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Motivation

Post-quantum cryptography. Cryptography is the art of exchanging data securely. A series of
mathematical transformations is applied on the cleartext message, which becomes unreadable to
an eavesdropper. On the other side of the network, the recipient is able to revert the transforma-
tions, thanks to some secret information: the key. Initially reserved for military communication,
cryptography has becomemainstream since the end of the twentieth century and is now integrated
in widespread messaging applications such as WhatsApp.

Current cryptography has been at threat since the discovery by Peter Shor of a quantum algo-
rithm [Sho94] that breaks some widely-used cryptosystems. Symmetric cryptography is resistant
to Shor’s algorithm but cannot be used alone in a big-scale network as it requires that both the
sender and recipient share the same secret key. Public-key cryptography is a solution to securely
exchange a secret key but currently-used public-key algorithms are precisely those targeted by
Shor’s algorithm. Recent developments in quantum computing demonstrate an increase in the
number of qubits available in a single quantum processor. This calls for a rapid transition to a
new quantum-resistant cryptography (also called post-quantum cryptography, or PQC) as opposed
to the current classical cryptography. To progress towards this objective, an American govern-
ment agency, the National Institute of Standards and Technology (NIST) launched in 2017 a post-
quantum standardization project [NISb] in order to select cryptosystems that would resist both
classical and quantum computers. Two categories exist in this project: (public-key) encryption
schemes that ensure confidentiality of data, and digital signature schemes that ensure authen-
ticity of the sender. Both primitives are essential to build secure communication networks. We
are now in the fourth phase of the process; 4 algorithms were selected for standardization and 4
remain under evaluation for another round. Final standards are expected to be ready for 2025.

There are several families of post-quantum algorithms: three schemes based on Euclidean
lattices (Kyber [SAB+22], Dilithium [LDK+22] and Falcon [PFH+22]) were eventually selected
for standardization in 2022. An isogeny-based candidate SIKE [JAC+22] is still in the contest for
an additional Round 4, although it was broken very recently [CD23]. Code-based cryptography
is the main focus of this manuscript and counts three active encryption candidates in Round 4
(BIKE [ABB+22], Classic McEliece [ABC+22] and HQC [AAB+22]). Multivariate cryptography
is another family of post-quantum algorithms.

Encryption Signature

Selected Round 4 Selected
Lattices 1 2
Codes 3
Isogeny 1
Multivariate
Hash-based 1

Table 0.1: Status of the NIST PQC standardization process in July 2022. Candidates displayed in
italics are still under consideration for an additional Round 4.

NIST opened in 2023 a new call for additional digital signature proposals [NISa] to be con-
sidered in the PQC standardization process. The new contest aims at mitigating the fact that the
two selected general purpose signature schemes Dilithium and Falcon are both based on structured
Euclidean lattices and that there are no remaining digital signature candidates under consideration
for Round 4. Another signature scheme SPHINCS+ [HBD+22] was also selected for standardisation
but suffers from a very slow signing algorithm. Code-based cryptography is a very active family
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in this new call as there were 11 code-based1 signature proposals.

Signature (Round 1)
Lattices 7
Codes 11
Isogeny 1
Multivariate 12
Symmetric-based 4
Other 5

Table 0.2: Candidates to the NIST PQC onramp standardization process for digital signature opened
in June 2023.

Code-based cryptography. This fascinating family of cryptographic primitives relies heavily on
the theory of error-correcting codes, which existed prior to public-key cryptography and is used to
correct errors in a noisy communication channel. Inventors of code-based cryptographic primitives
have three design choices to make regarding (i) the use of a hidden decoder, (ii) the cyclic structure,
and (iii) the metric. An extended introduction to code-based cryptography can be read in Chapter 1.

The first code-based encryption scheme, due to McEliece [McE78], used a hidden decoder:
the public key is the masked version of a private description of a code. In order to depend on
fewer security assumptions, Alekhnovich then designed an encryption scheme without a hidden
decoder [Ale03]. Every code-based encryption scheme belongs to either McEliece or Alekhnovich
framework. For signatures, the same distinction as for encryption can be found; constructions with
decoding are called hash-and-sign, whereas those without one derive from the generic Fiat-Shamir
transformation [FS87].

One of the challenges of post-quantum cryptography is its large key or message sizes when
compared to classical cryptography. To overcome this limitation, objects with a cyclic structure,
which can be stored in a succinct form, can be considered. This idea was first introduced for code-
based cryptography in [Gab05]. This approach however implies that the security assumption does
not rely on a pure instance of the usual difficult problem in code-based cryptography: the syndrome
decoding problem. Although in general, no major speedups have been found on attacking the de-
coding problem by exploiting the cyclicity, in some specific cases an attack was found [CDW21].
This potential vulnerability led some European information security agencies, such as French
ANSSI in their position paper [Age23], to recommend the unstructured FrodoKEM [NAB+20] as a
more conservative option than Kyber, which features cyclicity.

The Hamming metric is the usual metric in code-based cryptography. An alternative is the
rank metric introduced by Delsarte [Del78] and Gabidulin [Gab85]. It also enables a diminution
of sizes and all the previous design choices are also available for rank metric. Codes with a cyclic
structure are generalized into ideal codes in the rank metric.

Multi-dimensional approach. A fourth and somehow less studied design possibility exists in
code-based cryptography. The idea of the multi-dimensional approach is to view the words as
multi-dimensional vectors (i.e. matrices) whose errors are synchronized, in the sense that they
have the same error locations (also called support). The code remains the same, so for the same
key size, more information can be embedded in the ciphertext. As a result, parameters can be made
smaller and the overall total size is decreased. Of course, the difficult problem in the security proof
of the scheme needs to be adapted. More details about the multi-dimensional approach can be
found in Chapter 2.

The first publication implementing this technique is an identity-based encryption based on
rank-metric codes [GHPT17]. To prove the security of their encryption scheme, they introduce a
new difficult problem, the Rank Support Learning (RSL), a variant of the syndrome decoding in

1The official classification by NIST adds another MPC-in-the-Head category. We rather chose to put the corresponding
schemes into the category to which the difficult problem they are based on belongs.
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rank metric (RSD) with multiple errors of the same support. They studied the security of RSL and
showed that it remains exponential when the number of different errors is not too large. Several
other articles were published [DT18, BB21, BBBG22, BBB+23] that refined the security analysis of
RSL without calling its overall security into question. A rank metric signature scheme, Duran-
dal [ABG+19], was also designed using the multi-dimensional approach.

The decoding of multiple syndromes that result from synchronized errors can also be referred
to as the decoding of interleaved codes. Interleaved LRPC codes and their decoding were studied
in [RJB19]. Furthermore, the idea of using interleaved codes for Hamming-based cryptosystems
was introduced in [EWZZ18] and for rank-based cryptosystems in [RPWZ19].

Permuted Kernel Problem. The Permuted Kernel Problem (PKP), introduced by Shamir [Sha90]
is a difficult problem closely linked to coding theory. Despite many cryptanalytic efforts over the
years [Geo92,BCCG93,PC94,JJ01,LP11,KMP19,SBC22] the problem remains hard against classical
as well as quantum attackers. The well-studied hardness, compact description and simplicity of
involved objects and corresponding computations has made the PKP an attractive candidate for
post-quantum secure schemes.

Although there has been no encryption scheme based on PKP so far, this problem can be used to
build a proof of knowledge and consequently a digital signature scheme. Building upon the initial
proposal by Shamir [Sha90], many refinements were published in the recent years [BG23,BFK+19,
Beu20b].

The Permuted Kernel Problem can also be combined with the multi-dimensional approach. A
multi-dimensional variant of the PKP has already been studied [LP11, SBC22] but was not used in
a cryptographic scheme before our work.

Fully Homomorphic Encryption. At the end of this manuscript, we will make a foray into the
world of homomorphic encryption, thanks to the multi-dimensional approach. A homomorphic
encryption scheme allows to perform operations on plaintexts which are still in their encrypted
form. Because it enables computations in a public cloud while keeping the data private, homomor-
phic encryption has numerous applications, especially in the medical or banking sector.

In the early years of homomorphic encryption after it was introduced by Rivest, Adleman and
Dertouzos in 1978 [RAD78], some schemes were designed [GM82,ElG85,Pai99] but they only sup-
ported a single type of operation, either an addition or a multiplication. The scheme by Boneh,
Goh and Nissim [BGN05] was the first to support unlimited additions and a single multiplication.
A long-standing problem was finally solved when Gentry designed in 2009 a fully homomor-
phic encryption (FHE) scheme [Gen09], able to perform unlimited additions and multiplications
on encrypted data.

A fundamental technique in achieving fully homomorphic encryption is called bootstrap-
ping [Gen09]. In most systems, after some homomorphic operations, the ciphertext suffers from
a large amount of noise that prevent any further operation. The bootstrapping technique consists
in homomorphically applying the decryption circuit, generating a new ciphertext under a new key
with a reduced amount of noise. This allows to continue with additional homomorphic operations.
However, in existing systems, the bootstrapping procedure is very costly, making homomorphic
encryption inpractical for generic applications.

Many improvements have been made [BV11,DM15,CGGI20] since the initial proposal by Gen-
try in order to make fully homomorphic encryption efficient. These efficient schemes were built
with structured lattices, making them all highly at risk should an attack be found on structured
lattice difficult problems.

The question of homomorphic encryption based on codes was first addressed in 2011:
the authors of [AAPS11] present a symmetric scheme supporting additions and a limited num-
ber of multiplications. Their construction relies on a class of codes called special evaluation codes
whose codewords have natural multiplicative properties. They instantiate their scheme with Reed-
Muller codes. They do not investigate bootstrapping further than showing its impossibility. In the
same year, a public-key homomorphic encryption scheme based on Reed-Solomon codes was pro-
posed [BL11] but was broken shortly after its publication [CGG+14]. More recently, homomorphic
computations in Reed-Muller codes were investigated [CKN20]. The authors present an operation
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on Reed-Muller codewords so that the result represents an encoding of the multiplication of the
messages. However, they did not study their techniques in the presence of noise, nor did they
propose an encryption scheme. Therefore their work is not related to any notion of cryptographic
security. All existing code-based homomorphic constructions thus rely on families of codes with
an efficient decoding algorithm, which turned out in the past to be a source of numerous at-
tacks [SS92,Ove08].
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Contributions

During our doctoral work, we mainly explored the following question: to which extent can
code-based cryptography benefit from the multi-dimensional approach? We applied this
paradigm to three main categories: public-key encryption with a particular focus on rank-based
schemes; digital signatures; and homomorphic encryption. For rank-based encryption schemes, we
positively answered to the question. For signature and homomorphic schemes, the results are more
balanced. A summary table of our contributions is presented at the end of the chapter (Table 0.6)

Public-key encryption

In Section 3.1, we apply the multi-dimensional approach on the NIST candidate ROLLO [ABD+19],
a low-rank parity check (LRPC) code-based cryptosystem with a hidden decoder. This gave rise
to LRPC-MS (for LRPC with Multiple Syndromes) and its quasi-cyclic counterpart ILRPC-MS (I
stands for Ideal). The difference between ROLLO and ILRPC-MS lies only in the ciphertext which
in the latter is comprised of multiple noisy codewords whose errors share the same support. The
trickiest part was to evaluate the decoding failure rate of LRPC codes with multiple syndromes.
We could provide a proof that – with large probability – the entries of the product of two matrices,
whose entries are sampled in low dimension linear spaces E and F , span the entire product space
EF . This yielded an upper bound on the requested decoding failure rate. The public key size be-
tween ROLLO and ILRPC-MS (which both have cyclicity) is decreased from 1.9 kB to 0.5 kB, for
the same 128-bit security and roughly the same ciphertext size. As a result, the reduction factor on
the bandwith (the sum of public key and ciphertext sizes) is almost 50%. On a security perspective,
on top of the indistinguishability problem of an ideal LRPC matrix (ILRPC-Ind), whereas ROLLO
relies on the hardness of the Ideal Rank Syndrome Decoding (IRSD) problem, ILRPC-MS relies
on the Ideal Rank Support Learning (IRSL) problem instead. LRPC-MS can be compared to other
non-cyclic cryptosystems and the gain is even more spectacular; it is almost three times smaller
than FrodoKEM [NAB+20] and five times smaller than Loidreau’s cryptosystem [Loi17]. Similarly,
LRPC-MS relies on the hardness of RSL instead of RSD for its security proof.

Then, in Section 3.2, we adapt the same technique to another rank-based encryption scheme
with a hidden decoder: Loidreau’s cryptosystem [Loi17]. The public key is a Gabidulin codemasked
with a low weight homogeneous matrix. The security assumption is weaker than the masking of
an LRPC code for ROLLO, but gives potential for more efficient sizes and has no ideal structure by
design. We named this new encryption scheme LowMS (for Loidreau with Multiple Syndromes).
Similarly to (I)LRPC-MS, we had to prove an accurate upper bound on the decoding failure rate of
Gabidulin codes with multiple syndromes. In LowMS, the public key size is decreased to 4.6 kilo-
bytes and the ciphertext size to 1.1 kilobytes, making it one of the best performing unstructured
cryptosystems up to this date.

Concurrently to our work, the same multi-dimensional approach was studied by another team
on an encrytion scheme in the rank metric without a hidden decoder called RQC [AAB+19]. In
their article [BBBG22], they presented Multi-RQC and its unstructured counterpart Multi-UR. We
compare performance and security assumption between our schemes and existing works in Ta-
bles 0.3 and 0.4.

Finally, in Section 3.3 we present an algorithmic optimization to the key generation in ROLLO.
The most time-consuming part is an inversion in the ring of polynomials Fqm [X] modulo an irre-
ducible polynomial of degree n, especially when implemented in constant time with the Itoh-Tsuiji
algorithm [IT88]. When implemented with a traditional polynomial basis as in [AAB+21], the key
generation takes about 13 million CPU cycles for the 128-bit security version. By switching to
an optimal normal basis, we get a major speedup in the Itoh-Tsuiji algorithm and come down to
3.5 million cycles. This optimization is generic and would also work when the multi-dimensional
approach is taken. In particular, (I)LRPC-MS would also benefit from such an improvement.
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128 bits Security assumptions
LowMS (λ = 3) 5.76KB RSL, Gab. codes masking
NH-Multi-UR-AG [BBBG22] 7.12KB NHRSL
LRPC-MS 7.21KB RSL, LRPC codes masking
LowMS (λ = 4) 10.78KB RSL, Gab. codes masking
Multi-UR-AG [BBBG22] 11,03KB RSL
FrodoKEM [NAB+20] 19.34KB LWE
Classic McEliece [ABC+22] 261KB SD, Goppa codes masking

Table 0.3: Comparison of sizes of unstructured post-quantum KEMs. The sizes represent the sum
of public key and ciphertext expressed in bytes. Our schemes are written in bold font.

Hamming metric Rank metric
with cyclicity no cyclicity with cyclicity no cyclicity

With hidden decoder BIKE McEliece ROLLO Loidreau
ILRPC-MS LRPC-MS

LowMS

Without hidden decoder HQC Alekhnovich RQC Multi-UR
Multi-RQC

Table 0.4: Examples of encryption schemes for various design possibilities in code-based cryptog-
raphy. Schemes implementing the multi-dimensional technique are underlined. Our schemes are
written in bold font.

Digital signatures

During our work, we studied a rank metric digital signature, Durandal [ABG+19], which was im-
plementing the multiple syndrome approach by design. While trying to improve this signature
scheme, we found an major security flaw in Durandal. Our attack is presented in Section 4.1
and targets a problem called PSSI, which is very specific to Durandal and unlinked to the multi-
dimensional approach. Unfortunately we could not find a way to repair Durandal while still taking
advantage of the multi-dimensional paradigm. Our attack recovers the private key using a leakage
of information coming from several signatures produced with the same key. Our approach is to
combine pairs of signatures and perform Cramer-like formulas in order to build subspaces con-
taining a secret element. We break all existing parameters of Durandal: the two published sets of
parameters claiming a security of 128 bits are broken in respectively 266 and 273 elementary bit
operations, and the number of signatures required to finalize the attack is 1,792 and 4,096 respec-
tively. We implemented our attack and ran experiments that demonstrated its success with smaller
parameters.

Among other rank metric signatures than Durandal, the best performing ones are based on the
MPC-in-the-Head paradigm [IKOS07]. Combining MPC with the multi-dimensional approach had
already been tried in [BGKM23] but the proof of knowledge soundness gave a reduction to an un-
conventional variant of RSL whose security was hard to estimate. Instead we focused on another
MPC-in-the-Head signature based on a different problem: the Permuted Kernel Problem (PKP). An
efficient signature based on PKP was presented in [BG23], which we refined in our work thanks to
the multi-dimensional approach. In Section 4.2 we introduce PERK, a new compact digital signa-
ture scheme based on a new multi-dimensional version of PKP: the relaxed IPKP problem (r-IPKP).
PERK achieves the smallest signature size amongst existing PKP-based schemes, with 6 kB for level
1 security, while obtaining competitive signing and verification timings. We also give an in-depth
study of the concrete complexity to solve our variant.
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The following table gives an overview of code-based signature schemes including our contri-
butions. As cyclicity has not been used for signatures yet (see Section 1.2.2 for possible reasons),
the two remaining choices are the decoding method and the metric.

Hamming metric Rank metric PKP
Hash-and-sign Wave RankSign†

CFS†

Proof of knowledge SDitH Durandal† [BG23]
RYDE PERK

Table 0.5: Examples of signature schemes for various design possibilities in code-based cryptogra-
phy. Schemes implementing the multi-dimensional technique are underlined. Schemes to which
we contributed are written in bold font. The † symbol indicates a scheme for which there currently
exists no parameters that resist cryptanalysis.

Homomorphic encryption
The multi-dimensional approach gives a natural additively homomorphic scheme: adding two er-
rors sharing the same support gives another error with the same support again. The security of
the homomorphic scheme then relies on the support learning problem, restricting the number of
publishable ciphertexts. However, with this technique, a homomorphic multiplication operation is
also non trivial to obtain.

Taking a different approach, we propose in Chapter 5 an Aleknovich-inspired [Ale03] con-
struction, whose ciphertext is a pair of vectors. It can be seen as a secret key version with multiple
syndromes of the NIST Round 2 candidate RQC [AAB+19], with an important difference: the mes-
sage is encoded into a vector space orthogonal to the error. The ciphertext space benefits from an
Fn
q -module structure which makes addition and plaintext absorption completely straightforward,

and we also propose an algorithm for multiplication. Surprisingly, the security of the resulting
homomorphic scheme is not reduced to a support learning problem but rather to a traditional syn-
drome decoding problem for a low rate code.

Our scheme is remarkably the first code-based somewhat homomorphic encryption scheme
relying on random ideal codes. It has therefore a stronger security reduction than existing ap-
proaches, all based on highly structured codes.

We also propose the first candidate bootstrapping algorithm for a code-based homomorphic
scheme that homomorphically decrypts ciphertexts produced from another secret key. Remarkable
for its simplicity, our algorithm enjoys nomultiplicative depth, as it requires additions and plaintext
multiplications only.

However, our scheme suffers from two major limitations that hamper its categorization as fully
homomorphic. First, the number of multiplications is limited because each operation increases the
length of the ciphertext as well as the dimension of the noise space. Second, and most importantly,
there is an upper bound to the number of independent ciphertexts that can be published without
a polynomial key recovery attack. In particular, the number of ciphertexts required for our boot-
strapping algorithm is larger than the maximal number of publishable independent ciphertexts. To
address these problems, we propose a refinement of our homomorphic decryption algorithm by
introducing the notion of ciphertext packing. It reduces the number of bootstrapping ciphertexts
very close yet still above the maximal limit.

Still, we give concrete parameters for our scheme that shows its efficiency as a somewhat ho-
momorphic encryption scheme and a strong potential to be refined into a high-performing FHE
scheme. For a single multiplication, the key size is 3.7 kB and the ciphertext size is only 0.9 kB,
with competitive running times estimated to be a few microseconds for addition and 0.5 millisec-
ond for multiplication. Other parameters could be found to support an arbitrary fixed number of
multiplications.
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Contribution Sec. Output Impacts

New LRPC-based en-
cryption schemes with
multiple syndromes

3.1 [AAD+22] Shortest LRPC-based encryption scheme
without ideal structure. Improves ROLLO by
a factor 2 in size.

New scheme based on
Loidreau’s encryption
with multiple syn-
dromes

3.2 [ADG+22]† Shortest rank-based encryption scheme
without ideal structure. Improves Loidreau’s
cryptosystem by a factor 6 in size.

Algorithmic optimiza-
tion to ROLLO key
generation

3.3 [AADG21] Faster constant-time algorithm for ROLLO
key generation.

Cryptanalysis of the
PSSI problem

4.1 [ADG23b] Breaks all 128-bit parameters of Durandal
signature scheme in a bit complexity rang-
ing from 66 to 73.

New signature scheme
based on a multi-
dimensional variant of
PKP

4.2 [ABB+23a]† Shortest PKP-based signature scheme, was
submitted to NIST standardization call for
digital signatures.

New somewhat homo-
morphic encryption
scheme based on ran-
dom ideal codes

5 [ADG23a]* Alternative to lattice-based FHE schemes
with a strong security assumption. A first
step towards FHE based on codes.

Table 0.6: Summary of our contributions. The † symbole indicates an article that was accepted to a
peer-reviewed journal with minor modifications, and is currently in the process of being published.
The * symbol indicates a preprint that has not been peer-reviewed yet.
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Notation

[a, b] Set of integers i such that a ≤ i ≤ b

[n] Shorthand for [1, n]
#S Cardinality of a finite set S

x
$←− S x is sampled uniformly at random from S

x
$,θ←− S x is sampled pseudo-randomly from the set S, based on the seed θ

Sn Set of permutations of [1, n]
F Field
Fm×n orMn,m(F) Set of matrices with n rows andm columns of elements in F
Mn(F) Ring of square matrices of size n× n of elements in F
Fq Finite field with q elements
Fqm Finite field with qm elements (also a Fq-linear space of dimensionm)
k ⋆ b Multiplication of a scalar k ∈ F with a vector b ∈ Fn

⟨X⟩F Set of F-linear combinations of elements in X , where X is a subset
of L, an F-linear subspace

⟨X⟩ Shorthand for the above notation when there is no ambiguity on the
field

Gr(L, d) Set of F-linear subspaces of L of dimension d.
λ Security parameter
negl(λ) Negligible function, i.e. f : N → R+ such that for all c ∈ N there

exists a N0 ∈ N such that f(n) < 1/nc for all n > N0

poly(λ) Polynomially bounded function, i.e.there exists c, λ0 ∈ N such that
poly(λ) ≤ λc for all λ ≥ λ0

o(·),O(·),Θ(·) Family of Landau notations
PPT Probabilistic polynomial-time

Table 0.7: General notation.

Vectors andmatrices. Vectors will be represented with lowercase bold letters andmatrices with
uppercase bold letters (e.g., v = (v1, . . . , vn) and M = (mij)1⩽i⩽k

1⩽j⩽n
). Vectors are assumed to be

row vectors unless stated otherwise. When n equalsm this set, together with classical matrix sum
and product, forms a ring that we denoteMn(F). For a given vector b, we will also sometimes
note b(i) its i-th coordinate, and for a given matrix B, we will note B(i) its i-th column vector.
For a vector x = (x1, · · · , xn) ∈ Fn, we denote π[x] = (xπ(1), · · · , xπ(n)) the vector whose
coordinates have been permuted by π.

Field extensions. Elements and computations in Fqm are usually associated with polynomial
representations and computations overFq[X]/(P ) forP ∈ Fq[X] an irreducible monic polynomial
of degreem. We fix such a polynomial P for the rest of this document.

An element f ∈ Fqm can be associated to a column vector of Fm
q using the coefficients of the

polynomial representation of f . It is obviously an Fq-vector space isomorphism that we denote
vec():
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vec : Fqm −→Fm
q

f =

m−1∑
i=0

fiX
i 7−→

 f1
...

fm

 .

Similarly, a vector v ∈ Fn
qm can be associated to anm×nmatrixMat(v) ∈Mm,n(Fq) whose

i-th column is vec(v(i)). (The bold capital ‘M’ in this transformation’s name being a reminder that
it outputs a matrix).

Product of vectors. We would like to give a field structure to the set of vectors in Fn
qm . To

do so, we associate a vector v of Fn
qm to a polynomial poly(v) in the ideal ring Fqm [X]/⟨Q⟩ for

Q ∈ Fqm [X] a monic irreducible polynomial of degree nwhose coefficients are in the subfield Fq
2.

We fix such a polynomial Q for the rest of this document.

poly : Fn
qm −→Fqm [X]/⟨Q⟩

(v0, . . . , vn−1) 7−→
n−1∑
i=0

viX
i

We can now define the multiplication of two vectors u,v ∈ Fn
qm as

u · v = poly−1(poly(u)poly(v)).

Note that the product of polynomials is calculated modulo Q.

Probabilistic notation. Let X and Y be two discrete random variables defined over a finite
support D. The statistical distance between the two distributions is defined as

∆(X,Y ) :=
1

2

∑
d∈D

|P(X = d)− P(Y = d)|.

We say two ensembles of random variables {Xλ}λ∈N, {Yλ}λ∈N are statistically close if there exists
a negligible function negl : N → R+ such that ∆(Xλ, Yλ) ≤ negl(λ) for all λ ∈ N. We say two
ensembles of random variables {Xx}x∈{0,1}∗ , {Yx}x∈{0,1}∗ are statistically close if there exists a
negligible function negl : N→ R+ such that ∆(Xx, Yx) ≤ negl(|x|) for all x ∈ {0, 1}∗.

Basic definitions

Definition 0.0.1 (Circulant matrix). A square n × n matrix M is said to be circulant if it is of the
form

M =


m0 m1 . . . mn−1

mn−1 m0
. . . mn−2

...
. . . . . .

...
m1 m2 . . . m0


where each row is right-shifted from the above row.

2This is to ensure Fn
q is stable under multiplication.
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Definition 0.0.2 (Product space). ForE and F , Fq-linear subspaces of Fqm , the product spaceEF of
E times F is defined as the subspace generated by all the products of an element ofE with an element
of F :

EF = ⟨{ef | e ∈ E, f ∈ F}⟩Fq

Remark. When E and F are of Fq-dimension r and d respectively, the dimension of the product
space EF is upper bounded by rd. Indeed, for a basis (e1, ..., er) of E and a basis (f1, ..., fd) of F ,
it is clear that the tensor product of these basis (eifj)1≤i≤r,1≤j≤d is a generating family of EF .

When r and d are small with respect to m, this family is also linearly independent with great
probability, meaning that the dimension of EF is exactly rd in the typical case (see [AGH+19,
Section 3] for more detailed results on this probability).

Standard cryptographic primitives

Definition 0.0.3 (Pseudorandom Generator (PRG)). Let p be a polynomial and let PRG be a deter-
ministic polynomial-time algorithm such that for any λ ∈ N and any input s ∈ {0, 1}λ, the result
PRG(s) is a string of length p(λ). We say that PRG is a pseudorandom generator if the following
conditions hold:

1. Expansion: For every λ ∈ N it holds that p(λ) > λ.

2. Pseudorandomness: For any PPT algorithm D, there is a negligible function negl such that

|P[D (PRG(s)) = 1]− P[D(r) = 1]| ≤ negl(λ)

where the first probability is taken over the uniform choice of s ∈ {0, 1}λ and the randomness
of D, and the second probability is taken over the choice of r ∈ {0, 1}p(λ) and the randomness
of D.

We say PRG is (t, ϵPRG)-secure if for every D running in time at most t(λ) the success proba-
bility of D is upper bounded by some function ϵPRG(λ).

Definition 0.0.4 (Collision-Resistant Hash Functions (CRHF)). Let ℓ, κ be polynomials and letH =
{Hk : {0, 1}∗ → {0, 1}ℓ(λ); k ∈ {0, 1}κ(λ)}λ be a family of functions indexed by λ ∈ N. We say that
H is collision-resistant if there exists a negligible function negl such that, for any PPT algorithm A
it holds that,

P

[
x ̸= x′

∧
Hk(x) = Hk(x

′)

∣∣∣∣∣ k
$←− {0, 1}κ(λ);

(x, x′)←− A(k)

]
≤ negl(λ).

Definition 0.0.5 (Commitment Scheme). A commitment scheme is a tuple of algorithms (Com,Open)
such thatCom(r,m) returns a commitment c for themessagem and randomness rwhileOpen(c, r,m)
returns either 1 (accept) or 0 (reject). A commitment scheme is said to be correct if:

P
[
b = 1

∣∣ c← Com
(
r,m

)
, b← Open

(
c, r,m

) ]
= 1.

Definition 0.0.6 (Computationally Hiding). Let (m0,m1) be a pair of messages, the advantage of
A against the hiding experiment is defined as:

AdvhidingA (1λ) =

∣∣∣∣∣P
[

b = b′

∣∣∣∣∣ b
$←− {0, 1}, r $←− {0, 1}λ

c←− Com
(
r,mb

)
, b′ ←− A(c)

]
− 1

2

∣∣∣∣∣.
A commitment scheme is computationally hiding if for all PPT adversaries A and every pair of mes-
sages (m0,m1), Adv

hiding
A (1λ) is negligible in λ.

We say Com is (t, ϵCom)-secure if for every A running in time at most t(λ) the success proba-
bility of A is upper bounded by some function ϵCom(λ).
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Definition 0.0.7 (Computationally Binding). The advantage of an adversaryA against the commit-
ment binding experiment is defined as:

AdvbindingA (1λ) = P

 m0 ̸= m1

1←− Open
(
c, r0,m0

)
1←− Open

(
c, r1,m1

)
∣∣∣∣∣∣ (c, r0, r1,m0,m1)←− A(1λ)

 .

A commitment scheme is computationally binding if for all PPT adversaries A, AdvbindingA (1λ) is
negligible in λ.

Definition 0.0.8 (Key EncapsulationMechanism). AKey EncapsulationMechanismKEM= (KeyGen,
Encap,Decap) is a triple of probabilistic algorithms together with a key space K. The key generation
algorithm KeyGen generates a pair of public and secret keys (pk, sk). The encapsulation algorithm
Encap uses the public key pk to produce an encapsulation c and a key K ∈ K. Finally Decap, using
the secret key sk and an encapsulation c, recovers the key K ∈ K, or fails and returns ⊥.

Definition 0.0.9 (Signature Scheme). A signature scheme consists of three probabilistic polynomial
time algorithms (KeyGen,Sign,Vf) which work as follows:

• KeyGen
(
1λ
)
: The key generation algorithm takes a security parameter as input and outputs

a pair of keys (pk, sk). The key sk is the private (secret) signing key and pk is the public key
used for verification.

• Signsk(m): The signing algorithm takes as input a secret signing key sk and a messagem from
some message space (that may depend on pk). It outputs a signature σ ← Signsk(m).

• Vfpk(m,σ): The deterministic verification algorithm takes as input a public key pk, a message
m, and a signature σ. It outputs a bit b := Vfpk(m,σ), with b = 1 meaning the signature-
message pair is valid and b = 0 meaning it is invalid.

Security notions

The notion of indistinguishability under chosen plaintext attack (IND-CPA) for a KEM is debatable
because the Encap algorithm in a KEM offers no possibility to the attacker to choose a plaintext. In
this document we follow the definitions of [BBF+19, Section 2], where the attacker in an IND-CPA
experiment (defined in Figure 1) has to guess whether the given key is a valid encapsulation of the
given ciphertext.

Expind−cpa(A) :

• (pk, sk)←− KeyGen(1λ)

• b
$←− {0, 1}

• (c∗, k∗0)←− Encap(pk)

• k∗1
$←− K

• b′ ←− A(pk, c∗, k∗b )

• Return b == b′

Figure 1: IND-CPA game for KEMs

Definition 0.0.10 (IND-CPA Security). A key encapsulation scheme KEM is IND-CPA-secure if for
every PPT (probabilistic polynomial time) adversary A, its advantage in the IND-CPA experiment

Advind−cpa(A) := 2× P[Expind−cpa(A) = 1]− 1

is negligible.
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Definition 0.0.11 (EUF-CMA Security). A signature scheme (KeyGen,Sign,Vf) is EUF-CMA
secure if, for all PPT adversaries A there is a negligible function negl(·) such that,

P
[

Vfpk(m
∗, σ∗) = 1

∧
(m∗, ·) /∈ QSign

∣∣∣∣ (pk, sk)←− KeyGen(1λ),
(m∗, σ∗)←− A(Signsk(·), pk)

]
≤ negl(λ).

where the environment keeps track of the queries to and from the signing oracle via QSign.
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Introduction to code-based
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1.1 Codes and decoding problem

Error-correcting codes (or simply codes) are an old mathematical concept that dates back to the
first electronical communication devices. They are a way to encode a message with redundancy
so that potential errors can be corrected. The reference textbook in coding theory is [MS77] by
MacWilliams and Sloane. A (linear) error-correcting code is simply defined as a linear subspace of
Fn.

Definition 1.1.1 (F-linear code). Let F be a field. An F-linear code C of dimension k and length n
is a subspace of dimension k of Fn seen as an F-linear space. The notation [n, k]F is used to denote its
parameters (or simply [n, k] when there is no ambiguity on the field).

The code C can be represented by two equivalent ways:

• by a generator matrixG ∈ Fk×n. Each row ofG is an element of a basis of C,

C = {xG,x ∈ Fk}.

• by a parity-check matrix H ∈ F(n−k)×n. Each row of H determines a parity-check equation
verified by the elements of C:

C = {x ∈ Fn : HxT = 0}.

21
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We say that G (respectively H) is under systematic form if and only if it is of the form (Ik|A)
(respectively (In−k|B)).

The set Fk is said to be the set of messages and Fn the set of words. The set of words Fn is
equipped with a distance δ. Since Fn has a natural vector space structure, the distance δ(·, ·) can be
derived from a definition of weight ∥·∥. We define below the usual Hamming metric for which
F = Fq is a finite field.

Definition 1.1.2 (Hamming metric over Fn
q ). Let x = (x1, . . . , xn) ∈ Fn

q . The Hamming weight
∥x∥ of x is defined as the number of its non-zero coordinates

∥x∥ = #{i ∈ [1, n] |xi ̸= 0}.

The associated distance δ(x,y) between elementsx and y in Fn
q is defined by δ(x,y) = ∥x− y∥.

Definition 1.1.3 (Support in Hamming metric). The Hamming support of a word x ∈ Fn
q is the set

of indexes of its non-zero coordinates:

Supp(x) = {i ∈ [1, n] |xi ̸= 0}.

The weight of a word can be calculated from its support using

∥x∥ = #Supp(x).

Now that the space Fn is equipped with a metric, we can define the minimal distance for a code.

Definition 1.1.4 (Minimal distance). Let C be an [n, k]F code. The minimal distance d of C is the
minimum distance between two distinct words in C

d = min{δ(x,y) | (x,y) ∈ C2,x ̸= y}.

The code C is then said to be an [n, k, d]F code.

An error-correcting code in a noisy communication is used as follows. The sender encodes
a message m ∈ Fk into the corresponding codeword mG ∈ Fn. Because of imperfections in
the transmission channel, the recipient gets a word with errors y = mG + e. If the weight of
the error ∥e∥ is not too large, the recipient may nonetheless recover the codeword mG with a
decoding algorithm, and consequently the correct message m. Good codes for communication
have low redundancy (i.e the rate R = k/n is close to 1) and efficient decoding algorithms.

For cryptography, the perspective is different. Errors are voluntarily added by the sender, in-
stead of being created by an imperfect channel. The code itself is also different: it is (from the point
of view of the attacker) a random code. As no efficient decoding algorithm exists for a random code,
in order to decrypt the message, an attacker has to solve the decoding problem defined below.

Problem 1.1.1 (Decoding problem). GivenG ∈ Fk×n,y ∈ Fn and a target weight w, the decoding
problem Decoden,k,w asks to find m ∈ Fk such that ∥y −mG∥ ≤ w.

Noting that for a parity-check matrixH of the code generated byG, we haveHyT = H(y−
mG)T , the decoding problem is often solved in its dual equivalent version, the syndrome decoding
problem.

Problem 1.1.2 (Syndrome decoding problem SD). Given H ∈ F(n−k)×n,y ∈ Fn−k and a target
weight w, the syndrome decoding problem SDn,k,w asks to find e ∈ Fn such that ∥e∥ ≤ w and
eHT = y.

These problems have been proven NP-complete [BMvT78] in the worst case, and up to this
date the best solving algorithms for random instances are exponential in n (i.e. the problem is also
hard in the average case), provided that the weight w is properly chosen. Indeed, if there was no
constraint on the weight of the error, the syndrome decoding problem would be easily solved with
linear algebra. More precisely, the SD problem becomes polynomial when w is greater than the
Singleton bound.
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Definition 1.1.5 (Singleton bound). For a [n, k]Fq code in Hamming metric, the Singleton bound is
defined as

dSg = n− k + 1.

The weight should neither be too small otherwise an attacker could bruteforce the problem. In
practice, the best regime is when the weight is equal to the Gilbert-Varshamov bound, for which
the SD problem has exactly one solution on average.

Definition 1.1.6 (Gilbert-Varshamov bound). For a [n, k]Fq code in Hamming metric, the Gilbert-
Varshamov bound dGV is defined as the smallest positive integer t such that

qn−k ≤
t∑

i=0

(
n

i

)
(q − 1)i.

Asymptotically, the ratio between the Gilbert-Varshamov bound and the length of the code
tends to a constant that depends on the field size q and the rate R = k/n,

dGV

n
∼ γq,R.

For example, for a binary field and half-rate codes, the Gilbert-Varshamov bound is approxi-
mately a ninth of the length (γ2,1/2 ≈ 1

9 ).

The question is now: if the sent data appears like a random vector that is not decodable in
reasonable time, how can the legitimate recipient decrypt the message? We will explore some
possibilities in the next section.

1.2 Design choices

1.2.1 With or without a hidden decoder?

Encryption schemes

The first code-based scheme [McE78] is an encryption scheme, named after its author McEliece,
and works with a hidden decoder. The key generation algorithm samples a secret code C from a
family of non truly random but efficiently decodable codes. Let us denote G a generating matrix
of C. The private code is then masked with a permutation π ∈ Sn acting on the n coordinates of
vectors in C, giving a code C′ = π(C). A generating matrix of C′ is given by SGP , where S is
a non-singular matrix and P a permutation matrix representing π. The private key is the triple
(S,G,P ) and the public key is G′. Because of the permutation, the public key G′ looks like a
random generating matrix and no efficient decoding algorithm can be used on it.

When the legitimate recipient receives the noisy codeword y = mG′ + e, she can apply the
inverse of the secret permutation (the trapdoor). Because a permutation is an isometry for the
Hamming metric, the resulting word has the same distance to the private code C, allowing to take
advantage of the efficient decoding algorithm for C and recover themessagem. On the contrary, an
eavesdropper can only apply a decoding algorithm for random codes and thus faces an exponential
difficulty.

The above steps are represented in Figure 1.1. All these constructions with a hidden decoder
are based on the assumption that the masked public code C′ is indistinguishable from a random
code, and designers must closely evaluate the security of this assumption.

In [McE78], the family of efficient codes is the set of Goppa codes. They have not been broken so
far but have a large public key. Numerous attempts have been made to instantiate the scheme with
other families (e.g. generalized Reed-Solomon codes in [Nie86], or Reed-Muller codes in [Sid94])
in order to decrease the key size, but most of them have been broken because the private code C
could be recovered from C′.
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Alice Bob

Input: pk = G′, messagem Input: sk = (S,G,P )

Sample an error e of weight ≤ w

y = mG′ + e

Compute z = yP−1 = mSG+ eP−1

Decode z and retrieves mS

Recover m using S−1

Figure 1.1: McEliece encryption framework.

Another approach without a hidden decoder was introduced by Alekhnovich [Ale03]. The
public key is a purely random instance of the SD problem (H,y) and the secret key is a solution
e to that instance. On decryption, the ciphertext is combined with the secret key to recover the
message. Contrary to systems with a hidden decoder, in Alekhnovich-like cryptosystems both key
recovery andmessage recovery attacks require to solve the SD problem hence there is no additional
assumption on the masking of a private code. It has therefore strong guarantees of security, but in
return has a high decoding failure that necessitates repeating the encryption operation several
times. As a result, it is not totally practical except with an additional ingredient that will be covered
in the next subsection: quasi-cyclic structure.

Signature schemes

Before that, a few words about the design of digital signatures. Just like encryption, there are two
possible approaches: the first one with a hidden decoder is called hash-and-sign and the second
one without decoding is called Fiat-Shamir style.

