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Résumé

Effets collectifs des micronageurs dans les cristaux
liquides nématiques

La these se concentre sur les effets collectifs des micro-nageurs dans les cristaux liquides
nématiques. En utilisant des simulations de Boltzmann sur réseau, nous étudions un
systéme composé de nageurs sphériques au sein d’un cristal liquide nématique. Nos
résultats révelent que le couplage entre les champs de flux du nageur et 1’élasticité cristalline
liquide peut déstabiliser ’alignement nématique uniforme. Dans ’espace quasi-2D, nous
observons 1’émergence d’une instabilité dominée par la flexion avec les propulseurs, ce qui
est en accord avec les expériences de bactéries dans des films nématiques minces.

Apres l'ouverture de la troisieme dimension, une rupture spontanée de la symétrie
chirale est observée ; I’état nématique uniforme devient instable et se transforme en un
état cholestérique (chiral), caractérisé par une torsion continue du champ directeur. Cela
est observé a la fois pour les nageurs propulseurs (extensiles) et les nageurs tracteurs (con-
tractiles). En analysant les déformations dans le champ directeur nématique, 'instabilité
dominante est identifiée comme étant la torsion-flexion. Nos simulations démontrent que la
dynamique des particules et le directeur nématique sont connectés. Dans 1’état chiral, tant
les nageurs propulseurs que les nageurs tracteurs présentent des trajectoires hélicoidales.

De plus, des stratégies pour controler la dynamique des micro-nageurs sont également
étudiées. Motivés par des expériences bactériennes, nous considérons des nageurs de types
propulseur et tracteur au sein de motifs nématiques. En accord avec les expériences, nos
résultats montrent qu’un propulseur présente une trajectoire circulaire dans une déforma-
tion en flexion pure et une trajectoire linéaire dans une déformation en éventail pure. Pour
un nageur tracteur, un comportement opposé est observé. Enfin, nous explorons le trans-
port de cargaison de particules colloidales enchevétrées par des défauts topologiques. Nos
simulations suggerent que le remplacement d’une colloide passive par un nageur sphérique
n’affecte pas le défaut topologique partagé et fournit une mobilité. La particule active est
observée pour se lier a la cargaison via un défaut topologique. Avec un nageur propulseur,
nous observons un transport guidé le long du directeur nématique, tandis qu’avec un

tracteur, un transport perpendiculaire au directeur nématique est observé.

Mots-clés: Micro-nageurs, Dynamique collective, Cristaux liquides nématiques, Rupture

spontanée de la symétrie chirale



Abstract

Collective effects of microswimmers in nematic
liquid crystals

The thesis focuses on the collective effects of microswimmers in nematic liquid crystals.
Using hydrodynamic simulations, we study a system consisting of spherical swimmers
within a nematic liquid crystal. Our findings reveal that coupling between the swimmer
flow fields and the liquid crystalline elasticity can destabilize the uniform nematic align-
ment. In quasi-2D space, we observe the emergence of bend-dominated instability with
pushers, which is in agreement with experiments of bacteria in thin nematic films.

After opening the 3rd dimension, a spontaneous chiral symmetry breaking is observed;
the uniform nematic state becomes unstable and transitions into a cholesteric-like (chiral)
state, characterized by a continuous twist in the director field. This is observed for both
pusher (extensile) and puller (contractile) swimmers. By analyzing the deformations in the
nematic director field, the dominant instability is found to be twist-bend. Our simulations
demonstrate that the particle dynamics and nematic director are connected. In the chiral
state, both pusher and puller swimmers exhibit helical trajectories.

Further, strategies for controlling microswimmer dynamics are also studied. Motivated
by bacterial experiments, we consider swimmers of both pusher and puller types within
nematic patterns. In agreement with experiments, our findings show that a pusher exhibits
circular trajectory in a pure bend and linear trajectory in a pure splay. For a puller
swimmer, opposite behavior is observed. Finally, we explore cargo transport of colloidal
particles entangled by topological defects. Our simulations suggest that replacing a passive
colloid with a spherical swimmer does not affect the shared topological defect and provides
motility. The active particle is observed to bind to the cargo via a topological defect.
With a pusher swimmer, we observe guided transport along the nematic director, while

with a puller, transport is observed to be perpendicular to the nematic director.

Keywords: Micro-swimmers, Collective dynamics, Nematic liquid crystals, Spontaneous

chiral symmetry breaking
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Introduction

1.1 | Microswimmers

Active particles, such as microswimmers, use energy to propel themselves through various
environments. Typically living on a microscopic scale, they exist in nature as organisms
like bacteria, algae, and sperm. However, artificial microswimmers, such as Janus spheres,
Janus rods, and vesicles, can also be engineered for specific applications [1]. Some examples

of natural and artificial microswimmers are shown in Figure 1.1.

® Artificial Swimmers

4#\@ ’
P 4 b: Janus rods

sperma tozoa

s

, g, j: Janus spheres
v -
E. coli - y

Figure 1.1: Microswimmer examples: The figure shows examples of both natural (spermatozoa
and Escherichia coli) and artificial microswimmers (Janus rod and Janus spheres of varying
radii). The figure is taken from [2].

1.1.1 | Motility of microswimmers

Natural microswimmers

In nature, microswimmers often swim for their survival. Escherichia coli, for instance,
exhibits chemotaxis (movement along nutrient gradients) to locate environments rich in
nutrients [3]. Many algae also exhibit strategic motility to optimize their position relative

to light gradients, which helps them find suitable habitats and avoid adverse conditions [4].
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Motility is also a crucial aspect of reproductive processes. Sperm navigate the female
reproductive tract with precision, aiming to reach and fertilize the egg [5]. Understanding

the swimming behavior of a microswimmer can help us explain various physical processes.

Artifical microswimmers

Researchers have been trying to mimic the efficient movement observed in natural mi-
croswimmers [6, 1, 7, 8]. Significant progress has been made with the fabrication of
artificial microswimmers [2]. However, controlling their dynamics for potential applica-
tions remains an active area of research. Depending on the type of artificial microswimmer,
researchers use a variety of methods to guide them [9, 2]. These include the use of chem-
ical gradients in the surrounding environment [9], and applying external fields on the
microswimmers [10, 11]. Another practical approach involves the use of confining walls.
For example, in an experimental study, a chemically driven Janus sphere was shown to
swim parallel to and in proximity to confining walls [12]. The attraction towards solid

surfaces has been observed with swimming bacteria in confined environments [13, 14].

Swimming at micrometer scale

Microswimmers have various propulsion mechanisms to create flow fields around them [14,
15]. At the micron scale, fluid dynamics differ from the macro scale [16] and can be
characterized by a Reynolds Number (Re). The Reynolds number is defined as the ratio
of inertial to viscous forces acting on a swimming body, given by Re = %, where L is the
body size, U is the swimming velocity, 7 is the fluid viscosity, and p is the fluid density [14].
Typically, Reynolds numbers for microswimmers range from 1072 to 107° [14]. Thus, the
Navier-Stokes equations can be effectively simplified by removing the inertial term. These
modified equations are known as the Stokes equations, one can solve them with suitable

boundary conditions to find steady-state flow fields around microswimmers [14].

1.2 | Collective phenomenon in isotropic environment

On an individual scale, the dynamics of microswimmers have been extensively explored
in experiments [17, 15, 18, 13]. Nevertheless, in the natural environment, microswimmers
rarely found alone; they almost always exist in groups. Thus, their motion is not indepen-
dent but rather influenced by each other in a complex way. Physical systems characterized
by a high volume fraction of microswimmers can show remarkable phenomena (Figure 1.2),
including swarming [19, 20, 21], the formation of biofilms [22, 23, 24, 25|, and vortex forma-
tion [26, 27]. Many of these collective behaviors are necessary for the survival of bacterial
colonies. For instance, swarming (Figure 1.2a), a phenomenon where bacteria undergo

rapid mass migration across a surface, is vital for efficient nutrient search. Another crucial
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collective behavior is the formation of biofilm by bacterial colonies (Figure 1.2b). When ex-
posed to antimicrobial substances, certain bacteria can self-organize into 3D multicellular
structures, enhancing their resilience against the antimicrobial environment [22, 24].
Collective phenomena often result from hydrodynamic interactions [20, 26, 28, 29].
When microswimmers are in close proximity, they can exert forces on each other through
the surrounding fluid, thereby influencing their dynamics. One such example is shown in
Figure 1.2¢, the formation of a bacterial vortex in a densely populated bacterial suspension
confined within a flattened droplet [27]. This vortex formation can be explained by

considering hydrodynamic interactions between the bacteria [26].

Swarming Formation of wrinkled biofilm

Figure 1.2: Collective Behavior in Natural Microswimmers: (a) Swarming behavior of Pseu-
domonas aeruginosa bacteria inoculated at the center of a nutrient-containing dish, migrating
outward (source: Wikipedia). (b) Formation of wrinkled biofilm by Bacillus subtilis bacteria
near antibiotic-rich regions (source: [22]). (c) Bacterial vortex observed in a confined dense
suspension of B. subtilis bacteria (source: [26]).

1.3 | Microswimmers in liquid crystals

In the majority of the aforementioned studies, microswimmers were investigated in an
isotropic medium. Now, the question is: What happens if the surrounding medium is
anisotropic, such as the liquid crystal? Liquid crystals are unique since they can exhibit
both positional and orientational order while retaining the ability to flow. In nematic
liquid crystals, molecules align along a preferred direction known as the director. This
directional molecular alignment introduces anisotropy in viscosity [30, 31, 32], affecting

the dynamics of microswimmers.



Experimental evidence indicates that natural microswimmers, like bacteria, exhibit
constrained behavior when immersed in a nematic liquid crystal. Because of elastic
interactions with liquid crystal molecules, rod-like bacteria prefer to swim along the
director [33, 34, 35, 36, 37, 38]. The majority of these studies have been conducted with
rod-shaped bacteria in a liquid crystal environment. In this case, the elastic torque exerted
on a bacterium is directly proportional to the angle between the director and the bacterium
itself. Thus, the torque is minimum when the bacterium aligns parallel to the liquid crystal
director. Now, what happens if there is no elastic torque on a microswimmer?

This question was answered in a simulation study that focused on the dynamics of
a spherical microswimmer, or squirmer, moving within a nematic liquid crystal [39]. As
shown in Figure 1.3b, the results suggested the presence of a hydrodynamic torque, which
depends on the nature of the squirmer’s flow field. If the squirmer has a pusher-like
flow field, the torque aligns it parallel to the nematic director, and if the squirmer has
a puller-like flow field, the torque aligns it perpendicular to the nematic director. This
study provides an understanding of how the flow field of microswimmers couples with the

anisotropic nature of liquid crystals and affects microswimmer dynamics.

- = Director - _ Swimming-
122282 C T Direction -

Figure 1.3: Dominant torque on rod-like and spherical Microswimmers: The sketch depicts the
preferred swimming direction for rod-like and spherical particles in a liquid crystal environment
(red lines indicate directors). (a) Elastic torque dominates for rod-like particles, resulting in a
preferred alignment parallel to the director. (b) For spherical particles, where elastic torque is
zero, the hydrodynamic torque determines the preferred swimming direction. A pusher-type
spherical swimmer prefers to swim along the director, while a puller-like swimmer prefers to
swim perpendicular to the director [39]. Inset in (b) is sourced from [39].

