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Soft and squishy matter is ubiquitous in nature at many size scales. Some emblem-
atic examples are living systems, such as bacteria and sea sponges, while others are inert
matter such as clay and mud. Others examples are found in common man-made objects,
such as dish sponges, or even in complex synthetic materials, such as foams or polymeric
networks. Examples are illustrated in Fig. 1. From a physicist’s point of view, such sys-
tems are poroelastic materials. They have the abilities to deform and recover their initial
shape as a signature of elasticity, to absorb a solvent and to host fluid flows as a signature
of porosity. From this perspective, reticulated polymer hydrogels are fascinating systems
that exhibit particularly well a poroelastic signature. In particular, the ability of poly-N-
isopropylacrylamide (PNIPAM) to swell by a factor 4 in water at room temperature [1]
has been largely exploited in science. The resulting hydrogel exhibits a transition in
temperature, from a hydrophilic behavior at room temperature to a hydrophobic one for
higher temperatures. When grafted on a substrate [2], the latter temperature-responsive
polymer has found applications in the design of microfluidic valves [3, 4], in biomedical
fields such as single-cell trapping [5] for medical analysis, or drug delivery [6], and finally
in cellular culture [7, 8], exploiting PNIPAM bio-compatibility.

Despite the increasing interest for polymer hydrogels and their scientific applica-
tions, their fundamental mechanical behavior still constitutes a partly covered subject
in the literature. The first works on poroelastic matter were conducted by Biot [10],
in the context of soil sedimentation mechanics. While the effects of viscoelasticity [11–
13] have been recently under investigation, poroelasticity remains to address in more
detail [14–17]. The intrinsic complexity of these types of composite materials gener-
ates poroelastic and/or elastohydrodynamic couplings, thus, their mechanical response
depends on their interaction with the environment. Moreover, polymer hydrogels are
formed upon swelling, and constitute a mixture of different species characterized by cer-
tain affinities [18]. If the mechanics of swelling has been addressed for polymer gels [19–
21], and the one of drying is well documented for complex liquid droplets [22–25] and
films [26–29], the literature on gel-deswelling mechanics is less present. Furthermore,
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FIG. 1. Examples of soft and porous systems. A picture of cracked mud in Ireland;
Bob the sponge, dish sponges; a drawing of a human brain; a SEM picture of a polymer
network; sea sponges; a SEM picture of a synthetic foam. The SEM picture of the
polymer network was originally published in [9].
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the swelling-deswelling process presents asymmetric aspects [19, 20, 30].
In the present thesis, we study both theoretically and experimentally the mechanical

behavior of poroelastic materials when immersed into a solvent. The manuscript is
organized as follows. A first preliminary Chapter presents the overall context of the
thesis, from basics of fluid mechanics, continuum mechanics and polymer physics up
to the specific scientific background of this work. In the second Chapter, we report
elastic instabilities that can occur at the surface of hydrogels upon swelling and drying.
We exhibit a new morphology that is not reported in the literature, to the best of
our knowledge. In the third Chapter, we establish the theoretical background of the
poroelastic mechanical response to a point force. We compute the resulting deformation
profile over time for a permeable poroelastic medium, both in the semi-infinite and the
finite-thickness cases. In the fourth Chapter, we apply the latter theory to the case of
a gel gently indented by an oscillating sphere in lubrication conditions. We compare
our theoretical results to preliminary experiments performed on a PNIPAM hydrogel
with an Atomic Force Microscopy (AFM) based system. We show that such types
of experimental setups are well-designed to probe fragile and soft materials in a non-
contact mode without risk to damage the sample. However the porosity of the swollen
hydrogel appears as a subtle feature of the mechanical response, and can be described
as an effective compressibility. The last Chapter is dedicated to the investigation of
PNIPAM hydrogel thin films by Surface Forces Apparatus (SFA) in approach mode. We
highlight several regimes of mechanical response, from a small-deformation regime to
the dehydration-induced glass transition of the indented polymer film. Overall, we show
through different situations that the poroelastic response is characterized by a transition
from the behavior of a purely elastic and incompressible material to the one of a purely
elastic and compressible material.
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Chapter 1

General introduction and
concepts

In this preliminary Chapter, we introduce first the basic concepts of continuum mechan-
ics, fluid mechanics and polymer physics that we will use in the thesis. Then, in Sec. 1.5
we highlight the specific scientific context that led to the work reported in the thesis.

1.1 Flows in confined environments

1.1.1 Poiseuille flows

Fluid mechanics describes how fluids are transported in various contexts. The funda-
mental theory to describe such ubiquitous phenomena was developed between 1820 and
1850 by Claude-Louis Navier and Georges Gabriel Stokes. They gave their names to
the so-called Navier-Stokes equations, which express the mass conservation and the mo-
mentum balance, for Newtonian fluids [31]. Let us consider such a fluid, of dynamic
viscosity η and density ρ. The Navier-Stokes equations are partial differential equations
on the pressure and velocity fields p and v, respectively. By denoting the time t, the
Navier-Stokes equations are expressed in an Eulerian system of coordinates (x, y, z), as:

∂ρ

∂t
+ ∇ · (ρv) = 0, (1.1a)

ρ

[
∂v

∂t
+ v · ∇ (v)

]
= −∇p + η∇2v + f , (1.1b)

with f the external volumic forces, such as gravity: f = ρg. The Navier-Stokes equations
may be applied for instance to a compressible fluid, such as ambient air, which defines
the domain of aerodynamics. Or, for instance, the Navier-Stokes equations can be used
to describe incompressible fluids, such as water, which is the case in this thesis. When
the fluid is incompressible, the fluid density ρ is constant. Thus, the mass conservation
reads:

∇ · v = 0. (1.2)

A common practice in fluid mechanics is to introduce dimensionless quantities, that
compare different terms of the Navier-Stokes equations. The Reynolds number compares
the inertia term with the viscous stress term [32]. We introduce a typical scale of flow
velocity V0 and a typical length scale H0 over which the velocity varies. The Reynolds
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1.1. FLOWS IN CONFINED ENVIRONMENTS

(a) (b)

FIG. 1.1. Poiseuille velocity profiles in a pipe. (a): A fluid flows in a straight pipe
of length L and height h in between two rigid boundaries, driven by an extra pressure
applied at the entrance of the pipe. The resulting velocity profile is parabolic, and called
a Poiseuille profile. (b): A thin liquid film flows over a rigid boundary, squeezed towards
it by an object. The height profile of the film is denoted h(x, t). The same velocity
Poiseuille profile can be observed in the film.

number is defined as:

Re ∼ ρ||v · ∇ (v) ||
η||∇2v||

, (1.3a)

= ρV0H0
η

. (1.3b)

The value of the Reynolds number predicts the flow regime: for small Re, the flow is
dominated by viscous forces, while for large Re, the flow is dominated by fluid inertia.
However, the transition value depends on the geometry and the fluid density. The so-
called transition to turbulence is still a research area today.

To describe flows in confined geometries, in the present thesis, we work with small
values of the Reynolds number, in the range Re = 10−10 − 10−5. Thus, we neglect
the convective term. Let us introduce a simplified geometry that is representative of
the fluid mechanics problems encountered in this thesis. We consider a two-dimensional
straight pipe, of length L and height h, at the entrance of which a constant extra
pressure is applied, as schematized in Fig. 1.1(a). The velocity field rapidly reaches a
steady state, thus the temporal derivative of the velocity field can be neglected. In the
absence of external body forces, the incompressible Navier-Stokes equations reduce to
the incompressible Stokes equations:

∇ · v = 0. (1.4a)
−∇p + η∇2v = 0. (1.4b)

In this situation, the vertical component of the velocity field is null, thus v = vxex. The
incompressible Stokes equations (1.4) become then:

∂vx

∂x
= 0, (1.5a)

∂p

∂x
= η

∂2vx

∂z2 , (1.5b)

∂p

∂z
= 0. (1.5c)

Thus, the mass conservation and the momentum balance equations, respectively Eqs. 1.4a
and (1.4b), impose that the velocity vx is a constant along the horizontal direction x,
and that the pressure field p is a constant along the vertical direction z, respectively, as
shown by Eqs. (1.5a) and (1.5c). Then, the velocity profile vx(z) can be computed by
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solving Eq. (1.5b). In the simple situation presented here, we assume that the fluid does
not slip on the rigid walls, which reads:

vx(z = 0) = vx(z = h) = 0. (1.6)

We note that taking into account slippage at the walls may be relevant in more complex
situations, such as flows of polymer solutions [33–35] or flows on hydrophobic surfaces [36,
37]. Here, the chosen no-slip boundary condition leads to the computation of a parabolic
velocity profile, as:

vx(z) = 1
2η

∂p

∂x
z (z − h) , (1.7)

also known as Poiseuille velocity profile [38], that is often encountered in fluid mechanics
problems at low Reynolds number [39]. For instance, in microfluidics the flows are
contained into micrometric-to-millimetric channels, and are pressure-driven [40–44]: they
are described by such a velocity profile. Besides, we stress that these techniques have
found many applications over the past decades, from single-cell analysis [5, 45–47] to
particle tracking [48–50], passing through medical diagnosis [51, 52]. In this thesis, we
specifically study viscous flows that are confined in thin films.

1.1.2 Thin-film equation

The description of the fluid flow inside a thin film of liquid is similar to the one inside
a straight pipe that we detailed before. As schematized in Fig. 1.1(b), we consider
that a liquid film of thickness h is flowing onto a rigid boundary, yet the upper rigid
boundary may move slowly, have a less trivial shape. Stokes equations as given in
Eqs. (1.4) hold. We then introduce a hypothesis, which is that the vertical length scale
is small compared to the horizontal one: H0 ≪ L0. The latter hypothesis is called the
lubrication condition [32], and implies that the vertical component of the velocity field
is small compared to the horizontal one: vz ≪ vx. Thus, at leading order in H0/L0,
Stokes equations reduce to the same system of equations as for the Poiseuille flow, given
in Eqs. (1.5). Then, the parabolic Poiseuille profile given in Eq. (1.7) is a solution for
the velocity field. Now, when describing liquid thin films, a quantity of interest is the
height profile of the film, h(x), that can evolve along the x-axis. We then introduce the
volumetric flux in the x direction, as :

Qx =
∫ l

0
dy

∫ h(x)

0
dz vx(z) = − l

12η

∂p

∂x
h3(x), (1.8)

where l is a length along the third direction of space, y, on which the system is invariant.
Similarly, we introduce the volumetric flux in the z direction, that corresponds to the
time derivative of the film thickness, integrated over the upper surface of the film, as:

Qz =
∫ L

0
dx

∫ l

0
dy vz(z) =

∫ L

0
dx

∫ l

0
dy

∂h

∂t
= l

∫ L

0
dx

∂h

∂t
, (1.9)

with L a horizontal length along which the film is flowing. Invoking the flux conservation
for an incompressible liquid, the outgoing flux should equal the incoming one. Finally,
we derive the thin-film equation [32, 53, 54], as:

∂h

∂t
= 1

12η

∂

∂x

[
h3 ∂p

∂x

]
. (1.10)

The thin-film equation is largely used to describe lubricated contacts and squeezed
flows [55–57], from industrial applications to the modeling of landslides and faults in
geophysics [58, 59], through droplet generation and trapping in microfluidics [60–63].

8
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(a) (b)(a) (b)

FIG. 1.2. A spherical particle submitted to Stokes drag. (a): A particle of radius
R is moving at a velocity V in a viscous fluid. The stream lines are drawn. (b): A
particle of radius R is moving at a velocity V towards a rigid boundary. The distance
to the wall is denoted h.

1.1.3 Stokes drag

Let us now consider a spherical particle of radius R that is moving in a viscous and
incompressible fluid, at velocity V , as schematized in Fig. 1.2(a). The motion of the
particle forces the surrounding fluid to bypass it, and the fluid resists, as a result of
viscous stresses. Therefore, a drag force is applied by the fluid onto the particle. From
Stokes equations 1.4, the so-called Stokes drag is computed in the frame of the particle,
and reads:

FStokes = −6πηRV . (1.11)

For a detailed demonstration, the reader can refer to a classical fluid mechanics book [55,
64, 65]. The latter force should be taken into account whenever a no-slip rigid sphere
is in motion in a Newtonian fluid, when viscosity dominates over fluid inertia [66].
Furthermore, when the spherical particle approaches normally a flat rigid boundary, as
schematized in Fig. 1.2(b), a region of fluid becomes squeezed in between the sphere and
the walls. The escaping fluid is sheared between the particle and the wall. Therefore
the drag force is modified [67], and its vertical component reads:

FStokes,confined = −6πη
R2

h
V for h ≪ R, (1.12)

with h the distance from the bottom of the approaching sphere to the rigid wall. Finally,
several works have so far investigated how the Stokes drag is modified when more complex
physical effects are introduced, for instance by taking into account memory effects [68,
69], slippage [70], or for particles with a more complex shape [71].

1.1.4 Womersley number

We now consider that a sphere is immersed in a viscous fluid and has an oscillating
motion, at an angular frequency ω. We can still consider that the Reynolds number is
small, and then neglect in the Navier-Stokes equation the advection term ρv · ∇ (v).
Yet, the time-derivative term in Navier-Stokes equations, ρ∂tv is not zero any longer.
The typical velocity scale of the sphere is again denoted V0 and the typical length scale
of velocity variation is denoted H0. We introduce the Womersley number Wo, that was

9



CHAPTER 1. GENERAL INTRODUCTION AND CONCEPTS

originally introduced in the context of medical science, to study the pulsatile blood flow
inside arteries [72, 73]. The Womersley number is defined by taking the square root of
the ratio between the time-derivative term and the viscous term, as:

Wo ∼
√

ρ||∂tv||
η||∇2v||

, (1.13a)

=
√

ρV0ω

ηV0/H2
0

= H0

√
ρω

η
, (1.13b)

where
√

η/(ρω) is the viscous penetration depth. Thus, the Womersley number com-
pares the typical length scale of velocity variation H0, to the viscous penetration depth.
For low-Reynolds number unsteady problems, one should estimate the Womersley num-
ber, additionally to the Reynolds number. In the present thesis, we work with small
Womersley numbers, in the range Wo = 10−4 − 10−2. When the Womersley number is
small, the time-derivative term of inertia ρ∂tv can be neglected and the velocity field is
considered to have reached a steady state.

1.2 Diffusion

1.2.1 Diffusion equation

If a drop of ink is dropped in a glass of water, one observes that the ink gradually spreads
in the entire volume of water while the color fades at the same time. This phenomenon
is called diffusion: the ink progressively diffuses in water. Diffusion happens for a drop
of liquid in any miscible liquid as it would in gaseous media, and even for instance,
for water penetrating a solid and hydrophilic medium as shown further in this thesis.
Historically, the modern concept of diffusion was first described by the phenomenological
Fick’s law [74], which states that the diffusive transport of matter is oriented towards
the lowest concentration. The mathematical form of Fick’s law reads:

J = −D∇c, (1.14)

with J the diffusive flux of matter and c the concentration. The diffusion coefficient
D quantifies the area explored by diffusion by unit of time. Moreover, the continuity
equation given in Eq. (1.1a) ensures the conservation of matter, as:

∂c

∂t
+ ∇ · J = 0. (1.15)

Thus, a local variation of concentration with time is linked to a transport of matter.
If additionally the diffusion coefficient D is constant with the concentration c, the two
previous equations (1.14) and (1.15) lead to tho following linear diffusion equation:

∂c

∂t
= D∇2c. (1.16)

In the present paragraph, we established a diffusion equation for a concentration field.
More generally, diffusive phenomena are encountered in many situations and for various
fields (e.g. temperature), and obey to the same equation.
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1.2.2 Resolution with a Green’s function

In this subsection, we introduce the main ingredients of the classical path that is used
to solve the diffusion equation written in Eq. (1.16). We take the opportunity of solving
a simple standard diffusion equation to present the calculation method, whose scope
is much more general. This method can be used to solve more complex systems of
partial differential equations, as done in this thesis. The full calculation is detailed in
Appendix D.1. We first introduce the following initial condition:

c (x, 0) = c0δ3 (x) , (1.17)

which together with Eq. (1.16) define the fundamental problem. The solution is called
the fundamental solution, or Green’s function, and reads:

G (x, t) = c0√
4πDt

3 exp
(

− x2

4Dt

)
. (1.18)

By definition, the Green’s function of a problem constituted of a system of linear partial
differential equations, is the solution associated to a Dirac distribution as the the right
hand side source term. Here in particular, the initial condition transforms the equation
at t = 0 into one with a Dirac distribution as the right hand side source term. Finally,
by applying the superposition principle, or Duhamel’s principle [75, 76], the solution
to the diffusion equation (1.16) associated with any initial condition is computed by
convolution to the Green’s function G, as:

c (x, t) =
∫∫∫

R3
d3x G (x − y, t) c (y, 0) , (1.19)

with c (x, 0) the initial condition. One can remark that a natural, dimensionless diffusive
variable emerges, as χ = Dt/x2. Indeed, the length explored by front of diffusion scales
with

√
Dt, which defines the diffusive dynamics. For further reading on mathematical

methods associated to diffusion problems, one can refer to the work of Crank [77].

1.2.3 Diffusion of a particle in a liquid

An example of application of the diffusion equation presented in the previous subsection
is the diffusion of a solid sphere in a viscous liquid, that constitutes a classical problem.
When moving, the particle is subjected to the Stokes drag, which slows down its motion
in the liquid. On the contrary, the particle receives energy from thermal agitation,
through the collisions of liquid molecules. At low Reynolds number, the Stokes-Einstein
relation provides an expression of the diffusion coefficient of the particle [78–81], as:

D = kBT

6πηR
, (1.20)

with R the radius of the particle, η the liquid viscosity, T the temperature and kB the
Boltzmann constant. Many works were conducted, based on the fundamental Stokes-
Einstein relation, such as the experimental estimation of the Avogadro number by Jean
Perrin [82], the establishment of the fluctuation-dissipation theorem [83, 84], that still
constitute the basis of statistical physics today [85].

In the present section, we have considered a solid object that moves in a solvent by
diffusion. In the next section, we rather take the opposite point of view, and consider a
solvent that flows toward solid particles, to dilute them.
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H2O
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FIG. 1.3. Intuitive definition of the osmotic pressure. A U-pipe is filled with water.
Salt is added on the right side. A semi-permeable membrane placed in the middle allows
water to flow but prevents salt to pass through. A water flow from left to right dilutes
the salt, and results in a difference of height ∆H between the two sides.

1.3 Osmosis

1.3.1 Definition of the osmotic pressure

Let us consider a U-pipe filled with pure water, as sketched on Fig. 1.3. A semi-permeable
membrane is placed at the center of the tube, allowing only water to pass through. If
now one adds salt on the right side, the water dilutes the salt and the salt diffuses in the
water. Yet, the semi-permeable membrane prevents the salt to pass from right to left,
resulting in a water flow from left to right. At equilibrium, the water height is different
for the two sides of the tube. The height difference, noted ∆H, can be associated to
a mechanical pressure difference in the fluid ∆p, at both fluid surfaces. The osmotic
pressure Π is defined as:

Π = −∆p = ρg∆H, (1.21)
with g the gravitational acceleration and ρ the mass density of water. In other words, the
addition of a solute in a solvent creates a local increase of the osmotic pressure, compared
to a pure solvent. Fluid flows are directed towards the highest osmotic pressure to dilute
the solute. At equilibrium, all the water did not flow and some is left on the left side of
the tube. Thus the osmotic pressure is higher (and homogeneous) in the right side on the
tube compared to the left side. The difference in osmotic pressure is finally compensated
by the mechanical pressure difference on the two free surfaces, as expressed by Eq. (1.21).

The latter situation provides an intuitive definition of the osmotic pressure. Con-
sidering the pure solvent as the reference state with a zero osmotic pressure, the latter
increases with the concentration c of solute. This is materialized by Van’t Hoff for-
mula [18], which reads:

Π = cRT, (1.22)
with c the molar concentration, T the temperature and R the ideal gas constant. The
Van’t Hoff formula is derived from thermodynamics, considering that the activity of a
solvent varies with the concentration of the added solute. In the next paragraph, we
introduce a proper definition of the osmotic pressure, provided by thermodynamics.

First, still taking the pure solvent as the reference state, we consider the system after
addition of a solute. We recall from thermodynamics the expression of an infinitesimal
variation of Gibbs free energy [18, 86], which reads:

dGGibbs = −SdT + V dp + ∆µdN, (1.23)

with S the entropy, V the volume, T the temperature, p the mechanical pressure and N
the number of molecules of solute. The variation of chemical potential ∆µ is expressed
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1.3. OSMOSIS

FIG. 1.4. Darcy flow through a porous medium. A solvent flows through a porous
medium at a velocity v, or similarly with a molecular flux J , following the decreasing
mechanical pressures p or chemical potentials µ, or the increasing osmotic pressures Π.

by comparison to the reference state, and defined from Eq. (1.23) at constant pressure
and temperature, as:

∆µ = µ(p, T, c) − µ0(p, T ) = ∂G

∂N

∣∣∣∣
p,T

. (1.24)

To reach an equilibrium, the solvent flows to dilute the solute. Assuming that the
systems reaches an equilibrium when the Gibbs free energy is minimal, we deduce from
Eq. 1.24 that the solvent flow decreases the difference of chemical potential ∆µ. In other
words, the solvent flows towards the smallest chemical potentials. Then, by assuming
the incompressibility of both the solvent and the solute, the molecular volume of the
solvent Ω is defined by:

dV = ΩdN. (1.25)

Finally, the osmotic pressure Π is defined with the variation of chemical potential ∆µ,
using the molecular volume Ω, as:

Π = −∆µ

Ω = − 1
Ω

∂GGibbs
∂N

∣∣∣∣
p,T

= − ∂GGibbs
∂V

∣∣∣∣
p,T

, (1.26)

and the solvent flows towards the highest osmotic pressure.

1.3.2 Porosity

In this subsection, we rather consider the opposite situation, as schematized in Fig. 1.4,
where a solvent flows through a composite medium, driven by an imposed mechanical
pressure gradient. This situation can be represented by the local form of the Darcy’s
law [64, 87], which reads:

v = −k

η
∇p, (1.27)

with v the velocity field, η the fluid viscosity, p the pressure in the fluid and k the
permeability of the medium. Equivalently, a flow through a porous medium can be
described in terms of osmotic-pressure driving (directed towards the highest osmotic
pressures), or chemical-potential driving (towards the lowest chemical potentials), as
seen in the previous subsection. The Darcy’s law is then also expressed as;

J = − k

ηΩ2 ∇µ, (1.28)

with the instantaneous molecular flux J , expressed as J = v/Ω. Flows in porous media
constitute a field of research that has found many applications in the investigation of
soil mechanics [10, 88–92], and recently in the context of particles flowing in porous
media [93] or near boundaries [94].

13
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1.3.3 Polymer-solvent mixtures

When a solvent flows through a solid network, interactions between the solvent and the
solid matrix may occur. In particular, a solvent is defined as "good" or "bad" for a
polymer depending on theses interactions. Briefly, if the polymer dilutes in the available
volume of solvent up to the extent of the chain size, the latter is considered as good,
and otherwise, if the polymer collapses on itself the solvent is considered as bad [95].
When the solvent is pure water, the polymer is described as hydrophilic or hydrophobic.
This statement is modeled by Flory-Huggins theory for solvent mixtures [18]. First, the
Boltzmann formula provides the entropy per site of a thermodynamic system, as for the
general so-called Shannon entropy, as:

S = −kB
∑

i

pilnpi, (1.29)

with pi the probability associated to a state i of the system. In the case of a polymer-
solvent mixture, two states are considered: the site is occupied either by a solvent
molecule, either by a polymer one. We introduce the volume fractions of the polymer
and solvent, as:

Φp = Vp
V

and Φs = Vs
V

, (1.30)

with Vp and Vs the partial volume of polymer and solvent respectively, with Vp +Vs = V .
The entropy per site reads:

S = −kB [Φpln (Φp) + (1 − Φp) ln (1 − Φp)] . (1.31)

The free energy is derived using the equation F = U −TS. An additional term of mixing
is considered [86, 96], such as the the mixing free energy of the whole system reads:

Fmix = kBT

Ω V [Φpln (Φp) + (1 − Φp) ln (1 − Φp) + χpsΦp (1 − Φp)] , (1.32)

with χps the polymer-solvent interaction parameter, or Flory parameter, that quanti-
fies the propensity of both species to demix. For instance, the quality of a solvent is
quantified by the Flory parameter. Additionally, the stability of a liquid-liquid or a
polymer-solvent mixture can be predicted using the Flory parameter. A mathematical
study of the free energy Fmix as a function of the volume fraction of a species Φ deter-
mines whether the system is stable, depending on the value of the Flory parameter [97–
102]. Furthermore, in the case of polymer solutions, the free energy of the system is ex-
pressed taking into account the number Np of polymer segments connected by bounds.
The free energy thus reads:

Fmix,ps = kBT

Ω V

[
Φp
Np

ln (Φp) + (1 − Φp) ln (1 − Φp) + χpsΦp (1 − Φp)
]

. (1.33)

By comparaison to the free energy in the case of liquid mixtures, as expressed in
Eq. (1.32), the factor 1/Np in Eq. (1.33) accounts for the fact that Np polymer seg-
ments are now bounded, which reduces the possibilities of arrangement. We note that
Flory-Huggins theory has largely been applied to swelling polymers [100, 103, 104], and
also to phase-separation in polymer mixtures [100, 105].

From Flory-Huggins mixing free energy, the isothermal elastic bulk modulus is de-
fined as:

Kel = −V
∂Π
∂V

= Φp
∂Π
∂Φp

∣∣∣∣∣
T

. (1.34)

14
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FIG. 1.5. An elastic beam. A pulling force F is applied on a straight beam of section
S and initial length L0, causing an elongation ∆L.

As a result, the elastic bulk modulus depends on the volume fraction of polymer, and
thus of solvent, as Φs = 1 − Φp.

Elastomers are typically made of synthetic or natural polymers that are reticulated
to form a network. When immersed in a favorable solvent, a polymeric matrix swells
as predicted by Flory-Huggins theory [18], and forms a gel. In this thesis, we will work
with a particularly hydrophilic polymer, that swells by several times its initial volume
when brought in contact with water, driven by strong gradients of osmotic pressure. In
such a case, the swollen hydrogel contains a large proportion of water molecules, likely
to flow with any perturbation. According to Eq. (1.34), variations of elastic properties
with the amount of solvent are expected [106, 107]. Having an idea for how the elastic
modulus can be controlled on a physico-chemical basis, in the following we introduce
basic concepts of elasticity theory that will be used in this thesis.

1.4 Elasticity

1.4.1 Hooke’s law

The elasticity of a solid object characterizes how the latter can be deformed when sub-
mitted to a load, in a regime where it recovers perfectly its initial shape after release of
the load. Let us consider a straight beam of section S and initial length L0, as schema-
tized in Fig. 1.5. A pulling force F is applied at one edge, normally to the section S and
along the axis of the beam, resulting in an elongation ∆L. For simplicity, we consider
here that the section S is not impacted by the stretching. The linear elasticity of the
beam is modeled by Hookes’s law as if it was a spring, as:

F

S
= E

∆L

L0
, (1.35)

with E the Young’s modulus of the material. In the one-dimensional case of an extended
beam, we define the stress σ as the applied force per unit area, and the strain ϵ as the
relative elongation, as:

σ = F

S
and ϵ = ∆L

L0
, (1.36)

and the Hooke’s law can be written as:

σ = Eϵ. (1.37)

To generalize the linear-elasticity concept to three-dimensional objects, we first in-
troduce the tensorial definition of the strain, as:

ϵ = 1
2
[
∇u + (∇u)T

]
, (1.38)

with u being the spatial displacement field with respect to the undeformed reference
state. Figure 1.6 schematizes how the strain tensor is established, in two dimensions for
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simplicity. The displacement field u expresses the displacement upon deformation of a
material point located at (x, z). An element of the strain tensor ϵij expresses the variation
of the i-component of the displacement field u with respect to the direction j. In the
definition introduced in Eq. (1.38), the strain tensor is linear with respect to gradients
of the displacement field. The latter definition is valid for small deformations [108],
otherwise non-linear terms in the gradient of the displacement field are added. In the
case of a solid presenting a linear and isotropic elasticity, the Hooke’s law gives the
stress-strain relationship:

σ = 2G

[
ϵ + 2ν

1 − 2ν
Tr (ϵ)

]
, (1.39)

with G the shear modulus [108]. The Poisson ratio ν characterizes the compressibility
of the material, i.e. whether and how much volume is kept when a compression load is
applied on the solid. For an elastic and incompressible solid, the Poisson ratio takes a
particular value, which is ν = 0.5. In this case, the total volume of the object is conserved
in the deformed state, which is mathematically expressed from the strain tensor, as:

Tr (ϵ) = 0, (1.40)

with noting Tr the trace of a tensor, and the stress-strain relationship given in Eq. (1.39)
becomes:

σ = 2Gϵ. (1.41)

For the case of the elastic beam presented at the beginning of this section, and schema-
tized in Fig. 1.5, the Poisson ratio takes another particular value, which is ν = 0. In
that case, the strain in the direction of the pulling force does not affect the strains in
the two other directions of space. Thus, the section of the beam is conserved in the de-
formed state, and the stress-strain relationship is identical to the one given in Eq. (1.41).
Finally, the link between the Young’s modulus E, the shear modulus G and the bulk
modulus K is recalled, as:

E = 2G(1 + ν) = 3K(1 − 2ν). (1.42)

For further reading, one can refer to the following references [108, 109].
Finally, an equivalent of the Navier-Stokes equation for fluids, the motion of an elastic

solid is described mathematically by Newton’s second law, which reads:

ρ
∂u

∂t
= ∇ · σ + f (1.43)

with f the sum of external body forces per unit mass. In the particular case of a steady
state, in the absence of external body force, Newton’s second law becomes:

∇ · σ = 0, (1.44)

which is also known as Navier’s closure relation.

1.4.2 Towards poroelasticity

The present thesis studies the mechanics of swollen gels, which couples several of the
themes presented until there. Upon swelling, solvent molecules penetrate inside the gel
and diffuse through the polymer matrix. Therefore, when a load is applied to the gel,
the solvent flows with time inside the polymeric network, and material deformations are
time-dependent. This dynamic response arises because the elastic polymer chains are
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FIG. 1.6. Two-dimensional displacement of an infinitesimal surface element
upon deformation. Originally located at a position (x, z), an infinitesimal surface
element dxdz is displaced by u upon a deformation. The strain tensor ϵ is computed
using the partial derivatives of the displacement field u, using Eq. (1.38).

attached by reticulation, while the solvent motion is unbounded and implies viscous dis-
sipation in the pores. Such a coupling mechanism is called poroelasticity. The question
of poroelasticity was first addressed by Biot, in the context of soil-consolidation mechan-
ics [10, 92]. Later, the framework of linear poroelasticity was established [15–17, 30, 91,
110–113]. Considering the gels as isotropic materials, the theory of elasticity presented
in this subsection is coupled to Darcy’s law (see Sec. 1.3.2), to describe solvent flows
in elastic and porous media. As a result, a term of osmotic pressure is added to the
expression of the stress as a function of strain, which thus reads:

σ = 2G

[
ϵ + 2ν

1 − 2ν
Tr (ϵ)

]
− ∆µ

Ω I. (1.45)

Since Biot’s first model, additional features have been added such as nonlinear elastic-
ity [114, 115], viscoelasticity [116], or surface stresses [110, 117, 118], and instabilities
have been considered [119].

Having presented basic notions of fluid mechanics, continuum mechanics and polymer
physics, the next section sets the scientific context of this thesis. In particular, the
first subsection is dedicated to the surface instabilities that arise at the surface of gels,
upon swelling and drying. The second subsection focuses on soft-lubrication situations,
encountered when a spherical particle moves close to a soft boundary.
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1.5 Scientific context of the thesis

Besides the mechanisms of soil sedimentation, poroelasticity has also been an important
ingredient in the context of the exploitation of soft-coating properties in fundamental
science. Indeed, grafting polymer films onto rigid surfaces is largely used for various ap-
plications, from cellular culture [7, 120] and medicine [6] to microfluidic engineering [3,
5], through the building biomimetic systems [8, 121]. However, swollen polymer gels
are fragile systems, and therefore are difficult to investigate without damage. Moreover,
grafting to a substrate can constrain the swelling of hydrogel films and lead to surface
patterning. Contactless methods appear as good candidates to probe the mechanical
properties of such systems, yet the associated theoretical framework usually applies to
flat substrates. Thus, in the following we present a few different types of surface instabil-
ities that may occur upon swelling and drying, before focusing on different investigation
modes of the mechanical properties of soft substrates.

1.5.1 Elastic and drying-induced instabilities

When a hydrophilic, reticulated polymer film is brought in contact with water, a hydro-
gel forms by swelling. However, when the polymer film is grafted onto a rigid support,
the swelling of the hydrogel film is constrained in one direction, which leads to the for-
mation of surface patterns. Volumetric expansion, associated with osmotic stress, is
inhibited laterally by substrate attachment. The resulting geometrical incompatibility
generates an in-plane compressive stress that can destabilize the flat surface of the hy-
drogel [122–125]. This nonlinear instability [126–128] renders the surface topography
non-uniform, with sharp "creases" (localized regions of large strain/curvature [129]) sep-
arating smooth peaks [122, 130–132], as shown in Fig. 1.7(a). Creases were first noticed
at the surface of reticulated gels of gelatine a century ago [133], and on swollen rubber
in the 1960’s [134]. Then, the works of Tanaka in the 1990’s pioneered the research
on the creasing instability [135, 136], and led to various numerical developments [130].
Later, the creasing instability has been largely reported at the surface of compressed
elastomers [127, 129, 137–140], as well as on swelling gels[30, 122, 124, 133–136, 141,
142]. In particular, the characteristic wavelength λcrease of the pattern observed at the
surface of a swollen material is predicted by the works of Dervaux and Ben Amar [143],
and reads:

λcrease = 4πτdry

log
(44.953τdry

d

) , (1.46)

with τdry being the initial dry thickness of the swelling film and d a regularization
length, taking into account the mechanical properties of the material [144], such as the
bulk elasticity, the surface tension between the material and the ambient air and the
thickness of the material layer.

Besides, previous works showed that the deposition of a pre-stretched stiff film onto
a soft material triggers the formation of wrinkles at the surface [125, 145], as schema-
tized in Fig. 1.7(b). Wrinkles on bilayered systems have been first studied in details by
Allen [146] in the engineering context of building materials, made of several layers with
different mechanical properties. Later, wrinkles were observed on the treated surface of
elastomers [145, 147–150] or on elastic films deposited on a bath of viscous fluid [151].
In such cases, the surface takes a sinusoidal form [131, 152–154], with a characteristic
wavelength λwrinkle that is determined by the respective Young’s moduli of both layers
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Soft

Stiff Soft
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Compressive stress Drying
(a) (b) (c)

FIG. 1.7. Creasing, wrinkling, and buckling instabilities. Summary of elastic
instabilities that arise at the surface of elastomers, swelling gels, and drying droplets. (a):
Creasing instability, observed on compressed elastomers and surface-attached swollen
gels. (b): Wrinkling instability, observed on bilayered systems composed of a pre-stretched
stiff and thin film deposited at the top of a soft and thick layer. (c): Buckling instability,
observed on drying droplets of colloid or polymer solutions.

and the thickness τstiff of the top stiff one. The wavelength reads:

λwrinkle = 2πτstiff

(
Estiff
3Esoft

)1/3
, (1.47)

with Estiff the Young’s modulus of the top, thin and stiff layer, and Esoft the one of the
bottom, thick and soft layer.

A first theoretical prediction about the mechanism that triggers the apparition of
surface instabilities was made by Biot [155]. An elastomeric half-space would deform in
a sinusoidal pattern, which we identify now as wrinkles, provided that the in-plane strain
exceeds a threshold of 0.46 [155, 156]. Later, further theoretical and numerical [123, 128,
157] as well as experimental works [122, 127] showed that the creasing instability occurs
at a critical strain threshold of ϵc ∼ 0.30−0.35. This latter threshold is lower than Biot’s
earlier prediction, meaning that creases appear before wrinkles as strain increases [125,
129, 158]. The creasing instability is triggered by imperfections, experimentally in the
form of nanoscale roughness and numerically by introducing defects [129, 159–162]. The
singular deformation of a crease requires the elastic energy to overcome the barrier of
surface tension with the elasto-capillary length lec ∼ γ/G that characterizes a balance
between surface tension and bulk elasticity. Let l be a relevant characteristic length
of the considered system: for l ≤ lec the surface tension dominate over bulk elasticity,
while for l ≥ lec the bulk elasticity dominates over surface tension. Creasing thus releases
compression, and produces topographic variations that are reminiscent of the structural
architecture of the brain [128, 157, 163]. Finally, creases are reversible in the case of
compressed elastomers as compression is released. Yet, in the case of swelling gels, the
irreversible character of a swelling-drying cycle renders the creasing irreversible too [30,
164].

If in a drying process, the ambient medium is air instead of solvent, and the ini-
tial and final states are precisely reversed compared to the swelling process, drying is
only the time reversal of swelling if it occurs very slowly and elastic deformations are
small [19]. Non-linearities that arise though large deformation can turn swelling and
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deswelling into asymmetric processes [19, 20], and result in irreversible deformations,
even in a single swelling-deswelling cycle [30]. Furthermore, evaporation reduces the
volume fraction of solvent from the free surface, which may lead to an inhomogeneity of
solvent concentration [22, 24, 28, 165, 166], and to an accumulation of solute at the sur-
face. For instance, the so-called coffee-ring effect results from the latter mechanism [28,
165–167], as well as Marangoni flows [168–171]. In polymer films, the formation of a
skin layer or "crust" may occur [24, 25, 27, 29, 172, 173], together with phase changes
such as the glass transition in a region localized near the surface [23, 25, 27]. In sessile
drops, the formation of pinned contact lines [23, 165, 168, 169, 174, 175] may lead to
buckling instabilities [25, 172, 176, 177], as schematized in Fig. 1.7(c). More complex
shapes such as rings [178–180], cracks [23, 28, 181], or wrinkles [131, 181] similar to the
ones observed in the case of bilayered systems described here have been reported.

In the Chapter 2 of this thesis, we study the apparition of surface patterns at the
surface of both swollen and dried polymer films. In particular, we report a complex
pattern, resulting apparently from several types of instabilities, and we investigate in
details the characteristic features of the deformed surfaces.

In the present subsection, we presented some surface instabilities that can occur when
working with swelling and/or drying grafted polymer films. Such designed systems are
notably used in the context of fundamental sciences, exploiting their soft-coating prop-
erties. In the next subsection, we focus on the influence of a soft boundary on a nearby
mobile particle immersed in a viscous bath.

1.5.2 Soft lubrication

When a particle immersed in a viscous fluid is approached to a rigid boundary, the
pressure field in the fluid in the confined region is strongly modified, and would diverge
to infinity when contact would be reached. The lubrication layer of fluid located in
between the wall and the particle theoretically prevents contact [32, 67]. Besides, the
Stokes drag applied on the particle is modified by the confinement (see Sec. 1.1.3).
If now the rigid wall is coated with a soft and elastic material, when the particle is
approached towards the soft boundary, a hydrodynamic stress arises in the region of
fluid that is confined between the particle and the soft boundary. The latter stress
deforms the soft boundary, the elastic deformation modifies in turn the flow [182], and
the latter finally influences the particle motion. The resulting coupling belongs to the
field of elastohydrodynamics (EHD) [39, 56, 64, 183–186], and the particular situation
of a rigid object moving near a soft wall within a lubrication layer defines the so-called
soft-lubrication coupling [187–191].

Soft lubrication is relevant in many biomimetic contexts, and thus has been a field of
research for the past 20 years. Indeed, several examples can be identified in the human
body at different scales. The knees are made of cartilaginous menisci immersed in the
synovial liquid, that make a lubricated and softer interface between stiff bones. Consid-
ering the weight that knees have to handle, the effective friction coefficient between bones
is reduced by several orders of magnitude compared to a non-lubricated contact [192,
193], i.e. down to 10−6, a value that is not yet reproduced in industry. Similarly, the
eyes are constituted of eyelids sliding on eyeballs, the contact of which is lubricated by
the tear fluid. Moreover, the presence of a gel-like layer of proteins at the surface of
both the eyelid and the eyeball ensures a smooth transition between the solid parts and
the liquid phase, and softens the contact [194, 195]. Finally, the circulation of red blood
cells is carried out by the compliant blood vessels, presenting a protein-rich layer, called
glycocalyx, on their surface. In a perspective of biomimetism, a work studied the flow
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(a) (c) (d) (e)(b)

FIG. 1.8. Different configurations for soft-lubrication investigation in the
sphere-plane geometry. The sphere motion is (a): oscillatory and parallel to the
soft-coating plane, (b): steady and parallel to the plane, (c): oscillatory and perpen-
dicular to the plane, (d): steady and perpendicular to the plane, also called approach
mode. (e): After the approach mode, the sphere is eventually in solid contact with the
soft coating and indents it.

of rigid particles in a millimetric channel coated with hyaluronan brushes that mimic
glycocalyx [121], and showed that the particle trajectories are modified by the presence
of the soft coating. More precisely, the particles are repelled from the walls. Thus these
results provide important insights on the mechanism of blood circulation in the human
body [196].

To rationalize physical phenomena associated to the soft-lubrication coupling, let us
consider the sphere-plane geometry, in which several modes of motion can be identified as
schematized in Fig. 1.8(a-d). For the purpose of this thesis, we focus only on translation
motions, and not on rotation. Considering coatings made of a purely elastic material,
these different configurations are largely documented in literature. First, the sphere
motion can be parallel to the plane, either oscillatory (see Fig. 1.8(a)) or steady (see
Fig. 1.8(b)). In both cases, previous works showed experimentally and theoretically that
the motion of the sphere generates an asymmetric pressure field in the confined region
of fluid. The latter results in a lift force, that repels the particle from the wall [121,
188, 190, 197–201]. Second, the sphere motion can be oscillatory, and perpendicular
to the flat surface [202], as sketched on Fig. 1.8(c). In particular, the work of Leroy
and Charlaix showed that both the storage and loss components of the resulting force
applied on the sphere exhibit two regimes [203, 204], depending on the average sphere-
plane distance. At large distances, the viscous dissipation occurring in the fluid phase,
e.g. Stokes drag, is dominant, while at small distances, the elasticity of the soft coating
is dominant in the force response. Third, the sphere motion can be steady, and towards
the surface, which defines the approach mode, as sketched on Fig. 1.8(d). The inverse
situation, where the sphere is coated with an elastic material and approaches a rigid
wall, has also been studied [205–210]. A few other works predict that when the opposite
motion is imposed, e.g. retraction, an elastohydrodynamic adhesion force is applied on
the sphere, due to the presence of the soft coating [190, 211]. In the approach mode,
the elastic coating can undergo small-to-large deformations. Linear EHD theories are
well suited to describe small deformations [212], and non-linearities are rarely taken into
account to describe large-deformation regimes [191]. Finally, the approach mode leads to
a situation where the fluid layer thickness is smaller and smaller, up to physical contact.
Then, the sphere indents the soft layer, as described in Fig. 1.8(e). The latter situations
are respectively described by the framework of Hertz-like problems [213–215], and the
so-called Hertz contact theory [216, 217].

However, if the soft-lubrication problem has largely been addressed in the case of
purely elastic coatings, undergoing small deformation, more realistic descriptions in a
biomimetic perspective are still to develop. Early works on purely porous substrates
suggest an elastic-like description involving effective slippage at the interface, with ei-
ther the slip length considered to be on the order of the pore size [90], or a full slip
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boundary condition [218]. The effects of viscoelasticity have been recently investigated
in detail [11–13, 219], yet, the effects of poroelasticity remain scarcely and partially ad-
dressed [15–17, 111]. Recent works developed a theoretical framework that describes in
detail the swelling of poroelastic materials when immersed into a solvent, taking into
account large deformations [220]. The purpose of this thesis is to develop a framework
that describes the mechanical response of swollen hydrogels in a more realistic manner,
taking into account both their elasticity and porosity.

Considering now swollen hydrogels as more complex systems, their mechanical re-
sponse is determined by their interactions with the environment. If the gel is indented
by a rigid object, as in the emblematic example of contact mechanics [112, 113, 214,
217, 221, 222], solvent molecules do not flow across the interface between the gel and
the indenter, which is thus impermeable. The latter boundary condition is expressed
as [111]:

J(z = 0) · n = 0, (1.48)

with J being the molecular flux of solvent inside the porous matrix of the gel, n a normal
vector to the interface, and the interface being defined by z = 0. In contrast, if the gel
is immersed in its own solvent, then the solvent molecules can be transported across the
gel-solvent interface, which is thus permeable. At the surface, the chemical potential µ
is fixed to its bulk value µbulk, in the solvent reservoir. Thus, the permeable boundary
condition is expressed as [10]:

µ(z = 0) = µbulk. (1.49)

In Chapter 3, we establish a model that describes the mechanical response of a per-
meable, poroelastic material, in both the semi-infinite and finite-thickness cases. In
Chapter 4, we apply the latter model to the situation of a sphere oscillating perpendicu-
larly to the coated surface, as sketched in Fig. 1.8(c), and use our theoretical framework
to investigate the mechanical properties of a swollen hydrogel. Finally, Chapter 5 is
dedicated to the investigation of a swollen hydrogel in approach mode up to contact, as
sketched by Figs. 1.8(d) and (e).
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Chapter 2

Transition in morphology at the
surface of grafted hydrogel thin
films

The present Chapter is dedicated to the study of surface instabilities that may occur at
the surface of gels upon swelling and drying, as presented in the general introduction,
Sec. 1.5.1. Here, we report on a morphological transition that occurs upon gel drying. We
show surface patterns on nanometric-to-micrometric films in both the wet and dry states.
We first describe the sample fabrication and the AFM-based measurement technique.
We then investigate typical AFM images of dry and wet Poly-N-isopropylacrylamide
(PNIPAM) films, showing a transition from a creased pattern to a more sinusoidal mor-
phology with what we refer to as crease scars. We present a quantitative analysis of these
results and discriminate different regimes associated with specific morphologies. Consid-
ering hydration-dependent elastic properties, we suggest mechanisms for the threshold
of pattern formation. We finally discuss the role evaporation may play, in determining
the final surface morphology.

2.1 Description of the experiment

2.1.1 Preparation of grafted hydrogel samples

In the present subsection, we describe the fabrication process of hydrogels. The protocol
was originally developed by collaborators of the SIMM laboratory [1, 223], including
Yvette Tran, and is summarized in Fig. 2.1. The first main steps consist in preparing
the surface onto which polymer is grafted, then the polymer is deposited and cross-linked
(or reticulated), and the final steps consist in washing the obtained sample.

2.1.1.1 Preparation of the surface

Cleaning: Either silicon wafers or glass substrates (coverslips in borosilicate glass)
are chosen as the surfaces onto which the polymer gels are deposited. First, a "Piranha"
solution is prepared, by mixing usually 200 mL of sulfuric acid (at > 99%, Sigma Aldrich)
with 400 mL of hydrogen peroxide (at 35%, Sigma Aldrich) in a large beaker (of at least
2 L). Teflon dishes are used. The resulting solution is left to rest at room temperature
for at least 30 min, until it becomes a clear solution with no bubble, back to room
temperature. The substrates are then immersed in the piranha solution for one hour.
Water is then poured into the solution to decrease the concentration in acid and oxygen
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FIG. 2.1. Fabrication of PNIPAM hydrogel films by click-chemistry.(a): A co-
polymer of P(NIPAM-co-AA) is mixed with DTT (a crosslinker agent), in a mixture
of methanol and butanol (solvent). (b): The mixture is deposited onto a functionalized
substrate and a uniform layer is obtained by spin-coating. After solvent evaporation, the
mixture of melt P(NIPAM-co-AA) and DTT is cured by UV-insolation for 3 hours. The
obtained reticulated gel is then rinsed by immersion in water, and dried under ambient
air.

peroxide, before removing the substrates from the beaker. Substrates are then rinsed
with deionized water, dried with pressurized nitrogen flow, rinsed again with absolute
ethanol (HPLC level, Sigma Aldrich), dried again. At this stage, if any dust remains
visible at the surface of a substrate, the rinsing steps are done again.

Grafting sulfhydryl groups: A solution of silane is prepared by mixing 196 mL of
absolute ethanol with 4 mL of 3-mercaptopropyltrimethoxysilane (95 % Sigma Aldrich).
The solution is left at rest for one hour. The freshly cleaned substrates are then immersed
for one hour in the silane solution. This step, called silanization, allows sulfhydryl groups
(-SH) to attach on the extremely clean surfaces. Finally, the substrates are rinsed by
immersion in a bath of absolute ethanol, and dried with pressurized nitrogen flow. We
obtain chemically cleaned substrates, with thiol groups attached, that are referred to as
functionalized surfaces.

2.1.1.2 Deposition of polymer

Preparation of the polymer solution: An in-house synthetized copolymer of
Poly-N-isopropylacrylamide (PNIPAM) and acrylic acid (AA), functionalized with ene-
reactive groups (weight-average molar mass M = 459000 g/mol, polydispersity index
about 2) [1], was generously provided by colleagues from the SIMM laboratory under a
desiccated form. A mixture of butanol and methanol (1/1 in volume) is used as a solvent.
The desiccated polymer is dissolved in the solvent, at a chosen concentration cPNIPAM
(between 0.5% and 15% in mass). The solution can be left at rest overnight in the fridge,
for the polymer to have time to dissolve. Just before being used, 1,4-dithioerythritol
(DTT, Sigma Aldrich) is added to the solution, acting as a crosslinker agent. Typically
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(a) (b)

FIG. 2.2. Hydrogel dry thickness as a function of the polymer concentration
and the spin-coating speed. (a): Dry thickness τdry of the PNIPAM hydrogel sample
as a function of the angular spin-coating velocity ωspin, obtained from PNIPAM solutions
of different concentrations cPNIPAM (in mass), indicated in the legend. (b): Dry thickness
τdry of the PNIPAM hydrogel sample as a function of the PNIPAM solution concentration
cPNIPAM (in mass), for different angular spin-coating velocities indicated in the legend.

60% of DTT (in mass, compared to the P(NIPAM-co-AA)) is added.

Spin-coating: Uniform films of P(NIPAM-co-AA) copolymer are produced by spin-
coating onto the prepared surfaces. The polymer solution is first transferred into a
syringe for convenience. In the case of glass substrates, the solution is passed through a
calibrated filter (0.2 µm), placed at the output of the syringe. A few drops are typically
deposited onto the functionalized surface, and uniformly spread by spin-coating, with
a spinning time of 30 s and at a chosen angular velocity ωspin (in the range 1000 to
4000 rpm). To remove the excess of solvent, the obtained sample is placed onto a warming
plate at 65◦C for 1 min. At this stage, we obtain a uniform layer of polymer chains mixed
with the cross-linker agent deposited on a functionalized substrate.

Reticulation of the gel: The hydrogel coating is cross-linked by performing a UV-
irradiation (exposition carried out using a UV lamp, power 8 W, wavelength λ = 254 nm)
for 3 hours. To remove uncured polymer and crosslinker excess, samples are immersed
in deionized water for 4 h then in isopropanol (HPLC level, Sigma aldrich) for 15 min.
Finally, the samples are dried under ambient conditions.

2.1.1.3 Benchmark of the obtained dry film thickness

Here, we present the calibrations of the obtained film thickness in dry conditions, as a
function of the chosen polymer solution concentration and the chosen spin-coating angu-
lar velocity. These curves were established after several months of try-and-fails of sample
fabrication. The purpose of this subsection is to help any future experimentalist to chose
the appropriate experimental conditions to fabricate a PNIPAM gel of the desired thick-
ness. Figure 2.2(a) shows the obtained thickness τdry as a function of the spin-coating
velocity ωspin, for different PNIPAM concentrations cPNIPAM (in mass). Figure 2.2(b)
shows the obtained thickness τdry as a function of the PNIPAM concentration cPNIPAM
(in mass), for different spin-coating velocities ωspin.

2.1.2 Atomic Force Microscopy experiments

The hydrogels films are imaged by AFM (Nanosurf CoreAFM ), both in dry and wet con-
ditions, respectively in tapping and contact modes. We describe the imaging technique
in both cases.
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Laser Piezo

FIG. 2.3. Schematic of an AFM.A sharp tip is held by a cantilever, which is supported
by a chip. A piezo element moves vertically the chip, whose position is noted zpiezo. A
laser beam is sent on the top face, at the edge of the cantilever. The reflection of the laser
is monitored by a photodiode. From the shifted signal of the photodiode, the deflection of
the cantilever Zcanti is extracted.

2.1.2.1 Topography measurements

Principle of the AFM in tapping mode: The AFM is schematized in Fig. 2.3. A
sharp tip is held by a cantilever [224–226]. The cantilever itself is held by a chip, mounted
onto a holder, which is moved in the z direction by a piezo element, whose position is
noted as zpiezo. A laser beam is sent on the edge of the cantilever, reflected by the latter,
and this reflection is sent to a four-quadrant photodiode. The deflection Zcanti of the
cantilever is measured by monitoring the signal of the photodiode. In tapping mode, the
piezo element that holds the cantilever is made oscillating at a small amplitude, close to
the resonance frequency of the cantilever.

The ensemble made of the holder, the laser and the photodiode constitutes the scan
head of the AFM. When the scan head moves laterally, the tip may encounter a surface
irregularity, which provokes a change in the oscillation amplitude of the edge of the
cantilever. By applying a feedback loop on the amplitude of the cantilever deflection,
the piezo element holding the chip is forced to move over a distance ∆zpiezo, to correct
the cantilever deflection amplitude. Thus the distance ∆zpiezo provides a measurement
of the height of the irregularity encountered.

A region whose topography has to be measured is defined. Then, the scan head
browses that region following straight lines along a direction, going back and forth, and
shifting in the other direction each time a new line is began.

Principle of the AFM in contact mode: The instrument is the same as in tapping
mode. Yet, in contact mode, no oscillation of the cantilever is imposed, but the tip
touches the sample, imposing a small deflection to the cantilever. When the scan head
moves laterally and the tip encounters a surface irregularity, the cantilever deflection
Zcanti is changed. A feedback loop is applied on the cantilever deflection, thus the
piezo element holding the chip is forced to move over a distance ∆zpiezo to maintain the
cantilever deflection Zcanti at its prescribed value. Finally, the distance ∆zpiezo provides
a measurement of the height of the irregularity, as for the tapping mode. As for tapping
mode, a region to measure is defined. Then, the scan head scans that region following
lines, going back and forth.
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2.1.2.2 Force spectroscopy measurements in AFM

A spectroscopy measurement in AFM consists in an indentation experiment performed
with an AFM tip [227]. The tip is initially retracted, and no oscillation is imposed on
the piezo element holding the cantilever. Then, a downwards velocity of approach is
imposed to the piezo. The probe gets closer to the sample until reaching contact. The
approach is continued until reaching a threshold in force (or in traveled distance). Then,
the cantilever is retracted by imposing an upwards velocity to the piezo element. The
cantilever deflection as a function of the position of the piezo, Zcanti(zpiezo), constitutes
the approach curve. The latter is then analyzed, to extract various physical properties
of the investigated material, such as the elasticity, or the adhesion energy.

In the following, we describe briefly some calibration steps that are necessary to
convert electric signals, what are measured in the AFM, into forces and distances. The
latter represent the physical quantities of interest for the mechanical description of a
material.

2.1.2.3 Calibrations

In the standard force spectroscopy modes used for the present experiments, the cal-
ibration steps that are described in the following paragraphs are performed almost
automatically, carried out by the software of the AFM. We show an example of cal-
ibration results performed on a standard contact-mode cantilever (Nanosurf, model
Stat0.2LAuD), whose nominal resonance frequency and stiffness are f0,nom = 13 kHz
and kcanti,nom = 0.2 N/m.

Calibration of the resonance frequency in dynamic mode: For experiments
in tapping mode, a sweep in frequency (imposed by the piezo) is performed and the
oscillation amplitude is recorded, as the response of the cantilever. The resulting motion
of the edge of the cantilever is described by modeling the cantilever as a damped harmonic
oscillator, to which a harmonic forcing is imposed. Then, by solving the equation of
motion of the cantilever, one can derive the frequency-dependent complex cantilever
deflection Z∗

canti [225]. The amplitude of the cantilever deflection reads:

|Z∗
canti| (ω) = F0/mcanti√

(ω0 − ω)2 + (ωω0/Q)2
, (2.1)

with ∗ indicating a complex variable, ω the angular frequency, ω0 the resonance angular
frequency, Q the quality factor, mcanti the effective mass of the cantilever and F0 the
amplitude of the external excitation. The measured amplitude of the cantilever deflection
is fitted with Eq. (2.1). The resonance frequency f0 = ω0/(2π) and the quality factor
Q are extracted as fitting parameters. In Figure. 2.4(a) we show an example of the
amplitude of the cantilever deflection when submitted to an external harmonic forcing.
On the present example, we measure a resonance frequency of f0 = 6.209 kHz and a
quality factor of Q = 164. The measured resonance frequency is lower than the expected
nominal value, but still reasonable.

Calibration of the resonance frequency in static mode: For experiments per-
formed in contact mode, the deflection of the cantilever due to its thermal noise is
recorded and averaged over several measurements. The Brownian motion of the can-
tilever is described by modeling the cantilever as a damped harmonic oscillator to which
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FIG. 2.4. AFM calibrations.(a): Amplitude of the cantilever deflection |Z∗
canti| when

submitted to an external harmonic forcing, as a function of the temporal frequency f .
The experimental data is fitted with Eq. (2.1). (b): Amplitude spectral density Aω of
the cantilever as a function of the temporal frequency f , in the absence of any external
forcing, resulting only from thermal noise. The experimental data is fitted with Eq. (2.3).
(c): Deflection sensitivity DS measurement. The signal received by the photodiode, which
corresponds to the cantilever deflection Zcanti in V, is plotted as a function of the position
of the driving piezo zpiezo. The final part of the curve corresponds to the range where the
contilever is in contact with the hard surface. The deflection sensitivity DS is computed
as the inverse of the slope. (d): Schematic of the four-quadrant photodiode that follows
the direction of the reflected beam.

a Langevin force is applied. Then, by solving the Langevin equation for a damped har-
monic oscillator, one can derive the power spectral density of the cantilever deflection
Z∗

canti [225], as: ∣∣∣∣dZ∗
canti

dω

∣∣∣∣ = kBT

πm2
canti

ω0Q

Q2(ω2
0 − ω2)2 + ω2

0ω2 , (2.2)

with kB the Boltzmann constant and T the room temperature 1. The amplitude spectral
density Aω is then defined by taking the square root of Eq. (2.2):

Aω(ω) =
√∣∣∣∣dZ∗

canti
dω

∣∣∣∣. (2.3)

The measured amplitude spectral density of the cantilever is fitted with Eq. 2.3. The res-
onance frequency f0 = ω0/(2π) and quality factor Q are extracted as fitting parameters.
In Figure. 2.4(b) we show a typical example of the spectrum of the Brownian motion
amplitude of the cantilever. Here, we measure a resonance frequency f0 = 6.211 kHz
and a quality factor Q = 107. The measured resonance frequency is again lower than
the expected nominal value, but still in a good range. Moreover it is consistent with the
measurement performed in dynamic mode, detailed in the previous paragraph.

1The present calibration step is detailed again in Sec. 4.2.2.1.
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Calculation of the cantilever stiffness: Then, the Sader method is used to compute
the stiffness [228–232], based on the geometrical properties of the cantilever and its
resonance frequency. In summary, for rectangular cantilevers, the spring constant is
computed as:

k = MeffρbhLωvac, (2.4)

with h, b and L the thickness, width and length of the cantilever, Meff a normalized
effective mass (Meff = 0.2427 for L/b > 5), ρ the density of the cantilever material and
ωvac the angular resonance frequency in vacuum [228, 230]. The latter is computed by
taking into account a correction to the angular resonance frequency in air ω0 [229]. The
Sader method is also extended for V-shaped cantilevers [231]. The AFM we used has
a function to perform the calculation, based on the geometry and the material of the
cantilever (Silicon nitride most of the time). For the example presented here, we find a
stiffness k = 0.127 N/m.

Deflection sensitivity: In AFM, the measurement of the deflection sensitivity value
DS is used to convert the electric signal received from the photodiode (in V) into the
deflection of the cantilever Zcanti (in nm) 2. The deflection sensitivity is measured by
approaching the cantilever close to a hard surface, touching the surface, and the approach
continues until reaching a prescribed limiting deflection. The cantilever is then fully
retracted. The measurement is typically repeated ten times. The vertical signal of the
photodiode (i.e. the cantilever deflection Zcanti up to a factor, but in V) is monitored as
a function of the position of the piezo zpiezo. A linear relation between the signal of the
photodiode and the piezo position is typically obtained when the cantilever is in contact
with the hard surface, and the coefficient between both corresponds to the deflection
sensitivity DS in nm/V. Figure 2.4(c) shows a typical measurement of the signal of
the photodiode Zcanti as a function of the vertical position of the piezo zpiezo. In this
example, the calculated deflection sensitivity is 254 nm/V based on a good quality fit
(χ2 = 0.009). In practice, the measurement of the deflection sensitivity is automated by
the AFM software, repetitions and averaging included. The product of the deflection
sensitivity by the cantilever stiffness DS kcanti enables to convert the voltage signal of
the photodiode into a force.

Cross-talk compensation: In AFM, the deflection of the cantilever Zcanti is mon-
itored by following the reflected ray of the laser pointed at its edge. In Fig. 2.4(d), we
show a basic schematic of the four-quadrant photodiode that records the direction of the
reflected beam. The photodiode is constituted by four detection cells, noted A, B, C,
and D. The vertical deflection of the cantilever is deduced from (A+B)−(C +D), while
the lateral deflection, or torsion, is deduced from (A+C)−(B +D). Imperfections of the
system can perturb the independency of the different channels - a phenomenon named
"cross talk". The latter can result from several sources. First, a mechanical origin is
considered when the surface has significant variations in its topography, and the whole
range of the piezo holding the chip is used. Second, electronic origins are often cited.
Third, a geometric origin is considered when the alignment of the different optical ele-
ments involved in the laser detection is imperfect [233, 234]. For instance, on Fig. 2.4(c),
cross-talk would be observed if the approach and retract curves were not superimposed
on the linear final part of the curve Zcanti(zpiezo). Procedures have been developed to
compensate the cross-talk, consisting in performing several spectroscopy measurements
on a hard surface on the whole range of the piezo. The aim is to ensure that no cantilever

2This step is explained again in Sec. 4.2.2.2.
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deflection is measured when moving only in air, and a linear deflection of the cantilever,
as a function of the piezo position Zcanti(zpiezo), is measured when forcing onto a hard
surface. On the Nanosurf AFM we use, the cross-talk compensation constitutes a step
of the automatized calibration of the apparatus. This calibration should be done es-
pecially when working with patterned samples with a high variation amplitude of the
topography.

2.1.2.4 Measuring surface topography of wet and dry samples

The surface of dry and wet PNIPAM films are visualized by AFM, respectively using a
sharp and standard tip (Nanosurf, model Dyn190Al, f0,nom = 190 kHz and kcanti,nom =
48 N/m) in tapping mode, and using a thin cone-shaped tip (Nanosensors, model qp-
BioAC-Cl, f0,nom = 30 kHz and kcanti,nom = 0.06 N/m) in contact mode.

The advantage of tapping mode is the non-invasive aspect. Indeed, the probe only
touches the surface intermittently, which reduces the risk of damaging a fragile sample.
This technique is used to image the dried PNIPAM films. To approach the probe to
the sample, and thus define the feedback, the amplitude of the cantilever vibration is
prescribed far from the sample (0.5 V in the experiments presented in this Chapter),
and referred to as free vibration amplitude. When approaching close to the sample,
the vibration amplitude of the cantilever is decreased by the interaction with the close
boundary. We consider that the tip has approached the sample when the resulting vi-
bration amplitude of the cantilever is 50% of the free vibration amplitude. The feedback
loop will maintain the cantilever oscillation amplitude at that given threshold. A region
to measure is delimited, then the scan head moves in lines to browse all the region. In
tapping mode, the speed of motion of the scan head can be less than 1 s per line, thus
an image is typically recorded in 10-15 minutes.

The advantage of the contact mode is that the tip follows the surface of the sample,
with less risk of losing track of the surface. This technique is used to image the swollen
PNIPAM hydrogels, that are particularly fragile and difficult to measure. The precise
protocol was developed in collaboration with Henrik Peisker from Nanosurf instruments,
in Langen (Germany) 3. The approach of the probe close to the sample is defined by a
setpoint in force, first at 10 nN. The experiment is started. Then the setpoint is slowly
reduced step by step to minimize the indentation of the swollen hydrogel. The electronic
tuning of the feedback is adapted at the same time. When reaching 2 − 3 nN in force
setpoint, the image is started again with the fine-tuned parameters. In contact mode
in water, the experiment has to run slowly, thus an image is typically recorded in 1-2
hours. Yet, when starting the record, the user should always verify that enough water
is present on the sample, not to run out of water before ten end of the measurement.

