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Titre: Développement demodèles hybrides pour les réseauxmétaboliques à l’échelle du génome
Mots clés: Modélisation métabolique, Apprentissage automatique, Modèles hybrides
Résumé: Au cours des deux dernières décen-
nies, la communauté de la biologie des sys-
tèmes a consacré des efforts considérables
à la construction de modèles métaboliques
à l’échelle du génome (GEM), qui offrent des
représentations détaillées de l’ensemble du
métabolisme d’un organisme. Les GEMprésen-
tent le métabolisme comme un réseau, reliant
les réactions métaboliques et les métabolites.
Malgré la richesse des informations qu’ils con-
tiennent, les GEM présentent des limites no-
tables. Ils tentent d’englober tous les phéno-
types métaboliques potentiels, ce qui conduit
à un vaste espace de solutions qu’il peut être
difficile d’explorer efficacement. L’approche
prédominante pour l’exploitation des GEM,
l’analyse de l’équilibre des flux (FBA), repose
sur des simplifications et n’a pas la capac-
ité de se généraliser à diverses conditions.
En revanche, les techniques d’apprentissage
automatique ont gagné en intérêt pour la
modélisation métabolique, notamment en ex-
ploitant les données -omiques à grande échelle
pour prédire les comportements biologiques
dans divers environnements. Bien que de
nombreuses approches combinent les GEM
et l’apprentissage automatique, elles séparent
toujours les parties modélisation métabolique

et apprentissage automatique, ce qui limite
leur adaptabilité et leur réutilisation. Dans le
cadre de cette thèse de doctorat, j’introduis une
approche innovante qui s’attaque à cette limita-
tion : un modèle hybride neuronal-mécaniste
pour les GEM, appelé Réseau Métabolique Ar-
tificiel (AMN). Cela implique le développement
de méthodes de substitution au FBA compat-
ibles avec la rétropropagation du gradient et
la création d’une fonction de perte mécaniste
pour aligner les prédictions AMN avec les con-
traintes des GEMs. Cette thèse se penche
sur les phénomènes biologiques abordés par
les AMN et passe en revue les méthodes
d’utilisation des GEM les plus récentes. Elle dé-
montre ensuite que les AMN sont plus perfor-
mants que le FBA pour prédire les taux de crois-
sance d’E. coli dans divers milieux et conditions
génétiques, sans qu’il soit nécessaire d’obtenir
des données expérimentales supplémentaires.
Les capacités et les limites des AMN sont en-
suite examinées en détail. Enfin, je résume
les résultats et propose des pistes pour pour-
suivre le développement de modèles hybrides
pour les GEM, qui peuvent aider à construire
des modèles de cellules entières performants
et informatifs - un objectif ambitieux dans le do-
maine de la biologie des systèmes.
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Abstract: Over the past two decades, the sys-
tems biology community has dedicated sub-
stantial efforts to constructing genome-scale
metabolic models (GEMs), which offer de-
tailed representations of an organism’s en-
tire metabolism. GEMs present metabolism
as a network, linking metabolic reactions and
metabolites. Despite their wealth of informa-
tion, GEMs come with notable limitations. They
attempt to encompass all potential metabolic
phenotypes, leading to an extensive solution
space that can be challenging to explore ef-
ficiently. The predominant approach for ex-
ploiting GEMs, Flux Balance Analysis (FBA), re-
lies on simplifications and lacks the ability to
generalize across diverse conditions. In con-
trast, Machine Learning (ML) techniques, have
gained interest formetabolicmodeling, notably
by harnessing large-scale -omics data to predict
biological behaviors in various environments.
While many approaches combine GEMs and
ML together, they still separate the metabolic
modeling and ML parts, limiting their adapt-

ability and reusability. Within this Ph.D. thesis,
I introduce an innovative approach that tack-
les this limitation: a hybrid neural-mechanistic
model for GEMs, termed Artificial Metabolic
Network (AMN). This entails the development
of FBA surrogatemethods compatible with gra-
dient backpropagation and the creation of a
mechanistic loss function to align AMN pre-
dictions with GEMs’ constraints. This disserta-
tion delves into the biological phenomena ad-
dressed by AMNs and surveys the state-of-the-
art GEM utilization methods. Then, it demon-
strates how AMNs outperform FBA in predict-
ing E. coli growth rates across diverse media
and genetic conditions, without requiring addi-
tional experimental data. The capabilities and
limitations of AMNs are then thoroughly exam-
ined. Finally, I summarize the findings and of-
fer insights into ways to pursue the develop-
ment of hybridmodels for GEMs, that may help
in building high-performance, insightful whole-
cell models—an ambitious goal in the realm of
systems biology.
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Résumé étendu
Avant de lire ce résumé d’une dizaine de pages, je conseille au lecteur de commencer par celui en
début de manuscrit (page 2), afin d’avoir rapidement une idée globale du projet. Ici, vous trouverez
un résumé en français avec plus de détails sur le contenu des différents chapitres du manuscrit,
accompagnés de quelques figures importantes. N’hésitez pas à vous réferer au manuscrit complet si
le résumé manque de contexte ou de références. Bonne lecture !

Chapitre 1 : Introduction
Dans son ensemble, l’introduction proposeunemise en contexte approfondie du champde recherche
dans lequel cette thèse s’inscrit, en soulignant les différentes potentialités et limites des connais-
sances et méthodes existantes. En particulier, je souligne le défi immense de la modélisation des
systèmesmétaboliques – des systèmes complexes qui nécessitent le développement d’approches in-
novantes pour les modéliser, et in fine mieux les comprendre. J’y expose également les objectifs de
la thèse, notamment par la formulation de deux questions scientifiques concises.

Dans le préambule de l’introduction, je définis des notions clés et le cadre conceptuel pour la
thèse. C’est une étape importante avant d’aborder les descriptions détaillées des concepts et de
l’état de l’art de la recherche en modélisation métabolique. Une attention particulière est accordée
à la définition des termes clés comme "métabolisme", "régulation", "phénotype métabolique"; ainsi
que le "champ biologique" dans lequel le travail de thèse s’inscrit. Ces définitions fournissent le cadre
conceptuel nécessaire pour naviguer dans la complexité des sujets traités par la suite.

Ensuite, la première partie de l’introduction examine les phénomènes biologiques connus qui ex-
pliquent l’apparition de divers phénotypesmétaboliques en réponse à l’environnement et aumatériel
génétique des organismes. J’y souligne la complexité inhérente à la régulation métabolique, discu-
tant des divers niveaux auxquels cette régulation opère, depuis les interactions moléculaires “sim-
ples” comme l’allostérie, jusqu’aux réponses cellulaires globales, par exemple via l’intervention des
facteurs sigma, ou même les régulations à l’échelle des populations. Je donne par la suite une expli-
cation et une critique détaillée de l’approche réductionniste pour la compréhension dumétabolisme.
L’argument principal contre cette approche réside dans la simplification à outrance des processus bi-
ologiques complexes ; notamment du fait des limitations conceptuelles et expérimentales inhérentes
au domaine. J’y discute les implications de cette approche différente pour la recherche en biologie et
propose des perspectives alternatives, spécifiquement dans le contexte de la biologie des systèmes.
L’approche holistique est introduite comme un contrepoids nécessaire à l’approche réductionniste.
J’explore comment cette approche permet une meilleure compréhension des systèmes biologiques
en considérant les interactions et les interdépendances entre les différentes parties de ces systèmes.
Dans le cadre de la biologie des systèmes, dans lequel cette thèse s’inscrit, ces considérations sont
primordiales puisque l’objectif de ce domaine est de comprendre la vie dans son ensemble et non
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pas ses sous-parties comme l’approche réductionniste traditionnelle le propose. Par la suite, je me
penche sur le rôle crucial du métabolisme dans la biologie des systèmes, en expliquant les concepts
centraux de modélisation métabolique. La figure 1.6 ci-dessous est une figure conceptuelle impor-
tante, qui montre comment un réseau de réactionsmétaboliques est ’traduit’ en objet mathématique
de modélisation, la matrice de stoechiométrie S.

Figure 1.6: Formulation mathématique du réseau de réactions: la matrice stœchiométrique. À partirde (a) la stœchiométrie du réseau réactionnel, on dérive (b) une matrice stœchiométrique, qui peutà son tour être utilisée pour (c) une analyse mathématique des voies, par exemple en définissantl’espace des solutions stables possibles ; ici représenté pour seulement 3 flux imaginaires afin d’êtrefacilement visualisé. (Auteurs : Papin et al.[1] ; réutilisé avec l’autorisation de l’auteur correspondant ;licence obtenue sur la plateforme Rightslink©).
Enfin je conclus la première partie de l’introduction en décrivant les nombreuses implications du

métabolisme dans divers processus biologiques et applications industrielles. J’évoque également un
champ d’application innovant: utiliser le métabolisme comme unité de traitement de signal pour la
biocomputation. Je décris enfin les possibilités de ce champ d’application ainsi que les défis à relever
pour une mise en œuvre réelle, qui sont encore nombreux.

Dans la secondepartie de l’introduction, jeme focalise sur la description desmodèlesmétaboliques
à l’échelle du génome (GEMs). Cesmodèles sont au cœur demon travail de thèse, puisqu’ils ont consti-
tué la base des modèles mécanistiques sur lesquels s’appuyer pour développer les modèles hybrides
innovants présentés ici. Je commence par une présentation détaillée de ces réseaux métaboliques,
de leur construction et de leurs différentes formulations et utilisations pour prédire et comprendre
différents comportementsmétaboliques dans différents contextes. J’utilise ensuite l’exemple du GEM
le plus récent pour E. coli à ce jour, iML1515, pour donner plus de détails concrets sur le contenu et
la formulation mathématique du modèle. Ainsi, je donne une analyse de son contenu, de ses com-
partiments, et des flux métaboliques qu’il modélise. J’aborde aussi des limites inhérentes au modèle,
liées à sa méthode de construction, comme les réactions de biomasse et de maintenance d’ATP, qui
reposent sur des expérimentations peu nombreuses et difficilement généralisables à de nombreuses
conditions.

Dans la partie finale de l’introduction, je propose une comparaison des deux approches phares
de modélisation : la modélisation mécanistique et la modélisation par apprentissage automatique.
Je présente chacune des approches dans le contexte de la modélisation pour la biologie, en parti-
culier pour la biologie des systèmes, avec un accent sur les avantages et inconvénients de chaque
approche. Je souligne la complémentarité des deux approches et je cite de nombreux travaux de
couplage des deux approches pour la modélisation métabolique. Je prends ensuite le temps de dé-
tailler le fonctionnement des réseaux de neurones, évoquant les réseaux récurrents et les réservoirs,

6



qui sont d’importants concepts pour le développement des méthodes innovantes présentées dans
cette thèse. Enfin, je discute de l’émergence des modèles hybrides qui combinent les approches mé-
canistiques et d’apprentissage automatique, en allant plus loin qu’un simple couplage : ils émergent
d’une fusion entre plusieurs méthodes et approches, ce qui produit un modèle unique et pas un
assemblage de plusieurs modèles. Un exemple parlant et commun est le ‘Physics-Informed Neural
Network’ (‘PINN’), un modèle hybride où des réseaux de neurones vont prédire des solutions qui con-
cordent avec un système physique, grâce à une fonction de perte qui prend en compte le système
physique. Ce genre de modèle hybride n’ayant pas encore été formulé pour les GEMs, je présente
cette lacune comme la motivation centrale de mon travail de thèse. Je souligne l’importance de cette
fusion pour la modélisation métabolique, ouvrant de nouvelles perspectives pour la compréhension
et la manipulation des systèmes métaboliques complexes.

On appellera ces modèles Réseaux Métaboliques Artificiels (en anglais, ‘AMNs’). Ils reposent sur
un principe simple, décrit par la figure 1.15 ci-dessous: depuis divers types de donnée en entrée (par
exemple la description d’un environnement ou dematériel génétique), un algorithme d’apprentissage
automatique va prédire des paramètres pour un modèle mécanistique qui va à son tour prédire un
phénotype métabolique, la sortie du modèle hybride.

Machine 
Learning 
(ANNs)

Environmental or 
genetic conditions

Metabolic 
phenotypes

Mechanistic 
Model
(GEM)

Figure 1.15: Schéma simple de l’approche de modélisation hybride sélectionnée. À partir de n’importequel type dedonnées d’entrée décrivant des conditions environnementales ou génétiques, unmodèled’apprentissage automatique prédit les paramètres d’un modèle mécaniste (GEM) afin de prédire lesphénotypes métaboliques correspondants. Il convient de noter que la formulation de ce modèle estun modèle unique, qui ne sépare pas les parties d’apprentissage automatique et mécanistique, etpeut donc être considéré comme un modèle hybride. Les détails sur la construction, l’entraînementet l’exploitation du modèle sont donnés dans les chapitres 2 et 3.

Il est très important de comprendre que l’apprentissage automatique et le modèle mécanistique
doivent fonctionner ensemble comme un seul modèle, pour être appelé modèle ‘hybride’ comme
un AMN. Dans le travail de recherche présenté ici, on utilisera des réseaux de neurones comme al-
gorithme d’apprentissage automatique et on va appeler couche mécanistique la partie du modèle
qui contient des éléments tirés d’un modèle purement mécanistique. Cette couche mécanistique
consiste, pour l’AMN, à substituer les méthodes classiques d’optimisation sous contrainte comme
l’analyse d’équilibre des flux (FBA). Ajouté à cela, en s’inspirant des PINNs, les AMNs vont se servir
d’une fonction de perte mécanistique, qui a pour but de prédire des solutions concordantes avec les
contraintes des GEMs.
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Enfin, je conclus l’introductionpar 2 questions scientifiques auxquellesmon travail de thèse répon-
dra :

- Pouvons-nous développer des modèles hybrides de GEMs qui augmentent leur capacité prédic-
tive tout en respectant leurs contraintes ?

- Quelles sont lesmeilleures voies d’améliorations et champs d’application possibles pour lesmod-
èles hybrides de GEMs ?

Chapitre 2 : Une ApprocheHybrideNeuronale-Mécanistique Améliorant
la Puissance Prédictive desModèlesMétaboliques à l’Échelle duGénome
Ce chapitre contient l’article publié durant la thèse dans le journal Nature Communications. Cet article
présente les bases conceptuelles et les fondements mathématiques des modèles hybrides dévelop-
pés, les AMNs.

Dans ce chapitre, je commence par rappeler les motivations qui nous poussent à développer ces
modèles hybrides, avec une introduction concise rappelant l’état de l’art enmodélisationmétabolique
et les concepts innovants amenés par les modèles hybrides. Ensuite, les résultats principaux de
l’article sont présentés, divisés en différentes parties. D’abord, une vue globale des différentes formu-
lations et des capacités de chacune est donnée. La figure 2.1 ci-dessous résume le cadre conceptuel
dans lequel s’inscrivent les AMNs. On peut y voir la différence entre le FBA classique et les couches
mécanistiques (‘mechanistic layers’), développés pour résoudre le même problème que le FBA avec
des calculs matriciels itératifs, permettant d’intégrer la méthode dans un modèle neuronal. On voit
ensuite comment ces couches mécanistiques sont intégrées dans l’AMN, et comment une approche
inspirée du calcul par réservoir peut nous aider à trouver les meilleures entrées pour le FBA. Cette
figure donne une vue d’ensemble pour les concepts innovants développés durant la thèse, ce qui
permet de faciliter leur compréhension et de saisir rapidement le sens des différentes notations qui
seront utilisées dans la suite du chapitre.

La section suivante se focalise sur le processus de développement des couches mécanistiques,
apportant plus de détails mathématiques sur le fonctionnement de chacune, ainsi que l’inspiration
trouvée dans la littérature pour leur développement. Ensuite, une section décrit les premiers résultats
obtenus avec les AMNs, qui ont été entraînés soit avec des jeux de données simulés en figure 2.2 (par
FBA performé avec des flux d’entrées tirés aléatoirement) ou des jeux de données expérimentaux en
figure 2.3 (par acquisition de taux de croissance en laboratoire, avec des milieux de croissance tirés
aléatoirement). On démontre ici la capacité des AMNs à apprendre depuis ces deux types de jeux
de données, en fournissant des performances satisfaisantes. En d’autres termes, nous montrons
que les AMNs sont capables de prédire des distributions de flux complètes à partir de données de
flux partielles, tout en respectant les contraintes du GEM utilisé, via la couche mécanistique et la
fonction de pertemécanistique. Dans cette section, nous soulignons également la capacité des AMNs
à intégrer différents types de données d’entrée, au-delà des entrées possibles avec les GEMs. Nous
démontrons cela avec un exemple tiré d’un jeu de données externe, trouvé dans la base de données
ASAP, qui regroupe 17 400 taux de croissance de 145 souches cultivées dans 120 milieux différents.
L’AMN est capable ici de prédire les taux de croissance avec une grande fidélité, obtenant un R² bien
supérieur au FBA, la méthode classique pour exploiter un GEM dans cette situation. Les résultats de
cette approche sont visibles sur la figure 2.4 ci-dessous.
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Figure 2.1: Cadres de calcul et d’apprentissage pour le FBA, les modèles mécanistiques alternatifs,l’AMN et l’AMN-Reservoir. a. Cadre de calcul pour le FBA classique. Le processus est répété pourchaque milieu, calculant les flux d’états stationnaires correspondants. Les cercles bleus représententdifférentes limites sur les flux d’entrée des métabolites et chaque cercle rouge représente une valeurde flux à l’état stationnaire. b. Cadre de calcul pour les méthodes mécanistiques substituant le FBA.Lesméthodes peuvent gérer plusieursmilieux de croissance à la fois. Pour tous les solveurs (Wt, LP etQP), la couchemécanistique prend en entrée un vecteur de flux initial arbitraire, V0, respectant les lim-ites des flux d’entrée pour différents milieux, et calcule toutes les valeurs de flux à l’état stationnaire(Vout) par un processus itératif. c. Cadre d’apprentissage pour les modèles hybrides AMN. L’entrée(pour plusieurs milieux de croissance) peut être soit un ensemble de limites sur les flux d’entrée (Vin),lors de l’utilisation de données de simulation (générées comme dans le panneau a), soit un ensem-ble de compositions de milieux, Cmed, lors de l’utilisation de données expérimentales. L’entrée estensuite passée à une couche neuronale entraînable, prédisant un vecteur initial, V0, pour la couchemécanistique (uneméthode du panneau b). À son tour, la couchemécanistique calcule la sortie finaledumodèle, Vout. L’apprentissage est basé sur une fonction de perte personnalisée (cf. Méthodes, 2.5)assurant que les flux de référence soient ajustés (i.e., afin que Vout corresponde aux flux simulés oumesurés) et que les contraintes mécanistiques (sur les limites des flux et la stœchiométrie) soient re-spectées. d. Cadre d’apprentissage pour un "AMN-Reservoir". La première étape consiste à entraînerun AMN sur des données simulées de FBA (comme dans le panneau c), après quoi les paramètres decet AMN sont figés. Cemodèle AMN, dont le but est de substituer le FBA, est nommé "AMN-Reservoir",il est non-entraînable. À la deuxième étape, une couche neuronale est ajoutée avant Vin prenant enentrée les compositions demilieux, Cmed, et apprenant la relation entre les compositions et les limitessur les flux d’entrée.

La section suivante se focalise sur les résultats obtenus avec l’approche de calcul par réservoir
développépour les AMNs. Ici, unAMNest d’abordpré-entraîné sur des simulations, afinde reproduire
exactement le comportement du FBA. Ensuite, on ré-entraîne cet AMN, qu’on appelle AMN-Reservoir
et qui a ses paramètres immobilisés, cette fois avec des données expérimentales. Ainsi, les entrées de
l’AMN-Reservoir prédites grâce au réentraînement permettent de trouver les meilleurs flux d’entrées
pour le FBA. Nous démontrons ces capacités en figure 2.5 pour deux jeux de données : un pour la
régression des taux de croissance d’E. coli, l’autre pour la classification de la pousse de P. putida. Dans
les deux cas, on trouve des flux d’entrées pour le FBA qui améliore ses capacités prédictives, ce qui
montre l’avantage de l’approche hybride.
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Enfin, l’article se conclut par une discussion. D’abord, on résume les innovations apportées par
l’approche hybride présentée ici : l’intégration de méthodes neuronales avec les méthodes de mod-
élisation métabolique classiques ont permis l’émergence d’un nouveau type de modèle hybride, qui
montre des performances prometteuses pour le domaine. En effet, les performances de régression
et classification ont été systématiquement meilleures avec l’AMN qu’avec l’approche basique du FBA,
tout en respectant les contraintes mécanistiques du modèle métabolique. Ensuite, nous revenons
sur le contexte biologique afin de prendre du recul sur les tâches de modélisation que nous pouvons
considérer avec les AMNs, en insistant sur le fait que nous utilisons des boîtes noires pour toutes
les régulations. On rappelle ensuite l’augmentation claire de performance prédictive amenée par les
AMNs, sans besoin de données expérimentales supplémentaires, contrairement auxméthodes alter-
natives au FBA comme le satFBA. Nous ouvrons ensuite une discussion sur les applications possibles
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des AMNs, par exemple pour la construction automatisée de modèles métaboliques, notamment en
trouvant de meilleurs coefficients pour la réaction de biomasse et de maintenance de l’ATP. Nous
mentionnons également la capacité à réduire le nombre de mesures nécessaires en utilisant des ap-
proches hybrides comme l’AMN, comparé auxméthodes d’apprentissage automatiques classiques, ce
qui permettrait éventuellement de s’attaquer à la malédiction de la dimensionnalité (“curse of dimen-
sionality”). Enfin, nous expliquons brièvement comment de nombreux projets de bio-ingénierie, avec
des portées biomédicales, alimentaires ou environnementales, pourraient bénéficier d’approches hy-
brides comme les AMNs. En effet, leurs meilleures capacités prédictives pourraient être utiles à tous
les projets d’optimisation, tout en apportant des pistes de compréhension et d’amélioration par les
connaissances intégrées aux modèles.

La suite de l’article présente de nombreux détails sur les méthodologies employées. Le fonc-
tionnement des couches mécanistiques est précisé grâce à des descriptions mathématiques plus
formelles des algorithmes utilisés. Le processus d’entraînement des AMNs y est également décrit
en détail, de la génération de jeux de données expérimentales ou simulés, jusqu’à la conception de
l’architecture des réseaux de neurones, et les approches utilisées pour intégrer ces systèmes avec les
réseaux métaboliques existants. Un aspect méthodologique important du projet est le développe-
ment de fonctions de pertes personnalisées, qui permettent à l’AMN de respecter les contraintes du
réseau métabolique avec des réseaux des neurones. Ainsi, cette partie explique comment la fusion
des approches mécanistiques et des techniques d’apprentissage automatique a été rendue possible.
La méthodologie pour que les AMNs fonctionnent dans un cadre de calcul en réservoir est également
décrite. Enfin, on y décrit aussi l’acquisition et le contenu des différents jeux de données expérimen-
taux utilisés dans l’article. Par exemple, le détail de chaque condition expérimentale est donné, ainsi
que les lois de probabilité qui ont permis le tirage aléatoire des conditions. Le chapitre se conclut en
donnant un accès ouvert aux données et au code utilisés dans l’article, pour assurer la transparence,
la collaboration et l’évaluation du travail de recherche présenté ici.

Chapitre 3 : Évaluation et Amélioration des Modèles Hybrides pour Ex-
ploiter les GEMs
Ce chapitre a pour but d’approfondir l’évaluation des AMNs, leurs capacités et limites, ainsi que
d’apporter des améliorations ou des pistes d’amélioration pour une utilisation plus large et plus per-
formante de l’approche hybride présentée dans le chapitre précédent. Chaque section se concen-
tre sur un problème spécifique identifié comme significatif et important à évaluer. Pour chacun de
ces problèmes, je donne une introduction qui rappelle les éléments contextuels importants, puis la
méthodologie pour évaluer (et éventuellement corriger) ce problème, avant de présenter les résultats
obtenus et une discussion autour de ceux-ci.

Avant de présenter la première limite et son amélioration, je présente dans un préambule les
différents jeux de données utilisés dans ce chapitre, comment ils ont été générés (table 3.1) ainsi que
les mesures utilisées spécifiquement pour évaluer les performances de l’AMN au-delà de la capacité
prédictive du modèle. La mesure la plus intéressante utilisée dans ce chapitre est la norme de SV (le
produit matriciel du vecteur de flux métaboliques V avec la matrice de stoechiométrie S), qui indique
à quel point une distribution de flux respecte les contraintes du modèle métabolique. En effet, dans
le chapitre précédent, cette norme était mentionnée mais elle n’a pas été interprétée et comparée
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dans de nombreuses situations. Dans le préambule, je présente cette mesure et indique sa haute
sensibilité aux variations de flux sur une distribution de flux à l’équilibre (figure 3.1).

La première limitation s’intéresse au solveur QP (une des couches mécanistiques utilisée dans le
chapitre précédent). Il a été identifié que certaines contraintes ne sont pas respectées par ce solveur
(figure 3.3), ce qui nousmotive à reformuler laméthode. Dans cette partie, la reformulation est décrite
et comparée à la formulation originale, puis on montre comment la reformulation corrige le respect
des contraintes (figure 3.3), et comment elle amène une nouvelle fonction de perte mécanistique.
Cette nouvelle fonction de perte mécanistique, plus fiable pour le respect des contraintes, est utilisée
pour formuler un nouvel AMN-QP (figure 3.4), qui sera utilisé dans la suite du chapitre.

La deuxième partie explore comment les couches mécanistiques influent sur les prédictions des
AMNs. En testant différents nombres d’itérations avec les différentes couches mécanistiques, on
observe des effets très différents sur les solutions prédites par les AMNs. Globalement, les résul-
tats montrent un large avantage pour la couche mécanistique LP qui permet de réduire grandement
la norme de SV, et donc d’améliorer le respect des contraintes dans les prédictions, comparé aux
couches QP et Wt (figure 3.5). Malheureusement ces observations n’ont pas pu être réalisées avec de
grands réseaux métaboliques comme iML1515 ; elles sont pour l’instant limitées aux petits réseaux.
Une autre limite observée pour les couches mécanistiques est le temps de calcul nécessaire pour
entraîner un modèle qui contient beaucoup d’itérations sur sa couche mécanistique. En effet, cela
va augmenter exponentiellement le temps d’entraînement et potentiellement rendre impossible la
tâche d’apprentissage.

La troisième partie de ce chapitre se penche sur l’optimisation des hyperparamètres utilisés pour
les AMNs. Ces nombreux hyperparamètres peuvent concerner la partie neuronale du modèle : le
nombre de couches neuronales utilisées, leurs tailles, ainsi que leurs fonctions d’activation et leur taux
de ‘dropout’. Mais ils peuvent aussi concerner la partie mécanistique, en appliquant des poids pour
chaque terme de la fonction de perte (table 3.3). Ainsi, l’importance de chaque terme dans la valeur
finale de fonction de perte peut être modulée. En considérant l’optimisation des hyperparamètres
neuronaux et mécanistiques séparément, je décris ici plusieurs processus d’optimisation des hyper-
paramètres, qui permettent d’améliorer substantiellement les performances des AMNs (figure 3.6-7).
Enfin, je discute des résultats en comparant les normes de SV obtenues après optimisation des hy-
perparamètres avec des résultats obtenus par la méthode mécanistique classique du FBA. On peut
observer un écart significatif entre les normes de SV obtenues, ce qui ouvre une discussion quant à
l’interprétabilité et la fiabilité des résultats prédits par l’AMN. Dans cette discussion, il est important
de rappeler la sensibilité de la norme de SV aux perturbations, comme montré dans le préambule
(figure 3.1). La figure 3.10 ci-dessous illustre bien cette limite des AMNs, enmettant en avant la perfor-
mance prédictive très basse du FBA sous un respect strict des contraintes du GEM utilisé, ainsi que
la bonne performance prédictive de l’AMN, qui ne respecte pas strictement les contraintes du GEM
utilisé.
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Figure 3.10: L’AMN surpasse le pouvoir prédictif du FBA avec les données d’apprentissage "Cov-BiologKO", mais ne respecte pas strictement les contraintes de stœchiométrie. (a) FBA seul avecdes limites arbitraires sur les flux d’entrée (comme dans la Figure 2.4c) (b) AMN (approche classique,comme dans la Figure 2.4b). Les deux panneaux affichent, de haut en bas et de gauche à droite : ungraphique des prédictions du taux de croissance (axe Y) par rapport aux taux de croissance mesurésexpérimentalement (axe X), avec les couleurs des points correspondant à la valeur de la norme de SVcalculée sur la prédiction ; un histogramme de la norme de SV pour toutes les prédictions et un his-togramme de la norme de V pour toutes les prédictions. Pour les calculs de FBA, la norme Vmoyenneest de 0,042 et pour les prédictions de l’AMN, la norme V moyenne est de 0,0016. L’AMN surpasse leFBA en termes de Q² mais les contraintes stœchiométriques ne sont pas bien respectées, avec unenorme SV moyenne de 5,68e-03, contre une norme SV moyenne de 1,88e-14 pour le FBA.

La partie suivante du chapitre 3 explore les capacités de méthodes d’apprentissage automatique
alternatives aux réseaux de neurones, dans la tâche de construire un modèle de substitution au FBA.
Deux méthodes vont être comparées aux réseaux de neurones: XGBoost (‘extreme gradient-boosted
trees’) et MTEN (‘Multitask Elastic Net regression’). Ces deuxméthodes sont décrites en détail, et leurs
sources sont citées. La comparaison avec les réseaux de neurones se fait par plusieurs mesures
: la capacité prédictive sur le growth rate, la norme de SV et la norme de V. Pour une discussion
plus riche, ces méthodes alternatives vont être testées avec des données d’apprentissage plus ou
moins complexes. Globalement, on peut conclure, au vu des résultats présentés en figure 3.8, que
la méthode MTEN a un fort potentiel pour devenir un substitut au FBA, par sa capacité à atteindre
des valeurs de norme de SV bien plus basses. Cependant, comme montré dans la figure 3.9, cette
méthode est sensible à la complexité des données d’apprentissage utilisées. En résumé, cette partie
souligne la diversité des approches possibles pour obtenir des substituts de modèles métaboliques
mécanistiques, et leurs différents potentiels pour améliorer la fiabilité des prédictions effectuées.

Dans la cinquième partie du chapitre 3, j’ai exploré la dépendance des prédictions des AMNs aux
données d’apprentissage. Ce problème étant une limite commune à tous lesmodèles d’apprentissage
automatique, il est important d’explorer son effet ici. En particulier, j’ai comparé la performance
des AMNs lorsque le ‘training’ et le ‘validation set’ étaient choisis aléatoirement, avec un cas où le
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‘validation set’ contenait des conditions nouvelles, absentes du ‘training set’. Concrètement, dans
ce dernier cas, la tâche de l’AMN est de prédire l’effet de conditions de cultures ou de modifications
génétiques sur les fluxmétaboliques, sans avoir pu apprendre de ces conditions aupréalable. Comme
attendu, la performance de l’AMN est significativement dégradée dans ces cas (figures 3.10-12), ce
qui constitue une des principales limites de l’AMN si il est comparé aux méthodes mécanistiques.
Cette évaluation est cruciale pour comprendre la portée et les limites des AMNs dans des applications
réelles et expérimentales.

Pour conclure, je propose une synthèse des observations et conclusions faites dans ce chapitre,
puis une brève description des perspectives qui découlent de ces conclusions. En bref, les points
les plus importants du chapitre sont les suivants : (i) des solveurs mécanistiques alternatifs peu-
vent être formulés, ainsi que des fonctions de pertes mécanistiques personnalisées alternatives pour
les AMN, qui modifient le comportement général du modèle, (ii) les couches mécanistiques ont un
fort potentiel pour améliorer les prédictions des AMN mais nécessitent encore des améliorations,
(iii) l’optimisation des hyperparamètres peut améliorer les performances d’un AMN, mais les AMNs
prédisent encore des distributions de flux loin de respecter les contraintes des GEMs comme le FBA,
(iv) lemodèleMTEN fonctionne très bien pour remplacer le FBA, notamment en termes de contraintes
stœchiométriques, et (v) un AMN peut prédire l’effet de nouvelles compositions de médias ou pertur-
bations génétiques, mais cela dépend grandement des motifs statistiques trouvés dans les données
d’apprentissage. Pour finir, je décris le potentiel de l’architecture AMN-Reservoir pour résoudre les
défis associés aux AMNs (figure 3.13). Cette conclusion ouvre des perspectives sur de futures direc-
tions de recherche et d’application des modèles hybrides dans la biologie des systèmes, ce qui sera
plus longuement discuté dans le chapitre suivant.

Chapitre 4 : Discussion Générale et Perspectives
Ce chapitre est divisé en deux parties. Il présente d’abord une vue globale des capacités et limites
des AMNs. Je commence par un rappel de leur fonctionnement innovant qui permet d’augmenter
le pouvoir prédictif des GEMs, puis je mentionne les investigations nécessaires pour aboutir à un
modèle plus fiable et réutilisable par la communauté de biologie des systèmes. Ensuite, je discute
des voies possibles d’amélioration pour dépasser ces limites, et des champs d’application les plus
adaptés aux AMNs. Pour conclure, je propose un résumé global de la thèse, et la réponse aux deux
questions scientifiques énoncées au chapitre 1.

La première section commencepar récapituler les différentes contributions significatives apportées
par l’utilisation des AMNs pour l’exploitation des GEMs. De ce fait, je souligne le passage d’un principe
d’optimalité à un principe d’apprentissage dans la modélisation métabolique, ce qui constitue un
changement d’approche radical, qu’onpourrait éventuellement qualifier de changement deparadigme.
Ensuite, on souligne l’efficacité des AMNs à prédire des phénotypes métaboliques complexes à partir
d’ensemble de conditions et de mesures de flux partielles. On rappelle également que les AMNs peu-
vent accepter une bien plus grande diversité de données d’entrée et de sortie que les GEMs, ce qui
en fait des modèles plus versatiles et plus largement utilisables. Leurs architectures sont également
personnalisables selon l’usage, ce qui renforce encore plus le caractère réutilisable du modèle.

Ensuite, je résume les limites principales des AMNs. En effet, l’apprentissage avec contraintes est
un défi de modélisation, dont les limites doivent être soigneusement énoncées. D’abord, je rappelle
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que la fonction de perte mécanistique repose sur un équilibre entre les termes de ‘fitting’ et de con-
traintes. J’y mets en évidence la complexité du compromis nécessaire pour équilibrer les termes de
perte personnalisée, pour respecter les contraintes des GEMs. Ensuite je rappelle qu’en l’état actuel,
l’AMN ne respecte pas les contraintes mécanistiques comme les méthodes classiques d’optimisation
sous contrainte, comme le FBA. Puis je souligne les limites des couches mécanistiques, ainsi que la
dépendance des performances de l’AMN au contenu des données d’apprentissage utilisées. Je con-
clus cette première section du chapitre 4 par la description du potentiel de l’AMN-Reservoir pour
résoudre les différentes limites mentionnées, mais je signale aussi que cette approche n’est pas ‘hy-
bride’ à proprement parler, mais plutôt un couplage d’approche neuronale et mécanistique. En ce
sens, cette approche est moins innovante que les AMNs ‘classiques’.

La deuxième section se focalise sur les perspectives d’amélioration et d’application possibles pour
les AMNs. Je commence par lister les améliorations souhaitables dans les approches et formula-
tions développées pour cette thèse. En premier lieu, une acquisition plus standardisée des données
d’apprentissage, par des approches plus rationnelles (en utilisant plus deméthodes de design expéri-
mental), automatisées (par robotisation) et globales (en élargissant les espaces combinatoires). En-
suite, j’explique comment et par quelles inspirations il est possible d’améliorer les performances des
fonctions de perte et des couches mécanistiques. Par la suite, je décris les voies d’amélioration par le
remplacement des réseaux de neurones par des méthodes alternatives, et par l’utilisation d’une ver-
sion améliorée de l’architecture AMN-Reservoir ou des alternatives à celle-ci, comme l’apprentissage
actif ou les algorithmes génétiques (figures 4.2-3). La dernière sous-section de la thèse s’intéresse aux
applications les plus adaptées à l’AMN. On y liste notamment l’intégration de données omiques, le
développement automatisé de modèles métaboliques, l’intégration de séries temporelles pour mod-
éliser les processus dynamiques du métabolisme, le guidage d’optimisation de bioproduction et la
biocomputation. Enfin, j’ouvre la question des directions à prendre pour la modélisation en biolo-
gie des systèmes, en discutant du potentiel des modèles hybrides pour construire des modèles de
cellules entières. Voici mon point de vue personnel sur la direction à prendre pour la biologie des sys-
tèmes dans les années suivantes : développer des modèles hybrides de cellules entières, intégrant
divers jeux de données omiques au moyen de méthodes de ML, qui permettent la simulation mé-
canistique précise de processus biologiques de plus en plus détaillés à petite échelle, ainsi que des
traits phénotypiques à plus grande échelle. Pour ce faire, les questions de standardisation de don-
nées sont centrales, afin de garantir la réutilisabilité et la pertinence desmodèles ; et une compétition
internationale similaire à CASP pourrait stimuler l’émergence de nouvelles approches.

Je conclus la thèse par les réponses aux questions scientifiques énoncées au chapitre 1:
- Pouvons-nous développer des modèles hybrides de GEMs qui augmentent leur capacité prédic-

tive tout en respectant leurs contraintes ?
Même si le pouvoir prédictif des AMN est impressionnant par rapport au FBA seul, il doit encore

être approfondi pour respecter de manière plus fiable les contraintes des GEMs de grande taille et
être éventuellement utilisé par la communauté de modélisation métabolique comme une méthode
standard.

- Quelles sont lesmeilleures voies d’améliorations et champs d’application possibles pour lesmod-
èles hybrides de GEMs ?

De nombreuses améliorations peuvent être apportées dans cette direction, et je pense donc que
lesmodèles hybrides deGEMont un grandpotentiel dans une vaste gammedeprojets, de la construc-
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tion de modèles métaboliques à l’optimisation de la bioproduction, et même pour le développement
de modèles de cellules entières plus performants, le Graal de la biologie des systèmes.

Enfin, je donne quelques mots de conclusion, afin de prendre du recul sur le travail de thèse
réalisé et mieux l’inscrire dans son domaine de recherche. En voici les derniers mots: “L’avenir de
la recherche en biologie sera guidée par ordinateur, et la puissance de l’intelligence artificielle pour
des tâches de plus en plus complexes appelle à poursuivre l’intégration de l’IA dans les modèles bi-
ologiques. Cette thèse est une étape de cette voie, qui mènera éventuellement à une meilleure com-
préhension et exploitation des organismes. J’espère que cela pourra accélérer les percées biotech-
nologiques et médicales, pour un avenir plus sûr et plus durable.”
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Chapter 1
Introduction
This Ph.D. dissertation aims to propose a novel approach to state-of-the-art metabolic modeling, by
integrating mechanistic modeling and machine learning methods together. This approach was mo-
tivated by the lack of predictive power of mechanistic modeling methods, and the lack of mechanis-
tic insights brought by machine learning methods, when used separately. In particular, I developed
hybrid models for genome-scale metabolic models (GEMs) that use neural networks as a machine
learning basis to guide flux predictions by GEMs. Before diving into the biological and methodologi-
cal concepts that shall be described in order to understand the motivation for such an approach and
its construction, it is imperative to define important terms and set the biological scope that will be
considered. Indeed, some widely used terms’ precise meaning can differ among studies, as it will be
discussed in this preamble. Also, setting the particular biological scope that I limited myself to in this
dissertation is important, as considering all organisms and all known processes across the tree of life
would be too exhaustive.

1.1 Preamble: defining important terms and scopes
1.1.1 Metabolism
First of all, let us question the meaning of metabolism. As underlined by Lazar and Birnbaum[2], the
most common definition of metabolism, i.e. “the chemical processes that occur within a living organ-
ism in order to maintain life”, overlaps with the common definition of biochemistry, i.e. “the branch
of science concerned with the chemical and physico-chemical processes and substances which oc-
cur within living organisms”. The precise scope of metabolism is unclear: we need to draw a line
on the particular subset of biochemical reactions that constitute metabolism. In this dissertation,
I personally chose to use a common delimitation, considering metabolism as the set of all possible
enzyme-catalyzedbiochemical reactions that concern smallmolecules (i.e.,metabolites), happening in
an organism, or in a population of organisms. Importantly, some other delimitations of metabolism
(i) exclude non-essential reactions (and term ‘secondary metabolism’ the set of non-essential reac-
tions), (ii) include all chemical reactions (enzymatic and non-enzymatic), (iii) include macromolecule
synthesis, such as DNA replication and protein synthesis, or (iv) include biochemical reactions acting
as regulation processes, such as the activity of chaperones, transcription factors or kinases. Impor-
tantly, I don’t want to make the distinction between primary and secondary metabolism, as it does
not seemwell defined formost species, and condition-dependent (in some conditions, the ‘secondary’
metabolismmight become ‘primary’). Also, the metabolic models that will be used in this dissertation

31



do not include non-enzymatic reactions, nor those related tomacromolecule synthesis and regulation
processes; which motivates the proposed delimitation.

1.1.2 Regulation
Next, let us attempt to define regulation in general terms. A regulation can be defined as a man-
agement mechanism (defined by a set of rules) of a complex system (e.g. a living cell). For biological
systems in particular, it is unclear what processes are considered as regulatory or not. Bich et al. ex-
plored this question and define “regulation as the capacity of a biological organism to mediate the
effect of a perturbation, modifying its own internal behavior by means of a specialized subsystem
that modulates the action of diverse control mechanisms and selects between various available and
viable dynamic regimes”[3]. In the context of this dissertation (and in simpler terms) we will consider
regulation as the set of mechanisms that directly depends on abiotic or biotic cues, in order for the
organism to adapt to changing internal and external conditions.

1.1.3 Metabolic phenotype
Another important term I will use throughout this dissertation is the ‘metabolic phenotype’. This gen-
erally refers to the metabolic activity of an organism, whose precise scope is rather unclear. Indeed,
we could consider themetabolic activity of single cells or cell populations (of the same species ormulti-
species communities), time dynamics (on different time-scales) or a single snapshot, withmetabolites,
enzymes, reactions, or all of these entities, that each can be expressed in different units. Moreover,
as stated in the first section of the Preamble (1.1.1), the scope of metabolism itself relies on a subjec-
tive choice. Importantly, the notion of metabolic phenotype underlines the fact that it results from
regulation processes, with environmental cues driving the phenotypic responses based on genotype-
phenotypemaps[4]. Here, let me define the ‘metabolic phenotype’ of an organism as a snapshot of all
metabolic reaction speeds (also called metabolic fluxes), and all metabolites production rates. In that
sense, ametabolic phenotype performs biochemical reactions that are adapted to its environment, at
a given time point. Importantly, wewill consider in this dissertation the reaction fluxes andmetabolite
production rates to be expressed inmmol.gDW-1.hr-1, namely inmillimol of chemical species per gram
of dry weight of the organism per hour. As for the delimitation I set for metabolism, the proposed
definition of a metabolic phenotype is motivated by the scope of the metabolic models that I will use
throughout this dissertation, which are based on the same conception.

1.1.4 Biological scope
Importantly, I will limit my scope to Escherichia coli (E. coli) unless specified otherwise, in order to de-
scribe metabolic processes and regulation mechanisms. This is motivated by the fact that I almost
only used that model organism for the work presented in this dissertation. This is true for experi-
ments that have been conducted, metabolic models that have been exploited, and external datasets
that have been acquired from literature (except one Pseudomonas putida metabolic model and ex-
ternal dataset). In particular, I used models and experiments from the substrain MG1655, that was
isolated and treated with UV light and acridine orange, from the W1485 strain. The latter was isolated
from a stab-culture of the original K-12 strain, which was itself obtained from a stool sample of a diph-
theria patient in 1922[5]. Notably, compared to the original W1485 substrain, MG1655 mildly starves
for pyrimidine which can be compensated by adding uracil to the growth medium[6]. Note that such
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nutrient dependence is often called ‘auxotrophy’ (MG1655 is an uracil partial auxotroph). I also used
for some results the DH5-α strain of E. coli, engineered to lack methylation-dependent restriction sys-
tems and consequently enhance cloning efficiency[7]. In section 1.2.2.1.1, I will give details on E. coli as
a model organism and chassis for synthetic biology. Obviously, some of the metabolic processes and
regulationmechanisms further described are common tomany species and not only E. coli. However,
by limiting the scope to E. coli, I will ignore all eukaryote-specific regulation mechanisms, which can
be radically different[8], with exclusive processes such as alternative splicing.

1.2 Metabolism: more than breaking down nutrients
This section will present the main biological processes that we aim to model in this dissertation. It
will mostly cover the known mechanisms that control the metabolic response of an organism from
environmental cues.

To understand the state-of-the-art metabolism research, it is helpful to look back at historical
breakthroughs, that span fromunknowingly exploitingmetabolic processes circa 7,000 BC, tomodern
modeling approaches involving more andmore complete knowledge of metabolism. In the appendix
section A.1, such a historical overview is given, describing how the first enzymes, then metabolic
pathways, and complete metabolic maps were discovered. I also mention the modern questionings
around our conception of metabolism, mentioning underground metabolism and enzyme promiscu-
ity. In appendix section A.1, I also introduce basic metabolic key concepts, such as enzymes and their
thermodynamic constants (kcat, Km, Vmax), metabolites, pathways, cofactors or ribozymes. Finally, I
mention useful resources for metabolism research, such as the Enzyme Commission numbers clas-
sification, databases such as KEGG and BiGG, and a graphical view of a renewed central dogma of
molecular biology (Figure A.5).

1.2.1 From environmental cues to metabolic phenotypes: a concert of
regulatory mechanisms

In biological systems, regulatory and metabolic processes are intricate and intertwined: there is an
intensive interplay between the regulations shaping metabolic activities and the change of regulation
processes from different metabolic activities. However, for modeling purposes, such interplay does
not seem achievable as of today. Most approaches consider regulation or metabolism, and have
separate submodels for regulation and metabolism when combining them (see Section 1.2.1.2.1 for
examples). It is the case for hybrid models presented in this Ph.D. dissertation: we chose to model all
regulations through ‘agnostic’ machine learning methods, and use a mechanistic modeling approach
for metabolism, with genome-scale metabolic models (GEMs). The following section 1.2.1.1 will de-
scribe many regulatory processes found in bacteria (specifically in E. coli), and mechanistic modeling
approaches to simulate such processes. In the hybrid models presented in Chapters 2 and 3, we
attempt to model those processes by machine learning.
1.2.1.1 Amyriad of well-described regulationmechanisms: the reductionist approach
1.2.1.1.1 Metabolism regulation is more complex than controlling individual enzymes activities
Intuitively, and especially in scope of the ‘old’ central dogma of molecular biology (see Figure A.5
for a renewed version), one might guess that metabolic phenotypes are only controlled by regulat-
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ing the expression of enzyme-coding genes. However, there was no clear and universal relationship
found between the expression level of genes (i.e. the abundance or concentration of mRNA) and
the amounts of corresponding enzymes found in an organism[9]. Nonetheless, a correlation can
be found in many cases, and many attempts to build models predicting metabolic phenotypes from
transcriptomic data have been conducted[10], unfortunately showing limited generalization abilities
across environmental conditions. Moreover, the amount of enzyme involved in a given flux is not
necessarily correlated with the actual measured flux[11].

For a time, the scientific community considered a metabolic pathway to be only regulated by a
‘rate-limiting step’, i.e. an enzymatic reaction that is the bottleneck of the pathway (limiting the overall
pathway flux). Therefore, the approach to manipulate a metabolic pathway’s product flux was to at-
tempt a change in this particular enzyme activity (e.g. by increasing its expression level), which proved
unsuccessful in most cases. Note that an enzyme’s ‘activity’ is considered here as the catalyzed bio-
chemical reaction flux enabled by the enzyme. The fields of Metabolic Control Analysis (MCA) and Bio-
chemical Systems Theory (BST) tackled this issue by proposing a novel conception of the link between
an enzyme activity and itsmetabolic pathway activity. Instead of identifying a single ‘rate-limiting step’
assumed to control the pathway, this field explores the quantitative notion of ‘control’ exerted by an
enzyme activity on the pathway, i.e. howmuch the change in activity of this enzyme affects the overall
pathway’s activity. This quantitative notion of ‘control’ is formulated through mathematical models,
with ‘control coefficients’ estimated from experimental data. After compelling achievements, show-
ing better abilities to control pathways fluxes, the ‘metabolic control’ concept introduced by MCA and
BST fields replaced the previous intuition of ‘rate-limiting steps’, to explain the influence of individual
enzyme activities on overall metabolic pathways activities[12].

Wementioned above that a single rate-limiting step is not sufficient to explain an overallmetabolic
pathway regulation. These steps (also called ‘bottlenecks’, ‘key enzymes’, ‘pacemaker enzymes’ or ‘reg-
ulatory enzymes’) were historically identified through a variety of experimental or theoretical means
[12]. For example, one can determine the lowest Vmax enzyme of a pathway to find a rate-limiting
step (kinetic approach); but one can also interpret the metabolic pathway architecture (e.g. assuming
first steps to be rate-limiting, in a teleological approach). In most cases, experimentally determin-
ing a rate-limiting step does not require unraveling how this step is rate-limiting. It can sometimes
be explained without regulation mechanisms. For example, the thermodynamic properties of en-
zymes (kcat, Km, Vmax) and the cofactors, substrates, products and enzyme availability can modulate
metabolic fluxes that may induce such rate-limiting steps. Also, competitive inhibition, i.e. the com-
petition between different substrates of the same enzyme, can play a significant role in rate-limiting
steps. However, rate-limiting steps often involvemore sophisticated enzyme regulationmechanisms,
that we shall further describe. I will start by describing regulation mechanisms affecting the enzyme
activities (often referred to as ‘fast regulation’), and then proceed with gene expression regulation
related to metabolism (often referred to as ‘slow regulation’).
1.2.1.1.2 Enzyme activity regulation by post-translational modifications
Enzyme activity can be influenced by a widespread phenomenon: allostery (also called allosteric reg-
ulation or non-covalent post-translational modifications). It consists in a change of conformation of
an enzyme triggered by the binding of a molecule called an effector, to a different site than the ac-
tive catalytic site of the enzyme. The effector binding can change the conformation of an enzyme, to
inhibit or activate its activity. The term was first used in 1965 [13], describing the first allostery model,
known as the Monod, Wyman and Changeux (MWC) ‘concerted’ model. Nowadays, allostery is de-
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scribed with other models, such as the Koshland, Nemethy, and Filmer (KNF) ‘sequential’ model[14].
The KNF model differs from the MWC in the way allostery affects an enzyme’s subunits. In the 1980s,
allostery was re-conceived as a more continuous and global phenomenon, notably by considering
the physical environment of the enzyme, such as the pH and temperature, as allosteric effectors.
In the 2000s, more complex allosteric mechanisms were uncovered: a model of allostery without
conformational change, and a continuous conception of allostery (as a landscape of allosteric modu-
lation instead of binary activation), as well as ‘allostery networks’ were proposed[9]. Figure 1.1 shows
a general schematic of allosteric regulation. Another main enzyme activity regulation mechanism is
covalent Post-Translational Modification (PTM), with a diversity of effects found in bacteria[15]. The
best known and most widespread is the phosphorylation of serine, threonine or tyrosine residues in
proteins, performed by kinases and removed by phosphatases; inducing changes for longer periods
than allostery in the proteins activity. This phenomenon was long thought to be insignificant in E. coli
and other prokaryotes, but recent studies have shown the widespread and clear functional effects of
phosphorylation on E. coli phenotypes[16].

Figure 1.1: Allostery, a widespread enzyme regulation mechanism. Either a positive (activator) or neg-ative (inhibitor) allosteric effector binds to an enzyme allosteric site (bottom-left), to trigger allostericactivation or inhibition (white arrows) of the enzyme active site. The active site might be dependenton a cofactor (which is not an allosteric effector). (Author: Tenthkrige, License: CC BY 1.0)

1.2.1.1.3 Gene expression regulation: the lac operon and carbon catabolite repression examples
Now, I will describe enzyme-coding gene expression regulation mechanisms (the ‘slow’ regulation
mechanisms). The first thorough description of such a mechanism was the groundbreaking work of
Jacques Monod and François Jacob in 1961[17]. Their investigation started from a simple observation:
E. coli grown on a mixed carbon source culture medium, of glucose and lactose, would first consume
all glucose and then start consuming lactose. This phenomenon, termed diauxie, is the cause of a
phenomenon later described and called ‘carbon catabolite repression’ (CCR), and refers to the mech-
anisms explaining an organism’s modulation of its metabolic routes based on a hierarchy of carbon
sources utilization.

Naturally willing to explain this observation, Monod and Jacob pursued their investigation. This
led them to define the ‘operon’ as a transcriptional unit of E. coli, i.e. a physically clustered set of genes
that are transcribed in concert. In particular, they investigated the lactose (lac) operon organization
and regulation mechanism, of which a schematic is displayed on Figure 1.2. The operon consists of 5
contiguous DNA elements: a promoter sequence (where the RNA polymerase can bind), an operator
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sequence (where a repressor protein, lacI, can bind), and 3 ‘structural’ genes lacZ, lacY, lacA that en-
code for enzymes of the lactose transport and catabolism pathway, and are transcribed into a single
polycistronic mRNA (i.e. coding for several enzymes). Note that lacI is constitutively expressed (i.e.,
its expression is not depending on a specific condition). The production of the operon enzymes is
controlled by a relatively simple regulation mechanism. The ‘default’ behavior of the operon is to not
transcribe the enzyme-coding genes, in the absence of lactose or other lacI-binding molecules. If a
lacI-binding molecule is present in the cell (such as lactose, or allolactose, a product of lacZ creating
a positive feedback loop), it will allosterically change the conformation of lacI, making it unbind the
DNA operator and enabling the transcription of the lac operon. Therefore, this regulationmechanism
can be viewed as a boolean logic expression system: if the lactose substrate is present, the operon is
transcribed, otherwise it is not. However, we can expect to find much more complex logics in other
expression systems found in nature.

Another mechanism explaining glucose and lactose catabolite repression was found in 1984 and
called ‘CRP-cAMP lac operon activation’[18]. cAMP stands for cyclic Adenosine MonoPhosphate and
CRP stands for cAMP Receptor Protein. In the presence of glucose, cAMP levels are low because of
the inhibition of adenylate cyclase (producing cAMP) when glucose is transported inside the cell. CRP-
cAMP complexes bindmany sequences, notably to an upstreamsequence of the lac operonpromoter,
increasing its overall transcription activity in absence of glucose.

The above-described mechanisms explain how the lac operon activity is responding to the pres-
ence of lactose and absence of glucose, however it is not explaining how the presence of glucose
inhibits the lac operon activity. It was more recently found that the glucose transport system, known
as the Phosphotransferase system (PTS), triggers a de-phosphorylation of a PTS protein, which in this
form binds and inhibits the lactose transport permease enzyme lacY[19].

Figure 1.2: An enzyme-coding gene expression regulation mechanism controls the lac operon. 1: RNApolymerase, 2: Repressor, 3: Promoter, 4: Operator, 5: Lactose, 6: lacZ, 7: lacY, 8: lacA. In the toppanel, no lactose (white crosses) bind to the repressor (green), which binds to the operator sequence,blocking the RNA polymerase activity. In the bottom panel, lactose binds to the repressor whichchanges its conformation and suppresses its ability to bind the operator, thus allowing the RNA poly-merase activity. This leads to the production of lactase by the operon. (Author: T.A. Raju; license: CCBY 3.0)
More operons were discovered over the years, with a total of 2584 operons in E. coli[5]. One can

assume each of these operons are regulated in a different way, and CCR or CCR-like mechanisms can
also regulate how the operons are ‘competing’ with each other.
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1.2.1.1.4 Gene expression regulation: review of the main mechanisms
A more general family of regulatory proteins in which the lacI repressor falls into, is the transcription
factors (TFs) family. Generally, TFs are defined as DNA-binding proteins that influence positively or
negatively the transcription of one or several genes. A TF binds to an operator sequence. The activa-
tion or inhibition of transcription by a TF can be dependent on co-activator or co-repressor molecules
(such as lactose for lacI). Another family of regulatory proteins are the sigma factors, which are com-
monly known as more global regulators than TFs: they bind to RNA polymerase to transcribe large
sets of genes. For example, E. coli has 7 sigma factors and roughly 300 TFs. Importantly, most sigma
factors’ expression is regulated by other regulationmechanisms, and the competition between sigma
factors influences what genes will be expressed. In general, one gene is expressed with the help of a
single sigma factor. However in some rare cases, more than one sigma factor can support the tran-
scription of a gene[20].

Two-component regulatory systems are another important family of regulation mechanisms that
can explain how bacteria react to external stimuli, in which TFs play a central role[21]. Note these two-
component systems are ubiquitous across life domains but mostly found in bacteria so far. These
two-component systems transduce the signal of the external stimuli up to effective regulation, mostly
by modulating gene expression. The basic functioning of two-components systems is as follows: the
first component, a membrane-bound histidine kinase, senses the external stimuli which triggers the
autophosphorylation of a histidine residue; then the second component, called response regulator
protein, has its receiver domain phosphorylatedby the histidine kinase (transferring its histidine phos-
phate group on an aspartate residue of the receiver domain), which in turn activates the effector do-
main of the response regulator, in most cases by allostery. The response regulator with its effector
domain activated will perform the actual regulation, in most cases by directly modulating gene ex-
pression (thus they are considered as TFs). Note that in some cases the response regulator does not
possess a receiver domain, and a phosphorelay transduces the signal from the histidine kinase to
the response regulator. Moreover, in some cases, the effector domain of the response regulator is
interacting with another protein to trigger the regulation response, and does not directly modulate
gene expression. A major example of two-component system regulation is the expression of porin
genes in E. coli[21].

All regulations described so far were focusing on the cellular scale. However, a population-level
regulation happens in bacteria, called ‘quorum sensing’. It is defined as the gene expression regula-
tion triggered from fluctuations in cell population density. Quorum sensing is implicated in a wide
range of traits such as motility, virulence or biofilm formation[22]. Another mechanism, ‘quorum
quenching’ can disrupt quorum sensing communications and regulations. Chemotaxis is another in-
teresting regulation mechanism worth citing, enabling bacteria to direct their movement according
to chemical gradients found in their environment. Very briefly, other types of regulations can be per-
formed in E. coli by: (i) histone-like nucleoid structuring proteins (H-NS), (ii) small non-coding RNAs
(sRNAs), (iii) proteases and chaperones, (iv) signaling molecules (such as the above mentioned cAMP),
and (v) potentially other mechanisms that have not yet been discovered.

An extensive description of how E. coli metabolism is regulated has been proposed by Kayuzuki
Shimizu[23]. In this thorough review, Shimizu describes how different environmental stimuli such as
catabolite repression recruit global regulators such as the abovementioned cAMP-CRP system and
sigma factors, in order to regulate metabolic pathways. Figure 1.3 taken from this review shows an
overview of the descriptionmade by Shimizu. Importantly, note that this figure focuses here on global
(multiple targets) regulators of gene expression, and does not give a complete metabolic regulation
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description.

Figure 1.3: Overview of centralmetabolic pathways regulations in wild-type E. coli. A variety of environ-mental stimuli can trigger changes in global regulators and sigma factors activities, in turn regulatingthe central metabolism of the cell. (Author: Kazuyuki Shimizu [23]; license: CC BY 3.0)

1.2.1.1.5 Limitations of the reductionist approach
All regulation mechanisms listed so far are affecting enzyme activity either by gene expression or
PTMs. We previously mentioned that one can observe the ‘end-point’ effects of such mechanisms on
metabolic phenotypes, notably with changes in rate-limiting steps of a metabolic pathway. Another
way for regulation mechanisms to tune metabolic phenotypes are changes in branched pathways ac-
tivities (also called ‘branch points’). In metabolic networks, it is often observed that a product metabo-
lite can be subsequently used by more than one enzyme. The metabolic phenotypes are therefore
extremely dependent on such branch points, which are defining which route are the metabolites tak-
ing, i.e. the topology of the metabolic phenotype. It has been shown that branch points fluxes are
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critical to determine metabolic phenotypes, such as the acetyl-CoA branch point between fermenta-
tive and respiratory metabolism, that is controlled by transcriptional regulators[24].

In this section (1.2.1.1), we have describedmanymetabolism regulationmechanisms: allostery and
covalent PTMsmodulating enzymeactivity; regulation of operons in concertwith CCR; two-component
systems with sensing proteins and TFs to regulate gene expression; sigma factors. . . And these are
only the tip of the iceberg of themyriad of regulationmechanisms, that are described in-depth in liter-
ature. As quickly mentioned previously, the accumulation of many precise descriptions of suchmech-
anisms is a part of the reductionist approach. Reductionism - the scientific approach breaking down
a complex system into simpler subparts - has been the main approach to identify regulation mecha-
nisms, because of experimental constraints and scientific traditions[25]. Indeed, breaking down the
tremendous complexity of life into intelligible, interpretable subparts, was a necessary step on the
path to accumulate knowledge. As Shimizu attempted to summarize in his review[23], one may en-
vision the possibility to assemble all these descriptions and encapsulate into a single model, a single
formulation that simulates the cell-level behavior. This would be a step towards achieving the holy
grail of systems biology, as stated by Shimizu and Matsuoka: “the ultimate goal of systems biology is
to develop in silico models of a whole cell or cellular processes that can predict cellular phenotypes
in response to culture environment and/or genetic perturbation”[26]. In that sense, we would switch
our approach from reductionism to holism, i.e. considering the whole system instead of individual
subparts.
Even though we have seen a lot of regulation mechanisms extensively described in the past, “the
metabolic regulation in response to the change in culture environment is itself not well understood”,
as stated by Shimizu and Matsuoka in 2011[26]. Indeed, describing a subset of all existing regulation
mechanisms is not sufficient to model the whole-cell regulation mechanism (assuming that we do
not know all regulation mechanisms). Even if we did characterize all existing individual regulation
mechanisms, emerging properties of the combination of thesemechanismswould bring another level
of complexity, making it even more challenging to precisely characterize regulations at this scale.
Moreover, most regulationmechanisms cited in the present section 1.2.1.1 are qualitative descriptions:
their effect might be mitigated depending on quantitative changes of conditions. Consequently, it
seems very challenging to model whole-cell regulation in a holistic approach. In the next section
1.2.1.2, I will present some attempts in that direction.
1.2.1.2 Whole-cell regulation: the holistic approach
As stated in the introductory paragraph of the present section 1.2.1, the hybrid models I developed
for this Ph.D. attempt to model all regulations through machine learning methods, without requiring
knowledge about the underlying mechanisms. However, radically different approaches attempt to
model all regulations through detailed, mechanism-based models. These approaches shall be de-
scribed next, with an emphasis on their limitations.
1.2.1.2.1 Gene Regulatory Networks
RegulonDB[20] is themost complete and comprehensive database of transcriptional regulationmech-
anisms until today. It compiles all known and putative mechanisms found in E. coli. From this large
quantity of information, whole-cell models of regulation were attempted. Gene Regulatory Networks
(GRNs) are the general formulation to attempt a whole-cell mechanistic model of regulation[27]. They
are based on a network structure, where nodes are regulators and vertices represent the interaction
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of a regulator with others. Input signals are generally the presence or the quantity of metabolites to
which the organism is exposed, and the output is generally the gene expression levels. Regulators
can be DNA, RNA, protein, or any complex of those. The interactions can be of many kinds depend-
ing on the GRN representation. GRNs have a variety of representations, which can be delimited to 3
categories as proposed by Karlebach and Shamir: logical, continuous or single-molecule level GRNs.
Figure 1.4 shows the 3 categories of GRNs identified, with examples of models and their specificities.

Figure 1.4: Overview of GRN representations. 3main categories can be identified: Logical, Continuous,and Single-molecule level models. Examples of GRNs are displayed on the thick blue line on top.Specificities of the different representations are displayed on 7 imaginary qualitative axes, with themost ‘appealing’ pole of each specificity in a blue box. In short, GRNs formulations range from simpleto complex, with different levels of detail and accuracy. The choice depends on the specific applicationand the available data. (Authors: Karlebach & Shamir[27]; reused with authorization of the authorsand editors).
AGRN formulation that integrates awide range of biological objects is regulated Flux Balance Anal-

ysis (rFBA), since it is a quantitative formulation in which the metabolic network is ‘merged’ with the
GRN[28]. This opens the door for many interactions that are ignored in other formulations, and pro-
vides a quantitative whole-cell model of both regulation and metabolism. This particular formulation
is important in this dissertation, since most of the work has been conducted with similar metabolic
networkmodels as those used in rFBA. Similar merged formulations of GRNs andmetabolic networks
have been proposed, such as SR-FBA[29] and iFBA[30].
1.2.1.2.2 Limitations of GRNs
As stated in the previous section 1.2.1.1, gene expression levels alone cannot explain the metabolic
phenotypes of an organism. Therefore, most GRNs face amajor limitation: modeledmechanisms are
limited to transcriptional regulation, ignoring the ‘fast’ regulation mentioned above, i.e. allosteric and
covalent PTMs regulation of enzyme activity. Added to that, their output is most often limited to gene
expression levels[27]. Moreover, in my opinion, the major drawback of GRNs is evenmore important,
and generally related to an issue common to all mechanistic models. When using such models, if
we aim to accurately model regulation mechanisms, we must assume that (i) we are modeling all
interactions that exist in the organism, or at least all that are significant in the particular conditions
considered, and (ii) emerging properties from the concert of interactions working together are either
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known and modeled, or insignificant. These two assumptions are strong oversimplifications, that at
least limit the array of conditions accurately simulated by GRNs. In section 1.4.1.1.4 of the introduction,
we will come back in more depth to the capabilities and limits of mechanistic models.
As seen in the previous section 1.2.1.1, the complexity of whole-cell regulation processes is tremen-
dous, even for a ‘simple’ and very well characterized model organism such as E. coli. We have listed
in the present section 1.2.1.2 some attempts of whole-cell regulation models, but capabilities of those
seem still limited because of oversimplifications, due to (i) unknown knowledge gaps and lack of quan-
titativemodels for some regulationmechanisms, and (ii) emerging properties of the complex systems
we are trying tomodel. Other holistic formulations than GRNsmay suffer from the same issues. Mod-
ern research on metabolism also attempts to grasp and decipher complexity with more and more
standardized, rational, and quantitative approaches, which will be described in the next section 1.2.2.
Such holistic approaches of metabolism are ambitious but show great industrial potential. We will
also briefly cover the signal-processing abilities of metabolism itself.

