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Résumé

Dans cette thèse de doctorat, nous étudions les systèmes de dialogue orientés tâches
qui sont des systèmes conçus pour aider les utilisateurs à accomplir des tâches spéci-
fiques, telles que la réservation d’un vol ou d’un restaurant. Ils s’appuient générale-
ment sur un paradigme d’apprentissage par renforcement pour modéliser le dialogue
permettant au système de raisonner sur les objectifs et les préférences de l’utilisateur,
et de sélectionner les actions qui conduiront au résultat souhaité.

Malgré les avancées récentes, les systèmes de dialogue orientés tâches présentent
encore plusieurs limites. L’une d’entre elles est la tendance de ces systèmes à échouer
lorsque les utilisateurs s’écartent du comportement attendu ou introduisent de nou-
veaux objectifs au milieu de la conversation. Un autre problème est la difficulté de
concevoir des systèmes robustes capables de gérer un large éventail de tâches.

Nous nous concentrons spécifiquement sur l’apprentissage à partir d’un nom-
bre limité d’interactions, ce qui est crucial en raison de la rareté et du coût des
interactions humaines. Les algorithmes standards d’apprentissage par renforcement
nécessitent généralement une grande quantité de données d’interaction pour obtenir
de bonnes performances. Pour relever ce défi, nous visons à rendre les systèmes de
dialogue plus efficaces en termes d’échantillonnage dans leur entraînement.

Nous nous sommes inspirés principalement des idées d’imitation et de hiérarchie.
Notre première contribution explore l’intégration de l’imitation dans l’apprentissage
par renforcement. Nous nous appuyons sur la littérature existante qui souligne l’im-
portance de l’imitation dans l’apprentissage, car les humains apprennent souvent
en imitant des experts qui possèdent des connaissances précieuses. Nous étudions
comment utiliser efficacement les démonstrations d’experts pour extrapoler les con-
naissances avec un effort de généralisation minimal. Alors que l’imitation s’avère
efficace pour obtenir des performances et tirer parti de démonstrations réussies,
nous observons des limites lorsqu’il s’agit de traiter une complexité plus élevée, en
particulier dans le cadre d’un dialogue orienté tâches multi-domaines.

Notre deuxième contribution porte sur l’exploitation de la hiérarchie et de la
structure inhérentes aux dialogues. En nous inspirant de l’avantage que présente la
décomposition de problèmes complexes en problèmes plus simples, nous explorons la
manière d’exploiter les similitudes entre les tâches et les domaines dans les systèmes
de dialogue. En décomposant le problème principal en tâches élémentaires que
nous maîtrisons, nous tirons parti de la hiérarchie pour résoudre efficacement des
problèmes plus vastes et plus complexes. Cette approche permet d’économiser du
temps de formation en partageant des stratégies entre des tâches similaires.

Enfin, nous consolidons nos résultats précédents et soulignons l’importance de
l’apprentissage à partir d’un petit nombre d’interactions humaines dans les ap-
plications du monde réel. Les techniques d’apprentissage efficaces sur le plan de
l’échantillonnage sont essentielles dans ce contexte, et nos recherches portent sur le
développement de solutions efficaces dans le cadre de nos découvertes précédentes.
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Abstract
In this Ph.D thesis, we study task-oriented dialogue systems that are systems de-
signed to assist users in completing specific tasks, such as booking a flight or ordering
food. They typically rely on reinforcement learning paradigm to model the dialogue
that allows the system to reason about the user’s goals and preferences, and to select
actions that will lead to the desired outcome.

Despite these advances, there are still several limitations to task-oriented dia-
logue systems. One issue is the tendency of such systems to fail when users deviate
from expected behavior or introduce new goals mid-conversation. Another issue is
the difficulty of designing robust systems that can handle a wide range of tasks.

Our focus is specifically on learning from a limited number of interactions that
is crucial due to the scarcity and costliness of human interactions. Standard rein-
forcement learning algorithms typically require a large amount of interaction data
to achieve good performance. To address this challenge, we aim to make dialogue
systems more sample-efficient in their training.

To guide our contribution journey, we draw from two main ideas: imitation and
hierarchy. Our first contribution explores the integration of imitation with reinforce-
ment learning. We build upon existing literature that emphasises the importance
of imitation in learning, as humans often learn by imitating experts who possess
valuable knowledge. We investigate how to effectively use expert demonstrations to
extrapolate knowledge with minimal generalisation effort. While imitation proves
efficient for achieving performance and leveraging successful trajectories, we observe
limitations when dealing with higher complexity, particularly in multi-domain task-
oriented dialogue.

Our second contribution focuses on harnessing the hierarchy and structure in-
herent in dialogues. Taking inspiration from the advantage of decomposing complex
problems into simpler ones, we explore how to exploit task and domain similarities in
dialogue systems. By decomposing the main problem into elementary tasks that we
master, we leverage hierarchy to solve larger and more complex problems efficiently.
This approach saves training time by sharing policies across similar tasks.

Lastly, we consolidate our previous findings and emphasise the importance of
learning from a small number of human interactions in real-world applications.
Sample-efficient learning techniques are essential in this context, and our investi-
gation revolves around developing effective solutions within the framework of our
previous discoveries.
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Introduction

Since IBM’s Deep Blue defeated world chess champion Garry Kasparov in a six-
game rematch in 1997, Artificial Intelligence (AI) has continued to challenge hu-
man masters in historical events on the public scene. In 2011, IBM’s Watson, a
question-answering computer system capable of answering questions posed in natu-
ral language, competed on the quiz show Jeopardy! against champions Brad Rutter
and Ken Jennings, winning the first-place prize. DeepMind’s AlphaGo, a computer
program that plays the board game Go, made its debut in 2015 and went on to
defeat the European Go champion Fan Hui in a match. In March 2016, it made
history by defeating Lee Sedol, one of the world’s top Go players, in a five-game
match. Cepheus, developed by the Computer Poker Research Group at the Uni-
versity of Alberta, became the first poker playing program that ”essentially weakly
solved” the game of heads-up limit Texas hold ’em. Additionally, AI has shown
proficiency in mastering video games such as Atari, Dota 2 with OpenAI Five in
2017, and StarCraft II with AlphaStar in 2019. These achievements demonstrate
the continuous advancement and potential of AI in various fields.

What is AI?

The term AI has become increasingly popular in recent years, but what does it really
mean? Essentially, AI refers to the ability of machines to demonstrate intelligence,
rather than relying solely on natural intelligence like animals and humans. The field
of AI research involves the study of intelligent agents - systems that can perceive
their environment and take actions that maximize their chances of achieving their
goals. This pursuit can be viewed through two main lenses: one that focuses on
thought processes and reasoning, and another that addresses behavior. Addition-
ally, there are two approaches to measuring success - one that compares machine
performance to human performance, and another that measures against an ideal
concept of intelligence, known as rationality.
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In practice, the focus on rational behavior in defining AI helps us develop mod-
els and algorithms to systematically solve problems. This approach is particularly
useful in designing AI systems that tackle real-world problems with an objective
of maximizing their chances of success. In simpler terms, AI can be defined as an
automatic information processing tool or algorithm designed to achieve a specific
goal.

Modern artificial intelligence techniques are ubiquitous AI is therefore ap-
plicable to any intellectual task and is widely used in our world today. Modern AI
techniques are ubiquitous and too numerous to list here. In the 2010s, AI appli-
cations were at the heart of the most commercially successful areas of computing:
search engines (such as Google Search), targeting online advertisements, recommen-
dation systems (offered by Netflix, YouTube or Amazon), driving internet traffic,
targeted advertising (AdSense, Facebook), virtual assistants (such as Siri, Google
asisstant ot Alexa), autonomous vehicles (including drones and self-driving cars),
turn-by-turn navigation, spell checker, word completion, automatic language trans-
lation (Microsoft Translator, Google Translate), facial recognition (Apple’s Face ID
or Microsoft’s DeepFace), image processing, image labeling (used by Facebook, Ap-
ple’s iPhoto and TikTok) and spam filtering.

Artificial intelligence techniques are extremely effective AI has become
essential in various applications due to its many faculties, which make it efficient and
effective. One of the advantages of AI is its reliability: it can perform tasks with
consistent accuracy and do not tire or make mistakes due to fatigue or inattention.
Another important facet of AI is verification: it can be programmed to follow
specific rules and protocols, ensuring that they always operate within a defined
set of parameters. AI can also provide continuous monitoring and analysis of
vast amounts of data, which would be impossible for humans to perform manually.
Automation is another key feature of AI, allowing repetitive or mundane tasks
to be performed more efficiently and accurately by machines. Decision support
is another crucial aspect of AI, where algorithms can analyze data and provide
recommendations or insights to help humans make more informed decisions. AI can
also provide personalisation, tailoring recommendations or services to individual
users based on their preferences, behaviors, and past interactions. Finally, AI can
provide superhuman analysis, allowing for the processing of vast amounts of data
and performing complex computations beyond human capabilities.

Artificial intelligence benefits from advances in training models Machine
Learning (ML) is a field of inquiry devoted to understanding and building meth-
ods that ”learn” – that is, methods that leverage data to improve performance on
some set of tasks. ML has rapidly evolved over the past few years, thanks to the
emergence of Deep Learning (DL), methods based on artificial neural networks with

2



representation learning, and the advancements in computing capacities of modern
machines, particularly Graphics Processing Unit (GPUs). This has led to significant
improvements in the accuracy of deep neural networks, making them an essential
tool for many fundamental tasks. Techniques such as Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs) and transformers have revolutionized
the fields of Computer Vision, Natural Language Processing (NLP), and Speech
Recognition. The hardware advancements have allowed us to train these deep neu-
ral networks on vast amounts of data, leading to impressive results that were once
thought to be impossible. With the continued development of machine learning
techniques and hardware, we can expect further advancements in the field of AI in
the years to come. Last year, OpenAI’s language model called GPT-3 made a splash
in our societies by setting a new standard for AI that can mimic human language
and generate text that is almost indistinguishable from human writing with all the
ethical issues that this implies.

AI for dialogue systems
Dialogue System (DS), also known as conversational agents or chatbots, are com-
puter programs that engage in conversation with users. They can be used for a
variety of tasks, including customer service, information retrieval, personal assis-
tance, and entertainment. DS typically use NLP techniques to interpret user input
and generate appropriate responses. In recent years, the field of DS has under-
gone rapid development, with advances in ML and NLP techniques leading to more
sophisticated and effective systems.

A brief history of conversational AI The idea of machines that could con-
verse with humans has a long history, dating back to science fiction stories such as
Isaac Asimov’s ”I, Robot” and the character of Hal9000 in the film ”2001: A Space
Odyssey”. However, the first significant milestone in the development of DS was the
Turing Test, proposed by Alan Turing in 1950. The Turing Test is a measure of a
machine’s ability to exhibit intelligent behavior equivalent to, or indistinguishable
from, that of a human. The test involves a human evaluator who engages in a nat-
ural language conversation with a machine and a human, without knowing which
is which. If the evaluator cannot reliably distinguish between the machine and the
human, the machine is said to have passed the test.

In the decades following the Turing Test, several rule-based DS were developed,
which relied on handcrafted rules to generate responses. One early example was the
ELIZA program developed in the 1960s, which used pattern matching and simple
rules to simulate a psychotherapist. Another early DS was PARRY, developed in the
1970s, which simulated a paranoid schizophrenic patient. With the rise of ML in the
1990s, DS began to incorporate statistical methods to improve their performance. In
particular, stochastic optimization algorithms were used to learn models of dialogue
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behaviour from data. This led to the development of data-driven DS, which could
learn from examples of human conversations to generate more natural and effective
responses.

The current state of conversational AI Today, DS are used in a wide range of
applications, including customer service, personal assistants, and social media. Some
examples of DS include Apple’s Siri, which can answer questions, set reminders,
and perform various tasks on a user’s behalf, Amazon’s Alexa, which can control
smart home devices, play music, and provide information on a wide range of topics,
and Google Assistant, that can answer questions, set reminders, and control smart
home devices, among other things. These systems use a combination of natural
language processing (NLP), understanding (NLU) and generation (NLG) techniques
and machine learning algorithms to interact with users and provide helpful responses.

DS are facing a number of challenges in their development, particularly in the
areas of NLU, NLG and dialogue strategies. While recent advances in NLP tech-
niques have made it more feasible to understand the nuances of human language,
achieving direct control over dialogue strategy remains a difficult task. Large lan-
guage models, such as GPT-3, have demonstrated remarkable ability in imitating
human language, but designing effective dialogue strategies that can enable the sys-
tem to engage in a meaningful conversation with the user and achieve its intended
goals remains a challenge. To address this issue, researchers are exploring different
approaches such as using ML algorithms to learn from previous interactions and
optimise the dialogue strategy. However, this requires large amounts of high-quality
training data, which can be a significant obstacle in certain domains.

Focus on task-oriented dialogue systems One area of particular interest in
the field of DS is task-oriented dialogue systems. These are systems designed to
assist users in completing specific tasks, such as booking a flight or ordering food.
They typically rely on a Partial Observable Markov Decision Process (POMDP)
to model the dialogue that allows the system to reason about the user’s goals and
preferences, and to select actions that will lead to the desired outcome.

One of the key challenges in developing task-oriented dialogue systems is the
problem of Dialogue State Tracking (DST), which involves keeping track of the user’s
goals and preferences as the conversation progresses. This is a difficult problem
because it requires the system to reason about the user’s implicit intentions and
beliefs, rather than relying solely on explicit dialogue cues. Another challenge is the
design of effective Dialogue Policy (DP), which can balance the competing goals of
providing helpful responses and achieving the system’s objectives. In recent years,
Reinforcement Learning (RL) has emerged as a promising approach to learn such
policies, allowing DS to improve through interactions with users.

Despite these advances, there are still several limitations to task-oriented DS.
One issue is the tendency of such systems to fail when users deviate from expected
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behavior or introduce new goals mid-conversation. Another limitation is the diffi-
culty of designing robust systems that can handle a wide range of tasks.

Despite these challenges, task-oriented dialogue systems continue to hold signifi-
cant promise for a wide range of applications, including customer service, healthcare,
education, and personal productivity. For example, task-oriented dialogue systems
have been used to provide personalised recommendations for online shoppers and
support language learning through conversation practice.

As research in conversational AI continues to advance, we can expect to see fur-
ther progress in the development of more sophisticated and effective task-oriented
dialogue systems, as well as the emergence of new applications and use cases. With
the potential to revolutionise how we interact with technology and each other, con-
versational AI represents a crucial area of research and development for the future
of computing and human society.

Important note
We precise that this thesis predates ChatGPT (released in November 2022) and
therefore does not refer to these models of text-generation, now seen as conversa-
tional agents. This thesis is more about planning and task-oriented dialogue than
dialogue fluidity. As impressive as it is, ChatGPT in its current version (no open-
source) does not manage planning. We can expect to see task-oriented control
plugins soon, but for the moment it’s still a super chit-chat bot, which is prone to
hallucinations and offers no solid guarantees in relation to trusted AI (the veracity
of claims is an example).

Contributions
Our focus is specifically on task-oriented dialogue systems, where learning from
a limited number of interactions is crucial due to the scarcity and costliness of
human interactions. Standard RL algorithms typically require a large amount of
interaction data to achieve good performance. To address this challenge, we aim to
make dialogue systems more sample-efficient in their training.

To guide our contribution journey, we draw from two main ideas: imitation and
hierarchy. Our first contribution explores the integration of imitation with RL. We
build upon existing literature that emphasises the importance of imitation in learn-
ing, as humans often learn by imitating experts who possess valuable knowledge.
We investigate how to effectively use expert demonstrations or expert supervision
to extrapolate knowledge with minimal generalisation effort. While imitation proves
efficient for achieving performance and leveraging successful trajectories, we observe
limitations when dealing with higher complexity, particularly in multi-domain task-
oriented dialogue.
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Our second contribution focuses on harnessing the hierarchy and structure in-
herent in dialogues. Taking inspiration from the advantage of decomposing complex
problems into simpler ones, we explore how to exploit task and domain similarities in
dialogue systems. By decomposing the main problem into elementary tasks that we
master, we leverage hierarchy to solve larger and more complex problems efficiently.
This approach saves training time by sharing policies across similar tasks.

Lastly, we consolidate our previous findings and emphasise the importance of
learning from a small number of human interactions in real-world applications.
Sample-efficient learning techniques are essential in this context, and our investi-
gation revolves around developing effective solutions within the framework of our
previous discoveries.

In summary, this thesis aims to enhance task-oriented dialogue systems by ad-
dressing the challenge of sample efficiency. We achieve this through the integration
of imitation and reinforcement learning, leveraging the benefits of hierarchy and
structure in dialogue, and emphasising the ability to learn from a limited number
of human interactions, which is crucial for practical applications.

Publications

The contributions discussed in the previous paragraph have led to the various pub-
lications in international and national conferences. Our first work (Cordier et al.,
2020) has been shared through a remote oral presentation at the workshop of Hu-
man in the Loop Dialogue Systems of the Neural Information Processing Systems
conference. The continuation of our work (Cordier et al., 2022b) has led to a poster
presentation at the meeting of the Special Interest Group on Discourse and Dia-
logue. The same work (Cordier et al., 2022a) with a special focus have been shared
via a poster presentation at the meeting of Journées d’Études sur la Parole. Our
final work (Cordier et al., 2023) has been published in the findings of the European
Association for Computational Linguistics via a presentation and a poster session.

Thibault Cordier et al. (2020). “Diluted Near-Optimal Expert Demonstrations
for Guiding Dialogue Stochastic Policy Optimisation”. In: Proceedings of the Work-
shop of Human in the Loop Dialogue Systems, NeurIPS 2020. url: https://
sites.google.com/view/hlds-2020/home

Thibault Cordier et al. (2022b). “Graph Neural Network Policies and Imitation
Learning for Multi-Domain Task-Oriented Dialogues”. In: Proceedings of the 23rd
Annual Meeting of the Special Interest Group on Discourse and Dialogue, SIGDIAL
2022, Edinburgh, UK, 07-09 September 2022. Ed. by Oliver Lemon et al. Association
for Computational Linguistics, pp. 91–100. url: https://aclanthology.org/
2022.sigdial-1.10

Thibault Cordier et al. (2022a). “Et la robustesse ? ... bordel ! Comment les
stratégies de dialogue par apprentissage structuré résistent aux bruits des entrées ?”

6

https://sites.google.com/view/hlds-2020/home
https://sites.google.com/view/hlds-2020/home
https://aclanthology.org/2022.sigdial-1.10
https://aclanthology.org/2022.sigdial-1.10


In: Proceedings of Journées d’Études sur la Parole – JEP 2022, pp. 501–510. url:
https://www.isca-speech.org/archive/jep_2022/cordier22_jep.html

Thibault Cordier et al. (2023). “Few-Shot Structured Policy Learning for Multi-
Domain and Multi-Task Dialogues”. In: Findings of the Association for Computa-
tional Linguistics: EACL 2023, Dubrovnik, Croatia, May 2-6, 2023. Ed. by Andreas
Vlachos et al. Association for Computational Linguistics, pp. 432–441. url: https:
//aclanthology.org/2023.findings-eacl.32

Thesis Outline
This manuscript is organised as follows: In Part I, we provide an introduction of
task-based dialogue systems and reinforcement learning required to understand the
concepts used in this thesis. In Chapter 1, we propose a global overview on task-
oriented dialogue systems and present the mathematical framework for its modeling.
In Chapter 2, we discuss the main arguments for using reinforcement learning in a
dialogue application and present the mathematical framework for its modeling. We
conclude by giving an overview of more sophisticated mechanisms used for dialogue
management and the challenges we address in the scope of this thesis.

In Part II, we list the contributions of the thesis to the scaling of dialogue
systems for multi-domain task-oriented dialogues based on hierarchy and imitation
techniques. In Chapter 3, we present several hybrid imitation and reinforcement
learning strategies for single-domain dialogue policy. In Chapter 4, we present sev-
eral structured policies based on hierarchical reinforcement learning and graph neu-
ral network that we combine with different degrees of imitation learning in order to
effectively handle multi-domain dialogues. In Chapter 5, we focus on the ability to
learn from a small number of human interactions that is crucial especially on multi-
domain environments. We propose to use structured policies with full imitation to
improve sample efficiency when learning on these kinds of environments.

Finally, the conclusion and perspectives in Part III puts an end to this thesis.
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Task-Oriented Dialogue Systems

9





1
A Global Overview on Task-

Oriented Dialogue Systems

In the introduction, we briefly addressed the evolution of conversational AI and its
applications in our modern societies. We narrowed the scope of the study on task-
oriented dialogue systems that are designed to achieve specific goals while conversing
with humans, and possibly several goals during a unique dialogue.

In this chapter, we propose a global overview on task-oriented dialogue systems
in order to provide key elements to understand the concepts used in this thesis. First,
we briefly introduce some mechanisms inherent to human dialogues. Then we explain
how to model a statistical spoken dialogue systems in particular by providing a
probabilistic framework for dialogue simulation. To continue, we formalise the task-
oriented dialogue problem and describe in detail the necessary concepts. Finally, we
outline the approaches and tools needed for prototyping dialogue systems such as
data collection and simulation.

For more details about all elements we introduce, we invite the interested reader
to consult our main inspirational references on speech and language processing (Ju-
rafsky and Martin, 2014), on task-oriented dialogue literature surveys (Paek et al.,
2008a; H. Chen et al., 2017; J. Gao et al., 2018; Z. Zhang et al., 2020), on milestones
in dialogue system modelling (J. Williams et al., 2007; Young et al., 2013b) and on
pertinent applications (Rieser and Lemon, 2011).

1.1 From the perspective of a human conversation

Conversation between humans is a common activity that seems simple and natural at
first glance, but it quickly becomes complex and complicated when examined more
closely. Holding a conversation requires recognising and understanding speech and
text, following the flow of the conversation, incorporating and extracting knowledge,
deciding what action to take, structuring and generating the following speech. Before
attempting to design a conversational system to dialogue with humans, it is crucial
to understand the linguistic phenomena behind in this process. One good way to do

11



Chapter 1. A Global Overview on Task-Oriented Dialogue Systems

that is to study how humans converse with each others (Jurafsky and Martin, 2014).
As an example, we are going to draw inspiration from a job interview between an
employer and a candidate as illustrated in Figure 1.1. As if in a game between
two players, a dialogue proceeds as follows: the employer takes a turn, then the
candidate takes a turn, then the employer, and so on.

Turns A dialogue is a sequence of turns each hosting a single contribution
from one speaker to the dialogue.

A turn can consist of a sentence, although it might be as short as a single word
or as long as multiple sentences. By the way, a dialogue appears to be a sequential
decision making process.

Initiative When a dialogue is controlled by one participant, we say that it
has the conversation initiative (Walker and Whittaker, 1990).

As in a job interview, the employer asks questions and the applicant responds.
However sometimes it is more common for initiative to pass from one participant
to another. For instance, the applicant may ask a question to clarify something
the employer said. In this case, we call such interactions mixed initiative. As
we will see with human-machine interactions, we distinguish user-initiative and
system-initiative dialogues and the situation will depend on the actions taken by
each participant.

Dialogue acts Each utterance in a dialogue is a kind of action being per-
formed by the speaker. These actions are commonly called speech acts or
dialogue acts (Austin, 1975).

Due originally to the philosopher Wittgenstein (1953), the concept of language-
game states that a word or even a sentence has meaning only as a result of the rule
of the game being played. The philosopher Austin (1962) developed more fully the
concept of performative utterances that are sentences which not only describe a given
reality, but also change the social reality they are describing. In his framework, we
distinguish:

• The locutionary acts, that are what was said and meant (i.e. the actual
utterance and its ostensible meaning);

• The illocutionary acts, that are what was done (the semantic illocutionary
force of the utterance, thus its real, intended meaning);

• The perlocutionary acts, that are what happened as a result (i.e. its actual
effect such as persuading, convincing, scaring, inspiring);

• The metalocutionary acts, that categorise speech acts that refer to the
forms and functions of the discourse itself (prosody and punctuation).

12



1.1. From the perspective of a human conversation

Figure 1.1: Example of a dialogue during a job interview between an employer and
a candidate. The employer takes the initiative of the conversation and then the
candidate in her turn. They communicate the information requested by the other
in a structured way: the employee first questions the candidate and then vice versa.
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When the employer says “did you bring your resume?’ during the job interview,
the illocutionary act is a request: “please give me your resume’ even if the locu-
tionary act (the literal sentence) was to ask about the presence of the resume. The
perlocutionary act (the actual effect), could be to get the candidate to hand over
his resume.

In what follows, we will focus on “illocution” when talking about “dialogue acts”
since it is the driving force behind the conversation. Searle et al. (1969) set up the
following classification of illocutionary speech acts:

• The assertives commit a speaker to the truth of the expressed proposition;
• The directives are to cause the listener to take a particular action (e.g. re-

quests, commands and advice);
• The commissives commit a speaker to some future action (e.g. promises);
• The expressives (or acknowledgments) express on the speaker’s attitudes

and emotions towards the proposition with respect to some social action (e.g.
congratulations, excuses and thanks);

• The declarations change the reality in accord with the proposition of the dec-
laration (e.g. baptisms, pronouncing someone guilty or pronouncing someone
husband and wife).

This classification is helpful to define what a dialogue system should understand
and generate. Section 1.4 will introduce more formally the convention that we will
use in our future experimentations.

Grounding It is necessary for participants to share a common ground to
understand and be understood each other (Stalnaker, 1978).

A dialogue is not just a series of independent speech acts, but rather a col-
lective act performed by the speaker and the listener. For instance, the applicant
understands what the employer is asking and responds accordingly (and vice versa).
This is because the participants share common concepts (referring to the language-
game) and, in this way, implicitly determine what they agree on by grounding their
statements one after another. Grounding means acknowledging that the listener has
understood from the speaker; as when the employer confirms that the applicant has
answered the question (Clark, 1996).

Moreover, and still in connection with the concept of the language game, the
participants share and manipulate common concepts to communicate with each
other. This may be communication rules accepted a priori or vocabulary known to
all. Thus, when we design our dialogue systems, it will be important to define the
context of the conversation (for whom and for what purpose).

Organisation and Structure Dialogue acts are organised in a logical se-
quence, bringing out structures in the conversation (Sacks et al., 1978).
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Such local structures between speech acts are discussed in the field of conver-
sational analysis (Sacks et al., 1978). The employer, after having asked a question
(request act), expects an answer from the candidate (response act). A proposal
is commonly followed by an acceptance or rejection. Dialogue acts appears to be
present by pairs, called adjacency pairs (Schegloff, 1968).

These sequences usually appear successively, but may occur in parallel, reveal-
ing sub-parts of the dialogue called side sequence or sub-dialogue (Jefferson, 1972;
Litman, 1985). The applicant may wish to correct a previous request by initiating
a correction sub-dialogue. She may ask a clarification question which may initiate a
sub-dialogue between a request and a response. Or she may ask to repeat a question
that was not well understood because of a noisy environment.

Implicature Speakers attempt to be relevant in their interactions to guide
their interlocutor and expect the other to draw inferences (Grice, 1975).

Inference helps the speakers in their understanding of the dialogue as pointed
out by Grice (1975) in his theory of conversational implicature. Grice proposed that
what enables hearers to draw these inferences is that conversation is guided by a
set of maxims, general heuristics that play a guiding role in the interpretation of
conversational utterances. For example, when the employer asks the applicant how
long she has worked in the field, the applicant can list her experiences to show how
much work she has done. She is indirectly answering the original question but hopes
that her answer will guide the interviewer in the right direction.

Conclusion: These characteristics of human conversation (turns, speech acts,
common ground, dialogue structure, initiative and implicature) show structural and
dynamic aspects of a dialogue. As we will see, these elements will constrain our
way of modeling a dialogue as a sequential turn-taking decision-making process be-
tween two conversational agents who share a common ground of knowledge and
references. In particular, it will be necessary to define what these agents will talk
about, what actions they will undertake and how they will translate the intentions
of their interlocutor.

1.2 Modelling of statistical dialogue systems
Now that we have a better understanding of how human dialogues work, we propose
to formalise and model a spoken dialogue system. This gives us a mathematical
framework for further work and a procedure for how to design a dialogue system.
First, we propose a functional description of the human-machine dialogue, and then
we formalise it as a probabilistic framework.
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1.2.1 Formal description of human-machine dialogue
For formalisation purposes, a human-machine dialogue can be considered as a se-
quential turn-taking process between a human user and a dialogue system controlled
by the Dialogue Manager (DM) subsystem. It has access to an external information
source, the Knowledge Base (KB) and can interact though speech and language pro-
cessing subsystems such as Automatic Speech Recognition (ASR), Natural Language
Understanding (NLU), Natural Language Generation (NLG), and Text-To-Speech
(TTS) subsystems (Pietquin and Dutoit, 2006). We briefly introduce each subsys-
tem of this dialogue process pipeline (J. Gao et al., 2018; Z. Zhang et al., 2020).

Figure 1.2: The complete pipeline of a spoken dialogue system consists of an under-
standing input process, a dialogue manager, and a generation output process.

Input processing subsystems Upstream of the decision making, the input
modules process the signal, from speech to text and from text to a simplified
semantic representation for the machine. These steps are performed in suc-
cession by ASR and NLU modules.

Automatic Speech Recognition (ASR) is an input module that enables the
recognition and transcription of spoken language into text. It produces interpre-
tation hypotheses as the most probable sentences the user could have said. Each
hypothesis is associated with a confidence score that we call ASR score.

Natural Language Understanding (NLU) is an input module that extracts
meanings from a text to build a semantic representation. It produces interpretation
hypothesis as the most probable dialogue acts the user intended to perform, each
one associated with a confidence score we call NLU score. More precisely, the NLU
component takes the user utterance as input and maps the utterance to a structured
semantic representation called semantic frame. This can be done by performing
three tasks: domain detection, intent determination, and slot tagging. Typically, a
pipeline approach is taken, so that the three tasks are solved one after another. We
will detail these concepts more thoroughly in Section 1.3.
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Decision-making subsystems The mastermind of the dialogue system is
the Dialogue Manager (DM). It is the control module that decides the
best thing to say according to the current belief state of the dialogue. It is
divided into two sub-modules: the DST and the DP.

Dialogue State Tracking (DST) maintains an internal dialogue state (also
called dialogue context) by keeping track of the history of the dialogue. It usually
takes the form of a confidence probabilities of each concept (domain, intent and
slot) of the conversation.

