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Couplage charge-flux dans les films d’eau nanométriques en géométrie sphère-plan

Résumé : Les propriétés des électrolytes en contact avec une surface solide chargée sont un sujet d’intérêt
depuis longtemps. Les progrès récents dans les études expérimentales et théoriques ont montré que l’écoulement
liquide à l’échelle micro et nanométrique se comporte différemment de celui à l’échelle macroscopique. Lorsque
les dimensions sont réduites, les propriétés de surface sont prédominantes pour le comportement de l’écoulement
au contact de la surface. Pour une épaisseur encore plus petite, lorsque le fluide subit un confinement élevé,
non seulement les propriétés physico-chimiques des surfaces de confinement sont importantes, mais leur
comportement élastique doit également être pris en compte.

Cette thèse présente une étude théorique des propriétés des électrolytes confinés et de la mécanique de la
double couche électrique dans une géométrie sphère-plan, où la sphère est montée sur un système cantilever
qui oscille près d’une paroi solide. Nous dérivons les interactions électrocinétiques via le couplage du courant
électrique et du flux de Poiseuille. Les flux de volume et de charge sont fermés par la loi de Gauss et une
équation d’advection-diffusion pour les ions.

Nous avons obtenu la force électrovisqueuse, sans appliquer l’approximation de linéarisation, utilisée dans
les travaux précédents. Ce travail fournit un bref rappel de la théorie de Poisson-Boltzmann et de la force
répulsive statique. Ensuite, nous développons l’appareil formel pour le couplage charge-flux, nous dérivons le
coefficient de traînée électrovisqueuse, et nous comparons diverses approximations analytiques avec le calcul
numérique. Nous faisons une brève étude de la réponse visco-élastique, en fonction du produit de la fréquence
d’entraînement et du temps de relaxation. Enfin, nous comparons les effets de la prise en compte d’une charge
constante ou d’un potentiel de surface constant et nous confrontons les mesures dynamiques d’AFM à nos
résultats théoriques.
Mots-clés : Microfluidique, Interfaces fluides, Couplage charge-flux

Charge-flow coupling in nanoscale water films in sphere-plane geometry

Abstract: The properties of electrolytes in contact with a charged solid surface have been a matter of interest
for a long time. Recent progress in experimental and theoretical studies have shown that the liquid flow at
micro and nanoscale behave differently from that at the macroscale. When the dimensions are reduced, the
surface properties are predominant for the flow behaviour at contact with the surface. For an even smaller
thickness when the fluid experiences a high confinement, not only the physico-chemical of the confining
surfaces are important, their elastic behaviour should also be taken into account.

This thesis presents a theoretical study of the properties of confined electrolytes and mechanics of electric
double layer in a sphere-plane geometry, where the sphere is mounted on a cantilever system that oscillates
close to a solid wall. We derive the electrokinetic interactions via the coupling of electric current and Poiseuille
flow. The volume and charge flows are closed by Gauss’ law and an advection-diffusion equation for the ions.

We obtained the electroviscous force, without applying the linearization approximation, used in previous
work. This work provides a brief reminder of Poisson-Boltzmann theory and the static repulsive force. Then
we develop the formal apparatus for charge-flow coupling, derive the electroviscous drag coefficient, and
compare various analytical approximations with the numerical computation. We make a short study of
the visco-elastic response, as a function of the product of the driving frequency and the relaxation time.
Finally, we compare the effects of considering a constant charge or a constant surface potential and contrast
dynamic-AFM measurements with our theoretical findings.
Keywords: Microfluidic, Fluid Interfaces, Charge-flow coupling
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Abstract

The properties of electrolytes in contact with a charged solid surface have been a matter

of interest for a long time. Recent progress in experimental and theoretical studies have

shown that the liquid flow at micro and nanoscale behave differently from that at the

macroscale. When the dimensions are reduced, the surface properties are predominant

for the flow behaviour at contact with the surface. For an even smaller thickness when

the fluid experiences a high confinement, not only the physico-chemical of the confining

surfaces are important, their elastic behaviour should also be taken into account.

This thesis presents a theoretical study of the visco-elastic response of confined elec-

trolytes and mechanics of electric double layer in a sphere-plane geometry, where the

sphere is mounted on a cantilever system that oscillates close to a solid wall. We derive

the electrokinetic interactions via the coupling of electric current and Poiseuille flow, by

applying Poisson-Boltzmann mean-field theory and coupled linear relations for charge and

hydrodynamic flows, including electro-osmosis and charge advection. With respect to the

unperturbed Poiseuille flow, we define an electroviscous coupling parameter ξ, which turns

out to be maximum where the film thickness h0 is comparable to the screening length λ.

Our theory provides a quantitative description for the electroviscous drag coefficient and

the electrostatic repulsion as a function of the film thickness, with the surface charge density

as the only free parameter. We obtained the electroviscous force, with and without applying

the linearization approximation, used in previous work. And evaluate the importance of

charge regulation, that shows relevance only in small distances.

This work provides a brief reminder of Poisson-Boltzmann theory and the static re-

pulsive force. Then we develop the formal apparatus for charge-flow coupling, derive the

electroviscous drag coefficient, and compare various analytical approximations with the

numerical computation. We make a short study of the visco-elastic response, as a func-

tion of the product of the driving frequency and the relaxation time. Finally, we compare

the effects of considering a constant charge or a constant surface potential and contrast

dynamic-AFM measurements with our theoretical findings.
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Chapter 1

Introduction

For more than a century, the properties of electrolytes in contact with a charged solid

surface have been of interest, motivated by their effects in biological and colloidal systems

[1]. In fact, the coupling between electrostatic effects induced by the charged surface and

hydrodynamic transport effects allows the manipulation of colloid solutions. However,

these electrokinetic phenomena are not limited to the study of colloids but occur whenever

a charged solid-liquid interface is involved. For example charged membranes separating

dilute aqueous salt solutions. In 1968 R. J. Gross and J. F. Osterle [2] realised that there

was not a membrane permeation general theory has been established. so they conducted a

theoretical study of steady-state electrodynamics flow with adsorbed electrical charges on

the wall.

In addition, Bike and Prive [3] focused on the study of the sliding and squeezing motion

of two charged bodies immersed in an electrolyte solution. Observing that, for two bodies

separated by a minimum distance, a streaming potential given by the motion of the surfaces

creates electrical stress that contributes to a force that is felt by the two bodies. These

electrokinetic force does not rely on the fluid’s viscosity but depends on the non-equilibrium

properties of the electric double layer, which exceed by far the electrostatic repulsion and

therefore acts to keep the interacting bodies apart [4].

Since then, many attempts to find a correction to Bike and Prive’s approach have been

1



Chapter 1. Introduction 2

studied. For instance, by introducing nonlinear electric effects, Chun and Ladd [5] found

that the repercussions in the lifting force are significant. It was shown that when the ion

diffusivities are considerably different, the force can be reduced by one order of magnitude.

In addition, it has been observed by Manor et al, that when the surfaces approach,

the velocity of the approximation will determine the type of forces that will dominate in

the system, for instance, at low scan rates (<=1µm/s), the interaction will be dictated by

equilibrium forces and be independent of hydrodynamic boundary conditions. Which is

not the case when the velocity increases as dynamic effects dominate [6].

The electrostatic repulsion creates an increment in the viscosity in the trapped elec-

trolyte, that is associated to properties of the solid surfaces and is proportional to the

surface charge density [7]. For its part, the ion concentration plays a big role on the

electro-kinetic phenomena, on the one hand, in the dilute limit a strong electrical conduc-

tance is measured in narrow channels, where for low concentrations it shows higher values

that those expected for bulk [8]. On the other hand, where strong screening effects emerge

at high concentration [9]

In addition, the electroviscous effects are strongly dependent on the electrical potential

at the slipping plane, as a repercussion of the counter-ion conductivity of the electric double

layer [10].

Nanoscale flows of electrolytes in confined geometry are of primary importance for

active matter, energy storage devices, harvesting of waste energy, de-salinization, and

actuation and signal detection in micromechanical systems [11, 12]. Surface properties are

predominant for flow behaviour and ionic transport in these systems. Solid surfaces in

contact with electrolyte solutions are mostly charged. The coupling of the diffuse layer

of counter-ions to liquid flow is at the origin of various electro-kinetic and visco-electric

effects, leading to novel and original applications.

Electrophoresis through nano-pores is a most promising technique for the miniatur-

ization of simple circuits, considering that it has been observed that nano-pores behave
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like nano-fluidic diodes, this by permitting the flow in only one direction of the ionic flow

[13, 14]. As a consequence it is a very useful technique as well for DNA sequencing, seeing

that it offers the possibility to read information from single molecules of DNA[15, 16].

Another original application is the the assembly of active materials, by applying a a.c.

electric field, charge-induced electro-osmosis controls the mobility of the particles as well

as the colloidal interactions [17], observing different structures as a function of the electric

field.

Complex electro-hydro-mechanical couplings have been specifically investigated in highly

concentrated electrolytes known as ionic liquids, where by effect of the charges confined

in nanoscale distances, the restrained liquid experiments structural alterations. By gener-

ating an order in between layers, under the influence of an electric field solidification and

melting is predicted [18]. Experimentally, by measuring the friction force experimented

between two solid surfaces that trap an ionic liquid, it has been observed that a layered

ion structure is formed, conferring a quantized friction behaviour [19].

In aqueous medium, the electrostatic force should be considered, taking into account

that many surfaces are charged while in water. This charge can be generated from two

different phenomena. The dissociation of surface groups or by the absorption of ions into

the surface. Due to the charges on the surface, an electric field will be generated, this

electric field will decrease exponentially with the distance from the surface.[20, 21]

The first layer consists of the ionisation of the surface of the object, acquiring a surface

charge density and is caused by chemical interactions; the degree of the surface charge

density depends on the counterions on the surface and the free ions inside the fluid that it

is immersed [22].

On the other hand, inside the fluid, there are free ions that are moving in it due to

pressure, electric or thermal effects and that as a result of Coulomb force, will be attracted

to the surface of the object, electrically screening the layer on the object surface. This

second layer is also known as diffuse layer since it is roughly associated with the object.
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In many instances, the underlying electro-kinetic effects are coupled to a non-uniform

pressure, such that the fluxes of both volume and charge are driven by the electric field and

the pressure gradient. The volume flow consist of Poiseuille and electro-osmotic contribu-

tions, and the charge current is determined by the electrical conductivity and advection of

the diffuse layer by the Poiseuille flow.

1.1 The Electric Double Layer

When an object is immerse in an aqueous system, this object could be a solid particle, a

gas bubble, a liquid droplet or a porous body; the object may selectively adsorb one charge

species. This phenomena have been highly studied for colloids, where electrical interaction

in aqueous systems is greatly significant in the stability, aggregation and deposition of the

particles. So when a particle is exposed to a fluid, a structure of ions appears on its surface

causing an electrical double layer. This double layer refers to two parallel layers of charge

surrounding the object.

The first layer corresponds to the surface charge generated either by adsorption of

ions from an electrolyte solution due to chemical interactions, dissociation of the surface

compound, or redistribution of the electron density. On the other hand the second layer is

composed of ions attracted to the surface charge due to coulomb force, and thus these ions

screen the first layer. This second layer is called diffuse layer because it is loosely attached

to the object, since it is made of free ions that move in the fluid under the influence of

electric attraction and thermal motion. In such manner, both the surface charge and the

associated attracted ions compose the electrical double layer.

In other words a particle’s surface charge is balanced by an equivalent number of

oppositely charged counter-ions in the fluid.

The counterions in the solution are experimenting two interactions that counterbalance.

The attraction towards the particle given by electrostatic forces and the effect of the

thermal energy that diffuses them randomly throughout the solution [23]. These electric
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forces and thermal motion keeps an balanced distribution of the ions in the solution,

deriving in an equilibrium; where some of the excess counterions will get near to the

surface and the rest will dilute as a function of the distance of the surface [24], as shown

schematically in Figure 1.1 .

Solid surface

Bulk Liquid
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r

Figure 1.1: Graphic of the electrical double layer in aqueous solution at the interface with
a negatively-charged surface of a solid. where the blue spheres represent the cations and
the red spheres the anions. The increased number of cations closer to the surface that is
negatively-charged forms the electric double layer.

As expected, the part of the solvent that is the closest to the particle will be mostly

constituted by the counterions, this part of the fluid together with those charges that

are strongly attached to the particle is what is called the Stern layer. This interaction

is strong enough, that even if the particle moves in the medium, the Stern layer will

move with it. However, the amount of counterions that are adsorbed into the surface of

the particle tends to be smaller than the ions in the surface of the object, therefore the

potential created at this distance will still be negative.

As one can see in Figure 1.2, around the Stern layer there is a covering of ions and

counterions, that tends to be more charged of the second type, and it is known as diffuse

layer. The ions in this layer are more mobile due to the thermal energy and can move from

and towards the electrically neutral zone, where the concentration of ions and counterions

are equal, so the medium can be seen as a continuum.
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Solid 
Particle

Stern Layer

Difuse LayerNeutral Zone

Figure 1.2: Graphic of a particle immerse in a fluid creating a disperse system. Adapted
from [24]

The electrical double layer as the result of the variation of electric potential near a

surface, has an influence on the behaviour of colloids and other surfaces in contact with

solutions. This implies that the electrical potential in the fluid will depend greatly of it’s

exact position.

The difference in electric potential between the surface and the bulk area of the fluid

where electrical neutrality is reached is known as the Nernst potential. It is to be expected

that the Nernst potential is controlled by the ions at the surface of the particle that create

an initial electrical potential. Then, the difference in the potential between the plane

that divides the diffuse layer (slipping plane) and the neutral region is referred as the

electrokintic or zeta potential ζ, this plane of shear separates the fixed from the mobile

parts of the electrical double layer. As one can see from figure 1.3, the ζ potential decays

exponentially from the Stern layer while reaching the neutral region.

It is the zeta potential that determines the repulsion between, similarly charged solid

surfaces immerse in a fluid. It has been observed that depending on the characteristics of

system under investigation, since the surface charge and the distribution of counterions near

to the surface depends greatly on the nature and concentration of salt in the solution, if the

zeta potential is reduced under a certain value, the attractive forces between particles due

to van der Waals’ force, overcome the forces of repulsion and the particles come together
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Diffuse layerStern layer Debye Length

ζ

Figure 1.3: Relationship between Stern layer, Debye length and ζ potential. Adapted from
[24]

[25] whereas they will be stable if the zeta potential value is larger.

