refinement method plays an important role, and adapting the mesh
to the curvature no longer guarantees a reduction of the position and curvature errors. Adapting the time-step
to the size of the smallest edge may limit errors but it is not guaranteed. As we saw earlier with the expanding

67



and shrinking sphere (section 4.1, on page 37), the edge middle tends to saturate for the curvature error before
methods based on surface reconstruction do. The edge fit gave better results than WALF in most cases.
The aim of adaptive remeshing is to use less vertices to represent the features of the interface, yet it requires a
precise computation of the curvatures, a precise transport and a precise edge refinement method, otherwise it may
be counterproductive. In our case, the PERM interpolation here applied on regular grids could not be used with
adaptive remeshing. The velocity field may not be regular enough for the PERM interpolation, and finer grids
may be necessary to be able to adapt the mesh to the curvature. We have seen that Peskin and Q1 are less likely to
produce intersections, this may be explained by their smaller stencil than the PERM interpolation. It might be
interesting to use other interpolation schemes and AMR for the Eulerian grid.

Remarks. Because of the diffusion, the number of segments per radius is not always respected: κ̃i > κei . This
means that more vertices are used in zone 3 because of the transition in refinement. In this study, we did not
employ mesh smoothing. With the exact position, smoothing might improve the distribution of the markers,
improving in turn the results sometimes. When the position is not exact, the smoothing introduces position errors,
which is detrimental to the accuracy. The evaluation of the curvature may lead to unnecessary mesh operations,
downgrading the accuracy of the discretization of the surface. As mentioned by Popinet (2018), it might be
interesting to consider spectral mesh processing (Lévy and Zhang, 2010) to filter the curvature. The basic approach
would require to define an operator on the mesh and compute the eigenvectors efficiently.

Now that we have studied the remeshing operations without Navier-Stokes equations nor topological changes,
we perform in the next part simulations of elementary two-phase flows, coalescence and breakup.
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Part III

Elementary two-phase flows, coalescence and
breakup
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5 Rising bubble

In which we investigate the influence of the numerical methods on the dynamics
of rising bubbles in viscous liquids, in different regimes with qualitative and quan-
titative comparisons. The implemented Front-Tracking method is compared with
a VOF method.

5.1 An overview on rising bubbles

In chapter 4, we have studied the remeshing procedures on analytical test cases, without solving the Navier-Stokes
equations. Now, we study the whole Front-Tracking method with the resolution of the Navier-Stokes equations.
The simulation of rising bubbles is a common test case and it is often validated with analytical solutions or
experiments. Quantitative benchmarks have been proposed for two-dimensional rising bubbles (Hysing et al.,
2009). The terminal bubble rise velocity is often employed for the validation with experiments (Sussman et al.,
2007). Geometric properties are also used: bubble mass center, bubble tip height (Sharaf et al., 2017), bubble
extensions (or diameters) in Cartesian directions or sphericity (a measure of how similar a shape is to a sphere).

Bhaga and Weber (1981) conducted experiments on rising bubbles in a liquid column, where the concentration of
sugar in water is varied to investigate different regimes of bubble rise. Hua and Lou (2007) performed axisymmetric
simulations with a Front-Tracking method to reproduce such experiments. Some cases could not be reproduced
without three-dimensional computations: the bubbles are no longer symmetric in the wobbling regime. Three-
dimensional simulations are performed with a Front-Tracking method and AMR in Hua et al. (2008). For the
qualitative comparison against the experiments, it is difficult to distinguish the shape of the bubble. The size of
the computational domain influences the rise of the bubble. They use domains of width 8D, with D the diameter
of the bubble, based on a study of sensitivity and note that an experiment by Krishna et al. (1999) concludes the
same. Pianet et al. (2010) studied several averaging schemes for density and viscosity for axisymmetric simulations
of rising bubbles. Pivello et al. (2014) performs three-dimensional rising bubble simulations in the wobbling
regime with a Front-Tracking method and AMR. Anjos et al. (2014) used an ALE FEM to simulate three different
cases of rising bubbles from Bhaga and Weber (1981). Baltussen et al. (2014) compared the height functions with
the Integral Formulation for different regimes of rising bubbles, and provided guidelines for the choice of the
surface tension formulation, depending on the Eötvös number (Eo) and Morton number (Mo) numbers (eqs. 5.2
and 5.3, on page 72). Liu et al. (2023); Gorges et al. (2023) simulated cases from Bhaga and Weber (1981) with a
Front-Tracking method.

5.2 Comparison to an experiment

Tripathi et al. (2015) simulated the rise of an air bubble for different Ga and Eo numbers and thus identified
five regimes: axisymmetric, skirted, zigzagging or spiralling, peripheral breakup, and central breakup. Sharaf
et al. (2017) complemented this work with an experimental and numerical investigation in the same ranges of
Ga and Eo. Both works used the solver Gerris (Popinet, 2003) with a domain of 15D × 15D × 60D and
15D × 15D × 15D respectively. We focus on four regimes of bubble rise: spherical, oblate, dimpled and skirted.
The physical properties used in our simulations are presented in table 5.1. The bubbles may be described by
the subsequent non-dimensional numbers, where the radius R is the reference length, ρ2 and µ2 are the fluid
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properties of the liquid:
Morton number:

Mo =
gµ4

2

ρ2σ3
(5.1)

Galilei number:

Ga =
ρ2
√
gR3

µ2
(5.2)

Eötvös number:
Eo =

ρ2gR
2

σ
(5.3)

µ1 ρ1 µ2 ρ2 σ R Mo Ga Eo

1 × 10−5 1 3.197 × 10−1 1235 6.340 × 10−2 7.800 × 10−3 3.3 × 10−1 8.3 1.2 × 101

1 × 10−5 1 9.678 × 10−1 1254 6.240 × 10−2 1.927 × 10−2 2.8 × 101 1.1 × 101 7.3 × 101

1 × 10−5 1 1.700 × 10−1 1222 6.420 × 10−2 5.200 × 10−3 2.5 × 10−2 8.4 5.0
1 × 10−5 1 9.600 × 10−3 1100 6.840 × 10−2 8.300 × 10−4 2.4 × 10−7 8.6 1.1 × 10−1

Table 5.1: Fluid properties for the dimpled, skirted, oblate and spherical bubbles studied in Sharaf et al. (2017)

We compare the influence of some parameters related to the Navier-Stokes equations to improve the results
independently from the tracking of the interface. The numerical and experimental results from Sharaf et al. (2017)
as well as computations with an implementation of Weymouth and Yue (2010)’s VOF method are compared to
the Front-tracking method. Then, the influence of the Lagrangian mesh is studied.

Sources of differences between the experiments and simulations. The sources of differences
between the simulations and experiments are for example: pollution with surfactants (the liquid is replaced in
Sharaf et al. (2017)), volume of the bubble (initial volume, and the increase of volume as the bubble rises in the
experiment), initial (involuntary) movement, initial position, initial shape (not perfectly spherical). Sharaf et al.
(2017) supposed they could not reproduce the central breakup regime because of the initial shape of the bubble.
There are also measuring errors for the following geometrical and fluid properties: bubble tip height, volume,
viscosity, density, surface tension coefficient.

Presentation of the results. The height of the tip of the bubble ztip is non-dimensionalized by the radius
R, and the time is non-dimensionalized by

√
g/R. We plot the slice of the Lagrangian mesh in the X plane, as

well as the 0.5 isocontour of the volume fraction for a comparison with the VOF method. The bubble tip height
from the simulations is compared with the bubble tip height from the experiment zexptip . For the cases of a spherical,
oblate and dimpled bubbles with a Morton of respectively 2.4 × 10−7, 2.5 × 10−2 and 3.3 × 10−1, experimental
errors are provided by Sharaf et al. (2017) and we illustrate the error bars. For quantitative comparisons, the non-
dimensionalized bubble tip position is extracted. For the VOF simulations, ztip is obtained by a linear interpolation
of the volume fraction at the highest cell with a non-null volume fraction. For the Front-Tracking method, the
bubble tip is simply the maximal non-dimensionalized marker height. We compute the maximal error for the
experimental points between the bubble tip height ztip and the experiment and the simulations denoted ϵp, and
the maximal relative error for the velocity denoted ϵv . The velocity v is obtained by a least-square fit of the points at
the same abscissae as the experimental points. The contours of the bubbles are obtained in the X plane, by slicing
the Lagrangian mesh for the Front-Tracking method and by computing the 0.5 isocontour of the volume fraction
for the VOF method. The 0.5 isocontour could also be extracted for the Front-Tracking method, and differences
are to be expected between the two representations (as we will see later in fig. E.1). Depending of the slicing plane,
the isocontour may be more or less jagged. These representations are used for qualitative comparisons only. The
black horizontal lines indicate the bubble tip position from the experiment zexptip and zexptip −∆z with ∆z the
experimental uncertainty.
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Eulerian mesh. We use a 8D × 8D × 15D domain, with D the initial diameter of the bubble, with the
bubble centered at Z = 2D. We present simulations with 8, 16 and 32 cells per bubble diameter.

Lagrangianmesh. We perform simulations with different initial meshes comprised of 80, 320, 1280, 5120 and
20480 triangles. The reference edge length is the mean initial edge length l

(0)
m , computed with the discretization of

a sphere of radiusR, which is provided in table 5.1. The edge length interval is: [λmin, λmax], withλmin = l
(0)
m /2

and λmax = 4l
(0)
m /3. The curvature-based remeshing criterion κd is deactivated to focus on the influence of the

resolution of the Lagrangian mesh. We may either initialize the mesh with exact positions or exact discrete volume.
When not mentioned otherwise, the mesh is initialized with exact positions.

Resolution. The Navier-Stokes equations are solved with a threshold of 10−4 on the preconditioned residual
of the BiCGStab(2), non-dimensionalized by the right-hand side vector. The initial time-step is denoted ∆t and a
convective CFL of 0.5 is employed.

