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Résumé

Les matériaux composites stratifiés, de par leur anisotropie, offrent à l’ingénieur des degrés de liberté supplé-
mentaires pour la conception mécanique de pièces structurelles. Cependant, exploiter ce potentiel nécessite
le développement et la mise en œuvre de méthodes spécifiques durant la phase de conception. Les structures
primaires composites actuelles sont le plus souvent dimensionnées à l’aide d’une optimisation paramétrique
faite sur une forme figée. A l’inverse, exploiter pleinement l’anisotropie du matériau lors de l’optimisation
topologique de la forme des pièces reste un défi scientifique. Ce travail de thèse vise à réconcilier ces deux
démarches afin de mieux dimensionner des pièces composites dès la phase conceptuelle. L’optimisation
topologique consiste à distribuer aux mieux la matière pour minimiser un critère mécanique en utilisant une
variable de densité continue décrivant la présence (densité de 1) ou l’absence (densité qui tend vers 0) de
matière en chaque point de la structure. Ranaivomiarana et al. [1] a démontré que la forme idéale d’une pièce
dépend de l’anisotropie du matériau pour la minimisation de la compliance (ce qui équivaut à maximiser la
raideur). La solution obtenue pour une optimisation simultanée par rapport à la densité et l’anisotropie
s’avère plus rigide et moins encombrante que la solution obtenue pour une optimisation séquentielle de la
topologie avec un matériau isotrope, suivie de l’optimisation de l’anisotropie sur cette forme figée. Toutefois,
l’algorithme des directions alternées utilisé par Ranaivomiarana [2] est spécifique à la minimisation de la
compliance et n’est pas applicable à l’optimisation topologique avec d’autres objectifs ou contraintes. Or, le
dimensionnement d’une pièce dans une perspective d’application industrielle implique de nombreux critères
mécaniques supplémentaires, par exemple de résistance ou de flambement. De plus, il a été démontré dans le
cadre de l’optimisation topologique avec un matériau isotrope que l’ajout de ces critères change drastiquement
les formes optimales [3]. L’objectif de cette thèse est donc de définir une méthode d’optimisation topologique
en densité et anisotropie, adaptée aux matériaux composites, tout en considérant des critères mécaniques de
tenue du matériau comme contraintes d’optimisation supplémentaires.

La littérature scientifique consacrée à la prise en compte de critères de rupture dans l’optimisation
topologique est assez riche dans le cas des matériaux isotropes [4, 5]. Les difficultés théoriques et numériques
associées au problème sont bien identifiées et des travaux récents [3] proposent des techniques de plus en plus
matures pour les surmonter. Ces techniques ont également été démontrées être pertinentes dans le cas de le
prise en compte de la rupture et d’anisotropie, que ce soit en considérant des matériaux orthotropes à orien-
tations fixes [6], en sélectionnant parmi des plis prédéterminés pour obtenir un stratifié [7] ou avec des fibres
courbes [8, 9]. Cependant, un consensus se dégage autour de l’utilisation d’algorithmes à gradient lorsque
d’autres critères mécaniques (tel la rupture ou le flambement) doivent être pris en compte en optimisation
topologique. L’algorithme MMA (Method of Moving Asymptotes) [10], le plus largement employé dans la
littérature, a ainsi été retenu pour la suite de cette thèse.

La première phase des travaux a permis de développer une stratégie d’optimisation basée sur MMA
pour l’optimisation topologique en densité et anisotropie, et de comparer les résultats avec les solutions
obtenues avec le critère d’optimalité utilisé par Ranaivomiarana [2]. Le problème considéré de minimisation de
compliance C = UT [K]U à efforts imposés sous contrainte de volume maximal V0 est résumé par Equation 1.
Les déplacements U sont obtenus par une analyse éléments finis en résolvant l’équilibre classique [K]U = F.
[K] est la matrice de rigidité du système, et F le vecteur de force. Les variables d’optimisation considérées
en chaque élément correspondent à la densité de matière ρ, à l’orientation d’anisotropie ϕ1 et aux modules
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Résumé

anisotropes du matériau. L’anisotropie est représentée au moyen du formalisme polaire, et restreinte au cas
des matériaux orthotropes 2D. Le formalisme polaire exprime un tenseur d’élasticité du quatrième ordre
à l’aide d’invariants scalaires. Les modules anisotropes η0 et η1 sont exprimés à partir de ces invariants
tensoriels, et contraints par les bornes thermodynamiques, pour assurer que le tenseur d’élasticité reste défini
positif. Cette contrainte a été incorporée de manière implicite dans l’optimisation au moyen d’une opération
de mapping.

min
ρ,ϕ1,η0,η1

UT [K]U

s.t. V (ρ) ≤ V0

ρmin ≤ ρ ≤ 1
− π ≤ ϕ1 ≤ π

2η2
1 − 1 < η0 < 1

(1)

L’algorithme d’optimisation MMA consiste à résoudre de façon séquentielle une série de problèmes d’optimisation
approchés convexes (Sequential Approximate Optimization). Les approximations de la fonction objectif et
des contraintes du problème d’optimisation sont construites à partir de l’évaluation exacte de leurs valeurs
et de leurs dérivées au point courant à chaque itération. Cela a impliqué un travail important sur la prise
en compte de l’anisotropie et l’obtention des gradients par rapport à ces variables. Pour cela, le problème
d’optimisation a été traité en plusieurs étapes, en étudiant d’abord chaque variable séparément. La stratégie
d’optimisation finale retenue consiste à différencier le type d’approximation en fonction de la nature des vari-
ables. La surface de réponse par rapport aux densités et aux modules anisotropes se comporte de manière
plutôt régulière, ce qui permet l’utilisation de l’approximation monotone de l’algorithme MMA. A contrario,
la surface de réponse est fortement non linéaire par rapport à l’orientation, pour laquelle une approxima-
tion convexe est mieux adaptée. Par ailleurs, il a été observé que les optimisations à gradient sont très
sensibles à l’initialisation des variables, phénomène bien connu dans la littérature traitant d’optimisation
topologique en densité seule et accentué par l’introduction de variables d’anisotropie du matériau. Une dé-
marche d’initialisation est proposée dont l’efficacité a été démontrée sur plusieurs cas tests numériques, qui
consiste, en partant d’une initialisation uniforme, à optimiser d’abord l’anisotropie du matériau pour adapter
celle-ci aux chemins d’efforts, avant d’optimiser simultanément densité et anisotropie. Les résultats obtenus
ont été comparés aux solutions obtenues par Ranaivomiarana [2], les deux procédures d’optimisation ayant
été implémentées en Python au cours de ces travaux. La stratégie proposée permet, avec une optimisation à
base de gradients, de retrouver efficacement les solutions obtenues avec le critère d’optimalité des directions
alternées.

L’usage d’un algorithme à gradient permet de remplacer les bornes thermodynamiques sur les modules
d’anisotropie par les bornes géométriques, spécifiques aux composites stratifiés [11], permettant ainsi de
générer des résultats nouveaux par rapport à la littérature. La Figure 1 présente l’évolution de la compliance
optimisée en densité et anisotropie distribuées pour différents domaines de conception en anisotropie, à frac-
tion volumique égale : la solution isotrope, la solution avec un matériau unidirectionnel dont l’orientation
est optimisée, la solution stratifiée et la solution obtenue dans le domaine thermodynamique pour laquelle le
matériau est défini mathématiquement mais inconnu en pratique. La topologie finale diffère entre ces quatre
exemples et la raideur augmente avec le domaine de conception en anisotropie.

La deuxième partie de ces travaux s’est focalisée sur la prise en compte de critères de rupture, dans les
cas d’anisotropie pour lesquelles il est possible de postuler des valeurs admissibles pertinentes en contrainte
ou en déformation. La résistance a d’abord été évaluée pour des fibres courbes par un critère anisotrope
elliptique. Le formalisme polaire a également été utilisé pour exprimer les admissibles dans le repère global.
Ce type d’optimisation pose trois difficultés principales : i) l’espace de conception peut dégénérer lorsque
des contraintes d’optimisation sont formulées à partir des contraintes mécaniques évaluées sur le modèle
éléments finis de la pièce, ii) la contrainte mécanique est une dimension locale, il y a donc une contrainte
d’optimisation par élément du maillage, et iii) le coût numérique du calcul du gradient peut devenir prohibitif,
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Isotropic material
C = 36.2 mJ, Mnd = 0.6%

Steered fiber
C = 17.8 mJ, Mnd = 2.0%

Thermodynamic bounds
C = 13.8 mJ, Mnd = 4.5%

Geometric bounds
 C = 15.0 mJ, Mnd = 2.4%

Figure 1: Topologies et distributions d’anisotropie obtenues par des optimisations simultanées en densité et
anisotropie en élargissant progressivement le domaine de conception en anisotropie : de gauche à droite,
solutions obtenues pour un matériau isotrope, pour un matériau UD optimisé en orientation, solution
stratifiée à partir de pli constitués de ce même matériau UD (bornes géométriques) et solution orthotrope
générale (borne thermodynamiques).

puisque la contrainte mécanique en un élément dépend du champ complet des variables d’optimisation. Dans
ces travaux, le problème de singularité de la contrainte mécanique et celui de sa nature locale ont été pal-
liés par l’utilisation d’une technique de relaxation et d’agrégation simultanée, au moyen de la fonction "lower
Kreisselmeier–Steinhauser" (LKS) [5]. Cette technique permet d’obtenir une unique contrainte d’optimisation
gLKS qui approche par valeur inférieure la valeur maximale du critère de rupture g parmi les éléments de
la structure. Les gradients de ce critère de rupture sont calculés par le biais de la méthode adjointe pour
accélérer les optimisations. Le calcul du gradient a été incorporé dans un code d’optimisation et d’éléments
finis 2D implémenté sous Python.

Le premier exemple d’application considéré représente une pièce imprimée en 3D par dépôt de fil selon un
motif de remplissage isotrope dans chaque couche. La rupture de cette configuration peut être caractérisé par
un critère de Tsai-Wu isotrope transverse [12], avec des admissibles plus faibles dans la direction d’impression
Z. L’optimisation est réalisée en 2D dans un plan de coupe transverse à la pièce contenant la direction
d’impression. Le matériau est uniforme dans la pièce et son orientation figée. L’optimisation est répétée
pour trois orientations différentes du matériau. La Figure 2 montre les résultats obtenus pour une poutre en
L, avec le critère de rupture anisotrope orienté avec la direction d’impression représentée par la flèche jaune.
La solution optimisée est sensible à la direction d’impression, et des barres plus massives se forment dans
les zones sollicitées dans les directions les plus faibles du matériau. Ainsi l’anisotropie du critère de rupture
utilisé en contrainte de optimisation influe significativement sur la topologie optimisée et la raideur de la
pièce.L’analyse détaillée des solutions montre que la contrainte d’optimisation agrégée est satisfaite lors de
l’optimisation. Néanmoins, certaines valeurs de la critère de la rupture local g sont supérieures à 0, ce qui
découle de l’usage d’une approximation par valeur inférieure (LKS).
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Résumé

45° printing direction
𝑣𝑓 = 35.52%, C = 21.48 mJ, 𝑀𝑛𝑑 = 17.80%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.15

0° printing direction
𝑣𝑓 = 40.07%, C = 17.36 mJ, 𝑀𝑛𝑑 = 18.23%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.16
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90° printing direction
𝑣𝑓 = 46.20%, C = 14.88 mJ, 𝑀𝑛𝑑 = 17.00%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.17

Figure 2: Solutions pour la minimisation du volume avec une contrainte de résistance de Tsai-Wu pour
différentes directions d’impression Z. Les éléments représentés ont une densité optimisée supérieure à 0,3.

Un deuxième cas d’étude a eu pour objectif d’évaluer l’influence du choix du critère de rupture sur la
solution optimisée, dans le cas d’un matériau unidirectionnel (UD) uniforme sur la pièce et dont l’orientation
est figée. Une comparaison de résultats obtenus pour avec différentes orientions et critères de rupture est
présentée en Figure 3. De façon générale, les barres constitutives des solutions optimisées tendent à s’aligner
avec le direction de la fibre, c’est-à-dire le direction de plus grande raideur et résistance. Les barres sollic-
itées par des efforts transverses aux fibres sont plus massives, ayant des admissibles de magnitude inférieure.
Les critères considérés sont des critères elliptiques proches dans leur formulation mathématique mais dans
lesquelles les influences respectives des composantes du tenseur des contraintes s’expriment différemment.
Ainsi, les solutions obtenues sont globalement proches, mais témoignent bien d’une certaine influence du
chois du critère.

La méthode proposée est ensuite appliquée pour la prise en compte simultanée de la distribution de la
matière et de l’orientation distribuée du matériau UD. La solution pour une minimisation de volume avec une
contrainte de compliance et de rupture pour les fibres courbes est montré en Figure 4. L’ajout de la contrainte
de rupture modifie la topologie de la solution, avec une forme incurvée pour minimiser la concentration de con-
traintes à la place de l’angle droit observé dans le cas d’une optimisation sans critère de rupture. Des amas de
matière se forment au niveau des jonctions entre les barres, au niveau desquelles l’état de contraintes est mul-
tiaxial. Comme les admissibles d’un pli UD sont très différents dans les directions longitudinales, transverses
et en cisaillement, c’est la rupture transverse, la plus faible, qui est critique aux jonctions. L’optimisation
ajoute donc de la matière dans ces zones pour satisfaire aux contraintes d’optimisation. Placer des fibres
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𝑣𝑓 = 24.71%, C = 1496.69 mJ, 𝑀𝑛𝑑 = 14.23%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.12

𝑣𝑓 = 25.44%, C = 1462.85 mJ, 𝑀𝑛𝑑 = 13.78%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.14

𝑣𝑓 = 28.89%, C = 1472.71 mJ, 𝑀𝑛𝑑 = 12.26%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.14

𝑣𝑓 = 28.58%, C = 1609.87 mJ, 𝑀𝑛𝑑 = 12.50%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.13

𝑣𝑓 = 24.34%, C = 1538.00 mJ, 𝑀𝑛𝑑 = 13.21%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.13

𝑣𝑓 = 20.71%, C = 2196.27 mJ, 𝑀𝑛𝑑 = 13.21%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥= 0.09

𝑣𝑓 = 20.88%, C = 2131.94 mJ, 𝑀𝑛𝑑 = 14.35%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.13

𝑣𝑓 = 22.76%, C = 2053.32 mJ, 𝑀𝑛𝑑 = 16.06%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.13

𝑣𝑓 = 28.93%, C = 1597.51 mJ, 𝑀𝑛𝑑 = 12.41%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.13

Figure 3: Topologie et distribution des critères de résistance locale pour la minimisation du volume avec
différents critères de rupture elliptiques (Tsai-Wu, Tsai-Hill et Hoffman) pour des orientations UD de 0◦,
45◦ et 90◦ (illustrées par la flèche jaune). Les éléments représentés ont une densité optimisée supérieure
à 0,3.

dans plusieurs directions permettrait d’améliorer le design. C’est l’objet de la dernière partie de cette thèse
avec l’étude de la prise en compte de la rupture dans le cas des stratifiés.

Cependant, pour un stratifié représenté par son tenseur d’élasticité homogénéisé, un critère elliptique de
type Tsai-Wu ne peut être appliqué directement à l’échelle du pli composite. En effet, de par l’homogénéisation,
la séquence d’empilements et donc l’orientation des plis sont inconnues. Pour contrer cette limitation, il a
été choisi d’exprimer une enveloppe de rupture minimale en déformation, correspondant à l’intersection des
enveloppes obtenues pour toutes les orientations de plis possibles, dans la mesure où sous un chargement de
membrane, tous les plis partagent les même déformations globales. Une stratégie d’optimisation, toujours
basée sur la méthode d’agrégation et de relaxation de la LKS, a été développée, puis validée dans le cas d’un
matériau isotrope en vérifiant la bonne correspondance entre les résultats d’une optimisation réalisée avec un
critère de Von Mises exprimé en contrainte et d’une optimisation réalisée avec un critère de Von Mises exprimé
en déformation. Par après, des optimisations en prenant compte des stratifiés, par le biais des paramètres
polaires et les bornes géométriques, ont été effectuées avec une enveloppe de déformation maximale admis-
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Résumé

𝑣𝑓 = 43.89%, C = 5499.86 mJ, 𝑀𝑛𝑑 = 17.35%, 𝑔𝐿𝐾𝑆 = -0.00, ത𝑔𝑚𝑎𝑥 = 0.13

Figure 4: Solution pour une minimisation du volume avec une contrainte de compliance et un critère
de rupture Tsai-Wu pour l’optimisation de la topologie et de l’orientation d’un pli UD. Les éléments
représentés ont une densité optimisée supérieure à 0,3.

sible. Les résultats d’une optimisation sont présentés en Figure 5. La topologie et l’anisotropie diffèrent du
cas précédent, dans lequel seules la densité et l’orientation d’un matériau UD étaient optimisés. La solu-
tion obtenue dans le cas de stratifiés se compose de barres UD et d’empilements croisés (0◦/90◦) aux jonctions.

Dernièrement, la prise en compte indirecte du flambement dans l’optimisation a été évaluée. Le critère
de rupture elliptique et l’enveloppe de rupture minimale en déformation sont définis avec des admissibles
distincts pour la traction et la compression, on cherche à étudier la pertinence de réduire les admissibles
en compression pour favoriser la traction dans la structure et ainsi retarder le flambement. Les résultats
montrent, pour une faible pénalité en volume, des gains significatifs pour le facteur critique de flambement
en fonction de la réduction des admissibles appliqué. Les résultats d’analyses aux valeurs propres, réalisées en
post-processing, d’optimisation pour un même cas de charge avec deux enveloppes de rupture en déformation
différentes sont présentés en Figure 6. Jouer sur la valeur des admissible en compression pour privilégier la
traction dans la structure permet bien d’augmenter le facteur critique de flambement.

Ces travaux de thèse ont ainsi permis d’inclure des critères de tenue mécaniques dans l’optimisation
topologique en tenant compte de l’anisotropie. A cet effet, une stratégie d’optimisation à gradient a été
proposée avec des critères de rupture elliptique, tout en obtenant les dérivées par rapport aux différentes
variables. La pertinence de la méthode a été démontrée par différents exemples numériques. Cette stratégie
d’optimisation ouvre des perspectives telles que l’application à un problème en 3D ou la prise en compte
implicite du flambage dans l’optimisation topologique.
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𝑣𝑓 = 28.57%, C = 766.31 mJ, 𝑀𝑛𝑑 = 16.20%, 𝑔𝐿𝐾𝑆 = -0.00, ത𝑔𝑚𝑎𝑥 = 0.10

Figure 5: Solution pour une minimisation de volume avec un critère de déformation conservateur consid-
érant la topologie et un stratifié. Les éléments représentés ont une densité optimisée supérieure à 0,3.

Original strain envelope
𝑣𝑓 = 31.53%, 𝜆𝑐𝑟𝑖𝑡= 8.14e-1 

Reduced strain envelope
𝑣𝑓 = 33.33%, 𝜆𝑐𝑟𝑖𝑡= 1.47

Figure 6: Facteur critique de flambage λcrit et mode propre des solutions de minimisation du volume
considérant des stratifiés avec une enveloppe de déformation définie par l’utilisateur avec des admissibles
de compression élevées ou faibles. Les éléments représentés ont une densité optimisée supérieure à 0,3.
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Chapter 1

Introduction

In the field of transportation, the reduction of greenhouse gas emissions and costs implies the need to al-
ways reduce the amount of material used and thus the total mass of the vehicles, while fulfilling mechanical
requirements, such as strength. During the design phases, structural engineers in design offices try to reach
the best compromises through the use of structural optimization algorithms to find efficient shapes. Material
engineers meanwhile seek the best mix of materials to take into account mechanical stresses and environment
issues. These two design steps have traditionally been separated in design offices. This research aims to
consider both these steps simultaneously.

Additive manufacturing processes, such as 3D printing or fiber placement, have seen an increase in interest
due to the opportunity for more versatile structural configurations available to designers. Examples of
products obtained by such method are illustrated in Figure 1.1. These novel processes allow to place material
more freely, and are less restricted by manufacturing constraints present in traditional production methods
such as requiring a constant cross-section in extrusion or tool heads not having access in restricted spaces
in machining. Furthermore, these novel additive manufacturing processes provide the possibility to change
material during the process to better match local requirements, or dictate the orientation in which the
material is being added, and therefore control anisotropic properties.

(a) By 3D printing1. (b) By fiber placement2.

Figure 1.1: Additive manufacturing products.

New conceptual tools and strategies have been developed to fully take advantage offered by those new
production methods to unrestricted material placement, such as topology optimization. Topology optimiza-
tion seeks to define the optimal material distribution of a structure for defined load cases applied to a

1https://www.businesswire.com/news/home/20140204005189/en/EOS-and-Airbus-Group-Innovations-Team-on-Aerospace-
Sustainability-Study-for-Industrial-3D-Printing, accessed on the 27/01/2023.

2https://www.labelbreed.nl/collaborations/marleen-kaptein-nlr/fibre-placement-chair/, accessed on the 27/01/2023.
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Chapter 1. Introduction

design space. Initial research of topology optimization methods have generally been focused on incorporating
isotropic material. Nonetheless, besides material distribution, additive manufacturing also offers control over
the material orientation and its associated anisotropic properties. Additional research must be conducted to
evaluate and incorporate those added design possibilities effectively in a topology optimization framework.
The wish to incorporate anisotropy in topology optimization have also been identified in a survey among
topology optimization users by Subedi et al. [13], including industrial users, such as Airbus Atlantic.

Current design strategies consist of a sequential approach. Gains on mechanical properties are obtained
by optimizing the anisotropy on already existing isotropic structures. However, the optimized topology has
not been designed with anisotropy in mind. The downside of this disregard has already been demonstrated
for compliance (C) minimization problems, compliance being the inverse of the global stiffness of a structure.
When comparing the sequential approach of first optimizing the topology followed by the anisotropy to
the simultaneous optimization of both topology and anisotropy at the same time, different topologies are
obtained [1]. Such different solutions are shown in Figure 1.2 for the optimization of a suspended bridge for
a given volume. The concurrent approach yields a structure which is less bulky, with an improvement of
around 6% in stiffness. This shows the importance of considering anisotropy and topology simultaneously,
as it provides novel shapes and improved designs. Nonetheless, to efficiently consider anisotropy in the
optimizations, convenient parametrizations should be used. Such parametrizations are well defined for 2D
membrane and 3D shell structures, but remain a research topic for the more general 3D cases [2].

Sequential approach – C = 1 Concurrent approach – C = 0.94

Figure 1.2: Solution compliance minimization with a sequential approach of optimizing the anisotropy on
a fixed isotropic topology on the left, and of a concurrent topology and anisotropy optimization on the
right, for the same volume.

Only considering compliance is not always sufficient for industrial applications, other mechanical re-
quirements such as strength and buckling could be critical depending on the load cases. These additional
mechanical properties should therefore also be incorporated during the optimization. Gao et al. [3] highlighted
this influence by optimizing a T-shaped structure with an isotropic material, considering a combination of
different mechanical properties (compliance, strength and buckling). Different final topologies were obtained,
as displayed in Figure 1.3. It shows two important aspects, the first one being that if only compliance is
minimized, the critical buckling factor λcrit is low and the maximum Von Mises stress σV M

max high, as they
are not considered. This is not ideal, as this solution could experience an early loss of structural integrity.
Secondly, the remaining optimizations in Figure 1.3 show that considering additional optimization constraints
influences the final topology. In case of the last optimization, the design is driven by compliance, strength
and buckling requirements. Because of their effect on the optimized topology, these constraints should also be
incorporated in optimizations with anisotropy, where the current research is focused on including anisotropic
strength criteria.

Indeed, if for compliance alone, simultaneously optimizing the topology and anisotropy already yields
better solutions with different topologies, it is reasonable to expect that anisotropic strength constraints will
also alter the optimized topology. Furthermore, if a sequential approach were still to be used with first an
isotropic material and therefore an isotropic strength criterion, the optimized solutions would not account
for the failure mechanisms typical of anisotropic material, involving tensile-compressive dissymmetry and
distinction of directional dependent allowables. Both the influence on the optimized topology and the cor-
rect strength criterion consideration motivates the research conducted in this thesis to evaluate anisotropic
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Compliance

𝜎𝑚𝑎𝑥
𝑉𝑀𝜆𝑐𝑟𝑖𝑡

Compliance and strength

𝜎𝑚𝑎𝑥
𝑉𝑀𝜆𝑐𝑟𝑖𝑡

Compliance and buckling

𝜎𝑚𝑎𝑥
𝑉𝑀𝜆𝑐𝑟𝑖𝑡

Compliance, strength
and buckling

𝜎𝑚𝑎𝑥
𝑉𝑀𝜆𝑐𝑟𝑖𝑡

Figure 1.3: Influence of different mechanical considerations (compliance, strength and buckling) in topol-
ogy optimization the final results with an isotropic material [3].

strength in topology optimization. Additionally, to obtain realistic allowable values for anisotropic strength
and for its broadly use in the aerospace industry due to its high specific mechanical properties, the type of
considered anisotropy is restricted to Uni-Directional (UD) fibers and composite laminates.

The research objective of this thesis is therefore to incorporate strength criteria in a simultaneous topology
and material anisotropy optimization framework, in order to obtain structures made of composite laminates.
This research has been carried out at ONERA, in collaboration with Sorbonne Université and funded by
Airbus Atlantic. The current thesis is a continuation of a previous thesis by Narindra Ranaivomiarana [2],
performed in the same research setting. The overall project aim is to take material anisotropy into account
as additional design variables to further increase the performances of the optimized parts, by capitalizing
on novel manufacturing methods such as additive manufacturing. The previous work focused on elabo-
rating a theoretical basis to take the anisotropic stiffness behavior of materials into account in topology
optimization, in both two and three dimensions. An optimization framework was developed using these
anisotropy parametrizations, limited to stiffness maximization with respect to the topology and anisotropy
simultaneously, by means of an Alternate Directions algorithm. This algorithm can however not consider
other mechanical requirements in the optimization. Therefore, a gradient-based optimization strategy with
respect to both topology and anisotropy simultaneously must first be devised in this research. Gradient-
based algorithms can incorporate generic constraints in topology optimization for a wide application, and
are more specifically explored herein to consider strength constraints. Identifying the correct formulation of
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Chapter 1. Introduction

the optimization constraints based on anisotropic strength criteria for either UD fibers and laminates will be
required, as well as computing their gradient. This research will consider 2D topology optimizations, in order
to concentrate on the scientific challenges of integrating material anisotropy in a gradient-based optimization
with strength constraints.

The content of this thesis is constructed as follows. A review of topology optimization and state of the art
for strength incorporation and anisotropy optimization is performed in Chapter 2. The chapter also discusses
in more detail the theory of the polar formalism used to represent the anisotropy in this work. Chapter 3 is
dedicated to setting up a gradient-based optimization strategy by means of the Methods of Moving Asymp-
totes (MMA) for the simultaneous topology and anisotropy optimization. Both thermodynamic and geometric
bounds on the polar parameters are incorporated implicitly in the optimization. The former encompasses
any admissible stiffness tensor of a generic material in two dimensions, whereas the latter one represents
the membrane stiffness homogenization of any laminate made from a given base ply. The strategy is tested
numerically to escape local minima and validated against an optimality criteria method, the Alternate Direc-
tions (AD) algorithm used in [2]. Chapter 4 details the methodology to incorporate stress-based anisotropic
strength criteria in a topology optimization framework. The two main issues, the stress singularity problem
and computational cost of the gradient, are addressed by means of a lower Kreisselmeier-Steinhauser (KS)
aggregation function to relax the problem and use an adjoint formulation to obtain the gradient. These
solutions provided in literature for isotropic material are then used to incorporate elliptic strength criteria
for anisotropic materials in topology optimization. Chapter 5 presents results of such stress-based topology
optimizations with anisotropic strength criteria for different types of optimizations, with either an isotropic
material or Uni-Directional (UD) fibers. To extend the consideration to laminates, Chapter 6 considers a
conservative strain envelope to represent strength. As the selected laminate homogenization by means of
the polar formalism does not provide a stacking sequence during the optimization process, individual ply
orientations are unknown. A typical stress-based strength criterion can therefore not be applied. Such a
conservative strain envelope is considered at the complete laminate scale to describe the conditions which do
not result in failure for any ply orientation. A strain-based framework for topology optimization is therefore
developed. The framework is first validated for an isotropic material by comparing solutions with a Von
Mises criterion expressed in stress and strain. Afterwards, novel results considering strength and composite
laminates are provided for different optimization problem formulations. A specific investigation is also per-
formed on indirect buckling delay by reducing the compressive strength allowables and favor tension in the
optimized solution. Lastly, this thesis is concluded in Chapter 7 by summarizing the outcomes. Additionally,
follow-up scientific perspectives are discussed.
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Chapter 2

State of the Art

This section presents the topology optimization concept, and its specific case of strength optimizations.
Furthermore, a literature review is presented in the case of optimizations with anisotropic material. The
notation convention used next is [a] for matrices representation and bold for vectors representation.

2.1 An Introduction to Structural Optimization
Structural optimization is a mathematical strategy to improve mechanical properties of a structure, such as
stiffness, buckling or vibrations, for a constant volume, or inversely by reducing the volume while satisfying
the required mechanical properties. Analytical solutions for stiffness maximization have been provided for
trusses, so called Mitchell structure [14]. Thereafter, numerical techniques have been proposed. Those early
methods involved size and shape optimization (Eschenauer and Olhoff [15], Rozvany [16]), which is akin to
a parametric study on predefined structure characteristics. Size optimization only varies the cross sectional
properties of truss elements, on a fixed ground structure, whereas shape optimization consists in deforming
the geometry of the structure.

Later approaches for structural optimization lead to the appearance of topology optimization [17]: it has
a more versatile application, by defining a structure without prior knowledge or assumption of underlying
characteristics nor shape [18, 19]. For every point in the domain, the aim of topology optimization is to
define where material should be distributed. It is the only approach capable of making holes appear during
the optimization which were not present in initially. The difference between the three concepts of structural
optimization are highlighted in Figure 2.1.

Figure 2.1: Difference in (a) size, (b) shape and (c) topology optimization [18].
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Chapter 2. State of the Art

Topology optimization is a mathematical minimization problem, written in its most general form as given
in Equation 2.1.

min
x

f(x)

s.t. h(x) = 0
g(x) < 0
x ∈ [xmin,xmax]

(2.1)

To obtain the values of the considered mechanical responses, a Finite Element Method (FEM) analysis is
solved. This consists in finding the displacement U through [K]U = F , where [K] is the stiffness matrix of the
structure, and F the force vector. [K]U = F is known as the state equation. The mechanical responses are
then derived from the displacements. Moreover, the different parts of the optimization problem formulation
are as follows:

• f(x) is the objective function. This is the value of function of the system which is to be improved,
usual in term of a minimization.

• x are the optimization variables with respect to which the improvement is performed. They are collected
as a vector. These are the parameters defining the system and are to be modified in order to improve
the objective. The variables are in the range of the bounds imposed on each of them.

• h(x) and g(x) are respectively equality and inequality constraints imposed to the optimization to
be satisfied. These can be of global (e.g., buckling, vibrations) or local (e.g., stress, displacement)
mechanical type, manufacturing, volume.

All variables are used in the problem, but not all have an influence on the objective or the constraints.
Different objectives, variables and constraints have been introduced in topology optimization problems. Each
aspect will be discussed more in detail in the following sections. Furthermore, depending on the type of
problem, different mathematical approaches are possible to resolving the topology optimization problem, and
will be discussed shortly.

2.2 Compliance Minimization with Isotropic Material
The standard topology optimization problem is the one of the compliance (C) minimization with an isotropic
material and a volume constraint V0, as presented in Problem A. ρ are the variables representing the topology.
Compliance is the inverse of the stiffness. By minimizing the compliance, the stiffest structure is obtained.

min
ρ

C(ρ)

s.t. V (ρ) ≤ V0

ρ ∈ [ρmin, 1]

(Problem A)

Compliance is defined as the work of the external forces, obtained from Equation 2.2 [18].

C = UT [K]U (2.2)

The following section will first review the different possibilities to describe the topology, followed by the
optimization algorithm used to solve Problem A.
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2.2. Compliance Minimization with Isotropic Material

2.2.1 Topology Parametrization
Topology optimizations started to consider structures made of isotropic material [17, 20]. The topology is
the design variable, and can be characterized with density [19] or boundary methods [21]. The former assigns
a density representing the presence or absence of material, whereas the latter describes the boundary of the
domain by means of mathematical functions.

Density Methods

The density method approach consists in an element-wise discretization of the distribution of the material
density ρ. An early strategy is the Solid Isotropic Material Penalization (SIMP) interpolation [17, 22], as
expressed in Equation 2.3. A constant Young’s modulus E0 representing the pristine material property
is multiplied by density variable ρ, penalized by the SIMP exponent p, to obtain the mechanical Young’s
modulus E. This corresponds to multiplying the complete stiffness tensor, as shown by Equation 2.4 [23].
The value of the density represents the presence (ρ = 1) and absence of material (ρ = ρmin). The lower
bound on the density ρmin is used to avoid numerical instabilities in the analysis. Indeed, if the density were
to be zero, the stiffness of an element would also be zero in the FEM analysis. The stiffness matrix then
becomes singular and the FEM problem can not be solved.

E = ρpE0 (2.3)

[Q] = ρpE0

1 − ν2

1 ν 0
ν 1 0
0 0 1+ν

2

 (2.4)

The SIMP exponent p is ≥ 1. In a two dimensional context, a SIMP exponent p = 1 is equivalent to the
optimization of the thickness of a membrane. By using p > 1, an equivalent homogenized stiffness tensor is
obtained for intermediate densities, depending on the ratio of material to void. This represent the properties
of microstructures bound by the Hashin-Shtrikman conditions. The Hashin–Shtrikman conditions estimate
the theoretical lower and upper bound for the elastic moduli of a homogeneous, isotropic mixture of different
materials, based on the elastic moduli and volume fractions of the constituents. However, as the SIMP
exponent p is increased even further, the homogenization properties lay outside the feasible Hashin-Shtrikman
bounds, except for densities tending to ρ = 1 or ρmin limit, as represented in Figure 2.2. Not adhering to
the Hashin-Shtrikman bounds for intermediate densities is nonetheless allowed in topology optimization,
as the aim is to obtain distinct results with densities at both ends of the interpolation. Indeed, with a
SIMP exponent p > 1, the stiffness of intermediate density are penalized. This becomes the incentive of
the optimization to drive the densities towards the bounds of presence or not of material to obtain distinct
topologies with minimal intermediate densities.

Figure 2.2: Density interpolation functions [22].
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Alternatively, a modified SIMP interpolation can also be used, to remove the need for a lower density
ρmin. A minimal value for the Young’s modulus Emin is introduced to assign stiffness to FEM elements, as
given by Equation 2.5 [24].

E = Emin + ρp
e(E0 − Emin) (2.5)

This modified SIMP interpolation was also exploited in case of anisotropy. Instead of using a pristine and
minimal Young’s modulus, they are replaced by a pristine and a minimal stiffness tensor, analogously to
Equation 2.5 [25, 26, 27, 28].

Besides the SIMP approach, other density interpolation strategies have been proposed. Another well
used one is the Rational Approximation for Material Properties (RAMP) interpolation [29], as given in
Equation 2.6. Here, the interpolation is controlled by the RAMP exponent q.

E = E0

1 + q(1 − ρ) (2.6)

When using other penalizations than a linear one (when p > 1 or q > 0), numerical issues such as checker-
boards appear in the optimized solution. This consists in a pattern of discrete densities that numerically
approximates a continuous stiffness distribution [30, 31]. This is however not acceptable from a mechanical
point-of-view. To alleviate the checkerboard problem, and simultaneously impose a length scale control,
numerical strategies have been used. A perimeter control strategy [32] limits the length of the topology
boundary, which limits the amount of internal holes. Alternatively, filtering techniques have been proposed.
They can be applied to the density variables directly [24, 33, 34], or their derivatives [20].

Other numerical issues in topology optimization concerns the aim to converge to a global optimum. This
problematic is closely related to the choice of the SIMP interpolation exponent. Svanberg [35] showed that
when the stiffness matrix is linear with respect to the optimization variables, stiffness optimization problems
are convex. With a density variable, this condition represent thickness optimization, and does do not yield
discrete solutions with densities of either ρmin or 1. Usual techniques to obtain distinct topologies involve
raising the SIMP exponent p slowly throughout the iterations, or in discrete steps. A review of different
numerical strategies has been performed by Rozvany [16]. Automatic strategies have also been proposed, see
Rojas-Labanda and Stolpe [36] for example.

Finally, the element-wise density distribution over a domain can also be controlled by spatial interpolation
functions, such as NURBS or splines [6]. The interpolation functions are of degree N+1 compared to the
optimization problem: the coordinates of the element are the first components, whereas the last component
represents the element’s density. Such interpolation functions are defined by a number of control points which
multiply pre-defined shape functions. The values of these control points are then the optimization variables.
An iso-line of the interpolation function defines the boundary of the topology.

Feature-Mapping Methods

The method of morphable component (MMC) [37], similar to the geometric projection method [38], relies
on the density principle by assigning a density ρ to each element. However, the distribution is controlled by
external parameters that define geometric primitives. These primitives correspond to predefined geometries,
such as bars [39] or plates [27], which are projected as a density distribution onto the FEM mesh. The
optimization variables are the size and location parameters, dictating the properties of the component, such
as the length or width. Where no component is present, a minimal density is assigned to the mesh to avoid
numerical problems in the resolution of the FEM analysis. For further information, Wein et al. [40] reviewed
the use of feature-mapping methods in topology optimization. An example of such a component strategy is
displayed in Figure 2.3.
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Figure 2.3: MMC optimization results [39].

Level-Set Methods

The Level-Set method [41, 42] is another strategy to parametrize the topology. It is a boundary definition
method, based on a mathematical function defining an element-wise value over the domain. Afterwards, a
threshold value on that mathematical function dictates the boundary of the topology. Level-Set methods are
similar in their topology description as NURBS/splines methods. Nonetheless, the focus of NURBS/splines
methods is to manipulate the value of the control points to conduct the optimization, whereas Level-Set
methods use perturbation techniques on the topology and its boundary to evaluate the alteration direction
of the boundary during the optimization. The mathematical conditions of the presence of density for Level-
Set methods are given in Equation 2.7, and represented in Figure 2.4. Nevertheless, Level-Set methods
also require regularization of the problem. An extensive review of Level-Set methods, from the different
mathematical formulations and possible gradient computation to regularization techniques, is given by van
Dijk et al. [43].

ϕ(X) > c ↔ X ∈ Ω(material)
ϕ(X) = c ↔ X ∈ Γ(interface)
ϕ(X) < c ↔ X ∈ (D\Ω)(void)

(2.7)

Figure 2.4: Level-Set topology definition [43].

2.2.2 Optimization Algorithms
Compliance minimization problems have been solved with a variety of algorithm types. There exists three
main algorithm families to perform the optimizations: optimality criteria, metaheuristic algorithms and
gradient-based strategies. All three of them are shortly discussed next. An overview with benchmarking of
gradient-based algorithm and optimality criteria was performed by Rojas-Labanda and Stolpe [44].

Optimality Criteria

Optimality criteria have only been used in compliance minimization problems. Compliance problems have
the advantage of having a separate contribution of each element to the overall compliance, which allows using
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an optimality criterion to update all variables separately. Sigmund [19] used a heuristic optimality criterion
update scheme for isotropic materials, whereas the optimality criterion used in the Alternate Directions
(AD) of Allaire et al. [45] has a proof of convergence, for both isotropic and anisotropic material [2]. In both
cases, the strategy consists in performing a mechanical analysis to obtain the required information to solve
a closed-form conditions to update the variables until convergence is obtained in an iteratively manner.

