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France

Doctoral dissertation, to be presented for public discussion

with the permission of the Faculty of Science of the University of Helsinki,

in Auditorium A129, Chemicum building, on the 19th of June 2023 at 13 o’clock.

Helsinki 2023





Titre : Études des Bords et des Branes dans la Dualité Holographique

Résumé

Une théorie quantique des champs est conforme lorsqu’elle est symétrique sous les transforma-

tions conforme de l’espace-temps. En raison de leur relative simplicité, les CFT apparaissent dans

de nombreux domaines de la physique théorique tels que la physique de la matière condensée et

la gravité quantique. Par exemple, dans l’étude des systèmes de mécanique statistique, les CFT

apparaissent comme des descriptions effectives dans le limite du continu de phénomènes collec-

tifs près d’un point critique où une transition de phase se produit. Dans ce contexte, l’existence

de différents types de CFT est liée à la classification de différentes classes d’universalité de

transitions de phase.

En tant que théories en elles-mêmes, les CFT ne décrivent pas la force gravitationnelle qui

est transmise par le graviton. Cependant, les CFT sont profondément liées à la gravité dans

la théorie des cordes où elles déterminent la dynamique des cordes quantiques. Le spectre des

modes de vibration d’une corde comprend le graviton, ce qui fait de la théorie des cordes une

théorie de la gravité quantique cohérente et s’appuie sur de vastes connaissances théoriques.

Ainsi, les CFT ont joué un rôle central dans le développement de la théorie des cordes et dans

notre quête pour unifier la théorie de la gravité d’Einstein avec la mécanique quantique.

La principale étape dans la compréhension moderne de la gravité quantique a été la dé-

couverte de la dualité holographique dans la théorie des cordes. En termes simples, la dualité

énonce que certaines CFT contiennent des règles pour décrire la gravité cachées en elles. Cepen-

dant, ces règles sont holographiques car elles décrivent la gravité dans un espace-temps avec une

dimension supplémentaire : la dualité est comme un hologramme où une image tridimension-

nelle (la gravité) est encodée sur une surface bidimensionnelle (CFT). Non seulement la dualité

holographique est utile pour comprendre la structure de la gravité quantique, elle est également

extrêmement puissante pour prédire la dynamique de champs quantiques fortement couplés qui

se produisent, par exemple, à l’intérieur des étoiles à neutrons.

Cette thèse est consacrée à l’étude de la dualité holographique et est basée sur quatre articles

de recherche sur le sujet. L’accent est mis sur la manière dont les objets étendus, à savoir les

bords et les branes, se comportent des deux côtés de la dualité. Dans la théorie des cordes,

les bords des cordes ouvertes décrivent la dynamique des D-branes dont la compréhension a été

cruciale pour la découverte de la dualité holographique en premier lieu. De même, du côté des

CFT, les bords donnent lieu à des effets observables tels que l’effet Casimir lorsque le système

est confiné entre deux plaques parallèles. L’objectif de la thèse est de donner une introduction

à ces concepts dans le contexte de la dualité holographique.

Mots clefs : Dualité holographique, correspondance AdS/CFT, théorie conforme des champs,

théorie des cordes, gravité de Lovelock, supergravité, théorie ABJM
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Title: Investigations of Boundaries and Branes in the Holographic Dual-
ity

Abstract

Quantum conformal field theory (CFT) is a special type of quantum field theory which is sym-

metric under conformal transformations of spacetime. Because of their relative simplicity, CFTs

appear in many different areas of theoretical physics such as condensed matter physics and

quantum gravity. For example in the study of statistical mechanical systems, CFTs appear as

continuum effective descriptions of collective phenomena near a critical point where a phase

transition occurs. In this context, the existence of different types of CFTs is connected to the

classification of different universality classes of phase transitions.

As theories by themselves, CFTs do not describe the gravitational force which is transmitted

by the graviton particle. However, CFTs are deeply connected to gravity in string theory where

they determine the dynamics of quantum mechanical strings. The spectrum of vibrational modes

of a string include the graviton making string theory a theory of quantum gravity which is self-

consistent based on vast theoretical knowledge. Hence CFTs have played a central role in the

development of string theory and in our quest to unify Einstein’s theory of gravity with quantum

mechanics.

The main milestone in the modern understanding of quantum gravity was the discovery of the

holographic duality in string theory. Simply put, the duality says that there exist special CFTs

which contain rules to describe gravity hidden in them. However, these rules are holographic,

because they describe gravity in a spacetime with one extra dimension: the duality is like a

hologram where a three-dimensional image (gravity) is encoded on a two-dimensional surface

(CFT). Not only is the holographic duality useful in understanding the structure of quantum

gravity, it is also extremely powerful in predicting dynamics of strongly interacting quantum

fields that occur inside neutron stars for example.

This thesis is devoted to the study of the holographic duality and it is based on four research

articles on the topic. The focus is on how extended objects, namely boundaries and branes, be-

have on both sides of the duality. In string theory, boundaries of open strings describe dynamics

of D-branes whose understanding was crucial for the discovery of the holographic duality in the

first place. Similarly on the CFT side, boundaries give raise to observable effects such as the

Casimir effect when the system is confined between two parallel plates. The goal of the thesis

is to give an introduction to these concepts in the context of the holographic duality.

Keywords: Holographic duality, AdS/CFT correspondence, conformal field theory, string the-

ory, Lovelock gravity, supergravity, ABJM theory
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Chapter 1

Introduction

When an object looks the same at small and large scales it is said to exhibit self-similarity or

scale invariance meaning that the physical characteristics of the object are independent of scale.

Approximate scale invariance is ubiquitous in nature, for example, the ocean coastline of Europe

seen from space looks to be the same wiggly line at all zoom levels. When scale invariance is

exact, the object is a fractal with endless self-similarity.

Scale symmetry is realized in theories of physics that describe phase transitions in systems

with many degrees of freedom. A simple example is the heating of a permanent magnet that

looses its magnetism in a phase transition at the Curie temperature. At small scales, the magnet

consists of a large number of tiny spins that point up or down, and near the phase transition

(the critical point), the up-down distribution of the spins exhibits self-similarity. At the critical

point, the magnet is thus described by a field theory with exact scale invariance.

In addition to phase transitions driven by thermal fluctuations, there are also quantum

phase transitions occurring at absolute zero temperature that are driven by quantum mechanical

fluctuations. It is widely believed that the laws of quantum mechanics (combined with causality

and few other assumptions) require the enhancement of scale invariance at a quantum critical

point to conformal invariance [1, 2]. In addition to changes of scale, conformal transformations

include all transformations of space that preserve angles at each point. Field theories exhibiting

conformal invariance are even more symmetric than scale invariant theories which leads to strong

constraints on the properties of the theory. The study of these so called conformal field theories

(CFT) has a long history starting from their applications in condensed matter physics and in

string theory.

Quantum field theories (QFT) can be coupled to different types of extended objects such

as boundaries or defects that affect the behaviour of the system. In particular, the presence of

boundaries leads to drastic observable effects such as the Casimir effect [3] and the divergence

of energy density near a boundary [4]. The effects of boundaries are simplest to study in CFTs

where conformal symmetry is a strong constraint on the spectrum of the theory. In such a

CFT with a boundary (BCFT), the original conformal symmetry is broken to a subgroup that

preserves the location of the boundary and its boundary conditions. However, the remaining

subgroup is still very large especially in two dimensions where its constraints can be implemented

in astonishing detail [5–7].

In the early days of the development of CFT, the motivation was string theory where both

CFTs with and without boundaries appear. In this context, CFTs live on worldsheets of closed

1
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strings while BCFTs live on worldsheets of open strings which are anchored on extended surfaces

in spacetime. An important development in string theory was the realization that the anchor

surfaces are dynamical quantum mechanical objects in their own right [8, 9]. These objects

became known as D-branes, and just like strings, D-branes vibrate and move in spacetime.

Their dynamics at low-energies are described by a generalization of the Dirac–Born–Infeld (DBI)

action [10] so that classically the brane attempts to minimize its worldvolume.

As a result, string theory is not only a quantum theory of strings, but a quantum theory of

extended objects that include D-branes. These objects respect the laws of quantum mechanics

and relativity while interacting with each other in complicated ways making general calculations

difficult. Hence it is common in string theory to study its building blocks in corners of parameter

space where calculations are under control and progress can be made. A standard example is

closed string perturbation theory valid at the corner where the string coupling is weak so that

Feynman diagram methods are applicable. Another example is the limit where a condensate of

a large number of closed strings behaves as a curved spacetime governed by Einstein’s theory of

gravity, or more precisely, by equations of supergravity [11, 12].

Supergravity contains various classical solutions sourced by extended strongly gravitating

objects known as p-branes that are similar to extremal black holes [13]. Another important

discovery was that these sources are simply D-branes in disguise [14]. This is possible, because

open strings attached to D-branes can be reinterpreted as emission of closed strings so that

a large number of D-branes can source supergravity fields. Hence D- and p-branes give two

descriptions of the same physical object in two different regimes of parameter space.

Above types of non-trivial relations between different corners of parameter space are known

as dualities. A famous example of a duality in physics is the Kramers–Wannier (KM) duality of

the Ising model in two dimensions [15, 16] that relates low-temperature properties of the model

to its high-temperature physics. There a variety of different dualities relating different string

theories to each other [17]. For example, the analog of the KM duality is the T-duality [18–

20] relating strings living on different target spaces. On the other hand, the duality behind the

identification of D- and p-branes is the open closed string duality on the string worldsheet [21–23]

which is a statement about two-dimensional CFTs. What makes stringy dualities so remarkable

is that they often involve different theories that can even live in different dimensions.

The most recent example of a duality is the holographic duality which is also called the

AdS/CFT conjecture. In its original formulation [24], it conjectures that physics of a specific

supersymmetric CFT at strong coupling is equivalently described by a subsector of string theory

at weak coupling. This duality is called holographic, because the dimensionality of spacetime

in the two descriptions differs by one: the CFT lives on a d-dimensional spacetime while the

string theory lives effectively in d + 1 dimensions. More precisely, the string theory lives on

an asymptotically AdSd+1 ×Mq spacetime called the bulk where AdSd+1 denotes anti-de Sitter

space and Mq is a compact manifold of dimension q (usually a sphere). The holographic dual

CFT then lives on the conformal boundary of the AdSd+1 bulk [25, 26].

The holographic duality follows from the identification of D- and p-branes in a decoupling

limit [24]. By taking the limit using different types of branes in various corners of string theory

produces different supersymmetric CFTs as holographic duals. For example, D3-branes in type

IIB string theory and M2-branes on an orbifold singularity in M-theory lead to a Yang–Mills

theory in four dimensions [24] and a Chern–Simons theory in three dimensions [27] respectively.

The duality has been generalized by considering increasingly more complicated brane configu-
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rations, for example, the inclusion of D7-branes in the D3-brane system leads to the addition of

flavor degrees of freedom to the dual Yang–Mills theory [28].

One of the goals of these generalizations was to construct dual QFTs that are more simi-

lar to theories describing nature such as quantum chromodynamics (QCD) (see [29] for early

work in this direction). The string theory dual of QCD would allow the use of weakly coupled

gravitational calculations to study the strongly coupled regime of QCD which is otherwise in-

accessible for traditional perturbative methods. However, top-down string theory constructions

are often complicated so simpler gravitational models that capture necessary QCD physics are

preferred. This lead to the development of the bottom-up approach to holography where holo-

graphic gravity models are built on top of a simple classical theory of gravity. Bottom-up models

of holography have been successful in describing strongly coupled properties of QCD such as

confinement [30], the meson mass spectrum [31] and the phase diagram at finite density [32].

In the holographic duality, quantum gravitational degrees of freedom are encoded in an

ordinary QFT without gravity in a non-trivial manner. The bottom-up approach has been

useful for breaking down this encoding, for example, it was understood early on that quantum

entanglement plays an important role in the formation of a connected spacetime on the gravity

side [33]. The role of entanglement could be made quantitative in [34, 35] after the discovery of

the HRT formula [36–38] which says that entanglement entropy of quantum fields in the CFT is

equal to the area of a minimal surface in gravity. More recently, these bottom-up developments

lead to a proposal for a mechanism that explains how quantum gravity preserves unitarity in an

evaporation process of a black hole [39–42].

It is also natural to ask what type of special features make a CFT enjoy a gravitational dual

description. An example of a simple bottom-up model to study this question is three-dimensional

Einstein gravity which does not contain any propagating degrees of freedom (gravitons). On a

locally AdS3 manifold, this theory is expected to be holographically dual to a two-dimensional

CFT with infinite-dimensional conformal symmetry. Early evidence for the existence of a dual

CFT was the finding that the asymptotic symmetry group of 3D gravity is centrally extended

[43], but whether the dual theory actually exists is still an open question (see [44] for an early

proposal). Progress can be made by constraining the spectrum of the dual CFT: modular

invariance of the CFT combined with the presence of black hole solutions in 3D gravity requires

the CFT to have a large central charge and a large gap [45]. It is also possible that the dual

theory is not a single CFT, but instead an ensemble [46].

As mentioned earlier, the presence of boundaries in the CFT leads to various effects that

should also be realized on the gravity side of the duality. A simple way to incorporate boundaries

is to couple the gravity theory to dynamical end-of-the-world (EOW) branes [47, 48]. The

dynamics of EOW branes are determined by the boundary Einstein equation which follows after

imposing a Neumann boundary condition for the metric at the brane. In 3D gravity, such an

EOW brane model reproduces expected properties of two-dimensional BCFTs such as boundary

entropies and transitions between open and closed string channels [47]. Gaining a more detailed

understanding of holographic BCFTs still requires further investigation.

This thesis is structured as follows. In chapter 2, we begin by giving a detailed introduction

to conformal symmetry and CFTs on curved manifolds. Then in chapter 3, we restrict to CFTs

in two dimensions with and without boundaries and study their operator structure. In chapter

4, we describe aspects of bottom-up holography based on simple theories of classical gravity. In

chapter 5, we review string theory constructions of various holographic dual pairs and describe
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how they can be extended to include flavor on the field theory side. Lastly in chapter 6, we give

a summary and conclude.



Chapter 2

Aspects of conformal field theory

In this chapter, we will present the exact definition of a (quantum) conformal field theory

and study its properties. We begin by introducing the group of conformal diffeomorphisms of

a general curved manifold equipped with a Riemannian metric. The conformal group is the

classical symmetry group of a CFT which we will quantize using path integral methods. We

show how quantum effects can lead to the break down of conformal symmetry due to the Weyl

anomaly and also review constraints imposed by conformal invariance on simple correlation

functions.

2.1 Conformal symmetry on curved manifolds

Consider a d-dimensional differential manifold (M, g) equipped with a metric g of either Lorentzian

or Euclidean signature. An active diffemorphism ψ : M → M is a smooth bijective map from

the manifold to itself, in other words, ψ is a permutation of points of the manifold. The action

of an active diffeomorphism on the metric g produces a new metric g̃ = ψ∗g as the pull-back of

the old metric. The pull-back is defined in the standard way via the action of the push-forward

of ψ on tangent vectors.

Consider a local coordinate system xa, with a = 1, . . . , d, in which p, ψ(p) ∈ M correspond

to x, F−1(x) ∈ R
d respectively where F : Rd → R

d is a passive diffeomorphism. The action of ψ

in the coordinate x is given by

g̃ab(x) =
∂F c

∂xa
∂F d

∂xb
gcd(F (x)), (2.1)

where gab : R
d → R are component functions of the metric g and a, b, . . . = 1, . . . , d. We will only

be interested in orientation-preserving diffeomorphisms whose Jacobian determinant is positive:

det
∂F a

∂xb
> 0. (2.2)

Usually passive diffeomorphisms are called coordinate transformations and active diffeomor-

phisms simply diffeomorphisms which is the terminology we will adopt in this thesis. The dis-

tinction between these two types of diffeomorphisms played an important role in the conceptual

development of general relativity by Einstein [49].

Orientation-preserving diffeomorphisms ψ of M generate the diffeomorphism group Diff+M

5



6 2.1. Conformal symmetry on curved manifolds

with group operations being composition ψ1 ◦ψ2 and inversion ψ−1. Consider now the subgroup

Iso (M, g) ⊂ Diff+M (2.3)

whose elements keep the metric g invariant ψ∗g = g which in components reads

g̃ab(x) = gab(x). (2.4)

The subgroup (2.3) is called the isometry group of the metric g.

The diffeomorphism group also has the subgroup

Conf (M, g) ⊂ Diff+M (2.5)

whose action keeps the metric g invariant up to a conformal factor:

g̃ab(x) = ΩF (x)
2 gab(x). (2.6)

We will refer to the subgroup (2.5) as the conformal group of the metric g and to its elements

as conformal diffeomorphisms. By computing the determinant of both sides of (2.6), we get

ΩF (x) =

(
g̃(x)

g(x)

)1/(2d)

=

[(
g(F (x))

g(x)

)1/2

det

(
∂F a

∂xb

)]1/d
(2.7)

where

g(x) ≡ det gab(x) =
1

d!
εa1...adεb1...bd ga1b1(x) ga2b2(x) · · · gadbd(x) (2.8)

is the determinant of the metric components and εa1...ad = εa1...ad is the completely anti-

symmetric Levi–Civita symbol.1 In equation (2.7), we also used that

g̃(x) =

[
det

(
∂F a

∂xb

)]2
g(F (x)). (2.9)

The Jacobian matrix of a conformal diffeomorphism can be decomposed as

∂F a

∂xb
= ΩF (x)M

a
b(x) (2.10)

where we have defined the matrix Ma
b(x) that satisfies

M c
a(x)M

d
b(x) gcd(F (x)) = gab(x). (2.11)

This can be checked by substituting to (2.1) which gives (2.6). The decomposition (2.10) exists

at least when the metric is flat in which case Ma
b(x) =

∂ha

∂xb
where h is an isometry (2.4) of the

flat metric.

In addition to diffeomorphisms, we define a Weyl transformation whose action on the com-

ponents of the metric g at a point p ∈ M is given by

ĝab(x) = e2ω(x)gab(x), (2.12)

1In our conventions, ε012...d = 1.
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where ω : Rd → R. In other words, a Weyl transformation maps a metric g of M to another

metric ĝ by pointwise rescaling. Weyl transformations on the space of metrics of M generate the

abelian group WeylM where group operations are pointwise summation ω1+ω2 and subtraction

ω1 − ω2 of functions. Together, diffeomorphisms and Weyl transformations generate the non-

Abelian group

Diff⋉Weyl ≡ Diff+M⋉WeylM (2.13)

with group multiplication in local coordinates

(F1, ω1) · (F2, ω2) = (F1 ◦ F2, ω1 + ω2 ◦ F1). (2.14)

It is a semi-direct product since diffeomorphisms do not commute with Weyl transformations.

The action2 of (F, ω) on g gives a new metric whose components are given by

̂̃gab(x) = e2ω(x)
∂F c

∂xa
∂F d

∂xb
gcd(F (x)). (2.15)

Consider now the subgroup

CIso (M, g) ⊂ Diff⋉Weyl (2.16)

whose action keeps the metric invariant:

̂̃gab(x) = gab(x). (2.17)

We will call the subgroup (2.16) the conformal isometry group of the metric g and it contains

the isometry group Iso (M, g) as its subgroup. CIso (M, g) is generated by elements (F, ωF )

where the conformal factor (2.7) arising from the conformal diffeomorphism is cancelled by the

Weyl transformation:

ωF (x) = − log ΩF (x). (2.18)

The conformal isometry group is isomorphic to the conformal diffeomorphism group

CIso (M, g) ∼= Conf (M, g) (2.19)

via the map (F, ωF ) 7→ F .

We will now study actions of infinitesimal group elements. Consider an infinitesimal diffeo-

morphism given by

F a(x) = xa + ξa(x) (2.20)

where ξa(x) ≪ 1 are components of a vector field ξ on M. By directly expanding (2.1) it follows

that the metric transforms as

δgab(x) ≡ g̃ab(x)− gab(x) = ∇aξb(x) +∇bξa(x) +O(ξ2) (2.21)

where ∇a is the covariant derivative constructed with the Levi–Civita connection of g. On the

other hand, the conformal factor (2.7) expands as

ΩF (x)
2 = 1 +

2

d
∇aξa +O(ξ2) (2.22)

2The action is understood to be done from the left so that (F1, ω1) · (F2, ω2) is implemented by first applying

(F2, ω2) and then (F1, ω1). As a result (2.14) is consistent.
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where we used δ det (gab) = det (gab) g
ab δgab for the infinitesimal transformation of the deter-

minant (2.8). Hence the definition of a conformal isometry (2.17) becomes at the infinitesimal

level

∇aξb +∇bξa −
2

d
(∇cξc) gab = 0. (2.23)

Vector fields ξ obeying this equation are known as conformal Killing vectors and they are the

generators of the Lie algebra of CIso (M, g) and also of Conf (M, g) due to the isomorphism

(2.19).