Dialogue Policy (DP) decides what dialogue acts to take next according to
its internal state and chooses some attributes (slots and values) to say to the user. It
can access the KB in order to obtain the information needed to formalise its dialogue
acts.

Output generation subsystems Downstream of the decision, the output
modules transform the action into a human-understandable signal from di-
alogue acts to text and from text to speech. These steps are performed in
succession by NLG and TTS.

Natural Language Generation (NLG) is an output module that transcribes
the semantic representation (not only dialogue acts) of the current dialogue turn into
a natural language text. The transcription process can be based on a predefined
answer choice, on the completion of a template message or on a probabilistic word
(or token) generation process.

Text-To-Speech (TTS) is an output module that enables the synthesis of
text into speech. It consists of two parts: the front-end is responsible for assigning
phonetic transcriptions to each word, and divides a text into sentences. The back-
end, also called the synthesiser, is responsible for converting the symbolic linguistic
representation into sound.

Extensive reading: Traditionally, dialogue systems are built in a modular ar-
chitecture, so that each module is designed separately and combined together to
achieve the overall goal. With the recent use of neural methods, which have the
advantage of being differentiable and can be optimised by gradient-based methods
such as back-propagation, fully data-driven end-to-end systems combine all modules
(or a sub-set of these modules) into one that directly addresses the desired problem.
The design may take longer and be more or less complex but benefits from less
intermediation and therefore less propagation errors between modules. Interested
readers can refer to J. Gao et al. (2018)’s survey to explore neural approaches to
conversational AI.
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1.2.2 Probabilistic description of a human-machine dialogue

We now propose a probabilistic framework of human-machine dialogues that will
allow us to better understand how the modules communicate with each other and
how external fluctuations influence the internal system during a dialogue turn. We
will focus in particular on the probabilistic framework of the DM component.

How to formalise a human-machine dialogue turn? We detail how human-
machine dialogue turns take place (J. Williams and Young, 2005; Pietquin and
Dutoit, 2006). At each turn t, the DM generates a set of dialogue acts at that
have to be transmitted to the user. In order to do that, the output generation
subsystems (NLG and TTS) translate it successively into an intermediate text tt
and a synthesised spoken utterance syst. The human user answers by an utterance
ut built according to the dialogue acts she could extract from syst, to her knowledge
kt and to the goal gt she tries to achieve. Then the input processing subsystems
(ASR and NLU) process the user’s utterance to produce an observation composed
of the set of concepts ot supposed to represent what the user meant and a set of
scores mt indicating the confidence of those systems in their processing coming from
both the ASR (CLASR) and the NLU (CLNLU) modules. The observation can be
considered as the result of the processing of the dialogue acts by its environment.
The DM finally uses ot to update its internal state st+1 thanks to a model of the task.
During the input and output processing, both the user’s and the system utterances
are mixed with external noise nt. There are multiple causes of ambient noise such as
user’s indecisions generating agramaticality, repetitions, etc. or incorrect automatic
processes in speech generation and understanding. An illustration of this pipeline
for a turn is presented in Figure 1.3.

Figure 1.3: For a dialogue turn, the spoken dialogue system will transform step
by step the input (audio or textual) into a semantic representation to then make a
decision and perform the reverse transformation. Inspired from Pietquin and Dutoit
(2006).
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Notation Definition

t the time step or turn number
st the internal system state at time t
at the set of system dialogue acts at time t
syst the textual (or spoken) system utterance at time t
ut the textual (or spoken) user utterance at time t
kt the user’s knowledge at time t
gt the user’s goal at time t
ot the system observation (or the set of user dialogue acts) at time t

CLASR the confidence level of ASR module at time t
CLNLU the confidence level of NLU module at time t
mt the set of confidence scores on ot at time t
nt the external noise at time t

Table 1.1: Notations used and corresponding definitions for a probabilistic descrip-
tion of a human-human dialogue.

A probabilistic framework for SDS: Based on these elements, the functioning
of the dialogue system can be described by the joint probability of all signals oc-
curring during an interaction given the current state and the noise. In particular, it
is possible to factor this probability by taking into account their time dependence.
According to the used notations we recall in the Table 1.1, this allow us to propose
the following probabilistic framework of SDS:

Definition 1.1: Probabilistic framework for SDS

The functioning of the system can be represented by the following factored
joint probability:

P (st+1, ot, at, ut, syst, gt, kt, |st, nt) =

P (at|st)︸ ︷︷ ︸
DM

·P (syst|at, st, nt)︸ ︷︷ ︸
NLG+TTS

· P (kt|syst, st, nt)︸ ︷︷ ︸
Knowledge Update

· P (gt|kt)︸ ︷︷ ︸
Goal Modification

· P (ut|gt, kt, syst)︸ ︷︷ ︸
User Utterance

· P (ot|ut, at, st, nt)︸ ︷︷ ︸
ASR+NLU

·P (st+1|ot, st)︸ ︷︷ ︸
DST

(1.1)

We use Definition 1.1 to extend our probabilistic framework to DM. We propose
to simplify the joint probability by marginalising the DM components. We state that
noise only has impacts in the environment and that the internal state representation
depends only on the last observation of the environment.
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Definition 1.2: Probabilistic framework for DM

From the point of view of the DM, one can describe the system functioning
by a joint probability. By omitting the time indexes and denoting s′ the state
at time t+ 1, one can write:

P (s′, o, a|s, n) = P (a|s)︸ ︷︷ ︸
DM

· P (o|a, s, n)︸ ︷︷ ︸
Simulation Env.

·P (s′|o, s)︸ ︷︷ ︸
DST

(1.2)

If we isolate the DM module, we see that the observation can be considered as
the result of the processing of the DM dialogue acts by its environment.

1.3 Task-oriented dialogue problem formulation
For now on, we specifically address task-oriented dialogue problems. We formalise
this type of problem and present the key elements to understand the field that we
will use as a common thread for the thesis.

1.3.1 Focus on information-seeking dialogue systems
Above all, task-oriented dialogues are centered around a specific subject with a
clearly defined objective unlike chitchat scenarios. Here, we propose to focus on
the emblematic use case of information-seeking task. We are going to show that
information-seeking dialogue strategies can serve as an interactive natural language
interface to database search (Androutsopoulos and Ritchie, 2000).

Let us keep the dialogue strategies aside and take the example of a service that
provides access to a database containing a large number of search candidates. Here,
the concept of search candidates is, in a broad sense, a list of candidates that
response to a request of the user. The challenge is therefore to allow users to find
different candidates satisfying their constraints, to choose a result and to request the
needed information. Many services offer this functionality from simple slot-filling
tasks, such as product ordering or service reservation (J. Williams et al., 2007),
to more complex assistance tasks, such as tutoring tasks (Tetreault et al., 2006),
technical support or customer service that advise and assist in case of problems.
The simpler and usual approach consists of proposing a form containing boxes to
be filled in with the desired constraints. The advantage of this approach is that it
is simple to understand and not prone to errors. However, the downside is that the
search procedure may not be optimal and can be time-consuming for the user.

Information-seeking is a task that is already done automatically by machines,
nevertheless it can be done more efficiently by an AI that drives the questions on the
form to browse the database more efficiently. These interactions between machines
and humans can be done through natural language which can help to get away from
the cumbersome nature of forms. From this perspective, we see that the dialogue is
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used as a proxy for the search form and thus makes it possible to automate the task,
makes the search for information more natural and also allows a spoken interaction.

This use case allowed us to better understand the characteristics of a task-
oriented dialogue. Therefore we propose the following definition:

Definition 1.3: Task-oriented dialogue

We call a conversation involving a user and an assistant for information-
seeking a task-oriented dialogue:

• The assistant provides a service in which she is responsible for solving
a predefined information-seeking task.

• The user is looking for a solution that can answer her problem defined
by a structured set of constraints.

Such conversation gives the opportunity to the interlocutors to share their in-
formation to find a solution to the search. To be more specific, information-seeking
is the process of attempting to obtain information that can be decomposed in two
major phases (Rieser and Lemon, 2011):

• The information acquisition is the initial phase during which the system is
gathering information from the user by requesting her constraints;

• The information presentation is the second phase that starts when the sys-
tem has obtained sufficient information that matches the user’s requirements.
The system is now ready to present the candidates to the user, detailing the
information needed to solve the problem.

1.3.2 Elements of task-oriented dialogue problems

We propose to setup the main elements relative to a task-oriented dialogue.

Tasks and Domains Task-oriented dialogue systems search to satisfy users’
needs by accomplishing a particular task for a specific domain.

Usually, a task refers to the goal of the system - e.g. informing, booking, selling
- and it is related to a specific domain that refers to the set of concepts and values
speakers can talk about - e.g. restaurants, attractions, hotels, train, laptops. For
example, in a dialogue about booking train tickets, we can talk about the notions
of departure and arrival cities which can take as values the cities served by the
transport.

A dialogue is said to be single-domain if the task to be completed concerns
only one domain. It is said to be multi-domain (respectively multi-task) if it can
be broken down (sequentially or in parallel) into sub-dialogues related to distinct
domains (respectively distinct tasks).
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Slots A task-oriented dialogue is limited by the set of concepts speakers can
talk about, called slots.

We refer to a widely used taxonomy, originally formalised in the Dialogue
State Tracking Challenge (DSTC), to describe the information-seeking problem (J.
Williams et al., 2016). By standing on the side of the user:

• a slot is said informable if the user can provide a value for, to use as a
constraint on their search (for the system, this kind of slot is requestable).

• a slot is said requestable if the user can ask the system the value of a slot
(for the system, this kind of slot is informable).

On principle, all informable slots are also requestable. In the example of the
train ticket booking domain, the departure city is an informable slot with a number
of possible values equal to the number of cities served by the transport. A non
informable slot, but requestable, would be, for example, the identification number
of the train (Carrara, 2019).

Frames Task-oriented dialogue system must manage an internal state to
follow the evolution of the dialogue. Such internal states are called frames.

A frame is a kind of knowledge structure representing the intentions the system
can extract from user sentences. It consists of a collection of slots, each of which
can take a set of possible values. Its role is to keep in memory the knowledge
acquired by the system and the dialogue history as a picture at a specific time in the
conversation. Each domain defines its own structure of frames, sometimes called a
domain ontology (Jurafsky and Martin, 2014).

User and system acts Dialogue acts, as the abstract level of how utter-
ances change the conversational state, are a good level of description for any
communication between agents. (Traum, 1999).

Dialogue acts are formalised as predicates, possibly with slots or slot-values pairs
as arguments. Some acts are common to every dialogues such as hello, repeat
or bye. Others acts depend on the domain ontology such as inform or request
as they are direct instances of the requestable and informable slots. Examples
of dialogue acts specific to a restaurant search task are request(slot=food) or
inform(slot=price, value=moderate).

Here, we describe the most used dialogue act in dialogue system frameworks:
• request(slot) is used to request the value of a requestable slot;
• inform(slot, value) is used to inform the value of an informable slot;
• select(slot, set of values) is used to inform a set of possible values for a slot

and ask to select one of them;
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• recommend(set of slot-value pairs) is used to make a recommendation by
specifying a set of slot-value pairs;

• welcome / greet / bye / repeat / reqmore are common dialogue acts
for acknowledgement or misunderstanding.

This is not an exhaustive list of dialogue acts and the conventions used may
differ from one application to another. However, they are common to the majority
of dialogue systems, as we shall see later.

User goal Task-oriented dialogues can be reduced to a slot-filling problem
and a value-providing problem. The user’s goal is determined by her con-
straints and expectations.

Indeed, the constraints and expectations of the user are unknown to the system
but they can be formalised in the dialogue frame (which can be seen as a form), that
the system will fill for the user by questioning him and by querying the database.
Then, the objective of the system is to match its dialogue frame with the user’s
hidden goal. From this point of view, the user goal can be defined as a set of
constraints by slot-value pairs, e.g. {food = chinese, area = east}, and as a set of
expectations, e.g. {address = ?, phone = ?}.

Similarly, we define the gold goal which corresponds to a goal with explicit
expectations. In fact, it is possible that the system finds several search candidates
that respect the constraints provided by the user. It is then assumed that the user
expects to find a unique offer which is unknown to him but which he will recognise
eventually and he will stop as consequence the search process.

1.4 Evaluation, dialogue collection and simulation
After having detailed the mechanism underlying the dialogue and the characteristics
of a task-oriented dialogues, we now propose to work on the means of evaluating,
collecting and simulating dialogues for development and testing.

1.4.1 Evaluation metrics for task-oriented dialogue

Dialogue evaluation is an indispensable stage for measuring the capacity of a system
to solve a task. Because a task-oriented dialogue system is user-centered, it could be
interesting to get an idea of the user satisfaction by computing a user satisfaction
rating. A possible protocol could be having users interact with a dialogue system to
perform a task and then having them complete a questionnaire. However, in practice,
it is infeasible to run complete user satisfaction studies because of economical and
technical issues. It seems unreasonable to evaluate a system like this systematically
after every change. That is why it is useful to have performance evaluation heuristics
that correlate well with human satisfaction (Jurafsky and Martin, 2014).
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The most common choice to evaluate dialogue systems is to use measures based
on task success (or task completion). We previously state that task-oriented dia-
logues are related to information-seeking task. We can then evaluate the system by
analysing whether it properly provided the information the user has requested.

Task success measures To assess how well a task is solved, we can use
precision, recall and F-score measures: recall evaluates whether all the re-
quested information has been informed; precision evaluates whether only
the requested information has been informed; F-score is the harmonic mean
of recall and precision.

For a given dialogue, by denoting the true positive TP as the relevant retrieved
information, the false positive FP as the non-relevant retrieved information
and the false negative FN as the relevant non-retrieved information, we define
the recall, the precision and the F-score as follows:

recall = |{relevant information}| ∩ |{retrieved information}|
|{relevant information}|

=
TP

TP + FN

precision =
|{relevant information}| ∩ |{retrieved information}|

|{retrieved information}|
=

TP

TP + FP

Fscore = 2 · precision · recall
precision+ recall

We define the average recall, the average accuracy and the average F-
score as the average of these measures over the dialogues.

Thus, from a global point of view, we can propose to compute a task success
rating which estimates how successful a dialogue system performs the task. A di-
alogue is marked as successful if all the requested information has been informed
i.e. the proposed entity meets all the constraints specified in the gold user’s goal.
It is possible to relax this criterion by considering a dialogue as completed if it
is successful from the user’s point of view i.e. the proposed entity meets all the
constraints specified in the standard user’s goal.

Task success rating The most common choice to evaluate dialogue system
is the task success rate (respectively task complete rate) that is the
fraction of successful (respectively completed) dialogues that solves the user’s
problem.

24



1.4. Evaluation, dialogue collection and simulation

At the same time, we prefer when the task is solved in a few turns. This can
be evaluated by an efficiency cost measured by the total elapsed time e.g. the total
number of elapsed dialogue turns.

1.4.2 An overview on task-oriented dialogue collection

We now explain how to generate and collect dialogues and for what purpose it can
be useful. A dialogue dataset should approximate real human-human interactions in
order to facilitate development and testing. We distinguish three groups of dialogue
collection approaches:

• Machine-to-Machine approach consists on creating an environment where
the user and system roles are simulated to generate a complete conversation
flow with predefined dialogue templates (Bordes et al., 2016; Shah et al., 2018;
Rastogi et al., 2020);

• Human-to-Machine approach consists on generating dialogues based on
an existing dialogue system in front of a human user (Raux et al., 2005; J.
Williams et al., 2013);

• Human-to-Human approach consists on directly collecting a large amount
of human-human conversations (Ritter et al., 2010; Schrading et al., 2015;
Lowe et al., 2015).

In the field of Human-to-Human interactions, a common technique for collecting
more realistic dialogues is to simulate human users interacting directly with a di-
alogue system, called the Wizard-of-Oz (WOZ) setup (Kelley, 1984; Fraser et al.,
1991; Dahlbäck et al., 1993). A large number of dialogue collection are based on this
setup (T.-H. Wen et al., 2016; Asri et al., 2017; Pawel Budzianowski et al., 2018).
To be more precise:

Wizard-of-Oz experiment In a Wizard-of-Oz experiment, a human op-
erator, the so-called wizard, simulates the behaviour of a dialogue system,
while the user is lead to believe that she is operating with a real system
(Rieser and Lemon, 2011).

WOZ studies are performed to collect data before developing a dialogue system.
These data corpus were collected using crowd-sourcing in which a different worker
was computing one turn at the time. As we will see later, one of the advantages
of this technique is that they allow us to ’bootstrap’ a dialogue system in ideal
conversations through expert demonstrations. They are opposed to real human-
computer interactions, as the wizard has perfect recognition and understanding of
the user’s utterance, unlike a prototype dialogue system. Likewise, it is possible to
study the behaviour of the human operator and give an insight into the preferences
of the human user.
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In the following, for future experiments, we focus on one specific dataset namely
Multi-Domain Wizard-of-Oz (MultiWOZ) dataset (Pawel Budzianowski et al.,
2018) that was collected with a WOZ experiment. Since its release, it has been
improved and corrected by Eric et al. (2020), Zang et al. (2020), Han et al. (2021),
and Ye et al. (2021).

MultiWOZ The Multi-Domain Wizard-of-Oz dataset is a large anno-
tated and open-sourced collection of simulated human-human conversation
between a tourist and a clerk from an information center in a touristic city. It
includes different scenarios based on two basic tasks - Requesting and Booking
(referred to as find and book tasks) - and it includes seven possible domain
ontologies - Attraction, Hospital, Police, Hotel, Restaurant, Taxi, Train.

This corpus is based on a scenario sampling procedure from predefined domain
and task templates. In particular, some scenarios propose to change the goal during
conversations by simulating the mismatch of initial constraints with the database,
which leads the user to follow his goal with alternative constraints. This results in
more realistic conversations with single or multi-domain and task scenarios that are
naturally connected to each other. For example, a tourist needs to find a hotel, to
get the list of attractions and to book a taxi to travel between both places. Table 1.2
presents the global ontology with the list of considered dialogue acts as presented
in the paper of Pawel Budzianowski et al. (2018).

Domains & Tasks Informable slots / Requestable slots

Restaurants�

find, book
area, pricerange, food, postcode, bookday, bookpeople,
booktime / name, address, phone, ref

Attraction�

find
area, type, entrancefee / name, address, postcode, phone,
openhours

Hotel�

find, book
area, type, pricerange, parking, internet, stars, bookpeople,
bookday, bookstay / name, address, phone, ref

Taxi�

book
destination, departure, arriveby, leaveat / phone, type

Train�

find, book
destination, departure, day, arriveby, leaveat, bookpeople
/ trainid, ref, price, duration

Hospital�

find
department / address, phone, postcode

Police�

find
- / name, address, phone, postcode

Dialogue acts inform, request, select, recommend, not found, request
booking info, offer booking, inform booked, decline book-
ing, welcome, greet, bye, reqmore

Table 1.2: Description of MultiWOZ dataset by presenting its different domain
ontologies and the considered dialogue acts
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1.4.3 Focus on task-oriented dialogue simulation

We have previously presented different approaches for collecting “static” dialogues.
It is still possible to generate “dynamic” human-machine interactions with prototype
dialogue systems. Although this approach is necessary to provide a relevant solution
for human users, it is economically and technically expensive to be implemented in
practice. A natural way to get around this challenge is to build a simulated user,
with which a dialogue system can directly interact at virtually no cost. We present
in the following dialogue environments for prototype systems and summarise their
main characteristics.

Dialogue simulation is used for different purposes, for example for testing and
debugging prototypes systems or for automatic strategy development. Therefore, the
use of simulated dialogue environments has helped to overcome the problem of data
collection and to design dialogue systems more quickly.

In order to build a simulated user, it is possible to adapt the same dialogue
pipeline presented in Section 1.2 to model the user’s behaviour. The input processing
and output generation components of the simulator can be implemented in the
same way. The degree to which the simulated interaction resembles real human-
computer interaction depends on the quality of these components. However, as we
are specifically interested in the design of the DM module, we will first abstract from
these external components and reduce the interaction to the level of intent where
the system and the simulated user directly exchange dialogue acts. An error model
will be used to simulate error-prone pipeline components. We therefore highlight
two approaches to model the user’s DM (Schatzmann et al., 2006):

• Model-based simulation is an approach based on building user simulators
entirely on data (Eckert et al., 1997; Levin et al., 2000; Chandramohan et al.,
2011b; Asri et al., 2016).

• Agenda-based simulation is a popular approach based on handcrafting
hidden agenda-based user simulators (Schatzmann et al., 2009) as instantiated
in Xiujun Li et al. (2016), Ultes et al. (2017a), and Zhu et al. (2020).

One obvious limitation is that it raises the chicken-and-egg problem, i.e. the
problem of first having to build a user simulator to build an assistant simulator and
vice-versa. In the same time, the evaluation of the user simulator is not obvious
(Pietquin and Hastie, 2013), and it is often observed that dialogue systems overfit
to particular user simulator. The gap between user simulators and humans is thus
the main limitation of these approaches. However, agenda-based user simulation can
be built without access to a dialogue dataset and has the advantage of having an
explainable behaviours. In practice, it has been shown that they produce sufficiently
realistic dialogue behaviours. All these aspects are relevant in the development and
testing of prototype systems. For the reasons stated above, we use the agenda-based
simulation in the scope of this thesis.
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Agenda-based simulation An agenda-based approach is a probabilistic
method for simulating user behaviour based on a compact representation of
the user goal and a stack-like user agenda:

• Each dialogue simulation starts with a randomly generated user goal
that is unknown to the dialogue system;

• At each turn, the user simulator acts on a stack-like user agenda which
is a structure containing the pending user dialogue acts that are needed
to elicit the information specified in the user goal.

In this work, we used two popular simulated dialogue frameworks with agenda-
based user and hand-crafted agent simulators: PyDial and ConvLab.

PyDial for single-domain single-task-oriented dialogues: Proposed by Ultes
et al. (2017b), PyDial is an open-source statistical spoken dialogue system toolkit
implemented in Python1, which provides domain-independent implementations of
statistical approaches for all dialogue modules, as well as simulated users and sim-
ulated error models. It is pre-loaded with a total of ten domains of differing com-
plexity.

In practice, the framework is used for single-domain simulation as proposed in
the benchmarks of Casanueva et al. (2017), that focuses on three domains, from the
simplest to the most complex: Cambridge Restaurants, San Francisco Restaurants
and Laptops. Furthermore, to test the capability of algorithms in different environ-
ments, a set of tasks has been defined that spans a wide range of environments across
a number of dimensions. In total, six environments with different user model/error
model/action mask settings are defined, representing environments with different
SER, with possibly an action masking (i.e. heuristics which reduce the number of
actions the agent can take in each dialogue state) and with different user behaviour
model, from standard to unfriendly configurations (i.e. where the users barely pro-
vide any extra information to the system). We summarise these environment con-
figurations in Table 1.3. Table 1.4 provides a summary of the characteristics of each
domain and Table 1.5 a summary of the characteristics of a dialogue state2.

Env Env.1 Env.2 Env.3 Env.4 Env.5 Env.6

SER 0% 0% 15% 15% 15% 30%
Masks On Off On Off On On
User Standard Standard Standard Standard Unfriendly Standard

Table 1.3: Set of benchmarking tasks. Each user model/error model/action mask
environment is evaluated in the three different domains.

1Deprecated link we used for PyDial in Python2: http://pydial.org/. New link to access
PyDial in Python3: https://pydial.cs.hhu.de/.

2In the following, we refer to a dialogue frame as a dialogue state.
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Domain # of informable slots # of requestable slots

PyDial framework find task find task

Cambridge Restaurants 3 9
San Francisco Restaurants 6 11
Laptops 11 21

ConvLab framework find/book task find task

Restaurants 4/3 5
Attraction 3/- 7
Hotel 7/3 5
Taxi 4/- 2
Train 5/1 5
Hospital 1/- 3
Police -/- 3

Table 1.4: Domains Description of PyDial and ConvLab framework

ConvLab for multi-domain multi-task-oriented dialogues: Initially pro-
posed by Lee et al. (2019) and followed by an improved version of Zhu et al. (2020),
the ConvLab framework is presented as an open-source toolkit in Python3 that
enables researchers to build multi-domain multi-task-oriented dialogue systems and
perform end-to-end evaluations and system-wise evaluations. Notably, they have
been proposed to support several large-scale dialogue datasets including an extended
version of the dataset MultiWOZ (Eric et al., 2020) with user dialogue act anno-
tations.

In practice, the framework features the MultiWOZ task based on a scenario
sampling procedure from predefined domain and task templates similar to that used
for MultiWOZ data collection. Indeed, the sampling frequency and the correlation
of occurrence between domains and tasks are preserved, as well as some scenarios
propose to change the objective during the conversations by simulating the mis-
match of the initial constraints with the database. Furthermore, it has been used
as the standard platform for the multi-domain task-completion dialogue track in
DSTC84 (Kim et al., 2021) and as a benchmarking tool to provide a global system-
wise evaluation (Takanobu et al., 2020). Online benchmarks are available for the
system-wise and the end-to-end evaluations with ConvLab2 tool in the correspond-
ing Github repository, as well as with the MultiWOZ evaluator in the correspond-
ing Github repository. Table 1.4 provides a summary of the characteristics of each
domain of MultiWOZ and Table 1.6 a summary of the characteristics of a dialogue
frame aligned with the dialogue features of MultiWOZ.

3Link we used for ConvLab2 in Python3: https://github.com/thu-coai/ConvLab-2
4Link to access ConvLab used for DSTC8 Track 1 Task 1 ”End-to-End Multi-Domain Dialog

Challenge”: https://github.com/ConvLab/ConvLab
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Component & Description

Beliefs
constraint slot beliefs: {binfs ∈ ∆Vs,∀s ∈ S inf}

The goal constraint belief for each informable slot. This is either an assignment (proba-
bility) of a value from the ontology which the user has specified as a constraint, or is a
special value — either dontcare which means the user has no preference, or none which
means the user is yet to specify a valid goal for this slot.

request slot beliefs: {breqs ∈ ∆B,∀s ∈ Sreq}
A set of requested slots, i.e. those slots whose values have been requested by the user,
and should be informed by the system.

discourse act belief: bact ∈ ∆Dact

An assignment of the current dialogue act of the user. This is one of - hello - repeat
- silence - acknowledgement - thank you - bye - or none if the user is requesting or
informing a constraint.

method belief: bmeth ∈ ∆Dmeth

An assignment of the current dialogue search method. This is one of – by constraints,
if the user is attempting to issue a constraint, – by alternatives, if the user is requesting
alternative suitable venues, – by name, if the user is attempting to ask about a specific
venue by its name, – restart, if the user wants to restart the call – finished, if the user
wants to end the call – or none otherwise.

Features
last informed venue: f1 ∈ VDB(d)

The name of the last venue offered by the system to the user w.r.t the constraint slots.
informed venue since none: f2 ∈ list(VDB(d))

The name list of the previous venues offered by the system to the user w.r.t the previous
constraint slots.

last action inform none: f3 ∈ B
A boolean showing that during the last turn, the system couldn’t respond to the user’s
request.

offer happened: f4 ∈ B
A boolean showing that during the last turn, the system made a offer to the user.

inform info: f5 ∈ B5

The vector counting the number of entities count matching with numAccepted slots
in acceptance list: [count==0, count==1, 2<=count<=4, count>4, discriminatable].
Here, discriminatable is a boolean showing that there is a question which we could ask
which would give differences between the values.

User Acts
user acts: auser ∈ list(Auser)

The list of the last user actions with potentially corresponding probability.

Dialogue History
dialogue history: h ∈ list(list(Asys)× list(Auser))

The list of the previous couple of system and user composite actions.

Table 1.5: Belief State Template of PyDial framework
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Component & Description

Beliefs

constraint slot beliefs: {binfd,s ∈ Vs,∀s ∈ S
inf
d ,∀d ∈ D}

The goal constraint belief for each informable slot. This is either an assignment of a
value from the ontology which the user has specified as a constraint, or is a special value
— either dontcare which means the user has no preference, or none which means the user
is yet to specify a valid goal for this slot. To be exact, for each domain, the constraint
slot dictionary separates slots w.r.t the task i.e. we distinguish the find slot dictionary
and the book slot dictionary.

request slot beliefs: {breqd,s ∈ B,∀s ∈ Sreq
d ,∀d ∈ D}

A set of requested slots, i.e. those slots whose values have been requested by the user,
and should be informed by the system.

Features
terminated: f1 ∈ B

A boolean showing that the user wants to end the call.
booked: f2 ∈ VDB(d)

The name of the last venue offered by the system to the user w.r.t the constraint slots
with additional information like reference. To be exact, this feature is located in the
book slot dictionary.

degree pointer: f3 ∈ B6

The vector counting the number of entities count matching with constraint slots in
acceptance list: [count==0, count==1, count==2, count==3, count==4, count>=5].

System Acts
system acts asys ∈ list(Asys)

The list of the last system actions.

User Acts
user acts auser ∈ list(Auser)

The list of the last user actions.

Dialogue History
dialogue history h ∈ list(list(Asys)× list(Auser))

The list of the previous couple of system and user composite actions.

Table 1.6: Belief State Template of ConvLab framework
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2
Reinforcement Learning

for Dialogue Management

In the previous chapter, we introduced the fully-operational Spoken Dialogue System
(SDS) based on a complex pipeline including several sub-modules. The subject of
our thesis focuses on one of these modules: the Dialogue Manager (DM). From now
on, we consider the DM as an agent and we abstract all others DS modules and
the user into a single entity called environment. We claim that the user as well
as the communication modules of the dialogue system are fully integrated in the
environment and we assume that the integrated modules play their role properly.

In this chapter, we discuss the main arguments for using RL in a dialogue
application and present the mathematical framework for its modeling. Then, we lay
the technical foundations for understanding RL (basic principles and ideas behind
RL). Finally, we propose an overview of more sophisticated mechanisms used for
DM with the RL paradigm.

