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Titre : Caractérisation en flux de signaux radiologiques par apprentissage automatique embarqué 

Mots clés : apprentissage automatique, système embarqueé, signaux radioactives 

Résumé : Dans diverses applications, la classification des 

signaux de détecteurs de rayonnements revêt une 

importance cruciale. Cette thèse se concentre sur un cas 

d'utilisation spécifique et complexe, à savoir la 

discrimination des neutrons et des rayonnements 

gamma dans un scintillateur plastique organique, en 

utilisant l'apprentissage automatique embarqué. Les 

solutions explorées dans cette étude pourraient 

potentiellement être étendues à la discrimination 

d'autres types de radiations dans des détecteurs 

différents. Nous présentons tout d’abord une méthode 

pour créer des ensembles de données neutron-gamma 

étiquetés, acquis par un scintillateur organique. Ce point 

est crucial car toutes les sources de neutrons émettent 

des rayonnements gamma. Les modèles Multilayer 

Perceptron (MLP) et 1D Convolution Neural Network 

(CNN) supervisés sont entraînés et évalués avec les 

signaux bruts préparés en utilisant la méthode 

d'étiquetage. Le modèle 1D CNN surpasse le modèle 

MLP, qui, à son tour, surpasse l'état de l'art, en particulier 

pour les radiations à faible énergie ([100, 250] keVee). 

Une deuxième approche d'apprentissage basée sur 

l’extraction d'attributs a été explorée pour faire la 

discrimination, permettant à un signal d'être 

représenté par une dimension indépendante de la 

chaîne d'acquisition, facilitant ainsi l'utilisation de 

méthodes d'adaptation non supervisées. Les résultats 

montrent que les modèles supervisés sur les signaux 

bruts sont plus performants que l'approche basée sur 

les attributs extraits. Dans cette étude, l'attribut de 

"Form Factor" est exploré en tant que nouvelle 

méthode de discrimination, offrant des performances 

similaires à l'algorithme de l'état de l'art sans nécessiter 

d'ajustement de paramètres. Enfin, nous avons 

implémenté les modèles d’apprentissage proposés et 

l'algorithme de l’état de l’art sur Field Programmable 

Gate Array (FPGA), pour une discrimination en temps 

réel, en respectant une latence inférieure à la durée du 

signal. En prenant en compte la latence et la 

consommation de ressources comme une référence de 

comparaison, l’order des méthodes s'inverse.  

 

 

Title: Characterization of radioactivity signals by machine learning implemented on an embedded system 

Keywords: machine learning, embedded system, radioactivity signal  

Abstract: In various applications, the classification of 

radiation detector signals is of crucial importance. This 

thesis focuses on a specific and complex use case, namely 

the discrimination of neutrons and gamma-rays in an 

organic plastic scintillator using integrated machine 

learning (ML). The solutions explored in this study could 

potentially be extended to the discrimination of other 

types of radiations in different detectors. We present a 

method for creating labeled neutron-gamma datasets 

acquired through an organic scintillator. This is critical as 

all neutron sources emit gamma-rays. Supervised 

Multilayer Perceptron (MLP) and 1D Convolution Neural 

(CNN) models are trained and evaluated with the 

prepared dataset using the labeling method. The 1D CNN 

model outperforms the MLP model, which, in turn, 

surpasses the state-of-the-art, especially for low-energy 

radiations ([100, 250] keVee). A second ML approach  

based on features extraction was explored for 

discrimination, allowing a signal to be represented by 

a dimension independent of the acquisition chain, thus 

facilitating the use of unsupervised adaptation 

methods. The results indicate that supervised models 

on raw signals perform better than the attribute-based 

approach. In this study, the "Form Factor" attribute is 

explored as a novel discrimination method, offering 

performance similar to the state-of-the-art algorithm 

without requiring parameter tuning. Finally, we  

implemented the proposed ML models and state-of-

art algorithm on  Field Programmable Gate Array 

(FPGA) for a discrimination on the fly, while maintaining 

latency below less than the signal duration. 

Considering latency and resource consumption as a 

basis for comparison, the order of the methods is 

reversed  

 



 

 



There is no benefit to hope for from knowledge if it is not for the sake of supporting the

oppressed and achieving justice on this earth

i



Today, we live in an age of advanced technologies and innovations. Nevertheless, the world

continues to grapple with problems such as poverty, injustice, massacres and famines. Sci-

entific progress is often exploited to satisfy the selfish desires and greed of individuals and

institutions, instead of promoting the progress and development of humanity. My hope that

this thesis, along with the competences and experiences I have acquired, will be used in the

opposite direction, for a less unjust world.
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Résumé

Le domaine de l’instrumentation nucléaire couvre un large éventail d’applications, notamment le con-
trôle des réacteurs nucléaires, la sécurité des frontières et la médecine. Divers types de détecteurs ont été
développés pour chacune de ces applications. Certains détecteurs sont dédiés à un type de rayonnement
spécifique, comme le détecteur de neutrons rempli de gaz Hélium 3. D’autres détecteurs sont sensibles
à plusieurs types de rayonnement. En gros, chaque rayonnement détecté est représenté par le signal de
sortie acquis par le convertisseur analogique-numérique de la chaîne de mesure. Dans le cas du capteur
multi-rayons, il est nécessaire de pouvoir discriminer chaque type de rayonnement détecté, ce qui peut
être réalisé en classant le signal acquis en sortie. L’amélioration des performances de discrimination
peut être obtenue grâce à deux approches principales. La première consiste à améliorer la capacité de
discrimination du détecteur, souvent réalisée par des modifications chimiques. La deuxième approche
implique l’exploration de nouvelles techniques de traitement du signal et de méthodes de discrimination.
Cette thèse se concentre principalement sur cette dernière approche, en particulier sur la mise en œuvre
d’outils d’apprentissage automatique embarqués pour améliorer les performances de discrimination pour
les applications contraintes par le temps.

En considérant différentes familles de détecteurs, le signal de sortie d’intérêt est impacté par le type
de rayonnement incident. Parmi ces capteurs de discrimination, une grande partie de la recherche s’est
concentrée sur les scintillateurs plastiques, largement utilisés pour détecter les neutrons et les rayons
gamma. Ces détecteurs organiques présentent plusieurs avantages pour la détection de rayonnement. Ils
peuvent être facilement modelés, produire en grande volume et ont un coût relativement bas. De plus,
ils ont une durabilité accrue, des caractéristiques de non-toxicité et de non-inflammabilité. Cependant,
ils ont une faible capacité intrinsèque de discrimination par rapport à d’autres types de scintillateurs
organiques et les résultats obtenus par les méthodes de discrimination de l’état de l’art sont limités
en termes de performances, notamment pour les radiations de faible énergie. Cette limitation est
principalement due à la légère différence entre les signaux de neutrons et de rayons gamma générés
par un scintillateur plastique. De plus, le manque de jeu de données de neutrons de référence fiable
rend l’évaluation de toute approche de discrimination proposée difficile. La limitation principale pour
l’obtention de ce jeu de données de neutrons est l’absence d’une source de neutrons pure. Toutes les
sources de neutrons existantes émettent des rayons gamma. De plus, la courte durée des signaux fournis
par un scintillateur plastique, qui ne dure que plusieurs centaines de nanosecondes, présente un défi
supplémentaire pour la mise en œuvre d’un système de discrimination en ligne. Pour une discrimination
en temps réel, il est crucial d’obtenir une implémentation intégrée avec un temps d’inférence inférieur à
la durée du signal afin de minimiser le pourcentage de détection de rayonnement manqué, notamment
dans un scénario de taux de comptage élevé. En gros, aborder le problème de discrimination dans ce
type de détecteur pour des applications en temps réel représente l’un des problèmes de classification les
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plus complexes dans le domaine de l’instrumentation nucléaire.

Ce travail de thèse vise à évaluer l’intérêt des méthodes d’apprentissage automatique (Machine Learn-
ing (ML)) pour améliorer la classification des signaux de radioactivité. Le travail abordera d’abord la
discrimination des neutrons/rayons gamma dans les scintillateurs plastiques en utilisant des outils ML,
en raison de la complexité relativement élevée de ce problème par rapport à d’autres problèmes de
classification de particules radioactives, comme expliqué dans le paragraphe précédent. Une fois qu’une
solution aura été trouvée, elle pourrait être étendue afin de classer différents types de radiations détec-
tées par d’autres familles de détecteurs. L’objectif final est de développer une approche ML intégrée
pour des applications en temps réel.

À notre connaissance, cette thèse représente le premier travail explorant l’intérêt de l’apprentissage
automatique pour la discrimination des neutrons et rayons gamma avec un scintillateur plastique pour
des applications en ligne. L’étude implique une évaluation des performances de discrimination des
modèles ML et des méthodes de l’état de l’art utilisant un scintillateur plastique, en tenant compte de
différentes gammes d’énergie de radiation et de fréquences d’échantillonnage. De plus, cette recherche
examine les mises en œuvre intégrées de ces méthodes sur des systèmes embarqués, évaluant leur fais-
abilité pour le déploiement dans un système de discrimination en ligne.

Tout d’abord, dans le chapitre 1, nous avons introduit le sujet de la classification des signaux de
radioactivité en mettant l’accent sur la discrimination des neutrons et des rayons gamma dans les scin-
tillateurs plastiques. Ensuite, nous avons présenté les différents composants d’un système d’acquisition
de scintillation. Par la suite, nous avons analysé et discuté les principales limitations de l’état de l’art
concernant la discrimination des neutrons et rayons gamma dans les scintillateurs plastiques. Cette
étude a montré que l’évaluation des méthodes de discrimination reste une tâche difficile, principalement
en raison des effets des émissions de rayons gamma dans les sources de neutrons. De plus, le coût et la
taille d’un système de discrimination intégré sont proportionnels à sa fréquence d’échantillonnage. Par
conséquent, il est important de déterminer la fréquence d’échantillonnage minimale nécessaire pour la
discrimination afin d’optimiser l’implémentation embarquée. Ce point est crucial dans le cadre de cette
étude pour intégrer des approches ML sur des dispositifs embarqués.

Par conséquent, pour mettre en place une configuration expérimentale pratique activée à la fréquence
d’échantillonnage minimale nécessaire à la discrimination, le chapitre 2 a étudié comment la performance
de discrimination d’un scintillateur organique varie en fonction du rapport signal sur bruit (Signal to
Noise Ratio (SNR)) et de la résolution verticale à différentes fréquences d’échantillonnage. Les résultats
de l’étude ont montré qu’un compromis entre la fréquence d’échantillonnage et le SNR est nécessaire
pour optimiser la performance de discrimination. Augmenter le SNR peut conduire à une réduction de
la fréquence d’échantillonnage minimale requise pour une discrimination efficace. De plus, les résultats
expérimentaux ont indiqué que, en utilisant la même fréquence d’échantillonnage, un SNR plus élevé
peut fournir une performance de discrimination supérieure. En d’autres termes, la performance d’une
méthode de discrimination dépend des paramètres et des composants de la chaîne d’acquisition. Même
de légères modifications dans les conditions d’acquisition peuvent avoir un impact significatif sur la per-
formance de discrimination. Par conséquent, pour obtenir la meilleure performance de discrimination
pour une application prédéfinie, il est essentiel de concevoir et d’optimiser soigneusement la configura-
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tion de mesure. En plus, la comparaison de différentes approches de discrimination à travers différentes
études peut être difficile en raison des complexités liées à l’assurance de conditions et d’environnements
d’acquisition cohérents. Une information détaillée sur le SNR est nécessaire pour garantir une compara-
ison équitable.

L’étude des conditions d’acquisition a servi de base à la proposition d’une méthode pour générer des
ensembles de données de neutrons et rayons gamma propres et étiquetés avec un scintillateur organique.
C’est la deuxième partie du chapitre 2. Les ensembles de données préparés peuvent être utilisés pour
entraîner et évaluer avec précision divers modèles d’apprentissage automatique et comparer différentes
approches de discrimination. Une limitation principale de l’approche de étiquetage de signal proposée
est sa dépendance à l’algorithme de discrimination Tail to Total Integral Ratio (TTTratio). Une autre
limitation est sa dépendance à la fois à la fréquence d’échantillonnage et à l’énergie des radiations in-
cidentes. De plus, par rapport à la méthode traditionnelle, la mise en œuvre de la chaîne de mesure
de l’équitage est plus compliquée, et le processus d’acquisition prend plus de temps. En revanche, la
méthode proposée est capable de produire des ensembles de données étiquetés même dans des situations
où la capacité de discrimination de la chaîne d’acquisition utilisée est limitée.

Dans le chapitre 3, des modèles supervisés de réseaux de neurones (Multilayer Perceptron Neural
Network (MLP) et One Dimension Convolution Neural Network (1D CNN)) ont été entraînés et évalués
en utilisant des ensembles de données de neutrons/rayons gamma préparés par la méthode d’étiquetage
proposée. Les ensembles de données ont été obtenus en utilisant un scintillateur plastique EJ276 et
acquis à la fréquence d’échantillonnage minimale obtenue au chapitre 2 (250 MHz). Nous avons com-
paré les performances des modèles entraînés à celles de l’algorithme de discrimination de l’état de l’art
TTTratio, en tenant compte des variations de fréquence d’échantillonnage et de niveaux d’énergie des
radiations. Le modèle 1D CNN a montré des performances supérieures par rapport au modèle MLP, qui,
à son tour, a surpassé l’algorithme TTTratio. La différence de performance la plus notable a été observée
pour les radiations de faible énergie ([100, 250] keVee), soulignant l’intérêt d’utiliser des modèles ML
pour les applications nécessitant la discrimination d’événements neutron/gamma de relativement faible
énergie.

Il est crucial de souligner que l’algorithme de discrimination TTTratio peut présenter une performance
de discrimination améliorée pour l’intervalle d’énergie [100, 250] keVee, en utilisant le même type de
scintillateur (EJ276), lorsqu’on utilise des blocs de traitement de signal analogique dédiés, tels qu’un
intégrateur d’Op-Amp dans la chaîne d’acquisition, comme le montrent les résultats présentés dans
le chapitre 2. Néanmoins, un modèle ML supervisé entraîné sur les signaux 1D acquis peut toujours
atteindre de meilleures performances de discrimination pour les radiations de plus faible énergie par
rapport à TTTratio, comme le montrent les résultats obtenus dans cette thèse. La seule exigence est de
répéter la préparation de l’ensemble de données étiqueté en utilisant le nouveau dispositif expérimental
proposé, puis d’entraîner le modèle. En fait, la limitation principale de cette approche ML supervisée est
sa sensibilité aux composants et paramètres de la chaîne de mesure. La répétition de la préparation de
signaux de neutrons étiquetés propres pour tout changement subtil dans la chaîne d’acquisition présente
un travail difficile et chronophage.

L’adaptation de domaine non supervisée peut être une solution pour surmonter cette limitation.
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Cependant, un défi critique pour utiliser cette approche provient de la dimension d’entrée du modèle,
qui dépend des caractéristiques de la chaîne de mesure. Pour résoudre ce problème, nous avons exploré
dans le chapitre 3 une approche qui est basée sur l’extraction des attributs à partir des signaux bruts
pour effectuer la discrimination. Cette approche peut réduire la dimension des données à un certain
niveau indépendamment de la chaîne d’acquisition et de la longueur du signal d’entrée. Dans cette
étude, plusieurs attributs ont été définies en tenant compte de notre application de discrimination. Les
résultats obtenus ont indiqué que les modèles supervisés entraînés sur des signaux bruts fournissent des
performances supérieures par rapport à l’approche supervisée reposant sur les attributs extraits. Notre
exploration de l’approche d’extraction de attributs montre que l’attribut du facteur de Forme (Form
Factor) peut être utilisé comme méthode de discrimination, atteignant les performances de l’algorithme
TTTratio sans nécessiter d’ajustements de paramètres. Cette indépendance vis-à-vis des paramètres de
réglage peut être cruciale dans certaines applications.

Dans le chapitre 4, nous avons comparé l’implémentation embarquée des approches de discrimination
proposées (1D CNN, MLP, TTTratio et Facteur de Forme) pour être utilisées sur des systèmes porta-
bles pour des applications contraintes par le temps. C’est la dernière partie du travail présenté dans ce
manuscrit, où les implémentations ont été réalisées sur Field Programmable Gate Array (FPGA). La dé-
cision d’utiliser un FPGA a été motivée par sa propriété de traitement parallèle et sa capacité à traiter le
signal numérisé à une fréquence d’échantillonnage de l’ordre de plusieurs centaines de mégahertz (MHz),
ce qui est une exigence clé dans ce travail en raison de la courte durée des signaux de neutrons et de
rayons gamma générés par un scintillateur plastique. L’objectif était d’optimiser l’implémentation de
chaque méthode afin d’obtenir une latence inférieure à la durée du signal tout en minimisant la quantité
de ressources consommées. Basé sur la performance de discrimination comme critère d’évaluation, le
modèle 1D CNN surpasse le modèle MLP, qui, à son tour, surpasse les algorithmes TTTratio et Facteur
de Forme, surtout pour les radiations de faible énergie ([100, 250] keVee). De plus, les méthodes TTTratio

et Facteur de Forme présentent des performances comparables, ce dernier ayant l’avantage de ne pas
dépendre de paramètres de réglage. Cependant, lors de l’évaluation est basée sur la latence et la con-
sommation de ressources, le classement des quatre méthodes est complètement inversé. Par conséquent,
le choix de la méthode dépend de l’application cible et des ressources d’implémentation disponibles. Par
exemple, dans des applications impliquant la classification de radiations de faible énergie, l’utilisation
plus importante des ressources des modèles MLP et 1D CNN peut être justifiée. En revanche, pour la
discrimination de radiations de plus haute énergie, les algorithmes de Facteur de Forme et TTTratio sont
plus avantageux car ils atteignent la même performance de discrimination que les modèles ML avec une
latence et une consommation de ressources plus faibles.
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Introduction

Context and Challenges

The field of nuclear instrumentation covers a wide range of applications, including nuclear reactor
control, homeland security and medicine. Various types of detectors have been developed for each of
these applications. Some detectors are dedicated to specific radiation type, such as the neutron detector
Helium 3 gas-filled. Other detectors are sensitive to several radiation types. Roughly speaking, each de-
tected radiation is represented by the output signal acquired by the Analog-to-Digital Converter (ADC)
of the measurement chain. In the multi-rays sensor case, it is necessary to be able to discriminate each
type of detected radiation, which can be achieved by classifying the output acquired signal. Improv-
ing discrimination performance can be achieved through two main approaches. The first one involves
enhancing the discrimination capability of the detector, often achieved through chemical modifications.
The second approach involves the exploration of novel signal processing techniques and discrimination
methods. This thesis mainly focuses on the latter approach, especially the implementation of embedded
machine learning tools to enhance discrimination performance for time constraint applications.

Considering different families of detectors, the output signal of interest is impacted by the type of
incident radiation. Among these discriminating sensors, a large part of the research has been focused on
plastic scintillators, which are largely used to detect neutrons and gamma-rays. These organic detectors
present several significant benefits for radiation detection. They can be easily shaped, produced in large
volumes and have a relatively low-cost. In addition, they have increased durability, non-toxicity, and
non-flammability characteristics. However, they have low intrinsic discrimination ability compared to
other organic scintillator types and the results obtained by state of the art discrimination methods are
limited in terms of performance, especially for low energy radiations. This limitation is mainly due
to the slight difference between neutron and gamma-ray signals produced by an organic plastic scintil-
lator. Moreover, the lack of reliable reference neutron dataset makes the evaluation of any proposed
discrimination approach a challenging task. The main limitation for obtaining this neutron dataset is
the absence of a pure neutron source. All the existing neutron sources are emitters of gamma-rays.
Moreover, the short duration of signals provided by a plastic scintillator, which only lasts for several
hundreds of nanoseconds, presents an additional challenge for implementing an online discrimination
system. For a real time discrimination, achieving an embedded implementation with an inference time
less than the signal duration is crucial to minimize the percentage of missed radiation detection, espe-
cially in a high count rate scenario. Roughly speaking, addressing the discrimination problem in this
type of detector for real time applications represents one of the most complex classification problems in
the field of nuclear instrumentation.
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This PhD work aims at assessing the interest of ML methods to improve the classification of radioac-
tivity signals. The work will address first the neutron/gamma-ray discrimination in plastic scintillators
using ML tools, due to the relatively high complexity of this problem compared to other radioactive
particle classification problem, as explained in the previous paragraph. Once a solution has been found,
it could be extended in order to classify different types of radiations detected by other detector family.
The final purpose is to develop an embedded ML approach for real time applications.

To the best of our knowledge, this PhD represents the first work in exploring the interest of ML for
neutron/gamma-ray discrimination with a plastic scintillator for online applications. The study involves
an assessment of the discrimination performance of ML models and state of the art method using a
plastic scintillator, considering various radiation energy ranges and sampling frequencies. Furthermore,
this research examines the integrated implementations of these methods on edge devices, evaluating
their feasibility for deployment in an online discrimination system. The work in this thesis is structured
as follows.

Chapter 1 details the context and challenges of this PhD by providing an overview of the differ-
ent types of radiation detectors, describing the main components of a typical scintillation acquisition
system, which can significantly affect discrimination performance. The chapter analyses the state of
the art neutron/gamma-ray discrimination approaches and discusses the evaluation metrics used in the
literature for these discrimination approaches. By comparing the embedded machine learning solutions
that will be proposed during this work with the state of the art using these metrics, their performances
can be evaluated and highlighted.

Chapter 2 presents the impact of vertical resolution, sampling frequency and SNR on the discrim-
ination ability of a radiation measurement system. This study can help to implement a convenient
experimental setup activated at the minimum sampling frequency needed for discrimination. This is a
critical point to optimize the embedded implementation and reduce its cost and size. The second part of
this chapter proposes a method to prepare a clean labeled neutron/gamma-ray datasets acquired by an
organic scintillator. These datasets can be used to train and evaluate various ML models and compare
different discrimination approaches.

Chapter 3 examines whether the use of ML tools, compared to state of the art method, can result in
a decrease of the minimum required sampling frequency for discrimination in plastic scintillator, as well
as an improvement in classification performance. The chapter presents two different ML discrimination
approaches explored in this study. The proposed ML models are trained and evaluated using the labeled
datasets generated through the labeling process proposed in chapter 2. The results are compared to
state of the art according to the variation of sampling frequency and radiation energy.

Chapter 4 details the main steps involved in the embedded implementation of the discrimination
methods introduced in chapter 3, along with the state of the art algorithm for classifying neutron
and gamma-ray signals. As a result, a comparison can be made between these different discrimination
approaches, taking into account their discrimination performance, execution time and resource consump-
tion. The main objective is to achieve the embedded implementation with no significant degradation in
terms of discrimination performance, while ensuring an execution time lower than the signal duration
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and using a minimum amount of resources.

Finally, we will draw the main conclusions resulting from this thesis and future developments which
could be planned in the frame of this research topic.
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Chapter 1

Presentation of Radioactivity Signals
Classification

This chapter introduces the classification of radioactivity signals. The study focuses on a specific
and challenging use case, the discrimination of neutrons and gamma-rays in organic plastic scintillator.
The solutions explored in the framework of this study could potentially be extended to the discrimi-
nation of other types of radiations in different detectors. Section 1.2 describes the key building blocks
of a typical scintillation acquisition system, which can significantly affect discrimination performance.
Section 1.3 presents a comprehensive overview and analysis of Pulse Shape Discrimination (PSD) and
ML approaches for neutron/gamma-ray discrimination in an organic scintillator. Finally, section 1.4
discusses the evaluation metrics used in literature to assess the performance of these discrimination ap-
proaches. By comparing the proposed embedded machine learning solutions with the existing literature
using these metrics, their performances can be evaluated and discussed.

1.1 Overview of Radiation Detectors

Different types of detectors, such as semiconductors, scintillators, and systems based on gaz ionization,
have been developed to detect the different radiations. These detectors are used in a wide range of appli-
cations associated with various fields, including medical imaging, industrial operations, environmental
monitoring, and homeland security [1]. Detecting and identifying these radiations is important for ensur-
ing the safety of workers and the public, as well as protecting the environment from their harmful effects.

Gas ionization detectors, like Geiger-Mueller counters and ionization chambers, are used for detect-
ing and measuring ionizing radiations, such as alpha particles, beta particles, and gamma-rays [1,2]. The
gas molecules of a detector are ionized after interaction with these particles, resulting in the creation of
positively charged ions and negatively charged electrons. Neutrons are electrically neutral particles and
cannot directly ionize gas molecules. Hence, they cannot be measured by this type of detector. They
can be indirectly detected by using specific gases, such as helium-3, which can capture neutrons and
generate charged particles through nuclear reactions [3, 4]. The helium-3 gas ionization detector is no-
tably the most effective approach for detecting neutrons, especially in terms of sensitivity [1]. However,
a significant challenge to use these detectors is the high cost and the limited availability of helium-3
gas. Moreover, temperature, pressure, and humidity can influence their performances. Therefore, there
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has been a need to explore alternative solutions.

Semiconductor detectors measure ionizing radiations using semiconducting materials, such as silicon
or germanium. When ionization radiation interacts with these materials, it creates electron-hole pairs,
which generate an electrical signal. Neutron detection in this type of detector is achieved indirectly by
adding thin layers of specific converters, such as lithium-6 or boron-10. Both these materials generate
charged particles when they are exposed to neutrons, which can be detected by semiconducting ma-
terials. Semiconductor detectors have high sensitivity and time resolution [1]. Furthermore, they can
also be designed in compact and portable forms. Nevertheless, their performance can be influenced by
temperature, they are costly, particularly for large volume detectors, and they are susceptible to radia-
tion damage, especially for neutron detection. These limitations can affect their long-term stability and
reliability.

Scintillator is a material capable of converting radiation into visible or ultraviolet light. Light sensors,
such as Photo-Multiplier Tube (PMT) or Silicon Photo-Multiplier (SiPM), can then convert this light
into an electrical signal. Scintillators may be broadly grouped into organic and inorganic materials.

• Inorganic scintillators are made of materials such as sodium iodide (NaI) or cesium iodide (CsI).
They are available as single crystals, glasses and transparent ceramics.

• Organic scintillators primarily fall into two main subcategories, namely, liquid and plastic scintil-
lators, which are made from organic compounds that contain both a fluorescent and a radiation-
sensitive molecule. Liquid organic scintillators often use a solvent, such as toluene, to dissolve the
molecules, while plastic scintillators typically use a solid matrix to hold them in place.