Coupling of the Front-Tracking methodwith theNavier-Stokes equations. The velocities
of the markers are interpolated with Peskin’s interpolation. Peskin interpolation gives smoother interfaces than
linear interpolation and PERM, the latter tends to produce self-intersections when the triangle edge lengths are
smaller than the Eulerian resolution. The Momentum Preserving method (subsection 1.5.2, on page 7) is used,
and the same Third-order Strong Stability-Preserving Runge-Kutta method (SSP-RK3) scheme with the velocity
extrapolations is used for the time integration of the transport equations of the markers (eq. 2.13, on page 15). We
use the edge fit method for the edge splitting and collapsing. We use Kuprat et al. (2001)’s smoothing as well as the
Velocity-Based Correction for the volume correction (section 2.10, on page 18). No topological method is activated
to speed up the computations with the Front-Tracking method. We use 8 subdivisions for the Ray-Casting method
(appendix B, on page 111). When not mentioned otherwise, we use the height functions for the surface tension, in
order to limit the difference between the VOF and Front-Tracking simulations.

5.2.1 Influence of the viscosity average

We compare four average schemes used for the viscosity (subsection 1.3.2, on page 5): arithmetic, harmonic, mixed
and discontinuous averages in fig. 5.1 for Mo = 28 with the VOF method. The results from Sharaf et al. (2017) are
presented on the two columns on the left. A slice is represented at the middle. On the right, the following figures
are presented from top to bottom: bubble tip position and error on the bubble tip position (compared to the
experiment). The maximal position error and the relative error on velocity is indicated in the legend. The mixed
average gives better results when comparing to the experimental terminal velocity v and the bubble tip height.
There are 32 cells per diameter. The initial timestep is ∆ = 10−4 and the timestep. There is a great sensibility of
the shape to the average of the viscosity: the shapes are quite different at t = 8. The mixed average has a tendency
to limit the stretching of the bubble. If the stretching of the bubble is prioritized, the arithmetic average seems
better for 32 cells per diameter and Mo = 28. If the tip height and velocity are favored, the averaging schemes
sorted by decreasing precision are: mixed, harmonic, discontinuous and arithmetic.

A similar comparison is presented for Mo = 2.5 × 10−2 (fig. 5.2, on page 75) with the VOF method. The
mixed average gives not only lower errors for the tip height and velocity, but also a shape more similar to the
experiment. The shapes given by the arithmetic and mixed average are presented in fig. 5.3 with the VOF method
for 8, 16 and 32 cells per diameter. For the three meshes, the mixed average has a lower velocity error compared to
the arithmetic average. For a spherical drop and 8 cells per diameter, the mixed average is also more precise (fig. 5.4,
on page 77).
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Figure 5.1: Influence of the viscosity average, Morton 28, VOF, 32 cells per diameter, ∆t = 10−4, maximal error
for the experimental points between the bubble tip height ztip the experiment and the simulations
denoted ϵp, and the maximal relative error for the terminal velocity denoted ϵv , obtained by a least-
square fit on the experimental points, the minimum of the correlation coefficient R2 between the
experiment and the simulation is indicated. The results from Sharaf et al. (2017) are indicated in black
with their experimental errors. The first two rows are figures from a simulation and experiment from
Sharaf et al. (2017). Reproduced from Sharaf et al. (2017), with the permission of AIP Publishing. The
bubble tip height is non-dimensionalized by the radius R, t is the non-dimensionalized time.
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Figure 5.2: Influence of the viscosity average, Morton 2.5 × 10−2, VOF, 8 cells per diameter, ∆t = 10−3. The
results from Sharaf et al. (2017) are indicated in black with their experimental errors. The first two
rows are figures from a simulation and experiment from Sharaf et al. (2017). Reproduced from Sharaf
et al. (2017), with the permission of AIP Publishing. The bubble tip height is non-dimensionalized by
the radius R, t is the non-dimensionalized time.
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Figure 5.3: Comparison of the shapes of the bubble with the arithmetic (left) and the mixed (right) viscosity
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top to compare the shapes while ignoring the differences in bubble tip height. The figures in the first
row are from an experiment from Sharaf et al. (2017). Reproduced from Sharaf et al. (2017), with the
permission of AIP Publishing. t is the non-dimensionalized time.
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Figure 5.4: Influence of the viscosity average, Morton 2.4 × 10−7, VOF

Summary. From now on, we use the mixed average for the viscosity, based on the improvement of the
velocity.

5.2.2 Influence of the Lagrangian resolution and initialization

The Eulerian grid spacing is denoted h and d is the minimal edge length of the Lagrangian mesh. We run several
simulations with a fixed resolution for the Lagrangian mesh, with 1280, 5120 and 20480 faces, corresponding
to a ratio h/d of 2.6, 2.6 for the case Morton 28 (fig. 5.5). If the ratio of h the Eulerian grid spacing and d the
minimal edge length of the Lagrangian mesh is higher, the interface stretches more and the velocity is closer to the
velocity from the experiment. With 20480 faces and 16 cells per diameter, the simulation with the Front-Tracking
method agrees more with the experiment than with the VOF method and 32 cells. The velocity is closer to the
experiment, and the stretching of the interface seems more similar to the experiment with the Front-Tracking
method. However, the thickness of the stretched part is not measured.

We run several simulations with a fixed resolution for the Lagrangian mesh, with 80, 320 and 1280 faces for
8 cells per diameter figs. 5.6 and 5.7. We also compare two initialization procedures, where we either initialize
with exact positions or exact discrete volume. For fine Lagrangian meshes, there is not a great sensibility to the
initialization method. The shape and velocity error are sensible to the Lagrangian resolution forMo = 2.5×10−2

and Mo = 3.3× 10−1.
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Figure 5.5: Influence of the Lagrangian mesh, Morton 28, VOF and Front-Tracking, 32 cells per diameter, ∆t =
10−4. The results from Sharaf et al. (2017) are indicated in black with their experimental errors. The
first two rows are figures from a simulation and experiment from Sharaf et al. (2017). Reproduced
from Sharaf et al. (2017), with the permission of AIP Publishing.

78



10

−1.0 −0.5 0.0 0.5 1.0

y

7.25

7.50

7.75

8.00

8.25

8.50

8.75

9.00

z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

2 4 6 8 10

t

1

2

3

4

5

6

7

8

9

z t
ip

2 4 6 8 10

t

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

z t
ip
−
ze
x
p

ti
p

2 4 6 8 10

t

2

4

6

8
z t
ip

FT 8 1280, exact position εp 0.37 εv 1.23%R2 1.00

FT 8 320, exact position εp 0.37 εv 0.71%R2 1.00

FT 8 80, exact position εp 0.32 εv −5.49%R2 1.00

FT 8 1280, exact volume εp 0.36 εv 1.15%R2 1.00

FT 8 320, exact volume εp 0.34 εv 0.46%R2 1.00

FT 8 80, exact volume εp 0.25 εv −6.44%R2 1.00

exp. Sharaf et al. (2017)

8

−1.0 −0.5 0.0 0.5 1.0

y

5.25

5.50

5.75

6.00

6.25

6.50

6.75

7.00

z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

6

−1.0 −0.5 0.0 0.5 1.0

y

3.50

3.75

4.00

4.25

4.50

4.75

5.00

z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

4

−1.0 −0.5 0.0 0.5 1.0

y

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

2

t
−1.0 −0.5 0.0 0.5 1.0

y

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

zexptip

zexptip −∆z

Figure 5.6: Influence of the resolution of the Lagrangian mesh with a fixed resolution, Morton 2.5 × 10−2, Front-
Tracking. The results from Sharaf et al. (2017) are indicated in black with their experimental errors.
The first two rows are figures from a simulation and experiment from Sharaf et al. (2017). Reproduced
from Sharaf et al. (2017), with the permission of AIP Publishing.
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Figure 5.7: Influence of the resolution of the Lagrangian mesh with a fixed resolution, Morton 3.3 × 10−1, Front-
Tracking. The results from Sharaf et al. (2017) are indicated in black with their experimental errors.
The first two rows are figures from a simulation and experiment from Sharaf et al. (2017). Reproduced
from Sharaf et al. (2017), with the permission of AIP Publishing.

Influence of the surface tension formulation. With a Morton of 2.5 × 10−2, the height functions
and the Integral Formulation give similar results for the computations with the Front-Tracking method (fig. 5.8),
the height functions being a little more precise for the velocity and tip height. In this test case, the surface tension
does not seem to play an important role.
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Figure 5.8: Influence of surface tension formulation, Morton 2.5 × 10−2, Front-Tracking

The Front-Tracking is less precise for the velocity in fig. E.1. The 0.5 isocontour is also plotted for the Front-
Tracking method.

Summary. The surface tension formulation did not play an important role in these test cases. We have
seen that the description of the viscosity is important, and so is the resolution of the Lagrangian mesh
compared to the resolution of the Eulerian grid. The Lagrangian mesh cannot be chosen independently
from the Eulerian grid.

Now that we have compared the Front-Tracking method to the VOF method for rising bubbles, we review
methods for topological changes in the next part.
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6 Topological changes: relatedwork
We present a non-exhaustive list of topological methods used to simulate coales-
cence and breakup.

Not all interfaces that approach each other are due to coalesce, Qian and Law (1997) identified a bouncing
regime for hydrocarbon droplets. Two-phase flows such as sprays are multi-scale, and all scales cannot be resolved.
The Navier-Stokes equations do not include the effects of molecular scales, thus controlled topological changes will
be required along with Sub-Grid Scale (SGS) modelling to reach mesh convergence. Classical interface capturing
methods do not control coalescence and breakup, which can give a wrong outcome. Afanador et al. (2021)
simulated the evolution periodic jets while activating topological changes or not. They concluded that some
quantities such as phase and plane average velocities are little affected by the activation of the topological procedure.
However, the surface area is noticeably larger without the topological procedure. The way topological changes are
treated is thus important and we will present the main approaches subsequently.