In a hash-and-sign signature scheme, the message is hashed and interpreted as the noisy
syndrome of a private code with an efficient decoding. When the noisy vector can be decoded,
the signature is computed as the closest codeword. The verifier can then hash the message and
verify that the signature is close enough to the hash; it proves that the signer owned an efficient
way to decode the hash. In order for that approach to work, the probability that a noisy syndrome
can be decoded must be non negligible, which can be achieved with only a limited set of code
families. Many attempts of code-based hash-and-sign signatures have been broken, for example
CFS [CFS01] and RankSign [GRSZ14b]. Wave [DST19] is a code-based hash-and-sign signature
scheme that seems to resist to cryptanalysis. Its signature size is small, although it has a large
public key (greater than 3MB for 128-bit security).

Another possibility is to turn a zero-knowledge proof of knowledge into a signature scheme
thanks to the Fiat-Shamir transformation [FS87]. The challenge is chosen to be equal to the hash of
the message, making the proof of knowledge non interactive and suitable for digital signing. This
is the preferred approach to build code-based signatures with a smaller public key size. 8 out of the
11 code-based candidate signature schemes to the recent NIST onramp call rely on the Fiat-Shamir
transformation. In the recent years, there has been a considerable activity in the field of proofs
of knowledge for coding theory difficult statements. The smaller signatures build thanks to the
MPC-in-the-Head paradigm that was introduced in 2007 [IKOS07]. This is a generic transform that
turns a secure multiparty computation (MPC) protocol into a proof of knowledge. In Hamming
metric, the most efficient signature scheme based on MPC-in-the-Head for syndrome decoding is
called SDitH [FJR22].

1.2.2 Adding cyclic structure for a smaller public key
Code-based cryptography usually suffers from having large key sizes. A way to mitigate this issue
was initially proposed by Gaborit [Gab05]; the principle is to build codes with variations of a
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circulant matrix, which can be fully deduced from one of its rows.

Definition 1.2.1 (Quasi-cyclic codes). Let n ≥ 1 and s ≥ ℓ ≥ 1. A quasi-cyclic linear code of block
length n, index s and rate ℓ/s is an [ns, nℓ]Fq

code admitting a generating matrix of the form:

G =

G1,1 · · · · · · G1,s

...
...

Gℓ,1 · · · · · · Gℓ,s


where blocksGi,j are circulant matrices (Definition 0.0.1) of size n× n.

In practice, we additionally require the existence of a systematic quasi-cyclic parity-check ma-
trix. To lighten the notation, we only define systematic quasi-cyclic codes for rates of the form
1/s.

Definition 1.2.2 (Systematic Quasi-cyclic codes). Let n ≥ 1 and s ≥ 1. A systematic quasi-cyclic
linear code of block length n, index s and rate 1/s is an [ns, n]Fq code admitting a partiy-check matrix
of the form:

H =


In 0 · · · 0 H1

0 In H2

...
. . .

...
0 0 · · · In Hs−1


where blocksHi are circulant matrices of size n× n. The set of matrices of the form above is denoted
QC(F(s−1)n×sn

q ).

When codes used in a cryptosystem are quasi-cyclic, the difficult problem needs to be adapted
and is defined below.

Problem 1.2.1 (Quasi-cyclic syndrome decoding problem QCSD). Given a block length n ≥ 1, an
index s ≥ 1, H ∈ QC(F(s−1)n×sn),y ∈ F(s−1)n and a target weight w, the quasi-cyclic syndrome
decoding problem QCSDn,s,w asks to find e ∈ Fsn such that ∥e∥ ≤ w and eHT = y.

Although there is no known reduction from QCSD to SD, the former problem is considered
as hard as the latter – up to a polynomial factor – in the context of random codes. In practice,
QCSD is easier than SD by a factor of at most

√
n, using the Decoding Out Of Many (DOOM) ap-

proach [Sen11]. Indeed, quasi-cyclic shifts on the syndrome produce n equivalent instances of the
decoding problem and the DOOM strategy gives a square root speedup in the number of instances.

The positive impact of cyclicity on code-based signature schemes is less obvious. On one hand,
regarding hash-and-sign signatures, it is still an open problem to take advantage from a quasi-
cyclic structure. Designing a hash-and-sign scheme requires to find a delicate balance, which seems
uncompatiblewith the slight perturbation induced by adding structure. For example, a quasi-dyadic
structure was suggested in [BCMN11] for the CFS signature, but was later broken in [FOP+16].
Designing a quasi-cyclic variant of Wave [DST19] is also a challenge because the structure must be
adapted to the very specific masking of the scheme; to date, no solution was found. On the other
hand, for proofs of knowledge, public keys are already quite small, and the reduction induced by
the quasi-cyclic structure only gives a limited advantage.

1.2.3 Rank metric
Rank metric is an alternative to the Hamming metric that enables building cryptosystems with
smaller sizes. It was invented by Delsarte [Del78] for matrix codes whose words are matrices in
Fm×n
q . Later, Gabidulin [Gab85] extended the metric to vector codes with Fqm-linearity. In this

document we will adopt the viewpoint of Gabidulin: codes embedded in the rank metric are Fqm-
linear subspaces of Fn

qm and are denoted [n, k]Fqm
. The rank metric on the set Fn

qm is defined as
follows.
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Definition 1.2.3 (Rankmetric overFn
qm ). Letx = (x1, . . . , xn) ∈ Fn

qm . As explained in the notation
section in preamble, x can be associated to an m × n matrix Mat(x). The rank weight ∥x∥ of x is
then defined as the rank of Mat(x). This definition does not depend on the choice of the basis. The
associated distance δ(x,y) between elements x and y in Fn

qm is defined by δ(x,y) = ∥x− y∥.

Remark. The Hamming metric is also well defined on Fn
qm . When there is an ambiguity, the Ham-

ming weight will be denoted ∥·∥h and the rank weight ∥·∥r . One can easily establish that the rank
metric is dominated by the Hamming metric: for all x ∈ Fn

qm , ∥x∥r ≤ ∥x∥h.
Similar to the Hamming metric, we can define a notion of support in rank metric. In a rank

metric context, the rank weight is now calculated by taking the dimension of the support (instead
of cardinality for Hamming metric).

Definition 1.2.4 (Support in rank metric). The rank support of a word x ∈ Fn
qm is the Fq-subspace

of Fqm generated by the entries of x:

Supp(x) = ⟨x1, . . . , xn⟩Fq
.

The rank weight of a word can be calculated from its support using

∥x∥ = dim(Supp(x)).

The same techniques as for the Hamming metric can be used to build cryptographic primitives
with rank metric codes. The hardness assumption then relates to an adaptation of SD problem to
the rank metric, the RSD problem.

Problem 1.2.2 (Rank syndrome decoding problem RSD). Given H ∈ F(n−k)×n
qm ,

y ∈ Fn−k
qm and a target rank weight w, the rank syndrome decoding problem RSDm,n,k,w asks

to find e ∈ Fn
qm such that ∥e∥r ≤ w and eHT = y.

Similar to the Hamming metric, there exists a rank Singleton bound above which the RSD
problem becomes polynomial, and a rankGilbert-Varshamov boundwhich usually gives the highest
attack complexity of RSD.

Definition 1.2.5 (Rank Singleton bound [Gab85]). For a [n, k, d]Fqm
code, the rank Singleton bound

is defined as

dRSg =

⌊
m(n− k)

max(m,n)

⌋
+ 1.

Remark. When m ≥ n, the rank Singleton bound is equal to its Hamming counterpart.

Definition 1.2.6 (RankGilbert-Varshamov bound [ABG+19, Section 2.4]). The rankGilbert-Varshamov
bound dRGV of an [n, k]Fq

code is the smallest positive integer t such that

qm(n−k) ≤
t∑

i=0

i−1∏
j=0

(qm − qj)(qn − qj)

qi − qj
.

The rank Gibert-Varshamov bound admits a simple asymtotic equivalent when m = n:

dRGV

n
∼ 1−

√
R.

Contrary to the (Hamming) SD problem, the RSD problem is not known to be NP-complete.
There exists a polynomial probabilistic reduction from the SDproblem thatwas presented in [GZ16],
which however works for a restricted range of parameters only. Despite this absence of a proper
reduction, practical attacks against RSD are exponential. The reference attacks against RSD are the
combinatorial attack in [AGHT18] and the algebraic attack in [BBB+23]. For m = n, a constant
rateR and weight w on the rank Gilbert-Varshamov bound, the exponential factor in those attacks
are in the order of n2, which gives the following asymptotic comparison with the Hamming metric.
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Hamming metric Rank metric
Cost of attack (logq scale) Θ(n) Θ(n2)

Size of public key Θ(n2) Θ(n3)

Table 1.1: Comparison between Hamming and rank metrics. For a constant rate R = k/n and
a weight on the Gilbert-Varshamov bound, the first line approximates the exponential factor in
the cost of attacking the generic decoding problem (SD or RSD depending on the metric), and the
second row approximates the size of the public key.

Because the cost of attacks must be chosen above the security level λ, in Hamming metric
Θ(n) = Θ(λ) and therefore the size of the public key will be Θ(λ2), whereas in rank metric
Θ(n2) = Θ(λ) and the size of the public key will be Θ(λ1.5), which gives a clear advantage to the
latter metric for practical cryptography.

This is not magic: Fqm-linearity is a very strong property for matricial codes embedded with
the rank metric, and RSD can be seen as a quasi-cyclic variant of the well-known NP-complete
problem MinRank.

Definition 1.2.7 (MinRank). Given K + 1 matrices (M0,M1, . . . ,MK) ∈ (Fm×n
q )K+1 and

a target rank w, the MinRankm,n,K,w problem asks to find a non-zero linear combination of those
matrices of rank ≤ w, i.e. a vector x ∈ FK

q such that

rank
(
M0 +

K∑
i=1

xiM i

)
≤ w.

Existing attacks on RSD are not mere transpositions of attacks against MinRank; they take ad-
vantage of the Fqm-linearity but the speedup is less than the gain obtained by the decrease in the
public key size.

Another fundamental difference between Hamming and rank metrics is the behaviour of the
weight when concatenating two identical words: in the first case, the weight is doubled, whereas
in the second case, it remains the same.

∥(x |x)∥h = 2∥x∥h ∥(x |x)∥r = ∥x∥r

Drawing a parallel with physics, the Hamming metric can be qualified as extensive and the rank
metric intensive. This will have implications in the next chapter regarding the multi-dimensional
approach.

For scheme with hidden decoders, we need efficiently decodable rank metric codes. We present
below two examples of such codes as well as their decoding algorithm. Low-rank parity-check
(LRPC) codes will be used in our scheme LRPC-MS in Section 3.1 and Gabidulin codes will be used
in our scheme LowMS in Section 3.2.

1.2.3.1 LRPC codes

LRPC codes admit a parity-check matrix whose entries generate a small-dimensional subspace of
Fqm . They were introduced in [GMRZ13].

Definition 1.2.8 (Homogeneous matrix of weight d). Let d ≤ m be an integer. AmatrixH ∈ Fk×n
qm

is an homogeneous matrix of weight d when it is full-rank and its entries generate an Fq-subspace
F = ⟨{hij | 1 ≤ i ≤ k, 1 ≤ j ≤ n}⟩Fq

of dimension d.

Definition 1.2.9 (LRPC code). An [n, k]qm code C is an LRPC code of dual weight d when it admits
a homogeneous parity-check matrix H of weight d.
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LRPC codes have a polynomial time probabilistic decoding algorithm that allows to decode
errors up to a weight of n−k

d with a fairly good probability. We present below the details of this
decoding algorithm described in Algorithm 1.1. When s = eHT where H is an homogeneous
matrix of support F and weight d, and the error e has a support E of dimension r, the entries of s
are in the product space EF . The general idea of the algorithm is to use the fact that the subspace
S = ⟨s1, . . . , sn−k⟩ generated by the entries of the syndrome enables one to recover the whole
product space EF . The knowledge of both EF and F enables to recover E. Then, knowing the
support E of the error vector e, it is easy to recover the value of each of its entires by solving a
linear system.

Algorithm 1.1 Rank Support Recovery (RSR) algorithm
Input: F = ⟨f1, ..., fd⟩ an Fq-subspace of Fqm , s = (s1, . . . , sn−k) ∈ F(n−k)

qm a syndrome of an
error e of weight r and of support E
Output: A candidate for the vector space E

▷ Part 1: Compute the vector space EF
1: Compute S = ⟨s1, . . . , sn−k⟩

▷ Part 2: Recover the vector space E
2: E ←

⋂d
i=1 f

−1
i S

3: return E

Notation. For all i we denote Si the space f−1i S.

Probability of failure. There are two cases for which the decoding algorithm might fail:

• S ⊊ EF , the syndrome entries do not generate the entire space EF , or

• E ⊊ S1 ∩ · · · ∩ Sd, the chain of intersections generates a space of larger dimension than E.

From [AGH+19] we have that the probability of the first failure case S ⊊ EF is less than
qrd−(n−k)−1. In [ABD+19], under the assumption that the Si’s behave as random subspaces con-
taining E (which is validated by simulations), it is proven that the probability of the second failure
case E ⊊ S1 ∩ · · · ∩ Sd is less than q−(d−1)(m−rd−r). This leads to the following proposition:

Proposition 1.2.1 ([ABD+19]). The Decoding Failure Rate of algorithm 1.1 is bounded from above
by:

q−(d−1)(m−rd−r) + qrd−(n−k)−1.

A very recent result [BO23] intended to rigorously prove the above proposition without any
assumption on the behaviour of the subspaces Si but the best upper bound they could obtain is
much less tight (≈ q−(m−2rd+r) + qrd−(n−k)−1) and non consistent with simulations, suggesting
possible improvements.

Computational cost of decoding. According to [AGH+19], the computational cost of the de-
coding algorithm is in O(4r2d2m + n2r) operations in the base field Fq . There is an improved
version of this decoding algorithm which was also presented in [AGH+19]. We do not need these
improvements in the present document.

LRPC codes and cryptography. Similar to McEliece encryption, when used for cryptography,
the structure of the private parity-check matrix H of an LRPC code is masked and the public key
is given as H ′ = SH , where S is a non-singular matrix. In practice, S is chosen such that the
public keyH ′ is in a systematic form. The security of an LRPC-based cryptosystem is thus reduced
to the following indistinguishability problem:
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Problem 1.2.3 (LRPC codes decisional problem - LRPC-Ind). Given a matrix H ∈ F(n−k)×k
qm ,

distinguish whether the code C with the parity-check matrix (In−k|H) is a random code or an LRPC
code of weight d.

The best attacks against the above problem are described in Section 3.1.5.3 are usually not
decisive for the choice of parameters.

1.2.3.2 Gabidulin codes

Gabidulin codes [Gab85] are a well-known class of rank-metric codes and can be seen as the rank-
metric analogs of Reed–Solomon codes.

Definition 1.2.10 (Gabidulin Code). A Gabidulin code G[n, k] over Fqm of length n ≤ m and
dimension k is defined by its k × n generator matrix

G =


g1 g2 . . . gn

g
[1]
1 g

[1]
2 . . . g

[1]
n

...
...

. . .
...

g
[k−1]
1 g

[k−1]
2 . . . g

[k−1]
n

 ,

where g = (g1, g2, . . . , gn) ∈ Fn
qm , ∥g∥ = n and [i] = qi. The vector g is called the generator of the

code G.

The dual of a Gabidulin code is also a Gabidulin code.

Proposition 1.2.2 ( [Loi07]). A Gabidulin code G[n, k] generated by g admits as a parity-check
matrix

H =


h1 h2 . . . hn

h
[1]
1 h

[1]
2 . . . h

[1]
n

...
...

. . .
...

h
[n−k−1]
1 h

[n−k−1]
2 . . . h

[n−k−1]
n

 ,

where (h1, ..., hn) = (α
[n−k+1]
1 , ..., α

[n−k+1]
n ) with the αi verifying

n∑
i=1

αig
[j]
i = 0

for j ∈ {0, 1, ..., n− 2}. We note GT(n,k) the set of all parity-check matrices of [n, k] Gabidulin codes.

In [Gab85], it is shown that Gabidulin codes are Maximum Rank Distance (MRD) codes, i.e.,
their minimum distance satisfies d = n− k + 1, and can be decoded uniquely in polynomial time
up to a rank weight w ≤ ⌊d−12 ⌋. No efficient algorithms are known to decode in a Gabidulin code
when w > ⌊d−12 ⌋.

The first rank metric cryptosystem, GPT [GPT91], was based on a masking of a Gabidulin code
under the McEliece framework. It was broken by structural attacks [Ove05] that recover the pri-
vate Gabidulin code. Many reparations were suggested, and the only one that has not been broken
so far is the cryptosystem of Loidreau [Loi17] (there exists an attack [CC20] but it does not break
all the parameters of the cryptosystem). The masking consists of an homogeneous matrix of small
weight. The difficult problem resulting from this masking is presented in Section 3.2.5.1.

1.2.3.3 Ideal codes: cyclicity in the rank metric

In rank metric, cyclicity is obtained with ideal matrices, a generalization of circulant matrices mod-
ulo a polynomial.
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Definition 1.2.11 (Ideal Matrices). LetQ ∈ Fqm [X] be a polynomial of degree n and v ∈ Fn
qm . The

ideal matrix generated by v modulo Q is the matrix denoted IMQ(v) ∈Mn(Fqm) of the form:

IMQ(v) =


v

Xpoly(v)
...

Xn−1poly(v)

 .

The products of polynomials are computed modulo Q and the transformation poly−1 has been
omitted for simplicity.

In Hamming metric, the quotient polynomial must be Q = Xn − 1 in order to preserve the
support, with n such that the polynomial

∑
k<n X

k is irreducible in Fq , to avoid attacks exploiting
the additional structure introduced by two large divisors ofQ (see [LJS+16] for an example of attack
in a particular case). In rank metric, any polynomial in Fq[X] preserves the support, allowing for
more granularity than the Hamming metric. The polynomial must still be chosen irreducible in
order to avoid the same kind of attacks.

Definition 1.2.12 (Systematic ideal codes). Let n ≥ 1 and s ≥ 1. A systematic ideal linear code of
index s and rate 1/s is an [ns, n]Fqm

code admitting a partiy-check matrix of the form:

H =


In 0 · · · 0 H1

0 In H2

...
. . .

...
0 0 · · · In Hs−1


where blocks Hi are ideal matrices of size n × n modulo an irreducible polynomial Q ∈ Fq[X] of
degree n. The set of matrices of the form above is denoted IMQ(F(s−1)n×sn

qm ).

When using ideal codes in a cryptosystem, the difficult problem also needs to be adapted.

Problem 1.2.4 (Ideal rank syndrome decoding problem IRSD). Given a block length n, an index
s ≥ 1, a polynomial Q ∈ Fq[X], H ∈ IMQ(F(s−1)n×sn

qm ),y ∈ F(s−1)n
qm and a target weight w,

the ideal rank syndrome decoding problem IRSDn,s,w asks to find e ∈ Fsn
qm such that ∥e∥ ≤ w and

eHT = y.

Two rank-metric NIST candidates featured ideal codes in their design: ROLLO [ABD+19] is a
McEliece-like encryption scheme based on amasking of ideal LRPC codes, whereas RQC [AAB+19]
is an Alekhnovich-like encryption scheme based on random ideal codes.

The indistinguishability problem between a random parity-check matrix and an LRPC matrix
also has an ideal variant.

Problem 1.2.5 (Ideal LRPC codes decisional problem - ILRPC-Ind). Given a polynomialQ ∈ Fq[X]
of degree n and a vector h ∈ Fn

qm , distinguish whether the ideal code C with the ideal parity-check
matrix generated by (1,h) modulo Q is a random ideal code or an ideal LRPC code of weight d.

1.2.3.4 Cryptography in the rank metric

In this subsection we give a short historical panorama of rank metric cryptography, with recent
results but excluding new developments regarding the multi-dimensional approach that will be
covered in Chapter 2.

Encryption schemes. Cryptosystems using a hidden decoder in the rank metric either rely on
the weak structure of LRPC codes with a light masking; or on the strong structure of Gabidulin
with a heavy masking. For the first LRPC category, the initial proposal in [GRSZ14a] has been
refined with ideal cyclicity in the NIST submission ROLLO [ABD+19]. For the second Gabidulin
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category, all variants of GPT [GPT91] were broken by structural attacks, except the cryptosystem of
Loidreau [Loi17] which seems to resist to cryptanalysis when the distortion parameter λ is chosen
> 2. Without a hidden decoder, the only proposal is RQC [AAB+19] that features ideal codes. A
non-cyclic version of RQC would have too large sizes to be seriously considered.

Although very promising, rankmetric schemeswere not admitted to the third round of theNIST
standardization process. The reason given by NIST in their Round 2 report [AASA+20] was the im-
pact of algebraic attacks [BBB+20,BBC+20] that demanded an update on the parameter sets of rank
metric submissions. Since 2020, the rank metric has however gained in maturity and cryptanalysis
has stabilized, with some complexities being revised upwards in very recent results [BBB+23].

Signature schemes. In rank metric, the first signature scheme was a hash-and-sign proposal
with LRPC codes, RankSign [GRSZ14b], that was broken in [DT18]. Other rank-based signature
schemes derive from a Fiat-Shamir transformation of a proof of knowledge: Durandal [ABG+19]
is a signature following the approach of Lyubashevsky [Lyu09] that we investigate in Section 4.1,
and RYDE [ABB+23b], a NIST submission to the onramp call for additional signatures.

1.2.4 Summary

We summarize different approaches for designing code-based cryptography in a three-dimensional
table.

Hamming metric Rank metric
with cyclicity no cyclicity with cyclicity no cyclicity

With hidden decoder BIKE McEliece ROLLO Loidreau

Without hidden decoder HQC Alekhnovich RQC

Table 1.2: Examples of encryption schemes for various design possibilities in code-based cryp-
tography. A more complete panorama, including the multi-dimensional approach, is presented
in Table 0.4.

Hamming metric Rank metric
Hash-and-sign Wave RankSign†

CFS†

Proof of knowledge SDitH Durandal†
RYDE

Table 1.3: Examples of signature schemes for various design possibilities in code-based cryptogra-
phy. A more complete panorama, including the multi-dimensional approach, is presented in Ta-
ble 0.5. The † symbol indicates a scheme for which there currently exists no parameters that resist
cryptanalysis.

1.3 Permuted kernels

The Permuted Kernel Problem (PKP) is a problem introduced by Shamir in 1990 [Sha90]. Although
it is not a decoding problem per se, it is closely linked to some coding theory problems. The original
PKP consists in finding a permutation that sends a given vector onto the kernel of a given matrix.
We retain here a generalized form of PKP, called inhomogeneous.
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Definition 1.3.1 (IPKP problem). Let (q,m, n) be positive integers such that m < n. Given H ∈
Fm×n
q , x ∈ Fn

q and y ∈ Fm
q , the Inhomogeneous Permuted Kernel Problem IPKP(q,m, n, t) asks to

find a permutation π ∈ Sn such that π[x]HT = y.

The expected number of solutions for an random instance of IPKP is

n!

qm
,

allowing to define a "Gilbert-Varshmov"-like bound for IPKP, that is the largest integerm for which
n!
qm ≤ 1.

PKP has been proven NP hard in [GJ79]. When q = 2, the SD problem can be seen as a
particular case of PKP with the vector x = (1, · · · , 1, 0, · · · , · · · , 0) ∈ Fn

2 containing w ones
and n − w zeros. We will also see in the next chapter that PKP is linked to a subcode equiva-
lence problem (see Section 2.4). The foundational cryptanalytic efforts on PKP were the method of
Georgiades [Geo92] that made use of linear algebra, as well as a time-memory trade-off [BCCG93].
These attacks can be seen as the equivalent of, respectively, Prange algorithm [Pra62] and Dumer’s
birthday decoding [Dum89], showing once again a strong connection of PKP with coding theory.
Recently, the most efficient approaches to solve the permuted kernel problem have been hybrid
methods [JJ01,KMP19] between the two initial proposals (just like for codes).

Up to this date, the only cryptographic usage of the permuted kernel problem has been to build
a proof of knowledge, then turned into a signature scheme. In particular, no encryption scheme
based on PKP was found until now. The well-studied hardness, compact description and simplicity
of involved objects and corresponding computations has made the PKP an attractive candidate for
post-quantum signature schemes in recent years [BG23,BFK+19,Beu20b].
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2.1 General idea
The multi-dimensional approach is a non canonical terminology; we endeavor to gather into a sin-
gle paradigm various approaches, which all have in common a multiple usage of parts of a secret
element, in order to improve the efficiency of existing primitives or to build new advanced cryp-
tosystems. Consequently, security assumptions are slightly modified and new problems must be
thoroughly studied. The multi-dimensional approach conveys several names in the litterature: a
few examples are the (rank) support learning problem, interleaved codes, and synchronized decod-
ing.

Let us try to expose simply the benefits of this approach; suppose we are in a McEliece-style
encryption scheme with a ciphertext of the form:

c = xG+ e.

The weight w of the error e must be chosen high enough so that an attacker cannot recover
the message with decoding techniques on random codes, such as ISD and variants. However, this
weight cannot be too large, otherwise it would result in a decryption failure. The main idea of
the multi-dimensional approach is to modify these constraints on the weight by sending multiple
copies of ciphertexts:

c1 = x1G+ e1

...
cℓ = xℓG+ eℓ

33
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not with unrelated errors – that would make no difference at all – but rather with correlated
errors (usually, it means that they share the same support). For some special codes, it happens
that having correlated errors improves the decoding capacity. The weight w can then be increased
without hampering decryption. Consequently, it may happen that the scheme is better resisting to
attacks thanks to this increase, allowing to a decrease in the size ofmatrixGwhile keeping the same
transmission rate k/n. Because most encryption schemes based on coding theory especially suffer
from a large public key size, any improvement on the size of G can be a game changer. Improved
encryption schemes based on this principle will be presented in Chapter 3. We propose to call
this approach multi-dimensional, because the error can now be seen as a bidimensional matrix
instead of being a flat vector. This approach is specific to coding theory and is not immediately
transposable to lattices, as it heavily depends on the notion of support, which does not exist in the
latter family.

Of course, this modification requires a change in the security assumption. The attacker now
gets several noisy codewords whose errors share the same support, hence needs to solve a variant
of the syndrome decoding problem that is usually called in the literature the support learning
problem. This new problem is described in detail for both rank and Hamming metrics in Sec-
tions 2.2 and 2.3, respectively.

For signature schemes, the contribution of the multi-dimensional approach is debatable, al-
though not for the same reason as the quasi-cyclic structure mentioned in Section 1.1.

The case of hash-and-sign signatures is the most interesting. Unlike encryption, for which
the sender chooses to sample multiple errors with the same support, the signer receives a random
syndrome and does not control the shape of the error. The hash of themessage, turned intomultiple
syndromes, can be decoded with a multi-dimensional algorithm only if the corresponding errors
share the same support, which represents an additional constraint. Let us take the example of a
Hamming metric code that can be decoded up to weight t1 for a single syndrome and weight t2
for multiple ℓ syndromes. In the first case, the probability of decoding a random syndrome is the
number of errors divided by the number of possible syndromes, i.e.

p1 ≈
(
n
t1

)
qt1

qn−k
.

In the second case of ℓ syndromes, this probabitlity becomes

pℓ ≈
(
n
t2

)
qℓt2

qℓ(n−k)
,

the binomial coefficient being counted only once because all the errors must have the same support.
Even though t2 > t1, the same inequality is therefore not guaranteed for the probabilities. A
suitable scheme for which pℓ > p1 has not been found yet.

When it comes to signatures based on a proof of knowledge, an adaptation of the proof to the
multi-dimensional case often leads tomore unusual security assumptions than inmulti-dimensional
encryption schemes (see [BGKM23, BG23]) and parameters must be therefore chosen too large to
be competitive. However, in some very specific situations, the use of multiple syndromes that share
the same error support gives an additional flexibility that enables to build a signature scheme such
as Durandal [ABG+19], whose security is studied in Section 4.1. Because it is structurally different
from decoding instances, a multi-dimensional instance can however be useful for PKP-based proofs
of knowledge. It gave rise to the PERK signature scheme that is presented in Section 4.2.

Finally, the multi-dimensional approach gives a natural additively homomorphic scheme:
adding two errors sharing the same support gives another error still with the same support. The
security of the homomorphic scheme relies on the support learning problem, restricting the number
of publishable ciphertexts. A homomorphic multiplication operation is also non trivial to obtain.
We explore a way to overcome these limitations in Chapter 5. Surprisingly, the security of our
resulting homomorphic scheme is not reduced to a support learning problem but rather to a tradi-
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tional syndrome decoding problem for a low rate code.

The rest of this chapter is dedicated to the study of difficult problems related to the multi-
dimensional approach as well as a literature review of their applications. We start in the rank
metric and we focus especially on the rank support learning problem that has attracted a lot of
attention in the recent years. Then we inspect the case of the Hamming metric, which was less
studied but historically the first one to appear. Finally, we explore previous multi-dimensional
variants on the permuted kernel problem. All existing analyses tend to indicate that the multi-
dimensional versions of these problems remain difficult, as long as the number of correlated
instances is small.

2.2 The multi-dimensional approach in rank metric
The most emblematic problem of the multi-dimensional approach is the Rank Support Learning
(RSL) problem. It asks to decode multiple syndromes whose errors share the same rank support.

Problem 2.2.1 (Rank support learning problem RSL [GHPT17]). Let ℓ be a positive integer. Given
H ∈ F(n−k)×n

qm , (y1, . . . ,yℓ) ∈ (Fn−k
qm )ℓ and a target rank weight w, the rank support learning

problem RSLm,n,k,w,ℓ asks to find (e1, . . . , eℓ) ∈ (Fn
qm)ℓ such that there exists an Fq-subspace E ⊂

Fqm , such that dimE ≤ r and for all 1 ≤ i ≤ ℓ, ei ∈ En and eiHT = yi.

One immediately sees that RSL is a generalized version of RSD; the additional flexibility in-
duced by this new definition allows to build more efficient schemes. This will be covered mainly
in Chapter 3. But before that, the burning question is: how can we compare the respective hardness
of RSD and RSL?

2.2.1 Comparison with RSD and best attacks
It could seem that RSD is always harder than RSL because an instance of RSD can be extracted from
an instance of RSL. It is actually more subtle than that and depends on the choice of parameters;
it may happen that RSD has more solutions on average than RSL. In that case the solver for RSD
may not find the required solution for RSL. For a random RSD instance, the expected number of
solutions is given by

N1 =

(
m
w

)
q
qwn

qm(n−k) . (2.1)

This expected number of solution is approximately 1 whenw is on the rank Gilbert-Varshamov
bound dRGV (Definition 1.2.6).

For a randomRSL instance with the same parameters, the expected number of solutions is given
by

Nℓ =

(
m
w

)
q
qwℓn

qmℓ(n−k) . (2.2)

We can define a new "multi-rank Gilbert-Varshamov" bound dmRGV that is the smallestw such
thatNℓ > 1. It depends on ℓ, on top of q,m, k and n. Whenm = n and ℓ→∞, this bound has an
asymptotic equivalent

dmRGV ∼ n

(
1− k

n

)
.

The proof can be read in Appendix A. This is to be compared with the expression of the mono-

dimensional bound when m = n, dRGV ∼ n

(
1−

√
k
n

)
. Because the most advantageous zone
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of parameters for a better resistance to attacks is usually to choose the weight on the Gilbert-
Varshamov bound, we can see that switching to a multi-dimensional problem leads to an increase
in the optimal choice of weight w.

It is also readily seen from Equations (2.1) and (2.2) that

Nℓ < N1 ⇐⇒ w < m(1−R)

where R = k/n is the rate of the code. For usual parameters in cryptography, this inequality will
be verified and we will have Nℓ < N1 ≤ 1, and in this regime RSD is indeed harder than RSL. We
will now assume both conditions are verified:

w < m(1−R)

w ≤ dRGV

and when this holds, does it exist better attacks to RSL than those directed to RSD?

In [GHPT17], a polynomial attack against RSL is presented when ℓ ≥ nw. In [BBBG22],
another polynomial attack was presented when ℓ > kw m

m−w . In most cases, the latter bound is
sharper.

Informally, the principle of this attack works as follows. When (e1, . . . , eℓ) ∈ (En)ℓ with
E ⊂ Fqm of dimension ≤ w, there exists a non-zero Fq-linear combination of the tuple with
a = ⌊(ℓ − 1)/w⌋ zeros. In other words, there exist scalars (λ1, . . . , λℓ) ∈ Fℓ

q and ê ∈ En−a such
that

(0 | ê) =
ℓ∑

i=1

λiei.

By setting Ĥ = H∗,[a+1,n], an attacker can solve the linear system of (n−k)m equations over
Fq

êĤ
T
=

ℓ∑
i=1

λiyi

whose (n− a)m+ ℓ unknowns are the coordinates of ê and the λi.
The non trivial solution of small weight ê will be the unique solution on average as long as it

has more equations than variables, i.e.

ℓ+

(
n−

⌊
ℓ− 1

w

⌋)
m ≤ (n− k)m.

The above inequality can be simplified to the bound obtained by [BBBG22]. Then the attacker
can recover the support E from the entries of ê and finish the attack in polynomial time.

When the condition is not met, the technique explained above can be turned into a combina-
torial attack, as explained in [BBBG22], with a work factor of

O
(
qw(m−⌊

m(n−k)−ℓ
n−a ⌋)

)
(2.3)

operations in Fq , where a =
⌊
ℓ−1
w

⌋
.

A subexponential attack was found in [DT18] when ℓ > kw. The principle is, when the
matrixH from the RSL instance in systematic form, to define the following Fq-subspace

C = {xEHT |x ∈ Fℓ
q}

with E being the ℓ × n matrix whose rows are the errors ei of support E from the RSL instance.
The authors show that C ∩En−k is of Fq-dimension ≥ ℓ−wk ([DT18, Theorem 1]), which means
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that C contains many codewords revealing the secret support E. By solving a superdetermined
bilinear system of equations given by a basis of C, they show that the support E can be recovered
in subexponential time using standard Gröbner basis techniques.

Algebraic attacks against RSL were initially studied in [DT18,BB21]. When compared to the
best algebraic attacks against RSD, an algebraic approach specific to RSL seems to be useful only in
some specific cases. When the number of syndromes is large enough, i.e. ℓ > n− k − w, a closed
formula for the complexity was computed in [BBBG22] and is equal to:

min
1≤b≤w+1

0≤αR<n−a−w
0≤αλ<ℓ′−b

(
2wαR+αλ min

(
N F2

≤b(M
F2

≤b)
ω−1, (ℓ′ − αλ)

(
k − a+ 1 + w

w

)
(MF2

≤b)
2

))
(2.4)

with ω the linear algebra constant, a the unique integer such that aw < ℓ ≤ (a+1)w, ℓ′ = aw+1
andMF2

≤b and N
F2

≤b defined as follows:

MF2

≤b =

b∑
i=1

(
n− a− αR

r

)(
ℓ′ − αλ

i

)
,

N F2

≤b = m

b∑
i=1

i∑
d=1

n−k∑
j=1

(
j − 1

d− 1

)(
n− k − j

r − d+ 1

)(
ℓ′ − αλ − j

i− d

)
.

For the case ℓ ≤ n− k − w, no closed formula is known yet.

Summary

A summary is represented in Figure 2.1:

• When ℓ ≤ kw, the RSL problem is believed to be of exponential complexity, the security must
be estimated by taking into account both combinatorial complexity (2.3) and algebraic com-
plexity (2.4), as well as attacks against RSD than can be, for some parameters, surprisingly
better than specific RSL attacks;

• When kw < ℓ ≤ min(nw, kw m
m−w ), the RSL problem is of subexponential complexity;

• When ℓ > min(nw, kw m
m−w ), the RSL problem can be solved in polynomial time.

2.2.2 Applications

The first cryptographic scheme to rely on the RSL problem is RankPKE [GHPT17]. It can be seen
as a way to turn the originally inefficient Alekhnovich scheme [Ale03] into a deterministic scheme
without using quasi-cyclic or ideal structure. It was broken by [DT18], due to a weakness in an-
other problem than RSL, namely the indistinguishability of simple codes. Two years later, a signa-
ture scheme based on RSL was published, Durandal [ABG+19]. We break the scheme in Section 4.1
but, once again, not because of RSL but of another unrelated problem PSSI. More recently, RSL was
used to build Multi-RQC [BBBG22], the multi-dimensional version of RQC [AAB+19]. Thanks to
this modification, the public key size was divided by a factor 4, for approximatively the same ci-
phertext size. Other efficient schemes based on RSL will be presented in Section 3.1 and Section 3.2.
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ℓ = min(nw, kw m
m−w )

ℓ = kw

w/n0 0.5 1

ℓ

kn

n2

polynomial

subexponential

exponential

Figure 2.1: Difficulty zones for an RSL instance with an [n, k]Fqm
code, n = m = 2k, and ℓ errors

of the same support of weight w.

2.2.3 Another point of view: interleaved codes
The RSL problem can be interpreted as the standard rank syndrome decoding of an interleaved
code. An interleaved code of order ℓ of a code C is a code defined by the concatenation of ℓ (possibly
different) words in C.

Definition 2.2.1 (Interleaved code). Let C be an [n, k]Fqm
code. The (horizontal) interleaved code of

C of order ℓ is the code defined by

I(ℓ; C) = {(c1 | . . . | cℓ) | ∀i ∈ [1, ℓ], ci ∈ C}.

Lemma 2.2.1. Let C be an [n, k]Fqm
code of parity-check matrix H . The interleaved code I(ℓ; C) is

an [ℓn, ℓk]Fqm
code and admits as a parity-check the following matrix

I(ℓ;H) =

 H 0
. . .

0 H


Obviously, the RSL problem is equivalent to the RSD problem on the correspoding interleaved

code.

Lemma 2.2.2. Let H ∈ F(n−k)×n
qm and (y1, . . . ,yℓ) ∈ (Fn−k

qm )ℓ. (e1, . . . , eℓ) is a solution to
the RSLm,n,k,w,ℓ instance

(
H, (y1, . . . ,yℓ)

)
if and only if (e1 | . . . | eℓ) ∈ Fnℓ

qm is a solution to the
RSDm,ℓn,ℓk,w instance

(
I(ℓ;H), (y1 | . . . |yℓ)

)
.
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There exists another definition of interleaving that concatenates the codewords vertically, yield-
ing a matricial code. This approach is called vertical interleaving, where the one from Defini-
tion 2.2.1 is called horizontal interleaving.

Definition 2.2.2 (Vertical interleaved code). Let C be an [n, k]Fqm
code. The vertical interleaved

code of C of order ℓ is the matrix code defined by

Ivert(ℓ; C) =


c1

...
cℓ

 ∣∣∣∣∣ ∀i ∈ [1, ℓ], ci ∈ C

 ⊂ Fℓ×n
qm .

Vertical interleaving was historically the first definition [BKY03] to appear as it was adapted to
the case of the Hamming metric. In a rank metric context, the problem with vertical interleaving is
that the usual rank metric on matrix codes is not adapted to reflect the metric of the original code.
Therefore an alternative metric was defined for vertical interleaved codes.

Definition 2.2.3 (Vertical rank norm [RPWZ19]). The vertical rank norm ∥A∥vert of a matrix
A ∈ Fℓ×n

qm is the rank of the vertical concatenation of the expansions of rows from A.

∥A∥vert = rank


Mat(A1)

...

Mat(Aℓ)

 ,

whereA1, ...,Aℓ are the rows ofA.

A horizontal rank norm can be defined on Fqm-matrix codes that is equivalent to the usual rank
norm of a horizontal interleaved code.

Definition 2.2.4 (Horizontal rank norm). The horizontal rank norm ∥A∥horiz of a matrix A ∈
Fℓ×n
qm is the rank of the horizontal concatenation of the expansions of rows from A:

∥A∥horiz = rank (Mat(A1) | . . . |Mat(Aℓ)) ,

whereA1, ...,Aℓ are the rows ofA.

Some cryptographic systems were defined with the vertical rank norm [RPWZ19]. We claim
that such an approach is not appropriate for rank-based cryptography and that horizontal interleav-
ing should be preferred, see Section 3.2. Moreover, the problem of syndrome decoding in the verti-
cal rank norm is not equivalent to RSL but is a different problem that has been studied in [RPWZ21]
and that can be attacked when the interleaving order is greater or equal to the weight (ℓ ≥ w). This
condition severely restricts the possibilities for building efficient schemes with vertical interleaving
in the rank metric.

2.3 The curious case of the Hamming metric
The RSL problem has a Hamming metric equivalent that is defined below.

Problem 2.3.1 (Support learning problem SL [GHPT17]). Let ℓ be a positive integer. Given H ∈
F(n−k)×n
q , (y1, . . . ,yℓ) ∈ (Fn−k

q )ℓ and a target weight w, the support learning problem SLn,k,w,ℓ

asks to find (e1, . . . , eℓ) ∈ (Fn
q )

ℓ such that there exists a set J ⊂ [1, n], such that #J = w and for

all 1 ≤ i ≤ ℓ,HeTi = yi and ∀j ∈ [1, n] \ I, e(j)i = 0.