Metaheuristic Algorithms

Metaheuristic algorithms are zeroth order algorithms, which do not require gradient information of the ob-
jective or constraints. Therefore, they can be applied to any type of problems, which does not even require
to be continuous. A popular class is the evolutionary algorithm. The principle of evolutionary algorithms
is based on natural selection. An initial population representing the design variables is created. Then for
each new generation of the population, the fittest solutions are retained, while a mutation or cross-over of
the lesser ones is performed in order to seek statistical improvement of the solution. Balamurugan et al. [46]
used such evolutionary algorithm for compliance minimization.

Other metaheuristic strategies involve particle swarm or ant colony, also nature inspired. The objective
will improve following the trend of the majority of the population, where randomness and new search direc-
tions are provided by outlier solutions. Application to compliance minimization have been performed by Luh
and Lin [47] with ant colony, whereas Luh et al. [48] used particle swarm. Nonetheless, due to the exponential
combinatorial possibilities when the number of design variables, i.e. the number of elements in the FEM of
the problem, increases, non-gradient approaches are not well suited for topology optimization problems [49].
Their computational cost to treat all the combinatorial possibilities becomes prohibitive. Furthermore, topol-
ogy optimizations with metaheuristic strategies require regularization schemes to connect elements.

Finally, the initial Evolutionary Structural Optimization (ESO) [50] framework started as a metaheuristic
method. The ESO method consists in removing a percentage of elements who are least solicited from a struc-
ture at each iteration. Afterwards, to handle different type of optimization problems, such as buckling [51],
the element removal decision became based on a sensitivity number, equivalent to a gradient computation.
The ESO strategy is improved upon with the the Bi-directional ESO (BESO) [52] framework, which allows
to both remove and add elements. This gives the optimization more freedom, and allows to better converge
to local minima.

Gradient-Based Algorithms

A gradient-based strategy uses the gradient information to update the design variables. Algorithms may use
the first derivative information only, but may also incorporate the second derivative. These methods incor-
porating the second derivative are more accurate in representing the response surface, but require a higher
computational cost to obtain the information. For more complex problems than compliance, obtaining the
first derivative is not straightforward, obtaining the second is even less practical. Basic unconstrained opti-
mization problems can use the steepest descent direction, but more complicated problems require so-called
mathematical programming for non-linear optimizations. The non-linear part is represented by the addition
of non-linear equality and inequality constraints. The idea is then to create local approximations of the
problem at the current design point with the gradient information. These approximations are constructed in
such a way that dedicated algorithms can solve them efficiently. Gradient-based strategy can be applied to a
large range of problems, but requires the gradient information to be accurately and efficiently provided. Such
sequential approximation approaches are applied for the largest topology optimization problems, see [53] for
a review.

The different type of approximations of the problem include among others Sequential Linear Programming
(SLP), Sequential Least Square Quadratic Programming, Augmented Lagrangian, CONvex LINearization
(CONLIN) [54] or Methods of Moving Asymptotes (MMA) [10]. Dedicated algorithms to solve the approxi-
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mated problems include among others the primal-dual method or interior point method. SLP consists in solv-
ing successive linearized problems at the current iteration, whereas SLSQP uses a quadratic approximation.
The Augmented Lagrangian is an improved quadratic penalty method. CONLIN linearizes or uses an inverse
approximation, depending on the sign of the gradient. MMA consists in a monotonous approximation, which
can be controlled by the values of the asymptotes. Svanberg [55] also proposed a modification on MMA, the
Global Convergent MMA (GCMMA). The GCMMA approximation is convex and non-monotonous, which
is better suited to approach a minima without oscillations due to its non-monotonous property. Zuo et
al. [56] combined the monotonous Method of Moving Asymptotes (MMA) to initially converge faster towards
a minima for compliance minimization, and then switched to the Global Convergent MMA (GCMMA).

2.3 Strength-Based Topology Optimization
Strength constraints have been incorporated in topology optimization to account for material failure with
density-based methods [4, 57, 58, 5], NURBS [59], Level-Set [60] or BESO [61]. The focus of this section
will be on introducing strength constraints in a SIMP density-based framework. Two main problems are
recognized. The first one involves the nature and value of the local stress, while the second one concerns the
computational cost for optimizations.

2.3.1 Stress Singularity
Strength optimizations are subjected to singularity problems. This means that for a continuous variation
of the design variables, it is only possible to attain the optimal solution of a problem by going through a
violated state of the optimization constraints [62]. In topology optimization, this is represented by the fact
that the optimum is usually present in a a degenerated subspace, which can thus be difficult for gradient
optimizations to reach [63, 64]. This condition can be visualized by the example presented in Figure 2.5. The
original design space for this problem is shown in Figure 2.6 (a). The pinkish zone represents the feasible
domain of the constraint, whereas the gray lines are iso-lines for constant objective value of the design space.
The arrow shows the direction for the objective’s improvement. It is visible that the optimal design satisfying
the constraint is point D. Nonetheless, reaching this point with classical gradient-based algorithms is almost
impossible. Point D is only connected by a line to the rest of the feasible domain, meaning the gradients
with respect to A2 should be 0 to attain it.

Figure 2.5: Volume minimization problem with two stress constraints exhibiting a stress singularity [5].

To be able to attain this optimal point D numerically, the stress constrains are relaxed in a gradient-
based framework, as shown in Figure 2.6 (b). In this state, gradient-based optimization algorithms are able
to reach the optimum of point D. Such a stress relaxation technique, called ϵ-relaxation, was first proposed
in truss optimization [63] and later successfully adapted for continuum topology optimization [65, 66]. This
involved the relaxation of the stress constraints for low density elements, alleviating the singularity issue.
The method was improved to an easier implementation, the so called qp-approach [67]. This method uses a
different stiffness interpolation exponent when computing the stress than the one used to evaluate the local
stiffness matrix. The qp-approach was shown to be a special case of the ϵ-relaxation, where the relaxation
parameter depends on the element’s density [67].
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(a) (b)

Figure 2.6: Original (a) and relaxed (b) design space of the problem in Figure 2.5 [5].

The qp-approach can also be linked to another local density related problem: the stress measure. As a
density interpolation approach characterizes a fraction of void and material, the macro stress (applied at
the element level) does not represent the actual stress within the microstructure made of void and mate-
rial. In case of a SIMP interpolation, the relation between the void/material ratio and microstructure is
unknown, as the aim is to achieve distinct (0/1) designs. Not using the micro-stress falsifies the progress
of the optimization for intermediate densities, potentially leading to a trivial all void design in case of vol-
ume minimization with a stress-based strength constraint [4]. Therefore, an equivalent micro-stress measure
is derived in combination with the qp-approach [4, 57, 67]. When characteristics of a microstructure are
taken into account, a relation between the macro and micro-stress is obtained, as demonstrated by Duys-
inx and Bendsoe [68] for rank-2 microstructures. Nonetheless, a relaxation technique still needs to be applied.

The approximation of the stress is another issue in topology optimization with failure constraints. Firstly,
the structured ground mesh cannot follow oblique features, leading to serrated edges with intermediate den-
sities [69]. Svard [70] suggested an interior value extrapolation to approximate the boundary stress by an
extrapolation of the stress in the distinct material. Secondly, depending on the number of elements, the
mesh resolution may not be sufficient to accurately represent stress concentrations. Lastly, a FEM analysis
is based on a displacement formulation for the elements, for which stress’ evaluations may be rather inex-
act [71]. These conditions can be circumvented by using a finer ground mesh, resulting in higher numerical
cost. Instead, better suited element types based on a different formulation can be used [3].

2.3.2 Computational Cost
Introducing strength constraints in topology optimization entails several other difficulties. Stress by nature is
a local entity, which is usually represented with an individual constraint per element. This results in a number
of constraints equal to the number of elements. However, a large number of constraints can become limiting
for gradient optimizers. Moreover, the computational cost for the gradient of each constraint is prohibitive,
as it requires one FEM analysis per gradient. To avoid handling too many constraints, one could imagine
constraining the maximum stress only. However, this is difficult since trying to minimize the maximum stress
constraint value is difficult, as the location of the maximum can change throughout iterations, resulting in
ill-defined sensibilities [72]. Additionally, the maximum operation is non-differentiable.

Several tactics have been proposed which address these issues simultaneously. The most widely used
strategy consists in aggregating all the element-wise strength constraint values into a single one [73]. The
aggregation is usually done with either the p-norm [74] or the upper Kreisselmeier–Steinhauser (KS) [3]
function. These functions regroup the whole set of stress values and approximate the maximum value from
an upper value. A p-norm function can only aggregate positive values, whereas the KS function can handle
both positive and negative values. These aggregation techniques also avoid differentiability issues when the
location of highest stress changes between iterations. Verbart et al. [5] showed the combined relaxation and
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aggregation property with the same function: a lower KS aggregation. The lower KS approximates the
maximum from a lower value. Furthermore, Verbart et al. [5] used an equivalent problem formulation, based
on the concept of Mathematical Programming with Vanishing Constraints (MPVC) [75]. This approach
has proven to work well [76, 77], although underestimating the local strength constraint. When using an
aggregation function, one FEM analysis is still required per optimization constraint, but by aggregating the
constraints, the number of constraints and therefore additional FEM analysis decreases drastically. Instead
of the local constraint aggregation, Senhora et al. [58] used the Augmented Lagrangian (AL) algorithm which
allows to include all the stress constrains in the objective function by penalizing them, instead of aggregating
them into a constraint. This techniques also employs one additional FEM analysis to compute all the stress
gradients. The drawback of an aggregation into a single constraint, is loosing control over the local behavior
of the stress. It means that with an aggregation, only the most critical locations will be considered, with the
other ones becoming less influent for the optimization.

In order to preserve a more direct control over the stress distribution while decreasing the number of
constraints, Bruggi and Duysinx [78] proposed using a set of active stress constraints, including elements
close to or violating the failure constraint. This feature works well for coarser meshes, but as the mesh is
refined, an increasing number of elements reaches this target and again increases the amount of constraints
and subsequent gradient computation cost. An intermediate strategy to control the number of optimization
constraints, is to use several aggregation zones. This was proposed by París et al. [79, 80] with "block ag-
gregation". The method segments the design in different geometric blocks who internally use aggregation,
nonetheless it is difficult to define the number and size of these regions for an effective analysis [4].

Other strategies have been proposed to create clusters of elements, based on mathematical rules. For
example, Holmberg et al. [57] used a "stress level technique" (as given by Equation 2.8) and "distributed
stress technique" (as given by Equation 2.9) to assign the elements to a predefined amount of clusters. The
first one involves regrouping the element with stress of similar magnitude, whereas the second one distributes
equally similar magnitude to have similar aggregated cluster value. Re-clustering during the optimization
was also considered, based on heuristic schemes. Re-clustering however introduces discontinuities in the
optimization problem, which did not hinder the convergence [57]. These (re-)clustering strategies aim to
provide an automatic control over the stress distribution and therefore achieve lighter solutions. Performing
re-clustering during the optimization, with a "stress level technique" generates simple solutions which avoid
stress concentrations.

σ1 ≥ σ2 ≥ σ3 ≥ ..... ≥ σne
nc︸ ︷︷ ︸

cluster 1

≥ ..... ≥ σ 2ne
nc︸ ︷︷ ︸

cluster 2

≥ ..... ≥ σ (ne−1)nc
nc

≥ ..... ≥ σne︸ ︷︷ ︸
cluster nc

(2.8)

σ1︸︷︷︸
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≥ σ2︸︷︷︸
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≥ ..... ≥ σne
nc
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≥ σne
nc︸︷︷︸
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≥ σne
nc

+1︸ ︷︷ ︸
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≥ ..... ≥ σne︸︷︷︸
cluster nc

(2.9)

Figure 2.7 shows obtained results for volume minimization with Von Mises stress constraints on the L-
bracket benchmark problem with different strategies presented earlier. Despite the use of different strategies,
the final topologies exhibit similar characteristics, namely a rounded topology is created to alleviate the stress
concentration at the re-entrant corner. A more comprehensive review of optimization strategies for stress
constraint topology optimization is given by da Silva et al. [64].

Rectifier

As aggregations approximate the maximal value of the strength constraint over a set of elements, either from
below with a lower KS or from above with an upper KS or p-norm, it does however not coincide with the exact
maximum. In order to take the actual maximum value into account with an aggregation approach, rectifier
approaches have been suggested to obtain the correct constraint value [81]. This consists in multiplying the
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(a) (b) (c) (d)

Figure 2.7: Stress-based benchmark optimization problem and results obtained by (a) Verbart et al. [5],
(b) Le et al. [4], (c) Holmberg et al. [57] and (d) Senhora et al. [58].

aggregation value by a term which is dependent on the ratio of the actual maximum and aggregated value.
Moreover, heuristic schemes have been added to introduce a damping factor to alleviate oscillations with
the rectifier, as it is not considered in the gradient computations. An example of such rectifier ck

s is given
in Equation 2.10 [3], where s0 represents the damping factors. σKS is the value of the aggregated stresses,
whereas σV M

max is the maximum stress used in the aggregation. Such a rectifier approach has successfully been
used with a p-norm [4] and the upper KS [3] aggregation function. Yang et al. [82] used the rectifier approach
on elements which are only close or above the constraint limit, similar to the active set elements.

c(k)
s =


σV M(k)

max
σ

(k)
KS

, if k = 1

(1 − s0) σV M(k)
max
σ

(k)
KS

+ s0c
(k−1)
s , otherwise

(2.10)

2.3.3 Strength Criteria

Stress-based topology optimizations with isotropic material are often carried out with the Von Mises cri-
terion [3, 4, 57], even considering design dependent loads [83]. Nonetheless, other criteria have also been
incorporated. Bruggi and Duysinx [78] and Luo and Kang [84] used the Drucker–Prager criterion still with
isotropic material, which generalizes the Von Mises criterion and can differentiate between tensile and com-
pressive allowables. Instead, Pereira et al. [66] used the Raghava criterion considering isotropic material.
This criterion also differentiates tensile and compressive allowables. An elliptic Tsai-Wu criterion was used
for additive manufacturing by Mirzendehdel et al. [12] in a Level-Set framework with isotropic stiffness and
transversely isotropic strength. This strength criterion, beyond the differentiation of traction and compres-
sion, also incorporates a directional component. In case of additive manufacturing in successive ±45 raster
layers, the strength properties can be assumed uniform within the layers, with anisotropic strength properties
being aligned with the printing direction.

2.3.4 Optimization Algorithms

Strength-based topology optimization problems for isotropic materials are solved by means of gradient-based
optimizers. A variety of algorithms has been used, including among others the Augmented Lagrangian [58,
64, 66], MMA [3, 4, 57, 5, 74], CONLIN [68] or SLP [80]. In general, gradient-based algorithms are the
most extensively used in topology optimization because of their versatility, even for other constraints such
as buckling [3, 85], vibration [86] or manufacturing constraints [87, 88]. Gradient-based optimizers are also
widely used in the case of anisotropy as discussed next.
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2.4 Anisotropy Considerations in Optimization
The focus of the following literature analysis is twofold: Section 2.4.1 details with the overall parametrizations
of anisotropic material stiffness in topology optimization and Section 2.4.2 deals with composite laminates
optimization, since one of the main objectives of the present work is to bridge the gap between these two
distinct fields in structural optimization. Composite laminate optimization is extensively reviewed by Xu
et al. [89]. Once again, the main focus is placed on the parametrization of the material elastic properties.
Thereafter, handling anisotropic strength properties in composite optimizations is detailed in Section 2.4.3.
Finally, a small discussion is provided on numerical implementation issues with anisotropy in Section 2.4.4.

2.4.1 Material Anisotropy in Topology Optimization
Three main classes of methods can be extracted from the literature to handle material anisotropy in topology
optimization, namely, multi-scale parametrizations, direct parametrization of the elastic tensor and multi-
material methods.

Multi-Scale Approaches

A multi-scale approach is based on a microstructure in a representative elementary volume (REV). The
macroscopic stiffness tensor of the REV [QH ] is obtained by homogenization of the stiffness properties of its
constituents. Several homogenization methods can be used such as strain energy methods [90] or asymptotic
methods [91]. An example of asymptotic homogenization is given by Equation 2.11. χ

0(ij)
e are the test strains

as presented in Figure 2.8 and χ
(ij)
e the corresponding response strains. The macroscopic stiffness properties

are then used in the later process to set up the FEM analysis in topology optimization. Even when using a
mixture of only isotropic material and void at the microscale, depending on the layout of the microstructure,
an anisotropic macroscopic stiffness can be obtained.

Once the macroscopic anisotropic properties are obtained, these microstructures can be rotated to at-
tain preferred directional properties in the optimization. However, this creates the issue of connectivity
between cells at the microscopic scale, whether a single microstructure is used, but also for a variable mi-
crostructure [92] as shown in Figure 2.9. With variable microstructures, it is possible to work with a pre-
compiled database of microstructures and their homogenized properties, which have even been interpolated
between missing points [93]. The multi-scale approach involves optimization variables at different scales: the
anisotropic stiffness is defined by the variables representing the REV microstructure, whereas the variables at
a macroscopic level dictate the orientation of the anisotropy. For further information on multi-scale methods
and their application to topology optimization, a review has been performed by Wu et al. [94].

Figure 2.8: Test strain used to evaluate the ho-
mogenized stiffness properties of a microstruc-
ture [92]. Figure 2.9: Variable microstructure distribu-

tion [92].
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Direct Definition of the Stiffness Tensor

An alternative approach to incorporate anisotropic stiffness properties is not to change the microstructure,
but instead directly define the stiffness properties of a given anisotropic material. The first discussed strat-
egy is where a given anisotropic material is rotated. Usually, this strategy is employed with composite
Uni-Directional (UD) plies, made of fibers running in one direction held together by a matrix, either in
laminates [95] or in 3D printing [96]. In a fixed reference frame, changing the orientation of an anisotropic
material results in a different stiffness tensor and therefore mechanical properties. The same material orien-
tation can be applied over the complete structure, which is usually referred to as constant stiffness. When
instead the orientations vary spatially, variable stiffness is obtained. For either, the orientation becomes an
additional design variable in the optimization, whether it varies globally or point-wise for each element. The
point-wise orientations can be defined independently of one another, or obtained by interpolation functions
similar to the Level-Set method [97, 98].

Optimizations with variable stiffness can be classified as Continuous Fiber Angle Optimization (CFAO) [99].
CFAO and topology optimization have been used with transversely isotropic material in 2D [28] and 3D [100].
More specifically, the challenges of accounting for variable anisotropy in topology optimization for additive
manufacturing have been reviewed by Zhang et al. [101]. They highlight the need to incorporate process
modeling in the optimization. Dapogny et al. [102] considered the effect of anisotropic infill patterns on
compliance minimization, whereas the anisotropic stiffness along the printing path was taken into account
by Liu et al. [103] in a topology optimization framework.

When considering material density and orientation for compliance minimization, most research employed
the MMA algorithm [26, 27, 96, 104, 105, 106, 107], or its global convergent GCMMA approximation [108].
Bruyneel [23] compared several gradient-based algorithms for the optimization, finding that a combination
of MMA and GCMMA [109] achieves a stable and fastest convergence with equivalent objective values to
the other algorithms. For multiple load cases, Setoodeh et al. [110] considered a linear combination of the
compliance values as objective. The optimization uses an optimality criteria to obtain the optimal angle
for separate each load case. The separate optimal orientations are then combined with the linear objective
combination to obtain the overall optimized orientation.

The definition and inclusion of the material rotation for mechanical calculations have been performed
by several strategies. The most common approach is to apply a change of reference frame by means of a
second order tensor rotation in 2D [111]. Nomura et al. [104] used the components of the orientation vector
in an isoparametric projection as optimization variables. In the same framework, Lee et al. [108] simulta-
neously used the vector’s magnitude to represent the density variable. Different orientation descriptions for
an anisotropic tensor have also been utilized in 3D topology optimization. Zhou et al. [26, 96, 105] used an
orientation tensor, described by a normalized orientation vector. Alternatively, Schmidt et al. [106] used two
successive rotations around different axis. Finally, Smith and Norato [27, 107] used quaternions to represent
the general orientation of a plate in a geometric projection topology optimization.

On the other hand, instead of using a rotation, the components of the stiffness tensor in 2D or 3D can di-
rectly be the optimization variables as performed in the Free Material Optimization (FMO) framework [112].
Nonetheless, FMO requires compatibility constraints on these components to ensure the stiffness tensor
remains mechanically admissible, enforced by means of semi-definite programming with an interior point
solver [113]. Thereafter, to identify microstructures obtained by FMO, inverse homogenization techniques
are used [114]. In such a context, Hu et al. [115] considered the connectivity of adjacent microstructures,
whereas Tyburec et al. [116] applied clustering to FMO results to seek modular designs for the microstructures.
Instead, Weldeyesus and Stolpe [117] proposed a restriction of the FMO approach to represent laminates.
FMO for membrane stiffness is considered for separate layers, and assembled taking into account shell kine-
matics. Nomura et al. [25] used an approach similar to FMO for topology optimization with UD fibers, by
defining the components of an orientation tensor as variables.
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Finally, the stiffness tensor can also be parametrized by means of invariants quantities, such as with the
polar formalism for general anisotropy in 2D [118] or by harmonic decomposition for a transversely isotropic
material in 3D [2]. Simple mathematical conditions on the invariants then ensure the stiffness tensor remains
thermodynamically admissible. These mathematical conditions are akin to the constraints imposed by the
semi-definite programming in case of FMO. The invariant quantities define the anisotropic modules of the
material, and the direction of anisotropy is then dictated by an orientation definition.

Multi-material

Also named as multi-phase materials [119], topology optimization considering multiple material aims to find
beside the presence or absence of material, also the best local elastic properties from a pre-selected range
of materials [120]. The stiffness tensor related to an element is obtained as a linear combination of the
stiffness of pre-selected materials, given by Equation 2.12. The aim is to obtain one weight wi as 1, with
all other ones as 0, meaning only one material property remains. The aim is to obtained element-wise one
well defined material at the end of the optimization. The pre-selected materials can either be isotropic or
anisotropic [121], or both type can be considered in the same optimization [106]. Multi-material strategies
have been used in a stress based topology optimization in [122] or buckling in [123].

[Q] =
e∑

i=1
wi[Q]i = w1[Q]1 + w2[Q]2 + ...+ we[Q]e, 0 ≤ wi ≤ 1 (2.12)

A special framework adapted to composites, the Discrete Material Optimization (DMO) strategy, was
developed by Stegmann and Lund [124]. It uses the multi-material optimization principle to find the best ply
orientation in a variable stiffness, constant thickness laminate layup [125, 126]. Smith and Norato [27, 107]
used the DMO method for a 3D compliance minimization problem, to obtain a constant stiffness laminate
on a plate represented by a geometric projection in topology optimization. DMO is extended to the Dis-
crete Material and Thickness Optimization (DMTO) framework [127], which also incorporates ply drops by
assigning a density to each ply as in topology optimization. Instead of predefined candidates, Peeters and
Abdalla [128] considered continuous orientations in a similar framework to define ply drops in the optimiza-
tion for a variable stiffness variable thickness laminate.

2.4.2 Macroscopic Parametrization for Composite Laminates
A composite laminate consists in a stacking sequence of UD plies, each with a given orientation δ, as shown
in Figure 2.10. Two different reference frames can be distinguished. The first one is the global laminate
coordinate system frame xyz, in which the macroscopic stiffness tensor is expressed. The second material
coordinate system 123 is defined for each UD ply, and is rotated by δ with respect to the global reference
frame. The macroscopic stiffness of the laminate is computed from the stacking sequence by means of Clas-
sical Laminate Plate Theory (CLPT) or higher order theories [129].

Altering both a ply’s orientation and through the thickness location in the stacking sequence influences
the stiffness properties at the laminate level. Instead of representing each separate ply and its orientation,
specific homogenization techniques have been developed for laminates made of a base ply to represent their
overall stiffness. These techniques loose the implicit stacking sequence information, but represent a laminate’
stiffness for all possible permutation of ply orientations and through the thickness location with a reduced
number of variables. This feature is not only helpful to reduce the computational cost of optimizations
over a direct fiber orientation approach [131], but homogenization techniques also provide a more regular
design space [132]. Indeed, "one of the major challenges in design optimization of laminated composite struc-
tures is the non-convexity of the design space, i.e. the risk of ending up with a local optimum solution is
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Figure 2.10: Laminate layup consisting of different UD plies, rotated from the laminate reference frame
xyz to the ply’s reference frame 123 by δ [130].

high" [125] when discrete orientations and layups are used directly. Instead, at the end of a laminate opti-
mization with homogenized stiffness, a second design step to retrieve the actual stacking sequence is required.

Lamination Parameters

The most used homogenization technique are the lamination parameters [133]. This strategy is based on
four lamination parameters Vi to represent a 2D stiffness tensor, as computed by means of Equation 2.13
for membrane stiffness. They represent the layup information, both the amount of plies N , with the same
thickness proportion, and their orientation δ. To obtain the in-plane stiffness tensor [A], the lamination
parameters Vi are combined with material properties of the base ply, as expressed in Equation 2.14. Γ are
matrices with material properties expressed by means of the Tsai-Paganao parameters defined in a fixed
reference frame [134], with respect to the components of the base ply stiffness tensor. Similar definitions
are available for the coupling [B] and out-of-plane [D] stiffness tensor. When optimizing with respect to
lamination parameters, the Vi become the variables. However, their values are bound by trigonometric
relations. A more comprehensive review of lamination parameters can be found in [135].

V1, V3 = 1
N

N∑
k=1

cos(2δk, 4δk)

V2, V4 = 1
N

N∑
k=1

sin(2δk, 4δk)

(2.13)

[A] = h(Γ0 + Γ1V1 + Γ2V2 + Γ3V3 + Γ4V4) (2.14)
Lamination parameters are mainly used in optimizations with variable stiffness laminates. It can be used

when only the anisotropy needs to be optimized [136, 137] or in combination with the optimization of the
thickness or topology [138]. Peeters et al. [139] combined topology and lamination parameters for compliance
minimization, in an integrated but not simultaneous optimization of both topology and anisotropy. Only the
variable driving the best improvement is updated at each iteration, with a maximum number of consecutive
times. The optimization is performed with a predictor-corrector interior point gradient-based algorithm on a
convex approximation of the problem. Similarly, Tong et al. [140] used a sequential approach for compliance
minimization, alternating between topology and lamination parameters optimization for each FEM analysis.
Later, they applied the optimization to a leading edge for a compliant design [141], while using GCMMA to
optimize both density and lamination parameters simultaneously. Instead, Bohrer and Kim [142] used MMA
to optimize both density and lamination parameters simultaneously. Moreover, they proposed a restriction
on the lamination parameters feasible region, in order to facilitate the layup retrieval in subsequent steps.
Finally, Hu et al. [143] also included steering constraints on the layup retrieval, after having used MMA in a
sequential manner to resolving the topology and lamination parameters optimization.
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Polar Parameters

Whereas lamination parameters represent the elastic modules of composite laminates in a fixed reference
frame, the polar parameters provide a general representation of both the elastic modules and the local
frame [118]. The polar parameters are an invariant-based representation of a 2D stiffness tensor, which facil-
itates the consideration of rotations and change of reference frame. The polar formalism can be applied not
only to composite laminates, but encompasses any 2D material’s stiffness tensor. The domain of existence
of the polar parameters for any material is delimited by the thermodynamic bounds. These thermodynamic
bounds are a simple condition on the polar parameters, and are the equivalent to the constraints on the com-
ponents of the stiffness tensor in FMO. Laminated structures constituted from a known base ply are defined
conveniently as a subset of the thermodynamic domain on the polar parameters, the geometric domain [11].
The corresponding geometric bounds have only been used thus far in thickness optimization problems with a
gradient-based algorithm [144, 9, 145]. Nonetheless, the polar parameters have been used as design variables
in a topology optimization considering the thermodynamic bounds in [1], based on an optimality criteria
algorithm, the Alternate Directions. The polar formalism and the conditions for the different domains of
existence are discussed in more detail in Section 2.5.

Jibawy et al. [146] used the polar formalism to optimize only the in-plane [A] stiffness tensor of a lami-
nate. They considered special stacking sequences, namely angle and cross plied ones, thereby restricting the
domain of the polar parameters. This was used to perform stiffness maximization by means of optimality cri-
teria, and afterwards be able to determine a matching feasible stacking sequence over the domain. Later, the
polar parameters have also been used to perform optimization with the complete ABD laminate properties.
Montemurro et al. [147] used the polar parameters to maximize the stiffness of laminates with specific elastic
properties, such as in-plane isotropy, for a minimal number of plies by means of a genetic algorithm. This
was extended to other objectives, such as vibration or strength by Vincenti et al. [148]. A genetic algorithm
was used by Montemurro et al. [149] to optimize the anisotropy of both the skin and stiffeners for minimum
mass with buckling constraints, in combination with the amount and location of the stiffeners.

Montemurro and Catapano [150] proposed a two-level strategy for buckling optimization with respect to
thickness and layup in a variable stiffness laminate framework, the optimizations still being solved with a
genetic algorithm. The polar parameters distribution is described by a B-spline, while the kinematics include
an extension of the polar parameters to the first order shear deformation theory [151]. Still in a similar
framework, manufacturing constraints have been considered with the polar parameters for mass minimiza-
tion with buckling constraints [144]. When the polar invariants are constant, a steering constraint can be
expressed on the variation of direction of anisotropy [152]. Izzi et al. [9] adapted the framework to use the
SLSQP gradient-based optimization algorithm, while also describing the thickness variation with a B-spline.

Lastly, Savine [145] used the polar formalism to optimize laminates in a framework combining variable
stiffness and thickness optimization of a 3D shell structure and layout optimization of stiffeners using a
projection based method. The optimization problem consisted in mass minimization with buckling and edge
loads constraints in a gradient-based framework using MMA.

Laminate Retrieval

Whether the lamination parameters or polar parameters are used to represent the homogenize stiffness of
laminates, a second step must involve retrieving an actual layup matching the stiffness distribution. This
step is often performed with metaheuristic algorithms [153], in the case of generic laminates. The purpose of
the optimization is to match the optimized stiffness distribution obtained at the end of the first continuous
optimization step based on an homogenized description of the laminates. The main computational cost lies
in the first step that combines gradient-based optimization and structure model evaluations. The second step
is analytical which enables the use of metaheuristic algorithms. Note that a good matching can be difficult
or impossible to obtain, depending on the choice of the manufacturing constraints introduced in the layup
retrieval phase. Resulting designs can be sub-optimal. This point is dealt in further detail in [154].
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A possible way to avoid this retrieval step, is to constrain the homogenized stiffness of a laminate in
the first optimization step. Several special layup configurations can be defined, with a direct relationship
to the homogenized laminate stiffness tensor. For instance, Jibawy et al. [146] considered the homogenized
stiffness of a layup consisting in ±α orientation in their optimizations. On the other hand, Montemurro and
Catapano [152] simplified the second level by only using quasi-trivial layups. This facilitates the retrieval of
the layups, as quasi-trivial layups present advantageous properties [155], notably a zero [B] coupling matrix
regardless of the layer’s orientation. Lastly, Savine [145] used "double-double" layups, consisting of two ply
orientations regrouped in predefined geometric set, as to obtain a quasi-homogeneous laminate.

2.4.3 Integration of Strength Constraints for Laminate Optimization
Whereas a Von Mises stress criterion is applied directly to any isotropic structure, defining failure for a lam-
inated structure is not as straightforward. The constituent UD plies of a laminate show besides anisotropic
stiffness, also anisotropic strength, both properties defined in the ply’s reference frame. The allowables dif-
fer longitudinally, along the fibers, from to the transverse direction, mainly dominated by the matrix. For
preliminary and detail design stages, laminate failure is often represented by first ply failure, where each
individual ply in the laminate is checked with an appropriate anisotropic strength criterion. Failure for the
complete laminate is then assumed to occur as soon as any ply fails. For even more detailed analysis, pro-
gressive models are used to design and verify the integrity of laminates. These progressive models take load
redistribution into account when certain defects occur or individual plies fail within the laminate [156]. For
first ply failure as discussed and used for the remaining of this research, perfect ply bonding is assumed and
inter-laminar stresses between different plies are neglected. These stresses are a consequence of the stiffness
mismatch in the stacking sequence, for which guidelines are provided to reduce the effect of inter-laminar
stresses [129].

Checking a first ply failure with an anisotropic strength criterion is done with all quantities expressed
in the same reference frame, usually that of the ply. This entails that the global stresses applied to the
laminate are rotated to the ply’s reference system, to obtain the local stresses to be used in the strength
criterion. An elliptic strength criterion is then applied, the most used one being the Tsai-Wu criterion [129].
This strength criterion consists in a single condition considering all the applied stresses at the same time.
For such elliptic strength criterion, failure is defined by the safety factor s1 obtained from the quadratic
relation of Equation 2.15. [F ] and G are based on the type of failure criterion and material properties. The
solution s1 represents the load multiplier that can be applied to the stress state to reach the failure envelop
defined by the considered failure criterion. However, using s1 directly in gradient-based optimizations would
lead to load-dependent solutions [157]. This is alleviated by using the failure index to define the failure
measure, which corresponds to the inverse of the safety factor s1. The failure index indicates how much the
current stress state is in proportion to the critical one to achieve failure according to the criterion. Using the
polar formalism, Catapano et al. [158] proposed an invariant parametrization of the Tsai-Wu, Tsai-Hill and
Hoffman anisotropic failure criteria.

s2
1σT [F ]σ + s1σT G − 1 = 0 (2.15)

The Tsai-Wu criterion has initially been used with genetic algorithms to define the stacking sequence in
constant stiffness, constant thickness laminates optimizations [159, 160]. Afterwards, the Tsai-Wu criterion
has been used with gradient-based optimization, such as in variable stiffness constant thickness laminate,
considering strength, stiffness and manufacturing constrains by Ding et al. [161]. Each ply is modeled, where
the spatial distribution of the orientations is obtained with a radial basis function. The optimizations are
solved with MMA, where the local strength is taken into account as optimization constraint with a p-norm
aggregation on the failure indexes. For additive manufacturing, Liu et al. [162] compared stress-based Von
Mises topology optimizations to experiments and found that the deposition path influences the structural
strength. Mirzendehdel et al. [12] included an anisotropic failure criterion to capture this behavior, with the
anisotropy orientation of the failure criterion coinciding with the extrusion of the layer direction. Nonetheless,
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the material stiffness remains isotropic. Different designs were obtained based on the solicitation of the tensile
or compressive strength. Roiné [6] used a UD ply in their topology optimizations with different anisotropic
failure criteria, still for fixed ply orientations, solved with GCMMA. Instead, Dogru [163] included a Tsai-Wu
failure criterion in a ESO like framework, for topology optimization with yet again fixed orientations of the
anisotropy. Recently on the other hand, Ma et al. [8] considered strength in topology and fiber orientation
optimizations by means of MMA. Compliance minimizations are performed with a volume constraint and
Tsai-Wu criterion, where the optimization constraint is obtained by means of a p-norm and rectifier approach
to consider the anisotropic strength.

These strength criteria (Tsai-Wu, Tsai-Hill and Hoffman) use all stresses applied to the ply in a single
condition, and do not differentiate between failure mechanisms. There exist other more complex first ply
failure criteria, such as Puck or Hashin, that are based on separate conditions for the fiber and matrix fail-
ure. These type of criteria have been used with genetic algorithms. Deveci et al. [164] incorporated the
Puck failure criterion in buckling optimization for constant stiffness constant thickness laminates. Lopez et
al. [165] compared the Puck failure criteria with Tsai-Wu, obtaining highly different solutions depending on
the failure criteria for a same load case. Instead, Irisarri et al. [166] used the Hashin strength criteria for the
layup design of stiffened panels.

Using a stress-based strength criterion for first ply failure requires the knowledge of the laminate stacking
sequence to be able to use all required quantities in the same reference frame. For a homogenized stiffness
representation of a laminate without layup knowledge, IJsselmuiden et al. [167] suggested a conservative
strain failure envelope, based on the Tsai-Wu elliptic criterion. The envelope computes the common admis-
sible strain space for all possible ply orientations, as to not have failure. Khani et al. [168] later used this
envelope to design and optimize variable stiffness composites plates, with a laminate stiffness homogenization
by means of the lamination parameters. The optimization uses a bound formulation on the failure index, with
a convex approximation based on the gradient of the strength response and solved by the dual-method with
Lagrangian multipliers [169]. With the specific construction of the convex approximation, the adjoint gradient
formulation can be used. Hong et al. [170] instead used a p-norm aggregation of the strain envelope failure
index to incorporate the conservative strain envelope in a variable stiffness composite plate optimization.
On the other hand, Catapano and Montemurro [171] used the polar decomposition of a Tsai-Wu criterion to
relate anisotropic strength and stiffness properties, by averaging the failure indexes of each ply over the layup.
However, selecting the threshold for the averaged failure indexes now becomes important, as the averaging
operation is not conservative. Catapano and Montemurro [172] used this stiffness to strength relation in
strength optimizations with manufacturing constraints for a variable stiffness design with constant thickness.
Izzi et al. [9] further integrated variable thickness in the framework, the optimization problem being solved
with a gradient-based algorithm.

Finally, in the DMTO framework, Lund [7] proposed a strategy to consider anisotropic strength criteria
for the different ply candidates. Both stress and strain based criteria are included. However, by using a penal-
ization to make layers disappear, the stress singularity issue is encountered. Therefore, the qp−appraoch [67]
is applied directly on the failure indexes, the latter being computed with the penalized stiffness. The ele-
ment layer-wise failure indexes are then computed in the same way as the stiffness tensor, but by applying
above-linear penalization when forming the sum of the candidate’s failure indexes (see Equation 2.12). All
the combined failure indexes are then aggregated with a p-norm, and the thickness minimization is solved
with a SLP gradient-based algorithm. In the same framework, Xu et al. [173] integrated the Hashin strength
criterion and solved the optimizations with MMA. Finally, strength constraints have also been considered in
the FMO framework for topology optimizations in 2D [71, 174] and 3D [175]. Weldeyesus [176] considered
strength criteria in the dedicated FMO framework for laminated plates and shells.
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2.4.4 Specific Numerical Issues with Anisotropy
Whereas filtering techniques are enforced on the densities to counter numerical artifacts and have a length
scale control, a similar approach has been applied to the orientations to enforce the continuity on the
anisotropy distribution [121]. Another concern with orientation optimizations, is the possibility to stay-
ing trapped in local optima when the orientations are a continuous variable in [0, 2π] [105]. Indeed, when
at the bound of the interval, e.g. 2π, if an orientation of 2π + 0.01 is optimal, this would only be feasi-
ble by a huge variable variation to return to an orientation value of 0.01. The bound restricts attaining a
better minima. Using the orientation deconstruction into a ratio of two scalars, Nomura et al. [104] and
Duriez [177] circumvented both these restrictions. The two scalars were then filtered with a regular linear
filter by Duriez [177]. Instead, Nomura et al. [104] filtered both scalars based on a Helmholtz-type differ-
ential equation, whereas this filtering techniques has been used directly on the orientations by Silva et al. [178].

Schmidt et al. [106] also based their orientation filter strategy on the decomposition of the orientation
into two scalars, but added the consideration of nearly opposite orientations (whose difference is ≈ 180◦).
First, the dot product between two orientations to be filtered is checked before filtering the scalars. If the
difference is less than 90◦, the opposite of the scalar values would be used. This ensures that near similar
physical orientations would not be wrongfully averaged out. Finally, despite not being a direct orientation
filter, Jantos et al. [111] applied a filter technique on the components of the stiffness tensor by means of a
convolution.

2.5 Polar Formalism
This section gives a more comprehensive overview of the polar formalism, which is used in this work, and its
incorporation in the topology optimization framework with the Alternate Directions (AD) algorithm. The
polar formalism was introduced by Verchery [179]. A review of the polar formalism specifically applied to
anisotropic elasticity was performed by Vannucci [118].