Flexibility and versatility are key features of a liquid crystal medium. In a typical
experimental setup, bacteria are immersed within a lyotropic liquid crystal, which is
then confined between two glass plates [40, 36, 41, 37]. Planar anchoring is applied at
the glass surfaces, setting the nematic director to align parallel to the surface. Due to
the long-range orientational property of nematic liquid crystals, the director in the bulk
also aligns parallel to the surface. Nevertheless, the surfaces can be treated to induce
homeotropic anchoring, compelling the director to be perpendicular to the surfaces. As

the rod-like bacteria tend to align with the nematic director, leveraging anchoring effects



can allow us to engineer systems with liquid crystals, to guide microswimmers in specific
directions [41, 37, 42].

1.3.1 | Collective phenomena in liquid crystal environment

Unipolar motion in patterend liquid crystal

One strategy for guiding microswimmers within liquid crystals is to use a patterned director
field. Several experimental studies in this area have unveiled interesting phenomena [41,
35, 37, 36]. To this end, a noteworthy contribution comes from the study conducted by
Chenhui Peng and colleagues [37]. In their experiments, the bacteria, B. subtilis, were
introduced into a liquid crystal environment with a spatially varying director field. When
the director field had either a pure bend or a pure splay, the swimming of bacteria was
observed to be bipolar (Figure 1.4(a)-(d)). However, when a mixed bend-splay pattern
was introduced, above a critical volume fraction, the bacteria showed unipolar swimming
(shown in Figure 1.4 (e)-(g)). This finding suggests that the collective effect of the
bacterial population can overcome elastic forces within liquid crystals and can influence

the dynamics of microswimmers.

Pure bend

Mixed bend-splay

7
lSpm/s',/

Figure 1.4: Bacteria in patterned liquid crystal environment: Bacillus subtilis bacteria immersed
in liquid crystal with a patterned director field. (a) Director field with a pure bend pattern. (b)
Bipolar motion of bacteria observed within regions with a pure bend pattern (arrows represent
the direction of motion). (c) Director field with a pure splay pattern. (d) Bacteria follow the local
director in a bipolar fashion and aggregate at the center of the splay pattern. (e) Director field
with a mixed bend-splay pattern. (f) Above a critical concentration, bacteria exhibit unipolar
motion in regions with a mixed bend-splay pattern. (g) Map of bacterial velocities. All figures
are taken from [37].



Emergence of instabilities in 2D LLCs

Another study highlighting the importance of collective effects in microswimmers’ dynam-
ics is an experimental work done by Shuang Zhou and colleagues [40]. They introduced a
new term "Living Liquid Crystals" or LLCs, to represent any system where motile bacte-
ria are immersed within a water-based, nontoxic liquid crystal. Experiments with LLCs
revealed that swimming bacteria influence the long-range nematic ordering within the
liquid crystal [40, 41]. Moreover, beyond a critical activity, the uniform alignment of the
director field becomes unstable, and a periodic stripe pattern emerges (shown in Figure
1.5(c)-(d)). At even higher activity, this periodic pattern vanishes and defects appear in
the system (see Figure 1.5 (e)-(f))

LC experiments suggest that beyond a critical activity, the long-range nematic align-
ment in LLCs becomes unstable [40]. This instability arises from the coupling between the
microswimmer’s flow field and the liquid crystal’s orientational order, leading to spatiotem-
poral director patterns. These instabilities were absent in the LLC realized by C. Peng et
al. [37], as unipolar bacterial motion (Figure 1.4 (e)-(g)) was observed at a significantly

lower concentration [37] than the critical threshold reported in [40] for instabilities.

1.4 | Active nematics

Another class of active suspensions with nematic order is known as active nematics [43]. In
this class, the constituent rod-like particles are non-motile, yet they have the capability to
generate flow fields around them. Examples of active nematics include suspensions of mi-
crotubule filaments and kinesin motors [44, 45, 46|, and suspensions of actin filaments [47].
In a uniformly ordered active suspension or active nematic system, particle-generated flows
cancel out each other [48]. A linear stability analysis of such suspensions in 2D, suggests
that a bend fluctuation will grow if the flow generated by the particles is of an extensile
type [49]. Conversely, a splay fluctuation will grow if the flow generated by the particles
is of a contractile type [49]. However, director deformations induced by hydrodynamic
instabilities frequently lead to the formation of defects [50, 43|, a state commonly referred
to as active turbulence.

As shown in Figure 1.5 (g)-(f), experiments conducted with extensile active nematics,
such as microtubule-kinesin suspensions confined in two dimensions, have shown active
turbulence [44, 43]. This observation is further supported by numerical simulations [50].
Given the fundamental similarity between an active nematic system and a suspension
of motile bacteria in a liquid crystal, both systems should exhibit similar hydrodynamic
instabilities. In LLCs, B. subtilis bacteria were suspended in a liquid crystal medium [40].
These bacteria are "pushers" and generate extensile-type flow fields [51, 28, 52]. Conse-

quently, the most unstable mode of director deformation is predicted to be bend [49].
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Indeed, as the activity increases, the LLC shows wave patterns (see Figure 1.5 (c)-(d))
reminiscent of bend deformations and the nucleation of defects (Figure 1.5 (e)-(f)) Figures

(a)-(f) are taken from [40)], Figure (g) is sourced from [44].

Figure 1.5: Emergence of hydrodynamic instabilities: The figure illustrates the presence of
hydrodynamic instabilities in active ordered suspensions. Figures (a)-(f) showcase spatiotemporal
pattern formations resulting from hydrodynamic instabilities in LLCs [40]. (a)-(b) Inactive
bacteria (yellow ellipses) align parallel to the nematic director (depicted in red). (c)-(d) Active
bacteria generate a periodic stripe pattern. (e)-(f) Higher bacterial concentration leads to the
appearance of +1/2 defects in LLCs. (g) A 2D active nematic system of microtubule-kinesin
suspension forms +1/2 defects (red and blue arrows) [44, 43].

The majority of experimental studies on active nematics have primarily been conducted
in a 2D setup [44, 47]. Nonetheless, numerical simulations have shown that introducing a
third dimension can significantly impact turbulence in extensile active nematics [53, 54, 55].
In quasi-2D environments, active turbulence is characterized by straight disclination lines,
while in 3D, the disclination lines become contorted [53, 54, 56, 57, 58]. These results
suggest the presence of twist deformations in the nematic director field. Moreover, linear
stability analysis in 3D settings has predicted that twist-bend deformations grow in

extensile active nematics [55].



1.5 | Thesis overview

The primary objective of the thesis is to understand how hydrodynamic coupling between
microswimmer flow fields and liquid crystalline elasticity influences the nematic order
in liquid crystals. Our system consists of spherical microswimmers in nematic liquid
crystals. The self-propulsion for microswimmers is described by surface slip velocity as
per the squirmer model. The simulations have been performed using the Ludwig code [59],
which employs a hybrid Lattice Boltzmann algorithm to solve the relevant hydrodynamic

equations of the liquid crystal and microswimmers.

1.6 @ Thesis outline

Next in the thesis, Chapter 2 discusses different types of liquid crystal phases and the
concept of the Landau-de Gennes free energy. Chapter 3 introduces the squirmer model
for microswimmers. Chapter 4 briefly discusses the hydrodynamic equations governing the
system of microswimmers and nematic liquid crystal suspensions. Chapter 5 investigates
the system confined to a quasi-2D space, focusing on the emerging bend-dominated
instability. Chapter 6 explores the system without any spatial constraints, in 3-dimensions,
showcasing a transition to a cholesteric-like state. Finally, Chapter 7 examines how an
individual microswimmer behaves in patterned nematics and investigates the potential of

entangled topological defects in cargo transport.
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Liquid crystal

In this chapter, various types of liquid crystal phases are briefly discussed, with a focus
on nematic and cholesteric phases. Next, different types of deformations in the nematic
director field are introduced. And the corresponding elastic free energy according to the
Oseen-Frank formalism is discussed. Following that, the concept of the Q-tensor order
parameter and the Landau-de Gennes free energy is explained. The contributions from
bulk, elastic deformations, and the surface effects are discussed. Finally, the chapter
concludes by discussing a mapping between the elastic energies of the Oseen-Frank and

Landau-de-Gennes free energies.

2.1 | Introduction

There are several states of matter, including solid and liquid. However, certain mate-
rials exhibit an intermediate state between these two, known as the liquid crystalline
state [60]. This state was first observed in 1888 by Friedrich Reinitzer while examining
the physical properties of a compound named cholesteryl benzoate [61, 62]. He noted
that the compound had two different melting points [60, 61]. At the first melting point,
the solid crystalline form transformed into a cloudy liquid, and then at the second melt-
ing point, the cloudiness vanished, and the liquid became clear (see Figure 2.1). Later,
Otto Lehman, a German physicist, examined this cloudy fluid under a microscope and
reported the presence of crystal-like ordering between molecules [63, 62]. Subsequently,
this cloudy liquid was termed "liquid crystal" as it possessed characteristics of both lig-
uids, such as fluidity, and solids, including long-range order [60, 62]. Usually, materials
with anisotropic molecular shapes, such as disc-like, cone-like, or rod-like, exhibit the
liquid crystalline state [60]. In liquid crystals, the anisotropy in molecular shape causes

orientational ordering, ultimately leading to anisotropic physical properties [60]
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Figure 2.1: Cholesteryl benzoate phases: The image displays three phases of cholesteryl benzoate
observed in experiments [64]. On the left, the isotropic fluid phase is characterized by a clear
liquid; in the middle, the liquid crystalline phase exhibits a cloudy appearance; and on the right,
the solid phase resembles white powder. The figure is sourced from [64].

2.1.1 | Thermotropic and lyotropic liquid crystals

Depending on how the liquid crystalline phase is induced, the liquid crystals can be
classified into two broad categories: thermotropic liquid crystals and lyotropic liquid

crystals [60].

Thermotropic liquid crystals

Solid/Crystalline Liquid crystalline Isotropic liquid

Temperature

Figure 2.2: Molecular arrangement in thermotropic liquid crystal: The sketch illustrates the
molecular arrangement of rod-like molecules (blue colored) in solid, liquid crystalline and isotropic
fluid phases of a thermotropic liquid crystal material [65]. As the temperature increases, the
molecular ordering decreases.

When the liquid crystal phase is achieved by changing the temperature, those liquid

crystals are referred to as thermotropic. The molecular orientations in these compounds
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are influenced by temperature changes, as illustrated in Figure 2.2. Cholesteryl benzoate,
shown in Figure 2.1, is an example of thermotropic liquid crystal [64]. Another example
is pentylcyanobiphenyl, popularly known as 5CB.