To describe how the electric double layer is formed a two step process is suggested. It

starts with the molecules in the fluid approach the surface, that initially is not charged

and the atoms in the solution interact with the atoms on the surface of the object creating

a electron cloud. This leads to the transfer of electrons towards the surface forming ions

and charging the surface. Hereafter, the ions in the liquid will feel attracted approaching

the particle’s ions due to electrostatic interactions. Both electron transfer and ion transfer

co-exist at liquid-solid interface [26, 27].

1.2 Electrokinetic effects

Once the double layer is formed, different effects occur from the behaviour of the liquid

close to the interface. These effects known as electrokinetic phenomena generally refer to

the tangential motion of liquids with respect to charged solid surfaces [28], the induced

flux is created by an applied thermodynamic gradient and part of the double layer charge

moves with the fluid.

These electrokinetic effects have important industrial and biological applications. They

began to be studied as a characterization tool for colloids. But have been used as well to
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manipulate particles and liquids in micro and nano scale and for energy conversion [29].

The main electrokinetic phenomena are [30]:

• Electrophoresis, the motion of particles in a suspension generated by an applied

electric field.

• Electro-Osmosis, the flow of a liquid though a capillary when an electric field par-

allel to its axis is applied. This effect can be related to the electro-osmotic pressure,

when applying an electric field a difference in pressure will rise if the there is not

possible flow.

• Electroviscous effect, this is related to the increase of the viscous drag.

Electrophoresis

The most common electrokinetic method used to study colloid systems is electrophoresis.

This method considers that the particles that are in the suspension will move under the

effects of an applied electric field. The colloidal particles move with a constant velocity as

a result of the balance between the applied electric field acting on the particles and the

resistance felt by the particles created by the liquid. For particles’ size large compared

with the double layer thickness the velocity of the particles is proportional to the applied

field, and allows to define the eletrophoretic mobility µ as

µ = v/E = εζ/η (1.1)

Where v is the particle velocity and E the electric field.

In the case of hard particles without surface structures the electrophoretic mobility µ

depends on the zeta potential ζ of the particle as a function of the viscosity of the solution

η and using Smoluchowski electrophoresis theory [31].

With ε the dielectric constant of the dispersion medium, ε0 is the permittivity of free

space. This expression applies to particles in electrolyte solution that are large and not
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too diluted. On the other hand, if the particles are smaller than the double electric layer

both the drag force and the electric force acting on the particle will balance in static state

condition, leading to an expression known as Hückel equation

µ = 2εζ/3η (1.2)

Electrophoresis applied in media such as gel, is widely used to separate macro-molecules

based on size and electrical charge as well as in DNA, RNA and protein analysis. The

technique consist in applying a negative charge so proteins move towards a positive charge

through a gel, allowing smaller molecules to move faster than larger ones. The human

genome, for example, was obtained by capillary electrophoresis, by dividing the DNA in

shorter pieces and the make them move in a gel until they separate. This technique has

now attracted attention in biomedical analysis as an approach that can provide high effi-

ciency so it is migrating towards the clinical diagnosis and forensics, developing microchip

electrophoresis as a miniaturized form of conventional capillary electrophoresis [32].

The main advantages of using capillary electrophoresis are the higher separation efficacy

and the small sample volume required. This makes it highly attractive for biological cases

where monitoring body fluids with limited availability is required [33].

Electro-osmosis

Another well studied electrokinetic phenomena is the electro-osmotic flow, the motion

of liquid induced by an applied potential along a capillary. Due to friction forces, the

movement affects over the whole volume of the channel, because it takes place in ranges

of time in the order of 10−4 to 10−2s, as a result the whole volume of the liquid flows in

the channel [34–36]. Figure 1.4 shows how due to electro-osmosis the fluid trapped in a

capillarity is dragged in the same direction as the applied electric field.

Because electro-osmotic velocities are independent of conduit size, as long as the elec-

trical double layer is much smaller than the length scale of the channel, electro-osmotic
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Fluid

Electric Field

Figure 1.4: Diagram of electro-osmotic effect. Then electric field pushes the negatively
charged surface in one direction and the diffuse layer in the other, since the solid surface
is fixed only the liquid moves.

flow will have little effect on the diffuse layer. However if a voltage is applied between the

two ends of a small channel, the ions of the double layer are moved by the influence of the

electric field.

In contrast with the electrophoretic effect where the solid surface is that of a mobile

particle, which starts moving itself when the liquid moves along its surface, the electro-

osmotic flow causes the liquid to move as a whole with respect to the lab reference frame.

The velocity profile in a channel due to electro-osmosis is zero at the wall but in a very

short distance, which is approximately equal to the thickness of the diffuse layer, it reaches

a constant value across the rest of canal.

Assuming that the fluid velocity is zero in at the shear plane Ψ = ζ and reaches a

constant value when the potential Ψ = 0 and considering ε and η constant, the electro-

osmotic velocity takes a very simple form

veo =
Eεζ

η
(1.3)

Considering that the force per unit length of a channel is proportional to the perimeter

of the channel and the amount of fluid that will be moved is proportional to the cross

section area, the electro-osmotic effect becomes significant in really narrow channels, for
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example in microfluidic devices or porous media [37].

In the case of microfluidics, where elctrokinetics is relevant, the flows can be described

by a continuous approach but special attention has to be given to surface effects and

geometrical features. Microfluidic flows can be manipulated with different external fields:

pressure, electric, magnetic etc. To employ electro-osmotic flow as a way to transport fluid

by applying voltages along a channel has been widely applied in micro-fluidic devices since

it has the advantage that in uniform channels the flow has a constant velocity over the

channel cross-section and that electric and fluidic circuits can be integrated on the same

microchip to build complex miniaturized devices without moving parts.

Electroviscous effects in capillaries due to a pressure gradient

An electric potential gradient induces a global velocity and thus a fluid flow rate Q. In

classical macroscopic applications, the flows are induced by a pressure difference inducing

a parabolic profile called Poiseuille profile. However, Poiseuille-induced flows are very

sensitive to pressure drops, which become very important with decreasing channel size.

Just as an electric potential difference induces a flow, a∇P pressure gradient can induce

an electric current when double layers are involved: This phenomenon is called streaming

current. A hydrodynamic flow carries away the ions present in the diffuse double layer.

The excess of counter ions with respect to the co-ions, leads to a global flow of charges,

this is the streaming current, that is related to a streaming potential.

At the interface between a solid and a flowing liquid, when the liquid flows through

a channel under a pressure gradient ∇P , the generated streaming electric field is counter

directed resulting in a retardation of the liquid flow manifests itself as an apparent enhanced

fluid viscosity [38, 39].

In the case that we study, when the capillary is closed at one end, the charges accumu-

lates, this accumulation of charge is responsible of creating an electric field [3, 5]. It has

been found that this electroviscous force depends on the size of the ions present in the

double layer [40, 41].
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Figure 1.5: Schematic sketch.

1.3 AFM and SFA measurements

The resistance offered by a fluid, is called the drag force. It acts in a direction opposite to

the object’s motion. It is generated by the relative velocity between the solid object and

the fluid. Whether the object or fluid is moving, drag occurs as long as there is a difference

in their velocities. Drag force depends on the viscosity of the fluid, the upstream velocity,

and the size, shape, and orientation of the body and because it is resistant to motion, drag

tends to slow down the object.

Stokes law, for the resistance of a sphere ascending or descending in a fluid abstains

the frictional force as [42]

F0 = 6πηRV (1.4)

considering a solid sphere of radius R that moves with constant velocity V immerse in a

fluid of viscosity η (see figure 1.5), the solution for the drag force given in 1.4 is valid for the

case when the distance h >> R. Still this well known relation applies only to fluid media

that extend to infinity in all directions, while in most real situations, the fluid is limited

by rigid or free walls. Therefore, the presence of those boundaries at a finite distance from

the object require a correction to stokes formula [43].
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One common way of studying flows near boundaries is to consider a sphere moving

towards a flat surface. From a classical approach, it is assumed that there is no slip at the

boundary between the liquid and the surface and by denoting ξc as the correction which

must be applied the drag force takes the form

Fc = −6πηR2V

h
(1 + ξc) (1.5)

where h corresponds to the distance between the bottom of the sphere and the surface [44].

Here ξc ≈ (1 + αR/h) with α a correction constant. Contrary to the system described in

equation (1.4) is only valid when h << R.

During the last decades, several different techniques for measuring surface forces both

in air and in liquids, allowing to estimate accurately from the macroscopic to the molecular

scale. In the surface force apparatus (SFA) technique two smooth cylindrical curved

surfaces whose cylindrical axes are positioned at 90◦ to each other are made to approach

each other in a direction normal to the axes. One of the surfaces is mounted on a spring,

which is deflected by the presences of the normal force. this technique measures the

separation of the two surfaces h with interferometry and the changes in his used to calculate

the force being exerted between the surfaces [45, 46].

As typically the radius of the cylinders are larger that the separation between the sur-

faces h, the system can be represented as a one-dimensional capacitor where the separation

between the surface can be considered constant along the cylinder.

A atomic force microscope (AFM) is a mechanical microscope, that obtains infor-

mation of the studied surface by ”touching” it with a mechanical probe, in other words,

the AFM is a cantilever with a micro-fabricated tip that deflects when interacting with the

sample surface. A big advantage is that this technique offers is that it is not restricted by

the optical diffraction limit as in the case of light microscopes allowing a resolution down

to a single atom and subatomic features on a surface. The most used method to detect

the motion of an AFM is optical beam deflection. A laser beam is focused on a spot of the
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cantilever and the angular deflection of the reflected beam is detected [44, 47–56].

AFM is also helpful to study surface interactions by means of force-distance curves,

through the measuring of the forces between the probe and the sample as a function of

their mutual separation. These forces can be as weak as pico-Newton, and are necessary

to create van der Waals forces and to stretch and rupture biological molecules.

While AFM can be performed in vacuum and in air, where a constant force acts on the

sample by touching the surface, it is not ideal in all cases, since it can move or damage

the object. So to reduce the perturbation AFM in liquid medium was developed, reducing

the contact time and therefore the disturbance of the sample. However, the measured

deflection of the cantilever is not only generated by features on the studies surface, when the

cantilever oscillates near the surface, the fluid squeeze out the region directly underneath

the tip, resulting in an additional hydrodynamic force acting on the cantilever and opposing

the motion [57]. In addition, when the tip of the cantilever is in the aqueous medium above

a charged surface, it experiences electrostatic, van der Waals and hydration forces.

Even if the tip does not carry electric charges, if there is an electric field polarization

at the interface of the surface and the electrolyte will produce electrostatic interactions,

causing an osmotic pressure that repels the tip. So when the sample moves towards the

tip, this forces repel the tip, and the cantilever bends away, therefore the distance that is

measured is larger that the expected. Butt observed [21] that by modifying salt content in

the fluid as well as the pH the electrostatic forces can be tuned, increasing or decreasing

the value and becoming attractive for some values of pH depending on the characteristics

of the tip and surface material.

This thesis focuses on the investigation of the dynamic properties of electric double

layers in a confined geometry, where the inherent electro-kinetic effects couple to a non-

uniform pressure.

To this end, we propose a theoretical model to quantify the visco-elastic and electro-

dynamic response induced by non-equilibrium electric double layers, as a function of the
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gap width and the driving frequency.

To answer this question, we will proceed with the following plan:

⇀ Initially, we will present a brief overview of the equilibrium phenomena as well as the

transport phenomena involved in electrolyte systems in the vicinity of electrolytes in

the vicinity of charged surfaces.

⇀ We will present in detail in chapter 2 the main features of the theoretical basis

for our study, starting with the electrostatic potential obtained trough the Poisson-

Boltzmann theory and the characterization of the effects observed in the capillarity,

expressing it in a closed equation system for the volume and charge flow generated

due to generalised forces.

⇀ In chapter 3 we present different approaches to obtain the coupling of charge and

flow for a confined fluid and the results for the drag coefficient. The definition of

the coupling coefficient is given by the transport coefficients studied in chapter 2 and

that can be calculated analytically if we consider a wide channel and narrow channel

limits. In addition we obtain a general solution by taking a numerical approach and

that gives a solution for the full range of distance. Additionally, we study the effects

of different boundary conditions for the electrostatic potential.

⇀ An analysis of time dependency is discussed in chapter 5. He we include the effects of

the oscillation frequency in the system as well as the retardation time of the charges.

We approach this problem via relaxation time approximation and series expansion.

⇀ In chapter 6 we compare the results obtained for the electroviscous force with ex-

perimental data obtained via AFM force measurement and analyze the advantages

of our model with the previous work presented in the literature.We get the general

conclusions of this work in the chapter 7
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⇀ Finally, in ?? we discuss possible approach to continue the presented work.



Chapter 2

Formal Apparatus

2.1 Poisson-Boltzmann theory

Electrostatic interactions constitute a key component in understanding interactions be-

tween charged bodies in ionic solutions. For example, the stability of colloidal particles

dispersed in a solvent can be explained by considering the competition between repulsive

electrostatic interactions and attractive Van der Waals interactions[23, 58–61].

As any charged object immersed in an ionic solution, the membrane attracts a cloud

of opposite charges forming a diffusive ’electric double layer’. The exact distribution of

the charges is given by the competition between the electrostatic interactions and the

entropy of the ions in the solution which tends to disperse them. This diffusive electric

double layer in turn influences the overall electrostatic interactions of the membrane with

its environment as well as the ’internal’ membrane properties.

The electrostatic interactions will have an structural effect when the thermal energy

KBT is in the order of the Couloumbic energy between two charged objects. This distance

lB is defined as the Bjerrum length

lB =
e2

4πεkBT
(2.1)

where e is the elementary charge, ε is the relative dielectric constant of the medium. For

17
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water at room temperature T = 300 K and ε ≈ 80 so that lB ≈ 0.7 nm.

Whatever the origin of the surface charge, it must be balanced by an equal and opposite

charge in the solution, with a surface potential φ and a surface charge density σ, it is

possible to describe the distribution of charge and potential in the solution as a function

of the distance of the surface. As a mean-field theory, Poisson-Boltzmann theory replaces

all interactions to the body with an average interaction without loss of generality, and so

it base on a number of simplifying assumptions:

i An infinite, flat and impenetrable interface.

ii The aqueous solution is a continuous media with a dielectric constant ε independent

of the distance to the surface.

iii Only Coulomb interactions are considered between charged bodies.

iv The surface charge is assumed continuous and the mobile ions are modelled as point

objects that are able to approach right up to the interface.

v Dipole interactions are neglected

vi Both the electrostatic potential φ(r) and the density profile ρ(r) are mean-field contin-

uous functions of the position r

These assumptions can be modified in more refined versions of the theory. Nonetheless,

the rate of exchange of protons and other ions between the surface and the solution tends

to be very rapid, thus, many surfaces can be assumed to have a uniform surface charge.