2.5.1 Polar Parameters Definition
The polar parameters defining the components of a symmetric fourth order elastic tensor consists in five
frame invariants quantities. The scalar parameters T0 and T1 represent the isotropic modules, whereas R0
and R1 are the scalar parameters representing the anisotropic modules. The fifth invariant quantity is the
angular difference ϕ0 − ϕ1. Finally, by selecting either the value of the orientation ϕ1 or ϕ0, the Cartesian
components can be defined. The relationships between the polar parameters and the Cartesian components
of the elastic tensor [Q] are given by Equation 2.16, in case of a general anisotropic material.

Q1111 = T0 + 2T1 + R0 cos 4ϕ0 + 4R1 cos 2ϕ1
Q1122 = −T0 + 2T1 − R0 cos 4ϕ0
Q1112 = R0 sin 4ϕ0 + 2R1 sin 2ϕ1
Q2222 = T0 + 2T1 + R0 cos 4ϕ0 − 4R1 cos 2ϕ1
Q2212 = − R0 cos 4ϕ0 + 4R1 sin 2ϕ1
Q1212 = T0 − R0 cos 4ϕ0

(2.16)

Alternatively, the polar parameters can be obtained from the components of a stiffness tensor by the
relation of Equation 2.17.

8T0 = Q1111 − 2Q1122 + 4Q1212 + Q2222
8T1 = Q1111 + 2Q1122 + Q2222

8R0e
4iϕ0 = Q1111 + 4iQ1112 − 2Q1122 − 4Q1212 − 4iQ1222 + Q2222

8R0e
2iϕ1 = Q1111 + 2iQ1112 + 2iQ1222 + Q2222

(2.17)
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An advantage of the polar formalism is the ease for a change of reference frame by a rotation δ as defined
in Figure 2.11. In order to express the components of the tensor from the frame 1 − 2 to x − y, the new
angles become ϕ0 − δ and ϕ1 − δ, and resulting in the operation in Equation 2.18.

Figure 2.11: Cartesian and polar representation of: (a) a vector and (b) a second order tensor in a
reference frame rotated by δ [180].

Qxxxx = T0 + 2T1 + R0 cos 4(ϕ0 − δ) + 4R1 cos 2(ϕ1 − δ)
Qxxyy = −T0 + 2T1 − R0 cos 4(ϕ0 − δ)
Qxxxy = R0 sin 4(ϕ0 − δ) + 2R1 sin 2(ϕ1 − δ)
Qyyyy = T0 + 2T1 + R0 cos 4(ϕ0 − δ) − 4R1 cos 2(ϕ1 − δ)
Qyyxy = − R0 cos 4(ϕ0 − δ) + 4R1 sin 2(ϕ1 − δ)
Qxyxy = T0 − R0 cos 4(ϕ0 − δ)

(2.18)

The polar parameters of the compliance tensor [S] = [Q]−1 of an anisotropic material can also be de-
fined by the same procedure, and are related to the stiffness polar parameters as given by Equation 2.19.
t0, t1, r0, r1, φ0 and φ1 are the compliance parameters counterparts of T0, T1, R0, R1, ϕ0 and ϕ1.

t0 = 4(T0T1 −R2
1)

∆

t1 = T 2
0 −R2

0
∆

r0e
4iφ0 = 4R

2
1e

4iϕ1 − T1R0e
4iϕ0

∆

r1e
2iφ1 = −2R2

1e
4iϕ1

T0 −R0e
4i(ϕ0−ϕ1)

∆
∆ = 16T1(T 2

0 −R2
0) − 32R2

1(T0 −R0 cos 4(ϕ0 − ϕ1))

(2.19)

2.5.2 Admissible Design Space
The five invariants of the polar formalism can not assume any value in case they represent an elastic stiffness
tensor. Such a tensor should satisfy the thermodynamic bounds of a material, meaning it should be positive
definite. This is satisfied for the conditions given in Equation 2.20.


T0 > 0
T1 > 0
T0 −R0 > 0
T1(T 2

0 −R2
0) > 2R2

1(T0 −R0 cos 4(ϕ0 − ϕ1))

(2.20)
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Furthermore, as the anisotropic modules are modules of a complex number, by definition Equation 2.21
applies to them. {

R0 ≥ 0
R1 ≥ 0

(2.21)

All conditions listed above are the mathematical conditions of a thermodynamic admissible stiffness
tensor. Such tensor does however not guarantee that a physical or known material can be associated to it.
Finding a material or microstructure corresponding to a given admissible set of polar parameters values is
an open problem in the general case, for which there might not always exist a manufacturable solution. A
proof of the thermodynamic conditions on the polar parameters is given by Vannucci and Desmorat [181].

2.5.3 Physical Interpretation of the Polar Invariants
The polar decomposition of Equation 2.16 allows for an easy algebraic characterization of the elastic sym-
metries of a material and its stiffness tensor. In total, five different types of symmetry can be defined [118],
shortly explained next.

Ordinary orthotropy

The first symmetry is that for ordinary orthotropy, which is obtained for the condition of Equation 2.22.

ϕ0 − ϕ1 = K
π

4 ,K ∈ {0, 1} (2.22)

For a set of polar modules T0, T1, R0 and R1, two discrete values are possible for K (0 or 1), defining the
shape of orthotropy. Each of the K value represents different elastic properties of a material. Historically,
K = 1 materials have been called low shear modulus, whereas K = 0 materials have been called high shear
modulus by Cheng and Pedersen [182]. Nonetheless, this appellation has its shortcomings, as the overall
elastic properties changes for either K values, and not only the shear properties [158, 183].

The components of an orthotropic elastic tensor can then be obtained by means of Equation 2.23, where
ϕ1 represents the direction of orthotropy.

Q1111 = T0 + 2T1 + (−1)KR0 cos 4ϕ1 + 4R1 cos 2ϕ1
Q1122 = −T0 + 2T1 − (−1)KR0 cos 4ϕ1
Q1112 = (−1)KR0 sin 4ϕ1 + 2R1 sin 2ϕ1
Q2222 = T0 + 2T1 + (−1)KR0 cos 4ϕ1 − 4R1 cos 2ϕ1
Q2212 = − (−1)KR0 cos 4ϕ1 + 4R1 sin 2ϕ1
Q1212 = T0 − (−1)KR0 cos 4ϕ1

(2.23)

The thermodynamic condition on the stiffness tensor of Equation 2.20 can be reduced to Equation 2.24
in case of an orthotropic material.

T1[T0 + (−1)KR0] > 2R2
1 (2.24)

An overview of the distribution of the mechanical engineering properties obtained within the thermody-
namic domain is given in Figure 2.12, for a defined set of T0 and T1 values.

R0 orthotropy

R0 orthotropy is obtained when R0 = 0. The stiffness tensor then only depends on R1. The rotation of the
stiffness tensor will then behave like a second order tensor, instead of a fourth-order one [184].
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Figure 2.12: Engineering material properties distribution within the thermodynamic bounds, for fixed
isotropic modules T0 = 26.9 GPa and T1 = 24.7 GPa, with the geometric bounds traced in black [2].

r0 orthotropy

r0 orthotropy is obtained when r0 = 0. Due to the intricate relation between R0 and r0 (Equation 2.19),
this condition is not similar to R0 orthotropy. Therefore other material properties are obtained, an example
is given by Vannucci [185].

Square orthotropy

Square symmetry is obtained when R1 = 0. This is the 2D equivalent of the 3D tetragonal symmetry class.

Isotropy

Elastic properties of an isotropic material are obtained when R0 = R1 = 0. For this condition, the Cartesian
components are not dependent of the orientations. This leaves only T0 and T1 as non-zero invariants. They
are related to the shear G and bulk κ modulus in 2D by means of Equation 2.25.

T0 = G ; T1 = 1
2κ (2.25)

Nonetheless, for any type of anisotropic material, T0 and T1 preserve this mechanical meaning: they are
a generalization of the bulk and shear moduli.

2.5.4 Composite Laminate Case
Vannucci [11] also expressed a subset of the polar parameters with orthotropic properties, representing
the possible homogenized stiffness of a laminate made up of a unique base ply. This subset is labeled as
geometrical bounds. With a fixed orientation ϕ1 aligned with that of the base ply, the design space described
by the geometric bounds is equivalent to that of the lamination parameters. The polar invariants of the base
ply are denoted by the superscript L in the equations, and remain constant. The geometric feasible domain
is constructed from these base invariants. From the dimensionless quantities defined in Equation 2.26, the
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geometric bounds conditions are given by Equation 2.27. ρ0 and ρ1 are the only variable quantities, as they
involve R0 and R1 respectively.

ρ = RL
0

RL
1

; ρ0 = R0

RL
0

; ρ1 = R1

RL
1

; τ0 = TL
0
RL

0
; τ1 = TL

1
RL

1
(2.26)

2ρ2
1 − 1 ≤ (−1)K−KL

ρ0

ρ0 ≤ 1
(2.27)

Figure 2.13 presents the geometric domain within the thermodynamic domain, for a given base ply which
has a KL = 0 orthotropy. It highlights the special layup conditions.

Figure 2.13: Laminate properties within the geometric bounds of the polar formalism [2].

2.5.5 Use in Topology Optimization
Topology optimization considering 2D orthotropy was performed by Ranaivomiarana [2] with the polar
parameters and the Alternate Directions (AD) algorithm for compliance minimization. The AD algorithm
is based on alternating the minimization of the complementary energy, followed by the minimization with
respect to the design variables. The minimization of the complementary energy is performed with a FEM
analysis. Thereafter, the stress state is used to minimize the compliance with respect to the design variables
with optimality criteria in closed-form expressions. In this step, first the anisotropy properties are updated,
followed by the optimization with respect to the densities with a filtering strategy to avoid checkerboard. The
optimization strategy is valid for a generalized compliance problem. This entails both force and displacement
based optimizations.

Anisotropy

This section details the anisotropic optimality conditions for compliance minimization, as derived by Peder-
sen [186] and Julien [180]. The update of all the anisotropy variables is performed with a fixed stress state for
all conditions. The optimal orientation ϕopt

1 is given by the direction of the maximum value of the absolute of
the principal stresses σI and σII . The optimality conditions for the three anisotropic invariants are based on
the stress ratio X, which dependents on T and R, the spheric and deviatoric parts of the stress tensor. The
optimal value of R0 is constant for an interval of stress ratio X. An overview of all the anisotropic optimality
criteria is given in Table 2.1.

Density

The topology problem is modeled according to the classical SIMP interpolation, although the material is not
isotropic, with an exponent p and a minimum density ρmin. The density update strategy is performed in two
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Table 2.1: Optimality criteria for the compliance minimization within the thermodynamic bounds.

X = R
|T | 0

√
T0

2T1

√
T0
T1

2T1X
2 − T0 − T0 +∞

ϕopt
1 Dir{max(|σI |,|σII |)}

Kopt 0 or 1 | 0

Ropt
0

K = 0: 0 ≤ Ropt
0 < T0

K = 1: 0 ≤ Ropt
0 < T0 − 2T1X2 | 2T1X2 − T0 < Ropt

0 < T0 | T+
0

Ropt
1 T1X | T −

0
X

steps [1]. The first part consists in finding the optimal element-wise densities. This is achieved by introducing
the volume constraint in the compliance minimization problem by means of a Lagrangian multiplier k, as
given in Equation 2.28. The optimal densities are then obtained by differentiating Equation 2.28 with respect
to the density, as given in Equation 2.29. Lastly, a bisection operation is performed to obtain the value of k
that satisfies the volume constraint of Equation 2.30.

min
ρ

1
ρp
σTQ−1

opt(R
opt
0 , Ropt

1 ,Kopt, ϕopt
1 )σ + kρ (2.28)

ρopt(k) = max

ρmin,min

1,
(
pσTQ−1

opt(R
opt
0 , Ropt

1 ,Kopt, ϕopt
1 )σ

k

) 1
p+1
 (2.29)

∫
Ω
ρopt(k)dΩ = V0 (2.30)

After a conclusive bisection operation to find the correct k and the associated ρopt has been performed,
a filter is applied. This consists in an energy filter [187], detailed in Equation 2.31, where the Ei are filtered
strain energies. A linear decreasing weighting factor wij from an element’s centroid xi is used to calculate Ei,
with the updated separate densities ρ of the previous step as constants. The filter weights wij are obtained
according to Equation 2.32, for centroids xj within the filter radius R.

ρ̃opt(k) = max
(
ρmin,min

(
1,
(
pEi

k

) 1
p+1
))

with Ei = 1
1

ρp
i

∑N
j=1 wij

N∑
j=1

(
1
ρp

j

wijσj : C−1
j : σj

)
(2.31)

wij = R− |xi − xj| (2.32)

Equation 2.31 is still solved in combination with a bisection on k by means of Equation 2.30 to obtain
the filtered densities, satisfying the volume constraint. The results presented in Figure 1.2 were obtained
with this alternate direction strategy. The concurrent strategy optimizing both topology and anisotropy
resulted in stiffer solutions with different topologies than a sequential approach. The sequential approach
consisted in defining the topology by first minimizing the compliance with an isotropic material, followed by
the optimization with respect to the anisotropy on that fixed topology.

2.6 Conclusion and Thesis Objective
The polar formalism has shown to be an effective anisotropy parametrization to be used in 2D anisotropy
optimization, and used successfully in topology optimization for compliance minimization with thermody-
namically admissible stiffness tensors. However, the dedicated Alternate Directions (AD) algorithm used
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in [1] is limited to compliance minimization problems. Moreover, closed form solutions for compliance min-
imization have only been derived for thermodynamic material thus far, the geometric domain representing
laminates having only been used in gradient-based optimizations with variable thickness. The ability to
consider the geometric bounds is a first necessity to switch to gradient-based algorithms.

In addition, the state of the art review has shown that gradient-based algorithms are also required for
incorporating strength criteria in topology optimization. The isotropic material case is well documented for
density-based topology optimizations. The stress singularity and computational challenges are well under-
stood, and many strategies have been proposed to address these challenges. On the other hand, anisotropic
strength criteria are necessary to represent laminates failure. Strength optimizations with solely material
anisotropy representing composite laminates are also well documented and compatible with gradient-based
optimization techniques. This research will use and evaluate those latter methods to integrate strength con-
straints in a concurrent topology and anisotropy optimization.

Nonetheless, except for recent contributions considering UD fiber orientation [8] or composite layup [7],
little research combines the two considerations of distributed material anisotropy and density in case of
strength-based optimizations for composite laminates. For its invariant-based parametrization, and possibility
to consider either thermodynamically admissible material or composite laminates, the polar formalism is
selected to parametrize material anisotropy along a SIMP density-based topology optimization framework,
solved with the versatility offered by gradient-based optimizers. The three main focus points addressed in
this work are:

• Develop a concurrent topology and anisotropy optimization strategy with a gradient-based algorithm.
Such optimization strategy is required to integrate strength constraints. Due to its wide use in either
topology or anisotropy optimization, the MMA algorithm is selected to define the gradient-based op-
timization strategy. The strategy will be validated against results obtained by the AD algorithm for
thermodynamically admissible materials first, to address the challenges of considering different type of
variables in a gradient-based optimization. The aim is to reproduce similar solutions and equivalent
compliance gains when anisotropy and topology are considered simultaneously in the gradient-based
strategy. After the validation with thermodynamic bounds corresponding to general orthotropic mate-
rials, the use of a gradient-based framework enables to perform a 2D material anisotropy optimization
considering the geometric domains representing laminated composite materials.

• Incorporate an anisotropic stress-based strength criterion with a UD material, whose material orien-
tation is optimized along the topology. This part will allow to develop the understanding of using
anisotropic strength criteria in topology optimization. It will also serve to define the strength opti-
mization constraint, with an adaptation of the techniques for isotropic stress-based optimization. The
combined relaxation and aggregation strategy of Verbart [5] will be used to setup this part, as it is
useful for the third focus point. Finally, it will provide insight into the efficient computation of the
strength constraint gradient by means of the adjoint method.

• Incorporate an anisotropic strain-based strength criteria for laminates. As a homogenized stiffness
representation of a composite laminate is used by means of the polar formalism and therefore no layup
information is available, a strength criterion for a complete laminate optimization will be expressed as
a strain-based envelope. This entails first setting up a topology optimization with a strain constraint,
for which little research is available [7]. Inspiration will be used from the stress-based optimizations,
where the combined relaxation and aggregation technique of the lower KS aggregation is investigated
to perform successful strain-based topology optimization. Furthermore, the correct strength envelop
should be enforced, representing a conservative envelope for any orientation. Lastly, the correct strength
constraint and gradient computation by means of the adjoint method still are to be obtained.
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Chapter 3

Definition of a Gradient-Based
Strategy for Concurrent Topology and
Anisotropy Optimization

3.1 Introduction
This chapter introduces a novel gradient-based framework for distinct topology (i.e. black and white) op-
timizations, while incorporating material anisotropy modeled by means of the polar formalism. Current
topology optimizations with the polar formalism are based on optimality criteria [1], and limited to perform-
ing compliance minimization for thermodynamically feasible materials. The suggested optimization approach
uses sequential approximations, based on the Methods of Moving Asymptotes. The material density, orienta-
tion and anisotropic modules are updated separately at each iteration, in parallel sub-problems constructed
with different types of approximations and settings. The proposed optimization approach is successfully vali-
dated for compliance minimization against the Alternate Directions method for general orthotropic materials,
defined by the thermodynamic bounds. The importance of the anisotropy initialization in the gradient-based
approach is highlighted to obtain stiffer solutions. The gradient-based strategy is also extended to incor-
porate geometric bounds on the polar parameters, defining the domain of existence of composite laminates.
Obtained results for compliance minimization with laminates are compared to published results using lam-
ination parameters. Finally, new solutions are presented showing the improvement of the compliance with
increased consideration of the anisotropy design domains.

3.2 Optimization Problem Parametrization
This sections deals with a two-dimensional compliance minimization problem. The corresponding mathemat-
ical formulation reads as follows:

min
ρ,γ

C(ρ,γ)

s.t. V (ρ)/V0 ≤ vf

g(γ) < 0
ρ ∈ [ρmin, 1]

(3.1)

where C = UT KU is the compliance. ρ represents the topology distributed optimization variable, and
the material anisotropy distributed variables are regrouped under the γ variables.
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The volume ratio V (ρ)/V0 is bound by a prescribed volume fraction vf constraint (vf ∈ [0, 1]), while the
anisotropy variables are subjected to physical constraints g(γ). The mechanical problem is solved by means
of the Finite Element Method (FEM), where U is the solution to [K]U = F, [K] being the global stiffness
matrix and F the force vector.

3.2.1 Topology Parametrization
The topology is parametrized by means of a density approach, where each element i is assigned a scalar
density value ρ(i). The densities take value in [ρmin, 1], where ρmin is set to 10−3 to avoid having a near
singularity stiffness matrix and subsequent numerical problems with the FEM resolution. To obtain distinct
black an white solutions, a penalization exponent p is used to penalize intermediate densities and converge
to the presence (ρ = 1) or absence (ρ = ρmin) of material. This method is similar to the classical SIMP
(Solid Isotropic Material with Penalization) approach, although it is applied here to the case of anisotropic
materials. Thus, each element i is assigned a stiffness tensor [Q(i)] used for the mechanical analysis:

[Q(i)] = ρp
(i)[Q0] , (3.2)

where [Q0] is the pristine elastic tensor of the element.

In order to have a length scale control and avoid numerical artifacts such as checkerboard, a density
filter is used [31]. The filtered densities ρ̃e are the physical variables used to setup the FEM analysis with
Equation 3.2 and compute the volume constraint, while the densities ρi are the optimization variables:

ρ̃e =
∑

i∈Ωe
weiρi∑

i∈Ωe
ρi

. (3.3)

Ωe is the set of elements i whose centroid xi is within the filter radius R of the centroid xe of element e. The
associated filter weights wei are obtained as

wei = R− |xi − xe| . (3.4)

3.2.2 Anisotropy Parametrization
Material in-plane anisotropy is represented by means of the polar formalism [179]. The elastic behavior
of the material is imposed to be orthotropic, in which case the polar formalism expresses its fourth order
elasticity tensor by means of 5 invariants [118]: the four modules T0, T1, R0 and R1 and the orthotropy shape
parameter K. The parameter K takes a discrete value 0 or 1. A more detailed presentation of the polar
formalism is given in Section 2.5. Equation 3.5 shows the relation between the Cartesian components and
the polar ones for an orthotropic stiffness tensor, where the angle ϕ1 represents the direction of orthotropy:

Q1111 = T0 + 2T1 + (−1)KR0 cos 4ϕ1 + 4R1 cos 2ϕ1
Q1122 = −T0 + 2T1 − (−1)KR0 cos 4ϕ1
Q1112 = (−1)KR0 sin 4ϕ1 + 2R1 sin 2ϕ1
Q2222 = T0 + 2T1 + (−1)KR0 cos 4ϕ1 − 4R1 cos 2ϕ1
Q2212 = − (−1)KR0 cos 4ϕ1 + 4R1 sin 2ϕ1
Q1212 = T0 − (−1)KR0 cos 4ϕ1

. (3.5)

T0 and T1 dictate the spherical behavior of the stiffness tensor and must both be strictly positive. They are
kept constant in the optimization, as the trivial stiffest solution would be for T0 and T1 to have infinite values.
Thus, the material optimization is performed with respect to the parameters that influence the anisotropic
terms in Equation 3.5: the polar invariants R0, R1 and K and the orientation ϕ1. The normalized anisotropic
material parameters η0 and η1 are introduced, defined as:

30



3.2. Optimization Problem Parametrization

η0 = (−1)KR0

T0
,

η1 = R1√
T0T1

.

(3.6)

The normalization not only allows to reduce the amount of variables, by regrouping R0 and K into
η0, but foremost includes the discrete variable K into a continuous one. Continuous variables facilitate a
gradient-based optimization process, as these processes are not suited to handle discrete variables. As the
isotropic modules T0 and T1 remain constant during the optimization, they do not require normalization.
The elasticity tensor of Equation 3.5 is now defined as follows:

Q1111 = T0 + 2T1 + η0T0 cos 4ϕ1 + 4η1
√
T0T1 cos 2ϕ1

Q1122 = −T0 + 2T1 − η0T0 cos 4ϕ1
Q1112 = η0T0 sin 4ϕ1 + 2η1

√
T0T1 sin 2ϕ1

Q2222 = T0 + 2T1 + η0T0 cos 4ϕ1 − 4η1
√
T0T1 cos 2ϕ1

Q2212 = − η0T0 cos 4ϕ1 + 4η1
√
T0T1 sin 2ϕ1

Q1212 = T0 − η0T0 cos 4ϕ1

. (3.7)

3.2.3 Orthotropic Material Domain of Existence
Thermodynamic Bounds

Whereas T0 and T1 dictate the spheric behavior of the stiffness tensor, and must both be strictly positive, η0
and η1 can not assume any value. The thermodynamic bounds constrain the anisotropic variables to ensure
the elasticity tensor remains positive definite, represented by the condition of Equation 3.8 [118] when written
with dimensionless variables. The thermodynamic domain represents any possible material, whether it is a
real material or yet unknown one.

2η2
1 − 1 < η0 < 1 (3.8)

Geometric Bounds

The thermodynamic domain represents the theoretical space of all admissible material properties. In order
to obtain a final result which can be produced, a subset of the thermodynamic bounds will be considered for
further work. This subset represents a stiffness set of homogenized orthotropic laminates and is labeled as
geometrical bounds [11]. The assumption for this geometrical set is that a laminate is constructed from a
unique orthotropic base layer, whose properties are denoted by the superscript L in the subsequent equations
and have a constant value.

Starting from the geometric domain definition given in Equation 2.27 [11], the geometric bounds can
be written as a function of the normalized variables η0 and η1, and the normalized anisotropic material
properties of the orthotropic base layer ηL

0 and ηL
1 . It reads as:

2
(
η1

ηL
1

)2
− 1 ≤ η0

ηL
0

≤ 1 . (3.9)

Interestingly, Equation 3.8 and Equation 3.9 share the same form. Thus, by taking a base ply whose
normalized anisotropic properties tends towards 1, i.e. ηL

0 = ηL
1 = 1 − ε, with ε an infinitely small positive

number, the geometric domain tends to overlap with the thermodynamic domain and both domains can be
described using Equation 3.9. The representation of the geometric bounds within the thermodynamic bounds
is shown in Figure 3.1 for two orthotropic base plies with a different shape of orthotropy, whose material
properties are listed in Table 3.1.
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Table 3.1: Orthotropic base ply material properties [11].

UD carbon-epoxy T300/5204 Braided carbon-epoxy type BR-45a
Modules Values Polar parameters Values Modules Values Polar parameters Values
E11 [GPa] 181.0 TL

0 [GPa] 26.9 E11 [GPa] 40.4 TL
0 [GPa] 17.8

E22 [GPa] 10.3 TL
1 [GPa] 24.7 E22 [GPa] 19.6 TL

1 [GPa] 15.4
G12 [GPa] 7.2 ηL

0 [-] 0.73 G12 [GPa] 25.0 ηL
0 [-] -0.41

ν12 [-] 0.28 ηL
1 [-] 0.83 ν12 [-] 0.75 ηL

1 [-] 0.22

(a) For a UD carbon-epoxy T300/5204
base ply.

(b) For braided carbon-epoxy type BR-
45a base ply.

Figure 3.1: Geometric bounds within the thermodynamic domain.

3.2.4 Domain of Existence Remapping
Either the geometric or thermodynamic bounds become an optimization constraint to be satisfied for each
separate element of the ground structure mesh, as each element has a different set of normalized anisotropic
variables (η0, η1). Therefore, an additional number of constraints equal to the number of elements used in the
ground structure is included in the optimization problem. This however raises two possible issues: firstly, de-
pending on the gradient optimization algorithm, the updated variables can temporarily violate the constraint
depending on the regularity of the problem and variable step size. This is a valid characteristic for the MMA
algorithm chosen in this research, which can come back from an infeasible design point. This overshoot of the
constraint could however then prove to be fatal, as the stiffness tensor provided to the FEM analysis would
then become ill-conditioned and terminate the optimization. Secondly, the optimization algorithm is efficient
for few constraints (generally < 100), and hence using one constraint per element lengthens the optimization
routine. For both these reasons, a remapping technique based on a change of variable is introduce to satisfy
the domain of existence. It is feasible as all constraints only depend on each element’s individual properties,
with no cross influence with other variables.

Analogously to the method presented by Izzi et al. [9], the geometric or thermodynamic bounds on the
anisotropy modules are expressed as a remapping of the bounds to a square [0, 1]2] by a change of variable
presented in Equation 3.10. By using this remapping, the inequality constraint on the physical anisotropy

32



3.3. Optimization Strategy

variables η0 and η1 will become a bound on the optimization variable α and β. Such bounded optimization
variables are implicitly satisfied in the optimization method, and therefore speed up the process.

The parametrization with the new design variables, α and β, defining the anisotropic modules, η0 and η1,
is given by:

η0

ηL
0

= 1 − 8α(1 − α)β

η1

ηL
1

= 2α− 1 ,
(3.10)

With this parametrization, the following property holds:{
α ∈ [0, 1]
β ∈ [0, 1]

→ 2
(
η1

ηL
1

)2
− 1 ≤ η0

ηL
0

≤ 1 (3.11)

Proof: the inequality 2
(

η1
ηL

1

)2
− 1 ≤ 1 implies that −1 ≤ η1

ηL
1

≤ 1, therefore Equation 3.10 implies
0 ≤ α ≤ 1. Furthermore, when considering 0 < α < 1, the inequality 1 − η0

ηL
0

≥ 0 reads 8α(1 − α)β so that

β ≥ 0. Also, the inequality η0
ηL

0
− (2

(
η1
ηL

1

)2
− 1) ≥ 0 reads 8α(1 − α)(1 − β) ≥ 0 so that β ≤ 1. When

considering α = 0 or 1, meaning η0
ηL

0
= 1, β is undetermined and can be chosen in [0, 1].

Finally, the bounds on ϕ1 are also normalized in the software implementation to be in the [0,1] range. This
is only as a numerical step to follow the recommendations to use the optimization algorithm. Furthermore,
by using the proposed remapping, the non-linear feasible domain boundary given in Equation 3.9 is replaced
by α,β ∈ [0, 1]2. Therefore, Problem 3.1 can be rewritten as:

min
ρ,ϕ1,α,β

C(ρ,ϕ1,α,β)

s.t. V (ρ)/V0 ≤ vf

ρ ∈ [ρmin, 1]

ϕ1 ∈ [−π

2 ,
π

2 ]

α,β ∈ [0, 1]2

. (3.12)

3.3 Optimization Strategy
The MMA optimization algorithm [10, 188] is used to solve Problem 3.12. The MMA algorithm is based on
an iterative optimization process that consists in solving a succession of approximated convex sub-problems.
At each iteration, a sub-problem is constructed based on the values and gradients at the current iteration
point of both the objective and constraint functions with respect to the optimization variables.

Several approximation types can be used to construct this sub-problem, and have been found to influence
the convergence and the progress of the optimization. Since the regularity of the design space taken into
account in the problem differs with respect to the nature of the variable, a strategy called SplitMMA is
suggested to solve Problem 3.12. A compliance design space with respect to thickness and orientation
is shown in Figure 3.2. It shows the difference in regularity with respect to both variables. The MMA
algorithm provides different approximation type, of which two are considered, MMA and Global Convergent
MMA (GCMMA). The difference between the two approximations can be seen in Figure 3.3, where the
black line is a fictive function, with the monotonous MMA and convex GCMMA approximation in dash line.
The MMA approximation will lead to the new updated value being close to the asymptote and have a large
variation. This comes at the cost of possible imprecision on the approximation, depending on the regularity of
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the design space. This can lead to the oscillations on the variable between iterations. On the other hand, the
GCMMA approximation resembles more a quadratic approximation, and is more conservative. In general,
MMA is privileged to quickly attain an optimum, but lacks the properties for the final convergence to a local
minima, whereas GCMMA is much better at this later part due to its conservative characteristics. GCMMA,
however, would take much longer to reach a minimum from an initial point far away from the optimum [56].
The SplitMAA strategy uses approximations which are already better tailored to a variable’s influence, to
facilitate convergence as was hinted by Bruyneel et al. [189].

Figure 3.2: Compliance design space with re-
spect to thickness and ply orientation [189].

Figure 3.3: Monotonous MMA approximation
versus non-monotonous and convex GCMMA
approximation [56].

The general functioning of MMA is retained in the suggested strategy. But instead of constructing a
unique sub-problem taking into account all the variables at each iteration, three separate sub-problems are
devised depending on the type of variable (density, orientations and anisotropic modules) and their deriva-
tives. These sub-problems are then solved in parallel at each iteration, meaning once per FEM analysis. All
gradients can then be computed from this common mechanical analysis. The old variables and asymptote
update history is however kept independently per sub-problem throughout the optimization. This process
parallelization leads to neglecting the cross-influences of the sub-sets of variables, which has little influence
on the resolution of Problem 3.12. Indeed, the volume and domain of existence constraints are separate
and do not depend on the same variable. Optimizing with respect to each type of variable separately with
SplitMMA allows to construct more simple sub-problems to be solved, with independent settings for the
solver. Those settings can be individually tailored to the behavior of the optimization in junction with an
adequate selection of the approximation type to improve convergence.

The density variables are optimized with the standard monotonous MMA approximation, shown to behave
well in literature [18, 189], and its own set of algorithm settings dictating the asymptotes update. Equally, to
update the anisotropic modules η0 and η1, the optimization with respect to α and β is performed with a sep-
arate call of MMA and its monotonous approximation, giving good convergence. Having this separate MMA
call allows to use a different set of settings to guide the optimization of the anisotropic components. Finally,
the orientations are optimized with the convex but non-monotonous Global Convergent MMA (GCMMA)
without inner iterations. This helps to mitigate the highly non-linear behavior and design space of the com-
pliance with respect to the orientation. This GCMMA call has again its individual set of parameters. Using
GCMMA to optimize with respect to orientations is similar to the works performed by Kiyono et al. [121],
whereas it was also used with lamination parameters [136, 141]. An overview of the optimization strategy is
given in Figure 3.4.
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Figure 3.4: Overview of the optimization strategy SplitMMA.

3.4 Compliance and Volume Gradients Definition
The gradient of the volume with respect to the density variables can be obtained straightforwardly as follows,
where V(i) is the volume of each element:

∂V

∂ρ̃(i)
= V(i) . (3.13)

In the case of the compliance sensitivity, the gradient formulation is self adjoint [18]. Therefore, the
gradient with respect to density ρ̃(i) of element i is given by:

∂C

∂ρ̃(i)
= −UT

(i)
∂[k](i)

∂ρ̃(i)
U(i) = −UT

(i)pρ̃
p−1
(i) [k](i)U(i) , (3.14)

where U(i) is the displacement vector of the element’s nodes at the current iteration, whilst [k](i) is the ele-
ment’s local stiffness matrix. The implementation of these matrices in the FEM analysis is further developed
in Appendix B.

The sensitivity with respect to the direction of anisotropy ϕ1 can be obtain analogously to the sensitivities
with respect to the density [121, 100], as:

∂C

∂ϕ1(i)

= −UT
(i)
∂[k](i)

∂ϕ1(i)

U(i) . (3.15)

where the local stiffness matrix is given by:

[k](i) =
∫∫

S(i)

[B]T ρ̃p
(i)[Q(i)][B]dS(i) , (3.16)
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with [B] the strain-displacement matrix of the element, and S is the surface over which the element is
integrated.

As the stiffness tensor does not depend on the coordinates of the element, the partial derivative of
Equation 3.15 reads:

∂[k](i)

∂ϕ1(i)

=
∫∫

S(i)

[B]T ρ̃p
(i)
∂[Q0(i) ]
∂ϕ1(i)

[B]dS(i) . (3.17)

The gradient of the stiffness tensor [Q0(i) ] can be obtained straightforwardly from Equation 3.7, and the
numerical integration is performed in the same way than in the original FEM analysis. The sensitivities with
respect to η0 and η1 are obtained similarly.

To obtain the gradient with respect to the design variables α and β, the following chain rule must be
applied:

∂C

∂α
= ∂C

∂η0

∂η0

∂α
+ ∂C

∂η1

∂η1

∂α

∂C

∂β
= ∂C

∂η0

∂η0

∂β
+ ∂C

∂η1

∂η1

∂β

. (3.18)

Finally, the influence of the density filter on the sensitivities is taken into account using a another chain
rule, as follows:

∂f

∂ρ(i)
=
∑
e∈Ωi

∂f

∂ρ̃(e)

∂ρ̃(e)

∂ρ(i)
, (3.19)

with:
∂ρ̃(e)

∂ρ(i)
= wei∑

j∈Ωe
wej

, (3.20)

where f can be either the objective or a constraint, such as the compliance or volume [3].

3.5 Results and Discussion
The methodology presented in this chapter was implemented in Python. Only the MMA and GCMMA
routine was integrated from a standalone1. The following results were all obtained in Python framework.
Furthermore, the Alternate Directions, with the methodology of Section 2.5.5, was equally implemented in
Python to provide the results for the comparison.

The proposed strategy is applied to the three test cases shown in Figure 3.5. The first considered test
case (#1) is the cantilever beam problem of aspect ratio of 2:1. The prescribed volume fraction vf is 50%,
with a mesh size of 0.5 × 0.5 mm2 and a 1.1 mm filter radius on the densities Rρ. A 200 N downwards load
is distributed over the 5 middle nodes on the right hand size, while the left hand is clamped. The second
test case (#2) is the suspended bridge problem with a prescribed volume fraction vf of 20%, a mesh size of
1.875 × 1.85 mm2 and a 5.75 mm filter radius on the densities Rρ. A 900 N downwards load is distributed
over the deck, while some elements at the bottom are clamped. The deck is 2 elements thick. The clamping
areas are symmetric, as defined in Figure 3.5. The black elements only have their anisotropy optimized,
their densities remaining 1. Both test cases (#1) and (#2) are used in [1]. The third test case (#3) is the
cantilever beam problem of aspect ratio 1:1 used in [139]. The prescribed volume fraction vf is 60%, with
a mesh size of 5 × 5 mm2. A 9.5 mm filter radius on the densities Rρ is assumed here, while in the original
work, an implicit filter is used. A downwards distributed load totaling 10 N is applied across the 2 right most

1https://github.com/arjendeetman/GCMMA-MMA-Python, accessed on the 17/11/2020
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bottom nodes, while the left hand is clamped. A regular mesh is used in all cases, as is the most convenient
for topology optimization. This however does not prohibit the proposed optimization strategy from being
applied on an unstructured mesh. For test case (#1) and (#2), the density filter radius is taken according to
the common practice as to have two to three elements within the radius. On the other hand, the radius in test
case (#3) is taken as to match the topology of Peeters et al. [139], since their filter is implicitly implemented
in their approach.

The material properties used for the test cases are presented in Table 3.2. The results presented in
Section 3.5.2 are obtained using the thermodynamic bounds of Equation 3.8. These strict inequalities are
enforced by using Equation 3.9 with ηL

0 = ηL
1 = 1 − ε, where an offset ε = 0.05 is imposed. The isotropic

modules T0 and T1 are set equal to TL
0 and TL

1 respectively. In Section 3.5.3, results are obtained using the
geometric bounds defined by Equation 3.9, in which case the materials given in Table 3.2 correspond to the
base plies of the composite laminates. The isotropic modules T0 and T1 are still equal to TL

0 and TL
1 .

Table 3.2: Material properties for the optimizations of the test cases of Figure 3.5.

Test case (#1) and (#3) material properties Test case (#2) material properties
Modules Values Polar parameters Values Modules Values Polar parameters Values
E11 [GPa] 181.0 TL

0 [GPa] 26.9 E11 [GPa] 177.0 TL
0 [GPa] 26.6

E22 [GPa] 10.3 TL
1 [GPa] 24.7 E22 [GPa] 10.8 TL

1 [GPa] 24.3
G12 [GPa] 7.2e3 ηL

0 [-] 0.73 G12 [GPa] 7.6 ηL
0 [-] 0.71

ν12 [-] 0.28 ηL
1 [-] 0.83 ν12 [-] 0.27 ηL

1 [-] 0.82

80

40

(#1)

300

300

(#3)

75

300

(#2)

Figure 3.5: Test case representation, with the filter size indicate in orange.

The continuation strategy for the optimizations is given in Table 3.3. All optimizations are carried out
for a fixed number of iterations. The filter reduction phase consists in gradually decreasing the density filter
radius every 15 iterations until its value is smaller than the smallest element dimension. In this step, the
SIMP exponent p is still equal to 5. The filter reduction is used to minimize the amount of intermediate
density values, measured by the measure of non-discreteness (Mnd) [24]:

Mnd =
∑n

e=1 4ρ̃e(1 − ρ̃e)
n

× 100% . (3.21)

The algorithm settings for the SplitMMA strategy are given in Table 3.4. The initial density and
anisotropy distributions are uniform. The density is set to the imposed volume fraction of the optimiza-
tion, whereas the anisotropy is initialized with ϕ1 = 0◦, η1 = 0.001. η0 is set to its maximum possible value.
For the thermodynamic bounds, with a ε = 0.05 offset to satisfy the strict inequality, η0 is thus initialized
as 0.95. When the geometric bounds are used, the anisotropy is initialized with ϕ1 = 0◦, η1 = 0.001 and
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Table 3.3: Continuation strategy of the optimization parameters in number of iterations for the different
optimization approaches.

Sequential
SplitMMA

Sequential
AD

Concurrent
SplitMMA

Concurrent
AD

SIMP p = 1 - - 35 35
SIMP p = 3 90 90 90 90
SIMP p = 5 35 35 35 35

Filter reduction 90, where Rρnew
= 0.8 ×Rρold

every 15 iterations
Anisotropy optimization 35 35 - -

Total number of iterations 250 250 250 250

η0 = ηL
0 . Finally, the AD optimizations that are used as reference in Section 3.5.2, are initialized with all its

anisotropic components equal to 0.