2.2 Results

2.2.1 Topography of dry polymer films

A major part of the AFM images obtained on dry PNIPAM films that are shown in
this Chapter were recorded by Clemence Gaunand, intern in the team for a few months.
The project presented here started with the observation of a pattern at the surface of
a grafted PNIPAM film, in a context where flat and thin gels were needed. For the
Surface Force Apparatus experiments presented in Chapter 5, the flatness of samples
was systematically checked and the dry thickness was measured by AFM, for a given set

3The present collaboration benefited from EUSMI TA support, which allowed to travel to site.

30



2.2. RESULTS

1.5 nm

1.5

0

-1.5

-1.5

0.5

-0.5

(a)
20 nm

0

-20

10

-10

(b)
12 nm

0

-12

5

-10

10

-5

(c)

FIG. 2.5. First observation of a dry, patterned PNIPAM film. (a): AFM image
of a flat PNIPAM film, for reference. The measured thickness is τdry = 54 ± 3 nm. The
sample was fabricated using a spin-coating velocity of ωspin = 3000 rpm and a polymer
solution concentration of cPNIPAM = 1 %. The little red square indicates a color code
referring to flat samples. (b): AFM image of the destabilized surface of a PNIPAM
films, exhibiting a complex pattern. The measured thickness is τdry = 324 ± 20 nm. The
sample was fabricated using a spin-coating velocity of ωspin = 4000 rpm and a polymer
solution concentration of cPNIPAM = 3 %. The little green square indicates a color code
referring to samples with such a morphology. (c): Zoom on a fault observed at the
surface of the same sample as in (b). In (a), (b) and (c), the white bar represents 1 µm.

of fabrication conditions. Within this context, a pattern with an unusual morphology
was observed at the surface of a PNIPAM film grafted onto a glass substrate. In this
following subsection, we show the first patterned surface we observed. Then we show
different patterns characterized by different morphologies in the dry state. Finally we
compare the results to the morphology observed in the wet state.

2.2.1.1 First pattern

In this subsection, we exhibit an image of the patterned PNIPAM film that started the
project presented in this Chapter. Such an AFM image is obtained from raw imaging
data after a few treatment steps, that are detailed in Appendix A.1. In Fig. 2.5(a)
we show an AFM image of a flat sample, as a reference of what is desired, while in
Fig. 2.5(b) we show an image of the destabilized surface of a dry PNIPAM film. The
first dry film was fabricated using a PNIPAM solution at cPNIPAM = 1 % and a spin-
coating speed of ωspin = 3000 rpm. The thickness of the dry film is measured by AFM
at τdry = 54 ± 3 nm (see Appendix A.2 for the details of the thickness measurement
technique and the estimation of the error). The second, patterned film was fabricated
using a PNIPAM solution at cPNIPAM = 3 % and a spin-coating speed of ωspin = 4000 rpm
and the obtained thickness is measured at τdry = 324 ± 20 nm. In the case of the first
film, we observe a nanometric surface roughness, without defined morphology. In the
case of the second film, that is thicker, we observe a regular pattern with a defined shape,
characterized by smooth hollows and bumps, with small and sharp faults on the top of
the bumps. In Fig. 2.5(c) we show a zoomed image of such a fault, with three branches.

In summary, we observe here that the thinner sample exhibits no pattern, while the
thicker one does. In the following, thin samples exhibiting only a nanometric surface
roughness without defined morphology are qualified as flat by opposition to samples
exhibiting patterns with defined shapes. To understand where the pattern comes from,
in the next subsection we investigate the surface topography of two samples of different
thicknesses, at different steps of the fabrication process.
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FIG. 2.6. Topography of a PNIPAM film during the fabrication process(a): Af-
ter spin-coating and soft-baking steps, a uniform layer of the mixture of melt polymer and
cross-linker agent is observed (τmelt = 2.8 µm). (b): After deep-UV curing, the sample
is cross-linked and has a flat surface (τcured = 2.6 µm). (c): After the first rinsing-
and-drying step, with water, we observe a pattern at the surface of the PNIPAM film
(τdry,1 = 1.8 µm). The little blue square indicates a color code, referring to samples with
such a morphology. (d): After the second step of rinsing-and-drying, with isopropanol,
we make the same observations as in (c) (τdry,2 = 1.55 µm). The sample was fabricated
using a spin-coating speed of ωspin = 3000 rpm and a polymer solution concentrated at
cPNIPAM = 9 %. The white bar represents 5 µm.

2.2.1.2 Emergence of a pattern during the fabrication process

To understand which step of the fabrication process produces a patterned surface, a new
sample is prepared and imaged at several stages. In Fig. 2.6, we show AFM images
of a PNIPAM film of resulting dry thickness τdry = 1.6 µm, at different stages of the
preparation protocol. The PNIPAM film which is used in the present subsection was
prepared from a polymer solution at cPNIPAM = 9 % and using a spin-coating velocity of
ωspin = 3000 rpm. The thickness of the film is also measured at each stage.

A first AFM image, that is presented in Fig. 2.6(a), shows the surface topography of
the PNIPAM film just after spin-coating and evaporation of the solvent. A nanometric
surface roughness is observed, without any defined shape. In this case, we observe
only a flat and uniform film of a mixture of melt polymer and cross-linker agent. The
measured thickness of the film is τmelt = 2.8 µm. A second image is recorded just
after UV-insolation for 3 hours, and is shown in Fig. 2.6(b). Surface roughness is also
observed, albeit the fact that the sample was sticky, which made the image difficult to
obtain. The thickness is slightly smaller, with τcured = 2.6 µm, which indicates that
the chemical reaction occurring thanks to the UV-insolation makes the material denser.
A third AFM image, that is presented in Fig. 2.6(c), is recorded after a first rinsing
with water and subsequent drying. At this step, we observe a defined pattern, whose
morphology will be described in detail in a next subsection. Furthermore, the measured
thickness is significantly smaller than before rinsing, with τdry,1 = 1.8 µm. A smaller
thickness indicates that the rinsing-and-drying process has removed matter, such as the
excess of cross-linker agent, or free polymer chains. Finally, a fourth image is shown in
Fig. 2.6(d), after a rinsing-and-drying cycle, using isopropanol instead of water as the
rinsing solvent. We make the same observation as at the previous step: a precise pattern
is observed, and is similar to the one observed on the previous image. The measured
thickness is slightly smaller, with τdry,2 = 1.55 µm. As for the previous step, some excess
of material has been rinsed out.

In summary, we observe that the pattern appears after the first exposition to a
solvent, which can be either water or isopropanol, and subsequent drying. To go deeper
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FIG. 2.7. Comparison of patterns before and after immersion in a solvent and
drying. AFM images of samples before (top row) and after (bottom row) immersion
into a solvent and drying. (a): The PNIPAM film was immersed in water. The mea-
sured thickness is τdry = 232 nm, obtained using a spin-coating speed of ωspin = 3000 rpm
and a polymer concentration of cPNIPAM = 2 %. (b): In water. The measured thickness
is τdry = 1.8 µm, obtained using a spin-coating speed of ωspin = 3000 rpm and a poly-
mer concentration of cPNIPAM = 10 %. (c): In acetone. The measured thickness is
τdry = 2.95 µm, obtained using a spin-coating speed of ωspin = 1000 rpm and a polymer
concentration of cPNIPAM = 10 %. (a-c): The white bar represents 5 µm. The three white
crosses are placed on remarkable spots to guide the eye in the comparison between the
top and the bottom rows.

in details on the influence of swelling into a solvent, in the next subsection we compare
the obtained pattern before and after a given swelling-drying cycle.

2.2.1.3 Reproducibility of the pattern with swelling-drying cycles

The first swelling-and-drying step is responsible for the apparition of patterns at the
surface of grafted PNIPAM films. In the present section, we investigate the influence of
an extra swelling-and-drying step on the drawing of the pattern. We thus use samples
that already exhibit a defined pattern, and make a first AFM image on a given region
of each sample. The samples are exposed to a given solvent, then let to dry, and their
surface topography is measured again, on the same region as much as possible.

On the top row of Fig. 2.7, we show AFM images of three samples, of respective dry
thicknesses τdry = 232 nm, 1.9 µm and 2.95 µm, that exhibit patterns at the end of the
fabrication process. The two first samples are then immersed into water and the third
one into acetone. After complete drying, the topography of each sample is measured
again at the same spot, as shown on the bottom row of Fig. 2.7. For the three samples
presented here, the region of measurement was found again, within a shift of 20 µm. We
observe exactly the same pattern. Albeit a slight decrease in amplitude for the pattern
of the second sample (see Fig. 2.7(b)) and the lower quality of the after-immersion image
of the first sample (see Fig. 2.7(a)), each pair of images could be superimposed for the
three samples. In summary, once formed after the first exposition to a solvent, the detail
of surface patterns is fixed and irreversible to subsequent swelling-drying events. This
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observation is consistent with observations on swollen gels reported in the literature [164],
and contrasts with compressed elastomers which exhibit reversible creases.

Since the beginning of Sec. 2.2.1, samples exhibiting different patterns have been
studied. In the next subsection we explore the variety of patterns observed at the
surface of PNIPAM films, as a function of the thickness.

2.2.1.4 Distinct morphologies on dry samples

Following the preliminary observations presented in the previous subsection, different
grafted PNIPAM films with different thicknesses are prepared. In Fig. 2.8 we show
AFM images of six different samples, with increasing thickness. The flat sample already
shown in Fig. 2.5(a) is reproduced here, in Fig. 2.8(a), as the thinnest sample of the series.
Increasing the thickness, in Figs. 2.8(b) and (c) we observe at the surface of the PNIPAM
films a defined pattern, reminiscent of the brain or intestine structure. Such shapes
resemble the singular patterns typical of a creasing instability, observed on the surface
of elastomers subject to in-plane mechanical compression or swollen gels [30, 122, 124,
129, 135, 136, 143, 144, 235–238]. This comprises smooth upper peaks separated by sharp
plunging creases. In the following, we refer to this morphology as brain-like pattern. Still
with increasing thickness, in Figs. 2.8(e), (g), (h) and (i) we observe a completely different
type of pattern, with a defined morphology. The present shape is similar to the one of
the first observed sample, of which an AFM image is shown in Fig. 2.5(b). We observe a
regular pattern, exhibiting smooth hollows and bumps, with small and sharp faults on the
edges of the bumps. The small and sharper peaks are reminiscent of the creases observed
on previous samples. In the following, we refer to this morphology as volcano pattern.
The distinction between pattern types is moreover rationalized by quantitative criteria
based on the height distributions, detailed in Appendix. A.3. Finally, Figs 2.8(d) and
(f) show the surface image of an intermediate-thickness sample. We observe a transition
regime in morphology, exhibiting features of both the brain-like pattern and the volcano
pattern.

From the observations of pattern types with varying thickness, of which a few exam-
ples are shown in Fig. 2.8, conditions on the dry thickness arise for observing patterns.
First, we observe no defined pattern for samples thinner than a threshold thickness
τdry ≤ 70 nm. Second, we observe that samples with an intermediate range in thickness,
70 nm ≤ τdry ≤ 1.5 µm, exhibit a brain-like pattern. Finally, we observe that thicker
samples, τdry ≥ 2 µm, exhibit a volcano pattern.

2.2.1.5 Elements of discussion

In previous subsections, we observed that the swelling-and-rinsing step triggers the ap-
parition of patterns. The swelling ratio is defined as the ratio between the wet thickness
and the dry thickness, as:

SR = τwet
τdry

. (2.5)

For the PNIPAM films presented in this Chapter, the wet thickness of the samples was
also measured. The swelling ratio is estimated to be SR = 3.5, for samples thicker than
τdry ≥ 150 nm, which is consistent with results from Li et al. [1]. The swelling ratio is
related to the mechanical strain ϵ in the vertical direction, as:

ϵ = ν(SR − 1). (2.6)

Thus, for swollen samples with dry thickness thicker than τdry ≥ 150 nm, a mechanical
strain of ϵ ≈ 0.62 is estimated in the wet state, taking a Poisson ratio of ν = 0.25 [239,
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FIG. 2.8. Different morphologies of patterns at the surface of dry PNIPAM
films.(a-i): Surface topography of PNIPAM films with increasing thickness, measured
by AFM. The spin-coating speed ωspin, PNIPAM solution concentration cPNIPAM and
resulting thickness τdry are indicated in the table below for each sample. On each image,
the white bar represents 5 µm, and the colored square indicates the pattern type, following
a color code. (a): The sample is flat (red square). (b) and (c): We observe brain-like
patterns (purple square). (d) and (f): Transition regime (light blue square). (e) and
(g-i): Volcano pattern (green square). (j): Table giving the spin-coating velocity ωspin
and the concentration of the polymer solution cPNIPAM used to fabricate each sample, as
well as the measured thicknesses τdry.

240]. The latter strain is greater than the critical threshold strain of ϵc = 0.35, which
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corresponds to a swelling ratio of SR ≈ 2.4, above which creases can be observed [122,
123, 127, 128, 157].

Yet, we observe that the swelling ratio decreases monotonically on decreasing the
sample thickness below τdry ≤ 150 nm, which is still confirmed by results from Li et al. [1].
Indeed, swelling is strongly affected by the surface attachment for ultrathin PNIPAM
films. Moreover, for samples with τdry ≤ 70 nm, we observe no pattern. This suggests
that osmotic stresses produce a mechanical strain at the critical threshold ϵc = 0.35
for swollen samples of dry thickness τdry ≈ 70 nm. Below that thickness threshold,
the osmotic stresses generate a swelling and a mechanical strain that are insufficient to
destabilize the surface in the wet state. On the contrary, above that thickness threshold,
the osmotic stresses generate a swelling and a mechanical strain that are sufficient to
destabilize the surface of wet samples, and result in creases.

In summary, for samples such that τdry ≥ 70 nm, the mechanical strain due to swelling
is enough to trigger a surface instability in the wet state. However, in the previous
sections we showed observations that were made only on dry films. Thus, in the following
section we investigate patterns observed at the surface of swollen PNIPAM gels.

2.2.2 Topography of swollen polymer gels

To understand the morphologies of patterns observed at the surface of dried PNIPAM
films, we investigate the surface aspect on swollen films. Wet hydrogels are ultra-soft
materials, composed of about 80 % of water, which makes them particularly challenging
to probe by AFM. In Fig. 2.9 we show AFM images of six swollen PNIPAM hydrogels on
the top rows, and compare with AFM images recorded on the same samples, but in the
dry state, shown on the bottom rows. In the next paragraph, we describe the observed
surfaces in the wet state and compare them with those obtained in the dry state, with
increasing thicknesses measured on dried films.

In Fig. 2.9(a), we exhibit in both the wet and the dry states, the surface topography
of an ultra-thin sample (τdry = 24 nm), that is flat in the dry state. We observe on the
resulting topography in the wet state a nanometric surface roughness, without defined
morphology, thus still a "flat" surface. In Figs. 2.9(b-d), the surface topography of
samples exhibiting a brain-like pattern in the dry state is shown, in both the dry and
the wet states. We observe surface patterns on the swollen gels, reminiscent of brain-
like patterns observed on the same samples in the dry state. For the sample shown in
Fig. 2.9(b), the pattern observed presents feature of creases, but the latter is not easy to
classify only looking at the AFM image. Yet, creases are clearly observed on the samples
shown in Figs. 2.9(c) and (d). The little pink square indicates a color code and refers to
the creased pattern observed at the surface of swollen gels. Finally, in Figs. 2.9(e) and
(f), the surface topography of two samples exhibiting respectively a transitional pattern
and a volcano pattern in the dry state are shown, in both the dry and the wet states.
We again observe a creased pattern in the wet state, similar to the brain-like pattern
observed on thinner samples in the dry state.

In summary, the pattern observed at the surface of swollen PNIPAM films is typical
of a creasing instability, similarly to the brain-like pattern observed on dried samples of
intermediary thickness (70 ≤ τdry ≤ 1500 nm). Such patterns have been already observed
on soft and swollen gels [30, 122, 135, 136, 143, 144, 235, 237]. However, patterns on
dried films are rarely reported [124], as well as the link between both. Finally, the volcano
pattern is not reported in the literature to our knowledge, except in one figure of Ortiz
et al. [124], without further description. We reproduce the latter image in Fig. 2.10, for
comparison.
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FIG. 2.9. Morphology of patterns at the surface of wet PNIPAM films. (a-f):
Surface topography of samples of increasing thickness, in the wet state (top rows) and
in the dry state (low rows), measured by AFM. The spin-coating speeds ωspin, PNIPAM
solution concentration cPNIPAM and thickness measured on dried films τdry are indicated
in the table below for each sample. On each image, the white bar represents 5 µm, and
the colored square indicates the pattern type, following a color code. (g): Table giving the
spin-coating velocity ωspin and the concentration of the polymer solution cPNIPAM used to
fabricate each sample, as well as the measured thicknesses τdry. The images in the wet
state were obtained from a collaboration with Henrik Peisker from Nanosurf Instrument,
benefiting from EUSMI TA support.
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FIG. 2.10. Volcano pattern reported in the literature. Figure 6 from Ortiz et
al. [124], showing an AFM image of a 800 nm-thick dried film of a copolymer of PNIPAM
and methacroyloxybenzophenone (MaBP). The observed pattern is similar to the volcano
pattern observed and presented in this Chapter.

2.2.3 Elasticity of dry and wet PNIPAM films

Following topography measurements, force spectroscopy measurements were performed.
On dry PNIPAM films, measurements were performed using a Bruker probe, model
RTESPA-300, of nominal stiffness knom = 40 N/m and nominal resonance frequency
f0,nom = 300 kHz. The analysis protocol of the raw spectroscopy data is detailed in
Appendix A.3. The processing of the force-distance curves is done using the AtomicJ
software [241]. The measured Young’s modulus is Edry ≈ 700 ± 100 MPa (the technique
is explained in Sec. 2.1.2.2), and the measurement is almost uniform over a given pattern.
Details are shown in Appendix A.4. The measured value of the Young’s modulus is higher
but in the same order of magnitude as that of a glassy polymer [242]. We note that a
higher measured value may be due to the use of an indentation-based technique [243,
244].

On wet samples, the experiment was performed in collaboration with Henrik Peisker,
on a Nanosurf FlexAFM, whose particularity is to use an infrared laser to monitor the
cantilever deflection. We used a BudgetSensors cantilever, model Tap150GD-G, of nom-
inal stiffness knom = 5 N/m and resonance frequency f0,nom = 150 kHz, in silicon, and
adapted for probing fragile and soft materials. In Fig. 2.11, we show results of spec-
troscopy performed on a swollen PNIPAM hydrogel, of dry thickness τdry = 950 nm,
fabricated using a spin-coating speed of ωspin = 2500 rpm and a PNIPAM solution con-
centration of cPNIPAM = 5 %. In Fig. 2.11(a), we show an AFM image close to the
investigated region (a shift of < 50 µm is due to a change of cantilever between the
topography and the spectroscopy measurements), for reference. Then, a measurement
grid of 40 × 40 points was defined on a 30 × 30 µm window. In Fig. 2.11(b), we show the
measured Young’s modulus as a function of the x, y-position of the measurement. Inter-
estingly, the pattern shown on the AFM image can be guessed on the Young’s modulus
map. The Young’s modulus varies with the topography: the swollen gel is softer on the
top of the bumps than in the depth of the dips. The latter observation may be due to
an inhomogeneity of solvent fraction at the surface, with the topography variations, as
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FIG. 2.11. Measurement of the Young’s modulus of swollen PNIPAM hydro-
gels. (a): AFM image of the investigated region. The PNIPAM film shown here was
fabricated using a spin-coating speed of ωspin = 2500 rpm and a polymer solution concen-
tration of cPNIPAM = 5 %. The resulting dry thickness is measured to be τdry = 950 nm.
The white bar represents 5 µm (b): Measured Young’s modulus E as a function of the
x, y-position of the measurement. (c): Histogram of the measured values of the Young’s
modulus E. We retain the value E = 35 ± 5 kPa.

the elastic bulk modulus is known to vary with the solvent volume fraction [18, 86, 101].
In the upper regions at the top of bumps, the polymer network may be more stretched,
and thus the gel may contain more water. On the contrary, in the deeper regions, the
polymer matrix may be more compressed by the singular shape of creases, and thus the
volume fraction of water may be lower. As a result, regions containing more water would
be softer.

From the map of the measured Young’s modulus, statistics were computed. An
histogram of measured values is shown in Fig. 2.11(c). We retain a Young’s modulus
value of Ewet ≈ 35±5 kPa, which corresponds to the average Young’s modulus measured
towards the top of bumps, where no singularity changes drastically the surface shape.
Again, the measured value is higher but in the same order of magnitude than values
from the literature for swollen PNIPAM (E = 8 kPa), which can be due to the use of an
indentation-based technique with sharp probes [243, 244].

The measurements of Young’s modulus in both wet and dry conditions reveal drasti-
cally different stiffnesses. Indeed, the Young’s modulus of PNIPAM is known to sharply
increase by several orders of magnitude at the glass transition [245]. In both cases, we
measure higher values than expected, but in a correct range. In the next subsections,
we present the techniques we used to characterize quantitatively the different patterns
observed at the surfaces of both swollen and dried samples.

2.2.4 Quantitative analysis of AFM images

2.2.4.1 Height profiles extracted from surface topography

Two examples AFM images of patterned PNIPAM hydrogels are shown in Fig. 2.12.
Figures 2.12(a) and (b) show typical brain and volcano patterns, respectively. To extract
a wavelength and an amplitude from a given image, the height profile of the destabilized
surface is plotted along a line, as shown below each image. The wavelength λp of the
pattern is deduced by counting the spatial periods over the extracted height profile,
and averaging. The average amplitude Ap of the pattern is also deduced from the
height profile. The process is repeated between 10 and 20 times for a given image,
and the results are averaged. For the example of brain pattern shown in Fig. 2.12(b),
the extracted wavelength and amplitude are λp = 0.6 ± 0.3 µm and Ap = 20 ± 3 nm,
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FIG. 2.12. Extraction of the wavelength and amplitude from AFM images.(a):
Topography of a dry PNIPAM hydrogel sample, exhibiting a typical brain pattern, of dry
thickness τdry = 152 nm, obtained from a polymer solution at cPNIPAM = 2 % and a
spin-coating velocity of ωspin = 3000 rpm. The height profile shown in the panel below
is extracted from the mauve line indicated on the AFM image. (b): Topography of
a dry PNIPAM hydrogel sample, exhibiting a typical volcano pattern, of dry thickness
τdry = 2695 nm, obtained from a polymer solution at cPNIPAM = 9 %, and a spin-coating
velocity of ωspin = 1000 rpm. The height profile shown in the panel below is extracted
from the light green line indicated on the AFM image.

respectively. For the example of volcano pattern shown in Fig. 2.12(a), the extracted
wavelength and amplitude are λp = 19.5 ± 1.1 µm and Ap = 660 ± 41 nm, respectively.

The method to extract the wavelength λp and the amplitude Ap from an AFM image,
that is detailed in the previous paragraph, has been used to analyze all the AFM images
of the project presented in this Chapter. A 2D-Fourier analysis was also tested. However
the results given by the hand-based method are better. Indeed, an image typically shows
between 5 and 20 spatial periods, which is not enough to precisely compute the Fourier
transform in all cases. In the next subsections, we study the measured wavelengths and
amplitudes, for the different morphologies, as a function of the thickness in the dry state.

2.2.4.2 Wavelength and amplitude of the different patterns

From surface topography measured by AFM, patterns are characterized quantitatively
by measuring the wavelength and amplitude, in both wet and dry conditions. The dry
thickness τdry is systematically measured on each investigated sample. In Figs. 2.13(a)
and (b), the wavelength λp and amplitude Ap are respectively shown as a function of
the PNIPAM film thickness in the dry state τdry. In the following, we first detail the
observations about the wavelength, before turning to the amplitude.

Wavelength: The wavelength of the instability λwet
p observed at the surface of swollen

gels seems to increase monotonically with the initial, dry thickness τdry, on the full range
of achieved thicknesses. In the previous section, qualitative observations of patterns at
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FIG. 2.13. Wavelength and amplitude of surface patterns. (a): Wavelength λp
as a function of the dry thickness τdry. The different morphologies are indicated by the
color code and the legend. The data of Ortiz et al. on block-co-polymer (PNIPAM-co-
MaBP) films are reproduced [124], and correspond to the black squares. A transition
takes place at a critical wet thickness comparable to the wet elasto-capillary lengthscale
τwet ≈ SRτdry ∼ lwet

c (light blue dashed line). (b): Amplitude Ap as a function of the
dry thickness τdry. Light pink crosses stand for the amplitude of wet patterns Awet

p as a
function of wet thickness τwet = SRτdry.

the surface of swollen gels showed that one type of pattern is clearly recognized. The
latter is typical of a creasing instability. However, for dried films, we observe two regimes
depending on the thickness in the dry state τdry. In both the thin and the thick-film
regimes, the wavelength λdry

p increases monotonically with the dry thickness τdry, yet
with a different prefactor. Additionally, in the thick-film regime, the prefactor is twice
the one in the thin-film regime. Thus, we observe a period-doubling at the transition.
Moreover, the two regimes correspond to the two types of morphologies we observed
in the previous section. In the thin-film regime, brain-like patterns are identified at
the surface of dried films, and in the thick-film one, volcano patterns are identified. A
transition happens at the crossover between these two regimes in thickness, at a critical
dry thickness of about τdry,c ≈ 1.86 µm, that we will discuss in a following section.
Additionally, the transition in thickness corresponds to the transition in morphology
previously observed. Finally, in the thick-film regime we observe that the wavelengths of
swollen and dried gels are comparable among the investigated samples. In the thin-film
regime, we observe that the wavelength of swollen gels is twice the one of dried films.
By generalizing the latter statements, we estimate the wet wavelength of each sample,
as: {

λwet
p = 2λdry

p , for τdry ≤ τdry,c
λwet

p = λdry
p , 2for τdry ≥ τdry,c,

(2.7)

with τdry,c = 1.86 µm.
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For a matter of comparison, the results of Ortiz et al. [124], obtained with dried films
of PNIPAM copolymerized with methacroyloxybenzophenone (MaBP), are also included
in Figs. 2.13(a), for reference. Even if their focus is on submicron thick gels, their work
mentions also a greater wavelength for samples thicker than a critical thickness, which
is about 400 nm in their case, and also exhibits a doubling of the thickness dependency.
Some of the AFM images presented in their work show creased patterns for samples
thinner than 400 nm, and one image of what we recognize as a volcano pattern for
a sample of dry thickness 800 nm (see Fig. 2.10). However the classification of their
images in pattern types remains difficult as they focus more on the study of rinsing
solvents, not on pattern shapes.

Amplitude: The amplitude of the instability Ap is shown as a function of the dry
thickness τdry in Fig. 2.13(b). First, a standard nanometric surface roughness is mea-
surable on dried films thinner than 70 nm, which exhibit no pattern. Then, for dried
films thick enough to show a pattern (τdry ≥ 70 nm), we observe two regimes depending
on the dry thickness τdry, as for the wavelength. In the thin-film regime, the amplitude
Adry

p increases linearly with the dry thickness τdry. Yet, in the thick-film regime, the
amplitude Adry

p increases with the dry thickness τdry as a power law, with an exponent
2. Moreover, as for the wavelength, the two regimes in thickness correspond to the two
pattern types described in previous sections, which are brain-like and volcano patterns.
The crossover between the two regimes appears at the same critical dry thickness as for
the wavelength, τdry,c = 1.86 µm. At the pattern transition thickness, we observe a sharp
increase in amplitude. Additionally, the amplitude of the pattern observed at the surface
of swollen gels seems to scale linearly with the initial, dry thickness of the films τdry,
with some dispersion of the data. Such a linear dependency of the amplitude as a func-
tion of the thickness is also observed for dry brain-like patterns, that are similar to the
creased pattern observed on swollen gels. However, the prefactor is greater in the case
of swollen gels. Now, by taking into account the increase of the thickness with swelling,
by a factor which is the swelling ratio SR, we consider the amplitude as a function of
the wet thickness τwet instead. This comes down to apply a factor SR (represented by
the pink arrow on Fig. 2.13(b)). Then, the wet amplitude Awet

p scales linearly with the
wet thickness τwet, and with a similar prefactor as the dry amplitude Adry

p as a function
of the dry thickness τdry in the thin-film regime.

For a matter of comparison, the results of Ortiz et al. [124], obtained with dried films
of PNIPAM-co-MaBP, are also included in Fig. 2.13(b). Their data would show a convex
tendency, on five data points, which is not enough to conclude about a transition from
a linear to a power-law regimes in the thickness dependency of the pattern amplitude.

2.3 Discussion: dry patterns resulting from wet patterns
at the surface of polymer films

In Sec. 2.2.1.2 we observed that patterns appear at the surface of dried PNIPAM films
after the first exposition to a solvent. Then, observations made on AFM images in
Sec. 2.2.2 showed that the swollen and the dried cases are distinct by morphology. Ad-
ditionally, the more quantitative observations made on both the wavelength and the
amplitude as a function of the initial, dry thickness τdry, detailed in the two previous
subsections, show that the distinction is also quantitative, in terms of scalings and pref-
actors. In the following subsection, we aim to understand the links between the different
observed patterns and their features.
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2.3.1 Apparition of two regimes upon drying

When swollen, PNIPAM films exhibit one regime in morphology, characterized by creases,
while when dried, they exhibit two regimes characterized by distinct morphologies, that
we call the brain-like and the volcano patterns. Thus, when drying, the mechanics of
(in)stability of the surface becomes different depending on the thickness of the gel. We
define the wet elastocapillary length lwet

ec based on wet mechanical properties, as the
result of a balance between surface tension and volume elasticity, as:

lwet
ec = γ

G
, (2.8)

with γ the interfacial tension between swollen PNIPAM hydrogel and air, and G the
shear modulus of swollen PNIPAM. We recall the link between the shear modulus G
and the Young’s modulus E:

G = E

2(1 + ν) , (2.9)

with ν the Poisson ratio. Thus, for swollen PNIPAM, we compute first a shear modulus
of 14 kPa, based on our measured value of the Young’s modulus, which is E = 8 kPa
(see sec. 2.2.3), and taking a Poisson ratio of 0.25 from the literature [239, 240]. Then,
we compute a wet elastocapillary length of lwet

ec = 3 µm, taking from the literature the
surface tension between swollen PNIPAM and air, γ = 41.8 N/m [246]. Keeping in
mind that our value of the Young’s modulus may be overestimated, the same calculation
can be done using the value from the literature E = 8 kPa [243], and leads to a wet
elastocapillary length of lwet

ec = 13.1 µm.
In Section 2.2.4.2, we observed that the transition in morphology happens at a critical

dry thickness of τdry,c = 1.86 µm, which corresponds to a critical wet thickness of τwet,c =
SRτdry,c = 6.5 µm. Indeed, as the transition in morphology appears upon drying, and
as the drying process starts from the wet state, we treat the problem in the wet state.
Finally, the critical wet thickness at which the transition on morphology happens is
comparable to the wet elastocapillary length τwet,c ∼ lwet

ec . More precisely, the obtained
critical wet thickness τwet,c is comprised between the wet elastocapillary length computed
from our measurement of the Young’s modulus and the one computed from a Young’s
modulus value given by the literature.

In summary, the wet thickness τwet of PNIPAM hydrogels determines the final mor-
phology of the surface instability in the dry state, after a complete drying. For samples
thicker than the wet elastocapillary length in the wet state, i.e. τwet ≳ lwet

ec , bulk elasticity
dominates over surface tension. As a result of drying, we observe a strongly destabilized
surface, whose amplitude increases with thickness as a power law. The shape changes
upon drying. For samples thinner than the wet elastocapillary length in the wet state,
i.e. τwet ≲ lwet

ec , surface tension dominates over bulk elasticity. As a result of drying,
we observe a surface instability that keeps the same shape, yet the spatial frequency of
pattern is multiplied by two. To conclude, a track to explain the observed features on
dry PNIPAM films is thus to understand the transition from the wet to the dry states,
which implies to understand the features observed on wet PNIPAM films. In the fol-
lowing, we propose a quantitative scaling for the observed wavelength, based on the one
observed on swollen gels.

2.3.2 Rescaling on swollen-gel data

To understand the observed patterns on dried films, one must first understand the ones
on swollen gels, following the chronology of the rinsing-drying step that reveals patterns.
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CHAPTER 2. TRANSITION IN MORPHOLOGY AT THE SURFACE OF
GRAFTED HYDROGEL THIN FILMS

103 104

1

1

103 104

10-1

100
(b)

103

104

105
(a)

FIG. 2.14. Rescaled wavelength and amplitude of surface patterns. (a): Ex-
pected wavelength λwet on a swollen sample as a function of expected wet thickness
τwet = SRτdry. The wet wavelength λwet scales linearly with the dry thickness τdry,
albeit a logarithmic correction indicated on the panel, given in Eq. (2.10). (b): Ampli-
tude scaled by film thickness Adry

p /τdry when dried, as a function of the wavelength λdry
p

(open circles). Wet amplitude scaled by the wet thickness, Ap/(SRτdry), as a function of
the wet wavelength λwet

p (magenta crosses).

Thus, in Fig. 2.14(a), we show the estimated wet wavelength λwet
p as defined by Eqs. (2.7),

as a function of the estimated wet thickness, τwet = SRτdry. We observe that all the
data for brain-like patterns, volcano patterns and creases observed on wet films follow
the same apparently-linear trend, with the same prefactor. Indeed, in the wet state, all
the observed patterns are identified as coming from a creasing instability, thus finding a
common scaling is consistent.

Furthermore, finer scalings were derived for the wavelength at the surface of a creased
surface, as a function of the initial thickness, in both the cases of an expanding elas-
tomer [144] and a swelling gel [143]. The swelling gel is modeled as an elastic material,
fixed at a bottom interface and expanding in the free direction, perpendicularly to that
interface. Surface tension intervenes to balance bulk elasticity. In this framework, de-
veloped by M. Ben Amar, J. Dervaux and P. Ciarletta, the wavelength of the creasing
instability scales with the initial dry thickness, as:

λwet
p = 4πτdry

log
(44.953τdry

d

) , (2.10)

with d a regularization length that we interpret as ldry
ec , the dry elastocapillary length,

based on initial, dry mechanical properties, resulting from a balance between the elastic
shear modulus Gdry and the surface tension γ:

ldry
ec = γ

Gdry
. (2.11)

Thus, the wet wavelength λdry
p scales linearly with the thickness τdry, albeit a logarithmic

correction, involving the dry elastocapillary length ldry
ec . The latter acts as a regulariza-

tion length, that tunes the importance of the logarithmic correction, brought to the
zeroth-order linear scaling. The dry elastocapillary length defines a threshold for the
apparition of creases: for an initial, dry thickness small compared to the elastocapillary
length, i.e. τdry ≲ ldry

ec , surface tension dominates over volume elasticity. Thus, the sur-
face is not destabilized, resulting in a flat surface in the wet state. On the contrary, for
sample having an initial, dry thickness comparable or greater than the elastocapillary
length, i.e. τdry ≳ ldry

ec , bulk elasticity is sufficient to overcome surface tension. As a
result, the surface is destabilized, taking a singular shape characterized by the presence
of cusps, named creases.
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2.3. DISCUSSION: DRY PATTERNS RESULTING FROM WET PATTERNS AT
THE SURFACE OF POLYMER FILMS

The experimental data shown in Fig. 2.13(a) can be compared to the theoretical
wavelength λwet

p as a function of the dry thickness τdry, given in Eq. (2.10). We performed
a non-linear fit of our data on the model, letting a prefactor and the elastocapillary length
ldry
ec as two fitting parameters. In other words, we used the following equation to fit our

data:
λwet

p = α1
4πτdry

log
[44.953τdry

α2

] , (2.12)

with α1 and α2 being free parameters. We exploit also the observation of the period
doubling, defined in Eq. (2.7). With this expectation of wavelength λwet

p in the wet state,
our data for dried samples show an excellent agreement with the theoretical prediction of
Derveaux and Ben Amar [143], as shown by the best fit line represented on Fig. 2.14(a).
In this model, the agreement can be interpreted as surface tension smoothing out defects
that act as nucleation sites for crease formation and imposing an energy barrier between
the flat state and the creased state [158].

As a result of the fit, we obtain an estimation of the dry elastocapillary length, ldry
ec =

α2 = 152.7 nm, and a prefactor α1 = 3.46. Using the surface tension value from the
literature γ = 41.8 mN/m [246], we estimate first the shear modulus G = 274 kPa. The
link between the shear modulus G and the Young’s modulus E is recalled in Eq. (2.9). By
taking from the literature a Poisson ratio ν = 0.25 [239, 240], we finally obtain a Young’s
modulus E = 684 kPa. This estimation of the Young’s modulus corresponds to the
effective value the material would show in the dry state, if it was a rubber-like polymeric
material. Yet, PNIPAM exhibits a glass transition upon dehydration [107, 245], which
explains that our measurement of the Young’s modulus in the wet state is greater by
three orders of magnitude. Moreover, the calculation of the latter Young’s modulus is
based on the surface tension value γ = 41.8 mN/m found in the literature [246], which
is measured for a swollen gel in contact with ambient air. To be more consistent, the
surface tension between dry PNIPAM and ambient air should be considered. The latter
can be expected to be higher, and thus lead to an even greater value of the Young’s
modulus.

The fit presented in this section is based on the strong hypothesis of period-doubling,
summarized in Eqs. (2.7), which claims that in the thin-film regimes, the wavelength
in the wet state is exactly twice the one in the dried state. The validity of the latter
hypothesis is tested by performing the same fit on the same model, but with setting
the factor between the wavelengths in both the dry and wet states as a third fitting
parameter α3. In that case, we obtain a dry elastocapillary length ldry

ec = α2 = 157.4 nm,
a prefactor α1 = 3.52 and a multiplying factor between the dry and wet wavelengths
α3 = 2.04. The results are detailed in Appendix A.5. In conclusion, our results support
strongly the hypothesis of the period doubling formulated in Eq. (2.7).

2.3.3 The challenge of fabricating thicker samples

To measure the relative importance of the instability, in Fig. 2.14(b) we show the am-
plitude in both dry and wet conditions, scaled by the initial, dry thickness τdry, as a
function of the wavelength. We observe that the relative amplitude for dried films in
the thin-film regime is constant with the wavelength, which is a signature of a form of
self-similarity of the creasing instability. The same observation can be made about data
from swollen gels, but the data is more disperse, and the prefactor is greater than in the
case of dried films. Finally, for dried films in the thick-film regime exhibiting a volcano
pattern, the relative amplitude scales linearly with the wavelength. We interpret the
latter feature as a signature of a highly unstable surface in the thick-film regime, as with
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FIG. 2.15. Proposition of a mechanism to explain the apparition of patterns
on PNIPAM films. PNIPAM films are grafted onto rigid substrates (first column).
When exposed to a solvent, the PNIPAM films swell, resulting in creases at the free
surfaces (second column). When exposed to ambient air, PNIPAM swollen hydrogels
dry (third column). Depending on the thickness, the final morphology observed on dried
PNIPAM film corresponds either to a brain-like pattern (first row, thin-film regime), or
a volcano pattern (second row, thick-film regime).

increasing thickness the instability in the z-direction grows faster than in the in-plane
direction.

In the present project, one challenge was to fabricate the thickest samples. In-
deed, thicker samples were achieved by using a highly concentrated polymer solution
(cPNIPAM = 15 % at the maximum), which is difficult to realize. Such a concentration
must be close to saturation, as the polymer takes hours to dissolve. Moreover, the ob-
tained solution is highly viscous, which limits diffusion and homogeneity. Finally, at
such a concentration, spin-coating does not ensure a uniform layer of deposited solution,
as we observe important ridges on sides.

Yet, an interesting feature of the amplitude measurement is that for the volcano
patterns, it scales as a power law of the thickness, thus having access to data from
thicker samples would be of a certain interest. Indeed, following the observed scaling of
the relative amplitude Ap/τdry with the wavelength λdry

p (or equivalently with the dry
thickness τdry), in principle, the relative amplitude could reach one, which is physically
unrealistic. Thus, with increasing thickness, a third, distinct regime could probably be
highlighted. In the work of Ortiz et al. [124], as well as in other published works [131,
152, 154, 163, 247–249], folding of a top layer is observed for thicker samples. With
such a change of geometry and instability direction, amplitudes greater than thicknesses
could be achieved.

2.3.4 Proposition of a mechanism

In the present subsection, we attempt to explain the observed patterns at the surface of
dried PNIPAM films, from observations made on swollen gels. The proposed mechanism
is schematized in Fig. 2.15. The formation of patterns at the surface of wet films, as a
result of swelling, is already well understood and described in the literature [122–131].
When a hydrophilic, polymeric material is brought in contact with water, the polymer
swells into the water and a gel is formed. Additionally, when the polymer is grafted onto
a glass substrate, surface-attachment constrains the gel to swell in only one direction,
perpendicular to the plane of the substrate (see Fig. 2.15, first and second columns).
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2.4. CONCLUSION

Such an anisotropic swelling results in an in-plane, compressive stress in the polymer
matrix. When the swelling is sufficient, i.e. when the mechanical strain exceed a critical
strain above which the free surface is destabilized, creases form, which result in the
formation of the typical patterns observed at the surface of swollen PNIPAM hydrogels.

The drying process is initiated on a gel whose surface is already strongly destabi-
lized. Depending on the wet thickness, at the beginning of the drying phase, we observe
two regimes, that we rationalize with two possible scenarios. In the thin-film regime
(when the wet thickness is smaller than the wet elastocapillary length, τwet ≲ lwet

cap),
the gel shrinks upon drying (see Fig. 2.15, third and fourth columns, first row). More
creases appear, as their wavelength (respectively their spatial frequency) scales with the
thickness (respectively the inverse of the thickness). Yet, as the surface is already desta-
bilized when drying starts, the pre-existing creases stay in place and the new creases
have to distribute symmetrically between the ancient ones. As a result, the multiplying
factor between the wavelengths in the wet and dry states is necessarily an integer num-
ber. We indeed observe that this integer number is two, exploiting the period-doubling
hypothesis.

In the thick-film regime (when the wet thickness is greater than the wet elastocapil-
lary length, τwet ≳ lwet

cap), the solvent evaporates from the free surface upon drying (see
Fig. 2.15, third and fourth columns, second row). Previous works show that a crust forms
at the surface of a drying polymeric material [25, 27, 29, 166, 172, 173, 176], character-
ized by a drastically lower solvent concentration than in the underlying layer of hydrated
polymer. In the case of PNIPAM films, a glass-transition may be observed [107], trig-
gered by dehydration, since PNIPAM is glassy at room temperature. As a result, the
crust that is formed by drying at the surface of a PNIPAM gel may be stiffer than the
still-hydrated gel underneath, by four orders of magnitude (see Sec. 2.2.3). Moreover, as
drying generates a loss of solvent, the stiff layer of the crust shrinks, and pulls the surface
of the still-hydrated swollen gel underneath. In such a situation, which is schematized
by considering a stretched, stiff and thin layer on a thick and soft material, numerous
published works showed that a wrinkling instability can appear [125, 131, 132, 145,
148–152, 163, 250]. The surface is destabilized, taking a regular, sinusoidal shape. In
our case, a wrinkling instability appears on an already-destabilized surface. As a result,
the wavelength of wrinkles and their spatial distribution are pre-selected. By opposi-
tion to the depth of creases, the bumped regions are less constrained and thus deform
further, creating an inversion of the topography. The resulting surface morphology is
characterized by a globally-sinusoidal profile, with scars of creases present at the upper
regions.

2.4 Conclusion

In the present Chapter, we have shown AFM images of grafted PNIPAM films that
exhibit surface instabilities, both in the wet and dry states, as a result of swelling and
drying processes. Irreversible and reproducible surface deformations were characterized
by their morphology: swelling leads to a creased pattern for films thicker than 70 nm,
while drying leads to two types of instability depending on their thickness. Dried films
respectively thinner and thicker than 1 µm show a brain-like and a volcano patterns. We
have shown that the wavelength and amplitude are prescribed by the thickness, and in
the case of dried films, by the pre-existing instability at the surface of wet gels. Finally,
we have exposed a mechanism based on observations and published works to rationalize
the apparition of different morphologies.
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To enforce our hypothetical mechanism that would explain the formation of the vol-
cano pattern, an estimation of the thickness of the evaporation-formed crust is desired.
Very recent published works could be applied to our system, to provide such a crucial
information [173]. Indeed, together with our measurements of elastic moduli, the ratio
of the different layer thicknesses upon drying would provide a quantitative theoretical
prediction for the wavelength of the instability [148–150, 250]. A comparison with our
experimental data on dried and thick PNIPAM films could finally allow to critically
assess our proposition of mechanism.

In the following Chapters, we will be interested in the mechanical response of poroe-
lastic materials to a pressure field generated by a nearby sphere, when immersed in a
solvent. We will use PNIPAM films as a model system for experiments. From a theo-
retical point of view, we will describe our experiments in lubrication conditions, using a
sphere-plane geometry, thus we will assume that the sample surface is flat. In practice,
the study of instabilities presented in this Chapter allows to predict exactly whether an
investigated sample of PNIPAM hydrogel is flat or destabilized, and how, depending on
its thickness. Thus, we will consider that the hypothesis of flatness hold when the wave-
length of the instability is short compared to a relevant length scale of the contactless
rheology to be defined later, if the sample is thick enough to show an instability.

The following Chapter sets the theoretical framework to describe the mechanical re-
sponse of a permeable, poroelastic substrate to any axisymmetric pressure field, in terms
of deformations. Both the cases of an infinitely-thick and a finite-thickness substrate will
be studied.
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Chapter 3

Mechanical response of a
permeable poroelastic gel to an
external pressure field

This chapter is inspired from published work on the mechanical response of a permeable,
poroelastic and infinitely-thick medium [251], included in Appendix E. The content of
the publication is intersperse between the present chapter and the next one, which fo-
cuses on colloidal-probe rheology of soft and porous gels.

The present Chapter aims to mathematically describe poroelasticity, inspired from
the context of soft-lubrication problems as presented in the general introduction, in
Sec. 1.5.2. Here, we derive a model to characterize the mechanical response of poroelastic
gels, in both cases of infinitely-thick and thin layers. Since we are interested in describing
gels in contact with a reservoir of solvent, a full-permeability boundary condition at the
gel-solvent interface is considered. Our focus contrasts with a previous study in the
impermeable case [110, 111], that is more relevant to methods involving direct solid
contact. In the first part, we expose the framework of linear poroelastic theory. In the
second part, we adapt this framework in the case of a permeable layer to the fundamental
situation of a punctual pressure field suddenly applied. In the third part, we derive a
mathematical solution to express the deformation profile of the gel in this fundamental
situation. We use the formalism of Green’s functions in axisymmetric conditions, as it
was done for purely elastic media in the context of soft lubrication [184, 189, 202, 208,
209, 212], or for a poroelastic but impermeable soft substrate [110]. In a last part, we
generalize the fundamental solution of the third part to any axisymmetrical arbitrary
pressure field.

3.1 Linear poroelastic theory

3.1.1 Equations of poroelasticity

The considered system is shown in Fig. 3.1. It consists of a gel that occupies the half-
space defined by z ≤ 0 or a layer of space defined between −τ ≤ z ≤ 0, respectively
represented by Fig. 3.1(a) and Fig. 3.1(b) 1. We suppose that the mechanics of the gel is
described by the linear poroelastic theory. As mentioned in the introduction, this model

1The semi-infinite case described in Fig. 3.1(a) is published [251], article being included in Appendix E.
The finite-size case described in Fig. 3.1(b) is not but comes from the same development.
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FIG. 3.1. Semi-infinite and finite-thickness permeable poroelastic media de-
formed by a punctual external pressure field. A point-force pressure field
P (r, t) = F0δ(r) is suddenly applied at t = 0 on the poroelastic substrate, and gener-
ates a surface deformation w(r, t). The latter is directly related to the Green’s function
G(r, t) by Eq. (3.50). We denote G, ν, and k, the shear elastic modulus, Poisson ratio,
and porosity of the substrate, respectively, as well as η the shear viscosity of the sol-
vent flowing in the porous material. (a): Semi-infinite medium. (b): Finite-thickness
medium, where we denote τ the thickness of the substrate.

was first established by Biot [10], and was adapted to model the migration of solvent
in elastomeric gels [110, 111, 214]. We take as a reference state a swollen gel, with a
homogeneous solvent concentration c0, and where the chemical potential of the solvent
inside the gel is µ0. The elastic deformation of the gel is characterized by the strain
tensor ϵ. The latter is defined as the symmetric part of the displacement field gradient
tensor, as:

ϵ = 1
2
[
∇u + (∇u)T

]
, (3.1)

where u denotes the displacement field with respect to the reference state. The solvent
mass being conserved, the concentration c satisfies the continuity equation:

∂c

∂t
+ ∇ · J = 0, (3.2)

where the flux of solvent inside the gel is denoted J. The linear poroelastic theory
assumes that the solvent flow is driven by the gradient of solvent chemical potential µ,
through the Darcy law:

J = −
( k

ηΩ2

)
∇µ. (3.3)

Here, η and Ω are the viscosity and molecular volume of the solvent, respectively, and k
is the permeability that is on the order of the pore surface area of the swollen polymeric
network. The solvent and the polymer network are both assumed to be incompressible.
As a consequence, the local variations of volume of the polymer network are due to the
local changes in solvent concentration, which sets the incompressibility condition:

Tr(ϵ) = ∇ · u = (c − c0)Ω, (3.4)

where Tr is the trace. As discussed in Ref. [221], we expect that the free energy density
U of the gel is a function of the strain tensor and the concentration field. The work done
on a gel element is given by δU = σijδϵij + (µ − µ0)δc, where σ is the mechanical stress
tensor. Nevertheless, due to the incompressibility condition in Eq. (3.4), the solvent
concentration is no longer an independent variable, and the free energy density only
depends on strain. The latter is supposed to follow the standard linear-elastic energy
density, i.e. U = G

[
ϵ : ϵ + ν

1−2ν Tr2(ϵ)
]
, where G and ν are the effective shear elastic
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modulus and Poisson ratio, respectively. The stress tensor is then given by [221]:

σ = 2G
[
ϵ + ν

1 − 2ν
Tr(ϵ)I

]
− µ − µ0

Ω I, (3.5)

where I is the identity tensor. The difference in chemical potentials per molecular volume
appears as a hydrostatic pressure, often called pore pressure, and is obtained by enforcing
the incompressibility condition with a Lagrange multiplier. In the absence of body force,
the mechanical equilibrium is expressed by Navier’s closure equation:

∇ · σ = 0. (3.6)

3.1.2 Coupling between diffusion and hydrostatic pressure

Combining the Eqs. (3.5) and (3.6) leads to:

GΩ
(

∇2u + Ω
1 − 2ν

∇(c − c0)
)

= ∇(µ − µ0). (3.7)

Invoking Eq. (3.3), Eqs. (3.2),(3.4), and (3.7) form a closed system of five equations
for the five fields µ, c, and the three components of u. Combining the latter equations
reduces the problem to a set of two coupled equations on the concentration field c and
chemical potential µ, as:

∇2
[
(µ − µ0) − 2GΩ2 1 − ν

1 − 2ν
(c − c0)

]
= 0, (3.8a)

Dpe∇2c − ∂c

∂t
= 0, (3.8b)

where we have introduced an effective, poroelastic diffusion coefficient

Dpe = 2(1 − ν)
1 − 2ν

Gk

η
. (3.9)

Equation (3.8a) couples the chemical potential with the concentration, as the flow of
solvent is driven by gradients of chemical potential (or equivalently, gradients of pore
pressure). Equation (3.8b) describes the diffusion of solvent through the porous matrix,
with Dpe of Eq. (3.9) constructed using macroscopic material parameters. Physically, a
mechanical stress would generate (i) a mechanical strain (by elasticity) and (ii) a gradient
of chemical potential (or pore pressure). The latter would generate a fluid flow, thus an
inhomogeneity of solvent and polymer concentrations.

We note lastly, however, that even while Dpe is constructed from these macroscopic
parameters, one can recover a molecular-scale diffusion coefficient. To make the corre-
spondence, we use the Stokes-Einstein relation for molecular diffusion, Dµ ∼ kBT/(ηa),
with kBT and a ≈ Ω1/3 the thermal energy and monomer size, respectively. Estimat-
ing furthermore the typical polymeric modulus G ∼ kBT/(Na3), and the permeability
k ∼ Na2, where N is a typical number of monomers between crosslinks in the network,
we find Dpe ∼ Dµ upon substitution into Eq. (3.9).

3.2 Point-force driving of the gel deformation
In this section, we derive the response of a gel to a point force. We first describe
the boundary condition at the top interface, which applies for both thick and thin gels.
Secondly we distinguish an infinitely thick gel and a finite-size gel regarding the boundary
condition at the bottom interface. Then, we expose a path to resolve the calculation
which applies to both thick and thin gels, and use it in both cases. Finally, we illustrate
the theoretical results on the surface deformation of both thick and thin gels.
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(a) (b)

FIG. 3.2. Boundary condition The interface between the poroelastic substrate and the
reservoir of solvent at z = 0 is considered permeable and allows fluid exchange between
the reservoir and the substrate. The permeability condition is translated by the chemical
potential being fixed to its equilibrium value at z = 0. (a): The substrate is infinitely
thick, thus in the limit z → −∞ the stress and strain fields vanish and the concentration
field reaches its equilibrium value. (b): The substrate has a finite thickness τ and is
bounded to a rigid boundary at the bottom. Thus the displacement field vanishes at
z = −τ and the gel is considered impermeable at the interface with the rigid boundary.

3.2.1 Description of the solvent-gel interface

3.2.1.1 Sudden application of an external pressure field

We now derive the response of the gel to a spatially delta-distributed force density applied
to the surface of the gel. Prior to the application of such a force, i.e. for times t ≤ 0,
we suppose that the gel is in the (swollen) reference state with strain- and stress-free
conditions. For t ≥ 0, a point-force pressure source of magnitude F0 is suddenly applied
on the surface as represented in Fig. 3.1. This forcing drives a deformation of the gel
surface, and solvent flow within the polymer matrix. At the interface (i.e. z = 0 in the
reference state), the stress boundary condition is therefore given by:

σ · ez = −F0δ(r)H(t)ez, (3.10)

where H(t) denotes the Heaviside step function and δ(r) the Dirac distribution.
At infinitesimally small times after the point force has been applied, the solvent does

not have time to flow, so that the solvent concentration is the same as the one at t < 0
as illustrated in Fig. 3.10(a), i.e.:

c(r, z, t = 0) = c0. (3.11)

3.2.1.2 Permeable solvent-gel interface

We suppose that the gel is in contact with a reservoir of solvent molecules as described in
Fig. 3.2, which sets the surface chemical potential to the reference equilibrium value µ0.
Such a permeability condition allows for solvent exchange between the gel and the outer
reservoir, and is relevant to situations where the gel is immersed in a liquid phase (e.g.
its own solvent) with some affinity between the two. Thus, the permeable boundary
condition on the chemical potential at the interface reads:

µ(r, z = 0, t) = µ0. (3.12)

In a perspective of comparison, the same reasoning can be used to describe the
mechanical response of an impermeable gel. In that case, solvent exchange between the
gel and an outer reservoir is forbidden, thus the normal gradient of chemical potential
at the interface z = 0 vanishes. The impermeability condition is relevant to situations
where a solid object is in contact with the gel surface, thus where there is no reservoir,
or to situations where the gel is immersed in another liquid which is not miscible with
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the solvent of the gel. The impermeable boundary condition on the chemical potential
at the interface reads [110]:

∂µ

∂z
(r, z = 0, t) = 0. (3.13)

In this chapter, we focus on the permeable boundary condition given in Eq.(3.12).
We aim to describe situations where the gel is immersed in its own solvent, and even-
tually interacts with a solid object through a hydrodynamic coupling. The analogous
calculation for an impermeable gel is presented in Appendix D.2.

3.2.2 Thick and thin limit cases

3.2.2.1 Infinitely thick gel

In the limit z → −∞, the stress and strain fields vanish as represented in Fig. 3.2a.
The solvent concentration and chemical potential fields reach their reference equilibrium
values c0 and µ0, respectively.

3.2.2.2 Finite-thickness gel

At the interface with the substrate, located at z = −τ , the gel is bounded to the rigid
boundary as described in Fig. 3.2b. Thus, the displacement field is set at zero, as:

u(z = −τ) = 0. (3.14)

Yet, the stress field does not necessarily vanish at z = −τ . The rigid boundary is
impermeable, thus no exchange of solvent is allowed at the interface between the gel
and the rigid substrate. The impermeable boundary condition at the bottom of the gel
reads:

∂µ

∂z
(z = −τ) = 0. (3.15)

3.3 Resolution

3.3.1 Expression in terms of potential functions

To determine the surface deformation w(r, t) associated with the pressure source of
Eq. (3.10) (see Fig. 3.1(a)), we follow the method introduced by McNamme & Gib-
son [117, 252–254]. The key ingredient of that method is the introduction of two dis-
placement potentials A(r, z, t) and B(r, z, t), defined by:

ur = z
∂A

∂r
+ ∂B

∂r
, (3.16a)

uz = z
∂A

∂z
− A + ∂B

∂z
, (3.16b)

and that satisfy the following equations:

∇2A = 0, (3.17a)
∇2B = Ω(c − c0), (3.17b)

2GΩ∂A

∂z
= (µ − µ0) − 2GΩ2 1 − ν

1 − 2ν
(c − c0), (3.17c)

Dpe∇4B = ∂∇2B

∂t
. (3.17d)
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Using Eq. (3.17), the solvent concentration and chemical potential fields can be ex-
pressed as:

c − c0 = 1
Ω∆B, (3.18a)

µ − µ0 = 2GΩ
[

∂A

∂z
+ 1 − ν

1 − 2ν
∆B

]
. (3.18b)

Using Eq. (3.5), (3.16) and (3.17), the components of the stress tensor can be expressed
as:

σrr = 2G

(
z

∂2A

∂r2 − ∂A

∂z
+ ∂2B

∂r2 − ∆B

)
, (3.19a)

σzz = 2G

(
z

∂2A

∂z2 − ∂A

∂z
+ ∂2B

∂z2 − ∆B

)
, (3.19b)

σrz = 2G

(
∂2B

∂r∂z
+ z

∂2A

∂z∂r

)
. (3.19c)

We note that azimuthal stresses and displacements have not been considered here, we
indeed neglect hoop stresses in this axisymmetric problem.

To solve Eqs. (3.17), we reconsider the problem in the spectral domain. Specifically,
we use the Hankel transform of j-th order in space and the Laplace transform in time,
with j ∈ {0, 1}. In such a framework, a given field X(r, t) is transformed into:

X̂(s, q) =
∫ ∞

0
dt e−qt

∫ ∞

0
dr X(r, t)rJj(sr), (3.20)

where Jj is the Bessel function of the first kind and j-th order. The inversion formula
reads:

X(r, t) = 1
2πi

∫ γ+i∞

γ−i∞
dq eqt

∫ ∞

0
ds X̂(s, q)sJj(sr), (3.21)

where the inverse Laplace transform is written using the Bromwich integral. Then, ex-
pressing Eqs. (3.17) in the spectral domain and invoking the initial condition ∇2B(r, z, 0) =
0, we get the following ordinary differential equations on the transformed potentials
Â(s, z, q) and B̂(s, z, q): (

∂2

∂z2 − s2
)

Â = 0, (3.22)

and (
∂2

∂z2 − s2 − q

Dpe

)(
∂2

∂z2 − s2
)

B̂ = 0. (3.23)

We note that Â and B̂ are calculated using the Hankel transforms of order 0 of A and B,
respectively. The solutions to Eqs. (3.22) and (3.23) depend on the boundary conditions
set at the bottom of the gel, thus a distinction is made between infinitely thick and
finite-size gels.

3.3.1.1 Infinitely-thick gel

The solutions to Eqs. (3.22) and (3.23) that vanish at z → −∞ read:

Â = a1esz, (3.24a)

B̂ = b1esz + b2ez
√

s2+q/Dpe , (3.24b)
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where a1, b1, b2 are integration constants, that depend on the spectral variables s and
q. Expressing the stress and chemical-potential boundary conditions of Eqs. (3.10)
and (3.12) in reciprocal space in terms of the potentials, we obtain:

σ̂sz(s, z = 0, q) = 0 = −2Gs

[
b1s + b2

√
s2 + q

Dpe

]
, (3.25a)

σ̂zz(s, z = 0, q) = − F0
2πq

= 2G
[
−a1s + (b1 + b2)s2

]
, (3.25b)

µ̂(s, z = 0, q) − µ̂0 = 0 = 2GΩ
[

1 − ν

1 − 2ν
b2

q

Dpe
+ a1s

]
. (3.25c)

We note that σ̂sz and ûs are computed using the Hankel transforms of order 1 of σrz and
ur, respectively, using d

dr

(
rJ1(sr)

)
= srJ0(sr) and doing an integration by parts; while

σ̂zz, σ̂ss, ûz, ĉ and µ̂ are computed using the Hankel transforms of order 0 of σzz, σss,
uz, c and µ, respectively. We introduce intermediate auxiliary functions that depend on
s and q to lighten the notation:

χ = Dpes
2

q
, (3.26a)

β =
√

1 + q

Dpes2 =
√

1 + 1
χ

. (3.26b)

In the following, the dimensionless quantities defined in Eqs. (3.26) are used in the
intermediate calculation steps. We denote the compressibility factor Λ where the Poisson
ratio ν appears, as:

Λ = 1 − 2ν

1 − ν
. (3.27)

Eqs. (3.25) can be written under the form of a matrix equation with division by the
factors −2Gs2, 2Gs2 and 2GΩs2 on each line, respectively, as: 0

− F0
4πGs2q

0

 =

 0 1 β
−1

s 1 1
1
s 0 1

Λχ

 .

a1
b1
b2

 . (3.28)

Solving Eq. (3.28) by inverting the 3x3 matrix, we obtain a1, b1 and b2, as:

a1
b1
b2

 = F0
4πGs2q



s

1 + Λχ
(
1 − β

)
Λβ

χ + Λ
(
1 − β

)
Λ

χ + Λ
(
1 − β

)


. (3.29)

Using Eqs. (3.16b), (3.24) and (3.29), we express finally the vertical displacement field,
as:

ûz(s, z) = − F0
4πGsq

[1 − sz − Λχβ] esz + Λβχeszβ(s,q)

1 + Λχ
(
1 − β

) , (3.30)

using the dimensionless quantities defined in Eqs. (3.26) and (3.27). In the expression
of the vertical displacement field in reciprocal space, we observe a superposition of two
exponential decays in depth. The variables χ and β make a transition between the
two terms, thus the two penetration depths. The form of χ and thus β shows that the
smooth switching in time from one penetration depth to the other follows a diffusive-like
dynamics.
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3.3.1.2 Finite-thickness gel

The solutions to Eqs. (3.22) and (3.23) in the finite-thickness case are:

Â = a1esz + a2e−sz, (3.31a)
B̂ = b1esz + b2eszβ + b3e−sz + b4e−szβ, (3.31b)

where a1, a2, b1, b2, b3, b4 are integration constants, that depend on the spectral variables
s and q. We use the two auxiliary functions introduced in the previous section 3.3.1.1
through Eqs. (3.26), given in Eqs. (3.32a) and (3.32b). We add a third one, Eq. (3.32c)
that rescales the spatial frequency with the inverse of the thickness τ , adapted to describe
a finite-sized layer of gel. These functions are:

χ = Dpes
2

q
, (3.32a)

β =
√

1 + q

Dpes2 =
√

1 + 1
χ

, (3.32b)

ζ = sτ. (3.32c)

The definition of the compressibility factor Λ is still given by Eq. (3.27). Expressing the
stress, displacement and chemical-potential boundary conditions of Eqs. (3.10), (3.12), (3.14)
and (3.15) in terms of the potentials, we obtain:

σ̂sz(s, z = 0, q) = 0 = − 2Gs2 [b1 − b3 + (b2 − b4)β] , (3.33a)

σ̂zz(s, z = 0, q) = − F0
2πq

=2Gs2
[
−a1

s
+ a2

s
+ (b1 + b2 + b3 + b4)

]
, (3.33b)

µ̂(s, z = 0, q) − µ̂0 = 0 =2GΩs2
[

a1
s

− a2
s

+ 1
Λχ

(b2 + b4)
]

, (3.33c)

ûs(s, z = −τ, q) = 0 = − s
[
−τ
(
a1e−ζ + a2eζ

)
+ b1e−ζ + b2e−ζβ + b3eζ

+b4eζβ
]

, (3.33d)

ûz(s, z = −τ, q) = 0 = − s

[1 + ζ

s
a1e−ζ + 1 − ζ

s
a2eζ − e−ζb1 + βb2e−ζβ

+eζb3 + βb4eζβ
]

, (3.33e)
∂µ

∂z
(s, z = −τ, q) = 0 =2GΩs3

[
a1
s

e−ζ + a2
s

eζ + β

Λχ
b2e−ζβ − β

Λχ
b4eζβ

]
. (3.33f)

Eqs. 3.33 can be written under the form of a matrix equation, with division by the
factors −2Gs2, 2Gs2,2GΩs2, −s, −s, 2GΩs3 on each line, respectively, as:

0
− F0

4πGs2q

0
0
0
0


=



0 0 1 β −1 −β
−1

s
1
s 1 1 1 1

1
s −1

s 0 1
Λχ 0 1

Λχ

−τe−ζ −τeζ e−ζ e−ζβ eζ eζβ

1+ζ
s e−ζ 1−ζ

s eζ −e−ζ βe−ζβ eζ βeζβ

1
s e−ζ 1

s eζ 0 β
Λχe−ζβ 0 − β

Λχeζβ


.



a1
a2
b1
b2
b3
b4


. (3.34)

As for the semi-infinite case, the resulting product of the inverse 6x6 matrix by the
right-hand-side vector and the expression of ûz(s, z, q) are computed using the formal
calculation software Mathematica. The code is reproduced in Appendix C.4.
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3.3.2 Results and discussion

3.3.2.1 Infinitely-thick gel

Having solved the poroelastic problem of Eqs. 3.8-3.13 for the potentials A, B defined
in the previous section, we find the surface normal deformation of the gel ŵ(s, q) =
−ûz(s, z = 0, q) in reciprocal space (see Eq. (3.20)) by invoking Eq. (3.16b) and Eq. 3.30,
as:

ŵ(s, q) = F0
4πGsq

1
1 + ΛDpes2

q

(
1 −

√
1 + q

Dpes2

) , (3.35)

where the Poisson ratio appears in the compressibility factor defined in Eq. (3.27).
We first note that if the gel is nearly incompressible, i.e. as ν → 1/2, then Λ → 0 and

the poroelasticity does not affect the surface deformation, as revealed in Eq. (3.35). In
such a case, the poroelastic medium responds as a purely elastic and incompressible one,
at all times. Similarly, if the permeability is small, i.e. as k → 0, the diffusion constant
Dpe of the solvent vanishes, and the medium again behaves as an incompressible elastic
material. In the opposite limit of large permeability, the solvent can diffuse almost
instantaneously, and the stress is immediately relaxed, so that the response is the one
of a compressible elastic material at all times.