The problem was formalized for the first time in [GHPT17] but appeared non explicitely as
early as 1997. In the KKS signature scheme [KKS97], the public key is a pair of matrices (H,F )

where H ∈ F(n−k)×n
q and F = H∗,JG

T where J ⊂ [1, n] is a private support of size w and G
is a private matrix of size ℓ× w. Recovering the private key from the public key exactly amounts
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to solving an instance of the support learning problem. All parameters of [KKS97] were broken
by [OT11] with an attack on the public key, i.e. precisely an attack on the SL problem. As the au-
thors point out, they succeeded in breaking the KKS scheme because it was in a range of parameters
favorable to an attack, but the security of the whole KKS signature scheme is not compromised.
This was a preliminary witness of the existence of different zones of difficulty for the SL problem.

Similar to the rank metric, the expected number of solutions to SL can be approximated to

Nℓ =

(
n
w

)
qℓw

qℓ(n−k)

yielding a "multi(-Hamming)Gilbert-Varshamov" bound dmGV that could be defined as the smallest
w such that Nℓ > 1.

However, somewhat surprisingly, the polynomial bound for the Hamming version of the sup-
port learning problem is lower than for the rank version: when ℓ ≥ w, the SL problem is solvable
in polynomial time. This fact was proven in [GHPT17]. When ℓ < w, the speedup of SL over SD
is believed to be around qℓ, which means that for small values of ℓ, the SL problem can be robust.

It has not been used in many Hamming code-based cryptosystems though, hence the Hamming
support learning problem is somewhat less studied than its rank metric counterpart.

The multi-dimensional approach is indeed only known to improve the decoding capacity of
Reed-Solomon [BKY03] and Goppa codes [HLPWZ19] so far. An improvement of the McEliece
cryptosystem based on interleaved Goppa codes was presented in [EWZZ18], then repaired in
[HLPWZ19] and led to notable reduction in the public key size; for some parameters the decrease
beingmore than 50%. However, no result was found up to this date regarding themulti-dimensional
approach on RMRS and MDPC codes, which are featured into the most compact NIST Round 4
candidates, respectively HQC [AAB+22] and BIKE [ABB+22].

Another reason that could prevent the adoption of the Hamming SL problem is that the polyno-
mial bound of this problem depends only on the weight w of the code, contrary to the rank metric
where the length n is also a parameter. This reduced flexibility could restrict the practical use of
the SL problem in cryptography. Finding another concrete application to the SL problem would be
an interesting open research perspective.

Similar to the rank metric, the multi-dimensional approach in the Hamming metric is linked to
the notion of interleaved codes. However, contrary to the rank metric, horizontal interleaving is
unpractical in Hamming metric as the horizontal concatenation of words sharing the same small
support yields a word of large support and all the information about the original support is lost. On
the other hand, vertical concatenation seems to be the correct method, when defining the Hamming
weight of a matrix as the number of its non-zero columns. We recall below the definition of vertical
interleaving, adapting the definition to the context of Fq-linear codes.

Definition 2.3.1 (Vertical interleaved code). Let C be an [n, k]Fq
code. The vertical interleaved code

of C of order ℓ is the matrix code defined by

Ivert(ℓ; C) =


c1

...
cℓ

 ∣∣∣∣∣ ∀i ∈ [1, ℓ], ci ∈ C

 ⊂ Fℓ×n
q .

Definition 2.3.2 (Vertical Hamming norm). The vertical Hamming norm ∥A∥h,vert of a matrix
A ∈ Fℓ×n

q is the number of its non-zero columns.

The SL problem corresponds to the syndrome decoding problem in the (matricial) vertical in-
terleaved code equipped with the vertical Hamming norm. However, contrary to the rank metric,
it is not possible to view the SL problem as the SD problem of a traditional vector code with the
Hamming metric. Indeed, the matrix code Ivert(ℓ; C) could be seen as a vector code of length n
over the alphabet Fqℓ but it would not be Fqℓ linear, hence would not be a properly defined linear
code. This underlines what appears to be a fundamental difference between the rank and Hamming
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metric, namely that the multi-dimensional approach in the Hamming metric forces one to change
the norm.

Lastly, the multi-dimensional approach was also used in [AAPS11] to build a homomorphic en-
cryption based on codes in the Hamming metric. In their work the authors call codewords sharing
the same support synchronized. The security of their encryption scheme is reduced to the Deci-
sional Synchronized Codeword Problem (DCSP) that they introduce in their paper. They studied
the security of the DCSP in the particular case of Reed-Muller codes and chose their parameters so
as to avoid the best attacks against DCSP for this class of codes. They did not study the reduction
of their DCSP to the SL problem as it was not formalized yet, however it is likely that the two
problems are highly related.

2.4 Multi-dimensional variants of PKP
The permuted kernel problem can be naturally extended to a multi-dimensional version. It was
suggested for the first time in [LP11].

Definition 2.4.1 ((Multi-dimesional) IPKP problem). Let (q,m, n, ℓ) be positive integers such that
m < n. Given a matrix H ∈ Fm×n

q , linearly independent vectors (x1, . . . ,xℓ) ∈ (Fn
q )

ℓ and
(y1, . . . ,yℓ) ∈ (Fm

q )ℓ, the Inhomogeneous Permuted Kernel Problem IPKP(q,m, n, ℓ) asks to find
a permutation π ∈ Sn such that for all 1 ≤ i ≤ ℓ, π[xi]H

T = yi.

Remark. This multi-dimensional variant of IPKP is the most natural but not exactly the one we will
consider for our signature scheme PERK, presented in Section 4.2. Indeed, in the security proof,
the problem that arises is another variant that can be found in Definition 4.2.12.

The above definition can be retained as the most generic form of the IPKP problem; this is
the point of view adopted in [SBC22]. The requirement on the linear independence of vectors xi

makes sense because should there be a non trivial linear combination
∑

i λixi = 0, two cases may
happen:

•
∑

i λiyi ̸= 0, the same linear combination on the yi is non zero, in which case the IPKP
instance has no solution; or

•
∑

i λiyi = 0, and then the instance can be reduced to an equivalent instance by removing
one of the xi and yi.

The expected number of solutions of a random multi-dimensional IPKP instance is this time

Nℓ =
n!

qmℓ
.

Contrary to the multi-dimensional versions of (rank) syndrome decoding problems, this num-
ber of solutions decreases very rapidly with ℓ. Also note that, in contrast with the case ℓ = 1 for
which the solving strategies are the same for PKP (in which y = 0) and IPKP, there seem to be
a fundamental difference between multi-dimensional PKP and IPKP. For the homogeneous PKP,
it makes no sense to take ℓ > n −m, since if there exists a solution π to the problem, all the xi

belong to the code π−1[ker(H)] of dimension n−m. In the inhomogeneous IPKP, ℓ can take any
value from 1 to n.

As usual, it is legitimate to ask how do mono- and multi-dimensional variants of IPKP compare
to each other, and whether there exists a value for ℓ above which the IPKP becomes polynomial.

Both questions were adressed partially in [SBC22]. First, they link the homogeneous PKP with a
code equivalence problem. Second, they adapt the state-of-the-art algorithm for mono-dimensional
IPKP, the KMP algorithm, to the multi-dimensional case.

After that, we will finally present a simple polynomial attack on the inhomogeneous multi-
dimensional IPKP when ℓ = n.
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Link between PKP and code equivalence problems

Definition 2.4.2 (Subcode Permutation Equivalence Problem (SEP)). Let k′ < k ≤ n. Given two
codes C[n, k] and C′[n, k′], does there exists a permutation π such that

π[C′] ⊂ C?

When the two given codes are of the same dimension, the problem is renamed PEP.

Definition 2.4.3 (Permutation Equivalence Problem (PEP)). Let k ≤ n. Given two codes C[n, k]
and C′[n, k], does there exists a permutation π such that

π[C′] = C?

Authors of [SBC22] show that the homogeneous PKP is exactly equivalent to SEP or PEP with
the following correspondence on parameters:

PKP Equivalent problem Parameters
ℓ < n−m SEP k = n−m, k′ = ℓ
ℓ = n−m PEP k = k′ = n−m

Table 2.1: Relations between PKP, SEP and PEP, and corresponding parameters.

Both problems arewell-known in coding theory. While SEPwas provenNP-complete in [BGK17],
the NP-completeness of PEP would imply a collapse of the polynomial hierarchy [PR97]. For ran-
dom codes, with overwhelming probability the algorithms in [BOS19,Sen00] solve PEP in polyno-
mial time: for this reason, the homogeneous PKP is considered easy on average when ℓ = n−m.
For IPKP, for which when ℓ = n, a simple polynomial attack can be mounted (see below).

Best attacks against IPKP: KMP and SBC algorithms

The two natural yet non naive attacks against mono-dimensional IPKP are Georgiades attack
[Geo92] and a time-memory trade-off [BCCG93]. In the first attack, all possibilities for the first
n −m coordinates of π[x] are explored while the last m are deduced by solving a linear system.
This can be seen as the equivalent of Prange algorithm [Pra62]. The second attack consists in split-
ting the vector π[x] in two halves, then building lists of all possible values for the two half vectors,
and finally reconciling the lists by a collision search. As the lists can be large, it costs more memory
but is usually more efficient.

Until very recently, the best attack against mono-dimensional IPKP was the KMP algorithm
[KMP19]. It is a meet-in-the-middle approach between Georgiades’ attack and the time-memory
trade-off. It can be straightforwardly adapted to the multi-dimensional case, as shown by the au-
thors of [SBC22]. The total cost of the attack is the minimum for a parameter 1 ≤ u ≤ m of the
algorithm:

TKMP = O
(

min
1≤u≤m

(|L1|+ |L2|+ |L1 ▷◁ L2|)
)

with

|L1| = |L2| =
(

n
n−m+u

2

)(
n−m+ u

2

)
!

|L1 ▷◁ L2| =
|L1| × |L2|

qℓu

The authors of [SBC22] introduced an algorithmic improvement to the KMP algorithm by a
preprocessing step. The resulting SBC algorithm is the most effective compared to KMP algorithm
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when the parameter ℓ increases. Similarly to the KMP algorithm though, there exists a value for
ℓ after which the complexity of the algorithm does not decrease any more. Figure 2.2 depicts this
lower limit attained by the SBC algorithm.
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Figure 2.2: Complexity of mono-dimensional KMP and multi-dimensional SBC algorithms for in-
creasing parameter ℓ. The figure was drawn for q = 1021, n = 66 and m = 31, corresponding to
the zone where the expected number of solutions is close to 1.

A polynomial attack when ℓ = n

We describe in this paragraph a simple polynomial attack on the inhomogeneous IPKP problem
when ℓ = n. In that case, the vectors (x1, . . . ,xℓ) from the IPKP instance form a basis of Fn

q . For
any index 1 ≤ i ≤ n, there exists a linear combination such that

∑
j λjxj = (. . . , 0, 1, 0, . . . ), the

unique non-zero coordinate being taken at index i. We can then obtain a vector by taking the same
linear combination on the yj : y =

∑
j λjyj . If there exists a solution π to the given instance, then

y is bound to be equal to a column ofH whose index yields π(i). The attacker can then reconstruct
the solution permutation π in polynomial time since it requires linear algebra only.

Summary

The Figure 2.3 below summarizes the main takeways of this section: when ℓ = 1, both PKP and
IPKP can be solved with the KMP algorithm. When ℓ > 1, the best algorithm becomes the SBC al-
gorithm which has a lower limit with increasing ℓ. The difference beetween PKP and IPKP appears
for high ℓ. In the homogeneous case, when ℓ = n−m the problem is reduced to the hard problem
PEP of coding theory; ℓ > n−m is impossible. In the inhomogeneous case, the problem becomes
polynomial for ℓ = n.
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Figure 2.3: Best algorithms for solving inhomogeneous and homogeneous permuted kernel prob-
lems depending on the dimension ℓ.
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In this chapter, we apply themulti-dimensional approach to two rankmetric encryption schemes:
ROLLO [ABD+19] and the cryptosystem of Loidreau [Loi17]. We conclude the chapter with an im-
provement on the constant time key generation algorithm for LRPC code-based cryptosystems.

3.1 LRPC-MS: ROLLO with multiple syndromes
ROLLO [ABD+19] is a second-round NIST PQC standardization candidate relying on LRPC codes
(Definition 1.2.9). The public key is a masked version of a low weight homogeneous parity-check
matrix. LRPC parameters led to quite efficient cryptosystems for Decoding Failure Rates (DFRs)
around 2−30, but for DFRs below 2−128 there was a significant efficiency drop, as to obtain such
DFRs, codes needed to be quite long. The present section shows how to avoid larger code lengths
while still obtaining very low DFRs. This results in a significant improvement of the associated
cryptosystems, both for the structured and unstructured case, without compromising a precise
analysis of the DFR.

3.1.1 Improving LRPC decoding by using multiple syndromes
The decoding algorithm of LRPC codes presented in Section 1.2.3 has a probability of failure whose
main component is qrd−(n−k)−1 (where r is the weight of the error and d the dual weight of the
LRPC code, see Proposition 1.2.1) so it forces one to have a large n in an LRPC-cryptosystem in
order to obtain a DFR below 2−128. To overcome this constraint, we made the observation that
when several syndromes with same error support (s1, ..., sℓ)were used in the decoding algorithm,
the DFR was decreasing. This fact is the cornerstone of our new cryptosystem. We describe below
the associated decoding problem.

Problem 3.1.1 (Decoding LRPC codes with mutliple syndromes). Given H ∈ F(n−k)×n
qm a parity-

check matrix of an LRPC code of dimension d and support F ⊂ Fqm , a set of ℓ syndromes si ∈ Fn−k
qm

for 1 ⩽ i ⩽ ℓ, and an integer r, the problem is to find a subspace E of dimension at most r such that
there exists an error matrix V ∈ En×ℓ satisfying HV = S where the i-th column of S is equal to
sTi .

In order to solve this decoding problem, we introduce the Rank Support Recovery algorithm
with multiple syndromes (Algorithm 3.1). It is exactly the same as Algorithm 1.1, but several
columns are given to compute the syndrome space S. Intuitively, because the syndrome matrix
HV has (n− k)× ℓ entries inside the space EF of dimension rd, we would expect the Decoding
Failure Rate of this new algorithm to be approximately qrd−(n−k)ℓ. Actually, because the entries
ofHV are not independent between each other, the result is not trivially established and requires
technical lemmas which are presented in Appendix B.1.

Algorithm 3.1 Rank Support Recovery (RSR) algorithm with multiple syndromes
Input: F = ⟨f1, ..., fd⟩ an Fq-subspace of Fqm , S = (sij) ∈ F(n−k)×ℓ

qm the ℓ syndromes of error
vectors of weight r and support E
Output: A candidate for the vector space E

▷ Part 1: Compute the vector space EF
1: Compute S = ⟨s11, · · · , s(n−k)ℓ⟩

▷ Part 2: Recover the vector space E
2: E ←

⋂d
i=1 f

−1
i S

3: return E

In the following subsection, we describe our new scheme and its ideal variant, then study the
Decoding Failure Rate.
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3.1.2 Description of the schemes

3.1.2.1 LRPC-MS

Our scheme contains a hash function G modeled as a random oracle.

• KeyGen(1λ):

– choose uniformly at random a subspace F of Fqm of dimension d and sample an couple
of homogeneousmatrices of same supportU = (A|B)

$←− F (n−k)×(n−k)×F (n−k)×k

such that A is invertible.
– compute H = (In−k|A−1B).
– define pk = H and sk = (F,A).

• Encap(pk):

– choose uniformly at random a subspace E of Fqm of dimension r and sample a matrix
V

$←− En×ℓ.
– compute C = HV .
– defineK = G(E) and return C .

• Decap(sk):

– compute S = AC (= UV )

– recover E ← RSR(F,S, r) (Algorithm 3.1).
– return K = G(E) or ⊥ (if RSR failed).

We need to have a common representation of a subspace of dimension r of Fqm . The natural
way is to choose the unique matrixM ∈ Fr×m

q of size r×m in its reduced row echelon form such
that the rows of M are a basis of E (represented in the canonical polynomial basis of Fqm over
Fq).

An informal description of this scheme can be found in Figure 3.1. We deal with the semantic
security of the KEM in Section 3.1.5.

Alice Bob
choose F of dimension d at random

U = (A|B)
$←− F (n−k)×n,

H = (I(n−k)|A−1B) syst. form of U

S = AC
E ← RSR(F,S, r)

G (E)

H−−−−−→

C←−−−−−

Shared
Secret

choose E of dimension r at random
V

$←− En×ℓ

C = HV

G (E)

Figure 3.1: Informal description of our new Key Encapsulation Mechanism LRPC-MS. H consti-
tutes the public key.

3.1.2.2 ILRPC-MS

An informal description of this scheme is found in Figure 3.2. As for the non-ideal scheme, we deal
with the semantic security of the KEM in Section 3.1.5.
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Alice Bob
choose F of dimension d at random

(x,y)
$←− F k × F k , h = x−1y mod P

xci = xe2i−1 + ye2i mod P
S = (xc1, ...,xcℓ)
E ← RSR(F,S, r)

G (E)

h−−−−→

c1,...,cℓ←−−−−−−−−

Shared
Secret

choose E of dimension r at random
(e1, ..., e2ℓ)

$←− (Ek)ℓ

ci = e2i−1 + e2ih mod P

G (E)

Figure 3.2: Informal description of our new Key Encapsulation Mechanism with ideal structure
ILRPC-MS. h constitutes the public key.

3.1.3 Decoding Failure Rate of the schemes
The Decoding Failure Rate (DFR) of our scheme is the probability of failure of the Rank Support
Recovery algorithmwith multiple syndromes described in Algorithm 3.1. As stated in Section 1.2.3,
the two cases that can provoke a failure of the algorithm are:

• S ⊊ EF , the entries of the matrix UV do not generate the entire space EF , or

• E ⊊ S1 ∩ · · · ∩ Sd, the chain of intersections generate a space of larger dimension than E.

To study the probability of each case, we restrict ourselves to the case dim(EF ) = rd. Indeed,
when dim(EF ) < rd, the correctness of the algorithm is preserved, and the probabilities associ-
ated to the two sources of decoding failures are lower than in the case dim(EF ) = rd, since all
the vector spaces will be of smaller dimensions. Hence this restriction will lead to an upper bound
on the failure probability.

The first case of failure can be dealt with the following theorem, which is fully proven in Ap-
pendix B.1. Its immediate corollary yields the probability of failure for the first case. Wewill assume
for the rest of this document that q = 2 since the theorem is only proven in that case.

Theorem 3.1.1. For q = 2, n1 + n2 ≤ n and for U and V random variables chosen uniformly in
Fn1×n and En×n2 respectively, P(Supp(UV ) ̸= EF ) ≤ (n1 + 1)qrd−n1n2

Corollary 3.1.1. For q = 2, k ≥ ℓ and for U and V random variables chosen uniformly in
F (n−k)×n and En×ℓ respectively, the probability that the syndrome space S computed by the al-
gorithm RSR(F,UV , r) is not equal to EF is bounded by above by (n− k + 1)qrd−(n−k)ℓ

As for the second failure case,E ⊊ S1∩· · ·∩Sd, we apply again the upper-bound q−(d−1)(m−rd−r),
used in Section 1.2.3 for Proposition 1.2.1. This leads to the following proposition:

Proposition 3.1.1. For q = 2, k ≥ ℓ and for U and V random variables chosen uniformly in
F (n−k)×n and En×ℓ respectively, the Decoding Failure Rate of Algorithm 3.1 RSR(F,UV , r) is
bounded from above by:

q−(d−1)(m−rd−r) + (n− k + 1)qrd−(n−k)ℓ

This proposition extends immediately to the ideal case without modifications.

3.1.4 Impact on the asymptotic range of parameters
By reducing the decoding failure rate, the multiple syndrome approach fundamentally changes the
zone of parameters that we consider for our cryptosystem.
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In previous LRPC code-based cryptosystems, the decoding failure rate imposed the choice of r
and d to be below

√
n because of the need for rd < n− k (cf. Proposition 1.2.1).

In this work, we can choose r and d bigger than
√
n. To simplify the rest of the analysis we

will consider half-rate codes only, for which k = n/2. We will show that it is even asymptotically
possible to choose r and d on the rank Gilbert-Varshamov bound dRGV .

The DFR formula leads to the choice of a large ℓ such that when m and n tend to infinity,
rd = nℓ/2 + o(1). Because we chose r = d = dRGV , we get

ℓ ∼ 2d2RGV

n
.

When applying the asymptotic formula of dRGV ([ABG+19], §2.4) to the case k = n/2, we get
dRGV ≤ n/2. As a result, we obtain that ℓ is asymptotically upper bounded by dRGV = r. To
the best of our knowledge, the range where ℓ ≤ r is a hard parameter range for which the RSL
problem has no known polynomial attacks. In practice, for the parameters considered at the end of
this document, when choosing r and d on the Gilbert-Varshamov bound, ℓ has to be chosen slightly
greater than r and the RSL problem is still in a difficult zone.

The fact that we can choose r and d on the rank Gilbert-Varshamov bound has two major
implications:

• Algebraic attacks against the RSD problem are more difficult when r gets closer to dRGV .

• The secret parity check matrix U is homogeneous of weight dRGV so the minimal distance
of the dual of the resulting LRPC code is about dRGV , just like a random code. It gives more
confidence in the indistinguishably of the public matrix H (LRPC-Ind problem).

Our proposal is the only code-based cryptosystem with structural masking that has such an
interesting property for the distinguishing problem.

3.1.5 Security

3.1.5.1 Preliminary definition

For all the problems RSD, IRSD,RSL and IRSL defined in Chapters 1 and 2, we can give a decisional
version whose goal is to distinguish (for the example of RSD) between a random input (H, s) or
an actual syndrome input (H,HeT ). We denote these decisional versions DRSD,DIRSD,DRSL
and DIRSL. The reader is referred to [AGH+19] for more details about decisional problems.

3.1.5.2 IND-CPA proof

Theorem 3.1.2. Under the hardness of the LRPC-Ind and DRSLk,n,r,ℓ problems, the KEM LRPC-MS
presented in section 3.1.2 is indistinguishable against Chosen Plaintext Attack in the Random Oracle
Model.

Proof. We are going to proceed in a sequence of games. The simulator first starts from the real
scheme. First we replace the public key matrix by a random matrix, and then we use the ROM to
solve Rank Support Learning.

We start from the normal game G0: We generate the public keyH honestly, as well as E, and
C .

• In game G1, we now replace H by a random matrix, the rest is identical to the previous
game. From an adversary point of view, the only difference is the distribution of H , which
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is either generated at random, or the systematic form of a low weight parity matrix. This is
exactly the LRPC codes decisional problem, hence

AdvG0

A ≤ AdvG1

A + AdvLRPC-IndA .

• In gameG2, we now proceed as earlier except we receiveH,C from a Rank Support Learn-
ing challenger. After sending C to the adversary, we monitor the adversary queries to the
Random Oracle, and pick a random one that we forward as our simulator answer to the
DRSLk,n,r,ℓ problem. Either the adversary was able to predict the random oracle output, or
with probably 1/qG, we picked the query associated with the support E (by qG we denote
the number of queries to the random oracle G), hence

AdvG1

A ≤ 2−λ + 1/qG · AdvDRSLA

which leads to the conclusion.

For the ideal version of our scheme, the security proof is exactly the same except that ideal
versions of hard problems appear. The IND-CPA property follows immediately.

Theorem 3.1.3. Under the hardness of problems ILRPC-Ind and DIRSLk,n,r,ℓ, the KEM ILRPC-MS
presented in section 3.1.2 is indistinguishable against Chosen Plaintext Attack in the Random Oracle
Model.

The maximal value of ℓ for which DIRSLk,n,r,ℓ is hard is way lower than its non-ideal counter-
part. Indeed, a single ideal syndrome can be expanded in k traditional syndromes by performing
ideal rotations. That is why the value of ℓ is lower in the parameter sets for the ideal version.

3.1.5.3 Known attacks

Attacks against the RSL problem were covered in Section 2.2, therefore in this paragraph we only
recall a specific attack against the LRPC-Ind problem.

GivenH ∈ F(n−k)×k
qm such that (In−k|H) is the parity-check matrix of a code C, the problem

of distinguishing LRPC codes is to decide whether C is a random code or an LRPC code.
The best known attack against this problem for almost ten years ([GRSZ14a]) consists in using

the underlying homogeneous structure of the LRPC code to find a codeword of weight d in a [n−
⌊n−kd ⌋, n − k − ⌊n−kd ⌋]qm subcode C′ of the dual code C⊥ generated by (In−k|H) rather than a
codeword of weight d in the C⊥ [n, n − k] code. Then one can consider the previously described
algebraic or combinatorial attacks for this slightly smaller code (but for the same weight d).

3.1.6 Parameters
Choice of parameters. In Section 3.1.5, the security of the protocol is reduced to the LRPC-Ind
and DRSL problems (or their ideal variants). The best known attacks on these problems are thus
used to define our parameters. We also chose our parameters in order to have the Decoding Failure
Rate (DFR) below or very close to 2−λ, where λ is the security parameter, using Proposition 3.1.1.
We only considered parameters with k ≥ ℓ as required by these propositions.

Size of parameters. One may use seeds to represent the random data in order to decrease the
keysize. We use the NIST seed expander with 40 bytes long seeds.

The public key pk is composed of a matrix of size (n− k)× n in a systematic form, so its size
is
⌈
k(n−k)m

8

⌉
bytes. The size is reduced to

⌈
(n−k)m

8

⌉
bytes in the ideal case. The secret key sk is

composed of two random matrices that can be generated from a seed, so its size is 40 bytes. The
ciphertext ct is composed of a matrix of size (n−k)× ℓ, so its size is

⌈
(n−k)ℓm

8

⌉
bytes. The shared

secret ss is composed of K = G(E), so its size is 64 bytes.
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Parameters are given in Table 3.1. The "structure" column indicates whether this parameter
uses unstructured (random) matrices or ideal ones. The number indicated in the "DFR" column is
actually − log2(DFR).

Instance Structure q n k m r d ℓ Security DFR pk size ct size pk+ ct

LRPC-MS-128 Random 2 34 17 113 9 10 13 128 126 4,083 3,122 7,205
LRPC-MS-192 Random 2 42 21 151 11 11 15 192 190 8,324 5,946 14,270

ILRPC-MS-128 Ideal 2 94 47 83 7 8 4 128 126 488 1,951 2,439
ILRPC-MS-192 Ideal 2 188 89 109 9 8 3 192 189 1,213 3,638 4,851

Table 3.1: Parameters for our unstructured and ideal LRPC-MS cryptosystem. The security is ex-
pressed in bits and sizes are expressed in bytes.

Comparisonwith other unstructured cryptosystems Wecompare our cryptosystem to other
structured and unstructured proposals. Our comparison metric is the usual TLS-oriented commu-
nication size (public key + ciphertext).

For Loong.CCAKEM [Wan19], we consider only the third set of parameters since the other
sets of parameters have an error weight below 6 and thus are vulnerable to algebraic attacks. For
Loidreau cryptosystem, we consider the parameters presented in the conclusion of [Pha21] which
take into account the recent improvements on algebraic attacks. For both cryptosystemsmentioned
in this paragraph, parameters were not available (N/A) for 192 bits of security.

Instance 128 bits 192 bits
LRPC-MS 7,205 14,270
Loong.CCAKEM-III 18,522 N/A
FrodoKEM 19,336 31,376
Loidreau cryptosystem 36,300 N/A
Classic McEliece 261,248 524,348

Instance 128 bits 192 bits
ILRPC-MS 2,439 4,851
BIKE 3,113 6,197
ROLLO-II 4,030 N/A
HQC 6,730 13,548

Table 3.2: Comparison of sizes of unstructured KEMs (left table) and structured code-based KEMs
(right table). The sizes represent the sum of public key and ciphertext expressed in bytes.

Performance. We provide indicative performance measurements of an implementation of some
of the LRPC-MS cryptosystem parameters. Benchmarks were realized on an Intel® Core™ i7-
11850H CPU by averaging 1000 executions.

Instance KeyGen Encap Decap

LRPC-MS-128 383 137 3,195
ILRPC-MS-128 214 107 1,213

Table 3.3: Performances of our LRPC-MS cryptosystems in thousands of CPU cycles.

As for other code-based schemes, the decapsulation algorithm has a higher computational cost
than key generation and encapsulation. Note however, that our implementation does not yet ben-
efit from the techniques of [CL22]. These techniques improved the decapsulation performance by
a factor 15 (for 128 bits of security) with respect to the existing (and simpler to adapt) implemen-
tations we used as a basis for our benchmarking.
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3.2 LowMS: Loidreau’s encryption schemewithmultiple syn-
dromes

3.2.1 Improving Gabidulin codes decoding using multiple syndromes
Interleaved Gabidulin codes can be corrected with high probability beyond the ⌊d−12 ⌋ bound. More
precisely, efficient decoders are known that are able to correct t ≤ ⌊ ℓ

ℓ+1 (n − k)⌋ errors with
high probability. We recall below the result of [SJB11] regarding the decoding probability of an
interleaved Gabidulin code.

Proposition 3.2.1 ( [SJB11], Equations (43) and (44)). Let G be a Gabidulin code of parity check
matrixH and IG(ℓ;G) the corresponding interleaved code of order ℓ.

Let E $←− Gr(Fqm , t) be an error support of dimension t with ℓ ≤ t ≤ ⌊ ℓ
ℓ+1 (n − k)⌋. Let an

error e = (e1 . . . eℓ) ∈ Eℓn where for each i, ei
$←− En. Let y ∈ Fℓ(n−k)

qm be the corresponding
syndrome of the interleaved code IG(ℓ;G):

y = (e1H
T . . . eℓH

T ).

The decoding Algorithm 4 from [SJB11], on input y, fails to output correctly the error e with a
probability upper bounded by

3.5q−m
{
(ℓ+1)

(
ℓ

ℓ+1 (n−k)−t
)
+1
}
.

We can then build a decoding algorithm for Interleaved Gabidulin codes that takes as input an
ℓ× (n− k) syndrome matrix and returns the error vector.

Algorithm 3.2 InterleavedGab.Decode

Input: Received syndrome matrix Y ∈ Fℓ×(n−k)
qm

Output: Error matrix E ∈ Fℓ×n
qm or decoding failure ⊥

1: Flatten Y into y = (y1 . . .yℓ) ∈ Fℓ(n−k)
qm where yi denotes the i-th row of Y .

2: Apply Algorithm 4 from [SJB11] to y.
3: If it fails, return ⊥.
4: Else, we get an error vector e = (e1 . . . eℓ) where each suberror ei ∈ Fn

qm .
5: return the matrix E whose rows are e1, . . . , eℓ.

Proposition 3.2.1 turns immediately into the following corollary which is adapted to Inter-
leavedGab.Decode algorithm.

Corollary 3.2.1. Let G be a Gabidulin code of parity-check matrix H . Let E $←− Gr(Fqm , t) an
error support of dimension t with ℓ ≤ t ≤ ⌊ ℓ

ℓ+1 (n − k)⌋. Let Y ∈ Fℓ×n
qm be defined by Y = EHT

where the error is a matrix E
$←− Eℓ×n whose coefficients are picked uniformly at random in the

error support.

Algorithm InterleavedGab.Decode (3.2), on input Y , fails to output correctly the error matrix E
with a probability upper bounded by

3.5q−m
{
(ℓ+1)

(
ℓ

ℓ+1 (n−k)−t
)
+1
}
.

3.2.2 Description of the LowMS scheme
The LowMS KEM scheme is given by three algorithms (LowMS.KeyGen, LowMS.Encaps,
LowMS.Decaps) defined in Algorithms 3.3, 3.4, 3.5. LowMS KEM is parametrized by the follow-
ing parameters:
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• q the size of the base field Fq

• m the degree of the field Fqm used in rank metric

• (k, n) the dimension and length of a Gabidulin code

• r the rank weight of the error1

• λ the rank weight of the perturbation matrix

• ℓ the number of syndromes sent in the ciphertext (interleaving order)

• H is a hash function which outputs values ∈ F512
2 , such as SHA-512

We use the Niederreiter framework [Nie86] instead of the McEliece one to define our scheme,
i.e., we perform all operations using parity-check matrices instead of generator matrices. This
allows to divide the size of the ciphertext by 2 (if k = n/2). Similarly to ROLLO [ABD+19] and
other rank metric KEMs, using a Niederreiter system implies to compute the shared secret as a
hashed value of the error support E.

Algorithm 3.3 LowMS.KeyGen
Input: None
Output: Keypair (pk, sk) ∈

(
F(n−k)×n
qm ,F(n−k)×(n−k)

qm × F(n−k)×n
qm × Fn×n

qm
)

1: Choose a parity-check matrix of an [n, k] Gabidulin codeH $←− GT(n,k) ∈ F(n−k)×n
qm .

2: Choose an Fq-subspace of Fqm , F $←− Gr(Fqm , λ).
3: Choose uniformly at random an n× n perturbation matrix with entries in F , P $←− Fn×n.
4: Compute S ∈ F(n−k)×(n−k)

qm such that H ′ = STHP T is in systematic form.
5: Define pk := H ′ and sk := (S,H,P ).
6: return (pk, sk).

Algorithm 3.4 LowMS.Encaps
Input: Public key pk = H ′ ∈ F(n−k)×n

qm .
Output: Ciphertext c ∈ Fℓ×(n−k)

qm , session keyK ∈ F512
2 .

1: Sample the error support E $←− Gr(Fqm , r).
2: Sample the error matrix E $←− Eℓ×n, such that Supp(E) = E.
3: Compute C = EH ′T .
4: ComputeK = H(E).
5: return c = C,K .

Algorithm 3.5 LowMS.Decaps
Input: Ciphertext c = C ∈ Fℓ×(n−k)

qm and secret key sk = (S,H,P ) ∈ F(n−k)×(n−k)
qm ×

F(n−k)×n
qm × Fn×n

qm

Output: Session keyK ∈ F512
2

1: Compute C ′ = CS−1.
2: Recover E′ = EP = InterleavedGab.Decode(C ′).
3: Compute E = E′P−1 and E = Supp(E)
4: return K = H(E).

1In the comparison paper [RPWZ19], r is noted tpub.
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The decoding algorithm recovers the support E of the error matrix as long as conditions of Corol-
lary 3.2.1 apply, i.e. ℓ ⩽ rλ ⩽ ⌊ ℓ

ℓ+1 (n− k)⌋.
Remark. In order to hash E and obtain the same value during encryption and decryption, we need
a canonical representation for a subspace E of Fqm of dimension r. We choose the unique matrix
∈ Fr×m

q in reduced row echelon form whose rows form a basis of E.

3.2.3 Decoding Failure Rate

We prove simultaneously the correctness of our KEM and its decoding failure rate.

Proposition 3.2.2 (DFR). Under the assumption that the entries of EP are randomly independent
elements of EF , the decoding failure rate (DFR) of our scheme is upper bounded by

3.5q−m((ℓ+1)( ℓ
ℓ+1 (n−k)−rλ)+1).

Justification for the assumption. The behaviour of a product matrix EP was previously studied in
the context of LRPC decoding. In [ABD+19, Proposition 2.4.3], the decoding failure rate calculation,
validated by simulations, relies on the fact that a product of a vector with entries in E by a matrix
with entries in F is a random vector with entries in EF . In Theorem 3.1.1, it is shown that the
support of a product matrix EP has the same probability, up to a constant factor, of being equal
to EF as a random matrix with entries in EF . Therefore we can reasonably make the assumption
that every entry of EP is a random element of EF .

Proof. We have

C ′ = CS−1

= EH ′TS−1

= EPHT

= E′HT ,

with E′ = EP being the error matrix decoded by InterleavedGab.Decode (Algorithm 3.2). Each
of its entries E′ij is such that E′ij ∈ EF , where E is the support of the entries of E and F is the
support of the entries of P .

According to the assumption, every entry ofE′ is a random element of EF , thus we can apply
Corollary 3.2.1, the dimension of the error support being t = rλ. In our parameter sets, we were
careful enough to fulfill inequalities ℓ ≤ rλ ≤ ⌊ ℓ

ℓ+1 (n − k)⌋, so that the conditions of Corollary
3.2.1 are met. We thus obtain the upper bound on the decryption failure rate.

3.2.4 Difference with previous work

In this subsection, we try to present in the most understandable manner the difference with the
approach of [RPWZ19] which also suggests to interleave Loidreau’s cryptosystem. The fine com-
prehension of this difference led us to build this new system with much more efficient parameters.
The two main differing points concern the DFR and the error model.

Decoding failure rate. In [RPWZ19], Theorem 6, the DFR is given by a complex formula which
can be approximated by

4

qm
.

To ensure a negligible DFR, the value q = 16 has been chosen in [RPWZ19]. Our formula seems
more natural because it takes the value of ℓ into account, and therefore we are able to choose
q = 2. This results in significantly more competitive parameters and also takes into account that
for implementation reasons, cryptographic systems are usually preferred towork over binary fields.
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Error model. Another key difference between this scheme and the one from [RPWZ19] stems
from the error model. In [RPWZ19], the error matrix E is chosen of small vertical rank norm
(Definition 2.2.3) where in our solutionE is chosen of small horizontal rank norm (Definition 2.2.4).

This being said, the difference between Interleaved RSD and RSL is only a matter of norm, as
shown in the following table.

Interleaved RSD RSL

Given (H,Y ) ∈ F(n−k)×n
qm ×Fℓ×(n−k)

qm ,
find E ∈ Fℓ×n

qm such that HE⊤ = Y ⊤

and ∥E∥vert = r.

Given (H,Y ) ∈ F(n−k)×n
qm ×Fℓ×(n−k)

qm ,
find E ∈ Fℓ×n

qm such that HE⊤ = Y ⊤

and ∥E∥horiz = r.

We state that using the horizontal rank norm (and thus RSL) for the error instead of the vertical
rank norm is a better choice for cryptographic applications. We state below a few elements in
support for this claim:

• The technique presented in [RPWZ21] allows to decode an interleaved code of interleaving
order ℓ ≥ t where t is the vertical rank norm of the error. It penalizes the parameters of
[RPWZ19] by forcing to choose ℓ < t. The decoding algorithm in [RPWZ21] succeeds with
negligible probability in the horizontal rank norm (see next subsection for details), hence
opening the possibility of a higher interleaving order.

• The RSL problem has been studied for several years, and the recent algebraic attacks from
[BB21] allow us to precisely compute the complexity of the RSL instances resulting from the
chosen parameters.

• Because of the vertical rank norm, the error matrix E must be chosen in [RPWZ19] as a
product matrix AB, which in turn implies high constraints, such as

n− k

2λ
< dE ≤ t− ℓ+ 1,

where dE is the minimum rank distance of the code spanned by the rows of E. These con-
straints are lifted when using the horizontal rank norm.

Choosing the horizontal rank norm therefore allows a higher interleaving order ℓ and leads to
better parameter sets (see Section 3.2.6).

3.2.5 Security

3.2.5.1 Public key indistinguishability

Problem 3.2.1 (Distorted Gabidulin codes indistinguishability Gab-Ind). Given a matrix H ′ ∈
F(n−k)×n
qm , the problemGab-Indq,m,n,k,λ distinguish whetherH ′ is random or the parity-checkmatrix

of a distorted Gabidulin code, i.e. H ′ = SHP with S an (n− k)× (n− k) matrix with entries in
Fqm ,H the parity-check matrix of an [n, k] Gabidulin code, and P an n×n homogeneous matrix of
weight λ.

This problem was studied in [Loi22] and we give the complexity of the best known attack to
solve this problem below.

3.2.5.2 IND-CPA proof

Theorem 3.2.1. Under the hardness of the distorted Gabidulin codes indistinguishability (Prob-
lem 3.2.1) and Rank Support Learning (Problem 2.2.1), the KEM presented in Section 3.2.2 is IND-CPA
secure in the Random Oracle Model (ROM).
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Proof. We proceed in a sequence of games. The simulator starts from the real scheme. First we
replace the public key by a random code instead of a distorted Gabidulin code, and then we use the
ROM to solve the Rank Support Learning problem.

• We start with the game G0: in this game we generateH , H ′, E and C honestly.

• In game G1 we replace H ′ by a parity-check matrix of a random [n, k] code. From an ad-
versary point of view, everything is identical, except the distribution on H ′ which is either
generated at random or from a distorted Gabidulin code. Distinguishing between the two is
an instance of Gab-Indq,m,n,k,λ (see Problem 3.2.1), hence

AdvG0

A ≤ AdvG1

A + AdvGab-IndA .

• In gameG2 we now replaceH(E) by a random value r. Bymonitoring the calls the adversary
makes to the random oracle, we can prove that the difference between G1 and G2 is solving
the DRSL problem:

AdvG1

A ≤ AdvG2

A + AdvDRSLA .

In game G2 everything is sampled independently from the secret values, which leads to the
conclusion.

3.2.5.3 Known attacks

Attacks against RSD and RSL. The reader is referred to Chapter 2.

Attacks against the masking of Gabidulin codes. One of the key-points in the security re-
duction presented in Section 3.2.5 is the complexity of distinguishing the public-key pk, a.k.a G′
in Algorithm 3.3 from a randomly generated [n, k] matrix over Fqm . This precise problem was
addressed in the paper [Loi22].