1.2.2 Modern research on metabolism: embracing complexity
1.2.2.1 Shaping phenotypes with a purpose: a complex endeavor
1.2.2.1.1 Synthetic biology and metabolic engineering: industrially relevant fields
One of the major drives of metabolism research, except from the natural curiosity and human en-
deavor to understand life, is the medical and industrial potential of metabolic processes. Obviously,
it began with fermented beverages and foods, with for example Louis Pasteur’s research on fermen-
tation funded by the french wine industries in the early 19th century[31]. More recently, the break-
through of Cohen & Boyer in 1973[32] (showing the ability of easily and massively cultivable bacterial
strains to host and express heterologous genes), drew the attention of the biomedical industries.
But, even though the ability of E. coli to massively produce a complex molecule such as insulin by sim-
ply overexpressing a gene was considered a revolution for the biomedical industries, it was strongly
tempered for chemical industries applications, when facing the complexity of biological regulation
andmetabolism, even for producing a simple molecule such as ethanol[33]. Indeed, it required more
than 20 years of research after Cohen & Boyer’s breakthrough to see the emergence of the metabolic
engineering field. During these 20 years, an accumulation of knowledge on metabolic networks un-
locked a deeper and deeper understanding of metabolism. Moreover, as stated in the previous sec-
tion 1.2.1.1, regulation mechanisms were gradually deciphered, especially in E. coli which was (and
is still) the most widely used host for heterologous gene expression, thus the main candidate for
biotechnological applications. Consequently, in 1998, the first book of the field was published defin-
ing metabolic engineering as the “directed improvement of product formation or cellular properties
through the modification of specific biochemical reactions or the introduction of new genes with the
use of recombinant DNA technology”[34], with the hope of developing biotechnological interests be-
yond biomedecine. As stated in the previous section 1.2.1.1, it was for a long time believed that indi-
vidual enzyme activities could explain overall metabolic pathways activities and modify phenotypes
significantly. This assumption underlied many approaches of genetic engineering efforts, before the
emergence of metabolic engineering: instead of a single-gene scope, the engineering would use a
global and systemic scope of both regulation and metabolism, in order to finely control organisms’
phenotypes. In that way, metabolic engineering was the precursor of systems biology, which will be
described hereafter. Importantly, the synthetic biology field should be briefly mentioned, because it
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stems from metabolic engineering as they are both fields attempting to produce industrially inter-
esting molecules from biological materials. But, instead of focusing on organism-wide engineering
of metabolic phenotypes by fine-tuning existing regulation mechanisms and metabolic reactions, it
rather focuses on the de novo design of novel biosynthetic pathways and controlling mechanisms.
Moreover, synthetic biology develops systems that have more diverse applications than metabolic
engineering (i.e., more than the production of proteins or metabolites), such as biosensors, drug de-
livery, and cell-free systems[35]. This delimitation is still debated and the clear distinction between
synthetic biology and metabolic engineering is open for discussion.
1.2.2.1.2 Systems biology: understanding life as systems
As underlined just above, modern metabolic engineering and synthetic biology fields often rely on
holistic (systemic, global) views of regulation and metabolism. This approach is at the very core of
systems biology, i.e. the modeling of life as systems, with the great ambition of understanding life
as a whole. After decades of reductionism identifying many intelligible components of metabolism
and regulation, the challenge of postgenomic era’s biology was identified to be the assembly of these
components in more global formulations, to attempt and exploit global complexity instead of reduc-
ing it. Interestingly, the need for such an approach was formulated as early as 1961[36]. However,
it was much underappreciated, as it was an overambitious endeavor at that time. Indeed, we can
understand such a holistic approach was found unrealistic knowing both experimental and compu-
tational constraints of this era, as well as the simple lack of detailed knowledge about regulatory
and metabolic processes. Systems biology naturally re-emerged with great interest of the biology
community in the early 21st century[37], with the advent of high-throughput experimental technolo-
gies, namely the -omics methods. These encompasses measures at many levels such as genomics,
transcriptomics, metabolomics and phenomics (including fluxomics and interactomics). Leveraging
tremendous amounts of data at many scales, research was pushed to change the reductionist repre-
sentations of knowledge. The most widespread representation that enables the integration of such
large and diverse datasets are networks. A whole field of research is dedicated to the creation and
analysis of biological networks, namely Networks Biology[38]. These can be ofmany kinds, such as the
abovementioned GRNs, metabolic networks, or protein-protein interaction (PPi) networks. Systems
biology, obviously, is a much related field since most of this field’s models rely on network represen-
tations. Many challenges are still on the road for the successful integration of these large amounts of
data into systems biology models. This dissertation will present one effort towards completing this
grand challenge. In the following sections 1.3 (‘Genome-scale metabolic networks: state-of-the-art
metabolic modeling’) and 1.4 (‘Hybrid models: reconciling mechanistic and machine learning mod-
els’), I will come back in much more detail on examples of metabolic model formulations proposed in
the systems biology field.
Added to the new holistic representations brought by systems biology, -omics data and especially
metabolomics haveunveiled high complexity ofmetabolism, which questions thenature ofmetabolism
itself. In the next section 1.2.2.2, I will quickly describe unconventional use cases of metabolism, no-
tably as a form of signal-processing.
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1.2.2.2 Metabolism as a signal-processing unit in biocomputing
1.2.2.2.1 Definition of signal-processing and considered scope of metabolism
The definition of intelligence being highly controversial, I will avoid its use and prefer the less prob-
lematic signal-processing term. We can define a signal-processing system as a system able to take a
variety of decisions depending on the input signals it is exposed to. In other words, any computing
framework is a signal-processing system to which we feed an input signal and measure an output
signal.

Most often, complex relationships are foundbetween anorganism’s environment and themetabolic
phenotype it displays. In that sense, metabolism is involved in complex decisions based on input sig-
nals (the cell’s environment), and can be definitely considered as signal-processing. But since highly
complex mechanisms regulate metabolism, as described earlier, is it fair to consider metabolism
alone as having signal-processing abilities? In the end, this question is highly dependent on the delim-
itation we set for metabolism. Considering the same delimitation as in the Preamble of this chapter,
therefore excluding all regulationmechanisms, its signal-processing abilities consist only in the spatio-
temporal thermodynamics of the enzymes and metabolites interplay. We shall discuss hereafter to
what extent such signal-processing is performed, under that delimitation.
1.2.2.2.2 Open discussion on signal-processing abilities of life
Life was shaped by evolution to adapt to changing environments. As stated above, such adaptation
abilities, based on complex regulationmechanisms, can definitely be considered as signal-processing.
In that sense, evolution has shaped the signal-processing abilities of organisms, by selection pres-
sures depending on intricate interactions between organisms and their environment. Interestingly,
this iterative process refining the signal-processing abilities of cells through numerous generations,
can be itself considered as a signal-processing ability.

Importantly, evolution has not only led organisms to gain complex regulation mechanisms en-
abling such adaptation, but also complex metabolic interactions. In fact, metabolites and enzymes
have co-evolved in a very intricate manner[39]. Competitive inhibition, for example, is a form of con-
currency that can lead to signal-processing abilities by metabolism alone. Also, in a thermodynamic
view, the cell is a probabilistic space of encounters of metabolites and enzymes, which also can lead
to ‘noisy’ signal-processing abilities[25]. This is even more striking when looking at time dynamics of
metabolismwhich can display relatively complex behaviors over time, depending on properties of en-
zymes and their relation withmetabolites. Added to that, promiscuity, as cited in the beginning of this
chapter, is an ubiquitous phenomenon that adds another possible layer of complexity to competitive
inhibition, therefore increasing the signal-processing abilities of metabolism itself.

As discussed by Grozinger et al.[40], signal-processing abilities of cells, including metabolism,
could empower cellular computing frameworks surpassing traditional ones. Even though we are
far from achieving these frameworks concretely, the potential signal-processing abilities seem very
promising. Ametabolic computation frameworkwas built, called the ‘metabolic perceptron’[41], which
was based on multiplexed sensing of 3 molecules and a perceptron-like architecture of differentially
expressed enzymes eventually leading to a fluorescence response. Even though traditional comput-
ers were used for the biosensor design, in order to set the expression levels of enzymes to be used
as the metabolic perceptron’s weights, it clearly shows the signal-processing abilities of metabolism.
At a larger organism scale, the famous Physarum polycephalum species, commonly known as ‘blob’,
was used to compute many problems, with so-called Physarum machines[42] (echoing the more tra-
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ditional Turing machines); and another kind of perceptron was also built with plants[43].
To conclude this first section 1.2, let me summarize the key points mentioned so far. We have seen
that, in the past, myriads of regulation and metabolic processes were described in fine biochemical
detail, through the usual reductionist approach of biology. But today, large amounts of -omics data
are integrated inmore andmore complete and complexmodels, with the systems biology community
efforts to gather in rational, quantitative and intelligible ways the so-far acquired knowledge. Finally
we have reviewed how this holistic approach, rather ambitious, shows enormous potentials for con-
trolling organisms’ phenotypes, for applications in industrial biotechnology but also biocomputing.
The next section 1.3 will put the focus on the specific kind of systems biologymodel I used inmy Ph.D.,
i.e. genome-scale metabolic models (GEMs). These models describe all possible metabolic pathways
of an organism, and some associatedmetabolic capabilities, leading to complex representations, and
a variety of methods to exploit them.

1.3 Genome-scalemetabolic networks: state-of-the-artmetabolic
modeling

The hybrid models developed for this Ph.D. exploit genome-scale metabolic models (GEMs) to obtain
mechanistic insights on metabolic phenotypes. Such mechanistic models have a variety of formu-
lations and mathematical means to exploit them. In this section 1.3, I will start by giving a general
overview of suchmodels. Then, I will detail the content of a typical genome-scale model (iML1515[44]),
and describe the available mathematical methods for GEMs. Doing so, I will put an emphasis on con-
tents and methods that are of prime importance for the development of hybrid models in the disser-
tation remainder, such as the uptake fluxes, the biomass reaction, FBA and Linear Programming.

1.3.1 Overview
1.3.1.1 Metabolic models in the postgenomic era
One endeavor of systems biology is to represent metabolism at the genome-scale (i.e. at the en-
tire organism scale). Indeed, in the so-called ‘postgenomic’ era, i.e. the period after full sequenc-
ing of genomes was enabled and then gradually made cheaper, there was a shift in the scale of
metabolic pathways modeling. As described in the appendix section A.1, in the pre-genomic era, the
community accumulated individual metabolic reactions descriptions with biochemical experimental
analysis, which led to the precise knowledge of stoichiometry for many metabolic reactions[1]. After
this first step, individual metabolic reactions were naturally grouped into pathways, according to a
common function performed by these reactions together, or simply by scientific intuition. The next
stage of metabolic modeling was to surpass the grouping of reactions in pathways, and go to the
genome-scale. Indeed, the interconnection of pathways was sometimes missing and single formula-
tions of metabolic networks at the organism scale were not possible. The annotation of sequenced
genomes (the identification of DNA sequences’ functions) opened the door to this stage. In short,
algorithms and models based on DNA and protein sequence similarities enabled the inference of yet
unknown functions for DNA sequences. It is important to keep in mind that such genome annota-
tions may not be perfectly reliable, especially for less well-characterized organisms than E. coli, for
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which more uncertain inferences have to be made, since we have less detailed literature knowledge
of their metabolism. The three building steps from individual reactions to metabolic pathways then
to genome-scale metabolic networks, are schematized in Figure 1.5.

Figure 1.5: Evolution of network-based pathways. From (a) identifying single-step enzymatic reactionswith biochemical details of reaction stoichiometry and enzyme thermodynamics, to (b) grouping suchindividual reactions in pathways, to (c) considering the whole-cell metabolism in a single model, thatchange the paradigm of metabolic modeling by defining the system’s boundary and compiling allpossiblemetabolic routes, that are either active (black arrows) or inactive (gray arrows)(Authors: Papin
et al.[1]; reused with authorization of the corresponding author; license obtained on the Rightslink©platform).

Acquiring genome-scale metabolic models (GSMMs or GEMs) wasmade possible from both litera-
ture knowledge and automated genome annotations. Indeed, themost important piece of knowledge
contained in GEMs is the enzymatic reactions network stoichiometry, even if wewill see in section 1.3.2
that more diverse pieces of knowledge are integrated in modern GEMs. The fact that such models
are genome-scale brings up more challenges and questions on how to use them, compared to tra-
ditional metabolic pathways that were limited to roughly 20 reactions. The main difference between
traditional metabolic pathways and genome-scalemodels is the availability, in the latter, of all possible
metabolic routes the organism can display; whereas in traditional metabolic pathways, biochemists
were investigating the activity of the overall pathway without considering the remaining metabolism.
This is visually depicted on panel c of Figure 1.5. Importantly, one must also note that thermody-
namic properties of enzymes that were possibly identified when studying individual reactions are not
directly usable in the genome-scale network context[45].

The stoichiometric matrix is the usual mathematical representation of the metabolic network in
GEMs, with each row representing a metabolite and each column a reaction. Each element of the S
matrix denoted si,j is the stoichiometric coefficient of the metabolite mi in the reaction rj. The math-
ematical formulation of the metabolic network as a stoichiometric matrix and a glimpse of how it
can be used is depicted in Figure 1.6. In section 1.3.3 of the present chapter, I will describe in much
more detail the different mathematical means of making meaningful and useful inferences with such
a large space of possible metabolic routes.

To ease the large-scale representation efforts of systems biology, more rationalized ways of cat-
aloging biological objects were proposed, with community standards such as the Systems Biology
Markup Language (SBML)[46] or the Systems Biology Ontology (SBO)[47]. These provide common
vocabularies and semantics to the systems biology models, enabling interoperability and better un-
derstanding. For example, an SBML markup can tag an entity as a reaction or chemical species in a
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Figure 1.6: Mathematical formulation of the reaction network: the stoichiometric matrix. From (a) thereaction network stoichiometry, one derives (b) a stoichiometric matrix, which in turn can be used for(c) mathematical pathway analysis, for example defining the space of possible steady-state solutions;here represented for only 3 imaginary fluxes in order to be easily visualized. (Authors: Papin et al.[1];reusedwith authorization of the corresponding author; license obtained on the Rightslink© platform).

GEM, and an SBO termmay designate a Michaelis-Menten kinetic parameter in a dynamic model[48].
Inmost GEMs, the reaction fluxes andmetabolite production rates are expressed asmmol.gDW-1.hr-1.
Importantly, the biomass production rate (or simply termed ‘growth rate’) is an exception, expressed
in .hr-1. This particular reaction is further described in section 1.3.2.

Importantly, GEMsare sometimes termed ‘whole-cell’models, as they aim to represent themetabolic
behavior of the entire cell. As previously stated, it is the most ambitious endeavor of systems biology
to build such a model, and it is naturally E. coli which seems the most adapted for this quest, given
our extensive knowledge of it. Obviously, metabolism is not the only process happening in cells: tran-
scription, translation, transport or complexation, for example, can play important roles in the overall
cell behavior. Consequently, some approaches such as the ‘E. coliWhole-Cell Modelling Project’ aims
to integrate GEMs and othermodeling processes in rather intricateworkflows ofmodel combinations,
to propose an actual whole-cell model, simulating more than metabolism at the organism scale[49].
1.3.1.2 Steady-state or dynamic formulations to exploit GEMs
Two different ways of exploiting GEMs need to be distinguished; that are the steady-state and kinetic
models. Both of these formulations rely on the stoichiometry of metabolic reactions, termed stoi-
chiometric matrix and denoted S or N in many works. This matrix describes how metabolites are
consumed or produced by each metabolic reaction of the network; it is the most critical knowledge
that a GEM contains. The main difference between steady-state and kinetic formulations is that the
latter is considering the dynamics of metabolism, with the evolution in time of enzymes and metabo-
lites concentrations. In that sense, steady-state metabolic models assume a mass-balanced state of
metabolism. Experimentally, such steady-states are assumed to be reached in the mid-log phase of
batch-culture bacterial growth. Therefore, steady-state models consider the metabolic phenotype as
a ‘snapshot’ of the metabolic reactions at mass-balance equilibrium (fitting the definition given in the
Preamble, section 1.1). On the contrary, kinetic models exhibit the temporal metabolism dynamics
which leads to a drastically more complex formulation, since each enzyme in the network needs ther-
modynamic parameters (kcat, Km) to be estimated, either by experimental work or by sampling possi-
ble values when making predictions without experimental determinations. State-of-the-art methods
to simulate genome-scale kinetic models rely on deep learning to accelerate the sampling of realistic
enzyme kinetic parameters[50]. Even with such state-of-the-art methods, the computational cost of
simulations is significantly larger for kinetic models than for steady-state models.
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Kinetic models describe in very fine detail the dynamics of metabolism. In that sense, they are
closer to what happens in reality, and they provide more insights into the metabolic processes. For
example, when a steady-state metabolic model predicts a low flux for a metabolic reaction in a given
condition, there is no further interpretation that can be made. In contrast, kinetic models describe
underlying mechanisms that could explain this lower flux, such as enzymes andmetabolites levels, or
regulatory and thermodynamic processes affecting enzyme activities. However, kinetic models show
limited predictive capacities as in vivo biochemical data are too sparse. In addition, diverse -omics data
integration with these models is more challenging than with steady-state formulations[45]. Indeed,
steady-state models can output the possible solutions that kinetic models can reach, when built with
the same stoichiometric matrices. Therefore, the advantage of kinetic models over steady-state, in
most cases, is limited to the study of metabolites concentration dynamics over time before reaching
steady-state, which is often disregarded, given the complexity increase to obtain such dynamics. For
example, in industrial settings for bioproduction, cells are atmetabolic steady-state and the dynamics
before reaching that steady-state are rather useless. In short, kinetic models are closer to reality but
steady-state models bring simplifications that make them more usable. These two approaches may
seem opposed, however, many computing frameworks attempt to combine kinetic and steady-state
models into single frameworks, in order to better integrate -omics data[45], or simply use the insights
of each method to help interpret the other, in a synergistic fashion[51, 52].

As depicted in Figure 1.7, kineticmodels canbedistinguished fromconstraint-basedmodels (CBMs).
Even though CBMs can explicitly take time into account, and therefore describe dynamics, they differ
in their mathematical foundation. Indeed, kinetics models intrinsically describe dynamical behaviors,
with suited methods such as Ordinary Differential Equations (ODEs) or Hybrid Cybernetic Modelling
(HCM). In contrast, CBMs can only take time into account with ’tweaks’ to their methods, which are
originally designed to describe steady-states. For example, Flux Balance Analysis (FBA), a CBM that
finds single steady-state solutions based on optimality (see section 1.3.3.3), can be tweaked to inte-
grate time, with dynamic FBA (dFBA) simulating a series of steady-states to compute the time dy-
namics. Importantly, in the remainder of the dissertation, I will use the term CBM to designate the
steady-state CBM formulations to exploit GEMs.
1.3.1.3 A variety of ways to exploit GEMs, with different biological scopes
As stated in section 1.2.1.2.1, some GEMs formulation include regulatory mechanisms, most notably
by merging GRNs with metabolic networks. In fact, another diversity level extends the array of ways
to exploit GEMs. Indeed, as shown in the Venn diagram of Figure 1.7, many GEMs computing frame-
works exist. According to this classification from Moulin et al.[51], the different frameworks encom-
pass the integration of regulation, resource cost, and explicit time; with both Constraint-BasedModels
(CBM) and kinetics models. Note this figure is of course not exhaustive of all formulations. Recently,
community-level models, where GEMs of several organisms aremerged into a single formulation[53],
emerge as promising tools to understand bacterial communities. In the remainder of the introduc-
tion, I will focus on single-organism GEMs, exploited with steady-state CBMs formulations, such as
FBA that I extensively use in Chapters 2 and 3.
I just gave an overview of the origin of GEMs, their many different formulations, and a glimpse of how
they can be used. The following section 1.3.2 will focus on the detailed content of GEMs, under the
scope of steady-state CBM formulations, namely Flux Balance Analysis (FBA) and related approaches.
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Figure 1.7: Venn diagram of various GEMs computing frameworks, along with their interconnectedrelationships. Each framework is sorted into categories based on their nature (either constraint-basedor kinetic) and the attributes they offer, such as explicit time, regulatorymechanisms, or enzyme cost.An arrow from one framework to another indicates it is a further development or expansion. For thespecific meaning of each framework’s acronym, please refer to the original study (Authors: Moulin et
al.[51]; reused with authorization of the corresponding author; license: CC BY 4.0)

1.3.2 Detailed content of the state-of-the-art E. coli GEM: iML1515
In the appendix section A.2, I give a succinct description of how GEMs are derived from manual cu-
rations (based on expert knowledge) and genome annotations (based on uncertain inferences). In
particular, these methods compile metabolic reactions that, when assembled into a single network,
constitute the most basic GEM content: the stoichiometric matrix. What this matrix is including actu-
ally depends on themodeler’s choice of processes to include (i.e. the scope of themodel). iML1515[44]
only includes small-molecule enzyme-catalyzed metabolic reactions, and is the state-of-the-art E. coli
GEM in that scope. Its detailed content, beyond the stoichiometric matrix, will be further described.
1.3.2.1 General content
iML1515[44] contains 1877metabolites, 2712 reactions and 1516 genes; all formulatedwith SBML terms,
that link genes to reactions (with metadata links) and reactions to metabolites (with the stoichiomet-
ric matrix). It represents the metabolic network of the K-12 MG1655 strain of E. coli, and has been
constructed from the genome NC_000913.3 (NCBI Reference Sequence). Released in 2017, most of its
content comes from the previous formulation, iJO1366, which was itself based on older formulations
(from recent to old): iAF1260, iJR904, iJE660 (the very first E. coli GEM released in 2003)[54]. In the
appendix section A.2, I briefly describe how such iterative refinements are performed. The following
sections will focus on the additional iML1515[44] content that has not been described yet.
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1.3.2.2 Compartments
Added to themetabolic network stoichiometric matrix, an important part of the knowledge contained
in iML1515[44] lies in the compartmentalization of reactions. Indeed, each reaction is annotated
according to its localization in the organism (with SBML terms). There are three compartments in
iML1515[44]: the external (extracellular), periplasmic, and cytosol (intracellular) compartments. Note
that some GEMs may include more organelles compartments. Different types of reactions can be
identified according to their compartments localization. Exchange reactions (also called uptake fluxes,
see appendix section B, ‘Terminology’) are very important as they simulate the available external com-
pounds for the organism. In otherwords, they simulate the composition of the external compartment.
Transport reactions are also critical as they are linking the external, periplasmic, and cytosol compart-
ments. Internal reactions are happening in the cytosol compartment[55].
1.3.2.3 Uptake fluxes
Uptake fluxes (also called exchange reactions, see appendix section B, ‘Terminology’), are the most
critical fluxes to parametrize for a GEM. Setting a non-zero upper bound on such an uptake flux sim-
ulates a maximal speed of inflow for a given substrate that is available for the organism. In practice,
these uptake fluxes are often used to simulate the influence of media compositions on the metabolic
activity of the organism. However, when organisms are grown in complex media, finding suited up-
per bounds for uptake fluxes is very challenging. Therefore, measuring uptake fluxes is necessary in
many metabolic modeling projects involving GEMs. Further assessment of uptake fluxes limitations
will be done in the remainder of this section, when describing the biomass reaction (section 1.3.2.5)
and the optimality principle (section 1.3.3.3) underlying FBA, the usual method to exploit GEMs.
1.3.2.4 ATP maintenance
iML1515[44] contains the ATP maintenance (ATPM) reaction that simulates the basal consumption of
ATP by E. coli for survival (housekeeping). This is mathematically formulated by a lower bound on an
imaginary ATPmaintenance reaction, i.e. aminimumATPM value that all iML1515[44] solutions should
verify. Other default bounds on the remaining reactions are set according to the reversibility of reac-
tions: if a reaction is irreversible, its lower bound is null, but if it is reversible, its lower bound is nega-
tive and the flux can take either positive or negative values (depending on the reaction direction). The
ATPM is determined through experimental measures that may vary according to GEMs reconstruc-
tions. For iML1515[44], E. coli was grown on different substrates and the ATP fluxes were measured
as well as the growth rate. Fitting a regression line relating the growth rate (x) and the ATP fluxes (y),
Monk et al. could determine the non-growth associated ATPM (NGAM) to 6.86mmol.gDW-1.hr-1, as the
regression line y-intercept. This value represents the above mentioned basal ATP consumption of E.
coli for its survival. Importantly, they also determined the growth-associated ATPM (GAM) from the
regression line slope, at 75.55 mmol.gDW-1.hr-1, which is used as a stoichiometric coefficient of ATPM
consumption for the biomass reaction described below.
1.3.2.5 Biomass reaction
Finally and most importantly, the biomass reaction is a critical part in reconstructing a GEM (added
to the stoichiometric matrix, of course). This reaction is basically an imaginary reaction that simu-
lates the biomass production rate, i.e. the growth rate of an organism. The reactants are all the
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identified biomass precursors, with non-integer stoichiometric coefficients that are found to comply
with experimental measures. For iML1515[44] and most GEMs, this relies on literature reviews, and
a variety of measures such as fluxomics to relate the growth rate to different metabolite fluxes, or
macromolecular fractions to estimate the cell’s composition and consequently its needs to produce
biomass. These measures are not performed for a vast array of conditions, so its confidence and
extrapolation capacity to other conditions are quite limited. For example, the above mentioned GAM
value may be varying according to the number of tested substrates and their concentrations. Con-
sequently, studies proposing refined biomass reaction formulations from wider experimental data
integration, such as for the Chinese Hamster Ovary (CHO) model by Zanghelinni et al.[56]. Ambitious
approaches also propose to change the biomass reaction estimation process, such as the BOFdat
approach relying on a genetic algorithm searching for the best biomass formulation from diverse
experimental datasets[57].

In general, the realistic nature of growth rate predictions through the biomass reaction of GEMs
heavily relies on uptake fluxes. Indeed, such uptake fluxes will determine the value obtained for
the biomass reaction, through the optimality principle (section 1.3.3.3). In fact, the biomass reaction
in GEMs can only predict the growth yield and not the growth rate, when uptake fluxes are left un-
measured. The growth yield describes the amount of biomass produced per amount of substrate
consumed, an information that is directly described by the biomass reaction and metabolic network
topology.
In this section 1.3.1 we have seen that GEMs reconstructions may vary according to their scope. I
took as an example iML1515[44], the state-of-the-art E. coli GEM, to describe its content beyond the
stoichiometric matrix reconstruction. In the next section 1.3.3, I will cover the different mathematical
formulations for exploiting GEMs, which bring a diversity of applications.

1.3.3 Measuring and predicting metabolic phenotypes with GEMs
Exploiting GEMs rely on a variety of mathematical formulations and analysis methods. These can be
roughly divided into (i) pathway analysis, which entirely relies on the metabolic network topology and
the mathematical domain of convex analysis, (ii) Metabolic Fluxes Analysis (MFA), which relies on the
integration of metabolic fluxes datasets and algorithms estimating the propagation of metabolites in
the network, and (iii) Flux Balance Analysis (FBA) and related approaches, that rely on an optimality
principle to predict possible solutions of GEMs. The first approach, pathway analysis, is described
in the appendix section A.3; the second approach, MFA, is briefly described, and the third approach,
FBA, is extensively described hereafter.
1.3.3.1 GEMs rely on two main constraints
These approaches are different in many aspects, but they all rely on the two most central constraints
that GEMs should satisfy in CBMs formulations. Namely, these are the mass-balance and flux bound-
aries constraints. Mass-balance states that any flux vector V (i.e. a distribution of all fluxes values) and
the stoichiometricmatrix S should always verify, at steady-state, the following equality constraint, that
guarantees all reactions are balanced and equilibrated:

S.V = 0 (1.1)
The other constraint that metabolic networks should verify are inequalities, i.e. boundaries set
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for each flux value. This ensures any metabolic flux (vi) value of the flux vector V to be lower than its
corresponding upper bound (UBi) and higher than its lower bound (LBi). This is simply formulated,
for each flux vi of V by the following inequality:

LBi ≤ vi ≤ UBi (1.2)
Tuning the lower and upper bounds can be used to simulate metabolic states. Indeed, setting

minimal or maximal values constraints for particular fluxes can be used to simulate reaction KOs (in
that case the lower and upper bounds are null), observe metabolic phenotypes that respect precise
flux values (in that case the lower and upper bounds are equal to a flux measure or flux value to test),
or simulate minimal (e.g. for ATPM) or maximal (e.g. for substrate uptakes) flux activities.
1.3.3.2 Metabolic Fluxes Analysis: predicting metabolic phenotypes from flux mea-

sures
Metabolic Fluxes Analysis (MFA), in a nutshell, aims to integrate flux data in metabolic pathways or
GEMs, to predict remaining fluxes that have not been measured. It is a widely used technique in
metabolic engineering projects. The most basic approach is stoichiometric MFA[58], which consists
in minimizing the error between uptake and secretion fluxes computed by a GEM under the con-
straint of equation 1.1, and the actual measurements. Added to uptake fluxes measurements, one
can measure internal metabolites isotopomers, most often with 13C-labeling methods. This requires
a formulation called 13C-MFA which adds another minimization of the error between measures and
GEM computations, this time onmeasured isotopomers production rates. Finally, more sophisticated
approaches were also developed, such as 13C-NMFA to account for non-steady-state MFA solutions,
or COMPLETE-MFA for the integration of multiple isotopomer labelings.

Flux data to be used inMFA frameworks can be acquired throughmany experimental ways. Exter-
nal (uptake or secretion) fluxes can be obtained through exo-metabolomics or simpler quantification
techniques of extracellularmetabolites (which can be solutes or gas). Internal fluxes can bemeasured
with isotopic labeling experiments. It consists in replacing nutrient sources with their isotopomers
to enable, after spectrometry and chromatography measures, the precise quantification of individual
metabolites production rates. But these rates can also be indirectly estimated frommetabolomics[59]
or more recently from transcriptomics[60] datasets.

In many cases, MFA can be used to decipher the metabolic activity of an organism in different
conditions. For example, it has been used to characterize E. coli DH5-α metabolic phenotype when
grown in complex rich media[61]. Also, it has been used to discriminate between the transcriptional
control mechanisms of respiration and fermentation metabolism[24].
1.3.3.3 Flux Balance Analysis: predicting metabolic phenotypes from an optimality

principle
1.3.3.3.1 Computation framework overview
Themainways to use and exploit GEMs are FBA and related approaches. Instead ofminimizing the er-
rors betweenmeasurements and GEMs computations as in MFA, these rely on an optimality principle
to find solutions. Thus, they can be used without any fluxmeasurement. A reaction or combination of
reactions is set as an objective tomaximize (orminimize, in rare cases). Consequently, themathemat-
ical framework for such approaches is a Linear Program (LP). Subjected to constraints of equations
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1.1 and 1.2, this framework maximizes the following term:
Max

(
cT . V

) (1.3)
With c the vector indicating which reaction(s) to maximize. Most often, this objective-defining

vector is full of zeros with a single value of 1 for the reaction to maximize. This reaction is most often
the previously described biomass reaction. Constraints from equations 1.1 and 1.2 defining the convex
solution cone, the maximization then searches for the highest possible value of 1.3 inside this cone.
Note that there is no guarantee of a unique flux distribution maximizing 1.3. A visual depiction taken
from Kaufmann et al.[62] of the FBA methodology is given on Figure 1.8.

Figure 1.8: Methodology for flux balance analysis. (a) A model system comprising three metabolites(A, B and C) with three reactions (internal fluxes, vi, including one reversible reaction) and three ex-change fluxes (bi). (b) Mass balance equations accounting for all reactions and transport mechanismsare written for each species. These equations are then rewritten in matrix form. At steady state, thisreduces to S.V = 0 (equation 1.1). (c) The fluxes of the system are constrained on the basis of thermody-namics and experimental insights. This creates a flux cone corresponding to the metabolic capacityof the organism. (d) Optimization of the system with different objective functions (Z). Case I givesa single optimal point, whereas case II gives multiple optimal points lying along an edge. (Authors:Kauffman et al.[62]; license obtained on the Rightslink© platform).

1.3.3.3.2 Linear Programming for FBA
A variety of LP solvers exist to perform such FBA computations. Two main families will be cited here,
that are interior-point and edge-following algorithms. As briefly explained above, LPs have a solu-
tion space that is a convex cone (polytope, polyhedron). In simple terms, edge-following algorithms
such as the simplex algorithm[63] find the optimal solution relying on a procedure that explores the
edges of the solution cone, whereas interior-point methods’ procedures explore the cone from the
inside[64]. Both edge-following and interior-point methods are solvable in polynomial time through
iterative procedures, falling in the complexity class P, which makes these algorithms relatively effi-
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cient and computationally cheap. Interestingly, enumerating possible solutions would be intractable
compared to finding a single optimal solution. In the FBA context, this is the case with the enumer-
ation of Elementary Flux Modes (EFMs) being computationally intensive. Also, note that in the FBA
context, edges of the cone are Extreme Pathways (EPs, see appendix A.3 for explanations on EFMs
and EPs). For intelligible mathematical details of both edge-following and interior-points methods, I
recommend the review of Chandru & Rao[65]. These methods are still widely used today, with dif-
ferent formulations, but there is also a recent emergence of more innovative ways to approach LP
solving, notably through fuzzy[66] and machine learning[67] approaches.

Computational toolboxes have been developed for FBA and more generally Constraint-Based
Modeling (CBM) methods for GEMs. Worth citing here are the Constraint-Based Reconstruction and
Analysis (COBRA) packages in python and Matlab programming languages[68]. They provide an ar-
ray of functions, standardized objects, and mathematical methods to ease the Linear Programming
manipulations with GEMs. That includes standard LP solvers, e.g. the GNU Linear Programming Kit
(GLPK, an open-source simplex-based method).
1.3.3.3.3 FBA variations: different computation frameworks and biological scopes
Toovercome the shortcomings of FBA, variants of themethodhavebeenproposed. Someapproaches
imply a subsequent LP solving after regular FBA is performed: the first FBA solution value for the reac-
tion to optimize is used as an exact (LB=UB=solution) or loose (e.g. LB=0.9*solution andUB=1.1*solution)
constraint for that reaction, then another LP is performed. In parsimonious FBA[69] (pFBA), the sec-
ond LP consists in minimizing the sum of all fluxes, which is biologically meaningful for the cell’s re-
sources. In Flux Variability Analysis[70] (FVA), the second LP computes the minimal and maximal flux
values for a list of reactions, showing different possible solutions instead of a single FBA solution.
Flux sampling[71] does not rely on two subsequent LPs, but on a variety of possible sampling algo-
rithms that explore the solution space and return sets of solutions compliant with the constraints of
the problem. Therefore flux sampling methods do not rely on the LP optimization of an objective
function.

Other variants of FBA focus on extending the biological scope of the framework. As mentioned
previously, many formulations exist, whether they integrate regulationmechanisms, resource cost, or
time (Figure 1.7). A few areworth citing here given the scope of this dissertation. Regulatory FBA (rFBA)
is linking GRNs with GEMs thereby integrating regulation and metabolism together[28], dynamic FBA
(dFBA) simulate time-series as discrete steady-states of FBA[72], Resource Balance Analysis (RBA) in-
tegrates macromolecular synthesis processes as a part of GEMs[73]. Note that these formulations
can also be analyzed with pFBA, FVA, or flux sampling frameworks, as they are just modifying the
biological context and scope compared to FBA, but all rely on similar mathematical formulations (i.e.
constrained linear optimizations).

A specific task to make FBA predictions quantitatively accurate consists in constraining the up-
take fluxes, as stated in section 1.3.2.5. Without measures of such fluxes, the FBA computation relies
on a choice of exchange reactions bounds values, to simulate a particular environment for the cell.
To ease this task, a variety of formulations can be used. For example, Hoppe et al. have used addi-
tional thermodynamic constraints[74]; Marmiesse et al. have used regulatory network steady states
to estimate uptake fluxes[75]; saturation FBA (satFBA) simulates the uptake fluxes of metabolites by
transporter saturation kinetics[76]; CoRegFlux integrates dynamic transcriptomics to predict dynamic
uptake fluxes[77].
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1.3.3.3.4 Optimality principle in FBA: a questionable approach
A crucial criticism one can have on FBA is the need for a reaction to optimize in order to make predic-
tions. Indeed, without such a Biological Objective Function (BOF) to maximize, constraints imposed
by GEMs only define a large set of possible solutions. This space, as stated in the previous section
1.3.3.3.3, can be efficiently sampled with flux sampling algorithms. But these possible solutions may
vary a lot according to the sampling algorithm and the actual solution space (i.e. the constraints im-
posed on the system, the shape of the polytope), and it might be hard to interpret. Therefore, there
is a clear need for a BOF to optimize, to ease and standardize the exploitation of GEMs. The BOF is
most often the biomass production reaction, previously described and criticized for its lack of general-
izing ability. The optimality principle is a core assumption of the FBA framework to reach supposedly
realistic solutions: under FBA assumptions, an organism would always maximize its growth, in any
condition. This is obviously questionable, as many examples are found in nature of organisms that
adapt to changing environment by actually reducing their growth rate, e.g. with dormant states of
persistence under stress conditions[78]; or with niche construction and other community level inter-
actions (e.g. biofilm formation)[79]. More generally, we can assume that evolution has led organisms
and their metabolic networks to adapt to changing environments, with survival and reproduction as
objectives, rather than the maximization of their growth rates. Such criticism of the BOF in FBA and
more generally for the study of metabolic networks is an important and complex discussion that is
further explored by Berkhout et al.[80]. Two of the proposed solutions to overcome the BOF limi-
tation is to use multi-objective formulations of metabolic networks[81], and integrate experimental
data in more standardized and automated ways[57]. To temper the above criticism over the BOF and
optimality principle, it is important to note that in ideal laboratory conditions, metabolic networks
do show such growth rate maximization objectives. Indeed, Artificial Laboratory Evolution (ALE) ex-
periments have shown that, if an organism is left for hundreds of generations to grow and adapt to
the same substrates, it can reach the metabolic network theoretical optimality of growth found by
FBA[69].

As stated in section 1.3.2.5, determining uptake fluxes are critical for the BOF to accurately predict
growth rates, otherwise able to predict growth yields only. When parametrizing a GEM, upper bounds
on uptake fluxes are thus critical. However, the relationship between the uptake fluxes and the BOF
is clearly oversimplified: in most cases, the optimality principle tends to maximize uptake fluxes, in
order to maximize the BOF. The reality is muchmore complex: from physico-chemical conditions and
the cell’s internal state, the organism will have a certain uptake flux. There is a complex relationship
between the availability of a substrate and its uptake, which is strongly oversimplified with GEMs, by
the optimality principle.

Even though there are some drawbacks to FBA and its variants, it is still a powerful approach to
make large-scale metabolism predictions with relatively simple frameworks. Using such models and
frameworks is very widespread in metabolic engineering, drug discovery, and other domains of ap-
plication[82], with compelling achievements such as the design of antibiotics[83], or the engineering
of industrially relevant strains[84]. In general, such applications rely on large-scale in silico screening
of candidate metabolic modifications to perform, such as reactions to add or remove (by knock-ins
or knock-outs of enzyme-coding genes), or medium composition optimization. On a more theoreti-
cal ground, FBA frameworks can be used for regulation mechanism discoveries, with ‘gap-filling’ ap-
proaches similar to those used for GEM reconstruction[55], as described in the appendix section A.2.
For example, screening a large number of phenotypes with Biolog phenotyping arrays[85] enables
the identification of novel possible substrates for the growth of an organism, then refining the model
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to include such substrates’ uptake fluxes.
In this section 1.3, I have reviewed what is the general GEM content and how they are recon-

structed, as well as some of their mathematical frameworks to be exploited. I have also mentioned
the capabilities and limits of such GEMs, and cited some alternative formulations. So far, we have not
mentioned the formulations including Machine Learning (ML) processes, which are more and more
frequently used to increase the capabilities of GEMs. In the next section 1.4, I will recall the differences
betweenmechanistic andML approaches, then cover approaches to exploit GEMswithML processes,
and the emerging hybrid modeling field that aims to build models with both machine learning and
mechanistic abilities.

1.4 Hybrid models: reconciling mechanistic and machine
learning models

Mathematical models are abstract representations of ideas, concepts, observations and generally all
kinds of natural phenomena. They are necessarily approximations of the real-world. The famous
aphorism of Georges Box, “all models are wrong, but some are useful”[86] underlines such inherent
imperfection of models. Importantly, one must keep in mind the indirect relationships between the
‘truth’ (the real-world phenomenon), the observations we make, and the models that are based on
such observations. Observations of the ‘truth’ are inherently imperfect, as they are made through a
‘window’ limited by instrumentation capabilities or individual bias. This is especially true when ob-
serving complex and molecular scale phenomena such as metabolism. Integrating observations in
models is also imperfect, because mathematical models can have inherent limits to what behavior
they can simulate or not. Therefore, a mathematical model is far from an equation reproducing the
truth - in that sense, ‘all models are wrong’. For a model to be ‘useful’, twomain objectives seem to be
facing in a trade-off: it should provide insights on the ‘truth’, deciphering causality with mechanisms,
and built in the most simple way possible; but it should also be also approximating the ‘truth’ in the
most accurate and generalizing way possible. Also, a useful model should be able to predict new
behaviors that have not been observed during the model construction.

These two objectives relate to the twomain families of mathematical models: Mechanistic Models
(MMs), based on precisely predefined (a priori) components that model phenomena by causality en-
coded in mechanisms[87, 88]; and the Machine Learning (ML) models which are based on statistical
learning methods that model phenomena by analyzing the patterns found (a posteriori) in obser-
vational data[88–90]. In simpler terms, MMs relate the input (independent variables) to the output
(dependent variables) with mechanisms derived from knowledge; whereas ML relates the input to
the output from their observed statistical relationships.
The hybridmodels developed in this Ph.D. incorporate concepts andmethods from bothML andMM,
in particular using Artificial Neural Networks (ANNs) and GEMs. Consequently, in the following part of
the introduction, I will review the basics of both MM and ML, with more details given for ANNs, then
compare the two approaches capabilities and limits. Next, I will present approaches that combine
MM and ML for exploiting GEMs. Finally, I will present the hybrid modeling approach which aims to
formulate single models with both ML and MM capabilities, instead of combining both approaches
with separate models. Therefore, I will introduce the research gap that is targeted by this Ph.D. dis-
sertation, i.e. the development of hybrid models for GEMs.
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1.4.1 Machine learningandmechanisticmodels: two seemingly opposed
approaches

1.4.1.1 Mechanistic modeling for biology
1.4.1.1.1 Overview
As briefly stated just above, Mechanistic Models (MMs) can be defined as the family of mathemati-
cal models whose computations rely on precisely predefined mathematical components (variables,
equations, parameters. . . ) that represent causal mechanisms, which all have a meaning and purpose
based on our knowledge of the system we are modeling, or new hypotheses we want to test. They
are sometimes referred to as “white-box”, “knowledge bases” or “knowledge-driven models”, to em-
phasize the fact that every part of a MM is defined based on knowledge.

In most cases, MMs focus on their parsimonious nature, i.e. they are models built as simply as
possible, with as few components as possible, in order to have better explanatory abilities. A simple,
useful and extremely parsimonious example of MM, is the ideal gas law (PV = nRT ) which is relating
pressure and volume of an hypothetical ideal gas to the quantity of matter, temperature, and the
ideal gas constant. This trivial MM example, even if it does not generalize to all kinds of gasses in all
conditions, is very useful for its ability to make a fair approximation of many gas phenomena, with
just one constant derived from experimentation.
1.4.1.1.2 Categories of MM
Many categories ofMMs have been delimited. They can take time into account, and fall in the category
of dynamic MMs, unlike static MMs that focus on steady-states. This is the case for different methods
to exploit GEMs, as discussed in section 1.3.1.2. Briefly, other categories discriminate between mod-
els that are stochastic or deterministic, linear or nonlinear, discrete or continuous. For example, FBA
applied on a GEM is a static, deterministic, linear and continuous MM approach. According to the
modeling goals, one will choose the most suited category of model to use or develop. Importantly,
MMs can rely on different mathematical methods, to relate the input to the output. Thesemathemat-
ical methods are sometimes referred to as ‘governing equations’ of the model. These are most often
differential equations such as Ordinary Differential Equations (ODEs) and Partial Differential Equa-
tions (PDEs) in dynamic MMs. Other types of governing equations can be found in logical models (e.g.
Boolean Networks), Petri Nets (discrete events dynamic MM), or agent-based models.
1.4.1.1.3 Compelling MM achievements in biology
In biology, MMs have been ubiquitous to understand underlying phenomena, with relatively oldmod-
els such as the Hodgkin-Huxley’s model of neuron action potential[91], or the Michaelis-Menten’s
model of enzyme kinetics[92]. Both of these models have proven to be very useful: from parsimo-
nious formulations that rely on identified, biologically meaningful components, they are able to ap-
proximate the behavior of many systems in many situations. More complex and more recent useful
MMs have also been developed. For example, one can compute the annealing temperature of DNA
from its sequence[93] or E. coli traits from its metabolic network, with iML1515[44] as discussed in sec-
tion 1.3.2. In systems biology, MMs are widely used to confront complexity as well discussed by Robert
Phair[87]: “Modeling is quantitative hypothesis testing; it is classical scientific method combined with
computation to help us to manage the enormous complexity of cell biology”. A wide variety of MMs
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for biology are stored under the database BioModels[94], which provides valuable resources formod-
elers that aim to exploit MMs in such quantitative hypothesis testing approaches.
1.4.1.1.4 MMs limitations
Observed data is usually integrated in MMs in two main ways: either to tune the model’s param-
eters (for example tuning the kinetic parameters of enzymes in a Michaelis-Menten model); or to
curate the model itself based on prediction-measure disagreements (like in the gap-filling approach
of GEMs, see appendix A.2). The first way relies on statistical methods pushing the MM to reproduce
observed data more faithfully, while the second way relies on quantitative hypothesis testing, i.e. the
uncovering of novel components of a MM based on its agreement with observed data. Beyond these
two approaches, there are not many ways of data integration with MMs. When facing very large and
diverse datasets, MMs may have difficulties at integrating all data in efficient and scalable manners.
This issue is related to amajor limitation ofMMs, in their ability to accurately predict behaviors of com-
plex systems. Indeed, since they are built with the constraint of precisely defining the mechanisms
underlying a given phenomenon, their predictive power performance will be necessarily limited by
the completeness of the knowledge used to model the system. When facing extremely complex sys-
tems, such as protein folding or natural language processing, MMs cannot make reliable predictions
as we are missing too much knowledge on the actual mechanisms underlying such phenomena. In
such cases, modelers tend to use another class of models: Machine Learning (ML).
I just mentioned that statistical methods enable a tuning of MMs’ parameters, based on observations,
making them ’statistical models’ to some extent. But another class of models place such statistical
methods at their very core: the ML models. They are purely statistical models, since they entirely rely
on tuning large sets of ‘meaningless’ parameters, without any constraints from knowledge, assump-
tions, or hypothesis to test. The following section 1.4.1.2 will cover how such purely statistical models
are built, and what are their achievements in biology.
1.4.1.2 Machine learning for biology
1.4.1.2.1 Overview
Machine Learning (ML) is a part of the wider Artificial Intelligence (AI) field, which is not a precisely
delimited field, but that can be defined with its goal: the scientific endeavor of building computing
systems that have human-like problem-solving abilities, so they can be considered as intelligent. ML,
a subfield of AI, is often defined as the set of algorithms that enable computers to ‘learn’ by them-
selves. In more practical terms, ML is the set of mathematical methods and models purely relying
on statistical observations made on datasets[90]. Unsurprisingly, ML is sometimes called ‘statistical
learning’, and ML models are sometimes called ‘statistical models’. The basic assumption underlying
ML is that observing a system’s behavior yields enough information to reliably predict the general be-
havior of the system in unseen conditions. For example, feeding the observation of the sun rising for
10,000 days to anMLmodel, it will predict that it will rise again the next day, without an understanding
of how the sun rises. Indeed, statistical MLmodels aim to ‘mirror’ what is observed, agnostically of the
underlying mechanisms. In other words, ML models aim to capture a data-generating phenomenon
without an understanding of it.

The three main ML frameworks can be roughly delimited as the following: (i) supervised learning,
which consists in feeding example of inputs-outputs pairs to the model so that it is able to predict
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an output from a new input, (ii) unsupervised learning, which is closer to statistical analysis in the
way it searches for data patterns without input/output segmentation of a dataset, (iii) reinforcement
learning, which is based on an iterative exploration of an agent response, constructing the data and
MLmodelwith a balance between the exploration of the agent response space and the optimization of
a desired behavior of the agent. These 3 frameworks can rely on a variety of mathematical methods.
Note that in the remainder of the Ph.D. dissertation we only use supervised learning.
1.4.1.2.2 Categories of ML models
Many mathematical formulations have been proposed for ML models, such as Artificial Neural Net-
works (ANNs), Support Vector Machines (SVMs), Gaussian Processes (GPs), Random Forests (RF) or
one of the most basic form of ML, Linear Regression (LR)[89]. Each of these methods have a varying
degree of flexibility and tunability, brought by their architecture (i.e. set of hyperparameters), which
can be related to the maximum number of iterations or parameters in the model, the optimization
methods that are used, etc. . . ANNs are the most flexible type of MLmodels, as they can be built with
varying number and size of different layers types (convolutional, Long Short-Term Memory, Recur-
rent Neural Networks, transformers, auto-encoders. . . ), each with different activation functions such
as the Regularized Linear Unit (ReLU) or hyperbolic tangent (tanh) functions. Moreover ML models
and especially ANNs may have many hyperparameters to tune, such as dropout rates, L1/L2 regu-
larizers weights, training rates, solvers and more. This overall increases the diversity of ML models,
making them adaptable to various datasets. In section 1.4.1.3, I will explain in much more detail the
basic functioning of ANNs, their core mathematical principles, as well as the reservoir computing ap-
proach.
1.4.1.2.3 Compelling ML models achievements in biology
Since the postgenomic era and the advent of high-throughput -omics data, the use of ML has gained
increasing popularity in biology, notably with a variety of models integrating multi-omics data[95].
These performant models push the emergence of new fields such as precision medicine. Recently,
another grand breakthrough in biology that was brought by ML advances is the accurate protein
structure prediction performed by AlphaFold[96]. Importantly, many fields outside biology benefit
from ML capabilities, such as natural language processing and image recognition. By late 2022, spe-
cific ML technologies, namely generative AI, have impressed with performant tools such as ChatGPT
or MidJourney that can reach creativity and precision levels comparable to human works[97], which
questions the implication of ML to replace human workforces in societies[98].
1.4.1.2.4 ML models limitations
We mentioned in section 1.4.1.2.2 that ML models can have a diversity of hyperparameters, which
brings flexibility to the models. But this can also be a drawback as they can be hard to fine-tune.
This common issue of ML models is especially true for ANNs. Another issue that is especially striking
with ANNs, is the difficulty to interpret learned parameters beyond statistical relationships between
variables. The deeper an ANN is, the harder it will be to interpret the learned parameters to identify
mechanisms of causality; even though some approaches attempt to tackle this issue[90]. Impor-
tantly, each ML method (and each architecture by extension) has different capabilities depending on
the datasets and problems that we aim to solve. In other words, ML is highly context-dependent, in
terms of training sets (the data used to build them), model’s hyperparameters and formulated tasks
to solve. Finally, one flaw of ML is to ‘overfit’, which is a scenario where ML is mirroring the observed
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data ‘toowell’, up to the point that it is fitting the intrinsic noise of the observations, instead of the gen-
eral pattern. In such cases, even if the MLmodel might be perfectly reproducing observed data, it will
be unable to generalize for unseen data; therefore failing to model the actual data-generating mech-
anism. A widespread method to detect such behavior is the cross-validation method, where a part of
the training set is reserved for testing the ML model without having it trained on (in a case where the
training performance is far superior to the testing performance, the model is overfitting). Another
flaw of ML models is the curse of dimensionality, i.e. the need for exponentially larger datasets when
increasing the number of parameters in the model[99], which is necessary when modeling increas-
ingly complex data-generating phenomena.

To summarize, in contrast to MMs, the fact that ML models are solely based on statistical analy-
sis of observed data brings strong limitations to (i) the interpretability of learned parameters, (ii) the
generalization abilities of the model beyond the dataset used to build the model, (iii) the ability to un-
derstand mechanisms through hypothesis-driven reasoning, and (iv) the need for large datasets. In
one hand, MLmodels showmore predictive power thanMMs, in the sense they are able to reproduce
more faithfully the observations, at least in the context of a dataset used to train an ML model. In the
other hand, ML models clearly lack explanatory abilities of MMs, in order to perform quantitative hy-
pothesis testing and better understand the systems we are modeling. However, MMs lack predictive
power when used to model complex and partially known systems, and their goal of being built with
parsimony andmeaningful mathematical componentsmay be seen as too ambitious when facing the
huge complexity of certain modeling tasks. These differences are further discussed in the appendix
section A.4, in general and in the particular scope of metabolic modeling.
In section 1.4.2, we will introduce methods that tackle such limitations of ML and MM, for metabolic
modeling. But first, I will describe in more detail how ANNs function, in the next section 1.4.1.3, since
it is imperative to understand the basic functioning of ANNs for the remainder of the dissertation.
1.4.1.3 Artificial Neural Networks
The first neural networks appeared circa 1800, in their simplest form: linear regression. Indeed, linear
networks proposed by Legendre and Gauss were built with inputs directly connected to the output,
by a weighted sum of inputs to compute the output[100]. With input vectors and desired target val-
ues (also called labels), the method could adjust the weights linking each input to each output, based
on the minimization of the sum of squared errors between the outputs and the corresponding tar-
gets. This method was at the time called ‘least squares’ or ‘linear regression’ but already showed the
very core functioning of ANNs. An analogy with biological neurons was made, and further improve-
ments brought more diverse concepts to the mathematical foundations of ANNs, such as activation
functions, hidden layers and gradient backpropagation.
1.4.1.3.1 Biological inspiration and mathematical foundations
In ANNs, we call the nodes of the network ‘neurons’. These can take any real number value during
the computation. An ANN has at least two layers of neurons: an input layer (which does not perform
any computation and simply receives a given input vector) and an output layer. In between, it can
also have hidden layers that are used for modeling nonlinear problems. Neurons of the hidden and
output layers, in most architectures, compute their output as a ‘computational neuron’, the basic unit
of ANNs. This computational neuron stems from a biological analogy that inspired the perceptron,
which will be briefly described next.

59



Historically, the perceptron has set the mathematical foundations of ANNs, by introducing the
‘computational neuron’. In a nutshell, the perceptron is inspired from biological neurons, to perform
a linear classification. It is a single-output neural network without hidden layers. The perceptron
makes aweighted sumof inputs, adds a bias (any real number), and feeds the result to a step function,
which outputs a binary response (0 or 1). The analogy between a neuron and such a perceptron is
quite straightforward: (i) the input signals are bioelectric signals from several synaptic terminals in
the neuron, and several arbitrary input values in the perceptron, (ii) these signals travel through the
axon in the neuron, and through the weighted sum in the perceptron, (iii) the neuron transmits or
blocks the bioelectric signal with an action potential function, and the perceptron produces its final
output through a step function, the activation function of the computational neuron. A schematic of
a biological neuron and a computational neuron are given in Figure 1.9.

Figure 1.9: Biological and computational neurons. The biological neuron schematic (left) displays thecell body on the left, with its axon in blue on the right, ending with synaptic terminals. The computa-tional neuron schematic (right) displays n inputs, from x1 to xn, that are summed after beingmultipliedby their corresponding weights w1 to wn, as well as a bias w0 to add prior to an activation (here a step)function for the final response. (Authors: Maier et al.[101]; license: CC BY 4.0)
Mathematically, the computational neuron shown in Figure 1.9 follows this formula, with f the

output of the neuron, and step the Heaviside step function (which outputs 0 if the input is below 0,
and 1 if the input is above 0):

f(x,w) = step

(
n∑

i=1

xiwi + w0

)
(1.4)

Importantly, amulti-output perceptron contains asmany computational neurons as outputs. Also,
in a multi-layer perceptron (with one or more hidden layers), each hidden layer and output layer
node’s output will be computed with such a computational neuron. More generally, most ANNs have
an architecture based on the interconnection of many computational neurons. Importantly, note
that the activation functions are not limited to a step function in other ANNs than the perceptron,
and depend on the task to solve (multi-class classification, regression, etc. . . ). Moreover, such step
functions were later replaced by a sigmoid activation function, since its differentiability enables gra-
dient backpropagation through hidden layers (the step function is non-differentiable for zero, and
its derivatives are zero elsewhere, which blocks gradient descent, the optimization method for ANNs
that is explained below).

An example of Multi-Layer Perceptron (MLP), with one hidden layer, is schematized in Figure 1.10.
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Here, the input layer does not perform any computation, whereas the hidden and output layers have
computational neurons as their basis.

Figure 1.10: Multi-Layer Perceptron architecture example. Each circular node represents an artificialneuron and an arrow represents a connection from the output of one artificial neuron to the input ofanother. The input layer (red) receives vectors of 3 values, which are transformed to produce vectorsof 4 values in the hidden layer (blue), which are in turn transformed to produce vectors of 2 values, inthe output layer (green) of the perceptron. (Authors: Glosser.ca; license: CC BY 3.0)
To give more mathematical detail into the MLP functioning, the next Figure 1.11 shows how the

MLP performs a computation, with each computational neuron displayed.

Figure 1.11: Generic feedforward MLP computation schematic, with weights and biases terms labeled.Arrows originating from x2 and z2 are omitted for clarity. This network has p inputs, h nodes in itshidden layer, and q outputs (in the previous Figure 1.10, p=3, h=4, q=2). (Author: Mcstrother; license:CC BY 3.0)
Figure 1.11 shows a general example of a feedforwardMLP computation. The chained computation

is displayed, with each input (x1 to xp) connected to all hidden layer nodes (z1 to zh), and each of
those nodes connected to all output layer nodes (y1 to yq). Two weights matrices are used for the
computation, w(1) and w(2), respectively to compute z from x, and y from z. w(1) is of size (p, h), with
wij the weight to apply on xi to produce zj; and w(2) is of size (h, q) with wij the weight to apply on
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zi to produce yj. There are also two bias vectors that are used, namely b(1) to compute z and b(2) to
compute y. These are simply added before the computation of hidden (z) or output (y) nodes, and
they are the same size as their corresponding vectors, z and y. The hidden (z) and output (y) nodes
are using the same computational neurons as shown in Figure 1.9, to compute their output. Note that
here, the bias is written b instead of w0 (unlike in equation 1.4).

Now that we have seen how a classical ANN architecturemakes a computation from a given input,
we shall see how an ANN learns, i.e. how it adapts its weights and biases to best fit the data.
1.4.1.3.2 Gradient backpropagation for learning abilities
In this part, we will focus on the main method to train ANNs in supervised learning: gradient back-
propagation. ANNs learn in two steps: (i) compute an output from an input, as explained previously
(1.4.1.3.1), called ‘feedforward’ or ‘forward pass’ step, then (ii) from the output, compute a loss function
and its gradient, and backpropagate that gradient to update the ANNs parameters (i.e., the weights
and biases), called ‘backward pass’.

Training an ANN is an optimization problem. In particular, by minimizing a loss function, which is
usually designed to be lower when the ANNs computation matches the target data better, the ANNs
learn from data. Here, we will consider an imaginary loss function to be minimized, noted L. In short,
the minimization aims to find the best set of parameters (weights and biases), noted θ, in order to
minimize L. To do so, one computes the gradient of the loss function, i.e. the set of partial derivatives
of that loss function for each element of θ. The vector chain rule is used to make such computation,
since the loss function is not directly expressed with θ as variables, but with the ANNs computations.

The gradient of a function can be thought of as a map of the direction and speed of change of
that function’s value. This ‘map’ can be used to minimize a given function in efficient manners, with
different gradient descent algorithms. Computing a gradient of the loss function is easy for the final
layer’s weights, but hardly doable for other layers. The solution is to backpropagate the gradient:
first computed only on the final layer’s weights, the derivatives are then computed layer by layer,
toward the beginning of the ANNs. Once all partial derivatives are computed, they are used to perform
gradient descent: the ANN updates corresponding weights, with changes equivalent to the negative
partial derivative value multiplied by the learning rate (which is a learning hyperparameter to set)
in the classical gradient descent algorithm. This has been tweaked in more recent gradient descent
algorithms such as Stochastic Gradient Descent (SGD) algorithms, e.g. ‘adam’[102]. Importantly, the
batch size is a hyperparameter for SGD algorithms, that Imention in the following chapters. It controls
howmany training data entries are used to perform one gradient descent step where parameters are
updated (i.e. one training phase, a forward and a backward pass). Another parameter that I will use is
the dropout rate, which controls a fraction of a layer’s neurons to be deactivated for a training phase
(both forward and backward pass). Using dropout is popular to increase generalizing and robustness
abilities of ANNs[100].

Until now, we considered classical ANNs to explain their mathematical foundations and learning
abilities. Those ANNs were always performing their computation in one way, from the inputs to the
outputs, a category termed Feedforward Neural Networks (FNNs). But in other ANN formulations,
such as in Recurrent Neural Networks (RNNs), the computation does not rely on such a straightfor-
ward path, which drastically changes their computation abilities.
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1.4.1.3.3 Recurrent Neural Networks
RNNs are based on similar mathematical foundations as FNNs, with computational neurons as the
basic processing unit, and gradient backpropagation most often used as the learning mechanism.
However, computational neurons in RNNs can have feedback loops, where the output of a node (or
a subsequent node) is used as its own input. This plays a crucial role in establishing a memory of
previous events when processing a sequence, i.e. a series of inputs.

In fact, the first RNNs (1920s) were not showing learning abilities: they were simply iterative pro-
cedures, designed to reach an equilibrium from certain input conditions. In that sense they were
mechanistic models that would not learn from data but solve a given problem under certain condi-
tions[100]. In the following chapters, we use such non-learning RNNs to surrogate FBA, inspired from
projection networks[103], and in particular Hopfield networks[104].

More widely used are the RNNs with learning abilities, such as the Long Short-Term Memory
(LSTM) unit and variations being one of the most popular ANN architectures[100]. When connecting
outputs to inputs of a neuron, some shortcomings had to be overcome. One of those shortcom-
ings was the issue of vanishing or exploding gradients. This issue is also observed with deep FNNs.
By backpropagating the gradient through many layers (in RNNs, each feedback loop is considered a
layer), one can observe the gradient values to either vanish (extremely low values) or explode (ex-
tremely high values). In both cases, no convergence can be achieved for the loss minimization, the
learning fails. Somemathematical tools were developed to avoid this issue, such as gradient clipping,
batch normalization and the LSTM unit for RNNs[100].

RNNs can display nonlinear dynamical behaviors. Such nonlinear dynamics are used in an ANN-
related approach called ‘reservoir computing’, that attempts to ‘store’ computational power in so-
called ‘reservoirs’ (either non-trainable in silico networks, or physical phenomena).
1.4.1.3.4 Reservoir computing
Reservoir Computing (RC) is an approach originally designed to process sequential data (time-series).
The overall goal of RC is to reduce computational burden for modeling complex dynamical behav-
iors by exploiting the computational power of a ‘reservoir’, which can be an in silico process that is
not trainable or a physical phenomenon that is perturbed and has its responses measured. A reser-
voir computing system comprises a reservoir for mapping inputs into a high-dimensional space and
a readout for analyzing patterns within these high-dimensional states[105]. The readout is trainable
but should be kept simple, with linear regression for example. Figure 1.12 shows a schematic of con-
ventional RC (using in silico non-trainable RNNs that simulate dynamical behaviors) and physical RC
(using real-world phenomena of which we measure dynamical behaviors) frameworks.

Usually, in conventional RC, RNN-based reservoirs are generated by randomly sampling weight
matrices, with constraints on their spectral radiuses; but novel approaches also propose more per-
formant ways to generate in silico reservoirs[106].

In physical RC, a bucket of water has been used as a reservoir for complex sequential data pro-
cessing. One might wonder if biological processes could be used as well for the same purpose as the
bucket of water. For that, we would need to be able to precisely measure some responses to some
perturbations, which seems possible with -omics technologies. With particular ‘killer applications’,
biological reservoirs might lead to efficient biocomputing[40, 105].

Importantly, we use the term ’Reservoir Computing’ in the remainder of the dissertation to des-
ignate a modeling approach loosely inspired from the regular RC methods described here. This is
further explained in Chapter 2, section 2.3.5.
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Figure 1.12: Reservoir Computing frameworks, where the reservoir is fixed and only the readoutweights (W out) are trained. Importantly W in and W are not trained. (a) A conventional RC systemwith a RNN-based reservoir. (b) A physical RC system in which the reservoir is a physical system ordevice. (Authors: Tanaka et al.[105]; license: CC BY 4.0)

In the following section 1.4.2, I will describe how MM and ML are complementary approaches for
metabolic modeling. Then, I will introduce the emerging hybrid modeling field which aims to formu-
late innovative models incorporating elements from both MM and ML modeling principles.

1.4.2 Mechanistic andMachine Learningmodels as complementary ap-
proaches for metabolic modeling

1.4.2.1 Combining machine learning and mechanistic approaches
1.4.2.1.1 State-of-the-art approaches
MM and ML are seemingly opposed approaches. As discussed in the appendix section A.4, their
design and goals are radically different, including for systems biology models. Instead of opposing
the two approaches, many projects attempt to combine them for metabolic modeling, as I will review
in this section.

As previously stated, MMs are less flexible than ML models due to a priori knowledge used to
build them. This is true for GEMs, bringing several limitations, common to MMs as described in sec-
tion 1.4.1.1.4. First, the diversity of datasets that can be directly integrated with GEMs through FBA
is narrow: they must be either growth rates, or metabolic fluxes. Secondly, the FBA method to ex-
ploit GEMs finds single solutions for each condition, and does not generalize over sets of conditions.
Finally, GEMs are criticized for the low reliability of the biomass reaction (BOF) and the optimality
principle they rely on. Moreover, the advent of -omics data brings up the challenge of integrating
heterogeneous data types with GEMs, which is not possible in a straightforwardmanner[45, 107, 108].
However, using purely ML models to replace MMs would suppress any mechanistic insights on the
metabolic activity of the modeled organism; and it would bring all other ML limitations previously
mentioned in section 1.4.1.2.4, such as the lack of predictive power outside the data used to train the
model, or the need for larger datasets.

Due to such limitations, a lot of studies propose synergisms between MLmodels and GEMs, com-
bining the knowledge contained in GEMs with the predictive power and flexibility of ML.