In Fig. 3.3(a) is shown the dimensionless surface deformation in reciprocal space
ŵ(s, q) plotted as a function of the spatial frequency s for a given temporal frequency
q, both on linear (main) and logarithmic scales (inset). We choose a value ν = 0.1,
which is a typical value for swollen gels and giving finite Λ. The vertical normalisation
is chosen such that dimensionless values of s and q were used, length is normalised by√

F0/G, and time by F0/(DpeG). We choose qF0/(DpeG) = 1. Fig. 3.3(b) shows the
surface deformation in reciprocal space ŵ(s, q) plotted as a function of s for various q.
The results show parallel power-law decays in the small- and large-s limits, with a larger
prefactor for large s (small distance). Furthermore, the two prefactors for the small- and
large-s limits respectively depend on the value chosen for q. To explain this observation,
we explore the temporal asymptotics of the governing Eq. 3.35. We find:

ŵ(s, q) ∼
q→∞

F0
4πGsq

, (3.36a)

ŵ(s, q) ∼
q→0

F0(1 − ν)
2πGsq

. (3.36b)

The initial- and final-value theorems can be used in the short-time and long-time limits of
the surface deformation. By invoking the inverse Laplace transform we get, in reciprocal-
space (e.g. Hankel) and real-time domains:

ŵ(s, t = 0+) = lim
q→∞

qŵ(s, q) = F0
4πGs

, (3.37a)

ŵ(s, t → ∞) = lim
q→0+

qŵ(s, q) = F0(1 − ν)
2πGs

, (3.37b)

leading to the deformation in real space, by invoking the inverse Laplace and Hankel
transforms given in Eq. (3.21):

w(r, t = 0+) = F0
4πGr

= wincomp(r), (3.38a)

w(r, t → ∞) = F0(1 − ν)
2πGr

= wcomp(r). (3.38b)
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(a) (b)

FIG. 3.3. Surface deformation of a poroelastic half space induced by a point-
force pressure source in Hankel-Laplace space. (a): Dimensionless, reciprocal-
space surface deformation ŵ(s, q) as computed from Eq. (3.35) using ν = 0.1, as a func-
tion of the spatial frequency s, normalized by

√
G/F0, for a given temporal frequency

q, normalized by DpeG/F0. The orange and red dashed lines correspond to Eqs. (3.36a)
and (3.36b), respectively. Main : linear scale. Inset : logarithmic scale. (b): Dimen-
sionless, reciprocal-space surface deformation ŵ(s, q) as computed from Eq. (3.35) using
ν = 0.1, as a function of the scaled spatial frequency, s, for various scaled temporal
frequencies, q. The orange and red dashed lines are the same as in (a).

Thus, for both short and long times, we find in Eqs. (3.37) that the surface deforma-
tion in reciprocal space follows a power-law decay, in both short- and long-time limits.
The former expression is the point-force solution of a purely elastic, incompressible, and
semi-infinite medium of shear modulus G, denoted wincomp(r). At long times, we have
the point-force solution of a purely elastic and semi-infinite medium of shear modulus
G and Poisson ratio ν, denoted wcomp(r). Eqs. (3.36) are plotted using dashed lines
in Fig. 3.3(a) and 3.3(b). These expressions thus form a link between poroelastic and
elastic materials [188, 196]: at large distances (small s), the solvent has no time to flow
inside the porous matrix and the response is elastic-like, with an incompressibility con-
dition due to the liquid fraction. At small distances (large s), the solvent does not flow
anymore and the response recovers a steady elastic deformation, with compression (i.e.
a concentration change, as illustrated in Fig. 3.10(b)) as compared to the initial state.
In between the two asymptotic regimes, the surface deformation smoothly changes from
the short-time (incompressible) to the long-time (compressible) elastic-like behaviors, as
shown in Fig. 3.3(b) using a finite q.

To investigate the effect of inverse time, we remark that Eq. (3.35) is under the form
of a prefactor built with physical parameters multiplied by a dimensionless function.
The prefactor scales in 1/q, as a natural result of performing a Laplace transform.
Thus, in Fig. 3.4(a) is shown qŵ(s, q) plotted as a function of s for various q, both on
linear (main) and logarithmic scales (inset). With this scaling the parallel power-law
decays observed in the small- and large-s limits are independent on the chosen temporal
frequency q as predicted by Eqs. (3.36). The evolution of the response ŵ(s, q) multiplied
by q, with decreasing q, from the large-q to the small-q asymptotes, given respectively
by Eq. (3.36a)(a) and (3.36b)(b), is clearly seen.

To connect the asymptotic inverse space and time responses, we note that at fixed
Λ, Eq. (3.35) depends on the auxiliary function noted χ = Dpes

2/q in section 3.3.1.1,
that physically represents a dimensionless, diffusive variable. This is expected since
the solvent concentration follows a diffusive-like law with a diffusion constant Dpe. In
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q

(a) (b)

FIG. 3.4. Rescaled surface deformation of a poroelastic half-space induced by
a point-force pressure source in Hankel-Laplace space. (a): Normalized surface
deformation in reciprocal space ŵ(s, q), multiplied by the scaled temporal frequency q,
normalized by DpeG/F0, as a function of the scaled spatial frequency s, normalized by√

G/F0, for various scaled temporal frequencies q, and for ν = 0.1, as computed from
Eq. (3.35). The orange and red dashed lines correspond to Eqs. (3.36a) and (3.36b),
respectively, multiplied by q. Main : linear scale. Inset : logarithmic scale. (b): Normal-
ized surface deformation in reciprocal space ŵ(s, q) multiplied by the space frequency s
and the temporal frequency q, as a function of the scaled spatial frequency s, for ν = 0.1,
as computed from Eq. (3.35). The orange and red dashed lines are the same as in (a).

Fig. 3.4(b), we thus plot the normalized surface deformation in reciprocal space, as
a function of the normalized diffusive variable, having fixed the Poisson ratio. Given
the normalization and the form of Eq. 3.35, we find that a single curve describes the
response in reciprocal space. Interpreting the response physically, we note that when
the gel starts to be indented, it first exhibits an incompressible elastic-like response, as
discussed above. Later, at a given time t, the solvent and stress have typically diffused
over a radial distance rc ∼

√
Dpet, giving a self-similar curve in reciprocal space.

To have a direct view on the spatial and temporal relaxations described above in
reciprocal space, the inverse Laplace transform of Eq. 3.35 was numerically computed
using the Talbot algorithm [255]. The inverse Hankel transform was computed with
Riemann summation over a finite spectral domain. Residual numerical oscillations were
smoothed using a Savitzky-Golay filter of order 3 on a window of 9 points over the total
200 000 points used in the linear discretisation of the r, and s axes. Numerical tools are
detailed in Appendix C. The results are presented in Fig. 3.5(a), where the deformation
in real space is plotted as a function of the radial coordinate for various times. For
r < rc noted in the previous paragraph, the gel state has essentially relaxed and the
response is compressible (red dashed line), while for r > rc the state and response are
not modified with respect to the initial, incompressible elastic ones (orange dashed line).
The transition between compressible and incompressible deformations are also elucidated
in the logarithmic representation of the data shown in the inset, where the short- and
long-time asymptotic relaxations are shown.

In Fig. 3.5(b), we quantitatively show the gel’s relaxation to its final state, plotting
the difference of the data in (a) with that of the asymptotic late-time limit in Eq. (3.38b)
as a function of the radial coordinate. A continuous decay towards the late-time value
is observed for all radii. Taking a few examples, we show in the inset of Fig. 3.5(b)
the temporal decay towards the final state for the three radii noted by vertical dashed
lines in the main part of the figure. For early times, we note a plateau at a value
F0(1 − 2ν)/(4πG), corresponding to the difference between the two asymptotic limits in
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(a) (b)

t

FIG. 3.5. Surface deformation induced by a point-force pressure source. (a):
Surface deformation w(r, t) normalized by

√
F0/G, as a function of the radial coordi-

nate r normalized by
√

F0/G, for the times t noted in the legend and normalized by
F0/(DpeG), as computed from the inverse transform of Eq. (3.35) and using ν = 0.1.
The orange and red dashed lines correspond to the asymptotic limits in Eqs. (3.38). The
inset shows the same data on logarithmic scales. (b): Difference wcomp(r)−w(r, t) (nor-
malized) between the surface deformation of a purely elastic compressible material (see
Eq. (3.38b)) and the one of the poroelastic material, as a function of normalized radial
coordinate r, for the dimensionless times t noted in the legend. The inset shows the same
data, but as a function of time and for various radial positions r (corresponding to the
vertical dashed green lines in the main panel), using logarithmic scales.

Eq. (3.38). Remarkably, a temporal power law with exponent −1/2, characteristic of a
diffusive process, is reached for all the radii at long times. To explain this observation,
we perform an expansion of Eq. 3.35 at small temporal frequency q (or similarly at large
time t), as done in Eq. (3.36b) to a higher order in q. This leads to:

ŵ(s, q) ∼
q→0

F0
4πGsq

1

1 + 1−2ν
1−ν

Dpes2

q

(
1 −

[
1 + 1

2
q

s2Dpe
− 1

8

(
q

s2Dpe

)2
] )

= F0(1 − ν)
2πGsq

1
1 + (1−2ν)

4
q

Dpes2

.

(3.39)

We recover the result given in Eq. (3.36b), by taking Eq. (3.39) at order 1 in q at the
denominator. Taking the inverse Laplace transform of Eq. (3.39), we get:

ŵ(s, t) ∼
t→∞

F0(1 − ν)
2πGs

[
1 − exp

(
− 4

1 − 2ν
Dpes

2t

)]
. (3.40)

Finally, taking the inverse Hankel transform, we get in real space:

w(r, t) ∼
t→∞

F0(1 − ν)
2πGr

[
1 −

√
π(1 − 2ν) r√

Dpet
I0

(
−(1 − 2ν)

32
r2

Dpet

)
exp

(
−(1 − 2ν)

32
r2

Dpet

)]

≃ F0(1 − ν)
2πGr

− F0(1 − ν)
√

(1 − 2ν)π
2πG

√
16Dpet

,

(3.41)

where I0 is a modified Bessel function of the first kind, of order 0, and the last expansion
is obtained by taking the long-time limit. The first term of the right-hand side gives the
purely elastic and compressible response of the material at long time. The second term
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corresponds to the long-term correction to the latter, as plotted in Fig. 3.5(b). The decay
does not depend on r and scales as ∼ 1/

√
Dpet, as recovered through the asymptotic

−1/2 exponent in the inset of Fig. 3.5(b). The intercept between the asymptotic decay
law and the initial plateau value indicates its typical duration time, that scales with the
diffusion time r2/Dpe.

Lastly, we note that in Appendix D.2, we compare the results of the present perme-
able description to the case of an impermeable surface. For the impermeable case, the
solvent flux vanishes at the interface. This alternative boundary condition is relevant
when the gel is not in contact with its own liquid solvent. Such a situation arises when
a gel is indented by a rigid object [112, 113, 214, 217, 221, 222], as well as in some
configurations of soft wetting [110, 219]. The surface deformations are found to adopt
qualitatively similar shapes in the permeable and impermeable cases. However, the re-
spective behaviours quantitatively differ, and the stress relaxation is faster in particular
in the permeable case, due to the allowed exchange of solvent with the outer reservoir.

3.3.2.2 Finite-thickness gel

As for the semi-infinite case described in the previous section, we find the surface normal
deformation of the gel ŵτ (s, q) = −ûz(s, z = 0, q) in the finite-thickness case, solving for
Eqs. (3.8)-(3.15) in reciprocal space (see Eq. (3.20)) by invoking Eq. (3.16b) and solving
Eq. (3.34), as:

ŵτ (s, q) = F0
4πGsq

N1 + N2 + N3
D1 + D2 + D3

, (3.42)

with the six terms N1, N2, N3, D1, D2, D3 expressed as:

N1 = −4Λβχ sinh(ζ)
N2 = [(Λχ + 1) sinh(2ζ) − 2ζ] β cosh(βζ)
N3 = Λ(3χ + 2 − χ cosh(2ζ)) sinh(βζ)
D1 = 4Λβχ [ζ cosh(ζ) − (1 + Λχ) cosh(ζ)]
D2 = β

[
2ζ2 +

(
1 + 2Λχ(Λχ + 1)

)(
1 + cosh(2ζ)

)]
cosh(βζ)

D3 = −Λ(2χ + 1) [2ζ + (Λχ + 1) sinh(2ζ)] sinh(βζ),

(3.43)

where the dimensionless quantities χ, β, ζ are defined in Eqs.(3.32). The Poisson ratio
appears in the compressibility factor Λ defined in Eq. (3.27).

As for the semi-infinite case exposed in the previous section, we first note that if the
gel is nearly incompressible, i.e. as ν → 1/2, and thus Λ → 0, the terms N1, N3, D1, D3
are zero and the surface deformation of the gel reads:

ŵτ (s, q) =
ν→1/2

F0
4πGsq

sinh(2ζ) − 2ζ

1 + 2ζ2 + cosh(2ζ) = 1
q

ŵincomp
τ (s), (3.44)

with ζ = sτ , hence we recover the Laplace transform of the result known for a purely
elastic layer of thickness τ denoted ŵincomp

τ (s), taking the particular incompressible value
for the Poisson ratio ν = 0.5 [203, 212]. Similarly, if the permeability is small, i.e. as
k → 0, the diffusion constant Dpe of the solvent vanishes, χ → 0 and β ∼ χ−1/2, and we
recover the same limit. The medium again behaves as an incompressible elastic finite-
sized layer. In the opposite limit of large permeability, i.e. large Dpe, χ → +∞ and
β → 1, the surface deformation of the gel is finite and reads:

ŵτ (s, q) =
k→∞

F0(1 − ν)
2πGsq

2ζ − (4ν − 3) sinh(2ζ)
5 + 4ν(2ν − 3) + 2ζ2 − (4ν − 3) cosh(2ζ) = 1

q
ŵcomp

τ (s), (3.45)
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(a) (b)

FIG. 3.6. Surface deformation of a poroelastic finite-thickness layer induced
by a point-force pressure source in Hankel-Laplace space. (a): Normalized,
reciprocal-space surface deformation ŵτ (s, q) as computed from Eqs. (3.42) and (3.43),
as a function of the normalized spatial frequency s, for a given normalized temporal
frequency q, using ν = 0.1 and τ

√
G/F0 = 1. The orange and red full lines correspond

to Eqs. (3.46a) and (3.46b), respectively. Main : in linear scales. Inset : in logarithmic
scales. (b): Normalized surface deformation ŵτ (s, q) of a poroelastic half-space (dashed
lines) as computed from Eq. (3.35) and of a finite-thickness poroelastic layer (full lines) as
computed from Eqs. (3.42) and (3.43), respectively, as functions of the spatial frequency
s for a given normalized temporal frequency q, using ν = 0.1 and τ

√
G/F0 = 1. The

orange and red full lines are described in (a). The orange and red dashed lines correspond
to Eqs. (3.36a) and (3.36b), respectively.

where we recover the Laplace transform of the known result for a compressible purely
elastic layer of thickness τ denoted = ŵcomp

τ (s, q), for any Poisson ratio ν [203, 212],
in contrast to Eq. (3.44) that recovers the incompressible solution (ν = 0.5). In Ap-
pendix D.4, the known Green’s function for a purely elastic material is recovered using
the same calculation path as in the present chapter. Exactly as for the semi-infinite case,
the solvent diffuses almost instantaneously and the stress is immediately relaxed, such
that the response is the one of a compressible finite-sized layer.

In Fig. 3.6(a), the dimensionless surface deformation in reciprocal space ŵτ (s, q) is
plotted as a function of the spatial frequency s for a given temporal frequency q, both on
linear (main) and logarithmic scales (inset). We choose the same value ν = 0.1 than in
the semi-infinite case. The normalization of radial length, time and vertical deformation
are kept the same than in the semi-infinite case. We choose a value of qF0/(DpeG) = 10.
In Fig. 3.6(b) is shown ŵτ (s, q) and ŵ(s, q) plotted as a function of s for a given q.
We choose qF0/(DpeG) = 1000, a value that highlights the asymptotical behaviors.
To demonstrate the generality of the observations concerning Fig. 3.6, in Fig. 3.7(a)
is shown ŵτ (s, q) plotted as a function of s for various q. The results show the same
parallel power-law decays in the large-s limit for both infinite and finite thicknesses. The
two prefactors for small and large s limits respectively depend on the value chosen for
q. Yet in the small-s limit the finite-thickness response appears as constant, and at the
transition between large- and small- s limits it grows with a different power law. To
explain the observed power-law behaviors, we explore the temporal asymptotics of the
governing Eqs. (3.42) and (3.43). We find:

ŵτ (s, q) ∼
q→∞

F0
4πGsq

sinh(2ζ) − 2ζ

1 + 2ζ2 + cosh(2ζ) = 1
q

ŵincomp
τ (s), (3.46a)

ŵτ (s, q) ∼
q→0

F0(1 − ν)
2πGsq

2ζ − (4ν − 3) sinh(2ζ)
5 + 4ν(2ν − 3) + 2ζ2 − (4ν − 3) cosh(2ζ) = 1

q
ŵcomp

τ (s), (3.46b)
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with ζ = sτ . Equations (3.46) are plotted in Fig. 3.6(a) and Fig. 3.6(b). We note
that we recover the same results computed in the small and large permeability limits
respectively, which are the known responses of a purely elastic, finite-thickness layer,
respectively incompressible and compressible [203, 212]. By invoking the initial and
final-value theorems in the short-time and long-time limits of the surface deformation,
we get:

ŵτ (s, t = 0+) = lim
q→∞

qŵτ (s, q) = ŵincomp
τ (s), (3.47a)

ŵτ (s, t → ∞) = lim
q→0+

qŵτ (s, q) = ŵcomp
τ (s). (3.47b)

Thus, at initial times we recover the response to a point force of a purely elastic incom-
pressible layer, of shear modulus G and thickness τ . At long times, we have the response
to a point force of a purely elastic compressible layer, of shear modulus G, thickness τ
and Poisson ratio ν. We then compute the asymptotics of Eqs. (3.46) in the small- and
large-s limits, as:

ŵincomp
τ (s) ∼

s→0

F0τ3

6πG
s2, (3.48a)

ŵincomp
τ (s) ∼

s→∞
F0

4πGs
, (3.48b)

ŵcomp
τ (s) ∼

s→0

F0τ

πG

2(1 − ν)2

1 + 4ν(ν − 2) , (3.48c)

ŵcomp
τ (s) ∼

s→∞
F0(1 − ν)

2πGs
. (3.48d)

Using the inverse Laplace and Hankel transforms as defined in Eq. (3.21) on the asymp-
totics written in Eqs. (3.48), we get an estimate of the purely-elastic response behaviour
in real space, as:

wτ (r, t = 0+) = wincomp
τ (r) ∼

r→∞
0, (3.49a)

wτ (r, t = 0+) = wincomp
τ (r) ∼

r→0

F0
4πGr

, (3.49b)

wτ (r, t → ∞) = wcomp
τ (r) ∼

r→∞
F0τ

πGq

2(1 − ν)2

1 + 4ν(ν − 2)
δ(r)

r
∼

r→∞
0, (3.49c)

wτ (r, t → ∞) = wcomp
τ (r) ∼

r→0

F0(1 − ν)
2πGr

, (3.49d)

recalling that the inverse Hankel transforms of a constant is δ(r)/r and the one of the
square function s2 is identically 0.

We analyze now the different asymptotic behaviors exhibited in each of the four lines
of Eqs. (3.48) and (3.49).

Incompressible response - small r: We find with Eq. (3.48b) that the incompress-
ible response of a purely elastic material follows in reciprocal space a power-law decay
in s−1 in the limit of large-s. Additionally, in the limit of large s, which corresponds
to the small-r limit in real space, we recover the asymptotic behavior of a semi-infinite,
elastic incompressible medium computed in Eq. (3.36a). At large spatial frequencies s
(e.g. at small radii r), the point-force response of a poroelastic finite-thickness layer is
the same as the one of a semi-infinite medium as shown by Eq. (3.49b), at initial times.
This means the finite-sized aspect of the material is not probed in the small-r limit.
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q

(a) (b)

FIG. 3.7. Rescaled surface deformation of a poroelastic finite-thickness layer
induced by a point-force pressure source in Hankel-Laplace space. (a): Dimen-
sionless, reciprocal-space surface deformation ŵ(s, q) of a half space (dashed lines) and
ŵτ(s, q) of a finite-thickness layer (full lines), as computed from Eq. (3.35)and Eq. (3.42)
respectively, as a function of the spatial frequency s, normalized by

√
G/F0, for various

temporal frequencies q, normalized by DpeG/F0, using ν = 0.1 and τ
√

G/F0 = 1. The
orange and red dashed lines correspond to Eqs. (3.36a) and (3.36b), respectively, for
qF0/(DpeG) = 1. (b): Normalized surface deformation in reciprocal space ŵτ (s, q) mul-
tiplied by the temporal frequency q, as a function of the scaled spatial frequency s, for
ν = 0.1 and τ

√
G/F0 = 1, as computed from Eq. (3.42). The orange and red full lines

correspond to Eqs. (3.46a) and (3.46b), respectively. Main : linear scales. Inset : loga-
rithmic scales.

Incompressible response - large r: We find with Eq. (3.48a) that the incompress-
ible response of a purely elastic material follows in reciprocal space a power-law growth
in s2 in the limit of small-s. While at small spatial frequencies s (e.g. at large radii r),
the point-force response of a poroelastic finite-thickness layer differs from the one of a
semi-infinite medium, increasing with a power law in reciprocal spaces, at initial times.
This means that in comparison to the semi-infinite case, the finite-sized aspect of the
material is seen in the large-r limit, exhibiting no deformation, as shown by Eq (3.49a).

Compressible response - small r: We find that the compressible response of a
purely elastic material follows a power-lay decay in s−1 in the limit of large-s as shown
by Eq. (3.48d). As for the incompressible case just described, in the limit of large-s,
which corresponds to the small-r limit in real space, we recover the asymptotic behavior
of a semi-infinite, elastic compressible medium computed in Eq. (3.36b). At large spatial
frequencies s (e.g. at small radii r), the point-force response of a poroelastic finite-
thickness layer is the same as the one of a semi-infinite medium as shown by Eq. (3.49d),
at long times, which means again that the finite-sized aspect of the material is not probed
in the small-r limit.

Compressible response - large r: We find that the compressible response of a
purely elastic material is a constant in the limit of small s as shown by Eq. (3.48c). At
small spatial frequencies s (e.g. at large radii r), the point-force response of a poroe-
lastic finite-thickness layer differs from the one of a semi-infinite medium and reaches
a constant value, at long times. This means that in comparison to the semi-infinite
case, the finite-sized aspect of the material is seen in the large-r limit, still exhibiting no
deformation as shown by Eq. (3.49c).
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(a) (b)

FIG. 3.8. Surface deformation induced by a point-force pressure source in
Hankel-Laplace space, for various thicknesses of the material. (a): Dimension-
less, reciprocal-space surface deformation of a finite-thickness layer wτ (full line) and of
a semi-infinite medium w (dashed line), as a function of the spatial frequency s, nor-
malized by

√
G/F0, for various normalized thicknesses τ , as computed from the inverse

transforms of Eqs. (3.42) and (3.35) respectively, using ν = 0.1 and qDpeG/F0 = 100.
The orange and red dashed and full lines correspond to Eqs. (3.36a), (3.36b), (3.46a)
and (3.46b), respectively. (b): Normalized surface deformation in reciprocal space
ŵτ (s, q) divided by the thickness τ , as a function of the dimensionless variable sτ , for
various thicknesses, with ν = 0.1 and qDpeG/F0 = 100, as computed from Eq. (3.42).
The orange and red full lines are the same as in (a)

In the asymptotic limit of small r, for both the incompressible and compressible
responses, the finite-size aspect of the material is not highlighted, surprisingly, meaning
that the presence of the rigid boundary underneath the soft and porous gel does not
affect the mechanical behavior of its top free surface. The poroelastic model used in this
chapter is based on a linear stress-strain relationship, which supposes a relatively small
strain rate (typically ϵ ≲ 30% [108]). To preserve this assumption, the force exerted at
r = 0 should not be too large then. Otherwise, a correction taking into account gradients
of the strain tensor ∇ϵ should be taken into account in the stress-strain relationship,
switching from a linear to a non-linear elasticity model.

To investigate the effect of inverse time as for the semi-infinite case, we remark that
the prefactor in Eq. (3.42) scales in 1/q, as a natural result of performing a Laplace
transform. Thus in Fig. 3.7(b) is shown qŵτ (s, q) plotted as a function of s for various
q. With this scaling the power-law growth and decay observed in the large-s limits
are independent on the chosen temporal frequency q as predicted by Eqs. (3.46). The
scaled response qŵτ (s, q) with decreasing q clearly evolves from the incompressible to
the compressible asymptotes, given respectively by Eq. (3.46a)(a) and (3.46a)(b). Yet,
in comparison with the semi-infinite case, the universality of the response in reciprocal
space when scaled by the diffusive variable χ = Dpes

2/q is lost. This is expected given
the complex form of Eq. (3.42) where two natural and dimensionless variables, x and
ζ = sτ appear.

For both the incompressible and compressible responses, the smooth transition be-
tween the asymptotic behaviors at small-s and large-s seems to happen at spatial frequen-
cies of about s

√
F0/G ∼ 1 with the choice τ

√
G/F0 = 1. To investigate the dependency

of the transition between the small-s and large-s regimes on the thickness τ , we show
in Fig. 3.8 qŵτ (s, q) plotted as a function of rescaled s for various τ , for a poroelas-
tic finite-size layer. The deformation of a purely elastic, impressible and compressible,
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finite-size layer and semi-infinite medium, corresponding to Eqs. (3.46a), (3.46b), (3.36a)
and (3.36b) are also represented for comparison. Indeed, the transition between the
asymptotic behaviors at small-s and large-s happens at a spatial frequency s ∼ 1/τ .
With increasing thickness, the transition region is wider in s and the deformation in
reciprocal space reaches a higher value, following more closely the semi-infinite asymp-
tote. In Fig. 3.8(b) is thus plotted qŵτ (s, q) divided by the thickness τ as a function
of rescaled variable sτ , for various τ . The latter representation shows, following the
present theoretical prediction, that the finite-size aspect of the material is probed by
observing a zero response in the peripheral region r ≥ τ , while the response observed in
the central region r ≤ τ is the one of an incompressible elastic semi-infinite medium at
initial times and the one of a compressible elastic semi-infinite medium at final times.
As for the semi-infinite case, the link between poroelastic and purely elastic materials
is observed in the asymptotical behaviors. At large distances (small s), the point-force
response vanishes. The finite-thickness aspect induces a local, finite-range deformation.
At small distances (large s), the solvent has flowed and does not flow any more: the
response recovers an elastic deformation with compression (i.e. change in volume), as
in the semi-infinite case. At intermediary distances (s ∼ 1/τ), with increasing s, the
response smoothly changes from no deformation to a regime where the solvent has no
time to flow inside the porous matrix. In this intermediary regime, the response is the
one of an elastic layer, incompressible due to the solvent fraction, for a small range in s.
Still with increasing s, the surface deformation then smoothly changes from the interme-
diate, short-time (incompressible) to the long-time (compressible) elastic-like behaviors,
as shown in Fig. 3.6.

As for the semi-infinite case, to have a direct view on the spatial and temporal relax-
ations described above in reciprocal space, the deformation in reciprocal space given by
Eq.(3.42) was first computed with the technique described in Appendix C.2.5. Then the
inverse Laplace and Hankel transforms of Eq.(3.42) were numerically computed using the
Talbot Algorithm and Riemann summation. A Savitsky-Golay filter was finally applied
to smoothen residual oscillations. The process is detailed in Appendix C. A few traces
of numerical errors remain, for instance on Fig. 3.7(b), where the curve corresponding
to qF0/(DpeG) = 1 shows a minute residual oscillation at small s.

In Fig. 3.9(a) is shown the deformation of a finite-thickness layer and a semi-infinite
medium, respectively, as a function of the radial coordinate r for a given time t. We
choose the same values of ν = 0.1 and τ

√
G/F0 = 1 as before. We choose a value of

tDpeG/F0 = 0.1 representing an intermediate value. The responses of a incompress-
ible and compressible material are plotted in orange and red respectively. The full line
and dashed line represent the finite-thickness and semi-infinite cases respectively, corre-
sponding to Eqs. 3.38 and the inverse transform of Eqs. 3.46 respectively. The results
show a match between the point-force response of a finite-thickness layer and a semi-
infinite medium at small r, as predicted by asymptotics in Eqs. (3.49). Yet, at large r,
the deformation of a finite-thickness layer vanishes faster than the one of a semi-infinite
medium, again as predicted by asymptotics in Eqs. (3.49). In Fig. 3.9(b) is shown the
deformation of a finite-thickness layer as a function of the radial coordinate r, for various
times t. As for the semi-infinite case described in the previous section, the poroelastic
response exhibits a crossover from a purely elastic incompressible regime to a purely
elastic compressible regime with increasing time. In a central area defined by r ≤ τ , a
significant deformation is predicted and is similar to the one of an infinite-thickness layer.
In a transition zone defined by r ∼ τ the deformation shows an inflection due to the
finite thickness, while in the peripheral region defined by r ≥ τ the response is killed by
the finite-thickness effect. Thus for a more detailed description of the relaxation in the
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(a) (b)

t

FIG. 3.9. Surface deformation induced by a point-force pressure source. (a):
Normalized surface deformation of a finite-thickness layer wτ (full line) and of a semi-
infinite medium w (dashed line), as a function of the radial coordinate r, normalized
by
√

F0/G, for a given time t, normalized by DpeG/F0, as computed from the inverse
transform of Eq. (3.42), using ν = 0.1 and τ

√
G/F0 = 1. The orange and red dashed and

full lines correspond to Eq. 3.38 and the inverse transform of Eq. 3.46, respectively. (b):
Normalized surface deformation of a finite-thickness layer wτ as a function of the radial
coordinate r, for the times noted in the legend, as computed from the inverse transform
of Eq. (3.42), using ν = 0.1 and τ

√
G/F0 = 1. The orange and red dashed and full lines

are describes in (a). The inset shows the same data on logarithmic scales.

central area, one can refer to the semi-infinite case. The deformation relaxes following
a diffusive dynamics in the central area, as described by Fig. 3.5(b).

3.4 Solution for an arbitrary pressure field
In real systems, gels are indented with probes that have finite sizes [112, 113, 221, 222]. In
these cases, the external load is not a point force, and the outer pressure field has a finite
spatial extent. Additionally, the outer pressure field may exhibit temporal variations.
Since the above model only involves linear operators, we can apply the superposition
principle. Henceforth, the surface deformation generated by an arbitrary time-dependent
and space-dependent pressure field p(r, t), is given by the convolution:

w(r, t) =
∫ t

−∞
dt′
∫
R2

d2r′ G(|r − r′|, t − t′) p(r′, t′), (3.50)

where G is the Green’s function of the problem, which is the surface deformation induced
by a point force δ(r)δ(t). If on a one hand the gel is semi-infinite, the latter is directly
related to Eq. (3.35), through:

Ĝ(s, q) = 1
4πGs

1
1 + ΛDpes2

q

(
1 −

√
1 + q

s2Dpe

) . (3.51)

If on the other hand the gel has a finite thickness, the Green’s function is related to
Eq. (3.42), through:

Ĝτ (s, q) = 1
4πGsq

N1 + N2 + N3
D1 + D2 + D3

, (3.52)

with the six terms N1, N2, N3, D1, D2, D3 given in Eq. (3.43). The inverse transform
reads:

G(r, t) = 1
2iπ

∫ γ+i∞

γ−i∞
dq eqt

∫ ∞

0
ds Ĝ(s, q)sJ0(sr). (3.53)
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(a) (b) (c)

FIG. 3.10. Reticulated polymer matrix filled with a solvent. (a): An undeformed
reticulated gel is swollen in a solvent and forms an ideal poroelastic system. For negative
times, the concentration field of solvent is considered homogeneous and fixed at c0, and
the chemical potential field is homogeneous at equilibrium and fixed at µ0. (b): When
a sudden pressure field is applied at t = 0, the concentration field c of solvent is still
isotropic due to the incompressibility of the liquid, but non-zero gradients of chemical
potential µ arise. The material responds as an elastic incompressible solid. (c): In the
long-time limit, solvent had time to flow, due to the gradients of chemical potential. The
concentration field of solvent c is inhomogeneous but the chemical potential has reached
again its equilibrium value µ0. The material responds as an elastic compressible solid.

Yet, the Green’s function in real space has no explicit form, for both the semi-infinite
and finite-thickness cases. To perform efficient calculations, an adequate path is thus to
work in reciprocal spaces. The pressure field is first expressed in Hankel and Laplace
spaces and denoted p̂(s, q). Using properties on transformation of convolution products,
we thus write:

w(r, t) = 1
2iπ

∫ γ+i∞

γ−i∞
dq eqt

∫ ∞

0
ds ŵ(s, q)sJ0(sr) (3.54a)

= 1
2iπ

∫ γ+i∞

γ−i∞
dq eqt

∫ ∞

0
ds Ĝ(s, q)p̂(s, q)sJ0(sr). (3.54b)

In Eq. (3.54) the expression of the Green’s function Ĝ(s, q) is explicit while the
pressure field p(s, q) may be an unknown field to compute numerically. In the following
chapters of this thesis, the substitution of a convolution product by a standard product
in reciprocal space will be largely used to solve equations on pressure fields.

3.5 Conclusion and perspectives
Fig. 3.10 summarizes qualitatively a major result from this chapter. Poroelastic behav-
iors are characterized by a time-dependent transition from the limit of an incompressible
elastic response towards the one of a compressible elastic response. Fig. 3.10(a) illus-
trates the initial state of the gel, which is undeformed and swollen in its solvent. The
solvent concentration and chemical potential are fixed at their equilibrium values, re-
spectively c0 and µ0. At t = 0 a pressure field is turned on as illustrated by Fig. 3.10(b).
Then, the gel reacts as a purely elastic solid with an incompressibility condition, due to
the solvent fraction. The solvent concentration is still fixed at its equilibrium value c0
but gradients of chemical potential arise and testify of the out-of-equilibrium state of the
gel. With increasing times, driven by chemical-potential gradients, fluid flows happen
in the porous matrix. The gel relaxes towards its equilibrium state with a diffusive-like
dynamics. Such a transitional state exhibits features of both incompressible-like and
compressible-like solids. In the limit of long times t → ∞, the fluid has flowed and
the gel reacts as a purely elastic solid with a compressibility condition, due to the loss
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in volume of solvent. The solvent concentration c is inhomogeneous and the chemical
potential has reached again its equilibrium value µ0, which testifies of the equilibrium
state of the gel.

In the present Chapter, we theoretically addressed the mechanical response of semi-
infinite and finite-thickness, permeable, linear poroelastic substrates to an external ax-
isymmetric pressure field. The point-force response was first computed. By convolution
of the latter to any outer axisymmetric pressure field, the surface deformation profile
can be computed. Additional numerical work enables to compute the deformation pro-
file generated in time. In summary, we showed that the mechanical response of both
a semi-infinite and a finite-size media to a point force is characterized by a transition
in time from a purely elastic and incompressible behavior to a purely elastic and com-
pressible one. Furthermore, for semi-infinite medium, the transition between these two
limits is observed on the deformation profile, at a coordinate that depends on time as
rc =

√
Dpet. Thus, the purely elastic and compressible response diffuses over the incom-

pressible one. For a finite-thickness medium, in a peripheral region defined by rc ≥ τ ,
the poroelastic response to a point force vanishes, while in a central area defined by
r ≤ τ , the deformation profile is similar to the one observed in the semi-infinite case and
follows the same diffusive dynamics.

The poroelastic model used in this chapter is based on a linear stress-strain relation-
ship, which supposes that the strain rate is kept small. When the force applied on the
free surface is important enough to generate a larger strain rate, gradients of strain ten-
sor are no longer negligible and a non-linear stress-strain relationship should be chosen
instead to describe the behavior of the gel. In a next chapter the needed transition from
a linear elasticity law to a non-linear correction to that elasticity law to describe the
observed mechanical behavior of the soft gel will be shown.

In the perspective of investigating the mechanics of soft hydrogels, the theoretical
description presented in this chapter can describe the deformation field of the porous
matrix as a function of time, when submitted to any axisymmetric load. An experimen-
tal validation could be provided by any technique able to produce images of the vertical
deformation field: for instance, after preparing a gel with trapped fluorescent particles
inside, one could develop a technique based on confocal microscopy. A relevant choice
of the frame rate with respect to the relaxation dynamics of the gel should be thought
about, in order to track in time the motion of each fluorescent particle. Or, the same
idea could be applied in Total Internal Reflection Fluorescent Microscopy (TIRFM) [48,
49, 256–258], which consists in imaging fluorescent trackers close to a rigid boundary
(≤ 1µm) by an evanescent wave.

A direct application of the general tools derived in this Chapter to describe poroe-
lasticity would be to address the problem of the poroelastic adhesive force. Indeed,
considering a hard sphere immersed in a solvent and moving normally towards a purely
elastic boundary, it has been theoretically shown by Vincent Bertin, a former PhD stu-
dent and a close collaborator, that an adhesive term arises in the expression of the
resulting force at first order in compliance, which is defined by the length ratio between
the deformation of the wall and the distance to the sphere [211]. This phenomenon arises
from a elastohydrodynamic coupling between the confined layer of surrounding fluid and
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the elastic boundary. Considering instead a poroelastic boundary, the adhesion term
is expected to be influenced by the timescale of the sphere motion, ranging from an
incompressible to compressible response of the boundary. The theoretical derivation of
this suction term in the context of a poroelasticity would be of a great interest. Addi-
tionally, an experimental study based on colloidal-probe AFM for instance, would nicely
complement and (in)validate the theoretical predictions.

Another perspective of the work presented in this Chapter would be to compute a
poroelastic response to a point-force in a different geometry, with a planar symmetry,
using the same type of calculation path. Then, a direct application would be to ad-
dress the poroelastic lift force. Indeed, when a hard sphere immersed in a solvent moves
tangentially to a purely elastic boundary, the softness of the close wall results in a lift
force applied on the sphere [188, 198]. Thus, the latter is repealed from the boundary.
The elastohydrodynamic lift force arises from the asymmetry of the pressure field in
the confined region of fluid, which is due to a coupling between the fluid viscosity and
the elasticity of the nearby boundary. As for the adhesive force, we could study the
poroelastic lift force, that we expect to be influenced by time scales, both theoretically
and experimentally. In a biomimetic context, such a situation is relevant to describe
several organs in the human body: a classical example is about the blood cells flowing
in the blood vessels [121].

The theoretical results presented in this chapter stand as a basis to describe more
realistic situations. Motivated by the recent development of contactless colloidal-probe
rheological experiments on soft and complex materials, our general results will be ap-
plied in the next chapter to the specific case of a sphere oscillating vertically near a gel,
within an outer fluid identical to the solvent present in the polymeric matrix.
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Chapter 4

Contactless colloidal-probe
rheology of soft hydrogels

In this Chapter, we apply the general results of the previous one to a specific outer
pressure field that is relevant to contactless colloidal-probe rheological methods. Here
specifically, we focus on the elastohydrodynamic coupling between a rigid sphere of radius
R and a semi-infinite permeable poroelastic medium (see Fig. 1.8(c)). For this purpose,
we invoke the linear-response theory introduced by Leroy & Charlaix [203], and widely
used in contactless measurements of the mechanical properties of soft surfaces [197, 204,
259–263]. In a first part, we establish the theoretical framework of a lubricated sphere
oscillating close to a permeable, poroelastic half space. We derive the theoretical loss and
storage components of the force applied on the sphere, with complementing numerics.
In a second part, we present preliminary AFM-based experiments performed on a thick,
swollen PNIPAM hydrogel, that fits to the theoretical situation detailed in the first part.
The experimental results are confronted to the theoretical predictions.

4.1 Theoretical model

4.1.1 Soft-lubrication approximation

The situation we consider is that one of a sphere of radius R, placed at a distance
H from the undeformed surface of a gel, and that oscillates vertically with angular
frequency ω and amplitude h0, as schematized in Fig 4.1. The gel is assimilated to
a semi-infinite poroelastic medium, of shear modulus G, Poisson ratio ν and porosity
k. The ensemble is fully immersed in a Newtonian fluid (identical to the solvent in
the gel here) of dynamic shear viscosity η and density ρ. We suppose that the sphere-
plane distance H is small with respect to the sphere radius R, and can thus invoke the
lubrication approximation [32]. We suppose furthermore that the fluid-gap thickness
H is small compared to the hydrodynamic radius

√
2RH. Thus, the sphere profile can

be approximated by a parabola in the lubricated contact region, and the liquid-film
thickness profile is thus given by:

h(r, t) ≃ H + h0 cos(ωt) + w(r, t) + r2

2R
. (4.1)

The Reynolds number ρH2ω/η is assumed to be small compared to unity, so that the
flow is laminar. Furthermore, we suppose that the typical viscous penetration depth is
large compared to the liquid-gap thickness:

√
η/(ρω) ≫ h. Therefore, the flow can be
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FIG. 4.1. Semi-infinite permeable poroelastic medium deformed by the pres-
sure field generated with an oscillating lubricated sphere. In contactless
colloidal-probe rheological methods, a micrometric sphere is oscillating at angular fre-
quency ω and amplitude h0 normally to the substrate in a liquid of dynamic shear vis-
cosity η and density ρ. The substrate is a semi-infinite permeable poroelastic medium.
We denote G, ν, and k, its effective shear elastic modulus, effective Poisson ratio, and
porosity. The surrounding liquid is identical to the solvent flowing in the porous mate-
rial. The hydrodynamic lubrication pressure field P (r, t) generated by the associated flow
deforms the gel surface, leading to a deformed liquid gap profile. We note w(r, t) the
deformation profile and h(r, t) the fluid gap profile.

described by the steady Stokes equation at leading order [64], which reads:

0 = −∂p

∂r
+ η

∂2vr

∂z2 . (4.2)

We assume no-slip boundary conditions at both the sphere and gel surfaces. This latter
condition is assumed since the typical slip length at poroelastic surfaces is comparable
to the pore size ∼

√
k [90, 94], which is nanometric. We neglect the normal flow to the

interface between the gel and the fluid, as exchanges of solvent between the both are
modeled by the permeability boundary condition expressed by Eq. (3.12). The solution
to Stokes equation is a Poiseuille flow characterized by a parabolic velocity profile. The
volumetric flux in the vertical direction is derived by integrating over the surface of
the sphere, and the one in the radial direction is derived by integrating on azimuths
and the z variable, which defines a cylinder at a given radial position r. By invoking
the flux conservation, the liquid-film thickness profile follows the axisymmetric thin-film
equation [64], as:

∂h

∂t
= 1

12ηr

∂

∂r

[
rh3 ∂p

∂r

]
, (4.3)

where p is the excess pressure field in the liquid with respect to the atmospheric pressure.
In the lubrication approximation, the ratio between the shear stress and the normal stress
σrz/σzz is of order

√
H/2R, thus the viscous shear stresses are negligible compared to

the pressure in the fluid. Therefore, at the gel interface the force balance takes the same
form as in Chapter 3:

σzz = −p. (4.4)

Recalling the results obtained in Chapter 3, the surface deformation profile can be com-
puted in the general case from Eq. (3.50), and thus reads:

w(r, t) =
∫ t

−∞
dt′
∫
R2

d2r′ G(|r − r′|, t − t′) p(r′, t′), (4.5)

where G is the Green’s function of the problem. The latter is the surface deformation
induced by a point force F0δ(r). In the case of a permeable, semi-infinite poroelastic
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layer, the Green’s function was derived in Chapter 3 in Hankel and Laplace space, and
is given by Eq. (3.51), as:

Ĝ(s, q) = 1
4πGs

1
1 + ΛDpes2

q

(
1 −

√
1 + q

s2Dpe

) , (4.6)

where the compressibility factor is defined from the Poisson ratio ν by Eq. (3.27), that
we recall:

Λ = 1 − 2ν

1 − ν
, (4.7)

and the effective poroelastic diffusion coefficient is given by Eq. (3.9), that we recall:

Dpe = 2(1 − ν)
1 − 2ν

Gk

η
. (4.8)

The inverse transform is given by Eq. (3.21), as:

G(r, t) = 1
2πi

∫ γ+i∞

γ−i∞
dq eqt

∫ ∞

0
ds Ĝ(s, q)sJ0(sr). (4.9)

4.1.2 Linear-response theory

Following Ref. [203], we suppose that the oscillation amplitude is much smaller than the
liquid-gap thickness: h0 ≪ h. Additionally, the response function G of the gel to a point
force is derived from a linear stress-strain relation, allowed by the hypothesis of small
deformations. Thus, we assume that the deformation profile is small compared to the
liquid-gap thickness: w(r, t) ≪ h(r, t). At orders zero and one in h0/h, Eq. (4.1) reduces
then to:

h(0)(r, t) ≃ H + r2

2R
, (4.10a)

h(1)(r, t) ≃ h0 cos(ωt) + w(r, t) . (4.10b)

Recalling that p is the extra pressure in the fluid with respect to the atmospheric pressure,
p is considered of order one in h0/h. Hence, we invoke the linear-response theory, and
write the fields, as:

w(r, t) = Re[w∗(r)eiωt], p(r, t) = Re[p∗(r)eiωt] , (4.11)

where ∗ indicates complex variables, i2 = −1, and Re is the real part. Equation (4.3) is
then linearized, giving at order one in h0/h:

iω
(
h0 + w∗

)
= 1

12ηr

d
dr

[
r
(
H + r2

2R

)3 dp∗

dr

]
. (4.12)

To adapt to the steady-state description of the linear-response theory imposed by Eq. (4.11),
we write the response function G of the gel to an external axisymmetrical pressure field
under a complex form, in reciprocal space. To do so, we first write the forward and
backward Hankel transforms of a complex field X∗, as:

X̂∗(s) =
∫ ∞

0
dr X∗(r)rJ0(sr), X∗(r) =

∫ ∞

0
ds X̂∗(s)sJ0(sr), (4.13)

and the Green’s function reads:

Ĝ∗(s) = 1
2Gs

1
1 − iΛDpes2

ω

(
1 −

√
1 + iω

Dpes2

) . (4.14)
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The particular case of the calculation of G in the steady-state regime is detailed in
Appendix D.3. Using Eq. (4.5) in reciprocal space, the deformation is finally obtained
with:

ŵ∗(s) = p̂∗(s)Ĝ∗(s) = p̂∗(s)
2Gs

1
1 − iΛDpes2

ω

(
1 −

√
1 + iω

Dpes2

) . (4.15)

The thin-film equation Eq. (4.12) that is written in complex variables, is associated to
the deformation-pressure relation given by Eq. (4.15). Solving for the pressure field p∗

and the deformation profile w∗, we describe the steady-state regime of an oscillating
sphere near a semi-infinite poroelastic medium.

4.1.3 Non-dimensionalization

From Eq. (4.1), the lubricated-contact length
√

2RH - i.e. the so-called hydrodynamic
radius - sets a typical horizontal length scale. Besides, h0 sets a typical vertical length
scale. Thus, we introduce the following dimensionless variables:

r̃ = r√
2RH

, s̃ = s
√

2RH, w̃∗(r̃) = w∗(r)
h0

. (4.16)

From the horizontal projection of the Stokes equation, and the incompressibility con-
dition, we find that the typical lubrication pressure scale is 2ηRωh0/H2. Thus, we
introduce the following dimensionless pressure field:

p̃∗(r̃) = H2p∗(r)
2ωRηh0

. (4.17)

Injecting these new variables in Eq. (4.3), the dimensionless thin-film equation becomes:

i
(
1 + w̃∗(r̃)

)
= 1

12r̃

d
dr̃

[
r̃
(
1 + r̃2

)3 dp̃∗

dr̃

]
. (4.18)

Then, we introduce two characteristic parameters. First, we define the critical distance
at which the surface deformation and sphere oscillation amplitude are of the same or-
der [203]:

Hc = 8R
( ηω

2G

)2/3
. (4.19)

Second, we define the critical poroelastic angular frequency at which the solvent typically
diffuses over the contact length at the critical distance during one oscillation:

ωc = Dpe
2RHc

= Dpe
16R2

(2G

ηω

)2/3
. (4.20)

Using the dimensionless variables and critical parameters above, we can write the Green’s
function given in Eq. (4.14) in dimensionless form, as:

ˆ̃G∗(s) = 1
s̃

[
1 − iΛωcHcs̃

2

ωH

(
1 −

√
1 + i

ωH

ωcHcs̃2

)]−1

, (4.21)

and the dimensionless deformation profile is calculated in reciprocal space with the
dimensionless form of Eq (4.15), as:

ˆ̃w∗(s) =
ˆ̃p∗(s̃)

8

(
Hc
H

)3/2 ˆ̃G∗(s) (4.22a)

=
ˆ̃p∗(s̃)
8s̃

(
Hc
H

)3/2
[
1 − iΛωcHcs̃

2

ωH

(
1 −

√
1 + i

ωH

ωcHcs̃2

)]−1

. (4.22b)
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Finally, the complex pressure field ˆ̃p∗(s) in reciprocal space is derived by applying the
dimensionless form of the forward Hankel transform. Similarly, the complex deformation
profile w̃∗(r) in real space is derived by applying the dimensionless form of the inverse
Hankel transform. Transforms are given in Eq. (4.13) and can be rewritten as:

ˆ̃p∗(s̃) =
∫ ∞

0
dr̃ p̃∗(r̃)r̃J0(s̃r̃), (4.23a)

w̃∗(r̃) =
∫ ∞

0
ds̃ ˆ̃w∗(s̃)s̃J0(s̃r̃). (4.23b)

4.1.4 Comparison to the purely elastic case

To compare to the response of a purely elastic material, we use the known response of
elastic, incompressible and compressible, semi-infinite media that we recalled in Chap-
ter 3, Sec. 3.3.2.1. Using the linear response theory, the Green’s functions for purely
elastic, incompressible and compressible materials, read in reciprocal space:

Ĝincomp(s) = 1
2Gs

(4.24a)

Ĝcomp(s) = 1 − ν

Gs
, (4.24b)

and the complex deformation profiles read:

ŵ∗
incom(s) = p̂∗(s)

2Gs
(4.25a)

ŵ∗
incom(s) = (1 − ν)p̂∗(s)

Gs
. (4.25b)

Switching to dimensionless variables, the latter equations are transformed into:

ˆ̃w∗
incom(s̃) = ˆ̃w∗(s) =

ˆ̃p∗(s̃)
8s̃

(
Hc
H

)3/2
(4.26a)

ˆ̃w∗
incom(s̃) = ˆ̃w∗(s) = (1 − ν)ˆ̃p∗(s̃)

4s̃

(
Hc
H

)3/2
. (4.26b)

4.1.5 Resolution

In this paragraph, following Ref. [203], we detail how Eqs. (4.18), (4.22b) together with
Eq (4.23) are gathered into one integro-differential equation that can be solved numeri-
cally. We first inject Eq. (4.22a) in Eq. (4.23b), then inject the result in Eq. (4.18) and
multiply each side by 12r̃, to get:

12ir̃

[
1 +

∫ ∞

0
ds̃

ˆ̃p∗(s̃)
8

(
Hc
H

)3/2 ˆ̃G∗(s)s̃J0(s̃r̃)
]

= d
dr̃

[
r̃
(
1 + r̃2

)3 dp̃∗

dr̃

]
. (4.27)

As such, we obtained an equation only on the complex pressure field in real and reciprocal
space, respectively p̃∗ and ˆ̃p∗. By integrating Eq. (4.27) on r̃ between 0 and r̃, and
multiplying each side by r̃

(
1 + r̃2)3 we get:

dp̃∗

dr̃
= 6ir̃(

1 + r̃2)3 + 3i

2
(
1 + r̃2)3

(
Hc
H

)3/2 ∫ ∞

0
ds̃ J1(s̃r̃) ˆ̃G∗(s)ˆ̃p∗(s̃). (4.28)
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Finally, by performing a first-order Hankel transform of Eq. (4.28) and multiplying
each side by −1/k̃, we obtain an integro-differential equation on ˆ̃p∗, which is called the
Fredholm equation of the second kind:

ˆ̃p∗(k̃) = −3ik̃

4 K1(k̃) − 3i

2k̃

(
Hc
H

)3/2 ∫ ∞

0
ds̃ ˆ̃G∗(s)ˆ̃p∗(s̃)

∫ ∞

0
dr̃

r̃J1(s̃r̃)J1(k̃r̃)(
1 + r̃2)3 , (4.29)

where Kn is the modified Bessel function of the second kind of order n. The kernel of
the Fredholm equation has an analytical solution [261], given by:

∫ ∞

0
dr̃

r̃J1(k̃r̃)J1(s̃r̃)
(1 + r̃2)3 = k̃2 + s̃2

8 I1(s̃)K1
(
k̃
)

− s̃k̃
I2(s̃)K2

(
k̃
)

4 for s̃ < k̃,

= k̃2 + s̃2

8 I1(k̃)K1 (s̃) − s̃k̃
I2(k̃)K2 (s̃)

4 for k̃ < s̃,

(4.30)

where In is the modified Bessel function of the first kind of order n. Integrals are
numerically evaluated with the Gauss-Legendre-quadrature method, described in Ap-
pendix C.2.2. The numerical resolution of Eq. (4.29) is based on linear algebra and is
detailed in Appendix C.3.

Finally, having solved Eq. (4.29) for the complex pressure field in reciprocal space
ˆ̃p(k̃), the deformation profile is computed in real space by performing a dimensionless
backward Hankel transform, using Eq. (4.22a):

w̃∗(r̃) =
∫ ∞

0
dk̃ ˆ̃w∗(k̃)k̃J0(k̃r̃) (4.31a)

=
∫ ∞

0
dk̃

ˆ̃p∗(k̃)
8

(
Hc
H

)3/2 ˆ̃G∗(s)k̃J0(k̃r̃). (4.31b)

The same calculation path can be used to compute the complex pressure field in
reciprocal space:

p̃∗(r̃) =
∫ ∞

0
dk̃ ˆ̃p∗(k̃)k̃J0(k̃r̃), (4.32)

and the complex deformation profile w̃∗(r̃) for a purely elastic material, in both the
incompressible and compressible cases.

4.1.6 Normal force

In real colloidal-probe experiments, the rheological investigation of gels is made at a
controlled angular frequency ω and the spherical probe is placed at a given distance H
of the gel. Thus, in an experiment, the dimensionless parameters ω/ωc and H/Hc are
computed, based on the physical parameters of the gel and the solvent (e.g. porosity,
viscosity...), and the experimental choices of angular frequency ω and distance H. More-
over, the measured experimental quantity is often the total force applied on the probe.
Theoretically, the amplitude F ∗ of the vertical elastohydrodynamic force exerted on the
sphere is obtained by integrating the amplitude of the lubrication pressure field over the
surface of the sphere, as:

F ∗ = 2π

∫ ∞

0
dr r p∗(r). (4.33)

From Eq. (4.33) and the typical lubrication pressure scale (see Eq. (4.17)), a typical
elastohydrodynamic force scale is 8πηωh0R2/H. Thus we introduce the following di-
mensionless force:

F̃ ∗ = Hc
8πηωh0R2 F ∗, (4.34)
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which depends on the dimensionless parameters, D/Dc, ω/ωc, and Λ. Then, the dimen-
sionless force is computed, as:

F̃ ∗ = Hc
H

∫ ∞

0
dr̃ r̃ p̃∗(r̃), (4.35)

to keep the dependency on the dimensionless parameter H/Hc inside the expression
of the dimensionless force as a function of the lubrication pressure field. Recalling the
expression of the dimensionless complex pressure in reciprocal space, and using J0(0) = 1,
we have:

ˆ̃p∗(s̃ = 0) =
∫ ∞

0
dr̃ p̃∗(r̃)r̃J0(0 × r̃) =

∫ ∞

0
dr̃ r̃ p̃∗(r̃). (4.36)

Finally the complex force is computed without performing an inverse Hankel transform,
as:

F̃ ∗ = Hc
H

ˆ̃p∗(s̃ = 0). (4.37)

The complex force can be calculated in both the cases of purely incompressible and
compressible elastic materials using the same method.

4.1.7 Results and discussion

Examples of the obtained surface deformation and pressure fields are plotted in Fig. 4.2(a)
and (b) respectively, for various sphere-substrate distances. In a contactless colloidal-
probe rheological experiment, however, it is not the deformation amplitude that is typi-
cally measured. Rather, the sampled surface slowly approaches the oscillating spherical
probe using a piezo stage, with the typical experimental outputs being the measured force
amplitude and phase as functions of the sphere-substrate distance. Thus in Fig. 4.2(c)
and (d) are plotted the theoretically obtained force amplitude and phase shift, respec-
tively, for various oscillation frequencies. The other parameters are kept constant. From
the amplitude and phase, the real and imaginary components of the complex force can be
evaluated, the amplitude and phase being the modulus and the argument, respectively,
of the complex force. These force components and the amplitude of the pressure field
can be evaluated numerically, using Eq. (4.37). Therefore, in Fig. 4.2(e), we plot the
dimensionless, real and imaginary parts of the force, as a function of the dimensionless
distance, for various oscillation angular frequencies.

Two regimes can be observed, based on the probe-gel distance. At large distance, i.e.
H/Hc ≫ 1, the surface deformation is small with respect to the oscillation amplitude
(see Fig. 4.2(a)). As a result, the elastohydrodynamic coupling is weak, and the force
is dominated by the viscous dissipation in the liquid film. In the far-field asymptotic
regime, we observe that the modulus of the complex force (i.e. the amplitude) decays as
a power law with a −1 exponent in H/Hc. Additionally, we observe that the imaginary
part of the complex force, which corresponds to the dissipative force, decays as a power
law with a −1 exponent in H/Hc too. To explain the observed power-law decay, we can
multiply each side of Eq. (4.12) by 12ηr and integrate between 0 and r in the absence of
substrate deformation (w∗ = 0). Multiplying by r

(
H + r2

2R

)3
on each side, we obtain:

6iηωh0
r

H3
(
1 + r2

2RH

)3 =
dp∗

rigid
dr

. (4.38)

By integrating Eq. (4.38) between r and ∞ we then obtain the complex pressure field
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(a) (c)

(b) (d)

(e)

FIG. 4.2. Mechanical response of a poroelastic gel in the contactless colloidal-
probe configuration.(a): Normalized amplitude w∗/h0 of the surface deformation pro-
file as a function of the rescaled radial coordinate r/

√
2RH, for various normalized

sphere-substrate distances, as computed from Eq. (4.31b) with ω/ωc = 1 and ν = 0.1.
(b): Normalized pressure p∗H2

c /(2ωRηh0) applied on the surface deformation profile as
a function of the rescaled radial coordinate r/

√
2RH, for the same various normalized

sphere-substrate distances as in (a), as computed from Eq. (4.32) with ω/ωc = 1 and
ν = 0.1. (c): Amplitude of the normalized force F ∗Hc/(8πηωh0R2) exerted on the spher-
ical probe as a function of the normalized sphere-substrate distance, for various reduced
angular frequencies ω/ωc. (d): Phase of the normalized force exerted on the spherical
probe as a function of the normalized sphere-substrate distance, for the same various
reduced angular frequencies. (e): Real (pink) and imaginary (blue-green) parts of the
normalized force F ∗Hc/(8πηωh0R2) exerted on the spherical probe as functions of nor-
malized sphere-substrate distance, for the same various reduced angular frequencies, as
computed from Eq. (4.37) with ν = 0.1. The vertical dashed blue lines correspond to the
distances at which the surface deformation profiles are plotted in (a). The zoomed inset
shows the purely elastic incompressible case (orange) and the purely elastic compressible
case (red).

generated by a sphere oscillating at a distance H of a rigid boundary:

p∗
rigid(r) = − 3iηωh0R

H2
(
1 + r2

2RH

)2 . (4.39)

Finally by integrating Eq. (4.39) between 0 and ∞, we recover the classical confined
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Stokes drag:

F ∗
Stokes,confined = −6iπηh0ωR2

Hc

Hc
H

, (4.40)

which decays as the observed power law [67]. Thus, when probing a poroelastic sample,
in the far-field regime the force is dominated by its imaginary part, which is the classical
Stokes drag. The real part of the force amplitude in the far field is much smaller than the
imaginary part and decays as a power law with a −5/2 exponent in H/Hc. To explain
this observation, we refer to the case of a purely elastic and incompressible medium
probed by an oscillating sphere. The dimensionless Green’s function of the problem is
Ĝ∗

incomp(s̃) = 1/s̃. We then compute the limit of the dimensionless complex pressure
field, given by Eq. (4.29), when k̃ → 0, and get:

ˆ̃p∗
incomp(0) = −3i

4 − 3i

32

(
Hc
H

)3/2 ∫ ∞

0
ds̃ ˆ̃p∗(s̃)s̃K1(s̃), (4.41)

such that the complex force reads with Eq.(4.37):

F̃ ∗
incomp(0) = −3i

4

(
Hc
H

)
− 3i

32

(
Hc
H

)5/2 ∫ ∞

0
ds̃ ˆ̃p∗(s̃)s̃K1(s̃). (4.42)

We recover in the first term the Stokes drag while the prefactor of the second term shows
explicitly (H/Hc)−5/2. With the choices of scaling detailed in Sec. 4.1.3, the integral
over the complex pressure field does not scale as a power of H/Hc. Additionally, thin-
film equation associated to the linear response theory given in Eq. (4.12) ensures that
the complex pressure field is dominated by its imaginary part. Thus, the real part of
the complex force, which corresponds to the conservative force, displays a signature
of the elasticity of the substrate through an asymptotic decay with the distance as
∼ (H/Hc)−5/2. The exact prefactor of this scaling law can be obtained by expanding
the solution in (Hc/H) [203, 263].

At small distance, i.e. H/Hc ≪ 1, the substrate deformation saturates and scales
with the oscillation amplitude (see Fig. 4.2(a)). As a consequence, the real and imagi-
nary parts of the force amplitude saturate as well to values that do not depend on the
distance. The inset of Fig. 4.2(e) represents a zoom on the dimensionless, real part of
the force, and we additionally plot the force obtained in the purely elastic incompress-
ible and compressible cases. At small frequency, the elastohydrodynamic coupling is
similar to the one of a purely elastic compressible layer; conversely, at large frequency,
the elastohydrodynamic coupling is similar to the one of a purely elastic incompressible
layer.