To sum up the results, there are two ways to investigate the problem:

• If λ(n − k) < n, there exists a polynomial-time distinguisher, see [CC20]. Moreover, a
decryption algorithm can be recovered in polynomial-time for λ = 2, 3, see [CC20,Gha22]
and exponential time for λ > 4, but with a complexity much less than expected to be suitable
for encryption purposes [LP21]. Since in our parameter sets, the rate k/n is 1/2 and λ ≥ 3,
we are not in that case.

• If λ(n − k) ≥ n, then the best distinguisher to date is the one published in [BL23]. The
exponential part corresponds to the enumeration of some constrained vector spaces and the
polynomial term consists of the use of Wiedemann’s algorithm. This gives

WMask ≥ m3n5R3(1 +R)qm(λ−1)−λnR(1−R),

where R = k/n is the rate of the code.

Avoiding theMetzner-Kapturowski approach. The algorithm in [RPWZ21] is an adaptation
to the rank metric of the Metzner-Kapturowski approach [MK90] and constitutes a polynomial-
time algorithm for decoding arbitrary linear interleaved codes of high-interleaving order.

As said earlier, the decoding algorithmworks when the interleaved order satistifies ℓ ≥ twhere
t is the vertical rank norm of the error. We thus need to study the vertical rank norm of our error
matrix E (which is of horizontal norm r) and show that it is larger than ℓ with great probability.
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Proposition 3.2.3. Let E $←− Gr(Fqm , r) and E $←− Eℓ×n. Let t be the vertical rank norm of E.
We have

P(t ≤ ℓ) < qℓ
2r+nℓ(1−r).

Proof of Proposition 3.2.3. Let (e1, ..., er) be a basis of E. We can complete it into a basis γ :=
(e1, ..., er, x1, ..., xm−r) of Fqm over Fq . We will use γ to calculate the vertical rank norm, since it
does not depend on the choice of the basis.

It is clear that when one picks at random amatrixE $←− Eℓ×n, then extγ(E)writes as follows:

extγ(E) =


A1

0
...
Aℓ

0

 ,

withAi
$←− Fr×n

q being the unfoldings of the ℓ rows ofE in the basis ofE and the 0 blocks being
of size (m− r)× n.

The probability distribution of the rank of extγ(E) is therefore identical to the distribution of
the rank of a matrix A $←− Fℓr×n

q .
Finally we conclude with Lemma B.1.1 applied with parameters i = ℓ andm = ℓr.

For all parameter sets presented in Section 3.2.6, the probability obtained with Proposition 3.2.3
is less than 2−1000. We can consider that the threat of the Metzner-Kapturowski approach is
avoided by design, and we do not need to take additional precautions when sampling the error
matrix E.

3.2.6 Parameters
We give six sets of parameters (see Table 3.4): two sets for each security level in η ∈ {128, 192, 256}
bits. For each security level, we give an efficient parameter set with a smaller value of λ and a con-
servative parameter set with a higher value of λ.

The parameters are chosen following these steps in order:
• q is always equal to 2;

• the parameter r is chosen in a way to avoid RSD and RSL attacks. We need r = 7 for 128-bit
security, r = 8 for 192-bit security and r = 9 for 256-bit security;

• the parameters n and k are chosen such that k = n/2 and n − k is slightly larger than rλ,
so as to respect the condition rλ ⩽ ⌊ ℓ

ℓ+1 (n− k)⌋ with a reasonably small ℓ;

• m is set as the next prime after n;

• if needed,m and n are increased in order to have a complexity large enough for MaxMinors
(algebraic attack from [BBC+20]) andWMask. We always keep k = n/2 andm prime2 larger
than n;

• finally, parameter ℓ is chosen large enough so that the DFR is at most 2−η .
The sizes of the proposed parameters are expressed in kilobytes. The public key is an (n−k)×n

parity-check matrix with entries in Fqm given in systematic form, therefore

pk size = log2(q)mk(n− k) bits.

The ciphertext consists of ℓ syndromes of n− k entries in Fqm each, therefore

ct size = log2(q)mℓ(n− k) bits.

For the DFR, MaxMinors andWMask columns, we chose to put the base 2 logarithm.
2We traditionally choose m prime to avoid any potential attacks.
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Security level 128

q m n k λ r ℓ pk size ct size DFR MaxMinors WMask
2 61 50 25 3 7 6 4.77KB 1.14KB -242 139 131
2 67 66 33 4 7 6 9.12KB 1.66KB -199 155 183

Security level 192

q m n k λ r ℓ pk size ct size DFR MaxMinors WMask
2 101 74 37 3 8 2 17.28KB 0.93KB -301 193 197
2 79 78 39 4 8 5 15.02KB 1.93KB -314 218 209

Security level 256

q m n k λ r ℓ pk size ct size DFR MaxMinors WMask
2 101 88 44 4 9 5 24.44KB 2.78KB -503 278 267
2 107 106 53 5 9 6 37.57KB 4.25KB -426 313 349

Table 3.4: Parameters for LowMS

Comparison with other KEMs We compare our cryptosystem to other GPT-based KEMs, as
well as to unstructured proposals, either lattice-based or code-based. Our comparison metric is the
usual TLS-oriented communication size (public key + ciphertext). Although our scheme is only
proven IND-CPA at this stage, we believe that, since our DFR is negligible, it can be turned to an
IND-CCA scheme using the Fujisaki-Osamoto transform [FO99]. Indeed, when applying the HHK
framework [HHK17], similarly to [ABD+19, §5.3.2], the difference of advantages between CPA and
CCA adversaries is explained by a term being equal to the product of the number of queries to the
random oracle, by the probability of generating an decipherable ciphertext in an honest execution.
With a negligible DFR, the advantages are thus similar. This comes at the cost of adding only two
64-byte hashes to the ciphertext and would only be a negligible increase, hence we took the liberty
to compare our work with other IND-CCA parameters.

For the original Loidreau cryptosystem, we consider the parameters presented in the conclu-
sion of [Pha21] which take into account the recent improvements on algebraic attacks. For this
cryptosystem, parameters were not available (N/A) for 192 bits of security.

Instance 128 bits 192 bits
LowMS (λ = 3) 5.76KB 14.97KB
LowMS (λ = 4) 10.78KB 16.95KB
DRANKULA [AAB+18] 28.8KB N/A
Interleaved Loidreau [RPWZ19] 33.35KB N/A
Original Loidreau [Loi17] 36.30KB N/A

Table 3.5: Comparison of sizes of other GPT-based KEMs. The sizes represent the sum of the public
key and the ciphertext expressed in bytes.

3.3 Improvingkey generation in LRPCcode-based cryptosys-
tems

Notation In this section, we work with F2m a field of order q = 2m. Let us denote F the field
F2m [X]/(Q). Recall that Q a monic irreducible polynomial in F2m [X] of degree n.
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Instance 128 bits 192 bits
LowMS (λ = 3) 5.76KB 14.97KB
NH-Multi-UR-AG [BBBG22] 7.12KB 12.60KB
LRPC-MS (Section 3.1) 7.21KB 14.27KB
LowMS (λ = 4) 10.78KB 16.95KB
Multi-UR-AG [BBBG22] 11.03KB 21.08KB
FrodoKEM [NAB+20] 19.34KB 31.38KB
Classic McEliece [ABC+22] 261KB 524KB

Table 3.6: Comparison of sizes of unstructured post-quantum KEMs. The sizes represent the sum
of public key and ciphertext expressed in bytes.

3.3.1 The bottleneck in LRPC schemes key generation
The key generation phase of an LRPC-based cryptosystem requires a polynomial inversion which
is the most time-consuming step.

As an example, the key generation phase in ROLLO can be written as follows:

Algorithm 3.6 Key generation in ROLLO-I and ROLLO-II

1: (x, y)
$←− S2n

d (F2m)
2: h← x−1y mod Q

3:

{
pk = h
sk = (x, y)

Some existing implementations, such as rbc-lib [ABB+21], use Euclid’s algorithm to per-
form the inversion, which is not constant time and may leak secret information when exposed to
side-channel attacks. Even if the inversion is calculated only once, the existence of attacks, such
as Big Mac [Wal01], where a single trace is necessary, stresses the importance of doing constant
time algoirthms even for key generation. Most cryptographic libraries implement constant-time
algorithms as a countermeasure against such attacks.

The use of the Itoh-Tsuiji algorithm [IT88] as a constant-time alternative to Euclid’s algorithm
for polynomial inversion was recently suggested and implemented [AAB+21]. However, this leads
to computational costs for key generation ten times greater than for the non-constant-time im-
plementation. A variant of the Itoh-Tsuiji algorithm was adapted for the case of BIKE to invert a
polynomial and lead to very efficient performance results [DGK20]. Unfortunately, such an adap-
tation is not possible for LRPC codes, as the quotient ring in which the inversion is performed is
different. Indeed, in the case of BIKE, the inversion is done in a polynomial ring F2[X] quotiented
by Xn − 1. For LRPC, the polynomial ring is F2m [X] quotiented by an irreducible polynomial of
degree n. The identityXn = 1, leveraged by the authors of [DGK20], is thus not possible anymore.

3.3.2 Optimal normal basis
Our improvement involves the use of an optimal normal basis representation instead of a polyno-
mial basis for the Itoh-Tsuiji algorithm. x will be represented as a vector over an optimal normal
basis (ONB). This section defines the concept of optimal normal basis and shows how to build such
a basis for field F. We first recall results from prior papers (Proposition 3.3.1 and Theorem 3.3.1)
that serve as building blocks for Proposition 3.3.2, which is an original adaptation to the specific
case of F.

3.3.2.1 Definition

Definition 3.3.1 (Normal basis). An element α ∈ F is a normal element over F2m when (α, αq,

αq2 , ..., αqn−1

) is a basis of F seen as a F2m -vector space. The family (α, αq, αq2 , ..., αqn−1

) is then
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called the normal basis generated by α.

Definition 3.3.2 (Complexity of a normal basis). For a normal basis N = (α, αq, αq2 , ..., αqn−1

)
there exists a matrix T = (ti,j) of size n× n with coefficients in Fq such that for all i in [0..n− 1]:

ααqi =

n−1∑
j=0

ti,jα
qj . (3.1)

The number cN of non-zero entries in T is called the complexity of the normal basis N .

The matrix T is called the multiplication table of the normal basisN as it is used to implement
the multiplication of two elements of F represented as linear combinations of elements in the nor-
mal basis N . The complexity cN thus represents the complexity of a circuit implementing such a
multiplication.

Proposition 3.3.1 (Theorem 1.2.1 in [Gao93]). For a normal basisN , the complexity cN ≥ 2n− 1.

Definition 3.3.3 (Optimal normal basis). An optimal normal basis N is a normal basis whose com-
plexity cN is exactly 2n− 1.

Lemma 3.3.1. The multiplication matrix T of an optimal normal basis N has exactly one non-zero
entry in the first column and exactly two non-zero entries for each other column.

Proof : Let b =
∑n−1

i=0 αqi . Note that bq = b hence b ∈ Fq . By summing up the equations (3.1)
and comparing the coefficient of αqj we find for all j ̸= 0

n−1∑
i=0

ti,j = 0.

Since α is non-zero and {ααqi : 0 ≤ i ≤ n− 1} is also a basis of Fqn over Fq , the matrix T is
invertible. Thus for each j there is at least one non-zero ti,j . The result of the previous paragraph
implies that for each j ̸= 0 there is at least two non-zero ti,j . Because the total number of non-zero
entries in T is 2n−1, it has exactly one non-zero entry in the first column and exactly two non-zero
entries for each other column.

3.3.2.2 Constructing optimal normal basis

For our algorithm to work, we need to build an optimal normal basis of F over F2m . We first study
a simpler problem: the following theorem shows how to build an optimal normal basis of F2n over
F2 when some conditions on n are met.

Theorem 3.3.1 (Theorem 4.2.1 in [Gao93]). Let 2n+ 1 be a prime and assume that either

1. 2 is primitive in F2n+1, or

2. 2n+ 1 = 3 (mod 4) and 2 generates the quadratic residues in F2n+1.

Thenα = γ+γ−1 generates an optimal normal basis of F2nover F2, where γ is a primitive (2n+1)-th
root of unity.

The following proposition shows that it is easy to build an optimal normal basis of F when an
optimal normal basis of F2n is known.
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Proposition 3.3.2. Let α an optimal normal element in F2n over F2 and suppose m is prime to n.
Then α is also an optimal normal element of F over F2m .

Proof : LetN = (α, α2, α22 , ..., α2n−1

) the normal basis generated byα. According to Lemma 2.3.2
in [Gao93], N is also a basis of F over F2m .

If we prove that N ′ = (α, α2m , α22m , ..., α2(n−1)m

) is a permutation of N , then N ′ will be a
normal basis of F over F2m .

To prove this, note that sincem is prime to n, the application

i 7→ mi mod n

is obviously a permutation of Z/nZ. As a result, the sets {α2i , i ∈ 0..n − 1} and {α2mi mod n

, i ∈
0..n− 1} are equal.

Since α ∈ F2n , α2n = 1. Then for all i we have α2mi mod n

= α2mi .
This proves that the sets {α2i , i ∈ 0..n− 1} and {α2mi

, i ∈ 0..n− 1} are equal hence N ′ is a
permutation of N and N ′ is a normal basis.

We now need to prove the optimality of the normal basis N ′. Looking at Definition 2, it is
obvious that since N ′ is a permutation of N then its multiplication table is a permutation of the
multiplication table of N . Hence N ′ and N have the same complexity. N ′ is thus an ONB of F
over F2m .

We now know that it is possible to build an ONB of F when the conditions on n of Theorem 1
are met. It is also proven in [Gao93] that these conditions are necessary for the existence of an
ONB. Therefore, it is possible to get an ONB of F only for some values of n. Table 3.7 shows which
ROLLO schemes have a value for n that allows to build an ONB.

Scheme n ONB?
ROLLO-I-128 83 ✓

ROLLO-I-192 97 ✗

ROLLO-I-256 113 ✓

ROLLO-II-128 189 ✓

ROLLO-II-192 193 ✗

ROLLO-II-256 211 ✗

Table 3.7: Existence of an optimal normal basis depending on the value n for each ROLLO set of
parameters

Below is presented a Sagemath algorithm to find an optimal normal element in F.
from sage . cod ing . r e l a t i v e _ f i n i t e _ f i e l d _ e x t e n s i o n \
impor t ∗
impor t numpy

q = 83 # f o r the example
K. < a> = GF (2^ q )
L . < b> = GF ( 2 ^ ( 2 ∗ q ) )
FE = R e l a t i v e F i n i t e F i e l d E x t e n s i o n ( L , K )
R . <X> = Po lynomia lR ing ( L )
P = X^ ( 2 ∗ q +1 ) − 1
f o r x in P . r o o t s ( ) :
i f x [ 0 ] . m u l t i p l i c a t i v e _ o r d e r ( ) == 2 ∗ q +1 :
y = x [ 0 ]
break
z = y + y ^ ( −1 )
s = FE . r e l a t i v e _ f i e l d _ r e p r e s e n t a t i o n ( z ) [ 0 ]
t = s . po lynomia l ( ) . l i s t ( )
u = numpy . nonzero ( t ) [ 0 ] . t o l i s t ( )
p r i n t ( u )
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3.3.3 Operations in an optimal normal basis representation

In this section we present two operations in F using a normal basis representation. We suppose
that n meets the conditions of Theorem 1 and that we have found an optimal normal basis of F
over F2m generated by α.

3.3.3.1 Polynomial and normal basis representation

An element x ∈ F can be represented two usual ways. The first and natural way is the polynomial
representation

x =

n−1∑
i=0

xiX
i

with xi in F2m We write [x]P = (x0, ..., xn−1).
The second way is the normal representation, which is the entries of x according to the normal

basis.

x =

n−1∑
i=0

ξiα
qi

We write [x]N = (ξ0, ..., ξn−1).
x can be converted from polynomial to normal representation, and vice-versa, using an invert-

ible matrixM .

[x]N = [x]P M

3.3.3.2 q-powers

In a normal basis, raising an element of F to a power qk is easy. The following result holds for any
normal basis, regardless of its optimality.

Proposition 3.3.3. Forall k ∈ N, [xqk ]N = rotk([x]N ) where rotk is k circular right shifts.

Proof : Writing in a normal representation x =
∑n−1

i=0 ξiα
qi , we have according to Froebinius

endomorphism proprety:

xqk =

n−1∑
i=0

ξq
k

i αqi+k

ξi ∈ Fq implies ξq
k

i = ξi and α ∈ F implies αqn = 1, hence:

xqk =

n−1∑
i=0

ξi+kmodn αqi

which proves the result.

We thus see that the q-power operation in a normal basis is almost free (O(n)memory writes).

Algorithm 3.7 q_power(x, k)
Input: x = (x0, ..., xn−1) ∈ F; k ∈ N
Output: y = xqk

1: for i in 0..n− 1 do
2: yi = xi+kmodn
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3.3.3.3 Multiplication

The optimality of the normal basis generated by α is necessary to reduce the complexity of the
multiplication operation.

Proposition 3.3.4. Let x, y ∈ F and z = xy. We denote

[x]N = (x0, ..., xn−1)

[y]N = (y0, ..., yn−1)

[z]N = (z0, ..., zn−1)

There exist two permutations σ1 and σ2 of [0..n− 1] such that for all k:

zk = xkyσ1(0)+k +

n−1∑
i=1

xi+k(yσ1(i)+k + yσ2(i)+k)

where all subscripts are taken modulo n. Permutations σ1 and σ2 are independent of the choice of x
and y.

Proof : This proof is adapted from Section 2 in [NY01].
First observe that for all i, j:

αqiαqj =
(
ααqj−i

)qi
=

n−1∑
k=0

tj−i,k α
qi+k

=

n−1∑
k=0

tj−i,k−i α
qk

where all subscripts and all exponents of q are taken modulo n.
As a result,

z = xy =

n−1∑
i,j=0

xi yj α
qiαqj

rewrites for all k:

zk =

n−1∑
i,j=0

xi yj tj−i,k−i

and by changing variables:

zk =

n−1∑
i,j=0

xi+k yj+k tj−i,−i

By Lemma 1, for each i ̸= 0, there are only two values j = σ1(i) and j = σ2(i) for which
tj−i,−i = 1. We also note σ1(0) the index of the single non-zero entry of the first column of T .

This yields the final formula:

zk = xkyσ1(0)+k +

n−1∑
i=1

xi+k(yσ1(i)+k + yσ2(i)+k)

with σ1 and σ2 depending only of T and not of x or y.
We thus have a quadratic multiplication in a normal basis.
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Algorithm 3.8 mul_norm(x, y)
Input: x = (x0, ..., xn−1) ∈ F; y = (y0, ..., yn−1) ∈ F; k ∈ N
Output: z = xy

1: for i in 0..n− 1 do
2: zi = xiyi+σ1(0)modn

3: for j in 1..n− 1 do
4: for i in 0..n− 1 do
5: zi = zi + xi+kmodn(yk+σ1(i)modn + yk+σ2(i)modn)

3.3.4 Itoh-Tsuiji algorithm for polynomial inversion
Recall that q = 2m. We can now present the algorithm for inversion in F. The method is inspired
from Itoh-Tsuiji [IT88]. The idea is to compute x−1 = (xr)−1xr−1 with r = qn−1

q−1 . It is easy to
prove that xr ∈ Fq . This reduces the inversion in F to the computation of xr−1 , plus one inversion
in the base field Fq and n multiplications in Fq .

3.3.4.1 Helper function

We use the following helper function which computes xe with e = qt−1
q−1 for any odd integer t. Our

helper function is inspired from [DGK20].

Algorithm 3.9 helper_exp(x, t)
Input: x = (x0, ..., xn−1) ∈ F; t an odd integer
Output: z = xe with e = qt−1

q−1

1: y = z = x
2: for i in 1..log(t) do
3: tmp =q_power(y, 2i−1)
4: y =mul_norm(tmp, y)
5: if t[i] == 1 then
6: z =mul_norm(z, q_power(y, 2t mod 2i))

3.3.4.2 Computing xr−1

To finalize the inversion we need to compute xr−1 with r − 1 = qn−1
q−1 − 1 = q( q

n−1−1
q−1 ).

If n − 1 is odd, it is trivial: we use the helper function and raise the result to the power q.
However for ROLLO parameters, n− 1 is not odd, thus we must use the following technique. First
we apply the helper function to t = n−1

2k
(k being the smallest integer s.t. n−1

2k
is odd). Then we

use q-powers and multiplication to compute ar−1.

Algorithm 3.10 Compute xr−1

Input: x = (x0, ..., xn−1) ∈ F
Output: z = xr−1 with r = qn−1

q−1

1: k = min{i integer s.t. n−1
2i odd}

2: z =helper_exp(x, n−1
2k

)
3: for i in 0..k − 1 do
4: y =q_power(z, 1)
5: z =mul_norm(y, z)
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3.3.4.3 Final algorithm

The following and last algorithm (Algorithm 3.11) describes how to compute x−1. The first three
lines are dedicated to computing xr−1 through an intermediate representation in optimal normal
form. Lines 4 and 5 ensure t = (xr)−1. Line 6 returns the final result.

Algorithm 3.11 Compute x−1

Input: x = (x0, ..., xn−1) ∈ F in a polynomial representation
Output: z = x−1 in a polynomial representation

1: ξ = xP [transform to normal representation]
2: γ = ξr−1 [using algorithm 4]
3: y = γP−1 [transform to polynomial representation]
4: t = xy
5: t = t−1 [inversion in Fq]
6: z = yt

3.3.4.4 Constant-time property

In helper_exp, the conditional branches are on the value of t only. The only usage of that
function is in Algorithm 5, where it is called with a value t depending only on n, which is a public
parameter. Other conditional branchings in Algorithm 5 depend only on n, therefore computing
x−1 with Itoh-Tsuiji algorithm is constant-time.

3.3.5 Experimental results

This section provides performance results and compares them to other polynomial inversion algo-
rithms.

Measurements were carried out on a MacBook Pro laptop equipped with 2.7GHz Intel Core
i5-5257U CPU and 8GB memory for which Hyper-Threading and Turbo Boost were disabled.

To benchmark our implementation of ROLLO, we used the SUPERCOP [BL] platform ver-
sion 210114. All primitives were compiled using clang with parameters -march=native
-mtune=native -O3 -fomit-frame-pointer -fwrapv -fPIC -fPIE.We could test
our algorithm only for parameters that allow the existence of an ONB (see table 3.7).

On the same machine, we compared our algorithms with the original version in rbc-lib
(which is not constant time since it is using Euclid’s algorithm) using the same SUPERCOP config-
uration.

On the same machine again, we also compared with the constant time algorithm in [AAB+21],
using the testing platform provided by the authors3. For a fair comparison, we changed the com-
pilation options to match those used in SUPERCOP. The results are really close to those reported
in Table 7 in [AAB+21].

In all measurements, AVX instructions are used for binary field arithmetic.
Our results are summarized in table 3.8, where CT stands for “constant time” and NCT for “non

constant time”. The overhead with the NCT algorithm remains limited to a maximum of 5 whereas
the speedup with the existing CT algorithm is almost 4.

3available at https://github.com/peacker/constant_time_rollo.

https://github.com/peacker/constant_time_rollo
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Keygen NCT algorithm CT algorithm CT algorithm
[ABB+21] [AAB+21] (our work)

ROLLO-I-128 1,030,500 12,959,125 3,514,016
ROLLO-I-256 1,702,620 N/A 5,785,700
ROLLO-II-128 4,295,704 N/A 22,859,614

Keygen Speedup Overhead
[AAB+21] / (our) (our) / [ABB+21]

ROLLO-I-128 3.69 3.41
ROLLO-I-256 N/A 3.40
ROLLO-II-128 N/A 5.32

Table 3.8: Performance measurements

To understand which are the most time-consuming steps of our algorithm, we analyzed the
weights of each line of pseudo-code. Measurements weremadewith the profiling toolCallgrind
from the Valgrind suite.

Description Cost
Line 1 Transform from polynomial to normal representation 1.2%
Line 2 Elevate to power r − 1 94.7%
Line 3 Transform from normal to polynomial representation 1.2%
Line 4 Multiplication in F 2.8%
Line 5 Inversion in Fq < 0.1%
Line 6 Scalar multiplication < 0.1%

Table 3.9: Relative computation cost of each line of Algorithm 6 for polynomial inversion in F
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4.1 Cryptanalysis of Durandal

We present a new attack against the PSSI problem, one of the three problems at the root of se-
curity of Durandal [ABG+19], a rank metric code-based signature scheme. Our attack recovers
the private key using a leakage of information coming from several signatures produced with the
same key. Section 4.1.1 contains preliminary lemmas on subspaces of Fqm . Background on the
attacked scheme is given in Sections 4.1.2 and 4.1.3, which present Durandal and PSSI problem.
For understanding the gist and the main steps of the attack, the reader should read Sections 4.1.4
and 4.1.5.1. The rest of Section 4.1.5 provides full details on the correctness and complexity of the
attack. Finally, experimental results supporting our attack are shown in Section 4.1.6.

4.1.1 Preliminaries

4.1.1.1 Dimension of an intersection of subspaces

In this subsection, we prove some lemmas on the probability distribution of the dimension of an
intersection of two or more random subspaces of Fqm . These lemmas will be useful for a fine
analysis of our attack.

Lemma 4.1.1. Let x ∈ Fqm\{0}. Let B
$←− Gr(Fqm , b) be a random subspace of dimension b.

Then

P(x ∈ B) =
qb − 1

qm − 1
.

Proof. The set of subspaces of Fqm of dimension b containing x is in bijection with the set of
subspaces of the projective hyperplane Fqm/⟨x⟩ of dimension b − 1. Fqm/⟨x⟩ is an Fq-vector
space of dimension m − 1, hence the number of subspaces of Fqm of dimension b containing x is(
m−1
b−1
)
q
.

Then we divide this number by the total number
(
m
b

)
q
of subspaces of Fqm of dimension b, to

get the desired probability:

P(x ∈ B) =

(
m−1
b−1
)
q(

m
b

)
q

=

b−2∏
i=0

qm−1 − qi

qb−1 − qi

b−1∏
i=0

qb − qi

qm − qi

=
qb − 1

qm − 1
.

Lemma 4.1.2. Let A ∈ Gr(Fqm , a) and B $←− Gr(Fqm , b) be subspaces of Fqm . Then

P(dim(A ∩B) > 0) ≤ qa+b−m.

Proof. Notice that

dim(A ∩B) > 0⇔ ∃x ∈ A\{0}, x ∈ B,

hence:
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P(dim(A ∩B) > 0) = P
( ∨

x∈A\{0}

x ∈ B
)

≤
∑

x∈A\{0}

P(x ∈ B)

=
∑

x∈A\{0}

qb − 1

qm − 1
(Lemma 4.1.1)

≤
∑

x∈A\{0}

qb−m

= (qa − 1)qb−m

≤ qa+b−m.

Remark. When a+b > m, dim(A∩B) is always greater than 0 according to Grassmann’s formula
on dimensions. Note that the above lemma still holds in that case, since the right-hand side of the
equality is larger than 1.

We can generalize this lemma to an arbitrary family of independent random subspaces.

Lemma 4.1.3. For 1 ≤ i ≤ n, let Ai
$←− Gr(Fqm , ai) be uniformly random independent (in the

sense of probability) subspaces of Fqm . Then

P(dim(∩iAi) > 0) ≤ q
∑

i ai−(n−1)m.

Proof. As before, dim(∩iAi) > 0 if and only if there exists x ̸= 0 such that x ∈ ∩iAi, hence:

P(dim(∩iAi) > 0) = P
( ∨

x∈Fqm\{0}

x ∈ ∩iAi

)

= P
( ∨

x∈Fqm\{0}

( n∧
i=1

x ∈ Ai

))

≤
∑

x∈Fqm\{0}

P
( n∧
i=1

x ∈ Ai

)
=

∑
x∈Fqm\{0}

n∏
i=1

P(x ∈ Ai) (by independency of spaces Ai)

=
∑

x∈Fqm\{0}

n∏
i=1

qai − 1

qm − 1

≤
∑

x∈Fqm\{0}

n∏
i=1

qai−m

=
∑

x∈Fqm\{0}

q
∑

i ai−nm

= (qm − 1)q
∑

i ai−nm

≤ q
∑

i ai−(n−1)m.

Remark. Similarly to the previous remark, when
∑

i ai > (n − 1)m, dim(∩iAi) > 0 and the
lemma is still valid.
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We now present a slight variation of the above lemma when the random subspacesAi all share
a common element x. Let us introduce the following notation:

Definition 4.1.1. Let U ∈ Gr(Fqm , u) be a subspace of dimension u. For a ≥ u, we define

Gr(Fqm , U, a) := {A ∈ Gr(Fqm , a) |U ⊂ A},

the set of all subspaces of Fqm of dimension a containing U .

Gr(Fqm , U, a) is in bijection with Gr(Fqm/U, a− u), hence is of cardinality
(
m−u
a−u

)
q
.

Lemma 4.1.4. Let x ∈ Fqm\{0}. For 1 ≤ i ≤ n, let Ai
$←− Gr(Fqm , ⟨x⟩, ai) be random indepen-

dent subspaces of Fqm all containing x. Then, dim(∩iAi) ≥ 1 and

P(dim(∩iAi) > 1) ≤ q
∑

i ai−(n−1)m−1.

Proof. Since the subspaces Ai all contain x, we have immediately dim(∩iAi) ≥ 1. Next, we note
that

dim
(⋂

i

Ai

)
> 1⇔ dim

(⋂
i

Ai/⟨x⟩
)
> 0.

Therefore, we can apply Lemma 4.1.3 with the space Fqm/⟨x⟩ (of dimensionm− 1) and subspaces
A′i

$←− Gr(Fqm/⟨x⟩, ai − 1), to get

P(dim(∩iAi) > 1) ≤ q
∑

i(ai−1)−(n−1)(m−1)

= q
∑

i ai−(n−1)m−1.

4.1.1.2 Some results on product spaces

The following proposition states that it is easy to computeE fromF and the product space (see Def-
inition 0.0.2)EF when dim(EF )≪ m. It is analogue to the division ef

f = e, but in a vector space
setting. It will be necessary for a fine undersanding of the PSSI problem, and is also used exten-
sively for the decoding of LRPC codes, a family of rank-metric codes not used in Durandal but
found in other rank-metric cryptographic algorithms.

Proposition 4.1.1 ( [AGH+19], Proposition 3.5). Suppose m is prime. Let E $←− Gr(Fqm , r) and

F
$←− Gr(Fqm , d). Let (fi) be a basis of F . Then

E =
⋂
i

f−1i EF

with probability at least
1− rqr

d(d+1)
2 −m.

Remark. The above result requires m to be prime, which is always the case for parameters of
rank-based cryptographic primitives, including Durandal.
Remark. This proposition shows that it is possible to recover E with high probability when rd≪
m. In the other extreme case where rd ≥ m (i.e. EF = Fqm ), we get f−1i EF = Fqm so the chain
of intersections will always be Fqm and no information on E can be retrieved.

Definition 4.1.2 (Filtered subspace). Let E and F be two Fq-subspaces of Fqm . A strict subspace
U ⊊ EF of the product space EF is said to be filtered when it contains no non-zero product elements
of the form ef with e ∈ E and f ∈ F :

{ef, e ∈ E, f ∈ F} ∩ U = {0}.
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Key generation: E $←− Gr(Fqm , r)

Secret key: S ∈ Elk×n, S′ ∈ El′k×n

Public key: H $←− ideal matrix ∈ F(n−k)×n
qm , T = HST ,T ′ = HS′T

Sign(µ,S,S′):

1. W $←− Gr(Fqm , w),
F

$←− Gr(Fqm , d)

2. y $←− (W + EF )n, x = HyT

3. c = H(x, F, µ), c ∈ F l′k

4. U $←− filtered subspace of EF of di-
mension rd− λ

5. z = y + cS′ + pS, z ∈ (W + U)n

6. Output (z, F, c,p)

Verify(µ, z, F, c,p,H,T ,T ′):

1. Accept if and only if :
∥z∥ ⩽ w + rd− λ and
H(HzT − T ′cT + TpT , F, µ) = c

Figure 4.1: The Durandal Signature scheme

4.1.2 Durandal signature scheme

4.1.2.1 Description of the scheme

Webriefly recap in Figure 4.1 and in the below paragraphs theDurandal signature scheme, although
no deep understanding of the scheme is required for the rest of the article, since our attack targets
more specifically the PSSI problem defined in the next section. The reader is referred to [ABG+19]
for more details on Durandal. The scheme is parametrized with variables m,n, k, l, l′, r, d, and λ.
In Durandal, only half-rate codes are considered, therefore n = 2k.

Key generation. The secret key consists of two matrices S ∈ Elk×n and S′ ∈ El′k×n. S and
S′ are composed of ideal blocks of size k × k and their entries belong to the same secret support
E ⊂ Fqm of dimension r.

The public key consists of a random (n − k) × n ideal matrix H , together with the matrices
T = HS⊤ and T ′ = HS′⊤.

Signature of a message µ. Similar to the Lyubashevsky approach, the signer first computes to a
vector z = y+ cS′, where y is a vector whose entries are sampled in a spaceW +EF depending
on the secret key and c is a challenge depending on the message µ.

However, in order to avoid an attack, the vector z must be corrected with a corrective term pS
such that Supp(z) = W +U , whereU is a filtered subspace of the product spaceEF of dimension
rd− λ. p is a vector with entries in F and is computed through linear algebra during the signing
process.

The signature is the tuple (z, F, c,p). The signature consists therefore of the challenge c, com-
puted through a hash function, together with the answer to this challenge.

Verification of a signature (µ, z, F, c,p). To verify the signature, we have to check the rank
weight of z and thatH(x, F, µ) = c. The vector x is recomputed using z, c,p and the public key.
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4.1.2.2 Parameters

The parameters of Durandal, as presented in [ABG+19], are shown in Table 4.1.

q m n k l l′ d r w λ pk size σ size Security
Durandal-I 2 241 202 101 4 1 6 6 57 12 15,245 4,064 128
Durandal-II 2 263 226 113 4 1 7 7 56 14 18,606 5,019 128

Table 4.1: Parameters for Durandal. The sizes of public key (pk) and signature (σ) are in bytes.

4.1.3 PSSI problem
The security of the Durandal signature scheme relies on the hardness of several problems: I-RSL,
ARSD and PSSI. (see Theorem 20 in [ABG+19]).

While the first two problems are slight variants of the well-known syndrome decoding problem
in the rank metric (RSD) and are widely used among rank-based cryptographic primitives, the PSSI
is an ad-hoc problem that was also introduced in Durandal paper [ABG+19]. This latter problem
will be our main focus for the rest of the article.

The PSSI problem appears naturally when trying to prove the indistinguishability of the signa-
tures. Remember that we wrote in the previous section that the first two components of a Durandal
signature are a subspace F ∈ Gr(Fqm , d) and a vector z whose entries belong to the subspace
Z = W + U , where U is a filtered subspace of EF (see Definition 4.1.2). When a signer signs
N times with the same key, it produces several subspaces (Fi, Zi)1≤i≤N , the space E being fixed
since it is linked to the private key. It is natural to require that pairs of such subspaces (Fi, Zi) are
indistinguishable from random subspaces of the same dimension. This is captured by the following
definition:

Problem 4.1.1 (Product Spaces Subspaces Indistinguishability). Let E be a fixed
Fq-subspace of Fqm of dimension r. Let Fi, Ui and Wi be subspaces defined as follows:

• Fi
$←− Gr(Fqm , d);

• Ui
$←− Gr(EFi, rd − λ) such that {ef, e ∈ E, f ∈ Fi} ∩ Ui = {0} (i.e. Ui is a filtered

subspace of EFi);

• Wi
$←− Gr(Fqm , w).

The PSSIr,d,λ,w,m,N problem consists in distinguishing N samples of the form (Zi, Fi) where Zi =
Wi + Ui, from N samples of the form (Z ′i, Fi) where Z ′i is a random subspace of Fqm of dimension
w + rd− λ.1

Remark. An easy distinguisher could be to guess randomly unless dim(Zi) < w+rd−λ, in which
case Zi is bound to be of the first form Wi + Ui described above. However, this can occur only
if spaces Ui and Wi have a non-zero intersection, which happens with a probability dominated
by qw+rd−λ−m (cf. Lemma 4.1.2). As a result, with practical parameters of Durandal presented in
Table 4.1, this easy distinguisher gets a negligible advantage of less than 2−128. Therefore, in the
rest of this document, we consider the intersection Wi ∩ Ui to be trivial.

We define more precisely the two distributions between which a PSSI attacker must discrimi-
nate.

Definition 4.1.3 (PSSI distribution DPSSI ). Let E be a Fq-subspace of Fqm of dimension r. Let
DPSSI(E) be the distribution that outputs samples (Fi, Zi) defined as follows:

• Fi
$←− Gr(Fqm , d);

1In the original paper of Durandal, the first component of the samples are vectors zi of length n and support Zi but
this has been proven equivalent to the version defined in this paper (see the beginning of Section 4.1 in [ABG+19]).
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• Ui
$←− Gr(EFi, rd− λ) such that {ef, e ∈ E, f ∈ F} ∩ Ui = {0};

• Wi
$←− Gr(Fqm , w);

• Zi = Wi + Ui.

Definition 4.1.4 (Random distribution DRandom). Let DRandom the distribution that outputs sam-
ples (Fi, Zi) where Fi and Zi are independent random variables picked uniformly in, respecively,
Gr(Fqm , d) and Gr(Fqm , w + rd− λ).

The problem PSSI now simply consists in distinguishingN independent samples from the PSSI
distribution or from the random distribution.

We can now define the search version of this problem which will be attacked in the next sec-
tions. It is obviously harder than PSSI.

Problem4.1.2 (Search-PSSI). GivenN independent samples (Fi, Zi) fromDPSSI(E)with dim(E) =
r, the Search-PSSIr,d,λ,w,m,N problem consists in finding the vector space E.

Why filtering U?

There exists a simple attack on Search-PSSI in the case where U is equal to the entire space
EF and is not a strict subspace of it. In such a problematic setting, we can use similar arguments
to Proposition 4.1.1 to recover E from the knowledge of W + EF and F .

The filtration condition is a stronger constraint than having U being a strict subspace of EF .
The objective is to avoid an attacker gaining information from intersections I of the form f−1Z ∩
f ′−1Z with (f, f ′) ∈ F 2. If Z contains some product elements ef then the probability that
dim I ̸= 0 is much higher than if Z was truly random. With the filtration of the space U , such
techniques would not be useful.

Recovering the private key from Search-PSSI

Assume you can solve Search-PSSI. Then you can computeE, and from the public key (H,T ,T ′)
and the spaceE, it is easy to recover the private key (S,S′). Indeed, the equation T = HS⊤ with
coefficients in Fqm can be rewritten as linear systems in Fq . The number of equationsm(n− k)lk
is way larger than the number of unknowns rnlk, so with overwhelming probability the private
key will be the unique solution.

Existing attacks on PSSI

A security analysis of PSSI was presented in Durandal paper (see Section 4.1 in [ABG+19]).
The analysis relied on a distinguisher, whose idea is to consider product spaces of the form ZiGi

where Gi is a subspace of Fi of dimension 2. The probability that dimZiGi = 2(w + rd − λ)
depends on whether Zi is random or from the PSSI distribution. The claimed work factor of this
distinguisher was

2m−2(rd−λ)

and the authors of Durandal chose their parameters such that this work factor is above the security
level. Up to the present work, the above distinguisher was the state-of-the-art attack on PSSI and
it seemed that a large value for m was enough to prevent an attacker from breaking PSSI. As we
will see next, that is not the case, and on the contrary, the larger m is, the more attackable the
parameters are.
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4.1.4 An observation whenm is high
Before unveiling a practical attack against PSSI, we first make an interesting observation which
reveals the secret space E to an attacker who has no constraint on m. Therefore, in this sub-
section, we place ourselves in the simplified situation where 2d(w + rd− λ)≪ m2d(w + rd− λ)≪ m2d(w + rd− λ)≪ m. Even
though it is unrealistic as compared to practical parameters of the Durandal signature scheme, it
gives a first glimpse of the ideas that will be used for a practical attack against PSSI in the next
section.

The idea is the following: suppose an attacker has two instances from the PSSI distribution
(F1, Z1) and (F2, Z2). They can compute a "cross-product" of these instances

A := F1Z2 + F2Z1.

Even though for i ∈ {1, 2}, Zi contains a subspace Ui that is filtered and does not contain any
product element efi with e ∈ E and fi ∈ Fi, nothing guarantees that A is not filtered, meaning
it can contain product elements of the form eg with e ∈ E and g ∈ F1F2. Indeed, we observed
empirically with great probability that the entire product space E(F1F2) is contained in A:

E(F1F2) ⊂ A.