These combined approaches have been extensively listed and thoroughly described in many re-
views[52, 107, 109–112]. A few examples of studies are worth mentioning here: Zhang et al. combined
MMs to detect potential gene perturbation targets and ML to perform combinatorial optimization of
such targets, in order to maximize tryptophan production[113]; Heckmann et al. extracted features
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from CBM simulations and experimental data, to feed to an ML process that predicts kinetic parame-
ters for a dynamic GEMparametrization[114]; andWu et al. developed aMLworkflow to predict 13C flux
data from culture conditions, using CBM to discard biologically irrelevant predictions[115]. Another
approach was termed ‘white-box machine learning’[116], which uncovered antibiotics mechanisms of
actions on metabolism through the use of an ANN that was trained on GEM simulations, according to
metabolite supplementations when bacteria were exposed to antibiotics. Therefore, their white-box
ML system enabled the discovery of antibiotics effects on pathway mechanisms.

The reviews listing such CBM-ML synergic approaches focus on the exploitation of GEMs with
ML, mainly for bioprocess optimization or discovery, but some studies show another kind of synergy.
Indeed, ML can be also used as away to curate and reconstruct GEMs, for example in yeast to decipher
gene interactions[117]. More generally, as shown in Figure 1.13 taken from Rana et al., ML can be
combined with GEMs at many different steps of the modeling pipeline.

Figure 1.13: Overview of possible machine learning interventions on the constraint-based modelingpipeline, highlighting areas where machine learning has been applied (oval shapes). It additionallydepicts four categories of data sources and seven broad steps in the CBMmodeling pipeline. (Authors:Rana et al.[111]; license: CC BY 4.0)

1.4.2.1.2 A gap between MM and ML in combined approaches
As reviewed, a lot of approaches attempt tomixML andGEMs together to overcome the shortcomings
of traditional CBM formulations of GEMs, that are purely MMs. These approaches are successful, but
they still show a gap between the CBMandML parts. In such combinations, ML andMMparts commu-
nicate through a segmented framework, which necessarily brings limitations. First, such segmented
framework brings less reusability: each framework is specific to the task it has been designed for,
and can hardly be picked up for another purpose. Moreover, the mathematical formulation in such a
combined approach is not well defined, relying mostly on ‘ad hoc’ communications between the MM
andML parts. This research gap is clearly shown in Sahu et al.’s figure 2, Procopio et al.’s figure 4, Rana
et al.’s figure 2 and Khalegi et al.’s figure 5. The figure from Rana et al. is displayed as Figure 1.14.
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Figure 1.14: Integration example of experimental data with machine learning and constraint-basedmodels (and simulation results) proposed by Rana et al. Top: Machine learning is applied to theinput data to identify the important features for constructing reduced order constraint-basedmodels;the CBM simulations can be iteratively matched with input data for convergence until the properset of features are identified. Bottom: Machine learning is iteratively applied to CBM simulations toreconcile with experimental data. Interplay between the Top and Bottom parts can iteratively lead toconvergence between CBM simulations, experimental data and machine learning based predictions.(Authors: Rana et al.[111]; license: CC BY 4.0)

An emerging field, namely hybrid modeling, aims to build models incorporating concepts and meth-
ods from both MMs and ML models. As I have reviewed so far, and as stated by Baker et al.[88],
“the pros of one are the cons of the other, which suggests that research efforts should be directed
towards enabling a symbiotic relationship between both”. In the next section 1.4.2.2, I will review how
hybrid models attempt to achieve such complementarity, eventually leading to versatile and reusable
models that incorporate ML and MM for metabolic modeling.
1.4.2.2 Hybrid models: towards a fusion of mechanistic and machine learning ap-

proaches
1.4.2.2.1 Overview
Echoing the previously mentioned terminology of black- and white-box models, hybrid models are
sometimes termed ‘gray-box’ models. They are based on the intuition that incorporating MM and ML
together should bring more performance in terms of both predictive and explanatory power, respec-
tively from ML statistical learning methods and MM mechanisms. As we have previously reviewed,
pros and cons of each class of models seem complementary which justifies this approach. However,
such marriage is not trivial and there are a number of ways to approach the hybrid modeling realm,
which is a quite young and emerging field, especially for biology. Importantly, many combinations
of CBM and ML including those mentioned above are termed ‘hybrid approach’ – this is not identical
to hybrid models. Indeed, combining both MM and ML is a very widespread approach, but building
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single model formulations incorporating MM and ML simultaneously, without previously described
ad hoc combinations (section 1.4.2.1), is rather rare.
1.4.2.2.2 Historical use of hybrid models
Historically, the first hybridmodels to bewidely used are found in the physics domain, notably to solve
partial differential equations. The hybrid models, called Physics Informed Neural Networks (PINNs),
are ANNs with specific loss functions that incorporate a term to fit experimental observations, a term
for boundary constraints to be respected, and a term that computes the residual of the differential
equations systems to be satisfied. In that sense, PINNs are designed to surrogate, approximately, the
physical differential equations system through the learning of the neural networks parameters. After
training, the PINNs are able to predict the differential equations system’s output and parameters, for
given inputs. Note that each term of the loss can have an associated weight which can be modulated
to change how PINNs learn (e.g. with a low-confidence physical system, the loss weight applied on the
term for residuals of the system might be reduced). Also, analyzing the resulting error from PINNs
is of major importance, as it can indicate to what extent the PINNs predictions are approximate in
regard to the physical system[118]. Amajor standardized computing environment is currently in active
development, namely sciML[119], which implements ways to build and train PINNs and variations of
such hybrid models, in the programming language Julia.
1.4.2.2.3 Hybrid models for systems biology
In biology, the emergence of hybrid models is much more recent, and does not yet have standard-
ized computing environments like SciML. However, the equivalent of PINNs for biology, Biologically-
Informed Neural Networks (BINNs), were developed for reaction-diffusion models[120]. Moving away
from the PINN inspiration, another way to build hybrid models is to assign to ML components some
biological meaning. This was done with ANNs, assigning meaningful biological information to the
neural architecture: Knowledge Primed Neural Networks (KPNNs) translate the known structure of
protein signaling and gene regulation interaction into an ANN architecture, therefore increasing the
interpretability of an ML model and leading to a new regulatory MM formulation from single-cell
data[121]. A similar approach was performed with RNNs for signaling networks (with a specific activa-
tion function inspired from Michaelis-Menten), enabling the training of an hybrid model of signaling
with single-cell data[122]. Finally, a third approach translated a graphofmetabolicmodule interactions
in a Graph Neural Network (GNN), to estimate single-cell metabolic fluxes[60]. Importantly, the four
approaches cited are different from the CBM-ML synergies previously mentioned, in the sense they
formulate single-block models incorporating MM and ML together, without using an ad hoc frame-
work making the two parts communicate.

These approaches are all based on the use of ANNs as the ML model basis of the hybrid model.
This choice can be understood because they have proved to be highly performant in a variety of
tasks, show compelling achievements such as AlphaFold, andmost importantly, they have a very high
flexibility of architectures and loss formulations. Therefore, they seem like the best choice to easily
couple MMs with ML.
1.4.2.2.4 Hybrid model of GEMs: a research gap
The motivation for the original research work that will follow in chapters 2 and 3 is to fill the following
research gap: GEMs lack hybrid model formulations, whereas a lot of approaches combine ML and
GEMs in various ways. To my knowledge, there is only one hybrid model formulation that is filling the
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same gap as this Ph.D. dissertation’s work, described by Freischem et al. and Hasibi et al[123, 124].
They built a mass flow graph from a GEM, then used it as a scaffold to learn with. However, such
formulation is only used for gene essentiality prediction for now.

Importantly, our formulation has different purposes. In particular, some specific issues and limi-
tations of GEMs used with FBA alone are tackled by the hybrid modeling of GEMs we propose. GEMs
propose very large solution spaces: the number of possible metabolic phenotypes (flux distributions)
is tremendous. In otherwordsGEMswithout additional constraints are under-determined. Therefore,
measuring fluxes, such as the very critical uptake fluxes, is necessary for making meaningful predic-
tions with GEMs. This is a limitation for experimentalists, for example when working in metabolic
engineering projects, since flux measures are both time and resource expensive. More generally,
this issue of GEMs imposes strong limitations to understand the cell’s behavior. As stated in section
1.3.3.3, GEMs can provide insights on the metabolic activity of an organism when uptake fluxes are
measured; but they cannot be reliably used to predict the organism’s behavior to a new environment
if uptake fluxes are not measured. Overall, we assessed that GEMs contain the reliable topology of
metabolic networks, but the usual FBA methodology to exploit them is rather simplistic and not able
to generalize over sets of conditions, which motivates our hybrid approach. In particular, the ap-
proach aims to predict metabolic phenotypes proposed by a GEM from different conditions, by ML
methods. In that sense, regulations are modeled through ML, and metabolism is modeled through
the GEM. Obviously, this is a strong oversimplification of the ‘real-world’ processes, where regulation
and metabolism are not separated in two layers.

Inmore technical terms, we developed surrogates of FBA that can be integrated in learning proce-
dures, with ANNs. Several surrogatemethodswere developed, with inspiration fromPINNs (AMN-QP),
the hybrid RNN from Nilsson et al. (AMN-Wt) and Hopfield networks[104] (AMN-LP). They all behave
like ‘interior-point’ (see section 1.3.3.3.2) LP solvers using “neural” computations (i.e., iterative vector
and matrix multiplications). Moreover, we also use ML to surrogate MMs as described in recent re-
views[67, 125], when using the ‘AMN-Reservoir’ approach in Chapter 2 section 2.3.5. Therefore, the
hybrid models of GEMs that we developed exploit ANNs as the ML basis, to guide CBM formulations
exploiting GEMs. The details of such formulation are presented in the next chapter. Figure 1.15 dis-
plays a simple schematic of the hybrid modeling of GEMs approach that I present in this dissertation.
In the present section 1.4 of the introduction, we have reviewed ML and MM capabilities, with an
emphasis on their complementarity and the need to combine the two in systems biology. Hybrid
modeling is an emerging field that aims to integrate both ML and MM methodologies in single for-
mulations, instead of combining them separately. Developing hybrid models requires many method-
ological choices to be made, putting more or less emphasis on the ML or MM part, and focusing on
different MM modeling pipeline steps. However, achieving the development of such hybrid models
seems very promising for the systems biology endeavor of understanding life through integrative
models, in its ability to encompass many mechanisms through MM and integrating diverse datasets
with good predictive power (notably from -omics technologies) through ML. Eventually, we may for-
mulate a whole-cell performant hybrid model, a step towards the holy grail of systems biology. Of
course, this Ph.D. work does not have this ambition, but it presents original research that may inspire
others towards that goal. The following and final section 1.5 will quickly summarize the content of this
first chapter, and present the plan and content of the dissertation remainder.

68



Machine 
Learning 
(ANNs)

Environmental or 
genetic conditions

Metabolic 
phenotypes

Mechanistic 
Model
(GEM)

Figure 1.15: Simple schematic of the selected hybrid modeling approach for GEMs. From any kind ofinput data describing environmental or genetic conditions, amachine learningmodel (ANNs), predictsparameters of a mechanistic model (GEM) in order to predict corresponding metabolic phenotypes.Note that this model formulation is a single model, it does not separate the ML and MM parts andcan therefore be considered a hybrid model. Details on the construction, training, and exploitationof the model are given in Chapters 2 and 3.

1.5 Research questions and content of the dissertation
In this introduction, I have reviewed the key knowledge and methodologies to understand and crit-
icize the following chapters that will present original research works. In short, I have reviewed the
discovery path from the first enzyme to genome-scale metabolic networks (in the appendix section
A.1). Then, I described a variety of regulationmechanisms underlying the relationship between a cell’s
environment and its metabolic phenotype, and some approaches to integrate them in a holistic way.
Moving on, I showed how modern research on metabolism aims to grasp complexity for controlling
metabolic phenotypes and eventually computing with metabolism. Next, I focused on GEMs: their
content, reconstruction process, various formulations, mathematical framework, capabilities and lim-
its were described. After that, I compared MM and ML models that are complementary approaches,
notably for metabolic modeling where numerous combinations of the two approaches have been
performed. Finally, I introduced the field of hybrid modeling that aims to incorporate MM and ML
methodologies in single model formulations, instead of combining the two separately.

In this Ph.D. dissertation, we will attempt to fill the previously mentioned research gap of hy-
brid models formulations for GEMs, even though a plethora of combined CBM-ML approaches exist.
Therefore, the overall goal of this Ph.D. is to attempt such hybrid model development, and assess its
capabilities and limits. In the remainder of the dissertation, the term ‘Artificial Metabolic Networks’
(AMNs) will be used to designate the hybrid models hereby developed. The following chapters will
attempt to answer the following questions:

1. Can we develop AMNs that increase the GEMs predictive power while respecting their con-
straints?

2. What are the future improvements and most suited areas of application for AMNs?
In Chapter 2, I will start answering the first question by presenting a first-authored research ar-

ticle published in a peer-reviewed journal, entitled ‘A neural-mechanistic hybrid approach improving
the predictive power of genome-scale metabolic models’. This presents the basis of the modeling
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concepts and mathematical frameworks that were developed for AMNs, and benchmarks their capa-
bilities to surpass the predictive power of GEMs.

In Chapter 3, I will complete the answer to the first question by presenting further assessments of
the innovative modeling concepts that were formulated in Chapter 2. This will show what challenges
AMNs are facing and how to tackle them. Thereby, I will present a novel, more general formulation of
an AMN core principle, as well as an enhancedway to fine-tune AMNs for better performance through
hyperparameter optimization, and some important assessments on the capabilities of AMNs.

In Chapter 4, I will answer the second question with a general summary of previous chapters’
results and a discussion of possible perspectives to enhance AMNs, as well as potential areas of ap-
plications. Here, I will also concludemy dissertation by an overall recap of the main novelties brought
by this work and the potential it brings for future research on metabolic modeling.

Additionally, in the appendices, I include Supplementary Information sections for the current
chapter as appendix A, for the published article presented in chapter 2 as appendix B, and for chap-
ter 3 as appendix C. I also include 3 co-authored publications that I participated in: (i) a review pub-
lished in Current Opinion in Chemical Biology entitled ‘In silico, in vitro, and in vivo machine learning
in synthetic biology and metabolic engineering’ in appendix D; (ii) a book chapter published in Meth-
ods in Molecular Biology entitled ‘Cell-Free Biosensors and AI integration’ in appendix E; and (iii) a
research article published in Nature Communications entitled ‘A versatile active learning workflow
for optimization of genetic and metabolic networks’ in appendix F.

70



Chapter 2
A hybrid neural-mechanistic approach
improving the predictive power of
genome-scale metabolic models
This Chapter has the same content as the article published in Nature Communications. The online
published version can be found with the following DOI (clickable link).
Authors: Léon Faure1, Bastien Mollet2,3, Wolfram Liebermeister4, and Jean-Loup Faulon1,5,*

Affiliations: 1MICALIS Institute, INRAe, AgroParisTech, University of Paris-Saclay, Jouy-en-Josas,
France, 2EcoleNormale Supérieure, ENS-Lyon, Lyon, France, 3UMRMIA, INRAe, AgroParisTech, Univer-
sité Paris-Saclay, Palaiseau, France, 4MaIAGE, INRAe, University of Paris-Saclay, Jouy-en-Josas, France,
5Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.

*Corresponding author: jean-loup.faulon@inrae.fr, ORCID: 0000-0003-4274-2953
Keywords: Artificial Neural Network, Metabolic Network, Mechanistic Modeling, Flux Balance

Analysis, Scientific Machine Learning, Hybrid Modeling.
Abbreviations: AMN: ArtificialMetabolicNetwork, ANN: Artificial Neural Network, CBM: Constraint-

Based Modelling, FBA: Flux Balance Analysis, GEMs: GEnome-scale Metabolic models, KO: knock-
out, LP(QP): Linear (Quadratic) Programming, ML: Machine Learning, MM: Mechanistic Modelling,
MSE: Mean Squared Error, PINN: Physics Informed Neural Network, RNN: Recurrent Neural Network,
R2: Regression coefficient calculated on training set, Q2: Regression coefficient calculated on cross-
validation sets or independent test sets (not seen during training), ROC: Receiving Operating Charac-
teristic, AUC: Area Under the (ROC) Curve.

2.1 Abstract
Constraint-based metabolic models have been used for decades to predict the phenotype of mi-
croorganisms in different environments. However, quantitative predictions are limited unless labor-
intensivemeasurements ofmedia uptake fluxes are performed. We showhowhybrid neural-mechanistic
models can serve as an architecture for machine learning providing a way to improve phenotype pre-
dictions. We illustrate our hybrid models with growth rate predictions of Escherichia coli and Pseu-
domonas putida grown in different media and with phenotype predictions of gene knocked-out Es-
cherichia coli mutants. Our neural-mechanistic models systematically outperform constraint-based
models and require training set sizes orders of magnitude smaller than classical machine learning
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methods. Our hybrid approach opens a doorway to enhancing constraint-based modeling: instead
of constraining mechanistic models with additional experimental measurements, our hybrid models
grasp the power of machine learning while fulfilling mechanistic constraints, thus saving time and
resources in typical systems biology or biological engineering projects.

2.2 Introduction
In this study, we present an approach that combines Machine Learning (ML) and Mechanistic Model-
ing (MM) to improve theperformanceof constraint-basedmodeling (CBM) onGEnome-scaleMetabolic
models (GEMs). Our hybrid MM-ML models are applied to common tasks in systems biology and
metabolic engineering, such as predicting qualitative andquantitative phenotypes of organisms grown
in various media or subjected to gene knock-outs (KOs). Our approach leverages recent advances in
ML, MM, and their integration, which we briefly review next.

The increasing amounts of data available for biological research bring the challenge of data in-
tegration with ML to accelerate the discovery process. The most compelling achievement within this
grand challenge is protein folding, recently cracked by AlphaFold[96], which in the last CASP14 compe-
tition predicted structureswith a precision similar to structures determined experimentally. Following
this foot step, one may wonder if in the future we will be able to use ML to accurately model whole
cell behaviors. The curse of dimensionality[99], i.e. the fact that fitting many parameters may require
prohibitively large data sets, is perhaps the biggest hurdle that prevents usingML to build cell models.
Obviously, cells are far more complex than single proteins and since the amount of data needed for
ML training grows exponentially with the dimensionality[99], as of today, ML methods have not been
used alone to model cellular dynamics at a genome scale.

For the past decades, MM methods have been developed to simulate whole-cell dynamics (cf.
Thornburg et al.[126] for one of the latest models). These models encompass metabolism, signal
transduction, as well as gene and RNA regulation and expression. Cellular dynamics being tremen-
dously complex, MM methods are generally based on strong assumptions and oversimplifications.
Ultimately, they suffer from a lack of capacities to make predictions beyond the assumptions and the
data used to build them.

Flux Balance Analysis (FBA) is the main MM approach to study the relationship between nutrient
uptake and the metabolic phenotype (i.e., the metabolic fluxes distribution) of a given organism, i.e.,
E. coli, with a model iteratively refined over the past 30 years or so[127]. FBA searches for a metabolic
phenotype at steady state, i.e., a phenotype that is constant in time and in which all compounds are
mass-balanced. Usually, such a steady state is assumed to be reached in the mid-exponential growth
phase. The search for a steady state happens in the space of possible solutions that satisfies the
constraints of the metabolic model, i.e., the mass-balance constraints according to the stoichiometric
matrix as well as upper and lower bounds for each flux in the distribution. The steady state search is
performed with an optimality principle, with one principal objective (usually the ’biomass’ production
flux) and possibly secondary objectives (i.e., minimize the sum of fluxes in parsimonious FBA, or the
flux of a metabolite of interest). As we shall see later and as discussed in O’Brien et al.[55], FBA suffers
from making accurate quantitative phenotype predictions.

The MM and ML approaches are based on two seemingly opposed paradigms. While the former
is aimed at understanding biological phenomena with physical and biochemical details, it has difficul-
ties handling complex systems; the latter can accurately predict the outcomes of complex biological
processes even without an understanding of the underlying mechanisms, but require large training
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sets. The pros of one are the cons of the other, suggesting the approaches should be coupled. In
particular, MMsmay be used to tackle the dimensionality curse of MLmethods. For instance, one can
use MMs to extend experimental datasets with in silico data, increasing the training set sizes for ML.
However, with that strategy, if the model is inaccurate, ML will be trained on erroneous data. One can
also embed MMs within the ML process, in this strategy, named hybrid-modelling, ML and MM are
trained together and the model parameters can be estimated through training, increasing the model
predictive capacities. To improve FBA phenotype predictions, ML approaches have been used to cou-
ple experimental data with FBA. Among published approaches, one can cite Plaimas et al.[128] where
ML is used after FBA as a post-process to classify enzyme essentiality. Similarly, Schinn et al.[129] used
ML as a post-process to predict amino-acid concentrations. Freischem et al.[124] computed a mass
flow graph running FBA on the E. coli model iML1515[44] and used it with a training set of measured
growth rates on E. coli gene KO mutants. Several ML methods were then utilized in a post-process to
classify genes as essential vs. non-essential. As reviewed by Sahu et al.[52], ML has also been used to
preprocess data and extract features prior to running FBA. For instance, data obtained from several
omics methods can be fed to FBA, after processing multi-omics data via ML[107, 130, 131].

In all these previous studies, and as discussed in Sahu et al.[52], the interplay between FBA and
ML still shows a gap: some approaches use ML results as input for FBA, others use FBA results as
input for ML, but none of them embed FBA into ML, as we do in this study with the Artificial Metabolic
Network (AMN) hybrid models.

The main issue with hybrid modeling is the difficulty of making MM amenable to training. Over-
coming this difficulty, solutions have recently been proposed under different names in biology for sig-
naling pathways and gene-regulatory networks (Knowledge Primed Neural Network[121], Biologically-
InformedNeural Networks[120]) with recent solutions basedon recurrent neural networks (RNNs)[122].
Hybrid models have also been developed in physics to solve partial differential equations, such as
Physics Informed Neural Network[132] (PINN), available in open-source repositories like SciML.ai[119].
The goal of these emerging hybrid modeling solutions is to generate models that comply well with
observations or experimental results via ML, but that also use mechanistic insights from MM. The
advantages of hybrid models are two-fold: they can be used to parametrize MM methods through
direct training and therefore increasing MM predictability, and they enable ML methods to overcome
the dimensionality curse by being trained on smaller datasets because of the constraints brought by
MM.

In the current paper we propose a MM-ML hybrid approach in which FBA is embedded within
Artificial Neural Networks (ANNs). Our approach bridges the gap between ML and FBA by computing
steady-state metabolic phenotypes with different methods that can be embedded with ML. All these
methods rely on custom loss functions surrogating the FBA constraints. By doing so, our AMNs are
mechanisticmodels, determined by the stoichiometry and other FBA constraints, and alsoMLmodels,
as they are used as a learning architecture.

We showcase our AMNs with a critical limitation of classical FBA that impede quantitative pheno-
type predictions, the conversion of medium composition to medium uptake fluxes[55]. Indeed, real-
istic and condition-dependent bounds onmedium uptake fluxes are critical for growth rate and other
fluxes computations, but there is no simple conversion fromextracellular concentrations, i.e., the con-
trolled experimental setting, to such bounds on uptake fluxes. With AMNs, a neural pre-processing
layer aims to capture, effectively, all effects of transporter kinetics and resource allocation in a par-
ticular experimental setting, predicting the adequate input for a metabolic model to give the most
accurate steady-state phenotype prediction possible. Consequently, AMNs provide a new paradigm
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for phenotype prediction: instead of relying on a constrained optimization principle performed for
each condition (as in classical FBA), we use a learning procedure on a set of example flux distribu-
tions that attempts to generalize the best model for accurately predicting the metabolic phenotype
of an organism in different conditions. As shown in the results section, the AMN pre-processing layer
can also capture metabolic enzyme regulation and in particular predict the effect of gene KOs on
phenotype.

2.3 Results
2.3.1 Overview of AMN hybrid models
When making predictions using FBA, one typically sets bounds for medium uptake fluxes, Vin, to sim-
ulate environmental conditions for the GEM of an organism (Figure 2.1, panel a). Each condition is
then solved independently from each other by a Linear Program (LP), usually making use of a Sim-
plex solver. In most cases, one sets the LP’s objective to maximize the biomass production rate (i.e.,
the growth rate), under the metabolic model constraints (i.e., flux boundary and stoichiometric con-
straints). FBA computes the resulting steady-state fluxes, Vout, for all the reactions of the metabolic
network, which we use later in our reference ‘FBA-simulated data’, for the benchmarking of the hy-
brid models developed in this study. While FBA is computationally efficient and easy to use through
libraries like Cobrapy[68], FBA cannot directly be embeddedwithinMLmethods, like neural networks,
because gradients cannot be backpropagated through the Simplex solver.

To enable the development of hybrid models and gradient backpropagation, we developed three
alternative MM methods (Wt-solver, LP-solver and QP-solver) that replace the Simplex solver while
producing the same results (Figure 2.1, panel b). The three solvers, further described in the next
subsection, take as input any initial flux vector that respect flux boundary constraints.

We next used the MMmodels as a component of AMN hybrid models that can directly learn from
sets of flux distributions (Figure 2.1, panel c). These flux distributions used as learning references (i.e.,
training sets) are either produced through FBA simulations or acquired experimentally. The AMN
model comprises a trainable neural layer followed by a mechanistic layer (composed of Wt-solver,
LP-solver or QP-solver). The purpose of the neural layer is to compute an initial value, V0, for the flux
distribution to limit the number of iterations of the mechanistic layer. The initial flux distribution is
computed from medium uptake flux bounds, Vin, when the training set has been generated through
FBA simulations, or medium compositions, Cmed, for experimental training sets. For all AMNs, the
training of the neural layer is based on the error computation between the predicted fluxes, Vout,
and the reference fluxes, as well as on the respect of mechanistic constraints. It is important to point
out that AMNs attempt to learn a relationship between Vin (or Cmed) and the steady-state metabolic
phenotype, generalizing this relationship for a set of conditions and not just only one as in FBA. In
the upcoming subsections, Figure 2.2 presents results for FBA-simulated training sets and Figures 2.3
and 2.4 results for experimental training sets.

Finally, we developed a non-trainable AMN-Reservoir to showcase how the predictive power of
classical FBA can be improved (Figure 2.1, panel d). This architecture is based on a 2-step learning
process with the specific goal of finding the best bounds on uptake fluxes for FBA, by extracting Vin
after training. Indeed, once the AMN has been trained on adequate FBA-simulated data, we can fix its
parameters, resulting in a gradient backpropagation compatible reservoir that mimics FBA. The AMN
reservoir can then be used to tackle the above-mentioned issue of unknown uptake fluxes: adding
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a pre-processing neural layer and training this layer with an experimental dataset, one can predict
uptake fluxes from the media composition. Results of the pre-processing neural layer can directly be
plugged into a classical FBA solver and the neural layer can be reused by any FBA user to improve the
predictive power of metabolic models with an adequate experimental set-up. We showcase AMN-
Reservoir results in Figure 2.5 using experimental measurements acquired on E. coli and P. putida.
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Figure 2.1: Computing and learning frameworks for FBA, alternative Mechanistic Models, AMN, andAMN-Reservoir. a. Computing framework for classical FBA. The process is repeated for eachmedium,computing the corresponding steady state fluxes. Blue circles represent different bounds onmetabo-lites uptake fluxes and each red circle represents a flux value at steady-state. b. Computing frame-work for MM methods surrogating FBA. The methods can handle multiple growth media at once.Disregarding the solver (Wt, LP and QP), the MM layer takes as input an arbitrary initial flux vector, V0,respecting uptake flux bounds for different media, and computes all steady-state fluxes values (Vout)through an iterative process. c. Learning framework for AMN hybrid models. The input (for multiplegrowth media) can be either a set of bounds on uptake fluxes (Vin), when using simulation data (gen-erated as in panel a), or a set of media compositions, Cmed, when using experimental data. The inputis then passed to a trainable neural layer, predicting an initial vector, V0, for the mechanistic layer (aMM method of panel b). In turn, the mechanistic layer computes the final output of the model, Vout.The training is based on a custom loss function (cf. Methods, 2.5) ensuring the reference fluxes arefitted (i.e., Vout matches simulated or measured fluxes) and that the mechanistic constraints (on fluxbounds and stoichiometry) are respected. d. Learning framework for an ‘AMN-Reservoir’. The firststep is to train an AMN on FBA-simulated data (as in panel c), after which parameters of this AMN arefrozen. This AMNmodel, which purpose is to surrogate FBA, is named non-trainable ‘AMN-Reservoir’.In the second step, a neural layer is added prior to Vin taking as input media compositions, Cmed, andlearning the relationship between the compositions and bounds on uptake fluxes.

2.3.2 Alternative mechanistic models to surrogate FBA
Let us first recall that themethods described in this subsection aremechanistic models (MMs) that re-
place the Simplex-solver used in FBA and allow for gradient backpropagation, but without any learning
procedure performed. As far as medium uptake fluxes are concerned, we consider in the following
two cases: (i) when exact bound values (EB) for medium uptake fluxes are provided, and (ii) when only
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upper bound values (UB) for medium uptake fluxes are given.
Our first method (Wt-solver), inspired by previous work on signaling networks[122], recursively

computesM, the vector ofmetabolite production fluxes, andV, the vector of all reaction fluxes (cf. ‘Wt-
solver’ in Methods 2.5 and ‘Wt-solver equations’ in appendix B, for further details). The vectorsM and
V are iteratively updated using matrices derived from the metabolic network stoichiometric matrix
S and from a weight matrix, Wr, representing consensual flux branching ratios found in example
flux distributions (i.e., reference FBA-simulated data or experimental measurements). Since the mass
conservation law is the central rule when satisfying metabolic networks constraints, these ratios play
a key role in the determination of the metabolic phenotype, i.e. the paths taken by metabolites in the
organism. In this approach, we assume that the flux branching ratios remain similar between flux
distributions with different bounds on different uptake fluxes. A simple toy model network is shown
to demonstrate the functioning of the Wt-solver in Supplementary Figure S1 (appendix B).

While the Wt-solver is simple to implement it suffers from a drawback. As discussed in the Sup-
plementary Information ‘AMN-Wt architecture’ (appendix B), a consensus set of weights leads to a
solution when upper bounds (UB) for uptake fluxes are provided, but not when exact bounds (EB) for
uptake fluxes are given (cf. Supplementary Figure S2; appendix B). Consequently, we cannot assume
that the Wt-solver can handle all possible flux distributions in the EB case. To overcome this short-
coming, we next present two alternative methods that are much closer to the optimizations behind
FBA and that can accommodate both EB and UB cases for uptake fluxes. The two methods address
two distinct tasks in flux modeling: optimizing a flux distribution for maximal growth rate (LP-solver),
as in classical FBA, and fitting a stationary flux distribution to partial flux data (QP-solver).

The second method (LP-solver), derived from a method proposed by Yang et al.[133], handles lin-
ear problems using exact constraint bounds (EBs) or upper bounds (UBs) for uptake fluxes (Vin). That
method makes use of Hopfield-like networks, which is a long-standing field of research[103] inspired
by the pioneering work of Hopfield and Tank[104]. As with the Wt-solver, the LP-solver iteratively
computes fluxes to come closer to the steady-state solution (Vout). However, calculations are more
sophisticated, and the method integrates the same objective function (i.e., maximize growth rate) as
the classical FBA Simplex solver. The solver iteratively updates the flux vector, V, and the vector, U,
representing the dual problem variables also namedmetabolites shadow prices[134] (cf. ‘LP-solver’ in
Methods 2.5 and in appendix B for further details).

The third approach (QP-solver), is loosely inspired by the work on Physics-Informed Neural Net-
works (PINNs), which has been developed to solve partial differential equations matching a small set
of observations[118]. With PINNs, solutions are first approximated with a neural network and then
refined to fulfill the constraints imposed by the differential equations and the boundary conditions.
Refining the solutions necessitates the computation of three loss functions. The first is related to the
observed data, the second to the boundary conditions and the third to the differential equations.
As detailed in Methods 2.5, we similarly compute losses for simulated or measured reference fluxes,
Vref, the flux boundary constraints, and the metabolic network stoichiometry. As in PINN we next
compute the gradient on these losses to refine the solution vector V. Unlike with the LP-solver, we do
not provide an objective to maximize in the present case, but instead reference fluxes, consequently
themethod is namedQP because it is equivalent to solving an FBA problemwith a quadratic program.

To assess the validity of the LP and QP solver, we used the E. coli core model[135] taken from the
BiGG database[136]. To generate with Cobrapy package[68] a training set of 100 growth rates varying
20 uptake fluxes, following the procedure given in Methods 2.5. Results can be found in Supplemen-
tary Figure S6 (appendix B), showing excellent performances after 10,000 iteration steps.
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2.3.3 AMNs: metabolic & neural hybrid models for predictive power
with mechanistic insights

While the above solvers perform well, their main weakness is the number of iterations needed to
reach satisfactory performances. Since our goal is to integrate such methods in a learning architec-
ture, this drawback has to be tackled. As illustrated in Figure 2.1 panel c, our solution is to improve
our initial guesses for fluxes, by training a prior neural layer (a classical dense ANN) to compute initial
values for all fluxes (V0) from bounds on uptake fluxes (Vin) or media compositions (Cmed). This so-
lution enables the training of all AMNs with few iterations in the mechanistic layer. In the remainder
of the paper, we name AMN-Wt, AMN-LP and AMN-QP, the hybrid model shown in Figure 2.1 panel c,
composed of a neural layer followed by a mechanistic layer, i.e., a Wt, LP or QP solver.

The performances of all AMN architectures (Wt, LP, QP) and a classical ANN architecture (cf. Meth-
ods 2.5 ‘ANN architecture’, for further details) are given in Figure 2.2, using FBA-simulated data on two
different E. coli metabolic models, E. coli core[135] and iML1515[44]. These models are composed
respectively of 154 reactions and 72 metabolites, and 3682 reactions and 1877 metabolites (after du-
plicating bidirectional reactions). In all cases, the training sets were generated by running the default
Simplex-based solver (GLPK) of Cobrapy[68] to optimize 1000 growth rates for as many different me-
dia. Each medium was composed of metabolites found in minimal media (M9) and different sets of
additional metabolites (sugars, acids) taken up by the cell (more details in Methods 2.5 ‘Generation
of training sets with FBA’). These training sets have as variables a vector of bounds on uptake fluxes
(20 for E. coli core, 38 for iML1515) along with the Cobrapy[68] computed growth rate. For the ANN
training set, to enable loss computation on constraints, we replaced the growth rate by the whole flux
distribution computed by Cobrapy[68] (cf. Methods ‘ANN architecture’).

Figure 2.2 shows the loss values on mechanistic constraints and the regression coefficient (Q²)
for the growth rates of the aforementioned models. All results shown are computed on 5-fold cross-
validation sets. Additional information on hyperparameters and results on independent test sets are
found in Supplementary Information (appendix B). In particular, Supplementary Figure S7 shows per-
formances obtained with AMN-QP and the E. coli core model with different neural layer architectures
and hyperparameters, justifying our choices for the neural layers of AMNs (one hidden layer of dimen-
sion 500 and a training rate of 1e-3). Similar results were found for AMN-LP and AMN-Wt. Additionally,
in Supplementary Table S1 (appendix B), more extensive benchmarking is provided comparing MMs,
ANNs and AMNs. This table shows performances for training, validation, and independent test sets
of more diverse datasets, along with all training sets parameters and the models’ hyperparameters.

All AMN architectures exhibit excellent regression coefficients and losses after a few learning
epochs, and this for both models E. coli core[135] and iML1515[44]. It is interesting to observe the
good performances of AMN-Wt when UB training sets are provided. Indeed, while counterexamples
can be found for which AMN-Wt will not work with EB training sets (cf. Supplementary Figure S2, ap-
pendix B), we argue in Supplementary Information ‘AMN-Wt architecture’ (appendix B) that AMN-Wt is
able to handle UB training sets because the initial inputs (UB values for uptake fluxes) are transformed
into suitable exact bound values during training (via the neural layer).

We recall that in Figure 2.2, ANNs were trained on all fluxes to enable loss computation (154 fluxes
for E. coli core and 550 fluxes for iML1515), thus the number of training data points is substantially
larger than for AMNs (154 000 or 550 000 for ANNs, instead of 1000 for AMNs). Despite requiring
larger training sets, ANNs also need more learning epochs than AMNs to reach satisfying constraint
losses and growth rate predictions for E. coli core (Figure 2.2, panels a andb) anddonot handlewell the
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a b c

Figure 2.2: Benchmarking AMNs with different training sets and mechanistic layers. All results werecomputed on 5-fold cross-validation sets. Plotted is the mean and standard error (95% confidenceinterval) over the 5 validation sets of the cross-validation. Top panels show the custom mechanisticloss values, and bottom panels plot the Q² values for the growth rate, over learning epochs (Q² isthe regression coefficient on cross-validation datapoints not seen during training). All AMNs havethe architecture given in Figure 2.1 panel c, with Vin as input, and a neural layer composed of onehidden layer of size 500. For all models, dropout = 0.25, batch size = 5, the optimizer is ‘Adam’, thelearning rate is 10-3. The architecture for ANN (a classical dense network) is given in the Methods2.5, it takes as input the uptake fluxes bounds Vin and produce a vector Vout composed of all fluxeswith which the loss is computed. The panels a, b and c show results for different training sets: aand b for 1000 simulations training sets generated with the E. coli core model, respectively with UBand EB as inputs, whereas c is for a 1000 simulations training set generated with the iML1515 model,with UB as input (for more details on the training set generations, refer to Methods). As mentionedin subsection ‘Alternative mechanistic models to surrogate FBA’, AMN-Wt cannot be used to makepredictions when exact bounds (EB) are used and is therefore not plotted in panel b of Figure 2.2.Source data are provided as a Source Data file (cf. Data availability, 2.7).

large iML1515 GEM (i.e., the growth rate cannot be accurately predicted and the oscillatory behavior
in Figure 2.2 panel c demonstrates 100 epochs are not enough to reach convergence).

2.3.4 AMNs can be trained on experimental datasets with good predic-
tive power

To train AMNs on an experimental dataset, we grew E. coli DH5-α in 110 different media compositions,
with M9 supplemented with 4 amino acids as a basis and 10 different carbon sources as possibly
added nutrients. From 1 up to 4 carbon sources were simultaneously added to the medium at a
concentration of 0.4 g.L-1 (more details in Methods 2.5 ‘Culture conditions’). We determined which
compositions to test by choosing all the 1-carbon source media compositions and randomly picking
one hundred of the 2-, 3- and 4-carbon sources media compositions (more details in Methods 2.5
‘Generation of an experimental training set’). The growth of E. coli was monitored in 96-well plates,
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by measuring the optical density at 600nm (OD600) over 24 hours. The raw OD600 was then passed to
a maximal growth rate determination method based on a linear regression performed on log(OD600)
data (more details in Methods ‘Growth rate determination’).

The resulting experimental dataset ofmedia compositions, Cmed, and growth rates, Vref, was used
to train all AMN architectures (LP, QP, Wt). These architectures are those shown in Figure 2.1 panel c
with Cmed as input. In all cases the mechanistic layer was derived from the stoichiometric matrix of
the iML151520 E. coli reduced model (cf. Methods 2.5 ‘Making metabolic networks suitable for neural
computations’). Following Figure 2.1 panel c, Cmed was entered as a binary vector (presence/absence
of specificmetabolites in themedium), the vector was then transformed through the neural layer into
an initial vector, V0, for all reaction fluxes (therefore including the medium uptake fluxes) prior to be
used in the mechanistic layer and the loss computations. Prediction performances are provided in
Figure 2.3, alongside schematics for each of the architectures.

For displaying meaningful results and to avoid any overfitting bias, we show in Figure 2.3 pre-
dictions for points unseen during training. More precisely, we computed the mean and standard
deviation of predictions over 3 repeats of stratified 10-fold cross-validations, each repeat having all
points predicted, by aggregating validation sets predictions of each fold. Overall, results presented
in Figure 2.3 have been compiled over 3x10=30 different AMN models, each having different random
seeds for the neural layer initialization and the train/validation splits.

As a matter of comparison, a decision tree algorithm predicting only the growth rate from Cmed
(the ‘RandomForestRegressor’ function from the sci-kit learn package[137] having 1000 estimators and
other parameters left with default values) reach a regression performance of 0.71 ± 0.01 with the
samedataset and cross-validation scheme, indicating AMNs can outperform regularmachine learning
algorithms.

As one can observe in Figure 2.3, the experimental variability on the measured growth rates is
relatively high, and the Q² values could be interpreted differently if taking this variability into account.
To study this further, we estimated the best possible Q² that can be reached at a given experimental
variability. Precisely, for each experimental data point, we randomly drew a new point from a normal
distribution with a mean and variance equal to what was experimentally determined for the origi-
nal point. This point can be considered as an experimental ‘randomized’ point. After doing this for
all points and computing the Q², repeating this process 1000 times, we obtain a mean Q²=0.91 with
a standard deviation of 0.02. Consequently, the best possible Q² accounting for experimental vari-
ability is 0.91, and the performance of Q²=0.77 (or 0.78) must be interpreted considering that value.
Furthermore, substituting each point by a box defined by standard deviations of both measurement
and prediction, we find that 79% for AMN-QP (76% for AMN-LP and 74% for AMN-Wt) of the boxes
intersect the identity line indicating that these points are correctly predicted within the variances.

Our results show that AMNs can learn on FBA-simulated training sets and make accurate predic-
tions while respecting the mechanistic loss, as shown in Figure 2.2. AMNs can also perform well on a
small experimental growth rates dataset as shown in Figure 2.3. To demonstrate capabilities of AMNs
beyond these tasks, we extracted from the ASAP database[138] a dataset of 17,400 growth rates for
145 E. colimutants. Eachmutant had a KO of a single metabolic gene and was grown in 120media with
a different set of substrates. Our AMNs training set, were therefore composed of medium composi-
tion and reaction KOs, both encoded as binary vectors, alongside the measured growth rates. More
details can be found inMethods 2.5 ‘External training sets acquisition’. Results are presented in Figure
2.4 and compared with classical FBA results, which were obtained running Cobrapy using the same
dataset and setting scaled upper bounds (cf. Methods 2.5 ‘Searching uptake fluxes upper bounds
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Figure 2.3: Benchmarking growth rate predictions by AMNs with experimental measurements. Inall panels, the experimental measurements were carried out on E. coli grown in M9 with differentcombinations of carbon sources (strain DH5-α, model iML1515). Training and 10-fold stratified cross-validation were performed 3 times with different initial random seeds. All points plotted were com-piled from predicted values obtained for each cross-validation set. In all cases, means are plottedfor both axes (measured and predicted), and error bars are standard deviations. For the measureddata, means and standard deviations were computed based on 3 replicates, whereas for predictions,means and standard deviations were computed based on the 3 repeats of the 10-fold cross-validation.a. Architecture and performance of AMN-QP. The neural layer (grey box) is composed of an input layerof size 38 (Cmed), a hidden layer of size 500, and an output layer of size 550 corresponding to all fluxes(V) of the iML1515 reducedmodel. Themechanistic layer (green box) follows the neural layer andmin-imizes the loss between measured and predicted growth rate, as well as the losses of the metabolicnetwork constraints. The model was trained for 1000 epochs with dropout = 0.25, batch size = 5, andthe ‘Adam’ optimizer with a 10-3 learning rate. b. Architecture and performance of AMN-LP. Thismodelhyperparameters are identical to those of panel a. The neural layer computes the initial values forthe 550 reaction fluxes (vector V), the initial values for the 1083 metabolite shadow prices (vector U)are set to zero. c. Architecture and performance of the AMN-Wt architecture. The model hyperpa-rameters are those of the previous panels and the size of theWr matrix is 550x1083 (sizes of V and Uvectors). Source data are provided as a Source Data file (cf. Data availability, 2.7).

in FBA’) corresponding to medium uptake fluxes and constraining KO reactions to zero fluxes in the
metabolic model. The AMN architecture (Figure 2.4 panel a) used with this dataset is similar to the
architecture shown in Figure 2.1 panel c, with an added input for reaction KOs (RKO). Importantly, we
also added a term to the custom loss in order to respect the reaction KOs (cf. Methods 2.5 ‘Derivation
of loss functions’ for more details).

TheAMNregressionperformance in Figure 2.4 (aggregatedpredictions froma 10-fold cross-validation)
reaches Q²=0.81 (Figure 2.4 panel b). For comparison, a decision tree algorithm predicting only the
growth rates from Cmed and RKO (the ‘XGBRegressor’ function from the XGBoost package[139] with
all parameters set to default values) yields a regression performance of 0.75, with the same cross-
validation scheme and dataset.

The performance of classical FBA is poor, as no correlation can be found between measured and
calculated growth rate (Figure 2.4 panel c). Such performance is expected as classical FBA relies on
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Figure 2.4: AMNs growth rate predictions for E. coli gene KOsmutants. An AMNmodel was trained ona set of 17,400measured growth rates of E. coli grown in 120 uniquemedia compositions and 145 differ-ent singlemetabolic gene KOs. a. AMN architecture integratingmetabolic gene KOs. This architectureis similar to Figure 2.1 panel c, except for a secondary input (RKO) for the neural layer, alongside themedium composition Cmed. The RKO input is a binary vector describing which reactions are KO. Thecustom loss function ensures that reference fluxes (i.e., the E. coli mutants measured growth rates)and mechanistic constraints are respected and that reactions experimentally KO have in Vout a nullflux value. The neural layer comprised one hidden layer of size 500 and themodel was trained for 200epochs with dropout = 0.25, batch size = 5, and the ‘Adam’ optimizer with a 10-3 learning rate. b. AMNregression performance on aggregated growth rate predictions from a 10-fold cross-validation. Themechanistic layer used for this architecture was the QP solver. c. Regression performance of classicalFBA with scaled upper bounds for compounds present in the medium and setting the upper boundand lower bound to zero for reactions that are KO (having a value of 0 in RKO). d. ROC curve of AMNresults. We thresholded the measured growth rates (continuous values) in order to transform theminto binary growth vs. no growth measures. e. ROC curve of classical FBA results. The same thresh-olding as for panel d was applied. Source data are provided as a Source Data file (cf. Data availability,2.7).

fixed uptake fluxes. In contrast, FBA should perform better to predict growth vs. no growth (a clas-
sification task), this is due to the fact that the network structure of GEMs already provides a lot of
information on reaction essentiality, growth yields on different substrates, and other qualitative in-
sights about metabolism. Indeed, in the most recent GEM of E. coli, iML1515[44], an accuracy >90%
was found for a dataset of growth assays based onmedia compositions (classification task predicting
growth vs. no growth). Consequently, we also show in Figure 2.4 the performances of AMN and FBA
for classification. Precisely, we treat the growth rate value predicted by either the AMN or FBA as a
classification score for growth vs. no growth, to that end and following Orth et al.[140], we threshold
the growth rate measures (continuous values) to binary values (1 when the growth rate is above 5%
of the maximum growth rate of the dataset, 0 otherwise). With classifications, one can compute ROC
curves, and these are shown in Figure 2.4, as panel d for AMN and panel e for classical FBA.

Overall, the results presented in Figure 2.4 show that for both regression and classification tasks,
AMNs, which integrates learning procedures, outperforms classical FBA,which is basedonmaximizing
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a biological objective only. Indeed, asmentioned in the introduction, onemain issue of classical FBA is
the unknownuptake fluxes, which have a large impact on the predicted growth rate value, while AMNs
can handle this problem because of their learning abilities. To further showcase AMN capabilities, in
particular when multiple fluxes are measured, we provide in Supplementary Figure S8 (appendix B)
the performance of an AMN on a dataset from Rijsewijk et al.[24]. With this dataset, composed of 31
fluxes measured for 64 single regulator gene KO mutants of E. coli grown in 2 media compositions,
our AMN reaches a variance averaged Q² value of 0.91 in 10-fold cross-validation.

2.3.5 AMNs can be used in a reservoir computing framework to en-
hance the predictive power of traditional FBA solvers

As already mentioned in the introduction section, the uptake fluxes of E. coli nutrients, as well as their
relation to external nutrient concentrations, remain largely unknown: the uptake flux for each com-
pound may vary between growth media. In classical FBA calculations, this is usually ignored and the
same upper bound (or zero, if a compound is absent) is used in all cases. Our results for KO mutants
suggest that this strongly reduced regression performance of classical FBA, while in classification the
effect is less severe. Nonetheless, for regression or classification the problem remains: how can re-
alistic uptake fluxes be found?

In the following, we show a way to find these uptake flux values and improve the performances of
classical FBA solvers (for both regression and classification). Once an AMNhas been trained on a large
dataset of FBA-simulated data, we can fix its parameters and exploit it in subsequent further learning
in order to find uptake flux values that can be used in a classical FBA framework. Loosely inspired by
reservoir computing[105], we call this architecture ‘AMN-Reservoir’ (Figures 2.1 panel d and 2.5 panel
a). Let us note that we are not using usual reservoirs[105] with randomweights and a post-processing
trainable layer. As a matter of fact, we do not reach satisfactory performances when we substitute
the AMN-Reservoir weights (learned during training) by random weights.

We benchmarked our AMN-Reservoir approach with two datasets. The first one is the one used in
Figure 2.3, composed of 110 E. coli growth rates, and the second is a growth assay of P. putida grown in
296 different conditions[141] (more details in Methods 2.5 ‘External training sets acquisition’). The pro-
cedure used for the two datasets is the same. First, the AMN-Reservoir is trained on FBA simulations.
For E. coli we used as an AMN-Reservoir the AMN-QP of Supplementary Table S1 (appendix B) trained
on an iML1515 UB dataset, for P. putida we used the AMN-QP of Supplementary Table S1 (appendix B)
trained on an iJN1463[141] UB dataset. Second, as shown in Figure 2.5 panel a, the whole experimen-
tal dataset is used to train the neural layer, setting up either a regression task for E. coli growth rates
and a classification task for P. putida growth assays (growth vs. no-growth). After training on media
compositions andmeasured growth rates (for both E. coli and P. putida), we extract the corresponding
uptake fluxes (Vin). These uptake fluxes are then taken as input for a classical FBA solver for growth
rate calculation, as shown in Figure 2.5 panel b.

The output of FBA was used to produce the results shown in 2.5 panels c and e. As a matter of
comparison, we show the performance of FBA for the E. coli dataset (Figure 2.5 panel d) with scaled
uptake fluxes bounds (cf. Methods 2.5 ‘Searching uptake fluxes upper bounds in FBA’), and for P.
putida (Figure 2.5 panel f) where we used the same flux bounds as given in the reference study[141].

Overall, results shown in Figure 2.5 indicate that the usage of AMN-Reservoirs substantially in-
creases the predictive capabilities of FBA without additional experimental work. Indeed, after apply-
ing the AMN-Reservoir procedure to find the best uptake fluxes, we raised the R² on E. coli growth
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et al. For the results in panels e and f, accuracies are given for the whole dataset (‘All’) composed ofcarbon source assays (‘Carbon’) and nitrogen source assays (‘Nitrogen’). Source data are provided asa Source Data file (cf. Data availability, 2.7).

rates from 0.51 (panel d) to 0.97 (panel c) and that we raised the accuracy on P. putida growth assays
from 0.81 (panel f) to 0.96 (panel e). We note that these uptake fluxes were found for the training
set of the AMN-Reservoir, but we also show the performance of FBA with uptake fluxes found for
cross-validation sets (Supplementary Figure S9, appendix B). As expected, it displays the same level
of performance as the AMNs directly trained on experimental data (Figure 2.3).

2.4 Discussion
In this study we showed how a neural network approach, with metabolic networks embedded in the
learning architecture, can be used to address metabolic modeling problems. Previous work on RNNs
and PINNs for solving constrained optimization problems was re-used and adapted to develop three
models (AMN-Wt, -LP and -QP) enabling gradient backpropagation within metabolic networks. The
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models exhibited excellent performance on FBA generated training sets (Figure 2.2 and Supplemen-
tary Table S1, in appendix B). We also demonstrated that the models can directly be trained on an
experimental E. coli growth rate dataset with good predictive abilities (Figure 2.3).

In classical FBA, all biological regulation mechanisms behind a flux distribution are ignored and
flux computation relies entirely on bounds set on uptake or internal fluxes. Therefore, when perform-
ing classical FBA, one needs to set uptake bounds individually for each condition to reliably predict
metabolic phenotypes. AMNs attempt to capture the overall effects of regulation via the neural layer
while keeping the mechanistic layer for the metabolic phenotype. Indeed, as shown in Figure 2.4 and
Supplementary Figure S8 (appendix B), gene KOs of metabolic enzymes or regulators can be taken
into account via the neural layer. Such AMNs can potentially be trained on a variety of experimen-
tal inputs (wider than the carbon source composition shown in our studies) to grasp the effects of
complex regulation processes in the cell and to better explain the end-point metabolic steady-state
phenotype of an organism.

For improved adaptability, we also trained AMN-Reservoirs on large FBA-simulated training sets
and used these to improve FBA computations on two experimental datasets (E. coli growth rates and
P. putida growth assays). Figure 2.5 shows that our hybrid models substantially enhance classical FBA
predictions both quantitatively and qualitatively, and this without any additional flux measurements.

One issue that impairs phenotype predictions with FBA is the lack of knowledge on media up-
take fluxes and determining bounds on these fluxes is a core experimental work required for making
classical FBA computations realistic. These bounds depend on cell transporters abundances, which
may vary between conditions and depend on the cell’s metabolic strategy. satFBA[76] is a variant
of FBA that assumes fixed transporter levels and converts medium concentrations to possible up-
take fluxes by kinetic rate laws, relying on a Michaelis-Menten value for each uptake reaction. In
more sophisticated CBM approaches, such asmolecular crowding FBA[142] or Resource Balance Anal-
ysis[73], constraints on the resource availability and allocation are added to obtain more biologically
plausible metabolic phenotypes, but parameterizing such models requires additional data. To pro-
vide the necessary data to the aforementioned CBMmethods and to validate results, fluxomics[143],
metabolomics[59], or transcriptomics[60] have been used in the past. Because additional experimen-
tal work is needed with sophisticated CBM approaches, many users rely on classical FBA, which as we
have seen, has limitations as far as quantitative predictions are concerned.

AMNs are used in this study for tackling the same issue as satFBA: predicting metabolites uptake
fluxes from medium metabolite composition. To do so, where satFBA uses transporter kinetics with
parameters that need to be acquired through additional measurements, AMNs use a pre-processing
neural layer that is accessible for learning. Our AMN hybrid models get rid of additional experimental
data for reaching plausible fluxes distributions. We do so by backpropagating the error on the growth
rate or any other measured flux, to find complex relationships between the medium compositions
and themediumuptake fluxes. To this end, we demonstrated the high predictive power of AMNs, and
their re-usability in classical FBA approaches. Indeed, FBA developers and users may now make use
of our AMN-Reservoir method for relating medium uptake fluxes to growthmedium compositions. In
this regard, a Source Data file (cf. Data availability, 2.7) gives uptake fluxes for the metabolites used
in our benchmarking work with E. coli and P. putida (Figure 2.5), and these upper bounds for uptake
fluxes can directly be used by Cobrapy to reproduce Figure 2.5 panels c and e.

Making FBA suitable formachine learning aswe have done in this study opens the door to improve
GEMs. For instance, in addition to estimating uptake fluxes, AMNs could be used to estimate the coef-
ficients of the biomass reaction based onmeasurements. So far, these coefficients are derived based
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on literature, but also using experimental data: growth rate, flux, andmacromolecular fractions mea-
sures can help finding optimal coefficients[44]. However, these experiments are limited in number,
and biomass coefficients are usually determined only once, for a single experimental setup, and are
hardly extrapolated to all possible conditions. Some studies already underline this issue and attempt
to efficiently integrate experimental data in the biomass reaction parametrization[57]. With AMNs,
a trainable layer containing the biomass coefficients could be added, adapting the biomass reaction
to any experimental setup. Another possible application of AMN is to enhance GEMs reconstruction
based on quantitative prediction performance. Indeed, the method we developed for KOs could be
adapted to screen putative reactions in a metabolic model so that its predictions match experimental
data. This task should be performed after a manual curation, of course, to rely on existing literature
knowledge and databases.

Returning to the curse of dimensionality issue mentioned in the introduction, we systematically
studied at which training set sizes ‘black-box’ ML methods would yield performances similar to our
AMN hybrid models. To that end, we trained a simple dense ANNmodel on training sets of increasing
sizes. Results obtained with E. coli core[135] show that at least 500,000 labeled data (reference fluxes)
are needed in the training sets to reach losses below 0.01 (cf. in Supplementary Figure S10, appendix
B), which according to Figure 2.2 and Supplementary Table S1 (appendix B) are still one order of mag-
nitude higher than all AMNs losses trained on only 1000 labeled data. This clearly demonstrates the
capacity of hybrid models to reduce training set sizes by constraining the search space through the
mechanistic layer. Other black-boxmodels can also be used, indeed the experimental measurements
used in Figures 2.3 and 2.4 can be fitted with decision tree algorithms (Random Forests[137] and XG-
Boost[139]) with performances slightly under those of AMN. However, with these algorithms, nothing
is learned regarding the mechanistic constraints and results produced by these methods cannot be
fed back to classical FBA, as we do in Figure 2.5 with the AMN-Reservoir.

Beyond improving constraint-basedmechanisticmodels and black-boxMLmodels, AMNs can also
be exploited for industrial applications. Indeed, since arbitrary objective functions can be designed
and AMNs can be directly trained on experimental measurements, AMNs can be used to optimize
media for the bioproduction of compounds of interest or to find optimal gene deletion and insertion
strategies in typical metabolic engineering projects. In this latter case, reactions would be turned
off via a trainable layer, which would be added prior to the mechanistic layers of our AMNs. Another
potential application is the engineering ofmicroorganism-based decision-making devices for themul-
tiplexed detection of metabolic biomarkers or environmental pollutants. Here, AMNs could be used
to search for internalmetabolite production fluxes enabling one to differentiate positive samples con-
taining biomarkers or pollutants from negative ones. Such a device has already been engineered in
cell-free systems[41], and AMNs could be used to build a similar device in vivo by adding a trainable
layer after the mechanistic layer whose purpose would be to select metabolite production fluxes that
best split positive from negative samples.

2.5 Methods
2.5.1 Making metabolic networks suitable for neural computations
The set-up of our AMNs requires all reactions to be unidirectional; that is, the solutions must show
positive-only fluxes (which is not guaranteed by usual GEMs). To split reactions of a given metabolic
network into separate forward and reverse reactions, we wrote a standardization script that loads
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an SBML model into Cobrapy[68] and screens for all two-sided reactions, then duplicating them into
two separate reactions; and writes a new version of the model with bi-directional reactions split into
separate forward and backward reactions. To avoid confusion, we add a suffix to these reaction
names, either “for” or “rev” respectively designating the original forward reaction and the reversed
reaction. The uptake reactions were also duplicated, even if encoded as one-sided, and their suffix
was set to “i” for inflow reactions (adding matter to the cell), and “o” for outflow reactions (removing
matter from the system).

As detailed in the next subsection, our unidirectional models are used to build flux data training
sets. The duplicated iML1515[44] model is large, comprising 3682 reactions and 1877 metabolites.
A substantial number of reactions in this model have zero fluxes for many different media, and it
is unnecessary to keep these reactions during the training process. Prior to training, we therefore
generated a reducedmodel by removing reactions having zero flux values along with themetabolites
no longer contributing to any reactions. Using that procedure, we were able to reduce iML1515[44]
model to only 550 reactions and 1083 metabolites.

2.5.2 Generation of training sets with FBA
Our reference flux data were obtained from FBA simulations, using the GNU Linear Programming Kit
(‘GLPK’, a simplex-based method) on Cobrapy[68], with different models of different sizes. Through-
out this paper, when ‘reference FBA-simulated data’ is mentioned, it refers to data computed with
this method.

Reference FBA-simulateddata formetabolic flux distributionswere generatedusingmodels down-
loaded from the BiGG database[136]. The models were used to generate data using Cobrapy[68] fol-
lowing a precise set of rules. First, we identified essential uptake reactions for the models we used
(E. coli core[135] and iML1515[44]) which we defined in the following way: if one of these reactions has
its flux upper bound set to 0 mmol.gDW-1.h-1, the ‘biomass’ reaction optimization is impossible, even
if all other uptake fluxes bounds are set to a high value, i.e., 1000 mmol.gDW-1.h-1. In other words, we
identified theminimal uptake fluxes enabling growth according to themodels. For E. coli core[135] we
found 7 of such obligate reactions (for the uptake of CO2, H+, H2O, NH4, O2, Phosphate, and Glycerol
as the carbon source). For iML151520 we had the same 7 obligate reactions and additional salt and
ions uptake reactions (for the uptake of Fe2+, Fe3+, Mn2+, Zinc, Mg, Calcium, Ni2+, Cu2+, Selenate, Co2+,
Molybdate, Sulfate, K+, Sodium, Chloride, Tungstate, Selenite). With iML1515[44], we also added as ob-
ligate reactions the uptake of four amino acids (Alanine, Proline, Threonine and Glycine) in order to be
consistent with our experimental training set where the four amino acids were systematically added
to M9 (cf. subsection ‘Generation of an experimental training set’). During reference FBA-simulated
data generation, the upper bounds on these obligate reactions were set to 10 mmol.gDW-1.h-1.

To generate different media compositions, we added to the obligate reactions a set of variable
uptake reactions. For the E. coli core model[135] we added 13 variable uptake reactions (for Acetate,
Acetaldehyde, Oxoglutarate, Ethanol, Formate, Fructose, Fumarate, Glutamine, Glutamate, Lactate,
Malate, Pyruvate, and Succinate). For each generated medium, a set of variable uptake reactions was
selected, drawn with a binomial distribution B(n, p) with n=13 and p = 0.5, p being a tunable parameter
related to the ratio of selected reaction. Consequently, the mean number of selected variable uptake
reactions was n x p = 6.5. Next for each selected reaction, the upper bound continuous value of the
reaction flux was randomly drawn from a uniform distribution between 2 and 10 mmol.gDW-1.h-1. For
the iML1515[44] model, to limit the combinatorial search space, the selected variable uptake reactions
were those of the experimental training set and consequently between 1 and 4 variable uptake reac-
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tion were added (cf. subsection ‘Generation of an experimental training set’). The upper bound values
for each selected variable reaction were chosen randomly between 0 and 2.2 mmol.gDW-1.h-1 (0 ex-
cluded). The 2.2 threshold was chosen to produce predicted growth rates that were in the range of
those observed experimentally. For the P. putida iJN1463[141] model, we used the same approach with
variable uptake reactions selected from the experimental training set, and consequently 1 variable
uptake reaction was added to obligate reactions (described as the minimal medium in the reference
study[141]) for each element of the training set. The upper bound values for each selected variable
reaction were chosen randomly between 0 and 10 mmol.gDW-1.h-1 (0 excluded).

After generating the set of growth media for E. coli core[135], iML1515[44] and iJN1463[141] we ran
FBA in Cobrapy[68] for each medium and recorded all steady-state fluxes including the growth rate
(flux of the ‘biomass’ reaction). These fluxes were used as a training set for all models presented in
Figure 2.2 and in Supplementary Table S1 (appendix B). All AMN architectures were trained on the
‘biomass’ flux (i.e., the growth rate), while ANN architectures were trained on all fluxes. For all UB
training sets, the variable uptake flux values were those used by Cobrapy[68] to generate the training
set. For EB training sets, the variable uptake flux values were those calculated by Cobrapy[68] at
steady state.

2.5.3 Derivation of loss functions
Loss functions are necessary to assess the performances of all MM solvers and all AMN architectures
(AMN-Wt, -QP, and -LP) and also to compute the gradients of the QP solvers. In the following and
subsequent subsections, all vectors and matrices notations are defined when they are first used and
can also be found in Supplementary Table S2 (appendix B).

To compute loss, we consider a metabolic model with n reactions and m metabolites. Let V =

(v1, . . . , vn)
T be the reaction flux vector and S the m × n stoichiometric matrix of the model. We

assume some metabolites can be imported in the model through a corresponding uptake reaction.
Let Vin be the vector of nin upper bounds (or exact values) for these uptake reactions, and let Pin

the nin × n projection matrix such that Vin = PinV . We further assume that some reaction fluxes
have been experimentally measured, let Vref be the vector of reference flux data (FBA-simulated or
measured). With Pref the nref × n projection matrix for measured fluxes. V is calculated by solving
the following quadratic program (QP):

min
(
∥Pref V − Vref∥2

) (2.1)
s.t.:
SV = 0

PinV ≤ Vin

V ≤ 0

For each solution, V , of eq. 2.1, four loss terms are defined. L1 is the loss on the fit to the reference
data. L2 ensures the respect of the network stoichiometric constraint (S V = 0). L3 ensures the
respect of the constraints on input fluxes that depend on medium composition (PinV ≤ Vin). Finally,
L4 ensures the respect of the flux positivity (V ≤ 0). The losses are normalized, respectively by nref

for the fit to reference data,m for the stoichiometric constraint, nin for the boundary constraints, and
n for the flux positivity constraints.
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Summing the four terms, the loss L is:

L = L1 + L2 + L3 + L4 (2.2)
=

1

nref
∥PrefV − Vref∥2 +

1

m
∥SV ∥

2

+
1

nin
∥ReLU(PinV − Vin)∥

2

+
1

n
∥ReLU(−V )∥

2

More details about each loss term can be found in the Supplementary Information ‘QP-solver
equations’ (appendix B).

When reaction KOs are added to the input of AMNs (as in Figure 2.4), we add a term to the loss
function, L5, for ensuring a null value for fluxes that have their reaction KO:

L5 =
1

nKO
∥ReLU (PKOV −RKO) ∥2 (2.3)

where RKO is a vector of length nKO describing which reactions are KO, and PKO the projection
matrix mapping the whole flux vector V to KO fluxes.

2.5.4 Wt-solver
The Wt-solver describes a metabolic state by two vectors V andM , representing respectively the re-
action fluxes and the metabolite production fluxes. The initial value (V 0) for vector V can be arbitrary
as long as the uptake medium bounds are respected. Vectors V andM are iteratively computed until
convergence using the following equations:

M = Pv→mV (2.4)
V = (Pm→vV ⊙ Wr)M + V 0

where Wr is a consensus weight matrix representing flux branching ratios, Pv→m = ReLU(S),
Pm→v = ReLU(

[
− 1

zisj,i

]
), S is the stoichiometric matrix, sj,i the stoichiometric coefficient of row j

and column i, zi the number of strictly negative elements in column i of S, and ⊙ the Hadamard
product operation. Additional details on the procedure and the associated matrices are provided in
Supplementary Information section ‘Wt-solver equations’ (appendix B).

2.5.5 LP-solver
The LP method aims at solving linear constrained problem similar to the ones solved by FBA. It relies
on the results from Yang et al.[133] where the authors used gradient descent on both primal and dual
variables of the problem.