Inorganic scintillators have a higher density compared to organic scintillators. They provide also
better energy resolution and higher light yields, which can be important for specific applications, such as
gamma spectrometry. For instance, the NaI(Tl) inorganic scintillator has a density roughly three times
greater than that of both EJ276 plastic and EJ309 liquid scintillators [5]. Moreover, the light yield of
this inorganic scintillator surpasses that of its organic counterparts, reaching approximately three times
the light yield of EJ276 plastic type and five times that of EJ309 liquid type [5]. In contrast, organic
scintillators are easier to adapt to different designs, can be manufactured in larger sizes, and are more
cost effective.

A radiation detector can be sensitive to more than one type of radiation, requiring the use of a dis-
crimination method to identify the type of each detected radiation. Increasing the ability of detector to
discriminate can help to improve the discrimination performance. This improvement is usually achieved
through chemical modifications. Further, developing a novel discrimination approach can be another
way to enhance the discrimination performance.

Organic scintillators are an example of multiple radiation types detectors, which have been devel-
oped to detect both neutrons and gamma-rays. As an illustration, the CEA List institute recently
developed a new measurement system called GN TRACKER, illustrated in Figure 1.1. This detection
system is based on a chemically modified plastic scintillator and aims to perform an online detection
and classification of neutron and gamma-ray related events.
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Figure 1.1: GN TRACKER probe developed by CEA-List institute.

Organic plastic scintillators have been preferred to other types of detectors in many applications due
to their advantages for detecting radiations. They can be easily shaped and manufactured at a relatively
low cost and high volumes. They are more durable, non-toxic and non-inflammatory [1]. However, the
performance of state of the art for neutron/gamma-ray discrimination in these detectors is low compared
to other organic scintillator types [6–8]. This low performance is mainly due to their limited discrimi-
nation abilities, which mainly depend on their chemical characteristics. Furthermore, signals produced
by plastic scintillators have a relatively short duration, lasting only several hundred nanoseconds. This
short duration can challenge the embedded implementation of a discrimination method for a classifica-
tion in real time, especially in high count rate scenario. The inference time of the method should be less
than the signal duration to avoid the miss detection of radiations, as it will be explained in section 1.2.5.
Furthermore, the absence of a ground truth neutron dataset presents a challenge for accurately assessing
any proposed discrimination approach. Neutron sources are also emitters of gamma-rays. Considering
all these difficulties makes the discrimination problem in plastic scintillator one of the most challenging
classification problems in the field of nuclear instrumentation, especially for real time applications.

The main objective of this thesis is to assess the potential of ML in enhancing the classification of
radioactive particles, capable of being embedded on portable systems. The work will be dedicated first
to explore the potential of ML tools compared to state of the art for neutron/gamma-ray discrimination
problem in plastic scintillators, which is one of the most complex problem in the domain of radioac-
tivity signals classification, as explained previously. Once a solution is identified, it can be extended
to classify other types of radiation detected by different types of detectors. The final objective of this
work is to develop an embedded ML approach for a classification on the fly, where the aim is to make
an immediate decision after the acquisition of each pulse. Furthermore, the short duration of signals
in plastic scintillators requires an acquisition at a sampling frequency on the order of several hundred
megahertz (MHz) to acquire the information necessary for discrimination. The power consumption of
an embedded discrimination system is proportional to its sampling frequency. Therefore, a study will
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also be conducted to explore if ML could reduce the minimum sampling frequency required for discrim-
ination compared to the state of the art. This can reduce the architecture size, power consumption, and
complexity of an online discrimination system.

Next section introduces the main components in a scintillation measurement chain. The section
explain the process from the interaction between the radiation and the detector, to the generation of
the digital output signal.

1.2 Scintillation Measurement Chain

Figure 1.2 shows the key building blocks in a scintillation measurement chain. It is composed by a
scintillator, which is connected to photo-detectors, such as PMTs or SiPMs. These sensors generally
used in nuclear measurement chain convert the scintillation light into electrical signals. Depending
on the application, the obtained analog signals can be digitized directly by an ADC, or go through
different analog signal processing steps before digitization. Following the acquisition step, the obtained
output signal can be processed by digital signal processing techniques to extract meaningful information
required for the target application, such as identifying the source of each recorded signal, count rate,
and energy of the incident radiation.

Figure 1.2: Key building blocks in a scintillation acquisition chain.

1.2.1 Scintillator

Scintillators are made from materials that can absorb radiations, and then emit light in response.
When particles interact with the atoms of the scintillator material, the atoms become excited and sub-
sequently release energy in the form of light photons as they return to their ground state. Roughly
speaking, the scintillation process can be described into two steps. The process begins with a particle
interacting with the scintillator material, depositing energy into it and causing the atoms or molecules
to become excited. Subsequently, the excited atoms or molecules quickly return to their ground state,
emitting photons in the process. The number of photons emitted is proportional to the amount of
energy deposited by the incident particle.

More details about the scintillation mechanism in organic scintillators can be found in [9]. The
authors in [10] explain the theory of neutron/gamma-ray discrimination in organic scintillator. The
difference between two signals obtained by the interaction of the two particles arises from the density of
the excited states generated by the ionizing particle. In general, proton and electron particles correspond
to neutron and gamma-ray, respectively. Due to the lower ionization power of a recoiling electron
compared to recoiling proton, the excitation density of the scintillator by an electron is less important.
Therefore, the energy deposition of en electron produces less delayed de-excitation than that of a recoil

12



proton. Consequently, for equivalent energy deposition, the pulse resulting from a gamma-ray interaction
is temporally less dispersed than a pulse generated by neutron interaction, as illustrated in Figure 1.3.

Figure 1.3: Average of neutron and gamma-ray signals obtained by EJ276 plastic scintillator, 252Cf
(neutron and gamma-ray emission) and 60Co (pure gamma-ray emission) sources. Neutrons emitted by

252Cf source are separated from the gamma-rays using the labeling method explained in chapter 2.

1.2.2 Photodetectors

The photodetector converts the light signal produced by the scintillator into an electrical signal.
The output signal is in the form of a different pulses representing different incident radiations with
fluctuating maximum amplitudes distributed randomly over time, as illustrated in Figure 1.4. The
quality of this output signal is influenced by the type and characteristics of the photodetector. Sections
1.2.2.1 and 1.2.2.2 present the characteristics of PMTs and SiPMs photodetectors, which are the two
primary photodetector types used in nuclear measurement chains. Section 1.2.2.3 compares the main
advantages and disadvantages points of these two phototdetectors which can help in selecting one of
them to be used in the experimental setups of this thesis.

Figure 1.4: Illustration of a signal generated by the photodetector of a scintillation measurement
chain. The acquisition window in this example contains five pulses corresponding to five radiations.
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1.2.2.1 Photo-Multiplier Tube

PMTs have been commonly used for many years in scintillation based detectors because of their high
sensitivity, fast response time, and ability to amplify very weak light signals. The basic structure of
a PMT consists of a vacuum tube with a photocathode, several dynodes, and an anode, as shown in
Figure 1.5. When light strikes the photocathode, electrons are emitted due to the photoelectric effect.
These electrons are then accelerated by a high voltage applied between the photocathode and the first
dynode, as illustrated in Figure 1.6. The first dynode is a metal electrode that is positioned close to
the photocathode. As the electrons move toward the first dynode, they collide with other electrons
and release more electrons through secondary emission, resulting in an amplification of the signal. The
process of acceleration and secondary emission is repeated at each subsequent dynode, resulting in a
cascade of electrons that produces a large output signal at the anode. The output signal is proportional
to the amount of light striking the photo-cathode, and can be amplified and measured using appropriate
electronic components.

Figure 1.5: Schematized view of a PMT displaying the focusing electrode, the dynodes, and the
anode [11].

Figure 1.6: Schematized view on how the voltages are applied to each dynode of a PMT in order to
generate electron multiplication [11].

1.2.2.2 Silicon Photomultiplier

In recent years, SiPMs have emerged as an alternative to PMTs for scintillation detection. The basic
structure of a SiPM consists of a silicon substrate with an array of small photo-diodes connected in
parallel with series quenching resistor, see Figure 1.7. Each photo-diode operates in reverse bias, which
means that a voltage is applied across the diode in the opposite direction to its normal operation. When
a photon strikes a photo-diode, it creates an electron-hole pair, which generates a small current. The
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current generated by each photo-diode is proportional to the amount of light that strikes it. The output
signal of a SiPM is the sum of the currents generated by all photo-diodes contained in the array. The
signal can be amplified and measured using convenient electronic circuits.

Figure 1.7: Schematic of the parallel arrangement of photo-diodes with series quenching resistor in
SiPMs [11].

1.2.2.3 Photomultiplier Tube vs Silicon Photomultiplier

SiPMs have some advantages over PMTs, such as their smaller size, lower operating voltage and power
consumption. They also have a high photon detection efficiency, meaning that they are able to detect a
large percentage of photons entering the device. In contrast, SiPMs have many drawbacks. They have
a lower dynamic range compared to PMTs, which can lead to saturation at high light levels. Moreover,
discriminating the dark noise from the signal is a challenging task, the gain is significantly impacted by
temperature, and the device’s size is limited by the dark noise characteristics [11].

PMTs have been employed for many years in scintillation-based detectors for neutron/gamma-ray
discrimination. Additionally, various studies have explored the use of ML to enhance the performance of
neutron/gamma-ray discrimination in organic scintillators, incorporating PMTs into their experimental
setups [12–19]. In this work, datasets were acquired using a measurement system with a PMT photo-
detector. Nevertheless, the methods implemented for signal processing and classification can also be
applied to data collected through an acquisition system based on a SiPM sensor. In some applications,
the signals generated by the PMT or the SiPM are processed by different analog circuits before the
digitization. Next section explain the main analog processing tools that can be used in a scintillation
measurement chain.

1.2.3 Analog Signal Processing

The analog processing of signals generated by a SiPM or a PMT photo-detector aims to achieve basic
pulse shaping that matches the digitization requirements of the target application. Roughly speaking,
there are three main analog processing steps that are usually implemented:

1. Preamplifier: the main functions of this step is to recover the amplitude of the signal, to minimize
capacitor effects, to match the impedance of the detector to the impedance of the coaxial cable
carrying the signal and of the electronic processing chain, and perform an initial shaping of the
signal. There are three types of preamplifiers: voltage, charge and current. This stage is usually
unnecessary when the detector output is large enough to be processed.
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2. Amplifier: in some cases, the preamplifier stage does not provide enough gain for further use of the
signal. Therefore, an additional stage is used, which also serves as a pulse shaper and impedance
matching for the next stage electronics.

3. Voltage limiters: high energy radiations can introduce transient instabilities in the signal acquisi-
tion chain, resulting in inconsistent measurement output. To limit their impact, voltage limiters
are used. Different methods can be used to develop a voltage limiter circuit. This functionality can
also be integrated directly into the ADC chip. This means that the gain of the analog stage must
cover the energy range, while ensuring that the input dynamic range of the ADC is respected.

1.2.4 Analog-to-Digital Converter

The output analog signal provided by the photo-detector or the analog signal processing steps can be
digitized using an ADC. In the framework of this thesis, some of the key specifications of interest for
an ADC include:

1. Sampling frequency: the rate at which the ADC takes measurements of the input signal. It
is measured in Hertz (Hz), which represents the number of samples per second. According to
Shannon Nyquist sampling theorem, the sampling rate must be at least twice the highest frequency
component of the input signal to enable a reconstruction without information loss [20].

2. Bandwidth: the frequency range within the ADC can accurately sample and digitize. In simple
terms, it is the highest frequency that can be captured by the ADC without significant distortion
or information loss.

3. Input Voltage Range (Vpp): the dynamic input voltage range that can be digitized without clipping.

4. Resolution: the number of bits used to represent each digitized signal sample. It determines the
smallest voltage increment detectable by the ADC, which is calculated by dividing the Vpp by two
to the power number of bits. Although higher resolutions (such as 12, 14, or 16 bits) provide
greater accuracy, they come at the expense of decreased maximum sampling rate and bandwidth.

5. Triggering: ADCs can be activated by an external signal or programmed to trigger internally. In
some cases, they can be activated permanently, in which case the sampling process is continuous.
Internal triggering can be set to activate at a specific time, after a certain number of samples, or
when a particular threshold is reached. It is important to set the triggering threshold appropriately
to ensure accurate and reliable measurements. If the threshold is too low, the ADC may trigger on
noise, leading to incorrect measurements. If the threshold is too high, the ADC may not trigger at
all, resulting in missed data. The optimal triggering threshold is determined by the characteristics
of the signal, such as amplitude, frequency, and noise level.

During this work, the parameters of ADC are adjusted to match the dynamic range of the input
signals. The signals are acquired without using analog signal processing blocks and the different proposed
ML approaches are applied directly on raw signals.
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1.2.5 Digital Signal Processing

In real time applications, the main focus of this work, the sampling process is continuous, and the
acquisition window could contain different pulses corresponding to different radiations, as illustrated
in Figure 1.4. Therefore, triggers are needed to determine when pulse selection starts and stops. The
starting point of a pulse can be identified when a particular threshold is reached. The trigger threshold
must be adjusted to avoid noise triggering and minimize the number of undetected radiations. The
ending point of a pulse represents the pulse duration, depending on the target application and the
information required to be extracted from the pulse. For instance, determining the type of the incident
radiation can require a duration on the order of several hundreds of nanoseconds, depending on the type
of scintillator, the photo-detector, and the analog processing blocks.

During the processing of incident radiation to generate its corresponding signal, the scintillator may
react with subsequent radiation, resulting in an occurrence known as pile-up. Figure 1.8 illustrates a
typical case of pile-up, where each peak corresponds to a distinct radiation event. A shaping system,
using high pass filters, can be employed to prevent pile-up before acquiring signal values of interest.
If pile-up persists, the traditional approach is to reject it using an appropriate pile-up detection sys-
tem [21]. Alternatively, digital methods can be employed to identify and address these events. Further
details will be provided in Chapter 2, where a digital method is proposed for preparing a clean labeled
dataset.

Figure 1.8: Pile-up example containing two pulses.

The rejection of pile-up events has negative impact on different applications. For instance, pile-ups
can make the system to miss the identification of certain radiations. Therefore, the apparent number
of incident radiation is lower than the actual number. This leads to an underestimation of the source
activity. The likelihood of these events is directly proportional to the dead time of the system and the
frequency of incident particles. In the presented case, dead time refers to the duration between the
interaction of incident radiation and the generation of the analog signal before digitization [1]. The
information provided by a photodetector coupled to a scintillator may persist for several hundreds of
nanoseconds, while the energy deposition resulting from radiation interaction in the scintillator is vir-
tually instantaneous (ranging from picoseconds to nanoseconds). Further, it is important to note while
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the source activity can be managed in a laboratory setting by using a relatively low active source, in
field applications where measurement duration is constrained, source activities are beyond control.

In nuclear instrumentation, extracting the pulse in real time during the acquisition involves several
steps. The initial step is to identify the starting and ending points of the pulse and apply the BaseLine
Restoration (BLR) method to eliminate the DC component. Various methods can be employed to de-
termine the starting point, such as a certain percentage of the maximum or when the sample points of
the signal reach a predefined threshold. The stop point in the presented case corresponds to the dura-
tion required for discrimination. In this thesis, the BLR method involves calculating the average of the
previous n samples from the starting point and subtracting it from the input data. In certain situations,
it is necessary to include pile-up detection method before pulse extraction, especially in a high count
rate scenario where the probability of these events is increased as explained previously. Consequently,
the incorporation of a pile-up detection block takes on added significance as it plays a central role in
detecting and eliminating these events, or alternatively, isolating and distinguishing their individual
pulses. The work in [22] proposes a a macro-pipelined architecture based on FPGA to execute all these
steps for real time applications.

Roughly speaking, FPGA integrated circuit has been used in different studies to perform the acqui-
sition with organic scintillator due to its capacity to process the digitized signal at a sampling frequency
on the order of several hundred Megahertz [23–26]. This relatively high sampling rate is necessary due to
the short duration of signals produced by a plastic scintillator (in order of several hundreds of nanosec-
onds), which can help to acquire the signal without loss of information. Furthermore, FPGA circuit
has different advantages. It is reconfigurable device with parallel processing capability, low latency and
high energy efficiency. Chapter 4 delves into further details about this integrated circuit, including its
architecture and the process of its reconfiguration.

In the context of real time applications, the deployment of a discrimination system with FPGA can
be achieved through two distinct approaches. The initial approach involves processing each acquired
sample on the flow for discrimination without the need for storage [22]. In contrast, the second approach
entails buffering all acquired samples representing one incident radiation event [23]. This approach is
employed when the discrimination method, as is the case for some ML models, cannot be executed
until all the samples representing the duration required for discrimination are acquired. Therefore, the
FPGA implementation of proposed ML approaches for neutron/gamma-ray discrimination in plastic
scintillator during this work will be preformed and compared to state of the art under the assumption
that the discrimination method takes as input an already buffered pulse, as illustrated in Figure 1.9.
The Figure shows the key blocks of an online discrimination system. The first block involves pulse
extraction, as explained previously. The second block is a pile-up rejection system which can help to
perform the discrimination on a single pulse. In this context, a pile-up is defined as any event containing
at least two radiations separated by a time less than the signal duration required for discrimination.
The third block is a buffer designed to store the samples acquired by the ADC. The output of this block
serves as the input for the discrimination method block. To ensure continuous processing without any
loss of information, a ping pong buffer system can be employed to store the sampling points of subse-
quent pulses while the discrimination block is reading the current one. The final block is responsible for
the classification decision, where a predefined threshold is used to determine whether the input signal
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represents a neutron or a gamma-ray. The value of this threshold depends on the discrimination method
and the performance constraints of the target application.

Figure 1.9: Key blocks of an online neutron/gamma-ray discrimination system.

It is important to note that the pulse extraction and pile-up rejection blocks in Figure 1.9 should
operate at the same sampling rate as the ADC. The discrimination method and classification blocks can
function at different clock frequencies under an execution time constraint for each block, ensuring it is
less than the pulse duration. This execution time is called electronic dead time of the system. Violating
this dead time constraint leads to a subsequent period during which the system is blocked, making it
either totally or partially unavailable for the complete processing of a subsequent pulse. The higher the
frequency of the incident particles, the greater the loss of information. These losses affect the observed
count rate, especially if this rate is relatively high. In some applications, an accurate count rate is a
requirement. Furthermore, the longer the block time of the system, the fewer pulses are processed in
relation to the pulse frequency actually detected. This means that information is lost, and a higher ex-
ecution time is needed to acquire a greater number of pulses before making a decision (alarm threshold,
for example), which is not a feasible choice in real time applications where the duration of measures
is constrained. Therefore, a proposed approach to perform neutron/gamma-ray discrimination with a
plastic scintillator in real time should have an inference time less than the signal duration. The short
duration of signals in a plastic scintillator, which lasts for several hundreds of nanoseconds, challenges
the embedded implementation under this relatively low time constraint.

During this thesis, the signals are first acquired and registered by a digitizer such as, an oscilloscope,
directly connected to the PMT. The acquired raw signals are processed offline to be labeled and cleaned
from unwanted events. Thereafter, different ML models are trained and compared to the state of
the art neutron/gamma-ray discrimination algorithm. Finally, for real time applications, the FPGA
implementations of the proposed discrimination methods are compared based on their discrimination
performance, execution time, and resource consumption. Next section presents different approaches
that have been proposed in the literature for neutron/gamma-ray discrimination in organic scintillator.

1.3 Neutron/Gamma-ray Discrimination in Organic Scintillator

PSD algorithms, such as zero crossing [27], Tail to Total Integral Ratio (TTTratio) [28], and curve-
fitting [29] have been proposed to discriminate neutron and gamma-ray in organic scintillators. These
algorithms rely on the difference in shape of the signals to classify them. Neutron interaction produces
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a longer signal than the one generated by gamma-ray [10]. In liquid and stilbene scintillators, the
difference between the two created signals is more significant than the plastic counterpart, as shown in
Figure 1.10. Therefore, all discrimination approaches perform better with these types of detectors [6–8].

(a) EJ276 plastic scintillator (b) BC-501A liquid scintillator

Figure 1.10: Average of neutron and gamma-ray signals obtained by EJ276 plastic and BC-501A liquid
scintillators, 252Cf and 60Co sources. Min-max normalization is applied on the average signals.

Compared to zero crossing and curve-fitting PSD methods, TTTratio is widely used as the reference
algorithm to be compared with different ML approaches proposed to enhance neutron/gamma-ray dis-
crimination in organic scintillators [13–15,17–19]. Furthermore, this algorithm is very well documented
in the literature for different applications. It is implemented to characterize the discrimination ability of
EJ309 liquid [30] and EJ276 plastic [31] scintillators. It is also used to calibrate the neutron response in
EJ276 plastic scintillator [32]. Another studies consider TTTratio to compare the discrimination ability
between plastic and stilbene scintillators [7], and between liquid and plastic scintillators [33,34]. There-
fore, this algorithm is defined in the frame of this work as the reference to be compared with proposed
ML models.

1.3.1 Tail to Total Integral Ratio PSD Algorithm

TTTratio algorithm computes the ratio between the tail and total integral of the signal to identify the
nature of the incident radiation according to equation 1.1.

TTTratio =
Qtail

Qtotal

(1.1)

where Qtail =
∫ tlong

tshort
f(t) and Qtotal =

∫ tlong

0
f(t). Figure 1.11 illustrates Qtail and Qtot integrals on the

average of neutron and gamma-ray signals obtained by EJ276 plastic scintillator.

The amplitude value of a signal is proportional to the detected radiation energy [35]. Therefore,
this energy can be represented by the Qtotal integral. The values of tlong and tshort enabling to optimize
the discrimination performance are dependent on the implemented experimental setup. In this thesis,
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Figure 1.11: Illustration of Qtail and Qtot integrals on the average of neutron and gamma-ray signals
obtained by EJ276 plastic scintillator, 252Cf and 60Co sources.

the algorithm implemented in [36] is used to obtain their optimal values whenever TTTratio algorithm
is employed for discrimination. This optimization algorithm tunes tlong and tshort in order to maximize
Figure of Merit (FOM) evaluation metric, which is explained in section 1.4.1.

The discrimination performance of this algorithm is proportional to the energy range of incident radi-
ations. Figure 1.12 illustrates the bi-parametric graphical representation of the TTTratio as a function of
the total energy (Qtotal) for a dataset obtained by EJ276 plastic scintillator and a mixed neutron/gamma-
ray source (252Cf). We can distinguish two main classes. The overlapping between both of them illus-
trates the difficulty of the TTTratio algorithm to discriminate all signals, especially for low Qtotal values
([0, 0.2] a.u.), which correspond to low energy radiations ([0, 250] keVee). Nonetheless, it is crucial to
highlight that a key benefit of the TTTratio algorithm lies in its computational simplicity and relatively
low inference time [23, 24]. This makes it a preferred choice in applications where the classification
should be achieved on the fly.

Figure 1.12: Bi-parametric graph of TTTratio according to Qtot integral for a dataset obtained using
EJ276 plastic scintillator and a 252Cf source.
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1.3.2 Machine Learning for Neutron/Gamma-ray Discrimination in Organic
Scintillator

ML is a field of artificial intelligence that involves training algorithms to learn patterns and make
predictions from data. This process allows machines to identify complex relationships and extract
valuable insights from data. It can be separated into three main groups: supervised, unsupervised and
semi-supervised.

1. Supervised learning involves training an algorithm on a dataset where the desired output is known,
called labeled data. The algorithm learns to map inputs to outputs by minimizing the difference
between its predicted output and the true output. One example of supervised machine learning
is image recognition, where a model is trained to recognize different objects within an image.
Another example is email classification, where a model is trained to classify emails as either
spam or not spam. Some popular models used in supervised machine learning include Support
Vector Machine (SVM) [37], Random Forest (RF) [38], MLP [39] and Convolution Neural Network
(CNN) [40]. These models can be applied to a wide range of applications, including but not limited
to, healthcare, finance, and social media analysis [41, 42].

2. Unsupervised learning involves training an algorithm on a dataset where the desired output is
unknown, called unlabeled data [43]. The algorithm learns to find patterns and structure in the
data, without any explicit guidance. One example of unsupervised learning is clustering, where
the algorithm groups similar data points together based on their features. Another example is
dimensionality reduction, where the algorithm identifies the most important features in the data
and reduces the dimensionality of the dataset. Some popular models used in unsupervised learning
include k-means clustering, Gaussian Mixture Model (GMM), and encoded-decoder architecture.
These models can be applied to a wide range of applications, including but not limited to, customer
segmentation, anomaly detection, and image compression.

3. Semi-supervised learning involves a combination of labeled and unlabeled dataset to train a ML
model [44]. The labeled data is used to guide the learning process, while the unlabeled data helps
to improve the accuracy and generalization of the model. One example of semi-supervised learning
is text classification, where only a small portion of the data is labeled. The model can use the
labeled data to learn the patterns and relationships between the features and the labels, and then
apply that knowledge to the unlabeled data.

Recently, ML techniques have been explored to improve discrimination performance with liquid and
stilbene scintillators. The authors of [12] propose a non negative matrix and tensor factorization (TF)
methods to discriminate neutrons and gamma-rays in a stilbene scintillator. The obtained results in this
study show that the origin of acquired signals is due to two main independent components. These com-
ponents represent the neutron and gamma-ray respectively. The computation of the cross correlation
function between these obtained components for each signal and both pure neutron and gamma signals
allows the authors to discriminate neutrons and gamma-rays accurately. However, the authors do not
mention how this accurate performance is measured. Furthermore, they do not provide the preparation
details of pure neutron and gamma-ray signals used for the evaluation.

Another study related to the discrimination of neutron and gamma-ray signals is proposed in [13]
using a stilbene detectors and a MLP model. The authors train their model on neutron and gamma-ray
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signals obtained by a mixed neutron/gamma-ray californium source (252Cf). Then, they evaluate the
model on a dataset acquired in a high rate scenario using 252Cf source and 137Cs pure gamma-ray source.
The neutron/gamma-ray signals obtained by 252Cf are labeled by TTTratio algorithm. The trained model
misclassifies only 1.4% of neutrons in this proposed high rate scenario (gamma-ray neutron ratio of ap-
proximately 400 to 1).