Finally, in these scaled variables, we observe a small influence of the solvent diffusion
in the gel on the elastohydrodynamic coupling, despite the diffusion constant being varied
over 4 orders of magnitude (via the critical frequency). Therefore, from our model,
it appears that contactless colloidal-probe rheological methods in the linear-response
regime are not appropriate to robustly measure the effects of the solvent diffusion through
the gel network. In contrast, such methods appear to be well suited for measuring
the effective shear elastic moduli and Poisson ratios of gels. In the next section, we
present preliminary results of contactless colloidal-probe experiments on soft and swollen
hydrogels.
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Laser

INOUT

Piezo

Piezo

Lock-in

FIG. 4.3. Colloidal-probe AFM based setup to probe swollen hydrogels in con-
tactless mode. A swollen hydrogel sample is deposited on a stage in contact with a
piezo element. A colloidal probe held by an AFM cantilever is brought at a distance H
to the free surface of the hydrogel. A laser beam pointed on the cantilever extremity is
reflected by the latter, and the reflected beam is sent to a four-quadrant photodiode. The
motion of the probe is measured by monitoring the signal of the photodiode. A lock-in
amplifier sends a harmonic signal (OUT) and thus generates the vertical, oscillatory
motion of the piezo under the stage, at an angular frequency ω and with an amplitude
h0. Simultaneously, the lock-in amplifier receives the signal from the photodiode (IN)
and thus measures the vertical, oscillatory motion of the colloidal probe. A simultane-
ous comparison is made between the in and out signals, and with the lock-in amplifier
giving an amplitude A (see Eq. (4.50)) of the modulated signal and a phase shift ϕ (see
Eq. (4.51)), that are recorded with time.

4.2 Preliminary experiments

In this section we describe preliminary experimental results on soft hydrogels obtained
with a colloidal-probe AFM based setup 1. This setup was developed based on the
theoretical ideas of the oscillatory colloidal-probe experiments described in the first part
of the present Chapter. A custom stage was build to meet the special requirements of the
oscillatory rheology on an AFM. The fabrication protocol of thick PNIPAM hydrogels
described in Chapter 2 was used to make a thick hydrogel, as a test sample.

4.2.1 Experimental setup

A schematic of the experiment is presented in Fig. 4.3. An already existing Atomic Force
Microscope (Nanosurf CoreAFM ) was adapted to enable an oscillatory experimental
mode. The standard AFM used to realize topographic measurements was described in
Chapter 2. In contrast, here we first describe the colloidal-probe AFM used to perform
force measurements, then we present the adaptation work done on the apparatus.

Colloidal-probe AFM: The standard AFM is described in Chapter 2. In the exper-
iment described here, home-made colloidal probes are used instead of cantilevers with

1The theoretical development described in the first part 4.1 of the present Chapter is published [251],
with the article included in Appendix E. The experimental work described in the present section is
not published yet, but constitutes the experimental situation fitting the theoretical development of the
previous section.
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sharp tips. A silica sphere of R ≈ 45 µm is glued with epoxy resin on the edge of a
tip-less, triangular-shaped cantilever. The obtained colloidal probes are then placed on
the cantilever holder as standard probes.

Oscillatory mode: The AFM is then adapted. On the one hand, a piezo element
(named "the cube" due to its cubic shape, of about 2 cm each side) able to move in the
three directions of space is used as a stage on which the sample is held. A sinusoidal
electric signal is sent (OUT) to this piezo element through an amplifier (not represented
here) to generate its motion. On the other hand, the sinusoidal signal received (IN) from
the 4-quadrant photodiode of the AFM is monitored through the AFM controller (not
represented here). A lock-in amplifier compares simultaneously the IN and OUT signals.
A product of amplitudes A and a phase shift ϕ between the two signals are extracted,
as measured quantities.

4.2.2 Calibrations

To convert the amplitude of electric signals into forces and distances, several calibration
steps are performed.

4.2.2.1 Cantilever stiffness

The probes used in the experiment presented in this Chapter are commercialized by
Bruker, model NP-O10, four V-shaped tip-less cantilevers, in silicon nitride with a reflec-
tive gold coating. We use the cantilever noted D on the chip (see a picture in Fig 4.4(c)),
whose nominal resonance frequency in air and stiffness are f0,nom = 18 ± 6 kHz and
kcanti,nom = 0.06 ∈ [0.3; 0.12] N/m.

For the experiment described here, and when using home-made colloidal probes, the
cantilever stiffness is measured experimentally with the method of the added mass [264],
that we describe in the following. Before gluing the silica sphere (see a picture of colloids
in Fig. 4.4(d)) on the edge of the tip-less cantilever, the deflection of the latter due to
its thermal noise is recorded and averaged over several measurements. The Brownian
motion of the cantilever is described by modeling the cantilever as a damped harmonic
oscillator to which a Langevin force is applied. Then, by solving the Langevin equation
for a damped harmonic oscillator, one can derive the power spectral density of the
cantilever deflection Z∗

canti in the steady-state regime [225], as:∣∣∣∣dZ∗
canti

dω

∣∣∣∣ = kBT

πm2
canti

ω0Q0
Q2

0(ω2
0 − ω2)2 + ω2

0ω2 , (4.43)

with ∗ indicating a complex variable, ω the angular frequency, ω0 the resonance angular
frequency, Q0 the quality factor, mcanti the effective mass of the cantilever, kB the
Boltzmann constant and T the room temperature 2. The amplitude spectral density Aω

is then defined from Eq. (4.43) by taking the square root :

Aω(ω) =
√∣∣∣∣dZ∗

canti
dω

∣∣∣∣. (4.44)

The measured amplitude spectral density of the cantilever is fitted with Eq. (4.44).
The resonance frequency f0 = ω0/(2π) and quality factor Q0 are extracted as fitting
parameters. Then, a micrometric silica sphere is glued at the edge of the cantilever and
the thermal noise of the cantilever is recorded again. The resonance frequency f1 and

2The present calibration step is also detailed in Sec. 2.1.2.3

81



CHAPTER 4. CONTACTLESS COLLOIDAL-PROBE RHEOLOGY OF SOFT
HYDROGELS

(a) (b)

(c) (d)

FIG. 4.4. Calibration of the AFM. (a): Amplitude spectral density Aω of the cantilever
as a function of the temporal frequency f , before (light blue) and after (light blue-green)
gluing a silica sphere at its edge. Dark blue and dark blue-green lines correspond to fits of
the experimental data based on Eq. (4.44), before and after gluing the colloid respectively.
(b): Deflection Sensitivity DS measurement. The signal received by the photodiode,
which corresponds to the cantilever deflection Zcanti in V, is plotted as a function of the
position of the driving piezo zpiezo. The final part of the curve corresponds to the range
where the cantilever is in contact with the hard surface. The deflection sensitivity DS
is computed as the inverse of the slope. (c): Picture of a cantilever, of the same model
as the one used in the present experiment. (d): Picture of a few colloids spread on a
glass slide, from the same batch as the one used in the present experiment. (c) and (d)
were made with an inverted microscope (×20). The scale bar represents 100 µm in both
panels.

quality factor Q1 of the cantilever holding a colloid are extracted too. In Fig. 4.4(a)
is shown the spectrum of the Brownian motion amplitude of the cantilever, with and
without the attached sphere.

The cantilever being modeled as an harmonic oscillator, the resonance frequencies
before and after gluing the silica sphere are given respectively by [264]:

f0 = 1
2π

√
kcanti
mcanti

and f1 = 1
2π

√
kcanti

mcanti + msphere
, (4.45)

with kcanti the stiffness of the cantilever and msphere the mass of the sphere. The can-
tilever stiffness is then calculated by:

kcanti = (2π)2 msphere
1

(f1)2 − 1
(f0)2

. (4.46)

The quality factors provide estimates of the errors on the resonance frequencies:

∆f0 = f0
2Q0

and ∆f1 = f1
2Q1

. (4.47)
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The errors ∆f0 and ∆f1 extracted from the width of the distributions defined by the
amplitude spectral densities Aω are usually slightly overestimated, as the width of the
distributions is harder to fit than the maxima f0 and f1 to locate. Then, the errors
on the resulting stiffnesses can be calculated too. Knowing the radius of the sphere
(R = 45 ± 3 µm, see Fig. 4.4(d)) and the silica density (ρSi = 2.950 g/cm3), the sphere
mass is evaluated to be 140±23 ng. We neglect the mass of the glue, estimated at 0.1 ng
at the maximum. With the added-mass method [264] described in the present section,
we measure a stiffness of kcanti = 0.14 ± 0.02 N/m, which is slightly above the maximal
nominal value but still meaningful. The obtained cantilever stiffness kcanti is used to
convert the deflection of the cantilever (in nm) into the force exerted of the spherical
probe (in nN). The deflection measurement is thus described in the following subsection.

4.2.2.2 Deflection sensitivity

In AFM, the deflection sensitivity DS is used to convert the signal received from the
photodiode (in V) into the deflection of the cantilever Zcanti (in nm) 3. The deflection
sensitivity is measured by approaching the cantilever close to a hard surface, touching the
surface, and then continuing the approach until a prescribed limit deflection is reached.
The cantilever is then fully retracted. The measurement is typically repeated ten times.
The vertical signal of the photodiode (i.e. the cantilever deflection Zcanti up to a factor,
but in V) is monitored as a function of the position of the piezo zpiezo. A linear relation
between the signal of the photodiode and the piezo position is typically obtained when
the cantilever is in contact with the hard surface, and the coefficient between both
corresponds to the deflection sensitivity DS in nm/V. Figure 4.4(b) shows a typical
measurement of the signal of the photodiode Zcanti (i.e. the cantilever deflection but
in V) as a function of the vertical position of the piezo zpiezo. In this example, the
calculated deflection sensitivity is 254 nm/V based on a good quality fit (χ2 = 0.009).
In practice, the measurement of the deflection sensitivity is automated by the AFM
software, repetitions and averaging included. The product of the deflection sensitivity by
the cantilever stiffness DS kcanti enables to convert the voltage signal of the photodiode
into a force.

4.2.2.3 Extraction of Amplitude and phase shift with the lock-in amplifier

As depicted in Fig. 4.3, we generate a sinusoidal signal UOUT from the lock-in amplifier
that is sent to the piezo cube. The sinusoidal signal UIN is received from the photodiode.
The two signals read:

UOUT = aout cos(ωt) + uout (4.48a)
UIN = ain cos(ωt + ϕ) + uin, (4.48b)

with ω = 2πf the angular frequency, aout and ain the amplitudes (in V) of the OUT and
IN signals respectively, ϕ the phase shift. The lock-in amplifier (Zurich Instruments,
MFLI 500 kHz) is used to compare simultaneously both the signals sent to the piezo
UOUT and the signal received from the photo diode UIN. To compare both the IN and
OUT signals, the lock-in amplifier computes the modulated signal UMOD as:

UMOD = aoutain cos(ωt) cos(ωt + ϕ) = aoutain
2 [cos(2ω + ϕ) + cos(ϕ)] . (4.49)

In Fig. 4.5(a) we show an example of the OUT, IN and modulated signals, respectively
UOUT, UIN and UMOD, on a few periods. The mean values of the OUT and IN signals,

3This step was already detailed as is in Sec. 2.1.2.3
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(a)

(b)

FIG. 4.5. Raw sinusoidal signals compared by the lock-in amplifier. (a): Oscillat-
ing part of the OUT and IN sinusoidal signals, respectively UOUT and UINT, respectively
sent to cube and received from the photodiode, as a function of time t. The modulated
signal UMOD is computed from the IN and OUT signals, and represented with a factor
10 for more readability. The phase shift is extracted from the mean value of the mod-
ulated signal, through Eq. (4.51). (b): Fourier transforms of the signals shown in (a).
The amplitudes of the respective peaks of the UIN, UOUT and UMOD signals are linked by
Eq. (4.50).

respectively uOUT and uIN, are subtracted for a better readability. Then, the amplitude
A is obtained by computing the Fourier transform of the modulated signal and taking
the intensity of the peak at the angular frequency 2ω:

A = aoutain
2 (4.50)

and the cosine of the phase shift ϕ is obtained, by taking the average value of the
modulated signal, as:

cos(ϕ) = < UMOD >

A
. (4.51)

In Fig. 4.5(b), we show the Fourier transforms of the examples of OUT, IN and modulated
signals. In practice, the amplitude aout, mean value uout and angular frequency ω of the
OUT signal are prescribed by the low-frequency generator function of the apparatus.
The amplitude of the IN signal ain is directly monitored by using the scope function of
the apparatus. The phase shift ϕ is finally computed by the apparatus.

4.2.2.4 Cube calibration

The calibration of the piezo element (Piezosystem Jena, microTRITOR) which plays
the role of the sample stage consists in establishing the relation between the command
electric signal UOUT sent to the latter and its induced displacement. This measurement
is performed with a standard cantilever with a sharp tip (Nanosurf, model Dyn190Al,
f0,nom = 190 kHz and kcanti,nom = 48 N/m). The deflection sensitivity DS with the
chosen cantilever is measured first of all. Then the cantilever is approached in contact
mode close to the surface of the piezo cube, up to contact, with a set point in force at
10 − 50 nN, forcing a deflection of the cantilever to maintain contact at any time. When
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(a) (b) (c)

FIG. 4.6. Calibration of the piezo cube. (a): Amplitude of the oscillating cantilever
deflection Zcanti as a function of the driving amplitude aout of the electric signal OUT sent
to the piezo cube, for different driving frequencies f . Depending on the driving frequency
f , we obtain a factor of 0.56 − 0.7 µm/V between the command tension amplitude aout
and the driving oscillation amplitude h0. (b): Phase shift ϕ as a function of the command
tension amplitude aout. Depending on the driving frequency f , we measure a phase shift
ϕ between the command signal UOUT and the oscillation of the cube h0 cos(ωt). (c):
Averaged phase shift ϕmoy as a function of the driving frequency f .

contact is established, the AFM feedback is turned off, so that the cantilever response
is only due to the oscillation of the piezo cube.

The cantilever deflection is given by Zcanti = DS UIN in nm, with UIN the electric
signal received from the photodiode. The cantilever deflection follows the motion of the
piezo cube. Considering only the oscillating term, we have:

Zcanti− < Zcanti >= acanti cos(ωt + ϕ) = h0 cos(ωt + ϕ), (4.52)

with h0 = DS ain the oscillation amplitude of the cube (in nm), ϕ the phase shift, and
< Zcanti >= DSuin the mean value of the cantilever position. Figure. 4.6(a) shows the
oscillation amplitude of the cantilever deflection acanti, which is equal to h0 as long as
both the cantilever and the cube are in contact, as a function of the amplitude of the
command signal aout, for different driving frequencies f . We obtain a linear relation, with
a slope that slightly varies depending on the driving frequency f . This measurement
gives the conversion between the amplitude aout of the command signal in V sent to
the cube and the resulting motion amplitude of the cantilever acanti in nm. We obtain
a factor between the amplitude of the command signal aout and the cantilever motion
amplitude h0 of 0.56 − 0.7 µm/V, depending on the driving frequency f .

The comparison between the IN and OUT signals by using the lock-in amplifier
reveals a phase shift ϕ that depends on the frequency f . On Fig. 4.6(b) is plotted the
phase shift ϕ as a function of the amplitude of the command signal aout for different
frequencies f . We observe that the phase shift does not depend on the amplitude aout
but only on the frequency f . Thus on Fig. 4.6(c) is plotted the averaged phase shift
ϕmoy as a function of the driving frequency f .

The precise origin of the phase shift is not known and should be investigated rigor-
ously in the future of this project. The piezo cube has a resonance frequency around 1
kHz, which means that the oscillation amplitude should depend on the frequency. Fur-
thermore, the signal UOUT is first sent to an amplifier (not represented on Fig. 4.1), then
the amplified signal is sent to the piezo cube. Both the amplifier and the piezo itself may
introduce phase shifts depending on the frequency. Finally, the sample is attached onto
the piezo cube with double-face tape. The glue of the tape itself may also introduce a
phase shift depending on the frequency.
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4.2.3 Experimental protocol

In this section, we describe the protocol to run an experiment to probe the mechanical
response of a soft and hydrated poroelastic hydrogel, for a given oscillation amplitude
h0 at a given frequency f .

Calibration: The preparation of the spherical probe and the measurement of the
cantilever stiffness kcanti constitute the first steps of calibration, followed by a deflection
sensitivity DS measurement (on a hard surface, no sample) of the AFM scan head. At
the chosen frequency f is associated the calibration curve of the piezo cube, which gives
the coefficient between the electric signal amplitude aout that is sent and the motion
amplitude h0 that results. The intrinsic phase shift ϕmoy associated to the cube at
the frequency f is also noted. Both the IN and OUT signals and the phase shift are
monitored.

Initialization: In order to use the semi-infinite poroelastic half space model presented
in the previous Chapter, a thick (the swollen thickness should be large compared to the
hydrodynamic radius) hydrated gel is placed on the piezo cube. A high offset uout
(= 5 − 8 V), with a zero amplitude aout are set to begin the experiment. Using the
standard functions of the AFM, at a low set point in force (≈ 5 nN) and in static mode,
the probe is brought in contact with the gel. Then the offset of the command signal
UOUT is turned down to typically ≈ −5 V to drive away the cube, and the amplitude
aout is set to obtain the chosen value h0 of its motion amplitude. At this stage of the
experiment the IN signal should be almost zero, since the coupling between the probe
and the gel is weak when both are far away from each other.

Approach: The experiment is run varying the offset of the OUT signal uOUT. For a
given aOUT, samplings of both the IN and OUT signals are recorded, for a given value of
offset uOUT. The amplitude A and phase shift ϕ of the modulated signal are extracted.
The signals are recorded with special care to choose an adapted sampling rate (at least
20 measurement points by period) and a sufficient duration time (at least 50 periods)
to collect enough information, without excess. The measurement is repeated for a range
of offsets uOUT, typically from the initial -5 V value to 5 − 8 V. The range in offsets
corresponds to a range in distances, from large distances (almost no interaction sphere-
cube) to small distances (contact), compared to the typical height at which the probe
and the gel interact. Thus, varying the offsets realizes an approach of the cube holding
the sample towards the spherical probe.

Extracting the raw data: The oscillation amplitude of the cantilever acanti is com-
puted from the signal of the photodiode by DS ain. The phase shift ϕ is directly mon-
itored through the lock-in amplifier software. The absolute height of the piezo cube is
deduced from the calibration described in Sec. 4.2.2.4. The initialization and approach
steps are finally repeated for each desired frequency f .

4.2.4 Preliminary results

4.2.4.1 Raw data

In Fig. 4.7 we show preliminary results of contactless, colloidal-probe experiments in
oscillatory mode on a hydrated PNIPAM hydrogel film (dry thickness τ = 300 nm,
swollen thickness τswollen = 4τ = 1.2 µm, Appendix. A.2 for the thickness measurement),
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(a)

(b)

(c)

(d)

FIG. 4.7. Raw data of contactless rheology obtained in oscillatory contactless
mode on a soft and thick hydrogel. (a): Amplitude of AFM cantilever deflection
acanti as a function of the piezo cube height zcube, choosing an oscillation frequency of
f = 7 Hz and an oscillation amplitude of h0 ≈ 62 nm. The colored region indicates the
noise floor. (b): Cosine of the phase shift cos(ϕ) between the IN and OUT signals, sent
to the piezo cube and received from the AFM photodiode respectively, as a function of
the piezo cube height zpiezo. The colored region indicates the noise floor. (c): Amplitude
of the force F exerted on the spherical probe as a function of the distance between the
probe and the gel surface H. The colored region indicates the noise floor. (d): Phase
shift ϕ between the IN and OUT signals, corrected by the average phase shift ϕmoy = 8◦

measured during the piezo cube calibration, as a function of the gel-probe distance.The
colored region indicates the noise floor.

for a driving frequency f = 7 Hz and a driving amplitude aout = 100 mV (i.e. an
oscillation amplitude h0 ≳ 62 nm). Figure. 4.7(a) and (b) show the oscillation amplitude
of the cantilever acanti and the cosine of the frequency shift ϕ between the IN and OUT
signals, respectively, as a function of the cube height zcube. The raw data exhibit a
transition between two regimes depending on the piezo cube height. At small height,
the probe is far from the sample and the elastohydrodynamic coupling between both is
weak. As a result the cantilever deflection amplitude (at the driving angular frequency
ω) is close to zero. The measured cantilever motion is dominated by white noise and thus
the cosine of the phase shift cos(ϕ) takes random values. At larger height the opposite
is observed: the cantilever deflection amplitude increases sharply at the transition until
reaching a plateau value at acanti ≈ 20 nm for zcube ≳ 400 nm. A similar behavior is
observed on the cosine of the phase shift: after a sharp transition with increasing the
cube height, a plateau is reached at cos(ϕ) ≲ 1.

Such saturating behaviors are interpreted as the physical contact being established
between the surface of the gel and the probe. In the limit of large heights, the amplitude
of the cantilever deflection matches the one of the gel surface. Both the probe and the
cube oscillate in phase, which means that in the gel elasticity dominates over viscous
dissipation. The amplitude of the cantilever deflection is still lower than the one of the
piezo cube, when the probe touches the gel surface. This is due to the gel elasticity that
“absorbs" the harmonic forcing of the probe on its surface. Indeed, by considering one
oscillation of the cube, at the lowest point the forcing on the cantilever is weaker. Thus,
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the resulting force applied on the gel is lower than at the highest point. As a result,
the gel exhibits a smaller strain at the lowest point of the cube than at the highest, due
to its elasticity. This explains why the amplitude of the cantilever deflection (e.g. the
amplitude of the surface deformation) is still lower than the one of the piezo cube (e.g.
the imposed amplitude of motion at the bottom of the gel).

4.2.4.2 Contact point estimate

The observed saturation allows to estimate the contact height at zcube ≈ 400 nm. The
mean gel-probe distance can then be deduced as H = 400 − zcube. Using the cantilever
stiffness kcanti, the amplitude of the force F applied on the probe is deduced from the
cantilever deflection amplitude acanti. Thus in Fig. 4.7(c) and (d) the force amplitude F
and the phase shift ϕ−ϕmoy between the oscillation of the cube and the one of the probe,
respectively, are represented as functions of the gel-probe distance H. The correction
of ϕmoy = 8◦ on the phase shift comes from the non-zero phase shift between the IN
signal sent to the piezo cube and its oscillatory motion, measured as a function of the
frequency (see Fig. 4.6(c)). At small distances Hc, the force amplitude reaches a plateau
value at F ≈ 3 nN and the phase ϕ is small. The elastohydrodynamic coupling between
the probe and the gel is strong, and the low values of the phase shift indicate a regime
where elasticity dominates, as predicted by theory in Sec. 4.1.7. At large distances, the
measured force is on the order of the typical resolution of the instrument (F = 0.1−1pN)
and the phase shift takes random values: the coupling is weak and the force is lower
than what the instrument is able to measure. The crossover between the short- and
large-distance regimes is exhibited by a sharp transition on both the force and the phase
shift. In the transition window (Hc = 300−700 nm), the phase shift rapidly saturates at
ϕ ≲ π/2 with increasing Hc, indicating that viscous dissipation dominates as predicted
by theory in Sec. 4.1.7. The force decreases rapidly until reaching the limit of the AFM
resolution.

In summary, the dissipative, large-distance regime is observed for Hc ≳ 500 nm.
However, in this regime, the measurement of the elastohydrodynamic coupling is limited
by the resolution in force of the instrument, thus, the measured values of both the force
and the phase shift are irrelevant for Hc ≳ 700 nm. The limitations of the AFM being
taken into account, the representations of both the force amplitude F and the phase
shift ϕ shown in Figs. 4.7(c) and (d) are then reminiscent of the theoretical predictions
shown in Figs. 4.2(c) and (d). In the next section we will investigate how the experi-
mentally imposed frequency changes the force response, and will additionally investigate
the conversion of the amplitude and phase shift into storage and loss components of the
mechanical response, also in comparison to the theory of Sec. 4.1.

4.2.4.3 Different responses as functions of the frequency

The experimental protocol described in Sec. 4.2.3 was repeated for different driving
frequencies. From the obtained raw data, we estimate the contact point, applying the
process described in the previous subsection. In Fig. 4.8(a) and (c) we show the measured
deflection amplitude of the cantilever acanti as a function of the gel-probe distance H
for different frequencies f . In Fig. 4.8(b) and (d) we show the phase shift between the
oscillatory motions of the piezo cube and of the cantilever ϕ − ϕmoy as a function of the
gel-probe distance H for different frequencies f . In linear scale in Figs. 4.8(a) and (b),
by definition of H the contact point is estimated as H = 0. Then, the negative distances
correspond to the regime where the probe is always in contact with the gel. This regime
does not appear in logarithmic scale in Figs. 4.8(c) and (d).
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(a) (c)

(b) (d)

FIG. 4.8. Frequency-dependent, mechanical response of a hydrogel in oscilla-
tory contactless mode(a): Cantilever deflection amplitude acanti as a function of the
gel-probe distance H, for three frequencies of oscillation f indicated in legend, in linear
scale. The vertical orange dashed line at H = 0 represents the estimated contact point:
for negative distances H the gel and the probe are in contact at any time. (b): Phase
shift ϕ−ϕmoy between the oscillatory motion of the piezo cube and the oscillatory motion
of the cantilever, for three frequencies of oscillation f , in linear scale. The correction
ϕmoy takes into account an intrinsic phase shift of the piezo cube and is described in
Sec. 4.2.2.4. The vertical orange dashed line is described in (a). (c): Same as in (a),
on logarithmic scale. (d): Same as in (b), on semi-logarithmic scale.

For the three frequencies investigated in this experiment, f = {7, 70, 700} Hz, we
observe the same general features described in the previous section for a unique frequency
f = 7 Hz. At small distances we observe a plateau both for the deflection amplitude
of the cantilever and the phase shift in logarithmic scale. Then, we observe a sharp
decrease of the deflection amplitude of the cantilever acanti with increasing distance H,
associated to a sharp increase of the phase shift ϕ−ϕmoy (linear and logarithmic scales).
At large distances we observe a saturation of the deflection amplitude of the cantilever,
associated to random values of the phase shift, which corresponds to the limit of the
AFM resolution (linear and logarithmic scales). Yet, with increasing frequency f , the
transition between the short- and large-distance regimes is sharper, and even happens
on a too short range in distance to be visible for f = 700 Hz. The small-distance plateau
values in amplitude and phase are similar for the three investigated frequencies, and the
large-distance ones are similar for two out of three frequencies. Indeed, at large distance
for f = 700 Hz, the saturation of the oscillation amplitude of the cantilever is higher, and
the saturation in phase shift is lower, than for f = {7, 70} Hz. The large-distance value
of the oscillation amplitude of the cantilever is above the AFM resolution (= 0.1−1 nm).
The observed features of the f = 700 Hz data we just described constitute a piece of
evidence to assess the quality of this measurement. A possible explanation would be
that the driving frequency of f = 700 Hz is close to the resonance frequency of the piezo
cube.

To properly compare the results obtained with the three driving frequencies, we
need to rescale the data. We use the theoretical framework developed in the first part
of this Chapter (Sec. 4.1), assuming the hydrogel is thick enough to be described as a
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(a) (c)

(b) (d)

FIG. 4.9. Rescaled force exerted by a hydrogel in oscillatory contactless
mode(a): Dimensionless force amplitude F̃ (or modulus of the complex force) as a func-
tion of the normalized gel-probe distance H/Hc, for three normalized angular frequencies
ω/ωc. (b): Phase shift ϕ − ϕmoy (or argument of the complex force) as a function of
the normalized gel-probe distance H/Hc, for three normalized angular frequencies ω/ωc.
The correction ϕmoy takes into account an intrinsic phase shift of the piezo cube and is
described in Sec. 4.2.2.4. (c): Storage component of the dimensionless force (or real part
of the complex force) as a function of the normalized gel-probe distance H/Hc, for three
normalized angular frequencies ω/ωc. The dashed lines represent power laws fitted on
the “+” data points marked by a thick dot, with resulting exponents indicated in the leg-
end. (d): Loss component of the dimensionless force (or imaginary part of the complex
force) as a function of the normalized gel-probe distance H/Hc, for three normalized an-
gular frequencies ω/ωc. The dashed lines represent power laws, with resulting exponents
indicated in the legend. The color shades used to plot each quantity on each panel are
identical to the ones used in Fig. 4.2, to guide the comparison.

semi-infinite poroelastic medium. In comparison to the gel-probe distance H, the latter
statement is true as the swollen thickness of the gel is about τswollen ≈ 1.2 µm. Compared
to the hydrodynamic radius

√
2RH, considering the gel as a semi-infinite layer is more

questionable.

4.2.4.4 Rescaled data

Using the cantilever stiffness, the cantilever oscillation amplitude is converted into force
amplitude. The gel-probe distance H and the angular frequency ω = 2πf are normalized
by the critical distance Hc and the critical angular frequency ωc respectively, given by
Eqs. (4.19) and (4.20) respectively, as:

H

Hc
= H

8R

(2G

ηω

)2/3
and ω

ωc
= 2RωHc

Dpe
= 16(1 − 2ν)

(1 − ν)
R2

k

(
ηω

2G

)5/3
. (4.53)

We use the following values: the probe radius R = 45 µm, the water viscosity η =
10−3 Pa.s, the shear modulus G ≈ 5 kPa (see the next Chapter), the Poisson ratio
of PNIPAM ν = 0.2 [239, 240] and the permeability k ∼ l2p based on the pore size
lp ≈ 5 nm [1]. The effective poroelastic diffusion coefficient can be also estimated with
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Eq. (4.8), as Dpe ≈ 333 µm2/s, which is about 7 times smaller than the self-diffusion
coefficient of water. The three driving frequencies f = {7, 70, 700} Hz correspond respec-
tively to the reduced angular frequencies ω/ωc = {1.15, 53.4, 2470}. The force amplitude
is normalized using Eq. (4.34), as:

F̃ = FHc
8πηωh0R2 = F

πRh0 (ηω)1/3 (2G)2/3 , (4.54)

with h0 = 62 nm being the oscillation amplitude of the piezo cube. In Fig 4.9(a) and
(b) we show the dimensionless force amplitude F̃ and phase shift ϕ − ϕmoy, respec-
tively, as functions of the dimensionless gel-probe distance H/Hc. The two latter graphs
correspond to the theoretical predictions of Figs. 4.2(c) and (d) respectively, and are
represented with the same color shades.

As predicted by the theory, and as for the raw data, we observe for f = {7, 70} Hz
the small- and large-distance regimes on both the force amplitude F̃ and the phase shift
ϕ − ϕmoy, that we detail in the following. First, we describe small distances, H/Hc. In
this regime, the normalized force amplitude as a function of the normalized distance
exhibits a plateau which reaches the values F̃ ≈ {1.8, 0.8, 0.5}, respectively for the
reduced angular frequencies ω/ωc = {1.15, 53.4, 2470}. These measured values can be
compared to the predicted values based on the linear poroelasticity theory developed in
Sec. 4.1. In particular, the numerical resolution of the force is used as in Fig. 4.2(c) to
predict the theoretical dimensionless force values, as F̃ = 2.3 − 3, the value increasing
with increasing frequency. The phase shift also exhibits a plateau, the value of which
is about 0◦ for the reduced angular frequencies ω/ωc = {1.15, 2470} and about 15◦ for
ω/ωc = 53.4. As for the force, these measured phase shifts can be compared to the
predicted values, which are ϕ = 30 − 33◦. The qualitative features of the experimental
data match the theory at small distances, which suggests that the elastic response of
the gel dominates. However, the quantitative measurements exhibit deviations from
the theory that we will discuss below. Before such discussion, we next describe large
distances.

For H/Hc ≳ {3, 0.3} the normalized force amplitudes decay as power laws for the re-
duced angular frequencies ω/ωc = {1.15, 53.4} respectively. For ω/ωc = 2470, we do not
observe a decay, but a second plateau for H/Hc ≳ 0.06. This observation is in contrast
with the theory, predicting a power-law decay for H/Hc ≳ 0.3. At the same threshold
values in H/Hc, we observe a sharp increase of the phase shift, reaching ϕ − ϕmoy ≈
{80, 94, 70}◦ respectively for the reduced angular frequencies ω/ωc = {1.15, 53.4, 2470}
(theoretical predicted value ϕ = 90◦). At large distances, the qualitative features of the
experimental data match the theory for the angular frequencies ω/ωc = {1.15, 53.4},
which means that the viscous, dissipative response of the fluid dominates. The quan-
titative measurement of the threshold in H/Hc and the phase shift are close to the
theoretical prediction for ω/ωc = 53.4.

From the normalized force amplitude and the phase shift, we can compute the nor-
malized complex force F̃ ∗, as:

F̃ ∗ = F̃ ei(ϕ−ϕmoy) = Re
[
F̃ ∗
]

+ iIm
[
F̃ ∗
]

, (4.55)

the amplitude F̃ being the modulus and the phase shift ϕ − ϕmoy being the argument
of the complex force. The real and imaginary parts of the complex force are shown in
Figs. 4.9(c) and (d) respectively. The two latter graphs corresponds to the theoretical
prediction of Fig. 4.2(e), and are represented with the same color shades.

As predicted by the theory, as for the raw data and the amplitude-phase representa-
tion, we observe for f = {7, 70} Hz the small- and large-distance regimes on both the real
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and imaginary parts of the normalized complex force Re
[
F̃ ∗
]

and Im
[
F̃ ∗
]

respectively,
that we detail in the following. On the one hand, at small distances H/Hc, the real
part of the normalized force as a function of the normalized distance exhibits a plateau
which reaches the values Re

[
F̃ ∗
]

≈ {1.8, 0.8, 0.5}, respectively for the reduced angular
frequencies ω/ωc = {1.15, 53.4, 2470}, that correspond respectively to the three driving
frequencies f = {7, 70, 700} Hz (theoretical predicted value Re

[
F̃ ∗
]

= 2 − 2.5). The

imaginary part exhibits a plateau too, which reaches the values Im
[
F̃ ∗
]

≈ 0.2 for the

reduced angular frequency ω/ωc = 53.4 (theoretical predicted value Im
[
F̃ ∗
]

= 1.3−1.6).

A unique point at Im
[
F̃ ∗
]

≈ 0.2 is observed for ω/ωc = 1.15 at a similar value in force,
and no plateau is observed at small distances for ω/ωc = 2470. The qualitative features
at small distances match the theory for ω/ωc = 1.15 and partly for ω/ωc = 53.3, which
means that the elastic response of the gel dominates. Yet, the quantitative measurements
exhibit deviations from the predicted values. On the other hand, for H/Hc ≳ {3, 0.3}
the real part of the normalized force decays approximately as a power law for the reduced
angular frequencies ω/ωc = {1.15, 53.4} respectively, with −5.7 ± 0.1 and −2.5 ± 0.6 fit-
ted exponents respectively. For ω/ωc = 2470, we do not observe a decay, but we observe
only a second plateau for H/Hc ≳ 0.06. The theory predicts a decay for H/Hc ≳ 0.3
with a −2.5 exponent. At the same threshold values in H/Hc, the imaginary part of
the normalized force decays in a power law ω/ωc = {1.15, 53.4}, with −1.13 ± 0.02
and −1.05 ± 0.01 fitted exponents respectively (theoretical predicted exponent −1). For
ω/ωc = 2470 we observe a plateau instead for H/Hc ≳ 0.06. At large distances, the
qualitative features of the experimental data match the theory for the angular frequen-
cies ω/ωc = {1.15, 53.4}, which means that the viscous, dissipative response of the fluid
dominates. The quantitative measurement of the threshold in H/Hc and the decay ex-
ponents both for the real and imaginary parts are close to the theoretical prediction for
ω/ωc = 53.4.

In summary, three data sets are presented here. First, the experimental data set at
f = 700 Hz (ω/ωc = 2470) does not match the qualitative features of the theory. Second,
the experimental data set at f = 7 Hz (ω/ωc = 1.15) exhibit the qualitative but not the
quantitative features of the theory. Third, the experimental data set at f = 70 Hz
(ω/ωc = 53.4) matches the theoretical prediction qualitatively and quantitatively at
short and large distance, albeit the slightly low value of the force at small distances. In
the next section we discuss these agreements and disagreements in more detail.

4.2.5 Discussion

4.2.5.1 Validity of the hypotheses

We observe a qualitative agreement of the experimental data with the theory for ω/ωc =
{1.15, 53.4} and furthermore a quantitative one for ω/ωc = 53.4. The theoretical frame-
work of the contactless, colloidal-probe rheology experiment presented here is developed
based on several hypotheses. First the lubrication approximation should be valid, which
stipulates that the fluid gap is small compared to the hydrodynamic radius: H ≪

√
2RH.

The largest gel-probe (i.e. fluid gap) distance H taken into account here is 1 µm. The
sphere radius being 45 µm, then

√
2RH = 9.5 µm and thus limit of validity of the lu-

brication approximation is reached. Second, the viscous penetration depth should be
large compared to the fluid gap:

√
η/(ρω) ≫ H. For the highest frequency f = 700 Hz,
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the viscous penetration depth can be estimated at 15 µm, which is one order of magni-
tude more than the largest distance H. Again, the limit of validity of this hypothesis
is reached. Third, the oscillation amplitude should be small compared to the fluid gap:
h0 ≪ H. In the experiment presented here, the oscillation amplitude is h0 = 62 nm. The
experiment is conducted varying the cube height on a sufficiently large range so that the
contact between the sample and the probe is achieved. The contact point is deduced from
the raw data to extract the gel-probe distance. Thus, for a few data points at the small-
est distances H, this hypothesis breaks necessarily down. Here, arguing that at least an
order of magnitude should be kept between h0 and H to verify the hypothesis, the range
in distances for which the latter is verified starts at ≈ 600 µm which falls in the observed
large-distance regime. Thus, for all the data points at smaller distances than 600 µm,
which covers both the small-distance regime and the crossover with the large-distance
regime, the hypothesis is not verified, and a large-deformation modeling would be prob-
ably relevant. Yet, interestingly, the qualitative expected features of the force-distance
data are observed, and even quantitatively for one over three driving frequencies, even
though the last hypothesis is not satisfied. To conclude, in order to preserve the three
hypotheses listed above, the experiment should first of all be run at a smaller oscillation
amplitude (i.e. h0 ≲ 10 nm). Then, a bigger probe could be tested, to preserve safely
the lubrication approximation. Finally, to ensure a large viscous penetration depth, one
can fix an upper bound for the frequency range to explore at 500 Hz.

4.2.5.2 Asymptotic compressible-like behavior

In the theoretical framework presented in this Chapter, the response in force of a poroe-
lastic gel exhibits a transition from an incompressible-like response to a compressible-like
response with increasing reduced angular frequency. The incompressible asymptote is
almost reached for ω/ωc = 0.001 and the compressible one for ω/ωc = 10. Thus,
in the goal of showing an evidence of the porous signature of the poroelastic gel, the
range of angular frequencies to explore should match these two bounds. In the experi-
ment presented in this Chapter, the reduced frequencies are in the high-frequency limit
(ω/ωc = {1.15, 53.4, 2470}). Thus, the asymptotic compressible-like behavior is mainly
probed. Reducing the normalized angular frequency down to 0.001 would probe the
asymptotic incompressible-like behavior and the range of frequencies in between these
two boundaries would probe the crossover behavior between the two limit incompressible
and compressible cases. In practice, as the reduced angular frequency scales with ω5/3

(see Eq. 4.53), to achieve a range of four orders of magnitude in ω/ωc, the frequency f
(in Hz) has to vary only of a factor 1012/5 ≈ 250, the other experimental parameters
being kept fixed. Alternatively, we can consider that the sample is kept identical, thus
the experiment has to be adapted. To reduce the normalized angular frequencies, a
probe of smaller radius could be chosen (but not so small either, as to risk losing the
validity of the lubrication approximation).

Otherwise, fine tuning the mechanical properties of the hydrogel to highlight its
porous signature by the experiment presented here could be a track: the hydrogel should
then be stiffer and/or having a larger pore size (thus a larger porosity k). Finally, the
variation between the two limit incompressible-like and the compressible-like behaviors,
due to the porosity, is small as predicted by the theory. The experiment presented
here may show an evidence of the porosity of a sample, but this signature would be a
discrete feature in any case. To ensure the validity of such a delicate measurement, the
experiment should be repeated to ensure good enough statistics.
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4.2.5.3 Quality of the experiment

The preliminary results presented in Sec. 4.2.4 were collected during a single crash-test
experiment, which first aimed only at testing the recently-built setup and the home-
made code running all the experiment. Because of a lack of time, the experimental data
were deeply analyzed far later and the experiment was not repeated. For these reasons,
the prescribed experimental parameters such as the oscillation amplitude h0 and the
frequency f could not be fine-tuned. The hydrogel sample may also be too thin to be
considered as a semi-infinite poroelastic media. Finally, such a delicate experiment needs
some practice, and there was only one try.

Despite these considerations, the collected data show promising results: on two out
of three driving frequencies f we observe qualitatively the predicted response of the
hydrogel, for one we find moreover a quantitative agreement with the theory. The force
response is characterized by two regimes depending on the gel-probe distance. At small
distances, the elasticity of the gel dominates in the response in force, which translates by
a saturation of the force amplitude and a low value of the phase shift. At large distances,
the viscous dissipation happening in the fluid phase dominates in the response in force,
which translates by exponential decays of the storage and loss components of the force
with characteristic exponents. Thus, the results presented here constitute a proof-of-
concept that the built experiment can probe the mechanical response of a soft and
porous thick gel, as predicted by the theory developed in Sec. 4.1.

4.3 Conclusion

In the first part of the present Chapter, we derived theoretically the mechanical re-
sponse of a gel to a vertically oscillating spherical probe in lubrication conditions within
a fluid. The gel is modeled as a poroelastic, compressible, permeable, semi-infinite
medium and the surrounding fluid is identical to the solvent present in the polymeric
matrix. The complex amplitude of the force exerted on the spherical probe was numer-
ically computed and studied. As a result, contactless colloidal-probe methods in the
linear response regime appear as good candidates to robustly measure the effective elas-
tic properties of soft and fragile gels, without risk of wear and adhesion. However, such
experimental techniques are not suitable to probe permeability. In the second part of
the present Chapter, we presented a contactless, colloidal-probe, AFM-based experiment
on a thick PNIPAM hydrogel film immersed in water. We showed preliminary results
demonstrating the efficiency of the method to probe elastic mechanical properties of a
soft hydrogel. With fine-tuning, the method could also highlight the porous signature
of the soft hydrogel.

The data collected with the contactless experiment on a swollen PNIPAM gel pre-
sented in this Chapter constitute in a sense dynamic rheology data, since they present
a study of the mechanical response of the material as a function of the excitation fre-
quency. Then, a natural comparison would be to confront these data to pure rheology
data collected on PNIPAM microgels and grafted PNIPAM gels. The measured response
in the limit of small gel-probe distances could be compared to rheology data. Yet, some
adaptation work would be needed. A pure rheology experiment is realized with a probe
in contact with the material to investigate, thus presents a risk of damaging the sample,
which in turn could modify the measured mechanical response of it. Here, the strength
of the method lies in the contactless aspect, thus the latter prevents the risk of damaging
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the sample.

Exploiting the experimental method associated with the theoretical framework de-
veloped in this Chapter, more complex systems such as bending membranes or biological
samples could be investigated without damage. Extending the theory to other complex
materials, such as viscoelastic matter, or even samples exhibiting a plastic behavior, the
experiment could be adapted to probe such non-trivial materials, still in a non-invasive,
contactless mode to prevent damages.

In the next Chapter we present experimental results on the mechanical response of
PNIPAM thin films, based on a contact-mode method, to contrast with the present Chap-
ter. We investigate the properties of the hydrogel by approaching a lubricated spherical
probe until touching the gel, then the probe continues to indent the gel, provoking large
deformations and the dehydration of the gel.
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Chapter 5

Mechanical response of a
hydrogel: from small
deformations to the
dehydration-induced glass
transition

In the present Chapter, we investigate the mechanical response of PNIPAM hydrogel
thin films using an approach method (see Fig. 1.8(d)). When the contact is established
between the probe and the hydrogel, the experiment continues, such that the gel is
probed by indentation (see Fig. 1.8(e)). The method described in this Chapter allows to
probe several regimes of mechanical response, from a small-deformation and lubricated
regime, to a large-deformation, in-contact one. Here, we perform Surface Forces Appa-
ratus (SFA) experiments, in sphere-plane geometry, on initially fully swollen PNIPAM
hydrogels. In a first part, we describe the experimental setup, in which the approach of
the probe gradually compresses the hydrogel, until reaching full compression. In a second
part, we present the theoretical modeling of the observed experimental data. Several
regimes characterizing different physical behaviors are observed during an approach.
Efforts are made to identify and characterize each regime: complementary numerical
simulations are developed to describe early lubricated regimes while a non-linear fitting
method is implemented to describe the late contact problem and resolve the transition
between these two main regimes. We show that the hydrogel undergoes a glass transi-
tion, triggered by dehydration, itself due to the large indentation. We finally find the
point that marks the onset of the dehydration-induced glass transition of the PNIPAM
hydrogel.
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5.1 Experimental setup

The experimental setup consists in a miniature Surface Forces Apparatus (µ-SFA) in
sphere-on-flat geometry, observed through the objective of an inverted microscope [265].
Fig. 5.1(a) shows a schematic of the SFA and Fig. 5.1(b) a picture of the lens from a
top view. The SFA is used to investigate the mechanical properties of swollen PNIPAM
hydrogels thin films.

5.1.1 µ-SFA

A sample to investigate is first deposited on a circular glass coverslip, which is glued
to the stainless steel support of the SFA, using a UV-curable glue (Nordland Optical
Adhesive, NOA81 ). The body of the µ-SFA contains a glass spherical lens of radius
R ≈ 2.1 cm, which is held by a stainless steel support, connected to two metal blades
acting as a spring of stiffness K ≈ 1000 N/m. The lens is initially placed up, with the
help of a coarse screw acting on the back of the metal blades. The support on which
the sample is glued is then mounted onto the µ-SFA body. We then aim to place the
glass lens at about 0.5 cm of the sample, with the help of the coarse screw. A distillated
water drop is deposited in between the lens and the sample, using a syringe, and forms
a capillary bridge between the lens and the sample. Finally, an electric motor acts on
the extremities of the metal blades and drives the lens upwards and downwards. A
continuous electrical voltage is applied to the motor (typically U = 5 − 11 V, direct
current(DC)), so that the back of the metal blades is driven at a constant velocity V .

In this Chapter we show typical experiments on thin, grafted PNIPAM hydrogel.
The samples are prepared on circular coverslips (diameter 22 mm, VWR, Micro Cover
Glasses, round, no.2 ), following the protocol given in Chapter 2, Sec. 2.1.1. The sample
is mounted onto the SFA body with a concern for extreme cleanliness. Several approach
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credits: Gabriel Guyard

FIG. 5.1. Surface Forces Apparatus.(a): Schematic of the SFA. A glass lens is held
by two metal blades (in orange) acting as a spring. By driving downwards the back of
the metal blades at a velocity V , the lens is approached close to an investigated sample
(in magenta), immersed in water. The sample is held by a planar glass coverslip, which
is transparent. The apparatus is placed above the objective of an inverted microscope: a
light ray sent through the coverslip is reflected on the lens. The interference between the
incident and reflected rays is observed in the microscope. The distance D between the
two glass surfaces is measured by interferometry (see Fig. 5.2). (b): Top-view picture
of the glass lens, housed in its metallic support. The two metal blades holding the lens
support are visible on the top and bottom of the picture. The square support is about
1.5 cm.
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FIG. 5.2. Analysis of the interference pattern.(a): Typical interference pattern,
called Newton’s rings, recorded at the inverted microscope and divided by the background
image, for a distance D smaller than the coherence length of the incident light (wave-
length centered at λ ≈ 595 nm). The blue bar represent 100 µm. (b): Normalized light
intensity from the image (a), averaged over the azimuths, as a function of the radial
coordinate r. (c): Reconstructed interferogram. The averaged radial intensity is plotted
in colored scale as a function of the radial coordinate (vertical axis) and as a function
of time (horizontal axis).

velocities are tested. A given approach is ended by switching the motor off, when the
probe is compressing the gel at a point where we do not observe any further evolution of
the interference pattern. Several more images are recorded. Then, the probe is retracted
by inverting the polarity voltage on the motor. The retraction experiments are not shown
here.

5.1.2 Images of Newton’s rings

The apparatus is placed on the top of the objective of an inverted microscope. We use
a multicolored LED light source (CooLED pe-4000, 16 colors). In particular, we use the
yellow color (whose wavelength is centered around λ ≈ 595 nm). The light beam is sent
through the objective and passes successively through the glass coverslip, the hydrogel
film and the water drop. The ray reflects at each interface, and in particular on the
surface of the spherical lens. Then, the reflected ray passes successively through the
same media, and interferes with the incident ray. The reflected ray is reflected again on
the glass surface of the coverslip, and again on the one of the sphere, etc. The multiple
reflections between the two glass surfaces build an interference pattern, that we refer to
as Newton’s rings. The minimal distance between the two glass surfaces is noted D. If
the optical path difference 2D is smaller that the coherence length of the incident light,
we can observe in the microscope the interference pattern at the surface of the coverslip.
A CCD camera (Hamamatsu ORCA-ER II ) is mounted onto the inverted microscope
and records the interference pattern.

A background image is recorded when the distance D is long enough so that the
Newton’s rings disappear. In Fig. 5.2(a) is shown a typical interference image which
consists in a raw image taken at a close distance D, divided by the background image.
A first Matlab code written by one of my supervisors finds the center of the rings, and
computes the radial intensity profile averaged on azimuths, as shown on Fig. 5.2(b) (see
Appendix A.6 for the details of the algorithm). During an approach of the spherical
probe towards the soft sample, the interference pattern is recorded with time, and the
averaged intensity profiles are extracted for each image at each time step. In Fig. 5.2(c)
we show a reconstructed interferogram of the averaged intensity as a function of the
radial coordinate r and the time t. We observe that with the decrease of the distance
D as the spherical lens approaches the sample, more rings are visible on the image, and
the contrast is enhanced.
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5.1.3 Modeling the interference pattern

5.1.3.1 Multiple reflections between two glass interfaces

The interference pattern observed at the interface between the coverslip and the gel
is generated by multiple reflections of an incident light ray onto the coverslip and the
glass interface of the lens. This phenomenon is modeled with geometrical optics, by
considering a three-layer system. The coverslip and the lens are made of glass, and have
an optical index noted ng. In between, water and the swollen gel are present. The latter
is composed of ≈ 80% of water, thus we assimilate it to water and consider its optical
index to be the same than the one of water, noted nw. The Fresnel coefficients at the
coverslip and lens interfaces respectively [266] read:

rgw = nw − nG
nw + ng

, (5.1a)

rwg = ng − nw
nw + ng

. (5.1b)

The optical indices n depend slightly on the light wavelength λ. Tables of the optical
index of a given material (e.g. water or glass) as a function of the wavelength can be
found at https://refractiveindex.info/about. In Fig. 5.3(a) we show the tabulated
optical indices of water and glass, nw and ng respectively, as functions of the wavelength
λ that we use in the present analysis. Then, the numerical aperture of the microscope is
small, so that we consider a normal incidence. The sphere radius R being large compared
to the thickness D of the water-and-hydrogel layer, we consider the two interfaces to be
flat, and that the reflected ray stays normal to the interfaces. In such conditions, the
reflectance of the system can be derived [266], as:

R(Φ) =
r2

gw + 2rgwrwg cos(2Φ) + r2
wg

1 + 2rgwrwg cos(2Φ) + r2
gwr2

wg
, (5.2)

with Φ the phase shift introduced by a reflection, which reads:

Φ(D) = 2π

λ
ngD. (5.3)

The reflectance R is shown as a function of the distance D for different light wavelengths
λ in Fig. 5.3(b). Combining Eqs. (5.2) and (5.3), and normalizing, we get the light
intensity as a function of the distance D between the two glass interfaces, for a given
wavelength.

5.1.3.2 Spectrum bandwidth of the light source

In practice, we use a LED light source, that emits a yellow light whose wavelength is
centered around λ ≈ 595 nm. The spectrum of the light source has a finite bandwidth.
A precise measurement of the spectrum was provided by the manufacturer, and is shown
in Fig. 5.3(c). After smoothening and applying corrections to the measured spectrum,
based on measured data, a calibrated filter is established, whose transmission function
is noted T (λ). The intensity as a function of the distance is then obtained with a
summation of the reflectance R over the wavelengths λ, weighted by the transmission
function of the filter T , such that:

I(D) =
∫ ∞

0
dλ R(D, λ)T (λ). (5.4)

The resulting intensity is shown in Fig. 5.3(b).

99

https://refractiveindex.info/about


CHAPTER 5. MECHANICAL RESPONSE OF A HYDROGEL: FROM SMALL
DEFORMATIONS TO THE DEHYDRATION-INDUCED GLASS TRANSITION

(a) (b)

(c) (d)

FIG. 5.3. Modeled light intensity as a function of the distance between the
two glass surfaces. (a): Optical indices of glass and water, ng and nw respectively,
as functions of the light wavelength λ. (b): Reflectance R as a function of the distance
between the two glass interfaces D, for different wavelengths λ. (c): Normalized intensity
of the 595 nm channel of the LED light source, measured as a function of the wavelength
λ (yellow). Corrections based on measured data are applied to this measurement, which
establish a calibrated filter (orange). (d): Theoretical light intensity I as a function of
the distance D, as computed with Eq. (5.4).

5.1.3.3 Fitting of the intensity profiles to extract the distance to the probe

The spherical lens profile is modeled as a parabola, making the assumption that the
radius of the sphere R is large compared to the distance between the two glass surfaces
D(r = 0). Thus, the sphere profile can be written as:

D(r) = D(0) + r2

2R
. (5.5)

As a result, from a given experimental intensity profile, we can compute the light inten-
sity as a function of the distance to the sphere surface. A second code written by one of
my supervisors performs a fit of the intensity as a function of the distance D(r), based
on the model described in the previous section (see Fig. 5.3(d)), with the distance at the
center D(0) being a fit parameter. As such, the distance D(0) is extracted as a function
of time for a given approach of the spherical probe.

5.1.4 Experimental results

5.1.4.1 SFA data in approach mode towards a ultra-thin PNIPAM hydrogel

The series of images, an example of which is shown in Fig. 5.2, was made during an
approach towards an ultra-thin grafted PNIPAM hydrogel, of dry thickness τdry = 66 nm,
immersed in water (thus, of swollen thickness τ ≈ 4τdry). To preserve the cleanliness, the
dry thickness is measured by AFM after performing the SFA experiment, and is presented
in Appendix A.2. Similarly, the flatness of the sample can be checked a posteriori by
AFM. In Chap. 2, we showed that a threshold in thickness at about τ ≈ 70 nm determines
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(c)(a) (b) (d)

FIG. 5.4. Fits of two intensity profiles extracted from Newton’s rings images.
(a) and (b): Two Newton’s rings images obtained after division by the background im-
age, at two different times of an approach indicated in Fig. 5.5. The pink bar represents
100 µm. (c): Intensity profiles I(r) extracted from (a) and (b). The colored zone repre-
sents the range used for fitting. (d): Intensity I as a function of D(r), using Eq. (5.5),
and the respective fitted values of D(0) as indicated in the legend.

the onset of creasing instability. Thus, thinner samples are expected to be flat. On the
contrary, to enhance the effect of the hydrogel presence on the SFA results, we aim at
fabricating a hydrogel as thick as possible. Then, a hydrogel whose thickness is a little
below the threshold of τ ≈ 70 nm may show some elastic signature and is expected to
be flat, which is indeed the case in the experiment presented in this section.

From each image of a series constituting one approach, the intensity profile is ex-
tracted. In Figs. 5.4(a) and (b), we show two images of Newton’s rings, at two different
times, and their respective intensity profiles (see Fig. 5.4(c)). The distance D(0) is fitted
on each profile represented as a function of D(r) using Eq. (5.5) (see Fig. 5.4(d)), typ-
ically on a range r ∈ [100; 300] µm along the radial axis. Thus, in Fig. 5.5(a) we show
the fitted distance D as a function of time t. The two experimental points corresponding
to the images shown in Fig. 5.4 are marked on Fig. 5.5(a), using the same color code.
Three regimes can be observed, with increasing time. First, we observe a linear regime,
in which the hydrodynamic probe-gel interaction is weak. The constant Stokes drag,
applied on the spherical probe as it moves at a constant velocity V in a viscous liquid,
constitutes the dominant force. The linear regime can be fitted, and the slope provides a
measurement of the velocity of approach. In the data shown in Fig. 5.5(a), we measure
a velocity of V = 50.8 nm/s. Second, an intermediate regime starts where the experi-
mental curve shows a deviation from the linear fit, at about t ≈ 20 s. In this regime the
hydrodynamic probe-gel coupling is strong. The glass substrate on which the sample is
grafted constitutes a rigid boundary. The presence of both the sample and the substrate
influence the hydrodynamic motion of the spherical probe in the liquid. At a certain
point during the approach, the contact between the probe and the gel is reached, and
the probe indents the gel. Thus, the elastic response of the gel to indentation becomes
dominant, and influences the motion of the sphere. Third, in a final regime, starting at
about t ≈ 100 s, the distance between the two glass surfaces D reaches a plateau value,
at Dfinal = 0.156 µm. In this regime the gel is fully compressed and the spherical probe
does not indent the gel any further. The motor is turned off at tstop = 142.5 s when the
final regime is observed.

The two metal blades holding the spherical lens act as a spring, of equivalent stiffness
K. Thus, the compression of the equivalent spring corresponds to the resulting force,
up to the stiffness, and constitutes a relevant information to extract. From the distance
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(a) (b)
Fig. 5.4(a)

Fig. 5.4(a)

FIG. 5.5. Raw SFA data on a swollen PNIPAM hydrogel. (a): Distance between
the two glass surfaces D as a function of time t (blue cross symbols). A linear fit of the
initial regime provides a measurement of the approach velocity: V = 50.8 nm/s. When
no change is visible on the interference pattern, the motor is turned off (black cross
symbol). A few more images are recorded (gray cross symbols).(b): Spring compression
δ, as computed in Eq. 5.6 from the data of (a), as a function of the distance between the
two glass surfaces D. The black cross symbol is explained in (a).

D as a function of time t, the spring compression δ can be computed, as:

δ(t) = D(t) − (−V t + b) for t ≤ tstop, (5.6a)
δ(t) = D(t) − (−V tstop + b) for t ≥ tstop, (5.6b)

with V the velocity of approach, and b the y-intercept of the linear fit. In Eq. (5.6),
the difference between the distance D and the initial linear regime (−V t + b) defines the
compression. This definition does not take into account an initial offset in compression.
As the sphere is moving in a viscous liquid, the Stokes drag is initially present and results
in an offset of spring compression. We can compute an order of magnitude of the initial
spring compression, as:

δ(0) ∼ 6πηRV

K
∼ 10−5 nm, (5.7)

with the water viscosity η = 10−3 Pa.s, the radius of the sphere R = 20.3 mm, the spring
stiffness K = 1000 N/m, and the velocity V = 20 − 50 nm/s. As a result, the initial
spring compression is negligible compared to the sensitivity of the instrument (about
1 nm). Similarly, an order of magnitude of the Stokes drag can be computed, as:

FStokes = 6πηRV ∼ 10−2 nN. (5.8)

In summary, in the definition of δ given in Eq. (5.6), the Stokes drag is subtracted, and is
negligible compared to the sensitivity of the instrument and the others forces. A previous
work on confined ionic liquids studied in SFA comes to the same conclusions [267].

From the distance D as a function of time t, the spring compression δ is computed
as a function of time t. Combining δ(t) with the data of the distance D as a function
of time, we can get the spring compression as a function of the distance δ(D), which
corresponds to a force-distance curve (up to the stiffness). In Fig. 5.5(b) is shown the
spring compression δ, as computed in Eq. (5.6), as a function the distance between the
two glass surfaces D. The same three regimes as in Fig. 5.5(a) are observed. First,
at large distance D, the measured compression δ is zero, which corresponds to the
initial regime. In this regime, the hydrodynamic probe-gel coupling is weak. Thus, the
spherical probe moves at a constant velocity V in the viscous solvent, and the Stokes
drag applied on the spherical probe constitutes the dominant force. Second, at small
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(a) (b)

(d) (c)

FIG. 5.6. Influence of the dynamics on SFA data on a swollen PNIPAM hydro-
gel (a): Distance between the two glass surfaces D as a function of time t, for different
command velocities V indicated in legend (blue curves). The black cross symbols marks
the moment when the motor is turned off. The measurement is stopped a few tens of
seconds later (gray curves). (b): Distance between the two glass surfaces D as a func-
tion of the traveled distance imposed at the back of the spring V t, for different command
velocities V . The black cross symbols are explained in (a). The black rectangle indicates
a zoomed region. (c): Zoom of (b), as indicated by the gray rectangle on (b). (d): Spring
compression δ, as computed in Eq. (5.6) from the data of (a), as a function of the dis-
tance between the two glass surfaces D, for different command velocities V . The black
cross symbols are explained in (a).

distances D, the spring compression δ increases strongly with decreasing distances. In
this regime, the hydrodynamic probe-gel coupling is strong. The vicinity of the boundary
slows down the sphere velocity, as a result of an additional force applied on the latter.
Then, the spherical probe touches the gel and starts to indent it. Thus a transition
between a lubricated regime and a contact regime happens. Third, at the final distance
Dfinal ≈ 0.156 µm, the spring compression diverges until the motor is turned off, at about
δ(tstop) ≈ 6 µm. In this regime, the maximum compression of the gel is reached. After
the motor is turned off at tstop, the velocity of the back of the spring is 0. Thus, the
spring compression δ does not increase anymore and keeps its final value δ(tstop).

5.1.4.2 Influence of the dynamics

The experiment described above is repeated on a given sample for a range of command
voltages sent to the motor, which is typically in the range of U = 5 − 11 V (DC). The
resulting approach velocities range typically from 20 to 60 nm/s. In this section we
present SFA results performed on a similar ultra-thin PNIPAM hydrogel (dry thickness
τdry = 65 nm) than in the previous section, fabricated in the exact same experimental
conditions, investigated with six different command velocities. In Fig. 5.6(a) is shown
the distance D between the two glass surfaces as a function of time, for each command
velocity V . For an easier reading, offsets in time were introduced such that all curves
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start from the same point D(0) ≈ 1.35 µm. The experimental data points are connected
with full lines to avoid confusion. As expected, the six experimental curves exhibit
different velocities, in the initial, linear regime. The final distances Dfinal are similar
among the six curves, with four over six in the interval Dfinal ∈ [0.230; 0.238] µm, the
last two being Dfinal = 0.245 µm and Dfinal = 0.263 µm. To make the initial regimes
merge among the six experimental curves, we plot instead in Fig. 5.6(b) the distance
D between the two glass surfaces as a function of the time multiplied by each velocity
V t, which corresponds to the distance traveled by the back of the spring. We observe
at first sight that the six curves collapse in such a representation. However, the travel
distance imposed to the back of the spring V tstop at the time tstop, at which the motor is
stopped because no further evolution of the Newton’s fringes is seen, seems to increase
with the velocity. Furthermore, by taking a zoom as shown in Fig. 5.6(c), we observe
a slight dependence of the distance D as a function of the travel distance V t imposed
to the back of the spring on the command velocity V . Finally, in Fig. 5.6(d) we show
the spring compression δ, as computed from Eq. (5.6), as a function of the distance D
between the two glass surfaces. Here, the dependency on the command velocity V is
clearly observed.

5.1.4.3 Discussion

A purely elastic, conservative system would show always the same response in terms
of force-distance curves. In the results presented here, a velocity-dependent response
testifies of dissipative effects in the system. Several possible causes of dissipation can be
identified.

Stokes drag: First, as the spherical probe of radius R moves in a viscous liquid
of dynamic viscosity η, at a constant velocity V , viscous dissipation happens at the
interface between the sphere and the fluid. In the initial, linear-in-time regime, the
resulting Stokes drag FStokes = −6πηRV is constant and is not taken into account in
the force measurement presented in Fig. 5.6, up to the stiffness factor. However, in the
intermediate regime, one should consider a correction to the classical Stokes drag, taking
into account the vicinity of a boundary [67, 211]. In the case of a rigid boundary, the
corrected form of the Stokes drag is expressed as follows:

FStokes,confined = −6πη
R2

D

dD

dt
. (5.9)

In the present experiment, several confinement effects on viscous dissipation could be
relevant: (i) when the spherical probe enters in the zone of the immediate vicinity of
the gel surface, (ii) as long as the velocity of the sphere in the liquid is large, (iii) while
there is a lubrication fluid layer in between the sphere and the gel surface, which is true
until the spherical probe touches the gel surface.

Hydrogel porosity: Second, the porous matrix of the PNIPAM gel typically swells
four times in thickness when immersed in water. As a result, the swollen hydrogel
is composed of about 75 % of water in volume. The pore size is estimated at lp ≈
10 nm [243], and we make the hypothesis that the permeability scales with the pore size
to the square: k ∼ l2p. When a viscous fluid of dynamic viscosity η is forced to flow
inside a porous network, dissipation occurs at the interfaces between the fluid and the
polymer chains. The latter effect is modeled from a coarse view by Darcy’s law, which
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links the applied pressure field P to the resulting fluid velocity v, as:

v = −k

η
∇P. (5.10)

Thus, based on Darcy’s law, a higher pressure difference is applied inside the pores by
imposing a higher fluid velocity on a same length scale. Dissipation occurs inside the
porous matrix. Finally, dissipation in the hydrogel would occur either with a lubrication
fluid layer in between its surface and the spherical probe, either with the spherical probe
being in contact with the hydrogel surface.