Thermotropic liquid crystals are further classified based on whether mesophases (in-
termediate phases between liquid and solid) appear on both sides of the temperature
change. If the liquid crystalline phase can be induced by both, decreasing and increasing
the temperature of the compound, then these thermotropic liquid crystals are known
as 'enantiotropic’ [66]. Some thermotropic liquid crystals lack this reversibility of phase
transition; they can reach the liquid crystalline phase through unidirectional temperature

change. These are referred to as 'monotropic’ [66].

Lyotropic liquid crystals

Lyotropic is a class of liquid crystals where the liquid crystalline phase is induced by
dissolving specific anisotropic materials in a suitable solvent. Unlike thermotropic liquid
crystals, the long-range ordering in lyotropic liquid crystals is influenced by the change in
concentration of the dissolved particles rather than change in temperature. An example of
lyotropic liquid crystal material is disodium cromoglycate (DSCG). In aqueous solution,
DSCG exhibits a nematic phase even at room temperature [67]. An advantage of lyotropic
liquid crystals is their non-toxicity to biological organisms [68]. For instance, Living
Liquid Crystals (LLCs) are solutions of bacterial populations within a lyotropic liquid
crystal [40]. Experiments with LLCs have provided valuable insights into the dynamics of

microswimmers within an anisotropic liquid crystal environment [40, 41, 37, 42].

2.2 | Liquid crystal phases

The materials showing liquid crystalline phase have molecules with anisotropic shapes, like
rods, discs, or cones. The thermotropic liquid crystals with rod-like constituent molecules

can be classified into three types: nematic, smectic, and cholesteric [60].
2.2.1 | Nematic phase

In the nematic phase (shown in Figure 2.3), rod-like molecules align themselves along a
specific direction called the director, denoted by a unit vector n. In this phase, molecules
exhibit long-range orientational ordering but no positional ordering. The centers of gravity
of the molecules are randomly distributed (as in the isotropic liquid phase).

The optical properties of any material are influenced by the preferential alignment of
the molecules. A uniaxial nematic liquid crystal is birefringent [60]; that is, the refractive

index along the director is different from the refractive index perpendicular to the director.
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Director

Nematic liquid crystal

Figure 2.3: Nematic phase: The figure illustrates the alignment of rod-like molecules (depicted
in cyan) in the nematic liquid crystal. The average molecular orientation is indicated by the
director n (represented by the red arrow).

The nematic phase is apolar; the molecules show no preference for aligning parallel
or antiparallel to the director, resulting in the head-tail symmetry in the director (i =
—n). Nematic liquid crystal molecules are responsive to external fields, allowing their
average orientation to be controlled by applying either magnetic or electric field [60]. This
characteristic, combined with the ability of liquid crystals to influence light polarization,

forms the basis of liquid crystal display (LCD) technology.

2.2.2 | Cholesteric phase
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Molecular arrangement Helical director field

Cholesteric liquid crystal

Figure 2.4: Cholesteric phase: The sketch illustrates the molecular alignment of rod-like
molecules (depicted in green) in the cholesteric phase. Within each layer, the molecules have a
nematic arrangement, with the director represented by the double-sided arrow. These directors
undergo rotation along the direction of layer stacking, giving rise to the helical director field
(on right-side), characteristic of the cholesteric phase. The nematic planes are drawn for better
illustration, they don’t have any specific physical meaning.

The cholesteric phase was first observed by Friedrich Reinitzer, while he was working with

cholesterol derivatives from plants [61]. That’s why this phase is called ’cholesteric’ [62].
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In this phase, molecules align their long axes in a helical pattern [60], as shown in Figure
2.4. This phase is exclusive to compounds with chiral molecules (they can’t overlap with
their mirror images) [60].

To schematically understand the cholesteric phase (Figure 2.4), one can consider a layer
of molecules in the nematic phase. Now, add another layer on top, tilting its director by
an angle relative to the previous layer. Repeat until the nematic directors align. Because
the molecules are 'nematically” arranged in a layer, the cholesteric phase is also known as
twisted nematic or chiral nematic phase. Each layer’s director rotates by a fixed angle,
creating a helical arrangement of directors. The axis perpendicular to the directors is
called the helical axis. The distance over which the director rotates by 27 is the chiral
pitch length P (see Figure 2.4).

The pitch of a cholesteric liquid crystal changes with the temperature and can also be
altered by adding chiral dopants [69]. A property of the cholesteric phase is the selective
reflection of light based on its helical structure. It can lead to the display of colors due
to constructive interference of specific wavelengths [60]. This phenomenon is utilized in

various applications, including reflective displays and color-changing materials [69].

Twisted director fields

Our simulation results in Chapter 6 reveal a transition in the liquid crystal state, from
a nematic to a cholesteric-like state. To understand our results better, we introduce a
measure, termed as the tilt angle («). It is the angle between the director and the helical
axis, as shown in Figure 2.5. It is important to remember that o can have values within

range [0,7/2]. In the cholesteric phase the tilt angle oo = 90°.

o&
X .
S/ Helical

y axis

Figure 2.5: Definition of the tilt angle: the figure depicts the definition of the tilt angle, denoted
by «, for a cholesteric liquid crystal. « represents the angle between the helical axis (depicted
by the pink arrow) and the director (red).

In a cholesteric state, if the helical axis aligns with the x-axis, and the tilt and pitch are
denoted by a and P respectively, then the helical /twisted director field f(r) is expressed

as follows:
n(r) = (cosa, sinacosgr, +sin asingx) (2.1)

where + corresponds to left and right handed twists, ¢ = 27/P, and z signifies the x-

coordinate. One can visualize the twisted director field of the cholesteric phase using
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a = 7/2 in Equation 2.1. The simulation package used in this thesis, called Ludwig [59],
uses Equation 2.1, to initialize the liquid crystal in a cholesteric phase. In Figure 2.6, we
present the helical director field for a cholesteric phase, with the helical axis chosen along
% and the pitch, P = 128, in lattice units (LU).

Cholesteric liquid crystal

At xy-plane

SN

sl

~ A

B Ll

|
M

Figure 2.6: Cholesteric liquid crystal director field: The figure visualizes the director field of
cholesteric liquid crystal, created using the simulation package Ludwig. The twisted director
field is based on Equation 2.1, with a tilt angle of a = 90° and pitch P = 128 LU. The pitch
length is equal to the box length. On the left, the 3D simulation box is presented with directors
(colored in pink). In the right figure, the director field is visualized at a xy-plane, with the color
bar representing the absolute value of the director component along y-axis, denoted as |n|.

It is also possible to have o < 7/2 while still maintaining a helical structure, as shown
in Figure 2.7. But, a helical structure with zero tilt is not possible. When a = 0, the
directors align perfectly parallel to each other, resulting in nematic configuration. In the

nematic phase the tilt is zero and pitch is taken as infinity.

a=90° ]
Perfect ANEREN! I
Cholestetic LC ARREARARS ARRRRRRARNANAAR T
» S a = 60 N o Pitch is finite
.(‘é AL e n SVNN S \\ \\v,'/"/','g/, LA and equal
|_
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Figure 2.7: Tilt angle and the helical structure: Illustration of helical director field, n =
(cos a, sin «v cos gz, £ sin e sin gz ), corresponding to various tilt angle (a)). At aw = 90°, the helix
corresponds to a cholesteric phase. For tilt angles less than 90 degrees, the helical structure is
cholesteric-like but not cholesteric. The nematic phase has zero tilt and infinite pitch. The left
side bar represents the amount of twist (7") deformations in the helical structure, which scales as
T ~ sin? a. The twist is maximum in the cholesteric phase and minimum in the nematic phase.
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2.2.3 | Smectic phases

Smectic phases are more ordered than the nematic phase, in the sense that in addition to
the orientational order, the smectic phases also have positional order [60]. The positional
ordering comes from the arrangement of the molecules in a layered structure, as shown in
Figure 2.8. In these phases, the molecular centers of mass are correlated and are organized
in clearly defined planes. Within each layer, the molecules are oriented in a particular
direction and have the freedom to move freely. Moreover, the layers themselves can slide
over one another. This combination of layer sliding and intralayer molecular movement
contributes to the fluid-like behavior observed in the smectic phase.

Typically, the smectic phases are observed at lower temperatures compared to the
nematic phase. The smectic phases contain up to 12 different phases, with Smectic-A
(SmA) and Smectic-C (SmC) being the most common [60]. In SmA, the average orientation
of the molecular long axes (the director) is perpendicular to the layer. While in SmC,
molecules within each layer are tilted, resulting in the director being inclined at an angle

relative to the plane’s normal.

>

Smectic-A Smectic-C

Figure 2.8: Smectic phases: The figure illustrates the layered structures in smectic phases.
In Smectic-A (SmA), molecules align parallel to the plane normal (depicted by black arrow),
resulting in the director (red arrow) being parallel to the plane normal. In Smectic-C (SmC),
the molecules are tilted relative to plane normal.

2.2.4 | Blue phases

Finally, I would like to mention the blue phases (BPs). These phases are unique to
cholesteric liquid crystals with chiral molecules. Reinitzer first observed blue phases in
1888 [61], and due to their vibrant blue appearance under a polarizing microscope, they
were named ’blue phases’ Although, these phases do not always have blue appearance.
Blue phases can only be observed between the cholesteric and the isotropic fluid in a very
narrow temperature range (0.5° —1°) [70]. They are classified into three sub-phases: BPI,
BPII, and BPIII. BPIII has molecular ordering similar to the isotropic phase [71]. In
blue phases, molecules form helices, but unlike the cholesteric phase, they twist in two

dimensions, creating a double-twist (see Figure 2.9). Similar to the cholesteric phase,
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(a) Nematic structure

(c) Double twist

Figure 2.9: Single and double twist structure: The sketch shows the difference between single-
twist structure found in cholesteric phase and double-twist structure found in blue phases. The
figures are taken from [72].

blue phases can selectively reflect visible light, making them potentially useful in optical
devices like liquid crystal displays (LCDs). However, the main limitation is the narrow
temperature range in which blue phases exist. Efforts are underway to expand this range

by incorporating polymers or nanoparticles [73].

2.3 | Oseen-Frank elastic free energy

Bend
= = -
—~ = =
= = >
- Z 7 T X%
- RN
- ax(Vxn)
spla/y _ - Twist \\\\\\\\\\
’\;’ g — : B \\\\\\\

. \\\\\\\

A (V x f)

Figure 2.10: Deformations in the nematic director field: The sketch illustrates various types of
deformations in the nematic director field fi(r). In the Oseen-Frank formalism, bend deformations
can be calculated using n x (V x 1), twist deformations using f - V x 1, and splay using V - 1.

In uniaxial nematic liquid crystals, the directors align perfectly parallel to each other,
and any deformation in the director field adds an extra energy cost to the total free
energy. Three fundamental deformations or distortions, are splay, bend, and twist, which
are shown in Figure 2.10. These distortions contribute to the total free energy through
the elastic free energy. The Oseen-Frank formalism provides a framework to evaluate the

elastic free energy density using the director field n(r).
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In Oseen-Frank formalism, for the uniaxial nematic liquid crystal with a director field

n(r), the elastic free energy density F;)antiC is expressed as [74]

1
FOF = K (V1) + 2K - V x 21)2 + = Ks3(i x (V x 1)) (2.2)

elastic 2

2
— KV - [A(V-0) + 1 x (V x )]

Here, K11, Ko, and K33 represent the elastic constants for splay, twist, and bend
distortions, respectively [60]. The elastic constant Ky accounts for the fourth type of

distortion known as "biaxial splay".