6.1 Implicit interface tracking

In Front-Capturing methods (VOF,LS), the interface is represented by a scalar on the Eulerian grid. If two parts of
the interface come closer than the grid size, coalescence or breakup happens automatically. With such methods, the
topological changes are not controlled, unless special methods are used. In Herrmann (2005) a filament removal
procedure replaces the cut part with a spherical drop. Jiang and James (2007) manipulates the volume-fraction
boundary condition on the symmetry plane to control coalescence, yet this approach cannot be used in general. In
Coyajee and Boersma (2009), coalescence is prevented by using one global marker function per droplet instead
of one for all droplets for a CLSVOF method. Zhang and Law (2011) developed a film drainage model for the
head-on collision of two identical droplets in a gas. They include the physics behind the droplet deformation, the
internal flow and the attendant viscous loss, the rarefaction of the gas between the two drops, and the van der
Waals force that tends to merge the two drops. Kwakkel et al. (2013) control coalescence and breakup by using
one local marker function per droplet instead of one for all droplets in a CLSVOF method. Then coalescence
and breakup are activated with film drainage model from Zhang and Law (2011), by respectively merging two
marker functions should the contact time of two colliding droplets exceed the predicted film drainage time or
splitting one marker function. In this method, the accuracy of the film drainage model is more important than the
spatial grid resolution. Based on a time-varying graph-coloring problem, Naru (2021) proposed a more efficient
multiple-marker method.

Chiodi (2020) developed a modified approach for the VOF, the Reconstruction with 2 Planes (R2P), where
one or two planes are placed iteratively, thus enabling the representation of sub-grid films. Han and Desjardins
(2021) developed a Connected-Component Labeling (CCL) approach to identify structures which are due to
undergo topological changes with regards to a predefined criterion, such as a volume fraction threshold. Here
the connected component is a set of connected Eulerian cells verifying the criterion. This enables to classify fluid
structures according to their size. Chirco et al. (2022) detect structures thinner than a predefined criterion to
perforate them before the grid resolution does.

Binary head-on collision of identical droplets at high Weber produce a thin lamella, which may artificially
rupture for Front-Capturing methods, and the final outcome may be wrong. According to Focke and Bothe
(2011), four cells in the lamella (in the normal direction) are required. Roisman et al. (2009) analyzed the head-on
collision of identical drops at high impact Weber and Reynolds numbers, where a thin lamella is formed. One way
to compute the flow inside the lamella would be to employ AMR. Focke and Bothe (2011) developed a lamella
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stabilization method for simulations with a symmetry plane, the volume fraction in the ghost cells is modified
to prevent the influence of the opposite side of the interface in the surface tension evaluation. Liu and Bothe
(2019) employ a multi-scale approach for colliding drops: a pressure boundary condition, based on a SGS model is
applied on the collision plane.

6.2 Explicit interface tracking

Explicit interface tracking methods possess two representation of the interface: the Lagrangian mesh and isosurfaces
from a scalar on a grid such as the volume fraction (with its 0.5 isosurface) or a distance. By reconstructing the
whole Lagrangian mesh from an isosurface, topological changes are automatic. There is no need for connectivities,
vertices are created on the isosurface and triangles are created independently. The difficulty of implementing
topological changes is often cited as the main disadvantage of the Front-Tracking method, while the ability to
control them is also praised by others.

6.2.1 Topological changes without a supplementary grid

In Nobari and Tryggvason (1996), a Front-Tracking is presented where triangles are removed when drops are close
and the surfaces are reconnected. In the Grid-Free (GF), the following steps are applied to the Lagrangian mesh
only, without resorting to the grid: intersection detection, retriangulation of intersecting triangles, deletion of
invalid triangles and reconnection of the triangles (Glimm et al., 2000). The intersection detection is accelerated
by localizing the triangles on a topological grid (typically two or three times coarser than the Eulerian grid). If
two triangles intersect, their intersection curve is stored. The intersecting triangles are cut along their intersecting
curve and after removing invalid triangles, the newly formed triangles are connected. Nevertheless, the method
may fail for complex interfaces. If the interface is invalid, the entire time-step is restarted with a smaller ∆t. In
Cristini et al. (2001), breakup consists in identifying a region and cutting the mesh with two sets of vertices. These
vertices are moved to lie in two respective "splicing planes" The interface is then closed by half spheres. They also
perform coalescence. Homma et al. (2006) perform breakup for an axisymmetric jet based on the distance to
the axis of symmetry. Quan and Schmidt (2007) perform breakup with unstructured meshes with a predefined
distance criterion. In the identified region, the phase of the cells is modified, some nodes are projected to half
spheres and smoothing is applied. No volume correction is implemented. Quan et al. (2009) perform coalescence
and breakup with unstructured meshes, no volume correction is implemented either. Razizadeh et al. (2018) first
identifies triangles which are closer than a predefined distance criterion. Since the number of operations would be
O(N2) with N the number of triangles of the Lagrangian mesh, the triangles are localized in the cells of a grid (the
Eulerian grid for instance) in order to reduce the number of operations: the triangles localized in the neighboring
cells are tested instead of the whole mesh. Their algorithm identifies pairs of close triangles, and then evaluates
the dot product of the normals of the triangles of each pair. If it is positive, the pair is no longer considered as a
candidate for topological change. If it is negative, the pair will take part in the topological change: coalescence
if the triangles of the pair belong to two different drops, or breakup if they belong to the same drop. The two
triangles are "collapsed" into one triangle at half distance, which they call "dual element". If the triangles of a pair
do not have any common nodes, they are merged: their nodes are moved halfway and merged, starting by the two
closest vertices and proceeding to the remaining four vertices based on the orientation of the triangles. With this
procedure, some edges are shared by more than two triangles among the candidates for topological change, and
these triangles are merged as well by merging the remaining two vertices. After successive merging operations,
an area is formed by the "dual elements". In case of breakup, this area may turn into a thread, the interface is
composed of two parts connected by only one node. For coalescence and breakup alike, the "dual elements" are
deleted, and vertices that no longer belong to a triangle are deleted as well. Thus, there remains only edges which
connect two triangles only. After removing the triangles sharing this vertex, the interface is separated in two parts
at least for breakup and close interfaces are merged. This method is local, there is no need for a reconstruction of
the whole Lagrangian mesh. No volume correction step is mentioned.
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Topological changes are also employed in computer graphics, Computer Aided Design (CAD) and 3D biomed-
ical image analysis. Numerous approaches are developed, such as "boolean operations" on volumes delimited by
meshes, such as union, intersection and difference of two volumes, as well as mesh segmentation. Therefore, they
may be used for coalescence and breakup, provided that they are robust enough to be used in a simulation, the
difference here is that the result provided by the algorithm has to be valid to continue the simulation. Geomet-
ric libraries such as Computational Geometry Algorithms Library (CGAL) could be employed to perform the
coalescence after the collision occurred, like in the GF method with the mesh editing procedures described in
Fabri et al. (2000). They describe a "corefinement" procedure, which consists in: refining two intersecting meshes
"so that their intersection polylines are a subset of edges in both refined meshes". Brochu and Bridson (2009)
separates a mesh in two when an edge collapsing or swapping generates two triangles with the same vertices 1. They
merge meshes with a "zippering" method, by identifying two close edges. They delete the adjacent triangles, which
forms a quadrilateral hole on both meshes. These holes are "zippered" together with a tube constituted of eight
triangles. If the creation of the new triangles generates an intersetion, the topological change is cancelled. This
method is extended to multiple materials in Da et al. (2014). According to them, the "zippering" approach is overly
restrictive because of the intersection tests mainly. They propose an alternative method for nearby edges, which
they call "snapping". In 2D, it consists in selecting an edge and the closest vertex from the opposite edge. The edge
is split at the closest point to the selected vertex and the two vertices are "snapped" (moved halfway). The same
operation is repeated once with the opposite edge and the separating edge is delete. Collisions are less likely during
the "snapping" than the "zippering" because the modifications are less important. Schmidt and Brochu (2016)
merge intersecting meshes. They refine meshes in the intersection regions, deletes intersecting triangles and fills
the holes with an "adaptive mesh zippering" algorithm. Successive iterations where vertices from one "boundary
loop" moves towards the nearest vertices from the other "boundary loop". With this displacement, edges may
become too long or too short with regards to the predefined criteria, so they are split or collapsed. Eventually, after
several iterations, the Euclidean distance defines a bijection between the sets of vertices. Mesh segmentation is a
problem treated in many computer graphics applications. First, we need a criterion to determine where to cut the
mesh. For that matter we need a distance criterion, but it could be computed based on: the minimal distance, an
intersection along the triangle normal, the vertex normal. The Shape Diameter Function (SDF) was developed by
Shapira et al. (2008). In Shapira et al. (2008), several rays are sent in a cone centered around the opposite direction
of the normal. A mesh segmentation method is implemented in CGAL Yaz and Loriot (2023). A hole filling
algorithm is presented in Liepa (2003), combined with a mesh segmentation algorithm, it could perform breakup
for triangle meshes.

6.2.2 Topological changes with a supplementary grid

In the Grid-Based (GB) method, topological changes are handled by reconstructing the interface within each cell of
a user specified grid, such as the Eulerian grid (Glimm et al., 2000). The intersections between the interface and the
grid cell edges are computed (the triangles are localized on a grid for faster intersection tests). Unphysical crossings
are deleted, and the interface is reconstructed using the remaining intersections. The Grid-Free (GF) method
produces meshes of higher quality than the Grid-Based (GB) method, and conserves mass better but is is less robust.
The GB method always produces a valid interface. The Locally Grid-Based (LGB) method is a combination of the
GB and GF methods (Li, 2007). Bo et al. (2011) introduced a robust LGB method, aiming at reducing the use of
the GB method. Torres and Brackbill (2000) developed the "point-set method", a Front-Tracking method without
connectivity.

