
HAL Id: tel-04561235
https://theses.hal.science/tel-04561235

Submitted on 26 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Architecture Design for Analog Oscillatory Neural
Networks

Corentin Delacour

To cite this version:
Corentin Delacour. Architecture Design for Analog Oscillatory Neural Networks. Micro and nan-
otechnologies/Microelectronics. Université de Montpellier, 2023. English. �NNT : 2023UMONS069�.
�tel-04561235�

https://theses.hal.science/tel-04561235
https://hal.archives-ouvertes.fr


THÈSE POUR OBTENIR LE GRADE DE DOCTEURTHÈSE POUR OBTENIR LE GRADE DE DOCTEUR
DE L’UNIVERSITE DE MONTPELLIERDE L’UNIVERSITE DE MONTPELLIER

En Systèmes Automatiques et Microélectroniques

École doctorale : Information, Structures, Systèmes

Unité de recherche UMR5506 (LIRMM)

Architecture Design for Analog Oscillatory
Neural Networks

Architecture Design for Analog Oscillatory
Neural Networks

Présentée par Corentin Delacour
Le 19 Décembre 2023

Sous la direction de Aida Todri-Sanial
et Nadine Azemard-Crestani

Devant le jury composé de

Jean-Michel Portal, Professeur, Aix-Marseille Université Président

Nikhil Shukla, Assistant Professor, University of Virginia Rapporteur

Ian O’Connor, Professeur, Ecole Centrale de Lyon Rapporteur

Damien Querlioz, Chargé de recherche, Université Paris-Sud, CNRS Examinateur

Fernando Corinto, Professeur, Politecnico di Torino University Examinateur

Kerem Çamsarı, Assistant Professor, University of Santa Barbara Examinateur

Aida Todri-Sanial, Professeur, Eindhoven Technical University Directrice de thèse

Nadine Azemard-Crestani, Chargée de recherche, LIRMM, CNRS Co-directrice de thèse

Thierry Gil, Ingénieur de recherche, LIRMM, CNRS Invité





Je dédie cette thèse à mes parents pour leur soutien permanent et leurs encouragements,
ainsi qu’à Fullmoona pour ses bonnes ondes.





ACKNOWLEDGEMENTS

To all my dear colleagues and friends who accompanied me during this journey, I give you
my warmest thanks. Special thanks to my thesis supervisors Aida Todri-Sanial and Nadine
Azemard for guiding me while giving me so much freedom to explore new ideas. I particu-
larly thank Aida for putting scientific curiosity at the forefront and exploring uncharted paths.
Through her inspirational teaching, I have realized there is nothing more important than re-
maining curious and creative while having fun during research. Above all, I thank her for the
fantastic training and for the amazing opportunities to present this work; I feel grown up both
professionally and at a personal level. I am also very grateful to Nadine for all the professional
advice and for helping me during the thesis writing. It was so uplifting to have her feedback
during this busy period. On the engineering side, I cannot thank Thierry Gil enough for his
amazing support and for all the inspiring discussions we have had for more than three years.
Thierry is the captain that everyone would love to have on board and was always here to bring
the ship to its destination. Most of the thesis achievements would not have been possible with-
out his FPGA expertise. I am also very grateful to the researchers Nikhil Shukla, Ian O’Connor,
Damien Querlioz, Fernando Corinto, Kerem Çamsarı, and Jean-Michel Portal for honoring me
as members of my thesis jury and for the very interesting exchanges we had during the defense.

A huge thanks to my colleagues and friends from LIRMM for the prolific scientific ex-
changes and the great moments we have spent together. In particular, I was fortunate to walk
alongside Madeleine Abernot during this adventure. Madeleine has always been there to bounce
ideas and save me from getting lost in the strange digital world. I also would like to give her
a big shout-out for organizing so many events that greatly contributed to building our amazing
corridor team. Also, this thesis’s proof of concepts would not have been possible without the
immense support from Laurent Deknyff. I deeply thank Laurent for sharing and applying his
great PCB design expertise to make concepts a reality. I also thank Jeremie Salles for his sup-
port during the IC design, especially for the regular meetings and for his help just before the
tape out. I express all my gratitude to Fathi Ben Ali who supported me when I was in a difficult
situation. In a few hours, Fathi shared the invaluable tips that made the IC design a success.

I am also thankful to my colleagues from the NeurONN project for the fruitful collaboration
during the past three years. I particularly thank Juan Núñez, Manuel Jiménez, María José
Avedillo, and Bernabe Linares-Barranco from CSIC, IMSE in Sevilla for the regular interactions
and interesting discussions about ONN. I thank them as well for their warm welcome during the
final consortium meeting and for making it memorable. Many thanks to Elisabetta Corti, Olivier
Maher, and Siegfried Karg from IBM in Zurich for sharing their expertise about oscillating
vanadium dioxide devices and for the great collaboration. I also thank Ahmed Nejim from
Silvaco for providing VO2 compact models and for his great sense of humor.



Among our unique team at LIRMM, also known as the gourmet squad, I deeply thank
Stefania Carapezzi for the fruitful discussions on the whiteboard and for explaining so well the
complicated physics of devices. Above all, I thank Stefania for the joy and laughs she brought
to the team, and for pushing colleagues to visit sushi restaurants, a passion that we both share.
Many thanks to Gabriele Boschetto for his advice and for bringing such a good atmosphere
into the lab and during our trips. Special thanks to Siyuan Niu for the great moments we have
spent here in Montpellier and also in the bay. I also thank her for trying to demystify quantum
computing for me, and I am looking forward to the next discussions. I thank Eirini Karachristou
for the sunshine she has brought every day and all the organizing tips. Big thanks to Camille
Couralet for being the coolest office neighbor and for always motivating the team to go out.
Also, many thanks to Cécile Romane for bringing joy at every lunch and for all the advice.

Je remercie également Geneviève Carrière d’avoir fait vivre le couloir au quotidien et pour
ses boosts énergétiques qui remontent le moral. Un grand merci aussi à Virginie Fèche pour
sa bienveillance et son dévouement envers les doctorants. Sans oublier Ana Tacuri et Faiza
Laachir que je remercie particulièrement pour leur assistance administrative et pour avoir or-
ganisé chaque mission. Merci à l’équipe STI-RX de m’avoir dépanné de nombreuses machines
et en particulier Olivier Floucat qui a sauvé mon PC une semaine avant le rendu de thèse. Je re-
mercie aussi mes ami(e)s du département microélectronique pour nos excursions salvatrices au
R.A. suivies de l’indispensable pause-café. En particulier, merci Paul, Thomas, Pierre, Ismael,
et Julien pour tous les bons moments passés en soirée où à la plage à vos côtés. Je remercie
aussi Sarah de m’avoir invité en Nouvelle Zélande à l’occasion de sa future reconversion profes-
sionelle. Un immense merci à Elena pour son énergie positive qu’elle a si bien sû transmettre,
et de m’avoir motivé à la course quand il le fallait.

Enfin et surtout, je remercie infiniment la famille et en particulier mes parents qui m’ont
toujours soutenu et encouragé pendant les études. J’espère que vous verrez en cette thèse la
continuation de mes loisirs créatifs avec juste un peu plus de maths. Merci mes frères pour tous
ces bons moments qui rechargent les batteries, en particulier Joe pour les inoubliables sorties en
montagne, et Antoine qui m’a donné goût à l’électronique analogique pendant qu’on bricolait
des systèmes hi-fi. Merci à mes grands-parents pour leur soutien lorsque j’étudiais en région
parisienne et pour les bons plats qui remontent le moral. Je remercie aussi Kerim et mes amis de
palier pour les incroyables voyages de ces dernières années qui m’ont permis de déconnecter.
Merci à Rémi pour toutes les sessions de glisse épiques, en particulier à Maguelone. Enfin, un
grand merci à tous mes ami(e)s qui me suivent de près ou de loin depuis l’enfance. Un gros big
up à Séda, Skaner, Mock, GZU, PLF, Gagui, Jo et Nilsou.



ABSTRACT

DIGITALIZATION of society creates important quantities of data that have been increasing at
an exponential rate during the past few years. Despite the tremendous technological progress,
digital computers have trouble meeting the demand, especially for challenging tasks involv-
ing artificial intelligence or optimization problems. The fundamental reason comes from the
architecture of digital computers which separates the processor and memory and slows down
computations due to undesired data transfers, the so-called von Neumann bottleneck. To avoid
unnecessary data movement, various computing paradigms have been proposed that merge pro-
cessor and memory such as neuromorphic architectures that take inspiration from the brain and
physically implement artificial neural networks. Furthermore, rethinking digital operations and
using analog physical laws to compute has the potential to accelerate some tasks at a low energy
cost. This dissertation aims to explore an energy-efficient physical computing approach based
on analog oscillatory neural networks (ONN). In particular, this dissertation unveils (1) the per-
formances of ONN based on vanadium dioxide oscillating neurons with resistive synapses, (2)
a novel mixed-signal and scalable ONN architecture that computes in the analog domain and
propagates the information digitally, and (3) how ONNs can tackle combinatorial optimiza-
tion problems whose complexity scale exponentially with the problem size. The dissertation
concludes with discussions of some promising future research directions.





RÉSUMÉ DE LA THÈSE

LA transformation de nos sociétés par le digital génère des quantités importantes de don-
nées dont la croissance a atteint une vitesse exponentielle depuis les dernières années. En dépit
du progrès technique en matière de calcul, les ordinateurs digitaux actuels suivent difficile-
ment cette tendance et sont dépassés par l’ampleur de certains problèmes, notamment liés aux
algorithmes d’intelligence artificielle et aux problèmes d’optimisation de grande échelle. La
limitation principale est liée à l’architecture même des calculateurs digitaux, à savoir la sépa-
ration du processeur et de la mémoire qui induit un ralentissement par le transfert des données,
aussi appelée le goulot d’étranglement de von Neumann. Afin de contourner cette limitation,
d’autres méthodes de calcul furent proposées distribuant le processeur et la mémoire telles que
les architectures neuromorphiques basées sur l’implémentation de réseaux de neurones artifi-
ciels inspirés du cerveau. En outre, repenser la manière digitale de calculer comme par exemple
utiliser les lois physiques et analogiques a le potentiel de réduire l’impact énergétique de cer-
tains calculs tout en les accélérant. Cette thèse a pour objectif principal d’explorer une approche
physique du calcul fondée sur des réseaux de neurones oscillants (ONN) analogiques à faible
coût énergétique. En particulier, ce travail se concentre sur (1) les performances d’une architec-
ture ONN basée sur des neurones oscillants à partir de dioxyde de vanadium et couplés par des
résistances, (2) une nouvelle architecture d’ONN à signaux mixtes calculant dans le domaine
analogique, et propageant l’information de manière digitale afin de faciliter la conception à
grande échelle, et (3) comment les ONNs peuvent résoudre des problèmes d’optimisation com-
binatoire dont la complexité croît de manière exponentielle avec la taille du problème. Pour
conclure, de potentielles applications et futurs axes de recherche sont discutés.
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CHAPTER 1

INTRODUCTION

1.1 The Need for Rethinking Computation

TODAY’S societies are facing a huge demand for extended computing capability. Since the
first industrial revolution enabled by steam-powered machines, technology has been shaping so-
cieties. The rate of change, however, has not been linear throughout history and has accelerated
in the past decades. Not long ago, sending e-mails using the Internet was a revolution of its own
whereas now, users can exchange and access in real-time any kind of information such as news,
multimedia content, etc. In 2018, the production and use of information and communication
technologies (ICT), represented more than 2% of global carbon emissions, which was similar
to the aviation industry [1, 2]. While ICT has the potential to reduce carbon emission across
other sectors [2], storing and processing data does have a cost. In 2018, it represented around
1% of the world’s electricity just for data centers [1]. In 2020, it is estimated that around 4-6%
of global electricity was consumed by the use of ICT [3]. Moreover, processing data using ar-
tificial intelligence (AI) becomes exponentially difficult. Since 2012, the number of operations
to train AI algorithms has doubled every 3.4 months [4] with very large models like GPT-3
requiring more than 1023 training operations [5]. To put this number in perspective, using a
single best-in-class chip computing 1014 operations per second [6] would require computing
for more than 30 years. In this context, it becomes crucial to minimize the energy footprint of
computation.

Unfortunately, machines generally have a complexity gap between generating and process-
ing data. For instance, it is quite "simple" for a device such as a smartphone to take a photo-
graph, whereas identifying objects or people in the photograph is a much "harder" task. Here
"simple" and "hard" can be quantified as processing time, and hence energy. Time, energy, and
space are the fundamental variables quantifying a computing device’s efficiency. Looking at the
evolution of electronics, the space variable has been optimized at an exponential rate thanks to
semiconductor technology. Moore was indeed right when predicting that the number of transis-
tors per unit area (elementary brick in today’s computation) would double every two years [7].
Despite the mind-blowing progress achieved in chip design and fabrication (the 3-nm process
node is now commercially available [8]), many tasks still remain costly for machines.

As an example, consider a self-driving car that has to spot people and objects while adapting
and planning its navigation in real-time. Currently, the combination of these tasks is so hard
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that the car’s computer consumes about 850 W just for computation [9]. Compared to the 20 W
that our brain dissipates on average, there is a clear performance gap between the best-in-class
electronic systems and living intelligence. One could argue that the computational cost could
be further reduced in the near future with more advanced technologies and chips. However, the
challenge seems even bigger when thinking about how multitasking our brain is, compared to
the very specialized chips such as the ones embedded in a self-driving car.

At first glance, we can wonder if this performance gap is due to a difference in the number
of computing elements. Neuroscientists estimate the total number of neurons in the brain as 85
billion consuming 20 W of power [10]. In comparison, NVIDIA’s recent H100 Tensor Core
chip fabricated with a 4-nm process has about 80 billion transistors and dissipates up to 700 W
[11]. Although neurons are different from transistors, the numbers of computing units in our
brain and today’s largest chips are comparable. It is then reasonable to believe that for some
tasks, the brain’s higher performance not only comes from the number of neurons but mainly
from 1) its organization and 2) the way it solves the problem.

This second assumption further questions the definition of computation itself. To compute
is defined as "to calculate an answer or amount by using a machine" [12]. In agreement with
this definition, we generally think of computing as manipulating numbers, like we would do
with pencil and paper, to solve a problem. This is similar to what digital computers do with bits
’0’ or ’1’. However, at first sight, the brain does not seem to operate like a digital computer
(mental calculating is actually hard for most of us). Hence the question: Do we always need to
calculate, i.e. manipulate numbers, to solve a problem?

1.2 Computing with Neural Networks

In the brain, information is processed by neurons that are connected by synapses (Fig.1.1a).
The field of connectomics, which focuses on studying neural interconnections, tells a lot about
how brains differ from conventional digital computers [10]. The connectivity map of our brain
consists of a highly complex network of 85 billion neurons, where on average each neuron is
connected to about 1000 other neurons. In contrast, transistors in digital computers are generally
locally confined in small circuits that only communicate with a few other neighbors.

The information encoding also differs. Neurons communicate with each other by sending
electrical pulses or spikes propagated along the axon that are converted to chemical signals
when reaching a synapse [13]. The information is then integrated into the soma of the receiving
neuron, which produces a new spike when its membrane potential is above a threshold. Hence,
compared to digital computing, the neurons also have analog variables, i.e. not only binary
ones, which evolve according to differential equations [14]. Moreover, time plays a role in the
brain operation as a burst of input spikes is more likely to produce an output spike compared to
the same number of spikes stretched in time (leaky neuron integration).

Since the last century, scientists have been inspired by the brain principle to design new
ways of computing. One of the first brain-inspired models of computation was proposed by
McCulloch and Pitts in 1943 [15]. Motivated by the "all-or-none" type of information propaga-
tion (spike), their goal at the time was to model nervous activity with propositional logic. This
led to the first representation of an artificial neuron that produces a logical output (true or false)
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depending on its variables, the types of synaptic connections (excitatory or inhibitory), and the
neuron threshold. Under certain conditions detailed in [15], the authors showed that a network
of neurons can implement logical propositions and vice-versa.
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Figure 1.1: a) Illustration of a biological neural network. Information is transmitted through action
potentials that propagate along axons [13]. Note that the transmission at a synapse involves chemical
exchanges. The information is finally integrated into the receiving soma which increases its membrane
potential. When enough charge is accumulated (threshold), the neuron emits a spike. b) Model of artifi-
cial neural network (ANN) using perceptrons. It is time-agnostic and only models the neuron threshold
and synaptic signs (inhibitory or excitatory behavior). c) Model of spiking neural network (SNN) using
integrate-and-fire neurons. It describes the integration and emission of spikes. d) Model of oscillatory
neural network (ONN). Neurons transmit oscillating signals that hold the information in their respective
phase.

In 1957, the first hardware artificial neuron called perceptron was proposed by Rosenblatt
[16] and is conceptually shown in Fig.1.1b. Similar to a biological neuron, it consists of a
processing unit that outputs ’1’, i.e. a spike if the input weighted sum exceeds a threshold.
Otherwise, the output is ’-1’. The input-output relation, here defined as the sign function, is
called the activation function of the neuron. More than 60 years ago, Rosenblatt was already
concerned by the limitations of digital computing to solve associative tasks, e.g. identifying
an object from various angles, luminosity, etc., as the only solution at the time was to store
all possible configurations. In his groundbreaking work [16], he remarks that having a lim-
ited memory for solving those tasks "seems to be incompatible with the nature of conventional
computer systems", and thus proposes a network of perceptrons that can classify large sets of
input data, without explicitly storing each element. With this model, Rosenblatt introduced the
notion of network capacity which quantifies how many patterns, e.g. sensory data, the network
can learn while accurately assigning inputs to the closest learned items. He also extensively
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contributed to multi-layer perceptrons and for instance showed that a 3-layer network is a "uni-
versal system, for which a solution exists for every possible classification" [17]. More than
25 years later, Hornik further showed that adding a third layer of neurons enables a universal
approximation, i.e. a 3-layer network can approximate any function with a given accuracy by
adding a sufficient number of hidden neurons and having the right parameters [18].

These pioneer works are the foundations of today’s deep learning techniques based on many
layers of perceptrons (with various activation functions) connected in cascade [19] and generally
trained using the back-propagation algorithm [20]. Modern neural networks can now solve
a multitude of problems with high accuracy such as the classification [21] or generation of
multimedia content [5], solving optimization tasks [22], discovering new drugs [23] or new
algorithms [24], etc. Although artificial neural networks were initially brain-inspired, they have
been mainly deployed on conventional digital computers which do not exploit the distributed
organization of neural networks.

1.3 From von Neumann’s to Neuromorphic Architectures

Most digital computers are based on the von Neumann architecture that consists of 1) an arith-
metic unit 2) a control unit, 3) a memory, and 4) input/output units [25], as illustrated in Fig.1.2a.
Like in Turing’s abstract model of computation [26], the system operates in a sequential man-
ner and is meant to execute an algorithm, i.e. a list of instructions for solving a problem. It
started the era of digital computers that we know today. Despite the amazing versatility of the
architecture (it can execute any program given enough memory), the execution speed is limited
by data transfers between the memory unit and the processing unit, the so-called von Neumann
bottleneck. Moreover, moving data also has an energy cost as in practice the bus wires have
non-zero electrical impedance. When deploying neural networks on a von Neumann architec-
ture, most of the energy dissipation actually originates from the data movement corresponding
to the synaptic weights. For instance, the energy cost to fetch data from dynamic random-access
memory (DRAM) can be as large as 200x the energy to compute in a 65 nm process [27].
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Figure 1.2: . a) Example of algorithm and von Neumann architecture to execute it. Data related to
1) the problem and 2) intermediate results travel back and forth from the memory to the processor. b)
Illustration of an energy-based computing approach. The problem is programmed by tuning the coupling
elements (memory) between several processing units that consist of oscillators in this work. The input
corresponds to the initial state Y (t = 0) set by X , or X itself. The results are encoded in the final state
value Y ∗ reached at a minimum of of a scalar energy that is minimized in continuous time.
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As this energy loss is due to a physical separation between processor and memory, bring-
ing the two together promises remarkable energy savings. It is the principle of computing-
in-memory (CIM) that proposes to compute directly with memory elements without storing
intermediate results [28]. CIM architectures have been used as accelerators for various appli-
cations using deep neural networks [29] as in principle, matrix-vector multiplication can be
computed in a single step in the analog domain using Kirchoff’s laws [30]. In essence, the idea
is to physically encode the matrix elements in physical devices laid out in a cross-bar config-
uration, where the input vector consists of voltages applied to the rows, and the output vector
is formed by column currents or voltages. The matrix memory elements can be implemented
using many various devices having their pros and cons in terms of access time, endurance,
power consumption, and precision [28]. Some of the most used and commercially available are
charge-based circuits such as static random-access memory (SRAM), DRAM, flash memory, or
resistive-based memories like resistive random-access memory (RRAM), phase change mem-
ory (PCM), spin transfer torque devices (STT), etc. [28, 29]. Note that the concept of bringing
the memory as close to the processing unit is also applicable to digital architectures that are
called processing-in-memory (PIM) architectures.

As highlighted by Mead in the 1980s [31], mitigating the data movement is the first but not
the final step before reaching brain-like performances, and rethinking elementary computation
is also necessary to further decrease the energy cost of computation. Mead stated that the com-
bination of a CIM architecture, and "using the physics of the device to do the operation" (rather
than using many transistors for a single operation), could bring up to six orders of magnitude
energy improvement. Mead proposes to harness analog computation primitives that are differ-
ent from logical operations and rather based on signal amplification (exponential activations),
time-domain integration, and addition, similar to neural networks in the brain.

Such an approach is called neuromorphic and englobes various domains from material, de-
vices, circuits, architecture, and algorithms, up to the applications [32]. The end goal of neuro-
morphic computing is to build an efficient physical implementation of an artificial neural net-
work, where synapses and neurons are spatially distributed as in the brain. Such an ambitious
and fascinating approach led to the development of spiking neural networks (SNN), sometimes
called "the third generation of neural networks" [33] (the first started with the binary percep-
tron [15, 17] and the second with neurons having continuous activations). Essentially, SNNs
mimic the spiking behavior of biological neural networks to some extent with various degrees
of fidelity [33]. The key difference with previous approaches is that SNNs have the additional
time variable as spiking neurons integrate their inputs in the time domain (Fig.1.1c). From this
perspective, the static outputs of conventional ANNs can be thought of as the mean firing rate
of an SNN. In fact, it has been shown that rate-based SNNs, i.e. which encode information in
the spike frequency, do not bring a significant performance improvement compared to feedfor-
ward ANNs [34, 35]. Instead, SNNs have the potential to take advantage of richer information
encoding in the time domain such as time-to-first spike (TTFS) that encodes information in the
first spike arrival time and is at least 4x more efficient than rate coding for image classification
[36].

Various large-scale SNN systems have been designed with different levels of biological
plausibility, depending on the applications [32]. There are fully digital systems dedicated to
brain simulation such as the SpiNNaker digital architecture [37] that can model up to 109 neu-
rons with 1012 synapses using "medium-complexity" biological models and distributed on 106

cores. Also for neuroscience emulation, systems like BrainScaleS [38], Neurogrid [39], or
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ROLLS [40] are closer to biological SNN as they involve complex neural emulators based
on analog circuits. However, compared to digital approaches, adapting and handling different
time scales can be challenging when using these SNNs for diverse applications [32]. Thus,
instead of manipulating analog signals, some SNN chips use simplified digital neural responses
to facilitate scaling and programmability with dedicated software. Two famous examples are
True North [41], and Loihi [42] chips developed by IBM and Intel which have 4096x256 and
128x1024 cores x neurons in a single chip, respectively. Although these approaches can be
thought of as neural simulation rather than emulation, they enable remarkable performances
when processing event-based sensory data, i.e. the data is transmitted at the time there is a
change in its value, such as event-based cameras or tactile sensors used in robotics [35, 43].
Moreover, owing to their rich temporal dynamics, SNNs excel at solving problems having time
dependencies such as recurrent networks, i.e. networks that have synaptic feedback loops, or
combinatorial optimization problems using the spike dynamics and stochasticity to explore en-
ergy landscapes [35, 44].

1.4 Using Physics to Solve Hard Problems

Time is a powerful ally for neural networks as we just saw that SNNs can be more efficient than
von Neumann’s computers for solving tasks involving vision, perception, or even optimization.
At the heart of SNNs, there are ordinary differential equations (ODE) with respect to time
that determine their dynamics (note that stochasticity can further be included [44]) rather than
arithmetic circuits. Thus, neuromorphic computing is a remarkable example highlighting that
computing in continuous-time can be more efficient than sequential digital calculation such as
defined by Turing [26]. We can then wonder: Are there other physical dynamical systems that
can be more efficient than digital computers? Note that this does not question the use of digital
computation in general, as it is an extremely powerful concept that can in principle solve any
problem as long the solving procedure can be described by an algorithm, also known as the
Church-Turing thesis [26].

The first outstanding analog computer that comes to mind is the quantum computer [45]. It
is based on quantum mechanics, in particular the law of state superposition, i.e. the quantum
system is simultaneously in a superposition of states where, in the context of computation, each
state corresponds to a computational result [46]. Intuitively, it is as if the quantum computer
would consider "all possible paths simultaneously" [46]. The reason is that compared to a 1-
dimensional bit in digital computers, a qubit can be described by a 2-dimensional unit complex
vector Ψ = a|0⟩+b|1⟩ where |0⟩ and |1⟩ are basis vectors. Adding a qubit to the system dou-
bles the space dimension so that an N-qubit state becomes a linear combination of 2N basis
vectors. The "trick" of quantum computing is to exploit this high dimensionality to accelerate
computations. Similar to the Turing machine, an abstract computation model for quantum com-
puters was proposed by Deutsch [45] whose state is defined by a basis vector. The quantum
Turing machine is currently the only model of computation showing an exponential speedup
when solving some challenging tasks for von Neumann computers such as integer factorization
using Shor’s algorithm [46]. Unfortunately, quantum computers currently come with an impor-
tant circuit overhead such as cryogenic cooling for superconducting qubits, control, and error
mitigation circuits which overall dissipate several kW of power [47]. Hence, the current focus
for quantum computers is high-performance computing (HPC) rather than solving problems in
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embedded systems like robotics.

What makes quantum computers unique is their exponentially large space with the number
of qubits. However, they are not the only physical systems harnessing some kind of parallelism
to compute. In fact, there are many physical-based approaches that can solve problems based
on variables that naturally evolve (due to physical laws) and interact simultaneously [48]. The
underlying principle of non-quantum physical-based computers is to encode the solutions to a
problem as attractors of a dynamical system. In other words, the physical system is designed
in such a way that its state naturally flows, i.e. evolves toward a particular region of space that
encodes the solution [49]. This natural motion can also be thought of as parallel processing as
generally, all components of the state vector evolve simultaneously in continuous-time. In the
case of SNNs, the state vector would be composed of the neuron variables such as membrane
potentials. The flow would then be determined by the synaptic connections between the neu-
rons, the neuron input-output function, and how neurons are initialized. Compared to quantum
computers, however, adding a neuron to the network does not double the space size but instead
adds a single extra dimension. Some models of computation and their corresponding hardware
are illustrated in Fig.1.3.

Quantum
Computers

Energy-
based

Neuro-
morphic

Brain-inspired
Neural Networks

Stat.
Physics

Algorithms Physics-inspired

von Neumann Dynamical systems

CPU GPU TPU

Quantum
Mechanics

Analog Ising 
machines

Parallelism

Models

Hardware

PIM/CIM

Figure 1.3: . Main models used for computing and their corresponding hardware. Most of today’s com-
puters execute algorithms that are sequential by definition. Note that the classification is not exhaustive
and algorithms can be executed on many more custom architectures such as ASICs. Similarly, the set of
possible dynamical systems used for computing is very large. Most of these approaches can be described
by ordinary differential equations that define the computation process. ONN has roots in neuromorphic
computing but can also be described as an energy-based physical system.

Although not necessary, an interesting particular case occurs when the dynamics of the
physical system can be interpreted as the minimization of some energy landscape, i.e. a scalar
quantity that is a function of the state values, and which can be thought of as a high-dimensional
surface in the state space. Having this idea in mind, the state motion can then be interpreted as a
"ball" that naturally "rolls" following the landscape curvatures (Fig.1.2b). Imagine now that the
problem to solve is an optimization task having various solutions whose quality is quantified
by a cost function depending on the problem variables. By mapping the cost function to the
energy landscape, and the variables to some components of the state vector, one can then obtain
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a solution when the "ball" stops at low energy values. Currently, there are multiple existing
systems called Ising machines (IM) governed by different physical laws which follow a common
goal: minimizing the Ising energy [50]. This concept was named after the physicist Ernst Ising
[51] who studied ferromagnetic materials in the 1920s. It describes how interacting particles
with 1-dimensional magnetic moments (spins Si =±1) tend to reach a state that minimizes the
Ising Hamiltonian H defined as:

H =−∑
i, j

Ji jSiS j −∑
i

hiSi (1.1)

where Ji j models the interaction between particles i and j, and hi is the external field, i.e. a
force that favors a spin value for particle i. This model is of particular interest as the problem of
finding the spin values that minimize H for a 3-dimensional lattice is as hard as any nondeter-
ministic polynomial-time (NP)-complete problem [52, 53], for which there is no known algo-
rithm running in polynomial time [54]. For instance, consider the traveling salesman problem
(TSP) which given a list of cities on a map, consists in finding the shortest tour that visits every
city and returns to the starting city. A brute force algorithm would test all possible (N −1)!/2
tours, a number that grows exponentially with the number of cities N. However, it is clearly
not realizable for a relatively large number of cities like N = 100, as it would involve way more
operations than the total number of atoms in the observable universe (estimated around 1080).
Despite the existence of better exact algorithms like branch and bound or backtracking which
avoid testing every single tour, the worst-case number of operations still scales exponentially
[55].

In the 1980s, Tank and Hopfield [56] proposed to solve TSP with a physical artificial neural
network (made of electrical components) whose energy landscape corresponds to the Ising en-
ergy when neurons take binary values. This groundbreaking work triggered the study of various
physical systems for solving the Ising problem. Remarkable examples are coherent Ising ma-
chines that use laser pulses to emulate up to 105 Ising spins [57, 58], quantum annealers based
on the adiabatic theorem to find the ground states of H [59], or probabilistic-bit (p-bit) comput-
ers [60, 61] that implement Boltzmann machines [62] where bi-stable stochastic p-bits devices
randomly switch such that the probability distribution of the global spin state follows a Boltz-
mann distribution ∝ exp(ηH). Interestingly, η is the "inverse temperature" and can be used
for simulated annealing [63], i.e. to emulate the temperature decrease that reduces the particle
agitation until "freezing" to a fixed state of low energy. However, one important restriction for
reaching the desired Boltzmann distribution is to sequentially update the p-bit values [62, 64],
as Boltzmann machine inferences are based on Gibbs sampling, a particular instance of Markov
chain Monte Carlo algorithm [65]. Nevertheless, as stated by authors in [60] and [66], an analog
p-bit computer could be efficiently implemented at a very large scale as noisy devices such as
magnetic tunnel junctions (MTJ) would "naturally lead to an asynchronous updating of p-bits
in the absence of a global clock signal".

Another promising low-power approach is to use classical coupled oscillators that can also
be integrated into embedded systems at room temperature and do not require bulky equipment
[67]. At first glance, oscillating devices seem similar to p-bits as by definition they are unstable
and oscillate between two maximum values. However, in general, the dynamics of coupled
oscillators are deterministic and can be interpreted as continuous trajectories in their state space
rather than a stochastic search [68]. Interestingly, when oscillators have a uniform frequency
and couplings are symmetric, i.e. Ji j = J ji, the phase motion minimizes an analog relaxation
E of the Ising energy H (such that H ⊆ E) [69]. Hence, coupled oscillators are similar to
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continuous Hopfield neural networks (HNN) [70] and can solve various problems by "shaping"
the energy landscape such that the minima correspond to solutions. In the context of AI, this
process would be called training, while for solving optimization tasks the energy landscape
would capture the problem constraints. Despite the limited use of continuous HNN in modern
AI models, its computational power has been intensively studied [70–73] and proved to be at
least as powerful as space-bounded Turing machines and can simulate "any converging discrete-
time computation" [73]. Nowadays, the oscillatory implementation and in particular the recent
development of oscillatory Ising machines (OIM) [69] sheds new light on a particularly efficient
approach for solving hard optimization problems [74].

1.5 Oscillatory Neural Networks

1.5.1 Brief ONN Introduction

Due to the distributed architecture of coupled oscillators, and because oscillating signals can
also be measured in nervous systems [75], coupled oscillators are sometimes called oscillatory
neural networks (ONN) [68]. ONNs are known for their:

1. Computational interest: One can exploit the ONN synchronization mechanism to com-
pute by encoding the information in frequency or phase between oscillators. In the latter
case and with symmetric coupling (Ji j = J ji), their phase dynamics minimize an energy
function that is equal to the Ising energy when phases take binary values [68].

2. Potential large-scale fabrication: ONNs can be built from classical electronic oscillators
at room temperature [67].

3. Possible efficient operation: Oscillators running at high frequency could solve problems
at very low energy cost. For instance, a current CMOS-ONN running at 1 GHz dissipates
only around 10 fJ per oscillation [76].

Since Huygens who first observed synchronization between coupled pendulum [77], researchers
like von Neumann [78] and Goto [79] have studied the computational properties of coupled
oscillators and first engineered them to compute Boolean functions in the 1950s. Labeled
parametron, Goto’s oscillatory circuit was used as a majority gate to solve Boolean logic, and
machines with up to 9600 parametrons were used in the early 1960s. Note that this approach
has been recently reconsidered using recent oscillator designs [80, 81]. However, at that time,
oscillatory-based logic could not compete with more scalable transistor-based logic and dis-
appeared during the following decade. A few years later, the pioneering work from Hopfield
[70, 82] has brought neural networks together with concepts of statistical physics describing
spin-glass systems with the Ising model [51]. This triggered the rebirth of oscillatory-based
computing paradigms that have been shown to minimize Ising-like energies [68, 83] and follow
remarkable dynamics derived by Kuramoto a few years earlier [84]. Nowadays, the design of
coupled oscillator systems is driven by the development of novel oscillator circuits that promise
higher scalability compared to classical LC-based oscillators. Researchers are investigating
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transition-metal-oxide devices (TMO) [85, 86], spintronic devices [87], microelectromechani-
cal systems (MEMS) [88], optical systems [58], or CMOS accelerators [74, 89, 90] as poten-
tially scalable solutions [91] for applications like digital logic [80, 81], classification [92–94],
computing convolutions [85, 95], or solving associative tasks [68, 89, 96–98] and combinatorial
optimization problems (COP) [69, 86, 99, 100]. Fig.1.4 shows a timeline of oscillatory-based
computing systems.
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Figure 1.4: Timeline of the ONN computing paradigm highlighting the inspirations and current trends.

1.5.2 Computing with ONN

ONN computing is based on the synchronization of coupled oscillators, a phenomenon that nat-
urally appears in biology, physics, or social interactions [101] and was first conceptualized by
Winfree in the 1960s [102]. To illustrate oscillator synchronization, consider a crowd of peo-
ple applauding during an event. The reader probably experienced a situation where the initial
state is quite chaotic but after a sufficient time, most of the participants end up applauding in
synchrony. From a coupled oscillator network perspective, one can model each individual as an
oscillator adjusting its frequency, i.e. increasing or reducing the clapping rate to get synchro-
nized with the neighboring crowd [103]. The Kuramoto model predicts such phenomenon [84]
which expresses the time derivative of oscillators’ phases, i.e. instantaneous frequencies as:

dφi

dt
= ωi +∑

j
Ki j sin(φ j −φi) (1.2)

where ωi is the oscillator free-running frequency. The sinusoidal interaction terms are respon-
sible for the frequency adjustment and model the adaptation of individual i to other clapping
agents j in our example. Despite its simple expression, the Kuramoto model produces very
complex dynamics depending on the connectivity (Ki j) and frequency distributions [104]. The
model describes a large variety of rhythmic behaviors [105], including ONN dynamics.
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The non-linear dynamics of coupled oscillators such as (eq.1.2) can be harnessed in many
different ways to perform intelligent tasks. However, most ONN developments fall into two
classes depending on the type of input/output encoding:

1. Frequency-based ONN: inputs are oscillator frequencies and outputs are the synchro-
nization levels between oscillators.

2. Phase-based ONN: oscillators have the same frequency and input/output are encoded in
phase between oscillators.

In a frequency-based ONN (Fig.1.5a), frequency-dependent input signals are injected into the
ONN that reacts to the input perturbations. The computation outcome consists of groups of
oscillators that lock in frequency, i.e. are synchronized. This computation scheme has been
used for image processing [95, 96, 106, 107], associative memory tasks [97, 108], or spoken
vowel classification [94, 109].

Frequency-based ONN

Input signal:

ω1 ω2

+

• Locked

• Unlocked

ω2 ω1Output state:

Phase-based ONN(a) (b)

E

ϕ

ϕ1 = 0
ϕ2 = π

t0

tf

ONN Energy

dϕi

dt
= −

∂E

∂ϕi

Figure 1.5: a) Illustration of a frequency-based ONN. The input consists of frequency-dependent signals
fed into the ONN. The latter can have oscillators locking to a common frequency and providing the
computational result. b) Schematic of a phase-based ONN. The oscillators have a uniform frequency and
evolve in the phase domain, minimizing a kind of Hopfield energy. Both modes are generally based on
synchronization, i.e. oscillators are locked in phase and/or in frequency.

In the special case where oscillator frequencies are identical and coupling elements are
symmetric (Ki j =K ji), Hoppensteadt and Izhikevich [68] have shown that the ONN is a gradient
system that minimizes an energy function through time as:{

dφi/dt =−∂E/∂φi

E =−1
2 ∑i ∑ j Ki j cos(φi −φ j)

(1.3)

In this regime, the inputs and outputs are encoded in phase between oscillators whose dynamics
depend on the ONN energy and phase initialization (Fig.1.5b). It turns out that the ONN energy
is similar to Hopfield’s energy [82] and to the Ising Hamiltonian [69], enabling a broad range
of applications from machine learning and image processing to combinatorial optimization.
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1.5.3 ONN Design Challenges

Despite the well-established ONN formalism and the various promising implementations, we
identify three main practical implementation challenges for phase-based ONNs:

1. Mapping challenge: Given a physical ONN implementation, to which extent can we
use conceptual models (such as Kuramoto’s (eq.1.2)) to model the ONN computation?
Moreover, how to map conceptual synaptic weights to actual hardware components?

2. Scaling challenge: How to ensure robust dynamics and scale analog ONNs? Today’s
problems involve thousands, even millions of variables. What kind of architecture and
control strategy could enable such large-scale implementation in continuous-time?

3. Operational challenge: How to escape undesired energy minima? There is not yet rig-
orous formalism unifying a priori two different concepts: the continuous ONN dynamics
vs. simulated annealing. Are there other deterministic approaches to escape local min-
ima?

1.6 Thesis Contributions

The current thesis focuses on energy-efficient electrical ONN architecture design with the
objective of exploring ONN computing capabilities and taking aim at the three previous chal-
lenges (Fig.1.6). Overall, the research work can be grouped into three main chapters, each one
proposing various ONN architectures and techniques aiming to cope with these problems.
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Figure 1.6: Main thesis contributions.
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1.6.1 A VO2-based ONN Architecture with Resistive Coupling

In Chapter 2, we explore a simple yet promising VO2-based ONN architecture composed of
resistively coupled relaxation oscillators made of vanadium dioxide devices (VO2) which are
transition metal oxide devices (TMO) [85, 86, 110]. Acting as hysteresis switches, VO2 devices
trigger interest since a single device in series with a transistor can produce oscillations at room
temperature [110]. Despite its compactness, a VO2-ONN has complicated dynamics and there
is no clear mapping between existing ONN formalism and the hardware. In particular, mapping
weights to coupling resistance values is currently performed by trials and errors, thus preventing
the design and learning of large-scale VO2-ONNs. Consequently, it is unknown how the VO2-
ONN memory capacity scales with the number of oscillators. Further, the ONN performance
scaling such as computation time and energy consumption remain undetermined.

To enable a more systematic design, we combine the HNN formalism with the specific VO2
dynamics to derive a mapping function which assigns conceptual weights to coupling resistance
values. Similar to HNN [82], we find in simulations that a fully connected VO2-ONN trained
with the Hebbian learning rule has a similar memory capacity that scales linearly with the
number of oscillators N, i.e. C ∝ 0.15N. Then, we evaluate the VO2-ONN performance scaling
at the device and architecture level. We find that VO2 devices in crossbar configuration undergo
a quadratic energy decrease when scaling down the device dimensions. At the architecture level,
the high ONN parallelism allows computing in quasi-constant time and enables a linear energy
scaling with increasing coupling resistance values. Finally, we benchmark the unconventional
approach with state-of-the-art neural accelerators and neuromorphic chips at the neuron level.
Our study indicates that the intrinsic operation of VO2-ONN can be competitive for oscillating
frequencies above 100 MHz.

Despite these promising simulation results, we identify two main limitations when using a
resistively coupled VO2-ONN. First, the coupling resistances producing the best accuracy only
differ by 10% at maximum, which would challenge practical implementation, especially with
novel memristive devices. Second, the binary-phase locking property is only possible when
the oscillator is biased at the edge of the oscillation region, which is non-robust as VO2 device
variations could prevent oscillations.

1.6.2 SKONN: A Scalable Mixed-Signal Approach

In Chapter 3, we propose a novel mixed-signal ONN architecture labeled Saturated Kuramoto
ONN (SKONN) that mitigates some of the previous concerns. There are three main motivations
behind the proposed architecture. In response to the mapping and scaling challenges, SKONN
has:

1. Controllable analog dynamics while computing in continuous time.
2. Digital propagation to ease scaling and interfacing with digital circuits.
3. A simple synaptic design such as a linear weight mapping with a large synaptic range.

SKONN consists of relaxation oscillators that feed their digital waveform via synaptic capac-
itors to the analog input of the receiving oscillators. Such architectural choice lead to the
following interesting features:
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• At the hardware level: By construction, the information propagates in one direction thus
enabling feedforward ONNs that we demonstrate with a XOR example. Moreover, in the
context of Ising machines, feedforward synapses can be used to implement the external
field term hi (eq.1.1). Also, oscillators are AC-coupled and are then more robust to any
variation of the oscillator operating point. Moreover, synapses can easily be programmed
using banks of switched capacitors.

• At the computational level: SKONN electrical dynamics can be reduced to phase dy-
namics with high fidelity. The obtained phase dynamics are very similar to the Kuramoto
model (eq.1.2), except for the sinusoidal term that becomes saturated, i.e. a square func-
tion. Interestingly, SKONN’s energy landscape in its phase state is closely linked to the
best-known approximation algorithm for solving the NP-hard Max-cut problem [111].
Finally, SKONN’s phases tend to naturally reach binary phase fixed points, which makes
it particularly suited for solving Ising-like problems.