2.1 Problem formulation of dialogue management

In the following, we present the mathematical modeling of RL applied in the context
of task-oriented dialogues. Indeed, we claim that this modeling is adapted to the
resolution of task-oriented dialogue because the basic characteristics of dialogue in-
teractions are aligned with the principles behind RL. First the dialogue is temporal
in the sense that the current dialogue interaction has an impact on how the dialogue
progresses in the future. The dialogue is also dynamic in the sense that dialogues
evolve differently according to the interlocutors - different reactions or ways of inter-
acting - and according to the contexts - stochastic environments with different levels
of noise (Rieser and Lemon, 2011). Thus DM requires foresight, long-term planning
and robustness to deal with the dynamics of the environment. These considerations
lead us naturally to the concept of Markov Decision Process that we will present.
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2.1.1 Markov Decision Process framework

In mathematics, a Markov Decision Process (MDP) is a discrete-time stochastic
control process. It provides a mathematical framework for modeling decision making
in situations where outcomes are partly random and partly under the control of a
decision maker (Bellman, 1957; Howard, 1960). We propose here to formalise it:

Definition 2.1: Markov Decision Process (MDP)

A Markov Decision Process (MDP) is a discrete-time stochastic control
process and formally described by a 4-tuple 〈S,A,P ,R〉 where:

• S is a set of states called the state space,
• A is a set of actions called the action space (alternatively, As is the set

of actions available from state s),
• P ∈ ∆SS×A is a probability function called transition probability where

P(s′|s, a) = P(St+1 = s′|St = s, At = a) (2.1)

corresponds to the probability that action a in state s leads to state s′,
• R ∈ ∆RS×A×S is a probability function called reward function where

R(r′|s, a, s′) = R(Rt+1 = r′|St = s, At = a, St+1 = s′) (2.2)

corresponds to the probability that immediate reward r′ will receive
after transitioning from state s to state s′, due to action a.

A MDP is modelling by a sequence of random variables {(St, Rt, At)}0≤t≤T
and an outcome of a MDP is a trajectory τ = {(st, rt, at)}0≤t≤T of length T .

An environment is the engine of a MDP 〈S,A,R,P〉.

An agent is the entity interacting with an environment that is formally de-
scribed by a mapping function π ∈ ∆AS = Π from states to probabilities of
selecting each possible action called policy and where

π(at|st) = π(At = at|St = st) (2.3)

corresponds to the probability that action at in state st is selected.

Notation: If necessary, we use the tilde symbol (∼) to denote ”has the
probability distribution of”. In particular, we use the following notations:

π(s) ∼ π(·|s)
r(s, a, s′) ∼ R(·|s, a, s′)
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If we develop the idea that a MDP is like a game, then this formalism is a way
of modeling the point of view of a player called agent opposed to anything that
does not depend on it called environment. The rules of the game governing the
dynamics and the success and failure conditions are also external to the agent and
thus included in the environment. What defines the agent is its strategy.

(a) Loop representation.

(b) Graph representation. (c) Tree representation.

Figure 2.1: MDP representations. St, At and Rt are random variables. S = {si}1≤i≤3
and A = {ai}1≤i≤3 are state and action spaces. Rewards are represented in orange.

In practice, the MDP is an iterative process in which an agent interacts with
an environment over time. It proceeds as follows: at each time step t, the agent
receives a state st in the state space S and executes an action at from the action
space A according to its policy π(at|st). Then the agent receives a reward signal
R(st, at, st+1) and transits to the next state st+1 according to the transition proba-
bility P(st+1|at,st). Figure 2.1a represents this. Conceptually, a state st represents
what the agent sees at time t. An action at represents what the agent does at time
t. A reward rt+1 represents what the agent receives as feedback after performing
the action at in state st. The agent strategy can be visualised as an agent travelling
through a network of states interconnected by actions. In others words, the agent
explores the state network by following the action paths (see Figure 2.1b for graph
representation and Figure 2.1c for tree representation).

A MDP is a stochastic process that satisfies the Markov property: the evolution
of the process in the future depends only on the present state and does not depend
on past history, as expressed in Definition 2.2. Because the MDP is an extension of
Markov Chain, the only difference is the addition of actions (allowing choice) and
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rewards (giving motivation).

Definition 2.2: Markov Property

A MDP is represented by a sequence of random variables
(S0, R0, A0), . . . , (St, Rt, At) that respects the Markov property:

P(st+1, rt+1|st, at, st−1, at−1, . . . , s0, a0) = P(st+1, rt+1|st, at) (2.4)

2.1.2 Dialogue modelling via Markov Decision Process

Depending on the nature and assumptions of the problem under consideration, a
MDP can have several modellings (how to model the state space, the action space
and the reward function, etc.). Without going into detail, we will explain how a
dialogue problem is modelled via a MDP (and in particular via a POMDP) and
what are its specificities (J. Williams, 2007; Young et al., 2013b).

From MDP to POMDP To begin with, it should be noted that the first pro-
posed formalisation of dialogue problem was based on a MDP (Levin and Pierac-
cini, 1997). A more complete formalisation has been proposed the next decade by
J. Williams and Young (2005) by considering than the dialogue system does not
observe directly the user intent but its utterance. Therefore, the system have to
infer what the user want to say. In practice, this function is managed by the DST
module. That is why for the following we state that it is still possible to adapt a
POMDP problem into a MDP problem without loss of generality.

Definition 2.3: Partial Observable Markov Decision Process

A Partial Observable Markov Decision Process (POMDP) is a
discrete-time stochastic control process and formally described by a 6-tuple
〈S,A,P ,R,O,Z〉 where:

• 〈S,A,P ,R〉 is a MDP (see Definition 2.1),
• O is a set of observations called the observation space,
• Z ∈ ∆OS×A is a probability function called observation probability

where:
Z(o|s, a) = Z(Ot+1 = o|St+1 = s, At = a) (2.5)

corresponds to the probability that a previous action a that leads to the
state s generates the observation o.

In this framework, at each time, the environment communicates an obser-
vation o instead of a state s to the agent from which it must infer its belief
state s̃, the most likely state from its point of view.
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State space The state space refers to the set of reachable states for the agent in
the MDP. We called them frames (see Subsection 1.3.2), which are a knowledge
structure (in practice a dictionary of probabilistic or deterministic distribution of
slots, values and user/system actions) representing the history of the intentions that
the systems have extracted from the sentences of the user and the system since the
beginning of the conversation.

The input to the DM is the belief state that comes from the master state
space. Due to its large size, this representation is projected into the summary
state space by a process called value abstraction (see Figure 2.2). Finally, it must
be vectorised in order to be interpretable by machine learning methods. We call the
function that performs these different operations the feature function φ.

Figure 2.2: Processing the belief state from the master representation to the sum-
mary representation via value abstraction. Each slot is abstracted by keeping the
probabilities of the first and second most likely informed values, as well as the prob-
abilities of the “don’t care” and “don’t know” values (equal to 1 if no value was
informed). By following this process, the summary representation is independent of
the number of values in each slot.

In the case of task-oriented dialogue interactions, this space is finite because it is
delimited by the set of possible slots, values and actions of the domain ontology. But
it is continuous in the sense that the data representation is not categorical (listing
and tracking all possible combinations of these elements is not reasonable when the
sets of possible slots, values and actions become intractable). See Table 1.5 and
Table 1.6 in Chapter 1 for more details about how dialogue states are represented
and Table 1.2 on ontology structure.

Action space The action space refers to the set of actions that can be taken by the
agent. We called them dialogue actions (see Subsection 1.3.2) which are formalised
as predicates, possibly with slot or slot-values pairs as arguments. Therefore the
agent’s policy is a probabilistic distribution over these actions and it selects only
one action per turn.
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To reduce the complexity of the learning problem, master actions which are
valued dialogue acts such as inform(date = “2022-01-15’’) are abstracted into sum-
mary actions like inform(date), the value abstraction module being in charge of
restoring the relevant values in the context. Figure 2.3 illustrates this process.

Figure 2.3: Processing the probabilistic action (red columns) from the summary
representation to the master representation via value restoration that depends on
the state context (green column). The inform action informs of the most likely
value of the slot concerned. The request action does not need to be linked to a
value. The select and recommend actions use hand-crafted control to choose the
value to be communicated. At the end of this process, the master representation is
restored according to the ontology.

The master action space is continuous in the sense that the size of values is
unknown a priori but the summary action space is discrete because it is limited
by the number of possible predicates and slots of domain ontologies.

On the PyDial platform, the actions are performed one by one (called single-
actions). On ConvLab, the policy may activate several actions simultaneously
(called multiple-actions). On both systems, some hand-crafted control may be added
through a mask of valid actions in order to disable not pertinent actions depending
of the context (i.e. in the beginning or at the end of the conversation). Figure 2.4
summarises the entire decision-making process, from belief state to dialogue acts.

Due to structural limitations of our future approaches and in order to simplify
our problem by limiting the number of actions at first, we restrict our agent to
choose only single-actions. Subsequently, we will specify whether this condition will
be lifted. If necessary, in order to cope with ConvLab’s multiple-actions, we encode
them as single-actions by defining additional macro-actions like the make_offer
action that finds the relevant slots to inform, or the make_reservation action
that finds the relevant item to book and to inform.
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Figure 2.4: State/action representation and transformation process for dialogue
system. The semantic representation of the state is transformed from dictionary to
vector. The decision is then transformed from vector to dialogue action.

Time horizon & Reward function In task-oriented dialogues, the conversa-
tion begins with greetings and ends systematically whether it was a success or a
failure. A conversation is time-bound and is therefore episodic (vs. continuous in
time). Abusively, we note T the time horizon of the conversation episodes, i.e. the
maximum number of dialogue turns allowed for the agent to achieved its objective.

The objective of the agent is not well defined because it depends on the reward
function that is not explicit (contrary to video games or board games). Objectively,
we can expect that the agent achieves a maximum number of conversations (there-
fore a maximum number of episodes) in a minimum number of dialogue turns. In
practice, we reward the agent at the end of an episode if the dialogue is a success
and we penalise it at each time step to prevent long dialogues.

Reward function in DM problem Single-domain dialogue framework:

R(s′, a, s) =

rM = 20, if s′ is a terminal state of a successful dialogue.
p = −1, else.

(2.6)
Multi-domain dialogue framework:

R(s′, a, s) =


rM = 40, if all domains in s′ are solved.
rm = 5, if the current active domain in s′ is solved.
p = −1, else.

(2.7)
where rM is a major reward (rM = T ), rm is a minor reward (0 < rm < T )
and p is a penalty (p = −1).
A domain is solved if all related tasks are solved.
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2.1.3 The reinforcement learning problem

After presenting the core concept of MDP, we understand that a MDP model gives
us a context for designing the agent’s policy. It enables us to formalise a MDP
as a mathematical optimisation problem which can be solved using Reinforcement
Learning (R. Sutton and Barto, 2018). We will define the objective of the agent.

First, the idea behind a MDP is to discover the control strategy that lead to an
optimal behaviour with respect to a criteria: the reward. Indeed, the reward is as
a motivation signal for the agent in order to estimate the quality of its actions. So
we naturally define the concept of return.

Definition 2.4: Return (or cumulative reward)

Let γ ∈ [0,1[ be the discount rate that determines the present value of future
rewards. Then the return at time t is defined as the sum of future discounted
rewards. We call gt the cumulative reward for a trajectory τ and Gt the
cumulative reward for a policy π:

gt =
T∑

k=0

γkrt+k+1 Gt =
T∑

k=0

γkRt+k+1 (2.8)

where T is the horizon, Ri ∼ R(Ri|Si−1, Ai−1, Si), Si ∼ P(Si|Si−1, Ai−1),
Ai ∼ π(Ai|Si) and S0 ∼ P(S0).

According to this definition, the agent can estimate the quality of its trajectories
and of its policy. Its objective is so to have the best policy in estimation, so the
optimal policy according to the dynamics of the environment.

Definition 2.5: Objective

Let γ ∈ [0,1[, then the objective of an agent in an MDP 〈S,A,P ,R〉 consists
of finding an optimal policy π∗ that maximises the return in expectation:

π∗ ∈ argmax
π∈Π

EP,π[G0] = argmax
π∈Π

EP,π

[
T∑

k=0

γkRk+1

]
(2.9)

Where a MDP provides a framework for the formalisation of the dialogue prob-
lem, reinforcement learning is one of the tools for its solution (as we will see
later in Section 2.4). Among the other solutions that have been commonly used,
the hand-crafted policy and learning from demonstration approaches are al-
ternative solutions to the same problem based on different assumptions with their
strengths and weaknesses. First we propose a brief overview on these approaches
respectively in Section 2.2 and Section 2.3.
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2.2 Hand-crafted policy approaches
Hand-crafted approaches rely on programs or/and models that are fully specified
by developers or domain experts to track the dialogue state and define the policy.
By this process, experts are considered to know the optimal policy (or to a lesser
extent the closest to it) and to be able to render it in the form of explicit algorithms.
Following the review of DM approaches proposed by Brabra et al., 2021, it is possible
to identify four kinds of hand-crafted approaches:

Rule-based approach in which bot developers define the dialogue state as well
as the policy by encoding a set of rules. The simplest modeling of these rules is
structuring them in the form of pattern/response pairs, which perform NLU, DM,
and NLG tasks at once by taking the user utterance and producing the corresponding
response.

Finite state machine-based approach that is a declarative approach providing
a set of a predefined sequence of steps representing the dialogue state at any point
during the conversation. Each state is restricted to a prescribed number of transi-
tions to other states and defines the set of actions that the conversational system
can/should perform in a given situation.

Activity-based approach that is a procedural approach providing a concrete
implementation of DM by specifying the workflow that it may go through during
the conversation. It allows the development of DM model by leveraging the concept
of workflows, namely activities, triggers and actions.

Frame-based approach that relies on a domain ontology that defines a set of
frames, each specifying the required information that the conversational system is
designed to acquire from the user in order to fulfill a dialogue task.

The frame-based approach to conversation systems offers greater flexibility in han-
dling over-informative inputs from users by allowing them to fill in slots in various
orders and combinations. However, this approach necessitates the use of advanced
algorithms to determine the next system action or question, based on a set of fea-
tures including the user’s previous utterance, the remaining slots to be filled, and
dialogue control priorities. Additionally, thorough testing is required to ensure that
the system does not ask inappropriate questions in unforeseen situations. Despite
these challenges, the frame-based approach remains a prevalent method in modern
conversation systems, such as Apple’s Siri, Amazon’s Alexa, and Google Assistant,
Furthermore, it is implemented in current dialogue frameworks such as PyDial and
ConvLab.
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2.3 Learning from demonstrations approaches

In contrast to hand-crafted approaches where the DM logic has to be defined by
hand, data-driven approaches were proposed to learn the dialogue policy from
demonstrations, namely Learning from Demonstrations (LfD) by which an
apprentice agent learns a control policy for an environment by observing demon-
strations delivered by an expert agent. It can be viewed as a form of supervised
learning, where the training data set consists of task executions by a demonstra-
tion teacher (Argall et al., 2009). It is usually implemented as either Imitation
Learning (IL) or Inverse Reinforcement Learning (IRL).

Whereas IL is a learning paradigm that consists in generalising an (assumed
optimal) expert policy πE based on expert demonstrations DE, IRL is a learning
paradigm that consists in finding an (assumed non trivial) expert reward function
RE based on expert demonstrations DE that could explain its behaviour. It has
been shown that these two paradigms are equivalent in the sense that there exists
an explicit bijective operator between their respective solution spaces, within the
context of the set-policy framework (Piot et al., 2017).

2.3.1 Imitation Learning

Definition 2.6: Imitation Learning (IL)

Imitation Learning (IL) refers to methods that aim to generalise the expert
policy πE, as observed in the expert data set DE, to new situations. To be
precised, IL methods learn from the expert’s actions and try to replicate them
in unseen states.

Batch score-based IL is often reduced to Multi-class Classification (MCC) by
minimising the following empirical risk:

Given DE = (sk, ak)1≤k≤N , π = argmin
π∈Π

1

N

∑
(sk, ak)∈DE

1{π(sk) 6=ak} (2.10)

In practice, the goal of IL method is to compute a score function Q ∈ RS×A

that gives the highest scores to at least some of expert actions:

∀s ∈ S, argmax
a∈A

Q(s, a) ⊂ Supp(πE(·|s)) (2.11)

The decision rule π associated to the score function Q consists in taking the
action with the best score:

∀s ∈ S, π(s) = argmax
a∈A

Q(s, a) (2.12)
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In practice, minimising the empirical risk as defined in Eq. 2.10 is computation-
ally difficult, and practitioners often resort to using convex surrogates to approxi-
mate the true risk. Additionally, it can be observed that the empirical risk does not
take into account the dynamics of the MDP. As a result, the dynamic nature of the
environment is ignored, which is a significant drawback of IL. Despite this limita-
tion, MCC methods are relatively easy to implement, and have been theoretically
justified in both finite and infinite horizon settings.

Algorithms of IL: Standard IL methods use expert demonstrations to guide the
agent in learning relevant situations and expert corrections to guide the agent to
recover from past mistakes. Among the most popular, SEARN (Daumé et al., 2009)
is one such method, which maintains a current policy and uses it to generate new
training data to learn a new policy. SMILe (Stephane Ross et al., 2010) is another
method that builds on SEARN, with a simpler implementation and less expert in-
teraction. DAgger (Stéphane Ross et al., 2011) learns a policy that mimics the
expert policy on states induced by previous learned policies, with the expert pro-
viding corrections during exploration to help the agent recover from past mistakes.
AggraVate (Stéphane Ross et al., 2014) is an extension of DAgger, which learns to
choose actions to minimise the cost-to-go of the expert rather than mimicking their
actions. LOLS (Chang et al., 2015) is a learning-to-search (L2S) algorithm that
has been shown to have superior performance compared to other L2S algorithms in
cases where the reference policy performs poorly, but local hill-climbing in policy
space is effective.

Combined IL and RL: Hybrid imitation and reinforcement learning refers to a
subset of IL methods where the agent has been trained on expert demonstrations and
on its own interactions with the environment to generate more trajectories guided
by rewards. There are different ways to integrate IL into the RL process: (i) using
IL as a pre-training phase, also known as Behaviour Cloning (BC) (Su et al., 2016a;
Liu et al., 2018; Y. Gao et al., 2019; Goecks et al., 2020); (ii) using RL with only
demonstrations as a pre-training phase (Hester et al., 2017; Y. Gao et al., 2019;
Goecks et al., 2020); (iii) using both SL and RL losses during the RL phase (Hester
et al., 2017; Goecks et al., 2020; Gordon-Hall et al., 2020). More recent methods
use non-standard ways to use expert demonstrations, such as learning from a single
demonstration with resetting to a demo state (Salimans et al., 2018), learning a
weak and cheap expert policy for simulation (Gordon-Hall et al., 2020) or computing
intrinsic motivation from demonstrations (Hussenot et al., 2021). To complement
this overview, surveys of IL methods has been proposed by Hussein et al. (2017)
and Attia et al. (2018).
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2.3.2 Inverse Reinforcement Learning

Definition 2.7: Inverse Reinforcement Learning (IRL)

Inverse Reinforcement Learning (IRL) refers to methods that aim to
find a reward function R that can explain the expert policy πE. The expert
policy is assumed to be optimal with respect to an unknown reward function
RE. IRL methods use expert demonstrations to infer this reward function
and understand the expert’s decision-making process.

In order to quantify the quality of a policy π with respect to the reward R, the
quality function Qπ

R ∈ RS×A, also called the state-action value function (see
Subsection 2.4.1), is defined. The function Q∗R ∈ RS×A is called the optimal
quality function and is defined as:

Q∗R = max
π∈Π

Qπ
R (2.13)

The goal of an IRL algorithm is to compute a non-trivial reward function
R for which at least a subset of expert actions and only expert actions are
optimal to prevent non-expert actions to be optimal:

∀s ∈ S, argmax
a∈A

Q∗R(s, a) ⊂ Supp(πE(·|s)) (2.14)

Once the reward function is learned, the MDP must be solved with RL (see
Section 2.4) to compute the apprentice policy π such as:

∀s ∈ S, π(s) = argmax
a∈A

Q∗R(s, a) (2.15)

IRL is a challenging task because the expert’s actions may be influenced by
multiple factors. The expert’s reward function may be complex and non-linear.
IRL methods have been developed in various forms, starting from the early work
of Ng and Russell (2000) who proposed the first algorithm for IRL based on linear
programming and continuing with the work of Abbeel and Ng (2004) who proposed
an alternative version with quadratic programming. Since then, many other methods
have been proposed, such as Bayesian IRL (Ramachandran, 2007; Michini et al.,
2012), maximum entropy IRL (Ziebart et al., 2008) and non-linear IRL with gaussian
processes (Levine et al., 2011). Other algorithms developed during the same period
have been presented in surveys (Zhifei et al., 2012; Ghavamzadeh et al., 2015).
More recently, deep IRL and more sophisticated methods have been proposed which
use deep neural networks to model the reward function such as maximum entropy
deep IRL (Wulfmeier et al., 2016), adversarial IRL (Fu et al., 2018) (inspired by
generative adversarial IL by Ho et al. (2016)), Meta-IRL with probabilistic context
variables (Yu et al., 2019) and IRL as hindsight relabeling (Eysenbach et al., 2020).
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IRL for dialogue systems: IRL has also been applied to task-oriented dialogue
problems, where the objective is to infer the underlying reward function of a human
user by understanding their preferences. One of the first works in this area was pre-
sented by Boularias et al. (2010), who proposed an IRL algorithm for learning the
reward function of a dialogue model from human-human dialogues. Chandramohan
et al. (2011a) and Chandramohan et al. (2012) proposed a novel approach using IRL
for building multiple behavior-specific user simulators using IRL. Pietquin (2013)
discussed a method for learning a reward function for human-machine interaction
using Bayesian IRL. Rojas-Barahona et al. (2014) proposed a Bayesian approach for
learning the behaviour of human characters using Bayesian IRL in a serious game
context. Furthermore, there are various IRL methods for using expert demonstra-
tions that can be broadly divided into two categories: (i) learning a reward function
directly (Chandramohan et al., 2011a; Rojas-Barahona et al., 2014), by using deep
adversarial method (Fu et al., 2018) or joint reward learning and policy optimisation
(Takanobu et al., 2019a; X. Huang et al., 2020) (ii) engineered reward or engineered
policy, such as expert-based reward shaping and exploration schemes (Ferreira, Em-
manuel et al., 2013), social signal and user adaptation (Ferreira et al., 2013) or
reward and policy shaping (H. Wang et al., 2020). Finally, some methods pro-
pose to learn directly with human teaching and feedback instead of tuned reward
signal (Liu et al., 2018).
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2.4 Reinforcement learning approaches
Reinforcement Learning (RL) is a type of machine learning that differs from su-
pervised and unsupervised learning, in which an agent learns to make decisions by
interacting with its environment and receiving feedback in the form of rewards. The
agent’s goal is to learn a policy, which maps states of the environment to actions,
that maximises the cumulative reward over time. RL algorithms typically use value
functions (see Definition 2.8) to estimate the long-term reward of different actions
in different states, and use this information to update the policy.

RL can be used to solve a wide range of tasks, including games, robotics, decision
making problems and, particularly in our case, task-oriented dialogue problems. As
RL methods are commonly used in our field of research, we propose a summary to
introduce the basic elements needed to understand the ins and outs of our work and
explain the challenges we face when implementing algorithms in RL. For an enriched
and complete introduction to the subject, we invite the interested reader to consult
the work of R. Sutton and Barto (2018) and the work of Y. Li (2018) which provide
a broad overview of the state of the art in RL.

2.4.1 Theoretical foundation and core elements

Value functions

As explained earlier, the core of RL algorithms is based on value functions that
estimate the long-term reward of different actions in different states.

Definition 2.8: Value Functions

The value function of a state s under a policy π, denoted vπ(s), is the
expected return when starting in s and following π thereafter. We call vπ the
state-value function for policy π:

∀s ∈ S, vπ(s) = EP,π [Gt|St = s]

= EP,π

[
T∑

k=0

γkRt+k+1|St = s

]
(2.16)

The value function of taking action a in state s under a policy π, denoted
qπ(s, a), is the expected return starting from s, taking the action a, and fol-
lowing π thereafter. We call qπ the state-action-value function for policy π:

∀(s, a) ∈ S ×A, qπ(s, a) = EP,π [Gt|St = s, At = a]

= EP,π

[
T∑

k=0

γkRt+k+1|St = s, At = a

]
(2.17)
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Partial Ordering and Optimality

Solving a reinforcement learning task means, roughly, finding a policy that max-
imises long-term reward. Value functions provide a partial ordering over policies,
where a policy is considered better or equal to another if it has greater or equal
expected return for all states. An optimal policy, denoted by π∗ (there may be
multiple optimal policies) is one that is better than or equal to all other policies and
shares the same state-value function v∗ and state-action-value function q∗.

Theorem 2.1: Optimal Value Functions and Optimal Policy

The values functions are called optimal if and only if:

∀s ∈ S, ∀π ∈ Π, v∗(s) ≥ vπ(s)

∀(s, a) ∈ S ×A, ∀π ∈ Π, q∗(s, a) ≥ qπ(s, a)
(2.18)

In that respect, a policy is called optimal if and only if:

∀s ∈ S, π∗ ∈ argmax
π∈Π

vπ(s)

∀(s, a) ∈ S ×A, π∗ ∈ argmax
π∈Π

qπ(s, a)
(2.19)

Recursive Relationships

A fundamental property of value functions used throughout RL is that they satisfy
recursive relationships: the Bellman Equation (as presenting in Theorem 2.2 and
Theorem 2.3). describes the value of a state (or a state-action pair) in terms of the
value of the next state (or the next state-action pair) and the rewards that will be
received. It provides a way to iteratively update the value function of a policy.

Theorem 2.2: Bellman Expectation Equations

Bellman Expectation Equation for vπ function:

vπ(s) =
∑

a∈A(s)

π(a|s)
∑
s′∈S

P(s′|s, a) [r(s, a, s′) + γ vπ(s′)]

= EP,π [Rt+1 + γ vπ(St+1)|St = s]

(2.20)

Bellman Expectation Equation for qπ function:

qπ(s, a) =
∑
s′∈S

P(s′|s, a)

r(s, a, s′) + γ
∑

a′∈A(s′)

π(a′|s′) qπ(s′, a′)


= EP,π [Rt+1 + γ qπ(St+1, At+1)|St = s, At = a]

(2.21)
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Theorem 2.3: Bellman Optimality Equation

Bellman Optimality Equation for v∗ function:

v∗(s) = max
a∈A(s)

∑
s′∈S

P(s′|s, a) [r(s, a, s′) + γ v∗(s′)]

= EP,π∗ [Rt+1 + γ v∗(St+1)|St = s]

(2.22)

Bellman Optimality Equation for q∗ function:

q∗(s, a) =
∑
s′∈S

P(s′|s, a)
[
r(s, a, s′) + γ max

a′∈A(s′)
q∗(s′ ,a′)

]
= EP,π∗ [Rt+1 + γ q∗(St+1, At+1)|St = s, At = a]

(2.23)

In essence, finding an optimal policy by solving the Bellman optimality equation
requires knowledge of and access to the dynamics of the environment, assumptions
that can hardly be met in a real application.

Policy Improvement Theorem

The above considerations give rise to an important property that is the basis of all
RL methods: the Policy Improvement Theorem (presented in Theorem 2.4) is a
fundamental result that states that for any given policy, there exists another policy
that is at least as good and possibly better. In other words, it guarantees that we
can always improve the current policy by following the greedy policy with respect
to the current action-value function (Watkins, 1989).

Theorem 2.4: Policy Improvement Theorem

Let π and π′ be policies and let π′ be chosen so that:

∀s ∈ S, qπ(s, π′(s)) ≥ vπ(s) (2.24)

Then it follows that π′ must be as good as, or better than, π. That is, it must
obtain greater or equal expected return from all states:

∀s ∈ S, vπ
′
(s) ≥ vπ(s) (2.25)

From this result, it is possible to propose algorithms that find an optimal policy:
the algorithm called Value Iteration (VI) can find an optimal value function by
iterating on Equation 2.23 (Bellman, 1957); and the Policy Iteration algorithm
(PI) can find an optimal policy by evaluating the current policy with Equation 2.21
then by improving it greedily over the current value function of the policy with
Equation 2.24 (Howard, 1960).
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Generalised Policy Iteration

In what follows, we will consider that any standard RL algorithm can be seen as a
generalised policy iteration algorithm that is a unified framework that encompasses
the classical PI and VI algorithms.

Definition 2.9: Generalised Policy Iteration (GPI)

A Generalised Policy Iteration (GPI) is a framework for solving RL
problems that combines both policy evaluation and policy improvement that
can be performed simultaneously and interactively. It consists of two steps:

• Evaluation step: where the value function is evaluated for the current
policy, usually via the Bellman Equation.

• Improvement step: where a next policy is obtained from the cur-
rent value function via the Policy Improvement Theorem, usually via a
greedy strategy.

The general mechanism of most RL algorithms is as follows: at the initialisation
step, the agent starts with an initial Q-value function, denoted q̂(s, a), and policy
function, denoted π̂(s), where all the state-action values are set to some arbitrary
value. In the evaluation step, the agent updates its expected Q-values incrementally
using the Bellman Equations, which can be represented as:

q̂new(s, a)← q̂old(s, a) + αstep[qtarget(s, a)− q̂old(s, a)]

where αstep is the step size that controls changes over time, qtarget is a sampled Q-
value and [qtarget(s, a)− q̂old(s, a)] can be seen as the error toward the optimal value
q∗. In the improvement step, the agent improves its policy by following a greedy
strategy, i.e.:

π̂new(s)← argmax
a∈A

q̂new(s, a)

2.4.2 Classical Reinforcement Learning Algorithms

In practice, the RL algorithms seen through the prism of GPI must learn a value and
policy functions and periodically evaluate and improve them. We distinguish be-
tween three types of methods: (i) value-based methods that are based on learning
a value function, (ii) policy-based methods that learn the policy function directly,
and (iii) actor-critic based methods that optimise both the value function and a
policy function. We briefly provide an overview of these classical approaches which
are the basis for the more sophisticated state-of-the-art algorithms.
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Learning a value function

The methods for learning the value function differ according to the nature of the
updates performed (depth and/or width updates). Furthermore, the main difference
between Dynamic Programming (DP) methods and Temporal Difference (TD) meth-
ods lies in the opposition between model-based and simulation-based approaches.
Secondly, both approaches use bootstrapping (updating targets that include existing
estimates) to evaluate the target Q-value whereas the Monte Carlo (MC) methods
do not. For the equations, we only express the state-action-value function qπ.