Shin and Juric (2002) developed the LCRM, which performs coalescence and breakup automatically, not
unlike Front-Capturing methods. It is a global reconstruction, the whole mesh is modified. The LCRM can be
easily parallelized. However, with linear interpolation, the reconstruction lacks in accuracy and smoothness, and
the method tends to redistribute mass between separate interfaces or regions with large differences in curvatures.
Shin and Juric (2007) alleviated this problem with high-order interpolation, based on the B-spline described in
Torres and Brackbill (2000), thus improving mass conservation and parasitic currents. Singh and Shyy (2007)
applies the LCRM only for the interfaces whose "probes" detected a topological event. Shin and Juric (2009)

1We prevent this situation instead of letting it happen (subsection 3.5.2, on page 28).
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compute a signed distance function from the Lagrangian mesh, instead of using Poisson equation (eq. 2.22, on
page 17), which requires more implementations for the boundary conditions when the interface is in contact
with the boundaries. When the interface turns into thin structures, the high-order reconstruction from Shin and
Juric (2007) suffers from ambiguities for rectangular shaped reconstruction cells: there can be multiple ways to
reconstruct the Lagrangian mesh, leading to holes in the interface. Yoon and Shin (2010) circumvent this issue
with a marching tetrahedra procedure. The direction of their marching tetrahedra procedure is alternated as it
affects the topological outcome. Ceniceros (2010) use a hybrid LS / Front-Tracking method with AMR, and the
Closest Point Transform (Mauch, 2000) to compute the signed distance function. Tolle et al. (2020) adapted the
LCRM to unstructured meshes with AMR. One difference is that they use connected triangles and reconstruct
the distance with a marching tetrahedra procedure Treece et al. (1999). Shin et al. (2011) developed the Level Front
Reconstruction Method (LFRM), a geometrical method which reconstructs the Lagrangian mesh by computing
intersections with a structured grid. It does not use an isosurface on a reconstruction grid, but only the Lagrangian
mesh, and improves volume conservation. Like with the LCRM, connectivities are not required, the triangles can
be reconstructed independently. The triangles are localized on the reconstruction grid. The cells which contain a
portion of the interface are called reconstruction cells. The resolution of the LFRM can be adapted by subdividing
the reconstruction cells since it does not depend on a scalar on the Eulerian grid. The adaptive LFRM is more
efficient than employing the LCRM with a homogeneously refined grid (Shin et al., 2011). After the localization,
the triangles are cut by the reconstruction cells. A local volume conservative reconstruction is then applied in the
reconstruction cells. Rajkotwala (2020) coupled the LFRM with the film drainage model from Zhang and Law
(2011). Chirco and Zaleski (2023) developed the Edge-Based Interface-Tracking (EBIT) method for 2D flows,
where the vertices of the Lagrangian mesh lie on the edges of the Eulerian grid. A binary phase indicator function
from Singh and Shyy (2007) is used in Pan et al. (2023) to perform topological changes automatically, which
affects the volume enclosed by the interface. This function is updated during the transport of the interface.

A non-exhaustive list of topological methods based on Lagrangian meshes and applied to two-phase flows is
presented in table 6.1.

Publication Information Coalescence Breakup Dimension

Glimm et al. (2000) Lagrangian 3D
Glimm et al. (2000) Eulerian 3D

Torres and Brackbill (2000) Eulerian 3D
Cristini et al. (2001) Lagrangian 3D

Shin and Juric (2002) Eulerian 3D
Shin et al. (2005) Eulerian 3D

Homma et al. (2006) Lagrangian Axisymmetric
Li (2007) Mixed 3D

Quan et al. (2009) Lagrangian 3D
Ceniceros (2010) Eulerian 3D

Bo et al. (2011) Mixed 3D
Shin et al. (2011) Lagrangian 3D

Razizadeh et al. (2018) Lagrangian 3D
Tolle et al. (2020) Eulerian 3D
Pan et al. (2023) Eulerian 2D

Table 6.1: Non-exhaustive list of topological methods employed with explicit interface tracking. The source of
the information for topological change is indicated: Lagrangian mesh, Eulerian mesh (with an implicit
representation of the interface), or mixed: Eulerian and Lagrangian. The check and cross marks indicate
if coalescence and breakup were mentioned for the method.
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6.3 Summary

Unlike Front-Capturing approaches, the classical Front-Tracking method does not handle topological
changes and it is a well-known difficulty, which can be circumvented by resorting to an implicit description
of the interface (an isosurface) or by projecting the mesh onto a topological grid. However, the whole mesh
is modified, and we wish to preserve the mesh as much as possible to prevent the accumulation of position
errors and in the hope to save up computational time. Alternatively, the Lagrangian mesh can be modified
without a projection on a grid, and this is the approach we chose. The GF method and the "corefinement"
methods are interesting, yet they cannot be employed to perform coalescence before two meshes intersect.
The method from Razizadeh et al. (2018) is also interesting, yet we would like to present an alternative
method. Our aim is to identify regions to be merged or separated and treat special cases, like when a region
is small, we may not want to merge it. Our purpose is to develop a method for coalescence and breakup,
where the changes to the existing meshes are limited and where the volume can be conserved globally.

In the next chapter, we present a method for coalescence and a method for breakup and apply them to numerical
and experimental test cases.
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7 Coalescence and breakup
In which we present a method to simulate coalescence and a method for breakup,
The coalescence and breakup procedures are tested with numerical test cases and
experiments.

We present here two geometrical methods designed to handle coalescence and breakup for simple topological
cases, using the vertices and connectivities of the Lagrangian mesh. Each bubble/drop is contained in a numbered
object called bubble and possessing its own list of triangles, vertices (markers) and the connectivities to identify the
neighbors of a triangle. The coalescence is performed by identifying vertices of one bubble within a predefined
range of other bubbles. Then these points are projected on the corresponding bubble and the mesh of each
bubble is adapted to have a common polygon which is used to link both bubbles. This method is accelerated by a
localization of the triangles on the Eulerian mesh.

Hypothesis. The algorithm presented below cannot handle multiple structures merging in the same region.
Here we suppose that when two bubbles are about to coalesce, we can identify two regions on each bubble involved
in the process, and that no other bubble is involved in the vicinity of these regions. In other words, multiple bubbles

may coalesce with one bubble if only two bubbles are involved locally.

7.1 Coalescence between distinct bubbles/drops

The triangles are located on the structured Eulerian scalar mesh to accelerate the distance computations between the
vertices or centroids of the triangles of different bubbles. The distance computations later mentioned are reduced
to examining triangles in a few cubic volumes given by the Eulerian mesh. The main steps of the coalescence
algorithm are summarized in algorithm 4.
Algorithm 4: Coalescence algorithm

1 Identification of the bubbles to be merged
2 Identification of vertices at a minimal distance inferior to d2
3 Construction of a temporary region of coalescence on the first bubble and of a projection vector pmoy

4 Creating vertices at nearly d2
5 Construction of the coalescence region of the first bubble

6 Construction of the image of the tagged vertices on the polygon of the coalescence region
7 Adapting the boundaries of the coalescence region for a bijection between the two bubbles

8 Connection of the bubbles

9 Remeshing after the coalescence

Identification of the bubbles to be merged. The coalescence method between bubbles is activated when
the distance between the centroid of some triangles of two bubbles or more are at a distance inferior to d1 (d1 = h
the Eulerian mesh spacing, for example), as depicted in fig. 7.1. In that case, the bubble groups to be merged are
identified. For the sake of simplicity, we will consider next only one pair of bubbles.

Identification of vertices at a minimal distance inferior to d2. For the considered pair of bubbles,
the smallest Euclidean distance of the vertices of one bubble to the other is computed (figs. 7.5a and 7.5b). If
this distance is inferior to d2, which is chosen superior to d1 (d2 = 1.5d1 for example), the vertex is tagged by
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(a) Activation (b) Modifications

Figure 7.1: Distance criteria for coalescence

an integer value. The projection vectors p of the vertices on the interface of the second bubble are kept after
normalization if their norm is inferior to d2.

Construction of a temporary region of coalescence on the first bubble and of a projection
vector pmoy. A temporary region is constructed with the adjacent triangles whose vertices are all tagged,
illustrated by fig. 7.5a (the vertices whose normalized distance is inferior to 1). Isolated vertices are untagged and
will not intervene in the coalescence (fig. 7.2).

(a) Isolated points (b) Isolated segments

Figure 7.2: Special cases

We do not project edges or isolated points, it has to have a thickness of one triangle at least. Sometimes regions
are connected by a projected vertex. So we project vertices in the N1 neighborhood before adapting the mesh on
the other side as long as there remains connected regions (fig. 7.3). Similarly, if isolated points or edges are not
projected inside a coalescence region, we force their projection. Coalescence regions are merged if they share a
vertex.
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Figure 7.3: Special cases: connected regions (left), solution: the region is widened (right)

We do not use the minimal distance to adapt the meshes in the last stages. Our objective is to identify two
equivalent regions, delimited by equivalent polygons. The projections vectors of two bubbles are not necessarily
colinear and thus the polygons are different (fig. 7.4). The two regions would be asymmetric: the minimal distance
is not bijective. We compute the minimal distance in a first step to determine a temporary region on the first bubble.
We then determine a vector for each region by averaging the directions, which is bijective.

Figure 7.4: Illustration of a few projections with minimal distance between two close bubbles, the minimal distance
vectors from the top bubble to the bottom bubble are illustrated in black, the minimal distance vectors
from the bottom bubble to the top bubble are illustrated in red
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Figure 7.5: Minimal distance (a) and distance along the projection vector pmoy (b) (normalized by d2)

A unique projection vector pmoy is defined on the temporary region by averaging the normalized projection
vectors p for all tagged vertices belonging to the region. From this point forward, distance computations for this
region are performed with an intersection test with a segment colinear to pmoy (figs. 7.5d and 7.6). This new
distance is more regular (fig. 7.5c). In order to accelerate the distance computations, only the triangles localized in
the scalar control volumes traversed by the ray are examined. The ray-traversal algorithm examines the intersection
of the faces of a control volume to proceed to the next (fig. 7.6).
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Figure 7.6: Intersection test along pmoy for the distance computation of the coalescence method, the ray is illus-
trated in red, the cubic cells are the scalar control volumes used to accelerate the distance computations

Creating vertices at nearly d2. In order to improve the shape of the region between the two bubbles, the
edges with a unique tagged vertex are examined. By denoting d > d2 and D < d2 the distances along pmoy to
the second bubble of the vertices s (non tagged vertex) and S (tagged vertex), a new vertex N is introduced on the
edge so that its projection on the other bubble is nearly at d2. The position x⃗N of the new point N is obtained by
linear interpolation :

x⃗N =
d2 −D

d−D
x⃗s +

d− d2
d−D

x⃗S

This new point is tagged as well. Adding a new vertex implies creating new triangles and updating connectivities
(fig. 7.7a).

Construction of the coalescence region of the first bubble. A coalescence region is then con-
structed the same way the temporary region was but with the newly created vertices. The triangles inside the
coalescence region are tagged by an integer value.

Construction of the image of the tagged vertices on the polygon of the coalescence region.
In order to construct the image on the second bubble of the coalescence region, the projection vector pmoy is used.
This unique vector guarantees the bijection between the vertices of the coalescence regions of the two bubbles and
gives a more regular shape of the interface after the coalescence.