At this point, a better understanding of the SFA data is desired. A first hint would be
to identify the contact point, and thus make the difference between the lubricated regime
and the contact regime. Then, the discussion around possible sources of dissipation can
be adapted depending on the boundary condition at the gel surface. In the next part of
this Chapter we present modeling efforts, whose results provide a more precise estimation
of the contact point. Different regimes are highlighted, and the experimental results are
described separately before and after the contact point.

5.2 Theoretical modeling
In this section we present different models that are used to describe the experimental
SFA data. Numerical simulations and non-linear fitting methods are used in complement
to rationalize the data. The first question to answer, at least by making an estimation,
is the resolution of the contact point, that marks the transition between two different
physical situations. Before the spherical probe touches the surface of the gel, we consider
a lubrication problem, coupled with the (poro)elasticity of the gel. After the contact is
made, we consider a contact-mechanics problem. We start with the contact-mechanics
problem, that enables to estimate the contact point. Then, we continue with the lubri-
cation problem.

5.2.1 Contact regime: Hertz theory

5.2.1.1 Theory

A schematic of the situation is presented in Fig. 5.7. We consider that a sphere of radius
R indents over a depth bind, a semi-infinite elastic medium, of Young’s modulus E and
Poisson ratio ν. The resulting force F exerted by the sphere on the semi-infinite elastic
medium is derived from the Hertz contact theory [216], and reads:

F = 4
3E∗√

Rb
3/2
ind with E∗ = E

1 − ν2 . (5.11)

In the case of the SFA experiments presented here, the spring deflection is considered
instead of the force. Both are linked by a factor, which is the stiffness K. The spring
deflection reads:

δ = F

K
= 4

3
E

K(1 − ν2)
√

Rb
3/2
ind . (5.12)

Hertz theory intervenes when the sphere touches and indents the gel. Thus, in the Hertz
regime, the distance D between the two glass surfaces is smaller than the undeformed
thickness τ . The indentation bind is then defined by computing the difference between
the thickness and the distance to the glass substrate, as:

bind(t) = τ − D(t) for D ≤ τ. (5.13)
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Elastic substrate

Hard sphere
(a) (b)

(c)

FIG. 5.7. Hertz contact model for a sphere indenting an elastic material. (a):
An infinitely rigid sphere of radius R indents over a depth bind an elastic and compressible
material, of Young’s modulus E and Poisson ratio ν. The typical area of contact is given
by 2Rbind. (b): Spring compression δ as a function of indentation bind = τ − D, and
fit with Hertz theory (dashed line). The thickness is estimated at τ ≈ 306 nm. The fit
is obtained within an error given by χ2 = 0.15, which is represented by the green zone.
(c): Distance D as a function of time t. The point MHertz is defined by the coordinates
(tHertz, τ) and marks the transition between the lubrication and the contact regimes.

5.2.1.2 Non-linear fitting method

We perform a fit of the experimental spring compression δ with the Hertz model, based
on the logarithm of Eq. (5.12), as:

log [δ(t) − δHertz] = log
[4

3
E

K(1 − ν2)
√

R

]
+ 3

2 log [τ − D(t)] . (5.14)

with the thickness τ and the prefactor containing the reduced Young’s modulus E∗

being fit parameters (the thickness is taken in a given range of physically-possible values,
τ ∈ [200, 350] nm). The thickness τ defines a time tHertz, and an offset in compression,
as:

D(tHertz) = τ, (5.15a)
δHertz = δ(tHertz). (5.15b)

In Eqs. (5.15), tHertz corresponds to the time at which contact would be made if the gel
was an infinitely rigid solid. δHertz corresponds to the actual compression at that precise
time, and gathers other lubrication forces from previous regimes. The couple (tHertz, τ)
defines the point MHertz. The fit is performed using a least-square method on Eq. (5.14),
with the slope 3/2 being fixed.

5.2.1.3 Numerical computation of the distance as a function of time

The fit of the experimental data to the Hertz model is performed on the compression-
distance representation. The fit results in an offset which is the thickness τ , and a
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prefactor including the Young’s modulus E. One can switch back to the distance-time
representation using Eq. (5.6), as:

D(t) = δ(t) + (−V t + b) (5.16a)

=
[4

3
E

K(1 − ν2)
√

R

]
× [τ − D(t)]3/2 + δHertz + (−V t + b) , (5.16b)

using Eq. (5.14). Equation (5.16) thus represents an equation on D, that is solved
numerically, for a range of time t ≥ tHertz.

5.2.1.4 Results

Physical parameters: In Fig. 5.7(b) is shown a fit with Hertz theory on typical
experimental approach data in SFA. The swollen thickness is estimated at τ ≈ 0.306 µm,
which is slightly greater than expected but still reasonable. We also obtain a time
tHertz = 21 s and an offset in compression δHertz ≈ 0.091 µm. Finally, assuming a spring
stiffness of K = 1000 N/m and taking for the sphere radius the value that was adjusted
when fitting the intensity profiles (see Sec. 5.1.3.3), R = 20.27 mm, we obtain a prefactor
giving a reduced Young’s modulus of E∗ ≈ 267 ± 23 MPa, which is characteristic for a
glassy polymer but surprising for a hydrated hydrogel. This somewhat surprising result
will be discussed further, in Sec. 5.3.4.

In Fig. 5.7(c) we show the same data, on the distance-time representation. The
theoretical curve corresponding to the Hertz model is computed numerically, solving
Eq. (5.16). A characteristic point MHertz is defined by its coordinates (tHertz; D(tHertz)).
This point is placed near the main inflection point of the experimental curve, and marks
where the Hertz theory starts to match the experimental data. Then, we observe that
both the intermediate and final regimes we identified in Sec. 5.1.4.1 correspond to the
contact regime. In the following, we will refer to early- and late-time regimes, using the
point MHertz as the delimiter.

Late-time regime and finite-size effects: The present result shows that a sig-
nificant part of the late-time regime is well-described by the Hertz contact theory, even
while a deviation at final time is observed. Indeed, the spring compression as a func-
tion of the indentation, as represented in Fig. 5.7(b) grows in a power law with a 3/2
exponent, for indentations such that bind ≤ 0.1 µm, which corresponds to 20% of the
thickness τ [268]. For deeper indentations, i.e. bind ≥ 0.1 µm , the spring compression
grows in a power law with a higher exponent (up to 3), until the motor is stopped. This
deviation from the Hertz theory attests of the finite-thickness aspect of the sample, and
results in an apparent strain-hardening behavior. As a short-term perspective, a contact
model taking into account the finite thickness of the sample could be developed, and
especially the scaling of the spring compression as a function of the indentation would
constitute the most relevant information.

Lubrication layer and estimation of the contact point: On the one hand, for
very small indentations bind(t), as the gel is immersed in water, a lubrication layer can
still be present between the deformed surface of the gel and the spherical probe. Thus,
even for positive indentation values, the contact point would not be reached yet. The first
few data points on Fig. 5.7(b) represent this situation, where the Hertz scaling already
catches the data while there is still a thin lubrication layer. This window represents
the transition between the lubrication problem and the contact problem. In summary,
the contact may be realized later than tHertz, but the, Hertz theory already catches
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the data for a remaining, thin lubrication layer. On the other hand, the estimation
of the thickness relies on the fit with the Hertz model. To be precise, the offset in
distance D is interpreted as the swollen thickness. However, the latter statement might
be exaggerated: for sure the offset in distance D is the distance from which the Hertz
model catches the experimental data. The Hertz theory assumes that the probe and the
gel are in contact, yet the presence of the fluid, that forms a lubrication layer, differs the
moment where the contact is reached. The surface of the gel may be already strongly
deformed at the time tHertz. Thus, the thickness τ would be underestimated.

In summary, the interpretation of the offset in distance D between the two glass
surfaces, which would be at first glance the thickness τ , is uncertain. This is due to
the transition between a lubrication problem and a contact problem. The validity of
Hertz model may be differed by the presence of the lubricated layer. In the following,
we investigate the early-time regime, in which a lubricated spherical probe approaches
a soft hydrogel.

5.2.2 Lubrication regime at small deformations

5.2.2.1 Time scales of poroelasticity

The hydrogel can be modeled as a poroelastic layer of thickness τ . As described in
Chapter 3, an important characteristics of poroelasticity is the time dependence. The
poroelastic response shows a continuous transition from a purely elastic and incompress-
ible behavior to a purely elastic and compressible one with time. The propensity of a
poroelastic material to exhibit a more-or-less (in)compressible response is determined
by the probed experimental time scale. For a hydrogel, of shear modulus G and perme-
ability k, immersed in a solvent of viscosity η, we can first estimate the typical time the
solvent takes to diffuse across the layer, as:

tcross,τ = τ2

Dpe
= 1 − 2ν

2(1 − ν)
ητ2

Gk
, (5.17)

with Dpe the effective diffusion coefficient as defined in Eq. (3.9) and ν the effective
Poisson ratio of the hydrogel. For a PNIPAM hydrogel immersed in water, we use the
same physical parameters than in Sec. 4.2.4.4: the water viscosity η = 10−3 Pa.s, the
shear modulus G ≈ 5 kPa, the effective permeability k ∼ l2p based on the pore size
lp ≈ 10 nm, the Poisson ratio ν = 0.2. The effective diffusion coefficient is computed,
as Dpe ≈ 1300 µm2/s, using Eq. (3.9). The thickness was estimated to be τ ≈ 306 nm
in the previous section (see 5.2.1). We thus calculate a diffusion time tcross,τ ≈ 0.07 ms.
This characteristic time can be compared to the typical time scale imposed by the SFA
experiment. In the early-time, lubricated regime, the spherical probe is moving in the
liquid at a velocity V = 20−60 nm/s. Thus, to travel a distance of the same order as the
gel thickness, the probe takes a typical time tprobe,τ = 5 − 15 s. In the late-time regime,
where the lubrication condition becomes unsatisfied, the spherical probe is moving at a
velocity Ḋ ≈ 1 nm/s (see Appendix A.7), thus imposing a time scale even longer. To
summarize, the intrinsic diffusive time scale of the hydrogel is smaller than the external
one imposed by the experiment, by several orders of magnitude: tcross,τ ≪ tprobe,τ . Thus,
the solvent has time to diffuse across the thickness of the hydrogel. We then consider
the poroelastic response of the gel being in the late-time limit, which is equivalent to a
purely elastic and compressible behavior.

The same reasoning can be applied on radial length instead of vertical length, at the
limit of validity of the lubrication hypothesis, near the point MHertz. The typical time a
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molecule of solvent needs to travel a distance equal to the hydrodynamic radius can be
estimated as:

tcross,
√

2Rh = 2Rh

Dpe
, (5.18)

with h the fluid-gap thickness. Near MHertz, we can reasonably suppose the fluid thick-
ness to be less or on the order of h ≲ 10 nm. Thus, taking the upper bound, we compute
a time scale tcross,

√
2Rh ≈ 1.2 s. This characteristic time can be compared to the typical

time scale imposed by the experiment, which close to MHertz reads:

tprobe,
√

2Rh =
√

2Rh

Ḋ
. (5.19)

The front velocity of the sphere is on the order of Ḋ ≈ 1 nm/s. Thus, we compute a
time scale tprobe,

√
2Rh ≈ 2.104 s. In summary, again, the intrinsic diffusive time scale of

the hydrogel is smaller than the external one imposed by the experiment: tcross,
√

2Rh ≪
tprobe,

√
2Rh. We then treat the hydrogel as a purely elastic and compressible material.

5.2.2.2 Modelisation of the SFA experiment

A schematic of the situation is presented in Fig. 5.8. The system is axisymmetric and
a (r, z) frame is chosen. We consider that a hard sphere of radius R is held by a spring
of stiffness K. The back of the spring is driven downwards at a constant velocity V ,
which generates a compression noted δ. Thus, the sphere is approached towards an
elastic layer of thickness τ , which is supported by a hard boundary. The shear modulus
and Poisson ratio of the elastic material are noted G and ν, respectively. The whole
system is immersed in a viscous fluid of viscosity η. The sphere motion generates a non-
homogeneous, time-dependent pressure field in the liquid, noted P (r, t). The pressure is
increased by confinement in the central region, which deforms the surface of the elastic
coating. We note w(r, t) the deformation profile of the elastic layer, and h(r, t) the fluid
height between the hard sphere and the deformed surface. Finally, we note D(t) the
distance between the hard wall and the center of the hard sphere, which corresponds to
the distance between the two glass surfaces measured in SFA experiments.

Full model: Similarly to the situation described in Chapter 4, we suppose that the
distance H between the sphere and the undeformed surface of the gel is small with respect
to the sphere radius R. Thus, we can again invoke the lubrication approximation [32].
We still suppose that the fluid-gap thickness H is small compared to the hydrodynamic
radius

√
2RH. Thus, the sphere profile is approximated by a parabola in the lubricated

region, and the liquid-film thickness profile is given by:

h(r, t) ≃ H − V t + w(r, t) + δ(t) + r2

2R
. (5.20)

The Reynolds number ρHV/η is assumed to be small compared to unity, so that the
flow is laminar. Furthermore, we suppose that the typical viscous penetration depth is
large compared to the liquid-gap thickness:

√
η/(ρω) ≫ h. We assume no-slip boundary

conditions at both the sphere and gel surfaces. As detailed in Chapter 4, by invoking
flux conservation, the liquid-film thickness profile follows the axisymmetric thin-film
equation [64]:

∂h

∂t
= 1

12ηr

∂

∂r

[
rh3 ∂p

∂r

]
, (5.21)
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FIG. 5.8. Modelisation of SFA in the lubrication regime. A hard sphere of radius
R is held by a spring, which is driven downwards by a command velocity V applied at
its back. From a reference distance H, the sphere is brought close to a purely elastic and
compressible layer of thickness τ , shear modulus G and Poisson ratio ν. The system is
immersed in a fluid of viscosity η. The sphere motion generates a pressure field p(r, t)
in the fluid phase, which in turn generates a surface deformation of the elastic layer
w(r, t) and a compression of the spring δ(t). The resulting fluid gap is noted h(r, t).
The distance D(t) drawn in black indicates what experimental distance is measured in
practice.

where p is the excess pressure field in the liquid with respect to the atmospheric pressure.
The force exerted by the fluid on the sphere is obtained by integrating the pressure field
over the surface of the sphere, as:

Fp(t) =
∫ ∞

0
dr

∫ 2π

0
dθ rp(r, t) = 2π

∫ ∞

0
dr rp(r, t). (5.22)

The pressure force Fp is balanced by the elastic force exerted by the spring on the sphere,
which is given by Hooke’s law, as:

Fδ = Kδ(t), (5.23)

with δ being counted as positive in compression. Thus, the force balance of Eqs. (5.22)
and (5.23) leads to:

δ(t) = 2π

K

∫ ∞

0
dr rp(r, t). (5.24)

Similarly to the contactless rheology situation developed in Chapter 4, in the lubrication
approximation, the ratio between the shear stress and the normal stress σrz/σzz is of
order

√
H/2R, thus the viscous shear stresses are negligible compared to the pressure

in the fluid. Therefore, at the gel interface the force balance takes the same form as in
Chapter 3:

σzz = −p. (5.25)

The surface deformation profile can be computed in the general case, as:

w(r, t) =
∫
R2

d2r′ Gcomp
τ (|r − r′|) p(r′, t), (5.26)

where Gcomp
τ is the Green’s function of the problem, which is the surface deformation

induced by a point force F0δ(r). Since the timescales imposed by the experiment are
large compared to the appropriate diffusion times, as noted in the previous section, we
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use the finite-thickness, purely elastic and compressible Green’s function, that is derived
in Appendix D.4 and in [212] in Hankel space. It is given by Eq. (D.48), as:

Ĝcomp
τ (s) = 1 − ν

Gs

2ζ − (4ν − 3) sinh(2ζ)
5 + 4ν(2ν − 3) + 2ζ2 − (4ν − 3) cosh(2ζ) , (5.27)

where the auxiliary function ζ is given by Eq. (3.33f), i.e.:

ζ = sτ. (5.28)

The inverse transform is defined by Eq. (3.21), as:

Gcomp
τ (r) =

∫ ∞

0
ds Ĝcomp

τ (s)sJ0(sr). (5.29)

Using the properties of the convolution product, the surface deformation profile can be
expressed in Hankel space, as:

ŵ(s, t) = Gcomp
τ (s)p̂(s, t) (5.30a)

= p̂(s, t)(1 − ν)
Gs

2ζ − (4ν − 3) sinh(2ζ)
5 + 4ν(2ν − 3) + 2ζ2 − (4ν − 3) cosh(2ζ) , (5.30b)

with the forward and backward Hankel transforms of the pressure field and deformation
profile, respectively defined as:

p̂(s, t) =
∫ ∞

0
dr p(r, t)rJ0(sr) and w(r, t) =

∫ ∞

0
ds ŵ(s, t)sJ0(sr). (5.31)

The four Eqs. (5.20), (5.21), (5.24) and (5.30b), together with Eqs. (5.28) and (5.31),
form a close system of coupled partial differential equations, with four unknowns being
the pressure field p, the fluid gap h, the deformation profile w and the spring compres-
sion δ.

Boundary conditions: The problem is axisymmetric, so that the gradients of the
different fields must vanish at the center:

∂h

∂r
(r = 0, t) = 0, (5.32a)

∂p

∂r
(r = 0, t) = 0, (5.32b)

∂w

∂r
(r = 0, t) = 0. (5.32c)

In the r → ∞ limit, the pressure field reaches the atmospheric pressure value. Thus
the excess pressure p vanishes, and so does the deformation, i.e.:

lim
r→∞

p(r, t) = 0, (5.33a)

lim
r→∞

w(r, t) = 0. (5.33b)

Initial condition: Even if the problem is considered for positive times t ≥ 0, we
consider that the driving of the back of the spring at a velocity V has already started
at t = 0. Thus, the initial condition reads:

h(r, t = 0) = H + w(r, 0) + δ(0) + r2. (5.34)
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Non-dimensionalization: From Eq. (5.21), the hydrodynamic radius
√

2RH sets
a typical horizontal length scale. Besides, H sets a typical vertical length scale. Ad-
ditionally, a typical time scale is defined by H/V . Thus, we introduce the following
dimensionless variables:

r̃ = r√
2RH

, h̃ = h

H
, δ̃ = δ

H
, w̃ = w

H
and t̃ = tV

H
. (5.35)

The geometrical Eq. (5.20) becomes:

h̃(r̃, t̃) ≃ 1 − t̃ + w̃(r̃, t̃) + δ̃(t̃) + r̃2. (5.36)

Besides, injecting these new variables in the thin-film Eq. (5.21), we find a natural
pressure scale and define the dimensionless pressure, which reads:

p̃ = H2p

2ηRV
, (5.37)

and the thin-film Eq. (5.21) becomes:

∂h̃

∂t̃
= 1

12r̃

∂

∂r̃

[
r̃h̃3 ∂p̃

∂r̃

]
. (5.38)

The force balance Eq. (5.24) is written under a dimensionless form, as:

δ̃(t) = κ0

∫ ∞

0
dr̃ r̃p̃(r̃, t̃), (5.39)

with κ0 a dimensionless parameter that represents the ratio between viscous stresses and
spring elasticity, defined as:

κ0 = 8π
ηR2V

KH2 . (5.40)

Finally, the Hankel transform defined in Eq. (5.31) imposes the following dimensionless
variables:

s̃ = s
√

2RH, ˜̂w(s̃) = ŵ(s)
2RH2 , ˜̂p(s̃) = p̂(s)H

4ηR2V
. (5.41)

From Eq. (5.30b), the dimensionless deformation profile in Hankel space is given by:

˜̂w(s̃, t̃) = ϵ0
˜̂p(s̃, t̃)(1 − ν)

s̃

2ζ − (4ν − 3) sinh(2ζ)
5 + 4ν(2ν − 3) + 2ζ2 − (4ν − 3) cosh(2ζ) , (5.42)

with the auxiliary function ζ expressed as:

ζ = sτ = s̃
τ√

2RH
= s̃τ0. (5.43)

The dimensionless parameters τ0 and ϵ0 represent respectively the thickness normalized
by the hydrodynamic radius, and the ratio between viscous stresses and the gel elasticity,
defined as:

τ0 = τ√
2RH

, (5.44a)

ϵ0 = ηV

GH

(2R

H

)3/2
. (5.44b)

The definition of the dimensionless parameter ϵ0 must be compared to the one of the
distance Hc in Chapter 4, Eq. (4.19). Both parameters compare the viscous stresses to
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the gel elasticity, the link between both being made when taking the particular value
ϵ0 = 1/4 and setting H = Hc. In the present Chapter, the value of ϵ0 will be adjusted
when running numerical simulations.

In the following paragraphs, to lighten the notation, we omit the tilde symbol (̃) on
dimensionless quantities. We first present a resolution of the problem in simpler cases,
before presenting the numerical results obtained by performing a numerical resolution
of the full model.

5.2.2.3 Theoretical resolution for simpler cases

“Rigid-rigid” case: A way to tackle the complex model explained in the previous
paragraph is to incorporate each element one by one in the considered problem. A
first, trivial case may be considered in the absence of any spring and substrate. Thus,
the problem reduces to a rigid sphere approaching a rigid wall, and only Eqs. (5.36)
and (5.38) are considered, as:

hrigid(r, t) = 1 − t + r2, (5.45a)
∂hrigid

∂t
= 1

12r

∂

∂r

[
rh3

rigid
∂prigid

∂r

]
. (5.45b)

Combining the two equations, we get a unique equation over the dimensionless pressure
field p, which is:

−1 = 1
12r

∂

∂r

[
r
(
1 − t + r2

)3 ∂prigid
∂r

]
. (5.46)

The latter equation is solved by integrating a first time over the radial coordinate r
between 0 and r, then a second time over r between +∞ and r. The pressure field
reads:

prigid(r, t) = 3
2 (1 − t + r2)2 . (5.47)

The force resulting on the sphere is computed by integrating the pressure field over the
surface of the sphere, and reads:

Frigid(t) = 3π

2(1 − t) . (5.48)

The theoretical force and pressure field in the rigid case are shown in Fig. 5.9. The force
shows a divergence for t = 1, and the pressure field shows one for r = 0 and t = 1. This
divergence is expected: in the rigid case, at t = 1, the lowest point of the sphere touches
the rigid wall, chasing all the lubrication fluid in between.

“Spring only” case: In the present paragraph, we still neglect the presence of the
substrate, but we consider the presence of the spring holding the rigid sphere. Thus, the
problem is modeled from Eqs. (5.36), (5.38) and (5.39), as:

hspring(r, t) = 1 − t + δ(t) + r2, (5.49a)
∂hspring

∂t
= 1

12r

∂

∂r

[
rh3

spring
∂pspring

∂r

]
, (5.49b)

δ(t) = κ0

∫ ∞

0
dr rpspring(r, t). (5.49c)

We note that the spring compression δ(t) does not depend on the radial coordinate r.
Thus, from Eqs. (5.49a) and (5.49b), the same calculation path as for the rigid-rigid case
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(a) (b)

FIG. 5.9. Theoretical force and pressure field in the rigid case.(a): Dimensionless
theoretical force Frigid as a function of dimensionless time t, computed from Eq. (5.48).
The green dashed lines indicate the times t at which the pressure is plotted in (b). (b):
Dimensionless theoretical pressure field prigid(r, t), computed from Eq. (5.47), for different
dimensionless times t, signaled in (a) by green dashed lines.

is used to compute the pressure field, which reads:

pspring(r, t) = 3(1 − δ̇)
2 (1 − t + r2 + δ)2 , (5.50)

with δ̇ being the time derivative of the spring compression δ. By injecting the pressure
field into Eq. (5.49c), we get the following non-linear differential equation over the spring
compression δ:

δ (1 − t + δ) = 3κ0
4
(
1 − δ̇

)
. (5.51)

We note y the fluid height at the center, and yrigid the fluid height without spring
compression, as:

y = 1 − t + δ = hspring(r = 0, t) and yrigid = 1 − t. (5.52)

By considering y as a function of yrigid, denoting y′ its derivative with respect to yrigid,
we thus have y′ = −ẏ, with ẏ the derivative with respect to the time t. Eq. (5.51)
becomes an equation over y(yrigid), associated to the initial condition, as:

y × [y − yrigid] = 3κ0
4 y′(yrigid), (5.53a)

y(yrigid = 1) = 1 − δ(0). (5.53b)

Using a formal calculation software, like Mathematica, an explicit solution is found and
reads:

y(yrigid) = [1 − δ(0)] e
−

2y2
rigid

3κ0

e
− 2

3κ0 +
√

2π
3κ0

[1 − δ(0)] ∆Erf(t)
, (5.54a)

with ∆Erf(yrigid) =
[
Erf

(√
2

3κ0

)
− Erf

(√
2

3κ0
yrigid

)]
, (5.54b)

with Erf the Gauss error function. By performing the inverse change of variable, the
fluid gap hspring as a function of time is derived. Then the spring compression δ(t) reads:
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FIG. 5.10. Theoretical force when only a spring is considered.Dimensionless
theoretical force Fspring as a function of dimensionless time t, computed from Eq. (5.57),
for different values of the ratio between viscous stresses and spring elasticity κ0, as
indicated in the legend, and for δ(0) = 0.

δ(t) = [1 − δ(0)] e
− 2(1−t)2

3κ0

e
− 2

3κ0 +
√

2π
3κ0

[1 − δ(0)] ∆Erf(t)
− 1 + t, (5.55a)

with ∆Erf(t) =
[
Erf

(√
2

3κ0

)
− Erf

(√
2

3κ0
(1 − t)

)]
, (5.55b)

and the pressure pspring using Eq. (5.50), is found to be:

pspring(r, t) = 4 [1 − δ(0)] e
2

3κ0

κ0

×
(t−1)e

2(t2−2t)
3κ0 +[1−δ(0)]+(t−1)[1−δ(0)]

√
2

3κ0
e

2(t−1)2
3κ0

[1−δ(0)]+r2e
2(t2−2t)

3κ0
[

1+
√

2π
3κ0

[1−δ(0)]e
2

3κ0 ∆Erf(t)
] .

(5.56)

Finally, the force is computed as a function of time by integrating the pressure field
over the surface of the sphere, with Eq. (5.22). The calculation is performed with
Mathematica. Finally, the force reads:

Fspring(t) = 2π

κ0

t − 1 + [1 − δ(0)] e
2(2t−t2)

3κ0 +
√

2π
3κ0

[1 − δ(0)] e
2

3κ0 (t − 1)∆Erf(t)

1 + 2π
3κ0

[1 − δ(0)] e
2

3κ0 ∆Erf(t)
, (5.57)

with the expression of ∆Erf(t) being specified by Eq. (5.55b). The theoretical force
Fspring is shown in Fig. 5.10, for different values of the parameter κ0. We observe that
the greater κ0 is (i.e. the softer the spring is), the longer the force takes to reach the
final, linear regime in time. This final regime corresponds to the case where the fluid gap
is thin, and fluid hardly flows in the confined region. Thus, the displacement imposed
at the back of the spring compresses the spring.

5.2.2.4 Numerical resolution of the full EHD model

In this section we consider the full model. To solve numerically the problem, a specific
half-implicit half-explicit numerical scheme based on an integration kernel was developed
in collaboration with Laurent Duchemin.
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FIG. 5.11. Convergence of the kernel integral in SFA simulations. Truncated in-
tegral IK(r, r′, Smax) of the product sGcomp

τ J0(sr)J0(sr′) as a function of Smax, as defined
in Eq. (5.60), for different r′, for r = 1, ν = 0.2 and τ0 = 1. For r = r′, the integral
diverges following a logarithmic scaling.

Definition of the kernel: We first define an integration kernel noted Kτ0,ν(r, r′) to
express the deformation profile in a convenient way for numerics:

Kτ0,ν(r, r′) =
∫ ∞

0
ds ds Gcomp

τ (s)sJ0(sr)J0(sr′) (5.58a)

=
∫ ∞

0
ds J0(sr)J0(sr′) (1 − ν) [2ζ − (4ν − 3) sinh(2ζ)]

5 + 4ν(2ν − 3) + 2ζ2 − (4ν − 3) cosh(2ζ) . (5.58b)

The deformation profile is then computed from the pressure field, using the kernel
Kτ0,ν(r, r′), as:

w(r, t) = ϵ0

∫ ∞

0
dr′ r′p(r′, t)Kτ0,ν(r, r′). (5.59)

The geometrical equation (5.36), the thin-film equation (5.38) and the force-balance
equation (5.39) are kept identical.

The convergence of the kernel integral defined in Eq. (5.58) may be questioned. We
first define the truncated integral, as:

IK(r, r′, Smax) =
∫ Smax

0
ds ds Gcomp

τ (s)sJ0(sr)J0(sr′). (5.60)

The kernel Kτ0,ν(r, r′) is recovered by taking the limit Smax → ∞. In Fig. 5.11 we show
the truncated integral IK(r, r′, Smax) defined in Eq. (5.60), as a function of Smax, for
different values of r′ and a fixed r = 1, with ν = 0.2 and τ0 = 1. We observe that the
integral converges for r ̸= r′, and does not converge for r = r′. As a consequence, the
kernel Kτ0,ν(r, r′) given in Eq. (5.58) defines a distribution that exhibits a singularity
for r = r′, and takes a finite (if not zero) value for r ̸= r′. Similarly to a Dirac
distribution, the kernel distribution is finite almost everywhere. Thus, the product of
r′p(r′, t)Kτ0,ν(r, r′) is integrable, and the deformation profile as written in Eq. (5.59) is
still properly defined. Yet, numerical difficulties are encountered, and some fine tuning of
various numerical parameters is necessary. In the following paragraphs, we first present
a numerical study of the kernel integral as defined in Eq. (5.58). Then we present the
full numerical scheme used to simulate a SFA approach.

Optimization of numerical parameters: The time axis t is discretized linearly
on Nt points with a time step ∆t. We denote the n-th point tn = n∆t, and the upper
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boundary is given by Tmax = (Nt − 1)∆t. The radial axis r is discretized linearly on
Nr points with a space step ∆r. We denote the i-th point by ri = i∆r, and the upper
boundary is given by Rmax = (Nr − 1)∆r. The Hankel axis s is discretized on Ns points
being the zeros of the Legendre polynomial of degree Ns, up to the upper boundary
noted Smax. For each couple (ri, r′

j), the kernel Kτ0,ν(ri, r′
j) is computed using the Gauss-

Legendre quadrature method (described in Appendix. C.2.2), and takes the form of a
square matrix of size Nr×Nr, that is denoted Kτ0,ν,ij . Equation (5.59) is discretized using
a Riemann summation to compute numerically the deformation profile. The pressure
field and the deformation profile, expressed at a radial point ri and a time point tn are
denoted respectively pn

i and wn
i . The discretized deformation profile is expressed as:

wn
i = ϵ0∆r

Nr−1∑
j=0

rjpn
j Kτ0,ν,ij . (5.61)

The method to optimize the problem is described as follows. We consider the set
of four numerical parameters Rmax, Nr, Smax, Ns. We use the explicit form of the
pressure field in the rigid case given in Eq. (5.47) as a basis, to compute the deformation
profile that would be generated by this pressure field. The numerical calculation of the
deformation profile is performed on one side with Python (noted as wpy) using the set of
four numerical parameters, and on the other side with Mathematica (noted as wmath),
which is believed to be more precise [269–271]. Results of both methods are compared
by computing a numerical error, defined as:

Err(tn) = 1
Nr

Nr−1∑
i=0

[
wn

i,py − wn
i,math

]2
. (5.62)

The choice of the four parameters Rmax, Nr, Smax, Ns then results from a trade-off
between guaranteeing a low numerical error and maintaining a reasonable computation
time. In Fig. 5.12(a), we show an example of the deformation profile calculated for a
given set of numerical parameters with Python and Mathematica. We observe agreement
between both, with the choice of parameters indicated on the figure. The associated
numerical error as defined by Eq. (5.62) is shown in Fig. 5.12(b), for different Smax, and
Ns = Smax. In this case, we find two minima, which define potentially interesting sets of
numerical parameters. The study was ran systematically, varying the four parameters
Rmax, Nr, Smax, Ns. Two sets were identified: Rmax = 5, Nr = 1000, Smax = 200,
Ns = 100 and Rmax = 10, Nr = 2000, Smax = 200, Ns = 200. The robustness of
calculation with these two choices was tested by changing also the time t. Indeed, as
time increases, the sphere gets closer to the rigid boundary and the resulting pressure
field gets closer to its divergence point. In Fig. 5.12(c-e), the deformation profile and
the associated error are shown for the two choices of numerical parameters, for three
different times t. The error increases with the time t, but the calculation is robust as
the match between Mathematica and Python results stays excellent.

In the following, simulations were performed using: Rmax = 5, Nr = 1000, Smax =
200, Ns = 100, with a computation time of the kernel integral tcomp ≈ 0.1 s. The kernel
matrix Kτ0,ν is computed once for all at the beginning of a set of simulations.

One must note the paradoxical aspect of computing a deformation profile from the
pressure field prigid that is specific to a rigid sphere approaching a rigid wall, thus ne-
glecting the substrate deformation. Here, the pressure field p generated by a sphere
approached close to a soft coating, with a EHD coupling given by the spring holding the
sphere, is seen as a perturbation of the reference pressure field prigid in the rigid case.
Thus, the scaling of the pressure field p, with an EHD coupling and a soft wall, with
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(a) (b)

(c) (d)

(e) (f)

FIG. 5.12. Optimization of numerical parameters. (a): Dimensionless deforma-
tion profile generated by the dimensionless pressure field in the rigid case prigid from
Eq. (5.59), computed with Mathematica (blue) and Python (pink), for a time t = 0.7,
and using an example set of numerical parameters indicated on the legends, for a di-
mensionless thickness τ0 = 0.005 and a Poisson ratio ν = 0.25. (b): Numerical error
between Python and Mathematica results, as defined in Eq. (5.62), as a function of the
parameter Smax, for the three other parameters Nr, Nmax and Ns indicated in (a). The
cross indicates the precise case of (a). (c) and (e): Dimensionless deformation profiles
computed with Mathematica (blue) and Python (pink), for three sets of numerical pa-
rameters indicated on the legends, a dimensionless thickness τ0 = 0.005 and a Poisson
ratio ν = 0.25, and three different dimensionless times t, computed with the two selected
sets of numerical parameters. (d) and (f): Numerical errors as defined in Eq. (5.62),
as functions of dimensionless time t, for the parameters indicated in (c) and (e) respec-
tively.

the radial coordinate r, is similar to the one of the pressure field in the rigid case prigid.
Additionally, the reference pressure field in the rigid case prigid diverges close to contact.
When adding the EHD coupling and the soft wall, the pressure is released compared to
the reference, rigid case. In summary, if the unrealistic deformation field generated by
the pressure field in the rigid case prigid is efficiently computed, then, the more realistic
deformation field generated by the pressure field p, with the EHD coupling and the soft
wall, can be computed too.
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Discretization scheme of the full model: The thin-film equation as written in
Eq. (5.38) is discretized with a half-implicit-half-explicit [272] scheme in time, and a
centered finite-difference scheme in space [77, 273]. We first define the flux term F(r),
as:

F(r) = rh3 ∂p

∂r
, (5.63)

such that the thin-film equation (5.38) is written as:

∂h

∂t
= 1

12r

∂F
∂r

. (5.64)

The flux term F is discretized on a dual grid in r, which means in between two points
of the main grid. The non-linear terms are expressed at the current time step tn (half-
explicit scheme), while the linear ones are expressed at the next time step tn+1 (half-
implicit scheme). The latter choice enables to write a linear equation on the pressure
field pn+1 at the next time step tn+1, using powers of the fluid gap hn at the current
time step tn as known coefficients. We denote Fn+1

i+1/2 the flux term expressed at the dual
point ri+1/2 = (ri + ri+1)/2, and at the time step tn+1 (based on the unknown pressure
at the next time step pn+1), which reads:

Fn+1
i+1/2 = ri + ri+1

2

[
hn

i+1 + hn
i

2

]3 pn+1
i+1 − pn+1

i

∆r
. (5.65)

The radial derivative of the flux term at point ri, and at time step tn+1, is defined using
a finite-difference scheme, as:[

∂F
∂r

]n+1

i
=

Fn+1
i+1/2. − Fn+1

i−1/2
∆r

. (5.66)

Finally, we discretize the time derivative of the fluid gap h at point ri with a finite-
difference scheme, and we use the Euler method to integrate the thin-film equation in
time. The discretized thin-film equation reads:

hn+1
i − hn

i

∆t
= 1

12ri

Fn+1
i+1 . − Fn+1

i−1/2
∆r

. (5.67)

Combining Eqs. (5.65) and (5.67), we can write the pressure field and the fluid gap at
the next time step tn+1, as functions of the fluid gap at the current time step tn:

hn+1
i − 1

192ri

∆t

∆r2

[
(ri + ri+1)

(
hn

i+1 + hn
i

)3
pn+1

i+1

−
{

(ri + ri+1)
(
hn

i+1 + hn
i

)3 + (ri + ri−1)
(
hn

i−1 + hn
i

)3}
pn+1

i

+ (ri + ri−1)
(
hn

i−1 + hn
i

)3
pn+1

i−1

]
= hn

i .

(5.68)

The geometrical equation, the force balance equation and the deformation profile, as
written respectively in Eqs. (5.36), (5.39) and (5.59) are discretized and expressed at the
next time step tn+1, as:

hn+1
i = 1 − tn+1 + r2

i + wn+1
i + δn+1, (5.69a)

δn+1 = κ0∆r
Nr−1∑
j=0

rjpn+1
j , (5.69b)

wn+1
i = ϵ0∆r

Nr−1∑
j=0

rjpn+1
j Kτ0,ν,ij . (5.69c)
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Equations (5.68), (5.69b), (5.69c) and (5.69a) form a coupled system of 3Nr + 1 linear
equations with 3Nr + 1 unknowns, being hn+1

i , pn+1
i , wn+1

i and δn+1. In the following
we describe the linear-algebra path that solves the system.

Boundary conditions: The boundary conditions in r = 0 are specified by Eqs. (5.32),
which state that the gradients of all fields at the center should vanish, as a consequence
of axisymmetry. The discretized boundary conditions on the pressure field and the fluid
gap, at the current time step tn, are expressed as:

hn
0 = hn

1 , (5.70a)
pn

0 = pn
1 . (5.70b)

Similarly, the boundary condition at r → ∞ on the pressure field prescribes that the
extra pressure compared to the atmospheric pressure should vanish far from the center.
Thus, the discretized version of Eq. (5.33a) reads:

pn
Nr−1 = 0. (5.71)

Algebraic resolution: The three equations given in Eqs. (5.69) are first combined
into a single one by injecting Eq. (5.69b) and Eq. (5.69c) in Eq. (5.69a). Writing on the
left side the unknown terms and on the right side the known ones, we get:

hn+1
i − ∆r

Nr−1∑
j=0

[κ0δij + ϵ0Kτ0,ν,ij ] rjpn+1
j = 1 − tn+1 + r2

i , (5.72)

with δij the Kronecker symbol. We combine the components of the pressure field pn+1
i

and the fluid gap hn+1
i at the next time tn+1 in the vector Vn+1, defined as:

Vn+1
i =

{
pn+1

i for i ∈ J0; Nr − 1K,
hn+1

i for i ∈ JNr; 2Nr − 1K.
(5.73)

Equations (5.68) and (5.72) can then be written as a matrix equation, taking into account
the boundary conditions given in Eqs. (5.70) and (5.71), as:

Mn · Vn+1 = RHSn, (5.74)

with Vn+1 the vector to solve for and Mn a matrix to invert. The upper half of the
matrix Mn transcripts the discretized thin-film equation given in Eq. (5.68). Thus, for
i ∈ J1; Nr − 2K, the matrix Mn is defined as:

Mn
i,i+1 = − 1

192ri

∆t

∆r2 (ri + ri−1)
(
hn

i−1 + hn
i

)3
,

Mn
i,i = 1

192ri

∆t

∆r2

{
(ri + ri+1)

(
hn

i+1 + hn
i

)3 + (ri + ri−1)
(
hn

i−1 + hn
i

)3}
,

Mn
i,i+1 = − 1

192ri

∆t

∆r2 (ri + ri+1)
(
hn

i+1 + hn
i

)3
,

Mn
i,Nr+i = 1.

(5.75)

The lower half transcripts the combined geometrical equation given in Eq. (5.72). Thus,
for i ∈ JNr; 2Nr − 1K, the matrix Mn is defined as:

Mn
i,i = 1, (5.76a)

Mn
i,j = −∆r [κ0δij + ϵ0Kτ0,ν,ij ] rj . (5.76b)
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At the edges in i = 0 and i = Nr − 1, the boundary conditions are:


Mn

0,0 = 1,

Mn
0,1 = −1,

Mn
Nr−1,Nr−1 = 1.

(5.77)

The right-hand-side vector RHSn is known. It is computed from the pressure field and
the fluid gap expressed at time step tn. The upper half transcripts the right-hand-side
of Eq. (5.68), thus for i ∈ J1; Nr − 2K, RHSn is expressed as:

RHSn
i = hn

i . (5.78)

The lower half represents the right-hand-side of Eq. (5.72), thus for i ∈ JNr; 2Nr − 1K:

RHSn
i = 1 − tn + r2

i . (5.79)

The boundary conditions are transcripted on the edges, for i = 0 and i = Nr − 1, as:

RHSn
0 = RHSn

Nr−1 = 0. (5.80)

The matrix Mn can be inverted numerically. Thus, by solving Eq. (5.74), the pressure
field and the fluid gap are computed at the next time step tn+1, as:

Vn+1 = RHSn · (Mn)−1 . (5.81)

Then, the deformation profile and the spring compression are computed using Eqs. (5.69b)
and (5.69c). Finally, the force can be computed by integrating the pressure field over
the surface of the sphere. Using a Riemann summation, the discretized force at the next
time step tn+1 is computed as:

F n+1 = 2π∆r
Nr−1∑
i=0

rip
n+1
i . (5.82)

Initialization: We consider that the simulation starts during the experimental, initial
linear regime, when the sphere is far from the elastic substrate. Thus, the EHD coupling
between the sphere and the substrate is weak, and the initial substrate deformation
w(r, t = 0) is small compared to the vertical length scale H. The sphere moves in the
fluid at a constant velocity equal to the command velocity imposed at the back of the
spring. The resulting force applied on the sphere is the Stokes drag, that generates
an initial compression of the spring δ(0). The order of magnitude of this initial spring
compression is calculated in Sec. 5.1.4.1 ( δ(0) ∼ 10−5 nm). As a result, the initial spring
compression is negligible compared to the initial fluid gap (h(0) ∼ 1 µm)

With both the initial spring compression and substrate deformation being small,
the initial fluid gap h(r, t = 0) and pressure field p(r, t = 0) are approximated by the
ones computed in the rigid case, hrigid(r, t = 0) and prigid(r, t = 0), respectively, given is
Eqs. (5.45a) and (5.47) respectively. The initial spring compression δ(t = 0), deformation
profile w(r, t = 0) and finally the force F (t = 0) are then computed from the initial,
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rigid pressure field. In summary, for i ∈ J0, Nr − 1K a simulation is initialized as follow:

p0
i = prigid(ri, t = 0), (5.83a)

h0
i = hrigid(ri, t = 0), (5.83b)

δ0 = κ0∆r
Nr−1∑
j=0

rjp0
j , (5.83c)

w0
i = ϵ0∆r

Nr−1∑
j=0

rjp0
jKτ0,ν,ij , (5.83d)

F 0 = 2π∆r
Nr−1∑
j=0

rjp0
j . (5.83e)

Numerical simulation for SFA experiments: The numerical parameters ϵ0, κ0,
τ0 and ν are first calculated based on experimental characteristics. A choice has to be
made for the vertical distance scale H. The latter is directly related to the resolution of
the simulation, as both the time and the vertical length are scaled by H (see Eq. (5.35)).
Essentially, the H parameter acts as a zoom factor on a distance-time representation.
The matrix of the kernel Kτ0,ν is computed once for all at the beginning. Then, the
numerical resolution of the full model presented in this subsection consists of calculating
the initial pressure field p0

i , fluid gap h0
i , deformation profile w0

i , and spring compression
δ0 based on the initialization step described above. The initial force F 0 is computed
too. From quantities expressed at the initial time step t0, all fields and quantities at
the next time step t1 are computed, following the algebraic resolution presented above.
The operation is repeated Nt −1 times by default. Eventually, the simulation is stopped
when showing unphysical results (e.g. a negative fluid gap at r = 0, a negative spring
compression or a fluid gap at r = 0 greater than its initial value...).

When performing SFA experiments, the measured quantity D(t) is the distance be-
tween the two glass surfaces, which means the distance from the bottom of the elastic
coating up to the surface of the sphere, at the center in r = 0. This distance includes the
layer of deformed gel and the fluid gap. Thus, to link the experimental quantity D(t) to
the theoretical ones (with dimensions), we write:

D(t) = τ − w(r = 0, t) + h(r = 0, t). (5.84)

We introduce the dimensionless experimental distance D̃ = D/H. In dimensionless
writing, the latter equation reads:

D̃(t̃) = τ0

√
2R

H
− w̃(0, t̃) + h̃(0, t̃). (5.85)

Finally, as the output of the simulation, the distance D is discretized and numerically
computed as:

Dn = τ0

√
2R

H
− wn

0 + hn
0 . (5.86)

To be compared to experimental data with dimension, the dimensionless, numerical
distance D is finally multiplied by the distance H (defined in the simulation parameters).
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(a) (b)

FIG. 5.13. Linear elastic model for a sphere approaching a gel with an EHD
coupling. (a): Distance between the two glass surfaces D as a function of time t, as
an example of SFA data explained by modeling the gel as a linear elastic solid. The
simulation is performed for a Young’s modulus of 5 kPa and a Poisson ratio of ν = 0.2.
The initial, linear regime is recalled to exhibit the deviation of the simulated curve from
a purely linear behavior in time. Inset: Deformation as a function of time, predicted by
the numerical simulation. (b): Spring compression computed from the data of (a), as a
function of the distance between the two glass surfaces D.

5.2.2.5 Results

In Fig. 5.13 is shown a numerical simulation of a SFA approach in lubrication conditions,
together with experimental data. The distance between the two glass surfaces D is
shown as a function of time in Fig 5.13(a). In Fig. 5.13(b), the spring compression δ is
shown as a function of the distance D between the two glass surfaces. The simulation
presented here was performed for the following numerical parameters: H = 0.25 µm,
ϵ0 = 6.51, κ0 = 8.64.10−3, τ0 = 1.97.10−3 and a Poisson ratio of ν = 0.2. These
numerical parameters were calculated from known and previously estimated physical
parameters, except the Young’s modulus that was adjusted at 5 kPa. The numerical
curve was also adjusted to match the linear fit performed on the initial regime. An
adjustment was necessary, to catch the deviation from the linear regime. Thus only one
fitting parameter acting as an offset in time (and thus in distance D) was used.

First, we observe in both representations that the simulation exhibits a deviation from
the initial, linear regime, as a result of the vicinity of the soft substrate. This deviation
catches the experimental data better than the linear regime, on a small portion of the
curve, during the five seconds before the main inflection point. Thus, when an interaction
between the spherical probe and the hydrogel becomes measurable, the hydrogel can be
described as a purely elastic and compressible layer, for a few seconds. Yet, the model
does not predict the position of the inflection point at t ≈ 20 s. The gel is modeled as
a compressible elastic solid, whose mechanical behavior is described by a linear stress-
strain relationship. Such an elasticity law supposes small deformations. As the sphere
approaches the soft hydrogel, one can expect the deformations of the gel to increase,
enough to break the hypothesis of small deformations. Indeed, as shown in the inset
of Fig. 5.13(a), the predicted deformation at the center increases with time, and the
hypothesis of small deformation is broken. In the following subsection, we propose an
ad-hoc non-linear elasticity law that takes into account the finite thickness of the gel.

5.2.3 Lubrication regime at large deformations

In this subsection, the SFA experiment is modeled as in the previous subsection and the
schematic of the experiment presented in Fig. 5.8 still holds. However, the hydrogel is
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Hard wall

Substrate

(a) (b)

FIG. 5.14. Non-linear elastic model for a largely deformed hydrogel. (a):
Schematic of the situation. The hydrogel is considered as an elastic layer of thickness
τ and shear modulus G, which is modeled as a mattress of springs, characteristic of a
Winkler-like model. An external pressure field p(r, t) is applied and generates a defor-
mation profile w(r, t).(b): Ad-hoc elasticity law describing the mechanical response of
the hydrogel, computed with Eq. (5.87), for a gel of thickness τ = 0.3 µm and of shear
modulus G = 50 MPa.

modeled differently.

5.2.3.1 Non-linear elasticity

Model: Here we present a simple, ad-hoc elastic model used to describe the mechanical
behavior of the gel when larger deformations are encountered, taking into account its
finite thickness. Two main hypotheses are taken into account. (i) Similarly to the rigid
case, in which the pressure field diverges when the sphere touches the rigid boundary,
here we consider that the pressure field should diverge when the deformation amplitude
of the soft layer reaches its thickness, e.g. when the free surface of the gel touches
the rigid boundary underneath. (ii) Similarly to Winkler’s foundation model, the gel
is described by a mattress of independent springs, as illustrated by Fig. 5.14(a). Thus,
we neglect any contribution of the pressure field applied at a given position r to the
deformation profile at another position r′. As a consequence of (i) and (ii), we postulate
the following pressure-deformation relationship:

p(r, t) = G
w(r, t)

τ − w(r, t) , (5.87)

with G the shear modulus. The pressure as a function of the deformation is plotted
in Fig. 5.14(b), with Eq. (5.87), for a thickness of τ = 0.3 µm and a shear modulus
of G = 50 MPa. We recover the standard Winkler’s foundation model when writing a
Taylor development of the latter expression at order one in w/τ :

p(r, t) ≃ G
w

τ

(
1 + w

τ
+
(

w

τ

)2
)

. (5.88)

The geometrical equation (5.20), the thin-film equation (5.21) and the force-balance
equation (5.24), introduced in the previous section 5.2.2.2, are conserved. However,
Eq. (5.30b) is replaced by:

w(r, t) = τ
p(r, t)

G + p(r, t) , (5.89)

which is obtained by isolating w(r, t) in Eq. (5.87). The boundary conditions are kept
identical.
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Non-dimensionalization: Using the scalings introduced in the previous section, we
write Eq. (5.89) under a dimensionless form, as:

w̃(r̃, t̃) = ϵ0τ0
p̃(r̃, t̃)

1 + ϵ0
√

H
2R p̃(r̃, t̃)

, (5.90)

with ϵ0 and τ0 being defined in Eqs. (5.44b) and (5.44a), respectively. We recall the
three other equations (5.36), (5.38) and (5.39) written under a dimensionless form:

h̃(r̃, t̃) ≃ 1 − t̃ + w̃(r̃, t̃) + δ̃(t̃) + r̃2, (5.91a)
∂h̃

∂t̃
= 1

12r̃

∂

∂r̃

[
r̃h̃3 ∂p̃

∂r̃

]
, (5.91b)

δ̃(t) = κ0

∫ ∞

0
dr̃ r̃p̃(r̃, t̃). (5.91c)

In the following paragraphs, to lighten the notation, we omit the tilde symbol (̃) on
dimensionless quantities.

5.2.3.2 Numerical resolution

To solve numerically the model presented in this section, we use the iterative Newton-
Raphson method [273, 274], which is known to be adapted for highly non-linear problems.
Knowing the solution for the fields at the current time step tn, the solution at the next
time step tn+1 is computed by iteration.

Discretization scheme: The thin-film equation as written in Eq. (5.38) is dis-
cretized using an implicit scheme in time, and the same finite-difference scheme in space
as in the previous section. Every quantity is expressed at the next time step tn+1. The
flux term as defined in Eq. (5.63) is again discretized on the dual grid. We write the
flux at point ri+1/2 and at the next time step tn+1, as:

Fn+1
i+1/2 = ri + ri+1

2

[
hn+1

i+1 + hn+1
i

2

]3
pn+1

i+1 − pn+1
i

∆r
. (5.92)

Following then the same path as in the previous section, the radial derivative of the flux
at the point ri is given by Eq. (5.66), and the discretized thin-film equation is given by
Eq. (5.67). We finally derive an equation over the pressure field and the fluid gap at the
next time step tn+1, as a function of the fluid gap at the current time step, as:

−192ri
∆r2

∆t
hn+1

i + (ri + ri+1)
(
hn+1

i+1 + hn+1
i

)3
pn+1

i+1

−
{

(ri + ri+1)
(
hn+1

i+1 + hn+1
i

)3
+ (ri + ri−1)

(
hn+1

i−1 + hn+1
i

)3
}

pn+1
i

+ (ri + ri−1)
(
hn+1

i−1 + hn+1
i

)3
pn+1

i−1 = −192ri
∆r2

∆t
hn

i .

(5.93)

The geometrical equation, the force-balance equation and the deformation profile, as
written respectively in Eqs. (5.91a), (5.91c) and (5.90) are discretized as Eqs. (5.69),
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and thus read:

hn+1
i = 1 − tn+1 + r2

i + wn+1
i + δn+1, (5.94a)

δn+1 = κ0∆r
Nr−1∑
j=0

rjpn+1
j , (5.94b)

wn+1
i = ϵ0τ0

pn+1
i

1 + ϵ0
√

H
2Rpn+1

i

. (5.94c)

Equations (5.93), (5.94b), (5.94c) and (5.94a) form a coupled system of 3Nr + 1 non-
linear equations with 3Nr + 1 unknowns, namely hn+1

i , pn+1
i , wn+1

i and δn+1. In the fol-
lowing we describe how these equations are linearized with the Newton-Raphson method.

Boundary conditions: The boundary conditions in r = 0 and r → ∞ on the
pressure field p and the fluid gap h are the same as in the previous sections, and given
by Eqs. (5.70) and (5.71).

Non-linear operator of the Newton-Raphson method: The three equations
given in Eqs. (5.94) are first combined into a single by injecting Eq. (5.94b) and Eq. (5.94c)
in Eq. (5.94a). Writing on the left side the unknown terms and on the right side the
known ones, we get:

hn+1
i − κ0∆r

Nr−1∑
j=0

rjpn+1
j − ϵ0τ0

pn+1
i

1 + ϵ0
√

H
2Rpn+1

i

= 1 − tn+1 + r2
i . (5.95)

As in the previous sections, we combine the components of the pressure field pn+1
i and

the fluid gap hn+1
i at the next time tn+1 in the vector Vn+1, defined as:

Vn+1
i =

{
pn+1

i for i ∈ J0; Nr − 1K,
hn+1

i for i ∈ JNr; 2Nr − 1K.
(5.96)

Equations (5.93) and (5.95) can then be written under the form of a non-linear operator,
applied on the vector Vn+1, as:

OP
(
Vn+1

)
= RHSn, (5.97)

with RHSn the right-hand-side vector, being a known vector expressed with fields at
the current time step tn. The upper half of the non-linear operator OP transcripts the
discretized thin-film equation given in Eq. (5.93). Thus, for i ∈ J1; Nr − 2K, the operator
OP(Vn+1) is expressed at a point ri as:[

OP(Vn+1)
]

i
= −192ri

∆r2

∆t
hn+1

i + (ri + ri+1)
(
hn+1

i+1 + hn+1
i

)3
pn+1

i+1

−
{

(ri + ri+1)
(
hn+1

i+1 + hn+1
i

)3
+ (ri + ri−1)

(
hn+1

i−1 + hn+1
i

)3
}

pn+1
i

+ (ri + ri−1)
(
hn+1

i−1 + hn+1
i

)3
pn+1

i−1 .

(5.98)

The lower half transcripts the combined geometrical equation given in Eq. (5.95). Thus,
for i ∈ JNr; 2Nr − 1K, the operator OP(Vn+1) is defined at point ri as:

[
OP(Vn+1)

]
i

= hn+1
i − κ0∆r

Nr−1∑
j=0

rjpn+1
j − ϵ0τ0

pn+1
i

1 + ϵ0
√

H
2Rpn+1

i

. (5.99)
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At the edges in i = 0 and i = Nr − 1, the boundary conditions are:
[
OP(Vn+1)

]
0

= pn+1
1 − pn+1

0[
OP(Vn+1)

]
Nr−1

= −pn+1
Nr−1.

(5.100)

The right-hand-side vector RHSn is known. The latter is computed from the fluid gap
expressed at the current time step tn. The upper half transcripts the right-hand-side of
Eq. (5.93), thus for i ∈ J1; Nr − 2K, RHSn is expressed as:

RHSn
i = −192ri

∆r2

∆t
hn

i . (5.101)

The lower half represents the right-hand-side of Eq. (5.95), thus for i ∈ JNr; 2Nr − 1K:
RHSn

i = 1 − tn + r2
i . (5.102)

The boundary conditions are transcripted on the edges, for i = 0 and i = Nr − 1, as:
RHS0 = RHSNr−1 = 0. (5.103)

Linearization and computation of an iteration: The principle of the Newton-
Raphson method is to converge towards the solution Vn+1 of the equation (5.97) by
iterations. We consider then the current approximation Ṽ of the solution at the current
iteration, and look for a better one, at the next iteration Ṽnext, such that:

OP
(
Ṽnext

)
≈ OP

(
Vn+1

)
= RHSn. (5.104)

To solve the system of equations represented by Eq. (5.104), for the approximated vector
Ṽnext, one must linearize the non-linear operator OP. Thus, we write a Taylor expansion
around the current approximation Ṽ at order one in Ṽnext − Ṽ, which reads:

OP
(
Ṽnext

)
≈ OP

(
Ṽ
)

+ J ·
[
Ṽnext − Ṽ

]
≈ RHSn, (5.105)

with J the Jacobian matrix of the non-linear operator OP, defined as:

Jij (V) = ∂ [OP (V)]i
∂Vj

. (5.106)

Equation (5.105) is solved by isolating Vnext:

Ṽnext ≈ J −1 ·
[
RHSn − OP

(
Ṽ
)]

+ Ṽ. (5.107)

The difference RHSn − OP
(
Ṽ
)

is called the residual. A condition to compute the next
approximation Ṽnext is then that the Jacobian J can be inverted. The next iteration
is initialized by replacing Ṽ by Ṽnext, and the same process is repeated. The difference
between two successive approximations Ṽnext − Ṽ should be asymptotically equal to
zero with the increasing number of iterations, to ensure the convergence of the method.
When the difference dṼ passes below a prescribed threshold (which is set at 10−9 for the
simulations presented here), or after a prescribed maximum number of iterations (which
is set at 10 for the simulations presented here) if the latter threshold is not reached,
the iterative process is stopped. The last approximation defines the solution at the next
time step Vn+1. The pressure field pn+1 and the fluid gap hn+1 at the next time step
tn+1 are extracted from the vector Vn+1. Finally, the deformation profile wn+1 and the
spring compression δn+1 can be computed using Eqs. (5.94c) and (5.94b), and the force
is obtained by integrating the pressure field over the surface of the sphere, as:

F n+1 = 2π∆r
Nr−1∑
i=0

rip
n+1
i . (5.108)
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(a) (b)

FIG. 5.15. Non-linear elastic model for a sphere approaching a gel with an
EHD coupling. (a): Distance between the two glass surfaces D as a function of time
t, as an example of SFA data explained by modeling the gel as a mattress of non-linear
springs. The simulation is performed for a Young’s modulus of 5 kPa and a Poisson ratio
of ν = 0.2. The initial, linear regime is recalled to exhibit the deviation of the simulated
curve from a purely linear behavior in time. (b): Spring compression computed from the
data of (a), as a function of the distance between the two glass surfaces D.

Initialization: Similarly to the previous section, the initialization of a given numerical
simulation is done on the rigid case. The different fields and quantities are computed
at time t0 using Eqs. (5.83), except the deformation profile that is computed using
Eq. (5.94c) expressed at time t0, as:

w0
i = ϵ0τ0

p0
i

1 + ϵ0
√

H
2Rp0

i

. (5.109)

The quantities are then computed at time step t1 by iterations, as described in the
previous paragraph, then at time t2, etc. Finally, to compare the result of the numerical
simulation to experimental data, we link the measured distance Dn between the two
glass surfaces to the fluid gap hn at time step tn, with Eq. (5.86).

5.2.3.3 Results

In Fig. 5.15 we show a numerical simulation of a SFA approach in lubrication conditions,
together with experimental data. As for the linear case, the distance between the two
glass surfaces D is shown as a function of time in Fig 5.15(a). In Fig. 5.15(b), the
spring compression δ is shown as a function of the distance D between the two glass
surfaces. The numerical parameters ϵ0, κ0, τ0 and the Poisson ratio ν are identical. The
adjustment of the numerical curve on the experimental data, is still performed using an
offset as a fitting parameter, and the latter is kept identical too.

As for the linear case, we observe in both representations that the numerical curve
exhibits a deviation from the initial, linear regime, as a result of the vicinity of the
substrate. This deviation catches the experimental data better than the linear regime,
on the small portion of the curve, during the five seconds before the main inflection
point of the experimental data. Furthermore, and in contrast to the linear model, the
non-linear model catches the main inflection point of the experimental data at about
t ≈ 20 s. Thus, the gel can be modeled as a mattress of springs around the inflection
point, whose mechanical behavior is described by a non-linear stress-strain relationship.
Such a type of elasticity laws are often used to describe polymeric materials exhibiting
a strain-hardening behavior, and experiencing large deformations [275–280].
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(a) (b)

FIG. 5.16. SFA experimental data compared to a succession of different mod-
els.(a): Distance between the two glass surfaces D as a function of time t. The experi-
mental data is compared to different models, in the early-time, lubrication regime and in
the late-time, contact regime, detailed in the legend. (b): Spring compression computed
from the data of (a), as a function of the distance between the two glass surfaces D. The
theoretical curves are detailed in the legend of (a). The inset shows a zoom on the region
indicated by the gray rectangle, around the point MHertz and the transition between the
lubricated and contact regimes.

However, if the numerical computation of the SFA approaches exhibit a major in-
flection point using a strain-hardening type of elastic model, the calculation fails just
after, as observed in Fig. 5.15 at t ≈ 23 s. The non-linear model presented in this section
is adapted to describe an elastic layer encountering large deformations, in lubrication
conditions. As the spherical probe approaches the sample, the deformation is larger and
the contact is still lubricated, until the sphere touches the sample. When the contact
is made, one can expect the model to break, as the lubrication layer thickness has van-
ished. To investigate why the numerical simulation breaks just after the inflection point,
in the following, we gather results from the modeling of the contact problem and the
lubrication problem.

5.3 Synthesis and discussion

5.3.1 Succession of different models

We gather the results of the modeling of the lubrication regime and the ones of the
contact regime. In Fig. 5.16, we show one experimental approach together with the
different models described in this Chapter. In the initial, linear regime in time (see
Fig. 5.16(a)), the resulting force applied on the spherical probe approaching the soft
substrate in water is the Stokes drag. The coupling between the probe and the gel is
weak, thus, the extra spring compression δ is negligible (see Fig. 5.16(b)). Then, as the
sphere approaches, the EHD coupling with the soft substrate increases and we observe
a slight deviation from the linear regime, for t = 17 − 20 s. This deviation is predicted
by the EHD model based on a linear elastic response of the gel, in lubrication condition.
Then, a major inflection point is observed in the experimental data, both on the distance-
time and the compression-distance representations. The inflection point is furthermore
predicted by the non-linear elasticity model, in lubrication conditions (see Fig. 5.16(b),
inset). Then, the experimental data shows a slow relaxation of the distance D as a
function of time t, and simultaneously the spring compression δ strongly increases. This
regime is well-described by the Hertz theory, from only a few experimental points after
the main inflection point. Finally, the experimental data reaches a constant and final
value of distance D and the spring compression diverges. That last part is currently not
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(a) (b)

(c) (d)

FIG. 5.17. Summary of SFA experimental and modeling data.(a): Main panel:
distance between the two glass surfaces D as a function of time t, for four different
approach velocities V specified in the legend, corresponding to the first data set. The
experimental data is compared to the different models described in this Chapter, for
each velocity. Inset: Spring compression δ as a function of the distance D, from the
experimental and numerical data of the main panel. (b): Spring compression δ as a
function of the indentation τ − D. The experimental data are fitted with Hertz contact
theory. The legend indicates the different modeling elements represented in (a). (c): as
for (a), for the second data set. (d): as for (b), for the second data set.

described by a theory, but, an interesting perspective would be to build a contact model
taking into account a non-linear elasticity of the substrate, in the large-deformation
regime.