Consider an ionic solution with two ionic species having positive and negative charge

densities ρ = ρ+ + ρ−, if we assume that the membrane is negatively charged and take the

surface charge density as a negative constant, σ < 0.

There are two possible situations:

• No electrolyte is added to the water: Here the only ions in the solution are the

counterions balancing exactly the charges within the charged surface due to charge
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neutrality. since we are considering a continuum, the counterions in the solution are

described by a charge distribution

ρ± = ez±n± (2.2)

Where n± is the number density of the counterions.

• The solution is in contact with an electrolyte reservoir of fixed concentration n0:

both co-ions and counterions are present in the solution. Under these condition the

total charge density will be the addition of the two ionic densities

ρ = e(z+n+ + z−n−) (2.3)

Here z+ > 0 is the valency of the cations and z− < 0 is the valency of the anions.

Here we resume known results on the 1D Poisson-Boltzmann problem, following closely

Andelman’s review [58, 59]

Since the ions in the fluid are considered in thermodynamic equilibrium and they can

move, they adapt to the presence of electrostatic conditions, either a constant surface

potential, a constant surface charge density, or due to releasing and recovering of surface

protons, charge regulation. The relation between the electric potential φ and the charge

distribution at all point inside the fluid is described by the Poisson equation considering

the dielectric constant ε

∇2φ = − 1

εw
ρ = − e

εw
(z−n− + z+n+) (2.4)

When the system is in thermal equilibrium, in the solution, the charge density depends

on the local distribution of ions and cations, all of them follow the Boltzmann distribution

that is a function of the potential.

ni = n0e
−eziφ/kBT (2.5)
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Where ni is the number concentration of the ions i at a point where the potential is φ

and n0 is the reference density at φ→ 0 (bulk solution). the exponential therm represents

the electrical energy on an ion with a charge −ezi relative to its thermal energy kBT If we

combine the last two equations we find

∇2φ = − e

εw

(
z+n0e

−ez+φ/kBTT + z−n0e
−ez−φ/kBTT

)
(2.6)

That is known as the Poisson-Boltzmann equation for the potential φ.

In the particular case, when the system is in contact with an infinite reservoir of elec-

trolyte, one can find a solution of the form

∇2φ =
2en0
ε

sinh
eφ

kBT
(2.7)

Where it is assumed that the electrolyte is monovalent (z± = ±1 and n0 = n0− = n0+).

The simpler case to solve applying Poisson-Boltzmann theory is the 1D solution for a

single surface that is in contact with a infinite half-space of an electrolyte. It consist of a

planar surface that has a fixed surface charge density σ and the profile of counterions that

form a diffuse layer in contact to it.

z

0

Figure 2.1: Diagram of the electric double layer for a surface with surface charge density σ
placed at distance z = 0, in contact with an electrolyte bath, so the counterions attracted
to the surface create a density profile n(z). The surface is considered an infinite plane.

The first approximation shown in Figure 2.1 contemplates the electric double layer



Chapter 2. Formal Apparatus 21

for a surface with surface charge density σ placed at distance z = 0, in contact with an

electrolyte bath, so the counterions attracted to the surface create a density profile n(z).

Then the potential depends only on the vertical distance from the solid boundary, φ(z).

At the surface it satisfies the electrostatic boundary condition

dφ

dz

∣∣∣
z=0

= −1

ε
σ > 0 (2.8)

The equation 2.6 can be integrated, considering a electrolyte with z± = ±1 and the bulk

electrolyte concentration n± = n0, leading to

φ = −2kBT

e
ln

1 + γe−z/λ

1− γe−z/λ
(2.9)

the new parameter λ is the so called Debye screening length

λ =

√
εKBT

2e2n0
=

√
1

8πlBn0
(2.10)

Which is the distance where the screening of the electric field occurs. And the definition

for the parameter γ is

γ = − b
λ

+

√(
b

λ

)2

+ 1 (2.11)

The coefficient b is known as the Gouy-Chapman length, a distance that is inversely

proportional to the surface charge density σ,

b =
εkBT

2π|σ|
=

e

2πlB|σ|
(2.12)

And describes that, at a distance b from the surface, the layer of counter-ions will have a

total charge of |σ|/2. In addition from equation 2.5 the ionic densities are:

n± = n0

(
1± γe−z/λ

1∓ γe−z/λ

)
(2.13)
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On Figure 2.2 we present the potential, electric field (E = −∇φ) and ion profile (n+

and n−) for a surface density of σ = −e/25Å2. This figure shows clearly the accumulation

of of counter-ions against the negative charged-wall forming the diffuse layer that reach a

limiting value at the wall (n0).
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Figure 2.2: Electric double layer for a surfaces in contact with an electrolyte bath at an
electrolyte bulk concentration of n0=0.1M (λ ≈ 2.58nm) and surface charge at the surface
of σ = −e/25Å2.(a) Potential profile φ as a function of distance z (b) The electric field
profile E = −∇φ that decays to zero for z → ∞ and (c) Ionic density profile of co-ions
and counterions where n+ is the solid line and n− the dashed line.

Both the Electric field and the electrical decay exponentially and falls off to zero for

distances larger than the Debye length (z � λ).

A case that we are more interested in studying is the interaction between two planar

surfaces (see Figure 2.3), that are equally charged, with a charge density σ < 0 and that

are located at a distance z = h/2. These two plates confine a electrolyte therefore they

experience forces from the solution.

As it has been mentioned before, when the system is in contact with an electrolyte

solution the Poisson-Boltzmann equation takes the form 2.7

∇2φ = λ−2 sinhφ (2.14)

In addition, by considering a monovalent electrolyte (z± = ±1), the electrostatic potential

is symmetric at the mid-plane z = 0 hence the electric field at this reference point is zero.

This allows to study the system only considering the range that goes from z = 0 to z/2
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z

h

z/2

-z/2

0

0

Figure 2.3: Diagram of the electric double layer for a two-surface system. The planar
symmetrically charged surfaces are separated by a distance h and located at z = ±h/2.
The surface charge is neutralised by the ions in the fluid.

and with the boundary conditions

dφ

dz

∣∣∣
z=h/2

=
4πlBσ

e
and

dφ

dz

∣∣∣
z=−h/2

= −4πlBσ

e
(2.15)

The first integration from z = 0 to any point z in between the plates has a solution of the

form

λ
dφ

dz
=
√

2 coshφ(z)− 2 coshφz=0 (2.16)

By rewriting z as a function of φ (z = z(φ)), an expression for z is obtained as the second

integral of equation (2.16)

z

λ
=

∫ φ

φz=0

dη√
2 cosh η − 2 coshφz=0

(2.17)

Which does not have a closed form analytical solution, instead the solution can be expressed

in terms of elliptic functions, that can be written as

F (θ|α2) ≡
∫ θ

0

dη√
1− α2 sin2 η

(2.18)

That by definition m = eφz=0 and q = sin−1(e((φ−φz=0)/2)) leads to
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z = 2λ
√
m
[
F
(π

2

∣∣∣m2
)
− F (q|m2)

]
(2.19)

By inverting equation (2.19), the solution for the electrostatic potential

φ = ln (m) + 2 ln

[
cd

(
z

2λ
√
m

∣∣∣m2

)]
(2.20)

Where cd is known as a Jacobi elliptic function [58–60].

Jacobi functions are a set of basic elliptic functions that in contrast with trigono-

metric functions, are defined with reference to a circle, the Jacobi elliptic functions are a

generalization which refer to other conic sections, the ellipse in particular[62, 63].

One of the basic differences between trigonometric and elliptic functions is that the

first depends one one argument only, while Jacobi have two variables. The angle u and the

elliptic modulus k that corresponds to the eccentricity of the ellipse, both arguments can

be complex or real.

With this two arguments, Jacobi elliptic functions are given by

sn(u|k) = sinα

cn(u|k) = cosα =
√

1− sn2(u|k)

dn(u|k) =
√

1− ksn2(u|k)

and

cd(u|k) =
cn(u|k)

dn(u|k)

(2.21)

Where α is known as the Jacobi amplitude and is given by the incomplete elliptical integral

given in equation (2.18).

As an example on Figure 2.4 we present a typical counter-ion profile with its corre-

sponding electrostatic potential and electric field for σ = −e/25Å2 and d=0.3 nm.
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Figure 2.4: Electric double layer for a surfaces in contact with an electrolyte bath at an
electrolyte bulk concentration of n0=0.7mM (λ = 30nm) and surface charge at the surface
of σ = −e/25Å.(a) Potential profile φ as a function of distance z (b) The electric field
profile E = −∇φ that decays to zero for z → 0 and (c) Ionic density profile of co-ions and
counterions where n+ is the solid line and n− the dashed line.

2.2 Onsager relations

When two or more irreversible transport processes like the exchange of mass, energy, charge

or momentum take place at the same time in a thermodynamic system, the processes may

interfere with each other. In his work, Onsager [64, 65] assumes that as an analogy to the

reciprocal relations that connect forces and displacement complementary relations could

exist for transport phenomena. He express the equality of certain ratios between flows and

forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium

exists under the assumption of microscopic reversibility. According to this principles at

equilibrium, any molecular process and its reverse happen with equal rates [66].

By considering a set of thermodynamic fluxes Ji as a linear functions of thermodynam-

ical forces Xi as

Ji =
n∑
j=1

LijXj (2.22)

Where Lij measures how rapidly a perturbed system returns to equilibrium (transport

coefficients). Then if each flux Ji is the change in time of a thermodynamic variable ai

which in turn is an even function of the velocities of the atoms that conform the system
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[67].

In his work Onsager demonstrates that the crossed coefficients Lij and Lji are equal.

The fact that they are proportional comes from the fact that both coefficients are measured

in the same units.

We want to apply the same principle in the system of interest, where we rely on Poisson-

Boltzmann mean-field theory discussed at the beginning of this section and on coupled

linear relations for charge and hydrodynamic flows, including electro-osmosis and charge

advection described mathematically by the previously mentioned crossed coefficients.

Advection of the mobile charges in the diffuse layer couples the Poiseuille flow to electro-

kinetic phenomena. In particular, the advected counter-ions give rise to a radial electric

field E, which in turn drives an electro-osmotic flow and electrophoresis of the mobile ions

[68] both E and P depend on the radial coordinate r only. In lubrication approximation,

the radial velocity satisfies 1D Stokes equation

η∂2zv = ∇P − ecE, (2.23)

where P is the hydrodynamic pressure and E the radial electric field induced by the charge

displacement. We use the shorthand notation c = c+ − c− for concentration difference of

positive and negative ions.

The solution for (2.23) can be written as the sum of a pressure driven term and an

electro-osmotic term by the velocity field,

v(z) = vP (z) + vE(z). (2.24)

and the charge current

j(z) = jP (z) + jE(z). (2.25)

Even when the surface does not bear free electric charges, polarization charges at the

interface between of the surface and the electrolyte caused by the electric field generate
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an electrostatic interaction which causes an additional effect to the osmotic pressure on

the sphere. In addition, the charges on the surface attract counter-ions, these charges will

cause an increment on the ion concentration near the sample that will cause an osmotic

pressure repelling the sphere.

This coupled problem is best put in terms of the radial volume and charge flows by

integrating both the velocity field (2.24) and the charge current (2.25) along the distance

between the sphere and plane that constrict the fluid, i.e. over the vertical variable z,

JV =

∫
dz(vP + vE) = −Lvv∇P + LvceE, (2.26)

JC =

∫
dz(jP + jE) = −Lcv∇P + LcceE, (2.27)

The coupled equations (2.26) and (2.27) describe the local non-equilibrium properties in

terms of the charge current j and the radial electric field E. Where the generalized forces

are −∇P = and eE while the transport coefficients Lij represent the pressure-driven vol-

ume flow Lvv the electrical conductivity Lcc, and where the Onsager reciprocal coefficients

Lvc and Lcv describe electro-osmotic flow and pressure-induced charge current, respectively.

And due to the Onsager’s theory Lvc and Lcv must be identical.

The first term in equation (2.26) arises from the pressure driven flow profile vP (z).

Assuming no-slip boundary conditions vP (±h/2) = 0, and in absence of charge effects

(E = 0) the Stokes equation η∂2zv = ∂rP − ρE, the radial Poiseuille flow resulting from

the pressure gradient reads as

vP = −h
2 − 4z2

8η
∇P, (2.28)

Where η the fluid viscosity. The Poiseuille flow velocity profile is shown in figure 2.5,

with no-slip condition the velocity is zero at the walls and reaches a maximum at the center

of the channel. And if we integrate over the vertical variable, it results in
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Lvv =

∫
dzvP (z)/∇P

=
1

2

∫ h/2

−h/2
dzz(h− z) =

h3

12
.

(2.29)
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Figure 2.5: Axial velocity profile or a radial Poiseuille flow resulting from the pressure
gradient and describes the contribution of the coefficient Lvv

The electric field generated moves parallel to the surface and induces a movement of

the diffuse layer which drags the rest of the fluid by viscosity, thus creating the so-called

the electro-osmotic flow.

As discussed in the section (1.2) far from the surface, the liquid reaches a limiting ve-

locity called the electro-osmotic velocity veo, that can be derived from the Stokes equation,

that when absence of the gradient of pressure is considered, the Stokes equation writes as

η
∂2v

∂z2
+ ρE = 0 (2.30)

In this case ρ is the volumetric charge density and E the electric field. Using the Pois-

son equation (2.3) by double integrating (2.30) and applying no-slip boundary conditions

vP (±h/2) = 0 the velocity profile that is obtained from Anderson et al. [69] reads like
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vE =
ε

η

∫ h/2

z
dz′
∫ z′

0
dz′′ρ(z′′)E =

ε

η
(ψ(z)− ζ)E, (2.31)

where the second identity follows from twice integrating Gauss’ law ε∂2zψ = −ρ. This

velocity profile mirrors the electrostatic potential profile and is therefore related to the ion

density profile.

The velocity vE relies on the assumption of equally charged upper and lower surface.

Then the velocity profile is symmetric with respect to mid plane, and vE vanishes at both

z = 0 and z = h with the surface potential ζ = ψ(h/2), and leads to the transport

coefficient Lvc shown in the Figure 2.6, here one can observe that at the center of the

capillarity, the velocity of the flow dragged due to electro-osmosis is constant

Lvc =

∫
dzvE(z)/E

=
ε

η

∫
dz (ψ(z)− ζ) .