The authors in [14] employ a GMM model for neutron/gamma-ray discrimination in EJ309 liquid
scintillator. The authors compare their GMM model to TTTratio algorithm across varying incident radi-
ation energies ([10, 100] keVee). The results reveal that the trained GMM outperforms TTTratio, mainly
for low energy radiations. As the energy radiation increases, TTTratio algorithm begins to exhibit a sim-
ilar performance compared to the trained GMM. The trained GMM model is evaluated and compared to
TTTratio algorithm using neutron/gamma-ray datasets labeled by Time of Flight (ToF) discrimination
setup and an interval selection method to minimize the labeling error, as explained in [45]. ToF setup
relies on the speed difference between particles to identify their nature. This involves using two scin-
tillators separated by a certain distance to detect radiation and associated speed. Section 2.2 provides
further information about this setup, the method proposed in [45] to reduce the labeling error, and
the error reduction approach proposed in this thesis when this setup is implemented to prepare labeled
datasets.

SVM model is proposed in [15] to perform the neutron/gamma-ray discrimination with EJ299-33
plastic scintillator. The model is trained and evaluated using dataset labeled by TTTratio. The study
compares the performance of the pulse gradient analysis (PGA) discrimination algorithm and the pro-
posed SVM model. The results show that the SVM method can achieve high discrimination accuracy
of 99.1%, which is much better than that of PGA (92.1%).

The article [16] proposes a MLP approach with the EJ301 liquid scintillator. The main advantage
of this study is that model training and evaluation are achieved on a dataset labeled by ToF method.
Nevertheless, the proposed approach for reducing labeling error in ToF has some limitations that will
be discussed in section 2.2. In addition, the energy range of the prepared dataset is relatively high ([740
keVee, 1.225 MeVee]).

1D CNN models are proposed to perform the neutron/gamma-ray discrimination in CLYC inorganic
scintillator [17] and EJ200 plastic scintillator coupled to 6LiF:ZnS(Ag) neutron sensitive screen [18].
The authors of both studies compared their CNN models to different discrimination approaches such as
MLP and TTTratio. The obtained results in both works showed the outperformance of CNN model. The
first proposed approach depends on datasets labeled by TTTratio algorithm and have an energy range
between 2000 keVee and 4500 keVee. The signals of second approach have an energy range between
1 MeVee and 10 MeVee and are labeled by a PSD method based on the time-over-threshold (TOT)
and maximum peak amplitude (MPA) of signals. This method relies on the fact that neutron signals
have longer decay time compared to gamma-ray signals. In general, for a predefined threshold, neutron
signals have higher TOT values. The analogy of this method can be compared to TTTratio algorithm
by replacing TTTratio and Qtot integral in Figure 1.12 by TOT and MPA, respectively. Therefore, as for
TTTratio, the main drawback of this method is its dependence on the energy range of incident radiations.
The discrimination is challenging for relatively low energy radiations. Nevertheless, the authors take
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the advantage of using sensitive neutron screen to overpass this limitation and choosing TOT and MPA
thresholds minimizing the overlap between the distributions of TOT as a function of MPA of neutron
and gamma-ray classes.

Another approach based on CNN model is proposed to perform the neutron/gamma-ray discrimi-
nation in EJ276 plastic scintillator [19]. The datasets used to train and evaluate the model is labeled
by TTTratio and have [250, 1000] keVee energy range. The approach relies on two CNN models. The
initial model classifies the input signal as either a gamma-ray or neutron. The second model then dis-
criminates the neutrons predicted by the first model, labeling them as either true or fake neutrons. In
other words, the second model validates the neutron predictions of the first. The authors found this
dual-model approach to be more efficient than using a single model for signal classification, contributing
to a reduction in false alarm rate.

Despite the improvement obtained by all previous ML work on the neutron/gamma-ray discrimina-
tion task, there are several drawback points that cannot be ignored:

• The majority of ML approaches for neutron/gamma-ray discrimination have been developed us-
ing liquid and stilbene scintillators, which have a higher discrimination capability than plastic
scintillators.

• Some of these models are trained on datasets only labeled by the TTTratio discrimination algo-
rithm. The accuracy of the labeling by this algorithm decreased when there is an overlap between
the TTTratio distributions of neutrons and gamma-rays, as shown in Figure 1.12. Choosing one
TTTratio threshold to label the signals results to a significant number of mislabeled samples. Fur-
thermore, if an energy radiation threshold is selected, above which neutrons and gamma-rays can
be distinguished from each other, then using ML would become unnecessary. This is because
simpler methods can be used to separate the two types of radiation.

• Some of these studies do not take into consideration the comparison between the trained ML
model and state of the art algorithms based on their embedded implementations for a real time
discrimination. This point is critical in some applications, as explained in section 1.2.5.

• The discrimination performance of some of these ML approaches are not compared to that of state
of the art methods concerning variations in the energy of incident radiations. This comparison is
important to highlight the outperformance of the proposed ML model since the discrimination is
more challenging for low energy radiation, as shown in Figure 1.12.

• The discrimination performance is not evaluated according to the variation in sampling frequency.
This helps to find the minimum sampling rate that can be used to perform the discrimination,
which is an important point to reduce the complexity and power consumption of an online dis-
crimination system.

Table 1.1 provides an overview of the main benefits and drawbacks of each one of the previous men-
tioned ML method for neutron/gamma-ray discrimination. To the best of our knowledge, this PhD is
the first work to explore the interest of using ML for neutron/gamma-ray discrimination with a plastic
scintillator for online applications. This work compares the discrimination performance of ML mod-
els and TTTratio algorithm in a plastic scintillator, for different radiation energy ranges, at different
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Table 1.1: Overview of the main benefits and drawbacks of ML methods for neutron/gamma-ray
discrimination.

Model Scintillator type Labeling method Energy range (keVee) Minimum fs Embedded implementation

[12] TF stilbene ? ? ? no

[13] MLP stilbene TTTratio ? ? yes

[14] GMM EJ309 (liquid) ToF [10, 100] ? yes

[15] SVM EJ299 (plastic) TTTratio ? ? no

[16] MLP EJ301 (liquid) ToF [740, 1225] ? no

[17] 1D CNN CLYC (inorganic) TTTratio [2000, 4500] 250 MHz no

[18] 1D CNN EJ200 + 6LiF:ZnS(Ag) TOT ? no no

[19] 1D CNN EJ276 (plastic) TTTratio [250, 1000] no no

sampling frequencies. In addition, it compares their FPGA implementations for use in an online dis-
crimination system.

In this section we presented and discussed the main techniques and their limitations for discrimi-
nating between neutrons and gamma-rays in organic scintillators. The following section presents the
evaluation metrics proposed to assess these techniques and compare their performances.

1.4 Evaluation Metrics for Neutron/Gamma-ray Discrimination
Algorithms

In order to assess the ability of organic scintillators in differentiating between neutrons and gamma-
rays, two evaluation methods have been considered: the FOM and the Receiver Operating Characteristic
(ROC) curve. Sections 1.4.1 and 1.4.2 present these two metrics, respectively.

1.4.1 Figure of Merit

Researchers in physics and chemistry commonly use FOM evaluation metric to assess the ability of
a measurement chain to distinguish between two radiation types within a specific energy range [46].
For instance, chemists use FOM metric to compare several formulations of scintillators and to select
the most effective one. This evaluation metric assesses the ability to discriminate using the TTTratio

algorithm by calculating equation 1.2, making the assumption that TTTratio distributions of neutrons
and gamma-rays follow a Gaussian [46].

FOM =
S

FWHMγ + FWHMn

(1.2)

where S = µn − µγ. µn and µγ are the mean values of the Gaussian fitting equations of the neutron
and gamma-ray distributions respectively, and FWHMn and FWHMγ the corresponding Full Width at
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Half Maximum. Figure 1.13 illustrates the computation of this metric on a neutron/gamma-ray dataset
acquired by a plastic scintillator. A higher FOM value indicates a higher discrimination ability.

Figure 1.13: Main parameters for a FOM calculation.

The discrimination ability of the acquisition chain can be significantly influenced by various com-
ponents and parameters, such as the scintillator type, sampling frequency, ADC noise, and vertical
resolution, as presented in chapter 2, section 2.1. Therefore, the calculated FOM of two different stud-
ies are only comparable if their pulse acquisition chains are exactly the same. Furthermore, the definition
of the FOM is based on a Gaussian distribution assumption. In this thesis, when FOM metric is used to
evaluate the discrimination performance, the Gaussian fit of the experimental data and the computation
of the FOM are both carried out using the algorithm implemented in [36]. This algorithm tunes tlong
and tshort parameters of TTTratio algorithm to optimize the discrimination performance by maximizing
the value of FOM.

1.4.2 Receiver Operating Characteristic Curve

The performance of a binary classification system depends on the chosen classification threshold used
to classify the input. For instance, this can be observed in the use of the TTTratio discrimination al-
gorithm to differentiate neutrons from gamma-rays, where the optimal threshold is dependent on the
various components and parameters used in the implemented acquisition chain.

The ROC curve is a graphical display illustrating the diagnostic ability of a binary classification
system as the discrimination threshold is varied. This curve is generated by plotting the True Positive
Rate (TPR) versus the False Positive Rate (FPR) obtained at different classification thresholds, as
illustrated in Figure 1.14. These metrics, along with others are used to evaluate binary classification
problems. They are defined as:
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Figure 1.14: The ROC space for a better and worse classifier [47].

1. True Positive Rate (also called Recall or Sensitivity): number of items correctly identified as
positive out of the total actual positives. TPR represents the probability that an actual positive
will be predicted positive.

2. True Negative Rate (TNR) (also called Specificity): number of items correctly identified as nega-
tive out of the total actual negatives. TNR represents the probability that an actual negative will
be predicted negative.

3. False Positive Rate: number of items incorrectly identified as positive out of the total actual
negatives (FP/(TN+FP)). FPR is the probability that a false alarm will be raised. It can be
computed from the TNR, where FPR = 1 - TNR.

4. False Negative Rate (FNR): number of items incorrectly identified as negative out of the total
actual positive (FN/(TP+FN)). FNR is the probability that a true positive will be missed by the
prediction. It can be computed from the TPR, where FNR = 1 - TPR.

5. Accuracy: number of items correctly identified as either truly positive or truly negative out of the
total number of items.

6. Precision: number of items correctly identified as positive (negative) out of the total items iden-
tified as positive (negative).

7. F1-Score: the harmonic average of the precision and recall, it measures the effectiveness of iden-
tification when just as much importance is given to recall as to precision.
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Table 1.2 summarizes all these metrics used to evaluate a binary classification problem. TPR and
FPR metrics are considered as the most crucial criteria when evaluating a system designed to discrim-
inate neutrons and gamma-rays. Thanks to the labeling method which will be presented in chapter
2, section 2.2, the ROC curve can be used to accurately evaluate and compare various discrimination
methods, including the proposed ML models, where neutrons and gamma-rays are designated as the
positive and negative classes, respectively.

Table 1.2: Evaluation metrics for binary classification model.

Predicted

Positive Negative TPR = recallp = sensitivity = TP
TP+FN

Tr
ue

la
be

l Positive TP FN TNR = recallN = specifity = TN
TN+FP

Negative FP TN FPR = FP
TN+FP

= 1− TNR

accuracy = TP+TN
TP+TN+FP+FN

FNR = FN
TP+FN

= 1− TPR

F1 = 2∗precision∗recall
precision+recall

precision = TP
TP+FP

or TN
TN+FN

1.4.3 ROC vs FOM

FOM evaluation metric evaluates the discrimination ability of a scintillation acquisition system. In
contrast, the ROC curve shows the variation of false rate alarm of neutron detection according to the
true neutron detection rate, Figure 1.14. Therefore ROC can be considered to be more precise for the
evaluation. Nevertheless, creating the ROC curve requires a ground truth neutron dataset, which can
be difficult to obtain as explained in section 1.1. On the other side, determining the discrimination
ability of a measurement system through the FOM metric only requires a mixed dataset of neutrons
and gamma-rays, which can be generated using various radiation sources, such as californium (252Cf)
and americium–beryllium (241AmBe).

In the context of this thesis, FOM is used to assess and compare the discrimination abilities of differ-
ent implemented acquisition systems. In contrast, the ROC curve is presented for an accurate evaluation
and comparison between different proposed discrimination approaches. This graphical representation
will be achieved by using labeled datasets obtained through the labeling method proposed in chapter 2,
section 2.2.

For real time applications, the embedded implementation of a neutron/gamma-ray discrimination
method is a requirement. The implementation should be achieved while respecting an inference time
less than the signal duration to avoid the miss detection of some radiations, as explained in section 1.2.5.
Therefore, for these applications, the comparison between different discrimination approaches should go
beyond their performances. Their embedded implementations under this time constraint should also be
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compared. This can be done by comparing their execution time, resource consumption and discrimina-
tion performance.

1.5 Conclusion
This chapter defined the problem context and discussed the state of the art regarding this thesis. The

topic of classifying radioactivity signals was introduced, with focus on a challenging use case, which is
the discrimination of neutrons and gamma-rays in organic plastic scintillators. We presented the various
components of a typical scintillation acquisition system (section 1.2), analyzed and discussed the main
limitations of the existing discrimination approaches (section 1.3) and analyzed the evaluation metrics
used in the literature (section 1.4).

The cost and size of an embedded discrimination system increase in accordance with its sampling
frequency. Therefore, it is crucial to identify the minimal sampling frequency required for discrimination
to enhance the embedded implementation. This aspect holds significant importance within the context
of this study, particularly concerning the integration of ML approaches on edge devices. Furthermore,
the evaluation of discrimination methods remains a challenging task even with the use of the presented
evaluation metrics, mainly due to the effects of gamma-ray emissions in neutron sources. The next
chapter addresses the first concern by analyzing the impact of various factors, such as vertical resolu-
tion, sampling frequency, SNR, and the use of an integrator amplifier, on the ability to differentiate
between neutrons and gamma-rays in EJ276 plastic scintillator. The results of this study can help in
implementing an experimental setup that operates at the minimal sampling frequency necessary for
discrimination. Moreover, chapter 2 proposes a method to generate a clean labeled neutron dataset in
an organic scintillator for an accurate assessment of different discrimination approaches.
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Chapter 2

Signal Analysis and Processing for Clean
Labeled Neutron/Gamma-ray datasets

Determining the minimum sampling frequency required for discrimination is an important step to
optimize the embedded implementation of a discrimination method. The power consumption of a digi-
tal processing system is proportional to its sampling rate. Furthermore, an accurate evaluation of any
discrimination method is a difficult task due to the lack of a reference neutron dataset. The main
limitation for obtaining this dataset is the impact of gamma-ray emissions in neutron sources.

This chapter is segmented in two main sections. The first one presents the effect of vertical resolution,
sampling frequency, and SNR on the discrimination ability of a radiation measurement system. In the
presented case, the acquisition chain is implemented using EJ276 plastic scintillator. Thereafter, this
first section shows the impact of using an integrator amplifier in the acquisition chain on discrimination
performance and the minimum sampling rate required for accurate discrimination. The results of this
section can help in implementing an experimental setup activated at the minimum sampling frequency
needed for discrimination using EJ276 plastic scintillator. This is a critical point to optimize the
embedded implementation and reduce its cost and size. The second section of the chapter introduces a
method for preparing clean and labeled neutron/gamma-ray datasets in an organic scintillator, which
will be used to train and evaluate various ML models and compare different discrimination approaches.
The method is mainly based on a ToF setup and TTTratio algorithm. The main conclusions of this
study are summarized at the end of this chapter.

2.1 Discrimination Performance According to SNR, Sampling
Frequency and Vertical Resolution

In the literature, several studies have examined the characteristics of acquisition chains that have an
impact on the discrimination ability with an organic scintillator. The authors in [48] concluded that
achieving optimal discrimination with liquid scintillator required a balance between vertical resolution
and sampling frequency. However, the impact of SNR was not taken into account in this study. Another
study found that a minimum sampling frequency of 200 MHz was necessary to achieve discrimination
with BC501A liquid scintillator [49]. Nevertheless, the impact of SNR and vertical resolution on this
minimum frequency was not explored. A higher SNR may reduce this obtained sampling rate.
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The discrimination results with an organic scintillator are impacted by the sampling frequency, ver-
tical resolution, and SNR. This impact has never been examined in the literature. This chapter proposes
to study this effect, specifically showing how the sampling frequency can be reduced to simplify ML
implementation on portable devices and reduce their dynamic power consumption. First, the imple-
mented setup used to acquire the datasets of this study is described in section 2.1.1. Then, section 2.1.2
explains the analysis of the frequency components of the acquired signals. Sections 2.1.3 and 2.1.4 ex-
plain the SNR and vertical resolution and how they are used in this study, respectively. Thereafter, the
acquisition of different neutron/gamma-ray datasets at various sampling frequencies and vertical resolu-
tions is described in section 2.1.5. Section 2.1.6 presents the analysis achieved to determine the relation
between SNR, vertical resolution, and the minimum sampling frequency required for discrimination.
FOM evaluation metric explained in section 1.4.1 is used to measure the discrimination performance.
Furthermore, in section 2.1.7, we explore the impact of using an integrator amplifier in a measurement
system on the minimum sampling rate required for discrimination and its performance.

2.1.1 Experimental Setup

In the past, various commercial plastic scintillators have been developed. One of these detectors
is EJ276, manufactured by Eljen Technology, which has been used in different studies in the litera-
ture [6–8,11,19]. Its pulse shape discrimination properties are sufficient to achieve neutron/gamma-ray
discrimination [50]. Nevertheless, they are still degraded compared to those offered by a liquid scintilla-
tor [6, 7]. Furthermore, the discrimination ability is dependent on the energy of the incident radiation,
with lower energy levels being more difficult to discriminate. This thesis uses this scintillator type in
the implemented acquisition chains. By comparing the acquired results with the discrimination perfor-
mance documented in the literature, we can assess and validate the various discrimination approaches
proposed during this work.

Figure 2.1 illustrates the implementation of a scintillation acquisition chain that was used during this
study. An EJ276 plastic scintillator is coupled to a PMT model 9821B from ET Enterprises [51]. The
PMT operated at 1700 V and is coupled to the scintillator via SCIONIX EJ-500 optical grease, which en-
sures efficient transmission of scintillation photons to the PMT’s photo-cathode. The PMT is connected
to HDO6104A-MS oscilloscope, which has a bandwidth of 1 GHz. The mixed neutron/gamma-ray ra-
diation source 252Cf is placed at 5 cm from the scintillator.

It is important to note that the signal processing methods employed during this study are not
dedicated solely to the analysis of the datasets obtained from this chain. They can be applied on any
dataset acquired by a different acquisition chain, which be created by modifying at least one component
of the schematic presented in Figure 2.1.

2.1.1.1 Signal Alignment

In general, the starting point of each signal is the first sampling point reaching the triggering threshold.
However, the rise time of each signal depends on the energy of the incident radiation, thus resulting in
different peak positions for different signals. The alignment method of this work defines the starting
point of a signal as the time when the pulse reaches 10% of its maximum value, see Figure 2.2. The
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Figure 2.1: Implemented acquisition chain based on the EJ276 plastic scintillator.

length of the signal from the detected starting point can be chosen differently for each acquisition chain.
To remove the DC component and its drifts, we apply a BLR method on each signal. This method is
based on calculating the average of the previous n samples of the starting point and subtracting it from
the input data, as shown in Figure 2.2. In this work, n corresponds to a duration of 100 ns.

Figure 2.2: Illustration of the base line, starting and ending points on a signal obtained by EJ276
plastic scintillator and a 252Cf source. The sampling frequency and signal duration are 1.25 GHz and

500 ns, respectively.

2.1.2 Signal Frequency Analysis

The Shannon Nyquist sampling theorem states that a digital signal can be reconstructed without
losing information if it is sampled at a rate of at least twice its highest frequency component [20].
Therefore, a dataset is acquired by the measurement chain shown in Figure 2.1. The acquisition pa-
rameters are set to a triggering threshold of 60 mV, a sampling frequency of 1.25 GHz, a time window
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of 1 µs, and a voltage peak-to-peak of 1.6 V. The sampling rate of 1.25 GHz is specifically chosen to
ensure the detection of relatively high frequency components in the signals. Following the alignment
and BLR steps, the processed signals pass through frequency analysis using the Fast Fourier Transform
(FFT) implemented in the sklearn Python library. The alignment step and BLR are performed with a
signal and baseline duration of 500 ns and 100 ns, respectively. A 500 ns signal duration is enough for
ensuring that all pulses return to the noise level, as illustrated in Figure 2.2.

The FFT average of the recorded signals in Figure 2.3 indicates frequency components up to 100
MHz. As a result, the minimum required sampling frequency for these signals is approximately 200
MHz, as supported by the obtained results of this study.

Figure 2.3: FFT power spectrum of 50,000 signals obtained by EJ276 plastic scintillator and 252Cf.
The acquisition was done at 1.25 GHz sampling frequency.

2.1.3 Signal to Noise Ratio

SNR is a quantitative measure of the ratio between the signal strength and the level of noise in a
signal. A higher SNR indicates better separation of the signal from noise. The specific formula used
to calculate SNR may vary depending on the application. For instance, in audio processing, engineers
may compare the power levels of the signal and the noise to determine the SNR.

Two types of noise are traditionally encountered in the measurement of radioactivity. The first is
thermal noise which is considered as white Gaussian noise. The second is shot noise which is often
negligible compared to thermal noise [52]. White Gaussian noise is a type of random signal with a
constant power spectral density across all frequencies. In other words, the noise energy is distributed
uniformly across the entire frequency spectrum. It follows a Gaussian distribution, meaning that the
probability of any given sample is normally distributed around zero with equal likelihood for positive
and negative values.

The distinguishing feature between neutrons and gamma-rays detected by an organic scintillator
is primarily concentrated in the decay phase of the signal, as illustrated in Figure 2.4. Therefore, we
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are interested in the values of the sample points rather than the power of the signal. Moreover, the
high variation of the noise around the signal can lead to the loss of this distinction. In other words,
as the standard deviation of the noise increases, discrimination becomes more difficult. This is clear
in Figure 2.4(a) and 2.4(b), where the SNR of the latter is 14 times higher than that of the former.
Therefore, the appropriate SNR for a signal is determined by the ratio between the average of the sample
points of the signal and the standard deviation of the noise, as shown in equation 2.1.

(a) fs = 5 GHz, SNR = 0.65 (b) fs = 250 MHz, SNR = 9

Figure 2.4: Average of neutron and gamma-ray signals acquired at different SNRs, obtained by EJ276
plastic scintillator, 252Cf and 60Co sources.

SNR =
µsignal

σnoise

(2.1)

where the signal average (µsignal) and noise standard deviation (σnoise) are computed by equation 2.2
and 2.3, respectively.

µsignal =

∑N
i=SP xi

N
(2.2)

with SP and N are the starting point and the length of signal, respectively. In the presented case, SP
is the point when the signal reaches 10% of its maximum value.

The noise within each signal can be found in the sample points that occur both before the starting
point and after the signal length (N ). Therefore, the standard deviation of the noise in a signal can be
calculated using equation 2.3.

noise = [signal[0 : SP ], signal[SP +N : M ]]

σnoise =

√∑NoiseLength
i=0 (noisei−µnoise)2

NoiseLength

(2.3)
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M is the length of the acquisition window. Figure 2.5 illustrates the noise of a signal acquired at
500 MHz sampling frequency. M and N are respectively 1000 ns and 500 ns. The starting point of the
signal in this figure (10% of the maximum) is 148 ns from the start of the acquisition window.

Figure 2.5: Illustration of the noise on a signal obtained using an EJ276 plastic scintillator and a 252Cf
source.

2.1.4 Vertical Resolution

Vertical resolution is a key specification for the ADC implemented in an oscilloscope. It is the number
of bits used by the ADC to digitize input samples. Increasing vertical resolution of an ADC comes at
the expense of decreasing maximum sampling rate and bandwidth.

An ADC of n bits vertical resolution divides the Vpp into 2n levels. In other words, the minimum
voltage or the Quantization Step (QS) that an ADC can theoretically distinguish is the input voltage
range divided by the number of quantization step as expressed in equation 2.4. In our study, the QS is
representative of the vertical resolution and its unit is in mV/bin. It is important to acknowledge that
the presence of noise typically prevents the ADC to trigger on its theoretical minimum voltage level.
Moreover, an ADC may work across a range of selectable Vpp that determine the maximum voltage that
can be applied without causing the input waveform to clip.

QS (mV/bin) =
Vpp

2n
(2.4)

The QS directly affects the SNR of the output signal. The relationship between these two parameters
is inversely proportional. In other words, the SNR is directly proportional to the number of bits used
by the ADC for digitization and inversely proportional to the input voltage range employed during the
acquisition.

2.1.5 Dataset Acquisition

Datasets with varying SNR levels can be generated by adjusting the QS during the acquisition process.
This adjustment can be achieved by employing ADCs with different vertical resolutions or by modifying

36



the input voltage range (Vpp). Therefore, to obtain these datasets, the same acquisition system presented
in Figure 2.1 is implemented with the two following oscilloscopes:

• LeCroy WaveRunner-640Zi: 8 bits vertical resolution.

• LeCroy HDO6104A-MS: 12 bits vertical resolution.

With each oscilloscope, the acquisition is done on three different Vpp levels (1600 mV, 800 mV and
400 mV). For each Vpp level, six datasets are acquired at six different frequencies. The radioactive
source is 252Cf. Table 2.1 summarizes the parameters of this acquisition setup.

Table 2.1: Acquisition setup configurations. Each configuration provides a dataset with specific
quantization step and sampling frequency (fs).

WaveRunner-640Zi HDO6104A-MS
Vertical resolution 8 bits 12 bits

Bandwidth (-3 db, 50 Ohms) 4 GHz 1 GHz
fs (GHz) 5, 2.5, 1, 0.5, 0.25, 0.1 5, 2.5, 1.25, 0.5, 0.25, 0.1

QS (mV/bin) 6, 3, 1.5 0.4, 0.2, 0.1

In order to examine how the SNR parameter affects discrimination performance on an individual
level, datasets with the same QS level but varying SNRs are required. This can be done by adding
white Gaussian noise with mean equal to zero to a recorded dataset, effectively reducing its SNR.