To evaluate SKONN’s performance in practice, we designed a first proof-of-concept with 9
oscillators on a printed circuit board (PCB) to solve instances of the Max-cut optimization
problem. The promising results further led to the design of a 16-neuron SKONN integrated
circuit using a 65 nm CMOS technology with fully connected capability, i.e. 256 synapses
with 5 bits of resolution. The chip characterization confirmed its functional operation but also
highlighted some issues related to undesired couplings among oscillators.

1.6.3 ONN for NP-hard Combinatorial Optimization

Chapter 4 of the thesis further explores ONNs for solving hard combinatorial optimization
problems (COPs). First, we evaluate SKONN performances at the chip level and with large-
scale simulations when solving the Max-cut problem. Simulations up to 7000 oscillators using
the G-SET benchmark indicate that SKONN in free regime, i.e. without external control, is
as accurate as the Goemans Williamson [111] and CirCut [112] algorithms for Max-cut while
suggesting SKONN computes in logarithmic time only.

Second, we investigate how N coupled sinusoidal oscillators can approximate the N-city
traveling salesman problem (TSP), rather than using the Ising approach which requires N2 neu-
rons as originally proposed by Tank and Hopfield in their seminal paper [56]. Inspired by a
recent conceptual work [113] which proposes to interpret the phase permutation on the unit
circle as the TSP tour, we propose a simple implementation using negatively coupled sinusoidal
oscillators. Phase-based simulations indicate that the simple ONN can find TSP tours shorter
than 1.5x the optimal solution for N < 45. However, as the ONN is not constrained to have uni-
form spacing between phases, for some instances phases form clusters which would challenge
the phase read-out in a real implementation.

Finally, we propose a novel ONN architecture for constrained COPs designed to escape
local energy minima by going uphill in the energy landscape. Our approach is to apply the
Lagrange multipliers formalism from mathematical optimization to ONNs by combining both
gradient descent and ascent mechanisms to satisfy constraints. Similar to Lagrangian neural
networks [114], the proposed architecture labeled LagONN implements competitive dynamics
between classical and Lagrangian oscillators, resulting in a search for a saddle point in the aug-
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mented phase space. At this point, the energy is minimized along the classical phase directions
and maximized in the Lagrangian phase directions to meet the constraints. Harnessing high-
order interactions between oscillators, a LagONN architecture is specifically designed to solve
the NP-hard Maximum-3-Satisfiability problem (Max-3-SAT). LagONN simulations using the
SATlib benchmark with up to 200 variables and 860 clauses suggest that the approach can find
near-optimal solutions in polynomial time as O(N4) where it remains at most a single unsatis-
fied clause in 75% of trials. For N = 200, this corresponds to 99.88% of the 860 clauses being
satisfied with a median computation time of around 100k oscillation cycles. As Max-3-SAT
is NP-hard, finding the optimal solution probably takes exponential time. However, compared
to other physical-based approaches that trade time with exponential power, our approach could
be implemented using a bounded circuit power due to 1) variables encoded in phases and 2)
synapses having fixed amplitudes. Overall, a LagONN physical machine could be used for ap-
plications tolerating near-optimal solutions while requiring fast inference such as in real-time
systems.
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CHAPTER 2

A VO2-BASED ONN ARCHITECTURE

THIS chapter explores an ONN architecture where neurons are based on vanadium dioxide
devices (VO2) that act as switches with hysteresis and synapses are resistive devices such as
resistors, transistors, or memristors. There are two main motivations behind this architecture
choice:

1. The oscillator circuit is very compact with only three components: a VO2 device, a load,
and a capacitor.

2. The synaptic matrix can be programmed using memristors laid out in a crossbar array.

Despite the simplicity of the architecture, little is known about 1) the ONN programmability,
2) its performances such as computation time, energy consumption, and 3) its accuracy for
a given application. In this chapter, we focus on these three points by combining analytical,
numerical, and hardware experiments for the pattern recognition application as with Hopfield
neural networks (HNNs).

2.1 Introduction

2.1.1 Existing ONN Architectures

ONN for Image Processing

Although oscillatory-based computing has been studied since the 1950s [78, 79], the first ONN
hardware realizations (other than for Boolean logic) appeared only 40 years later. In 1994,
Wang and Terman [115] proposed the locally excitatory, globally inhibitory network (LEGION)
for image segmentation using an array of oscillators having excitatory couplings with nearest
neighbors and a global inhibitor. The idea is to map each pixel of an image to an oscillator where
two neighboring oscillators are coupled if the corresponding pixels have a similar intensity.
This way, oscillators belonging to the same region remain synchronized together, what the
authors call "oscillatory correlation", whereas two different regions are not synchronized due
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to global inhibition. The first LEGION implementation was proposed in 1999 [116] using
CMOS analog circuits and further developed in 2006 [117] with a 32x32 oscillator chip. More
recently, coupled oscillators using beyond-CMOS devices have been studied for various image-
processing tasks such as edge detection [96, 118] or stereo vision [106]. All these approaches
have the potential to be implemented at a large scale as oscillators are locally coupled.

ONN as an Associative Memory

In 1982, Hopfield [119] proposed a recurrent neural network (HNN) to implement associative
memories (AM), i.e. memories where stored items (with no known storage location) are recalled
by inputting partial memory items. For instance, an HNN programmed as an AM can be used to
remove noise from input images that are associated with stored images ("stored" in the synaptic
array). Intrigued by the oscillatory behavior of some neural circuits in the brain, or simply
to exploit the high parallelism of coupled oscillators, Noest [120] and Endo [99] proposed to
program coupled oscillators for associative memory applications. The dynamics of coupled
oscillators were further formalized by Hoppensteadt and Izhikevich [121], in particular how to
derive phase-based models that abstract the remaining oscillator variables such as the voltage
orbit under the weak coupling assumption. This work is the foundation for phase-based ONN
computing as the authors derived a convergence theorem for ONN which ensures global stability
for symmetric coupling by providing a Lyapunov function for the system (also called energy
function). Overall, ONN for AM behaves similarly to HNN, i.e. stored items correspond to
some minima of the energy function. Compared to HNN, however, ONNs have the potential to
learn patterns encoded with continuous values on the unit circle by extending synaptic values
to the complex domain (adding synaptic delays) [122].

The first ONN hardware for AM was proposed in [68] using phase-locked loop circuits
(PLL) whose phase evolution satisfies the ONN convergence theorem with various oscillating
waveform shapes. PLL-based ONNs were further studied by Jackson and Shi [123, 124] but
the impact of undesired transmission delays finally led the authors to choose a PLL-free archi-
tecture demonstrated with a fully connected 100-neuron chip in 28 nm CMOS technology and
operated in the digital domain [89]. Inspired by Jackson’s work, digital architectures have been
recently developed by Abernot on FPGAs [125] (120 fully connected neurons) which facili-
tate the ONN programmation and controlling the dynamics. However, there is currently some
resource overhead that prevents large FPGA scaling due to digital arithmetic circuits based on
multiply and accumulate operations (MAC), compared to analog CIM architectures that harness
analog operations.

Another fascinating approach proposed by Hoppensteadt and Izhikevich in 1999 [126] is to
replace the pairwise static connections Ji j with dynamic connections, i.e. synaptic couplings
are embedded in a time-varying signal to avoid implementing N2 synapses. Having oscillators
with different frequencies, the idea is to connect each oscillator to a central unit (via N connec-
tions) which in turn sends a signal a(t) that is the sum of N2 harmonic signals weighted by all
possible synaptic weight Ji j. The role of each harmonic signal is to "connect" two oscillators
such that the average phase difference follows Kuramoto’s dynamics (eq.1.2). Thus, the N2

synaptic overhead is replaced by the challenge of generating a(t). This concept was further
studied and formalized by Itoh, Chua [127], Corinto and colleagues [128] with the ONN star
topology. Notably, they have shown that in addition to reaching static phase fixed points cor-
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responding to memorized items, the ONN can also successively find several patterns or create
new spurious patterns, what the authors call dynamic memories. Interestingly, the dynamic cre-
ation of spurious patterns would be analogous to the emergence of new ideas in our brain, or
"flash of inspiration" that could help us learn new concepts [127]. Recently, this architecture
has been further explored in the context of Ising machines [129]. Although the authors discuss
the potential implementation of a modular architecture where each module is driven by its own
modulation signal a(t), it is not clear yet how to generate such modulation.

ONN for Classification

ONN synchronization is also interesting for accelerating classification tasks in modern neural
networks. Authors like Corti [85] and Nikonov [95] both proposed to use ONNs to accelerate
convolution operations that are at the heart of modern convolutional neural networks (CNN)
for image classification [21]. Moreover, computing in the frequency domain is not restricted
to energy-based computation and broadens the spectrum of applications. For instance, in [109]
and [94], the authors propose to use frequency-based spin-torque and phase transition nano-
oscillators to solve spoken vowel classification tasks in real time, respectively. The principle is
to reduce input vowels to two frequencies fA and fB called "formants" and inject them into a 4-
node ONN that assigns each input sample to a vowel by reading the synchronization state of the
oscillators with inputs fA and fB. As demonstrated in these studies [94, 109], operating the ONN
in the frequency domain enables a relatively simple supervised learning procedure which con-
sists of 1) applying the training frequencies, 2) measuring the resulting ONN synchronization
frequencies and computing the error (or loss), and 3) tuning the individual oscillator frequen-
cies to match the training labels. This last step is possible because the gradient of the loss with
respect to some oscillator parameter is known (such as the oscillator bias current). This con-
trasts with phase-based ONNs for which the frequency is set and learning consists in finding the
ONN synaptic weights. Given the final phase state and a phase target, it is not straightforward
to find the weight update, although there are promising local learning rules such as equilibrium
propagation [130, 131] and its holomorphic variant [132].

When learning the weights is too difficult, another approach is to use coupled oscillators
in a reservoir topology [133], also called echo-state networks [134]. The principle of reservoir
computing (RC) is to harness the non-linear input-output function of a dynamical system whose
internal configuration is unknown (black box) to classify or generate data. The key advantage
of RC is that the reservoir weights are randomly set, thus greatly simplifying the training phase.
Overall, the reservoir’s role is to project the input data to a higher dimensional space before it
can be classified by an output linear function. In RC, the reservoir has a fading memory, i.e. a
short-term memory, so it can process time-dependent signals that are compatible with ONNs.
For instance, using the non-linear amplitude of a single magnetic tunnel junction (MTJ), authors
in [93] have shown that the oscillating device can implement a reservoir computer to classify
spoken digits with high accuracy by scaling the input signal to the oscillator time constants
(short-term memory). Similar spintronic-based reservoirs have also demonstrated the potential
combination of amplitude, frequency, and phase non-linearity for classification [135, 136].
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ONN for Combinatorial Optimization

One of the most promising applications for ONN is to solve NP-hard combinatorial optimization
problems (COP). Like for HNNs, the motivation arises from the intimate link between the ONN
energy E (eq.1.3) and the Ising Hamiltonian H (eq.1.1). For most ONNs, E forms an analog
relaxation of H where E(φ∗) ∝ H(S) when phases take binary values as φ∗ = π(1+S)/2. We
take the Kuramoto dynamics (eq.1.2) as an example and rewritten here for Ki j = K ji:{

E =−1
2 ∑i ∑ j Ki j cos(φi −φ j)

dφi/dt =−∂E/∂φi = ∑ j Ki j sin(φ j −φi)
(2.1)

Observing that cos(φ∗
i − φ∗

j ) = Si S j, it is clear that E(φ∗) ∝ H(S) and φ∗ is a fixed point of
the dynamics, i.e. dφ∗/dt = 0. Unfortunately, φ∗ is not necessarily a stable fixed point and is
often a saddle point in practice as pointed out by Bashar et al. [137]. In other words, there is
no guarantee that the ONN reaches φ∗. To overcome this situation and reach Ising-like energy
minima, Wang et al. [69] proposed to use sub-harmonic injection locking (SHIL) which consists
in injecting a harmonic signal to every oscillator at twice the oscillating frequency so that the
oscillator dynamics become:{

E =−1
2 ∑i ∑ j Ki j cos(φi −φ j)− KS

2 ∑i cos2φi

dφi/dt = ∑ j Ki j sin(φ j −φi)−KS sin2φi
(2.2)

with KS the strength of the SHIL signal. Its effect can be deduced from the new expression for
E: SHIL adds "wells" of depth KS/2 at every multiple of π in all phase directions. When KS is
large enough, it is likely to transform φ∗ into a stable fixed point meaning that in practice, the
oscillators tend to phase-lock to binary phase states φ∗. In their groundbreaking work, Wang
et al. [69] named such ONN configuration Oscillatory Ising Machine (OIM) and implemented
proof-of-concepts on PCB with up to 240 spins. This work triggered great enthusiasm in the
field as the results show that a physical OIM can find approximate solutions for the NP-hard
Max-cut problem much faster than software approaches with similar or higher accuracy.

Following a similar principle, many various OIM chips have been showcased using CMOS
technology or novel devices. Remarkable CMOS chips with 560 [74] and 1968 [76] ring oscil-
lators (RO) were designed using a digital flow achieving both low area and high speed (1968
ROs in 2.1 mm2 @ 1 GHz in [76]). At this scale, it is generally not feasible to implement the
full synaptic array and oscillators are coupled to nearest neighbors with 6 [74] or 8 connections
[76]. Impressive fully analog OIMs were also reported by Bashar, Mallick, and colleagues with
a first OIM chip with 30 fully connected relaxation oscillators [138], followed by an extended
architecture containing 600 oscillators [139]. In the latter, each tile of 16 oscillators can be
coupled to 6 neighboring tiles, thus each oscillator has programmable connections with 111
neighbors which enables relatively dense networks. Graber and Hofmann further proposed a
400-oscillator analog OIM chip [90, 140] with 8 nearest neighbor connections per oscillator
and a 6-bit high synaptic resolution using digital-to-analog converters. As pointed out by the
authors in another work [141], mapping arbitrary problems to the OIM is not directly possi-
ble due to the limited connectivity between oscillators. The mapping procedure called graph
embedding generally requires more physical spins, i.e. oscillators, than the initial number of
nodes. Finding the optimal graph embedding can be a hard problem by itself which could un-
dermine the final OIM computational speed-up. A very interesting approach to facilitate graph
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embedding was proposed by the same authors in [140]. The idea is to use "switch blocks" be-
tween tiles of 12 oscillators and a global routing bus that allows any oscillator connection in the
chip (each tile has 4 connections to the global routing bus). Such architecture is an interesting
trade-off between fully connected capability and graph embedding difficulty.

Despite the impressive performances of CMOS OIM chips, there is also a great interest
in studying beyond-CMOS OIM systems as oscillatory circuits with fewer transistors can be
implemented with novel devices such as spintronic devices [87], transition metal oxide devices
[86, 142], memristors [143], RRAM [144], or ferroelectric transistors [145]. By reducing the
number of components, the common goal of these approaches is to reduce the overall ONN area
and energy footprints to allow a potential large-scale integration.

2.1.2 Compact Oscillatory Neurons

Sustained oscillations can appear in many dynamical systems involving mechanical, optical,
electrical, biological, or chemical processes [84]. Despite the great variety of oscillators, they
are generally described mathematically as dynamical systems dx/dt = F(x) ∈ Rm having a
limit cycle attractor [128, 146], i.e. an orbit γ ⊂ Rm with period T such that γ(t) = γ(t +T ).
For instance, van der Pol derived famous oscillatory dynamics corresponding to an electrical
harmonic oscillator with non-linear damping [147]; and Hodgkin–Huxley’s neuron is known
to produce oscillations with a sufficient input current [14]. When computing with ONNs, the
system dynamics are often reduced to frequency and phase dynamics by considering weak cou-
pling between oscillators, and the oscillation amplitude is not considered [68, 146]. However,
intrinsic parameters such as waveform shape and response to perturbations determine the collec-
tive ONN performances and can be tuned for specific applications [69, 148], just like activation
functions in neural networks.

Ring Oscillator

Schmitt trigger

Hysteresis deviceSpin-Torque Schmitt Oscillator

ϕ1

ϕ2
ϕ1

ϕ2

ϕ1

ϕ2

Coupling

Oscillator

IRF

ω2

ω1

I1

I2

VO2

VO2

Chapter 1

Figure 2.1: 2-coupled oscillators implemented with various technologies. Ring oscillators can be cou-
pled by back-to-back inverters [74] or using transmission gates [76]. Relaxation oscillators consist of a
hysteresis device that charges/discharges a load capacitor, producing analog oscillations. The hysteresis
component can be implemented by a Schmitt trigger [138] or beyond-CMOS devices that have a nega-
tive differential resistance region in their I-V characteristic. A partial list of potential devices includes
VO2 [85, 86, 149, 150], TaOx and TiOx oxide [142], NbOx memristors [143], PrMnO3 RRAM [144] or
ferroelectric transistors [145].

Fig.2.1 shows various electrical oscillator implementations used in ONNs. One of the sim-
plest, yet promising oscillators for ONN is the ring oscillator (RO) which consists of a closed
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loop of CMOS inverters in series. ROs benefit from advanced CMOS technologies and can be
integrated at a very large scale with low energy consumption and high speed (1968 oscillators
demonstrated @1 GHz [76]) although it is still unknown whether ROs provide any compu-
tational advantages over other types of oscillators. Spin-torque nano oscillators (STNO) are
promising for ONNs as they operate at radio frequencies from 100 MHz to the GHz range and
could be integrated at a very large scale with CMOS electronics [87]. An STNO consists of
a magnetic tunnel junction biased by a DC current which induces a magnetization precession
and consequently voltage oscillations across the device [151]. STNOs are very versatile as they
react to various magnetic or electrical perturbations, enabling various types of couplings and
ranges [152]. Additionally, STNOs also possess memory in the oscillation amplitude which can
be harnessed for processing time series in real-time [93].

Another interesting CMOS oscillator is the Schmitt-based relaxation oscillator where a
Schmitt trigger alternately charges and discharges a load capacitor through a resistor. This oscil-
lator is generally bulkier than RO but exhibits interesting properties when carefully tuned, such
as phase binarization which is particularly useful for solving COPs [153]. Moreover, beyond-
CMOS devices holding hysteresis behavior such as transition metal oxide devices (TMO) [85,
86, 142, 154], volatile memristors [143], RRAM [144] and ferroelectric transistors [145] are
intensively studied to replace Schmitt triggers and implement more compact relaxation oscil-
lators. A promising TMO is vanadium dioxide (VO2) which operates at room temperature
and can transition from a semiconductor (insulating) state to a metallic state by Joule effect
[150, 155]. When the VO2 device is biased in its negative differential resistance region, the
circuit is unstable and produces sustained oscillations.

2.1.3 Motivations and Contributions

How to program the coupling elements between VO2 oscillators is not formally defined and still
remains empirical [110], although it is known that ONNs behave like HNNs [68, 119]. In the
simplest HNN, every neuron is connected to all the others, and synaptic weights are computed
with the Hebbian rule ([68]). Given N fully-coupled VO2-oscillators, it is yet unknown how
to transform the coefficients obtained analytically via the Hebbian learning rule to coupling
resistor values among oscillators. Further, how can one interpret the coefficient signs Wi j such
as positive or negative values? Finding a mapping from weights to resistances is a crucial step
to allow large-scale ONN design exploration. A greedy approach would be to tune the coupling
elements corresponding to the most negative and most positive weights and linearly interpolate
all the other weight values. However, this would be impractical. It would require repeated
simulations and re-tuning coupling resistances when changing any oscillator parameter; hence,
it is not suitable for large-scale ONN design.

Moreover, it is believed that scaled VO2 devices would provide fast and energy-efficient
oscillations and has been validated experimentally with up to eight coupled oscillators [86]. But,
little is known about ONN energy when scaling up the network size, whereas energy and power
are among the most important specifications for edge devices. Likewise, it is still unknown
how the computation time evolves for a large ONN when used as an associative memory. Prior
experimental works using VO2 oscillators have reported ONN performances for less than ten
oscillators, but information on 1) VO2 device scaling and 2) ONN architecture scaling are yet to
be explored. For example, for image processing applications, Shukla et al. reported the power
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consumption for six-coupled VO2-oscillators [96, 107] but do not mention the energy and delay
for larger networks. However, at the device level, a power projection motivates the scaling down
of the VO2 channel length in planar geometry. For spoken vowel detection, Dutta et al. [94]
propose to use four coupled planar VO2 oscillators that consume 6 µW each, but scalability and
computation time are not discussed. Corti et al. [85] describe how four and nine coupled VO2
oscillators can be used as input filters in convolutional neural networks and make a projection of
the ONN energy-delay for scaled VO2 devices in crossbar geometry. However, the estimation
remains empirical as VO2 device physics and coupling elements parameters are not considered.

The chapter is divided into two parts. First, we formally link HNN to VO2-ONN and propose
a framework to map Hebbian coefficient values to ONN coupling resistances. Second, we
investigate the VO2-ONN scaling and performances at device, circuit, and architecture levels.
Overall, the main contributions of this chapter are:

1. At the architecture level:
• To propose a mapping function between Hebbian coefficients and ONN coupling

resistances.
• To determine the ONN linear energy scaling and quasi-constant computation time

with the number of oscillators.
• To benchmark the VO2-based ONN energy and delay with respect to state-of-the-art

neural accelerators and neuromorphic chips. It appears that ONN can be a competi-
tive computing paradigm for high oscillating frequencies.

• Finally, we showcase a VO2-based ONN benchmark for image edge detection and
compare it with the state-of-the-art CMOS ASICs.

2. At the device level:
• How to minimize the oscillating energy for crossbar VO2 devices.

The findings of this chapter have led to two peer-reviewed journal articles:

• C. Delacour and A. Todri-Sanial, "Mapping Hebbian Learning Rules to Coupling Resis-
tances for Oscillatory Neural Networks ", in Frontiers in Neuroscience, vol.15, 2021.

• C. Delacour, S. Carapezzi, M. Abernot, and A. Todri-Sanial, "Energy-Performance As-
sessment of Oscillatory Neural Networks Based on VO2 Devices for Future Edge AI
Computing," in IEEE Transactions on Neural Networks and Learning Systems, 2023.

2.2 VO2 Device

Vanadium dioxide (VO2) is a material whose resistivity can vary abruptly with temperature
[156]. The timescale of the insulator-metal transition is ultrafast, spanning from ns to fs [157].
A sudden resistive switching is also observed in VO2 channels of two-terminal devices, where
self-heating due to Joule effect is driving the change. The channel is in high resistance state
(HRS) or low resistance state (LRS) according to its temperature being below or above temper-
ature thresholds for state transitions. The volatility of resistance states of VO2 devices is key
to designing VO2 relaxation oscillators. Overall, the temperature thresholds are not unique and
depend on temperature history, i.e. if the VO2 channel is in the heating/cooling stage during
the device operation. Specifically, VO2 needs to cool down to transition back to the insulating
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state and thus presents a hysteresis behavior (Fig.2.2a). Since the temperature of the channel is
triggered by self-heating, such threshold temperatures are achieved at given threshold voltages:
VH , for the transition from HRS to LRS, VL for the transition from LRS to HRS. Hence, VO2’s
I −V curve also has a hysteresis (Fig.2.2c).

The state-of-the-art approach for simulating VO2 is to use the compact model from Mafez-
zoni et al. [158] which reproduces the VO2 hysteresis along with continuous and abrupt tran-
sitions between the two states. In this model, the VO2 hysteresis behavior is conceptually
emulated by an amplifier with positive feedback that charges or discharges an RC circuit when
the VO2 is in a metallic or insulating state, respectively. The voltage Vc across the capacitor
commands the VO2 conductance GVO2 as:

GVO2 =
1−Vc

Rins
+

Vc

Rmet
(2.3)

where Rins and Rmet are the VO2 resistances in insulating and metallic state. The dynamics
of the VO2 conductance is given by the RC circuit where τ0 is its time constant modeling the
transition time of the VO2:

τ0
dVc

dt
+Vc = 1−V0 (2.4)

where V0 is the output of the positive feedback amplifier (gain α) and is expressed as:

V0 =
1
2

[
1+ tanh

(
2α
(
(VH −VL)V0 +VL −V

))]
(2.5)

Note that this model does not include VO2 thermal variables that impact the oscillator frequency
and energy consumption.

2.3 VO2 Oscillator

The VO2 hysteresis behavior has been widely used in literature to design relaxation oscillators
[86, 158, 159]. It consists of biasing the VO2 device with a load resistance RS in series and
connecting a capacitor CP in parallel with the output node Vout to adjust the oscillation frequency
(Fig.2.2b). To produce oscillations, the load line IL set by VDD and RS must cross the VO2 I-
V curve in its negative differential resistance region (NDR) to obtain an unstable fixed point
(Fig.2.2c). The VO2 device state hence alternates between the metallic and insulating state.
When the VO2 device is in the insulating state, the parallel capacitance CP at the output node
discharges through RS until the VO2 voltage reaches VH and transitions to the metallic state.
Then, CP charges through the VO2 device until its voltage reaches VL and a new cycle begins
(Fig.2.2d). The oscillator dynamics can be described by Kirchoff’s law as follows:

CP
dVout

dt
=
(
VDD −Vout

)
GVO2 −

Vout

RS
(2.6)

Note that despite the first order differential equation, oscillations can occur as equations (eq.2.3),
(eq.2.4) and (eq.2.5) describe the hysteresis behavior of GVO2 . Fig.2.2d shows an example of
oscillating dynamics where at t=0: Vout = 0 V , GVO2 = 1/Rins, and VDD = 2.5 V . In this chapter,
we use the same VO2 and circuit parameters listed in Table 2.1 if not stated otherwise. The VO2
parameters were shared by our IBM colleagues after characterization.
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Figure 2.2: (A) VO2 resistance versus temperature. RVO2 axis is in logarithmic scale. (B) VO2 oscillator
circuit (C) VO2 I-V curve showing the device hysteresis behavior. When its voltage reaches a threshold
VH , it transitions from insulating to the metallic state. To transition from a metallic to an insulating state,
V must be lower than the threshold VL. (D) If the device is biased in its Negative Differential Resistance
region (NDR), its state alternates between the metallic and insulating state, producing electrical oscilla-
tions.

Parameter VDD RS CP Rins Rmet VL VH α τ0 V+ =VDD −VL V− =VDD −VH

Value 2.5 V 20 kΩ 500 pF 100.2 kΩ 0.99 kΩ 1 V 1.99 V 200 10 ns 1.5 V 0.501 V

Table 2.1: VO2 and circuit parameters used in Chapter 2.

2.4 Two-coupled VO2-Oscillators

2.4.1 Phase Initialization

To set an initial phase state with respect to a reference oscillator (the first one in this manuscript),
the oscillator starting times can be delayed via VDD. Assuming the oscillators have the same
period Tosc, any input delay ∆tinit is equivalent to an initial phase relation as:

∆φinit = 2π
∆tinit

Tosc
(2.7)

However, if the two oscillators are always connected, they might have different oscillation pe-
riods during initialization and their initial phase relation cannot be defined. For example, as
shown in Fig.2.3a, the second oscillator starts ∆tinit = 0.5 Tosc after the first one to set an initial
phase relation ∆φinit = π . For t < ∆tinit , the second oscillator is off, and its output resistance is
RS//Rins ≈ RS. Therefore, during this time, the equivalent load resistance of the first oscillator
is RS//(RC +RS), which induces a shorter period of oscillation T ′

osc < Tosc and hence no control
on the initial phase. To tackle this lack of control, one can introduce switches between each
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oscillator and coupling elements as in Fig.2.3b. Then, the oscillators can evolve freely with a
known oscillation period Tosc before coupling them at ton, instant where their initial conditions
are known using (eq.2.6). The ONN initialization is improved at the cost of one additional
switch per oscillator such as a transfer gate.
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Figure 2.3: (A) Two oscillators are coupled by a resistance RC=10 kΩ without coupling switches in
between. VDD2 is turned on 0.5Tosc after VDD1 to set an initial phase of 180◦. However, for t <0.5Tosc the
first oscillator period is decreased due to the shunt RC at its output node, and we cannot control the initial
phase difference. The two oscillators are in phase after convergence. (B) Same circuit with coupling
switches to isolate the oscillators during initialization. In this case, the 0.5Tosc input delay sets a desired
180◦ initial phase state. Here, the switches are closed at ton = 0.5Tosc + tc such that Vout2(ton) =V+. The
two oscillators converge to an 180◦ phase state relation.

2.4.2 Memory of Two-coupled Oscillators

Analyzing the dynamics of two coupled oscillators gives information about the phase fixed
points which depend on 1) the coupling strength RC and 2) the initial phase state. The dynamics
of two coupled oscillators can be expressed using Kirchhoff’s laws:{

CP
dVout1

dt =
(
VDD1 −Vout1

)
G1

VO2
−Vout1/RS + Ic1

CP
dVout2

dt =
(
VDD2 −Vout2

)
G2

VO2
−Vout2/RS + Ic2

(2.8)

where currents are Ic1 = −Ic2 represent the coupling element’s current flow. Fig.2.4 shows a
simulation where VDD2 is turned on 0.1Tosc after VDD1 which initializes a light-gray pixel for the
input image of oscillator 2. For a small coupling resistance RC=10 kΩ, the ONN converges to
a stable state with both oscillators in phase (0◦,0◦). Whereas, for RC=100 kΩ, it converges to
an out-of-phase state (0◦,180◦). More interestingly, varying both parameters RC and ∆tinit high-
lights the ONN associative memory behavior. Fig.2.5A shows the simulation results. As already
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Figure 2.4: (A) Two identical VO2 oscillators coupled by a resistance RC and switches. VDD2 starting
time and coupling time ton are delayed by 0.1Tosc with respect to the first oscillator, representing a light-
gray second-pixel ONN input. (B) Output voltages for RC = 10kΩ: the oscillators converge to an in-phase
state (0◦,0◦) and the corresponding output pattern corresponds to two white pixels. (C) Output voltages
for RC = 100kΩ: the oscillators are out-of-phase (0◦,180◦) and the output pattern corresponds to white
and black pixels.

observed by [159], a large coupling resistance RC > 40 kΩ induces oscillators in out-of-phase
relation (0◦,180◦) for any input delay, whereas a small coupling resistance RC < 10kΩ aligns
oscillators in-phase (0◦,0◦) for any input delay. In contrast, we examine the region between
these two ranges, highlighted in the center of Fig.2.5A. It appears that for 10 kΩ ≤ RC ≤ 40
kΩ both states co-exist and the oscillators store two patterns (0◦,0◦) and (0◦,180◦) that can be
retrieved by adjusting the input delay. The line transition function between the in-phase and
out-of-phase regions represents our analytical function for the ONN memory with respect to
coupling resistance and initialization. It is defined as:

ζ : RC −→ ∆ttransit (2.9)

with ∆ttransit the initial delay such that:

∆ttransit = ζ (RC) |
{

∆tinit < ∆ttransit ⇒ ∆φout = 0◦

∆tinit ≥ ∆ttransit ⇒ ∆φout = 180◦
(2.10)

To study ζ (RC) in experiments, we emulated two coupled VO2 oscillators with off-the-shelf
components on a printed circuit board (PCB). The relaxation oscillator circuit consists of an in-
verting Schmitt trigger [160] operational amplifier (OPA) which implements the VO2 hysteresis
behavior (Fig.2.5b). The OPA saturates to +Vsat and −Vsat while the 1.8 nF output capacitor
charges and discharges, respectively. Fig.2.5c shows the voltage across the output capacitor
for a single oscillator. Similarly to a VO2 oscillator, the OPA transitions to another state when
the voltage across the output capacitor reaches V+ or V−. The 5.6 kΩ resistor implements the
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metallic VO2 resistance, whereas the 100 kΩ resistor corresponds to the load RS. For a fixed
oscillating period of Tosc=200 µs, we varied RC and measured ∆ttransit values that define the
experimental transition function ζ (RC) (Fig.2.5d). There is a good match between experimen-
tal ζ (RC) data points and the analytical transition function derived in the next section. Such
formulation ζ (RC) is of interest as it represents a closed-form representation of ONN memory
instead of repeating numerical simulations for different oscillator parameters.
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Figure 2.5: (A) Plot showing the phase relation between two oscillators for every set of parameters
(RC,∆tinit). As expected, small coupling resistances tend to pull the oscillator phase together, whereas
large coupling resistances push the phase away. The middle green region shows the coupling resistance
range 10kΩ<RC < 40kΩ in which two patterns (0◦,0◦) and (0◦,180◦) are memorized and can be retrieved
by adjusting the input delay. The red curve is our analytical model describing the transition between the
two phase states in the plan (RC,∆tinit), and plays a major role in the ONN ability to memorize patterns.
(B) Experimental set-up of two coupled relaxation oscillators based on MCP6001 OPAs. We delay VG2
with respect to VG1 by ∆tinit to set the initial phase, and close SW after initialization. (C) Experimental
oscillating waveform and equivalent circuits during charge and discharge of the output capacitor. (D)
Experimental phase transition curve and analytical model in plain line.
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2.5 Mapping Hebbian Weights to Coupling Resistances

2.5.1 Phase Transition Function

The phase transition function has already been observed [161] but to the best of our knowledge,
no closed-form expression has ever been reported. To derive the transition function, we ana-
lytically solve the node voltage equations for two coupled oscillators during initialization (see
Appendix A). The oscillator output voltages can be expressed as:

∆V =Vout2 −Vout1 =
(
V 0

out2 −V 0
out1
)

exp(− t
τ ′(RC)

) (2.11)

where V 0
out1 and V 0

out2 are the initial voltages when coupling the oscillators. τ ′(RC) is a function
of RC and defined in the Appendix (eq.A.18). Eq.2.11 describes how both oscillator output
voltages are attracted via the coupling resistance RC. If the coupling is strong enough (small
RC), the oscillators are rapidly pulled together with a speed determined by τ ′. Then, if ∆V < ε

(ε defined in the Appendix (eq.A.22)) before reaching the VO2 threshold V−, both oscillators
transition to low resistive states, and the exponential term in (eq.A.19) keeps the two voltages
locked. This concept is illustrated in Fig.2.6A when both oscillators are in-phase. However, if
Vout1 reaches V− before Vout2 such that ∆V > ε as in Fig.2.6B, the first oscillator transitions to
a LRS while the other oscillator is still in HRS. The two oscillators are then in opposite states,
and this leads to an out-of-phase state.

∆𝐕 < 𝛆

A

𝟎. 𝟐 𝐓𝐨𝐬𝐜

∆𝐕 > 𝛆

B

𝟎. 𝟑 𝐓𝐨𝐬𝐜

ton ton

𝚫𝛟𝐨𝐮𝐭 = 𝟎° 𝚫𝛟𝐨𝐮𝐭 = 𝟏𝟖𝟎°

Figure 2.6: Two identical oscillators coupled by RC = 12kΩ. (A) The second oscillator is turned on at
0.2 Tosc after the first one. By zooming on the waveform when the first oscillator reaches V−, there is
a voltage difference ∆V < ε and the oscillators converge to an in-phase state. (B) The second oscillator
is turned on 0.3 Tosc after the first one. In this case, the voltage difference ∆V > ε and the oscillators
converge to an out-of-phase state. We express ∆V to derive the phase transition function ζ .
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Thus, the transition function ζ (eq.2.9) can be derived when both ∆V = ε and Vout1 = V−

(see Appendix A for details). By combining Appendix equations (eq.A.17), (eq.A.24) and
(eq.A.25) the coupling resistance can be expressed as:

RC = 2
RSRins

RS +Rins

log

(
V−−V ins

std
V 0

out1/2+V 0
out2/2−V ins

std

)

log

(
ε(RC)

V 0
out2−V 0

out1

)
− log

(
V−−V ins

std
V 0

out1/2+V 0
out2/2−V ins

std

) (2.12)

where V ins
std is defined in (eq.A.5). Finally, introducing (eq.A.9) into (eq.2.12) produces a re-

lation between RC and ∆ttransit . Note that as ε is a function of RC, (eq.2.12) cannot be solved
analytically. Instead, one can numerically solve (eq.2.12) using Newton-Raphson’s algorithm
for ∆ttransit values. Finally, the RC values that describe the inverse of the transition function
correspond to:

ζ
−1 : ∆ttransit −→ RC (2.13)

The transition function ζ is plotted as the curve line (red line) in Fig.2.5A. There is an excellent
fit between our analytical model, simulations (transition region between dark and light green in
(RC,∆tinit) plan) and the transition curve obtained experimentally with off-the-shelf relaxation
oscillators (Fig.2.5D). As by definition, both output phase states can equally occur for W = 0,
its corresponding coupling resistor R0 can be expressed as follows:

R0 = ζ
−1(∆tinit = Tosc/4) (2.14)

Finally, the final phase relation can be expressed based on the transition function as:

∆φout = π

(
sign

(
RC −ζ

−1(∆tinit)
)
+1
)
/2 (2.15)

Analogous to ANNs, (eq.2.15) can be thought of as oscillator’s activation function because it
provides the oscillator’s output phase based on its input phase (set by ∆tinit (eq.2.7)) and the
weight implemented by RC.

2.5.2 Linking ONNs to Hopfield Neural Networks

Here, we exploit the HNN formalism to build an analogous representation in ONN. For equiv-
alence, ONN oscillators are treated similarly to HNN neurons. Such as, we consider a neuron
i with two possible states Si that can be thought of as equivalent to ONN oscillators with 0◦ or
180◦ phase relations as:

Si =

{
+1
−1

⇐⇒ ∆φi =

{
0◦

180◦
(2.16)

In HNN, each neuron output state is dynamically determined by a sigmoid activation function
g(x) =

(
tanh(βx)+1

)
/2 with β > 0 [13] and shown in Fig.2.7.

For a neuron i, g gives the probability to reach one of the two states at t +∆t for a given input
weighted sum hi(t) as:

P
(

Si(t +∆t) = +1 | hi(t)
)
= g
(
hi(t)

)
(2.17)

30



A VO2-based ONN Architecture 2.5. Mapping Hebbian Weights to Coupling Resistances

+

S1 t

S2(t)

SN(t)

Neuron i

Wi1

Wi2

WiN

hi(t)

hi(t)

1

0

g(hi t )

Si t + ∆t

Figure 2.7: Model of artificial neuron used to construct our mapping function µN . The neuron’s output
state Si(t) is either +1 or -1 and is dynamically updated at each time-step ∆t according to the sigmoid
activation function g. Here, g gives the probability to have one of the two states at t+∆t for a given input
weighted sum hi(t).

with:

hi(t) =
N

∑
j=1

Wi j S j(t) (2.18)

In ONNs, (eq.2.17) would represent the probability of oscillator i to be in phase with the refer-
ence at time-step ∆t. For the two-oscillator case, the weighted input sum of the second oscillator
is given by:

h2(t) =W21 S1(t) =W21 (2.19)

Because the first oscillator is the reference. Thus, the probability of the second oscillator being
in phase with the reference can be derived by (eq.2.17) and (eq.2.19), as:

P
(

S2(t +∆t) = +1 | h2(t)
)
= Pin−phase = g(W21) (2.20)

2.5.3 Mapping Function

Applying the above definitions from the HNN formalism, a mapping function can be derived
as:

µN : Wi j −→ Ri j (2.21)

where normalized weights are −1 ≤ Wi j ≤ 1 and N is the ONN size. Before scaling to N
oscillators, we first propose a mapping function µ2 for two coupled oscillators. The unifying
step between HNN and ONN is the recasting of the phase transition curve, ζ as the probability
Pin−phase for a given coupling resistance RC. In ONNs, the input delay ∆tinit can be considered
as a uniform random variable taking values between 0 and Tosc/2 and the transition function ζ

would give the probability Pin−phase (for example for RC > 10 kΩ):

Pinphase = ζ (RC)
2

Tosc
(2.22)

By equalizing (eq.2.20) and (eq.2.22), the coupling resistance is expressed as:

µ2(W21) = RC = ζ
−1
(

Tosc

2
g(W21)

)
(2.23)
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This mapping function is represented in Fig.2.8 for three different values of the sigmoid param-
eter, β . We see that β sets the range of RC and could be adapted for different ONN sizes. Inter-
estingly, it appears that the derivative |dW21/R. C| is quite large for a positive weight, whereas it
is much smaller for a negative one. Actually, Fig.2.8B shows that the function ζ−1 is a logarith-
mic function; thus, any small variation in ∆RC around 10 kΩ is likely to change the final phase
state outcome. Whereas for large RC, the two oscillators are almost always out-of-phase. This
asymmetry in ζ−1 comes from the oscillator waveform type, as ζ−1 is derived from (eq.2.12),
which is specific for relaxation oscillator waveform type. Hence, we expect some change for
other types of waveforms, such as linear sawtooth, but the formulation of mapping (eq.2.23) is
general enough to be applied to any relaxation oscillators.

For large-scale ONN with N oscillators, we scale µ2 (eq.2.23) by a factor N − 1 to ensure
the conservation of the current flow in coupling resistances, i.e. an average constant fan-out
current at the oscillator output. We finally obtain:

µN(Wi j) = Ri j = (N −1) ζ
−1
(

Tosc

2
g(Wi j)

)
(2.24)

g:W21 → Pinphase

ζ−1: Pinphase → RC

μ2 = ζ−1(g): W21 → RC

Composite 
function

A

B
C

β
β
β

β
β
β

β
β
β

Figure 2.8: Mapping function for two coupled oscillators. (A) The sigmoid activation function presents
the probability Pin−phase for the two oscillators to be in phase. (B) The inverse of the transition function
ζ−1 determines the coupling resistance RC for a given probability Pin−phase. (C) The mapping function
µ2 is obtained by the composite function ζ−1(g).

2.6 ONN Design for Pattern Recognition

Here, we show the effectiveness and limitations of the proposed mapping function (eq.2.24) in
simulations up to 100 coupled oscillators for pattern recognition as in HNN.
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2.6.1 ONN Training and Mapping

We propose a design flow as shown in Fig.2.9A for pattern recognition with ONNs using the
proposed mapping function. We first compute the weights associated with the M stored binary
patterns {ξ 1,ξ 2, ...ξ M} using the Hebbian Rule [68], as:

Wi j =
1
N

M

∑
k=1

ξ
k
i ξ

k
j (2.25)

where ξ k
i = 1 if the pixel i is white, or ξ k

i =−1 if the pixel i is black. We store M = 6 images
representing digits ’0’,’1’ to ’5’ as shown in Fig.2.9B.

B C
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𝑅34 𝑅35 𝑅36

𝑅14 𝑅24 𝑅34
𝑅15 𝑅25 𝑅35
𝑅16 𝑅26 𝑅36
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Training
Hebbian

Patterns to store

ONN
design

A

Figure 2.9: (A) Illustration of the ONN design flow for the associative memory application. Patterns to
store can be represented as black-and-white images from which we compute weights with the Hebbian
rule during the training process. Then, we use the mapping function µN to get the coupling resistances,
allowing a systematic ONN design. (B) Stored patterns. (C) Coupling resistances as a function of
Hebbian weights, computed with the mapping function µN for different values of parameter β .