2.1.1 Examples of conformal groups

We will start by considering the manifold R
1,d ≡ (Rd, gflat) with a flat Lorentzian metric gflat

(Minkowski space). We will choose xa to be Cartesian coordinates such that the metric compo-

nents are simply

gflatab (x) = ηab ≡ diag (−1, 1, . . . , 1). (2.24)

In these coordinates, a conformal diffeomorphism F satisfies (equation (2.6))

∂F c

∂xa
∂F d

∂xb
ηcd = ΩF (x)

2 ηab, ΩF (x)
d = det

(
∂F a

∂xb

)
. (2.25)

In other words, a conformal diffeomorphism defines a curvilinear coordinate system x′ = F−1(x)

on R
d in which the metric components are proportional to the diagonal Minkowski metric up to

a multiplicative factor. A general conformal diffeomorphism is obtained by composing rotations,

scale transformations (dilatations) and special conformal transformations [50, 51]

F a(x) = Λabx
b, F a(x) = λxa, F a(x) =

xa + va|x|2
1 + 2(v · x) + |v|2|x|2 (2.26)

where Λab ∈ SO(d− 1, 1), v ∈ R
d and v · x ≡ ηab v

axb. The conformal factor associated to each

diffeomorphism is

ΩF (x) = 1, ΩF (x) = λ, ΩF (x) =
1

1 + 2(v · x) + |v|2|x|2 . (2.27)

Together, the diffeomorphisms (2.26) generate SO(d, 2) so that the Lorentzian conformal group

of Minkowski space is given by

ConfR1,d ∼= SO(d, 2), d > 2. (2.28)

This isomorphism can be seen by embedding R1,d into R2,d with a metric of signature (−1,−1, 1, . . . , 1).

Under this embedding, conformal diffeomorphisms (2.26) become Lorentz rotations of R2,d [52].

In d = 2, the Lorentzian conformal group is infinite-dimensional and the group SO(2, 2)

(2.28) is only a subgroup in this case [53, 54]. Let us work in light-ray coordinates x± =

x1 ± x2 ∈ R in which the flat metric (2.24) takes the form

gflatab dxadxb = dx−dx+. (2.29)

Consider the diffeomorphism

F±(x+, x−) = f±(x
±), (2.30)
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which only acts on each light-ray coordinate separately. Here f± ∈ Diff+R are diffeomorphisms

of R with a positive derivative (orientation-preserving)

Diff+R = {f : R → R | f ′(x) > 0, f is smooth} (2.31)

whose group operations are composition and inversion of diffeomorphisms. The condition

∂±f± > 0 ensures that the two-dimensional diffeomorphism (2.30) is also orientation-preserving.

One can see that (2.30) is a conformal diffeomorphism with

ΩF (x
−, x+)2 = (∂−f

−) (∂+f
+). (2.32)

Hence the conformal group of two-dimensional Minkowski space is isomorphic to the direct

product [54]

ConfR1,1 ∼= Diff+R×Diff+R. (2.33)

Now the group (2.28) is the subgroup3

SO(2, 2) ∼= PSL(2,R)× PSL(2,R) ⊂ Diff+R×Diff+R (2.34)

where each factor is embedded separately PSL(2,R) ⊂ Diff+R and contain diffeomorphisms of

the type

f(y) =
ay + b

cy + d
, ad− bc = 1, a, b, c, d ∈ R, y ∈ R. (2.35)

We can also consider the Lorentzian cylinder (S1 × R, gflat) where the time-like direction is R

while S1 is the space-like direction. We will denote light-ray coordinates of S1 × R by

x± = ϕ± t (2.36)

where ϕ ∼ ϕ+ 2π and t ∈ R. They satisfy (see also [55])

(x−, x+) ∼ (x− + 2π, x+ + 2π) (2.37)

which has to be preserved by diffeomorphisms. Hence conformal diffeomorphisms of S1 ×R are

given by the same formula (2.30), but with the extra condition

f±(x
± + 2π) = f±(x

±) + 2π. (2.38)

Diffeomorphisms of R with this property (called 2π-equivariance) form the group

D̃iff+S
1 = {f : R → R | f(x+ 2π) = f(x) + 2π, f ′(x) > 0, f is smooth} (2.39)

which is the universal-covering group of the group Diff+S
1 of orientation-preserving diffeomor-

phisms of S1 (see for example [56]). Hence we get [53, 54]

Conf (S1 × R, gflat) ∼= D̃iff+S
1 × D̃iff+S

1. (2.40)

It is possible to map conformal diffeomorphisms of Minkowski space and the Lorentzian cylinder

to each other via an embedding R
1,1 ⊂ (S1 × R, gflat) which can be found in [57].

3Here PSL(2,R) ∼= SL(2,R)/Z2.
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The result (2.40) also extends to (S1 × R, g) where g is an arbitrary curved metric. This is

because in two dimensions, the flat metric gflat can be mapped to any metric g by the action

of Diff ⋉Weyl: the number of independent components of g (three) is equal to the number of

functions that define the action of Diff⋉Weyl. In other words, the equation

e2ω(x)
∂Dc

∂xa
∂Dd

∂xb
gflatcd (D(x)) = gab(x) (2.41)

written in light-ray coordinates fixes the three functions ω and D± in terms of the three com-

ponents g+− and g±± of the metric. The conformal group of (S1 × R, g) is then generated by

diffeomorphisms D ◦ F ◦D−1 where F is a conformal diffeomorphism (2.30) of the flat metric.

2.2 Conformal field theory on a curved manifold

Consider a spin-s matter tensor field Φ on a Lorentzian manifold (M, g) described by a classical

action

I[g,Φ] =

∫

M
ddx

√
−g(x)L

(
gab(x),Φa1...as(x), . . .

)
(2.42)

where the Lagrangian density involves up to second derivatives of gab(x) and first derivatives of

Φa1...as(x). Under a diffeomorphism F the matter field transforms by pull-back as

Φ̃a1...as(x) =
∂F b1

∂xa1
· · · ∂F

bs

∂xas
Φb1...bs(F (x)). (2.43)

Using (2.10), the action of a conformal diffeomorphism is thus given by

Φ̃a1...as(x) = ΩF (x)
sM b1

a1(x) · · ·M bs
as(x) Φb1...bs(F (x)). (2.44)

The action of WeylM can also be extended to the matter fields as (note the minus sign in the

exponent [58, 59])

Φ̂a1...as(x) = e−∆W ω(x)Φa1...as(x), (2.45)

where ∆W > 0 is the Weyl dimension of Φ which is independent of the spin s. Finally the action

of CIso (M, g) is given by

̂̃
Φa1...as(x) = ΩF (x)

−∆M b1
a1(x) · · ·M bs

as(x) Φa1...as(F (x)), (2.46)

where ∆ = ∆W − s is the scaling dimension of Φ. Notice that the scaling and Weyl dimensions

differ by the spin of the field. The transformation law (2.46) can also be generalized beyond

spin-s tensor fields by replacing Ma
b with an appropriate representation of the group (2.3) (at

least in flat space [60–62]).

We will assume that the theory defined by (2.42) is diffeomorphism invariant

I[g̃, Φ̃] = I[g,Φ] (2.47)

which is achieved if the Lagrangian density transforms a scalar field L̃(x) = L(F (x)). In addition,

we assume that theory is Weyl invariant

I[ĝ, Φ̂] = I[g,Φ] (2.48)
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which requires that the Lagrangian density L(x) has Weyl dimension ∆W = d. As a result, the

theory is Diff⋉Weyl invariant and it is called a conformal field theory (CFT):

Conformal Field Theory = Diff⋉Weyl invariant field theory.

Due to Weyl invariance, the CFT is only sensitive to the conformal class of the metric (the

metric modulo Weyl transformations). Usually we want to fix the metric g itself (not only the

conformal class) which determines the “background” on which the CFT lives. This breaks the

Diff ⋉ Weyl symmetry group to the subgroup that keeps the metric invariant: the conformal

isometry group CIso (M, g). As a result, CFTs on a fixed background have more symmetry than

ordinary field theories that are only invariant under the isometry group Iso (M, g).

Note that one always obtains a CIso (M, g) invariant theory from a Diff ⋉ Weyl invariant

theory upon fixing the background metric, but the reverse is not true upon coupling to a back-

ground metric [63]. There is evidence that the lift can be done for unitary theories, but for

higher-derivative non-unitary theories there are known counterexamples [64, 65]. Hence the dis-

tinction between CIso and Diff⋉Weyl is subtle and we take (2.49) as our definition of a CFT.

For an early discussion on the relation between CIso and Diff⋉Weyl symmetry for local fields,

see [66].

2.3 Quantization of conformal field theory

Let us quantize the classical CFT using path integrals. For this, we assume that the manifold M
admits a time-like direction parametrized by t ∈ R that can be used to foliate the spacetime with

codimension-1 space-like slices. Observables of the CFT are time-ordered correlation functions

defined as

⟨ · · · ⟩g ≡
1

Z[g]

∫
[dΦ]g T { · · · } eiI[g,Φ], Z[g] = eiW [g] =

∫
[dΦ]g e

iI[g,Φ], (2.49)

where T denotes time-ordering in t and the integration is performed over all field configurations

on M.4 The integration measure [dΦ]g necessarily depends on the background metric, because

it is needed for constructing a coordinate invariant inner-product on the space of field config-

urations Φ (see for instance [67]). For us the path integral (2.49) is a formal object that we

use as a rule to do formal manipulations on correlation functions. Its definition also requires

regularization and renormalization which we will keep implicit.

The integrals over spatial directions do not converge in general due to oscillatory behaviour

of the complex exponential. The integrals can be made to converge by giving the time-variable

a small imaginary part

t→ t(1− iϵ) = te−iϵ, ϵ→ 0+ (2.50)

which is assumed implicitly in (2.49) and which is consistent with time-ordering. This requires

that the domain of all fields is analytically continued to the neighbourhood of the real axis in

the complex-t. The analytic continuation can be assumed to extend such that we can take t to

be completely imaginary t = −iτ so that (2.49) becomes a Euclidean path integral.

4The theory is not gravitational so the metric is not integrated over.
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2.3.1 Stress tensor and the Weyl anomaly

Symmetries of the classical theory can be broken by the integration measure [dΦ]g, because to

properly define it, it has to be regulated and the regulator might break these symmetries. We

will assume that the regularization method is chosen such that diffeomorphism invariance is

respected which is achieved for example using dimensional regularization. However, it turns out

that depending on the dimension d and on the presence of boundaries, Weyl invariance cannot

be simultaneously respected. Thus generically we have the relations

[dΦ̃]g̃ = [dΦ]g, [dΦ̂]ĝ = [dΦ]g e
iΓW[g,ĝ], (2.51)

where ΓW[g, ĝ] ̸= 0 so that Weyl invariance is broken. As a result, the generating functional

W [g] defined in (2.49) is diffeomorphism invariant, but not Weyl invariant:

W [g̃] =W [g], W [ĝ] =W [g] + ΓW[g, ĝ]. (2.52)

Hence we can write

W [g] =
1

2

∫

M
d2x

√
gLW(gab(x), . . .), (2.53)

where ellipsis denote derivatives of the metric and the function LW transforms as a scalar under

diffeomorphisms sinceW [g] is diffeomorphism invariant. The expression for LW can be found for

example in two-dimensional CFTs [67] (see the next chapter) and in some higher-dimensional

cases [58, 59]. In general, it involves derivatives of infinitely high order in gab(x) and is thus a

non-local.

The non-invariance of the integration measure under Weyl transformations (2.51) appears

also in correlation functions of the stress tensor of the CFT which is defined from the classical

action as

T g
ab(x) =

2√−g
δI[g,Φ]

δgab(x)
=

2√−g
∂(
√−gL)
∂gab(x)

. (2.54)

Now the invariance of the classical action I[g,Φ] under an infinitesimal element of Diff ⋉Weyl

gives the equation ∫

M
ddx

√−g T g
ab (∇aξb − δω gab) = 0 (2.55)

which after integration by parts and dropping boundary terms gives

∇aT g
ab(x) = 0, gab(x)T g

ab(x) = 0. (2.56)

We see that diffeomorphism invariance implies conservation of the classical stress tensor while

Weyl invariance implies that it is traceless with respect to the metric g. However, due to the

Weyl anomaly (2.51), this is no longer true at the quantum level. To see this, consider the

1-point function of (2.54) obtained as

⟨T g
ab(x)⟩g =

2√−g
δW [g]

δgab(x)
(2.57)

and due to (2.52) it is conserved but not traceless

∇a⟨T g
ab(x)⟩g = 0, gab(x) ⟨T g

ab(x)⟩g = AgW(x), (2.58)
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where the Weyl anomaly is explicitly

AgW(x) = gab(x)
∂(
√−gLW)

∂gab(x)
(2.59)

In general, AgW is a local curvature invariant constructed from derivatives of the metric g. The

possible curvature invariants appearing can be divided into types A and B depending on how

the transform under Weyl transformations [68].

It is possible in some cases to remove the Weyl anomaly by the addition of local (in compo-

nents of the background metric) counterterms to the action of the CFT, but these counterterms

violate diffeomorphism invariance so that ⟨T g
ab⟩g is no longer conserved [69]. As a result, the

Weyl anomaly can be exchanged for a diffeomorphism anomaly. There does not exists a scheme

in which both the Weyl and diffeomorphism anomaly can be removed simultaneously which is

due to the fact that the CFT actually exhibits a combined Diff⋉Weyl anomaly.

2.3.2 Scalar correlation functions

From the fundamental fields Φ one can construct composite fields Oi(x) ≡ Oi(Φ(x)) which

for simplicty we assume to transform as scalars under diffeomorphisms with equal Weyl and

scaling dimensions ∆i = ∆W,i.
5 We want to compute correlation functions (2.49) with operator

insertions as

⟨O1(x1) · · · On(xn)⟩g =
1

Z[g]

∫
[dΦ]g O1(Φ(x)) · · · On(Φ(x)) e

iI[g,Φ]. (2.60)

We will consider the action of an element ψ ≡ (F, ω) ∈ Diff ⋉ Weyl on these correlation func-

tions. The integration in (2.60) is over all field configurations and we are free to replace the

dummy integration variable by Φ → ψ−1Φ. Then using Diff ⋉ Weyl invariance of the ac-

tion I[g, ψ−1Φ] = I[ψg,Φ] and transformation properties (2.51) of the integration measure

[d(ψ−1Φ)]g = eiΓW[ψg,g] [dΦ]ψg, we get (see also [70])

⟨O1(x1) · · · On(xn)⟩g = eiΓW[ψg,g] ⟨(ψ−1O1)(x1) · · · (ψ−1On)(xn)⟩ψg (2.61)

which is a relation between correlation functions of the CFT living on manifolds (M, g) and

(M, ψg) with two different metrics. If we specialize to the action of a conformal isometry

ψ = (F, ωF ) ∈ CIso (M, g) under which the metric g is invariant, we get a constraint for the

correlations function on the same background metric

ΩF (x1)
∆1 · · · ΩF (xn)∆n ⟨O1(F (x1)) · · · On(F (xn))⟩ = ⟨O1(x1) · · · On(xn)⟩g, (2.62)

where we used (2.18), ΩF−1(F (x)) = ΩF (x)
−1 and that ΓW[g, g] = 0.

Expanding the left-hand side of (2.62) for infinitesimal diffeomorphisms gives a differential

equation for the correlation function which fixes its functional form completely in certain cases

such as in Minkowski space R
1,1. Let xa be Cartesian coordinates on R

1,1 where the metric is

diagonal (2.24). The one- and two-point functions are fixed to [50]

⟨Oi(x)⟩R1,1 = 0, ⟨Oi(x1)Oj(x2)⟩R1,1 =
δij

|x1 − x2|∆i+∆j
(2.63)

5The Lagrangian density is an example of such an operator.
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where the Lorentzian norm

|x1 − x2| ≡ ηab (x1 − x2)
a(x1 − x2)

b (2.64)

and we have used the freedom in the coefficients ofOi to normalize the coefficient of the two-point

functions. The three-point function is fixed up to a single real parameter cijk as

⟨Oi(x1)Oj(x2)Ok(x3)⟩R1,1 =
cijk

|x1 − x2|∆i+∆j−∆k |x2 − x3|∆j+∆k−∆i |x1 − x3|∆k+∆i−∆j
(2.65)

while four-point functions are fixed up to an arbitrary function of two cross ratios [50]. Finally

these results can be extended to any conformally flat metric by using (2.61).

The state-operator correspondence of the CFT implies reduction of higher n-point functions

to sums of products of three- and two-point functions via the operator product expansion (OPE)

(see for example [51]). The coefficients cijk appearing in the three-point functions are known as

OPE coefficients and they determine correlation functions of the theory. Hence a set of opera-

tors {Oi(x)} with associated with scaling dimensions, spins and OPE coefficients {∆i, si, cijk}
completely determine a CFT in the sense that they can be used to construct all n-point cor-

relation functions that satisfy conformal Ward identities. Such a construction does not require

reference to an underlying Lagrangian which does not necessarily exist (it might not be possible

to interpret the correlation functions as a path integral). For a CFT defined by a Lagrangian,

one has to a specify the set of fundamental fields from which one can construct a set composite

operators (usually an infinite set). Determining scaling dimensions and OPE coefficients using

the path integral then determines the CFT.

2.4 Relation to the articles

The basics of CFTs reviewed in this chapter form the basis of all four articles [A1–A4]. Un-

derstanding properties of CFTs on curved manifolds was the focus of the article [A2] where we

considered a three-dimensional CFT on an S3 (ABJM theory). In the article [A4], we used the

Weyl anomaly presented above to compute Euclidean path integrals of CFTs on a manifold with

a curvature singularity.



Chapter 3

Conformal field theory in two dimensions

In the previous chapter, we studied CFTs in general dimensions, but in many condensed matter

systems, the CFTs that arise are actually only two-dimensional. A traditional example is a one-

dimensional quantum many-body system consisting of qubits (spins) on a chain with nearest

neighbour interactions [71]. These spin chains can exhibit a quantum phase transition1 in the

thermodynamic limit where the number of spins is taken to infinity. At the critical point where

the phase transition occurs, the low-energy vacuum fluctuations of the spin chain are described

by a two-dimensional continuum CFT on Minkowski space [72].

In addition, 2D CFTs in Euclidean signature appear as continuum descriptions of 2D classical

statistical mechanical systems near a thermal phase transition. For example, the partition

function of a 2D classical Ising model at the critical temperature can be written as a Euclidean

path integral in a 2D CFT of central charge c = 1/2 [70]. Hence Euclidean CFT methods are

also important for condensed matter applications.

In this chapter, we will focus our attention to two-dimensional CFTs on a flat background

and consider their operator formulation. The fact that the conformal group in two dimensions

is infinite-dimensional leads to a rich mathematical structure. Our main application is in CFTs

with boundaries where the large amount of conformal symmetry can be translated into con-

straints on the spectrum of the theory. The purpose of this chapter is not to be exhaustive, but

present the necessary background for the articles [A1, A3] appearing in this thesis. In contrary

to previous introductory reviews of CFTs that have appeared in the literature, we will mostly

work in Lorentzian signature instead of the Euclidean plane.

3.1 Operator formulation

Consider a two-dimensional CFT on the Lorentzian cylinder (S1 × R, gflat) with a fixed flat

background metric and coordinates x = (ϕ, t). The conformal isometry group is given by (2.40)

so that the CFT has an infinite-dimensional D̃iff+S
1 × D̃iff+S

1 symmetry at the classical level.

In the previous section, we considered quantization of the CFT using path integrals which is

equivalent to canonical quantization. In the canonically quantized theory, classical fields are

replaced by local operators acting on a Hilbert space.

1In contrast to thermal phase transitions that occur as a function of temperature, quantum phase transitions

occur at zero temperature as a function of a parameter (for example the strength of an external magnetic field)

appearing in the Hamiltonian operator of the system.

15
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To every classical symmetry there is a corresponding Noether charge which becomes an oper-

ator that implements these symmetries. Given a conformal Killing vector ξ (2.23), infinitesimal

conformal diffeomorphisms (2.20) are implemented by a Hermitian operator Hξ as

δO(x) = −i [Hξ,O(x)]. (3.1)

Denoting the stress tensor (2.54) restricted to the flat background by Tab(ϕ, t), the generator is

given by

Hξ =

∫ 2π

0
dϕ ξa(ϕ, 0)Tat(ϕ, 0). (3.2)

In light-ray coordinates x± = ϕ ± t introduced in (2.36), conservation and tracelessness (2.58)

in flat space imply that the components of the stress tensor satisfy

T−−(x
−, x+) = T−−(x

−), T++(x
−, x+) = T++(x

+), T−+(x
−, x+) = 0. (3.3)

Hence there are only two independent components T±±(x
±+2π) = T±±(x

±) and they respect the

identification (2.37). Since conformal Killing vectors in two-dimensions are given by ξ±(ϕ, t) =

ξ±(x±), the generator of conformal diffeomorphisms is simply

Hξ =

∫ 2π

0
dϕ [ξ+(ϕ)T++(ϕ)− ξ−(ϕ)T−−(ϕ)]. (3.4)

We can now use these equations to determine the commutation relation of the stress tensor with

itself. For a two-dimensional conformal diffeomorphism (2.30), the only non-zero components

of the Jacobian matrix are ∂±F
± = ∂±f±. From the transformation law (2.43) of a spin

s = 2 tensor under diffeomorphisms, we get that the stress tensor transforms under conformal

diffeomorphisms as (T−+ remains zero)

T̃±±(x
±) = (∂±f±)

2 T±±(f±(x
±)) (3.5)

which at the infinitesimal level f±(x
±) = x± + ξ±(x±) corresponds to

δT±±(x
±) = 2 (∂±ξ

±)T±±(x
±) + ξ±(x±) ∂±T±±(x

±). (3.6)

This is implemented by (3.1) when the stress tensors are given by2

T−−(x
−) = T (x−)⊗ 1, T++(x

+) = 1⊗ T (−x+) (3.7)

where the operator T (ϕ) satisfies the commutation relation3

[T (ϕ1), T (ϕ2)] = −i
(
T (ϕ1) + T (ϕ2)

)
δ′2π(ϕ1 − ϕ2) + c-number. (3.8)

Notice that the tensor product structure implies that [T±±(ϕ1), T∓∓(ϕ2)] = 0.