The dimension of A is upper bounded by 2d(w+ rd−λ) (which is by hypothesis greatly less than
m) and since an attacker can compute very easily a basis of the vector space F1F2, one can use a
chain of intersections, similar to Proposition 4.1.1, in order to recover E by computing⋂

g∈F1F2

g−1A.

An informal explanation for why A contains some product elements lies in the fact that, even
though Zi contains no product elements, it contains "2-sums" of product elements of the form
efi + e′f ′i for (e, e′) ∈ E2 and (fi, f

′
i) ∈ F 2

i .
More problematically, we will see in the next section that one can find 2-sums in both Z1 and

Z2 for the same pair (e, e′), meaning that there exists (e, e′) ∈ E2, (f1, f
′
1) ∈ F 2

1 and (f2, f ′2) ∈ F 2
2

such that

ef1 + e′f ′1 = z1 ∈ Z1,

ef2 + e′f ′2 = z2 ∈ Z2.

Notice that, in that case, the cross product f ′1z2 − f ′2z1, which is an element of A, is also a
product element because:

f ′1z2 − f ′2z1 = ef2f
′
1 + e′f ′2f

′
1 − ef1f

′
2 − e′f ′1f

′
2

= e(f2f
′
1 − f1f

′
2).

This explains why A contains product elements. As said earlier, we observed furthermore that A
contains all of them.

As said at the beginning of the section, computing A is only useful when m is high enough.
With practical parameters of PSSI, m is much less than 2d(w + rd − λ), and the computation of
F1Z2 + F2Z1 would only lead to A = Fqm . This does not give any information on E.

The next section overcomes this limitation on parameters; we refine the observation to give a
practical attack against PSSI.

4.1.5 An attack against PSSI
Since the vector spaceF1Z2+F2Z1 is too large for a practical attack, we turn our initial observation
into a combinatorial attack where the attacker picks individual elements f1 ∈ F1 and f2 ∈ F2 and
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computes spaces f1Z2 + f2Z1. If the attacker is lucky enough, they can obtain a product element
eg with e ∈ E and g ∈ F1F2. Since the vector spaces F1 and F2 are of small dimension d, the
combinatorial factor in the attack is manageable.

4.1.5.1 General overview of the attack

Our combinatorial attack against PSSI consists in repeatedly applying Algorithm 4.1. The algo-
rithm returns an element of Fqm , which is most of the time 0. We will show later on that, with
a non negligible probability, it returns a non-zero element of Fqm and in that case, this element
belongs to the secret space E with overwhelming probability.

Algorithm 4.1 Attack against PSSI
Input: Four PSSI samples (F1, Z1), (F2, Z2), (F3, Z3), (F4, Z4)
Output: An element x ∈ Fqm

1: Choose (f1, f ′1)
$←− F 2

1

2: Choose (f2, f ′2)
$←− F 2

2

3: Choose (f3, f ′3)
$←− F 2

3

4: Choose (f4, f ′4)
$←− F 2

4

5: for (i, j) ∈ J1, 4K2 with i < j do

6: if
∣∣∣∣fi f ′i
fj f ′j

∣∣∣∣ = 0 then go back to step 1

7: else
8: Compute

Ai,j :=
f ′jZi + f ′iZj∣∣∣∣fi f ′i

fj f ′j

∣∣∣∣
9: Compute

B :=
⋂

(i,j)∈J1,4K2

i<j

Ai,j

10: if dim(B) = 1 then
11: return a non-zero element of B
12: else
13: return 0

The attacker starts by drawing random pairs in the subspaces Fi. If they are lucky, there exists
a pair (e, e′) ∈ E2, such that a system (S) of four conditions is verified:

(S) :


ef1 + e′f ′1 = z1 ∈ Z1

ef2 + e′f ′2 = z2 ∈ Z2

ef3 + e′f ′3 = z3 ∈ Z3

ef4 + e′f ′4 = z4 ∈ Z4

Because the matrices
(
fi f ′i
fj f ′j

)
are chosen invertible (if not, the attacker retries with new random

pairs), the element e can be recovered using Cramer’s formula

e =

∣∣∣∣zi f ′i
zj f ′j

∣∣∣∣∣∣∣∣fi f ′i
fj f ′j

∣∣∣∣ .
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However, only the space Zi is known to the attacker, not the exact element zi. The attack thus
consists in computing a Cramer-like formula with vector spaces, in order to get vector spaces
containing e:

e ∈ Ai,j :=

∣∣∣∣Zi f ′i
Zj f ′j

∣∣∣∣∣∣∣∣fi f ′i
fj f ′j

∣∣∣∣ .
Finally, the attacker intersects all the spaces Ai,j . Two cases can then happen:

• If the attacker was lucky in the random sampling of (fi, f ′i), there exists (e, e′) ∈ E2 such
that conditions (S) are verified, and then the intersection will be almost surely ⟨e⟩.

• In the other case, the intersection will be almost surely of dimension 0 and the attacker can
retry with other samples.

The following subsections will be dedicated to proving our main result on the probability of
success of the attack. It relies on an equality on parameters, which is verified for Durandal, as well
as on an assumption which is discussed in the next subsection and is supported by simulations.

Theorem 4.1.1. Under the equality λ = 2r and under Assumption 1, the attack presented in Algo-
rithm 4.1 outputs:

• 0 with a probability ≥ 1− α;

• an element x ∈ E\{0} with a probability ≥ β;

• an element x ∈ Fqm\E with a probability ≤ α− β,

with {
α ≈ q−6r + q12(w+rd−λ)−5m − q12(w+rd−λ)−5m−6r

β ≈ q−6r − q12(w+rd−λ)−5m−6r−1

Note that α− β is always greater than 0 and that for existing parameters of Durandal, both α
and β weigh approximately q−6r , therefore the probability that the third case happens is negligible
in front of the chances of being in one of the two first cases.

Before delving into the details of the proof, we need technical results about the existence of
2-sums in a product space.

4.1.5.2 Technical results about 2-sums

For this subsection, let E be a subspace of Fqm of dimension r and let (F1, Z1), (F2, Z2), (F3, Z3),
(F4, Z4) be four PSSI samples.

Definition 4.1.5. For a fixed pair (e, e′) of linearly independent elements in E, we define Xe,e′,F,Z

the Bernouilli random variable

Xe,e′,F,Z : F 2 −→ {0, 1}
(f, f ′) 7−→ 1Z(ef + e′f ′)

where 1Z refers to the indicator function of the set Z .

The element ef +e′f ′ belongs to the product spaceEF and it is natural to think that its statis-
tical distribution is close to uniformly random inside the space EF , therefore the probability that
it falls in the space Z is expected to be q−λ, since Z∩EF is of codimension λ inEF . We formalize
it in the following assumption, alongside with an additional hypothesis on the independence of the
random variables defined above.
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Assumption 1. The family of random variables (Xe,e′,Fi,Zi), parametrized by all the pairs (e, e′) of
linearly independent elements in E and the four PSSI samples, form a family of independent Bernoulli
variables of parameter q−λ.

This assumption was validated by numerous simulations. Using the above assumption, we can
prove the following lemma which explicitly gives the probability of fulfilling conditions from (S).
We present in Section 4.1.6 an experimental validation of Lemma 4.1.5.

Lemma 4.1.5. Let (fi, f ′i)
$←− Fi for i ∈ J1, 4K. Under the condition λ = 2r and under Assump-

tion 1, the probability ε that there exists a pair (e, e′) ∈ E2, such that the system (S) of four conditions
is verified:

(S) :


ef1 + e′f ′1 = z1 ∈ Z1

ef2 + e′f ′2 = z2 ∈ Z2

ef3 + e′f ′3 = z3 ∈ Z3

ef4 + e′f ′4 = z4 ∈ Z4

admits an asymptotic development

ε = q−6r + or→∞(q−10r).

Proof. The system (S) is verified for a pair (e, e′) when the four boolean variables Xe,e′,Fi,Zi

(defined above) are all true for i ∈ J1, 4K. Therefore,

ε = P(
∨

(e,e′)∈E2

(

4∧
i=1

Xe,e′,Fi,Zi
))

= 1− P(
∧

(e,e′)∈E2

(

4∨
i=1

Xe,e′,Fi,Zi
))

= 1−
∏

(e,e′)∈E2

P(
4∨

i=1

Xe,e′,Fi,Zi
)

= 1−
∏

(e,e′)∈E2

(1− P(
4∧

i=1

Xe,e′,Fi,Zi
))

= 1−
∏

(e,e′)∈E2

(1− q−4λ)

= 1− (1− q−4λ)q
2r−or→∞(qr+2)

= 1− (1− q−8r)q
2r−or→∞(qr+2)

= 1− (1− q−6r + or→∞(q−12r))

= q−6r + or→∞(q−12r).

In the rest of the paper we will omit the residue in or→∞(q−12r).

4.1.5.3 Proof of the probability of success of the attack

We can now finalize the proof of success of the attack.

Proof of Theorem 4.1.1. The three cases of Theorem 4.1.1 form a partition of the possible outputs
of Algorithm 4.1, hence we only need to prove the first two inequalities on the probabilities of the
theorem and the third inequality will follow immediately.

For i ∈ J1, 4K, let (fi, f ′i) ∈ F 2
i be the pairs sampled at random during the first four steps of

the attack.
We will consider two separate cases depending on whether conditions from (S) are fulfilled. Each
case will yield one of the equalities to be proven.



78 Chapter 4. Design and cryptanalysis of signature schemes

First case. Suppose that there exists (e, e′) ∈ E2 such that the conditions from (S) are verified.
According to Lemma 4.1.5, this happens with probability q−6r .

In that case, we can assume the vector spaces Ai,j are independent (as random variables)
subspaces of Fqm , all containing e, of dimension ai,j ≤ 2(w + rd − λ), hence

∑
i,j ai,j ≤

12(w + rd − λ). By using Lemma 4.1.4, ⟨e⟩ ⊂ B and the probability that B is exactly ⟨e⟩ is
greater than 1 − q12(w+rd−λ)−5m−1. As a result, Algorithm 4.1 outputs an element of E with a
probability greater or equal to

q−6r(1− q12(w+rd−λ)−5m−1) = β.

Second case. If there does not exist a pair (e, e′) ∈ E such that the conditions from (S) are
verified (it happens with probability 1− q−6r), then the vector spaces Ai,j can be seen as random
independent subspaces of Fqm of dimension ai,j ≤ 2(w+rd−λ), so this time we use Lemma 4.1.3.

It proves that Algorithm 4.1 returns 0 with a probability of at least

(1− q−6r)(1− q12(w+rd−λ)−5m) = 1− α.

4.1.5.4 Complexity of the attack

Algorithm 4.1 returns only one element of E with a small probability of success. In order to fully
solve the Search-PSSI problem, the attacker has to recover the whole space E, i.e. at least r el-
ements of the secret space. In this subsection we study the complexity of the full attack, which
recovers E totally.

Let us first study the complexity of one call to Algorithm 4.1. Themost costly operation is Step 8,
which consists in five intersections of subspaces of Fqm , each of dimension less than 2(w+rd−λ).
An intersection of two subspaces is usually computed through the Zassenhaus algorithm, and is
essentially a Gaussian elimination of a binary matrix of size 4(w + rd − λ) × 2m, which costs
2m× (4(w+ rd−λ))2 = 32m(w+ rd−λ)2 operations in Fq . Repeating the operation five times
yields a total complexity of

160m(w + rd− λ)2

operations in Fq .

It remains to evaluate the number of calls to Algorithm 4.1. To simplify, because the probability
that Algorithm 4.1 returns an element outside the space E is negligible, we will consider that the
algorithm either

• returns a random element of E with probability q−6r , or

• returns 0 with probability 1− q−6r .

On average, the number of times Algorithm 4.1 must be run is q6r multiplied by the expectancy
of the number of elements needed to recover E, which is given by the following lemma.

Lemma 4.1.6. Let E be a subspace of Fqm of dimension r. Let O be an oracle which, on each

call i, returns an independent xi
$←− E. The average number n of calls to the oracle such that

⟨x1, ..., xn⟩ = E is upper bounded as follows:

n ≤ r +
1

q − 1
.

Proof. LetX be the integer-value random variable defined as the number of calls to the oracle until
it generates E, i.e. ⟨x1, ..., xX−1⟩ ⊊ E and ⟨x1, ..., xX⟩ = E.

It is clear thatX ≥ r with probability 1. For i > r,X ≥ i if and only if ⟨x1, ..., xi⟩ ⊊ E, which
is equivalent to having a uniformly random r × i matrix with entries in Fq not of full rank. This
happens with a probability upper bounded by qr−i (see Lemma B.1.1).
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To finish the proof, we calculate the expectancy n of X :

n = E(X)

= r +

∞∑
i=r+1

P(X ≥ i)

≤ r +

∞∑
i=r+1

qr−i

≤ r +
1

q − 1
.

Therefore, we can formulate the following result.

Proposition 4.1.2 (Complexity of the attack). Under the same conditions of validity than Theo-
rem 4.1.1, the average complexity of the attack is given by

160m(w + rd− λ)2(r +
1

q − 1
)q6r

operations in Fq .

Applying the above formula to parameters of Durandal, it gives the following table:

Theoretical complexity Security
Durandal-I 66 128
Durandal-II 73 128

Table 4.2: Theoretical base-2 logarithm of the average number of bit operations necessary to run
our attack against Search-PSSI.

4.1.5.5 Number of signatures

In the previous subsection, we saw that Algorithm 4.1 must be run on average (r + 1
q−1 )q

6r to
finalize the attack. Since 4 PSSI samples are used in Algorithm 4.1, it could seem that an average
number of 4(r+ 1

q−1 )q
6r of signatures would be necessary to recover the private key. This would

be a very large number of signatures with the considered parameters.

Fortunately, the same signatures can be reused by running Algorithm 4.1 several times with
the same 4 PSSI samples. Indeed, this algorithm starts by choosing at random 8 elements in vector
spaces of Fq-dimension d, which makes q8d possibilities.

We can assume that if the algorithm is run with the same set of 4 signatures a number of times
greatly less than q8d, the event that one run outputs an element of E remains probabilistically
independent from the other runs with the same samples.

Empirically, we set to q5d the number of reuses of the same signatures in Algorithm 4.1, which
makes an average number of signatures necessary to finalize the attack of:

4(r +
1

q − 1
)
q6r

q5d
.

Applying the above formula to parameters of Durandal, it gives the following table:
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Expected signatures
Durandal-I 1,792
Durandal-II 4,096

Table 4.3: Excepted number of signatures to perform our attack on Search-PSSI.

4.1.6 Experimental results
We implemented the attack in C language, using the RBC library [ABB+21] which provides useful
functions when working with finite field subspaces. Our implementation is publicly available in
the following Github repository:

https://github.com/victordyseryn/pssi-security-implementation

All of our experiments were performed on a laptop equipped with an Intel Core i5-7440HQ
CPU and 16GB RAM.

Since we didn’t have a sufficient computing power at our disposal to run the 266 attack on the
actual parameters of Durandal in reasonable time, we ran experiments with lower parameter sets,
which are represented in the following table:

Experiment number q m d r λ w

A2 2 83 2 2 3 19
A3 2 127 3 3 6 28
A4 2 163 4 4 8 38
A5 2 199 5 5 10 47

Table 4.4: Reduced parameter sets for experiments on PSSI attack

For each experiment, we ran the attack a number of times depending on the complexity of
the attack, and we recorded the average number of cycles to recover the entire secret space E, as
well as the average number of PSSI samples needed. We were able to complete the attack up to
the parameter set A4. Experiment A5 was out of reach in a reasonable time. We computed the
experimental complexity of our experiments as the average number of cycles required to recover
the secret key, and then multiplying this cycle count by 64 to obtain an approximation of the
number of bit operations performed by our 64-bit processor. Our experimental results are presented
in Table 4.5.

Experiment q m d r λ w Number of
tests

Number of
signatures (avg)

Experimental
complexity

Theoretical
complexity

A2 2 83 2 2 3 19 1,000 10 232.4 235.9

A3 2 127 3 3 6 28 100 301 244.9 244

A4 2 163 4 4 8 38 1 502 251.2 251.7

Table 4.5: Experimental results on PSSI attack

Figure 4.2 shows the comparison between the experimental and theoretical complexities, as
well as the expected complexities for parameter sets A5, Durandal-I and Durandal-II.

Finally, we also validated the result from Lemma 4.1.5 by running the following experiment:
we randomly generated PSSI samples and checked whether there exists a pair (e, e′) ∈ E2 such

https://github.com/victordyseryn/pssi-security-implementation
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Figure 4.2: Comparison between experimental and theoretical complexities for different values of
r.

that the system (S) described in Lemma 4.1.5 is verified, by enumerating every possible pair (e, e′).
Results are presented in Table 4.6.

q m d r λ w Number of
tests

Experimental
probability

Theoretical
probability

2 83 3 3 6 19 224 2−18.6 2−18

2 127 3 3 6 28 224 2−18.9 2−18

Table 4.6: Experimental results validating Lemma 4.1.5

4.2 PERK: a signature scheme based on a variant of PKP

In this section, we present PERK, a new compact digital signature scheme based on a new multi-
dimensional version of PKP: the relaxed IPKP problem (r-IPKP). In Section 4.2.1 we cover basic
notations and definitions, recall ZKPoK constructions as well as the MPCitH paradigm. In the
subsequent Section 4.2.2 we then present our new ZKPoK protocol based on the hardness of the
r-IPKP, convert it into a non-interactive signature scheme via the Fiat-Shamir transform and pro-
vide comprehensive security proofs. Section 4.2.3 covers a detailed analysis of the complexity of
r-IPKP, where Section 4.2.3.1 covers previous approaches and Section 4.2.3.2 introduces our new
algorithm. Parameters of our scheme are presented in Section 4.2.4 which also provides a compar-
ison to the state-of-the-art. Eventually, in Section 4.2.5 performance benchmarks of our optimized
AVX2 consant-time implementation are given.

I mainly contributed during my doctoral work to the definition of the r-IPKP problem and
its security analysis, as well as the parameter selection for our algorithms. The construction and
implementation of the new protocol and signature scheme was mostly handled by other members
of the PERK team.
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4.2.1 Preliminaries
4.2.1.1 Proofs of Knowledge

Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation. If (x;w) ∈ R, we say x is a statement and w is a
witness for x. The set of valid witnesses for x is denoted byR(x) = {w | (x;w) ∈ R}. A statement
that admits a witness is called a true or valid statement. The set of true statements is denoted by
LR := {x : ∃w such that (x;w) ∈ R}. A binary relation is said to be an NP relation if the validity
of a witness w can be verified in time polynomial in the size |x| of the statement x. From now on
we assume all relations to be NP relations.

An interactive proof for relationR aims for a prover P to convince a verifier V that a statement
x admits a witness, or even that the prover knows a witness w ∈ R(x).

Definition 4.2.1 (Interactive proof (cf. [AF22])). An interactive proof Π = (P,V) for relation R is
an interactive protocol between two probabilistic machines, a prover P and a polynomial time verifier
V. Both P and V take as public input a statement x and, additionally, P takes as private input a
witness w ∈ R(x), which is denoted as (P(w),V) (x). The verifier V either accepts or rejects the
prover’s claim of knowing a witness for x, the output of the protocol is the verifier’s decision. The set of
all messages exchanged in the protocol execution is called a transcript and is denoted ⟨P(x,w),V(x)⟩.
We call the transcript accepting (or resp. rejecting) based on whether the verifier accepts (or rejects)
the prover’s claim.

We assume that the prover sends the first and the last message in any interactive proof. Hence,
the number of messages is always an odd number 2µ+1. We also sayΠ is a (2µ+1)-round proof.
It is represented in the following figure.

Prover P Verifier V

Input: (x,w) Input: x

Commitment

Challenge 1

Response 1

...

Challenge µ

Response µ

accept(1) or reject(0)

Figure 4.3: (2µ+ 1)-round interactive proof

An interactive proof Π is complete if the verifier V accepts honest executions with a public-
private input pair (x;w) ∈ R with high probability. It is sound if the verifier rejects the false
statements x /∈ LR with high probability. In this work, we follow the presentation of [AF22] and
do not require these properties as part of definition of interactive proofs, but consider them as
desirable additional security properties.

Definition 4.2.2 (Completeness (cf. [AF22])). An interactive proof Π = (P,V) for relation R is
complete with completeness error ρ : {0, 1}∗ → [0, 1] if for every (x;w) ∈ R,

P [(P(w),V) (x) = reject] ≤ ρ(x).

If ρ(x) = 0 for all x ∈ LR, then Π is said to be perfectly complete.
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Definition 4.2.3 (Soundness (cf. [AF22])). An interactive protocol Π = (P,V) for relation R is
sound with soundness error σ : {0, 1}∗ → [0, 1] if for every x /∈ LR and every prover P∗,

P [(P∗,V) (x) = accept] ≤ σ(x).

An interactive proof which is complete and sound allows a prover to convince a verifier that
the statement x is true, i.e., x ∈ LR. However, this does not necessarily convince a verifier that the
prover actually “knows" the witness w ∈ R(x). This stronger property is captured by the notion
of knowledge soundness. Informally, knowledge soundness guarantees that if a prover convinces a
verifier about the validity of some statement x with sufficiently high probability, then the prover
can actually compute a witness w ∈ R(x) with high probability. 2

Definition 4.2.4 (Knowledge Soundness (cf. [AF22])). An interactive protocol Π = (P,V) for re-
lation R is knowledge sound with knowledge error εKS : {0, 1}∗ → [0, 1] if there exists a positive
polynomial q and an algorithm Ext, called knowledge extractor, with the following properties: The
extractor Ext, given input x and rewindable oracle access to a (potentially dishonest) prover P∗, runs in
an expected number of steps that is polynomial in |x| and outputs a witnessw ∈ R(x)with probability

P
[(

ExtP
∗
(x)
)
∈ R

]
≥ ϵ(x,P∗)− εKS(x)

q(|x|)
,

where ϵ(x,P∗) := P [(P∗,V) (x) = accept].

If ϵ(x,P∗) = P [(P∗,V) (x) = accept] > εKS(x), then the success probability of the knowledge
extractor Ext in Definition 4.2.4 is positive. Therefore, ϵ(x,P∗) > εKS(x) implies that x admits a
witness, i.e., x ∈ LR. Hence, knowledge soundness implies soundness.

Definition 4.2.5 (Proof of Knowledge (cf. [AF22])). An interactive proof that is both complete with
completeness error ρ(·) and knowledge sound with knowledge error εKS(·) is a Proof of Knowledge
(PoK) if there exists a polynomial q such that 1− ρ(x) ≥ εKS(x) + 1/q (|x|) for all x.

It is desirable to have simple verifiers which can send uniform random challenges to the prover,
and efficiently verify the transcript.

Definition 4.2.6 (Public-Coin (cf. [AFK22])). An interactive proof Π = (P,V) is public-coin if all

of V’s random choices are made public, i.e. are part of the transcript. The message chi
$←− CHi of V

in the 2i-th round is called the i-th challenge, and CHi is the challenge set.

Public-coin protocols can be turned into non-interactive protocols by using the Fiat-Shamir
transformation [FS87]. In this work, we consider only public-coin protocols.

Next, we discuss the notion of special-soundness. Special-soundness property is easier to check
than knowledge soundness and for many protocols, knowledge soundness follows from special-
soundness. Note that this requires special-sound protocols to be public-coin.

Definition 4.2.7 (k-out-of-N Special Soundness (cf. [AF22])). Let k,N ∈ N. A 3-round public-
coin protocol Π = (P,V) for relation R, with challenge set of cardinality N ≥ k, is k-out-of-N
special sound if there exists a polynomial time algorithm that, on input a statement x and k accepting
transcripts (cmt, ch1, rsp1), . . . , (cmt, chk, rspk) with common first message cmt and pairwise dis-
tinct challenges ch1, . . . , chk , outputs a witness w ∈ R(x). We also say Π is k-special-sound and, if
k = 2, it is simply called special-sound.

In order to generalize k-special-soundness to multi-round protocols we will introduce the no-
tion of a tree of transcripts following the definitions given in [ACK21].

Definition 4.2.8 (Tree of Transcripts (cf. [AF22])). Let k1, . . . , kµ ∈ N. A (k1, . . . , kµ)-tree of
transcripts for a (2µ+ 1)-round public-coin protocol Π = (P,V) is a set ofK =

∏µ
i=1 ki transcripts

2Since the protocol presented in this work only achieves computational soundness, and is secure when the prover runs
in polynomial time, technically our protocol is an argument of knowledge. However, we avoid this distinction for simplicity.
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cmt

rsp1,1,...,1µ
. . . rsp

1,1,...,kµ
µ

rsp1,12

ch1,12

. . . rsp1,k2

2

ch1,k2

2

rsp11

ch11

. . .

. . .

. . .

rspk1,1
2

chk1,1
2

. . .

rspk1,k2,...,1
µ

. . . rsp
k1,k2,...,kµ
µ

rspk1,k2

2

chk1,k2

2

rspk1
1

chk1
1

Figure 4.4: (k1, k2, . . . , kµ) tree of transcripts of a (2µ+ 1)-round public-coin protocol

arranged in the following tree structure. The nodes in this tree correspond to the prover’s messages and
the edges to the verifier’s challenges. Every node at depth i has precisely ki children corresponding
to ki pairwise distinct challenges. Every transcript corresponds to exactly one path from the root to a
leaf node. For a graphical representation we refer to Figure 4.4. We refer to the corresponding tree of
challenges as a (k1, . . . , kµ)-tree of challenges.

We will also write k = (k1, . . . , kµ) ∈ Nµ and refer to a k-tree of transcripts.

Definition 4.2.9 ((k1, . . . , kµ)-out-of-(N1, . . . , Nµ) Special Soundness (cf. [AF22])). Let k1, . . . , kµ,
N1, . . . , Nµ ∈ N. A (2µ+ 1)-round public-coin protocol Π = (P,V) for a relation R, where V
samples the i-th challenge from a set of cardinality Ni ≥ ki for 1 ≤ i ≤ µ, is (k1, . . . , kµ)-out-of-
(N1, . . . , Nµ) special-sound if there exists a polynomial time algorithm that, on an input statement
x and a (k1, . . . , kµ)-tree of accepting transcripts outputs a witness w ∈ R(x). We also say Π is
(k1, . . . , kµ) special-sound.

The following theorem proved in [ACK21] states that special soundness implies knowledge
soundness.

Theorem 4.2.1 ((k1, . . . , kµ) Special Soundness implies Knowledge Soundness [ACK21, Theo-
rem 1]). Let µ, k1, . . . , kµ ∈ N be such thatK = Πµ

i=1ki. Let (P,V) be a (k1, . . . , kµ) special sound
(2µ+1)-round interactive protocol for relation R, where V samples each challenge uniformly at ran-
dom from a set of cardinality Ni for 1 ≤ i ≤ µ. Then (P,V) is knowledge sound with knowledge
error

εKS =

∏µ
i=1 Ni −

∏µ
i=1(Ni − ki + 1)∏µ

i=1 Ni
≤

µ∑
i=1

ki − 1

Ni
. (4.1)

We write Πτ := (Pτ ,Vτ ) for the τ -fold parallel repetition of Π, which runs τ instances of Π
in parallel and the verifier Vτ accepts if all the parallel instances are accepted.

The following theorem proved in [AF22] states that the knowledge soundness is retained (and
knowledge error is reduced) via parallel repetition.

Theorem 4.2.2 (Parallel Repetition for Multi-Round Protocols [AF22, Theorem 4] ). Let (P,V) be
a (k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special sound protocol. Let (Pτ ,Vτ ) be the τ -fold repetition of
protocol (P,V) . Then (Pτ ,Vτ ) is knowledge sound with knowledge error ετKS, where

εKS = 1−
µ∏

i=1

(Ni − ki + 1)

Ni
(4.2)
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is the knowledge error of (P,V).

Definition 4.2.10 (Special Honest-Verifier Zero Knowledge (SHVZK) (adapted from [ACK21])).
An interactive proof Π = (P,V) is called { perfectly, statistically, computationally } honest-verifier
zero knowledge (HVZK) if there exists a polynomial time simulator that on input x ∈ LR outputs
an accepting transcript which is distributed { perfectly, statistically, computationally } close to the
transcripts generated by honest executions ofΠ. If the simulator proceeds by first sampling the verifier’s
messages uniformly at random, then Π is called special honest-verifier zero knowledge (SHVZK).

4.2.1.2 Merkle Trees

Merkle trees can be used in our context to compress randomness seeds as suggested in [KKW18].
Suppose a party needs to generate N seeds and then to send only N − 1 of those seeds (without
knowing in advance which seed should not be sent). The principle is to build a binary tree of depth
⌈log2(N)⌉. The root of the tree is labeled with a master seed θ. The rest of the tree is labeled
inductively by using a PRG of double extension on each parent node and splitting the output on
the left and right children.

To reveal all seeds except seed number i ∈ [N ], the principle is to reveal the labels on the
siblings of the paths from the root of the tree to leave i. It allows to reconstruct all seeds but seed
number i at the cost of communicating ⌊log2(N)⌋ labels, which is more effective than communi-
cating N − 1 seeds.

4.2.1.3 MPC-in-the-Head and PoK

Our construction relies on the MPC-in-the-Head (MPCitH) paradigm introduced by Ishai, Kushile-
vitz, Ostrovsky, and Sahai in [IKOS07]. This paradigm builds a zero-knowledge proof based on a
secure multiparty computation (MPC) protocol. Informally, the MPC protocol is used to compute
the verification of an NP relation, where the privacy guarantee of the protocol is used to achieve
the zero-knowledge property.

The main steps of the proof of knowledge resulting from the MPCitH technique are the follow-
ing:

1. The prover splits its witness into N parties by secret sharing the witness;

2. The prover then simulates locally (“in her head”) all the parties of the MPC protocol which
evaluates a Boolean function that is expected to be 1 whenever the witness is correct (this is
supposed to correspond to the verification of desired NP relation);

3. The prover commits to the views of all the parties in the MPC protocol;

4. The verifier chooses a random subset ofN ′ < N parties and asks to reveal their correspond-
ing views;

5. The verifier finally checks that the views of the revealed parties are consistent with each
other and with an honest execution of the MPC protocol that yields output 1.

This transformation achieves the zero-knowledge property as long as the views of any N ′

parties do not leak any information about the secret witness.
Since our proof of knowledge is an instantiation of the MPCitH technique for the specific case

of r-IPKP, it benefits from an extensive literature of optimizations generic to anyMPCitH construc-
tion, such as:

• The preprocessing extension, introduced in [KKW18], allows the MPC protocol – used in
the MPCitH technique – to rely on a preprocessing phase (under certain conditions) thus
drastically reducing the proof size;

• the challenge space amplification technique, introduced in [BG23], that is itself an optimiza-
tion of the PoK with Helper paradigm introduced in [Beu20b];

• Merkle trees to reveal a partial number of random seeds, as explained in Section 4.2.1.2.
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4.2.1.4 Fiat-Shamir Transformation

In this section, we explain the random oracle model and Fiat-Shamir transformation used for
transforming interactive protocols into non-interactive ones. We closely follow the presentation
of [AFK22, Section 2.3] in the following exposition.

In the random oracle model (ROM), algorithms have black-box (or input-output) access to an
oracle RO : {0, 1}∗ → Z , called as random oracle, which is instantiated with a uniform random
function with domain {0, 1}∗ and codomain Z . Generally, Z = {0, 1}η for some η ∈ N related
to the security parameter. In practice, RO can be implemented by lazy sampling, which means
for each input string x ∈ {0, 1}∗, RO(x) is sampled uniform randomly from Z and then fixed.
To avoid technical difficulties, we limit the domain from {0, 1}∗ to {0, 1}≤ℓ, the finite set of all
bitstrings of length at most ℓ, for a sufficiently large ℓ ∈ N.

An algorithm ARO that is given black-box access to a random oracle is called a random oracle
algorithm. We say A is a Q-query random-oracle algorithm, if it makes at most Q queries to RO
(independent of RO).

A natural extension of the ROM is whenA is given access tomultiple independent random ora-
cles RO1,RO2, . . . ,ROµ, possibly with different codomains. In practice, these random oracles can
be instantiated by a single random oracle RO : {0, 1}∗ → {0, 1}η using the standard techniques
for domain separation (refer to [BDG20] for more details) and for sampling random elements from
non-binary sets.

The Fiat-Shamir transform [FS87], turns a public-coin interactive proof into a non-interactive
proof in the random oracle model. The general idea of this transformation is to compute the i-th
challenge message chi as a hash of the i-th prover message ai along with (partial) communication
transcript generated till that point. For aΣ-protocol, the challenge ch is computed as ch := H(cmt)
or as ch := H(x, cmt), where the former is sufficient for static security, where the statement x is
given as input to the dishonest prover, and the latter is necessary for adaptive security, where the
dishonest prover can choose the statement x for which it wants to forge a proof.

For multi-round public-coin interactive proofs, there is some degree of freedom in the compu-
tation of the i-th challenge. For concreteness we consider a particular version where all previous
messages are hashed along with the current message.

Let Π = (P,V) be a (2µ+ 1)-round public-coin interactive proof, where the challenge for the
i-th round is sampled from set CHi. For simplicity, we considerµ random oraclesROi : {0, 1}≤ℓ →
CHi that map into the respective challenge spaces.

Definition 4.2.11 (Fiat-Shamir Transformation (cf. [AFK22])). The static Fiat-Shamir transfor-
mation FS [Π] = (Pfs,Vfs) is a non-interactive proof in the ROM, where PRO1.RO2....,ROµ

fs (x;w) runs
P(x;w) but instead of asking the verifier for the challenge chi on message ai, the challenges are com-
puted as

chi = ROi (a1, a2, . . . , ai−1, ai) ; (4.3)

the output is then the proofπ = (a1, . . . , aµ+1). On input a statementx and a proofπ = (a1, . . . , aµ+1),
P
RO1.RO2....,ROµ

fs (x, π) accepts if, for chi as above V accepts the transcript (a1, ch1, . . . aµ, chµ, aµ+1)
on input x.

If the challenges are computed as

chi = ROi (x, a1, ch1, . . . ai−1, chi−1, ai) ; (4.4)

the resulting non-interactive proof in ROM is called as the adaptive Fiat-Shamir transformation.

4.2.2 PoK and Signature based on r-IPKP

4.2.2.1 Relaxed-IPKP: our variant of the Permuted Kernel Problem

The classical IPKP problem, in its generic form with an inhomogeneous syndrome y and a dimen-
sion parameter t, was defined in Definition 1.3.1.
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Instead of directly relying on the hardness of IPKP, we consider a relaxed version r-IPKP which
allows for more efficient constructions. In this relaxed variant the searched permutation does not
necessarily have to satisfy the identity for all given pairs but only for an arbitrary (non-zero) linear
combination of those pairs.

Definition 4.2.12 (r-IPKP). Let (q,m, n, t) be positive integers such that m < n, H ∈ Fm×n
q ,

(xi,yi) ∈ Fn
q × Fm

q and π ∈ Sn be a permutation such that H
(
π[xi]

)
= yi for all i ∈ [t].

Furthermore, the matrix whose columns are the xi has full rank. Given
(
H, (xi,yi)i∈[t]

)
, the Re-

laxed Inhomogeneous Permuted Kernel Problem r-IPKP(q,m, n, t) asks to find any π̃ ∈ Sn such that
H
(
π̃
[∑

i∈[t] κi · xi

])
=
∑

i∈[t] κi · yi for some κ ∈ Ft
q \ 0, where κ := (κ1, . . . , κt) and 0 ∈ Ft

q

is the all zero vector.

The hardness of the above problem is discussed in Section 4.2.3.

4.2.2.2 Proof of Knowledge based on r-IPKP

Recall that our goal is to construct a post-quantum digital signature scheme based on the ZKPoK
protocol by using the Fiat-Shamir transformation [FS87]. However, Kales and Zaverucha in [KZ20]
showed that 5-round PoK which use parallel repetition to achieve a negligible soundness error can
be attacked when they are converted to their non-interactive version with the Fiat-Shamir trans-
form. The attack strategy optimally guesses the challenges in each round allowing to convince the
verifier by crafting the responses based on the guessed challenge values, without actually knowing
the secret. While this attack can be thwarted by increasing the number of parallel repetitions ap-
propriately, it was shown in [BG23] that one can achieve a similar result by amplifying the challenge
space queried by the verifier, which can lead to more efficient constructions.

Our construction leverages the r-IPKP problem introduced in Section 4.2.2.1 as away to perform
challenge space amplification. Informally, the problem requires, given a matrix H and t pairs
of vectors (xi,yi), to find a permutation π that sends Hπ(x) to y where x :=

∑
i κixi (resp.

y :=
∑

i κiyi) and κ1, . . . , κt are the coefficients of an arbitrary adversarially chosen (non-zero)
linear combination. Let x =

(
H, (xi,yi)i∈[t]

)
and let w = π ∈ Sn as defined in Definition 4.2.12.

LetRt−r-IPKP be a relation for r-IPKP problem defined as,

Rt−r-IPKP :=

{( (
H, (xi,yi)i∈[t]

)
; π̃
)
:

H
(
π̃
[∑

i∈[t] κi · xi

])
=
∑

i∈[t] κi · yi

for someκ ∈ Fq
t \ 0

}
We now present our protocol in Figure 4.5 that is inspired from [BG23] and [FJR23]. Informally,

it consists of three main steps, following the MPCitH paradigm:

1. In the commitment step, the witness π is split into N compositional shares π1, . . . , πN such
that π = πN ◦ πN−1 ◦ · · · ◦ π1. The prover also generates N (pseudo) random vectors
v1, . . . ,vN in Fn

q . The compositional and vector shares are then combined to construct a
syndromeHv (the vector v is generated by combining the shares πis and vis, refer Figure 4.5
for the details), which is committed together with the generated shares (πi and vi).

2. The verifier then sends coefficients κi of an Fq-linear combination as a first challenge. The
prover then computes values s1, . . . , sN with the help of the πi and vi values committed
earlier and the public statement x =

(
H, (xi,yi)i∈[t]

)
, such thatHsN = Hv+

∑
i∈[t] κiyi.

The prover then sends si values as its response. In the actual protocol we use a collision-
resistant hash function to compress the information sent to the verifier.

3. Finally, the verifier sends an index α ∈ [N ] as the second challenge. The prover reveals all
shares πi and vi except the ones with index α. Additionally, the prover reveals the share
sα. This allows the verifier to verify the consistency of the views of all the shares except
the ones with index α by recomputing the commitments. The verifier can also recompute
all the si values for i ̸= α and together with sα sent by the prover, the verifier can then
reconstruct sN . Finally the verifier computes Hv = HsN −

∑
κiyi and checks if this

value is consistent with the commitment received in first message (Step 1 above).
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Prover P Verifier V

Input: (x = (H, (xi)i∈[t], (yi)i∈[t]), w = π) Input: x = (H, (xi)i∈[t], (yi)i∈[t])

θ
$←− {0, 1}λ

For i ∈ {N, . . . , 1},

⋄ θi
$,θ←− {0, 1}λ, ϕi

$,θi←− {0, 1}λ, r1,i
$,θi←− {0, 1}λ

⋄ If i ̸= 1, πi
$,ϕi←− Sn, vi

$,ϕi←− Fn
q , cmt1,i = Com

(
r1,i, ϕi

)
⋄ If i = 1, π1 = π−1

2 ◦ · · · ◦ π−1
N ◦ π, v1

$,ϕ1←− Fn
q , cmt1,1 = Com

(
r1,1, π1 ||ϕ1

)
r1

$,θ←− {0, 1}λ, v = vN +
∑

i∈[N−1] πN ◦ · · · ◦ πi+1[vi]

cmt1 = Com
(
r1, Hv

)
h1 = H(cmt1, (cmt1,i)i∈[N])

h1

(κi)i∈[t]
$←− Ft

q

(κi)i∈[t]

s0 =
∑

i∈[t] κi · xi

For i ∈ [1, N ],

⋄ si = πi[si−1] + vi

h2 = H((si)i∈[N])

h2

α
$←− [1, N ]

α

z1 = sα

If α ̸= 1, z2 = (r1 ||π1 || (θi)i∈[N]\α)

If α = 1, z2 = (r1 || (θi)i∈[N]\α)

rsp = (z1, z2, cmt1,α)

rsp

Compute r̄1, (ϕ̄i, r̄1,i, π̄i, v̄i)i∈[N]\α from z2

s̄0 =
∑

i∈[t] κi · xi, s̄α = z1, ¯cmt1,α = cmt1,α

For i ∈ [1, N ] \ α,

⋄ s̄i = π̄i[s̄i−1] + v̄i

⋄ If i ̸= 1, ¯cmt1,i = Com
(
r̄1,i, ϕ̄i

)
⋄ If i = 1, ¯cmt1,1 = Com

(
r̄1,1, π̄1 || ϕ̄1

)
¯cmt1 = Com

(
r̄1, Hs̄N −

∑
i∈[t] κi · yi

)
b1 ←−

(
h1 = H( ¯cmt1, ( ¯cmt1,i)i∈[N])

)
b2 ←−

(
h2 = H((s̄i)i∈[N])

)
return b1 ∧ b2

Figure 4.5: PoK leveraging structure for the r-IPKP problem
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Theorem 4.2.3 (Completeness). The protocol presented in Figure 4.5 is perfectly complete.