Next, we use the mapping function to compute the coupling resistances associated with the
Hebbian coefficients. The mapping is represented in Fig.2.9C for different values of parameter
β which sets the slope of µN(Wi j). Increasing β induces a larger coupling resistance range.
Because the Hebbian rule normalizes the weights by the network’s size N (eq.2.25), we scale
β with N to keep a relative range of Ri j approximately constant when increasing the ONN size.
As shown in the next simulations, we find that the best accuracy is obtained for β = N/32.
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2.6.2 ONN Inference

We have developed an ONN circuit simulation platform in Matlab that includes the VO2 device
parameters (compact model [158]) and coupling parameters to allow transient simulation of
different size ONNs. Each oscillator is a pixel of an image where a black pixel is initialized
with a delay ∆tinit = Tosc/2 to set an initial out-of-phase relation (eq.2.7) whereas, for a white
pixel, no delay is introduced. A noisy gray pixel corresponds to an input delay between 0
and Tosc/2. After a few oscillations, the ONN settles, retrieves the noiseless pattern and the
phase relations are measured. An example of ONN voltage dynamics is presented in Fig.2.10A,
showing the initialization and the settling time before the ONN stabilizes. Fig.2.10B and C
show two examples of input images where 15 pixels have been randomly altered by a uniform
distribution taking values between -1 and +1. When the number of noisy input pixels is too
large such as in Fig.2.10D (20 noisy pixels), the ONN converges toward a wrong spurious state
that is different from the stored patterns.

B C D

Settling time

𝑻𝒐𝒔𝒄
𝟐

A

Phase measurementInitialization

Input Output

Figure 2.10: (A) Noisy input image ’2’ with 15 random altered pixels and voltage waveforms of 60
oscillators. ONN is initialized during Tosc/2 with the noisy input image. After few oscillation cycles,
ONN settles, and phases are measured. ONN retrieves the correct output image that corresponds to the
stored pattern ’2’. (B) The input image ’5’ has been altered at 15 random pixel locations by a uniform
distribution. ONN retrieves the corresponding stored pattern. (C) Similarly, 15 random pixels of the
input image ’2’ are altered, and ONN retrieves the correct corresponding pattern. (D) In this example,
20 noisy input pixels are introduced to digit ’1’, and ONN converges toward a spurious state.

2.6.3 ONN Memory Capacity

We report on the ONN memory capacity when trained using the Hebbian learning rule and our
proposed mapping (eq.2.24). For different ONN sizes from N=8 up to N=100, several training
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set sizes M are considered. To avoid biased results due to specific training sets, we generate
random training sets composed of M random black-and-white patterns that have the same pro-
portion of black-and-white pixels to avoid any effect emerging from unbalanced patterns. To
generate test sets, we add a random uniform noise between -1 and +1 to the training patterns
(noisy pixels are gray), as in the example of Fig.2.10A. The number of noisy pixels varies from
0 up to 50%.

During inference, the accuracy is ’1’ if and only if the ONN completely retrieves the pattern.
Otherwise, it is ’0’. Fig.2.11A shows the ONN recognition accuracy for test images having 10%
of noise. As expected, larger networks can store more patterns. An ONN with N=100 stores
M=16 patterns with more than 50% of recognition accuracy. Whereas 16 oscillators are limited
to M=6 patterns for a similar accuracy. This trend is in accordance with Hopfield’s results [82].
Based on Fig.2.11A, we extract the ONN memory capacity when the recognition accuracy
reaches 50%. Results are shown in Fig.2.11B. It appears that the ONN memory capacity grows
linearly with a fitted slope of 0.146, in accordance with the scaling factor of 0.15 derived by
Hopfield [82]. The trained ONN can hence implement an HNN as there is a good match between
the results and the original observations from Hopfield [82].

0.146

A B

Figure 2.11: (A) ONN recognition accuracy with respect to the number of stored patterns M. Test
images have 10% of noise. Each data point is the recognition average computed over 20 different trials.
(B) ONN capacity extracted for a 50 % recognition accuracy. ONN capacity scales linearly. The slope is
close to the 0.15 value theoretically obtained with HNN using the Hebbian rule [82]

2.7 ONN Energy Scaling

Here, we study the ONN energy scaling using a bottom-up approach, i.e., starting from device
and circuit level up to the architecture level. It is shown analytically and by circuit simulations
that the ONN energy scales linearly with the number of oscillators.
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2.7.1 Single Oscillator Energy Footprint

From circuit equations and Fig.2.2A, the instantaneous power consumption of a single oscillator
can be expressed as:

P(t) =VDD(
Vout

RS
+CP

dVout

dt
) (2.26)

As Vout is a Tosc-periodic signal, the oscillator energy loss for one oscillation is given by:

Eosc =
VDD

RS

∫ Tosc

0
Vout dt (2.27)

Then, we introduce the output mean voltage Vout = 1/Tosc
∫ Tosc

0 Vout dt to reformulate the last
expression as:

Eosc =
VDD

RS
VoutTosc (2.28)

As Tosc ∝ RSCP (see Appendix A), the expression is similar to the dynamic energy loss due to
the charge and discharge of load capacitors in digital circuits, i.e. Edyn =CPV 2

DD. However, in
our case, the oscillator energy loss (eq.2.28) is modulated by the DC output voltage operating
point Vout . Note that closed-form expressions for Vout and Tosc are established in the Appendix
A but are not listed here for clarity. However, the mean power consumption of a single oscillator
can be expressed as:

Posc =
VDD

RS
Vout (2.29)

Hence, the two key knobs to obtain low-energy ONNs are low operating voltages and low par-
asitics. The next section presents the oscillator energy when coupled to N −1 other oscillators.

2.7.2 ONN Synaptic Operations

We first define the intrinsic synaptic operation between coupled oscillators. For oscillator i, its
synaptic input weighted sum hi(t) can be conceptually expressed as:

hi(t) =
N−1

∑
j=1

Wi j ∆φ j(t) (2.30)

where Wi j are the synaptic weights and ∆φ j(t) are the phases of other oscillators (Fig.2.12a).
Then, the role of the oscillating neuron is to produce an output phase by applying a non-linear
activation function a to its input:

∆φi = a(hi) (2.31)

We define a synaptic operation (SOP) in ONN as the evaluation of the quantity Wi j∆φ j. Note that
up to now, the study is hardware-agnostic, and a SOP could be implemented in various manners
such as with digital circuits [125] or using the analog Ohm’s law. Using these definitions, the
neuron energy is expressed as the sum of two contributions:

Eneuron = Einput +Eactivation (2.32)

Einput is the loss related to the evaluation of the input weighted sum, whereas Eactivation is the
energy needed to produce an output, i.e., to determine the phase difference. Again, (eq.2.32)
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is general enough so it can capture any type of implementation and computing (sequential or
parallel). In the interesting case where neurons process information in parallel, the neuron
energy becomes:

Eneuron =
(
(N −1)ESOP +Eosc

)
Ncycles (2.33)

where Ncycles is the number of oscillating cycles before settling to a stable output phase state,
and Eosc is the energy of a single oscillation. One interesting aspect of analog ONN is that
sometimes SOP can be energy-free. For instance, when two coupled oscillators are in-phase the
synaptic current is null and ESOP = 0 (see Fig.2.12c). The worst-case SOP energy occurs when
two oscillators are out-of-phase: the maximum amplitude across the synaptic resistor reaches
∆Vmax =VH −VL and induces Joule’s loss (see Fig.2.12b). As the SOP analytical expression de-
pends on the oscillating waveform, we evaluate here the worst-case for simplicity and consider
that a DC voltage ∆Vmax is applied to every coupling resistor RCN during the entire oscillating
period:

ESOP =
∆V 2

max
RCN

Tosc (2.34)

To assess how the ONN energy scales with N, the ONN computation time, Ncycles, must be
first evaluated. The next section presents circuit simulations of various ONN sizes dedicated to
pattern recognition to estimate Ncycles.
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Figure 2.12: (a) ONN neuron model (top) and analog implementation using coupling resistors and a
VO2-oscillator. In this work, synaptic operations occur via current flow through coupling resistors and
the input summation naturally happens in current mode. (b) When two coupled oscillators are out of
phase, a synaptic current flows through the coupling resistor, and energy is lost by the Joule effect. The
case where the two oscillators are out-of-phase during tsettle corresponds to the maximum SOP energy
loss. (c) The other extreme case occurs when two coupled oscillators are in phase during tsettle; the
current flow is null and ESOP = 0.
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2.7.3 ONN Settling Time and Energy Scaling

We define the ONN settling time as the time tsettle required for ONN signals to be periodically
stable:

tsettle = NcyclesTosc (2.35)

For t ≥ tsettle, ONN phases can be measured as they are stable. For example in Fig.2.10A, the
ONN stabilizes to a stable pattern after Ncycles ≈ 5 cycles. Simulations for different ONN sizes
allow the estimation of the ONN settling time by varying 1) the number M of stored patterns and
2) the number of noisy pixels in test images from 10% to 50%. Fig.2.13 shows the simulation
results. Interestingly, the ONN settling time is approximately constant and is smaller than 5
cycles in most cases. Hence, the ONN parallel computation allows computing in constant time
even for large networks. This result corroborates what has been observed with oscillator-based
Ising machines [162], i.e., coupled oscillators converge to a solution (not necessarily the optimal
one) in quasi-constant time. In fact, we will see in Chapter 3 that the computation time seems
to scale logarithmically.

Figure 2.13: ONN settling time and energy for different values of N. Settling time remains approxi-
mately constant when scaling up N. Oscillators truly act as parallel processing units. Energy to settle
scales linearly with N. Medians, first and third quartiles of simulation results are represented.

Moreover, the ONN energy scales linearly (see Fig.2.13) when ONN satisfies the two fol-
lowing properties:

1. Parallelism: the computation time tsettle remains quasi-constant.
2. Downscaling of synaptic energy: the coupling resistors RCN are scaled as:

RCN = (N −1)RC2 (2.36)

where RC2 is the coupling resistance between two coupled oscillators (eq.2.23). The
synaptic loss ESOP becomes:

ESOP =
∆V 2

max
(N −1)RC2

Tosc (2.37)

Therefore, even though the number of synapses grows quadratically, the ONN energy grows
only linearly with the number of oscillators. This can be verified using our previous definitions
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(eq.2.28, eq.2.33, eq.2.37):

Eanalog
ONN = N Eneuron

= N
(
(N −1)ESOP +Eosc

)
Ncycles

= N(
∆V 2

max
RC2

+
VDD

RS
Vout)NcyclesTosc

(2.38)

Note that we have not yet considered any peripheral circuits that could change the ONN energy
scaling law when implemented in real hardware. For instance, although the energy of the ana-
log ONN computing core grows linearly (eq.2.38), there would still be a quadratic number of
synapses that would need to be programmed. But in terms of computing, the analog ONN is
promising when compared to digital architectures. In the latter case, the energy of a synaptic
operation (such as multiply and accumulate (MAC)) generally remains constant and can hardly
be scaled down. By considering a fully digital ONN computing with MACs rather than analog
currents, its total energy would grow quadratically as:

Edigital
ONN = N

(
(N −1)EMAC +Eosc

)
Ncycles (2.39)

In the previous simulations of Fig.2.13, we considered ONNs with a large supply voltage
VDD = 2.5 V leading to an important energy consumption of 2 nJ/oscillator/cycle. Whereas
for instance Jackson et al. in [89] have designed an ONN consuming 1.21 pJ/oscillator using
a hybrid design (analog synapses and digital neurons) in 28 nm CMOS technology. The next
section presents how to scale VO2 devices to achieve competitive performances with respect to
state-of-the-art solutions.

2.7.4 Oscillator Energy Minimization using Scaled VO2 Devices

Here, we study how to minimize the energy for a VO2-based oscillator using the formulation
(eq.2.28) and assisted by TCAD simulations. The TCAD modeling and simulation flow is
described in recent work [150, 163]. VO2 devices in crossbar (CB) geometry [85] is considered
as a potentially scalable geometry to lower the oscillator energy consumption (Fig.2.14a). By
reducing the VO2 CB size, the overall VO2 thermal dissipation decreases and the VO2 device
can transition to a metallic state with less power [150]. The applied voltage can then be reduced
for given insulator and metallic states that are set by the material properties and contact area
(Fig.2.14b).

As our model predicts that the oscillator energy scales quadratically with voltages (eq.2.28),
it is of interest to scale down the VO2 CB dimensions. Fig.2.15 shows results of TCAD simula-
tions for various CB (500 nm, 1 µm, 1.5 µm, 2 µm, 3 µm, and 4 µm) and biasing parameters.
It can be seen from Fig.2.15a that the VO2 threshold voltages VH and VL are approximately
proportional to CB and allow a linear VDD scaling. With reduced CB, the oscillating voltage
amplitude can be decreased (Fig.2.15b) for low power operation (Fig.2.15c). As the material,
contact area, and load capacitor remain the same for all CB sizes, the oscillating period does
not vary significantly and the minimum energy is obtained for CB=500 nm (Fig.2.15d).
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(b)(a)
CBCB size

Contact 
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Figure 2.14: (a) Structure of the VO2 crossbar (CB) device. The top and bottom electrodes are in cross-
like configuration. They have the same contact width of 250 nm. The VO2 layer of 80 nm thickness is
sandwiched between them. The color map overlapped with the geometrical structure accounts for the
temperature distribution across the device at the highest simulated voltage. (b) Device I −V obtained
through electrothermal TCAD simulation of CB=4 µm (red solid line) and CB=2 µm (blue solid line)
devices. The simulations have been performed in voltage-controlled mode, by applying the voltage to
a circuit composed of the VO2 device connected in series to an external resistor of RS = 1 kΩ. The
dashed-dotted lines represent the associated load lines.

(a) (b)

(c) (d)

Figure 2.15: TCAD simulation results for the same crossbar (CB) geometry and CP=5 nF. (a) Oscillator
parameters with respect to the VO2 CB. By scaling down the VO2 CB, the thermal dissipation decreases
and the device needs less power to transition from one state to the other. Therefore, the VO2 thresholds
VH and VL decrease with CB. VDD is scaled down approximately linearly with VH and VL. The load
resistor RS is adapted in each case to place the load line in the NDR region and obtain oscillation. (b)
Transient voltage across VO2 devices for different CB. (c) Instantaneous power for different CB sizes.
Scaling down CB leads to low oscillation amplitude and low power. (d) Oscillator energy vs period for
various CB.

Fig.2.16 shows the comparison between our analytical model (eq.2.28) and mean power and
energy computed with TCAD for different CB sizes. There is a good match for the mean power
but some deviation when evaluating the energy. We believe this is mainly due to non-linearities
induced by thermal effects, which result in a larger oscillating period and thus a higher energy
consumption [163]. This aspect is not captured by our analytical formalism as it only considers
electrical variables (Fig.2.16b). Nevertheless, the scaling trend of our model is in agreement
with TCAD simulations and we use it for benchmarking ONN with state-of-the-art chips.
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Figure 2.16: Comparison between TCAD and analytical model for (a) Oscillator mean power (b) Os-
cillating period and (c) Oscillator energy with respect to VDD. Our analytical model does not include
thermal effects which slow down oscillations and increase the energy. Nevertheless, our model (eq.2.28)
captures well the quadratic VDD scaling law. (d) Both TCAD and our model predict a linear energy scal-
ing law with respect to the oscillator load capacitance. CB=1.5µm is considered here.

2.8 ONN Benchmarking

2.8.1 Neuron Energy-Delay Benchmark

Benchmarking ONN with other architectures is not trivial as ONN is a phase-based neuromor-
phic system and does not perform conventional MAC operations. However, the concept of
synaptic operation (SOP) is shared among all sorts of neural inference chips and can serve as
common ground for benchmarking. In ANNs, an SOP is defined by the multiplication between
the input and the synaptic weight. Then, it can be naturally implemented in digital hardware by
a MAC operator and in this case, there is the equivalence 1 SOP≈1 MAC [91]. In SNNs, an
SOP is generally defined as the event where an action potential (or spike) propagates through a
synapse [36]. Similarly, we previously defined an SOP in ONN as the oscillation propagation
through a synapse during one oscillation period. Beyond SOP metrics, information about the
time and energy dissipated by a single neuron to produce an output is challenging to find in the
literature. Generally, the accessible metrics common to all sorts of chips are the following:

• Chip synaptic throughput Tch in SOP/s.
• Chip total power Pch.
• Number of neurons N and number of synapses per neuron NS.

To find the average processing time of a neuron, we propose a simplistic approach that is never-
theless in agreement with existing benchmarks recently proposed by Nikonov and Young [91].
We first make distinctions between the SNN, ANN, and ONN paradigms. Fig.2.17 illustrates
SNN, ANN, and ONN chips having the same synaptic throughput Tch = 30 SOP/s, N = 2 and
NS = 3.
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Figure 2.17: Illustration of synaptic and neuronal throughput for (a) an SNN chip, (b) an ANN chip, and
(c) an ONN chip. The chips have N = 2 neurons with NS = 3 synapses each. The synaptic throughput
for all chips is set to Tch = 30 SOP/s. In SNNs, the neuron membrane potential is updated for each input
spike and can potentially produce an output spike when receiving a single weighted spike. In ANNs,
each neuron needs to receive all the input MAC before producing an output. In ONNs, neurons’ outputs
are measured after Ncycle oscillations.

Note that this is purely illustrative, as SNN and ANN chips have Tch in the range of [106−1010]
SOP/s and [1010−1014] SOP/s, respectively. Moreover, the schematic assumes a uniform distri-
bution of SOPs, whereas in practice SOPs could occur differently depending on the architecture
and information encoding [36]. Given Tch, N, and NS, we can only infer the average number of
SOPs per neuron within a time window.

In SNNs, each synaptic spike (SOP) updates the neuron membrane potential which can
induce an output spike when the potential is above a threshold. In other words, the neural
output is sensitive to each SOP and produces an output, ’0’ or ’1’, according to its internal state
(Fig.2.17a). We define the neuron throughput in SNN as the neural output rate T SNN

neuron = Tch/N,
which is different from the output firing rate (rate of ’1’s). Consequently, we define the average
neuron delay in neuromorphic chips as:

delayneurom =
1

T SNN
neuron

=
N
Tch

(2.40)

In ANNs, the neurons need to evaluate all the input SOPs (MACs) before updating the output.
Hence, the neuron throughput is T ANN

neuron = Tch/(N NS). Note that this is also valid when the
MAC operations are calculated in parallel, which is the main objective of neural accelerators.
Thus, we define the average neuron delay in ANN accelerator chips as:

delayacc =
1

T ANN
neuron

=
N NS

Tch
(2.41)

Knowing the power consumed in the chip Pch, we express the neuron energy loss to produce an
output for SNN chips as:

Eneurom =
Pch

N
delayneurom =

Pch

Tch
(2.42)

The last expression is equal to the energy lost while processing a single SOP and is in agreement
with our previous definition of SNN neural output. Similarly, we express the neuron energy loss
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to produce an output for ANN accelerators as:

Eacc =
Pch

N
delayacc = NS

Pch

Tch
(2.43)

In ONNs, the computation is based on the synchronization of coupled oscillators which
require an average of Ncycle oscillation cycles before producing a steady output. Thus, the
oscillator delay is simply expressed as:

delayONN = NcycleTosc (2.44)

and the oscillator energy becomes:

EONN =
Pch

N
delayONN =

Pch

N
NcycleTosc (2.45)

In general, ONNs need less than 10 oscillation cycles to settle and we set Ncycle = 5 in this
benchmark, as observed in section 2.7.3.

The VO2-ONN architecture is benchmarked using VO2 devices with CB=500nm, ∆Vmax=21
mV, and various load capacitors. TCAD simulations were initially carried out to fit experimental
oscillations where circuits employ nano-farad load capacitors [110]. However, in literature,
faster VO2 oscillations up to 9 MHz have been reported [164] and we believe crossbar VO2
could reach a similar speed with lower load capacitors. Thus, we project the oscillator energy
and delay for lower capacitances down to 500 fF using our analytical model (eq.2.28) and
(eq.2.35).

The power dissipated by peripheral circuits, i.e., the phase initialization and measurement
circuits, are included to obtain a more precise energy assessment. In the worst case, one digital-
to-time converter (DTC) per oscillator is needed to set the oscillator input phase. As an example,
we consider a 9-bit DTC consuming 31 µW at 40 MHz in 28 nm CMOS technology [165] suit-
able for low-power edge applications. For the phase measurement, we take the example of the
circuit described in [166] that consumes 20.5 µW in 28 nm CMOS technology. Overall, the
peripheral circuits clocked at 30 MHz consume Pperiph=60 µW per oscillator, which gives 2 pJ
per cycle. As a first-order estimation, Pperiph is considered proportional to the neuron oscillating
frequency which gives a constant peripheral energy loss Eperiph = Pperiph Tosc Ncycles. The num-
ber of cycles is Ncycles ≈ 5 and Eperiph=10 pJ. Note that our estimation remains optimistic as we
use a bottom-up type of energy-delay assessment, whereas state-of-the-art data correspond to
real chip measurements.

Fig.2.18 shows the neuron energy delay for various SNN neuromorphic chips (blue circled
dots), digital neural accelerators (red squared points) considered in previous work [91] and VO2
oscillators with different load capacitances. The benchmark data is listed in Tables 2.2, 2.3 and
2.4. When the oscillator load capacitance increases, the oscillator slows down and its energy to
produce a stable output phase increases. Similarly, neuromorphic SNN chips lie on the right-
hand side of the plot as they generally produce spikes at lower frequencies than digital neural
accelerators [91]. From the neuron energy point of view, it appears that VO2-based ONNs can
compete with state-of-the-art SNN neuromorphic chips for a similar neuron delay.
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Figure 2.18: Neuron energy and delay to produce an output for various chips. Red squared markers are
digital neural accelerators optimized for efficient matrix-vector product (MAC operations). Blue circled
points are neuromorphic chips that implement SNNs. Green diamond markers are VO2 oscillators with
CB=500 nm and various load capacitances including peripheral circuits. Orange star markers are ONN
neurons standalone without any peripheral circuits. Purple triangular points are ONNs designed with
CMOS technology.

BSS-2 ASIC SpiNNaker Neurogrid ROLLS Loihi True North SBNN Kuang et al.
[38] [167] [39] [168] [169] [41] [165] [170]

Application Neuroscience simulation Neuromorphic computing

#core 1 768 15 1 128 4096 64 64
N/core 512 150 256x256 256 1024 256 64 1024

NS 256 750 7980 512 1000 ( 1bit) 256 256 1024 (1 bit)
Tch (MSOP/s) 477 1330 3300* 3.9* 50 000 (@1V) 2700 25 200 (@0.9V) 12 290 (@1.2V)

Pch (W) 0.69 26.8 3.1 0.004 (@1.8V) 1.25* 0.07 0.21* 0.208 (@1.2V)
Firing rate (Hz) 3600* 15 0.42 30 380* 20 24 000* 183*

Time step of dynamics NA - NA NA - 1 ms - -
delayneurom = N/Tch (µs) 1* 90* 300* 64* 2.6* 400* 0.16* 5.3*

Eneurom = Pch/Tch (pJ) 1400* 20 000* 940* 1025* 25* 26* 8.3* 17*
ESOP (pJ) - 7000 - 3.7 - - - 4.6 (@1.2V)

Table 2.2: High-level features of Neuromorphic chips implementing SNNs. *Derived values.

DianNao ShiDianNao DaDianNao Origami Eyeriss Envision TPU v4 Google Myriad2
[171] [172] [173] [174] [175] [176] [177] [178]

Application CNN/DNN CNN CNN/DNN CNN CNN CNN DNN/CNN Vision processing
#core 1 1 16 1 1 1 2x4 12

N/core 16 64 16 4 12 16 128 2 (16-bit)
NS 16 8 16 49 14 16 128 8 (16-bit)

Tch (GOP/s) 452 194 5580 196 (@1.2V) 33.6 (@1V) 100 275 000 950 (16-bit)
Pch (W) 0.485 0.32 15.97 0.654 (@1.2V) 0.278 0.077 170 0.8

Clock frequency (GHz) 0.98 1 0.606 0.5 0.2 0.2 1.05 0.6
delayacc = NNs/Tch (ns) 0.57* 2.6* 0.73* 1* 5* 2.6* 0.48* 0.2*
Eacc = NSPch/Tch (pJ) 17* 13* 46* 163* 116* 12* 79* 6.7*

Table 2.3: High-level features of digital accelerators. *Derived values.
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Jackson et al. Nikonov et al. Ahmed et al. Moy et al. SKONN Bashar et al. Graber et al.
[89] [95] [74] [76] [179] [138] [90]

Application Image Processing Combinatorial Optimization

#core 1 1 1 1 1 1 1
N/core 100 26 560 1968 16 30 400

NS 100 1 6 4 16 30 4
fosc (MHz) 1000 8000 118 1000 1 0.045 200
Pch (mW) 303 6.76 23 42 0.167 (core) 1.76 182

delayONN = Ncycle/fosc (ns) 4* 9 42* 5* 5 000* 111 000* 25*
EONN = NcycleToscPch/N (pJ) 1.21* 2.1* 1.74* 0.11* 52* 6500* 11.3*

Table 2.4: High-level features of ONN chips. *Derived values.

With real chip measurements which would include all peripheral energies, the ONN region
would probably shift up and lie in the SNN neuromorphic region in the worst case. The VO2
oscillator could compete with neural accelerators at energy level but would be orders of mag-
nitude slower with load capacitances larger than 500 fF. For instance, a neuron from DianNao
[171] accelerator produces an output after 570 ps whereas it would take 16 ns to phase lock
for a scaled VO2 oscillator with CP=500 fF. Interestingly, peripheral circuits set the minimum
achievable neuron energy for load capacitances smaller than 50 pF (green diamond points),
whereas the energy of the ONN neuron standalone can reach sub-picojoule ranges (orange star
points). From our first-order estimation, we conclude that the energy and delay of a VO2-ONN
can be very competitive under the two following conditions:

1. The oscillating frequency is in the GHz range, i.e., the load capacitance CP <50 fF and
assuming that the VO2 thermal time constant remains negligible [150].

2. A careful design of peripheral circuits is required to fully take advantage of the ONN
phase computing paradigm.

As an alternative to VO2 oscillators, CMOS ONNs (purple triangular points) are currently
very competitive as they use scaled transistors from a mature CMOS technology. For instance,
the first phase-based ONN chip ever reported for pattern recognition is the digital ONN designed
by Jackson et al. [89] with 100 neurons and 10,000 synapses using a 28 nm CMOS technology.
Their results are promising as they measured a 1.21 pJ neuron energy and 4 ns delay. For
fast convolution inference, Nikonov et al. recently reported on an ONN chip fabricated in a
22 nm FinFet CMOS process that computes in less than 10 ns and consumes 2 pJ/oscillator
[95]. In the field of oscillator-based Ising machines (OIM) [162], Moy et al. [76] revealed an
OIM composed of 1968 ring oscillators in 65 nm CMOS technology that only consume 110
fJ/oscillator for Ncycles=5 and fosc=1 GHz. These recent examples further highlight the ONN
potential to perform various tasks at high speed and low energy.

Finally, it is important to stress that benchmarking different architectures at the neuron level
only gives a limited vision of the chips’ potential as they are ultimately used to solve practical
problems. For example, Nikonov’s ONN and the neural accelerator DianNao [171] have almost
the same energy and delay when used to compute convolutions [95]. Next, we choose to bench-
mark a VO2-ONN in the case of image edge detection which is a widely used task in image
processing.
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2.8.2 Edge Detection Benchmark with ONN

Here, we aim to benchmark VO2-ONNs with other works on a specific image edge detection
application. Similar to edge detection algorithms that employ 3x3 or 5x5 convolution kernels
[180], the input image is scanned by a 3x3 ONN to extract edges. Analogous phase-based
edge detection algorithms have already been proposed in literature [118, 181] but we rather
focus on the analog hardware implementation to assess how a VO2-ONN benchmarks with the
state-of-the-art edge detection hardware.

We consider a fully-coupled ONN composed of 10 oscillators and 45 coupling resistors
where 9 oscillators scan the input image with a padding of 1, and the 10th oscillator makes
the final decision (Fig.2.19a). Using the Hebbian learning rule [68], the ONN is trained to
detect edges in the vertical, horizontal, and diagonal directions and the Hebbian coefficients are
mapped to coupling resistors using the mapping function defined in [98] (Fig.2.19b). To detect
the background, we bias the VO2 oscillators such that the 0◦ phase state is more likely to occur
(RS=6 kΩ instead of 20 kΩ), further explained in section 2.9.3. As shown in Fig.2.19c and
Fig.2.20b, the oscillators converge in-phase when initialized with similar input phases and the
ONN detects the background. Fig.2.20a shows an example where the ONN detects a vertical
edge. Note that the 10th output oscillator is always initialized with an input phase of 90◦ to not
favor any particular output state. As already highlighted in section 2.7.3, the ONN makes the
decision after a few oscillation cycles only (between 3 and 5).

Training images: edge detection

Additional state: 
Background 
detection

(a)

(b) (c)

EDGE=1

EDGE=0

Figure 2.19: a) 10 fully-connected oscillators trained to detect vertical, horizontal, and diagonal edges
in images. b) Mapping of Hebbian coefficients to coupling resistors. c) ONN state that detects the image
background.
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Figure 2.20: From left to right: 3x3 portion of an input image, oscillators’ waveforms, output ONN state
in the case of a) vertical edge and b) uniform background.

We compare our ONN image detection with the state-of-the-art Sobel and Canny edge detec-
tion methods [180, 182] that are evaluated in Matlab using built-in functions. To quantitatively
benchmark edge detection algorithms, most methods compare the output image with a ground
truth solution [183]. We consider Canny’s result as the ground truth solution as it is a widely
used edge detection algorithm known for its good performances [184, 185]. Given the set of
positive pixels (edges) Pc produced by the Canny algorithm, we compute four sets that quantify
how well the produced set of edges P matches the ground truth solution. True Positives are pix-
els that match the ground truth positive pixels: T P = Pc ∩P; False Positives are positive pixels
that do not match the ground truth: FP = Pc ∩P; False Negatives quantify the missing edges:
FN = Pc ∩P and True Negatives are correctly undetected edges: T N = Pc ∩P.

With the 8-bit 64x64 gray-scale example in Fig.2.21a, Canny produces |Pc|=469 positive
pixels that are considered as the ground truth set (Fig.2.21b). The ONN outputs more edges
than Sobel (578 vs 184) and some regions such as Lena’s nose and mouth are more visible.
The ONN has more TP pixels (179 vs 137) but most of the ONN edge pixels are not aligned
with Canny’s edges as the ONN produces 399 FP pixels (69%); whereas Sobel only has 47 FP
pixels (25%). This misalignment is also reflected by FN pixels that correspond to missed edges
as |FN|/|Pc|=62% of Canny’s edges are missed by the ONN edge detector. With respect to the
Jaccard similarity defined as J = |T P|/

(
|T P|+ |FP|+ |FN|

)
[186, 187], Sobel is more similar

to the ground truth than ONN as J(C,S)=0.265 and J(C,ONN)=0.206.

Using a similar approach, we benchmark VO2-ONNs on nine different 512x512 black and
white images [188] (Fig.2.22a). By considering Canny’s edge set as the ground truth, it ap-
pears that Sobel produces more TP pixels and fewer FN pixels than the ONN edge detector
(Fig.2.22b). Hence, there is a better match between Sobel’s output and the ground truth com-
pared to the ONN output. For instance, Fig.2.23b illustrates the good match between Canny
and Sobel outputs as |T P| > |FN| > |FP| (black and magenta pixels are dominant); whereas
the ONN output in (Fig.2.23c) is dominated by green FP pixels, suggesting again that the
ONN edges are at different locations compared to Canny’s. Finally, the larger mismatch be-
tween ONN and Canny also appears in the Jaccard similarity measure for the nine images as
J(C,S)> J(C,ONN). Overall, the ONN produces at least as many edges as Canny (except for
Image 9: see Fig.2.22b) but are at different locations. In contrast, the Sobel algorithm detects
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fewer edges that are better matched to Canny’s.

(a) (b)

(c) (d)

Input image Canny

Sobel ONN

|P| |TP| |FP| |FN| |TN| J

Sobel 184 137 47 332 3580 0.265

ONN 578 179 399 290 3228 0.206

(e)

Figure 2.21: a) 64x64 8-bits gray scale image [188]. b), c) and d) are the output images using Canny,
Sobel, and ONN edge detection methods, respectively. e) Comparison between Sobel and ONN edge
detections by considering the Canny edge set Pc as ground truth with |Pc|=469. |P| is the number of
positive pixels that correspond to edges. |T P|, |FP|, |FN|, |T N| are the number of True Positive, False
Positive, False Negative and True Negative pixels compared to Canny, respectively. J is the Jaccard
similarity with Canny’s edge set.

Table 2.5 shows the performances of edge detection ASICs implemented in 65 nm [189] and
45 nm [190] CMOS technologies. Both accelerators are optimized to run the Canny algorithm
and are suitable for edge applications thanks to their low power consumption. A VO2-ONN with
a crossbar size of 500 nm is considered to achieve low power operations along with various load
capacitances to set the oscillating frequency. A single ONN running at 31 MHz would process
a 512x512 image in 42 ms and would be 100x slower than Soares’s ASIC [190]. By reducing
the capacitance load to 500 fF and parallelizing at least 10 ONNs, ONN could compete with
state-of-the-art to achieve 0.42 ms/image.

Hardware Frequency Mean Power Image size Time /image Energy/pixel
Lee 2018 [189] ASIC (65 nm) 500 MHz 5.48 mW 1280x720 2.2 ms 13.2 pJ

Soares 2020 [190] ASIC (45 nm) 350 MHz 6.7 mW 512x512 0.42 ms 10.7 pJ

ONN1 10 VO2-oscillators
C=5 pF 31 MHz

13 µW
+ 330 µW (periph.) 512x512 42 ms

2.1 pJ
+ 53 pJ (periph.)

ONN2 10 VO2-oscillators
C=500 fF 310 MHz

13 µW
+ 3.3 mW (periph.) 512x512 4.2 ms

0.21 pJ
+ 53 pJ (periph.)

Table 2.5: Edge Detection Benchmark

Again, the peripheral circuits’ energy could become dominant for scaled VO2-oscillators
and would be 253x larger than the oscillator energy in this first-order estimation. This points
out that a VO2-ONN requires specific and optimized peripheral circuits to fully take advantage
of the ONN paradigm. We also believe there is room for improvement in terms of power man-
agement as ONN only needs initialization and phase measurement circuits during the first and
last oscillating cycle, respectively.
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(a)

Image 2Image 1 Image 3

Image 5Image 4 Image 6

Image 8Image 7 Image 9

(b)

(c)

Figure 2.22: a) 512x512 black and white images. b) Numbers of True Positive, False Positive, and False
Negative pixels obtained by considering Canny as the ground truth. The bottom right plot shows the
number of detected edges for each edge detector. c) Jaccard similarities between (Canny, Sobel) and
(Canny, ONN).
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Comparison between
Canny and ONN

Comparison between
Canny and Sobel

: TP : FP : FN : TN

Input image 2

: TP : FP : FN : TN

a) b) c)

𝑇𝑃 > 𝐹𝑁 > |𝐹𝑃| 𝐹𝑃 > 𝐹𝑁 > |𝑇𝑃|

Figure 2.23: a) Monkey binary 512x512 image. b) and c) Comparison between Sobel and ONN outputs,
respectively, with Canny considered as the ground truth. Black, green, magenta and white pixels repre-
sent True Positive, False Positive, False Negative, and True Negative pixels, respectively.

2.9 Architecture Limitations

While VO2-based ONNs are promising for low-energy applications, the proposed architecture
has three main limitations that are further described below. Overall, we find that the pattern
recognition accuracy is greatly affected by the:

1. Synaptic resistance range.
2. VO2 device variations.
3. Oscillator waveform shape.

2.9.1 Challenge of Synaptic Implementation

Here, we highlight the sensitivity of the proposed VO2-ONN architecture with respect to the
synaptic resistance range for pattern recognition applications. Our strategy is to evaluate the
recognition accuracy of a 60-neuron ONN (Fig.2.10) trained with different coupling resistance
ranges set by the mapping function parameter β . The test set consists of 20 different subsets
Sk, k ∈ {1,2, ..,20} in which 60 different test patterns have k randomly located fuzzy input
pixels. We notice from Fig.2.24C that the ONN achieves the best accuracy for an optimum
value β = N/32 = 1.875. In this case, the ONN recognizes more than 80% of test images with
up to 20% of noise. As seen in Fig.2.9C, the ONN accuracy is sensitive to the slope parameter
β that sets the coupling resistance range. For instance, while increasing β = 2 to β = 2.5 only
slightly changes the coupling resistance range, the accuracy decreases drastically in the latter
case. This could be an issue in real circuits where the coupling resistance precision is limited
by the technology process.

Thus, we assess the impact of RC’s relative variations and RC’s mean value on the ONN
accuracy. Rmin

C is the minimum resistance common to all coupling resistances, and ∆R is the
additional series resistance to distinguish between weights (Fig.2.24A). Using the Hebbian rule,
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weights are located near ’0’ coefficient as in Fig.2.9C and our mapping function can be fitted
linearly (dashed lines). Therefore, every coupling resistances can be approximated by RC ≈
Rmin

C +n∆Rmin with n ∈ {0,1,2, ..,M}. Using this linear approximation, we check that the ONN
accuracy is similar to the nominal mapping function with β =N/32, as shown in Fig.2.24C with
the magenta dashed line.

VO2 RC

RC
min ΔR

VO2

A B

Mean RC variation

A
cc

u
ra

cy

C D

Figure 2.24: (A) Two oscillators coupled by RC, which can be decomposed in two series resistances:
RC = Rmin

C +∆R. (B) Evolution of ∆R, Rmin
C with respect to β . ∆Rmax ≈ 10% Rmin

C gives the best accuracy
results. Note that ∆Rmin = 1.7% Rmin

C . (C) ONN recognition accuracy for different values of β . The
dashed line is obtained for a linear fit of the mapping µN , i.e., with coupling resistances that are linearly
spaced. (D) Impact of RC’s mean variation on recognition accuracy.

It appears that the ONN accuracy is quite sensitive to the coupling resistances. We obtain
∆Rmax ≈ 15% Rmin

C for β = 3, and ∆Rmax ≈ 5% Rmin
C for β = 1 (Fig.2.24B). For these two cases

as shown in Fig.2.24C, the ONN shows a poor accuracy. It is rather for β = N/32 = 1.875
with ∆Rmax ≈ 10% Rmin

C that the ONN accuracy is higher than 90%. To achieve the best ONN
accuracy, a very good resistor matching is required, with a precision of ∆Rmin = 1.7% Rmin

C
between two consecutive weights. To study the influence of the RC’s mean value only, we
apply the same variation to all coupling resistances for β = N/32 and for 10 fuzzy input pixels
(Fig.2.24C). We notice that the mean value of coupling resistances can vary from -10% up to
+5% from its nominal value to achieve a similar accuracy.

2.9.2 Impact of VO2-oscillator variations

Fabricating reliable VO2 devices is challenging [85] and ONN experiments with VO2 are cur-
rently limited to few devices because of device variability [85, 107]. Here, we study the impact
of VO2 variability on the ability to phase-lock and on the synaptic range. The transition func-
tion ζ (RC) (eq.2.9) defines the boundary between the binary phase regions and allows direct
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identification of the neutral coupling resistor R0 corresponding to the weight W = 0 (eq.2.14).
Thus, we use ζ and R0 as metrics to assess the impact of VO2 parameters’ variations. We ap-
ply relative variations on VO2 parameters one at a time from -20% up to +20%, as shown in
Fig.2.25A. Note that we vary VH from -4% up to +4% only, as for larger positive variations
oscillations do not occur (load line crosses the insulating branch and forms a fixed point). We
solve (eq.2.12) to find ζ with the varied VO2 parameters by checking that ζ also matches the
phases boundary obtained via transient simulations, as in Fig.2.5A.

A BΔRmet ΔRins

ΔVL ΔVH

ΔR0 ΔR0

ΔR0

ΔR0

C
MIT

IMT

Figure 2.25: (A) Phase transition curves ζ (RC) when varying VO2 parameters Rmet , Rins, VL from -20%
to +20%, and VH from -4% to +4% for circuit parameters listed in Table ??. Left hand side of the tran-
sition curve corresponds to inputs (∆tinit ,RC) inducing ∆φout = 0◦ whereas right hand side corresponds
to ∆φout = 180◦ phase region. VH and Rins variations correspond to IMT point variations and have the
most detrimental impact on the transition function variations. The oscillating period almost doubles due
to IMT variations. (B) Variations of the neutral synaptic resistance R0 with respect to VO2 parameters’
variations. R0 is very sensitive to VH as -4% and +4% VH variations induce -20% and +40% R0 variations,
respectively. (C) The ONN sensitivity to IMT point is mainly due to the load line IL = (VDD −V )/RS

placed close to IMT point. Any IMT variation greatly impacts the oscillators’ dynamics defined by
CP dV/dt = IL − I.

Fig.2.25A shows the set of phase transition curves obtained when varying Rmet , Rins, VL,
and VH . Note that our current formalism assumes matched oscillators and hence, variations
are applied to both coupled oscillators. For all curves, the maximum ∆tinit value corresponds
to an input delay of Tosc/2 and shows the oscillation period variation (highlighted in green in
Fig.2.25A). Finally, we extract R0 for each configuration (Fig.2.25B). We observe that variations
on the IMT point (defined by Rins and VH) induce the largest Tosc and R0 variations. With
our biasing scheme set by RS and VDD (Table 2.1), the most sensitive VO2 parameter is VH
as +4% and -4% VH variations induces +40% and -20% R0 variations, respectively. As the
dynamic of the voltage V across the VO2 device is given by CP dV/dt = IL − I, we believe this
sensitivity is mainly due to the load line that passes very close to the IMT point on the VO2
I −V characteristic (Fig.2.25C). In this case near IMT, IL(VH)− I(VH) is small and the voltage
"slows down" and is very sensitive to any IMT variation. When applying -4% up to +4% VH
variations, the oscillating period Tosc almost doubles (same remark with -20% and +20% Rins
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variations). Ideally, we would then place the load line at equal distances between MIT and IMT
points (I(VL)−IL(VL)≈ IL(VH)−I(VH)) to homogenize the impact of VO2 variations. However,
we show in the next subsection that such biasing would prevent binary phase locking and that
resistively coupled oscillators need a very asymmetric waveform to phase-lock to 180◦.