Neglecting the additive c-number (the Schwinger term [74]) in (3.8), this is the algebra

VectS1 of real valued vector fields on the circle which is the Lie algebra of D̃iff+S
1 (see for

2Notice the minus sign in T (−x+) which is in agreement for example with [73]. We will show below how the

standard Euclidean stress tensors are obtained from Wick rotation given this sign.
3Here δ2π(φ) is the 2π-periodic delta function defined as the Fourier series δ2π(φ) =

∑
∞

n=−∞
einφ.
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example [56]). Hence the stress tensor gives a representation of the conformal algebra VectS1×
VectS1 which is the infinitesimal classical symmetry of the CFT. The Schwinger term is a

quantum correction that extends the classical symmetry algebra. It turns out that the Schwinger

term is required due to the presence of the Weyl anomaly in correlation functions of the stress

tensor, and in the next section, we will show that the Schwinger term is completely fixed by

the Weyl anomaly. It is also fixed by mathematical fact that the central extension of VectS1 is

unique and isomorphic to the Virasoro algebra vir. The result is

[T (ϕ1), T (ϕ2)] = −i
(
T (ϕ1) + T (ϕ2)

)
δ′2π(ϕ1 − ϕ2) +

ic

24π
δ′′′2π(ϕ1 − ϕ2) (3.9)

which is a local presentation of vir. The algebra can be written in a more familiar form by

expanding

T (ϕ) =
1

2π

∞∑

n=−∞

(
Ln −

c

24
δn,0

)
einϕ, (3.10)

where L†
n = L−n. Substituting to (3.9) gives

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1) δn,−m. (3.11)

The Virasoro algebra vir (3.11) is the Lie algebra of the Virasoro group Vir which is the cen-

tral extension of the Lie group D̃iff+S
1 (see for example [56]). Hence the presence of the Weyl

anomaly in the CFT centrally extends the classical symmetry group. This is a manifestation of

the fact that in quantum mechanics, classical symmetries are represented by projective repre-

sentations acting on the Hilbert space and they satisfy the group multiplication law only up to

a phase. To each projective representation of D̃iff+S
1 corresponds an ordinary representation of

Vir which is why Vir×Vir is the relevant group for CFTs at the quantum level.

Now using the centrally extended algebra (3.9) in (3.1) leads to an additional term − c
24π∂

3
±ξ

±

in the infinitesimal transformation (3.6) of the stress tensor. The result can be integrated which

gives the quantum modification of (3.5) as

T̃±±(x
±) = (∂±f±)

2 T±±(f±(x
±))− c

24π
{f±(x±), x±} (3.12)

where the Schwarzian derivative is defined as

{f(ϕ), ϕ} =

(
f ′′(ϕ)

f ′(ϕ)

)′

− 1

2

(
f ′′(ϕ)

f ′(ϕ)

)2

. (3.13)

Equation (3.12) implies that the stress tensor transforms in the coadjoint representation of

Vir×Vir [56].

3.1.1 Structure of the Hilbert space

Due to the presence of Vir×Vir symmetry, the Hilbert space of the CFT decomposes to a direct

sum of its irreducible representations Hh⊗Hh parametrized by two positive real numbers (h, h)

as

HCFT =
⊕

h,h

dhhHh ⊗Hh (3.14)
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where dhh are integers characterizing the degeneracy of each representation. Each irreducible

representation Hh is spanned by basis states

|h, {m1, . . . ,mn}⟩ =
n∏

k=1

L−mk
|h⟩, L0|h⟩ = h|h⟩, Ln>0|h⟩ = 0. (3.15)

The Hamiltonian HCFT of the CFT is given by

HCFT =

∫ 2π

0
dϕTtt(ϕ, 0) =

∫ 2π

0
dϕ [T−−(ϕ) + T++(ϕ)] (3.16)

which generates time-translations t + δt corresponding to ξ±(x±) = ±1 in (3.4). The integral

simply picks up the zero mode of the Fourier expansions (3.10) with the result

HCFT = L0 ⊗ 1+ 1⊗ L0 −
c

12
. (3.17)

Thus the energy of the highest-weight state

|h, h⟩ = |h⟩ ⊗ |h⟩ (3.18)

is given by Eh,h = h + h − c
12 and the ground state energy is Egs ≡ E0,0 = − c

12 which is the

Casimir energy due to periodic boundary conditions on the circle.

3.1.2 The state operator correspondence

In addition to the stress tensor, the 2D CFT includes other fields whose components in light-ray

coordinates transform under conformal diffeomorphisms (2.30) as

Õh,h(x
−, x+) = (∂−f−)

h (∂+f+)
h̄Oh,h(f−(x

−), f+(x
+)). (3.19)

These fields are called conformal tensors of weight (h, h) ∈ R
2 that are also known as primary

operators. An example is a 2-form Φab with only one independent component Φ−+ = −Φ+−

that transforms as (1, 1) conformal tensor. Similarly, the components of the stress tensor are

(2, 0) and (0, 2) conformal tensors at the classical level. There are also conformal tensors with

negative weights.

We can write the conformal tensor as a tensor product operator

Oh,h(x
−, x+) ≡ Oh(x

−)⊗Oh(−x+) (3.20)

where the factors transform with weights (h, 0) and (0, h) respectively. Defining the mode

expansion

Oh(ϕ) =
1

2π

∞∑

n=−∞

Oh,n e
inϕ, (3.21)

with O†
h,n = Oh,−n, the transformation law (3.19) is reproduced by (3.1) at the infinitesimal

level when we have the commutation relations [50]

[Ln,Oh,m] = ((h− 1)n−m− h)Oh,n+m. (3.22)
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Two-dimensional CFTs have a state-operator correspondence which means that to each state in

HCFT there is a corresponding local operator acting on HCFT. Local operators corresponding

to highest-weight states (3.18) are called primary operators and they are given by

|h, h⟩ = Oh,h|0⟩. (3.23)

One can check that the conditions (3.15) for a highest-weight states are satisfied due to (3.22)

and Oh,n>0|0⟩ = 0 (which is required for consistency with the fact that the one-point function

of a primary operator on the circle vanishes). As a result, we get

|h, h⟩ = lim
τ→−∞

Oh,h(ϕ+ iτ, ϕ− iτ)|0⟩ (3.24)

which can be understood as an insertion of the local operator (3.19) at τ = −∞ in Euclidean

time. More generally, any local operator defines a unique state in the Hilbert space in this manner

and the reverse is also true: every state determines a local operator. This is the state-operator

correspondence.

3.2 Stress tensor correlators from the Polyakov action

In this section, we will study Euclidean correlation functions of the stress tensor. The Euclidean

CFT is obtained by a Wick rotation t = −iτ after which the light-ray coordinates become

complex:

w = ϕ+ iτ = x−|t=−iτ , w = ϕ− iτ = x+|t=−iτ (3.25)

and the flat Lorentzian metric becomes Euclidean. Assuming τ ∈ R, we obtain an infinite

Euclidean cylinder which can be mapped to the complex plane via

z = e−iw = eτ−iϕ, z = eiw = eτ+iϕ. (3.26)

Stress tensors on the complex plane are defined as

Tzz(z) = (∂wz)
2 T−−(w(z))−

c

24π
{w(z), z}, Tzz(z) = (∂wz)

2 T++(w(z))−
c

24π
{w(z), z}

(3.27)

and substituting the expansions (3.10) gives

Tzz(z) = − 1

2π

∞∑

n=−∞

(L0 ⊗ 1) z−n−2, Tzz(z) = − 1

2π

∞∑

n=−∞

(1⊗ L0) z
−n−2 (3.28)

which are the standard expansions obtained from radial quantization.4 We want to compute

Euclidean correlation functions on the complex plane defined as

⟨Tzz(z1) · · ·Tzz(zn)⟩ ≡ ⟨0|R{Tzz(z1) · · ·Tzz(zn)}|0⟩ (3.29)

where R denotes radial ordering in increasing |z|= eτ which is what time-ordering T in the

Lorentzian time t becomes under the mappings above.

4It is common in the literature to adopt the notation Ln ≡ Ln ⊗ 1 and Ln ≡ 1⊗ Ln, but we will not do that

here.
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In two-dimensions, the infinite dimensional conformal symmetry is enough to fix the gener-

ating functional W [g] of Euclidean stress tensor correlation functions up to a single coefficient.

W [g] can be found by analyzing the Weyl anomaly which has fixed the one-point function as5

gab(x) ⟨T gab(x)⟩g =
c

24π
R(x). (3.30)

where R is the Ricci scalar of g and we will see below that the constant c matches with the

central charge of the Virasoro algebra.

Equation (3.30) contains enough information to fix all higher-order correlation functions

(3.29) of the stress tensor, because it fixes the generating functional W [g]. Now W [g] is an

integral of LW as defined in (2.53). Using (2.58) combined with (3.30), we get the equation

gab
∂(
√
gLW)

∂gab
=

c

24π

√
g R. (3.31)

In two-dimensions, we can always find a coordinate system x such that the metric is diagonal

up to a conformal factor

gab(x) = e2φ(x) δab (3.32)

where φ(x) is a function. This coordinate system is known to exist globally on R
2 [75, 76]. In

these coordinates
√
g = e2φ and R = 2e−2φ

□φ so that equation (3.31) becomes

∂(e2φLW)

∂φ
=

c

24π
□φ (3.33)

where □ = −δab∂a∂b is the Laplacian of the flat Euclidean metric in Cartesian coordinates and

LW = LW(φ) is only a function of φ and its derivatives due to (3.32).

Equation (3.33) can be integrated and a Lagrangian LW constructed from derivatives of

φ(x) exists, because the right-hand side satisfies the necessary integrability conditions [77]. The

integrability conditions also ensure that the equation can be integrated along any curve so we

can simply integrate along sφ(x) with s ∈ (0, 1) which gives the result [59, 77]

e2φLW(φ)− LW(0) =
c

24π
φ□φ

∫ 1

0
ds s. (3.34)

When φ(x) = 0, the metric becomes exactly flat and the Weyl anomaly vanishes. Imposing

L(0) = 0 and performing the integral over s gives

LW(φ) =
c

48π
e−2φ φ□φ (3.35)

which is valid in the coordinate system where the metric is of the form (3.32). Inverting the

expression R = 2e−2φ
□φ gives

φ(x) =
1

2

∫

R2

d2y e2φ(y)G(x, y)R(y) (3.36)

5This is the only possibility, because the 1-point function has to satisfy the WZ consistency conditions. It can

also be derived directly from the integration measure [70].
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where G(x, x′) is the Green’s function of the Laplacian of the flat metric:

□G(x, x′) = δ(2)(x− x′). (3.37)

Combining (3.36) with (3.35) and substituting to (2.53) gives

W [g] =
c

192π

∫

R2

d2x
√
g(x)

∫

R2

d2y
√
g(y)G(x, y)R(x)R(y) (3.38)

which is the Polyakov action on the Euclidean plane [78]. This expression is diffeomorphism

invariant so that it holds in any coordinate system beyond of (3.32). The generalization of

(3.38) to higher-genus Riemann surfaces can also be found [79, 80].

For the holomorphic components of the stress tensor, the Euclidean one- and two-point

functions obtained from (3.38) are given by [81]

⟨Tzz(z)⟩ = 0, ⟨Tzz(z1)Tzz(z2)⟩ =
c

8π

1

(z1 − z2)4
. (3.39)

One can check this two-point produces the Schwinger term in the commutator of two stress

tensors (3.9) (see for example [57]). This proves that the Weyl anomaly fixes the central extension

of the conformal algebra and that the constant c coincides with the central charge.

3.3 2D CFT with two boundaries

In this section, we will introduce boundaries to the two-dimensional CFT. This breaks conformal

symmetry of the original CFT to a single D̃iff+S
1 which affects the structure of the Hilbert space

and of correlation functions.

3.3.1 CFT on the Lorentzian strip

In the previous section we considered a CFT on the Lorentzian cylinder (S1 × R, gflat) where

each spatial slice is a circle. We will now introduce two boundaries at ϕ = 0, ϕ = π so that the

CFT lives on the Lorentzian strip ((0, π)×R, gflat) whose spatial slices are intervals of length π

(half of the original circle).

The presence of the two boundaries breaks the conformal group D̃iff+S
1 × D̃iff+S

1 to the

subgroup of diffeomorphisms that do not move the boundaries, in other words, diffeomorphisms

that preserve the strip. This subgroup is known as the boundary conformal group. We can see

that under F ∈ D̃iff+S
1 × D̃iff+S

1, the ϕ = 0 line is mapped to

F (0, t) =
1

2
(f+(t) + f−(−t)), ∀t ∈ R. (3.40)

Imposing F (0, t) = 0 then gives

f−(t) = f+(−t), t ∈ R. (3.41)

Hence only conformal diffeomorphisms of the form F (x−, x+) = (f(x−), f(−x+)) with f ∈
D̃iff+S

1 preserve the boundary at ϕ = 0. Requiring that ϕ = π is fixed does not impose any

extra condition since F (π, t) = π follows automatically from F (0, t) = 0 and the periodicity

conditions. Thus the boundary conformal group is isomorphic to a single D̃iff+S
1.
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To completely define the CFT on the strip, we need to impose boundary conditions at the

two boundaries. At ϕ = 0, we will impose the condition

Tϕt(0, t) = 0, ∀t ∈ R. (3.42)

We also impose this on the second boundary ϕ = π, but it is not an independent condition,

because Tϕt(π, t+ π) = 0 follows automatically from (3.42) due to 2π-periodicity of T++(x
+).

Boundary conditions satisfying (3.42) are known as a conformal boundary conditions and we

will denote the two (in general different) boundary conditions at ϕ = 0, π byA andB respectively.

Dirichlet and Neumann conditions for free fields are examples of conformal boundary conditions,

but (3.42) can be imposed without reference to fundamental fields and is thus valid even in CFTs

without Lagrangians.

By using Tϕt(ϕ, t) = T++(x
+)− T−−(x

−), the condition (3.42) implies

T−−(t) = T++(−t), t ∈ R (3.43)

so that the two components of the classical stress tensor on the Lorentzian strip (0, π) × R are

not independent. Upon quantization, there is thus only one stress tensor operator

T (ϕ) ≡ T±±(∓ϕ) =
1

2π

∞∑

n=−∞

(
Ln −

c

24
δn,0

)
einϕ (3.44)

where Ln satisfy the Virasoro algebra (3.11). In particular, there is no tensor product structure as

in (3.7). The corresponding Virasoro group provides a projective representation for the boundary

conformal diffeomorphisms f±(ϕ) = f(∓ϕ) that are classical symmetries of the boundary CFT.

Due to the presence of only one copy of the Virasoro symmetry, the Hilbert space of the

BCFT decomposes as

HBCFT =
⊕

h

nhABHh (3.45)

where nhAB ∈ N0 gives the degeneracy of the representation Hh of Vir and it depends on the

boundary conditions.

The Hamiltonian operator of the BCFT is given by

HBCFT =

∫ π

0
dϕTtt(ϕ, 0) =

∫ π

−π
dϕT (ϕ) (3.46)

where we used Ttt(ϕ, t) = T−−(x
−) + T++(x

+) and equation (3.44) to extend the range of the

integral to (−π, π). By using the mode expansion (3.44), the integral picks up the zero mode as

HBCFT = L0 −
c

24
(3.47)

so that primary states are energy eigenstates with energy Eh = h− c
24 .

In a unitary boundary CFT the vacuum representation satisfies n0AB = δAB so that it only

appears when A = B in which case the ground state energy Egs = E0 = − c
24 is the Casimir

energy between two parallel plates. When A ̸= B, the vacuum state does not appear in the

Hilbert space (3.45) so that different boundary conditions lead to an increase in the ground
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state energy. Denoting the smallest non-zero weight appearing in (3.45) by hbcc, the increase in

the ground state energy due to boundary conditions is ∆Egs = hbcc.

The CFT on the strip also enjoys state-operator correspondence which works in the same

way as for the CFT on a circle. The main difference is that primary operators no longer have

the tensor product structure (3.20), because the Hilbert space of the BCFT does not involve

tensor product representations. Instead, the operator corresponding to the highest weight state

|h⟩ ∈ Hh is simply the chiral operator Oh(x
−) and it is known as a boundary primary. When the

boundary conditions are different A = B, the boundary primary operator Obcc corresponding

to |hbcc⟩ is called the boundary condition changing (BCC) operator:

|hbcc⟩ = lim
τ→−∞

Obcc(w)|0⟩. (3.48)

The name comes from the fact that when the Wick rotated Lorentzian strip is mapped to the

upper-half plane by (3.26), the operator Obcc is inserted at the point w = w = 0 where the

boundary condition jumps from A to B.

The BCFT also includes operators of the form

Oh(x
−, x+) ≡ Oh(x

−)Oh(−x+) (3.49)

where Oh(ϕ) is defined by the expansion (3.21). Under a boundary conformal diffeomorphism

F (x−, x+) = (f(x−), f(−x+)) with f ∈ D̃iff+S
1, it transforms as

Õh(x
−, x+) = (∂−f(x

−) ∂+f(x
+))hOh(f(x

−), f(−x+)) (3.50)

which coincides with the transformation law of a h = h primary operator of a CFT on the full

cylinder. The operator (3.49) is a local operator on the Lorentzian strip ϕ ∈ (0, π), but a bilocal

operator on the full cylinder ϕ ∈ (0, 2π) [82].6 It is local on the strip, because the factors in

the product never coincide x− ̸= −x+ unless the operator is placed at a boundary ϕ = 0, π.

Taking (3.49) to the boundary, the two factors coincide and the one-point function will have a

divergence which coincides with the divergence of a two-point function on the full cylinder. This

is the doubling trick on the Lorentzian cylinder.

3.3.2 Open closed string duality

We will now consider a CFT on a finite cylinder S1
β × (0,W ) of circumference β and width W

equipped with the flat Euclidean metric. The object of interest is the Euclidean path integral

of the CFT with conformal boundary conditions A and B:

ZAB(W/β) ≡
∫

A,B
[dΦ] e−I[Φ] (3.51)

which is a function of the dimensionless modulus W/β only. There are two ways to slice the

path integral and interpret it from the point of view of the operator formulation of the CFT.

The first way is to slice by intervals in which case the Hilbert space on each slice is that

of a boundary CFT (3.45). The Euclidean path integral over the cylinder then computes a

thermal trace Tr e−βH
op

overHBCFT whereHop is the generator of translations along the circular

direction. The second way is to slice by circles giving the Hilbert space HCFT of a CFT on a

circle. In this case, the Euclidean path integral computes a matrix element7 ⟨A|e−WHcl |B⟩ of

6By local we mean local from the point of view of the one-dimensional algebra living on a single light-ray. To

obtain local operators on the full cylinder one has to take a tensor product as in (3.20).
7It is the Wick rotation t = −iτ of a Lorentzian transition amplitude to Euclidean signature.
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the operator generating the Euclidean evolution from τ = 0 to τ = W . We started from the

same path integral so that in principle the thermal trace and the matrix element should give the

same result:

ZAB = ⟨A|e−WHcl |B⟩ = Tr e−βH
op

(3.52)

which is the open closed string duality.

The states |A⟩, |B⟩ ∈ HCFT appearing in the closed string transition amplitude are special

states called boundary states and they are determined by the boundary conditions A,B. A

generic boundary state |BS⟩ ∈ HCFT satisfies the equation [83]

(T−−(x
−)− T++(x

+))|BS⟩ = 0 (3.53)

where T±±(x
±) are stress tensor operators (3.9) of the full CFT without a boundary. Using the

mode expansions (3.10), we get the conditions

Ln|BS⟩ = L−n|BS⟩, ∀n ∈ Z. (3.54)

Setting n = 0 shows that |BS⟩ can only have components on representations Hh ⊗ Hh with

h = h. Hence boundary states (3.14) belong to the subspace of the Hilbert space containing

only spinless irreducible representations of Vir×Vir. When the CFT is diagonal dhh = δhh, one

can show that (3.54) is solved by an Ishibashi state [22, 23, 83],

|Ih⟩ =
∑

{m}

|h, {m}⟩ ⊗ |h, {m}⟩, (3.55)

for any h and it turns out that the set of Ishibashi states for different h span the solution space of

the equation (3.54) (at least in diagonal CFTs or in theories with a current algebra symmetry).

Hence a general solution of (3.54) is a linear combination of Ishibashi states:

|BS⟩ =
∑

h

⟨Ih|BS⟩|Ih⟩. (3.56)

Hence for the boundary states |A⟩, |B⟩ appearing in (3.52), the boundary condition is encoded

in the overlaps ⟨Ih|A⟩, ⟨Ih|B⟩ between Ishibashi states.

The open closed string duality (3.52) imposes constraints on the open string HBCFT and

closed string HCFT spectra of the CFT. To derive the constraints, we will expand (3.52) in

terms of characters χh(q) of the irreducible representations Hh of the Virasoro algebra. For this,

we need to write the open and closed string Hamiltonians in terms of the Virasoro generators.