5.3.2 Comparison in velocities and reproducibility of the data

The modeling work presented in this Chapter exploits one single approach curve of
a given SFA data set made on a given sample. SFA experiments are known to be
difficult and delicate. Moreover, the synthesis of nanometric and ultra-clean hydrogel
films is also a challenge. Yet, after numerous (about twenty) repetitions of the entire
experimental process, two data sets were judged as valuable, composed of a total of ten
approach curves. Therefore, the modeling work was repeated on these approach curves.
In Fig. 5.17, we show a synthesis SFA experimental result, together with modelisation
results. In Figs. 5.17(a) and (b), we show the results from the first data set, constituted of
four approach curves, obtained by performing experiments on a sample of dry thickness
τdry = 66 nm. In Figs. 5.17(c) and (d), we show the results from the second data
set, composed of six approach curves, obtained by performing experiments on a similar
sample of dry thickness τdry = 65 nm. In Figs. 5.17(a) and (c), we show on the main
panel the distance between the two glass surfaces D as a function of time t, for the
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FIG. 5.18. Comparison of numerical simulations with two different Young’s
Moduli to experimental data.Distance between the two glass surfaces D as a function
of time t. The experimental data is compared to numerical simulations based on the
non-linear EHD model, for two different values of the Young’s modulus indicated in the
legend.

different approach velocities. The inset shows the spring compression δ as a function of
the distance D. The initial, linear regime provides a measurement of the velocities. The
numerical simulations based on the linear and non-linear EHD models are represented.
Simulations were ran for a Young’s modulus E = 5 kPa, for both sets. Figures 5.17(b)
and (d) show the late-time regime, fitted with the Hertz contact model. The points
MHertz defined in Sec 5.2.1 are reported on panels (a) and (c) respectively, as well as
the numerical computation of the distance as a function of time, based on the fitting
parameters. We observe that these ten experimental approaches are well-described by
the successive models. Thus the modeling work presented in the Chapter appears as
robust to the variation of the velocity.

5.3.3 Estimation of the Young’s modulus in lubricated regime

The numerical simulation performed based on both the linear and non-linear EHD mod-
els provide an estimate of the Young’s modulus of the swollen PNIPAM gel. The com-
putation time for a single curve, with a good resolution, is about 20 hours (on a pow-
erful, experiment-dedicated computer, RAM 64 Go and processor AMD Ryzen 3900X
12 cores). Additionally, a numerical simulation enables to appreciate the relevance of a
choice of Young’s modulus, but does not provide the best value as a fit would do. The
numerical simulations presented in this Chapter were performed for a Young’s modulus
E = 5 kPa, the value for which the accordance between the numerical and experimental
data is overall the best, among the tested values. For a matter of comparison, in Fig. 5.18,
we show an experimental approach curve, together with two numerical curves, obtained
by performing simulations based on the non-linear EHD model with two different values
of Young’s modulus: E = 1 kPa and E = 5 kPa. The difference is particularly visible
around the inflection point. In the following, we establish a systematic comparison.

Before the inflection point: A few seconds before the inflection point, the exper-
imental data deviates from the initial, linear regime. In this portion of the data, the
numerical simulation performed with a larger Young’s modulus exhibit a larger deviation
from the linear regime. In this part, the experimental data shown on Fig. 5.18 appears in
between the two numerical curves, maybe closer to the one performed with E = 1 kPa.
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Inflection point: The numerical simulation performed with a smaller Young’s mod-
ulus exhibits a sharper inflection point. Here, the inflection point shown by the exper-
imental data is more spread out. Thus the simulation performed with E = 5 kPa may
match better this experimental curve in particular.

After the inflection point: The numerical simulation performed with a smaller
Young’s modulus saturates faster, and results in a larger distance D. On that portion of
the curve, the experimental data shown in Fig. 5.18 appears in between the two numerical
curves, but does not saturates as fast as the simulation performed with E = 1 kPa. The
one performed with E = 5 kPa may match better the experimental data.

Estimation of E : In summary, the precise approach curve represented in Fig. 5.18
appears in between the two numerical curves, performed with E = 1 kPa and E = 5 kPa.
Extra numerical simulations could be ran to refine the estimation of the Young’s modulus
(taking E ∈ [1; 5] kPa), for all the sets of curves, and would catch even better the
experimental data.

5.3.4 Contact point and crossover between lubrication and contact
regimes

The fitting of experimental data with the Hertz contact model enables to estimate the
contact point. The point MHertz that was defined in Sec. 5.2.1 represents the moment
from which Hertz model catches the data, and may be interpreted as the contact point.
Figure 5.19 focuses on the point MHertz for a given approach curve. On Fig. 5.19(a) we
show the distance D as a function of time, for reference. On Fig. 5.19(b) we show a zoom
in the region around the point MHertz. We observe that precisely at the point MHertz,
the non-linear elasticity model in lubrication condition describes still the experimental
data for a few more experimental points. Additionally the Hertz model describes the
experimental data from MHertz. Thus, when the lubrication-based model reaches its
limit of validity, the contact-based one takes over. In this example, we observe then a
crossover between the lubrication and the contact regimes, on a duration of about 7 s.
In the following, we will refer to this window of ≈ 5 − 10 s as the crossover region. For
comparisons, zoomed figures on the region of MHertz are represented for each curve of
Fig. 5.17 in Appendix B.

In the crossover region, the thickness of the fluid lubrication layer is decreasing,
until reaching zero, which means the sphere enters in contact with the gel and no more
solvent is present in the confined region in between. Thus the crossover region refers to
a complex physical situation, and is of particular interest. To investigate in more detail
this physical situation, and to refine the interpretation of MHertz as a contact point,
we focus on the thickness of the lubrication layer. The numerical simulation based on
the non-linear EHD model computes first the pressure field p and the fluid gap h, as
explained in Sec. 5.2.3. Then, the deformation profile w as well as other quantities are
computed from the pressure field and the fluid gap. The distance D corresponding to the
experimentally measured distance is deduced afterwards. Thus, we extract the fluid gap
h, computed by the numerical simulation used to catch the experimental data presented
on Figs. 5.19(a) and (b). From the results of the numerical simulation based on the non-
linear model, the deformation profile w is also extracted, and used to draw illustrations
of the situation. Thus, in Figs. 5.19(c) and (d) we show illustrations of the situation, at
scale, at two precise instants, respectively indicated as 1 and 2 on Fig 5.19(a). In the
following, we describe these two instants.
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1 2

(a) (b)

(c) (d)

21

FIG. 5.19. Crossover between lubrication and contact regimes.(a): Distance
between the two glass surfaces D as a function of time, for a given approach velocity V.
The different models described in the present Chapter are represented and indicated in the
legend. (b): Zoom from panel (a), around the the point MHertz, where the Hertz contact
model takes over on the non-linear EHD-based model. (c) and (d): At-scale schematic
of the situation at two precise instants t1 and t2, indicated in panel (a), obtained from
the numerical simulation performed with the non-linear EHD model, and used in panels
(a) and (b).

Instant 1: The instant 1 is defined as the instant when the surface of the sphere at
the center r = 0 reaches the height of the undeformed surface of the substrate. For
the experimental curve used in Fig. 5.19, this situation happens at t1 = 40.5 s. The
numerical simulation based on the non-linear EHD model predicts a fluid gap at the
center of h(0, t1) = 42 nm. As the sphere has reached the height of the undeformed
surface, in this particular case the deformation is equal to the fluid gap at the cen-
ter: w(0, t1) = h(0, t1). First, the lubrication hypothesis still holds. Then, with the
illustration presented in Fig. 5.19(c), we observe that the maximum deformation of the
gel surface reaches approximately 15% of the thickness. At this point, the gel is still
in a small-deformation regime. The linear model still holds, and indeed catches the
experimental data (see Fig. 5.19(a)).

Instant 2: The instant 2 is defined by the point MHertz, as t2 = tHertz. For the
experimental curve used in Fig. 5.19, this situation happens at t1 = 50.8 s. The numer-
ical simulation based on the non-linear EHD model predicts a fluid gap at the center
of h(0, t1) = 4.6 nm, and a deformation of about 65% of the thickness. First, with a
nanometric layer of fluid, the lubrication hypothesis becomes questionable for the fol-
lowing reasons. Lubrication theory relies on a continuum-mechanics-based description
of matter. For h ≤ 1 nm, the continuum limit is crossed, thus the fluid phase can no
longer be described as a continuous medium. Moreover, when the fluid gap is small
compared to the deformation, the pressure field in the fluid converges towards the Hertz
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pressure [217]. This picture defines the Hertz-like limit of soft-lubrication regimes, in
which the fluid layer is completely squeezed between the sphere and the gel, forming
thus an effective contact region [215, 281]. The force response of the material exhibits a
continuous transition towards the Hertz response, as the fluid gap decreases [189, 213].
Additionally, a nanometric fluid gap means that the mechanical contact between the
sphere and the surface of the gel is nearly reached. The latter statement may explain
why the numerical simulation based on the non-linear EHD model fails a few seconds
after the point MHertz: if the fluid gap is asymptotically zero, the pressure diverges. In
summary, the schematic of the situation presented in Fig. 5.19(d) supports the fact that
the Hertz contact model holds from MHertz.

Another information brought by the numerical simulation based on the non-linear
EHD model, is the maximal gel deformation, which is about 65% of the gel thickness,
as shown by the schematic presented in Fig. 5.19(d). Such an imposed strain expels the
solvent present in the hydrogel matrix, and thus creates a partially dehydrated region.
However, PNIPAM hydrogels become glassy upon drying, as discussed in Chapter 2. At
25◦C, below a critical humidity rate of 30% (mPNIPAM/mwater), (de)hydrated PNIPAM
gels exhibit a dehydration-induced glass transition [107]. Using ρPNIPAM = 1.1 g/cm3

as the mass density of PNIPAM [282], the latter critical humidity rate corresponds to
a solvent volume fraction of Φw,c = 0.25 (Vwater/Vtotal) at 25◦C. The glass transition is
characterized by a jump in Young’s modulus, from a few tens of kPa to a few hundreds
of MPa [243]. The local solvent volume fraction Φw and the maximal deformation w can
be linked, as a function of time, as:

Φw(t) = Vwater
Vtot

= τswollen − w(0, t) − τdry
τswollen − w(0, t) , (5.110)

with τswollen − w(0, t) giving the thickness of the deformed gel at a time t and at the
center r = 0, and considering an uniaxial deformation. We consider a swelling ratio of
τswollen/τdry = 4. Thus, we finally estimate that the critical deformation corresponding
to the critical solvent fraction Φw,c at which the gel becomes glassy is 0.67τswollen. To
conclude, the deformation amplitude of ≈ 0.65τswollen that is predicted by the numeri-
cal simulation based on the non-linear EHD model at the point MHertz approximately
corresponds to the critial one, at the onset of the glass transition.

In summary, a finer interpretation of the point MHertz would be that it marks the
onset of the dehydration-induced glass transition of the PNIPAM hydrogel. Then, from
the point MHertz, the value of the thin-film Young’s modulus changes, and we should
consider a typical value for glassy polymer films. Furthermore, Hertz fits provide an
estimate of the reduced Young’s modulus of the gel, which is E∗ = 266 MPa for the
approach presented in Fig. 5.19, perfectly consistent with the latter statement. In the
next subsection, we will focus on the measurements of the Young’s modulus in the glassy
state.

5.3.5 Dependency of the Young’s modulus on the approach velocity in
the contact regime

The late-time, contact regime is fitted with the Hertz contact theory (see Sec. 5.2.1) and
provides a measurement of the reduced Young’s modulus of the glassy PNIPAM thin film.
The fit is performed using the least-square method, which provides an estimate of the
error on the reduced Young’s modulus. In this subsection, we explore the consistency of
that measurement among the different approach curves presented in the present Chapter.
The reduced Young’s modulus extracted from Hertz fits is referred to as apparent, for
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(a) (b)

FIG. 5.20. Dependency of the apparent Young’s modulus of glassy PNIPAM
on the approach velocity.(a): Apparent reduced Young’s modulus E∗

app as a function
of the approach velocity V , for two data sets. The apparent reduced Young’s modulus
is defined as E∗

app = E/(1 − ν2
app) with νapp the apparent Poisson ratio. The apparent

reduced Young’s modulus is computed from Hertz fits, based on Eq. (5.14). The squares
represent the first data set and the diamonds the second one. The linear fit represented
by the green dashed line is computed over 8 out of 10 points. (b): Apparent Poisson
ratio νapp as a function of the approach velocity V , for the two data sets. The apparent
Poisson ratio is computed with Eq. (5.111), taking as a reference Eref = 200 MPa and
Eref = 225 MPa for the first and the second data sets, respectively. The orange dashed
line indicates the incompressible limit.

reasons explained in the following. We note the apparent reduced Young’s modulus as:

E∗
app = Eref/(1 − ν2

app), (5.111)

with νapp the apparent Poisson ratio, Eref the “true” Young’s modulus that should be
independent on the velocity in a typical elasticity theory, and V the approach velocity. In
Fig. 5.20(a) we show the apparent reduced Young’s modulus for the two data sets. First,
we observe that the apparent reduced Young’s modulus slightly depends on the approach
velocity. Such a dependency is the signature of dissipative effects in the gel. Indeed, a few
molecules of solvent may be still present in the glassy gel, as the critical solvent volume
fraction below which PNIPAM turns glassy is not zero, but Φw,c = 0.25. Furthermore,
we observe that the apparent Young’s modulus increases with the velocity. Thus, at
slow imposed indentation, the gel appears softer, and at fast imposed indentation, the
gel appears stiffer.

The latter feature is reminiscent of the time-dependent poroelastic response that we
highlighted in Chapter 3. Indeed, in the short-time limit, a poroelastic material behaves
as an incompressible, purely elastic solid, whereas in the long-time limit, it behaves
as a compressible, purely elastic solid. For any time, a porelastic material shows a
mechanical response which features are in between these two asymptotic regimes. In the
present case, when the velocity of approach V is smaller, the external time scale that
is imposed to the system is longer. Thus, the solvent has more time to flow inside the
porous matrix. The exhibited response is then closer to the one of a purely elastic and
compressible material, and the measured reduced Young’s modulus appears as lower.
On the contrary, when the approach velocity V is larger, the external time scale that
is imposed to the system is smaller. Thus, the solvent has less time to flow inside the
porous matrix. The exhibited response is then closer to the one of a purely elastic and
incompressible material, and the measured reduced Young’s modulus appears as larger.

From Eq. (5.111), we can try to extract an apparent Poisson ratio νapp, by estimating
the value of the true Young’s modulus noted as Eref , that should be independent on
the velocity of approach (but can be sample-dependent). In Fig. 5.20(b) we show the
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apparent Poisson ratio νapp as a function of the approach velocity V for the two data
sets, taking Eref = 200 MPa and Eref = 225 MPa as references for the first and the
second data sets, respectively. The incompressible limit νapp is recalled, and the values
of Eref are chosen such that the apparent Poisson ratio νapp does not exceed 0.5 at high
velocities. We observe that the apparent Poisson ratio increases with the velocity, which
constitutes a signature of poroelasticity, ranging from νapp ≈ 0.1 to νapp = 0.5. However,
the known Poisson ratio of swollen PNIPAM hydrogels is about 0.2 − 0.25 [239, 240].
Thus, the two experimental points at the lowest velocities exhibit a too low value of
Poisson ratio. Except these, the estimated values of the apparent Poisson ratio are in
a physically possible range, and show a part of the transition from a purely elastic and
compressible response to an incompressible one, with increasing velocities.

In summary, in the late-time, contact regime, the thin hydrogel film is dehydrated
enough to be glassy, but still exhibits a velocity-dependent mechanical response. A
quick qualitative analysis shows that the low, but non-zero, volume fraction of solvent
in the gel generates a response that is typical of poroelastic matter. However, this quick
analysis is based on values of the Young’s modulus extracted using the Hertz contact
model, which holds for purely elastic matter. Thus, an interesting perspective would be
to develop a Hertz model for a poroelastic material, and compare it quantitatively to
experimental data in the late-time regime.

5.4 Conclusion

In this Chapter, we presented SFA experiments in sphere-plane geometry, performed on a
PNIPAM hydrogel thin film, in approach mode. The experiment enables to probe various
regimes with increasing indentation, from no resolvable interaction between the probe
and the gel, to the complete compression with expulsion of the solvent, passing mainly
by a first lubricated regime, and a second, contact regime. We presented different models
describing different parts of the data, showing that a succession of different descriptions
enables to understand an experimental curve almost all along. The lubrication-based
models were complemented with numerical simulations, whereas numerical fittings were
performed based on the Hertz contact model. We showed that modeling efforts enable
to estimate the Young’s modulus of the swollen PNIPAM film, both in the lubricated
regime (E ≈ 5 kPa) and in the contact regime (E≈ 200 kPa). We thus showed that the
imposed indentation of the probe expels enough solvent from the polymeric matrix to
provoke a dehydration-induced glass transition, and we resolved the point at which the
transition happens. Finally, we explored the dynamical response of the gel in the glassy
state, and interpreted the velocity-dependency of the apparent Young’s modulus as a
signature of poroelasticity.

Perspectives could be proposed for several aspects of this work. First, the estima-
tion of the Young’s modulus in the lubricated regime results from a guessed value used
as a parameter of numerical simulations. With time, tables of ready-to-use numeri-
cal approaches could be created, in order to estimate faster, with a better precision,
the Young’s modulus. Second, the contact regime is modeled using Hertz theory for
elastic and compressible materials. Using the poroelastic response theory developed in
Chapter 3, we could build a Hertz-like theory for poroelastic materials, and compare
it to experimental data. Furthermore, within this framework, the discussion about the
velocity-dependent Young’s modulus as a signature of poroelasticity would be quantita-
tively founded. Finally, the last, almost constant part (in distance-time representation)
of the experimental data is not caught by Hertz theory. Indeed, as the indentation
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increases, the finite-size aspect of the thin film becomes more important. Some theoret-
ical works were already developed taking into account corrections to the original Hertz
model, to include finite-size effects [268, 283]. However, such a model assumes condi-
tions on the length ratio between the sphere radius and the indentation, or on the ratio
between the indentation and the thickness. These conditions were not matching our ex-
perimental situation, therefore the model would not be used. Thus a perspective would
be to develop a model that takes into account finite-size effects, with non-linear elas-
ticity as the deformation gets close to the thickness, like we did in the lubrication regime.

Complementary experiments based on other techniques could be used to confirm
the observations and results described in the present Chapter. For instance, a simple
measurement of the Young’s modulus by AFM, in a closed chamber with a controlled
humidity rate, could confirm that the results of Ref. [107] on the onset of the glass
transition at room temperature apply to our samples. Additionally, AFM-based inden-
tation experiments would be of great interest as a matter of comparison. Indeed, the
experiment principle is similar, except that the sphere radius changes (R ∼ 10 µm in
colloidal-probe AFM). Thus, the hydrodynamic radius changes, and the resulting force
changes. By choosing carefully the cantilever stiffness, we could again tune an AFM-
based experiment that probes all the different regimes described in this Chapter, from
zero sphere-gel interaction to the dehydration-induced glass transition of the polymeric
gel. Finally, as a “negative control”, the same SFA experiments could be tested on hy-
drogel thin films made from a rubber-like polymer. For instance, Polyacrylamide (PAA)
hydrogels should not exhibit a dehydration-induced glass transition. Thus, the Hertz
contact modeling should provide a much softer Young’s modulus. Such an experiment
could support our interpretation and conclusion on PNIPAM hydrogels.

A longer-term project could consist in adapting the work presented in Chapter 3
on the poroelastic response to the approach case in lubrication conditions, after it has
been done for the harmonic case in Chapter 4. Such a powerful tool would surely be a
key to investigate soft hydrogels in SFA, as well as in AFM. Here we could model the
gel as a purely elastic and compressible system (with no memory, thus simpler than a
poroelastic system) in the lubricated regime, because the experimental conditions were
such that only the late-time limit was explored. Yet, when changing material (e.g. using
Polyacrylamide) or setup (e.g. using AFM), this may not be true any longer. Thus, the
theoretical framework of a poroelastic and finite-size layer approached by a sphere would
constitute the general tool, robust to time considerations, useful to describe approach
and indentation experiments on soft and porous matter.
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In this thesis, we have studied the mechanical response of PNIPAM hydrogel films
from several aspects. Here, we gather the main conclusions, and we deepen the perspec-
tives of this work.

In Chapter 2 we have shown swelling-induced surface instabilities on grafted PNI-
PAM films, resulting from swelling and drying processes. Different morphologies have
been investigated by AFM. In the swollen state, a creased pattern has been observed,
while in the dried state, two types of morphologies have been reported depending on
the swollen thickness of the film. In particular, we have exhibited a new pattern shape,
compared to patterns already reported in literature. The volcano pattern is observed
at the surface of dried and thick PNIPAM films, characterized by a sinusoidal surface
shape with small creases present on upper regions. Then, quantitative features such as
the wavelength and the amplitude have been studied as functions of the thickness of
the films. Comparisons of such characteristics between the swollen and the dried states
have led to the proposition of a mechanism to explain the observation of the volcano
pattern. We have suggested that drying makes a stiff, skin layer appearing at the sur-
face of the already-creased surface of a polymer hydrogel. The latter skin layer applies
a sufficient compressive stress to trigger a wrinkling instability [125, 151, 163], which
results in the formation of the volcano pattern. To pursue this work and validate the
latter hypothesis, an estimation of the skin layer thickness is required. Finally, such
an unexplored morphology may present considerable advantages in the context of the
fabrication of pattern-designed materials, for various application such as cellular culture
or optically-switchable devices.

Chapter 3 has established the theoretical framework of the mechanical response of a
permeable and poroelastic substrate, to an external axisymmetric pressure field. Based
on linear poroelasticity, the point-force response in terms of deformation has been de-
rived first, both in the infinitely-thick case and taking into account finite-size effects.
Then, the latter solution has been generalized to any external pressure field exhibiting
the same symmetry properties. We have shown that the poroelastic response is charac-
terized by a transition from the limit of a purely elastic and incompressible response to
the one of a purely elastic and compressible response. The propensity of the poroelastic
response to be more similar to one limit or the other is determined by comparing the in-
trinsic response time scale of the material to the one imposed by the external excitation.
This theoretical work can be applied to any situation involving a poroelastic material
with an axial symmetry, as demonstrated in the two following Chapters. An experimen-
tal validation of the presented modeling work could be provided by any experimental
technique able to track the deformed surface of a soft and porous material immersed in
a solvent. Additionally, a similar theoretical framework could be used to compute the
mechanical response of a poroelastic and permeable material to a point-force pressure
field, in the case of a planar symmetry. By applying the same generalization principle,
a direct perspective would be to theoretically address the poroelastic lift force in lubri-
cation condition [188, 198, 211].

In Chapter. 4, the framework established in Chapter 3 has been directly applied to
the case of a vertically-oscillating sphere, close to a poroelastic medium in lubrication
conditions. In the first part of this Chapter, we have derived theoretically the loss and
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storage components of the resulting force on the sphere, with complementing numerical
simulations. In the second part of this Chapter, we have presented colloidal-probe AFM-
based experiments on a swollen PNIPAM hydrogel thick film, and compared the results
to the theory established in the first part. In summary, contactless, colloidal-probe tech-
niques appear as good candidates to investigate soft and fragile materials without risks
of damaging. However, the porosity appears as a minor feature of the response, which
expands on a narrow range, from the limit of a purely elastic and incompressible behav-
ior, to the one of a purely elastic and compressible behavior. Essentially, the porosity
results in an effective compressibility. A natural perspective would be to compare the
obtained experimental data with classical rheology data, or to go to non-linear modelling
and large indentations. To conclude, we have demonstrated the efficiency of contactless
colloidal-probe methods to investigate soft and fragile samples. Such a type of experi-
mental techniques could be applied to any similar materials such as living systems, or
multilayered viscous liquids.

In the last Chapter. 5, we have presented SFA experimental results in sphere-on-
flat mode, performed on thin PNIPAM hydrogel films in lubrication conditions. The
situation is similar to the one explored in Chapter. 4. However, the ratio between the
probe radius and the sample thickness is completely different, and the experiment has
been realized in approach mode until contact. Several different regimes of mechanical re-
sponses of the sample are highlighted, from small deformations in lubrication conditions
to the dehydration-induced glass transition. Finally, describing the glassy, dehydrated
PNIPAM film as a purely elastic material, we have measured an elastic modulus that
depends of the driving approach velocity. We have rationalized the latter observation
by the presence of solvent traces still flowing inside the polymeric network. Thus, an
interesting perspective would be to model the glassy film as a poroelastic material, since
a purely elastic description highlights dynamics. Furthermore, a last regime where the
glassy film is physically in contact with the probe that imposes large deformations is
still to describe. Finally, complementary experiments could be performed to validate
our observation of a dehydration-induced glass transition, such as a study of the elastic
properties as a function of the humidity rate, in AFM. Additionally, similar approach
experiments could be tried in colloidal-probe AFM, which would change the length scales
compared to SFA. Finally, the theoretical framework developed in Chapter. 3 could be
adapted to describe approach experiments on poroelastic materials.
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Chapter 6

Résumé substantiel en français

Dans cette partie en français, l’introduction et la conclusion de la thèse sont traduites.
Ainsi le contexte général des recherches est présenté dans l’introduction, et les principaux
résultats obtenus sont résumés chapitre par chapitre dans la conclusion. La figure 3.10
présente dans la conclusion du chapitre 3 est également ajoutée. Le contenu du chapitre
préliminaire 1 n’est pas retranscrit, puisqu’il ne traite pas de résultats obtenus dans
le cadre de cette thèse mais rassemble des notions spécifiques du domaine, utiles pour
aborder les quatre chapitres suivants.

6.1 Introduction (traduite)

La matière molle et spongieuse est omniprésente dans la nature, à toute échelle. Quelques
exemples emblématiques sont donnés par des systèmes vivants, comme les bactéries ou
les éponges de mer, tandis que d’autres par des systèmes inertes, comme la boue et
l’argile. D’autres exemples peuvent être trouvés dans des objets du quotidien fabriqués
par l’homme, comme les éponges à vaisselle, ou encore au sein de matériaux synthé-
tiques complexes, comme les mousses ou les réseaux polymériques. Ces exemples sont
illustrés par la Fig. 6.1. D’un point de vue de physicien, de tels systèmes sont des
matériaux poroélastiques. Ils ont la capacité d’être déformés et de retrouver ensuite leur
forme initiale, comme signature de leur élasticité, d’absorber un solvant et d’héberger
des courants de fluides, comme signature de leur porosité. Sous cet angle, les hydrogels
de polymères réticulés sont des systèmes fascinants qui montrent particulièrement bien
leur signature poroélastique. En particulier, la capacité du poly-N-isopropylacrylamide
(PNIPAM) à gonfler d’un facteur 4 dans l’eau à température ambiante [1] a été large-
ment exploitée en science fondamentales. L’hydrogel ainsi formé est caractérisé par une
transition en température, d’un comportement hydrophile à température ambiante à
un comportement hydrophobe pour des températures supérieures à 32◦C. Lorsqu’il est
greffé sur un substrat [2], ce polymère sensible à la température est utilisé dans le de-
sign de valves microfluidiques [3, 4], dans des disciplines biomédicales comme le piège de
cellule unique [5], pour des analyses médicales ou la délivrance de substances médica-
menteuses [6], et finalement dans le domaine de la culture cellulaire [7, 8], ce qui exploite
sa biocompatibilité.

Malgré un intérêt croissant pour les hydrogels de polymères et leurs applications,
leur comportement mécanique fondamental constitue toujours un sujet peu couvert de
la littérature. Les premiers travaux sur la matière poroélastique ont été conduit par
Biot [10], dans le contexte de la mécanique de sédimentation des sols. Tandis que les
effets de la viscoélasticité ont été investigués récemment [11–13], la poroélasticité reste à
explorer en plus amples détails [14–17]. La complexité intrinsèque de ces types de matéri-
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FIG. 6.1. Exemples de systèmes souples et poreux. Une photo de boue craquelée
prise en Irlande ; Bob l’éponge ; des éponges à vaisselle ; un dessin de cerveau humain ;
une photo prise en microscopie électronique à balayage (SEM) d’un réseau de polymère ;
des éponges de mer ; une photo prise en SEM d’une mousse synthétique. Le réseau de
polymères photographié en SEM est à l’origine publié dans [9].

aux composites engendre des couplages poroélastique et/ou élastohydrodynamique, donc
leur réponse mécanique dépend de leur interaction avec leur environnement. De plus,
les hydrogels de polymères sont formés par gonflement, et sont constitués d’un mélange
de différentes espèces caractérisées par leur affinité [18]. Si la mécanique du gonflement
a été explorée pour les gels de polymères [19–21] et celle du séchage bien documentée
pour les gouttes de liquides complexes [22–25] et les films [26–29], la littérature sur la
mécanique de dégonflement des gels est moins fournie. Qui-plus-est, le processus de
gonflement et dégonflement présente des aspects asymétriques [19, 20, 30].

Dans cette thèse, le comportement mécanique de matériaux poroélastiques est étudié
lorsque qu’ils sont immergés dans un solvant à la fois de façon théorique et expérimen-
tale. Ce manuscrit est organisé comme suit. Un premier chapitre présente le contexte
global de la thèse, allant des bases de mécanique des fluides, de mécanique des milieux
continus et de physique des polymères, au contexte scientifique spécifique de la thèse.
Le deuxième chapitre fait état d’instabilités de surface qui peuvent surgir à la surface
d’hydrogels suite à leur gonflement et à celle de films de polymères suite à leur séchage.
Une nouvelle morphologie qui n’est pas documentée dans la littérature (à la connaissance
des auteurs) est mise en évidence. Dans le troisième chapitre, le cadre théorique de la
réponse mécanique poroélastique à une force ponctuelle est établi. Le profil de déforma-
tion qui résulte est calculé en fonction du temps pour un milieu poroélastique perméable,
à la fois dans le cas d’une épaisseur semi-infinie et dans celui d’une épaisseur finie. Dans
le quatrième chapitre, cette théorie est appliquée au cas d’un gel indenté doucement par
une sphère oscillante en conditions de lubrification. Les résultats théoriques obtenus sont
comparés à des expériences préliminaires conduites sur des hydrogels de PNIPAM, en
utilisant un système développé sur place et basé sur de la Microscopie à Force Atomique
(AFM). Il est démontré que ce type de montage expérimental est approprié pour sonder
des matériaux souples et fragiles, dans un mode sans contact, sans risque d’endommager
les échantillons. Cependant la porosité de l’hydrogel gonflé apparaît seulement comme
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un aspect discret de la réponse mécanique, sous la forme d’une compressibilité effec-
tive. Le dernier chapitre est dédié à l’étude de films minces d’hydrogel de PNIPAM
avec un Appareil à Forces de Surface (SFA), en mode approche. Différents régimes de
réponses mécaniques sont mis en exergue, allant d’un régime en faibles déformations à la
transition vitreuse du film de polymères indenté, déclenchée par déshydratation. Glob-
alement, il est démontré à travers différentes situations que la réponse poroélastique
est caractérisée par une transition en fonction du temps allant du comportement d’un
matériau purement élastique et incompressible à celui d’un matériau purement élastique
et compressible.

6.2 Conclusion (traduite)

Dans cette thèse, la réponse mécanique de films d’hydrogels de PNIAPM a été étudiée
sous plusieurs angles. A présent, les principales conclusions sont rassemblées, et les per-
spectives de ces travaux sont approfondies.

Au cours du chapitre 2, des instabilités de surface induites par gonflement ont été
montrées, sur des films de PNIPAM greffés, qui résultent des processus de gonflement
et de séchage. Différentes morphologies ont été explorées en AFM. A l’état gonflé, un
motif comprenant des failles nettes a été observé, tandis qu’à l’état séché, deux types
de morphologies, dépendants de l’épaisseur du film gonflé, ont été rapportés. En par-
ticulier, une nouvelle forme de motif a été observée, par comparaison aux formes déjà
rapportées dans la littérature. Le motif volcan est observé en surface de films séchés
et épais de PNIPAM, et est caractérisé par une forme de surface sinusoïdale, avec de
petites failles sur les hauteurs. Ensuite, des aspects quantitatifs comme la longueur
d’onde et l’amplitude des motifs ont été étudiés en fonction de l’épaisseur des films.
Ces caractéristiques ont été comparées entre les états séchés et gonflés, ce qui a con-
duit à la proposition d’un mécanisme visant à expliquer l’observation du motif volcan.
Il a été suggéré que le séchage fait apparaître une peau rigide et mince sur la surface
préalablement déstabilisée de l’hydrogel de polymère. Cette couche de peau engendre
une contrainte compressive suffisante pour déclencher une instabilité en forme de rides
régulières [125, 151, 163], dont le motif volcan résulte. Pour poursuivre ce travail et
valider cette dernière hypothèse, une estimation de l’épaisseur de la couche de peau est
nécessaire. Enfin, une telle morphologie jusqu’à présent inexplorée pourrait présenter
de considérables avantages dans le cadre de la fabrication de matériaux dont on dessine
les motifs, avec des applications variées, telles que la culture cellulaire ou la création de
dispositifs commutables optiquement.

Dans le chapitre 3 est établi le cadre théorique de la réponse mécanique d’un sub-
strat perméable et poroélastique, à un champ de pression axisymétrique externe. Dans
le cadre de la poroélasticité linéaire, la réponse en termes de déformation à une force
ponctuelle a d’abord été établie, à la fois dans le cas d’un substrat semi-infini et dans
celui prenant en compte les effets de taille finie. Ensuite, ce résultat a été généralisé à
tout champ de pression externe ayant les mêmes propriétés de symétrie. Il a été mon-
tré qu’une réponse poroélastique est caractérisée par une transition entre la limite d’une
réponse purement élastique et incompressible à celle d’une réponse purement élastique et
compressible, comme illustré par la figure 6.2. La propension de la réponse poroélastique
à être plus proche d’une limite ou l’autre est déterminée en comparant l’échelle de temps
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(a) (b) (c)

FIG. 6.2. Matrice réticulée de polymère gorgée de solvant. (a) : Un gel réticulé
non déformé est gonflé dans un solvant, et forme un système poroélastique idéal. Pour
les temps négatifs, le champ de concentration en solvant est considéré comme homogène
et fixé à c0. Le champ de potentiel chimique est homogène à l’équilibre et fixé à µ0.
(b) : Quand un champ de pression est soudainement appliqué à t = 0, le champ de
concentration en solvant c est toujours isotrope, du fait du caractère incompressible du
liquide, mais des gradients non nuls de potentiel chimique µ apparaissent. Le matériau
répond comme un solide élastique et incompressible. (c) : Dans la limite des temps
longs, le solvant a eu le temps de couler, dirigé par les gradients de potentiel chimique.
Le champ de concentration en solvant c est inhomogène mais le potentiel chimique a
retrouvé sa valeur d’équilibre µ0. Le matériau répond comme un solide élastique et
compressible.

propre et intrinsèque à la réponse, à celle qui est imposée par l’excitation externe. Ce
cadre théorique peut être appliqué à n’importe quelle situation impliquant un matériau
poroélastique dans une symétrie axiale, comme fait dans les deux chapitres suivants.
Une validation expérimentale du travail de modélisation présenté dans ce chapitre pour-
rait être apportée par n’importe quelle technique expérimentale permettant de suivre la
surface déformée d’un matériau souple et poreux immergé dans un solvant. Qui plus est,
un cadre théorique similaire pourrait être utilisé pour calculer la réponse mécanique d’un
matériau perméable et poroélastique à un champ de pression ponctuel, dans le cas d’une
symétrie par rapport à un plan. En appliquant le même principe de généralisation, une
perspective directe serait d’aborder le problème de la force de portance poroélastique en
conditions de lubrification [188, 198, 211].

Au chapitre 4, le cadre théorique posé au cours du chapitre 3 a été directement ap-
pliqué au cas d’une sphère oscillant verticalement au voisinage d’un milieu poroélastique,
en conditions de lubrification. Dans la première partie de ce chapitre, les composantes
de conservation et de perte de la résultante des forces sur la sphère ont été établies
théoriquement, avec des simulations numériques complémentaires. Dans la deuxième
partie de ce chapitre, des résultats expérimentaux basés sur de l’AFM en sonde colloï-
dale, obtenus sur des films épais et gonflés de PNIPAM, ont été présentés puis comparés à
la théorie établie lors de la première partie. En résumé, les techniques sans contact et en
sonde colloïdale se présentent comme de bonnes candidates pour explorer des matériaux
souples et fragiles, sans courir le risque de les abîmer. Cependant, la porosité apparaît
comme un trait discret de la réponse, qui s’étend sur une gamme restreinte allant de la
limite du comportement d’un matériau purement élastique et incompressible, à celle du
comportement d’un matériau purement élastique et compressible. La porosité se traduit
donc par une compressibilité effective. Une perspective naturelle serait de comparer les
données expérimentales obtenues avec des données de rhéologie classique. Pour conclure,
nous avons démontré l’efficacité d’une méthode sans contact et en sonde colloïdale pour
explorer des échantillons souples et fragiles. Des techniques expérimentales de ce type
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pourraient être appliquées à n’importe quel matériau similaire tel qu’un système vivant
ou des liquides visqueux en couches multiples.

Dans le dernier chapitre 5, nous avons présenté des résultats expérimentaux de SFA
en géométrie sphère/plan, obtenus sur des films minces d’hydrogel de PNIPAM, en con-
ditions de lubrification. La situation est similaire à celle introduite au chapitre 4 à
deux exceptions près : le ratio entre le rayon de la sphère et l’épaisseur du gel est com-
plètement différent et l’expérience a été réalisée en mode approche jusqu’à atteindre le
contact. Plusieurs régimes différents de réponse mécanique de l’échantillon ont été mis
en valeur, allant de faibles déformations en conditions de lubrification à une transition
vitreuse induite par la déshydratation. Enfin, en décrivant le film déshydraté et vitreux
de PNIPAM comme un matériau purement élastique, un module élastique qui dépend de
la vitesse d’approche a été mesuré. Cette observation a été expliquée par la présence de
traces résiduelles de solvant toujours en train de couler dans le réseau polymérique. En
conséquence, une perspective intéressante serait de modéliser le film vitreux comme un
matériau poroélastique, puisqu’une description purement élastique révèle une réponse
dynamique. En outre, un dernier régime reste à modéliser, celui où le film est physique-
ment en contact avec la sonde, qui lui impose de larges déformations. Enfin, des ex-
périences complémentaires pourraient être réalisées pour valider les observations d’une
transition vitreuse induite par la déshydratation, telles que l’étude des propriétés élas-
tiques en fonction du taux d’humidité en AFM. Egalement, des expériences similaires en
mode approche pourraient être testées en AFM en sonde colloïdale, ce qui changerait les
échelles de longueur. Enfin, le cadre théorique établi au chapitre 3 pourrait être adapté
pour décrire des expériences d’approche sur des matériaux poroélastiques.
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Appendix A

Analysis of experimental data

A.1 Treatment of AFM images

In the present section we detail the treatment process that is realized on raw AFM
imaging data, using the software Gwyddion http://gwyddion.net/.In Fig. A.1, we
show the main steps of treatment that are systematically applied. A raw AFM image
is usually difficult to read, as shown for example on Fig. A.1(a). The sample is usually
slightly tilted compared to the perfect horizontal plane. A first step of treatment consists
in correcting the planar tilt, as indicated by the schematic below the image. Then, we
obtain the image shown in Fig. A.1(b). To realize a topography measure, the AFM head
moves laterally along a first line, from left to right, then measures the second line (just
above or just below the first one), moving from right to left, then the third one from left
to right, etc. A gap in height may appear between two successive lines. Then, the next
step of treatment consists in correcting the gap between successive lines, as schematized
below, to obtain the image shown in Fig. A.1(c). Finally, for a more convenient reading,
the mean plane is subtracted. As a consequence, the legend color scale indicating the
measured height in each point is centered at zero. On the final image that is shown in
Fig. A.1(d), the color scale was also adapted to the height distribution, so as to improve
the contrast and ease the reading.

Additionally, if the AFM image has a defect, such as the one we show in Fig. A.1, a
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FIG. A.1. Treatment of raw AFM images. Image et different steps of treatment
and schematic of the defect to correct. (a): Raw image obtained after a topography
measurement. (b): After correction of the planar tilt. (c): After correction of the gap
between successive lines. (d): After subtracting the mean plane.
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FIG. A.2. AFM image of a scratch in a hydrogel thin film.(a): AFM image of
the scratch. On the left we can see the gel surface, on the right the glass substrate. The
white rectangle represents 5 µm. (b): Same image than in (a). The red color indicates
the masked regions (imperfections, AFM artefacts, accumulation of matter close to the
cliff...), that are not taken into account in the analysis. (c): Distribution of heights,
based on (b). The gap between the two maxima define the thickness of the gel.

mask can be drawn by hand on the concerned region, such that the calculation involved
in data treatment does not take into account the defect. For instance, here the defect
consists in a sharp roughness at the surface of the image, that is beautiful apart from
that. Such a defect would introduce an error in the calculation of the tilted plane at step
(a), and/or when computing the correspondence between successive lines at step (b), or
a shift of the mean plane height upwards at step (c). Finally, other treatments may be
useful depending on the image, such as a correction of grains, effect of adhesion... Yet
the best is to have a nice image from the start.

A.2 Measurement of a hydrogel thickness by AFM

In this section we describe how the thickness of a dry gel is typically measured by AFM. A
scratch is made on the gel with a scalpel, in an only gesture, such that the glass substrate
underneath the polymer is discovered. Then, the topography of the scratched region is
measured by AFM, in tapping mode, with a standard sharp tip (Nanosurf, Dyn190Al,
nominal stiffness knom = 48 N/m and nominal resonance frequency knom = 190 kHz). An
exploitable image should show equally both the gel surface and the glass substrate. The
“cliff" should appear vertically (perpendicularly to the scanning direction), in the middle
of the image, and be as sharp as possible. In Fig A.2(a) we show such an AFM image of
a scratch performed on a flat PNIPAM gel.After discarding irrelevant defects as shown
in Fig. A.2(b), the distribution of heights is extracted from the image and is shown in
Fig. A.2(c). Two planes are visible, and the difference of height between them provides
a measurement of the thickness of the gel. In the example presented here, we measure a
thickness of 65 ± 2 nm. The present method is used to measure the thickness of thin and
flat samples, as well as patterned ones, in both dry and wet conditions. In the case of
a patterned sample, the averaged height of the surface of the gel is taken as the highest
plane, within a larger error. In the case of a soft and swollen gel, the AFM image is done
in contact mode with a low set-point (3 nN or less) and a specific probe (Nanosensors,
qp-BioAC, softest cantilever, nominal stiffness knom = 0.06 N/m and nominal resonance
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frequency knom = 30 kHz).

A.3 Differentiating patterns

A.3.1 Height distributions of patterned samples

In this subsection we show how to differentiate creased pattern (e.g. brain-like patterns
in the dry state) from volcano pattern, using the height distributions. In Fig. A.3, we
show two AFM images of the surface topography of two samples. The first one, shown in
Fig. A.3(a) is a swollen PNIPAM hydrogel of dry thickness τdry = 950 nm (thus of swollen
thickness τwet ≈ 3.5 − 4τdry) exhibiting creases. The second one, shown in Fig. A.3(b) is
a dried PNIPAM hydrogel of dry thickness τdry = 2.95 µm.

The height distributions are extracted from the both AFM images, and plotted below
each image respectively. We observe that for creases, the distribution exhibit a shift
towards the greater heights z, while for volcano pattern, the distribution exhibit a shift
towards the smaller heights z. Thus, looking at distribution of heights constitutes a
quick mean to identify a pattern type.

A.3.2 Minkovski functions

In this subsection, we compute the Minkovski functionals [284, 285] from the two AFM
measurements of the surface topography of the two samples shown in the previous sub-
section, and show a quantitative and systematic method to classify pattern types. Con-
sidering a non-flat surface S of an object and δS its boundary, the Minkovsky functionals
are defined as:

M0(S) =
∫

S
ds, (A.1a)

M1(S) = 1
2π

∫
δS

dc, (A.1b)

M2(S) = 1
2π2

∫
δS

[ 1
R

]
dc, (A.1c)

with ds being a surface element, dc a circumference element, R the radius of the local
curvature. Then, the Minkovski surface area AMink, perimeter PMink, and connectivity
χMink are defined as :

AMink = M0(S), (A.2a)
PMink = 2πM1(S), (A.2b)
χMink = πM2(S). (A.2c)

The Minkowski area AMink, perimeter PMink, and connectivity χMink correspond re-
spectivey to the area enclosed by an isocontour, the total length of the isocontours,
and number of connected components in an isocontour. Minkowski functionals pro-
vide a method of distinguishing 3D patterns with different morphologies [286], since
morphologically-equivalent patterns exhibit the same functional dependence on surface
height. The Minkovski surface area, perimeter and connectivity were computed as a
function of height z, using a special package of Python [287], whose documentation is
available at https://boeleman.github.io/quantimpy/index.html. In Fig. A.3(c), we
show the Minkowski area AMink, perimeter PMink, and connectivity χMink as a function
of the heights z, normalized by the amplitude of the surface topography Ap. We observe
that these three quantities constitute an efficient way to clearly distinguish a pattern
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FIG. A.3. Height distribution for different patterns.(a): Surface topography mea-
sured by AFM of a swollen PNIAPM film, fabricated using a spin-coating speed of
ωspin = 2500 rpm and a polymer solution concentration at cPNIPAM = 5 %. The thickness
in the dried state is measured at τdry = 950 nm. The height distribution is extracted from
the AFM image and shown below. (b): same as in (a), with a dried sample fabricated
using a spin-coating speed of ωspin = 1000 rpm and a polymer solution concentration
at cPNIPAM = 10 %. The thickness in the dried state is measured at τdry = 2.95 µm.
(c): Minkovski area AMink, perimeter PMink and connectivity χMink as a function of the
heights z, normalized by the amplitude of the surface topography Ap

type from another. In particular, the asymmetry of the perimeter distribution PMink
gives a simple criteria to classify patterns.

A.4 Measurement of Young’s modulus by AFM

A.4.1 Processing the raw data

From raw spectroscopy data to force-distance curves: In the present section
we detail the analysis process of raw spectroscopy data [225, 226]. In practice, the
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(a) (b)

(c) (d)(d)

FIG. A.4. Treatment steps of raw AFM spectroscopy data. (a): Cantilever
deflection Zcanti as a function the piezo position zpiezo, as raw spectroscopy data. (b):
Raw force Fraw as a function of the position of the cantilever zcanti as defined by Eq. (A.3).
(c): Raw force Fraw as a function of the distance between the probe and the sample, as
defined by Eq. (A.4). (d): After removing the baseline, we obtain the force F as a
function of the sample-probe distance H.

treatment in done using the software AtomicJ [241]. In Fig. A.4 we show the main steps
of treatment that are systematically applied. A raw spectroscopy curve corresponds to
the cantilever deflection Zcanti as a function of the z-position of the piezo element zpiezo.
In Fig. A.4(a) we show an example of a raw spectroscopy curve ( we know the deflection
sensitivity DS, thus the cantilever deflection is expressed in distance). A first step is to
compute the position of the cantilever zcanti, in the same frame as the one of the piezo,
as:

zcanti = zpiezo − Zcanti. (A.3)

Thus, knowing the spring constant kcanti, in Fig. A.4(b) we show the raw force Fraw as a
function of the position of the cantilever zcanti. A second step is to convert the cantilever
position zcanti into the sample-probe distance H. The latter distance is defined as:

H = zdiv − zcanti, (A.4)

with zdiv the distance at which the force diverges, which gives the maximum indentation
of the sample that is reached. Thus, in Fig. A.4(c) we show the raw force Fraw as a
function of the sample-probe H. Finally, the baseline, which is the offset in force, is
subtracted. The latter offset may result of a non-perfect alignment of the laser on the
four-quadrant photodiode. In Fig. A.4(d) we show the resulting force F as a function of
the distance H.

Fitting force-distance curves Then, force-distance curves can be exploited depend-
ing on (i) the probe used to investigate the sample and (ii) the mechanical response of
the sample.
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FIG. A.5. Measurement of the Young’s modulus of dry PNIPAM films. (a):
Typical AFM image of the investigated sample. The PNIPAM film shown here was fabri-
cated using a spin-coating speed of ωspin = 2500 rpm and a polymer solution concentration
of cPNIPAM = 5 %. The resulting dry thickness is measured at τdry = 950 nm. The white
bar represents 5 µm (b): Measured Young’s modulus E as a function of the x, y-position
of the measurement, on a 20 × 20 µm window. (c): Histogram of the measured values of
Young’s modulus E. We retain E = 700 ± 100 MPa.

(i) The geometry of the probe determines how the contact between the probe and the
sample is achieved. The software AtomicJ takes into account the shape of the tip (cone,
pyramid, sphere, blunt tip...) and its dimensions (radius of curvature, half-angle...).

(ii) The model applied to describe the contact with the sample takes into account
mechanical properties of the latter.The Hertz model is often used as a reference [216],
however models taking into account adhesion may also be used [288, 289]. Finally, in
relevant cases, electrostatic forces are taken into account [290].

A.4.2 Young’s modulus of dry PNIPAM films

The process to extract the Young’s modulus from force-distance curves is automatized
using the software AtomicJ [241]. An example of the measurement is shown in Fig. A.5.
In Fig. A.5(a) we show a typical AFM image of the investigated sample, that exhibit
a pattern. In Fig. A.5(b) we show the measured Young’s modulus, as a function of
the x, y position of the measurement. We observe that the measured Young’s modulus
is independent of the pattern. Finally, on Fig. A.5(c) we show an histogram of the
measured values of Young’s modulus. We retain E = 700 ± 100 GPa, which is the most
represented value in the histogram.

A.5 Enforcement of the period-doubling hypothesis

In Sec. 2.3.2, we performed a fit of experimental data, which are the expected wavelength
in the swollen state of patterns observed at the surface of PNIPAM hydrogels, λwet

p , as a
function of the expected swollen thickness τwet. The model on which the data are fitted is
developped by Dervaux and Ben Amar [143]. The fit was done on two fitting parameters
α1 and α2, that correspond respectively to a prefactor and the dry elastocapillary length
lcapdry, as given by Eq. (2.12). The wet expected wavelength is defined by the period
doubling hypothesis, formulated in Eq. (2.7).

In the present section we question the factor 2 between the wavelength in dried and
swollen states in the thin-film regime. We perform the same fit, but with a third fitting
parameter, which corresponds to the factor between the wavelengths. Thus, the model
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FIG. A.6. Fit of the ratio between swollen and dried wavelength in the thin-
film regime. Expected wavelength λwet when swollen as a function of expected swollen
thickness τwet = SRτdry. The experimental data are fitted with the model of Dervaux and
Ber Amar. (a): With two fitting parameters α1 and α2, imposing the ratio between the
swollen and dried wavelength in the thin-film regime. (b): With three parameters, α1 α2
and α3, the ratio between the swollen and dried wavelength in the thin-film regime being
kept as a fitting parameter.

on which the experimental data are fitted reads:

λwet
p = α1

4πτdry

log
[44.953τdry

α2

] , (A.5)

{
λwet

p = α3λdry
p , for τdry ≤ τdry,c

λwet
p = λdry

p , α3for τdry ≥ τdry,c.
(A.6)

The results are shown in Fig. A.6. In panel (a) we show the same data as in
Fig. 2.14(a), for reference, with the best fit line established with two fitting parame-
ters. In Fig. A.6(b), we show the experimental data fitted with three fitting parameters,
based on Eqs. (A.5) and (A.6). We obtained a prefactor and an elastocapillary length
from the fitting parameters α1 and α2 respectively, that are similar to the one obtained
with a two-parameters fit, within 2 − 3 %. Finally, we obtain from the third fitting pa-
rameter α3 the ratio between the swollen and dried wavelengths in the thin-film regime,
as α3 = 2.04, instead of the precise value of 2 that is imposed in the two-parameter fit.
In conclusion, the hypothesis of the period doubling holds, within a 2 % error, which is
small considering the dispersion of the data.

A.6 Finding centers on SFA images

In this section we detail how the center of an interference image is found numerically.
The raw image is first divided by the background image. A typical obtained image is
shown in Figs. A.7(a) and (b). A first guess of the center position is given manually on
the last image of the series (we analyze from the closest distance D, thus we start with
the last image). The coordinates of the center (x0, y0) being guessed, each pixel of the
image is associated to cartesian coordinates (x, y), then to polar coordinates (r, θ). In
Fig. A.7(c) the same image is shown, in polar coordinates.

The position of the center is numerically optimized from the first guess introduced
manually, by working on the image in polar coordinates. We discretize linearly the
azimuth axis in N points with a angle step ∆θ, and we note θi = i∆θ. For a given
column j (corresponding to a given rj), the following loss function on the intensity I (in
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(a) (b)

(c)

FIG. A.7. Numerical search for the center of the Newton’s rings.(a): Large
plan of an interference image, after division by the background image. (b): Zoom on
the center of the rings. (c): Conversion of the image into polar coordinates. The light
intensity is plotted as a function of the radial coordinate r (horizontal axis) and the
azimuths θ (vertical axis).

grey scale) is computed:

L(rj) =
N−1∑
i=0

(
I(rj , θi) − Ī(rj)

)2
, (A.7)

with Ī(rj) being the intensity averaged over a column. Then, the position of the center
(x0, y0) is optimized so as to minimize the function L. Finally, the coordinates are
obtained with a precision smaller than a pixel.
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A.7. FRONT VELOCITY OF THE SPHERICAL PROBE IN SFA EXPERIMENTS

FIG. A.8. Front velocity of the spherical probe in SFA.From the data of Fig. 5.6(b),
the time-derivative of the distance D between the two glass interfaces is computed and
plotted as a function of V t, the traveling distance imposed at the back of the spring.

A.7 Front velocity of the spherical probe in SFA experi-
ments

In this section we compute the time-derivative of the distance D measured between
the two glass interfaces in SFA experiments. We use the experimental data shown in
Fig. 5.6(b). The experimental data are first filtered using a Savitsky Golay filter of order
3, on a 15-points window (see Appendix C.2.4). Then the time derivative is computed.
The obtained velocity is filtered again, with a Savitsy Golay filter of order 3 on a 15-
points window. In Fig. A.8 we show the front velocity of the spherical probe, Ḋ, as a
function of the traveling distance imposed at the back of the spring, V t. We observe
a first plateau regime for each command velocity, which correspond to the early-time
regime, characterized by a constant velocity of the sphere in water. Then a second regime
appears for V t ≥ 1.5 µm, characterized by a slow decrease of each individual velocity,
with front velocities on the order of Ḋ ≈ 1 nm/s.

159



Appendix B

Crossover between lubrication
and contact regimes in SFA
experiments

(a)

(b)

FIG. B.1. Zoom around the inflection point in distance-time representation.
Distance D between the two glass interfaces as a function of time, zoomed around the
inflection point, for each of the ten approach curves shown in the Chapter 5. (a): First
data set, made of four curves. (b): Second data set, made of six curves.
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Appendix C

Numerical Techniques

In reciprocal spaces, expressions were plotted using a logarithmic discretization of the
spectral axis s, with a total number of points Ns = 500, on a range of s ∈ [10−3; 103].
For the finite case, numerical errors are seen for values of q lower than 1.

C.1 Laplace inverse transforms
Laplace backward transform is formally expressed by the Bromwich intergral as in com-
plex space:

X(t) = 1
2πi

∫ γ+i∞

γ−i∞
dq X̂(q)eqt. (C.1)

Talbot’s algorithm is used to compute numerically the inverse Laplace transform [255].
The inverse transform is approximated by:

X(t) = 2
5t

M−1∑
k=0

Re
(

wkX̂

(
αk

t

))
, (C.2)

with the nodes given by:

α0 = 2M

5 , αk = 2kπ

5

(
coth(kπ

M
) + i

)
1 ≤ k < M, (C.3)

and the weight by:

w0 = eα0

2 , wk =
[
1 + i

kπ

M

(
1 + coth(kπ

M
)2
)

− i coth(kπ

M
)
]

eαk 1 ≤ k < M. (C.4)

A precision of M = 24 is chosen, and the time axis is linearly discretized.
A requirement of Talbot’s algorithm is that the function to invert should be explicit

in Laplace space. As such, Laplace backward transforms are always computed first on
explicit functions in reciprocal space. Then, Hankel backward transforms are computed
on real-time expressions.

C.2 Hankel inverse transforms

C.2.1 Riemann summation

In the figures shown in this chapter, the backward Hankel transforms were computed
with Riemman summation over a finite domain. We recall the backward transform of
order 0:

X(r) =
∫ ∞

0
ds X̂(s)J0(sr)s. (C.5)
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For the semi-infinite case, a linear discretization scheme was used, with a fixed space
step both in spectral and real domains, respectively ds and dr, using Ns and Nr points.
The integral is approximated by a Riemann summation so that the backward transform,
expressed at the point ri = i ∗ dr, reads:

X(ri) =
Ns−1∑
j=0

X̂(sj)J0(sjri)sjds. (C.6)

The numerical parameters chosen are Ns = Nr = 200 000 and dr = 0.005, on a finite
reciprocal domain s ∈ [10−3; 103].

C.2.2 Gauss-Legendre quadrature method

For the finite case, a non-linear, more adapted discretization scheme is chosen to increase
the precision. The integral is computed using Gauss-Legendre quadrature method. The
integral of an expression f on an interval x ∈ [−1; 1] is approximated by:∫ 1

−1
dx f(x) ≈

N∑
j=0

wjf(xj), (C.7)

with xj the j-th zero of the Legendre polynomial of order n Pn and wj the associated
weight, given by:

wj = 2
(1 − x2

j ) [P ′
n(xj)]2

. (C.8)

A mapping of the s axis on [−1; 1] is performed using a linear change of variable and
leads to the following discretization of the reciprocal axis:

sj = sNs−1 − sN0

2 xj + sNs−1 + sN0

2 , (C.9)

such that the backward transform expressed at the point ri reads:

X(ri) =
Ns−1∑
j=0

X̂(sj)J0(sjri)sjwj . (C.10)

The numerical parameters chosen are Ns = Nr = 200 000 and dr = 0.05, on a finite
reciprocal domain s ∈ [10−4; 102].

C.2.3 Fourier-Bessel series

Another method based on Fourier-Bessel serie was explored to numerically compute
inverse Hankel transfoms on a finite domains [291]. Let us denote jk the k-th root of
the Bessel function of order 0 J0, and respectively sN and rN the upper bounds of the
reciprocal and real domains. The reciprocal axis s and the real axis r are discretized on
a total of N points, as:

sm = jm

rN
= jmsN

jN
1 ≤ m ≤ N, (C.11a)

rk = jkrN

jN
= jk

sN
1 ≤ k ≤ N. (C.11b)

The forward Hankel transform is approximated by:

X̂(sm) =
N∑

k=1

2
s2

N J2
1 (jk)

X(rk)J0

(
jkjm

jN

)
. (C.12)
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C.3. NUMERICAL RESOLUTION OF THE FREDHOLM INTEGRAL

FIG. C.1. Effect of a Savitsky-Golay filter of order 3. A Savitsky-Golay filter of
order 3 is applied on a 9-points wide sliding window, for a total of 200 000 points.

The backward Hankel transform is approximated by:

X(rk) =
N∑

m=1

2
rN J2

1 (jm)
X̂(sm)J0

(
jmjk

jN

)
. (C.13)

This method is claimed to be efficient to reduce numerical errors due to the truncation
of the integral at a finite value sN , yet it adds constraints on the sampling in both
reciprocal and real space, such as sN rN = jN .

C.2.4 Savitsky-Golay filter

After having applied both backward Laplace and Hankel transforms, a few residual
oscillations remain on the numerical result. Curves are smoothened using a polynomial
Savitsky-Golay filter of order 3, on a 9 points-wide sliding window, for a total of 100 000
(finite-sized case) or 200 000 (semi-infinite case) points. Fig.C.1 shows that when an
effect of smoothening is obtained, residual oscillations due to numerical challenges are
erased, and results are more lisible. For our purpose no information is lost in the process.

C.2.5 Numerical calculation of the finite-thickness poroelastic Green’s
function in reciprocal space

When computing large numbers with Python, fatal errors occur (“OverFlowError") and
the software does not end the computation. To avoid this problem, the calculation is
made as follows:

ŵτ (s, q) =



F0
4πGsq

N1 + N2 + N3
D1 + D2 + D3

with Eqs. (3.42) and (3.43), for s

√
F0
G

≤ 100

F0
4πGsq

1
1 + ΛDpes2

q

(
1 −

√
1 + q

Dpes2

) with Eq. (3.35), for s

√
F0
G

> 100

(C.14)

C.3 Numerical resolution of the Fredholm integral

In this section we detail the numerical resolution of the Fredholm integral of the second
kind used in Sec. 4.1.5. We first recall the integro-differential equation of the Fredholm
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integral:

p∗(k) = −3ik

4 K1(k) − 3i

2k

(
Hc
H

)3/2 ∫ ∞

0
ds G∗(s)p∗(s)K(s, k), (C.15)

with the variables s, k, the complex pressure field p∗ and the Green’s function G in
reciprocal space being dimensionless. The kernel K of the Fredholm equation has an
analytical solution [261], given by Eq. (4.30). The integral is evaluated with Gauss-
Legendre quadrature method described in Appendix C.2.2. The s-axis is discretized in
N points, we denote sj the j-th point being the j-th zero of the Legendre polynomial of
order N and wj the associated weight. We denote the complex pressure field p∗ expressed
at the discrete point kj : p∗

j = p∗(kj), and the kernel K expressed at the discrete points
sl and kj : Kl,j = K(sl, kj). The discretized version of Eq. (C.15) reads:

p∗
j = −3ikj

4 K1(kj) − 3i

2kj

(
Hc
H

)3/2 N−1∑
l=0

wlG∗(sl)p∗
l Kl,j . (C.16)

We can write the latter equation under the form of a matrical system:

M.P = RHS, (C.17)

with P the vector to solve for, RHS a known vector and M a matrix to invert, the
expressions of which are given by:

Pl = p∗
l , l ∈ J0; N − 1K, (C.18a)

RHSj = −ikjK1(kj), j ∈ J0; N − 1K, (C.18b)

Mj,l = 4
3δl,j − 2i

kj

(
Hc
H

)3/2
wlG∗(sl)Kl,j , l, j ∈ J0; N − 1K, (C.18c)

with δl,j the Kronecker symbol. The matrix M can be numerically inverted, such that
the complex pressure field is given in reciprocal space by:

P = M−1.RHS. (C.19)

The discretized complex pressure field at a point kl is then given by:

p∗
l = Pl =

(
M−1

)
l,j

RHSj , l ∈ J0; N − 1K. (C.20)

C.4 Calculation of the finite-thickness poroelastic Green’s
function with Mathematica

In this section is given a Mathematica code that computes formally the poroelastic
Green’s function for a finite-thickness layer in reciprocal spaces. To make the output
display, one can erase the punctuation sign “;" at the end of a line.
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In[ ]:= chi[s_, q_] = Dpe * s^2 / q;

beta[s_, q_] =

racine carrée
Sqrt[1 + 1 / chi[s, q]];

zeta[s_] = s * tau;

In[ ]:= RHS[s_, q_] = {0, -F0 / (4
nombre pi
Pi G * s^2 q), 0, 0, 0, 0};

In[ ]:= BigMatrix[s_, q_] = {{0, 0, 1, beta[s, q], -1, -beta[s, q]}, {-1 / s, 1 / s, 1, 1, 1, 1},

{1 / s, -1 / s, 0, 1 / (Lambda * chi[s, q]), 0, 1 / (Lambda * chi[s, q])},

{-tau *

exponentielle
Exp[-zeta[s]], -tau *

exponentielle
Exp[zeta[s]],

exponentielle
Exp[-zeta[s]],

exponentielle
Exp[-zeta[s] * beta[s, q]],

exponentielle
Exp[zeta[s]],

exponentielle
Exp[zeta[s] * beta[s, q]]},

{(1 + zeta[s]) / s *
exponentielle
Exp[-zeta[s]], (1 - zeta[s]) / s *

exponentielle
Exp[zeta[s]],

-

exponentielle
Exp[-zeta[s]], beta[s, q] *

exponentielle
Exp[-zeta[s] * beta[s, q]],

exponentielle
Exp[zeta[s]],

beta[s, q] *

exponentielle
Exp[zeta[s] * beta[s, q]]}, {1 / s *

exponentielle
Exp[-zeta[s]], 1 / s *

exponentielle
Exp[zeta[s]],

0, beta[s, q] / (Lambda * chi[s, q]) *

exponentielle
Exp[-zeta[s] * beta[s, q]],

0, -beta[s, q] / (Lambda * chi[s, q]) *

exponentielle
Exp[zeta[s] * beta[s, q]]}};

In[ ]:= InvBigMatrix[s_, q_] =

matrice inverse
Inverse[BigMatrix[s, q]];

In[ ]:= CoeffAB[s_, q_] = InvBigMatrix[s, q].RHS[s, q];

In[ ]:= A1[s_, q_] =

partie
Part[CoeffAB[s, q], 1];

A2[s_, q_] =

partie
Part[CoeffAB[s, q], 2];

B1[s_, q_] =

partie
Part[CoeffAB[s, q], 3];

B2[s_, q_] =

partie
Part[CoeffAB[s, q], 4];

B3[s_, q_] =

partie
Part[CoeffAB[s, q], 5];

B4[s_, q_] =

partie
Part[CoeffAB[s, q], 6];

In[ ]:= Apotential[s_, z_, q_] = A1[s, q] *

exponentielle
Exp[s * z] + A2[s, q] *

exponentielle
Exp[-s * z];

Bpotential[s_, z_, q_] = B1[s, q] *

exponentielle
Exp[s * z] + B2[s, q] *

exponentielle
Exp[s * z * beta[s, q]] +

B3[s, q] *

exponentielle
Exp[-s * z] + B4[s, q] *

exponentielle
Exp[-s * z * beta[s, q]];

In[ ]:= Uz[s_, z_, q_] =

z *

dérivée d
D[Apotential[s, z, q], z] - Apotential[s, z, q] +

dérivée d
D[Bpotential[s, z, q], z];

GreenPoroElastic[s_, q_] = Uz[s, 0, z];



Appendix D

Green’s functions

D.1 Introduction to Green’s function: resolution of a dif-
fusion equation

In this section, we detail the classical path that is used to solve a three-dimensional dif-
fusion equation. We take the opportunity of solving a simple standard diffusion equation
to present the calculation method, which scope is much more general. This method is
generally used to solve more complex systems of partial differential equations. Let us
consider the following diffusion equation over a concentration field c:

∂c

∂t
= D∇2c. (D.1)

The diffusion equation is first solved in one dimension, along the x axis, for simplicity.
First, a fundamental solution denoted G is desired, i.e. a solution that satisfies the
following initial condition:

c(x, t = 0) = c0δ(x) (D.2)
We introduce the spatial Fourier transform of the concentration field c, as:

ĉ(q, t) = 1√
2π

∫ ∞

−∞
dx c(x, t)e−iqt. (D.3)

Thus, the diffusion equation (D.1) and the initial condition given in Eq. (D.2) are ex-
pressed in Fourier space, as:

∂ĉ

∂t
= −Dq2ĉ (D.4a)

ĉ(q, t = 0) = c0. (D.4b)

The solution to Eqs. (D.4) in Fourier space is called the fundamental solution or the
Green’s function of the diffusion equation (1.16), and reads:

Ĝ(q, t) = c0exp
(
Dq2t

)
. (D.5)

By applying the inverse Fourier transform, the Green’s function is expressed in real
space, as:

G(x, t) = c0√
4πDt

exp
(

− x2

4Dt

)
. (D.6)

We consider now the three-dimensional diffusion equations written in Eq. (D.1),
associated to the fundamental initial condition, as:

c(x, t = 0) = c0δ3(x). (D.7)
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D.2. POINT-FORCE SOLUTION FOR A SEMI-INIFINITE IMPERMEABLE GEL
AND COMPARISON TO THE PERMEABLE CASE

(a) (b)

FIG. D.1. Comparison between the point-force solutions of the permeable and
impermeable cases. (a): Normalized surface deformation as a function of the radial
coordinate at the noted time, using ν = 0.1. The point-force solutions for permeable
and impermeable boundary conditions are shown, computed from the inverse transforms
of Eqs. (3.35) and (D.11). The orange and red dashed lines correspond to the inverse
transforms of Eqs. (3.36a) and (3.36b). The inset shows the same data on logarithmic
scales. (b): Relative difference between the surface deformation in the permeable and
impermeable cases, as a function of the radial coordinate, for the noted dimensionless
times. The inset shows the same data in semi-logarithmic scale.