2.4 | Q-tensor order parameter

An order parameter quantifies the degree of order or symmetry in a physical system.
Since the isotropic phase is less ordered than the nematic phase, one can define an order
parameter that is zero in the isotropic phase and non-zero in the nematic phase.

In a liquid crystal composed of rod-like molecules, the order parameter is represented
by a symmetric, traceless tensor known as the Q-tensor. In the uniaxial nematic phase

with a director n, the Q-tensor is defined as:

3s 1
Qoz,B = ? (nan,ﬁ - 35046) (23)

Here, Greek indices represent Cartesian components, and summation over repeated
indices is implied. Consider a scenario where the preferred alignment is along the x-axis.

Using the above equation, the Q-tensor can be written as:

Since we assumed the nematic phase to be uniaxial, the Q-tensor has only two in-
dependent eigenvalues: s and —s/2. The absolute largest eigenvalue, denoted as s, is
called the scalar order parameter, and the associated eigenvector determines the director
n. The scalar order parameter s measures the degree of molecular alignment along n and

is defined as follows:

1y, 1
s=35 <cos 0 3> (2.4)

Here, angular brackets represent the spatial average, and 6 denotes the angle between

the molecular long axes and the director. In the case of randomly oriented molecules, such

as in an isotropic fluid, {cos® ) = %, resulting in s = 0. Conversely, when molecules are

perfectly aligned, (cos?6) =1, and s = 1/3.
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The Q-tensor contains information about the scalar order parameter as well as the
director. Also, Q can vary in space and time, in the simulations. At each time step, Q
can be diagonalized. Consequently, the largest absolute eigenvalue provides the scalar

order parameter s, and the corresponding eigenvector gives the director n.

2.5 | Landau-de Gennes free energy

The transition from the isotropic to the nematic phase is governed by changes in the
free energy of the liquid crystal material. The phase characterized by the lowest free
energy becomes the stable phase under specific conditions. Various approaches have
been made to describe nematic-isotropic transitions, such as Onsager density functional
theory and Maier-Saupe mean-field theory [60]. However, in this section, our focus is
on a phenomenological theory (without knowing molecular details) known as Landau-de
Gennes theory [60].

This theory proposes that the free energy density near the transition temperature can
be described through a power series expansion in terms of the order parameter Q and its
spatial gradients. For a uniaxial nematic phase with spatially invariant Q, the free energy

density is due to the bulk contribution:

A A A
Fou = 70 (1 - g) 28— %Qaﬁ@/ﬁv@’ya + %( 28)’ (2.5)

Here, A is a constant, and Qi,@ represents (QopQap. The temperature dependence is

introduced through the parameter ~, which also determines the scalar order parameter s,

—_

8

1— —
3y

S +

B 1
6 2
If Q-tensor varies in space, an additional elastic term contributes to the free energy density.

Under the one elastic constant approximation, it can be written as:

K
Felastic - 5(8762&6)2 (26)

Here, K is the elastic constant. A non-zero gradient in the order parameter indicates
deformations in the nematic director field (see Figure 2.10). For a cholesteric liquid crystal,
the elastic contribution is modified to account for the twist in the director field. For a
cholesteric phase with a helical pitch length Py and gy = 27/Py, the elastic contribution
is given by:

K
5 ((2:Qap)® + (ears 0, Qsp + 200 Qus)°) (2.7)

Here, €45 is the Levi-Civita symbol.

F elastic —
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2.5.1 | Surface contributions to free energy density

Experiments with nematic liquid crystals are often conducted in confined environments [40,
42, 37, 32]. When the liquid crystal is near a solid surface, molecular interactions between
the surface and the liquid crystal molecules can influence the director orientation. This
holds true for various surfaces, including colloids [75, 76]. The nature of these interactions
decides the preferred orientations of liquid crystal molecules near the interface, and due
to the long-range orientational property of liquid crystals, these effects extend into the
bulk. This is known as surface anchoring.

Surface anchoring involves modifying the chemical or physical properties of the surface
to induce a preferred orientation for the liquid crystal molecules [77, 78, 79]. Types of
surface anchoring include homeotropic anchoring, where molecules align perpendicular to
the surface, and degenerate planar anchoring, where molecules lie parallel to the surface.
For simulations involving walls or colloids with surface anchoring effect, the Landau free

energy density has an additional surface term, which is generally expressed as:

Fy = Wo(Qus — Q) 2.3

Here, W, denotes the anchoring strength, and Q° represents the preferred tensor order
parameter at the surface, which can be set to induce either homeotropic or planar anchoring
(for examples, see [80]). The surface term Fj reaches its minimum when the director field

aligns with the preferred orientation, given by Q°.

2.5.2 | Mapping between Frank and de Gennes elastic free energy

In our simulations, the Q-tensor is initialized for the uniaxial nematic liquid crystal, using
Equation 2.3. At each time step, the total free energy density is evaluated according
to the Landau-de Gennes formalism. The bulk and elastic contributions are calculated
using Equation 2.5 and Equation 2.6, respectively. If there are any walls or particles with
a surface anchoring effect, the surface energy contribution is also included in total free
energy using Equation 2.8.

However, calculating elastic free energy using Landau formalism has one drawback.
The elastic energy consolidates contributions from twist, bend, splay, and biaxial splay
into a single term ~ %(8762&/3)2; thus, one cannot calculate the individual contributions
from different deformations.

To address this issue, we shift our attention to the Oseen-Frank formalism. In this

case, under a single elastic constant approximation, the elastic energy reads,

1 1 1 1
FOF = K S+ (KT 4 KBl + JKTr(A?) (2.9)
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where the splay S, bend B, and twist T deformations are defined as:
S=V-1n T=n-(V xn) B=nx(V xn) (2.10)

and the A in Equation 2.9 is the biaxial splay deformation, which is defined by a symmetric
traceless tensor [81].

While Equations 2.9 and 2.10 can be used to calculate the magnitudes of different
distortions and their corresponding energies, it would be advantageous in our simulations
to calculate the distortions directly from the Q-tensor. To achieve this, we use the
formalism proposed by Selinger [81]. In this approach, the distortions are calculated using

a special tensor q, which is related to Q as follows:

1 2Qi
% =3 (51-]- + C’j’) (2.11)

here, s represents the scalar order parameter of the nematic liquid crystal. Due to the

inherent ambiguity in defining the splay scalar uniquely in terms of ¢;;, a splay vector

S = Sn is introduced [81], and the distortions are given by:
Si = qu0;q; T = €1qi0;qk By, = —qu0iqu (2.12)

We use these expressions to calculate |S|, |T|, and |B|, representing the magnitudes of
splay, bend, and twist deformations, respectively.

From Ludwig code [59], the output is a Q-tensor field. These tensors can be diagonal-
ized to extract the eigenvalues and eigenvectors. At each lattice point, the nematic director
is determined by taking the eigenvector corresponding to the highest absolute eigenvalue.
Subsequently, we reconstruct the Q-tensor using Equation 2.3. Then, we construct the

g-tensor using Equation 2.11, and calculate distortions using Equation 2.12.
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Microswimmer model

The aim of the thesis is to understand the collective effects of microswimmers within a
nematic liquid crystal. This chapter discusses the squirmer model, which is employed to
simulate the dynamics of the swimmers. The following chapter introduces the simulation

model for the nematic liquid crystal.

3.1 | Introduction

Microswimmers generate flow fields to propel themselves in the surrounding fluid. There
are a variety of mechanisms by which these flow fields are generated. For instance, bacteria
like Escherichia coli have specialized hair-like structures called flagella on the surface (see
Figure 3.1). A small cell motor rotates this bundle of flagella to generate a flow field [82].
Another natural microswimmer, Chlamydomonas reinhardtii, has two flagella (shown in

Figure 3.1), both beat in a breaststroke-like pattern to move the swimmer forward [83].

E. coli Paramecium

C. reinhardtii

Figure 3.1: Natural microswimmers with hair-like appendages: This schematic figure illustrates
the variety in the number and type of hair-like appendages across different natural microswimmers.
For example, Fscherichia coli has multiple flagella, Chlamydomonas reinhardtii has only two
flagella, and Paramecium has multiple cilia (shorter flagella) that cover its entire body. The
figure is sourced from [84].

To model the dynamics of the swimmers, we use the Squirmer model, developed by
Lighthill and Blake [85, 86]. The model approximates the swimmer as a spherical object,
whose surface undergoes periodic waving motion (like microswimmer surface with cilia) to

generate a flow field. In its simplest form, the model approximates this squirming motion
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by incorporating tangential slip velocity on the spherical surface (see Figure 3.3). This
surface slip velocity creates a flow field around the swimmer and propels it forward.

As discussed in Chapter 1, microswimmers swim in low Reynolds number regime [16],
where the viscous forces dominate over the inertial forces. Therefore, the flow field u
around the microswimmers is a Stokes flow. The Stokes and continuity equations can be

written as:

V-u=0
Vp = nV2u (3.1)

where 7 is the fluid viscosity and p is the pressure. The solution of above equations
can be expanded into a series of flow fields generated by singular sources [84], such as the
source dipole and the force dipole (shown in Figure 3.2). The flow field due to the source
dipole decays as 1/r®, where r is the distance from the swimmer. The flow field due to
the force dipole decays as 1/r? (extensile force dipole is shown in Figure 3.2). Studies
have shown that combination of a source dipole and force dipole is sufficient to describe

far-field flows generated by microswimmers [84, 87, 17, 13, 8§].

Source dipole ~ 1/r® Force dipole ~ 1/r?

Fluid velocity

0

Figure 3.2: Flow field due to singular sources: The figure illustrates the flow fields generated
by a source dipole and a force dipole (extensile). The color bar represents the scaled velocity.
Streamlines indicate the direction of fluid movement. If the distance from the singular source is
given by 7, then the flow field of a source dipole decays as 1/, while that of a force dipole decays
as 1/r2. Source dipole consist of a source (where the fluid direction is radially outward) and
a sink (where the fluid direction is radially inward). An extensile force dipole pushes the fluid
outwards along the axis (black double-sided arrow). At large distances from a microswimmer,
the flow has no contribution from the source dipole, the dominant flow is a force dipole [84].
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3.2 | Squirmer model

As per the standard Squirmer model, the axisymmetric slip velocity u,, at the surface of

a spherical swimmer of radius R is given by [84]
us(0)|,_p = Bisinf + Bysinf cos 6 (3.2)

where 6 is the polar angle measured from the swimmer orientation vector & (refer to
Figure 3.3). The coefficient B; is related to the source dipole, and it sets the swimming
speed uy = %. The coefficient By corresponds to the strength of the force dipole and
influences the fluid mixing around the swimmer. When B, < 0, the force dipole is extensile;
the fluid is pushed outwards along the swimmer axis (see flow field of the force dipole in
Figure 3.2). Conversely, when By > 0, the force dipole is contractile; the fluid is pulled

inwards along the swimmer axis.