(2.32)

June 7, 2021 Titre de votre présentation15

Figure 2.6: Electro-osmotic transport. The net electric density in the diffuse layer is non-
zero and a total force is applied to this layer. Due to the viscosity, the ions drag the whole
fluid. The contribution is given by the coefficient Lvc

Just as due to electro-osmotic transport an electrical potential difference induces flow,

a pressure gradient ∇P can induce an electrical current when double layers are involved.
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As shown in Figure 2.7, the Poiseuille flow advects the ions present in the diffuse double

layer, and since there is an excess of counter ions with respect to the co-ions, a global flow

of charges occurs

June 7, 2021 Titre de votre présentation15

Figure 2.7: Advected charges due to osmotic pressure or flow current. When the fluid is
set in motion in a channel whose walls are charged, the counter ions are also displaced,
inducing a movement of non-zero charge. Described by the transport coefficient Lcv

The described electric current (2.27) consists of advection of counterions in the Poiseuille

flow profile vP ,

Lcv =
1

η

∫
dzρ(z)vP (z)

=
1

η

∫
dzρ(z)

h2 − 4z2

8
,

(2.33)

To close the system the current density comes from the Ohm’s law, the counterions in

the diffuse layer are drag due to the accumulation of counter-ions that induces an electric

field creating an electric current in the same direction that the electric field (see Figure

2.8) This conductivity is defined by the coefficient
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Figure 2.8: Electrical conductivity where a electric field will induce a charge gradient in
the double layers and thus a drag-out effect creating flow in the double layer, it gives the
contribution of the coefficient Lcc

Lcc =

∫ h/2

−h/2
dzρ(z)vE(z) + heµ(n+ − n−)

=

∫
dz

(
ρ
ε

η
(ψ − ζ) + µe2(n+ + n−)

) (2.34)

that comprises both advection by the electro-osmotic velocity field vE and electrophoresis

of salt ions [70]. The excess conductivity with respect to the bulk conductivity 2µn0h are

often expressed in terms of the Dukhin number [12, 71]. We assume the identical mobilities,

µ± ≡ µ; the general case would require to add a “chemical” contribution to the electric

field, proportional to (µ+ − µ−)∇ lnn, with the salinity n [69].

Advection-diffusion equation

The radial charge current density is given by

j = −D∇c+ cv + nµE, (2.35)

where c is the charge concentration, n the salinity, D = µkBT the ion diffusion coefficient,

and v the radial velocity profile, as mentioned before, we assume identical mobilities, µ.
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This equation is closed by the continuity equation for the ion current

∇ · j = −e∂tc, (2.36)

In addition, a relation between the distribution of electric charge and the resulting electric

field is required, considering the full volume enclosed between the charged surfaces. The

Gauss’ law relating the radial electric field E and the non-equilibrium charge density,

∇ · E = e(c− c0)/ε, (2.37)

where c− c0 is the deviation from the equilibrium charge density ec0. Here the equilibrium

value is related to the Poisson-Boltzmann potential ψ resulting from the surface charges

[58–60, 72],

∂2zψ = ec0/ε. (2.38)

We are interested in a water film between surfaces of low-permittivity materials such

as silica or mica. In this case, the electric field has a radial component only, it hardly

penetrates the boundaries and thus is constant with respect to z. With the vertical integral

of the charge density,

C =

∫ h

0
dzc,

the continuity equation (2.36) becomes

∂tC = D∇2C −∇ · JC , (2.39)

In this chapter we describe the electroviscous phenomena resulting from charge-flow

coupling in a nanoscale capillary, starting from the Poisson-Boltzmann mean-field theory

and the coupled linear relations for charge and hydrodynamic flows, including electro-

osmosis and charge advection.



Chapter 3

Electroviscous drag force in the

steady state

This chapter aims to investigate some of the basic behavior of an aqueous solution trapped

between two charged surfaces, formed by a sphere of radius R and a substrate in a qua-

sistatic state, where the relaxation rate is much larger than the typical oscillation fre-

quencies of the sphere. This chapter aims to investigate some of the basic behavior of an

aqueous solution trapped between two charged surfaces, formed by a sphere of radius R

and a substrate in a quasistatic state, where the relaxation rate is much larger than the

typical oscillation frequencies of the sphere.

3.1 Setting the problem

Consider a charged surface in contact with an electrolyte solution as displayed in figure

3.1. The surface has a diffuse layer confined by a vibrating sphere, also charged, of radius

R mounted on the cantilever of an AFM [21, 73]. The sphere is treated as a flat interface

since the radius is much larger than the distance at which the fluid is confined. These

surfaces as also considered to be uniformly charged (constant surface charge distribution).

The mobile charges are distributed continuously along with the fluid and we considered

only the properties in thermodynamic equilibrium [60].

33
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As displayed in the diagram 3.1, the vertical position of the sphere oscillates with a

velocity V (t) according to A sin(ωt), resulting in the velocity proportional to the amplitude

and frequency of the oscillation,

V (t) = Aω cos(ωt), (3.1)

V

h

Figure 3.1: Diagram of the experimental system. A sphere of radius R oscillates with a
velocity V = Aω cos(ωt) at a distance h, from a charged surface. The polarized charges on
the surface of both the substrate and the sphere interact with the charges in the fluid.

The oscillation of the sphere induces a non-uniform hydrodynamic pressure P in the

film and imposes a flow JV as shown schematically in Fig. 3.1. For an incompressible

fluid, there is a simple geometrical relation between the vertical velocity of the tip of the

cantilever and the volume flow JV carried by the radial fluid velocity v(z, r),

πr2V = 2πrJV = 2πr

∫
h
dzv(z, r). (3.2)

The film thickness being much smaller than the curvature radius, we resort to the lubrica-

tion approximation [74], thus simplifying significantly the fluid mechanical problem. For

distances h much smaller than the radius of the oscillating sphere, the vertical distance

between the two boundaries h = h0 +R−
√
R2 − r2 is well approximated by
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h = h0 +
r2

2R
, (r � R).. (3.3)

when this is valid, the hydrodynamic pressure P is independent of z hence the vertical

component of the velocity field is negligible, and the radial component v = v(z, r) obeys a

simplified Stokes equation,

η∂2zv = ∂rP − ρE, (3.4)

with the viscosity η and where only the vertical component of the Laplace operator ∇2v

has been held. The right-hand side comprises the radial pressure gradient ∂rP and the

force exerted by a radial electric field E and the charge density ρ of the diffuse layer.

3.2 Stationary case

Electrokinetic phenomena in a channel between two electrolyte reservoirs at different elec-

trochemical potential, are characterized by a constant streaming current JC 6= 0 [2, 34, 75].

On the contrary if one considers a open geometry, where the fluid in the capillarity is in

contact with air and, as is our case of study, it is within a periodically driven squeezing

motion, it will not not allow for a steady current but given the accumulation of counterions,

it gives rise to the electric field E.

Strictly speaking, there is a small current which develops the space charges related to

the electric field,

δρ = ε∇ · E. (3.5)

and which vanishes when averaged over one cycle. Because of the strong electric interac-

tions, the space charges develop almost instantaneously such that the electric field is in

phase with the pressure gradient, and that advection and conduction currents cancel each

other in the charge flow as follows:
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JC = −Lcv∇P + LcceE = 0. (3.6)

This relation holds true as long as the charge relaxation time τ is much shorter than

the period of the external driven, ωτ � 1. This relaxation time can be obtained from the

diffusion equation. As mentioned in the previous chapter the continuity equation takes the

form

∂tC = D∇2C −∇ · JC , (3.7)

where the diffusion time of the advected counter-ions occurs on a time scale τD = Rh0/D,

of the order of a second, which turns out to be much larger than the time scale arising from

the coupled currents allowing to discard the diffusion term, that leads to an expression of

the continuity equation as:

iωE = − e

hε
JC . (3.8)

That leads to the definition of the charge relaxation rate given by

1

τc
=

h0εη

e2Lcc
(3.9)

and that it turns out to be much larger than typical oscillation frequencies, since it is in

the order of 1/τc ∼ 105 s−1, whereas the cantilever frequency, ω ∼ 102 s−1. This means

that the non-equilibrium charge distribution and the corresponding radial electric field E

follow the mechanical driving instantaneously, and that the charge current is negligibly

small. As a consequence we use the approximation JC = 0 in (2.27) that we review in the

previous chapter

JC = −Lcv∇P + LcceE, (3.10)

we can fin an expression for electric field proportional to the pressure gradient.
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eE =
Lcv
Lcc
∇P (3.11)

As the radial flow of liquid JV is fixed

JV =
ηrV

2
= −Lvv∇P + LvceE, (3.12)

we obtain the correction of the Poiseuille flow from the diffuse layer.

∇P = −6ηrV

h3
1

1− ξ
(3.13)

where the coupling of the double layer to the flow is accounted for by the ratio of off-

diagonal and diagonal transport coefficients Lij

ξ =
LvcLcv
LvvLcc

(3.14)

From (3.13) it is clear that the dimensionless parameter ξ describes the effect of charge-flow

coupling on the hydrodynamic pressure. For ξ = 0 one recovers the well-known expression

for the pressure gradient in capillary. The stability of the dynamic equations (2.26) and

(2.27) requires a positive determinant of the transport matrix, det L > 0 or ξ < 1.

In lubrication approximation where the height h(r) varies with the radial position

according to h = h0+r2/2R. Therefore when integrating the excess hydrodynamic pressure

in the capillary, it turns out convenient to use the variable h instead of r so one has

dh = drr/R and the hydrodynamic pressure takes the form

P (h) = 6ηV

∫ ∞
h

dh′

h′3
1

1− ξ(h′)
. (3.15)

Finally, the viscous force on the cantilever is given by the surface integral of the pressure.

With dS = 2πdrr and by regritting everything in terms of the height h we get dS = 2πRdh

and one finds

F =

∫
dSP (r) = 2πR

∫ ∞
h0

dhP (h). (3.16)
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As a first approach we considered the simplest case, we solve in the absence of electroviscous

coupling this means that the correction term ξ = 0 , one readily obtains the pressure

P0(h) =
3

2
ηV R/h2 (3.17)

which is maximum at the centre of the film and vanishes as P ∝ r−4 at large radial distance.

Performing the surface integral one obtains the lubrication drag force [43]

F0 =
6πηV R2

h0
, (ξ = 0), (3.18)

that is by a factor R/h0 larger than the Stokes drag on a sphere of radius R in a bulk liquid.

Equation (3.16) expresses the electroviscous drag enhancement in terms of the coupling

coefficient ξ which quantifies the charge-flow coupling. In the sequel, we evaluate this

enhancement as a function of the height of the channel compared with the Debye length,

considering a narrow channel when the height h� λ and a wide channel if h� λ.

3.3 Wide channel approximation

If a width of the water film is much larger than the Debye length, h � λ, then the mid

plane potential vanishes, giving a solution for the electrostatic potential [59]

ψ = −4kBT

e
arctanh(γe−z/λ), (3.19)

with γ =
√

1 + q2 − q and q = 1/2πσ`Bλ. In this case, there are analytical expressions

for the transport coefficients Lij . The off-diagonal term Lvc caused by electro-osmosis is

given by the Helmholtz-Smoluchowski electrophoretic mobility. Recalling equation (2.33)

Lvc =
ε

η

∫
dz (ψ(z)− ζ) . (3.20)

and inserting the definition of the electrostatic potential, one gets
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Lvc = −hεζ
eη

= − hζ̂

4πlB
(3.21)

Where we have introduced the reduced zeta potential ζ̂ = 2ζ/kBT in units of the thermal

energy. The solution for the electrical conductivity is

Lcc =
sinh

(
1
4 ζ̂
)2

λπ2l2Bη
+ 2µ(σ + n0h) (3.22)

The last term 2µn0h is the bulk conductivity of the electrolyte solution, whereas the first

two terms account for surface corrections, which comprise counter-ion electrophoresis ∝ σ

and electro-osmotic advection.

The volume flow driven by electro-osmosis is well approximated by the product of slip

velocity and channel width. Thus, neglecting boundary effects, the electric current Lcv

turns out to be identical to Lvc,

Lcv = −hεζ
eη

(3.23)

For wide channels, the conductivity is dominated by ion electrophoresis, 2µ(σ+n0h0), such

the electro-osmotic term may be discarded. With the definition of the screening length

e

kBT

d2ψ

dz2
= λ−2 sinh

eψ

kBT
, (3.24)

the coupling parameter simplifies, if we rewrite the ion mobility as µ = 1/6πηa with the

hydrodynamic radius a we obtain the electroviscous coupling parameter

ξ =
3λ

4h

ζ̂2

sinh (ζ̂/4)2 + σ+n0h
3a πλl2B

(3.25)

The behavior of ξ still depends on the ratio of the bulk conductivity proportional to

n0h and surface contributions which comprise counter-ion electrophoresis ∝ σ and electro-

osmotic advection. It turns out that the latter term may be neglected for the most relevant

situations. After rearranging the remainder and using the definition of the screening length,
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the electroviscous coupling parameter reads as

ξ(x) =
λ2∗
2h2

1

1 + x
, (3.26)

where we have defined the length scale

λ∗ = 6ζ̂

√
a

`B
λ (3.27)

and the ratio of surface and bulk conductivities,

x =
σ

hn0
. (3.28)

In the following we first discuss the case where surface conductivity is not relevant x� 1

and then account the effect of surface conductivity.

Surface conductivity effect

Force for limiting case n0h/σ � 1

As a first approach to the problem, we discard the surface conductivity and set the coeffi-

cient x = 0. Then the pressure and the viscous force can be integrated in closed form,

P =
3ηV R

λ2∗
ln

(
1− 4λ2∗

h

)
. (3.29)

And the total force

F

F0
=
h0
λ∗

ln
h0 + λ∗
h0 − λ∗

+
h20
λ2∗

ln
h20 − λ2∗
h20

(3.30)

As it has been previously discussed, the prefactor F0 refers to the visco-elastic force in the

absence of charge effects:

F0 = −6ηV R2

h0
(3.31)
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It turns out instructive to rewrite (3.30) as a series in powers of λ∗/h0,

F

F0
= 1 +

1

6

λ2∗
h20

+
1

15

λ4∗
h40

+
1

28

λ6∗
h60

+ ... (3.32)
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Figure 3.2: Electroviscous enhancement of the drag force , as a function of the reduced
sphere-plane distance h0, in the absence of surface conductivity. The dotted line “F0” gives
the force F0 without electroviscous coupling as in (3.31), dashed lines the perturbation
series (3.32) truncated at (λ∗/h0)

2n with n = 1, 2, 3, 50, and the full line the complete
series (3.30), which is not defined for h < λ∗.