The tagged vertices at the polygon of the coalescence region are projected on the second bubble in the direction
of the projection vector and generate new vertices and triangles on the second bubble. These new vertices are tagged
with the same number than the projected vertices. With the intersection algorithm from Woop et al. (2013) we
know the signed distance to the edges of the examined triangle. If two signed distances are null, there is no need
to create a new point for the projection hits a vertex. If one signed distance is null, an edge is hit so the adjacent
triangles are split in two. If all signed distances are non null, the triangle is split in three.

Adapting the boundaries of the coalescence region for a bijection between the two bubbles.
The next step consists in adapting the meshes so that there is bijection between the edges of the polygons of the
coalescence regions. First, the polygon of the coalescence region of the first bubble is extracted. Let S′

1 et S′
2 be the

images of S1 and S2 by the projection defined previously. If S′
1 and S′

2 do not share an edge, a set of edges must
be created to link them.

A unit vector n = (x⃗S′
2
− x⃗S′

1
)/∥x⃗S′

2
− x⃗S′

1
∥ is defined. From S′

1, the intersection of the ray from that point
and directed by the unit vector, projection of n in the plane of one of the triangles having S′

1 as one of its vertices,
and the opposite edge is constructed : a new vertex A′

1 is created (and the associated triangles). This procedure is
reiterated from this new vertex to create a series A′

i (of increasing index) of vertices until S′
2 is reached (fig. 7.7b).

Since new vertices are generated on the second bubble between S′
1 and S′

2, the same work has to be done on the
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first bubble, on the edge formed by S1 et S2. By denoting A′
0 = S′

1, A′
n = S′

2 and A0 = S1, An = S2, the new
vertices Ai on the edge are positioned to verify the relation:

d(Ai+1Ai)∑n−1
i=0 d(Ai+1Ai)

=
d(A′

i+1A
′
i)∑n−1

i=0 d(A′
i+1A

′
i)

(7.1)

with d(Ai+1Ai) the Euclidean distance between Ai+1 and Ai.
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Figure 7.7: Mesh refinement of the first bubble (a) and mesh adaptation of the second bubble (b)

Connection of the bubbles. Once the polygons are defined on each bubble, the triangles and vertices inside
the polygon are deleted (fig. 7.8a). The pairs of vertices S and S′ are merged and moved halfway between their
original position, (x⃗S + x⃗S′)/2. The connectivities of the new bubble are updated by creating two triangles for
each common edge1, as depicted in fig. 7.8a.

Remeshing after the coalescence. The mesh at the junction between the two bubbles has generally a
poor quality. This junction is smoothed with an edge-based volume conserving smoothing (Kuprat et al., 2001).
Even if the shape of the junction is satisfactory, its triangles are too large with regards to the curvature generated
by the coalescence. It is necessary to refine the mesh in the neighborhood of the junction. Each triangle sharing
a vertex on the junction is split without resorting to surface reconstruction. The quality of the reconstruction
would be bad because of the lack of resolution. Badly shaped triangles are deleted. The transport by the velocity
field in the next time steps will help improve the quality of the mesh with the surface tension.

7.2 Breakup of a ligament

A method for the breakup of a ligament is now presented. Some of the steps are similar, but the distance is
computed with the vertex normals.

Identification of the bubbles whichwill break. The breakup method is activated for a bubble when
the distance along the vertex normal is inferior to d3 (d3 = h the Eulerian mesh spacing, for example). The mesh
is separated based on a distance criterion d4 which is chosen superior to d3. Regions of breakup are identified,

1Another way to connect the two bubbles would be to reconnect the triangles with equivalent edges.
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(a) Deletion (b) Merging

Figure 7.8: Connecting the two bubbles

delimited by segments. Isolated segments are ignored. Linear interpolation is also used to improve the polygons
delimiting the regions. Connected regions are treated like in coalescence. We may refer to these regions as clusters,
and they are delimited by polygons. These clusters are then due to be separated. We may merge clusters based on
several criteria. For example if a cluster has a small area compared to the area of the bubble, we may merge it with
one of its neighboring clusters, thus cancelling a separation. We also compute an average normal for the cluster. If
the minimal dot product with this average normal and the normals of the cluster is positive, we may merge this
cluster with one of its neighbors. This can prevent identifying clusters at the end of a ligament.

Mesh segmentation. The final clusters are separated in different bubbles. The holes caused by the mesh
segmentation are filled with a patch of triangles along the polygons separating the clusters. The patches are
smoothed with the edge-based volume conserving smoothing (Kuprat et al., 2001). Bubbles which are smaller
than the distance criterion can either be deleted or maintained. If the small objects are deleted, their volume is
redistributed equally to the structures that were in contact with it. The advantage is that the newly formed bubbles

are distant, this prevents intersections. If the small bubbles are maintained, they have to be displaced with a SGS
model to resume the computation without provoking intersections.

Entrapment. Air entrapment may be seen as a breakup event for the other phase, so the breakup procedure
is adapted and a ray is generated on both sides of the interface to detect both breakup and entrapment events
(fig. 7.9). The difference with air entrapment is that it does not generate a new bubble of the same phase but a
bubble of the other phase, so the newly formed Lagrangian mesh must be added to the current Lagrangian mesh.
Entrapment is detected when the newly formed part has not the same orientation: the volume is negative. During
air entrapment, we may prefer to keep the subgrid bubbles which are trapped inside the original bubble.
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Figure 7.9: Air entrapment, the ray is illustrated in red, the cubic cells are the scalar control volumes used to
accelerate the distance computations, the part of the interface that was examined for the current vertex
is illustrated in gray.

7.3 Simple coalescence and breakup test cases

We employ the coalescence and breakup methods in four test cases with simple topological events: breakup of a
drop due to variable tension, breakup of a drop in a shear flow, binary collision of identical droplets (followed
by coalescence and reflexive separation) and binary collision of unequal droplets (followed by coalescence and air
entrapment).

7.3.1 Breakup generated by a variation in surface tension

We consider the case presented in Abu-Al-Saud et al. (2018), where a bubble breaks due to a variation in surface
tension. A drop of diameter D = 2 is placed at the center of a domain of dimensions 7D × 3D × 3D with
Dirichlet boundary conditions. The Laplace number (La) is thus defined:

La =
ρ1σ0D

µ1
(7.2)

where ρ1 and µ1 are the density and viscosity of the bubble. The fluid properties are summarized in (table 7.1).

ρ1 ρ2 µ1 µ2 g σ0 La

(kg.m−3) (kg.m−3) (Pa.s) (Pa.s) (m.s−2) (kg.s−2) −
1 25 1 25 0 1.72 3.44

Table 7.1: Fluid and physical properties.

The surface tension coefficient varies in the x-direction fig. 7.10, it is non-null in the whole domain:

σ(x) = σ0max(1− 1.25|x/R|, 0.1) (7.3)
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We use the Integral Formulation (IF) with Peskin distributions since it takes into account variable surface tension
coefficients. Peskin’s functions are also used for the velocity interpolation. Symmetry boundary conditions are
used. The breakup method is activated with an activation criterion d3 = 4h with h the Eulerian mesh spacing and
a breakup criterion d4 = 6h as depicted in fig. 7.11. The structure smaller than the breakup criterion is deleted
and its volume is distributed equally to the adjacent bubbles.

Figure 7.10: Distribution of the non-dimensionalized surface tension σ/σ0 on the bubble at t = 0, test case from
Abu-Al-Saud et al. (2018)

Figure 7.11: Breakup due to variable surface tension

7.3.2 Shear flow

We consider a drop sheared by two opposite velocities (Li et al., 2000; Razizadeh et al., 2018). The domain
dimensions are 3× 1× 1. A coarse mesh is used: dx = dy = dz = 1/32, there are 16 cells per drop diameter.
The breakup criterion is d4 ≈ 0.5. No-slip boundary conditions are used in the Z direction, and periodic in the X
and Y directions. The liquids have the same density and unit viscosities. The drop has a radius R and viscosity µ.
Two plates are placed at a distance of d. A shear rate is imposed with u the magnitude of the velocities of the plates:

γ̇ =
2u

H
(7.4)

The Reynolds and capillary numbers are thus defined:

Re =
γ̇a2

ν
(7.5)
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Figure 7.12: Breakup of a drop in a shear flow: distance contour

Figure 7.13: Breakup of a drop in a shear flow: cluster identification

Ca =
aγ̇µ2

σ
(7.6)

We perform a simulation with Re = 0.2 and Ca = 0.42. Two parts of the sheared drop are smaller than the
breakup criterion as depicted in fig. 7.12. The breakup algorithm identifies five parts to be separated (fig. 7.13).

7.4 Binary drop collision

We attempt to reproduce the experiments made by Ashgriz and Poo (1990). Two drops of water collide in the air.
The collision outcomes are often plotted with the Weber number and the non-dimensionalized impact parameter
x which measures the offset from head-on collision:

x =
X

D1 +D2
(7.7)
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with X the distance between the straight lines crossing the drop centers and colinear to the relative velocity vectors,
D1 is the diameter of the smaller drop and D2 the other diameter. The Weber number here is defined as:

We =
ρ1D1U

σ
(7.8)

with U the relative velocity, ρ1 the liquid density and σ the surface tension coefficient. At low We, the drops
are slow enough to coalesce. In some binary drop coalescence regimes, thin films of air or water form, and this
can prove difficult to simulate. We use the Momentum Conserving and coupled solver developed in (Elouafa,
2022; El Ouafa et al., 2023). The computations are not as stable without the Momentum Conserving. We use the
Integral Formulation (IF) and Peskin’s interpolation.

7.4.1 Initialization of the velocity

For a given Weber number, we need to initialize the simulation so that the drops reach a velocity of (U/2, 0, 0) and
(−U/2, 0, 0). Coalescence can be initialized with a force to accelerate the drops like in Nobari and Tryggvason
(1996). In Rajkotwala et al. (2020), a divergence-free velocity field is initialized, with four vortices. This avoids
a pressure jump at the beginning of their simulations. In our implementation, a constant velocity is initialized
in and around the drops. The number of cells outside is determined by the stencil of the transport schemes (2
for Peskin’s interpolation), so that the vertices are initially transported with the exact velocity. However, with a
constant velocity around the drops, the divergence is not null. In Nangia et al. (2019), a projection step is used for
a droplet splashing on a film. In our implementation, the velocity field is made divergence-free with a resolution
with the coupled solver (Ouafa, 2021), equivalent to a projection step.