Dynamic Programming methods: They consist of using the Bellman
Equation to update the value function (bootstrapping with width updates).
They assume knowledge of an exact mathematical model of the MDP and
therefore become infeasible for large MDPs. Formally, ∀(s, a) ∈ S ×A:

qπ(s, a)←
∑
s′∈S

P(s′|s, a)

r(s′, a, s) + γ
∑

a′∈A(s′)

π(a′|s′) qπ(s′, a′)

 (2.26)

(a) exhaustive search (b) dynamic programming

(c) monte carlo (d) temporal difference

Figure 2.5: Diagrams illustrating the procedure for updating the state-value function
vπ (works as well for qπ) according to the different methods presented. A white circle
represents a state, a black circle an action and a grey circle a terminal state. An
arrow represents a transition from a state to an action according to the policy π
and from an action to the next state and the reward according to the dynamics of
the environment p. The paths of the tree in transparency are not explored by the
methods and those in dotted line are explored in depth.
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Monte Carlo methods Model-free methods that update the value func-
tion directly from experience, based on averaging complete returns (sam-
pling with depth updates with low bias but high variance). For each τ =

{(st, rt, at)}0≤t≤T :

qπ(st, at)←qπ(st, at) + α [gt − qπ(st, at)] (2.27)

with α = 1/n when n is the number time when (st, at) is met and gt is the
cumulative return of the trajectory τ at time t (see Eq. 2.8).

Temporal Difference methods Model-free methods that update the
value function directly from experience, based on accumulating partial re-
turns (bootstrapping with one-step sampled updates with high bias but low
variance). The most popular algorithms in this category are TD learn-
ing (R. Sutton, 1988), SARSA (Rummery et al., 1994) (in Eq 2.28) and
Q-learning (Watkins, 1989) (in Eq 2.29). For each τ = {(st, rt, at)}0≤t≤T :

qπ(st, at)←qπ(st, at) + α [rt+1 + γ qπ(st+1, at+1)− qπ(st, at)] (2.28)

qπ(st, at)←qπ(st, at) + α
[
rt+1 + γ max

a
qπ(st+1, a)− qπ(st, at)

]
(2.29)

(a) TD (vπ) (b) Optimal TD (v∗)

(c) SARSA (qπ) (d) Q-Learning (q∗)

Figure 2.6: Diagrams illustrating the procedure for updating the value function
according to TD methods. A white circle represents a state and a black circle an
action. An arrow represents a transition from a state to an action according to the
policy π (or according to the greedy strategy max) and from an action to the next
state and the reward according to the dynamics of the environment p. The paths of
the tree in transparency are not explored by the methods.
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Learning a value function with function approximation

We discuss tabular cases above, where a value function is stored in a tabular form.
Function approximation is a way for generalisation when the state and/or action
spaces are large or continuous. Linear approximation of the function was a popular
choice before the deep Q-network work of Mnih et al. (2015) marked the emergence
of deep learning in RL.

Value function approximation The gradient of a value function qπ

parametrised by a model ω is computed as follows:

∇ωq
π = ∇ωEP,π

[
(qπ(St, At;ω)− q̂(St, At))

2
]

∝ EP,π [(qπ(St, At;ω)− q̂(St, At))∇ωq
π(St, At;ω)]

(2.30)

where q̂ is the current estimator of qπ defined according to the value function
learning method used (TD, SARSA, Q-learning, etc).

Learning a policy function

In contrast to value-based methods, policy-based methods optimise the policy di-
rectly with function approximation and update the parameters by gradient ascent
(see Theorem 2.5 that gives a formulation of the policy gradient w.r.t the value
function). They are known for their superior convergence characteristics and abil-
ity to handle high-dimensional or continuous action spaces, and to learn stochastic
policies. However, they tend to converge to a local optimum, are computationally
less efficient, and have higher variance in the estimates (Y. Li, 2018).

Theorem 2.5: Policy Gradient Theorem

The gradient of a policy function π parametrised by a model θ is computed
as follows (R. Sutton et al., 2000):

∇θπ = ∇θEP,π[G0] ∝ EP,π [Qπ(St, At)∇θ log π(At|St; θ)] (2.31)

where G0 is the initial return and Qπ is any state-action value estimate, possi-
bly with a comparison to an arbitrary baseline that does not vary with action.

REINFORCE algorithm (R. Williams, 1992) is a policy-based method that
calculates the expected return as an estimate of the state-action value as
Qπ(st, at) = gt involving ∇θπ ∝ EP,π [Gt∇θ log π(At|St; θ)].
Actor-Critic algorithms are policy and value-based methods that optimise
both policy and value functions: Qπ(st, at) = q̂(st, at;ω) for Q actor-critic,
Qπ(st, at) = q̂(st, at;ω) − v̂(st;ω) for advantage actor-critic and Qπ(st, at) =

rt + γv̂(st+1;ω)− v̂(st;ω) for TD actor-critic.
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2.4.3 Advanced mechanisms for dialogue management

In the world of RL, algorithms are multiplying year after year offering more and more
sophisticated techniques for computational and data efficiency. The emergence of
deep learning (LeCun et al., 2015) has led to a significant growth in RL methods,
also called Deep Reinforcement Learning (DRL) (Y. Li, 2018), that have not failed
to influence the field of task-oriented dialogue systems (J. Gao et al., 2018).

Deep Reinforcement Learning

Among the value-based methods, the Deep Q-Network (DQN) and Double DQN
algorithms presented by Mnih et al. (2013) and Hasselt et al. (2015) use deep neural
networks to represent the Q-values of the state-action pairs. Regarding the actor-
critic methods, the Asynchronous Advantage Actor-Critic (A3C) algorithm (Mnih
et al., 2016) uses a parallel and asynchronous approach to update the actor and
critic models. Ziyu Wang et al. (2017) propose the Actor Critic with Experience
Replay (ACER) algorithm, which combines several techniques to achieve stability
and sample efficiency, including truncated importance sampling, stochastic dueling
networks and trust region policy optimisation. De facto, trust region methods are
approaches to stabilising optimisation by constraining gradient updates. The Trust
Region Policy Optimization (TRPO) algorithm (Schulman et al., 2017a) is an iter-
ative procedure to monotonically improve policies. The Proximal Policy Optimiza-
tion (PPO) algorithm (Schulman et al., 2017b) alternates between data sampling
and optimisation, and benefits from the reliability of TRPO, with the goal of simpler
implementation, better generalisation, and better empirical sampling complexity.

DRL for dialogue management

Different policy learning methods have already been tested for task-oriented dia-
logue (Casanueva et al., 2017; Takanobu et al., 2020). To name but a few, KTD
framework that is based on Kalman filters and Temporal Differences (Geist et al.,
2010), was applied for sample-efficiency, non-linear approximation, non-stationarity
handling and uncertainty management (Daubigney et al., 2012; Ferreira et al., 2013).
In continuity, GP-SARSA (Gasic et al., 2013) is an on-line RL algorithm that in-
corporates gaussian processes regression, a non-parametric Bayesian model used for
function approximation (Engel et al., 2005). Since then, DRL approaches as DQN
have become the new baseline for task-oriented dialogue systems and are used in the
majority of recent papers. Then, a variety of advanced deep approaches with actor-
critic have been used to improve performance such as deep actor-critic methods with
and without pre-supervised learning (Fatemi et al., 2016), Trust Region Actor Critic
with Experience Replay (TRACER) methods with and without pre-supervised learn-
ing (Su et al., 2017), TRACER in large action spaces context (Weisz et al., 2018)
and TRACER with intrinsic curiosity module (Wesselmann et al., 2019).
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Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning (HRL) is an approach of reinforcement learning
where the learning process is decomposed into multiple levels or stages, in order to
learn complex tasks by breaking them down into smaller subtasks and learning to
solve each one independently before combining them into a larger solution. There are
several different approaches to HRL, including feudal learning framework, options
framework, MAXQ framework and hierarchy abstract machine framework.

Feudal Learning (Dayan et al., 1993) is a HRL method in which a high-level
manager learns to set goals for a set of lower-level workers. The manager provides
these goals to the workers, who then use their own local policies to achieve them.
The manager receives feedback on the workers’ progress and updates its own policy
to improve overall performance.

Option Framework (R. S. Sutton et al., 1999) is another HRL method that
focuses on learning reusable sub-policies, called options. These options are defined
as Markov Decision Processes (MDPs) themselves, with their own reward functions
and termination conditions. The main agent can use these options to accomplish its
own goals, allowing for a more efficient use of learning time.

MAXQ (Dietterich, 2000) is a HRL approach that decomposes an MDP into
a set of subtasks, each of which can be solved independently. The subtasks are
organized in a hierarchy, with the highest-level task being the main goal. Each
subtask has its own MDP, which can be solved using any RL algorithm. The main
agent learns to select which subtask to execute at any given time, taking into account
the constraints of the subtask hierarchy.

Finally, Hierarchical Abstract Machine (HAM) approach (Parr et al., 1998) uses
a hierarchical structure of finite state machines to represent complex tasks. Each
machine represents a subtask and has its own inputs and outputs. At each level
of the hierarchy, a decision is made about which subtask to execute, based on the
current state of the task.

HRL for dialogue management

HRL can result in faster convergence, better generalization and improved sample
efficiency compared to flat RL algorithms (Nachum et al., 2019; Z. Wen et al., 2020).
This approach has been adopted in the field of dialogue management research, by
applying HAM (Cuayáhuitl, 2009), feudal learning (Casanueva et al., 2018a; Paweł
Budzianowski et al., 2017; Casanueva et al., 2018b) or option framework (Peng et
al., 2017) and by working on different technical challenges such as transfer learning
across different domains (Gasic et al., 2015), domain selection (Cuayáhuitl et al.,
2016), or composite task-completion with subgoal discovery (Tang et al., 2018).

Beyond the dialogue management task, various methods of HRL has been pro-
posed with DL as hierarchical DRL (Kulkarni et al., 2016), option-critic architecture
(Bacon et al., 2016), stochastic neural networks for HRL (Florensa et al., 2016).
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Advanced techniques in RL

RL methods need to strike a balance between exploration and exploitation in order
to explore relevant solutions and exploit them quickly. Classical ways to explore
environment are epsilon-greedy, Boltzmann and Thompson samplings. More recent
methods propose new exploration strategies as bootstrapped DQN (Osband et al.,
2016), curiosity-driven exploration (Houthooft et al., 2017; Pathak et al., 2017;
Wesselmann et al., 2019), noisy network (Fortunato et al., 2017), bayes by back-
propagation neural network (Lipton et al., 2017) and this list can be extended to
any bayesian neural network (Jospin et al., 2022).

Unlike deterministic policies that systematically choose the optimal action, deep
energy-based policies are proposed methods for learning directly stochastic policies
such as Soft Q-learning (Haarnoja et al., 2017) and Soft Actor-Critic (Haarnoja et
al., 2018). They assign an energy value to each state-action pair, with lower energy
values corresponding to more desirable states or actions.

The list of techniques advanced in RL in the last decade is far too long to be
presented exhaustively in this thesis. We invite the curious reader to consult the
overview of deep reinforcement learning written by Y. Li (2018).

2.5 Challenges of Reinforcement Learning
Even if RL is a powerful tool for solving complex decision-making problems, it also
has several challenges that need to be considered.

The Deadly Triad

The concept of Deadly Triad was formalised by R. Sutton and Barto (2018) that
argue that function approximation, bootstrapping and off-policy learning combined
together imply instability and divergence in the learning process. However, it is
difficult to give up these practices:

Function approximation, that is a powerful, scalable way of generalising
from a state space much larger than the memory and computational resources,
is necessary for scalability and generalisation.
Bootstrapping, that updates targets that include existing estimates rather
than relying exclusively on actual rewards and complete returns, is necessary
for computational and data efficiency.
Off-policy learning, that is based on training on a distribution of transitions
other than that produced by the target policy, is necessary for freeing behaviour
policy from target policy.

The Deadly Triad can be avoided by eliminating any one of its three elements.
However, giving up function approximation sacrifices the ability to handle large
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problems and expressive power. Dropping bootstrapping sacrifices computational
and data efficiency. Although on-policy methods are sufficient, off-policy learning
enables the agent to learn about various policies simultaneously, including policies
other than the one it follows. Therefore the challenge is central when designing
RL algorithms in order to retain these properties while being robust to instabilities.
Especially, recent research focuses on studying and breaking the Deadly Triad with
empirical and theoretical support (Hasselt et al., 2018; S. Zhang et al., 2021).

Dealing with the challenges of task-oriented dialogue problems

RL algorithms for dialogue problems have their intrinsic challenges. We distinguish
two different approaches to dialogue strategy learning depending on which context
the agent gathers its experiences: model-based and simulation-based approaches.

On one hand, model-based learning is done off-line without any interaction be-
tween the agent and the environment (also called batch RL) usually using Maximum
Likelihood Estimation (MLE). To do that, it is necessary to obtain a large-scale an-
notated corpus that is often a difficult task because it requires specific knowledge
and expertise and because annotating fine-grained tags for the corpus is a time-
consuming and costly process that requires a significant amount of human resources.
Thus, one of the main challenges in building task-oriented dialogue systems is to
improve data efficiency, especially when resources are limited (Z. Zhang et al., 2020).
Similarly, learning from fixed datasets has a number of important shortcomings, as
they are not large enough to reliably estimate all transition probabilities, as they are
limited to fixed state-action combinations which do not guarantee that the optimal
strategy is present in the learning corpus, and as the learning is limited to domains
where working systems already exist (Rieser and Lemon, 2011).

On the other hand, simulated-based learning is performed on-line by interacting
with a simulated environment (also called model-free RL) instead of real learning
environment in which the agent optimises on-the-fly a policy based on its interac-
tions with human users: in a real learning environment, direct interaction is painful
especially when the agent starts to learn a policy, which reinforces the need for
improved data efficiency. One way around this problem is to replace it with a sim-
ulated user and an error model designed by hand or trained with SL techniques.
The main advantages of this approach are that the simulator does not limit the
number of training episodes to be generated and that it allows the exploration of
strategies that are not included in the training data. However, as the dynamics of
the environment are intrinsically determined by the user, designing a simulator that
approximates human behaviour is another equally complex task. The reward func-
tion R has to be explicitly constructed and is mostly hand-crafted, tuned and not
easily adjustable. Similarly, the transition function P is also hand-crafted and it is
complex, unknown, can vary a lot from one individual to another and it is not clear
how it aligns with the user’s actual behaviour (Carrara, 2019; Paek et al., 2008b).
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2.5.1 Challenges addressed in the scope of this thesis

The ability to learn from few interactions is essential in dialogue applications because
human interactions are scarce and costly. Unfortunately, standard RL algorithms
usually require a large amount of interactions with the environment to reach good
performance. Especially in multi-domain multi-task oriented dialogue scenarios, the
ability to adapt a policy from one domain or task to another is relevant in dialogue
applications when dialogue policies are similar thus avoiding learning individual
policies in favour of a generic policy for all dialogue domains or tasks.

Therefore, dialogue policy learning must meet the needs of scalability and effi-
ciency. Scalability can be achieved by using data collected from different dialogue
tasks and by utilising a generic dialogue policy in a hierarchical way (HRL). Effi-
ciency can be achieved by deploying an advanced off-policy actor critic algorithm
combined with efficient exploration techniques based on imitation (IL).

The article written by Le et al. (2018b) introducing Hierarchical Imitation and
Reinforcement Learning is the first step in our journey. In the case where a hier-
archical structure can emerge from the considered problem, the authors show that
hierarchical guidance is an effective way to exploit expert feedback to learn sequen-
tial decision-making policies, in which the feedback from the high-level expert is
used to guide the low-level learner.

This approach is in line with methods that use expert demonstrations to guide
the agent in relevant situations to be learned such as DAgger (Stéphane Ross et al.,
2011), AggraVate (Stéphane Ross et al., 2014) and LOLS (Chang et al., 2015). To
go further in the hybridisation of IL and RL strategies, Hester et al. (2017) propose
Deep-Q Learning from Demonstration (DQfD), an extension to DQN that uses
expert demonstrations to guide the agent directly in the RL process.

However, noisy demonstrations can disrupt the joint optimization of expert im-
itation and reward exploitation. Recent methods try to learn a stochastic policy
from imperfect demonstrations during the pre-training phase in a video game con-
text (Y. Gao et al., 2019). In multi-domain task-oriented dialogue, Gordon-Hall
et al. (2020) leverages the DQfD approach by using experts who are trained with
weak demonstrations and then refined during the RL training.

At the same time, the divide-and-conquer strategy enabled by hierarchical de-
composition is a catalyst for learning. In the multi-domain task-oriented dialogue,
this is a commonly used strategy for managing multiple domains in a single dialogue
or managing multiple slots in a single domain.

However, this strategy, which involves independence between domains and be-
tween slots, does not benefit from knowledge transfer. More recently, a series of
work on single-domain task-oriented dialogues has demonstrated that using a graph
structure instead of a tree structure (to be understood as feudal learning) can ac-
celerate the learning process in RL settings (L. Chen et al., 2018; Z. Chen et al.,
2020b; Z. Chen et al., 2020a).
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Here, we are interested on how structure the architecture and the learning of
dialogue management models in order to reach faster good performance not only
in single-domain-task but in multi-domain-task environments. This is done by
means of a strategy combining IL and RL and by means of a Graph Neural Network
(GNN) architecture.
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3
Guiding Dialogue Policies with

Diluted Expert Demonstrations

A learning dialogue agent can infer its behaviour from interactions with the users.
These interactions can be taken from either human-to-human or human-machine
conversations. However, human interactions are scarce and costly, making learn-
ing from few interactions essential. One solution to speedup the learning process
is to guide the agent’s exploration with the help of an expert. It can benefit from
demonstrations in a supervised fashion to further improve exploration. However,
some common practices are undesirable if we want to learn in real-context with
human interactions and noise. We present in this chapter several hybrid imitation
and reinforcement learning strategies for dialogue policy where the guiding expert
is a near-optimal handcrafted policy. We incorporate these strategies with state-of-
the-art reinforcement learning methods based on Q-learning and actor-critic. We
notably propose a randomised exploration policy which allows for a seamless hy-
bridisation of the learned policy and the expert, which can be seen as a dilution of
the expert’s demonstration into the resulting policy. Our experiments show that our
hybridisation strategy outperforms several baselines, and that it could accelerate the
learning when facing real humans.

3.1 Motivation

The ability to learn from few interactions is essential in dialogue applications because
human interactions are scarce and costly. Unfortunately, standard RL algorithms
usually require a large amount of interactions with the environment to reach good
performances. One solution to speedup the learning process is to guide the agent’s
exploration. We also claim that policy learning should not be deterministic. By
taking a closer look at the way dialogue policy learning works, we observed that some
actions do not contribute to the dialogue and therefore do not change the current
state. We hence posit that greedy off-policy learning methods suffer this situation
and need a randomised policy rather than a deterministic one. This also can be
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profitable for a better exploration strategy than epsilon-greedy. Moreover, former
works did used stochastic policy (e.g. Young et al., 2013a) and recent methods
show that stochastic learning policies like soft-kind policies can perform very well
and present elegant proprieties (Haarnoja et al., 2017; Haarnoja et al., 2018; Y. Gao
et al., 2019). The first question we address here is: can dialogue policy learning be
improved with stochastic off-policy learning methods?

Secondly, we think that external demonstrations should not be reserved only for
supervision and instead should be directly integrated in the RL process. Several
methods search a way to exploit demonstrations to accelerate the learning with the
conviction that demonstrations are the solution to the sparse reward. These meth-
ods are presented as useful and efficient as showed in Hester et al., 2017. They can
be based on Imitation Learning (IL) to learn an optimal policy function or on Inverse
Reinforcement Learning (IRL) to learn an optimal reward function. Nevertheless,
the majority of these approaches uses Supervised Learning (SL) and compares them
with pure reinforcement methods, which is not ideal because: (i) the integrity of
policy learning is safe obviously thanks to the refinement of the policy in the RL
environment; (ii) a supervised update in policy learning is more powerful than a re-
inforced one (Hester et al., 2017; Su et al., 2016a; Y. Gao et al., 2019). In addition,
SL strongly constrains the learning of the agent according to the demonstrations and
the performance of these methods therefore depends on the quality of the demon-
strations.

Although warm SL can obviously improve the performance, demonstrations may
still be useful to guide efficiently the exploration even when they are sub-optimal.
Similarly, we think that exploration with demonstrations can improve learning. In
addition, we consider that human expertise can be used in different ways. The
most classical one is to use demonstrations that humans have already produced.
Another way is to use a hand-crafted agent that has been designed, evaluated and
fine-tuned by humans. Indeed, Casanueva et al., 2017 have shown that hand-crafted
approaches still perform better than policy learning approaches. Moreover it is a
fact that human interactions and manually crafted rules are not only costly but also
time consuming, while simulated interactions are cheaper and easier to collect (Su
et al., 2016b; Schatzmann et al., 2006). Therefore, the second issue that raised in
our work is: can we use demonstrations without supervision and only as a way to
guide exploration in an on-line learning?

Our contribution in this chapter focuses on exploration strategies in pure RL. To
the best of our knowledge, this might be the first proposal to learn a dialogue policy
with demonstrations given by a sub-optimal expert directly in the learning process
without any supervision. We openly propose to learn a randomised exploration
policy in order to integrate seamlessly the expert actions and to avoid being stuck
on a deterministic policy. The process expert’s demonstrations can be viewed as
diluted in the derived policy (in contrast to bootstrap it).
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3.2 Hybrid imitation and reinforcement learning
for dialogue policies

The proposed approach to policy dialogue learning is based on recent DL meth-
ods to which we bring the advantages of stochastic techniques, namely Boltzmann
sampling, and to which we integrate demonstrations directly into the RL process
in order to better guide exploration and make relevant exploitation. RL is usually
implemented as either value-based method as Q-learning or policy-based method
as actor-critic. Both are our baselines with which we will make our contributions.
During the RL process, demonstrations can serve as an efficient way to explore the
environment even if not optimal. Indeed, they can lead the agent to receive rewards
promptly and so can lead it to exploit confident winning trajectories quickly.

We propose different demonstration sampling strategies corresponding to dif-
ferent ways of using the knowledge of an adviser expert. They are drawn on IL
techniques but they are not designed in a supervised fashion (except for the last
one). These hybrid IL and RL methods are distinguished by (i) their ability to
exploit human data as a teacher, (ii) their ability to outperform their teacher on
the long run, and (iii) their convergence speed. In the following, we will examine
how the loss function L(Θ;π,πE) is computed with respect to the agent policy π,
the oracle policy πE and the demonstration sampling strategy f in order to optimise
the parameters of the model Θ:

L(Θ; π̃) = λRLLRL(Θ; π̃) + λILLIL(Θ; π̃)

with π̃ ∼ f(π,πE)
(3.1)

3.2.1 Pure reinforcement learning

The first approach is a Pure Reinforcement Learning method which improves the
agent policy according to its own trajectories in order to accumulate more rewards in
the future and thus does not depend on the oracle policy as detailed in Algorithm 3.1
and shown in Figure 3.1. Therefore, the loss function is defined by the Equation 3.2:

Eq. (3.1) with


λRL = 1,

λIL = 0,

π̃ ∼ π

L(Θ; π̃) = LRL(Θ;π) (3.2)
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Figure 3.1: RL is based on the experience replay from the agent’s trajectories. The
states are represented by circles (double circle for the terminal state) and the agent’s
actions by black arrows.

Algorithm 3.1: Pure Reinforcement Learning

Input: D ← ∅, an empty dataset
(π,Q)← any policy and value functions parametrised by Θ

L← any loss function to optimise with respect to D and Θ

Output: trained policy π with pure reinforcement learning
for each train step do

for each episode i do . Sample T -step trajectories using π

τi ← {(st, at, rt+1, st+1)}0≤t≤T
end for
D ← D ∪ {τi}1≤i≤n . Update the train dataset D
π,Q← Optimise(L,D,Θ) . Train the policy π on D

end for

The Q-learning baseline is the combination of Double and Duelling Deep-Q-
Network with Experience Replay (DQN/D3QN) (Hasselt et al., 2015; Ziyu Wang et
al., 2016). The Double DQN architecture is an alternative DQN method to mitigate
the problem of overoptimistic value estimation and the Duelling DQN architecture
is for learning more efficiently by decoupling value and advantage functions. On top
of that experience replay can be added which is a popular technique for reducing
sample correlation and for improving sample efficiency.

The actor-critic baseline is the Trust Region Policy Optimization for Actor-Critic
with Experience Replay (A2C/ACER/TRACER) (Ziyu Wang et al., 2017; Weisz et
al., 2018). This method is based on the Policy Gradient Descent (R. Sutton et al.,
2000) for which we bring computation improvements. The importance sampling
truncation with bias correction technique is used to correct the perceived sampling
distribution induced by experience replay in order to reduce variance. We apply
the Retrace algorithm (Munos et al., 2016) to recursively estimate the advantage
function in safe and efficient way with small bias and variance. Finally, we use the
Trust Region Policy Optimisation (TRPO) (Schulman et al., 2017a) for adjusting the
policy gradient in order to learn in a safe parameters region limiting the deterioration
of the policy performance.

64



3.2. Hybrid imitation and reinforcement learning for dialogue policies

3.2.2 Behaviour cloning for imitation learning

Behaviour cloning (BC) is a pure supervised learning method that tries to mimic
the oracle policy as shown in Algorithm 3.2. Its loss function is the cross-entropy
loss function as in a classification problem (see Equation 3.3). A BC agent can be
trained from static human or simulated demonstrations as illustrated in Figure 3.2.

Eq. (3.1) with


λRL = 0,

λIL = 1,

π̃ ∼ πE

L(Θ; π̃) = LIL(Θ;πE) (3.3)

Figure 3.2: Behaviour cloning is based on the experience replay from the oracle’s
trajectories. The states are represented by circles (double circle for the terminal
state) and the oracle’s actions by orange arrows.

Algorithm 3.2: Behaviour Cloning for Imitation Learning

Input: D ← ∅, an empty dataset
(π,Q)← any policy and value functions parametrised by Θ

L← any loss function to optimise with respect to D and Θ

Output: trained policy π with behaviour cloning
for each train step do

for each episode i do . Sample T -step trajectories using πE

τi ← {(st, at)}0≤t≤T . Keep only state-action transition
end for
D ← D ∪ {τi}1≤i≤n . Update the train dataset D
π,Q← Optimise(L,D,Θ) . Train the policy π on D

end for

BC benefits from a more efficient learning capacity than RL since the initial
state-action evaluation problem becomes a state-optimal action classification prob-
lem. But this advantage is limited insofar as the oracle delivers optimal demonstra-
tions since, by construction, it cannot outperform its teacher.
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3.2.3 Imitation learning from oracle demonstrations

Imitation Learning from Oracle Demonstrations (ILfOD) is a reinforcement learning
method with online data augmentation which allows the agent to play oracle
actions as demonstrations and inject them in its replay buffer (Figure 3.3). This is
why the loss function is always the same as RL except that the policy followed is a
mixture between the agent and the oracle (Equation 3.4). In practice, before each
new episode, the policy to be followed is chosen among those of the agent or the
expert to generate the next trajectory (Algorithm 3.3).

Eq. (3.1) with


λRL = 1,

λIL = 0,

π̃ ∼ β π + (1− β)πE sampling at the start of each dialogue

L(Θ; π̃) = LRL(Θ; β π + (1− β) πE) (3.4)

Figure 3.3: ILfOD is based on the experience replay composed of both oracle and
agent trajectories (represented by two different datasets). The states are represented
by circles (double circle for the terminal state), the oracle’s actions by orange arrows
and the agent’s actions by black arrows.

Algorithm 3.3: Imitation Learning from Oracle Demonstrations

Input: D ← ∅, an empty dataset
(π,Q)← any policy and value functions parametrised by Θ

L← any loss function to optimise with respect to D and Θ

Output: trained policy π with ILfOD
for each train step do

for each episode i do . Sample T -step trajectories using π or πE

πi ← Sample(π, πE) . Draw the policy to be played
τi ← {(st, at, rt+1, st+1)}0≤t≤T . Sample one trajectory with πi

end for
D ← D ∪ {τi}1≤i≤n . Update the train dataset D
π,Q← Optimise(L,D,Θ) . Train the policy π on D

end for
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Both BC and ILfOD can be trained from static human demonstrations. How-
ever, this time, ILfOD can outperform its teacher through policy refinement in the
reinforcement learning environment. This technique therefore allows us to provide
the agent with promising demonstrations to quickly obtain rewards. In other point
of view, the agent learns as if they are two datasets. The first one contains its
trajectories and the second the expert demonstrations.

In our experiments, we share in the buffer the agent’s own actions as well as
those generated by the oracle. We propose that in β (in percent) of dialogues, the
agent plays for itself. Otherwise in 1− β of dialogues, the expert gives to the agent
one of its expert trajectories as demonstration and the agent replays the dialogue
as if it was the one who played it.

3.2.4 Imitation learning from oracle feed-backs

Imitation Learning from Oracle Feed-backs (ILfOF) is also a reinforcement learning
method with online data augmentation. However, unlike ILfOD, the agent is
allowed to be guided by oracle actions at any dialogue turn and inject them into its
replay buffer. We draw on the exploration strategy of the DAgger method (Stéphane
Ross et al., 2011) but apply it in an RL process with mixed initiatives between the
oracle and the agent during a dialogue (see these differences in Equation 3.5 and
Algorithm 3.4). In other words, the agent plays in an RL environment and the
oracle can interrupt the agent to give feedback, i.e. its optimal action (Figure 3.4).

Eq. (3.1) with


λRL = 1,

λIL = 0,

π̃ ∼ β π + (1− β) πE sampling at the start of each dialogue turn

L(Θ; π̃) = LRL(Θ; β π + (1− β) πE) (3.5)

Figure 3.4: ILfOF is based on the experience replay from the hybrid trajectories
between the oracle and the agent. The states are represented by circles (double
circle for the terminal state), the oracle’s actions by orange arrows and the agent’s
actions by black arrows. Arrows with a cross indicate that the agent has been guided
by the oracle.
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Algorithm 3.4: Imitation Learning from Oracle Feed-backs

Input: D ← ∅, an empty dataset
(π,Q)← any policy and value functions parametrised by Θ

L← any loss function to optimise with respect to D and Θ

Output: trained policy π with ILfOF
for each train step do

for each episode i do . Sample T -step trajectories using π or πE

for each turn t do
πt ← Sample(π, πE) . Draw the policy to be played
(st, at, rt+1, st+1) ∼ πt . Sample one turn with πt

end for
τi ← {(st, at, rt+1, st+1)}0≤t≤T . Collect the mixed trajectory

end for
D ← D ∪ {τi}1≤i≤n . Update the train dataset D
π,Q← Optimise(L,D,Θ) . Train the policy π on D

end for

This technique therefore allows us to provide the agent with promising dialogue
actions to quickly explore the environment by been redirected to more relevant oracle
action at any time, as DAgger does. As we do with ILfOD, we let the agent and the
oracle share the initiative. We propose that in β (in percent) of dialogue actions,
the agent plays for itself. Otherwise in 1−β of dialogue actions, the expert gives to
the agent its expert action as feed-back and the agent plays the dialogue action as
if it was its choice.

