
HAL Id: tel-04565603
https://theses.hal.science/tel-04565603v1

Submitted on 2 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advancing Bayesian Deep Learning : Sensible Priors and
Accelerated Inference

Ba-Hien Tran

To cite this version:
Ba-Hien Tran. Advancing Bayesian Deep Learning : Sensible Priors and Accelerated Inference. Arti-
ficial Intelligence [cs.AI]. Sorbonne Université, 2023. English. �NNT : 2023SORUS280�. �tel-04565603�

https://theses.hal.science/tel-04565603v1
https://hal.archives-ouvertes.fr

DOCTORAL THESIS

Advancing Bayesian Deep Learning:
Sensible Priors and Accelerated Inference

Ba-Hien Tran

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy in the

Doctoral School N. 130: Computer Science, Telecommunications and Electronics of
Paris of the Sorbonne University

Committee in charge:

Maurizio Filippone EURECOM Advisor
Chris Oates University of Newcastle Reviewer
Mark van der Wilk University of Oxford Reviewer
Marco Lorenzi INRIA Examiner
Serena Villata CNRS Examiner
Pietro Michiardi EURECOM Examiner (Jury President)

ii

Dedicated to my family . . .

iii

SORBONNE UNIVERSITY

Abstract
Doctoral School N. 130: Computer Science, Telecommunications and

Electronics of Paris

Doctor of Philosophy

Advancing Bayesian Deep Learning: Sensible Priors and Accelerated Inference

by Ba-Hien Tran

Over the past decade, deep learning has witnessed remarkable success in a wide range
of applications, revolutionizing various fields with its unprecedented performance.
However, a fundamental limitation of deep learning models lies in their inability to
accurately quantify prediction uncertainty, posing challenges for applications that
demand robust risk assessment. Fortunately, Bayesian deep learning provides a
promising solution by adopting a Bayesian formulation for neural networks. Despite
significant progress in recent years, there remain several challenges that hinder the
widespread adoption and applicability of Bayesian deep learning. In this thesis, we
address some of these challenges by proposing solutions to choose sensible priors
and accelerate inference for Bayesian deep learning models. The first contribution
of the thesis is a study of the pathologies associated with poor choices of priors for
Bayesian neural networks for supervised learning tasks and a proposal to tackle
this problem in a practical and effective way. Specifically, our approach involves
reasoning in terms of functional priors, which are more easily elicited, and adjust-
ing the priors of neural network parameters to align with these functional priors.
The second contribution is a novel framework for conducting model selection for
Bayesian autoencoders for unsupervised tasks, such as representation learning and
generative modeling. To this end, we reason about the marginal likelihood of these
models in terms of functional priors and propose a fully sample-based approach
for its optimization. The third contribution is a novel fully Bayesian autoencoder
model that treats both local latent variables and the global decoder in a Bayesian
fashion. We propose an efficient amortized MCMC scheme for this model and impose
sparse Gaussian process priors over the latent space to capture correlations between
latent encodings. The last contribution is a simple yet effective approach to improve
likelihood-based generative models through data mollification. This accelerates infer-
ence for these models by allowing accurate density-esimation in low-density regions
while addressing manifold overfitting.

HTTPS://WWW.SORBONNE-UNIVERSITE.FR
https://www.edite-de-paris.fr
https://www.edite-de-paris.fr

v

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor,
Prof. Maurizio Filippone, who deserves my utmost thanks. I am truly fortunate to
have had him as my advisor during this journey. He has been supportive, giving
me the best opportunities and the freedom to pursue my research interests while
being available whenever I needed help. I am grateful to him for his guidance and
encouragement throughout my PhD. Furthermore, I express my appreciation to
the AXA Research Fund through the Chair of Computational Statistics awarded to
Maurizio, making these past three years of research possible.

This thesis would not have been possible without my collaborators, from whom I
have learned so much. It is a pleasure, in particular, to thank Dimitrios Milios and
Simone Rossi for the numerous inspiring discussions and fruitful collaborations. I
extend warm appreciation to Prof. Stephan Mandt and Prof. Babak Shahbaba for
hosting me during my research visit at UC Irvine, and to Edwin V. Bonilla for his
rigorous questions and insightful comments. I also would like to thank other co-
authors, Prof. Pietro Michiardi and Giulio Franzese, for their contributions to our
joint works.

I am also grateful to my colleagues and friends at EURECOM, especially to the ma-
chine learning group of the data science department, for the stimulating discussions
and the fun time we had together.

I extend my sincere thanks to Prof. Chris Oates and Prof. Mark van der Wilk for
accepting to review this thesis, and thanks to Prof. Pietro Michiardi, Serena Villata,
and Marco Lorenzi for being in the examination committee.

Finally, there is nothing I could do to sufficiently express my gratitude to my parents
and my sister. Their love and support have made all of this possible.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 The Undeniable Success of Deep Learning 1
1.2 But are Deep Learning Models Really That Good? 2
1.3 The Promises of Bayesian Deep Learning 3
1.4 Challenges for Bayesian Deep Learning 5
1.5 Outline and Contributions of the Thesis 5

2 Probabilistic Methods for Machine Learning 9
2.1 A Refresher on Probabilistic Machine Learning 9
2.2 Bayesian Neural Networks . 11

2.2.1 Deep neural networks . 11
2.2.2 Bayesian treatment for deep neural networks 12

2.3 Common Approximation Inference Methods for Bayesian Neural Net-
works . 13
2.3.1 Laplace approximation . 13
2.3.2 Variational inference . 14
2.3.3 Markov chain Monte Carlo . 16

2.4 Gaussian Processes . 20

3 Functional Priors for Bayesian Neural Networks 23
3.1 Introduction . 23
3.2 Related Work . 26
3.3 Preliminaries . 28

3.3.1 Gaussian process priors . 28
3.3.2 Wasserstein distance . 29

3.4 Imposing Gaussian Process Priors on Bayesian Neural Networks . . . 30
3.4.1 Wasserstein distance optimization 30
3.4.2 Prior parameterization for neural networks 33
3.4.3 Algorithm and complexity . 35

3.5 Examples and Practical Considerations 36
3.5.1 Visualization on a 1D regression synthetic dataset 37

viii

3.5.2 The effects of the GP prior on the BNN posterior 38
3.5.3 Wasserstein distance vs KL divergence 39

3.6 Experimental Evaluation . 41
3.6.1 Baselines . 41
3.6.2 UCI regression benchmark . 43
3.6.3 UCI classification benchmark . 44
3.6.4 Bayesian convolutional neural networks for image classification 45
3.6.5 Optimizing priors with data: cross-validation and empirical

Bayes . 50
3.6.6 Active learning . 53
3.6.7 Maximum-a-posteriori (MAP) estimation with GP-induced prior 55

3.7 Conclusions . 56

4 Model Selection for Bayesian Autoencoders 59
4.1 Introduction . 59
4.2 Related work . 61
4.3 Preliminaries on Bayesian Autoencoders 62
4.4 Model Selection for Bayesian Autoencoders via Prior Optimization . . 64

4.4.1 Another route for Bayesian Occam’s razor 65
4.4.2 Matching the marginal distribution to the data distribution via

Wasserstein distance minimization 66
4.4.3 Summary . 67

4.5 Experiments . 68
4.5.1 Analysis of the effect of the prior 69
4.5.2 Reconstruction and generation of CELEBA 71
4.5.3 Prior adjustment versus posterior tempering 74

4.6 Conclusions . 75

5 Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes 77
5.1 Introduction . 77
5.2 Related Work . 79
5.3 Imposing Distributions over the Latent Space of Bayesian Autoencoders 80
5.4 Scalable Gaussian Process Prior for Bayesian Autoencoders 84

5.4.1 Gaussian process prior . 84
5.4.2 Bayesian sparse Gaussian processes 85

5.5 Experiments . 87
5.5.1 Synthetic moving ball data . 88
5.5.2 Conditional generation of rotated MNIST 89
5.5.3 Missing data imputation . 92

5.6 Conclusions . 95

6 Improving Training of Likelihood-based Generative Models with
Data Mollification 97

ix

6.1 Introduction . 97
6.2 Challenges in Training Deep Generative Models 100

6.2.1 The manifold hypothesis and density estimation in low-density
regions . 100

6.2.2 Manifold overfitting . 102
6.3 Generative Models with Data Mollification 103
6.4 Experiments . 105

6.4.1 2D Synthetic Data Sets . 105
6.4.2 Image Experiments . 107

6.5 Related work . 111
6.6 Conclusion . 111

7 Final Remarks and Outlooks 113
7.1 Summary of Contributions . 113
7.2 Future Directions . 115

A Appendix for Chapter 3 119
A.1 A primer on Wasserstein Distance . 119
A.2 Implementation and experimental details 123

A.2.1 Deep Ensemble . 124
A.2.2 Likelihoods for BNNs . 124
A.2.3 Tempered posterior . 125
A.2.4 Details on the sampling scheme for BNN hierarchical priors . . 126
A.2.5 MAP estimation with Gaussian prior 126
A.2.6 Network architectures . 128
A.2.7 Measuring similarity between GPs and BNNs using maximum

mean discrepancy . 128
A.2.8 Details on the experiments with functional BNNs and empirical

Bayes . 129
A.3 Additional results . 130

A.3.1 Additional results on MAP estimation with GP-induced priors 130
A.3.2 Tabular results on the UCI benchmarks 130
A.3.3 Convergence of Wasserstein optimization 130
A.3.4 Additional comparisons with the empirical Bayes approach . . 130
A.3.5 Additional results with full-batch Hamiltonian Monte Carlo . . 133
A.3.6 Additional discussion on the optimization of Wasserstein distance133

B Appendix for Chapter 4 137
B.1 Derivation of Distributional Sliced-Wasserstein Distance 137

B.1.1 (Distributional) sliced-Wasserstein distance 137
B.2 Numerical Implementation of Sliced-Wasserstein Distance 139

B.2.1 Wasserstein distance between two empirical 1D distributions . 139
B.2.2 Slicing empirical distribution . 140

x

B.3 Pseudocode of Prior Optimization Procedure 140
B.4 PCA of the SGD Trajectory . 140
B.5 Additional Details on Experimental Settings 142

B.5.1 Experimental environment . 142
B.5.2 Preprocessing data . 142
B.5.3 Network architectures . 142
B.5.4 Prior optimiziation . 143
B.5.5 SGHMC hyperparameters . 143
B.5.6 Competing approaches . 144
B.5.7 Performance evaluation . 145

B.6 Additional Results of Comparison with Temperature Scaling 146
B.6.1 Partial tempering . 147
B.6.2 Full tempering . 148

B.7 Ablation Studies . 150
B.7.1 Additional results of ablation study on the size of the dataset

to optimize priors . 150
B.7.2 Effect of the dimensionality of latent space 150
B.7.3 Visualizing 2-dimensional latent space 152

B.8 Additional Results . 154
B.8.1 Convergence of Wasserstein optimization 154
B.8.2 Tabulated results . 154
B.8.3 More qualitative results . 158

C Appendix for Chapter 5 167
C.1 A Taxonomy of Latent Variable Models 167
C.2 Details of the Scalable Sampling Objective for Sparse Gaussian Processes168
C.3 Details of the Extension to deep Gaussian Processes 170
C.4 Experimental Details . 171

C.4.1 Moving ball experiment . 172
C.4.2 Rotated MNIST experiment . 172
C.4.3 Missing imputation experiment 173

C.5 Additional Results . 173
C.5.1 Ablation study on Bayesian treatments of autoencoders 173
C.5.2 Convergence of SGHMC . 176

D Appendix for Chapter 6 177
D.1 A Primer on Normalizing Flows and VAEs 177

D.1.1 Normalizing flows . 177
D.1.2 Variational autoencoders . 178

D.2 Details on Blurring Mollification . 179
D.3 Implementation of Noise Schedules . 180
D.4 Experimental Details . 180

D.4.1 Datasets . 180

xi

D.4.2 Software and computational resources 181
D.4.3 Training details . 182

Toy examples. 182
Imaging experiments. 182

D.5 Addtional Results . 183

Bibliography 187

xiii

List of Figures

3.1 Sample functions of fully-connected Bayesian neural networks with 2,
4 and 8 layers obtained by placing a Gaussian prior on the weights. . . 25

3.2 Schematic representation of the process of imposing GP priors on BNN
via Wasserstein distance minimization. 32

3.3 Visualization of one-dimensional regression example with a three-layer
MLP. 37

3.4 The effect of using different hyperparameters of the RBF kernel of the
target GP prior to the predictive posterior. 38

3.5 Comparison between KL-based and Wasserstein-based optimization. . 40
3.6 UCI regression benchmark results. 43
3.7 Ablation study on the test negative log-likelihood based on the UCI

regression benchmark for different number of hidden layers of multi-
layer perceptron (MLP). 44

3.8 UCI classification benchmark results. 45
3.9 Average class probabilities over all training data of MNIST for three

prior samples of parameters . 47
3.10 Accuracy and negative log-likelihood on CIFAR10C at varying corrup-

tion severities . 49
3.11 Accuracy and negative log-likelihood on CIFAR10 at varying the train-

ing set’s size. The bars indicate one standard error. 49
3.12 Cumulative distribution function plot of predictive entropies when the

models trained on MNIST are tested on MNIST 51
3.14 Comparison with empirical Bayes and functional inference approaches

on the UCI regression datasets. 53
3.15 Comparison with empirical Bayes and functional inference approaches

on the CIFAR10 dataset. 53
3.16 The progressions of average test RMSE and standard errors in the

active learning experiment. 54
3.17 Comparison between early stopping and MAP optimization with the

FG and GPi-G priors on the UCI classification datasets. 55
3.18 Comparison between early stopping and MAP optimization with the

FG and GPi-G priors for three different convolutional neural network
(CNN) architectures on the CIFAR10 dataset. 56

xiv

4.1 Realizations sampled from different priors given an input image. OOD

stands for out-of-distribution. 64
4.2 Qualitative evaluation for MNIST and YALE. 69
4.3 Convergence of the proposed Wasserstein minimization scheme. . . . 70
4.4 Test log-likelihood of MNIST and YALE. 70
4.5 Visualization in 2D of samples from priors and posteriors of BAE

parameters. 71
4.6 Qualitative and quantitative evaluation on CELEBA. 72
4.7 Qualitative and quantitative evaluation of generated samples with the

truncated Gaussian likelihood . 74
4.8 Average test predictive variance as a function of the number of data

points used to optimize the prior and the temperature 75
4.9 Test performance for temperature scaling with different priors. 75

5.1 The graphical models of vanilla BAE, and the proposed SGP-BAE with
a fully Bayesian sparse GP prior imposed on the latent space. 82

5.2 Performance of autoencoder models as a function of the number of
inducing points. 89

5.3 The posterior of the lengthscale corresponding to using a different
number of inducing points . 90

5.4 The posterior of the inducing position. 90
5.5 Comparison of test MSE on the rotated MNIST dataset as function of

training time. 91
5.6 Visualization of t-SNE embeddings of SGP-BAE latent vectors on the

training data of the rotated MNIST. 92
5.7 Visualization of predictions for missing data of the EEG dataset. 93

6.1 Illustration of the manifold hypothesis. 101
6.2 Illustration of Gaussian mollification. 104
6.3 Illustration of sigmoid schedule and the corresponding log(SNR). . . . 105
6.4 Gaussian mollification on a dataset generated from a Gaussian mixture

model . 106
6.5 The learning curves of the GMM experiments. 106
6.6 Gaussian mollification on a dataset generated from a von Mises distri-

bution . 106
6.7 The progression of FID on CIFAR10 dataset. 109
6.8 Intermediate samples generated from REAL-NVP flows 109

A.1 Comparison between early stopping and MAP estimations with respect
to the FG and GPi-G priors on the UCI regression datasets. 132

A.2 Comparison with empirical Bayes and functional inference methods
on CIFAR10 dataset. 132

xv

A.3 Comparison between strategies to optimize the Lipschitz function and
the Wasserstein distance . 134

A.4 Convergence of Wasserstein optimization for two-layer MLP on the
UCI regression datasets. 135

A.5 Convergence of Wasserstein optimization for two-layer MLP on the
UCI classification datasets. 136

A.6 Convergence of Wasserstein optimization for CNN on the CIFAR10
dataset. 136

B.1 Test log-likelihood as a function of temperature on MNIST using
Bayesian autoencoder (BAE) with N (0, 1) prior. 148

B.2 Visualization of samples from priors and posteriors of BAE’s parame-
ters in the plane spanned by eigenvectors of the SGD trajectory. 149

B.3 The average predictive variance computed over test data points as a
function of the number of data points used to optimize prior, and the
temperature used for cooling the posterior. 150

B.4 Visualization of convergence Wasserstein optimization, and samples
from priors and posteriors of BAE’s parameters in the plane spanned
by eigenvectors of the SGD trajectory corresponding to the first and
second largest eigenvalues. 151

B.5 Ablation study on the test log-likelihood on MNIST dataset for different
sizes of the latent space and training sizes. 152

B.6 Visualization of 2D latent spaces of variants of autoencoders on MNIST

test set where each color represents a digit classs. 153
B.7 Diffrent priors and density estimations on the 2-dimensional latent

space of variational autoencoders (VAEs) and BAEs. 153
B.8 Convergence of Wasserstein optimization. 154
B.9 Qualitative evaluation for sample quality for autoencoders and GANs

on CELEBA. 159
B.10 Qualitative evaluation for sample quality for autoencoders with the

truncated Gaussian likelihood on CELEBA. 160

C.1 Connections between our proposed models and other latent variables
models. 168

C.3 Trace plots for four test points on the rotated MNIST dataset. 176
C.2 An ablation study on different Bayesian treatments of AE models and

AE-style models with GP priors on the moving ball dataset. 176

D.1 The progression of FID scores during training on the CIFAR10 dataset. 186
D.2 The progression of FID scores during training on the CELEBA dataset. 186

xvii

List of Tables

3.1 Glossary of methods used in the experimental campaign with Bayesian
neural networks . 42

3.2 Results for different convolutional neural networks on the CIFAR10
dataset . 48

3.3 Results for the active learning experiments. 54

5.1 A summary of related AE-style models with GP priors 81
5.2 Reconstructions of the latent trajectories of moving ball. 88
5.3 Conditionally generated MNIST images. 90
5.4 Results on the rotated MNIST digit 3 dataset. 91
5.5 A comparison between methods of multi-output Gaussian process

(GP) models and GP autoencoders on the EEG and JURA datasets. . . 92

6.1 FID score on CIFAR10 and CELEBA dataset 107
6.2 FID score on CIFAR10 w.r.t. different choices of noise schedule. 110
6.3 Comparisons of FID scores on CIFAR10 between mollitication and

two-step methods. 110

A.1 LENET5 architecture . 128
A.2 PRERESNET20 architecture . 128
A.3 VGG16 architecture . 128
A.4 Average test RMSE on UCI regression datasets 131
A.5 Average test accuracy (%) on UCI classification datasets 132
A.6 Average test negative log-likelihood in nats on UCI regression datasets 133
A.7 Average test negative log-likelihood in nats on UCI classification datasets134
A.8 Average test RMSE results of full-batch HMC and SGHMC on UCI

regression datasets . 134

B.1 Convolutional Encoder-Decoder architectures. 143
B.2 SGHMC hyperparameters used in the experiments on MNIST, YALE

and CELEBA datasets. 144
B.3 Evaluation of all methods in terms of test log-likelihood on MNIST. . . 154
B.4 Evaluation of all methods in terms of test log-likelihood on YALE. . . . 155
B.5 Evaluation of all methods in terms of test log-likelihood on CELEBA. . 155
B.6 Evaluation of all methods in terms of FID on CELEBA. 156

xviii

B.7 Evaluation of all methods in terms of test log marginal likelihood of
VAE models on MNIST. 156

B.8 Evaluation of all methods in terms of test log marginal likelihood of
VAE models on YALE. 157

B.9 Evaluation of all methods in terms of test log marginal likelihood of
VAE models on CELEBA. 157

B.10 Evaluation of all methods in terms of test log-likelihood on CELEBA. . 158
B.11 Evaluation of all methods in terms of FID on CELEBA. 158
B.12 Qualitative evaluation for reconstructed samples on CELEBA. 161
B.13 Qualitative evaluation for reconstructed samples on CELEBA with the

truncated Gaussian likelihood. 161
B.14 Qualitative evaluation for reconstructed samples on MNIST. 162
B.15 Qualitative evaluation for generated samples on MNIST. 163
B.16 Qualitative evaluation for reconstructed samples on YALE. 164
B.17 Qualitative evaluation for generated samples on YALE. 165

C.1 Parameter settings for the moving ball experiment. 174
C.2 Parameter settings for the rotated MNIST experiment. 174
C.3 Parameter settings for the JURA experiment. 175
C.4 Parameter settings for the EEG experiment. 175

D.1 Neural network architectures used for VAE in our experiments. 182
D.2 Uncurated samples from the models trained on the CIFAR10 dataset. . 184
D.3 Uncurated samples from the models trained on the CELEBA dataset. . 185

xix

List of Abbreviations

NN Neural Network
CNN Convolutional Neural Network
DNN Deep Neural Network
BNN Bayesian Neural Network
MLP Mutilayer Perceptron
AE Autoencoder
VAE Variational Autoencoder
BAE Bayesian Autoencoder
GP Gaussian Process
DGP Deep Gaussian Process
SGP-BAE Sparse Gaussian Process Bayesian Autoencoder
DSGP-BAE Deep Sparse Gaussian Process Bayesian Autoencoder
DPMM Dirichlet Process Mixture Model
NF Normalizing Flow
MLE Maximum Likelihood Estimation
MAP Maximum A Posterior
VI Variational Inference
MCMC Markov Chain Monte Carlo
HMC Hamiltonian Monte Carlo
SGHMC Stochastic Gradient Hamiltonian Monte Carlo
NLL Negative Log Likelihood
RMSE Root Mean Squared Error
FID Fréchet Inception Distance
ELBO Evidence Lower Bound
KL Kullback-Leibler Divergence
MMD Maximum Mean Discrepancy
RBF Radial Basis Function
ARD Automatic Relevance Determination
RKHS Reproducing Kernel Hilbert Space
OT Optimal Transport
WD Wasserstein Distance
DSWD Distributional Siced Wasserstein Distance
GM Generative Model
DM Diffusion Model
GAN Generative Adversarial Network

xxi

List of Symbols

a Scalar
a Vector
A Matrix
I Identity matrix with dimensionality implied by context

D Dataset
X Dataset inputs (matrix with N rows, one for each data point)
Y , y Dataset outputs (matrix/vector with N rows, one for each data point)
xi The i-th input data point (generally vector)
yi, yi The i-th output data point (vector, scalar)
ŷi, ŷi The i-th prediction of a model (vector, scalar)
pdata The data generating distribution
p̂data The empirical distribution defined by the training set

f : X → Y The function f with domain X and range Y
f ◦ g Composition of the functions f and g
f (x) The evaluation of function f (·) at a single location x
f (X) The evaluation of function f (·) at each location in X
f Shorthand for f (X) if there is no ambiguity

N Gaussian distribution
MN Matrix Gaussian distribution
GP Gaussian process
Ep[x] Expectation of x under distribution p
KL [· ‖ ·] Kullback-Leibler divergence

R Real numbers
O(·) Big-O

1

Chapter 1

Introduction

1.1 The Undeniable Success of Deep Learning

Deep learning (LeCun et al., 2015) has emerged as a transformative and powerful
approach to solving complex problems across various domains. At its core, deep
learning relies on artificial neural networks. These networks consist of interconnected
layers of neurons, where each neuron processes and passes information to subsequent
layers. Unlike classical machine learning algorithms, deep learning models can
automatically learn hierarchical representations from raw data, obviating the need
for manual feature engineering.