The force F is plotted in Fig. 3.2 as a (red) solid line, which stops at the distance

h0 = λ∗. At this point the electroviscous coupling parameter ξ is equal to unity and, as a

consequence, a logarithmic branch point appears in the pressure integral (3.15), resulting

in the value of the force ratio F/F0 = 2 ln 2 ≈ 1.39. At smaller distances the pressure and

force integrals provide complex numbers which have no physical meaning and consequently

the pressure and force are not defined in a wide channel approximation.

We compare this expression with the uncoupled lubrication drag force (3.31). Retaining

a few correction terms of the series, suggests a smooth behavior, whereas eq. (3.30) is

defined for h0 ≥ λ∗ only. The first correction term, proportional to λ2∗/h
2
0, corresponds to

the electroviscous coefficient of Bike and Prieve [3].

Noting that the ion radius is usually smaller than the Bjerrum length `B = 0.7 nm,
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and that the reduced zeta potential ζ̂ is of the order of unity, one finds that λ∗/λ takes

values between 1 and 10.

Force for limiting case n0h/σ � 1

When the spacing of the channel h0 is small, the approximation that allowed us to neglect

x in (3.26) cannot be consider any more, since there will be interaction between the ions

attached to both of the surfaces. However we face the problem that it can not be integrated

analytically. In this case there is not a direct analytical solution so as a first approximation

we propose to write the first term expansion the pressure gradient as

∇P =
6ηrV

h3
(1 + ξ(x)) (3.33)

Where ξ(x) follows the same definition from equation (3.26), this leads to an expression

for the viscous force like

F = −6πηV R2

h0
(1 + ξ∗) (3.34)

With

ξ∗ = − λ4∗
6x4h30

(
6− x2 + 3x− 6

(
1 +

1

x

)
ln (1 + x)

)
(3.35)

Further study is required for the case where surface conductivity becomes relevant

at smaller channel widths, however we show in Figure 3.3 that it may describe a valid

behaviour for h < λ∗.

3.4 Narrow channel approximation

In the case of a narrow channel, h� λ, the overlapping double layers of the surfaces results

in a constant charge density

ρ = ε∂2zψ = σ/h, (3.36)
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Figure 3.3: Electroviscous enhancement of the drag force, as a function of the sphere-
plane distance of closest approach h0. The dotted line “F0” gives the force F0 without
electroviscous coupling as in (3.31), the force in the absence of surface conductivity “x=0”
(blue) (3.30) and with the correction including surface charge (green) (3.34). In contrast
with the solution for x=0 (3.34) is defined for h < λ∗.

in other words, the counterions form a homogeneous gas [59]. The electrostatic potential

is readily integrated,

ψ(z) =
kBT

e

(
ln k − 4π`Bσ

h
z2
)
, (3.37)

where the parameter k describes the finite potential at mid-plane ψ(0) = (kBT/e) ln k.

With these expressions for ρ and ψ the transport coefficients are readily calculated.

Retaining contributions up to first order in h only, we find

Lvc =
ε

η

∫
dz (ψ(z)− ζ) =

eσh2

12η
, (3.38)

and that driven by the electric field,

Lcc =

∫
dz

(
ρ
ε

η
(ψ − ζ) + µe2(n+ + n−)

)
=
e2σ2h

12η
+
e2(σ + n0h)

3πaη
, (3.39)

Therefore the coupling coefficient can be expressed as
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ξ =
LvcLcv
LvvLcc

=
πσ2ah

πσ2ah+ 4(σ + n0h)
(3.40)

It is important to note that ξ is independent of the Debye length. For narrow channels, the

denominator takes the value 4σ, and ξ decreases linearly with h. This gives an expression

for the viscoelastic force

F = −F0

(
1− ah0πσ

2
− ah0π(h0n0 + 2σ)

4
ln

(
h0n0

h0n0 + 2σ

))
(3.41)

That as it is displayed in Figure 3.4, will increase as a function of the surface conductivity.

5 10 15 20 25 30

0.05

0.10

0.15

0.20

0.25

0.30

0.35

h0/nm

F

σ

Figure 3.4: Electroviscous enhancement of the drag force, as a function of the sphere-plane
distance of closest approach h0 for a narrow channel. The dotted lines are the force (3.41)
calculated for increasing values of surface conductivity.

3.5 Numerical evaluation of ξ

In the general case, the electrostatic potential is obtained in terms of the Jacobi elliptic

function cd(u|m) discussed in the chapter 2 in equation (2.21) [76],

ψ(z) =
kBT

e

[
ln k + 2 ln cd

(
z

2λ
√
k

∣∣∣∣ k2)] . (3.42)
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This potential is completely determined by the density profiles that are function of the

physical parameters, the distance between the surfaces h, the charge density σ and the

bulk density n0. Because of cd(0|m) = 1, the second term vanishes at z = 0, and the

potential at mid-plane is given by ln k. The parameter k depends on the ratio of the

channel width and the Debye length as well as the surface conductivity σ as shown in

Figure 3.5
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Figure 3.5: The parameter k of the electrostatic potential (3.42) as a function of reduced
channel width h/λ, for three values of the surface charge density σ; for distances larger
than λ∗, that is, h� λ, one reaches the wide-channel limit k = 1.

For h� λ one has k = 1 and recovers the analytic expression

ψ = −4kBT

e
arctanh(γe−z/λ), (3.43)

for a charged surface limiting an infinite half-space. In the narrow-channel limit one finds

k =
hn0
2σ

, (hn0 � σ), (3.44)

this implies that by expanding the Jacobi function to second order in z, one can recover

the narrow-channel electrostatic potential
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ψ(z) =
kBT

e

(
lnm− 4π`Bσ

h
z2
)
. (3.45)

To obtained the general solution the electric potential (3.42) is calculated considering a

fixed surface charge density eσ, therefore it satisfies the boundary condition

eσ

ε
= ∓ dψ

dz

∣∣∣∣
z=±h/2

. (3.46)

Then the electroviscous coupling parameter ξ

ξ =
LvcLcv
LvvLcc

. (3.47)

is obtained by performing the integrals for the transport coefficients Lcv, Lvc and Lcc for

a given film distance h and Debye length λ.

This general solution permits to eliminate the range restriction for the obtained elec-

troviscous coupling, since it can be calculated along all the range of the sphere-plane

distance h. We obtained numerical values for the coupling parameter ξ(h) by integrating

the transport coefficients using the software Mathematica that has a definition of the Ja-

cobi functions. Our Notebook takes an initial value of λ and σ that we fix from the possible

physical scenarios observed in experiments and that are considered constant along all the

range of heights h evaluated. The success of the calculation depends on a convergence of

the solution for the parameter k that as shown in Figure 3.5 is a parameter that must be

recalculated for each value of the distance h.

Figure 3.6 shows the variation of ξ as a function of h for different values of surface

charge concentration σ and Debye length λ, and compares with narrow-channel (dotted

lines) and wide-channel (dashed lines) approximations. First, when the coupling parameter

is calculated for different values of σ at a fixed λ as in Figure 3.6(a) we observe a surprising

feature, that ξ is roughly linear in σ. From the slope of the log-log plot one finds the power
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Figure 3.6: Numerical calculation of the electroviscous coupling parameter ξ as a function
of h, for surface charge density σ = 0.002 and 0.02 nm−2, and Debye length λ = 30 and
90 nm. Dotted and dashed lines correspond to the approximations of narrow and wide
channels, respectively, whereas the solid lines give the numerical solution.

law ξ ∝ h and ξ ∝ h−2 in the limits of narrow and wide channels, respectively.

In addition, from Figure 3.6(b), where λ variate as a function of σ we notice that the

maximum of the coupling parameter occurs at hmax ≈ 3λ. The narrow-channel result

(3.40) provides a good description for h ≤ λ, whereas the wide-channel expression (3.25)

converges for h� λ∗ only. One must conclude that in the intermediate range, which covers

at least one decade in h, neither of them is valid.

In Figure 3.7 we plot the enhancement factor F/F0 − 1 of the viscous force

F = 2πR

∫ ∞
h0

dhP (h). (3.48)

With parameters as in Fig. 3.6. As expected for the electroviscous coupling parameter

ξ, there is a maximum at h ≈ λ. The enhancement factor depends equally strongly on the

surface charge and the Debye length. The upper curve exceeds unity, which means that

the force is more than twice F0.
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Figure 3.7: Relative electroviscous force F/F0− 1 as a function of h, for different values of
surface charge density σ and Debye length λ.

3.6 Charge regulation

The three most commonly used boundary conditions for charged surface systems are con-

stant charge (cc), constant potential (cp) and charge regulation (cr) [77, 78]. So far we

have assumed that the surface charge density σ remains constant upon varying the film

thickness h0, this is the case of constant charge (cc) boundary conditions. In a different ap-

proach, one can make the assumption that the ion concentration remains constant near the

charged surfaces, implying a constant potential (cp). In this case the boundary condition

(3.49)

eσ

ε
= ∓ dψ

dz

∣∣∣∣
z=±h/2

. (3.49)

has a solution for the potential along the channel as

ψ(±h/2) = ζ∞. (3.50)
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Here ζ∞ is the surface potential at large distance, calculated with the surface charge σ

according to

ψ = −4kBT

e
arctanh(γe−z/λ), (3.51)

.

However, neither a constant charge nor a constant potential are the case for ionizable

groups at the surface HA which release and recover protons, this effect is known as charge

regulation. The surface dissociation and association can be described as

HA 
 H+ + A−. (3.52)

In this reaction H represents a site in the surface that can be negatively charged or neutral,

as depicted in Figure 3.8

Figure 3.8: Graphic of the effect of charge regulation on a surface with dissociable ionic
groups. Some of the acidic groups are released leaving the surface with negative charged
sites (red) and uncharged sites (white).

For narrow channels the potential ψ(z) given in (3.42) takes a finite value at mid-plane,

ψ(0) = (kBT/e) ln k, which favors recombination of the surface groups, thus reducing the

effective charge density σ and surface potential ζ.

A simple and widely studied model [79, 80] relies on the dissociation constant

Z =
[H+][A−]

[AH]
= ns

α

1− α
, (3.53)
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where [H+], [A−] and [AH] stand for the three possible surface concentrations. We have

defined the dissociated fraction α and the hydronium concentration at the surface

ns = e−eζ/kBT [H+]∞ (3.54)

Solving for α one finds the fraction of dissociated sites

α =
1

1 + ns/Z
, (3.55)

and the number density of surface charges,

σ =
α

S
. (3.56)

The electrostatic potential is obtained by closing the above relations with the boundary

condition (3.46). The area per site S is chosen such that at large distance (where ζ = ζ∞),

σ takes the value indicated for the case of constant charge.

As discussed previously, the parameter k of the electrostatic potential expressed in

terms of the Jacobi elliptic functions in equation (3.42) is a function of the reduced channel

width h and of the surface charge density σ. In Figure 3.9 we plot k for three values of σ

as a function of h/λ considering tree different boundary conditions: constant charge (cc),

constant potential (cp), and charge regulation (cr).

We observe that for distances larger than λ∗ = 6ζ̂
√

a
`B
λ, that is, h� λ, one reaches the

wide-channel limit k = 1, where the electroviscous force component is small. On the other

hand, the electrostatic boundary condition and charge regulation are relevant at shorter

distances, h < λ for weakly charged surfaces and h� λ for higher surface charge σ.

In order to observe where the effect of charge regulation is valid we compare the electro-

viscous properties calculated at constant charge with the charge-regulated case, and also

with that of constant potential.

In Figure 3.10 we plot the coupling parameter ξ for the cases of constant charge and

constant surface potential, and observe a behavior similar to what has been reported
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Figure 3.9: Parameter k of the electrostatic potential as a function of reduced channel
width h/λ, for three values of the surface charge density σ, where the red line corresponds
to the boundary condition of constant charge (cc), the blue line to a constant potential
(cp), and the green line represents the charge regulation case (cr).

previously for the disjoining pressure [60]: At distances smaller than the screening length,

h < λ, the curves of ξ for different boundary conditions diverge significantly. Yet note that

the electroviscous coupling is strongest in the range λ < h < 10λ, where charge regulation

is of little importance.

The electroviscous enhancement of the drag force F with respect to the uncoupled

expression F0 is shown in Figure 3.11. The maximum occurs at a distance slightly below

the screening length. For the given electrostatic parameters, it reaches the value F/F0 ≈ 2,

which depends little on the electrostatic boundary condition.

As discussed for the electroviscous drag component for constant charge density as shown

in Figure 3.7, the enhancement of the force disappears at much higher distances of about

10λ.
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Figure 3.10: Numerical calculation of the electroviscous coupling parameter ξ as a function
of h, for an initial surface charge density σ = 0.01 nm−2, and Debye length λ = 70 nm for
constant charge (cc), charge regulation (cr), and constant potential (cp).

3.7 Static Force

Now we consider the static repulsive force arising from the overlap of the diffuse layers on

the opposite surfaces, and which is independent of the external driving.

The disjoining pressure is the distance dependence of the interaction between two sur-

faces, either attractive or repulsive. It is a pressure due to the attractive force between

two surfaces, divided by the area of the surfaces [81].

In the case of a film on a substrate, deGennes defined the energy function P(e) as

the excess energy of a film on a substrate as a function of film thickness (e). Derjaguin

defined the disjoining pressure as the derivative of this energy P(e) as a function of e. The

disjoining pressure is related to the stability of films. When P(e) is a decreasing function

of e (favoring a thick film), π(e) is positive and the film is considered to be stable.

Then the disjoining pressure is given by the excess osmotic pressure of the mobile ions

at midplane,

Π = (nm − 2n0)kBT (3.57)
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Figure 3.11: Numerical calculation of the electroviscous enhancement of the drag force
F/F0 − 1 as a function of h0, for an initial surface charge density σ = 0.01 nm−2, and
Debye length λ = 70 nm for constant charge (cc), charge regulation (cr), and constant
potential (cp).

With the excess number density nm = 2n0 cosh(ψ(0)/kBT ), one readily finds

Π = 2n0kBT

(
cosh

eψ(0)

kBT
− 1

)
. (3.58)

The dependence of the osmotic pressure on the film thickness h arises from the midplane

potential ψ(0) [59]. At distances h larger than the screening length λ, this potential

vanishes, and so does the disjoining pressure.

The repulsive force K between the two surfaces, is obtained as the surface integral

the osmotic pressure. The film thickness being much smaller than the curvature radius,

we use the Derjaguin approximation [82]. For distances much smaller than the radius of

the oscillating sphere, the vertical width of the water film h = h0 + R −
√
R2 − r2 is well

approximated by

h(r) = h0 +
r2

2R
, (r � R). (3.59)
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Figure 3.12: .