The Hamiltonians for general β and W (instead of β = 2π and W = π as above) are given by

Hop =
π

W
HBCFT =

π

W

(
L0 −

c

24

)
, Hcl =

2π

β
HCFT =

2π

β

(
L0 ⊗ 1+ 1⊗ L0 −

c

12

)
. (3.57)

Hence we get

Tr e−βH
op

= Tr qL0−
c
24 , ⟨A|e−WHcl |B⟩ = ⟨A|q̃ 1

2
(L0⊗1+1⊗L0−

c
12

)|B⟩, (3.58)

where we have defined

q = e−πβ/W , q̃ = e−4πW/β , (3.59)
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which take values between zero and one. These parameters are related via a modular S-

transformation ω → −1/ω if we write them in the form q = e2πiω and q̃ = e−2πi/ω with

ω = iβ/(2W ).

By using the decomposition (3.45) of HBCFT, we get

Tr e−βH
op

=
∑

h

nhAB χh(q), (3.60)

where the character of an irreducible representation Hh is given by8

χh(q) = TrHh
qL0−

c
24 =

qh−
c
24∏∞

n=1(1− qn)
. (3.61)

By expanding the boundary states |A⟩, |B⟩ in the basis of Ishibashi states (3.56), we get

⟨A|e−WHcl |B⟩ =
∑

h,h′

⟨A|Ih⟩⟨Ih′ |B⟩ ⟨Ih|q̃
1
2
(L0⊗1+1⊗L0−

c
12

)|Ih′⟩. (3.62)

The Ishibashi states satisfy the orthogonality relation [83]

⟨Ih|q̃
1
2
(L0⊗1+1⊗L0−

c
12

)|Ih′⟩ = δhh′χh(q̃). (3.63)

so that (3.62) becomes

⟨A|e−WHcl |B⟩ =
∑

h

⟨A|Ih⟩⟨Ih|B⟩χh(q̃). (3.64)

Under modular S-transformations the Virasoro characters (3.61) satisfy

χh(q̃) =
∑

h′

Shh′ χh′(q) (3.65)

where Shh′ is known as the modular S-matrix which represents the modular S-transformation

ω → −1/ω on the space of characters. Hence we get

⟨A|e−WHcl |B⟩ =
∑

h,h′

Shh′ ⟨A|Ih⟩⟨Ih|B⟩χh′(q). (3.66)

Since the characters χh(q) are linearly independent, the open closed string duality (3.52) implies

nhAB =
∑

h′

Shh′ ⟨A|Ih′⟩⟨Ih′ |B⟩ (3.67)

which is known as the Cardy equation. The Cardy equation puts constraints on possible bound-

ary conditions ⟨Ih|BS⟩, degeneracy factors nhAB and S-matrices that can appear in a CFT obeying

open closed string duality. When the CFT is diagonal and contains a finite number of primaries,

a solution was found by Cardy [7].

8This is for representations h > 0 that do not contain null-vectors. For the character of the vacuum represen-

tation, the product in the denominator starts from n = 2.
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3.4 Relation to the articles

Boundary CFTs introduced in this chapter are studied from a holographic point of view in the

two articles [A1, A3] where we reproduce some properties of BCFTs presented above from the

gravity dual. In the article [A3], the focus was on correlation functions of a scalar operator in

the presence of a single boundary in general higher dimensional CFTs. The simplest example we

considered was the one-point function which can be non-vanishing when a boundary is present.

In [A1], we considered a two-dimensional holographic BCFT and studied its spectrum of op-

erators using the dual gravity description. To extract the spectrum of the BCFT, we considered

its Euclidean path integral on a cylinder with two boundaries as presented above. The gravity

dual is able to describe various open and closed string excited states whose scaling dimensions

we computed from gravity. We found that boundary condition changing operators also have a

dual gravity description. More details on the holographic aspects of [A1, A3] are given in section

4.4 of chapter 4.



Chapter 4

Aspects of bottom-up holography

After reviewing aspects of CFTs in the previous two chapters, we move on to study the gravi-

tational side of the holographic duality. In this chapter, we will take the bottom-up approach

and work with theories of classical gravity in anti-de Sitter space with the goal of motivating

existence of the holographic duality without reference to string theory. The detailed top-down

derivation of the duality will be presented in the next chapter.

A simple premise of holography is that the symmetries on both sides of the duality have to

match. In top-down string theory examples of the duality, global R-symmetry of the CFT is

reflected in isometries of the compact space Mq that appears in the asymptotic expansion of

the bulk spacetime in the form AdSd+1 ×Mq. We will show how similar matching holds for the

spacetime symmetry group when the dual CFT lives on a curved background: the asymptotic

symmetry group of AdSd+1 is isomorphic to Diff ⋉ Weyl and its action on the background

metric of the CFT is via diffeomorphisms and Weyl transformation. In particular, asymptotic

symmetries that preserve the metric on the conformal boundary are dual to conformal isometries

of the dual CFT.

On the gravity side, our focus will be on a theory of gravity called Lovelock gravity that forms

a subclass of general higher-curvature theories that exist in higher dimensions. Lovelock gravity

is the most general theory of the metric tensor whose equations of motion are second order in

derivatives of the components of the metric. In four dimensions, Lovelock gravity reduces to

general relativity (GR) which leads to the Lovelock’s theorem: any modification of GR which

has second-order equations of motion in four dimensions contains extra degrees of freedom in

addition to the metric. Lovelock gravity also contains a subset of topological theories of gravity

in odd dimensions that do not have propagating degrees of freedom and contain 3D Einstein

gravity as a special case. These theories are simple toy-models that can be studied from a

holographic perspective.

In the case of three-dimensional Einstein gravity, we will explain how the asymptotic sym-

metry group of AdSd+1 acts on the stress tensor of the CFT and how it is centrally extended.

Namely, we are able to reproduce the Schwarzian transformation law generated by the Schwinger

term in the stress tensor operator commutation relation studied in chapter 3. Hence classical 3D

gravity reproduces inherently quantum mechanical properties of the putative 2D CFT living on

the conformal boundary. Similar ideas play a central role in the attempts to extend AdS/CFT

duality to flat space in the celestial holography program.

The 3D gravity model of a holographic CFT can also be extended to accommodate boundaries

27
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on both sides of the duality using end-of-the-world branes. To this end, we will present a model

which is able to incorporate boundary condition changing operators (see chapter 3) on the gravity

side. The model requires the inclusion of Gibbons–Hawking–York [84, 85] and Hayward terms

[86] to the action of 3D gravity. We will provide complete presentation of such boundary and

corner terms in the broad setting of Lovelock gravity.

4.1 Classical theories of gravity

Consider a manifold (M, g) of dimension D = d+1 equipped with a Euclidean metric g, and in

this section (and chapter), a, b, . . . = 1, . . . D label bulk dimensions. An F (Riemann) theory of

gravity in Euclidean signature has the action

I[g] =

∫

M
dDx

√
g F (gab, Rabcd) (4.1)

where Rabcd is the Riemann tensor of g and the action is assumed to be diffeomorphism invariant

I[g̃] = I[g]. The variation of the action is given by

δI =

∫

M
dDx

√
g Eab δg

ab +

∫

∂M
ddx

√
hnaδ̄v

a (4.2)

where the equation of motion tensor and the boundary term are given by [87]

Eab = PacdeR
cde

b − 1

2
gabF + 2∇c∇dPacbd, naδ̄v

a = 2nc P
bcd

a δΓabd + 2nc δgbd∇aP
abcd. (4.3)

Here hab is the induced metric of the boundary ∂M, na is its outward-pointing unit normal

vector and we have defined the tensor

Pabcd =
∂F

∂Rabcd
. (4.4)

The notation δ̄ indicates that δ̄va is not a total variation of any quantity (it cannot be written as

δV a for some vector V a). The boundary term arises, because the action involves second-order

derivatives of gab that lead to a total derivative term ∇aδ̄v
a in the variation.

In general, the equations of motion Eab = 0 of F (Riemann) gravity depend on higher-order

derivatives of the metric which can lead to various unphysical effects. Hence it is natural to

consider a subtheory whose equations are of second order in derivatives which is known as

Lovelock gravity.

4.1.1 Lovelock gravity

Lovelock theories of gravity are the most general diffeomorphism invariant theories of the metric

tensor g whose equations of motion are second order in g. They are a subset of F (Riemann)

theories (4.1) with the function [87]

F =

⌊D/2⌋∑

m=0

c(m)R(m) (4.5)

where c(m) are arbitrary constants and R(m) is a Lovelock scalar of order m:

R(m) =
1

2m
δa1b1...ambmc1d1...cmdm

Rc1d1a1b1
· · ·Rcmdmambm

(4.6)
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such that R(0) ≡ 1 and ⌊D/2⌋ denotes the smallest integer k that satisfies D/2 ≥ k. Here the

generalized Kronecker delta symbol is defined as

δa1...anb1...bn
= n! δa1[b1 · · · δ

an
bn]
. (4.7)

where the anti-symmetrization operation contains a factor of 1/n! in our conventions.

The Lovelock scalar R(m) becomes a topological invariant (the Euler characteristic) in even

dimension D = 2m and vanishes identically in dimensions D < 2m (since there are not enough

indices to be summed over in the generalized Kronecker delta). Already in dimension D = 2m

the Lovelock scalar does not contribute to the equations of motion, because the variation of the

Euler character is a total derivative.

Let us consider examples. For m = 1 the Lovelock scalar is equal to the Ricci scalar and for

m = 2 it is the Gauss–Bonnet term:

R(1) = R, R(2) = R2 − 4RabRab +RabcdRabcd. (4.8)

Hence in D = 4, the action (4.5) reduces to general relativity (since R(2) is a total derivative)

while in D = 5 it is Gauss–Bonnet gravity. In high enough dimensions, multiple Lovelock

scalars appear and one has the freedom to choose the coefficients c(m). The theory in dimension

D ≥ 2m + 1 that involves a single Lovelock scalar R(m) is known as pure Lovelock gravity of

order m.

For each term in the action (4.5), the tensor (4.4) is given by

P abcd(m) =
m

2m
δaba2b2...ambmcdc2d2...cmdm

Rc2d2a2b2
· · ·Rcmdmambm

(4.9)

and due to the Bianchi identity for the Riemann tensor, it follows that

∇aP
ab
cd(m) =

m(m− 1)

2m
δaba2b2...ambmcdc2d2...cmdm

(
∇[a1R

c2d2
a2b2]

)
· · ·Rcmdmambm

= 0. (4.10)

As a result, the equation of motion tensor of pure Lovelock gravity takes the form (see [A6] for

an explicit proof)

Eab(m) = −1

2

1

2m
δaa1b1...ambmbc1d1...cmdm

Rc1d1a1b1
· · ·Rcmdmambm

. (4.11)

which depends only on second derivatives of the metric due to (4.10). As a result, equations of

motion of (4.5) are second order. The argument can also be reversed: Lovelock gravity is the

only F (Riemann) theory for which ∇aPabcd = 0 and which has second-order equations of motion

[87, 88].

4.1.2 Topological Lovelock gravity

Lovelock actions can be used to construct theories of gravity in odd dimensions D = 2m + 1

that contain no propagating degrees of freedom and that are higher-dimensional generalizations

of three-dimensional Einstein gravity. These topological Lovelock gravities are also known as

Lovelock–Chern–Simons (LCS) gravities since their first-order formulation is a Chern–Simons

action for a gauge group which in our case will be the isometry group of AdS space SO(2, d)

[89] (see also [90]).1 The Euclidean action is given by

I(m) =

∫

M
d2m+1x

√
g F(m) (4.12)

1The first-order formulation also allows for non-zero torsion, but we will focus on the torsionless case in which

the theory can be formulated solely with a metric.
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where the Lagrangian is

F(m) =
1

2m

∫ 1

0
ds δa1b1...ambmc1d1...cmdm

m∏

n=1

(
Rcndnanbn

+
s2

ℓ2
δcndnanbn

)
. (4.13)

where ℓ is the only free parameter of the theory and it has dimension of length. The action

(4.12) is an example of a Lovelock gravity action (4.5) with a special choice of coefficients. By

expanding the product in (4.13) as a binomial series, performing the Kronecker contractions and

integrating term by term over s, we get

I(m) =

∫

M
d2m+1x

√
g

m∑

n=0

c(m,n)R(n) (4.14)

where [A4, 91]

c(m,n) = (2m− 2n)!

(
m

n

)(
1

ℓ2

)m−n

. (4.15)

Using (4.11), the equation of motion tensor of (4.13) is given by [A4, 91]

Eab(m) ≡
m∑

n=0

c(m,n)E
a
b(n) = −1

2

1

2m
δaa1b1...ambmbc1d1...cmdm

m∏

n=1

(
Rcndnanbn

+
1

ℓ2
δcndnanbn

)
. (4.16)

Interestingly, if we define the tensor [92]

Fcd
ab = Rcdab +

1

ℓ2
δcdab, (4.17)

we see that (4.16) is identical to the equation of motion of pure Lovelock gravity (4.11) after the

replacement Rcdab → Fcd
ab . Now the equations of motion Eab(m) = 0 of topological Lovelock gravity

are trivial in the sense that all solutions satisfy

F [c1d1
[a1b1

· · · Fcmdm]
ambm] = 0 (4.18)

in an open neighbourhood around any point (see [A4] for a proof). In the first order formulation,

(4.18) is the statement that all solutions of the theory correspond to flat connections of the AdS

isometry group. For 3D Einstein gravity corresponding to m = 1, the equation of motion (4.18)

reduces to

Rcdab = − 1

ℓ2
δcdab (4.19)

so that that all solutions are locally AdS3. This is the familiar fact that the Einstein tensor in

three dimensions has as many independent components as the Riemann tensor.

4.1.3 Boundary and corner terms

We have seen that the variation of the action of F (Riemann) gravity involves a boundary vari-

ation naδ̄v
a (4.3) which can be written as

naδ̄v
a = na δ̄U

a +Da δ̄Y
a (4.20)



4.1. Classical theories of gravity 31

where the two terms in Euclidean signature are [93]

naδ̄U
a = −4Ψab δK

ab + (2na∇dPacbd + 6ΨabK
a
c ) δh

bc − 2ndPacbdD
aδhbc (4.21)

δ̄Y a = −2Ψa
b δ̄A

b. (4.22)

HereKab = hcah
d
b ∇cnd is the extrinsic curvature of ∂M, Da is the covariant derivative compatible

with the induced metric hab, δ̄A
a = −hab nc δgbc and the symmetric tensor

Ψab ≡ Pacbd n
cnd. (4.23)

Equation (4.20) involves a total derivative term which integrates to the boundary of the boundary

∂(∂M).

We will consider the situation where the boundary ∂M has two components ∂M = Q1 ∪Q2

that intersect non-smoothly at a corner C = Q1 ∩ Q2. In this case, the boundaries of the

two boundary components coincide ∂Q1,2 = C and are non-empty. Using above formulae, the

variation (4.2) becomes

δI =

∫

M
dd+1x

√
g Eab δg

ab +

2∑

s=1

∫

Qs

ddx
√
hs nsa δ̄U

a
s +

2∑

s=1

∫

C
dd−1x

√
σ rsa δ̄Y

a
s (4.24)

where nas and ras are the outward-pointing unit normal and tangent vectors of Qs respectively,

and σab is the induced metric of the corner C.
To obtain the equations of motion Eab = 0 from the variational principle δI = 0, both the

codimension-one boundary term and the codimension-two corner term have to vanish in (4.24).

Usually, this is done by imposing Dirichlet boundary conditions

δhabs |Qs = δσab|C = 0 (4.25)

for the bulk metric g, in other words, the induced metrics of Q1,2 and C are kept fixed under the

variation. However, the Dirichlet condition for hab does not remove the boundary term, because

δ̄Ua depends on δKab which involves normal derivatives of hab. The corner term does not vanish

either, because it involves the mixed component ranb δg
ab of the variation.

The Dirichlet problem (4.25) can only be made viable if the original action is modified by

supplementing it with additional boundary and corner terms. The new action takes the form

I =

∫

M
dd+1x

√
g F +

∫

∂M
ddx

√
hB +

∫

C
dd−1x

√
σ C (4.26)

where we require that

δB = −na δ̄Ua, δC = −ra δ̄Y a (4.27)

under variations δgab that satisfy the boundary condition (4.25). The functions B,C are con-

structed from intrinsic and extrinsic data of ∂M and C respectively.

The exact expressions for B,C in Lovelock gravity are known. The boundary term is given

by [94, 95]

B(m) = 2m

∫ 1

0
ds δ

aca1b1...am−1bm−1

bdc1d1...cm−1dm−1
ncn

dKb
a

m−1∏

k=1

(
1

2
R̃ckdkakbk

− s2Kck
ak
Kdk
bk

)
(4.28)
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where R̃cdab is the Riemann tensor of the induced metric hab of one boundary component. The

corner term is [96]

C(m) = 2mΘ R̂(m−1) + (extrinsic curvature terms) (4.29)

where Θ = arccos (gab n
a
1n

b
2) is the intersection angle of the two boundary components Q1,2 and

R̂(m) is the Lovelock scalar (4.6) of the induced metric σab. For m = 1, these reduce to the

original Gibbons–Hawking–York term [84, 85] and to the Hayward term [86] of Einstein gravity

B(1) = 2K, C(1) = 2Θ (4.30)

where K = gabKab. In general, a given Lagrangian F might not admit boundary terms that

make the Dirichlet problem (4.25) viable. But if one relaxes the Dirichlet condition then it is

known that boundary and corner terms can be obtained for any F (Riemann) theory [93, 97].

Another example where the boundary term for the Dirichlet problem is known is Pontryagin

gravity in D = 4 [98], but it does not technically belong to the class of F (Riemann) theories due

to also involving Levi–Civita tensor in the definition of the action.

4.2 Asymptotic symmetries of AdS space

A Lorentzian or Euclidean manifold (M, g) is locally AdSd+1 around a point if the Riemann

tensor satisfies (4.19) in an open neighbourhood of the point. An asymptotically locally AdSd+1

(ALAdS) manifold approaches a locally AdSd+1 manifold when the point is taken to infinite

proper distance from any other point. The manifold (M, g) can be equipped with the Fefferham–

Graham coordinates system in which the metric takes the form (we will set ℓ = 1 in this section)

[99]

ds2 = gab(X) dXadXb =
1

z2
(dz2 + γij(z, x) dx

idxj), (4.31)

where the Fefferham–Graham coordinate z > 0 and γij has the expansion

γij(z, x) = g(0)ij(x) + g(2)ij(x) z
2 + g(4)ij(x) z

4 + . . . , z → 0. (4.32)

In this section, i, j, . . . = 1, . . . , d label the d boundary directions while a, b, . . . = 1, . . . , D label

bulk directions as in the previous section.

We can see that the FG coordinate system (z, x) is defined by the conditions

gzi(z, x) = 0, gzz(z, x) = z−2, gij(z, x) = z−2 g(0)ij + g(2)ij + . . . (4.33)

The condition that the metric is locally AdSd+1 as z → 0 gives relations between the coefficients

g(n) so that they are not all independent.

One should not expect the FG coordinate system to cover the whole manifold, but only some

neighbourhood around the codimension-one surface B at z = 0 which is called the conformal

boundary. Note that B is not an ordinary boundary, because it is at an infinite proper distance

from all bulk points and only light-rays can reach it in finite affine parameter. The leading term

in the expansion (4.32) defines a metric on B via

g(0)ij(x) = lim
z→0

z2 gij(z, x). (4.34)
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The manifold (B, g(0)) defines the background on which the putative dual CFTd lives.

Equation (4.31) constructs an ALAdSd+1 metric g from data g(n). However, the construction

is ambiguous in the sense that there exists another metric g̃, obtained by acting with a diffeo-

morphism F on g, which also satisfies the conditions (4.33). In fact, there are an infinite number

of such diffeomorphisms F and they form the asymptotic symmetry group of ALAdS metrics.

In general, asymptotic symmetries are defined to be diffeomorphisms that map different metrics

with the same asymptotics to each other. In our case, asymptotic symmetries map {g(n)} to

{g̃(n)} such that both sets of data determine an ALAdS metric.

We will now determine the asymptotic symmetry group AsymAdSd+1 of ALAdSd+1 metrics.

An asymptotic symmetry F (z, x) is a diffeomorphism such that the components of the new

metric g̃ab(z, x) (given by (2.1)) satisfy the FG conditions (4.33) that are easiest to solve at the

infinitesimal level [100].2 We will consider an infinitesimal diffeomorphism of the form

F z(z, x) = z (1− ω(x)), F i(z, x) = xi + ξi(z, x) (4.35)

where both ω and ξi are taken to be small. Then the FG condition g̃zi(z, x) = 0 gives at leading

order in (ω, ξi) the equation [100]

∂zξ
i =

1

2
γij∂jω. (4.36)

Substituting the expansion

ξa(z, x) = ξi(0)(x) + ξi(2)(x) z
2 + . . . , z → 0 (4.37)

together with (4.32), all the coefficients ξi(n)(x) for n ≥ 2 are fixed in terms of {ω, g(n)}. For

example, the n = 2 term is explicitly

ξi(2) =
1

2
gij(0)∂jω. (4.38)

The leading term ξ(0) remains free. Hence the resulting diffeomorphism is completely fixed by

{ω, ξ(0)} and it is called an infinitesimal Penrose–Brown–Henneaux (PBH) diffeomorphism. The

group of PBH diffeomorphisms make up the asymptotic symmetry group of AdSd+1.