Deep learning has witnessed remarkable success in a wide range of applications,
revolutionizing various fields with its unprecedented performance. For example,
large language models like OpenAI’s GPT (Brown et al., 2020) have demonstrated
the ability to generate coherent and contextually relevant text, with applications in
chatbots, virtual assistants, and content generation. Another notable area where
deep learning has excelled is computer vision. Deep learning has demonstrated
exceptional accuracy in tasks such as image classification (Dosovitskiy et al., 2021),
object detection (Zhang et al., 2023), image segmentation (Kirillov et al., 2023) and
image generation (Dhariwal and Nichol, 2021). These advancements have paved
the way for applications like autonomous driving (Grigorescu et al., 2020), medical
diagnostics (Litjens et al., 2017), and various other domains.

The success of deep learning can be attributed to three key factors (Goodfellow et al.,
2016): (1) Large-scale models with a huge number of parameters, despite their lack
of identifiability and interpretability; (2) Abundance of data; (3) High-performance
computing, particularly GPUs. Consequently, the prevailing paradigm in deep
learning can be summarized as follows: gather a vast dataset, define a cost function
with some forms of regularization, devise a complex neural network architecture that
enables end-to-end gradient propagation, and employ some variants of stochastic
gradient descent to minimize the cost function. As a result, deep learning has become
the go-to approach for practitioners seeking simple yet powerful solutions to solve
machine learning problems.

2 Chapter 1. Introduction

1.2 But are Deep Learning Models Really That Good?

Deep Learning, despite its remarkable performance, has notable limitations that
warrant consideration including: (1) data-hungriness (Marcus, 2018), (2) miscali-
brated predictions (Guo et al., 2017; Minderer et al., 2021); (3) non-robustness to
out-of-distribution data (Lee et al., 2018; Hein et al., 2019; Ovadia et al., 2019); (4)
poor interpretability (Koh and Liang, 2017; Selvaraju et al., 2017). These limitations
pose significant concerns, especially in critical domains like medical diagnostics and
autonomous driving, where wrong predictions can have severe consequences.

On the one hand, deep learning models are well-known to suffer from a data-hungry
nature, posing a significant challenge in practical applications. This data-hungry
nature stems from the high capacity and complexity of deep neural networks, which
requires substantial amounts of diverse and representative data to accurately estimate
their large number of parameters. For example, modern language models (Brown
et al., 2020) are trained on more than 300 billion tokens and image recognition models
on 400 million images (Radford et al., 2021). Insufficient data can lead to poor gener-
alization, overfitting, and limited performance. This presents a particular concern in
domains where data acquisition is expensive, time-consuming, or restricted, such as
in medical research or rare event prediction.

On the other hand, although deep neural network (NN) exhibit impressive perfor-
mance in terms of accuracy, their prediction uncertainty is often miscalibrated and
over-confident (Ovadia et al., 2019). Indeed, in the context of classification tasks, the
common practice of interpreting softmax outputs as per-class probabilities lacks a
solid statistical foundation (Guo et al., 2017). In addressing this issue, it is important
to quantify two distinct types of uncertainty: aleatoric and epistemic uncertainty (Der
Kiureghian and Ditlevsen, 2009; Gal, 2016). Aleatoric uncertainty encapsulates the
inherent noise present in the data which remains unaffected by observing additional
data. On the other hand, epistemic uncertainty arises from uncertainty in the model
parameters, specifically the weights of NNs. This uncertainty reflects our lack of
knowledge about which model generated the observed data. While aleatoric uncer-
tainty persists even with an infinite number of samples, epistemic uncertainty can
be explained away with sufficient data. Unfortunenately, deep learning models are
usually not equipped with a principled mechanism to quantify these uncertainties
(Guo et al., 2017).

Moreover, deep learning models typically assume that training and testing data are
independent and identically distributed (i.i.d). However, in real-world applications,
this assumption is often violated. Once a model is deployed, the distribution of
observed data can undergo significant shifts, deviating from the original training data
distribution. This is particularly evident in online services where data distribution
may vary based on factors like time of day, seasonality, or popular trends. Ensuring
robustness under distributional shift and handling out-of-distribution (OOD) inputs

1.3. The Promises of Bayesian Deep Learning 3

is crucial for the safe deployment of machine learning systems (Amodei et al., 2016).
In such contexts, having well-calibrated predictive uncertainty becomes essential as
it allows for accurate risk assessment, enables practitioners to gauge the potential
degradation in accuracy, and allows the system to refrain from making decisions
when confidence is low. Unfortunenately, Hein et al. (2019) demonstrate that rectified
linear unit (ReLU) deep NN are always overconfident on out-of-distribution examples.
Ovadia et al. (2019) show extensively that deep learning models are not robust to
corrupted data. Moreover, Moosavi-Dezfooli et al. (2016) demonstrate that deep
learning models are susceptible to adversarial attacks, where small perturbations to
the input can cause the model to make wrong predictions with high confidence.

Last but not least, the lack of interpretability in deep learning models poses a signifi-
cant challenge in their widespread adoption and deployment. This arises from the
complex, non-linear nature of deep neural networks and the huge number of parame-
ters involved. As a result, it becomes challenging to understand how and why these
models arrive at certain predictions or decisions. In domains where transparency,
accountability, and trust are crucial, such as healthcare, finance, and autonomous
systems, the black-box nature of deep learning can hinder its practical application. To
address this issue, some explicitly interpretable models have been designed (Mon-
tavon et al., 2018) aiming to provide explanations for their predictions. Additionally,
various techniques have been developed to shed light on the inner workings of neural
network predictions. These include gradient-based methods, such as generating
"heatmaps" (Selvaraju et al., 2017) that highlight the most influential features, as
well as influence-function-based approaches (Koh and Liang, 2017) that quantify the
impact of individual training examples on the model’s predictions.

1.3 The Promises of Bayesian Deep Learning

The Bayesian treament promises to address limitations of deep learning, i.e. improv-
ing robustness, interpretability, and uncertainty quantification. In the past 30 years,
numerous compelling arguments have emerged in support of adopting a Bayesian
inference to deep learning (MacKay, 1995; Graves, 2011; Blundell et al., 2015; Gal,
2016; Izmailov et al., 2021b). Differently from conventional neural networks, Bayesian
neural networks treat the model parameters as random variables and places a prior
distribution over them. Subsequently, the posterior distribution over the model pa-
rameters is inferred using the Bayes rule to reflect the updated knowledge, balancing
prior knowledge with observed data.

By incorporating Bayesian principles into the learning process, Bayesian neural
network provides a principled framework to quantify uncertainty for predictions,
which can aid decision-making and improve the reliability of systems. Rather than
bet everything on one hypothesis — with a single setting of optimized parameters of

4 Chapter 1. Introduction

neural networks — Bayesian neural networks seek to explore all feasible parameter
settings, weighting them by the posterior distribution. This process is known as
Bayesian model averaging (BMA) (Wilson and Izmailov, 2020), and naturally represents
epistemic uncertainty in the model parameters. In principle, when we move far away
from the training data, there are many more sets of parameters that are consistent with
the observed data, leading to a corresponding growth in our epistemic uncertainty.
This could make Bayesian deep learning more robust to out-of-distribution data
(Izmailov et al., 2021a; Trinh et al., 2022) and adversarial attacks (Carbone et al.,
2020). As a result, Bayesian deep learning has the potential to empower informed
decision-making and enable appropriate actions, particularly in critical domains such
as healthcare, autonomous systems, and finance (Gal, 2016).

Moreover, Bayesian deep learning offers an elegant mechanism to handle data scarcity
and interpretability, by leveraging prior knowledge. Defining a prior distribution
is a fundamental aspect of the Bayesian paradigm, allowing for the analysis of task
similarity, modeling task noise, and incorporating domain-specific knowledge (see
Fortuin, 2022, for a comprehensive review of priors for Bayesian deep learning). By
encoding prior knowledge about the task at hand, informative priors can reduce
the reliance on large amounts of data, leading to more data-efficient performance
(Shwartz-Ziv et al., 2022). Moreover, the Bayesian paradigm offers a function-space
view of predictors, which can enhance the interpretability of neural network architec-
tures compared to the weight-space view (see e.g. Khan et al., 2019; Sun et al., 2019).
Additionally, the uncertainty quantification provided by the Bayesian framework fa-
cilitates the interpretability of predictions through counterfactual explanations. These
explanations involve making small changes to an input to decrease the uncertainty
assigned to it by the model, thereby enhancing the transparency and interpretability
of deep learning models (Antoran et al., 2021).

Lastly, the Bayesian paradigm provides a principled framework for model selection
through the marginal likelihood, also known as Bayesian evidence (Immer et al.,
2021b; Lotfi et al., 2022). This quantity represents the probability that the data is
generated from the model, providing a distinctive approach to the fundamental
question of model selection. It automatically incorporates Occam’s razor principle,
favoring simpler explanations of the data that are consistent with the observations.
Bayesian model selection for machine learning and neural networks was developed
and popularized by Mackay (1992). This mechanism can be used to select the best
model to predict which architectures will generalize best, and for automatically
setting hyperparameters (Immer et al., 2021b), or impose inductive biases such as
learning invariances (van der Wilk et al., 2018; Immer et al., 2022). Notably, this
model selection process is based solely on the training data, eliminating the need
for a separate validation set that may not be readily available in many real-world
applications.

1.4. Challenges for Bayesian Deep Learning 5

1.4 Challenges for Bayesian Deep Learning

Bayesian deep learning, despite its promises and advantages, also faces several
challenges that need to be addressed for its widespread adoption. First of all, Bayesian
inference while offering an elegant and principled framework, cannot be solved
exactly for these models. The Bayesian quanties of interest, such as the posterior
distribution and marginal likelihood, are analytically intractable to compute for
most neural network architectures. As a result, approximate inference methods such
as Laplace approximation (Daxberger et al., 2021), variational inference (Graves,
2011; Blundell et al., 2015) or Markov chain Monte Carlo (MCMC) (Chen et al., 2014;
Zhang et al., 2020) are required. These approximations could decrease the quality of
the prediction and uncertainty estimates, and are often computationally expensive
(Izmailov et al., 2021b). For example, popular variational inference methods require
considerable changes to the training procedure while introducing more parameters
to be optimized compared to conventional training. Meanwhile, MCMC methods
typically require more gradient evaluations and need to store samples from the
posterior distribution, which can be prohibitively expensive for large-scale deep
learning models.

On the other hand, choosing sensible priors for Bayesian deep learning is a very
challenging task. The first and also one of the most important and difficult steps
of the Bayesian workflow is to choose a sensible prior over the parameters to be
inferred (Mikkola et al., 2023). However, choosing such a prior for modern neural
networks is extremely difficult as these models are characterized by a huge number of
parameters, and the choice of these priors has an uncontrolled effect on the induced
functional prior, which is the distribution of the functions obtained by sampling the
parameters from their prior distribution. As a consequence, most works in Bayesian
deep learning utilize a (seemingly) uninformative prior for convenience such as the
standard Gaussian prior, N (0, I) (see, e.g., Fortuin, 2022, and references therein),
which results in serious pathologies. We argue that using such bad priors is a hugely
limiting aspect of Bayesian deep learning.

1.5 Outline and Contributions of the Thesis

In this thesis, I proposed solutions to address the aforementioned challenges for
Bayesian deep learning. The rest of the thesis is organized as follows:

• Chapter 2 provides a brief introduction to Bayesian machine learning, includ-
ing Bayesian neural networks and Gaussian processes. The main aims are to
describe fundamental Bayesian methodologies, and to provide a background
for the rest of the thesis.

6 Chapter 1. Introduction

• Chapter 3 covers the first contribution of this thesis, where we present the
pathologies of choosing priors for Bayesian neural networks and propose a
solution to tackle this problem in a practical and effective way. Specifically, our
approach involves reasoning in terms of functional priors, which are more easily
elicited, and adjusting the priors of neural network parameters to align with
these functional priors. To achieve this, we leverage shallow Gaussian processes
as an elegant framework for defining prior distributions over functions and pro-
pose a novel and robust framework to match their prior with the functional prior
of Bayesian neural networks by minimizing their Wasserstein distance (Villani,
2008). Through extensive experimentation in supervised-learning tasks such as
classification, regression and active learning, we provide compelling empirical
evidence that the integration of these priors with scalable Markov chain Monte
Carlo sampling consistently leads to significant performance improvements.

• Chapter 4 shows an extension of the work presented in Chapter 3 to unsuper-
vised learning settings with Bayesian autoencoders, where the parameters of
both the encoder and decoder are treated in a Bayesian manner. We introduce
a novel framework for conducting model selection for Bayesian autoencoders
through prior optimization. To this end, we reason about the marginal like-
lihood of Bayesian autoencoders in terms of functional priors and propose a
fully sample-based approach for its optimization utilizing the distributional
sliced Wasserstein distance (Nguyen et al., 2021). The effectiveness of our
approach is demonstrated through extensive experiments on various unsu-
pervised learning tasks, with a particular focus on the challenging domain of
representation learning and generative modeling for high-dimensional data in
scenarios characterized by limited data availability.

• Chapter 5 presents an extension of the work presented in Chapter 4, where
we introduce a fully Bayesian autoencoder model that treats both local latent
variables and global decoder parameters in a Bayesian fashion. To achieve this,
we propose an amortized MCMC approach to by utilizing an implicit stochastic
network as an encoder to learn how to sampling from the posterior over local
latent variables. The encoder in our model functions analogously to that em-
ployed in variational autoencoders (Kingma and Welling, 2014). However, we
do not assume any specific form of the posterior distribution of the latent vari-
ables. This approach enables flexible priors and posterior approximations while
maintaining low computational costs for inference. Furthermore, we propose
to incoprorate sparse Gaussian process priors over the latent space to capture
correlations between latent encodings. We show the strong performance of our
approach through a series of experiments focusing on dynamic representation
and generative modeling.

• Chapter 6 delves into our final contribution in this thesis, which is inpsired by
the work presented in Chapter 3 and the recent success of diffusion models (Ho

1.5. Outline and Contributions of the Thesis 7

et al., 2020; Song et al., 2021). A key feature of score-based diffusion models
is to accurately estimate density in low-density regions and address manifold
overfitting by employing data mollification through the addition of Gaussian
noise. We speculate that this effect bears resemblance to Bayesian autoencoders,
wherein the Bayesian treatment empowers these models to effectively behave
in the tail regions of the data distribution, resulting in robust performance.
We establish a connection between data mollification procedure and Gaussian
homotopy, a well-known technique for optimization improvement. Notably,
data mollification incurs no additional computational overhead and can be
effortlessly implemented with a single line of code in any training loop. We
demonstrate that this simple technique can facilitate inference and consistently
improve the sample quality of likelihood-based generative models, including
variational autoencoders, normalizing flows.

• Chapter 7 gives remarks of the works presented in this thesis and concludes
with an outlook on future research directions.

Publications

The works in this thesis were done in collaboration with colleagues and collaborators,
and have been mainly peer-reviewed by program committees in A* conferences and
journals.

Chapter 3 is based on the following journal publication:

• Ba-Hien Tran, Simone Rossi, Dimitrios Milios, Maurizio Filippone. “All You
Need is a Good Functional Prior for Bayesian Deep Learning”. In Journal of
Machine Learning Research (2022).

which is an extension of the following workshop paper:

• Ba-Hien Tran, Dimitrios Milios, Simone Rossi, Maurizio Filippone. “Functional
Priors for Bayesian Neural Networks through Wasserstein Distance Minimiza-
tion to Gaussian Processes”. In Symposium on Approximate Bayesian Inference
(2021).

Chapter 4 is based on the following conference publication:

• Ba-Hien Tran, Simone Rossi, Dimitrios Milios, Edwin V. Bonilla, Pietro Michiard,
Maurizio Filippone. “Model Selection for Bayesian Autoencoders”. In Advances
of Neural Information Processing Systems (2021)

Chapter 5 is based on the following conference publication:

• Ba-Hien Tran, Babak Shahbaba, Stephan Mandt, Maurizio Filippone. “Fully
Bayesian Autoencoders with Latent Sparse Gaussian Processes”. In International
Conference on Machine Learning (2023).

8 Chapter 1. Introduction

Chapter 6 is based on the following conference paper:

• Ba-Hien Tran, Giulio Franzese, Pietro Michiardi, Maurizio Filippone. “One-
Line-of-Code Data Mollification Improves Optimization of Likelihood-based
Generative Models”. In Advances on Neural Information Processing Systems
(2023).

which is an extension of the following workshop paper:

• Ba-Hien Tran, Giulio Franzese, Pietro Michiardi, Maurizio Filippone. “Improv-
ing Training of Likelihood-based Generative Models with Gaussian Homotopy”.
In Workshop on Structured Probabilistic Inference & Generative Modeling during the
International Conference on Machine Learning (2023).

9

Chapter 2

Probabilistic Methods for Machine
Learning

In this chapter, we establish the fundamental background that will underpin the
entire thesis. We provide concise introductions to key concepts that play a central role,
including probabilistic machine learning, Bayesian neural networks, and Gaussian
processes. These concepts lay the groundwork for the subsequent chapters of the
thesis.

2.1 A Refresher on Probabilistic Machine Learning

Probabilistic modeling is a cornerstone of modern machine learning toolkits. It offers
a principled framework for making coherent inferences, learning from observations
and handling uncertainty, through the language of probability theory (Ghahramani,
2015). The key idea behind the probabilistic approach to machine learning is that
learning can be thought of as inferring plausible models to explain observed data.
At its core, a probabilistic model utilizes probability distributions to express the
subjective beliefs or uncertainties surrounding unknown variables within the model,
which are encapsulated through the prior. Additionally, the model establishes the
relationship between these unknown variables and the observed data through the
likelihood. Through probabilistic inference, often referred to as Bayesian inference, the
initial beliefs represented by the prior are transformed into a posterior distribution of
the unknown variables. This posterior distribution encapsulates the updated beliefs
about the unknown variables after taking the observed data into account.