Figure 3.3: Definition of 6 in the Squirmer model: The figure depicts a spherical squirmer
with an orientation vector €. The slip velocity us at the squirmer surface is given by us(0) =
Bisinf 4+ By sinf cos 8, where 6 is the angle between a point on surface and é.

As discussed earlier, microswimmers use various propulsion mechanisms to generate
flow fields. For example, the E. coli bacterium generates thrust from behind. It rotates its
flagella bundle located at the back to push the bacterial body forward. Therefore, E.coli
is classified as a pusher [17]. Another example of a pusher is B.subtilis [26]. A pusher is
characterized by a far-field low resembling that of an extensile force dipole. Conversely,
some microswimmers, such as C. reinhardtii, generate thrust from the front. They propel
themselves forward by pulling and are therefore classified as pullers. A puller exhibit a
far-field flow resembling to a contractile force dipole [89].

In the squirmer model, pushers and pullers are distinguished by the squirmer parameter
g = g—f. A squirmer with § < 0 exhibits an extensile flow field (fluid is pushed outwards
along the axis), and is therefore called a pusher squirmer (example shown for § = —5,
in Figure 3.4). In contrast, a squirmer with § > 0 exhibits a contractile flow field (fluid
is pulled inwards along the axis), and is classified as a puller squirmer (see = +5 in
Figure 3.4). A third category includes microswimmers like Volvor and Paramecium, which
lack force dipole contributions in their far-field flow [89, 90]. Such microswimmers are

represented by neutral squirmers, with § = 0 (see Figure 3.4).
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Figure 3.4: Squirmer flow fields: Flow fields generated by various

Puller
B=+5

DML

S A
TG

/AN

types of squirmers, pusher

(8 = —=5), puller (8 = +5), and neutral (5 = 0). The swimming direction is indicated by the
white arrow. Streamlines (in black) show the (local) movement of fluid. A pusher flow field

resembles an extensile force dipole; the fluid is pushed outwards alo

ng the moving direction. A

puller flow field resembles a contractile force dipole; the fluid is pulled inwards along the moving
direction. Neutral squirmer’s flow field only has source dipole. The figure is taken from [91].
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Simulation model

This chapter focuses on the model used to simulate the nematic liquid crystal. First, the
Landau free energy is reviewed, which describes the energy landscape of the liquid crystal.
Following that, the Beris-Edwards equation is discussed, which governs the dynamic
evolution of the order parameter tensor (Q-tensor). Finally, a short introduction to the
Lattice Boltzmann method (LBM) is provided, a tool to solve the hydrodynamic equations
(like Navier-Stokes), which govern the flow within the system.

4.1 | Hydrodynamics of Liquid Crystal

The Landau-de Gennes free energy density describes the thermodynamics of a liquid
crystal. In the uniaxial nematic phase with a spatially invariant Q (no deformations in

the nematic director field), the free energy density simplifies to the bulk term [60)]:

Ao

A A
Fbulk - 7 (1 - ’;:) iﬁ - %Qaﬁ@ﬂ’y@va + %’7( ZB)Q (41)

When the director field is not uniform and there are deformations (as shown in Figure
2.10), an additional elastic term is added [60],

K
Felastic - E(aﬂ/@ozﬁy (42)

If the liquid crystal is confined between two surfaces with anchoring effects, an anchoring

term is added, .
Fanch = §WO(QOC,3 - Q25)2 (43)

Consequently, the total Landau free energy density, F, of a nematic liquid crystal is the

sum of various contributions,

F = Fbulk + Felastic + Fanch (44)
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4.1.1 | Beris-Edwards equation

The dynamics of the order parameter Q-tensor is governed by the Beris-Edwards equa-
tion [92],
(0+u-V)Q=TH+S(W,Q) (4.5)

In this equation, the right-hand side accounts for the advection of Q by the fluid with
velocity d. On the left-hand side, the first term I'H, is responsible for relaxation towards
the minimum of the total free energy density F (given by Equation 4.4). Here, I" denotes
the rotational diffusion constant, which sets the timescale for this relaxation motion. The

molecular field, H, represents the variation of F with respect to Q,

oF I OF
H=— Tr— 4.6

5Q " (3) o) (4.6)
The molecular field H provides the force that drives the liquid crystal towards the equi-
librium state. The second term in Equation 4.5, S(W, Q), is the flow coupling term. It

describes how the orientation of liquid crystal molecules is influenced by fluid flow,

S(W,Q) = (€D +w) (Q+3) + (D -w) (Q+ ) -2 (Q+3) QW) (47)

Here, W is the velocity gradient tensor. D and w represent the symmetric and anti-
symmetric contributions to W. The parameter £ depends on the molecular details of the
liquid crystal and determines whether the director field is flow aligning or flow tumbling.
Specifically, if & > 1, the director field is flow tumbling, and if £ < 1, the field is flow
aligning.

The dynamics of a liquid crystal, governed by the Beris-Edwards equation, is intricately

coupled with the Navier-Stokes (NS) equations:
P (Orua + ugdpua) = Ipllag + 193 (Jatig + Iptia) (4.8)

Here p represents the fluid density and 1 denotes the isotropic viscosity. The flow field,
u, also obeys the continuity equation d;p = —V - (pu). For an incompressible fluid, this
equation simplifies to J,(pu,) = 0. In Equation 4.8, IT denotes the thermodynamic stress

tensor. For a liquid crystal without any activity, the stress tensor is expressed as,

1 1
Haﬁ = 25 <Qaﬁ + 3504,8) Q’yerys - fHoa'y <Q'yﬁ + 357,8>

1 oF
- é (Qa'y + 35057) nyB - aaQ'qu + QomeyB - Ha'waﬁ
7%

Note, in the case of active nematic systems, the stress tensor has an additional term

(4.9)

—(Q, reflecting the active nature of the liquid crystal molecules [49, 48]. The parameter
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¢, known as activity, depends on the flow field generated by active liquid crystal molecules.
If their flow field is of an extensile type, pushing fluid away along the molecular long axis,
then ¢ > 0. Conversely, if their flow field is of a contractile type, pulling fluid inwards
along the molecular long axis, then ¢ < 0. In our simulations, ( = 0, the liquid crystal is

not active, only particles (swimmers) are active.

4.2 | Lattice Boltzmann Method

The fundamental concept behind LBM is to represent the fluid as a collection of fictitious
particles on a lattice, where each lattice node is associated with a set of distribution
functions {f;}. These f;’s represent the probability density of finding a (fluid) particle

with a discrete velocity ¢;. The evolution of f; in time At is given by the equation [93],

At
T

(fz(f:a t) - fieq<F7 t)) (410)
The left-hand side represents the streaming of (fluid) particles to neighboring nodes, and
the right-hand side accounts for the the relaxation toward the equilibrium distribution,
given by f{9. The relaxation time scale 7, sets the kinematic viscosity v of the fluid:

At

v=c(t— 7) (4.11)

Here, ¢, is the speed of sound in lattice units. The discrete velocities {¢;} in Equation 4.10,
are chosen from a set based on the lattice configuration. To obtain hydrodynamic quantities

like fluid’s density (p) and velocity (ud) at a lattice node,
p=>1 pi=>_ fici (4.12)

Typically, Lattice Boltzmann Method (LBM) lattices are denoted as "DnQm", where "n'
indicates the spatial dimension, and "m" corresponds to the number of discrete velocities
in the set {c;i}. For 2D studies, the commonly adopted lattice is D2Q9, characterized
by a 9-velocity model. In 3D simulations, various velocity models are available, with the
favored choice being the 19-velocity model. Consequently, the preferred lattice used in 3D
simulations is D3Q19. In this thesis, whether the simulation is quasi-2D or full 3D, only
D3Q19 lattice is used.
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4.3 | Implementation

The liquid crystal dynamics follows the Beris-Edwards equation (Equation 4.5) and the
fluid flow is governed by the Navier-Stokes (Equation 4.8) and continuity equations.
These equations are connected via an elastic tensor (Equation 4.9). Our simulations
are conducted using the Ludwig simulation package [59], which efficiently solves these
equations using a hybrid approach. Specifically, the Beris-Edwards equation is tackled
through the finite-difference method, and the Navier-Stokes equation is solved using LBM.
In our simulations, the microswimmers are modelled as spherical swimmers, rendered
motile by a surface slip velocity (Equation 3.2 in Chapter 3). In LBM, a solid boundary is
typically modelled using the bounce back scheme [94, 95]. However, this can be modified
to take into account for particle motion [96] and the effects of the active slip flow, as done
n [97]. This is also implemented within the ludwig code; for full details, please refer to
this link: https://ludwig.epcc.ed.ac.uk/
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Microswimmers in tighlty confined nematics

This chapter presents our simulation results for a system of spherical microswimmers
in a nematic liquid crystal, confined within quasi-2D space. We begin by outlining the
simulation setup and initial conditions. Next, we analyze the emerging instability for
systems with pusher populations, and present a state diagram. We also examine the role

of motility in the emerging instability by considering pushers with zero speed.

5.1 | Simulation setup

To conduct our simulations, we used a simulation box with dimensions 256 x 256 x 27,
along the x, y, and z directions. The system was confined in quasi-2D space, by placing
walls in the z-direction (see Figure 5.1). The walls had planar surface anchoring, which
allowed free movement of the nematic director only in the xy-plane; any deviations from
this plane were penalized. Spherical swimmers with random orientations were placed at
the mid-plane. The nematic liquid crystal was uniformly initialized throughout the box
with a scalar order parameter s = 1/3, and the director field fii(r) was initialized along the
x-axis (represented as pink in Figure 5.1). Periodic boundary conditions were imposed at
the box edges along the x and y direction.

N spherical swimmers/squirmers of radius R = 6 in the lattice units (LU) were used
in simulations. For self-propulsion, a surface slip velocity (given by Equation 3.2) was
applied at swimmers surfaces. We considered pusher-type swimmers (pushes the fluid
outward along the particle axis). The source dipole strength B in the squirmer parameter
£ was fixed at 0.0015, which set the swimming speed uy = %Bl = 1073 LU. The force
dipole strength B, was systematically varied, such that § € [—5, —1]. The number of

swimmers is represented using the area (volume) fraction ¢, defined as ¢, r = ]ij; The
¢ys was varied between 5% and 20%.

For modeling the nematic liquid crystal, following parameters were used: Ay = 0.1,
v =3.0, K =0.005, I' = 0.3, and rotational viscosity v, = % = 5/3. These parameters
set the Reynolds number, Re = UOTR ~ 0.036, and the Ericksen number, Er = % ~ 2.
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At mid xy plane

Figure 5.1: Illustration of the quasi-2D simulation setup: The figure shows our quasi-2D sim-
ulation setup. The system consisting of spherical swimmers within a nematic liquid crystal,
is confined between walls. Planar anchoring is imposed on the walls and the director field (in
pink) is initialized along the x-direction. In right figure; particles (blue spheres) are initialized
at the mid-plane with random x,y coordinates and random orientations (in black). The color
bar represents the value of scalar order parameter s, which is uniform and initialized to s = 1/3
throughout the simulation box.