When the uptake fluxes are known (EB method), the FBA problem can be written as:
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max: cTFBAV (2.5)
s.t.:
SintV = −bFBA

V ≤ 0

where Sint is the stoichiometricmatrix with uptake fluxes zeroed out (i.e., fluxes that addmatter in
the system). In other words, Sint is the internal stoichiometric matrix. Let us consider bFBA, a vector
of dimensionm with bi corresponding to uptake fluxes of medium metabolitemi (either as an exact
value for EB or an upper bound for UB) and cFBA, the objective vector of dimension n (in this work
this vector has non-zero elements only for reference fluxes like the ‘biomass’ reaction flux (growth
rate)).

This problem can be written in its dual form with U being the dual variable of V :

min: − bTFBAU (2.6)
s.t.:
ST
intU ≤ cFBA

As mentioned before, the problem given by eq. 2.5 can be solved conjointly with problem given
by eq. 2.5 by iteratively updating V and its dual U through gradient descent:

V (t+1) = V (t) − dt∇V (2.7)
U (t+1) = U (t) − dt∇U

V (0) = P T
inVin and U (0) = 0

where t is the iteration number and dt the learning rate.
Note that initialization of LP with uptake fluxes is not mandatory with the method from Yang et

al.[133] as it has been proven to converge to global optimum independently from the initial values of V
and U . Detailed expressions and derivations of gradients for U and V are provided in Supplementary
Information ‘LP-solver equations’ along with Figures S4 and S5 (appendix B).

2.5.6 QP-solver
The QP solver solves the quadratic program given by eq. 2.1. While the QP system can be solved by
a simplex algorithm, solutions can also be approximated by calculating the vector V that minimizes
the loss (L in eq. 2.2). The gradient ∇V for vector V can thus be found by solving ∂L

∂V = 0 and, as in
eq. 2.7, V is computed iteratively with iteration number t and learning rate dt.

Detailed expressions and derivations for the gradient ∇V , when exact bounds (EBs) or upper-
bounds (UBs) are provided for uptake flux medium, can be found in the Supplementary Information
‘QP-solver equations’ (appendix B).
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2.5.7 ANN architecture
The ANN architecture is a ‘black box’ dense neural network. As with the other architectures the input
layer corresponds to themedium uptake fluxes, Vin, and the output layer corresponds to the set of all
fluxes Vout. In order to assess losses with the ANN architecture, which does not have any mechanistic
layer, each entry of the training set contained all flux values (in other words, Vref contains all fluxes).
Consequently, the training process with ANN consists in fitting all predicted fluxes to reference flux
data (computing the MSE on all the fluxes). To compare results with the other architectures, R² and
Q² are computed for the growth rate, and constraint losses are computed using predictions for all
fluxes, using the formulation given in the subsection Methods 2.5 ‘Derivation of loss functions’.

2.5.8 AMN architectures
As shown in Figures 2.1 and 2.3, we propose three AMN architectures: AMN-Wt, AMN-LP and AMN-
QP. The AMNs are run with training sets using exact values (EB) or only upper bound values (UB) for
medium uptake fluxes. All AMNs take as their input a vector of bounds of size nin for medium uptake
fluxes (Vin) and then transform it via a dense neural network the input vector into an initial vector of
size n for all fluxes (V0), which is refined through an iterative procedure computing V (t+1) from V (t).
With all AMNs a nin x n weight matrix transforming Vin to V0 is learned during training, and we name
this transforming layer the neural layer. With AMN-LP/QP, V (t) is iteratively updated in a mechanis-
tic layer by the gradient (∇V ) of LP/QP solvers (cf. previous subsections in Method). With AMN-Wt,
the mechanistic layer computes V (t+1) from V (t)using the transformations shown in Figure S1 (ap-
pendix B), which include a n x m weight matrix (Wr). That weight matrix can be directly computed
from training data when all fluxes are provided or can be learned during training, when only a frac-
tion of fluxes are provided (like the growth rate with experimental datasets). In our implementation
(cf. Code Availability, 2.8) AMN-Wt is embedded in a RNN Keras cell[144] and both matrices Wi and
Wr are learned during training. ANN-Wt is further detailed in Supplementary Information ‘AMN-Wt
architecture’ (appendix B).

With all AMN architectures, the values of V corresponding to Vin are not updated in the neural nor
mechanistic layers when training with exact values for medium uptake (EB training sets).

2.5.9 ANN and AMN training parameters
For ANN and AMN architectures, we use the Mean Squared Error (L1 in eq. 2.2) for measured fluxes
as the objective function to minimize during training. In all AMN architectures we add to the L1 loss
function the terms corresponding to the 3 losses derived from the constraints of themetabolic model
(L2, L3 and L4 in eq. 2.2).

The parameters used when training ANNs and AMNs, there are two types:
1. Reference data parameters. Reference data can either be FBA-simulated or experimental. For
FBA-simulated data, we can tune the size of the training set to be generated. We can alsomodify
the mean number of selected variable intake medium fluxes, and the number of levels (i.e. the
resolution) of the fluxes. We can alsomodify the variable uptake reactions list, but this modifies
the architecture of the model (initial layer size), so we kept the same list for each model in the
present work. The lists can be found in the subsection ‘Generation of Training Sets with FBA’.
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2. Model hyperparameters. During learning on FBA-simulated or experimental data, ANN and
AMN have a small set of parameters to tune: the number and size of hidden layers, the number
of epochs, the batch size, the dropout ratio, the optimizer and learning rate, and the number of
folds in cross-validation. These numbers are provided in Supplementary Table S1 (appendix B)
for models trained on FBA-simulated data and in the captions of Figures 2.3 to 2.5 for models
trained on experimental data.

2.5.10 Searching uptake fluxes upper bounds in FBA
The goal of this optimization was to find the best scaler for fluxes to best match experimentally de-
termined growth rates, by using ‘out-of-the-box’ FBA, simply informing the presence or absence of
the flux according to the experimental medium composition. The optimal scaler used in Figures 2.4
and 2.5 was found using the Cobrapy software package[68] by simply searching for the maximum R²
between experimental and FBA-predicted growth rates for scalers ranging between 1 and 10.

2.5.11 Generation of an experimental training set
Ten carbon sources (Ribose, Maltose, Melibiose, Trehalose, Fructose, Galactose, Acetate, Lactate, Suc-
cinate, Pyruvate) were picked for being the variables of our training sets. These could ensure observ-
able growth as a sole carbon source with a concentration of 0.4 g.L-1 in our M9 preparations. The
selected carbon sources enter different parts of the metabolic network: 6 sugars enter the upper
glycolysis pathway, and 4 acids enter the lower glycolysis pathway or the TCA cycle. With a binary
(i.e., presence or absence of each carbon source) approach when generating the combinations to test
for making the experimental training set, we generated all possible combinations of 1, 2, 3 or 4 car-
bon sources simultaneously present in the medium. Naturally, we picked all 1-carbon source media
combinations for experimental determination (only 10 points). Then, we randomly selected 100 more
combinations to experimentally determine, by randomly picking 20 points from the 2-, 40 points from
the 3- and 40 points from the 4-carbon source combinations sets. The python scripts to generate
these combinations and pick the ones for making our experimental training set are available on our
Github package (cf. Codes availability section). After picking the combinations to test, we experimen-
tally determined the maximum specific growth rate of E. coli for each combination of carbon sources
inM9 (cf. next two subsections). Themean over replicates for eachmedia composition was computed
as the corresponding growth rate value to make the final experimental training set (cf. Methods 2.5
‘Growth rate determination’).

2.5.12 Culture conditions
The base medium for culturing E. coli DH5-α (DH5a) was a M9 medium prepared with those final
concentrations: 100µM CaCl2, 2mM MgSO4, 1X M9 salts (3 g.L-1 KH2PO4, 8.5 g.L-1 Na2HPO4 2H2O, 0.5
g.L-1 NaCl, 1g.L-1 NH4Cl), 1X trace elements (15 mg.L-1 Na2EDTA 2H20, 4.5 mg.L-1 ZnSO4 7H2O, 0.3 mg.L-1
CoCl2 6H2O, 1 mg.L-1 MnCl2 4H2O, 1 mg.L-1 H3BO3, 0.4mg.L-1 Na2MoO4 2H2O, 3 mg.L-1 FeSO4 7H2O, 0.3
mg.L-1 CuSO4 5H2O; solution adjusted at pH=4 and stored at 4°C), 1 mg.L-1 Thiamine-HCl and 0.04g.L-1
amino acid mix so that each amino acid (L-Alanine, L-Proline, L-Threonine, Glycine) was at a final
concentration of 5 mg.L-1 in the medium. The additional carbon sources that could be added were
individually set to a final concentration of 0.4 g.L-1. The pH was adjusted at 7.4 prior to a 0.22µm filter
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sterilization of the medium. Pre-cultures were recovered from glycerol -80°C stocks, grew in Luria-
Bertani (LB) broth overday for 7 hours, then used as 5µL inoculate in 200µL M9 (supplemented with
variable compounds) in 96 U-bottom wells plates overnight for 14 hours. Then 5µL of each well was
passed to a replicate of the plate on the next day for growth monitoring. The temperature was set
to 37°C in a plate reader (BioTek HTX Synergy), with continuous orbital shaking at maximum speed,
allowing aerobic growth for 24 hours. A monitoring every 10 minutes of the optical density at 600 nm
(OD600) was performed. A figure for summarizing the experimental workflow is available in Figure S11
(appendix B).

2.5.13 Growth rates determination
The maximal growth rate was determined by sliding a window of 1 hour-size, performing a linear
regression on the log(OD600) data in each window. We then retrieve the maximum specific growth
rate as the maximum regression coefficient over all windows. If several growth phases are visible,
one can omit a part of the growth curve for the maximal growth rate determination (for this study
we always retrieved the maximal growth rate on the first growth phase, so as we are certain that the
media contains all added carbon sources). 8 replicates for eachmedium compositionwere performed
(on a single column of a 96-well plate). Outliers were manually removed after visual inspection of the
growth curves or clear statistical deviation of the computed growth rate from the remaining replicates.
The numbers of replicates kept range from 2 to 8, with an average of 4.6 (± 1.6) replicates per medium
composition. Means and standard deviations over replicates were computed to be used for training
AMNs andmaking figures. All rawdata and the code to process it are available in theGithub repository
(cf. Code availability, 2.8).

2.5.14 External training sets acquisition
Growth rates of E. coli metabolic gene KO mutants. The dataset was downloaded from the ASAP
database (Mutant Biolog Data I for K-12 mutant strains)[138] . That dataset was pre-processed by
applying several filtering steps: removing substrates that do not appear in iML1515 as possible sub-
strates for uptake fluxes, removing genes not found in iML1515, and removing all data duplicates to
obtain a balanced and coherent dataset. The filtered dataset contains 17,400 growth rates: 145 E. coli
mutants (each having a KO of a single metabolic gene) grown in 120 conditions (each with a different
set of substrates) from Biolog phenotype microarrays[85]. The final training set can be found in the
source data, provided as a Source Data file (cf. Data availability, 2.7).

For practical reasons, we converted the information about metabolic gene KOs information into
binary vectors describing which reactions are directly affected by a gene KO, called RKO in Figure
2.4. This mapping was automated with iML1515’s ability to link genes and reactions. For reactions
performed by enzymes encoded by more than one gene, we make the assumption that when any of
these genes is knocked-out, the reaction is also knocked-out.

For the FBA computation (Figure 2.4 panels c and e), we set an arbitrary upper bound on uptake
fluxes (11 mmol.gDW-1.h-1 was found to be the best value in terms of regression performance) for each
substrate in the dataset when it is present (otherwise 0). To simulate a KO, we set the lower and upper
bound of a reaction to zero.

To transform the measured growth rates from continuous values into binary values (for the ROC
curves in Figure 2.4 panels d and e), followingOrth et al.[140], we applied a threshold of 0.165 .h-1, which
is equal to 5% of themaximum growth rate (3.3 .h-1) found in the dataset. Therefore, the classification
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task can be seen as the ability for the model to classify growth rates below and above the threshold
value.
P. putida growth assays. The dataset used to generate Figure 2.5 (panels e and f) was taken from
the study of J. Nogales et al.[141] presenting iJN1462 (an updated version called iJN1463 is available on
BiGG[136]) for P. putida’s GEM. This state-of-the-art GEM of P. putida KT2440 contains a few hundred
more genes and reactions from the previous models, allowing better coverage. The dataset corre-
sponds to growth assays with 188 carbon and 108 nitrogen sources. For each condition, we verified
that an uptake reaction flux was present in the iJN1463[141] model. 55 conditions contained a nu-
trient source without a corresponding uptake reaction in the model. For all those conditions, the
AMN input would be the minimal medium. In order to avoid biasing the training set with 55 identical
conditions, we kept one condition describing the minimal medium for carbon sources and one con-
dition describing the minimal medium for nitrogen sources. The 55 conditions were added back to
compute the final score. The training set can be found in the source data, provided as a Source Data
file (cf. Data availability, 2.7).

The minimal medium assumed in our simulations was taken from J. Nogales et al.[141], reporting
a set of uptake fluxes upper bounds. When testing a carbon (nitrogen) source, glucose (NH4) was
removed from theminimal medium, and the respective nutrient sourcemetabolite was added. Using
these simulated growth media, accuracies on growth predictions using Cobrapy (Figure 2.5 panel f)
were calculated considering as positive all non-zero growth predictions. Results presented in Figure
2.5 panel e were obtained by training a reservoir on simulations as explained in Methods 2.5 ‘AMN
and ANN training parameters’. Thus, this reservoir was used to fit experimental data, and Vin was
directly used as an input for Cobra.

2.6 Statistics & reproducibility
As stated in the previous section Generation of training sets with FBA, the exchange reactions upper
bounds were randomized to produce FBA-simulated training sets. No statistical method was used
to predetermine the sample size, which was chosen based on time and resources. Blinding was not
relevant to generate these training sets. When performing cross-validation data were excluded from
these training sets depending on the fold size as indicated in Figure 2.2 and in Supplementary Table
S1 (appendix B). Additionally, in Supplementary Table S1 (appendix B), 10% of the training set was
removed and placed in a test set prior performing training and cross-validation.

As stated in the previous section Generation of an experimental training set, the media of the ex-
perimental training set were randomized by randomly drawings carbon sources combinations. The
growth rate measures were computed as means over 2 to 8 technical replicates. In all figures dis-
playing this dataset, we show the standard deviation over replicates as the error bars. No statistical
method was used to predetermine the sample size of 110. This size was chosen based on time and
resources. Blinding was not relevant to generate this training set.

As stated in the previous section External training sets acquisition, we found two additional pub-
licly available datasets, for which the authors did not specify any statistical method to pre-determine
the sample size. To our knowledge, there was no replication scheme for experiments, for both ex-
ternal training sets. Incompatible data were excluded in the pre-processing steps of the training set
stemming from the ASAP database (cf. previous section). For more details on the statistics and repro-
ducibility of these external training sets, please refer to the original studies.
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2.7 Data availability
Metabolic models used in this study can be found with the following accessions on the BiGG
database[136]: e_coli_core, iML1515, iJN1463. Unidirectional versions of these models can be found
on our repository, at this link. The original dataset from the ASAP database[138] can be found un-
der the accession Mutant Biolog Data I. The original dataset from Nogales et al.[141] can be found in
Supporting Information’s Table S2 (appendix B) of the study.

The source data underlying all figures presented in the main manuscript and Supplementary In-
formation in appendix B (including training sets used in Figures 2.3 to 2.5), are providedwith this paper
as a downloadable archive, on this clickable link. Additional datasets and raw data are available on
our Github repository (cf. Code availability, 2.8), or from the corresponding author upon request.

2.8 Code availability
All scripts and data for generating results presented in this paper are available within a documented
repository. For a citable and stable version of the repository supporting this article, refer to Zenodo
(clickable link). Alternatively, to access future releases and interact with the repository authors, refer
to Github (clickable link). The repository includes tutorials in Google Colab notebooks. The released
codesmake use of Cobrapy[68], numpy[145], scipy[146], pandas[147], tensorflow[148], scikit-learn[137]
and keras[144] libraries. Figures were generated using the matplotlib[149] and seaborn[150] libraries.
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Chapter 3
Further assessment and improvements
of hybrid models to exploit GEMs
In the previous chapter, I demonstrated the basic abilities of AMNs, with three key aspects: (i) we
can surrogate FBA with different kinds of ‘neural’ solvers which can be included in ANNs thanks to
their gradient backpropagation compatibility, termed ‘mechanistic layers’; (ii) we can build predictive
models, AMNs, that use an ANN with a custom ‘mechanistic loss’, in order to learn the best input for
themechanistic layer, by generalizing from a set of conditions; and (iii) we can use a two-step learning
process, termed ‘reservoir computing’, that relies on first training an AMNon FBA simulations, then re-
train it with an experimental dataset to find the best FBA inputs in order to match experimental data.
We showcased the capabilities of AMNs with (i) in silico datasets generated through FBA subjected to
random combinations of upper bounds applied on uptake fluxes, (ii) an experimental dataset of 110 E.
coli growth rates grown inmixed carbon sources (designed and acquired bymyself), (iii) three external
phenotyping datasets: E. coli growth rates for 120 single metabolic gene KOs mutants grown in 145
substrate conditions; 296 P. putida growth assays; as well as an E. coli fluxomics dataset, obtainedwith
64 single regulator gene KOs mutants grown in two substrate conditions, with 31 measured fluxes.

We clearly showed that the predictive performance of GEMs was surpassed without requiring
more experimental measures, with the AMNs formulation. However, there is still a lot to investigate
on different parts of the methodology, to further assess its capabilities and limits, and eventually give
leads on how to improve it. Importantly, this chapter assesses howmuch AMNpredictions are reliable
in terms of GEMs constraint respect, which was not done in the previous Chapter, but is critical in the
scope of developing a reliable hybrid model. Indeed, one advantage of hybrid models like AMNs is to
bring mechanistic insights, that can be only reached if predictions respect GEMs constraints.

Each of the investigations will be divided in a section of this chapter, with an introduction stating
what is the part of the methodology that is investigated, and why; then the methods and finally the
results and their discussion. Before presenting my investigations, I will describe in a preamble the
different training sets and metrics used in this chapter. Then, investigations will first focus on the
‘neural’ mechanistic solvers, notably by reformulating the QP-solver method, which was found to be
incomplete. Then I will investigate what is the behavior of such mechanistic solvers when included
in AMNs, as ‘mechanistic layers’, which is not obvious as this approach is rather new and innovative.
Next, I investigate how the AMNs architectures can be automatically searched by hyperparameter op-
timization, leading to performance improvements. After that, I assess the performances of alternative
ML models to surrogate FBA, underlining the importance of both training sets contents and the type
of models for overall performance. Finally, the last section will assess AMN performance with in vivo
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datasets that are splitted in specific ways. To conclude, I add some remarks on the present chapter’s
results and open the discussion for Chapter 4, which will give take-home messages from the whole
dissertation, and some leads for the method’s improvements.

3.1 Preamble: training sets and metrics presentation
3.1.1 Training sets
Throughout this chapter, the same training sets can be used for different tasks. A summary table of
all those training sets is provided here, with corresponding appendix figure numbers, to access visual
depictions. Note that in this chapter I will only consider ‘UB’ training sets for sake of simplicity, since
the performance difference was not significant compared to ‘EB’ training sets, and these were not
compatible with the AMN-Wt method (see section 2.5.2 and appendix B Table S2).

Context Inputs Outputs GEM Name Comments
Appendix 

Figure number

core-glucose Only the glucose uptake flux is varied

core-random
13 upper bounds on uptake fluxes are 
drawn with binomial law (n=13, p=0.5)

core-extended
Extends the number and possible values of 
upper bounds on uptake fluxes compared to 

'core-random'
iML-glucose Only the glucose uptake flux is varied

iML-random
10 upper bounds on uptake fluxes are 
drawn with binomial law (n=10, p=0.5)

iML-extended
Extends the number and possible values of 
upper bounds on uptake fluxes compared to 

'iML-random'

iML-singles
One out of 10 uptake fluxes upper bounds 

is drawn for each training set entry

iML-expsim
For each '110GR' medium composition, 10 

FBA simulations are performed with 
different drawings

Medium composition (Cmed) 110GR
Mixed carbon sources (1 to 4) media 

compositions, with corresponding growth 
rates

Medium composition (Cmed) 
and Reaction KO (RKO)

Cov-BiologKO
17,400 growth rates of 120 metabolic gene 

KO mutants grown in 145 conditions

Medium composition (Cmed) 
and Regulator gene KO 

(GKO)

31 fluxes (including 
Growth Rate)

Rijs-RegKO
128 sets of 31 fluxes of 64 regulator gene 

KO mutants grown in 2 conditions

C.2

in silico
(FBA simulations)

Upper bounds on uptake 
fluxes (Vin)

OR

Upper and lower bounds on 
all fluxes (UB, LB)

Growth Rate

OR

All simulated fluxes 
(including Growth Rate)

E. coli  core
C.1

iML1515

n/a

C.1

in vivo
(experimental 

data)

Growth Rate

Table 3.1: Summary table of the training sets used in this chapter. For some training sets, afigure is shown in the appendix C.1 that displays a heatmap of the inputs and outputs, andother metrics (Figure C.1 and C.2). In Table C.1, the location of files containing rules to drawupper bounds on uptake fluxes is available.

3.1.2 R² and Q²
Throughout this chapter, recurrent metrics will be used to evaluate and assess the different perfor-
mance of AMNs and other models. The most frequently used metric is the coefficient of determi-
nation, R². Importantly, in the context of trainable models, the term R² is used when computing the
coefficient of determination on trained data points computations, in contrast to the term Q² that is
used when the coefficient of determination is computed on untrained data points predictions. Note
that these ‘unseen data’ predictions can be aggregated from cross-validation sets, taken from inde-
pendent test sets, or averaged over several cross-validations. Unless specified otherwise in a figure
legend or method section, I always display results from aggregated predictions from validation sets
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of a cross-validation. The R² or Q²metric measures the quality of a linear regression, in our case be-
tween the true and prediction data (without a y-intercept). The formula for R² (and Q²) is the following
equation 3.1.

R2 = 1 − SSres

SStot
= 1 −

∑n
i=1 (yi − fi)

2∑n
i=1 (yi −m)2

(3.1)
WithSSres the residual sumof squares, SStot the total sumof squares, n the number ofmeasures,

f the ‘true’ data, y the predicted data, andm the mean of f .

3.1.3 SV norm, V norm, and Euclidean distance
I will frequently use metrics specifically designed for this chapter, that are meant to quantitatively
measure how metabolic fluxes distributions (also termed ‘flux vector’, denoted V) respect GEMs con-
straints. As stated in Chapter 1 section 1.3.3.1, the SV constraint is the most critical metabolic network
constraint. In Chapter 2, we designed a loss term in QP-solver and in the custom loss formulations, in
order for AMNs to predict metabolic flux distributions that fulfill this constraint, which is defined as L2
in Chapter 2’s Methods (2.5), section ‘Derivation of loss function’ (equation 2.2). A slightly tweaked ver-
sion of this loss term is used in this chapter as a metric to quantify the respect of the SV constraint in
metabolic fluxes distributions that are computed by the different models. I term SV norm this metric
that can be computed as follows in the equation 3.2, for a flux vector V and a stoichiometric matrix
S ofm columns (number of metabolites) and n rows (number of reactions).

1

m
||S.V || (3.2)

With S.V the matrix product of S with V and ∥S.V ∥ the Euclidean norm of this product (square
root of the sum of squares). Note that the only difference with Chapter’s 2 L2 is that I removed the
square. Also, note that the ‘Loss constraint’ metric used in Chapter 2 and appendix B is not equivalent
to SV norm. Indeed, ‘Loss constraint’ is the sum of L2, L3 and L4, divided by 3, so the stoichiometry is
only one of the constraints ensured by ‘Loss constraint’.
Another important metric to analyze metabolic flux distributions predicted by AMNs is the V norm,
which is simply defined as the Euclidean norm of the flux vector V normalized by its length, i.e. the
square root of the sum of squares (of each flux in the flux vector), divided by the length of V (the
number of fluxes in the distribution, n). This value quantifies the norm (i.e. the ‘size’) of the flux
vector, i.e. a rough estimate of how many fluxes are non-zero and how large are the flux values.
Finally, in order to compare two flux vectors, I use in this chapter the Euclidean distance, which is
computed as the square root of the sum of squares of the differences between each flux value of the
two vectors. This is a very basic and widespread way of quantitatively comparing two vectors. Note
that most flux vectors compared with this distance metric are sparse, and the Euclidean distance
might not be the best suited distance metric for such vectors. For example, the Wasserstein or cosine
distance could be more suited[151].
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3.1.4 Metrics interpretability
The metrics SV norm and V norm are designed to evaluate the SV constraint respect and the norm of
V. The numerical values of such metrics can be hard to interpret. Therefore, the next Figure 3.1 gives
examples of how increasing a single flux value of a steady-state flux distribution can change these
metrics values, for both E. coli core[135] and iML1515[44] GEMs.

E. coli core

iML1515

SV norm V norm

Figure 3.1: SV norm (left panels) or V norm (right panels) metrics response to different flux increasesapplied on a steady-state flux distribution of either ‘core-random’ (top panels) or ‘iML-random’ (bot-tom panels). Either the Growth Rate, Glucose uptake or ATPM flux were perturbed with 100 differentperturbations (X-axis) and the SV norm or V norm metric (Y-axis) was measured afterwards. The 100increases applied on a steady-state flux distribution range from 10-16 to 10. For SV norm the perturba-tions were evenly sampled on a geometric space, whereas for V norm the perturbations were evenlysampled on a linear space. SV norm is very sensitive to small perturbations, whereas V norm is rela-tively robust to large perturbations.
First of all, it is important to notice themagnitude order difference between themetrics computed

with E. coli core[135] and iML1515[44] models. The selected flux distribution from E. coli core[135] has
a SV norm around 10-14 and a V norm around 0.57, whereas the one from iML1515[44] has a SV norm
around 10-17 and a V norm around 0.02. These values differences are explained by intrinsic differ-
ences between the two metabolic models, probably by the number of fluxes (154 for E. coli core[135],
3682 for iML1515[44]). For complete distributions of such metrics, computed for many steady-state
flux distributions (here, only one distribution for each model is used), please refer to the training set
figures shown in appendix C.1.

Also, Figure 3.1 shows that the SV norm metric is very sensitive to small perturbations: adding
10-4 to the glucose uptake of a stationary flux distribution of the E. coli core[135] model shifts its SV
norm from less than 10-12 to more than 10-6. Figure 3.1 also shows that the V norm is relatively robust
to large perturbations: adding 10 to the glucose uptake of a stationary flux distribution of the E. coli
core[135] model shifts its V norm from 0.571 to 0.582. This difference in sensitivity between the two
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metrics should be kept in mind to interpret results of this chapter.

3.2 An improved QP-solver formulation to better respect
GEMs’ constraints

3.2.1 Introduction
This first section aims to describe technical improvements on the QP-solver method, and investiga-
tions of the behavior of such solvers. As a reminder, the reader should keep inmind that these solvers
are non-trainable FBA surrogates, they are iterative procedures that should lead to steady-state so-
lutions without any generalizing (i.e. learning) abilities. These procedures start with a given initial
flux distribution, then iteratively modified to reach a steady-state flux distribution satisfying a GEMs’
constraints. In particular, the QP-solver (and its reformulation, QP-bnds-solver) rely on minimizing
a loss function by gradient descent. Importantly, this gradient descent is not related to any learn-
ing procedure, it is solely modifying the flux distribution to minimize the loss function (there are no
parameters, the gradient is derived directly from the flux distribution).

Developing surrogates of FBA (cf. Figure 2.1 panel b) was a core research work of the AMNs de-
velopment. Indeed, we designed AMNs based on the idea to include FBA surrogates as a process
inside a ML architecture. However, these solvers were designed specifically for the study, and their
behavior is not extensively studied in the previous chapter. Therefore, I will focus in this section on
such mechanistic solvers, especially on the QP-solver which was found to be incomplete.

The QP-solver method (cf. appendix B, section ‘QP-solver equations’) is based on several terms,
each designed with a particular purpose: a fitting term with L1, a term to encourage the respect of
SV=0 with L2, a term to encourage the respect of uptake fluxes upper bounds with L3, and a term to
encourage flux positivity with L4. The QP-solver then operates by gradient descent of the sum of L1,
L2, L3 and L4 terms. The issue with such formulation is two-fold: (i) it does not respect non-zero lower
bounds, such as the ATPM reaction, and (ii) it does not respect upper bounds on other fluxes than
the uptake fluxes. For example, a gene KO (encoded by an upper bound of zero on a flux) cannot
be directly simulated with such formulation. These are clear issues that should be tackled. For that,
I reformulated the QP-solver method, termed QP-bnds-solver for emphasizing the fact that it better
respects the boundary constraints.

Moreover, the QP-solver relies on a tradeoff (i.e. a ‘concurrency’) of the different terms that are
summed in the final loss to beminimized. This tradeoff is yet unexplored: in this section I will attempt
to optimize it by tuning weights applied on each term of the loss to compute the final loss value,
and observe the relationships between weights and their effect on solvers’ behaviors. This is a basic
approach to tune a multi-objective optimization problem, which is an active research field with more
cutting-edge methods[152, 153].

3.2.2 Methods
3.2.2.1 QP-solver reformulation
The original QP-solver formulation is defined in appendix B., section ‘QP-solver equations’. The terms
found to be problematic in this formulation are terms L3 that account only for uptake fluxes (and not
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all fluxes) upper bounds to be respected, and L4 that account only for flux positivity (and not for non-
zero lower bounds) respect. Therefore, I introduce two new loss terms, namely L6 (replacing L3) and
L7 (replacing L4) that are respectively accounting for all upper bounds respect, and all lower bounds
respect.

L6 =
1

n
∥ReLU(V − UB)∥2 (3.3)

L7 =
1

n
∥ReLU(LB − V )∥2 (3.4)

With UB and LB two vectors of the same size as V , respectively containing all upper and all lower
bounds (see equation 1.2). From these two new terms, I formulate a new minimization performed by
the QP-bnds-solver, in equation 3.5:

min (L1 + L2 + L6 + L7) (3.5)
To formulate QP-bnds-solver, we follow a similar procedure for this minimization in equation 3.5,

as in the original QP-solver formulation for minimizing equation (S15) in appendix B. This yields the
following gradient terms for L6 and L7, to be used in QP-bnds-solver:

∇V6 = − 2

n
DUB ReLU(V − UB) (3.6)

∇V7 = − 2

n
DLB ReLU(LB − V ) (3.7)

DUB =
ReLU (V − UB)

ReLU (V − UB)
; DLB =

ReLU (LB − V )

ReLU (LB − V )
(3.8)

With DUB and DLB using the Hadamard division, as in appendix B equation (S22).
3.2.2.2 Optimization of solvers’ terms weighting
To optimize the solvers (both QP-solver and QP-bnds-solver), I attempt to apply different weights on
their different loss terms. These weights are multiplying the values of each term prior to the gradient
computation, i.e., on equation (S15) of appendix B for the original QP-solver, and on equation 3.5 for
the QP-bnds-solver. For more clarity, different names are given to the weights applied on losses,
according to the table 3.2 below, with the ranges of values they were allowed to be sampled in.
Loss term Purpose Weight name Weight rangeL1 (‘Loss fit’) Fit reference fluxes ‘Loss weight (fit)’ 0.01 to 0.9L2 Satisfy SV=0 ‘Loss weight (SV)’ 0.01 to 0.9L3 Ensures uptake fluxes upper bounds ‘Loss weight (Vin)’ 0.01 to 100.0L4 Ensures flux positivity ‘Loss weight (Vpos)’ 0.01 to 100.0L6 Ensures all upper bounds ‘Loss weight (UB)’ 0.01 to 100.0L7 Ensures all lower bounds ‘Loss weight (LB)’ 0.01 to 100.0

Table 3.2: QP-solver and QP-bnds-solver loss terms, associated purpose, name of weightsapplied on different terms, and corresponding range searched during optimization of thesolvers.
When testing the solvers, I observed that loss terms accounting for upper and lower bounds (L3;
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L4; L6; L7) were showing small values and tweaking their weights was not significantly changing the
solvers results. In contrast, I observed that loss terms accounting for fitting reference fluxes (L1) and
stoichiometric constraints (L2) were showing much higher values and tweaking their weights had a
clear impact on the solver’s results. The values of loss terms directly act on each iteration of the solver,
since the loss is minimized based on such values, making terms with higher values more important
for the direction that a solver takes. Therefore, I divided the weights search into two independent
searches, based on the assumption that solvers’ loss terms are subjected to two distinct tradeoffs:
the fitting term L1 and the SV term L2, which are the two most important terms of the solvers; and the
upper bounds term L3 or L6 and the lower bounds term L4 or L7, which are less important terms of
the solvers.

The framework to optimize theweights applied on loss terms of the solvers is based on the optuna
package[154]. It was set to search the best set of weights to apply on loss terms, with a two-objectives
optimization: (i) theminimization of theMean Squared Error (MSE) between reference and computed
fluxes (here only the growth rate), i.e. the L1 value, called ‘Loss fit’; and (ii) the minimization of the
SV norm metric. The two-objectives optimization was performed with default optuna’s method, i.e.
the Tree-structured Parzen Estimator (TPE)[155]. It relies on Gaussian Mixture Models, fitted with
the weights applied on loss terms as independent variables, and both objective values ‘Loss fit’ and
SV norm as dependent variables, in order to efficiently sample the space of weights. 10 conditions
from the ‘core-glucose’ training set were randomly picked. The solvers were then runned for 10,000
iterations on those 10 conditions. This was repeated 500 times to search for the best set of weights.

The first search explores the weight values for ‘Loss weight (fit)’ and ‘Loss weight (SV)’. Results for
that approach are displayed in Figure 3.2. The second search explores the weight values for ‘Loss
weight (Vin)’ or ‘Loss weight (UB)’ and ‘Loss weight (Vpos)’ or ‘Loss weight (LB)’. Results for that ap-
proach are displayed in the appendix C.3, Figure C.3.
3.2.2.3 Comparison of QP-solver and QP-bnds-solver for respecting GEMs’ constraints
In order to compare how QP-solver and QP-bnds-solver respect GEMs’ constraints, I used FBA as
reference data, with 10 randomly sampled entries of the ‘core-glucose’ training set. For each training
set entry, the upper and lower bounds of the FBA problem were used to derive loss terms for both
QP-solver and QP-bnds-solver. I remind that the ‘core-glucose’ training set has only its glucose uptake
flux varied between different entries. All other bounds are set to the default value, except for a series
of minimal uptake fluxes ensuring positive growth computation by FBA (see Chapter 2 Methods 2.5,
section ‘Generation of training sets with FBA’ 2.5.2).

3.2.3 Results and discussion
3.2.3.1 Tradeoff between the fitting and SV loss terms
First of all, we observe on Figure 3.2 similar performances for both formulations, in terms of fit on
fluxes and respect of stoichiometric constraints. Strikingly, we observe a clear tradeoff operating
between the L1 and L2 terms, that is visible as a Pareto-front-like frontier. This frontier seems mostly
influenced by weight ratios. A ratio of 1 between the ‘Loss weight (fit)’ and ‘Loss weight (SV)’ seems
optimal, as it shows an equilibrium between the two terms (purple points, with a ‘Loss fit’ around 0.4
and a SV norm around 0.6). The best value for those two weights was found to be 0.8.

A similar figure was generated for the other loss terms: ‘Loss Vin’ and ‘Loss Vpos’ (in the original
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a bQP-solver QP-bnds-solver

Figure 3.2: Pareto plots of QP-solver (a) and QP-bnds-solver (b) show the solvers’ tradeoff betweensatisfying stoichiometric constraints (SV=0) and fitting the reference fluxes. For both plots, each of the500 points displays mean metrics for 10 conditions of the ‘core-glucose’ training set, computed aftera mechanistic method run of 10,000 iterations. Plots show unweighted ‘Loss fit’ values on the X-axis,and unweighted SV norm values on the Y-axis. Each point’s color corresponds to the ratio betweenthe ‘Loss weight (SV)’ and the ‘Loss weight (fit)’. Both solvers behave similarly, showing a clear pareto-like frontier between the ‘Loss fit’ and the SV norm when varying the weights applied on loss termsaccounting for fitting reference fluxes and satisfying stoichiometric constraints.

QP-solver); or ‘Loss LB’ and ‘Loss UB’ (in QP-bnds-solver). Briefly, results show that weights ratios of 1
are yielding satisfactory performances, but not very clear trade offs were found like in Figure 3.2. The
results can be found in appendix C.3.
3.2.3.2 No significant improvement of the MM solver by loss terms weights optimiza-

tion
Importantly, I splitted in two the searches for optimal weights applied on the loss terms; based on
an assumption, and also for the sake of clarity. But in practice, all of the terms compete with each
other. Moreover, changing solvers’ parameters (e.g. iterations number, gradient descent rate, se-
lected conditions to solve) further changes the behavior of the solvers. That makes QP-solver and
QP-bnds-solver hardly fine-tuned for all conditions and setups. In other words the optimization ap-
proach presented here is quite limited to the particular scope in which it is performed (i.e. what are
the conditions to solve, with how many iterations at which gradient descent rate). If that scope is
changed, the optimization approach should be performed again.

Overall, I could not make any significant improvement on the overall performance of the solvers,
between previously used weights on loss (all at 1) and the weights found with the optimization ap-
proach. However, we have shown here that QP solvers rely on a subtle tradeoff between loss terms
and that should be kept in mind for further research on such solvers and for the remainder of the
dissertation. This is especially important when considering that the QP-solver formulation inspired
the custom mechanistic loss of AMNs.
3.2.3.3 The QP-bnds-solver enhances the respect of GEMs’ constraints
The new formulation QP-bnds-solver does not display better performance in terms of fitting fluxes
and respecting the SV constraint. However, the following results will demonstrate how the QP-bnds-
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solver outperforms the original QP-solver: it is making more reliable computations in terms of GEMs’
constraints respect. This is shown in the next Figure 3.3, and in the appendix C.3, with Figure C.4 that
shows data heatmaps to visualize extended results (for other fluxes than those shown in Figure 3.3).

Boundaries
respected

Non-zero uptake fluxes
Near zero ATPM

constraints violation

Figure 3.3: QP-bnds-solver better respects GEMs constraints. The red line represents the lower boundof ATPM and the blue line represents the upper bound of the acetaldehyde uptake flux (EX_acald_e_i).The allowed region from these two bounds constraints (whether it is for FBA, QP-solver and QP-bnds-solver solutions) is highlighted in yellow. Blue points corresponding to QP-solver solutions show nearzero ATPM fluxes and non-zero acetaldehyde uptake fluxes, which violates constraints. By zoomingin the dotted black box, one can better observe the dispersion of green points, corresponding to QP-bnds-solver solutions, which are not in the allowed region but extremely close to it.
Figure 3.3 displays the ability of QP-bnds-solver to take into account both the non-zero lower-

bounds (ATPMhere) and respect all upper bounds, where the original QP-solver fails. QP-solver shows
acetaldehyde uptake flux (EX_acald_e_i) values that should be at zero having values between 0.3 and
3.4, and ATPM values near zero. In contrast, QP-bnds-solver shows acetaldehyde uptake flux near
zero, and ATPM values close to its lower bound constraint of 8.39. Note that the upper bounds respect
difference between the two solvers is only shown for the EX_acald_e_i flux here, which was picked as
an uptake flux that QP-solver does not respect. Extended results with all uptake fluxes are available
in Figure C.4.

Importantly, one should note that in chapter 2, we always used QP-solver in a context where it did
not respect ATPM lower bounds. However, it did respect the upper bounds of uptake fluxes, since
we always considered all uptake fluxes in Vin. Here, by using the ‘core-glucose’ training set, I consider
FBA data with only glucose and essential uptake fluxes in Vin. This makes the QP-solver formulation
fall into its flaw, to show that QP-bnds-solver is more versatile and general.
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We have assessed that an alternative formulation of the QP-solver can be formulated, with im-
proved respect of constraints. However, the method seem to rely on subtle tradeoffs between the
different loss terms, which seem hardly fine-tuned, and they still require very large (>1e5) iterations
number to perform well (cf. appendix B, figure S6e).
3.2.3.4 AMN-QP-bnds formulation better respects GEMs constraints and is more ver-

satile
In light of previous results, using the QP-bnds-solver appears preferable than the original QP-solver.
In Chapter 2, we use the QP-solver as a mechanistic layer of AMN-QP; but also as a foundation for the
custom mechanistic loss common to all AMNs formulations, given in equation 2.2. The same issues
of QP-solver mentioned above are expected in AMNs, which should be tackled.

Therefore, I also formulate AMN-QP-bnds, which differs from AMN-QP in two ways: (i) the mecha-
nistic layer is QP-bnds-solver instead of QP-solver; (ii) the custom loss is derived from QP-bnds-solver
instead of QP-solver. This derivation is identical to what was done with the original custom loss, one
can refer to Chapter 2 Methods 2.5, section ‘Loss functions derivation’ for more details. In short, the
original mechanistic loss L, given in equation 2.2 is reformulated in the following equation of the new
mechanistic custom loss Lbnds, used in AMN-QP-bnds:

Lbnds = L1 + L2 + L6 + L7 (3.9)
These changes also bring important improvements in the workflow of AMN-QP-bnds, which is

displayed in the following figure 3.4.
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Figure 3.4: Improved workflow of AMN-QP-bnds compared to AMN-QP. The metabolic networkschematic indicates the use of a GEM at a given step of the workflow. (a) Workflow of the AMN-QPformulation presented in Chapter 2, showing with the black arrows on the sides how to obtain theupper bounds on uptake fluxes from the inputs, to be used in the custom loss term L3 (based on theQP-solver). (b) Workflow of the AMN-QP-bnds formulation, showing how the upper and lower boundsfor all fluxes can be derived from any kind of data, in order to be used in the custom loss terms L6and L7 (based on the QP-bnds-solver).
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Figure 3.4 shows how theworkflowof the AMN-QP-bnds (panel b) improves the original one (panel
a): the input is not anymore restricted to be either Vin or Cmed. Therefore, AMN-QP-bnds can handle
’Cov-BiologKO’ and ’Rijs-RegKO’ datasets more easily, without changes to the custom loss (like what
was done for AMN-QP to integrate reaction KOs, cf. Chapter 2 Methods 2.5, section ‘Loss functions
derivation’, term L5), andwithout changes to the overall data flowof themodel. However, even though
any kind of data can be used as input, an extra pre-processing step has to be performedwith AMN-QP-
bnds in order to derive the corresponding upper and lower bounds for each entry of the dataset. Note
that these can be the default lower and upper bounds of the GEM, or automatically generated bounds
with scripts available in the github repository (cf. appendix C.2). Note that the AMN-QP-bnds workflow
improvement could be made with AMN-LP and AMN-Wt by changing the custom loss formulation in
these models. But it will not be done in the context of this dissertation, where I will keep the original
formulations, for more consistency with the previous chapter’s results.
When including QP-solver and other mechanistic solvers inside AMNs, we had to keep the number
of iterations relatively low, enabled by adding a dense neural layer prior to the solver (which is then
termed mechanistic layer). This approach raises important questions on how the mechanistic layer
behaves when included in a learning model, which is a rather innovative approach. The next section
will attempt to investigate such behavior.

3.3 Howmuch domechanistic layers improve AMN predic-
tions?

3.3.1 Introduction
This second section aims to investigate the effect of increasing iterations in mechanistic layers on
AMNs prediction performance. As a reminder, AMNs are learning models that have a neural layer
predicting the best input for a mechanistic layer, based on a custom mechanistic loss. In this sec-
tion, AMNs output full flux distributions, with upper bounds on uptake fluxes as input. Growth rates
found in FBA simulations were used as reference. In other words, from a biological standpoint, AMNs
generalize from a set of upper bounds on uptake fluxes (independent variables) and corresponding
growth rates (dependent variable), to predict full metabolic flux distributions of a GEM.

In order to build AMNs, mechanistic layers were used together with ANNs. The reason underlying
this methodological choice was three-fold: (i) reduce the number of iterations needed for mechanis-
tic layers to perform well, by predicting an input for mechanistic layer with ANNs, (ii) enable AMNs to
generalize over a set of conditions, with learning procedures, in contrast to FBA and other mechanis-
tic solvers that are performed independently with each condition, and (iii) ANNs can pass a gradient,
so they can be directly connected to mechanistic layers. Such integration raises important questions,
because the behavior of mechanistic layers changes when included in learning architectures (mech-
anistic layers are limited in iterations, and their initial solution is predicted by ANNs).

Moreover, when the QP-solver (or QP-bnds-solver) are integrated in AMN-QP (or AMN-QP-bnds)
as amechanistic layer, they lose the term for fitting reference fluxes, and are only based on remaining
loss terms, which further changes the behavior of the solver. Since the solvers performances have
been assessed with the fitting term, their behavior is rather unknown without such fitting term. This
removal of the fitting term had to be made, otherwise the predictions would need the reference data
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to be performed, which prevents the model from being predictive. Importantly, note that AMN-LP
and AMN-Wt do not require such a tweak to the mechanistic layer.

In the previous chapter, we did not assess the dependence of AMNs performance on their mech-
anistic layers. Indeed, important questions may arise from using such an approach: (i) howmuch the
mechanistic layers improve the prediction performance in terms of fitting reference fluxes and satis-
fying the GEM constraints?, (ii) do mechanistic layers make the AMNs predictions closer to what FBA
could predict, for what computational cost?, and (iii) how much does a mechanistic layer transform
its input, in other words how close the ‘first guess’ V0 is to the final prediction Vf?

In this section I will attempt to answer these questions, by measuring AMNs performances with
increasing iteration numbers of the different mechanistic layers.

3.3.2 Methods
3.3.2.1 Training set and models architectures
The training set used in this section is ‘core-random’ in all cases. Please refer to the Preamble (section
3.1) of this chapter for more information. Vin (uptake fluxes upper bounds) was always used as input,
the growth rate was always used as output (i.e. it was the only reference flux to fit).

Three AMN formulations were tested, AMN-QP-bnds, AMN-LP, and AMN-Wt. These differ in their
mechanistic layers, and AMN-QP-bnds makes use of a different custom loss as presented in Figure
3.4. All architectures had the following neural layer parameters 1 hidden layer of size 100 with ReLU
activation function and 0.2 of dropout rate. In all cases, a 10-fold cross-validation with 5 epochs was
performed, and aggregated predictions from the validation sets were used to display performance
results. The optimizer was always ‘adam’, with a batch size of 5.
3.3.2.2 Varying mechanistic layers iterations
For AMN-QP-bnds and AMN-LP, the number of iterations in the mechanistic layers tested were 0, 4,
32 and 128. For AMN-Wt, the number of iterations tested were 1, 4, 32 and 64. For technical reasons,
the AMN-Wt architecture could not be run with 0, nor with 128 iterations (the model training made
python crash).

Most metrics displayed in this section are described in the Preamble (3.1): Q², SV norm, V norm,
and the Euclidean distance between V0 and Vf. In this section I also describe the effect of increasing
iterations on computation time, by simply indicating the computational time, in seconds, required for
the whole 10-fold cross-validation to be performed. This computational time was obtained on an Intel
Core i7-7500U CPU, paced at 2.7 GHz.

3.3.3 Results and discussion
3.3.3.1 The mechanistic layer improves predictions of AMNs, with a large advantage

for AMN-LP
A striking effect of mechanistic layers on AMNs predictions was found to be the SV norm reduction,
alongside an increase in computational time, as shown in Figure 3.5. All AMNs consistently reduce
the SV norm found in predictions by increasing the number of iterations in the mechanistic layer.
However, AMN-LP has a clear advantage over others: the magnitude order of SV norm is around
10-5 with 4 iterations of the mechanistic layer, whereas AMN-QP-bnds and AMN-Wt respectively reach
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Figure 3.5: Increasing number of iterations in the mechanistic layers of AMNs reduces the SV normbut increases computational time. The SV norm was averaged over all predictions of an AMN, andthe CPU time is expressed in elapsed seconds for the 10-fold cross-validation to be performed (seeMethods). The three panels display results for AMN-QP-bnds for 0, 4, 32 and 128 mechanistic layeriterations (a), AMN-LP for 0, 4, 32 and 128 iterations (b) and AMN-Wt for 1, 4, 32 and 64 iterations (c).The AMNs differ by their mechanistic layer, based on different solvers. Looking at the SV norm valuesobtained for the different AMNs, a large advantage goes to AMN-LP, reaching SV norms around 10-5with roughly 150 seconds to perform the 10-fold cross-validation.

minimal SV norms of 0.048 (128 iterations) and 0.066 (64 iterations). This advantage of AMN-LP over
other AMNs is more striking on the appendix figure C.6, which displays the same results as Figure 3.5
on a single plot.

Other measures were performed with increasing mechanistic layer iterations, notably observing
a consistent increase of the V norm, and no significant effect on the growth rate Q². These results are
shown and discussed in the appendix C.5.

Overall, we can conclude that the different mechanistic layers inside AMNs yield different be-
haviors, for AMN-LP, -QP-bnds and -Wt. In AMN-LP, increasing the mechanistic layer iterations has
a strong effect on SV norms, and this effect is drastically smaller with AMN-Wt and AMN-QP-bnds.
Therefore, the increase in computational time brought by the mechanistic layer seems to bring a
significant advantage to AMN-LP only. Moreover, current implementations have limits which will be
discussed next.
3.3.3.2 Current implementations have strong limits
The first limitation of mechanistic layers is the significant increase in computational time with increas-
ing iterations, which should be kept in mind when considering the possible performance improve-
ment brought by high iterations numbers. In the appendix C.4, I show that AMN-Wt’s computation
time logarithmically increases with mechanistic layer iterations, whereas AMN-LP and AMN-QP-bnds’
computation time linearly increaseswith iterations. Note that this effect is amplifiedwhenusing larger
metabolicmodels, such as iML1515[44]. Importantly, using anymechanistic layer with iML1515[44] was
found to be computationally too expensive for all tested AMNs (making python crash for unresolved
technical issues), which is a very strong limit of the current mechanistic layers implementations. In
Chapter 2 (Figures 2.3 and 2.4), we display results with AMNs that have a tweakedmechanistic layer in
order to function with iML1515[44], by lowering the solvers’ rates and using amaximumof 4 iterations.
This makes mechanistic layers very slightly modifying V0 to produce Vf.
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AMNs can be tuned inmany ways, not only with increasingmechanistic layer iterations as it was done
here. For example, the custommechanistic loss and the neural layer can be tuned to obtain different
model performances, without modifying the mechanistic layer. In the next section, I will present
hyperparameter optimization results, by fine-tuning the neural layer and the custom mechanistic
loss to enhance AMNs performances.

3.4 Fine-tuning AMNs by hyperparameter optimization
3.4.1 Introduction
This third section aims to investigate the effect of neural layer hyperparameters and custom loss
terms weighting on AMNs prediction performance. The investigation is made through hyperparam-
eter optimization, which also brings technical improvements. In this section, AMNs do not have a
mechanistic layer so the neural layer directly predicts the flux distribution. This was decided in light
of the previous section, to reduce computational time and avoid incompatibilities with large GEMs.
Also in the present section, AMNs output full flux distributions, with upper bounds on uptake fluxes
or medium compositions as inputs. Growth rates found in FBA simulations or experimental mea-
surements were used as reference. In other words, from a biological standpoint, AMNs generalize
from a set of in silico or in vivo conditions (independent variables) and corresponding growth rates
(dependent variable), to predict full metabolic flux distributions of a GEM.

As stated in Chapter 1 (section 1.4.1.3), ANNs provide a large flexibility in terms of architecture and
learning parameters. Indeed, one can select different layer types, of different sizes, with different
activation functions. Moreover, the model can be trained with different learning parameters (solver,
batch size, epochs) and loss formulations, for example applying a different set of weights on the loss
terms. With AMNs, we also have this freedom of tweaking the ANN part and the loss of the model,
which will be explored in this section.

In the present section, I vary the architecture ANNs to use as neural layers of AMNs, as well as
weights applied on the custom loss terms, using a two-objective hyperparameter optimization frame-
work built with optuna[154]. This framework is searching either ANN architectures or weights applied
on the custom loss terms, in order to optimize both the respect of stoichiometric constraints and the
fitting performances of AMNs.

3.4.2 Methods
3.4.2.1 Training sets and models architectures
The training sets used in this section are ‘core-random’, ‘iML-singles’, and ‘110GR’. Please refer to the
Preamble section (3.1) of this chapter for more information. Vin (upper bounds on uptake fluxes) or
Cmed (media compositions) was used as input, the Growth Rate (measured after FBA or experimen-
tally) was always used as output (i.e. it was the only reference flux to fit).

AMN-QP-bnds was always used, without a mechanistic layer. All architectures had varying neu-
ral layer hyperparameters and weights applied on the custom loss (the space of possibilities will be
described in the next subsection). The optimizer was always ‘adam’, with a batch size of 10.
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3.4.2.2 Hyperparameters space and optimization framework
The default hyperparameters of neural layers (before optimization) were the following: 1 hidden layer
of size 100 with ReLU activation function and 0.2 of dropout rate. The space of possible architectures
to search for during hyperparameter optimization is defined in Table 3.3.

The default weights applied on the custom loss terms (before optimization) were all 1, applied
on L1, L2, L6 and L7. Ranges searched during hyperparameter optimization are given in Table 3.3.
Importantly, note that the weights are applied on the custom mechanistic loss terms used to train
neural layers, and they are not applied on a mechanistic layer loss terms (no mechanistic layer is
used in the section).

The following table 3.3 gives an overview of the possible values for the different hyperparameters
searched during the optimization. All these different ranges come from manual testings ensuring
they do not produce aberrant results.

Type Name Range
Neural layer

Hidden layer number 0 to 5Hidden layers sizes 10 to 150Activation functions ReLU or tanhDropout rates 0 to 0.5
Mechanistic loss terms weights

Weight applied on L1 1 to 1Weight applied on L2 0.1 to 10Weight applied on L6 0.01 to 10Weight applied on L7 0.01 to 10
Table 3.3: Hyperparameters for optimization of either the neural layer or the mechanisticloss terms weighting, with each hyperparameter name and corresponding range searchedduring the optimization process.

Optuna’s hyperparameter optimization was first targeted at searching the best neural layers ar-
chitectures with default weights applied on the custom loss terms. Then, using the best architecture
found, it was runned again to search the best weights applied on the custom loss terms. Both of
the hyperparameters optimization were screening 100 combinations, each running a 10-fold cross-
validation with 50 epochs, retrieving aggregated predictions from the validation sets to compute the
metrics. For both searches, a two-objective optimization was performed, to (i) maximize the Q² and (ii)
minimize the custom loss. I always used optuna’s default Tree-structured Parzen Estimator (TPE)[155]
as the hyperparameter space sampler (described in section 3.2.2.2).

3.4.3 Results and discussion
3.4.3.1 Optimization of neural layer hyperparameters and weights for custom loss

terms can lead to better AMN performance
On Figure 3.6, one can observe consistent improvements of AMN-QP-bnds’ performances by hyper-
parameter optimization. For 2 out of the 3 tested training sets (’core-random’ and ’iML-singles’), panel
a displays increased performance between the green point (original neural layer) and the red point
(optimized neural layer), with higher Q² and lower custom loss. Also, searching for the best set of
weights to apply on the custom loss terms further increased performance, displayed by yellow points
of panel b.
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Step 1: Neural layer 

hyperparameters 
optimization

core-random

Default neural layer

Optimized neural layer

Optimized neural layer
and weights on loss terms

iML-singles

110GR

Step 2: Custom loss 
terms weighting 

optimization

Figure 3.6: Hyperparameter optimization of the neural layer and custom loss terms weighting ofAMNs. Each plot displays all trials of a hyperparameter optimization run, with the Q² on the growthrate (X-axis) and the unweighted custom loss value (Y-axis). Each panel (a or b, the columns) dis-plays the hyperparameter optimization results for 3 different training sets, from top to bottom: ’core-random’, ’iML-singles’, and ’110GR’. Each point represents a ‘trial’ of the hyperparameter optimization,sampling a neural layer architecture in step 1 (a) or a set of weights for the custom loss terms (b).Large green points display the AMN performance with the original ‘default’ neural layer, and largered points indicate the performance with the best neural layer found (with high Q² and low customloss), with all weights on the custom loss terms at 1. Large yellow points display the AMN performancewith the best neural layer found and the best set of weights applied on custom loss terms. This pointis considered best, which yields the ‘Optimized’ hyperparameters for AMN-QP-bnds in the next Fig-ure 3.7. (a) First step of the hyperparameter optimization, searching for the best neural architectureof AMN-QP-bnds (without mechanistic layer). (b) Second step of the hyperparameter optimization,searching for the best set of weights to apply on the custom loss terms of AMN-QP-bnds. The pointsare colored according to the ratio between the weight applied on the SV term (L2) and the fitting term(L1) of the custom loss. A general observation with this figure is the consistent performance increasebrought by hyperparameter optimization with AMNs.

For easier comparison of AMN-QP-bnds’ performance before and after hyperparameter optimiza-
tion, the next figure 3.7 shows a simple bar chart of the Q², SV norm, and V norm.

To access details of which neural architectures and set of weights were found for each training
set, and extended results comparing the default and optimized performance of AMN-QP-bnds, please
refer to the appendix C.5.
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Figure 3.7: Comparison of AMN-QP-bnds’ performance before (‘Default’, in green) and after (‘Opti-mized’, in yellow) hyperparameter optimization is performed. Each bar plot shows results for the 3training sets tested (’core-random’, ’iML-singles’, ’110GR’). From left to right, the metrics used for thedifferent bar plots are the Q² computed on the growth rate, the average SV norm, and the average Vnorm over all predictions. The Q² was improved in two out of three cases (increasing values); the SVnorm was always improved (decreasing values); no clear effect on V norm was observed.

3.4.3.2 Hyperparameter optimization depends on the training set
Added to the increased performance of AMNs after hyperparameter optimization, which is a tech-
nical improvement, the presented results can bring interesting observations. Different training sets
not only yield different AMN performances, but they will also be associated with different hyperpa-
rameters optimal values. For example, we observe different effects of varying weights on the custom
loss terms (Figure 3.6 panel b): with the ’core-random’ training set, one can observe some tradeoff
between the custom loss and Q² values; whereas for the ’iML-singles’ and ’110GR’ training set, one can
observe a clear and single optimum found with a single set of weights. This underlines that different
training sets will yield different optimal neural layer architectures and weighting schemes applied on
loss terms. This can be considered both as an advantage that enables one to fine-tune an AMN for
a particular purpose, but also a drawback as it requires one to search the hyperparameter space for
each training set. These points will be further discussed in the next Chapter.
3.4.3.3 AMNs predictions are not respecting constraints like FBA computations
Importantly, the present results also show the significant gap between the SV norm and V norm found
in FBA computations and thesemetrics found in AMNpredictions. As shown in the following table 3.4,
the difference of SV norm is several orders ofmagnitudes, questioning the realistic nature of AMNflux
predictions in terms of stoichiometric constraints. The results presented in table 3.4 are computed
from AMN-QP-bnds predictions, after hyperparameter optimization (same results as for yellow bars
on previous Figure 3.7), or from FBA computations acquired for the training set generation. For ex-
tended results of metrics computed with FBA results, refer to the appendix Figure C.1, where one can
observe the entire distributions of SV norms and V norms for both training sets.

The fact that AMNs reach significantly higher SV norms than what FBA computes is problematic:
that means AMNs predictions do not respect GEMs constraints as well as FBA computations. The fact
that AMNs reach slightly lower V norms is not problematic in itself, but indicates a probable reason
explaining the SV norm issue, which will be further explained. Even though this issue was not fixed in
the context of this dissertation, I will now give some hypotheses explaining this unwanted behavior.
In the next Chapter 4, I will give leads on how the issue could be solved.

Looking into individual AMN predictions showing high SV norm and low V norm, I observed more
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Training set FBA or AMN Average SV norm Average V norm
core-random FBA 8.36e-16 0.74AMN 2.63e-2 0.51
iML-singles FBA 1.09e-10 1.0e-2AMN 1.49e-4 8.6e-4

Table 3.4: Comparison of SV norm and V normmetrics found in FBA computations and AMNpredictions.
fluxes close to zero compared to fluxes computed with FBA. This observation was even more striking
with increasing values for the weight applied on L2 (the term encouraging the respect of SV = 0).
Therefore, this issue is hypothesized to come from a ‘bias’ of the AMN when it attempts to respect
SV = 0. This would be explained by the fact that a valid solution of SV = 0 is V = 0. Therefore, the
AMN would be ‘cheating’ to ensure SV = 0, which drives the model to predict many fluxes at zero.
This induces lower V norm metrics than what can be found in FBA computations.

Importantly, such unwanted behavior was observed inmany cases, but not all. For example, AMN-
LP with 128 iterations trained on ’core-random’ (Figure 3.5) yields satisfactory V norm metrics and
lower SV norm thanwhat was obtainedwith AMN-QP-bnds (even after hyperparameter optimization).
Also, using a Reservoir Computing (RC) approach tackles this issue, as it relies on performing FBA to
obtain final flux distributions, as it is done in Figure 2.5, appendix B Figure S9, and Figure 3.13. These
points will be further discussed in Chapter 4.
In the next section, I will investigate alternative ML models capabilities in the task of surrogating FBA.
This was motivated with the hypothesis that ANNs might not be the best architecture for that task.
Indeed, the issue discussed above might also be explained from intrinsic limitations of ANNs in the
FBA surrogation task.

3.5 Exploration of alternative MLmethods to better surro-
gate FBA

3.5.1 Introduction
This fourth section aims to investigate the performance of alternativeMachine Learning (ML)methods
in the task of surrogating FBA. I will show purely exploratory results, not focusing on any technical
improvements of the method. The previous section 3.4.3.3 shed light on a concerning issue found in
AMNs predictions: the SV norm is orders of magnitude above what is found with FBA (and the V norm
is lower). One solution to tackle this issue might be to use other ML methods than ANNs. Indeed, we
solely used ANNs so far, and they might have intrinsic shortcomings to surrogate FBA. Consequently,
this section investigates their ability to surrogate FBA through performance comparisons. It will focus
on three ML methods: ANNs, Multi-task Elastic Net, and XGBoost.

Importantly, the task for which ML methods are tested is different from the usual task of AMNs.
In most cases, AMNs have partial flux data to learn on (most often, the growth rate is the only flux to
be fitted), and a custom mechanistic loss pushes AMNs predictions to fulfill constraints and produce
realistic flux distributions. This is the case for Figures 2.2 to 2.5 in the previous chapter, as well as
Figures 3.5 to 3.7 in the present chapter. In contrast, theMLmethodswill be tested herewith all fluxes
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given as reference data to fit, and these methods will not have a custom mechanistic loss like AMNs.
They will simply minimize the mean squared error between all ‘true’ fluxes and all predicted fluxes.
In short, ML methods tested here aim to predict full flux distributions from upper bounds on uptake
fluxes, like AMNs; but they differ in the data used as reference and the loss function. In other words,
from a biological standpoint, the ML methods tested here generalize from a set of upper bounds on
uptake fluxes (independent variables) and all fluxes obtained by FBA (dependent variables), to predict
full metabolic flux distributions of a GEM. In that sense I attempt in this section to build purely ML
surrogates of FBA that are not ‘hybrid’, but should reproduce the behavior of FBA faithfully.

3.5.2 Methods
3.5.2.1 Training sets and models architectures
The training sets used in this section are ‘core-glucose’, ‘core-random’, ‘core-extended’, ‘iML-glucose’,
‘iML-random’, ‘iML-extended’ and ‘iML-singles’. Please refer to the Preamble section (3.1) of this chap-
ter for more information. Vin was always used as input, all fluxes were always used as output (i.e. the
whole flux distribution computed by FBA is the label).

The 3 tested ML models were picked for interesting comparisons: (i) ANNs with the same archi-
tectures as the AMNs’ optimal ones found after hyperparameter optimization of AMN-QP-bnds in the
previous section; but this time fitted on all fluxes without constraints terms, instead of the growth rate
fit and constraints terms; (ii) Multitask Elastic Net regression (from sci-kit learn), a method found to be
performant in the tested task with a relatively simple formulation; (iii) XGBoost, a gradient-boosted
decision tree algorithm that is performant in many tasks and scalable:

• ANNs, with the ‘ANN-core’ and ‘ANN-iML’ architectures. These architectures were taken from
the AMN-QP-bnds’s neural layers architectures found to be optimal in the previous section’s
hyperparameter optimization. These optimal architectures were found with the objective of
maximizing the Q² obtained on the growth rate and minimizing the custom mechanistic loss
values. Therefore, it is Important to note that such architectures are not optimal for fitting all
fluxes as it is done here. ‘ANN-core’ has 3 hidden layers of size 102, 97 and 16, with hyperbolic
tangent activation function for the two first hidden layers and ReLU for the last one. The optimal
dropout rates are set to 0.015, 0.022 and 0.017. ‘ANN-iML’ has no hidden layer, so Vin is directly
connected to all fluxes. The optimizer was always ‘adam’, with a batch size of 10 and 50 epochs.
Note that in the following results, ‘ANN’ will be used to designate both ‘ANN-core’ (for results
obtained with ’core-random’) and ‘ANN-iML’ (for results obtained with ’iML-singles’).

• Multitask Elastic Net regression, called ’MTEN’ in short. This model is detailed in its documenta-
tion (clickable link). It basically relies on an ensemble of elastic nets, one for each output (each
flux). Each of them is a linear regression with L1 and L2 regularization terms. I used an existing
implementation from scikit-learn[137].

• XGBoost[139], called ‘XGB’ in short. This model is detailed in its documentation (clickable link).
XGBoost stands for extreme gradient boosted trees, it relies on boosting procedures (splitting
the dataset to learn submodels) and tree-based machine learning (like random forests).

All models were benchmarked by 10-fold cross-validation, aggregated predictions from the validation
sets were used to display performance results.
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3.5.3 Results and discussion
3.5.3.1 MTEN and XGB are promising ML models to surrogate FBA

Figure 3.8: Alternative MLmodels to surrogate FBA. ANN (blue), MTEN (orange) and XGB (green) wereused with two training sets, ’core-random’ and ’iML-singles’. From left to right, bar plots display theML models performance in terms of (i) Q² computed between the FBA growth rate solution and theMLmodel prediction; (ii) the average SV norm found in theMLmodel predictions; and (iii) the averageV norm found in the ML model predictions.
Three striking observations can be made from Figure 3.8. First, learning on all fluxes with ML

methods instead of solely on the growth rate in AMNs, always yields more realistic V norm values
(closer to what FBA has computed), for all ML methods tested here: for ’core-random’, average V
norms were always close to 0.7 and for ’iML-singles’, they were always close to 1e-2. For both models,
these values fall in the range of what FBA predicts: the average V norm was found at 0.74 for ’core-
random’ and 1e-2 for ’iML-singles’ (values from table 3.4, full distributions are available in appendix
Figure C.1).