As an example, consider a generic parametric model f parameterized by unknown
parameters (variables) w ∈ Rd, and a dataset comprised of N input-output pairs
D = {X, y} def

= {(xi, yi)}N
i=1, with xi ∈ RDin and yi ∈ R. By imposing a prior p(w) on

the parameters w, we can obtain the posterior distribution by applying Bayes’ rule as

10 Chapter 2. Probabilistic Methods for Machine Learning

follows:

p(w | D)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(D |w)

Prior︷ ︸︸ ︷
p(w)

p(D)︸ ︷︷ ︸
Model Evidence

, (2.1)

where the normalization constant p(D) =
∫

p(D |w)p(w)dw is known as the model
evidence or marginal likelihood.

Likelihood. The likelihood component p(D |w) = ∑N
i=1 p(yi | f (xi, w)) represents

the probability density function of the model given the parameters, evaluated at the
observed data. Here, we assume a full factorization of the likelihood over the data-
points. It quantifies the likelihood of the model f with parameters w generating the
observed data. Furthermore, this quantity encapsulates our assumptions about the
observed data, such as being continuous and noisy, binary, or count data. Hence, dif-
ferent likelihood distributions are employed depending on the task and data type. For
regression tasks with i.i.d noisy data, the Gaussian likelihoodN (yi | f (xi, w), σ2

ε) with
a noise variance σ2

ε is used, whereas for binary classification tasks with a mapping
function λ : R→ [0, 1], the Bernoulli likelihood Bern(yi | λ(f (xi, w))) is utilized.

Prior. The prior distribution p(w) embodies our beliefs about the parameters w
before observing the data. A natural question concerning the choice of the prior is
the amount of information it conveys. This leads to the classification of priors into
objective and subjective categories. The Jeffrey prior (Jeffreys, 1946) is a well-known
example of the former type, defined as pJEFF(w) ∝

√
F(w), with F(w) is the Fisher

information. It is considered analogous objective or non-informative prior since it
remains invariant to parameterization changes, assigning the same probability to a set
of models regardless of the chosen parameterization. In contrast to objective priors,
subjective priors align with the roots of the Bayesian approach, as they encode one’s
beliefs through a prior. Eliciting a prior distribution is a delicate matter, particularly
with more complex models where parameters may lack interpretation, and higher-
dimensional parameter spaces, making the design of a suitable prior challenging. For
a comprehensive review on this topic, refer to Mikkola et al. (2023).

Bayesian model selection. By leveraging the model evidence, the Bayesian frame-
work offers a principled approach to model selection. Understanding this approach
becomes clearer when we explicitly condition the entire inference on a specific model
hypothesisMi, which is part of a finite set of modelsM = {Mi}M

i=1. Eq. 2.1 can be
rewritten as follows:

p(w | D,Mi) =
p(D |w,Mi)p(w |Mi)

p(D |Mi)
(2.2)

2.2. Bayesian Neural Networks 11

The model evidence p(D |Mi) describes the probability that we would generate a
dataset D with a modelMi if we randomly sample from a prior over the parameters
p(w |Mi). This quantity is referred to as the marginal likelihood because it can be
viewed as a likelihood function over the space of models, in which the parameters w
have been marginalized out:

p(D |Mi) =
∫

p(D |w,Mi)p(w |Mi)dw. (2.3)

We can futher apply Bayes’s rule to condition models on the data as follows:

p(M|D) = p(D |M)p(M)

p(D) , (2.4)

where p(M) is a prior distribution over models. Estimating the posterior over the
models p(M|D) is very challenging since both the model prior and the marginal
likelihood are not obvious. Consequently, the prevalent approach to address the
problem of model selection involves maximizing the marginal likelihood, thereby
selecting the model with the highest marginal likelihood. This method is commonly
known as type-II maximum likelihood. In essence, this approach can be seen as a
maximum-a-posteriori (MAP) estimate of the posterior in Eq. 2.4, where a uniform
prior over models, i.e., p(M) ∝ 1, is assumed. In addition, we can compare two
modelsMi andMj by computing the ratio of their marginal likelihoods, denoted
as p(D | Mi)/p(D | Mj), which is referred to as the Bayes factor (Kass and Raftery,
1995).

2.2 Bayesian Neural Networks

In the previous section, we consider the Bayesian paradigm for the generic form of
the parametric model f . In this section, our focus shifts towards exploring the uti-
lization of neural networks for modeling f , along with their corresponding Bayesian
treatment.

2.2.1 Deep neural networks

We consider a deep neural network (DNN) consisting of L layers, where the output
of the l-th layer fl(x) is a function of the previous layer outputs fl−1(x), as follows:

fl(x) =
1√

Dl−1

(
Wl ϕ(fl−1(x))

)
+ bl , l ∈ {1, ..., L}, (2.5)

where ϕ is a nonlinearity, bl ∈ RDl is a vector containing the bias parameters for layer
l, and Wl ∈ RDl×Dl−1 is the corresponding matrix of weights. We shall refer to the

12 Chapter 2. Probabilistic Methods for Machine Learning

union of weight and bias parameters of a layer l as wl = {Wl , bl}, while the entirety
of trainable network parameters will be denoted as w = {wl}L

l=1.

In order to simplify the presentation, we focus on fully-connected DNNs; the weight
and bias parameters of convolutional neural networks (CNNs) are treated in a similar
way, unless stated otherwise. The scheme that involves dividing by

√
Dl−1 is known

as the NTK parameterization (Jacot et al., 2018; Lee et al., 2020), and it ensures that the
asymptotic variance neither explodes nor vanishes. For fully-connected layers, Dl−1

is the dimension of the input, while for convolutional layers Dl−1 is replaced with
the filter size multiplied by the number of input channels.

Training. Given a dataset with N input-target pairs D = {X, y} def
= {(xi, yi)}N

i=1 ∈
(X ,Y)N . We consider a loss function L : F × X × Y → R, where F is a set of
predictors f : X → Y . The goal of training a DNN is to find the optimal parameters w?

that minimize the expected risk, which is defined as follows:

RL(f) def
= Ep(x,y)

[
L(f (x), y)

]
. (2.6)

Due to the intractability of the expected risk, we resort to minimizing the empirical
risk, i.e. the average loss over the training data:

R̂LD(f) def
=

1
N

N

∑
i=1
L(f (xi), yi). (2.7)

Optimizing the objective Eq. 2.7 as-is risks overfitting the training data. Therefore,
we need to impose regularization which controls the tradeoff between data fitting
and model complexity. This leads us to formulate an optimization problem in the
following form:

w? = arg min
w

R̂LD(f) + λΩ(w), (2.8)

where Ω(w) is a regularization term, such as L2 regularizer, i.e. Ω(w) = 1
2 ||w||22;

and λ is a regularization coefficient that controls the strength of the regularizer. This
objective can be optimized via backpropagation (Rumelhart et al., 1986) and using a
gradient-based optimization algorithm (Goodfellow et al., 2016).

2.2.2 Bayesian treatment for deep neural networks

The Bayesian treatment of neural networks (MacKay, 1992; Neal, 1996) dictates that
a prior distribution p(w) is placed over the parameters. We will delve deeper into
the role of prior distributions for Bayesian neural network in Chapter 3. The learning
problem is now formulated as a transformation of a prior belief into a posterior

2.3. Common Approximation Inference Methods for Bayesian Neural Networks 13

distribution by means of Bayes’ theorem. The posterior over w is defined as follows:

p(w | D) = p(D |w)p(w)

p(D) =
p(D |w)p(w)∫
p(D |w)p(w)dw

. (2.9)

Once the posterior is infered, we can obtan the predictive posterior for unseen data x?

as follows:

p(y? | x?,D) =
∫

p(y? | f (x?, w))p(w | D)dw. (2.10)

The above integral performs a so-called Bayesian model averaging operation because
rather than betting everything on one hypothesis — with a single setting of param-
eters — we use every plausible setting of parameters, weighted by their posterior
probabilities. This is the main distinction of the Bayesian treatment from the conven-
tional approach where parameters are optimized.

We can see that obtaining the predictive posterior requires computing two integrals,
one to calculate the normalizing constant in Bayes’ theorem in Eq. 2.9 and one to
average our predictions over the posterior distribution in Eq. 2.10. Because the
likelihood function p(D |w) is highly non-linear in w for neural networks, these
integrals are analytically intractable. As a consequence, approximate inference methods
are needed for Bayesian neural networks.

2.3 Common Approximation Inference Methods for Bayesian
Neural Networks

2.3.1 Laplace approximation

Let wMAP
def
= arg maxw log p(w | D) = arg maxw log p(D |w) + log p(w) be a local

maximum of the posterior, known as the maximum a posteriori (MAP) estimate, which
can be found by a gradient descent algorithm. By applying Taylor’s expansion to
the log-unnormalized posterior g(w)

def
= log p(D |w) + log p(w) around wMAP up to

second order, we obtain the following approximation:

log g(w) ≈ log g(wMAP)−
1
2
(w−wMAP)

>Λ(w−wMAP), (2.11)

where Λ
def
= −∇2 log g(w)|w=wMAP is the Hessian matrix of the log-unnormalized

posterior evaluated at the MAP estimate wMAP.

14 Chapter 2. Probabilistic Methods for Machine Learning

Integrating Eq. 2.11, we can obtain the analytical form of the normalization constant
of the posterior distribution as follows:

Z ≈ exp(log g(wMAP))
∫

exp
(
−1

2
(w−wMAP)

>Λ(w−wMAP)

)
dw

= g(wMAP)(2π)
d
2 (detΛ)−

1
2 , (2.12)

where d is the dimensionality of the parameter w.

From Eq. 2.11 and Eq. 2.12, we can obtain the following approximation of the posterior
distribution:

p(w | D) = 1
Z

g(w) ≈ (2π)−
d
2 (detΛ)

1
2 exp

(
−1

2
(w−wMAP)

>Λ(w−wMAP)

)
(2.13)

This is a Gaussian distribution with mean wMAP and covariance matrix Λ−1, and is
called the Laplace approximation of p(w | D). This method stands out as one of the
most cost-effective approximate inference techniques for Bayesian neural networks
(Daxberger et al., 2021). It can be applied to any MAP pre-trained neural networks.
Additionally, the Hessian matrix only needs to be computed once, which has been
made feasible by recent advancements in second-order optimization techniques
(Dangel et al., 2020). However, as both the MAP estimate wMAP and the Hessian
matrix Λ are local quantities, the Laplace approximation is limited to providing a
local approximation around a mode of the posterior distribution p(w | D).

2.3.2 Variational inference

Another approach to obtaining a parametric approximation of the posterior p(w | D)
is via variational inference (VI). This is a classic tool to tackle intractable Bayesian
inference (Jordan et al., 1999; Blei et al., 2017). VI casts the inference problem into
an optimization problem to compute a tractable approximation of the posterior
distribution. Let Q = {qφ : φ ∈ Φ} be a set of parametric densities, known as
variational family, which are usually tractable. The common goal of VI is to minimize
the Kullback-Leibler (KL) divergence between the approximate posterior qφ(w) and
the true posterior p(w | D). In other words, we seek the parameter φ? such that:

φ? = arg min
φ∈Φ

KL
[
qφ(w) ‖ p(w | D)

]
= arg min

φ∈Φ

∫
qφ(w) log

qφ(w)

p(w | D)dw. (2.14)

However, the above integral is intractable in general since it implies that we need to
compute the normalization constant of the posterior p(w | D).

To address this concern, it is possible to explore the upper bound of of the KL di-
vergence. To derive this bound, we introduce and subtract the log-marginal likeli-
hood p(D) to the KL divergence. By recognizing that p(w,D) = p(w | D)p(D) =

2.3. Common Approximation Inference Methods for Bayesian Neural Networks 15

p(D |w)p(w), we can proceed with the derivation as follows:

KL
[
qφ(w) ‖ p(w | D)

]
= Eqφ(w)

[
log

qφ(w)

p(w | D)

]
− log p(D) + log p(D)

= Eqφ(w)

[
log

qφ(w)

p(w | D)p(D)

]
+ log p(D)

= −Eqφ(w)

[
log

p(D |w)p(w)

qφ(w)

]
+ log p(D) (2.15)

= −
(

Eqφ(w)[log p(D |w)]− KL
[
qφ(w) ‖ p(w)

]︸ ︷︷ ︸
:=LELBO(φ)

)
+ log p(D).

Here, LELBO(φ) is a lower bound of the log-marginal likelihood p(D), commonly
referred to as the evidence lower bound (ELBO). Maximizing LELBO is equivalent to min-
imizing the KL divergence between qφ(w) and p(w | D). The first term in LELBO(φ)

corresponds to the expected log-likelihood of the data under the approximate poste-
rior qφ(w), serving as a measure of how well the model fits the data. The second term
introduces a regularization effect by penalizing posteriors that significantly deviate
from the prior. Unlike KL

[
qφ(w) ‖ p(w | D)

]
, obtaining an unbiased estimate of

LELBO(φ) is often computationally feasible. In particular, we can decompose LELBO

as follows:

LELBO(φ) = Eqφ(w)[log p(D |w)]− KL
[
qφ(w) ‖ p(w)

]
(2.16)

=
N

∑
i=1

Eqφ(w)[log p(yi | f (xi, w))]− KL
[
qφ(w) ‖ p(w)

]
(2.17)

=
N

∑
i=1

Eqφ(w)[log p(yi | f (xi, w))]−Eqφ(w)

[
log

qφ(w)

p(w)

]
. (2.18)

Estimations of the expectations in Eq. 2.18 can be done through Monte Carlo sam-
pling, wherein samples are drawn from the approximate posterior qφ(w). Analytical
computation of the KL divergence becomes feasible in some cases, for example, where
both qφ(w) and p(w) are Gaussian. Additionally, exploiting the decomposition of the
likelihood term over datapoints allows for the straightforward creation of an unbiased
estimate of LELBO using mini-batches of data, enabling scalable variational inference
for large datasets. To optimize φ, gradient-based optimizers can be employed, while
unbiased estimates of ∇φLELBO can be obtained using the reparameterization trick
(Kingma and Welling, 2014; Blundell et al., 2015).

Variational inference is a versatile approximate inference technique that encompasses
a wide range of variational families Q. Among these, the most commonly employed
variational family consists of fully-factorized Gaussian distributions over w. This
type of variational inference is commonly referred to as mean-field variational inference
(MFVI) (Graves, 2011; Blundell et al., 2015). Additionally, more flexible families have

16 Chapter 2. Probabilistic Methods for Machine Learning

been proposed, including multivariate Gaussian distributions over w, families incor-
porating matrix-variate Gaussians (Louizos and Welling, 2017), normalizing flows
(Rezende and Mohamed, 2015), or implicit distributions (Huszár, 2017; Mescheder
et al., 2017; Titsias and Ruiz, 2019) whose densities cannot be directly evaluated.
Moreover, instead of using the KL in Eq. 2.14, various alternative divergences and dis-
tances are proposed in the literature, such as Rényi divergences (Li and Turner, 2016),
χ-divergences (Dieng et al., 2017), f-divergences (Wan et al., 2020), and Wasserstein
distances (Ambrogioni et al., 2018).

2.3.3 Markov chain Monte Carlo

Markov chain and stationary distribution. Consider a sequence of random vari-
ables denoted as w(1), . . . , w(t). Under the assumption of independence between
w(i) and {w(j)}i−1

j=1 given w(i−1) for each i = 1, ..., t, commonly known as the Markov
assumption, the joint distribution can be expressed as follows:

p(w(1), . . . , w(t)) = p(w(1))
t

∏
i=2

p(w(i) |w(i−1)). (2.19)

The sequence {w(i)}t
i=1 is referred to as a Markov chain, and the probability p(w(i) |w(i−1))

is known as the transition probability. Once p(w(i) |w(i−1)) is defined, a Markov chain
offers a simple approach to generating a sequence of random variables. Specifically,
we can sample w(i) from p(w(i) |w(i−1)), where w(i−1) is the previous sample.

Consider two random variables in a Markov chain, denoted as w(i) and w(i+1), with
a transition probability of p(w(i+1) |w(i)). Let us assume that the distribution of w is
represented by q(w). In such a case, we refer to q as the stationary distribution of the
Markov chain if

q(w(i+1)) =
∫

p(w(i+1) |w(i))q(w(i))dw(i). (2.20)

In other words, the stationary distribution is the distribution of w that does not
change under the transition probability. Intuitively, once a Markov chain reaches
its stationary distribution at a time i, any w(j) with j ≥ i is drawn from the same
distribution q.

Markov chain Monte Carlo. The fundamental concept behind Markov chain Monte
Carlo (MCMC) methods for Bayesian inference involves constructing a Markov chain.
This entails defining the transition function p(w(i+1) | w(i)), where the stationary dis-
tribution of the Markov chain, denoted as q, corresponds to the posterior distribution
p(w | D). Consequently, once the Markov chain reaches its stationary distribution,
running the chain is equivalent to sampling from the true posterior p(w | D). The
rate at which the Markov chain converges to its stationary distribution, commonly

2.3. Common Approximation Inference Methods for Bayesian Neural Networks 17

known as the mixing speed, holds practical significance as it determines the sampling
costs involved in obtaining posterior samples.

Hamiltonian Monte Carlo. Hamiltonian Monte Carlo (HMC) (Duane et al., 1987;
Neal, 2011) provides a method for proposing samples of w in a Metropolis-Hastings
(MH) franework that efficiently explores the posterior space. These proposals are gen-
erated from a Hamiltonian system based on introducing a set of auxiliary momentum
variables r. That is, to sample from p(θ | D), HMC considers generating samples from
a joint distribution of (w, r), defined as follows:

p(w, r) ∝ exp
(
−U(w)− 1

2
r>M−1r

)
, (2.21)

where U(w) is a potential energy function defined by the log-unnormalized posterior,
i.e. U(w) = − log p(D |w)− log p(w); M is an arbitrary mass matrix, and together
with r, defines a kinetic energy term.

Samples are then generated based on the Hamiltonian dynamics:

dw = M−1rdt, (2.22)

dr = −∇U(w)dt, (2.23)

where, the mass matrix M plays the role of a preconditioner.

Simulating the above continuous system can pose computational challenges. To
overcome this, a common approach involves discretization techniques such as the
leapfrog scheme. Additionally, a correction step is typically applied using the classical
MH acceptance/rejection framework. In this case, the MH relies on the Hamiltonian
function, which is defined as follows:

H(w, r) = U(w) +
1
2

r>M−1r. (2.24)

Algorithm 1 provides a summary of the HMC algorithm.

Stochastic gradient Hamiltonian Monte Carlo. Despite its effectiveness in sam-
pling from the posterior, HMC comes with a considerable computational cost, as it
necessitates evaluating the gradient of the potential energy function U(w) at every
iteration. While evaluating the gradient of the prior component is generally feasible,
computing the likelihood gradient can be computationally challenging, particularly
for large datasets. To address this issue, one potential approach involves assum-
ing that the likelihood factors on the observations, allowing us to approximate this

18 Chapter 2. Probabilistic Methods for Machine Learning

Algorithm 1: Hamiltonian Monte Carlo

Input: Starting position w(0) and step size ε
1 for t = 1, 2, . . . do

/* Resample momentum r: */

2 r(t) ∼ N (0, M)

3 (w0, r0) = (w(t), r(t))
/* Simulate discretization of Hamiltonian dynamics in Eq. 2.22 and Eq. 2.23:

*/

4 r0 ← r0 − ε
2∇U(w0)

5 for i = 1, 2, . . . , m do
6 w(i) ← w(i−1) + εM−1ri−1

7 ri ← ri−1 − ε∇U(w(i))

8 rm ← rm − ε
2∇U(wm)

9 (ŵ, r̂) = (wm, rm)
/* Metropolis-Hastings correction: */

10 u ∼ Uniform(0, 1)
11 ρ = eH(ŵ,r̂)−H(w(t),r(t))

12 if u < min(1, ρ) then
13 w(t+1) = ŵ

quantity using mini-batches of size M:

∇Ũ(w) ≈ − N
M

M

∑
i=1
∇ log p(yi | f (xi, w))−∇ log p(w), (2.25)

By utilizing mini-batches, we can write the gradients as unbiased estimates of U(w)

as follows:

∇Ũ(w) = ∇U(w) +N (0, V(θ)), (2.26)

where V(θ) represents the covariance of the stochastic gradient noise. It should be
noted that this covariance is dependent on various factors, including the parameters
themselves.

A naïve approach to implement stochastic gradient Hamiltonian Monte Carlo (SGHMC)
would be to simply replace the gradient in Algorithm 1 with Eq. 2.25. However, Chen
et al. (2014) prove that the the simulation of the resulting dynamics would make the
stationary distribution no longer invariant (i.e., sampling is performed on a distribi-
tion which is not the original target distribution). To address this issue, Chen et al.
(2014) propose a modification to the HMC algorithm, which involves adding a friction
term to the dynamics. The discretized Hamiltonian dynamics are then updated as

2.3. Common Approximation Inference Methods for Bayesian Neural Networks 19

follows: ∆w = εM−1r,

∆r = −ε∇Ũ(w)− εCM−1r +N (0, 2ε(C− B̃)),
(2.27)

where ε is an step size, C is an user-defined friction matrix, B̃ is the estimate for the
noise of the gradient evaluation.