In [49, 98, 99], the activity at the continuum limit is defined as being directly pro-
portional to both the force dipole strength and the concentration of active particles. We
adopted the same approach in our simulations, the global activity was increased by either
increasing the force dipole strength, characterized by |53, or the volume fraction ¢, or
both.

5.2 | Pushers in quasi-2D nematic liquid crystal

5.2.1 | Uniform, Wave and Chaotic states

When pusher swimmers were introduced in the nematic liquid crystal, at low global activity,
the uniform nematic order was observed to be stable. The director field, initially aligned
along the x-axis, remained uniform and aligned in the same direction (refer to Figure 5.2).
Some perturbations were observed in the director field, but they were localized (refer to
|f|= 3 in Figure 5.2), the overall nematic order remained uniform. Throughout the thesis,
liquid crystal state with stable uniform nematic order is referred as the "Uniform state".

Beyond a critical global activity, the coupling between the swimmer flow fields and the
nematic order led to a flow instability; the uniform nematic alignment became unstable,
and periodic distortions were observed in the director field (shown in Figure 5.3). Due to
the distinctive wave-like pattern, this state was named, the "Wave state'. At even higher
activities, the wave pattern disappeared, and we observed defects in the system. Straight
disclination lines appeared, which looked like point defects in 2D (see red triangles and

circular arcs in Figure 5.4). This state was labeled as the "Chaotic state'. Within the

32



chaotic states, the number of defects (on average) was oberved to increase with global

activity (refer to Figure 5.4).

¢af ~ 5%
|8l =1.0 |8l =2.0 18] =3.0

Figure 5.2: Examples of uniform states: For the nematic liquid crystal with pusher population
(¢af), the figure shows the director fields (in pink) for various force dipole strength (5). For
better visualization, pushers are not shown here. Within the uniform states, the perturbations
in the director field are localized (see rightmost figure), and has no effect on the global uniform
nematic alignment. The director fields are shown at the steady state and at the section of
xy-midplane. The yellow color represents the scalar order parameter s = 1/3. Black dashed lines
indicate the global alignment of the director field.

¢af ~ 5%
18] = 4.0 1] = 4.5

Figure 5.3: Emergence of periodic distortions in the director field: The figure shows the wave-
like pattern observed in the wave states. The director fields (in pink) are shown at the steady
state and at the xy-midplane. Increasing swimmer concentration ¢,y or the force dipole strength
|8], beyond a critical threshold leads to periodic distortions in the director field. The black
dashed lines highlight the periodic wave-like pattern.

¢af ~ 15%
18] =3.0 18] = 4.0 18] = 5.0

Figure 5.4: Increase in the number of defects with activity: At higher global activity, straight
disclination lines (look like point defects in 2D) are observed in the system. The director field (in
pink) is observed to have no spatial symmetry. Within the chaotic state, the number of defects
(on average) is observed to increase with activity (left to right). In defect-free regions (yellow
region), scalar order parameter s ~ 1/3, which decreases by 20% close to a defect (greenish
region). Red triangles approximate the positions of —1/2 defects, and circular arcs indicate +1/2
defects. Not all defects are marked.
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In steady uniform states at low volume fraction ¢,s, pushers were observed to swim
along the local nematic director fi in an apolar fashion (i.e., swimming along i and —n).
This behavior aligns with an individual spherical pusher swimming in a nematic liquid
crystal [39]. However, at higher ¢, the apolar motion was not observed within the mid-
plane of the simulation box. Because of higher collision frequency, pushers were observed
to swim near the walls.

Our simulations reveal that the collective effects of swimmers can destabilize the
uniform nematic order. Above a critical activity, the coupling between the swimmer flow
fields and the nematic order triggered a flow instability, which caused periodic distortions
in the director field n. In the next section, we analyze the director field deformations
(twist, bend, and splay) across the uniform, wave, and chaotic states to characterize the

underlying nature of instability.

5.2.2 | Analysis of director field distortions

Following the procedure explained in Section 2.5.2, we calculated the deformations in
the director field (at steady state) for different values of force dipole strength |3, at
each volume fraction ¢, (shown in Figure 5.5). At low global activity, distortions were
observed to be minimal (Uniform regions in Figure 5.5). This is because, while pusher flow
fields perturbed the nematic director field, these perturbations remained localized around
the swimmer at low activity (refer to |3|= 3 in Figure 5.2). Above a critical activity,
the influence of flow fields on the global nematic alignment became significant, and we
observed a wave-like pattern in the director field, as showed in Figure 5.3. In these wave
states, bend dominated the distortions, followed by the splay and twist (see Wave regions
in Figure 5.5). At higher activities, the distortions further increased, and defects appeared
in the chaotic states (Chaotic regions in Figure 5.5).

The distortion analysis indicates the growth of all distortions with activity, but par-
ticularly, we see a significant increase in bend distortions. This suggests that bend is the
dominant instability. In our system, the activity is from pusher swimmers, which have
extensile flow fields (fluid is pushed along the particle axis). A pusher swims parallel to
the nematic director [39]. Therefore, our system can be seen as a nematic liquid crystal
with moving extensile force dipoles. Interestingly, the linear stability analysis of 2D ex-
tensile active nematics has predicted bend to be the most unstable mode. Therefore, our
results agree with the theoretical predictions (as shown by increasing bend in Figure 5.5).
Continuum simulation studies [53, 98, 50, 100] of extensile active systems in 2D, have also

observed the dominance of bend.
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Figure 5.5: Distortions and defect densities For nematic liquid crystals with pushers, confined
within quasi-2D space, the figure shows the distortion and defect densities as a function of the
squirmer parameter |3|, for various volume fraction ¢,r. The values are time averaged over
steady states. The pink dashed line separates the Uniform and Wave states, and the orange
dashed line separates the Wave and Chaotic states. Distortions: twist (yellow), bend (blue),
and splay (green) are minimal in the uniform states. Within wave states, high values of bend is
observed. In chaotic states, distortions have higher values and non-zero defect densities.

5.3 | State Diagram (quasi-2D)

Our simulations show that the uniform nematic alignment is unstable to activity. Because
of swimmer flow fields, the liquid crystal state transitions from Uniform, to Wave and to
Chaotic state. Figure 5.6 shows the state diagram summarizing the nature of the steady
state observed at various volume fraction ¢,s and squirming strength |3|.To classify states,
we visually inspected the director field (within the mid-plane) at steady state. States with
periodic wave-like pattern (like in Figure 5.3) were identified as Wave state, while states

with defects (as in Figure 5.4) present were classified as Chaotic.
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In our system, the state transition is observed to depend on both swimmer volume
fraction ¢, and force dipole strength |3] (see state diagram in Figure 5.6). At the contin-
uum limit, the activity scales with both the force dipole strength and the concentration
of active particles [49, 98, 99]. Following the same, we approximate the global activity ¢
for our system, as ( ~ |By| ¢,s, where By represents the force dipole strength. With all
other parameters fixed, the transition occurs at a critical activity ¢*, which gives a critical
volume fraction ¢y, ~ By 1 This relationship captures the transition boundary between

the uniform and the wave states remarkably well (pink line in Figure 5.6).

Wave ® Uniform 4 Chaotic

20 * ¢ 6 0 0 o

o 15
5
GH
S
- 10]
5_

18]

Figure 5.6: State diagram: For a system consisting of spherical microswimmers in a confined
(quasi-2D) nematic liquid crystal, the figure shows the observed steady states, as a function of
the squirmer parameter || and the swimmer volume fraction ¢,¢. In = %, the source dipole
is kept constant By = 0.0015, only the force dipole strength is varied Bs. Blue circles represent
stable uniform states, orange triangles denote stable wave states, and green rhombuses indicate
chaotic states. Pink line represents the best fit for the critical volume fraction ¢ F~ By L

5.4 | Pusher-Shakers in 2D nematic liquid crystal

In the nematic liquid crystal with pusher swimmers, a flow instability emerged due to the
coupling between swimmer flow fields and the orientational order. Now, we investigate the
effect of swimming speed on this instability by introducing pushers with zero speed, also
called pusher-shakers. These particles generate pusher-like hydrodynamic flow but has no
self-propulsion. The source dipole term Bj in the slip velocity (Equation 3.2), determines
)

the swimming speed ug (= For shakers Bj is set to be zero, which gives ug = 0. The

sign of the force dipole strength By determines the shaker type: By < 0 corresponds to
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pusher-shaker, which has pusher-like (extensile) flow field. Conversely, By > 0 corresponds
to puller-shaker (not addressed in this chapter).

The swimmer volume fraction was kept constant, ¢,; ~ 15%, while the force dipole
strength By was varied in [-0.0075,-0.0015], to change the activity. Figure 5.7 summarizes
our simulation results for pusher-shakers. We observed a similar transition as with pushers
(from Uniform to Wave to Chaotic, see Figures 5.2 to 5.4). At low activity, the uniform ne-
matic alignment was observed to be stable (Uniform state in Figure 5.7). Beyond a critical
| Bs|, wave-like pattern was observed in the director field (Wave state in Figure 5.7), and

at high activity, +1/2 defects were observed in the system (Chaotic states in Figure 5.7).
Pusher-shakers (B2 < 0)
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Figure 5.7: Emergence of instability in nematic liquid crystals with pusher-shakers: The figure
provides a visual summary of our simulations with pusher-shakers. The uniform nematic order is
observed to be unstable to activity. The particle volume fraction is fixed, ¢q r ~ 15%. The activity
is increased by increasing the force dipole strength |Bg|. In the left figure, the director fields (in
pink) are presented for the Uniform state (at |Bz|= 0.0015), the Wave state (|Bz|= 0.0030), and
the Chaotic state (at |Bz|= 0.0075). The right figure presents the distortion analysis, where the
pink dashed line separates the Uniform and Wave states, and the orange dashed line separates
the Wave and Chaotic states. Instability leads to higher values of bend deformations (Wave and
chaotic region). Non-zero defect density is observed only in chaotic states.

Our findings align closely with observations for pushers (see Figures 5.2 to 5.4). Pusher-
shakers also exhibit periodic undulations in the director field due to the flow instability
(Wave state in Figure 5.7). The instability must be a result of the coupling between
pusher-shakers flow fields and the liquid crystal order. Pusher-shakers are immobile and
have no source dipole contribution in their flow fields. This suggests that instability is
driven by the coupling between force dipoles and the nematic order. Since both pushers
and pusher-shakers generate extensile flow fields, same flow instability can be expected
for both. Indeed, the distortion analysis confirms this, bend dominated the deformations,

followed by splay and twist (Figure 5.7).
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5.5 | Discussion

In this chapter, we investigated the collective behavior of spherical microswimmers in
a confined (quasi-2D) nematic liquid crystal. Our results suggest that, increasing the
swimmer volume fraction (or force dipole strength) beyond a critical threshold onsets
a flow instability, causing periodic undulations in the director field. By analyzing the
distortions, we found bend as the most unstable mode, which aligns with predictions for
2D extensile active nematics [49].