Table 3.4: MMA and GCMMA algorithm settings for the SplitMMA strategy for compliance minimization.

MMA ρ GCMMA ϕ1 MMA α & β

epsimin 10−10 10−10 10−10

raa0 10−5 0.01 10−4

raa0eps - 10−6 -
move 0.5 - 0.2
albefa 0.9 0.985 0.965
asyinit 0.8 0.7 0.7
asyincr 1.2 1.2 1.2
asydecr 0.8 0.6 0.6

3.5.1 About the Proper Use of η1 to Escape Local Optima
This section details specific considerations for the optimization with respect to η1 in the scope of topology
optimization. From the definition of α given in Equation 3.10, η1 is allowed to vary in [−ηL

1 ,ηL
1 ]. The effect

of this choice is here discussed on a fixed topology, and serves to highlight an important strategy to escape
local minima. A negative η1 implies that the highest stiffness is aligned at 90◦ with respect to ϕ1 [2]. As a
matter of fact, the domain of existence is mirrored, as shown in Figure 3.6. In that case the domain describes
all possible laminates and their rotation by 90◦ with respect to the reference frame defined by the ϕ1. Thus
all laminates are contained twice in the design space. Nonetheless, having η1 negative does not change other
properties of the polar formalism.

Starting from a uniform density distribution at the beginning of a topology optimization, distinct features
will appear during the iterations as the topology becomes distinct. At a critical moment when those features
appear, the direction of the maximum of the principal stresses changes abruptly. However, only using positive
η1 does not allow ϕ1 to align with the direction of the maximum of the principal stresses. This condition is
the optimality criterion for compliance minimization as detailed in Section 2.5.5. Indeed, before the abrupt
stress direction switch, the trend of the anisotropy properties η1 and ϕ1 are in accordance with the stress
state. However, when a feature appears, ϕ1 can not follow this sudden switch in a gradient-based framework.
This is highlighted with the following example, recreated on a fixed topology with η0 fixed at 1-ε. Figure 3.7
shows the ϕ1 and η1 distribution when optimized on the fixed isotropic topology of test case (#1).
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Figure 3.6: Domain of existence mirroring by including the consideration of negative η1.

Figure 3.7: Optimized anisotropy with only η1 being positive on a fixed topology.

The example shows that in the red-outlined area, the orientation ϕ1 is perpendicular to the bars. Further-
more, the anisotropy represented by η0 and η1 means a square symmetry stiffness is obtained in these bars.
Both these properties are sub-optimal for stiffness maximization. The value of the compliance is plotted in
Figure 3.8, when varying η1 in [0, 1[ and ϕ1 in [−90◦, 90◦] in the red-outlined area.

A

B

BA

Figure 3.8: Design space of the compliance function with respect to η1 and ϕ1 in [0, 1[×[−90◦, 90◦] when
varied in the red-outlined area of Figure 3.7.

The design space shows two different optima for this simple case. One at point A, which is associated
to the results shown in Figure 3.7. The other minimum is at point B. It represents the solution with the
Alternate Directions, where a UD material is obtained aligned with the bars. In Figure 3.7, the gradient-
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based optimization is trapped into the valley that corresponds to the local minimum A that lies on the
boundary η1 = 0. The Alternate Directions attains point B, as there is no step size limitation between con-
secutive iterations, which allows for a sudden switch in the direction of the maximum of the principal stresses.

Figure 3.9 shows the value of the compliance function over the design space with η1 in the range ] − 1, 1[
and ϕ1 still in [−90◦, 90◦]. The design space is extended with respect to η1, which enables the gradient-based
optimizer to reach from point A the true optima, in point C, which corresponds to point B from a mechanical
viewpoint. In this extended design space point A is no more a local optimum.

C A

B

BC A

Figure 3.9: Design space of the compliance function with respect to η1 and ϕ1 in ] − 1, 1[×[−90◦, 90◦]
when varied in the red-outlined area of Figure 3.7.

This section showed that local minima are present with respect to anisotropy variables, in which gradient
optimizers can be trapped. These local minima are counter-intuitive and sub-optimal. They represent
a totally different type of orthotropic behavior, be it with a compliance value close to the optimal one.
Extending the design space to negative η1 values enables to evade the spurious local optima created by the
boundary η1 = 0 through a different optimization trajectory. In subsequent results, for the sake of clarity,
the absolute values of the parameter η1 are shown, since a change of sign of η1 corresponds to a 90◦ rotation
of the material orthotropy axes. The orientations ϕ1 are corrected accordingly, for easier visualization of the
stiffest direction.

3.5.2 Optimization with Thermodynamic Bounds

Sequential Optimization

The sequential approach is first presented to investigate the influence of the topology and anisotropy sepa-
rately. It is applied to both test case (#1) and (#2). The first step consists in obtaining a topology with
an isotropic material. This step, done with only the density variables in the SplitMMA strategy and AD
algorithm (η0 and η1 are set to 0), results in the topology solutions of the sequential optimizations in Fig-
ure 3.10 and Figure 3.11. The anisotropic components, optimized in a separate stage, of both these sequential
optimizations are equally shown in Figure 3.10 and Figure 3.11. Lastly, the convergence graph for all the
iterations together is also shown. In case of test case (#1), the topology and compliance are similar between
both AD and SplitMMA, be it with a higher Mnd % for the AD algorithm. For test case (#2), the topology
remains similar, be it with a higher compliance for SplitMMA. Furthermore, the local topology at the junc-
tion is different between SplitMMA and AD, with small holes emerging. Nonetheless, the disposition of the
bars and junctions are coherent between both strategies.
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Sequential Alternate
Directions

C = 13.8 mJ, Mnd = 1.4%

Sequential 
SplitMMA

C = 13.8 mJ, Mnd = 0.6%

Concurrent
SplitMMA

C = 13.8 mJ, Mnd = 4.5%

Concurrent Alternate
Directions

 C = 13.8 mJ, Mnd = 4.4%

Figure 3.10: Results of the cantilever beam test case (#1) with thermodynamic bounds, for the sequential
and simultaneous optimizations of the topology and anisotropy with the AD algorithm and SplitMMA
strategy. Anisotropy variables are shown where ρ ≥ 0.9.

Simultaneous Optimization

This part presents the simultaneous optimization with respect to the topology and anisotropy for compliance
minimization. The results of these concurrent optimizations with the AD and SplitMMA strategy for both
test cases are given in Figure 3.10 and Figure 3.12 respectively. In case of the second SplitMMA optimization
(initial anisotropy only optimization) of test case (#2), the 35 initial iterations are performed only with
respect to ϕ1, η0 and η1, with all element densities kept at ρ = vf and SIMP p = 1. However, the total
volume is greater than vf in this step, due to the presence of the imposed full elements. When the SIMP
exponent p is increased after iteration 35, the compliance is minimized with respect to all variables as in the
other concurrent optimizations. The volume constraint is then satisfied.

The results for test case (#1) have similar density and anisotropy distributions, for the same compliance
yet small differences in Mnd value. On the other hand, the SplitMMA solutions are more compliant than
the AD solution for test case (#2). Nonetheless, the stiffest of the SplitMMA solutions, the one with
an initial anisotropy only optimization step, resembles closely the AD solution. Furthermore, it is stiffer
than any of the sequential optimization, with either the AD algorithm or SplitMMA strategy. Finally,
Figure 3.15 shows the output and distribution of the anisotropic properties for the SplitMMA optimization
within the thermodynamic domain for test case (#1). These distributions highlight the need of the anisotropy
representation by means of a negative η1 to be used to escape a local minima.
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Sequential Alternate
Directions

C = 20.1 mJ, Mnd = 1.3%

Sequential SplitMMA
 C = 21.6 mJ, Mnd = 0.4%

Figure 3.11: Results of the bridge test case (#2) with thermodynamic bounds, for the sequential opti-
mizations of the topology and anisotropy with the AD algorithm and SplitMMA strategy. Anisotropy
variables are shown where ρ ≥ 0.9.

Discussion

The non-discreteness measure is important in the comparison of the solutions with AD and SplitMMA. In-
deed, despite the same filter radius being used in both the SplitMMA and AD optimizations, they are not the
same filter. The AD algorithm in [1] is programmed with an energy filter [187], which filters the deformation
energy instead of only the densities. The most notable difference from this comes as the energy filter with
a given filter radius will result in a topology with little intermediate densities. On the contrary, the density
filter as used with the SplitMMA strategy with the same active filter radius will have intermediate densities
due to the averaging and blurring effect on the boundary of the topology. Therefore the filter removal in
SplitMMA lessens the blurring, and allows the topology to converge to more distinct density values, with
lower Mnd %.

This has a twofold advantage. First, the distinct topology makes it easier to define the boundary of the
structure for later post-processing steps in a design loop. Secondly, the intermediate densities are penalized
the most by the SIMP approach. This therefore deteriorates the compliance for a similar topology with
blurred boundaries. Having the intermediate densities removed and similar levels of Mnd facilitates the com-
parison of the compliance value between solutions.
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Concurrent Alternate
Directions

C = 18.9 mJ, Mnd = 3.4%

Concurrent SplitMMA
Uniform anisotropic initialization

C = 20.3 mJ, Mnd = 1.2%

Concurrent SplitMMA
Distributed anisotropic initialization

 C = 19.8 mJ, Mnd = 1.4%

Figure 3.12: Results of the bridge test case (#2) with thermodynamic bounds, for the simultaneous
optimizations of the topology and anisotropy with the AD algorithm and SplitMMA strategy. Anisotropy
variables are shown where ρ ≥ 0.9.

Figure 3.13: Difference between the anisotropic values obtained with SplitMMA and the optimized values
obtained by applying the optimality criteria to SplitMMA solution for the sequential approach of test
case (#1).

Thereafter, there is an equivalence between the isotropic topology with the AD and MMA algorithm for
both test cases (the first step of the sequential optimizations). This was also reported by Fanni et al. [190]
for optimization with isotropic material with optimality criteria, the basis of the AD algorithm, and MMA.
On the other hand, both test case (#1) and (#2) show that the anisotropy changes the topology.
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Figure 3.14: Difference between the anisotropic values obtained with SplitMMA and the optimized values
obtained by applying the optimality criteria to SplitMMA solution for the concurrent approach of test
case (#1).

Figure 3.15: Results of the concurrent topology and anisotropy optimization with SplitMMA for test case
(#1), with η1 in [−ηL

1 , η
L
1 ]: the anisotropic modules distribution within the thermodynamic bounds, the

associated optimization variables α and β and the anisotropic modules on the topology. Values shown for
elements with ρ ≥ 0.9.

The comparison of the overall anisotropic distribution is in good agreement between AD and SplitMMA
for all cases. Looking more in detail at η0 of the SplitMMA solutions, its distribution is locally different
along the jagged edge of the oblique bars between algorithms for the sequential approach of test case (#1)
in Figure 3.10. Figure 3.13 shows the difference in optimized values of the polar parameters after having ap-
plied the optimality criteria on the final SplitMMA solution. η0 values on the jagged edge differ significantly
from the optimized values, also having a different sign. This different sign means the shape of orthotropy is
different, and the overall elastic behavior changes. This leads to equally sub-optimal values for ϕ1 and η1.
Local negative η0 values are also present in test case (#2), but in neither test case (#1) or (#2) does it have
a major impact on the global distribution and compliance value.

The AD solutions furthermore show that η0 is constant at its upper bound. This is true regardless of the
stress state [1], and the reason for the initialization choice of η0 as the upper limit. On the other hand, the
η1 distribution is in good agreement, also when the optimality criteria are applied to the SplitMMA solution
as given in Figure 3.13 and Figure 3.14. This clearly highlights that η1 is well optimized with respect to the
local stress state, with some noise present on the distributions. As a possible solution to the noise present
on the η0 and η1 distribution, and alleviate the negative η0 locations, further improvements could look at
including a filter on these anisotropic modules to smooth the variation.

Afterwards, the ϕ1 distribution also corresponds well between algorithms. The final orientations in Split-
MMA greatly coincide with the theoretical optimality conditions used in the AD algorithm, being aligned
with the maximum of the absolute value of the principal stresses. This is visible in Figure 3.13 and 3.14. A
note should be made about the periodicity of the orientations: despite neighboring elements having 90◦ and
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−90◦ orientations, the corresponding mechanical properties are identical. The discontinuity in the orientation
field is not a source of error, but merely a periodicity effect. Therefore, to avoid 180◦ orientation differences
being averaged out, a prospective filter should address this issue, such as the strategy proposed by Schmidt
et al. [106]. All these elements of analysis show that the anisotropy is well optimized and conforming to the
topology, and hence well taken into account in the optimization.

Both test cases also highlight the importance of the anisotropy distribution for the concurrent optimiza-
tion with SplitMMA compared to the AD algorithm. This is because the optimality criteria in the AD can
change the orientations and modules abruptly, as it only depends on the stress state of the current iteration.
On the other hand, the variable values in the gradient approach can only evolve from the variable value of
the previous iteration by the maximum stepsize allowed in MMA. The gradient-based approach seeks the
best stepsize of the variables to improve the objective. However, the variable update is dictated by the valid-
ity of the gradient and its approximation, hence the variable change between iterations is usually less than
optimality criteria changes. For the uniform initialization, the SIMP p = 1 optimization step with respect
to all variables is required. It allows for the interaction of the anisotropy and topology to converge to an
intermediate configuration, even with these smaller steps. The intermediate convergence is due to the lack of
penalization hindering any excess favoritism of any variable on the compliance. If the SIMP exponent p were
to be raised too early, or the optimization started with SIMP p > 1, the synergy between anisotropy and
topology would not have time to take place, as the higher density penalization would lead the optimization.
In the case of SIMP p > 1, the smaller anisotropy variables steps and slower changes would be conforming
to the already defined and predominant topology variables.

On the other hand, for the first 35 iterations in test case (#2), the optimization is carried out only with
respect to the anisotropy with a uniform density. This allows to have an anisotropy distribution already
conforming to the load path over the design domain at the start of the topology optimization. Then the
optimization with respect to all variables is begun with SIMP p = 3, meaning the influence of the anisotropy
is directly taken into account by the topology variables. This is actually equivalent to the AD algorithm
workings. Although the AD algorithm starts directly with SIMP p = 3, its first step is to minimized the
compliance with respect to the anisotropy. Thereafter, the densities are updated with the optimal anisotropy
but the stress distribution of the current iteration, as one iteration is seen as a FEM analysis carried out.
But the anisotropy update is a discrete change in the AD algorithm, based only on the stress field. The same
effect occurs in the first 35 iterations in SplitMMA, where only the anisotropy is optimized. Only, as stated
earlier, the changes can not be abrupt with a gradient-based method, but rather continuous with small steps
to obtain the anisotropic field best aligned with the stress field.

Adding to the small possible variable variation between iterations with SplitMMA, allowing both positive
and negative η1 in the optimization permits to quickly switch the direction of highest stiffness between two
iterations, even though the orientation ϕ1 can only vary by a few degrees. This property is useful when
the direction of principal stress flips due to bar-like feature being created during the optimization. In case
of test case (#1), the initial anisotropy only optimization step is not required, and the SIMP p = 1 op-
timization with respect to all variables yields a similar solution to the AD algorithm. Not requiring this
initial step is attributed to the nature of this specific test case problem, where many similar local minima
are present, and is therefore less sensitive to the initialization. The presence of many similar local minima
is highlighted by the AD optimizations showing both the sequential and concurrent compliance are equivalent.

This approach of first optimizing the anisotropy alone leads thus to a different topology, which for the
bridge test case is less bulky, but foremost also a stiffer solution. From a physical perspective, the arch
is extremely stiff in bending in case of the right solution in Figure 3.12 compared to middle solution in
Figure 3.12 Furthermore, with a lower height, more material can be used to obtain an additional stiffening
effect by increasing the inertia of the arch and having an added support. The difference between the best
AD and SplitMMA solution is because the gradient optimization is prone to getting stuck in local minima.
Nonetheless, the difference is admissible, as the AD is specific to compliance minimization, but a wider range
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of optimization problems can be considered with the SplitMMA framework. Furthermore, SplitMMA upholds
the concurrent approach yielding significant compliance gains over the sequential approach, by about 8% for
the bridge case with the distributed anisotropy at the start of the topology optimization. This corresponds
to the conclusion of Ranaivomiarana et al. [1].

All these observations allow to validate the suggested SplitMMA strategy, which is therefore well suited
to incorporating anisotropy in topology optimization with thermodynamic materials. The solutions with
SplitMMA converge to a similar solution to that of the benchmark AD algorithm, which is a powerful means
of validation.

3.5.3 Optimization with Laminates within the Geometric Domain
Validation of Optimizations with the Geometric Bounds Optimization against the Lamination
Parameters

The topology optimization with geometric bounds on the polar parameters is validated by comparing the
results obtained to similar optimization results with lamination parameters on test case (#3). In the case
of an orthotropic stiffness tensor, the relation between the lamination parameters and the polar parameters
given by Panettieri et al. [191] can be expressed with normalized modules as follows:

V1 = η1

ηL
1

cos 2ϕ1 ,

V2 = η1

ηL
1

sin 2ϕ1 ,

V3 = η0

ηL
0

cos 4ϕ1 ,

V4 = η0

ηL
0

sin 4ϕ1 .

(3.22)

To reproduce the same orthotropy conditions of a balanced laminate as Peeters et al. [139], ϕ1 is fixed
to 0◦ and not optimized. Only η0 and η1 anisotropy variables are optimized simultaneous to the density
variables. A uniform initialization is used. The optimization is performed in two steps with p = 1 and p =
3. The original results of Peeters et al. [139] with lamination parameters are shown in Figure 3.16. The re-
sults of with the geometric bounds on the polar parameters and the current SplitMMA strategy are shown in
Figure 3.17, where the polar parameters have been converted to lamination parameters through Equation 3.22.

Figure 3.16: Results of Peeters et al. [139] for test case (#3) with lamination parameters: (a) the topology,
(b) V1 and (c) V3.
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(a) (b) (c)

Figure 3.17: Optimization results of test case (#3) with geometric bounds: (a) the topology, (b) V1 and
(c) V3.

The results of the optimization with geometric bounds in Figure 3.17, where the polar parameters have
been converted to lamination parameters, are in good agreement for both topology and anisotropy distribution
as compared to Peeters et al. [139]. This shows that the SplitMMA strategy can well incorporate simultaneous
topology and anisotropy optimizations with geometric bounds.

Comparison between the Sequential and Concurrent Topology Approach for Laminates

With the incorporation of the geometric bounds in topology optimization validated, an equal comparison
between the sequential and simultaneous approach can be conducted for the geometric bounds. Figure 3.18
shows the different results obtained applied to test case (#2). The sequential topology remains the same, as
it is purely dictated by an isotropic topology optimization. On the other hand, the concurrent optimization
with geometric bounds results in a different topology than with thermodynamic material. However, as
with thermodynamic bounds, the geometric bounds solution remains less bulky, and provides a compliance
improvement over the sequential approach.

Topology Optimization with Different Degree of Anisotropy

Lastly, SplitMMA can be used to simulate different degrees of freedom of the anisotropy, as defined by the
constraints placed on the anisotropy design variables, and therefore the type of anisotropy that is obtained.
Figure 3.19 compares solutions obtained for different materials for the same volume and mass with test case
(#1). The isotropic case is optimized only with respect to the density, where T0 = TL

0 , T1 = TL
1 , η0 = 0 and

η1 = 0. This corresponds to the first step of the sequential approach. The steered fiber case is optimized
with respect to the density and orientation ϕ1 only, with T0 = TL

0 , T1 = TL
1 , η0 = ηL

0 and η1 = ηL
1 . The

geometric case optimizes with respect to all variables, limited to the geometric bounds based on ηL
0 and ηL

1 .
The optimization solution with thermodynamic bounds is the one from Section 3.5.2. The visual represen-
tation of the geometric feasible domain within the thermodynamic domain is shown in Figure 3.20, for the
properties as listed in Table 3.2. The optimizations with steered fiber and geometric bounds use the initial
anisotropy only optimization step.

Analyzing the solutions shows two important facts. First of all, all the topologies are different, demon-
strating once again the importance of considering the anisotropy concurrently to the topology. Secondly,
the more anisotropic freedom is given, the less compliant the solution becomes. The laminate anisotropy
by means of the geometric bounds is stiffer than just steered fibers on a structure, although less than the
thermodynamic bounds. Figure 3.20 shows the distribution of the anisotropic modules within the geometric
domain. The reduced domain for the anisotropic modules with geometric bounds compared to the thermo-
dynamic ones is the reason for the more compliant result: the restriction means less than ideal anisotropy
can be used from a theoretical point of view. Even so, the optimized orthotropy direction ϕ1 with geometric
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Sequential SplitMMA
C = 23.1 mJ, Mnd = 0.4%

Concurrent SplitMMA
 C = 21.7 mJ, Mnd = 0.6%

Figure 3.18: Comparison between a sequential and concurrent topology and laminate optimization.

bounds still coincides with the direction of the maximum of the absolute value of the principal stresses, as
shown in Figure 3.21.

The solution with the geometric bounds holds nonetheless an advantage over its counterpart with ther-
modynamic bounds. Anisotropy defined by the thermodynamic bounds is valid mathematically, but part of
the domain has no known corresponding material. This is for example visible where η0 tends to 1, meaning
no shear stiffness. This is where the geometric bounds are superior, as they represent a feasible stacking
sequence and therefore a material which can be manufactured. However, this stacking sequence retrieval,
performed in subsequent steps after the optimization, is not part of the current topic. The geometric bounds
have already been used for laminates with thickness optimization before [144, 9], see Section 2.4.2, but not
yet incorporated in a topology optimization routine. The current framework offers the prospect of topology
and anisotropy optimization with additional optimization constraints such as strength or buckling, for future
research.

3.6 Conclusion
This chapter presented and validated an optimization strategy for the simultaneous optimization of topology
and material anisotropy combining the MMA algorithms and the polar method, an invariant-based repre-
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Isotropic material
C = 36.2 mJ, Mnd = 0.6%

Steered fiber
C = 17.8 mJ, Mnd = 2.0%

Thermodynamic bounds
C = 13.8 mJ, Mnd = 4.5%

Geometric bounds
 C = 15.0 mJ, Mnd = 2.4%

Figure 3.19: Topology and anisotropy distributions for simultaneous optimizations with different degrees
of anisotropy: isotropic material design, steered-fiber design, laminated solution (geometric bounds) and
general orthotropic materials (thermodynamic bounds).

sentation of the elasticity tensors. The anisotropic components are normalized to obtain a set of continuous
design variables. The considered materials are either general orthotropic materials or composite laminates.
A change of variables is used to implicitly satisfy either of the corresponding existence constraints during the
optimization. A strategy called SplitMMA is suggested to solve the compliance minimization problem, based
on the Method of Moving Asymptotes (MMA) algorithm class. The density, orientation and anisotropic
modules are updated separately at each iteration, in parallel sub-problems. Each sub-problem is constructed
with a different type of approximation and settings, selected to tailor best the regularity of the problem with
respect to the different types of variables.

The proposed SplitMMA method is first compared with respect to the Alternate Direction (AD) algo-
rithm in the case of general orthotropy in 2D. For both sequential and simultaneous topology and anisotropy
optimizations, the SplitMMA solutions are a close match to their AD counterparts, both in objective value
and variable distributions. In particular, the SplitMMA strategy preserves the improvement in compliance
due the simultaneous consideration of topology and anisotropy. The importance of the anisotropy initializa-
tion in SplitMMA is highlighted to achieve the improvements, along adapting the design space to flip the
principal stiffness direction transversely in a continuous manner.

The method is further validated in the case of composite laminates by comparing the results obtained
with published results using density and lamination parameters as design variables. Finally, the influence
of different types of material anisotropy in topology optimization are presented with novel results in the
case of composite laminates. With the same prescribed mass and the same isotropic part of the material,
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Figure 3.20: Anisotropic modules distribu-
tion within the geometric bounds for the con-
current topology and anisotropy optimization
with SplitMMA for test case (#1). Modules
included where ρ ≥ 0.9.

Figure 3.21: Optimized anisotropy orientation
and ϕ1 for the geometric bounds optimization
of Figure 3.19. Modules shown for elements
with ρ ≥ 0.9.

the compliance of the solutions decreases with increasing anisotropy design domains, while the topologies
vary. Finally, it is shown that the concurrent approach also yields stiffer results at iso-mass with geometric
compared to the sequential approach.
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Chapter 4

Optimization Constraint and Gradient
Derivation Based on an Elliptic Stress
Criterion for the Simultaneous
Density and Orthotropic Material
Orientation Optimization

4.1 Introduction
This chapter details the theoretical derivation and numerical implementation of the optimization constraint
when strength is considered for a Uni-Directional (UD) material in topology optimization. An anisotropic
material with fixed elastic modules is considered, such as a single composite UD ply, but whose orientation
is allowed to vary. Three elliptic stress-based first ply failure criteria (Tsai-Wu, Tsai-Hill and Hoffman) are
implemented in the derivation to represent anisotropic material failure. Chapter 6 deals with strength con-
straints in topology optimization with a layup of several UD plies representing a laminate.

Including failure in topology optimization is not straightforward, due to several difficulties, as identified
in the state of the art in Section 2.3, and shortly summarized next. First of all, the maximum of a stress
criterion can not directly be used as constraint or minimized if used as the objective. Indeed, this would
lead to a non-differentiable problem, as the location of the maximum stresses would change every iteration,
which in turns leads to numerical issues when gradient-based solvers are used. Secondly, stress singularities
arise when the optimizer tries to remove low density elements (meaning ρ tends to ρmin). The solution which
removes completely low density elements lays in a lower dimension design space, which gradient-based solvers
have difficulty reaching. Regulation techniques have been developed to handle these issues and are used for
isotropic failure criteria. The last problem with failure consideration is linked to the computational cost of
the optimization loop and obtaining the required gradient information. As failure is a local measure, if the
stress criterion of each individual element is considered as optimization constraint, the amount of constraints
slows down tremendously the optimization. Moreover, the gradient computation of each separate constraint
requires one additional FEM analysis, further increasing the computational cost. Therefore, aggregation
techniques are used to regroup the local strength constraints into few global ones, and decrease the amount
of required additional FEM analysis and subsequent computational cost.

The following sections describes the selected strategy to address these numerical issues with stress con-
centrations. The strategy is first reviewed for an isotropic material with an isotropic failure criterion, based
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on the lower KS strategy of Verbart et al. [5]. This strategy relaxes the stress singularities and aggregates
the local constraints by the same function. Afterwards, the strategy is extended to account for anisotropic
stiffness and strength criteria in case of UD material. Results with this strategy are given and discussed in
Chapter 5.

4.2 Isotropic Stress Criterion
4.2.1 Optimization Constraint Definition
Stress Measure

The stress vector σ(i) of element (i), defined as {σx, σy, τxy}T , can be obtained from the standard stress
strain relationship as given in Equation 4.1. ε(i) is the strain vector of element (i), defined as {εx, εy, γxy}T ,
and [Q] the stiffness tensor. In case of a FEM analysis, the strain components are obtained from the nodal
displacements U (i) and the strain-displacement matrix [B]. This matrix is unique if all elements are the
same (which is often the case in topology optimization), otherwise it must be computed for every different
one. The Python FEM implementation is detailed more in Appendix B.

σ(i) = [Q(i)]ε(i) (4.1)
In a SIMP topology optimization framework, an element stress is therefore obtained by means of Equa-

tion 4.2, called the macro-stress of an homogenized element. [Q0(i) ] is the stiffness tensor of the pristine
material (that can be defined by the polar formalism as given by Equation 3.7). The macro-stress naming is
in relation to the macroscopic stiffness assigned to an element by means of the SIMP interpolation with an
exponent p. However, if the macro-stress is used straightforwardly to perform a volume minimization with a
stress constraint in topology optimization, a trivial all-void design is obtained [4].

σ(i) = [Q(i)][B]U (i) = ρp
(i)[Q0(i) ][B]U (i) (4.2)

To counter this, it is better to use the micro-stress measure [68]. This represents the actual stress in
the underlying microstructure. Indeed, for intermediate densities, the SIMP stiffness tensors represent the
homogenized properties of a combination of void and pristine material. This results in the micro-stress
being different than the macro-stress applied to the element. If the underlying microstructure is known,
a true relationship can be setup between the macro and micro-stress. However, as the current aim of
the optimizations is to obtain distinct density solutions (either ρmin or 1), no relation is known between
intermediate densities and microstructures. Therefore, an equivalent micro-stress measure is defined and used
to avoid the trivial all void solution. This so-called equivalent micro-stress σmicro

(i) for topology optimization
problems is defined by Equation 4.3 [67]. This approximation is based on a different penalization of the
elasticity matrix [Q(i)] by using a different exponent value r for the density, given as r = p− q.

σmicro
(i) =

σ(i)

ρq
(i)

=
ρp

(i)

ρq
(i)

[Q0(i) ][B]U (i) = ρr
(i)[Q0(i) ][B]U (i) (4.3)

The case q = p leads to the so-called stress singularity problem, where the optimal solution lays in a
degenerate space difficult to reach for gradient optimizers. All elements retain a finite strain and therefore
finite stress, as explained in more detail in Section 2.3. Therefore, stress relaxation techniques are used,
which approximate the micro stress, yet avoid the degenerate design space. Bruggi [67] introduced a simple
strategy to relax the stress singularities, the so-called qp-approach. This qp-approach is in itself a modified
ϵ-approach as was suggested by Cheng and Guo [63], with the special case of ϵ being adapted as a function
of the density. The value of the q exponent must satisfy 0 < q < p, as to not use the macro-stress (q = 0) or
be in a degenerate design space (q = p). This is a mathematical manipulation with no physical basis in order
to solve a stress-based topology optimization and obtain distinct results. It is introduced to circumvent the
problems of having all void designs or stress singularities and not being able to remove elements.
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In the following, it is nonetheless chosen to implement an alternative solution proposed by Verbart et
al. [5], where the relaxation is combined with the aggregation thanks to the use of a lower approximation of
the maximum value of the strength criterion. Therefore, a micro-stress value can be used, with q equals to
p. Hence the exponent r equals 0 when considering stress in a optimization constraint. This is expressed by
Equation 4.4, where the dependency on ρr

(i) is kept for ease of derivation of the gradient in subsequent steps.

σmicro
(i) = ρr

(i)[Q0(i) ][B]U (i) (4.4)

With a correct stress measure for a topology optimization, the remainder of the section will first discuss
the case of an isotropic material, whose failure is modeled according to the Von Mises criterion. Section 4.3.1
deals with the integration of an anisotropic strength criterion. The equivalent failure measure for each element
failm(i) is defined in Equation 4.6. For an isotropic material, it is equivalent to the Von Mises stress measure
σV M

(i) of an element i, where its stress components at each centroid σ(i) is obtained according to Equation 4.5.
The transformation matrix [V] is defined as in Equation 4.6 [3].

failm(i) := σV M
(i) =

√
(σmicro

(i) )T [V ]σmicro
(i) (4.5)

[V ] =

 1 −1/2 0
−1/2 1 0

0 0 3

 (4.6)

Thereafter, failure is reached when the Von Mises stress σV M is lower than the yield stress σY over the
isotropic material (i.e., σV M

(i) ≤ σY ). This condition is equivalent to Equation 4.7, where g is normalized and
defined in such a way to be incorporated as an optimization constraint (g(i) ≤ 0).

g(i) :=
σV M

(i)

σY
− 1 ≤ 0 (4.7)

Following the strategy proposed by Verbart et al. [5] and discussed in Section 2.3.2, a Mathematical
Programming with Vanishing Constraints (MPVC) strategy is used, where the equivalent local constraint ḡi

is defined for element i as given in Equation 4.8.

ḡ(i) := ρ(i)g(i) ≤ 0 (4.8)

Aggregation Method

Stress measure and failure is a local phenomenon, and structural optimization seeks a safe optimized design
where the constraint of Equation 4.8 is satisfied for every element. However, this would increase the amount
of optimization constraints and add a huge numerical cost to the analysis. On the other hand, only using the
maximum value of Equation 4.8 as constraint would lead to numerical instability as the maximum function is
non-differentiable. Moreover, the location of the maximum would possibly change at every iteration, which
does not allow to have a control over it. Therefore, in order to reduce the amount of optimization constraints,
an aggregation technique is used. The aggregation allows to regroup and approximate the maximum of all
the values of interest of the elements included in the set Ωk. Equation 4.9 shows the aggregation by means of
an lower-bound Kreisselmeier-Steinhauser (KS) function [192]. This KS function can aggregate both positive
and negative terms, opposite to the P-norm aggregation which can only include positive terms. Furthermore,
this aggregation step also has the benefit to speed up the sensitivity calculations as discussed in Section 4.2.2.

The cluster Ωk contains all elements whose quantity of interest are considered. This can be used to divide
the structure in different zones (either geometrically or by value) to have a more precise control of the failure
constraint over the design domain, as discussed in Section 2.3, but also to assign different failure properties
to different regions. The influence of elements not considered in the cluster will still be taken into account
by the gradient and their effect on the change in load path, as discussed in Section 4.2.2.
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gLKS
k = 1

µ
ln 1
N

∑
j∈Ωk

exp(µḡ(j))

 (4.9)

The principle of the lower KS aggregation function is shown in Figure 4.1. The parameter µ dictates
the accuracy of the approximation of the maximum. For an increase in this parameter µ, the aggregated
maximum will tend to the true maximum, at the cost of numerical issues. On one hand, the function becomes
much more non-linear. This can then possibly lead to bad convergence of the optimization. On the other
hand, numerical overflow can occur. This happens when the ḡi quantities are of larger magnitude, which
combined to the exponential operation results in values too large to be handled by a computer’s memory.
In order to overcome these difficulties, several possibilities are available. First, ḡi can be scaled down. This
already happens by considering the constraint of Equation 4.7, and not aggregate the Von Mises stress
directly before using that aggregated stress with the yield stress. Secondly, a continuation of the µ parameter
can be considered, with a smaller value when the value of ḡi is still large, and increasing µ when the value
of ḡi is lower. However, the aggregated value then tends to be far off the actual maximum initially, and
afterwards, as the value of µ increases, so does the non-linearity of the problem. Instead, it is chosen to
bound the maximum value used in the aggregation of Equation 4.9 by changing the formulation as given in
Equation 4.10 [76, 193]. This ensures that no matter the magnitude of ḡ, the exponential operation always
considers small magnitudes, and a constant value of µ is used. The ḡmax is a fixed value chosen as the
maximum of the ḡi values to avoid numerical overflows.

0 1 2 3 4 5
0

2

4

6

8

10

12 Maximum value of
the 3 full line functions
Lower KS (  = 0.1)
Lower KS (  = 0.5)
Lower KS (  = 0.75)
Lower KS (  = 1.5)

Figure 4.1: Effect of different µ values on the lower KS aggregation of the maximum of the three functions.

gLKS
k = ḡmax + 1

µ
ln 1
N

∑
j∈Ωk

exp(µ(ḡ(j) − ḡmax))

 (4.10)

The lower KS function approximates the maximum value of the cluster from below. Hence, in the op-
timizations later on, although the constraint gLKS

k ≤ 0 will be satisfied, the actual maximum value of the
system will be higher than 0 due to this approximation from beneath. The final form of the optimiza-
tion constraint gLKS

k is then given by Equation 4.11 for a Von Mises failure criterion, with the graphical
representation of the numerical steps to obtain it shown in Figure 4.2.

gLKS
k = ḡmax + 1

µ
ln

 1
N

∑
j∈Ωk

exp

µ
ρ(j)


√

([Q0(j) ][B]U (j))T [V ][Q0(j) ][B]U (j)

σY
− 1

− ḡmax

 (4.11)

4.2.2 Optimization Constraint Gradient
In order to obtain the gradient of the global aggregated constraint of Equation 4.11, the chain rule of the
operations required to compute the gLKS

k function must be applied. First, the derivative of the KS function
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Figure 4.2: Numerical steps used to compute the value of the global failure optimization constraint for a
Von Mises criterion with an isotropic material.

is given by Equation 4.12, with the last partial derivative being obtained by applying the chain rule again as
to obtain the expression given in Equation 4.13.

∂gLKS
k

∂ρ(i)
=
∑

j∈Ωk
exp

(
µ(ḡ(j) − ḡmax)

) ∂ḡ(j)
∂ρ(i)∑

j∈Ωk
exp

(
µ(ḡ(j) − ḡmax)

) (4.12)

∂ḡ(j)

∂ρ(i)
=
∂ρ(j)

∂ρ(i)
g(j) + ρ(j)

∂g(j)

∂failm(j)

∂failm(j)

∂σmicro
(j)

∂σmicro
(j)

∂ρ(i)
(4.13)

Each part of Equation 4.13 can be computed separately. The first term stems from the MPVC definition
in Equation 4.8, and equates to δij . Looking at the first factor of the second term, from its definition in
Equation 4.7, the gradient is expressed in Equation 4.14.

∂g(j)

∂failm(j)

= ∂

∂σV M
(j)

(
σV M

(j)

σY
− 1
)

= 1
σY

(4.14)

The second factor of the second term of Equation 4.13 relates the change of the Von Mises failure cri-
terion with respect to the stress components at the centroid of the element, obtained from Equation 4.5 as
Equation 4.15.

∂failm(j)

∂σmicro
(j)

= 1
σV M

(j)
[V ]σmicro

(j) (4.15)

Finally, the last factor of the second term of Equation 4.13 involves the change of the different stress
components of a given element, as defined by the micro-stress of Equation 4.4. This is constituted of two
parts: one is the influence on the elasticity properties of the element itself, and the other is the change
in element displacement due to the influence of a different load path. It can be computed as given in
Equation 4.16.

∂σmicro
(j)

∂ρ(i)
= ∂

∂ρ(i)

(
ρr

(j)[Q0(j) ][B]U (j)

)
=
∂(ρr

(j)[Q0(j) ])
∂ρ(i)

[B]U (j) + ρr
(j)[Q0(j) ][B]

∂U (j)

∂ρ(i)
(4.16)

The sensitivity ∂U(j)
∂ρ(i)

in the second term can be calculated from the equilibrium state equation as given in
Equation 4.17. This assumes design independent loading, meaning F is not dependent on the displacement.
Hence the presented gradient will only be valid for force based topology optimization, and not for displacement
based. Resolving Equation 4.17 directly is known as the direct method, which has to be solved each time
for every variable. This is a large system, as the size of [K] depends on the degree of freedom of the system,
which is proportional to the amount of elements. Therefore solving Equation 4.17 every time over again
involves a high computational cost. The cost could already be lowered by reusing a LU factorization of [K],
saved from the earlier FEM analysis. [K] is indeed constant for each iteration. Nonetheless, this method is
effective with few variables, but many constraints.
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∂

∂ρ(i)
([K]U = F ) ⇒ ∂[K]

∂ρ(i)
U + [K] ∂U

∂ρ(i)
= 0 ⇒ ∂U

∂ρ(i)
= −[K]−1

(
∂[K]
∂ρ(i)

U

)
(4.17)

However, instead of computing Equation 4.17 directly, it can be substituted in Equation 4.16, which
on its turn can be substituted together with Equation 4.14 and Equation 4.15 in Equation 4.12 to obtain
Equation 4.18.

∂gLKS
k

∂ρ(i)
= 1∑

j∈Ωk
exp

(
µ(ḡ(j) − ḡmax)

) ∑
j∈Ωk

exp
(
µ(ḡ(j) − ḡmax)

)δijg(j) + ρ(j)
1
σY

[
1

σV M
(j)

[V ]σmicro
(j)

]T

[
∂(ρr

(j)[Q0(j) ])
∂ρ(i)

[B]U(j) − ρr
(j)[Q0(j) ][B][K]−1

(
∂[K]
∂ρ(i)

U
)]

(4.18)

Expanding Equation 4.18 leads to Equation 4.19.