Hyperparameter selection for SGHMC. Working with the dynamics system Eq. 2.27
remains challenging from a practical point of view due to the need to select the fric-
tion term C, estimate the noise covariance B̃, choose the mass matrix M, and tune
the step size ε. The selection of the friction term and step size relies heavily on the
specific model and dataset at hand. However, the remaining two quantities can be
estimated during the burn-in phase, as proposed by Springenberg et al. (2016).

More specifically, Springenberg et al. (2016) leverage the connection between SGHMC

and stochastic gradient descent (SGD) to choose the mass matrix M. In particu-
lar, Duchi et al. (2011) and Tieleman and Hinton (2012) show how normalizing
the gradient by its magnitude (estimated over the whole dataset) improves the
robustness of SGD. For SGHMC, this is equivalent to choosing the mass matrix
M−1 = diag

(
V̂−1/2

w
)
, where V̂w is an estimate of the uncentered variance of the

gradient, V̂w ≈ E[(∇Ũ(w))2]. This quantity can be estimated by using exponential
moving average as follows:

∆V̂w = −τ−1V̂w + τ−1∇(Ũ(w))2, (2.28)

where τ is a parameter vector that specifies the moving average windows. This
parameter can be automatically chosen by using a procedure similar to the adaptive
learning rate for SGD (Tieleman and Hinton, 2012) as follows:

∆τ = −g2
wV̂−1

w τ + 1, and, ∆gw = −τ−1gw + τ−1∇Ũ(w), (2.29)

where gw is a smoothed estimate of the gradient ∇U(w).

The estimate for the noise of the gradient evaluation B̃ should be ideally an estimate
of the empirical Fisher information matrix of U(w), which is prohibitively expensive
to compute. Therefore, we can use a diagonal approximation, B̃ = 1

2 εV̂w. For the
friction matrix, in practice, one can simply set it as C = CI, i.e. the same independent
noise for each element of w.

By substituting these new quantities and v := εV̂−1/2
w r, the dynamics Eq. 2.27 become∆w = v,

∆v = −ε2V̂−1/2
w ∇Ũ(w)− εCV̂−1/2

w v +N (0, 2ε3CV̂−1
w − ε4I).

(2.30)

20 Chapter 2. Probabilistic Methods for Machine Learning

Springenberg et al. (2016) suggest to choose C such that εCV̂−1/2
w = αI. This is

equivalent to using a constant momentum coefficient of α. The final discretized
dynamics are as follows:∆w = v,

∆v = −ε2V̂−1/2
w ∇Ũ(w)− αv +N (0, 2ε2αV̂−1/2

w − ε4I).
(2.31)

2.4 Gaussian Processes

In the preceding sections, we discuss neural networks as parametric models, where the
model’s complexity is inherently tied to the number of parameters. In this section, we
consider a type of non-parametric model for the mapping f , which is Gaussian process
(GP) (Rasmussen and Williams, 2006). Unlike parametric models, the complexity of
GPs actually grows with the size of data available.

GPs are a simple and general class of models of functions. A GP is any distribution
over functions such that any finite set of functions values f (x1), f (x2), . . . , f (xN) have
a joint Gaussian distribution (Rasmussen and Williams, 2006). It is fully characterized
by its mean function, µθ(x), and its covariance function or kernel, κθ(x, x′), i.e.:

f (x) ∼ GP(µθ(x), κθ(x, x′)), (2.32)

where x and x′ represent the input locations where the function f (·) is evaluated,
while θ comprises the hyper-parameters of both the mean and covariance functions.
Based on the previously stated GP definition, we can formulate the distribution for a
finite set of function values as:

p

f (x1)

f (x2)
...

f (xN)

 θ

 = N

f (x1)

f (x2)
...

f (xN)

 ;

µ(x1)

µ(x2)
...

µ(xN)

 ,

κθ(x1, x1) κθ(x1, x2) · · · κθ(x1, xN))

κθ(x2, x1) κθ(x2, x2) · · · κθ(x2, xN))
...

...
. . .

...
κθ(xN , x1) κθ(xN , x2) · · · κθ(xN , xN))

 .

(2.33)

The common assumption for the mean function is often that it is a zero function,
denoted as µθ(x) = 0. This choice stems from the rationale that the prior knowledge
about the function f (·) can be encapsulated in the form of the covariance function
and its associated hyper-parameters θ. The selection of the covariance function
is determined by the prior insights about the nature of the function, such as its
smoothness, oscillations, roughness, or periodicity, see Chapter 2 in Duvenaud (2014)
for examples of different covariance functions. A popular covariance function is the
radial basis function (RBF) or squared exponential kernel with automatic relevance

2.4. Gaussian Processes 21

determination (ARD) (MacKay, 1996a), which is defined as follows:

κθ(x, x′) = α2 exp

(
−1

2

D

∑
d=1

(xd − x′d)2

l2
d

)
, (2.34)

where ld is the lengthscale for the d-th input dimension and α2 is the kernel variance,
and in this case θ = {α2} ∪ {ld}D

d=1 are the kernel hyper-parameters.

Consider the case of regression, employing a Gaussian likelihood. Here, every
observation yn is a result of an underlying, unknown function f (·) evaluated at
the input xn. This evaluation is perturbed by independent Gaussian noise, with a
variance of σ2

ε . A GP can be used to specify the prior over functions f (·) and the
corresponding probabilistic model is as follows:

f | θ ∼ GP(0, κθ(·, ·)), (2.35)

p(y | f , σ2
ε) =

N

∏
n=1
N (yn; f (xn), σ2

ε), (2.36)

where y is a vector of comporising of all the training outputs, and f is the evaluations
of the function f (·) on all the training inputs, i.e. f = f (X) = [f (x1), . . . , f (xN)]

>.

Prediction. The model allows us to make a prediction of the function value at a new
(test) input location x?, i.e. f (x?). Because the joint distribution between the training
observations and the test latent functions is a multivariate Gaussian distribution, the
posterior can be obtained using the conditional Gaussian distribution property that
implies a GP as well (Rasmussen and Williams, 2006):

f (x?) | y ∼ GP(Kx?X(KXX + σ2
ε I)−1y︸ ︷︷ ︸

predictive mean follows observations

, Kx?x? − Kx?X(KXX + σ2
ε I)−1KXx?︸ ︷︷ ︸

predictive var. shrinks given more data

), (2.37)

where Kx?X , KXX are the covariance matrices between the test function values and
training function values, and the training function values and themselves, respec-
tively.

Model selection. The aforementioned procedure enables us to obtain the GP poste-
rior and make predictions at test inputs, given a fixed set of kernel hyper-parameters
θ and noise variance σ2

ε . However, these values are usually not known in advance
and often pose a challenge for manual selection. To address this, a fully Bayesian
approach can be adopted. This involves specifying priors for the hyper-parameters
and deriving the joint posterior distribution, denoted as p(f , θ, σ2

ε | y). However, this
procedure is not analytically available and necessitates approximation techniques like
MCMC. Alternatively, a common practice is to select the hyper-parameters {θ, σ2

ε}
by maximizing the marginal likelihood of the hyper-parameters. In the regression

22 Chapter 2. Probabilistic Methods for Machine Learning

scenario, the marginal likelihood can be computed analytically, and its logarithm is
as follows:

log p(y | θ, σ2
ε) = log

∫
p(y | f , σ2

ε)p(f | θ)d f (2.38)

= logN (y; 0, KXX + σ2
ε I) (2.39)

= − 1
2

y>(KXX + σ2
ε I)−1y︸ ︷︷ ︸

encourages fit with data

− 1
2

log |KXX + σ2
ε I|︸ ︷︷ ︸

controls model capacity

− N
2

log 2π︸ ︷︷ ︸
constant

. (2.40)

As can be seen from the above objective, the marginal likelihood embodies a trade-off
between the fit with the data and the model complexity. Consequently, this approach
is anticipated to offer resilience against overfitting. However, it’s worth noting that
the optimization routine might encounter challenges with regard to local maxima
(Rasmussen and Williams, 2006).

Complexity. As can be seen from Eq. 2.40 and Eq. 2.36 and the computational com-
plexity of the GP for learning hyper-parameters and making predictions is largely
dominated by the matrix inversion of KXX + σ2

ε I. This inversion incurs a time com-
plexity of O(N3), and during the learning phase, it necessitates repetition multiple
times. After this step, subsequent predictions for a test data point can be executed
with O(N2) time complexity.

23

Chapter 3

Functional Priors for Bayesian
Neural Networks

The Bayesian treatment of neural networks dictates that a prior distri-
bution is specified over their weight and bias parameters. This poses a
challenge because modern neural networks are characterized by a large
number of parameters, and the choice of these priors has an uncontrolled
effect on the induced functional prior, which is the distribution of the func-
tions obtained by sampling the parameters from their prior distribution.
We argue that this is a hugely limiting aspect of Bayesian deep learning,
and the work presented in this chapter tackles this limitation in a practical
and effective way. Our proposal is to reason in terms of functional priors,
which are easier to elicit, and to “tune” the priors of neural network param-
eters in a way that they reflect such functional priors. Gaussian processes
offer a rigorous framework to define prior distributions over functions,
and we propose a novel and robust framework to match their prior with
the functional prior of neural networks based on the minimization of
their Wasserstein distance. We provide vast experimental evidence that
coupling these priors with scalable Markov chain Monte Carlo sampling
offers systematically large performance improvements over alternative
choices of priors and state-of-the-art approximate Bayesian deep learning
approaches. We consider this work a considerable step in the direction
of making the long-standing challenge of carrying out a fully Bayesian
treatment of neural networks, including convolutional neural networks, a
concrete possibility.

3.1 Introduction

The majority of tasks in machine learning, including classical ones such as classifica-
tion and regression, can be reduced to estimation of functional representations, and
neural networks offer a powerful framework to describe functions of high complexity.

24 Chapter 3. Functional Priors for Bayesian Neural Networks

In this work, we focus on the Bayesian treatment of neural networks, which results in
a natural form of regularization and allows one to reason about uncertainty in pre-
dictions (Tishby et al., 1989; Neal, 1996; Mackay, 2003). Despite the lack of conjugate
priors for any Bayesian neural networks (BNNs) of interest, it is possible to generate
samples from the posterior distributions over their parameters by means of Markov
chain Monte Carlo algorithms (Neal, 1996; Chen et al., 2014).

The concept of prior distribution in Bayesian inference allows us to describe the
family of solutions that we consider acceptable, before having seen any data. While
in some cases selecting an appropriate prior is easy or intuitive given the context
(O’Hagan, 1991; Rasmussen and Ghahramani, 2002; Srinivas et al., 2010; Cockayne
et al., 2019; Briol et al., 2019; Tran et al., 2021), for nonlinear parametric models
with thousands (or millions) of parameters, like deep neural networks (DNNs) and
convolutional neural networks (CNNs), this choice is not straightforward. As these
models are nowadays accepted as the de facto standard in machine learning (LeCun
et al., 2015), the community has been actively proposing ways to enable the possibility
to reason about the uncertainty in their predictions, with the Bayesian machinery
being at the core of many contributions (Graves, 2011; Chen et al., 2014; Gal and
Ghahramani, 2016; Liu and Wang, 2016). Despite many advances in the field (Kendall
and Gal, 2017; Rossi et al., 2019; Osawa et al., 2019a; Rossi et al., 2020), it is reported
that in some cases the predictive posteriors are not competitive to non-Bayesian
alternatives, making these models—and Bayesian deep learning, in general—less
than ideal solutions for a number of applications. For example, Wenzel et al. (2020)
have raised concerns about the quality of BNN posteriors, where it is found that
tempering the posterior distribution improves the performance of some deep models.

We argue that observations of this kind should not be really surprising. Bayesian
inference is a recipe with exactly three ingredients: the prior distribution, the likelihood
and the Bayes’ rule. Regarding the Bayes’ rule, that is simply a consequence of the
axioms of probability. The fact that the posterior might not be useful in some cases
should never be attributed to the Bayesian method itself. In fact, it is very easy to
construct Bayesian models with poor priors and/or likelihoods, which result in poor
predictive posteriors. One should therefore turn to the other two components, which
encode model assumptions.

In this work, we focus our discussion and analysis on the prior distribution of BNNs.
For such models, the common practice is to define a prior distribution on the network
weights and biases, which is often chosen to be Gaussian. A prior over the parameters
induces a prior on the functions generated by the model, which also depends on the
network architecture. However, due to the nonlinear nature of the model, the effect
of this prior on the functional output is not obvious to characterize and control.

Consider the example in Fig. 3.1, where we show the functions generated by sampling
the weights of BNNs with a tanh activation from their Gaussian prior N (0, 1). We

3.1. Introduction 25

−10 0 10

−4
−2
0

2

4

BNN prior with 2 layers

−10 0 10

−4
−2
0

2

4

BNN prior with 4 layers

−10 0 10

−4
−2
0

2

4

BNN prior with 8 layers

−10 0 10

−2

0

2

GP prior with RBF kernel

−10 0 10

−2

0

2

GP prior with Matern32 kernel

Figure 3.1: (Top) Sample functions of a fully-connected BNN with 2,
4 and 8 layers obtained by placing a Gaussian prior on the weights.

(Bottom) Samples from a GP prior with two different kernels.

see that as depth is increased, the samples tend to form straight horizontal lines,
which is a well-known pathology stemming from increasing model’s depth (Neal,
1996; Duvenaud et al., 2014; Matthews et al., 2018). We stress that a fixed Gaussian
prior on the parameters is not always problematic, but it can be, especially for deeper
architectures. Nonetheless, this kind of generative priors on the functions is very
different from shallow Bayesian models, such as Gaussian processes (GPs), where the
selection of an appropriate prior typically reflects certain attributes that we expect
from the generated functions. A GP defines a distribution over functions which is
characterized by a mean and a kernel function κ. The GP prior specification can be
more interpretable than the one induced by the prior over the weights of a BNN, in
the sense that the kernel effectively governs the properties of prior functions, such as
shape, variability and smoothness. For example, shift-invariant kernels may impose
a certain characteristic length-scale on the functions that can be drawn from the prior
distribution.

Contributions

The main research question that we investigate in this work is how to impose func-
tional priors on BNNs. We seek to tune the prior distributions over BNNs parameters
so that the induced functional priors exhibit interpretable properties, similar to shal-
low GPs. While BNN priors induce a regularization effect that penalizes large values
for the network weights, a GP-adjusted prior induces regularization directly on the
space of functions.

We consider the Wasserstein distance between the distribution of BNN functions in-
duced by a prior over their parameters, and a target GP prior. We propose an
algorithm that optimizes such a distance with respect to the BNN prior parameters
and hyperparameters. An attractive property of our proposal is that estimating the

26 Chapter 3. Functional Priors for Bayesian Neural Networks

Wasserstein distance relies exclusively on samples from both distributions, which
are easy to generate. We demonstrate empirically that for a wide range of BNN ar-
chitectures with smooth activations, it is possible to sufficiently capture the function
distribution induced by popular GP kernels.

We then explore the effect of GP-induced priors on the predictive posterior distri-
bution of BNNs by means of an extensive experimental campaign. We do this by
carrying out fully Bayesian inference of neural network models with these priors
through the use of scalable Markov chain Monte Carlo (MCMC) sampling (Chen
et al., 2014). We demonstrate systematic performance improvements over alternative
choices of priors and state-of-the-art approximate Bayesian deep learning approaches
on a wide range of regression and classification problems, as well as a wide range of
network architectures including convolutional neural networks; we consider this a
significant advancement in Bayesian deep learning.

3.2 Related Work

In the field of BNNs, it is common practice to consider a diagonal Gaussian prior
distribution for the network weights (Neal, 1996; Bishop, 2006). Certain issues of
these kind of BNN priors have been recently exposed by Wenzel et al. (2020), who
show that standard Gaussian priors exhibit poor performance, especially in the case of
deep architectures. The authors address this issue by considering a temperate version
of the posterior, which effectively reduces the strength of the regularization induced
by the prior. Many recent works (Chen et al., 2014; Springenberg et al., 2016) consider
a hierarchical structure for the prior, where the variance of the normally-distributed
BNN weights is governed by a Gamma distribution. This setting introduces additional
flexibility on the space of functions, but it still does not provide much intuition
regarding the properties of the prior. A different approach is proposed by Karaletsos
and Bui (2020) and Karaletsos and Bui (2020), who consider a GP model for the
network parameters that can capture weight correlations.

Bayesian model selection constitutes a principled approach to select an appropriate
prior distribution. Model selection is based on the marginal likelihood – the normaliz-
ing constant of the posterior distribution – which may be estimated from the training
data. This practice is usually used to select hyperparameters of a GP as its marginal
likelihood is available in closed form (Rasmussen and Williams, 2006). However, the
marginal likelihood of BNNs is generally intractable, and lower bounds are difficult
to obtain. Graves (2011) first and Blundell et al. (2015) later used the variational lower
bound of the marginal likelihood for optimizing the parameters of a prior, yielding
in some cases worse results. Recently, Immer et al. (2021b) extended the Mackay’s
original proposal (MacKay, 1995) of using the Laplace’s method to approximate the
marginal likelihood. In this way, one can obtain an estimate of the marginal likelihood

3.2. Related Work 27

which is scalable and differentiable with respect to the prior hyperparameters, such
that they can be optimized together with the BNN posterior.

Many recent attempts in the literature have turned their attention towards defin-
ing priors in the space of functions, rather than the space of weights. For example,
Nalisnick et al. (2021a) consider a family of priors that penalize the complexity of
predictive functions. Hafner et al. (2019) propose a prior that is imposed on training
inputs, as well as out-of-distribution inputs. This is achieved by creating pseudo-data
by means of perturbing the training inputs; the posterior is then approximated by a
variational scheme. Yang et al. (2019) present a methodology to induce prior knowl-
edge by specifying certain constraints on the network output. Pearce et al. (2019)
explore DNN architectures that recreate the effect of certain kernel combinations for
GPs. This result in an expressive family of network priors that converge to GPs in the
infinite-width limit.

A similar direction of research focuses not only on priors but also inference in the
space of functions for BNNs. For example, Ma et al. (2019) consider a BNN as an
implicit prior in function space and then use GPs for inference. Conversely, Sun
et al. (2019) propose a functional variational inference which employs a GP prior to
regularize BNNs directly in the function space by estimating the Kullback-Leibler
(KL) divergence between these two stochastic processes. However, this method
relies on a gradient estimator which can be inaccurate in high dimensions. Khan
et al. (2019) follow an alternative route by deriving a GP posterior approximation
for neural networks by means of the Laplace and generalized Gauss-Newton (GGN)
approximations, leading to an implicit linearization. Immer et al. (2021a) make this
linearization explicit and apply it to improve the performance of BNN predictions. In
general, these approaches either heavily rely on non-standard inference methods or
are constrained to use a certain approximate inference algorithm, such as variational
inference or Laplace approximation.

A different line of work focuses on meta-learning by adjusting priors based on the
performance of previous tasks (Amit and Meir, 2018). In contrast to these approaches,
we aim to define a suitable prior distribution entirely a priori. We acknowledge that
our choice to impose GP (or hierarchical GP) priors on neural networks is essentially
heuristic: there is no particular theory that necessarily claims superiority for this
kind of prior distributions. In some applications, it could be preferable to use priors
that are tailored to certain kinds of data or architectures, such the deep weight prior
(Atanov et al., 2019). However, we are encouraged by the empirical success and the
interpretability of GP models, and we seek to investigate their suitability as BNN

priors on a wide range of regression and classification problems.

Our work is most closely related to a family of works that attempt to map GP priors
to BNNs. Flam-Shepherd et al. (2017) propose to minimize the KL between the BNN

prior and some desired GP. As there is no analytical form for this KL, the authors rely

28 Chapter 3. Functional Priors for Bayesian Neural Networks

on approximations based on moment matching and projections on the observation
space. This limitation was later addressed (Flam-Shepherd et al., 2018) by means of a
hypernetwork (Ha et al., 2017), which generates the weight parameters of the original
BNN; the hypernetwork parameters were trained so that a BNN fits the samples of
a GP. In our work, we also pursue the minimization of a sample-based distance
between the BNN prior and some desired GP, but we avoid the difficulties in working
with the KL divergence, as its evaluation is challenging due to the empirical entropy
term. To the best of our knowledge, the Wasserstein distance scheme we propose is
novel, and it demonstrates satisfactory convergence for compatible classes of GPs
and BNNs.

Concurrently to the release of this work, we have come across another work advo-
cating for the use of GP priors to determine priors for BNNs. Matsubara et al. (2021)
rely on the ridgelet transform to approximate the covariance function of a GP. Our
work is methodologically different, as our focus is to propose a practical framework
to impose sensible priors. Most importantly, we present an extensive experimental
campaign that demonstrates the impact of functional priors on deep models.

3.3 Preliminaries

In this section, we establish some basic notation on GPs that we follow throughout
this chapter. In addiition, we give a brief introduction to the concept of Wasserstein
distance, which is the central element of our methodology to impose functional GP

priors on BNNs.