3.2.5 Imitation learning from oracle supervision

Imitation Learning from Oracle Supervision (ILfOS) is a combination of super-
vised and reinforced learning based on ILfOD for data augmentation (Equa-
tion 3.6) and inspired by Deep Q-learning form Demonstrations (DQfD) (Hester
et al., 2018) in which the reinforced loss function is augmented with a supervised
loss called margin loss (Equation 3.7). This modification allows the agent to benefit
from demonstration-guided exploration and teacher-forced learning if its best action
is not sufficiently aligned with that of the oracle (Figure 3.5).

Eq. (3.1) with


λRL = 1,

λIL = 1,

π̃ ∼ β π + (1− β)πE sampling at the start of each dialogue

L(Θ; π̃) = LRL(Θ; β π + (1− β) πE) + LIL(Θ; β π + (1− β) πE) (3.6)
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3.2. Hybrid imitation and reinforcement learning for dialogue policies

Figure 3.5: ILfOS is based on the experience replay from the oracle and agent’s
trajectories as ILfOD but with teacher forcing learning. The states are represented
by circles (double circle for the terminal state), the oracle’s actions by orange arrows
and the agent’s actions by black arrows.

Algorithm 3.5: Imitation Learning from Oracle Supervision

Input: D ← ∅, an empty dataset
(π,Q)← any policy and value functions parametrised by Θ

L← any loss function to optimise with respect to D and Θ

Output: trained policy π with ILfOS
for each train step do

for each episode i do . Sample T -step trajectories using π or πE

πi ← Sample(π, πE) . Draw the policy to be played
τi ← {(st, at, a∗t , rt+1, st+1)}0≤t≤T . Sample one trajectory with πi

and keep the optimal action
end for
D ← D ∪ {τi}1≤i≤n . Update the train dataset D
π,Q← Optimise(L,D,Θ) . Train the policy π on D

end for

As DQfD approach (Hester et al., 2018), ILfOS agent learns with a supervised
loss named margin loss (Equation 3.7) which forces to associate to the oracle action
a better score by artificially applying a margin:

LIL(Θ, π) =Eτ∼π

 ∑
(st, a∗t )∈τ

max
at∈A

[QΘ(st, at) + l(a, a∗t )]−QΘ(st, a
∗
t )


with l(at, a

∗
t ) = µ ∗ 1at 6=a∗t

(3.7)

with QΘ is any score function (value function or log-policy function), st the
current state, at and a∗t the current agent and oracle actions and µ the margin
penalty.

An ILfOS agent converges usually faster than an ILfOD agent, but because
they require a constant or frequent access to the oracle’s decisions, they cannot
exploit static human logs (as shown in Algorithm 3.5).
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3.3 Stochastic Exploration Strategy
We present our contributions related to the exploration strategy, which we integrate
to the hybrid imitation and reinforcement off-policy learning methods explained
earlier. Indeed, exploring with a smooth stochastic policy seems to be more adapted
than exploring with a deterministic one or with ε-greedy for instance. We propose to
learn an energy-based policy in the dialogue environment where the agent samples
his actions according to Boltzmann’s stochastic sampling.

Energy-based policies modelling: Inspired from Haarnoja et al. (2017), we opt
for using energy-based policies of the following form:

π(at|st) ∝ exp(−E(st, at)) (3.8)

where E is the energy-based function that can be related to any score function. When
using value-based method, the energy function can be represented by the Q-function
with parameter τ , called the temperature, where we set E(bt,at) = − 1

τ
Qπ(bt,at).

When using policy-based method, the energy function is directly represented by the
log-policy and so is learned implicitly.

In theory, learning an energy-based policy function is motivated by the consid-
eration of the maximum entropy RL setup in which the rewards are augmented with
an entropy term (Haarnoja et al., 2017). Even if there exists an interesting relation-
ship between the temperature and the relative importance of entropy over rewards,
we decide to separate the maximum entropy objective from maximum rewards ob-
jective which leads to maximizing entropy without discount factor. In other words,
we maximize the entropy at all time step without taking into account the time decay
and so we promote exploration at any time step and not only at the beginning.

Energy-based sampling: A stochastic sampling with energy-based policies can
be achieved by the Boltzmann sampling. Contrary to the commonly used strategy
as ε-greedy where actions at are sampled as follows:

at ∼ (1− ε) argmax
a∈A

π(a|st) + εU(A) (3.9)

where U(A) is the uniform distribution over action space, the Boltzmann sampling
strategy samples actions from:

at ∼ exp(−E(st,·)) = π(·|st) (3.10)

We think that exploring with smooth stochastic policy should improve the stability
of learning in spite of exploitation strength. Indeed, stochastic sampling is equiva-
lent to play current policy when greedy sampling is equivalent to play hypothetical
optimal policy with respect to the current policy.
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One of its advantages is that policy learning is less influenced by the policy
function changes. Conversely, the ε-greedy sampling faces sudden jumps in action
choices due to the argmax operator (see Figure 3.6). So in theory, the Boltzmann
strategy can make learning more stable than the ε-greedy strategy.

Figure 3.6: Policy learning is less influenced by the policy function changes (from
the first row to the second). After the score function changes, the ε-greedy sampling
faces sudden jumps when the Boltzmann sampling is more stable.

Another advantage is that the temperature parameter can control the exploration-
exploitation balance. So, to counter the weakness of its exploitation, it can be
interesting to define correctly the temperature.

In practice, we decide to add random exploration, namely ε-Boltzmann sampling,
in such a way that the actions are sampled according to:

at ∼ (1− ε)π(·|st) + εU(A) (3.11)

with decreasing ε parameter in order to explore enough before following the stochas-
tic policy with a fixed τ temperature parameter.

In all cases, the sampling of our agent’s actions is combined with the sampling
of the oracle’s actions according to the hybrid strategy presented before as follows:

π̃ ∼ β [(1− ε)π + ε U)] + (1− β)πE (3.12)

In particular, a hand-crafted agent is used to simulate near-optimal demonstra-
tions and feed-backs. This one is not optimal as seen in the benchmark of Py-
Dial (Casanueva et al., 2017) but it offers good performance compared with the
other deep learning methods. Also, it has been designed, evaluated and fine-tuned
by humans. So it is a way to mimic human expertise and can be served as a near-
optimal expert in our experimentation.
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3.4 Experimentation
We propose to organise our study along two axes that will frame our experiments: are
the demonstrations and feedbacks sufficient for the exploration in the reinforcement
learning paradigm and how good are demonstrations instead of supervision? Indeed,
on the one hand, ILfOD and ILfOF are close from a statistical point of view but
differ on the moment of interrogating the oracle to guide the agent. We thus propose
in Subsection 3.4.1 to study this problem in single-domain task-oriented dialogues
in order to determine which one is the best in place of pure RL.

Moreover, imitation is useful when reinforcement is not sufficient. With this in
mind, we propose in Subsection 3.4.2 to examine this issue in multi-domain multi-
task-oriented dialogues to determine whether supervision is the only way to solve a
more difficult dialogue problem or whether demonstrations are sufficient as a catalyst
to solve this problem.

3.4.1 Are the demonstrations sufficient for the exploration?

In our experiments, the PyDial framework (Ultes et al., 2017b) is used, which imple-
ments an agenda-based user simulation (Schatzmann et al., 2007). As in Casanueva
et al. (2017) we tested our algorithms for policy learning on different domains and in
different environments by increasing the inputs’ noise. As shown in previous Chap-
ter 1, the domains differ from each other by the ontology size, impacting the state
and action space dimensions.

In particular, we decide to evaluate our policy models according to three levels
of noise with respect to the semantic error rate (SER). This corresponds to the noise
that comes from the ASR and the NLU channels. In PyDial, this is modelled at
the semantic level whereby the true user action is corrupted by noise to generate an
N-best-list with associated confidence scores. This corresponds to the environments
1, 3 and 6 proposed by Casanueva et al. (2017)

Methods: Table 3.1 shows the compared policy models. HDC corresponds to the
handcrafted policy learning, which is a frame-based approach written by experts.
DQN and ACER are the baselines enhanced with stochastic (Stoc) exploration and
either demonstrations (ILfOD) or feed-backs (ILfOF).

Hyper-parameters and Training: All algorithms use by default ε-Boltzmann
sampling strategy during training and testing. We use common parameters between
the different algorithms as learning rate α = 1 ·10−4, experience replay buffer of size
10 000, train batch of size 128, discount factor γ = 0.9, linearly decreasing epsilon
ε ∈ [0.05; 0.55], fixed temperature τ = 100, weights dropout with probability 0.1,
oracle-agent play ratio β = 0.5. Others parameters related to referred papers are
chosen identically. All deep networks have the same architecture composed by two
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Method name Abbrev.

Handcrafted Policy HDC

Stochastic Q-learning Stoc-DQN
Stochastic Q-learning with Demonstrations Stoc-DQN-ILfOD
Stochastic Q-learning with Feed-backs Stoc-DQN-ILfOF

Stochastic Actor-Critic Stoc-ACER
Stochastic Actor-Critic with Demonstrations Stoc-ACER-ILfOD
Stochastic Actor-Critic with Feed-backs Stoc-ACER-ILfOF

Table 3.1: Overview of proposed methods for single-domain task-oriented dialogues.

hidden layers with respectively 128 and 64 neurons. The Adam optimiser was used
to train all the deep-RL models. The first hidden layer is shared between learning
modules depending on the algorithms. Each network is trained after one dialogue
with one training step.

As in Casanueva et al. (2017) the maximum dialogue length was set to 25 turns
and the discount factor γ was 0.9. We evaluated our policy models on the the
average success rate and average reward. Success rate is defined as the percentage
of dialogues which are completed successfully, i.e. whether the DM is able to fulfill
the user goal or not. More details on the reward function used (Equation 2.6) and
evaluation measures can be found in the Chapter 1 and Chapter 2.

Experiments: First, we performed a short training stage over 1 000 dialogues dur-
ing which the agent learns from its interactions with the environment and potentially
from demonstrations or feed-backs given by the simulated expert. We compare the
performances with the Hard-DQN which uses a deterministic sampling and with
eNAC (episodic Natural Actor-Critic) which uses the true natural policy gradient.
Both are given by Casanueva et al. (2017). At this stage we search to answer the
question: can we improve dialogue policy learning with demonstrations directly in
the reinforcement learning process?

Second we performed a long training stage over 10 000 dialogues. This will eval-
uate the contribution of stochastic sampling strategy during training and testing
stages. Here we search to answer the question: can we improve dialogue policy
learning with stochastic off-policy learning methods in order to compete the hand-
crafted agent?

All methods are evaluated after training over 1 000 dialogues during which the
learned policy is fixed. For the second experiments, we decide to compute the
average performance over the last five checkpoints from dialogue indices 6 000 to
10 000 with a step of 1 000 dialogues. This calculation is done in order to reduce
variance induced by RL when we estimate the performance of the models.
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Chapter 3. Guiding Dialogue Policies with Diluted Expert Demonstrations

Results: The results of the first experiments are presented in Table 3.2. We
can observe that demonstrations can improve the performance during the early
training when compared with baselines (i.e eNAC and Hard-DQN). Particularly, our
proposed stochastic ACER models outperform eNAC baseline on all environments.
Although stochastic ACER is already efficient to learn in early training without
demonstrations, we can notice that the best performances are obtained through an
expert-guided policy.

Hard-DQN Stoc-DQN Stoc-DQN-ILfOD Stoc-DQN-ILfOF HDC
Task Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew.

0% SER
CR 88.6% 11.60 72.7% 8.08 93.4% 12.30 98.1% 13.23 100.0% 14.00
SFR 48.0% 2.70 64.5% 3.51 97.2% 11.56 93.5% 10.69 98.2% 12.40
LAP 61.9% 5.50 57.6% 2.54 95.3% 11.38 81.7% 8.41 97.0% 11.70

15% SER
CR 79.5% 9.20 68.4% 5.47 88.8% 10.17 92.2% 10.59 96.7% 11.00
SFR 42.4% 1.00 56.1% -0.79 93.5% 9.34 87.8% 7.41 90.9% 9.00
LAP 51.9% 3.10 43.7% -5.82 87.6% 8.06 88.0% 8.31 89.6% 8.70

30% SER
CR 72.3% 6.90 64.9% 2.50 82.8% 8.17 83.0% 7.67 89.6% 9.30
SFR 35.6% -1.20 62.3% 1.10 73.5% 3.01 78.8% 4.18 79.0% 6.00
LAP 47.5% 1.40 71.0% 1.78 76.1% 4.20 77.1% 4.45 76.1% 5.30

eNAC Stoc-ACER Stoc-ACER-ILfOD Stoc-ACER-ILfOF HDC
Task Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew.

0% SER
CR 93.0% 12.20 98.5% 13.47 99.1% 13.40 99.0% 13.46 100.0% 14.00
SFR 85.8% 9.90 97.4% 11.77 97.9% 11.71 96.3% 11.50 98.2% 12.40
LAP 84.2% 8.80 96.5% 11.65 98.7% 12.00 98.4% 12.11 97.0% 11.70

15% SER
CR 85.7% 10.00 93.9% 11.17 95.9% 11.72 94.8% 11.38 96.7% 11.00
SFR 73.6% 6.20 90.7% 8.88 92.8% 9.11 90.5% 8.84 90.9% 9.00
LAP 71.0% 5.50 93.2% 9.60 83.8% 7.51 89.7% 9.01 89.6% 8.70

30% SER
CR 73.6% 6.70 86.6% 8.82 81.6% 8.15 89.4% 9.26 89.6% 9.30
SFR 55.2% 1.40 79.6% 4.62 81.3% 4.92 83.1% 5.46 79.0% 6.00
LAP 56.3% 1.90 81.6% 5.79 78.5% 4.67 79.1% 5.29 76.1% 5.30

Table 3.2: Results of Experiment 1. Short term learning after 1 000 training dia-
logues for 1 000 testing dialogue. Each bold result represent the best model according
to the referenced baseline.

Moreover, the proposed Stoc-DQN policy models outperform also Hard-DQN
for all environments. We can also notice that demonstrations clearly improve per-
formance of the models. Indeed, we see that demonstrations efficiently guide the
exploration of the models. For instance, Stoc-DQN-ILfOD model outperforms all
the others for SFR and laptops in the environment (0% SER) and for SFR in envi-
ronment (15% SER). Similarly, Stoc-DQN-ILfOF outperforms all the other models
for all domains in the environment (30% SER). This attests a faster exploitation of
the environment that therefore improves outcomes in more difficult environments.

Finally, we can observe that in some cases the stochastic policy models outper-
form the handcrafted expert, such as: Stoc-ACER with 15% SER and 30% SER for
laptops; Stoc-ACER-ILfOD with 0% SER for laptops and with 15% SER for SFR;
Stoc-ACER-ILfOF with 30% SER applied SFR. It is worth noting that laptops con-
tains more constrains than the other domains (Table 1.4). In addition, with 0% and
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15% SER the the performance of Stoc-ACER-ILfOD is very close to the expert for
CR. This suggest that integrating demonstrations directly in the RL process without
supervision can improve dialogue policy learning.

The results of our second experiments are presented in Table 3.3. In most en-
vironments, methods learn very well compared to the benchmarks Casanueva et
al. (2017). Furthermore, some of them can compete with the handcrafted agent
whether it is a stochastic Q-learning approach or a stochastic actor-critic approach.
For instance, Stoc-DQN-ILfOD outperforms handcrafted expert with 30% SER for
laptops and SFR. Again stochastic ACER was more robust to the different environ-
ments, showing better performance, particularly for Stoc-ACER-ILfOD with 30%
SER for laptops.

Stoc-DQN Stoc-DQN-ILfOD Stoc-DQN-ILfOF HDC
Task Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew.

0% SER
CR 97.48% 12.67 98.34% 13.30 98.88% 13.46 100.0% 14.00
SFR 94.18% 10.99 87.40% 9.58 95.62% 10.94 98.2% 12.40
LAP 95.08% 11.10 98.10% 11.76 98.40% 11.77 97.0% 11.70

15% SER
CR 92.22% 10.29 94.16% 11.26 95.76% 11.64 96.7% 11.00
SFR 90.64% 8.56 88.70% 8.06 89.22% 8.21 90.9% 9.00
LAP 90.34% 8.59 92.56% 9.40 91.86% 9.19 89.6% 8.70

30% SER
CR 84.32% 7.73 85.36% 8.64 85.46% 8.65 89.6% 9.30
SFR 82.48% 5.11 80.26% 5.05 80.34% 4.63 79.0% 6.00
LAP 82.24% 5.89 84.62% 6.25 83.40% 6.00 76.1% 5.30

Stoc-ACER Stoc-ACER-ILfOD Stoc-ACER-ILfOF HDC
Task Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew.

0% SER
CR 99.60% 14.02 99.64% 14.03 99.30% 13.87 100.0% 14.00
SFR 97.66% 12.36 96.48% 11.98 96.34% 11.98 98.2% 12.40
LAP 95.24% 11.23 95.34% 11.28 95.40% 11.24 97.0% 11.70

15% SER
CR 97.56% 12.69 95.80% 12.32 96.78% 12.59 96.7% 11.00
SFR 88.62% 9.26 87.64% 8.91 86.98% 8.67 90.9% 9.00
LAP 88.74% 8.72 88.00% 8.55 86.26% 8.24 89.6% 8.70

30% SER
CR 89.82% 10.19 89.38% 9.98 89.32% 10.04 89.6% 9.30
SFR 72.74% 4.38 78.22% 5.45 71.02% 4.37 79.0% 6.00
LAP 75.80% 4.86 78.66% 5.40 77.82% 5.23 76.1% 5.30

Table 3.3: Results of Experiment 2. Long term learning, average from 6 000 to
10 000 training dialogues, for 1 000 testing dialogue. Each bold result represent
better models than the handcrafted agent.

These results are encouraging and suggest that stochastic sampling makes it
possible to learn a policy that performs as well as the handcrafted agent, which
has been designed and fine-tuned by humans, even in hard environments. Also,
these results show that demonstrations can significantly contribute to improve the
performance at early learning stages.
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3.4.2 How good are demonstrations instead of supervision?

In this section, the ConvLab2 framework (Zhu et al., 2020) is used for multi-domain
multi-task oriented dialogues to evaluate our approach against delivered baselines.
We present the tested methods, the experimental setup and the evaluation metrics.

Methods: Table 3.4 shows the compared policy methods. All baselines (except
for BC and ACER) are from the ConvLab2 framework. Behaviour cloning (BC)
is a supervised learning method that imitates the oracle actions. Deep Q-network
(DQN) and policy gradient (PG) are standard value based and policy based meth-
ods. Actor-critic with experience replay (ACER) is a a more sophisticated actor-
critic based method (Ziyu Wang et al., 2017). Proximal policy optimization (PPO)
is an actor-critic method that utilises a surrogate function based on advantage func-
tion to update the policy network (Schulman et al., 2017b). Guided dialogue policy
learning (GDPL) is a joint policy optimization and reward estimation method using
adversarial inverse reinforcement learning (Takanobu et al., 2019b).

Method name Abbrev.

Handcrafted Policy HDC

Deep Q-Network DQN
Policy Gradient PG
Proximal Policy Optimization PPO
Guided Dialogue Policy Learning GDPL

Behaviour Cloning BC
Actor-Critic with Experience Replay ACER
ACER with Imitation Learning from Oracle Demonstrations ACER-ILfOD
ACER with Imitation Learning from Oracle Supervision ACER-ILfOS

Table 3.4: Overview of proposed methods for multi-domain oriented dialogues.

Concerning our propositions, we tested the Imitation Learning from Oracle
Demonstrations (ILfOD) method and the Imitation Learning from Oracle Super-
vision (ILfOS) method based on ACER to study the impact of demonstration and
supervision in a multi-domain dialogue context.

Hyper-parameters and Training: All baselines use the default settings pro-
posed by ConvLab2. Concerning our hybrid imitation and reinforcement learning
methods, the used oracle is the handcrafted agent proposed by the framework. When
we use ILfOD or ILfOS methods, the oracle-agent ratio is preserved β = 0.5. How-
ever, we precise that when we use ILfOS, we call all the time the oracle which gives
us the best expert action as supervision.

Our policy algorithm is an off-policy learning that uses experience replay (all
data are stored in buffers) without priority, i.e without importance sampling. The
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exploitation-exploration procedure is achieved by Boltzmann sampling with a fixed
temperature τ = 1 choosing arbitrary. All our proposed networks have the same
architecture composed by two hidden layers, both with 128 neurons.

For learning stage, we use a learning rate α = 10−3, a dropout rate dr = 0.1

and a batch size bs = 64. Each loss function has a weight of λQ = 0.5, λπ = 1,
λIL = 1. and λent = 0.01 respectively. We fix a margin penalty µ = log(2) for the
margin loss. The learning frequency is one iteration after each episode (finished
dialogue) with only one gradient iteration.

The system is guided by the rewards as shown in Equation 2.7. At any time, if
all domains are solved (a domain is solved if all related tasks are solved), it gains
40 points. On the contrary, if the current active domain is solved, it gains 5 points.
Otherwise, it is penalized by 1 point.

Experiments: All the experiments were launched 10 times with random initial-
isations and the results were averaged. Each learning trajectory was kept up to
10 000 dialogues with a step of 1 000 dialogues in order to analyze the variability
and stability of the methods.

We evaluate the performance of the policies for all tasks. For the find task,
we use the recall metric called inform recall rate. For the book task, we use
the accuracy metric called book rate. As a reminder (see Chapter 1 for more
information), inform recall rate evaluates whether all the requested information
has been informed. Book rate assesses whether the offered entity meets all the
constraints specified in the user goal.

The dialogue is marked as successful if and only if both inform recall and book
rates are 1. An active domain in dialogue is marked as successful if and only if both
inform recall and book rate are 1 in the context of this domain (independently of
other domains).

Pre-analysis: It is interesting to note that the distribution of rewards does not
reward the system for successfully solving one of two tasks (when two tasks are
required). So the system can be encouraged to solve only one of the two possible
tasks if they appear alone and being victim of over-learning or partial-learning by
ignoring the other task.

In the same way, it is important to notice that success rate (or any other metric)
in multi-domain context is not the mean of all success rates in each single-domain
context (it is lower)1. In fact, if two domains are required, success rate in multi-
domain context is the mean of the product of all pairs of success rates in each
single-domain context.2

1The multi-domain-task oriented dialogue problem is more difficult than the single-equivalent
because it is harder to success two domains and/or tasks in succession in one dialogue than to
success them in two independent dialogues.

2Example: Let’s flip two coins. On average, we can expect to get 50% heads for the first coin
and the same with the second one. But we can only expect to get 25% double heads.
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(a) Success rate for reference methods. (b) Success rate for hybrid IL/RL algorithms.

(c) Recall rate for reference methods. (d) Recall rate for hybrid IL/RL algorithms.

(e) Book rate for reference methods. (f) Book rate for hybrid IL/RL algorithms.

Figure 3.7: Distribution of the performance of the proposed approaches with differ-
ent architectures on multi-domain dialogues in ConvLab, with 10 different initial-
izations. The colored area represents the distribution and the middle line represents
its median. BC stands for behaviour cloning. ILfOD and ILfOS stand for imitation
learning from oracle demonstrations and from oracle supervision respectively.

Results: Concerning the re-evaluation of the proposed policies in ConvLab, the
results are presented in Figures 3.7a, 3.7c and 3.7e. All baselines have difficulties
to learn on a horizon of 10 000 dialogues with a clear stagnation of the success rate
between 0% and 20%. One of the reasons for this is the difficulty of solving the
booking task, exploring efficiently and finding winning trajectories. This is evidence
of the difficulties of learning with sparse rewards on multi-domain dialogues.

Then we perform an ablation study based on ACER (in the code, we call this
algorithm A2C since it learns the advantage function). The results of this study are
presented in Figures 3.7b, 3.7d and 3.7f. The supervised loss-based methods (BC
and ILfOS) make more progress in achieving successful dialogues by making a trade-
off between finding and booking tasks. We can see an evolution in performance up to
50% for BC and 40% for ILfOS. It can be noted that the use of demonstrations in the
RL process alone does not significantly improve performance over the time horizon
of the experiment. This clearly shows that demonstrations alone (ILfOD) are not
sufficient to achieve good performance in a multi-domain dialogue context, but that
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the combined use of supervision and reinforcement is relevant. We can at least notice
that ILfOS performs better than BC at the very beginning of the experiment (with
1000 dialogues). In any case, having expert demonstrations is essential to achieve
good performance quickly. This observation leads us to wonder whether results are
preserved if a small amount of data is available instead of systematically accessing
the oracle demonstrations.

3.5 Conclusion
We have presented hybridisation strategies in pure reinforcement learning, in which
we learn a stochastic dialogue policy with demonstrations given by a sub-optimal
expert designed by humans directly in the learning process. The results of our ex-
periments suggest that this hybridisation approach outperforms classical approaches
in noisy environments for task-oriented dialogue systems. Moreover, our results sug-
gest that the demonstrations given by the hand-crafted expert improve performance
at the beginning of the learning process without any supervision. Our approach
can compete with the hand-crafted expert when classical approaches can not in
single-domain dialogue context.

However, this analysis no longer applies when the system learns in a multi-
domain dialogue context. All commonly used reinforcement learning methods fail to
solve the different tasks simultaneously. Methods based solely on oracle supervision
(BC) have been shown to better identify and exploit long-term winning trajectories.
On the contrary, the methods based on the hybridisation between oracle demonstra-
tion and reinforcement (ILfOS) were more effective in the short term. This finding
leads us to wonder whether this conclusion will persist when a small amount of data
is available, as opposed to systematic access to oracle demonstrations during the
learning process.

Limitations
It would have been interesting to to explore strategies which can help the agent
to consult efficiently the demonstrations or the feed-backs of the expert by adding
constraints in a similar approach of (L. Chen et al., 2017). We would like to experi-
ment different strategies of how define correctly temperature in Boltzmann sampling
when learning with Q-learning in order to adapt these methods to take account of
the action space size. Finally, it would have been interesting to train the model
with different beta parameters or with a mixture of demonstrations and feed-backs
because it would be an important factor in practice to estimate the importance of
the diluted expert in the derived policy and so the human cost.
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4
Structuring Dialogue Policies
with Graph Neural Network

Most of the Reinforcement Learning approaches for DM learns a specific policy for
each domain or a more complex overall policy for several domains. Nevertheless,
real dialogue systems must handle simultaneously several domains, tasks and slots.
Ideally, the DM must detect domain changes, plan across different domains in or-
der to deal with multi-domain dialogues and plan across different slots in order to
deal with complex single-domain dialogue stage. However, learning can be difficult
because the state-action dimension is larger while the reward signal remains scarce.
We present in this Chapter several structured policies based on Hierarchical Rein-
forcement Learning (HRL) and Graph Neural Network (GNN) that we combine with
different degrees of Imitation Learning in order to effectively handle multi-domain
dialogues. These methods benefit from strategies that take advantage of the similar-
ities between domains and between slots and the structure imposed by the dialogue
problem, which theoretically significantly increase learning efficiency. Our study un-
derline the benefit of structured policies against non structured policies that could
accelerate the learning when facing real humans.

4.1 Motivation

We focus here on the multi-domain multi-task dialogue problem. Most of the RL
approaches learn a specific dialogue policy for each domain and task, like for instance
find a hotel or find a restaurant. However, real applications like personal assistants
must deal with multiple tasks: the user may first want to find a hotel (first task),
then book it (second task). Moreover, the tasks may cover several domains: the
user may want to find a hotel (first task, first domain), book it (second task, first
domain), and then find a restaurant nearby (third task, second domain). In Peng
et al. (2017) these types of multi-domain dialogues are called composite.

A first step to handle this complexity is to rely on a hierarchy on domains and
tasks: this is called Hierarchical Reinforcement Learning (HRL) (Dayan et al., 1993;
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Parr et al., 1998; R. S. Sutton et al., 1999; Dietterich, 2000). Another requirement
is domain scalability which is the ability of a model to switch from one domain to
another by scaling up the policy (Z. Zhang et al., 2020).

In recent works, L. Chen et al. (2018) and Z. Chen et al. (2020a) proposed to
improve domain scalability by learning a generic policy (called a structured policy),
that is based on Graph Neural Network (GNN) (Rahimi et al., 2018; Zhou et al.,
2020; Wu et al., 2020). Indeed, the dialogue state spaces and action sets are usually
different from a domain to another. However, some generic dialogue actions (e.g.,
greetings) or some slots (e.g., the hotel/restaurant reservation date) share a similar
semantic structure. A key property of GNNs as policy networks is their ability
to explicitly wire this knowledge through a graph of communicating sub-networks.
This weight-sharing also improves the sparsity of the model with additional benefits
on data efficiency, stability, and adaptability.

Although structured dialogue policies as proposed in Z. Chen et al. (2020b) and
Z. Chen et al. (2020a) can adapt quickly from a domain to another, covering multiple
domains is still harder because the system must detect domain changes and plan
across different domains. Therefore, the dimensions of the state and action spaces
are larger while the reward signal remains sparse. The combination of HRL and of
structured policies is helpful as in Z. Chen et al. (2020b) but is insufficient for truly
multi-domain dialogues.

A common technique to circumvent this reward scarcity problem in RL is to
guide the learning by injecting some knowledge though a teacher policy. This hy-
brid imitation and reinforcement learning can be declined at various levels from pure
behaviour cloning where the agent only learns to mimic its teacher to pure reinforce-
ment where no hint is provided (see our previous Chapter 2 and Chapter 3).