2.9.3 Impact of the Waveform Shape

Oscillators’ circuit parameters listed in Table 2.1 influence the oscillating frequency, amplitude,
and waveform shape. The oscillating waveform shape has a major influence on ONN phase-
locking capability and has been studied for PLL-based ONNs by [68]. Here, we study the
impact of the oscillating waveform shape on the capability for pairs of oscillators to lock to the
180◦ phase state. We characterize the oscillating waveform shape with the ratio τd/τc, where
τd and τc are the discharging and charging time constant, respectively (defined in Appendix A
(eq.A.7), (eq.A.6)). Our transition function ζ links ONN phase-locking properties to the metric
τd/τc, as ζ only depends on oscillators’ internal parameters.
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Figure 2.26: (A) Phase plots showing ∆φout with respect to ∆tinit and coupling resistance RC between
two oscillators. For τd/τc = 3.7, 180◦ phase state is not reachable for low ∆tinit values. In contrast for
τd/τc = 59, 180◦ phase-locking can occur for any ∆tinit value for large RC. The red line is our analytical
model ζ (RC) and captures well the boundary between phase regions. (B) 4 coupled oscillators store a
pattern composed of 2 white and 2 black pixels. Positive and negative weights are mapped to 3xR+1 and
3xR−1, respectively. (C) ONN inference for τd/τc = 3.7 and τd/τc = 59. The first configuration leads
to a wrong in-phase relationship for all oscillators. In the latter case, ONN retrieves the correct stored
pattern.

We reproduce the previous simulation with two coupled oscillators to extract the output
phase regions for different load resistances RS that set τd/τc (Fig.2.26A). Note that we could
also have varied VO2 parameters such as Rmet , but we instead consider the same device. For
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τd/τc = 3.7 (RS = 3 kΩ), we observe that the two oscillators cannot lock to ∆φout = 180◦ for
small ∆tinit values. In other words, the phase state ∆φout = 180◦ stored by a large RC cannot
be fully recovered. This can be an issue for some pairs of oscillators that need an out-of-
phase relationship for any input delay. If τd/τc = 59 (RS = 20 kΩ), the charging time is much
smaller than the discharging time and the oscillating waveform becomes very asymmetrical.
Interestingly, this configuration enlarges the 180◦ phase region and ∆φout = 180◦ is reachable
for any ∆tinit value for large RC. Our analytical model ζ (RC) predicts the correct boundary
between the two phase regions (red plain lines in Fig.2.26A).

We study a simple case where four VO2 oscillators are coupled by resistances to store a
single pattern (Fig.2.26B). Based on transition functions obtained for 2 coupled oscillators,
we compute the coupling resistances R+1 and R−1 that correspond to synaptic coefficients +1
and -1, respectively. We set R+1 and R−1 around R0 as R+1 = ζ−1(Tosc/4+Tosc/8) and R−1 =
ζ−1(Tosc/4−Tosc/8), respectively. Then, we scale the coupling resistances as 3xR+1 and 3xR−1
as every oscillator is connected to 3 others (Fig.2.26B). It appears that the ONN with τd/τc =
59 retrieves the correct stored pattern whereas the ONN with τd/τc = 3.7 produces a wrong
output (Fig.2.26C). In the latter case, we observe that all oscillators converge to an in-phase
relationship. We believe this wrong behavior is mainly due to the small τd/τc value for which
it is less likely ONN converges to ∆φout = 180◦, as described by the transition function ζ .

Fig.2.27 shows results for the same experiment with τd/τc varied from 1.8 up to 59 (ob-
tained for 2 kΩ ≤ RS ≤ 20 kΩ). We observe that τd/τc > 20 is required to retrieve the correct
pattern. Interestingly, for τd/τc ≤ 20, there are cases where the fourth oscillator locks to a phase
state around 270◦. 270◦ phase value is also obtained in the phase plot between two coupled os-
cillators, such as on the left-hand side of Fig.2.26A. This phenomenon would allow more than
two phase values but is not captured by our current formalism. In contrast, setting τd/τc = 59
ensures binary 0◦ and 180◦ phase locking. However, this configuration lacks stability and is
subject to device variations, as seen in the previous section.

Input

Output

1 2

3 4

Training

1 2

3 4
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B

C

Figure 2.27: (A) Training pattern stored by the ONN. (B) ONN input pattern. (C) Output phase with
respect to τd/τc. For τd/τc < 7, all oscillators converge to a wrong in-phase relationship. For 7≤ τd/τc <
20, the fourth oscillator locks to a 270◦ phase state. A very asymmetrical waveform such that τd/τc ≥ 20
leads to a correct binary phase-locking.

54



A VO2-based ONN Architecture 2.9. Architecture Limitations

2.9.4 Impact of the External Temperature

We saw in section 2.2 that the switching mechanism of VO2 devices is temperature-dependent
as it is driven by the temperature increase due to the Joule effect. However, such dependency
is not captured by the state-of-the-art VO2 model from Maffezzoni [158] that we have been
using throughout this chapter. Instead, the VO2 electrothermal TCAD model developed by
Carapezzi et al. [150, 163] is based on the intrinsic relationship between device resistivity and
temperature ρ(T ), as illustrated in Fig.2.2A, and has been calibrated with experimental data
from IBM [150].

Fig.2.28a and b show the I −V characteristic and oscillating circuit of a VO2 device in
crossbar geometry with 5-µm side and thickness of 80 nm. The contact width is 250 nm. More
details can be found in [150]. TCAD quasi-static simulations show that the I −V characteristic
shifts to the left when increasing the external temperature. As the VO2 device IMT point is set
by a given temperature threshold, the device requires less power (i.e. current) to switch when
increasing the external temperature. Of course, the amplitude of the I−V shift depends on VO2
material and device properties but for this device example, we observe a -25% VIMT variation
for a 14 K temperature increase. This results in modifications of the oscillation waveform as
shown in Fig.2.28c) with the device biased with a series resistor RS = 15 kΩ, VDD = 3 V and
CP = 150 pF. The ratio τd/τc decreases with T0 which prevents binary phase-locking, as seen
earlier in section 2.9.3. Moreover, if the temperature increases too much, the load line no longer
lies in the NDR region and the oscillations die, as shown in Fig.2.28b at T0 = 308 K.

𝑇0 (K) 293 303 307

𝑓𝑜𝑠𝑐 (MHz) 1.59 1.96 1.81

𝑉𝑝𝑝 (mV) 220 202 190

𝜏𝑑/𝜏𝑐 4 1.8 1.1

(b)

(a)

VO2

RS CP

VDD

VoutIL

5 μm

IL

(c)

Figure 2.28: a) I −V plot of a 5-µm VO2 device in crossbar geometry [150] for various external tem-
perature points T0. b) VO2 oscillator circuit. c) Resulting oscillations. Vpp is the peak-to-peak oscillation
amplitude. τd and τc are the oscillation charging and discharging times.
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2.10 Discussions

Possible Design Improvement: Adding Synaptic Capacitors. In literature, authors have
reported that AC coupling using a coupling capacitor favors a 180◦ phase shift between two
coupled oscillators [149, 191]. Thus, adding a synaptic capacitor in parallel with the coupling
resistor could increase the 180◦-phase-locking capability while enabling a more stable oscillator
biasing in the middle of the NDR region. To test our hypothesis in experiments, we have moved
the biasing line closer to the center of the NDR region, resulting in phase plots having a reduced
180◦ phase region, similar to the phase plot in Fig.2.26A. In practice, we decreased the charge
resistance using a potentiometer on our VO2 PCB emulator (Fig.2.29A) to reduce τd/τc ≤ 20
and increase the oscillator stability.

𝜏𝑑

𝜏𝑐
= 20
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Figure 2.29: A) Schematic of the experimental circuit on PCB to test the impact of synaptic capacitors.
B) Experimental results with or without CC = 220 pF.

Fig.2.29B presents two experimental phase plots obtained by varying the synaptic resistance
RC with or without a fixed synaptic capacitance CC = 220 pF = 12%CL. It is clear that the
synaptic capacitor widens the 180◦ phase region and enables binary phase locking. Adding CC
increases the exploitable RC range by a factor of 10 at least. However, the mapping formalism
that we have developed in Section 2.5 does not consider synaptic capacitors yet, and would
constitute a future work.
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2.11 Conclusion

Motivated by the architecture simplicity, this chapter focused on designing ONNs using VO2
oscillators coupled by resistive devices. As fully-connected ONNs behave like HNNs, we first
proposed a formalism to map Hebbian synaptic coefficients to ONN coupling resistances, thus
enabling ONN design and programmation for the pattern recognition application. Then, we
studied how the ONN performances scale with the network size N. It first appeared that for
good accuracy, the ONN coupling resistances should linearly increase with N, thus keeping a
constant synaptic current at the output of each neuron. This further induces a decrease in the
power of a single synapse as O(1/N), limiting the total ONN power to scale only linearly as
N2O(1/N) =O(N). Furthermore, circuit simulations suggested that the ONN computation time
remains quasi-constant with N, highlighting the high ONN parallelism and its advantageous
energy scaling.

Moreover, we studied how to minimize the oscillator energy footprint at the VO2 device
level. TCAD simulations of VO2 devices in crossbar configuration with fixed thickness sug-
gested that the device threshold voltages scale as O(CB), with CB the crossbar width. Hence,
the oscillator power scales as O(CB2) and the VO2 oscillating neuron is low-power when scaled
down to low dimensions. When benchmarked with state-of-the-art digital neural accelerators
and neuromorphic chips at the neuron level, a VO2 oscillator with CB=500 nm becomes more
energy efficient (<20 fJ/oscillation) for oscillating frequencies above 100 MHz, i.e. for capaci-
tive loads < 500 fF.

Finally, we discussed the limitations of the architecture and found that a large-scale imple-
mentation remains challenging without architectural modifications. The two main limitations
are poor oscillator stability and limited synaptic range which would both lead to an unreliable
ONN operation with real devices. However, there is room for improvement such as 1) relax-
ing the oscillator biasing for more robust oscillations while using synaptic capacitors and 2)
controlling the ONN dynamics with sub-harmonic injection techniques. In the next chapter,
we propose a novel ONN architecture to relax these constraints and potentially facilitate ONN
design at a large scale.
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CHAPTER 3

SKONN: A SCALABLE MIXED-SIGNAL
ONN ARCHITECTURE

DESPITE the promising results on ONN performances and scaling discussed in Chapter 2,
the study of ONNs based on resistively coupled VO2 oscillators has underlined important design
and operational challenges such as:

1. A limited oscillation robustness.
2. A non-trivial synaptic mapping to the hardware with a very narrow synaptic range.
3. A non-negligible temperature dependency of the oscillating signals.

Furthermore, the previous architecture was intrinsically recurrent as oscillators’ inputs and out-
puts were merged on a single node, thus preventing any kind of forward propagation of infor-
mation. In this chapter, I propose a new ONN architecture to address the previous limitations
with a limited increase in complexity. For this design, I wished to keep the computation in the
analog domain, according to the let physics compute paradigm; while taking advantage of the
digital world that has so much to offer in terms of programmability, modularity, and robustness
to noise. Hence, the proposed ONN is a mixed-signal architecture with relaxed triangular
oscillations to address the first challenge, and a digital propagation of information to overcome
the second one. Finally, the temperature dependency is mitigated by designing the ONN with a
CMOS technology.

Although the architecture development first started at transistor and circuit levels, higher
levels of ONN abstraction such as phase dynamics and gradient descent naturally emerged from
the composition of simple building blocks. Interestingly, we will see throughout this chapter
how such high levels of ONN abstractions are linked to energy-based models and to the field of
combinatorial optimization, a topic that will be the focus of the fourth chapter.
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3.1 Introduction

3.1.1 Previous work

Recently, a new interest in ONN has risen thanks to the emergence of novel oscillating devices
that enable the fabrication of efficient ONNs [67]. Such as spin-torque and spin Hall devices
[87, 93], micro-electromechanical systems [88, 192], and transition metal oxide devices are
all candidates for implementing ONNs using their oscillatory behavior and synchronization
properties [85, 86, 96, 123, 150]. As seen in the previous Chapter, beyond-CMOS devices are
promising as they generally allow a compact oscillator design using a single device that could
be scaled down to the nanoscale. Nevertheless, CMOS-based ONNs benefit from the mature
CMOS technology which enables rapid ONN development and facilitates its co-integration with
conventional digital circuits [76, 89, 90, 138]. Throughout this thesis, we focus on ONNs that
compute in the phase domain, i.e. with neurons that oscillate at the same frequency. However,
note that it is also possible to compute with various frequencies [94, 95]. Regardless of the
technology, we identify three important criteria for designing a competitive ONN that computes
in phase domain. It should have:

1. Homogeneous oscillating frequencies
2. Compact and linearly programmable signed synapses
3. A scalable architecture

Even with the mature CMOS technology, achieving perfect matching between hundreds of os-
cillators is unfeasible for small-scale oscillators due to device-to-device variations. Hopefully,
some techniques can overcome frequency mismatches such as calibration or sub-harmonic in-
jection locking (SHIL). SHIL consists in driving the oscillators with a harmonic signal that
can lock to a Fourier harmonic of the oscillating signal [193]. In case of large frequency mis-
matches, the injection of a strong SHIL signal ensures phase locking among the oscillators
[194]. The second criterion promotes synapses that are compact, programmable with signed
weights, and have a value proportional to their conceptual weight. Some architectures, such as
the one studied in Chapter 2, can lead to a non-linear mapping between the conceptual weights
and their hardware implementation, or even be unknown due to the high complexity of the dy-
namics. Finally, the ONN architecture must be scalable to compete with conventional comput-
ing and solve large-scale problems involving thousands or millions of synapses. For this reason,
we believe that the ONN architecture should be modular, i.e. to support the interconnection of
smaller sub-ONNs to build a larger system and avoid the implementation of a fully-connected
network.

Table 3.1 presents the state-of-the-art ONN architectures and their features. We only con-
sider ONN computing in the phase domain and based on electrical oscillators. For solving
combinatorial optimization problems (COPs), a general approach is to map the input graph to
the ONN where vertices are oscillators, and edges are synapses. Some architectures such as
[86, 139] are dedicated to finding the maximum cut of a graph with weights of the same sign,
as the synapses only implement negative weights. The main drawback is that both coupling
capacitors and resistors are required to program negative and positive weights, respectively.
Other architectures using differential LC oscillators enable signed weights using resistors only
[162, 195] but are not scalable on chip due to the bulky LC tanks and resistors. Digital ONNs
are promising as they are scalable and modular, as demonstrated by Moy et al. with their 1968
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ring oscillators chip [76]. A recent promising fully-analog architecture for solving COPs has
also been proposed by Graber et al. [90] that consists of 400 oscillators coupled with nearest
neighbors.

Goto [79]
Jackson

et al. [89]
Wang

et al. [162].
Chou

et al. [195].
Mallick

et al. [139].
Dutta

et al. [86].
Moy

et al. [76].
Graber

et al. [90]. This work

Size 9600 100 240 4 600 8 1968 400 16

Oscillator Analog LC Digital Analog LC Analog LC
Analog

relaxation

Analog
relaxation
(PTNO)

Ring
Oscillator

Analog
differential

Analog
relaxation

SHIL
or

Calibration
Yes Yes Yes Yes Yes Yes Yes Yes Yes

Coupling Transformers Resistors Resistors Resistors Capacitors
Capacitors
Resistors

Transmission
gates

Current sources
with DACs Capacitors

Signed
weights No Yes Yes Yes No No Yes Yes Yes

Weight
precision 1 bit 5 bits 8 bits 5 bits 1 bit - 5 levels 6 bits 5 bits

Modular Yes - Yes - Yes - Yes Yes Yes
Feedforward Yes Yes - Yes No No No Yes Yes
Initial phase

control Yes Yes - - - - - No Yes

Application Digital logic
Pattern

recognition COP COP COP COP COP COP
COP

Image
processing

Table 3.1: State-of-the-art ONN Architectures

3.1.2 Contributions

In this work, we introduce a new mixed-signal ONN architecture, named Saturated Kuramoto
oscillatory neural network (SKONN) that leverages both analog and digital domains to satisfy
the three ONN design criteria. SKONN takes inspiration from the state-of-the-art analog ONN
architectures for which the dynamics evolve naturally in continuous time and can easily be
described by phase models like Kuramoto’s or Izhikevich’s [146], thus facilitating the explo-
ration of potential applications. SKONN’s main novelty consists of setting the computation and
propagation in the analog and digital domains, respectively. Fig.3.1 illustrates SKONN with 4
fully-coupled neurons.

Digital propagation has several advantages such as greater noise immunity, a higher fan-
out, and smoother interfacing with other digital circuits. Moreover, the separation between the
computation and propagation induces a natural implementation of feed-forward synapses that
have never been implemented in literature, to the best of our knowledge. The development of
the proposed ONN architecture led to the following contributions:

• SKONN circuit and architecture description.
• Derivation of SKONN’s phase dynamics and energy landscape.
• Design of a first 3x3 SKONN proof-of-concept on PCB.
• Integrated circuit (IC) design of a 4x4 SKONN demonstrator in 65 nm CMOS technology.
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Figure 3.1: Illustration of a SKONN architecture composed of 4 oscillators and 16 synapses. Neuronal
input and output lines are laid out vertically and horizontally, respectively. For neuron i, the input V in

i (t)
and output V out

i (t) are synchronized such that V out
i (t) commands the generation of V in

i (t). A synapse Si j

consists of a capacitor Ci j that converts the digital signal V out
j (t) in current spikes sent to the input node

i. The multiplexer sets the weight sign by selecting V out
j (t) or V out

j (t) = V out
j (t −T/2). The triangular

analog input oscillation V in
i (t) receives the synaptic current spikes, i.e. the charges Qi j, that shift the

phase φi.

Part of this chapter’s findings led to the following peer-reviewed journal article:

C. Delacour, S. Carapezzi, G. Boschetto, M. Abernot, T. Gil, N. Azemard and A. Todri-Sanial,
"A Mixed-Signal Oscillatory Neural Network for Scalable Analog Computations in Phase Do-
main", in Neuromorphic Computing and Engineering, vol.3, 2023.
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3.2 SKONN Architecture Description

3.2.1 A Mixed-Signal Oscillating Neuron

A SKONN neuron consists of a relaxation oscillator producing analog and digital oscillations
with period T at its input and output nodes, respectively. Fig.3.2a shows the block diagram of
the oscillating neuron. It consists of a hysteresis circuit that commands a shaper block to charge
and discharge a capacitor CL with constant current Ibias. The voltage across the capacitor V in

i
is fed back to the hysteresis comparator that switches between VDD and 0 when V in

i reaches
the thresholds VH and VL, thus producing oscillations. V out

i holds the phase state in the digital
domain, whereas V in

i is the analog evolution of the oscillation. Note that the input impedance
of the oscillator is purely capacitive in the ideal case so that any charge sent to the input node
causes an instantaneous phase shift. The analog waveform V in

i supports the computation and is
separated from the digital propagation V out

i , enabling a feed-forward propagation of the phase
information.

Fig.3.2c shows an example of feed-forward propagation between two oscillators. The com-
putation occurs in the analog domain at the input node of neuron i that gathers the output signals
from neuron j. The oscillator output signal is a square digital-like signal that carries the oscil-
lator state and evolves until the phase dynamics settle to a fixed point. Choosing a triangular
waveform at the analog input leads to simple yet rich phase dynamics that are similar to the Ku-
ramoto model, which is known to have interesting computational properties [146]. Moreover, it
skips the use of bulky LC tanks needed for producing sinusoidal oscillations. The neuron volt-
age dynamics are expressed in Appendix B.1 for completeness, although this work focuses on
phase dynamics that are more suitable to study phase-based ONNs. The comparison between
SKONN circuit dynamics and phase dynamics is presented in Appendix B.4.

3.2.2 Synaptic Design and Weight Sign

A SKONN synapse Si j consists of a capacitor Ci j that transmits current pulses, i.e. charges Qi j,
from the output of oscillator j to the input of oscillator i. Ci j can easily be programmed using a
capacitor bank and a register, as shown in Fig.3.2b. Instead of propagating the sensitive analog
signal, SKONN only transmits the oscillator phase information in a robust manner. The digital
output voltage V out

j is applied to Ci j that creates current spikes holding the phase information
φ j. The synaptic spike train can be expressed as follows:

Ii j =Ci j
(dV out

j

dt
− dV in

i
dt

)
(3.1)

The synaptic capacitor can be thought of as a digital-to-analog phase converter. The synap-
tic weight consists of the capacitance value Ci j that linearly modulates the charge sent to the
oscillating input node i as Qi j = Ci jVDD, thus inducing phase shifts in the oscillation i as
shown in Fig.3.2c. To implement a negative weight, the complementary of V out

j defined as
V out

j (t) = V out
j (t −T/2) is selected using a multiplexer and applied to Ci j. Compared to resis-

tors, synaptic capacitors have several advantages for upscaling the ONN:
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1. ONN computation models are generally based on the weak coupling assumption [69, 146]
and necessitate weak synaptic signals. This means the ONN needs either large coupling
resistors or small capacitors, the latter being much more scalable in a chip.

2. For a limited neuron output strength, the only way of increasing the synaptic fan-out
is to reduce the synaptic current, which again would lead to bulky resistors or smaller
capacitors in the case of SKONN.

          

          

 

 
 

    

sign(Wij)

Cij

Sign Amplitude

Programmation

Vj
out

Vi
in

sign(Wij)

C0 C1 C2 C3

(b) SKONN synapse

Vj
out

Vi
in

Iij

Iij

Vi
in Vi

out
IN OUT

HysteresisShaper

Vi
outVi

in

ANALOG DIGITAL

(a) SKONN neuron

CL

CL

Vj
out

δV =-
Qij

Ceq

Vi
in

Iij

Δϕij =
π

2
Δϕij = π

(c) SKONN principle

Vi
out

sign(Wij) = −𝟏

Cij

Vj
out

Vi
in

Iij

IN OUT

Neuron j

CL

IN OUT

Neuron i

Vi
out

Qij

-Qij

VH

VL

δt

δt

Figure 3.2: a) A SKONN neuron is a relaxation oscillator composed of two blocks: the hysteresis circuit
that holds the neuron state and drives the shaper stage. The latter produces an analog triangular waveform
at the input whereas the hysteresis block outputs a digital waveform. b) A SKONN synapse consists of
a capacitor bank setting the weight amplitude. A multiplexer selects V out

j or V out
j to set the weight sign.

c) SKONN principle of computation illustrated with a negative weight. The multiplexer selects V out
j that

is fed into Ci j, creating current spikes Ii j aligned with the rising and falling edges of V out
j . The injected

charges ±Qi j to V in
i induce voltage jumps ±δV that cause time shifts δ t. After a few cycles, the two

oscillators lock to ∆φi j = π .
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3.3 SKONN Phase Dynamics

3.3.1 Two Coupled Oscillators

SKONN computing mechanism is illustrated in Fig.3.2c with the case of a neuron j feeding its
phase to another neuron i in a feed-forward manner with a negative weight.
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Iij(t)

(a)
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IN OUT

CL
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W21 > 0

W21 < 0

ΔV =
Q21

CL

Neuron j Neuron iVj
in(t)

21

21

Figure 3.3: (a) Illustration of a neuron that drives a second neuron in a feed-forward manner. The
multiplexer sets the weight sign and the capacitor Ci j converts the digital signal V out

j (t) into current
spikes Ii j(t) that induce phase shifts of the input V in

i (t). b) Transistor-level transient simulation with a
positive weight Wi j > 0. The second phase catches up with the first one after a few cycles such that
∆φi j ≈ 0◦. (c) Simulated dynamics with a negative weight Wi j < 0. The second phase is pushed such that
∆φi j ≈ 180◦ after a few cycles.
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This means that V out
j is selected by the multiplexer and applied to Ci j, thus creating current

spikes +Qi jδ (t) and −Qi jδ (t −T/2) that are aligned with the rising and falling edges of V out
j ,

respectively. Each injected charge ±Qi j induces a voltage jump δV = ±Qi j/Ceq at the in-
put node, with Ceq = CL +Ci j. As V in

i is a triangular waveform, δV provokes a time shift
δ t =±CeqδV/Ibias, where ± indicates here the sign of V in

i ’s slope. Knowing the period of the
triangular oscillation T = 2Ceq∆V/Ibias where ∆V is V in

i ’s peak-to-peak amplitude, we can then
express the phase shift related to a single current spike:

δφ = 2π
δ t
T

= π
±Qi j

Ceq∆V

= π
±Ci j

Ceq

VDD

∆V

≈ π
±Ci j

CL

VDD

∆V
if CL >>Ci j (3.2)

SKONN’s unique feature consists of this simple relation (eq.3.2) between coupling capacitors
and phase shift, thus enabling well-controlled phase dynamics and a precise weight mapping
to the coupling capacitor Ci j. As we will see later, the quantity β0 = |δφ/Qi j| provides the
neuron phase sensitivity with respect to the charge perturbation. It is linked to the phase pertur-
bation vector (PPV) of the oscillator which is key for deriving SKONN’s phase dynamics [194].
SKONN’s PPV is defined and derived in Appendix B.2.

Two coupled oscillators converge either in or out of phase, depending on the synaptic sign.
To show this property, we use SKONN’s phase dynamics that are derived in Appendix B.3
using the PPV formalism [194]. Under the weak coupling assumption (Ci j << CL), the phase
dynamics of oscillator i can be expressed as follows:

d
dt

φi = 2β0
Qi j

T
square(φi −φ j) (3.3)

with the 2π-periodic function:

square(θ) =

{
−1, if 0 < θ < π

+1, if π < θ < 2π
(3.4)

The phase fixed points can be derived from (eq.3.3) and are expressed in the next proposition.

Proposition 3.1. If the injected charge Qi j ̸= 0 then the two SKONN oscillators admit a unique
stable fixed-point ∆φ∗ = (φi −φ j)

∗ such that

∆φ
∗ =

{
0, if Qi j > 0
π, if Qi j < 0

(3.5)

The proof is shown in Appendix B.3. In other words, propagating a spike train defined as
(eq.3.1) induces an in-phase or out-of-phase locking, depending on the polarity of Qi j. Each
current spike produces a local phase shift to the analog input oscillation, resulting in an average
phase shift ∆φ =±2β0Qi j after each cycle (eq.3.3). Fig.3.3b shows a transistor-level simulation
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of the positive weight case. Ii j perturbs V in
i until the oscillators converge in phase. Similarly,

Fig.3.3c shows the same configuration with a negative weight and the oscillators are out-of-
phase.

Note that the phases measured from the rising edges of V out
i and V out

j are slightly shifted
from the theoretical fixed points (eq.3.5). This is mainly due to the limited bandwidth of the
hysteresis block which does not switch instantaneously when reaching its thresholds. This non-
ideality can be compensated and is further discussed in Appendix B.6. Interestingly, this phase
shift disappears with symmetric synapses as both oscillators are equally delayed (see Fig.3.6c).

3.3.2 N Coupled Oscillators

The phase dynamics of N sinusoidal coupled oscillators are often expressed using the Kuramoto
model [68, 69, 146]:

d
dt

φi =−ω0

N

∑
j=1

Ki j sin
(
φi −φ j

)
(3.6)

where ω0 is the frequency in rad/s and Ki j the coupling coefficients. Similarly, we derive
SKONN’s phase dynamics for N oscillators as follows:

d
dt

φi = ω0
VDD

∆V

N

∑
j=1

Ci j

CL
square

(
φi −φ j

)
(3.7)

where we replaced β0 and Qi j from (eq.3.3) by their expressions β0 = π/(∆VCL) and Qi j =
Ci j VDD. The derivation is detailed in Appendix B.3. VDD is the digital voltage swing, ∆V is
the peak-to-peak triangular voltage amplitude at the input, Ci j is the synaptic capacitance value,
and CL is the neuron input capacitance.

SKONN’s phase dynamics are very similar to the Kuramoto model (eq.3.6) except for its si-
nusoidal function replaced by a saturated square function in this work. It induces a binarization
behavior that is useful for solving some optimization problems as shown next. Note that similar
dynamics have already been explored in simulation by Wang et. al. in their work about oscilla-
tory Ising machines (OIM) [69]. The authors studied the case where the sinusoidal term sin(∆φ)
from Kuramoto (eq.3.6) is replaced by tanh(α sin∆φ) with α = 10. As SKONN’s square in-
teraction can be thought as square(∆φ)≈− tanh(α sin∆φ) for α >> 1, we expect SKONN to
have good performances when solving NP-hard combinatorial optimization problems.

3.4 SKONN Stability and Energy Landscape

SKONN stability can be proved by applying the convergence theorem for ONNs derived by
Hoppensteadt and Izhikevich [121]. With an odd coupling function (eq.3.4) and symmetric
coupling Qi j = Q ji, the theorem ensures that the phase differences converge to a stable fixed
point. The proof consists of finding a Lyapunov function for the dynamics (eq.3.7) that is
bounded below and minimized through time. A candidate for the SKONN Lyapunov function
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is:

E =
β0

T

N

∑
i, j

Qi j triangle
(
φi −φ j

)
(3.8)

with:

triangle(θ) =

{
θ −π/2, if 0 ≤ θ ≤ π

3π/2−θ , if π ≤ θ ≤ 2π
(3.9)

Under the assumption that Qi j = Q ji, one can check that:

∂E
∂φk

=
β0

T

(
−

N

∑
j=1

Qk j square
(
φk −φ j

)
+

N

∑
i=1

Qik square
(
φi −φk

))
=− dφk

dt

(3.10)

Thus, SKONN minimizes E over time:

dE
dt

=
N

∑
k=1

∂E
∂φk

dφk

dt

=−
N

∑
k=1

(dφk

dt

)2
≤ 0

(3.11)

By considering φ1 = 0 as the reference oscillator, SKONN’s and Kuramoto’s energy landscapes
are represented for the three-oscillator case with negative weights in Fig.3.4. In this simula-
tion, the phases are initialized with φ(t = 0) = (0,5,2)◦, and the dynamics (eq.3.6) and (eq.3.7)
are numerically solved using Matlab. Although Kuramoto’s and SKONN’s dynamics seem
similar, i.e. the phases are "pushing" each other, it appears from Fig.3.4b that SKONN’s tra-
jectory converges faster to a different phase fixed point φS(tS

end) = (0,90,180)◦, compared to
φK(tK

end) = (0,120,240)◦ for Kuramoto. Visualizing the trajectories on the energy landscapes
(Fig.3.4) confirms the stability of both ONNs, although reaching different local minima. Note
how SKONN’s energy landscape is sharper than Kuramoto’s. Surprisingly, in this example, Ku-
ramoto’s minima are translated as flat regions or plateaus in SKONN’s energy landscape. The
shape of the energy landscape will be further discussed in Chapter 4 when solving optimization
problems.

For more than 3 oscillators, the only way to plot the energy landscapes in 3D is to take
"snapshots" along some phase variables. Fig.3.5a shows an ONN example with four oscilla-
tors and recurrent negative weights. Here, the phase fixed points are the same as φS(tS

end) ≈
φK(tK

end) = (0,180,360,180)◦, but we observe different convergence times tK
end >> tS

end as Ku-
ramoto’s trajectory seems to 1) be slowed down by a saddle point and 2) is slower to reach the
local minimum (especially φ2 and φ4, see Fig.3.5b). Fig.3.5c shows a snapshot of the energy
landscapes for φ4 = 110◦ when the Kuramoto ONN slows down. For this example of initial-
ization, SKONN’s trajectory follows a much steeper route than Kuramoto’s. We will see in
Chapter 4 that SKONN is indeed statistically faster than Kuramoto to reach energy minima.
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(a) (b)

(c)

Figure 3.4: a) Three oscillators are recurrently coupled by a negative weight. b) Example of Kuramoto
and SKONN dynamics for an initial phase state φ(t = 0)= (0,5,2)◦. c) Corresponding energy landscapes
minimized through time. The red plain lines show both trajectories.

(a) (b)

Snapshot @𝝓𝟒 = 𝟏𝟏𝟎°

Snapshot

Snapshot

(c)

Figure 3.5: a) 4-neuron ONN with recurrent synapses and negative weights. b) Example of dynamics
with φ(t = 0) = (0,5,130,15)◦. The star marker indicates when a snapshot of the energy landscape is
captured at φ4 = 110◦. Notice that SKONN’s settling time is 10x faster than Kuramoto’s. c) Energy
landscapes at the snapshot φ4 = 110◦. Kuramoto and SKONN trajectories take different paths.
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3.5 9-Neuron SKONN Proof-of-Concept

3.5.1 SKONN Design with Discrete Components

We designed a 3x3 SKONN on PCB with fully connected capability and 81 synapses (Fig.3.6a)
as a proof of concept for the SKONN architecture. Due to area constraints, we only imple-
mented negative weights that we program by placing discrete capacitors Ci j manually. Fig.3.6b
shows the oscillating neuron based on a Schmitt trigger (U1) with feedback resistor R3 that
charges/discharges a load capacitor CL, producing a triangular-like waveform with 720 mVpp
amplitude. The neuron output is a square-like waveform oscillating between VDD =+0.9V and
VSS =−0.9V. Using an FPGA, we set the initial phase state by delaying the oscillator’s starting
time (via transistor Q1). The FPGA measures the neurons’ output voltages and allows phase
post-processing with a maximum precision of ε = 360◦ f0/ fFPGA. In our experiments we set
f0 = 4kHz, fFPGA =50 MHz and ε ≈ 0.03◦.

IN

OUT

OUT
FPGAIN

FPGA

30cm

20cm

SKONN Neuron

IN OUT

(a)

(b)

SKONN Synapse
Cij

(c)

(d)

IN OUT

C12
INOUT

C21

Figure 3.6: (a) SKONN on PCB with 9 oscillators and 81 synapses. We set the weight amplitude
with the synaptic capacitance value Ci j. The FPGA initializes the phases by delaying the oscillators’
starting time by switching Q1 and measures the digital oscillations buffered by the output stage (U2
and Q2). (b) The oscillator consists of an OPA Schmitt trigger with feedback via the resistor R3 to
produce self-oscillations. R1//R2 sets the analog oscillation amplitude. (c) Two coupled oscillators with
C12/CL =C21/CL = 1%. (d) Two coupled oscillators with C12/CL =C21/CL = 10%.

Fig.3.6c shows an experiment of two oscillators weakly coupled by C12 = C21 = 1%CL
whereas Fig.3.6d is a strong coupling with C12 =C21 = 10%CL. In both experiments, the oscil-
lators are out-of-phase but the strong coupling case leads to a frequency reduction of -34% as
the voltage jumps ∆V = (VDD −VSS)C12/CL produced by each current spike are too large with
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respect to the analog amplitude. This phenomenon can induce frequency mismatches between
groups of strongly coupled oscillators and groups of weakly coupled oscillators. Frequency
mismatches still need to be investigated and here we empirically choose Ci j < 5%CL to guaran-
tee phase locking among oscillators.

3.5.2 Weighted Max-Cut Experiments

The test case consists of the Max-cut problem with 2-bit positive weights. Given a graph, the
Max-cut objective is to find two complementary graph subsets A and B such that the sum of
weighted edges between A and B is maximum. It has been shown in the literature that ONNs
can solve the Max-cut problem by mapping the graph vertices to oscillators and assigning the
weighted edges to negative weights in ONNs [69, 138, 139]. Chapter 4 provides more rigorous
definitions and here we rather focus on SKONN’s experimental results compared to Kuramoto
simulations. We generate random instances of Erdos-Rényi graphs G(N, p) [196] with N=9
nodes and p is the probability to have an edge between a pair of vertices such that the total
number of edges m = pN(N−1)/2. For each graph edge, the weight is randomly selected from
the list [0 10 22 47]/47 that corresponds to discrete capacitors used experimentally.

(a) (b) (c)

(e)
𝐒𝐢 = −𝟏 𝐒𝐢 = +𝟏

𝐒𝐢 = +𝟏

Max-cut

𝐒𝐢 = −𝟏

Settling time

(d)

Max-cut

(f)

𝐒𝐢 = −𝟏

Figure 3.7: (a) Random instance of G(9,0.75) with 2-bit weighted edges. (b) Cut value vs spin con-
figuration. (c) SKONN phases measured after 1000 oscillation cycles and compared with Kuramoto
simulations. (d) Histogram of Max-cut solutions for 100 trials and measured settling time (e) SKONN
experimental phase distribution. The polar amplitude represents the trial number (100 trials). We assign
−90◦ < φi < 90◦ → Si =+1 and Si =−1 otherwise. (f) Example of phase dynamics and cut evolution.

Fig.3.7a shows an example of a dense random graph instance with p = 0.75. We map the
graph edges to the synaptic matrix and run 100 trials with random phase initializations. For
each trial, the nine phases are sampled every oscillation period during 1000 oscillation cycles.
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Fig.3.7e shows the final phases φi(t = 1000T ) measured for each trial, the latter indicated as the
amplitude in the polar plot. The right-hand side of the polar plot corresponds to positive spins,
whereas the left-hand side corresponds to negative spins. It appears that some phases such as
φ2, φ4 and φ6 are always assigned to the same spin polarity whereas most of the phases can
end up in both half-circles, depending on the phase initialization. Hence, SKONN final states
depend on the initialization and several trials ensure obtaining a good solution. Fig.3.7d shows
the histogram of solutions and the settling time. SKONN finds the graph Max-cut with 75%
probability in less than 100 oscillation cycles on average. Fig.3.8 presents another Max-cut
problem with G(9,0.5).

(a) (b) (c)

(d) (e)
𝐒𝐢 = −𝟏 𝐒𝐢 = +𝟏

𝐒𝐢 = −𝟏

Settling time

Max-cut

(f)

Opt1 Opt2

Opt1

Opt2

𝐒𝐢 = −𝟏 𝐒𝐢 = −𝟏

Opt1: 97%
Opt2: 0%

Figure 3.8: (a) Random instance of G(9,0.5) with 1-bit weighted edges and the two optimal states. (b)
Cut value vs spin configuration. (c) SKONN phases measured after 1000 oscillation cycles and compared
with Kuramoto simulations. (d) Histogram of Max-cut solutions for 100 trials and measured settling time
(e) SKONN experimental phase distribution. The polar amplitude represents the trial number (100 trials).
We assign −90◦ < φi < 90◦ → Si =+1 and Si =−1 otherwise. (f) Example of phase dynamics and cut
evolution.

This instance is easier to solve as there are two optimal spin states as seen in Fig.3.8a and
SKONN reaches 97% accuracy. Whereas Kuramoto simulations led to a lower accuracy due to
the large phase distribution causing errors when rounding phases to spin values. Surprisingly,
SKONN favors a single optimal state and never finds the second one. We observe a similar
behavior even for graph instances with three optimal states as seen in Fig.3.9. This suggests
there are optimal critical points that are unstable (such as saddle points) as recently highlighted
by Bashar et al. [137].
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Figure 3.9: (a) Random instance of G(9,0.25) with 1-bit weighted edges and the three optimal states.
(b) Cut value vs. spin configuration. (c) SKONN phases measured after 1000 oscillation cycles and
compared with Kuramoto simulations. (d) Optimal states found for 100 trials (e) SKONN experimental
phase distribution. The polar amplitude represents the trial number (100 trials). We assign −90◦ < φi <
90◦ → Si =+1 and Si =−1 otherwise. (f) Example of phase dynamics and cut evolution.
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3.6 16-neuron SKONN CMOS Prototype

This section is dedicated to the design of a second SKONN prototype in an integrated circuit
(IC) using Europractice’s Miniasic program to further assess its performance and programma-
bility. The design process started in November 2021 after discovering SKONN architecture.
The chip was designed using a full custom design flow and the Virtuoso software from Cadence
with TSMC’s PDK @1.2V of supply voltage and 9 metal layers. The parasitic extraction was
carried out with Synopsys’ Calibre PEX tool. All the design steps were conducted at LIRMM,
except the chip metal filling that was done by IMEC engineers before sending out the GDS file
to TSMC. The chip was taped out in June 2022 and first tested in January 2023. We provide
below the high-level chip specifications and the description of each block.

3.6.1 Integrated Circuit Specifications

Table 3.2 presents the specifications of the state-of-the-art ONNs designed using CMOS tech-
nology, transition metal oxide, and spintronic devices. The connectivity scheme can be all-to-all
for small-sized ONNs (N≤100) but is obviously reduced to nearest neighbor connections for
larger ONNs such as in [76] and [90] that both chose 8 neighbors (King’s graph). It appears
that digital ONNs such as [89] and [76] are very energy-efficient as they produce a single os-
cillation with only 300 fJ and 21 fJ, respectively. In contrast, analog oscillators found in [90]
and [138] consume 2.3 pJ and 1.3 nJ per oscillation, respectively. Finally, novel devices such as
vanadium dioxide (VO2 [86]) and spin-torque oscillators [109] are promising for future ONN
implementation thanks to their potential dense integration and high frequency.

Jackson et al. Moy et al. Bashar et al. Graber et al. Dutta et al. Romera et al. Our target
[89] [76] [138] [90] [86] [109]

Technology 28nm 65nm 65nm 28nm
Simulations:

28nm CMOS + PTNO (VO2) Spin-torque 65nm

Neurons 100 1968 30 400 100 4 16
Connectivity all-to-all King’s graph all-to-all King’s graph all-to-all all-to-all all-to-all

Power 303 mW 42 mW 1.76 mW 182 mW 2.56 mW 4 mW 160 µW (core)
Frequency 1 GHz 1 GHz 45 kHz 200 MHz 87 MHz 300 MHz 1 MHz
Energy/osc 300 fJ 21 fJ 1.3 nJ 2.3 pJ 300 fJ 3.3 pJ 10 pJ
Chip area 3.24 mm² 2.1 mm² - 2.2 mm² - - < 4 mm²

Table 3.2: State-of-the-art ONNs and IC Specifications

For this first IC proof-of-concept, we chose TSMC’s 65-nm technology with the objective
of integrating 16 oscillators and all-to-all connectivity (256 synapses) with 5 bits of synaptic
precision as shown in Fig.3.10. Moreover, given the performances of the state-of-the-art ONNs
(Table 3.2), we targeted an energy consumption of around 10 pJ per oscillation at 1 MHz only to
minimize the risks. Finally, we wished to have the ability to control each one of the oscillators
externally by sending its initialization and sub-harmonic injection signal, while receiving its
output signal. This requirement induced a high number of Input/Output pads (IOs) estimated as
follows:

• 16 inputs for initialization.
• 16 inputs for SHIL signals.
• 4 inputs for the synaptic programmation (serial).
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• 8 power supply pads (digital domain).
• 8 power supply pads (analog domain).
• 4 analog pads for biasing.

Due to the high number of pads > 56, we did not have severe area constraints for the core design
as the high number of IOs in the pad ring hardly fit in a square smaller than 4 mm2. The initial
design specifications are resumed in Table 3.2.