In the i scalar control volume Vi, we integrate the divergence di:

di =
∑

f

v · nSf (7.9)

where Sf is the surface of the face f of the scalar control volume i.
We define the relative error on divergence in l∞ and l2 norms as:

l∞ =
max|di|

max(
∑
f

|v · nSf |)
(7.10)

l2 =

√√√√√√

∑
i
Vi(di)

2

1
2

∑
i
Vi

∑
f

(v · nSf )
2 (7.11)

The projection step reduces the divergence error in l2 and l∞ norm, as we can see in table 7.2 for the case
We = 30.

l2 l∞

Before projection 1.0 3.1 × 10−1

After projection 1.5 × 10−1 1.1 × 10−3

Table 7.2: Example of divergence errors before and after projection with a preconditioned residual of 10−4

The parameters are summarized in table 7.3 for both cases.

99



We U D1 D2 ∆ x D1/h

23 1.44 8.0 × 10−4 8.0 × 10−4 1.00 0.05 25.6

30 2.05 5.2 × 10−4 8.0 × 10−4 0.65 0.05 16.6

Table 7.3: Fluid and physical properties for the binary drop collision cases, D1 is the diameter of the smaller drop
and D2 the other diameter, h is the Eulerian mesh spacing

7.4.2 Reflexive separation,We = 23

Two equal drops collide, coalesce and form a thin film, after that a reflexive separation occurs. The film breakup is
not implemented, so numerical breakup does not happen. The thin liquid film is ill-resolved and this delays the
reflexive separation. We would very fine a fine Eulerian resolution or a Sub-Grid Scale model to simulate the film
correctly. The following criteria are used: coalescence criterion d2 = 3h, coalescence activation criterion d1 = 2h,
breakup criterion d4 = 3h for a mesh 128× 64× 64. We use a CFL of 0.5, based on convection.

Figure 7.14: Binary drop collision, We = 23

7.4.3 Air entrapment,We = 30

Two unequal droplets collide and coalesce with We = 30. A bubble is trapped by the newly formed drop. We
use a mesh 96× 64× 64, with a CFL of 0.5. The following criteria are used: coalescence criterion d2 = 3h/2,
coalescence activation criterion d1 = h, breakup activation criterion d3 = h and breakup criterion d4 = 3h/2.
The method for the coalescence between two bubbles is activated between the two first frames of fig. 7.15. The
breakup method identifies a "ligament of air", which is cut as shown in fig. 7.16. The subgrid bubble, i.e. the
trapped air bubble, is not removed and thus conserved in the same data structure as the drop. A Sub-Grid Scale
model is required to represent the dynamics of air entrapment. The two structures are side by side and with the
smoothing step they intersect each other and it is not possible to resume the computation.

7.5 Summary

The proposed methods for coalescence and breakup can be used for simple topological changes, and the
simulations come to a qualitative agreement with numerical and experimental test cases. Not all topological
changes are handled yet, like the breakup of a liquid sheet. For now, the criteria are geometric, we did not
include a coalescence or breakup model. For the breakup method, the distance may be computed with
several rays like in Shapira et al. (2008) to obtain a more regular distance. For complex topological changes,
resorting to an implicit representation of the interface seems necessary.
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Figure 7.15: Before air entrapment, simulation of the collision We = 30 from the experiment of Ashgriz and Poo
(1990)

Y X

Z

junction

2

1

Y X

Z

Figure 7.16: Air entrapment, simulation of the collision We = 30 from the experiment of Ashgriz and Poo (1990).
The two pictures are obtained by clipping the Lagrangian mesh in the Y direction. On the left,
the identified regions are coloured. On the right, the trapped bubble intersects the drop after the
smoothing step, as no SGS model is employed.
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Conclusions and perspectives

A Front-Tracking method was presented. The influence of the remeshing methods and criteria on the approxima-
tion of the curvature, position and volume was appreciated with two unsteady analytical test cases. The expanding
and shrinking test case is simple: with a spherical shape, the exact curvature is constant at each timestep, and the
mesh is almost homogeneous. The second test case, with a surface deformed in a radial velocity field, allowed us to
test the adaptive remeshing criteria along with the three edge splitting methods on a surface with spatially varying
curvature. The use of polynomial approximation for the edge splitting and collapsing generally improves the
approximation of curvature, position and volume. We observed that even though the adaptation to curvature was
interesting with exact velocities, it was less beneficial with interpolated velocities when the velocity field presents
strong variations. This is understandable since the numerical curvatures are used in the remeshing criterion and
position errors accumulate.

The developed Front-Tracking method was then compared with a VOF method to appreciate the influence of
the coupling of the Lagrangian mesh with the Eulerian grid. It was observed that the formulation of the average
viscosity has a significant impact on the shape of the bubble. Likewise, the shape of the bubble changes noticeably
depending on the resolution of the Lagrangian mesh.

A method for coalescence and a method for breakup were proposed, based on geometrical criteria. These two
methods are activated by distance criteria and rely only on the interface mesh, without resorting to a supplemen-
tary grid. These methods were employed on numerical and experimental configurations from the literature to
appreciate their robustness and performances.

When the velocity field is not accurate enough, the adaptive remeshing to the curvature cannot be employed,
otherwise unphysical features are tracked and the quality of the simulation is not improved.

Concerning the resolution of the Navier-Stokes equations, using a Sub-Grid Scale model, Adaptive Mesh
Refinement, a GFM or a two-fluid formulation like in Tavares et al. (2021) would provide the Front-Tracking
method with a more physical velocity field. The computation of the surface tension may be improved, for example
with an Integral Formulation without Peskin’s distributions, i.e. by computing the intersections of the Lagrangian
mesh with the Eulerian grid, like in Popinet and Zaleski (1999). The parallelization of the Front-Tracking method
will be necessary to go further in convergence studies for the rising bubble case.

As for topological changes, the proposed methods only work for simple cases. The classification of the liquid
structures needs to be improved to decide which structures should be merged or separated. Robustness is an issue
when only using the explicit representation of the interface. To the best of our knowledge, other Front-Tracking
methods in the literature resort to a supplementary grid for complex topological changes.
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A Comparison of four Runge-Kutta schemes
with a three-dimensional deformation of
a sphere

LeVeque (1996) proposed a test case where a sphere deforms in an analytical velocity field described in eq. A.1
where T = 3, and then returns to its initial position and shape. The sphere of radius R = 0.15 is initially centered
at (0.35, 0.35, 0.35) in a unit domain: [0, 1]3. We consider the position error in l∞ norm, with rei = R = 0.15.
First, we study the time integration schemes (subsection 2.5.2, on page 15) with exact velocities, without remeshing,
with a mesh of 323, and a Lagrangian mesh of 1280 faces (fig. A.1). For this velocity field, the RK1, RK2, SSP-RK3
and RK4 have respectively 1st, 3rd, 3rd and 5th orders in time, as long as machine error does not come into play.
The position errors are then evaluated for the transport with spatial interpolation (PERM, fig. A.2). Here the
intermediate velocities are not known, so 2nd order Adams-Bashforth extrapolations are used, which degrades the
order of convergence of the RK2, SSP-RK3 and RK4 methods.

u(x, y, z, t) = 2sin2(πx)sin(2πy)sin(2πz)cos(πt/T )

v(x, y, z, t) = −sin(2πx)sin2(πy)sin(2πz)cos(πt/T )

w(x, y, z, t) = −sin(2πx)sin(2πy)sin2(πz)cos(πt/T )

(A.1)
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Figure A.1: Comparison of Runge-Kutta schemes, exact velocity, CFL based on a mesh of 323, and a reference
velocity U = 2
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Figure A.2: Comparison of Runge-Kutta schemes, PERM interpolation, mesh of 323, CFL based on a reference
velocity U = 2
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B Computation of the volume fraction:
Ray-Casting method

We describe the method employed to compute the volume fraction and the phase
indicator.

The Ray-Casting method is used to compute the phase indicator χ and the volume fraction C in the scalar
control volume (i, j, k) of the Eulerian grid, denoted χ(i, j, k) and C(i, j, k). For every scalar node (i, j, k),
we wish to know if it belongs to the interior of he region enclosed by the Lagrangian mesh or its exterior. This
problem is known as the "Point-in-Polygon" problem, an overview of the methods employed to solve it can be
found in Ogayar et al. (2005). The Ray-Casting method is based on the Jordan curve theorem. According to
the Jordan Curve theorem, a plane simple (which does not intersect itself) closed curve divides the points of the
plane into two distinct domains. By considering two points A and B, a ray is cast from A to B. If the number
of intersections of segment [AB] is even, points A and B are in the same phase, A and B are in different phases
otherwise.

In our case, the triangle mesh separates the computation domain into two phases. For a given node (i, j, k),
which we denote A, we choose a point B outside of the domain (whose phase is set according to the boundary
conditions). By computing the number of intersections between the ray [AB] and the triangle mesh, we can tell if
the points A and B are in the same phase or not. It is however not necessary to examine all triangles for each node.

Localization of the triangles. The triangles of the Lagrangian mesh can be located in each scalar control
volumes, and we may test only the triangles belonging to the scalar control volumes crossed by the ray. With a
cartesian Eulerian mesh, the algorithm can be further improved by casting rays in a fixed direction, such as X (a
fixed direction in the Cartesian coordinate system, aligned with the Eulerian grid) (Sarthou et al., 2011). Instead of
computing the node values independently, the nodes are examined in rows, aligned in the X direction, so that the
number of intersections nintcan be simply incremented in successive cells. This reduces the number of examined
triangles, because a node (i+ 1, j, k) would require to examine the same triangles as (i, j, k), with the triangles
located between them in addition.