Our main contribution in this Chapter is to study how GNN structured policies
combined with hybrid IL and RL methods can be effective to handle multi-domain
dialogues. We study on the adaptability of GNN policies during the learning and
testing stages in ConvLab2 (Zhu et al., 2020). We provide large scale experiments,
in which we analyse the performance of different types of policies, from single-domain
policy to generic policy, with different RL algorithms and different levels of IL. These
experiments underline the clear benefit of structured policies against non-structured
policies. Furthermore, we evaluate the best approach in a full dialogue pipeline with
simulated and real users to validate structured policies in practice.

For the seek of simplicity and scalability, we propose a hierarchical decomposi-
tion of dialogues at multi-domain-level. The objective is to propose a hierarchical
structured policy that: 1) adapts to the domain-level, i.e. it is scalable to the change
in the number of slots and 2) adapts to the multi-domain-level, i.e. it is scalable to
the change in the number of domains. To the best of our knowledge, an investiga-
tion of these methods on true multi-domain dialogues environment has never been
proposed.
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4.2 Introduction on structured dialogue policies
Fundamental HRL frameworks (Dayan et al., 1993; Parr et al., 1998; R. S. Sutton et
al., 1999; Dietterich, 2000) have inspired a wide variety of work on DM. They propose
both temporal abstraction (the problem is broken down in time into successive sub-
problems) and space abstraction (the problem is partitioned in the state/action
space into complementary sub-problems) in decision-making process.

In our work, we used the concept of hierarchical policy at the multi-domain
level, by decomposing the multi-domain problem into independent single-domain
problems (see Subsection 4.2.1). We also used the concept of structured policy at
the single-domain level, by decomposing the multi-slot problem into interdependent
single-slot problems (see Subsection 4.2.2). By breaking down as follows, the initial
agent can be considered as a composition of multiple agents. Then, we propose an
overview of hierarchical and structured policies applied to DM in Subsection 4.2.3.

4.2.1 Hierarchical policy via Sub-Markov Decision Process

For a mathematical definition of hierarchical policy, we refer to the work of R.
Sutton et al., 1999 that introduces the concept of Semi-Markov Decision Process
(SMDP) using temporal abstraction and to the work of Z. Wen et al., 2020 that
introduces the concept of Sub-Markov Decision Process (SubMDP) using state par-
tition. In the scope of our work, we propose to consider the SubMDP framework.

Typically, a meta-controller (also called master policy) manages a set of con-
trollers which operate at a lower level (we refer them as sub-policies). The high-
level decision can be taken before the low-level decisions (i.e. the action is a choice
from a set of sub-policies) or after (i.e. the action is a choice from a set of sub-policy
actions) as illustrated in Figure 4.1. Therefore, we propose the Definition 4.1:

Figure 4.1: Two possible decision processes for a hierarchical policy. On the left, the
meta-controller chooses the sub-policy to execute, which will return the final action.
On the right, the sub-policies are all executed, returning each one a action, then the
meta-controller chooses one of these actions to finally return.
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Definition 4.1: Hierarchical policy

A hierarchical policy π associated with a MDP M is defined by a meta-
controller φ and a set of independent sub-policies πi, each associated with a
sub-problem class of M (which we will refer to as SubMDP Mi in the next
Definition 4.2).

The meta-controller φ identifies in which subMDP the agent is and delegates
to the sub-policy πi the responsibility to solve the corresponding Mi sub-
problem. More formally:

∀s ∈ S,


∃!i ∈ [1,L] s.t. s ∈ Si,
πi(s) = ai, φ(s) = i and
π(s) = πφ(s)(s) = πi(s)

(4.1)

In HRL, a state space partition is assumed to exist if a large problem can be bro-
ken down into K sub-problem classes that can be tackled and solved independently
(in our example, we can assume that single-domain problems are independent with
each other). We formalise the notion of MDP decomposition into sub-problems as
following:

Definition 4.2: Sub-Markov Decision Process

Consider a partition of the non-terminal states S \{se} into L disjoint subsets
H = {Si}Li=1. An induced Sub-Markov Decision Process (SubMDP)Mi

is a sub-process of a MDPM = 〈S,A,P ,R〉 based on a partition of the state
space S and formally described by a 4-tupleMi = 〈Si ∪ Ei,A,Pi,Ri〉 where:

• Mi is the induced SubMDP ofM restricted to Si,
• Si is the internal state space, Si ∪Ei the state space, A the action space

and Ei the exit state set such as:

Ei = {e ∈ S \ Si : ∃(s, a) ∈ Si × A s.t. P(e|s, a) > 0} (4.2)

• Pi ∈ ∆SSi×A is the restriction of the transition probability P to Si×A,
• Ri ∈ ∆RSi×A×Si is the restriction of the reward function R to Si ×A,
• the SubMDPMi terminates once it reaches a state in Ei.

Two SubMDPs Mi and Mj are equivalent if there exist a bijection such
that the SubMDPs have the same internal states, exit states, transition prob-
abilities and rewards at internal states.
Then let K ≤ L be the number of equivalence classes of SubMDPs induced
by a particular partition H of M. When there is no repeatable structure,
K = L. When the partition produces repeatable structure, K < L.
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In particular, an algorithm based on this kind of structure has theoretical guar-
antees. As Z. Wen et al. (2020) proves under reasonable assumptions (by extending
the work of Osband et al. (2013)), a model-based Thompson sampling-style HRL
algorithm that exploits this structure is statistically efficient, as established through
a finite-time regret bound analysis in Table 4.1. Posterior sampling for reinforce-
ment learning (PSRL) offers an often effective approach to episodic reinforcement
learning (Strens, 2000). PSHRL stands for its hierarchical version. VI stands for
Value Iteration planning and PEP for Planning with Exit Profiles planning.

learning alg. planner regret bound computation per episode

PSRL VI Õ(H3/2|S|
√
|A|T ) O(|S|2|A|M)

PSHRL VI Õ(H3/2M
√
K|
√
A|T ) O(|S|2|A|M)

PSHRL PEP ∆|E|T + Õ(H3/2M
√
K
√
|A|T ) O(X(M2K|A|+ |E|2)M)

Table 4.1: Differences in regret bounds and computational complexities for (non)-
hierarchical algorithms taken from Z. Wen et al. (2020). H is a bound on the
expected time horizon of M; T is the number of interaction episodes; M is the
maximum SubMDP size; K is the number of SubMDP equivalence classes; E is the
set of all exit states. ; ∆ and X respectively measure the quality and the number
of exit profiles used in PEP.

More specifically, HRL will offer dramatic improvements over the standard al-
gorithms only ifM exhibits hierarchical structure, in particular if MK << |S| and
|E| << |S| where M is the maximum size of an induced SubMDP, K the number of
SubMDP equivalence classes and |E| the total number of exit states.

With regard to our work, we address the problem of multi-domain task-oriented
dialogue by proposing a hierarchical policy: the state space is partitioned according
to the domains. The meta-controller identifies the currently activated domain. The
sub-policies are responsible for solving the task-oriented dialogue problem specific to
their respective domain. When there are L balance domains with equivalent tasks,
M = |S|/L, K = 1 and thus MK = |S|/L.

4.2.2 Structuring policies with interdependence graph

A state space partition is assumed to exist if a large problem can be broken down into
sub-problems. But sometimes, they can not be tackled and solved independently.
In our example, in a single-domain problem with multiple slots, we assume that we
can not manage the slots independently. Indeed, a sub-policy with a specific view
on a slot may need information on other slots (e.g. it is not relevant to ask the
user to book a hotel room until the date is known). The problem of single-domain
task-oriented dialogue can not be handled sufficiently well with hierarchical policy.
However, it is still possible to build a hierarchical policy with non-independent sub-
policies, namely structured policy as a generalisation of hierarchical policy.
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Definition 4.3: Structured policy

A structured policy π associated with a MDP M is defined by a meta-
controller φ and a set of interdependent sub-policies πi, each associated with
a SubMDPMi.

The sub-policies πi are allowed to communicate with each other before plan-
ning a strategy for their respectiveMi sub-problem. The meta-controller φ is
responsible for consulting all sub-policies to solve the main problemM. More
formally:

∀s ∈ S,


∃!i ∈ [1,L] s.t. s ∈ Si,
πi(s|{πj, ∀j 6= i}) = ai, φ(s|{πj, ∀j ∈ [1,L]}) = i and
π(s) = πφ(s)(s) = πi(s)

(4.3)

With regard to our work, we address the problem of single-domain task-oriented
dialogue by proposing a structured policy: the state features space is partitioned
according to the slots such that the sub-agents communicate with each other the
information they have on their respective slots. The meta-controller consults the
sub-agents and chooses the best one to play the next action.

While a hierarchical policy (with independent sub-policies) can be seen as a
multi-agent policy with one active sub-policy per turn, a structured policy (with
interdependent sub-policies) can be seen as a multi-agent policy in which these sub-
agents cooperate with each other to find out which one is best to take the next
action. Figure 4.2 highlights the structural differences between hierarchical and
structured policies.

Figure 4.2: Structural comparison between hierarchical policy (on the left) and
structured policy (on the right) according to Definitions 4.1 and 4.3. The dotted
lines represent the subordination of the sub-policies to the meta-controller. The
solid lines represent the interdependence or communication between sub-policies. In
hierarchical policy, sub-policies are not influenced by others in their decision-making
process. In structured policy, the sub-policies influence each other.
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Where graphs are all around us

This structured organisation can be naturally represented quite naturally as graphs.
We can find them all around us as graphs are an extremely powerful and gen-
eral representation of data: images, texts, molecules, social or citation networks
(Sanchez-Lengeling et al., 2021). More formally in the Definition 4.4:

Definition 4.4: Graph structure

A graph G = (V,E, U) is a data structure representing relations E (edges)
between a collection of entities V (nodes). To further describe a graph, infor-
mation can be stored in:

• the vertex (nodes) attributes in a set of vectors V = {vi}Li=1,
• the edge (link) attributes and directions in a set of vectors or an adja-

cency matrix E = {ei,j}Li,j=1,
• the global (or master node) attributes in one vector U .

There are many useful problems that can be formulated over graphs: node,
edge and graph classification where nodes, edges or graph are individually classified,
node clustering where similar nodes are grouped together based on connectivity,
link prediction where missing links are predicted and influence maximisation where
influential nodes are identified (Daigavane et al., 2021).

For over a decade, researchers have developed neural networks that operate on
this kind of graph data called Graph Neural Network (GNN) (Scarselli et al., 2008).
These methods are increasingly used in areas such as antibacterial discovery (Stokes
et al., 2020), physics simulations (Sanchez-Gonzalez et al., 2020), fake news detec-
tion (Monti et al., 2019), traffic prediction (Jiang et al., 2022) and recommendation
systems (Eksombatchai et al., 2018).

A GNN is an optimisable transformation on all attributes of the graph consisting
of a cascade of layers, each of which applies a graph convolution, followed by a
point-wise non-linearity (Daigavane et al., 2021). In particular, it preserves graph
symmetries also called node-order equivariance or permutation invariance
property (Gama et al., 2020): as illustrated in Figure 4.3b, if we permute the nodes
in a certain way, the resulting representations of the nodes should also be permuted
in the same way. It also benefits from the ability to adapt to the structure of the
data also called the scalability property: as in Figures 4.3c and 4.3d, if we add or
remove nodes in a certain way, the network architecture is scaled in the same way.

A growing number of GNN architectures are constantly being proposed. Graph
Convolutional Networks (GCN) applies a normalised graph convolution (Kipf et al.,
2016), Graph Attention Networks (GAT) uses a multi-headed attention mechanism
(Veličković et al., 2017), Graph Sample and Aggregate (GraphSAGE) is based on
neighbourhood sampling and aggregation (Hamilton et al., 2017) and Graph Iso-
morphism Network (GIN) has more discriminative power (Xu et al., 2018).
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(a) Graph convolution. (b) Node order equivariance.

(c) Scalability (remove a node). (d) Scalability (add a node).

Figure 4.3: Permutation invariance and scalability properties in GNN. The green
nodes are the input of the GNN and the red ones the output. The

⊗
symbol

represents the graph convolution. The colored squared represent the weights of the
GNN with respect to the adjacency matrix (same color, same weight). A row in the
adjacency matrix represents the ”all nodes to one node” relationship. A permutation
of the input corresponds to a permutation of the rows and columns in the matrix
and therefore resulting in a permutation of the output. The addition or deletion of
a node corresponds to the addition or deletion of the weights of GNN according to
the adjacency matrix. We assume here that all nodes are of the same type and that
their link is of the same type.

4.2.3 Related Work

Hierarchical Reinforcement Learning for Dialogue Manager

In single-domain task-oriented dialogue systems, HRL is used by DM to delegates
the low-level dialogue actions to sub-policies, to share slot management between
them. For instance, the feudal hierarchy has been combined with Actor Critic with
Experience Replay (ACER) and with Deep Q-Network (DQN) by dividing the main
task into sub-tasks and the master policy’s action is to choose a slot-dedicated sub-
policy (Casanueva et al., 2018a; Casanueva et al., 2018b). These sub-policies are
based on the Domain Independent Parametrisation (DIP) that allows for weight
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sharing between sub-policies (Zhuoran Wang et al., 2015; Papangelis et al., 2019).
DIP (Zhuoran Wang et al., 2015) standardises the representations of states and

actions into a common feature space to build policies that can be transferable be-
tween domains. It has been used to compare GP-SARSA and GP-SARSA-DIP
(Zhuoran Wang et al., 2015), then DQN and DQN-DIP (Papangelis et al., 2019), It
has also been used to compare DQN-DIP and Feudal-DQN-DIP (Casanueva et al.,
2018a), then ACER-DIP and Feudal-ACER-DIP (Casanueva et al., 2018b).

Structured policies for Dialogue Manager

A more structured hierarchy with GNN rather than a set of classical Feed-forward
Neural Network (FNN) allows one to build non-independent sub-policies resulting
in a more expressive global policy. This decomposition of decisions appears to be a
generalization of DQN-DIP methods and a restriction of DQN methods (as shown
in Figure 4.4). Another major advantage of structured policies is their scalability
and thus their ability to generalize between similar dialogue tasks. GNN has been
used in various works to compare DQN-DIP and DQN-GNN-DIP (L. Chen et al.,
2018) and its ACER variant (Z. Chen et al., 2020a).

(a) DQN-FNN. (b) DQN-DIP-GNN. (c) DQN-DIP.

Figure 4.4: Comparison of the internal structure of neural networks. (a) is a FNN
(as used in DQN). Its functional space is very complex because all sub-matrices (in
white) need to be learned. The × symbol represents the matrix multiplication. (b)
is a GNN (as used in DQN-DIP-GNN). Its functional space is less complex because
it relies on symmetries (the color sub-matrices share the same weights) and only 5
matrices need to be learned in this example (the total number of learned matrices
depends on the number of different types of links that exist in the graph). The⊗

symbol represents the graph convolution. We assume here that all nodes are of
the same type and that their link is of the same type. (c) is a hierarchical FNN
(as used in DQN-DIP). Its functional space is the least complex because only 2
matrices need to be learned (the total number of learned matrices depends on the
number of different types of nodes that exist in the graph). As a counterpart, the
sub-policies are independent. The dotted squares mean that there is no matrix. The
symbol × therefore represents the matrix multiplication only between a node and a
sub-matrix. We assume here that all nodes are of the same type.
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State of the art

These hierarchical and structured mechanisms have been used in recent methods:
FeudalGain (Geishauser et al., 2021) is based on Feudal-ACER with an intrinsic
reward based on information gain and STRAC (Z. Chen et al., 2020a) is an ACER
variant of DQN-GNN that proposes an implicit policy decomposition and uses
noisy networks for exploration. The purpose of these two methods was to improve
domain scalability and learning efficiency. With ComNet, Z. Chen et al. (2020b)
were the first to propose a multi-domain dialogue variant of DQN-GNN by adding
a domain-selection hierarchy level. For experimental purposes, they discarded the
domain provided by the Dialogue State Tracking (DST) module. They relied on the
DIP to share the same GNN structure for all domain-specific sub-policies and they
evaluated their policies in PyDial (Ultes et al., 2017b).

4.3 Hierarchical and structured policies for multi-
domain dialogues

In this work, as in L. Chen et al. (2018) and Z. Chen et al. (2020a), we propose
to improve multi-domain covering by learning a generic policy based on GNN. But
unlike them, (i) we use a multi-domain multi-task setting, in which several domains
and tasks can be evoked in a dialogue; (ii) the DST output is not discarded when
activating the domain; and (iii) we adapt the GNN structure to each domain by
keeping the relevant nodes while sharing the edge’s weights.

First of all, we need to talk about the DIP representation which is the basis
of structured dialogue policies in Subsection 4.3.1. Next, we go into the mecha-
nism of GNN and their properties in Subsection 4.3.2. Finally, in Subsection 4.3.3
we propose our hierarchical decomposition of dialogues at multi-domain-level and
structured and scalable dialogue policy at single-domain-level.

4.3.1 Data structure: Domain Independent Parametrisation

We adopt the Domain Independent Parametrisation (DIP) state and action repre-
sentations which standardises the slots representation into a common feature space
(Zhuoran Wang et al., 2015). More specifically, these representations are not re-
duced to a flat vector but to a set of sub-vectors: one corresponding to the do-
main parametrisation (or slot-independent representation), the others to the slots
parametrisation (or slot-dependent representations) as shown in Figure 4.5.

For any active domain, the input to the slot-independent representation is the
concatenation of the previous slot-independent user and system actions (see examples
of the output below), the number of entities fulfilling the user’s constraints in the
database, the booleans indicating if the dialogue is terminated and whether an
offer has been found / booked. The output corresponds to action scores such as
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Figure 4.5: Domain Independent Parameterisation (DIP). For any domain, DIP
decomposes the summary representations of state and action (the state parameter-
isation is illustrated here) into a set of sub-vectors. The slot-independent vector
groups together all the information that does not depend on any slot. It is repre-
sented here by a yellow node. For any slot, the called slot-dependent vector groups
all the information which depends on this slot. It is represented by a green node.
All the slot-dependent representations have the same parameterisation which allows
a common parameterisation between all the slots of all the domains. The example
shows the parameterisation of a domain composed of two slots, ”price” and ”area”.

reqmore, offer, book, great, etc.
Regarding the slot-dependent representation, its input is composed of the previ-

ous slot-dependent user and system actions (see output below), the booleans indi-
cating if a value is known and whether the slot is needed for the find / book tasks.
Its output are actions scores such as inform, request and select.

As a restriction imposed by the framework, the parameterisation used depends
on the representation of the deterministic states of ConvLab2 which does not con-
sider the uncertainty in the predictions made by the Natural Language Understand-
ing (NLU) module. Ideally, it should be otherwise and we will therefore propose an
analysis of the robustness of the tested methods in a noisy environment.
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4.3.2 Architecture: Graph Neural Network
Until now, we have always assumed that structured methods allow to express more
expressive ans scalable policies thanks to a communication graph. We propose first
to formalise this communication graph, then to give the technical details for their
implementation in a GNN-type architecture.

How to implement interdependence between sub-policies?

We have mentioned that it is possible to partition the state feature space. To be
precise, this partition induces that the sub-policies share different point of view of
the large problem. In the multi-domain level, each sub-policy sees only the state of
its domain. In the single-domain level, each sub-policy sees only the state features
of its slot. Thus, this state partition is only an abstraction of the decomposition of
the initial agent into multiple sub-agents as we wish to illustrate in Figure 4.6.

Figure 4.6: Partition of the state feature space at multi-domain and single-domain
level (also works for the action feature space). The full state (s) is decomposed
according to the domains (from d1 to d3). We assume that the domain sub-policies
are independent in our work. Then, each domain state is decomposed in several slot
states according to DIP (from g to s3). We assume that the slot sub-policies are
inter-dependent in our work. The

⊕
symbol represents the concatenation.

From this observation, a standard Feed-forward Neural Network (FNN) can be
used as model for a structured policy. Indeed, the state space partition induces a
weight matrix partition, and each sub-matrix can be considered as a communication
module from one sub-agent to another like an adjacency matrix (see Figure 4.6 and
the comparison between FNN and GNN in Figure 4.4).
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So far, we have never talked about the assumptions about these communication
modules. Should the communications be the same between sub-agents? Should they
be enabled or disabled? What type of messages should be sent? How should they
be aggregated? In fact, the relationships between sub-policies can be formalised by
a graph. This justifies the use of Graph Neural Network (GNN) for modelling a
structured policy as we will see (as illustrated in Figure 4.6).

What is the formal definition of the communication graph?

We refer to the works of Z. Chen et al. (2020a) to describe the ”graph” of commu-
nication between slot sub-agents. Here we propose the following definition:

Definition 4.5: Communication graph

A communication graph is a fully connected and directed graph G = (V,E)

consisting on a finite set of sub-agents V = {vi}Li=0 and relationships between
all sub-agents E = {ei,j}Li,j=0.

• Each node of the graph vi denotes a sub-agent with sub-policy πi.
• A directed edge between two sub-agents of the graph ei,j means that the

starting sub-agent vi sends some message to the ending sub-agent vj.
Related to the Definition 4.4, the master node is treated as a node v0 called
general node. The others are called slot nodes.

Each sub-agent vi has a specific view on the current state Si ⊂ S and can take
specific actions Ai ⊂ A depending on the partition of the state/action space .

In particular, for a single-domain problem, we assume that the specific-slot sub-
agents share the same policy except for the non-slot sub-agent. This exception is
just a convention to handle global information about the conversation that is not
related to any slot. We thus identify two roles for sub-agents: the first role called
I-agent is associated with the non-slot sub-agent v0 responsible of slot-independent
decision making; the second role called S-agent is associated with the other sub-
agents {vi}i 6=0 responsible of slot-dependent decision making.

Consequently, we identify several types of connection between sub-agents: the
first connections called self-I relation and self-S relation correspond to the con-
nection of an sub-agent with itself ({ei,i}i=0 is a self-I relation and {ei,i}i 6=0 are self-S
relations); the other connections called I2S, S2I and S2S relations correspond to
the connection between two different sub-agents ({ei,j}i=0,j 6=0 are relations from I-
agent to S-agent, {ei,j}i 6=0,j=0 are relations from S-agent to I-agent and {ei,j}i,j 6=0,i 6=j

are relations from S-agent to another S-agent). We omit the I2I relation because
only one sub-agent has the I-agent role.
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FNN: First step in understanding the GNN structure

The baseline we consider until now is a classical Feed-forward Neural Network (or
multi-layer perceptron). The dialogue state is built in such a way that all informa-
tion is contained in a single input vector. Similarly, the probabilistic distribution
over dialogue actions is based on a single output vector. To draw a parallel with
DIP, it is as if all the slot-dependent and slot-independent representations had been
concatenated into a single vector.

Figure 4.7: FNN module decomposition.

Let s be the dialogue state, x, hl ∀l ∈ [0,L − 1] and y be respectively the
input, hidden and output dialogue representations, φ be the feature function and
F l, ∀l ∈ [0,L − 1] be the network layers with non-linear functions σl parametrised
by the weight matrices Wl and bias vectors bl.

Input Module

h0 = φ(s) = x (4.4)

Hidden Module

∀l ∈ [1, L− 1], hl = F l(hl−1) = σl(Wlhl−1 + bl) (4.5)

Output Module

y = σL(WLhL−1 + bL) (4.6)

GNN: The core mechanism of graph convolution

Let us consider a communication graph as presented in Definition 4.5. The dialogue
state with DIP is considered as a full-connected graph in which the nodes are the
slots according to the decomposition of slot-dependent and independent states. So
by construction, the probabilistic distribution over actions is computed by the nodes
in a such a way that each slot node is responsible to its slot actions. This abstraction
is only a way to model relations between slots and sub-policies and so the use of
symmetries in the NN architecture via an adjacency matrix (see Figure 4.8).
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(a) Without symmetry assumption (b) With symmetry assumption

Figure 4.8: GNN module decomposition.

We propose here the first steps for modelling GNN architecture. Let s be the
dialogue state, x0, hl

0 ∀l ∈ [0,L− 1] and y0 be the successive slot-independent repre-
sentations and ∀i ∈ [1,n], xi, hl

i ∀l ∈ [0,L− 1] and yi the successive slot-dependent
representations, φi be the feature function and ∀i ∈ [1,n], F l

i ,∀l ∈ [0,L − 1] be the
network layers with non-linear functions σl parametrised by the weight matrices Wl

i

and bias vectors bl
i. The proposed GNN is based on a Graph Convolutional Network

(GCN) as formalised in Equations 4.7, 4.8 and 4.9 (Kipf et al., 2016):

Input Module

∀i ∈ [0, n], h0
i = F 0

i (φi(s)) = F 0
i (xi) = σ0(W0

i xi + b0
i ) (4.7a)

Hidden Module (graph convolution with generic aggregation)

∀l ∈ [1, L− 1], ∀i ∈ [0, n], hl
i = F l

i (hl−1) (4.8a)

Message Sending : ml
i←j = M l

i←j(hl−1
j ) = Wl

i←jhl−1
j (4.8b)

Message Aggregation : ml
i = Al

i(ml
i←∗) (4.8c)

Representation Update : hl
i = U l(ml

i) = σl(ml
i) (4.8d)

Output Module

y = σL

(
n⊕

i=1

WL
i hL−1

i + bL
i

)
(4.9)

The notation i ← j is to denote a message sending from sub-policy πj to sub-
policy πi. It also corresponds to the directed relation between the slots j and i

in the adjacency matrix of the communicative graph. By extension, the notation
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ml
i←∗ is to denote the set of all messages sending from sub-policies πj with j 6= i to

sub-policy πi. The concatenation notation (⊕ symbol) is to denote that all hidden
slot representations are regrouped in one single vector.

The graph convolution is detailed in the hidden module (Equations 4.8) and
proceeds as follows: the message sending functions M l

i←j (Equation 4.8b) sends a
message from πj to πi and could be a linear transformation possibly offset by some
bias (we will omit it for easy reading). The message aggregation function Al

i

(Equation 4.8c) aggregates all messages received for πi and could be the average
pooling function, the max pooling function or the self-attention mechanism. The
representation update function U l (Equation 4.8d) compute the new hidden
representation of any sub-policy πi with non-linear activation function.

GNN vs. FNN: An unified framework to bridge the gap between dense
and graph-based architecture

As illustrated in Figure 4.9, the FNN architecture (4.9a) can be seen as a non-flexible
and agnostic GNN architecture (4.9c). The power of the GNN architecture is re-
vealed when sub-agents share the same role and therefore share network parameters
(as illustrated with the color coding in Figure 4.9c).

(a) Classical FNN repr. (b) FNN repr. with DIP. (c) GNN repr. with DIP.

Figure 4.9: Structures of the neural network layers. The central box represents the
weight matrix of a layer. It can be decomposed into sub-matrices. The left circles
represent the state vectors of the slots as the input of the network (it can be the
concatenation of all the vectors of the slots or a collection of sub-vectors). The right
circles represent the action vectors of the slots at the output of the network.

In our single-domain task-oriented dialogue problem, all slot-related sub-agents
share the same sub-policy: ∀i ∈ [1,n], πS = πi. In consequence, they share the same
message sending and aggregation functions and thus the same weight parameters:
∀i,j ∈ [1,n],Wi←j = Wj←i (blue sub-matrices), Wi←i = Wj←j (green sub-matrices),
W0←i = W0←j (red sub-matrices) and Wi←0 = Wj←0 (orange sub-matrices).

From this point of view, the FNN architecture can therefore be seen mathemat-
ically as a GNN architecture where all sub-blocks are not constrained to be identi-
cal. We propose a mathematical framework to understand FNN hidden module as a
graph convolution in Equations 4.11 and to visualise the decomposition of a weight
matrix in a hidden layer of a FNN in Equation 4.10. The element Wl

[i,j] = Wl
i←j

denotes the sub-block of index i and column j of the matrix Wl.
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FNN hidden module seen as a decomposition of the weight matrix

∀l ∈ [1, L− 1], ∀i ∈ [0, n], hl = F l(hl−1) = σl
(
Wlhl−1) (4.10)

with Wl =


Wl

0←0 Wl
0←1 . . . Wl

0←n

Wl
1←0 Wl

1←1 . . . Wl
1←n

... ... . . . ...
Wl

n←0 Wl
n←1 . . . Wl

n←n

 and hl =


hl
0

hl
1

. . .

hl
n



FNN hidden module seen as a graph convolution

∀l ∈ [1, L− 1], ∀i ∈ [0, n], hl
i = F l

i (hl−1) = σl

(
n∑

j=0

Wl
i←jhl−1

j

)
(4.11a)

Message Sending : ml
i←j = M l

i←j(hl−1
j ) = Wl

i←jhl−1
j (4.11b)

Message Aggregation : ml
i = Al

i(ml
i←∗) =

n∑
j=0

Wl
i←jhl−1

j (4.11c)

Representation Update : hl
i = U l(ml

i) = σl

(
n∑

j=0

Wl
i←jhl−1

j

)
(4.11d)

In this case, the use of GNN is only relevant if symmetries exist in the graph
structure and allow for weight sharing. The symmetries that are at work on sub-
blocks Wi←j depend on the assumptions made on the adjacency matrix as illustrated
in Figure 4.10. In our case, because all slot-related sub-agents share the same sub-
policy, we assume that the graph structure is slot-node permutation invariant.

Figure 4.10: GNN and its decomposition variants.
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4.3.3 Model: Hierarchical and structured dialogue policy

In our work, we propose a hierarchical decomposition of dialogues at multi-domain-
level and a structured decomposition at single domain-level (as illustrated in Fig-
ure 4.11). In particular:

• at the multi-domain level, we propose a domain-selection module to im-
plement a hierarchical policy with one equivalence class for all domains. A
meta-controller φ chooses the current domain to activate and calls its associ-
ated sub-policy. It is trivially aligned with the prediction of the DST module.
We assume that all sub-policies are represented by the same sub-policy π for
all domains. A direct consequence is that the meta-controller φ is scalable
to the changes of the number of domains (as far as the DST module is also
scalable to theses changes).

• at a single domain level, we propose a domain-specific decision module
to implement a structured policy π with an unique sub-policy, denoted as
I-agent, and as many sub-policies as there are slots in the activated domain,
denoted as S-agents. We assume that these interdependent sub-policies πi

communicate with each other via a communication graph that we can imple-
ment with a GNN built according to their role, I-agent and S-agent. A direct
consequence is that the structured policy π is scalable to the changes of the
number of slots (as long as the slots are set by DIP).