3.3.1 Gaussian process priors

GPs constitute a popular modeling choice in the field of Bayesian machine learning
(Rasmussen and Williams, 2006), as they allow one to associate a certain class of
functional representations with a probability measure. A GP is a stochastic process
that is uniquely characterized by a mean function µ(x) and a covariance function
κ(x, x′). The latter is also known as a kernel function, and it determines the covariance
between the realization of the function at pairs of inputs x and x′. For a finite set of
inputs X, a GP yields a multivariate Gaussian distribution with mean vector µ = µ(X)

and covariance matrix K = κ(X, X).

There is a significant body of research whose objective is to perform inference for
GP models; see Liu et al. (2020) for an extensive review. However, in this work we
only treat GPs as a means to define meaningful specifications of priors over functions.
Different choices for the kernel result in different priors in the space of functions. A

3.3. Preliminaries 29

popular choice in the literature is the radial basis function (RBF) kernel:

κα,l(x, x′) = α2 exp
(
− (x− x′)>(x− x′)

l2

)
, (3.1)

which induces functions that are infinitely differentiable, as in Fig. 3.1. The subscripts
α, l denote the dependency on hyperparameters: α is the amplitude, which controls
the prior marginal standard deviation, and l is known as the lengthscale, as it controls
how rapidly sample functions can vary.

Hierarchical GP priors The most common practice in GP literature is to select val-
ues for the hyperparameters that optimize the marginal log-likelihood. We do not
recommend such an approach in our setting however, as it introduces additional
complexity from a computational perspective. Instead, we opt to consider a hier-
archical form for the target prior. Assuming a shift-invariant kernel κα,l(x, x′) with
hyperparameters α and l, we have:

α, l ∼ LogNormal(m, s2), f ∼ N (0, κα,l(x, x′)) (3.2)

where m and s are user-defined parameters. Samples of the target prior are generated
by means of a Gibbs sampling scheme: we first sample the hyperparameters from a
log-normal distribution, and then we sample from the corresponding GP. This form
of hierarchical GP priors is adopted in the majority of experiments of § 3.6, unless
otherwise specified.

3.3.2 Wasserstein distance

The concept of distance between probability measures is central to this work, as we
frame the problem of imposing a GP prior on a BNN as a distance minimization
problem. We present some known results on the Wasserstein distance that will be
used in the sections that follow. Given two Borel’s probability measures π(x) and ν(y)
defined on the Polish space X and Y (i.e. any complete separable metric space), the
generic formulation of the p-Wasserstein distance is defined as follows:

Wp(π, ν) =

(
inf

γ∈Γ(π,ν)

∫
X×Y

D(x, y)pγ(x, y)dxdy
)1/p

, (3.3)

where D(x, y) is a proper distance metric between two points x and y in the space
X × Y and Γ(π, ν) is the set of functionals of all possible joint densities γ whose
marginals are π and ν.

When the spaces of x and y coincide (i.e. x, y ∈ X ⊆ Rd), with D(x, y) being the
Euclidian norm distance, the Wasserstein-1 distance (also known in the literature as

30 Chapter 3. Functional Priors for Bayesian Neural Networks

Earth-Mover distance) takes the following shape,

W1(π, ν) = inf
γ∈Γ(π,ν)

∫
X×X

‖x− y‖γ(x, y)dxdy . (3.4)

With the exception of few cases where the solution is available analytically (e.g. π

and ν being Gaussians), solving Eq. 3.4 directly or via optimization is intractable. On
the other hand, the Wasserstein distance defined in Eq. 3.4 admits the following dual
form (Kantorovich, 1942; Kantorovich, 1948),

W1(π, ν) = sup
‖φ‖L≤1

[∫
φ(x)π(x)dx−

∫
φ(y)ν(y)dy

]
= sup
‖φ‖L≤1

Eπφ(x)−Eνφ(x) , (3.5)

where φ is a 1-Lipschitz continuous function defined on X → R. This is effectively a
functional maximization over φ on the difference two expectations of φ under π and
ν. A revised proof of this dual form by Villani (2003) is available in the Supplement.

3.4 Imposing Gaussian Process Priors on Bayesian Neural
Networks

The equivalence between function-space view and weight-space view of linear mod-
els, like Bayesian linear regression and GPs (Rasmussen and Williams, 2006), is a
straightforward application of Gaussian identities, but it allows us to seamlessly
switch point of view accordingly to which characteristics of the model we are willing
to observe or impose. We would like to leverage this equivalence also for BNNs but
the nonlinear nature of such models makes it analytically intractable (or impossible,
for non-invertible activation functions). We argue that for BNNs—and Bayesian deep
learning models, in general—starting from a prior over the weights is not ideal, given
the impossibility of interpreting its effect on the family of functions that the model can
represent. We therefore rely on an optimization-based procedure to impose functional
priors on BNNs using the Wasserstein distance as a similarity metric between such
distributions, as described next.

3.4.1 Wasserstein distance optimization

Assume a prior distribution p(w; ψ) on the weights of a BNN, where ψ is a set of
parameters that determine the prior (e.g., ψ = {µ, σ} for a Gaussian prior; we discuss
more options on the parametrization of BNN priors in the section that follows). This
prior over weights induces a prior distribution over functions:

pnn (f ; ψ) =
∫

p(f |w)p(w; ψ)w, (3.6)

3.4. Imposing Gaussian Process Priors on Bayesian Neural Networks 31

where p(f |w) is deterministically defined by the network architecture.

In order to keep the notation simple, we consider non-hierarchical GP priors. Hier-
archical GPs are treated in the same way, except that samples are generated by the
Gibbs sampling scheme of Eq. 3.2. Our target GP prior is pgp (f | 0, K), where K is
the covariance matrix obtained by computing the kernel function κ for each pair of
{xi, xj} in the training set. We aim at matching these two stochastic processes at a
finite number of measurement points XM

def
= [x1, ..., xM]> sampled from a distribution

q(x). To achieve this, we propose a sample-based approach using the 1-Wasserstein
distance in Eq. 3.5 as objective:

min
ψ

max
θ

Eq

[
Epgp [φθ(fM)]−Epnn [φθ(fM)]︸ ︷︷ ︸

L(ψ,θ)

]
, (3.7)

where fM denotes the set of random variables associated with the inputs at XM,
and φθ is a 1-Lipschitz function. Following recent literature (Goodfellow et al.,
2014; Arjovsky et al., 2017), we parameterize the Lipschitz function by a neural
network1with parameters θ.

Regarding the optimization of the θ and ψ parameters we alternate between nLipschitz

steps of maximizing L with respect to the Lipschitz function’s parameters θ and one
step of minimizing the Wasserstein distance with respect to the prior’s parameters ψ.
We therefore use two independent optimizers (RMSprop–see, for example, Tieleman
and Hinton, 2012) for θ and ψ. Fig. 3.2 offers a high-level schematic representation of
the proposed procedure. Given samples from two stochastic processes, the Wasser-
stein distance is estimated by considering the inner maximization of Eq. 3.7, resulting
in an optimal φ∗. This inner optimization step is repeated for every step of the outer
optimization loop. Notice that the objective is fully sample-based. As a result, it is
not necessary to know the closed-form of the marginal density pnn (f ; ψ). One may
consider any stochastic process as a target prior over functions, as long as we can
draw samples from it (e.g., a hierarchical GP). Finally, we acknowledge that the two
training steps could have been optimized jointly in a single loop, as Eq. 3.5 defines a
minimax problem. However, this choice allows φθ to converge enough before a single
Wasserstein minimization step takes place. In fact, this is a common trick to make
convergence more stable (see e.g., the original Goodfellow et al. (2014) paper, which
suggests to allow more training of the discriminator for each step of the generator).
In Appendix A.3.6 we further discuss this choice and we show qualitatively the
convergence improvements.

Lipschitz constraint. In order to enforce the Lipschitz constraint on φθ, Arjovsky et
al. (2017) propose to clip the weights θ to lie within a compact space [−c, c] such that

1Details on the 1-Lipschitz function: we used a multilayer perceptron (MLP) with two hidden
layers, each with 200 units; the activation function is softplus, which is defined as: softplus(x) =
1/(1 + exp(−x)).

32 Chapter 3. Functional Priors for Bayesian Neural Networks

(Bayesian) Neural Network

Gaussian Process

(Bayesian) Neural Network
with Optimized Priors

Figure 3.2: Schematic representation of the process of imposing GP
priors on BNN via Wasserstein distance minimization.

all functions φθ are K-Lipschitz. This approach usually biases the resulting φθ towards
a simple function. Based on the fact that a differentiable function is 1-Lipschitz if
and only if the norm of its gradient is at most one everywhere, Gulrajani et al. (2017)
propose to constrain the gradient norm of the output of the Lipschitz function φθ with
respect to its input. More specifically, the loss of the Lipschitz function is augmented
by a regularization term

LR(ψ, θ) = L(ψ, θ) + λEp f̂

[(∥∥∥∇ f̂ φ(f̂)
∥∥∥

2
− 1
)2
]

︸ ︷︷ ︸
Gradient penalty

. (3.8)

Here p f̂ is the distribution of f̂ = ε fnn + (1− ε) fgp for ε ∼ U [0, 1] and fnn ∼ pnn ,
fgp ∼ pgp being the sample functions from BNN and GP priors, respectively; λ is a
penalty coefficient.

Choice of the measurement set. In our formulation, we consider finite measure-
ment sets to have a practical and well-defined optimization strategy. As discussed
by Shi et al. (2019), there are several approaches to define the measurement set for
functional-space inference (Hafner et al., 2019; Sun et al., 2019). For low-dimensional
problems, one can simply use a regular grid or apply uniform sampling in the input
domain. For high-dimensional problems, one can sample from the training set, possi-
bly with augmentation, where noise is injected into the data. In applications where
we know the input region of the test data points, we can set q(x) to include it. We
follow a combination of the two approaches: we use the training inputs (or a subset
of thereof) as well as additional points that are randomly sampled (uniformly) from
the input domain.

3.4. Imposing Gaussian Process Priors on Bayesian Neural Networks 33

3.4.2 Prior parameterization for neural networks

In the previous section, we have treated the parameters of a BNN prior pnn (f ; ψ) in a
rather abstract manner. Now we explore three different parametrizations of increasing
complexity. The only two requirements needed to design a new parametrization are
(1) to be able to generate samples and (2) to compute the log-density at any point; the
latter is required to be able to draw samples from the posterior over model parameters
using most MCMC sampling methods, such as stochastic gradient Hamiltonian Monte
Carlo (SGHMC) which we employ in this work.

Gaussian prior on weights. We consider a layer-wise factorization with two inde-
pendent zero-mean Gaussian distributions for weights and biases. The parameters to
adjust are ψ = {σ2

lw , σ2
lb
}L

l=1, where σ2
lw is the prior variance shared across all weights

in layer l, and σ2
lb

is the respective variance for the bias parameters. For any weight
and bias entries wl , bl ∈ wl of the l-th layer, the prior is:

p(wl) = N
(
wl ; 0, σ2

lw

)
and p(bl) = N

(
bl ; 0, σ2

lb

)
.

In the experimental section, we refer to this parametrization as the GP-induced BNN

prior with Gaussian weights (GPi-G). Although this simple approach assumes a Gaus-
sian prior on the parameters, in many cases it is sufficient to capture the target
GP-based functional priors.

Regarding the implementation of this scheme, there are a few technical choices to
discuss. In order to maintain positivity for the standard deviation σ and perform un-
constrained optimization, we optimize ρ such that σ = log(1 + eρ), which guarantees
that σ is always positive. Also, we have to use gradient backpropagation through
stochastic variables such as wl . Thus, in order to treat the parameter wl in a determin-
istic manner, instead of sampling the prior distribution directly wl ∼ N

(
wl ; 0, σ2

lw

)
,

we use the reparameterization trick (Rezende et al., 2014; Kingma and Welling, 2014),
and sample from the noise distribution instead,

wl := σlw ε, ε ∼ N (0, 1). (3.9)

Hierarchical prior. A more flexible family of priors for BNNs considers a hierarchi-
cal structure where the network parameters follow a conditionally Gaussian distribu-
tion, and the prior variance for each layer follows an Inverse-Gamma distribution.
For the weight and bias variances we have:

σ2
lw ∼ Γ−1(αlw , βlw) and σ2

lb ∼ Γ−1(αlb , βlb)

In this case, we have ψ = {αlw , βlw , αlb , βlb}L
l=1, where αlw , βlw , αlb , βlb denote the

shape and rate parameters of the Inverse-Gamma distribution for the weight and

34 Chapter 3. Functional Priors for Bayesian Neural Networks

biases correspondingly for layer l. The conditionally Gaussian prior over the network
parameters is given as in the previous section. In the experiments, we refer to this
parametrization as the GP-induced BNN prior with Hierarchically-distributed weights
(GPi-H).

Similar to the Gaussian prior, we impose positivity constraints on the shape and rate
of the Inverse-Gamma distribution. In addition, we apply the reparameterization
trick proposed by Jankowiak and Obermeyer (2018) for the Inverse-Gamma distri-
bution. This method computes an implicit reparameterization using a closed-form
approximation of the CDF derivative. We used the corresponding original PyTorch
(Paszke et al., 2019) implementation of the method in our experiments.

Beyond Gaussians with Normalizing flows. Finally, we also consider normalizing
flows (NFs) as a family of much more flexible distributions. By considering an invert-
ible, continuous and differentiable function t : RDl → RDl , where Dl is the number
of parameters for l-th layer, a NF is constructed as a sequence of K of such transfor-
mations TK = {t1, . . . , tK} of a simple known distribution (e.g., Gaussian). Sampling
from such distribution is as simple as sampling from the initial distribution and then
apply the set of transformation TK. Given an initial distribution p0(wl), by denoting
p(TK(wl)) the final distribution, its log-density can be analytically computed by
taking into account to Jacobian of the transformations as follows,

log p(TK(wl)) = log p0(wl)−
K

∑
k=1

log
∣∣∣∣det

∂tk(wlk−1)

∂wlk−1

∣∣∣∣ , (3.10)

where wlk−1 = (tk−1 ◦ ... ◦ t2 ◦ t1)(wl) for k > 1, and wl0 = wl .

We shall refer to this class of BNN priors as the GP-induced BNN prior, parametrized
by normalizing flows (GPi-NF). We note that NFs are typically used differently in
the literature; while previous works showed how to use this distributions for better
approximation of the posterior in variational inference (Rezende and Mohamed, 2015;
Kingma et al., 2016; Louizos and Welling, 2017) or for parametric density estimation
(e.g., Grover et al., 2018), or for enlarging the flexibility of a prior for variational
autoencoders (VAEs) (e.g., Chen et al., 2017), as far as we are aware this is the first
time that NFs are used to characterize a prior distribution for BNNs.

In our experiments, we set the initial distribution p0(wl) to a fully-factorized Gaus-
sian N (wl | 0, σ2

l I). We then employ a sequence of four planar flows (Rezende and
Mohamed, 2015), each defined as

tk(wlk−1) = wlk−1 + ulk h(θ
>
lk wlk−1 + blk), (3.11)

3.4. Imposing Gaussian Process Priors on Bayesian Neural Networks 35

where ulk ∈ RDl , θlk ∈ RDl , blk ∈ R are trainable parameters, and h(·) = tanh(·). The
log-determinant of the Jacobian of tk is

log
∣∣∣∣det

∂tk(wlk−1)

∂wlk−1

∣∣∣∣ = log
∣∣∣1 + u>lk θlk h′(θ>lk wlk−1 + blk)

∣∣∣ . (3.12)

Thus for the l-th BNN layer, the parameters to optimize are ψl = {σ2
l }
⋃{ulk , θlk , blk}K

k=1.

Algorithm 2: Wasserstein Distance Optimization
1 Requires: Ns, number of stochastic process samples; q(x), sampling distribution for

measurement set; nLipschitz, number of iterations of Lipschitz function per prior iteration;

2 while ψ has not converged do
3 draw XM from q(x) // Sample measurement set ;
4 for t = 1, ..., nLipschitz do

5 draw GP functions { f (i)gp }Ns
i=1 ∼ pgp (f ; κ) at XM;

6 draw NN functions { f (i)nn }Ns
i=1 ∼ pnn (f ; ψ) at XM;

7 LR = N−1
s ∑Ns

i=1 L
(i)
R // Compute Lipschitz objective LR using Eq. 3.8 ;

8 θ← Optimizer(θ,∇θLR) // Update Lipschitz function φθ ;
9 end

10 draw GP functions { f (i)gp }Ns
i=1 ∼ pgp (f ; κ) at XM;

11 draw NN functions { f (i)nn }Ns
i=1 ∼ pnn (f ; ψ) at XM;

12 W̃1 = N−1
s ∑Ns

i=1 φθ

(
f (i)gp
)
− φθ

(
f (i)nn
)
// Compute Wasserstein-1 distance using

Eq. 3.7 ;
13 ψ← Optimizer(ψ,∇ψW̃1) // Update prior pnn ;
14 end

3.4.3 Algorithm and complexity

Algorithm 2 summarizes our proposed method in pseudocode. The outer loop is
essentially a gradient descent scheme that updates the ψ parameters that control the
BNN prior. The inner loop is responsible for the optimization of the Lipschitz function
φθ, which is necessary to estimate the Wasserstein distance. The computational
complexity is dominated by the number of stochastic process samples Ns used for the
calculation of the Wasserstein distance, and the size NM of the measurement set XM.

Sampling from a BNN prior does not pose any challenges; Ns samples can be gen-
erated in O(Ns) time. However, sampling from a GP is of cubic complexity, as it
requires linear algebra operations such as the Cholesky decomposition. The total
complexity of sampling from a hierarchical GP target is O(N2

s N3
M), as the Cholesky

decomposition should be repeated for every sample. For a single step of the outer
loop in Algorithm 2, we have to account the nLipschitz steps required for the calculation
of the distance, resulting in complexity of O(nLipschitzN2

s N3
M) per step. Although our

approach introduces an extra computational burden, we note that this is not directly
connected to the size of the dataset. We argue that it is worthwhile to invest this

36 Chapter 3. Functional Priors for Bayesian Neural Networks

additional cost before the actual posterior sampling phase (via SGHMC), and this is
supported by our extensive experimental campaign.

The complexity also depends on the number of parameters in ψ, whose size is a
function of the network architecture and the prior parameterization. For the Gaussian
and hierarchical parameterizations discussed in § 3.4.2 (i.e. GPi-G and GPi-H), the set
ψ grows sub-lineraly with the number of network parameters, as we consider a single
weight/bias distribution per layer. The obvious advantage of this arrangement is
that our approach can be easily scaled to deep architectures, such as PRERESNET20
and VGG16, as we demonstrate in the experiments.

In the case where BNN weight and bias distributions are represented by normalizing
flows, the size of ψ grows linearly with the total number of BNN parameters NBNN.
More formally, for a sequence of K transformations, the number of prior parameters
that we need to optimize is of order O(KNBNN). This might be an issue for more
complex architectures; in our experiments we apply the GPi-NF configuration for
fully connected BNNs only. A more efficient prior parameterization that relies on
normalizing flows requires some kind of sparification, which is subject of future
work.

3.5 Examples and Practical Considerations

We shall now elaborate on some of the design choices that we have made in this work.
First, we visually show the prior one can obtain by using our proposed procedure
on a 1D regression (§ 3.5.1) and how the choice of GP priors (in terms of kernel
parameters) affects the BNN posterior for 2D classification examples (§ 3.5.2). We
then empirically demonstrate that the proposed optimization scheme based on the
Wasserstein distance produces a consistent convergence behavior when compared
with a KL-based approach (§ 3.5.3).

For these experiments and the rest of the empirical evaluation, we use SGHMC

(Springenberg et al., 2016) for posterior inference. The likelihood for regression and
classification are set to Gaussian and Bernoulli/multinomial, respectively. Unless
otherwise specified, we run four parallel SGHMC chains with a step size of 0.01 and a
momentum coefficient of 0.01. We assess the convergence of the predictive posterior
based on the R̂-statistic (Gelman and Rubin, 1992) over the four chains. In all our
experiments, we obtain R̂-statistics below 1.1, which indicate convergence to the
underlying distribution. To further validate the obtained samples from SGHMC, for a
selection of medium-sized datasets we also run a carefully tuned Hamiltonian Monte
Carlo (HMC) obtaining similar results (see Table A.8 in the Appendix).