The QS is directly proportional to Vpp , as shown in equation 2.4. According to the experimental
setup of this study, a Vpp value of 400 mV results in a minimum QS of 0.1 mV/bin. Furthermore,
the acquisition threshold is also proportional to Vpp , with the exact proportionality depending on the
digitizer used and its noise level. In the presented case, the results of the experiment indicated that the
threshold should be set to a minimum of 60 mV for the highest Vpp value of 1600 mV (which corresponds
to a QS of 6 mV/bin). As a result, the acquisition threshold is set at 60 mV and any signal with a
maximum amplitude exceeding 400 mV is eliminated. This implies that all of the acquired datasets
are exposed to radiation with a comparable energy range. This energy range is between 200 and 1300
keVee. It is obtained by calibrating the dataset acquired at 250 MHz with a Vpp (QS) equal to 800 mV
(0.2 mV/bin), using HDO6104A-MS oscilloscope. The calibration process is explained in section 3.5 of
chapter 3. The acquisition time window and size of each dataset are respectively 1000 ns and 50000

2.1.6 Experimental Results

In order to ensure both datasets can be compared, the length of the signal in equation 2.2 is set to
500 ns for all signals. For each dataset, the SNR is determined by calculating the median value of the
SNR values for all the individual signals within that dataset. The results showed that, for a given QS,
the SNR remained relatively consistent according to the variation of the sampling frequency.

As expected, the SNR decreases as the QS increases (Table 2.2). Furthermore, for QS values of
2 mV/bin and 1 mV/bin, datasets with different SNR levels are obtained by adjusting the standard
deviation of the added Gaussian noise.
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Table 2.2: Variation of SNR according to QS in each digitizer.

HDO6104A-MS WaveRunner-640Zi
SNR 9 7 2 2 1 0.65

QS (mV/bin) 0.1 0.2 0.4 1.5 3 6

This study uses TTTratio algorithm explained in section 1.3.1 to perform the discrimination between
neutrons and gamma-rays. The obtained optimal values of the algorithm’s parameters, tlong and tshort,
are within the range of [100, 500] ns and [10, 30] ns, respectively. The discrimination performance
is measured using the FOM evaluation metric. The experimental results showed that when the FOM
was less than 0.6, it became difficult to distinguish the difference between neutrons and gamma-rays
TTTratio distributions. Therefore, any dataset with a FOM below this threshold is considered to have
no discrimination potential in this work.

Table 2.3 shows that the FOM remains approximately constant across all sampling rates when the
QS is multiplied by 3 at an SNR of 2. Tables 2.4 and 2.5 indicate that decreasing SNR on the same
QS increases the necessary sampling rate to achieve the discrimination. These results suggest that
the performance of neutron/gamma-ray discrimination is primarily dependent on SNR and sampling
frequency. The discrimination at a certain SNR level can be performed if the sampling frequency exceeds
a specific threshold, as shown in Figure 2.6. However, datasets obtained at a lower sampling rate and
higher SNR are more suitable for discrimination than those obtained at a higher sampling rate with
lower SNR, as illustrated in Figure 2.7.

Table 2.3: FOM for different sampling frequencies, QS and SNR.

SNR 9 7 2 2 1 0.65
QS (mV/bin) 0.1 0.2 0.4 1.5 3 6
fs = 5 GHz 0.98 0.88 0.71 0.73 0.68 0.63

fs = 2.5 GHz 0.97 0.86 0.69 0.72 0.62 0
fs = 1.25 GHz 0.96 0.86 0.68 - - -
fs = 1 GHz - - - 0.62 0 0

fs = 500 MHz 0.94 0.83 0 0 0 0
fs = 250 MHz 0.82 0.72 0 0 0 0
fs = 100 MHz 0 0 0 0 0 0

Table 2.4: FOM for QS = 0.1 mV/bin, different sampling frequencies and SNR.

SNR 9 7 4 2 1 0.65
fs = 5 GHz 0.98 0.92 0.84 0.73 0.67 0.65

fs = 2.5 GHz 0.97 0.88 0.82 0.71 0.62 0
fs = 1.25 GHz 0.96 0.87 0.78 0.65 0 0
fs = 500 MHz 0.94 0.85 0.72 0 0 0
fs = 250 MHz 0.82 0.73 0 0 0 0
fs = 100 MHz 0 0 0 0 0 0
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Table 2.5: FOM for QS = 0.2 mV/bin, different sampling frequencies and SNR.

SNR 7 4 2 1 0.65
fs = 5 GHz 0.88 0.85 0.71 0.65 0.62

fs = 2.5 GHz 0.86 0.82 0.68 0.61 0
fs = 1.25 GHz 0.86 0.8 0.66 0 0
fs = 500 MHz 0.83 0.79 0 0 0
fs = 250 MHz 0.72 0 0 0 0
fs = 100 MHz 0 0 0 0 0

Figure 2.6: Variation of FOM according to fs for different SNRs (Table 2.3). A trade-off between the
SNR and fs is necessary to improve the discrimination performance.

(a) fs = 5 GHz, SNR = 0.65, FOM = 0.63 (b) fs = 250 MHz, SNR = 9, FOM = 0.82

Figure 2.7: TTTratio distribution of neutron and gamma-ray signals acquired at different sampling
frequencies and SNR levels.

The QS indirectly affects discrimination by having an inverse proportional relationship with SNR.
Therefore, the QS can be decreased as long as the SNR can be improved to an acceptable level that
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matches the required sampling rate for the application. However, it is important to consider the ampli-
tude range of the signals because decreasing the QS may also require reducing the ADC’s input voltage
range (equation 2.4). Furthermore, Figure 2.8 shows that the minimum sampling frequency required
for discrimination decreases as the SNR increases. The relation between the two variables is inversely
exponential, which is represented by equation 2.5. The fitting’s mean absolute error is 0.15 GHz. The
sampling frequency can be reduced to 250 MHz if the SNR is higher than 4. Nevertheless, the discrimi-
nation cannot be achieved if the sampling rate is less than 200 MHz, even if the SNR is high, as showed
by the frequency analysis in section 2.1.2 and the results obtained in Table 2.3.

minimumfs = 17 ∗ exp(−2∗SNR) + 0.4 (2.5)

Figure 2.8: Variation of minimum sampling frequency according to SNR (equation 2.5).

In summary, there are four main conclusions drawn from the results of this study:

1. The discrimination performance of a measurement system is not solely dependent on its scintillator
and the discrimination algorithm. SNR which depends on each component and parameter of the
measurement chain has also an important impact. For this reason, conclusions of a study can be
biased by the use of a setup with a low SNR.

2. Neutron/gamma-ray discrimination can be achieved at lower sampling frequency if the SNR is
increased. The relation between these two factors is inversely exponential. In the proposed
experimental setup, a minimum sampling frequency of 250 MHz is possible if the SNR is higher
than 4.

3. At the same sampling rate, the discrimination performance can be improved by increasing the
SNR.

4. Information about SNR is essential for ensuring a fair comparison among discrimination ap-
proaches across various studies. Each component in the acquisition chain influences discrimination
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performance, making the comparison sensitive to subtle differences in acquisition conditions and
environments. However, the SNR is often not detailed in studies focusing on neutron/gamma-ray
discrimination.

The implemented acquisition chain of this study requires a minimum sampling frequency of 250 MHz
to effectively perform neutron/gamma-ray discrimination, for a SNR higher than four. Furthermore,
the discrimination performance obtained at this sampling rate can be improved by increasing the SNR.
One possible solution to further increase the SNR is by introducing an Op-Amp integrator between the
PMT and the ADC, as shown in Figure 2.9. This Op-Amp can also help to reduce the sampling rate
required for discrimination. Reducing the sampling frequency can help in minimizing the size and cost
of the embedded implementation, which is critical in some applications. The next section explains the
concept of this amplifier and its impact on the SNR and the sampling rate required for discrimination.

Figure 2.9: A scintillation acquisition chain with Op-Amp integrator.

2.1.7 Impact of Pulse Shaping Amplifier

An Op-Amp integrator is an electronic component widely used in various circuits due to its ability to
amplify and manipulate signals. The circuit of this component performs mathematical integration on
an input signal. The output voltage of this device is proportional to the integral of the input voltage
over time. Figure 2.10 shows the diagram circuit of an ideal Op-Amp integrator. The voltage at the
inverting (-) input is equal to the voltage at the non-inverting (+) input as a virtual ground. The input
voltage passes a current Vin/R1 through the resistor producing a compensating current flow through
the capacitor Cf to maintain the virtual ground. This charges or discharges the capacitor over time.
The output voltage (Vout) is taken from the output terminal of the Op-Amp, which is connected to the
capacitor Cf in the feedback loop. The circuit can be analyzed by applying Kirchhoff current law at
the inverting input node:

i1 = Ib + if (2.6)

For an ideal Op-Amp Ib = 0 amps:
i1 = if (2.7)

Furthermore, the if can be expressed in function of capacitor Cf and output voltage Vo by the following
equation:

if = Cf
d(V2 − Vo)

dt
(2.8)

Substituting if in equation 2.7 by its equation 2.8:

Vin − V2

R1

= Cf
d(V2 − Vo)

dt
(2.9)
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Figure 2.10: Ideal Op-Amp integrator circuit [53].

For an ideal Op-Amp, V2 = 0 V:
Vin

R1

= −Cf
d(Vo)

dt
(2.10)

Integrating both sides with respect to time:∫ t

0

Vin

R1

dt = Cf

∫ t

0

d(Vo)

dt
(2.11)

If the initial value of Vin is V0, the output voltage will be:

Vo = −
1

R1Cf

∫ t

0

Vindt+ V0 (2.12)

Equation 2.12 shows that the output voltage is proportional to the negative integral of the input
voltage plus the initial input voltage V0. R1Cf is the integration time constant (τ), which determines
how fast the capacitor charges or discharges in response to the input voltage. A larger τ means a slower
integration, which can extend the length of a signal in the sense that it transforms a short-duration
input signal into a longer-duration output signal. This property of signal extension can be useful in noise
reduction. Rapid fluctuations or noise in a signal can be smoothed out through integration, resulting
in a more stable and less noisy output.

The frequency response of an ideal Op-Amp depends on the reactance of the capacitor in the feed-
back loop (Xc = 1/(2πfCf )). At very low frequencies (DC), the gain is theoretically infinite, resulting
in perfect integration of the input signal over time. However, as frequency rises, the gain starts to
decrease, causing the integrator to attenuate higher frequency components of the input signal. This
means that the frequency response of an ideal Op-Amp integrator involves a transition from high gain
at low frequencies to decreasing gain as frequency increases. In other words, an Op-Amp integrator can
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be an equivalent to an active low pass filter.

An ideal Op-Amp integrator has infinite gain and bandwidth, enabling the integration of input
signals of varying frequencies and amplitudes without any loss or distortion. However, practical Op-
Amp integrators are subject to certain factors restricting their performance and precision, such as:

1. Op-Amp characteristics: a practical Op-Amp has finite gain and bandwidth. Furthermore, it has
input and output impedance, offset voltage, bias current and certain noise level. These parameters
affect the output voltage by introducing errors and deviations from the ideal behavior.

2. Capacitor leakage: the capacitor within the feedback loop of a real-world Op-Amp is not a perfect
capacitor. It includes some leakage resistance, which allows a small current to pass through it, re-
sulting in gradual discharge. This phenomenon diminishes the integration impact and contributes
to drift in the output voltage.

3. Input bias current: a practical Op-Amp has an input bias current, which flows either into or out
of its terminals based on its design and type. This current induces a voltage drop across Rin and
influences the input voltage perceived by the Op-Amp, leading to an associated deviation in the
output voltage.

4. Frequency response: the frequency response of a practical Op-Amp introduces both phase shifts
and distortion in the output signal. Additionally, at extremely low frequencies (DC), the voltage
gain may surpass the Op-Amp output range, leading to saturation or clipping effects.

Practical Op-Amp integrators are usually modified and include additional stages and components
to surpass the above mentioned limitations. In this work, the Op-Amp integrator is used as a tool to
improve the SNR of the neutron/gamma-ray signal and reduce the required sampling frequency for the
discrimination. Employing a novel approach of integration dedicated for radiation measurement is not
the objective of the study. Therefore, we used the commercially amplifier "2111 Timing Filter Amplifier"
available in our laboratory [54]. By adjusting the integration time constant setting of this device, the
user can extend the pulse decay time. However, this increase in decay time results in a reduction in
amplitude. The user can therefore compensate this loss, or even boost the signal amplitude, by adjusting
the coarse and fine gain settings.

2.1.7.1 Data Acquisition

The data acquisition for this study is achieved by adding the 2111 Timing Filter Amplifier between
the PMT and the oscilloscope, as shown in Figure 2.11. The acquisition is done with a time window,
triggering threshold, quantization step, and baseline equal to 10 microseconds, 15 mV, 0.1 mV/bin, and
1 microsecond, respectively.

The variation of integration time parameter provides signals with different lengths and power fre-
quency densities. To examine this, five datasets are acquired at a sampling rate of 250 MHz using 5
different integration time configurations. For each configuration, the coarse and fine gain are tuned to
obtain a dataset that has approximately the same maximum amplitude distribution of the raw signals.
Frequency analysis is then conducted on all the datasets. As it is expected, longer delay times led to a
decrease in the maximum frequency components, as indicated in Table 2.6.
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Figure 2.11: The implemented acquisition chain with Op-Amp amplifier.

Table 2.6: Five different configurations of 2111 Timing Filter Amplifier. These configurations provide
signals with different length, SNR and frequency power spectrum.

Fine Gain Coarse Gain Integrate (ns) Maximum frequency component
0 3 20 40 MHz

0.75 3 50 20 MHz
1.25 3 100 12 MHz
1.75 3 200 10 MHz
1.25 10 500 5 MHz

2.1.7.2 Results

For each setting of the Timing Amplifier, a dataset is collected at the corresponding minimum sam-
pling frequency (twice the highest frequency component). The resulting optimal values for the long gate
parameter are used to calculate the SNR. The results presented in Table 2.7 show that discrimination
is possible at the minimum sampling rate for each integration time configuration, primarily due to the
relatively high SNR. Furthermore, the comparison between the results obtained on the raw signals and
the signals acquired with an integrator value of 20 ns, shows that the discrimination can be achieved on
the latter with better performance at lower sampling rate, using the same signal duration. The FOM
values of the former and the latter are 0.72 and 1.02, respectively.

Table 2.7: FOM and SNR obtained on each configuration of the Timing Shaping Amplifier.

Integrate (ns) fs(MHz) Long gate (ns) Short gate (ns) FOM SNR
20 100 500 20 1.02 24
50 50 1000 100 0.98 23
100 25 2000 100 0.95 28
200 25 4000 500 0.92 25
500 10 7000 500 0.9 26
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To summarize, connecting a PMT to an integrator amplifier can improve the discrimination perfor-
mance and reduce the sampling rate required for discrimination. In other words, it can help to minimize
the cost and size of embedded implementation for online classification. However, using an Op-Amp in-
tegrator can increase the dead time and negatively affect the maximum acceptable counting rate, as
explained in section 1.2. Thus, the use of an integrator amplifier could be a viable option to reduce the
sampling frequency, depending on the considered application. In this work, we are interested to improve
the online discrimination performance directly on raw signals using embedded ML approach. This can
help to minimize the loss of information during the acquisition for a classification on the fly, as detailed
in section 1.2.

2.2 Labeling Method for Neutron/Gamma-ray Datasets in Or-
ganic Scintillator

In order to be able to correctly assess a discrimination method based on organic scintillator data, it is
necessary to have a reliable dataset of both neutron and gamma-ray emissions, which can be also used
to train a supervised ML model and compare different discrimination approaches. While obtaining a
dataset of gamma-rays is possible using pure gamma-ray sources like 60Co and 137Cs, creating a dataset
for neutron emissions is more difficult due to the fact that neutron sources are also gamma-ray emitters.

In section 1.3 of chapter 1, we showed that TTTratio PSD algorithm is widely used and very well
documented in the literature to achieve the neutron/gamma-ray discrimination in organic scintillator.
However, the discrimination performance of this algorithm is proportional to the energy of the incident
radiation as explained in section 1.3.1. ToF is another technique used to label and discriminate neutrons
from gamma-rays. This method relies on the speed difference between gamma-rays and neutrons to dis-
criminate them, considering the gamma-ray is faster than the neutron. Nevertheless, acquired labeled
datasets often contain mislabeled samples, which have various origins, such as the overlap between the
gamma and neutron arrival time distributions and natural background radiations. These mislabeled
samples have a penalizing impact on the evaluation of any discrimination approach.

In this section, a process for generating labeled and clean datasets of neutrons and gamma-rays in an
organic scintillator, as illustrated in Figure 2.12. The first step in the process consists in acquiring the
signals via an implemented ToF setup. The next step involves identifying and removing pile-up events,
as experimental results showed that these events are relatively prevalent in the collected datasets. A
pile-up event is a signal containing several overlapped pulses. The remaining signals from the pile-up
detection step are then processed to decrease the number of background events and labeled based on
ToF information. The final step of the process aims at reducing the percentage of mislabeled samples
present in the obtained datasets using TTTratio discrimination algorithm. Recently, a similar approach
has been proposed to remove the mislabeled samples in the dataset acquired by ToF setup using EJ309
liquid organic scintillator [55]. However, the energy distributions of classified neutrons and gamma-rays
do not correspond to the chosen thresholds to remove the mislabeled samples. At the end of this section,
a summary of the main contributions and limitations of this labeling process is proposed.
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Figure 2.12: The main steps of the proposed labeling method.

2.2.1 Time of Flight Setup

The experimental ToF setup involves two detectors separated by a distance L, as illustrated in Figure
2.13. The radiation source is placed in front of the start detector. When the oscilloscope identifies the
detection of radiations at both detectors and the time between the two identifications is less than a
preset time threshold, it records two signals corresponding to the radiation detected by each detector.
Neutron and gamma-ray signals of the stop detector can be separated by the ToF between the two
detectors, which is calculated from the time duration between the peaks of both recorded signals.
However, obtained labeled signals often contain mislabeled samples that should be removed to obtain a
clean reference neutron/gamma-ray datasets.

Figure 2.13: Diagram representing the configuration of ToF experiment.

The article [56] introduces an approach for minimizing the labeling error of ToF setups that is based
on liquid scintillator. However, the implemented method cannot remove background events that coinci-
dentally contribute to peaks in the ToF distribution. An alternative method for improving the precision
of ToF measurements with liquid scintillator involves the use of an optimization algorithm to identify
the time interval within the ToF distribution that has the lowest number of mislabeled samples [45].
Both approaches generated training and validation datasets of ML models presented in [57] and [16],
respectively. In our study, the proposed method to reduce the error combines the results of ToF and
TTTratio discrimination algorithm. By using this approach, mislabeled samples from the entire ToF
distribution of the acquired dataset can be detected and removed.

As illustrated in Figure 2.14, the components used to implement the ToF setup of this study are:
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• Start scintillator: EJ200 non-discriminating plastic scintillator made by Eljen Technology. This
scintillator is not able to discriminate between neutrons and gamma-rays.

• Stop scintillator: EJ276 discriminating plastic scintillator.

• Photomultiplier: 9821B model produced by ET Enterprises, which was supplied by 1700V.

• Oscilloscope: WaveRunner-640Zi with 8 bits vertical resolution.

• Radiation source: 252Cf.

Figure 2.14: Implemented ToF experiment.

The distance between the two detectors in Figure 2.14 is 50 cm. The acquisition parameters are set
to a triggering threshold of 60 mV, a sampling frequency of 5 GHz, a time window of 200 ns, a Vpp of
3.2 V, and a maximum duration between the triggering of the start and stop detectors of 60 ns. After
the acquisition, a duration of 100 ns is assigned to the signal from its identified starting point, while the
baseline is given a length of 50 ns. It should be highlighted that the experimental results obtained from
this ToF setup showed a significant percentage of pile-up events within the collected dataset. Thus, an
offline detection method described in next section was implemented to remove these events.

2.2.2 Pile-up Detection & Evaluation

Pile-up is a phenomenon that can occur when measuring signals with non-zero durations, such as neu-
trons and gamma-rays, whose arrival times follow a Poisson distribution. This event occurs when more
than one pulse is detected within the recorded duration, resulting in the detection of multiple local peaks
in the overall acquired signal, see Figure 2.15(a). These events are usually detected and rejected using
a dedicated electronic system [58]. Nevertheless, some of them may be missed in the implemented ToF
setup due to its coincidence acquisition characteristic and natural background radiations. As a result,
an offline method is necessary to process these events and obtain a reliable datasets for neutron/gamma
classification. Furthermore, evaluating the performance of the detection method can be challenging, as
pile-up events in the acquired dataset cannot be easily identified. Therefore, a method for synthesizing
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pile-up events must be included in the evaluation process to assess the detection performance.

The performance of a pile-up detection algorithm is measured by determining its detection error,
which is the percentage of undetected signals in a dataset consisting exclusively of pile-up events.
Detecting pile-up events becomes more challenging as the time difference between the arrival of the
two contributions within an event becomes smaller, see Figure 2.15(c). Consequently, the evaluation
must take this factor into account to identify the minimum threshold at which the detection error
remains within an acceptable range. In our research, we consider a detection error of less than 1% to
be acceptable.

(a) A synthetic pile-up event with large arrival
time difference between the two events

(b) Correlation output

(c) A real pile-up event with short arrival time
difference between the two events

(d) Correlation output

Figure 2.15: Real detected pile-up events before and after the correlation with Gaussian kernel.
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2.2.2.1 Detection Method

There are various algorithms available for handling digital detection of pile-up events. In [59], the
authors propose a pile-up identification method based on first order derivative. Their method relies
on the fact that zero-crossing point corresponds to the peak point of the original signal. Since the
presence of noise in the original signal can cause many false zero-crossings, the first-order derivative is
smoothed first using a moving-average filter. Then, the search for zero-crossing points is achieved. Each
zero-crossing point that have a slope higher than a predefined threshold and its corresponding point
in the original signal exceeds a certain amplitude threshold is counted as a peak. Finally, a signal is
identified as pile-up event if two or more peaks are detected.

Another method for detecting pile-up events in germanium detectors has also been proposed, which
benefits from the relatively long signal length (in microseconds) to identify them [60]. The method
calculates the width of a signal at 20% of its maximum value and compares it with an average value
calculated using a dataset of single events. If the pulse width is larger than the average value, it is
considered as pile-up.

Fitting method is proposed in [61] for pile-up detection in liquid scintillators. First, the pulse sig-
nal from is modeled using a double exponential with two decay time constants. The parameters of
the model are calculated using database acquired by an implemented experimental setup. Then, peak
detection algorithm based on a least squares fit is used to identify the number of peaks in a acquired
signal. However, the authors do not provide more details about this algorithm. Furthermore, in order
to avoid false peak detection due to noise, the minimum distance between consecutive peaks has been
set to 15 ns. In other words, pile-ups with overlapping pulses whose peaks are separated by less than
15 ns cannot be identified. These events are therefore classified as single pulses.

Recently, a MLP model has been developed that can simultaneously classify neutron, gamma-ray,
and pile-up events of a stilbene detector [13]. The model is trained on neutron/gamma datasets labeled
by TTTratio algorithm and a synthetic pile-up dataset. Despite the high accuracy achieved, the model is
not evaluated for the minimum difference between the arrival times of the two contributions for which
the model can still detect a pileup with high certainty.

In nuclear instrumentation, pile-up detection and rejection constitute a broad field of study. In this
work, the objective of the pile-up detection method is to clean up the dataset acquired by the ToF setup.
Introducing a novel pile-up detection method with an organic scintillator is beyond the scope of this
research. Furthermore, evaluating various pile-up detection techniques and selecting the most effective
one can be a challenging and time consuming work, which may divert our attention from the main ob-
jective, improving the neutron/gamma-ray discrimination in plastic scintillator using ML for real time
application. Therefore, the pile-up detection method from [62] is adapted to clean the ToF dataset. The
proposed adapted method can detect pile-up events with a satisfying level of performance, as we will
show in the evaluation step in Section 2.2.2.2. While acknowledging that a more powerful method may
exist in the literature, the performance achieved by this method satisfies the need for clean labeled data.

The proposed method is based on the cross-correlation between the output signal of the detector
and a predefined Gaussian kernel. Cross-correlation measures the similarity between two vectors over

49



time and the shape of an output signal produced by an organic scintillator is similar to the shape of a
Gaussian window. This means that each peak in the cross-correlation output could indicate an event
in the acquired signal, as shown in Figures 2.15(b) and 2.15(d). However, a Gaussian window that is
too wide will cause the peaks of two closely occurring events to merge together. Conversely, a narrow
window will result in detecting most signals as pile-ups, since any noise peak can be similar to the
created narrow kernel and be identified as a pulse peak.

The optimal width of the kernel window depends on the standard deviation used to create the kernel
and the number of points in the kernel array. In the presented case, the kernel size is the same as
the signal length and the standard deviation should be adjusted to find its optimal value. The tuning
can be done by gradually decreasing the standard deviation until the algorithm starts to misidentify
the majority of the signals in a collected dataset as pile-ups. In other words, the optimal value is the
point at which decreasing the standard deviation further would lead to a substantial misidentification
of actual signals, while increasing it would lead to a considerable number of misidentified pile-up events.
In the presented case, the obtained optimal value of the standard deviation is equal to 4. The first four
lines of algorithm 1 summarize these steps. However, it should be noted that using the optimal standard
deviation value may misidentify some signals as pile-up events. The objective of this detection method
is to prepare clean neutron/gamma-ray datasets and the performance in terms of counting rate is not a
concern.

Algorithm 1 Pile-up detection
0: function pile− up− detection(signals)
1: sigma = obtainedoptimalvalue
2: window = Gaussian(length(signal), sigma)
3: corr = correlate(signal, window)
4: corr = (corr-min(corr))/(max(corr)-min(corr))
5: indexpeaks= find-peaks (corr, high, width, distance)
6: if length(indexpeaks > 1) then
7: pile− up− event = 1
8: else
9: pile− up− event = 0

10: end if
11: return pile− up− event

After the correlation, in line five of algorithm 1, the peaks in the obtained output are detected
using the implemented find_peaks function in scipy library in Python. The function finds all local
maximums by a simple comparison of neighboring values. Some of the detected peaks refer to noise
signals. Therefore, by specifying conditions for the peaks properties, a subset of the detected peaks
can be selected, Figures 2.15(b) and 2.15(d). These properties are width, amplitude, and the distance
between two peaks. Finally, if the number of peaks that are found is higher than one, the acquired
signal is considered as a pile-up.
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2.2.2.2 Evaluation of the Detection Method

To evaluate this detection method, a synthetic pile-up dataset is generated using real signals acquired
by the acquisition chain depicted in Figure 2.1 with a 60Co and 252Cf sources. The oscilloscope is ex-
changed by WaveRunner-640Zi and the acquisition is carried out with identical ToF measurement chain
settings. The size of each obtained dataset was 50,000 signals.