Second, both ANNs (‘ANN-core’ and ‘ANN-iML’) show limited fitting performance with systemati-
cally lower growth rate Q² than other methods. Importantly, note that this could be eventually reme-
diedwith hyperparameter optimization, sinceweused an architecture optimized for a different task in
the present case. In light of previous results, hyperparameter optimization could also slightly reduce
the SV norm metric obtained with ANNs. This poor performance of ANNs, compared to the perfor-
mance obtained for the same architecture in the previous section 3.4 for a different task, underlines
the fact that architectures found with hyperparameter optimization cannot be directly transferred to
another modeling task.

Third, the ANNand XGBmodels reach higher SV normvalues thanMTEN,which reaches the lowest
SV norm values, by far. Most importantly, the SV norms obtained with MTEN are close to what was
found in FBA computations (see Table 3.4 for SV norms computed on FBA results for ’core-random’
and ’iML-singles’). Therefore, I conclude that MTEN has more potential to be used as a surrogate,
since it seems able to satisfy SV constraints very well. Consequently, I extended the performance
assessment of MTEN with more training sets, to observe its capabilities in more diverse contexts.
3.5.3.2 MTEN surrogates FBA with different performances depending on the training

set
From Figure 3.9, we see that the training set content plays a crucial role in MTEN performance. Strik-
ingly, the SV norm is lower, so the stoichiometric constraints are better respected, with ’core-random’,
’core-extended’, ’iML-random’ and ’iML-extended’; compared to ’core-glucose’ and ’iML-glucose’. These
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Figure 3.9: MTEN performance to surrogate FBA with six different training sets. MTEN was used withsix training sets: ’core-glucose’ (blue), ’core-random’ (orange), ’core-extended’ (green), ’iML-glucose’(red), ’iML-random’ (pink) and ’iML-extended’ (light brown). From left to right, bar plots display the MLmodels performance in terms of (i) Q² computed between the FBA growth rate solution and the MLmodel prediction; (ii) the average SV norm found in the ML model predictions. Strikingly, differenttraining sets yield different performances, especially with the SV norm that is drastically lower withmore complex training sets (those where upper bounds are drawn for more diverse uptake fluxesthan glucose).

results indicate that varying the glucose uptake flux only to generate a training set does not pro-
vide enough statistical patterns for MTEN to perform well. This suggests that training sets acquired
through wider samplings of uptake fluxes upper bounds yield enough information in inputs to pre-
dict outputs, which is not the case for training sets acquired through narrow samplings such as ‘core-
glucose’ or ‘iML-glucose’.

Added to the SV norm differences, different training sets also yield different fitting performance.
Even if all growth rate Q² obtained are above 0.8 which is satisfactory, there are clear differences
between training sets. In the appendix Figure C.11, one canobserve the complete scatter plot of growth
rate predictions by MTEN against reference growth rates obtained by FBA; for the three iML1515[44]
training sets used.

From this section’s results, we can conclude that MTEN has great potential to surrogate FBA, but
the training set content is very crucial for its performance. Such importance of the training set content
has been briefly assessed for AMNs, in section 3.4.
This influence of the training set content will be further investigated in the next section, focusing
on Chapter 2’s results shown in Figures 2.4 and appendix B section ‘AMNs benchmarking with gene
knockouts and multiple measured fluxes’. Indeed, we have shown there the good performance of
AMNs when integrating metabolic or regulator gene KOs, with the growth rate or multiple fluxes
measured. Now, we shall explore how such performance depends on training sets’ contents.
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3.6 AMNs’ ability to predict the effect ofmedia and genetic
conditions onmetabolic fluxes depends on training set
contents

3.6.1 Introduction
This fifth section aims to investigate the effect of varying experimental training sets content on AMNs
prediction performance. I will show purely exploratory results, not focusing on any technical im-
provements of the method. The investigation is made through modifications brought to the training
set itself or how it is used in cross-validation. In this section, AMNs do not have a mechanistic layer
so the neural layer directly predicts the flux distribution, as in section 3.4. Also in the present section,
AMNs output full flux distributions, with medium compositions and genetic perturbations as inputs.
Experimentally determined growth rates or a set of 31 measured fluxes (including the growth rate)
were used as references. In other words, from a biological standpoint, AMNs generalize from a set of
media compositions and genetic perturbations (independent variables); and corresponding reference
fluxes (dependent variables), to predict full metabolic flux distributions of a GEM.

In section 3.4 of this chapter, we have seen that different training sets yield different performances
with AMNs, and hyperparameter optimization can lead to better architectures, each suited for a spe-
cific training set. In section 3.5, when exploring the performance of MTEN, we have also assessed the
importance of training data on the prediction performance ofMLmodels. Therefore, it is important to
assess how changing the structure of training sets changes the AMN performance. In particular, this
section aims to tweak the training sets used to generate results obtained in Figures 2.4 and appendix
B section ‘AMNs benchmarking with gene knockouts and multiple measured fluxes’. We will use the
‘Cov-BiologKO’ (used for Figure 2.4) and ‘Rijs-RegKO’ (used for appendix B section ‘AMNsbenchmarking
with gene knockouts and multiple measured fluxes’) training sets, modifying their structure in mean-
ingful ways. In particular, ‘Cov-BiologKO’ was re-organized with a specific cross-validation scheme, in
order to obtain validation splits with unseen conditions (media compositions or reaction KOs); and
‘Rijs-RegKO’ was splitted to obtain subsets with only glucose or only galactose as carbon source; and
it was used with only the growth rate as the reference flux to fit instead of the 31 fluxes of the dataset.

3.6.2 Methods
3.6.2.1 Training sets and models architectures
The training sets used in this section are ‘Cov-BiologKO’ and ‘Rijs-RegKO’. Please refer to the Preamble
section (3.1) of this chapter for more information.

‘Cov-BiologKO’ will be used in 2 alternative ways: (i) organized in such a way that validation sets
of a 145-fold cross-validation each contain an unseen combination of reaction KOs; (ii) organized in
such a way that validation sets of a 120-fold cross-validation each contain an unseen combination of
substrates (i.e. media composition). In all cases, Cmed and RKO were used as inputs, and themeasured
growth rate was used as output (i.e. it was the only reference flux to fit). The alternative ways (i) and
(ii) will be respectively called ‘Cov-BiologKO-unseen-KO’ and ‘Cov-BiologKO-unseen-media’. Note that
these alternative ways do not change the content of the training set but solely their organization and
cross-validation approach. In short, the training set was re-organized by grouping the same RKO (i.e.
the samemetabolic gene KO) together sequentially, for alternative way (i); and the training set was re-
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organized by grouping the sameCmed (i.e. the sameBiolog growth condition) together sequentially, for
alternative way (ii). Importantly, for the two alternative ways, the training set was not shuffled during
the cross-validation process, unlike all other cross-validation results shown in this dissertation.

‘Rijs-RegKO’ will be used in 3 alternative ways: (i) a subset with only the data of glucose conditions,
(ii) a subset with only the data of galactose conditions, (iii) using only the growth rate as output of
the training set, instead of the 31 fluxes. Results for alternative ways (ii) and (iii) can be found in the
appendix C.7. For ‘Rijs-RegKO’, Cmed and GKO were always used as inputs. The alternative ways (i),
(ii) and (iii) will be respectively called ‘Rijs-RegKO-galactose’, ‘Rijs-RegKO-glucose’ and ‘Rijs-RegKO-GR-
only’. For the alternative ways (i) and (ii), 31 measured fluxes were used as outputs; for the alternative
way (iii) only the measured Growth Rate was used as output (i.e. it was the only reference flux to
fit). In short, the training set was splitted between galactose and glucose conditions, respectively for
alternative ways (i) and (ii). For the alternative way (iii), the training set was kept as a whole but only
the measured growth rate was retained, and the remaining 30 measured fluxes were discarded from
the training set.

All alternative ways of using ’Cov-BiologKO’ and ’Rijs-RegKO’ are summarized in the following table
3.5.

Original training set
Alternative way 

number
Alternative way name Comment

(i) Cov-BiologKO-unseen-KO Validation sets contain unseen reaction KOs

(ii) Cov-BiologKO-unseen-media
Validation sets contain unseen media 

compositions

(i) Rijs-RegKO-galactose
The training set contains only galactose 

conditions

(ii) Rijs-RegKO-glucose
The training set contains only glucose 

conditions

(iii) Rijs-RegKO-GR-only
Only the growth rate is used as the reference 

flux to fit

Cov-BiologKO

Rijs-RegKO

Table 3.5: Summary of the alternative ways to use ’Cov-BiologKO’ and ’Rijs-RegKO’ trainingsets.
In all cases, AMN-QP-bndswas used, without amechanistic layer. The ‘adam’ optimizer was always

used. For ‘Cov-BiologKO’, aggregated predictions from the validation sets are used as final prediction
values. For ‘Rijs-RegKO’, the mean aggregated predictions from the validation sets over 10 repeats of
a 10-fold cross-validation were compiled as final prediction values.

For models trained with ‘Cov-BiologKO’ training set, in regular and alternative ways, neural layers
had the following parameters: 1 hidden layer of size 500 with ReLU activation function and 0.2 of
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dropout rate. The batch size was set to 100 and epochs to 10.
For models trained with ‘Rijs-RegKO’ training set, in regular and alternative ways, neural layers

had the following parameters: 2 hidden layers, each of size 400 with ReLU activation function and 0.2
of dropout rate. The batch size was set to 10 and epochs to 200.

FBA alone was used with ‘Cov-BiologKO’, by simulating KOs found in RKO and using arbitrary up-
per bounds on uptake fluxes for substrates found in Cmed, for each training set entry. The biomass
reaction of iML1515[44] was optimized and the value directly used as the prediction. This is the same
process as in Chapter 2 (for Figure 2.4 panel c).

3.6.3 Results and discussion
3.6.3.1 AMNs better predict the effect of reaction KOs and media conditions that ap-

peared in the training data

ba

FBA computations AMN predictions

Figure 3.10: AMN-QP-bnds outperforms FBA with the ‘Cov-BiologKO’ training set but do not respectstoichiometry constraints. (a) FBA alone with arbitrary bounds on uptake fluxes (as in Chapter 2’sFigure 2.4 panel c) (b) AMN-QP-bnds (regular approach, as in Chapter 2’s Figure 2.4 panel b). Bothpanels display, from top to bottom and left to right: A scatter plot of the growth rate predictions (Y-axis) against the experimentally measured growth rates (X-axis), with points’ colors corresponding tothe SV norm value computed on the prediction; an histogram of the SV normmetric for all predictionsand an histogram of the V normmetric for all predictions. For FBA computations, the average V normis 0.042 and for AMN predictions the average V norm is 0.0016. Strikingly, AMN-QP-bnds outperformsFBA in terms of Q² but stoichiometric constraints are not well respected, with an average SV norm of5.68e-03, against an average SV norm of 1.88e-14 for FBA.
On Figure 3.10 we can observe that FBA alone shows bad fitting performance but extremely low SV
norm values. In contrast, AMN-QP-bnds shows good fitting performance but relatively high SV norm
values, and much smaller V norm compared to FBA alone. Looking at the detail of the prediction
vector, I observed that many fluxes in the AMN-QP-bnds predictions were close to zero, explaining
the small V norm observed, as discussed in section 3.4.3.3.
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Unseen reaction KO Unseen media composition

Figure 3.11: AMN-QP-bnds performance with unseen combinations of reaction KOs and unseenmediacompositions. AMN-QP-bnds performance with (a) ‘Cov-BiologKO-unseen-KO’, displaying aggregatedpredictions from a 145-fold cross-validation, with each validation set containing an unseen combina-tion of reaction KOs and (b) ‘Cov-BiologKO-unseen-media’, displaying aggregated predictions from a120-fold cross-validation, with each validation set containing an unseen media composition. Sameplot organization as previous figure’s. The Q² is reduced with those alternative ways, compared to theregular approach on panel b of Figure 3.10. This indicates that AMNs better predict the effect of geneKO and media compositions when they are found in the training data.
On panels a and b of Figure 3.11, we can observe the SV norm and V norm metrics having similar

order ofmagnitudes compared to the regular way, displayed on panel b of Figure 3.10. More strikingly,
alternative ways of using ‘Cov-BiologKO’ display lower Q². Results of Figure 3.11 can be interpreted as
the AMN-QP-bnds predictive power that is only based on the media composition (panel a) or the
reaction KOs (panel b). Therefore, we can conclude that most of the predictive power displayed on
panel b of Figure 3.10 comes from the media composition, and a smaller part also originates from the
reaction KOs. However the difference in performance here should be kept in perspective of the very
different cross-validation scheme (120-fold and 145-fold for alternative ways, 10-fold for the regular
way).
3.6.3.2 AMNs can predict the effect of a regulator gene KO only if statistical patterns

are found in the reference fluxes
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Figure 3.12: AMNs can predict the effect of a regulator gene KOonlywhen statistical patterns are foundin the training data. (a) Comparative bar chart of AMN-QP-bnds performance with different ways ofusing the training set ‘Rijs-RegKO’: regular (blue, ‘Rijs-RegKO’), glucose only conditions (light orange,‘Rijs-RegKO-glucose’), galactose only conditions (light orange, ‘Rijs-RegKO-galactose’), and growth ratereference flux only (dark orange, ‘Rijs-RegKO-GR-only’). Refer to Table 3.5 for details on those trainingsets. Bar plots show the variance weighted Q² computed for all 31 reference fluxes (left) and the Q²computed only with the growth rate (right). (b) Scatter plots of the Growth Rate and ACKr_rev flux pre-dictions (Y-axis) against the experimentally measured fluxes (X-axis), with points’ style correspondingto the carbon source (yellow crosses: glucose, blue dots: galactose). Scatter plots are displayed forthe regular and alternative ways (ii) and (iii). Such alternative ways do not yield satisfactory perfor-mance, indicating that using only one carbon source condition or only the growth rate as a referenceflux do not provide enough statistical patterns for the AMN to perform well.
Strikingly, as observed on the left bar plot of panel a Figure 3.12, the variance weighted aver-
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age Q² computed on the 31 reference fluxes is close to 1 only when using the full training set in the
regular way, ‘Rijs-RegKO’. When considering only glucose or galactose, with ‘Rijs-RegKO-glucose’ and
‘Rijs-RegKO-galactose’ , the variance weighted average Q² falls close to zero, and when considering
only the growth rate as a reference flux to fit, with ‘Rijs-RegKO-GR-only’ the variance weighted aver-
age Q² falls to -3. When looking at the Q² computed solely on growth rates, on the right bar plot of
panel a Figure 3.12, the Q² only falls around zero when considering glucose or galactose conditions
only. When looking at the detailed prediction results on panel b Figure 3.12, it is clear that the growth
rate and ACKr_rev reference fluxes are clustered according to the carbon source. As a result, most of
the statistical patterns in the training set rely on such clusters. Indeed, we clearly see that the AMN is
unable to accurately predict the fluxes when the training set contains only glucose or only galactose
conditions. This is not surprising: with such subsets of the training set, each data point has a differ-
ent regulator gene KO, which prevents the AMN from learning any statistical relationships. Looking
into the detailed flux predictions of the growth rate and ACKr_rev (panel b, ’Rijs-RegKO-glucose’, and
appendix Figure C.13), one can clearly observe that AMN predictions fall into the right value range
compared to measured fluxes, but the precise value prediction is impossible for the AMN.

The ‘Rijs-Reg-KO-GR-only’ results of Figure 3.12 indicate that the AMN learning only with the growth
rate as a reference flux to fit is unable to have predictive power on other fluxes. This might be related
to the issuementioned in section 3.4.3.3, since most flux predictions are close to zero for other fluxes
than the growth rate (see appendix Figure C.15).

Figures with extended results for all alternative ways are available in the appendix C.7. Figure C.12
to C.15 display the V norm and SV norm distributions; as well as scatter plots for all 31 fluxes (not just
the growth rate and ACKr_rev).

3.7 Closing remarks
3.7.1 Chapter summary
In this chapter, I have formulated an improved version of the QP-solver, namely QP-bnds-solver, that
inspired an improved AMN architecture, namely AMN-QP-bnds. It uses a custom loss that is more
general and versatile, shown to better respect GEMs’ constraints. After that, I investigated the be-
havior of MM solvers inside AMNs (termed mechanistic layers) showing their interesting capabilities
for improving AMNs predictions, but also their limits: further investigations and improvements are
required to reliably use them with all GEMs. Moving on, I showed that neural layers of AMNs can
be fine-tuned through hyperparameter optimization, a process that heavily depends on the training
set. In the same section, I also stressed an issue observed with AMN flux predictions showing high SV
norms, probably due to many flux values close to zero, an issue that seems to originate from L2 (the
loss term that ensures stoichiometric constraints) pushing predicted flux values towards zero instead
of more realistic values. Next, I showed how different ML models can surrogate FBA with different
performances, using different training sets. Finally, I showed the dependence of AMNs’ performances
on their training sets, with alternative ways of using two experimental datasets, drastically changing
the obtained performance, concluding that AMNs can predict the effect of media compositions and
genetic perturbation on metabolic fluxes if and only if those fluxes show enough statistical patterns
to learn with.

In short, the important take-aways of the present chapter are the following: (i) alternative MM
solvers can be formulated, as well as alternative custom mechanistic loss for AMNs, which change
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the general behavior of the model, (ii) mechanistic layers have high potential to enhance AMNs pre-
dictions but still require improvements, (iii) hyperparameter optimization can enhance an AMN per-
formance, but AMNs still predict flux distributions far from respecting GEM’s constraints like FBA, (iv)
MTEN performs very well for surrogating FBA, especially in terms of stoichiometric constraints, and
(v) an AMN can predict the effect of media compositions and genetic perturbations depending on
statistical patterns found within the training data.

3.7.2 Reservoir computing, a promisingapproach to tackleAMN issues?
From all the observations made in this Chapter, we can make important assessments on AMNs ca-
pabilities and caveats. First of all, including the L2 term in the custom loss, to ensure SV = 0, does
not suffice for making realistic flux predictions in terms of stoichiometric constraints. Mechanistic
layers seem like a very promising way to tackle the issue, but the current implementations still suffer
drawbacks. The MTEN model also showed promising results in its capabilities of better respecting
GEMs constraints. However, it was only assessed with all fluxes used as references to fit. Therefore,
its potential as a reservoir to surrogate FBA is clear but its potential as a basis for a hybrid model
similar to AMN is still uncertain.

All these assessments should drive us towards the use of the ‘AMN-Reservoir’ approach (Figure
2.2), that seems the most reliable approach. Indeed, if we redraw the Figure S9 of appendix B (section
‘AMN-Reservoir prediction performance’) with similar plots as those shown in this chapter, we obtain
the following Figure 3.13.

Figure 3.13: Performances of AMN-Reservoir using predicted Vin as input to FBA. The dataset usedto train the AMN-Reservoir is ‘110GR’ (also used for Figure 2.3 and Figure 2.5 panel c). The measuredgrowth rates are plotted as the mean over technical replicates (cf. Chapter 2 Methods, 2.5) and FBAresults are shown as the predicted growth rate. The hyperparameters and the pre-trained AMN-Reservoir were the same as for Figure 2.5 panel c. A 10-fold cross-validationwas performed (instead ofa training and prediction on the whole dataset as in Figure 2.5 panel c), and validation sets predictionswere used to extract Vin, then used as input for FBA. On the right are shown histograms of the V normand SV norm metrics computed for FBA results. As a reminder, FBA with arbitrarily chosen boundsyields a Q² of 0.51 as shown in Figure 2.5 panel d (with similar values for SV and V norms).
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This figure shows ideal results, as it not only yields good Q² performance, but also perfectly re-
spects GEM constraints and produces realistic norms of flux predictions, which is expected since we
use FBA to compute these flux distributions. However, one can argue that this approach is not a hy-
brid model as defined in Chapter 1, as it relies on 3 different steps for making such predictions, as
shown in the following Chapter 4, Figure 4.1.
We shall discuss these points further in the next Chapter, where I will summarize all previous chap-
ters, and further discuss the present concluding remarks. I will also provide usage perspectives and
improvement directions of hybrid modeling for GEMs, and conclude the dissertation by presenting
where the metabolic modeling community should focus in the future, in my opinion.
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Chapter 4
General discussion and perspectives
I will start this chapter with an overview of both the strengths and limitations of AMNs. First, I will
summarize how AMNs improve GEMs’ predictive power. Then, I will review how such improvement
is based on an innovative approach of learning with constraints. Doing so, I will underline how this
challenging approach requires further investigations, reminding some issues uncovered in the dis-
sertation.

Next, I will discuss the potential ways to tackle such limitations, and the best potential areas of
application for AMNs. Finally, concluding remarks close the dissertation with a global summary, an-
swering the scientific questions set for the dissertation in chapter 1, section 1.5.

4.1 A novel and challenging approach to exploit GEMs
4.1.1 Improving GEMs predictive power with AMNs
4.1.1.1 From an optimality to a learning principle
In many metabolic modeling approaches, GEMs are involved and exploited through FBA, or closely
related methods (examples are given in Chapter 1 section 1.3.3.3.3). From a given condition (i.e., LP
constraints to simulatemedia compositions, or genetic perturbations), suchmethods can find a single
metabolic phenotype (i.e., a flux distribution solution). Importantly, they solve each condition inde-
pendently of each other. Whether the methods rely on a linear or quadratic program, they do not
attempt to generalize from a set of instances, but rather consider each condition to solve as a differ-
ent problem. In most approaches combining ML and GEMs (examples are given in Chapter 1 section
1.4.2), the ML part enables generalization from a set of conditions, but the GEMs are used without
such generalizing abilities.

By formulating AMNs, we radically change this paradigm: relying on learning procedures, the
model attempts to learn and generalize from statistical patterns found between input conditions and
output reference fluxes, as well as custom loss terms accounting for GEMs constraints. This is the
main novelty brought by the original research work shown in this Ph.D. dissertation. As we have seen
in Chapter 2, this novelty drastically improves the predictive power of GEMs, when comparing it to
FBA. In particular, when uptake fluxes are unknown but media compositions are known, AMNs can
grasp the power of ML to predict the uptake fluxes in yet unseen conditions. We also showed that
integration of metabolic gene KOs and regulator gene KOs with AMNs was possible and showed good
performance. Finally, we showed that an AMN could be pre-trained on FBA simulations to faithfully
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reproduce FBA, to then be included with frozen parameters in a larger learning model; that is trained
on experimental datasets in order to find best FBA inputs for the experimental data to match FBA
computations (i.e., the ‘AMN-Reservoir’ or ’Reservoir Computing’ approach).

Interestingly, comparing MFA (described in Chapter 1 section 1.3.3.2) and AMNs, one can assess
that AMNs propose another level of generalization. Indeed, MFA approaches attempt to minimize an
error between fluxmeasures and GEMs predictions, but they do so for each condition independently.
In contrast, AMNs are able tominimize a similar error for a set of conditions, thus building a predictive
model.
4.1.1.2 AMNs can predict full metabolic phenotypes with partial flux data
AMNs have an advantage over regular ML models: they predict more than the data given as refer-
ence. In particular, they can predict full metabolic fluxes distributions with partial flux datameasures,
whereas regular ML models would only predict the fluxes that are measured. Let me consider a case
where one wants to build a predictive model for 5 metabolic fluxes from media compositions. One
could use regular ML models, using supervised learning to model the relationship between the me-
dia compositions and the 5 metabolic fluxes, probably reaching satisfactory predictive power. But
one could also use hybrid models like AMNs, enabling the prediction of the full metabolic phenotype
instead of the 5 measured fluxes. This would extend the size of predictions, which could be useful
for later statistical analyses of metabolic fluxes, eventually uncovering new insights. Therefore, AMNs
can bring more insights than regular ML models, with the same measuring efforts.
4.1.1.3 Mechanistic layers can improve predictions quality
Mechanistic layers are the second main novelty introduced in this dissertation. Indeed, the inclusion
of “neural” solvers as a part of learning architectures is an innovative piece of work. To our knowledge,
no such approach was yet performed in literature. The use ofmechanistic layers, as seen in Chapter 3
section 3.3 for AMN-LP (Figure 3.5), can drastically improve the prediction quality of AMNs, especially
in terms of GEMs constraints respect.
4.1.1.4 A wider range of input or output data type
The formulation of AMNs (especially with AMN-QP-bnds, Figure 3.4), enables the use of a GEM with
any kind of dataset as input. A strong limitation of GEMs was to only accept fluxmeasures as possible
data to integrate: the AMN formulation tackles this issue very clearly. One can think of using as input
variables some physical or chemical parameters other than metabolic fluxes, such as temperature,
shaking speeds, vessel types, pH, salinity (which cannot be used with GEMs alone, at least with FBA).
These environmental parameters strongly influence metabolic phenotypes, as shown in Figure A.5.
Thus, AMNs enable one to grasp the power of ML and GEMs for predicting metabolic phenotypes
depending on physico-chemical conditions that would not be usable in a regular FBA approach.
4.1.1.5 A wide range of architectures
The AMNs formulation also provides high flexibility over the possible model architectures to design.
As already shown in Chapter 3 section 3.4, hyperparameters of theML part of AMNs can be fine-tuned
to reach better performance. In that sense, AMNs architectures can be designed for any dataset and
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modeling task, which is an advantage over FBA and related approaches to exploit GEMs, that are not
as tunable.
I just listed the main advantages of AMNs over usual approaches to exploit GEMs, and over usual ML
approaches. However, we have seen in Chapter 3 that AMNs still show some limits. These will be
summarized in the next section.

4.1.2 Learning with constraints: a challenging approach
4.1.2.1 The custommechanistic loss relies on tradeoffs between the terms
In Chapter 3 section 3.4, I assessed that the weighting scheme on custom mechanistic loss terms of
AMNs influences the final prediction performance. Therefore, these tradeoffs must be investigated
when developing AMNs. Indeed, the proposed custommechanistic loss has several terms competing,
making the AMNs training a multi-objective optimization process. This will be further discussed in
section 4.2.1.2 of this chapter.
4.1.2.2 The SV loss term is not sufficient to satisfy GEMs constraints in AMNs predic-

tions
Each of the AMNs loss terms has a purpose, and it was found that the SV loss term (L2) imposes
clear limitations to the AMNs predictions quality. In Chapter 3 section 3.4.3.3, I assessed that the
loss term encouraging SV = 0 (L2) was not sufficient to make meaningful flux predictions (i.e., flux
distributions that respect GEMs constraints). Indeed, AMNs were found to predict flux distributions
with significantly higher SV norms than what is found in FBA computations. I hypothesized this issue
to come from flux predictions showing many values close to zero. This would be due to V = 0 being
a solution to SV = 0. The SV loss term seems to get stuck in that local minima, and does not help
reaching realistic flux predictions. Instead, it ‘cheats’ to minimize SV and predicts most fluxes at zero.
This issue is related to an important feature of AMNs: they predict flux distributions under ‘loose’
constraints. In contrast to FBA, in which the LP is solved under strict constraints, AMNs attempt to
satisfy constraints in predictions in the best way possible, but not under strict constraints.
4.1.2.3 Mechanistic layers have limitations
In Chapter 3 section 3.3, I showed that the mechanistic layer of AMN-QP-bnds and AMN-Wt had both
a low effect on prediction performance. Moreover, I mentioned that AMN-LP, even if showing very
promising performance with a high number of iterations (128) with E. coli core[135], could not be per-
formed with larger models such as iML1515[44] due to technical issues. Finally, using mechanistic lay-
ers in AMNs drastically increases computational time, which represents a significant drawback when
dealing with large datasets.
4.1.2.4 The AMN performance depends heavily on the training set
In Chapter 3 section 3.4, with Figure 3.6, I assessed that different in silico training sets, generated
with different samplings of uptake fluxes upper bounds to perform FBA with, were yielding different
AMN performances. In this section I also assessed that different training sets were yielding different
optimal architectures through hyperparameter optimization.
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Moreover, in Chapter 3 section 3.6, with Figures 3.10, 3.11 and 3.12, I showed that the AMNs perfor-
mance strongly depends on the content (and train/validation split, if cross-validation is performed)
of experimental training sets. In particular, it was shown that the AMNs prediction performance was
strongly dependent on statistical patterns found in the training sets. This should be taken into account
for further development of AMNs, especially when designing and acquiring training sets.

More generally, the trainable nature of AMNs make them very performant in a specific space of
experimental conditions. But after being trained, their reusability seem limited to that space. This
issue is common to all ML models, as discussed in Chapter 1, section 1.4.1.2.4.
4.1.2.5 The AMN-Reservoir approach is reliable but suffers from limitations
As stated in the closing remarks of Chapter 3 (section 3.7), the AMN-Reservoir approach seems to
be the most reliable method. However, it requires to run simulations to train the reservoir with, then
train theAMN-Reservoir on experimental data, andfinally predict themetabolic phenotypes using FBA
with AMN-Reservoir predicted upper bounds as inputs. These 3 separate steps make the workflow
fragmented. In Chapter 2, this workflow was described in Figure 2.1 panel d, here I show a more
detailed version of this workflow in Figure 4.1, to underline the fragmented nature of the Reservoir
Computing approach.
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Figure 4.1: Reservoir Computing workflow to generate Figure 2.5. This Figure is an extended versionof Figure 2.1 panel d, to show in more detail the different steps of the workflow for AMN-Reservoircomputations to be made.
Even though the AMN-Reservoir approach makes more reliable predictions, it is not fitting the

hybridmodel definition given in Chapter 1. Indeed, it is rather a combined approach of ML with GEMs,
as many other existing approaches (cited in Chapter 1 section 1.4.2), which reduces novelty compared
to the regular AMN approach (Figure 2.1 panel c). Another possible limitation of the AMN-Reservoir
approach is its ability to make predictions overcoming the GEMs limitations. Indeed, the reservoir
being trained on FBA simulations, it may show the exact same shortcomings. For example, if we
consider a condition inwhich theGEMpredicts no growth of an organism, whereas growth is observed
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experimentally, the reservoir trained with this erroneous data will fail to predict growth in similar
conditions.
I have summarized here the main limitations of AMNs that were assessed in Chapter 3. These limi-
tations may be tackled in various ways, which will be discussed hereafter. I will also discuss what are
the best prospective areas of applications for AMNs.

4.2 Perspectives onhybridmodels forGEMs: improvements
and applications

4.2.1 Improved approaches and formulations
4.2.1.1 Standardized training set acquisition
As stated in the previous section, both in silico and in vivo training sets contents were assessed to
strongly influence the overall AMN performance. Therefore, there is a clear need to standardize the
design, acquisition, and preprocessing of such training sets, for further developments of AMNs.
4.2.1.1.1 in silico training sets
For in silico datasets exploited in this Ph.D. dissertation, we always used a random (binomial law, see
section 2.5.2) drawing of upper bounds on uptake fluxes, which is an effective means of sampling
the space of possible metabolic phenotypes by FBA. However, it is not much standardized, as any
drawing scheme can be designed, with different probability laws applied on different uptake fluxes,
each with different values range. Also, FBA optimizing the growth rate (biomass reaction) was always
performed, which can be limiting the diversity of metabolic phenotypes found in the training set.

For more standardized approaches, one could take inspiration from past works where a sampling
of metabolic phenotype space was performed by flux sampling methods[116], to evenly sample a
constrained metabolic phenotype space. Another possible inspiration can be taken from the Design
of Experiments (DoE) methods, to draw upper bounds in more standardized ways. Moreover, we
could think of drawing upper and lower bounds for each reaction instead of solely uptake fluxes,
further extending the metabolic phenotype space found in the training set. Finally, one could think of
other optimization schemes to generate in silico training sets. For example, one could perform FBA
with a diverse set of objectives instead of only the growth rate.
4.2.1.1.2 in vivo training sets
For in vivo datasets exploited in this Ph.D. dissertation, different approaches have been used to build
the combinatorial space to perform experiments. For ‘110GR’, a DoE method was used, in particular a
random sampling of a full-factorial design. The full-factorial design included all 1 to 4 carbon sources
combinations. This approach yields a balanced dataset, in terms of input variables found in the train-
ing set. For ‘Cov-BiologKO’ and ‘Rijs-RegKO’ (the two external phenotyping datasets), all combinations
of the experimental variables were performed. In particular, in ‘Cov-BiologKO’, all 120 metabolic gene
KO mutants have been grown in the 145 media conditions. In ‘Rijs-RegKO’, all 64 regulator gene KO
mutants have been grown in the 2 media conditions. These two approaches yield balanced and ‘com-
plete’ datasets, which is an appealing feature of a training set. However, they lack a large combina-
torial space to further explore. This could be limiting for AMNs in some specific contexts, such as
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media optimization for bioproduction, where the training set should not cover the whole combinato-
rial space. In general, I conclude that the design of experimental training sets should be led with DoE
methods, with experimental variables shaping the combinatorial space that are chosen according to
our knowledge, as well as the project’s goals and resources.
4.2.1.1.3 Automated experimentation for large training sets acquisition
One limit of AMNs is their requirement for large training sets, compared to regular FBA approaches.
A good way to tackle this issue would be to grasp the power of automated experiments[156]. Indeed,
this could be an effective means, possibly combined with DoEmethods, to acquire large phenotyping
datasets in standardized ways.
4.2.1.1.4 Data preprocessing
An important preprocessing step for ML systems, that has not been extensively explored in this Ph.D.
dissertation, are normalization and other data standardization methods. These are known to signifi-
cantly change the performance of an ML system in some cases (e.g., in a classification task[157]). For
all results shown in this dissertation, the only data normalization that was performed is a feature
scaling, dividing all values with the global maximum input value (to obtain feature values between
0 and 1). Therefore, more suited input and output data normalization methods could lead to better
performance of AMNs.
4.2.1.2 Improved custommechanistic loss formulations
The custom loss of AMNs suffers from twomain issues: (i) a tradeoff between its terms, and (ii) a term
that is not performing as expected, namely L2.

The different terms tradeoffs can be partially tackled through hyperparameter optimization. In-
deed, changing the weighting of loss terms has been shown to increase AMNs performance, as shown
in Chapter 3 section 3.4. In such hyperparameter optimization, the weighting scheme was relatively
basic. More sophisticated solutions exist to enhance tradeoffs within models that have such a loss
with multiple terms. In literature, this issue (termed ‘multi-objective optimization’ or ‘multi-task learn-
ing’), is known and methods exist to tackle this issue[152, 153], such as the multiple gradient descent
algorithm.

The L2 term that should be accounting for GEMs stoichiometric constraints, has to be further
investigated in order to enhance AMNs performance. Additional terms, or modification of existing
terms could enhance the GEMs stoichiometric constraints respect. Or, the L2 term behavior might be
enhanced by searching for better loss normalizations, in order to give more importance to the term
without pushing flux predictions towards flux values close to zero.

Another way to improve the custom loss formulation is to inspire from the LP-solver formulation.
One may be able to derive gradients from that method, and inspire from those in the custom loss
instead of inspiring from the gradients of the QP-solver.

Finally, in literature, some purely ML processes specifically designed to surrogate constrained
optimization problems could inspire a novel custom loss formulation[67]. With such a formulation,
mechanistic layers would not be used. For example, one can use a “decomposition scheme alter-
nating master steps (in charge of enforcing the constraints) and learner steps (where any supervised
ML model and training algorithm can be employed)” as done by Detassis et al[158], separating the
fitting and constraints enforcing processes. Such purely ML approach to surrogate a constrained op-
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timization problem has very recently been applied for metabolic modeling, where authors surrogate
a dynamic FBA (dFBA) problem with Convolutional Neural Networks (CNNs)[159].
4.2.1.3 Improved mechanistic layers formulations
As shown in Chapter 3 section 3.3, mechanistic layers can improve AMNs predictions, notably with
better respect of GEMs stoichiometric constraints. But mechanistic layers also suffer from strong
limitations, at least in the current implementations: (i) only AMN-LP’s mechanistic layer significantly
improves predictions, (ii) their use largely increases computational time of AMNs, and (iii) they could
not be used to enhance AMNs predictions with large GEMs like iML1515[44].

The possible above-mentioned improvements for the custom loss formulations could be directly
applied to the QP-bnds-solver of AMN-QP-bnds, possibly improving themechanistic layer capabilities.
For AMN-Wt, further investigations are needed to improve the behavior of the mechanistic layer.

A possible way to reduce the computational time might be to enhance the current backend im-
plementation of AMN-LP and AMN-QP-bnds mechanistic layers, as it is done in AMN-Wt. The latter
relies on a RNNCell custom object of Keras[144], that is much more efficient than the QP-bnds-solver
and LP-solver current implementations as mechanistic layers, relying on stacking solver’s operations
in a Keras model.

By reducing the computational time of mechanistic layers in AMNs, and increasing their compu-
tational efficiency, their use with larger models might be enabled. Otherwise, further improvements
would have to be performed; or the use of reduced models would be required to exploit mechanistic
layers.
4.2.1.4 Replacing ANNs by other ML methods
Finally, oneway to improve the custom loss behavior could be to set us away fromANNs as theMLpart
of AMNs. This would be a drastic change as it would make the use of mechanistic layers impossible,
at least in their current formulations. But given the good performance of the Multi-task Elastic Net
(MTEN) observed in Chapter 3 section 3.5, it might be worth trying to use a similar custommechanistic
loss as the one used for AMNs, with MTEN or other performant ML models. As a reminder, this good
performance of MTEN was assessed with a fit on all fluxes, with a usual mean squared error loss.
Thus, one perspective work can be to attempt a MTEN formulation that integrates a custom loss like
AMNs, in order to use partial flux data to fit, and predict the remaining flux vector based on GEMs
constraint.
4.2.1.5 Improved AMN-Reservoir workflow and alternatives
As stated in the above section 4.1.2.5, the AMN-Reservoir approach is making reliable predictions but
has two major drawbacks: (i) it relies on three separated learning steps, which makes it more of
a combined MM and ML approach rather than a hybrid model, and (ii) it can suffer from the same
limitations as theGEMs themselves. These issues are intrinsic to the approach, andwill not be tackled.
However, the AMN-Reservoir approach previously described in Figure 4.1 lacks generality, and a better
workflow can be proposed.

I propose the following workflow for the AMN-Reservoir approach, shown in Figure 4.2. This new
workflow brings several advantages: (i) the ML reservoir is not strictly limited to be an AMN-Reservoir,
it just has to allow gradient backpropagation, (ii) the ML reservoir has lower and upper bounds for all
fluxes as inputs and some simulated fluxes (not the whole distribution) as outputs, these fluxes being
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measured in the experimental dataset to process afterwards; (iii) the sampling of the solution space
(left part of Figure 4.2, black arrows) can rely on other processes than repeated FBA, e.g., using flux
sampling approaches (which could be more performant, as stated in section 4.2.1.1.1).
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Figure 4.2: Proposition of an improved Reservoir Computing workflow. Compared to the originalworkflow of Figure 4.1, the workflow shows four main differences: (i) the input of the experimentaldataset is not restricted tomedia compositions, it should simply describe any experimental conditions(X); (ii) we derive upper and lower bounds for all fluxes from the experimental dataset instead ofupper bounds for uptake fluxes (UB and LB instead of Vin); (iii) the AMN-Reservoir is replaced by amore generic Machine Learning Reservoir that can be based on any method; (iv) this ML reservoirtakes as inputs lower and upper bounds for all fluxes (UB and LB) instead of upper bounds for uptakefluxes (Vin), and outputs only measured fluxes (Vref-sim) instead of entire flux distributions (Vout) likethe AMN-Reservoir in Figure 4.1. Moreover, the output Vref-sim is used in a regular fitting loss with theexperimental reference data Vref. Note that FBA outputs a full flux distribution (on the right, Vout, withyellow fluxes indicating the presence of Vref-sim).
In the case we wish to use a ML reservoir that does not allow gradient backpropagation, an alter-

native approach can be conducted. A learning loop (Figure 4.3), for example based on Active Learning
(AL) or Genetic Algorithm (GA) procedures, can link a MLmodel that predicts upper and lower bounds
from experimental conditions (step 1), to FBA performed on a GEM with those bounds (step 2), whose
output is used for computing an error metric with experimental measurements (step 3), which in turn
is used to update the machine learning model (step 4). This learning loop could provide very reliable
predictions, and enable a high diversity ofMLmodels to be tested. However, themathematical details
and examples of implementations will not be discussed in this dissertation.

The novel Reservoir Computing (Figure 4.2) and learning loop (Figure 4.3) workflows are two al-
ternatives that should predict perfectly reliable metabolic phenotypes, in terms of GEMs constraints
respect. However, they are not considered hybrid models like AMNs due to their fragmented nature,
and ‘ad hoc’ implementation tomakedata communicate in themodel. In literature, a lot of approaches
use such combinations but very few attempt to build hybrid models like AMNs. The following section
will describe the closest hybrid model of GEMs formulation found in literature and how we could
inspire from it.
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Figure 4.3: Proposition of a learning loop workflow, with FBA and ML separated. From experimentalconditions (X), a ML model predicts fluxes bounds (step 1), UB and LB; which are used to performFBA (step 2), producing Vref-sim (yellow fluxes) as a part of Vout. These simulations from FBA are thencompared to experimental measures (step 3), computing an error that is in turn used to update theML model (step 4).

4.2.1.6 Alternative hybrid modeling of GEMs: comparison of AMNs with existing ap-
proaches

The closest works that attempt a hybrid model formulation for GEMs have been directed by Pr. Diego
Oyarzun[123, 124]. In these research articles, authors propose to translate a GEM into a mass flow
graph (a directed graph with reactions as nodes and chemical mass flows as edges). Then, using wild-
type flux data as training, they learnmass flows of the graph, to then predict gene essentiality with the
same accuracy as the GEM alone. Although this formulation slightly overlaps with the present work,
it differs in the data type that can be used as input, which is wider with AMNs. It also differ in the
task that has been designed for the formulations to solve, with mostly uptake fluxes predictions with
AMNs, instead of gene essentiality prediction (note that a slight change to the AMN formulation could
enable such gene essentiality prediction). Finally, the mathematical approach to hybrid modeling is
different, with the use of mechanistic layers and custom loss with AMNs, and no translation of the
metabolic network into mass flow graphs. However, we could get inspiration from this formulation in
order to improve AMNs: formulating the metabolic network as a mass flow graph drastically reduce
the model’s size, which can be very useful to ease the functioning of some AMNs formulations, such
as AMN-LP with a high number of mechanistic layer iterations.

To my knowledge, no similar hybrid model formulation for GEMs has been formulated. Moving
away from GEMs but worth citing is the work of Nilsson et al.[122] for gene regulatory networks. In
this work, recurrent neural networks with the same architecture as the GRNs have been developed,
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and were shown to be trainable with experimental data and yield satisfactory performances. This
approach is similar to the AMN-Wt formulation, so we may find inspiration in this work to improve it.

The advantage of hybridmodels overmore fragmented and ad hoc combinations ofML andGEMs,
lies in the single-block nature of their formulations. Indeed, hybrid models are single models, with a
clearer mathematical definition, a more concise functioning, and they are more reusable. Therefore,
hybrid models seem more promising and ambitious for the future than ML and GEMs combined ap-
proaches. However, they have common areas of application, as they are built with the same goal:
using the predictive power of ML alongside the mechanistic insights of GEMs. These areas of applica-
tion will be further described, with a focus on how AMNs can be used for each use case.

4.2.2 Areas of application
4.2.2.1 Omics data integration
A general, previously mentioned, advantage of AMNs, is their ability to integrate diverse input data
types. This perk could be of great help for multi-omics data integration, that can be of many types,
and whose integration can be very challenging and require machine learning methods, as underlined
by Sahu et al.[52]. For example, with few fluxes measured and many transcriptomic data acquired
in different conditions, one could use as inputs of AMN the transcriptomic data and the conditions
in which they were acquired, to predict the full metabolic phenotype. Therefore, acquiring new tran-
scriptomics data in new conditions would suffice to predict entire metabolic phenotypes, without
requiring the measurement of fluxes. More specific areas of application will be detailed hereafter,
that can possibly include -omics datasets integration.
4.2.2.2 Data-driven metabolic models curation
Many existing ML and GEMs combined approaches aim to develop new ways of curating metabolic
models. For example, DNNGIOR aims to use deep learning for reconstructing metabolic networks of
organisms that are poorly described in literature (notably frommetagenomic samples)[160]; CHESHIRE
aims to find missing reactions of GEMs by hypergraph learning[161]; and Szappanos et al. estimate
genetic interaction networks from large-scale phenotyping data and GEMs[117].

One area of application for AMNs could be such data-driven metabolic model curation. By using
large amounts of experimental data, and varying the GEM structure to derive different mechanistic
layers and custom losses, one could automatically screen the best modifications to bring to the GEM,
in order to best match the experimental data. For example, adding promiscuous reactions to the
GEM could be automated with such an approach. Also, finding the best coefficients for the biomass
reaction, and amore general lower bound for the ATPM reaction (and possibly other fluxes), could be
performed. Note that these approaches could work with regular GEMs includingmetabolic processes
only, but also more advanced ones taking into account transcription and translation for example.

For such data-driven metabolic models curation, flux predictions should perfectly respect the
GEMs constraint. As seen previously, this is not the case in current implementations of AMNs for
large models like iML1515[44]. Therefore, these formulations should be avoided and one should pre-
fer the AMN-Reservoir (Figure 4.2) or learning loop (Figure 4.3) approaches previously described, until
further improvements on AMNs are performed.
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4.2.2.3 Integration of time-series datasets
Time-series datasets are abundant for kinetic models of metabolism, describing the time dynamics
of metabolites concentrations. A good example of a combined ML and GEM model for integrating
time-series multi-omics data is the work of Costello and Martin[162]. Here, the ML is used to predict
time-series metabolite concentrations, from a time-series proteomics dataset, outperforming amore
traditional Michaelis-Menten kinetic model.

For AMNs, one way to integrate time-series seems more accessible, as it does not require kinetic
model formulations. Dynamic FBA (dFBA) is a version of FBA where the time series are discretized,
each timestep being considered a ‘steady-state’ solved by regular FBA. With dFBA, only the exchange
reactions are controlled by a dynamicalmodel simulating substrate availability dynamics. With a time-
series dataset of phenotype measures (growth rate and/or other fluxes) acquired, one could design
an AMNwhere the neural layer is time-series compatible, such as a LSTM layer. This LSTM layer would
then predict, for each timestep, a flux vector for a mechanistic layer to produce a final metabolic phe-
notype. It is yet quite unclear how this would be implemented mathematically, making this approach
completely prospective. But, given the high performance of ML models with time-series, it is worth
citing this possible area of application, that has great potential.
4.2.2.4 Guiding bioproduction efforts with hybrid models
Many examples of combinedML andGEMs approaches target the optimization of bioproduction as an
end goal. For example, tryptophan metabolism was maximized by Zhang et al.[113] using both a GEM
to identify genetic perturbation targets, and ML processes to predict the best genetic perturbation
experiments to conduct. ML is a natural ally of such engineering projects: the combinatorial space of
parameters to tune can be huge, if taking into account physical, chemical, growth media and genetic
perturbation parameters. By active learning and other approaches, one can savemany resources and
find the best combinations to optimize a bioproduction[163]. However, these ML approaches lack a
mechanistic insight: this is where AMNs could play a role. Indeed, AMNs could be easily integrated
in active learning workflows, and the ability of AMNs to predict unmeasured fluxes could give new
metabolic insights to ease and streamline some complex bioproduction optimization processes.
4.2.2.5 Biocomputing with hybrid models
As stated in Chapter 1 section 1.2.2.2, metabolism can be considered to have signal processing abilities.
Hybrid models may help to exploit such signal processing abilities for biocomputing. Coming back to
Reservoir Computing, described in Chapter 1 section 1.4.1.3.4, the metabolic activity of an organism
in response to changing environments could be used as a biological reservoir. This idea originates
from a simple analogy between the bucket of water (physical reservoir) and the metabolic activity of
E. coli (biological reservoir). Hybrid models like AMNs could help to define such biological reservoir
abilities, and find the best conditions to expose an organism to, in order for the reservoir to grasp
more computing power.
4.2.2.6 Towards a whole-cell hybrid model?
As stated in Chapter 1, the most ambitious endeavor of systems biology is to build performant whole-
cell models that would simulate living systems as whole, predicting many biological functions for a
wide range of conditions. Efforts towards the development of such models are numerous, such as
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the E. coliwhole-cell modeling project[49], or the 3Dminimal cell dynamical model from Thornburg et
al.[126]. These ambitious projects integrate an array of processes, from metabolism, gene regulation
and transport, to complexation, growth and division. Importantly, the more processes are included,
the more they rely on large amounts of parameters that can be hardly determined for many condi-
tions. Moreover, they often suffer from simplifications in order to be computationally tractable: for
example, Thornburg et al.’s model only considers glucose as a possible E. coli sugar source, which is
very far from true.

I personally believe that hybrid models could partially tackle the issues mentioned above. Ma-
chine learning methods could ease the integration of diverse omics datasets, in order to parametrize
whole-cell models with wide arrays of conditions to generalize from. Pure ML models would not be
appealing for building such whole-cell models, since one goal of such formulation is to easily obtain
insights on the biological functions of an organism exposed to certain conditions. Therefore, the MM
part of a whole-cell hybrid model would be very important: once parametrized through powerful ML
approaches, they would be accurately simulating the biological processes included in the model. In a
nutshell, my view of an ideal whole-cell hybridmodel would be the following: from any environmental
and genetic conditions (inputs), a ML model would predict the best set of parameters for many MMs
describing different biological processes, that would be merged to produce the final model output as
a global behavior of the cell, withmacroscopic phenotypic observations (e.g., growth rate, cell average
size, motility. . . ) as well as smaller scales behavior (e.g., transport, metabolism, gene regulation. . . ).
It would grasp the power of ML to decipher the complexity of omics datasets; in order to efficiently
guide mechanistic models, that would makemeaningful predictions based on our current knowledge
of several biological processes. Such a model would be useful for many engineering tasks, as well as
a tool to decipher more mechanisms to include in mechanistic models.

Concretely, how this model would be constructed is still unclear and open for discussion. Still,
here is my personal take on what systems biology should focus on in the following years: developing
insightful and predictive hybrid whole-cell models, integrating diverse datasets through MLmethods,
that enables the accurate simulation of more and more detailed small-scale biological processes, as
well as larger scale phenotypic traits. Importantly, I believe the evaluation of such whole-cell models
should be standardized, in order for the community to better grasp the capabilities of each model. In
the same idea, a similar competition as for protein folding (CASP[164]) could emulate the advances of
whole-cell models, eventually leading to a breakthrough like AlphaFold[96].

4.3 Concluding remarks
4.3.1 Chapters summaries
In Chapter 1, I have described the fascinating complexity of biological phenomena that are modeled
by Artificial Metabolic Networks (AMNs). Then I delved into genome-scale metabolic models and the
essential tools to exploit them, with a focus on flux balance analysis limitations. Finally, I introduced
two captivating modeling realms, mechanistic modeling and machine learning. After a general de-
scription of both approaches, I reviewed combinations of the two for state-of-the-art metabolic mod-
eling. Lastly, I described the emerging hybridmodeling field that aims to push such combinations one
step further. Overall, I present the research gap filled by AMNs, and the motivation to develop them.
These hybrid models fill a crucial research gap, pushing the boundaries of what we can achieve with
genome-scale metabolic models.
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Chapter 2 takes us on a journey to discover the basic concepts and mathematical formulations of
AMNs, as well as their capacity to outperform flux balance analysis. First, I have shown that innovative
mechanistic methods can surrogate flux balance analysis and blend with artificial neural networks,
forming the basis of the AMN model. With concrete examples of experimental datasets, I have wit-
nessed AMNs surpass traditional flux balance analysis in predictive power. Also, an AMN-Reservoir
approach was performed to help us fine-tune uptake fluxes to match experimental data more effec-
tively. Overall, AMNs were found to significantly enhance GEMs’ predictive capabilities.

Chapter 3 is where we put AMNs to the test. I have explored various limits, starting with the QP-
solver missing key GEM constraints and depending on a subtle balance of its loss terms. Mechanistic
layers, though promising, currently increase computation time without substantial benefits for large
genome-scalemetabolic models. Our custommechanistic loss has shown room for improvement, es-
pecially concerning the L2 (for ensuring SV = 0) term, probably pushing predictions towards zero flux
values. We should also keep inmind that AMNs’ performance is highly reliant on training set structure
and content, be it real-world or simulated data. Yet, I have uncovered avenues for improvement, such
as optimizing AMNs’ hyperparameters and exploring alternativeML systems like themulti-task elastic
net. Finally, I assessed that the AMN-Reservoir approach, while promising to tackle major issues of
AMNs, does not fit the precise definition of ’hybrid model’ as defined in Chapter 1.

The present Chapter 4 wraps it all up. I have summarized AMNs’ capabilities and limitations. Im-
portantly, we must acknowledge a significant challenge: the current AMNs implementations struggle
to reliably predict fluxes that conform to GEMs’ constraints. To overcome this shortcoming, I have
outlined numerous paths for improvement, like standardized training set generation, enhanced loss
and mechanistic layer formulations, and a refined Reservoir Computing approach. I have also identi-
fied exciting areas where AMNs could shine, from automatedmetabolic model curation to optimizing
bioproduction, and eventually the realm of whole-cell hybrid models.

4.3.2 Answers to scientific questions of Chapter 1 section 1.5
Overall, we have embarked on a journey exploring an innovative way to harness the power of GEMs:
a hybrid neural-mechanistic approach, with machine learning and flux balance analysis at its heart. I
will now give short answers to the scientific questions I formulated in the last section of Chapter 1.

1. Can we develop AMNs that increase the GEMs predictive power while respecting their con-
straints?
Even though the predictive power of AMNs is impressive when compared to FBA alone, it still
needs further investigations to more reliably respect large GEMs constraints, and eventually be
used by the metabolic modeling community as a standard method.

2. What are the future improvements and most suited areas of application for AMNs?
Many improvements in that direction can be made, so I believe that hybrid models of GEMs
have great potential in a vast array of projects, frommetabolic model curation to bioproduction
optimization, and even for the development of more performant whole-cell models, the holy
grail of systems biology.

4.3.3 Final words
To end this dissertation, let us have a step back on the research work that was presented here, to
conclude with a more biology-centered, non-technical point of view.
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Billions of years of evolution have led living organisms to rely on processes of amazing complexity.
A myriad of molecular mechanisms act in concert, so that living systems constantly adapt to changing
environments, survive and reproduce. Naturally, the human quest to understand life led to ways to
handle such complexity.

Two main modeling approaches are seemingly opposed, but share the purpose of deciphering
complexity. One attempts to gather pieces of knowledge and build models of mechanisms; whereas
one attempts to gather high numbers of observations and build statisticalmodels. The first is overam-
bitious given our current knowledge of biological processes, whereas the secondmay lack insights for
understanding underlying mechanisms. Therefore, this original research work has shown an attempt
towards a merging of both approaches.

This hybrid approach, as it was formulated, is appropriate for predicting metabolic phenotypes
from environmental and genetic conditions. Indeed, the intricate and highly complex mechanisms
between an organism environmental and genetic resources, and its metabolic activity, are not very
well understood. Consequently, we chose to rely on statistical observations tomodel these high com-
plexity phenomena.

However, the past 200 years of biochemistry research has accumulated extensive knowledge
about the possiblemetabolic reactions happening in anorganism: completemetabolicmaps ofmodel
organisms like E. coli cannowadays be exploited. Therefore, we include such knowledgeofmetabolism
in our hybrid approach, to re-use and exploit 200 years of research in the best possible way.

Even if we cannot hope tomodel some extremely complex biological processes like consciousness
with modern machine learning techniques, they have shown amazing capabilities, like the accurate
prediction of protein structures by AlphaFold[96]. This is inspiring to formulate whole-cell hybrid
models, able to simulate diverse biological activities from a vast array of conditions; by grasping the
power of modern machine learning and leveraging tremendous amounts of -omics datasets.

The future of biological research will be computer-guided, and the potency of Artificial Intelligence
in more and more complex tasks appeals for pursuing AI integration within biological models. Here, I
have presented a step towards that path, which will eventually lead to a better understanding and ex-
ploitation of organisms. Hopefully, this could accelerate biotechnological andmedical breakthroughs,
for a safer and more sustainable future.
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Appendix A
Supplementary Information for Chapter
1
A.1 Historical breakthroughs inmetabolismresearch: from

single enzymes to complete metabolic maps
This first subsectionwill recall the historicalmetabolism research breakthroughs, to underline the tor-
tuous researchpath that brought humanity fromunknowingly exploitingmicroorganisms’metabolism,
to themodern days wide and deep understanding of metabolism. A chronological timeline schematic
is displayed in Figure A.1, which the reader can refer to for a visual summary of this subsection.

Figure A.1: Timeline of historical breakthrough in metabolism research, and modern research ap-proaches in the postgenomic era.

A.1.1 Discovery of enzymes
The first tracks of human communities using metabolic processes dates back to 7,000 BC[165]. At
the time, fermented beverages and foods were produced unknowingly of the metabolic activity of
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microorganisms. Today, microorganisms are engineered for many industrial applications, in an in-
creasingly standardized and rational way[33]. This first section aims to summarize how scientists
built their knowledge of metabolism, and present the state-of-the-art research on metabolism.

A first important milestone is the discovery of the first enzyme - at the time termed ‘ferment’
- by the french chemist Anselme Payen, in 1833[166]. He called ‘diastase’ a mixture of germinating
barley, after observing its catabolic properties: transforming starch into sugars. This was quickly
followed by more enzyme discoveries, among which pepsin - breaking down proteins in peptides -
and invertase - hydrolyzing sucrose into fructose and glucose[31]. In 1877, Wilhelm Kühne coined the
term ‘enzyme’, originating from ancient Greek and meaning ‘in yeast’. Shortly after, the first model
of enzyme-substrate interaction was formulated by Emil Fischer in 1894: the widely known ‘lock-and-
key’ conception explaining substrate specificity of enzymes. Surprisingly, at the time, most scientists
believed that enzymes were performing their activity thanks to a ‘vital force’ inside microbes, notably
from Louis Pasteur research and the ‘vitalist’ movement. That was until Eduard Büchner, in 1897,
showed that a dead yeast extract could perform the same transformation as a live one, putting an
end to the ‘vitalist’ view of enzyme activity. Note that Büchner’s work is therefore the first cell-free fer-
mentation in history, rewarded by a Nobel prize. In 1913, extending the lock-and-key model to a more
quantitative enzyme activity model, a foundational work was proposed by Maud Menten and Leonor
Michaelis: the Michaelis-Menten kinetic model. This model was slightly refined over the years, and
is still used in many modern kinetic models of metabolism. This formulation introduced important
thermodynamic constants for enzyme kinetics, that shall be quickly reminded here: Km, theMichaelis
constant of an enzyme, indicating the concentration of substrate for which the reaction speed is half
of its maximum (Vmax

2 ); and kcat, the turnover number or catalytic constant of an enzyme, indicating
the maximal number of substrate catalyzed by one enzyme in one second. Around the same period,
the first cofactor (called ‘cozymase’ at the time, later known as NAD) was discovered by A. Harden and
H. von Euler-Chelpin, rewarded by a Nobel prize in 1929. This work shed light on the dependency of
many enzymes on small molecules and ions. However, the nature of enzymes themselves was still
unclear at that point, until James B. Sumner deciphered a protein structure from crystallizing urease
in 1926, leading to a consensus on the proteic nature of enzymes. It took several decades before the
community realized that some biocatalysts were protein-RNA complexes, or RNA alone in the case of
ribozymes, discovered by S. Altman and T. Cech and rewarded by a Nobel prize for their work[167]. A
typical enzyme 3D structure, Glucosidase, is represented in Figure A.2, with its catalytic activity, active
site, substrate and products displayed.

Figure A.2: Glucosidase 3-dimensional structure, catalyzing the hydrolysis of maltose into two glucosesugars. Active site residues are displayed in red, maltose and glucose in black, and the NAD cofactorin yellow. (Author: Thomas Shafee, License: CC BY 4.0)
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A.1.2 Discovery of metabolic pathways
Discovering enzymes naturally led to the discovery of metabolic pathways, the first one being glycoly-
sis, i.e. a very common pathway breaking down 1 glucose into 2 pyruvatemolecules. In the early 1900s,
Louis Pasteur was the first to get hints on the glycolysis process, notably observing glucose consump-
tion reduction when Saccharomyces cerevisiae (baker’s yeast) was put under aerobic conditions. It was
a joint effort of many scientists to decipher the glycolysis puzzle, each discovery unraveling a small
part of the pathway. Among those scientists, the most important ones gave their name to the glycoly-
sis: the Embden–Meyerhof–Parnas (EMP) pathway. Embden was the first to propose a full description
of glycolysis, in 1933, based on all the previous work from the community[168]. Importantly, today’s
use of the term ‘glycolysis’ may extend to other pathways that break down glucose in pyruvate, such
as the Entner-Doudoroff (ED) pathway. A description of the EMP glycolytic pathway is shown in Figure
A.3.

Figure A.3: Glycolysis: the first metabolic pathway discovered. Conversion of glucose to pyruvateis performed by enzymatic reactions (arrows) that consume (purple) or produce (yellow) ATP. Suchenzymatic reactions induce chemical modifications (red boxes) on intermediate metabolites, fromglucose (top-left) to pyruvate (bottom-left). Steps 6 to 10 are occuring twice per glucose molecule.(Author: Thomas Shafee, License: CC BY 4.0)
Over time, the metabolism research community efforts for (i) identifying enzyme structures and

functions, and (ii) identifying metabolic pathways (i.e., chained series of enzymatic reactions found in
organisms) gradually expanded our knowledge of metabolism. This accumulation of knowledge was
accelerated by the ‘DNA revolution’, starting afterWatson and Crick’s discovery of the DNA structure in
1953[31]. After that, the genetic code was deciphered in 1966 and DNA sequencing technologies were
developed, with F. Sanger who paved the way in 1977. The first complete genome sequence of E. coli
was published in 1997[169], which follows genome sequences of a bacteriophage in 1976 and other
bacteria since 1995. This period marks the beginning of the post-genomic era, which revolutionizes
biology, including the research on metabolism. Importantly, the ability to isolate a DNA sequence
coding for an enzyme, and clone it in model organisms such as E. coli, enabled scientists to further
characterize individual enzymes in a more precise way. Later, sequencing tremendous amounts of
DNA, and relating them to enzymes, enabled the development of bioinformatics tools that can infer
metabolic networks fromgenome sequences[1]. Eventually, the accumulation of enzymeandpathway
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data brought up challenges on how to organize and exploit this knowledge.

A.1.3 Metabolism at the organism scale
As stated before, more and more investigations into diverse enzyme catalytic activities were per-
formed. However, the community lacked a standardized way of classifying and naming enzymes,
until 1961. At that time, the Enzyme Commission (EC) numbers were created in order to classify en-
zymes in a standardized way[170]. The classification was then iteratively refined, the last update in
2018 adding a 7th category of enzymes, translocases. An EC number is a 4-part hierarchical numer-
ical ID, each number narrowing down the capabilities of the enzyme: the main class (oxidoreduc-
tases, transferases. . . ), subclass, sub-subclass and serial number (a unique identifier for an enzyme).
Furthermore, enzymes are now cataloged in information-rich databases such as the Braunschweig
Enzyme Database (BRENDA)[171].

Manymetabolic pathways characterizations followed the EMPpathway, and connections between
pathways were uncovered. This eventually led to more and more complete metabolic maps of more
andmore organisms. Figure A.4 displays the major metabolic pathways and how they are connected,
agnostically of the organism it can be found in, conceptualized as a metro map. This gives a gen-
eral idea of the complexity, modularity, and communality of pathways across all living organisms.
Nowadays, metabolic pathways are cataloged in databases such as BioCyc[172] or the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG)[173]. The wide and deep understanding of metabolism, and
the extensive description of metabolic pathways, led to more and more complete metabolic mod-
els, sometimes described at the genome-scale and called genome-scale metabolic models (GEMs or
GSMMs). These models are also stored in databases, such as BiGG[136].
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Figure A.4: ‘Metabolicmetromap’ representation of themajormetabolic pathways (Author: Chakazul,License: CC BY 4.0, 2016)

A.1.4 Questioning our knowledge of metabolism
The ‘written-in-stone’ nature ofmetabolic networks, basedonevolution-driven strong enzyme-substrate
specificity, has been recently challenged. Researchers have shown that evolutionhas drivenmetabolic
networks to more complexity and connectivity[39]. Such complexity is hypothesized to bring more
robustness (to genetic variations) and adaptation (to changing environments or diverse ecological
niches) abilities to the network. Interestingly, studies suspect that primitive enzymes were more
promiscuous than modern ‘evolved’ enzymes[174, 175]. Recently, enzyme promiscuity was found to
be a more widespread phenomenon than previously thought, questioning the lock-and-key model
of enzyme-substrate specificity. From these results, some metabolic models attempt to include non-
canonical enzymatic reactions that happen in organisms (extending the ‘classical’ metabolism with
‘underground’ metabolism)[176].

Since the acceptance of the central dogma of molecular biology, metabolism hasmost often been
considered as an ‘end-point’ phenotype[177]. Indeed, with most enzymes being proteins and proteins
being at the end of the information flow in this central dogma,metabolismwould bemostly controlled
by genetic regulation processes. However, after 50 years of research, the central dogma proposed by
Crick and his peers is challenged. Proteins are now known to strongly interact with DNA replication,
transcription of DNA in RNA, and translation of RNA in proteins, as shown in the ‘new central dogma
of molecular biology’ proposed by Change Tan et al.[178]. A schematic representation of this new
dogma is displayed in Figure A.5.
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Figure A.5: Schematic view of the ‘New central dogma of molecular biology’ proposed by Tan andAnderson[178]. Dashed arrows represent sequence information transfer, curved purple arrows rep-resent the kind of molecules needed for the corresponding information transfer, triangular bottomarrows represent the interactions between the cell and its environment. (Authors: Tan and Anderson,reused with the permission of the authors. Unpublished work - no editors concerned by copyrights).