3.5. Examples and Practical Considerations 37

−10 0 10

−4
−2
0

2

4

GP prior

−4
−2
0

2

4

BNN - FG prior

−4
−2
0

2

4

BNN - FH prior

−4
−2
0

2

4

BNN - Fixed NF prior

−10 0 10

−4
−2
0

2

4

BNN - GPi-G prior

−10 0 10

−4
−2
0

2

4

BNN - GPi-H prior

−10 0 10

−4
−2
0

2

4

BNN - GPi-NF prior

0 200 400 600 800

0

10

20

30

Iteration

W1 optimization
(BNN - GPi-G prior)

0 200 400 600 800

0

20

40

Iteration

W1 optimization
(BNN - GPi-H prior)

0 200 400 600 800

0

10

20

Iteration

W1 optimization
(BNN - GPi-NF prior)

−10 0 10
−4

−2

0

2

4

GP posterior

−4

−2

0

2

4

BNN posterior
(FG prior)

−4

−2

0

2

4

BNN posterior
(FH prior)

−4

−2

0

2

4

BNN posterior
(Fixed NF prior)

−10 0 10
−4

−2

0

2

4

BNN posterior
(GPi-G prior)

−10 0 10
−4

−2

0

2

4

BNN posterior
(GPi-H prior)

−10 0 10
−4

−2

0

2

4

BNN posterior
(GPi-NF prior)

Figure 3.3: Visualization of one-dimensional regression example with
a three-layer MLP. The first two rows illustrate the prior sample
and distributions, whereas the last two rows show the corresponding
posterior distributions. The means and the 95% credible intervals are
represented by red lines and shaded areas, respectively. The middle

row shows progressions of the prior optimization.

3.5.1 Visualization on a 1D regression synthetic dataset

The dataset used is built as follows: (1) we uniformly sample 64 input locations x in the
interval [−10, 10]; (2) we rearrange the locations on a defined interval to generate a gap
in the dataset; (3) we sample a function f from the GP prior (l = 0.6, α = 1) computed
at locations x; (4) we corrupt the targets with i.i.d. Gaussian noise (σ2

ε = 0.1). In
this example, we consider a three-layer MLP. Fig. 3.3 shows all the results. The

38 Chapter 3. Functional Priors for Bayesian Neural Networks

−2

0

2

0.2

0.5
0.5

0.5

0.8
0.8

0.8

α
2
=

1
0.2

0.5

0.5

0.8
0.5 0.5

−2

0

2

0.2

0.2

0.5
0.5

0.
5

0.8
0.8

0.8

α
2
=

8

0.2

0.2

0.5
0.5

0.5

0.
8

0.8

0.2

0.5

0.5

0.5

0.
8

0.8

0.5

−2 0 2

−2

0

2

0.2
0.2

0.
5

0.5

0.
5

0.
8

0.8

0.8

l = 1

α
2
=

32

−2 0 2

0.2

0.2
0.5

0.5
0.5

0.
8

0.8

0.
8

l = 4

−2 0 2

0.2

0.2

0.5
0.5

0.5

0.
8

0.8 0.8

l = 8

−2 0 2

0.2

0.2
0.5

0.5
0.5

0.
8

0.8

l = 16 -2 0 2

-2

0

2

0.2

0.2

0.5
0.5

0.5

0.
8

0.8
0.8

Figure 3.4: (Left) The effect of using different hyperparameters of
the RBF kernel of the target GP prior to the predictive posterior.
Rows depict increasing the amplitude α, whist columns show in-
creasing the lengthscale l. In each panel the orange and blue dots
represent the training points from the two different classes, while
the black lines represent decision boundaries at different confidence
levels. (Right) The predictive posterior with respect to using a target
hierarchical-GP prior, in which hyper-priors LogNormal(log

√
2D, 1)

and LogNormal(log 8, 0.3) are employed on the lengthscales l and
variance α2 respectively, where D is the number of input dimensions.

first two rows illustrate the different choice of priors. For the Wasserstein-based
functional priors (GPi-G, GPi-H, GPi-NF), the third row shows the convergence of the
optimization procedure. Finally, the last two rows represent the posterior collected
by running SGHMC with the corresponding priors.

From the analysis of these plots, we clearly see the benefit of placing a prior on
the functions rather than on the parameters. First, the Wasserstein distance plots
show satisfactory convergence, with the normalizing flow prior closely matching
the GP prior. Second, as expected, the posteriors exhibit similar behavior according
to the possible solutions realizable from the prior: classic priors tend to yield de-
generate functions resulting in overconfidence in regions without data, while our
GP-based priors (GPi-G, GPi-H, GPi-NF) retain information regarding lengthscale
and amplitude.

3.5.2 The effects of the GP prior on the BNN posterior

In order to gain insights into the effect of the GP prior (i.e., kernel parameters), we set
up an intuitive analysis on the BANANA dataset. We can define the regularization
strength of the prior in a sensible way by modifying the hyperparameters of the RBF

3.5. Examples and Practical Considerations 39

kernel. Fig. 3.4 (left) illustrates the predictive posterior of a two-layer BNN, whose
prior has been adapted to different target GP priors, featuring different hyperpa-
rameters. We observe that the decision boundaries are more complex for smaller
lengthscales l and larger amplitudes α, while in the opposite case, we obtain posterior
distributions that are too smooth. This behavior reflects the properties of the induced
prior.

In a regular GP context, it is possible to tune these hyperparameters by means of
marginal likelihood maximization. This is not the way we proceed, for two reasons:
(1) the overhead to solve the GP and (2) the uselessness of the overall procedure
(solving the task with GPs, so to then pick the converged GP prior to solve the BNN

inference). As discussed in § 3.3.1, we approach this issue by means of hierarchical
GPs. In the rightmost plot of Fig. 3.4, we include the BNN posterior that was adapted
to a hierarchical-GP target. Since samples from the target prior can be easily generated
using a Gibbs sampling scheme, we can positively impact the expressiveness of the
BNN posterior without explicitly worrying which GP prior works best.

3.5.3 Wasserstein distance vs KL divergence

The KL divergence is a popular criterion to measure the similarity between two
distributions. In our context, the KL divergence could be used as follows:

KL [pnn ‖ pgp] = −
∫

pnn (f ; ψ) log pgp (f)d f +
∫

pnn (f ; ψ) log pnn (f ; ψ)d f︸ ︷︷ ︸
Entropy (intractable)

, (3.13)

This is the form considered by Flam-Shepherd et al. (2017), which propose to minimize
the KL divergence between samples of a BNN and a GP. This requires an empirical
estimate of the entropy, which is a challenging task for high-dimensional distributions
(Delattre and Fournier, 2017). These issues were also reported by Flam-Shepherd
et al. (2017), where they propose an early stopping scheme to what is essentially an
optimization of the cross-entropy term (i.e., -

∫
pnn (f ; ψ) log pgp (f)d f). Instead of

computing the entropy, another approach is to estimate its gradient as required by
optimization algorithms. This can be carried out by using any methods estimating
the log density derivative function of an implicit distribution. For example, Sun et al.
(2019) use the spectral Stein gradient estimator (SSGE) (Shi et al., 2018) to obtain an
estimate of the gradient of the entropy.

In our experiments, we have found that a scheme based on the Wasserstein distance
converges more consistently without the need for additional heuristics. We demon-
strate the convergence properties of our scheme against the KL-divergence based
optimization with early stopping Flam-Shepherd et al. (2017) and SSGE in Fig. 3.5.
In this experiment, following Matthews et al. (2018), we additionally use the kernel
two-sample test based on the MMD (Gretton et al., 2012) as an alternative assesment

40 Chapter 3. Functional Priors for Bayesian Neural Networks

0.00

0.02

0.04

0.06

·10−2

M
M

D
2 (

p n
n

,p
gp

)

2.5

3

3.5

R
M

SE

boston

2.4

2.5

2.6

2.7

N
LL

0.00

0.02

0.04

0.06

·10−2

M
M

D
2 (

p n
n

,p
gp

)

6

8

10

R
M

SE

concrete

3

3.5

4

N
LL

0.00

0.02

0.04

0.06
·10−2

M
M

D
2 (

p n
n

,p
gp

)

0.07

0.08

0.09

0.10

0.11

R
M

SE

kin8nm

−1.2

−1

−0.8

N
LL

0.00

0.02

0.04

0.06
·10−2

M
M

D
2 (

p n
n

,p
gp

)

4.1

4.2

4.3

4.4

R
M

SE

power

2.85

2.9

N
LL

0.00

0.02

0.04

0.06
·10−2

M
M

D
2 (

p n
n

,p
gp

)

4.5

5

R
M

SE

protein

2.85
2.90
2.95
3.00
3.05
3.10

N
LL

0 500 1000

0.00

0.02

0.04

0.06

0.08
·10−2

M
M

D
2 (

p n
n

,p
gp

)

0 500 1000

0.600

0.625

0.650

Iteration

R
M

SE

wine

0 500 1000

0.9

1.0

1.1

1.2

N
LL

KL-based optimization KL-based + SSGE optimization Wasserstein-based optimization

Figure 3.5: Comparison between KL-based and Wasserstein-based
optimization. The green shaded area is for calibration and denotes the
difference between the squared maximum mean discrepancy (MMD)
of the target GP to itself and to another GP with a doubled lengthscale.

3.6. Experimental Evaluation 41

of the similarity between BNNs and GPs. A detailed description of estimating this
discrepancy and experimental settings are available in Appendix A.2.7. As done
by Matthews et al. (2018), we use a target GP prior with a characteristic lengthscale
of l =

√
2D, where D is the input dimensionality. We monitor the evolution of

squared MMD from the target GP prior and performance metrics for the UCI datasets
(test negative log-likelihood (NLL) and root mean squared error (RMSE)). The KL-
based approaches offer improvements for the first few iterations, before degrading
the quality of the approximation despite using the SSGE for estimating the entropy
gradient. Our approach, instead, consistently improves the quality of the approxima-
tion to the desired prior. In the Appendix A.3.3 we include a complete account on
the convergence of Wasserstein distance for all experiments that follow in the next
section.

3.6 Experimental Evaluation

We shall now evaluate whether our scheme offers any competitive advantage in
comparison to standard choices of priors. This section is organized as follows: we
first summarize the baselines considered in our experimental campaign in § 3.6.1.
We then investigate the effect of functional priors on classic UCI benchmark datasets
for regression in § 3.6.2 and classification in § 3.6.3. Bayesian CNNs are explored
in § 3.6.4, where we also study the benefits of functional priors for handling out-of-
distribution data. We next compare against some well-established alternatives to
determine prior parameters, such as cross-validation and empirical Bayes in § 3.6.5.
We then perform experiments on active learning (§ 3.6.6), where having good and
calibrated estimates of uncertainty is critical to achieve fast convergence. Finally,
we conclude in § 3.6.7 with a non-Bayesian experiment: we explore the effect of
functional priors on maximum-a-posteriori (MAP) estimates, demonstrating that our
scheme can also be beneficial as a regularization term in a purely optimization-based
setting.

3.6.1 Baselines

In the following experiments, we consider two fixed priors: (1) fixed Gaussian (FG)
prior, N (0, 1); (2) fixed hierarchical (FH) prior where the prior variance for each
layer is sampled from an Inverse-Gamma distribution, Γ−1(1, 1) (Springenberg et al.,
2016); and three GP-induced neural network (NN) priors, namely: (3) GP-induced
Gaussian (GPi-G) prior, (4) GP-induced hierarchical (GPi-H) prior, and (5) GP-induced
normalizing flow (GPi-NF) prior. Since the computational cost of the GPi-NF prior
is high, we only consider this prior in some of the regression experiments. For
hierarchical priors, we resample the prior variances using a Gibbs step every 100
iterations.

42 Chapter 3. Functional Priors for Bayesian Neural Networks

Table 3.1: Glossary of methods used in the experimental campaign.
Here, p(f) =

∫
p(f |w)p. (w) denotes the induced prior over func-

tions; Γ−1(α, β) denotes the Inverse-Gamma distribution with shape
α, and rate β; NF (TK) indicates a normalizing flow distribution con-
structed from a sequence of K invertible transformations T ; σ̂2, and (α̂,
β̂) denote the optimized parameters for the GPi-G and GPi-H priors,
respectively. κ̂ corresponds to optimized kernel parameters, while σ̂2

LA
shows that the parameters are optimized on the Laplace approxima-
tion of the marginal likelihood. References are [a] for Wenzel et al.
(2020), [b] for Springenberg et al. (2016), [c] for Lakshminarayanan
et al. (2017), [d] for Sun et al. (2019) and, finally, [e] for Immer et al.

(2021b).

Priors Inference

Name p(σ2) p(w | σ2) p(f) Ref.

() BNN w/ Fixed Gaussian (FG) prior – N (0, σ2 I) → ? SGHMC
() BNN w/ Fixed Gaussian prior and TS (FG+TS) – N (0, σ2 I) → ? Temp. SGHMC [a]
() BNN w/ Fixed hierarchical (FH) prior Γ−1(α, β) → N (0, σ2 I) → ? SGHMC + Gibbs [b]

() Deep ensemble – ? ? Ensemble [c]

() Functional BNN w/ variational inference (fBNN) – – GP(0, κ̂) VI [d]
() BNN w/ Laplace GGN approximation (LA-GGN) – N (0, σ̂2

LA I) → ? Laplace approx. [e]

() BNN w/ GP-induced Gaussian (GPi-G) prior – N (0, σ̂2 I) ← GP(0, κ) SGHMC [Ours]
() BNN w/ GP-induced hierarchical (GPi-H) prior Γ−1(α̂, β̂) ← N (0, σ2 I) ← GP(0, κ) SGHMC + Gibbs [Ours]
() BNN w/ GP-induced norm. flow (GPi-NF) prior – NF (TK) ← GP(0, κ) SGHMC [Ours]

Considering the aforementioned settings, we compare BNNs against Deep Ensemble
(Lakshminarayanan et al., 2017), arguably one of the state-of-the-art approaches for
uncertainty estimation in deep learning (Ashukha et al., 2020; Ovadia et al., 2019).
This non-Bayesian method combines solutions that maximize the predictive log-
likelihood for multiple neural networks trained with different initializations. We
employ an ensemble of 5 neural networks in all experiments. Following Lakshmi-
narayanan et al. (2017), we use Adam optimizer (Kingma and Ba, 2015) to train the
individual networks. Furthermore, we compare the results obtained by sampling
from the posterior obtained with GP-induced priors against “tempered” posteriors
(Wenzel et al., 2020) that use the FG prior and temperature scaling; we refer to this ap-
proach as FG+TS. In our experiments, the weight decay coefficient for Deep Ensemble
and the temperature value for the “tempered” posterior are tuned by cross-validation.

Additionally, we benchmark our approach against the state-of-the-art variational
inference method in function space (Sun et al., 2019), referred to as fBNN. We also
evaluate our methodology of imposing priors against an empirical Bayes approach
(Immer et al., 2021b), namely LA-GGN, which optimizes the prior based on an approx-
imation of the marginal likelihood by means of the Laplace and GGN approximations.
See the Appendix A.2 for implementation details and more detailed hyperparameter
settings. Table 3.1 presents an overview of the methods considered in the experi-
ments.

3.6. Experimental Evaluation 43

2.5

3

3.5

4

R
M

SE
(←

)
boston

4.8

5

5.2

5.4

5.6
concrete

0.5

1

1.5

energy

0.064

0.066

0.068

kin8nm

0

0.001

0.002

0.003

naval

3.8

4

power

3.6

3.8

4

4.2

4.4

protein

0.6

0.62

0.64

0.66
wine

2.5

3

3.5

N
LL

(←
)

3

3.05

3.1

3.15

1

2

−1.3

−1.25

−6.5

−6

−5.5

2.75

2.8

2.75

2.8

2.85

2.9

0.9

1

1.1

1st

3rd

5th

7th

Rank (↓)

1st

3rd

5th

7th

FG prior FG+TS GPi-G prior (ours)
FH prior GPi-H prior (ours) GPi-NF prior (ours) Deep Ensemble

Figure 3.6: UCI regression benchmark results. The dots and error
bars represent the means and standard errors over the test splits,

respectively. Average ranks are computed across datasets.

3.6.2 UCI regression benchmark

We start our evaluation on real-world data by using regression datasets from the
UCI collection (Dua and Graff, 2017). Each dataset is randomly split into training
and test sets, comprising of 90% and 10% of the data, respectively. This splitting
process is repeated 10 times except for the PROTEIN dataset, which uses 5 splits. We
use a two-layer MLP with tanh activation function, containing 100 units for smaller
datasets and 200 units for the PROTEIN dataset. We use a mini-batch size of 32 for
both the SGHMC sampler and the Adam optimizer for Deep Ensemble.

We map a target hierarchical-GP prior to GPi-G, GPi-H, and GPi-NF priors using our
proposed Wasserstein optimization scheme with a mini-batch size of Ns = 128. We
use an RBF kernel with dimension-wise lengthscales, also known as automatic rele-
vance determination (ARD) (MacKay, 1996b). Hyper-priors LogNormal(log

√
2D, 1)

and LogNormal(0.1, 1) are placed on the lengthscales l and the variance α2, respec-
tively. Here, D is the number of input dimensions. We use measurement sets having
a size of NM = 100, which include 70% random training samples and 30% uniformly
random points from the input domain.

Fig. 3.6 illustrates the average test NLL and RMSE. On the majority of datasets, our GP-
induced priors provide the best results. They significantly outperform Deep Ensemble
in terms of both RMSE and NLL, a metric that considers both uncertainty and accuracy.
We notice that tempering the posterior delivers only small improvements for the FG

prior. Instead, by using the GPi-G prior, the true posterior’s predictive performance
is improved significantly.

44 Chapter 3. Functional Priors for Bayesian Neural Networks

2.25 2.50 2.75

1 layer

2 layers

4 layers

8 layers

boston

3.0 3.2 3.4

concrete

0.25 0.50 0.75 1.00

energy

−1.25 −1.2 −1.15

kin8nm

−7 −6.5 −6

1 layer

2 layers

4 layers

8 layers

naval

2.7 2.8

power

2.8 2.9

protein

0.9 1.0 1.1

wine

1st 5th 10th15th20th

Ranking Summary

FG+TS FG prior GPi-G prior (ours)
FH prior GPi-H prior (ours)

Figure 3.7: Ablation study on the test NLL based on the UCI regres-
sion benchmark for different number of hidden layers of MLP. Error
bars represent one standard deviation. We connect the fixed and GP-
induced priors with a thin black line as an aid for easier comparison.

Further to the left is better.

Ablation study on the model capacity. We further investigate the relation of the
model capacity to the prior effect. Fig. 3.7 illustrates the test NLL on the UCI re-
gression benchmark for different number of MLP hidden layers. For most datasets,
the GP-induced priors consistently outperform other approaches for all MLP depths.
Remarkably, we observe that when increasing the model’s capacity, the effect of
temperature scaling becomes more prominent. We argue that a tempered posterior is
only beneficial for over-parameterized models, as evidenced by pathologically poor
results for one-layer MLPs. We further elaborate on this hypothesis in § 3.6.4 with
much more complex models such as CNNs.

3.6.3 UCI classification benchmark

Next, we consider 7 classification datasets from the UCI repository. The chosen
datasets have a wide variety in size, number of dimensions, and classes. We use a
two-layer MLP with tanh activation function, containing 100 units for small datasets
(EEG, HTRU2, LETTER, and MAGIC), 200 units for large datasets (MINIBOO, DRIVE,
and MOCAP). The experiments have been repeated for 10 random training/test splits.
We use a mini-batch size of 64 examples for the SGHMC sampler and the Adam
optimizer. Similarly to the previous experiment, we use a target hierarchical-GP prior

3.6. Experimental Evaluation 45

0.8

0.85

0.9

0.95

A
cc

ur
ac

y
(→

)

eeg

0.979

0.98

0.981

htru2

0.87

0.875

0.88

0.885

magic

0.91

0.92

0.93

miniboo

0.9

0.92

0.94

0.96

0.98
letter

0.985

0.99

0.995

drive

0.988

0.99

0.992

0.994

mocap

0.2

0.3

0.4

N
LL

(←
)

0.065

0.07

0.29

0.3

0.31

0.18

0.2

0.22

0.1

0.2

0.3

0.4

0.02

0.04

0.06

0.08

0.1

0.02

0.03

0.04

0.05

0.06

1st

3rd

5th

Rank (↓)

1st

3rd

5th

FG prior FG+TS GPi-G prior (ours)
FH prior GPi-H prior (ours) Deep Ensemble

Figure 3.8: UCI classification benchmark results. The dots and error
bars represent the means and standard errors over the test splits,

respectively. Average ranks are computed across datasets.

with hyper-priors for the lengthscales and the variance are LogNormal(log
√

2D, 1)
and LogNormal(log 8, 0.3), respectively. We use the same setup of the measurement
set as used in the UCI regression experiments.

Fig. 3.8 reports the average test accuracy and NLL. The results for Deep Ensemble are
significantly better than those of the FG prior with and without using temperature
scaling. Similarly to the previous experiment, the GPi-G prior outranks Deep Ensem-
ble and is comparable with the FH prior, which is a more flexible prior. Once again,
the GPi-H prior consistently outperforms other priors across all datasets.

3.6.4 Bayesian convolutional neural networks for image classification

We proceed with the analysis of convolutional neural networks: we first analyze
the kind of class priors that are induced by our strategy, and then we move to the
CIFAR10 experiment where we also discuss the cases of reduced and corrupted
training data.