Let us now consider the effect of an infinitesimal PBH diffeomorphism on the functions

g(n)(x). We define γ̃ij(z, x) = z2 g̃ij(z, x) which gives at leading order in ω, ξi,

δγij(z, x) = ω(x) (2− z∂z) γij(z, x) +∇(γ)iξj(z, σ) +∇(γ)jξi(z, x), (4.39)

where ∇(γ)i denotes the covariant derivative of γij(z, x) with z treated as a parameter. By

substituting the expansions (4.32) and (4.37), we get at leading order in z → 0

δg(0)ij = 2ω g(0)ij +∇(0)iξ(0)j (4.40)

where ∇(0)i is the covariant derivative compatible with g(0) and we used (4.38) in the second

equation. At non-linear level, the transformation of g(0) integrates to

g̃(0)ij(x) = e2ω(x)
∂fk

∂xi
∂f l

∂xj
g(0)ij(x) (4.41)

2The radial coordinate ρ in [100] is given by ρ = −
1
2
z2. This radial coordinate transformation can also be

found in [99].
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where f(x) ∈ Diff+B is the diffeomorphism of B generated by the vector field ξ(0):

f i(x) = xi + ξj(0)(x). (4.42)

We can identify (4.41) as the action of Diffd⋉Weyld on (B, g(0)) so that the asymptotic symmetry

group of AdSd+1 is given by

AsymAdSd+1
∼= Diffd ⋉Weyld. (4.43)

This isomorphism describes how to embed Diffd⋉Weyld into the diffeomorphism group Diffd+1 of

a higher-dimensional spacetime M. It is first evidence for the possible existence of a holographic

duality between a gravitational diffeomorphism invariant theory in the bulk and a CFT on the

conformal boundary.

The group AsymAdSd+1 has a subgroup that keeps the metric (4.34) on the conformal

boundary fixed g̃(0)(x) = g(0)(x), but that can change subleading terms g̃(n≥2)(x) ̸= g(n≥2)(x)

in the FG expansion. This subgroup is isomorphic to the conformal isometry group of the

conformal boundary CIso(B, g(0)) introduced in equation (2.16). Hence the symmetry group of

a CFT on a fixed background metric is realized in terms of bulk diffeomorphisms that preserve

g(0). We will see below that the change in the subleading term g(d) describes the transformation

of the CFT stress tensor one-point function under conformal isometries.

4.2.1 Subleading terms in the FG expansion

The subleading terms in the FG expansion can also be written in terms of boundary data. For

simplicity, we will consider the case ξ(0) = 0 corresponding to a pure Weyl transform on the

conformal boundary. In this case, equation (4.39) gives [100]

δg(2)ij = ∇(0)iξ(2)j +∇(0)jξ(2)i = ∇(0)i∇(0)j ω, (4.44)

where we used (4.38). For d > 2, equation (4.40) coincides with the infinitesimal transformation

of the (minus) Schouten tensor −S(0)ij under Weyl transformations of g(0) so that3

g(2)ij = −S(0)ij = − 1

d− 2

(
R(0)ij −

1

2(d− 1)
R(0)g(0)ij

)
, d > 2, (4.45)

where the curvature tensors are of the conformal boundary metric g(0) [99–101].
4 This expression

is not valid in d = 2 which is analysed separately in more detail below.

The expression for g(4) is also determined in terms of g(0) up to two free parameters [100]

which are not determined by boundary data. Regardless, it is quite remarkable that an infinite

number of asymptotically locally AdS metrics are determined by only two parameters to first

order in the FG expansion. Higher-order functions g(n) will contain more free parameters.

However, there is a special class of bulk metrics for which all g(n) are determined uniquely:

these are locally conformally flat Einstein metrics that satisfy Rab = −d gab and whose Weyl or

3Since the non-linear form of δg(0) is a Weyl transformation, the transformation of g(2) = g(2)(g(0)) must be

produced by Weyl scalings of g(0).
4The equation corresponding to (4.45) in [100, 101] does not have a minus sign. The reason is the minus sign

in the relations between the coordinates ρ = −
1
2
z2 [99].
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Cotton tensor vanishes (depending on whether D ≥ 4 or D = 3). In these cases, the Fefferham–

Graham expansion truncates at order z4 as [99, 101]

γij = g(0)ij + g(2)ij z
2 + g(4)ij z

4 =

(
δki +

1

2
gk(2)i z

2

)(
δlj +

1

2
gl(2)j z

2

)
g(0)kl , (4.46)

where we used that in this case [101]

g(4)ij =
1

4
gkl(0) g(2)ik g(2)lj . (4.47)

By (4.45), the form of the bulk metric is then completely fixed in terms of g(0) and its Schouten

tensor S(0).

In dimensions D ≥ 5, the FG expansion can truncate even if the bulk metric is not locally

conformally flat. For example in odd dimensions D = 2m+ 1 with m = 1, 2, . . ., the expansion

truncates when the bulk metric is a solution of topological Lovelock gravity (4.18), see [90, 102].

4.2.2 Asymptotic symmetries in three bulk dimensions

We will now focus on the case of three-dimensional bulk and two-dimensional boundary D =

d + 1 = 3. Consider an asymptotically locally AdS3 metric which is automatically Einstein

Rab = 2gab in three dimensions so that the FG expansion truncates as in (4.46). However, g(2)
can no longer be given by the Schouten tensor, because (4.45) is clearly not well defined for

d = 2 so we have to look for another expression. We see that (4.44) implies

gij(0)g(2)ij = −□(0)δω, ∇i
(0)g(2)ij = −∂j □(0)δω. (4.48)

Notice that □(0)δω = δR(0) is the transformation of the Ricci scalar of g(0) under infinitesimal

Weyl transformations. Hence we get at the non-perturbative level

gij(0)g(2)ij = −1

2
R(0), ∇i

(0)g(2)ij = −1

2
∂jR(0). (4.49)

It is useful to define the tensor

τij ≡ g(2)ij +
1

2
R(0)g(0)ij (4.50)

which by (4.49) is conserved, but not traceless

gij(0)τij =
1

2
R(0), ∇i

(0)τij = 0. (4.51)

We recognize these as the Weyl anomaly and conservation equations of a stress tensor one-point

function in a two-dimensional CFT with central charge c = 12π.

Let us consider B = S1 × R equipped with a Lorentzian metric g(0) given by

g(0)ij dx
idxj = e2φ dx−dx+. (4.52)

In these coordinates, we get from (4.51) and (4.50) that

g(2)±± = τ±±(x
±), g(2)−+ = −∂−∂+φ (4.53)
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which allow us to extend (4.52) into the bulk as a locally AdS3 metric using (4.46). Let us focus

on the simple case of a flat boundary metric φ = 0 in which case we get

gab dX
adXb =

1

z2
[dz2 + (dx− − z2 τ−−(x

−) dx+) (dx+ − z2 τ++(x
+) dx−)]. (4.54)

This is a general solution of 3D Einstein gravity which asymptotes to the flat metric dx−dx+

on the conformal boundary known as the Banados metric [103]. The subgroup of PBH diffeo-

morphisms of (4.54) that preserve the flat metric on the conformal boundary can be written

explicitly everywhere in the bulk at the infinitesimal level [104]. Near the conformal boundary,

they can also be written at full non-perturbative level as [104]

F z(z, x−, x+) =
√
(∂−f−) (∂+f+) z +O(z2)

F±(z, x−, x+) = f±(x
±) +

1

2

∂2∓f∓
∂∓f∓

∂±f±
f±

z2 +O(z4), (4.55)

where f± = f±(x
±). Comparing with (4.35), the diffeomorphism (4.55) implements a Weyl

transformation e2ω = [(∂−f−)(∂+f+)]
−1 and a boundary conformal diffeomorphism with con-

formal factor Ω2
F = (∂−f−)(∂+f+) that cancel each other. Hence (4.55) is the action of the

conformal isometry group D̃iff+S
1× D̃iff+S

1 on the conformal boundary extended into the bulk.

Now the metric g̃ obtained from the action of (4.55) on (4.54) has the same form, but with

τ±±(x
±) replaced by [104]

τ̃±±(x
±) = (∂±f±)

2 τ±±(f±(x
±))− 1

2
{f±(x±), x±} (4.56)

which can be identified as the anomalous transformation law of the CFT stress tensor under the

conformal isometry group D̃iff+S
1 × D̃iff+S

1. It is remarkable that a purely classical transfor-

mation of a metric under diffeomorphisms reproduces a centrally extended algebra which can

be thought to have a quantum mechanical origin.

4.3 The holographic Weyl anomaly

In the holographic duality, the dual CFT lives on the conformal boundary (B, g(0)) of an

ALAdSd+1 spacetime (M, g). A basic entry in the holographic dictionary is the equivalence

of partition functions of the two dual theories. In the bottom-up context where the bulk theory

is a classical theory of gravity this equivalence can be written as

ZCFT[(B, g(0))] = Zgravity[(M, g)]. (4.57)

Here the partition function of the CFT ZCFT is defined as a Euclidean path integral so that

both g(0) and g are assumed to be Euclidean in this equation. The definition of the Euclidean

path integral of gravity is an open question, but in its traditional formulation in the context of

AdS/CFT, it is given by the sum over all Euclidean metrics g that asymptote to the same g(0)
on the conformal boundary weighted by the action of Euclidean gravity:

Zgravity[(M, g)] ∼=
∫

g→g(0)

[dg] e−I[g]. (4.58)

The definition of the integration measure [dg] is very subtle and is best understood in two-

dimensional theories of gravity (such as the theory on the worldsheet of a string). However,
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in the limit where the coefficient of the classical action diverges, we can calculate the path

integral in the saddle-point approximation as a sum over solutions of the gravitational equations

of motion

Zgravity[(M, g)] ∼=
∑

g=solution

e−Ion-shell[g]. (4.59)

For AlAdS metrics, the coefficient of the gravitational action will be proportional to ℓd−2/GN

where ℓ is the radius curvature of the metric and GN is the D-dimensional Newton’s constant.

Hence the saddle-point approximation (4.59) is valid in the limit where the curvature radius is

much larger than Planck length ℓ/ℓpD ≫ 1. On the CFT side, this corresponds to the limit of

large central charge c → ∞ (see equation (4.67) below), or more specifically in string theory

examples, to the large rank limit N → ∞ of the gauge symmetry group (see the next chapter).

At leading order in the saddle-point approximation, the solution with the smallest on-shell

action Ion-shell[g] dominates the sum (4.59) leading to the formula (we will denote the dominating

solution by g for simplicity)

ZCFT[(B, g(0))] = e−Ion-shell[g]. (4.60)

The gravitational equations of motion can be integrated from the conformal boundary by using

the FG expansion and by starting with the initial condition g(0). Assuming that the equations

are second order (as in Lovelock gravity), they determine all functions g(n) in terms of g(0) except

for the traceless part of g(d). The remaining freedom in g(d) is fixed in terms of g(0) by a boundary

condition deep in the bulk z > 0 which in Euclidean signature is a regularity condition for the

bulk metric g. As a result, the on-shell gravity action is only a function of g(0) and equation

(4.60) makes sense.

However, there is a subtlety which we have neglected: the on-shell gravity action has an

IR divergence due to infinite volume of the ALAdS space which has to be regularized and

renormalized. In the dual field theory, this corresponds to regularization and renormalization of

UV divergences. The regularized action is defined by integrating the action of a ALAdS metric

(4.31) up to a cut-off surface z = ϵ > 0:

Ireg[g] = − 1

2κ2

∫

z>ϵ
dd+1x

√
g F − 1

2κ2

∫

z=ϵ
ddx

√
γ

1

zd
B (4.61)

where we have to include the Gibbons–Hawking term at z = ϵ (since it is a boundary with a

Dirichlet boundary condition) and we have included the prefactor 2κ2 = 16πGN to the definition

of the action. The regularized on-shell action Iregon-shell is given by (4.61) evaluated on a solution of

the equations of motion which is divergent in the limit ϵ→ 0. Hence we define the renormalized

on-shell action

Irenon-shell = lim
ϵ→0

(
Iregon-shell + Ict

)
(4.62)

where the counterterms Ict are local integrals of covariant quantities constructed from the in-

duced metric of the cut-off surface z = ϵ. For Dirichlet boundary conditions at z = ϵ, the

variation of these counterterms vanish so that they do not modify equations of motion. In

D = 3 only the area term
∫
B

√
γ is enough while in higher dimensions also curvature tensors of

γij are needed. Thus finally the holographically renormalized version of (4.60) is given by

W [g(0)] = Irenon-shell[g(0)] (4.63)
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where W [g(0)] is the generating functional of renormalized stress tensor correlation functions

(2.49) on B.
Taking the functional derivative of (4.63) gives the formula

⟨T(0)ij(x)⟩(0) =
2

√
g(0)

δIrenon-shell

δgij(0)(x)
= lim

ϵ→0

2√
γ(ϵ, x)

δIrenon-shell

δγij(ϵ, x)
. (4.64)

which is the Euclidean one-point function of the CFT stress tensor on the background g(0).

For Einstein gravity with F = R, it can be shown that the one-point function is given by the

subleading term g(d) in the FG expansion of the bulk metric [105]

⟨T(0)ij(x)⟩(0) =
dℓd−1

2κ2
g(d)ij(x) + Y

(d)
ij (4.65)

where the tensor Y
(d)
ij is determined by g(n) with n < d. This is a general property of the

relationship between bulk fields and boundary operators of scaling dimension ∆: the term of

order z∆ in an expansion of the bulk field in z → 0 computes the one-point function of a

boundary operator sourced by that field [25, 26].

From (4.65) we can compute the trace which turns out to be completely fixed in terms of g(0).

The traceless part is also fixed after imposing the bulk IR boundary condition discussed below

equation (4.60). Hence holography gives a prediction for the renormalized one-point function

in the presence of a background metric (source) that depends on the details (how its solutions

behave deep in the bulk) of gravitational theory considered.

Now the trace gij(0)⟨T(0)ij⟩(0) obtained from (4.65) is non-zero which is the holographic de-

scription of the Weyl anomaly of the dual CFT. For D = 3 Einstein gravity, the result is [105]

gij(0)⟨T(0)ij⟩(0) =
ℓ

16πGN
R (4.66)

and by comparing with (3.30) we can identify the Brown–Henneaux central charge [43]

c =
3ℓ

2GN
. (4.67)

As shown in section 3.2, equation (4.66) completely determines the generating functionalW [g(0)]

on a genus zero Riemann surface with the result being the Polyakov action. One can also obtain

the Polyakov action by a direct computation of the bulk on-shell action (4.63) which was done

in the first-order formulation of 3D gravity in [106] and also in [81].

We can now use the formula (4.65) in D = 3 to obtain

⟨T(0)±±(x
−, x+)⟩(0) =

ℓ

8πGN
g(2)ij(x) =

c

12π
τ±±(x

±). (4.68)

Due to (4.56), we see that it transforms by the Schwarzian derivative under the action of con-

formal diffeomorphisms (as originally shown in [107]). This is what we expected based on the

CFT computations.

The holographic Weyl anomaly has also been computed in various higher-curvature theories

of gravity. In topological Lovelock gravity in D = 2m + 1 dimensions, it has been computed

using the first order formulation and the result is [90, 102, 108, 109]

gij(0)⟨T(0)ij⟩(0) =
ℓ

2κ2
R(m) (4.69)
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where R(m) is the Lovelock scalar of g(0). For m = 1, it reduces to the Einstein value (4.66). In

the classification of Weyl anomalies [68], the anomaly is purely of type A and transforms as a

total derivative under Weyl transformations.

4.4 Holographic models of 2D boundary CFTs

In [47] a holographic model for a boundary CFT was proposed where the boundary of the BCFT

is extended into the bulk as an end-of-the-world (EOW) brane. In this case, the Euclidean gravity

action is given by

I = − 1

2κ

∫

M

√
g

(
R+

d(d− 1)

ℓ2

)
− 1

κ

∫

Q

√
h (K − T ), (4.70)

where T is a constant characterizing the brane tension. The brane tension encodes overlaps of

boundary states ⟨B|0⟩ with the vacuum state of the BCFT.

This model can be extended by allowing for the branes to intersect and by including matter

fields to the theory. In this case, the extended action becomes [A1, 110]

I = − 1

2κ

∫

M

√
g

(
R+

d(d− 1)

ℓ2
− LM

)
− 1

κ

∫

Q

√
h (K − T )− 1

κ

∫

C

√
σ (Θ−M), (4.71)

where we have included the Hayward term at brane intersections and M is a constant charac-

terizing the tension of the intersection. One can show that the variation of the action is given

by [A1]

δI = − 1

2κ

∫

M

√
g

(
Gab + Λgab +

1

2
TM
ab

)
δgab

− 1

2κ

∫

Q

√
h (Kab − (K − T )hab) δh

ab

+
1

2κ

∫

C

√
σ (Θ−M) σab δσ

ab,

(4.72)

where we have not imposed any boundary conditions on the metrics. In the spirit of holography,

we want to keep the bulk metric completely dynamical so we will not impose Dirichlet boundary

conditions for hab and σab, but set the coefficients of their variations to vanish in (4.72). As a

result, the variational principle δI = 0 gives three equations

Rab −
1

2
Rgab − gab +

1

2
TM
ab = 0, Kab − (K − T )hab = 0, Θ−M = 0 (4.73)

which are the bulk, boundary and corner Einstein’s equations respectively [A1]. The boundary

Einstein’s equation can be seen as a modified Neumann boundary condition for the bulk metric

at the branes.

As we have seen above, in three dimensions the bulk Einstein’s equation is solved by locally

AdS3 metrics. Hence generic solutions of pure 3D gravity are obtained by cutting and gluing

locally AdS3 manifolds which can introduce boundaries (EOW branes) and conical singularities.

The locations of the boundaries are fixed by the boundary Einstein’s equation in terms of the

brane tension. In addition, conical singularities with angular deficits 2π(1−α) can be supported

by adding point-particle sources of mass 4π(1− α) to the theory

LM = 2π (1− α) δD. (4.74)
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The bulk Einstein’s equation in (4.73) determines the locations of these singularities

One can also add scalar fields of squared mass ∆(2−∆) to the theory corresponding to the

Lagrangian

LM =
1

2κ

∫

M

√
g
(
∇aΦ∇aΦ+m2Φ2

)
(4.75)

which can be coupled to the EOW branes by including the term [A3, 48]

LQ = −1

κ

∫

Q1

√
h1 λ1Φ− 1

κ

∫

Q2

√
h2 λ2Φ. (4.76)

Point-particles and scalar fields are holographically dual to operators in the BCFT. If we treat

the scalar field as a probe which does not backreact on the geometry, it is dual to a light

operator of dimension ∆ for which ∆/c → 0 as c → ∞. On the other hand, point-particles

are backreacting since they source a deficit angle around them. Hence they are dual to heavy

operators with dimension ∆ → ∞ such that ∆/c is finite. The deficit angle is fixed by the

dimension via the formula (see for example [A1])

α =

√
1− 12∆

c
. (4.77)

A brane intersection is also dual to an operator in the BCFT: it is a boundary condition changing

operator (see chapter 2) with dimension ∆bcc = 2hbcc which is fixed by the corner mass M

(however the exact relation is quite complicated [A1, 110]).

The outcome of these considerations is that the bottom-up gravitational model (4.71) cou-

pled to a scalar field (4.75) allows to describe various operators appearing in two-dimensional

CFTs. For example, the simple scalar coupling (4.76) is necessary to produce non-zero one-point

functions for the dual operator which is allowed by the boundary conformal symmetry [A3, 48].

This can be used to narrow done the moduli space of BCFTs that are described by the action

(4.71): gravity computations give predictions for observables that are only consistent in a subset

of BCFTs (see [111–114] for recent work in this direction).

4.5 Relation to the articles

The saddle-point approximation of the gravitational path integral presented in this chapter was

utilized in all four articles [A1–A4]. In addition, the holographic Weyl anomaly of topological

Lovelock gravity in the presence of conical singularities was considered in the article [A4]. In [A4],

we also studied effects of conical singularities to curvature invariants that appear in Lovelock

gravity actions presented above. These calculations generalized previous work on the topic of

conical singularities [115, 116].

The holographic model involving three-dimensional Einstein gravity coupled to EOW branes

was our focus in the two articles [A1, A3]. As mentioned above, this model was first introduced

in [47] and it is able to describe vacuum states of the open and closed string sectors of the

BCFT. The shortcoming of the model considered in [47] is that it does not describe excited

states or BCC operators in the BCFT [111]. Hence in the article [A1], we extended the model

of [47] to include excited states by coupling the bulk theory to point particles as presented in

the previous section. We also showed that BCC operators can be incorporated holographically

by allowing branes to merge non-smoothly at a corner. The analysis in our article requires a

careful treatment of boundary and corner terms on the gravity side as discussed in this chapter.
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In the articles [A1, A3], we considered the holographic model containing a scalar field linearly

coupled to an EOW brane as in (4.76). The implications of this coupling to correlation functions

of a scalar operator was the focus of [A3] while in [A1] we focused on its contributions to the

BCFT partition function.



Chapter 5

Aspects of top-down holography

The low energy limit of the closed string sector of string theory is described by classical super-

gravity which has various solutions describing extended strongly gravitating p + 1-dimensional

objects (p-branes). On the other hand, in the open string sector, there are open strings attached

to p+ 1-dimensional surfaces (Dirichlet branes or D-branes for short) in the target space whose

low energy description is a gauge theory living on the D-branes. According to the identification

between D- and p-branes [14], the supergravity solutions and the D-brane gauge theory are de-

scriptions of the same object in different regimes of parameter space. In a decoupling limit [24]

the identification can be made precise which leads to the holographic duality.