The fundamental solution of the problem, or the three-dimensional Green’s function, is
the product of the Green’s functions in one dimension, as written in Eq. (D.6). The
resulting Green’s function in three dimension reads:

G(x, t) = c0√
4πDt

3 exp
(

− x2

4Dt

)
. (D.8)

Finally, by applying the superposition principle, the solution to the diffusion equa-
tion (1.16) associated with any initial condition is computed by convolution to the
Green’s function G, as:

c(x, t) =
∫∫∫

R3
d3x G(x − y, t)c(y, t = 0), (D.9)

with c(x, t = 0) the initial condition.

D.2 Point-force solution for a semi-inifinite impermeable
gel and comparison to the permeable case

Here, we discuss the effect of surface permeability on the point-force response. In this
chapter, the focus is made on permeable-interface case, we assumed that the gel is in
contact with a bath of its own solvent, which fixes the chemical potential of the solvent
at the surface to its reference value, at all times. If the gel is in contact with an other
kind of medium (e.g. air, solid surface, or immiscible liquid), the description should be
modified, in particular by incorporating drying. If one considers time scales smaller than
the drying time, we can neglect the solvent exchange at the interface. In that case, we
suppose the solvent flux vanishes at the surface, allowing us to impose the impermeable
boundary condition at z = 0:

J · n = ∂µ

∂z
(r, z = 0, t) = 0. (D.10)
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We can use the same method as the one described in section 3.3.1.1, in order to derive
the point-force response of a semi-infinite, permeable medium:

ŵimper(s, q) = − 1
2Gsq

1
1 + ΛDpes2

q

(
1√

1+ q

s2Dpe

− 1
) , (D.11)

where the superscript “imper” stands for the impermeable condition. We thus recover
the solution derived in Ref. [110]. The diffusive-like self-similarity discussed in the main
text, holds as well here.

The point-force responses with impermeable and permeable boundary conditions
are compared in Fig.D.1(a). Both solutions appear to be qualitatively similar, and
display the same short-term and long-term behaviors. Nevertheless, at a given time
t = 0.1F0/(GDpe), we observe that the surface deformation in the impermeable case
is smaller than the one in the permeable case. Also, the permeable solution relaxes
faster than the impermeable one towards the long-time purely elastic compressible limit.
Quantitatively, for a Poisson ratio ν = 0.1, we observe a relative difference between the
two solutions up to 35%, where the maximum difference is located at a radial position
∼
√

Dpet, as shown in Fig. D.1 (b).

D.3 Derivation of the semi-infinite, poroelastic Green’s
function in steady-state

In chapter 3 we derive the deformation profile of a semi-infinite poroelastic layer sub-
mitted to any axisymmetrical, external pressure field, in the general case.

D.3.1 Linear poroelastic theory

In this section we focus on the particular case of a periodic pressure field p, and we thus
invoke the linear response theory, we write a field X as:

X(r, t) = Re[X∗(r)eiωt], (D.12)

where ∗ indicates complex variables, i2 = −1, and Re is the real part. We recall the set
of two coupled equations Eqs. (3.8) on the concentration field and the chemical potential
that govern the problem, and write them in complex variables:

∇2
[
µ∗ − 2GΩ2 1 − ν

1 − 2ν
c∗
]

= 0, (D.13a)

Dpe∇2c∗ − iωc∗ = 0. (D.13b)

At the solvent-gel interface in the steady-state regime, a pressure field p∗(r) is applied,
thus Eq. (3.10) becomes in complex variable:

σ∗
zz = −p∗(r), σ∗

rz = 0. (D.14)

We consider the solvent-gel interface to be permeable as in section 3.2.1.2, which sets
the surface chemical potential to its reference and constant value. In the steady-state
regime, the constant disappears:

µ∗(r, z = 0) = 0. (D.15)

The poroelastic layer is considered infinitely thick. In the limit z → ∞, the stress and
strain fields vanish. The complex solvent concentration c∗ and chemical potential µ∗

fields go to 0 in the steady-state regime.
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D.3. DERIVATION OF THE SEMI-INFINITE, POROELASTIC GREEN’S
FUNCTION IN STEADY-STATE

D.3.2 Resolution

Following the method introduced by McNamee & Gibson [117, 252–254], we use the
same change of variables as in chapter 3, section 3.3.1 which consists of the introduction
of two displacement potentials A∗(r, z) and B∗(r, z), in steasy-state regime, defined by:

u∗
r = z

∂A∗

∂r
+ ∂B∗

∂r
, (D.16a)

u∗
z = z

∂A∗

∂z
− A∗ + ∂B∗

∂z
, (D.16b)

with u∗
r and u∗

z being the two components of the complex displacement field u∗. The
potentials A∗ and B∗ satisfy the following equations:

∇2A∗ = 0, (D.17a)
∇2B∗ = Ωc∗, (D.17b)

2GΩ∂A∗

∂z
= µ∗ − 2GΩ2 1 − ν

1 − 2ν
c∗, (D.17c)

Dpe∇4B∗ = iω∇2B∗. (D.17d)

Given the axisymmetry of the situation, to solve Eqs. (D.17), we reconsider the problem
in spatial spectral domain. We introduce the Hankel transform of i-th order, with i ∈
{0, 1}. In such a framwork, a given field X∗(r)is transformed into:

X̂∗(s) =
∫ ∞

0
dr X∗(r)rJi(sr), (D.18)

where J0 is the Bessel function of the first kind and zeroth order. The inversion formula
reads:

X∗(r) =
∫ ∞

0
ds X̂∗(s)sJi(sr). (D.19)

Then, the calculation path detailed in section 3.3.1 applies for the calculation in the
steady-state regime, substituing the temporal frequency q in Laplace domain by iω in the
steady-state description. Expressing Eqs. (D.17) in spectral domain, we get the following
ordinary differential equations on the transformed potentials Â∗(s, z) and B̂∗(s, z):(

∂2

∂z2 − s2
)

Â∗ = 0, (D.20a)(
∂2

∂z2 − s2 − iω

Dpe

)(
∂2

∂z2 − s2
)

B̂∗ = 0. (D.20b)

The solutions to Eqs. (D.20a) and (D.20b) that vanish at z → −∞ read:

Â∗ = a1esz, (D.21a)

B̂∗ = b1esz + b2ez
√

s2+iω/Dpe , (D.21b)

where a1, b1, b2 are integration constants, that depend on the spectral variable s and
the frequency ω. Expressing the stress and chemical-potential boundary conditions of
Eqs. (D.14) and (D.15) in reciprocal spaces in terms of the potentials, we obtain under
a matricial form:  0

− p̂∗(s)
2Gs2

0

 =

 0 1 β
−1

s 1 1
1
s 0 1

Λχ

 .

a1
b1
b2

 , (D.22)
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with:

χ = −i
Dpes

2

ω
, β =

√
1 + iω

Dpes2 =
√

1 + 1
χ

, Λ = 1 − 2ν

1 − ν
. (D.23)

Solving Eq. (D.22), we can compute a1, b1 and b2. Using Eqs. (D.16), (D.21) and (D.22),
we finally express the deformation profile in the steady-state regime:

ŵ∗(s) = −û∗
z(s, z = 0) = p̂∗(s)

2Gs

1
1 − iΛDpes2

ω

(
1 −

√
1 + iω

Dpes2

) . (D.24)

The Green’s function of the problem in the steady-state regime reads:

Ĝ∗(s) = 1
2Gs

1
1 − iΛDpes2

ω

(
1 −

√
1 + iω

Dpes2

) . (D.25)

D.4 Derivation of the finite-thickness, purely elastic Green’s
function

In chapter 3 we derive the deformation profile of a semi-infinite poroelastic layer sub-
mitted to any axisymmetrical, external pressure field, in the general case.

D.4.1 Linear elastic theory

D.4.1.1 Description of a purely elastic medium

In this section we focus on a purely elastic and compressible finite-size layer. There is no
solvent flux inside the elastic matrix, thus, the chemical potential is fixed to its reference
value µ0, and the permeability k and the solvent flux bmJ are set to zero. We recall the
definition of the strain tensor ϵ, as written in Eq. (3.1):

ϵ = 1
2
[
∇u + (∇u)T

]
, (D.26)

where u denotes the displacement field with respect to the reference state. We suppose
again the stress-strain relationship to be linear. The stress tensor σ given by Eq. (3.5),
in the absence of any flow, reads:

σ = 2G
[
ϵ + ν

1 − 2ν
Tr(ϵ)I

]
, (D.27)

where I is the identity tensor. In the absence of body force, the mechanical equilibrium
is expressed by Navier’s closure equation, given in Eq. (3.6), by:

∇ · σ = 0. (D.28)

D.4.1.2 Equation governing the displacement field

Combining the last three equations, we get and equation on the displacement field u:

∇2u + 1
1 − 2ν

∇ (∇ · u) = 0. (D.29)

Finally, we take the divergence of Eq. (D.29), and get:

∇2 (∇ · u) = 0. (D.30)

In the general case of a compressible material, the divergence of the displacement field
is not zero:

∇ · u ̸= 0. (D.31)
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D.4.2 Boundary conditions

Following the calculation path given in Chap. 3, we first describe the free interface. For
times t ≤ 0, we suppose that the gel is in the undeformed reference state with strain-
and stress-free conditions. For t = 0, an axisymmetric pressure field p(r) is applied on
the surface. At the interface i.e. z = 0 in the reference state), the stress boundary
condition is therefore given in Eq. (3.10), by:

σ · ez = −p(r)ez, (D.32)

where δ(r) denotes the Dirac distribution. At the interface with the substrate, located
at z = −τ , we consider that the elastic layer is fixed to the rigid boundary. Thus, the
displacement field is set at zero, as expressed by Eq. (3.14), which reads:

u(z = −τ) = 0. (D.33)

D.4.3 Resolution

D.4.3.1 Expression in terms of potential functions

We follow the same calculation path as in Chapter 3. Then, we introduce the same
displacement functions A(r, z, t) and B(r, z, t), defined in Eq. (3.16), as:

ur = z
∂A

∂r
+ ∂B

∂r
, (D.34a)

uz = z
∂A

∂z
− A + ∂B

∂z
, (D.34b)

and that satisfy the following equations:

∇2A = 0, (D.35a)
∇2B = ∇ · u, (D.35b)

∂A

∂z
= 1 − ν

1 − 2ν
∇ · u, (D.35c)

∇4B = 0. (D.35d)

Using Eqs. (D.35), we can write a last one that links A and B:

∂A

∂z
− 1 − ν

1 − 2ν
∇2B = 0. (D.36)

Using Eqs. (D.27), (D.34) and (D.35), we recall the components of the stress tensor, as
given in Eqs. (3.19), by:

σrr = 2G

(
z

∂2A

∂r2 − ∂A

∂z
+ ∂2B

∂r2 − ∆B

)
, (D.37a)

σzz = 2G

(
z

∂2A

∂z2 − ∂A

∂z
+ ∂2B

∂z2 − ∆B

)
, (D.37b)

σrz = 2G

(
∂2B

∂r∂z
+ z

∂2A

∂z∂r

)
. (D.37c)
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D.4.3.2 Mathematical transforms

As in Chapter. 3, we reconsider the problem in the spectral domain. We recall the
Hankel transform, introduced by Eq. (3.20), which reads:

X̂(s) =
∫ ∞

0
dr X(r, t)rJj(sr), (D.38)

with j ∈ {0, 1} being the order of the Hankel transform in space. By applying Eq. (D.38)
on Eqs. (D.35), we get the following ordinary differential equations on the transformed
potentials Â(s, z) and B̂(s, z): (

∂2

∂z2 − s2
)

Â = 0, (D.39a)(
∂2

∂z2 − s2
)2

B̂ = 0. (D.39b)

For clarity, we write the expressions of the transformed components of the displacement
field and the stress tensor, as:

ûs = szÂ + sB̂, (D.40a)

ûz = z
∂Â

∂z
− Â + ∂B̂

∂z
, (D.40b)

σ̂sz = sz
∂Â

∂z
+ s

∂B̂

∂z
, (D.40c)

σ̂zz = z
∂2Â

∂z2 + ν

1 − 2ν

(
∂2B̂

∂z2 − s2B̂

)
+ ∂2B̂

∂z2 . (D.40d)

Finally, the transformed Eq. (D.36) reads:

∂Â

∂z
+ 1 − ν

1 − 2ν

(
∂2B̂

∂z2 − s2B̂

)
= 0. (D.41)

D.4.3.3 Solutions for a finite-size layer

The solutions to Eqs. (D.39) read:

Â = a1esz + a2e−sz, (D.42a)
B̂ = (b1 + zb2)esz + (b3 + zb4)e−sz, (D.42b)

where a1, a2, b1, b2, b3, b4 are integration constants, that depend on the spectral variable s.
Combining Eqs. (D.41) and (D.42), we derive the following expressions of the integration
constants a1 and a2:

a1 = −2 1 − ν

1 − 2ν
b2, (D.43a)

a2 = −2 1 − ν

1 − 2ν
b4, (D.43b)

which reduces the problem from 6 to 4 integration constants to solve. We use an auxiliary
function as introduced in Chapter 3, which reads:

ζ = sτ. (D.44)
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Then, combining the transformed stress tensor and displacement field given in Eqs. (D.40),
together with the boundary conditions given in Eqs. (D.32) and (D.33), we obtain:

σ̂sz(s, z = 0, q) = 0 =2G [s(b1 − b3) + b2 + b4] , (D.45a)

σ̂zz(s, z = 0, q) = −p̂(s) =2Gs

[
s(b1 + b3) + 2(1 − ν)

1 − 2ν
(b2 − b4)

]
, (D.45b)

ûs(s, z = −τ) = 0 =s
[
b1e−ζ + b3eζ

]
+ ζ

1 − 2ν

[
b2e−ζ + b4eζ

]
, (D.45c)

ûz(s, z = −τ) = 0 =s
[
b1e−ζ − b3eζ

]
+ 1

1 − 2ν

[
(3 − 4ν + ζ)b2e−ζ

+(3 − 4ν − ζ)b4eζ
]

. (D.45d)

Equations (D.45) can be written under the form of a matrix equation, with division by
the factors 2G and 2Gs, on the first two lines, respectively, as:

0
− p̂(s)

2Gs
0
0

 =


s 1 −s 1
s 2(1−ν)

1−2ν s −2(1−ν)
1−2ν

se−ζ ζ
1−2ν e−ζ seζ ζ

1−2ν eζ

se−ζ 3−4ν+ζ
1−2ν e−ζ −seζ 3−4ν−ζ

1−2ν eζ

 .


b1
b2
b3
b4

 . (D.46)

Using the formal calculation software Mathematica, the four coefficients b1, b2, b3, b4 are
computed, then, the two a − 1, and a2. The vertical displacement field ûz is computed.
By taking the opposite of its value in z = 0, we obtain the deformation profile of a
finite-size, purely elastic and compressible layer, as:

ŵcomp
τ (s) = −ûz(s, z = 0) = p̂(s)(1 − ν)

Gs

2ζ − (4ν − 3) sinh(2ζ)
5 + 4ν(2ν − 3) + 2ζ2 − (4ν − 3) cosh(2ζ) ,

(D.47)
and the Green’s function of the problem reads:

Ĝcomp
τ (s) = 1 − ν

Gs

2ζ − (4ν − 3) sinh(2ζ)
5 + 4ν(2ν − 3) + 2ζ2 − (4ν − 3) cosh(2ζ) , (D.48)

as given in Eq. (3.45) and in [203], and derived in [212].
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Appendix E

Mechanical response of a thick
poroelastic gel in contactless
colloidal-probe rheology

In this section we reproduce the published work from which Chapters. 3 and 4 are
inspired [251], for reference.
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When a rigid object approaches a soft material
in a viscous fluid, hydrodynamic stresses arise
in the lubricated contact region and deform the
soft material. The elastic deformation modifies in
turn the flow, hence generating a soft-lubrication
coupling. Moreover, soft elastomers and gels are
often porous. These materials may be filled with
solvent or uncrosslinked polymer chains, and might
be permeable to the surrounding fluid, which further
complexifies the description. Here, we derive the
point-force response of a semi-infinite and permeable
poroelastic substrate. Then, we use this fundamental
solution in order to address the specific poroelastic
lubrication coupling associated with contactless
colloidal-probe methods. In particular, we derive
the conservative and dissipative components of the
force associated with the oscillating vertical motion
of a sphere close to the poroelastic substrate. Our
results may be relevant for dynamic surface force
apparatus and contactless colloidal-probe atomic
force microscopy experiments on soft, living and/or
fragile materials, such as swollen hydrogels and
biological membranes.
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1. Introduction
Modern synthesis techniques and observation methods at small scales have fostered intense
research activity on soft materials and their interfaces [1]. Many of these materials are elastomers
and gels, deform considerably under small stress, and are commonly found in biological and
technological systems. Stimuli-responsive hydrogels, for example, are candidate materials in
novel devices for the detection of diseases by isolation of cells [2]. Elastomers and gels are
typically made of synthetic or natural polymers that are crossed-linked to form a network. When
immersed in a favourable solvent, the polymer matrix swells as described by Flory–Huggins
theory [3,4]. For such gels, the material may eventually contain a large proportion of solvent
molecules with a volume increase up to a factor five, for example [5], or more.

Solvent molecules inside a gel can diffuse through the inter-chain regions of the polymer
matrix. Therefore, when a load is applied to a gel, material deformations are time-dependent.
This dynamic response arises since the chains are restrained from unbounded displacements by
elasticity while the solvent motion implies viscous dissipation. The latter mechanism is called
poroelasticity, which has been extensively used to describe the mechanical properties of gels. The
first poroelastic theory was introduced by Biot to model the consolidation of soils [6]. Since then,
additional features have been added such as nonlinear elasticity [7,8], viscoelasticity [9] or surface
stresses [10–12], and instabilities have been considered [13]. Notably, the mechanical response of
a gel depends on the interactions between the gel and its environment. If the gel is indented by
a rigid object, as in the emblematic example of contact mechanics [14–19], solvent molecules do
not flow across the interface between the gel and the indenter, which is thus impermeable. By
contrast, if the gel is immersed in its own solvent, then the solvent molecules can be transported
across the gel–solvent interface, which is thus permeable. In the case of a spherical indenter
in contact with the probed gel, impermeability should be considered in the central contact
region while permeability should be considered in the coronal, contact-free region around the
indenter.

In addition to the permeability boundary condition above, when a rigid object moves in
a viscous fluid near a soft surface, it generates hydrodynamic stresses [20] that, despite the
lack of direct contact, may deform the soft surface. In turn, the deformation of the soft surface
modifies the flow which generates so-called soft-lubrication couplings, that are at the heart of the
recent development of gentle, contactless rheological methods for soft materials [21–29]. These
methods have been employed to measure the rheology of diverse surfaces such as elastomers
[30], gels [31,32], glasses [33], living cells [34] and liquid–air interfaces with impurities [35,36].
They typically involve colloidal-probe atomic force microscopy [37,38], dynamical surface force
apparati [39–41] or tuning-fork microscopes [42]. The underlying principle involves driving a
spherical probe near a soft surface of interest (see figure 1b), and to combine the measured force
and the soft-lubrication model in order to infer the material rheology.

Another interesting aspect of soft-lubrication couplings is the emergence of inertial-like forces
at zero Reynolds number, such as the lift force for transverse driving [43–52]. As a direct
consequence, the effective friction between two objects in respective sliding motion can be
strongly reduced [53–56], as compared to the classical rigid lubrication case. This might have
important practical implications, in physiology for instance, since the friction between bones in
mammalian joints [57,58] may be strongly reduced through the presence of poroelastic cartilages
between the solid bones and the synovial lubricant. In the same way, the wet contact between the
eyelid and the eyeball is complemented by a stratification of polymer-like and gel-like layers, that
may offer better sliding when blinking [59].

Despite the above interest in soft materials and their rheology measured from contactless
methods, it is interesting to realize that only simple linear elastic-like constitutive responses have
been addressed in the context of soft-lubrication theory. While the effects of viscoelasticity have
been recently investigated in more detail [60–62], the effects of poroelasticity remain scarcely
and partially addressed [63–65] and certainly at a too basic level to address the more complex
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(a)

poroelastic substrate

P(r, t)

F0δ(r)

w(r, t)

w(r, t)

h(r, t)viscous fluid

motor
drive

hard sphere

z
r

(b)

G,η ,k, v

η, ρ

ω
P(r, t)

(r, t)

Figure 1. Semi-infinite permeable poroelastic medium deformed by two different external axisymmetric pressure fields. (a)
A point-force pressure field P(r, t)= F0δ(r) is suddenly applied at t = 0 on the poroelastic substrate, and generates a surface
deformationw(r, t). The latter is directly related to the Green’s functionG(r, t).We denoteG,ν and k, the effective shear elastic
modulus, effective Poisson ratio and porosity of the substrate, respectively, aswell asη the viscosity of the solvent flowing in the
porousmaterial. (b) In contactless colloidal-probe rheologicalmethods, amicrometric sphere is oscillating at angular frequency
ω normally to the substrate in a liquid (identical to the solvent in the gel here) of dynamic shear viscosityη and densityρ . The
hydrodynamic lubrication pressure field P(r, t) generated by the associated flow deforms the gel surface, leading to a deformed
liquid-gap profile h(r, t).

and subtle responses of nonlinear functionalized materials [66]. Early works on purely porous
substrates suggest an equivalent description involving effective slippage at the interface, with
either the slip length considered to be on the order of the pore size [67], or a full slip boundary
condition [68], while more recent work suggests a key role of the permeability boundary
conditions [69].

In this article, in view of the identified gap in the literature noted above, we derive a model
to characterize the mechanical response of thick poroelastic gels in the framework of contactless
colloidal-probe rheological methods. Since we are interested in describing gels in contact with
a reservoir of solvent, a full permeability boundary condition at the gel–solvent interface is
considered. Our focus contrasts with a previous study in the impermeable case [10,70], that is
more relevant to methods involving direct solid contact. In the first part, we obtain the surface
deformation of a semi-infinite, permeable, poroelastic layer under the action of an arbitrary
pressure field. We use the formalism of Green’s functions in axisymmetric conditions, as was
done for purely elastic media in the context of soft lubrication [24,25,29,71,72], or for a poroelastic
but impermeable soft substrate [10]. In the second part, we apply this formalism to the canonical
situation for contactless colloidal-probe rheology, namely the soft-lubricated motion of a sphere
oscillating vertically near a poroelastic gel, and we characterize the substrate deformation and
resulting normal force in detail.

2. Mechanical response to an external pressure field

(a) Linear poroelastic theory
The considered system is shown in figure 1a. It consists of a gel that occupies the half-space
defined by z ≤ 0. We suppose that the mechanics of the gel is described by the linear poroelastic
theory. As mentioned in the introduction, this model was first established by Biot [6], and was
adapted to model the migration of solvent in elastomeric gels [10,15,70]. We take as a reference
state a swollen gel, with a homogeneous solvent concentration c0, and where the chemical
potential of the solvent inside the gel is μ0. The elastic deformation of the gel is characterized by
the strain tensor ε. The latter is defined as the symmetric part of the displacement field gradient
tensor, as

ε = 1
2

[∇u + (∇u)T], (2.1)
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where u denotes the displacement field with respect to the reference state. The solvent mass being
conserved, the molar concentration c satisfies the continuity equation:

∂c
∂t

+ ∇ · J = 0, (2.2)

where the flux of solvent inside the gel is denoted J. The linear poroelastic theory assumes that
the solvent flow is driven by the gradient of solvent chemical potential μ, through the Darcy law:

J = −
(

k
ηΩ2

)
∇μ. (2.3)

Here, η and Ω are the viscosity and molecular volume of the solvent, respectively, and k is the
permeability that is on the order of the pore surface area of the swollen polymeric network—
but with a prefactor depending on the specific network architecture. The solvent and the polymer
network are both supposed to be incompressible. As a consequence, the local variations of volume
of the polymer network are due to the local changes in solvent concentration, which sets the
condition:

Tr(ε) = ∇ · u = (c − c0)Ω , (2.4)

where Tr is the trace. As discussed in [17], we expect that the free energy density U of the gel
is a function of the strain tensor and the concentration field. The work done on a gel element is
given by δU = σijδεij + (μ − μ0)δc, where σ is the mechanical stress tensor. Nevertheless, because
of the incompressibility condition in equation (2.4), the solvent concentration is no longer an
independent variable, and the free energy density only depends on strain. The latter is supposed
to follow the standard linear-elastic energy density, i.e. U = G[ε : ε + (ν/(1 − 2ν))Tr2(ε)], where G
and ν are the effective shear elastic modulus and Poisson ratio at equilibrium, respectively. The
stress tensor is then given by [17]

σ = 2G
[
ε + ν

1 − 2ν
Tr(ε)I

]
− μ − μ0

Ω
I, (2.5)

where I is the identity tensor. The difference in chemical potentials per molecular volume
appears as a hydrostatic pressure, often called pore pressure, and is obtained by enforcing
the incompressibility condition with a Lagrange multiplier. In the absence of body force, the
mechanical equilibrium is expressed by Navier’s closure equation:

∇ · σ = 0. (2.6)

Combining the two last equations leads to:

GΩ

(
∇2u + Ω

1 − 2ν
∇(c − c0)

)
= ∇(μ − μ0). (2.7)

Invoking equation (2.3), equations (2.2), (2.4) and (2.7) form a closed system of five equations for
the five fields μ, c and the three components of u. Combining the latter equations reduces the
problem to a set of two coupled equations on the concentration field c and chemical potential μ,
as

∇2
[

(μ − μ0) − 2GΩ2 1 − ν

1 − 2ν
(c − c0)

]
= 0 (2.8a)

and
∂c
∂t

=Dpe∇2c, (2.8b)

where we have introduced an effective, poroelastic diffusion coefficient

Dpe = 2(1 − ν)
1 − 2ν

Gk
η

. (2.9)

Equation (2.8a) couples the chemical potential with the concentration, as the flow of solvent is
driven by gradients of chemical potential (or equivalently, gradients of pore pressure). Equation
(2.8b) describes the diffusion of solvent through the porous matrix, with Dpe of equation (2.9)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 M

ar
ch

 2
02

3 



5

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220832

..........................................................

constructed using macroscopic material parameters. An osmotic modulus, 2(1 − ν)/(1 − 2ν),
arises in the expression of the diffusion coefficient Dpe. We note lastly, however, that even
while Dpe is constructed from these macroscopic parameters, one can recover a molecular-
scale diffusion coefficient. To make the correspondence, we use the Stokes–Einstein relation for
molecular diffusion, Dμ ∼ kBT/(ηa), with kBT and a ≈ Ω1/3 the thermal energy and monomer
size, respectively. Estimating furthermore the typical polymeric modulus G ∼ kBT/(Na3), and
the permeability k ∼ Na2, where N is a typical number of monomers between crosslinks in the
network, we find Dpe ∼Dμ upon substitution into equation (2.9).

(b) Point-force driving
We now derive the response of the gel to a spatially delta-distributed force density applied to
the surface of the gel. Prior to the application of such a force, i.e. for times t ≤ 0, we suppose that
the gel is in the (swollen) reference state with strain- and stress-free conditions. For t ≥ 0, a point-
force pressure source of magnitude F0 is suddenly applied on the surface. This forcing drives a
deformation of the gel surface, and solvent flow within the polymer matrix. At the interface (i.e.
z = 0 in the reference state), the stress boundary condition is, therefore, given by

σ · ez = −F0δ(r)H(t)ez, (2.10)

where H(t) denotes the Heaviside step function and δ(r) the Dirac distribution.
In the limit z → −∞, the stress and strain fields vanish and the solvent concentration field

reaches its reference equilibrium value c0. At infinitesimally small times after the point force has
been applied, the solvent did not have time to flow, so that the solvent concentration is the same
as the one at t < 0, i.e.:

c(r, z, t = 0) = c0. (2.11)

We suppose that the gel is in contact with a reservoir of solvent molecules, which sets the surface
chemical potential to the reference equilibrium value μ0. Such a permeability condition allows for
solvent exchange between the gel and the outer reservoir, and is relevant to situations where the
gel is immersed in a liquid phase (e.g. its own solvent) with some affinity between the two. Thus,
the boundary condition on the chemical potential at the undeformed interface of the gel reads:

μ(r, z = 0, t) = μ0. (2.12)

(i) Resolution

To determine the surface deformation w(r, t) associated with the pressure source of equation (2.10)
(see figure 1a), we follow the method introduced by Liu et al. [11], McNamme & Gibson [73,74]
and Gibson et al. [75]. The key ingredient of that method is the introduction of two displacement
potentials A(r, z, t) and B(r, z, t), defined by

ur = z
∂A
∂r

+ ∂B
∂r

(2.13a)

and

uz = z
∂A
∂z

− A + ∂B
∂z

, (2.13b)

and that satisfy the following equations:

∇2A = 0, (2.14a)

∇2B = Ω(c − c0), (2.14b)

2GΩ
∂A
∂z

= (μ − μ0) − 2GΩ2 1 − ν

1 − 2ν
(c − c0) (2.14c)

and
∂∇2B

∂t
=Dpe∇4B. (2.14d)
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Substituting the strain tensor ε in equation (2.5), using equations (2.1) and (2.4), the stress tensor
σ can be written as a function of μ, c and u. Using then equations (2.13), (2.14b) and (2.14c), the
stress tensor can be expressed as a function of A and B, as

σrr = 2G

(
z
∂2A
∂r2 − ∂A

∂z
+ ∂2B

∂r2 − �B

)
, (2.15a)

σzz = 2G

(
z
∂2A
∂z2 − ∂A

∂z
+ ∂2B

∂z2 − �B

)
(2.15b)

and

σrz = 2G

(
∂2B
∂r∂z

+ z
∂2A
∂z∂r

)
. (2.15c)

We note that azimuthal stresses and displacements have not been considered here, given the
axisymmetry of the problem.

To solve equation (2.14b), we reconsider the problem in the spectral domain. Specifically, we
use the Hankel transform of zeroth order in space and the Laplace transform in time. In such a
framework, a given field X(r, t) is transformed into:

X̂(s, q) =
∫∞

0
dt e−qt

∫∞

0
dr X(r, t)rJ0(sr), (2.16)

where J0 is the Bessel function of the first kind and zeroth order. The inversion formula reads:

X(r, t) = 1
2π i

∫ γ+i∞

γ−i∞
dq eqt

∫∞

0
ds X̂(s, q)sJ0(sr), (2.17)

where the inverse Laplace transform is written using the Bromwich integral. Then, expressing
equation (2.14b) in the spectral domain and invoking the initial condition ∇2B(r, z, 0) = 0, we get
the following ordinary differential equations on the transformed potentials Â(s, z, q) and B̂(s, z, q):(

∂2

∂z2 − s2

)
Â = 0 (2.18)

and (
∂2

∂z2 − s2 − q
Dpe

)(
∂2

∂z2 − s2

)
B̂ = 0. (2.19)

The solutions to equations (2.18) and (2.19) that vanish at z → −∞ read:

Â = a1esz (2.20a)

and
B̂ = b1esz + b2ez

√
s2+q/Dpe , (2.20b)

where a1, b1, b2 are integration constants, that depend on the spectral variables s and q. Expressing
the stress and chemical-potential boundary conditions of equations (2.10) and (2.12) in terms of
the potentials, we obtain:

σ̂sz(s, z = 0, q) = 0 = −2Gs

[
b1s + b2

√
s2 + q

Dpe

]
, (2.21a)

σ̂zz(s, z = 0, q) = − F0

2πq
= 2G[−a1s + (b1 + b2)s2] (2.21b)

and

μ̂(s, z = 0, q) − μ̂0 = 0 = 2GΩ

[
1 − ν

1 − 2ν
b2

q
Dpe

+ a1s
]

. (2.21c)

Solving equations (2.21), we obtain a1, b1 and b2.
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(ii) Results and discussion

Having solved the poroelastic problem equations (2.8)–(2.12) for the potentials A, B defined in
the previous section, we find the surface normal deformation of the gel ŵ(s, q) = −ûz(s, z = 0, q) in
reciprocal space (see equation (2.16)) by invoking equation (2.13b), as

ŵ(s, q) = F0

4πGsq
1

1 + Λ(Dpes2/q)(1 −
√

1 + (q/Dpes2))
, (2.22)

where the Poisson ratio appears in the compressiblity factor

Λ = 1 − 2ν

1 − ν
. (2.23)

We first note that if the gel is nearly incompressible, i.e. as ν → 1/2, then Λ → 0 and the
poroelasticity does not affect the surface deformation as revealed in equation (2.22). In such a
case, the poroelastic medium responds as a purely elastic and incompressible one, at all times.
Similarly, if the permeability is small, i.e. as k → 0, the diffusion constant Dpe of the solvent
vanishes and the medium again behaves as an incompressible elastic material. In the opposite
limit of large permeability, the solvent can diffuse almost instantaneously and the stress is
immediately relaxed, so that the response is one of a compressible elastic material at all times.

In figure 2a is shown ŵ(s, q) plotted as a function of s for various q. We choose a value ν = 0.1, a
typical value for swollen gels and giving finite Λ. The vertical normalization is chosen such that
dimensionless values of s and q were used, length is normalized by

√
F0/G and time by F0/(GDpe).

The results show parallel power-law decays in the small- and large-s limits, with a larger prefactor
for large s (small distance). To explain this observation, we explore the temporal asymptotics of
the governing equation (2.22). The initial and final value theorems can be used in the short- and
long-time limits of the surface deformation. We thus find:

ŵ(s, t = 0+) = lim
q→∞ qŵ(s, q) = F0

4πGs
(2.24a)

and

ŵ(s, t → ∞) = lim
q→0+

qŵ(s, q) = F0(1 − ν)
2πGs

, (2.24b)

leading to the deformation in real space:

w(r, t = 0+) = F0

4πGr
= wincomp(r), (2.25a)

and

w(r, t → ∞) = F0(1 − ν)
2πGr

= wcomp(r). (2.25b)

Thus for both short and long times, we find spectral power-law decays of the surface deformation.
The former expression is the point-force solution of a purely elastic, incompressible and semi-
infinite medium of shear modulus G, denoted wincomp(r). At long times, we have the point-force
solution of a purely elastic and semi-infinite medium of shear modulus G and Poisson ratio ν,
denoted wcomp(r). Equations (2.24) are plotted using dashed lines in figure 2a. These expressions
thus form a link between poroelastic and elastic materials [45,76]: at large distances (small s),
the solvent has no time to flow inside the porous matrix and the response is elastic-like, with an
incompressibility condition due to the liquid fraction. At small distances (large s), the solvent does
not flow anymore and the response recovers a steady elastic deformation, with compression (i.e.
a concentration change) as compared to the initial state. In between the two asymptotic regimes,
the surface deformation smoothly changes from the short-time (incompressible) to the long-time
(compressible) elastic-like behaviours, as shown with blue lines and using finite q in figure 2a.

To connect the asymptotic inverse space and time responses, we note in equation (2.22) that at
fixed Λ, a natural variable is an inverse, dimensionless diffusive one Dpes2/q. This is expected
since the solvent concentration follows a diffusive-like law with a diffusion constant Dpe. In
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Figure 2. Surface deformation inducedby apoint-force pressure source inHankel–Laplace space. (a) Dimensionless, reciprocal-
space surface deformation ŵ(s, q) as computed from equation (2.22), as a function of the scaled spatial frequency, s, for various
temporal frequencies, q, normalized byDpeG/F0, using ν = 0.1. The orange and red dashed lines correspond to equations
(2.24a) and (2.24b), respectively. (b) Normalized surface deformation in reciprocal space ŵ(s, q), as a function of the variable
Dpes2/q, for ν = 0.1, as computed from equation (2.22). The orange and red dashed lines as described in (a).

figure 2b, we thus plot the normalized surface deformation in reciprocal space, as a function of the
normalized diffusive variable, having fixed the Poisson ratio and for the same q noted in figure 2b.
Given the normalization and the form of equation (2.22), we find that a single curve describes the
response in reciprocal space. Interpreting the response physically, we note that when the gel starts
to be indented, it first exhibits an incompressible elastic-like response, as discussed above. Later,
at a given time t, the solvent and stress have typically diffused over a radial distance rc ∼√Dpet,
giving a self-similar curve in reciprocal space.

To have a direct view on the spatial and temporal relaxations described above for reciprocal
space, the inverse Laplace transform of equation (2.22) was numerically computed using the
Talbot algorithm [77]. The inverse Hankel transform was computed with Riemann summation
over a finite spectral domain. Numerical oscillations were first reduced by increasing the domain
size and reducing the space step, in the limit of a reasonable computational time. Residual
oscillations were then smoothed using a Savitzky–Golay filter of order 3 on a window of 9 points
over the total 200 000 used in the linear discretization of the r, s axes. The results are presented in
figure 3a, where the deformation in real space is plotted as a function of the radial coordinate for
various times. For r < rc noted in the previous paragraph, the gel state has essentially relaxed
and the response is compressible (red dashed line), while for r > rc the state and response
are not modified with respect to the initial, incompressible elastic ones (orange dashed line).
The transitions between compressible and incompressible deformations are also elucidated in
the logarithmic representation of the data shown in the inset, where the short- and long-time
asymptotic relaxations are shown.

In figure 3b, we quantitatively show the gel’s relaxation to its final state, plotting the difference
of the data in figure 3a with that of the asymptotic late-time limit in equation (2.25b) as a function
of the radial coordinate. A continuous decay toward the late-time value is observed for all radii.
Taking a few examples, we show in the inset of figure 3b the temporal decay toward the final
state for the three radii noted by vertical dashed lines in the main part of the figure. For early
times, we note a plateau at a value F0(1 − 2ν)/(4πG), corresponding to the difference between
the two asymptotic limits in equation (2.25). Remarkably, a temporal power law with exponent
−1/2, characteristic of a diffusive process, is reached for all the radii at long times. In appendix A,
the late-time t−1/2 asymptotic power-law decay is demonstrated by expanding equation (2.22) at
small q and transforming to real space. The intercept between the asymptotic decay law and the
initial plateau value indicates its typical duration time, that scales with the diffusion time r2/Dpe.

Lastly, we note that in appendix B we compare the results of the present permeable description
to the case of an impermeable surface. For the impermeable case, the solvent flux vanishes at the
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Figure 3. Surface deformation induced by a point-force pressure source. (a) Normalized surface deformation as a function
of the radial coordinate, for the times noted in the legend, as computed from the inverse transform of equation (2.22) and
using ν = 0.1. The orange and red dashed lines correspond to the asymptotic limits in equations (2.25). The inset shows the
same data on logarithmic scales. (b) Differencewcomp(r) − w(r, t) (normalized) between the surface deformation of a purely
elastic compressible material (see equation (2.25b)) and the one of the poroelastic material, as a function of normalized radial
coordinate, for the dimensionless times noted in the legend. The inset shows the same data, but as a function of time and for
various radial positions (corresponding to the vertical dashed green lines in themain panel), using logarithmic scales. The−1/2
exponent of the asymptotic power-law behaviour is discussed in appendix A.

interface. This alternative boundary condition is relevant when the gel is not in contact with its
own liquid solvent. Such a situation arises when a gel is indented by a rigid object [14–19], as well
as in some configurations of soft wetting [10,78]. The surface deformations are found to adopt
qualitatively similar shapes in the permeable and impermeable cases. However, the respective
behaviours quantitatively differ, and the stress relaxation is in particular faster in the permeable
case, due to the allowed exchange of solvent with the outer reservoir.

(c) Solution for an arbitrary pressure field
In real systems, gels are indented with probes that have finite size [16–19]. In these cases,
the external load is not a point force, and the outer pressure field has a finite spatial extent.
Additionally, the outer pressure field may exhibit temporal variations. Since the above model
only involves linear operators, we can apply the superposition principle. Henceforth, the surface
deformation generated by an arbitrary time-dependent and space-dependent pressure field p(r, t)
is given by the convolution:

w(r, t) =
∫ t

−∞
dt′

∫

R2
d2r′ G(|r − r′|, t − t′) p(r′, t′), (2.26)

where G is the Green’s function of the problem, which is the surface deformation induced by a
point force δ(r)δ(t). The latter is directly related to equation (2.22), through:

Ĝ(s, q) = 1
4πGs

1

1 + Λ
Dpes2

q (1 −
√

1 + (q/Dpes2))
, (2.27)

and the inverse transform:

G(r, t) = 1
2iπ

∫ γ+i∞

γ−i∞
dq eqt

∫∞

0
ds Ĝ(s, q)sJ0(sr). (2.28)
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3. Application to contactless colloidal-probe rheology
In this section, we apply the general results of the previous one for a specific outer pressure field
that is relevant to contactless colloidal-probe rheological methods. Specifically, we focus on the
elastohydrodynamic coupling between a rigid sphere of radius R and a semi-infinite permeable
poroelastic medium. For this purpose, we invoke the linear-response theory introduced by
Leroy & Charlaix [22], and widely used in contactless measurements of the mechanical properties
of soft surfaces [30–34,36,42].

(a) Soft-lubrication approximation
The above-mentioned sphere is placed at a distance D from the undeformed gel surface and
oscillates vertically with angular frequency ω and amplitude h0, as schematized in figure 1b.
The ensemble is fully immersed in a Newtonian fluid (identical to the solvent in the gel here) of
dynamic shear viscosity η and density ρ. We suppose that the sphere-plane distance is small with
respect to the sphere radius, and can thus invoke the lubrication approximation [20]. The sphere
profile can be approximated by a parabola in the lubricated contact region, and the liquid-film
thickness profile is thus given by

h(r, t) � D + h0 cos(ωt) + w(r, t) + r2

2R
. (3.1)

The Reynolds number is assumed to be small, so that the flow is laminar. Furthermore, we
suppose that the typical viscous penetration depth

√
η/(ρω) is large compared to the liquid-

gap thickness. Therefore, the flow can be described by the steady Stokes equations with no-slip
boundary conditions at both the sphere and gel surfaces. This latter condition is assumed for
simplicity since the typical slip length at poroelastic surfaces is comparable to the pore size ∼ √

k
[67,69], which is normally nanometric.

The liquid-film thickness profile follows the axisymmetric thin-film equation [79]:

∂h
∂t

= 1
12ηr

∂

∂r

[
rh3 ∂p

∂r

]
, (3.2)

where p is the excess pressure field in the liquid with respect to the atmospheric pressure. In the
lubrication approximation, the viscous shear stresses are negligible compared to the pressure.
Therefore, the force balance at the gel surface takes the same form as in §2, and the surface
deformation profile can be computed from equation (2.26).

(b) Linear-response theory
Following [22], we suppose that the oscillation amplitude is much smaller than the liquid-gap
thickness. Hence, we invoke the linear-response theory, and write the fields as

w(r, t) = Re[w∗(r)eiωt], p(r, t) = Re[p∗(r)eiωt], (3.3)

where ∗ indicates complex variables, i2 = −1, and Re is the real part. Equation (3.2) is then
linearized, giving:

iω
(

h0 + w∗
)

= 1
12ηr

d
dr

[
r
(

D + r2

2R

)3 dp∗

dr

]
. (3.4)

Using the solution derived in §2c, we can obtain the surface deformation by injecting equation
(3.3) into equation (2.26). The amplitude of the surface deformation in Hankel space reads:

ŵ∗(s) = p̂∗(s)Ĝ∗(s) = p̂∗(s)
2Gs

1

1 − iΛ(Dpes2/ω)
(

1 −
√

1 + (iω/Dpes2)
) , (3.5)
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with:

ŵ∗(s) =
∫∞

0
dr w∗(r)r J0(sr) and p̂∗(s) =

∫∞

0
dr p∗(r)r J0(sr). (3.6)

Note that, in contrast to §2, the ˆ symbol now only refers to the Hankel transform, since there
is no time dependence on the amplitudes and thus no Laplace transform. From equation (3.1),
the contact length

√
2RD—i.e. the so-called hydrodynamic radius—sets a typical horizontal

length scale. Besides, h0 sets a typical vertical length scale. Thus, we introduce the following
dimensionless variables:

r̃ = r√
2RD

, s̃ = s
√

2RD, w̃∗(r̃) = w∗(r)
h0

. (3.7)

From the horizontal projection of the Stokes equation, and the incompressibility condition, we
find that the typical lubrication pressure scale is 2ηRωh0/D2. Thus, we introduce the following
dimensionless pressure field:

p̃∗(r̃) = D2p∗(r)
2ωRηh0

. (3.8)

Injecting these new variables in equation (3.2), the dimensionless thin-film equation results:

i(1 + w̃∗) = 1
12r̃

d
dr̃

[
r̃
(

1 + r̃2
)3 dp̃∗

dr̃

]
. (3.9)

Finally, we introduce two characteristic parameters. First, the critical distance at which the surface
deformation and sphere oscillation amplitude are of the same order:

Dc = 8R

(
ηω

2G

)2/3

. (3.10)

Second, the critical poroelastic angular frequency at which solvent typically diffuses over the
contact length at the critical distance during one oscillation:

ωc = Dpe

2RDc
= Dpe

16R2

(
2G
ηω

)2/3

. (3.11)

(c) Deformation profile and normal force
Using the dimensionless variables and critical parameters above, we can write equation (3.5) in
dimensionless form, as

ˆ̃w∗(s) =
ˆ̃p∗(s)
8s

(Dc/D)3/2

1 − iΛ(s̃2/(ωD/(ωcDc)))
(

1 −
√

1 + (iωD/(ωcDc))/s̃2
) . (3.12)

Moreover, the amplitude F∗ of the vertical elastohydrodynamic force exerted on the sphere is
obtained by integrating the amplitude of the lubrication pressure field over the surface, as

F∗ = 2π

∫∞

0
dr r p∗(r) = 8πηωh0R2

Dc
F̃∗, with F̃∗ = Dc

D

∫∞

0
dr̃ r̃ p̃∗(r̃), (3.13)

where we have noted the dimensionless force F̃∗, which depends on the dimensionless
parameters, D/Dc, ω/ωc and Λ.

Equations (3.9) and (3.12) can be solved numerically, as detailed in appendix C. Examples of the
obtained surface deformation field are plotted in figure 4a for various sphere-substrate distances.
In a contactless colloidal-probe rheological experiment; however, it is not the deformation
amplitude that is typically measured. Rather, the sampled surface slowly approaches the
oscillating spherical probe using a piezo stage, with the typical experimental outputs being the
measured force amplitude and phase as functions of the sphere-substrate distance. The other
parameters are kept constant. From the amplitude and phase, the real and imaginary components
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Figure 4. Mechanical response of a poroelastic gel in the contactless colloidal-probe configuration. (a) Normalized amplitude
w∗/h0 of the surface deformationprofile as a function of the rescaled radial coordinate r/

√
2RD, for various normalized sphere-

substrate distances, as computed from equation (3.12) with ω/ωc = 1 and ν = 0.1. (b) Real (pink) and imaginary (green)
parts of the normalized force F∗Dc/(8πηωh0R2) exerted on the spherical probe as functions of normalized sphere-substrate
distance, for various reduced angular frequenciesω/ωc, as computed from equation (3.13) with ν = 0.1. The vertical dashed
blue lines correspond to the distances at which the surface deformation profiles are plotted in (a). The zoomed inset shows in
addition the purely elastic incompressible case (orange) and the purely elastic compressible case (red).

of the complex force can be evaluated. These force components can be evaluated theoretically
using equation (3.13), while the amplitude of the pressure field can also be obtained numerically.

Therefore, in figure 4b, we plot the dimensionless force amplitudes as a function of the
dimensionless distance, for various oscillation angular frequencies. Two regimes can be observed.
At large distance, i.e. D/Dc  1, the surface deformation is small with respect to the oscillation
amplitude (see figure 4a). As a result, the elastohydrodynamic coupling is weak, and the force
is dominated by the viscous dissipation in the liquid film. In the far-field asymptotic regime,
we recover the classical lubrication Stokes drag F∗ = −6iπηR2h0ω/D, which can be obtained by
integrating equation (3.2) in the absence of substrate deformation. The real part of the force
amplitude in the far field is much smaller than the imaginary part, but it displays a signature of
the elasticity of the substrate through an asymptotic decay with the distance as ∼ (D/Dc)−5/2. The
exact prefactor of this scaling law can be obtained by expanding the solution in (Dc/D) [22,36]. At
small distance, i.e. D/Dc � 1, the substrate deformation saturates and scales with the oscillation
amplitude (see figure 4a). As a consequence, the real and imaginary parts of the force amplitude
saturate as well to values that do not depend on the distance. Besides, at all distances (see e.g.
inset of figure 4b, at large distance), we recover the qualitative feature discussed in the previous
part: at small frequency, the elastohydrodynamic coupling is similar to that of a purely elastic
compressible layer; conversely, at large frequency, the elastohydrodynamic coupling is similar to
the one of a purely elastic incompressible layer.

Finally, in these rescaled variables, we observe a small influence of the solvent diffusion in the
gel on the elastohydrodynamic coupling, despite the diffusion constant being varied over 4 orders
of magnitude (via the critical frequency). Therefore, from our model, it appears that contactless
colloidal-probe rheological methods in the linear-response regime are not appropriate to robustly
measure the effects of the solvent diffusion through the gel network. By contrast, such methods
appear to be well suited for measuring the effective shear elastic moduli and Poisson ratios of
gels.

4. Conclusion
We theoretically addressed the mechanical response of a semi-infinite and permeable, linear
poroelastic substrate to an external axisymmetric pressure field. The point-force response was first
computed. By convolution of the latter to any outer pressure field, the surface deformation profile
can be computed. Motivated by the recent development of contactless colloidal-probe rheological
experiments on soft and complex materials, we applied our general results to the specific case
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of a sphere oscillating vertically near a gel, within an outer fluid identical to the solvent present
in the polymeric matrix. The complex amplitude of the force exerted on the spherical probe was
numerically computed and studied. As a result, contactless colloidal-probe methods in the linear-
response regime appear as good candidates to robustly measure the effective elastic properties
of gels and biological membranes, without risks of wear and adhesion. Going beyond linear
response, and incorporating large deformations as well as a polymeric description of the gel
architecture seem to be the next steps towards modelling further the complex response of gels
and measuring their specific poroelastic behaviours.
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Appendix A. Long-term asymptotic deformation
In order to rationalize the t−1/2 power law observed in the inset of figure 3b, the point-force
solution obtained in the main text, equation (2.22), can be expanded at small temporal frequency
q (or similarly at large time t), as

ŵ(s, q) ≈ F0

4πGsq
1

1 + ((1 − 2ν)/(1 − ν))(Dpes2/q)(1 − [1 + (1/2)(q/s2Dpe) − (1/8)(q/s2Dpe)2])

= F0(1 − ν)
2πGsq

1
1 + ((1 − 2ν)q/4Dpes2)

. (A 1)

Taking the inverse Laplace transform, we get:

ŵ(s, t) ≈ F0(1 − ν)
2πGs

[
1 − exp

(
−4Dpets2

1 − 2ν

)]
. (A 2)

Finally taking the inverse Hankel transform, we get:

w(r, t) = F0(1 − ν)
2πGr

⎡
⎣1 − r√

Dpet/π (1 − 2ν)
I0

(
− (1 − 2ν)r2

32Dpet

)
exp

(
− (1 − 2ν)r2

32Dpet

)⎤⎦

� F0(1 − ν)
2πGr

− F0(1 − ν)
√

(1 − 2ν)π
2πG

√
16Dpet

, (A 3)

where I0 is a modified Bessel function of the first kind, of order 0, and the last expansion is
obtained by taking the long-time limit. The first term of the right-hand side gives the purely
elastic and compressible response of the material at long time. The second term corresponds to
the long-term correction to the latter, as plotted in figure 3b. The decay does not depend on r and
scales as ∼ 1/

√Dpet, as recovered through the asymptotic −1/2 exponent in the inset of figure 3b.
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Figure 5. Comparison between the point-force solutions of the permeable and impermeable cases. (a) Normalized surface
deformation as a function of the radial coordinate at the noted time, using ν = 0.1. Shown are the point-force solutions for
permeable and impermeable boundary conditions, computed from the inverse transforms of equations (2.22) and (B 2). The
orange and red dashed lines correspond to the inverse transforms of equations (2.24a) and (2.24b). The inset shows the same
data on logarithmic scales. (b) Relative difference between the surface deformation in the permeable and impermeable cases,
as a function of the radial coordinate, for the noted dimensionless times. The inset shows the same data in semi-logarithmic
scale.

Appendix B. Point-force solution for an impermeable gel and comparison to the
permeable case

Here, we discuss the effect of surface permeability on the point-force response. In the model
presented in the main text, we assumed that the gel is in contact with a bath of its own solvent,
which fixes the chemical potential of the solvent at the surface to its reference value, at all times.
If the gel is in contact with another kind of medium (e.g. air, solid surface or immiscible liquid),
the description should be modified, and incorporate drying in particular. If one considers time
scales smaller than the drying time, we can neglect the solvent exchange at the interface. In that
case, we suppose the solvent flux vanishes at the surface, allowing us to impose the impermeable
boundary condition at z = 0:

J · n = ∂μ

∂z
= 0. (B 1)

We can use the same method as the one used in the main text, in order to derive the point-force
response:

ŵimper(s, q) = − 1
2Gsq

1

1 + Λ(Dpes2/q)
(

(1/(
√

1 + (q/s2Dpe))) − 1
) , (B 2)

where the superscript ‘imper’ stands for the impermeable condition. We thus recover the
solution derived in [10]. The diffusive-like self-similarity discussed in the main text also holds
here.

The point-force responses with impermeable and permeable boundary conditions are
compared in figure 5a. Both solutions appear to be qualitatively similar, and display the same
short-term and long-term behaviours. Nevertheless, at a given time t = 0.1F0/(GDpe), we observe
that the surface deformation in the impermeable case is smaller than the one in the permeable
case. Also, the permeable solution relaxes faster than the impermeable one towards the long-time
purely elastic compressible limit. Quantitatively, for a Poisson ratio ν = 0.1, we observe a relative
difference between the two solutions up to 35%, where the maximum difference is located at a
radial position ∼√Dpet, as shown in figure 5b.
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Appendix C. Numerical computation of the normal force
Here, we detail how equations (3.9), (3.12) and (3.13) are numerically solved. All variables
are dimensionless in this section for simplicity and the ˜ symbol is omitted. The normalized
deformation in reciprocal spaces reads according to equation (3.12):

ŵ∗(s) = p̂∗(s)
8

(
Dc

D

)3/2

Ĝ∗(s) with Ĝ∗(s) = 1
s

1

1 − iΛ s2

ωD/(ωcDc)

(
1 −

√
1 + ((iωD/(ωcDc))/s2)

) . (C 1)

By integrating equation (3.9) between 0 and r, and invoking equation (C 1), we obtain the
following equation for the pressure:

dp∗

dr
= 6ir

(1 + r2)3 + 3i
2(1 + r2)3

(
Dc

D

)3/2 ∫∞

0
ds J1(sr)Ĝ∗(s)p̂∗(s). (C 2)

Finally, by performing a first-order Hankel transform of the latter equation, we obtain the
Fredholm equation of the second kind:

p̂∗(s) = −3is
4

K1(s) − 3i
2

(
Dc

D

)3/2 ∫∞

0
dkĜ∗(k)p̂∗(k)

∫∞

0
dr

rJ1(kr)J1(sr)
s(1 + r2)3 , (C 3)

where Kn is the modified Bessel function of the second kind with index n. The kernel of the
Fredholm equation has an analytical solution [31], given by

∫∞

0
dr

rJ1(kr)J1(sr)
(1 + r2)3 = k2 + s2

8
I1(s)K1(k) − sk

I2(s)K2(k)
4

for s < k,

= k2 + s2

8
I1(k)K1(s) − sk

I2(k)K2(s)
4

for k < s, (C 4)

where In is the modified Bessel function of the first kind with index n. Integrals are numerically
evaluated with the Gauss–Legendre-quadrature method. The discretized version of equation (C 3)
is a linear algebraic problem and can be numerically solved. Finally, the dimensionless force can
be computed as in equation (3.13) by

F∗ = Dc

D
p̂∗(s = 0). (C 5)

References
1. Andreotti B, Bäumchen O, Boulogne F, Daniels KE, Dufresne ER, Perrin H, Salez T, Snoeijer

JH, Style RW. 2016 Solid capillarity: when and how does surface tension deform soft solids?
Soft Matter 12, 2993–2996. (doi:10.1039/C5SM03140K)

2. d’Eramo L et al. 2018 Microfluidic actuators based on temperature-responsive hydrogels.
Microsyst. Nanoeng. 4, 1–7. (doi:10.1038/micronano.2017.69)

3. Flory PJ. 1953 Principles of polymer chemistry. Ithaca, NY: Cornell University Press.
4. de Gennes P-G. 1979 Scaling concepts in polymer physics. Ithaca, NY: Cornell University Press.
5. Li M, Bresson B, Cousin F, Fretigny C, Tran Y. 2015 Submicrometric films of surface-attached

polymer network with temperature-responsive properties. Langmuir 31, 11 516–11 524.
(doi:10.1021/acs.langmuir.5b02948)

6. Biot MA. 1941 General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164.
(doi:10.1063/1.1712886)

7. Hong W, Zhao X, Zhou J, Suo Z. 2008 A theory of coupled diffusion and large deformation in
polymeric gels. J. Mech. Phys. Solids 56, 1779–1793. (doi:10.1016/j.jmps.2007.11.010)

8. Bouklas N, Huang R. 2012 Swelling kinetics of polymer gels: comparison of linear and
nonlinear theories. Soft Matter 8, 8194–8203. (doi:10.1039/c2sm25467k)

9. Hu Y, Suo Z. 2012 Viscoelasticity and poroelasticity in elastomeric gels. Acta Mech. Solida Sin.
25, 441–458. (doi:10.1016/S0894-9166(12)60039-1)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 M

ar
ch

 2
02

3 



16

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220832

..........................................................

10. Zhao M, Dervaux J, Narita T, Lequeux F, Limat L, Roché M. 2018 Geometrical control of
dissipation during the spreading of liquids on soft solids. Proc. Natl Acad. Sci. USA 115,
1748–1753. (doi:10.1073/pnas.1712562115)

11. Liu Z, Bouklas N, Hui C-Y. 2020 Coupled flow and deformation fields due to a line load
on a poroelastic half space: effect of surface stress and surface bending. Proc. R. Soc. A 476,
20190761. (doi:10.1098/rspa.2019.0761)

12. Ang I, Liu Z, Kim J, Hui C-Y, Bouklas N. 2020 Effect of elastocapillarity on the swelling
kinetics of hydrogels. J. Mech. Phys. Solids 145, 104132. (doi:10.1016/j.jmps.2020.104132)

13. Dervaux J, Amar MB. 2012 Mechanical instabilities of gels. Annu. Rev. Condens. Matter Phys. 3,
311–332. (doi:10.1146/annurev-conmatphys-062910-140436)

14. Johnson KL. 1987 Contact mechanics. Cambridge, UK: Cambridge University Press.
(doi:10.1017/CBO9781139171731)

15. Hui C-Y, Lin YY, Chuang F-C, Shull KR, Lin W-C. 2006 A contact mechanics method for
characterizing the elastic properties and permeability of gels. J. Polym. Sci. B: Polym. Phys. 44,
359–370. (doi:10.1002/polb.20613)

16. Hu Y, Zhao X, Vlassak JJ, Suo Z. 2010 Using indentation to characterize the poroelasticity of
gels. Appl. Phys. Lett. 96, 121904. (doi:10.1063/1.3370354)

17. Hu Y, Chen X, Whitesides GM, Vlassak JJ, Suo Z. 2011 Indentation of polydimethylsiloxane
submerged in organic solvents. J. Mater. Res. 26, 785–795. (doi:10.1557/jmr.2010.35)

18. Delavoipiere J, Tran Y, Verneuil E, Chateauminois A. 2016 Poroelastic indentation of
mechanically confined hydrogel layers. Soft Matter 12, 8049–8058. (doi:10.1039/C6SM01448H)

19. Degen GD, Chen Y-T, Chau AL, Månsson LK, Pitenis AA. 2020 Poroelasticity of highly
confined hydrogel films measured with a surface forces apparatus. Soft Matter 16, 8096–8100.
(doi:10.1039/D0SM01312A)

20. Reynolds O. 1886 Iv. On the theory of lubrication and its application to mr. beauchamp tower’s
experiments, including an experimental determination of the viscosity of olive oil. Phil. Trans.
R. Soc. 177, 157–234. (doi:10.1098/rstl.1886.0005)

21. Vakarelski IU, Manica R, Tang X, O’Shea SJ, Stevens GW, Grieser F, Dagastine RR, Chan
DY. 2010 Dynamic interactions between microbubbles in water. Proc. Natl Acad. Sci. USA 107,
11 177–11 182. (doi:10.1073/pnas.1005937107)

22. Leroy S, Charlaix E. 2011 Hydrodynamic interactions for the measurement of thin film elastic
properties. J. Fluid Mech. 674, 389–407. (doi:10.1017/S0022112010006555)

23. Dowson D, Higginson GR. 2014 Elasto-hydrodynamic lubrication: international series on materials
science and technology. Oxford, UK: Elsevier.

24. Kaveh F, Ally J, Kappl M, Butt H-J. 2014 Hydrodynamic force between a sphere and a soft,
elastic surface. Langmuir 30, 11 619–11 624. (doi:10.1021/la502328u)

25. Wang Y, Dhong C, Frechette J. 2015 Out-of-contact elastohydrodynamic deformation due to
lubrication forces. Phys. Rev. Lett. 115, 248302. (doi:10.1103/PhysRevLett.115.248302)

26. Wang Y, Tan MR, Frechette J. 2017 Elastic deformation of soft coatings due to lubrication
forces. Soft Matter 13, 6718–6729. (doi:10.1039/C7SM01061C)

27. Wang Y, Pilkington GA, Dhong C, Frechette J. 2017 Elastic deformation during dynamic
force measurements in viscous fluids. Curr. Opin. Colloid Interface Sci. 27, 43–49. (doi:10.1016/
j.cocis.2016.09.009)

28. Wang Y, Frechette J. 2018 Morphology of soft and rough contact via fluid drainage. Soft Matter
14, 7605–7614. (doi:10.1039/C8SM00884A)

29. Karan P, Das SS, Mukherjee R, Chakraborty J, Chakraborty S. 2020 Flow and deformation
characteristics of a flexible microfluidic channel with axial gradients in wall elasticity. Soft
Matter 16, 5777–5786. (doi:10.1039/D0SM00333F)

30. Leroy S, Steinberger A, Cottin-Bizonne C, Restagno F, Léger L, Charlaix E. 2012
Hydrodynamic interaction between a spherical particle and an elastic surface: a gentle probe
for soft thin films. Phys. Rev. Lett. 108, 264501. (doi:10.1103/PhysRevLett.108.264501)

31. Guan D, Barraud C, Charlaix E, Tong P. 2017 Noncontact viscoelastic measurement of polymer
thin films in a liquid medium using long-needle atomic force microscopy. Langmuir 33,
1385–1390. (doi:10.1021/acs.langmuir.6b04066)

32. Zhang Z, Arshad M, Bertin V, Almohamad S, Raphaël E, Salez T, Maali A. 2022
Contactless rheology of soft gels over a broad frequency range. Phys. Rev. Applied 17, 064045.
(doi:10.1103/PhysRevApplied.17.064045)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 M

ar
ch

 2
02

3 



17

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220832

..........................................................