Rewriting the surface element as dS = 2πdrr = 2πRdh, one readily obtains

K(h0) =

∫
dSΠ = 2πR

∫ ∞
h0

dhΠ(h). (3.60)

Now we consider the repulsive force arising from the overlap of the diffuse layers on the

opposite surfaces, and which is independent of the external driving. According to (3.42)

the potential at midplane reads as ψ(0) = (kBT/e) ln k, and the disjoining pressure (3.58)

is determined by the parameter k,

Π = n0kBT

(
k +

1

k
− 2

)
. (3.61)

In Fig. 3.13 we plot Π calculated for constant charge (cc), constant potential (cp), and

charge regulation (cr). For distances shorter than the screening length, these different

boundary conditions result in significant differences. In agreement with previous work, we

find a constant pressure for cp [59] and power laws Π ∝ hs with s = −1 and −1
2 for cc and

cr, respectively [83].

The dashed line corresponds to the widely used approximation [84]

Πs(h) = 64β2n0kBTe
−h/λ, (h� λ), (3.62)

which relies on the linear superposition of the double layers at the opposite surfaces, and

where the parameter β = tanh(eζ∞/4kBT ) is given by the surface potential ζ∞ at h0 →∞,
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as defined in eq. (??).
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Figure 3.13: Disjoining pressure between charged surfaces as a function of the distance h0,
with screening length λ = 30 nm. The solid curves give the numerical solution (3.58) for
constant surface charge σ = 0.018nm−2 (cc), constant potential ζ (cp), and the charge-
regulated intermediate case (cr) with dissocation constant Z = 10−3M. The approximative
expression (4.3) is plotted as dashed line. The inset shows the ratio Π/Πs, highlighting
the deviation of the disjoining pressure Π from the approximate expression Πs.

The repulsive force (3.60) between the two surfaces is calculated in Derjaguin approx-

imation, in analogy to (??), resulting in

K = 2πR

∫ ∞
h0

dhΠ(h). (3.63)

For the pressure in superposition approximation we obtain Ks = 2πRλΠs(h0) and, after

expressing the salt content through the Debye length,

Ks =
16Rβ2kBT

λ`B
e−h/λ, (h0 � λ). (3.64)

A comparison of the numerically exact force K with the exponential approximation Ks

is given in Fig. ??. Both expressions agree beyond 200 nm, or h0 > 7λ. Fig. shows the

force calculated for constant potential (cp) remains about 10% below Ks, whereas those for

constant or regulated charge (cc or cr) show a more complex behavior: they first decrase
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below Ks yet at even smaller h0 by far exceed the analytic approximation Ks [84].
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Figure 3.14: Static force between charged surfaces as a function of the distance h0. The
solid curve give the numerical solution (3.60) for constant charge (upper red), constant
potential (lower blue), and charge regulation (middle green). The approximative expression
(4.7) is plotted as dashed line. The inset shows the ratio K/Ks; note that all curves coincide
at large distance, which is not visible in the main figure.



Chapter 4

Disjoining pressure and static

repulsion

This chapter aims to investigate some of the basic behavior of an aqueous solution trapped

between two charged surfaces, formed by a sphere of radius R and a substrate in a qua-

sistatic state, where the relaxation rate is much larger than the typical oscillation frequen-

cies of the sphere. And to compare the results with previous work relied on the linearization

approximation for the hydrodynamic pressure gradient.

Now we consider the static repulsive force arising from the overlap of the diffuse layers

on the opposite surfaces, and which is independent of external driving. According to

ψ = KBT/e

[
ln (m) + 2 ln

[
cd

(
z

2λ
√
m

∣∣∣m2

)]]
(4.1)

the potential at z = 0 reads as ψ(0) = kBT/e lnm, and the disjoining pressure

Π = n0kBT (m+ 1/m− 2) (4.2)

is determined by the parameter m,

In Fig. 7 we plot calculated for constant charge (cc), constant potential (cp), and

charge regulation (cr). For distances shorter than the screening length, these different

boundary conditions result in significant differences. In agreement with previous work, we

57
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find a constant pressure for cp [24] and power laws Π ∝ hs with s = −1 and 1/2 for cc and

cr, respectively ??.

Figure 4.1: Disjoining pressure between charged surfaces as a function of the
distance h04.Thesolidcurvesgivethenumericalsolutionforconstantsurfacecharge4σ =
0.018nm−2 (cc), constant potential ζ (cp), and the charge-regulated intermediate case
(cr) with a dissociation constant =! =−3. The approximative expression is plotted as a
dashed line. The inset shows the ratio Π/Πs, highlighting the deviation of the disjoining
pressure Π from the approximate expression Pis, which sets in well above 200 nm.

The dashed line corresponds to the widely used approximation [84] which relies on the

linear superposition of the double layers at the opposite surfaces, and where the parameter

β = tanh(eζinf /4kBT ) is given by the surface potential ζinf at h0 tends to inf.

Πs(h) = 64β2n0kBTe
−h/λ, (h� λ), (4.3)

which relies on the linear superposition of the double layers at the opposite surfaces,

and where the parameter β = tanh(eζ∞/4kBT ) is given by the surface potential ζ∞ at
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h0 →∞, as

β =

√
1 + (2π`Bλσ)2 − 1

2π`Bλσ
(4.4)

The repulsive force (3.60) between the two surfaces is calculated in Derjaguin approx-

imation, in analogy to

ξ =
LvcLcv
 LvvLcc

(4.5)

resulting in

K = 2πR

∫ ∞
h0

dhΠ(h). (4.6)

For the pressure in superposition approximation we obtain Ks = 2πRλΠs(h0) and, after

expressing the salt content through the Debye length,

Ks =
16Rβ2kBT

λ`B
e−h/λ, (h0 � λ). (4.7)

A comparison of the numerically exact force K with the exponential approximation, Ks

is given in Fig. 4.2. Both expressions agree beyond 200 nm, or h0 > 7λ. The inset shows

that the force calculated for constant potential (cp) remains about 10% below Ks, whereas

those for constant or regulated charge (cc or cr) shows a more complex behavior: they first

decrease below Ks yet at even smaller h0 by far exceed the analytic approximation Ks [84].
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Figure 4.2: Static force between charged surfaces as a function of the distance h0. The
solid curve gives the numerical solution (3.60) for constant charge (upper red), constant
potential (lower blue), and charge regulation (middle green). The approximative expression
(4.7) is plotted as a dashed line. The inset shows the ratio K/Ks; note that all curves
coincide at a large distance, which is not visible in the main figure.



Chapter 5

Viscoelastic effects

So far, we have considered only the electrostatic effect on the system, where the potential

ψ is the static equilibrium potential across the channel with screening charges ρ, properties

that only vary in the vertical direction. So both the generalized forces −∇P and eE are in

phase with the velocity. In this section we consider the space charges which develop due

to the external drive and that it is characterize by the radial E, δρ and the charge current

JC . As a result of the viscoelastic effect, the trapped fluid experiences a time-dependent

stress that translates in a phase shift of the current. We calculate the viscoelastic force

using two different approaches, the relaxation time approximation and a series expansion.

From the continuity equation ∂tC = D∇2C−∇·JC and the time derivative of Gauss’ law

it is clear that both JC and∇·E vanish for zero charge modulation, defining C(r) =
∫
dzδρ,

and since both vectors have radial components only, we obtain

ε∇ · h∂tE = ∂tC = −∇ · JC . (5.1)

5.1 Relaxation time approximation

Noting that forces and currents are oscillating functions of zero mean value, it turns con-

venient to express the time dependence of currents and forces in terms of X(t) = X0e
iωt

61



Chapter 5. Viscoelastic effects 62

iωE = − 1

hε
JC =

e

h0εη
(Lcv∇P − LcceE) . (5.2)

where we define the time required for the fluid to recover from the applied stress as

1

τ
=
eLcc
hε

, (5.3)

Rearranging the terms and solving for E, we find

E =
Lcv
Lcc

∇P
1 + iωτ

, (5.4)

Inserting the above electric field in the volume current that we previously defined as

JV = −Lvv∇P + LvcE,

and solving for the pressure gradient, we have

∇P = − 1

1− ξ/(1 + iωτ)

6ηrV

h3
. (5.5)

In physical terms the pressure gradient is no longer in phase with the external driving but

shows a phase shift tan δ = ωτ . In the quasistatic limit ωτ � 1, we recover the solutions

for the electric field

E =
Lcv
Lcc
∇P (5.6)

and the pressure gradient

∇P = −6ηrV

h3
1

1− ξ
(5.7)

at zero charge current.

First approximation

As a first approximation to the problem we solve for the force assuming that both the

coupling parameter ξ and the relaxation rate τ are constant with respect to h
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F = 2π

∫
drrP (5.8)

we obtain a first expression for the force

F = −6πηV R2

h0

1− iωτ
1− ξ − iωτ

(5.9)

We plot in the figure 5.1 the force F = FRe + iFIm where its real part describes the viscous

drag in phase with the external driving V (t), and the imaginary part the out-of-phase or

elastic response for ωτ = 0.5 and 1.

FRe = −6πηV R2

h0

1− ξ + (ωτ)2

(ξ − 1)2 + (ωτ)2
and FIm =

6πηV R2

h0

ξωτ

(ξ − 1)2 + (ωτ)2
(5.10)
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Figure 5.1: Viscoelastic force as a function of the distance for ωτ = 0.5 and 1 where the
blue line is the real component FRe and the red one −FIm, the green line displays the static
case F0.

Wide channel approximation

By considering a time dependency in the solution for ξ and expanding ∇P in powers of ξ

∇P = −∇P0

(
1 + (1 + iωτ)ξ + (1 + 2iωτ − ωτ2)ξ2 + ...

)
(5.11)
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and resorting to the wide-channel approximation, meaning using the solution for the cor-

rection ξ

ξ =
λ2∗
2h2

1

1 + σ/h0n0
with λ∗ = 6ζ̂

√
a

`B
λ, (5.12)

when we integrate the hydrodynamic pressure we obtain the complex force

F

F0
= 1 +

1

6

λ2∗
h20

1

1 + iωτ
+ ... (5.13)

In Fig. 5.2 we plot the variation with distance of the viscoelastic force F = Fr + iFi,

as calculated from eqs. (5.5) and (5.8) for ωτ = 0.5 and ωτ = 1. Comparison with the

corresponding curve for the quasi-static case ωτ = 0 shown in Fig. 3.7, reveals an overall

reduction of the electroviscous force at finite frequency, |F (ω)| < F (0).
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Figure 5.2: Viscoelastic force as a function of the distance for ωτ = 0.5 and 1 where the
blue line is the real component FRe and the red one −FIm, the green line displays the static
case F0.

With the bulk conductivity and a distance h0 of 100 nm, this rate takes values of the

order

1

τ
∼ kBT

6πηh0λ2n0
∼ 105s−1. (5.14)

This means that the radial charge distribution is achieved on a time scale well below a

microsecond, much faster than the oscillations of the cantilever in our AFM experiments.

On the other hand, diffusion of ions over the lubrication length r0 =
√
h0R occurs on
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the time scale τD = r20/D. With h0 = 100 nm, R = 100µm and the diffusion coefficient

D = 10−10m2s−1, the corresponding rate takes the value 1/τD ∼ 10s−1, which a posteriori

justifies our neglecting diffusion in the charge current (5.2).

Finally we note that the left-hand side of (5.1) relies on the assumption that both the

current JC and the electric field E are confined to the film of thickness h. this is true for

JC because of charge conservation, however the confinement of the electric field, is satisfied

only for a vanishing permittivity εs of the solid surfaces is much smaller than that of water

ε.

In reality, the permittivity ratio εs/ε is about 1/20 for silica and 1/15 for mica. At

radial distances much larger than the thickness h0, the electric field E penetrates in the

solid surfaces, and the left-hand side of (5.1) reads εh∇·∂tE, rendering the relation between

E and JC significantly more complex. Yet even for zero permittivity contrast, εs = ε, the

finite term on the left-hand side of (5.1) would merely result in a rather insignificant

correction factor in the relaxation rate.

Charge conservation

Since the total electric charge in our system never changes, the charge conservation law

must be met. Giving the continuity equation between the charge density δρ and the current

density JC

∂tδρ+∇ · j = 0 (5.15)

And by Gauss’s law,

∇ · E = δρ/ε (5.16)

The radial Electric field as well as the charge distribution δρ(r) describe the response to

the mechanical driving V (t) = Aω cos (ωt), therefore they oscillate with the frequency ω.

Many electroviscous studies rely on a channel between two electrolyte reservoirs, where
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the steady-state is characterized by a constant streaming current JC= 0. Contrary to this

open geometry, the squeezing-motion with periodic driving does not allow for a steady

current, but requires that a zero mean value, averaged over one period 2π/ω,

∫ 2π/ω

0
dtJC = 0 (5.17)

A total current arises if the streaming and the conduction contributions of Lcv∇P and

LcceE show a finite phase angle δ

JC ∝ cos (ωt− δ) (5.18)

That for charge conservation implies that the screening charges density δρ

δρ ∝ sin (ωt− δ) (5.19)

The observed phase shift describes the relaxation process, hence it can be expressed as a

function of the frequency ω and the characteristic time τ , tan (δ) = ωτ .
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Figure 5.3: Charge density as a function of the distance for λ = 30 nm and σ = 0.2nm−2

comparing for ωτ = 0.1, 0.5 and 1 where the blue line is the real component δρRe and the
red one δρIm
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5.2 Series expansion

We start from the usual pressure for a Poiseuille flow, and we assume that modifications

due to charge effects can be cast in the form of a power series in h0/h,

∇P =
6ηrV

h3

(
1 +

∑
n>3

pn

(
h0
h

)n−3)
. (5.20)

Similarly we write the electric field as

eE = eE0
r

r0

∑
n

en

(
h0
h

)n
, (5.21)

where en are complex numbers.

Then the volume (JV ) and charge (JC) flow equations and provide a relation between

the coefficients pn and en,

pn = − ζ̂h0
4π`B

2eE0

ηV r0
en−2 (n > 3), (5.22)

where p3 = 1. The prefactor on the right hand side compares the electric and viscous

forces.

We separate the constant and h-dependent contributions of Lcc and Lcv according to

Lcc = L0
cc + L1

cc

h

h0
, Lcv = L1

cv

h

h0

Resulting in a recursion relation for the coefficients en,(
iωh0εη

e2
+ L1

cc

)
en =

12

h30
(L1

cv)
2en−2 − L0

ccen−1 (5.23)

In our system, the pressure gradient will advect the counter-ions in the electrolyte solution

that give rise to an electric field generating osmotic flow and electrophoresis. However,

before this electric field, the flow of the mobile charges will depend only on the gradient of

pressure.
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So, in an initial time (t = 0) one can express

JC = −Lcv
∇P
η

(5.24)

This simplification applied to equation (5.22) and as an approximation replacing the spa-

tially varying factor h with h0. Since p1 = 0 and p2 = 0 implies that the first two coefficients

of the electric field e1 = 0 and e2 = 0 so the initial point of the system has a solution from

n = 3 since p3 = 1

In a initial time, when there is not an electric field but only a gradient of pressure,

the contribution of the electric field coefficients will be attributed to the advected charges,

described by the coefficient L1
cv in the first coefficient, en0 . The electro-osmotic flow as

well as the electrical conductivity are shown and become more important as higher terms

solutions are considered and are included in b̃ and ã.