Analysis on the prior class labels. As already mentioned, FG is the most popular
prior for Bayesian CNNs (Wenzel et al., 2020; Zhang et al., 2020; Heek and Kalchbren-
ner, 2019). This prior over parameters combined with a structured function form,
such as a convolutional neural network, induces a structured prior distribution over
functions. However, as shown by Wenzel et al. (2020), this is a poor functional prior
because the sample function strongly favors a single class over the entire dataset.

We reproduce this finding for the LENET5 model (Lecun et al., 1998) on the MNIST

dataset. In particular, we draw three parameter samples from the FG prior, and
we observe the induced prior over classes for each parameter sample (see the three

46 Chapter 3. Functional Priors for Bayesian Neural Networks

rightmost columns of Fig. 3.9b). We also visualize the average prior distribution
obtained from 200 samples of parameters (see the leftmost column of Fig. 3.9b).
Although the average prior distribution is fairly uniform, the distribution for each
sample of parameters is highly concentrated on a single class. As illustrated in
Fig. 3.9d, the same problem happens for the FH prior.

This pathology does not manifest in our approach, as a more sensible functional prior
is imposed. In particular, we choose a target GP prior with an RBF kernel having
amplitude α = 1, such that the prior distribution for each GP function sample is
close to the uniform class distribution (Fig. 3.9a), and a lengthscale l = 256 . We then
map this GP prior to GPi-G and GPi-H priors by using our Wasserstein optimization
scheme. Fig. 3.9c and Fig. 3.9e demonstrate that the resulting functional priors are
more reasonable as evidenced by the uniformly-distributed prior distributions over
all classes.

Deep convolutional neural networks on CIFAR10 We continue the experimental
campaign on the CIFAR10 benchmark (Krizhevsky and Hinton, 2009) with a number
of popular CNN architectures: LENET5 (Lecun et al., 1998), VGG16 (Simonyan and
Zisserman, 2014) and PRERESNET20 (He et al., 2016). Regarding posterior inference
with SGHMC, after a burn-in phase of 10,000 iterations, we collect 200 samples with
10,000 simulation steps in between. For a fair comparison, we do not use techniques
such as data augmentation or adversarial examples in any of the experiments. Regard-
ing the target hierarchical-GP prior, we place a hyper-prior LogNormal(log 8, 0.3) for
variance, whereas the hyper-prior for length-scale is LogNormal(log 512, 0.3). We
use a mini-batch size of Ns = 128 and NM = 32 measurement points sampled from
the empirical distribution of the training data regarding prior optimization.

Table 3.2 summarizes the results on the CIFAR10 test set with respect to accuracy
and NLL. These results demonstrate the effectiveness of the GP-induced priors, as
evidenced by the improvements in predictive performance when using GPi-G and
GPi-H priors compared to using FG and FH priors, respectively. Noticeably, the
GPi-H prior offers the best performance with 76.51%, 87.03%, and 88.20% predictive
accuracy on LENET5, VGG16, and PRERESNET20 respectively. We observe that for
complex models (e.g., PRERESNET20 and VGG16), FG prior’s results are improved
by a large margin by tempering the posterior. This is in line with the results showed
by Wenzel et al. (2020). By contrast, in the case of LENET5, the predictive performance
dramatically degraded when using temperature scaling. In addition to the results
in § 3.6.2, this observation supports our conjecture that a “tempered” posterior is
only useful for over-parameterized models. Instead, by using GP-induced priors, we
consistently obtain the best results in most cases.

3.6. Experimental Evaluation 47

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

C
la

ss
P
ro

b.

Class Prior (mean)

1 2 3 4 5 6 7 8 9 10

Prior Sample 1

1 2 3 4 5 6 7 8 9 10

Prior Sample 2

1 2 3 4 5 6 7 8 9 10

Prior Sample 3

(a) Target GP prior.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

C
la

ss
P
ro

b.

Class Prior (mean)

1 2 3 4 5 6 7 8 9 10

Prior Sample 1

1 2 3 4 5 6 7 8 9 10

Prior Sample 2

1 2 3 4 5 6 7 8 9 10

Prior Sample 3

(b) BNN - FG prior.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

C
la

ss
P
ro

b.

Class Prior (mean)

1 2 3 4 5 6 7 8 9 10

Prior Sample 1

1 2 3 4 5 6 7 8 9 10

Prior Sample 2

1 2 3 4 5 6 7 8 9 10

Prior Sample 3

(c) BNN - GPi-G prior.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

C
la

ss
P
ro

b.

Class Prior (mean)

1 2 3 4 5 6 7 8 9 10

Prior Sample 1

1 2 3 4 5 6 7 8 9 10

Prior Sample 2

1 2 3 4 5 6 7 8 9 10

Prior Sample 3

(d) BNN - FH prior.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

C
la

ss
P
ro

b.

Class Prior (mean)

1 2 3 4 5 6 7 8 9 10

Prior Sample 1

1 2 3 4 5 6 7 8 9 10

Prior Sample 2

1 2 3 4 5 6 7 8 9 10

Prior Sample 3

(e) BNN - GPi-H prior.

Figure 3.9: Average class probabilities over all training data of MNIST
for three prior samples of parameters (three right columns), and prior
distribution averaged over 200 samples of parameters (leftmost col-
umn). The GPi-G and GPi-H priors were obtained by mapping from a

target GP prior (top row) using our proposed method.

48 Chapter 3. Functional Priors for Bayesian Neural Networks

Table 3.2: Results for different convolutional neural networks on the
CIFAR10 dataset (errors are ±1 standard error computed over 4 run-

ning times).

Architecture Method Accuracy - % (↑) NLL (↓)

LENET5

Deep Ensemble 71.13 ± 0.10 0.8548 ± 0.0010

FG prior 74.65 ± 0.25 0.7482 ± 0.0025

FG+TS 74.08 ± 0.24 0.7558 ± 0.0024

GPi-G prior (ours) 75.15 ± 0.24 0.7360 ± 0.0024

FH prior 75.22 ± 0.40 0.7209 ± 0.0040

GPi-H prior (ours) 76.51 ± 0.21 0.6952 ± 0.0021

PRERESNET20

Deep Ensemble 87.77 ± 0.03 0.3927 ± 0.0003

FG prior 85.34 ± 0.13 0.4975 ± 0.0013

FG+TS 87.70 ± 0.11 0.3956 ± 0.0011

GPi-G prior (ours) 86.86 ± 0.27 0.4286 ± 0.0027

FH prior 87.26 ± 0.09 0.4086 ± 0.0009

GPi-H prior (ours) 88.20 ± 0.07 0.3808 ± 0.0007

VGG16

Deep Ensemble 81.96 ± 0.33 0.7759 ± 0.0033

FG prior 81.47 ± 0.33 0.5808 ± 0.0033

FG+TS 82.25 ± 0.15 0.5398 ± 0.0015

GPi-G prior (ours) 83.34 ± 0.53 0.5176 ± 0.0053

FH prior 86.03 ± 0.20 0.4345 ± 0.0020

GPi-H prior (ours) 87.03 ± 0.07 0.4127 ± 0.0007

Robustness to covariate shift. Covariate shift describes a situation where the test
input data has a different distribution than the training data. In this experiment,
we evaluate the behavior of GP-induced priors under such circumstances. We also
compare to Deep Ensemble, which is well-known for its robustness properties under
covariate shift (Ovadia et al., 2019).

Using the protocol from Ovadia et al. (2019), we train models on CIFAR10 and then
evaluate on the CIFAR10C dataset, which is generated by applying 16 different
corruptions with 5 levels of intensity for each corruption (Hendrycks and Dietterich,
2019). Our results are summarized in Fig. 3.10 (additional results are available in
the appendix). For PRERESNET20, there is a clear improvement in robustness to
distribution shift by using the GP-induced priors. Remarkably, the GPi-H prior
performs best and outperforms Deep Ensemble at all corruption levels in terms of
accuracy and NLL. Meanwhile, the NLL results of SGHMC are significantly better
than those of Deep Ensemble. We also notice that the GPi-G prior offers considerable
improvements in predictive performance compared to the FG prior.

Performance on small training data For small and high-dimensional datasets, the
importance of choosing a sensible prior is more prominent because the prior’s in-
fluence on the posterior is not overwhelmed by the likelihood. To compare priors
in this scenario, we use subsets of the CIFAR10 dataset with different training set
sizes, keeping the classes balanced. Fig. 3.11 shows the accuracy and NLL on the test

3.6. Experimental Evaluation 49

Test 1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

Corruption Intensity

A
cc

ur
ac

y
(→

)

Test 1 2 3 4 5

0.50

0.75

1.00

Corruption Intensity

N
LL

(←
)

FG prior GPi-G prior (ours) FH prior GPi-H prior (ours) Deep Ensemble

Figure 3.10: Accuracy and NLL on CIFAR10C at varying corruption
severities. Here, we use the PRERESNET20 architecture. For each
method, we show the mean on the test set and the results on each level
of corruption with a box plot. Boxes show the quartiles of performance
over each corruption while the error bars indicate the minimum and

maximum.

VGG16

0 20 40 60 80 100

0.2

0.4

0.6

0.8

Accuracy (↑)

0 20 40 60 80 100

0.5

1

1.5

2

Ratio of Training Data (%)

NLL (↓)
PRERESNET20

20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

Accuracy (↑)

20 40 60 80 100

0.5

1

Ratio of Training Data (%)

NLL (↓)

FG prior GPi-G prior (ours) FH prior GPi-H prior (ours) Deep Ensemble

Figure 3.11: Accuracy and negative log-likelihood on CIFAR10 at
varying the training set’s size. The bars indicate one standard error.

50 Chapter 3. Functional Priors for Bayesian Neural Networks

set. The FG prior yields poor predictive performance in small training data cases.
Indeed, we observe that the GPi-G prior performs much better than the FG prior in
all cases. Besides, the GPi-H prior offers superior predictive performance across all
proportions of training/test data. These results again demonstrate the usefulness of
the GP-induced priors for the predictive performance of BNNs.

Entropy analysis on out-of-distribition data. Next, we demonstrate with another
experiment that the proposed GP-based priors offer superior predictive uncertainties
compared to competing approaches by considering the task of uncertainty estimation
on out-of-distribution samples (Lakshminarayanan et al., 2017). Our choice of the
target functional prior is reasonable for this type of task because, ideally, the predictive
distribution should be uniform over the out-of-distribution classes–which results in
maximum entropy–rather than being concentrated on a particular class. Following
the experimental protocol from Louizos and Welling (2017), we train LENET5 on the
standard MNIST training set, and estimate the entropy of the predictive distribution
on both MNIST and NOT-MNIST datasets2. The images in the NOT-MNIST dataset
have the same size as the MNIST, but represent other characters. For posterior
inference with SGHMC, after a burn-in phase of 10,000 iterations, we draw 100
samples with 10,000 iterations in between. We also consider the “tempered” posterior
with the FG prior and Deep Ensemble as competitors.

Fig. 3.12 shows the empirical CDF for the entropy of the predictive distributions on
MNIST and NOT-MNIST. For the NOT-MNIST dataset, the curves that are closer to
the bottom right are preferable, as they indicate that the probability of predicting
classes with a high confidence prediction is low. In contrast, the curves closer to
the top left are better for the MNIST dataset. As expected, we observe that the
uncertainty estimates on out-of-distribution data for the GP-induced priors are better
than those obtained by the fixed priors. In line with the results from Louizos and
Welling (2017), Deep Ensemble tends to produce overconfident predictions on both
in-distribution and out-of-distribution predictions. For tempered posteriors, we
can interpret decreasing the temperature as artificially sharpening the posterior by
overcounting the training data. This is the reason why a tempered posterior tends to
be overconfident.

3.6.5 Optimizing priors with data: cross-validation and empirical Bayes

Although we advocate for functional priors over BNNs, we acknowledge that a
prior of this kind is essentially heuristic. A potentially more useful prior might
be discovered by traditional means such as cross-validation (CV) or by running an
empirical Bayes procedure (a.k.a. type-II maximum likelihood), which maximizes

2NOT-MNIST dataset is available at http://yaroslavvb.blogspot.fr/2011/09/
notmnist-dataset.html.

http://yaroslavvb.blogspot.fr/2011/09/notmnist-dataset.html
http://yaroslavvb.blogspot.fr/2011/09/notmnist-dataset.html

3.6. Experimental Evaluation 51

−8 −6 −4 −2 0
0

0.2

0.4

0.6

0.8

1

Predictive Entropy (nat)

E
m

pi
ric

al
C
D

F
Tested on MNIST

−2.3 0
0

0.2

0.4

0.6

0.8

1

Predictive Entropy (nat)

E
m

pi
ric

al
C
D

F

Tested on NOT-MNIST

FG prior FG+TS GPi-G prior (ours)
FH prior GPi-H prior (ours) Deep Ensemble

Figure 3.12: Cumulative distribution function plot of predictive en-
tropies when the models trained on MNIST are tested on MNIST (left,
the higher the better) and NOT-MNIST (right, the lower the better).

−1 0 1

2.86

2.88

2.9

2.92

2.94

2.96

2.98

3

Time [hours]

Test NLL

−1 0 1
4.15

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

Time [hours]

Test RMSE

Figure 3.13: A timing comparison between imposing functional prior
and cross-validation with either grid-search () or Bayesian opti-
mization (). In the plots, each corresponds to a run of a single
configuration, while highlights the Pareto front of the cross val-
idation procedure. The figure also reports the N (0, 1) prior as ,

while is our proposal of using functional prior (GPi-G).

the marginal likelihood p(D; ψ) =
∫

p(D |w)p(w; ψ)dw w.r.t. the prior parameters.
However, these methods present significant challenges: (i) for CV, the number of
hyperparameter combinations that needs to be explored becomes exponentially
large as the complexity of the neural network grows, or as the exploration grid
becomes more fine-grained. (ii) for empirical Bayes, we need to compute the exact
marginal likelihood, which is always intractable for BNNs, thus requiring additional
approximations like variational inference (VI) or the Laplace approximation. We next
demonstrate these issues empirically.

Cross-Validation. We consider a simple case of a BNN with one hidden layer only;
by adopting the simple parameterization of § 3.4.2, we shall have four parameters
to optimize in total (i.e. the weight and bias variances of the hidden and the output
layer). In Fig. 3.13, we demonstrate how our scheme behaves in comparison with a
CV strategy featuring a grid size of 9 (for a total of 6561 configurations). To get results
for the cross-validation procedure and to massively exploit all possible parallelization

52 Chapter 3. Functional Priors for Bayesian Neural Networks

opportunities, we allocated a cloud platform with 16 server-grade machines, for a
total of 512 computing cores and 64 maximum parallel jobs. This required a bit more
than one day, although the total CPU time approached 3 months. While grid-based
routines are widely adopted by practitioners for cross-validation, we acknowledge
that there are more efficient alternatives. To this extent, we also include Bayesian
optimization (Močkus, 1975; Snoek et al., 2012; Nogueira, 2014), a classical method
for black-box optimization which uses a Gaussian process as the surrogate function
to be maximized (or minimized). As expected, CV indeed found marginally better
configurations, but the amount of resources and time needed, even for such a small
model, is orders of magnitude larger than what required by our scheme, making this
procedure computationally infeasible for larger models, like CNNs. To put things
into perspective, our Wasserstein-based functional prior could be run on a 4-core
laptop in a reasonable time.

Empirical Bayes. We now discuss state-of-the-art methods for empirical Bayes
when using variational inference and Laplace approximation. We demonstrate that
our proposal outperforms these approaches through an extensive series of experi-
ments on UCI regression and CIFAR10 benchmarks. More specifically, we evaluate
our approach using SGHMC with the GPi-G prior and compare it against fBNN, a
method of functional variational inference (Sun et al., 2019) which imposes a GP

prior directly over the space of functions of BNNs. The hyperparameters of the
GP prior for fBNN are obtained by maximizing the marginal likelihood. As in the
original proposal of fBNN, we only consider this baseline in experiments on regres-
sion datasets. We consider a comparison with the Gaussian prior obtained by the
empirical Bayes approach of Immer et al. (2021b). This method uses the Laplace
and GGN methods to approximate the marginal likelihood, and referred to LA-GGN.
Here, we use the same parameterization as for the GPi-G prior where we optimize the
variance of the Gaussian prior on the weights and biases of each layer individually.
The resulting prior obtained by this approach is denoted as LA-MargLik. The details
of experimental settings are described in Appendix A.2.8. In Fig. 3.14, we show
the results of one-layer MLP with tanh activation function on the UCI regression
datasets. Our approach using the SGHMC sampler with the GPi-G prior outperforms
the baselines of functional inference on most datasets and across metrics. Moreover,
we find that our GPi-G prior is consistently better than the LA-MargLik prior when
used together with SGHMC for inference, denoted as “LA-MargLik + SGHMC”. These
observations are further highlighted in the experiments with Bayesian CNNs on the
CIFAR10 benchmark. As can be seen from Fig. 3.15, thanks to using a good prior
and a powerful sampling scheme for inference, our proposal consistently achieves
the best results in all cases. More comprehensive analyses with Bayesian CNNs are
available in Appendix A.3.4.

From a more philosophical point of view, it is worth noting that cross-validating prior

3.6. Experimental Evaluation 53

2.5

3

3.5

4

R
M

SE
(←

)
BOSTON

5

6

7

CONCRETE

0.4

0.6

0.8

1

1.2

ENERGY

6.5

7

7.5

·10−2
KIN8NM

1.5

2

2.5

3
·10−4

NAVAL

3.9

4

4.1

4.2

POWER

4

4.2

4.4

4.6

PROTEIN

0.6

0.65

0.7

WINE

2.4

2.6

2.8

N
LL

(←
)

3

3.2

3.4

1

2

3

4

−1.25

−1.2

−1.15

−6.9

−6.8

−6.7

−6.6

2.8

2.85

2.8

2.85

2.9

2.95

0.9

0.95

1

1.05

GPi-G prior + SGHMC (ours) fBNN LA-GGN LA-MargLik + SGHMC

Figure 3.14: Comparison with empirical Bayes and functional infer-
ence approaches on the UCI regression datasets. The dots and error
bars represent the means and standard errors over the test splits, re-

spectively.

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

A
cc

ur
ac

y
(→

)

0.8

0.9

1.0

1.1

1.2

lenet5

N
LL

(←
)

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

A
cc

ur
ac

y
(→

)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

preresnet20

N
LL

(←
)

FG prior + Laplace-GGN FG prior + SGHMC
LA-GGN GPi-G prior + SGHMC (ours)

Figure 3.15: Comparison with empirical Bayes and functional infer-
ence approaches on the CIFAR10 dataset. A thin black line is used as
an aid to see the performance improvement by using the optimized
prior instead of the fixed prior (the standard Gaussian prior). The error
bars indicate one standard deviation which is estimated by running 4

different random initializations.

parameters, though perfectly legitimate, is not compatible with the classical Bayesian
principles. On the other hand, empirical Bayes is widely accepted as a framework to
determine prior parameters in terms of a Bayesian context; nevertheless it still has
to rely on part of the data. In contrast to both of these alternatives, our procedure
returns an appropriate prior without having taken any data into consideration.

3.6.6 Active learning

We next perform a series of experiments within an active learning scenario (Settles,
2009). In this type of task, it is crucial to produce accurate estimates of uncertainty
to obtain good performance. We use the same network architectures and datasets as
used in the UCI regression benchmark. We adopt the experimental setting of Skafte

54 Chapter 3. Functional Priors for Bayesian Neural Networks

Data set FG prior GPi-G prior (ours) FH prior GPi-H prior (ours)

BOSTON 3.199 ± 0.390 2.999 ± 0.382 3.030 ± 0.365 2.990 ± 0.384
CONCRETE 5.488 ± 0.218 5.036 ± 0.239 5.154 ± 0.251 4.919 ± 0.299
ENERGY 0.442 ± 0.041 0.461 ± 0.032 0.458 ± 0.050 0.446 ± 0.025
KIN8NM 0.069 ± 0.001 0.067 ± 0.001 0.068 ± 0.001 0.066 ± 0.001
NAVAL 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
POWER 4.015 ± 0.059 3.834 ± 0.068 4.172 ± 0.051 3.851 ± 0.066
PROTEIN 4.429 ± 0.016 4.036 ± 0.014 4.080 ± 0.018 3.993 ± 0.014
WINE 0.634 ± 0.013 0.617 ± 0.008 0.625 ± 0.010 0.612 ± 0.011

Table 3.3: Results for the active learning scenario. Average test RMSE
evaluated at the last step of the iterative data gathering procedure.