By doing that, we propose to improve multi-domain covering by learning a
generic policy π for all domains based on GNN. But unlike Z. Chen et al. (2020b),
(i) we use a multi-domain multi-task setting, in which several domains and tasks can
be evoked in a dialogue; (ii) the DST output is not discarded when activating the
domain; and (iii) we adapt the GNN structure to each domain by only keeping the
relevant nodes (but, as we will see furthermore, the edge’s weights remain shared).

Domain-selection module at multi-domain level

Our method at the multi-domain level works as follow: first, the DST domain-
selection module chooses which domain to activate, then, the multi-domain state
and action space is projected into the active domain (i.e. only the DIP nodes
corresponding to the active domain are kept).

Domain-specific decision module at single-domain level

Afterwards at the single-domain level, we apply the GNN message passing but only
among the domain specific DIP nodes. Concerning the structured policy at a single-
domain-level, we refer to our previous explanations on communicative graph and
GNN architecture. We recall that, by construction, the probabilistic distribution
over the dialogue actions is computed by the nodes in such a way that each slot
node is responsible of its own actions.
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Figure 4.11: Hierarchical and structured policy for multi-domain dialogues with
hierarchical decision making at high-level and structured policy with GNN based on
weight sharing at low-level.

We build a GNN model composed by three layers in charge to update the nodes
representation. First, the GNN transforms inputs (Equation 4.7) Then, it com-
putes the internal nodes representations (Equation 4.8) by following message send-
ing (Equation 4.8b), message aggregation (Equation 4.8c) and representation update
(Equation 4.8d). The message sending function M l

i←j is a linear transformation with
bias. The message aggregation function Al

i is the average pooling function. The rep-
resentation update function U l

i compute the new hidden representation with ReLU
activation function and dropout technique during learning stage. Finally, the GNN
concatenates all final nodes representations and computes the value or policy func-
tions depending on the final activation function (linear or softmax) (Equation 4.9).

4.4 Experimentation

In this Section, we propose to organise our study by successively analysing the
learning efficiency of structured policies with hybrid IL and RL methods in single-
domain and multi-domain contexts. On the one hand in Subsection 4.4.1, we propose
an evaluation of the dialogue management by establishing an ablation study by
progressively adding different levels of structure. In the same time, we analyse the
performance of different RL algorithms with different levels of IL.

On the other hand in Subsection 4.4.2, we propose an evaluation of the full
dialogue system based on our best approach with simulated and real users to validate
structured policies in practice. Notably, we are interested in conducting a more
detailed robustness study to raise the limits of the framework used as shown in the
previous Chapter 3.
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4.4.1 How effective are structured policies for multi-domain
dialogues?

We first experimented with PyDial to validate our GNN implementation on single-
domain against similar structured methods. Following Casanueva et al. (2017)’s
protocol, we tested our agent on different domains and in different environments
increasing the inputs’ noise and enabling or disabling the action masking mechanism.

Then we experimented with ConvLab to evaluate our approach on multi-
domain dialogues. We performed an ablation study: (i) by progressively building
from one of the baselines to our proposed GNNs, and (ii) by guiding the exploration
with imitation learning.

Methods: Table 4.2 shows the compared methods used in PyDial. DQNGNN
is the DQN-GNN method presented in L. Chen et al. (2018). Structured Actor-
Critic (STRAC) is its ACER variant also presented in Z. Chen et al. (2020a) that
proposes an implicit policy decomposition and uses noisy networks for exploration.
ACGNN is our implemented ACER-GNN method. Concerning ConvLab2, we
have reused the same compared methods that we have already presented in Chapter 3
and that we recall in Table 4.2. All baselines (except for BC and ACER) are from
the ConvLab2 framework.

Method name Abbrev.

Methods for single-domain task-oriented dialogues

Handcrafted Policy HDC

Deep Q-learning with Graph Neural Network DQNGNN
Structured Actor-Critic (based on GNN) STRAC

Actor-Critic with Graph Neural Network (ours) ACGNN

Methods for single-domain task-oriented dialogues

Handcrafted Policy HDC

Deep Q-Network DQN
Policy Gradient PG
Proximal Policy Optimization PPO
Guided Dialogue Policy Learning GDPL

Behaviour Cloning BC
Actor-Critic with Experience Replay ACER
ACER with Imitation Learning from Oracle Demonstrations ACER-ILfOD
ACER with Imitation Learning from Oracle Supervision ACER-ILfOS

Table 4.2: Overview of proposed methods for single and multi-domain task-oriented
dialogues.
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Ablation study: We propose a wide range of dialogue policies to study the impact
of the structure in sample efficiency (as detailed in Table 4.3). An ablation study
progressively adds some notion of hierarchy to FNNs to approximate the structure
of GNNs. Similarly, we analyse the advantage of sharing a generic GNN among
several domains versus specialising a GNN to each domain. Therefore, we propose:

• Feed-forward Neural Network (FNN) that is a classical feed-forward neu-
ral network with DIP parametrisation (Figure 4.12a).

• Hierarchy of Feed-forward Neural Networks (HFNN) that is a hierar-
chical policy with hand-crafted domain-selection and FNNs for each domain.
Each domain has one corresponding FNN model (Figure 4.12b).

• Hierarchy of Graph Neural Networks (HGNN) that is a hierarchical
policy with hand-crafted domain-selection and GNNs. Each domain has one
corresponding GNN model (Figure 4.12c).

• Hierarchy with Unique Graph Neural Network (UHGNN) that is a
HGNN with a unique GNN for all domains. Each domain shares the same
GNN model (Figure 4.12d).

(a) FNN. (b) HFNN.

(c) HGNN. (d) UHGNN.

Figure 4.12: Policy and input data structures. Different levels of structure are
presented from classical feed-forward neural network (FNN) to graph neural network
(GNN). The prefix H- corresponds to a hierarchical policy and UH- to a unique
sub-policy for all domains. For a FNN layer, the input data is the concatenation of
all DIP slot representations. For a GNN layer, the input keeps its structure.
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Architecture name Abbrev.

Feed-forward Neural Network (without DIP) FNN-REF
Feed-forward Neural Network (with DIP) FNN
Hierarchical Feed-forward Neural Network HFNN
Hierarchical Graph Neural Network HGNN
Hierarchical with Unique Graph Neural Network UHGNN

Table 4.3: Overview of proposed architectures for multi-domain oriented dialogues.

In order to compare with the methods proposed by ConvLab, we have re-
implemented FNN with DIP and we have named FNN-REF the ConvLab’s
FNN with the native parametrisation (no DIP) and with multiple-actions output.
Indeed, ConvLab was built on the annotation convention of MultiWOZ dataset
in which the features space was not based on DIP. In particular, the action space is
not constrained to the choice of a single action and extends to all composite actions
seen in the dataset (e.g., in the search for a restaurant, the agent can ask the user
for the expected price and the food at the same time).

When IL is used, the agents learn in simulation and the oracle is the handcrafted
policy (both implemented in PyDial or ConvLab). To recall, Imitation Learning
from Oracle Demonstrations (ILfOD) is a reinforcement learning method with online
data augmentation and Imitation Learning from Oracle Supervision (ILfOS) is a
combination of supervised and reinforcement learning with data augmentation.

Hyper-parameters and Training: The FNN models have two hidden layers,
both with 128 neurons. The GNN models have one first hidden layer with 64 neurons
for each node (two in all: slot-dependent node noted S-node and slot-independent
node noted I-node). Then the second hidden layer is composed of 64 neurons for
each relation (three in all: S2S, S2I and I2S). We detail the number of parameters
of our models in the Table 4.4. The size of the tested networks are of the order of
magnitude of 10 000 to more than 100 000 parameters.

For training stage, we use the Adam optimiser with a learning rate lr = 0.001,
a dropout rate dr = 0.1 and a batch size bs = 64. Each loss function has a weight of
λQ = 0.5, λπ = 1., λIL = 1. and λent = 0.01 respectively. These hyper-parameters
have been chosen arbitrarily. The learning frequency is one iteration after each
episode (finished dialogue) with only one gradient iteration.

The used oracle is the handcrafted agent proposed by each framework. When
we use ILfOD or ILfOS methods, we use in 50% of the time the oracle trajectories.
When we use ILfOS, the oracle is constantly called to give us the best expert action
as supervision and we use a margin penalty µ = log(2).

Our policy algorithm is an off-policy learning that uses experience replay (all
data are stored in buffers) without priority (i.e without importance sampling). The
exploitation-exploration procedure of our implemented models is achieved by Boltz-
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Configuration # of parameters

ACER +

FNN REF 87 250
FNN 244 448
HFNN 650 864
HGNN 375 952
UHGNN 46 994

Configuration # of parameters

BC +

FNN REF 87 121
FNN 244 319
HFNN 364 648
HGNN 192 136
UHGNN 24 017

Table 4.4: Number of learned parameters in the models used. We precise that for
ACER models, the value and policy functions are learned separately, except for
FNN REF and FNN.

mann sampling with a fixed temperature (from τ = 1 to τ = 0.1) depending of the
environment. The hyper-parameter search of temperature was performed by grid
search.

Experiments: All the experiments were launched 10 times with random initial-
isations and the results were averaged. Concerning PyDial, we performed two
training stages up to 400 and 4 000 dialogues. Concerning ConvLab, each learning
trajectory was kept up to 10 000 dialogues with a step of 1 000 dialogues in order
to analyse the variability and stability of the methods. In particular, we evaluated
each trained agent on 500 dialogues to keep track of the variance.

The system is guided by the rewards as follows. At any time, if all domains are
solved (a domain is solved if all related tasks are solved), it gains 20/40 points in
PyDial/ConvLab respectively. On the contrary, if the current active domain is
solved, it gains 5 points (only in ConvLab). Otherwise, it is penalised by 1 point.
The dialogue is marked as successful if and only if both inform recall and book rates
are 1. An active domain in dialogue is marked as successful if and only if both
inform recall and book rate are 1 in the context of this domain (independently of
other domains).

Dialogue Management Evaluation

We evaluate the policy learning algorithms in PyDial and ConvLab for single-
domain and multi-domain dialogues respectively.

Single-domain dialogues The results of the evaluation of single-domain dia-
logues are presented in Table 4.5. We observe that our ACGNN proposal achieves
competitive performance in the long training stage in environments with action
masking mechanism and with semantic error rates of 0%, 15% and 30% for respec-
tively Env1, Env3 and Env6. ACGNN is better than DQNGNN in a majority
of environments. But it seems that our proposal is less efficient when the action
masking mechanism is not activated (in Env2 and Env4). ACGNN certainly re-
mains more limited against STRAC in the short training stage and in unfriendly
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environment like Env5 since the latter has more advanced learning mechanisms.
Our approach manages to reach a performance close to or even better than those of
STRAC and those of handcrafted (HDC) policies. This confirms that our struc-
tured policies are suitable for single-domain task-oriented dialogues.

DQNGNN STRAC ACGNN(Ours) HDC
Task Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew.

After 400 dialogues
Env1 CR 85.9 11.0 97.7 13.1 98.6 13.7 100.0 14.1

0% SER SFR 52.3 3.4 98.2 12.3 98.3 12.3 97.6 12.1
Mask. LAP 55.4 4.6 98.5 12.3 95.7 11.3 97.2 11.8
Env2 CR 75.5 8.1 65.5 5.0 80.4 9.0 100.0 14.1

0% SER SFR 71.2 7.1 69.8 4.4 80.5 8.7 97.6 12.4
No Mask. LAP 76.5 7.7 56.9 1.6 69.3 6.1 97.8 11.7

Env3 CR 78.3 8.8 97.2 12.5 96.2 12.1 95.2 10.8
15% SER SFR 54.6 3.1 90.4 8.9 89.8 9.2 90.2 8.9
Mask. LAP 49.6 2.5 92.5 9.7 83.5 7.4 88.2 8.4
Env4 CR 70.5 6.6 71.0 5.2 61.9 5.1 97.0 11.1

15% SER SFR 66.7 5.6 72.7 5.0 55.1 4.0 89.2 8.2
No Mask. LAP 63.7 4.6 65.9 3.1 44.2 1.1 88.6 8.4

Env5 CR 53.8 2.8 95.3 10.6 91.3 9.5 94.6 9.2
15% SER SFR 26.0 -2.9 80.6 4.5 79.1 4.5 87.6 6.3
Mask. LAP 23.4 -3.0 87.8 6.1 76.1 2.7 82.8 4.6
Env6 CR 62.8 5.3 91.9 10.3 91.6 10.1 91.2 9.5

30% SER SFR 36.2 -0.8 78.5 4.9 76.3 4.3 80.2 6.5
Mask. LAP 37.2 -0.3 84.6 6.6 73.5 3.8 76.6 5.6

After 4000 dialogues
Env1 CR 74.8 8.7 99.8 14.1 99.8 14.1 100.0 14.1

0% SER SFR 61.3 5.3 98.7 12.7 99.2 12.8 97.6 12.1
Mask. LAP 78.5 8.6 97.6 12.0 98.2 12.0 97.2 11.8
Env2 CR 93.6 12.2 97.9 13.1 87.8 11.9 100.0 14.1

0% SER SFR 93.0 11.5 95.6 12.1 91.5 11.8 97.6 12.4
No Mask. LAP 91.4 11.1 92.6 11.6 91.8 11.3 97.8 11.7

Env3 CR 96.6 12.6 98.1 13.0 98.2 12.9 95.2 10.8
15% SER SFR 89.4 9.4 91.9 10.5 93.8 10.2 90.2 8.9
Mask. LAP 84.2 7.9 90.7 9.7 91.8 9.4 88.2 8.4
Env4 CR 90.9 11.0 92.9 11.5 87.8 10.9 97.0 11.1

15% SER SFR 87.7 9.6 90.2 10.7 70.4 7.4 89.2 8.2
No Mask. LAP 83.3 8.2 86.3 9.2 71.7 8.3 88.6 8.4

Env5 CR 95.2 11.2 97.1 11.8 96.8 11.3 94.6 9.2
15% SER SFR 82.3 5.9 89.6 8.4 88.8 7.2 87.6 6.3
Mask. LAP 70.0 2.8 88.2 6.9 86.8 5.3 82.8 4.6
Env6 CR 89.3 10.0 92.5 11.0 93.6 10.9 91.2 9.5

30% SER SFR 70.8 4.3 81.6 7.0 84.7 7.1 80.2 6.5
Mask. LAP 68.7 4.0 83.3 6.7 83.5 6.4 76.6 5.6

Table 4.5: Average of rewards and success rates on single-domain dialogues with
PyDial with 10 different initializations. CR refers to Cambridge Restaurants,
SFR to San Francisco Restaurants and LAP to Laptops. SER stands for semantic
error rate and Mask refers to action masking mechanism. Env5 is an unfriendly
environment (Casanueva et al., 2017). Results of DQNGNN, STRAC and HDC
were taken from Z. Chen et al. (2020a). Results in blue represent those with the
best rewards and in bold those with the best success rate (excluding HDC).

104



4.4. Experimentation

Multi-domain dialogues Concerning the re-evaluation of the proposed policies
in ConvLab, the results of success rates are presented in Figure 4.13. All baselines
have difficulties to learn on a horizon of 10 000 dialogues with a clear stagnation of
the success rate between 0% and 20%. This is evidence of the difficulties of learning
with sparse rewards on multi-domain dialogues.

Figure 4.13: Distribution of the performance of the baselines on multi-domain di-
alogues in ConvLab, with 10 random initialisations. The colored area represents
the distribution and the middle line represents its median.

Then we perform an ablation study based on ACER. The results of this study
are presented in Figure 4.14. All variants of ACER (Figure 4.14a) have difficulties
to learn in contrast to BC variants (Figure 4.14b) for which we can see an evolution
in performance up to 90%. We can notice that using ConvLab’s native parame-
terisation with multiple-actions (FNN REF in blue) is better than using our DIP
representations with some macro-actions (FNN in orange). But the successive use
of hierarchical decision making (HFNN in green), graph neural network (HGNN in
purple) and generic policy (UHGNN in red) drastically improves the performance.
And this analysis is still valid when using IL like ILfOD (Figure 4.14c) and ILfOS
(Figure 4.14d). Regarding ILfOD, we can observe that neither hierarchical deci-
sion making nor separated GNNs guarantee learning stability. On the other hand,
learning a generic GNN with weight sharing allows collaborative gradient updating
and thus efficient learning on multi-domain dialogues when domain transfer is pos-
sible. This suggests that GNN structured networks are useful for learning dialogue
policies on multi-domain dialogues and that these policies can be transferred during
learning across domains to improve performance.

4.4.2 How effective are structured policies within a full sys-
tem?

We propose to evaluate our best DM policy in a dialogue system with simulated
and real users. From now on, we decide to use ACER-ILfOS-UHGNN under a
shorter name ACGOS.
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(a) ACER methods

(b) BC algorithms.

(c) ACER with ILfOD.

(d) ACER with ILfOS.

Figure 4.14: Distribution of the performance of the proposed approaches with differ-
ent architectures on multi-domain dialogues in ConvLab, with 10 different initiali-
sations. The colored area represents the distribution and the middle line represents
its median. BC stands for behaviour cloning. ILfOD and ILfOS stand for imitation
learning from oracle demonstrations and from oracle supervision respectively. ’H ’
refers to hierarchical decision-making and ’U ’ to unique generic method.
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Configuration Avg Turn Inform (%) Book Complete Success
(succ/all) Prec. / Rec. / F1 Rate (%) Rate (%) Rate (%)

Dialogue Management
HDC 10.6/10.6 87.2 / 98.6 / 90.9 98.6 97.9 97.3

ACGOS (ours) 13.3/13.5 97.2 / 98.5 / 97.4 97.8 98.0 87.6

Dialogue System (MILU NLU + hand-crafted NLG)
HDC 11.5/12.0 79.5 / 89.3 / 82.0 83.9 86.1 75.7

ACGOS (ours) 13.2/16.5 71.3 / 83.5 / 74.3 79.1 74.8 60.4

Dialogue System (BERT NLU + hand-crafted NLG)
HDC 11.4/12.0 82.8 / 94.1 / 86.2 91.5 92.7 83.8

MLE* 12.2/—– —– / —– / 67.8 —– 46.7 41.9
PG* 12.5/—– —– / —– / 67.1 —– 47.6 42.0

GDPL* 12.2/—– —– / —– / 67.9 —– 49.9 44.0
PPO* 11.6/—– —– / —– / 71.1 —– 64.9 63.8

ACGOS (ours) 14.0/14.8 76.2 / 92.2 / 80.8 87.0 88.5 74.8

Table 4.6: Dialogue system evaluation with simulated users and different configu-
rations. Configurations without NLU and NLG modules represent perfect trans-
mission of the dialogue acts. Configurations with ACGOS and HDC policies are
been evaluated on a single run with 1 000 dialogues. Configurations with * are
taken from Rohmatillah et al. (2021) and used behaviour cloning as the pre-trained
weights. Some missing information has been noted as —.

Simulated-User Evaluation We train it on a horizon of 100 000 dialogues. We
compare it with two benchmarks taken from J. Li et al. (2020). The first one
consists of a multi-intent language understanding model (MILU), a handcrafted
DST, a handcrafted policy, and a template-based NLG. The second one consists of
a similar pipeline with a BERT as NLU. We add more baselines from Rohmatillah
et al. (2021) that re-evaluate standard policies that use behavior cloning as the
pre-trained weights. The results of our experimentation are presented in Table 4.6.

We observe that the performance of our approach is within 10 points near to
the handcrafted policy when using perfect NLU and NLG (97.3 vs. 87.6) and
BERT and template-based NLG (83.8 vs. 74.8). It is indeed better compared to
the baselines with more than 10 points difference (e.g. with 74.8 for ACGOS vs.
63.8 for PPO). It is worth noting that compared to other methods ACGOS can
reach a performance closer to handcrafted. These results highlight the clear benefit
of structured policies against standard policies.

Human Evaluation We evaluate our best policy within a dialogue system with
real users. We have organised human evaluation sessions in our research team in
which we propose to discuss with our ACGOS dialogue manager with two different
NLU modules: MILU and BERT. For the sake of comparability, we show the
human evaluation of J. Li et al. (2020), in which a handcrafted policy was used. They
reported results on 100 dialogues while we report results on around 45 dialogues.
The results of this experimentation are presented in Table 4.7.
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Configuration Avg Turn Success Rate (%) Nb of Dial.

BERT + HDC (J. Li et al., 2020) 15.48 65.81 ± 9.48 100
MILU + HDC (J. Li et al., 2020) 17.54 56.45 ± 9.92 100

BERT + ACGOS (Ours) 17.12 57.78 ± 14.73 45
MILU + ACGOS (Ours) 21.36 50.06 ± 14.58 47

Table 4.7: Dialogue system evaluation with real users and different configurations
and a 95% confidence level for success rates.

Although real dialogue systems are more complex than simulated environments,
the proposed policies are able to succeed more than 50% of the time. Moreover,
the performance of our approach is still within 10 points of that of the handcrafted
policy. We observe also that using BERT as NLU clearly boost the performance
compared to MILU.

4.4.3 How robust are dialogue systems to noisy inputs?

To study the robustness of the DM to noisy inputs, we simulate input noise by
imposing a certain error rate on the dialogue acts that the system receives. We can
interpret this confusion as emanating from poor speech recognition or poor natural
language understanding. In practice, a confusion rate of 20% will lead to a modifica-
tion of one of the elements of the dialogue act among the predicate, the slot and the
value in 20% of the dialogue turns. These modifications are constrained to respect
the ontologies imposed by the domains (i.e. errors such as inform(price=italian))
are forbidden).

In this context, we evaluate our best approach ACGOS in a dialogue system
with simulated users and compare it to the handcrafted approach. We vary the
confusion rate from 0% to 50% in 10 steps. Evaluations are performed on a set of
1,000 simulated dialogues. The approach is also trained in an environment subjected
to a confusion rate of 30% to study the robustness of the approaches and their
adaptability in a noisy environment. The results are presented in Figure 4.15.

First of all, we note that the degradation of performance in the face of noise
can be explained by the inability of the approaches, when one of the communicated
information is corrupted, to propose an offer (task find, see Figure 4.15c) but above
all by the inability to make a reservation (task book, see Figure 4.15b). However, the
rule-based approach consistently dominates the structured approaches in terms of
success rate (Figure 4.15f). Nevertheless, we observe that the approaches are more
cautious (or accurate) when communicating their information since their accuracy
remains better (Figure 4.15a). Nevertheless, the tested approaches have a low re-
sistance to noise due to their inability to detect corrupted information even though
they have faced noisy inputs during their training. This highlights the need for di-
alogue systems to develop a specific competence to overcome the lack of robustness
to input noise.
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(a) Precision (find task) (b) Accuracy (book task)

(c) Recall (find task) (d) Completed dialogue rate

(e) F-score (find task) (f) Succeeded dialogue rate

Figure 4.15: Evaluation of the robustness of DM to noisy inputs at a confidence
level of 97.5%. Each configuration was evaluated on 1 000 dialogues.

4.5 Conclusion

We studied how structured policies like GNN combined with some imitation learning
could be effective to handle truly multi-domain dialogues. The results of our large-
scale experiments on ConvLab confirm that an actor-critic with a GNN policy
is relevant for solving multi-domain multi-task dialogue problems. Moreover, the
results of our experiments on PyDial show that it is relevant for solving the single-
domain problem as well. Furthermore, it follows that imitation learning is efficient
in improving exploration in multi-domains dialogues. Finally, we evaluated the best
policy (ACGOS) in a complete dialogue system with both simulated and real users.
The performance of our ACGOS policy overcomes the baselines and is almost on
par with the handcrafted policy.
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The GNN structured policies combined with imitation learning avoid sparsity,
while being data efficient, stable and adaptable. We conclude that a dialogue man-
ager policy structured with GNN is relevant for covering multi-domain multi-task
dialogue problems.

Limitations
A limitation of our approach is its dependence on the NLU noisy predictions and
on the DST module that provides the active domain. As future work we could
integrate the domain selection to our policy as in Z. Chen et al. (2020b), or with a
feudal-like approach as in Casanueva et al. (2018a) and Casanueva et al. (2018b). It
could be also interesting to study the impact of incorporating real human feed-backs
and demonstrations in place of handcrafted teacher.

Nevertheless, robustness to noisy inputs is no longer specifically addressed and
our experiments show the need to address this in order to strengthen speech interac-
tion systems. We plan to re-introduce in the context of structured neural approaches
already proven solutions, such as a probabilistic dialogue act representation (as pro-
posed in PyDial).
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5
Learning Dialogue Policies Faster

with Graph Neural Network

Reinforcement Learning has been widely adopted to model DM in task-oriented di-
alogues. However, the simulators provided with dialogue frameworks are only rough
approximations of human behaviour. The ability to learn from a small number of
human interactions is hence crucial, especially on multi-domain environments where
the action space is large. We therefore propose to use structured policies to improve
sample efficiency when learning on these kinds of environments. To this end, we
investigate the impact of the policy structure on the dialogue success rate when
trained from a limited number of examples. Among the different levels of structure
that we tested, Graph Neural Networks (GNNs) show a remarkable superiority by
reaching a success rate above 80% with only 50 simulated dialogues. We also investi-
gated the impact of the nature of the provided examples. We found out that learning
from simulator examples is easier than learning from human examples. because of
the large variability of human strategies, which are less predictable than simulated
ones. We therefore suggest to concentrate future research efforts on bridging the gap
between human data, simulators and automatic evaluators in dialogue frameworks.

5.1 Motivation

Multi-domain multi-task dialogue systems are designed to complete specific tasks in
distinct domains such as finding and booking a hotel or a restaurant (Zhu et al.,
2020). However, the design of a DM is costly: hand-crafted policies require a lot
of engineer time, pure supervised learning requires a lot of expert demonstrations,
and pure reinforcement learning requires a lot of user interactions to converge. The
simulators provided with dialogue frameworks like PyDial (Ultes et al., 2017a)
or ConvLab (Zhu et al., 2020) are only rough approximations of the human be-
haviours and the ability to learn from a small number of human interactions remains
crucial. This is especially true on multi-domain and multi-task environments where
the action space is large (J. Gao et al., 2018).
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A first approach to reduce these costs is to combine expert supervision and
reinforcement learning. This approach, called imitation learning combined with
refining reinforcement learning, has been well studied (Hussein et al., 2017) and it
offers a balance between expert’s and user’s costs. But it is not sufficient alone to
handle the complexity of multi-domain and multi-task environments.

Another way to reduce these costs is to wire some hand-crafted knowledge about
the problem into the policy model, which allows for few shot learning (Y. Wang
et al., 2020). In particular, structured policies like graph neural networks (GNNs)
are known to be well suited to handle a variable number of slots and a variable
number of domains for the information-seeking task (L. Chen et al. 2018; Z. Chen
et al. 2020a).

As an entry point for studying sample efficiency of structured policies, we study
the dialogue success rate of these policies once trained in a supervised way from
expert demonstrations. We consider two types of demonstrations: human experts
demonstrations extracted from the MultiWOZ dataset (Pawel Budzianowski et al.,
2018), and simulated experts demonstrations generated by letting the ConvLab’s
hand-crafted policy interacts with its automatic evaluator.

Our main contribution is to provide a large scale experiment where we study the
impact of different levels of structure on policy success rate after a limited number
of dialogue demonstrations. For each level of structure, we also compare two sources
of demonstrations: simulated dialogues and human dialogues. We show a notable
result: our structured policies are able to reach a success rate above 80% with only
50 simulated dialogues in ConvLab.

Another important finding is that in few-shot learning regime, it is harder to
reach a high success rate from humans demonstrations than from simulated dia-
logues. This can be explained first by the large variability of human strategies that
is not covered by simulated dialogues which stick to more repetitive – easy to learn
– dialogue patterns. Another explanation could be an evaluation bias, simulated
dialogues being more in line with artificial evaluators.

The remainder of this Chapter is structured as follows. We present the re-
lated work in Section 5.2. Section 5.3 presents the proposed GNNs with IL. The
experiments and evaluation are described in Section 5.4. Finally, we conclude in
Section 5.5.

5.2 Related Work

Few shot learning takes advantage of prior knowledge to avoid overloading the em-
pirical risk minimiser when the number of available examples is small. In particular,
prior knowledge can be used to constrain hypothesis space (i.e. model parameters)
with parameter sharing or tying in order to reduce reliance on data acquisition and
on data annotation (Y. Wang et al., 2020).
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Prior knowledge can be built into dialogue systems by imposing a structure in
the neural network architecture. A first approach is to use HRL that divides a
main problem into several simpler sub-problems. We refer to R. S. Sutton et al.
(1999) that introduces Semi-Markov Decision Process using temporal abstraction
and to Z. Wen et al. (2020) that introduces Sub-Markov Decision Process using state
partition. In the scope of the work (and as detailed in Chapter 4), a hierarchical
policy corresponds to a meta-controller that chooses to activate a domain and we
have one sub-policy per domain (Paweł Budzianowski et al., 2017; Casanueva et al.,
2018a; Le et al., 2018a).

In the same vein, Graph Neural Networks (GNNs) have been explored in a wide
range of domains because of their empirical success and their theoretical properties
which explains its efficiency: the abilities of generalisation, stability and expres-
siveness (Garcia et al., 2018). GNNs are suitable for applications where the data
have a graph structure i.e. where the graph outputs are supposed to be node-order
equivariant or permutation invariant (Zhou et al., 2020; Wu et al., 2020).

In single-domain dialogue environments, this architecture has been also adapted
to model the DM in L. Chen et al. (2018) and Z. Chen et al. (2020a). They have
shown that GNNs generalise between similar dialogue slots, manage a variable num-
ber of slots and transfer to different domains that perform similar tasks. We thus
adopt in this work the DIP (Zhuoran Wang et al., 2015), which standardises the
slots representation into a common feature space.

In the continuity of the Chapter 4, we propose to improve multi-domain covering
by learning with demonstrations a generic policy based on GNN and with a limited
access of expert demonstrations.

5.3 Accelerating Learning from Demonstrations
with Structured Policies

In order to investigate the impact of structured policies with Behaviour Cloning in
improving sample efficiency in multi-domain multi-task dialogue environments, we
briefly introduce the dialogue state and action spaces for structured policies and we
present also the different policies and the experts’ nature we investigated.