Today, there are multiple examples of holographic dual pairs obtained by taking decoupling

limits of various brane configurations. This chapter is devoted to the study of two such examples:

type IIB string theory on AdS5×S5 dual toN = 4 super Yang–Mills theory [24] and M-theory on

AdS4×S7/Zk dual to ABJM theory [27]. Our main motivation is to give a top-down description

of flavor fields in the CFT which involves inclusion of additional D-branes in the string theory

setup. In contrast to bottom-up holography, we will be able to make precise statements of the

dual theory at strong coupling using gravitational calculations. The focus will be on the free

energy which is relatively simple to compute from the on-shell supergravity action.

5.1 Holographic dual of N = 4 super Yang–Mills theory

The simplest example of the AdS/CFT correspondence (which is also the first example in the

original Maldacena article [24]) is given by the duality between N = 4 super Yang–Mills (SYM)

theory and type IIB string theory on a manifold with AdS5×S5 asymptotics. Before describing

the conjecture, we will first review low-energy effective actions of closed and open string theories

in detail.

5.1.1 Effective actions of closed and open strings

In this section, we will denote worldsheet coordinates by σµ with µ, ν, . . . = 1, 2 and target space

coordinates by Xa with a, b, . . . = 1, . . . , D. With these conventions, the bosonic part of the type

IIB superstring has the Lorentzian worldsheet action (in this chapter, we assume that there is

no background Kalb–Ramond field)

Icl = − 1

4πα′

∫

Σ
d2σ

√−γ
(
γµνgab ∂µX

a∂νX
b − α′R(2)Φ

)
(5.1)

42
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where γµν(σ) is the worldsheet metric and R(2) is its Ricci scalar; Xa(σ) is the embedding of the

worldsheet to the target space; gab(X) and Φ(X) = Φ0 + ϕ(X) are the target space metric and

dilaton respectively. The string action (5.1) involves only a single length scale ℓs =
√
α′ which

is the string length. The constant Φ0 in the dilaton contributes an overall prefactor gs = eΦ0 to

the worldsheet path integral when Σ has genus zero so that gs is the string coupling.

In the path integral quantization of (5.1), the worldsheet metric γµν is integrated over (in

addition to Xa and the fermions), because it is an auxiliary field whose purpose is to reduce

the first term in the action to the Nambu–Goto action (at the classical level). The action (5.1)

has classical Diff⋉Weyl symmetry which is required to be preserved also at the quantum level

to ensure that γµν completely decouples from the theory.1 The first obstruction for this is

the Weyl anomaly whose cancellation requires fixing the target space dimension to the critical

value D = 10. The second obstruction is the running of the worldsheet couplings {g,Φ} under

renormalization group flow. Imposing conformal invariance requires {g,Φ} to be such that their

beta functions are vanishing βg = βΦ = 0 (see [11, 12] for calculations of beta functions).

String theory is a theory of quantum gravity which at low energies should reduce to a classical

field theory in the target space with a diffeomorphism invariant action (the effective action) for

massless fields of the string spectrum. String theory has the interesting property that setting

worldsheet beta functions to zero is equivalent to imposing equations of motion of the effective

action. In the case of type IIB superstring, the beta functions produce an effective action which

is type IIB supergravity in the critical dimension D = 10. Focusing on the relevant fields in

what follows, the action in the string frame is [117]

IIIB =
1

2κ210

∫
d10X

√−g e−2ϕ(R+ 4 ∂aϕ∂
aϕ)− 1

4κ210

∫
d10X

√−g
(
F 2
1 +

1

2 · 5!F
2
5

)
(5.2)

where F1 = dC0, F5 = dC4 and a self-duality constraint F5 = ∗F5 is imposed by hand. The

gauge fields C0 and C4 are related to the fermionic sector of the superstring. Linear combinations

of variations of the action (5.2) with respect to {g, ϕ} reproduce beta functions of the closed

string couplings.

The beta function derivation of the action (5.2) does not fix the overall coefficient (the

10-dimensional Newton’s constant). To fix it, the effective action (5.2) has to be quantized

perturbatively (including the graviton) and its scattering amplitudes correctly reproduce the

low energy limit of string amplitudes when

2κ210 ≡ (2π)7ℓ8p10 = (2π)7g2s ℓ
8
s (5.3)

where we have defined the 10-dimensional Planck length ℓp10 = g
1/4
s ℓs.

In general, type IIB string theory also includes open strings whose worldsheets Σ have bound-

aries. To specify the theory, we have to impose boundary conditions for Xa(σ) at ∂Σ. There

are two options which are consistent with the variational principle of the action (5.1): Dirich-

let or Neumann boundary conditions. We will consider a “Dirichlet–Neumann” theory where

9− p worldsheet fields Xa (or rather their linear combinations) are imposed Dirichlet boundary

conditions while the rest p+ 1 fields satisfy Neumann boundary conditions.

To specify the open string action, we introduce a p + 1-dimensional hypersurface Q (the

D-brane) with an embedding Xa = Ea(x) into the target space. The worldvolume coordinates

1Diffeomorphism invariance is enough to decouple two degrees of freedom in γ while Weyl invariance decouples

the third and final degree of freedom.
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of the brane are denoted by xi with i, j, . . . = 1, . . . , p + 1. A basis of p + 1 tangent vectors

{ei}i=1,...p+1 on the brane Q is defined as

eai (x) =
∂Ea

∂xi
. (5.4)

There is also a basis of 9−p unit normal vectors {nα}α=1,...,9−p that are orthogonal to the brane

gab n
a
αe
b
i |∂Σ= 0 and we use α, β, . . . = 1, . . . , 9−p to label transverse directions of the brane. We

will also define eia and nαa that satisfy eiae
b
i = δba and naαn

α
b = δab .

At the boundary ∂Σ of the worldsheet, we will now impose the Dirichlet boundary condition

[10]

Xa(σ)|∂Σ= Ea(x) (5.5)

which ensures that the string worldsheet Σ is anchored to the brane ∂Σ ⊂ Q. Equation (5.5)

fixes boundary values of 9 − p worldsheet degrees of freedom Xa(σ), because the functions Ea

are determined only up to arbitrary reparametrizations of the p+1 worldvolume coordinates xi.

On the worldsheet, the embedding of the open string boundary ∂Σ is denoted by σµ = Y µ(s)

where s is the coordinate on ∂Σ. We will denote the unit normal and tangent vectors of ∂Σ by

mµ and uµ respectively. With these conventions, the most general Diff⋉Weyl invariant form of

the open string action is given by

Iop = Icl −
1

2πα′

∫

∂Σ
ds e(s) [γµν(σ) gab(X) lµ(σ)L

a(X) ∂νX
b(σ)− α′K(2)Φ], (5.6)

where Icl is the closed string action (5.1), e(s)2 = γµν u
µuν is the induced line element on ∂Σ

and K(2) is the extrinsic curvature of ∂Σ. The extrinsic curvature term is included to ensure

that gs = eΦ0 multiplies the Euler characteristic of a worldsheet with boundaries.

The action (5.6) involves a new worldsheet coupling La = La(X) which is a vector field in the

target space (to ensure target space diffeomorphism invariance of (5.6)). It can be decomposed

into tangential and transverse components with respect to the brane Q as

La(X)|Q= Ai(x) eai (x) + vα(x)naα(x) (5.7)

where the fields on the worldvolume of the brane are given by

Ai(x) = eai (x)La(E(x)), vα(x) = naα(x)La(E(x)). (5.8)

Similarly on the worldsheet, we can decompose

lµ(σ)|∂Σ= lu(s)uµ(s) + lm(s)mµ(s). (5.9)

Substituting these decompositions to (5.6), the cross terms involving tµv
α and mµA

i vanish, be-

cause target space normal (tangent) vectors are pulled back to multiples of the normal (tangent)

vector on the worldsheet. In addition, the coefficients lu(s) and lm(s) can be absorbed into Ai
and vα. The result is the action presented in [10, 118]2

Iop = Icl −
1

2πα′

∫

∂Σ
dτ [hij(x)A

i(x) ∂τx
j +Hαβ(x) v

α(x)nβa(x) ∂mX
a − α′K(2)Φ], (5.10)

2Compared to [10, 118], we have written the action in general gauge and not in the conformal gauge.
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where we have defined the proper length element dτ = ds e(s) on ∂Σ and

hij(x) = eai (x) e
b
j(x) gab(E(x)), Hαβ(x) = naα(x)n

b
β(x) gab(E(x)) (5.11)

are the induced metric of the brane and transverse components of the metric respectively.

The new open string couplings are thus {A, v}. To understand their physical interpretation,

consider an infinitesimal target space diffeomorphism F a(X) = Xa + ξa(X) where the vector

field decomposes at the brane as ξa(X)|∂Σ= ζi(x) eai (x) + wα(x)naα(x). Then the new brane

embedding is

F a(E(x)) = Ea(x+ ζ) + wα(x)naα(x) (5.12)

so that the tangential part ζi(x) performs a brane worldvolume diffeomorphism while the or-

thogonal part wα(x) produces a transverse fluctuation of the embedding. From (5.8), it follows

that Ai(x) and vα(x) respectively transform as a one-form and as a scalar under the worldvol-

ume diffeomorphism ζ. In addition, the orthogonal component wα produces a shift vα + wα so

that physically vα describes fluctuations of the brane in the 9− p transverse directions from the

worldvolume point of view. The physical interpretation of Ai is a U(1) gauge field on the brane

under which the end-point of the open string is charged.

Computing the variation of the action (5.6) and using δXa|∂Σ= eai δx
i which follows from

(5.5), the vanishing of boundary terms requires the Neumann boundary condition [10, 118]

[eai γ
µνgabmµ ∂νX

b + Fij ∂τx
i]|∂Σ= 0, vα(x) = 0, (5.13)

where Fij = ∂iAj − ∂jAi. This equation fixes boundary values of p + 1 worldsheet degrees of

freedom so that together with (5.5) all ten independent degrees of freedom Xa|∂Σ are fixed.

Beta functions of the couplings {A, v} were studied in [8, 10, 119, 120] and they can be

obtained from the low energy effective action [10]

IDBI = −TDp
∫

Q
dp+1x e−ϕ

√
− det

(
hij + Fij

)
, (5.14)

where hij is the induced metric (5.11) of the brane. The action (5.14) is a functional of the

gauge field Ai(x) and of the embedding Ea(x) whose derivatives produce the beta functions

βA and βv respectively. In general, the action is also supplemented with fermions to respect

supersymmetry.

Again, the beta function analysis does not fix the coefficient TDp, but it can be fixed by

considering a one-loop open string amplitude between two parallel branes which is equivalent to

a tree-level closed string exchange between the branes [121] via the open closed string duality.

The result is [14]

TDp =
1

(2π)pgsℓ
p+1
s

. (5.15)

We will now consider the simplified situation where the Dp-brane is embedded in a flat target

space with Cartesian coordinates Xa so that gab(X) = ηab. We will choose the worldvolume

coordinates as xi = Xi with i = 1, . . . , p+ 1 so that the transverse directions are Xα+p+1 with

α = 1, . . . , 9− p. In addition, we take all transverse directions to be spacelike so that gαβ = δαβ .

We will write the embedding of the brane as

Ei(x) = xi, Eα+p+1(x) = 2πℓ2s Ψ
α(x), α = 1, . . . , 9− p. (5.16)
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We will also rescale the fields ϕ,Ai and vα by a factor of 2πℓ2s so that vα describes small

perturbations of Ψα. At leading order expanding around a flat brane, the action (5.14) has the

term (taking into account the rescaling and neglecting the cosmological constant term)

IYM = − 1

4g2YM

∫
dp+1x

[
ηijηkl FikFjl + 2 ηijδαβ ∂iΨ

α∂jΨ
β +O(ℓ2s )

]
(5.17)

where we have defined the constant

g2YM ≡ 1

4π2 TDp ℓ4s
= (2π)p−2gsℓ

p−3
s . (5.18)

Note also that the open-closed string coupling between (rescaled) ϕ and Ai is of order O(ℓ2s )

and decouples [122]. The theory (5.17) is a Yang–Mills theory for an abelian U(1) worldvolume

gauge field Ai with additional 9 − p worldvolume scalars Ψα describing transverse fluctuations

of the brane. The constant gYM is the standard Yang–Mills coupling.

In general, there can be multiple Dp-branes present in the theory that have many open

strings stretching between them. Consider the case of N branes that have the same embedding

(5.16) (they are coincident), but that can fluctuate independently in the transverse directions.

First there are strings of type (i) that start and end on the same brane each contributing a U(1)

gauge field to the worldvolume theory for a total of N gauge fields making up a U(1)N . In

addition, there are strings of type (ii) that start and end on different branes. Combining strings

of the two types (i) and (ii), it turns out that the U(1) gauge field in the effective action (5.14)

is replaced with a non-Abelian U(N) gauge field [123]. In addition, the scalars Ψα describing

transverse fluctuations become N × N matrices transforming in the adjoint of U(N) under

gauge transformations leading to a form of non-commutative geometry. The generalization of

the bosonic DBI action (5.14) to the non-Abelian Ai and adjoint Ψα is complicated, but has

been derived using T-duality in [124].

The situation is simplified for a stack of N D3-branes (p = 3) in the ℓs → 0 limit in which

the effective action is completely fixed by supersymmetry to be the N = 4 super YM theory for

the gauge group U(N) which can be replaced by SU(N) [123]. The same low energy theory can

also be obtained by expanding the non-Abelian DBI action of [124] in the ℓs → 0 limit [125].

The bosonic part of the action is

ISYM = − 1

4g2YM

∫
d4x Tr

(
ηijηkl FikFjl + 2 ηijδαβ DiΨ

αDiΨβ + δαγδβδ [Ψ
α,Ψβ ][Ψγ ,Ψδ]

)

(5.19)

where Fij = ∂iAj−∂iAj+ i [Ai, Aj ] is the SU(N) field strength, DiΨ
α = ∂iΨ

α− i [Ai,Ψα] is the

gauge covariant derivative and the YM coupling is given by (5.18). This is the generalization of

the effective action (5.17) describing a stack of N D3-branes in the low energy limit.

In four-dimensions, the YM coupling (5.18) is dimensionless so that (5.19) is superconfor-

mally invariant which is also true at the quantum level. The quantum theory simplifies in the

double scaling limit

N → ∞, gYM → 0, λ = g2YMN = fixed, (5.20)

taken such that the ’t Hooft coupling λ is kept fixed. In this so called planar limit, only planar

Feynman diagrams contribute in perturbative calculations [126].
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Consider the thermal free energy density at inverse temperature β:

Fβ ≡ −
logZ[S1

β × R
3]

VolR3
(5.21)

which is defined by the Euclidean path integral of (5.19) over the Euclidean manifold S1
β × R

3

equipped with the flat metric. In the planar limit (5.20), the free energy density goes as

Fβ − F0 = fβ(λ)N
2 +O(1/N) (5.22)

for some function fβ(λ) of the ’t Hooft coupling. The free energy can be computed using

perturbative methods in the weak coupling limit λ→ 0 with the result [127]

fβ(0) = − π2

6β4
. (5.23)

Holographic duality gives a prediction for the coefficient at strong coupling λ → ∞ as we will

see next.

5.1.2 Supergravity description

In the previous section, we studied weakly coupled Dp-branes that can be described by an

effective action obtained from open strings. We will now consider the strongly coupled regime

where the closed string sector becomes important. To this end, we will look for solutions of the

classical closed string effective action with N coincident Dp-branes

I = IIIB +NIDp (5.24)

where IIIB is given by (5.2) and the D-brane action IDp is the DBI action (5.14) obtained from

the open string calculation. For the case of p = 3 (D3-brane), the action (5.24) admits a solution

[13]

ds210 = H(u)−1/2 ds2
R1,3 +H(u)1/2 (du2 + u2ds2S5) (5.25)

H(u) = 1 +
ℓ4

u4
, F5 = (1 + ∗) VolR1,3 ∧ d(H−1) (5.26)

where VolR1,3 is the volume form of R1,3 and u > 0. In this solution, the D3-branes act as a

source for the ∗F5 flux and their total charge QD3 is identified with the coefficient of the DBI

action QD3 = 2κ210TD3N [128, 129].3 The charge can also be computed at asymptotic infinity

from the solution (5.26) as

QD3 = 2κ210TD3N =

∫

S5

∗F5 = 4ℓ4VolS5 (5.27)

where S5 is the 5-sphere at infinity u = ∞. This fixes the constant ℓ in (5.26) as

ℓ4 =
2κ210TD3N

4VolS5
= 4πNgsℓ

4
s . (5.28)

3Quantum mechanical consistency of the effective theory requires that the D3-brane charge is quantized in

units of 2κ2
10TD3 meaning that N is an integer (this is the Dirac quantization condition).
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The solution (5.26) describes the backreaction of a stack of N D3-branes in 10-dimensional flat

Minkowski space that are uniformly distributed in the directions of S5.4 Being an extremal

solution (charge is equal to the ADM mass), the geometry does not contain a horizon, but an

infinitely long throat with the D3-branes at the end of it.

The description of the backreaction of a stack of N D3-branes in terms of classical geometry

is valid as long as the radius of curvature ℓ of the geometry is much larger than Planck and

string lengths. In other words, we take the limit ℓs → 0 with

ℓ

ℓp10
= fixed ≫ 1,

ℓ

ℓs
= fixed ≫ 1. (5.29)

Since we have
ℓ8

ℓ8p10
=

2N2

π4
,

ℓ4

ℓ4s
= 4πgsN, (5.30)

the conditions (5.29) are achieved when

N → ∞ gs → 0, gsN = fixed ≫ 1. (5.31)

5.1.3 The AdS/CFT conjecture

Let us then consider the double scaling limit

u, ℓs → 0, r =
u

ℓ2
= fixed (5.32)

known as the Maldacena limit or the decoupling limit [24]. Taking further r → 0, the solution

(5.26) becomes

ds210 = ℓ2
(
dr2

r2
+ r2ds2

R1,3 + ds2S5

)
(5.33)

F5 = −4ℓ4 (1 + ∗) VolAdS5, (5.34)

where we used d(H−1) ≈ 4ℓ4r3dr and VolAdS5 is the volume form on unit AdS5:

VolAdS5 = r3 dr ∧VolR1,3. (5.35)

This limit is known as the Maldacena limit [24] which produces the near-horizon geometry of

the metric (5.26). Even though the geometry (5.34) is obtained as the r → 0 limit, it is a valid

solution for all values of r with locally AdS5×S5 asymptotics when r → ∞. In other words, the

asymptotically flat region completely decouples from the throat and we are left with a sector of

supergravity on manifolds with locally AdS asymptotics.

A similar decoupling occurs in the description of D-branes from the open string perspective

where the U(N) SYM gauge theory on the brane decouples from supergravity away from the

brane. As in the supergravity solution (5.34), the decoupled theory is supergravity on flat space

while the theory in the brane region is different. Because the closed string solution (5.34) and

the brane gauge theory are supposed to describe the same physical object, one is lead to the

AdS/CFT conjecture: classical type IIB supergravity on a manifold with AdS5×S5 asymptotics

is an alternative description of N = 4 SU(N) SYM theory [24, 122].

4Solutions with D3-branes distributed arbitrarily on the S5 can also be found [130].
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More precisely, supergravity describes the planar limit (5.20) of SYM theory in the strongly

coupled regime λ → ∞. The relation (5.18) between the YM coupling and the string coupling

in four dimensions is given by (see also [131]):

g2YM = 2πgs. (5.36)

so that the planar and strong coupling limits are required by the conditions (5.31) for the

validity of the supergravity description. It is natural to assume that the AdS/CFT conjecture

holds beyond these limits in which case supergravity is replaced by quantum string theory (which

is still weakly coupled due to gs → 0). The strongest form of the AdS/CFT conjecture is then:

Type IIB superstring theory on a manifold with AdS5 × S5 asymptotics

⇔
N = 4 SU(N) super-Yang–Mills theory on R

1,3.

In general, string theory is believed to be background independent and restricting to manifolds

with AdS5 × S5 asymptotics means that we are restricting to a subsector of string theory. The

duality states that this subsector (with its own Hilbert space if one wishes) is isomorphic to the

Hilbert space of SYM theory.

The holographic duality gives a prediction for the thermal free energy density (5.21) of SYM

theory at strong coupling λ→ ∞: it is computed by the on-shell supergravity action of the finite

temperature generalization of the solution (5.34) (the black D3-brane solution). The calculation

produces the expected ∼ N2 behaviour with the coefficient function [127]

fβ(∞) = − π2

8β4
. (5.37)

Comparing with (5.23), we see that the weak and strong coupling free energies differ by the

famous factor
fβ(∞)

fβ(0)
=

3

4
. (5.38)

This can be seen as a prediction of the AdS/CFT conjecture that can in principle be verified by

a difficult strongly coupled calculation in SYM theory.

5.2 Holographic dual of ABJM theory

We will now move on to study another example of a holographic duality involving the ABJM

CFT. ABJM theory is a 3-dimensional N = 6 Chern–Simons–matter theory with gauge group

U(N)k×U(N)−k [27]. The subscripts k,−k denote integers that appear as coefficients of the two

U(N) Chern–Simons terms in the action. The matter part of the theory consists of four complex

scalar fields (and their fermionic partners) that transform in the bifundamental representation

(N, N̄) and (N̄ ,N) of the gauge group. ABJM theory arises as the low-energy limit of an open

string effective action of intersecting D3-, NS5- and D5-branes in type IIB string theory [27].