16

SIPO

SKONN

16 oscillators

256 synapses

Initialization 

signals

SHIL

Synaptic bits

16

256x5

16

Output signals

SKONN Integrated Circuit

f = 1 MHz

Figure 3.10: SKONN IC High-level View

3.6.2 Oscillator Circuit Design

Hysteresis Circuit

A SKONN oscillator consists of a hysteresis and a shaper block, as shown in Fig.3.2a. There
are various CMOS circuits having a hysteresis behavior such as Schmitt triggers [160] with 6
transistors only [197] that have already been used in ONNs [138]. However, in this circuit, the
hysteresis thresholds are set by the supply voltage and the transistor threshold voltage which
are process-dependent. Instead, we opted for a differential Schmitt trigger with regenerative
current feedback [198, 199] whose hysteresis is only set by device dimensions and biasing
current. The hysteresis circuit is shown in Fig.3.11a and consists of a standard operational
transconductance amplifier (OTA) with positive feedback applied by transistors Q6 and Q7.
Denoting R6 = W6/L6 = W7/L7 and R4 = W4/L4 = W5/L5, the circuit has a hysteresis effect
when k = R6/R4 > 1. In our case, k = 4 and the hysteresis width can be calculated as [198]:

∆VH = 2

√
2nIREF

β (k+1)
(
√

k−1)≈ 60mV (3.12)
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where n ≈ 1.1 models the bulk effect, IREF = 4.5 µA is the bias current flowing through Q1 and
β = µnCoxW/L = 200x16 µA/V2 for transistors Q2-3. Note that to achieve our initial target
of 1 pJ per oscillation at 1 MHz Table3.2, the hysteresis block should have been biased with
less than 1 µA. However, during the design process, we noticed that the hysteresis circuit did
not switch fast enough for SKONN and we increased the bias current until we got satisfactory
results. The relationship between hysteresis bandwidth and theoretical phase fixed points is
further explained in Appendix B.6. Note that in dynamic operation, the oscillator amplitude
∆V ≈ 100 mV is larger than ∆VH due to the hysteresis limited bandwidth and shaper delay.
Fig.3.11a shows the circuit nodes that require minimization of parasitics for high speed, and the
sensitive high impedance nodes necessitating shielding against noise (such as Vin and VREF ).
These constraints were considered during the layout process (Fig.3.11d).

Minimize parasitics
Maximize parasitics
Sensitive nodes 

(a)
Hysteresis Circuit

(d)
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Width (𝜇m) 8.64
(36f)

1.92
(8f)
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0.96
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Figure 3.11: a) Hysteresis circuit schematic. b) Hysteresis characteristic for a fixed Vre f ≈ 0.6 V. c)
Transistors’ dimensions. d) Layout.

Shaper Circuit

The full oscillator circuit is shown in Fig.3.12a. The hysteresis commands the shaper block
which charges or discharges the load capacitor CL = 500 fF via current sources I1 = I2 = 200
nA. To ensure a symmetric triangular waveform Vin, the current sources I1 and I2 copy the same
current in a cascode configuration as seen in Fig.3.12b. As the analog waveform amplitude Vin
does not exceed 100 mV, using a cascode topology was possible here without bringing Q20 and
Q21 in the triode regime. Fig.3.12c shows the biasing circuits for VREF ≈ 0.6V and IREF ≈
4.5 µA. They polarize the oscillator circuit based on a bias current Ibias = 200 nA brought by
the chip’s main bias block.
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Figure 3.12: a) Oscillator circuit. b) Full Shaper circuit. c) Bias circuit used to produce the hysteresis
voltage reference VREF . The current Ibias is distributed by the chip’s global bias block.

Optimization of the Oscillator Circuit Design

As for any phase-based ONNs, one of the main important specifications is to have homogeneous
frequencies between oscillators, which is challenged by device-to-device mismatches within the
chip. In our design, the oscillation frequency is expressed as:

fosc =
Ishaper

2CL∆V
(3.13)

where Ishaper is the current sunk by current sources I1 and I2 (Fig.3.12a) and ∆V is the peak-to-
peak analog amplitude. The relative frequency variation is then calculated as follows:

d fosc

fosc
=

dIshaper

Ishaper
− dCL

CL
− d∆V

∆V
(3.14)

Although there are negligible variations in the large load capacitance CL = 500 fF implemented
with a metal-oxide-metal capacitor (MOM), we found in Monte Carlo simulations that the main
variations originate from the shaper block. Hence, the shaper block had to be carefully designed
in order to minimize the current mismatches expressed as [200]:

σID =

√
σ2

β
+(

gm

ID
σVT )

2 (3.15)

where ID, gm are the transistor current and transconductance; and σVT , σβ are transistors varia-
tions depending on the technology [200]. However, these two contributions can be minimized
by increasing the transistor dimensions:

σVT−β ∝
1√
W L

(3.16)

Moreover, the equation 3.15 indicates that the quantity gm/ID should be minimized, i.e. the
transistor should be in strong inversion (SI) regime [201] and have a low W/L for a given
current ID.
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(c) Example of functionnality check: 2-coupled oscillators
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Figure 3.13: a) Impact of process variations. SF stands for Slow NMOS, Fast PMOS. Note how the
triangular waveform remains symmetric despite the NMOS/PMOS performance asymmetry. b) Monte
Carlo (MC) simulation measuring the oscillator frequency and amplitude after design optimization. c)
Example of functionality check carried out during the design process. The phase fixed point between
two-coupled oscillators varies with device variations. d) Worst MC instance resulting in ∆φ = 158◦

instead of 180◦ in theory.

Overall, the oscillator transistor sizing was finalized after several iterative steps mainly con-
sisting of 1) Monte Carlo and corner transient simulations to measure the oscillator frequency
variations subjected to device and process variations (Fig.3.13a and b), 2) resizing the tran-
sistors, 3) comparing the resulting SKONN operation with the phase-based model (eq.3.7) as
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in Fig.3.13c with two-coupled oscillators. This process reduced the frequency variations from
σ fosc/µ fosc =19% down to 3.4% (Fig.3.13b), but increased the shaper and bias transistor sizing
that are listed in Table 3.3.

Transistor Q13-14 Q15-Q19 Q20-21 Q22-24 Q25-26 Q27-28

Width (µm)
2.4

(10f)
11.52
(12f)

0.48
(1f)

11.52
(12f)

9.6
(10f)

0.24
(2f)

Length (µm) 0.06 6 0.25 6 20 7
Table 3.3: Shaper Transistor Dimensions in the IC

Note that Monte Carlo simulations from Fig.3.13d highlight SKONN’s robustness to any shift
of the DC operating point (set by VREF ) as the coupling between oscillators is purely AC.

Oscillator Layout and Parasitics Extraction

The final oscillator layout is shown in Fig.3.14. To minimize transistor mismatches, every group
of transistors is laid out in a common-centroid topology, i.e. their fingers are interdigitated to
form a symmetrical single block. Note that the MOM load capacitor C′

L = 320 fF = 500 fF-Cpar
was adjusted after extracting the parasitics Cpar added to Vin’s metal line from the synaptic array.
The post-layout simulation that includes parasitic capacitances shows frequency and amplitude
variations of -13% and +9%, respectively. The main contributor to the +9% amplitude variation
is the hysteresis block whose bandwidth is impacted by the parasitics and takes a longer time
to switch, thus increasing ∆V . Moreover, assuming that the shaper current is not impacted by
the parasitic capacitances, we conclude from eq.3.14 that the frequency variation is expressed
as ∆ fosc/ fosc = −13% ≈ −∆CL/CL −9% so around 4%CL = 20 fF of parasitic is added to the
oscillator input node.
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Figure 3.14: a) SKONN Oscillator Layout. b) Post-layout simulation.
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3.6.3 Synaptic Design

A synapse consists of a programmable bank of four capacitors Ci=2.5 fF x 2i with i ∈ {0,1,2,3}
connected in parallel such that a 4-bit weight Wi j is linearly mapped to a synaptic capacitor
Ci j = |Wi j|x2.5 fF (Fig.3.15) with a synaptic range of [0, 37.5] fF. We chose the synaptic range
as follows. From our previous PCB prototype, we concluded that having Ci j < 10%CL = 50
fF prevents too large frequency mismatches between groups of strongly and weakly coupled
oscillators (Fig.3.6b). Moreover, the synaptic smallest capacitance was set by the device and
technology. We chose to implement the capacitors with metal-oxide-metal capacitors (MOM)
for enhanced linearity compared to MOS capacitors. Note that the metal-insulator-metal ca-
pacitors (MIM) are only implementable at the highest metal levels and are generally used as
decoupling capacitors. In this technology, the smallest available MOM capacitor has a 2.5 fF
value. It consists of an array of 6x6 100nm-width fingers per metal layer, from metal 2 up to
metal 4, with a footprint of 1.7 µm x 3 µm. To shield the synaptic capacitor from the substrate,
we chose an N-type MOM capacitor with an NWELL underneath.
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Figure 3.15: a) Synapse circuit. b) Synapse layout. c) Post-layout synaptic capacitance vs. absolute
weight value. d) Example of programmation procedure with Wi j =−1. The upper waveforms show the
input and output signals for the neurons i and j.
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The synaptic weight sign is programmed by selecting the input signal V out
j or V out

j if Wi j > 0
or Wi j < 0, respectively. This is the function of the standard 2-input multiplexer shown in
Fig.3.15a and commanded by the bit sign BS. Overall, the synaptic circuit implements a synap-
tic range from -15 to +15 and is programmed by a standard register consisting of five D flip-flops
loading the weights serially at each clock cycle. A second register applies the voltages to the
switches when receiving the ’LOAD’ signal, as shown in Fig.3.15d with the programmation
of Wi j = −1. Due to some challenges with our PDK, we did not have the layout views of the
standard logic blocks thus we designed our own D flip-flops to program the synapse.

Fig.3.15b shows the layout view of the synaptic block. Note that the 15 MOM capacitors
are encircled by dummy devices to avoid the impact of any process variation at the edge of
the synaptic array. The area taken by the register is dominant here but could be reduced in
a future design by using optimized standard cells provided by the PDK. Fig.3.15c shows the
post-layout synaptic capacitance measured using two different methods that provide similar
results. One method measures the injected charge in the time domain, while the other computes
a gain in the frequency domain and they are further described in Appendix X. It appears that
the deviation from linearity remains under 5% for Wi j ≥ 3 but is higher for smaller synaptic
capacitances due to the added parasitics. For instance, when all the switches are opened (Wi j =
0), it remains a parasitic capacitance of Ci j = 0.7 fF that would be equivalent to a weight |Wi j| ≈
0.3. Unfortunately, we realized too late that this small parasitic is sufficient to synchronize
oscillators that should be disconnected (Huygens effect [77]). Using Monte Carlo simulations
to emulate device-to-device variations, it appears that two-coupled oscillators can phase-lock
40% of the trials after a few tens of cycles. A possible improvement would be the addition of
a 4-input OR(B0,B1,B2,B3) gate in series with the multiplexer to further shield the synaptic
output from the input when Wi j = 0.

3.6.4 Additional Circuits

Biasing Circuit

The chip biasing block provides two bias currents Ibias = 200 nA for IREF and VREF nodes in
each oscillator (Fig.3.12). Fig.3.16a shows the bias circuit which consists of two blocks of 16
current mirrors, with each block dedicated to IREF and VREF nodes, respectively. Similar to the
shaper circuit, it is preferable to have low mismatches between each bias current so that the bias
block only introduces negligible frequency mismatches among oscillators. Hence, the transis-
tors’ dimensions are critical and set such that the transistors are in strong inversion to minimize
current variations (eq.3.15). Overall, we measure a relative standard deviation σ/µ = 1.6% for
Ibias during Monte Carlo (MC) simulations including device-to-device variations. Note that the
previous MC simulation measuring the oscillator frequency variation (Fig.3.13b) includes the
variations of the chip bias block and validates its good operation.
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Figure 3.16: a) Schematic of two bias blocks. b) Layout of a single bias block (16 current branches). c)
Operation of the calibration circuit.

Calibration Circuit

The goal of the calibration circuit is to adjust the oscillation frequency of each oscillator if
needed. It is similar to the synaptic circuit and consists of a 4-bit capacitor bank connected
to the input line to modulate the load CL with steps of 6.7 fF as Ccalib = 6.7xn with n ∈
{0,1,2, ..,14,15}. Each capacitance step corresponds to a 10x10-fingers MOM capacitor laid
out from M1 to M4. All the possible calibrations are shown in Fig.3.16c. The calibration circuit
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can add a total capacitance of around 100 fF. Hence, for CL = 500 fF, the calibration circuit
can reduce the frequency down to -20% and is enough to compensate a Gaussian distribution of
frequencies such as 3σ/µ ≤ 10%.

3.6.5 Floor Planning and Layout of the Prototype IC

The chip blocks are placed in a symmetric topology as shown in Fig.3.17a. Two blocks of 8
oscillators are positioned at the top and bottom of the chip to have similar output line lengths that
are laid out horizontally and buffered to keep sharp digital edges. The 1-mm length oscillator
input lines are laid out vertically on metal 1 layer (M1) with a 180-fF parasitic capacitance Cpar
added to the input node such that CL =C′

L +Cpar = 500 fF. Moreover, the oscillator calibration
circuit is added at the end of each input line to adjust the oscillator frequency if needed. The
bias block is at the center of the chip and provides 16 current paths to each part of the chip laid
out on M4-5. Note that we placed M3 ground plans at the intersection between the output and
bias lines to shield them from the digital signals.

All the synaptic and calibration registers are connected serially to form a 1344-bit register
(256x5+16x4) whose input starts at the bottom-left of the chip. As shown in Fig.3.17a., the
data goes through every line of the synaptic array and is propagated to the top-right of the chip.
Hence, the chip is ready for inference after 1344 clock cycles fed through one of the DATA pads
(Fig.3.17b). All the signal pads are digital except the BIAS analog pads used to polarize the
chip bias block from the outside. The unannotated pads from Fig.3.17b are power pads used for
both digital and analog power domains.

3.7 IC Characterization

3.7.1 IC Package and PCB

The fabricated IC die is shown in Fig.3.18a. We chose to package the die in a pin grid array
(PGA) in order to use a zero insertion force (ZIF) IC support on the experimental PCB. The
final package choice was mainly determined by the maximum length of the wire bound, and
we finally chose the 120-pad CPG12034 package from NTK. The experimental PCB is shown
in Fig.3.18a and consists of a 144-ZIF support holding the IC and communicating with an
FPGA board. Two current mirror circuits bias the chip with Ibias ranging from 100 nA to 1
µA. The PCB was carefully designed using 4 layers to homogenize and minimize the routing
line lengths. The user interface is on Matlab and communicates with the FPGA via a serial
port. Then, the FPGA commands the IC depending on the user’s requests. In return, the FPGA
measures the chip output signals on its digital inputs and computes the phase of the oscillators
with respect to a reference at each oscillation cycle. Finally, the phase data is sent back to
Matlab for post-processing.
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Figure 3.17: a) Floorplan of the IC. b) Final layout of the chip.
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3.7.2 Characterization of SKONN Building Blocks

Oscillator Frequency at Steady State

The oscillator circuit was initially designed to operate at f = 1.5 MHz with Ibias = 200 nA.
After post-layout simulations at the oscillator level, we observed a -13% frequency reduction,
i.e. an expected frequency f ≈ 1.3 MHz (Fig.3.14b). However, it is still underestimated as the
simulation does not consider all the chip parasitic capacitances such as the metal fillings. In
practice, we had to inject Ibias = 366 nA to get f ≈ 1.13 MHz. Table 3.4 reports each individual
oscillating frequency measured with an oscilloscope while the oscillators are uncoupled and
started for a long time (minutes). The oscillating signal was analyzed using a Fast Fourier
Transform (FFT) with a resolution of 150 Hz during a time window of 3.1 ms, i.e. more than
3000 oscillation periods. As the frequency mismatches are below 0.3%, it is likely that the
oscillators get synchronized during the measure. This hypothesis is confirmed by measuring
the phase dynamics in real time.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16

f (MHz) 1.127 1.126 1.129 1.130 1.128 1.127 1.128 1.129 1.129 1.127 1.130 1.130 1.131 1.130 1.130 1.130
∆ f/ f (%) 0 -0.09 0.18 0.27 0.09 0 0.09 0.18 0.18 0 0.27 0.27 0.35 0.27 0.27 0.27

Table 3.4: IC Frequency Measurement at Steady State

Oscillator Synchronization (Huygens effect) and Transient Frequency

Fig.3.19a shows the oscillator phases measured during 1000 oscillations where the first oscilla-
tor is taken as a reference. It appears that the group of oscillators 1-8 are synchronized as their
phases stabilize. However, the group 9-16 is not synchronized with the reference oscillator.
Instead, their phase dynamics show a modulation with a frequency of around | f9−16 − f1| ≈ 25
kHz, which is the consequence of a frequency mismatch between the two groups of oscillators
expressed as:

cos(φ9−16 −φ1) = cos
(
2π( f9−16 − f1)+θ

)
(3.17)

To measure the synchronization level between signals, we use the metric σ(cosφ(t)) which
is the standard deviation of cosφi(t) over time defined as:

σ(cosφ(t)) =

√√√√ 1
L−1

L

∑
k=1

(
cosφ(kT )−µ

)2 (3.18)

where µ is the mean µ = ∑
L
k=1 cosφ(kT )/L and T is the oscillating period of the reference

oscillator. Computing σ(cosφi(t)) indicates if the phase value varies through time, i.e. if oscil-
lator i is synchronized with the reference. A value close to 0 means the phase is stable through
time, whereas a value tending to 1 indicates an unstable or rotating phase. Fig.3.19b presents
the standard deviation computed over 100 trials for each oscillator. Its median value is around
0.2-0.3 for oscillators 1-8 whereas it reaches 0.6 for oscillators 9-16, highlighting the synchro-
nization asymmetry between the two groups. However, there are trials where all the oscillators
are synchronized as in the example of Fig.3.19c. Due to memory limitations in the FPGA, we
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could not measure dynamics longer than 1000 cycles with the current resolution. Hence, it
is possible that the unsynchronized state is only transient and that all oscillators get synchro-
nized after several thousands of cycles. This hypothesis is confirmed by previous frequency
measurements realized minutes after the oscillator starting times (Table 3.4).

cos ϕ1−8

cos ϕ9−16

FFT(cos ϕ15)

Reference oscillator: 1

cos ϕ1−8

cos ϕ9−16

FFT(cos ϕ15)

(a)

(b)

(c)

Figure 3.19: Chip measurements when oscillators are uncoupled and with reference oscillator 1. a) Ex-
ample where oscillators 9-16 are not synchronized to oscillator 1 while measuring a frequency mismatch
between the two groups around 25 kHz. b) Standard deviation of spin signals measured over 1000 cycles
and 100 trials. c) Trial instance where all oscillators are synchronized with the reference.

We repeat the same experiment by taking the oscillator 16 as a reference. Fig.3.20a and
c show examples of dynamics while Fig.3.20b presents the resulting standard deviations com-
puted over 100 trials. We notice that the results are symmetric with the previous experiment, i.e.
this time oscillators 1-8 are not synchronized with oscillators 9-16. Again, the phase dynamics
indicate a transient frequency mismatch of around 25-30 kHz. To further assess the frequency
mismatch observed during the two experiments, the FPGA is programmed to measure the os-
cillation frequency of the reference oscillator in real time. Over the 1000 oscillation cycles
measured from experiments a) of Fig.3.19 and Fig.3.20, we finally measure a mean frequency:

f1−8 = 1.135 MHz
f9−16 = 1.164 MHz
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which is consistent with the oscilloscope measurements at steady state (Table 3.4). Hence,
oscillators 9-16 are +2.5% faster than oscillators 1-8. Note that the measured mismatch is
smaller than the expected frequency standard deviation σ/µ = 3.4 % (Fig.3.14b).

cos ϕ1−8

cos ϕ9−16

FFT(cos ϕ2)

Reference oscillator: 16

cos ϕ1−8

cos ϕ9−16

FFT(cos ϕ2)

(a)

(b)

(c)

Figure 3.20: Chip measurements when oscillators are uncoupled and with reference oscillator 16. a)
Example where oscillators 1-8 are not synchronized to oscillator 16 while having a frequency mismatch
around 30 kHz. b) Standard deviation of spin signals measured over 1000 cycles and 100 trials. c) Trial
instance where all oscillators are synchronized with the reference.

Overall, these experiments indicate that:

1. Oscillators 1-8 are synchronized together with frequency f1−8.
2. Oscillators 9-16 are synchronized together with frequency f9−16.
3. There is a frequency mismatch of 2.5% between the two groups of oscillators.
4. There are parasitic connections in the chip that connect the two groups of oscillators and

are strong enough to provoke global phase locking.

The undesired coupling could originate from the substrate, the metal fillings, and the non-zero
synaptic capacitances. While it is difficult to quantify these parasitic connections, we can still
evaluate their impact on SKONN operation by studying two-coupled oscillators. To mitigate the
frequency mismatches, we activated the calibration circuits and added more load capacitances
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to oscillators 9-16 to slow them down. We obtained the best frequency matching by adding 100
fF to oscillators 9-16, and 93.3 fF to oscillators 1-8, for a final matched frequency of 970 kHz
as shown in Fig.3.21.

Before calibration After calibration

f1−8 = 1.135 MHz

f9−16 = 1.164 MHz
f1−8 ≈ f9−16 = 970 kHz

(a) (b)

Figure 3.21: Standard deviation of spin signals measured with 100 trials before a) and after b) calibra-
tion.
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Figure 3.22: Phase distribution vs synaptic weight. Data are mean phases (averaged for 1000 cycles and
two trials) for each one of the 120 possible recurrent weights Wi j =Wji.
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Synaptic Array and Undesired Coupling

We characterized each pair of synapses (Si j, S ji) with i ̸= j by varying the weight value from -15
to +15 and measuring the resulting phase. Fig.3.22 shows the distribution of all 16x15/2=120
possible pairs of phases (run twice and averaged for 1000 cycles) for each synaptic weight. It
appears that weak coupling such that |Wi j| < 5 does not always induce phase fixed points of 0
or π , but also some intermediate phase values. This was expected from the previous experiment
that highlighted possible weak connections within the chip. However, these parasitics are on
average overcome for |Wi j| ≥ 5 as the phase distributions become very sharp around 0 and π .

During this experiment, we further monitored wrong phase states, i.e. errors with respect to
the theoretical phase fixed points (eq.3.5). For instance, if Wi j =−10 (resp. +10) and cos∆φi j >
0 (resp. ≤ 0), then it is considered as an error and qualified as false positive (resp. false
negative). Fig.3.23a shows the false negative map when synapses are programmed with positive
weights and represented on the synaptic array. The left-hand plot reveals that oscillators 2
and 8 are never in phase for all positive weights and trials. This means that either synapses
S2−8 and/or S8−2 are dysfunctioning, or there is a strong parasitic connection between the two
oscillators acting as a negative weight. If the latter is true, then the equivalent capacitance
of the parasitic connection is larger than 37.5 fF which corresponds to the maximum weight
amplitude |Wi j| = 15. There is the exact same situation for oscillators 9 and 15. Similarly,
oscillators 3 and 7 also suffer from a false negative parasitic connection but to a lower extent
as W3−7 =W7−3 ≥ 10 compensate the undesired connection (right-hand side of Fig.3.23a). The
wrong dynamics of oscillators (2,8) and (9,15) are shown in Fig.3.23b. They are also less
stable compared to the wished dynamics of other oscillators such as (3,8) in Fig.3.23c). False
positive weights were detected too between oscillators (7,9) and (9,10) as shown in Fig.3.24.
We count two times fewer occurrences compared to false negative weights but still represent
50% of wrong dynamics for oscillators (9,10). Overall, for all the tested die samples, we found
that oscillators 2,8,9, and 15 suffer from strong undesired coupling, while 3,7,10, and 14 also
have non-negligeable parasitic couplings. They are resumed in Table 3.5.

Oscillator pairs (2,8) (9,15) (7,9) (9,10) (3,7)

Negative coupling strong strong weak
Positive coupling medium medium

Table 3.5: Undesired Coupling in the IC
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Wij ∈ {1, … , 15} Wij ∈ {10,… , 15}

Synaptic map of false negative weights (undesired)(a)

(b)

(c) Example of ideal behavior

Figure 3.23: a) Synaptic error map when weights are positive. A false negative weight between oscilla-
tors i and j indicates that an incorrect phase state cos∆φi j < 0 is measured (averaged over 1000 cycles)
instead of having cos∆φi j ≥ 0. b) Incorrect dynamics between oscillators (2,8) and (9,15). c) Example
of desired dynamics between oscillators 3 and 8.
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Wij ∈ {−1,−2,… ,−15} Wij ∈ {−10,… ,−15}

Synaptic map of false positive weights (undesired)(a)

(b)

(c) Example of ideal behavior

Figure 3.24: a) Synaptic error map when weights are negative. A false positive weight between oscil-
lators i and j means that an incorrect phase state cos∆φi j ≥ 0 is measured (averaged over 1000 cycles)
instead of having cos∆φi j < 0. b) Incorrect dynamics between oscillators (7,9) and (9,10). c) Example
of desired dynamics between oscillators 1 and 8.
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Consider now that the undesired strong coupling is indeed capacitive to study any possi-
ble implication. We saw previously that strong capacitive coupling must provoke large voltage
jumps at the oscillating input node, as seen in Fig.3.6d on the PCB with Ci j = 10%CL. In this
example, the measured frequency reduction was -34%. For two coupled SKONN oscillators
with recurrent weights, the frequency at steady state is indeed reduced as the effective volt-
age jump dV increases the overall analog amplitude ∆V . Hence, using eq.3.14, the resulting
frequency change for the two-coupled oscillators is expressed as:

∆ fosc

fosc
=−dV

∆V
=−Ci j

CL

VDD

∆V
(3.19)

Under the current assumption, we also saw that the false negative weight between oscillators
(2,8) must be larger than 37.5 fF. Considering an undesired C2−8 = 40 fF and using the post-
layout values CL = 520 fF and ∆V = 140 mV, it leads to ∆ fosc/ fosc =−66%. Although we can-
not yet draw any conclusion, this frequency reduction is in agreement with the +80% increase in
bias current we had to inject to reach a frequency close to the nominal case fosc ≈ 1.3 MHz. The
other way around, considering ∆ fosc/ fosc =−80% induces a parasitic capacitance C2−8 = 48.5
fF. In such a scenario, oscillators (2,8) would "impose" their frequency to the group of oscilla-
tors (1,2,...,8) as we previously saw that they are synchronized in a free regime (Fig.3.21a). The
same comment applies to oscillators (9,15) that would sort of drive the oscillators (9,10,...16)
and reach a common frequency.

We are not sure about the causes of such coupling but one of our hypotheses is that the
metal-filling could create parasitic connections at lower metal levels. However, it is striking
how synapses S8−2 and S9−15 are symmetric in the synaptic array. The same remark applies to
S7−9 and S10−9. We asked for the metal-filling layout views from IMEC to further investigate
this issue.

Neuron to Oscillator Mapping

Since there are undesired connections between some oscillators, how to assign neurons to os-
cillators in the chip impacts the performance and can be quantified by varying np, the bijective
application that assigns every neuron to a unique physical oscillator. We run experiments for
random networks of various densities with Wi j =Wji =−5 while increasing the ONN size and
assigning neurons to physical oscillators according to np. Fig.3.25a shows the standard devi-
ation of spin signals (eq.3.18) when np is the identity function. We notice that there is a clear
instability peak for N ≥ 9. In addition to the undesired couplings (Table 3.5), groups 1-8 and
9-16 are at different locations in the chip, thus it is plausible they cause some kind of asymmetry
in performances. Looking at the chip floorplan (Fig.3.25b), it is clear that the identity neuron as-
signment induces an asymmetric synaptic assignment with a synaptic block discontinuity when
N = 9.

Consider now the permutation np(1, ..,16) = (4,13,5,12,3,14,6,11,2,15,7,10,1,16,8,9).
Its corresponding synaptic assignment is illustrated in Fig.3.25b. With this permutation, the
synaptic assignment is symmetric and the resulting dynamics are more stable for N ≥ 9, al-
though the case N = 4 is worse than with the previous identity assignment. We are not sure
about what causes such discrepancy between the two permutations, but we think the main rea-
son is that oscillators with strong undesired couplings (Table 3.5) are assigned only for N ≥ 9.
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Whereas the first permutation used oscillators 2 and 8 for N ≤ 8. We also thought a possible
explanation could be mismatches in output line lengths. For instance, there is an asymmetry in
output line lengths between synapses S1−9 and S9−1 as d9−1 ≈ 1.5d1−9 (Fig.). Similarly, the
second largest asymmetry is between S8−16 and S16−8 as d8−16 ≈ 1.5d16−8. With the second
proposed permutation, these two mismatched lines are used only for N ≥ 12 and could explain
the peak of instability measured at N = 12. However, two-oscillator experiments with oscilla-
tors (1,9) and (8,16) did not confirm this hypothesis as the dynamics were comparable to other
oscillator pairs.

Instability vs ONN size Synaptic assignement

(a)

(b)
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Figure 3.25: a) Experiments with the identity oscillator assignment np. The left-hand plot shows the
metric σ(cosφ(t)) computed for 10 trials per graph. Each size N has N(N − 3)/2+ 1 different graphs
(from sparse to fully connected) with Wi j = Wji = −5. The right-hand side illustration represents the
corresponding synaptic assignment when increasing the size N. b) Same experiment with a different
synaptic assignment np that leads to the best results.
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3.7.3 Feed-Forward Network with SKONN

Propagating the information in a feed-forward manner is helpful in some applications that re-
quire driving neurons. For instance, when training an ONN with the equilibrium propagation
method [130, 131], one must nudge the output oscillators toward the desired value which is chal-
lenging to obtain with recurrent synapses. Instead, teaching oscillators could drive the output
oscillators using feed-forward connections without being impacted during the learning phase.

To demonstrate SKONN’s feed-forward ability, we program the ASIC to solve a simple 2-
input XOR operation. Inspired by the Parametron built by Goto in the 1950s [79], we use a
3-input SKONN neuron as a majority gate

φM = (φX .φY )+(φX .φZ)+(φY .φZ) (3.20)

where φX , φY , φZ ∈ {0◦;180◦} are the input binary phases thought as Boolean variables; i.e. φM
is true when φM=180°. Interestingly, SKONN’s odd-degree property (Proposition 4.2.1 derived
in Chapter 4)) ensures that φM is binary when its inputs are also binary.

The XOR(X,Y) circuit is implemented by writing the XOR boolean expression φXOR =
(φX .φY )+ (φY .φX). Table 3.6 summarizes the results for the 4 possible inputs WXZ and WY Z .
By assigning the bit 0 when -90°≤ φi ≤90° and 1 otherwise, it can be seen that the proposed
network computes XOR(X,Y) in a feed-forward manner.

WXZ WY Z φX φY φXOR XOR(X,Y)

+1 +1 359° 56° 342° 0
+1 -1 358° 195° 161° 1
-1 +1 203° 0° 187° 1
-1 -1 199° 203° 344° 0

Table 3.6: Solving XOR(X,Y) with SKONN IC
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Figure 3.26: a) XOR(X,Y) circuit using SKONN and feed-forward synapses. Neuron Z is the reference
oscillator and can be thought of as the neurons’ bias, similar to perceptrons. The weights WXZ and WY Z

are the inputs and set the initial phases φX and φY . b) ASIC experimental results when WXZ =WXZ =−1
which set φX ≈ φY ≈ 180◦ and corresponds to the boolean case where X=Y=1.
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3.8 Discussions

Here we resume several implementation challenges that we faced while designing this first
proof-of-concept, and discuss possible improvements:

1. Low power, low mismatch vs. circuit area. Due to the low-power specification, we
had to limit the current of each block which induced some other challenges. The main
problem we faced was oscillator-to-oscillator mismatches. Most mismatch contributions
come from the shaper stage, i.e. the circuit that commands the charge and discharge of
the load capacitor. Ideally, for this circuit, transistors should be in strong inversion (SI)
to minimize current mismatches (eq.3.14) and SI is obtained for large gate voltages. For
a given transistor length, this means that the bias current has to increase. As we did not
wish to increase the current consumption, the other way of reaching SI for a fixed current
was to increase the transistor length. Thus, to reach our mismatch specifications and keep
currents down to 200 nA, we had to use very long lengths in the shaper block up to 7 µm.

2. Low-power vs. low-energy. Although a low-energy system is not necessarily low-power
(and vice versa), we now think that it is probably simpler to meet low-energy specifica-
tions with SKONN. By allowing an increase of current consumption in the shaper block,
the power goes up but the energy loss remains quasi-constant as the oscillating frequency
is proportional to the current (eq.3.13). Of course, increasing the frequency could bring
other issues such as undesired synaptic delays, or limited precision for the phase mea-
surement, but it has the potential to significantly reduce the silicon area.

3. Circuit design. There is room for improvement at the circuit level, especially concerning
the oscillator circuit. While we chose a regenerative comparator circuit for the hysteresis
block that is robust against process variations, simpler circuits could probably be used.
We think that process, temperature, and supply voltage (PVT) variations are not too prob-
lematic for ONN computation as long as oscillators remain matched. Hence, simpler
PVT-dependent circuits could be advantageously used for SKONN design.

4. Oscillator isolation We also learned from the characterization that neighbor oscillators
are synchronized by default, highlighting undesired couplings (Huygens effect). While
we are still investigating this issue, it is likely that oscillators exchange current through
the substrate. Hence, using deep-NWELL for the PMOS transistors could enhance the
oscillator isolation. Another probable cause is undesired synaptic connections due to par-
asitic capacitors in the chip. This is probably the main drawback of SKONN architecture.

For future work and to further assess SKONN scalability, it would be interesting to study the
performance of a modular SKONN system having a locally dense, globally sparse connectivity
in a single chip by assembling tiles (similar to chips in [139] or [90]) or connect several chips
together. Although the first option is probably the safest, the last one would be possible by
including digital input pads in series with synapses that connect oscillators, and digital output
pads to propagate the phase information to other chips.
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3.9 Conclusion

In this chapter, we proposed a mixed-signal ONN architecture (SKONN) that computes in the
analog domain and propagates the phase information digitally. The combination of relaxation
oscillators and synaptic capacitors led to simple and controllable phase dynamics, yet having in-
teresting computational properties when the input oscillation has a triangular shape. We showed
that SKONN dynamics are closely linked to the Kuramoto model, where sinusoidal interactions
are replaced by a saturated version, i.e. a square function. Importantly, there is a one-to-one
linear correspondence between conceptual synaptic weights and synaptic capacitance values.
Moreover, SKONN allows feedforward ONNs that we showcased with the XOR example. Af-
ter demonstrating SKONN on a 9-neuron PCB, we further designed a 16-neuron SKONN chip
with all-to-all connectivity and 5 bits of synaptic resolution in a TSMC 65nm CMOS tech-
nology. In the next chapter, we further explore the SKONN model and test the chip to solve
NP-hard combinatorial optimization problems.
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CHAPTER 4

ONN FOR NP-HARD COMBINATORIAL
OPTIMIZATION

PHASE-based ONNs naturally minimize an energy function in continuous time without any
external control or algorithm. Moreover, due to their network structure, ONNs can be seen
as graphs which are at the heart of combinatorial optimization problems (COPs). The nonde-
terministic polynomial time (NP)-hard COPs are deeply rooted in computer science as they are
essential for many crucial problems in transportation, scheduling, resource allocation, engineer-
ing, etc. and no known algorithm can find an optimal solution in polynomial time. Hence, dur-
ing the last five decades, scientists have designed heuristic algorithms that provide near-optimal
solutions in polynomial time to daily problems. As many remarkable heuristic algorithms like
simulated annealing (SA), particle swarm optimization (PSO), or genetic algorithms (GA) are
inspired by natural sciences, it brings back an old question: why not solve COPs with physical
objects that naturally perform some optimization in continuous-time? As analog computing
suffers from a lack of programmability, variability, and noise, one can question the quest for
physics-based computers. However, analog dynamical systems have the intrinsic advantage of
being driven by nature, i.e. they evolve in continuous time according to physical laws. Hence,
when the physical system is carefully designed to solve a particular problem instance, it does
not need any algorithm and instruction fetch between a memory and a processor, which in turn
can speed up computations and save energy.

This chapter aims to explore how the ONN intrinsic optimization mechanisms can also be
harnessed to solve NP-hard COPs. The chapter is divided into three main parts. First, I focus
on SKONN and show that it is closely linked to the best-in-class approximation algorithm for
the Max-cut problem developed by Goemans and Williamson. I further evaluate SKONN’s
performance for solving Max-cut using the IC proof-of-concept and large-scale simulations.
In the second part, I explore how Kuramoto-ONNs with sinusoidal interactions can naturally
approximate the traveling salesman problem (TSP) by letting the phases relax to analog values.
Finally, I explore how ONNs can escape sub-optimal solutions without injecting noise but rather
going uphill in the energy landscape. This study led to the development of Lagrangian-ONNs
(LagONN) that I specifically designed to solve one of the most fundamental NP-hard problems:
Boolean satisfiability.
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4.1 Introduction

4.1.1 Background on Combinatorial Optimization

Combinatorial Problems

Combinatorial problems consist of "finding groupings, orderings, or assignments of a discrete
set of objects which satisfy certain conditions or constraints" [55]. Combinatorial problems can
be stated as:

1. decision problems, where one needs to answer a yes-no question.
2. search problems that require finding a solution satisfying some conditions given by the

problem instance.
3. optimization problems (COPs) that consist of finding a solution meeting the conditions

and minimizing (or maximizing) a cost function.

For instance, a decision problem for the traveling salesman problem (TSP) would be asking the
question "Is there a tour visiting every city once with distance ≤ D"; whereas its search version
would be to find or not such tour. Finally, its optimization version is to find the shortest tour.
The usual method for solving combinatorial problems is to run an algorithm or program, that
sequentially operates on an input string of size N that encodes the input problem with some
alphabet. Formal definitions of programs using Turing machines can be found in [202] but are
beyond the scope of this study.

Time Complexity and NP problems

We are interested in an important algorithmic property that is its time complexity. Applied to
combinatorial problems, it consists of the maximum time T (N) required by the program to
answer the decision problem (the yes-no question). There are problems solvable in polynomial
time as T (N)≤ p(N) with p a polynomial function. Finding the maximum value of a list, matrix
multiplication, or the shortest path problem are examples of polynomial-time problems that we
say belong to the class P [55]. However, there are much harder problems whose time complexity
cannot be bounded by some polynomial and are said to be intractable [202]. TSP is one example
of intractable problems as the search space grows exponentially (there are (N −1)!/2 possible
tours). Imagine if we had access to some kind of oracle that would guess the answer to the
TSP decision problem by providing a tentative tour. Having this tour, it is then possible to
verify in polynomial time that its length is indeed ≤ D. Because of the oracle, this kind of
program is called nondeterministic. Moreover, as the verification of the guessed solution can be
done in polynomial time, the algorithm is said to run in nondeterministic polynomial time (NP).
Informally, we say that the problems that can be solved by nondeterministic polynomial time
algorithms belong to the class NP [202].
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SAT, NP-complete and NP-hard problems

The theory of NP-completeness provides powerful methods to study combinatorial problems
stated in their decision version [202]. One of the most important tools is polynomial trans-
formation or reduction. Informally, we say problem A transforms to problem B when there is
a polynomial time algorithm that transforms any instance of A into an instance of B, denoted
A ∝ B. Importantly, it is transitive as if A ∝ B and B ∝ C, then A ∝ C [202]. The foundation
for this theory is the Theorem from Cook [203] which states that all problems in NP can be
transformed into a single decision problem: Boolean Satisfiability (SAT). SAT can be described
as follows. Consider a Boolean formula fB :

fB =C1
∧

C2
∧

...
∧

CM−1
∧

CM (4.1)

With each clause Cm expressed as the disjunction of literals such as Cm = lm
1
∨

lm
2 ...

∨
lm
k , and

where literals consist of Boolean variables lm
j ∈ {x1, ...,xN ,x1, ...,xN}. The SAT problem con-

sists of answering the question: "Is fB satisfiable?"

Cook’s Theorem points out an important property for SAT: it is at least as hard as any
problem in NP. SAT was then qualified as NP-complete. One of the implications is that if SAT
can be solved in polynomial time, then all problems in NP can be solved in polynomial time
[202]. Using the transitivity property, many other decision problems have been proved NP-
complete such as TSP, 0-1 integer programming, Knapsack, Max-cut, etc., and 21 of them are
listed in seminal work from Karp [54].

Informally, an NP-hard problem is a problem for which any NP-complete problem can be
transformed to it [202]. It is then as hard as all the NP-complete problems. For a combinatorial
problem, the search and optimization versions are as hard as the decision version because find-
ing a solution for the former answers the "yes-no" question. Hence, the optimization versions
of the combinatorial problems (COPs) considered throughout this thesis are NP-hard. A poly-
nomial transformation between the TSP decision problem and its optimization variant would
be to loop the decision problem over decreasing D values until finding the optimal tour. Note
that compared to NP-complete problems, an NP-hard problem does not necessarily belong to
NP. This is the case for TSP in its optimization form because if someone provides a tour and
claims that it is the optimal one, no polynomial-time algorithm can check if it is indeed the best
solution.

4.1.2 ONN for solving NP-hard COPs

After the seminal works from Hopfield [119] and Tank [56], researchers have thought about
solving NP-hard COPs using coupled oscillators that would implement a kind of Hopfield neu-
rons. Endo [99] proposed to replace the neural activation with van der Pol oscillators having
smooth transient dynamics and binary steady state (ON/OFF) for reading out the COP solution.
For graph coloring, Wu [100] designed a coupled oscillator system whose phases at steady-
state correspond to colors in the corresponding graph. Then, Hoppensteadt and Izhikevich [68]
have further proposed an ONN implementation using a network of phase-locked-loop (PLL)
behaving as an analog Hopfield neural network (HNN) in the phase domain.

More recently, using ONN for solving COPs was brought up to date thanks to the seminal
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work from Wang et al. [162] who formally linked ONN to the Ising model. The Ising model
was named after the physicist Ernst Ising who studied magnetic moments (or spins Si =±1) in
ferromagnetic materials [51] whose Hamiltonian is expressed as:

H =−∑
i

∑
j

Ji jSiS j −∑
i

hiSi (4.2)

where Ji j are interaction coefficients between spins Si and S j, and hi is the external field ap-
plied to spin Si. Essentially, both analog HNN and ONNs are relaxations of the Ising model
in the sense that their energy functions are equal to the Ising Hamiltonian H when variables
or phases are binary. As finding the ground states of the Ising Hamiltonian is an NP-hard
problem [53], there is a great interest in designing oscillatory-based Ising machines (OIM) to
solve any other NP problem using coupled oscillators. The OIM development has been mainly
driven by technological progress as CMOS technology enables the integration of various OIMs
[74, 90, 138] with up to 1968 oscillators demonstrated on-chip [76], and beyond-CMOS de-
vices such as volatile memristors [86] or spintronic devices [87] promise a compact oscillator
implementation.