Computation of the phase indicator. Algorithm 5 advances in a fixed direction aligned with one of the
grid axes such as X. The function Intersection returns true if the segment [AB] intersects the triangle. Figure B.1a
illustrates the Ray-Casting method for a row of scalar control volumes in the direction of the ray. The triangles are
located in the scalar control volumes, so the intersection tests are performed in two steps. The first test examines a
segment from the left Y Z face (in the X direction) of the scalar control volume to the scalar node. A second ray is
cast from the scalar node to the right face. The intersections of this second ray are counted for the next cells.

Computation of the volume fractionwith a scalar control volume refinement. The Ray-
Casting method gives a binary value: the phase indicator χ. By subdividing the scalar control volume and applying
the Ray-Casting method to the subdivisions, the volume fraction can be approximated (fig. B.1b). The volume
fraction is approximated by a weighting with Vc the volume of the scalar control volume and Vi and χi the volume
and phase indicator of its ith subdivision:

C =
1

Vc

∑

i∈subdivisions
Viχi (B.1)
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Algorithm 5: Ray-Casting
1 for k = startz,endz do

2 for j = starty,endy do

3 nint= 0
4 for i = startx,endx do

5 for triangle in scalar control volume(i,j,k) do

6 if Intersection then

7 nint= nint+1
8 end

9 if nintis even then

10 χ(i, j, k) = 0
11 else

12 χ(i, j, k) = 1
13 end

14 end

15 end

16 end

Scalar control volumeScalar control volume

Last ray for current cellLast ray for current cell

Intersection for next cellIntersection for next cell

11 22 33 44

Scalar nodeScalar node

Lagrangian gridLagrangian grid

(a) Computation of the phase indicator

Scalar control volumeScalar control volume Scalar control volume refinementScalar control volume refinement

Last ray for current cellLast ray for current cell

Intersection for next cellIntersection for next cell

Scalar nodeScalar node

Lagrangian gridLagrangian grid

11

4433

22

Refinement nodeRefinement node

(b) Computation of the volume fraction

Figure B.1: Ray-Casting
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(a) Refinement of the scalar con-
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(b) One level of refinement, the
rays illustrated in the figure are
used for a more precise evalua-
tion of the volume fraction

Figure B.2: Refinement of the scalar control volume around the interface

The scalar control volumes are subdivided when triangles are located in the vicinity, as illustrated by the slice view
in fig. B.2a where one level of refinement was employed. Subdivisions are only used in the vicinity of the interface,
where the count of located triangles is not null. The triangles are then located on a finer level : on the subdivisions,
starting from the triangles already located in the scalar control volume. Figure B.2b illustrates the refinement of
the scalar control volume in 3D. The Lagrangian mesh represented in gray is the part that was located on the scalar
control volume to accelerate the computation of the intersections. The red ray in each subdivision leaves from the
left face to the scalar node and the blue ray leaves from the scalar node to the right face. The volume fraction is only
computed in the cells where the interface is located. Otherwise it has the same value as the phase indicator. In the
example, there is one level of refinement so the scalar control volume is divided in 23 subdivisions and intersections
are tested in each subdivision.

Intersection between a ray and a triangle. If the ray hits an edge or a vertex, the same intersection is
counted more than once, and this produces an error in the volume fraction for the current cell and the following
cells in the ray direction. We use the "watertight" intersection test from Woop et al. (2013) instead of other
methods such as the well-known procedure presented in Möller and Trumbore (1997). The latter does not ensure
consistency at edges and vertices because it chooses one vertex among the three forming one triangle and then
compute the intersection based on this vertex. The problem is that a shared edge or vertex can be computed
differently depending on the triangle. The method proposed by Woop et al. (2013) computes the three signed
distances to the edges, which guarantees consistency. In our case, we not only require a watertight algorithm
but we also need to count only once an edge and once a vertex if the ray hits exactly at an edge/vertex within the
machine error. If such a case is encountered, our algorithm recasts a ray with an origin shifted in the Y and Z
direction with a small distance ϵ.

Ray-Castingatthe limitsofthecomputationdomain. Some changes are necessary when the interface
is near the limits of the computation domain. The first ray in a scalar control volume starts at the limits of the scalar
control volume. If some triangles were right at the limit of the computation domain, the Ray-Casting algorithm
could miss some intersections. We need to count the intersections before the wall and we move the markers slightly
outside the domain to detect the intersections. At the last scalar control volume we count intersections up to the
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last subdivision, that is to say : we do not detect intersections between the center of the last subdivision and the
wall. In our implementation, when an element is in range of a wall, defined by a tolerance, the marker is shifted
outside of the domain so that the Ray-Casting algorithm detects the element. The marker is not shifted at the exact
limit of the domain but slightly outside. For instance, when an element is near a wall, say the left wall x = xmin:
when the X coordinates of the vertices of an element are inferior to a threshold, these X coordinates are modified
to xmin − ϵ with ϵ = h× 10−10 (h Eulerian grid spacing) for instance. The rays are cast at the center of the scalar
control volume: for instance at (xmin, ymin, zmin). By shifting the markers slightly outside of the domain, no
intersection is missed. When computing the volume fraction at the wall with the refined Ray-Casting, only the
contributions of the subdivisions inside the computation domain are taken into account.

Influence of the number of subdivisions in the raycasting algorithm. The Vofi library (Bnà
et al., 2016) uses a variable number of nodes in each direction from 4 to 20 to integrate an analytical expression of
the interface. We compare our results with the Vofi library for the volume fraction of a drop. Among the different
sources of errors, we may cite the approximation of the surface by triangles, the limited number of rays and their
position with regards to the interface.

The number of refinements influences the error on the volume fraction. With n levels of refinement there are
2n subdivisions in each direction. The error on the volume fraction for a bubble of radius R = 0.25 centered at
(0.5, 0.5, 0.5) in a cubic domain of dimensions 1× 1× 1 is computed with the Vofi library (Bnà et al., 2016).
The order of the error is nearly one for a 323 mesh (fig. B.3).

2 4 8 16
Number of subdivisions

10 2

10 1

L2  e
rro

r

Eulerian 32 lagrangian 40
Eulerian 64 lagrangian 40
Eulerian 128 lagrangian 40
Eulerian 32 lagrangian 80
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Eulerian 32 lagrangian 160
Eulerian 64 lagrangian 160
Eulerian 128 lagrangian 160
First order slope

Figure B.3: l2 error of the volume fraction compared to Vofi, in function of the number of subdivisions, for
different Eulerian grids and Lagrangian meshes
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Figure C.1: Sphere case, no edge collapsing, no volume correction, errors at the middle (left) and end of the
simulation (right), l2 and l∞ norms
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Figure C.2: Sphere case, without edge collapsing, with volume correction, errors at the middle (left) and end of
the simulation (right), velocity-based volume correction (VBC), no volume correction and homothety
(HR) see section 2.10, on page 18
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D Radial

D.1 Distance computationwith a discretized reference surface

In Garland and Heckbert (1997), the approximation error Ei sums a distance error from the vertices of the
reference mesh Xn to the examined discretized surface Ti plus the error from the vertices of the examined mesh Xi

to the reference discretized surface Tn with the minimal Euclidean distance dist (eq. D.1). In Hu et al. (2017), the
one-sided Hausdorff distance is approximated (maximum of Euclidean distance).

Ei =
1

cardXn + cardXi


 ∑

x∈Xn

dist2(x, Ti) +
∑

x∈Xi

dist2(x, Tn)


 (D.1)

We could define a fine reference mesh with exact positions. Yet, if we want to compute a curvature error with
the fine mesh, we would need to interpolate curvature on the mesh under study, based on the curvature computed
at the surrounding vertices or employ a more general method, able to compute the curvature at any point on the
discretized surface. For a vertex on the reference mesh, the closest point on the mesh under study does indeed not
necessarily coincide with a vertex of the mesh. Supplementary figures are presented, with l2 and l∞ norms and in
zones Z1 ∪ Z2 ∪ Z3, Z2 and Z3.

D.2 Exact position
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Figure D.1: Exact position, whole domain, l2 norm in fig. 4.13
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Figure D.2: Exact position, zone 3, whole domain in fig. 4.13
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Figure D.3: Exact position, zone 2, whole domain in fig. 4.13
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D.3 Influence of refinement diffusion
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Figure D.4: Exact position, zone 4, influence of refinement diffusion, l2 norm in fig. 4.15
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Figure D.5: Exact position, zone 3, influence of refinement diffusion, whole domain in fig. 4.15

123



10−2

10−1

100
√
( ∑

S
i(
κ
i
−
κ
e i
)2
) /

(∑
(S
iκ
ie

2
))

100 101

κh

10−2

10−1

100

m
ax
|κ
i
−
κ
e i
|/
|m

ax
(κ
e i
)|

10−3 10−2 10−1

1/
√
N

100 101

κh

10−2

10−1

100

√
( ∑

S
i(
κ
i
−
κ
e i
)2
) /

(∑
(S
iκ
ie

2
))

10−3 10−2 10−1

1/
√
N

κd : - 1/2 1/4 1/8 1/16 1/32

100 101

κh

10−2

10−1

100

√
( ∑

S
i(
κ
i
−
κ
e i
)2
) /

(∑
(S
iκ
ie

2
))

10−3 10−2 10−1

1/
√
N

Refinement diffusion λ: 0.25 0.5 0.75

Figure D.6: Exact position, zone 2, influence of refinement diffusion, whole domain in fig. 4.15
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D.4 Influence of weighting in least-squares
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Figure D.7: Exact position, whole domain, influence of weighting, Wendland’s RBF (Wendland, 1995), R =
3Rmean/2, l2 norm in fig. 4.16 (on page 57)
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Figure D.8: Exact position, zone 3, influence of weighting, Wendland’s RBF (Wendland, 1995), R = 3Rmean/2,
whole domain in fig. 4.16 (on page 57)
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Figure D.9: Exact position, zone 2, influence of weighting, Wendland’s RBF (Wendland, 1995), R = 3Rmean/2,
whole domain in fig. 4.16 (on page 57)
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Figure D.10: Exact position, whole domain, influence of weighting, Wendland’s RBF (Wendland, 1995), R =
3Rmax/2, R = 3Rmean/2, R = Rmax
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Figure D.11: Exact position, whole domain, influence of weighting, Wendland’s RBF (Wendland, 1995), R =
2Rmax, R = 3Rmean/2, R = 2Rmean
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D.5 Influence of the definition of the reference position
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Figure D.12: Exact transport, whole domain, edge middle, WALF (Jiao and Wang, 2012), edge fit (Gorges et al.,
2022), table 3.1 (on page 30), influence of the definition of the reference position, l2 norm in fig. 4.17
(on page 59)
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Figure D.13: Exact transport, zone 3, edge fit (Gorges et al., 2022), influence of the definition of the reference
position, whole domain in fig. 4.17 (on page 59)
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Figure D.14: Exact transport, zone 2, edge fit (Gorges et al., 2022), influence of the definition of the reference
position, first two points (κd = 0) removed (position error lower than 10−14, because of the small
number of points in zone 2 and those points and those points were presumably in the initial mesh)132