33. Villey R, Martinot E, Cottin-Bizonne C, Phaner-Goutorbe M, Léger L, Restagno F, Charlaix
E. 2013 Effect of surface elasticity on the rheology of nanometric liquids. Phys. Rev. Lett. 111,
215701. (doi:10.1103/PhysRevLett.111.215701)

34. Guan D, Charlaix E, Qi RZ, Tong P. 2017 Noncontact viscoelastic imaging of living cells using
a long-needle atomic force microscope with dual-frequency modulation. Phys. Rev. Appl. 8,
044010. (doi:10.1103/PhysRevApplied.8.044010)

35. Wang Y, Zeng B, Alem HT, Zhang Z, Charlaix E, Maali A. 2018 Viscocapillary response of
gas bubbles probed by thermal noise atomic force measurement. Langmuir 34, 1371–1375.
(doi:10.1021/acs.langmuir.7b03857)

36. Bertin V, Zhang Z, Boisgard R, Grauby-Heywang C, Raphael E, Salez T, Maali A. 2021
Contactless rheology of finite-size air-water interfaces. Phys. Rev. Res. 3, L032007. (doi:10.1103/
PhysRevResearch.3.L032007)

37. Cappella B, Dietler G. 1999 Force-distance curves by atomic force microscopy. Surf. Sci. Rep.
34, 1–104. (doi:10.1016/S0167-5729(99)00003-5)

38. Butt H-J, Cappella B, Kappl M. 2005 Force measurements with the atomic force
microscope: technique, interpretation and applications. Surf. Sci. Rep. 59, 1–152. (doi:10.1016/
j.surfrep.2005.08.003)

39. Israelachvili JN, Adams G. 1976 Direct measurement of long range forces between two mica
surfaces in aqueous KNO3 solutions. Nature 262, 774–776. (doi:10.1038/262774a0)

40. Israelachvili J et al. 2010 Recent advances in the surface forces apparatus (SFA) technique. Rep.
Prog. Phys. 73, 036601. (doi:10.1088/0034-4885/73/3/036601)

41. Kristiansen K et al. 2019 Multimodal miniature surface forces apparatus (μSFA) for interfacial
science measurements. Langmuir 35, 15 500–15 514. (doi:10.1021/acs.langmuir.9b01808)

42. Lainé A, Jubin L, Canale L, Bocquet L, Siria A, Donaldson SH, Niguès A. 2019
Micromegascope based dynamic surface force apparatus. Nanotechnology 30, 195502.
(doi:10.1088/1361-6528/ab02ba)

43. Sekimoto K, Leibler L. 1993 A mechanism for shear thickening of polymer-bearing surfaces:
elasto-hydrodynamic coupling. Europhys. Lett. 23, 113. (doi:10.1209/0295-5075/23/2/006)

44. Beaucourt J, Biben T, Misbah C. 2004 Optimal lift force on vesicles near a compressible
substrate. Europhys. Lett. 67, 676. (doi:10.1209/epl/i2004-10103-0)

45. Skotheim J, Mahadevan L. 2005 Soft lubrication: the elastohydrodynamics of nonconforming
and conforming contacts. Phys. Fluids 17, 092101. (doi:10.1063/1.1985467)

46. Urzay J, Llewellyn Smith SG, Glover BJ. 2007 The elastohydrodynamic force on a sphere near
a soft wall. Phys. Fluids 19, 103106. (doi:10.1063/1.2799148)

47. Snoeijer JH, Eggers J, Venner CH. 2013 Similarity theory of lubricated hertzian contacts. Phys.
Fluids 25, 101705. (doi:10.1063/1.4826981)

48. Salez T, Mahadevan L. 2015 Elastohydrodynamics of a sliding, spinning and sedimenting
cylinder near a soft wall. J. Fluid Mech. 779, 181–196. (doi:10.1017/jfm.2015.425)

49. Vialar P, Merzeau P, Giasson S, Drummond C. 2019 Compliant surfaces under shear:
elastohydrodynamic lift force. Langmuir 35, 15605–15613. (doi:10.1021/acs.langmuir.9b02019)

50. Zhang Z, Bertin V, Arshad M, Raphael E, Salez T, Maali A. 2020 Direct measurement of
the elastohydrodynamic lift force at the nanoscale. Phys. Rev. Lett. 124, 054502. (doi:10.1103/
PhysRevLett.124.054502)

51. Bertin V, Amarouchene Y, Raphael E, Salez T. 2022 Soft-lubrication interactions between a
rigid sphere and an elastic wall. J. Fluid Mech. 933, A23. (doi:10.1017/jfm.2021.1063)

52. Bureau L, Coupier G, Salez T. 2022 Lift at zero reynolds number. (http://arxiv.org/abs/2207.
04538).

53. Bouchet A-S, Cazeneuve C, Baghdadli N, Luengo GS, Drummond C. 2015 Experimental study
and modeling of boundary lubricant polyelectrolyte films. Macromolecules 48, 2244–2253.
(doi:10.1021/acs.macromol.5b00151)

54. Saintyves B, Jules T, Salez T, Mahadevan L. 2016 Self-sustained lift and low friction via soft
lubrication. Proc. Natl Acad. Sci. USA 113, 5847–5849. (doi:10.1073/pnas.1525462113)

55. Davies HS, Débarre D, El Amri N, Verdier C, Richter RP, Bureau L. 2018 Elastohydrodynamic
lift at a soft wall. Phys. Rev. Lett. 120, 198001. (doi:10.1103/PhysRevLett.120.198001)

56. Rallabandi B, Oppenheimer N, Ben Zion MY, Stone HA. 2018 Membrane-induced
hydroelastic migration of a particle surfing its own wave. Nat. Phys. 14, 1211–1215.
(doi:10.1038/s41567-018-0272-z)

57. Hou J, Mow VC, Lai W, Holmes M. 1992 An analysis of the squeeze-film lubrication
mechanism for articular cartilage. J. Biomech. 25, 247–259. (doi:10.1016/0021-9290(92)90024-U)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 M

ar
ch

 2
02

3 



18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220832

..........................................................

58. Jahn S, Seror J, Klein J. 2016 Lubrication of articular cartilage. Annu. Rev. Biomed. Eng. 18,
235–258. (doi:10.1146/annurev-bioeng-081514-123305)

59. Cher I. 2008 A new look at lubrication of the ocular surface: fluid mechanics behind the
blinking eyelids. Ocul. Surf. 6, 79–86. (doi:10.1016/S1542-0124(12)70271-9)

60. Pandey A, Karpitschka S, Venner CH, Snoeijer JH. 2016 Lubrication of soft viscoelastic solids.
J. Fluid Mech. 799, 433–447. (doi:10.1017/jfm.2016.375)

61. Kargar-Estahbanati A, Rallabandi B. 2021 Lift forces on three-dimensional elastic
and viscoelastic lubricated contacts. Phys. Rev. Fluids 6, 034003. (doi:10.1103/
PhysRevFluids.6.034003)

62. Hui C-Y, Wu H, Jagota A, Khripin C. 2021 Friction force during lubricated
steady sliding of a rigid cylinder on a viscoelastic substrate. Tribol. Lett. 69, 1–17.
(doi:10.1007/s11249-020-01396-5)

63. Delavoipière J, Tran Y, Verneuil E, Heurtefeu B, Hui CY, Chateauminois A. 2018
Friction of poroelastic contacts with thin hydrogel films. Langmuir 34, 9617–9626.
(doi:10.1021/acs.langmuir.8b01466)

64. Ciapa L, Delavoipière J, Tran Y, Verneuil E, Chateauminois A. 2020 Transient sliding of thin
hydrogel films: the role of poroelasticity. Soft Matter 16, 6539–6548. (doi:10.1039/D0SM00641F)

65. Cuccia NL, Pothineni S, Wu B, Méndez Harper J, Burton JC. 2020 Pore-size dependence
and slow relaxation of hydrogel friction on smooth surfaces. Proc. Natl Acad. Sci. USA 117,
11 247–11 256. (doi:10.1073/pnas.1922364117)

66. Eddine MA, Belbekhouche S, de Chateauneuf-Randon S, Salez T, Kovalenko A, Bresson B,
Monteux C. 2022 Large and nonlinear permeability amplification with polymeric additives in
hydrogel membranes. Macromolecules 55, 9841–9850. (doi:10.1021/acs.macromol.2c01462)

67. Beavers GS, Joseph DD. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech.
30, 197–207. (doi:10.1017/S0022112067001375)

68. Meeker SP, Bonnecaze RT, Cloitre M. 2004 Slip and flow in pastes of soft particles: direct
observation and rheology. J. Rheol. 48, 1295–1320. (doi:10.1122/1.1795171)

69. Knox D, Duffy B, McKee S, Wilson S. 2017 Squeeze-film flow between a curved impermeable
bearing and a flat porous bed. Phys. Fluids 29, 023101. (doi:10.1063/1.4974521)

70. Van de Velde P, Dervaux J, Protière S, Duprat C. 2022 Spontaneous localized fluid release on
swelling fibres. Soft Matter 18, 4565–4571. (doi:10.1039/D2SM00460G)

71. Hughes B, White L. 1979 ‘soft’ contact problems in linear elasticity. Q. J. Mech. Appl. Math. 32,
445–471. (doi:10.1093/qjmam/32.4.445)

72. Essink MH, Pandey A, Karpitschka S, Venner CH, Snoeijer JH. 2021 Regimes of soft
lubrication. J. Fluid Mech. 915, A49. (doi:10.1017/jfm.2021.96)

73. McNamee J, Gibson R. 1960 Plane strain and axially symmetric problems of the consolidation
of a semi-infinite clay stratum. Q. J. Mech. Appl. Math. 13, 210–227. (doi:10.1093/
qjmam/13.2.210)

74. McNamee J, Gibson R. 1960 Displacement functions and linear transforms applied to diffusion
through porous elastic media. Q. J. Mech. Appl. Math. 13, 98–111. (doi:10.1093/qjmam/13.1.98)

75. Gibson R, Schiffman R, Pu S. 1970 Plane strain and axially symmetric consolidation
of a clay layer on a smooth impervious base. Q. J. Mech. Appl. Math. 23, 505–520.
(doi:10.1093/qjmam/23.4.505)

76. Hariprasad DS, Secomb TW. 2012 Motion of red blood cells near microvessel walls: effects of
a porous wall layer. J. Fluid Mech. 705, 195–212. (doi:10.1017/jfm.2012.102)

77. Abate J, Whitt W. 2006 A unified framework for numerically inverting laplace transforms.
INFORMS J. Comput. 18, 408–421. (doi:10.1287/ijoc.1050.0137)

78. Xu Q, Wilen LA, Jensen KE, Style RW, Dufresne ER. 2020 Viscoelastic and
poroelastic relaxations of soft solid surfaces. Phys. Rev. Lett. 125, 238002. (doi:10.1103/
PhysRevLett.125.238002)

79. Guyon E. 2001 Physical Hydrodynamics. Oxford, UK: Oxford University Press.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 M

ar
ch

 2
02

3 



Bibliography

1. Li, M., Bresson, B., Cousin, F, Fretigny, C. & Tran, Y. Submicrometric films of surface-attached
polymer network with temperature-responsive properties. Langmuir 31, 11516–11524 (2015).

2. Russell, T. Surface-responsive materials. Science 297, 964–967 (2002).
3. Beebe, D. J. et al. Functional hydrogel structures for autonomous flow control inside microfluidic

channels. Nature 404, 588–590 (2000).
4. Idota, N., Kikuchi, A., Kobayashi, J., Sakai, K. & Okano, T. Microfluidic valves comprising

nanolayered thermoresponsive polymer-grafted capillaries. Advanced Materials 17, 2723–2727
(2005).

5. d’Eramo, L. et al. Microfluidic actuators based on temperature-responsive hydrogels. Microsystems
& Nanoengineering 4, 1–7 (2018).

6. Peppas, N. A., Hilt, J. Z., Khademhosseini, A. & Langer, R. Hydrogels in biology and medicine:
from molecular principles to bionanotechnology. Advanced materials 18, 1345–1360 (2006).

7. Bearinger, J. et al. P (AAm-co-EG) interpenetrating polymer networks grafted to oxide surfaces:
Surface characterization, protein adsorption, and cell detachment studies. Langmuir 13, 5175–
5183 (1997).

8. Eslahi, N., Abdorahim, M. & Simchi, A. Smart polymeric hydrogels for cartilage tissue engineering:
a review on the chemistry and biological functions. Biomacromolecules 17, 3441–3463 (2016).

9. Fung, Y. et al. Polymer networks formed in liquid crystal. Liquid Crystals 19, 797–801 (Dec.
1995).

10. Biot, M. A. General theory of three-dimensional consolidation. Journal of applied physics 12,
155–164 (1941).

11. Pandey, A., Karpitschka, S., Venner, C. H. & Snoeijer, J. H. Lubrication of soft viscoelastic solids.
Journal of fluid mechanics 799, 433–447 (2016).

12. Kargar-Estahbanati, A. & Rallabandi, B. Lift forces on three-dimensional elastic and viscoelastic
lubricated contacts. Physical Review Fluids 6, 034003 (2021).

13. Hui, C.-Y., Wu, H., Jagota, A. & Khripin, C. Friction force during lubricated steady sliding of a
rigid cylinder on a viscoelastic substrate. Tribology Letters 69, 1–17 (2021).

14. Eddine, M. A. et al. Large and Nonlinear Permeability Amplification with Polymeric Additives
in Hydrogel Membranes. Macromolecules (2022).

15. Delavoipière, J. et al. Friction of poroelastic contacts with thin hydrogel films. Langmuir 34,
9617–9626 (2018).

16. Ciapa, L., Delavoipière, J., Tran, Y., Verneuil, E. & Chateauminois, A. Transient sliding of thin
hydrogel films: the role of poroelasticity. Soft Matter 16, 6539–6548 (2020).

17. Cuccia, N. L., Pothineni, S., Wu, B., Méndez Harper, J. & Burton, J. C. Pore-size dependence
and slow relaxation of hydrogel friction on smooth surfaces. Proceedings of the National Academy
of Sciences 117, 11247–11256 (2020).

18. Flory, P. J. Principles of polymer chemistry (Cornell university press, 1953).
19. Bertrand, T., Peixinho, J., Mukhopadhyay, S. & MacMinn, C. W. Dynamics of swelling and drying

in a spherical gel. Physical Review Applied 6, 064010 (2016).
20. Etzold, M. A., Linden, P. F. & Worster, M. G. Transpiration through hydrogels. Journal of Fluid

Mechanics 925, A8 (2021).
21. Engelsberg, M & Barros Jr, W. Free-evolution kinetics in a high-swelling polymeric hydrogel.

Physical Review E 88, 062602 (2013).

193



BIBLIOGRAPHY

22. Deegan, R. D. Pattern formation in drying drops. Physical review E 61, 475 (2000).
23. Zang, D., Tarafdar, S., Tarasevich, Y. Y., Choudhury, M. D. & Dutta, T. Evaporation of a Droplet:

From physics to applications. Physics Reports 804, 1–56 (2019).
24. Ozawa, K., Nishitani, E. & Doi, M. Modeling of the drying process of liquid droplet to form thin

film. Japanese journal of applied physics 44, 4229 (2005).
25. Pauchard, L & Allain, C. Stable and unstable surface evolution during the drying of a polymer

solution drop. Physical Review E 68, 052801 (2003).
26. De Gennes, P. G. Instabilities during the evaporation of a film: Non-glassy polymer+ volatile

solvent. The European Physical Journal E 6, 421–424 (2001).
27. De Gennes, P. G. Solvent evaporation of spin cast films:“crust” effects. The European Physical

Journal E 7, 31–34 (2002).
28. Routh, A. F. Drying of thin colloidal films. Reports on Progress in Physics 76, 046603 (2013).
29. Okuzono, T., Ozawa, K. & Doi, M. Simple model of skin formation caused by solvent evaporation

in polymer solutions. Physical review letters 97, 136103 (2006).
30. Yoon, J., Kim, J. & Hayward, R. C. Nucleation, growth, and hysteresis of surface creases on

swelled polymer gels. Soft Matter 6, 5807–5816 (2010).
31. Navier, C. L. M. H. Mémoire sur les lois du Mouvement des Fluides. Mémoires de l’Académie

Royale des Sciences de l’Institut de France, 389–440 (1823).
32. Reynolds, O. IV. On the theory of lubrication and its application to Mr. Beauchamp tower’s

experiments, including an experimental determination of the viscosity of olive oil. Philosophical
transactions of the Royal Society of London, 157–234 (1886).

33. GENNES, P. Viscometric flows of tangled polymers. Comptes Rendus Hebdomadaires Des Seances
De L Academie Des Sciences Serie B 288, 219–220 (1979).

34. Léger, L, Hervet, H, Massey, G & Durliat, E. Wall slip in polymer melts. Journal of Physics:
Condensed Matter 9, 7719 (1997).

35. Mhetar, V. & Archer, L. Slip in entangled polymer melts. 1. General features. Macromolecules
31, 8607–8616 (1998).

36. Huang, D. M., Sendner, C., Horinek, D., Netz, R. R. & Bocquet, L. Water slippage versus contact
angle: A quasiuniversal relationship. Physical review letters 101, 226101 (2008).

37. Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chemical Society Reviews 39,
1073–1095 (2010).

38. Poiseuille, J. L. Experimental research on the movement of liquids in tubes of very small diameters.
Mémoires presentés par divers savants a l’Académie Royale des Sciences de l’Institut de France,
IX, 433–544 (1846).

39. Duprat, C. & Shore, H. A. Fluid-structure interactions in low-Reynolds-number flows (Royal
Society of Chemistry, 2016).

40. Stone, H. A., Stroock, A. D. & Ajdari, A. Engineering flows in small devices: microfluidics toward
a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004).

41. Whitesides, G. M. The origins and the future of microfluidics. nature 442, 368–373 (2006).
42. Squires, T. M. & Quake, S. R. Microfluidics: Fluid physics at the nanoliter scale. Reviews of

modern physics 77, 977 (2005).
43. Kaoui, B., Ristow, G., Cantat, I., Misbah, C. & Zimmermann, W. Lateral migration of a two-

dimensional vesicle in unbounded Poiseuille flow. Physical Review E 77, 021903 (2008).
44. Bruus, H. Theoretical microfluidics (Oxford university press, 2007).
45. Wheeler, A. R. et al. Microfluidic device for single-cell analysis. Analytical chemistry 75, 3581–

3586 (2003).
46. Yin, H. & Marshall, D. Microfluidics for single cell analysis. Current opinion in biotechnology 23,

110–119 (2012).
47. Zare, R. N. & Kim, S. Microfluidic platforms for single-cell analysis. Annual review of biomedical

engineering 12, 187–201 (2010).
48. Vilquin, A. et al. Nanoparticle Taylor dispersion near charged surfaces with an open boundary.

Physical Review Letters 130, 038201 (2023).

194



BIBLIOGRAPHY

49. Vilquin, A. et al. Time dependence of advection-diffusion coupling for nanoparticle ensembles.
Physical Review Fluids 6, 064201 (2021).

50. Santiago, J. G., Wereley, S. T., Meinhart, C. D., Beebe, D. & Adrian, R. J. A particle image
velocimetry system for microfluidics. Experiments in fluids 25, 316–319 (1998).

51. Chin, C. D. et al. Microfluidics-based diagnostics of infectious diseases in the developing world.
Nature medicine 17, 1015–1019 (2011).

52. Sackmann, E. K., Fulton, A. L. & Beebe, D. J. The present and future role of microfluidics in
biomedical research. Nature 507, 181–189 (2014).

53. Benzaquen, M., Salez, T. & Raphaël, E. Intermediate asymptotics of the capillary-driven thin-film
equation. The European Physical Journal E 36, 1–7 (2013).

54. Oron, A., Davis, S. H. & Bankoff, S. G. Long-scale evolution of thin liquid films. Reviews of
modern physics 69, 931 (1997).

55. Happel, J. & Brenner, H. Low Reynolds number hydrodynamics: with special applications to par-
ticulate media (Springer Science & Business Media, 1983).

56. Dowson, D. & Higginson, G. R. Elasto-hydrodynamic lubrication: international series on materials
science and technology (Elsevier, 2014).

57. Venner, C. H. & Lubrecht, A. A. Multi-level methods in lubrication (Elsevier, 2000).
58. Brodsky, E. E. & Kanamori, H. Elastohydrodynamic lubrication of faults. Journal of Geophysical

Research: Solid Earth 106, 16357–16374 (2001).
59. Campbell, C. S. Self-lubrication for long runout landslides. The Journal of Geology 97, 653–665

(1989).
60. Huerre, A. et al. Droplets in microchannels: dynamical properties of the lubrication film. Physical

review letters 115, 064501 (2015).
61. Baroud, C. N., Gallaire, F. & Dangla, R. Dynamics of microfluidic droplets. Lab on a Chip 10,

2032–2045 (2010).
62. Dangla, R., Kayi, S. C. & Baroud, C. N. Droplet microfluidics driven by gradients of confinement.

Proceedings of the National Academy of Sciences 110, 853–858 (2013).
63. Abbyad, P., Dangla, R., Alexandrou, A. & Baroud, C. N. Rails and anchors: guiding and trapping

droplet microreactors in two dimensions. Lab on a Chip 11, 813–821 (2011).
64. Guyon, E., Hulin, J.-P., Petit, L. & de Gennes, P. G. Hydrodynamique physique (EDP sciences

Les Ulis, 2001).
65. Landau, L. D. & Lifshitz, E. M. Fluid Mechanics: Landau and Lifshitz: Course of Theoretical

Physics, Volume 6 (Elsevier, 2013).
66. Lovalenti, P. M. & Brady, J. F. The force on a bubble, drop, or particle in arbitrary time-dependent

motion at small Reynolds number. Physics of Fluids A: Fluid Dynamics 5, 2104–2116 (1993).
67. Brenner, H. The slow motion of a sphere through a viscous fluid towards a plane surface. Chemical

engineering science 16, 242–251 (1961).
68. Basset, A. B. A Treatise on Hydrodynamics, vol. 1 (1888).
69. Proudman, I. & Pearson, J. Expansions at small Reynolds numbers for the flow past a sphere and

a circular cylinder. Journal of Fluid Mechanics 2, 237–262 (1957).
70. Lovalenti, P. M. & Brady, J. F. The hydrodynamic force on a rigid particle undergoing arbitrary

time-dependent motion at small Reynolds number. Journal of Fluid Mechanics 256, 561–605
(1993).

71. Brenner, H & Cox, R. The resistance to a particle of arbitrary shape in translational motion at
small Reynolds numbers. Journal of Fluid Mechanics 17, 561–595 (1963).

72. Loudon, C. & Tordesillas, A. The use of the dimensionless Womersley number to characterize the
unsteady nature of internal flow. Journal of theoretical biology 191, 63–78 (1998).

73. Rohlf, K & Tenti, G. The role of the Womersley number in pulsatile blood flow: a theoretical
study of the Casson model. Journal of biomechanics 34, 141–148 (2001).

74. Fick, A. Ueber diffusion. Annalen der Physik 170, 59–86 (1855).
75. Duhamel, J. M. C. Éléments de calcul infinitésimal (Mallet-Bachelier, 1860).

195



BIBLIOGRAPHY

76. Ettlinger, H. A Simple Form of Duhamel’s Theorem and Some New Applications. The American
Mathematical Monthly 29, 239–250 (1922).

77. Crank, J. The mathematics of diffusion (Oxford university press, 1979).
78. Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von

in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der physik 4 (1905).
79. Sutherland, W. LXXV. A dynamical theory of diffusion for non-electrolytes and the molecular

mass of albumin. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science 9, 781–785 (1905).

80. Von Smoluchowski, M. Zur kinetischen theorie der brownschen molekularbewegung und der sus-
pensionen. Annalen der physik 326, 756–780 (1906).

81. Miller, C. C. The Stokes-Einstein law for diffusion in solution. Proceedings of the Royal Society
of London. Series A, Containing Papers of a Mathematical and Physical Character 106, 724–749
(1924).

82. Perrin, J. Mouvement brownien et réalité moléculaire in Annales de Chimie et de Physique 18
(1909), 1–114.

83. Kubo, R. The fluctuation-dissipation theorem. Reports on progress in physics 29, 255 (1966).
84. Marconi, U. M. B., Puglisi, A., Rondoni, L. & Vulpiani, A. Fluctuation–dissipation: response

theory in statistical physics. Physics reports 461, 111–195 (2008).
85. Landau, L. D. & Lifshitz, E. M. Statistical Physics: Landau and Lifshitz: Course of Theoretical

Physics, Volume 5 (Elsevier, 2013).
86. Onuki, A. Theory of phase transition in polymer gels. Responsive Gels: Volume Transitions I,

63–121 (2005).
87. Darcy, H. Les fontaines publiques de Dijon (1856).
88. Biot, M. A. General solutions of the equations o elasticity and consolidation for a porous material,

91–96 (1956).
89. Terzaghi, K. Theoretical soil mechanics (1943).
90. Beavers, G. S. & Joseph, D. D. Boundary conditions at a naturally permeable wall. Journal of

fluid mechanics 30, 197–207 (1967).
91. Wang, H. Theory of linear poroelasticity with applications to geomechanics and hydrogeology

(Princeton university press, 2000).
92. Rice, J. R. & Cleary, M. P. Some basic stress diffusion solutions for fluid-saturated elastic porous

media with compressible constituents. Reviews of Geophysics 14, 227–241 (1976).
93. Sarfati, R., Calderon, C. P. & Schwartz, D. K. Enhanced diffusive transport in fluctuating porous

media. ACS nano 15, 7392–7398 (2021).
94. Knox, D., Duffy, B., McKee, S & Wilson, S. Squeeze-film flow between a curved impermeable

bearing and a flat porous bed. Physics of Fluids 29, 023101 (2017).
95. Brochard, F. & de Gennes, P.-G. Dynamical scaling for polymers in theta solvents. Macromolecules

10, 1157–1161 (1977).
96. Jones, R. A. Soft condensed matter (Oxford University Press, 2002).
97. De Gennes, P.-G. Scaling concepts in polymer physics (Cornell university press, 1979).
98. Cahn, J. W. On spinodal decomposition. Acta metallurgica 9, 795–801 (1961).
99. Archer, A. J. & Evans, R. Dynamical density functional theory and its application to spinodal

decomposition. The Journal of chemical physics 121, 4246–4254 (2004).
100. Doi, M. Soft matter physics (Oxford University Press, USA, 2013).
101. Doi, M. & Onuki, A. Dynamic coupling between stress and composition in polymer solutions and

blends. Journal de Physique II 2, 1631–1656 (1992).
102. Lee, D. et al. Physical, mathematical, and numerical derivations of the Cahn–Hilliard equation.

Computational Materials Science 81, 216–225 (2014).
103. Huang, C., de La Cruz M., O. & W., S. B. Phase separation of ternary mixtures: Symmetric

polymer blends. Macromolecules 28, 7996–8005 (1995).

196



BIBLIOGRAPHY

104. Butler, M. D. & Montenegro-Johnson, T. D. The swelling and shrinking of spherical thermo-
responsive hydrogels. Journal of Fluid Mechanics 947, A11 (2022).

105. Cummings, J., Lowengrub, J. S., Sumpter, B. G., Wise, S. M. & Kumar, R. Modeling solvent
evaporation during thin film formation in phase separating polymer mixtures. Soft Matter 14,
1833–1846 (2018).

106. Sierra-Martin, B, Laporte, Y, South, A., Lyon, L. A. & Fernández-Nieves, A. Bulk modulus of
poly (N-isopropylacrylamide) microgels through the swelling transition. Physical Review E 84,
011406 (2011).

107. Bar, A., Ramon, O., Cohen, Y. & Mizrahi, S. Shrinkage behaviour of hydrophobic hydrogel during
dehydration. Journal of food engineering 55, 193–199 (2002).

108. Landau, L. D., Lifshitz, E. M., Kosevich, A. M. & Pitaevskii, L. P. Theory of elasticity: Landau
and Lifshitz: Course of Theoretical Physics, volume 7 (Elsevier, 1986).

109. Love, A. E. H. A treatise on the mathematical theory of elasticity (Cambridge university press,
2013).

110. Zhao, M. et al. Geometrical control of dissipation during the spreading of liquids on soft solids.
Proceedings of the National Academy of Sciences 115, 1748–1753 (2018).

111. Van de Velde, P., Dervaux, J., Protière, S. & Duprat, C. Spontaneous localized fluid release on
swelling fibres. Soft Matter 18, 4565–4571 (2022).

112. Hu, Y., Zhao, X., Vlassak, J. J. & Suo, Z. Using indentation to characterize the poroelasticity of
gels. Applied Physics Letters 96, 121904 (2010).

113. Delavoipiere, J., Tran, Y., Verneuil, E. & Chateauminois, A. Poroelastic indentation of mechani-
cally confined hydrogel layers. Soft Matter 12, 8049–8058 (2016).

114. Hong, W., Zhao, X., Zhou, J. & Suo, Z. A theory of coupled diffusion and large deformation in
polymeric gels. Journal of the Mechanics and Physics of Solids 56, 1779–1793 (2008).

115. Bouklas, N. & Huang, R. Swelling kinetics of polymer gels: comparison of linear and nonlinear
theories. Soft Matter 8, 8194–8203 (2012).

116. Hu, Y. & Suo, Z. Viscoelasticity and poroelasticity in elastomeric gels. Acta Mechanica Solida
Sinica 25, 441–458 (2012).

117. Liu, Z., Bouklas, N. & Hui, C.-Y. Coupled flow and deformation fields due to a line load on a
poroelastic half space: effect of surface stress and surface bending. Proceedings of the Royal Society
A 476, 20190761 (2020).

118. Ang, I., Liu, Z., Kim, J., Hui, C.-Y. & Bouklas, N. Effect of elastocapillarity on the swelling
kinetics of hydrogels. Journal of the Mechanics and Physics of Solids 145, 104132 (2020).

119. Dervaux, J. & Amar, M. B. Mechanical instabilities of gels. Annu. Rev. Condens. Matter Phys.
3, 311–332 (2012).

120. Engler, A. J., Richert, L., Wong, J. Y., Picart, C. & Discher, D. E. Surface probe measurements
of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: correlations
between substrate stiffness and cell adhesion. Surface science 570, 142–154 (2004).

121. Davies, H. S. et al. Elastohydrodynamic lift at a soft wall. Physical review letters 120, 198001
(2018).

122. Trujillo, V., Kim, J. & Hayward, R. C. Creasing instability of surface-attached hydrogels. Soft
Matter 4, 564–569 (2008).

123. Hong, W., Zhao, X. & Suo, Z. Formation of creases on the surfaces of elastomers and gels. Applied
Physics Letters 95 (2009).

124. Ortiz, O., Vidyasagar, A., Wang, J. & Toomey, R. Surface instabilities in ultrathin, cross-linked
poly (N-isopropylacrylamide) coatings. Langmuir 26, 17489–17494 (2010).

125. Chen, D., Yoon, J., Chandra, D., Crosby, A. J. & Hayward, R. C. Stimuli-responsive buckling
mechanics of polymer films. Journal of Polymer Science Part B: Polymer Physics 52, 1441–1461
(2014).

126. Ciarletta, P. Matched asymptotic solution for crease nucleation in soft solids. Nature communi-
cations 9, 496 (2018).

127. Cai, S., Chen, D., Suo, Z. & Hayward, R. C. Creasing instability of elastomer films. Soft Matter
8, 1301–1304 (2012).

197



BIBLIOGRAPHY

128. Hohlfeld, E. & Mahadevan, L. Unfolding the sulcus. Physical review letters 106, 105702 (2011).
129. Chen, D., Cai, S., Suo, Z. & Hayward, R. C. Surface energy as a barrier to creasing of elastomer

films: An elastic analogy to classical nucleation. Physical review letters 109, 038001 (2012).
130. Suematsu, N., Sekimoto, K. & Kawasaki, K. Three-dimensional computer modeling for pattern

formation on the surface of an expanding polymer gel. Physical Review A 41, 5751 (1990).
131. Li, B., Cao, Y.-P., Feng, X.-Q. & Gao, H. Mechanics of morphological instabilities and surface

wrinkling in soft materials: a review. Soft Matter 8, 5728–5745 (2012).
132. Weiss, F. et al. Creases and wrinkles on the surface of a swollen gel. Journal of Applied Physics

114 (2013).
133. Sheppard, S. & Elliott, F. The reticulation of gelatine. Journal of the Franklin Institute 187, 227

(1919).
134. Southern, E & Thomas, A. Effect of constraints on the equilibrium swelling of rubber vulcanizates.

Journal of Polymer Science Part A: General Papers 3, 641–646 (1965).
135. Tanaka, T. et al. Mechanical instability of gels at the phase transition. Nature 325, 796–798

(1987).
136. Tanaka, H., Tomita, H., Takasu, A., Hayashi, T. & Nishi, T. Morphological and kinetic evolution

of surface patterns in gels during the swelling process: Evidence of dynamic pattern ordering.
Physical review letters 68, 2794 (1992).

137. Brau, F. et al. Multiple-length-scale elastic instability mimics parametric resonance of nonlinear
oscillators. Nature Physics 7, 56–60 (2011).

138. Ghatak, A. & Das, A. L. Kink instability of a highly deformable elastic cylinder. Physical review
letters 99, 076101 (2007).

139. Chen, D., Jin, L., Suo, Z. & Hayward, R. C. Controlled formation and disappearance of creases.
Materials Horizons 1, 207–213 (2014).

140. Jin, L., Chen, D., Hayward, R. C. & Suo, Z. Creases on the interface between two soft materials.
Soft Matter 10, 303–311 (2014).

141. Guvendiren, M., Burdick, J. A. & Yang, S. Solvent induced transition from wrinkles to creases in
thin film gels with depth-wise crosslinking gradients. Soft Matter 6, 5795–5801 (2010).

142. Drummond, W. R., Knight, M. L., Brannon, M. L. & Peppas, N. A. Surface instabilities during
swelling of pH-sensitive hydrogels. Journal of controlled release 7, 181–183 (1988).

143. Dervaux, J. & Amar, M. B. Buckling condensation in constrained growth. Journal of the Mechanics
and Physics of Solids 59, 538–560 (2011).

144. Amar, M. B. & Ciarletta, P. Swelling instability of surface-attached gels as a model of soft tissue
growth under geometric constraints. Journal of the Mechanics and Physics of Solids 58, 935–954
(2010).

145. Cerda, E. & Mahadevan, L. Geometry and physics of wrinkling. Physical review letters 90, 074302
(2003).

146. Allen, H. G. Analysis and design of structural sandwich panels: the commonwealth and interna-
tional library: structures and solid body mechanics division (Elsevier, 2013).

147. Bowden, N., Huck, W. T., Paul, K. E. & Whitesides, G. M. The controlled formation of ordered,
sinusoidal structures by plasma oxidation of an elastomeric polymer. Applied physics letters 75,
2557–2559 (1999).

148. Bowden, N., Brittain, S., Evans, A. G., Hutchinson, J. W. & Whitesides, G. M. Spontaneous
formation of ordered structures in thin films of metals supported on an elastomeric polymer.
nature 393, 146–149 (1998).

149. Davis, C. S. & Crosby, A. J. Mechanics of wrinkled surface adhesion. Soft Matter 7, 5373–5381
(2011).

150. Niven, J. F., Chowdhry, G., Sharp, J. S. & Dalnoki-Veress, K. The emergence of local wrinkling
or global buckling in thin freestanding bilayer films. The European Physical Journal E 43, 1–7
(2020).

151. Kodio, O., Griffiths, I. M. & Vella, D. Lubricated wrinkles: Imposed constraints affect the dynamics
of wrinkle coarsening. Physical Review Fluids 2, 014202 (2017).

198



BIBLIOGRAPHY

152. Genzer, J. & Groenewold, J. Soft matter with hard skin: From skin wrinkles to templating and
material characterization. Soft Matter 2, 310–323 (2006).

153. Breid, D. & Crosby, A. J. Surface wrinkling behavior of finite circular plates. Soft Matter 5,
425–431 (2009).

154. Kim, P., Abkarian, M. & Stone, H. A. Hierarchical folding of elastic membranes under biaxial
compressive stress. Nature materials 10, 952–957 (2011).

155. Biot, M. A. Surface instability of rubber in compression. Applied Scientific Research, Section A
12, 168–182 (1963).

156. Mora, S., Abkarian, M., Tabuteau, H & Pomeau, Y. Surface instability of soft solids under strain.
Soft matter 7, 10612–10619 (2011).

157. Hohlfeld, E. B. Creasing, point-bifurcations, and the spontaneous breakdown of scale-invariance
(Harvard University, 2008).

158. Liu, Q., Ouchi, T., Jin, L., Hayward, R. & Suo, Z. Elastocapillary crease. Physical review letters
122, 098003 (2019).

159. Cao, Y. & Hutchinson, J. W. From wrinkles to creases in elastomers: the instability and imperfection-
sensitivity of wrinkling. Proceedings of the Royal Society A: Mathematical, Physical and Engineer-
ing Sciences 468, 94–115 (2012).

160. Wong, W., Guo, T., Zhang, Y. & Cheng, L. Surface instability maps for soft materials. Soft Matter
6, 5743–5750 (2010).

161. Kim, J., Yoon, J. & Hayward, R. C. Dynamic display of biomolecular patterns through an elastic
creasing instability of stimuli-responsive hydrogels. Nature materials 9, 159–164 (2010).

162. Yoon, J., Bian, P., Kim, J., McCarthy, T. J. & Hayward, R. C. Local switching of chemical
patterns through light-triggered unfolding of creased hydrogel surfaces. Angewandte Chemie 29,
7258–7261 (2012).

163. Tallinen, T., Biggins, J. S. & Mahadevan, L. Surface sulci in squeezed soft solids. Physical review
letters 110, 024302 (2013).

164. Van Limbeek, M. A., Essink, M. H., Pandey, A., Snoeijer, J. H. & Karpitschka, S. Pinning-induced
folding-unfolding asymmetry in adhesive creases. Physical review letters 127, 028001 (2021).

165. Deegan, R. D. et al. Contact line deposits in an evaporating drop. Physical review E 62, 756
(2000).

166. Hennessy, M. G., Ferretti, G. L., Cabral, J. T. & Matar, O. K. A minimal model for solvent
evaporation and absorption in thin films. Journal of Colloid and Interface Science 488, 61–71
(2017).

167. Deegan, R. D. et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature
389, 827–829 (1997).

168. Poulard, C & Damman, P. Control of spreading and drying of a polymer solution from Marangoni
flows. Europhysics Letters 80, 64001 (2007).

169. Hu, H. & Larson, R. G. Analysis of the effects of Marangoni stresses on the microflow in an
evaporating sessile droplet. Langmuir 21, 3972–3980 (2005).

170. Tsoumpas, Y., Dehaeck, S., Rednikov, A. & Colinet, P. Effect of Marangoni flows on the shape of
thin sessile droplets evaporating into air. Langmuir 31, 13334–13340 (2015).

171. Barash, L. Y. Marangoni convection in an evaporating droplet: Analytical and numerical descrip-
tions. International Journal of Heat and Mass Transfer 102, 445–454 (2016).

172. Pauchard, L & Allain, C. Buckling instability induced by polymer solution drying. Europhysics
Letters 62, 897 (2003).

173. Talini, L. & Lequeux, F. Formation of glassy skins in drying polymer solutions: approximate
analytical solutions. Soft Matter 19, 5835–5845 (2023).

174. Larson, R. G. Transport and deposition patterns in drying sessile droplets. AIChE Journal 60,
1538–1571 (2014).

175. Hu, H. & Larson, R. G. Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir
21, 3963–3971 (2005).

176. Pauchard, L. & Allain, C. Mechanical instability induced by complex liquid desiccation. Comptes
Rendus Physique 4, 231–239 (2003).

199



BIBLIOGRAPHY

177. Zhou, J., Man, X., Jiang, Y. & Doi, M. Structure Formation in Soft-Matter Solutions Induced by
Solvent Evaporation. Advanced Materials 29, 1703769 (2017).

178. Chen, L. & Evans, J. R. Arched structures created by colloidal droplets as they dry. Langmuir
25, 11299–11301 (2009).

179. McGraw, J. D., Li, J., Tran, D. L., Shi, A.-C. & Dalnoki-Veress, K. Plateau-Rayleigh instability
in a torus: formation and breakup of a polymer ring. Soft Matter 6, 1258–1262 (2010).

180. McGraw, J. D., Rowe, I. D., Matsen, M. & Dalnoki-Veress, K. Dynamics of interacting edge
defects in copolymer lamellae. The European Physical Journal E 34, 1–7 (2011).

181. Zhang, Y., Qian, Y., Liu, Z., Li, Z. & Zang, D. Surface wrinkling and cracking dynamics in the
drying of colloidal droplets. The European Physical Journal E 37, 1–7 (2014).

182. Wang, X. & Christov, I. C. Theory of the flow-induced deformation of shallow compliant mi-
crochannels with thick walls. Proceedings of the Royal Society A 475, 20190513 (2019).

183. Davis, R. H., Serayssol, J.-M. & Hinch, E. The elastohydrodynamic collision of two spheres.
Journal of Fluid Mechanics 163, 479–497 (1986).

184. Hughes, B. & White, L. ‘Soft’contact problems in linear elasticity. The Quarterly Journal of
Mechanics and Applied Mathematics 32, 445–471 (1979).

185. Dowson, D. Elastohydrodynamic and micro-elastohydrodynamic lubrication. Wear 190, 125–138
(1995).

186. Dowson, D & Ehret, P. Past, present and future studies in elastohydrodynamics. Proceedings
of the institution of mechanical engineers, part J: journal of engineering tribology 213, 317–333
(1999).

187. Skotheim, J. & Mahadevan, L. Soft lubrication. Physical review letters 92, 245509 (2004).
188. Skotheim, J. & Mahadevan, L. Soft lubrication: The elastohydrodynamics of nonconforming and

conforming contacts. Physics of Fluids 17, 092101 (2005).
189. Essink, M. H., Pandey, A., Karpitschka, S., Venner, C. H. & Snoeijer, J. H. Regimes of soft

lubrication. Journal of fluid mechanics 915 (2021).
190. Weekley, S., Waters, S. & Jensen, O. Transient elastohydrodynamic drag on a particle moving

near a deformable wall. The Quarterly Journal of Mechanics and Applied Mathematics 59, 277–
300 (2006).

191. Temizer, I & Stupkiewicz, S. Formulation of the Reynolds equation on a time-dependent lubrica-
tion surface. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
472, 20160032 (2016).

192. Jahn, S., Seror, J. & Klein, J. Lubrication of articular cartilage. Annual review of biomedical
engineering 18, 235–258 (2016).

193. Hou, J., Mow, V. C., Lai, W. & Holmes, M. An analysis of the squeeze-film lubrication mechanism
for articular cartilage. Journal of biomechanics 25, 247–259 (1992).

194. Cher, I. A new look at lubrication of the ocular surface: fluid mechanics behind the blinking
eyelids. The ocular surface 6, 79–86 (2008).

195. Gipson, I. K. & Argueso, P. Role of mucins in the function of the corneal and conjunctival epithelia.
Int Rev Cytol 231, 1–49 (2003).

196. Hariprasad, D. S. & Secomb, T. W. Motion of red blood cells near microvessel walls: effects of a
porous wall layer. Journal of fluid mechanics 705, 195–212 (2012).

197. Zhang, Z. et al. Contactless Rheology of Soft Gels over a Broad Frequency Range. arXiv preprint
arXiv:2202.04386 (2022).

198. Salez, T. & Mahadevan, L. Elastohydrodynamics of a sliding, spinning and sedimenting cylinder
near a soft wall. Journal of Fluid Mechanics 779, 181–196 (2015).

199. Zhang, Z. et al. Direct measurement of the elastohydrodynamic lift force at the nanoscale. Physical
review letters 124, 054502 (2020).

200. Saintyves, B., Jules, T., Salez, T. & Mahadevan, L. Self-sustained lift and low friction via soft
lubrication. Proceedings of the National Academy of Sciences 113, 5847–5849 (2016).

201. Rallabandi, B., Oppenheimer, N., Ben Zion, M. Y. & Stone, H. A. Membrane-induced hydroelastic
migration of a particle surfing its own wave. Nature Physics 14, 1211–1215 (2018).

200



BIBLIOGRAPHY

202. Karan, P., Das, S. S., Mukherjee, R., Chakraborty, J. & Chakraborty, S. Flow and deformation
characteristics of a flexible microfluidic channel with axial gradients in wall elasticity. Soft Matter
16, 5777–5786 (2020).

203. Leroy, S. & Charlaix, E. Hydrodynamic interactions for the measurement of thin film elastic
properties. Journal of Fluid Mechanics 674, 389–407 (2011).

204. Leroy, S. et al. Hydrodynamic interaction between a spherical particle and an elastic surface: a
gentle probe for soft thin films. Physical review letters 108, 264501 (2012).

205. Wang, Y., Pilkington, G. A., Dhong, C. & Frechette, J. Elastic deformation during dynamic force
measurements in viscous fluids. Current opinion in colloid & interface science 27, 43–49 (2017).

206. Wang, Y. & Frechette, J. Morphology of soft and rough contact via fluid drainage. Soft Matter
14, 7605–7614 (2018).

207. Wang, Y., Tan, M. R. & Frechette, J. Elastic deformation of soft coatings due to lubrication
forces. Soft Matter 13, 6718–6729 (2017).

208. Kaveh, F., Ally, J., Kappl, M. & Butt, H.-J. Hydrodynamic force between a sphere and a soft,
elastic surface. Langmuir 30, 11619–11624 (2014).

209. Wang, Y., Dhong, C. & Frechette, J. Out-of-contact elastohydrodynamic deformation due to
lubrication forces. Physical review letters 115, 248302 (2015).

210. Vialar, P., Merzeau, P., Giasson, S. & Drummond, C. Compliant surfaces under shear: elastohy-
drodynamic lift force. Langmuir 35, 15605–15613 (2019).

211. Bertin, V., Amarouchene, Y., Raphael, E. & Salez, T. Soft-lubrication interactions between a rigid
sphere and an elastic wall. Journal of Fluid Mechanics 933 (2022).

212. Li, J. & Chou, T.-W. Elastic field of a thin-film/substrate system under an axisymmetric loading.
International Journal of Solids and Structures 34, 4463–4478 (1997).

213. Wu, H., Moyle, N., Jagota, A. & Hui, C.-Y. Lubricated steady sliding of a rigid sphere on a soft
elastic substrate: hydrodynamic friction in the Hertz limit. Soft Matter 16, 2760–2773 (2020).

214. Hui, C.-Y., Lin, Y. Y., Chuang, F.-C., Shull, K. R. & Lin, W.-C. A contact mechanics method for
characterizing the elastic properties and permeability of gels. Journal of Polymer Science Part B:
Polymer Physics 44, 359–370 (2006).

215. Snoeijer, J. H., Eggers, J & Venner, C. H. Similarity theory of lubricated Hertzian contacts.
Physics of fluids 25 (2013).

216. Hertz, H. Ueber die Berührung fester elastischer Körper. (1882).
217. Johnson, K. L. Contact mechanics (Cambridge university press, 1987).
218. Meeker, S. P., Bonnecaze, R. T. & Cloitre, M. Slip and flow in pastes of soft particles: Direct

observation and rheology. Journal of Rheology 48, 1295–1320 (2004).
219. Xu, Q., Wilen, L. A., Jensen, K. E., Style, R. W. & Dufresne, E. R. Viscoelastic and poroelastic

relaxations of soft solid surfaces. Physical Review Letters 125, 238002 (2020).
220. Webber, J. J. & Worster, M. G. A linear-elastic-nonlinear-swelling theory for hydrogels. Part 1.

Modelling of super-absorbent gels. Journal of Fluid Mechanics 960, A37 (2023).
221. Hu, Y., Chen, X., Whitesides, G. M., Vlassak, J. J. & Suo, Z. Indentation of polydimethylsiloxane

submerged in organic solvents. Journal of Materials Research 26, 785–795 (2011).
222. Degen, G. D., Chen, Y.-T., Chau, A. L., Månsson, L. K. & Pitenis, A. A. Poroelasticity of highly

confined hydrogel films measured with a surface forces apparatus. Soft Matter 16, 8096–8100
(2020).

223. Abdorahim, M. High throughput compartmentalization with thermosensitive hydrogel. Application
to bacteria studies PhD thesis (Université Paris sciences et lettres, 2021).

224. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Physical review letters 56, 930
(1986).

225. Butt, H.-J., Cappella, B. & Kappl, M. Force measurements with the atomic force microscope:
Technique, interpretation and applications. Surface science reports 59, 1–152 (2005).

226. Cappella, B. & Dietler, G. Force-distance curves by atomic force microscopy. Surface science
reports 34, 1–104 (1999).

227. Ducker, W. A., Senden, T. J. & Pashley, R. M. Direct measurement of colloidal forces using an
atomic force microscope. Nature 353, 239–241 (1991).

201



BIBLIOGRAPHY

228. Sader, J. E., Larson, I., Mulvaney, P. & White, L. R. Method for the calibration of atomic force
microscope cantilevers. Review of Scientific Instruments 66, 3789–3798 (1995).

229. Sader, J. E. Frequency response of cantilever beams immersed in viscous fluids with applications
to the atomic force microscope. Journal of applied physics 84, 64–76 (1998).

230. Sader, J. E., Chon, J. W. & Mulvaney, P. Calibration of rectangular atomic force microscope
cantilevers. Review of scientific instruments 70, 3967–3969 (1999).

231. Sader, J. E. et al. Spring constant calibration of atomic force microscope cantilevers of arbitrary
shape. Review of Scientific Instruments 83 (2012).

232. Neumeister, J. M. & Ducker, W. A. Lateral, normal, and longitudinal spring constants of atomic
force microscopy cantilevers. Review of scientific instruments 65, 2527–2531 (1994).

233. Hoffmann, Á, Jungk, T & Soergel, E. Cross-talk correction in atomic force microscopy. Review of
scientific instruments 78 (2007).

234. Onal, C. D., Sümer, B. & Sitti, M. Cross-talk compensation in atomic force microscopy. Review
of scientific instruments 79 (2008).

235. Li, Y., Li, C. & Hu, Z. Pattern formation of constrained acrylamide/sodium acrylate copolymer
gels in acetone/water mixture. The Journal of chemical physics 100, 4637–4644 (1994).

236. Li, C., Hu, Z. & Li, Y. Temperature and time dependencies of surface patterns in constrained
ionic N-isopropylacrylamide gels. The Journal of chemical physics 100, 4645–4652 (1994).

237. Gérardin, H, Buguin, A & Brochard-Wyart, F. Pattern formation in anti-fog and anti-frost poly-
mer coatings. preprint (2009).

238. Durie, K., Razavi, M. J., Wang, X. & Locklin, J. Nanoscale surface creasing induced by post-
polymerization modification. ACS nano 9, 10961–10969 (2015).

239. Hirotsu, S. Softening of bulk modulus and negative Poisson’s ratio near the volume phase transi-
tion of polymer gels. The Journal of chemical physics 94, 3949–3957 (1991).

240. Boon, N. & Schurtenberger, P. Swelling of micro-hydrogels with a crosslinker gradient. Physical
Chemistry Chemical Physics 19, 23740–23746 (2017).

241. Hermanowicz, P., Sarna, M., Burda, K. & Gabryś, H. AtomicJ: an open source software for
analysis of force curves. Review of Scientific Instruments 85 (2014).

242. Gilmour, I., Trainor, A & Haward, R. Elastic moduli of glassy polymers at low strains. Journal
of Applied Polymer Science 23, 3129–3138 (1979).

243. Haq, M. A., Su, Y. & Wang, D. Mechanical properties of PNIPAM based hydrogels: A review.
Materials Science and Engineering: C 70, 842–855 (2017).

244. Hashmi, S. M. & Dufresne, E. R. Mechanical properties of individual microgel particles through
the deswelling transition. Soft Matter 5, 3682–3688 (2009).

245. Shibayama, M., Morimoto, M. & Nomura, S. Phase separation induced mechanical transition of
poly (N-isopropylacrylamide)/water isochore gels. Macromolecules 27, 5060–5066 (1994).

246. Zhang, J. & Pelton, R. The surface tension of aqueous poly (N-isopropylacrylamide-co-acrylamide).
Journal of Polymer Science Part A: Polymer Chemistry 37, 2137–2143 (1999).

247. Jin, L., Cai, S. & Suo, Z. Creases in soft tissues generated by growth. Europhysics Letters 95,
64002 (2011).

248. Sun, J.-Y., Xia, S., Moon, M.-W., Oh, K. H. & Kim, K.-S. Folding wrinkles of a thin stiff layer
on a soft substrate. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences 468, 932–953 (2012).

249. Pocivavsek, L. et al. Stress and fold localization in thin elastic membranes. Science 320, 912–916
(2008).

250. Stafford, C. M. et al. A buckling-based metrology for measuring the elastic moduli of polymeric
thin films. Nature materials 3, 545–550 (2004).

251. Kopecz-Muller, C., Bertin, V., Raphael, E., raw, J. D. & Salez, T. Mechanical response of a thick
poroelastic gel in contactless colloidal-probe rheology. Proceedings of the Royal Society A 479,
20220832 (2023).

252. McNAMEE, J. & Gibson, R. Plane strain and axially symmetric problems of the consolidation of
a semi-infinite clay stratum. The Quarterly Journal of Mechanics and Applied Mathematics 13,
210–227 (1960).

202



BIBLIOGRAPHY

253. McNamee, J. & Gibson, R. Displacement functions and linear transforms applied to diffusion
through porous elastic media. The Quarterly Journal of Mechanics and Applied Mathematics 13,
98–111 (1960).

254. Gibson, R., Schiffman, R. & Pu, S. Plane strain and axially symmetric consolidation of a clay
layer on a smooth impervious base. The Quarterly Journal of Mechanics and Applied Mathematics
23, 505–520 (1970).

255. Abate, J. & Whitt, W. A unified framework for numerically inverting Laplace transforms. IN-
FORMS Journal on Computing 18, 408–421 (2006).

256. Prieve, D. C. & Frej, N. A. Total internal reflection microscopy: a quantitative tool for the mea-
surement of colloidal forces. Langmuir 6, 396–403 (1990).

257. Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764–774
(2001).

258. Prieve, D. C. Measurement of colloidal forces with TIRM. Advances in Colloid and Interface
Science 82, 93–125 (1999).

259. Villey, R. et al. Effect of surface elasticity on the rheology of nanometric liquids. Physical review
letters 111, 215701 (2013).

260. Guan, D., Charlaix, E., Qi, R. Z. & Tong, P. Noncontact viscoelastic imaging of living cells using
a long-needle atomic force microscope with dual-frequency modulation. Physical Review Applied
8, 044010 (2017).

261. Guan, D., Barraud, C., Charlaix, E. & Tong, P. Noncontact viscoelastic measurement of polymer
thin films in a liquid medium using long-needle atomic force microscopy. Langmuir 33, 1385–1390
(2017).

262. Lainé, A. et al. MicroMegascope based dynamic surface force apparatus. Nanotechnology 30,
195502 (2019).

263. Bertin, V. et al. Contactless rheology of finite-size air-water interfaces. Physical Review Research
3, L032007 (2021).

264. Cleveland, J., Manne, S., Bocek, D & Hansma, P. A nondestructive method for determining the
spring constant of cantilevers for scanning force microscopy. Review of scientific instruments 64,
403–405 (1993).

265. Kristiansen, K. et al. Multimodal miniature surface forces apparatus (µSFA) for interfacial science
measurements. Langmuir 35, 15500–15514 (2019).

266. Heavens, O. Optical properties of thin films. Reports on Progress in Physics 23, 1 (1960).
267. Lhermerout, R. & Perkin, S. Nanoconfined ionic liquids: Disentangling electrostatic and viscous

forces. Physical Review Fluids 3, 014201 (2018).
268. Dimitriadis, E. K., Horkay, F., Maresca, J., Kachar, B. & Chadwick, R. S. Determination of elastic

moduli of thin layers of soft material using the atomic force microscope. Biophysical journal 82,
2798–2810 (2002).

269. Rackauckas, C. A comparison between differential equation solver suites in matlab, r, julia, python,
c, mathematica, maple, and fortran. Authorea Preprints (2023).

270. Sofroniou, M. & Spaletta, G. Precise numerical computation. The Journal of Logic and Algebraic
Programming 64, 113–134 (2005).

271. Sofroniou, M., Spaletta, G., et al. Extrapolation methods in mathematica. JNAIAM J. Numer.
Anal. Indust. Appl. Math 3, 105–121 (2008).

272. Duchemin, L. & Eggers, J. The explicit–implicit–null method: Removing the numerical instability
of PDEs. Journal of Computational Physics 263, 37–52 (2014).

273. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical recipes 3rd edition:
The art of scientific computing (Cambridge university press, 2007).

274. Ypma, T. J. Historical development of the Newton–Raphson method. SIAM review 37, 531–551
(1995).

275. Le Menn, F.-M. Micromechanics of cavitation in confined soft polymer layers PhD thesis (Uni-
versité Paris sciences et lettres, 2022).

276. Rubinstein, M & Colby, R. Polymer Physics Oxford University Press. New York (2003).

203



BIBLIOGRAPHY

277. Treloar, L. The elasticity and related properties of rubbers. Reports on progress in physics 36,
755 (1973).

278. Yeoh, O. H. & Fleming, P. A new attempt to reconcile the statistical and phenomenological
theories of rubber elasticity. Journal of Polymer Science Part B: Polymer Physics 35, 1919–1931
(1997).

279. Gent, A. N. A new constitutive relation for rubber. Rubber chemistry and technology 69, 59–61
(1996).

280. Rivlin, R. S. & Saunders, D. Large elastic deformations of isotropic materials VII. Experiments
on the deformation of rubber. Philosophical Transactions of the Royal Society of London. Series
A, Mathematical and Physical Sciences 243, 251–288 (1951).

281. Bissett, E. The line contact problem of elastohydrodynamic lubrication-I. Asymptotic structure
for low speeds. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences
424, 393–407 (1989).

282. Sbeih, S., Mohanty, P. S., Morrow, M. R. & Yethiraj, A. Structural parameters of soft PNIPAM
microgel particles as a function of crosslink density. Journal of colloid and interface science 552,
781–793 (2019).

283. Chadwick, R. S. Axisymmetric indentation of a thin incompressible elastic layer. SIAM Journal
on Applied Mathematics 62, 1520–1530 (2002).

284. Mecke, K. R. Integral geometry in statistical physics. International Journal of Modern Physics B
12, 861–899 (1998).

285. Mecke, K. R. in Statistical Physics and Spatial Statistics: The art of analyzing and modeling spatial
structures and pattern formation 111–184 (Springer, 2000).

286. Scholz, C., Schröder-Turk, G. E. & Mecke, K. Pattern-fluid interpretation of chemical turbulence.
Physical Review E 91, 042907 (2015).

287. Boelens, A. M. & Tchelepi, H. A. QuantImPy: Minkowski functionals and functions with Python.
SoftwareX 16, 100823. issn: 2352-7110. https://www.sciencedirect.com/science/article/
pii/S2352711021001151 (2021).

288. Johnson, K. L., Kendall, K. & Roberts, a. Surface energy and the contact of elastic solids. Proceed-
ings of the royal society of London. A. mathematical and physical sciences 324, 301–313 (1971).

289. Derjaguin, B. V., Muller, V. M. & Toporov, Y. P. Effect of contact deformations on the adhesion
of particles. Journal of Colloid and interface science 53, 314–326 (1975).

290. London, F. The general theory of molecular forces. Transactions of the Faraday Society 33, 8b–26
(1937).

291. Baddour, N. & Chouinard, U. Theory and operational rules for the discrete Hankel transform.
JOSA A 32, 611–622 (2015).

204

https://www.sciencedirect.com/science/article/pii/S2352711021001151
https://www.sciencedirect.com/science/article/pii/S2352711021001151




Mecanique de films d’hydrogels : instabilités induites par le gonflement, effets de taille finie,
de la rhéologie sans contact à une déshydratation induite par indentation

Résumé : Dans ce manuscrit, nous étudions la réponse mécanique de films minces d’hydrogel sous
plusieurs angles, incluant celui d’instabilités de la surface libre, d’indentation de la surface au moyen d’un
fluide et de situations proches du contact de Hertz. Un premier chapitre préliminaire est consacré à la
présentation des concepts de base utilisés dans cette thèse. Ensuite, dans une première partie, nous nous
intéressons à des instabilités de surface induites par gonflement, que l’on observe à la fois sur des hydrogels
gonflés et sur des films séchés. Nous analysons la formation de motifs comme le résultat d’un important
gonflement anisotrope des films qui sont attachés à une surface, suivi du séchage de la surface libre de
l’hydrogel de polymères, d’ores et déjà déstabilisée. Dans une deuxième partie, nous développons un modèle
poroélastique pour décrire la réponse mécanique d’un hydrogel perméable soumis à un quelconque champ de
pression possédant une symétrie axiale, dans un cas général. Aussi bien le cas d’une épaisseur infinie que les
effets de taille finie sont étudiés et comparés. Dans une troisième partie, nous utilisons ce cadre théorique
pour aborder le problème spécifique du couplage entre poroélasticité et lubrification, rencontré dans le cadre
de techniques en sonde colloïdale et sans contact. Nous aboutissons théoriquement aux composantes dis-
sipative et conservative de la force résultant du mouvement vertical d’une sphère au voisinage du substrat
poroélastique. Ces résultats théoriques sont confrontés à des résultats expérimentaux de Microscopie à Force
Atomique (AFM) en sonde colloïdale, obtenus sur un hydrogel épais et gonflé. Dans une dernière partie,
nous mettons en évidence une succession de réponses mécaniques de la part d’hydrogels gonflés, avec des
expériences d’Appareil à Forces de Surface (SFA). Partant d’un régime dénué d’interactions entre la sonde et
le gel, la surface de l’hydrogel subit d’abord une faible déformation, dans un régime en lubrification. Enfin,
nous montrons qu’à température ambiante la contrainte mécanique imposée déclenche par déshydratation
la transition vitreuse du polymère. Dans l’ensemble, les résultats obtenus montrent que la réponse poroélas-
tique est caractérisée par une transition dans le temps allant d’un comportement purement élastique et
incompressible à un comportement purement élastique et compressible.
Mots-clés : Hydrogels, poroelasticité, lubrification souple, elastohydrodynamique, motifs de surface, rhéolo-
gie.

Mechanics of hydrogel films: swelling-induced instabilities, finite-size effects, and contactless
rheology to indentation-induced dehydration

Abstract: In this manuscript, we study the mechanical response of hydrogel thin films from different
perspectives, including free-surface instability, fluid-mediated surface indentation and Hertz-like contact
situations. A first, preliminary Chapter is deduced to the introduction of basic concepts used is this thesis.
Then, in a first part, we focus on swelling-induced surface instabilities that are observed on both swollen
hydrogels and dried polymer films. The different observed morphologies are characterized by shape and
spacing. We analyse the pattern formation as the result of an important anisotropic swelling of surface-
attached films, and a subsequent drying of the already-destabilized free surface of polymer hydrogel. In a
second part, we develop a poroelastic model to describe the mechanical response of a permeable hydrogel
to any axially-symmetric pressure field, in a general case. Both the infinite-thickness case and finite-size
effects are studied and compared. In a third part, we use the latter theoretical framework to address the
specific poroelastic lubrication coupling associated with contactless colloidal-probe methods. We derive
theoretically the conservative and dissipative components of the force associated with the oscillating vertical
motion of a sphere close to the poroelastic substrate. We confront our theoretical results to colloidal-probe
Atomic Force Microscopy (AFM) experiments performed on a thick and swollen hydrogel. In a last part, we
highlight a succession of several mechanical responses of swollen hydrogels, with Surface Force Apparatus
(SFA) experiments. From a regime with no gel-probe interaction, the hydrogel first undergoes a gentle
deformation of its surface in a lubricated regime. Then, the indentation of the probe in a contact regime
forces the expulsion of the solvent from the polymer matrix. We finally show that, at room temperature,
the imposed mechanical load triggers the dehydration-induced glass transition of the polymer. Overall, our
results show that the poroelastic response is characterized by a transition in time from a purely elastic and
incompressible behaviour to a purely elastic and compressible one.
Keywords: Hydrogels, poroelasticity, soft lubrication, elastohydrodynamic, patterning, rheology.
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