On the conceptual side, Erementchouk et al. [204] have recently shown that ONNs can
solve the NP-hard Max-cut problem even without binary phases and are linked to classical
approximation algorithms for Max-cut. Landge et al. [113] proposed to solve the N-city TSP
with N oscillators by encoding the TSP tour in the oscillator phase permutation. This extended
the work from Duane [205] who first proposed using an array of N2 oscillators for solving TSP,
similar to the original Hopfield-Tank network [56]. Moreover, researchers have pushed the
OIM boundaries and extended the binary phase encoding to multiple phase values for solving
other NP-hard COPs such as TSP or Max-K-cut (Max-cut with K possible spin values) [206].
For Max-K-cut, authors in [206] propose extending real synaptic weights to complex weights
|Wkl|ei f (φk−φl) by adding a custom synaptic function f (φk − φl), so that the ONN energy is
minimized when two coupled oscillators are in different subsets defined by f (φk − φl). They
further constrain the ONN phases by injecting a harmonic signal at frequency K fosc to favor
the K desired phases.

In [207], the authors further extended the OIM concept to hypergraphs involving high-order
interactions between the variables, whereas the Ising model has only spin-to-spin quadratic
interactions. This extension enables the direct mapping of many NP-hard problems such as
Satisfiability to a coupled oscillator system without adding auxiliary oscillators. However, the
practical implementation is more complicated as it involves hyper-edges, i.e. a simultaneous
connection between more than two nodes.

In this chapter, we first study SKONN for solving Max-cut in a free regime, i.e. the phases
can settle to any value. Then, inspired by the work from Landge et al. [113], we explore how
Kuramoto-ONN can solve small-scale TSP by encoding the TSP tour in the ONN phase permu-
tation. Finally, we harness ONN high-order interactions to solve the maximum-3-satisfiability
problem (Max-3-SAT) by designing custom Lagrangian dynamics to escape local minima.
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4.1.3 Contributions

The findings of this chapter are:

1. SKONN is closely related to the best-in-class Goemans-Williamson algorithm (GW) for
solving the NP-hard Max-cut problem. Moreover, large-scale simulations using the G-
SET benchmark indicate that SKONN is as good as GW while having a runtime that
seems to scale only as O(logN).

2. Kuramoto-ONNs in free regime can find TSP tours with distance ≤1.4x the optimal dis-
tance for N ≤ 40 cities.

3. A Lagrangian-ONN (LagONN) that combines both gradient descent and ascent can solve
large-scale Max-3-SAT instances (simulations up to 200 variables and 860 clauses) by
taking advantage of high-order interactions between oscillators.

4.2 ONN for Solving the NP-hard Max-cut Problem

Given a graph with a set V of N vertices connected by weighted edges Wi j = Wji, the Max-
cut problem consists in cutting the graph in two complementary subsets of vertices V1 and V2
such that the sum of weights between V1 and V2 is maximum. The Max-cut problem can be
formulated as follows [111]:

Max
1
2 ∑

i, j
Wi j(1−SiS j)

subject to: (4.3)
Si ∈ {−1,+1} ∀ i ∈V

Solving the Max-cut problem is NP-hard and the best-known approximation algorithm is the
semidefinite programming (SDP) algorithm found by Goemans and Williamson [111] and de-
noted GW throughout the paper. By relaxing the binary spins Si to unit vectors vi in RN , GW
relaxes the NP-hard Max-cut problem to an SDP convex problem for which optimality can be
found in polynomial time:

Max
1
2 ∑

i, j
Wi j(1− vi.v j)

subject to: (4.4)

vi ∈ RN

|vi|= 1 ∀ i ∈V

To compute the cut, the vectors are finally assigned to binary spins by splitting in two the N-
dimensional sphere with a random hyperplan. Repeating this final rounding step provides a cut
whose expectation is:

E[cut] = 1
2π

∑
i, j

Wi j arccos(vi.v j)> 0.878Max-cut (4.5)
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However, due to the high dimension of the problem relaxation (RN), GW is costly for large
instances [58, 112] and alternative approaches using physical systems such as Quantum An-
nealers [208], coherent Ising machines [58], memristors [209] or coupled oscillators are being
investigated [69, 76, 86, 139].

4.2.1 The Ising Approach

One of the most studied formalisms applied to ONN is from Ising which was initially derived
to study magnetism in materials [51]. Given interaction coefficients Ji j ∈ R between particles
that can have two spins Si ∈ {−1;+1}, the particles relax to a state that minimizes the Ising
Hamiltonian (we skip the external fields for simplicity):

H =−1
2

N

∑
i, j

Ji jSiS j (4.6)

Thanks to Lucas’ seminal work [53], all Karp’s 21 NP-complete problems can be mapped to the
Ising formalism and the solutions can be approximated by any physical machine that minimizes
the Ising Hamiltonian (eq.4.6). If SKONN phases take binary values φi = (1−Si)π/2 ∈ {0,π},
its Lyapunov function (eq.3.8) becomes:

E =
β0

T

N

∑
i, j

Qi j triangle(
π

2
(S j −Si))

=− πβ0

2T

N

∑
i, j

Qi jSiS j

∝ H

(4.7)

Each synaptic current spike can be thought of as a downward step (due to eq.3.11) in the energy
landscape (eq.3.8) which corresponds to the Ising Hamiltonian (eq.4.7) if the final phases are
binary. However, having binary phases is not guaranteed in general. To force phase binarization,
it is common practice to inject into the oscillators a SHIL periodic signal at twice the oscillating
frequency [69, 138] and described in Appendix B.5 for SKONN.

The Max-cut problem can easily be mapped to an oscillatory Ising machine (OIM) with
spins corresponding to the graph vertices by setting Ji j = −Wi j with Wi j the graph weights
[53]. Then, the OIM performs the following minimization which is equivalent to the Max-cut
(eq.4.4):

MinH = Max
(
− 1

2 ∑
i, j

Wi jSiS j

)
subject to: (4.8)
Si ∈ {−1,+1} ∀ i ∈V

The general strategy is to 1) map the graph to the OIM, 2) start the OIM while ramping up
a 2-SHIL signal to binarize the phases, and 3) read the stable phase state [69]. Forcing phase
binarization is common practice as it maps the OIM Lyapunov function to the Ising Hamiltonian
(eq.4.7). However, how to binarize is not straightforward. If the injected signal is too strong,
it may "freeze" the phases to sub-optimal local minima [69, 137]. Whereas if the signal is too
weak, it might increase the OIM computation time. As described next, we rather harness the
free SKONN dynamics without SHIL to compute the Max-cut in this chapter.
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4.2.2 A Rank-2 Relaxation Approach

Erementchouk et al. [204] have recently shown that the free OIM relaxation can be harnessed
to solve the Max-cut problem. Their recent results demonstrate that letting a Kuramoto-ONN
settle to analog phase values is equivalent to solving a rank-2 relaxation problem for the NP-hard
Max-cut problem. Such phase dynamics are used in the CirCut solver [112]. Similarly to GW,
the CirCut algorithm relaxes spins Si to 2D unit vectors xi ∈R2 such that xi =

(
cos(φi) sin(φi)

)
that can take arbitrary values on the unit circle. The objective of the rank-2 relaxation is:

Max
1
2 ∑

i, j
Wi j(1− xi.x j)

= Max
1
2 ∑

i, j
Wi j(1− cos(φi −φ j))

subject to: (4.9)

xi ∈ R2

|xi|= 1 ∀ i ∈V

Then, a rounding procedure produces spins to compute the graph cut. Unfortunately, this rank-2
algorithm cannot guarantee a lower bound on the cut as it remains a non-convex optimization
problem. Nevertheless, its accuracy is comparable to the GW algorithm in practical use [112].

4.2.3 SKONN’s Approach and Link with GW

In this chapter, we only explore the relaxation approach where we let SKONN settle with-
out forcing binarization. We will see that SKONN’s phase binarization property (Proposition
4.2.1) is particularly useful in this case. For the Ising approach, we invite the reader to consult
the excellent work from Wang and colleagues [69] as the reported dynamics are equivalent to
SKONN’s.

Moreover, it is worth mentioning that SKONN’s energy landscape can be linked to the GW
algorithm restricted to vectors of dimension 2 (GW2), as recently noticed in [210]. Indeed,
SKONN’s triangular interaction can be written as:

triangle(φi −φ j)+π/2 = arccos(xi.x j) (4.10)

By setting SKONN’s synapses as the negative of the graph weights Ji j = −Wi j, the energy
becomes:

E ∝ −∑
i, j

Wi j arccos(xi.x j)+C (4.11)

with C a real constant. Hence, SKONN’s energy minimization is equivalent to GW2’s maxi-
mization task (eq.4.5) as:

MinE =Max∑
i j

Wi j arccos(xi.x j) (4.12)

subject to: (4.13)

xi ∈ R2

|xi|= 1 ∀ i ∈V
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4.2.4 Link between the Graph Degree and SKONN Fixed Points

The 3-node case of Fig.4.1a reveals a different distribution of SKONN’s phase fixed points
compared to Kuramoto. A simple analysis of the dynamics for N oscillators gives a relation-
ship between the connectivity of the network and the phase fixed points. Specifically, the next
proposition links the degree of a SKONN neuron, i.e. the number of synaptic inputs, with the
value of its phase fixed point.

Proposition 4.1. Consider a neuron i of degree D, i.e. driven by D neurons j with weighted
charges Qi j ∈ {−q,+q} q ̸= 0.

1. If D is odd and dφi/dt = 0, then there is at least one input neuron j such that (φi −φ j) is
a multiple of π .

2. If D is even, then there is at least one φi and one set of input phase φ j such that dφi/dt = 0
and ∀ j (φi −φ j) is not a multiple of π .

The proof is shown in Appendix B.3.

Interestingly, odd-degree neurons will phase-lock in or out of phase with at least one input
phase. The odd-degree property will be advantageous for solving some optimization problems
(COPs) on graphs as it can prevent the use of SHIL to binarize phases. On another hand, an even
number of inputs instead leads to a relaxed scenario where the neuron can settle into an infinite
number of phases as seen in the 3-node case of Fig.4.1a. When SKONN has both odd and
even numbers of input synapses, we heuristically find that most of the phases tend to binarize
as illustrated with the 5-node graph in Fig.4.1b, although some phases (such as φ2) can still
converge to fixed points with arbitrary phase values. This aspect will be further discussed when
solving larger graphs in section 4.2.7.
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(a)

(b)

Kuramoto SKONN

Even-degree neurons: 
𝐃 = 𝟐

With odd-degree neurons: 

D3 = 3

Δϕ15 = π

Δϕ34 = π

D1 = 3

SKONN phases 
can take 
arbitrary value

Δϕ34 = π

Δϕ15 = π

Figure 4.1: a) Three oscillators coupled by negative weights. The right-hand side shows the Kuramoto
and SKONN distributions of the final phases for 1000 random initializations (uniform distribution) and
the corresponding Kuramoto and SKONN energy landscapes. The arrows represent three examples of
trajectories with various initializations, highlighting Kuramoto’s minima and saddle point. In this exam-
ple, SKONN’s energy minima consist of plateaus that are linked to the even-degree property (Proposition
4.1.2). b) Five coupled oscillators where D1, D3 and D2, D4, D5 are odd and even, respectively. SKONN
tends to binarize phases except for φ2 which can rather converge to any phase value (Proposition 4.1).

4.2.5 SKONN IC Experimental Results

Fig.4.2 shows the experimental setup to test SKONN IC. An FPGA programs the chip, i.e. loads
the graph weights and initializes the phases prior to computation with a uniform distribution
φ0 ∼U [0,2π[. Then, the FPGA reads the phase differences at each oscillation cycle by detecting
the rising edges of V out

i with a precision of 5◦. The results are then sent to a laptop (i7 Intel core
@1.6 GHz and 32 GB of RAM) and post-processed with MATLAB to compute the cut. For
each graph, we solve Max-cut by running GW using the CVX solver on MATLAB [211] that
we consider as ground truth, i.e. SKONN’s cuts are normalized by GW’s best cut. We define
the accuracy as the ratio cut/cutGW .
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1) Input graph
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SKONN

3) Compute cut

Subset 2: 
{3,4,5,6,8,9,14,16}

Subset 1: 
{1,2,7,10,11,12,13,15}

𝐒𝐢 = +𝟏

𝐒𝐢 = −𝟏

Figure 4.2: Experimental setup for testing the IC. The FPGA programs the IC and measures the phases
that naturally evolve in the analog domain without any external control. After a few tens of oscillation
cycles, phases are sampled and assigned to Ising spins.

Max-cut for Various Graph Sizes and Densities

Here, we compute cuts of random graphs with three different edge densities d ∈{0.25,0.5,0.75},
uniform weights Wi j = Wji = +5, and various sizes N. The graphs are generated such that in
expectation, the number of graph edges is M = dN(N −1)/2. Data points of Fig.4.3a show the
quartiles of cuts for 10 random graphs and 10 trials per graph when the phases are measured
after 15 oscillation cycles (15µs). It appears that more than 25% of SKONN’s cuts have accu-
racies higher than 0.95 for all sizes and for the three graph densities, although the accuracy is
slightly lower for sparser graphs and for N ≥ 9. We believe the accuracy drop for N ≥ 9 could
be due to the oscillators having undesired strong couplings found during the characterization
(Table 3.5) and assigned for N ≥ 9.

If phases are measured before 15 oscillation cycles, the accuracy drops as the ONN has
not stabilized yet (Fig.4.3b). For longer measurement times, the accuracy is quasi-constant
which indicates that the system remains stable when reaching a phase fixed point. Although the
heuristic hardware does not always stabilize to binary phases (Fig.4.3c), SKONN favors binary
phases (peaks at cos(φ) =±1) due to its unique energy landscape (eq.3.8) as predicted analyt-
ically and confirmed here. In contrast, state-of-the-art ONNs often necessitate the injection of
subharmonic signals (SHIL) to binarize the phases and emulate Ising spins [69, 138].
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(c)

𝐒𝐢 = −𝟏 𝐒𝐢 = +𝟏

Cut vs synaptic range(d)

Figure 4.3: a) Accuracy vs. size N for graph densities d ∈ {0.25,0.5,0.75}. b) Accuracy vs runtime
(measurement time) for N=16. c) Phase distribution measured after 1000 oscillation cycles. c) Accuracy
vs synaptic range SR. Graphs have weighted edges taking random values Wi j ∈ {1, ...,SR}. The star data
points show the accuracy obtained after 15 oscillation cycles.

Max-cut for various weight ranges

We set N=16, d=0.25 and explore random graphs with various weight ranges SR from 1 to 15,
i.e. non-zero weights Wi j ∈ {1,2, ..,SR} are chosen with probability 1/SR. Fig.4.3d shows the
results for 10 random graphs per SR value. These graphs are harder to solve for SKONN as in
general, only 25% of cuts have accuracies above 0.9. It also appears that SKONN’s accuracy is
reduced for SR < 5 which could be due to a too-weak coupling strength compared to the chip
parasitics. As a sanity check, the obtained cuts are also compared to the simplest approximation
algorithm labeled "coin-flipping" which randomly assigns each graph vertex to subsets V1 or
V2 with 50% probability [111]. As the median cuts are only around 0.6 for the coin-flipping
procedure, we are confident the chosen random instances are not trivial.
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Runtime

Fig.4.3b presents the accuracy vs. measurement time extracted from the first experiment and
for N=16. By measuring the phases after 15 oscillation cycles (15 µs), 25% of the cuts have
accuracies higher than 0.95 for all graph densities. For N=16, GW’s mean CPU execution time
is 228 ms and our chip provides a runtime improvement of 1.5.104x. Having oscillations at 100
MHz would further reduce the runtime by two orders of magnitude, at the expense of a higher
power consumption.

4.2.6 Impact of SKONN Noise on Max-cut Solutions

Here, we study the impact of noise at the hardware level when solving the Max-cut task for
various graph sizes. The objective is twofold: 1) assess whether SKONN is robust to noise
and 2) quantify the maximum tolerated noise for practical implementation. Due to resource
constraints during transient simulations, this study does not include every single noise source
from each transistor. As an approximation, we perform stochastic simulations at the level of
circuit equations by including the main thermal noise contributions at the oscillating input node
(equations (B.4) derived in the Appendix B.1). To compensate for this approximation, the level
of input noise is swept to 70x larger values than the calculated ASIC input noise. Note that the
input noise also contributes to jitter noise at the output due to the stochasticity on the oscillator
transition times, as shown by the 10 stochastic oscillator trajectories in Fig.4.4a.

Main Noise Contributions

Fig.4.4a presents the main thermal noise sources of the shaper block that perturb the analog
input waveform. Assuming the noise amplitude is small (small-signal calculation [212]), we
find that the main source of thermal noise originates from the current source transistors in our
design that also carry noise from biasing stages. During the load capacitor charge, four transis-
tors acting as current sources and four diode-connected transistors contribute to current noise at
the input. Further assuming transistor noises are uncorrelated, the current noise power spectral
density (PSD) at the input is expressed as:

S2
N = 4S2

S +4S2
D +S2

B = σ
2
N (4.14)

where S2
S, S2

D, and S2
B are the PSDs of the current source, diode-connected, and bias transistors,

respectively. Note that the noise contribution from the switches is negligible as their PSDs are
divided by the high output impedance of the current sources. The transistor parameters used to
compute the noise variance are listed in Table 4.1. The small-signal parameters are evaluated
using the transistor model proposed by Enz, Krummenacher, and Vittoz (EKV) [201] where the
inversion factor is defined as IF = Ibias/IS with IS = 2µCox(W/L)U2

T the specific current of the
transistor, and UT = kBT/q is the thermal voltage. The transconductance gm is calculated as:

gm

Ibias
=

1
UT

2
1+

√
4IF +1

(4.15)

As the 1/f noise PSD is inversely proportional to the transistor dimensions, we assume that
thermal noise is dominant here and express the current PSD of each transistor i as:

S2
i ≈ 4kBT gmγ (4.16)
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with γ=1/2 or γ=2/3 when the transistor is in saturation and weak or strong inversion [201].

   

   

Max-cut of random instance G(N = 12, d = 0.5)Oscillator input thermal noise
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Figure 4.4: a) Schematic of the shaper stage with current noise sources. The bottom figure shows 10
stochastic transient simulations with σN=2.5 pA. b) Example of phase dynamics with and without noise
for a 12-node graph with 50% density. The Y-axis shows the output voltages Vf of each analog filter
measuring the phases (see Fig.B.3). c) Left: cut-value vs standard deviation of noise σN . Right: measure
of instability vs σN .

Transistor Length Width IF gm or R Noise standard deviation
Current source 6 µm 12 µm 0.5 gmS = 5.6 µA/V σS=0.25 pA
Diode-connected 6 µm 12 µm 0.5 gmD = 5.6 µA/V σD=0.25 pA
Chip current
mirror 16 µm 2 µm 8 gmC = 2.3 µA/V σC=0.16 pA

External resistor NA NA NA R = 1MΩ σR=0.13 pA

Shaper bias 20 µm 10 µm 2 gmB = 3.8 µA/V
σ2

B = σ2
R +4σ2

C +0.182

σB =0.4 pA
Total input
current noise

σ2
N = 4σ2

S +4σ2
D +σ2

B
σN = 0.8 pA

Table 4.1: ASIC Transistor Parameters used in the Stochastic Simulations.

To model noise in the time domain, we consider Gaussian white noise (GWN) which also
has a similar PSD, i.e. a constant spectrum, with the additional assumption that the current
noise samples follow a Gaussian distribution [213, 214]. Hence, we express the current noise
in the time domain as:

IN(t) = σNξ (t) (4.17)

where ξ (t) is a GWN with E[ξ (t)]=0, and correlation E[ξ (t + τ)ξ (t)] = δ (τ) with δ (t) the
Dirac delta function. It follows that E[IN(t + τ)IN(t)] = σ2

N δ (τ) and the PSD is:

S2
N = σ

2
N (4.18)
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This relation enables the numerical evaluation of the σN-values using the ASIC transistor
parameters of Table 4.1 while running stochastic transient simulations. From the circuit of
Fig.4.4a, we see that the current noise is integrated by the capacitor CL during the dynamics.
Overall, the addition of GWN turns the ODE system into a stochastic differential equation
(SDE) system that is integrated by a dedicated Julia solver [215]. Especially, the ODE for the
input voltage V in

i of neuron i becomes the following SDE:

CL dV in
i = Ibias

(
1−2

V out
i

Vdd

)
dt +∑

j
Ci j dV out

j +σN dW (4.19)

where dW is a Wiener process defined as ξ (t) = dW/dt [214].

Impact of Noise on Max-cut solutions

Fig.4.4c shows the cut values obtained for 10 random graphs G(N,d) of sizes N ∈{12,16,24,32,48},
densities d ∈ {0.1,0.2. . .0.9,1} and various noise variances. For all graph instances, the cut
value is evaluated after 100 oscillation cycles and normalized by the cut value obtained in the
noiseless case. Note that from Table 4.1 we calculate the input current noise in the ASIC as
σN ≈0.8 pA, which does not include the output noise from the hysteresis block. However, the
simulations suggest robustness to larger input noise up to σN=15 pA which also contributes to
output noise. For lower noise levels, noise can sometimes increase the accuracy as shown in
the example of Fig.4.4b where a noisy SKONN with σN=2.5 pA finds a larger cut compared
to the noiseless case. Furthermore, the stability of the system is estimated by analyzing the
time evolution of the spin signals expressed as Si(t) = cosφi(t). Computing the standard devi-
ation std[Si(t)] over time from t=0 to t=100/ fosc indicates whether the spins settle or not. In
the ideal case, std[Si(t)] ≈ 0 whereas in the worst case, the spin varies between -1 and +1 with
std[Si(t)] ≈ 1. Note that the transient dynamics are also included in the metric std[Si(t)] which
hence never reaches 0 in practice. Fig.4.4c shows a correlation between the decrease of cut
value and the decrease of stability for σN ≥15 pA for all SKONN sizes.

From this study, we conclude that only large levels of noise have detrimental effects on
SKONN performances. Moreover, moderate levels of noise can slightly increase the accuracy
which we believe is linked to the escape from local minima, as already observed by Wang et al.
[69] at the level of phase modeling.

4.2.7 Large-Scale Simulations and Benchmark

.

Weighted Max-cut of random graphs

To assess how SKONN’s computational performances scale, we run large-scale simulations of
random weighted Max-cut problems for N=8, 16, 32, 64, 128, 256, 512, and 1024 nodes. For
each graph density d=0.25, 0.5, and 0.75, 10 random graphs G(N,d) are generated such that
the total number of edges m = d N(N − 1)/2. The graph edges are randomly weighted with
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positive values from 0 to 15 that correspond to the IC synaptic range. We use the IC parameters
and solve SKONN’s dynamics (eq.3.7) with MATLAB using the built-in ODE solver ode15s
(see appendix C). For each graph instance, we run 10 trials with random phase initialization, for
a total of 100 trials per graph size and density. As a ground truth, we consider the best solution
CutGW provided by the Goemans-Williamson algorithm, out of 100 random projections defining
the cut [111] and computed with the CVX solver on MATLAB [211]. The distance between
the SDP cut CutSDP and CutGW is represented in Fig.4.5a. As CutSDP ≥Max-cut, the ratio
CutGW/CutSDP gives a lower bound on the chosen GW cut. For all the trials, the results are
compared with Kuramoto dynamics with the same parameters and initializations.

Fig.4.5b shows SKONN’s and Kuramoto’s phase distributions for each ONN size. Here
again, it appears that SKONN phases tend to be clustered near 0° and 180° whereas Kuramoto
phases seem more uniformly distributed. Fig.4.5c present the obtained cuts when considering
the first oscillator as the reference, and normalized by CutGW . We first notice that the results
are quite homogeneous with respect to the graph densities. Secondly, it appears that SKONN
produces high-quality cuts as Cut/CutGW ≈ 1 for all ONN sizes. In contrast, Kuramoto-ONNs
have a lower accuracy for sizes between N=16 and N=256. Interestingly, the settling time (time
to reach a steady phase state) seems to grow according to a logarithmic law with the ONN size.
This result refines some previous scaling observations mentioning a quasi-constant settling time
[69, 139]. It also confirms the high ONN parallelism and ability to compute in a few tens of
cycles, even for large graphs.

Similarly to the CirCut algorithm [112] (rank-2 relaxation approach), we also investigate the
Kuramoto accuracy when changing the reference oscillator and name it the Kuramoto-CirCut
scheme. Fig.4.5d presents the case where the best Kuramoto cut is chosen out of N possible
cuts, whereas the SKONN reference oscillator remains the first one. It can be seen that SKONN
provides the same quality cut as GW and Kuramoto-CirCut. However, compared to GW and
Kuramoto-CirCut, SKONN’s cut is solely obtained by reading out the phases with respect to a
single oscillator and does not need N different cut evaluations that linearly increase the time to
solution.

G-set benchmark

The previous study concerned random graphs. Here, we benchmark SKONN for solving Max-
cut using the G-set benchmark that includes various graph topologies [216]. Table 4.2 shows
the cuts obtained for a single trial with SKONN and Kuramoto using the same random phase
initialization, and considering the first oscillator as the phase reference. The cuts are compared
against the state-of-the-art GW [111] and the Kuramoto-CirCut scheme [112]. GW’s cut is
the best cut obtained out of 100 random projections and computed with the CVX solver on
MATLAB [211]. For graphs with N > 3000, GW values are taken from another state-of-the-art
SDP solver [217] due to memory constraints. The Kuramoto-CirCut values correspond to the
best cut extracted from the Kuramoto dynamics, out of N possible reference oscillators.

With a single run, Kuramoto-CirCut and SKONN solvers produce, on average, better results
than the GW algorithm which picks up the best spin configuration out of 100 random projec-
tions. The average SKONN cut value is 94.6% of the best-known cuts [216] and the highest
among the four methods. The accuracy obtained by simulating SKONN motivates its real hard-
ware implementation as the time-to-solution could be drastically reduced compared to a CPU.
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(a)

(b)

(c) (d)SKONN
Kuramoto

SKONN
Kuramoto-CirCut

Figure 4.5: a) Ratio between CutGW and CutSDP that gives a lower bound on CutGW as CutSDP ≥Max-cut.
b) Phase distribution at steady state for SKONN (left) and Kuramoto (right) for various ONN sizes. c)
Cuts obtained by SKONN and Kuramoto when the first oscillator is the phase reference and for various
graph densities. d) Cut obtained when SKONN’s reference is the first oscillator, compared to the case
where the Kuramoto reference is changed N times, similarly to the CirCut algorithm [112].
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Table 4.2: Comparison Between CirCut, Kuramoto, and SKONN solvers for G-SET Max-cut instances.
The bold values indicate the best cut obtained among the four approaches. The number in parenthesis is
the cut normalized by the best-known cut found in [216].

Graph Value
Settling time

(cycles)
Name |(V |, |E|) Weights Type GW Kuramoto-CirCut Kuramoto SKONN Best-known [216] Kuramoto SKONN
G11 (800, 1600) -1,+1 toroidal 530 (0.940) 514 (0.911) 502 (0.890) 540 (0.957) 564 480 368
G12 (800, 1600) -1,+1 toroidal 532 (0.957) 510 (0.917) 496 (0.892) 528 (0.950) 556 216 272
G13 (800, 1600) -1,+1 toroidal 554 (0.952) 538 (0.924) 524 (0.900) 544 (0.935) 582 368 224
G14 (800, 4694) +1 planar 2978 (0.972) 3005 (0.981) 2974 (0.970) 3020 (0.986) 3064 416 496
G15 (800, 4661) +1 planar 2963 (0.971) 2992 (0.981) 2970 (0.974) 2979 (0.977) 3050 704 240
G20 (800, 4672) -1,+1 planar 849 (0.902) 871 (0.926) 818 (0.869) 858 (0.912) 941 504 208
G21 (800, 4667) -1,+1 planar 849 (0.911) 868 (0.932) 839 (0.901) 852 (0.915) 931 184 104
G22 (2000, 19990) +1 random 12936 (0.968) 13095 (0.980) 13026 (0.975) 12988 (0.972) 13359 280 104
G23 (2000, 19990) +1 random 12946 (0.970) 13106 (0.982) 13078 (0.980) 12950 (0.970) 13344 864 216
G24 (2000, 19990) +1 random 12966 (0.972) 13135 (0.985) 13050 (0.978) 12997 (0.974) 13337 928 160
G30 (2000, 19990) -1,+1 random 3014 (0.883) 3200 (0.938) 3175 (0.930) 3095 (0.907) 3413 376 192
G31 (2000, 19990) -1,+1 random 2885 (0.872) 3089 (0.933) 3063 (0.925) 3015 (0.911) 3310 1424 456
G32 (2000, 4000) -1,+1 toroidal 1290 (0.915) 1284 (0.911) 1280 (0.908) 1332 (0.944) 1410 616 520
G33 (2000, 4000) -1,+1 toroidal 1266 (0.916) 1254 (0.907) 1244 (0.900) 1294 (0.936) 1382 424 248
G34 (2000, 4000) -1,+1 toroidal 1274 (0.920) 1258 (0.909) 1224 (0.884) 1306 (0.943) 1384 704 456
G50 (3000, 6000) -1,+1 toroidal 5880 (1.00) 5784 (0.983) 5764 (0.980) 5818 (0.989) 5880 544 1968
G56 (5000, 12498) -1,+1 random 3634 (0.904) 3700 (0.921) 3622 (0.901) 3733 (0.929) 4017 712 296
G57 (5000, 10000) -1,+1 toroidal 3320 (0.950) 3138 (0.898) 3054 (0.874) 3270 (0.936) 3494 792 576
G60 (7000, 17148) +1 random 13610 (0.959) 13730 (0.968) 13669 (0.963) 13717 (0.967) 14188 824 384
G61 (7000, 17148) -1,+1 random 5252 (0.906) 5322 (0.918) 5257 (0.907) 5327 (0.919) 5796 1648 312
G62 (7000, 14000) -1,+1 toroidal 4612 (0.947) 4394 (0.902) 4358 (0.895) 4642 (0.953) 4870 520 1328
G64 (7000, 41459) -1,+1 planar 7624 (0.871) 8046 (0.919) 7946 (0.908) 8135 (0.930) 8751 800 352

Average 0.934 0.938 0.923 0.946 1 623 431

For instance, solving the smallest graph G11 requires 12 s of GW runtime on a laptop (i7 Intel
core @1.6 GHz and 32 GB of RAM). In contrast, SKONN’s settling time does not vary much
with the ONN size and could enable a large-scale cut computation in less than 431 cycles on
average. With oscillators running at 1 MHz, the runtime per trial would only be 431 µs which
is 2.8 104x faster than GW’s execution. However, reaching excellent cuts such as 99.9% of the
best-known cut requires more trials and annealing the ONN to escape local minima. Reaching
the optimal solution probably takes exponential time as Max-cut is NP-hard. For more results
using SHIL and various annealing schemes, we invite the reader to refer to [69].
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4.3 Beyond Binary Phases with ONN

ONN dynamics are generally used as analog relaxations for COPs with binary variables such as
the Ising problem. This means that ideally, the wished steady phases should be binary so that
the relaxation is as accurate as possible. However, during transient, ONN phases are analog and
can take non-binary values. Moreover, without further constraints such as harmonic injection,
ONN phases can settle to arbitrary values. Similar to Erementchouk et al. [204] who proposed
to exploit the analog phase values to solve Max-cut, we explore how a Kuramoto-ONN in a
free regime, i.e. without harmonic injection, can approximate the traveling salesman problem
(TSP).

4.3.1 Traveling Salesman Problem and Previous Work

TSP is one of the easiest COP to understand, yet one of the hardest to solve. Its NP-hard op-
timization version can be described as follows: Given a list of cities and inter-city distances,
find the shortest round-trip that visits each city only once [55]. Here, we focus on the symmet-
ric TSP, i.e. the distance between cities i and j is symmetric as di j = d ji. The best-existing
approximation algorithm for TSP instances satisfying the triangle inequality is the one from
Christofides [218] that guarantees a 3/2 approximation ratio.

Hopfield and Tank were among the first to solve TSP with neural networks [56]. Their idea
is to have an array of neurons such that a column corresponds to a city, and a line represents the
position in the tour. With such encoding, one only needs to read the array line by line to know
the corresponding tour. Of course, this is possible only if there is a single activated neuron per
line and column. Such constraints are implemented using synaptic weights, among those that
encode the inter-city distances. The concept is illustrated in Fig.4.6b for 5 cities. Note that there
are 25 neurons required to solve this TSP instance. Overall, to solve an N-city TSP, there are
N2 neurons that evolve in a space of 2N2

possible states.

A B C D E

P1

P2

P3

P4

P5

A B C D E

P1 1 0 0 0 0

P2 0 0 0 1 0

P3 0 1 0 0 0

P4 0 0 1 0 0

P5 0 0 0 0 1

N² phases N phases

ϕA

ϕDϕB

ϕC
ϕE

Hopfield-Tank and Ising Duane et al. Landge et al. 

N² neuronsN cities

This work

N Kuramoto
oscillators

TSP instance

A
D

B

C

E

[dij]

(a) (b) (c) (d) (e)

-[dij]

Figure 4.6: a) Example of TSP instance with 5 cities. b) Original Hopfield-Tank mapping for solving
TSP [56]. Note that the Ising approach is similar [53]. c) Architecture proposed by Duane et al. [205].
Each phase can take up to N values so all possible cyclic permutations are encoded (highlighted with dif-
ferent colors). d) Original idea from Landge et al. [113] to encode the TSP tour in the phase permutation
of N oscillators. e) Proposed Kuramoto-ONN architecture to approximate TSP.
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In [205], authors have explored the same array architecture but using coupled oscillators
with information encoded in the synchronization between them. Compared to Hopfield-Tank’s
approach, it allows for simultaneously representing all possible cyclic tour permutations, as
illustrated in Fig.4.6c. As there are N possible cyclic permutations, each line/column sees
N possible phase values. It is as if Hopfield-Tank binary variables were extended to N-spin
variables. However, assuming that oscillators can take any phase value, there are now NN2

possible states which further complexify the space search.

Recently, Landge et al. [113] brought back the idea of using coupled oscillators but having
only N phase-based oscillators that encode the TSP tour in the phase permutation. Not only this
approach reduces the number of neurons from N2 to N, but it also avoids the tour degeneracy
linked to the choices of starting city and tour direction. When phases are constrained to take N
values, the search space has a size of NN which is smaller than the two previous approaches.
Inspired by this conceptual work, we propose a similar idea using a phase-based Kuramoto-
ONN that could be implemented with any type of sinusoidal oscillator.

4.3.2 Approximating TSP with Kuramoto-ONN

The main idea behind the Kuramoto-ONN solver is that a negative synapse implements a re-
pulsive force between two coupled oscillators. The stronger the negative coupling is, the less
likely the two oscillators have similar phases. If the negative weight is very large, there is a high
chance that the phase difference is π . Keeping in mind that we want to represent the TSP tour
as a phase permutation on the unit circle, phases separated by π should correspond to cities that
are far from each other in the tour, and most likely, cities that are separated by a long distance.
Hence, it is natural to choose the ONN synaptic weights as:

Wi j =−di j (4.20)

Overall, this mapping leads to an N-neuron fully-connected ONN with N(N − 1)/2 negative
weights. The corresponding energy function is then:

E =
1
2 ∑

i
∑

j
di j cos(φ j −φi) (4.21)

which is the standard ONN Lyapunov function [68]. Hence, the resulting ONN dynamics seek
to minimize E as:

dφ

dt
=−∇φ E (4.22)

The ONN minimization process can be alternatively written as:

min
φ

−
(

∑
(i, j)|∆φi j|≥π/2

di j |cos∆φi j|
)
+
(

∑
(i, j)|∆φi j|<π/2

di j |cos∆φi j|
)

=min
φ

−EN +EP

(4.23)

The ONN only seeks to minimize E, thus long distances should be weighted by a negative sign
and belong to EN . Hence, those phases are pushed in the opposite direction on the unit circle
and the corresponding cities are not consecutive in the tour. As this process happens for every
pair of cities, the by-product effect consists of some distances di j that are positively weighted
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(EP terms). As they are positive, the ONN favors consecutive phases that have a small di j value
to further minimize E. It is in EP that some sort of TSP is embedded, with a summation over
consecutive cities and distances weighted by cos∆φi j.

Hence, the ONN does not exactly embed TSP but rather executes a broader optimization
task, as all possible di j intervene in the formulation eq.4.23. From a geometrical perspective,
the ONN minimizes a sum of N(N-1) dot products as:

E =
1
2 ∑

i
∑

j
v⃗i j(φi).v⃗ ji(φ j) (4.24)

where vectors v⃗i j have length
√

di j and angle φi. Note that it is possible to compensate for the
undesired term cos∆φi j that weights distance di j and has been proposed by Mallick et al. [206].
However, it requires using synaptic weights in the complex domain and harmonic injection at
frequency N fosc. Next, we first assess the performances of this simpler ONN version.

4.3.3 Simulation Results

In Matlab, we generate random TSP instances where the city coordinates are randomly chosen
according to a uniform distribution on a square map (Fig.4.7a). ONN phases are randomly ini-
tialized and sampled once the ONN stabilizes to a local minimum. From the measured phase
permutation, we compute the final tour distance. Fig.4.7a shows some TSP instances and cor-
responding final tours. Visually, the proposed tours seem near-optimal. We further evaluate
the ONN energy and TSP tour distance during the dynamics, as shown in Fig.4.7b. From these
simple examples, we make two important observations.

1. By definition, the ONN energy is monotonously decreasing and rapidly reaches a local
minimum. However, it appears that the tour distance can be non-monotonous, as shown in
the second example. In this particular case, the ONN settles to a sub-optimal tour value,
although its phase trajectory previously produced a better tour.

2. As shown in Fig.4.7c, the ONN dynamics are not uniformly distributed on the unit circle.
Some phases are very close to each other, which can challenge the phase permutation
measurement in a real implementation.

However, simulations enable high precision during the phase permutation measurement and
thus we further investigate how the performance scales with the number of cities. Fig.4.8a
presents the ONN tour distance versus the number of cities. It is normalized by the optimal tour
found using an integer program in Matlab. Each data point consists of 10 random TSP instances
and 10 trials per instance with random phase initialization. The shaded interval represents the
maximum and minimum reached values. It appears that for N ≤ 17, the ONN can find an
optimal tour and median values are below 10% of the optimal solution. However, for larger
instances, the ONN never finds the optimal solution, while having median tours below 50% of
the optimal distance for N < 45. Fig.4.8b and c present instances from the TSPlib set [219]. For
the 29 Bavarian cities, the ONN finds a 12% longer tour than the optimal one, while for the 48
US capitals, the tour is 36% longer. Visually, we notice that the ONN tour is kind of "circular",
i.e. as if the ONN would seek a center of mass for all cities from which a tour is constructed.
For instance, the particular southern path of the optimal 48 US tour has never been found by the
ONN.
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(a) (b) (c)TSP tour

ONN energy

Tour distance

ONN phase dynamics

Figure 4.7: a) Example of 8-city tours found by ONNs. Each point is a city randomly located on a
square map. b) ONN energy and tour distance in real-time for each example. c) Corresponding ONN
phase dynamics. The TSP tour is read from the phase permutation.

To achieve the optimal solution for more than 17 cities, the ONN requires additional mech-
anisms to escape local minima such as annealing using noise [113]. However, these preliminary
results are encouraging as ONN could be used in cluster-based TSP solvers. Indeed, one of the
state-of-the-art strategies for solving large TSP instances is divide and conquer where smaller
TSP tours are assembled to build a larger one [220]. One could think of having a modular ar-
chitecture with an array of ONN modules that run in parallel and continuous time, and some
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post-processing algorithm to assemble the sub-tours and further optimize the final TSP tour.
However, as seen in Fig.4.7c, the architecture requires improvements in the phase separation as
phases are often forming clusters, thus preventing reliable tour assessment.

29 cities in Bavaria

Optimal tour ONN tour: +12% longer

48 US capitals 

Optimal tour ONN tour: +36% longer

(a) (b)

(c)

Figure 4.8: a) Scaling of ONN tour vs. number of cities in random TSP instances. b) Instance of TSPlib
[219] with 29 cities. c) TSP of the 48 capitals from the USA. The left-hand plot shows the evolution of
the corresponding ONN unit circle.
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4.4 Constrained Optimization with Lagrangian-ONN

4.4.1 Mathematical Optimization

We have seen that ONNs are powerful to solve COPs thanks to their intrinsic gradient descent
properties. However, minimization using gradient descent does not guarantee to reach one of
the global minima and can be stuck at local minima, i.e. suboptimal COP solutions. One way of
avoiding the system being stuck at local minima is to express conditions for optimality that must
be reached before the system settles to a fixed point. In the field of Mathematical Optimization,
the conditions are rather called constraints, and minimizing a function f subject to constraints
g on real variables is known as the General Programming Problem [221, 222]:

min f (x) (4.25)

subject to: g(x) = 0
x ≥ 0

where f : x ∈ RN −→ R is the scalar cost function to minimize along N real decision variables
and g : x ∈ RN −→ RM is the function expressing the M constraints to satisfy. Note that the
constraints can be expressed in three equivalent formulations [221]:

(A)
g(x) = 0

x ≥ 0
⇐⇒ (B)

g(x)+ s ≥ 0
x ≥ 0
s ≥ 0

⇐⇒ (C) g′(x′)≥ 0

where x′ is an augmented vector including slack variables s, and g′ is an augmented function
comprising the non-negativity constraints on x′. Given a COP with constraints g(x) = 0 such
as in formulation (A), the state-of-the-art approach using Ising machines [53] and ONNs is to
transform the constrained optimization problem into an unconstrained problem. The idea is to
include the constraints in an augmented cost function fP(x) = f (x)+P gT (x)g(x) where P is
a positive real term that penalizes the cost function if g(x) ̸= 0. However, in the general case,
reaching a minimum of fP(x) does not guarantee that the constraints are satisfied.