A.2 GEMs reconstruction process
A.2.1 Automated or manual curations depend on the GEM’s scope
Genome annotations enabled the detection of metabolic reactions in an automated fashion, directly
from DNA sequences, mostly through the gene-protein-reactions (GPR) rules functional annotations.
In some cases when the organism is widely and precisely described in literature, manual curation can
be used in order to increase the ‘certainty’ of the GEM. Briefly, manual curations consist in manually
adding, removing, or changing parts of a GEM, based on expert knowledge. Unfortunately, except
for a few microorganisms such as E. coli (having the most precisely reconstructed GEM as of today),
one cannot rely on many manual curations. Therefore, most of the GEMs reconstructions rely on
automated genome annotation, to find the corresponding metabolic reactions possibly happening
in an organism. Recent studies also propose deep learning-powered GEM reconstruction methods
from incomplete genomes (especially useful inmetagenomic samples, for example)[160]. Importantly,
some GEMs reconstruction rely on more diverse data than genome annotations, since they contain
more information than just the stoichiometricmatrix representing themetabolic network. In practice,
what kind of data will be used depends on the designed GEM’s scope.

As stated in Chapter 1’s Preamble (section 3.1), the delimitation of what is considered metabolism
necessarily relies, in the end, on a subjective choice. This has consequences on how we conceive
metabolism, and when considering what to include in GEMs as well. In the most recent GEMs re-
construction, not only the small molecule transformations by enzymes have been integrated, but
also transcription, tRNA charging, and translation reactions, thus enlarging the usual scope of tradi-
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tional GEMs to macromolecular processes[54]. Moreover, promiscuity is more and more considered
in themetabolism research community and this brings GEM formulations including the ‘underground
metabolism’[175, 179]. As stated in the previous subsection, there is also a great diversity of GEMs
computing frameworks available. Consequently, this opening of GEMs and their computing frame-
works to a wider conception of metabolism requires the integration of more diverse datasets, such
as phenotypic stress responses including protein folding sensitivity to temperature or metalloprotein
oxidation and repair, just to name a few (the diversity of data to integrate is, effectively, quite end-
less). Increasing the ‘completeness’ of GEMs has been the main endeavor of the GEM reconstructing
community. Indeed, the latest GEM of E. coli called iML1515[44], released in 2017, is very different from
the 2003-released iJE660. The most striking difference is that it contains 1,515 open-reading frames
(i.e. RNA-encoding genes), more than doubling the amount from the 2003 version. New genes no-
tably include periplasm-related processes, reactive oxygen species processes, and expanded cofactor
metabolism.

A.2.2 Refining the previous GEM: enhancing the stoichiometric matrix
and metadata links

To give a concrete and detailed example of the GEM reconstruction process and global content, I will
now describe how iML1515[44] has been reconstructed, and what it contains precisely[44]. This model
emerges from iterative refinement that started in 2003 with iJE660, each new version pushing the pre-
vious one to a new level of completeness. During the last refinement step, to build iML1515[44], the
previous reconstruction (iJO1366) was analyzed and 54 of its reactions were identified and corrected,
from enzymatic assays and other experimental data. Also, new gene functions were added by the
so-called model-driven gap-filling approach, which is very important in GEM reconstruction and re-
finement. It basically consists in finding disagreements betweenmodel predictions and experimental
observations, most often by automated algorithms interpreting growth assays[180]. With this ap-
proach and literature reviews, 184 genes and 196 reactions were added. Also, iML1515[44] displays
new metadata links for each gene to the protein structure accession in the Protein Database (PDB),
enabling a possibly deeper investigation of the gene-protein-reaction associations (GPR), up to the
catalytic site domain level. Previous points are the main improvements proposed by the iML1515[44]
reconstruction; other performance assessments can be found in the original study. For further de-
scriptions of its general content, please refer to Chapter 1 section 1.3.2.

A.3 Pathway analysis: deriving topological insights from
metabolic networks

Analyzing the topology of pathways can lead to insightful conclusions and novel hypothesis formula-
tions on the metabolic networks capabilities, and can provide powerful tools to compare metabolic
networks together. Pathway analysis of metabolic networks rely on convex analysis, a mathematical
domain studying linear inequalities systems, which is the case of metabolic networks. Indeed, with
constraints of equations 1.1 and 1.2, one can apply convex analysis algorithms. Note that for such al-
gorithms to function, LBi must be all positive (i.e. the reactions must be unidirectional, which is done
by duplicating bi-directional reactions). The main algorithms worth citing here aim to enumerate Ele-
mentary Flux Modes (EFMs) and Extreme Pathways (EPs). EFMs are the set of all possible paths in the
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metabolic network, i.e. the set of valid steady-state solutions (solely based on network topology, not
on actual flux values). Consequently, EFMs actually constitute the convex solution cone that satisfies
equations 1.1 and 1.2. Note that EFMs can be enumerated with the constraint of including a specific
reaction in the network. Visual representations of a convex solution cone for 3 fluxes is displayed
on Figure 1.6. The EFMs enumeration algorithm is computationally intensive and can return a very
large number of elements[1]. A less computationally intensive enumeration algorithm searches for
EPs. EPs are defined as the unique and minimal subset of EFMs that are needed to compute any
EFMs (with linear combinations of EPs). They are therefore the convex basis vectors, i.e. the limits
of the convex solution cone, represented by arrows on figure 1.6, panel (c). Tackling the issue of the
increasing size of GEMs, somemore sophisticated approaches such as Singular Value Decomposition
(SVD) were developed to handle large sets of EPs for pathway analysis[181]. EFMs and EPs have been
extensively used to analyze topological properties of metabolic networks. The conclusions brought
by these analyses range from minimal medium predictions, to evaluation of pathway redundancies
(equivalent to network robustness), or the characterization of correlated reactions or metabolites.
Note these analyses are universal and only depend on the metabolic network topology, unlike most
of the approaches reviewed in Chapter 1 section 1.3.3 that involve experimental measurements.

A.4 Open discussion on MM and ML capabilities
A.4.1 Two seemingly opposed approaches
A terminology designatingML andMMmodels is particularly evocative of its core difference: MMs are
often designated aswhite-boxmodels, whereasMLmodels are often designated as black-boxmodels.
This terminology underlines the fact that, in MMs, we construct the model with a priori knowledge
of the system, and each component is clearly pre-defined based on expert knowledge rather than
instrumental observations. In contrast, ML are built without a priori knowledge and entirely rely on a
posteriori instrumental observations to train the model. In other words, MMs are knowledge-driven
whereas ML models are data-driven (they are sometimes referred to as ‘models of mechanisms’ and
‘models of data’). In this subsection I will review core differences betweenMMandML thatmake them
appear as seemingly opposed, and focus on these differences in the scope of metabolic modeling.

On one hand, MMs can be built only based on knowledge, e.g. through manual curations that
emanate from literature reviews. Moreover, MMs can be used without datasets, and enable us to
draw insightful conclusions or test hypotheses quantitatively, as described for metabolic networks in
the previous section on pathway analysis, for example. On the other hand, ML models are usually
built without using any form of knowledge. Consequently MLmodels always require training sets, i.e.
observations of the phenomenon tomodel; and this data acquisition is critical regarding theMLmodel
capabilities and scope. Indeed, the training set acquisition does require some insight (or at least some
intuition) on the phenomenon that is modeled, given the full reliance of an ML model on its training
set. If the wrong measures are made to define the training set, the ML model may have no predictive
power, or predict the phenomenon from the wrong angle. A trivial example would be to attempt to
build aMLmodel for weather forecasting, and train it with data of vehicle speeds; or build aMLmodel
for lung cancer development prediction based on coffee drinking data. Even if some predictive power
could be obtained, the relationships that could be learned do not imply a direct causality, but rather
a confounding factor. This issue is very important: ML models being solely based on deciphering
statistical patterns, it relies on the data acquisition process and input/output segmentations to have
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a meaningful causality to be modeled. On the other hand, the interpretability of MMs is very good
as they are based on predefined components that have a meaning and purpose[87]. But, as stated
above, the predictive power of MMs is in general quite low compared to MLmodels. This is due to the
a priori knowledge used to build MMs that is much constraining. Indeed, MMs are less flexible as the
a priori knowledge can limit the types of inputs, the mathematical structure, and the types of outputs
that the model can handle.

A.4.2 MM and ML for systems biology
The very goal of MMs and ML models is different: the former aim to understand underlying mech-
anisms of a system, while the latter aim to faithfully reproduce the behavior of a system without
understanding it. Coming back to the endeavor of systems biology to understand life as a whole, in-
cluding with GEMs, MMs and ML models offer two very different paradigms. We have seen that the
traditional reductionist approach cannot grasp the complexity of biological systems when considered
as whole, mainly because of unknown emerging properties. Consequently, MMs will by essence lack
some components to have good predictive power. In contrast, MLmodels will have a better predictive
power, but they will lack any component that helps the understanding of the system. A key difference
between MM and ML is the paradigm of scientific method they are based on: while MMs focus on
deductive, hypothesis-driven discoveries, ML focus on inductive, data-driven discoveries. However,
efforts tomake these twoparadigms of reasoning conciliatewere formulated, as it seemsnecessary in
the postgenomic era[182]. Indeed, Kell and Oliver propose as early as 2004, a synergy between the in-
ductive paradigm, that brings insights based on observations, and the deductive paradigm, that shall
test such putative insights through hypothesis-driven discovery. Moreover, they suggest that similar
synergy should be attempted between reductionism and holism, when modeling complex systems
such as life at the organism scale.

In systems biology, it is an active debate whether the modeling community should direct their ef-
forts towardsMMs orML. According to somemodelers, MMs should be preferred as they are enabling
the identification of causes and effects, and are more compatible with the classical scientific method
(hypothesis-driven research). This is the case of R. D. Phair who writes that “modeling thrives on the
unknown and does not require that we know all the parts”[87]. Others warn of the possibly overam-
bitious endeavor to use MMs for systems as complex as life, since we do not have enough knowledge
yet of the different components and their interactions. And some propose new paradigms merging
MM and ML[88, 162, 183], which are further described in Chapter 1, section 1.4.2.

149



150



Appendix B
Supplementary Information for Chapter
2

151



 
 

1 
 
 

A neural-mechanistic hybrid approach 
improving the predictive power of genome-

scale metabolic models 
 
 

Léon Faure1, Bastien Mollet2,3, Wolfram Liebermeister4, and Jean-Loup Faulon1,5,* 

 

1MICALIS Institute, INRAE, AgroParisTech, University of Paris-Saclay, Jouy-en-Josas, France, 2Ecole 
Normale Supérieure, ENS-Lyon, Lyon, France, 3UMR MIA, INRAE, AgroParisTech, Université Paris-
Saclay, Palaiseau, France, 4MaIAGE, INRAE, University of Paris-Saclay, Jouy-en-Josas, France, 
5Manchester Institute of Biotechnology, University of Manchester, Manchester, UK. 
*Corresponding author: Jean-loup.Faulon@inrae.fr, ORCID 0000-0003-4274-2953 
 
 
 

Supplementary Information 
 

 
Wt-solver equations 2 

Figure S1. Computing steady-state fluxes with the Wt-solver 4 
AMN-Wt architecture 5 

Figure S2. Different weights for different uptake fluxes provided by exact bounds (EBs) 5 
Figure S3. Branch point metabolite flux ratio 6 

LP-solver equations 8 
Figure S4. Matrices used with the LP (EB) method 11 
Figure S5. Matrices used with the LP (UB) method 12 

QP-solver equations 13 
MM solvers benchmarking 16 

Figure S6. MM solvers architectures and performances 16 
AMNs benchmarking varying hyperparameters 17 

Figure S7. Hyperparameters for AMN’s neural Layer 17 
AMNs benchmarking with independent test sets and additional metabolic models 18 

Table S1. Benchmarking MMs, ANNs and AMNs 18 
AMNs benchmarking with gene knockouts and multiple measured fluxes 21 

Figure S8. AMN performance on multiple fluxes dataset 22 
AMN-Reservoir prediction performance 23 

Figure S9. Performances of AMN-Reservoir using predicted Vin as input to FBA 23 
ANN training set sizes 24 

Figure S10. Loss and regression coefficient for training sets of increasing sizes 24 
Experimental workflow 25 

Figure S11. Experimental workflow pipeline 25 
Terminology 26 

Table S2. Vectors and matrices notations used in figures and equations 26 
Supplementary references 28 

 
  



 
 

2 
 
 

Wt-solver equations 

 

 

The Wt-solver equations, inspired by the work of Nilsson et al.1 for signaling modeling, are detailed 

below for the specific example given in Figure S1.  

With the usual FBA method (Figure S1.a), we obtain the flux distribution maximizing the flux of the 𝑣3 

reaction (representing a classical ‘biomass’ reaction) with an uptake reaction 𝑣1  by solving a linear 

program (Figure S1b).  

In the Wt-solver method, we first translate the model into a neural-network-like architecture (Figure 

S1c). Precisely, in Figure S1c we start from an initial set of given fluxes (𝑣1 = 0.1) and then propagate 

knowledge about the fluxes through the entire network, each layer corresponding to one step in a 

discrete flux propagation. Mathematically, each layer is composed of two simple operations that 

update the M and V vectors, respectively representing metabolites production rates and reaction 

fluxes. Those operations are repeated until convergence. The network shown in Figure S1c is the 

unrolled representation of an RNN-like network depicted in Figure S1d. The matrices used in the Wt-

solver are given in Figure S1e. The weight matrix 𝑊𝑟 can be computed from the steady state flux values 

if they are known, or learned through training from provided reference fluxes (cf. section ‘AMN-Wt 

architecture’). For instance, taking the example of Figure S1, the weight matrix 𝑊r can be either 

computed from steady state fluxes, computed by FBA (cf. legend of Figure S1f), or learned after setting 

𝑣1 = 0.1 and searching weights for which 𝑣3 = 0.5. We note, the steady state fluxes after iterating 30 

times (or more, here we stopped at 30 because the reference data values were reached) are equal to 

those obtained in the reference data (cf. Figure S1 panels b and f). 
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Figure S1. Computing steady-state fluxes with the Wt-solver 
a. Simple toy stoichiometric model. The model is unidirectional, all flux values are positive. 𝑣1 represents a 
nutrient uptake flux and 𝑣3 the objective (e.g. the biomass flux). This toy network was inspired from the upper 
glycolysis pathway found in iML15152, downloaded from BiGG3. b. Steady-state solution fluxes maximizing 𝑣3. 
At steady state, the reaction fluxes (𝑣𝑖) must satisfy stationarity conditions that guarantee mass balance of all 
metabolites, this is depicted by the equation 𝑆𝑉 = 0, where 𝑆 is the stoichiometric matrix representing the 
connectivity of the model and 𝑉 the vector of fluxes to be calculated. 𝑉𝑖𝑛  is the medium represented by a vector 
of nutrient uptake fluxes (here 𝑣1= 0.1, symbol “—” indicates that no value is provided, in practice one uses an 
‘infinity’ value to represent an unbounded flux). The steady-state solution 𝑉𝑜𝑢𝑡 is calculated by solving a linear 
program maximizing the objective 𝑐𝑇𝑉 = 𝑣3, here the Cobrapy package was used to compute 𝑉𝑜𝑢𝑡, by making 
use of a Simplex-solver algorithm.  c. Unrolled neural network built from the stoichiometric model. In the initial 
layer (𝑙0) only 𝑣1 has a value. In layer 1, 𝑣1 value is passed to 𝑚1, the production flux for metabolite 𝑚1. 
Subsequently a fraction (𝑤21) of 𝑚1 goes to 𝑣2 and the other fraction (𝑤31) to 𝑣3. In layer 2, 𝑣1 continues to feed 
𝑚1, 𝑣2 is passed on to 𝑚2 and 𝑚3 , and then goes to 𝑣3 and 𝑣4. In layer 3, 𝑚4 receives input from 𝑣4 which in 
turn activates 𝑣5.  The unrolling is iterated until the values for the metabolites production rates and reaction 
fluxes converge. d. Recurrent neural network (RNN) representation. Vectors 𝑀 and 𝑉 respectively represent 
metabolites production rates and reaction fluxes. At each iteration step, 𝑀 and 𝑉 are computed using matrices 
𝑃𝑣→𝑚 and 𝑃𝑚→𝑣 of panel e. When a metabolite is the substrate of several reactions (like 𝑚1 and 𝑚2), each 
reaction gets a fraction of the metabolite production flux, this is depicted in matrix 𝑊𝑟 (r indicates this matrix is 
used in recurrence).  The matrix 𝑊𝑟  can be computed from the steady state fluxes of all reactions or learned 
through training. The operator ⊙ stands for element-wise matrix product (Hadamard product). E. Neural 
network matrices. 𝑃𝑣→𝑚  is the matrix to compute metabolite production fluxes from reaction fluxes, 𝑃𝑚→𝑣 is a 
matrix to compute reaction fluxes from the production rates of the reaction substrates. 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥 (0, 𝑥), 
sj,I corresponds to the value of S at the jth row (metabolite) and ith column (flux) and zi is the number of strictly 
negative elements in column i of 𝑆. f.: Providing the FBA steady state solution, the weight matrix is computed as 
follows: w21 = v2 /(v1+v5), w31 = v3 /(v1+v5), w23 =v3 /v2 and w24= v4 /v2. Heatmap obtained for n=30 iterations of the 
RNN of panel d running with the toy model of panel a. 
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AMN-Wt architecture 

As shown in Figure 1 in the main paper, the AMN-Wt architecture (like AMN-LP or AMN-QP) takes as 

input a vector (Vin) representing exact bounds (EBs) or upper bounds (UBs) for uptake fluxes. In both 

cases an initial vector V0 is computed via the weight matrix Wi (V0 = Wi Vin). We recall from the previous 

section that AMN-Wt also comprises a weight matrix Wr which can be learned through training.  In the 

EB case, Wi is not trainable and is just a mapping of Vin into V. Consequently, in this case only the matrix 

Wr is learned during training. In the UB case, the weights in Wi are trainable and transform the upper 

bounds Vin into exact bounds in V0.  Consequently, with UB, both Wi and Wr are learned during training. 

It turns out with EB that a single set of weights (matrix Wr) cannot handle all the elements of a training 

set when the network contains internal reaction fluxes depending on at least two metabolite uptake 

fluxes. Figure S2 below shows such an example. Consequently, AMN-Wt cannot be used to process EB 

training sets.  

 
 
Figure S2. Different weights for different uptake fluxes provided by exact bounds (EBs) 
In the two cases all flux values (vi) satisfy the steady state constraints (SV = 0, cf. Figure 1b). Following the 
equations provided in Figure 1d, the production rates for m1 and m2 are respectively 1 and 0.5 in (a) and 0.75 and 
0.25 in (b). The reaction for flux v4 is taking two substrates m1 and m2 and the value for v4 is the minimum 
metabolite production rate (i.e., the rate limiting among m1 and m2). Consequently, the value for v4 is 0.5 (a) and 
0.25 (b). Therefore, the fraction (w41) of m1 contributing to v4 is 1/2 (a) and 1/3 (b). The weights are different in 
panel a and b as they depend on the uptake flux values. 
 
 
In the UB case, the uptake flux upper bounds are first transformed into exact bounds with the matrix 

Wi learned during training. In this instance, a vector V0 is calculated via Wi for each element of a training 

set, and as observed in Table S1, large training sets can be processed with a single set of weight Wr. 

Returning to the example of Figure S2, assuming we measure fluxes v3 and v4, then for any non-null 

weights w31 and w41, it is easy to find exact bounds for v1 and v2:  v1 = v3 / w31 and v2 = 2v4 - v3 w41 / w31. 

More generally, as shown in Table S1, when running AMN-Wt for many training sets with upper bounds 

for uptake fluxes for both E. coli core4 and iML15152 models, we always find solutions with losses 

around 0.001 and for which the regression coefficients between AMN predicted growth rates and 

Simplex calculated growth rates are above 0.98.   
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Remains the question of whether or not a single set of weights is realistic from a metabolic kinetics 

point of view. Weights arise at branching points where metabolite fluxes can contribute to two or more 

reactions. For instance, taking the example of Figure S2, the metabolite production flux m1 is spliced 

into w21m1 and w31m1. The question we therefore have to answer is: given different production rates 

for branch point metabolites, are the weights conserved? 

Without lack of generality and for simplicity, we consider below a branch point metabolite with 

different production fluxes contributing to two reactions. Let V be the production flux of that 

metabolite, and let V1 and V2 be the fluxes of the two reactions, we necessarily have V = V1 + V2. Now 

according to Michaelis-Menten equations: 

 𝑉1 = 𝑉𝑚𝑎𝑥,1 𝑆
𝑆 + 𝐾𝑚,1

,  𝑉2 = 𝑉𝑚𝑎𝑥,2 𝑆
𝑆 + 𝐾𝑚,2

         (S1) 

where 𝑉𝑚𝑎𝑥,1 = 𝐸1𝑘𝑐𝑎𝑡,1 (𝑉𝑚𝑎𝑥,2 = 𝐸2𝑘𝑐𝑎𝑡,2), E1 (E2) being the concentration of the enzyme catalyzing 

the reaction, S the concentration of the branch-point metabolite, and kcat,1 (kcat,2) and Km,1 (Km,2) the 

turnover rate and the Michaelis constant of the reaction. Using these notations, we have: 

𝑉 = 𝑉𝑚𝑎𝑥,1 𝑆
𝑆 + 𝐾𝑚,1

+ 𝑉𝑚𝑎𝑥,2 𝑆
𝑆 + 𝐾𝑚,2

          (S2) 

We note that S can be computed from V by solving the quadratic eq. S2. As shown in Figure S3 below, 

a numerical simulation for different values of the kinetics parameters shows that the ratio (V1 / V) 

remains constant (slope of Figure S3 equals 1) even when the production flux V is changed by several 

orders of magnitude. Consequently, a single set of weights can fit a training set as long as the kinetics 

parameters Vmax,1 (Vmax,2) and Km,1 (Km,2) do not change with the production flux V. 

 

Figure S3. Branch point metabolite flux ratio 
Here a branch point metabolite contributes to two reactions with fluxes V1 and V2. The kinetics parameters for 
reaction V1 are arbitrarily set to Vmax1 = 1000 (a.u) and Km1 = 100 (a.u). The values for Vmax,2 and Km,2 are those of 
Vmax,1 and Km,1 halved, equal or doubled. Nine cases are considered from Vmax,2 = ½ Vmax,1, Km,2 = ½ Km,1 (“-,-”)  to 
Vmax,2 = 2 Vmax,1,  Km,2 = 2 Km,1 (“+,+” ).   
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According to Figure S3, flux split ratios are conserved for nutrients leading to different metabolite 

production fluxes if the Michaelis-Menten kinetics parameters (Vmax and Km) of the enzymes catalyzing 

the reactions involved in the split remain constant. However, Chubukov et al.5 have shown 

experimentally that it was not the case (for B. subtilis) and different nutrients do provide different 

ratios. This behavior is due to varying enzyme activities, which themselves depend on enzyme 

concentrations, post-translational modification, and gene regulations. Chubukov et al.5 showed with 

experimental evidence that different nutrients give rise to different concentrations for many enzymes, 

implying that nutrients do have an effect on gene regulations. We note that even though weights in 

Wr do not have a physical meaning, AMN-Wt still exhibits excellent performances, showing that the 

consensual Wr matrix and the initial V0 vector (computed through a neural layer from the upper bound 

Vin) are performant enough. We also note that the weight issue does not arise with AMN-LP and AMN-

QP as these architectures do not rely on flux split ratios. 

 
 

  



 
 

8 
 
 

LP-solver equations  

We recall that the LP-solver makes use of Hopfield-like networks, which is a long-standing field of 

research6 inspired by the pioneering work of Hopfield and Tank7. Later, these Hopfield-like networks 

were showcased to perform well for solving linear programs8 and simpler and more efficient solutions 

were developed over the years9,10. It is important to point out at this stage that these Hopfield-like 

networks are non-trainable networks and differ from classical neural networks used in ML. The 

Hopfield-like networks are instead recurrent procedures iteratively updating the solution of linear 

programs. 

The constrained linear optimization problems EB and UB are specific cases of the general problem 

described in Yang et al.9 which can be written as: 

𝑚𝑖𝑛: 𝑐𝑇𝑥           (S3) 

s.t.  𝐴𝑥 = 𝑏  

       𝐵𝑥 ≤ 𝑑 

where x is the vector of unknown (size n) to be calculated, c is the objective vector (also of size n), A 

is a (m x n) matrix of rank m (and therefore non-null) and B a m x n matrix. Translated to FBA problems, 

x is the flux vector (V), c the vector corresponding to the objective function, A is related to the 

stoichiometric matrix, B is a matrix that extracts exchange fluxes from the full flux vector and d is a 

vector of constraints on exchange fluxes.  

 

Consequently, to solve a FBA problem A, B, c, d, b and x take the following values in the EB case: 

𝐴 = 𝑆𝑖𝑛𝑡, 𝐵 = −𝐼𝑛, 𝑏 = −𝑏𝐹𝐵𝐴, 𝑑 = 0 , 𝑐 = −𝑐𝐹𝐵𝐴, 𝑥 = 𝑉  

According to Yang et al.3 ,  gradients for V and its dual U in EB case can be written as: 

𝛻𝑉 = (𝐼𝑛 − 𝑃)[ 𝑐𝐹𝐵𝐴 − 𝑆𝑖𝑛𝑡
𝑇𝑅] + 𝑄𝑉         (S4) 

𝛻𝑈 =  1
2

(𝑈 − 𝑅)                         

where: 

𝑅 = 𝑅𝑒𝐿𝑈(𝑈 + 𝑆𝑖𝑛𝑡𝑉 + 𝑏𝐹𝐵𝐴) 

𝑄 = 𝑆𝑖𝑛𝑡
𝑇 (𝑆𝑖𝑛𝑡𝑆𝑖𝑛𝑡

𝑇 )−1 

𝑃 = 𝑄𝑆𝑖𝑛𝑡  

 

As 𝑆𝑖𝑛𝑡𝑆𝑖𝑛𝑡
𝑇  has to be invertible, it is important that 𝑟𝑎𝑛𝑘(𝑆𝑖𝑛𝑡) = (𝑆𝑖𝑛𝑡) . To ensure this point, 𝑆𝑖𝑛𝑡 

was converted to its row echelon form and rows with null values were removed. Consequently, prior 

to any computation of the LP solver, one has to preprocess the matrices in row echelon form. 
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The linear problem in the case where uptake fluxes values are unknown (UB method) can be written 

as:  

𝑚𝑎𝑥: 𝑐𝑇
𝐹𝐵𝐴𝑉                                                                                                                                                     (S5) 

s.t.  𝑆𝑖𝑛𝑡,𝐼𝑛𝑉 ≥  −𝑏𝐹𝐵𝐴,0            

                 𝑆𝑉 = 0                      

                   

The matrix  𝑆𝑖𝑛𝑡,𝐼𝑛  is obtained by concatenation of Sint and -In (see Figure S5c). This matrix ensures the 

respect of two inequalities; entry fluxes are inferior to the upper bound, fluxes are positive. 

Consequently, bFBA,0, is the concatenation of the upper bounds vector bFBA and a zero vector of size n.  

The dual form of eq. S5 being: 

𝑚𝑖𝑛: −𝑏𝑇
𝐹𝐵𝐴,0𝑈                                                                                                                                                (S6) 

 𝑠𝑡:  𝑆𝑇
𝑖𝑛𝑡,𝐼𝑛𝑈 ≤  𝑐𝐹𝐵𝐴                                                       

        𝑈 ≤  0 

 

Thus, A, B, c, d, b and x take the following values: 𝐴 = 𝑆, 𝐵 = −𝑆𝑖𝑛𝑡,𝐼𝑛,   𝑏 = 0, 𝑑 = 𝑏𝐹𝐵𝐴,0 , 𝑐 =

−𝑐𝐹𝐵𝐴, 𝑥 = 𝑉  

We note 𝑐 = −𝑐𝐹𝐵𝐴 since min (−𝑐𝐹𝐵𝐴𝑉) is equivalent to max (𝑐𝐹𝐵𝐴𝑉). The matrices A, B and vectors 

b, d take different forms depending if we are in the EB or UB cases. More details can be found in Figure 

S4 and Figure S5. 

Similarly, to the EB case, gradients for U and V are: 

𝛻𝑉 = (𝐼𝑛 − 𝑃)[ 𝑐𝐹𝐵𝐴 − 𝑆𝑇𝑅] + 𝑄(𝑆𝑖𝑛𝑡,𝐼𝑛𝑉 + 𝑏𝐹𝐵𝐴,0)      (S7) 

𝛻𝑈 =  1
2

(𝑈 − 𝑅)                         

where: 

𝑅 = 𝑅𝑒𝐿𝑈(𝑈 + 𝑆𝑉) 

𝑄 = 𝑆𝑇(𝑆𝑆𝑇)−1 

𝑃 = 𝑄𝑆 

 

Yang et al.9 proved in their paper that x, the variable of the primal problem, and y ,the variable of the 

dual problem, (V and U using FBA notations) can be calculated iteratively starting with arbitrary values 

for 𝑉(0) and 𝑈(0): 

𝑉(𝑡+1) = 𝑉(𝑡) − 𝑑𝑡 𝛻𝑉           (S8) 

𝑈(𝑡+1) = 𝑈(𝑡)  −  𝑑𝑡 𝛻𝑈          
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where 𝑡 is the iteration number, 𝑑𝑡 the learning rate, and the derivatives are equation (S4) for EB and 

(S7) for UB. 

 

The equivalence between (S3) and (S8) is proved by the first Lemma of Yang et al.9 which states that 

V* is a solution of (S3) if and only if there exist U* such that: 

(𝐼 − 𝑃)(−𝑐 − 𝐵𝑇 𝑈∗) − 𝑄(𝐴 𝑉∗ − 𝑏) = 0                                (S9) 

𝑅𝑒𝐿𝑈(𝑈∗ + 𝐵 𝑉∗ − 𝑑) − 𝑈∗ = 0 

with 𝐼 the identity matrix of adequate size for P. According to the 2nd Theorem in Yang et al.9, any 

initialization will converge to an equilibrium point. This Theorem also states that the convergence 

trajectories are asymptotically stable if there is a unique equilibrium point. In practice it is almost 

never the case with metabolic networks because the optimum is rarely unique.  

 

Note that the work from Yang et al.9 allows quadratic optimization, thus this method could be used 

with a fitting term similar to the one described in the QP method.  
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Figure S4. Matrices used with the LP (EB) method 
a. We show here an example for the same model as in Figure S1 in the scenario of known uptake fluxes (EB). All 
the information about uptake fluxes is contained in bFBA. P, Q and R are defined in panel c (in this case using the 
formulations for exact bounds, EB). 𝛻𝑉 and 𝛻𝑈 are gradients respectively for the fluxes and metabolites shadow 
prices (as in the eq. S4) b. In the EB case, the only inequality constraint to verify is the positivity of fluxes 
(highlighted in red), so we use -In, the identity matrix of size n (number of fluxes), multiplied by -1, as the matrix B 
in Yang et al. formulation. To verify the equality constraints, coefficients of v1 are zeroed out in Sint because only 
the input flux v1 of the metabolite m1 is known, thus the matrix A in Yang et al. formulation is Sint in our 
formulation, and SintV = -bFBA ensures the respect of equality constraints. c. Reminder of P, Q and R when using 
exact (EB) or upper bounds (UB). 
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Figure S5. Matrices used with the LP (UB) method 
a. The example is the same as in Figure S1 and Figure S4. In this scenario, uptake fluxes are unknown (UB), 
consequently upper bounds are contained in bFBA,0 and their values are fixed arbitrarily. Note that, in bFBA,0 , an 
upper bound is different from zero if and only if the corresponding metabolite is in the medium (only m1 here). P, 
Q and R are shown in. Figure S4, panel c (in this case using the formulations for upper bounds, UB). 𝛻𝑉 and 𝛻𝑈 
are gradients respectively for the fluxes and metabolites shadow prices (as in the eq. S7) b. The only equality 
constraint to verify in this problem is the physical law of mass conservation: SV=0. Therefore, the stoichiometric 
matrix S is used as the matrix B in Yang et al. formulation c. Sint,In was constructed to ensure two inequalities: first 
the uptake fluxes should be inferior to their upper bounds (UB), which is verified with the 4 first rows 
(corresponding to Sint, defined in Figure S4); and all fluxes should be positive, which is verified by -In (the same as 
in Figure S4), that is stacked to Sint. Consequently, Sint,In is used as the matrix A in Yang et al. formulation. 
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QP-solver equations 

We recall below the quadratic program (QP) exposed as eq. 1 in Methods ‘Derivation of loss functions: 

𝑚𝑖𝑛( ‖𝑃𝑟𝑒𝑓 𝑉 − 𝑉𝑟𝑒𝑓‖2)                                                            (S10) 

s. t.  𝑆 𝑉 = 0 

               𝑃𝑖𝑛𝑉 ≤ 𝑉𝑖𝑛 

                𝑉 ≥ 0 

To solve this problem, a loss function with four terms was built. As mentioned in the Methods section 

‘Loss functions derivation’, the first term is related to the fit to the reference targeted values and the 

three additional losses terms are related to the boundary, stoichiometric and flux positivity constraints 

of the metabolic network. 

 

The first loss is simply the Mean Square Error (MSE) between predictions (𝑉) and FBA-simulated or 

measured reference data (𝑉𝑟𝑒𝑓):  

𝐿1 = 1
𝑛𝑟𝑒𝑓

‖𝑃𝑟𝑒𝑓𝑉 − 𝑉𝑟𝑒𝑓 ‖2                     (S11) 

 

The second loss is linked to the network stoichiometric constraint (𝑆 𝑉 = 0), which in its normalized 

form (loss per constraint) is: 

𝐿2 = 1
𝑚

 ‖𝑆𝑉‖2                                      (S12) 

 

The third loss evaluates how well boundary constraints are respected (𝑃𝑖𝑛𝑉 ≤  𝑉𝑖𝑛): 

𝐿3 =  1
𝑛𝑖𝑛

‖𝑅𝑒𝐿𝑈( 𝑃𝑖𝑛𝑉 − 𝑉𝑖𝑛 )‖2                                 (S13) 

 

The last loss enforces all fluxes to be positive: 

𝐿4 =  1
𝑛

‖𝑅𝑒𝐿𝑈(−𝑉)‖2                                   (S14) 

 

We note that when exact bounds are provided, 𝑃𝑖𝑛𝑉 = 𝑉𝑖𝑛, and 𝐿3 becomes obsolete as the values 

of 𝑉 corresponding to 𝑉𝑖𝑛 are not updated by the LP/QP solvers and AMN programs.  

Thus, the sum of those four terms is the loss L given be eq.  2 in Methods ‘Loss functions derivation’. 

Note that 𝐿 can also be computed as the MSE between the vectors: 

(𝑃𝑟𝑒𝑓𝑉, ‖𝑆𝑉‖
√𝑚

, ‖𝑅𝑒𝐿𝑈( 𝑃𝑖𝑛𝑉−𝑉𝑖𝑛 )‖
√𝑛𝑖𝑛

, ‖𝑅𝑒𝐿𝑈(−𝑉)‖
√𝑛

) and (𝑉𝑟𝑒𝑓, 0, 0, 0)  
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While the QP system can be solved by a simplex algorithm, solutions can also be approximated 

calculating 𝑉 corresponding to: 

 

𝑚𝑖𝑛 ( 1
𝑛𝑟𝑒𝑓

‖𝑃𝑟𝑒𝑓𝑉 − 𝑉𝑟𝑒𝑓 ‖2 +  1
𝑚

‖𝑆𝑉‖2 +  1
𝑛𝑖𝑛

‖𝑅𝑒𝐿𝑈( 𝑃𝑖𝑛𝑉 − 𝑉𝑖𝑛 )‖2 + 1
𝑛

 ‖𝑅𝑒𝐿𝑈(−𝑉)‖2)          (S15) 

 

The vector 𝑉 can thus be found solving: 

𝜕 ( 1
𝑛𝑟𝑒𝑓

‖𝑃𝑟𝑒𝑓𝑉−𝑉𝑟𝑒𝑓 ‖2+ 1
𝑚‖𝑆𝑉‖2+ 1

𝑛𝑖𝑛
‖𝑅𝑒𝐿𝑈( 𝑃𝑖𝑛𝑉−𝑉𝑖𝑛 )‖2+1

𝑛 ‖𝑅𝑒𝐿𝑈(−𝑉)‖2)

𝜕𝑉
= 0                 (S16) 

 

As mentioned in Methods ‘QP solver’, 𝑉 satisfying eq. S15 can be found iteratively: 

𝑉(𝑡+1) = 𝑉(𝑡) − 𝑑𝑡 𝛻𝑉                      (S17) 

𝑉(0) = 𝑃𝑖𝑛
𝑇 𝑉𝑖𝑛 

where 𝑡 is the iteration number, 𝑑𝑡 the learning rate. 

 

𝛻𝑉  is computed as follow: 

𝛻𝑉 = 2
𝑛𝑟𝑒𝑓

 𝑃𝑟𝑒𝑓
𝑇 (𝑃𝑟𝑒𝑓 𝑉 − 𝑉𝑟𝑒𝑓) + 2

𝑚
 𝑆𝑇𝑆𝑉 +  2

𝑛𝑖𝑛
𝑃𝑖𝑛

𝑇  𝐷𝑖𝑛𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉 − 𝑉𝑖𝑛) − 2
𝑛

 𝐷𝑉 𝑅𝑒𝐿𝑈(−𝑉) (S18) 

 

It is easy to verify that for the first term of 𝛻𝑉 we have: 

𝛻𝑉1 =
𝜕 ‖

𝑃𝑟𝑒𝑓𝑉−𝑉𝑟𝑒𝑓 
𝑛𝑟𝑒𝑓

‖2

𝜕𝑉
= 2

𝑛𝑟𝑒𝑓
 𝑃𝑟𝑒𝑓

𝑇 (𝑃𝑟𝑒𝑓 𝑉 − 𝑉𝑟𝑒𝑓)                  (S19) 

for the second term: 

𝛻𝑉2 =
𝜕 ‖𝑆𝑉

𝑚 ‖2

𝜕𝑉
= 2

𝑚
 𝑆𝑇𝑆𝑉                                    (S20) 

for the third term: 

𝛻𝑉3 =
𝜕 ‖𝑅𝑒𝐿𝑈( 𝑃𝑖𝑛𝑉−𝑉𝑖𝑛 )

𝑛𝑖𝑛
‖2

𝜕𝑉
= 2

𝑛𝑖𝑛
𝑃𝑖𝑛

𝑇  𝐷𝑖𝑛𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉 − 𝑉𝑖𝑛)                   (S21) 

where  𝐷𝑖𝑛 = 𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉−𝑉𝑖𝑛)
𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉−𝑉𝑖𝑛) using an Hadamard division: 𝐴

𝐴
= (𝑎𝑖𝑗

𝑎𝑖𝑗
)    (= 0 when 𝑎𝑖𝑗 = 0) 

and for the fourth term: 

𝛻𝑉4 =
𝜕 ‖𝑅𝑒𝐿𝑈(−𝑉)

𝑛 ‖2

𝜕𝑉
= − 2

𝑛
 𝐷𝑉 𝑅𝑒𝐿𝑈(−𝑉)                        (S22) 

where  𝐷𝑉 =  𝑅𝑒𝐿𝑈(−𝑉)
𝑅𝑒𝐿𝑈(−𝑉) using an Hadamard division. 
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Summing eqs. S19-S22 we find: 

𝛻𝑉 = 2
𝑛𝑟𝑒𝑓

 𝑃𝑟𝑒𝑓
𝑇 (𝑃𝑟𝑒𝑓 𝑉 − 𝑉𝑟𝑒𝑓) + 2

𝑚
 𝑆𝑇𝑆𝑉 +  2

𝑛𝑖𝑛
𝑃𝑖𝑛

𝑇  𝐷𝑖𝑛𝑅𝑒𝐿𝑈(𝑃𝑖𝑛𝑉 − 𝑉𝑖𝑛) − 2
𝑛

 𝐷𝑉 𝑅𝑒𝐿𝑈(−𝑉) (S23) 

 

In the EB case where exact medium uptake fluxes are known, the QP system is: 

𝑚𝑖𝑛( ‖𝑃𝑟𝑒𝑓 𝑉 − 𝑉𝑟𝑒𝑓‖2)                                                (S24) 

s.t.      𝑆 𝑉 = 0 

            𝑃𝑖𝑛𝑉 = 𝑉𝑖𝑛 

            𝑉 ≥ 0 

In such an instance, reaction fluxes having a mapping in 𝑉𝑖𝑛 remain constant and are not updated, 

therefore: 

𝛻𝑉 = ( 2
𝑛𝑟𝑒𝑓

 𝑃𝑟𝑒𝑓
𝑇 (𝑃𝑟𝑒𝑓 𝑉 − 𝑉𝑟𝑒𝑓)  + 2

𝑚
 𝑆𝑇𝑆𝑉 − 2

𝑛
 𝐷𝑉 𝑅𝑒𝐿𝑈(−𝑉)) ⨀ (1𝑛 − 𝑃𝑖𝑛

𝑇 1{𝑛𝑖𝑛})                 (S25) 

where ⨀ stands for Hadamard product (A⨀𝐵 = 𝑎𝑖𝑗𝑏𝑖𝑗) and 1𝑛 (𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 1{𝑛𝑖𝑛}) is a vector of 

dimension 𝑛 (𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑛𝑖𝑛) with constant coefficients equal to 1. 
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MM solvers benchmarking  

 

As it has been described along this paper, AMNs are composed of both a mechanistic layer and a 

neural layer. As illustrated in Figure S6d and S6e, mechanistic solvers require more than 10,000 

iterations, which brings issues to the gradient backpropagation (vanishing or exploding gradients) as 

well as an increased training time. Further results about mechanistic layers alone are given in the Table 

S1, for the ‘MM’ model types.  

 

 

Figure S6. MM solvers architectures and performances 
a. Schematic procedure for the Simplex solvers. From Vin, which is a vector describing the bounds of some uptake 
fluxes, the solvers reach a steady-state solution, Vout, optimizing the objective function c, satisfying the constraints 
and bounds of the network. Solutions obtained using the simplex-based method in Cobrapy11, are taken as 
reference data. b. Schematic for LP-solver architecture. This solver surrogates the simplex-based algorithm. 
Following Yang et al. and as further detailed in the Methods ‘AMN architectures’, the full flux distribution V is 
updated by ∇V and the metabolites shadow prices U by ∇U through products of matrices derived from the 
stoichiometry of the network. c. Schematic for QP-solver architecture. Here target reference fluxes (Vref) are given 
to the solver. The computed fluxes are fitted to the reference targets by means of a custom loss function 
integrating also the input constraints along with the stoichiometric constraint of the metabolic network. The flux 
vector V is updated by ∇V which is the gradient minimizing the loss function (cf. Methods ‘AMN architectures’ for 
further details). d. R2 vs Solver iteration. e. Loss vs. Solver iterations. QP takes 1 million iterations to reach close 
to zero values, whereas LP takes 10,000 iterations. In d and e, plotted is the mean and standard error (95% 
confidence interval) across all elements of the set of 100 simulations. 
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AMNs benchmarking varying hyperparameters 

We benchmarked hyperparameters for the neural layer of the AMN-QP model shown in Figure 2b 

(trained on a 1,000 E. coli core simulations dataset). Results are presented in Figure S7 panels b-d. The 

main conclusion of this search is that increasing the number of layers was inducing overfitting 

(displaying worst performance on validation sets than with a single layer) and that a minimal hidden 

dimension was 100 for better performance.  

 

 

Figure S7. Hyperparameters for AMN’s neural Layer 
 a. AMN architecture. In panels b-d the AMNs with QP-solver were trained on a simulated training set of 1000 
samples for 100 epochs using the Adam optimizer. The metabolic model was E. coli core. Three hyperparameters 
were tested: dimension of the hidden layer(s), number of hidden layers and learning rate. Plotted is the mean and 
standard error (95% confidence interval) of the loss on test set across 5-folds cross-validation.  b. log(Loss) vs 
epoch.  c.  log(Loss) vs epoch. d. log(Loss) vs epoch. 
 
 

From Figure S7 we note that: (i) increasing dimension of the hidden layer increases the decay of the 

loss function, (ii) the number of hidden layers exhibits huge variability across cross-validation folds 

suggesting overfitting, and (iii) no major influence was detected for the learning rate. The default 

architecture of the neural layer in all AMN was therefore set as one layer of dimension higher than 50 

(we increased this hyperparameter with the model’s size, see Table S1) and a training rate of 1e-3 
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AMNs benchmarking with independent test sets and additional metabolic models 

The performances of all AMN architectures (Wt, LP, QP) are given in Table S1 using FBA simulated data 

on two different E. coli metabolic models, E. coli core model4 and iML15152 along with iJN1463 P. 

putida model. These E. coli models are composed respectively of 154 reactions and 72 metabolites, 

and 3682 reactions and 1877 metabolites (after duplicating bidirectional reactions). The P. putida 

model is composed of 2135 reactions and 1637 metabolites (after duplicating bidirectional reactions). 

In all cases the default Simplex-based solver (GLPK) of Cobrapy was run to optimize growth rates for 

different media. Each medium was composed of metabolites found in minimal media (M9) and 

additional metabolites (sugars, acids) crossing the cell membrane (more details in Methods 

‘Generation of training sets with FBA’). For comparison purposes, Table S1 also provides results for 

MM architectures (no neural layer) and ANN architectures (no mechanistic layer).  

Table S1. Benchmarking MMs, ANNs and AMNs  
(1) All SBML models describing different E. coli strains were downloaded from the BiGG database, ‘Core’ stands 
for the E. coli core model, EB (UB) stands for exact bounds (upper bounds) for medium uptake fluxes, the iML1515 
model was reduced following the procedure described in Methods ‘Making metabolic networks suitable for neural 
computations’. (2) Training set size (number of elements multiplied by number of labelled data per element) and 
range for the number of metabolites added to the minimal medium. (3) YES or NO if the model contains a neural 
layer or a mechanistic layer. (4) MM stands for Mechanistic Model, ANN stands for Artificial Neural Network (a 
dense neural architecture) and AMN for Artificial Metabolic Network. ANN and AMN architectures are described 
in Methods. Neural Layer Hyperparameters display the number of hidden layers, the size of the hidden layer, and 
the training rate. Mechanistic Layer Hyperparameters display the number of iterations performed by the solver. 
(5) Number of trainable parameters and epochs, in all cases dropout = 0.25, batch size = 5, the optimizer is Adam 
and the loss function is the mean squared error between predicted and reference fluxes to which for AMN loss 
constraints are added, see Methods ‘Loss functions derivation’ for additional details. (6) Regression coefficient 
and Loss values for training set (R²), and cross-validation sets (Q²) between reference growth rate and predicted 
growth rate. (7) Regression coefficient and Loss values for growth rates for independent test sets not seen during 
training. Test set sizes are 10% of training set sizes. For (6) and (7) the performance is displayed as the mean over 
5 folds (or over a training set when no cross-validation scheme is performed, i.e., for the MM performances). n/a: 
not applicable or not computed. 
 

SBML 
strain 
 
Bound 
 
 
 
 
(1) 

Size 
 
 
Range 
 
 
 
 
(2) 

Neural layer 
 
 
Mechanistic 
layer 
 
 
 
(3) 

Architecture 
 
Neural Layer 
Hyperparameters 
 
Mechanistic Layer 
Hyperparameters 
 
(4) 

Nbr param. 
 
 
Nbr epochs 
 
 
 
 
(5) 

Training R2  
 
 
Loss  
constraint 
 
 
 
(6) 

Validation set Q2  

 

 
Loss  
constraint 
 
 
 
(6) 

Test set Q2 

 

 

Loss 
constraint 
 
 
 
(7) 

Core 
 
EB 

100 
 

1-6 

NO 
 

YES 

MM_LP 
 

n/a  
 

104 

n/a 
 

n/a 

1.00 ± 0.000 
 

3.2e-9 ± 3.2e-8 

n/a 
 

n/a 

n/a 
 

n/a 

Core 
 
UB 

100 
 

1-6 

NO 
 

YES 

MM_LP 
 

n/a 
 

104 

n/a 
 

n/a 

1.00 ± 0.000 
 

5e-7 ± 2.8e-6 

n/a 
 

n/a 

n/a 
 

n/a 

Core 
 
EB 

100 
 

1-6 

NO 
 

YES 

MM_QP 
 

n/a 

n/a 
 

n/a 

1.00 ± 0.000 
 

7.8e-6 ± 6.1e-6 

n/a 
 

n/a 

n/a 
 

n/a 



 
 

19 
 
 

 
106 

Core 
 
UB 

100 
 

1-6 

NO 
 

YES 

MM_QP 
 

n/a 
 

106 

n/a 
 

n/a 

1.00 ± 0.000 
 

7.1e-6 ± 5.7e-6 

n/a 
 

n/a 

n/a 
 

n/a 

Core 
 
EB 

1540 
 

1-6 

YES 
 

NO 

ANN 
 

1, 50, 1e-3 
 

n/a 

8904 
 

500 

0.83 ± 4.8e-2 
 

1.8e-1 ± 2.2e-3 

0.66 ± 1.4e-1 
 

2.6e-1 ± 2.1e-2 

n/a 
 

n/a 

Core 
 
UB 

1540 
 

1-6 

YES 
 

NO 

ANN 
 

1, 50, 1e-3 
 

n/a 

8904 
 

500 

0.82 ± 4.8e-2 
 

1.1e-1 ± 8.2e-3 

0.39 ± 2.5e-1 
 

2.1e-1 ± 7.4e-2 

n/a 
 

n/a 

Core 
 
EB 

154 000 
 

1-6 

YES 
 

NO 

ANN 
 

1, 50, 1e-3 
 

n/a 

8904 
 

100 

0.91 ± 1.5e-2 
 

2.3e-1 ± 2.3e-2 

0.98 ± 1.1e-2 
 

1.0e-2 ± 1.1e-2 

n/a 
 

n/a 

Core 
 
UB 

154 000 
 

1-6 

YES 
 

NO 

ANN 
 

1, 50, 1e-3 
 

n/a 

8904 
 

100 

0.86 ± 2.1e-2 
 

1.8 ± 2.0 

0.94 ± 3.9e-2 
 

4.4e-3 ± 1.0e-3 

n/a 
 

n/a 

Core 
 
EB 

1000 
 

1-6 

YES 
 

YES 

AMN_LP 
 

1, 50, 1e-3 
 

4 

17 808 
 

500 

0.98 ± 7.9e-3 
 

2.8e-3 ± 0.6e-3 

0.98 ± 7.4e-4 
 

2.8e-3 ± 0.5e-3 

0.98 
 

3.0e-3 

Core 
 
UB 

1000 
 

1-6 

YES 
 

YES 

AMN_LP 
 

1, 50, 1e-3 
 

4 

25 152 
 

500 

0.98 ± 9.7e-3 
 

2.5e-3 ± 0.4e-3 

0.97 ± 1.0e-2 
 

2.5e-3 ± 0.4e-3 

0.99 
 

3.1e-3 

Core 
 
EB 

1000 
 

1-6 

YES 
 

YES 

AMN_QP 
 

1, 50, 1e-3 
 

4 

8904 
 

500 

0.99 ± 4.2e-3 
 

2.3e-3 ± 0.5e-3 

0.99 ± 4.7e-3 
 

2.3e-3 ± 0.5e-3 

0.98 
 

3.0e-3 

Core 
 
UB 

1000 
 

1-6 

YES 
 

YES 

AMN_QP 
 

1, 50, 1e-3 
 

4 

8904 
 

500 

0.97 ± 9.9e-3 
 

2.5e-3 ± 0.6e-3 

0.97 ± 1.3e-2 
 

2.5e-3 ± 0.6e-3 

0.97 
 

2.0e-3 

Core 
 
UB 

1000 
 

1-6 

YES 
 

YES 

AMN_Wt 
 

1, 50, 1e-3 
 

4 

13 622 
 

500 

0.99 ± 1.3e-3 
 

0.9e-3 ± 0.000 

0.99 ± 2.2e-3 
 

0.9e-3 ± 0.000 

1.0 
 

0.000 

iML1515 
 
UB 

11000 
 

1-6 

YES 
 

NO 

ANN 
 

1, 500, 1e-3 
 

n/a 

295 050 
 

100 

0.88 ± 4.3e-2 
 

2.2 ± 0.8   

0.76 ± 1.0e-1 
 

4.7 ± 4.2   

n/a 
 

n/a 

iML1515 
 
UB 

550 000 
 

1-6 

YES 
 

NO 

ANN 
 

1, 500, 1e-3 
 

n/a 

295 050 
 

100 

0.98 ± 3.3-2 
 

4.0e-4 ± 3.0e-4 

0.67 ± 3.5e-1 
 

3.1e-3 ± 4.5e-3 

n/a 
 

n/a 

iML1515 
 
UB 

11000 
 

1-4 

YES 
 

YES 

AMN_LP 
 

1, 250, 1e-3 
 

4 

839 266 
 

100 

1.0 ± 1.0e-3 
 

0.000 ± 0.000 

1.0 ± 1.0e-3 
 

0.000 ± 0.000 

1.0 
 

0.000 
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iML1515 
 
UB 

11000 
 

1-4 

YES 
 

YES 

AMN_QP 
 

1, 500, 1e-3 
 

4 

295 050 
 

100 

1.0 ± 1.4e-3 
 

0.000 ± 0.000 

1.0 ± 1.4e-3 
 

0.000 ± 0.000 

1.0 
 

0.000 

iML1515 
 
UB 

11000 
 

1-4 

YES 
 

YES 

AMN_Wt 
 

1, 500, 1e-3 
 

4 

634 238 
 

100 

1.0 ± 0.1e-3 
 

0.000 ± 0.000 

0.99 ± 0.4e-3 
 

0.000 ± 0.000 

1.0 
 

0.000 

iJN1463 
 
UB 

4860 
 

1-1 

YES 
 

YES 

AMN_QP 
 

1, 500, 1e-3 
 

4 

1 168 135 
 

500 

0.99 ± 2e-3  
 

0.000 ± 0.000 

 0.99 ± 2e-3   
 

0.000 ± 0.000 

0.99 
 

0.000 

 

 

The MM architectures show good performances both in terms of growth rate computation and loss on 

constraints. There is no learning process involved with MMs, therefore no reason to compute results 

for validation and test sets. The ANN architectures (cf. Methods ‘ANN architecture’ for further details) 

exhibit poor performances and have small predictive capacities (high Loss) for cross validation sets of 

sizes in the range of those of AMN (~1000 reference data in training), for that reason performances for 

test sets were not assessed. We also note that losses remain higher with ANNs even for training set 

sizes 1000 times larger than those used with AMNs. All AMN architectures exhibit excellent regression 

coefficients and losses for training sets, validation sets and test sets, and this for both models E. coli 

core4, iML15152 and iJN146312. 
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AMNs benchmarking with gene knockouts and multiple measured fluxes 

 
 
 
To assess the performance of AMNs on datasets where more than one flux is measured, we extracted 

a dataset from Rijsewijk et al.13 which consists of 128 experiments, each containing 31 measured 

fluxes.  

The dataset was composed of 2 media compositions (glucose or galactose as carbon source), for 64 

regulator gene KOs mutants (GKO). These regulator genes were found on RegulonDB14 and their 

corresponding regulated metabolic reactions encoded in iML1515 were compiled. Each regulator was 

found to have at least one regulated reaction in iML1515. The final training set to use with AMNs was 

composed of 2 inputs: 1 binary vector of size 2 for media compositions (Cmed) and 1 binary vector of 

size 64 for gene KOs (GKO). Unlike for the E. coli KO dataset used in Figure 4 in the main paper, we did 

not add a term to the custom loss since the effect of deleting the regulation of a reaction is a priori 

unknown (at least quantitatively, in terms of effect on the fluxes distribution).  

Overall, the performance is satisfactory for most fluxes, but 7 fluxes (empty slots in Figure S8b) have 

a Q² close to zero or negative. However, these low-performance predictions do not impact the 

variance-weighted average Q² (red line, 0.91) because the corresponding measured fluxes have low 

variance, thus, there are limited statistical patterns for the model to learn on these fluxes (we recall 

that the variance weighted-average consists in a weighted average of all 31 fluxes' Q²s, with a weight 

applied on each flux's Q² corresponding to the variance found in the flux's measure)s.  

Learning on many fluxes is more challenging for the AMNs than on a single flux, but it still seems to 

make accurate predictions with this dataset for the majority of fluxes. 
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Figure S8. AMN performance on multiple fluxes dataset 
 a. AMN architecture compatible with the multiple fluxes dataset from Rijsewijk et al. The mechanistic layer and 
custom loss were derived from the E. coli model iML1515. The medium composition binary vector for this dataset 
is of size 2, for glucose or galactose as the carbon source. The other input, GKO, a binary vector as well, of size 64, 
is describing which genes are knocked out. The remaining of the architecture is similar to what is shown in Figure 
1c, with 2 hidden layers of size 400 as the neural layer, QP as the mechanistic layer, and a custom loss fitting 
simultaneously 31 reference fluxes (instead of only the growth rate for most results shown in the study). The 
model was trained for 100 epochs with the Adam optimizer with a learning rate of 1.0e-3.  b. Performance chart 
of the AMN, displayed as Q² computed on aggregated validation sets from a 10-fold cross-validation. The mean 
predictions over 3 repeats of the 10-fold cross-validation were compiled as final prediction values. The Q² is 
displayed for each flux individually with the bars of the chart, and we also show the variance weighted (red line, 
0.91) and uniform (blue line, 0.60) averages of Q²s of all fluxes.  
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AMN-Reservoir prediction performance 

 

Figure 5 in the main paper displays the performance of classical FBA with Vin extracted from the AMN-

Reservoir, after training on the whole dataset. Another possibility, is to use the AMN-Reservoir in a 

more predictive manner, obtaining Vin during predictions on the validation sets of a cross-validation. 

We show in Figure S9 below the performance of FBA when using such predicted Vin from unseen data, 

as the regression performance on the 110 E. coli growth rates dataset. We note the regression 

coefficient we obtained is similar to those obtained when training AMNs directly on experimental data 

(Figure 3, main paper).  

 

 

Figure S9. Performances of AMN-Reservoir using predicted Vin as input to FBA 
The dataset used to train the AMN-Reservoir was the 110 E. coli growth rates used for Figure 3 and Figure 5 panels 
c and d. The measured growth rates are plotted as the mean and standard deviation over technical replicates (cf. 
Methods). The hyperparameters and the pre-trained AMN-Reservoir were the same as for Figure 5 panel c. A 10-
fold cross-validation was performed (instead of a training and prediction on whole dataset as in Figure 5c), and 
validation sets predictions were used to extract Vin then use it as input for FBA. FBA results are shown here as the 
predicted growth rate.  
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ANN training set sizes 

To compare the performances of an ANN ‘black box’ model with AMNs, we trained a simple dense 

ANN model and an AMN-QP model on training sets of increasing sizes. The training sets were 

generated using E. coli core4 as in Methods ‘Generation of training sets with FBA’. We recall (see 

Methods ’ANN architecture’) that to assess losses for an ANN model (which does not have any 

mechanistic layer), each entry of the training sets contains all flux values; this enables one to compute 

the losses given in Methods ‘Loss function derivation’. Consequently, with ANN for each element in 

the training set we provided as labeled data all reaction fluxes (154 for E. coli core4), while with AMN-

QP we provided as labeled data only the flux of the biomass reaction.  

To enable comparison between AMN and ANN, in Figure S10 given below the training set size is the 

number of labeled data provided. We find that the results obtained for AMN-QP are consistent with 

those presented in Table S1: training set size of 1000 yields a Q2 above 0.95 while the loss remains 

below 0.003. We also observe that the ANN architecture requires training set sizes several orders of 

magnitude larger to reach losses that are still above those obtained with AMN-QP: training set sizes 

of more than 500,000 are needed to obtain a loss below 0.01, while Q2 above 0.9 are reached for 

training set sizes above 50,000. Finally, it is worth noticing that while ANN can be trained on simulated 

data as in Figure S10 they cannot directly be used with experimental data as it is practically not 

possible to measure all the reaction fluxes of a strain grown with different media compositions. 

 

Figure S10. Loss and regression coefficient for training sets of increasing sizes 
In both cases training sets were generated for the E. coli core model using the procedure described in Methods 
‘Generation of training sets with FBA’. AMN and ANN were trained for different medium metabolites uptake rates 
as inputs and, as reference (labeled) data, the biomass reaction flux for AMN and all fluxes for ANN. In both cases 
Q² is the regression coefficient between the reference and the predicted biomass reaction fluxes during 5-fold 
cross-validation.  Loss on constraints were computed as described in Methods ‘Loss functions derivation’ on 5-
fold cross-validation sets. a. AMN. The model architecture is the one shown in Figure 3 with a QP-solver for the 
mechanistic layer. The neural layer is composed of an input layer of size 20 (all uptake fluxes of E. coli core), a 
hidden layer of size 50 and an output layer of size 154 (all reactions of E. coli core), the learning rate was set to 
1.0e-3 and Adam was used as the optimizer. b. ANN. The ANN model has the same architecture as the neural 
layer of the AMN and no mechanistic layer. Raw data for this figure can be found in the amn_release GitHub 
repository (Result folder). 
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Experimental workflow 

 
 
Details on the experimental protocol can be found in the Methods ‘Culture conditions’ and ‘Growth 

rate determination’. Figure S11 gives a visual overview of the workflow to generate the dataset 

showcased in Figures 3 & 5 (main paper).  

 

Figure S11. Experimental workflow pipeline 
a. The DH5-alpha strain of E. coli was cultured in M9 medium with different carbon source combinations (1 to 4 
carbon sources simultaneously added, all at 0.4g.L-1). The optical density at 600nm (OD600) was monitored for 
24 hours in a plate reader; reading 96-well plates each containing 10 media compositions, each in 8 replicates 
(remaining space was used as blanks, for the edges of the plate that show high evaporation). After data 
acquisition, the maximal growth rate was computed (cf. Methods ‘Growth rate determination’). b. The 
experimental workflow enables the generation of 110 data points each composed of Cmed as the independent 
variables and growth rates as dependent variables. Cmed is describing each medium carbon source composition as 
zeros - when absent - and ones - when present – yielding in the end a binary vector of length 10. 
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Terminology 

We provide below the list of all notations used in all equations and figures of our main manuscript and 
Supplementary Information. 
 
Table S2. Vectors and matrices notations used in figures and equations 
 

Notation Description (units) 
Vin Vector of exact or upper bounds for uptake fluxes. See Figure 1a,c,d              

(mmol.gDW-1.h-1) 
Vout Vector of steady-state fluxes values predicted by a model, either fully mechanistic or 

AMN. See Figure 1. (mmol.gDW-1.h-1 and .h-1) 
Vref Vector of reference fluxes, either FBA-simulated or measured. In all results except 

Figure S8 (31 fluxes) and for the ANNs (all fluxes), it contains only the growth rate. 
(mmol.gDW-1.h-1

 and .h-1) 
V0 Vector of fluxes values before passing through the mechanistic model. Referred to as 

initial guess for the flux distribution. See Figure 1c,d. (mmol.gDW-1.h-1 and .h-1) 
Cmed Vector describing medium composition. See Figure 1c,d. (no unit) 

V Vector of reaction fluxes. Generic name. (mmol.gDW-1.h-1 and .h-1) 
M Vector of metabolites production rates, used for Wt. (mmol.gDW-1.h-1) 
U Vector. Dual variable of V when considering FBA’s constrained linear problem. Also 

called metabolites’ shadow prices. 
RKO Vector of reactions that are KO. See Figure 4a. 0 if reaction is inactivated by the gene 

KO, 1 otherwise. (no unit) 
cFBA Vector of reactions that are hypothesized to be maximized by the cell. In this work, 

always set to the biomass production reaction (i.e., the growth rate). Used for LP 
method. (mmol.gDW-1.h-1) 

S Matrix of stoichiometric coefficients given by the GEM. Its dimension is m (number 
of metabolites) × n (number of reactions). (no unit) 

Wr Matrix of weight representing consensual flux branching ratios. (no unit) 
Pin Matrix of mapping V into the fluxes of Vin.  (no unit) 
Pout Matrix of mapping V into the fluxes of Vout. (no unit) 
Pref Matrix of mapping V into the fluxes of Vref. (no unit) 
PKo Matrix of mapping from gene KO to inactivated reactions. (no unit) 
Pv→m Matrix of mapping from reactions to metabolites. (no unit) 
Pm→v Matrix of mapping from metabolites to reactions. (no unit) 
Sint Matrix of stoichiometric coefficients where uptake reactions have been zeroed out. 

(no unit) 
 

In our study Vin are “uptake fluxes” also named “uptake reactions” the fluxes and corresponding 

reactions that introduce matter into the model, i.e. reactions that have no reactants and their product 

is a metabolite in the ‘medium’ compartment of the metabolic model. These reactions are also called 

“exchange reactions” in many studies, and this subsection aims to clarify the use of “uptake flux” in 

this study. The term “uptake” was preferred to “exchange” for two main reasons: (i) for simplicity to 

readers that are not familiar with metabolic models and (ii) for the better biological sense of “uptake 
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reactions” (designating an organism uptaking nutrients from its environment), even if these reactions 

introducing matter into the model are fully virtual reactions without any biological or physical sense. 

Importantly, ‘uptake reactions’ are not referring to the membrane-crossing reactions, which are always 

left with default bounds in this study. In practice, when one makes ab initio predictions with classical 

FBA, one sets a non-zero upper bound for a reaction introducing matter in the system, to simulate the 

presence of a given metabolite in the medium. But, in most cases, this reaction flux optimized value 

will be equal to the membrane-crossing flux value, since one metabolite, in most cases, can only go to 

this reaction once it has been introduced in the medium compartment of the model. The only 

exception is in some models where the metabolites can interact in the medium compartment, or when 

several transport reactions are available, which is rare and not the case in the scope of the models 

used in this study. 
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Appendix C
Supplementary Information for Chapter
3
C.1 Training sets presentation
The following figures (C.1 and C.2) show visual depictions of different training sets inputs (also called
features, independent variables, or X) and outputs (also called labels, dependent variables, or Y).
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a

b

c

core-extended

core-random

core-glucose

d

e

f

iML-expsim

iML-singles

iML-glucose

Training set inputs

Columns as uptake fluxes upper bounds

Rows as data points

Training set output and metrics

Distribution of Growth Rate,

V norm and SV norm found with FBA

Figure C.1: in silico training sets generated by FBA on E. coli core or iML1515[44]. For visualizationpurposes, each heatmap’s rows were ordered by decreasing optimized growth rate value obtainedby FBA; and minimal medium (i.e., essential uptake fluxes for the GEM to predict growth, see Chapter2 Methods 2.5, ‘Generation of training sets with FBA’) was removed from the heatmaps.
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a

b

c

Rijs-RegKO

+ 29 fluxes

Reaction KOs

Regulator gene KO
Galactose or Glucose

Biolog Substrates

Minimal medium 1 to 4 carbon sources

110GR

Training set inputs

Columns as features
Rows as data points

Training set outputs

Distribution of measured values

Cov-BiologKO

0

0

1

1

1

0

Figure C.2: in vivo training sets generated from experimental data. For visualization purposes, eachheatmap’s rows were ordered by decreasing growth rate value obtained experimentally. The mini-mal medium (i.e., essential uptake fluxes for the GEM to predict growth, see Chapter 2 Methods 2.5,‘Generation of training sets with FBA’) is indicated by a yellow box for each experimental dataset.
In the following table C.1 is provided the path to the random drawing instruction files used to

generate in silico training sets, or upper bounds used for in vivo training sets, in the github repository
‘amn_phd’ (see following section ‘Code and Data availability’ C.2).
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Context Repository folder 
and file content Name File name

in silico
(FBA 

simulations)

Data/Constraints/ 

Random drawing rules

core-glucose e_coli_core_glucose_only.csv
core-random e_coli_core.csv

core-extended e_coli_core_extended.csv
iML-glucose iML1515_glucose_only.csv
iML-random iML1515_random.csv

iML-extended iML1515_extended.csv
iML-singles iML1515.csv (drawing_mode='random')
iML-expsim iML1515.csv (drawing_mode='expsim')

in vivo
(experimental 

data)

 Data/Experimental/

Default bounds for substrates
found in media composition

110GR iML1515_EXP_bounds.csv
Cov-BiologKO biolog_iML1515_EXP_bounds.csv
Rijs-RegKO rijs_iML1515_EXP2_bounds.csv

Table C.1: Drawing rules and default bounds file locations, used to generate in silico and
in vivo training sets. The repository can be found at this address (clickable link). Note that’iML-singles’ and ’iML-expsim’ use the same drawing rule file with a different ‘drawing_mode’argument used in the training set generation.