Proof. The completeness follows from the protocol description once it is observed that sN =

π
[∑

i∈[t] κi · xi

]
+ v which implies that

HsN −
∑
i∈[t]

κi · yi = H

π

∑
i∈[t]

κi · xi

+Hv −
∑
i∈[t]

κi · yi = Hv.

Therefore for every true statement (H, (xi)i∈[t], (yi)i∈[t])with witness π if the protocol described
in Figure 4.5 is executed honestly then the verifier V accepts with probability 1 for all possible
random choices of P and V.

Theorem 4.2.4 (Knowledge Soundness). The protocol presented in Figure 4.5 is knowledge sound
with knowledge error

εKS =
1

N
+

N − 1

N · (qt − 1)
.

Theorem 4.2.5 (Special Honest-Verifier Zero Knowledge). Assume that there exists a (t, ϵPRG)-
secure PRG, and the commitment scheme Com is (t, ϵCom)-hiding. Then there exists an efficient sim-
ulator Sim which, outputs a transcript such that no distinguisher running in time at most t(λ) can
distinguish between the transcript produced by Sim and a real transcript obtained by honest execution
of the protocol in Figure 4.5 with probability better than (ϵPRG(λ) + ϵCom(λ)).

We prove Theorem 4.2.4 and Theorem 4.2.5 in Appendix C.1.1 and Appendix C.1.2 respectively.

4.2.2.3 PERK: Signature Scheme based on r-IPKP

By applying the Fiat-Shamir transformation on the protocol shown in Figure 4.5, one gets the digital
signature scheme described in Figure 4.6, Figure 4.7 and Figure 4.8.

Theorem 4.2.6. Suppose PRG is (t, ϵPRG)-secure and any adversary running in time t(λ) can solve
the the underlying r-IPKP instance with probability at most ϵr-IPKP. Model H0, H1, and H2 as random
oracles where H0, H1, and H2 have 2λ-bit output length. Then a chosen-message attacker against the
signature scheme (PERK) presented in Figure 4.7, running in time t(λ), making qs signing queries, and
making q0, q1, q2 queries, respectively, to the random oracles, succeeds in outputting a valid forgery
with probability

P[Forge] ≤ (q0 + τ · (N + 1) · qs)2

2 · 22λ
+

qs · (q0 + q1 + q2 + qs)

22λ

+ τ · qs · ϵPRG(λ) + ϵr-IPKP + q2 · ετKS,
(4.5)

where εKS = 1
N + N−1

N ·(qt−1) .

We prove Theorem 4.2.6 in Appendix C.2.1.

4.2.3 On the Hardness of r-IPKP
In this section we study the hardness of the r-IPKP from Definition 4.2.12. Even though, we in-
troduce the r-IPKP together with our scheme its hardness is still tied to the hardness of the multi-
dimensional and mono-dimensional versions of IPKP as we outline in the following.

Recall that the difference to IPKP is that for r-IPKP the solution does not necessarily have to be
the permutation that works for all the given pairs, but it has to satisfy the PKP identity only for an
arbitrary (non-zero) linear combination of those pairs, i.e. any permutation π such that

H

(
π

[∑
i

κixi

])
=
∑
i

κiyi,
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1. Sample sk_seed $←− {0, 1}λ and pk_seed $←− {0, 1}λ

2. Sample π ←− PRG(sk_seed) from Sn
3. Sample (H, (xi)i∈[t])←− PRG(pk_seed) from Fm×n

q × (Fn
q )

t

3. For j ∈ [t],
⋄ Compute yj = Hπ[xj ]

4. Output (sk, pk) = (sk_seed, (pk_seed, (yj)j∈[t]))

Figure 4.6: PERK - KeyGen algorithm

Inputs

- Secret key sk = π

- Public key pk = (H, (xj ,yj)j∈[t])

- Messagem ∈ {0, 1}∗

Step 1: Commitment

1. Sample salt and master seed (salt,mseed)
$←− {0, 1}2λ × {0, 1}λ

2. Sample seeds (θ(e))e∈[τ] ←− PRG(salt,mseed) from ({0, 1}λ)τ

3. For each iteration e ∈ [τ ],

⋄ Compute (θ(e)
i )i∈[N] ←− TreePRG(salt, θ(e))

⋄ For each party i ∈ {N, . . . , 1},

- If i ̸= 1, sample (π(e)
i ,v

(e)
i )←− PRG(salt, θ

(e)
i ) from Sn × Fn

q

- If i = 1, sample v(e)
1 ←− PRG(salt, θ

(e)
1 ) from Fn

q

- If i ̸= 1, compute cmt
(e)
1,i = H0(salt, e, i, θ

(e)
i )

- If i = 1, compute π(e)
1 = (π

(e)
2 )−1 ◦ · · · ◦ (π(e)

N )−1 ◦ π and cmt
(e)
1,1 = H0(salt, e, 1, π

(e)
1 , θ

(e)
1 )

⋄ Compute v(e) = v
(e)
N +

∑
i∈[N−1] π

(e)
N ◦ · · · ◦ π(e)

i+1[v
(e)
i ] and cmt

(e)
1 = H0(salt, e,Hv(e))

Step 2: First Challenge

4. Compute h1 = H1(salt,m, pk, (cmt
(e)
1 , cmt

(e)
1,i )e∈[τ],i∈[N])

5. Sample (κ(e)
j )e∈[τ],j∈[t] ←− PRG(h1) from (Ft

q)
τ

Step 3: First Response

6. For each iteration e ∈ [τ ],

⋄ Compute s(e)
0 =

∑
j∈[t] κ

(e)
j · xj

⋄ For each party i ∈ [N ],

- Compute s(e)
i = π

(e)
i [s

(e)
i−1] + v

(e)
i

Step 4: Second Challenge

7. Compute h2 = H2(salt,m, pk, h1, (s
(e)
i )e∈[τ],i∈[N])

8. Sample (α(e))e∈[τ] ←− PRG(h2) from ([1, N ])τ

Step 5: Second Response

9. For each iteration e ∈ [τ ],

⋄ Compute z(e)
1 = s(e)

α

⋄ If α(e) ̸= 1, z(e)
2 = (π

(e)
1 || (θ(e)

i )
i∈[N]\α(e) )

⋄ If α(e) = 1, z(e)
2 = (θ

(e)
i )

i∈[N]\α(e)

⋄ Compute rsp(e) = (z
(e)
1 , z

(e)
2 , cmt

(e)

1,α(e)
)

10. Compute σ = (salt, h1, h2, (rsp
(e))e∈[τ])

Figure 4.7: PERK - Sign algorithm
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Inputs

- Public key pk = (H, (xj ,yj)j∈[t])

- Signature σ

- Messagem ∈ {0, 1}∗

Step 1: Parse signature

1. Parse signature as σ = (salt, h1, h2, (z
(e)
1 , z

(e)
2 , cmt

(e)

1,α(e)
)e∈[τ])

2. Recompute (κ(e)
j )e∈[τ],j∈[t] ←− PRG(h1) from (Ft

q)
τ

3. Recompute (α(e))e∈[τ] ←− PRG(h2) from ([1, N ])τ

Step 2: Verification

4. For each iteration e ∈ [τ ],

⋄ Compute s(e)
0 =

∑
j∈[t] κ

(e)
j · xj and s(e)

α = z
(e)
1

⋄ Compute (π(e)
i ,v

(e)
i )i∈[N]\α from z

(e)
2

⋄ For each party i ∈ [N ] \ α(e) ,

- If i ̸= 1, compute cmt
(e)
1,i = H0(salt, e, i, θ

(e)
i )

- If i = 1, compute cmt
(e)
1,1 = H0(salt, e, 1, π

(e)
1 , θ

(e)
1 )

⋄ For each party i ∈ [N ] \ α(e) ,

- Compute s(e)
i = π

(e)
i [s

(e)
i−1] + v

(e)
i

⋄ Compute cmt
(e)
1 = H0(salt, e,Hs

(e)
N −

∑
i∈[t] κ

(e)
i · yi)

5. Compute h̄1 = H1(salt,m, pk, (cmt
(e)
1 , cmt

(e)
1,i )e∈[τ],i∈[N]).

6. Compute h̄2 = H2(salt,m, pk, h1, (s
(e)
i )e∈[τ],i∈[N]).

7. Output accept if and only if h̄1 = h1 and h̄2 = h2 .

Figure 4.8: PERK - Verify algorithm

for a choice of the κ′is ∈ Fq , is a solution. Clearly any algorithm applicable to IPKP can also be
applied to find a solution to the r-IPKP problem. However, a solution to r-IPKP does not necessarily
have to be a solution to IPKP. Therefore algorithms to solve r-IPKP can be split into those initially
proposed for IPKP and those specifically designed to solve r-IPKP. In the following section we
first describe known approaches for solving IPKP, after which we present a new Algorithm 4.2
specifically designed to solve r-IPKP.

4.2.3.1 Attacks on IPKP

The IPKP problem was introduced by Shamir in 1990 [Sha90]. Still, the best attack on mono-
dimensional IPKP is a meet-in-the-middle adaptation known as the KMP algorithm by Koussa,
Macario-Rat and Patarin [KMP19]. This algorithm extends easily to t > 1, which was recently
formalized in [SBC22]. The multi-dimensional IPKP first appeared in the literature in 2011 [LP11].
However, until recently cryptanalysis only resulted in better algorithms for the particular case
of binary fields [PT21]. Recently, Santini, Baldi and Chiraluce [SBC22] proposed the SBC algo-
rithm which extends the KMP algorithm by a pre-processing step. For t > 1, i.e., for the multi-
dimensional case, this results in improvements over the KMP approach. In the following we give a
brief overview of those attacks. For fully-fledged descriptions, analysis and estimation scripts the
reader is referred to [KMP19, SBC22,EVZB23].

The KMP Algorithm. The algorithm by Koussa, Macario-Rat and Patarin [KMP19] is a slight
variant of previously known combinatorial techniques [Geo92,BCCG93,PC94, JJ01]. Here we out-
line first the initial proposal for the mono-dimensional IPKP [KMP19].

Initially, the matrixH is transformed into semi-systematic form by applying a change of basis
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(modelled by the invertible matrix Q)

QH =

(
Im−u H1

0 H2

)
,

where H1 ∈ F(m−u)×(n−m+u)
q , H2 ∈ Fu×(n−m+u)

q and u is an optimization parameter of the
algorithm. By multiplying the syndrome y by the same matrixQ one maintains the validity of the
PKP identity

QHπ(x) =

(
Im−u H1

0 H2

)
π(x) =

(
Im−u H1

0 H2

)(
x1

x2

)
= (x1 +H1x2,H2x2)

⊤

= (y1,y2)
⊤ = Qy,

where Qy = (y1,y2) ∈ Fm−u
q × Fu

q and π(x) = (x1,x2) ∈ Fm−u
q × Fu

q . The algorithm now
focuses on solving the identity H2x2 = y2. For any found x2 satisfying the identity it is then
checked if x1 = y1 −H1x2 and x2 together form a permutation of x.

Candidates for x2 are obtained by a meet-in-the-middle enumeration strategy. Therefore x2

is further split as x2 = (x21,x22), with x21,x22 ∈ Fu×((n−m+u)/2)
q to obtain the meet-in-the-

middle identity
H2(x21,0) = y2 −H2(0,x22). (4.6)

Then the algorithm enumerates all candidates for x21 and x22, that is all permutations of any se-
lection of (n−m+u)/2 entries ofx. For each such vector the left (resp. right) side of Equation (4.6)
is stored in a list L1 (resp. L2). In a final step the algorithm searches for matches between the lists
L1 and L2 yielding the candidates for x2. From there x1 can be computed as x1 = y1 −H1x2. If
(x1,x2) forms a permutation of x this yields the solution π.

The complexity of the algorithm is (up to polynomial factors) linear in the sizes of the lists L1,
L2 and L, where L is the list of matches. The expected sizes are

|L1| = |L2| =
(

n

(n−m+ u)/2

)(
(n−m+ u)/2

)
! and |L| = |L1 × L2|

qu

Extension tomulti-dimensional IPKP. The algorithm can easily be extended to solve IPKP for
arbitrary t, as it was recently made explicit in [SBC22]. Therefore let X be the matrix containing
the xi as rows and Y containing the yi as columns. Substituting the occurrences of x and y by
X and Y resp., where the permutation now operates as a column permutation on matrices, one
obtains this generalization. Then of course the definition of (x1,x2) and (y1,y2) analogously
extends to matrices.

In terms of complexity, the enumeration effort stays (up to polynomial factors) exactly the
same, as the possible number of permutations remains unchanged. The only difference is that the
expected size of the list L of matches reduces to |L1×L2|

qu·t .

The SBC algorithm. The algorithmic improvement by Santini-Baldi-Chiraluce (SBC) extends
the KMP algorithm by a preprocessing step.

Therefore, assume that the matrix H2 constructed in the KMP algorithm would contain zero
columns. Clearly, those columns could be removed without affecting the validity of the identity
H2x2 = y2. But in turn this would reduce the enumeration effort to find candidates for x2.

The preprocessing step of the SBC algorithm now consists in finding a u-dimensional sub-
code of H that has small support w < n −m + u, i.e., an H2 that contains some zero columns.
This can be accomplished by adaptations of Information Set Decoding (ISD) algorithms [Beu20a].
Subsequently, the SBC algorithm continues as the KMP algorithm by finding candidates for x2 in
H2x2 = y2, now with reduced enumeration complexity. This resulting list of candidates is now
treated as the first list, L1, in the KMP algorithm.

Note that the KMP algorithm creates two lists each giving candidates for (n−m+u)/2 entries
of the permutation. Now, as there are already candidates for w entries in L1, the second list enu-
merates the permutation for further n −m + u − w positions. Eventually both lists are matched
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on u · t coordinates as in the KMP algorithm to obtain a list of final candidates. Note that as in the
KMP algorithm now each candidate of the final list reveals n −m + u potential positions of the
permutation which can be checked in polynomial time for extending to a full solution.

4.2.3.2 A new Algorithm Solving r-IPKP

We introduce the r-IPKP problem together with our scheme. However, it is still very related to
the multi-dimensional and mono-dimensional versions of IPKP and their corresponding hardness.
We already discussed the relation to the multi-dimensional case of IPKP. Let us now focus on the
relation between r-IPKP and the mono-dimensional version of IPKP. In this context r-IPKP can be
seen as a multi-instance version of IPKP.

Therefore disregard the (most likely) unique solution to r-IPKP which simultaneously solves
IPKP for the same t, i.e. the permutation that works for all pairs (xi,yi). Further, assume that
for any of the given pairs (xi,yi) there exist a permutation πi solving the corresponding mono-
dimensional IPKP instance, that is a πi that satisfiesHπi[xi] = yi. If wewould be forced to recover
one of the πi, this would exactly be a multi-instance version of IPKP. However, the r-IPKP allows
to recover not only those but also any permutation that works for an arbitrary linear combination
of the given pairs. Clearly, this gives a total of qt different pairs, but unlike the multi-instance case
those pairs are related.

In fact, from a coding theory perspective the r-IPKP asks to recover a permutation that works
for some codeword and the corresponding syndrome where the code is defined by the generator
matrix containing thexis as rows. In the following we give a new algorithm for solving r-IPKP that
exploits this view on the problem. The algorithm is based on a preprocessing of the given pairs
(xi,yi), a subsequent instance permutation and an adapted KMP-style enumeration technique.
Moreover, our algorithm contains the KMP algorithm as a special case.

The algorithm starts by finding a low Hamming-weight codeword in the code whose generator
matrix has the xi as rows. This task is accomplished by application of an ISD algorithm. Let
x′ =

∑
κixi be this codeword of weight w and y′ =

∑
κiyi the corresponding syndrome.

We now focus on finding a permutation π that satisfies H(π[x′]) = y′. Therefore, we apply a
KMP-style enumeration with some modifications. Again we derive the identityH2x2 = y2 ∈ Fu

q ,
with x2 = (x21,x22) as in the usual KMP algorithm. Now, recall that π[x′] = (x1,x2) contains
n−w zeros. For the enumeration of x21 and x22 we now assume that z of those zeros are mapped
into x2 by the permutation. Moreover, we assume that z/2 of those zeros are mapped to x21 and
z/2 to x22. This leads to a reduced amount of candidates for x21,x22 that has to be enumerated.

Of course we do not know a priori if the permutation indeed distributes z/2 zeros onto x21

and z/2 zeros onto x22. Therefore prior to the enumeration we apply a random permutation to
the columns ofH to redistribute the weight (and zeros) of π[x′]. If the enumeration does not lead
to a solution we repeat with a different column permutation of H .

A pseudocode description is given in Algorithm 4.2. Note that for w = n, i.e., a maximum-
weight codeword, we resemble the standard KMP algorithm for solving mono-dimensional IPKP.

Analysis of Algorithm 4.2. Let us start with the correctness of the algorithm.
Correctness. Note that the permuted instance (H∗,x′,y′) withH∗ = π′[H] has solution π′ ◦ π
if π solves the original instance (H,x′,y′). Therefore the algorithm correctly returns (π′)−1 ◦ π̃
as the solution to the original instance, where π̃ solves the permuted instance.

Accordingly the solution to the permuted instance is (x1,x2) = π′[π[x′]]. Line 9 to 11 enu-
merate all candidates for x2 satisfying H2x2 = y2, where x2 = (z1, z2) with each of the zi

containing z/2 zeros. Note that by construction (x1,x2) contains n − w zeros. As the permuta-
tion π′ redistributes the zeros the algorithm can recover the permutation.
Complexity. The complexity of the algorithm splits into the cost of finding the short codeword
x′ and the cost of the repeat loop. The codeword is found by application of an ISD algorithm.
Let us denote this cost by TISD.

The cost of the loop is equal to the amount of repetitions times the cost of one iteration. The
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Algorithm 4.2 Algorithm Solving r-IPKP
Input: r-IPKP instance (H, (xi,yi)i∈[t])
Output: solution π, κi ∈ Fq , i ∈ [t]

1: For a vector x and an integer k let Px,k be the set of vectors of length k with entries from x
(with their maximum occurence as in x).

2: Choose optimal positive u ≤ n−m, w ≤ n, and z ≤ n− w, let k := (n−m+ u)/2
3: Find weight-w codeword x′ =

∑
i κixi in the code defined by the xi

4: Let y′ =
∑

i κiyi

5: repeat
6: choose random permutation π′

7: H∗ = π′[H]

8: H ′ = QH∗ =

(
Im−u H1

0 H2

)
, (y1,y2) = Qy

9: L1 = {
(
H2(z1, 0

k), z1

)
| z1 ∈ Px,k ∧ ∥z1∥ = k − z/2}

10: L2 = {
(
y2 −H2(0

k, z2), z2

)
| z2 ∈ Px,k ∧ ∥z2∥ = k − z/2}

11: Compute L = {(z1, z2) ∈ L1 × L2 |H2(z1, z2) = y2} from L1, L2

12: for Each x2 ∈ L do
13: x1 = y1 −H1x2

14:
15: if ∃π̃ : π̃[x1,x2] = x′ then return (π′)−1 ◦ π̃
16: until false

amount of different permutations until the zeros are distributed as desired is

P =

(
n

n−w
)(

n−2k
n−w−z

)(
k

z/2

)2 ,
where k = (n −m + u)/2. The cost for one iteration is (up to polynomial factors) linear in the
involved lists’ sizes. Note that we have

|Li| =
(

k

z/2

)(
n− z

k − z/2

)
(k − z/2)! and |L| = |L1 × L2|

qu
.

The total time complexity therefore amounts to

T = Õ (TISD + (|L1|+ |L|) · P ) ,

while the memory complexity is equal toM = Õ (|L1|+ |L|) .

In our numerical optimization we use for TISD the basic ISD procedure by Prange [Pra62] which
gives

TISD = Õ

( (
n
w

)(
n−m
w

)) .

There are more sophisticated ISD procedures with lower cost, but as TISD does not dominate the
running time, we refrain from further optimizations.

Note that this running time assumes a single existing solution for the considered mono-
dimensional instance solved. In case of multiple solutions the running time can be lower, which
we discuss in the next section.

Further improvement of Algorithm 4.2. For completeness, we point out that the algorithm
can be (slightly) improved by considering in L1 and L2 vectors of weight k− z ≤ ∥zi∥ ≤ k− z/2.
This would only insignificantly increase the list sizes, while giving a slightly higher probability of
the permutation distributing the weight as desired. However, the overall improvement is a factor
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of order roughly 2. For small values of t ≤ 5 as considered later, the factor turns out to be smaller
than

√
2. Therefore for the sake of clarity we omit this improvement.

Another intuitive strategy seems the consideration of small support subcodes instead of small
codewords in the code defined by the xi. This would lead to a reduced amount of matches, i.e.,
reduced list size L at the expense of larger w and correspondingly smaller z. However, the nature
of instances considered in PERK renders this strategy ineffective. As detailed later, instances are
chosen, such that for any single codeword there exist exponentially many solutions, leading to an
exponential speedup. On the other hand already when considering a subcode of dimension two, the
only existing solution is the permutation solving the IPKP defined by all pairs (xi,yi). We find that
the reduced amount of matches from considering subcodes does not compensate for the speedup
from the amount of solutions. We therefore again omit further details for the sake of clarity.

4.2.3.3 Concrete Complexity of Solving r-IPKP

In this section we give details on how the variation of different parameters affects the hardness
of r-IPKP. A solid understanding of those effects is crucial for secure parameter selection. As
outlined previously, for solving the r-IPKP one can either directly apply an IPKP algorithm (see
Section 4.2.3.1) or solve one of the single IPKP instances defined by any linear combination of
input pairs (see Section 4.2.3.2). Which of the two attack strategies is more efficient depends on the
particular choice of parameters.

Effect of the number of solutions. Multiple existing solutions can lead to a maximum speedup
that is linear in this amount of solutions. Whether this maximum speedup can be realized depends
on the particular algorithm. However, for our parameter selection we conservatively assume that
any algorithm can leverage this maximum speedup.

Note that the expected number of solutions differs for the considered sub-problems. The ex-
pected number of solutions for any random IPKP instance is about SolIPKP = n!

qm·t . Note that the
mono-dimensional IPKP instance solved in the context of our new Algorithm 4.2 is not random but
contains z zeros. In this case the amount of expected solutions is only Solmono

IPKP,z = n!
qmz! .

Effect of t on the running time. Santini et al. [SBC22] observed that the running time of the
KMP algorithm as well as the running time of their SBC algorithm for IPKP is asymptotically in-
dependent of t.3 For concrete parameters, these algorithms still yield speedups for increasing t but
the running time quickly converges to a stable minimum. Therefore, based on known algorithms
the hardness of IPKP does not seem to deteriorate for high values of t. Contrary, the complexity of
our new Algorithm 4.2 is monotonically decreasing for increasing t. This shows that high choices
of t in the r-IPKP context are vulnerable.

To visualize this we consider in Table 4.7 a fixed instance for increasing t. The SBC algorithm
reaches its minimum running time already for t = 10, while Algorithm 4.2 constantly improves.
However, the SBC algorithm has a lower complexity for small choices of t and obtains a larger gain
for early increases.

Note that for the chosen parameters in Table 4.7 already a random mono-dimensional IPKP
instance has at most one solution in expectation, i.e. Solmono

IPKP ≤ 1.

Effect ofm on the running time. Generally the hardness of IPKP is increasing with decreasing
m. This holds up to the point where there exist multiple solutions. Previous parameter selection for
PKP-based schemes therefore choosesmminimal such that there exists no more than one random
solution in expectation. However, for the specific case of the r-IPKP problem, the two sub-problems,
i.e., the multi- and mono-dimensional IPKP instances, have a different amount of expected solu-
tions. Here, decreasing m leads, generally, only to an increase of the problem complexity as long
as the solution to both sub-problems is still unique.

3Informally, this can be seen by observing that t only affects the amount of matches, i.e. the size of L (compare to
Section 4.2.3.1). However, asymptotically the size of the initial lists Li and L are balanced, therefore a decrease of L does
not lead to runtime improvements.
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t Tnew TSBC

1 139.35 139.35
2 139.01 116.25
3 137.46 110.70
10 115.98 88.18
15 100.27 88.18
19 89.14 88.18
20 85.63 88.18
25 71.77 88.18
30 63.47 88.18

Table 4.7: Complexity of SBC algorithm (TSBC) and Algorithm 4.2 (Tnew) for increasing t on
r-IPKP(n,m, q, t) instance with (n,m, q) = (66, 31, 1021).

4.2.4 Parameters

In this section we present the parameters of our scheme. Generally the parameters divide into
r-IPKP specific parameters, i.e., (q, n,m, t), and MPC parameters, i.e., the number of partiesN and
the number of parallel repetitions τ . The rationale for their selection are as follows.

Selection of MPC parameters. The number of parties and iterations is governed by the knowl-
edge soundness of the protocol. Following common practice we propose two different parameter
sets, a short variant using N = 256 and a fast variant using N = 32. The number of protocol
repetitions τ is then chosen to guarantee a soundness probability of 2−λ for λ ∈ {128, 192, 256}
for category I, III and V respectively. For deriving the soundness we take into account the attack
by Kales-Zavurecha, see Appendix C.3.

Selection of problem parameters. For parameter selection we ensure that the complexity of
the SBC algorithm aswell as the complexity of our newAlgorithm 4.2 are above the security thresh-
old, when assuming a linear speedup from the existing amount of solutions. Note that it is impor-
tant to consider both strategies as the IPKP suggests to decreasem to increase the difficulty of the
problem. This is related to the low amount of expected solutions SolIPKP, which allows to decrease
m significantly without introducing multiple solutions. Contrary, for any mono-dimensional in-
stance given by the possible linear combinations, there exist several solutions Solmono

IPKP for such
small choices ofm, which decrease the complexity of Algorithm 4.2.

Note that we, conservatively, restrict in our parameter selection to small choices of t ∈ {3, 5} to
guard against attacks that exploit the specifics of r-IPKP over IPKP. For such small values of t, the
SBC algorithm has generally a lower complexity than Algorithm 4.2 (compare to Table 4.7). In those
cases, the parameter selection process leads to a choice of m which implies a unique solution to
the multi-dimensional IPKP instance, while there exist multiple solutions to the mono-dimensional
instance solved in the context of Algorithm 4.2. This leads to a balancing of both complexities via
the amount of solutions.

In our complexity estimations we ignore polynomial factors and ensure that the exponential
factors of the complexity formulas already match the NIST security level definitions of 143, 207 and
272 bits of category I, III and V respectively. For the complexity estimation of the SBC algorithm
we rely on the CryptographicEstimators library4 incorporating a more efficient version of the script
from [SBC22]. For our algorithm we rely on a separate script.

Overall this leads to the choices of parameters specified in Table 4.8.
Note that even though we are quite conservative in parameter selection by restricting to small

choices of t, disregarding polynomial factors and assuming a maximum speedup from multiple so-
4https://github.com/Crypto-TII/cryptographic_estimators

https://github.com/Crypto-TII/cryptographic_estimators
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PKP parameters MPC parameters
Parameter Set λ q n m t N τ pk size σ size
PERK-I-fast3 128 1021 79 35 3 32 30 0.15 kB 8.35 kB
PERK-I-fast5 128 1021 83 36 5 32 28 0.24 kB 8.03 kB
PERK-I-short3 128 1021 79 35 3 256 20 0.15 kB 6.56 kB
PERK-I-short5 128 1021 83 36 5 256 18 0.24 kB 6.06 kB
PERK-III-fast3 192 1021 112 54 3 32 46 0.23 kB 18.8 kB
PERK-III-fast5 192 1021 116 55 5 32 43 0.37 kB 18.0 kB
PERK-III-short3 192 1021 112 54 3 256 31 0.23 kB 15.0 kB
PERK-III-short5 192 1021 116 55 5 256 28 0.37 kB 13.8 kB
PERK-V-fast3 256 1021 146 75 3 32 61 0.31 kB 33.3 kB
PERK-V-fast5 256 1021 150 76 5 32 57 0.51 kB 31.7 kB
PERK-V-short3 256 1021 146 75 3 256 41 0.31 kB 26.4 kB
PERK-V-short5 256 1021 150 76 5 256 37 0.51 kB 24.2 kB

Table 4.8: Parameters of PERK signature scheme

lutions, we obtain competitive signature sizes. Also all considered algorithms use as much memory
as they consume time, which in a more realistic estimate that accounts for memory access leads to
an even higher security margin.

In Table 4.9 we provide the corresponding time complexities in logarithmic scale of the SBC
algorithm and Algorithm 4.2 (accounting for a linear speedup from multiple existing solutions)
on the suggested parameter sets. As outlined, the parameter sets are chosen to balance both time
complexities. Additionally the tables provide the internal parameters of the algorithms. In the
case of Algorithm 4.2 we find that for small values of t as considered here, the choice w = n − z
is optimal, meaning all contained zeros should be contained in the part of the vector which is
enumerated. For the SBC algorithm, recall that u is the dimension of the subcode and we denote
by z the amount of zero columns in H2 (compare to Section 4.2.3.1), i.e., the subcode has support
w = n−m+ u− z.

SBC [SBC22] Algorithm 4.2
Parameter Set time u z time u z

PERK-I-fast3 145.7 5 1 147.5 17 2
PERK-I-fast5 147.7 3 2 147.2 19 0
PERK-III-fast3 210.7 7 1 210.1 26 2
PERK-III-fast5 212.5 4 2 210.8 27 4
PERK-V-fast3 274.8 9 1 275.5 35 4
PERK-V-fast5 274.1 6 2 275.5 37 3

Table 4.9: Parameters of PERK signature scheme

4.2.4.1 Key and Signature Sizes

Table 4.8 already states the public key and signature sizes for the different parameter sets. Let us
give an overview how those numbers are composed.

Key size. The private key as well as most of the components of the public key can be derived
from a seed. The only elements not generated from a seed in the public key are the t syndromes
(yi).
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Public key size (bits)

λ+ t ·m⌈log2(q)⌉

Signature size (bits)

6λ+ τ ·
(
n⌈log2(q)⌉︸ ︷︷ ︸
vector in Fn

q

+n⌈log2(n)⌉︸ ︷︷ ︸
permutation

+λ⌈log2(N)⌉︸ ︷︷ ︸
seeds

+ 2λ︸︷︷︸
commitment

)

Table 4.10: Public key and signature sizes in bits

Signature size. The signature consists of a salt and two hashes (h1, h2), making a subtotal of
6λ bits, and then τ repetitions of the following:

• A vector z(e)
1 ∈ Fn

q ;

• A permutation in Sn;

• N − 1 seeds (of size λ) arranged in a PRG tree, hence of size only λ · ⌈log2(N)⌉;

• A commitment cmt
(e)

1,α(e) of size 2λ.

Overall, for a security level λ, the key and signature sizes for our signature scheme are captured
by the following formulas:

Signature compression. Our implementation features an optimization that further reduces the
aforementioned signature theoretical size. The idea is to pack the permutation two by two. Instead
of representing a permutation π ∈ Sn as a sequence of n elements in [0, n− 1] it is represented as
a sequence of ⌈n/2⌉ elements in [0, n2 − 1]. When the following inequality holds⌈

log2(n
2)
⌉
< 2⌈log2(n)⌉,

the packed permutation takes less memory size. Numbers given in Table 4.8 take into account this
compression technique.

4.2.4.2 Comparison

We compare our scheme with other signature schemes, either based on PKP or based on other
security assumptions. The results are presented in Table 4.11 and Table 4.12.

4.2.5 Performances

This section provides performance measures of PERK signature. Our constant-time implementa-
tion is written in C, and uses AVX2 vector instructions. The benchmarks have been performed
on a machine that has 64 GB of memory and an Intel® Core™ i9-13900K @ 3.00 GHz for which
the Hyper-Threading, Turbo Boost and SpeedStep features were disabled. For each parameter set,
the results have been obtained by computing the average from 1000 random instances. The fol-
lowing optimization flags have been used during compilation: -O3 -std=c99 -pedantic
-funroll-all-loops -march=native -mavx2 -mpclmul -msse4.2 -maes.
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Name Variant pk σ Security assumption
PKP-DSS [BFK+19] - 0.1 kB 21.0 kB PKP

SUSHYFISH [Beu20b] fast 0.1 kB 18.4 kB IPKP
short 0.1 kB 12.1 kB IPKP

BG22 [BG23] fast 0.1 kB 10.0 kB IPKP
short 0.1 kB 8.9 kB IPKP

Fen22 [Fen22] fast 0.1 kB 16.4 kB IPKP
short 0.1 kB 12.8 kB IPKP

PERK-I-fast3 fast 0.15 kB 8.35 kB r-IPKP
PERK-I-short5 short 0.24 kB 6.06 kB r-IPKP

Table 4.11: Comparison of our scheme with other digital signature schemes based on PKP assump-
tions

Name Variant pk σ Security assumption

SPHINCS+ [HBD+22] fast 0.03 kB 17.1 kB Hash Collisions
short 0.03 kB 7.9 kB Hash Collisions

FJR22 [FJR22] fast 0.1 kB 9.7 kB SD over F256

short 0.1 kB 6.9 kB SD over F256

Fen22 [Fen22] fast 0.1 kB 7.4 kB RSD over F2

short 0.1 kB 5.9 kB RSD over F2

Fen22 [Fen22] fast 0.1 kB 7.2 kB MinRank over F16

short 0.1 kB 5.5 kB MinRank over F16

Fen22 [Fen22] fast 0.1 kB 8.5 kB MQ over F256

short 0.1 kB 7.1 kB MQ over F256

R-BG [BBP+23] fast 0.1 kB 7.7 kB Restricted-SD
short 0.1 kB 7.2 kB Restricted-SD

PERK-I-fast3 fast 0.15 kB 8.35 kB r-IPKP
PERK-I-short5 short 0.24 kB 6.06 kB r-IPKP

Table 4.12: Comparison of our scheme with other digital signature schemes not based on PKP
assumptions



100 Chapter 4. Design and cryptanalysis of signature schemes

Parameter Set Keygen Sign Verify
PERK-I-fast3 77 k 7.6 M 5.3 M
PERK-I-fast5 88 k 7.2 M 5.1 M
PERK-I-short3 80 k 39 M 27 M
PERK-I-short5 92 k 36 M 25 M
PERK-III-fast3 167 k 16 M 13 M
PERK-III-fast5 184 k 15 M 12 M
PERK-III-short3 174 k 82 M 65 M
PERK-III-short5 194 k 77 M 60 M
PERK-V-fast3 297 k 36 M 28 M
PERK-V-fast5 322 k 34 M 27 M
PERK-V-short3 299 k 184 M 142 M
PERK-V-short5 329 k 170 M 131 M

Table 4.13: Performances of our implementation for different instances of PERK. The key gener-
ation numbers are in kilo CPU cycles, while the signing and verification numbers are in million
CPU cycles.

4.3 NIST submissions: PERK, MIRA and RYDE
During our doctoral studies, we participed to NIST onramp call for additional digital signature
proposals [NISa]. We were involved in three candidates:

• MIRA [ABB+23c]

• PERK [ABB+23a]

• RYDE [ABB+23b]

They are signature schemes built from the MPC-in-the-Head paradigm, each of them relying
on a different difficult problem: MinRank for MIRA; a variant of PKP for PERK; and RSD for RYDE.
All of them achieve very competitive sizes with a public key never exceeding a hundred bytes and
signature sizes ranging from 5.6 kB to 8.0 kB.



Chapter 5

Code-based homomorphic
encryption

Contents
5.1 Additive scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1.1 Fundamental Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.1.2 Additively Homomorphic Algorithms . . . . . . . . . . . . . . . . . . . 104

5.2 Somewhat Homomorphic Scheme . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.1 Fundamental and Additively Homomorphic Algorithms . . . . . . . . . 105
5.2.2 Multiplicative Homomorphic Algorithms . . . . . . . . . . . . . . . . . 106

5.3 (Insecure) Bootstrapping and Fully Homomorphic Encryption . . . . . . 107
5.3.1 Homomorphic Decryption Algorithms . . . . . . . . . . . . . . . . . . . 107
5.3.2 Bootstrapping relinearization . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Problem: Limitation on the number of independent ciphertexts . . . . . . 110
5.5 Reducing the number of bootstrapping ciphertexts . . . . . . . . . . . . . 111

5.5.1 Packing plaintexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.5.2 Plaintext rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.5.3 Homomorphic decrytion with packing . . . . . . . . . . . . . . . . . . . 113

5.6 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

In this chapter we present a secret-key encryption scheme based on random rank metric ideal
linear codes with a simple decryption circuit. It supports unlimited homomorphic additions and
plaintext absorptions as well as a fixed arbitrary number of homomorphic multiplications.

Our scheme is an Aleknovich-inspired [Ale03] construction. It can be seen as a secret key
version of the NIST Round 2 candidate RQC [AAB+19], with important differences (see below). The
ciphertext is a pair (u,v) of vectors in Fn

qm where v is the noisy version of the multiplication u · s
of the first component of the ciphertext times the secret key s. The noise is taken in a secret space
and contains an encoding of the messagem being a vector in Fn

q . The ciphertext space has an Fn
q -

module structure which makes addition and plaintext multiplication completely straightforward.
The additive scheme is presented in Section 5.1 and is augmented with multiplication in Section 5.2.

Contrary to RQC in which the encoded message is a codeword of a public Gabidulin code that
can be recovered from the noise using a decoding algorithm, in our construction the message is
encoded into a vector space orthogonal to the error vector. The decryption algorithm is thus quite
simple since it consists in a secret orthogonal projection of the noise term (i.e. a scalar product
with a secret basis). Consequently, a natural homomorphic decryption algorithm (Section 5.3)
can be designed. The key switching material consists in encrypted coordinates of the previous
key and projection vector, split against a public basis of Fqm over Fq . By splitting the ciphertext
onto the same basis and plaintext multplying each component to the key switching material, one
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102 Chapter 5. Code-based homomorphic encryption

obtains a fresh ciphertext under a new keywith nomultiplication, only with additions and plaintext
multiplications.

The security of our scheme can be reduced to the well-studied ideal rank syndrome decoding
problem (IRSD). The reduction is presented in Section 5.4. The rate of the code tends towards 0
as the number of independent ciphertexts increases, giving an upper bound of 2w (where w is the
rank weight of the error term in the ciphertext) to the number of ciphertexts that can be safely
published. This prevents from using safely the homomorphic decryption algorithm which requires
2m ciphertexts: one for each of them components against the Fqm-basis of the secret key and the
projection vector.

Aiming at reducing the number of ciphertexts necessary to a homomorphic decryption, we
finally present in Section 5.5 a way to pack several plaintexts in a single ciphertext. Instead of
having the message encoded in a single dimension orthogonal to the error, the idea is to increase
the dimension of the encoded message, which is now a matrix with components in Fq . Rows of the
matrix can be rotated using a public operation that allows to perform homomorphic linear combi-
nations on the rows of the plaintext matrix. Because the ciphertext now contains more information,
the size of the bootstrapping material is reduced to 2(w+1). However, this is still higher than the
secure upper bound 2w.

Finally, concrete parameters for our scheme are presented in Section 5.6.

5.1 Additive scheme
In this section we present an additive secret key encryption scheme. It can also multiplicatively
absorb a plaintext.

5.1.1 Fundamental Algorithms
The three polynomial-time algorithms constituting our additive scheme AHE (for Additively Ho-
momorphic Encryption) are depicted in Figure 5.1. The reader is referred to the Notation section
for a reminder of the meanings of the symbols ·, ⋆ and b(i).

The scheme is parametrized by:

• q, the base field cardinality;

• m, the dimension of the field extension;

• n, the length of the vectors;

• w, the rank weight of the error; it must be that w < m.

Remark. EncryptAHE and DecryptAHE are functions, not randomized algorithms. In general we
will hide the randomness in the encryption function: EncryptAHE(sk,m) being the randomized
algorithm that samples r $←− Fn

qm ×Mw,n(Fq) and returns EncryptAHE(sk,m, r).

Remark. In EncryptAHE, having e = fR2 with R2
$←−Mw,n(Fq) is equivalent to having e

$←−
Fn. As for m̂, it belongs to (⟨g(1)⟩Fq )

n.

Proposition 5.1.1 (Fresh Ciphertext Decryption Correctness). For sk $←− KeyGenAHE(),m ∈ Fn
q

and r ∈ Fn
qm ×Mw,n(Fq) it holds that

DecryptAHE (sk, EncryptAHE (sk,m, r)) = m.

Proof. We suppose in this proof that the KeyGenAHE and EncryptAHE protocols are well defined
and can be executed properly. We just note thatB−1 exists as b is a basis of Fqm and thusB is of
full rank.