4.4.2 Lagrangian Multipliers

The method of Lagrange multipliers is a technique to solve constrained optimization problems
named after the mathematician Joseph-Louis Lagrange. Similarly to the penalty method, it
includes constraints weighted by multipliers λ in an augmented cost function L : RN+M −→ R
defined as:

min f (x)
subject to: g(x) = 0

−→ L(x,λ ) = f (x)−λ
T g(x) (4.26)

Compared to the previous penalty method, it is as if the penalty terms P would become variables
λ rather than fixed parameters. Suppose x is a minimum of f (x) satisfying g(x) = 0. Then, the
following conditions are necessary for local optimality (under some regularity conditions such

123



ONN for NP-hard Combinatorial Optimization 4.4. Constrained Optimization with Lagrangian-ONN

as gradients of constraints are linearly independent [222]):

Lagrangian necessary conditions for local optimality:

∃ λ ∈ R

{
∇λ L = 0
∇xL = 0

⇐⇒ ∃ λ ∈ R

{
g(x) = 0
∇x f (x) = ∑

M
k=1 λk∇x gk(x)

(4.27)

where ∇x is the gradient operator with respect to variable x. Note that the generalized condi-
tions with inequality constraints are called the Karush-Kuhn-Tucker conditions (KKT) [223].
A geometrical interpretation of the Lagrangian necessary conditions is shown in Fig.4.9a with
two variables and a single constraint. While moving on the line g(x) = 0, we are looking for a
point where f (x) cannot change in any direction of g(x) = 0. This situation can occur when a
contour of f (x) = c is tangent to the line g(x) = 0, i.e. ∃λ ∈R∇x f (x) = λ∇x g(x), or when we
reach an extremum of f (x), i.e. ∇x f (x) = 0 and thus λ = 0. In the general case with multiple
constraints, ∇x f (x) is a linear combination of the constraints’ gradients as expressed in eq.4.27.

We see from the definition of the Lagrange function (eq.4.26) that performing gradient de-
scent of L(x,λ ) with respect to x minimizes the cost function f (x), just like in the previous
method. The KKT Theorem [222, 223] suggests how to find the λ values, which points out an
interesting property of the optimal point that can be harnessed by any gradient system such as
neural networks and ONNs.

Theorem 4.1 (Corollary of Karush-Kuhn-Tucker Theorem [222]). Let f (x) and g(x) of the
general nonlinear programming problem satisfy convexity and concavity conditions.
x∗ is global optimal solution ⇐⇒ ∃ λ ∗ L(x∗,λ ∗) is a saddle point.

The saddle point property linked to the KKT theorem is illustrated in Fig.4.9b. As having a
saddle point is a necessary condition for local optimality, the search for a saddle point can drive
some optimization algorithms and is the focus of this section.

4.4.3 Lagrangian Neural Networks

In literature, researchers have proposed various methods for solving mathematical optimization
problems for real-time processing and to enhance convergence compared to digital approaches.
Analog circuits were among the first accelerators to solve these problems by encoding them di-
rectly in the hardware with analog devices such as resistors, diodes, voltage, and current sources
[221, 224]. The main idea is to have a system whose dynamics evolve to satisfy the neces-
sary KKT conditions for optimality. Other approaches proposed to interpret the optimization
problem as a Lagrangian Neural Network (LNN) where neurons x evolve to minimize the cost
function f (x), while Lagrangian neurons λ bring x in a feasible region where g(x) = 0. LNNs
were first proposed in [114], where authors have defined custom dynamics for the neurons that
seek a saddle point during the minimization process as:{

dx/dt =−∇xL
dλ/dt =+∇λ L

(4.28)

We see that any fixed point of the dynamics satisfies the Lagrangian necessary conditions for
local optimality (eq.4.27). As illustrated in Fig.4.9c, LNNs seek solutions in real-time and do
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not settle until ∇λ L = g(x) = 0, i.e. not before the constraints are met. Note that in the general
case, there is no performance guarantee and the LNN can settle to a fixed point corresponding
to a local minimum for f (x). Nevertheless, if one expresses sufficient conditions for optimality
as constraints, then the LNN is forced to find the optimal solution as we show next for the
Satisfiability problem.

𝛁𝐟

-𝝀𝛁𝐠

Necessary conditions for local optimality

ቊ
g x, y = 0

∇f(x, y) = λ∇g(x, y)

min f x, y = x2 + y2

subject to:
g x, y = −x2 − y − 0.37 = 0

Kuhn-Tucker Theorem and saddle point

Lagrange function: L x, y, λ = f x, y − λ g(x, y)

dx

dt
= −

∂f x, y

∂x
+ λ

∂g x, y

∂x
dy

dt
= −

∂f x, y

∂y
+ λ

∂g x, y

∂y

Gradient descent: −𝛁𝐱𝐋

Gradient ascent: +𝛁𝝀𝐋

dλ

dt
= −g(x, y)

-𝛁𝐟

𝛌𝛁𝐠
𝐠 𝐱, 𝐲 = 𝟎

𝐠 𝐱, 𝐲 > 𝟎

Dynamics of Lagrangian NN: finding a saddle point

Saddle point

(a)

(b)

(c)

Figure 4.9: a) Illustration of Lagrange necessary conditions for local optimality. b) Plots of the Lagrange
function L for x = 0 (left) and y = 0.37 (right) highlighting the saddle point of L which corresponds to
a local solution of the initial problem. c) Dynamics of a Lagrangian neural network that seeks a saddle
point. The plain-line black arrows represent the trajectories of the neural network that converge to the
local optimal point.
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4.4.4 Lagrangian-ONN (LagONN) for Solving Satisfiability Problems

Here, we propose a similar idea to Nagamatu et al. [225] for solving NP-hard satisfiability
problems using an LNN with phase-based oscillatory neurons. Compared to most of the state-
of-the-art models [225–228], we restrict ourselves to dynamics that are implementable by cou-
pled phase oscillators. A crucial feature of analog-based approaches is whether the system
has bounded variables or not. In [226] and [229], the authors proposed an analog model that
provides an exponential speed-up at the expense of unbounded variables and hence a potential
exponential power. Whereas limiting the growth of variable values generally induces an ex-
ponential computation time for hard instances [227]. However, note that there are promising
models such as memcomputing machines that allow polynomial scaling for both convergence
time and power [228]. Nevertheless, these models are not exempted from unstable dynamics
such as limit cycles that can appear in the general case. As our goal is to have an implementable
model with bounded variables, most likely the proposed ONN does not provide exponential
speed-up in the general case. However, using oscillators guarantees a bounded circuit power as
variables φ ∈ [0,2π[ and the synaptic amplitudes do not vary in the proposed implementation.
Moreover, simulations up to N=200 suggest that our approach can find near-optimal solutions
of hard max-3-satisfiability instances in polynomial time as O(N4).

The Max-3-Satisfiability Problem (Max-3-SAT)

The Max-3-SAT problem consists in finding the Boolean assignment of variable x that maxi-
mizes the number of TRUE clauses composed of three literals Cm = lm

1
∨

lm
2
∨

lm
3 in the formula:

fB =C1
∧

C2
∧

...
∧

CM−1
∧

CM (4.29)

With lm
j ∈ {x1, ...,xN ,x1, ...,xN}. The problem of assessing whether or not fB is satisfiable is

NP-complete [203], thus any problem in NP can be reduced to 3-SAT which motivates the
development of hardware accelerators for solving Max-3-SAT.

Mapping a Boolean Clause to an ONN Module

Similar to Nagamatu et al. [225], we first express a clause Ci as an Ising energy term Hi which
is null if and only if Ci is true. There are four kinds of clauses, depending on the number of
complementary literals. We propose to map the four clauses as follows:

C0 = X ∨Y ∨Z −→ H0 = 1+SX SY +SX SZ +SY SZ − (SX +SY +SZ)−SX SY SZ (4.30)

C1 = X ∨Y ∨Z −→ H1 = 1−SX SY −SX SZ +SY SZ − (−SX +SY +SZ)+SX SY SZ

C2 = X ∨Y ∨Z −→ H2 = 1+SX SY −SX SZ −SY SZ − (−SX −SY +SZ)−SX SY SZ

C3 = X ∨Y ∨Z −→ H3 = 1+SX SY +SX SZ +SY SZ +(SX +SY +SZ)+SX SY SZ

where spins S j =±1 are the binary Ising variables. Writing the truth table for each clause, we
find the following equivalence:

Ci is TRUE
Ci is FALSE

⇐⇒ Hi = 0
Hi = 8

(4.31)
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It is important to mention that this mapping leads to a cubic spin interaction SX SY SZ that is not
straightforward to implement in hardware. Note that it is also possible to map a clause to an
Ising energy term with quadratic interactions only by adding auxiliary variables [60].

The next step is to map the Ising energies to phase-based ONNs. We propose to relax the
binary Ising Hamiltonians to complex variables defined as:

H0 −→ Z0 = 1+ ei(φX−φY )+ ei(φX−φZ)+ ei(φZ−φY )− (eiφX + eiφY + eiφZ)− ei(φX−φY+φZ) (4.32)

H1 −→ Z1 = 1− ei(φX−φY )− ei(φX−φZ)+ ei(φZ−φY )− (−eiφX + eiφY + eiφZ)+ ei(φX−φY+φZ)

H2 −→ Z2 = 1+ ei(φX−φY )− ei(φX−φZ)− ei(φZ−φY )− (−eiφX − eiφY + eiφZ)− ei(φX−φY+φZ)

H3 −→ Z3 = 1+ ei(φX−φY )+ ei(φX−φZ)+ ei(φZ−φY )+(eiφX + eiφY + eiφZ)+ ei(φX−φY+φZ)

The complex relaxation Zi is equal to the Hamiltonian Hi in some cases listed in the following
proposition.

Proposition 4.2.

1. If phases take binary values such as φ j = kπ , then Zi = 0 or Zi = 8. Consequently Zi =Hi.

2. If Zi = 8, then all phases take binary values such as φ j = kπ .

The proof is detailed in Appendix C. Unfortunately, the reciprocal of Proposition 4.2.1 is false
as for instance if φX = 3.73, φY = 5.17, and φZ = 2.03, then Z0 = 0. This means that although
the ONN reaches Zi = 0, phases are not necessarily binary and there is no one-to-one correspon-
dence with spin variables. Whereas Proposition 4.2.2 shows that an unsatisfied clause (Zi = 8)
has necessarily binary phases. To summarize, reaching the desired case where Zi = 0 does not
necessarily induce binary phases and is a similar situation to ONN solving Max-cut without
SHIL: it opens the question of how to round phases to spins. However, we will see that when
there are more than a few clauses, the stable phase states tend to be binary which mitigates
rounding errors.

Using this property, the idea is to have an ONN module that minimizes |Zi| so that when
Zi = 0, the ONN phases φX , φY , and φZ give the Boolean variables SX , SY , and SZ that satisfy
clause Ci. Minimizing |Zi| can be expressed as the following unconstrained problem:

min Zi Z∗
i (4.33)

where Z∗
i is the complex conjugate of Zi. However, such formulation would involve multi-

ple frequencies within the ONN and we rather choose to focus on phase-based ONNs with a
uniform frequency.

Constraining the ONN using a Lagrangian Oscillator

Constraining the ONN for reaching Zi = 0 can be expressed in an alternative manner using the
Lagrange function Li(φ ,λ ) as follows:

Li(φ ,λ ) = λ1Re[Zi]+λ2Im[Zi] (4.34)

127



ONN for NP-hard Combinatorial Optimization 4.4. Constrained Optimization with Lagrangian-ONN

We indeed have ∇λ Li = (Re[Zi], Im[Zi])T = 0 ⇐⇒ Zi = 0. Note that there are only two con-
straints and no cost function f as in the general case (eq.4.27). Moreover, there are two possi-
ble interpretations for the Lagrangian multipliers leading to two different types of Lagrangian
ONNs:

1. λ1 and λ2 are synaptic elements. This possibility opens up the question of how to
implement synapses λ1 and λ2 that need to evolve in real-time while having a limited
range for a real implementation.

2. λ1 and λ2 are oscillatory variables, i.e. neurons. This interpretation only involves os-
cillating neurons and synapses with fixed amplitude, potentially facilitating the hardware
implementation.

Focusing on the second interpretation that we label LagONN, there is a particular choice for
λ that simplifies the Lagrangian function Li (eq.4.34). Consider a Lagrangian Oscillator with
the same frequency as the other neurons, phase φλ , and amplitude of 1. While moving in the
2D plan, the corresponding unitary vector u⃗λ has coordinates (cosφλ , sinφλ ) that we assign to
variables (λ1, λ2). Hence, the resulting Lagrangian function becomes the dot product between
u⃗λ and the vector Z⃗i = (Re[Zi], Im[Zi]) as:

Li(φ ,φλ ) = u⃗λ .Z⃗i = cosφλ Re[Zi]+ sinφλ Im[Zi] (4.35)

This leads to a compact expression for Li as shown here for i = 0:

L0(φ ,φλ ) =cosφλ

− cos(φX −φλ )− cos(φY −φλ )− cos(φZ −φλ )

+ cos(φX −φY −φλ )+ cos(φX −φZ −φλ )+ cos(φZ −φY −φλ )

− cos(φX −φY +φZ −φλ )

(4.36)

We recognize the Lyapunov function of 4 sinusoidal coupled oscillators φX , φY , φZ, φλ with
high-order interactions up to four as shown by the last term. Interestingly, the synaptic ampli-
tudes appear as fixed binary weights of the cosine terms. Hence, this ensures having bounded
LagONN variables since only phases vary and are bounded by definition.

LagONN Fixed Points

For LagONN, the Lagrangian necessary conditions for optimality are written as:{
∇φλ

Li = 0
∇φ Li = 0

⇐⇒
{

u⃗′
λ
.Z⃗i = 0

cosφλ ∇φ Re[Zi]+ sinφλ ∇φ Im[Zi] = 0⃗
(4.37)

with u⃗′
λ
= (−sinφλ , cosφλ ). Noticing that |u⃗′

λ
| ̸= 0 and using Proposition 4.2, we identify

four possible types of LagONN fixed points that are described in Table 4.3 and illustrated in
Fig.4.10b. It appears that LagONN fixed points are not necessarily inducing Ci =TRUE but
instead, LagONN can settle to three spurious states. The first one is reached when Zi = 8 = Hi,
meaning that Ci is not satisfied. The second and third spurious states occur when at least one
phase φ j is non-binary. Then, φ j does not correspond to any spin variable and we cannot decide
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whether Ci is true or not. However, from State 3, it might be possible to retrieve the spin values
that satisfy the clause by rounding the phases. The final desired state is when Zi = 0 = Hi with
binary phases and Ci is TRUE. Evaluating the angle of Z⃗i with respect to u⃗′

λ
can indicate whether

LagONN is in a spurious state or not. However, this would involve additional circuitry or post-
processing. Instead, we propose to run several trials with different LagONN initial phases to
maximize chances to reach State 4 if Ci is satisfiable.

Note that the undesired first state where Zi = 8 will decrease the accuracy of the Max-SAT
solver in general but can also help LagONN to settle if the Boolean formula is unsatisfiable.
This contrasts with some other approaches where the network never stabilizes when the formula
cannot be satisfied [225]. Our hypothesis for the existence of spurious states is that LagONN
uses a single Lagrange variable φλ instead of λ1 and λ2 as in eq.4.34. In the latter, λ1 would
never settle until Re[Zi] = 0. Nevertheless, we will see that this LagONN version performs well
in simulations and would be easier to implement in practice given its simpler Lyapunov function
(eq.4.36).

Spurious Desired
State 1 State 2 State 3 State 4
Zi = 8

Z⃗i ⊥ u⃗′
λ

Zi ̸= 0
Zi ̸= 8

Z⃗i ⊥ u⃗′
λ

Zi = 0 Zi = 0

∀ j φ j ∈ {0,π} ∃ j φ j /∈ {0,π} ∃ j φ j /∈ {0,π} ∀ iφi ∈ {0,π}
Conclusion:

Ci is not satisfied Undecidable Undecidable Ci is satisfied
Table 4.3: LagONN Fixed Points

LagONN Network and Dynamics for Solving a Clause

Motivated by the saddle-point property, we set LagONN neurons’ dynamics such that they
minimize Li(φ ,φλ ) (Fig.4.10a). In parallel, the Lagrangian oscillator performs gradient ascent
of Li(φ ,φλ ) until the constraints are met or LagONN reaches a spurious state. Overall, we
propose the following dynamics for LagONN implementing a clause Ci:{

τ
dφ j
dt =−∇φ jLi(φ ,φλ ) =− ∂ Z⃗i

∂φ j
.u⃗λ

τλ

dφλ

dt =+∇φλ
Li(φ ,φλ ) = Z⃗i.u⃗′λ

(4.38)

where τ and τL are the time constants for standard neurons and the Lagrangian neuron. They set
the relative speed between gradient descent and ascent. We will see later that for large problems,
the performances increase when the Lagrange oscillator is slower than the other neurons. Li’s
gradient descent causes Z⃗i to evolve in the opposite direction from u⃗λ as expressed here for
τ = 1:

dZ⃗i

dt
.u⃗λ =

∂ Z⃗i

∂φX
.u⃗λ

dφX

dt
+

∂ Z⃗i

∂φY
.u⃗λ

dφY

dt
+

∂ Z⃗i

∂φZ
.u⃗λ

dφZ

dt

=−
( ∂ Z⃗i

∂φX
.u⃗λ

)2 −
( ∂ Z⃗i

∂φY
.u⃗λ

)2 −
( ∂ Z⃗i

∂φZ
.u⃗λ

)2

≤ 0

(4.39)
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whereas Li’s gradient ascent tends to bring u⃗λ towards Z⃗i (Fig.4.10a). The dynamics can hence
be thought of as a "race" between Z⃗i and u⃗λ where the desired outcome is reaching Zi = 0 as a
compromise (Li’s saddle point) between the two competitive dynamics.

𝐋𝐢 = 𝐮𝛌 . 𝐙𝐢 

Spurious fixed points:
𝐙𝐢 ≠ 𝟎

Desired state:
 𝐙𝐢 = 𝟎

𝐮𝛌 

𝐮𝛌 ′

𝐙𝐢 = 𝟎

dϕ

dt
= −

∇ϕLi

τ

dϕλ

dt
= +

∇ϕλ
Li

τλ

LagONN competitive dynamics to find a saddle point

𝐮𝛌 

𝐙𝐢

𝐮𝛌 

𝐙𝐢

min
ϕ

 Li :

max
ϕλ

 Li :

LagONN function for Ci

(a)

(b)

Im

Re𝐮𝛌 

𝐙𝐢

𝐝𝐙𝐢

𝐝𝐭

𝐝𝛟𝛌

𝐝𝐭

Wished 
dynamics

LagONN fixed points

𝐮𝛌 ′

𝐙𝐢

𝛛𝐙𝐢

𝛛𝛟
⊥ 𝐮𝛌 

𝐙𝐢 ⊥ 𝐮𝛌 ′𝐮𝛌 

ϕX,Y,Z ∈ 0; π

⟹
Ci = TRUE

Figure 4.10: a) Illustration of LagONN competitive dynamics mixing both gradient descent and ascent
to satisfy a clause. b) Schematics of the possible fixed points for LagONN. The first type of fixed point
corresponds to a spurious state as Zi ̸= 0 and Ci is either false or undecidable. If Zi = 0 with binary
phases, then Ci=TRUE.

A LagONN network implementing such dynamics to satisfy C0 = X
∨

Y
∨

Z is shown in
Fig.4.11c. Note that there is a reference oscillator to measure the phases and apply an ex-
ternal field to the Lagrangian oscillator. Thus, φ j corresponds to φ j − φREF in practice. The
LagONN network complexity mostly originates from the synaptic array that consists of de-
layed and weighted signals. In Fig.4.11c, we denote a synapse Si j that modulates signals with
weight Wi j and phase θi j as Si j = Wi jeiθi j . This supposes having a mechanism to delay the
synaptic input by θi j/ω0 in real-time, which is the consequence of the high-order interaction
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terms in the LagONN function (eq.4.36).

(a) LagONN network for clause 𝐂𝟎 

IN

OUT
X

IN

OUT

Y
IN

OUT
𝛌

IN

OUTZ

-eiϕλ

ei(ϕλ−ϕZ)

-eiϕλ

1

-e−iϕλ

-e−iϕλ

ei(ϕZ−ϕλ)

1

-eiϕλ

-e−iϕλ

1

IN

OUT
REF

τL

τLe−iϕY

τLe−iϕY

τLe−iϕZ

τLei(ϕX−ϕY)

-τL

-τL

-τL

𝛟𝐗 𝛟𝐘 𝛟𝐙 𝛟𝐑𝐄𝐅

ei(ϕλ−ϕX)

𝐜𝐨𝐬 𝛟𝛌

− 𝐜𝐨𝐬 𝛟𝐗 − 𝛟𝛌 − 𝐜𝐨𝐬 𝛟𝐘 − 𝛟𝛌 − 𝐜𝐨𝐬(𝛟𝐙 − 𝛟𝛌)
+ 𝐜𝐨𝐬 𝛟𝐗 − 𝛟𝐘 − 𝛟𝛌 + 𝐜𝐨𝐬 𝛟𝐗 − 𝛟𝐙 − 𝛟𝛌 + 𝐜𝐨𝐬 𝛟𝐘 − 𝛟𝐙 − 𝛟𝛌

−𝐜𝐨𝐬(𝛟𝐗 − 𝛟𝐘 + 𝛟𝐙 − 𝛟𝛌)

𝐋𝟎 =

(b) Example of 𝐙𝟎 trajectories

𝐙𝟎 = 𝟎

t=0

𝐭𝐞𝐧𝐝

(c) Example of phase trajectories
Run 1 Run 2

Run 3 Run 4

Figure 4.11: a) LagONN network for solving clause C0. b) Example of Z⃗0 trajectories when phases are
randomly initialized and with τL = τ . It appears that a single-clause LagONN network converges towards
stable states where Z0 = 0 every time (100 trials). c) Example of phase trajectories. As highlighted in
Proposition 4.2, LagONN can satisfy Zi = 0 while having non-binary phases. However, one can conclude
that Ci = T RUE here by rounding phases to the nearest multiple of π .
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Fig.4.11b shows examples of Z⃗i trajectories with τL = τ that all converge to a stable state
where Zi = 0. The local stability can be evaluated by linearizing the system around the fixed
point and computing the eigenvalues of the Jacobian matrix. As expected from Proposition 4.2,
we find that with a single clause phases almost never settle to binary phase values, as shown
in Fig.4.11c. Although the results for a single clause are not encouraging, we will see that the
system becomes much more interesting at a larger scale as phases tend to relax to binary values.

LagONN Single Clause Stability

When the Lagrangian oscillator is OFF, i.e. ∀ t φλ (t) = 0, LagONN behaves as a standard
ONN even though it has cubic interactions. As we have seen throughout this thesis, the ONN
global stability can be proven by finding a bounded Lyapunov function such as Li (eq.4.36) that
is minimized through time due to the chosen dynamics (eq.4.47). Taking the clause C0 as an
example, the function L0(φ ,φλ = 0) is minimized as:

d
dt

L0(φ ,φλ = 0) = ∑
j

∂L0

∂φ j

dφ j

dt
=−τ ∑

j

(dφ j

dt

)2 ≤ 0 (4.40)

Hence the network is stable when the Lagrangian oscillator is OFF. The global stability is much
harder to study when the Lagrangian oscillator is ON due to the gradient ascent operation.
Authors in [114] have shown that global stability can be proved under convexity conditions
along the dynamic path. They proposed the following Lyapunov function, adapted here for
LagONN:

Ei(φ ,φλ ) =
1
2

∇φ LT
i ∇φ Li +

1
2

∇φλ
LT

i ∇φλ
Li (4.41)

Note how Ei(φ ,φλ ) ≥ 0 and Ei(φ ,φλ ) = 0 when LagONN reaches a fixed point. After some
calculation, it can be shown that:

dEi

dt
=−∇φ LT

i ∇
2
φφ Li ∇φ Li (4.42)

which is negative if the Hessian matrix ∇2
φφ

Li is positive definite. However, in our case, it is
unlikely the energy landscape Li(φ ,φλ ) remains convex during the entire operation given that
it is a sum of cosine terms (eq.4.36). Hence, it is possible that for some instances LagONN is
unstable and never settles to a fixed point, although we have not observed such behavior in the
following simulations.

4.4.5 LagONN Modular Architecture and Scaling

Consider a larger Boolean formula fB with N Boolean variables and M clauses Cm = lm
1
∨

lm
2
∨

lm
3

defined as:
fB =C1

∧
C2
∧

...
∧

CM−1
∧

CM (4.43)

with lm
j ∈ {x1, ...,xN ,x1, ...,xN}. The 3-SAT instance can be mapped to LagONN modules where

a module m corresponds to a clause Cm, and each literal lm
j corresponds to an input port of a

module m (Fig.4.12a). There is no need to implement the AND operation "
∧

" between two
clauses as every Lagrangian oscillator evolves to satisfy its corresponding clause and thus, the
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whole network tries to maximize the number of TRUE clauses in fB. We connect the LagONN
modules as follows:

1. Consider two clauses m and n that have a literal in common, i.e. ∃(k, l) ∈ {X ,Y,Z}2 lm
k =

ln
l or lm

k = ln
l . Then, we connect input ports k and l together with a wire. This means

that variables φ m
k and φ n

l are reduced to a single variable φx j , j ∈ {1, ...,N} as the two
oscillators have shorted inputs.

2. All reference oscillators are connected with a wire.

Repeating this procedure for every pair of clauses, the total LagONN function becomes:

LT (φx,φλ ) =
M

∑
m=1

u⃗m
λ
.Z⃗m(φx) (4.44)

where φx is now the vector of phases corresponding to the Boolean variables:

φx = (φx1,φx2 , ...,φxN−1,φxN )
T (4.45)

and φλ contains all the Lagrangian variables:

φλ = (φλ1,φλ2, ...,φλM−1,φλM)
T (4.46)

Again, the objective is to reach LT = 0 with Zm = 0 for all clauses so that fB is satisfied.
Assembling the M LagONN modules leads to the following dynamics:{

τ
dφx
dt =−∇φxLT (φx,φλ ) =−∑

M
m=1

∂ Z⃗m
∂φx

.u⃗m
λ

τλ

dφλ

dt =+∇φλ
LT (φx,φλ ) = ∑

M
m=1 Z⃗m.u⃗′mλ

(4.47)

It is important to mention that although there are only N phase variables and M Lagrange vari-
ables in the model, our modular construction leads to 5M oscillators in practice. As in general
for Max-3-SAT, M > N, this approach leads to a high number of oscillators. However, it has the
following advantages:

1. It avoids implementing large synaptic arrays as synapses are contained in modules.
2. It maintains the synaptic high-order interactions locally inside the modules.

In contrast, a programmable fully-connected design with N +M oscillators would require a
(N +M)2 synaptic array to support any fB instance. Moreover, it seems very challenging to
propagate the high-order interaction throughout the whole synaptic array as not directly possible
with a standard array laid out as a 2D grid. The comparison between the modular and fully
connected LagONN architectures scaling is summarized in Table 4.4.

LagONN Architecture Oscillators Size of Synaptic Array High-Order Interaction Worst Distance

Fully-Connected N +M+1 (N +M)2 N +M (global)
Modular 5M 42/module (clause) 4 (local)

Table 4.4: Comparison between Two Possible LagONN Architectures.
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An example of a modular LagONN network consisting of 6 modules is shown in Fig.4.12.
There are 3 variables whose input lines are laid out vertically. Each module connects to the
input lines according to its literals. As soon as the modules are turned on, each module acts on
the input lines X1, X2, and X3 to satisfy its corresponding clause Cm. The optimization process
happens in real-time and in parallel until the modules find a common variable assignment that
satisfies fB or they reach a spurious fixed point. Fig.4.12b shows an example of simulation
where the Lagrangian oscillators are initially ’OFF’, and then ’ON’ for t ≥ 2000. Unlike the
single-clause case of Fig.4.11c, activating the Lagrangian oscillator brings all the phases to
binary values which satisfy fB. Fig.4.12d indeed shows that all complex variables Zm reach the
desired state Zm = 0, inducing Cm = T RUE as φX , φY , and φZ are binary (Proposition 4.2). When
the number of clauses increases such as in this example, simulations almost always converge
toward binary phase values for φX , φY , and φZ .

𝛟𝛌 = 𝟎: 
Lagrange OFF

Lagrange 
ON

𝐙𝐦 = 𝟎 t=0

𝐭𝐞𝐧𝐝

fB = X1⋁X2⋁X3 ⋀ X1⋁X2⋁X3 ⋀ X1⋁X2⋁X3

   ⋀(X1⋁X2⋁X3)⋀(X1⋁X2⋁X3)⋀(X1⋁X2⋁X3)

𝐑𝐄𝐅

X2

X1

X3

X2

X1

X3

X3

X2

X1

X1

X3

X2

X3

X1

X2

X2

X1

X3

ഥ𝐗⋁𝐘⋁𝐙

ഥ𝐗⋁𝐘⋁𝐙

ഥ𝐗⋁ഥ𝐘⋁ത𝐙

ഥ𝐗⋁ഥ𝐘⋁𝐙

ഥ𝐗⋁ഥ𝐘⋁𝐙

ഥ𝐗⋁ഥ𝐘⋁𝐙

𝐗𝟏 𝐗𝟐 𝐗𝟑

ቐ

𝛟𝐗𝟏 = 𝛑
𝛟𝐗𝟐 = 𝛑
𝛟𝐗𝟑 = 𝛑

⟹ ቐ

𝐗𝟏 = 𝟎
𝐗𝟐 = 𝟎
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Phase readout:

⟹ 𝐟𝐁 = 𝐓𝐑𝐔𝐄

Satisfiability
Assessment:

(a)

(b)

(c)

(d)

Figure 4.12: a) Example of LagONN network for solving a formula fB with 6 clauses. b) Simulation
with τL = τ where Lagrangian oscillators are OFF for t < 2000 and ON for t ≥ 2000. Measuring the
phases gives the Boolean assignment which satisfies fB in this example. c) Same simulation showing the
6 Lagrangian phases. d) Evolution of the 6 corresponding Zm → 0.
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4.4.6 Simulation Set-up for SATlib

In the following sections, we benchmark LagONN on a set of random 3-SAT instances from
SATlib (’uf’) that are close to the solubility phase transition (M/N ≈ 4.3 [230]) and thus are
known to be very hard for most of the state-of-the-art SAT solvers [231].

Verilog-A Implementation

As LagONN is a modular architecture, we use a modular simulation approach based on Verilog-
A modules to build circuits corresponding to 3-SAT instances from the SATlib library [232].
Each clause circuit is composed of Kuramoto oscillators and synapses with high-order inter-
actions as shown in Fig.4.11 that overall satisfy equations (4.47). The Verilog-A codes and
equivalent circuits are shown in Fig.4.13. The oscillator circuit integrates its input current and
the result is buffered to its output node. The initial integration value is set by INIT. The synaptic
block contains the sinusoidal interaction corresponding to Kuramoto dynamics. The two addi-
tional ports DIN, and DOUT, correspond to the additional phase delays coming from potential
high-order interactions. Note that the simulated circuit voltages correspond to phases in radians.
The synaptic currents do not have a direct meaning but could be thought of as contributing to the
instantaneous oscillating frequency, i.e. the derivative of the phase. The oscillation frequency
is set to 1 Hz so that a second corresponds to an oscillation cycle. Hence, the physical time can
be estimated by multiplying the simulation time by the oscillating period of a given device.

module kur_osc_va(IN,OUT,INIT);
electrical IN, OUT, INIT;
parameter real Rin=1e-8;
analog begin
 V(OUT) <+ idt(I(IN),V(INIT));
 V(IN) <+ V(OUT)+Rin*I(IN);
end
endmodule

module kur_syn_va(IN,OUT,DIN,DOUT);
electrical IN, OUT, DIN,DOUT;
parameter real W=1;
analog begin
 I(IN,OUT) <+ W*sin(V(IN,OUT)+V(DIN,DOUT));
end
endmodule

V(IN) 

   

   

  

           

   

V(OUT) 

RinI(IN) V(INIT) 

 
  

 
 
 

  

 
  
 
 
  
 
  
  
 
 

C=1

     

                          

       

IN OUT

DIN DOUT

(a) Oscillator Verilog-A model Synapse Verilog-A model(b)

Figure 4.13: a) Oscillator Verilog-A model. The small input resistance is used to avoid short warnings
from the solver. b) Synapse Verilog-A model.

Cost Function

From the SATlib ".cnf" files, we build a netlist of clause circuits interconnected according to the
Boolean formula as shown in Fig.4.12. As there is not any straightforward Lyapunov function
for the system, we monitor the number of unsatisfied clauses in real-time using a custom cost
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function κ(φ) defined as:

fB =C1
∧

C2
∧

...
∧

CM−1
∧

CM

−→ κ(φ) = K1 +K2 + ...+KM−1 +KM

where Km(φ)= lm
1 lm

2 lm
3 with literals lm

j = 0.5
(
1± tanh(β cosφ m

j )
)
∈ [0,1]. The sign that weights

the cosine term depends on whether the literal lm
j corresponds to a positive x j (-) or negated

variable x j (+). This way, Km(φ) = 0 if there is a variable assignment that satisfies the clause
Cm. Consequently, fB is true if κ(φ) = 0. The tanh function is used to round the phases to
spin values so we only need to know on which side of the unit circle each phase is to assign
it to a Boolean variable. This is equivalent to rounding phases to the nearest multiples of π .
For a sufficiently high β -value, we then have κ(φ) = Nunsat , i.e. κ(φ) counts the number of
unsatisfied clauses. Note that with the proposed rounding procedure, a clause Cm is true if and
only if Km(φ) < 0.53 = 0.125 (Km(φ) = 0.125 when ∀ j cosφ m

j = 0). Thus, if κ(φ) < 0.125,
fB is true and we use this value as a threshold to stop the LagONN search (Fig.4.14a).

𝐱𝐣 = 𝐓𝐑𝐔𝐄

𝐱𝐣 = 𝐅𝐀𝐋𝐒𝐄

Run that stops when
κ ϕ <0.125 Same run without stop

(a) (b)

(c) Cost function

Figure 4.14: Example of LagONN dynamics for SATlib instance ’cnf50-02’ (50 variables and 218
clauses). a) The dynamics stop when κ(φ) < 0.125. b) Same run without the stop. Waiting for the full
phase convergence towards 0 and π is approximately twice as long as the time for reaching κ(φ) = 0.125
in the first case. c) Cost function κ(φ) for both runs. We observe a trajectory deviation around 180 s
which is probably due to the accumulation of numerical errors.
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Computation Time

At the time t∗ where κ(φ) = 0.125, LagONN phases are just about to reach the optimal sides of
the unit circle that provide the optimal Boolean assignment. Thus, t∗ is the minimum time for
LagONN to find the solution. If the dynamics continue, we observe that phases settle to 0 or π

after some time t > t∗ (Fig.4.14b). We chose t∗ as the metric to assess LagONN’s computation
time as in practice, there would probably not be any circuit to monitor the cost in real-time,
and a solution would rather be obtained by sampling phases at various times. If κ(φ) ≥ 0.125
(sub-optimal case), the simulation continues until it reaches the user-defined final time. In this
case, we extract the computation time as the time needed for κ(φ) to settle within 0.5% of its
final value.

Solver

We run LagONN transient simulations using the SPECTRE solver in the Virtuoso software from
Cadence [233]. The numerical simulation employs the parameters listed in Table 4.5. They are
the default ones used by the simulation tool, except for the integration method that we set to
Euler’s method to speed up simulations. At each time step, the solver checks that the difference
of two successive Newton-Raphson (NR) iterations is bounded by TolNR = abstol+reltol∗Re f .
We choose Ref=’pointlocal’ so that the errors are evaluated "at each node relative to the current
value of that node" [233] for a good accuracy. Finally, a new integrated point is accepted
if the local truncation error (LTE) between the computed and predicted points (polynomial
extrapolation) is smaller than TolLT E = TolNR ∗ LT Eratio. We further discuss the trade-off
between speed and precision later in the chapter.

SPECTRE Solver LagONN
Integration Maxstep LTEratio Reltol Vabstol Iabstol Ref Tosc τ τλ

Euler Tsim/10 3.5 1m 1 µV 1 pA pointlocal 1 s 1 s 10 s
Table 4.5: LagONN Simulation Parameters.

4.4.7 LagONN Accuracy and Runtime Scaling with SATlib

Here, we assess the performances of LagONN using hard random instances from SATlib [232]
with various sizes (N,M) ∈ {(20,91),(50,218),(100,430),(200,860)}. For each (N,M), we
select the 10 first 3-SAT instances from the library. Then, we run Monte Carlo simulations
consisting of 10 transient simulations per instance with random initial phase values sampled
according to a low-discrepancy sequence. Hence, there are 100 trials per (N,M). LagONN
accuracy depends on individual instances as shown in Fig.4.15 with two examples of SATlib
instances having 100 variables and 430 clauses. For 10 trials, the solver found 100% of optimal
solutions for instance ’cnf100-06’ whereas it settled to near-optimal solutions for ’cnf100-02’
with at best κ(φ) = Nunsat = 1. Moreover, some trials took up to 500k cycles to settle compared
to 800 cycles for the ’simple’ cnf100-06 instance.
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‘Simple’ 3-SAT instance(a) Hard 3-SAT instance(b)

Figure 4.15: Example of LagONN dynamics for SATlib instances a) ’cnf100-06’ and b) ’cnf100-02’
(both 100 variables and 430 clauses). For 10 trials, LagONN always finds an optimal solution for the
first instance but never finds it for the second instance (one remaining unsatisfied clause in the best case).

Fig.4.16a shows the cost κ(φ) and the computation time for each trial. Clearly, the com-
putation time increases with N while the cost does not seem to vary much with N. In fact, for
this experiment, Fig.4.16b indicates that for all sizes at least 25% of trials found an optimal
solution and 75% of trials have κ(φ) = Nunsat ≤ 1. For the case (N,M) = (200,860), this cor-
responds to 99.88% of satisfied clauses. Moreover, the constant cost highlights that at least for
N ≤ 200, LagONN undesired fixed points do not become dominant when increasing the size.
Fig.4.16c presents the computation time against N in a semi-logarithmic plot. For this exper-
iment, LagONN’s computation time does not scale exponentially (true for the three quartiles)
and the median values rather follow a polynomial trend as O(N4) as shown in Fig.4.16d. For
some hard instances such as the one shown in Fig.4.15b, 10 trials with random initialization
were not sufficient for finding an optimal solution. This suggests that for hard instances, many
more trials are required and it is very likely that LagONN computation time scales exponen-
tially in the general case. However, the best non-optimal solutions, i.e. with Nunsat = 1, can be
found as fast as 105 cycles for (N,M) = (200,860) in the median case. For oscillators running
at 100 MHz, the runtime would be 1 ms only and suitable for real-time optimization.

Despite the preliminary results, we identified several important points regarding the solver’s
accuracy. First, LagONN dynamics are stiff as the solver time steps were often significantly
reduced to sub-second values, sometimes down to 100 ms which corresponds to 1/10th of an
oscillating period in the simulation. Second, we used the implicit Euler integration method to
increase the simulation speed which is not the most accurate integration method, as shown in
Fig.4.14c where the effect of numerical error is visible. As this method is known for showing
heavy damping when simulating oscillatory behaviors such as resonators [233], it is possible
that the simulated dynamics "smooth out" the real dynamics and mitigate some chaotic behavior.
Furthermore, it is still an open question whether the solver’s accuracy is related to LagONN’s
accuracy, i.e. if a higher accuracy would reduce the cost κ(φ), and what would be the impact
on LagONN’s computation time. As highlighted by Siegelmann and Fishman [49], there is no
guarantee in the general case that the discretized version of a continuous system converges to
the same fixed points. Hence, more studies are required to further assess LagONN’s potential.
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An immediate improvement would be to simulate the non-modular LagONN version (Table
4.4) having much fewer oscillators (N +M+1 compared to 5M) to speed up simulations while
using a better integration method such as a second-order one like Gear’s.

~𝒂𝑵𝟒

N=20
M=91

N=50
M=218

N=100
M=430

N=200
M=860

(a) (b)

(c) (d)

Figure 4.16: LagONN scaling study with SATlib instances. a) Cost κ(φ) vs. computation time measured
for each trial. b) Same results showing quartile data points. c) Computation time vs. N in a log-linear
plot. The three quartile values do not scale exponentially. d) Same data in a log-log plot. The preliminary
results suggest a polynomial scaling as O(N4). In the fitted curve aN4, a = 4.813 10−5.
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4.5 Discussions

4.5.1 SKONN, Max-cut, and 2D Goemans-Williamson

In this chapter, we first saw that SKONN has unique computational properties related to its
phase binarization property (Proposition 4.1) and has a close relationship with the Goemans-
Williamson (GW) algorithm for solving Max-cut. Independently, Erementchouk et al. [210]
recently proposed an Ising machine model labeled GW2, as "2D Goemans-Williamson" whose
cost function is proportional to SKONN’s energy landscape. Essentially, SKONN’s energy has
the same expression as GW’s expected cut value except that variables are 2-dimensional rather
than N-dimensional for GW. As highlighted by the authors in [210] for GW2 and adapted here
for SKONN, given a phase state ξ , the energy "can be regarded as the average size of cut
obtained by random rounding of ξ ". Hence, according to this interpretation, the deeper the
energy minimum is, the more likely it is that its corresponding phase state produces a high-
quality cut when rounding phases to the nearest multiple of π .

Interestingly, the authors have derived a particularly interesting property expressed in The-
orem 3.3 [210] which states that "rounding a non-binary critical point with respect to different
rounding centers produces binary states yielding the same cut". Hence according to the authors,
GW2 intrinsically produces the best rounding of a fixed point which means for SKONN that
the best rounding does not depends on the reference oscillator’s choice. Intuitively, we think
that the observed "plateaus" in SKONN’s energy landscape are a consequence of this property
since moving on the plateau does not change the cut value (see for instance Fig.4.1). As a fu-
ture work, it would be interesting to validate this property experimentally by checking that a
SKONN phase fixed point does not produce a better cut when changing the reference oscillator.
If true, it would speed up the time-to-solution and prevent checking various possible references
before picking up the best cut as it is done in the CirCut algorithm [112]. Moreover, the au-
thors in [210] have suggested that running GW2 after adding small perturbations to a binary
state cannot worsen the cut value. This mechanism could constitute an interesting local search
technique to improve SKONN’s accuracy.

4.5.2 Lagrangian ONN

Our study with Lagrangian oscillators performing gradient ascent highlighted a promising de-
terministic mechanism to escape local minima in ONNs. However, in principle, Lagrangian
neural networks (LNN) do not stop until reaching a state that satisfies the constraints [114, 225].
Hence, the proposed LagONN architecture is a "pseudo" LNN in the sense that LagONN can
settle to spurious fixed points where constraints are not met (Nunsat ≥ 1), as highlighted in Table
4.3. One way of forcing the ONN to stop if and only if constraints are met is to introduce a
second Lagrangian variable at the expense of a more complicated circuit. Nevertheless, the pre-
liminary simulations indicate that with a single Lagrangian oscillator, LagONN can already find
Boolean assignments such that Nunsat ≤ 1 in 75% of trials for hard SATlib instances up to 200
variables and 860 clauses. Intuitively, we have set the Lagrangian oscillator to evolve slower
than the remaining oscillators so that the latter "have time" to relax to minima in the augmented
energy landscape which is shaped in real-time by the Lagrangian phase variable with speed set
by τλ . Thus, we used τλ = 10τ for all our SATlib simulations. However, it is an open question
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whether there is an optimal value for τλ and if it should be scaled with the 3-SAT instance size.