(4.19)

∂gLKS
k

∂ρ(i)
= 1∑

j∈Ωk
exp

(
µ(ḡ(j) − ḡmax)

)
∑

j∈Ωk

exp
(
µ(ḡ(j) − ḡmax)

)δijg(j)

+ ρ(j)
1
σY

(
1

σV M
(j)

[V ]σmicro
(j)

)T
∂(ρr

(j)[Q0(j) ])
∂ρ(i)

[B]U(j)


−
∑

j∈Ωk

exp
(
µ(ḡ(j) − ḡmax)

)
ρ(j)

1
σY

(
1

σV M
(j)

[V ]σmicro
(j)

)T

ρr
(j)[Q0(j) ][B][K]−1

(
∂[K]
∂ρ(i)

U
)

Defining λT
k as the adjoint vector and corresponding to the expression in Equation 4.20, λk can be easier

computed as given in Equation 4.21, as the global stiffness matrix [K] is symmetric. Equation 4.21 is known
as the adjoint system, and decreases the computational cost of the gradient analysis, as it does only need to
be calculated once for each constraint, regardless of the amount of variables.

λT
k =

∑
j∈Ωk

exp
(
µ(ḡ(j) − ḡmax)

)
ρ(j)

1
σY

(
1

σV M
(j)

[V ]σmicro
(j)

)T

ρr
(j)[Q0(j) ][B][K]−1

 (4.20)

[K]λk =
∑

j∈Ωk

[
exp

(
µ(ḡ(j) − ḡmax)

)
ρ(j)

1
σY

[B]T ρr
(j)[Q0(j) ]

(
1

σV M
(j)

[V ]σmicro
(j)

)]
(4.21)

Further analyzing Equation 4.19, recalling that the exponent r equals 0 from Equation 4.4, the contri-
bution of

∂(ρr
(j)[Q0(j) ])
∂ρ(i)

is also 0. Moreover, δij can be taken out of the sum. Therefore, combining these two
attributes and the adjoint formulation, the stress constraint and its sensibility can be summarized as shown
next. This is the gradient with respect to the filtered FEM densities. To obtain the correct gradient with
respect to the real optimization densities, the chain rule of Equation 3.19 must still be applied.

All gradient computations have been implemented in Python, in combination with the self-written FEM
analysis as explained in Appendix B. The values of the gradient have been verified against finite difference
by means of a central scheme.
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Von Mises Stress Constraint Summary with Isotropic Material

Optimization constraint

gLKS
k = ḡmax + 1

µ
ln

 1
N

∑
j∈Ωk

exp

µ
ρ(j)


√

([Q0(j) ][B]U (j))T [V ][Q0(j) ][B]U (j)

σY
− 1

− ḡmax


Optimization constraint gradient

∂gLKS
k

∂ρ(i)
= 1∑

j∈Ωk
exp (µ(ḡ(j) − ḡmax))

[
exp

(
µ(ḡ(i) − ḡmax)g(i)

)
− λT

k

∂[K]
∂ρ(i)

U
]

Adjoint vector

[K]λk =
∑

j∈Ωk

[
exp

(
µ(ḡ(j) − ḡmax)

)
ρ(j)

1
σY

[B]T [Q0(j) ]
(

1
σV M

(j)
[V ]σmicro

(j)

)]

4.3 Elliptic Failure Criterion for a Combined Density and Or-
thotropic Material Orientation Optimization

This section presents the method to consider failure for an orthotropic material, where the anisotropic stiffness
variation is only considered by means of the material orientation. This corresponds to having fixed η0 and η1
values, and only ϕ1 is optimized along the density ρ for each element. For such an orthotropic material, the
strength integration must be characterized differently for topology optimization than in case of an isotropic
material of Section 4.2. This involves two major differences. First, failure must be defined by the correct
measure for an elliptic envelope. This failure measure can then be used to incorporate strength constrain
in the optimization. Secondly, the correct gradient must be obtained with respect to both the density and
the additional orientation variable. The next sections shows how including an additional variable does not
change the overall derivation as given in the previous section.

4.3.1 Elliptic Failure Criteria
Whereas a Von Mises criterion is well suited to consider failure for an isotropic material, it can not represent
the behavior of an anisotropic one. When focusing on a UD composite material more specifically, failure
is well characterized by an anisotropic elliptic failure envelope [129]. The Tsai-Wu failure criterion given in
Equation 4.22 is the most widely used of such elliptic envelopes. Xt and Xc are respectively the magnitude
of the tensile and compressive strength allowables along the fiber direction, whereas Yt and Yc are the ones
in the transverse direction. S is the shear allowable. σ1, σ2 and τ12 are the stresses expressed in the ply’s
reference frame.

σ2
1

XtXc
+ σ2

2
YtYc

−
√

1
XtXc

1
YtYc

σ1σ2 +
(

1
Xt

− 1
Xc

)
σ1 +

(
1
Yt

− 1
Yc

)
σ2 + τ12

S2 ≤ 1 (4.22)

The failure envelope of Equation 4.22 can be written in a compact form as given in Equation 4.23, which
is easier to use in the subsequent derivation. The general definition of the quadratic failure matrix F and
linear failure matrix G components are given in Equation 4.24. The specific definition of these matrices for
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the Tsai-Wu failure criterion are listed in Equation 4.25. F ∗
12 is a stress state dependent factor, which is taken

as -0.5 in case of Tsai-Wu.

σT [F ]σ + σT G ≤ 1 (4.23)

[F ] =

F11 F12 F13
F12 F22 F23
F13 F23 F33

 ; G =

G1
G2
G3

 (4.24)

[F ] =


1

XtXc

F ∗
12√

XtXcYtYc
0

F ∗
12√

XtXcYtYc

1
YtYc

0
0 0 1

S2

 ; G =


Xc−Xt

XcXt
Yc−Yt

YcYt

0

 (4.25)

The matrix system can equally be set up for other types of elliptic failure criteria. The Tsai-Hill failure
criterion matrix components are given in Equation 4.26, whereas the components for the Hoffman failure
criterion are given in Equation 4.27 [158]. The Tsai-Hill criterion does not differentiate between tensile and
compressive allowables.

[F ] =

 1
X2 − 1

2X2 0
− 1

2X2
1

Y 2 0
0 0 1

S2

 ; G = {0} (4.26)

[F ] =

 1
XtXc

− 1
2XtXc

0
− 1

2XtXc

1
YtYc

0
0 0 1

S2

 ; G =


Xc−Xt

XcXt
Yc−Yt

YcYt

0

 (4.27)

A representation in the σ1-σ2 and σ2 − τ12 material reference plane of the different failure envelope for
the allowables listed in Table 4.1 is shown in Figure 4.3. The Tsai-Hill X and Y allowables are taken as Xt

and Yt respectively.

Table 4.1: Material strength properties for different failure criteria (E11 = 39 GPa, E22 = 8.4 GPa,
G12 = 4.2 GPa, ν12 = 0.26) [8].

X [MPa] Y [MPa] S [MPa] Xt [MPa] Xc [MPa] Yt [MPa] Yc [MPa] F ∗
12 [-]

Tsai-Hill 1062.0 31.0 72.0 - - - - -
Hoffman - - 72.0 1062.0 610.0 31.0 118.0 -
Tsai-Wu - - 72.0 1062.0 610.0 31.0 118.0 -0.5

Figure 4.3: Tsai-Wu, Tsai-Hill and Hoffman elliptic failure criteria envelope in the σ1 − σ2 and σ2 − τ12
material reference plane for the properties of Table 4.1.
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The components of the matrices of Equation 4.25 can also be expressed by means of the polar formal-
ism [158]. As the matrix representation of Equation 4.25 is expressed in the Voigt basis, the relation to the
tensor components are expressed by Equation 4.28 and 4.29 respectively [158, 194].

F11 = Fxxxx;F13 = 2Fxxxy;F12 = Fxxyy;F33 = 4Fxyxy;F23 = 2Fxyyy;F22 = Fyyyy (4.28)

G1 = Gxx;G2 = Gyy;G3 = 2Gxy (4.29)

The polar invariants γ0, γ1, λ0, λ1, l and the orientation ω1 are then obtained according to Equation 4.30.
These are the counterparts and have the same significance as T0, T1, R0, R1, K and ϕ1 for the stiffness
properties, as discussed in Section 2.5.

8γ0 = F1111 − 2F1122 + 4F1212 + F2222
8γ1 = F1111 + 2F1122 + F2222

8λ0e
4iω0 = F1111 + 4iF1112 − 2F1122 − 4F1212 − 4iF1222 + F2222

8λ1e
2iω1 = F1111 + 2iF1112 + 2iF1222 + F2222

(4.30)

In case of the linear matrix G, the invariants γ and λ, and the orientation ω are obtained as detailed in
Equation 4.31.

γ = G1 +G2

2
λe2iω = G1 −G2

2 + iG3

(4.31)

As the name indicates, all the invariants (γ, γ0, γ1, λ, λ0, λ1, l) are fixed for a given failure criteria,
regardless of the reference frame. This property of the polar parametrization allows for an easy rotation of
the allowables. Indeed, the failure criterion in Equation 4.25- 4.26 are computed in the local material/ply
reference frame, where the stresses have been rotated in the same coordinate system. In the topology
optimization routine, the stress of Equation 4.2 is calculated at each centroid in the global coordinate system.
Therefore, either the stress or the allowables must be rotated to be expressed in the same reference frame. It
is chosen to rotate the allowables, as the polar formalism allows to do this easily with a rotation angle equal
to the material stiffness orientation ϕ1, according to Equation 4.32 and Equation 4.33.

Fxxxx = γ0 + 2γ1 + (−1)lλ0 cos 4(ω1 + ϕ1) + 4λ1 cos 2(ω1 + ϕ1)
Fxxyy = −γ0 + 2γ1 − (−1)lλ0 cos 4(ω1 + ϕ1)
Fxxxy = (−1)lλ0 sin 4(ω1 + ϕ1) + 2λ1 sin 2(ω1 + ϕ1)
Fyyyy = γ0 + 2γ1 + (−1)lλ0 cos 4(ω1 + ϕ1) − 4λ1 cos 2(ω1 + ϕ1)
Fyyxy = − (−1)lλ0 cos 4(ω1 + ϕ1) + 4λ1 sin 2(ω1 + ϕ1)
Fxyxy = γ0 − (−1)lλ0 cos 4(ω1 + ϕ1)

(4.32)

Gxx = γ + λ cos 2(ω + ϕ1)
Gyy = γ − λ cos 2(ω + ϕ1)
Gxy = λ sin 2(ω + ϕ1)

(4.33)

4.3.2 Optimization Constraint Definition
Now that the elliptic failure criteria can be computed with quantities expressed in the same coordinate
system, the failure measure can be computed. The overall procedure and reasoning of Section 4.2.1 are kept,
especially considering the micro-stress definition. Only the specific parts concerning orthotropic failure are
discussed in this section. The failure measure for an elliptic failure envelope is obtained by considering the
safety factor s1 of Equation 4.23, as expressed in Equation 4.34. The stresses used are still the ones obtained
from Equation 4.4.
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s2
1(i)

(σmicro
(i) )T [F (ϕ1(i))]σmicro

(i) + s1(i)(σmicro
(i) )T G(ϕ1(i)) − 1 = 0 (4.34)

The value of the safety factor s1(i) is the positive root of Equation 4.34, as given by Equation 4.35. It is
the multiplier by which the stress state must be multiplied to attain failure. A value of s1(i) ≥ 1 means the
current stress state remains within the feasible envelope and satisfies Equation 4.23. On the other hand, a
value of s1(i) < 1 indicates failure (the stress state should be lowered). Equation 4.35 is what is called failm
in Equation 4.13.

failm(i) := s1(i) =
−B(i) +

√
B2

(i) + 4A(i)

2A(i)

with A(i) = (σmicro
(i) )T [F (ϕ1(i))]σmicro

(i) and B(i) = (σmicro
(i) )T G(ϕ1(i))

(4.35)

As noted [157] and then also implemented [6, 12, 159, 168, 170] in literature, performing optimizations
directly with s1(i) would lead to load-dependent solutions. Instead, to circumvent this characteristic, it is
better to use the inverse of the safety factor s1(i) to define the failure constraint. Therefore, the local con-
straint g(i) can be expressed as given in Equation 4.36.

Moreover, using the inverse of the safety factor, the failure index, has an advantage for topology opti-
mization. If an element has a low stress state, its safety factor would be high, meaning the aggregation would
run into numerical overflow and be impossible to compute. If, on the other hand, the failure index is used in
the aggregation, not only is this problem reversed, with values remaining acceptable, but furthermore, the
correct elements are directly being tracked in the aggregation. Indeed, the lower KS function approximates
the maximum of the provided values, meaning the aggregated value is then linked to the critical element
whose stress state satisfies least the failure criteria.

g(i) := 1
s1(i)

− 1 ≤ 0 (4.36)

Furthermore, the MPVC strategy is still used. Therefore, the local constraint g(i) of Equation 4.36 is
further used to defined ḡi, accordingly to Equation 4.8. Lastly, the aggregated global failure constraint gLKS

k

is obtained by using the lower KS function of Equation 4.9 with the MPVC constraint ḡi. The constraint is
given in Equation 4.37 and an overview of the procedure to obtain it in shown in Figure 4.4.

gLKS
k = ḡmax + 1

µ
ln

 1
N

∑
j∈Ωk

exp

µ
ρ(j)

 2(σmicro
(j) )T [F (ϕ1)]σmicro

(j)

−(σmicro
(j) )T G(ϕ1) +

√
((σmicro

(j) )T G(ϕ1))2 + 4(σmicro
(j) )T [F (ϕ1)]σmicro

(j)

− 1

− ḡmax


(4.37)

𝑓𝑎𝑖𝑙𝑚 𝑖
≔ 𝑠1(𝑖) = 𝑓 𝝈(𝑖)

𝑚𝑖𝑐𝑟𝑜 , 𝐹 𝜙1(𝑖) , 𝑮 𝜙1(𝑖)
𝑔(𝑖) =

1

𝑠1(𝑖)
− 1 ത𝑔(𝑖) = 𝜌(𝑖)𝑔(𝑖) 𝑔𝐿𝐾𝑆 = 𝐿𝐾𝑆 ത𝑔 𝑖

𝜌(𝑖)
𝑝

𝐾 𝑼 = 𝑭 𝜺(𝑖) = 𝐵 𝑼(𝑖) 𝝈(𝑖)
𝑚𝑖𝑐𝑟𝑜 = 𝑄0 𝑖

𝜺(𝑖)

Figure 4.4: Numerical steps used to obtain the global failure optimization constraint for an elliptic failure
criterion with an anisotropic material.
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4.3.3 Optimization Constraint Gradient
Gradient With Respect to Density

The starting point for the derivation of an elliptic failure criteria with respect to the density variable are
Equation 4.38 and Equation 4.39, repeated from Section 4.2.2.

(4.38)

∂gLKS
k

∂ρ(i)
= 1∑

j∈Ωk
exp

(
µ(ḡ(j) − ḡmax)

)
∑

j∈Ωk

exp
(
µ(ḡ(j) − ḡmax)

)∂ρ(j)

∂ρ(i)
g(j)

+ ρ(j)
∂g(j)

∂failm(j)

(
∂failm(j)

∂σmicro
(j)

)T
∂(ρr

(j)[Q0(j) ])
∂ρ(i)

[B]U(j)

− λT
k

(
∂[K]
∂ρ(i)

U
)

[K]λk =
∑

j∈Ωk

[
exp

(
µ(ḡ(j) − ḡmax)

)
ρ(j)

∂g(j)

∂failm(j)

[B]T ρr
(j)[Q0(j) ]

(
∂failm(j)

∂σmicro
(j)

)]
(4.39)

The partial derivative ∂g(j)
∂failm(j)

in case of an elliptic failure criteria is replaced with its adequate expression,
obtained in Equation 4.40 from Equation 4.36.

∂g(j)

∂failm(j)

:= ∂

∂s1(j)

(
1

s1(j)

− 1
)

= −1
s2

1(j)

(4.40)

To take into account the correct definition of failm(j) , and its partial derivative
∂failm(j)
∂σmicro

(j)
, in case of an

elliptic failure criteria, first the chain rule of
∂failm(j)

∂ρ(i)
is computed to shown, and being equivalent to the

isotropic case of Equation 4.13. From the definition in Equation 4.35, Equation 4.41 is obtained.

∂failm(j)

∂ρ(i)
:=

∂s1(j)

∂ρ(i)
=

∂s1(j)

∂σmicro
(j)

∂σmicro
(j)

∂ρ(i)
(4.41)

Therefore
∂failm(i)
∂σmicro

(j)
equals to

∂s1(i)
∂σmicro

(j)
. This expression is a vector, as it provides the derivatives with

respect to the 3 stress components. It is obtained by means of the following steps. Using the chain rule on
Equation 4.35 results in Equation 4.42.

∂s1

∂σmicro
x

= ∂s1

∂A

∂A

∂σmicro
x

+ ∂s1

∂B

∂B

∂σx

∂s1

∂σmicro
y

= ∂s1

∂A

∂A

∂σmicro
y

+ ∂s1

∂B

∂B

∂σmicro
y

∂s1

∂σmicro
xy

= ∂s1

∂A

∂A

∂τmicro
xy

+ ∂s1

∂B

∂B

∂τmicro
xy

(4.42)

The partials derivatives with respect to the quadratic components A and B are obtained as shown in
Equation 4.43.

∂s1

∂A
=

4A√
B2+4A

− 2
(
−B +

√
B2 + 4A

)
4A2

∂s1

∂B
= 1

2A

(
−1 + B√

B2 + 4A

) (4.43)
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The partial derivatives of the quadratic components with respect to the micro-stress are then obtained as
given in Equation 4.44.

∂A

∂σmicro
x

= 2σmicro
x F11 + 2F12σ

micro
y ; ∂A

∂σmicro
y

= 2σmicro
y F22 + 2F12σ

micro
x ; ∂A

∂τmicro
xy

= 2τmicro
xy F66

∂B

∂σmicro
x

= F1; ∂B

∂σmicro
y

= F2; ∂B

∂τmicro
xy

= 0
(4.44)

Once the values of Equation 4.43 and Equation 4.44 are obtained, they are assembled in a vector according
to Equation 4.42 to obtain

∂failm(j)
∂σ(j)

. Then combining it with Equations 4.38, 4.39 and 4.40, and furthermore
considering that r is still taken as 0, the gradient of an elliptic failure criteria with respect to the density is
given by Equation 4.45 and the adjoint vector of Equation 4.46. Again, this is the gradient with respect to
the filtered FEM densities. To obtain the correct gradient with respect to the real optimization densities,
the chain rule of Equation 3.19 must still be applied.

∂gLKS
k

∂ρi
= 1∑

j∈Ωk
exp (µ(ḡ(j) − ḡmax))

[
exp

(
µ(ḡ(i) − ḡmax)

)
− λT

k

∂[K]
∂ρ(i)

U
]

(4.45)

[K]λk =
∑

j∈Ωk

[
exp

(
µ(ḡ(j) − ḡmax)

)
ρ(j)

(
−1
s2

1(j)

)
[B]T ρr

(j)[Q0(j) ]
(

∂s1(j)

∂σmicro
(j)

)]
(4.46)

Gradient With Respect to the Material Orientation

To obtain the orientation gradient, the partial derivative of ḡ in Equation 4.12 must first be adjusted. This
is expressed in Equation 4.47.

∂ḡ(j)

∂ϕ1(i)

= ρ(j)
∂g(j)

∂failm(j)

∂failm(j)

∂ϕ1(i)

(4.47)

where the last part is given by Equation 4.48.

∂failm(j)

∂ϕ1(i)

:=
∂s1(j)

∂ϕ1(i)

=
∂s1(j)

∂σmicro
(j)

∂σmicro
(j)

∂ϕ1(i)

+
∂s1(j)

∂[F(j)]
∂[F(j)]
∂ϕ1(i)

+
∂s1(j)

∂G(j)

∂G(j)

∂ϕ1(i)

(4.48)

This entails two facts. The first one comes from Equation 4.47, where the first term of Equation 4.13 is
not present anymore, meaning there is also no more δij dependency in the subsequent gradient (such as in
Equation 4.18). Secondly, [F ] and G contain the failure allowables expressed in the global reference frame.
These are rotated with respect to the local material frame, by means of ϕ1, as explained in Section 4.3.1.
Therefore, this rotation effect on [F ] and G must also be accounted for in the gradient. This is the influence
of the last 2 terms in Equation 4.48. In the first term, the first factor

∂s1(j)
∂σmicro

(j)
does remain the same as

Equation 4.42. The second factor, ∂σmicro
(j)

∂ϕ1(i)
, given in Equation 4.49, is obtained similarly to Equation 4.16,

with the substitution of Equation 4.17.

∂σmicro
(j)

∂ϕ1(i)

= ∂

∂ϕ1(i)

(
ρr

(j)[Q0(j) ][B]U
)

=
∂(ρr

(j)[Q0(j) ])
∂ϕ1(i)

[B]U − ρr
(j)[Q0(j) ][B][K]−1

(
∂[K]
∂ϕ1(i)

U

)
(4.49)

The terms of Equation 4.50 have been obtained by means of a central difference scheme.

62



4.3. Elliptic Failure Criterion for a Combined Density and Orthotropic Material Orientation Optimization

∂s1(j)

∂[F(j)]
∂[F(j)]
∂ϕ1(i)

≈
s1(j)([F(j)(ϕ1(i) + ∆ϕ1)]) − s1(j)([F(j)(ϕ1(i) − ∆ϕ1)])

2∆ϕ1

∂s1(j)

∂G(j)

∂G(j)

∂ϕ1(i)

≈
s1(j)(G(j)(ϕ1(i) + ∆ϕ1)) − s1(j)(G(j)(ϕ1(i) − ∆ϕ1))

2∆ϕ1

(4.50)

Combining Equation 4.47-4.50 in Equation 4.12, Equation 4.51 is obtained.

(4.51)

∂gLKS
k

∂ϕ1(i)

= 1∑
j∈Ωk

exp
(
µ(ḡ(j) − ḡmax)

)
∑

j∈Ωk

exp
(
µ(ḡ(j) − ḡmax)

)ρ(j)
∂g(j)

∂failm(j)

(∂failm(j)

∂σmicro
(j)

)T

∂(ρr
(j)[Q0(j) ])
∂ϕ1(i)

[B]U +
∂s1(j)

∂F(j)

∂F(j)

∂ϕ1(i)

+
∂s1(j)

∂G(j)

∂G(j)

∂ϕ1(i)

− λT
k

(
∂[K]
∂ϕ1(i)

U
)

Again, an adjoint vector can be defined as given in Equation 4.53, resulting in Equation 4.52.

(4.52)

∂gLKS
k

∂ϕ1(i)

= 1∑
j∈Ωk

exp
(
µ(ḡ(j) − ḡmax)

)
∑

j∈Ωk

exp
(
µ(ḡ(j) − ḡmax)

)ρ(j)

(
−1
s2

1(j)

)(∂failm(j)

∂σmicro
(j)

)T

∂([Q0(j) ])
∂ϕ1(i)

BU +
∂s1(j)

∂[F(j)]
∂[F(j)]
∂ϕ1(i)

+
∂s1(j)

∂G(j)

∂G(j)

∂ϕ1(i)

− λT
k

(
∂[K]
∂ϕ1(i)

U
)

[K]λk =
∑

j∈Ωk

[
exp

(
µ(ḡ(j) − ḡmax)

)
ρ(j)

(
−1
s2

1(j)

)
[B]T ρr

(j)[Q0(j) ]
(

∂s1(j)

∂σmicro
(j)

)]
(4.53)

It can be seen that the adjoint vector in Equation 4.53 is the same as the one in Equation 4.46 for the
gradient with respect to the density, meaning that just one linear problem must be solved per constraint with
the adjoint term, regardless of the number (and type) of variables.

Finally, the optimization constrain and its gradients with respect to the density ρ and material orientation
ϕ1 can be summarized as given next, knowing that r equals 0 from the previous equations.

Elliptic Failure Criterion Constraint Summary with Anisotropic Material

Optimization constraint

gLKS
k = ḡmax + 1

µ
ln

 1
N

∑
j∈Ωk

exp

µ
ρ(j)

 2(σmicro
(j) )T [F (ϕ1)]σmicro

(j)

−(σmicro
(j) )T G(ϕ1) +

√
((σmicro

(j) )T G(ϕ1))2 + 4(σmicro
(j) )T [F (ϕ1)]σmicro

(j)

− 1

− ḡmax


Optimization constraint gradient

∂gLKS
k

∂ρ(i)
= 1∑

j∈Ωk
exp (µ(ḡ(j) − ḡmax))

[
exp

(
µ(ḡ(i) − ḡmax)g(i)

)
− λT

k

∂[K]
∂ρ(i)

U
]
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∂gLKS
k

∂ϕ1(i)

= 1∑
j∈Ωk

exp
(
µ(ḡ(j) − ḡmax)

)
∑

j∈Ωk

exp
(
µ(ḡ(j) − ḡmax)

)ρ(j)

(
−1
s2

1(j)

)(∂failm(j)

∂σmicro
(j)

)T

∂([Q0(j) ])
∂ϕ1(i)

BU +
∂s1(j)

∂[F(j)]
∂[F(j)]
∂ϕ1(i)

+
∂s1(j)

∂G(j)

∂G(j)

∂ϕ1(i)

− λT
k

(
∂[K]
∂ϕ1(i)

U
)

Adjoint vector

[K]λk =
∑

j∈Ωk

[
exp

(
µ(ḡ(j) − ḡmax)

)
ρ(j)

(
−1
s2

1(j)

)
[B]T ρr

(j)[Q0(j) ]
(

∂s1(j)

∂σmicro
(j)

)]

4.4 Towards Complex Application Cases
This small sections details the considerations that should be incorporated to the methods outlined previously
to consider more complex optimization cases, not implemented here as it was not the main scope of the
research. The required changes to the numerical implementation are discussed, and necessitates very few
conceptual changes. The more complex application cases involve multi-loading, considering other failure
criteria and switching to 3D optimizations.

4.4.1 Advanced Failure Criterion
Three different elliptic failure criteria were presented (Tsai-Wu, Tsai-Hill and Hoffman). Nonetheless, the
current procedure allows to incorporate more complex failure criteria in 2D , such as presented by Li et
al. [195], or even higher order criteria. In case of strength criteria taking into account different failure
mechanisms, such as Hashin or Puck, the local constraint definition and aggregation could be done separately
for each condition in the criteria. Indeed, as all the optimization constraints are satisfied at the end of the
optimization, it means that each individual local constraint and condition will be satisfied, despite not having
been checked in the same optimization constraint, and no failure is predicted by the strength criterion.

4.4.2 Adapting to 3D Optimization
The whole procedure outlined previously does not change if 3D elements are considered in the FEM analysis;
only the shape of the matrices is altered in order to match the number of degrees of freedom and stress
components for each element. For example, the [B] matrix becomes a (6,24) matrix instead of (3,8), and
the failure criterion uses the full stress field (it depends on all 6 components). Also the stiffness tensor [Q0]
becomes a (6,6) matrix instead of (3,3). In case of 3D anisotropy, the stiffness tensor can not be represented by
the polar formalism, and requires another adequate parametrization to be efficiently used in the optimization,
such as the one proposed by Ranaivomiarana for transversely isotropic material [2]. However, a 3D strength
criteria can also not be defined anymore by the polar formalism, and should follow the orientation definition
of the 3D anisotropy.

4.4.3 Commercial FEM Integration
If a commercial FEM software is to be used (such as MSC NASTRAN or ALTAIR OptiStruct), there are
several possibilities to interface with it. The mechanical response can be obtained in each element, and
post-processed according to Equation 4.54 to obtain the correct constraint based on the micros stress.

σmicro
(i) =

σF EM
(i)

ρp
(i)

(4.54)
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However, obtaining the gradient is not as straightforward. Two options are available: use the internal
scripting of a FEM software, or calculate the gradient oneself. The former option involves using the internal
relation of a FEM software to compute the aggregation in the input file, which then allows the FEM software
to compute the gradient afterwards. This however has the disadvantage of not knowing which method the
FEM software will use to calculate the gradient, i.e. whether the aggregation is recognized and the adjoint
formulation will be used or instead the more computational costly direct method. The latter direct approach
will always be implemented in the software and obtain the gradients, as it is the most basic one, but the
computation time can become prohibitive for large system (both the required amount of gradients scales
with increasing the number of elements, so does the computation of one FEM analysis for a larger and more
costly FEM to be solved). The other option consists in calculating the adjoint vector oneself by means
of Equation 4.55. To do this, the fictive force vector on the right hand side of Equation 4.55 should be
computed, and be applied to the nodes of the FEM model. The FEM analysis is then solved with the same
displacement boundary conditions, and the resulting displacement vector corresponds to the adjoint vector
λk. Nonetheless, to set up this fictive force vector, the knowledge of [B], the strain-displacement matrix, is
required for each type of element in the FEM implementation.

[K]λk =
∑

j∈Ωk

exp
(
µ(ḡ(j) − ḡmax)

)
ρ(j)

∂g(j)

∂failm(j)

[B]T [Q0(j) ]
(
∂failm(j)

∂σmicro
(j)

)T
 (4.55)

Finally, once the adjoint vector is obtained, the integration rule of Equation 3.16 to obtain the elementary
stiffness matrix must also be known to obtain the partial derivatives, especially with respect to the anisotropy,
as this is included in the integration (see Equation 3.16).

4.4.4 Multi-Loading Optimizations
Multi loading of a structure is an inherent feature of practical engineering applications. Two major types of
optimization problems can be characterized: with a load independent objective function or a load dependent
one. An example of the former consists in volume minimization, whereas the latter includes compliance or a
stress criterion optimization.

When the objective does not depend on the loading, multiple load cases can be used straightforwardly
with this example. Indeed, each mechanical response (such as compliance, stress criterion,...) can be easily
incorporated as constraint for all the individual load cases.

When the objective is load dependent, such as the compliance, all measures for the different load cases can
not be minimized directly. Instead, a weighted sum approach of the different values can be used as objective.
This however requires to attribute weight to each load case separately, and its importance to the final design.
Alternatively, the optimization problem could be altered by using a bound formulation strategy [125, 196]. A
bound formulation strategy consists in minimizing the maximum of separate values. Finally, as an example
for compliance, the problem could also just be formulated as the compliance minimization for a single load
case, whereas the compliance of other load cases is incorporated as constraints. All previous comments are
also valid for other load dependent constraints, be it a stress criterion or other such as buckling, vibrations,
etc...

4.5 Conclusion
This chapter provides the methodology to obtain the optimization constraint in case of anisotropic failure
with a UD material. It considers the case where only the density and material orientation changes during
the optimization (the peculiarities of an homogenized stiffness but unknown laminate layup by means of the
polar parameters is discussed in Chapter 6). An anisotropic stress-based strength criterion is used to define
the local element-wise strength constraint, by using the polar formalism to express the strength properties
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in the global reference frame depending on the local orientation of the ply. Furthermore, the relaxation and
regulation techniques used with isotropic material are integrated in case of anisotropic stress-based strength.
It is also shown how to obtain the gradient of the optimization constraint with respect to the density and
orientation variable by using the adjoint vector. Finally, a small discussion is provided on extending the
method for more practical and complex cases, such as considering multiple load cases or requiring the use of
commercial FEM solver among others.
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Chapter 5

Stress-Based Density and Material
Orientation Topology Optimization:
Applications

5.1 Introduction
This chapter is dedicated to the results of stress-based topology optimizations. First, a benchmark case with
an isotropic material and strength criterion is used as verification and reference. Afterwards, anisotropic
features are gradually introduced in the optimizations. The case of additive manufacturing is considered,
with isotropic stiffness but anisotropic strength depending on the printing direction. Thereafter, anisotropic
stiffness is used with an anisotropic strength criterion, but for fixed orientations. For all these cases, the
optimization is only carried out with respect to the density variables, as the anisotropy remains constant.
Lastly, topology and fiber orientations, representing a UD composite ply, are optimized with strength con-
straint. This is equivalent of fiber steering.

5.2 Different Problem Formulations
With the use of a gradient-based strategy and the inclusion of stress constraints in the framework of topology
optimization, several problems can now be defined. The considered problems in this chapter are a volume
minimization with a stress-based strength constraint (Problem 2), a volume minimization with a compliance
and a stress-based strength constraint (Problem 3) and a volume minimization problem with a compliance
constraint (Problem 4). Finally, the case of compliance minimization with volume and stress-based strength
constraint (Problem 5) is also considered. These different formulations will be used to evaluate the effect on
the optimized solution.

Following the optimizations presented in Section 3.5, C is the compliance, calculated as UT [K]U. vf the
volume ratio of the structure, obtained as V (ρ)/V0, with V (ρ) the sum of all filtered densities and V0 the
volume of the design space. Finally, gLKS

k is the stress constraint as defined by Equation 4.11 or Equation 4.37
depending on the material anisotropy in the optimization, for cluster k. The optimization bounds on the
orientations ϕ1 have been extended compared to the compliance minimization problem, to leave more design
freedom to the optimization for these more complex problems. A normalization parameter N0 is also used
for the objective, and adapted for each problem to control the convergence of the optimization. Indeed, the
optimization process may becomes divergent for certain settings. Svanberg [188] explains that the objective
value should ideally be in the range [1, 100]. N0 is therefore used to scale the objective value to follow this
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guideline. Furthermore, using this N0 factor changes the relative magnitude of the constraint and objective
values. In general, the larger the objective value is, the more the optimization will focus on improving
the objective. On the other hand, a lower objective value will lead the optimization to emphasis more on
satisfying the optimization constraint. This parameter will further be discussed in Section 5.5.3.

min
ρ,ϕ1

vf (ρ)/N0

s.t. gLKS
k (ρ,ϕ1) ≤ 0

ρ ∈ [ρmin, 1]
ϕ1 ∈ [−3π/2, 3π/2]

(Problem 2)

min
ρ,ϕ1

vf (ρ)/N0

s.t. C(ρ,ϕ1) ≤ C0

gLKS
k (ρ,ϕ1) ≤ 0

ρ ∈ [ρmin, 1]
ϕ1 ∈ [−3π/2, 3π/2]

(Problem 3)

min
ρ,ϕ1

vf (ρ)/N0

s.t. C(ρ,ϕ1) ≤ C0

ρ ∈ [ρmin, 1]
ϕ1 ∈ [−3π/2, 3π/2]

(Problem 4)

min
ρ,ϕ1

C(ρ,ϕ1)/N0

s.t. V (ρ)/V0 ≤ vf

gLKS
k (ρ,ϕ1) ≤ 0

ρ ∈ [ρmin, 1]
ϕ1 ∈ [−3π/2, 3π/2]

(Problem 5)

All optimizations going forward will be applied on the L-bracket test case, represented in Figure 5.1. It
has a mesh size of 1 × 1 mm2, with the top face clamped. A downwards load F is distributed over the
top 5 right most nodes at the force introduction location. The total load magnitude is adapted for each
case, depending on the material properties. The black zone consists in 5 × 5 elements whose properties are
not optimized. These 25 elements are given isotropic elastic properties, represented by T0 and T1, when the
anisotropy is optimized in the following results. These elements are kept constant as to avoid having numerical
stress concentration due to the load introduction. Furthermore, only one stress cluster k is considered in the
optimization, and it consists of all elements which are optimized. The k index is therefore drop in subsequent
notations for gLKS

k . Depending on the optimization, a prescribed volume fraction vf or prescribed compliance
value C0 is also used and indicated.

F

Figure 5.1: L-bracket test case representation.
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MMA Parametrization for Stress Inclusion

The optimizations of Section 3.5.2 consisted in compliance minimization with a volume constraint. Both these
functions behave with regularity with respect to density and anisotropic modules, and the monotonous MMA
approximation turned out to be well suited in both cases. This allowed to use exploratory algorithm settings
for the MMA approximation, and perform larger variable changes per iterations as the gradient retained a
greater validity around the current iteration point. However, when considering stress in topology optimiza-
tion, the design space is much more non-linear and therefore requires a tighter control on the approximations
and variable changes as to not have a divergent optimization. This is done by using a tighter approximation
validity region, and is controlled with two settings. The first option involves a direct control through the
move setting, dictating the maximum variable change between two successive iterations. The second option
has a more indirect control, and restricts the asymptotes distance. By having tighter asymptotes, a more
conservative approximation is used and limits the changes. This latter option was implemented by means
of external move limits, as suggested by Verbart et al. [5] and employed by Coniglio [197]. Concerning the
orientations and its GCMMA approximation, it is not altered as by itself it is already more conservative to
take into account the non-monotonous influence of the material orientation on the design criterion.

The initialization for all these optimizations starts with ρ = 1. All the optimization are done for a fixed
1000 iterations each, with a fixed SIMP p = 3 exponent. All relevant SplitMMA strategy properties are given
in Table 5.1.

Table 5.1: MMA and GCMMA algorithm settings for the SplitMMA strategy with strength constraints.

MMA ρ GCMMA ϕ1 MMA α & β

epsimin 10−10 10−10 10−10

raa0 10−4 0.01 10−4

raa0eps - 10−6 -
move 0.5 - 0.5

external move limit 0.1 - 0.1
albefa 0.1 0.98 0.1
asyinit 0.1 0.7 0.1
asyincr 1.1 1.2 1.1
asydecr 0.8 0.6 0.8

5.3 Stress-Based Topology Optimization with Isotropic Stiffness
and Strength

This first section is dedicated to the verification of the method presented in Chapter 4 and its implementation
with isotropic stiffness and a Von Mises criterion. More specifically, the influence of the aggregation parameter
µ on the optimized topology and maximum local strength constraint is first investigated and decided upon
for the rest of the research. This is followed by a comparison of different optimization problems and the
influence on the optimized solution. The settings and properties used in the following optimizations are
given in Table 5.2. The mechanical properties being isotropic, the optimizations are carried out only with
respect to the density variables.

5.3.1 Influence of the Aggregation Parameter µ

The influence of the aggregation parameter µ in Equation 4.11 is investigated, by performing the volume
minimization of Problem 2 with values of µ equal to 10, 20, 30 and 40. The results of these four optimizations
are given in Figure 5.2. The normalization parameter N0 is set to 25.
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Table 5.2: Isotropic material properties and optimization parameters for a strength-based topology opti-
mization.

Modules Values Polar parameters Values
E [GPa] 69.7 TL

0 [GPa] 26.9
G12 [GPa] 26.9 TL

1 [GPa] 24.7
ν12 [-] 0.29 ηL

1 [-] = ηL
0 [-] 0

F [N] C0 [mJ] σY [MPa] Rρ [mm] µ [-]
200.0 25.0 45.0 2.0 30.0

𝜇 = 10
𝑣𝑓 = 34.49% %, C = 38.44 mJ, 𝑀𝑛𝑑 = 15.90, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.43

𝜇 = 20
𝑣𝑓 = 36.87%, C = 36.78 mJ, 𝑀𝑛𝑑 = 15.80%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.25

𝜇 = 30
𝑣𝑓 = 40.81%, C = 35.91 mJ, 𝑀𝑛𝑑 = 16.80%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.16

𝜇 = 40
𝑣𝑓 = 43.89%, C = 35.29 mJ, 𝑀𝑛𝑑 = 17.33%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.12

Figure 5.2: Influence of the aggregation parameter µ on stress-based topology optimization with an
isotropic material and a Von Mises criterion. Information shown for optimized elements with a final
density ≥ 0.3.