A synthetic pile-up event is created by selecting randomly two acquired signals, shifting the second
one, then adding them together. Figure 2.15(a) shows an example of synthesised pile-up event. The
shifting is determined by the arrival time difference parameter, which can be assigned to a constant
or random value within a given predefined time interval. The shape of a created pile-up signal is
quite realistic and similar to the shape of a real pile-up event. This is because the PMT current
is proportional to the incident radiation fluxes magnitude, which are linearly added when multiple
radiations are detected in the same time window of the acquisition [35]. Moreover, this method allows
us to precisely control the temporal arrival difference between the two components of a synthetic pile-
up event. Therefore, the detection error can be evaluated according to the variation of this parameter.
Table 2.8 summarizes the results of this evaluation, where the value of arrival time distance is adjusted
between 5 and 15 nanoseconds. For each value, the execution is repeated 10 times, each time 100000
pile-up signals are generated.

Table 2.8: Pile-up detection error (%) according to arrival time distance (nanoseconds) between the
two contributions in a pile-up event.

Arrival time difference (ns) 5 6 7 8 9 10 11 12 13 14 15
Detection error 77.6% 66.5% 44.2% 29.8% 22.8% 17.1% 10.2% 3.9% 1.1% 0.6% 0.5%

The minimum arrival time difference required to keep the error less than 1% is 14 nanoseconds,
meaning the proposed detection method can accurately identify a signal as a pile-up event if the second
contribution arrives 14 ns after the first one. This does not imply that the method cannot detect pile-up
events with a shorter arrival time difference between two incoming radiations. Nonetheless, as indicated
in Table 2.8, the likelihood of detection decreases when the distance between the two arrival times is less
than this threshold. These results show that the simple implemented detection method with a single
tuning parameter (standard deviation of the Gaussian kernel) is adapted to clean up pile-up events from
the signals acquired by the ToF setup with a satisfying level of performance.

Finally, the obtained optimal value of the standard deviation of the Gaussian kernel is used to
apply the algorithm on the datasets obtained by the ToF acquisition chain. The percentage of the
detected pile-up events is 8.8% of the signals. Some of the detected pile-up events may be misidentified.
In the presented case, this is not a critical concern, as the primary objective is to generate clean
neutron/gamma-ray datasets.

2.2.3 Processing & Labeling ToF Dataset

The remaining signals from the pile-up removal step contains two main classes: neutron and gamma-
ray. This can be clearly seen in Figure 2.16, which visualizes the ToF distribution. The left and right
distributions correspond to the gamma-rays and neutrons, respectively. As gamma-rays are faster than
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neutrons, their ToF values are lower. However, the two ToF regions contain mislabeled gamma and
neutron samples as we mentioned in section 2.2.1. In section 2.2.4, we will work on reducing the per-
centage of these events using TTTratio discrimination algorithm.

Figure 2.16: ToF Distribution

It is worth mentioning that the obtained average ToF value of the neutron class (37 ns) is compatible
with the expected value of the theory. This value is equal to 35.7 ns, considering the experimental set-up
previously described. It can be computed by considering that the distance between the two detectors is
equal to 50 cm and the mode energy of the neutrons emitted by the 252Cf is 1 MeV which corresponds
to a speed equal to 1.4 cm/ns [63]. Concerning the negative average ToF value of the gamma signals (-3
ns) is due to the difference response time of two detectors and the time resolution of the oscilloscope,
since the speed of gamma is approximately equal to the speed of light in the air.

The samples located at the extremes of each class’s distribution are primarily either mislabeled or
irrelevant background events. Moreover, the region lying in between the two distributions is associated
with significant uncertainty in classification. Therefore, in order to ensure accurate classification of
acquired signals based on ToF parameter and to obtain well-labeled datasets, it is necessary to eliminate
these samples. This can be done through the following steps:

1. Separate the detected radiations into two classes by applying the K-mean algorithm [64], taking
the ToF values of the signals as input. The effectiveness of this method is illustrated in Figure
2.17(a), which provides an example of how the data can be well-separated into two classes.

2. Calculate the ToF mean (µ) and standard deviation (σ) of each cluster.

3. Remove signal in each cluster i, if its ToF value is greater than µi+β ∗σi, or less than µi−β ∗σi,
where µi and σi are the mean and the standard deviation of cluster i.

The percentage of removed signals is inversely proportional to the value of β. The ToF distributions
for both classes are normally distributed. In this work, the value of β is set to 3, resulting in removing
only 0.2% of the signals from each distribution. Figure 2.17(b)) shows the ToF distribution of neutron
and gamma-ray classes after removing the samples from the uncertain regions. This approach ensures
that the neutron and gamma-ray clusters are well-separated with low percentage of signal rejection.
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(a) ToF distribution of signals labeled by K-mean. (b) ToF distribution for β equal to 3.

Figure 2.17: Labeling of ToF output vector by K-mean algorithm.

2.2.4 Identifying & Removing Mislabeled Samples

Figure 2.18(a) shows the 2D graph of TTTratio according to total energy for signals labeled as neutron
by ToF parameter. The figure contains two main clusters representing true and mislabeled neutron ra-
diations. To separate them and obtain a clean neutron dataset, a convenient TTTNeutronThreshold must
be chosen. The TTTratio distribution of both clusters in Figure 2.19 reveals two peaks corresponding
to each cluster. TTTNeutronThreshold is chosen to be equal to the TTTratio value of the first peak plus
half-width at half maximum, as shown in Figure 2.19. The ToF distribution of the removed samples is
approximately similar to the original ToF distribution of the neutron cluster. Thus, with this approach,
even background events that contribute to the peaks in the ToF spectrum can be removed.

(a) neutron class (b) gamma class

Figure 2.18: TTTratio according to total integral for each class of signals labeled by ToF parameter.
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Figure 2.19: TTTratio distribution of signals labeled as neutron by ToF.

It is important to note that all background events cannot be identified by this method, and some
neutron events may be misclassified. Furthermore, the removed signals may contain true neutron sam-
ples. Nevertheless, the performance of neutron counting rate is not a parameter of interest for this work.

Concerning the signals labeled as gamma-rays, the TTTratio distribution according to total energy
has one main cluster, see Figure 2.18(b). In other words, the contamination by mislabeled samples
is relatively low. In order to increase the labeling accuracy, a TTTGammaThreshold is defined, which is
calculated based on the normally distributed TTTratio obtained from a pure gamma dataset emitted by
60Co, by adding three times the standard deviation (3 ∗ σγTTT

) to the mean (µγTTT
), see Figure 2.20.

Consequently, the rejection rate is approximately equal to 0.5%. Finally, at the end of this labeling
pipeline, four datasets can be obtained.

1. neutron: signals are labeled as neutron using the proposed strategy.

2. gamma-ray: signals are labeled as gamma-ray using the proposed strategy.

3. mislabeled-neutron: signals classified as gamma-ray by TTTratio method and neutron by ToF
technique.

4. mislabeled-gamma-ray: signals classified as neutron by TTTratio method and gamma-ray by ToF
technique.

It should be emphasized that the primary objective of the proposed labeling process is to create a
pure neutron dataset. Gamma-ray signals can be directly obtained from gamma-ray sources, such as
60Co or 137Cs. Furthermore, in this labeling method, the cutoff for the minimum energy radiation is
exclusively implemented during the acquisition, using the trigger parameter of the ADC. Subsequently,
all acquired signals undergo processing for labeling or rejection.

To sum up, the ToF setup initially acquires 165,000 signals. After that, pile-up events are identified
and removed by the proposed detection algorithm, which account for 8.8% of the dataset. The remaining
signals are further processed and separated into neutron and gamma-ray clusters. The final stage consists
in removing the mislabeled samples by TTTratio algorithm. The resulting neutron and gamma-ray
datasets contain 29600 and 117600 signals, respectively.
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Figure 2.20: TTTratio distribution of gamma-rays emitted by 60Co.

2.2.5 Contributions and Limitations

The presented labeling process can identify and remove mislabeled samples in the entire ToF spec-
trum, including those that contribute to peak values. This process cleans ToF dataset from pile-up
events, which can significantly impact experimental results and the conclusions extracted from them.
This point is usually ignored in the literature when ToF discrimination approach is employed to label
the signals. Furthermore, the process can provide labeled datasets, even when the discrimination ability
of the implemented acquisition chain is relatively low. In the presented experimental setup, the obtained
FOM is equal to 0.6, see Table 2.3. More accurate labeled dataset can be obtained in a similar acqui-
sition chain with higher discrimination ability, which is primarily dependent on SNR, as demonstrated
by the results of this chapter.

The dependency on TTTratio discrimination algorithm is one of the main limitations of the proposed
signal labeling method. Another limitation is the dependency on the sampling frequency and on the
energy range of the incident radiations. The energy of the particle and its type determine both the
distance it can travel and its speed during travel. Therefore, when dealing with lower energy radiations,
the distance between detectors needs to be reduced, resulting in lower ToF values for higher energy
radiations. To detect these lower ToF values, the sampling rate must be increased. Moreover, compared
to the traditional method, the ToF measurement chain is more complicated to be implemented, and the
acquisition process takes longer time due to coincidence detection. This becomes particularly challenging
as a large dataset is required to effectively identify the peak of mislabeled neutron dataset in the TTTratio

distribution of the neutron signals labeled by ToF.

2.3 Conclusion

Reducing the sampling frequency is a crucial step in order to minimize the cost and size of a discrim-
ination approach. This point is key in the framework of our study for embedding ML approaches on
edge devices. Therefore, in the first section of this chapter we analyzed the discrimination performance
between neutrons and gamma-rays in an organic scintillator according to the variation of SNR and ver-
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tical resolution at different sampling frequencies. TTTratio algorithm and FOM were used to assess the
discrimination ability of implemented measurement system. The study found that this discrimination
ability mainly depends on the SNR and sampling frequency, while vertical resolution has an indirect
impact since SNR is proportional to it. According to the experimental setup implemented in this study
using EJ276 plastic scintillator, the minimum required sampling rate for discrimination decreases as
SNR increases, and it can potentially reach a minimum of 250 MHz. Furthermore, considering the same
sampling rate, the obtained results showed that a higher SNR can offer a better discrimination perfor-
mance. Moreover, using an integrator amplifier in the acquisition system can significantly reduce the
necessary sampling frequency for discrimination and improve the discrimination performance compared
to raw signals, as demonstrated by the experimental results of this study. However, this decrease in
sampling rate is associated to an increase in signal duration, which could be a severe limitation, as soon
as the counting rate will be a parameter to be taken into account.

In summary, the performance of a discrimination approach is strongly dependent on the parameters
and components of the acquisition chain. Even subtle changes in the acquisition conditions and envi-
ronment can significantly affect the discrimination performance. Therefore, it is essential to carefully
design and optimize the acquisition chain for a specific application to obtain the best discrimination
performance. Comparing discrimination approaches across various studies can be difficult due lack of
information regarding acquisition conditions. Providing the SNR can be a solution to ensure a fair
comparison. Finally, it is worth to mention that the discrimination performance is proportional to the
energy range of the incident radiations. This factor was not considered in this study. The acquired
datasets by different acquisition chains were ensured to be in the same energy domain.

The second section of this chapter presents a method to prepare clean and labeled neutron/gamma-
ray datasets using an organic scintillator. The initial step is to gather the dataset through an im-
plemented ToF setup. The subsequent stage comprises detecting and removing pile-up events using
a proposed and evaluated detection method. The remaining signals are then processed to decrease
the number of background events and classified into neutron and gamma-ray classes. Finally, TTTratio

discrimination algorithm is employed to reduce the percentage of mislabeled samples present in the
obtained datasets.

The described labeling procedure has the capability to identify and remove mislabeled samples
throughout the entire ToF spectrum, even those contributing to the peak values. This method cleans
the ToF dataset from pile-up events, which can have a significant impact on experimental results and
the conclusions extracted from them. This aspect is often ignored in the literature when the ToF dis-
crimination approach is used to label signals. Additionally, this process can generate labeled datasets
even in cases where the discrimination ability of the acquisition system is relatively low (FOM equal to
0.6). A key limitation of this proposed labeling method is its reliance on the TTTratio discrimination
algorithm. Another limitation is its dependence on the sampling frequency and the energy range of in-
cident radiation. Furthermore, when compared to the traditional method, the ToF measurement setup
is more complex to implement, and the acquisition process is more time-consuming due to the need for
coincidence detection.

Next chapter explores the discrimination of neutrons and gamma-rays in an organic plastic scintilla-
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tor by supervised and unsupervised ML models. Different ML models and the state of the art algorithm
(TTTratio) will be evaluated based on the variation of sampling frequency and the energy range of the
incident radiations. Training and validation datasets of the implemented models will be obtained by
the proposed labeling process.
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Chapter 3

Supervised ML for Radiations Classification:
A Comparison with a State of the Art
Discrimination Algorithm

Chapter 2 introduced a labeling process to generate clean labeled neutron/gamma-ray datasets, which
can be used to train and evaluate effectively ML models for the discrimination task. The objective of this
chapter is to explore whether the use of ML tools, compared to the state of the art algorithm (TTTratio),
can lead to a reduction of the minimum required sampling frequency in EJ276 plastic scintillator, as
well as an enhancement in the classification performance, especially for low energy radiations.

3.1 Introduction

MLP and 1D CNN ML models have been used in various studies for neutron/gamma-ray discrim-
ination [13, 16, 19, 40], as detailed in section 1.3.2. The models in these studies are trained directly
on 1D time signals, as illustrated in Figure 3.1. They exhibit superior performance compared to PSD
algorithms. However, these approaches have distinct limitations related to dataset preparation and
embedded implementation, as discussed in section 1.3.2. In this chapter, these two ML model types
will be trained and compared to TTTratio algorithm, considering variations in sampling frequency and
radiation energy. More complex structures of these models can be explored if the obtained results are
not promising and cannot outperform the state of the art. Nevertheless, due to the promising results
reported in the literature and the simple nature of input data (1D time signal represented by several
hundred sampling points, as illustrated in Figure 3.2), we expect that these models can achieve discrim-
ination with higher performance.

The main limitation of a ML approach trained on raw signals lies in its sensitivity to the distribution
of the training dataset. In the context of neutron/gamma-ray discrimination, the distribution of two
datasets acquired by distinct measurement chains can vary in multiple aspects, including the input
voltage range and the number of sampling points representing a signal. Consequently, for any subtle
change in the components and parameters of the acquisition chain impacting the distribution of the
input data, the data preparation and training of the model should be repeated, which are challenging
and time consuming work. Unsupervised model adaptation can offer a solution to overcome this data
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Figure 3.1: An illustration of a ML model for neutron/gamma-ray discrimination, taking as input a
raw signal.

Figure 3.2: An example of a raw signal used for training MLP and 1D CNN models. The signal is
obtained by EJ276 plastic scintillator and a 252Cf source. The sampling frequency and signal duration

are 250 MHz and 500 ns, respectively. The input length is 125 sampling points.

preparation problem by adapting a pre-trained model to a new unlabeled dataset acquired by a different
measurement chain. However, a main limitation in adapting a model trained on raw signals is its depen-
dence on the input length, determined by the signal duration, which itself relies on the characteristic of
the acquisition setup. A potential solution is to perform features extraction from the signal, which can
be used to train a ML model instead of using the entire raw signal, as illustrated in Figure 3.3. This
approach involves reducing the data dimensionality to a manageable level that is independent of the
acquisition chain and the input signal length. This is the second ML approach that will be explored to
perform the discrimination in this chapter.

Figure 3.3: An illustration of a ML model for neutron/gamma-ray discrimination, taking as input
features extracted from a raw signal.
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The structure of this chapter is organized as follow. First, MLP and 1D CNN models are explained
in details in sections 3.2 and 3.3. Section 3.4 presents the preparation of labeled raw signals, which
are used to train and evaluate the proposed ML models. The energy calibration of these prepared
datasets is presented in section 3.5. The results obtained by the trained ML models are compared to
TTTratio according to the variation of sampling frequency and radiation energy in section 3.6. Section
3.7 presents the second approach, which is based on features extraction from the signals to achieve the
discrimination. The results of this ML approach reveal three features, including the TTTratio, that can
be used for an effective discrimination. Section 3.8 explores the consistent utilization of the other two
attributes across datasets obtained from various acquisition chains, aiming to assess their suitability
for discriminating between neutron and gamma-ray signals. During this study, Form Factor attribute
is explored as a novel discrimination method that exhibit similar performance compared to TTTratio

without the need for tuning parameters.

3.2 Multi-Layer Perceptron Model

MLP neural network is a fully connected network that tries to find the relation between predefined
output and input. Regarding our application field and considering the neutron/gamma-ray discrimina-
tion problem, the input is the raw signal obtained by a scintillation measurement chain, as shown in
Figure 3.2. The output is one (neutron) or zero (gamma). The model tries to find the function relating
these binary output and the points representing each pulse.

Roughly speaking, MLP models are used to tackle problems with high-dimensional data. The input
dimension typically ranges from several tens to several thousands. MLP models are especially valuable
for solving problems that are challenging or cannot be addressed using traditional statistical approaches.
With the availability of more data, ML models tend to provide better results [65, 66]. However, it is
important to note that this is not always the case. There may be scenarios where the performance of
ML model reaches a certain point and cannot be more improved even if a large dataset exists [67,68].

MLP models consist of artificial neurons, where each neuron is connected to one or multiple inputs
and generates a single output. These inputs can originate from other neurons within the network or
from external sources such as images, or neutron/gamma-ray signal as in the presented case of this work.
The neuron’s output is then transmitted to various other neurons, except for the outputs of the final
neurons that fulfill the specific task at hand, such as signal classification or object detection in an image.

To calculate the output of a neuron, several steps are involved. First, each input is multiplied by the
corresponding weight connecting the neuron to the input source. Then, the weighted inputs are summed
together. Subsequently, a bias term is added to the sum. Finally, the resulting value is passed through
an activation function, as illustrated in Figure 3.4. This activation function introduces nonlinearity
into the neural network, enabling it to capture complex relationships between the input data and the
output. One commonly used activation function is the Rectified Linear Unit (ReLu), depicted in Figure
3.5, which has gained significant popularity in the field of ML [69].

In a MLP model, neurons are commonly arranged in layers, where each neuron in a layer is solely
connected to neurons in the immediately preceding and succeeding layers. The initial layer, known
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Figure 3.4: Illustration of computation steps inside a single artificial neuron. The first step is
calculation the the sum of multiplications between the neuron weights and the input. Then the bias
term is added to the result. The last step is calculating the neuron output through the activation

function.

Figure 3.5: ReLU activation function used as an activation function in the hidden layers of a ML
model.

as the input layer, receives the input data. The final or the output layer, generates the output that
corresponds to the desired task. The choice of activation function in this layer depends on the specific
task at hand. For instance, the softmax function is typically employed for multi-class classification
problems [70], while the sigmoid function is commonly used for binary classification problems [71]. The
layers positioned between the input and output layers are known as hidden layers.

A MLP consisting of three layers (input, hidden, and output) can be considered as a basic MLP
model [39]. However, when an MLP includes more than one hidden layer, it becomes a deep learning
model, as shown in Figure 3.6. The connections between two consecutive layers can either be fully
connected, where each neuron in the first layer is linked to every neuron in the second layer, or non-fully
connected, with some connections being omitted. The extent of dropped connections is regulated by a
tuning parameter known as drop-out, which determines the percentage of connections that are dropped.
Additionally, connections can be reduced, if a group of neurons in the first layer is connected to a single
neuron in the second layer, thereby reducing the number of neurons in the second layer.
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Figure 3.6: An illustration of two hidden layers MLP model. The numbers of neurons in the input,
first hidden, second hidden and output layers are 3, 4, 3 and 2, respectively.

The performance of a ML model is assessed by computing the difference between the predicted and
ground truth outputs. This difference, which depends on the weights of each layer in the ML model
layer is called loss function. Improving the performance level requires to calculate the weights of each
layer giving the minimum of the loss function. The type of the loss function depends on the targeted
problem. For instance, binary-cross-entropy and categorical-cross-entropy are used for binary and multi-
class classification problems, respectively. Mean-squared-error is commonly used for regression problem.
Moreover, these loss functions depend on layer’s activation functions where some of them are non convex
and non linear, such as sigmoid and softmax.

Roughly speaking, the obtained loss function of a ML model depends on the non convex activation
functions and the input/output of all the layers. In other words, we encounter a challenging optimization
problem that involves minimizing a non-convex function in a high-dimensional space, where traditional
methods fail to provide a solution. To address this, various approaches have been developed, including
gradient descent [72], stochastic gradient descent [73], and Adam [74] algorithms. Each approach em-
ploys a distinct strategy to find the minimum and incorporates its own set of tuning parameters. These
algorithms are iterative by design, meaning that they update the weight values at each iteration to con-
verge towards the minimum. The update process depends on how the method handles the optimization
problem, the values of its tuning parameters, and the outputs generated by the machine learning model
for the training dataset in the previous iteration. The training process stops when the change in the
loss function falls below a given threshold for a specified number of iterations (referred to as waiting
iterations). If the achieved performance is deemed satisfactory, the obtained weight values can be used
to predict the output for new instances.

There is another strategy used in the learning process that goes through these steps:

1. The dataset is separated into n subdatasets of equal size.

2. In each iteration, one of these subdatasets is used to update the weights for the subsequent
iteration. Rather than using the full training data to predict the output and update the weights
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sequentially, a subdataset is employed.

3. Once n iterations have been completed, the entire training dataset is used to update the weights
for the next iteration.

4. If the variation in the loss functions has not exceeded a certain threshold for a certain number of
iterations, the training stops. Otherwise, the process returns to step 2.

An epoch is defined by the steps 2, 3, and 4. The number of epoch required to converge the training
depends on several factors such as the task, the dimension of input data and the size of the model. It is
usually tuned during the training to achieve the desired performances. In popular ML frameworks such
as keras or PyTorch, the programmer specifies the size of the subset data instead of the exact number.
This parameter is referred to as the batch-size. If the training data has a size of m and the user selects
p as the batch size, the number of subdatasets will be m/p. If m is not evenly divisible by p, the last
subdataset will have the remaining data samples from the division as its size.

The tuning parameters of the chosen optimization algorithm, the loss function threshold, the waiting
iterations and batch-size should be tuned by the user to optimize the training of the proposed model.

3.3 1D Convolution Neural Network

A 1D CNN is a type of neural network commonly used for processing and analyzing sequential data,
such as time series data and audio signals. 1D CNNs operate on 1D or 2D input vector, where each row
represents a time sequential signal, and they are therefore able to capture patterns in the sequential
data more effectively.

The fundamental layer of a 1D CNN model is the One Dimension Convolution Layer (1D CL).
The 1D CL applies a set of filters (also called kernels) to the input data, sliding them along the input
sequence one position at a time, as illustrated in Figure 3.7. At each position, the filter computes a
dot product between its weights and a segment of the input data, producing a single output value. By
sliding the filter along the input sequence, the convolution layer produces a sequence of output values
capturing the local patterns present in the input data.

A 1D CL has N filters, each of size K, and takes as input a tensor of shape (C, M), where M is the
number of channels, and C is the sequence length. The layer produces an output tensor of shape (N,
(C - K)/S + 1). Each row (channel) of this output tensor corresponds to the result of the convolution
operation between the input of the layer and one filter. S is the stride length, which controls how many
positions the filter is moved at each step. Furthermore, a CL has padding hyperparameter, which adds
extra zeros around the edges to obtain an output tensor having the same number of columns than the
input. After the convolution layer, an activation function is applied to the feature maps as in MLP
model. This activation function introduces non-linearity into the network and helps to capture complex
relationships between the input data and the output.

A 1D CNN model may contain a pooling layer, which is applied directly on the activation output.
Pooling layers, such as maximum and average pooling, downsample the feature maps by summarizing
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Figure 3.7: Illustration of 1D convolution operation. The number filter, the filter width, stride,
number of input channels and input length are equal to 3, 3, 2, 2 and 7, respectively.

each neighborhood of values into a single value. This reduces the size of the feature maps and helps to
reduce overfitting.

After the convolution layers, there is the flatten step, where the feature maps are flattened into a
one-dimensional vector. This vector is then fed into one or more fully connected layers described in
section 3.2, where the dimension of the output layer and its activation function depend on the target
task. The training process follows the same steps than those involved in a MLP model.

In this study, the first ML approach explored to perform the neutron/gamma-ray discrimination
task is based on supervised MLP and 1D CNN models, taking as input raw signal, as illustrated in
Figure 3.1. The two models are trained, evaluated and compared to TTTratio discrimination algorithm
according to the variation of sampling frequency and radiation energy. Sections 3.4 and 3.5 explain
the preparation and the energy calibration of the datasets used for the training and the comparison,
respectively.

3.4 Data Preparation

Results obtained in section 2.1 shows that the minimum sampling rate needed to perform the dis-
crimination between neutrons and gamma-rays by TTTratio algorithm with the implemented acquisition
chain exposed in Figure 2.1, without extending the pulse duration with the Op-Amp is 250 MHz. There-
fore, two datasets are created using this acquisition chain at sampling rates of 125 MHz and 250 MHz.
Consequently, we can examine whether the minimum sampling rate required to discriminate raw signals
with the EJ276 scintillator can be reduced by employing ML tools instead of the TTTratio method.
This reduction helps to obtain an embedded discrimination system with less power consumption and
complexity. Further, this makes the implementation of ML model on edge device for online application
more feasible.
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It should be noted that the maximum frequency component obtained by the FFT of the recorded
signals in section 2.1.2 is 100 MHz. Moreover, the average rise time, the first decay time component
of the EJ276 plastic scintillator and the duration needed for the discrimination are 6, 13 and 500 ns,
respectively. Therefore, preparing a dataset at frequencies lower than 125 MHz results in a loss of signal
shape and amplitude, both these features being crucial to carry out the discrimination. The comparison
between ML methods and TTTratio, according to variation in sampling rate, cannot be achieved for a
lower sampling rate.