5.3.1 Data structure: Domain Independent Parametrisation

We adopt here the multi-task setting as presented in ConvLab (Zhu et al., 2020),
in which a single dialogue can have the following tasks: (i) find, in which the system
requests information in order to query a database and make an offer; (ii) book, in
which the system requests information in order to book the item. We adopt the
DIP state and action representations, which are not reduced to a flat vector but to
a set of sub-vectors. More details can be found in the previous Chapter 4.
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For any active domain, the input to the slot-independent representation is the
concatenation of the previous slot-independent user and system actions (see examples
of the output below), the number of entities fulfilling the user’s constraints in the
database, the booleans indicating if the dialogue is terminated and whether an
offer has been found / booked. The output corresponds to action scores such as
reqmore, offer, book, great, etc.

Regarding the slot-dependent representation, its input is composed of the previ-
ous slot-dependent user and system actions (see output below), the booleans indi-
cating if a value is known and whether the slot is needed for the find / book tasks.
Its output are actions scores such as inform, request and select.

5.3.2 Architecture: Graph Neural Network

Prior knowledge can be integrated in our models by constraining the layer structure
imposing symmetries in the neural dialogue policies. Without prior knowledge,
the standard structure used is the Feed-forward Neural Network layer (FNN). This
unconstrained structure does not assume any symmetry in the network.

Assuming that sub-policies associated with the slots are the same, a better al-
ternative is to use the Graph Neural Network layer (GNN). This structure assumes
that the state and action representations have a graph structure that are identically
parameterised by DIP. The GNN structure is a fully connected and directed graph,
in which each node represents a sub-policy associated with a slot and a directed
edge between two sub-policies represents a message passing. We identify two roles
for sub-policies: the general node as I-node associated to the slot-independent rep-
resentation and the slot nodes denoted as S-node associated to the slot-dependent
representations. We also identify the relations: I2S for I-node to S-node, S2I and
S2S respectively. More detailed can be found in the previous Chapter 4.

We formally define the GNN structure as follows. Let n be the number of slots
and L the number of layers. Let be x the dialogue state, x0 = φ0(x), hl

0 ∀l ∈ [0,L−1]
and y0 be respectively the input, hidden and output I-node representations. Let the
input, hidden and output S-nodes representations be respectively ∀i ∈ [1,n], xi =

φi(x), hl
i ∀l ∈ [0,L− 1] and yi. First, the GNN transforms inputs:

∀i ∈ [0, n], h0
i = F 0

i (φi(x)) = σ0(W0
iφi(x) + b0

i ) (5.1)

Then, at the l-th layer, it computes the hidden nodes representations by following
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message sending1, message aggregation and representation update:

∀i ∈ [0, n], hl
i = F l

i (hl−1) (5.2a)
ml

i←j = M l
i←j(hl−1

j ) (5.2b)
ml

i = Al
i(ml

i←∗) (5.2c)
hl
i = U l

i (ml
i) = σl(ml

i) (5.2d)

The message sending function M l
i←j is a linear transformation with bias. The

message aggregation function Al
i is the average pooling function. The representation

update function U l
i compute the new hidden representation with ReLU activation

function and dropout technique during learning stage. Finally, the GNN concate-
nates (⊕ symbol) all final nodes representations and computes the policy function
with the Softmax activation function.

y = σL(
n⊕

i=0

WL
i hL−1

i + bL
i ) (5.3)

5.3.3 The Structured Policies
We propose a wide range of dialogue policies to study the impact of the structure in
sample efficiency. An ablation study progressively adds some notion of hierarchy to
FNNs to approximate the structure of GNNs. Similarly, we analyse the advantage
of sharing a generic GNN among several domains versus specialising a GNN to
each domain. Therefore, we propose from the least to the most constrained:

• Feed-forward Neural Network (FNN) that is a classical feed-forward neu-
ral network with DIP parametrisation (Figure 5.1a).

• Hierarchy of Feed-forward Neural Networks (HFNN) that is a hierar-
chical policy with hand-crafted domain-selection and FNNs for each domain.
Each domain has one corresponding FNN model (Figure 5.1b).

• Hierarchy of Graph Neural Networks (HGNN) that is a hierarchical
policy with hand-crafted domain-selection and GNNs. Each domain has one
corresponding GNN model (Figure 5.1c).

• Hierarchy with Unique Graph Neural Network (UHGNN) that is a
HGNN with a unique GNN for all domains. Each domain shares the same
GNN model (Figure 5.1d).

5.3.4 The Expert’s Nature
Since our goal is to learn on observed demonstrations delivered by an expert, we
propose to focus on policies that learn from both simulated and human experts. For

1The notation i ← j denotes a message sending from slot j to slot i. It corresponds to the
directed relation between the slots j and i. The notation i ← ∗ denotes all messages sending to
slot i.
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(a) FNN. (b) HFNN.

(c) HGNN. (d) UHGNN.

Figure 5.1: Policy and input data structures. Different levels of structure are pre-
sented from classical feed-forward neural network (FNN) to graph neural network
(GNN). The prefix H- corresponds to a hierarchical policy and UH- corresponds
to a unique sub-policy for all domains. For a FNN layer, the input data is the
concatenation of all DIP slot representations. For a GNN layer, the input keeps its
structure.

this purpose, we use the dataset MultiWOZ (Pawel Budzianowski et al., 2018) to
follow human experts and the hand-crafted policy of ConvLab (Zhu et al., 2020)
as the simulated expert.

Human expert The MultiWOZ dataset is a large annotated and open-sourced
collection of human-human chats that covers multiple domains and tasks. Nearly
10k dialogues have been collected by a Wizard-of-Oz set-up at relatively low cost and
with a small time effort. However, different versions of this dataset corrected and
improved the annotations (Eric et al., 2020; Zang et al., 2020; Han et al., 2021; Ye
et al., 2021). In this work, we use the MultiWOZ dataset integrated in ConvLab
with extended user dialogue act annotations.

Simulated expert The ConvLab framework has been proposed to automati-
cally build, train and evaluate multi-domain multi-task oriented dialogue systems
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based on MultiWOZ features. It implements both hand-crafted simulated user
and policy. The latter has been shown to be nearly the optimal policy according to
the ConvLab evaluation setup of Takanobu et al. (2020). Therefore its use as the
simulated expert.

5.4 Experiments
In this section the experimental setup, the proposed models and the evaluation
metrics are reviewed.

Experiment Setup: We performed an ablation study by gradually adding dif-
ferent levels of structure from a baseline FNN to the proposed GNN. On the one
hand, we analyse the learning efficiency of our models in small training steps. On
the other hand, we compare their generalisation ability in few shot learning.

To analyse the learning efficiency, we measure performance with respect to the
number of gradient descent steps up to 1 000 iterations with a step size of 100 it-
erations. We compare learning curves based on randomly chosen 10, 100 and 1 000

training dialogues2. We also measure performance as a function of the number of
training dialogues available (randomly chosen) namely 10, 50, 100, 500 and 1000

when each training is performed up to 10 000 gradient descent steps. All the exper-
iments were run on ConvLab, restarted 10 times with random initialisation and
the results estimated on 500 new dialogues.

Models: The FNN models have two hidden layers, both with 128 neurons. The
GNN models have one first hidden layer with 64 neurons for both nodes (S-node
and I-node). Then the second hidden layer is composed of 64 neurons for each
relation (S2S, S2I and I2S). For training stage, we use the Adam optimiser with a
learning rate lr = 0.001, a dropout rate dr = 0.1 and a batch size bs = 64.

Metrics: We evaluate the performance of the policies for all tasks as in ConvLab.
Precision, recall and F-score, namely the inform rates, are used for the find task.
Inform recall evaluates whether all the requested information has been informed
while inform precision evaluates whether only the requested information has been
informed. For the book task, the accuracy, namely the book rate, is used. It
assesses whether the offered entity meets all the constraints specified in the user
goal. The dialogue is marked as successful if and only if both inform recall and
book rate are equal to 1. The dialogue is considered completed if it is successful
from the user’s point of view3.

2These values were chosen arbitrarily to give us an insight into the impact of the number of
dialogues on the performance.

3A dialog can be completed without being successful if the information provided is not the one
objectively expected by the simulator.
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Results: First in Subsection 5.4.1, we evaluate the dialogue manager performance
when talking to a simulated user. Second in Subsection 5.4.2, we evaluate the learned
policies within the entire dialogue system both with simulated and with real users.
The evaluations have been done within ConvLab.

5.4.1 Dialogue Manager Evaluation

We analyse our models on the learning efficiency in small training steps and on the
ability to generalise in a few-shot setting.

Learning Efficiency Evaluation

We report in Figure 5.2 the results of the ablation study showing the ability of the
models to succeed in a short training stage. First, when learning from simulated
demonstrations we notice in Figure 5.2a that the baseline (FNN) needs a large
number of training dialogues (more than 100) to achieve a moderate performance
(less than 40%). We show then in Figure 5.2b that hierarchical networks (HFNN)
do improve learning efficiency up to 60% with 100 dialogues, up to 80% with 1 000

dialogues. Finally we show that graph neural network (HGNN in Figure 5.2c) and
generic policy (UHGNN in Figure 5.2d) drastically improve the efficiency with few
dialogues, more than 60% with 10 dialogues, and achieve remarkable performance
above 80% with only 100 dialogues in 1 000 training steps. These observations
confirm that hierarchical and generic GNNs allow efficient learning and collaborative
gradient update in a short training stage.

Although standard or hierarchical policies (FNN in Figure 5.2e and HFNN in
Figure 5.2f) are less efficient when learning from human demonstrations, they are
still above baselines. It is worth noting that structured or generic GNN policies
HGNN in Figure 5.2g and UHGNN in Figure 5.2h are able to reach more than
50% success rate.

Few-Shot Learning Evaluation

We extended the ablation study in a few-shot scenario focusing on the ability of the
models to succeed on specific dialogue tasks as reported in Figure 5.3. In particular,
we show the success rate in Figure 5.3a, the inform rate (recall) in Figure 5.3c and
the book rate in Figure 5.3e when using simulated demonstrations and respectively
in Figure 5.3b, Figure 5.3d and Figure 5.3f when using human demonstrations. The
more structured the model, the greater the learning efficiency and the greater the
data efficiency. Likewise, we notice that learning is more data-intensive when imitat-
ing human strategies. It appears that the booking task is more difficult to perform
according to human demonstrations (when comparing Figure 5.3e and Figure 5.3f)
or using a flat architecture (FNN gets null results). We therefore foresee that more
high quality data is needed to learn on human dialogues.
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(a) FNN. (b) HFNN.

(c) HGNN. (d) UHGNN.

(e) FNN. (f) HFNN.

(g) HGNN. (h) UHGNN.

Figure 5.2: Dialogue manager evaluation with simulated users. We present the
success rate on 10 / 100 / 1 000 training dialogues as a function of the number of
gradient descent steps in a short training scenario. Learning is based on simulated
experts ((a) up to (d)) or on human experts ((e) up to (h)). The line plot represents
the mean and the coloured area represents the 95% confidence interval over 10 runs.
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(a) Success rate. (b) Success rate.

(c) Inform rate (recall). (d) Inform rate (recall).

(e) Book rate. (f) Book rate.

Figure 5.3: Dialogue manager evaluation with simulated user presenting the success
rate based on 10 000 training iterations as a function of the number of training
dialogues in a long learning scenario. Learning is based on a simulated expert ((a),
(c) and (e)) or human experts ((b), (d) and (f)). The line plot represents the mean
and the coloured area represents the 95% confidence interval over a sample of 10
runs.

5.4.2 Dialogue System Evaluation

We continue our analysis on the robustness of the studied models with the entire di-
alogue system facing both simulated and human users. The dialogue system utilises
a BERT NLU (Devlin et al., 2019) and a hand-crafted NLG.
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(a) Success rate. (b) Success rate.

(c) Inform rate (recall). (d) Inform rate (recall).

(e) Book rate. (f) Book rate.

Figure 5.4: Dialogue system performance with simulated user based on 10 000 train-
ing iterations as a function of the number of training dialogues in a long training
scenario. The supervised DM is based on simulated demonstrations ((a), (c), (e))
or on human demonstrations ((b), (d), (f)). The line plot represents the mean and
the coloured area represents the 95% confidence interval over a sample of 10 runs.

Simulated User Evaluation

As in the previous subsection, we study the robustness of the models in a few-shot
scenario as presented in Figure 5.4. We observe that FNN (in blue) and HFNN (in
orange) learning is collapsing when using simulated dialogues (see Figure 5.4a, 5.4c
and 5.4e). On the opposite, HGNN (in green) and UHGNN (in red) performance
appears more stable in the entire dialogue system even when using real dialogues (see
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Configuration Avg Turn Inform rate (%) Book Complete Success
(succ/all) Prec. / Rec. / F1 Rate (%) Rate (%) Rate (%)

Dialogue Management
HDC 10.6/10.6 87.2 / 98.6 / 90.9 98.6 97.9 - 97.3 -

MLE-UHGNN-HDC (ours) 12.8/13.0 95.3 / 98.8 / 96.4 98.5 97.3 (-0.6) 95.4 (-1.9)
MLE-UHGNN-MW (ours) 16.5/20.7 94.3 / 90.7 / 91.6 76.7 81.4 (-16.5) 81.0 (-6.3)

Dialogue System (BERT NLU + hand-crafted NLG)
HDC 11.4/12.0 82.8 / 94.1 / 86.2 91.5 92.7 - 83.8 -
HDC† 11.6/12.3 79.7 / 92.6 / 83.5 91.1 90.5 (-2.2) 81.3 (-2.5)
MLE† 12.1/24.1 62.8 / 69.8 / 62.9 17.6 42.7 (-50.0) 35.9 (-47.9)
PG† 11.0/25.3 57.4 / 63.7 / 56.9 17.4 37.4 (-55.3) 31.7 (-52.1)

GDPL† 11.5/21.3 64.5 / 73.8 / 65.6 20.1 49.4 (-43.3) 38.4 (-45.4)
PPO† 13.1/17.8 69.4 / 85.8 / 74.1 86.6 75.5 (-17.2) 71.7 (-12.1)

MLE-UHGNN-HDC (ours) 14.0/15.4 89.3 / 93.0 / 90.2 84.8 90.0 (-2.7) 82.7 (-1.1)
MLE-UHGNN-MW (ours) 17.0/23.0 84.0 / 87.6 / 84.5 64.8 72.1 (-20.6) 68.1 (-15.7)

Table 5.1: Dialogue manager and system evaluations with simulated users. When
evaluating the dialogue manager, the simulated user passes directly dialogue acts
and vice-versa. Our tested configurations are evaluated and averaged on 10 run each
with 250 dialogues. Configurations with † are taken from the GitHub of ConvLab.

Figure 5.4b, 5.4d and 5.4f). Therefore, these results confirm that behaviour cloning
is easier from simulated than human experts. As observed before in Subsection 5.4.2,
this can be explained by an large variability of human strategies (hence the need
for more data to improve performance). Another explanation is that simulated
dialogues are more in line with the artificial evaluator provided in the ConvLab.
In addition, it is important not to neglect the side effects of cascading errors due
to successive NLU, DST, DM and NLG modules. In particular, the NLU BERT
proposed by ConvLab was pre-trained and evaluated on 7 372 user utterances with
14% of errors (F1 86.4%, precision 85.1%, recall 87.8%). This problem can therefore
be exacerbated by cascading human errors, as confirmed in the next paragraph.

Finally, we present a detailed comparison table with the best structured policies
UHGNN trained on simulated dialogues of ConvLab noted MLE-UHGNN-HDC
(HDC for hand-crafted policy) and trained on real dialogues of MultiWOZ noted
MLE-UHGNN-MW and the baselines of ConvLab (see Table 5.1). In particular,
the maximum likelihood estimator (MLE) proposed by ConvLab is its implemen-
tation of FNN model trained on MultiWOZ corpus in a very long training scenario
(multiple passes on all 10k dialogues)4. Our models show competitive results against
ConvLab’s baselines, confirming that the structured with supervised learning in
few-shot settings is adapted to address the difficulties in multi-task multi-domain
dialogues.
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5.4. Experiments

Dialogue System Avg Satisfaction Nb of
(BERT NLU + Rule NLG) Turn Rate (%) Dial.

HDC 22.6 92.6 ± 9.87 27
MLE-UHGNN-HDC 25.6 50.0 ± 14.8 44
MLE-UHGNN-MW 17.3 36.7 ± 17.2 30

Table 5.2: Dialogue system evaluation with real users with a 95% confidence level
for satisfaction rate.

Human Evaluation

We organised preliminary evaluation sessions, in which volunteers were invited to
chat on-line with three dialogue systems that were randomly assigned5. Subjects
do not know which system they are evaluating. Each system has a different DM
model: HDC (hand-crafted policy), MLE-UHGNN-HDC and MLE-UHGNN-
MW combined with the BERT NLU and the hand-crafted NLG provided by
ConvLab. At the end of the chat, evaluators were asked whether or not they reach
the goal and were satisfied with the performance of the system. The satisfaction
rate is then the proportion of dialogues in which the system solved the task at
the end of the dialogue according to the human evaluator. We reported results
on roughly 30 dialogues for each method. The results of this experimentation are
presented in Table 5.2. Although test is small-sized and not highly statistically
significant, these preliminary results are disconcerting with respect to the simulated
ones. The HDC does very well whereas MLE-UHGNN-HDC gets by in half the
cases, MLE-UHGNN-MW fails in most cases.

These results can be explained by the limitations of the NLU facing impatient
evaluators, short and ambiguous sentences where the active domain is unclear (as
in this example of the user saying ”What is the name?”) or typographical errors.
Moreover, it is important to underline that ConvLab does not natively propose the
management of uncertainties in the state representation which can strongly restrict
the performance of the learning methods in noisy environments.

Another limitation is that the HDC is more adapted to generic dialogues whereas
MLE-UHGNNs were trained only on winning dialogues. This implies that learn-
ing methods are more sensitive to dialogues that break out of the learned patterns.
Similarly, the strategies of simulated and real users do not seem to be well aligned
with each other and even more strongly with the expectations of human evaluators.

4Another difference is that our models returns one unique action per turn instead of a group of
actions.

5Crowdsourcing was not used because of ethical concerns regarding the work conditions of
collaborators.
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5.5 Conclusion
We investigated in this work the impact of structure and experts on success rate
in few-shot learning for multi-domain multi-task dialogues. Promising results were
obtained: hierarchical and generic GNN policies are able to achieve remarkable per-
formance with few dialogues and few training iterations when following a simulated
expert. This confirms the growing interest for these neural structures.

We also present an important finding: the policy performance degrades in few-
shot learning when using human demonstrations. This fact questions the alignment
between dialogue evaluators and human strategies in state-of-the-art dialogue frame-
works.

Limitations
The reduced performance when learning from human experts suggests that we shall
concentrate the efforts in bridging the gap between automatic evaluators and high-
quality human-human datasets. We also devise the use of curriculum learning (Ben-
gio et al., 2009) strategies: starting from simple – simulated – dialogues then adding
progressively more complex, human dialogues demonstrations.

It is also necessary to analyse the impact of GNN policies with neural NLU/NLG
modules to study how to integrate such structures in end-to-end architectures.

We point out some limitations of ConvLab. The detection of the active domain
is sensitive to the output of the NLU and thus sensitive to ambiguous statements.
Data representation restricts the DST to a deterministic view and must be adapted
to a probabilistic representation to capture the uncertainties in the user’s input.
Similarly, it may be worthwhile to improve the action space by adding more possi-
bilities for human users, for instance to confirm or deny in a more flexible way.

Finally, the human evaluation was performed on a small scale and on models
trained in a context with few training iterations. A more in-depth or supervised
study could shed more light on the raised issues.
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6
Conclusion

In this thesis, we have explored the use of hierarchical imitation and reinforcement
learning techniques for multi-domain task-oriented dialogue systems. Our research
focused on addressing the challenges of scalability and efficiency in dialogue policy
learning, as well as the need for faster learning and improved performance in multi-
domain environments.

6.1 Contributions

Chapter 1 provided a global overview of task-oriented dialogue systems, focusing
on the concepts and mechanisms involved in modeling and simulating dialogues. It
introduced the fundamental elements necessary to understand the thesis, including
the probabilistic framework for dialogue simulation and the essential concepts of
task-oriented dialogue systems. The chapter also outlined the approaches and tools
used for prototyping dialogue systems, such as data collection and simulation.

Chapter 2 delved into reinforcement learning for dialogue management (DM),
highlighted the dynamic and temporal nature of dialogues and the challenges of
learning from complex environment and limited interactions. It introduced both re-
inforcement learning and demonstration-based learning approaches and emphasised
the need for scalability and efficiency in dialogue policy learning. It naturally intro-
duced the core concept of the thesis, i.e. hierarchical imitation and reinforcement
learning as an effective strategy for adapting policies across different domains or
tasks. It discussed the use of expert demonstrations to guide the agent’s decision-
making process, as well as the use of hierarchical structure in dialogue policy to
catalyse the learning for efficient exploration and exploitation.

Chapter 3 explored the integration of expert demonstrations into dialogue poli-
cies for improved exploration in task-oriented dialogue systems. It discussed the
benefits of hybrid imitation and reinforcement learning strategies, where the agent
learns from a sub-optimal expert policy during the learning process. The chapter
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presented experiments that demonstrate the effectiveness of this hybrid approach in
noisy environments, particularly in single-domain dialogue contexts. It also raised
questions about the applicability of these strategies in multi-domain dialogues and
suggests avenues for future research, such as exploring different strategies for effi-
ciently incorporating expert demonstrations and feedback.

Chapter 4 focused on structuring dialogue policies using hierarchical reinforce-
ment learning based on graph neural networks (GNNs). It addressed the challenges
of handling multi-domain dialogues and complex single-domain dialogues with lim-
ited reward signals. The chapter presented structured policies based on GNNs and
discussed their effectiveness in multi-domain dialogue problems. It highlighted the
benefits of leveraging similarities between domains and slots, as well as the efficiency
gains achieved through structured policies. The chapter concluded by emphasizing
the relevance of GNN-based policies in multi-domain and single-domain dialogue
scenarios.

Chapter 5 investigated the use of structured policies, specifically graph neural
networks, to improve sample efficiency in active learning on multi-domain multi-
task dialogues. It examined the impact of policy structure and expert guidance
on the success rate of few-shot learning. The chapter presented promising results,
demonstrating that hierarchical and generic GNN policies can achieve remarkable
performance with limited training data. However, it also highlighted the challenges
of aligning dialogue evaluators with human strategies and suggested future research
directions, such as bridging the gap between automatic evaluators and high-quality
human-human datasets and employing curriculum learning strategies. The chapter
concluded by emphasizing the need to integrate GNN policies with neural natu-
ral language understanding/generation modules and to address the limitations of
existing dialogue frameworks.

6.2 Perspectives

Our thesis has shed light on various aspects of task-oriented systems and explored
their potential for further development. However, we believe it is crucial to expand
the scope of our research to address emerging challenges and advance the field of AI
in meaningful ways.

One promising avenue for future investigation is the integration of human feed-
back into reinforcement learning. By incorporating human preferences as a reward
signal, we can enhance the learning process and align AI systems with human values.
This approach offers a more nuanced and adaptable framework compared to relying
solely on dialogue success as a reward signal.

Moreover, curriculum-based learning offers significant potential to enhance and
guide policy dialogue learning. Guiding learning from simple to complex problems
in a step-by-step manner can facilitate more efficient and effective knowledge acqui-
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sition. This approach enables AI systems to tackle increasingly sophisticated tasks
while ensuring a solid foundation of learning.

We also urge researchers to examine the impact of architecture on learning effec-
tiveness to find alternatives to the continuous growth in architecture size. Building
upon the success of architectures such as Transformers and GNN-type architectures,
we encourage the exploration of alternative architectural designs, leveraging tech-
niques that optimize performance without excessive resource requirements.

Furthermore, while our research has focused on task-oriented systems, the emer-
gence of generative models prompts us to consider their potential for specific tasks.
We must investigate how to effectively harness the capabilities of generative mod-
els, such as chitchat LLMs, within constrained domains. Ensuring that their usage
remains within the intended domain is essential to maintain reliability.

As the field of generative AI continues to advance, ethical considerations become
paramount. Researchers must engage in thoughtful discussions surrounding the
ethical implications of their results. Balancing the power of generative AI with the
need for explanation and interpretability is a central dilemma. Striving for trusted
AI that is both powerful and accountable is crucial to ensure responsible deployment
and adoption, in the era of regulation of the design and use of AI.

Finally, it is essential to develop robust mechanisms to prevent users from by-
passing the controls put in place to guarantee correct and responsible usage of AI
systems. Safeguards must be established to mitigate the risk of misuse or unin-
tended consequences. Striking a balance between user flexibility and system control
will be a critical aspect of AI system development moving forward.

In conclusion, our thesis marks a step forward in the search for task-oriented
systems on the notions of efficiency and scalability, but it also highlights the pressing
need for further exploration and development. By addressing the proposed research
directions and considering the ethical implications, we can shape the future of AI
towards more powerful, accountable, and beneficial systems.
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Hierarchical Imitation and
Reinforcement Learning for Multi-Domain

Task-Oriented Dialogue Systems

par
Thibault CORDIER

Résumé : Dans cette thèse de doctorat, nous étudions les systèmes de dialogue orientés tâches
qui sont des systèmes conçus pour aider les utilisateurs à accomplir des tâches spécifiques, telles
que la réservation d’un vol ou d’un restaurant. Ils s’appuient généralement sur un paradigme
d’apprentissage par renforcement pour modéliser le dialogue permettant au système de raisonner
sur les objectifs et les préférences de l’utilisateur, et de sélectionner les actions qui conduiront
au résultat souhaité.

Malgré les avancées récentes, les systèmes de dialogue orientés tâches présentent encore
plusieurs limites. L’une d’entre elles est la tendance de ces systèmes à échouer lorsque les utili-
sateurs s’écartent du comportement attendu ou introduisent de nouveaux objectifs au milieu de
la conversation. Un autre problème est la difficulté de concevoir des systèmes robustes capables
de gérer un large éventail de tâches.

Nous nous concentrons spécifiquement sur l’apprentissage à partir d’un nombre limité d’in-
teractions, ce qui est crucial en raison de la rareté et du coût des interactions humaines. Les
algorithmes standards d’apprentissage par renforcement nécessitent généralement une grande
quantité de données d’interaction pour obtenir de bonnes performances. Pour relever ce défi,
nous visons à rendre les systèmes de dialogue plus efficaces en termes d’échantillonnage dans
leur entraînement.

Nous nous sommes inspirés principalement des idées d’imitation et de hiérarchie. Notre pre-
mière contribution explore l’intégration de l’imitation dans l’apprentissage par renforcement.
Nous nous appuyons sur la littérature existante qui souligne l’importance de l’imitation dans
l’apprentissage, car les humains apprennent souvent en imitant des experts qui possèdent des
connaissances précieuses. Nous étudions comment utiliser efficacement les démonstrations d’ex-
perts pour extrapoler les connaissances avec un effort de généralisation minimal. Alors que l’imi-



tation s’avère efficace pour obtenir des performances et tirer parti de démonstrations réussies,
nous observons des limites lorsqu’il s’agit de traiter une complexité plus élevée, en particulier
dans le cadre d’un dialogue orienté tâches multi-domaines.

Notre deuxième contribution porte sur l’exploitation de la hiérarchie et de la structure inhé-
rentes aux dialogues. En nous inspirant de l’avantage que présente la décomposition de problèmes
complexes en problèmes plus simples, nous explorons la manière d’exploiter les similitudes entre
les tâches et les domaines dans les systèmes de dialogue. En décomposant le problème principal
en tâches élémentaires que nous maîtrisons, nous tirons parti de la hiérarchie pour résoudre
efficacement des problèmes plus vastes et plus complexes. Cette approche permet d’économiser
du temps de formation en partageant des stratégies entre des tâches similaires.

Enfin, nous consolidons nos résultats précédents et soulignons l’importance de l’apprentissage
à partir d’un petit nombre d’interactions humaines dans les applications du monde réel. Les
techniques d’apprentissage efficaces sur le plan de l’échantillonnage sont essentielles dans ce
contexte, et nos recherches portent sur le développement de solutions efficaces dans le cadre de
nos découvertes précédentes.

Mots-clés : système de dialogue orienté tâche, apprentissage par renforcement, apprentissage
par imitation, apprentissage hiérarchique, stratégie structurée

Abstract : In this Ph.D thesis, we study task-oriented dialogue systems that are systems
designed to assist users in completing specific tasks, such as booking a flight or ordering food.
They typically rely on reinforcement learning paradigm to model the dialogue that allows the
system to reason about the user’s goals and preferences, and to select actions that will lead to
the desired outcome.

Despite these advances, there are still several limitations to task-oriented dialogue systems.
One issue is the tendency of such systems to fail when users deviate from expected behavior or
introduce new goals mid-conversation. Another issue is the difficulty of designing robust systems
that can handle a wide range of tasks.

Our focus is specifically on learning from a limited number of interactions that is crucial due
to the scarcity and costliness of human interactions. Standard reinforcement learning algorithms
typically require a large amount of interaction data to achieve good performance. To address
this challenge, we aim to make dialogue systems more sample-efficient in their training.

To guide our contribution journey, we draw from two main ideas: imitation and hierarchy.
Our first contribution explores the integration of imitation with reinforcement learning. We build
upon existing literature that emphasises the importance of imitation in learning, as humans often
learn by imitating experts who possess valuable knowledge. We investigate how to effectively
use expert demonstrations to extrapolate knowledge with minimal generalisation effort. While
imitation proves efficient for achieving performance and leveraging successful trajectories, we
observe limitations when dealing with higher complexity, particularly in multi-domain task-
oriented dialogue.

Our second contribution focuses on harnessing the hierarchy and structure inherent in dia-
logues. Taking inspiration from the advantage of decomposing complex problems into simpler



ones, we explore how to exploit task and domain similarities in dialogue systems. By decompos-
ing the main problem into elementary tasks that we master, we leverage hierarchy to solve larger
and more complex problems efficiently. This approach saves training time by sharing policies
across similar tasks.

Lastly, we consolidate our previous findings and emphasise the importance of learning from
a small number of human interactions in real-world applications. Sample-efficient learning tech-
niques are essential in this context, and our investigation revolves around developing effective
solutions within the framework of our previous discoveries.

Keywords : task-oriented dialogue system, reinforcement learning, imitation learning, hierar-
chical learning, structured policy
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