First looking at the convergence properties of these four optimizations, it is visible that the strength
optimization constraint gLKS in all four cases is satisfied. Furthermore, once the constraint is satisfied,
the objective (volume) reduction happens sharply at the beginning before leveling out. The local aggrega-
tion constraint ḡ(j) is violated on the structure, as the lower KS aggregation underestimates the maximum.
Nonetheless, the optimization is successful in creating a rounding at the re-entrant corner to alleviate the
stress concentration, such as the results in literature as presented in Section 2.3.2.
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Looking at the final properties of the four optimizations, several effects are visible due to changing the
value of µ. Going from the smallest to the highest µ value optimization results, the maximum ḡ(j) decreases,
dropping from 0.43 to 0.12. On the contrary, the volume increases. This can be explained by the fact that a
lower µ allows for a higher stress limit, which for a given load means less material. This in turns translates
to a lower total volume. Finally, all four optimizations yield solutions with features which are well solicited.

An aggregation value µ= 30 is chosen to perform all subsequent optimizations which uses the lower KS. For
this value, the underestimation is only about 15%, but increasing the value further does not yield substantial
gains in the underestimation. Moreover, if µ is chosen too high, the approximation of the maximum becomes
increasingly non-linear. Its smooth approximation tends to become non-differentiable again. This has not
been experienced as an issue with the selected µ value. This µ value influences the global behavior of the
topology, by creating a rounder feature at the re-entrant corner but also shifting the right vertical bar away
from the domain boundary. Finally, the chosen µ value lays within the range of values recommended by
Verbart et al. [5]. If needed, the fact that the lower KS underestimates the maximum could be addressed
by using a rectifier approach, as the ones discussed in Section 2.3. Alternatively, the maximum error of an
aggregation function can be related to the number of elements and aggregation parameter [6].

5.3.2 Influence of the Optimization Problem Formulation
The effect of including different optimization constraints for the minimization of the volume is investigated
with isotropic stiffness. Problem 2, Problem 3 and Problem 4 are carried out only with respect to the density
variable, with their results shown in Figure 5.3. The properties in Table 5.2 are still used, with an aggregation
parameter µ = 30, and N0 = 25. For Problem 4, the algorithm settings of Table 3.4 are used. For this case,
there is no need for more conservative settings as both the compliance and volume functions are regular and
monotonous.

The results for these different optimization problems highlight several points. First, when volume min-
imization is carried out only considering compliance and not strength (Problem 4), a stress concentration
at the re-entrant corner is formed. In this example, the Von Mises stress has a maximal magnitude of
109.5 MPa in an element of density 0.79, which is equivalent to ḡmax = 1.13 when evaluated with the limit
of σY = 45 MPa for this problem. Alternatively, only considering elements with ρ ≥ 0.95, the highest Von
Mises stress is 64.3 MPa, with an equivalent ḡmax = 0.41. As stated early, having such overshoot compared to
a target stress is not wishful for practical engineering applications. It is a traditional result found in literature.

When the volume minimization is constrained with both compliance and strength (Problem 3), the overall
distribution does not change. Mostly, a local radius appears at the re-entrant corner to alleviate the stress
constraint. It is interesting to note that this would also be the procedure to remove stress concentration in a
design office, by adding a small radius at sharp corners. Moreover, it can be noted that the structure is far
from uniformly solicited. The final volume value (vf = 31.2%) is higher than the previous case, which is to
account for the material redistribution at the re-entrant corner and changes to alleviate the stress constraint.
The constraints are well respected and taken into account in the optimization, as displayed in the convergence
graph.

Lastly, when only strength is taken account for in the volume minimization (Problem 2), a much more
pronounced rounding and change in the material distribution is obtained. Furthermore, a lighter structure
than in the previous two cases is obtained, be it with compliance only as outcome. It is more compliant,
which is logical as the topology is not designed for stiffness, but also the lower volume which by itself already
makes it less stiff. The Mnd is similar between the first two problems in this discussion, meaning the compli-
ance values can be compared. On the other hand, the Mnd of the third problem is higher, which also worsen
the comparison of compliance. This behavior of higher Mnd and more intermediate density elements in the
optimized solution is explained partly due to the optimization problem formulation, but also to the lack of
compliance consideration in the optimization: the SIMP interpolation with p > 1 indeed penalizes interme-
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Problem 3
𝑣𝑓 = 48.63%, C = 25.00 mJ, 𝑀𝑛𝑑 = 13.60%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.26

Problem 4
𝑣𝑓 = 46.37%, C = 25.00 mJ, 𝑀𝑛𝑑 = 12.70%, 

𝑔𝐿𝐾𝑆 = 0.30, ҧ𝑔𝑚𝑎𝑥 = 1.13

Problem 2
𝑣𝑓 = 40.81%, C = 35.91 mJ, 𝑀𝑛𝑑 = 16.80%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥= 0.16

Figure 5.3: Influence of the optimization problem (Problem 2, Problem 3 and Problem 4) with an isotropic
material and a Von Mises criterion. Information shown for optimized elements with a final density ≥ 0.3.

diate densities for compliance. Therefore, there is an incentive to remove intermediate densities as much as
possible, and to reduce the volume. By not considering the compliance, this incentive is lost, and only an
indirect mechanism penalizes intermediate densities through the micro-stress. These three basic examples
show the difference in results depending on the problem formulation. With the use of the gradient-based
optimization strategy, designers have much more freedom to adapt the problem to their needs, by giving the
possibility to adapt or consider the pertinent formulation depending on the requirements, such as being the
lightest or having more engineering constraints.

Another important discussion for these simple isotropic problems concerns the convergence rate, and
associated computational cost, for the different formulations. The convergence graphs are already shown in
Figure 5.3, with a more detailed view of the topologies throughout the iterations displayed in Figure 5.4.
For Problem 4, the formulation only taking compliance into consideration, convergence and a discrete solution
are obtained quickly, after 75 iterations. This has two reason. The first one is dependent on the algorithm
settings, where for this case, the settings of Table 3.4 have been used. As both the volume and compliance
design space are regular and monotonous, the approximated MMA sub-problem still represents the design
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Iteration 25 Iteration 75 Iteration 300 Iteration 700

Problem 2
𝑣𝑓 = 40.81%, C = 35.91 mJ, 𝑀𝑛𝑑 = 16.80%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.16

Problem 3
𝑣𝑓 = 48.63%, C = 25.00 mJ, 𝑀𝑛𝑑 = 13.60%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.26

Problem 4
𝑣𝑓 = 46.37%, C = 25.00 mJ, 𝑀𝑛𝑑 = 12.70%, 

𝑔𝐿𝐾𝑆 = 0.30, ҧ𝑔𝑚𝑎𝑥 = 1.13

Figure 5.4: Topology convergence rate of the solutions of Figure 5.3 with isotropic material, for a volume
minimization with a strength constraint (Problem 2), a volume minimization with a strength and com-
pliance constraint (Problem 3) and a volume minimization with a compliance constraint (Problem 4).

space well away from the current iteration point. This allows for variable changes per iteration, and there-
fore less iterations are required to remove intermediate densities. The second reason for faster convergence
furthermore specifically targets those intermediate densities. As already addressed, the SIMP interpolation
penalizes those intermediate densities in case of compliance, which drives them towards distinct results.

On the other hand, when only strength is included, the MMA settings are more restrictive (Section 5.2
and Table 5.1) as the problem involves a more non-linear response and therefore the validity of the gradi-
ent information has to be bounded further. This already entails that a larger number of iterations will be
required, as the variable change per iteration is less. Furthermore, only an indirect penalization of the inter-
mediate densities is involved through the micro-stress. The optimized solution is only obtained after around
700 iterations. Moreover, some light gray zones (ρ ∈ [ρmin, 0.1]) remain at the end of the optimization. This
was also reported by Verbart et al. [5]. This effect is much less when compliance is considered alongside
failure in the problem, due to the already discussed SIMP penalization and tendency to converge to real dis-
tinct solutions. Moreover, still with the same algorithm settings, the final topology is obtained faster in the
volume minimization considering both compliance and strength, after only around 300 iterations. This shows
the effect of a direct penalization, but also the more conservative settings to handle stress-based topology
optimization problems. Therefore, an idea to further accelerate convergence, is to penalize the intermediate
densities in the objective, by introducing a similar penalizing interpolation for the volume calculation, left as
a future possibility.

As a conclusion, several optimization problems with isotropic stiffness and strength have been discussed.
The importance of strength consideration have been discussed to reduce stress concentration. Without
compliance constraint, lighter structures are obtained with only strength consideration. Furthermore, the
influence of more conservative algorithm settings to obtain convergence are discussed. It lengthens the
optimization process, be it that with a direct penalization, such as is the case of compliance, the convergence
can be improved. Nonetheless, the gradient-based framework allows for a versatile use and permutation of
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different constraints or objective. This part also served as a demonstration and verification of the correct
integration of stress constraints in topology optimization for isotropic material before moving on to include
anisotropy.

5.4 Stress-Based Topology Optimization with Isotropic Stiffness
and Strength Anisotropy Induced by 3D Printing

The first consideration of anisotropy in a stress-based topology optimization represents the one assumed in
additive manufacturing under particular printing conditions. As in the work of Mirzendehdel et al. [12], an
isotropic material is used, assumed to be printed in alternative ±45 raster layers in the XY plane parallel
to the machine flatbed. Furthermore, the printing direction Z is defined as the direction perpendicular to
the flatbed of the machine, along which the part is extruded. The local strength of such part can then be
characterized with a transverse anisotropic strength behavior by means of a Tsai-Wu failure envelope, with
the direction of orthotropy aligned with the printing direction. The weaker direction is aligned with the
printing direction, while the stiffness tensor of the material remains isotropic.

In the following, 2D topology optimization are performed in the Y Z plane. The structure is supposed
to be extruded in the X direction. In the YZ plane, the strength is supposed orthotropic. Optimization
and material properties used herein are given in Table 5.3. Solutions to a volume minimization with a
Tsai-Wu strength constraint (Problem 2) are shown in Figure 5.5 for different printing directions. The
printing direction and therefore weakest axis is represented by the yellow arrow (Z axis) in the results.
Furthermore, the anisotropic strength criterion in the σ1 − σ2 material reference plane is indicated for the
different orientations. It is rotated with respect to the global reference plane by the rotation indicating the
printing direction.

Table 5.3: 3D Printing induced material properties and optimization parameters for a strength-based
topology optimization [12].

Modules Values Polar parameters Values
E [GPa] 69.7 TL

0 [GPa] 26.9
G [GPa] 26.9 TL

1 [GPa] 24.7
ν [-] 0.29 ηL

1 [-] = ηL
0 [-] 0

F [N] Rρ [mm] µ [-] Zt [MPa] Zc [MPa] Yt [MPa] Yc [MPa] S [MPa]
200.0 2.5 30.0 19.8 35.0 29.6 38.0 10.0

The direction of weakest strength influences the final result. In all cases, a rounding is introduced at the
re-entrant corner, be it with a different shape for each case. Moreover, all solutions present designs with well
solicited features. In case of the printing direction Z at 0◦, the topology resembles the one with an isotropic
strength criterion. This can be explained by the fact that as there is no stiffness anisotropy, hence the load
path is not influenced. Furthermore, the structure is mostly solicited transverse to the printing direction,
in the direction of equivalent tensile and compressive allowables. For the case of printing at 45◦, the tensile
allowable in the σ1 − σ2 plane for right vertical bar is higher than in case of 0◦ orientation. This means a
smaller cross-section is possible, and explains the reduced volume. This is in turn associated with the highest
compliance, which is expected, as only the presence of material influences the compliance.

The solution with the printing direction at 90◦ ends up with the highest volume of all solutions. This is a
consequence of the weakest axis being aligned with the load. Furthermore, the lower tensile allowable is the
most solicited one in the right vertical bar. As a quick estimation, the tensile load seen by this bar is about
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45° printing direction
𝑣𝑓 = 35.52%, C = 21.48 mJ, 𝑀𝑛𝑑 = 17.80%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.15

0° printing direction
𝑣𝑓 = 40.07%, C = 17.36 mJ, 𝑀𝑛𝑑 = 18.23%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.16

Z

Y

ZY

Z

Y

90° printing direction
𝑣𝑓 = 46.20%, C = 14.88 mJ, 𝑀𝑛𝑑 = 17.00%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.17

Figure 5.5: Solutions for volume minimization with a Tsai-Wu strength constraint representing additive
manufacturing for different printing (extrusion) directions corresponding to the Z axis. Information shown
for optimized elements with a final density ≥ 0.3.

twice the applied load. In combination with the lowest tensile allowable, it explains the need for the largest
cross-section. It is the opposite for the left vertical bar: the compressive allowable is much higher, and it
sees a compressive load with magnitude roughly the same as the applied load. This only requires a smaller
cross-section. Nonetheless, with anisotropic strength and this difference in compressive and tensile allowables,
a solution designed for one applied load direction is not the optimized one for the reverse loading. Indeed,
Figure 5.6 shows the local constraint distribution on the optimized 90◦ solution with an opposite applied load.

With this reverse loading, the solution yields several bars with an excessive local strength constraint ḡ,
even taking the underestimation of the lower KS approach into account. This means the structure would
fail under the reverse loading. Instead, Figure 5.7 shows the optimized solution for the reverse loading. The
major material build-up for the right vertical bar has disappeared, not because of the magnitude of the stress
it experiences, which is similar, but because it is in compression now. Combined with the higher compressive
allowable, this results in a sleeker bar. A similar phenomena is less visible for the left bar, as the load
magnitude is lower, and results in a much lighter structure.

This first consideration of anisotropic strength, yet isotropic stiffness, showed that for the same opti-
mization problem, different optimized topologies are obtained depending on the orientation of anisotropy.
Naturally, when the local stresses are aligned with the weakest anisotropy direction, wider features are cre-
ated. This influence is clearly identifiable on the final design, and therefore should carefully be taken care of,
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𝑣𝑓 = 46.20%,

C = 14.88 mJ,
𝑀𝑛𝑑 = 17.00%,
𝑔𝐿𝐾𝑆 = 0.52,
ത𝑔𝑚𝑎𝑥 = 0.75

Figure 5.6: Local strength constraint for the 90◦

printing direction solution with a reverse loading
condition. Information shown for optimized ele-
ments with a final density ≥ 0.3.

𝑣𝑓 = 33.20%,

C = 18.44 mJ, 
𝑀𝑛𝑑 = 17.03%, 
𝑔𝐿𝐾𝑆 = -0.00, 
ത𝑔𝑚𝑎𝑥 = 0.17

Figure 5.7: Local strength constraint of the opti-
mized solution for additive manufacturing at 90◦

with a reverse applied load. Information shown for
optimized elements with a final density ≥ 0.3.

with a good load case identification. Design engineers should carefully consider the printing direction for op-
timal additive manufacturing pieces when it comes to their strength consideration. Finally, the convergence
graphs show the correct consideration of the strength constraint in the optimization.

5.5 Stress-Based Topology Optimization with Fixed Anisotropic
Stiffness and Strength

The use of anisotropy is further extended to the stiffness tensor, be it with a fixed orientation for this section.
Both strength and stiffness are orthotropic, with the same principal direction X aligned with the fibers and
Y transverse to the fiber. The used properties are listed in Table 5.4. The strength and stiffness material
properties corresponds to the one used by Ma et al. [8], with the exception of the transverse tensile allowable
Yt. The Yt allowable has been multiplied by 3 for this part. This is because the initial allowable is about an
order of magnitude smaller than the other ones, and introduces difficulties to find an optimized topology for a
fixed UD orientation transverse to the applied load. In the optimization of Ma et al. [8], the fiber orientation
is also varied to align the strongest direction with the loading.

Table 5.4: Fixed orthotropic UD material properties and optimization parameters for a strength-based
topology optimization [8].

Modules Values Polar parameters Values
E11 [GPa] 39.0 TL

0 [GPa] 7.6
E22 [GPa] 8.4 TL

1 [GPa] 6.6
G12 [GPa] 4.2 ηL

0 [-] 0.44
ν12 [-] 0.26 ηL

1 [-] 0.55

Xt [MPa] Xc [MPa] Yt [MPa] Yc [MPa] S [MPa]
1062.0 610.0 93.0 118.0 72.0

F [N] Rρ [mm] µ [-]
200.0 2.0 30.0
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5.5.1 Tsai-Wu Failure Criterion
Volume minimization with a strength constraint (Problem 2) is treated herein, still only with respect to
the density variables as the UD material orientation is kept constant. A Tsai-Wu criterion is employed to
characterize failure. The failure envelope in the σ1 −σ2 material reference plane is represented in Figure 5.8.
Figure 5.9 shows the local strength constraint ḡ(i) on the topology consisting of element with ρ ≥ 0.3 for
optimizations carried out for the following UD orientations: 0◦ (= 180◦), 30◦, 45◦, 60◦, 90◦, 120◦, 135◦ and
150◦. The normalization factor has been adapted for each case, as follows: N0 is set to 50 for the optimization
with orientations in ]0◦, 90◦], whereas N0 is taken as 25 for the cases with orientations in ]90◦, 180◦]. The
solution for 0◦ and 180◦ are from the same optimization.

1000 500 0 500 1000
1 [MPa]

100

100

2 [
M

Pa
]

Figure 5.8: Tsai-Wu failure criterion envelope for the properties of Table 5.4 in the σ1 − σ2 material
reference plane.

Compared to the additive manufacturing case with an isotropic stiffness, these solutions are more sensitive
to the material orientation. This is because the load path is more influenced, as the anisotropic stiffness is
also involved in directing the loads, preferably along the direction of the fibers. For instances, for orientations
in ]0◦, 90◦[, the lower right oblique bar follows the UD orientation, whereas this is the case for the lower left
oblique bar for the UD orientations ]90◦, 180◦[.

The local strength constraints ḡ(i) are mostly uniformly distributed over the whole structure, showing sim-
ilar failure level. As mentioned before, although the aggregated optimization constraint is satisfied, some of
these local constraints are above 0, meaning the failure criterion is not satisfied. This is a consequence of the
underestimation of the lower KS. Nonetheless, similar failure levels does not mean similar failure mechanisms.
The different strength allowables result in different failure mechanism being active, as the local loading path
is not always in line with the fiber direction. For example, for the 0◦ case, the transverse allowable is critical
in the vertical bars. On the contrary, shearing failure can be seen in the 90◦ case in the near horizontal
top right bar. Furthermore, depending on the orientations, a rounding is obtained to the re-entrant corner.
Other solutions present a sharper corner, where stress concentration are avoided due to the fiber direction
and anisotropy directing load away, such as with the 45◦ case.

Finally, different final volumes are obtained, with the lowest one for the 90◦ solution. This is logical, as
the point of highest loading and stress is located in the vertical bars. Furthermore, with 90◦ UD orientation,
the fiber and strongest allowables are aligned with this loading. The topology for the 90◦ orientation is given
in Figure 5.10. It shows that the vertical bar are not distinct, with a density of about 0.7. This is due to those
large longitudinal allowables of the UD material. Compared to failure at other locations which happens for
a more complex stress condition. Even with lower densities, and indirect inherent penalization, intermediate
densities still means that a high strength capability is retained for the material. The filter radius dictates the
minimal bar width and therefore the only way to increase the local strength constraint to be more solicited,
is for the optimization to decrease the density, not to have element densities of 1 at that location.

Checking this is done by considering a compliance minimization with volume and strength constraints
(Problem 5) for fixed orientations at 90◦, a Tsai-Wu failure criterion and a volume vf of 25.92%. This volume
constraint corresponds to a 25% increase over the solution of the 90◦ UD optimization in Figure 5.9. This
increase is provided to this new optimization to reach full density in the vertical bars. Indeed, as the structure
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5.5. Stress-Based Topology Optimization with Fixed Anisotropic Stiffness and Strength

is well solicited, material can not be taken elsewhere to obtain fully distinct vertical bars. The solution of
this optimization is shown in Figure 5.11.

𝑣𝑓 = 20.71%, 

C = 2196.27 mJ,
𝑀𝑛𝑑 = 13.21%,
𝑔𝐿𝐾𝑆 = -0.00,
ത𝑔𝑚𝑎𝑥 = 0.01

Figure 5.10: Topology for a vol-
ume minimization with a Tsai-Wu
failure criterion and fibers at 90◦

(Problem 2), as shown in Fig-
ure 5.9.

𝑣𝑓 = 25.92%,

C = 983.52 mJ,
𝑀𝑛𝑑 = 13.22%,
𝑔𝐿𝐾𝑆 = -0.00,
ҧ𝑔𝑚𝑎𝑥 = 0.23

Figure 5.11: Results of a compliance minimization with fixed
UD fibers at 90◦, a Tsai-Wu criterion and a 25% increase of
volume compared to the topology of Figure 5.10 (Problem 5).
Information shown for optimized elements with a final density
≥ 0.3.

The solution to Problem 5 shows that indeed the vertical bar now becomes distinct, as the intermediate
densities are outed to reduce the compliance. Hence, due to this effect but also additional volume, the com-
pliance value is also much lower (from 2196.27 mJ in Figure 5.10 to 983.52 mJ in Figure 5.11). Furthermore,
the topology itself does not change much, except for some additional bars. These are mainly due to the
increase in volume being used, as any volume increase reduce the compliance objective of the optimization.
Looking at the local constraint ḡ(i) for the final result, it shows that the vertical bars are now far from being
critical with full densities. Nonetheless, the lower part remains well solicited, as it was already distinct and
critical in the initial optimization.

5.5.2 Influence of the Choice of the Failure Criterion
The influence of different elliptic failure criteria on the final result is also investigated, for a Tsai-Wu, Tsai-
Hill and Hoffman criteria as described in Section 4.3.1. The results are shown in Figure 5.13. The X and Y
allowable for the Tsai-Hill criterion are taken as Xt and Yt respectively. A representation of all three criteria
is given in Figure 5.12 in the σ1 − σ2 and σ2 − τ12 material reference plane. The Tsai-Hill criterion has the
most conservative transverse envelope, but least longitudinally. This is because Yt and Xt are the smallest
and largest allowable in the transverse and longitudinal direction respectively. Nonetheless, all three enve-
lope have similar shapes. This is also recognized in the optimization results, where the overall distribution
of material remains similar for the optimizations with different failure criteria. There are local differences,
depending on the predominant stress component (shear, longitudinal or transverse), which influences the
local failure mode, and further, final volume. Lastly, for a given fixed orientation, the solution with the
highest volume has the lowest compliance.

The aim of these simulations is not to indicate which failure criteria is best suited for topology optimiza-
tion, merely to show the feasible incorporation of different failure criteria. The specific choice of a criterion
is left to the user, depending on the material and strength characterization.

5.5.3 Influence of the Optimization Objective Normalization
The effect of the normalization factor N0 on the objective, as used in Problem 2- Problem 5, is shown next. It
changes the optimization by granting more or less importance to satisfying the constraints, depending on the
relative magnitude of the constraints and objective. All constraints are already normalized by their bounding
value, so acting on the relative magnitude happens through normalizing the objective value. Figure 5.14
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Figure 5.12: Tsai-Wu, Tsai-Hill and Hoffman elliptic failure criteria envelope in the σ1 − σ2 and σ2 − τ12
material reference plane for the properties of Table 5.4.
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𝑣𝑓 = 24.71%, C = 1496.69 mJ, 𝑀𝑛𝑑 = 14.23%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.12

𝑣𝑓 = 25.44%, C = 1462.85 mJ, 𝑀𝑛𝑑 = 13.78%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.14

𝑣𝑓 = 28.89%, C = 1472.71 mJ, 𝑀𝑛𝑑 = 12.26%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.14

𝑣𝑓 = 28.58%, C = 1609.87 mJ, 𝑀𝑛𝑑 = 12.50%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.13

𝑣𝑓 = 24.34%, C = 1538.00 mJ, 𝑀𝑛𝑑 = 13.21%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.13

𝑣𝑓 = 20.71%, C = 2196.27 mJ, 𝑀𝑛𝑑 = 13.21%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥= 0.09

𝑣𝑓 = 20.88%, C = 2131.94 mJ, 𝑀𝑛𝑑 = 14.35%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.13

𝑣𝑓 = 22.76%, C = 2053.32 mJ, 𝑀𝑛𝑑 = 16.06%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.13

𝑣𝑓 = 28.93%, C = 1597.51 mJ, 𝑀𝑛𝑑 = 12.41%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.13

Figure 5.13: Local strength constraint of the results for volume minimization with different elliptic failure
criteria for 0◦, 45◦ and 90◦ UD orientations. Information shown for optimized elements with a final density
≥ 0.3.
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shows the results of the optimization of Problem 2 with a 90◦ UD fiber and Tsai-Hill failure criteria. It
corresponds to the same case as the top right result in Figure 5.13, be it that the normalization factor
N0 now equals 25 instead of 50. Despite using the same conservative MMA settings, the optimization has
now gone to an unfeasible point by removing all the material first, resulting in a maximum local constraint
exploding to large values. The focus was too much on minimizing the objective. Instead, by using a higher
normalization factor for the solution in Figure 5.13, the objective value is lower, and the focus is emphasized
on satisfying the constraint, before starting to reduce the objective.

𝑁0 = 50 𝑁0 = 25

Figure 5.14: Comparison of the final topology for volume minimization with a Tsai-Hill criterion and UD
fibers at 90◦: on the left, the solution of Figure 5.13 with N0 = 50, and on the right unsuccessful N0 =
25.

Figure 5.15 shows the optimization result, still for Problem 2 and a UD orientation of 90◦, but with a
Tsai-Wu failure criteria. It corresponds to right middle in Figure 5.13, with N0 again equal to 25 instead of
50. The optimization converges well, with a final volume of 14.1%. A different topology is obtained, with
the upper bars slightly inclined. This is assigned to the Tsai-Wu envelope allowing for σ1 stresses larger than
Xt or Xc when some transverse stress σ2 is also present, introduced by the inclination. This however, means
a longer bar is obtained, which in turn increases the total volume. It shows that this normalization setting
influence the optimization process.

𝑁0 = 25
𝑣𝑓 = 21.92%,

C = 1909.43 mJ,
𝑀𝑛𝑑 = 16.40%,
𝑔𝐿𝐾𝑆 = 0.00,
ത𝑔𝑚𝑎𝑥 = 0.14

𝑁0 = 50
𝑣𝑓 = 20.71%,

C = 2196.27 mJ,
𝑀𝑛𝑑 = 13.21%,
𝑔𝐿𝐾𝑆 = 0.00,
ത𝑔𝑚𝑎𝑥 = 0.09

Figure 5.15: Comparison of the final topology for volume minimization with a Tsai-Wu criterion and UD
fibers at 90◦: on the left, the solution of Figure 5.13 with N0 = 50, and on the right with N0 = 25.

As with the selection of the settings for the MMA algorithm, the normalization factor modifies the
optimization problem and the path taken to solve it. All these parameters have several influences. First,
there is no unique setting to obtain the best solution for a range of problems. This means a certain experience
is required in tuning those parameters first to converge to a feasible solution. Thereafter, they can be tuned
in order to find a better optimum. It should also be noted, as already addressed earlier in Section 3.5.2, and
touched upon again in subsequent sections, the starting anisotropy distribution for the topology optimization
is more important for which local minima is obtained. All these become additional considerations to take
into account when using a gradient-based topology optimization tool with anisotropy.
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5.6 Concurrent Density and Material Orientation Optimization
for Steered UD Composite Fibers

This sections is dedicated to the optimization with respect to both density and orientation of a Uni-Directional
(UD) material with strength considerations. The optimizations are solved with the SplitMMA strategy of
Section 3.3. The stiffness properties of Table 5.4 are still used together with the properties listed in Table 5.5.
In this case, the initial tensile transverse allowable Yt has been used, as the UD fiber is allowed to rotated
and align with the direction of largest stress.

Table 5.5: Optimization and UD fiber [8] properties for simultaneous topology and orientation optimiza-
tion with strength constraint.

Rρ [mm] Rϕ1 [mm] µ [-] Xt [MPa] Xc [MPa] Yt [MPa] Yc [MPa] S [MPa]
2.0 2.0 30.0 1062.0 610.0 31.0 118.0 72.0

5.6.1 Filter on Material Orientations
Rϕ1 represents the filter radius used for the material orientations. It is based on the same approach as the
density filter (Equation 3.3) as explained in Section 3.2.1 and Section 3.4, but applied to the orientation
variables. This filter serves to obtain a smoother anisotropy distribution during the optimization. Without
this, checkerboard like phenomena appears on the orientations, which can adversely affect the filtered density
variable. Indeed, with discontinuities on the orientations and therefore the anisotropy, the spatial variations
of the density gradient are less regular, which propagates to the variables during the optimization. Applying a
filter on both orientation and density, leads to a more homogenized and continuous stiffness distribution over
the optimized part. This is a beneficial effect for the load path and subsequent stress distribution. It ensures
that no local stress concentration due to stiffness mismatch is optimized instead of actual stress concentration
due to the geometry and load cases. Nonetheless, this simple linear filter could average out some orientations
which are π apart, e.g., 90◦ and −90◦ which represent the same stiffness tensor would lead to an orientation
of 0◦. This effect will be discussed in the results. A different filter taking near opposite orientations into
account is left as possibility for future work, the focus herein lays in incorporating the strength constraints.

5.6.2 Initial Material Orientation Influence
As was discussed in Section 3.5.2, the initial anisotropy distribution for topology optimization is important
and further corroborated here. The volume minimization with strength constraint optimization of Problem
2 is considered, with an applied load of 400 N, a Tsai-Wu criterion and a normalization factor of 50. All
elements start off with a density of 1, and the effect of the initial orientations is investigated. Three cases
are considered: the orientations are uniformly initialized with either 0◦ and 90◦ or the initial orientation
distribution comes from a compliance minimization problem first, where the density are fixed. The latter
is similar to the initialization phase used in Section 3.5.2 in the case of simultaneous material anisotropy
and density optimization, where a compliance minimization is performed first with respect to the anisotropy
design variables only for the given load case. This allows the anisotropy to align with the load path, pro-
viding the initialization of anisotropy for a subsequent optimization. In the present case, the optimization
constraints and objective are different between the two optimization step, but this is not a problem as long as
the design variables remain the same. The results of optimizations with these three initialization strategies
are shown in Figure 5.16.

The results show three different topologies, with the one starting from 90◦ and the one from the compli-
ance minimization having similar main features. These two also have a similar volume, with the latter one
being the lightest, whereas the 0◦ is by far the heaviest. Analyzing the results further, it shows that the
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Uniform 𝜙1 = 90° initialization
𝑣𝑓 = 20.47%, C = 6165.07 mJ, 𝑀𝑛𝑑 = 16.33%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.08

Distributed 𝜙1 initialization
𝑣𝑓 = 18.06%, C = 5281.91 mJ, 𝑀𝑛𝑑 = 15.72%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.09

Uniform 𝜙1 = 0° initialization
𝑣𝑓 = 31.98%, C = 4301.51 mJ, 𝑀𝑛𝑑 = 22.38%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.09

Figure 5.16: Local strength constraint of the results for volume minimization with a Tsai-Wu criterion for
both topology and orientation optimization of a UD ply with different initialization of the orientations:
uniform ϕ1 = 0◦ on the left, uniform ϕ1 = 90◦ in the middle and distributed ϕ1 on the right. Information
shown for optimized elements with a final density ≥ 0.3.

local strength constraint ḡ(i) is consistently distributed and a design with well solicited features is obtained
for all three initializations. Nonetheless, the issue of well solicited intermediate density bars, as discussed in
Section 5.5.1, is still present as a result of the optimization problem formulation.

The result from the 0◦ initialization suffers from many small bars created within the structure and material
build-up locations with local strength constraint discontinuities. The optimized orientation in the vertical
bars is a full 90◦ rotation from the initialization, which was obtained for the left bar. For the right one,
transverse failure is already present at the start of the optimization, as shown in Figure 5.17. This is due
to both the stress magnitude being higher for the right hand side, and the different nature of the load,
either compressive in the left bar and tensile in the right one, which involves different failure allowables (Yc
and Yt respectively). The algorithm tries to satisfy the strength constraints by rotating some orientations
counter-clockwise and other clockwise. This then involves a detrimental averaging effect of the linear filter on
the material orientations. Spurious 0◦ orientations are generated by averaging ±ϕ1 orientation in adjacent
elements. This generates local stress concentrations that lead to the material density build-up that can be
seen in the middle of the bar. The optimizer is trapped in a sub-optimal solution, due to the linear orientation
filter.
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The material build-up is a result of poor transverse strength properties of the UD material. This happens
when the material cannot be properly aligned with the main load path, as discussed previously, or in locations
of complex multi-direction loading, such as at junctions, as seen with the ϕ1 = 90◦ and the distributed ϕ1
initialization. Furthermore, opposite to the ϕ1 = 0◦ initialization, these ϕ1 = 90◦ and the distributed ϕ1
initializations do not have initial violated local strength constraint in the left upper area of the L-bracket,
as they have the higher longitudinal allowables aligned with the load path. Moreover, the distributed ϕ1
initialization has orientations following the load path, which also decreases the value of the local strength
constraints in the right horizontal part, as visible in Figure 5.17. The ϕ1 = 90◦ initialization shows higher
local strength constraint, where it is solicited in shear. Nonetheless, the final topology for the ϕ1 = 90◦ and
the distributed ϕ1 initializations seem more efficient than the one obtained with the ϕ1 = 0◦ initialization.
In both case the material orientation is well aligned with the bar orientations. Nonetheless the distributed
ϕ1 initialization gives the best result, with both the lowest volume and compliance.

Lastly, where guessing which uniform anisotropy initialization (i.e., 0◦ or 90◦) would be the best starting
value in the case of a uniform ϕ1 initialization is problem specific and not trivial. Using a first optimization
step by minimizing the compliance with respect to the anisotropy with fixed uniform densities will align the
anisotropy with the load path, and can be applied to any case. Aligning the strongest material orientation
with the load path seems a sound engineering basis, and already yields the lowest local strength constraint
distribution of all initialization as seen in Figure 5.17. Therefore, a two step initialization strategy is used for
the remaining optimizations. This strategy yields the solution with the lowest volume, a lower initial stress
concentration and applicable to any load case. The first step consists in aligning the anisotropy with the
load path by performing a compliance minimization with respect to the anisotropy only and SIMP p = 1 for
a uniform and fixed density distribution. This solution is then the start point for the second step, consisting
in a strength-based topology optimization with respect to both density and anisotropy simultaneously with
SplitMMA.

𝜙1 = 90°
Distributed 𝜙1 from compliance 

minimization
𝜙1 = 0°

Figure 5.17: Initial local strength constraint distribution for the optimization of Figure 5.16.

5.6.3 Influence of the Choice of the Anisotropic Failure Criterion
A comparison of optimizations with different elliptic failure criteria is performed with Tsai-Wu, Tsai-Hill and
Hoffman envelopes (described in Section 4.3.1). The optimization problem consists in volume minimization
with strength constraint (Problem 2). An applied load of 400 N and a normalization factor N0 = 50 are
still used. The initial densities are 1, with the distributed orientations ϕ1 obtained from a first compliance
minimization step as explained in Section 5.6.2. The local constraints ḡ(i) for densities greater than 0.3 are
shown for the three cases in Figure 5.19. The X and Y allowables for the Tsai-Hill criterion are taken as Xt

and Yt respectively. A representation of all three envelopes is given in Figure 5.18 in the σ1 − σ2 material
reference plane.
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Figure 5.18: Tsai-Wu, Tsai-Hill and Hoffman elliptic failure criteria envelopes in the σ1 − σ2 material
reference plane for the properties of Table 5.5.

Hoffman criterion
𝑣𝑓 = 19.75%, C = 5738.37 mJ, 𝑀𝑛𝑑 = 16.64%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.08

Tsai-Hill criterion
𝑣𝑓 = 21.08%, C = 7126.47 mJ, 𝑀𝑛𝑑 = 18.28%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.11

Tsai-Wu criterion
𝑣𝑓 = 18.06%, C = 5281.91 mJ, 𝑀𝑛𝑑 = 15.72%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.09

Figure 5.19: Local strength constraint of the results for volume minimization with Tsai-Wu, Tsai-Hill and
Hoffman failure criteria for both density and material orientation optimization of a UD ply. Information
shown for optimized elements with a final density ≥ 0.3.

As with the earlier comparison of different failure criteria with fixed orientation in Section 5.5.2, the
heaviest solution is the one with the more conservative failure criterion, being the Tsai-Hill here. This so-
lution presents the lowest transverse allowables, meaning it has the most material build-up at junctions to
satisfy the optimization constraint. On the contrary, the lightest structure is the one with the largest failure
envelope, represented by the Tsai-Wu criterion. Nonetheless, all solutions are uniformly stressed. The final
topologies are similar, although the Tsai-Wu solution retains vertical bars. For the other two optimizations,
these bars have a small inclination with respect to the vertical. This is associated to being in a particular
local minima, and corresponds to the behavior of other solutions shown previously.

Comparing the final compliance yields remarkable values: the heaviest solution has the highest compliance.
This is because compliance is only considered as an output, and no explicitly during the optimization.
Furthermore, the compliance is not only dependent on the volume, but also on the distributed anisotropy.
The presented solution is a minimum which fulfills the strength constraint, but is not particularly stiff. Other
equivalent minima could be present which stratify the strength constraint and are stiffer.

5.6.4 Influence of an Increased Loading
This part investigates the effect of a higher applied load on the optimized solution. A volume minimization
problem with strength constraint (Problem 2) is treated, with a total applied load F = 800 N, a normalization
factor N0 = 1. The densities start with a uniform density of 1, while a distributed orientation field comes
from a compliance minimization step with respect to the material orientations for fixed densities. In this
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case 1500 iterations have been used, as the convergence takes longer to occur than in Section 5.6.2, beyond
the 1000 iterations. The solution is shown in Figure 5.20.

𝑣𝑓 = 34.21%, C = 10807.93 mJ, 𝑀𝑛𝑑 = 19.77%, 𝑔𝐿𝐾𝑆 = 0.00, ത𝑔𝑚𝑎𝑥 = 0.08

Figure 5.20: Solution for a volume minimization with a Tsai-Wu failure criterion for both topology and
orientation optimization of a UD ply with an increased load F = 800 N. Information shown for optimized
elements with a final density ≥ 0.3.

For this case, looking at the optimization evolution graph, the objective only arrives at a plateau after
around 1250 iterations. Detailing the constraint evolution, it is visible that for early iterations, the strength
constraint is not fulfilled. The optimization therefore first tries to reduce and satisfy the strength constraint
whilst barely improving the objective. Once the constraint is satisfied, the focus of the optimization is back
on the objective minimization. Nonetheless, there are some violations of the strength constraint during the
optimization process. This corresponds to subsequent oscillations in the objective. This is however no issue
for the gradient-based strategy, which can recover from these infeasible points to return to the feasible do-
main and thereafter continue the optimization. These local infeasible points are a consequence of allowing
a step-size too large for any variable with respect to the trust region of the gradient representing the local
behavior of the constraint.

Inspecting the optimized solution, the topology exhibits two loaded sections, forming a sort of arch at
the inner and outer part, with smaller bars between them. The orientations are well aligned with the bars,
except for junction locations or filter transitions between opposite orientations. The stress distribution are
mostly contained within the Tsai-Wu envelope in the σ1 − σ2 and σ2 − τ12 material reference plane. Some
stress state are beyond the envelope, which corresponds to elements with a local constraint greater than
0. Finally, there are some intermediate densities floating around the boundary, which are not connected to
the rest of the structure. These are numerical artifacts appearing in the solution, as these regions’ strength
constraint is well satisfied and could be removed altogether. The small bars within the topology suffer from
being partially loaded, with resulting intermediate densities. They are difficult to remove for the algorithm
with this problem formulation.

Therefore, the same test case is treated with a different problem formulation. A volume minimization
with a strength constraint is still carried out, but also with an added compliance constraint (Problem 3). The
compliance constraint C0 is set at 5500 mJ, which is just over half the one of the solution in Figure 5.20. The
normalization factor N0 is to set to 25. The results of this optimization are shown in Figure 5.21. Despite
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the new problem formulation, the overall topology remains similar to the solution in Figure 5.20. It can
be stated that the problem is therefore driven by the strength constraint, as most of the bars in the new
solution are still highly solicited. Nonetheless, the right vertical bar has become thicker to be stiffer, as have
the inner bars by being more distinct. Furthermore, the floating intermediate densities at the boundary have
been removed.