The raw signals at 250 MHz are first prepared. Neutron samples are obtained using a 252Cf source.
They are acquired, cleaned up and identified by our labeling method proposed in section 2.2. The
gamma-ray dataset is directly acquired using a 60Co. The tshort and tlong parameters are tuned, with the
resulting optimum values being 20 ns and 500 ns, respectively. These settings are used when applying
the labeling strategy and to obtain the results of section 3.6. The triggering threshold, the voltage peak
to peak, and the acquisition window are all set to 15 mV, 800 mV and 1 µs, respectively. The length of
each signal is 500 ns from its starting point (10% of the maximum), which makes it possible to contain
the longest pulses in the observed dynamics.

Concerning the preparation of labeled datasets at 125 MHz, the proposed labeling strategy in section
2.2 cannot be used. The latter depends on TTTratio algorithm, which with the present acquisition chain
is unable to differentiate the signals at this frequency level, as demonstrated in section 2.1.6. One
solution could be to use the dataset prepared at 250 MHz, then downsampling the recorded signals.
Downsampling consists in reducing the sampling rate (fs) of a signal. The rate reduction by a factor N
can be done in two steps [75]. First, the high frequency components of the signals are reduced with a
low pass filter to avoid potential aliasing. The cutoff frequency of the filter is equal to fs/(2 ∗N). The
second step consists in decimating the filtered signal by N. In other words, keep only every N th sample.
In the presented case, the neutron dataset is prepared at 125 MHz using a Butterworth digital Finite
Impulse Response filter [76]. The window of the implemented filter is Kaiser [77] with β and length
equal to 6 and 200 ∗ fs, respectively. This filter’s frequency response in the pass band ([0 - 62.5 MHz])
needed to produce the downsampled dataset is flat, as shown in Figure 3.8.

Figure 3.8: Frequency response of Butterworth digital Finite Impulse Response filter. The window is
Kaiser with β equal to 6 and length equal to 200 ∗ fs.
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It should be noted that downsampled signals, though realistic, are still somewhat different to signals
acquired directly at 125 MHz sampling rate in which some of the information required to perform the
discrimination might be lost, while these information in the downsampled signal may be preserved.
Nevertheless, obtaining a pure neutron dataset at this relatively low sampling frequency is not possible
for us at the time this report was written and using downsampled version is a reasonable approach
to develop our method. Next section explain the energy calibration steps of the acquisition chain
implemented to acquire the prepared labeled datasets.

3.5 Energy Calibration

Pulse distribution according to the total integral charge (Qtotal) is used to calibrate the energy of the
implemented acquisition chain (examples of 137Cs and 22Na are shown in Figure 3.9). This calibration
process is carried out according to the procedure proposed in [78]. A comparison is made by a colleague
of the team in the laboratory between the measured and simulated spectrum, taking into account the
degradation of energy resolution represented by the Gaussian Energy Broadening (GEB) function. The
simulation is performed using the Monte Carlo N-Particle code (MCNP6.2 [79]), where the values of
parameters a, b, and c are 0.02, 0.1, and -0.2953, respectively. Thereafter, the obtained Compton
maximum energies of 137Cs, and 22Na, and the photopeaks of 241Am are used, see Table 3.1. A linear
energy response function is then applied for the calibration. Results presented in section 3.6 are obtained
for an energy radiation higher than 100 keVee, as shown in Figure 3.10.

Figure 3.9: Examples of spectra obtained from 137Cs and 22Na sources with an EJ276 plastic
scintillator and a PMT.

Thanks to this energy calibration, the comparison between the trained ML models and the TTTratio

algorithm in next section can be performed according to the energy variation to evaluate its impact on
the discrimination performance.
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Table 3.1: The corresponding Qtot for different energy levels based on the result obtained by the
simulation for the energy calibration.

Source Energy (keVee) Qtot (a.u.)
22Na 1020 1.02
137Cs 456 0.5
22Na 323 0.24

241Am 60 0.052

Figure 3.10: TTTratio according to the total energy integral obtained from the labeled datasets at 250
MHz. The green lines correspond to the limits of the energy range [100 keVee, 1.2 MeVee].

3.6 Experimental Results

The number of neutron and gamma-ray signals prepared at 250 MHz are 40600 and 66800, respec-
tively. The percentage of neutron in dataset is approximately 38%. This imbalance in the data can
be addressed by integrating an average weight in the loss function and the evaluation metric during
training. The datasets are separated into 80% for the training and 20 % for the validation. The op-
timizer algorithm is Adam [74], and the loss function is binary cross-entropy. Adam is preferred to
other optimization algorithms such as stochastic gradient descent [73] because it has a faster computa-
tion time and requires fewer parameters for tuning. ReLu and Sigmoid are respectively the activation
functions of the hidden and last layers. The keras framework and Scikit-learn package are used for the
implementation.

Using the same amount of resource, the inference time of a ML model is proportional to its size.
This time is critical for real time applications where the model will be implemented on edge device, as
explained in section 1.1. It can be reduced by optimizing the model size. In this work, the model size of
each implemented ML model is first fine-tuned to maximize accuracy and minimize loss on the validation
dataset. Thereafter, the model size is tuned to minimize it while preserving the performance previously
obtained. The model parameters that need to be tuned to optimize the discrimination performance and
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then reduce the size depend on the type of model.

3.6.1 MLP vs. TTTratio Discrimination Algorithm

The tuning parameters of a MLP model are the number of layers and the number of neurons in each
layer. After the two adjustment steps, the obtained MLP model is one with two hidden layers of 32
neurons each. The input layer has n neurons, which is the number of points encoding a signal. The
output layer is one neuron representing the probability that a signal will be a neutron or gamma-ray. In
general, the classification threshold is 0.5. If the result is greater than 0.5, the radiation is considered as
a neutron, otherwise as a gamma-ray. However, the user can tune this threshold to meet the performance
constraints of the target application using the ROC curve, as explained in section 1.4.2.

3.6.1.1 MLP vs TTTratio: According to Incident Energy Variation

The obtained MLP model is trained and evaluated using datasets acquired and prepared at 250 MHz.
The classification report of the validation dataset is shown in Table 3.2. The obtained TPR is 96%.
Accordingly, 40 samples out of every 1000 neutrons are classified as gamma-rays. Furthermore, the
model raises 20 false alarms for every 1000 gamma signals it classifies. In other word, the FPR is equal
to 2%.

Table 3.2: Classification report of the validation data acquired at sampling rate equal to 250 MHz.
Accuracy is equal to 98%.

Class Precision Recall F1-score

Gamma-ray 98% 98% 98%

Neutron 96% 96% 96%

Figure 3.11 displays the ROC curves obtained by the trained MLP model and TTTratio algorithm at
250 MHz for various radiation energy ranges. The Qtot for each energy level obtained according to the
results of the energy calibration is shown in Table 3.3. It is clear that the discrimination performance of
both approaches is degraded with the decrease of the energy levels. The trained model nonetheless main-
tains its superiority, especially with low energy radiations. This is seen from the sharp contrast between
the ROC curves for the [100 keVee, 250 keVee] energy range. However, the discrimination performance
of both methods are approximately the same for energies greater than 500 keVee, as shown in Figure 3.11.

It is important to note that the discrimination threshold that provides a certain level of FPR for the
entire dataset is different from the thresholds that provide the same level of FPR for different subsets
of the data. Thus, for the same level of FPR, the average TPR is not equal to the TPR of the entire
dataset. The latter is equal to the former if the same discrimination threshold is used.
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(a) ROC curve (b) Zoom in ROC curve

Figure 3.11: ROC curves obtained by MLP model and TTTratio discrimination algorithm on validation
data, for different energy ranges, fs = 250 MHz. The ROC curves for the energy ranges [500 keVee,

750 keVee] and [750 keVee, 1.2 MeVee] are superimposed.

Table 3.3: The corresponding Qtot for different energy levels based on the result obtained by the
energy calibration. Column three represents the percentage of each energy range in the validation

dataset (fs = 250 MHz).

Energy (keVee) Qtot (a.u.) Percentage
[100, 250] [0.06, 0.22] 40%
[250, 500] [0.22, 0.49] 26%
[500, 750] [0.49, 0.75] 14%
[750, 1200] [0.75, 1.3] 20%

3.6.1.2 MLP vs. TTTratio: According to Sampling Frequency

Thereafter, training dataset at 125 MHz sampling rate is prepared. Then, testing dataset to assess
the trained model is created. This dataset consists of downsampled neutron samples from the validation
data and 15,000 signals acquired directly at 125 MHz sampling rate using the gamma-ray source 60Co.

The same MLP model is trained on the prepared training dataset. The obtained results on the
testing data following the training are summarized in Table 3.4. The results indicate that the model
performance is proportional to the sampling frequency. Moreover, Figure 3.12 illustrates how the model
outperforms the TTTratio method at 125 MHz and 250 MHz. For instance, at 125 MHz, the TPR of
MLP model is 94% when the FPR is equal to 2%. The TTTratio, in comparison, provides TPRs of 90%
and 91%, respectively, for the same FPR level, at both sampling rates, see Table 3.4.
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Table 3.4: Obtained accuracy, TPR and FPR with MLP on validation (testing) dataset at 250 MHz
(125 MHz).

FPR = 2%
fs Accuracy TPR TPR for TTTratio

250 MHz 97% 96% 91%
125 MHz 96% 94% 90%

(a) ROC curve (b) Zoom in ROC curve

Figure 3.12: ROC curves obtained by MLP model and TTTratio discrimination algorithm on testing
data at different sampling rates. The figure on the right is a zoom based on the ROC curve on the left.

In summary, these results show that the supervised MLP model trained on raw signals can be a po-
tential solution to improve the performance of neutron/gamma-ray discrimination in plastic scintillator
compared to the state of the art (TTTratio algorithm), especially for low energy radiations. Further-
more, it can help to reduce the complexity of an online discrimination system by reducing its sampling
frequency. However, the main advantage of TTTratio method is its simplicity of computation compared
to MLP models, which can make it a better option for embedded implementation.

3.6.2 MLP vs 1D CNN

In the previous section, the proposed MLP model outperforms the TTTratio algorithm in achieving
neutron/gamma-ray discrimination using the EJ276 plastic scintillator. This section assesses the benefit
of using 1D CNN in order to improve the discrimination performance. The parameters of the 1D CNN
model that need to be adjusted to first optimize discrimination performance and then reduce model size
are the number of layers, the number of filters, and their size within each layer. The resulting model
from the two tuning steps is one with one hidden CL. The obtained number of filters is 4. The filter
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width and stride are equal to 3 and 2, respectively. The input and output layers are the same compared
to the MLP model. The model is implemented and trained using keras framework. The optimizer
algorithm is Adam algorithm.

The ROC curves shown in Figure 3.13 indicate that the 1D CNN model outperforms the MLP
model, mainly for low energy radiation ([100, 250] keVee). In this range, for FPR equal to 2%, the
TPRs achieved by the two models are 88% and 84%, respectively, as indicated in Table 3.5. For energy
levels exceeding 250 keVee, the ROC curves of both models overlap. These results validate the previous
conclusion, indicating that the discrimination between neutrons and gamma-rays in the presented case
is challenging when dealing with low energy radiations ([100, 250] keVee]).

Figure 3.13: ROC curves obtained by MLP and 1D CNN models on validation dataset at 250 MHz.

Table 3.5: Obtained TPR for FPR = 2% with MLP and 1D CNN models on validation dataset at 250
MHz.

Energy range MLP 1D CNN
[100, 250] keVee 84% 88%
[250, 500] keVee 99.42% 99.56%
[500, 750] keVee 100% 100%
[750, 1200] keVee 100% 100%

While the trained 1D CNN model outperforms the TTTratio algorithm in the presented case, a key
limitation of this supervised ML model is its sensitivity to the distribution function of the trained
dataset. As explained in section 3.1, there is a need to repeat the data preparation and model training
for even subtle changes in the measurement chain. This process can be both challenging and time-
consuming. Adapting the proposed 1D CNN model to an unlabeled dataset acquired by a different
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measurement chain can be a solution to overcome this data preparation problem. However, the input
dimension of this model depends on the characteristic of the acquisition setup, which can be a limitation
in achieving the adaptation. Features extraction from the signal can be a potential solution to overcome
this limitation, as detailed in section 3.1. The extracted attributes from raw signals can be used to
train an ML model instead of using the entire raw signal. The next section provides a comprehensive
explanation of the steps involved in this feature extraction approach.

3.7 Features Extraction

Supervised model adaptation involves first the training of a model on a large dataset (source dataset).
Then, the trained model is adapted on a new smaller dataset (target data), having different distribution
obtained from different sources. On the other hand, unsupervised model adaptation involves adapting
a trained model to a new dataset (target dataset) without using labeled data. This characteristic can
be of great interest when obtaining labeled data is a challenging task, as is the case for the neutron
dataset in this work. Adapting a model trained on source data to perform the same task on target data
is challenged by several factors, such as the different distributions of both datasets and the different
dimension size that represent a signal in each dataset. An instance of unsupervised model adaptation
problem is adapting the previous trained MLP or 1D CNN model to classify neutron/gamma-ray signals
acquired by a different acquisition chain. In this presented case, both challenges mentioned previously
are presented. Features extraction process may be a solution to overpass the difference in signal dimen-
sions. It can reduce the dimension of the data to a manageable level independent from the acquisition
chain and the length of the raw signal.

Features extraction is the process of extracting a set of relevant features from data, such as time
sequence signals acquired from a sensor. These features can be more easily analyzed and processed
to extract meaningful information from the data. In other words, features extraction can provide a
compact and informative representation of a signal, which enables the comparison of signals with dif-
ferent lengths that can be useful for model adaptation. For instance, features extraction could involve
identifying and extracting statistical criteria such as mean, variance, skewness, and kurtosis. These
statistical criteria are simple and yet informative features that can describe the signal’s shape, average
deviation, and spread.

The features that can be extracted from the signals and are useful for the target application can
be defined by the user or through the using of self-supervised ML tools. Self-supervised learning has
emerged as a promising approach in the field of ML, offering a novel paradigm for learning useful rep-
resentations that capture important aspects of the data distribution. The fundamental idea behind
self-supervised learning is to design pretext tasks that guide the learning process without human anno-
tation. These pretext tasks involve automatically generating supervisory signals from the data itself,
effectively transforming unlabeled data into labeled-like data. By solving these pretext tasks, models
can represent the relevant information of the dataset needed for a desired task in a lower dimension.
These representations can then be used as input for another ML models to achieve different tasks, such
as classification and object detection. In a wide range of applications, the relevant features learned
by self-supervised learning has offered the potential to achieve the desired task with higher or similar
performance, compared to using the initial dataset directly [80,81].
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While recognizing the potential of self-supervised learning for extracting meaningful data features,
our study focuses solely on the definition of some features that can be useful to perform the neutron/gamma-
ray discrimination task. The application of self-supervised learning to classify radioactivity signals re-
mains a prospect for future research. Section 3.7.1 defines the various types of features that can be
extracted from signals. Then, section 3.7.2 explains the process of training supervised ML model using
the derived features and compares the results with those obtained by the trained MLP and 1D CNN
models on raw signals in section 3.6. Finally, section 3.7.4 measures and analyses the contribution
of each feature to the decision output, which can help to determine the most relevant attributes for
discrimination.

3.7.1 Definitions of Extracted Features

The types of features that can be extracted rely on the signal’s characteristics and the specific applica-
tion. These features can be broadly classified into three categories: statistical, spectral, and time-domain
features. Spectral features, such as dominant frequency, bandwidth, and harmonic ratios, are primarily
derived from the frequency domain. Experimental results showed that the difference between neutrons
and gamma-rays in the frequency domain (using FFT) is mainly due to their energy distribution differ-
ences. The sole disparity lies in the amplitudes of the frequency components because these amplitudes
correspond to the energy of the signal in the time domain.

As presented in section 1.1, the main difference between neutron and gamma-ray signal in an organic
scintillator is located in the decay phase. Therefore the main time domain and statistical attributes
that may contain useful information for the discrimination (Table 3.6) are:

• Mean: the average value of the signal.

• Variance: the average of the squared differences from the mean.

• Standard Deviation: a measure of the dispersion or variability of the signal.

• Skewness: a measure of the asymmetry of the signal’s distribution.

• Kurtosis: a measure of the peakedness or flatness of the signal’s distribution.

• Crest Factor: the ratio of the peak value to the Root Mean Square (RMS).

• Pulse Indicator: the ratio of the peak to the average value.

• Form Factor: the ratio of the RMS value to the average value.

• TTTratio: the ratio of the tail to the total integral of the signal.

These features can represent a neutron or a gamma-ray signal in a lower dimension and it may
contain the information required for the discrimination. This can be verified by using these attributes
instead the raw signals to train a ML model for the discrimination task. Decision tree algorithms can
be more powerful tools than MLP or 1D CNN when the purpose consists in discriminating signals
using extracted features instead of raw signals [82–85]. RF [38] is one of main decision tree algorithms
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Table 3.6: Equations of extracted features.

Attribute Equation

Mean µ = 1
N

∑N
i=1 xi

Variance σ2 = 1
N

∑N
i=1(xi − µ)2

Standard Deviation σ =
√
σ2

Skewness γ =
1
N

∑N
i=1(xi−µ)3

σ3

Kurtosis κ =
1
N

∑N
i=1(xi−µ)4

σ4

Crest Factor Crest Factor = max({xi})√
1
N

∑N
i=1 x

2
i

Pulse Indicator Pulse Indicator = max({xi})
µ

Form Factor Form Factor =
√

1
N

∑N
i=1 x

2
i

µ

TTTratio TTTratio = Qtail/Qtot

that have been developed to solve classification problem when the dataset is represented by convenient
extracted features [86–90]. It also includes a tool for identifying the most relevant attributes considering
the target application. Next section presents a brief introduction of this algorithm and its concept of
work.

3.7.2 Random Forest Model for Training on Extracted Features

The RF decision tree algorithm, as described in [38], works by constructing a collection of decision
trees and combining their predictions to produce a final output decision. A decision tree is based on a
series of simple "if-then" rules, as shown in Figure 3.14. The decision tree classifier in this figure has 4
features. Each decision path is a conjunction of different conditions. These conditions are features and
values with relations less than (<), greater than (>) and equal (=). For instance, if a sample has f1
greater than 0.45 and f2 greater than 1, the decision will be ’B’. Roughly speaking, algorithms relying on
decision trees can be easily interpreted and understood, thanks to the simple "if-then" rules that guide
the output decisions. This characteristic making them better choice for problems where the goal is to
identify key features that distinguish different classes of signals. Moreover, decision tree algorithms are
less prone to overfitting, which can occur when a model is too complex and performs well on the training
data but poorly on new, unseen data. Roughly speaking, decision tree algorithms are a powerful and
interpretable tool for discriminating between signals using extracted features, making them a popular
choice in many signal processing applications [86–90].

RF decision tree algorithm operates by building a set of decision trees and aggregating their predic-
tions to generate a final prediction, as explained previously. The process starts by randomly selecting
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Figure 3.14: A simple decision tree classifier with 4 features [91].

a subset of the training data and a subset of features for each individual tree. Subsequently, for every
tree, the algorithm recursively divides the data based on the chosen features, creating a collection of
decision rules that forecast the target variable. The selection of the feature and its corresponding value
for partitioning in each iteration is determined by minimizing the loss function. In the case of supervised
binary classification, cross-entropy serves as the loss metric, quantifying the dissimilarity between the
predicted probability and the actual class. Figure 3.15 illustrates a RF algorithm with n decision tree.

Figure 3.15: RF algorithm with n decision trees [92].

After the training, to make a prediction for a new data point, each tree in the random forest
independently makes a prediction based on its decision rules. The final prediction is then determined
by combining the predictions of all the trees, typically by taking a majority vote. There are several
hyperparameters that should be tuned when using random forest such as the number of trees in the
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forest and maximum depth of each tree. Increasing the former can improve the accuracy of the model,
but also increases the computational cost and may lead to overfitting. The maximum depth controlls
the largest possible length between the root to a leaf which can help prevent overfitting and improve
generalization performance.

3.7.3 Performance on raw signals vs. Features Extracted

The features outlined in section 3.7.1 are derived from neutron and gamma-ray signals prepared
at a frequency of 250 MHz. These labeled signals were used to train and evaluate the previously
developed MLP and 1D CNN models. The results obtained from these models indicate their superior
performance compared to the TTTratio algorithm, especially within the energy radiation range of [100,
250] keVee. Both the ML models and the PSD method showed similar performance for radiation
energy levels exceeding 250 keVee. Consequently, we proceed to train an RF model on the complete
dataset and assess its performance in comparison to the TTTratio algorithm, as well as the trained
ML models on raw signals (1D CNN and MLP), within this lower energy range. The number of trees
and the maximum depth parameters of RF model are tuned empirically to optimize the discrimination
performance and avoid the overfitting. The obtained values are 10 and 7, respectively. Figure 3.16
illustrates a significant degradation in terms of discrimination performance when these extracted features
are employed instead of the raw signals for discrimination purposes. More precisely, achieving the
neutron/gamma-ray discrimination using these attributes provides a performance similar to that of the
TTTratio algorithm, as shown in Table 3.7 and Figure 3.16. While the results obtained through this
proposed features extraction approach are not promised, analyzing the defined attributes and assessing
the contribution of each to the output decision can help explain the previously obtained results. This
is the topic of the next section.

Figure 3.16: ROC curves obtained by RF, MLP and 1D CNN models on validation dataset at 250
MHz and energy range [100, 250] keVee.
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Table 3.7: TPR for FPR = 2% obtained by RF, MLP and 1D CNN models on validation dataset at
250 MHz and energy range [100, 250] keVee.

Model TPR for FPR = 2%
1D CNN 88%

MLP 84%
TTTratio 78%

RF 80%
RF important features 79%

Form Factor 77%
Pulse Indicator 54%

3.7.4 Features Selection

RF incorporates a feature selection tool capable of identifying the most relevant attributes for a given
task. Figure 3.17 presents the importance score of each feature. In the presented case, Form Factor,
TTTratio and Pulse Indicator emerge as the most significant features. These three attributes contain
approximately 94% of the essential information required for discrimination. Therefore the training of
the RF is repeated using only these three attributes. The ROC curves obtained by this trained model
and the model trained using all the features on validation dataset at 250 MHz and energy range [100,
250] keVee are superimposed, as shown in Figure 3.16. This indicates that using these three relevant
features for discrimination achieves approximately the same performance as when all features are used.

Figure 3.17: The contribution score of each defined feature to the decision output.

Figures 3.18(a) and 3.18(b) show the distributions of Form Factor and TTTratio attributes. The sep-
aration between neutron and gamma-ray classes in both distributions is roughly similar. This indicates
a comparable discrimination performance, as supported by the ROC curve presented in Figure 3.16.
For a FPR of 2%, both methods yield TPRs of 78% and 77%, respectively. In contrast, Figure 3.18(c)
shows that the separation between neutrons and gamma-rays in the distribution of Pulse Indicator is
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less pronounced compared to the separation obtained using Form Factor and TTTratio. The ROC curve
using Pulse Indicator for discrimination in Figure 3.16 validates this observation, indicating a significant
degradation in performance. For a 2% FPR, the TPR obtained with this attribute is 54%.

The value of the Form Factor attribute is influenced by the shape of the signal, which varies between
neutron and gamma-ray signals. Therefore, this attribute holds significant information for discrimination
purposes, as illustrated by its distribution in Figure 3.18(a) and validated by the results obtained in
Figure 3.16. It is worth to note that there is a similar parameter called Shape Factor, which is computed
as the ratio of RMS to the mean of absolute values. It is used in conjunction with other statistical
features to assess the operational state of various systems like induction motors, gears, and rotating
electrical machines [93, 94].

(a) Form Factor (b) TTTratio (c) Pulse Indicator

Figure 3.18: Distributions of Form Factor, TTTratio and Pulse Indicator features extracted from each
class of neutron/gamma-ray labeled dataset obtained by using an EJ276 plastic scintillator (sampling

frequency at 250 MHz).

The Pulse Indicator feature which is the ratio between the signal amplitude and its mean, provides
an information on the agreement between the signal and an impulse response. Due to its faster decay
time, a gamma-ray signal exhibits a more similar impulse response when compared to a neutron signal.
This distinction appears in the higher values of the pulse indicator obtained for gamma-ray signals,
Figure 3.18(c).

The results obtained in this study show that the Form Factor and Pulse Indicator attributes can be
useful to perform the discrimination. Furthermore, Form Factor exhibited similar performance compared
to the state of the art PSD algorithm (TTTratio). Next section explores the consistent use of these two
attributes on datasets acquired from different acquisition chains to assess their suitability for performing
neutron/gamma-ray discrimination.

3.8 Form Factor: A Novel Pulse Shape Discrimination Method

3.8.1 Dataset Acquisition

In order to assess the suitability for performing neutron/gamma-ray discrimination of Form Factor
and Pulse Indicator methods four different acquisition chains are employed (Table 3.8).
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1. EJ276 plastic scintillator coupled to a 9821B PMT. The sampling frequency and the amplitude
resolution of the digital oscilloscope (LeCroy HDO6104A-MS) are respectively 250 MHz and 12
bits. This is the same acquisition chain used to obtain the labeled dataset. In this study, the
discrimination performance of each method is directly measured on the obtained raw signals
without the labeling step.

2. A plastic scintillator composed of a high concentration of 2, 5-diphenyloxazole and a small quantity
of 9, 10-diphenylanthracene in polystyrene. This formulation should be close to that of EJ-276
from Eljen Technology. This scintillator is connected to a R7724 PMT. The sampling frequency
and the amplitude resolution of the digitizer (CAEN DT5743) are respectively 800 MHz and 12
bits.

3. The same plastic scintillator of the chain 2 is connected to a SensL ArrayC-30035-16P SiPM. The
sampling frequency and the amplitude resolution of the digitizer (CAEN DT5743) are respectively
800 MHz and 14 bits.

4. BC-501A liquid scintillator connected to a R7724 PMT. The sampling frequency and the amplitude
resolution of the digitizer (CAEN DT5743) are respectively 800 MHz and 12 bits.

Table 3.8: Main components and parameters of the 4 employed acquisition chains.