Unlike in active nematics, our system has actual swimmers that generate flow fields
and interact with the nematic liquid crystal. This makes our system fundamentally similar
to real-world systems like bacterial suspensions in nematic environments, such as Living
Liquid Crystals (LLCs) [40]. In our simulations, the director field patterns observed in
the Uniform, Wave, and Chaotic states closely resemble to the ones seen in thin film LLC

experiments (Figure 5.8). This agreement further validates our simulation model.

Simulations Experiments [40]

$as ~ 5%, 8] = 1.0

Bag ~ 5%, 18] = 40

Gag ~ 15%, |8| = 5.0

Figure 5.8: Comparing our simulation results with LLC experiments: Our system, consisting of
spherical pusher swimmers in the nematic liquid crystal, is a realization of bacterial suspensions
in nematic liquid crystals, such as living liquid crystals (LLCs) [40]. The figure compares our
simulation results with the experiments observation with thin films LLCs [40]. At low swimmer
density and activity, our simulations show a steady Uniform state with uniform nematic alignment,
resembling LLCs with inactive bacteria (right-top). The Wave state (characterized by wave-like
patterns in the director field) observed at higher activity resembles the periodic distortions seen
in LLCs with active bacteria (right-middle). In regions with higher swimmer densities, LLC
experiments observe the formation of +1/2 defects (right-bottom), which is observed in our
Chaotic states. The LLCs experiment images are adapted from [40].
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The flow instability observed for pusher swimmers as well as for non-motile pusher-
shakers suggest that the instability is independent of the swimming speed. The most
unstable mode remained bend, for swimmers and for shakers. This consistency in dominant
instability underscores the role of force dipoles, rather than source dipoles, in destabilizing
the uniform nematic order.

While working in quasi-2D environment, we chose to exclude puller swimmers in
our analysis, because an individual puller prefers to swim perpendicular to the director
field [39]. Therefore, within our setup, it is highly probable that pullers would swim
towards the walls of the simulation box.

The chapter explored the collective effects of the swimmer population in a quasi-2D
nematic liquid crystal. We observed that the coupling between the swimmer flow field
and the nematic order lead to a bend-dominated flow instability. Our findings agree
with both theoretical predictions and experiments. To investigate whether the observed
instability is influenced by the quasi-2D confinement, the next chapter extends our study
into three-dimensional space, and we include pullers to comprehensively analyze the impact

of swimmer flow fields on instability.
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Microswimmers in 3D nematic liquid crystal

In this chapter, we continue our study on the collective effects of microswimmers in
nematic liquid crystals. Within quasi-2D confinement, we observed the emergence of a
bend-dominated flow instability due to coupling between swimmer (pusher) flow fields and
the nematic order. Now, we ask, what happens if we open the 3rd dimension? Will the
bend remain the dominant instability for pusher swimmers in 3D 7 Also, will the system
with puller (contractile) swimmers exhibit a splay-dominated instability, which has been
predicted for contractile active nematic systems?

We begin by introducing our 3D simulation setup, and describing the initial conditions
for the system. Following that, we present simulation results, focusing on pusher swimmers
followed by puller swimmers. In subsequent sections, we discuss the emerging instabilities,
swimmer dynamics, and present a state diagram as a function of the swimmer volume
fraction and the squirmer parameter. Additionally, we investigate the impact of swimming
speed on the instability by introducing shakers (particles with zero swimming speed) in

nematic liquid crystals.

6.1 | 3D Simulation Setup

Hydrodynamic simulations were conducted in a cubic simulation box with dimensions
128 x 128 x 128 (Figure 6.1). Initially, spherical swimmers with random orientations
were placed randomly inside the simulation box (refer to Figure 6.1). The nematic liquid
crystal was uniformly initialized throughout the box with a scalar order, s = 1/3, and the
director field fi(r) was aligned along the x-axis, as illustrated in Figure 6.2.

We initialized N spherical swimmers of radius R = 6 with the surface slip velocity given
by Equation 3.2. Both pusher (extensile, f < 0) and puller (contractile, 8 > 0) swimmers

were considered in our simulations. The source dipole coefficient B; in the squirmer

By
By

The strength of the force dipole By was then systematically varied in equal steps within

parameter [ = was kept at 0.0015, fixing the particle velocity uy = %Bl = 1073,

the range 5 € [—5,+5]. Negative values By < 0 represent extensile flow fields (fluid
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pushed outwards) for pushers, while positive values By > 0 represent contractile flow fields
(fluid pulled inward) for pullers. The swimmer volume fraction ¢,f was calculated using
Gvf = M where L is the box size. The ¢,f was varied between 1% and 5% for both

pushers and pullers.

“’Q
+ :. g

Liquid Crystal Randomly initialised Liquid Crystal with
bulk squirmers squirmers

Figure 6.1: Schematics of the 3D simulation setup: The simulations were conducted in a 3D box
of dimension 128 x 128 x 128. The nematic liquid crystal was uniformly initialized throughout
the simulation box, and the director field was initialized along the x-axis. The microswimmers
with random orientations were randomly placed inside the box.

S Y ) ==

Figure 6.2: Nematic liquid crystal at initial time step: The figure shows the initial director field
(in pink), at a random xy-plane. In subfigure (a), the color bar corresponds to the scalar order
parameter s = 1/3. In subfigure (b), the color bar indicates the absolute value of the director
component along y-axis, denoted by |n,|.

To maintain consistency with our quasi-2D simulations, we used the same liquid
crystal parameters: Ay = 0.1, v = 3.0, K = 0.005, I' = 0.3, and rotational viscosity
252

7 = & = 5/3. These parameters give the same Reynolds number, Re = UOTR ~ 0.036,

and the Ericksen number, FEr = % ~ 2.
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6.2 | Pushers in 3D nematic liquid crystal

6.2.1 | Uniform state

bog ~1%,]8] = 0.5

Figure 6.3: Uniform state: For the nematic liquid crystal with pusher swimmers, an example of
a stable Uniform state observed at a volume fraction of ¢, ~ 1% and a squirming parameter
of |B|= 0.5. On the left, a snapshot of the 3D simulation box at steady state with nematic
directors (colored in pink) and pushers (in green). Pushers are observed to follow nematic
director and exhibit apolar linear motion, red and blue arrows indicate motion along (&) and
(—2), respectively. The yellow color represents the value of the scalar order parameter s = 1/3.
In the right figure, the director field is shown at a random xy-plane within the simulation box,
and the color bar corresponds to |n,|, the absolute value of the director component along . The
nematic director field is not affected by inclusion of pushers, the distortions are minimal and
localized (represented by light white shading).

In 3D nematic liquid crystals with pusher swimmers, at low global activity, the uniform
nematic state was observed to be stable. Figure 6.3 shows a system at low volume fraction
and low force dipole strength, where the nematic director field, which was initially aligned
along the x-axis, remains unaffected and aligned in the same direction. The pushers were
found to swim along the nematic director n in an apolar fashion, meaning the number of
swimmers moving along i and —i was balanced (see red and blue arrows in Figure 6.3).
At low global activity, the distortions in the director field were minimal and localized
around the particle (see ¢, ~ 4% and |5|= 0.5 in Figure 6.4). As discussed in Chapter 5,
such states with stable nematic order are classified as Uniform.

The director field distortions in the uniform states were observed to be minimal but
not zero. This is because pushers generate flow fields and perturb the surrounding director
field. In the uniform states, these perturbations remain localized around the particles
and do not affect the global uniform nematic order. However, within the uniform states,

increasing global activity, either by increasing swimmer volume fraction or the magnitude
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of force dipole, resulted in more local perturbations. This is demonstrated by increasing
(light) white regions in Figure 6.4 from left to right, which signify the growing extent of

local perturbations.

vy N 1%, |8| = 2.0 buf R 2%, |8| = 1.0 buf R 4%,|8| = 0.5

Figure 6.4: Local perturbations increase with the activity: For the nematic liquid crystal with
pushers, the director field corresponding to various steady uniform states are presented. Within
the uniform states, an increase in global activity, either by increasing the pusher volume fraction
¢yf or the squirmer parameter |3|, leads to more localized perturbations in the director field
(represented by light white shading). However, the global nematic alignment remains unaffected
and uniform. Directors are depicted in pink, and the color bar corresponds to the absolute value
of the director component along the y-axis, denoted as |n,]|.

Beyond a critical global activity, the coupling between the swimmer flow fields and
the nematic order gave rise to a flow instability. As a result of arising flow instability,
we observed a spontaneous chiral symmetry breaking in the system; a continuous twist
developed in the director field, leading to cholesteric-like structure. Because of its helical
director field arrangement (similar to the one in Figure 2.4), we named this state the
"Helical state". However, at even higher activity, this chiral state disappeared and topolog-
ical defects (disclinations) appeared in the system. This "Chaotic state" lacked any clear
spatial symmetry, and the particle dynamics became unpredictable in this state. We will

first explore the Chaotic state, and then we will look at the Helical state in detail.

6.2.2 | Chaotic state

At high activity (high volume fraction or force dipole strength), the coupling between the
swimmer flow fields and the nematic order led to the emergence of disclination lines in
the system. The director field, which was initially aligned along the x-axis (as shown in
Figure 6.2), exhibited significant spatial variations throughout the system, as shown in
Figure 6.5. These abrupt spatial changes in director orientations resulted in the formation
of disclination lines. Topological defects were also observed in the chaotic states of our
quasi-2D simulations (Figure 5.4).

In quasi-2D simulations, the chaotic states exhibited straight disclination lines that

appeared as +1/2 point defects (see Figure 5.4). However, in 3D, chaotic states exhibited
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curved disclinations (highlighted in red in Figure 6.5 and 6.6). Previous studies have
indicated that activity disrupts the uniform nematic order, and leads to turbulent states [50,
53, b6, 57| characterized by +1/2 point defects in 2D [50, 54, 98], and curved disclination
lines in 3D [55, 53, 56, 57]. Indeed, our findings are consistent with the existing literature,
we observed curved disclinations in 3D (see Figure 6.5 and 6.6). We further observed
that the number and length of disclinations increased with increasing activity. This is
shown in Figure 6.6, where the increase in swimmer volume fraction ¢,; results in more

disclinations.

¢’U.f ~ 2%a Iﬂl = 45

Figure 6.5: Chaotic state: For nematic liquid crystal with pushers, an example of Chaotic state,
observed at pusher volume fraction ¢,; ~ 2% and |3|= 4.5. On the left, a snapshot of the
3D simulation box is shown with disclination lines (colored in red) and pushers (in green). At
high activity, the director field lacked any clear spatial symmetry, the abrupt change in director
orientation resulted in the defects formation. The pushers are observed to align along the local
nematic director. In the right figure, the director field is visualized at a random xy-plane, with
the color bar representing the absolute value of the director component along the y-axis, denoted
as |ny|. The particles shown are close to the xy-plane. Disclination lines are visualized with the
isosurface of the scalar order parameter s = 0.27.

of

Figure 6.6: Increase in disclinations with activity: For the nematic liquid crystal with pushers,
the figure compares systems with different pusher volume fractions, ¢, ~ 2% and 3%, and same
squirmer parameter |3|. The disclinations (highlighted in red) increase with the activity (here
achieved by increasing ¢, ¢).
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In the uniform states, pushers aligned parallel to the local nematic director n and
exhibited linear apolar motion, swimming along fi and —n (represented by red and blue
arrows in Figure 6.3). However, in chaotic states, the spatially varying director field led
to complex and irregular swimmer trajectories. The pushers still aligned with the local
director fn (black arrows in Figure 6.5 and 6.6), but their motion lacked a well-defined

trajectory, because of spatial changes in the director orientation.