𝑣𝑓 = 43.89%, C = 5499.86 mJ, 𝑀𝑛𝑑 = 17.35%, 𝑔𝐿𝐾𝑆 = -0.00, ത𝑔𝑚𝑎𝑥 = 0.13

Figure 5.21: Solution for a volume minimization with compliance and a Tsai-Wu failure criterion for
both topology and orientation optimization of a UD ply with an increased load. Information shown for
optimized elements with a final density ≥ 0.3.

Concerning the anisotropy, the final orientations follow well the features, even at junctions, as the outcome
of the optimization has not placed major material build-up at the junctions. This is because the smaller inner
bars do not carry large loads compared to the massive outer bars forming arch-like shape. Therefore, less
multi-directional strength is required at the junctions, represented by the build-ups. Finally, looking at the
outcomes, a higher volume than in Figure 5.20 is obtained. This is due to the intermediate density bars
becoming distinct, but also the thicker vertical bars to account for the compliance constraint. Concerning
the convergence of the optimization, the compliance with the initial full volume is of course largely satisfied,
but not the strength constraint. With the decrease in volume, the compliance constraint becomes active. At
the same time, the emerging topology in combination with the anisotropy alignment reduces the strength
constraint. Once both constraints are satisfied and active, the volume is gradually and regularly minimized.
This example showed that increasing the load of the problem influences the optimized solution, both topology
and conforming anisotropy-wise. However, the optimization will not find a solution for all values of the
applied load. There is a relation between the material properties, considered load cases and design domain
(represented by the underlying mesh), for which there exists feasible solutions. This should be evaluated
beforehand by users of such topology optimization tools, as it is problem specific.
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5.6.5 Comparison with Literature
The method is also compared with literature for Problem 5, with the results of Ma et al. [8]. It consists in a
compliance minimization with strength and volume constraint. The original results are given in Figure 5.22,
where the solution obtained with the current method is shown in Figure 5.23. The optimization is performed
with an applied load F = 200 N, a normalization factor N0 = 1, a volume fraction vf constrained at 40% and
started with µ = 30. The densities are initialized as ρ = 1 and, whereas distributed material orientations are
initialized from a preliminary compliance minimization step. Furthermore, to reduce the overshoot of the lo-
cal strength constraints, the aggregation parameter µ is increased after 500 iterations by 75 every 25 iterations.

𝑣𝑓 = 40.00%, C = 254.79 mJ, 𝑔𝐿𝐾𝑆 = 0.00, ത𝑔𝑚𝑎𝑥 = 0.00

Figure 5.22: Results obtained by Ma et al. [8] for topology and orientation optimization for compliance
minimization with volume and a Tsai-Wu failure criterion with a UD fiber: (a) density and fiber distri-
bution, (b) Tsai–Wu value distribution.

𝑣𝑓 = 40.00%, C = 251.01 mJ, 𝑀𝑛𝑑 = 12.26%, 𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.005

Figure 5.23: Solution for a compliance minimization with volume and a Tsai-Wu failure criterion for both
density and material orientation optimization of a UD ply (Problem 5). Information shown for optimized
elements with a final density ≥ 0.3.

The amount of bars and their location differs between both cases. Nonetheless, the general trend of the
optimized piece is retained. The stress concentrations and high local strength constraints are in similar places,

88



5.7. Conclusion

at the re-entrant corner and junctions. Moreover, with the gradual increase of the aggregation parameter µ, it
is possible to achieve a solution whose local strength constraint are well enough satisfied in combination with
a lower KS approach. Indeed, the maximum local strength value has about a 0.5% overshoot, which is well
within acceptable limits. The increase in µ does introduce some constraint violation during the iterations,
as seen in the convergence graph, but is well recovered by the SliptMMA strategy. Finally, local stress
concentrations are still obtained at orientation transitions. This is noticeable for the ones within bar, such
as the bottom bar in Figure 5.23.

5.7 Conclusion
This chapter showed the implementation and results of the SplitMMA gradient-based optimization strategy
for stress-based problems with anisotropic material properties. It is first verified for a simple isotropic case
with a Von Mises criterion. The effect of different optimization problems are discussed. As the lower KS
aggregation function underestimates the maximum, the optimization constraint is satisfied, while the local
constraints have a value higher than 0. Afterwards, anisotropic stress criteria have successfully been inte-
grated for different problem types. It has first been considered along isotropic stiffness, representing the
behavior along the printing direction in additive manufacturing. This showed that results obtained with an
anisotropic failure criterion, differentiating between tensile and compressive allowables, are not necessarily
satisfied for a reverse loading. Design offices should therefore carefully define the load cases for the use of
topology optimization. Moreover, the difference in tensile and compressive allowable leads to more massive
features for parts subjected to the lower of the two.

UD material was thereafter considered, combining anisotropic stiffness and strength behavior. Volume
minimization optimizations were first carried out only with respect to the density for a range of fixed UD
orientations. This showed that due to the large difference in longitudinal and transverse allowables, the final
densities in only longitudinal loaded features become intermediate values. This is explained by the fact that
the associated allowables are an order of magnitude larger compared to the other ones, and that even penalized
intermediate densities are still strong enough to carry the load and fulfill the strength criterion. If compliance
consideration is integrated in the optimization, the penalization of these intermediate density is stronger and
the solution converges to distinct results. This is followed by a comparison of different failure criteria (Tsai-
Hill, Hoffman and Tsai-Wu) in the optimization. It revealed that the final results are similar, be it heavier
with the more conservative failure criteria. Lastly, the effect of numerical settings is discussed in achieving
convergence to local minima. A range of settings is possible to intervene in the behavior of the optimization,
but are problem specific and require some experience from the user. Optimal numerical settings are not given.

The last optimization problems treated in this chapter focus on the optimization with respect to both
the topology and orientation of a UD material. The effect of different orientation initializations is investi-
gated, leading to different local minima. Due to the high strength anisotropy, uni-directional loaded features
are slender, but junction locations with complex loading condition get a material build-up as transverse
allowables lead to earlier failure. Furthermore, a simple linear orientation filter is included to help obtain a
more continuous stiffness and subsequent stress distribution. It nonetheless introduces numerical transitions
between opposite orientations, leading to another material build-up and failure locations. Using the initial-
ization of a compliance minimization with respect to only the orientation yielded a lighter solution, while
being logical by having the orientations aligned with the features. Moreover, this initialization also provides
a logical starting point by having the orientations align with the local load path, and can be applied to any
load case. Afterwards, the effect of considering different failure criteria is again investigated, resulting in
similar topologies between the criteria, be it still obtaining the heaviest solution with the more conservative
envelope. The influence of a higher applied load is then checked, with resulting thicker bar sections, and
for different optimization problem formulation. Including compliance consideration helps to remove a large
amount of intermediate densities. Finally, the strategy compares well with recent literature for compliance
minimization with a volume and Tsai-Wu constraint. The current method is successfully extended to reduce
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the overshoot of the local constraint by less than 1%, by increasing the aggregation parameter towards the
end of the optimization. These results conclude strength-based optimization with UD material. In the next
chapter, the case of laminates consisting of a stacking of UD plies is considered in strength-based topology
optimization.
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Chapter 6

Topology Optimization of Laminates
taking a Conservative Strain Envelope
into account

6.1 Introduction

This chapter is dedicated to the inclusion of a strength criterion in topology optimization, in the specific case
when composite laminates are considered. A strain-based criterion is formulated, as the polar parameters
are used to represent the macroscopic homogenized membrane stiffness tensor of the laminate. Thus, the
stacking sequence is unknown. Such strain criterion could entail for example a first ply failure in the laminate
layup, but also represent a damage criterion value for aircraft applications.

The anisotropy variables considered in the subsequent topology optimizations are that of an orthotropic
laminate. The feasibility domain for laminates is represented by the geometric bounds on the polar parameters
η0 and η1, as described in Section 3.2.3. The remapping of Section 3.2.4 is still used to enforce these geometric
bounds. The optimization variables per element therefore become ρ, ϕ1, α and β. Similarly to the different
optimization problems of Chapter 5, different formulation are used in this chapter to evaluate the effect on
the optimized solutions. The considered problems are a volume minimization with a strain-based strength
constraint (Problem 6), a volume minimization with a compliance and a strain-based strength constraint
(Problem 7), and finally a volume minimization with a compliance constraint (Problem 8). The initialization
for all these optimizations starts with ρ = 1. All the optimizations are performed for 1000 iterations each,
with a fixed SIMP p = 3 exponent. The SplitMMA properties of Table 5.1 are still used. Finally, only one
cluster for the optimization constraint consisting of the optimized elements is considered.

min
ρ,ϕ1,α,β

vf (ρ)/N0

s.t. C(ρ,ϕ1,α,β) ≤ C0

gLKS
k (ρ,ϕ1,α,β) ≤ 0

ρ ∈ [ρmin, 1]
ϕ1 ∈ [−3π/2, 3π/2]
α,β ∈ [0, 1] × [0, 1]

(Problem 6)

min
ρ,ϕ1

vf (ρ)/N0

s.t. V (ρ)/V0 ≤ vf

gLKS
k (ρ,ϕ1,α,β) ≤ 0

ρ ∈ [ρmin, 1]
ϕ1 ∈ [−3π/2, 3π/2]

(Problem 7)
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min
ρ,ϕ1,α,β

C(ρ,ϕ1,α,β)/N0

s.t. gLKS
k (ρ,ϕ1,α,β) ≤ 0

ρ ∈ [ρmin, 1]
ϕ1 ∈ [−3π/2, 3π/2]
α,β ∈ [0, 1] × [0, 1]

(Problem 8)

6.2 Conservative Strain Envelope Definition

When including a strength constraint in topology optimization for the optimization with respect to the
anisotropic modules η0 and η1 in the geometric domain, an elliptic stress criterion as discussed in Sec-
tion 4.3.1 can not be used straightforwardly. Indeed, when first ply failure for a composite is evaluated, a
classical stress-based criterion is use to check each individual ply, with all quantities of interest expressed in a
common reference frame, often that of the ply. That means that the applied laminate stresses are transformed
to the ply reference frame through the local ply orientation. However, when considering the case of laminate
optimization by means of the geometric bounds, the elastic properties are represented by an homogenized
stiffness tensor. Thus, the corresponding physical stacking sequence is unknown, hence the orientations of
the separate plies making up the laminate are also unknown. This means an elliptic failure criterion can not
be applied to each ply separately. To counter this limitation, it is chosen to express a strain-based criterion
as optimization constraint.

In the 2D framework of the present work, only in-plane loading and displacements are considered. Hence,
the strains are constant over the thickness of an element, and all plies making up the laminate will therefore
experience the same strains in the global reference frame, regardless of their orientations. It is the stiffness
difference related to the orientation and change of reference frame that alters the stress in each ply, and
leads to some plies failing before others. Nonetheless, as the strains are equal for all plies, it is a useful
measure to define a strength criterion. Such criterion can be applied by a conservative strain envelope, as
developed by IJsselmuiden et al. [167]. This envelope is constructed in such a way that no failure occurs
according to a Tsai-Wu failure criterion expressed with strains in a global reference frame, regardless of the
ply’s orientation. It is a conservative approximation, as it uses the common admissible domain in the εx, εy

and γxy space for any orientation, as represented in Figure 6.1. Depending on the base ply’s stiffness and
strength properties, two different cases are possible. The envelop of the admissible domain is defined by the
intersection of a second-order equation and a fourth-order equation, as given by Equation 6.1. The critical
envelope corresponds to the smallest positive real root s1 of either condition. A more detailed explanation
of the conservative envelope is given in Appendix A.

f1(s1) := a12s
2
1 + a11s1 + a10 = 0

f2(s1) := a24s
4
1 + a23s

3
1 + a22s

2
1 + a21s1 + a20 = 0

(6.1)

The different a12 - a20 coefficients are given by Equation 6.2, based on the material properties u1 − u6
(given in Appendix A) and the strain invariants I1 and I2, defined in Equation 6.3. The material proper-
ties are constant in the optimization, as they only depend on the base ply used (i.e., RL

0 , RL
1 ,K

L and Xt,
Xc, Yt, Yc, S). On the other hand, the strain invariants vary for each element at each iteration.
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Figure 6.1: Second-order and fourth-order strain envelopes for any ply orientation for a Tsai-Wu failure
criterion [167].

a10 = u2
4 + 4u1 − 4u6

a11 = −4u2I1(u1 − u6) + 2u4u5I1

a12 = 4u2
6I

2
2 − 4u3I

2
1 (u1 − u6)

a20 = 1
a21 = −2u2I1; a22 = −2u3I

2
1 + u2

2I
2
1 − I2

2
(
u2

4 + 2u1
)

a23 = 2u2I
3
1u3 − I2

2 (2u4u5I1 − 2u1u2I1)
a24 = u2

1I
4
2 − I2

2
(
u2

5I
2
1 − 2u1u3I

2
1
)

+ u2
3I

4
1

(6.2)

I1 = εx + εy

I2 =

√(
εx − εy

2

)2
+
(γxy

2

)2 (6.3)

Alternatively, a user-defined envelope expressed in global strains as shown in Equation 6.4 is also inte-
grated, analogous to the elliptical Tsai-Wu criterion of Equation 4.23. εT contains the strain components
{εx, εy, γxy}. The coefficients of [M ] and N in Equation 6.5 are the strains equivalent of the maximal allow-
able stresses (Xt, Xc, Yt, Yc, S) in Equation 4.23. These coefficients can be chosen as to represent a different
envelope than Equation 6.1. It could be based on damage tolerance or limits for fatigue. The formulation
of such user-defined envelope is not limited to the condition of Equation 6.4, and can be extended to higher
degree relationships, as long as it is differentiable with respect to the strains to be incorporated in the current
framework.

s2
1εT [M ]ε + s1εT N − 1 = 0 (6.4)

[M ] =


1

εxt εxc

M∗
12√

εxt εxc εyt εyc
0

M∗
12√

εxt εxc εyt εyc

1
εyt εyc

0
0 0 1

γ2
xymax

 ; N =


εxc −εxt

εxt εxc
εyc −εyt

εyt εyc

0

 (6.5)
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6.3 Equivalent Strain Value for the Optimization Constraint
This sections deals with the integration of a strain-based criterion in the topology optimization framework.
First of all, an approach which uses an equivalent strain measure is tested, given by Equation 6.6. The
equivalent strain, εeq, is a function of the element’s density depending on the power t. This is a similar idea
as not using the macro stress directly in the computation of a strength criterion, but instead the micro stress.
The equivalent strain will be the one used in either criterion of Equation 6.1 or Equation 6.5. The element’s
strains ε are obtained by means of Equation 6.7, where [B] is the strain displacement matrix obtained from
the FEM formulation, and U (i) the node displacements. The influence and selection of the t exponent value
is discussed in Section 6.5.

εeq = ρtε (6.6)

ε(i) = [B]U (i) (6.7)

As the criterion used herein is still an elliptic type with a load multiplier, the procedure to obtain the
optimization constraint follows the one of Section 4.3.2, without the rotation effect. failm is defined as the
load multiplier s1 satisfying Equation 6.1 or Equation 6.4, obtained by means Equation 6.8 or Equation 6.9
respectively. Thereafter, the local failure constraint gi is obtained by means of Equation 6.10.

failm := s1 = min([real(root+(f1)), real(root+(f2))]) (6.8)

failm := s1 = −B +
√
B2 + 4A

2A with A = εT
eq[M ]εeq and B = εT

eqN (6.9)

g(i) := 1
failm(i)

− 1 ≤ 0 (6.10)

Furthermore, the MPVC approach is also still used, therefore the total local constraint ḡ(i) is given by
Equation 6.11.

ḡ(i) := ρ(i)g(i) ≤ 0 (6.11)

Finally, the computational cost linked to the number of optimization constraints and their gradient still
prevails. The lower KS aggregation function is used to reduce the amount of optimization constraints.
Furthermore, the relaxation properties will be used in junction with the suggested equivalent strain measure
to overcome possible strain singularities. These strain singularities are expected difficulties to remove low
density elements and attain solutions laying in a degenerate space, equivalent to the stress singularities in
stress-based optimizations. Therefore, the aggregated optimization constraint of the local constraints ḡ(i) is
given by Equation 6.12. The strategy of using ḡmax, the maximum of the local constraint, to avoid numerical
instabilities with the exponential function is still used, as explained in Section 4.2.1. An overview of the
approach to obtain the optimization constraint is given in Figure 6.2.

gLKS
k = ḡmax + 1

µ
ln

 1
N

∑
j∈Ωk

exp
(
µ

[
ρ(j)

(
1

s1(j)

− 1
)

− ḡmax

]) (6.12)

6.4 Conservative Strain Envelope Gradient Definition
This section details the gradient computations with a strain-based criterion with respect to any of the topology
and anisotropy variables, represented by ψi in the subsequent steps. The gradient definition is similar to
the one for stress-based constraints, except no rotation is involved, and the strain does not depend on the
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𝑓𝑎𝑖𝑙𝑚 𝑖
≔ 𝑠1(𝑖) = 𝑓 𝜺(𝑖)

𝑒𝑞 𝑔(𝑖) =
1

𝑠1(𝑖)
− 1 ത𝑔(𝑖) = 𝜌(𝑖)𝑔(𝑖) 𝑔𝐿𝐾𝑆 = 𝐿𝐾𝑆 ത𝑔 𝑖

𝜌(𝑖)
𝑝

𝐾 𝑼 = 𝑭 𝜺(𝑖) = 𝐵 𝑼(𝑖) 𝜺𝑒𝑞(𝑖) = 𝜌(𝑖)
𝑡 𝜺(𝑖)

Figure 6.2: Steps used to obtain the global failure optimization constraint for a strain-based criterion.

stiffness tensor. Starting from the aggregation derivative of Equation 4.12, the chain rule of the local strain
constraint ḡ(j) is given by Equation 6.13.

∂ḡ(j)

∂ψ(i)
=
∂(ρ(j))
∂ψ(i)

g(j) + ρ(j)
∂g(j)

∂failm(j)

(
∂failm(j)

∂εeq(j)

)T
∂εeq(j)

∂ψ(i)
(6.13)

The first part of Equation 6.13 is straightforward, and only computed for the density variables. For
the second part, the first term ∂g(j)

∂failm(i)
is given by Equation 4.40. The second term, the vector

∂failm(i)
∂εeq(j)

, is
obtained by means of a central finite difference scheme, regardless of the conservative envelope of Equation 6.8
or the user defined envelope of Equation 6.9. It has a negligible computational cost.

∂failm(j)

∂εeq(j)

≈
failm(j)(εeq(j) + ∆εeq) − failm(j)(εeq(j) − ∆εeq)

2∆εeq
(6.14)

Thereafter, from the equivalent strain definition of Equation 6.6, the last part of the derivative can be
obtained. As for a stress constraint gradient, this part involves the change of the load path due to the change
in stiffness of an element. Using the same approach in Section 4.2.2, with the substitution of Equation 4.17,
Equation 6.15 is obtained.

∂εeq(j)

∂ψ(i)
=
∂ρt

(j)

∂ψ(i)
[B]U (j) − ρt

(j)[B][K]−1
(
∂[K]
∂ψ(i)

U

)
(6.15)

Finally, combining Equation 4.12 and Equation 4.40 with the derived expressions, Equation 6.16 with the
adjoint vector λk of Equation 6.17 are obtained for the gradient with respect to any topology or anisotropic
variable ψ(i). As the failure criterion is already expressed in the global coordinate system, no part of the
gradient depends on the rotation and change of reference frame. The adjoint vector still is the same regardless
of the variable gradient. Hence, the total cost to compute the gradient with respect to all variables is still
equivalent to solving one additional FEM analysis. Furthermore, the gradient with respect to the remapping
variables α and β to enforce the geometric bounds on the anisotropy, are still obtained from the chain rule
of Equation 3.18. In a similar way, the filter operations are taken care of by means of Equation 3.19.

(6.16)

∂gLKS
k

∂ψ(i)
= 1∑

j∈Ωk
exp

(
µ(ḡ(j) − ḡmax)

)
∑

j∈Ωk

exp
(
µ(ḡ(j) − ḡmax)

)
∂ρ(j)

∂ψ(i)
g(j) +

∂g(j)

∂failm(j)

(
∂failm(j)

∂εeq(j)

)T
∂ρt

(j)

∂ψ(i)
[B]U (j)

− λT
k

(
∂[K]
∂ψ(i)

U

)

[K]λk =
∑

j∈Ωk

exp
(
µ(ḡ(j) − ḡmax)

) ∂g(j)

∂failm(j)

ρt
(j)[B]T

(
∂failm(j)

∂εeq(j)

)T

(6.17)
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Elliptic Strain Constraint Summary with Anisotropic Material

Optimization constraint

gLKS
k = ḡmax + 1

µ
ln

 1
N

∑
j∈Ωk

exp
(
µ

[
ρ(j)

(
1

s1(j)

− 1
)

− ḡmax

])
Optimization constraint gradient

∂gLKS
k

∂ψ(i)
= 1∑

j∈Ωk
exp

(
µ(ḡ(j) − ḡmax)

)
∑

j∈Ωk

exp
(
µ(ḡ(j) − ḡmax)

)
∂ρ(j)

∂ψ(i)
g(j) +

∂g(j)

∂failm(j)

(
∂failm(j)

∂εeq(j)

)T
∂ρt

(j)

∂ψ(i)
[B]U (j)

− λT
k

(
∂[K]
∂ψ(i)

U

)
Adjoint vector

[K]λk =
∑

j∈Ωk

exp
(
µ(ḡ(j) − ḡmax)

) ∂g(j)

∂failm(j)

ρt
(j)[B]T

(
∂failm(j)

∂εeq(j)

)T

6.5 Validation of the Strain-Based Topology Optimization
This sections deals with the influence of the t exponent value in the equivalent strain definition of Equation 6.6
for a strain-based topology optimization. As a validation step for strain-based topology optimization, a
comparison with a stress-based optimization is conducted. A volume minimization with a Von Mises stress
constraint for an isotropic material is considered, as defined in Problem 9. The stress constraint is translated
to an equivalent strain constraint. The optimization uses the properties listed in Table 6.1, and is performed
for 1000 iterations. One cluster is still being used, consisting of all the elements which are being optimized.

min
ρ

vf (ρ)

s.t. gLKS(ερ) ≤ 0
ρ ∈ [ρmin, 1]

(Problem 9)

Table 6.1: Stress and strain-based topology optimization properties with an isotropic material and Von
Mises criterion.

F [N] Rρ [mm] N µ [-] T0 [GPa] T1 [GPa] σY [MPa]
200.0 2.5 50.0 30.0 26.9 24.7 50.0

The stress-based optimization constraint gLKS
k is defined by means of Equation 4.11, whereas the strain-

based optimization is defined by the user-defined envelope of Equation 6.4. To obtain the equivalent strain
coefficient for Equation 6.5, the following procedure has been used. For a range of test strain combinations,
the load multiplier s1 of the Von Mises stress can be obtained from Equation 6.18. [V] is the transformation
matrix of Equation 4.6 and the stress-strain relationship of Equation 4.1 has been used. Therefore the load
multiplier to reach the yield stress σY is given by Equation 6.19.
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σV M (s1) =
√
s1σT [V ]s1σ =

√
(s1[Q]ε)T [V ](s1[Q]ε) (6.18)

σV M (s1) = σY → s1 = σY√
([Q]ε)T [V ][Q]ε

(6.19)

Thereafter, the coefficients of the user-defined strain envelope can be found by matching the Von Mises cri-
terion expressed in strains, as shown in Figure 6.3. The corresponding coefficient values are given in Table 6.2.
All εxt

, εxc
, εyt

and εyc
are given the same value, which equals s1 for any test strain vector with 0 shear

strain in Equation 6.19. M∗
12 is set to 0, as for the given stiffness properties, there is no apparent interaction

between εx and εy. Lastly, γxymax equals s1 as obtained for the test strain vector εT {0, 0, 1} in Equation 6.19.

Figure 6.3: Von Mises stress criterion expressed in terms of global strains and its approximated strain
envelope.

Table 6.2: Strain coefficient for the user-defined envelope to express a Von Mises stress criterion in terms
of global strains.

εxt
[-] εxc

[-] εyt
[-] εyc

[-] M∗
12[-] γxymax [-]

7.37e-4 7.37e-4 7.37e-4 7.373e-4 0 1.07e-3

The results of the stress-based and strain-based optimization with t = 0 and t = 1 are shown in Figure 6.4.
Figure 6.5 shows the final topologies for an additional range of t exponents for non-conclusive optimizations.
Both strain-based optimizations give reasonable results. Looking at the convergence plot, especially of the
constraint evolution, of all three successful optimizations, both stress-based and strain-based with t = 0
start with a high violated constraint which is satisfied in a similar fashion throughout the iterations. On
the other hand, the strain-based t = 1 optimization starts with a satisfied constraint. This is due to the
implementation and density filter, which assigns an intermediate density for the border elements where the
stress concentration is located. Having this intermediate density in combination with the t = 1 exponent in
Equation 6.6 under-predicts the local constraint by exaggerating the reduction of the strain value. It does
however not hinder the optimization to correctly satisfy the constraint during the iterations for full density
elements. Once the optimization constraint is satisfied, all three objective minimization behave similarly,
with the t = 1 optimization converging faster initially. Comparing solutions, the strain-based t = 0 topology
and local constraint distribution resembles closely the stress-based solution. This is corroborated by the
similar mechanical properties, such as the final volume and compliance. On the contrary, despite the t = 1
strain-based solution having similar bar distributions, its final volume is far lower than the stress-based case.
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Strain-based with t = 0
𝑣𝑓 = 39.52%, C = 42.89 mJ, 𝑀𝑛𝑑 = 17.01%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.15

Stress-based
𝑣𝑓 = 39.50%, C = 42.99 mJ, 𝑀𝑛𝑑 = 17.30%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.16

Strain-based with t = 1
𝑣𝑓 = 30.56%, C = 52.83 mJ, 𝑀𝑛𝑑 = 16.55%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.14

Figure 6.4: Comparison of a volume minimization strength-based topology optimization with a stress-
based and strain-based formulation of the Von Mises criterion, and for different t values for εeq of Equa-
tion 6.6.

Strain-based t = 0.5 Strain-based t = 1.5 Strain-based t = 2 Strain-based t = 3

Figure 6.5: Unsuccessful strain-based topology optimization with different t values for εeq of Equation 6.6.

It shows again that it under-predicts the strength constraint. This is because there is too much incentive for
the solution to have intermediate densities, by reducing their strain values. This allows to easier satisfy the
constraint. This effect is visible at all bar edges where there are intermediate densities due to the filter, and
the constraint is very low compared to the inside of the bars. This is the opposite of the stress-based and
t = 0 case, where these outer densities have at least an equally local constraint ḡ(i) value than the inner ones
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of the bars. Finally, the t = 1 optimization was not able to remove all the intermediate material just right of
the re-entrant corner, not providing a fully converged structure.

Hence, the best way to perform a strain-based optimization is with an exponent t = 0 in Equation 6.6,
meaning εeq is just defined by Equation 6.7. There is no influence or need of altering the strain values for low
density, and possible singularity problems are resolved by the relaxation property of the lower KS function.
This provides results similar to a stress-based topology optimization. The t = 0 value also makes sense,
as with the stress-based approach, the aggregation happens with the pristine stiffness tensor [Q0] to relate
micro-stress to the strain in Equation 4.4. When only the strains are considered, there is no more dependency
on the stiffness [Q0], yet the strain measure is not altered. This section shows that strain based topology
optimization is feasible, using an exponent t = 0.

6.6 Topology and Anisotropy Optimization with a Conservative
Tsai-Wu Strain Envelope

This section considers the volume minimization problem with a strain-based constraint (Problem 6). It
compares the case of a single UD ply, which is rotated, to the case of a laminate restricted by the geometric
bounds. The strength constraint is in both cases enforced by the conservative Tsai-Wu envelope formulation
of Equation 6.1, as both optimizations are based on the same material. The material properties are the
ones already used in Section 5.6, repeated in Table 6.3. The specific conservative strain envelope for this
material is dictated by the fourth-order envelopes, as shown in Figure 6.6. Each optimization is initialized
with densities = 1, and an anisotropy distribution stemming from a preliminary compliance minimization
step (35 iterations). The total applied load is 200 N, and a normalization factor N0 = 50. This is a lower
load magnitude compared to the case where the actual UD allowables are considered in Section 5.6, as a
conservative envelope is used. This feature is well illustrated in Figure 6.6, where the horizontal blue envelope
are the allowable strain for a 0◦ ply, and the vertical one for a 90◦ ply. The conservative envelope is the
orange part, which only uses part of the full allowable strain for a given orientation. The green line represents
the strain envelope for a 45◦ ply. A filter on the orientations is still used, but not extended to the modules.

Table 6.3: Optimization parameters and UD ply [8] properties for optimizations with a conservative Tsai-
Wu strain-based constraint.

Modules Values Polar parameters Values
E11 [GPa] 39.0 TL

0 [GPa] 7.6
E22 [GPa] 8.4 TL

1 [GPa] 6.6
G12 [GPa] 4.2 ηL

0 [-] 0.44
ν12 [-] 0.26 ηL

1 [-] 0.55

Rρ [mm] Rϕ1 [mm] µ [-] Xt [MPa] Xc [MPa] Yt [MPa] Yc [MPa] S [MPa]
2.0 2.0 30.0 1062.0 610.0 31.0 118.0 72.0

6.6.1 Considering Material Orientations for a Uni-Directional Ply
The solution considering fiber steering is shown in Figure 6.7. The solution is has similar characteristics to that
in Section 5.6, with the fiber orientations aligned with the bars. Looking at the local strength constraint, the
solution is however not fully solicited, especially in the left and lower bars. These are compressive members,
with higher strains allowables as is visible in Figure 6.6. It means their cross-sections could be reduced to
be more solicited, however the density filter does not allow for smaller bar sizes. Instead, the densities could
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Figure 6.6: Conservative Tsai-Wu strain envelope for the material properties in Table 6.3.

become intermediate for those bars, as in Section 5.5. This is not achieved for the current solution. This
is attributed to the discontinuity in the fourth-order envelope, where the gradient does not characterize the
design space well. Therefore the optimization remains trapped in a local minimum for those compressive
bars. Nonetheless, the convergence graph shows that the strain constraint is well satisfied and well taken into
account by the SplitMMA strategy when it comes to topology and UD orientation optimization. Furthermore,
ensuing results with a smooth definition of the strain envelope can obtain much more solicited bars for strain-
based topology optimization.

𝑣𝑓 = 25.56%, C = 728.39 mJ, 𝑀𝑛𝑑 = 14.64%, 𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.11

Figure 6.7: Solution for a volume minimization with respect to both material density and orientation,
with a conservative Tsai-Wu strain criterion for both topology and orientation optimization of a UD ply.
Information shown for optimized elements with a final density ≥ 0.3.

The same optimization, a volume minimization with strength constraint with respect to density and
material orientation, can be performed, but taking the actual stress-based Tsai-Wu criterion into account
(Problem 2). These results are displayed in Figure 6.8. It shows that a much lighter solution is obtained (a
volume of 12.76% versus 25.56%), where the bars with the stress-based criterion are much thinner. The bars
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are restricted from becoming even more thinner by the density filter. So most densities have an intermediate
value. In case of the strain-based conservative envelope, only part of the high material strength is retained,
as shown in Figure 6.6. When the stress-based criterion is used instead, the complete strength performance
of the UD fiber can be used, requiring less volume.

𝑣𝑓 = 12.76%, C = 2672.19 mJ, 𝑀𝑛𝑑 = 14.51%, 𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.08

Figure 6.8: Solution for a volume minimization with respect to both material density and orientation,
with a Tsai-Wu stress criterion for both topology and orientation optimization of a UD ply. Information
shown for optimized elements with a final density ≥ 0.3.

6.6.2 Considering Laminates
The solution of the optimization with a conservative strain envelope considering a laminate is shown in Fig-
ure 6.9. The anisotropy, both material orientation and modules, is initialized from the preliminary compliance
minimization. The optimized laminate solution is less stiff and heavier than the fiber steering solution of
Figure 6.7, with a different topology. This has several reasons, starting with the initialization of both prob-
lems, displayed in Figure 6.10.

It can be seen that not all the initial anisotropy conditions are equivalent to that of a UD ply (repre-
sented by η0/η

L
0 = η1/η

L
1 = 1). Furthermore, the η0/η

L
0 = −1 lines are induced by the orientation filter

and transition zone of opposite orientation. This effect remains visible in the optimized solution. As already
discussed in Section 5.6, a better filter taking into account opposite orientation could be integrated in the
future. Moreover, a filter has not been used with the modules, but could also reduce the noise and variation
as suggested in Section 3.5.2. It would be best to consider a filter which considers the physical tensor quanti-
ties, as they provide the actual stiffness distribution. Nonetheless, both solutions start from different points,
where the laminate one already contains some inconsistencies, and obviously end in a different local minima.
This local minima is just a less good one than the UD case, where the compressive bars are still not fully
solicited.

The optimization with a laminate is therefore also attempted starting from the distributed UD initial-
ization, with results shown in Figure 6.11. A similar topology is obtained as in Figure 6.10, but smoother
anisotropy fields are obtained, as the optimization is not influenced by the initialization defects on the
anisotropic modules due to the orientation filter. The solution of Figure 6.11 also has a lower volume (27.57%
vs 28.57%) than the solution in Figure 6.9 (28.57%). Nonetheless, despite the laminate case encompassing
the UD condition and starting from the same design point, neither laminate optimization does tend to the
UD solution, both topology and volume-wise.

This is because the laminate optimization problem has more variables by means of the anisotropic modules
and therefore a more complex design space. The gradient with respect to those additional variables will
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𝑣𝑓 = 28.57%, C = 766.31 mJ, 𝑀𝑛𝑑 = 16.20%, 𝑔𝐿𝐾𝑆 = -0.00, ത𝑔𝑚𝑎𝑥 = 0.10

Figure 6.9: Solution for a volume minimization with a conservative Tsai-Wu strain criterion considering
the topology and a laminate. Information shown for optimized elements with a final density ≥ 0.3.
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Figure 6.10: Anisotropy initialization for a UD orientation or laminate topology optimization.

numerically never be 0, and therefore influences the solution to using different stiffness properties which still
fulfill the constraint requirement. Looking at the anisotropy distribution of the optimized solution, there
are locations in the smaller bars where the orientations are not aligned with the bars. This correspond
to η1/η

L
1 = 0 values, meaning square anisotropy. This entails that the stiffness properties along ϕ1 and

orthogonal to it are the same. The reason for this material stiffness distribution is that the only incentive is
to satisfy the strain constraint, which the obtained distribution fulfills. There is no compliance consideration,

102



6.7. Influence of Different Optimization Problem Formulations with a User-Defined Envelope

𝑣𝑓 = 27.57%, C = 761.08 mJ, 𝑀𝑛𝑑 = 15.09%, 𝑔𝐿𝐾𝑆 = -0.00, ത𝑔𝑚𝑎𝑥 = 0.11

Figure 6.11: Solution for a volume minimization with a conservative Tsai-Wu strain criterion considering
the topology and a laminate. Information shown for optimized elements with a final density ≥ 0.3.

the latter favoring η1/η
L
1 = 1 conditions. These initialization issues are problem specific for a volume

minimization where no stiffness is considered. As was shown in Section 3.5.2, the distributed anisotropy
initialization is important for compliance minimization. Therefore, the anisotropy for a laminate is still used
in subsequent optimizations. Finally, observing the convergence graphs shows that SplitMMA can well satisfy
the optimization constraint without considering cross-influence of variables with strain-based constraints, and
also decrease the objective as asked. It also shows the compatible of the strain-based optimization with the
remapping of the geometric bounds for the anisotropic modules and their domain of existence.

6.7 Influence of Different Optimization Problem Formulations with
a User-Defined Envelope

This section considers different problem formulations for topology optimization with laminates and a user
defined strain envelope. The aim is to evaluate the effect of changing the optimization problem formulation
(changing the objective, but also considering different constraints) on the optimized solutions. The material
stiffness properties of Table 6.3 are still being used. The strain-envelope properties are given in Table 6.4, and
is represented in Figure 6.12 along the previously used conservative Tsai-Wu strain envelope. The current
user-defined envelope allows for higher tensile strain allowables compared to the Tsai-Wu strain envelope.
This is chosen as to not favor compressive regions in the final topology, which in a real structure would lead
to buckling. The initial anisotropy distribution for the topology optimization is obtained from a compliance
minimization problem with respect to the anisotropy variables only at fixed densities of 1 for all cases. Each
optimization is performed for 1000 fixed iterations, and a total applied load of 400 N.
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Table 6.4: Optimization parameters and user-defined strain envelope properties for optimizations with a
strain-based constraint.

Rρ [mm] Rϕ1 [mm] µ [-] εxt [-] εxc [-] εyt [-] εyc [-] M∗
12[-] γxymax [-]

2.0 2.0 30.0 0.012 0.012 0.01 0.011 -0.5 0.005

Figure 6.12: User-defined and conservative Tsai-Wu strain envelope.

6.7.1 Volume Minimization with a Strain-Based Strength Constraint
The initial optimization problem consists in a volume minimization with a strain-based constraint (Problem
6), with a normalization factor N0 = 50. It serves as a benchmark for a comparison with subsequent different
problem formulations, both in variable distributions and optimized mechanical properties. The results of this
optimization are displayed in Figure 6.13.

Similarly to Figure 6.9, the optimized design exhibit well solicited features. The re-entrant corner has
moved to the left, creating a small local radius. That radius is not as large as in case of isotropic material.
In the current case, the anisotropic stiffness distribution can also be used to relieve the stress concentration,
by adapting the load path. The anisotropy variables behave similarly as in case of Figure 6.9, showing the
same distribution properties (transition in ϕ1 with resulting η0/η

L
0 = 0, η1/η

L
1 = 0 in the smaller bars) for

the same reasons explained beforehand. Nonetheless, is can be noted that the right vertical bar has a smaller
width difference to the left bar than in Figure 6.9. This is because the tensile and compressive allowables are
much closer in magnitude. The right bar width is still larger than the left bar, as the right bar has a higher
internal loading, as can be estimated from static equilibrium.

6.7.2 Compliance Minimization with a Volume Constraint
This part deals with compliance minimization with a volume constraint representing 3.12. The volume con-
straint is based on the final volume vf of the solution in Figure 6.13, namely 31.5%. A normalization factor
N0 of 25 is used. The results of the optimization can be seen in Figure 6.14.
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𝑣𝑓 = 31.53%, C = 2196.27 mJ, 𝑀𝑛𝑑 = 16.16%, 𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.13

Figure 6.13: Results of a volume minimization considering laminates with a user-defined strain-envelope
constraint. Information shown for optimized elements with a final density ≥ 0.3.

𝑣𝑓 = 31.54%, C = 1241.47 mJ, 𝑀𝑛𝑑 = 12.94%, 𝑔𝐿𝐾𝑆 = 0.70, ҧ𝑔𝑚𝑎𝑥 = 0.99

Figure 6.14: Results of a topology optimization considering laminates for a compliance minimization with
volume constraint. Information shown for optimized elements with a final density ≥ 0.3.

The figure shows the local strength constraint ḡ(i) evaluated with the same user-defined envelope than
previously. It clearly highlights the local stress concentration. On the other hand, the compliance value
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has decreased a lot, with a decrease of 43.5% from 2196.23 mJ to 1241.47 mJ. This is to be expected,
as the compliance is the objective to minimize. But it should also be noted that in case of Figure 6.13,
stiffness is not a design criterion. The better compliance value is also obtained thanks to the anisotropic
modules’ distribution as given in Figure 6.15. Figure 6.15a shows the anisotropic modules for compliance
minimization. Most of the modules have a value of η0/η

L
0 = 1 and tend to be pure UD (η1/η

L
1 = 1) or have a

square symmetry of a balanced number of 0◦ and 90◦ layers cross-ply (η1 = 0). Instead, Figure 6.15b shows
the anisotropic modules’ distribution corresponding to Figure 6.13. The modules are more dispersed over the
domain, as the optimization for Figure 6.13 does not consider any stiffness, either as objective or constraint.