Acquisition chain Scintillator Photo sensor Sampling frequency (MHz) Amplitude resolution (bits)
1 EJ276 (plastic) 9821B PMT 250 12
2 Plastic (laboratory) R7724 PMT 800 12
3 Plastic (laboratory) ARRAYC3003516P SiPM 800 12
4 BC-501A (liquid) R7724 PMT 800 12

The acquisition of the datasets is achieved using 252Cf source. The values of the tlong and tshort parame-
ters of TTTratio algorithm are fine-tuned to optimize the discrimination performance, using the method
proposed in [36]. The obtained optimal values for each acquisition chain are shown in Table 3.9. The
obtained values of tlong are used as the signal length for calculating both the Pulse Indicator and Form
Factor. For each acquisition chain, the distributions of each attribute extracted from the dataset are
illustrated in Figure 3.19.

Table 3.9: Optimal values of tlong and tshort obtained on the datasets acquired by the four employed
acquisition chains.

Acquisition chain tlong tshort
1 500 20
2 1050 75
3 1000 120
4 275 25

The distributions of the Pulse Indicator reveal that discrimination is not achievable when using a
plastic scintillator and PMT during acquisition in our experimental setup, as indicated in Figure 3.19.

80



(a) EJ276 plastic - 9821 PMT

(b) Plastic (lab) - R7724 PMT

(c) Plastic (lab) - ArrayC3003516P SiPM

(d) BC501A liquid - R7724 PMT

Figure 3.19: Distributions of Form Factor, TTTratio and Pulse Indicator features extracted from
neutron and gamma-ray dataset obtained using the four employed acquisition chains.

There is a notable overlap between the distributions of neutron and gamma-ray classes. However, when
the plastic scintillator is replaced by a liquid one, the distribution clearly indicates the presence of
two distinct classes in the dataset. Similar results are observed when the PMT is replaced by SiPM,
although the distribution seems to be less Gaussian. Despite the improvement in discrimination capac-
ity, visualizing the distributions alone is sufficient to conclude that the discrimination achieved by the
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TTTratio method is better, which is not the case with the Form Factor attribute, as shown in Figure 3.19.

A quantitative measurement is necessary for a meaningful comparison between the Form Factor
and TTTratio methods. These two features extracted from the signals are more prone to being derived
from Gaussian distributions, as shown in Figure 3.19. Consequently, an unsupervised GMM can be an
appropriate choice for this quantitative measurement making the assumption that the observations in the
dataset are generated from a mixture of Gaussian distributions. Next section provides an introduction
about this unsupervised ML model.

3.8.2 Gaussian Mixture Model

GMM works by fitting a specified number of Gaussian distributions to the dataset, with each distribu-
tion representing a cluster or component of the data. It assigns a probability to each observation for each
component, indicating the likelihood that the observation was generated from this specific component.
The GMM algorithm estimates the parameters of the Gaussian distributions, including the means and
variances, using an iterative process called the Expectation-Maximization (EM) algorithm [95]. First,
the algorithm randomly assigns the parameters for each Gaussian component, including mean, covari-
ance, and mixing coefficients. In the expectation step (E-step), the algorithm calculates the probability
or likelihood for each observation belonging to each Gaussian component, using the current estimated
parameter. In the maximization step, the algorithm updates the assessment of the Gaussian parame-
ters, such as means and covariances of each cluster, using the probability weights previously obtained.
The E-step and M-step are alternated to refine the parameter estimates and improve the model fit.
Convergence is typically determined based on a predefined criterion, such as the change in likelihood or
the number of iterations.

The number of components in the GMM is a hyperparameter that needs to be specified prior to
fitting the model. Selecting the appropriate number of components is important for the performance of
the model, as too few components may result in underfitting and too many components may result in
overfitting. There are different approaches to select the number of components, such as the Bayesian
Information Criterion (BIC) [96] or the Akaike Information Criterion (AIC) [97]. In our case, we have
prior knowledge that the number of components is equal to 2, corresponding respectively to the neutron
and gamma-ray classes.

3.8.3 Experimental results

A two-component GMM is fitted to each one of these two attributes extracted from the datasets
acquired by the four employed acquisition chains presented in Table 3.8. The performance of the model
is evaluated by calculating the FPR on the pure gamma-ray dataset obtained from a 60Co source, and
the neutron percentage in the 252Cf source. The latter ensures that the model does not classify all
signals as gamma-rays. The obtained results are presented in Table 3.10. As it is expected, the GMM
yields comparable discrimination results for both methods. However, the performance of the TTTratio

method is optimized by adjusting its parameters for each acquisition chain. In contrast, the Form Factor
attribute does not require any fine-tuning. It solely relies on the signal length, which can be estimated
based on the characteristics of the components in the acquisition chain. Moreover, the discrimination
performance of the Form Factor method is not significantly affected by variations in the signal length,
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unlike the TTTratio algorithm, where the values of tlong and tshort play a crucial role, as shown in Figures
3.20 and 3.21. This consideration is quite important for practical applications.

Table 3.10: The results obtained by GMM fitted on Form Factor and TTTratio attributes.

Form Factor TTTratio

Acquisition chain % of neutron FPR % of neutron FPR
1 20 1.5 19% 1.7%
2 17 0.5 17 0.6
3 20 0 20 0
4 21 0 22 0

(a) tlong (tshort) is equal to 1050 (150) ns, 950 (50) ns and 800 (20) ns, respectively.

(b) Signal length is equal to 1050 ns, 950 ns and 800 ns, respectively.

Figure 3.20: Distributions of Form Factor, TTTratio obtained with the second acquisition chain, using
different values tlong, tshort and signal length.
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(a) tlong (tshort) is equal to 800 (50) ns, 1000 (50) ns and 1000 (120) ns, respectively.

(b) Signal length is equal to 800 ns, and 1000 ns, respectively.

Figure 3.21: Distributions of Form Factor, TTTratio obtained with the third acquisition chain, using
different values tlong, tshort and signal length.

3.9 Conclusion

In this chapter, we compared the discrimination performance of neutron/gamma-ray signals recorded
using an EJ276 plastic scintillator between a trained MLP and 1D CNN models and the TTTratio al-
gorithm. The comparison was achieved according to variations in sampling frequency and radiation
energy. The ML models are trained and evaluated on raw signals obtained using the labeling pipeline
described in chapter 2. In the presented case, the performance of three methods decreases with the
energy of the incident radiation. Nevertheless, the 1D CNN model outperforms the MLP model, which
in turn, outperforms the TTTratio algorithm, especially for low energy radiations ([100, 250] keVee).
Furthermore, the trained ML models outperform the TTTratio discriminating algorithm in terms of its
ability to distinguish the radiations at lower sampling rates. This point can help to reduce the archi-
tecture size, power and complexity of an online discrimination system.

It is worth noting that the TTTratio PSD algorithm can provide better discrimination performance
within the energy range [100, 250] keVee, using the same scintillator type (EJ276), when incorporating
analog signal processing blocks, such as Op-Amp integrator, in the acquisition chain, as shown in the
results obtained in Chapter 2. Nevertheless, a supervised 1D CNN model can still achieve superior
discrimination for lower energy radiation compared to TTTratio, as presented in this chapter. The only
necessity is to repeat the preparation of the labeled dataset using the newly proposed experimental setup
and subsequently train the model. In fact, the sensitivity of the 1D CNN model to the components
and parameters of the acquisition is the primary limitation of this ML based approach. Repeating the
preparation of clean labeled neutron signals for any subtle change in the acquisition chain is a challeng-
ing and time consuming work.
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Unsupervised domain adaptation can be a solution to overpass this significant limitation. However,
the input dimension of the model mainly depends on the measurement chain, which will be a key chal-
lenge to use this approach. Features extraction can be a solution to overpass this challenge. It can
reduce the dimension data to a level independently of the acquisition chain and the input signal length.
The features that can be extracted from the signals and are useful for the target application can be
defined by the user or through the use of self-supervised ML tools. In this chapter we explored the
benefit of using the former approach for the neutron/gamma-ray discrimination task and we considered
the latter for a future work. Obtained results showed that the supervised models trained on raw signals
exhibit better performance than the supervised approach based on the extracted features. Lastly, our
investigation of the Form Factor attribute as a discrimination method showcases its effectiveness in
capturing the performance of the TTTratio algorithm without requiring any tuning parameters. This
point is crucial for practical applications.

For a future work, a deeper study can be done to assess the effectiveness of unsupervised domain
adaptation tools in the context of neutron/gamma-ray discrimination in organic scintillators, which is
a critical point since the preparation of labeled dataset is a challenging and consuming time step.

Preserving the outperformance of the trained supervised model and respecting the time constraints
are the main keys that should be considered when these models will be implemented on an embedded
system to obtain an online discrimination system. Next chapter provides a detailed explanation and
comparison of this implementation for the trained MLP and 1D CNN models, as well as the TTTratio

and Form Factor PSD algorithms.
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Chapter 4

Pulse Shape Discrimination using embedded
Neural Networks: First Steps for Developing
a Specific Electronic Architecture

In Chapter 3, in the context of neutron gamma-ray discrimination, using our scintillation setup,
we show that the proposed 1D CNN model outperforms the MLP model, which in turn, outperforms
the TTTratio discrimination algorithm. Furthermore, Form Factor PSD method exhibits a similar per-
formance to TTTratio algorithm. In some applications, the embedded implementation of a proposed
discrimination method is a critical point to achieve a classification on the fly. The main objective in this
type of application is to get as close as possible to an immediate output decision after the acquisition
of each signal while minimizing the percentage of missed radiation detection as explained in section
1.2.5 of chapter 1. Therefore, the comparison between different discrimination approaches should go be-
yond their performances. Their embedded implementations should also be compared. One of the main
challenges to achieve the implementation is to preserve the same discrimination performance obtained
offline. Additionally, optimizing the implementation involves balancing execution time and resource
consumption.

The short duration of signals produced by a plastic scintillator (in order of several hundreds of
nanoseconds) requires an acquisition at a sampling frequency on the order of several hundred Mega-
hertz (MHz). Consequently, the embedded system should have the capability to process the digitized
signal at this relatively high sampling rate without loss of information. FPGA integrated circuit can be
a solution to overpass this limitation [23–26]. Furthermore, FPGA circuits have different advantages.
They are reconfigurable devices with parallel processing capability, low latency and high energy effi-
ciency.

Figure 4.1 shows the key building blocks of an online neutron/gamma-ray discrimination system.
Each one of these blocks is explained in details in section 1.2.5 of chapter 1. This chapter focuses on the
FPGA implementation of the discrimination method block. The chapter presents the implementation
details of each proposed discrimination method during this thesis (TTTratio, Form Factor, MLP and
1D CNN). Consequently, a comparison can be made among these various discrimination approaches,
considering their discrimination performance, executions time and resource consumption. The main
objective is to achieve the embedded implementation while maintaining the discrimination performance
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obtained offline, ensuring an execution time less than the signal duration and using the minimal amount
of resources. By achieving the implementation under this time constraint, we can avoid the miss de-
tection of some radiations, as explained in section 1.2.5. In this context, the required signal duration
for discrimination is 500 ns. This duration corresponds to the average pulse duration where the longest
(largest) pulse is acceptable within the ADC quantization dynamics. The work is carried out under the
assumption that the discrimination block receives an already buffered pulse, as precised in section 1.2.5.
The implementation of the entire system shown in Figure 4.1 will be addressed in future work.

Figure 4.1: Key blocks of an online neutron/gamma-ray discrimination system.

Section 4.1 introduces the main characteristics of a FPGA and the methods used to configure this
device. Section 4.2 describes the settings and process employed for the implementation. The quantiza-
tion results of the four discrimination methods to reduce their sizes are presented in section 4.3. Sections
4.4 to 4.7 respectively explain the implementation details of TTTratio, Form Factor, MLP and 1D CNN.
Finally, in section 4.8, the main conclusions resulting from the obtained implementation results are
discussed.

4.1 Introduction to FPGA
FPGA is a semiconductor device based on a matrix of Programming Logic Blocks (PLBs) connected

via reconfigurable interconnections. It is a type of integrated circuit that can be configured or recon-
figured and offers a flexibility and adaptability for a wide range of digital logic applications. Therefore,
it has been used in different domains, such as defense, aerospace, medical device, automation, wireless
communications, and digital signal processing [98–100]. The main components of this reconfigurable
device are:

1. PLBs: these are the fundamental building blocks of an FPGA. PLBs typically consist of Look-up
Table (LUT) and Flip Flop (FF) components.

• LUTs are used to implement Boolean logic functions, such as AND, OR, XOR, etc. A LUT
typically has multiple inputs and a corresponding output, and its behavior is defined by a
lookup table mapping input combinations to output values.

• FFs are sequential elements that can store a single bit of data. FFs are used to build sequential
circuits, such as registers, counters, and state machines. They allow for the storage and
propagation of data within the FPGA design. For instance, they can be used to store the
data between two consecutive layers of a ML model during the inference of a new input signal.
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2. Block RAM (BRAM): this is a type of dedicated memory available in FPGA. BRAMs provide
storage for large amounts of data and are often used for applications requiring data buffering,
caching, or data storage. They offer high-speed access and are the components used for imple-
menting FIFOs (First-In-First-Out) or LUTs that require fast data retrieval. For instance, they
can be used to store the weights of a trained ML model or the data between two layers if its size
is large and FFs are not sufficient for storage.

3. I/O Blocks: these blocks provide interfaces for communication between the FPGA and external
devices. They typically include input buffers, output drivers, and configurable I/O standards
to support different voltage levels and signal types. In the context of the neutron/gamma-ray
discrimination task, an input block can be connected to the ADC and contain a buffer to store
the acquired samples. The output block can be interfaced with a photodiode. This photodiode
serves as an indicator, discerning the presence of neutrons when activated and gamma-rays when
it is deactivated.

4. Digital Signal Processing (DSP) Blocks: DSP blocks are specialized components available in some
FPGA that provide hardware acceleration for digital signal processing operations. They typically
include dedicated Multiply–Accumulate (MAC) units and other arithmetic logic units optimized
for processing digital signals. DSP blocks can significantly improve the performance and efficiency
of algorithms such as filtering, modulation, convolution operation and matrix multiplication.

FPGA configuration is a process involving several steps:

1. Hardware Description of the desired circuit: this can be done using Hardware Description Lan-
guage (HDL), such as VHDL or Verilog. These languages empower designers to define the behavior
and functionality of intended digital circuit, while also specifying its structural details, including
how components are interconnected. This level of description for a digital circuit is commonly
referred to as Register Transfer Level (RTL), where designers outline how data is transferred
between registers and processed by combinational logic.

2. Synthesis: the HDL code is synthesized into digital circuit made from the main components of the
FPGA such as DSPs, LUTs and FFs. This circuit is represented by a logical netlist which consists
of a list of the electronic components in a circuit and a list of the nodes they are connected to. In
other words, the synthesis tool or software maps the high level design to specific FPGA resources.

3. Place and route: during this step, the synthesized circuit is mapped onto the actual resources of
the FPGA. The placement stage determines the physical locations of the circuit elements on the
FPGA, and the routing stage establishes the interconnections.

4. Bitstream generation: after the placement and routing, the design is converted into a configuration
bitstream, also known as a bit file. This bit file contains the information necessary to configure
the interconnections and logic blocks.

5. FPGA configuration: the generated bit file is then loaded onto the FPGA using a programming
tool or hardware programmer. This process configures the FPGA to implement the desired circuit
functionality.
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In the past, FPGA technology could only be reconfigured by engineers with a deep understanding
of digital hardware design using HDLs. The rise of High Level Synthesis (HLS) tools, however, is
changing the rules of FPGA programming. HLS is a design methodology that allows designers to
describe digital circuits at a higher level of abstraction using software programming languages, such as
C/C++ or SystemC [101,102]. Then, these tools automatically convert these high level descriptions into
synthesizable hardware descriptions, which can be used to generate the bit file for FPGA programming.
The main steps involved in generating a bit file using HLS includes:

1. Algorithmic description: the designer starts by describing the desired circuit behavior and func-
tionality using a high-level programming language like C/C++ or SystemC. This description
represents the algorithm or functional level view of the design.

2. Pre-synthesis validation: the function to be synthesized should be validated before the synthesis
with a test bench using C or C++ simulation. Thus, the program is ensured to correctly implement
the required functionality.

3. Synthesis: the HLS tools transform the high-level description algorithm into an intermediate lan-
guage allowing the modeling of data dependencies and parallelism. Then, these tools generate
hardware description of the circuit (RTL level) representing the algorithm under the predefined
constraints of data dependencies and parallelism. The synthesized output circuit represents the
code at gate level using flip-flops, registers, multiplexers, and other low-level digital logic compo-
nents. During this step, a report is generated indicating the number of components used in the
circuit, the average latency time and initiation interval (II). The latency refers to the time it takes
to receive the output of an input, while the II represents the number of clock cycles that must
elapse before the system can accept a new input and start processing it.

4. Synthesis optimization: several optimization techniques, including resource sharing, pipelining,
and loop unrolling, can be employed to enhance performance, reduce area of circuit, or meet
specific design constraints. These optimizations can be incorporated into the synthesis process by
instructing the HLS tool to consider the specific constraints.

5. C/RTL co-simultation: after the synthesis, the synthetized circuit performances should be vali-
dated according to the initial requirements. This step is made by comparing its output to the
output obtained by the simulation in the pre-synthesis validation step.

6. Place and route, Bitstream generation and FPGA programming: these are the same steps of
programming FPGA using HDLs.

Next section explains the process and the settings that we used to realize the FPGA implementations
of the four discrimination methods.

4.2 Configuration and Implementation Process

The main aim of this work is to compare the FPGA implementation of TTTratio, Form Factor, MLP
and 1D CNN models trained in Chapter 3 for the neutron/gamma-ray discrimination task. In order
to achieve this comparison, the implementation of the four methods will be realized while respecting
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the time constraint and using minimum amount of resource. The circuit synthesis of each discrimi-
nation method can be more optimized directly using HDL code instead of using the HLS approach.
Nevertheless, the later can be sufficient to achieve the embedded comparison between the different dis-
crimination approaches. It is important to note that in this work we only proceeded as far as the C/RTL
co-simulation step, and the reports generated in the synthesis step used as the basis for comparing the
different discrimination methods. The hardware implementation for a more deeper comparison should
be considered for a future work.

The HLS software used in this work is Vitis HLS (2021.2) provided by AMD (Xilinx) [103]. For each
discrimination algorithm, the code is first written and validated in C++ using fixed point arbitrary
precision type instead of floating point types. Fixed point data types (ap_fixed <m, n>) represent
data as a combination of integer and fraction bits, where m is the total number of bits and n is the
number of bits dedicated to the integer part. By using this type, the area of the synthesized circuit can
be reduced. In the presented case, discrimination is most challenging within an energy range of [100,
250] keVee. Obtaining a high TPR for a low FPR in this energy range is a difficult task, as proved in
chapter 3. In this work, the number of bits for the variables in each discrimination method is adjusted
to minimize the area while ensuring that the degradation in TPR is equal to or less than 2% for a 2%
of FPR within this low energy, compared to the performance obtained with floating point types. Syn-
thesizing the four proposed discrimination approaches under these extreme conditions case can enable
a more valid and meaningful comparison between them. Furthermore, the input is quantized to 12 bits,
where all bits are allocated to the decimal part. This quantization approach is chosen because the data
is acquired through a 12-bit resolution ADC, and the maximum signal amplitude is less than one volt.
A test bench created from the labeled dataset prepared at 250 MHz in chapter 3 (1000 samples) is used
for validating the C++ codes and the C/RTL co-simulation step.

Following the validation and tuning of the number of bits, the synthesis process is optimized to meet
the required time constraint (a latency less than 500 ns) while using minimal amount of resources. The
final step involves validating the synthesized circuit through the C/RTL co-simulation. Concerning the
FPGA type, this work employs a Xilinx FPGA with the part number xc7z020-clg484-3. Furthermore,
the synthesis of the four discrimination algorithm is performed at a clock frequency of 200 MHz (5 ns
per cycle). In our laboratory, various acquisition cards have been developed using FPGAs of a similar
type, operating in the same range of clock frequency [25,26].

Finally, it is important to note that training a ML model while taking into account the quantization
of the weights and activation functions outputs that will be used for hardware implementation has proved
to be more effective than quantizing the model after training [104]. In this work, Qkeras python library
(version 0.9.0) is used to quantize the ML models (MLP and 1D CNN) aware training. Subsequently, the
structure of each quantized model is synthesised via Vitis HLS. Figure 4.2 provides an overview of the
workflow used to achieve the FPGA implementations of the four discrimination methods. The workflow
of TTTratio and Form Factor methods start from the C++ implementation. Next section presents the
discrimination performance obtained by the four proposed methods using floating point and fixed point
types. The same architectures of MLP and 1D CNN models obtained in chapter 3 are quantized aware
training. Thereafter, the obtained results are validated in C++ using Vitis HLS and the created test
bench.
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Figure 4.2: The proposed workflow to translate a ML model into a FPGA implementation using
Qkeras and Vitis HLS.

4.3 Quantization of TTTratio, Form Factor, MLP and 1D CNN
Discrimination Methods

In this step, the number of bits used to represent the parameters of each proposed discrimination
algorithm is tuned empirically to meet the discrimination performance constraints presented in section
4.2. The algorithms of TTTratio and Form Factor methods are first coded in C++. This involves quan-
tizing the input to 12 bits, as explained in section 4.2. Subsequently, the tuning process for the number
of bits for each variable in each method is achieved. For a FPR equal to 2%, the TPR of TTTratio

(Form Factor) is reduced from 78% (77%) to 77% (76%), as indicated in Table 4.1. Sections 4.4 and
4.5 provide a detailed presentation of the synthesis process for each method and the resulting number
of bits for their variables.

Table 4.1: TPR for FPR = 2% obtained by TTTratio and Form Factor, MLP and 1D CNN algorithms
using floating point and fixed point types on validation dataset for the energy range [100, 250] keVee.

Method floating point fixed point (Qkeras) fixed point (Vitis HLS)
1D CNN (one CL) 88% 88% 79%
1D CNN (two CLs) 88% 88% 87%

MLP 84% 84% 83%
TTTratio 78% - 77%

Form Factor 77% - 76%

The MLP model trained in section 3.6 for neutron/gamma-ray discrimination consists of an input,
an output and two hidden layers of 32 neurons each. The quantization of this MLP model is tuned
for both the weights and the outputs of each layer using Qkeras framework. The minimal obtained
representation is 8 bits, all of them dedicated to the decimal part. For the energy range [100, 250]
keVee, the TPR is decreased from 84% to 83%, for a FPR equal to 2%, as shown in Table 4.1.

As for the MLP model, the quantization of the trained 1D CNN model in section 3.6.2 is tuned
aware training for the weights and output of each layer. The optimal representation that respects the
degradation constraints in the discrimination performance is 16 bits, with 4 bits to the integer part. Fur-
thermore, the obtained results in Table 4.1 indicate that the quantized 1D CNN model outperforms the
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non quantized MLP model. Nevertheless, the results obtained from testing the C++ code of this model
architecture using ap_fixed type and Vitis HLS show that the performance of the model is significantly
degraded, as indicated in Table 4.1. This may be due to the difference between the implementation of
the quantization methods in Qkeras and Vitis HLS, leading to variations in quantization errors. Some
information is lost during quantization by Vitis HLS due to rounding errors, which can impact the
model performance as observed in the presented case. To address this problem, increasing the size of
the model can be a potential solution. A larger model might be more resilient to quantization errors as
it can distribute the errors across more parameters and absorb the quantization noise, leading to less
performance drop.

Therefore, the size of the model is empirically tuned by quantizing various model sizes aware training
and then assessing their discrimination performance through C++ simulation in Vitis HLS. The obtained
model exhibits a 1% degradation in discrimination performance after its implementation in C++ using
fixed types, as indicated in Table 4.1. This obtained model consists of two CLs, two ReLu, one dense and
one Sigmoid operations. The obtained number of bits for quantization is 16, with 4 of them dedicated
to the integer part.

4.4 TTTratio Implementation
TTTratio algorithm as defined in section 1.3.1, is the ratio between the tail and total integral of

the signal. In this thesis, the optimization algorithm implemented in [36] is used to tune tshort and
tlong in order to optimize the discrimination performance based on FOM evaluation metric, where the
resulting optimum values are 20 ns and 500 ns, respectively. Qtail and Qtotal integrals in this optimization
algorithm are calculated using trapezoidal numerical integration method with delta equal to one, which
is represented by equation 4.1. The latter indicates that the computing of this numerical method involves
one multiplication by a constant (0.5) and k addition operations, where k is the integral length. Thus,
the main operations to calculate this ratio and achieve the synthesis for a signal of length n are:

• n addition operations for the Qtotal integral.

• m addition operations for the Qtail integral.

• The division between Qtail and Qtotal integrals.

∫ k

0

f(t) dt ≈ x0 + xk

2
+

k−1∑
i=1

xi (4.1)

The algorithm of this method is first coded in C++. Then, the numbers of bits of the parameters
responsible for storing the two integral calculation results and their ratio are tuned. ap_fixed <18, 10>
is the type used for the three variables without violating the constraints of discrimination performance
presented in section 4.2. Subsequently, the code is synthesized by paralyzing the calculation of the two
integrals. Table 4.2 shows the obtained RTL synthesis report. A second solution can be obtained with
lower latency and increased DSP unit consumption by calculating the inverse of the Qtot integral and
then multiplying it by the result of the Qtail integral (see Table 4.2). The computation of the inverse
is done using hls::recip() method implemented in Vitis HLS, specifically designed for fixed-point types.
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ap_fixed <18, 10> type is used to store the result of the inverse operation.

Table 4.2: RTL synthesis reports for the two proposed solutions in FPGA implementation of the
TTTratio discrimination algorithm.

Model Latency (ns) II (ns) BRAM DSP FF LUT
First solution 230 5 0 0 5256 4630

Second solution 215 5 0 9 4325 3848

Finally, it is important to note that this FPGA implementation of TTTratio algorithm assumes
that the entire signal should be ready before starting the discrimination process, which is different
from pipeline chains [25]. Another solution can be obtained by proposition that the execution of the
discrimination algorithm can start directly after receiving the starting point of the signal. In this
solution, the computation of Qtot and Qtail integrals are done sequentially through two steps:

1. As long as the triggertot flag = 1 : Qtot = Qtot + x(n).

2. As long as the triggertail flag = 1: Qtail = Qtail + x(n).

triggertot and triggertail are two boolean variables indicating the start and the end of computation
of Qtot and Qtail integrals, respectively. Then, the division between two integrals can be performed by
a floating calculation unit which can be used also for communication, such as microcontroller. The
resource consumption in this approach is lower than that of the first approach, as the n (m) addition
operations of Qtot (Qtail) integrals are executed sequentially, and the division operation is computed
externally. Furthermore, the output decision can be obtained almost immediately after the acquisition
end of one signal. However, for the MLP and 1D CNN models, due to the matrix multiplication and the
need for optimization in implementation, the entire signal must be ready before starting the algorithm’s
execution. Therefore, to ensure a fair comparison among the four proposed discrimination approaches,
their embedded implementations are performed under the assumption that the algorithm block receives
an already buffered signal.