The total charge of the system can be obtained by integrating the charge density over

the surface as

cn = 2π

∫ r

0
drrδρ =

2eE0h0nπr0εen
n+ 1

(5.25)

We can see that from the value n > 3 the behaviour is always the same. where for the total

solution both real and imaginary part are zero, as expected. A more detail calculation can

be found in Appendix A.

General solution

As a more general solution, we solve directly for the charge flow

∇ · ∂tE = iω∇ · E = − e

hε
∇ · JC . (5.26)
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Figure 5.4: Real and Imaginary terms of the charge

Allowing us to express the system as

[
E0h

3
0r0
[
e2(hL1

cc(n− 1) + h0L
0
ccn)− iωεηh0hn

]
en
](h0

h

)n
= −12ehL1

cv(h(n− 2)− h0(n− 1))RV ηpn

(
h0
h

)n (5.27)

The total force as a function of the coefficients pn

F = 2π

∫
drrP =

6πηV R2

h0

(
1 +

∑
n>3

2pn
(n2 − 3n+ 2)

)
(5.28)

Evaluating the force and adding them, where Fn corresponds to
∑n Fn, we observe for the

first 7 solutions, that the force, both in the real as well as the imaginary contribution, it

is smaller than when the force is purely due to the osmotic pressure for small distance h0,

and it has a tendency to reach F3 as h0 grows.

We can see that from the value n > 3, the correction added for the coefficients pn have

a bigger impact in the force for h0 ∼ 2λ. However, for larger distances, the force will

linearly approach Poiseuille flow force. As one can see in the figure 5.5, the frequency has

a big influences in the values that can reach by the force when the system is at distances

closer to 2λ values, however, the correction for the pressure driven force will decrease faster

for larger ωτ , and the effect will not be noticeable when the distance is increased.
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(a) (b)

Figure 5.5: Viscoelastic force as a function of the distance for ωτ = 0.5 and 1 where the
blue line is the real component FRe and the red one −FIm, the green line displays the static
case F0.

5.3 Relaxation Time Approximation vs Series Expansion

The force expression obtained through relaxation approximation and by the series expan-

sion approximation can be expanded as a geometric series, they have the form

F

F0
= 1 +

1

6

λ2∗
h20

1

1 + iωτ
+ ... (5.29)

Its real part describes the viscous drag in phase with the external driving V (t), and the

imaginary part the out-of phase ”elastic” response.

Considering that both systems, we can see that for a very small ωτ the solution for the

force obtained trough the series expansion method approaches the relaxation time approx-

imation in the imaginary contribution, however, for the real part of the solution, include

by the relaxation approximation is always larger, since the force obtained by expanding in

series terms is always small.

When the frequency ω tends to be small, we recover the static state of the system,

when there is no time dependency, this implies that if the sphere is not oscillating, then

there wont be a dephasing in the total force, or not a viscous force in the fluid that is being

advected.
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Discussion

Validity of the narrow and wide channel approximation

If the double layers on either side of the capillary don’t overlap, their properties are given

by the Poisson-Boltzmann potential calculated for an infinite half-space.

ψ = −4kBT

e
arctanh(γe−z/λ),

This approach is widely used to describe electrokinetic and osmotic phenomena in capil-

laries [3, 34]. Its range of validity is obviously related to the Debye length λ, our analysis

shows that in reality it is limited by a significantly larger distance λ∗, as defined in (3.27)

which is proportional to the electrokinetic potential. With typical values of the reduced

potential ζ̂ ranging from 1 to 4, the parameter λ∗ may be up to 20 times larger than the

actual screening length λ.

By observing the electroviscous coupling parameter ξ , it can be concluded that an

analytical approach to solve the narrow-channel approximation 3.4 provides a good de-

scription only for the range where h0 ≤ λ, whereas the opposite limit 3.3 converges only

at h0 > 20λ.

Unfortunately it is impossible to obtain the electroviscous drag force from the coupling

parameter obtained from a narrow channel approximation
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Figure 6.1: Numerical calculation of the electroviscous coupling parameter ξ as a function
of h, for surface charge density σ = 0.002 and 0.02 nm−2, and Debye length λ = 30.
Dotted and dashed lines correspond to the approximations of narrow and wide channels,
respectively, whereas the solid lines give the numerical solution.

ξ =
πσ2ah

πσ2ah+ 4(σ + n0h)
.

since the excess pressure P (h) = 6ηV
∫∞
h

dh′

h′3
1

1−ξ(h′) is normalized with respect to the

equilibrium value at infinity. As a consequence, in the most interesting intermediate range,

the force can only be calculated numerically. This can not be overcome by resorting to

Debye-Hückel approximation, since in the weak-channel limit its validity is restricted to

2πσλ`B � h0/λ [59], which applies to very weakly charged surfaces only.

Comparison with previous work

Electroviscous effects on squeezing motion have been studied in several previous papers

[3, 5, 7, 10]. All of these works start, more or less explicitly, from the coupled equation

system

JV = −Lvv∇P + LvceE

JC = −Lcv∇P + LcceE
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considering the volume and charge currents. Yet they use, as an essential difference, the

unperturbed pressure gradient ∇P0 = −6ηrV/h3 in JC instead of ∇P . This perturbative

approach corresponds to a linearization of the pressure gradient in the coupling parameter

ξ,

∇P1 = ∇P0(1 + ξ), (6.1)

instead of the exact expression.

As a consequence, electroviscous effects appear as an additive correction to the unper-

turbed drag force F0. Thus the wide-channel force of Bike and Prieve [3] is identical to the

first two terms of the solution of the force where a width of the water film is much larger

than the Debye length, h� λ

F

F0
= 1 +

1

6

λ2∗
h20

+
1

15

λ4∗
h40

+
1

28

λ6∗
h60

+ ...

although our expression (3.30) corresponds to the full series in λ∗/h0. Similarly, the nu-

merical calculations of Chun and Ladd [5] and Zhao et al. [10], are done with the linearized

pressure gradient P1.
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Figure 6.2: Numerical calculation of the electroviscous enhancement of the drag force
F/F0−1 as a function of h, for σ = 0.02enm−2 and λ = 30 nm. The solid line corresponds
to the force calculated numerically with the exact pressure, and the dashed line that with
the linearized expression P1.
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In Fig. 6.2 we compare the electroviscous enhancement of the drag force, calculated

with the numerically exact pressure gradient

∇P = −6ηrV

h3
1

1− ξ

and with the linearized form P1 (6.1). For the parameters λ = 30 nm and σ = 0.02 e nm−2,

the linearized force is by about 50% larger than F0, whereas the increase of the full ex-

pression exceeds 100%.

This difference is not surprising in view of the coupling parameters shown in Fig. 6.1

where in the intermediate range where ξ reaches values of the order of unity, one expects

a significant nonlinear behavior.

Electroviscous coupling

We calculate the electrostatic and electroviscous properties calculated at constant charge

σ as described in section 3.5 (cc) and that of constant potential (cp), where the boundary

condition (3.46) is replaced with

ψ(±h/2) = ζ∞, (6.2)

where ζ∞ is the surface potential at large distance, calculated with the surface charge σ

according to (3.43).

In Fig. 6.3 we plot the coupling parameter ξ for the cases of constant charge and

constant surface potential, and observe a behavior similar to that of disjoining pressure

and repulsive force: At distances beyond the screening length h > λ, the electrostatic

boundary condition is of little relevance, whereas at short distances, h < λ, both of the

curves calculated numerically for constant charge and constant potential diverge.

The electroviscous drag force F depends in a rather intricate manner and non-linear

manner on ξ, resulting in a much weaker effect of the electrostatic boundary condition.

Indeed, the curves for constant charge and constant potential shown in Fig. 6.4, differ by
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Figure 6.3: Electroviscous coupling parameter ξ as a function of the distance h, for both
constant charge (cc), constant potential (cp) and charge regulation (cr).

15%, whereas the corresponding coupling parameters ξ differ by more than one order of

magnitude.

Comparison with experiments

In order to verify the validity of our expression we compare with the experimental data ob-

tained by the group of Nano-physics of fluids at interfaces at Laboratoire Ondes et Matiere

d’Aquitaine. They performed a dynamic AFM measurement with colloidal probe follow-

ing the method described in [85]. A spherical particle with a radius of R = 55± 0.5 µm

was glued at the end of a cantilever. Then mica surface was driven by a piezo to ap-

proach the spherical particle with a very small velocity such that the hydrodynamic force

can be neglected, and meanwhile the probe was also driven with a base oscillation am-

plitude Ab = 3.5 nm and frequency of ω/2π = 100 Hz. The oscillations of the cantilever

with respect to the mica surface causes a Poiseuille flow that depends on time as well as

electrokinetic phenomena due to the displacement of charges in the fluid.

They proceed to record the DC component of the cantilever deflection, from which the

separation distance h0 and electrostatic force F between the sphere and the mica surface
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Figure 6.4: Electroviscous drag force F as a function of h0 for cc, cp and cr boundary
conditions.

were extracted. The mica surface and cantilever probe are immersed in the electrolyte

solution of 0.1 mM NaCl.

Fig. 6.6 shows the electrostatic force in a weak electrolyte solution, of approximately

0.1 mM NaCl. The upper (red) curve is calculated from the definition of the Static force

V

h

R

AFM

Figure 6.5: Enhancement of the drag force due to electroviscous coupling. The green points
are measured AFM data, and the black dots give F/F0 − 1.
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Figure 6.6: Static repulsion K between the AFM sphere and the solid surface, as a function
of the distance h0. The squares give experimental data. The blue and red curves are
calculated from (4.6) for constant potential and constant surface charge, respectively, with
the parameter values R = 55µm, surface charge density σ = 0.025nm−2 and screening
length λ = 40nm.

K = 2πR

∫ ∞
h0

dhΠ(h). (6.3)

for constant charge density σ = 0.025nm−2, and the lower (blue) one for constant

surface potential ζ = −95mV. Both curves are calculated for a Debye length λ = 40nm.

Fig. 6.7 we plot the numerical calculation of the electroviscous enhancement of the drag

force F/F0−1 as a function of h together with the measured the viscous component of the

drag force on a 55µm-sphere mounted on an AFM cantilever, as a function of the distance

h0. For a low concentration of the salinity solution, when the distance is large, the elastic

component of the force is zero. The fitting is considering Debye length of λ = 40 nm and

a constant charge of σ = 0.008 nm−2, while the observed Debye length was λ = 28± 2nm.

The fact that the fitting for the smaller values of h could be related to slight deviation of

the λ or sigma used for the numerical computation with regard to the measured ones.
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Figure 6.7: Enhancement of the drag force due to electroviscous coupling. The green points
are measured AFM data, and the black dots give F/F0 − 1.
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Conclusion

The main aim of the work presented in this thesis was to develop and apply a theoretical

model of the dynamic properties of electric double layers in a confined geometry. In

particular the properties of confined electrolytes in the nanoscale range in a sphere-plane

geometry. We have studied the electroviscous and electrostatic forces exerted on a vibrating

AFM tip across a nanoscale water film and compared them with obtained experimental

data.

In chapter 3 in the framework of Onsager relations for generalized fluxes and forces, we

derive the drag coefficient (??) in terms of the electroviscous coupling parameter ξ, and

find a quantitative agreement with experimental data (Fig. ??). As the only parameters,

the surface charge σ and the screening length λ are taken from the electrostatic repulsion

shown in Fig. 6.6.

This analysis relies on a quasistatic approximation (??), where the radial charge dis-

tribution in the water film is assumed to follow instantaneously the external driving. The

fits of the viscous and elastic components of the response function (??), measured at

ω/2π = 100 Hz and shown in Figs. 3.5 and ??, indicate that this approximation is justi-

fied at distances larger than the screening length, yet ceases to be valid for h0 < λ. Our

experimental data strongly suggest that in this range both the spring constant k and the

drag coefficient γ vary with frequency. The nature of the underlying relaxation process is

79



Chapter 7. Conclusion 80

not clear at present.

Electroviscous effects on squeezing motion have been studied in several previous papers.

All of these works start, more or less explicitly, from the volume and charge currents. Yet

when calculating the charge current JC , they use the unperturbed pressure gradient ∇P0 =

−6ηrV/h3 instead of ∇P . This perturbative approach corresponds to a linearization of

the pressure gradient in the coupling parameter ξ,

∇P1 = ∇P0(1− ξ), (7.1)

instead of the exact expression. As a consequence, electroviscous effects appear as an

additive correction to the unperturbed drag force F0. Thus the wide-channel force of Bike

and Prieve is identical to the first two terms of our presented series expansion, whereas our

expression corresponds to the full series in λ/h0. Similarly, the numerical calculations of

Chun and Ladd and Zhao et al., are done with the linearized pressure gradient P1. In this

work we compare the electroviscous enhancement of the drag force, calculated with the

numerically exact pressure gradient and with the linearized form P1. For the parameters

λ = 50nm and σ = 0.03nm−1, the linearized drag coefficient (dashed line) is 28% larger

than 0, whereas the increase of the full expression (solid line) attains 40%. This difference

is not surprising in view of the coupling parameters; in the intermediate range where ξ

reaches values of the order of unity, one expects a significant nonlinear behavior.

Charge regulation turns out to be of minor importance in the experimentally most rel-

evant range. Indeed, the electroviscous coupling sets in at large distances and is maximum

at h0 ∼ 3λ (Fig. ??), whereas the electrostatic boundary conditions and charge regulation

effects are significant in narrow channels only, as shown in Figs. 6.3–6.6.
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Series expansion

We start from the usual pressure for a Poiseuille flow, and we assume that modifications

due to charge effects can be cast in the form of a power series in h0/h,

∇P =
6ηrV

h3

(
1 +

∑
n>3

pn

(
h0
h

)n−3)
. (A.1)

Similarly we write the electric field as

eE = eE0
r

r0

∑
n

en

(
h0
h

)n
, (A.2)

where en are complex numbers.