(a) Results of a compliance minimization with volume
constraint of Figure 6.14.

(b) Results of a volume minimization with strain con-
straint of Figure 6.13.

Figure 6.15: Anisotropic modules’ distribution within the geometric and thermodynamic domain.

6.7.3 Volume Minimization with Strain-Based Strength and Compliance Con-
straints

Both previous optimizations were based on only two design criteria, with either a strength constrained volume
minimization or a volume constrained compliance minimization, for a 400 N load case. The current opti-
mization problem will investigate the effect of considering all three criteria (volume, stiffness and strength)
into a single topology optimization. In this case, it will more precisely be a volume minimization, according
to Problem 6, with a compliance constraint of 1241.52 mJ as obtained in Figure 6.14 and the user-defined
strain envelope. A normalization factor N0 = 25 is used. The results are shown in Figure 6.16.

The optimized volume is 33.3%, about a 5% increase over the solution in Figure 6.14. As the applied
load magnitude is still low, the right angle topology has reappeared at the re-entrant corner but the stress
concentration has been alleviated by adapting the anisotropy during the optimization. The vertical bars have
a low local strength constraint, as their primordial aim is for stiffness maximization and therefore have an
associated larger width. This is opposite to the smaller bars at the bottom. These have for the majority
a large local strength constraint, hinting at them being more constrained by the strength requirement. As
these locations also show η1/η

L
1 variables which are not close to the stiffness condition, this could suggest

being stuck in a local minima. When performing an optimization, the constraints are there to be satisfied,
whereas the objective to be minimized. Therefore, the constraints do not drive the optimization once satisfied,
showing the variable distribution in the lower bars not being exactly in accordance with the case of stiffness
minimization. Furthermore, the volume objective in this case does not depend on the anisotropy. The
anisotropy therefore only acts on the constraints, and through them indirectly on the volume. The dual
optimization problem will be considered next, explicitly minimizing the compliance.
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𝑣𝑓 = 33.30%, C = 1241.52 mJ, 𝑀𝑛𝑑 = 12.12%, 𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.13

Figure 6.16: Results of a volume minimization considering laminates with user-defined strain-envelope
and compliance constraints. Information shown for optimized elements with a final density ≥ 0.3.

6.7.4 Compliance Minimization with Strain-Based Strength and Volume Con-
straints

Lastly, a compliance minimization with volume and strength constraints (Problem 8) is carried out. The vf

volume constraint is kept at 31.51%, and a normalization factorN0 = 25. The results are shown in Figure 6.17.

It could first be thought that as the solution in Figure 6.13 is well solicited, using that volume constraint
would lead to an infeasible point. This would have likely been the case with an isotropic material. Nonethe-
less, a stiffer solution is found which is less strength constrained. This can be explained by the fact that beside
the topology, the material anisotropy is also used in first satisfying the strength constraint and thereafter the
compliance minimization. The constraints’ evolution shows that the optimization initially tries to satisfy the
volume constraint, reducing the volume from all full elements towards the target volume density. However
in doing so, the strength constraint rises as it is more important in intermediate density elements. But once
close to the target volume, the optimization starts creating a more distinct solution, and converging to full
density elements at high local constraint zones, bringing the strength constraint under control and towards 0.
The volume is even increased momentarily by the optimization algorithm to ensure the strength constraint is
satisfied, before the volume constraint becoming itself satisfied. Due to this behavior of fixed maximal volume
raising the strength constraint, compliance minimization with strength constraint and maximal volume are
more difficult to satisfy than volume minimization with strength and maximum compliance constraints. This
latter minimization type has the advantage of having a low compliance and lower strength constrained at full
density, and can start removing material once the mechanical constraints are satisfied.

Despite being a compliance minimization, there remains some intermediate densities at the junctions
in Figure 6.17. These intermediate density zones are dictated by the strain constraint. Nonetheless, the
major characteristics of the topology are identifiable in the final result, and it can serve as an initial point
to be used in post-processing and a later design phase. Finally, looking at the modules’ distribution in the
geometric domain shown in Figure 6.18, they are much more in line with the results of the optimization in
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𝑣𝑓 = 31.51%, C = 1429.46 mJ, 𝑀𝑛𝑑 = 15.09%, 𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.16

Figure 6.17: Results of a compliance minimization considering laminates with user-defined strain-envelope
and volume constraints. Information shown for optimized elements with a final density ≥ 0.3.

Figure 6.14, representing either cross-plies or UD material. This is because the anisotropy is now directly
used for improving the objective.

Figure 6.18: Anisotropic module distribution within the geometric and thermodynamic domain for the
compliance minimization with a user-defined strain-envelope and volume constraints of Figure 6.17.

These different optimization problem formulations and results showed that taking volume, compliance and
strength consideration into topology optimization with anisotropy is successful with the SplitMMA strategy.
In Section 5.6, it was discussed how a correct initialization of the anisotropy already provides better solu-
tions. This section shows that including strength considerations in the optimization allows to obtain practical
designs. Furthermore, only considering volume and strength in the optimization results in feasible designs,
but not the most coherent ones from a mechanical point of view. Indeed, the anisotropy distribution is
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quite dispersed. Adding compliance, either as objective or constraint, helps to stabilize the optimization by
considering a mechanical responds for which there is a clear favored anisotropy condition.

Whether the best optimization problem then becomes a volume minimization with compliance and
strength constraints, or a compliance minimization with volume and strength constraints depends on the
designer’s needs. Compliance minimization with a volume constraint has the advantage of not requiring
an a priori knowledge of a compliance target value. Such compliance target can be difficult to estimate,
as it is a structural characteristic not often used as a design requirement. Nonetheless, evaluating which
volume constraint results in a feasible point for a given load case is also difficult on the other hand, and
requires several optimizations with different volume constraint. Volume minimization would be the more
logical optimization problem, as lighter designs are often pursued. Additionally, the initial iterations with
100% volume have a higher chance of being a feasible point, and afterwards, the optimization only starts
removing elements once the strength constraint is satisfied. But as stated earlier, evaluating the compliance
constraint target becomes more difficult. This could perhaps be replaced by an alternative stiffness measure,
such as the maximum displacement at certain locations. Integrating such constraint is now feasible with
a gradient-based strategy, and is left as a possibility for future research. Ultimately, the selection of the
adequate problem formulation remains based on the engineer’s knowledge of their design, and the need for
the largest structural improvement, either stiffness or volume-wise.

6.8 Indirect Buckling Delay Control
The anisotropic strength criteria used as optimization constraint allow to distinguish between tensile and
compressive allowables. This section is dedicated to the influence of changing the compressive allowables,
and more particularly on the possibility to use it to indirectly promote a tensile stress state in the structure
and increase the buckling critical load. Both a stress-based optimization with UD ply (as in Section 5.6) and
a laminate with a strain-based constraint are investigated.

6.8.1 Influence of the Compressive Allowable Value Xc with a Uni-Directional
Ply

This section investigates the effect of reducing the compressive stress allowable value Xc on the optimized
solution. A volume minimization with a Tsai-Wu stress criterion constraint is treated (Problem 2). A total
applied load of 400 N is used, with a normalization factor N0 = 1, and a uniform initialization of the densi-
ties ρ as 1. The orientations are initialized from a preliminary compliance minimization step. The material
stiffness properties of Table 5.4, whereas the strength properties and optimization parameters of Table 5.5
are used. Solutions of the optimization for a range of Xc allowable is shown in Figure 6.19. The solution
with the initial Xc = 610 MPa is the right result in Figure 5.16.

The load path and main features do not differ much between the solutions with decreasing values of Xc,
but the smaller inner bars tend to disappear. On the other hand, the bars’ width changes a lot. For all cases,
with the decrease in compressive allowable, the outer bars increase in width to experience a lower stress
state. This goes with an increase in total volume. For the case Xc = 400 MPa and the case Xc = 200 MPa,
the material orientations remain mostly aligned with the bars. On the contrary, the orientations are oblique
to the compressive bars in case of Xc = 100 MPa. For this condition, the transverse compressive allowable
Yc is higher than the longitudinal one, which results in the logical alignment of the UD material with the
direction of highest local strength for the least area and mass. Furthermore, with the lower compressive
longitudinal allowable, all allowables except the tensile longitudinal one, Xt, Yt, Yc, S, tend to become closer
in magnitude. This creates less material build-up at junctions, as the material can be more uniformly loaded.
Furthermore, changing the magnitude of the compressive allowable Xc influence the shape of the Tsai-Wu
envelope. For a lower magnitude of the compressive allowable, the Tsai-Wu envelope in the positive σ1 − σ2
(upper right) quadrant increases in size. This is illustrated with the different envelopes for each Xc value
in Figure 6.20. This leads to the right vertical bar in tension to become a little thinner when a lower Xc value.
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𝑋𝑐 = 200 MPa
𝑣𝑓 = 24.00%, C = 4500.77 mJ, 𝑀𝑛𝑑 = 16.31%, 

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.10

𝑋𝑐 = 100 MPa
𝑣𝑓 = 26.39%, C = 4781.78 mJ, 𝑀𝑛𝑑 = 14.72%, 

𝑔𝐿𝐾𝑆 = 0.00, ҧ𝑔𝑚𝑎𝑥 = 0.10

𝑋𝑐 = 400 MPa
𝑣𝑓 = 21.65%, C = 4961.89 mJ, 𝑀𝑛𝑑 = 16.95%,

𝑔𝐿𝐾𝑆 = -0.00, ҧ𝑔𝑚𝑎𝑥 = 0.08

𝑓 = 25.56%, C = 728.39 mJ, = 14.64%, = -0.00, = 0.11

Figure 6.19: Results of a volume minimization with respect to material orientation and density with a
Tsai-Wu strength constraint for a range of longitudinal compressive allowable Xc. Information shown for
optimized elements with a final density ≥ 0.3.

At the end of the optimization, a linear buckling analysis input file for OptiStruct is created. This involves
only using elements with ρ ≥ 0.3, as to avoid spurious buckling mode appearing in the analysis in low density
regions. The stiffness tensor components are then provided in the input file according to Equation 3.2. The
buckling analysis consists in in-plane buckling with only the membrane ([A]) stiffness tensor of the material.
The results of a linear eigenvalue buckling analysis for four Xc allowable solutions (the right solution in
Figure 5.16 and the ones in Figure 6.19) are given in Figure 6.20 and Table 6.5.

The lower compressive allowables show an increase in critical buckling load factor λcrit. This is because
the compressive bars of the topology have become more massive, which has a twofold benefit: the experienced
stress is lowered, but simultaneously a higher cross section and therefore inertia is obtained. The buckling
eigenmode, and therefore the critical buckling location, is also changed. Nonetheless, the increase in buckling
load also comes at the cost of a volume increase.
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𝑋𝑐 = 610 MPa
𝑣𝑓 = 18.06%, 𝜆𝑐𝑟𝑖𝑡= 2.23 e-1 

𝑋𝑐 = 400 MPa
𝑣𝑓 = 21.65%, 𝜆𝑐𝑟𝑖𝑡= 5.36 e-1 

𝑋𝑐 = 200 MPa
𝑣𝑓 = 24.00%, 𝜆𝑐𝑟𝑖𝑡= 1.24

𝑋𝑐 = 100 MPa
𝑣𝑓 = 26.39%, 𝜆𝑐𝑟𝑖𝑡= 2.74

Figure 6.20: Buckling load multiplier λcrit and eingenmode for the optimized designs with decreasing Xc

values. Respective solutions are the right solution in Figure 5.16 and the ones in Figure 6.19. Information
shown for optimized elements with a final density ≥ 0.3.

Table 6.5: Volume and buckling load multiplier differences for the results with different longitudinal
compressive allowable Xc.

Xc [MPa] vf [%] Difference with
Xc = 610 MPa case [%] λcrit [-] Difference with

Xc = 610 MPa case [%]
610 18.06 0.00 0.223 0.00
400 21.65 19.84 0.536 140.36
200 24.00 32.79 1.24 456.05
100 26.39 45.99 2.74 1128.70

6.8.2 Influence of the Compressive Stress Allowable Values with a Laminate
A similar approach is tested on an optimization with laminates (i.e., geometric bounds) and a strain envelope.
The compressive strain allowable in both x and y direction are reduced. However, doing so changes the
ellipse, and increased tension is allowed. Therefore, the tensile strain allowables are also adapted as to obtain
a strain envelope similar to the original one in tension. The reduced compressive allowable values are given in
Table 6.6, which can be compared to the original compressive allowable values given in Table 6.4 for a volume
minimization with a strain-based constraint (Problem 6). The difference in strain envelope and results of
the buckling analysis are shown in Figure 6.21. The reference solution corresponds to the one in Figure 6.13.
The reduced compressive allowable optimization was carried out with a normalization factor N0 = 25, with
full density and anisotropy distribution coming from a preliminary compliance minimization step.

Table 6.6: User-defined strain envelope reduced allowable values.

εxt [-] εxc [-] εyt [-] εyc [-] M∗
12[-] γxymax [-]

0.012 0.0065 0.01 0.0065 0 0.004

Similar conclusions can be drawn as with the stress-based comparison in the previous section. In this
case, an 80% increase in buckling load is obtained, for a 6% volume increase due to both lower loading on the
compressive bars and an increased area. Nonetheless, using the volume difference on the high compressive
allowables solution could already improve the buckling load factor, and lessen the difference at iso-mass.

111



Chapter 6. Topology Optimization of Laminates taking a Conservative Strain Envelope into account

Original strain envelope
𝑣𝑓 = 31.53%, 𝜆𝑐𝑟𝑖𝑡= 8.14e-1 

Reduced strain envelope
𝑣𝑓 = 33.33%, 𝜆𝑐𝑟𝑖𝑡= 1.47

Figure 6.21: Buckling load multiplier λcrit and eingenmode for the optimized designs. Information shown
for optimized elements with a final density ≥ 0.3.

This approach shows that the critical buckling load can be increased, but does however not provide a direct
control on the way to do, as buckling is only a post-processing result. It would be interesting to compare
these solutions with equivalent results for topology optimizations which explicitly take buckling constraints
into account.

6.9 Conclusion
This chapter was dedicated to incorporating strength constraints in the topology optimization of laminates.
By using the homogenized stiffness of laminates, represented by means of the polar parameters, the actual
stacking sequence and ply orientations are unknown. Therefore applying a stress-based elliptic criterion as
presented in the previous chapter is not possible, since such a stress-based criterion can not be expressed at
the ply level in which the allowables are defined. Hence, strain-based strength criteria have been introduced.
Both a conservative envelope representing the common admissible strain space with a Tsai-Wu failure crite-
rion for any ply orientation and a user-defined envelope are considered. The latter one can stem from other
design requirements than ultimate strength, and represent a damage tolerance or fatigue envelope. As little
research has been conducted into strain-based topology optimization, a framework to take strain criteria
into account was first developed. The method is based on the lower KS function, for both its aggregation
and relaxation properties, applied to a strain criterion. The method is compared and validated against a
stress-based topology optimization with an isotropic material and Von Mises criterion. It showed coherent
results, with similar mechanical properties and variable distributions in the optimized designs.

With the strain-based framework set-up, optimizations with anisotropy could be carried out. First, the
conservative envelope for any ply orientation is used in an optimization with steered fiber, followed by one
with laminates. Surprisingly, the optimized fiber steering solution turned out to be lighter than the laminate
case. This is attributed to the different initialization point, and local minima in which the laminate get stuck.
Thereafter, several topology optimization problems with laminates and a user-defined strain constraint are
carried out. It is notable that when no stiffness constraint is added to the optimization, the anisotropic
modules are more dispersed in the geometric domain and do not tend to the distribution for compliance
minimization. The condition for compliance minimization consists predominantly with UD fibers in the bars,
and cross-plies at junctions. This is because in simple volume minimization with strength constraint, there
is no compliance consideration, and therefore the anisotropy is only optimized with respect to satisfying the
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given constraints. These examples show the correct consideration of strain-based constraints with topology
along anisotropy optimization with the SplitMMA strategy. Some problems prevails, such as the numerical
strength concentration due to a linear filter on the orientations. These could be alleviated with a more
advanced filter, as discussed in Section 2.4.4.

Lastly, the influence of the compressive allowable values is investigated. It shows that with a lower value,
the compressive zones become more massive. In case of a stress-based topology optimization for UD material,
if the longitudinal allowable is lowered beyond the transverse one, the compressive zones remain massive, but
the orientation become transverse to the bars as the compressive transverse allowable becomes the highest
compressive allowable. This is well identified by the SplitMMA strategy to obtain a better solution. Reducing
the compressive allowables is used in an successful attempt to increase the critical buckling load in both stress
and strain-based topology optimization. This is a consequence of compressive bars having wider cross-sections
and being less loaded when reducing the domain of admissible compressive strains or stresses. Nonetheless,
this strategy remains an indirect control for buckling delay, as it is only checked on post-processed results.
Moreover, solutions with lower compressive allowables also have a higher final volume, but far below the
critical load multiplier improvement (vf +6% and λcrit +80%). Some of the improvement could be lost by
using the volume difference on the high compressive allowable solution.
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Chapter 7

Conclusion and Perspectives

7.1 Conclusion
With the rise of new manufacturing techniques, both the material distribution and anisotropic properties,
such as stiffness and strength, can be controlled. To take advantage of these combined new possibilities,
novel design methods have been developed, such as topology optimization. Published studies show that
taking topology and material anisotropy simultaneously into account in the optimizations result in stiffer so-
lutions than considering them separately. Nonetheless, stiffness is not always the major requirement for the
design of structures, additional engineering requirements could be more critical, such as buckling or strength.
Integrating such additional requirements as constraints in topology optimizations has been a research topic of
interest for the past 15 years, and has shown to already alter the optimized topology with isotropic material.
The aim of this research is to incorporate strength constraints in a simultaneous topology and distributed
material anisotropy optimization, with a particular emphasis on composite laminates.

Chapter 2 consists in a literature review of topology and anisotropy optimization, whose principal conclu-
sions can be summarized as follows. Two major problems are identified in stress-based topology optimizations
with isotropic material: stress singularities and computational cost. The first one involves the optimal design
point being in a degenerate design space, which gradient-based solvers have difficulties reaching. The algo-
rithms encounter difficulties to make intermediate density elements disappear. Several relaxation techniques
have been suggested and are employed successfully to remediate this problem. On the other hand, efficiently
obtaining the gradient information in strength-based problems is solved by reducing the amount of optimiza-
tion constraints, mostly by means of an aggregation function. This allows to use an adjoint formulation to
compute the gradient. The strategy of using a lower Kreisselmeier-Steinhauser (KS) aggregation function is
identified as proving at the same time both the required relaxation and reduction in number of constraints,
and has been used in the subsequent modeling in this research. Concerning the anisotropy definition for
optimizations, several parametrizations for composite laminates are used. Each individual ply can be rep-
resented, but to obtain a more regular variation of the design space, the preferred parametrization consist
in representing the homogenized stiffness of the laminate, without explicit layup definition. This can be
done using lamination parameters or by means of the geometric bounds on the polar parameters. For their
invariant definition of the stiffness tensor, the polar parameters are further used in this research. The polar
parameters can also represent any admissible stiffness tensor by means in thermodynamic domain, which
encompasses the geometric domain. The corresponding thermodynamic bounds on the polar parameters
have been used in topology optimization for compliance minimization, by means of optimality criteria in the
Alternate Directions (AD) algorithm. On the other hand, the geometric bounds on the polar parameters have
only been used in thickness optimizations, by means of gradient-based algorithms. Finally, only a limited
number of research papers considers anisotropic strength in the optimizations. Therefore literature for just
anisotropy optimizations is also reviewed, and more specifically for composite laminates. During a detailed
design stage, failure in laminates is characterized by means of a first ply failure. This consists in applying
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an elliptic failure criterion to each separate ply, with all applied stresses and strength properties expressed in
the local ply’s reference frame. At a conceptual design stage, with an homogenized stiffness representation of
composite laminates, where no stacking sequence is known, conservative strain-based envelopes are available.
Such envelopes define in terms of global strains the boundary of the safety region for a ply-based failure
criterion for any ply orientation. The first objective of this research is to incorporate strength constraints
in a simultaneous topology and anisotropy optimization. This requires the development of an appropriate
gradient-based framework. In the following, this optimization framework is used to consider either thermo-
dynamic or geometric bounds to represent material anisotropic stiffness, and stress-based or strain-based
failure criterion. This will also allow to consider the geometric bounds on the polar parameters.

Chapter 3 consisted thus in developing a gradient-based optimization strategy and framework taking
both topology and distributed anisotropy into account. The polar formalism is used to represent a 2D or-
thotropic stiffness tensor, defined by five invariants quantities and the direction of orthotropy. Only the
polar parameters dictating the anisotropic part of the stiffness tensor are used in the optimization. Both the
thermodynamic and geometric bounds can be introduced implicitly in the optimization, and are satisfied by
a remapping operation to new optimization variables. A gradient-based optimization strategy, called Split-
MMA, is introduced to solve the optimization. This strategy is based on the Methods of Moving Asymptotes
(MMA) algorithm. It uses different approximations depending on the optimization variable to solve differ-
ent approximated sub-problems in parallel. The approximations are chosen based on the regularity of the
design space with respect to each variable. The compliance and volume gradients can be easily obtained by
the self-adjoint property of these quantities for the corresponding minimization problem. The validation of
the gradient-based strategy is performed with the thermodynamic bounds by comparing SplitMMA results
against results obtained with the AD algorithm. The importance of being able to switch the orientation
transversely by a continuous change of the anisotropic modules when distinct bars appear in the topology
optimization is first highlighted. Thereafter, the importance of the anisotropy distribution at the begin-
ning of the topology optimization is also shown. Different and better solutions are obtained with the initial
anisotropy distribution coming from a distinct first step compliance minimization. This first compliance min-
imization problem is solved with respect to the anisotropic variables for a fixed uniform density field. This
enables the anisotropy to conform to the load path. Afterwards, as no optimality criteria exist for the geo-
metric domain, nor have they been used in topology optimization, optimizations with the geometric bounds
on the polar parameters have successfully been compared to results obtained with lamination parameters.
Finally, novel results consisting in a comparison of the optimized design with increasing anisotropy freedom
(isotropic, steered fiber, laminates and thermodynamic bounds) is performed, where the more design freedom
yields stiffer designs. With the successful definition of a gradient-based optimization strategy that considers
anisotropy in a topology optimization, the fundamental framework for strength consideration is available.
The incorporation of strength requirements is then addressed.

In Chapter 4, a stress-based anisotropic strength constraint and its gradient are then derived for elliptic
criteria, in case the orientation of an anisotropic material is allowed to change. Anisotropic strength criteria
are used to define the failure index, representing the load multiplier to achieve failure. The inverse of the
failure index is used to setup a local strength constraint. Moreover, as anisotropic strength properties are
expressed in the material reference frame aligned with the material orientation, they have to be expressed in
common frame with the applied stresses. To this end, the strength allowables are expressed with the polar
formalism, and rotated from the material reference frame to the global one, where the mechanical analysis
stresses are computed. Both the reduction of the number of constraints and the relaxation of the stress
singularity problem are performed with a lower KS aggregation function. This allows to define the gradient
by means of the adjoint formulation to decrease the computational cost. The adjoint formulation has been
implemented in an in-house FEM routine, used for all the presented results.

Chapter 5 compares stress-based optimizations for different anisotropic properties, both stiffness and
strength wise. Results are first obtained for optimizations with respect to material density for fixed anisotropic
properties, followed by optimizations with respect to both material orientation and density. Anisotropic
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strength is first considered in additive manufacturing for a fixed layer stacking direction, yet the stiffness
remains isotropic. For volume minimization, wider bars appear when those are solicited in the direction with
lower allowables to reduced the stress magnitude. Moreover, a design obtained for one load direction will not
sustain the reverse loading because of the dysymmetric allowables. Thereafter, both strength and stiffness
anisotropy are considered, with a UD ply for a range of fixed orientations. The final topologies exhibit bars
aligned with the fixed orientations. Volume minimizations with only strength constraints yield intermedi-
ate density values for elements loaded along the fiber with higher longitudinal strength than transversely.
Including an additional stiffness consideration, as either objective or constraint, in the optimization results
in distinct final topologies, as the SIMP model penalizes intermediate density elements. For optimizations
with respect to both density and material orientation, a linear filter is applied to smooth the orientation
distribution. This creates some local abrupt transitions for neighboring opposite orientations, which are
different value wise but not mechanically, and introduce artificial stress concentration due to the stiffness
mismatch. For volume minimization considering strength, the optimized result obtained with initial orienta-
tions stemming from a compliance minimization step yields the lowest volume and most coherent orientation
distribution compared to uniform orientation initializations. UD fibers are well aligned within bars, using
the higher strength allowables along the fibers. However, material build-up is present at junctions where
multi-axial stress states are experienced. Furthermore, more conservative anisotropic strength criteria result
logically in heavier solutions. The lower KS strategy underestimates the maximum of the aggregated con-
straint, so despite a satisfied optimization constraint, the local strength constraints yield a value exceeding
the failure criteria. Finally, a gradual increase in the aggregation parameter towards the end of the optimiza-
tion is able to reduce the overshoot of the local strength constraint to less than 1%. This is an acceptable
level of accuracy for design phases.

Finally, the case of laminate optimization with a strength constraint is considered in Chapter 6, where
both the orientation and modules of the homogenized material are optimized along the topology. However, as
the polar parameters with geometric bounds represent a homogenized stiffness behavior, the actual stacking
sequence of the laminate is unknown. A stress-based criterion can therefore not be applied to individual
plies. A strain-based condition as suggested in literature is used to express a minimal admissible strain
envelope as not to have failure with a Tsai-Wu criterion for any ply orientation. An alternatively user-defined
envelope is also proposed, which can represent a different failure envelope, such as damage tolerance or
fatigue limits. Nonetheless, as no extensive research is available on strain-based topology optimization, such
framework is first investigated. The approach based on the lower KS function is chosen for both relaxation
and reduction of the amount of optimization constraints. As the strain conditions are expressed in the global
coordinate system, the constraint and its gradient do not require a rotation operation. The strain-based
framework is first verified with a stress-based Von Mises criterion for isotropic material. Thereafter, the
conservative Tsai-Wu strain envelope is successfully used in a volume minimization problem for either a UD
ply or laminate. But although the latter case considers additional design variables, these drive the solution
to a local minimum, and a lighter solution than the UD case could not be obtained. A user-defined envelope
is then used to compare several optimization problem formulations, where the influence of the choice of the
objective and constraints is investigated. Different solutions with the same volume can be achieved, but
with different stiffness values as the anisotropy can be used to tailor a solution to a particular need with
respect to the problem formulation. The application of the problem formulation is dependent on the need of
a user. Lastly, as the strength criteria allow to differentiate between tensile and compressive allowables, an
investigation on the influence of the compressive allowable is performed. First the stress-based case with UD
plies is considered, where decreasing the longitudinal compressive allowable results in thicker compressive
bars. Additionally, decreasing the longitudinal compressive compressive allowable below the transverse one
results in the optimized orientations being oblique to the bars. The lower compressive allowable is also used
in a strategy to indirectly increase the critical buckling load factor. Substantial improvements (+80%) are
obtained for a reduced volume increase (+6%) in volume minimization problems. Similar results are obtained
when considering lower compressive strain allowables in an optimization with laminates. These examples
show the successful development of a framework for topology and anisotropy optimization with strength
constraints, which opens the possibility for implementation in design offices and for further research.
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7.2 Perspectives
The possibilities offered by this research are manifold. Some part concerns the methodology directly, with
research directions which were not explored, and other are about the future possibilities. First of all, the
current framework allows to incorporate strength constraints and anisotropy in topology optimization with
an in-house FEM implementation. Nonetheless, for larger optimization problems with more elements and
therefore optimization variables, the optimization should be coupled with a more-advanced FEM solver. That
FEM solver should preferably allow to control the efficient computation of the gradients by means of the
adjoint formulation. Thereafter, with the gradient-based topology and anisotropy optimization framework,
additional constraints can be incorporated such as buckling or vibrations. The direct consideration of a buck-
ling requirement will also yield a far better control over the increase in critical load, compared to the indirect
compressive allowable decrease strategy. Adding to the versatility offered by the framework, the considered
overall structural stiffness of the structure could also be replaced by a maximum deflection constraint. This
has a direct physical meaning, and furthermore is more relevant and applicable for practical designs than
compliance.

On the other hand, an idea to further accelerate convergence and improve upon the current framework,
is to penalize the intermediate densities in the objective, by introducing a similar penalizing interpolation
for the volume calculation, left as a future possibility. Moreover, a more advance filtering techniques on
the anisotropy should be incorporated, as to avoid numerical concentrations and propagate sub-optimal
anisotropy variable values. An orientation filter such as suggested by Schmidt et al. [106] would be a first
improvement, but a filter directly applied on the stiffness tensor would be ideal, as this would directly take
the physical properties into account, and regroup all variables. Moreover, a strategy was presented herein to
decrease the aggregation error of the local constraints due to the lower KS to less than 1%. Further work
could focus to make the stress and strain-based topology work with a rectifier approach to obtain a final
optimized result which satisfies the local constraint over the complete domain, with possible inspiration from
recent research [81].

Thereafter, both the thermodynamic and geometric domain of the polar parameters represent a material
stiffness homogenization. This is appreciated as a first optimization step for a better behaved and more
continuous design domain, but a second step is still required to obtain an actual physical representation. In
case of the geometric domain, a matching stacking sequence should still be found for each element. This
can be achieved by restricting the domain of existence to known stacking sequences in the optimizations as
done by Savine [145]. Alternatively, for the more general case where no restriction is imposed, the stacking
sequence can be retrieved by a second optimization step. On the other hand, although not used extensively
in this research, the thermodynamic domain can also be seen as representing any microstructure. This could
be used for research aimed with reverse identification, for instance deshomogenization methods.

Lastly, this research only considered in-plane loading in 2D. The polar parameters, and specifically the
geometric bounds, can also be used in shell theory to represent bending, coupling and transverse shear stiffness
anisotropy. This would allow to consider 3D load cases and physical response of laminates. In particular, it
would allow to consider out-of-plane buckling for the optimized structures. A possible approach would be
by considering anisotropy coupled with feature mapping techniques such as Smith and Norato [27]. By the
projection method, a plate is represented which can move in a 3D space by means of control points, where the
plate representation allows to define laminate properties on it. This can be coupled with the current strength
or strain-based approach. Another possibility is to consider volumetric 3D topology optimization problems,
with a 3D anisotropic stiffness representation, such as for transversely isotropic material as proposed by
Ranaivomiarana [2]. To obtain coherent results, the parametrization should be identified in providing a
means to change the orientation of the material transversely by a continuous change of the modules. The
subsequent anisotropy initialization importance and strength constraint optimization are expected to be as
effective as in 2D, and offer no increased difficulties.
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Appendix A

Tsai-Wu Criterion Strain Invariants

The conservative strain envelope dictated by a Tsai-Wu criterion for possible orientation is presented in more
details here, with the relationship to the material properties. It is a summary of the work by IJsselmuiden et
al. [167]. Figure A.1 shows the two possible cases, where the admissible space is either dictated by a second-
order or fourth-order envelope depending on the base ply’s mechanical properties. The different envelope
are defined by the positive real roots s1 of Equation A.1, where the envelope linked to the smallest s1 is the
most critical one. In case of the fourth-order envelope condition, two s1 and therefore distinct envelopes are
defined. The admissible space is then determined by the common space to both fourth-order envelope, still
represented by the lowest s1. As the type of envelope is a property of the base ply, once the type of envelope
is a priori known, it is remains constant during the optimization and can be implemented as a constraint.

Figure A.1: Second-order and fourth-order strain envelopes for any ply orientation for a Tsai-Wu failure
criterion [167].

f1(s1) = a12s
2
1 + a11s1 + a10

f2(s1) = a24s
4
1 + a23s

3
1 + a22s

2
1 + a21s1 + a20

(A.1)

The different a10 - a24 coefficients are given by Equation A.2, based on the strain invariants I1 and I2,
defined in Equation A.3, and the material properties u1 − u6 given in Equation A.4.
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u1 = G11 +G22 − 2G12;u2 = G1 +G2

2
u3 = G11 +G22 + 2G12

4 ;u4 = G1 −G2

u5 = G11 −G22;u6 = G66

(A.4)

The G coefficients are dependent on the stiffness and strength properties according to Equation A.5. Qii

are the components of the stiffness tensor of the UD base ply, whereas Fii are the strength properties of a
Tsai-Wu failure criterion with F ∗

12 equal to -0.5 obtained from Equation A.6. Xt and Xc are the magnitude of
the tensile and compressive allowables along the fiber direction, whereas Yt and Yc represent the magnitude
of the traverse allowables. Lastly, S is the magnitude of the shear strength. Both Qii and Fii are computed
in the material reference frame, and remain constant for a given base ply.

G11 = Q2
11F11 +Q2

12F22 + 2F12Q11Q12

G22 = Q2
12F11 +Q2

22F22 + 2F12Q12Q22
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2
12 + F12Q11Q22
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;F12 = −1
2
√
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(A.6)

The strain envelope is also applicable with out-of-plane displacement in shell kinematics. The most critical
strain is then obtained as a combination of the in-plane strains ε, the local curvature κ and the through the
thickness location from the mid-plane z, according to Equation A.7.

ε = ε+ κz (A.7)
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Appendix B

Finite Element Model

This appendix details the Finite Element Model implementation. It is constructed for a four node 2D linear
plane element with a plain stress assumption. The elements are defined with an isoparametric representation,
using a change to natural coordinates (ξ and η) to compute all required information. The natural coordinates
are expressed by means of Equation B.1 from the element’s node coordinate (x and y) and their respective
dimensions (l and w).

ξ = 2x
l

− 1

η = 2y
w

− 1
(B.1)

Linear shape functions are used, resulting in the strain-displacement relationship [B] according to Equa-
tion B.2. ε(i) are the element’s strains, whereas U (i) are the node’s displacement, with u and v are respectively
the nodal displacement in the x and y direction. The [B] matrix is computed as [B] = [A][M ]. [A] is obtained
from the Jacobian [J ] according to Equation B.4 and Equation B.5. [M ] is defined by means of Equation B.6.

ε(i) = [B]U (i) →

 εx

εy

γxy


(i)

= [B]



u1
v1
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[B] = [A][M ] (B.3)
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[M ] = 1
4
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−(1 − η) 0 (1 − η) 0 (1 + η) 0 −(1 + η) 0
−(1 − ξ) 0 −(1 + ξ) 0 (1 + ξ) 0 (1 − ξ) 0
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The elementary stiffness matrix [k(i)] is then given by Equation B.7. A reduced integration scheme is used
to solve the integral of Equation B.7, resulting in Equation B.8. [Q(i)] is the matrix representation in Voigt’s
basis of the element’s stiffness tensor. The point (0, 0) is the integration point in the natural coordinates of
the elements. The strain vector ε(i) used in the strength analysis is also computed at the (0, 0) integration
point with the [B] matrix.

[k(i)] =
∫∫

ηξ

[B]T [Q(i)][B] det[J ]dηdξ (B.7)

[k(i)] ≈ 2[B(0, 0)]T [Q(i)][B(0, 0)] (B.8)
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Incorporating strength constraints in a simultaneous material anisotropy and topology
optimization of composite laminate structures

This research funded by Airbus Atlantic focuses on merging material and structural design further. A density-based frame-
work for topology optimization is adopted, in which material anisotropic stiffness is incorporated as additional design vari-
ables. Material stiffness is characterized by means of the polar parameters, an invariant-based representation of the elasticity
tensor. The considered design space of the polar parameters is described by the thermodynamic bounds for the general case
of 2D orthotropic materials, or by the geometric bounds to restrict the scope to composite laminates. In the optimizations,
either domain of existence is enforced through a remapping as optimization bounds. A gradient-based optimization strategy
is formulated based on the Method of Moving Asymptotes, in which density and anisotropy variables are optimized in parallel.
The method is validated against optimality criteria optimizations for compliance minimization. Thereafter, strength con-
straints are incorporated for topology and unidirectional fiber steering optimizations using a lower KS aggregation method.
Elliptic stress criteria, such as the Tsai-Wu failure criterion, are considered to define material failure. As these criteria are
expressed in the material reference frame, the rotation effect of the fiber is taken into account for the computation of both
the optimization constraint and its gradient. Finally, to extend strength considerations to the more general case of laminates,
a conservative strain envelope is employed. This envelope represents the maximal allowed deformation for any possible ply
orientation. The corresponding optimization constraint is formulated based on the strains in the global frame. To this end, a
strain-based topology framework is proposed and validated against stress-based optimizations with isotropic material. Finally,
the method is applied to show the influence of material anisotropy, both for stiffness and strength, on the optimized solutions.

Keywords: DISTRIBUTED ANISOTROPY; SIMP; POLAR PARAMETERS; STRESS; STRAIN; ELLIPTIC FAILURE
CRITERION

Incorporation de contraintes de résistance dans une optimisation simultanée de la topologie et de
l’anisotropie de structures composites stratifiés

Cette recherche financée par Airbus Atlantic a pour ambition de combiner la conception du matériau et celle de la struc-
ture. Une approche d’optimisation topologique basée sur la densité est adoptée, dans laquelle la rigidité anisotrope des
matériaux est incorporée comme variable de conception supplémentaire. La rigidité des matériaux est caractérisée au moyen
des paramètres polaires, une représentation du tenseur d’élasticité basée sur des invariants. L’espace de conception des
paramètres polaires est décrit par les bornes thermodynamiques dans le cas général des matériaux orthotropes 2D, ou par les
bornes géométriques pour restreindre le champ d’application aux stratifiés composites. Dans les optimisations, l’un ou l’autre
domaine d’existence est converti en bornes d’optimisation au moyen d’une opération de changement de variable. Une stratégie
d’optimisation à gradient basée sur la méthode des asymptotes mobiles (Method of Moving Asymptotes) est proposée, dans
laquelle les variables de densité et d’anisotropie sont optimisées en parallèle. La méthode est validée en comparant avec
une méthode à critère d’optimalité pour la minimisation de la compliance. Par la suite, des contraintes de résistance sont
incorporées dans l’optimisation topologique de pièces composites unidirectionnelles, pour lesquelles l’anisotropie du matériau
est paramétrée par l’orientation de la fibre, en utilisant une méthode d’agrégation de type lower KS. Des critères elliptiques
en contraintes, tels que le critère de rupture Tsai-Wu, sont considérés pour définir la tenue mécanique du matériau. Ces
critères étant exprimés dans le repère local du matériau, l’effet de rotation de la fibre est pris en compte pour le calcul de
la contrainte d’optimisation et de son gradient. Enfin, pour étendre la prise en compte de la résistance au cas plus général
des stratifiés, une enveloppe de déformation maximale admissible est utilisée. Cette enveloppe représente la déformation
maximale autorisée pour toutes les orientations possibles de plis. La contrainte d’optimisation correspondante est formulée
à partir des déformations exprimées dans le repère global. À cette fin, une approche d’optimisation topologique basée sur
les déformations a été proposée et validée par rapport à des optimisations basées sur les contraintes mécaniques dans le cas
d’un matériau isotrope. Enfin, la méthode est appliquée pour montrer l’influence de l’anisotropie du matériau, tant pour la
rigidité que pour la résistance, sur les solutions optimisées.

Mots clés : ANISOTROPIE DISTRIBUEE ; SIMP ; PARAMETRES POLAIRES ; CONTRAINTES MECANIQUES ;
DEFORMATION ; CRITERE DE RUPTURE ELLIPTIQUE
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