As d is the (w + 1)-th column vector of (B−1)T , we thus have that dTvec(g(1)) = 1 ∈ Fq

and dTvec(x) = 0 for any x ∈ b \ {g(1)}.
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• KeyGenAHE():

– samples f = (f1, . . . , fw)
$←− Sww (Fqm)

– extends f into a basis b = (f1, . . . , fw, g1, . . . , gm−w) ∈ Smm (Fqm)

– defines g = (g1, . . . , gm−w)

– computes the matrix B = Mat(b)

– defines D as the lastm− w columns of its transposed inverse (B−1)T

– samples s $←− Fn with F = Supp(f)

– returns sk = (f , g,D, s).

• EncryptAHE(sk = (f , g,D, s),m ∈ Fn
q , r ∈ Fn

qm ×Mw,n(Fq)): notes (r1,R2) = r,
defines u = r1, e = fR2 and sets v = s · u + e + m̂ with m̂ = g(1) ⋆ m ∈ Fn

qm .
Returns ct = (u,v).

• DecryptAHE(sk = (f , g,D, s), ct = (u,v)): returns dTMat(v − s · u) with d = D(1).

Figure 5.1: Description of the additive scheme.

The correctness is thus straightforward as, noting (u,v) = EncryptAHE(sk,m, r), from v =
s · u+ e+ m̂ we get that v − s · u = e+ m̂ and therefore

v − s · u =
∑

1≤i≤w

fi ⋆ ei + g(1) ⋆m.

with e1, . . . , ew,m ∈ Fn
q . We can thus write,

dTMat(v − s · u) =
∑

1≤i≤w

dTvec(fi) ⋆ ei + dTvec(g(1)) ⋆m

= m

using the fact that, as noted above, dTvec(g(1)) = 1 ∈ Fq and dTvec(x) = 0 for any x ∈
b \ {g(1)}.

Proposition 5.1.2 (Ciphertext Distribution). For sk $←− KeyGenAHE(), the set of ciphertexts of
zero {EncryptAHE(sk,0)} is a subgroup of Fn

qm × Fn
qm , and more generally the set of ciphertexts of a

messagem ∈ Fn
q are the cosets {EncryptAHE(sk,0)}+ g(1) ⋆m. The output probability distribution

is uniform in the associated coset.

Proof. The set {EncryptAHE(sk,0)} is a subgroup as for any (u, s · u + e), (u′, s · u′ + e′) ∈
{EncryptAHE(sk,0)} we have that u−u′ ∈ Fn

qm and e−e′ ∈ Fn and thus (u−u′, s · (u−u′)+
(e− e′)) is in {EncryptAHE(sk,0)}. Moreover the output distribution of EncryptAHE on this set is
uniform as for a given s there is a one to one mapping between the pairs (u, e) and (u, s ·u+ e)
and the pairs (u, e) are chosen uniformly on Fn

qm×Fn. Proving the rest of the proposition is trivial
as the encryption process consists exactly on generating a ciphertext of zero and adding g(1) ⋆m
to it.

The security of this encryption scheme is reduced to the IRSD problem in Section 5.4; the
problem of decrypting ℓ independent ciphertexts is equivalent to solving the syndrome decoding
in an (ℓ + 1)-ideal code. For small values of ℓ, the IRSD is known to be hard and is at the core of
the security of other encryption schemes such as ROLLO or RQC.
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5.1.2 Additively Homomorphic Algorithms
Figure 5.2 presents the homomorphic algorithms of our additive scheme.

• AddAHE(ct = (u,v), ct′ = (u′,v′)): returns (u+ u′,v + v′) ∈ Fn
qm × Fn

qm .

• PtxtMulAHE(m′ ∈ Fn
q , ct = (u,v)): returns (m′ · u,m′ · v) ∈ Fn

qm × Fn
qm .

Figure 5.2: Additively Homomorphic Algorithms.

In the following proposition we consider Fn
q as the ring (Fn

q ,+, ·),+ the natural addition in Fn
q

and · the multiplication in Fq[X]/⟨Q⟩ (see Product of vectors).

Proposition 5.1.3 (Encryption is an Fn
q -module isomorphism). For any properly generated key sk,

the function f = EncryptAHE(sk, ·, (·, ·)) is an Fn
q -module isomorphism between (Dom(f),+) and

(Im(f),+) with Dom(f) = Fn
q × Fn

qm ×Mw,n(Fq) and Im(f) ⊂ Fn
qm × Fn

qm .

Proof. First note that (Im(f),+) is an Fn
q -module. It is a subgroup of (Fn

qm × Fn
qm ,+) as for any

two ciphertexts ct = (u, s · u + e + g(1) ⋆ m), ct′ = (u′, s · u′ + e′ + g(1) ⋆ m′), we have
ct−ct′ = (u−u′, s·(u−u′)+(e−e′)+g(1)⋆(m−m′)) ∈ {EncryptAHE(sk,m−m′)} ⊂ Im(f).
Moreover for anym′ ∈ Fn

q we havem′ · ct = (m′ ·u, s · (m′ ·u) +m′ · e+ g(1) ⋆ (m′ ·m)) ∈
{Encrypt(sk,m′ ·m)} ⊂ Im(f) as m · u ∈ Fn

qm and m′ · e ∈ Fn (F being an Fq-linear span).
To prove that (Dom(f),+) with Dom(f) = Fn

q × Fn
qm ×Mw,n(Fq) is an Fn

q -module we must
define the external multiplication with an element in Fn

q . We define it by multiplying coordinate-
wise. The first two coordinates correspond to multiplications in Fq[X]/⟨Q⟩ and Fqm [X]/⟨Q⟩. For
the last one we consider that the external multiplication is done with each of the w rows of the
matrix over Fq[X]/⟨Q⟩. With this operation it is trivial to verify that we obtain an Fn

q -module.
The identity element of (Fn

q × Fn
qm × Mw,n(Fq),+) is (0,0,0) and f(0,0,0) =

EncryptAHE(0, (0,0)) = (0,0) the identity element of Im(f).
Form′ ∈ Fn

q and (m, r1,R2) ∈ Dom(f), we have f(m′ ·m,m′ · r1,m′ ·R2) = (m′ · r1, s ·
(m′ ·r1)+f ·m′ ·R2+g(1)⋆m′ ·m) = m′ ·f(m, r1,R2) using the commutative and associative
properties of the involved polynomial operations, which concludes the proof.

Corollary 5.1.1 (Homomorphic Addition Distribution). For any m,m′ ∈ Fn
q , properly generated

key sk, and ct ∈ {EncryptAHE(sk,m)}, let ct′′ be obtained by

ct′
$←− EncryptAHE(sk,m

′)

ct′′ = AddAHE(ct, ct′)

and let ct′′′ be obtained by

ct′′′
$←− EncryptAHE(sk,m+m′).

Then the distributions of ct′′ and ct′′′ are identical.

Proof. The proof is immediately derived fromProposition 5.1.3 as it proves that ct′′=EncryptAHE(sk,
m+m′, r+r′)with r′ uniformly sampled and r independent from r′, and thus r+r′ is uniform
in Fn

qm ×Mw,n(Fq).

Note that obtaining the same distribution as a fresh ciphertext of the sum is a much stronger
property than decrypting to the sum. In practice it implies (among other things) that no information
about a computation, besides the result, can leak from the output ciphertext if one of the input
ciphertexts was generated with EncryptAHE and unknown to the decrypter (which is definitely not
naturally true with lattice-based schemes). It also implies that there is no bound on the amount
of ciphertexts that can be added (which again is not naturally true for lattice-based schemes), but
we delay the formalization of these properties into an associated corollary to make it more general
so that it takes into account arbitrary linear combinations of ciphertexts. We prove thus first that
multiplications of ciphertexts by plaintexts also lead to the same distribution as fresh ciphertexts.



5.2. Somewhat Homomorphic Scheme 105

Corollary 5.1.2 (Homorphic PlaintextMultiplication Distribution). For anym ∈ Fn
q ,m

′ ∈ Fn
q {0}

and properly generated key sk, let ct′ be obtained by ct
$←− EncryptAHE(sk,m) and ct′ = m′ · ct.

Let ct′′ be obtained by ct′′ $←− EncryptAHE(sk,m ·m′). The distributions of ct′ and ct′′ are identical.

Proof. Again, the proof is immediately derived from 5.1.3 as it proves that ct′ = EncryptAHE(sk,m
′·

m,m′ · r) with r uniformly sampled and m′ independent from r, and thus m′ · r is uniform in
Fn
qm ×Mw,n(Fq) as m′ is invertible (Fq[X]/⟨Q⟩ being a field) and it therefore does not alter the

uniform distribution.

We are now ready to prove the corollary summarizing the results of this section.

Corollary 5.1.3. Any non-null linear combination, with coefficients in Fn
q , of independent ciphertexts

follows the same distribution as a fresh encryption of the same linear combination over the associated
plaintexts. The resulting ciphertext decrypts correctly.

Proof. The first result is obtained by removing first the null coefficients (not all are null as it is a
non-null linear combination). Then we apply corollary 5.1.2 to each plaintext multiplication and
corollary 5.1.1 iteratively. The second result is obtained using the first result and proposition 5.1.1.

The case in which some ciphertexts are inter-dependent, even maliciously, is more complex
and beyond the scope of this chapter. However it is important to note that with the properties
described in this section it is quite manageable, unlike for lattice-based homomorphic encryption
schemes for which this issue is quickly very complex.
Remark. Functions AddAHE and PtxtMulAHE corresponding to natural operations, from now on we
will in general not call these functions explicitly replacing directly AddAHE(ct, ct′) with operation
ct + ct′ and PtxtMulAHE(m, ct) with m · ct (where m multiplies each of the two coordinates of
the vector ct).

5.2 Somewhat Homomorphic Scheme
In this section we extend our additive scheme to a somewhat homomorphic scheme that can
perform unlimited additions and one multiplication. The homomorphic multiplication operation
transforms a two-component ciphertext into a three-component ciphertext, which can be decrypted
with an alternative decryption algorithm.

5.2.1 Fundamental and Additively Homomorphic Algorithms

The fundamental algorithms constituting our scheme SHE, and the additively homomorphic algo-
rithms directly inherited from AHE are depicted in Figure 5.3. The scheme is parametrized by the
same variables than the previous scheme, with a different condition on the weight w:

• q, the base field cardinality;

• m, the dimension of the field extension;

• n, the length of the vectors;

• w, the rank weight of the error; it must be that w(w+3)
2 + 1 < m.

As for AHE we define a randomized algorithm EncryptSHE(sk,m) that samples r $←− Fn
qm ×

Mw,n(Fq) and returns EncryptSHE(sk,m, r). The SHE scheme does not change the encryption,
decryption, addition and plaintext multiplication algorithms, it only gives a stronger constraint on
w when defining the parameters and has a more complex key generation algorithm to ensure that
noise can be separated from the message space even after a homomorphic multiplication.
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• KeyGenSHE():

– samples g1
$←− Fqm , f = (f1, . . . , fw)

$←− Sww (Fqm)

– defines F = Supp(f1, . . . , fw) and F̃ = Supp(f , g1 ⋆ f , (fifj)1≤i,j≤w)

– computes f̃ = (f1, . . . , fdF̃
) ∈ SdF̃

dF̃
(Fqm) a basis of F̃ with dF̃ = dim(F̃ )

– defines g2 = g1g1

– checks that
∥∥(f1, . . . , fdF̃

, g1, g2)
∥∥
r
= dF̃ + 2 (if not it restarts)

– extends this vector into a basis b = (f1, . . . , fdF̃
, g1, . . . , gm−dF̃

) ∈ Smm (Fqm)

– defines g = (g1, . . . , gm−dF̃
)

– computes the matrix B = Mat(b)

– defines D as the lastm− dF̃ columns of (B−1)T

– samples s $←− Fn with F = Supp(f)

– returns sk = (f , g,D, s).

• EncryptSHE = EncryptAHE.

• DecryptSHE = DecryptAHE.

• AddSHE = AddAHE.

• PtxtMulSHE = PtxtMulAHE.

Figure 5.3: Description of the fully homomorphic scheme.

Proposition 5.2.1 (Extension of AHE properties to SHE). Propositions 5.1.2, 5.1.1, and 5.1.3 and
Corollaries 5.1.1, 5.1.2 and 5.1.3 remain true when replacing AHE with SHE.

Proof. The associated proofs only use properties ofD and the definitions of EncryptAHE,DecryptAHE,
AddAHE and PtxtMulAHE. It can be easily checked that the used properties of D are maintained
and that the definitions of EncryptAHE, DecryptAHE, AddAHE and PtxtMulAHE are unchanged.

5.2.2 Multiplicative Homomorphic Algorithms

• Mul(ct = (u,v), ct′ = (u′,v′)): returns (v · v′,−(u · v′ + u′ · v),u · u′) ∈
Fn
qm × Fn

qm × Fn
qm

• DecryptMul(sk = (f , g,D, s), (a, b, c)): computes tmp = a + s · b + s · s · c, and
returns dTMat(tmp) with d = D(2).

Figure 5.4: Multiplicative Homomorphic Algorithms.

Proposition 5.2.2 (Homomorphic Multiplication Decryption Correctness). For any m,m′ ∈ Fn
q ,

and properly generated key sk, let ct ∈ {Encrypt(sk,m)} and ct′ ∈ {Encrypt(sk,m′)}. We have
DecryptMul(sk,Mul(ct, ct′)) = m ·m′.
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Proof. Let’s note ct = (u,v), ct′ = (u′,v′) and Mul(ct, ct′) = (a, b, c). We then have

tmp = a+ s · b+ s · s · c
= v · v′ − s · (u · v′ + u′ · v) + s · s · u · u′

= (v − s · u) · (v′ − s · u′)

= (m̂+ e) · (m̂′ + e′)

= m̂ · m̂′ + m̂′ · e+ m̂ · e′ + e · e′

with m̂ · m̂′ = g(1)g(1) ⋆m ·m′ and m̂′ · e+ m̂ · e′ + e · e′ ∈ F̃n. We thus can write

tmp = g(1)g(1) ⋆m ·m′ +
∑

1≤i≤d
F̃

fi ⋆ ei with ei ∈ Fn
q .

As g(1)g(1) = g(2) and d = D(2), dTvec(g(2)) = 1 and dTvec(fi) = 0 for 1 ≤ i ≤ dF̃ , we thus
have dTMat(tmp) = m ·m′.

It is possible to define an encryption function that directly creates ciphertexts of the form
(a, b, c) (with noise drawn from F̃ ) and show that the result of the multiplication of two fresh
ciphertexts of the form (u,v) follows the same distribution as a fresh three-coordinate ciphertext
associated with the product of plaintexts. It is also possible to show that non-null linear combina-
tions of these three-coordinate ciphertexts have the same distributions as fresh three-coordinate
ciphertexts. We do not delve into these proofs as in practice three-coordinate ciphertexts will be
transformed back to two coordinate ciphertexts. However if for some reason (e.g. computing a
degree two polynomial with a simple scheme) one wants to handle three-coordinate ciphertexts it
is important to understand that the nice distributional properties of two-coordinate ciphertexts are
maintained.

The Somewhat Homomorphic Encryption scheme described above can be adapted so as to per-
form the evaluation of a arbitrary polynomial of degree d. However this has two implications that
we state informally. First, the ciphertext is expanded to d+ 1 coordinates. Second, multiplications
are expanding the noise space, meaning that the parameters must satisfy wd = O(m). These two
conditions require the choice of large and impractical parameters for high values of d.

5.3 (Insecure) Bootstrapping and FullyHomomorphic Encryp-
tion

In this sectionwe present bootstrapping algorithms that homomorphically applies eitherDecryptSHE
or DecryptMulSHE on a ciphertext. Our bootstrapping algorithm has no multiplicative depth so it
produces a two-component (u,v) fresh ciphertext with a new key. The simplicity of our construc-
tion gives a glimpse of a practical Fully Homomorphic Encryption scheme that would allow to
compute arbitrary circuits.

However, this first bootstrapping construction is unsecure as the number of bootstrapping keys
(2m for the case of a homomorphic evaluation of DecryptSHE) is higher than the upper bound on
the number of independent ciphertexts allowed (2w, cf. Section 5.4). Therefore, at the moment, it
cannot be used for a secure FHE.

Wefirst present in Figure 5.5 a homomorphic decryption algorithm thatworks on two-component
(u,v) ciphertexts, then present in Figure 5.6 a bootstrapping relinearization algorithm that is a ho-
momorphic decryption on three-component (a, b, c) ciphertexts.

5.3.1 Homomorphic Decryption Algorithms

In this sectionwe explicitly note (γ1, . . . , γm) the public basis inwhich an element ofFm
q represents

an element of Fqm .
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• GenKeySwitchSHE(sk1 = (f1, g1,D1, s1)):

– generates a new basis b2 of Fqm , and sk2 = (f2, g2,D2, s2) as in KeyGenSHE

– for 1 ≤ i ≤ m defines s1,i = dTMat(γi ⋆ s1) with d = D
(1)
1

– defines ksk = (ksk1, . . . , kskm), with kski
$←− EncryptSHE(sk2, s1,i)

– for 1 ≤ i ≤ m defines pi = d(i) ⋆ (1, 0, . . . , 0) ∈ Fn
qm

– defines projk = (projk1, . . . , projkm) with projki
$←− EncryptSHE(sk2,pi)

– returns (sk2, ksk, projk)

• HomDecryptSHE(ksk, projk, ct = (u,v)):

– defines ui ∈ Fn
q such that u =

∑
1≤i≤m γi ⋆ ui

– defines vi ∈ Fn
q such that v =

∑
1≤i≤m γi ⋆ vi

– computes ct1 =
∑

1≤i≤m vi · projki
– computes ct2 =

∑
1≤i≤m ui · kski

– returns ct1 − ct2

Figure 5.5: Homomorphic Decryption Algorithms.

Proposition 5.3.1 (Homomorphic Decryption Distribution). For any properly generated key sk1,

any ct ∈ (Fn
qm)∗ × (Fn

qm)∗ such that DecryptSHE(sk1, ct) = m ∈ Fn
q , and (sk2, ksk, projk)

$←−
GenKeySwitchSHE(sk1), let ct

′ be obtained by ct′ = HomDecryptSHE(ksk, projk, ct) and let ct′′ be

obtained by ct′′
$←− EncryptSHE(sk2,m). The distributions of ct′ and ct′′ are identical.

Proof. As ct is non-null, ct1−ct2 is a non-null linear combination of the ciphertexts projki and kski,
that have been generated independently. Thus, using Corollary 5.1.3 and Proposition 5.2.1, ct1−ct2
follows the same distribution as ct′′′ $←− EncryptSHE(sk2,

∑
1≤i≤m vi · pi −

∑
1≤i≤m ui · s1,i).

We thus only need to prove that
∑

1≤i≤m vi · pi −
∑

1≤i≤m ui · s1,i = m. We have

∑
1≤i≤m

vi · pi −
∑

1≤i≤m

ui · s1,i =
∑

1≤i≤m

vi · d(i) ⋆ (1, 0, . . . , 0)−
∑

1≤i≤m

ui · s1,i

=
∑

1≤i≤m

d(i) ⋆ vi −
∑

1≤i≤m

ui · s1,i

= dTMat(v)−
∑

1≤i≤m

ui · s1,i

= dTMat(v)−
∑

1≤i≤m

ui · dTMat(γi ⋆ s1)

noting that dTMat(γi ⋆ s1) =
∑

j d
(j)ℓj with ℓj the rows of Mat(γi ⋆ s1) we can use the

distributivity of the polynomial multiplication over the addition to get ui · dTMat(γi ⋆ s1) =
dTMat(γi ⋆ ui · s1). We thus obtain

∑
1≤i≤m

vi · pi −
∑

1≤i≤m

ui · s1,i = dTMat(v)− dTMat(
∑

1≤i≤m

γi ⋆ ui · s1)

= dTMat(v − u · s1)

= m

which concludes the proof.
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It is very important to note that Proposition 5.3.1 ensures that the output of HomDecryptSHE
is a well formed and well distributed ciphertext even if ct is not, as long as it decrypts tom. There
are many implications to Proposition 5.3.1. Among them we can highlight that it opens the path to
fast and simple algorithms for: bootstrapping relinearization, and trans-encryption. It also allows
to rerandomize a ciphertext (assuming that the key switching key is well-formed).

5.3.2 Bootstrapping relinearization

• GenRelinKeySHE(sk1 = (f1, g1,D1, s1, P )):

– generates a new basis b2 of Fqm , and sk2 = (f2, g2,D2, s2, P ) as in KeyGenSHE

– for 1 ≤ i ≤ m defines s1,i = dTMat(γi ⋆ s1) with d = D
(2)
1

– for 1 ≤ i ≤ m defines s1sq,i = dTMat(γi ⋆ s1 · s1)

– defines ksk = (ksk1, . . . , kskm), with kski
$←− EncryptSHE(sk2, s1,i)

– defines ksksq = (ksksq1, . . . , ksksqm), with ksksqi
$←− EncryptSHE(sk2, s1sq,i)

– for 1 ≤ i ≤ m defines pi = d(i) ⋆ (1, 0, . . . , 0) ∈ Fn
qm

– defines projk = (projk1, . . . , projkm) with projki
$←− EncryptSHE(sk2,pi)

– returns (sk2, ksk, ksksq, projk)

• RelinearizeSHE(ksk, ksksq, projk, (a, b, c) ∈ (Fn
qm)∗ × (Fn

qm)∗ × (Fn
qm)∗)):

– defines ai ∈ Fn
q such that a =

∑
1≤i≤m γi ⋆ ai

– defines bi ∈ Fn
q such that b =

∑
1≤i≤m γi ⋆ bi

– defines ci ∈ Fn
q such that c =

∑
1≤i≤m γi ⋆ ci

– computes cta =
∑

1≤i≤m ai · projki
– computes ctb =

∑
1≤i≤m bi · kski

– computes ctc =
∑

1≤i≤m ci · ksksqi
– returns cta + ctb + ctc

Figure 5.6: Relinearization Algorithms.

Proposition 5.3.2 (Relinearization Distribution). For any properly generated key sk1, non-null
(a, b, c) ∈ Fn

qm × Fn
qm × Fn

qm such that DecryptMulSHE(sk1, (a, b, c)) = m ∈ Fn
q , and

(sk2, ksk, ksksq, projk)
$←− GenRelinKeySHE(sk1), let ct

′ be obtained by ct′ = RelinearizeSHE(ksk,

ksksq, projk, (a, b, c)) and let ct′′ be obtained by ct′′
$←− EncryptSHE(sk2,m). The distributions of

ct′ and ct′′′ are identical.

Proof. The proof is very similar to the one of HomDecryptSHE. We use the fact that (a, b, c) is not
null and the ciphertexts generated in GenRelinKeySHE are independently generated to show that
the result is uniformly distributed among the encryptions of a given plaintext. We then show that
this plaintext ism by evaluating the correctness.

For the correctness we show that cta is in EncryptSHE(sk2,d
TMat(a)), then that ctb is in

EncryptSHE(sk2,d
TMat(s1 · b)), and finally that ctc is in EncryptSHE(sk2,d

TMat(s1 · s1 · c)).
As a consequence we obtain that ct is in EncryptSHE(sk2,DecryptMulSHE(sk1, (a, b, c)) and thus
in EncryptSHE(sk2,m).

Note that the relinearization bootstraps the ciphertext. Unlike in previous FHE schemes, the
resulting ciphertext is fresh. It has, exactly the same amount of noise as the fresh ciphertexts used
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for the relinearization. Note that these are direct results of Corollary 5.1.3 (doing linear combina-
tions of ciphertexts with coefficients in Fq does not change the distribution). This seems to be a
very powerful property.

Another very interesting property that makes these algorithms possible is the structure of the
coefficients of the polynomials forming the ciphertexts. As these coefficients have structure it is
much easier to project and reconstruct inside a ciphertext than it would be with bits inside an
integer (as in lattice cryptosystems). This structure can also lead to many interesting applications
such as directly encoding structured plaintexts (e.g. AES states if we take Fq = F28×4×4 ).

5.4 Problem: Limitation on the number of independent ci-
phertexts

Even though it is beautiful, this FHE is not secure because, as we will demonstrate in this section,
the number of ciphertexts that allows an attacker to retrieve the secret key in polynomial time (2w)
is lower than the number of ciphertexts of the bootstrapping material (2m).

Definition 5.4.1 (Rank-SHE Ciphertext Learning Problem (RCL)). Let sk = (f , g,D, s)
$←−

KeyGenSHE(). LetO be an oracle which samples randomly independent encryptions of 0 under secret
key sk. The problem RCLn,ℓ,w is to recover F = Supp(f) given ℓ accesses to the oracle.

Wewill prove below the following result which upper bounds to 2w the number of independent
ciphertexts that can be crafted with the same key. For the sake of the security reduction, we will
now assume that w is below the rank Gilbert-Varshamov bound for parameters (q, ℓn, n,m) for
every ℓ > 1, in order to guarantee the unicity of a solution to the considered problems.

Proposition 5.4.1. RCLn,ℓ,w can be solved in polynomial time when ℓ ≥ 2w.

The proof requires the following lemma that connects RCL and IRSD.

Lemma 5.4.1. IRSDn,ℓ+1,w is polynomially equivalent to RCLn,ℓ,w .

Proof. Suppose we have a solver for RCLn,ℓ,w . Let (H,y = He⊤) ∈ Fℓn×(ℓ+1)n
qm × Fnℓ

qm be an
instance of IRSDn,ℓ+1,w .

By applying Gaussian elimination on the ideal blocks ofH , we can reduceH to its systematic
form. Namely there exists an invertible matrixM ∈Mℓn(Fqm) such that:

H = M


In IMQ(u1)

In IMQ(u2)
. . .

...
In IMQ(uℓ−1)

In IMQ(uℓ)

 (5.1)

By rewriting M−1y as (v1, · · · ,vℓ) where the vi are in Fn
qm , and e as (e1, · · · , eℓ, s) we get the

following equalities :

v1 = u1 · s+ e1

...
vℓ = uℓ · s+ eℓ

Therefore, as the distributions of e in IRSD on one hand, and (e1, · · · , eℓ, s) in RCL on the other
hand, are the same, (ui,vi)i≤ℓ is a (random) instance of RCLn,ℓ,w (for a secret key sk = (f , g,D, s)
such that Supp(f) = Supp(e)) so a solver can recover the support of e. It is only a matter of linear
algebra to compute the exact entries of e and thus to solve the instance of IRSDn,ℓ+1,w .
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Conversely, suppose we have a solver for IRSDn,ℓ+1,w . Let sk = (f , g,D, s) and let (ui,vi =
ui ·s+ei)i≤ℓ be an instance of RCLn,ℓ,w . We then draw a random invertible matrixM and apply
the same transformation as before: define amatrixH as in Equation (5.1) andy = (Mv1, . . . ,Mvℓ).
We obtain a random instance (H,y) of IRSDn,ℓ+1,w ,we can use our solver, and thanks to the unic-
ity of a solution, the support of the recovered error will precisely be the secret space F .

All transformations in this proof are obviously polynomial so we get that IRSDn,ℓ+1,w and
RCLn,ℓ,w are polynomially equivalent.

Proof of Proposition 5.4.1. We use the linearization attack against RSD presented in [GRS16, Propo-
sition 2] that is effective against small rate codes. This attacks solves the decoding problem with
weight w in an [n, k]qm code under the following condition:

n ≥ (k + 1)(w + 1)− 1.

As seen in the above lemma, the ideal code constructed from the RCLn,ℓ,w instance is an [n(ℓ+
1), n]qm code. In that setting, the linearization attack works when

n(ℓ+ 1) ≥ (n+ 1)(w + 1)− 1,

i.e.
ℓ+ 1 ≥ w +

w

n
.

Because n ≥ 1, this clearly shows that ℓ ≥ 2w is a sufficient condition to break RCL in polynomial
time.

Remark. The RCL problem is defined for encryptions of 0, so it is not obvious whether the poly-
nomial attack would work for encryptions of random messages m. However, we find this attack
sufficiently dangerous to claim that 2w is the maximal number of ciphertexts that can be safely
published, even for non-zero messages.

5.5 Reducing the number of bootstrapping ciphertexts
In order to reduce the number of ciphertexts, we pack the plaintext into several components which
are linked publicly so that the server can select which component of the packing they want. It
allows to reduce the number of bootstrapping ciphertexts from 2m to 2(w + 1), which is a major
improvement but is unfortunately still unsecure.

5.5.1 Packing plaintexts
In order to simplify and since our bootstrapping procedure does not need any multiplication, we
only present packing for the additive homomorphic scheme. It could be easily extended to the
somewhat homomorphic scheme.

In this section we present a variant of AHEwhich packs as many plaintexts in Fn
q as possible in

a single ciphertext. We call this variant PAHE (for Packed Additively Homomorphic Encryption).
The fundamental algorithms constituting our scheme PAHE, and the additively homomorphic

algorithms directly inherited fromAHE are depicted in Figure 5.7. The scheme has now a public key
pk that consists of a field element ρ ∈ Fqm that will be used for manipulating packed ciphertexts.

The scheme is parametrized by an additional parameter t that accounts for the size of the pack-
ing:

• q, the base field cardinality;

• m, the dimension of the field extension;

• n, the length of the vectors;
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• w, the rank weight of the error;

• t, the maximal number of plaintexts that can be packed in a single ciphertext; it must be that
t(w + 1) ≤ m and that m is divisible by t.

Actually, in the following we will consider that the equality is met for the above condition, i.e.
t(w+1) = m, because it is the optimal setup to have the least number of bootstrapping ciphertexts.

• KeyGenPAHE():

– samples ρ $←− Fqm such that ρt = 1.

– samples g0
$←− Fqm , f = (f1, . . . , fw)

$←− Sww (Fqm)

– defines F̃ = V ectFq
((ρjfi)1≤i≤w,0≤j≤t−1)

– computes f̃ = (f1, . . . , fdF̃
) ∈ SdF̃

dF̃
(Fqm) a basis of F̃ with dF̃ = dim(F̃ )

– defines gi = ρ−ig0

– checks that
∥∥(f1, . . . , fdF̃

, g0, ..., gt−1)
∥∥
r
= dF̃ + t (if not it restarts)

– extends this vector into a basis b = (f1, . . . , fdF̃
, g0, . . . , gm−dF̃−1) ∈ S

m
m (Fqm)

– defines g = (g0, . . . , gm−dF̃−1)

– computes the matrix B = Mat(b) and its transposed inverse (B−1)T

– defines D as the lastm− dF̃ columns of (B−1)T

– samples s $←− Fn with F = Supp(f)

– returns (sk = (f , g,D, s) , pk = ρ).

• EncryptPAHE(sk, (m0, . . . ,mt−1), r ∈ Fn
qm × Mw,n(Fq)) with mi ∈ Fn

q ): notes
r = (r1,R2), defines u = r1 and e = fR2 and sets v = s · u + e + m̂ with
m̂ =

∑
0≤i<t gi ⋆mi ∈ Fn

qm . Returns ct = (u,v).

• DecryptPAHE(sk, ct = (u,v)): returns (m0, . . . ,mt−1) with mi = (D(i+1))TMat(v −
s · u).

• AddPAHE = AddAHE.

• PtxtMulPAHE = PtxtMulAHE.

Figure 5.7: Description of the packed additive homomorphic scheme.

Proposition 5.5.1 (Extension of AHE properties to PAHE). Proposition 5.1.1, and Corollaries 5.1.1
to 5.1.3 remain true when replacing AHE with PAHE. Proposition 5.1.2 remains true except for the
definition of the cosets which are now {EncryptPAHE(sk,0)}+

∑
0≤i<t gi ⋆mi.

Proof. For Proposition 5.1.1 we can follow the same proof noting that

v − s · u =
∑

1≤i≤w

fi ⋆ ei +
∑

0≤i<t

gi ⋆mi.

We can thus write,

(D(j+1))TMat(v − s · u) =
∑

1≤i≤w

(D(j+1))Tvec(fi) ⋆ ei +
∑

0≤i<t

(D(j+1))Tvec(gi) ⋆mi

= mj
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using the same arguments as in the proof of Proposition 5.1.1.
The proofs of Proposition 5.1.2 and Corollaries 5.1.1 to 5.1.3 do not depend on the specific

encoding we have on PAHE but only on how the noise vectors are chosen and used. As this is
unchanged from AHE, the proofs are immediately valid for PAHE.

5.5.2 Plaintext rotation
In this section we define a rotation operation that is publicly computable and rotates plaintexts
inside a packed ciphertext. It is described in Figure 5.8.

• RotatePAHE(ct = (u,v), pk = ρ, j ∈ N) returns (ρju, ρjv).

Figure 5.8: Description of plaintext rotation.

Proposition 5.5.2 (Rotation correctness). For any (m0, ...,mt−1) ∈ Fn×t
q , and a properly gener-

ated key (sk, pk), let ct = (u,v) be obtained by ct
$←− EncryptPAHE(sk,m0, ...,mt+1), ct′

$←−
RotatePAHE(ct, pk, j). We have DecryptPAHE(sk, ct

′) = (mj , ...,mj+t−1)
1.

Proof. Like in the proof of Proposition 5.5.1, we have

v − s · u =
∑

1≤i≤w

fi ⋆ ei +
∑

0≤i<t

gi ⋆mi.

By noting ct′ = (u′,v′) and pk = ρ we get

v′ − s · u′ =
∑

1≤i≤w

(ρjfi) ⋆ ei +
∑

0≤i<t

(ρjgi) ⋆mi.

Changing variables i′ = i− j in the second sum gives

v′ − s · u′ =
∑

1≤i≤w

(ρjfi) ⋆ ei +
∑

0≤i′<t

(ρjgi′+j) ⋆mi+j

=
∑

1≤i≤w

(ρjfi) ⋆ ei +
∑

0≤i′<t

gi′ ⋆mi+j

Now just like in the proof of Proposition 5.5.1, we can write for any 0 ≤ k < t,

(D(k+1))TMat(v′ − s · u′) =
∑

1≤i≤w

(D(k+1))Tvec(ρjfi) ⋆ ei +
∑

0≤i′<t

(D(k+1))Tvec(gi′) ⋆mi+j

= mk+j

because thanks to the definition of D = (B−1)T , for any 1 ≤ i ≤ w, (D(k+1))Tvec(ρjfi) = 0,
(D(k+1))Tvec(gk) = 1 and for any 0 ≤ i′ < t, i′ ̸= k, (D(k+1))Tvec(gi′) = 0.

Remark. In particular, RotatePAHE(·, pk, t) = id.

5.5.3 Homomorphic decrytion with packing
The new relinearization with packing is presented in Figure 5.9. The key switching material (ksk
and projk) is now composed of 2(w + 1) packed ciphertexts (instead of 2m simple ciphertexts
in Figure 5.5).

The following proposition establishes that a ciphertext ct encrypting a single plaintext m
(without packing), after homomorphic decryption with a PAHE key switching material, decrypts
correctly.

1The indexes are taken modulo t
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• GenKeySwitchPAHE(sk1 = (f1, g1,D1, s1)):

– generates a new basis b2 of Fqm , sk2 = (f2, g2,D2, s2) and pk2 as in KeyGenPAHE

– for 1 ≤ i ≤ m defines s1,i = dTMat(γi ⋆ s1) with d = D
(1)
1

– defines ksk = (ksk0, . . . , kskw), with kski
$←− EncryptPAHE(sk2, (s1,it+j)1≤j≤t)

– for 1 ≤ i ≤ m defines pi = d(i) ⋆ (1, 0, . . . , 0) ∈ Fn
qm

– defines projk = (projk0, . . . , projkw) with projki
$←−

EncryptPAHE(sk2, (pit+j)1≤j≤t))

– returns (sk2, pk2, ksk, projk).

• HomDecryptPAHE(ksk, projk, ct = (u,v), pk2):

– defines ui ∈ Fn
q such that u =

∑
1≤i≤m γi ⋆ ui

– defines vi ∈ Fn
q such that v =

∑
1≤i≤m γi ⋆ vi

– computes ct1 =
∑

1≤i≤m vi ·RotatePAHE(projk⌊(i−1)/t⌋, pk2, (i− 1))

– computes ct2 =
∑

1≤i≤m ui ·RotatePAHE(ksk⌊(i−1)/t⌋, pk2, (i− 1))

– returns ct1 − ct2

Figure 5.9: Homomorphic Decryption Packing Algorithms.

Proposition 5.5.3 (Homomorphic Decryption with packing Correctness). For any properly gener-
ated key sk1 and m ∈ Fn

q , ct
$←− EncryptAHE(sk1,m), (sk2, pk2, ksk, projk)

$←−
GenKeySwitchPAHE(sk1), DecryptPAHE(sk2,HomDecryptPAHE(ksk, projk, ct, pk2)) = m.

Proof. Let 1 ≤ i ≤ m. By Proposition 5.5.2,

RotatePAHE(projk⌊(i−1)/t⌋, pk2, (i− 1)) ∈ {EncryptPAHE(sk2, (pα(i,j))1≤j≤t)}.

where

α : [1,m]× [1, t] −→ [1,m]

(i, j) 7−→ ⌊ i− 1

t
⌋t+ 1 + ((i+ j − 2) mod t).

Similarly,

RotatePAHE(ksk⌊(i−1)/t⌋, pk2, (i− 1)) ∈ {EncryptPAHE(sk2, (s1,α(i,j))1≤j≤t)}.

Using 5.5.1,

(ct1 − ct2) ∈ {EncryptPAHE(sk2,
∑

1≤i≤m

(vi · pα(i,j) − ui · s1,α(i,j))1≤j≤t)}.

Using DecryptAHE on ciphertext (ct1 − ct2) corresponds to retrieving the first component of
the packed plaintext hence

DecryptAHE(sk2,HomDecryptPAHE(ksk, projk, ct, pk2)) =
∑

1≤i≤m

vi · pα(i,1) − ui · s1,α(i,1).

Noting that for all 1 ≤ i ≤ m, we have the identity α(i, 1) = i,
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DecryptAHE(sk2,HomDecryptPAHE(ksk, projk, ct, pk2)) =
∑

1≤i≤m

vi · pi − ui · s1,i

= m

using the same argument as in the proof of Proposition 5.3.1.

Remark. After homomorphic decryption, the resulting ciphertext ct′ = HomDecryptPAHE(ksk,
projk, ct, pk2) does not belong to the distribution EncryptAHE(sk2,m) nor EncryptPAHE(sk2,
(m, ·, . . . )). Indeed, the noise component of ct′ lives in the bigger space F̃ (as defined inKeyGenPAHE),
whereas the noise component of the freshly encrypted ciphertexts belong to F . It does not impact
security since ct′ results from public operations only with fresh ciphertexts ct, ksk and projk.
Remark. Because the HomDecryptPAHE operation consists essentially in a homomorphic evalua-
tion of the orthogonal projection of v − s · u on ⟨g0⟩Fq

, note that the initial ciphertext ct does
not need to be fresh (i.e. with its noise in F ). In particular, Proposition 5.5.3 is still valid when ct
results from a previous homomorphic decryption with another set of keys.
Remark. If the initial ciphertext ct had been taken with packed plaintexts (i.e. drawn from
EncryptPAHE instead of EncryptAHE), the homomorphic decryption would be correct only for the
first component of the packed plaintext. Other components would be lost.

5.6 Parameters
In this section we give example parameters for our scheme. Several sets are proposed for different
values of d, the number of possible multiplications in the SHE. The parameter selection ran through
the following steps. For given m and n, the weight w is set to the minimum between the half-
rate rank Gilbert-Varshamov bound drGV and wd−1 (to prevent an overflow on the noise after d
multiplications). We search for the lowest n such that a sufficient number of ciphertexts ℓ = 3w/4
can be published, i.e. the best attacks against IRSD in an s-ideal [sn, n]qm random code for every
2 ≤ s ≤ ℓ are above the security level. Two attacks against IRSD were taken into account:

• the combinatorial attack from [AGHT18] whose complexity is given by

(sn− n)ωmωqw⌈
m(n+1)

sn ⌉−m

for ω the linear algebra exponent;

• the algebraic attack from [BBC+20] whose complexity is given by qawm
(
sn−n−1

w

)(
sn−a
w

)ω−1
where a is defined as the smallest integer such that the conditionm

(
sn−n−1

w

)
≥
(
sn−a
w

)
−1

is fulfilled.

If no such n can be found, the process restarts with an increased m. The SageMath script of our
parameter selection is available at:

https://www.github.com/victordyseryn/rank-fhe-parameter-selection

The key and ciphertext sizes in bits are given by the following formulas:

|sk| = log2(q)(m
2 + nw)

|ct| = 2 log2(q)mn.

The approximate timings for addition, multiplication and bootstrapping operations are esti-
mated as follows:

• The addition consists in the sum of two vectors in Fn
qm , the number of bit operations is then

TAdd = 2mn;

https://www.github.com/victordyseryn/rank-fhe-parameter-selection
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• The multplication consists in three multiplications of vectors in Fn
qm . The use of the Karat-

suba algorithm gives a number of bits operations of

TMul = 3(mn)1.6;

• The bootstrapping requires 2m plaintext absorptions, i.e. a multiplication of a vector in Fn
q

times a vector in Fn
qm . With Karatsuba algorithm, the number of bit operations of a plaintext

absorption is mn1.6, hence the total cost of bootstrapping is

TBootstrap = 2m2n1.6.