The setup can be uplifted to M-theory where the brane configuration amounts to a single stack

of N M2-branes on a C
4/Zk orbifold singularity (see [132, 133] for reviews). Hence ABJM theory

is the low-energy description of M2-branes in M-theory, and based on this construction, ABJM

theory turns out to be dual to M-theory on a manifold with AdS4 × S7/Zk asymptotics.5

5The special case k = 1 was already considered from the gravity side in the original Maldacena article [24].
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The analog of the YM coupling g2YM in ABJM theory is 1/k so that the ’t Hooft coupling is

λ = N
k and the planar limit is

N, k → ∞, λ =
N

k
= fixed. (5.39)

In this limit, the internal space S7/Zk → CP
3 is dimensionally reduced so that M-theory reduces

to type IIA superstring theory on AdS4 ×CP
3 [27]. Hence similarly to the previous section, the

planar limit of the dual CFT is described by a string theory.

The purpose of the current section is to review basics of the ABJM duality. We start by

describing the low energy effective action of M-theory, which is D = 11 supergravity, and review

how dimensional reduction produces type IIA string theory. Then we present the relevant

supergravity solutions whose decoupling limit leads to the ABJM duality.

5.2.1 Effective action of M-theory

M-theory is the quantum theory of the fundamental supermembrane in eleven dimensions whose

worldvolume action was first written in [134]. Let σ̂µ̂ with µ̂ = 1, 2, 3 index the three worldvolume

coordinates of the membrane and let X̂ â with â = 1, . . . , 11 denote the eleven target space

coordinates. The bosonic part of the membrane action is then given by

I = −T3
∫
d3σ̂

[
1

2

√
−γ̂ (Gâb̂(X̂) γµ̂ν̂ ∂µ̂X̂

â∂ν̂X̂
b̂ − 1) +

1

3!
Câb̂ĉ(X̂) εµ̂ν̂ρ̂∂µ̂X̂

â∂ν̂X̂
b̂∂ρ̂X̂

ĉ

]
(5.40)

where γ̂µ̂ν̂(σ̂) is the membrane metric, ĝâb̂(X̂) is the target space metric, Câb̂ĉ(X̂) is a target

space 3-form, and T3 is the membrane tension (the only free parameter of the theory).

The Lorentz symmetry on the membrane determines the critical dimension of the superme-

mbrane to be D = 11 [135] (see also [136] for another argument) and kappa-symmetry imposes

classical equations of motion of D = 11 supergravity on the couplings {g, C} [134, 137]. The

action of D = 11 supergravity is given by [138]

I11D =
1

2κ211

∫
d11X̂

√
−ĝ

(
R11 −

1

2 · 4! F
2
4

)
− 1

12κ211

∫
C3 ∧ F4 ∧ F4 (5.41)

where F4 = dC3 and 2κ211 ≡ (2π)8ℓ9p11 with ℓp11 being the 11-dimensional Planck length. The

action (5.41) is interpreted as the low-energy effective action of M-theory which is the conjectured

quantized theory of the supermembrane (5.40).

The Planck length ℓp11 is fixed in terms of the membrane tension T3 by flux quantization

conditions. Requiring the path integral of the membrane action (5.40) (the C3 part) and of the

effective action (5.41) (the C3 ∧ F4 ∧ F4 part) to be single valued requires that [139]

T3

∫

S3×S1

F4 = 2πn,
1

12κ211

∫

M12

F4 ∧ F4 ∧ F4 = 2πm, n,m ∈ Z, (5.42)

where M12 is any closed 12-dimensional manifold. We can take M12 = (S3 × S1)3 so that using

the first condition in the second gives (see also [140, 141])

(2πn)3

12κ211T
3
3

= 2πm, n,m ∈ Z. (5.43)
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We will now assume that this condition is satisfied for m = n3/6 which gives

T3 =
1

4π2ℓ3p11
(5.44)

as in [131].

The worldsheet action of the type IIA superstring can be obtained from the supermembrane

action (5.40) via double dimensional reduction [142]. In double dimensional reduction, both

the membrane and the target space are reduced on the same circle to two- and ten-dimensions

respectively. The reduction ansatz is

ds211 = e−
2φ
3 ds210 + e

4φ
3 (dφ+A1)

2 (5.45)

where A1 = A1(X), ϕ = ϕ(X), and the ten-dimensional metric ds210 = gab(X) dXadXb. We take

the circle to have circumferemce 2πℓφ so that φ ∼ φ+ 2πℓφ.

Let us first consider the reduction of the target space effective action. Substituting to (5.41)

and integrating over the fiber, the action (5.41) becomes [117]

IIIA =
1

2κ210

∫
d10X

√−g e−2ϕ(R10 + 4∂aϕ∂
aϕ)− 1

4κ210

∫
d10X

√−g
(
1

2!
F 2
2 +

1

4!
F 2
4

)
. (5.46)

where F2 = dA1, and

2κ210 =
2κ211
2πℓφ

. (5.47)

This is the action of type IIA supergravity where the one-form gauge field A1 and the dilaton ϕ

(not Φ) are identified as components of the eleven-dimensional metric.

It is expected that type IIA supergravity arises, because it is the effective action of the type

IIA superstring which is the result of the dimensional reduction of the membrane action (5.40)

[136]. In other words, the supermembrane reduces to the superstring and their effective actions

also reduce to each other. The coefficient of the reduced membrane action is identified with the

coefficient of the string action as
1

4πℓ2s
= 2πℓφ

T3
2
. (5.48)

Combining equations (5.47) and (5.48) with (5.3) and (5.44), we get [131, 133]

ℓφ = gsℓs, ℓp11 = g1/3s ℓs (5.49)

or equivalently

g2/3s =
ℓφ
ℓp11

, ℓ4s =
ℓ6p11
ℓ2φ

. (5.50)

These equations relate 11-dimensional M-theory parameters to the 10-dimensional string theory

parameters. In particular, the size of the compactification circle in Planck units is the string

coupling which shows that M-theory is the strong coupling limit of the type IIA superstring [17].

Using the identification (5.49), the membrane tension (5.44) matches with the D2-brane

tension (5.15) TM2 = TD2. This is expected, because when the membrane is not wrapped on the

circle that is being reduced, it becomes a D2-brane of type IIA supergravity (similar relation

holds for other types of branes as well [133]).



52 5.2. Holographic dual of ABJM theory

5.2.2 Supergravity solutions

We will now review the classical solution of D = 11 supergravity that describes a stack of N

coincident M2-branes on a C
4/Zk singularity. In the k → ∞ limit, the solution dimensionally

reduces to a ten-dimensional solution of type IIA supergravity. These solutions provide the

holographic dual of strongly coupled ABJM theory in its planar limit.

Consider C4 with the flat Euclidean metric and consider the orbifold action

zj → e
2πi
k zj , k ∈ Z, (5.51)

with zj ∈ C for j = 1, . . . , 4. Identification under (5.51) produces the orbifold C
4/Zk with a

conical singularity. In terms of the radial coordinate

u2 =

4∑

i=1

|zi|2, (5.52)

the singularity is located at u = 0 and the flat metric on C
4/Zk takes the form

ds2
C4/Zk

= du2 + u2ds2S7/Zk
. (5.53)

We will now consider the 11-dimensional metric

ds211 = ds2
R3 + ds2

C4/Zk
(5.54)

and place N coincident M2-brane sources at u = 0. We want to solve the equations of motion

of the action

I = I11D +NIM2. (5.55)

where I11D is given by (5.41) and the action of an M2-brane is the same as the membrane action

(5.40). The M2-branes backreact on the geometry producing a solution of 11D supergravity

given by [132, 143]

ds211 = H(u)−2/3(−dX2
0 + dX2

1 + dX2
2 ) +H(u)1/3(du2 + u2ds2S7/Zk

) (5.56)

H(u) = 1 +
(2L)6

u6
, F4 = dX0 ∧ dX1 ∧ dX2 ∧ d(H−1) (5.57)

where we will keep the factor of two in 2L for convenience. The M2-branes are a source for the

F4 flux and the total charge of the solution is given by

QM2 = 2κ211TM2N =

∫

S7/Zk

∗F4 = 6 (2L)6Vol (S7/Zk) (5.58)

where the integral is performed at u = ∞. We get

L6 =
π2Nk

2
ℓ6p11 (5.59)

where we used Vol (S7/Zk) = π4/(3k).

Let us consider the decoupling limit of the M2-brane solution (5.57) as we did for the D3-

brane solution above. We will take the limit [24]

u, ℓp11 → 0, r ≡ 2u2/(2L)3 = fixed (5.60)
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such that r → 0. In this limit, the solution (5.57) becomes

ds211 = L2

[
dr2

r2
+ r2(−dX2

0 + dX2
1 + dX2

2 ) + 4ds2S7/Zk

]
(5.61)

F4 = −3L3VolAdS4 (5.62)

where the volume form of unit AdS4 is

VolAdS4 = r2 dr ∧ dX0 ∧ dX1 ∧ dX2. (5.63)

We see that (5.62) is the metric of AdS4×S7/Zk where the AdS4 factor has radius of curvature

L.

Let us study the range of validity of the classical solution (5.62). The Zk-quotient decreases

the radius of curvature of the S7-factor which has to be taken into account. For this it is useful

to use the fact S7/Zk is an S1-fibration over CP3 so that the metric (5.62) can be written as

ds211 = L2(ds2AdS4 + 4ds2
CP3) + (dφ+ kℓφ dω)

2 (5.64)

where the size of the fiber

ℓφ =
2L

k
=

(
32π2N

k5

)1/6

ℓp11, (5.65)

ω is the Kähler form of CP3, and φ ∼ φ+ 2πℓφ [27, 144–146].

Now we see that (5.64) is a valid description when the radius L of AdS4×CP
3 and the radius

ℓφ of the S1 fiber are large in Planck units ℓp11. In other words, we take the limit ℓp11 → 0 with

L

ℓp11
= fixed ≫ 1,

ℓφ
ℓp11

= fixed ≫ 1. (5.66)

We have
L6

ℓ6p11
=

Nk

8 · 22/3π8/3 ,
ℓ6φ
ℓ6p11

=
4 · 21/3
π8/3

N

k5
. (5.67)

so that the solution (5.62) is a valid description when [27]

N ≫ 1, k ≪ N1/5. (5.68)

For this range of parameters, ABJM theory is holographically dual to D = 11 supergravity on

a manifold with AdS4 × S7/Zk asymptotics [27]. The limit (5.68) is a strong coupling limit of

ABJM theory, because the second condition in (5.68) implies that λ = N
k ≫ 1.

When the radius ℓφ of the S1 fiber is small compared to the radius L of AdS4 × CP
3, the

eleven-dimensional solution can be replaced with its dimensional reduction which is a solution

of type IIA supergravity in ten-dimensions as explained in the previous section. This happens

when

N, k ≫ 1, N1/5 ≪ k. (5.69)

The reduction of the solution (5.62) is obtained by comparing (5.64) with the general reduction

ansatz (5.45). We see that the resulting ten-dimensional dilaton ϕ = 0 vanishes and that the
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ten-dimensional gauge field A1 = kω is the Kähler form. The full ten-dimensional solution of

type IIA supergravity in string frame becomes

ds210 = L2(ds2AdS4 + 4ds2
CP3) (5.70)

F2 = kℓφ dω, F4 = −3L3 VolAdS4. (5.71)

The string coupling is obtained from the formula (5.50) to be

gs =

(
32π2N

k5

)1/4

. (5.72)

One can see that the S1 fiber being small (5.69) means that the type IIA string is weakly coupled

gs ≪ 1.

The conditions (5.69) are not enough to ensure validity of the ten-dimensional solution, but

we also need the curvature to be large in string units. Since we have

L4

ℓ4s
=

2π2N

k
, (5.73)

we need k ≪ N which amounts to staying in the strongly coupled regime λ ≫ 1. Hence to

summarize, ABJM theory at strong coupling λ≫ 1 has two dual descriptions depending on the

magnitude of k as follows:

11D supergravity: N ≫ 1, k ≪N1/5 (5.74)

10D type IIA supergravity: N, k ≫ 1, N1/5 ≪ k ≪ N. (5.75)

Notice that we have written the solution (5.71) in conventions where the dimensional reduction

ansatz (5.45) involves ϕ and where the φ coordinate has period 2πℓφ. However in the literature,

it is usually written in conventions where the ansatz (5.45) involves Φ instead of ϕ and where φ

has period 2πℓs.
6 To obtain the solution in these conventions, we write (5.64) as

ds211 = L2(ds2AdS4 + 4ds2
CP3) +

(
2L

kℓs

)2

(dφ+ kℓs dω)
2 (5.76)

where now φ ∼ φ + 2πℓs. Writing L2 = e−
2
3
Φℓ2 and 2L

kℓs
= e

2
3
Φ, the dimensional reduction

formula (5.45) with ϕ now replaced by Φ gives

ds210 = ℓ2(ds2AdS4 + 4ds2
CP3) (5.77)

gs = eΦ =
2ℓ

kℓs
, F2 = kℓs dω, F4 = −3

2
ℓ2ℓs VolAdS4, ℓ4 =

2π2N

k
ℓ4s , (5.78)

which agrees with [144, 147] after setting ℓs = 1.

5.2.3 Free energy on a sphere

We can now use the supergravity dual to compute the renormalized free energy of ABJM theory

on an S3 (with the standard curved Euclidean metric)

FS3 ≡ − logZ[S3] (5.79)

6In these conventions, 2κ2
D and TDp do not involve the string coupling.
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in the strong coupling limit. Instead of computing (5.79) directly using the on-shell action in ten

or eleven dimensions, we will use the effective action of M-theory reduced to four dimensions.

This will be simpler and avoids possible problems with the need of including an additional

boundary term to the higher-dimensional action as in type IIB supergravity [148, 149].

The four-dimensional effective action of M-theory is given by

I4D = − 1

2κ24

∫
d4x

√
g4 (R4 − 2Λ + . . .) (5.80)

where g4 is the four-dimensional Euclidean metric, R4 is its Ricci scalar, Λ is the cosmological

constant and dots denote additional terms that depend on fields beyond the metric. We will

reduce the M-theory solution (5.62) along the internal space which gives the 4-dimensional

Newton’s constant
1

2κ24
=

(2L)7

2κ211
Vol (S7/Zk). (5.81)

where the volume factor arises from integrating over S7/Zk. Since (5.62) has only the F4-flux

turned on, the resulting four-dimensional on-shell action is given completely by the Einstein–

Hilbert part of (5.80) as [150]

Ion-shell4D =
(2L)7Vol (S7/Zk)

2κ211

∫

AdS4

√
g4

(
R4 +

3 · 2
L2

)
(5.82)

where now R4 = −12/L2 and
√
g4 = L4. The renormalized Euclidean on-shell action becomes

Iren4D = −3Vol (S7/Zk)

π8
V ren
AdS4

(
L

ℓp11

)9

. (5.83)

where V ren
AdS4

denotes the renormalized volume unit Euclidean AdS4. We have V ren
AdS4

= (2π)2

3

[151] so that the free energy (5.79) becomes (see also [147, 150])

FS3 =
π
√
2

3
N3/2k1/2 =

π
√
2

3

N2

√
λ

(5.84)

where we used (5.59). At fixed ’t Hooft coupling λ, the free energy exhibits the familiar ∼ N2

behaviour as predicted by planar diagrams, and at fixed k, it exhibits the characteristic behaviour

∼ N3/2 of M2-branes.

5.3 Holographic dual of flavor in ABJM theory

Holographic duals of string theories do not contain matter transforming in the fundamental

representation of the gauge group as is the case for example with N = 4 SYM whose scalar

fields (corresponding to transverse fluctuations of the brane) transform in the adjoint of U(N).

The reason for this limitation is the fact that open strings have to start and end on identical

branes. If there were at least two types of branes present to which open strings can attach fields

transforming in the fundamental representation could arise [28].

Consider N D3-branes inside Nf D7-branes gives a low energy U(N)×U(Nf ) gauge theory

on the worldvolume of the D3-brane with adjoint scalar fields coming from D3-D3 and D7-D7

open strings. Now the system also includes D3-D7 strings that have one end-point coupled to
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transverse fluctuations of the D3-brane while the other end-point is coupled to fluctuations of

the D7-brane. From the point of view of the gauge theory, these modes are encoded in scalar

fields that transform in the bifundamental representation of U(N)× U(Nf ). In the decoupling

limit, D7-D7 strings decouple so that the gauge group reduces to U(N) and U(Nf ) becomes a

global symmetry [152]. As a result, the remaining D3-D7 scalars appear as quarks (flavor) that

transform in the fundamental representation of U(N). This is the original proposal of [28] for

adding flavor to N = 4 SYM using the D3-D7 system.

The addition of flavor can be done in the double scaling limit

N,Nf → ∞,
Nf

N
= fixed, (5.85)

which is known as the Veneziano limit [153]. In this limit, one has to take into account backre-

action of the D7-branes to the geometry sourced by the D3-branes which is a difficult problem

in general so that various approximations such as smearing have been proposed to simplify the

problem (see [153] for a review). The problem simplifies if we also assume that Nf/N ≪ 1 is

small and compute to leading order in an expansion in Nf/N . In this case, the D7-brane is

a probe brane whose backreaction is neglected (on the field theory side it corresponds to the

quenched approximation).

A similar story exists for ABJM theory [145, 154–156] which admits an extension with flavor

that transform in the fundamental representations (N, 1) and (1, N) of U(N) × U(N). These

flavor fields arise by the inclusion of D5-branes into the original type IIB brane system that

engineers pure ABJM theory as its low energy limit. The flavored brane system can then be

uplifted to M-theory using the same steps as in the flavorless case. After taking the near horizon

limit and reducing to type IIA supergravity, the addition of flavor corresponds to the addition of

D6-branes that extend in all AdS4 directions and wrap an S3/Z2 = RP
3 ⊂ CP

3 in the internal

space [145, 154–156]. This is similar to the D7-branes wrapping an S3 ⊂ S5 in the near horizon

limit of the above D3-D7 system.

In this section, we compute flavor corrections to the sphere free energy (5.84) of ABJM theory

using its holographic dual. This can be done using both M-theory and type IIA supergravity

descriptions. In M-theory we can work with any Nf , while in ten-dimensions it is simplest to

take the probe limit Nf/N ≪ 1 to neglect backreaction of the D6-branes. The power of the

probe limit is that it also allows to work with non-zero flavor mass [A2].

5.3.1 Adding flavor in M-theory

Let us consider ABJM theory with Nf flavor fields such that the parameters are in the regime

(5.74) where the dual description in terms of D = 11 supergravity is valid. We want to compute

the sphere free energy FS3 of this flavored theory. The presence of flavor modifies the near horizon

solution (5.62) by deforming the internal space from S7/Zk to an Einstein–Sasaki manifold

X7 whose metric depends on the number of flavors Nf . More precisely, X7 is a tri-Sasakian

parametrized by the three integers (Nf , Nf , k) [157, 158]. The new solution is explicitly

ds211 = L2(ds2AdS4 + 4ds2X7
) (5.86)

F4 = −3L3VolAdS4. (5.87)
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The charge of this solution is the same as (5.58), but with S7/Zk → X7 so that the radius of

curvature is modified to

L = π

(
N

6Vol (X7)

)1/6

ℓp11. (5.88)

The four-dimensional renormalized on-shell action has the same form (5.83), but with L given

by (5.88) and the volume being that of X7. The result is

Iren4D = −π
3
√
2

3
√
3

N3/2

(VolX7)1/2
. (5.89)

The volume of X7 is given by [157]

VolX7 =
Vol (S7/Zk)

f(Nf/k)2
, f(s) =

1 + s√
1 + s/2

(5.90)

so that the sphere free energy becomes [158]

FS3 =
π
√
2

3
N3/2k1/2

1 +Nf/k√
1 +Nf/(2k)

. (5.91)

We will now consider the probe limit. Since Nf/k = λ (Nf/N) with the ’t Hooft coupling fixed,

the probe limit Nf/N ≪ 1 in ABJM theory amounts to Nf/k ≪ 1 as long as Nf/N ≪ λ−1.

Expanding (5.91) in powers of Nf/k gives

FS3 =
π
√
2

3
N3/2k1/2 +

π

4
NfN

√
2λ+O(N2

f /N
2). (5.92)

The leading Nf/N -correction can be derived directly from the field theory side using matrix

theory formulation of ABJM theory [158]. In the next section, we reproduce the same correction

by looking at probe D6-branes in ten dimensions.

5.3.2 Adding flavor in type IIA supergravity

We will now consider flavored ABJM theory in the regime (5.75) where the description in terms

of type IIA supergravity is valid. This regime involves taking k → ∞ so we can work in the

Veneziano limit (5.85) with Nf/k = λ−1 (Nf/N) also being fixed. In ten dimensions, massless

flavor is described by Nf D6-branes that wrap the three-cycle RP
3 ⊂ CP

3 in the internal space

[145, 154–156]. The total bulk action is thus

I = IIIA +NfID6, (5.93)

where IIIA is the type IIA supergravity action (5.46) and the action of a single D6-brane in the

string frame is

ID6 = TD6

∫
e−ϕ

√
h− TD6

∫
Ĉ7, (5.94)

where in addition to the DBI action7 (5.14) there is a WZ term that couples the brane to the

background F8 = dC7 = ∗F2 with Ĉ7 denoting the pull-back of C7.