D.6 Influence of weighting for the new vertex position
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Figure D.15: Exact transport, whole domain, edge middle, WALF (Jiao and Wang, 2012), edge fit (Gorges et al.,
2022), table 3.1 (on page 30), influence of the definition of the reference position, l2 norm in fig. 4.18
(on page 60)
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Figure D.16: Exact transport, whole domain, reference position with minimal distance, edge fit (Gorges et al.,
2022), influence of weighting for the new vertex position

D.7 Comparison of edge refinement methods with radial reference
position

Here we denote the reference values for the i-th vertex re = re,1 and κe = κe,1.
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Figure D.17: Exact transport, whole domain, edge middle, WALF (Jiao and Wang, 2012), edge fit (Gorges et al.,
2022), table 3.1 (on page 30), radial reference position, l∞ norm in fig. D.18 (on page 136)
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Figure D.18: Exact transport, whole domain, radial reference position, edge middle, WALF (Jiao and Wang, 2012),
edge fit (Gorges et al., 2022), l2 norm in fig. D.17 (on page 135)
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Figure D.19: Exact transport, zone 3, radial reference position, whole domain in fig. D.17 (on page 135)
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Figure D.20: Exact transport, zone 2, radial reference position, whole domain in fig. D.17 (on page 135)
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D.8 Comparison of edge refinement methods with minimal distance
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Figure D.21: Exact transport, whole domain, reference with minimal distance, edge middle, WALF (Jiao and Wang,
2012), edge fit (Gorges et al., 2022), table 3.1 (on page 30), l2 norm in fig. 4.19 (on page 61)
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Figure D.22: Exact transport, zone 3, reference with minimal distance, edge middle, WALF (Jiao and Wang, 2012),
edge fit (Gorges et al., 2022), table 3.1 (on page 30), whole domain in l2 norm in fig. 4.19 (on page 61)
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Figure D.23: Exact transport, zone 2, reference with minimal distance, edge middle, WALF (Jiao and Wang, 2012),
edge fit (Gorges et al., 2022), table 3.1 (on page 30), whole domain in l2 norm in fig. 4.19 (on page 61)
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D.9 With numerical curvatures for the remeshing criteria
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Figure D.24: Exact transport, whole domain, reference with minimal distance, adaptation to numerical curvature,
edge middle, WALF (Jiao and Wang, 2012), edge fit (Gorges et al., 2022), table 3.1 (on page 30), l2
norm in fig. 4.20 (on page 63)

142



10−2

10−1

√
( ∑

S
i(
κ
i
−
κ
e i
)2
) /

(∑
(S
iκ
ie

2
))

10−1

100

m
ax
|κ
i
−
κ
e i
|/
|m

a
x
(κ
e i
)|

10−6

10−5

10−4

10−3

10−2

10−1

√
( ∑

S
i(
r i
−
re i

)2
) /
( ∑

(S
ir
e i
2
))

100 101

κh

10−5

10−4

10−3

10−2

10−1

m
ax
|r i
−
re i
|/
|m

ax
(r
e i
)|

10−3 10−2 10−1

1/
√
N

10−2

10−1

100

m
ax
|κ
i
−
κ
e i
|/
|m

ax
(κ
e i
)|

Slope=0.96
R²=1.1

100 101

κh

10−2

10−1

100

√
( ∑

(κ
i
−
κ
e i
)2
) /

(∑
(κ
ie

2
))

10−3 10−2 10−1

1/
√
N

Slope=1.3
R²=1.6

κd : - 1/2 1/4 1/8 1/16 1/32

Mesh size10−1

100

√
( ∑

S
i(
κ
i
−
κ
e i
)2
) /

(∑
(S
iκ
ie

2
))

100 101

κh

10−5

10−4

10−3

10−2

√
( ∑

S
i(
r i
−
re i

)2
) /
( ∑

(S
ir
e i
2
))

10−3 10−2 10−1

1/
√
N

Method: Edge middle WALF Edge fit

Figure D.25: Exact transport, zone 3, reference with minimal distance, adaptation to numerical curvature, edge
middle, WALF (Jiao and Wang, 2012), edge fit (Gorges et al., 2022), table 3.1 (on page 30), whole
domain in l2 norm in fig. 4.20 (on page 63) 143
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Figure D.26: Exact transport, zone 2, reference with minimal distance, adaptation to numerical curvature, edge
middle, WALF (Jiao and Wang, 2012), edge fit (Gorges et al., 2022), table 3.1 (on page 30), whole
domain in l2 norm in fig. 4.20 (on page 63)144



D.10 Influence of the time-step with numerical curvatures for the
remeshing criteria
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Figure D.27: Exact transport, whole domain, reference position with minimal distance, adaptation to numerical
curvature edge middle, Lagrangian and Eulerian CFL, WALF (Jiao and Wang, 2012), l2 norm in
fig. 4.21 (on page 64)
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Figure D.28: Exact transport, whole domain, reference position with minimal distance, adaptation to numerical
curvature edge middle, Lagrangian and Eulerian CFL, WALF (Jiao and Wang, 2012), whole domain
in l2 norm in fig. 4.21 (on page 64)146
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Figure D.29: Exact transport, whole domain, reference position with minimal distance, adaptation to numerical
curvature edge middle, Lagrangian and Eulerian CFL, WALF (Jiao and Wang, 2012), whole domain
in l2 norm in fig. 4.21 (on page 64) 147
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Figure E.1: Morton 2.4 × 10−7, 8 cells per diameter,∆t = 10−3. The results from Sharaf et al. (2017) are indicated
in black with their experimental errors. The first two rows are figures from a simulation and experiment
from Sharaf et al. (2017). Reproduced from Sharaf et al. (2017), with the permission of AIP Publishing.
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Acronyms

ALE Arbitrary Lagrangian-Eulerian 5, 71, 151
AMR Adaptive Mesh Refinement 3, 4, 68, 71, 83, 86, 105, 151
CAD Computer Aided Design 85, 151
CCL Connected-Component Labeling 83, 151
CFL Courant-Friedrichs-Lewy condition, Courant number 8, 73, 100, 151
CGAL Computational Geometry Algorithms Library 85, 151
CLSVOF Coupled Level-Set/Volume-of-Fluid 83, 151
CMF Continuous Moving Frames 29, 151
CSF Continuum Surface Force 18, 151
CUBISTA Convergent and Universally Bounded Interpolation Scheme for the

Treatment of Advection 7, 151
DIM Diffuse Interface Model 6, 151
EBIT Edge-Based Interface-Tracking 86, 151
Eo Eotvos number 71, 151
FD Fictitious Domain 4, 151
FEM Finite Element Method 4, 71, 151
FT Front-Tracking 23, 151
FV Finite Volume 4, 151
FVM Finite Volume Method 7, 8, 151
Ga Galilei number 71, 151
GB Grid-Based 85, 151
GF Grid-Free 84, 85, 87, 151
GFM Ghost-Fluid Method 7, 105, 151
HR Homothetic Rescaling 20, 41, 45, 117, 151, 165, 168
IBM Immersed Boundary Method 11, 151
IF Integral Formulation 17, 18, 23, 71, 80, 97, 99, 105, 151
La Laplace number 96, 151
LB Lattice Boltzmann 4, 151
LBO Laplace-Beltrami Operator 17, 23, 24, 151
LCRM Level Contour Reconstruction Method 12, 85, 86, 151, 165
LFRM Level Front Reconstruction Method 86, 151
LGB Locally Grid-Based 85, 151
LS Level-Set 5–7, 12, 83, 86, 151
MLS Moving Least-Squares 151
Mo Morton number 71, 151
MSA Memoryless Simplification algorithm 20, 29, 151
OFM One-Fluid Model 3–6, 151
PERM Parabolic Edge Reconstruction Method 15, 49, 65, 66, 68, 73, 109, 110,

151, 166, 168
PLIC Piecewise Linear Interface Calculation 151
RBF Radial Basis Function 57, 151
Re Reynolds number 151
SDF Shape Diameter Function 85, 151

151



SGS Sub-Grid Scale 3, 83, 84, 95, 100, 101, 105, 151, 167
SPH Smoothed Particle Hydrodynamics 4, 151
SSP-RK3 Third-order Strong Stability-Preserving Runge-Kutta method 7, 16,

73, 109, 151
VBC Velocity-Based Correction 19, 41, 45, 73, 117, 151, 165, 168
VOF Volume Of Fluid 5–7, 9, 12, 71–78, 81, 83, 105, 151, 166, 167
WALF Weighted Averaging of Local Fittings 29, 39, 54, 151
We Weber number 3, 151



Nomenclature

card T Cardinal of T 19, 151
χ Phase indicator function 17, 111, 151
C Volume fraction, color function 5, 18, 111, 151
d Reference edge length 11, 151
δ Dirac function 151
δh Smoothed approximation to the Dirac delta function 11, 151
h Eulerian mesh spacing 11, 23, 29, 37, 97, 100, 151, 171
κ Mean curvature 4, 26, 46, 151
κ1 Maximal principal curvature 26, 46, 151
κ2 Minimal principal curvature 26, 46, 151
κG Gaussian curvature 26, 46, 151
κmax The maximum of the absolute value of the principal curvatures 27,

151
N1 First neighborhood 13, 151, 165
N2 Second neighborhood 13, 37, 151, 165
Ω Control volume 17, 18, 151
µ Dynamic viscosity 151
ρ Density 3, 151
σ Surface tension 3, 4, 17, 151
θ Polar angle 46, 151
V Numerical volume, volume delimited by the triangle mesh 39, 151, 165
Ve Exact volume 39, 151
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