The bootstrapping time is informative only as it is unsecure as proven in Section 5.4.

The timings inmilliseconds are then computed by diving the number of bit operations by 3millions,
accounting for a processor running at 3 GHz. Note that this is an extremely conservative estimation,
as modern processors run several bit operations in one clock cycle.

Our parameters are presented in the following table:

d q m n w ℓ Security Key size ct size Add Mul Bootstrap
1 2 172 20 13 9 128 3.7 kB 0.9 kB 0.002 ms 0.5 ms 2 ms
2 2 367 183 7 5 128 17.0 kB 16.8 kB 0.04 ms 52 ms 374 ms
3 2 1296 314 6 4 128 210 kB 102 kB 0.3 ms 944 ms 11 s
4 2 3125 713 5 3 128 1.22 MB 557 kB 1 ms 14.3 s 239 s

Table 5.1: Example of paramaters for our SHE scheme, with associated sizes and execution timings.
d is the number of possible multiplications. q,m and n are parameters of the rank linear code and
w is the rank weight of the error. ℓ is the number of independant ciphertexts that can be published.

The sizes and expected performance of our somewhat homomorphic encryption scheme are
very positive, and could already be used for practical applications with a small number of multi-
plications.

These numbers additionally show a strong potential regarding bootstrapping, should it be re-
paired. With bootstrapping enabled, the only parameters to consider would be those for which
d = 1, and in such a context bootstrapping would be very efficient with an unoptimized running
time of only 2 milliseconds. For example, it is more than 6 times more efficient than the bootstrap
in TFHE [CGGI20], one of the most popular and widely used lattice-based FHE framework. Our
scheme shows that error correcting codes can lead to very competitive FHE constructions.
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Conclusion

Code-based cryptography mainly revolves around three difficult problems: the syndrome decod-
ing problems – and their cyclic variants – either in the Hamming or in the rank metric; and the
permuted kernel problem.

We presented in Chapter 2 a recent approach to improve the efficiency of code-based schemes,
as an alternative to quasi-cyclic or ideal structure, which can be a potential vulnerability. This
multi-dimensional approach consists in sampling several errors sharing the same support, or sev-
eral vectors sharing the same permutation in the case of PKP. Being intensive by nature, the rank
metric seems particularly well suited for this approach. We presented crytanalytic efforts on the
multi-dimensional variants of the decoding problems. The complexity of attacks has stabilized over
the years and it seems that multiple instances of errors with the same support do not bring any
advantage to the attacker, when the number of instances remains small. The multi-dimensional
approach was the central theme of this manuscript; we explored new and existing applications of
this technique.

For rank metric encryption schemes, two families of codes are particularly well adapted to a
multi-dimensional (or interleaved) decoding: LRPC codes and Gabidulin codes. We introduced
in Chapter 3 two encryption schemes based on the improvements brought by the decoding of
multiple errors with the same support: LRPC-MS and LowMS. We proved an upper bound on
their decoding failure rate, and consequently showed their IND-CPA security. They achieve very
competitive sizes, especially when compared to other cryptosystems that do not feature a quasi-
cyclic or ideal structure.

Chapter 4 began with an attack against a signature scheme using the multi-dimensional ap-
proach, Durandal. The attack targeted a very specific problem, PSSI, which was created just for
Durandal and is totally unliked to the multi-dimensional approach. In the same chapter, we pre-
sented our contributions to the NIST onramp standardization call for digital signature with three
submissions: MIRA, PERK and RYDE. We gave a special focus on PERK, by presenting a detailed
analysis of the security of r-IPKP, a multi-dimensional variant of the traditional IPKP, which ap-
pears in the security proof of PERK.

Chapter 5 concluded themanuscriptwith the presentation of a homomorphic encryption scheme
based on random ideal codes in the rank metric. The novel ideas of using the framework of
Alekhnovich for homomorphic encryption, as well as the perpendicular encoding of errors and
messages, allowed us to build a simple and efficient somewhat homomorphic scheme. Even though
it is currently insecure, we also presented a bootstrapping algorithm that demonstrates the high
potential of code-based homomorphic encryption.

Perspectives

The multi-dimensional approach opens a large field of possibilities; we present below a few options
for further work.

• A reduction frommulti-dimensional problems to their single-dimensional counterpartswould
strenghen the confidence in the security of the multi-dimensional approach;

• We investigated the benefits of themulti-dimensional approach applied to encryption schemes
in the rank metric. Similar results in the Hamming metric, especially on the families of low
density parity-check (LRPC) codes, found in BIKE [ABB+22] or Reed-Muller-Reed-Solomon
codes, found in HQC [AAB+22] would be very attractive;

• The decoding of LRPC codes can fail for two reasons: either the syndrome space does not
generate the full product space EF , or the chain of intersections ∩f−1i EF is strictly larger
thanE. Although the first probability is well understood, even for themulti-dimensional case
as shown in Chapter 3, an efficient upper bound the second probability was not rigorously
proven. An improvement of the upper bound from [BO23] would be a great step towards a
better understanding of LRPC codes;
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• Finding a hash-and-sign signature scheme in the rank metric with secure parameters is still
an open problem. It suffices to find a new family of rank metric codes that have a large
density of decodable syndromes and that can be securely masked. As mentioned earlier, it
would also be a challenge to take advantage of the multi-dimensional approach to build such
a scheme;

• Our attack on the PSSI problem presented in Section 4.1 computes Cramer-like formulas of
size 2× 2. A generalization to size 3× 3 or more could lead to a more efficient attack;

• Wewould like to find new parameters for Durandal that resist our attack. It possibly involves
a slight modification to the scheme itself;

• The attack on r-IPKP we presented in Section 4.2.3 first converts the multi-dimensional
instance into a mono-dimensional instance with many zeros, then solves it with a mono-
dimensional enumeration algorithm adapted to the low weights. Finding a way to enumer-
ate directly on the multi-dimensional instance and to find partial matches efficiently is a
possibility to improve our attack;

• We would like to improve the packing capacity of our homomorphic construction in order
to make the bootstrapping possible. A possible research direction could be to add some
structure to the error.
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Appendix A

Proofs for the introducing chapters

A.1 Asymptotic equivalent for themulti-rankGilbert-Varshamov
bound

Proposition A.1.1. When m = n and ℓ → ∞, the multi-rank Gilbert-Varshamov bound dmRGV

defined as the smallest integer such that

(
m
w

)
q
qwℓn

qmℓ(n−k) > 1,

admits an asymptotic equivalent

dmRGV ∼ n

(
1− k

n

)
.

Proof. The inequality defining dmRGV becomes an equality in the asymptotic regime, i.e.(
m

dmRGV

)
q

qdmRGV ℓn = qmℓ(n−k) (A.1)

The asymptotic equivalent of the gaussian binomial coefficient is(
m

dmRGV

)
q

∼ qdmRGV (m−dmRGV )

hence by looking only at the exponential part of Equation (A.1), dmRGV satisfies a degree two
equation

dmRGV (m− dmRGV ) + dmRGV ℓn = mℓ(n− k),

which, whenm = n simplifies into

d2mRGV − n(ℓ+ 1)dmRGV + nℓ(n− k) = 0.

The only solution to the above equation satisfying 0 ≤ dmRGV ≤ n is
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dmRGV ∼
n(ℓ+ 1)−

√
n2(ℓ+ 1)2 − 4nℓ(n− k)

2

∼ n(ℓ+ 1)

2

[
1−

√
1− 4nℓ(n− k)

n2(ℓ+ 1)2

]

∼ n(ℓ+ 1)

2

4nℓ(n− k)

2n2(ℓ+ 1)2

∼ ℓ

ℓ+ 1
(n− k)

which gives the following equivalent, when ℓ→∞,

dmRGV ∼ (n− k) = n

(
1− k

n

)
.



Appendix B

Proofs for LRPC-MS

B.1 Dimension of the support of the product of homogeneous
matrices

In this section we prove the following theorem, which is required to prove the correctness of the
multi-syndrome approach presented in Section 3.1. We fixE and F subspaces of Fqm of dimension
r and d respectively such that EF is of dimension rd. Remember that we have q = 2 all along the
proof.

Theorem B.1.1. For q = 2, n1 + n2 ≤ n and for U and V random variables chosen uniformly in
Fn1×n and En×n2 (respectively), P(Supp(UV ) ̸= EF ) ≤ (n1 + 1)qrd−n1n2

A first idea which may come to mind when trying to prove this theorem would be to use the
Leftover Hash Lemma [ILL89] (LHL) in order to prove that the statistical distribution of UV is
ε-close to the uniform statistical distribution on EFn1×n2 . However, the total number of differ-
ent couples (U ,V ) is equal to dimFn1n dimEn2n = rdnrn2dn1 and the number of matrices in
EFn1×n2 is rdn1n2 . In a usual code-based cryptography setting where n1 ≈ n2 ≈ n/2 and r ≈ d,
we get that rdnrn2dn1 ≪ rdn1n2 therefore we cannot expect to use the LHL.

At first sight, this is quite an issue, as proving the statement of our theorem without standard
statistical arguments can be quite complex, or impossible. The rest of the section presents a five
stage proof of the theorem (main body and 4 lemmas), using algebraic arguments. Our approach
is to study the distribution of ϕ(UV ) for a linear form ϕ on EF . We show that the distribution of
ϕ(UV ) is uniform in a subspace of Fn1×n2 whose dimension is depending on the rank of ϕ viewed
as a tensor in E ⊗ F and on a simple condition on matrix U .

B.1.1 Preliminary results on binary matrices
Lemma B.1.1. For a uniformly random binary matrix M of size m × n with m ≤ n and for
0 < i ≤ m, P(rank(M) = m− i) ≤ 2i(m−n).

Proof. Let S be a subspace of {0, 1}m of dimensionm− i. The number of such possible subspaces
is
(
m
i

)
2
≤ 2im.

For a uniformly random binary m× n matrix M , since the n columns of M are independent
random variables, P(Supp(M) ⊂ S) = 2−in. Then:

P(rank(M) = m− i) ≤ P(rank(M) ≤ m− i)

≤ P(
⋃
S

Supp(M) ⊂ S)

≤
∑
S

P(Supp(M) ⊂ S)

≤ 2i(m−n)
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Definition B.1.1. For s > 0, letRs be the random variable defined as the rank of a uniformly random
binary matrix of size n1 × ns.

Lemma B.1.2. For n2 > 0, E(2−n2R1) ≤ (n1 + 1)2−n1n2 .

Proof.

E(2−n2R1) =

n1∑
i=0

2−n2iP(R1 = i)

= 2−n1n2P(R1 = n1) +

n1−1∑
i=0

2−n2iP(R1 = i)

≤ 2−n1n2 +

n1∑
i=1

2−n2(n1−i)P(R1 = n1 − i)

≤ 2−n1n2 +

n1∑
i=1

2−n2(n1−i)2i(n1−n) (Lemma B.1.1)

≤ 2−n1n2 +

n1∑
i=1

2i(n2+n1−n)−n1n2

≤ 2−n1n2 +

n1∑
i=1

2−n1n2 (n ≥ n1 + n2)

≤ (n1 + 1)2−n1n2

Since R1≤Rs, we get an immediate corollary.

Corollary B.1.1. For n2 > 0 and for s > 0, E(2−n2Rs) ≤ (n1 + 1)2−n1n2 .

B.1.2 Proof of Theorem 3.1.1
We first fix ϕ a non-zero linear form from EF to Fq and we will study the probabibilty that
Supp(UV ) ⊂ ker(ϕ). For a vector x = (x1, ..., xi) ∈ (EF )i, we will note ϕ(x) the vector
(ϕ(x1), ..., ϕ(xi)). We use the similar abuse of notation for ϕ(X) when X is a matrix.

Let ϕb be the non-zero bilinear form

ϕb : E × F → F
(e, f) 7→ ϕ(ef).

Let s = rank(ϕb) be the rank of this bilinear form. Then there exists a basis (e1, . . . , er) of E and
a basis (f1, . . . , fd) of F in which the matrix representation of ϕb is(

Is 0
0 0

)
.

In the product basis of EF

(e1, . . . , er)⊗ (f1, . . . , fd) = (e1f1, ..., e1fd, e2f1, ..., erf1, ..., erfd)

the expression of ϕ is very simple. For x =
∑

1≤i≤n
1≤j≤n

xijeifj we have

ϕ(x) =
∑

1≤i≤s

xii.



B.1. Dimension of the support of the product of homogeneous matrices 135

Let u = (u1, . . . , un) be a vector of Fn and consider the map

En → F
v = (v1, . . . vn)

T 7→ ϕ(uv) = ϕ(u1v1 + · · ·+ unvn).

For i = 1 . . . n, writeui =
∑d

j=1 uijfj the decomposition ofui along the basis ofF (f1, . . . , fd).
Similarly write vi =

∑r
j=1 vijej the decomposition of vi along the basis of E (e1, . . . , er). We

clearly have:
ϕ(uv) =

∑
1≤i≤n
1≤j≤s

uijvij . (B.1)

Now let U be an n1 × n matrix of elements in F . Define U s to be the n1 × sn binary matrix
obtained from U by replacing every one of its rows u by its expansion

u11, . . . , u1s, u21, . . . , u2s, . . . un1, . . . , uns

as defined in (B.1). It follows that we have:

Lemma B.1.3. Let s = rank(ϕb), U be an n1 × n matrix of elements in F and let φU be the map

φU : En → Fn1

v 7→ ϕ(Uv).

The rank of the map φU is equal to the rank of the n1 × sn binary matrix U s.

Corollary B.1.2. For U a random variable chosen uniformly in Fn1×n, rank(φU )=Rs where s is
the rank of ϕb.

Now that we know the probability distribution of the rank of φU , we will give a probability on
Supp(UV ) depending on this rank.

Lemma B.1.4. Let U such that the above-defined φU is of rank 0 ≤ i ≤ n1. Then for V a random
variable chosen uniformly in En×n2 , P(Supp(UV ) ⊂ ker(ϕ)) ≤ q−in2

Proof. Let H = Im(φU ) Let V = (v1, ...,vn2
) the columns of V .

φU is a surjective homomorphism of finite abelian groups En andH , so according to Theorem 8.5
in [Sho09], for all i,Uvi is uniformly distributed. Thus because the columns ofV are independent,
ϕ(UV ) is uniformly distributed in Hn2 .
As a result, because Supp(UV ) ⊂ ker(ϕ) if and only if ϕ(UV ) = 0, P(Supp(UV ) ⊂ ker(ϕ)) ≤
1/|Hn2 | = q−in2 .

Lemma B.1.5. For a non-null linear form ϕ of EF , P(Supp(UV ) ⊂ ker(ϕ)) ≤ E(2−n2R1)

Proof. Let s > 0 be the rank of ϕb.

P(Supp(UV ) ⊂ ker(ϕ)) =

n1∑
i=0

P(Supp(UV ) ⊂ ker(ϕ)|rank(φU ) = i)P(rank(φU ) = i)

≤
n1∑
i=0

2−in2P(rank(φU ) = i) (Lemma B.1.4)

≤ E(2−n2 rank(φU ))

≤ E(2−n2Rs) (Corollary B.1.2)
≤ E(2−n2R1) (Corollary B.1.1)
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Proof of Theorem 3.1.1.

P(Supp(UV ) ̸= EF ) = P(
⋃

ϕ∈EF∗\{0}

Supp(UV ) ⊂ ker(ϕ))

≤
∑

ϕ∈EF∗\{0}

P(Supp(UV ) ⊂ ker(ϕ))

≤
∑

ϕ∈EF∗\{0}

E(2−n2R1) (Lemma B.1.5)

≤ 2rd E(2−n2R1)

≤ (n1 + 1)2rd−n1n2 (Lemma B.1.2)



Appendix C

Proofs for PERK

C.1 Security Proofs for PoK

C.1.1 Proof of Theorem 4.2.4
We restate the Theorem 4.2.4 below and follow it by its proof.

Theorem 4.2.4 (Knowledge Soundness). The protocol presented in Figure 4.5 is knowledge sound
with knowledge error

εKS =
1

N
+

N − 1

N · (qt − 1)
.

Proof of Theorem 4.2.4. Before proving the knowledge soundness of our protocol, wewill first prove
the following useful lemma.

Lemma C.1.1 ((2, 2)-special soundness). The protocol shown in Figure 4.5 is (2, 2)-special sound.

Proof of Lemma C.1.1. (2, 2)-special soundness.
Following Definition 4.2.9 the protocol is called (2, 2)-special sound if there exists an efficient
knowledge extractor Ext which on an input statement (H, (xi)i∈[1,t],
(yi)i∈[1,t]) and a (2, 2)-accepting tree of transcripts (See Definition 4.2.8) returns a solution of
the r-IPKP instance defined by (H, (xi)i∈[1,t], (yi)i∈[1,t]). We now show such an extractor which
takes 4 accepting transcripts associated with challenges (κ, α1), (κ, α2), (κ

′, α′1), (κ
′, α′2) such

that κ = (κi)i∈[1,t], κ′ = (κ′i)i∈[1,t] as well as κ ̸= κ′, α1 ̸= α2, and α′1 ̸= α′2, and outputs a
solution to the r-IPKP instance defined by (H, (xi)i∈[1,t], (yi)i∈[1,t]).

Let z(κ
∗,α∗)

2 denote the response z2 computed as shown in Figure 4.5 when the first and second
challenges are κ∗ and α∗ respectively. Note that, z(κ,α1)

2 contains all the seeds θi for i ∈ [1, N ] ex-
cept i = α1. Therefore, the extractor has access to all the seeds θi for i ∈ [1, N ] since it knows both
z
(κ,α1)
2 as well as z(κ,α2)

2 and α1 ̸= α2. It can compute (π̄(κ)
i , v̄

(κ)
i )i∈[1,N ] and (π̄

(κ′)
i , v̄

(κ′)
i )i∈[1,N ]

from
(
z
(κ,αi)
2

)
i∈[1,2] and

(
z
(κ′,α′

i)
2

)
i∈[1,2] respectively.

Also, note that the first message h1 = H(cmt1, (cmt1,i)i∈[1,N ]) is common to all the 4 tran-
scripts. Since we assume that H is a collision-resistant hash function, it means that the initial
commitments (cmt1, (cmt1,i)i∈[1,N ]) are all same in the 4 transcripts. From the binding property
of the commitments (cmt1,i)i∈[1,N ], we know that

(π̄i, v̄i)i∈[1,N ] = (π̄
(κ)
i , v̄

(κ)
i )i∈[1,N ] = (π̄

(κ′)
i , v̄

(κ′)
i )i∈[1,N ].

The knowledge extractor Ext computes the solution as
1. Compute (π̄i)i∈[1,n] from z

(κ,α1)
2 and z

(κ,α2)
2

2. Output π̄ = π̄N ◦ · · · ◦ π̄1
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Let us now check the validity of this solution output by the extractor. By construction, we know
that s̄(κ,α1)

0 = s̄
(κ,α2)
0 =

∑
i∈[1,t] κi · xi. Also, for all i ∈ [1, N ] \ α1, s̄(κ,α1)

i = π̄i

[
s̄
(κ,α1)
i−1

]
+ v̄i.

And for all i ∈ [1, N ] \ α2, s̄(κ,α2)
i = π̄i

[
s̄
(κ,α2)
i−1

]
+ v̄i. Since the transcripts are accepting and

V checks h2 computed as h2 = H((si)i∈[1,N ]), due to the collision-resistance property of H, it
follows that for all i ∈ [1, N ], s̄(κ)i = π̄i

[
s̄
(κ)
i−1

]
+ v̄i, this implies s̄(κ)N = π̄

[∑
i∈[1,t] κi · xi

]
+ v̄.

Following a similar argument, we know that s̄(κ
′)

N = π̄
[∑

i∈[1,t] κ
′
i · xi

]
+ v̄. Based on the

binding property of commitment cmt1 and using the fact that the transcripts are accepting, we can
write

Hs̄
(κ)
N −

∑
i∈[1,t]

κi · yi = Hs̄
(κ′)
N −

∑
i∈[1,t]

κ′i · yi

=⇒ H

π̄

 ∑
i∈[1,t]

κi · xi

+ v̄

− ∑
i∈[1,t]

κi · yi = H

π̄

 ∑
i∈[1,t]

κ′i · xi

+ v̄

− ∑
i∈[1,t]

κ′i · yi

=⇒ H

π̄

 ∑
i∈[1,t]

(κi − κ′i) · xi

 =
∑

i∈[1,t]

(κi − κ′i) · yi

This implies that π̄ is a solution of the considered r-IPKP problem.

We can now apply the result of Theorem 4.2.1 to Lemma C.1.1, which concludes the proof.

C.1.2 Proof of Theorem 4.2.5

The following proof is inspired from the proof of [ZCD+20, Lemma 6.1] and [FJR22, Theorem 3].
We now show that the protocol described in Figure 4.5, Section 4.2.2, satisfies the special honest-
verifier zero knowledge property. We assume that the commitment algorithm Com

(
·
)
outputs

ℓ(λ)-bit strings as output for some polynomial ℓ. We restate the Theorem 4.2.5 below and follow
it by its proof.

Theorem 4.2.5 (Special Honest-Verifier Zero Knowledge). Assume that there exists a (t, ϵPRG)-
secure PRG, and the commitment scheme Com is (t, ϵCom)-hiding. Then there exists an efficient sim-
ulator Sim which, outputs a transcript such that no distinguisher running in time at most t(λ) can
distinguish between the transcript produced by Sim and a real transcript obtained by honest execution
of the protocol in Figure 4.5 with probability better than (ϵPRG(λ) + ϵCom(λ)).

Proof of Theorem 4.2.5. We begin by describing an efficient simulator Sim which outputs a tran-
script which is indistinguishable from a real transcript obtained by honest execution of the proto-
col. Sim on input x = (H, (xi)i∈[1,t],
(yi)i∈[1,t]) works as follows:

Note that the simulator Sim runs in polynomial-time and the challenges sampled in Step 1 are
distributed identically to the real world execution since the verifier also samples the challenges uni-
formly at random. We now show that the transcript output by Sim and a real transcript obtained by
honest execution of the protocol in Figure 4.5 with challenges (κ, α∗) cannot be distinguished with
probability better than (ϵPRG(λ) + ϵCom(λ)) by any distinguisher running in time at most t(λ). We
consider the following sequence of simulators:

Simulator 0 (real world). This simulator takes the statement x = (H, (xi)i∈[1,t],
(yi)i∈[1,t]), witness π, and the challenges (κ, α∗) as input. It then runs the protocol in Figure 4.5
honestly and outputs the transcript. This transcript is identically distributed as a real-world tran-
script.
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1. Sample κ $←− Ft
q \ 0 and α∗ $←− [N ]

2. Sample θ $←− {0, 1}λ

3. For each i ∈ [1, N ] \ {α∗}

⋄ θi
$,θ←− {0, 1}λ, ϕi

$,θi←− {0, 1}λ, r1,i
$,θi←− {0, 1}λ

⋄ if i ̸= 1

▷ πi
$,ϕi←− Sn, vi

$,ϕi←− Fn
q , cmt1,i = Com

(
r1,i, ϕi

)
⋄ if i = 1

▷ π1
$←− Sn, v1

$,ϕ1←− Fn
q , cmt1,1 = Com

(
r1,1, π1 ||ϕ1

)
4. For i = α∗

⋄ Sample πα∗
$←− Sn, vα∗

$←− Fn
q , cmt1,α∗

$←− {0, 1}ℓ(λ)

5. Compute r1, v, cmt1, h1 as in the real protocol using the values computed above.
6. Compute π̃ = πN ◦ · · · ◦ π1

7. Compute x̃ such thatHx̃ =
∑

i∈[1,t]
κi · yi

8. Compute s0 =
∑

i∈[1,t]
κi · xi

9. For each i ∈ [1, α∗ − 1]

⋄ Compute si = πi[si−1] + vi

10. Compute sα∗ = πα∗ [sα∗−1] + vα∗ + π−1
α∗+1 ◦ · · · ◦ π

−1
N

[
x̃− π̃

[∑
i∈[1,t]

κi · xi

]]
11. For each i ∈ [α∗ + 1, N ]

⋄ Compute si = πi[si−1] + vi

12. Compute h2, z1, z2, rsp as in the real protocol using the values computed above.
13. Output (x, h1, (κi)i∈[1,t], h2, α

∗, rsp)

Figure C.1: Simulator Sim for generating indistinguishable transcripts without knowledge of secret
witness π

Simulator 1. Simulator 1 works exactly same as Simulator 0 except that instead of computing
cmt1,α∗ as in the real protocol, it samples a uniform string as cmt1,α∗

$←− {0, 1}ℓ(λ). The proba-
bility of distinguishing Simulator 0 from Simulator 1 by any distinguisher running in time at most
t(λ) is upper bounded by ϵCom(λ).

Simulator 2. The only difference between Simulator 1 and Simulator 2 is that, Simulator 2 samples
πα∗

$←− Sn and vα∗
$←− Fn

q uniformly at random instead of using the seed-derived randomness
from the seed θ. The probability of distinguishing Simulator 2 from Simulator 1 by any distin-
guisher running in time at most t(λ) is upper bounded by ϵPRG(λ).

Simulator 3 (Sim). Simulator 3 takes the statement x = (H, (xi)i∈[1,t], (yi)i∈[1,t]), and works as
Sim defined in Figure C.1. Note that, this simulator does not depend on the witness π. Also, Sim
first samples the challenges (κ, α∗) uniform randomly (this is identical to honest verifier in real
world).

If α∗ = 1, then Simulator 2 and Sim work exactly same till Step 5 of Sim. Therefore, h1 is
distributed identically in both the transcripts. Also, s0 is computed honestly by Sim and hence
matches with that computed by Simulator 2. While computing s1, both Simulator 2 and Sim add
v1 to it. However, v1 is sampled uniformly at random by both Simulator 2 and Sim. Hence, s1
is also distributed identically in both the transcripts. Step 11 of Sim works exactly as Simulator 2
which means h2 is also distributed identically in both the transcripts. The response rsp in this case
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is rsp =
(
s1, (r1 ||θi)i∈[2,N ], cmt1,1)

)
. As explained above s1 is uniform random and distributed

identically in both transcripts. The seeds (θi)i∈[2,N ] and randomness r1 are computed identically
by both the simulators since they work exactly the same way till Step 5 of Sim. Also, cmt1,1 is
sampled uniformly at random in both experiments (refer Simulator 1). Therefore, the transcript
(x, h1, (κi)i∈[1,t], h2, α

∗, rsp) is distributed identically in Simulator 2 and Sim when α∗ = 1.
If α∗ ̸= 1, then Simulator 2 and Simwork exactly same till Step 5 of Sim, except for sampling of

π1. Simulator 2 computes π1 from witness π, whereas Sim samples π1 uniformly at random. How-
ever, the values r1,v, cmt1, and h1 are computed independently of π1 and those are distributed
identically in both the transcripts. Also note Simulator 2 computes π1 by composing it with π−1α∗ .
Since πα∗ is sampled uniformly at random by Simulator 2, this implies that π1 computed by Sim-
ulator 2 is also uniform random permutation and hence π1 is also distributed identically. Also, for
i ∈ [0, α∗ − 1], the values si are computed honestly by Sim and since π1 is distributed identically
the values si for i ∈ [0, α∗− 1] are also distributed identically. As in the previous case, while com-
puting sα∗ , both Simulator 2 and Sim add vα∗ to it. However, vα∗ is sampled uniformly at random
by both Simulator 2 and Sim. Hence, sα∗ is also distributed identically in both the transcripts.
Step 11 of Sim works exactly as Simulator 2 which means h2 is also distributed identically in both
the transcripts. The response rsp in this case is rsp =

(
sα∗ , (π1 ||r1 ||θi)i∈[1,N ]\α∗ , cmt1,α∗)

)
. As

explained above sα∗ is uniform random and distributed identically in both transcripts. The seeds
θi)i∈[1,N ]\α∗ and randomness r1 are computed identically by both the simulators since they work
exactly the same way till Step 5 of Sim. Also, cmt1,α∗ is sampled uniformly at random in both ex-
periments (refer Simulator 1). Therefore, the transcript (x, h1, (κi)i∈[1,t], h2, α

∗, rsp) is distributed
identically in Simulator 2 and Sim when α∗ ̸= 1.

Therefore, any distinguisher running in time at most t(λ) cannot distinguish between the real-
world transcript and the transcript produced by Simwith probability better than (ϵPRG(λ) + ϵCom(λ)).

C.2 Security Proof for PERK signature scheme

C.2.1 Proof of Theorem 4.2.6
We restate the Theorem 4.2.6 below and follow it by its proof.

Theorem 4.2.6. Suppose PRG is (t, ϵPRG)-secure and any adversary running in time t(λ) can solve
the the underlying r-IPKP instance with probability at most ϵr-IPKP. Model H0, H1, and H2 as random
oracles where H0, H1, and H2 have 2λ-bit output length. Then a chosen-message attacker against the
signature scheme (PERK) presented in Figure 4.7, running in time t(λ), making qs signing queries, and
making q0, q1, q2 queries, respectively, to the random oracles, succeeds in outputting a valid forgery
with probability

P[Forge] ≤ (q0 + τ · (N + 1) · qs)2

2 · 22λ
+

qs · (q0 + q1 + q2 + qs)

22λ

+ τ · qs · ϵPRG(λ) + ϵr-IPKP + q2 · ετKS,
(4.5)

where εKS = 1
N + N−1

N ·(qt−1) .

The following proof is greatly inspired from the proof of the Picnic signature scheme [ZCD+20,
Theorem 6.2] and [FJR22, Theorem 5].

Proof of Theorem 4.2.6. LetA be a EUF-CMA attacker against the signature scheme, which makes
qs queries to the signing oracle. Also, let q0, q1, and q2 respectively denote the number of queries
made by A to the random oracles H0, H1, and H2. To prove security we define a sequence of
experiments involvingA, starting with an experiment in whichA interacts with the real signature
scheme. We let Pri[·] refer to the probability of an event in experiment i. We let t(λ) denote the
running time of the entire experiment, i.e., including both A’s running time and the time required
to answer signing queries and to verify A’s output.
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Experiment 1. This corresponds to the interaction of A with the real signature scheme. In
more detail: first KeyGen is run to obtain, the secret key sk = π along with the public key
pk = (H, (xj ,yj)j∈[1,t]), and A is given pk. In addition, we assume that the random oracles
H0, H1, and H2 are chosen uniformly from the appropriate spaces. A may make signing queries,
which will be answered as in the signature algorithm; A may also query any of the random ora-
cles. Finally, A outputs a message-signature pair; we let Forge denote the event that the message
was not previously queried by A to its signing oracle, and the signature is valid. Our goal is to
upper-bound Pr1[Forge].

Experiment 2. We abort the experiment if, during the course of the experiment, a collision occurs
in H0. The number of queries to any oracle throughout the experiment (by either the adversary or
the signing algorithm) is at most (q0 + τ · (N + 1) · qs). Therefore,

|Pr1[Forge]− Pr2[Forge]| ≤
(q0 + τ · (N + 1) · qs)2

2 · 22λ
.

Experiment 3. We abort the experiment if during the course of the experiment, while answer-
ing to a signature query, the sampled salt collides with the value salt in any previous query to
H0, H1, or H2. For each single signature query, the probability to abort is upper bounded by
(q0 + q1 + q2 + qs) /2

2λ. Thus,

|Pr2[Forge]− Pr3[Forge]| ≤
qs · (q0 + q1 + q2 + qs)

22λ
.

Experiment 4. The difference with the previous experiment is that, when signing a messagemwe
begin by choosing h1 and h2 uniformly at random and then we expand them as (κ(e)

j )e∈[1,τ ],j∈[1,t]
and (α(e))e∈[1,τ ]. Steps 1, 3, and 5 are computed as before, but in Steps 2 and 4 we simply set the
output of H1 to h1 and the output of H2 to h2.

The outcome of this experiment compared to the previous one only changes if, in the course
of answering a signing query, the query to H1 or the query to H2 was ever made before (by either
the adversary or as a part of answering some other signing query). But this cannot happen since
in such a case Experiment 3 would abort. Thus,

Pr3[Forge] = Pr4[Forge].

Experiment 5. The difference with the previous experiment is that, for each e ∈ [1, τ ], we sample
cmt

(e)

1,α(e) uniformly at random instead of making a query to H0.
The only difference between this experiment and the previous experiment occurs if, during the

course of answering a signing query, the seed θ
(e)

α(e) (for some e ∈ [1, τ ]) was previously queried
to H0. However, such collisions cannot occur within the same signing query (since indices e and i
are part of the input of H0) and if it occurs from a previous query (signing query or query to H0)
then the experiment aborts (according to the difference introduced in Experiment 3). Thus,

Pr4[Forge] = Pr5[Forge].

Experiment 6. We again modify the experiment. Now, for e ∈ [1, τ ] the signer uses the SHVZK
simulator Sim (see proof of Theorem 4.2.5) to generate the views of the parties during the execution
of Step 1 and Step 3. We denote by Simsalt(·) a call to this simulator which appends salt to the
sampled seed θ as input to PRG. This simulation results in

{(
θ
(e)
i , π

(e)
i

)}
i ̸=α(e)

and (s
(e)
j )

j∈[1,N ]
.

Thus the signing queries are now answered as shown in C.2.

Note that the secret π is no longer used for generating signatures. Recall that an adversary
against Sim has distinguishing advantage ϵPRG(λ) (corresponding to execution time t(λ)), since
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Step 0

1. Sample h1
$←− {0, 1}2λ uniformly at random.

2. Sample (κ(e)
j )e∈[1,τ],j∈[1,t] ←− PRG(h1).

3. Sample h2
$←− {0, 1}2λ uniformly at random.

4. Sample (α(e))e∈[1,τ] ←− PRG(h2).

5. Sample a uniform random salt salt $←− {0, 1}2λ .

Steps 1 and 3 For each iteration e ∈ [1, τ ]

1.
{(

θ
(e)
i , π

(e)
i

)}
i̸=α(e)

, (s
(e)
j )

j∈[1,N]
← Simsalt((κ

(e)
j )e∈[1,τ],j∈[1,t], (α

(e))e∈[1,τ])

2. Choose commitment cmt
(e)

1,α(e)

$←− {0, 1}2λ uniform randomly.

3. For i ̸= α(e) :

⋄ If i ̸= 1, set cmt
(e)
1,i = H0(salt, e, i, θ

(e)
i ).

⋄ If i = 1, set cmt
(e)
1,1 = H0(salt, e, 1, π1, θ

(e)
1 ).

4. ComputeHv(e) asHv(e) = (H(s
(e)
N )−

∑
i∈[1,t] κ

(e)
i · yi).

5. Set cmt
(e)
1 = H0(salt, e,Hv(e)).

Steps 2 and 4

1. Set H1(salt,m, pk, (cmt
(e)
1 , cmt

(e)
1,i )e∈[1,τ],i∈[1,N]) equal to h1 .

2. Set H2(salt,m, pk, h1, (s
(e)
i )e∈[1,τ],i∈[1,N]) equal to h2 .

Step 5 Output signature σ built as

1. For each iteration e ∈ [1, τ ]:

⋄ Compute z(e)
1 = s(e)

α

⋄ If α(e) ̸= 1, z(e)
2 = π

(e)
1 || (θ(e)

i )
i∈[1,N]\α(e)

⋄ If α(e) = 1, z(e)
2 = (θ

(e)
i )

i∈[1,N]\α(e)

⋄ Compute rsp(e) = (z
(e)
1 , z

(e)
2 , cmt

(e)

1,α(e)
)

2. Compute σ = (salt, h1, h2, (rsp
(e))e∈[1,τ])

Figure C.2: Experiment 6: Answer to a signature query for a message m.

the commitments are built outside of the simulator. Therefore,

|Pr5[Forge]− Pr6[Forge]| ≤ τ · qs · ϵPRG(λ).

Experiment 7. At any point during the experiment, we say that the execution e∗ of a query

h2 = H2(salt,m, pk, h1, (s
(e)
i )e∈[1,τ ],i∈[1,N ])

defines a correct witness if the following four conditions are fulfilled:

1. h1 was output by a previous query

h1 = H1(salt,m, pk, (cmt
(e)
1 , cmt

(e)
1,i )e∈[1,τ ],i∈[1,N ]),

2. each cmt
(e∗)
1,i in this H1-query was output by a previous query

cmt
(e∗)
1,i = H0(salt, e

∗, i, θ
(e∗)
i )

for i ∈ [2, N ], and
cmt

(e∗)
1,1 = H0(salt, e

∗, 1, π
(e∗)
1 , θ

(e∗)
1 )

for i = 1.
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3. each cmt
(e∗)
1 in the above H1-query was output by a previous query

cmt
(e∗)
1 = H0

salt, e∗,

Hs
(e∗)
N −

∑
i∈[1,t]

κ
(e∗)
i · yi


4. the permutation π derived from

{
π
(e∗)
i

}
i∈[1,N ]

i.e. π = π
(e∗)
N ◦ π(e∗)

N−1 ◦ · · ·π
(e∗)
1 satisfies

H

π

 ∑
i∈[1,t]

κi · xi

 =
∑

i∈[1,t]

κi · yi

for some κ ∈ Fq
t \ 0, where κ := {κ1, . . . , κt} and 0 ∈ Fq

t is the all zero vector.

(Note that in all cases the commitments in the relevant prior H1-query, if it exists, must be
unique since the experiment is abortedif there is ever a collision in H0.)

In Experiment 7, for each query of the above form made by the adversary to H2 (wherem was
not previously queried to the signing oracle), check if there exists an execution e∗ which defines a
correct witness. We let Solve be the event that this occurs for some query to H2. Note that, if that
event occurs, the

{
π
(e∗)
i

}
i∈[1,N ]

(which can be determined from the oracle queries ofA) allow the
computation of solution to r-IPKP. Therefore, Pr7[Solve] ≤ ϵr-IPKP. We claim that

Pr7

[
Forge

∧
Solve

]
≤ q2 · ετKS,

where εKS = 1
N + N−1

N ·(qt−1) is the knowledge soundness error of one execution. To see this, assume
Solve does not occur. Then there is no execution of any H2-query which defines a correct witness.
When considering an arbitrary execution e ∈ [1, τ ], the attacker can only possibly generate a
forgery (using this H2-query) if

1. A guesses the first challenge κ(e∗) ∈ Fq
t \0, where κ(e∗) :=

{
κ
(e∗)
1 , . . . , κ

(e∗)
t

}
and 0 ∈ Fq

t

is the all zero vector.

2. or even if cmt
(e∗)
1 ̸= H0(salt, e

∗, (Hs
(e∗)
N −

∑
i∈[1,t] κ

(e∗)
i · yi)) the attacker guesses the

second challenge α∗ such that the views of all remaining N − 1 parties are consistent.

Thus, the overall probability with which the attacker can generate a forgery using this H2-query
is

ετKS =

(
1

qt − 1
+

(
1− 1

qt − 1

)
· 1
N

)τ

.

The final bound is obtained by taking a union bound over all queries to H2. This concludes the
proof of Theorem 4.2.6.

C.3 Generic Attacks against Fiat-Shamir Signatures
Kales and Zaverucha in [KZ20], showed a generic attack on the non-interactive version of 5-round
PoK schemes. The attack strategy is to guess either one of the challenges (ch1 or ch2) correctly
which permits the prover to cheat. The attacker then aims to split the work by attempting to
guess the first challenge for η∗ instances out of τ parallel repetitions, and tries to guess ch2 for the
remaining (τ − η∗) instances.

If the attacker can guess η∗ challenges for the first phase correctly, then he can answer all the
N possible challenges for the α(e) for those instances. Subsequently, to successfully cheat he has
to guess the remaining (τ − η∗) values of α(e) correctly.
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The parameter η∗ allows the attacker to balance the cost for both guessing phases. The overall
cost is minimized for a choice of

η∗ = argmin
0≤η≤τ

{
1

P1(η, τ, q, t)
+N (τ−η)

}
(C.1)

where,

P1(η, τ, q, t) :=

τ∑
j=η

(
1

qt − 1

)j(
qt − 2

qt − 1

)τ−j(
τ

j

)
.

Finally, the total cost for the attacker is thus

WKZ =
1

P1(η∗, τ, q, t)
+N (τ−η∗). (C.2)

In [KZ20] the authors classify the 5-round protocols based on whether it is possible for the
verifier to detect if the tuple (cmt, ch1, rsp1) is valid or not. If the verifier can detect the validity of
this tuple then the scheme is said to possess early abort property. The cost of the attack varies for
different schemes based on whether they satisfy the early abort property or not. Our protocol and
signature scheme do not possess the early abort property and hence the expected cost of attacking
the PERK signature scheme proposed in this work, is given by Equation (C.2).
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