7The overall minus sign compared to (5.14) is due to being in Euclidean signature
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In principle, the embeddings of the D6-branes and their backreaction to the solution (5.71)

can be computed at finite Nf/k by solving the equations of motion of the action (5.93) and the

resulting Euclidean on-shell action should match with (5.91). However, this is a difficult task

due to the delta-function nature of the D6-brane stress tensor, but progress can be made by

smearing the branes in transverse directions. For backreacting smeared D6-branes, the on-shell

action (5.93) was computed in [147] and the result looks very similar to the exact result (5.91),

but does not agree with it perfectly.

Instead of attempting the full backreacted analysis, we will consider the probe limit Nf/

k ≪ 1 (equivalently Nf/N ≪ 1). In this case, the zeroth order term in Nf/N is simply the

supergravity action evaluated on the solution (5.71) which gives (5.91). The leading Nf/N -

correction then comes only from the on-shell D6-brane action (5.94) evaluated at the brane

embedding that minimizes its action on the non-backreacted background (5.71) [A2]:

FS3 =
π
√
2

3
N3/2k1/2 +NfI

on-shell
D6 +O(N2

f /N
2). (5.95)

The result for the renormalized Euclidean on-shell D6-brane action is [A2]

Ion-shellD6 =
π

4
N
√
2λ (5.96)

so that the leading Nf/N -correction in (5.95) matches with (5.92). The same correction can

also be found in the smeared D6-brane analysis [147]. The power of the D6-brane approach in

ten dimensions is that it can be extended to massive flavor (as done in [A2]) which would be

intractable in M-theory.

5.4 Relation to the articles

The top-down holographic duality involving ABJM theory presented in this chapter was utilized

in the article [A2]. We used the ABJM duality, because we wanted to apply holography to

study renormalization group monotones in a non-trivial interacting three-dimensional QFT of

which ABJM theory is an example. ABJM theory is also suitable for the problem, because its

extension with flavor admits a relevant mass deformation that triggers a renormalization group

(RG) flow from the flavored theory in the UV to pure ABJM theory in the IR. This flow on the

three-sphere was the main focus of our article [A2]. The recipe for describing flavor using D6-

branes on the supergravity side allowed us to compute free energies holographically and to study

the F-theorem. Approaching the RG flow directly in field theory would have been impossible.



Chapter 6

Summary and conclusion

Quantum field theories without gravity are related to theories of (quantum) gravity via the

holographic duality. The duality provides a two-way street to approach difficult problems that

appear in both theories. In particular, strongly coupled QFT phenonema such as confinement

are equivalently described by weakly coupled gravitational physics in the gravity dual that are

easier to solve. On the other hand, semi-classical quantum gravity contains unsolved problems

such as the black hole information paradox for which progress can be made using well understood

quantum mechanical tools of the QFT. The duality itself is also interesting on its own and giving

constraints for what types of QFTs are holographic plays a central role in mapping the landscape

of quantum gravity.

In this thesis, we gave an introduction to the holographic duality and related topics with

the above perspectives in mind. The first half of the thesis was reserved for reviewing necessary

concepts in conformal field theory with emphasis on two-dimensional CFTs. Our description of

conformal symmetry was general and included CFTs living on curved manifolds for which the

definition of the conformal group as a subgroup of the Diff⋉Weyl group was given. We studied

quantum mechanical properties of CFTs using both path integral and operator formulations

(canonical quantization) of the theory with latter described in a less conventional Lorentzian

signature. The quantum mechanical breaking of Diff ⋉ Weyl symmetry is realized in the two

formulations in different, but equivalent ways: the Weyl non-invariance of the path integration

measure is consistent with the Schwinger term in the algebra of generators of conformal sym-

metry. We also considered two-dimensional CFTs with a boundary where open closed string

duality leads to strong constraints on the spectrum of the theory.

In the second half of the thesis, we reviewed both bottom-up and top-down approaches to

the holographic duality. In the bottom-up approach, theories of classical gravity play a central

role as toy-models of string theory. We reviewed properties of Lovelock gravity which is a

natural generalizations of Einstein’s general relativity to higher-dimensions. In particular, we

explained how boundaries and corners can be treated in these theories. Our main focus was on

the bottom-up description of the Weyl anomaly of the dual CFT. To this end, we considered the

description of the Diff⋉Weyl symmetry on the gravity side as the asymptotic symmetry group of

asymptotically locally AdS spaces. In AdS3/CFT2, the action of the asymptotic symmetry group

produced the Schwarzian transformation of the stress tensor of the dual CFT. For holographic

description of boundaries, we considered models with end-of-the-world branes that can be used

to accommodate primary or boundary condition changing operators of the BCFT.
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In our top-down introduction to holography, we described the low-energy effective theories

of closed and open strings. In particular, we gave a detailed account of Dirichlet–Neumann open

strings whose effective field theory is the DBI action of a D-brane in the target space. We also

explained that membrane theory in eleven dimensions produces superstrings in ten dimensions

and how the effective actions are related. In the process, we derived relationships between M-

theory and stringy theory parameters. Based on the effective actions, we derived the holographic

duality starting with a stack of D3-branes which lead to the duality between type IIB string

theory on AdS5 × S5 and N = 4 SYM in four dimensions. We also presented another example

of the duality involving M-theory on AdS4 × S7/Zk and type IIA string theory on AdS4 × CP
3

that are dual to different regimes of ABJM theory in three dimensions. These CFTs can be

supplemented with matter transforming in the fundamental representation of the gauge group

by adding more branes in the dual gravity description.

Since its discovery, the holographic duality has been extremely successful in shaping our

understanding of the landscape of quantum field theories and string theories. Since string theory

is by current knowledge a complete theory of quantum gravity, this development has naturally

lead to better understanding to quantum properties of gravity. For example, applying ideas from

quantum information theory has been fruitful in this regard. It will be interesting to see what

the future holds.
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Appendix A

Résumé substantiel

Lorsqu’un objet a la même apparence à petite et à grande échelle, on dit qu’il présente une

auto-similarité ou une invariance d’échelle, ce qui signifie que les caractéristiques physiques de

l’objet sont indépendantes de l’échelle. L’invariance d’échelle approximative est omniprésente

dans la nature, par exemple, la côte de l’océan européen vue de l’espace semble être la même

ligne sinueuse à tous les niveaux de zoom. Lorsque l’invariance d’échelle est exacte, l’objet est

un fractal avec une auto-similarité infinie.

La symétrie d’échelle est réalisée dans les théories de la physique qui décrivent les transitions

de phase dans les systèmes avec de nombreux degrés de liberté. Un exemple simple est le

chauffage d’un aimant permanent qui perd son magnétisme dans une transition de phase à la

température de Curie. À petite échelle, l’aimant se compose d’un grand nombre de petites

rotations qui pointent vers le haut ou vers le bas, et près de la transition de phase (le point

critique), la distribution haut-bas des rotations présente une auto-similarité. Au point critique,

l’aimant est donc décrit par une théorie des champs avec une invariance d’échelle exacte.

En plus des transitions de phase provoquées par des fluctuations thermiques, il existe égale-

ment des transitions de phase quantiques se produisant à une température de zéro absolu et qui

sont provoquées par des fluctuations quantiques mécaniques. On croit largement que les lois de

la mécanique quantique (combinées à la causalité et à quelques autres hypothèses) nécessitent

l’amélioration de l’invariance d’échelle à un point critique quantique pour la conformalité. En

plus des changements d’échelle, les transformations conformes comprennent toutes les transfor-

mations de l’espace qui préservent les angles en chaque point. Les théories des champs présentant

une invariance conforme sont encore plus symétriques que les théories invariantes d’échelle, ce

qui conduit à de fortes contraintes sur les propriétés de la théorie. L’étude de ces théories con-

formes des champs (CFT) a une longue histoire qui commence par leurs applications en physique

de la matière condensée et en théorie des cordes.

Les théories quantiques des champs (QFT) peuvent être couplées à différents types d’objets

étendus tels que des bordss ou des défauts qui affectent le comportement du système. En

particulier, la présence de bords conduit à des effets observables drastiques tels que l’effet Casimir

et la divergence de la densité d’énergie près d’une frontière. Les effets des bords sont plus simples

à étudier dans les CFT où la symétrie conforme est une forte contrainte sur le spectre de la

théorie. Dans une telle CFT avec un bord (BCFT), la symétrie conforme originale est brisée en

un sous-groupe qui préserve l’emplacement du bord et ses conditions aux limites. Cependant,

le sous-groupe restant est toujours très grand, surtout en deux dimensions où ses contraintes

73



74

peuvent être mises en œuvre de manière étonnante précise.

En tant que théories en elles-mêmes, les CFT ne décrivent pas la force gravitationnelle qui

est transmise par le graviton. Cependant, les CFT sont profondément liées à la gravité dans

la théorie des cordes où elles déterminent la dynamique des cordes quantiques. Le spectre des

modes de vibration d’une corde comprend le graviton, ce qui fait de la théorie des cordes une

théorie de la gravité quantique cohérente et s’appuie sur de vastes connaissances théoriques.

Ainsi, les CFT ont joué un rôle central dans le développement de la théorie des cordes et dans

notre quête pour unifier la théorie de la gravité d’Einstein avec la mécanique quantique.

En théorie des cordes, les CFT avec et sans bords apparaissent : les CFT vivent sur les feuilles

du monde des cordes fermées tandis que les BCFT vivent sur les feuilles du monde des cordes

ouvertes qui sont ancrées sur des surfaces étendues dans l’espace-temps. Un développement

important en théorie des cordes a été la réalisation que les surfaces d’ancrage sont des objets

quantiques dynamiques en eux-mêmes. Ces objets sont devenus connus sous le nom de D-

branes, et tout comme les cordes, les D-branes vibrent et se déplacent dans l’espace-temps. Leur

dynamique à basses énergies est décrite par une généralisation de l’action de Dirac-Born-Infeld

(DBI) de sorte que classiquement, la brane tente de minimiser son volume dans le monde.

Par conséquent, la théorie des cordes n’est pas seulement une théorie quantique des cordes,

mais aussi une théorie quantique des objets étendus qui incluent les D-branes. Ces objets

respectent les lois de la mécanique quantique et de la relativité tout en interagissant les uns avec

les autres de manière compliquée, rendant les calculs généraux difficiles. Il est donc courant en

théorie des cordes d’étudier ses éléments constitutifs dans des coins de l’espace des paramètres

où les calculs sont sous contrôle et où des progrès peuvent être réalisés. Un exemple standard

est la théorie de la perturbation des cordes fermées valide dans le coin où le couplage des cordes

est faible de sorte que les méthodes des diagrammes de Feynman sont applicables. Un autre

exemple est la limite où un condensat d’un grand nombre de cordes fermées se comporte comme

un espace-temps courbé régi par la théorie de la gravité d’Einstein, ou plus précisément, par les

équations de la supergravité.

La supergravité contient diverses solutions classiques sourcées par des objets étendus forte-

ment gravitant connus sous le nom de p-branes qui sont similaires aux trous noirs extrémaux.

Une autre découverte importante a été que ces sources ne sont rien d’autre que des D-branes

déguisées. Cela est possible car les cordes ouvertes attachées aux D-branes peuvent être réinter-

prétées comme une émission de cordes fermées de sorte qu’un grand nombre de D-branes peut

être la source de champs de supergravité. Ainsi, les D- et p-branes donnent deux descriptions

du même objet physique dans deux régimes différents de l’espace des paramètres.

Les types de relations non triviales entre différents coins de l’espace de paramètres sont

connus sous le nom de dualités. Un exemple célèbre de dualité en physique est la dualité de

Kramers–Wannier (KM) du modèle d’Ising en deux dimensions, qui relie les propriétés à basse

température du modèle à sa physique à haute température. Il existe une variété de dualités

différentes reliant différentes théories des cordes entre elles. Par exemple, l’analogie de la dualité

de KM est la dualité T qui relie des cordes vivant dans des espaces cibles différents. D’autre part,

la dualité derrière l’identification des D-branes et des p-branes est la dualité ouverte-fermée sur

la feuille du monde des cordes, qui est une affirmation concernant les CFTs bidimensionnels. Ce

qui rend les dualités de la théorie des cordes si remarquables, c’est qu’elles impliquent souvent

des théories différentes qui peuvent même vivre dans des dimensions différentes.

Le plus récent exemple de dualité est la dualité holographique, également appelée conjecture
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AdS/CFT. Dans sa formulation originale, elle conjecture que la physique d’une CFT super-

symétrique spécifique à couplage fort est décrite de manière équivalente par un sous-secteur

de la théorie des cordes à faible couplage. En termes simples, la dualité énonce que certaines

CFT contiennent des règles pour décrire la gravité cachées en elles. Cependant, ces règles sont

holographiques car elles décrivent la théorie des cordes dans un espace-temps avec une dimen-

sion supplémentaire : la dualité est comme un hologramme où une image tridimensionnelle

(la théorie des cordes) est encodée sur une surface bidimensionnelle (CFT). La découverte de

la dualité holographique a été une étape importante dans notre compréhension moderne de

la gravité quantique et elle a conduit à de nombreuses avancées au cours des deux dernières

décennies. Non seulement la dualité holographique est utile pour comprendre la structure de

la gravité quantique, elle est également extrêmement puissante pour prédire la dynamique de

champs quantiques fortement couplés qui se produisent, par exemple, à l’intérieur des étoiles à

neutrons.

La dualité holographique découle de l’identification des D-branes et des p-branes dans une

limite de découplage. En prenant la limite en utilisant différents types de branes dans divers

coins de la théorie des cordes, on obtient des CFT supersymétriques différentes en tant que duals

holographiques. Par exemple, les D3-branes dans la théorie des cordes de type IIB et les M2-

branes sur une singularité orbifolde dans la théorie M conduisent respectivement à une théorie

de Yang-Mills en quatre dimensions et à une théorie de Chern-Simons en trois dimensions. La

dualité a été généralisée en considérant des configurations de branes de plus en plus complexes,

par exemple, l’inclusion de D7-branes dans le système de D3-branes conduit à l’ajout de degrés

de liberté du quark à la théorie de Yang-Mills duale.

Dans la dualité holographique, les degrés de liberté de la gravité quantique sont encodés

dans une QFT ordinaire sans gravité de manière non triviale. L’approche bottom-up a été utile

pour décomposer cet encodage, par exemple, on a compris très tôt que l’entrelacement quantique

joue un rôle important dans la formation d’un espace-temps connecté du côté de la gravité. Le

rôle de l’entrelacement peut être quantifié grâce à la formule HRT qui affirme que l’entropie

d’entrelacement des champs quantiques dans la CFT est égale à l’aire d’une surface minimale

en gravité. Plus récemment, ces développements bottom-up ont conduit à une proposition pour

un mécanisme qui explique comment la gravité quantique préserve l’unitarité lors du processus

d’évaporation d’un trou noir.

Il est également naturel de se demander quelles caractéristiques spéciales permettent à une

CFT de bénéficier d’une description gravitationnelle. Un exemple d’un modèle bottom-up sim-

ple pour étudier cette question est la gravité d’Einstein à trois dimensions qui ne contient pas de

degrés de liberté de propagation (gravitons). Sur une variété localement AdS, cette théorie est

censée être duale holographiquement à une CFT à deux dimensions avec une symétrie conforme

infinie-dimensionnelle. Les premières preuves de l’existence d’une CFT duale étaient la décou-

verte que le groupe de symétrie asymptotique de la gravité en 3D est centré, mais il reste une

question ouverte de savoir si la théorie duale existe réellement. Des progrès peuvent être réalisés

en contraignant le spectre de la CFT duale : l’invariance modulaire de la CFT combinée à la

présence de solutions de trous noirs en gravité 3D nécessite que la CFT ait une grande charge

centrale et une grande lacune. Il est également possible que la théorie duale ne soit pas une

seule CFT, mais plutôt un ensemble.

Comme mentionné précédemment, la présence de bords dans la CFT conduit à divers ef-

fets qui devraient également être réalisés du côté gravité de la dualité. Une manière simple
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d’incorporer des bords est de coupler la théorie de la gravité à des branes de fin-du-monde

(EOW) dynamiques. La dynamique des branes EOW est déterminée par l’équation d’Einstein

de bord qui découle de l’imposition d’une condition de Neumann pour la métrique à la brane.

Dans la gravité en 3D, un tel modèle de brane EOW reproduit les propriétés attendues des CFT

de bord en deux dimensions telles que les entropies de bord et les transitions entre les canaux

de cordes ouvertes et fermées. Pour avoir une compréhension plus détaillée des CFT de bord

holographiques, des recherches supplémentaires sont nécessaires.

Cette thèse est consacrée à l’étude de la dualité holographique et elle repose sur quatre

articles de recherche sur le sujet. L’accent est mis sur la façon dont les objets étendus, à savoir

les frontières et les branes, se comportent des deux côtés de la dualité. En théorie des cordes,

les bords des cordes ouvertes décrivent la dynamique des D-branes, dont la compréhension a été

cruciale pour la découverte de la dualité holographique en premier lieu. De même, du côté de la

CFT, les bords donnent lieu à des effets observables tels que l’effet Casimir lorsque le système

est confiné entre deux plaques parallèles. L’objectif de la thèse est de donner une introduction

à ces concepts dans le contexte de la dualité holographique.

Dans la première moitié de la thèse, nous passerons en revue les concepts nécessaires en

théorie conformes de champs, en mettant l’accent sur les CFT bidimensionnelles. Notre descrip-

tion de la symétrie conforme est générale et comprend les CFT vivant sur des variétés courbes.

Nous étudions les propriétés quantiques des CFT en utilisant à la fois des formulations en inté-

grale de chemin et en opérateurs (quantification canonique) de la théorie, cette dernière étant

décrite dans une signature Lorentz moins conventionnelle. La rupture quantique des symétries

de difféomorphisme et de Weyl est réalisée dans les deux formulations de manière différente,

mais équivalente : la non-invariance de Weyl de la mesure d’intégration de chemin est cohérente

avec le terme de Schwinger dans l’algèbre des générateurs de la symétrie conforme. Nous con-

sidérons également des CFT bidimensionnelles avec un bord où la dualité ouverte fermée des

cordes conduit à de fortes contraintes sur le spectre de la théorie.

Dans la seconde moitié de la thèse, nous passons en revue les approches bottom-up et top-

down de la dualité holographique. Dans l’approche bottom-up, les théories de la gravité classique

jouent un rôle central en tant que modèles jouets de la théorie des cordes. Nous examinons les

propriétés de la gravité de Lovelock, qui est une généralisation naturelle de la relativité générale

d’Einstein à des dimensions supérieures. En particulier, nous expliquons comment les bords et les

coins peuvent être traités dans ces théories. Notre objectif principal est la description ascendante

de l’anomalie de Weyl de la CFT duale. À cette fin, nous considérons la description des symétries

de difféomorphisme et de Weyl du côté de la gravité comme le groupe de symétrie asymptotique

des espaces asymptotiquement localement AdS. Dans l’espace AdS tridimensionnel, l’action du

groupe de symétrie asymptotique produit la transformation de Schwarz du tenseur d’énergie de

la CFT duale. Pour une description holographique des bords, nous considérons des modèles

avec des branes EOW qui peuvent être utilisés pour accommoder les opérateurs primaires ou de

changement de conditions aux limites (BCC) de la BCFT.

Dans deux des quatre articles de recherche, nous considérons les CFTs de frontière d’un

point de vue holographique de bottom-up. Dans le premier article [A3], l’accent est mis sur les

fonctions de corrélation d’un opérateur scalaire en présence d’une seule frontière dans les CFTs

dimensionnels généraux plus élevés. Le plus simple exemple que nous considérons est la fonction

à un point qui peut être non nulle lorsqu’une frontière est présente. Dans le deuxième article [A1],

nous considérons une BCFT holographique bidimensionnelle et étudions son spectre d’opérateurs
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en utilisant la description gravitationnelle duale. Le modèle holographique que nous utilisons

implique la gravité d’Einstein tridimensionnelle couplée à des branes EOW qui a été introduit

pour la première fois dans [47]. La limite du modèle considéré dans [47] est qu’il ne décrit pas

les états excités ou les opérateurs BCC dans la BCFT [111]. Par conséquent, dans l’article

[A1], nous étendons le modèle de [47] pour inclure des états excités en couplant la théorie de la

masse volumique à des particules ponctuelles tel que présenté dans la section précédente. Nous

montrons également que les opérateurs BCC peuvent être incorporés de manière holographique

en permettant aux branes de fusionner de manière non lisse à un coin.

Le point de vue bottom-up de l’holographie est également adopté dans l’article [A4] où nous

étudions l’anomalie de Weyl holographique de la gravité de Lovelock topologique en présence

de singularités coniques. Nous étudions également les effets des singularités coniques sur les

invariants de courbure qui apparaissent dans la gravité de Lovelock, ce qui généralise les travaux

antérieurs sur le sujet des singularités coniques [115, 116].

L’holographie top-down est utilisée dans l’article [A2] où nous étudions les monotones du

groupe de renormalisation dans une QFT tridimensionnelle non triviale appelée théorie ABJM.

La théorie ABJM convient pour le problème, car son extension avec des quarks admet une

déformation de masse pertinente qui déclenche un flot de groupe de renormalisation (RG) de la

théorie avec des quarks dans l’UV vers la théorie ABJM pure dans l’IR. Ce flot sur la sphère

tridimensionnelle était au centre de notre article [A2]. La recette pour décrire les quarks en

utilisant des D6-branes du côté de la supergravité nous a permis de calculer les énergies libres

de manière holographique et d’étudier le théorème F. Aborder directement le flot RG en théorie

des champs aurait été impossible. Nous constatons que nos F-fonctions ne sont pas monotones,

ce que nous supposons être dû à la présence d’une transition de phase quantique.
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