C.2 Code and Data Availability
All codes and data to generate training sets, models and figures presented in Chapter 3 can be found
in this github repository (clickable link).

Here is a non-exhaustive list of improvementsmade in this repository compared to the ‘amn_release’
repository developed for Chapter 2’s publication (see section 2.8):

• Saving AMN-Wt models is possible.
• UB and LB can be used as inputs of AMN-QP-bnds, enabling compatibility of ’Cov-BiologKO’,
’Rijs-RegKO’, and other datasets with a single model encoding.

• Dense layers are now tunable in size, activation function and dropout rate. When using several
layers, these parameters are accessible for each layer independently. L1 and L2 regularization
terms were also added as possible parameters.

• Weighing of each loss term is possible, both in mechanistic layers and in custom mechanistic
loss.

• A hyperparameter optimization framework compatible with all AMNs and most parameters is
now available.

• An easier saving and loading of training sets and models was performed, with easier tuning of
attributes, thanks to the use of compressed pickles of the objects instead of parsed strings to
retrieve an object’s attributes.

• Amore centralized catching of errors that come from incompatible parameters (it can be found
in the __init__ functions of TrainingSet, NeuralModel, and RC objects).

• More functions to analyze predictions and compare them to FBA training sets. All these are
stored within the function file ‘Library/analysis.py’.

• The scaler applied on X is now saved as an attribute of the NeuralModel object.
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C.3 QP-solver reformulation and optimization
a bQP-solver

QP-bnds-solver

Figure C.3: Pareto plots of QP-solver (a) and QP-bnds-solver (b) do not show a clear solver’s tradeoffbetween satisfying lower bounds and upper bounds constraints. For both plots, each of the 500points displays mean metrics for 10 conditions of the ‘core-glucose’ training set, computed after amechanistic method run of 10,000 iterations. Plots show unweighted ‘Loss upper bounds’ (either ‘LossVin’ or ‘Loss UB’) on the X-axis, and unweighted ‘Loss positivity’ (either ‘Loss Vpos’ or ‘Loss LB’) on theY-axis. Each point’s color corresponds to the ratio between the ‘Loss weight (Vin)’ or ‘Loss weight(UB)’ and the ‘Loss weight (Vpos)’ or ‘Loss weight (LB)’. Both solvers behave similarly, showing no cleartradeoff and optimal weights ratio of 1.
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a

b

c

d

Bounds

FBA

QP-solver

QP-bnds-solver

Figure C.4: QP-bnds-solver reformulation improves the respect of GEM constraints. For visualizationpurposes, each heatmap’s rows were ordered by decreasing glucose uptake flux upper bound. Redboxes indicate a constraint violation by the QP-solver. (a) FBA bounds constraints to generate fluxdistributions with the E. coli core[135] model (10 samples from the ‘core-glucose’ training set). Fromleft to right: 10 sets (rows) of 20 upper bounds (columns) on uptake fluxes; 10 values of lower boundon ATPM (the only non-zero lower bound). (b) FBA results. From left to right: uptake fluxes, ATPM fluxvalues, SV norm metrics, V norm metrics. (c) Same as in the previous panel, here with QP-solver re-sults (100,000 iterations). (d) Same as in the previous panel, here with QP-bnds-solver results (100,000iterations). Note that for both QP-solver and QP-bnds-solver, the R² on the growth rate was alwaysvery close to 1.0, and all loss terms except L2 were showing low values (L1 < 1e-3, L3 = 0, L4 < 1e-5, L6 =0, L7 < 1e-5).
Figure C.4 clearly shows the constraints violation by QP-solver when used with conditions taken from
the ’core-glucose’ training set. Interestingly, the norms of V computed by QP-bnds-solver are closer
to those of FBA compared to the original QP-solver. However, the SV norms are higher for QP-bnds-
solver, which might be explained by the more stringent constraints that are ‘harder’ to respect for
the method. Strikingly, the SV norms obtained through FBA are many orders of magnitude below the
ones obtained with QP-solvers. Even if we push the method to 1,000,000 iterations, it will show SV
values higher than 1e-8. Note that with the LP-solver, we obtain SV norms closer to those obtained
through FBA, with less iterations, as shown in appendix B section ‘MM solvers benchmarking’ Figure
S6e.
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C.4 Mechanistic layers performance assessment
a b c

AMN-QP-bnds AMN-LP AMN-Wt

CPU time (s)

Average SV 
norm

Average V 
norm

Q²

Average V0-Vf 
distance

Figure C.5: Performance of AMN-QP-bnds (a), AMN-LP (b) and AMN-Wt (c) for increasing number ofiterations of the mechanistic layer. The performance is evaluated with 5 metrics, from top to bottom:the computational time required to perform the 10-fold cross-validation (CPU time (s)), the Average SVnorm found in predictions, the Average V norm found in predictions, the Q² computed on the growthrate, and the average Euclidean distance between the predicted input of the mechanistic layer (V0)and the predicted output of the AMN (Vf). The Euclidean distance could not be computed for AMN-Wtfor technical reasons. The AMN-LP model has a clear advantage over other AMNs, since it lowers theSV norm below 10-4 with only 4 iterations.

Figure C.6: Increasing number of iterations in the mechanistic layers of AMNs reduces the SV normbut increases computational time. Same data as for Figure 3.5, plotted on a single panel instead of 3separate panels for each AMN. The advantage of AMN-LP over other AMNs, in its ability to reduce SVnorm by its mechanistic layer, is very clear.
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a b c

Figure C.7: Increasing the iteration number of the mechanistic layer has limited effect on AMN-QP-bnds prediction performance. All panels display, from top to bottom and left to right: A scatter plotof the growth rate predictions (Y-axis) against the measured growth rates after FBA, i.e. the referencegrowth rates (X-axis), with points’ colors corresponding to the SV norm value computed on the predic-tion; an histogram of the SV norm metric for all predictions; an histogram of the Euclidean distancesbetween predicted V0 and predicted Vf; and an histogram of the V normmetric for all predictions. (a)0 iterations, in this case V0 and Vf are the same flux vectors, and the mechanistic layer is deleted fromthe AMN. (b) 4 iterations, (c) 128 iterations.
On Figure C.7, one can observe the limited effect of increasing mechanistic layer iterations on the
AMN-QP-bnds performances. Comparing the panel (a) and (c), one can observe a similar Q² value
and a slightly inferior average SV norm in panel (c). Moreover, the V norm does not seem affected
by increasing iteration numbers. We can conclude that, in the tested range, increasing mechanistic
layer iterations with AMN-QP-bnds does not improve the overall performance of the model, neither
in terms of fitting performance, nor in terms of GEM’s constraints respect.
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a b c

Figure C.8: Increasing the iteration number of the mechanistic layer has a strong effect on AMN-LPprediction performance. Same plot organization as previous figure’s. (a) 0 iterations, in this case V0and Vf are the same flux vectors, and the mechanistic layer is deleted from the AMN. (b) 4 iterations,(c) 128 iterations.
On Figure C.8, one can observe the strong effect of increasing mechanistic layer iterations on the

AMN-LP performances. Comparing the panel (a) and (c), one can observe a similar Q² value and a
drastically inferior average SV norm in panel (c), by roughly 1e4 smaller. Moreover, the V norm is
clearly affected by increasing iteration numbers, reaching more realistic values (Figure C.1 shows the
distribution of V norms computed by FBAwith the ‘core-random’ training set, that roughly ranges from
0.6 to 1.2). We can conclude that, in the tested range, increasingmechanistic layer iterationswith AMN-
LP drastically improves the overall performance of the model in terms of GEM’s constraints respect.
However, it does not improve the performance in terms of fitting reference fluxes.
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a b c

Figure C.9: Increasing the iteration number of themechanistic layer has amitigated effect on AMN-Wtprediction performance. Same plot organization as previous figure’s. (a) 1 iteration (b) 4 iterations, (c)64 iterations.
On Figure C.9, one can observe mitigated effects of increasing mechanistic layer iterations on the

AMN-Wt performances. Panel (a) shows that 1 iteration is clearly not enough for the AMN to perform
correctly, thus we will not consider this panel for comparison. Comparing the panel (b) and (c), one
can observe similar Q² and average SV norm values. Moreover, the V norm does not seem affected by
increasing iteration numbers. We can conclude that, in the tested range, increasing mechanistic layer
iterations with AMN-Wt does not significantly improve the overall performance of the model, neither
in terms of fitting performance, nor in terms of GEM’s constraints respect.
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C.5 AMNs hyperparameter optimization

a

b

c

core-random

Default Optimized

iML-singles

110GR

Figure C.10: Comparison of AMN-QP-bnds performance before (‘Default’, left plots), and after (‘Opti-mized’, right plots) hyperparameter optimization; for 3 training sets: (a) ’core-random’, (b) ’iML-singles’and (c) ’110GR’. In each case is displayed: a scatter plot of the growth rate predictions (Y-axis) againstthe measured growth rates after FBA, i.e. the reference growth rates (X-axis), with points’ colors cor-responding to the SV norm value computed on the prediction; an histogram of the SV norm metricfor all predictions; and an histogram of the V norm metric for all predictions. In cases (a) and (b), thehyperparameter optimization increased the AMN performance by increasing the Q² and decreasingthe average SV norm; in case (c) it only improved the AMN performance by decreasing the averageSV norm.
The best neural architecture found in the hyperparameter optimization of AMN-QP-bnds with ‘core-
random’ (red points on Figure 3.6) was found to have 3 hidden layers of size 102, 97 and 16, with
hyperbolic tangent activation function for the two first hidden layers and ReLU for the last one. The
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optimal dropout rates were found to be 0.015, 0.022 and 0.017.
With that architecture, the best weights were found to be 1.6, 8.22 and 8.14, respectively applied

on L2, L6 and L7. This set of weights yields the yellow point on Figure 3.6 panel b, which shows a good
tradeoff between Q² and SV norm.

The best neural architecture found in the hyperparameter optimization of AMN-QP-bnds with
‘iML-singles’ (red points on Figure 3.6) was found to have no hidden layers. In that case Vin is directly
connected to Vf.

With that architecture, the best weights were found to be 7.4, 2.7 and 9.3, respectively applied on
L2, L6 and L7. This set of weights yields the yellow point on Figure 3.6 panel b, which shows the best
performance both in terms of Q² and SV norm.

The best neural architecture found in the hyperparameter optimization of AMN-QP-bnds with
‘110GR’ (red points on Figure 3.6) was found to have 1 hidden layer of size 48 with hyperbolic tangent
activation function. The optimal dropout rate was found to be 0.45. This architecture was found to
be the best Q² and ‘Loss SV’ tradeoff, as it yields a bottom-right point on panel a.

With that architecture, the best weights were found to be 2.7, 6.8 and 7.8, respectively applied on
L2, L6 and L7. This set of weights yields the yellow point on Figure 3.6 panel b, which shows a good
tradeoff between Q² and ‘Loss SV’.

C.6 Alternative ML models to better surrogate FBA

a b c
iML-glucose iML-random iML-extended

Figure C.11: MTEN performance with ‘iML-glucose’, ‘iML-random’, ‘iML-extended’ training sets. Eachpanel shows a scatter plot of the growth rate predictions (Y-axis) against the measured growth ratesafter FBA, i.e. the reference growth rates (X-axis), with points’ colors corresponding to the SV normvalue computed on the prediction; an histogram of the SV norm metric for all predictions; and anhistogram of the V norm metric for all predictions.
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C.7 Extended results for ’Rijs-RegKO’
a

b

c

Figure C.12: AMN-QP-bnds performance with ‘Rijs-RegKO’ (regular approach, as in appendix B FigureS8). (a) Performance chart of AMN-QP-bnds. Q² is displayed for each flux individually with the barsof the chart, and we also show the variance weighted (red line, 0.91) and uniform (blue line, 0.70)averages of Q²s of all fluxes. (b) Histograms of SV norm and V norm metrics for all predictions. (c)Individual fluxes scatter plots of the predictions (Y-axis) against the experimentally measured flux(X-axis), with points’ style corresponding to the carbon source (yellow crosses: glucose, blue dots:galactose).
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b

c

Figure C.13: AMN-QP-bnds performancewith ‘Rijs-RegKO-glucose’. Sameplot organization as previousfigure’s. On panel (a), we show the variance weighted (red line, -0.05) and uniform (blue line, -0.01)averages of Q²s of all fluxes.
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c

Figure C.14: AMN-QP-bnds performance with ‘Rijs-RegKO-galactose’. Same plot organization as previ-ous figure’s. On panel (a), we show the variance weighted (red line, -0.05) and uniform (blue line, 0.01)averages of Q²s of all fluxes.
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b

c

Figure C.15: AMN-QP-bnds performance with ‘Rijs-RegKO-GR-only’. Same plot organization as previ-ous figures. On panel (a), we show the variance weighted (red line, -3.0) and uniform (blue line, -4.0)averages of Q²s of all fluxes.
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In silico, in vitro, and in vivo machine learning in
synthetic biology and metabolic engineering
Jean-Loup Faulona and Léon Faure

Abstract
Among the main learning methods reviewed in this study and
used in synthetic biology and metabolic engineering are su-
pervised learning, reinforcement and active learning, and
in vitro or in vivo learning.
In the context of biosynthesis, supervised machine learning is
being exploited to predict biological sequence activities, predict
structures and engineer sequences, and optimize culture
conditions.
Active and reinforcement learning methods use training sets
acquired through an iterative process generally involving
experimental measurements. They are applied to design, en-
gineer, and optimize metabolic pathways and bioprocesses.
The nascent but promising developments with in vitro and
in vivo learning comprise molecular circuits performing simple
tasks such as pattern recognition and classification.
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Introduction
We have seen in the past few years a growing interest in
using machine learning for chemistry and biology, syn-
thetic biology and metabolic engineering making no
exception to this trend [1]. This study reviews three

main techniques used when engineering biological sys-
tems. In section 2, we present an overview of supervised
and semisupervised machine learning techniques,

providing examples on searching for promiscuous
enzyme activities. In section 3, we discuss active learning
(AL) and reinforcement learning (RL) methods, which
are generally based on supervised learning, with training
sets acquired on the fly in an iterative process. These
methods are particularly amendable to the design-build-
test-learn synthetic biology cycle. Examples are provided
in the context of predicting enzymatic activities, opti-

mizing metabolic pathways, and performing retro-
biosynthesis. Engineering information processing de-
vices in living systems is a long-standing venture of syn-
thetic biology. Yet, the problem of engineering devices
that perform basic operations found in machine learning
remains largely unexplored. Section 4 presents attempts
to construct in vitro and in vivo perceptrons which are the
basic units of all artificial neural networks.

Supervised and semisupervised learning
Supervised learning is one of the main machine learning
methods that is being used in biology and in particular in
bioinformatics where it has been extensively developed
[2]. Focusing on biosynthesis, and to name a few, su-
pervised learning enables one to predict enzyme activ-
ities [3e6], to propose protein structures [7], to

engineer sequences (DNA, RNA, protein) [8e11], to
complete metabolome [12], to optimize culture condi-
tions [13], and to perform more unexpected tasks like
predicting the lab-of-origin of engineered DNA [14].
The supervised learning workflow starts by compiling a
training set where each object being studied (promoter
sequence, ribosome-binding site sequence, protein
sequence, pathways,...) has been labeled (with strength,
activity, flux,.). In life sciences, labels generally
correspond to experimental measurements. Disregard-
ing the machine learning technique used, the workflow

is composed of two main steps: (1) training and (2)
validation (cf. Figure 1). Training is not performed on
the entire data set but a fraction of it, the rest being set
aside for validation.

The core of supervised learning is of course the learning
step, where a mapping between the objects and the
labels is established. Several mapping techniques have
been used in synthetic biology and metabolic engi-
neering including support vector machine (SVM) for
classification or support vector regression (SVR) [3],
random forests [15], Gaussian processes (GPs) [16], and
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artificial neural networks (ANNs) including deep
learning networks [4e13]. While Figure 1 illustrates the

process with ANNs, with all machine learning tech-
niques one must first transform the objects into vectors
of integers or reals. Feature extraction is generally the
method preferred to compute these vectors. For bio-
logical sequences, string spectrum [17] (count of kmers
on the top left side of Figure 1), motif counts [4] (like
Pfam domains), and one-hot encoding and embeddings
[5] are common features that are used. With feature
vectors in hands, all machine learning techniques
mentioned previously search for a linear or nonlinear
function mapping features to labels. When using an

ANN (right side of Figure 1), the function is a recursive
weighted sum starting with the feature vector (input
layer), propagating to hidden layers to reach an output
layer composed of only one node. As we wish a 0 or 1
answer, the value of the last layer is generally calculated
through a sigmoid function. Learning here consists in
finding the weights (wi) for each weighted sum mini-
mizing the difference between the values (0, 1) calcu-
lated at the last layer and the values in the training set.
During validation, values are predicted using the trained

network, and true or false positives or negatives are
recorded. Receiver operating characteristic (ROC)

curves (bottom left side of Figure 1) can also be calcu-
lated on the validation set changing the threshold be-
tween positives and negatives. The numbers provided in
Figure 1 are areas under the ROC curves that have been
reported in the past when using SVMs [3] and GPs [16].

In some instances, it is necessary to merge different
types of features together, for instance when building a
classifier to determine if a given sequence will metab-
olize a given substrate. To merge biological and chemical
information, one strategy is to compile feature vectors

separately for each object and then merge these into a
tensor product [3], the tensor representing the in-
teractions between the objects (sequence-chemical).
Such a strategy has shown to outperform other tech-
niques for drugetarget interactions [18] and enzymee
substrate interactions [3].

When dealing with classification problems, like for
instance finding if a particular sequence is a promiscuous
enzyme [19], we need positive and negative examples in

Figure 1

Typical machine learning process to predict and validate enzyme activity from sequence. We assume here we have collected a set of sequences having a
given EC number (at any level of the EC nomenclature) along with a set of sequences not having that EC number. We wish to learn if any given sequence
belongs to the chosen EC class or not. This is a classification problem. See main text for additional details.
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the training set. Yet, very often, we are faced with the
issue that only positives can be found, as failures are
hardly reported in the literature. Here comes therefore
the problem of generating negative examples. In the
past, this issue has been tackled using ad hoc methods to
generate negatives arbitrarily, for instance, randomly
drawing sequences that are not annotated as those in the
training set or sequences and chemicals that are distant

(similarity wise) to those in the training set [19]. A more
thorough method is using semisupervised learning [20].
In semisupervised learning, the data set is composed of
two classes, a class of labeled examples (either positive or
negative when performing classification) for which
measurement has been carried out and a class of unla-
beled examples. The learning process consists in finding
the best partition between positives and negatives by
shuffling unlabeled data points either in the positive
class or in a negative class.

Although numerous studies are making use of machine
learning in the life sciences, in the context of biosyn-
thesis and bioengineering, only a few studies have trig-
gered experimental validation. One can cite a work
making use of a semisupervised GP [16], which
predicted three native Escherichia coli BL21 enzymes
capable of synthesizing L-acetyl-leucine. These en-
zymes (ECBD0907, ECBD4067, and ECDB4269) are
known to transform glutamate into acetyl-glutamate,
ornithine into acetyl-ornithine, and glutamate and
methyl-oxovalerate into oxoglutarate and leucine. When

overexpressed, two (ECBD4067 and ECDB4269) of the
three enzymes increased the production of acetyl-
leucine. Not only this study demonstrated that ma-
chine learning could be used to find promiscuous
enzyme activities but also revealed that acetyl-leucine
was produced in E. coli, which was not known before
that study. In our second example, the DeepEC deep
learning method [5] was used to find alternative EC
numbers for YgbJ, an L-threonate dehydrogenase (an-
notated 1.1.1.411 in Uniprot). For YgbJ, DeepEC
predicted an oxidoreductase activity on D-glycerate
(1.1.1.60). A follow-up enzymatic assay revealed that

YgbJ was indeed able to metabolize both D-glycerate and
L-threonate.

Active learning and reinforcement learning
AL is a special case of supervised machine learning,
where a learner (any learning algorithm mentioned in
the previous section) can interactively query an oracle
(a human, a robot, a computer simulation) to ask new

data points to be labeled [21]. The process is iterative,
and the training set is acquired and growing on the fly.
Because the learner chooses the examples to be
labeled, the number of examples can be made lower
than the number required in normal supervised
learning while maintaining performances. For instance,
searching novel substrates for a small set of four pro-
miscuous enzymes, it was shown that SVMs trained on

a set of substrates selected by AL performed with 80%
accuracies using 33% fewer compounds than when
trained on the whole set of substrates [22]. AL is
particularly appealing in the context of bioengineering
because it reduces the number of experiments to be
performed. In addition, AL perfectly fits the designe
buildetestelearn cyclic process developed in synthetic
biology as it proposes a solution to the learning step of

the cycle [23].

AL is illustrated in Figure 2 to search alternative sub-
strates metabolized by promiscuous enzymes. The
process starts by asking to label (i.e. perform measure-
ments) an initial set of data points (enzyme x substrate
pairs). Each data point is described by features; one can
use, for instance, chemical fingerprints for substrates
and string spectrum or one-hot encoding for sequences.
The initial set can be generated by choosing enzyme x
substrate pairs at random or better using fractional

factorial design [24] to evenly sample the space of
possibilities. Measurements are then acquired, eventu-
ally using robotic screening equipment, and the pairs
with activity measurements are added to the labeled
data set. Next, a machine learning algorithm is trained
on the labeled data set and used to predict labels from
features for all the pairs in the unlabeled set (or a sample
of pairs if the whole unlabeled set is too large). Methods
mentioned in section 2 like the tensor product can be
utilized to perform the predictions. Based on pre-
dictions carried out on the unlabeled data set, a new set

of enzyme x substrate pairs is selected for the next
round of measurement. The selected pairs are screened,
the new measurements are added to the growing
training set, and the trained model is retained. The
process is iterated until the performances of the learner
cannot be improved.

The AL process illustrated in Figure 2 is generic; it can
be and has been applied to other biosynthesis and
metabolic engineeringerelevant problems like finding
the expression level of enzymes in a pathway producing
a target molecule [25e28] or finding buffer composition

maximizing cell-free productivity [29]. As an example,
coupling robotic equipment with AL, HamediRad et al.
[27] optimized the lycopene biosynthetic pathway
evaluating less than 1% of possible variants while
outperforming random screening by 77%. One critical
step in AL is the selection of new data points to be
labeled. AL makes use of two selection modes, exploi-
tation and exploration. In exploitation mode and when
maximizing an objective, AL is seeking predicted label
values (m) higher than those already in the training set,
whereas in exploration mode, AL is searching for pre-

dictions having high variances (s), these corresponding
to data points that are far away from those being in the
training set. As shown in the study by Borkowski et al.
[29], the combination of exploitation and exploration via
an upper confidence bound formula like m þ k s (where
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k is a constant) is efficient in large combinatorial spaces.
Indeed, that study demonstrated that fewer than 10 AL
iterations were sufficient for a 34-fold cell-free produc-
tivity increase, while optimizing buffer composition in a
combinatorial space > 4 106.

RL is another technique that can be coupled with

simulations or experimental measurements. RL was
popularized by the Google DeepMind AlphaGO pro-
gram [30]. It has since been used for retro-biosynthesis
[31], synthesis planning of synthetic pathways with
green processes [32], and bioprocess optimization
[33,34]. The Monte Carlo tree search RL method,
developed for the AlphaGO program [30], is outlined in
Figure 3a in the context of retro-biosynthesis. Retro-
biosynthesis consists in finding heterologous enzymatic
reactions transforming the native metabolites of a host
strain into a target molecule. Traditional breadth-first

search retrosynthesis algorithms [35] proceed from the
target (source) to the strain (sink) applying retro reac-
tion rules (rules for reactions that have been reversed).
The process is iterated layer by layer until a pathway is
found ending in the sink. Monte Carlo tree search does
not proceed breadth-first but instead makes use of 4
phases (selection, expansion, rollout, and back-
propagation), repeated until a number of iterations are
reached. During expansion and rollout, policy networks
can be used to return the most appropriate trans-
formations for the set of molecules of the selected node.

Supervised or semisupervised methods described in
section 2 can be used to train these policy networks.

Figure 3b shows that number of targets successfully
retrieved by RL (reported in Ref. [31]) is larger than the
number obtained with a classical breadth-first algorithm
[35].

In vitro and in vivo learning
In all the applications we have seen so far, learning is
performed in silico. In this section, we are interested in
performing learning in vitro or in vivo; the main challenge
is therefore to be able to construct molecular devices
processing information the same way as the basic blocks
of machine learning programs. Two main goals motivate

this innovative learning approach. The first, rather
theoretical, is to probe to which extent cellular networks
can be engineered to learn. The second, more prag-
matic, is to develop diagnostic tools for pollutants or
diseases [45] making use of in vitro or in vivo molecular
circuits performing learning tasks like classification.
Constructing electronic-like devices in vivo has been a
long-standing endeavor of synthetic biology, and many
logic gates [36], switches [37], amplifiers [38], latches
[39], and memory devices [40] can be found in the
literature. Quite complex logic circuits can now be

constructed [39], but building a circuit that would
mimic the behavior of a machine learning code is still
out of reach. Timing consideration is also a major issue as
it takes generally half an hour (the time taken to tran-
scribe and translate genes) to pass information from one
circuit layer to another when implemented in vivo.
Considering the time already taken to train an in silico
machine learning model, trying to do this in vivo appears

Figure 2

Active learning process applied to search for alternative substrates of promiscuous enzymes.
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unreasonable. One strategy to overcome the complexity
and timing issues is to train the circuits in silico and to
construct in vitro or in vivo devices that reproduce the

behavior of the trained circuits. That strategy has
actually been followed to engineer molecular percep-
trons, which are the basic units found in artificial neural
networks. In a pioneer work, Qian et al. [41] built a 4-
input Hopfield network (a recurrent neural network)
using DNA strand displacement. This Hopfield network
was trained in silico to remember four input patterns:
0110, 1111, 0011, and 1000. Weights were implemented
changing the concentrations of the DNA strands used in
the circuits.

In a more recent work, presented in Figure 4, Pandi
et al. [42] trained a 4-input perceptron to classify 16
input patterns. Figure 4 shows a 16-input
pattern perceptron implemented through a metabolic
network expressed in cell-free systems. The input

patterns are based on the presence or absence of four
input metabolites (hippurate, cocaine, benzamide, and
biphenyl-2,3-diol). The observed behavior (relative

fluorescent unit) matches well the targeted behavior
and the kinetics model predictions (red circles). Other
classifiers can be constructed using the same setup by
simply changing the weights and the corresponding
concentrations of enzyme DNA (cf. Pandi et al. [42] for
other examples).

As the last example, a trained perceptron was
constructed in vivo to classify 12 input patterns [43].
The trained perceptron was implemented engineering
two E. coli strains: a sender and a receiver. The sender

produced quorum molecules (acyl-homoserine lactone
3OHC14:1-HSL), and the receiver was engineered to
respond on detection of these molecules by expressing a
fluorescent reporter. The perceptron weights were
instantiated by varying the promoter strength, affecting

Figure 3

Reinforcement learning (RL) with Monte Carlo tree search (MCTS) illustrated with retro-biosynthesis. (a) MCTS method. Circles represent nodes and
pentagon molecules. Selection: Starting from the root node (here, a chemical state containing the target compound), the best child nodes are iteratively
chosen until a leaf node is reached. Typical selection policies are based on exploitation and exploration. Exploitation is computed from a reward value (D)
received in previous iterations of the algorithm (nodes with high values are favored), and exploration is based on the number of times a node has been
visited (nodes with low number of visits are favored). Expansion: Possible transformations are applied on the selected node generating new children.
Rollout: If the node is not terminal (the molecules are not in the sink or the maximum number of iterations is not reached), a transformation is sampled
from available transformations and the process is repeated. If the node is terminal, a reward (if in sink) or penalty (if not in sink) is returned. Rollout is
repeated until a maximum number of steps or the maximal depth of the tree is reached. Backpropagation or update: The reward obtained after exploring
the expanded node is returned to its parents to update their values (D) and visit counts. (b) Performances for a golden set of 20 experimental pathways (cf.
[31]). With supplementation (purple) means a supplement has to be provided in the media to identify the correct experimental pathway. One step different
(dark blue) means only one step differs from the described pathway, for example, by using a different co-substrate. One step missing (light blue) means
the search algorithm found a pathway identical to the experimental one, except one step which was shortcut. Fully found (green) means the experimental
pathway was found without restriction. Not found (orange) means the experimental pathway was not found.
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the production level of the quorum molecules in the
sender strains.

Conclusion and perspectives
The use of machine learning in biology will continue
to grow. In fact, a search on bioRxiv with the key
words ‘deep learning’ returns about 450 articles
deposited each month for the last year and that
number nearly doubled between march 2020 (370)
and march 2021 (682). However, the number of
published articles actually prompting design of ex-

periments and new experimental finding is much
smaller. That number will undoubtfully increase as
machine learning techniques are being interfaced with
robotized workstations allowing automated engineer-
ing as it is currently being carried out in chemistry
with synthesis planning [44]. One area of particular
interest to synthetic biology is the development of
molecular devices enabling in vitro or in vivo learning
like the perceptrons presented in section 4. Aside
from finding practical applications with
biomarker detection and decision- making for medical

diagnostics [45], such devices could also be used to
probe to what extent molecular and cellular networks

can handle problems currently solved in silico and even
shed some light on how cognition could emerge from
basic molecular circuits, a fundamental and long-
standing question [46].

The neural networks of our brains inspired the devel-

opment of artificial neural networks; perhaps artificial
neural networks can now prompt the discovery and en-
gineering of new learning molecular devices in living
systems.
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Chapter 19

Cell-Free Biosensors and AI Integration

Paul Soudier, Léon Faure, Manish Kushwaha, and Jean-Loup Faulon

Abstract

Cell-free biosensors hold a great potential as alternatives for traditional analytical chemistry methods
providing low-cost low-resource measurement of specific chemicals. However, their large-scale use is
limited by the complexity of their development.
In this chapter, we present a standard methodology based on computer-aided design (CAD) tools that

enables fast development of new cell-free biosensors based on target molecule information transduction
and reporting through metabolic and genetic layers, respectively. Such systems can then be repurposed to
represent complex computational problems, allowing defined multiplex sensing of various inputs and
integration of artificial intelligence in synthetic biological systems.

Key words Metabolite biosensors, Transcription factors, Machine learning, CAD, Artificial neural
networks, Perceptron

1 Introduction

Metabolite biosensors emerged as a major application of synthetic
biology. Repurposing biological systems naturally present in vari-
ous organisms enabled the development of synthetic sensing
devices [1] giving rapid and inexpensive point of care measurement
of various molecules of interest levels in a broad range of samples
with applications in health [2], environment [3], industries, and
fundamental research [4]. The potential of these types of devices
lies in the fact that they are able to deliver information on the
presence and levels of certain chemicals without the need for
expensive reagents, trained operators, and large-size facilities. Tran-
scription factor-based biosensors are a subset of those sensing
devices repurposing transcription factor and inducible promoter
for the quick detection of molecules of interest.

Ashty S. Karim and Michael C. Jewett (eds.), Cell-Free Gene Expression: Methods and Protocols,
Methods in Molecular Biology, vol. 2433, https://doi.org/10.1007/978-1-0716-1998-8_19,
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Cell-free biosensors emerged as an alternative for traditional
whole-cell biosensors, solving several issues carried by these systems
[5]. Cell-free biosensors are efficient, generating big signal over
noise ratios [6]. They are suitable for the detection of molecules
toxic for bacterial growth or molecules that are not able to cross the
cell membrane. Their ability to be freeze dried on paper enables
long-term storage at room temperature without loss of activity
pushing their use as point-of-care devices, especially in low resource
communities [7]. The absence of living organisms in it is also
facilitating their industrial developments with reduced regulatory
issues and low biosafety concerns. Finally, the ability to express each
gene from distinct DNA fragments (plasmids or linear fragments)
[8] and to fine-tune their expression levels by varying their respec-
tive concentrations enable a fast development and optimization of
new biosensor candidates or more complex devices relying on
them. This central property of straightforward tuning of gene
expression is necessary for the development of the complex infor-
mation processing systems that will be described in this chapter.

The main issue encountered in the development of transcrip-
tion factor (TF)-based biosensors is the limited number of mole-
cules for which an interacting transcription factor has been
described. The list of these metabolites known to trigger transcrip-
tional response, either in natural systems or in the context of
synthetic biosensors, has been described in various databases
[9, 10] and compiled in a dataset of small molecules triggering
transcriptional and translational cellular responses [11].

In order to detect molecules for which associated transcription
factors are not available, new methodologies have been developed
relying on the use of metabolic pathways. It has indeed been shown
that enzymes could be used to convert nondetectable molecules
into molecules known to regulate a characterized transcription
factor [12]. This framework has been formalized and showcased
as the sensing-enabling metabolic pathway (SEMP) concept
[13]. This shifted the problem from finding a TF binding the
molecule of interest to finding any potential enzymatic route
between the molecule of interest and the known set of detectable
molecules. This was addressed by repurposing bioinformatic tools
traditionally used for retrosynthesis [14] into a platform able to find
potential SEMP for any molecule of interest. This web-service
called SENSIPATH is a CAD program predicting pathways of up
to two steps allowing detection for any query compounds
[15]. This approach was then used for the development of a plug
and play cell-free workflow where enzymes formalized as metabolic
transducers were used as interchangeable modules converting vari-
ous chemicals into detectable molecules called effectors [6]. Such
biosensors were found to be highly efficient, the cell-free system
potentialities allowing to reach optimal response for each biosensor
by a systematic tuning of each component involved (reporter,
transcription factor, and enzyme encoding DNA). They were also
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applied for the commercially relevant sensing of molecules of inter-
est in complex real-world samples (preservative in beverage, disease
biomarker and drug in clinical samples).

In addition to its biosensing potential, this framework has also
then been applied to the field of information processing. Indeed, the
constructed devices sensing various molecules can also be conceptua-
lized as information processing systems, converting an input signal
(the concentration of detected molecules) into an output one (the
level of protein synthesized by the reporter plasmid). This processing
device uses the continuous concentration of input metabolites as
analog signals able to be processed by the metabolic or the genetic
layer featured in the system. Multiple molecules can be continuously
converted into the same effector at the same time allowing the
construction of multi-input devices derived from analog adders.

Starting from this basis, wehave implemented amachine learning
architecture that allows integration of AI computations in cell-free
systems [16].One of the simplest architectures for signal processing is
the perceptron [17]. A single-layer neural network transforms an
input vector into an output value through the application of a
weighted sum of the input followed by a thresholding function on
the obtained result. Input data can be integrated as categorical or
numerical (discrete or continuous). This signal-processing unit has
been implemented in a cell-free system to enhance its multiplex
sensing abilities [16]. This system is indeed capable of classifying
complex samples in two categories (above or below a threshold of
the reporter gene expression) based on the recognition of certain
patterns of molecules present in those samples. A theoretical percep-
tron was first constructed and trained “in silico” to compute the
optimal set of weights required to solve a defined problem of classifi-
cation. The perceptron was then implemented in cell-free using a
molecular model, giving concentrations of enzymes coding DNA
that correspond to the weight of each input (see Fig. 1). The thresh-
olding applied through the effector biosensor dose–response curve.

Different elements of the computing unit have a defined termi-
nology: e.g., transducer, adder, actuator. A transducer, in cell-free
terms, means one or more enzymes transforming onemolecule into
another. An adder consists of several reactions having different
substrates but yielding the same compound. An actuator is simply
a way for the cell-free system to report its activity, through the
expression of a reporter gene, for example. Theoretically, many
more parameters of a cell-free reaction could be implemented in
such signal-processing manner. The diversity of elements can be
increased, as well as the number of layers in the perceptron, and the
number of detectable molecules.

Here we describe a straightforwardmethodology that details how
to use CAD tools to identify potential new biosensors for a chosen
molecule, how to build and test these biosensor candidates, and finally
how to repurpose these cell-free biosensors into signal processing
devices to implement neural computing in biological systems.
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This method to this date has been applied for the construction
of a single layer 4-input perceptron but is easily scalable for more
inputs and adaptable for more complex designs including multi-
layer perceptron and other types of computational architectures. An
example of potential implementation of a multilayer perceptron
using this system can be found in the supplementary figure 14 of
the original metabolic perceptron paper [16].

2 Materials

2.1 Preparation of

Cell-Free Extract and

Buffer

1. Extract preparation equipment.
In addition to common lab equipment, materials for the

preparation of cell extract include large-volume centrifugation
equipment (for 1 L bottles) and a French press.

2. Extract preparation media and buffers.
Cells are grown in 2YTP media (31 g/L 2xYT, 40 mM

potassium phosphate dibasic, 22 mM potassium phosphate
monobasic).

Fig. 1 Implementation of a clustering problem in a biological system through the metabolic perceptron: to
obtain a genetic device operating multiplex sensing on a set of defined clustered samples an in silico model (b)
is first trained with the input dataset (a). The results give information on the best set of DNA concentration to
implement the problem in a cell free environment (c). The device is evaluated for response to a set of samples
with various compositions (d)
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S30A and S30B buffers are also required for the prepara-
tion of the cell extract.

They are prepared with the following components:

(a) S30A ¼ (14 mM Mg glutamate, 60 mM K-glutamate,
50 mM Tris, pH 7.7).

S30A is titrated using acetic acid and 2 mM DTT is added just
before use.

(b) S30B ¼ (14 mM Mg glutamate, 60 mM K-glutamate,
~5 mM Tris, pH 8.2).

S30B is titrated using 2 M Tris and 1 mM DTT is added just
before use.

3. Chemicals for the reaction buffer.

(a) Solutions of the 20 canonical amino acids, 19 of them
concentrated at 168 mM, except leucine that is concen-
trated at 140 mM.

(b) Chemicals for the energy solution, including individual
solutions of: HEPES pH 8, ATP, GTP CTP, UTP, tRNA,
CoA, NAD, cAMP, folinic acid, Spermidine, and 3-PGA,
all of them concentrated close to their limit of solubility.

(c) Additional components for the reaction buffer including
K-glutamate solution at 3000 mM, Mg-glutamate solu-
tion at 100 mM, PEG8000 solution at 40% w/w, and
DTT solution at 1 M.

(d) Reference plasmid pBEST-OR2-OR1-Pr-UTR1-deGFP-
T500 (Addgene #40019) for reaction buffer calibration
experiments

2.2 Cloning of DNA

Parts and Production

of Plasmids

Additional materials for the construction and production of plas-
mid encoding the elements for biosensors include:

1. High-fidelity PCR material (Q5 High-Fidelity 2� Master Mix
or equivalent).

2. Template plasmid for backbone amplifications (plasmids
#114597 and #114598 from Addgene) and respective primers:

FWD primer Backbone for CDS:

FBC: cccGGTCTCtGCTTactttatctgagaatagtc.

REV primer Backbone for CDS:

RBC: cccGGTCTCtCATCatatctcttcttaaagttaaac.

FWD primer Backbone for Promoter:
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FBP:cccGGTCTCtATGCgtaaaggcgaagagctgttc.

REV primer Backbone for Promoter: RBP:
cccGGTCTCtTAAGaatagtaatacaggatccgaatcgtttcag.

3. Thermocycler.

4. TAE buffer, 50�.

5. 1% agarose gel with SYBR™ Safe DNAGel Stain or equivalent.

6. Monarch® DNA Gel Extraction Kit or equivalent.

7. Thermo Scientific NanoDrop 1000 for DNA concentration
determination or equivalent.

8. Thermo Scientific™ Savant™ DNA SpeedVac™ Concentrator
Kits to concentrate DNA if required.

9. BsaI enzyme.

10. T4 DNA ligase.

11. T4 DNA ligase buffer.

12. DH5α competent cells.

13. Lysogenic broth liquid medium for cell culture.

14. Lysogenic broth + agar solid medium and ampicillin for cell
plating.

15. Monarch® Plasmid Miniprep Kit or equivalent.

16. Macherey-Nagel™ Kits NucleoBond™ Xtra Maxi for plasmid
purification.

17. Sequencing plasmids seqF: gataggttaaggaacgg and seqR:
ttgatgcctggcaccaac for sequencing verifications of the inserts.

2.3 Running Cell-

Free Reactions

1. Plate reader equipment: Typically, Synergy HTX Multi-Mode
Reader from Biotek®.

2. 384-well black plate, optically clear polymer bottom.

3. Adhesive PCR plate seals.

4. Analytical-grade chemical powder or solution for any sensed
effector and target molecule.

2.4 In Silico

Materials

The R programming language (version 3.2.3) was used for fitting
experimental data from actuator and transducers, as well as for
defining and solving classification tasks. One can perform calcula-
tions described in Subheading 3.6. with regular computational
power, and computational clusters are not required. Other pro-
gramming languages can be used, but we recommend to use R in
order to take advantage of our git repository containing all files
from Pandi et al. work [16]. The repository is freely available here:
https://github.com/brsynth/metabolic_perceptrons/tree/mas
ter/cell_free.
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3 Methods

3.1 Identifying

Sensing Routes for a

Target Molecule

(Fig. 2)

1. Choose a target molecule to sense. Check that the molecule
you want to sense is not one of the components of the cell-free
buffer you are using (see Note 1).

2. Identify the InChi identifier or your target. To do so, you can
either search it by name on the database Pubchem (https://
pubchem.ncbi.nlm.nih.gov/) or search for the InChi in the
section Identifier. The other possibility is to go on Pubchem
sketcher: (https://pubchem.ncbi.nlm.nih.gov//edit3/index.
html) and to draw the molecule to retrieve its InChI by repla-
cing SMILEs by StdInChI.

3. Go to http://sensipath.micalis.fr/ to access the online plat-
form. Use the section “Query with a Standard InChI” and
paste the InChI of your molecule.

4. Run the tool first for one step pathways. If the results are not
satisfying, you can run a second attempt for two step pathways.

Fig. 2 CAD pipeline for Cell-Free biosensor Design. Main steps of the biosensor design and construction
process are presented, from the identification of the chemical identifiers for the target molecule, to the cloning
of the DNA parts in plasmids. The sensipath results showed here are the output given for a query of 1 step
detection potentialities for cocaine
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This can be the case if no pathway to a detectable molecule
(in green on the graph view) is identified or if the identified
detectable molecule is nonsuitable for cell-free biosensors
(components of the cell-free buffer) (see Note 2).

5. Identify the promising effector molecules from the “Pathways
view” section.

If the molecule you want to sense appears in green, it
means it is directly detectable without need for enzymatic
conversion. For developing a biosensor for it you can skip the
enzyme-related steps.

6. Download the database of detectable molecules from: https://
github.com/brsynth/detectable_metabolites and isolate the
lines corresponding to the identified effector. First identify
transcription factor that interacts with your component. You
can use column E to retrieve the names of it or, if this informa-
tion is not available, use the column B that contains literature
reference of papers describing potential sensing mechanisms
for the molecule.

7. Once you find a TF of interest, you have to find the promoters
that are potentially regulated by it. To do so, you can search for
it in databases such as RegulonDB (http://regulondb.ccg.
unam.mx/) for E. coli and Subtiwiki (http://subtiwiki.uni-
goettingen.de/) for B. subtilis. You can also try a naive biblio-
graphic search for this regulator to identify features linked to it
like regulated promoters but also mechanism of action and
possible existing design of biosensors using it.

8. Identify the enzymes converting the molecule you want to
sense into the effector for which you found a TF. By clicking
on the edges from the SENSIPATH graph view, you can
retrieve the references associated with the enzymatic reaction
of interest. From this point using cross-references between
databases or identifiers such as EC number, you can find
enzyme candidates in UNIPROT with described catalyzed
reactions matching your expectations. You can also use the
computational tool Selenzyme (http://selenzyme.syn
biochem.co.uk/) with SENSIPATH provided references to
find potential hits for other enzymes candidates (see Note 3).

9. Retrieve DNA sequences for the identified parts. TF and
enzymes sequences can be codon optimized using any of the
available tools. Promoter sequence is often defined as the
200 nucleotides before the start codon of a regulated gene.
For troubleshooting purposes, various size promoters can be
synthesized to test for their response to the TF and their
transcription initiation ability (see Note 4).
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3.2 Constructing

Candidate Biosensors

Plasmids

1. Synthesize the previously isolated sequence of your transcrip-
tion factor, its regulated promoter, and any enzyme required to
convert the molecule you want to detect into the TF binding
effector.

2. Design and orders primers for golden gate cloning of the
synthesized parts. Genes (TF and enzymes) require overhangs
in the format:

FWD: ccGGTCTCtGATG. . . . REV: ccGGTCTCtAAGC. . . .

Promoters require overhangs in the format:

FWD: ccGGTCTCtCTTA. . . . REV: ccGGTCTCtGCAT. . . .

3. Run high fidelity PCRs to amplify with the correct golden gate
overhangs the vectors and the synthesized inserts. The reaction
typically consists of pipetting 25 μL of 2� Q5® polymerase
master mix, 2.5 μL of FW and RV primer at 10 μM, 1 μL of
template DNA (at concentration around 100 ng/μL), and
19 μL of water.

This mix is then typically incubated in a thermocycler
applying the following program: 30 s at 98 �C then 35 cycles
with (10 s at 98 �C, 30 s at Tm +3 �C, 30 s/kb at 72 �C) then
2 min at 72 �C. Tm beings the lowest melting temperatures of
the two primers and kb being the size of the amplicon in kilo
bases. Use primer pairs FBP/RBP on the template plasmid
114598 to reamplify the linearized reporter backbone and the
primers FBC/RBC on the template plasmid 114597 to ream-
plify the linearized backbone for enzyme or TF. Use the newly
designed primers from step 2 on the synthesized parts from
step 1 to reamplify the inserts.

4. Run an electrophoresis on the PCR product on a 1% agarose
gel stained with SYBR safe using an appropriate DNA ladder to
be able to discriminate your amplicon by its size. After an
approximate time of 30 min at 100 V, identify and cut the
band of the expected size by imaging on a blue-light
transilluminator.

5. Recover the DNA from the Gel using a DNA Gel extraction
kit, following the kit’s instructions to purify your DNA frag-
ment. Determine the titer of purified DNA using a NanoDrop
spectrophotometer.

6. Prepare a golden gate reaction to insert each fragment in its
respective backbone (see Note 5). To do so, you need to
calculate the molarity of your DNA. You can use the tool
available at https://nebiocalculator.neb.com/#!/dsdnaamt
using the NanoDrop determined concentrations of each pur-
ified DNA fragment. For the golden gate reaction, incubate
100 fmol of insert with 50 fmol of linearized backbone in a
tube with 1 μL T4 DNA ligase, 1 μL BsaI enzyme, 2 μL T4
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DNA ligase buffer, and water to adjust the volume to 20 μL.
Incubate the mix at the 37 �C for 1 h and then 16 �C for 5 min
(see Note 6).

7. Transform DH5α competent cells with the golden gate reac-
tion product. Incubate 5 μL of golden gate product with 50 μL
chemically competent cells at 4 �C for 30 min.

8. Heat-shock at 42 �C for 45 s.

9. Incubate at 4 �C for 3 min.

10. Add 300 μL LB media and incubate at 37 �C for 1 h.

11. Finally spread 100 μL of the final mix on LB agar + ampicillin
(100 μL/mL) plates and incubate overnight at 37 �C.

12. Small-scale culture for screening:

(a) Select 4 colonies per assembly and inoculate them in 3 mL
LB medium + ampicillin (100 μL/mL) overnight.

(b) Purify the plasmids from 2 mL the bacterial cultures using
a plasmid miniprep kit and use the primers seqF and seqR
to check the integrity of each cassette by Sanger
sequencing.

(c) Save one correct clone per construction by freezing the
rest of the liquid culture at �80 �C after addition of
glycerol to final concentration of 25%.

13. Large-scale culture for plasmid production. You will require
big quantities (>100 μg) of each plasmid to run the cell-free
reactions for the characterization and optimization of each
biosensor candidate (seeNote 7). To do so, you have to realize
large-scale culture and plasmid extraction for each
construction.

(a) Inoculate 300 mL of LB + ampicillin (100 μL/mL) from
the �80 �C glycerol stock and grow the cells overnight.

(b) Pellet the cells by spinning them at 6000� g for 15 min at
4 �C.

(c) Use the Maxiprep kit to recover plasmid DNA from the
pellet.

(d) After the last step of your purification, resuspend the
precipitated DNA in 200 μL pure water in order to have
a final solution at high concentration.

(e) Measure the final concentration using a nanodrop and
adjust it at 1 μM by either diluting it with water or con-
centrating it using a SpeedVac machine.

3.3 Preparing in

House Cell-Free

Extract and Buffer

The method briefly described here is adapted from a widely used
protocol [18] of 3-PGA powered cell-free mix with minor modifi-
cations mostly concerning the lysis method and the starting strain.
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3.3.1 Extract Preparation 1. Inoculate BL21* cells from an overnight culture in 4 L of
2YTP medium.

2. Stop the culture at OD 2 and pellet the cells by centrifugation
for 12 min at 5000 � g at 4 �C in 4-L bottles.

3. Rinse the cells twice by successive resuspension/centrifugation
steps with 250 mL of S30A buffer.

4. Resuspend the pellets in 40 mL of S30A buffer and transfer the
suspension to preweighed 50-mL Falcon tubes.

5. Centrifuge the tubes at 2000 � g at 4 �C during 8 min, discard
the supernatant, and after weighing the pellets freeze them
overnight at �80 �C.

6. Thaw the cell-pellet on ice, weigh the pellet, and resuspend
them in 1 mL of S30A buffer per gram of cell pellet.

7. Lyse the cells by passing the whole flow once through a French
press at 15,000 psi (see Note 8).

8. Centrifuge the lysate at 12,000 � g at 4 �C during 30 min.

9. Incubate the supernatant for 1 h at 37 �C with a 220 rpm
shaking before a second centrifugation at 12,000 � g at 4 �C
during 30 min.

10. Transfer the supernatant to a 12–14 kDa MWCO dialysis
cassette and incubate the cassette overnight in 2 L S30B buffer
at 4 �C (see Note 9).

11. After a last centrifugation at 12,000 � g 30 min 4 �C, aliquot
the supernatant (500 μL in 1.5-mL tubes) and flash-freeze
them in liquid nitrogen before storing at �80 �C.

3.3.2 Buffer Preparation 1. Starting from individual solutions of chemicals dissolved in
pure water (described in detail in the original paper [18]),
prepare an amino acid (at 4� concentration) and an energy
solution mix (at 14� concentration) that will be used for buffer
preparation. The amino acid mix has to be prepared by mixing
all the 20 canonical amino acids at a final concentration of
6 mM except for leucine at 5 mM. Prepare energy solution
with HEPES pH 8 700 mM, ATP 21 mM, GTP 21 mM, CTP
12.6 mM, UTP 12.6 mM, tRNA 2.8 mg/mL, CoA 3.64 mM,
NAD 4.62 mM, cAMP 10.5 mM, folinic Acid 0.95 mM, Sper-
midine 14 mM, and 3-PGA 420 mM. Store each mix at
�80 �C.

2. Using previously prepared extract, amino acid mix, and the
energy solution, you will have to evaluate in this order the
best concentration of: (a) Mg-glutamate, (b) K-glutamate,
(c) DTT, and (d) PEG8000 to add to your buffer to optimize
the protein production of your extract. You will run four con-
secutives calibration experiments of 8 h cell-free reactions. For
each calibration, prepare a master mix for 12 reactions by
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mixing 88 μL extract, 66 μL amino acid mix, 18.86 μL energy
solution, and 13.2 μL of the Addgene plasmid #40019 con-
centrated at 200 nM. Add the remaining three components
that you are not calibrating for from the following four
(Mg-glutamate, K-glutamate, PEG8000, and DTT) at either
a starting concentration (if the optimum has not been deter-
mined yet) or the optimal concentration determined in a pre-
vious step. Finally, add water to this mix to reach a final volume
of 237.6 μL. Prepare each calibration reaction by mixing in
PCR tubes 19.8 μL of the master mix with 2.2 μL of the tested
component concentrated at 20�. Then, take 20 μL from each
PCR tube and pipette them inside individual wells of a
384-well microplate before incubating the plate for 8 h while
measuring GFP signal produced (ex: 458 nm, em: 528 nm).

The concentration that leads to the highest GFP signal at
8 h is identified as the optimal one to be used for future
calibrations and run.

The starting concentrations for each component are the
following ones: (6 mM for Mg-glu, 80 mM for K-glu, 0 for
DTT, and 2% for PEG8000).

The tested concentrations for each component are the
following:

Mg-glu: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 mM}.

K-glu: {0, 20, 40, 60, 80, 100, 120, 140, 160, 180 mM}.

DTT: {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 mM}.

PEG8000 {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4%}.

3. Prepare the final buffer mix that will be used for running the
cell-free reactions. The following quantities are for 1 tube of
650 μL (you need to scale up to have two tubes of buffer for
1 mL of final extract produced): per tube of buffer, add
128.97 μL of amino acid mix, 110.54 μL of energy solution,
PEG8000, K-glu, Mg-glu, and DTT according to the best
determined concentration and pure water to adjust the volume
to 650 μL.

3.4 Running Cell-

Free Reactions

All the cell-free experiments in the following parts should be run
according to the same methodology. This method is for the prepa-
ration of N number of 20-μL cell-free reactions. All the following
reactions have to be prepared on ice and have to be run in technical
triplicate.

1. Thaw your cell-free reagents (extract and buffer) on ice.

2. Predilute your DNA and inducer stock: You will prepare 22-μL
reactions each with 7.33 μL of extract, 9.17 μL of buffer, and
5.5 μL of other components (DNA plasmids, inducer(s) and
water to adjust). The easiest way to proceed if you have less
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than five different components to add per reaction is to make
20� solutions of the plasmids and inducers you want to use to
add 1.1 μL of those to the reaction.

3. Prepare your cell-free master mix for (N + 15%) reactions to
compensate for the pipetting loss. Add (7.33 * (N + 15%)) μL
of cell extract and (9.17 * (N + 15%)) μL of buffer to a single
1.5-mL tube.

4. Mix by briefly vortexing.

5. Pipette 16.5 μL of that mix in N PCR tubes (in strips).

6. Add the respective other inputs (plasmids, inducers, water. . .)
from the 20� stocks, to each PCR tube up to 22 μL.

7. Close these tubes and mix them by briefly vortexing and bench
centrifugation.

8. Pipette 20 μL from each tube to a well of a black 384-well plate
prechilled.

9. Then cover the plate with a transparent sealing film.

10. Using a plate reader, monitor the green fluorescence (ex:
458 nm, em: 528 nm) at various gains during a 12-h
kinetic run.

3.5 Cell-Free

Biosensors

Characterizations and

Optimizations

In order to obtain the best possible biosensor response for our
target, we need to first develop an efficient biosensor for the TF
binding effector, before optimizing the enzymatic conversion of
our target molecule into our effector.

The first step is aimed to screen for any potential response of
designed candidate biosensors and to answer two questions: first, is
there any interaction between the TF expression and the level of
expression of the reporter, and then is this interaction modulated in
any way by the effector that we are trying to detect. To answer
those, you need to characterize the behavior of the reporter plasmid
in a cell-free reaction in presence or absence of transcription factor
and in presence or absence of effector. If you have identified multi-
ple candidates for the sensing of the same molecule, this first
experiment can also be used to decide what are the TFs and the
promoters most promising for the next steps.

1. Run cell-free reactions varying the quantity of added plasmids
and chemicals in the following possibilities: Reporter DNA
concentration at 0 or 30 nM, TF DNA concentration at 0 or
30 nM, and inducer concentration at 0, 100 μM, or 1 mM.

2. Use end point kinetics results at 8 h to evaluate the potential
mechanism of your TF (activation or repression) and a possible
response of your system to the inducer.

3. Find the optimal plasmid concentration for the reporter and
TF that results in a maximal response for your biosensor. With
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three concentrations of inducer (0 μM, 100 μM, and 1 mM),
test a combination of concentrations gradients for the added
plasmid DNA varying reporter and TF DNA concentration on
a logarithmic scale (0, 0.1, 0.3, 1, 3, 10, 30, and 100 nM).

4. Using the previously determined best pair of plasmid concen-
tration, evaluate the inducer dose–response of the constructed
sensor. Run a cell-free experiment with inducers concentration
at: 0 nM, 0.5 nM, 1 nM, 2 nM, 5 nM, 10 nM, 20 nM, 50 nM,
100 nM, 200 nM, 500 nM, and 1000 nM. Dose–response
curve is obtained by plotting (fluorescence at concentration�/
fluorescence at concentration 0) for each datapoint. Use the
final results obtained to assess the performance of the devel-
oped sensor and its conformity with your objective of sensitiv-
ity (see Note 10).

5. Once you have a satisfying sensor for your effector, you can
start screening for enzymes candidates to convert your target
into this effector. The first experiment to do consists of screen-
ing for any potential activity on each of the selected enzymes
candidates. Prepare a cell-free experiment with the previously
identified best concentration for reporter and TF DNA, vary-
ing enzyme DNA concentration at 0 nM or 10 nM, and the
molecule of interest at 0 mM or 1 mM.

6. Select the best enzyme candidate and optimize the expression
of the enzyme on a dose–response curve (same concentrations
as in step 3) by varying the DNA concentration coding for the
enzyme on the scale of 0, 0.1, 0.3, 1, 3, 10, 30, and 100 nM.

3.6 Design, Build,

and Test a Perceptron

1. Define the architecture of the perceptron based on input mole-
cules. There are two possibilities depending on the level of
constraints you have with the input molecules. If you want to
implement a computing device with a defined behavior but
without any constraint on the nature of the inputs, you can
reprogram the already developed benzoate-based perceptron
[16] to implement your desired computational function.

2. If you are interested in multiplexed sensing for defined mole-
cules, you need to identify a common effector they can be
converted into. You can use SENSIPATH with a reaction
length of 2 to increase the chance to find a product accessible
from the two or more substrates. Some central molecules
(lactate, acetate, hydrogen peroxide, ammonium. . .) may be
useful for that purpose but a specific attention has to be put
on the development of biosensors with high dynamic range for
these molecules with potential high-noise issues related to their
central positions on the metabolic networks.

3. Create and fit the cell-free model. It can be decomposed in two
parts: actuators and transducers.
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4. An actuator is modeled with a modified Hill function; com-
monly used in biochemistry for simulating the binding of
ligands to proteins according to the ligand concentration.

Actuator totalð Þ ¼ totalð Þhilla
KMð Þhilla þ totalð Þhilla

� fcþ 1

 !
� basalþ lin

� 0:0001� total

Function description:

– total: Concentration of input metabolite in μM.

– KM: Concentration of input metabolite yielding half of the
maximum induction of the system (also called IC50).

– hilla: Hill coefficient characterizing the cooperativity of the
induction system.

– fc: Stands for fold-change, corresponds to the dynamic
range (in Arbitrary Units) of the system.

– basal: Basal GFP fluorescence signal without input, i.e., the
background noise of the system.

– lin: Accounts for the linearity of the system when dealing
with concentrations saturating the Hill transfer function.

5. A transducer is also modeled with a particular Hill function:

Transducer inputð Þ ¼ rangeenzyme �
Eð ÞnE

KEð ÞnE þ Eð ÞnE

� �

� inputð Þninput

KIð Þninput þ inputð Þninput

� �

Function description:

– input: Input metabolite concentration in μM.

– range_enzyme: Coefficient characterizing the capacity of the
enzyme to transduce the signal (dimensionless).

– E: enzyme concentration in nM.

– KE: Hill constant for enzyme concentration E.

– nE: Hill constant for enzyme concentration E.

– KI: Hill constant for input metabolite input.

– ninput: Hill constant for input metabolite input.

We recommend at least some inspiration from our fitting process
described in the notes section (see Note 11) as it puts an
emphasis on tackling the loss of signal of the actuator when
the whole system is modeled then implemented. Otherwise,
one can adapt another fitting process for a particular project’s
needs.
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6. Measure the model’s performance with different metrics: root
mean square deviation (RMSD); R2; weighted R2; error
percentage.

Ensuring high metrics (e.g., above 0.9 for scores between
0 and 1) on many experimental data points guarantee a robust
model for predicting the weights schemes for each
classification task.

7. Define your classification problem. Start by defining a set of
tasks (here, classifications), which outputs either 0 (OFF) or
1 (ON); as well as a set of weights to be tested (equivalent to a
range of possible enzyme concentrations in the cell-free exper-
iment, for our work it was between 0.1 and 10 nM).

8. Continue by sampling uniformly input values for your prob-
lem, that is to be resolved by the perceptron. For example, in
the case of a binary classification of solutions composed of
hippurate and cocaine, sample points in a given range, either
for a “low” concentration or a “high” concentration for each of
the compounds. Here, let us assume we can sample between
0 and 2 μM for low concentrations and between 80 and
100 μM for high concentrations.

9. For each of the two clusters, choose to sample either in the low
or high range for each compound.

10. Then, two clusters have been produced and a binary classifier
can be easily defined on these points: the perceptron set of
weights and its corresponding fluorescence threshold. Please
find a visual example of the definition of a classification task on
Fig. 3. Further is detailed how to find the set of weights and
the fluorescence “decision threshold.”

11. Predict the best set of weights for solving this problem (aka
“train” the perceptron on a classification task). Using the
previously fitted (part 2) and benchmarked (part 3) model,
simulate all possible input combinations with all possible sets
of weights.

12. Screen for performant set of weights, i.e., those enabling a
sharp threshold between the output states of the system
(“ON” or “OFF”). Several thresholds can be tested for con-
sidering an output value as ON or OFF, for all possible
simulations.

13. Manually select the best set of weights and corresponding
threshold, i.e., those that show the highest and clearest differ-
ence between ON and OFF behaviors, and in most scenarios.
Also, prefer those showing low enzyme concentrations
(to avoid resource competition). One can also test several
possibilities (several sets of weights and/or thresholds) in
the following cell-free experiments.
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14. Implement the designs predicted as best ones, to test it in a
cell-free reaction. Start by drawing a test set of chemical
(input) combinations from the compositions used for the
training of the in silico perceptron. Be cautious to evaluate
enough points from the space of possibilities to capture the
behavior of your system. If your perceptron is designed to
solve the particular problem of binary inputs sample classifica-
tions, you can eventually build a complete test set with all the
possible combinations of inputs (see Fig. 1d).

15. The designed test set can be prepared at 20� concentration in
PCR tube strips to be evaluated on various perceptron imple-
mentations. We advise you to prepare a single master mix with
the cell-extract, the buffer, and the DNA coding for the
reporter system and the various transducers at the desired
concentration for each implementation of the perceptron that
you designed.

16. Use this master mix to evaluate the response of the system on
the chemical test set previously designed. If the perceptron
does not have the expected behavior from in silico analysis,
try another set of weights.

Fig. 3 Visual example of a binary clustering with a metabolic perceptron. This
figure has been copied from supplementary material of Pandi et al. [16] with
authorization from the authors. The X-axis shows the normalized concentration
of cocaine in a sample, and the Y-axis shows the normalized concentration of
Hippurate in a sample. Here, the blue points drop into the first cluster (“high
Hippurate, low cocaine”) and the red ones drop into the second cluster (“high
cocaine, high hippurate”). Colors of the points correspond to the predicted RFU
values by the fitted perceptron (after Subheading 3.6, part 3 is done). The three
vertical lines correspond to three isofluorescence lines; equivalent to three
fluorescence thresholds, each of them being associated with one set of
weights of the perceptron (i.e., [HipO]: 0.03 nM and [CocE]: 0.3 nM)
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4 Notes

1. Most of the molecules present in the cell-free buffer are in high
concentration masking any potential response for a biosensor
designed to detect them. This list includes all the 20 amino
acids, HEPES, ATP, GTP, UTP, CTP, tRNA, CoA, NAD,
cAMP, folinate, spermidine, 3-PGA, magnesium, potassium,
and DTT.

2. If you cannot find satisfying results with the software SENSI
PATH, you can try to find other SEMP using the retrosynthesis
workflow Retropath [14]. It has the advantage to allow predic-
tion for pathways with more than two steps or pathways using
promiscuous activity of enzymes to find potential new reac-
tions. To run Retropath for biosensor design, use the list of
detectable molecules [11] as Sink, the molecule you want to
detect as source and the reaction rules in the forward direction.
Results coming from this workflow have to be taken with more
care as it relies on less-reliable predictions.

3. The Selenzyme tool is predicting potential enzymes catalyzing
a defined reaction based on similarity of sequences, reactions or
other features existing between enzymes from a well-annotated
database and enzymes potentially catalyzing the query reaction.
The predictions should be manually checked in published liter-
ature/datasets to evaluate if the identified enzyme can likely
catalyze the given reaction.

4. The methodology described here is a standard to be used in the
case where the identified promoter has limited annotation or
features described. You are strongly encouraged to search for
existing biosensing projects described in the literature that uses
the same transcription factor with defined size promoters or
synthetic ones (built by inserting TF-binding sequences in
another promoter) as these promoters may show a better
response than the natural ones.

5. Golden gate assembly was chosen over other methods like
Gibson assembly as it allows reusing the same primers to ream-
plify backbone for every new insert cloned.