Finally, our 3-SAT mapping to LagONN used high-order interactions between oscillators.
How to implement them remains an open question too but luckily, these challenging coupling
elements are locally confined in LagONN modules, i.e. there is no global high-order connec-
tion in the system. For future work, we are investigating if we can generalize SKONN’s pair-
wise synaptic digital propagation to high-order interactions using elementary digital circuits
like latches.

4.6 Conclusion

This chapter explored how to solve NP-hard combinatorial optimization problems (COPs) using
ONNs. After introducing the ONN-to-Ising mapping for binary phases, we further discussed
how to solve the NP-hard Max-cut problem using the free ONN dynamics, i.e. without forced
phase binarization. Particularly, we highlighted the intimate link between SKONN, the archi-
tecture developed in Chapter 3, and the best approximation algorithm found by Goemans and
Williamson (GW). Moreover, we analytically showed that for neurons with an odd number of
synapses, SKONN dynamics tend to binarize phases when reaching a fixed point which facili-
tates rounding phases to binary variables. The phase binarization property was experimentally
validated using our 16-neuron SKONN IC which produces median cut values larger than 0.9x
CutGW . Moreover, experiments indicated that the IC finds its best cut after 15 oscillation cy-
cles only, which constitutes a runtime improvement of more than 4 orders of magnitude at only
fosc=1 MHz compared to GW executed on a laptop. Large-scale simulations using random
graphs and the G-set benchmark for Max-cut suggested SKONN’s runtime scales as O(logN)
while having a similar or better accuracy than GW.

Next, we further explored how the ONN free dynamics can be harnessed to solve the NP-
hard N-city traveling salesman problem (TSP). Compared to the state-of-the-art Hopfield/Ising
approach having N2 variables, we proposed a simple fully-connected ONN with N oscillators
where inter-city distances are mapped to negative coupling coefficients, and where the ONN
phase permutation gives the TSP tour. While the approach does not accurately embed the TSP
tour distance in the ONN energy function, simulations indicate that the ONN can find solutions
at most 50% longer than the optimal tour distance for N < 45. However, in many instances, the
phases are clustered which would challenge the phase readout in a real implementation.

Finally, we studied how to escape local energy minima in ONNs using the technique of La-
grange multipliers from the field of constrained optimization. Taking the NP-hard Max-3-SAT
problem as an example, we constructed a dedicated Lagrangian-ONN (LagONN) architecture
to escape local minima in a deterministic manner. Each 3-SAT clause corresponds to a LagONN
module of 5 oscillators locally connected with high-order synapses. Overall, the architecture
is modular where modules are interconnected to represent the global 3-SAT formula. Using
one of the hardest sets of instances from the SATlib benchmark, LagONN simulations for up
to 200 variables and 860 clauses indicate that 75% of trials find a Boolean assignment with at
most a single unsatisfied clause. The simulation results further suggest a polynomial scaling of
LagONN’s computation time as O(N4), with a median runtime of 100k oscillation cycles for
N = 200. For a physical LagONN hardware with oscillators running at 100 MHz, the corre-
sponding runtime would be around 1 ms only.
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CHAPTER 5

CONCLUSION AND OUTLOOK

5.1 Conclusion

HUMANITY is currently producing massive amounts of information that often need to be
processed in real-time. To face this "data deluge", technological innovation is key for accel-
erating digital computing and improving its efficiency. Despite the mind-blowing progress of
semiconductor technology and the exponential growth of the number of transistors per chip,
digital computers still have trouble solving particular tasks such as optimization problems and
running artificial intelligence algorithms (AI) that are now ubiquitous. The main limitation orig-
inates from the architecture of digital computers that separate memory and processing units,
thus producing undesirable data transport and energy waste. Another constraint concerns digi-
tal computing itself which computes via the combination of many sequential binary operations
that are implemented by arithmetic circuits with a high number of transistors. To overcome
these limitations, researchers are developing alternative computing paradigms such as brain-
inspired neuromorphic computing where 1) processor and memory are interlinked (neurons
and synapses) and 2) computation occurs "naturally" as a consequence of physical laws rather
than arithmetic circuits. This dissertation explored an unconventional neuromorphic computing
paradigm based on analog oscillatory neural networks (ONN) that compute in the phase do-
main to solve AI and combinatorial optimization problems (COP). Although ONNs have been
studied for a few decades, it remains several challenges that have been the focus of this thesis:

• How to map conceptual models to physical ONNs? Despite the simplicity of ONN
architectures, their dynamics can be very complex and it is not always straightforward
how to map a given computational model such as a Hopfield neural network (HNN) to
physical ONNs. Although it is known that two-coupled oscillators can converge to two
different binary states like HNN, the relationship between the 1) initial phase state, 2)
coupling element value, and 3) final phase state is generally empirically determined. This
is problematic for scaling up the ONN as it cannot be trained and programmed automati-
cally with high accuracy. In Chapter 2, we proposed a mapping procedure between HNN
to ONN based on vanadium dioxide oscillating neurons (VO2) coupled by resistive de-
vices. When increasing the network size, the mapping allows ONN training for pattern
recognition and its performance assessment from device to architecture. Furthermore,
this study highlighted a high sensitivity of the proposed resistively coupled VO2 ONN
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regarding coupling resistance variations, which suggests implementation challenges at a
large scale.

Chapter 2 further underlined the challenge of controlling analog phase dynamics. To im-
plement a phase-based ONN at a large scale, we believe it is crucial to understand the
physical dynamics such as having an ONN phase model that is exploitable to compute
with high accuracy, e.g. which provides the weight mapping to coupling values but also
sheds light on the underlying ONN energy function. Analogous to neural activation func-
tions in deep neural networks, the shape of the ONN energy function determines the ONN
properties and performances for particular tasks. For instance, the custom ONN architec-
ture proposed in Chapter 3 is particularly suited to solve the NP-hard Max-cut COP as its
energy is closely linked to the Max-cut classical cost function.

• How to design analog ONNs at a large scale? Analog ONNs exchange continuous
variables such as synaptic currents that can be challenging to propagate at a large scale
without altering the signals, in contrast with digital information. Chapter 3 proposed
a novel mixed-signal ONN architecture, labeled SKONN, that computes in the analog
domain and propagates the information digitally to facilitate synaptic signal propaga-
tion. Feeding a neuron output square wave to synaptic capacitors induces the injection of
charges at the oscillator input node, which in turn provoke controllable phase shifts. Two
fully-connected SKONN prototypes were demonstrated: a 9-neuron SKONN on a printed
circuit board and a 16-neuron SKONN integrated circuit using a 65 nm technology. The
proof of concepts confirmed SKONN’s intimate link with NP-hard COPs and in particular
with the Max-cut problem and its best approximation algorithm found by Goemans and
Williamson (GW). Chapter 4 further highlighted SKONN’s potential for solving Max-cut
at a large scale with iso-accuracy compared to GW, while suggesting an advantageous
logarithmic scaling of the settling time with the network size.

• How to escape local energy minima? ONNs are also known for their close relationship
with the Ising model which has a great computational interest because finding the ground
states of the Ising Hamiltonian is NP-hard. If a machine can efficiently solve the Ising
problem, then it can efficiently solve any problem in NP. ONNs programmed to solve
the Ising problem are called oscillatory Ising machines (OIM) and are promising thanks
to their high parallelism and low-energy footprint. However, the OIM energy function
that embeds the Ising Hamiltonian is non-convex and contains local minima where the
OIM can get stuck, thus limiting the accuracy. In Chapter 4, we applied a technique
from mathematical optimization using Lagrange multipliers to force the ONN to escape
local minima by going uphill in an augmented energy landscape. Harnessing high-order
interactions between oscillators, we proposed a modular Lagrangian-ONN (LagONN)
architecture to solve the NP-hard Max-3-SAT COP. Compared to other analog models,
LagONN’s power is bounded as synaptic weights are fixed, and phase variables are natu-
rally bounded. Preliminary simulations with up to 200 variables and 860 clauses indicate
that in 75% of trials, LagONN finds Boolean assignments for which at most a single
clause remains unsatisfied while suggesting a median computation time that scales poly-
nomially with the number of variables.
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5.2 Future Research Directions

This dissertation only explored a subset of possible ONN computing by restricting the oscilla-
tors to have uniform frequencies and computing in the phase domain. However, some authors
have shown that ONN can indeed compute in the frequency domain which is not based on the
ONN energy minimization but rather by harnessing the ONN non-linearity and short-term mem-
ory to process time series [94, 109]. Thanks to its real-time processing and energy efficiency,
there is potential for ONN to process time-dependent analog sensory data within devices that
have limited resources, and avoid some of the energy-hungry analog-to-digital conversions.

Moreover, phase-based ONNs have shown promising results for solving NP-hard combina-
torial optimization problems thanks to their intimate link with the Ising model. The community
has pushed the boundaries of large-scale ONN implementation from 100 fully connected oscil-
lators in 2018 [89] to 560 [74] and 600 [139] oscillators in 2021, up to 1440 [140] and 1968
[76] oscillators very recently. If this "Moore-like" ONN scaling goes on, ONN systems could
potentially speed up the resolution of real-life large-scale problems intractable for digital com-
puters. However, noticing that fully connected ONNs are not implementable at a large scale,
we believe that only combining ONNs with more classical algorithmic approaches could be a
game changer. Such a hybrid approach was recently proposed by Mallick et al. [139] where
ONNs provide very fast partial or near-optimal solutions prior to final algorithmic optimiza-
tion. For instance, ONNs could solve sub-problems in divide-and-conquer approaches such as
for large-scale traveling salesman problems, or even be co-integrated with branch and bound
algorithms.

Finally, there are some exciting research topics that we think could further push the ONN
computational capabilities. Two are related to improving the ONN solution to an optimization
problem that is generally stuck at a local energy minimum. First, it would be interesting to trans-
pose the technique of simulated annealing (SA) [63] to phase-based ONN. Although it has been
experimentally shown that modulating a sub-harmonic signal can act similarly to decreasing the
temperature in SA [69, 138], a theoretical framework including stochasticity is missing and how
to operate such modulation to stochastically explore the energy landscape before converging to
a good local solution remains empirical.

Second, we think the ONN gradient property can be combined with gradient ascent in an
augmented energy landscape to escape local minima, similarly to the dynamics of several ana-
log solvers [226, 228]. Our first attempt using additional Lagrange oscillators (LagONN) has
room for improvement since more Lagrange oscillators could be used to guarantee convergence
towards optimal solutions while exploring other types of energy landscapes. Finally, harness-
ing high-order oscillator interactions enables mapping any combinatorial optimization problem
to the hardware [207, 234], without adding auxiliary oscillators that potentially create energy
minima. The implementation of such high-order synapses for ONN constitutes a promising
research topic.
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CHAPTER A

VO2-BASED ONN ARCHITECTURE

A.1 Single Oscillator Time Constants

Before studying the dynamics of two coupled oscillators to derive the transition function, we
express the time constants of a single oscillator. The oscillating period Tosc is given by the sum
of the charging and discharging time of the output capacitance:

Tosc = tc + td (A.1)

If we assume abrupt VO2 transitions we obtain:

tc = τc log

[
V−−V met

std
V+−V met

std

]
(A.2)

td = τd log

[
V+−V ins

std

V−−V ins
std

]
(A.3)

with:
V met

std =VDD
RS

RS +Rmet
(A.4)

V ins
std =VDD

RS

RS +Rins
(A.5)

and with the two oscillator’s time constants given by:

τc =
RSRmet

RS +Rmet
CP (A.6)

τd =
RSRins

RS +Rins
CP (A.7)

A.2 Dynamics of Two Coupled Oscillators after Initialization

The dynamics of two coupled oscillators can be expressed as:{
CP

dVout1(t)
dt =

(
VDD1(t)−Vout1(t)

)
G1

VO2
(t)− Vout1(t)

RS
+ Ic1

CP
dVout2(t)

dt =
(
VDD2(t)−Vout2(t)

)
G2

VO2
(t)− Vout2(t)

RS
+ Ic2

(A.8)
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To express the transition function ζ (RC), we study the oscillators’ dynamics until the first os-
cillator reaches the lower threshold V− (before IMT). Then, the voltage difference between the
two oscillators (set by the initial delay and RC) determines the final phase state. We analyti-
cally solve (eq.A.8) for t ≥ ton (when the two oscillators are coupled) until one output voltage
reaches V−. During our initialization procedure, we turn-on the two oscillators via VDD and we
couple them at time ton = ∆tinit + tc. Therefore, both their output capacitors start to discharge.
For this reason, at ton the initial output voltages V 0 are given by the dynamics of the uncoupled
oscillators i ∈ {1,2} when both VO2 devices are in the insulating state: Ri

VO2
= Rins:

V 0 =

[
V 0

out1
V 0

out2

]
=

VDD
RS

RS+Rins

[
1− exp(−∆tinit

τd
)

]
+V+ exp(−∆tinit

τd
)

V+

 (A.9)

It is convenient to rewrite (eq.A.8) in a matrix form to use the formalism from dynamical sys-
tems. As both oscillators are in insulating state, we can write the linear equation:

C
dV
dt

= GA V +GB VDD (A.10)

with

V =

[
Vout1
Vout2

]
(A.11)

GA =

[
− 1

Rins
− 1

RC

1
RC

1
RC

− 1
Rins

− 1
RC

]
(A.12)

GB =

[
1

Rins
0

0 1
Rins

]
(A.13)

C =

[
CP 0
0 CP

]
(A.14)

VDD =

[
VDD1
VDD2

]
(A.15)

We solve the first-order differential equation (eq.A.10) given the initial conditions (eq.A.9). We
consider ton as the new time origin: t − ton → t to express the solution as:

V =

(
exp
(
C−1GA t

)
− Id

)
G−1

A GBVDD + exp
(
C−1GA t

)
V 0 (A.16)

While both VO2 devices are in insulating state, computing (A.16) leads to:

Vout1 =
V 0

out1
2

(
exp(− t

τd
)+ exp(− t

τ ′ )

)
+

V 0
out2
2

(
exp(− t

τd
)− exp(− t

τ ′ )

)
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std

(
1− exp(− t

τd
)

)
Vout2 =

V 0
out1
2

(
exp(− t

τd
)− exp(− t

τ ′ )

)
+

V 0
out2
2

(
exp(− t

τd
)+ exp(− t

τ ′ )

)
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(
1− exp(− t

τd
)

)
(A.17)
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V−ΔV1

ΔV2
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V−ΔV1

ΔV2
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ΔVb
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ΔV1 = ϵ

Vout2 Vout1

ΔV2 = ΔVb

Phase transitionA B C

Figure A.1: Output voltages near IMT threshold V−. There are two final phase outcomes (A) in-phase
state and (B) out-of-phase state. (C) The phase transition occurs when ∆V2 = ∆Vb, and consequently
when ∆V1 = ε .

The attraction between the two oscillators is characterized by the time constant:

τ
′ =

C
1

RS
+ 1

Rins
+ 2

RC

(A.18)

and we get a compact relation by expressing the difference:

∆V =Vout2 −Vout1 =
(
V 0

out2 −V 0
out1
)

exp(− t
τ ′
) (A.19)

A.3 Final Phase State and Transition Function

In simulations, when the first oscillator is about to reach V− (Figure A.1), we observe a voltage
ε such that: {

∆V < ε → ∆φout = 0◦

∆V ≥ ε → ∆φout = 180◦
(A.20)

Using this observation, we derive the transition function ζ when both equations ∆V = ε and
Vout1 =V− are fulfilled, as ε represents the transition voltage threshold between the two phase
domains. To derive ε , we consider the metallic state of the oscillator, i.e. when CP charges.
Fig.A.1A and B illustrate the two scenarios that lead to in-phase or out-of-phase states. ∆V1 and
∆V2 are the voltage differences when Vout1 and Vout2 reach V−, respectively. ∆Vb is the mini-
mum voltage difference that pulls up Vout2 (via synaptic current) and prevents it from reaching
the lower threshold V−. This event is characterized by a "bump" appearing in the transient
waveform, which postpones the IMT of oscillator 2. In this case, we have dVout2/dt = 0, and
using (eq.A.8), we obtain:

∆Vb = RC (
V−

Rins
+

V−

RS
− VDD

Rins
) (A.21)
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This configuration, shown in Fig.A.1C, represents the limit case between A and B and deter-
mines the phase transition. From this illustration, we express ε as:

ε ≈ s1

s2
∆Vb (A.22)

with s1, s2 slopes of the discharge and charge curves, respectively. We approximate the slopes
by considering the dynamic of a single oscillator, and we express them as:s1 =

V ins
std −V+

τd
exp(−Tosc

τd
)

s2 =
V met

std −V+

τc

(A.23)

Using (A.19), we express the time tε when ∆V = ε as:

tε = τ
′ log

(
V 0

out2 −V 0
out1

ε

)
(A.24)

When the capacitor charge is much faster than its discharge (s2 >> s1), we obtain ε → 0+.
Hence, we can write Vout2(tε) = Vout1(tε)+ ε ≈ Vout1(tε). The transition between the in-phase
and out-of-phase domain occurs when:

Vout1(tε) =V− → Vout1(tε)+Vout2(tε)
2

≈V− (A.25)

By combining this last equation with (eq.A.17) and (eq.A.24), we finally express coupling re-
sistances that describe the phase transition curve as:

RC = 2
RSRins

RS +Rins

log

(
V−−V ins

std
V 0

out1/2+V 0
out2/2−V ins

std

)

log

(
ε(RC)

V 0
out2−V 0

out1

)
− log

(
V−−V ins

std
V 0

out1/2+V 0
out2/2−V ins

std

) (A.26)

152



CHAPTER B

SKONN ARCHITECTURE

B.1 SKONN Voltage and Current Dynamics

B.1.1 Neuron Voltage Dynamics

By denoting Ii j the input synaptic currents, the voltage dynamics of neuron i can be modeled as
follows: CL

dV in
i

dt = Ibias
(
1−2V out

i /VDD
)
+∑ j Ii j

τH
dV out

i
dt =VDD fH

(
V in

i ,V out
i ,VL,VH

)
−V out

i
(B.1)

where CL is the input capacitance, Ibias the current that charges and discharges CL, VDD is the
amplitude of V out

i , VL and VH are the lower and upper thresholds of the hysteresis block, and τH
is the time constant linked to the output load of the hysteresis block. The term fH expresses the
output switching with hysteresis behavior. As in [158], one can model the hysteresis behavior
using a tanh function with slope γ:

fH = 0.5
(

1+ tanh
(
γ
(
V in

i −VH − VL −VH

VDD
V out

i
))

(B.2)

When fH=0, V out
i =0 and CL charges. When fH = 1, V out

i =VDD and CL discharges. The two
switching occur when V in

i =VL and V in
i =VH , respectively. Fig.B.1 shows an example of a numer-

ical solution for the equations (eq.B.1).

In SKONN, the digital output voltage V out
j goes through the synaptic capacitance Ci j that

creates current spikes holding the phase information φ j. The synaptic spike train can be ex-
pressed as follows:

Ii j =Ci j
(dV out

j

dt
− dV in

i
dt

)
(B.3)
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Figure B.1: Voltage dynamics of a single neuron obtained by solving numerically (eq.B.1). In this
example, CL=500 fF, Ibias=200 nA, VL=0.5 V, VH=0.7 V, VDD=1.2 V, γ=100 and τH=1 ns.

B.1.2 Voltage dynamics of coupled neurons

By injecting the synaptic current expression in equation (eq.B.1), we obtain:

Ceq
dV in

i
dt = Ibias

(
1−2V out

i /VDD
)
+∑ j Ci j

dV out
j

dt

τH
dV out

i
dt =VDD fH

(
V in

i ,V out
i ,VL,VH

)
−V out

i

(B.4)

with Ceq the equivalent capacitance:

Ceq =CL +∑
j

Ci j (B.5)

Eq.B.5 indicates that the synaptic capacitances are added to the oscillator load and slow down
the charge and discharge of the input node. Large synaptic capacitances could potentially induce
heterogeneous frequencies within SKONN and still need to be explored.

B.2 SKONN Phase Perturbation Vector

The PPV is a T-periodic function v⃗(t) that quantifies the phase shift of an oscillator subject
to a perturbation occurring at time t [193, 194]. One way of computing v⃗(t) is to inject a
pulsed perturbation to the oscillator at time t, measure the induced phase shift, and normalize
by the perturbation’s strength [86]. In SKONN, the synaptic current Ii j perturbs the triangular
oscillation V in

i and the scalar PPV v(t) can be derived by computing the phase shift dφ when
injecting current pulses I(t ′) = dQδ (t ′− t) with t ∈ [0;T [. From Fig.B.2, we distinguish three
cases:
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1. 0 < t < T/2: the perturbed oscillation is shifted toward the left by the same amount of
time −dt.

2. T/2 < t < T : the perturbed oscillation is shifted toward the right by the same amount of
time +dt.

3. t ∈ {0;T/2}: the time shift is undefined as V in
i ’s slope is undefined (not differentiable).

π

Figure B.2: SKONN Phase Perturbation Vector (PPV). The injection of a charge dQ induces a time shift
±dt, which in turn creates a phase shift dφ = 2π dt/T . The phase shift sign changes when there is a
change in V in

i ’s slope.

Injecting dQ to CL induces a voltage jump dV = dQ/CL. This results in a time delay −dt
and +dt when CL charges and discharges, respectively, with |dt|=CLdV/Ibias. The amount of
phase shift can then be expressed as dφ = 2π dt/T . The oscillation period T is expressed by
T = 2CL∆V/Ibias, with ∆V =VH −VL. Finally, merging the equations leads to

dφ

dQ
=± π

CL∆V
=±β0 (B.6)

which is the phase shift caused by the injection of 1 coulomb. The phase shift sign depends
on whether the charge is injected during the charge or discharge of the triangular waveform.
Considering the three previous cases and changing the time variable t to phase θ , we express
SKONN’s PPV as follows:

v(θ) = β0 square(θ) (B.7)

where:

square(θ) =

{
−1, if 0 < θ < π

+1, if π < θ < 2π
(B.8)
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B.3 SKONN Phase Dynamics

B.3.1 Two Coupled Oscillators

The phase dynamics of a single oscillator of frequency ω0 = 2π/T are:

d
dt

φ(t) = ω0 (B.9)

When the oscillator receives a pre-synaptic signal b⃗(t), it undergoes a time shift α(t) associated
with the perturbation b⃗(t). If the variation of the oscillating amplitude remains small [193],
α(t) dynamics can be expressed as follows:

d
dt

α(t) = v⃗(t +α(t)).⃗b(t) (B.10)

where v⃗(t) is the T-periodic Phase Perturbation Vector (PPV) associated with the oscillator;
and describes the phase sensitivity of the oscillator under injections at different nodes. In our
case, we consider scalars b(t) and v(t) as the pre-synaptic signal b(t) is injected into a unique
input node. As b(t) also oscillates at frequency ω0 and with phase φb(t) = ω0t, we introduce
∆φ(t)= φ(t)−φb(t)=ω0α(t) that expresses the phase difference between post and presynaptic
signals. The latter can be considered as the reference as it is driving the oscillator. To simplify
equations, we define the 2π-periodic PPV and perturbation as v2π(ω0t) = v(t) and b2π(ω0t) =
b(t), respectively, like in [69]. The phase dynamics become:

d
dt

∆φ = ω0 v2π
(
φb +∆φ

)
b2π
(
φb
)

(B.11)

We assume that under weak coupling, the phase difference ∆φ evolves slowly compared to the
presynaptic phase φb and it is common practice to average out ∆φ over one period [69, 86]:

1
2π

∫
π

−π

d
dt

∆φ dφb ≈
d
dt

∆φ

=
1
T

∫
π

−π

v2π
(
φb +∆φ

)
b2π
(
φb
)

dφb

(B.12)

We saw previously that a pre-synaptic signal consists of current pulses that are aligned with the
rising and falling edges of the digital pre-synaptic voltage. Then, we consider the case where
b2π(θ) consists of a train of Dirac pulses:

b2π(θ) =
∞

∑
n=0

p(θ −n2π) (B.13)

with:
p(θ) = Q

(
δ (θ)−δ (θ −π)

)
(B.14)

Under this assumption, (eq.B.12) becomes:

d
dt

∆φ =
Q
T

(
v2π(∆φ)− v2π(∆φ +π)

)
(B.15)
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In SKONN, the analog input oscillation is a symetric triangular waveform that has a simple
2π-periodic PPV expressed as follows:

v2π(θ) = β0 square(θ) (B.16)

where:

square(θ) =

{
−1, if 0 < θ < π

+1, if π < θ < 2π
(B.17)

and β0 is the phase shift induced by the injection of 1 coulomb to the oscillating node. Finally,
we express the phase dynamics of the driven oscillator:

d
dt

∆φ = 2β0
Q
T

square(∆φ) (B.18)

We notice that the average of the phase dynamics are very similar to the Kuramoto model except
that its sinusoidal interaction term is replaced by a saturated square function in our case.

Proposition B.1. If the injected charge Q ̸= 0 then the two SKONN oscillators admit a unique
stable fixed-point ∆φ∗ = (φi −φ j)

∗ such that:

∆φ
∗ =

{
0, if Q > 0
π, if Q < 0

(B.19)

Proof. The proof consists in finding a Lyapunov function for the dynamics (eq.B.18). Consider
the bounded continuous Lyapunov function:

E = 2β0
Q
T

triangle(∆φ) (B.20)

with:

triangle(θ) =

{
θ −π/2, if 0 ≤ θ ≤ π

3π/2−θ , if π ≤ θ ≤ 2π
(B.21)

We have :
∂E

∂∆φ
=−2β0

Q
T

square(∆φ) =−d∆φ

dt
(B.22)

E is minimized through time as follows:

dE
dt

=
∂E

∂∆φ

d∆φ

dt
=−

(d∆φ

dt

)2
≤ 0 (B.23)

1. If Q > 0, the minima of E are ∆φ∗ = 0 [2π] and correspond to the phase fixed points of
the dynamics (eq.B.18).

2. If Q < 0, the minima of E are ∆φ∗ = π [2π] and correspond to the phase fixed points of
the dynamics (eq.B.18).

In other words, propagating a spike train that consists of positive and negative current spikes
spaced in time by T/2 induces an in-phase or out-of-phase locking, depending on the polarity
of Q. The latter can be set by choosing one of the two complementary digital post-synaptic
voltages.
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B.3.2 N Coupled Oscillators

When an oscillator i is perturbed by N other oscillators with same pulsation ω0, (eq.B.10) can
be generalized in the scalar case:

d
dt

αi =
N

∑
j=1

v2π
i j
(
φi
)

b2π
j
(
φ j
)

(B.24)

Similarly to the two-oscillators case, averaging out the previous equation along the fast variable
φ j leads to:

d
dt

αi =
N

∑
j=1

1
2π

∫
π

−π

v2π
i j
(
∆φi j +φ j

)
b2π

j
(
φ j
)
dφ j (B.25)

We use the spike train expression (eq.B.13) to obtain:

d
dt

αi =
1

2π

N

∑
j=1

(
v2π

i j
(
∆φi j

)
− v2π

i j
(
∆φi j +π

))
(B.26)

As we inject pre-synaptic signals to the same node, we have v2π
i j = v2π and we use the SKONN

oscillator PPV v2π (eq.B.16) to get finally:

d
dt

φi =
2β0

T

N

∑
j=1

Qi j square
(
φi −φ j

)
(B.27)

Note that we omitted the term ω0 in the right-hand side of (eq.B.27) as in practice we refer to
the relative phase relationship between oscillators instead of the absolute values that linearly
increase with ω0t.

Considering SKONN’s hardware implementation, we saw that β0 is equal to:

β0 =
π

∆VCL
(B.28)

and:
Qi j =VDDCi j (B.29)

where ∆V is the peak-to-peak triangular amplitude at the input, CL is the neuron input capac-
itance, VDD is the digital voltage swing, and Ci j is the synaptic capacitance value. SKONN’s
phase dynamics become:

d
dt

φi = ω0
VDD

∆V

N

∑
j=1

Ci j

CL
square

(
φi −φ j

)
(B.30)
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SKONN has an interesting phase binarization property resumed in the following proposi-
tion:

Proposition B.2. Consider a neuron i of degree D, i.e. driven by D neurons j with weighted
charges Qi j ∈ {−q,+q} q ̸= 0.

1. If D is odd and dφi/dt = 0, then there is at least one input neuron j such that (φi −φ j) is
a multiple of π .

2. If D is even, then there is at least one φi and one set of input phase φ j such that dφi/dt = 0
and ∀ j (φi −φ j) is not a multiple of π .

Proof. 1. By assuming the opposite, i.e. that ∀ j (φi −φ j) ̸= 0 [π], it leads to ∀ j square(φi −
φ j) = ±1, using (eq.B.17). Noticing that D = m+ l with m ̸= l, and writing SKONN’s
phase dynamics (eq.B.30) leads to:

dφi

dt
= 0 =⇒

D

∑
j=1

±1 =
m

∑
j=1

1−
l

∑
j=1

1 = 0 (B.31)

Which is not possible as m ̸= l and proves the proposition.

2. Consider the integers m and l such that there are m weights Qi j = +q and l weights
Qi j =−q, with D = m+ l = 2k. We can choose:

(a) φ j = 0 for the l (resp. m) input neurons.

(b) φ j = π for k− l (resp. k−m) other input neurons.

(c) φ j=0 for the remaining k input neurons.

From SKONN’s phase dynamics (eq.B.30) we obtain:

T
2β0

dφi

dt
=−q ∑

j≤l
square(φi)

+q ∑
l< j≤k

square(φi −π)

+q ∑
k< j≤2k

square(φi)

Assuming that φi ̸= 0 [π], it follows from (eq.B.17):

T
2β0

dφi

dt
=−ql(±1)−q(k− l)(±1)+ kq(±1)

= 0
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B.4 Comparison Between SKONN Phase Model and Circuit
Dynamics

The phase dynamics defined in (eq.B.30) only provide the phases φ m
i and do not include voltage

and current equations. Here, we compare φ m
i with φ c

i , the phases extracted from the circuit
dynamics expressed in (eq.B.4). For every oscillator i, the pair of output voltages V out

i and V out
1

are fed to a 2-XOR gate which produces a signal V XOR
i whose duty cycle is proportional to the

phase between the first (reference) and the i-th oscillator (Fig.B.3a). Then, the voltages V XOR
i

are filtered out with a second-order low-pass filter to obtain the phase dynamics φ c
i . Fig.B.3b

and c show an example of circuit simulation for 4 fully-coupled oscillators with Wi j = −1 and
a random initialization. Fig.B.3d shows the corresponding phases φ c

i and φ m
i (dashed lines)

obtained from the circuit and the phase model, respectively. Note that the XOR-based phase
measurement is insensitive to the phase sign and so φ c

3 departs from φ m
3 when φ m

3 > φ c
3 = 180◦.

However, computing cos(φ c
i ) and cos(φ m

i ) provide the spin dynamics for the two approaches
and are shown at the bottom of Fig.B.3d. Overall, in the weak-coupling regime, we observe
a good agreement between the phase and circuit models. This comparison motivates the use
of the phase model (eq.B.30) as it only contains N ODEs for emulating an N-node SKONN,
compared to at least 2N ODEs for the circuit approach (eq.B.4).
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Figure B.3: a) Proposed phase read-out to analyze the circuit phase dynamics. We set the cut-off fre-
quency ωc = ω0/2 = 500 MHz and damping factor m =

√
2/2. The gain K converts voltage to phase as

K = π/VDD. Circuit parameters are CL=500 fF, Ibias=200 nA, VL=0.5 V, VH=0.7 V, VDD=1.2 V, γ=100 and
τH=1 ns. b) Example of SKONN network. |Wi j| = 1 corresponds to a coupling capacitance Ci j=2.5 fF.
c) Circuit dynamics obtained by solving numerically (eq.B.4). d) Comparison between SKONN’s phase
model φ m

i (eq.B.30) and the circuit phase φ c
i .
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B.5 Sub Harmonic Injection Locking in SKONN

To binarize the phases, one can inject a signal at twice the oscillating frequency VSHIL(t) =
Asin(4πω0t) to an oscillator’s node for which its scalar PPV contains a second-order harmonic
P2 ̸= 0 in its Fourier decomposition [193]. In SKONN, we cannot inject the 2-SHIL signal to the
input oscillating node V in

i (t) as the associated scalar PPV only contains odd harmonics (square
PPV (eq.B.7)). In practice, we inject the 2-SHIL signal to a biasing node that allows SKONN
binary phase locking. In this case, the SKONN Lyapunov function becomes

E =
β0

T

N

∑
i, j

Qi j triangle
(
φi −φ j

)
+

N

∑
i

Ai P2 cos(2φi)

(B.32)

When SHIL amplitudes Ai are large enough, phases are binarized φi = (1− Si)π/2 ∈ {0,π}
and the SKONN Lyapunov function corresponds to the Ising Hamiltonian H with an additional
offset:

E =−πβ0

2T

N

∑
i, j

Qi jSiS j +
N

∑
i

Ai P2

= H + constant

(B.33)

B.6 Impact of SKONN’s Limited Bandwidth

When SKONN is implemented in hardware, we observe some phase deviation with respect to
the theoretical phase fixed points, as shown in Fig.B.4. The main reason is the hysteresis block
that does not switch instantaneously when the synaptic current spikes induce voltage jumps
above or below the hysteresis thresholds VH and VL. To better understand this phenomenon, we
ran two transistor-level simulations of two coupled neurons in feed-forward mode with a strong
weight W21=+15 and different frequencies (Fig.B.4). When the oscillation frequency is low
(300 kHz), the hysteresis switching delay is negligible and there is only a small phase deviation
δφ=4◦. However, when the oscillation frequency increases to 1.2 MHz, the limited bandwidth
of the hysteresis circuit causes a switching delay and a larger phase deviation δφ=13◦.

For a given phase precision required by the application, this error could be mitigated by
increasing the bandwidth of the hysteresis circuit or slowing down the oscillators which consti-
tutes a trade-off with the energy consumption. Interestingly, we have observed in experiments
that having recurrent synapses Wi j =Wji compensate the hysteresis delay induced in both neu-
rons, and the theoretical phase fixed point is reached in that case (see Fig.3.6c and d).
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Figure B.4: a) Two coupled oscillator in feed-forward mode with +C21=7.5%CL which implements
W21=+15 in the ASIC. b) Transistor-level simulation with CL=2pF to decrease the frequency to fosc=300
kHz. c) Transistor level simulation in nominal case where CL=500 fF and fosc=1.2 MHz.
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CHAPTER C

ONN FOR COMBINATORIAL
OPTIMIZATION

C.1 MATLAB code for simulating Kuramoto-ONN and SKONN

C.1.1 Kuramoto ONN

The following function defines Kuramoto’s dynamics:

Listing C.1: kuramoto_dynamics.m
function dphidt = kuramoto_dynamics (phase , N, C, Ashil , Cshil ,

shil_order , osc_parameters )

dphidt =zeros(N ,1);

w0= osc_parameters .w0; % nominal frequency
Vdd= osc_parameters .Vdd; % supply voltage
CL= osc_parameters .CL; % oscillator load capacitance
dV= osc_parameters .dV; % oscillator peak -to -peak amplitude
w=ones(N ,1)*w0; % oscillator frequency

for i=1:N
interaction =sin(phase -phase(i));
dphidt (i)=w(i)*C(i ,:)*Vdd /(dV*CL)* interaction
+Ashil*w(i)*Cshil*Vdd /(dV*CL* shil_order )*cos( shil_order *( phase(i)));

end

Providing the Jacobian matrix of the phase dynamics can speed up the simulations:

Listing C.2: kuramoto_Jacobian.m
function J = kuramoto_Jacobian (phase , N, C, Ashil , Cshil , shil_order ,

osc_parameters )

J=zeros(N,N);

w0= osc_parameters .w0;
Vdd= osc_parameters .Vdd;
CL= osc_parameters .CL;
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dV= osc_parameters .dV;
w=ones(N ,1)*w0;

for i=1:N
for j=1:N

if i==j
interaction =cos(phase -phase(i));
J(i,j)=w(i)*C(i ,:)*Vdd /(dV*CL)*(- interaction )
+Ashil*w(i)*Cshil*Vdd /(dV*CL* shil_order )*(- sin( shil_order *(

phase(i))));
else

interaction =cos(phase(i)-phase(j));
J(i,j)=w(i)*C(i,j)*Vdd /(dV*CL)* interaction ;

end
end

end

C.1.2 SKONN

In simulations, SKONN’s square interaction term is approximated as square(θ)=−tanh
(
α sin(θ)

)
with α = 50. This allows making square(θ) differentiable everywhere and speed-up simulations
by defining SKONN’s Jacobian. SKONN’s dynamics are defined in MATLAB as follows:

Listing C.3: skonn_dynamics.m
function dphidt = skonn_dynamics (phase , N, C, Ashil , Cshil , shil_order ,

osc_parameters )

dphidt =zeros(N ,1);

w0= osc_parameters .w0; % nominal frequency
Vdd= osc_parameters .Vdd; % supply voltage
CL= osc_parameters .CL; % oscillator load capacitance
dV= osc_parameters .dV; % oscillator input peak -to -peak amplitude
alpha= osc_parameters .alpha; % slope of tanh interaction
w=ones(N ,1)*w0;

for i=1:N
interaction =-tanh(alpha*sin(phase -phase(i)));
dphidt (i)=w(i)*C(i ,:)*Vdd /(dV*CL)*(- interaction )
+Ashil*w(i)*Cshil*Vdd /(dV*CL* shil_order )*cos( shil_order *( phase(i)));

end

SKONN’s Jacobian can hence be derived as follows:

Listing C.4: skonn_Jacobian.m
function J = skonn_Jacobian (phase , N, C, Ashil , Cshil , shil_order ,

osc_parameters )

J=zeros(N,N);

w0= osc_parameters .w0;
Vdd= osc_parameters .Vdd;
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CL= osc_parameters .CL;
dV= osc_parameters .dV;
alpha= osc_parameters .alpha;
w=ones(N ,1)*w0;

for i=1:N
for j=1:N

if i==j
interaction =( tanh(alpha*sin(phase(i)-phase)).^2 -1)
.*( alpha*cos(phase(i)-phase));
J(i,j)=w(i)*C(i ,:)*Vdd /(dV*CL)* interaction
+Ashil*w(i)*Cshil*Vdd /(dV*CL* shil_order )*(- sin( shil_order *(

phase(i))));
else

interaction =( tanh(alpha*sin(phase(j)-phase(i))).^2 -1)
.*(- alpha*cos(phase(j)-phase(i)));
J(i,j)=w(i)*C(i,j)*Vdd /(dV*CL)* interaction ;

end
end

end

C.2 Lagrangian-ONN

C.2.1 Properties of the Relaxed Complex Function

Given 3-SAT Boolean clauses Ci, we express them in an equivalent Ising formulation Hi as:

C0 = X ∨Y ∨Z −→ H0 = 1+SX SY +SX SZ +SY SZ − (SX +SY +SZ)−SX SY SZ (C.1)

C1 = X ∨Y ∨Z −→ H1 = 1−SX SY −SX SZ +SY SZ − (−SX +SY +SZ)+SX SY SZ

C2 = X ∨Y ∨Z −→ H2 = 1+SX SY −SX SZ −SY SZ − (−SX −SY +SZ)−SX SY SZ

C3 = X ∨Y ∨Z −→ H3 = 1+SX SY +SX SZ +SY SZ +(SX +SY +SZ)+SX SY SZ

with spins Si =±1 the binary Ising variables. There is the following equivalence:

Ci is TRUE
Ci is FALSE

⇐⇒ Hi = 0
Hi = 8

(C.2)

The next step is to map the Ising energies to phase-based ONNs. We propose to relax the
binary Ising Hamiltonians to complex variables defined as:

H0 −→ Z0 = 1+ ei(φX−φY )+ ei(φX−φZ)+ ei(φZ−φY )− (eiφX + eiφY + eiφZ)− ei(φX−φY+φZ) (C.3)

H1 −→ Z1 = 1− ei(φX−φY )− ei(φX−φZ)+ ei(φZ−φY )− (−eiφX + eiφY + eiφZ)+ ei(φX−φY+φZ)

H2 −→ Z2 = 1+ ei(φX−φY )− ei(φX−φZ)− ei(φZ−φY )− (−eiφX − eiφY + eiφZ)− ei(φX−φY+φZ)

H3 −→ Z3 = 1+ ei(φX−φY )+ ei(φX−φZ)+ ei(φZ−φY )+(eiφX + eiφY + eiφZ)+ ei(φX−φY+φZ)

The complex relaxation Zi is equal to the Hamiltonian Hi in some cases listed in the following
proposition.
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Proposition C.1. 1. If phases take binary values such as φ j = kπ , then Zi = 0 or Zi = 8.
Consequently Zi = Hi.

2. If Zi = 8, then all phases take binary values such as φ j = kπ .

Proof. 1. For every clause i, expressing all possible phase binary values φ j(S j) ∈ {0,π}
leads to eiφ j(S j) =±1 and Zi(φ) = Hi(S) ∈ {0,8}.

2. By contraposition, suppose ∃ j φ j /∈ {0,π}. We consider the four possible clauses:

(a) Clause C0 and C1: consider phases φX = π/2 and φY = k1π , φZ = k2π with k1,k2 ∈Z.
Then, the real part of Z0 and Z1 becomes:

Re[Z0−1] = 1± cos(π/2− k1π)± cos(π/2− k2π)+ cos(k2π − k1π)

∓ cos(π/2)− cosk1π − cosk2π

∓ cos(π/2− k1π + k2π)

= 1+ cos((k2 − k1)π)− cosk1π − cosk2π

= 4 if k1,k2 are odd.
= 0 otherwise.
̸= 8

(b) Clause C2: consider phases φX = π/2 and φY = k1π , φZ = k2π with k1,k2 ∈Z. Then,
the real part of Z2 becomes:

Re[Z2] = 1+ cos(π/2− k1π)− cos(π/2− k2π)− cos(k2π − k1π)

+ cos(π/2)+ cosk1π − cosk2π

− cos(π/2− k1π + k2π)

= 1− cos((k2 − k1)π)+ cosk1π − cosk2π

= 4 if k1,k2 are even and odd, resp.
= 0 otherwise.
̸= 8

(c) Clause C3: consider phases φX = π/2 and φY = k1π , φZ = k2π with k1,k2 ∈Z. Then,
the real part of Z3 becomes:

Re[Z3] = 1+ cos(π/2− k1π)+ cos(π/2− k2π)+ cos(k2π − k1π)

+ cos(π/2)+ cosk1π + cosk2π

+ cos(π/2− k1π + k2π)

= 1+ cos((k2 − k1)π)+ cosk1π − cosk2π

= 4 if k1,k2 are even.
= 0 otherwise.
̸= 8
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