Next section explains how the implementation on FPGA of the proposed Form Factor discrimina-
tion method can be optimized. The synthesis results are compared to those obtained by the FPGA
implementation of TTTratio algorithm.

4.5 Form Factor Implementation
Form Factor PSD method is the ratio between the root mean square and the mean of the signal as

defined in section 3.7.1. Thus, the main operations to calculate this factor and achieve the synthesis for
a signal of length n are:

1. n addition operations to compute the mean of the signal.

2. n MAC to calculate the mean square.

3. The RMS.
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4. The division between the mean and RMS.

After developing the algorithm in C++, the number of bits for the variables storing the results of
mean, mean square, root mean square and Form Factor are tuned to meet the degradation constraints
in the discrimination performance presented in section 4.2. The obtained type is ap_fixed<32, 3>.
Thereafter, during the synthesis process, the calculation of the mean and the mean square of the signal
are fully paralyzed. The root mean square is then computed using the dedicated hls::sqrt() method
implemented in Vitis HLS, specifically designed for fixed-point types. Following this calculation, the
inverse of the mean is calculated and then multiplied by the RMS. Experimental results in Table 4.3
indicate that performing direct division violates the time constraint, which is a latency less than 500
ns. The type used to store the result of the inverse operation is ap_fixed<32, 25>.

Table 4.3: Comparing the RTL synthesis reports for the solutions proposed in the FPGA
implementation of TTTratio and Form Factor neutron/gamma-ray discrimination algorithms.

Model Latency (ns) II (ns) BRAM DSP FF LUT
TTTratio (first solution) 230 5 0 0 5256 4630

TTTratio (second solution) 215 5 0 9 4325 3848
Form Factor (direct division) 585 5 0 132 22680 14022

Form Factor 290 5 0 143 16526 10344

The obtained synthesis report indicates that the total latency achieved is 290 ns, using 143 DSP,
16526 FFs and 10344 LUTs. Furthermore, as it was expected, Table 4.3 indicates a high superiority
of TTTratio algorithm concerning the embedded implementation, consuming less amount of resources
and execution time. Nonetheless, the Form Factor algorithm has the advantage of being independent
of tuning parameters, providing the same discrimination performance.

4.6 MLP implementation
Different approaches have been proposed to optimize the inference of MLP on FPGA [105–107]. The

works by [105] and [107] explain the implementation of two MLP models trained for medical diagnosis
and digital recognition tasks, respectively. The authors in [106] develop a general MLP flow that can
take arbitrary datasets as input and automatically produce optimized neural network architectures and
hardware designs based on a set of constraints and fitness functions such as the accuracy, latency and
throughput. They show that, in general, executing a trained MLP model on FPGA is faster than on
GPU. Their framework is based on evolutionary optimization algorithms, OpenCL framework and 2D
systolic array configuration. In the presented case we work to optimize the embedded implementation of
the trained MLP model in section 3.6 for the neutron/gamma-ray discrimination task, while respecting
the time constraint. Building an automatic framework is not an objective of this study.

The trained MLP model in section 4.3 has three main components (Figure 4.3). The first one is the
fundamental component of a MLP model, the dense layer. The computation of this layer is done via two
nested for loops. Algorithm 1 indicates that these two loops iterate over the number of neurons (m) in
the layer and the input length (n) respectively. In other words, there are n*m MAC operations for one
layer. The two loops of each layer can be unrolled to optimize the synthesis, where the unrolling factor
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of a loop is a divisor of its number of iterations. Figure 4.4 shows that the parallel execution of the first
loop requires to copy the data k times, where k is the unrolling factor of the loop. Therefore, parallel
execution of the second loop of all layers has first priority. However, this is hampered by a memory
dependency problem. In algorithm 1, the next iteration reads the variable output[i], while the previous
iteration writes data to output[i]. Therefore, the subsequent iteration cannot start until the prior one
is completed. An adder tree structure can be a solution to this problem, as illustrated in Figure 4.5.
In this solution, all n multiplications from the second loop are first computed and loaded into a temp
array of length n. Then, the sum of the elements in temp is calculated using the adder tree function, as
shown in algorithm 2. This approach reduces the calculation complexity from O(n) to O(log(n)).

Figure 4.3: The three main operations in the trained MLP model.

Algorithm 1 Dense algorithm
input array input with length n weight matrix w with dimensions m× n
output array output with length n

0: function Dense(input, weight)
1: for i← 0 to m do
2: output[i]← b[i]
3: for j ← 0 to n do
4: output[i] += input[j] · w[i][j]
5: end for
6: end for
7: return output

Figure 4.5: Adder tree structure
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Figure 4.4: Illustration of the first loop unrolling in dense layer.

Algorithm 2 Optimized dense algorithm
input array input with length n weight matrix w with dimensions m× n
output array output with length n

0: function Dense(input, weight)
1: for i← 0 to m do
2: temp[n]
3: for j ← 0 to n do
4: temp[i] = input[j] · w[i][j]
5: end for
6: output[i] = adder_tree(temp)
7: output[i] += b[i]
8: end for
9: return output

The second component of a MLP model is ReLu activation function of the two hidden layers which
is shown in algorithm 3. In this work, the calculation of this function is fully unrolled for all layers.

The third component is the Sigmoid activation function of the output layer which is represented by
the equation 1/(1+ exp−x). In the presented case, x represents the output resulting from the last dense
layer. Calculating the exponential component of this function can be computationally challenging for
hardware implementation. Therefore, to speed up the hardware computation, Sigmoid function can be
approximated using piecewise linear approach and a lookup table:
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Algorithm 3 ReLU function algorithm for one layer
input array input with length n
output array output with length n

0: function ReLu(input)
1: for i← 0 to n do
2: if input[i] ≥ 0 then

output[i]← input[i]
3: end if
4: end for
5: return output

1. A lookup table of Sigmoid values is created, dividing the input range into N segments and calcu-
lating Sigmoid values for each segment using the standard Sigmoid function.

2. The lookup table is stored in BRAM during the synthesis.

3. The segment index of x is calculated based on the input range.

4. The obtained index in step 3 corresponds to the position of the element in the created lookup
table that represents the Sigmoid value of x.

5. The input range and the number of segments N should be tuned to preserve a similar precision
of the standard Sigmoid function.

The trained quantized MLP model for the discrimination task between neutrons and gamma-rays
consists of three dense, two ReLu and one Sigmoid operations (Figure 4.6). The dimensions of the weight
matrices (loop parameters) for these layers are (32, 126), (32, 32), and (1, 32) respectively. The structure
of this trained quantized MLP model is implemented in C++. Subsequently, the synthesis is optimized
to meet the time constraint by empirically tuning the unrolling factors for each layer. This adjustment
can be achieved by using for each loop in each layer the pragma HLS unroll factor. This Vitis HLS
pragma is dedicated to parallel loop execution. The obtained unrolling factors for the loop iterations in
the three layers are (1, 126), (1, 32), and (1, 32) respectively, with corresponding latency of 39, 37, and
6 cycles. The Sigmoid function uses 1 BRAM for lookup table and takes 2 cycles for execution, with
input range (-8, 8) and 1024 segments. The first layer consumes 126 DSPs for MAC operations, while
the MAC operations of the second and third layers are computed by LUTs. This feature in Vitis HLS
can only be applied when the multiplication operation involves numbers represented by a maximum of
8 bits each. Weight storage in FFs and LUTs is preferred over BRAMs to avoid latency increase due to
read and write operations. The obtained synthesis report indicates a total latency of 490 ns (98 cycles)
using 126 DSP units, 46,059 LUTs, 17,657 FFs, and 1 BRAM.

Figure 4.6: The inference flow of the trained MLP model.
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Another synthesis approach can yield a latency value of 350 ns, as shown in Table 4.4. In this
proposed solution, the unrolling factors of the three layers are (32, 3), (32, 4) and (1, 32). This
solution enables the parallel computation of 256 multiplications. The synthesis report shown in Table
4.4 indicates that only 96 DSP units are consumed for the multiplications, with the remaining 160
multiplications being executed by LUTs. These 96 DSP units are assigned to the first layer. In this
solution the weights of first and second layers and 32 copies of the input signal are stored in BRAMs.
Therefore, the number of BRAMs is increased to 220 (Table 4.4). In summary, a trade-off exists
between the latency and resources of both solutions. The choice between them depends on the specific
requirements of target application.

Table 4.4: RTL synthesis reports for the two proposed solutions in the FPGA implementation of the
trained MLP model.

Model Latency (ns) II (ns) BRAM DSP FF LUT
MLP (first solution) 490 235 1 126 38364 46059

MLP (second solution) 350 240 220 96 20580 51177

4.7 1D CNN implementation
Many methods for incorporating machine learning into FPGA devices primarily focus on 2D-CNNs

for image recognition tasks [108–116]. Different studies have addressed the implementation of 1D-CNN
on FPGA for 1D signal applications [117,118]. In [117], the authors optimized the implementation of a
specific trained 1D-CNN designed for underwater target spectrum recognition. The authors used three
main techniques: quantization, loop unrolling and tilling. Moreover, they assessed the impact of these
techniques on the resource consumption of their 1D-CNN model implementation. The authors in [118]
propose a pyramid layer-folding pipeline structure to implement a 1D-CNN model trained for speaker
recognition task. The primary goal of this work is to optimize the embedded implementation of the 1D
CNN model from chapter 3 while meeting the time constraint. Building an automatic framework or a
novel approach to optimize the embedded implementation is not an objective of this work.

The obtained 1D CNN model for the discrimination task in section 4.3 has four components: 1D
CL, dense layer, ReLu and Sigmoid activation functions, as illustrated in Figure 4.7. The calculation in
the 1D CL goes through four nested for loops. They iterate over the output length (out_size), number
of filters (nf ), number of input channels (nc), and kernel width (k), respectively (algorithm 4). Thus,
the total number of MAC operations for a layer is out_size ∗ nf ∗ nc ∗ k. To reduce the latency of
the FPGA implementation and meet the time constraints of our application, it may be necessary to
parallelize the execution of these operations for each layer.

Figure 4.7: The inference flow of the trained 1D CNN model.
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Algorithm 4 1D Convolution layer algorithm
input and weight (w) matrices with dimensions nc× n and nc× k ×nf
output array output with dimensions out_size× nf

0: function 1DCNN_Layer(input, weight)
1: for i← 0 to out_size do
2: for j ← 0 to nf do
3: output[j, i]← b[j]
4: for c← 0 to nc do
5: for p← 0 to k do
6: output[j, i] += input[c, s ∗ (p− 1) + k] · w[c][p][j]
7: end for
8: end for
9: end for

10: end for
11: return output

The parallel execution of the first loop involves copying (k-s) * nc columns of the input data and
the kernel matrix of the layer m times, where m and s are unrolling factor of the loop and the stride,
respectively (Figure 4.8(a)). On the other hand, the parallel execution of the second loop requires du-
plicating the input data m times (Figure 4.8(b)), while the unrolling of third and fourth loops does not
impact the data size (Figure 4.8(c)). In our approach, the primary focus is on the parallel execution of
the third and fourth loops across all layers. Subsequently, if these unrolling steps do not help to meet
the time constraint, we empirically tune the unrolling factor of the first and second loops.

(a) Unrolling of first loop, s=1, k=3, and
nc=2

(b) Unrolling of second loop, nc=2,
nf =3

(c) Unrolling of third and fourth
loops

Figure 4.8: Illustration of 1D CL loops unrolling
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The dense layer is the output layer comprising a single neuron. The number of multiplications per-
formed in this layer is determined by multiplying the output length of the last CL by its number of
channels. To optimize the implementation, it is necessary to tune the unrolling factor, which should be
a divisor of this multiplication result, along with other unrolling parameters of the CLs. The Sigmoid
and ReLu activation functions can be implemented and synthesized in the same manner than in the
case of MLP model.

Table 4.5 displays the configuration of the two CLs and the dense layer of the quantized 1D CNN
model obtained in section 4.3. It also presents the dimensions of the loops for each layer. The dimen-
sion of the dense layer loop is calculated by multiplying the output length of the second CL (14) by its
number of filters. The structure of this model is implemented in C++ using ap_fixed type. Thereafter,
empirical tuning is made to unrolling factors for each CL layer, number of segments, and input range
of the Sigmoid function to optimize the synthesis and respect the time constraint. Table 4.5 shows the
obtained value for each one of these parameters. The total latency achieved is 490 ns, consuming 228
DSPs, 156,833 LUTs, 193,625 FFs and 2 BRAMs. The 2 BRAMs are dedicated for the lookup table of
the Sigmoid.

Table 4.5: Obtained unrolling factors for each layer in the trained 1D CNN model.

Layers Loops dimensions Unrolling factors
First CL (k=3, s=3, nf=4) (42, 4, 1, 3) (42, 1, 1, 3)

Second CL (k=3, s=3, nf=4) (14, 4, 4, 3) (1, 4, 4, 3)
Dense layer (one neuron) (56) (56)

Sigmoid number of segments = 2048, input range = (-32 , 32)

These results show that, in the presented case, the MLP model can be effectively implemented on
a FPGA for online classification with fewer resources compared to the 1D CNN model, while achieving
the same latency (Table 4.6). However, it is important to note that the discrimination performance
of the 1D CNN model is higher than that of the MLP model. Furthermore, Table 4.6 indicates that
both the latency and resource usage of TTTratio algorithm are considerably lower than those of ML
models. Nevertheless, for relatively low energy range ([100, 250] keVee), this discrimination method is
significantly less efficient than ML models (Table 4.6). Therefore, in applications involving classification
of low energy radiations in real time, the higher resources consumed by MLP and 1D CNN models can
be justified. In contrast, for the discrimination of higher energy radiations, TTTratio algorithm is more
advantageous as it achieves the same discrimination performance as ML models with lower latency and
resource consumption. Moreover, the synthesised reports in Table 4.6 shows a superiority of TTTratio

algorithm compared to Form Factor method, concerning their FPGA implementations. The second
solution of the former uses only 6% of the DSP units, 26% of the FFs and 37% of LUTs compared
to those used by the latter. Nevertheless, the FPGA implementation of Form Factor provides similar
discrimination performance and its independent of tuning parameters, which can be an advantage point
for practical applications.
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Table 4.6: RTL synthesis reports for the solutions proposed in the FPGA implementation of 1D CNN,
MLP, TTTratio and Form Factor neutron/gamma-ray discrimination methods.

Model Latency (ns) II (ns) BRAM DSP FF LUT TPR (FPR=2%)
TTTratio (first solution) 230 5 0 0 5256 4630 77%

TTTratio (second solution) 215 5 0 9 4325 3848 77%
Form Factor 290 5 0 143 16526 10344 76%

MLP (first solution) 490 235 1 126 38364 46059 83%
MLP (second solution) 350 240 220 96 20580 51177 83%

1D CNN 490 185 2 228 193625 156833 87%

4.8 Conclusion
This study compares the FPGA implementations using HLS tools of the TTTratio and Form Factor

pulse shape discrimination algorithms, MLP, and 1D-CNN models for neutron/gamma-ray discrimi-
nation using EJ276 plastic scintillator. The main objective is to achieve the implementation of each
method, aiming for a latency lower than the signal duration while minimizing resource consumption.
This constraint is important in some applications to perform a discrimination on the fly and minimizing
the percentage of missed radiation detection, especially in a high count scenario. Based on discrimina-
tion performance as the evaluation metric, the 1D CNN model outperforms the MLP model, which, in
turn, outperforms the TTTratio and Form Factor algorithms, especially for low energy radiations ([100
keVee, 250 keVee]). Furthermore, both the TTTratio and Form Factor methods exhibit similar perfor-
mance, with the latter having the advantage of being independent of any tuning parameter. In contrast,
when the comparison is based on latency and resource consumption, the order of the four methods is
completely inverted. For this reason, the choice of the method depends on the target application and
the available resources for implementation.

For a more accurate comparison between the four methods, future work could involve a hardware
implementation of each method and the complete discrimination system, incorporating different tasks
such as the BLR and the classification decision.
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Chapter 5

Conclusions and Future Developments

In the field of nuclear instrumentation, there exist various types of radiation detectors, including
gas ionization, semiconductor, and scintillator detectors. While some detectors are sensitive to specific
types of radiation, others can simultaneously detect multiple types of radiation. Consequently, there is
a need for a discrimination method to classify the different detected radiation types. An example of a
multi-radiation detector is the plastic scintillator, which can detect neutrons and gamma-rays. This or-
ganic detector has different advantage points for radiation detection. It can be easily shaped, produced
in large volumes and has a relatively low-cost. In addition, it has increased durability, non-toxicity,
and non-flammability characteristics. However, this detector exhibits relatively lower discrimination
capability when compared to other types of detectors, such as liquid or stilbene scintillators. This is
mainly due to the slight difference between the signals produced by neutron and gamma-ray interac-
tions in a plastic scintillator. State of the art methods using this type of detector have limitations in
terms of performances, particularly for classifying low energy radiations. Furthermore, the absence of
a ground truth neutron dataset adds a significant challenge for evaluating any proposed discrimination
approach. The acquisition of this dataset is primarily challenged by the influence of gamma-ray emis-
sions in neutron sources. Additionally, the short duration of signals generated by a plastic scintillator,
lasting only a few hundred nanoseconds, presents an additional challenge for the implementation of an
online discrimination system. In some applications, the embedded implementation should be achieved
with an inference time less than the signal duration to minimize the percentage of missed radiation de-
tection. These difficulties make the discrimination problem in this detector one of the most challenging
classification problems in the field of nuclear instrumentation.

The main objective of this thesis is to examine the potential of ML techniques in enhancing the
classification of radioactivity signals for online applications. Due to the relatively high complexity of
neutron/gamma-ray discrimination in plastic scintillators, as explained in the previous paragraph, the
work of this thesis was dedicated to address this problem using ML tools. The identified effective so-
lution could be extended to classify different types of radiation detected by varying detectors. The
approach adopted in the course of this work was organized as follows.

First, we introduced the topic of classifying radioactivity signals with a focus on the discrimination
of neutrons and gamma-rays in plastic scintillators. Then, we presented the various components of a
typical scintillation acquisition system. Subsequently, we analyzed and discussed the main limitations
of state of the art regarding the neutron/gamma-ray discrimination in plastic scintillator. This study
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showed that the evaluation of discrimination methods remains a challenging task, mainly due to the
effects of gamma-ray emissions in neutron sources. Furthermore, the cost and size of an embedded dis-
crimination system are proportional to its sampling frequency. Therefore, it is important to determine
the minimum sampling frequency needed for discrimination to optimize the embedded implementation.
This point is key in the framework of this study for embedding ML approaches on edge devices.

Therefore, we studied how the discrimination performance of an organic scintillator varies concern-
ing SNR and vertical resolution across different sampling frequencies. The study results showed that
a trade off between the sampling frequency and SNR is needed to optimize the discrimination perfor-
mance. Increasing SNR can lead to a reduction in the minimum required sampling rate for effective
discrimination. Furthermore, experimental results indicated that, when using the same sampling rate,
a higher SNR can provide superior discrimination performance. In other words, the performance of
a discrimination method depends on the parameters and components of the acquisition chain. Even
subtle modifications in acquisition conditions and environmental factors can have a significant impact
on the discrimination performance. Consequently, to obtain the best discrimination performance for
a predefined application, it is essential to carefully design and optimize the measurement setup. The
comparison of different discrimination approaches across different studies can be challenging due to the
complexities of ensuring consistent acquisition conditions and environments. A detailed information
about the SNR is needed to ensure a fair comparison.

The study of acquisition conditions served as a basis for proposing a method for generating clean and
labeled neutron/gamma-ray datasets with an organic scintillator. A primary limitation of the proposed
signal labeling approach is its reliance on the TTTratio discrimination algorithm. Another limitation is
its dependence on both the sampling frequency and the energy range of the incident radiations. Fur-
thermore, in comparison to the traditional method, the implementation of the ToF measurement chain
is more complicated, and the acquisition process takes a longer time due to the necessity for coincidence
detection. In contrast, the presented labeling process can identify and remove mislabeled samples across
the entire ToF spectrum, including those contributing to peak values. Moreover, the proposed process
is capable of producing labeled datasets even in situations where the discrimination capability of the
employed acquisition chain is limited.

By using the proposed labeling pipeline and by optimizing the acquisition chain components and
parameters, labeled datasets of neutron/gamma events were obtained with an EJ276 plastic scintillator
at a minimum sampling rate of 250 MHz. Supervised MLP and 1D CNN models were trained and
assessed using these datasets to discriminate the prepared neutron and gamma-ray events. We com-
pared the performance of these models against that of the state of the art TTTratio algorithm, while
taking into account variations in sampling frequency and radiation energy levels. The 1D CNN model
showed superior performance compared to the MLP model, which, in turn, outperformed the TTTratio

algorithm. The most notable performance difference was observed for low energy radiations ([100, 250]
keVee), highlighting the interest of using ML models for applications necessitating discrimination of
relatively low energy neutron/gamma-ray events.

It is crucial to emphasize that the TTTratio PSD algorithm can exhibit enhanced discrimination
performance for the energy range [100, 250] keVee, using the same scintillator type (EJ276), when
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employing a dedicated analog signal processing blocks, such as Op-Amp integrator in the acquisition
chain, as shown in the results presented in Chapter 2. Nevertheless, a supervised ML model trained on
the acquired 1D signals can still achieve better discrimination performance for lower energy radiation
compared to TTTratio, as shown by the obtained results in this thesis. The only requirement is to repeat
the preparation of the labeled dataset using the newly proposed experimental setup and subsequently
train the model. In fact, the main limitation of this supervised ML approach is its sensitivity to the
components and parameters of the measurement chain. The repetition of the preparation of clean la-
beled neutron signals for any subtle change in the acquisition chain presents a challenging and time
consuming work.

Unsupervised domain adaptation can be a solution to overpass this limitation. However, a critical
challenge to use this approach arises from the input dimension of the model, which depends on the
characteristics of the measurement chain. To address this problem, features extraction process emerges
as a potential solution. This method can reduce the dimension data to a certain level regardless of the
acquisition chain and input signal length. In this study, several features were defined for extraction
from the signals taking into account the target application. The obtained results indicated that super-
vised models trained on raw signals provide superior performance compared to the supervised approach
relying on the extracted features. Our exploration of the features extraction approach shows that Form
Factor attribute can be used as a discrimination method, reaching the performance of the TTTratio

algorithm without requiring any parameter adjustments. This independence from tuning parameters
can be crucial in some applications.

For real time applications, the comparison between the proposed discrimination approaches should
not only be limited to the discrimination performance. Their embedded implementations should also be
compared. This is the last part of the work presented in this manuscript, where the implementations were
performed on FPGA. The decision to employ FPGA was motivated by its parallel processing property
and its capacity to process the digitized signal at a sampling frequency on the order of several hundred
megahertz (MHz), which is a key requirement in this work due to the short duration of neutron and
gamma-ray signals generated by a plastic scintillator. The objective was to optimize the implementation
of each method in order to achieve a latency less than the signal duration while minimizing the amount of
consumed resources. Based on discrimination performance as the evaluation metric, the 1D CNN model
outperforms the MLP model, which, in turn, outperforms the TTTratio and Form Factor algorithms,
especially for low energy radiations ([100, 250] keVee). Furthermore, both the TTTratio and Form
Factor methods exhibit comparable performance, with the latter having the advantage of not relying
on any tuning parameters. However, when assessing based on latency and resource consumption, the
ranking of the four methods is completely reversed. Consequently, the choice of method depends on the
target application and the available implementation resources. For instance, in applications involving
classification of low energy radiations, the higher resources usage of MLP and 1D CNN models can
be justified. In contrast, for the discrimination of higher energy radiations, Form Factor and TTTratio

algorithms are more advantageous as they achieve the same discrimination performance as ML models
with lower latency and resource consumption.
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Future Developments
The work presented in this thesis reveals the interest of using embedded ML in the context of ra-

dioactivity signals classification, mainly for low energy radiations. Furthermore, the work opens different
paths that can be considered for future work:

1. The results obtained by this work can be validated by a hardware implementation of a prototype
for an online discrimination system with a plastic scintillator based on ML approach. This is
significant in applications where the accurate classification of low energy radiations is a require-
ment. This step involves the hardware implementation of the complete discrimination system,
incorporating different tasks such as the BLR and the classification decision.

2. The work process of this thesis can be expanded to classify various radiation types (neutron,
gamma, beta, and alpha) detected by different types of detectors. For example, EJ276 and other
scintillators can be used to create neutron, beta and gamma-ray datasets. The neutron dataset
can be generated using the labeling method proposed in this thesis, while gamma-ray and beta
datasets can be obtained using pure gamma-ray (137Cs) and beta-ray (36Cl) sources. Additionally,
synthetic pile-up events can be generated and incorporated into the labeled datasets as a fourth
class. Therafter, a 1D CNN model can be trained on these prepared datasets to classify the four
classes simultaneously.

3. A study could be realized to assess the effectiveness of unsupervised domain adaptation tools in the
context of neutron/gamma-ray discrimination in organic scintillators, which is a critical point since
the preparation of labeled dataset is a challenging and time consuming step. Furthermore, self-
supervised ML tool can be explored as a solution to overcome the challenge raised by the varying
input lengths of ML models due to changes in the measurement chain. This exploration could lead
to the identification of invariant features capable of representing the signal and containing relevant
information for discrimination purposes. In order to carry out this study, first a neutron/gamma-
ray dataset should be acquired by a different acquisition chain than the one used in this study with
EJ276 plastic scintillator. This dataset can be cleaned and labeled using the labeling approach
proposed in this thesis. Subsequently, different unsupervised domain adaptation tools can be
explored to adapt the models trained in this thesis for classifying the newly acquired dataset.
The labeling of the second dataset is essential for accurately evaluating the different proposed
adaptation methods.
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