6.2.3 | Helical states

As the global activity in the swimmer/nematic system was increased (by increasing swim-
mer numbers or force dipole strength), the initially aligned nematic became unstable,
and we observed a spontaneous emergence of a continuous twist in the director field. We
labeled this state the Helical state (an example is shown in Figure 6.7). This Helical state
is particularly unique, because it exhibits a cholesteric-like order, similar to that seen in

cholesteric liquid crystal (see Figures 2.6 and 6.7).
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Figure 6.7: Helical State: For the nematic liquid crystal with pushers, an example of the Helical
state, observed at the pusher volume fraction ¢, 5 ~ 1% and |3|= 4, is shown. In the left figure,
at steady state, a snapshot of the 3D simulation box is presented with directors (colored in pink)
and pushers (in green). A continuous twist along the x-axis is observed in the director field.
The pitch of the helical director field is approximately equal to the box length. The pushers
are observed to align with the local nematic director. In the right figure, the director field is
visualized at a random xy-plane, with the color bar representing the absolute director component
along the y-axis, |n,|. Variations in |n,| are observed along the x-axis; in the y-axis, |n,| is not
varying significantly.

At the onset of the Helical state, we observed the helical director field with a continuous
twist along the same axis as the initial nematic alignment (x-axis in our case). To
investigate the influence of initial alignment, we performed another simulation with the
same parameters but with the different initial director field alignment, along the y-axis.

In this case, the continuous twist was observed along the y-axis, which demonstrated that
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the initial nematic alignment determines the orientation of the helical axis in the Helical
state. As expected, with our same initial alignment (along x-axis, see Figure 6.2) in 3D
simulations, we consistently observed the continuous twist to be along the x-axis, as shown

by the three examples in Figure 6.8.

dvf ~ 2%, |6 = 2.0 v =~ 2%, |6 = 3.0 dvf =~ 3%,|6] = 3.0

j ‘

Figure 6.8: Examples of helical states: For the nematic liquid crystal with pushers, some examples
of the helical states observed at different volume fractions and || are presented. The snapshots
show the director field at steady state, with directors represented in pink and particles shown as
green spheres. A continuous twist is observed in the helical states, with the pitch length equal
to the box length. The pushers are observed to align with the local nematic director.

The collective effects of the pusher swimmers induced a transition in the nematic liquid
crystal; from the uniform nematic to a helical (chiral) state. This transition also influenced
the dynamics of the pushers. In uniform states, pushers aligned with the local nematic
director and moved in straight lines (refer to Figure 6.3). In chaotic states, pushers aligned
with the local nematic director but exhibited irregular trajectories. Interestingly, in the
helical states with helical twist along the x-axis, pusher trajectories were observed to
be helical (as shown in Figure 6.19) along the same axis (x-axis). This behavior can be
explain by the pusher’s tendency to swim along the local nematic director [39]. In the
helical state, the local nematic director rotates along the helical axis (see in Figure 6.7).
Thus, the pusher consistently aligns with the local nematic director as it moves along
this axis, resulting in a helical trajectory. Further discussion on pusher dynamics will be
presented later in Section 6.5.

We consistently observed helical states across a range of swimmer volume fractions ¢,
and squirmer parameter |3|. To gain deeper insights into the characteristics of these states,
next, we analyze the properties of the helical director field present in these states, such
as the pitch length P and tilt angle a. These parameters describe the spatial periodicity
and the inclination of the helical twist (w.r.t the helical axis), respectively (see cholesteric

phase in Section 2.2.2).
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Characterization of the continuous twist in helical states

As mentioned earlier, the Helical state closely resembles the cholesteric state. The con-
tinuous twist structures in both look similar, but there is a difference in the director
orientations. In both, a continuous twist defines the director field, but the tilt angle
of the directors relative to the helical axis differs. We compare a single twist from
both in Figure 6.9. In cholesteric phase, the directors are perpendicular to the heli-
cal axis (x-axis), meaning the tilt angle o = 90°. As per the helical configuration
n(r) = (cosa, sinacosqr, +sinasingr), the x-component of the director vanishes
(n, = 0) in cholesteric twist (see director components in Figure 6.9). Interestingly, in the
Helical state, we observe that the directors are not exactly perpendicular to the helical
axis (x-axis); the tilt angle is less than 90°, resulting in non-zero n, values (see Figures 6.9
and 6.10). Within a helical twist (corresponding to a Helical state), we observed small
fluctuations in the n, values (see Figure 6.10). Furthermore, with increasing activity
(left to right in Figure 6.11), the average n, decreased. Since n, = cos« in the helical
configuration, this decrease indicates a slight increase in the tilt angle o with increasing

activity (see Figure 6.12).
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Figure 6.9: Comparing continuous twist in the Cholesteric and the Helical state: The figure
compares an isolated continuous twist from the cholesteric liquid crystal and the helical state
(observed at ¢,f ~ 1% and |B|= 3). Pink lines represents the director. Also, the director
components n,,ny,n, are plotted as a function of the x-coordinate. For helical director fields,
ngy = cosa, ny = sinacosqr, and n, = sinasin gz, with ¢ = 2r/P. The pitch length P = 128
is the same for both cases; only the tilt angle is observed to be different. In perfect cholesteric,
the directors are perpendicular to the helical axis (i.e., @« = 90°) and ny = 0. In the helical
state, the directors are not perpendicular to the helical axis, which gives n, # 0, and the n, is
fluctuating around 0.5.

48



bvs = 1%, |B| = 4.0 dus ~ 3%, |8 =2.0
@{/‘///////////M\\\\\\\\\\\\\\\\\\\\\\\\\\\W//////////// @é/’/////////////A\\\\\\\\\\\\\\\\\\\\\\\\\\\\\W/////////////

0N, Ny en, | (on, Ny en; |
1.0 1.0
o o \
g 0.5 [N g 0.5 }
é /\J é H ,/N'q“-\/f\\
S 00 ‘.'- é‘; S 0.0 . ..- :
= p i = \ {
e} kY S o i
= 1 5 i
3-0.5 ; 9-0.5
B $ B
5 ) \ E o) WS
104 105
0 30 60 90 120 0 30 60 90 120
T (b) x

Figure 6.10: Helical configuration in the helical states: The figure compares the continuous twist
corresponding to various helical states, observed at different pusher volume fraction ¢, and |3]|.
The director components 2 = (ny, ny, n,) corresponding to the twist are plotted as a function of
x-coordinate. The average n, ~ 0.45 for ¢,y ~ 1% and |3|= 4, while the average n, ~ 0.3 for
¢uf ~ 3% and |B|= 2. This decrease is due to an increase in the global activity ¢ ~ ¢, Bs.
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Figure 6.11: Fitting helical director field: The figure shows a few examples of the director
components ng,n,, and n, along the x-axis (solid lines) from various helical states. The com-
ponents are averaged over yz-planes and fitted by the director field corresponding to the helical
configuration n, = cosa, ny = sinacos gz, and n, = £sin asin gz, with ¢ = 2w/P. The helical
states in subfigure (b) and (d) show right handed twists, and in subfigure (a) and (c) show left
handed twists. The dashed lines show the best fit using the pitch P and tilt angle . The «
is observed to increase with the global activity (( ~ ¢,¢B2), while P ~ 128 across the helical
states. At a fixed pusher volume fraction ¢,, the variations within yz-planes (represented by
vertical lines) are more pronounced for higher |f3].
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Across all helical states, the tilt angle o never reached 90°, indicating that the directors
were never perfectly perpendicular to the helical axis. The x-component of the director n,
remained non-zero (shown in Figures 6.10 to 6.12). The continuous twist oberved along
the x-axis and the director field maintained a relatively uniform (in aspect of director
components) within the yz-plane (Figures 6.7 and 6.8). To further analyze the director
field, we calculated the average of each director component (n,, n,, n,) across each yz-plane
at steady states. Plotting these averaged components as a function of the x-coordinate
(Figure 6.11) revealed larger deviations from the average director components, for higher
force dipole strengths (|3]), (see Figure 6.11). This is understandable because a higher
force dipole strength intensifies local fluid mixing around the swimmers, causing stronger
local perturbations in the director field.

To calculate the pitch length P and the tilt angle a of the helical twist, we fitted the
averaged director components with the helical configuration: n, = cos «, n, = sin « cos gz,
and n, = £sinasin gz, (where + corresponds to left and right-handed helices). As the
activity increased, the tilt angle a was observed to increase slightly, within the range 55°
to 72°, shown in Figure 6.12. Interestingly, the pitch length P remained relatively constant
at ~ 128, giving ¢ = 27/P ~ 0.049 (purple in Figure 6.12). The consistency is likely due
to the periodic boundary conditions imposed on the simulaion box, which restrict P to be

a multiple of the box length L = 128.
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Figure 6.12: Variation of pitch length and tilt with the squirming strength: For nematic liquid
crystals with pushers, the figure presents the variation in the pitch length P and the tilt angle «
as a function of the squirmer parameter /3, for pusher volume fractions ¢, ~ 1% and 4%. At
the onset of the instability, P and « are observed to be non-zero in the helical states. Within
the helical states, the tilt angle « is observed to increase slightly, while the pitch length remains
~ 128, giving q ~ 0.49 across the helical states.

In 3D nematic liquid with pushers, the coupling between the swimmer flow fields and
the nematic order gave rise to a flow instability, which led to the formation of a helical
twist in the director field. In the next section, we analyze various types of distortions
observed in the director field across different states (Uniform, Helical, and Chaotic) to

understand the nature of instability.
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6.2.4 | Analysis of director field distortions

After analyzing the helical states, we now look at the various deformations (e.g, twist,
bend and splay) across different states. We time averaged the deformation densities over
steady states for simulated volume fractions ¢, and squirmer parameter |5| (shown in
Figure 6.13). As expected, the uniform nematic states with stable uniform nematic order
exhibited minimal twist, bend and splay deformations (see Uniform region in Figure 6.13).
This is because, the perturbations in the director field were localized around the swimmers.
The collective effects of the pusher population were not strong enough to disturb the global
uniform nematic alignment (see Figures 6.3 and 6.4).

When the global activity was increased beyond critical value (by increasing ¢, ¢ or |3]),
we observed an emergence of flow-induced orientational instability, which transitioned
the Uniform state into the Helical state, characterized by the helical director field. This
spontaneous chiral symmetry breaking caused a sudden growth in distortions (see Helical
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