To make a general review, it is necessary to recall that the diffusion of the advected

counter-ions occurs on a time scale τD = Rh0/D, of the order of a second, which turns out

to be much larger than the time scale arising from the coupled currents. Thus we discard

the diffusion term D∇2C in

∂tC = D∇2C −∇ · JC , (A.3)

and using Gauss’ law, we rewrite ∂tC as the time derivative of ∂tC = ∇ · E, resulting in

∇ · ∂tE = iω∇ · E = − e

hε
∇ · JC . (A.4)
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In order to recover a homogeneous expression in powers of h, we resort to the approximation

iωE = − e

hε
JC . (A.5)

This simplification applied to equation (5.22) and as an approximation replacing the spa-

tially varying factor h with h0. Since p1 = 0 and p2 = 0 implies that the first two coefficients

of the electric field e1 = 0 and e2 = 0 so the initial point of the system has a solution from

n = 3 since p3 = 1

We separate the constant and h-dependent contributions of Lcc and Lcv according to

Lcc = L0
cc + L1

cc

h

h0
, Lcv = L1

cv

h

h0

Inserting the above expressions we find relation for the coefficients pn and en,

L1
cv

6ηrV

h30
pn = eE0

r

r0

[(
iωh0εη

e2
+ L1

cc

)
en + L0

ccen−1

]
(A.6)

For n = 3, we have with p3

6ηr0V

eE0h30
L1
cv =

(
iωh0εη

e2
+ L1

cc

)
e3 + L0

cce2 (A.7)

For n > 3, the pressure coefficient is related to en by (5.22), resulting in a recursion relation

for the coefficients en,(
iωh0εη

e2
+ L1

cc

)
en =

12

h30
(L1

cv)
2en−2 − L0

ccen−1 (A.8)

We can re-express this equation as

en = ãen−2 − b̃en−1 (A.9)

Where
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ã =
(L1

cv)
2

L1
vvL

1
cc

1

iωτ + 1
b̃ =

L0
cc

L1
cc

1

iωτ + 1
and

1

τ̃
=

h0εη

e2L1
cc

(A.10)

The coefficient ã is very close to the definition of ξ while it considered exclusively the

effects of the bulk charge. One can see that ã � 1. On the other hand, the second

coefficient b̃ includes only the surface density interaction, which leads to ã < b̃.

Since p1 = 0 and p2 = 0 implies that the first two coefficients of the electric field e1 = 0

and e2 = 0 so the initial point of the system has a solution from n = 3 since p3 = 1

en0 = −i6V r0eh
2
0

ωE0ε
L1
cv = −iξ0 (A.11)

Using the notation en0 = e3 since e3 is the first solution different to zero. So going back

to the main electric field expression (A.9) we get

en0+1 = ib̃ξ0

en0+2 = −i(ã+ b̃2)ξ0 (A.12)

en0+3 = i(2ã+ b̃2)b̃ξ0

en0+4 = −i(ã2 + 3ãb̃2 + b̃4)ξ0

The rest of the coefficients will be also a function of en0 and depending if the coefficient is

an even or odd number.

en0 = −i6V r0eh
2
0

ωE0ε
L1
cv = −iξ0 (A.13)

For m even

en0+meven = −iυmξ0 (A.14)

For m odd

en0+modd
= iχmb̃ξ0 (A.15)
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Where the coefficients υm and χm are polynomials of a and b. All coefficients where m is

an even number will be negative while for m odd they are positive therms.

We can solve for the pressure also by substituting (??) in equation (5.22). The first

thing we notice is that the term p4 = 0 since e2 = 0. For the rest of the coefficients the

solution follows the same form as the electric field ones; so defining a new constant from

p5

p5 = − ζ̂h0
4π`B

2eE0

ηV r0
en0 = −i12e2h20

ωηε
(L1

cv)
2 = −i%0 (A.16)

As it follows for the rest

p6 = ib̃%0

p7 = −i(ã+ b̃2)%0 (A.17)

p8 = i(2ã+ b̃2)b̃%0

p9 = −i(ã2 + 3ãb̃2 + b̃4)%0
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Figure A.1: Coefficients pn and en.

An we can conclude as well that

pnodd
= −iυm%0 and pneven = iχmb̃%0 (A.18)
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For this first approximation and applying the continuity equation

∂tC = −∇ · JC (A.19)

We can obtain the charge density terms for different values of n, as expected C1 and C2

are zero and we find

C3 = i
V L1

cv

100Rh3
(r2 − 2h0R)

C4 = 0

C5 =
V L1

cv

100Rh5
(r2 − 2h0R)h20%0 (A.20)

C6 =
V L1

cv

100Rh6
(r2 − 2h0R)h30b̃%0

C6 =
V L1

cv

100Rh7
(r2 − 2h0R)h40(ã+ b̃2)%0

As the charge density depends on both ã and b̃, it will have a imaginary and a real

contribution.

It is important to notice that for a bigger n the values of both real and imaginary

charge density tend to zero and the more relevant coefficient is C5. And by solving for the

charge integrating

c = −
∫
r∇ · JCdr (A.21)
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c3 = i
3V L1

cvr
2

50Rh2

c4 = 0

c5 =
3V L1

cvr
2

50Rh4
h20%0 (A.22)

c6 =
3V L1

cvr
2

50Rh5
h30b̃%0

c6 =
3V L1

cvr
2

50Rh6
h40(ã+ b̃2)%0

The charge is not conserved this case because the initial assumption that JC = −Lcv∇P

does not considers the total effect of the electric field, since the real part of the coefficient

cn5 and the imaginary part of cn6 are still relevant, so as making the addition of all the

charges as our initial definition of the electric field for larger values of n we get that the

total charge is of roughly c ≈ Re(cn5) + iIm(cn6).

However, as soon as the total definition of the charge flow JC then the charge in the

system is almost conserved.

c3 = i
3V L1

cvr
2

50Rh2

c4 = 0

c5 =
3V L1

cvr
2

50Rh4
h20%0 (A.23)

c6 =
3V L1

cvr
2

50Rh5
h30b̃%0

c6 =
3V L1

cvr
2

50Rh6
h40(ã+ b̃2)%0

We can observe the same behaviour that in the previous case where the coefficients cn5

and cn6 have a highest contribution to the charge values, but that are closer to zero since

both of them are � 1

The charge is now conserved this case because the initial assumption that JC =



Appendix A. Series expansion 88

5 10 15 20 25

10- 11

10- 6

10- 1

104

109

n

c n

Figure A.2: Real and Imaginary charge coefficients cn that decrease when the polynomial
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Lcv∇P − LcceE does considers the total effect of the electric field, since the real part

of the coefficient cn5 and the imaginary part of cn6 are still relevant, so as making the

addition of all the charges as our initial definition of the electric field for larger values of n

we get that the total charge is of roughly c =∝ Re(cn5) + iIm(cn6). But the solution for

the total charge in the total system, after the overall integral in the areal, it is closer to

zero even for the larger coefficients found before, since they might be proportional to JC

which by definition is initially zero, then the largest contribution will be proportional to

−iJC(n)ω/r for n > 3

cn = −iJC(n)ω

r
(A.24)

Solution without approximation

We know from the volume conservation that we can express

pn = χen−2 (A.25)

and by combining Gauss’ law and charge conservation
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apn − ben−1 = en (A.26)

Where

χ = − ζ̂h0
4πlB

2eE0

ηV r0
a =

L1
cv

L1
cc

6ηr0V

h30

1

iωτD + 1
and b =

L0
cc

L1
cc

1

iωτD + 1
(A.27)

This give us the general solution for both en and pn

en =
1

2n+1aχ2
√
b2 + 4aχ

(
b
√
b2 + 4aχ− b2 − 2aχ

)(
−b−

√
b2 + 4aχ

)n
+ ...(

b
√
b2 + 4aχ+ b2 + 2aχ

)(
−b+

√
b2 + 4aχ

)n (A.28)

And

pn =
1

2n+1aχ2
√
b2 + 4aχ

((
b3 + 2abχ

)√
b2 + 4aχ− b4 − 4abχ − 2a2χ2

)
...((

b3 + 2abχ
)√

b2 + 4aχ+ b4 + 4abχ + 2a2χ2
) (A.29)

For the first 10 coefficients we get

n pn en

3 1 a

4 0 −ab
5 aχ a(b2 + aχ)

6 −abχ −a(b3 + 2abχ)

7 aχ(b2 + aχ) a(b4 + 3ab2χ+ a2χ2)

8 −aχ(b3 + 2abχ) −ab(b2 + aχ)(b2 + 3aχ)

9 aχ(b4 + 3ab2χ+ a2χ2) a(b6 + 5ab4χ+ 6a2b2χ2 + a3χ3)

10 −abχ(b2 + aχ)(b2 + 3aχ) −ab(b2 + 2aχ)(b4 + 4ab2χ+ 2a2χ2)

The charge density of the system is a property that can be known through the definitions

of the charge conservation or the Gauss’ law since:

∂tρ(r) = ∇ · JC and ρ = εh∇E (A.30)
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Figure A.3: Viscoelastic force as a function of the distance for ωτ = 0.5 and 1 where the
blue line is the real component FRe and the red one −FIm, the green line displays the static
case F0.

both solutions are function of n and h0; from the charge flow JC

ρ(r, n, h0) =− i2n+1(neE0h
3
0LccRr0en + 3L1

cv((n− 2)r2 − 2h0R)(r2 + 2h0R)V ηpn)

h20(r
2 + 2h0R)2

...(
h0R

r2 + 2h0R

)n−1
(A.31)

The total charge of the system can be obtained by integrating the charge density over the

surface as

cn = 2π

∫ r

0
drrρ (A.32)

And we find that from charge conservation

cn = −21eE0Lccπr0en
ω

(A.33)

Plotting for the real and imaginary part of both solutions we find

and from Gauss’ law

ρ = −2neE0nr0εen
R

(
h0R

r2 + 2h0r

)n
(A.34)
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Where the total charge

cn =
2eE0h0nπr0εen

n+ 1
(A.35)

Comparing this two forms of the charge density for different values of n

Solution without approximation

By solving directly from

∇ · ∂tE = iω∇ · E = − e

hε
∇ · JC . (A.36)
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Without making the approximation that leads to a general expression

[
E0h

3
0r0
[
e2(hL1

cc(n− 1) + h0L
0
ccn)− iωεηh0hn

]
en
](h0

h

)n
= −12ehL1

cv(h(n− 2)− h0(n− 1))RV ηpn

(
h0
h

)n (A.37)

As before we can separate the constants and h-dependent contributions and we rewrite the

derivative of h as

h′(r) =
2(h− h0)

r
(A.38)

We know from the volume conservation that we can express

pn = den−2 (A.39)

where

d = − ζ̂h0
4π`B

2eE0

ηV r0
(A.40)

That leads to a recursive system for the coefficients pn, and by combining Gauss’ law and

charge conservation

pn+2 =
1

1− iωτ n
n−1

([
2(L1

cv)
2

L1
vvL

1
cc

− L0
cc

L1
cc

]
pn+1 −

2(L1
cv)

2

L1
vvL

1
cc

pn

)
=

1

1− iωτ n
n−1

([
2ξ1 − L0

cc

L1
cc

]
pn+1 − 2ξ1pn

) (A.41)

Where we apply the definition of ξ as a function of h0 as

ξ1 =
(L1

cv)
2

L1
vvL

1
cc

(A.42)

To simplify

pn+2 = a(bpn+1 − cpn) (A.43)
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Where

a =
1

1− iωτ n
n−1

b =
24(L1

cv)
2

h30L
1
cc

− L0
cc

L1
cc

c =
24(L1

cv)
2

h30L
1
cc

(A.44)

Where the definition of the decaying time is

τD =
h0εη

e2L1
cc

(A.45)

For the first 7 coefficients we get

n pn

2 0

3 1

4 ab

5 a(ab2 − c)
6 a2b(ab2 − 2c)

7 a2(a2b4 − 3ab2c+ c2)

8 a3b(ab2 − 3c)(ab2 − c)

Evaluating the real and imaginary part of the coefficients en and Pn they describe an

oscillatory behaviour, which is more notorious for a small frequency, since it decays faster

to zero when ωτ grows.

From the original definition the coefficient p3 = 1 and is from the coefficient p4 that

the viscous effects become relevant (imaginary part of the force). However, the absolute

value of the coefficients as a function of the distance h0 show that contribution of the extra

terms tend to zero when the distance is increased.

The total charge of the system can be obtained by integrating the charge density over

the surface as

Q = 2π

∫ r

0
drrρ (A.46)
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And we find that from charge conservation

Q = −2ieE0(L
0
cc + L1

cc)πr0en
ω

(A.47)

And from Gauss’ law

Q = −2E0h0nπr0εen
n− 1

(A.48)
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quelques phénomènes corrélatifs,” Bull. Akad. Sci. Cracovie., vol. 8, pp. 182–200,

1903.

[32] N. Nuchtavorn, W. Suntornsuk, S. M. Lunte, and L. Suntornsuk, “Recent applications

of microchip electrophoresis to biomedical analysis,” Journal of Pharmaceutical and

Biomedical Analysis, vol. 113, pp. 72–96, 2015. REVIEW 2015.

[33] G. Hempel, “Biomedical applications of capillary electrophoresis,” vol. 41, no. 6,

pp. 720–723, 2003.

[34] S. Marbach and L. Bocquet, “Osmosis, from molecular insights to large-scale applica-

tions,” Chem. Soc. Rev., vol. 48, pp. 3102–3144, 2019.



Bibliography 100

[35] S. Shoji, H. Sato, and R. Zengerle, “2.09 - liquid micropumps,” in Comprehensive

Microsystems (Y. B. Gianchandani, O. Tabata, and H. Zappe, eds.), pp. 301–322,

Oxford: Elsevier, 2008.

[36] T. Bøg-Hansen, “Electrophoresis — affinity techniques,” in Encyclopedia of Analytical

Science (Second Edition) (P. Worsfold, A. Townshend, and C. Poole, eds.), pp. 419–

425, Oxford: Elsevier, second edition ed., 2005.

[37] S. Ghosal, “Lubrication theory for electro-osmotic flow in a microfluidic channel of

slowly varying cross-section and wall charge,” Journal of Fluid Mechanics, vol. 459,

p. 103, 2002.

[38] S. Bai, P. Huang, Y. Meng, and S. Wen, “Modeling and analysis of interfacial electro-

kinetic effects on thin film lubrication,” Tribology International, vol. 39, no. 11,

pp. 1405–1412, 2006.

[39] P. Vainshtein and C. Gutfinger, “On electroviscous effects in microchannels,” Journal

of micromechanics and microengineering, vol. 12, no. 3, p. 252, 2002.

[40] T. Van de Ven, “On the role of ion size in coagulation,” Journal of colloid and interface

science, vol. 124, no. 1, pp. 138–145, 1988.
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