6. This thermocycler protocol for golden gate is a variation of the
fast golden gate assembly protocol (1 h 37 �C, 10 min 55 �C)
that is adapted to backbone plasmid containing internal bsaI
cut sites. Removing the last 55 �C step and adding one at 16 �C
for 5 min avoid cutting the final assembly containing the
BsaI site.

7. DNA batch can have an influence on its expression level in cell-
free limitating reproducibility of results from one maxiprep to
another. You are advised to purify each plasmid in a big enough
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quantity for running all your experiment with a single batch. If
necessary, run multiple maxiprep in parallel and mix the result-
ing DNA to have a sufficiently large quantity of plasmid.

8. Sonication and autolysis have also been successfully tested as
lysis methods on this protocol for the development of cell-free
biosensors with good results. The French press method has the
advantage of being easily scalable for the production of large
quantity of extract but if you lack the equipment for it you can
adapt the protocol to any other lysis method.

9. In our experience, the dialysis does not show a major impact on
behavior of the final extract. For optimization purposes, dia-
lyzed and nondialyzed extract can be screened to find the
condition giving the best response for specific biosensors.

10. If you plan to use this effector biosensor for indirect detection
(using metabolic transducers) or for multiplex sensing
(through a perceptron like architecture), you may want to
have it optimized for the detection of inducers present at a
lower concentration than what you need for your target mole-
cule as the transduction of the signal through the enzymatic
layer often goes with a decrease of sensitivity and an increase of
potential noise.

11. Once these functions are encoded in R, the actual fitting can
happen.

First, fit the actuator experimental data (effector dose–
response curve obtained in part 3.5 Subheading 3) to the
Hill function model.

To do so, fit 100 times the actuator experimental values to
the actuator model. Let all parameters be able to vary. Use
ordinary least-square error or the R “optim” function (that
uses the Limited-memory Broyden Fletcher Goldfarb Shanno
algorithm) as the objective function for the data fitting. Keep
the seed of the fitting process in memory so it ensures repro-
ducibility. Retrieve fitted parameters for each fitting
(a population of 100 sets of fitted parameters will be pro-
duced). From this population, save the mean, standard devia-
tion, standard error, and confidence interval; for each
parameter.

To account for the decrease of signal in experimental actu-
ator data when the whole system is implemented in cell-free,
one needs to fit the transducer model in a specific way.

To fit the transducers models, we need to actually fit the
whole model to the whole system’s cell-free experimental data.

In order to have a coherent perceptron, we will actually
constrain the actuator’s parameters, then fit all transducers and
the actuator together.
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To do so, start by constraining each of the actuator’s
previously fitted parameters with bounds corresponding to
the 95% confidence interval; or +/� one standard deviation
from the mean, in the case of following parameters: the fold-
change, termed “fc,” and the baseline, termed “basal.”

We call “pseudo-experimental” the data used to fit the
whole system, but that originates from specific components’
experimental data. These individual data were aggregated as
described in the whole-system model: combine transducers
data by simply adding their output and feeding the sum to
the actuator. Note that in the cell-free experimental system, the
same process happens, e.g., benzoate concentrations are added
as a result of all transducers yielding benzoate, and the actuator
takes this aggregated benzoate concentration as an input. As a
result, we obtain “pseudo-experimental” data for the whole
cell-free system, with experimental data only available for each
component separately.

Once your whole system is modeled and you have con-
strained your actuator’s parameters, you can fit your transducer
parameters. Initialize the whole model by drawing actuator
parameters values according to a Gaussian distribution cen-
tered on the mean of the parameter estimations, with a stan-
dard deviation equal to the standard error of this parameter
estimation. Let all transducer parameters vary to fit the whole
system to the previously described “pseudo-
experimental” data.
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ARTICLE

A versatile active learning workflow for
optimization of genetic and metabolic networks
Amir Pandi 1,9✉, Christoph Diehl1,9, Ali Yazdizadeh Kharrazi2, Scott A. Scholz 1, Elizaveta Bobkova1,
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Nicole Paczia4, Niña Socorro Cortina1,5, Jean-Loup Faulon3,6,7 & Tobias J. Erb 1,8✉

Optimization of biological networks is often limited by wet lab labor and cost, and the lack of

convenient computational tools. Here, we describe METIS, a versatile active machine learning

workflow with a simple online interface for the data-driven optimization of biological targets

with minimal experiments. We demonstrate our workflow for various applications, including

cell-free transcription and translation, genetic circuits, and a 27-variable synthetic CO2-

fixation cycle (CETCH cycle), improving these systems between one and two orders of

magnitude. For the CETCH cycle, we explore 1025 conditions with only 1,000 experiments to

yield the most efficient CO2-fixation cascade described to date. Beyond optimization, our

workflow also quantifies the relative importance of individual factors to the performance of a

system identifying unknown interactions and bottlenecks. Overall, our workflow opens the

way for convenient optimization and prototyping of genetic and metabolic networks with

customizable adjustments according to user experience, experimental setup, and laboratory

facilities.
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The understanding and engineering of biological systems
require practical and efficient experimental and computa-
tional approaches1–5. Machine learning algorithms hold a

big promise for the study, design, and optimization of different
biological systems6–9, including genomics studies10–12, protein,
enzyme and metabolic engineering4,13,14, prediction and optimi-
zation of CRISPR sequences and proteins15–18, as well as complex
genetic circuits design and optimization19–21. Yet, applying
machine learning is limited by the need for informatics expertise
and large user-labeled datasets, which are typically time-, labor-
and cost-intensive.

Active learning, sometimes called optimal experimental
design22,23, is a type of machine learning that interactively sug-
gests a next set of experiments after being trained on previous
results24. This makes active learning valuable for wet-lab scien-
tists, especially when dealing with a limited number of user-
labeled data25. Active learning approaches reduce experimental
time, labor and cost and have been used in cellular imaging26,
systems biology27, biochemistry28–30, and synthetic biology31.
Despite these examples, a challenge in applying active learning
methods for experimental biologists is the lack of customizable
programs and workflows.

Here, aimed at democratization and standardization, we
describe METIS (Machine-learning guided Experimental Trials
for Improvement of Systems, named after the ancient goddess of
wisdom and crafts Μῆτις, lit. “wise counsel”), a modular and
versatile active machine learning workflow for data-driven opti-
mization of a biological objective function (an output/target that
depends on multiple factors) with minimal datasets. Note that,
active learning for optimizing a system is also known as Bayesian
optimization. We created METIS for experimentalists with no
experience in programming, who can use the entire process of
personalized active learning, experimental setup, data analysis
and visualization without any advanced computational skills.
METIS runs on Google Colab, a free online platform to write and
execute Python codes developed for education, data science, and
machine learning purposes32. The open platform does not need
any installation/registration and local computational power and
can be simply used via a personal copy of the respective notebook.

To establish the workflow, we first assessed the performance of
different machine learning algorithms on a minimal training
dataset and experimentally validated the best performing algo-
rithm (XGBoost) by optimization of an in vitro cell-free tran-
scription-translation (TXTL) system of Escherichia coli that is
commonly used in cell-free synthetic biology for a variety of
applications33, including biosensor development34, metabolic
pathway prototyping35, and gene circuit design36. We then
developed the modular architecture of METIS for user-defined
applications through the customization of different parameters
and factors.

We showcase the versatility of METIS on various biological
systems, starting with an in vitro gene circuit. Cell-free gene
circuits have recently received attention (e.g., as biosensors), but
are still limited in their applicability due to their poor
performance34,37. Applying our workflow, we could improve the
activity of a recently reported LacI-based multi-level controller38 by
two orders of magnitude, notably by identifying and overcoming a
fundamental bottleneck (i.e., resource competition) in the design of
the system. We further demonstrate ten-fold improved protein
production from an optimized transcription & translation unit,
demonstrating that our workflow can be used for biological
sequences based on categorical factors (i.e., combinatorial variants
of a T7 promoter, ribosome binding site (RBS), N- and C-terminal
amino acids). Finally, we use METIS to improve a complex
metabolic network, the so-called crotonyl-CoA/ethylmalonyl-CoA/
hydroxybutyryl-CoA (CETCH)39 cycle, a new-to-nature synthetic

CO2-fixation cycle, comprising 17 different enzymes plus 10 dif-
ferent cofactors and components, which was shown to be (ther-
modynamically) more efficient compared to natural
photosynthesis. Yet, the network’s full kinetic potential had not
been exploited, as efficient strategies to explore its combinatorial
space had been lacking so far. Using METIS allowed us to improve
productivity of the CETCH cycle by ten-fold with (only) 1,000
experiments, resulting in the most efficient CO2-fixing in vitro
system described to date. Overall, these results demonstrate the
ability of our workflow for the optimization of various complex
biological networks with minimal experimental efforts, providing
multiple opportunities for the study and engineering of different
biological systems in the future.

Results
Assessing the performance of different algorithms for our
workflow. We first tested which machine learning algorithm
would perform best with a limited number of experimental data
typical for a standard research lab setup. To that end, we took
advantage of an existing dataset from a recent optimization of an
E. coli extract-based in vitro TXTL system31. In their study,
Borkowski et al. optimized cell-free protein production in E. coli
lysate by varying 12 different factors including salts, energy mix,
amino acids, and tRNAs, and measuring production yield of Gfp
(produced by a plasmid expressing Gfp) as output. Altogether, the
dataset encompassed around 1000 data points. We fitted the
dataset to obtain a standard as a gold regressor (a reference model
fitted on pre-existing experimental data to evaluate new algo-
rithms) and divided it further into test and training sets, with 20%
and 80% of data, respectively. While the latter set was used to
train the model, the test set was used to validate the gold regressor
(Methods).

We used the gold regressor to assess the performance of four
different machine learning algorithms over 10 rounds of active
learning (Fig. 1a). The tested algorithms included deep neural
networks (DNN), multilayer perceptrons (MLP), linear regres-
sors, and XGBoost gradient boosting, which all show different
capabilities for a given problem set and its data sample size. Over
10 rounds of active learning with 100 data points in each round,
XGBoost and linear regressors showed better performance
(Fig. 1b) compared to DNN and MLP, which generally need
larger datasets for training40. XGBoost outperformed linear
regressors when fewer data points per round were used
(Supplementary Fig. 1).

XGBoost is an improved random forest-type algorithm,
working through gradient boosted decision trees41 by aggregating
and compiling sets of models. This algorithm is a sparsity-aware,
fast, scalable as well as versatile model for handling tabular data
with complex non-linear interactions41. These features make
XGBoost a promising algorithm for machine learning applica-
tions on different biological systems with limited datasets. For our
workflow, we therefore selected XGBoost, which has also been
used for different biological applications previously18,42,43. To
determine the minimum dataset required for optimization, we
compared active learning rounds with 5, 10, 25, and 100 data
points. Notably, a sample size as low as 10 data points still
allowed sufficient yield optimization (i.e., in the scale of the
original study31) within 10 learning cycles (Fig. 1b).

Testing the workflow with minimal experimental work. Having
validated the workflow with an existing data set, we next sought
to test it in a real-world experimental setup, simulating a situation
in which the number of combinations that can be tested is limited
by available equipment, readout and experimental cost. We chose
(again) to optimize relative Gfp production (yield) in an E. coli
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lysate TXTL system (Fig. 1c) that consists of 13 variable factors
(components).

To optimize composition of the TXTL system, we defined a
concentration range for each of the 13 factors (Code availability),
and performed an active learning process over 10 rounds
with only 20 experiments per round (Fig. 1d, see Supplementary
Note 1 for details) quantifying Gfp yield (i.e., Gfp fluorescence
reported from each composition normalized by the Gfp
fluorescence of the standard composition33), as objective func-
tion. Over 10 rounds of active learning, the relative yield
increased up to 20 and the median increased from zero to over
10 in the 9th round (Fig. 1e, see also Supplementary Fig. 2). Note

that low-yield data points (even those observed in the late
learning cycles) are equally informative as high-yield ones,
because they allow to explore the landscape around and beyond
local maxima, as defined by the exploration to exploitation ratio
of our workflow that we fully discuss in Supplementary Note 2.

Beyond the simple optimization of a given system, our
workflow can also quantify the contribution of different factors
during optimization. Figure 1f represents feature importance, i.e.,
the effect of each individual factor on the objective function. The
importance is given as a relative fraction (or percentage) in the
prediction of the values of the objective function by the model,
with the sum of all factors set to 100%. Our analysis showed that
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tRNA mix and Mg-glutamate were the most important
components in optimizing Gfp yield, while cAMP and NAD
were the least important contributors. Figure 1g shows the
distribution of Gfp yield at different concentrations of individual
factors (see also Supplementary Fig. 3). Decreasing concentra-
tions of tRNA and NTP mixes correlated with high yield, while
PEG 8000, Mg-glutamate, 3-PGA, folinic acid, and spermidine
showed similar effects at increasing concentrations. Together,
these data did not only result in an optimized TXTL system but
also allowed to identify the most crucial components during
system optimization, providing the basis for a deeper under-
standing of the system itself. All combinations and yields are
provided as results files for each experimental round (Data
availability), and the Google Colab notebook with all analyses
and visualization modules are also accessible (Code availability).

Development of METIS, a user-friendly, versatile modular
workflow. After demonstrating that our workflow is capable of
working efficiently with minimal datasets, we sought to build
METIS, a modular architecture that can be easily applied for the
optimization of different biological objective functions. We
implemented our workflow in Google Colab Python notebooks
that can be accessed by the user—without installation or regis-
tration—simply through a personal copy of the notebook from a
web browser. Defining the objective function and the variable
factors (Fig. 2a), the user can simply open the link of Google
Colab notebook and directly use the workflow as shown in
Fig. 2a, b, Supplementary Figs. 4–6.

In Supplementary Note 2, we provide a detailed description of
all features of METIS. The modular workflow enables the use of
factors with numerical values (examples in Figs. 1, 3 and 5),
categories (examples in Fig. 4, Supplementary Fig. 19), or both
(example in Figs. 3 and 5). Active learning can be initialized by
random combinations generated by the workflow in the first
round (example in Figs. 1, 3 and 4). Alternatively, pre-existing
datasets can be imported and used for optimization or
simulations (examples in Supplementary Figs. 18 and 19).
Although our workflow is designed as an active learning approach
over iterative experimental rounds, it can be also used in a
classical machine learning setup, when only using one round of
experiments. Multiple data analysis and visualization modules are
available that can be used in each round of active learning as
shown in example applications (Fig. 2b, Supplementary Note 2).
The workflow is able to generate a pipetting table output
(exemplified for the experiments in Figs. 1 and 3), which
alongside our table-to-speech virtual assistant tool, improves the
speed and accuracy of manual pipetting (Supplementary Note 1,
2). For more complex experiments where multiple components in
different volumes are required, the workflow can be interfaced

with lab automation (e.g., an EchoⓇ acoustic liquid handling
robot, see optimization of the CETCH cycle in Fig. 5).

Application of METIS for optimization of a LacI gene circuit.
Next, we aimed to apply METIS for optimization of LacI-based
gene circuits that were described recently38. Greco et al. devel-
oped a strategy for stringent gene expression by engineering
transcriptional and/or translational small RNA inhibitors
upstream of a Gfp reporter gene under the control of the pTAC
promoter (Fig. 3a). Starting from a standard pTAC architecture, a
so-called single-level controller (SLC), Greco et al. constructed
three different multi-level controllers (MLC): pTHS (toehold
switch; translational control), pSTAR (small transcription acti-
vating RNA; transcriptional control), and pDC (double con-
troller; transcriptional and translational control)38. Notably, the
authors could improve the rate of in vitro protein production by
35-fold with different MLC designs. Yet in these efforts, the fold-
change in total protein production remained low (Supplementary
Fig. 7), which was likely the result of leaky repressor-regulated
promoters in the OFF state, as noted earlier34,37. A high fold-
change in protein production, however, would be strongly desired
for application of gene circuits, e.g., as diagnostic sensors, where a
high signal-to-noise ratio is important. Additional to the high
fold-change (FC), a desired circuit should have a high level of
protein production, a feature that can be quantified by the
dynamic range (DR) (Fig. 3a).

Here, we aimed at using our workflow to optimize the SLC and
MLC LacI circuits. We performed 10 rounds of active learning
with the objective function of FC × DR, to score those composi-
tions that result in not only high fold-changes but also total Gfp
productions. The fold-change can be improved by supplying an
additional plasmid expressing LacI (under the control of a T7
promoter transcribed by purified T7 RNA polymerase) and the
dynamic range can be improved through alternative selection of
SLC and MLC circuits and through tuning TXTL composition.
The active learning cycle received input from several factors in
the E. coli cell-free system; amino acids and tRNAs, which are
important when extra DNA is added, DTT as reducing reagent,
spermidine for DNA-protein binding, and PEG 8000 as crowding
agent (Fig. 3b), and four LacI circuits (one SLC and three MLC)
were considered as one categorical feature with four alternatives.
While the objective function improved during the active learning
cycle (bottom plot in Fig. 3c), we did not observe a substantial
improvement in fold-change of Gfp production alone (upper plot
in Fig. 3c). Feature importance analysis identified the concentra-
tion of the PT7-LacI plasmid as strong contributor (Fig. 3d, e,
Supplementary Fig. 8), indicating deleterious LacI protein-DNA
interactions or resource limitation of the TXTL system through
production of the lacI protein44.

Fig. 1 Assessing the performance of different algorithms and testing the active learning workflow with minimal data points. a An existing dataset of
cell-free gene expression compositions composed of 1000 data points was used to build a gold standard regressor and assess the performance of different
machine learning algorithms in 10 rounds of active learning. b Top panel: performance of 4 algorithms, multilayer perceptrons (MLP), deep neural networks
(DNN), linear regressors, and XGBoost gradient boosting in 10 rounds of active learning (100 data points per round). Bottom panel: performance of the
XGBoost gradient boosting algorithm as the selected algorithm with different sample sizes. The boxplots with whisker length of 1.5, represent the
minimum, 25th percentile (bottom bound of box), median (center of box), 75th percentile (upper bound of box), and maximum. c An in vitro or cell-free
transcription-translation (TXTL) system (based on E. coli lysate) to test the workflow with 20 data points per round. A plasmid expressing sfGfp was added
to TXTL reaction mix along with 13 components of reaction buffer and energy mix. d Overview of the active learning cycle. 13 components are varied
starting with random compositions and over 10 rounds of results are imported to the model, which learns and suggests new compositions for improvement
of the objective function. e The plot presenting the average of triplicates (n= 3 independent experiments) of the objective function (yield) for compositions
in 10 rounds (days) of active learning. The gray lines show the median. f Feature importance percentages show the effect of each factor on the model’s
decision to calculate yields for the suggested compositions. g Distribution of different concentrations of each factor within the measured yields. The Google
Colab Python notebook and all active learning data (combinations and yields) in this figure are available at https://github.com/amirpandi/METIS.
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By performing a titration experiment with PT7-LacI, we could
show that addition of the LacI plasmid has indeed a strong
negative effect on the optimal LacI circuit (i.e., with pTHS)
(Fig. 3f) and in an independent TXTL protein production
(Fig. 3g) (see also Supplementary Note 3 for details of the active
learning cycle and titration experiments). To further investigate
this effect, we titrated the LacI plasmid with either T7 or a
constitutive promoter against a fixed concentration of the Gfp

expressing plasmid under control of either T7 or a constitutive
promoter. While increasing concentrations of the plasmid with
constitutive LacI expression did only slightly affect Gfp expression
from the T7 promoter, increasing concentrations of LacI plasmid
under T7 control strongly affected Gfp production, especially
when Gfp was expressed from the constitutive promoter (Fig. 3h).
These results indicated a resource competition between the two
plasmids, according to which the T7 promoter wins competition

Fig. 2 A representation of METIS, a modular active machine learning workflow for biological systems. a The first step is choosing an objective function
(an output/target that depends on multiple factors), then continuing with the Google Colab Python notebook, performing experiments, and visualizing and
analyzing results. b Users should define active learning parameters depending on the application, equipment, and the size of the combinatorial space.
Factors’ ranges/categories are conditions that are varied to explore the behavior of the objective function. In each round of active learning, while the users
perform experiments and label the suggested combinations with measured objective function values (parameters and factors’ conditions can be readjusted
at any round), the data can be analyzed and visualized using the workflow’s modules. See Supplementary Note 2 and Supplementary Figs. 4–6 for a
detailed explanation and guide for each step.
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at the transcriptional and consequently the translational level.
Quantifying the levels of Gfp and LacI mRNA by qPCR
confirmed a direct correlation between mRNA and Gfp
production levels, further supporting the resource competition
hypothesis (Fig. 3i).

To overcome resource competition, we tested purified LacI
protein instead of the LacI plasmid in the TXTL system, which
resulted in improved Gfp productivity (Supplementary Fig. 9).
Thus, we sought to optimize Gfp fold-change with using purified
LacI protein instead of a LacI expressing plasmid. Using a module
of METIS called “K most informative combinations” (with the
number K to be defined by the user), we extracted the 20 most
informative combinations of the active learning cycle and

repeated these 20 setup by replacing PT7-LacI plasmid with
purified LacI protein (Fig. 3j), resulting in a strong improvement
in the objective function, and in particular Gfp fold-change
(Fig. 3k). Note that among these 20 combinations were again
all four SLC and MLC circuits. All of them improved upon
providing external LacI, clearly demonstrating that resource
competition had been limiting performance of the SLC and MLC
circuits. Continuing with only one additional round of active
learning using this dataset, we were able to improve the fold-
change to up to 123 (Fig. 3k), which is 15-fold improvement
compared to that of 10 rounds of active learning with the
PT7-LacI plasmid and 34-fold improvement compared to the
initial setup.
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Overall, these experiments demonstrated how our workflow can
be used to improve the signal-to-noise-ratio of an existing in vitro
gene circuit by two orders of magnitude. Notably, the feature
importance module of METIS, which identified apparent bottle-
necks (i.e., resource competition by the LacI plasmid) and the K
most informative combinations module of the workflow were
crucial for success. A Google Colab notebook and all combinations
and results are provided through Code and Data availability.

Application of METIS on a transcription & translation unit. To
demonstrate that our workflow can also be used with categorical
factors such as biological sequences, we tested METIS for the
optimization of a transcription & translation unit. This unit is
composed of six variants of a T7 promoter45, six ribosome
binding sites (RBS)46, as well as 15 variations of N-terminal
amino acids 3 to 547, and 20 variations of the last two C-terminal
amino acids48, which is in line with two recent studies that

Fig. 3 Application of METIS for optimization of a LacI gene circuit. a LacI gene circuits characterized by dynamic range (DR) and fold-change (FC) of the
output (Gfp fluorescence) between 0 and 10mM IPTG. b Active learning by varying components of E. coli TXTL, 4 lacI circuit plasmids as alternatives, T7
RNA polymerase and a T7-lacI plasmid. c The objective function (FC × DR) and fold change (FC) values, average of triplicates (n= 3 independent
experiments) in 10 rounds of active learning. The gray lines show the median. d The distribution yield values within the range of each factor. e Feature
importance percentages showing the effect of each factor on the objective function. f Titration of PT7-LacI plasmid and T7 RNA polymerase with the
optimal composition (from active learning that achieved with pTHS circuit). The heatmaps show FC × DR (left) and FC (right) values (average of triplicates,
n= 3 independent experiments) of the titration. g Fluorescence values (average of triplicates, n= 3 independent experiments) of the similar titration as in
f but instead of the pTHS circuit, a Gfp expressing plasmid was used). h Titration of LacI plasmids with constitutive/T7 promoter in combination with a Gfp
plasmid with constitutive/T7 promoter. i The RT-qPCR results of the relative level of LacI and Gfp mRNAs after 10 h. Relative log2 resource share between
LacI and Gfp mRNA in each sample is reported to account for RNA purification efficiency variability. In h and i bars are the average of triplicates (n= 3
independent experiments) and error bars are standard deviation. j Usage of the METIS module, K most informative combinations for further LacI circuit
optimization. k Objective function FC × DR and FC (average of triplicates, n= 3 independent experiments) of 20 most informative combinations with
purified LacI (Day 0) followed by Day 1 experiments suggested by METIS. The gray lines show the median. The Google Colab Python notebook and all
active learning data (combinations and yields) in this figure are available at https://github.com/amirpandi/METIS. Source data for f–i are provided as a
Source Data file.

Fig. 4 Application of METIS for optimization of a transcription & translation unit. a The cell-free expression of sfGfp (super-folder Gfp) using plasmid,
linear DNA (PCR) and linear DNA plus GamS protein, a nuclease inhibitor that protects linear DNA from degradation. The bars and the error bars are the
average and standard deviation of triplicates (n= 3 independent experiments), respectively. b Design of a transcription & translation unit controlled by
variants of a T7 promoter, ribosome binding site (RBS), N-terminal amino acids 3, 4, and 5, and the last two C-terminal amino acids. The combinatorial
transcription & translation units are expressed from linear DNA in the TXTL system consisting of the E. coli lysate, buffer and energy mix, as well as purified
GamS and T7 RNA polymerase. c The plot representing the average of triplicates (n= 3 independent experiments) as the result of 4 rounds of active
learning, with 50 transcription & translation units tested per round. The yield is the Gfp fluorescence readout after 6 hours at 30 °C normalized by the same
value from the reference constructs commonly used in the lab (Methods). The gray lines show the median. d A list of 20 most informative combinations of
4-day active learning performed in the cell-free system (c) was downloaded and the combinations were cloned in a vector and transformed into E. coli
DH10β harboring a plasmid expressing auto-regulated T7 RNA polymerase (Methods). e Cell-free versus in vivo yields (average and standard deviation of
triplicates, n= 3 independent experiments) for the 20 most informative combinations. f In vivo yield results (average of triplicates, n= 3 independent
experiments) of Day 0 (20 most informative combinations) and Day 1 (suggested by the workflow). The gray lines show the median. The Google Colab
Python notebook and all active learning data (combinations and yields) in this figure are available at https://github.com/amirpandi/METIS. Source data for
a, e are provided as a Source Data file.
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reported the importance of N- and C-terminal amino acids on
mRNA translation47,48.

To establish a convenient cell-free screening system, we sought
to use linear DNA (i.e., a PCR product)49 as template in
combination with GamS, a small, 136 amino acid-long nuclease
inhibitor from phage λ50 that binds and protects linear DNA

from degradation. First, we validated that addition of linear DNA
with GamS resulted in gene expression levels comparable to that
of plasmid DNA (Fig. 4a), which allowed the fast and efficient
assembly of DNA templates through PCR primers without
extensive cloning, transformation, and plasmid preparation steps
(Fig. 4b).
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We then optimized the transcription & translation unit that
theoretically consists of 6 (PT7) × 6 (RBS) × 15 (N-terminal) × 20
(C-terminal) = 10,800 potential conditions (i.e., combinations)
through screening of only 200 combinations in 4 rounds of active
learning (Fig. 4b). As the objective function, we defined the yield
of the Gfp fluorescence readout of each transcription &
translation unit normalized by a construct comprising wild-type
T7 promoter, B0032 RBS and sfGfp. Yields were quantified after
6 hours of incubation of the different transcription & translation
units at 30 °C in the E. coli cell-free system supplemented with
purified GamS and T7 polymerase. Over 4 rounds of active
learning, yield of the transcription & translation unit improved
up to 12-fold on Day 3. Using a high exploration rate on Day 3
resulted in a wide distribution of yields, but no further
improvement, indicating that an optimum had been reached
(Fig. 4c). The distribution of alternative factors within the yield of
200 combinations and a representation of the feature importance
are shown in Supplementary Fig. 10. Altogether, our experiments
demonstrated again, how METIS can be used to improve a
described genetic unit by more than an order of magnitude with
minimal experimental efforts.

After having rapidly explored the combinatorial space of the
sequence controlling the transcription & translation unit in a cell-
free setup, we additionally investigated the effect of the 20 most
informative combinations in vivo (Fig. 4d). Surprisingly, however,
the cell-free and in vivo yields for the 20 combinations showed a
relatively low correlation of 0.41 (Day 0, Fig. 4e, Supplementary
Fig. 11). This indicated that although cell-free systems offer rapid
prototyping solutions, the optimal candidates are not necessarily
directly transferable in vivo. To investigate whether we can
further improve the performance of the transcription &
translation unit in vivo, we used the data from Day 0 and
continued with one more round of experiments guided by our
workflow (Day 1, Fig. 4f). This resulted in an improvement by
130% for the highest yield in vivo.

Application of METIS for optimization of the CETCH cycle.
Finally, we aimed at assessing the performance of METIS for the
optimization of complex metabolic networks. The collection of
thousands of different enzymes and recent progress in enzyme
engineering has opened the way for the design and construction
of synthetic metabolic networks with new-to-nature
properties35,51,52. One recent example is the CETCH cycle
(Fig. 5a), a synthetic in vitro metabolic network consisting of 17
different enzymes that was built around a highly efficient CO2-
fixing enzyme, Crotonyl-CoA carboxylase/reductase (Ccr), con-
verting CO2 into the C2-compound glyoxylate39 or glycolate53.
Notably, the CETCH cycle is more efficient than natural

occurring CO2-fixing pathways like the Calvin-Benson-Bassham
(CBB) cycle39. However, since the enzymes used for its con-
struction derive from different organisms and thus metabolic
backgrounds, several rounds of rational optimization were needed
to harmonize the enzyme reactions and cofactors used in the
cycle; and even though the kinetic parameters of the individual
enzymes are known, their interactions in such a complex setup
are non-linear, hardly predictable and basically impossible to
disentangle with pure rational approaches. Hence, we sought to
use our active learning workflow to improve the CETCH cycle’s
productivity further.

The setup of the CETCH cycle consists of 27 components
encompassing 13 core enzymes, as well as four accessory
enzymes, and nine other components such as magnesium
chloride, CoA, NADPH, ATP and the starting substrate
propionyl-CoA (see all components in Fig. 5 and their
concentration range in the Code availability). To minimize
handling errors and automate the experimental setup of
individual CETCH assays, we used an ECHO® 525 acoustic
liquid handler with a minimal pipetting volume of 25 nL.
Miniaturizing the assay to 10 µl of total volume allowed us to
work with 384-well plates and assay 125 different conditions in
triplicates per active learning round (Fig. 5b). To determine the
CETCH cycle’s productivity (i.e., formation of glycolate from
CO2), we developed an LC-MS (liquid chromatography-mass
spectrometry) method using 13C2-glycolic acid as an internal
standard (Methods).

For the first five rounds of optimization, we used product yield
(glycolate) as objective function (for a description of the used
parameters see Supplementary Note 4). After four iterative
rounds, we reached a final concentration of 2.87 ± 0.09 mM
glycolate in the best performing condition starting from 100 µM
propionyl-CoA (Fig. 5c). This yield translates into 57.4 fixed
CO2-equivalents per acceptor (propionyl-CoA) and is >10 times
more productive compared to the originally reported,
already rationally optimized version 5.4 of the CETCH cycle39.

As we had not restricted the component resources during
optimization, most of the superior conditions used more enzymes
(compared to CETCH 5.4) to increase glycolate production
(Supplementary Fig. 12). Next, we aimed at increasing specific
productivity of the CETCH cycle. To that end, we took the data
from the initial five rounds of unrestricted optimization and
divided the glycolate yield values by the total concentration of
enzymes used for each combination. This data was fed back to
METIS and three additional rounds of active learning were
performed with the new objective function, called “efficiency”
(Fig. 5d). Optimization of efficiency identified one condition in
round seven that is about six times more efficient than CETCH
5.4 and 14% more efficient than the best condition from the

Fig. 5 Application of METIS for optimization of an in vitro CO2-fixation pathway (CETCH cycle). a Reaction sequence of the CETCH cycle (see Methods
for enzyme names and information). b Active learning with 125 conditions tested in each round. ECHO® liquid handler pipetted the combinations and the
reactions were started with 100 µM propionyl-CoA and stopped after 3 h. The glycolate content was measured by LC-MS. c Optimization of the CETCH
cycle with glycolate yield. d Summary of the optimization and the switch of the objective function. e Transformed data of c (glycolate yield divided by the
total amount of enzymes = efficiency) for rounds 1–5, shaded region, and the data of three additional rounds of optimization with efficiency as the objective
function (rounds 6–8). The yields in c and e are average of triplicates, (n= 3 independent experiments) and the gray lines show the median. f, g Feature
importance of factors for active learning in c and e, respectively. h–l Manually pipetted experiments for seven conditions, three highest glycolate yields
(blue, orange and red), a control (black) and three randomly picked underperformed conditions (green, lavender, burgundy) color coded the same in
h–l and circled in c and/or e. These plots show glycolate production over 8 h (h) and its first 15 min with slopes (i), initial production rate versus the final
glycolate yield (j), total amount of measured CoA esters after 8 h versus the final glycolate yield (k), and quantified CoA esters over 8 h (l). The plotted
values in h–k are the average of triplicates (n= 3 independent experiments), and the error bars represent the standard deviation. In (l), bars are the
average of triplicates (n= 3 independent experiments), each compound is plotted with error bars in Supplementary Fig. 17. In l the amount of propionyl-
CoA within the zero samples is the added amount (100 µM) to start the reaction and was not measured by LC-MS. The Google Colab Python notebook and
all active learning data (combinations and yields) in this figure are available at https://github.com/amirpandi/METIS. Source data for h–l are provided as a
Source Data file.
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unrestricted optimization achieved in round four (Fig. 5e, see also
Supplementary Figs. 12 and 13).

To learn more about the possible bottlenecks of the CETCH
cycle, we used the feature importance module of the METIS
workflow along with plots visualizing the yield distribution over
the range of each factor (Supplementary Figs. 14, 15). One of the
most important contributors for both optimization efforts is the
enzyme Methylsuccinyl-CoA dehydrogenase (Mco) (Fig. 5f, g).
The enzyme’s low activity of 0.1 U/mg and its unstable substrate
methylsuccinyl-CoA, which is prone to spontaneous hydrolysis,
likely require large amounts of Mco to preserve flux through the
cycle54. During efficiency optimization, the two most important
components were 4-hydroxybutyryl-CoA synthetase (Hbs) and
coenzyme B12 (Fig. 5g). Analysis of the top 10% best performing
conditions (Supplementary Figs. 12 and 13) revealed that the
concentrations of Hbs and B12 were significantly lower compared
to the control (CETCH 5.4). To verify that high concentrations of
Hbs have a negative impact on the cycle, we tested our control
assay with ten times less and with five times more of the enzyme.
Indeed, increasing Hbs concentration in the original assay
decreased yield by 40%, while decreasing Hbs by one order of
magnitude did not lower glycolate yield (Supplementary Fig. 16).
Regarding the negative impact of higher concentrations of B12, we
reasoned that cobalt released from damaged cofactor could
inhibit enzymes. Similar to high concentrations of Hbs, addition
of cobalt to the original assay led to a decrease in glycolate yield
(Supplementary Fig. 16).

To understand the dynamic behavior of the different CETCH
cycle variants, we manually repeated the top three conditions
(highest glycolate yields), a control (see Supplementary Note 4) and
three underperforming conditions, taking time point samples for
eight hours. The yield from this manual approach reflected the yield
from the previous automated, miniaturized experiments, validating
the results of our optimization efforts (Supplementary Table 3).
Interestingly, the final glycolate yield after eight hours (Fig. 5h) and
the initial glycolate formation rates of these conditions over the first
15minutes (Fig. 5i) were highly correlated (Fig. 5j), indicating that
total flux and not improved enzyme/cofactor stability (or life-time)
was responsible for the observed increased productivity of the
system. This trend was further confirmed by a detailed analysis of 9
CoA-ester intermediates at different time points (Fig. 5k, l).
Quantification of the CoA-ester intermediates did not show
accumulation of single metabolites in the underperforming condi-
tions or the control, indicative of specific bottlenecks (Fig. 5l,
Supplementary Fig. 16). Instead, the underperforming conditions
showed overall a faster depletion of intermediates, in line with the
hypothesis that high flux through the cycle is important to prevent
the loss of intermediates towards side reactions or hydrolysis.

In summary, our optimization efforts of the CETCH cycle
resulted in variants that showed more than ten-fold productivity
and almost six-fold improved efficiency, representing to the best
of our knowledge the most efficient in vitro CO2-fixing system
described to date.

Discussion
In this work, we describe METIS, a versatile, modular active
learning workflow for the optimization of various biological
objective functions, such as genetic and metabolic networks. This
study democratizes machine learning applications for experi-
mentalists without any programming skills or sophisticated lab
equipment. We provide Google Colab notebooks (see Code
availability) that can be adapted to different optimization appli-
cations (also known as Bayesian optimization) and even used for
data-driven predictions (for use of the latter see Supplementary
Table 1, Supplementary Note 5, Supplementary Fig. 18).

For tailoring the workflow, the number of rounds and experi-
ments per round need to be defined, which should take into account
the number of different factors and their conditions, complexity of
the objective function, as well as experimental throughput. For
applications with a larger combinatorial space, more combinations
need to be tested (Fig. 5). However, if the number of experiments is
limited by cost, effort, or lab equipment, performing active learning
in more rounds can be used to compensate for a lower number of
total combinations tested. To explore a system beyond a local
optimum, it is advised to adapt the exploration to exploitation ratio
for each round individually (fully discussed in Supplementary
Note 2). Users should apply their knowledge on the system and
implicitly check whether the value of a given factor is fixed too early,
probably indicating a low exploration to exploitation ratio. On the
other hand, a high exploration to exploitation ratio might push the
model towards random combinations, asking for a proper balance to
enable explorative as well as exploitation sampling. In our empirical
experience, the exploration to exploitation ratio should gradually
decrease towards the late rounds of active learning to enable more
explorative combinations in early rounds and more exploitation in
late rounds for efficient optimization (Supplementary Note 2).

Workflows can be started either from scratch (random com-
bination as initialization) or using existing datasets (then per-
forming active learning). Although our workflow is designed as
an active learning approach (over multiple rounds of experi-
ments), it can also be used as a classical machine learning with
only one round of experiments. Factors of a given objective
function can be numerical and/or categorical. Active learning
parameters can be further customized using a detailed explana-
tion in Supplementary Note 2.

METIS provides a variety of choices for visualization and analysis
of results. Most importantly, our workflow can quantify importance
of individual features and provide a number of most informative
combinations, which has both proven particularly useful during LacI
gene circuit optimization (Fig. 3). Using these features of the
workflow allowed us to not only to improve the fold-change of the
circuit, but also spot and, using additional experiments, verify a
major bottleneck in the further optimization of the system (i.e., the
LacI expression plasmid). After replacing the LacI expression plas-
mid with purified LacI protein, we were able to improve the circuit
by more than two orders of magnitude compared to the original
system. Notably, we did not have to re-perform active learning when
switching to purified LacI instead of the LacI plasmid. The 20 most
informative combinations generated through our workflow offered a
short and quick path toward optimization.

Applying METIS onto different biological systems, we
demonstrate that our workflow is able to optimize several com-
plex genetic and metabolic networks of medium to large com-
binatorial space with minimal experimental efforts. As example,
we improved the CETCH cycle a system of 27 variable factors
including enzymes, cofactors, and buffer composition, spanning a
theoretical combinatorial space of ~1025 different conditions.
Performing only 1,000 (triplicate) assays over 8 rounds of active
learning yielded a system with ten-fold improved productivity
and six-fold increased efficiency, representing the most efficient
in vitro CO2-fixation system described to date.

The development and application of complex genetic and
metabolic networks in synthetic biology is dramatically increasing
and require new tools for their data-driven analysis. Efficient
explorative approaches are needed not only for the optimization
of existing biological networks, but also for the design and rea-
lization of new-to-nature genetic and metabolic networks for
which sampling the entire combinatorial space becomes practi-
cally impossible. Apart from network optimization with minimal
experimental datasets, METIS can simultaneously help to dis-
cover so far unknown interactions and bottlenecks in these

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31245-z

10 NATURE COMMUNICATIONS |         (2022) 13:3876 | https://doi.org/10.1038/s41467-022-31245-z | www.nature.com/naturecommunications



networks, which paves the way for their hypothesis-driven
improvement. In the LacI circuit optimization, we showed how
a bottleneck (i.e., resource competition) can be identified, tar-
geted, and finally overcome, which allowed us to improve the
system by 34-fold. Similarly, during optimization of the CETCH
cycle, we identified Mco, Hbs and B12 as limiting factors.

Numerous applications of the METIS workflow can be envi-
sioned in the future, including the optimization of growth media
and/or biochemical assays, genetic circuits, from simple tran-
scription & translation units to more complex designs, or the
guided engineering of proteins, enzymes, and metabolic pathways
in vivo and in vitro. With its convenience and easy access, METIS
opens the door for the study, prototyping, (combinatorial) engi-
neering, and optimization of these systems in an efficient, stan-
dardized, and systematic manner.

Methods
Gold regressor and analyzing different machine learning algorithms. To find
out which machine learning algorithm and sample size are suitable for our
workflow, we conducted the following simulation:

– 1017 data points (compositions and yields) were collected from a recent
study31.

– An XGBRegressor model (gold regressor) was trained on 80% of the dataset
and 20% of the dataset was used for validation and to avoid overfitting via
early stopping.

– 100 combinations produced randomly within the range of each factor
for Day_1.

– Instead of doing experiments in the laboratory to determine the yield of each
combination, yield values were assigned by the gold regressor.

– Note that, in this phase the test model predicts the yields and ranks them to
suggest for the experiments of the next day, and the gold regressor (trained on
pre-data) is used to assign yield values by prediction instead of performing the
experiments in the laboratory.

– For each machine learning model (MLP, DNN, linear regressors, XGBoost) an
ensemble of 5 models with different hyperparameters was produced.

– Note that the linear regressors is a deterministic approach so we just
duplicated a model 5 times for which all predictions are the same.

– Each ensemble was trained on Day_1 data.
– 100000 random combinations were generated, and their corresponding yield

was predicted by the ensemble of models and ranked by UCB score (see
method section for the core algorithm of active learning), top 100
combinations were suggested for the next day. Yields were assigned by the
gold regressor.

– The last two steps were repeated for other days, and on each day the model
was trained on all the previous days’ data.

Note that, in Fig. 1b for different sample sizes with XGBoost, 5, 10, 25, or 100
combinations were suggested for the next day.

Hyperparameters: MLPRegressor from Sklearn (fully connected architecture with
Relu activation function) was used for MLP. In ensemble of 5 models the following
number of neurons were used in the hidden layer: (10, 100, 100, 20), (20, 100, 100, 10),
(20, 100, 100, 20), (10, 100, 100, 10), (20, 100, 100, 50). For DNN we used the Keras
implementation of fully connected layer architecture with 100, 100, 20 neurons for
each of hidden layers. For Linear Regression the default implementation of Ordianry
Least Square by Sklearn was used. XGBRegressor with following parameter was used
for XGBoost model: objective= ‘reg:squarederror’, n_estimators = 500, learning_rate
= 0.01, max_depth = 6, min_child_weight = 1, subsample = 0.8.

General description of METIS notebook. All scripts used in this study were written
in Python 3. Our modular tool, METIS, runs on Google Colab working through web
browsers with a link without users needing to install Python or any packages.

Packages used in the development of METIS:

– Data processing: pandas (1.1.4) and numpy (1.18.5)
– Data visualization: matplotlib (3.2.2) and seaborn (0.11.0)
– Machine learning and deep learning: scikit-learn (0.22.2.post1), xgboost (0.90),

and Keras (2.3.1) using TensorFlow backend.

The core algorithm of active learning. After measuring the value of the objective
function (yield) for random combinations of Day_1, we continued with the fol-
lowing algorithm:

– RandomSearchCV is used to find the optimal 20 hyperparameters for the
XGBoost model.

– The ensemble of 20 models is trained with the hyperparameters on data from
all previous days (Day_1 to present day).

– 100000 combinations out of possible combinations are randomly selected.
– The mean and standard deviation of ensemble predictions are calculated.
– The combinations are sorted based on Upper Confidence Bound (UCB)

score:31 exploitation * (average of predictions) + exploration * (standard
deviation of predictions).

– To perform experiments of the next day, the combinations with the highest
UCB values are suggested.

The high standard deviation represents the uncertainty and improves the
prediction power of models, whereas a high average value weighs favorable
combinations leading to higher yields. Hence a coupled score taking into account
these two factors ranks the most promising combinations31. Note that the active
learning for optimization of objective functions is also called Bayesian
optimization55. In Supplementary Fig. 21 we show optional data preprocessing and
an improved XGBoost model. See Supplementary Fig. 22 for an optional scoring
(can be defined when using METIS), batch UCB that can generate richer
combinations for subsequent rounds.

Finding K most informative combinations. The K most informative combina-
tions are calculated using the following algorithm:

– RandomSearchCV is used to find the optimal 20 hyperparameters for the
XGBoost model.

– 2000 subsets of length K are selected from the tested combinations. The total
number of possible subsets is represented in Eq. (1).

N
K

� �
¼ N!

K! ´ N � Kð Þ! ð1Þ

– Then a new XGBoost with the optimal hyperparameter is trained on each
subset. The model performance is then validated on unseen combinations
using the Spearman correlation coefficient.

– All subsets are sorted based on their Spearman correlation coefficient, the top
5 are then chosen. Each of these 5 could be used.

Note that increasing the number of subsets leads to a longer training time.

Finding feature importance. Feature importance values have been calculated with
the following algorithm:

– RandomSearchCV is used to find the optimal hyperparameter for the
XGBoost model.

– The model is trained using the selected hyperparameter. Using the built-in
“feature_importances_” property of the XGBoost package, the ratio of feature
importance is calculated throughout the training process for each day
cumulatively.

Finding nonlinear (mutual) interactions. In complex systems, factors usually
interact with each other and epistatically affect the output. These interactions can
be among many factors, however, the most relevant is the mutual or double
interaction between factors56. This analysis can be a hint to discover biological
phenomena’s behavior. The mutual interactions were calculated through the fol-
lowing algorithm:57

– A linear regression model is fitted on the dataset and its performance is
evaluated based on the R squared of predicted and actual values. This
performance is considered as the baseline.

– Iteratively, a new feature is added to the temporary dataset that equals Fi × Fj
for i and j in the list of factors.

– The linear regression is fitted on the temporary dataset (which now has one
more feature, Fi × Fj) its performance is measured similarly to the baseline.

– The difference between each performance and the baseline, j, is calculated and
visualized.

METIS prediction. In contrast to METIS optimization that tries to find the most
promising combinations through maximizing the objective function, METIS pre-
diction aims to maximize the model performance on the prediction of the objective
function for unseen combinations. We modified the core active learning algorithm:

– Instead of UCB (exploitation × mean + exploration × std), combinations are
sorted based on only their std value and set exploitation to zero. This enables
picking the most uncertain combination for the next round.

– At the end of each round, it returns a trained model instead of promising
combinations, and the R squared of prediction is improved over rounds.

Performance analysis using cross-validation. To evaluate the model perfor-
mance of the enzyme engineering notebook, we used k-fold cross-validation. In
each round, all the tested combinations are divided into k subsets (k = 5 for
Supplementary Figs. 18, 19), then in five steps we trained the model on 4 and
evaluated its performance (R2 Pearson) on the other subset. This process was
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repeated for all 5 subsets. In the end, the average performance on all subsets was
reported as the model’s performance. We used sklearn built-in function for cross-
validation.

Table-to-speech virtual assistant. This tool helps molecular biologists to boost
their manual liquid handling through reading volume and destination well in
ascending order, therefore minimizes the need for changing the pipetting volume.
We used the Google Text2Speech python package to transform the text into a voice
file. There are two ways to interact with this notebook to continue with the next
pipetting volume. The first is to do it manually with your keyboard (what we did),
the second is using the voice assistant. For transforming voice to text (specific
commands like ‘next’, ‘repeat’, etc.). We used the SpeechRecognition (3.8.1) python
package. The code is available on https://github.com/amirpandi/Liquid-Handling-
Assistant.

Plasmid and DNA preparation. The constitutive Gfp under the control of J23101
promoter and B0032 RBS was built in a recent study (pBEAST-J23101-B0032-
sfGfp)58. Using golden gate cloning (BsaI-HFⓇv2 NEB #R3733L, T4 DNA ligase
NEB #M0202T), in this plasmid, the super folder Gfp gene was replaced by LacI for
constitutive-LacI, then the promoter was replaced by a T7 promoter (gaatttaa-
tacgactcactatagggaga) to construct PT7-LacI plasmid. Since we used T7 promoters,
a T7 terminator from Temme et al.59 (tactcgaacccctagcccgctcttatcgggcggctagggg
ttttttgt) was cloned downstream. The version of LacI gene is similar to those in LacI
circuits built by Greco et al.38. Plasmids for the cell-free gene expression were
purified using the Machery-Nagel NucleoBond Xtra Maxi kit. For protein pur-
ification using His tag, sfGfp and LacI genes were cloned with an N-terminal His
tag under IPTG-inducible T7 promoter.

For cell-free experiments for optimization of the transcription & translation
unit (Fig. 4b), PCRs were performed using Q5Ⓡ High-Fidelity 2X Master Mix (NEB
#M0492L), sfGfp as the template, and primers (Eurofins and Sigma-Aldrich) with
overhangs harboring PT7, RBS, and N-terminal sequence (forward primer) and
C-terminal (reverse primer) at the final volume of 50 µL. After verification of PCRs
using agarose gel, Monarch PCR & DNA Cleanup Kit (NEB #T1030L) was used to
purify the fragments and they were all adjusted to the concentration of 100 nM to
use for active learning experiments.

For in vivo experiments of the transcription & translation unit (Fig. 4d) PCRs
were done similar to the cell-free experiment. Restriction sites for BsaI enzyme
were designed on either side of PCR fragments enabling for goldengate assembly
into a pSEVA224 vector (a low copy plasmid with kanamycin marker) from the
SEVA collection60,61. Since we used T7 promoters, a T7 terminator from Temme
et al.59 (tactcgaacccctagcccgctcttatcgggcggctaggggttttttgt) was cloned downstream.

Protein purification. For all enzymes involved in the CETCH cycle, expression
and purification were performed as previously described62. Other proteins, T7
RNA polymerase (addgene #124138), GamS (addgene #45833), sfGfp, and LacI
were His-tag purified using ProtinoⓇ gravity columns (Machery-Nagel #745250)
and ProtinoⓇ Ni-NTA Agarose (Machery-Nagel #745400). 1 L cultures in LB
media supplement with appropriate antibiotic were subcultured (1:100) from
overnight precultures. Cultures were grown at 37 °C for two hours, then induced by
0.1 mM IPTG, incubated for 3 more hours at 37 °C to produce proteins. Cells were
harvested at 8000 g for 10 min, pellets were resuspended with 5 mL NPI-10 buffer,
and sonicated. Samples were centrifuged at 18000 g for 1 hour at 4 °C. The equi-
libration, wash, and elution steps were done according to the manufacturer’s
protocol. Next, imidazole desalting was performed using PD-10 desalting columns
(GE Healthcare #17085101) according to the manufacturer’s protocol. The pur-
ification was verified using the SDS page and the protein concentrations were
determined using the Bradford assay. Glycerol was added to the protein samples to
a final percentage of 10%, then they were aliquoted and after flash-freezing in liquid
nitrogen, stored at −80 °C.

Lysate preparation. E. coli lysate was prepared using an autolysis strategy63.
Briefly, freeze-thawing E. coli BL21-Gold (DE3) cells with a pAS-LyseR plasmid
produce a high-quality extract. Overnight precultures in LB-ampicillin media at
37 °C were subcultured in 5 × 2 L 2xYTPG medium supplemented with ampicillin
and grown at 37 °C to the OD = 1.5. Cells were harvested (2000g, 15 min, room
temperature) in 10 centrifuge bottles and 90 mL of cold S30A buffer (50 mM Tris-
HCl at pH 7.7, 60 mM K-glutamate, 14 mM Mg-glutamate, to the final pH of 7.7)
was added to each. After vigorous vortexing, each was divided into two preweighed
50 mL falcons and centrifuged (2000g, 15 min, room temperature). The super-
natants were removed carefully and after weighing falcons with pellets, the net
weights were calculated. Two volumes of cold S30A with 2 mM DTT, were used to
resuspend each pellet (2.8 mL for 1.4 g pellet), which were then vortex-mixed, and
stored at −80 °C. The next day, frozen cells were thawed in a water bath at room
temperature, vigorously vortex-mixed, and incubated at 37 °C shaking for 45 min.
The vortexing and 45 min incubation steps were repeated. Finally, the samples were
centrifuged (30000 g, 60 min, 4 °C) to obtain the cell extract. The supernatants were
gently pipetted out in 1.5 tubes, recentrifuged (20000 g in a tabletop centrifuge,
5 min, 4 °C) to remove all the remaining cell debris aliquoted, and after freezing in
liquid nitrogen stored at −80. For the composition of the cell-free reaction buffer

and energy mix, all chemicals were used as by Sun et al.33 except for amino acids
(L-amino acids set, Sigma #LAA21-1KT).

Cell-free reactions. To perform the active learning experiments in Figs. 1 and 3,
Table2Seech_Volume.csv file of each round was downloaded from the notebook
and uploaded to the table-to-speech virtual assistant notebook. Before starting the
pipetting, we arranged all pipette tips with numbers written on one side of tip
boxes (two boxes side by side) from 1 to 20 (for 20 data points). PCR tubes in
which the compositions were going to be mixed also were numbered on racks from
1 to 20. The numbering increases the accuracy of the manual pipetting. Next, the
table-to-speech assistant was run on a laptop on the bench and the space key was
set in the Google Colab settings to run the code. After pipetting each factor into the
corresponding destination, while the right hand was replacing the tip, the left hand
pressed the space key to hear the next pipetting step in a headphone as well as to
see the action appearing on the screen. The table-to-speech assistant goes line by
line for each factor and ranks the pipetting values from minimum to maximum,
hence, minimizes changes in the pipette volume. For fixed elements such as HEPES
and lysate, a master mix was made and after finishing pipetting all combinations,
the master mix was added to each. All the steps were performed on ice. At the end,
samples were gently mixed (not to generate bubbles) using a multichannel pipette
and 10 µL of each was transferred into a 384-well plate (Greiner Bio-One #784076).
Note that the volume of mixtures should be at least 20% in excess in PCR tubes not
to face difficulties in the final pipetting step into the 384-well plate. The Gfp
fluorescence was monitored (excitation: 485, emission: 528 nM, gain: 80) every
10 min in a plate reader (Tecan Infinite 200 PRO).

The yield (objective function) in Fig. 1e, as provided in the Data availability, is
the Gfp fluorescence (after 6 h incubation at 30 °C) of each composition
normalized by a composition in which the concentration of all variable factors is at
mid-range. However, the plotted yields are those values divided by 0.33, the average
ratio of Gfp fluorescence between the active learning reference and a commonly
used composition33. The objective function of the LacI circuit active learning in
Fig. 3c is fold-change (FC) × dynamic range (DR) of the output (Gfp fluorescence)
between 0 and 10 mM input (concentration of IPTG). For cell-free reactions in
Fig. 4c, the final volume of 5 µL was prepared directly in a 384-well plate, 10 nM
final concentration of each linear DNA was transferred and the mix of other
components of the cell-free lysate plus T7 polymerase (40 µg.mL−1) and GamS
(2 µM) was added while gently mixing. The yield (objective function) in Fig. 4c is
the Gfp fluorescence readout (after 6 h of incubation at 30 °C) of each transcription
& translation unit normalized by the Gfp fluorescence of a commonly used
sequence in our lab, wild-type T7 promoter, B0032 RBS, and sfGfp sequence. For all
cell-free reactions, the Gfp fluorescence readout of the extract with no DNA was
subtracted before yield calculations.

RT-qPCR experiment. Total RNA was extracted from cell-free expression reac-
tions with a kit (NEB #T2010), following the manufacturer’s instructions. Initial
qPCR analysis indicated that a substantial amount of plasmid DNA remained in
control reactions, which did not include reverse transcriptase to synthesize cDNA.
Therefore, samples were subsequently treated to an additional DNase treatment by
TURBO DNA-free™ Kit (Invitrogen™ #AM1907) according to the manufacturer’s
instructions. The resulting RNA produced a substantial qPCR signal (iTaq Uni-
versal SYBR Green Supermix Bio-Rad #1725120) when converted to cDNA by
ProtoScript® II Reverse Transcriptase (NEB #M0368) using the standard protocol
and random hexamer primers (ThermoFisher #SO142), but not in control reac-
tions lacking reverse transcriptase. In order to account for potential sample-to-
sample variability in extraction efficiency, all data presented herein is represented
as a relative difference in cycle threshold (Ct) between Gfp and LacI cDNA
within each sample. Standard curves with known concentrations of plasmid
DNA were analyzed in parallel for Gfp and LacI primer sets, indicating
comparable qPCR efficiencies and template specificity. No further normalization
was required.

Western blot. Cell-free expression reactions and LacI-6xHis purified protein
dilutions were mixed with 4 µL of non-reducing sample loading buffer (Thermo
Scientific #39001) and incubated at 90 °C for 5 minutes. The samples were then
loaded into pre-cast SDS-PAGE gels (Bio-Rad #4561095) and separated by elec-
trophoresis. The gel was then immediately placed into a Bio-Rad TransBlot® Turbo
apparatus for protein transfer onto a nitrocellulose membrane (Bio-Rad #1704158).
Since all samples were produced from the same batch of cell-free expression
reaction mix or were of known concentration, total protein concentration was not
assessed. Western blot analysis was performed using a monoclonal antibody
against LacI clone 9A5 (Sigma-Aldrich #05-503-I) and an anti-mouse HRP-con-
jugated secondary antibody (Invitrogen #31430) with dilution of 1:1000 and
1:100,000, respectively. After dispensing the detection reagent as indicated by the
manufacturer (Neogen #324175), the blot was immediately imaged on a Bio-Rad
ChemiDoc. A single clear band corresponding to the molecular weight of LacI was
detected in lanes containing purified LacI or expression from a LacI-containing
plasmid (see inset, Supplementary Fig. 9a).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31245-z

12 NATURE COMMUNICATIONS |         (2022) 13:3876 | https://doi.org/10.1038/s41467-022-31245-z | www.nature.com/naturecommunications



In vivo experiment of transcription & translation units. After cloning tran-
scription & translation units into the pSEVA224 vector (plasmid and DNA pre-
paration section), they were transformed into E. coli DH10β harboring an
autoregulated T7 RNA polymerase circuit (addgene #71428)64. 3 colonies of each
were cultured in LB with 30 µg.mL−1 ampicillin + 30 µg.mL−1 kanamycin in a 96
deep well plate. After 10 hours of cultivation at 37 °C, 10 µL of each was added to
190 µL LB with 30 µg.mL−1 ampicillin + 30 µg.mL−1 kanamycin in a 96-well plate
(Thermo Scientific #137101). The Gfp fluorescence was monitored (excitation: 485,
emission: 528 nM, gain: 80) every 30 min in a plate reader (Tecan Infinite 200
PRO) shaking at 37 °C. The in vivo yield in Fig. 4e, f is the Gfp fluorescence readout
(after 6 h) of each transcription & translation unit normalized by the Gfp fluor-
escence of a commonly used sequence in our lab, wild-type T7 promoter, B0032
RBS, and sfGfp sequence. The Gfp fluorescence readout of cells with no sfGfp gene
was subtracted before yield calculations.

Workflow for CETCH assays in 384-well plates. The worklist generated by the
METIS script was dissected into 5 worklists: dH2O, Buffers and Cofactors,
Enzymes, Carbonic Anhydrase, and Substrate (pco: propionyl-CoA oxidase, ccr:
crotonyl-CoA carboxylase/reductase, epi: ethylmalonyl-CoA/methylmalonyl-CoA
epimerase, mcm: methylmalonyl-CoA mutase, scr: succinyl-CoA reductase, ssr:
succinic semialdehyde reductase, hbs: 4-hydroxybutyryl-CoA synthetase, hbd: 4-
hydroxybutyryl-CoA dehydratase, ecm: ethylmalonyl-CoA mutase, mco:
methylsuccinyl-CoA oxidase, mch: mesaconyl-CoA hydratase, mcl: β-methylmalyl-
CoA lyase, gor: glyoxylate reductase, kat: catalase, fdh: formate dehydrogenase, ck:
creatine phosphokinase). For source of enzymes and kinetic parameters see
Schwander et al.39. In cases where pipetting errors occurred, we used our Excep-
tions_to_Worklist script for correction of failed transfers (provided in Code
availability). This script generates a new worklist out of the exception file generated
by the ECHO® and provides a list with how much volume needs to be added into
which well. Dissecting the worklists guarantees for example that all buffers are
transferred before enzymes are added. Note that we used fresh enzyme stocks in
each round to prevent loss of activity due to repetitive freeze-thaw cycles. As source
plates we used ECHO® qualified 384-Well PP 2.0 Plus Microplates from Labcyte
and used AQ_GP as the liquid class (AQueous solution; Glycerol/Protein). This
liquid class was tested previously with the stocks of our assay components.

We also added a control condition with composition derived from the
published assay of CETCH 5.4 (for the composition, see Assays for determination
of new enzyme stocks after round two section in Supplementary Note 4). Controls
can be added in the workflow as specials. The yield of our control condition
increased from round 2 to 3, where new enzyme batches of four enzymes were used
(Supplementary Fig. 16b). To identify the enzyme that was the reason for that, we
tested the control assay with each of the four old enzymes separately
(Supplementary Fig. 16b). Despite being important in the control (~280 µM in
round 1 and 2), catalase did not seem important in each condition, since we
reached yields up to 1500 µM already in round 2 with the old stock (Fig. 5c).

After starting the assays with 100 µM propionyl-CoA we used an Axygen®
Breathable Sealing Film (BF-400-S) to cover the 384-well PCR Plate (AB-1384) to
allow the transfer of oxygen. The reaction (10 µL volume) was carried out at 30 °C
and mild shaking at 160 rpm in an Infors HT Ecotron shaker. The reactions were
stopped after 3 h with 1.25 µL of 500 mM polyphosphate and 1.25 µL of 50% formic
acid. While the formic acid quenches the reaction, the polyphosphate was used for
enhanced precipitation of the proteins. The plate was spun for 1 h at 2272 g and
4 °C to pellet the proteins.

For analysis by LC-MS, we used a multichannel pipette to transfer 1 µL of the
supernatant into 9 µL of precooled dH2O in a new 384-Well Thermo-Fast® plate.
Afterward, we added 10 µL of 10 µM 13C2 labeled glycolic acid as an internal
standard. The plate was sealed with a Corning™ Microplate Aluminum Sealing
Tape (6570). The assay plate with the quenched reactions was sealed with a
Corning™ Microplate Aluminum Sealing Tape too and stored at −80 °C.

Timepoint assays of 7 selected conditions. The assays were done in triplicates
containing 150 µL volume each and were carried out in a 1.5mL reaction tube (at
30 °C, 500 rpm). The reactions were started with 100 µM propionyl-CoA. 12 µL
samples were taken and quenched in 1.5 µL 50% formic acid and 1.5 µL 500mM
sodium polyphosphate (emplura®) at 5, 10, 15, 30, 60, 120, 180, 240, 300 and 480min.
The samples were spun for 20min at 4 °C and 20.000 g, before the supernatant was
transferred into Thermo Scientific™ Abgene 96 Well Polypropylene Storage Micro-
plates (AB-1058) and sealed with Corning™ Microplate Aluminum Sealing Tape.
While 2 µL were used to prepare a 1:10 dilution in water for the measurement via LC-
MS, the remaining samples were stored at −80 °C. The concentrations for the assays
are shown in the table below (Buffers and cofactors in mM, enzymes in µM). See
Supplementary Table 3 for the details of these conditions.

LC-MS analysis of CoA esters. All CoA esters were measured on a triple quad-
rupole mass spectrometer (Agilent Technologies 6495 Triple Quad LC-MS)
equipped with a UHPLC (Agilent Technologies 1290 Infinity II) using a 150 ×
2.1 mm C18 column (Kinetex 1.7 µm EVO C18 100 Å) at 25 °C. The injection
volume was 2 µL of the diluted samples (1:10 in water). The flow was set to
0.400 mL.min−1 and the separation was performed using 50 mM ammonium

formate pH 8.1 (buffer A) and acetonitrile (buffer B). We quantified the CoAs
using external standard curves prepared in water with formic acid at pH 3. The
standard curves were measured before and after the samples. Except for methyl-
succinyl-CoA, all compounds were stable. For methysuccinyl-CoA we calculated
the concentration as an average of the two standard curves at the time point the
sample was measured. The parameters for the multiple reaction monitoring
(MRMs) and the gradient are shown in the tables below. The data analysis was
done with Agilent MassHunter Quantitative Analysis (for QQQ). See Supple-
mentary Table 4 (Gradient for the separation of CoA esters) and Supplementary
Table 5 (MRM transitions).

LC-MS analysis of glycolate. Glycolate was measured on a triple quadrupole mass
spectrometer (Agilent Technologies 6495 Triple Quad LC-MS) equipped with a
UHPLC (Agilent Technologies 1290 Infinity II) using a 150 ×2.1 mm C18 column
(Kinetex 1.7 µm EVO C18 100 Å) at 25 °C. The injection volume was 0.5 µL. The
diluted samples (1:10 in water), as well as the external standard curve, were diluted
1:2 with 10 µM 13C2-labeled glycolic acid as internal standard. The flow was set to
0.100 mL.min−1 and the separation was performed using dH2O with 0.1% formic
acid (buffer A) and methanol with 0.1% formic acid (buffer B). The parameters for
the multiple reaction monitoring (MRMs) and the gradient are displayed below.
Data analysis was done using the Agilent Mass Hunter Workstation Software. See
Supplementary Table 6 (Gradient for the separation of CoA esters) and Supple-
mentary Table 7 (MRM transitions).

Data analysis. Data was analyzed using Microsoft Excel, GraphPad Prism, and
custom Python scripts (available at https://github.com/amirpandi/METIS) and
Agilent Mass Hunter Workstation Software (QQQ) 10.0 for LC-MS data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 3f-i, 4a, e, and 5h-l and Supplementary Figures 2, 7a, b,
9b, 11, 16a, b are provided as a Source Data file. All active learning data (combinations
and yields) are available along with Google Colab Python notebook of each application
on GitHub, https://github.com/amirpandi/METIS. Primers used for transcription and
translation units (Fig. 4) are provided in Supplementary Tables 8, 9. Source data are
provided with this paper.

Code availability
METIS workflows for different applications used in this study run as Google Colab
Python notebooks and are free open source tools available at https://github.com/
amirpandi/METIS. All scripts used in this study were written in Python 3. Packages used
in the development of the workflow are pandas (1.1.4) and numpy (1.18.5), matplotlib
(3.2.2) and seaborn (0.11.0), scikit-learn (0.22.2.post1), xgboost (0.90), and Keras (2.3.1)
using TensorFlow backend.
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