1 3 5 7 9
2.5

3

3.5

4

4.5

R
M

SE

boston

1 3 5 7 9

5

6

7

concrete

1 3 5 7 9

0.5

1

energy

1 3 5 7 9

0.065

0.07

0.075

0.08

kin8nm

1 3 5 7 9

0.0002

0.0003

0.0004

R
M

SE

naval

1 3 5 7 9

3.8

4

4.2

Active Learning Step

power

1 3 5 7 9

4

4.2

4.4

4.6

protein

1 3 5 7 9

0.6

0.62

0.64

0.66

wine

FG prior GPi-G prior (ours) FH prior GPi-H prior (ours)

Figure 3.16: The progressions of average test RMSE and standard
errors in the active learning experiment.

et al. (2019), where each dataset is split into 20% train, 60% pool, and 20% test sets.
For each active learning step, we first train models and then estimate uncertainty for
all data instances in the pool set. To actively collect data from the pool set, we follow
the information-based approach described by MacKay (1992). More specifically, we
choose the n data points with the highest posterior entropy and add them to the
training set. Under the assumption of i.i.d. Gaussian noise, this is equivalent to
choosing the unlabeled examples with the largest predictive variance (Houlsby et al.,
2012). We define n = 5% of the initial size of the pool set. We use 10 active-learning
steps and repeat each experiment 5 times per dataset on random training-test splits
to compute standard errors.

Fig. 3.16 shows the progressions of average test RMSE during the data collection
process. We observe that, on most datasets (CONCRETE, KIN8NM, POWER, PRO-
TEIN, and WINE), the GPi-G and GPi-H priors achieve faster learning than FG and
FH priors, respectively. For the other datasets, FH prior is on par with GPi-H, while

3.6. Experimental Evaluation 55

0.2

0.3

0.4

0.5

N
LL

(←
)

EEG

0.065

0.07

0.075

HTRU2

0.32

0.34

MAGIC

0.17

0.18

0.19

0.2

0.21
MINIBOO

0.2

0.3

0.4

0.5
LETTER

0.05

0.1

DRIVE

0.03

0.04

0.05

0.06

MOCAP

75

80

85

90

A
cc

ur
ac

y
(%

)
(→

) EEG

97.7

97.8

97.9

98

98.1

HTRU2

86.8

87

87.2

87.4

MAGIC

91.5

92

92.5

93

MINIBOO

88

90

92

94

96

LETTER

98

98.5

99

99.5

DRIVE

98.6

98.8

99

99.2

MOCAP

Early Stopping MAP with FG prior MAP with GPi-G prior (ours)

Figure 3.17: Comparison between early stopping and MAP optimiza-
tion with the FG and GPi-G priors on the UCI classification datasets.

FG consistently results in the worse performance, except in one case (ENERGY). We
also report the average test RMSE at the last step in Table 3.3. These results show that
the GPi-H prior performs best, while the GPi-G prior outperforms the FG prior in
most cases.

3.6.7 Maximum-a-posteriori (MAP) estimation with GP-induced prior

In the last experiment, we demonstrate that the GPi-G prior is useful not only for
Bayesian inference but also for MAP estimation. We investigate the impact of the GPi-
G priors obtained in the previous experiments and the FG prior on the performance
of MAP estimation. We additionally compare to early stopping, which is a popular
regularization method for neural networks. Compared to early stopping, MAP is a
more principled regularization method even though early stopping should exhibit
similar behavior to MAP regularization in some cases, such as those involving a
quadratic error function (Yao et al., 2007). Regarding the experimental setup, we
train all networks for 150 epochs using the Adam optimizer with a fixed learning
rate 0.01. For early stopping, we stop training as soon as there is no improvement
for 10 consecutive epochs on validation NLL for classification tasks. For the UCI

classification datasets, MAP estimation for the GPi-G prior is comparable with early
stopping and significantly outperforms the one for the FG prior (Fig. 3.17). For the
CNNs, as shown in Fig. 3.18, we observe that the MAP estimations outperform early
stopping in most cases. Besides, it is not clear which prior is better. We think this
can be attributed to the fact that optimization for very deep nets is non-trivial. As
suggested in the literature (Wenzel et al., 2020; Ashukha et al., 2020), one has to
use complicated training strategies such as a learning rate scheduler to obtain good
performance for deterministic CNNs on high-dimensional data like CIFAR10.

56 Chapter 3. Functional Priors for Bayesian Neural Networks

1.5

2

2.5

N
L
L
(←

)

lenet5

0.8

1

1.2

preresnet20

1

1.5

2

vgg16

1.5

2

2.5

N
LL

(←
)

LENET5

0.8

1

1.2

PRERESNET20

1

1.5

2

VGG16

Early Stopping MAP with FG prior MAP with GPi-G prior (ours)

Figure 3.18: Comparison between early stopping and MAP optimiza-
tion with the FG and GPi-G priors for three different CNN architectures

on the CIFAR10 dataset.

3.7 Conclusions

In most machine learning tasks, function estimation is a fundamental and ubiquitous
problem. Being able to perform Bayesian inference of neural networks represents a
much sought-after objective to equip extremely flexible models with the capability of
expressing uncertainty in a sound way (Mackay, 2003; Neal, 1996). Recent advances
in MCMC sampling enabling for efficient parameter space exploration, combined
with mini-batching (Chen et al., 2014), have turned this long-standing challenge
into a concrete possibility. However despite these advances, there have been only
few success stories involving the use of Bayesian inference techniques for neural
networks (Osawa et al., 2019a; Zhang et al., 2020). We attribute this to the difficulties
in specifying sensible priors for thousands/millions of parameters, while being able
to understand and control the effect of these choices in the behavior of their output
functions (Duvenaud et al., 2014).

The difficulty in reasoning about functional priors for neural networks, made us
consider the possibility to enforce these by minimizing their distance to tractable
functional priors, effectively optimizing the priors over model parameters so as to
reflect these functional specifications. We chose to consider Gaussian processes, as
they are a natural and popular choice to construct functional priors, whereby the
characteristics of prior functions are determined by the form and parameters of
Gaussian process kernel/covariance functions. While previous works attempted this
by using the KL divergence between the functional priors (Flam-Shepherd et al., 2017;
Flam-Shepherd et al., 2018), the objective proves difficult to work with due to the
need to estimate an entropy term based on samples, which is notoriously difficult. In
this work, we proposed a novel objective based on the Wasserstein distance, and we
showed that this objective offers a tractable and stable way to optimize the priors over
model parameters. The attractive property of this objective is that it does not require
a closed form for the target functional prior, as long as it is possible to obtain samples
from it. We studied different parameterizations of the priors with increasing flexibility,
and we showed that more flexibility makes it indeed possible to improve the match
to Gaussian process priors, especially when the activation functions are not suitable

3.7. Conclusions 57

to model the target Gaussian processes. It is worth noting that, as far as we know,
normalizing flows have never been proposed to model priors for neural networks,
and this represents an interesting line of investigation that deserves some attention for
future work. We are also planning to investigate our proposal on unsupervised/latent
variable models, and study ways to reduce the complexity of the optimization of the
Wasserstein distance.

After describing our strategy to optimize the Wasserstein distance, we moved on to
show the empirical benefits of choosing sensible priors on a large variety of neural
network models, including convolutional neural networks, and modeling tasks such
as regression and classification under standard conditions, covariate shift, and active
learning. We demonstrated consistent performance improvements over alternatives
ways of choosing priors, and we also showed better performance compared to state-
of-the-art approximate methods in Bayesian deep learning. In all, this work confirms
the hypothesis that choosing sensible priors for deep models matters, and it offers a
practical way to do so.

59

Chapter 4

Model Selection for Bayesian
Autoencoders

In this chapter, we develop a novel method for carrying out model selec-
tion for Bayesian autoencoders (BAEs) by means of prior hyperparameter
optimization. Inspired by the common practice of type-II maximum
likelihood optimization and its equivalence to Kullback-Leibler diver-
gence minimization, we propose to optimize the distributional sliced-
Wasserstein distance (DSWD) between the output of the autoencoder
and the empirical data distribution. The advantages of this formulation
are that we can estimate the DSWD based on samples and handle high-
dimensional problems. We carry out posterior estimation of the BAE
parameters via stochastic gradient Hamiltonian Monte Carlo and turn our
BAE into a generative model by fitting a flexible Dirichlet mixture model
in the latent space. Consequently, we obtain a powerful alternative to
variational autoencoders, which are the preferred choice in modern appli-
cations of autoencoders for representation learning with uncertainty. We
evaluate our approach qualitatively and quantitatively using a vast exper-
imental campaign on a number of unsupervised learning tasks and show
that, in small-data regimes where priors matter, our approach provides
state-of-the-art results, outperforming multiple competitive baselines.

4.1 Introduction

The problem of learning useful representations of data that facilitate the solution of
downstream tasks such as clustering, generative modeling and classification, is at
the crux of the success of many machine learning applications (see, e.g., Bengio et al.,
2013b, and references therein). From a plethora of potential solutions to this problem,
unsupervised approaches based on autoencoders (Cottrell et al., 1989) are particularly
appealing as, by definition, they do not require label information and have proved

60 Chapter 4. Model Selection for Bayesian Autoencoders

effective in tasks such as dimensionality reduction and information retrieval (Hinton
and Salakhutdinov, 2006).

Autoencoders are neural network models composed of two parts, usually referred
to as the encoder and the decoder. The encoder maps input data to a set of lower-
dimensional latent variables. The decoder maps the latent variables back to the
observations. The bottleneck introduced by the low-dimensional latent space is
what characterizes the compression and representation learning capabilities of au-
toencoders. It is not surprising that these models have connections with principal
component analysis (Baldi and Hornik, 1989), factor analysis and density networks
(MacKay and Gibbs, 1999), and latent variable models (Lawrence, 2005).

In applications where quantification of uncertainty is a primary requirement or where
data is scarce, it is important to carry out a Bayesian treatment of these models
by specifying a prior distribution over their parameters, i.e., the weights of the
encoder/decoder. However, estimating the posterior distribution over the parameters
of these models, which we refer to as Bayesian autoencoders (BAEs), is generally
intractable and requires approximations. Furthermore, the need to specify priors
for a large number of parameters, coupled with the fact that autoencoders are not
generative models, has motivated the development of variational autoencoders
(VAEs) as an alternative that can overcome these limitations (Kingma and Welling,
2014). Indeed, VAEs have found tremendous success and have become one of the
preferred methods in modern machine-learning applications (see, e.g., Kingma and
Welling, 2019, and references therein).

To recap, three potential limitations of BAEs hinder their widespread applicability in
order to achieve a similar or superior adoption to their variational counterpart: (i) lack
of generative modeling capabilities; (ii) intractability of inference and (iii) difficulty
of setting sensible priors over their parameters. In this work we revisit BAEs and
deal with these limitations in a principled way. In particular, we address the first
limitation in (i) by employing density estimation in the latent space. Furthermore,
we deal with the second limitation in (ii) by exploiting recent advances in Markov
chain Monte Carlo (MCMC) and, in particular, stochastic gradient Hamiltonian Monte
Carlo (SGHMC) (Chen et al., 2014). Finally, we believe that the third limitation (iii),
which we refer to as the difficulty of carrying out model selection, requires a more
detailed treatment because choosing sensible priors for Bayesian neural networks is
an extremely difficult problem, and this is the main focus of this work.

Contributions. Specifically, in this work we provide a novel, practical, and elegant
way of performing model selection for BAEs, which allows us to revisit these models
for applications where VAEs are currently the primary choice. We start by considering
the common practice of estimating prior (hyper-)parameters via type-II maximum
likelihood, which is equivalent to minimizing the Kullback-Leibler (KL) between the

4.2. Related work 61

distribution induced by the BAE and the data generating distribution. Because of the
intractability of this objective and the difficulty to estimate it through samples, we
resort to an alternative formulation where we replace the KL with the distributional
sliced-Wasserstein distance (DSWD) (Nguyen et al., 2021) between these two distribu-
tions. The advantages of this formulation are that we can estimate the DSWD based on
samples and, thanks to the slicing, we can handle large dimensional problems. Once
BAE hyperparameters are optimized, we estimate the posterior distribution over the
BAE parameters via SGHMC (Chen et al., 2014), which is a powerful sampler that
operates on mini-batches and has proven effective for Bayesian deep/convolutional
networks (Tran et al., 2022; Zhang et al., 2020; Izmailov et al., 2021b). Furthermore,
we turn our BAE into a generative model by fitting a flexible mixture model in the
latent space, namely the Dirichlet process mixture model (DPMM). We evaluate our
approach qualitatively and quantitatively using a vast experimental campaign on a
number of unsupervised learning tasks, with particular emphasis on the challenging
task of generative modeling when the number of observations is small.

4.2 Related work

VAEs provide a theoretically-grounded and popular framework for representation
learning and deep generative modeling. However, training VAEs poses consider-
able practical and theoretical challenges yet to be solved. In practice, the learned
aggregated posterior distribution of the encoder rarely matches the latent prior, and
this hurts the quality of generated samples. Several methods have been proposed to
deal with this problem by using a more expressive form of priors on the latent space
(Nalisnick and Smyth, 2017; Chen et al., 2017; Tomczak and Welling, 2018; Bauer and
Mnih, 2019). Similar to our work, there is a line of research that employs a form of
ex-post density estimation on the learned latent space (Dai and Wipf, 2019; Böhm
and Seljak, 2020; Ghosh et al., 2020). Wasserstein autoencoders (WAEs) (Tolstikhin
et al., 2018) impose a new form of regularization on latent space by reformulating the
objective function as an optimal transport (OT) problem. There have been previous
attempts to apply the Bayesian approach to VAEs. For example, (Daxberger and
Hernández-Lobato, 2019) treats the parameters of VAE’s encoder and decoder in a
Bayesian manner to deal with out-of-distribution samples. Most of these works focus
on imposing prior or regularization on the latent or weight space of autoencoders. In
this work, we take a different route, as we aim to impose prior knowledge directly on
the output space. Indeed, our work is motivated by recent attempts to rethink prior
specification for Bayesian neural networks (BNNs). It is extremely difficult to choose
a sensible prior on the parameters of BNNs (see, e.g., Nalisnick, 2018, and references
therein) because their effect on the distribution of the induced functions is difficult
to characterize. Thus, recent attempts in the literature have turned their attention
towards defining priors in the space of functions (Nalisnick et al., 2021b; Yang et al.,

62 Chapter 4. Model Selection for Bayesian Autoencoders

2020; Hafner et al., 2019; Sun et al., 2019). Closest to our work is that of Tran et al.
(2022), which matches the functional prior induced by BNNs to Gaussian process
(GP) priors by means of the Kantorovich-Rubinstein dual form of the Wasserstein
distance. Different from this line of works, we consider a general framework to
impose a functional prior for BNNs in an unsupervised learning setting.

4.3 Preliminaries on Bayesian Autoencoders

An autoencoder (AE) is a neural network parameterized by a set of parameters w,
which transforms an unlabelled dataset, x def

= {xn}N
n=1, into a set of reconstructions

f def
= { fn}N

n=1, with xn, fn ∈ RD. An AE is composed of two parts: (1) an encoder
fenc which maps an input sample xn to a latent code zn ∈ RK, K � D; and (2) a
decoder fdec which maps the latent code to a reconstructed data point fn. In short,
f = f (x; w) = (fdec ◦ fenc)(x), where we denote w := {wenc, wdec} the union of
parameters of the encoder and decoder.

The Bayesian treatment of AEs dictates that a prior distribution p(w) is placed over
all parameters of fenc and fdec and the posterior is inferred using Bayes’ rule. For the
sake of presentation, we can consider a BAE as a classic BNN for a supervised learning
task (Mackay, 1992; Neal, 1996), where we have labels y def

= {yn}N
n=1 associated with

each input point xn. From this perspective, we can write the posterior on w as follows:

p(w | y, x) =
p(y |w, x)p(w)

p(y | x) , (4.1)

where p(y |w, x) is the likelihood defined by the network architecture and the
denominator—p(y | x)—constitutes the marginal likelihood. In order to keep the
notation uncluttered, we can drop the explicit dependency on x as input, which leads
to:

p(w | y) = p(y |w)p(w)

p(y)
, (4.2)

We observe that for an AE the labels y are the same as the data points x, meaning that
the likelihood is computed in x.

Likelihood model. Before giving an in-depth treatment on priors for BAEs in the
next section, we briefly discuss the likelihood, which can be chosen according to the
type of data. Firstly, we assume factorization of the likelihood on the data points, i.e.
p(y |w) = ∏N

n=1 p(yn |w). Secondly, given that our experiments mainly focuses on
image datasets where pixel values are normalized in the [0, 1] range, we will use the

4.3. Preliminaries on Bayesian Autoencoders 63

continuous Bernoulli distribution (Loaiza-Ganem and Cunningham, 2019):

p(yn |w) =
D

∏
i=1

K(λi)λ
yn,i
i (1− λi)

1−yn,i := p(yn | fn), (4.3)

where K(λi) is a properly defined normalization constant (Loaiza-Ganem and Cun-
ningham, 2019) and λi = fi(xn; w) = fn,i ∈ [0, 1] is the i-th output from the BAE

given the input xn. We note that, as fn depends deterministically on w, we will use
the above expression to refer to both p(yn |w) and p(yn | fn), where the latter term
will be of crucial importance when we define the functional prior induced over the
reconstruction f . Finally, we remark that in the Bayesian scheme both the prior and
likelihood are modeling choices. In fact, in our experiments we explore an additional
likelihood model, namely the truncated Gaussian, and we show how the problem of
selecting good priors is orthogonal to the choice of the likelihood.

Inference. Although the posterior over the BAE parameters is analytically in-
tractable, it can be approximated by variational methods or using MCMC sampling.
Within the large family of approximate Bayesian inference schemes, SGHMC (Chen
et al., 2014) allows us to sample from the true posterior by efficiently simulating
a Hamiltonian system (Neal, 2011). Unlike more traditional methods, SGHMC

can scale up to large datasets by relying on noisy but unbiased estimates of the
potential energy function U(w) = −∑N

n=1 log p(yn |w) − log p(w). These can be
computed by considering a mini-batch of size M of the data and approximating

∑N
n=1 log p(yn |w) ≈ N

M ∑j∈IM
log p(yj |w), where IM is a set of M random indices.

More details on SGHMC can be found in the Appendix.

Pathologies of standard priors. The choice of the prior is important for the Bayesian
treatment of any model as it characterizes the hypothesis space (Mackay, 1992; Murray
and Ghahramani, 2005). Specifically for BAEs, one should note that placing a prior
on the parameters of the encoder and decoder has an implicit effect on the prior over
the network output (i.e. the reconstruction). In addition, the highly nonlinear nature
of these models implies that interpreting the effect of the architecture is theoretically
intractable and practically challenging. Several works argue that a vague prior
such as N (0, 1) is good enough for some tasks and models, like classification with
convolutional neural networks (CNNs) (Wilson and Izmailov, 2020).

However, for BAEs this is not enough, as illustrated in Fig. 4.1. The realizations
obtained by sampling weights/biases from a N (0, 1) prior indicate that this choice
provides poor inductive bias. Meanwhile, by encoding better beliefs via an optimized
prior, which is the focus of the next section, the samples can capture main charac-
teristics intrinsic to the data, even when the model is fed with out-of-distribution
inputs.

64 Chapter 4. Model Selection for Bayesian Autoencoders

Ouput with Output with
Input N (0, 1) Prior Optimized Prior

MNIST

OOD

CELEBA

OOD

Figure 4.1: Realizations sampled from different priors given
an input image. OOD stands for out-of-distribution.

4.4 Model Selection for Bayesian Autoencoders via Prior Op-
timization

One of the main advantages of the Bayesian paradigm is that we can incorporate prior
knowledge into the model in a principled way. Let us assume a prior distribution
pψ(w) on the parameters of the AE network, where now we are explicit on the set
of (hyper-)parameters that determine the prior, i.e., ψ. Specifying the prior is easy,
e.g., a Gaussian. Determining the effective functional prior, i.e., the prior over the
network output f is not trivial due to the complex nonlinear forms of fenc and fdec,
which induce a non-trivial effect on the output (functional) prior:

pψ(f) =
∫

f (x; w)pψ(w)dw, (4.4)

where, as before, f = f (x; w) is the functional output of the BAE. Although pψ(f)
cannot be evaluated analytically, it is possible to draw samples from it.

Prior parameterization. The only two requirements needed to design a parameteri-
zation for the prior are: to be able to (1) draw samples from it and (2) to compute its
log-density at any point. The latter is required by many inference algorithms such as
SGHMC. We consider a fully-factorized Gaussian prior over weights and biases at
layer l:

p(wl) = N (wl ; µlw , σ2
lw), p(bl) = N (bl ; µlb , σ2

lb), (4.5)

Notice that, as we shall see in § 4.4.2 and § 4.4.3, in order to estimate our prior
hyperparameters, we will require gradient back-propagation through the stochastic

4.4. Model Selection for Bayesian Autoencoders via Prior Optimization 65

variables wl and bl . Thus, we treat these parameters in a deterministic manner by
means of the reparameterization trick (Rezende et al., 2014; Kingma and Welling,
2014).

4.4.1 Another route for Bayesian Occam’s razor

A common way to estimate hyperparameters (i.e., prior parameters ψ) is to rely on
the Bayesian Occam’s razor (a.k.a. empirical Bayes), which dictates that the marginal
likelihood pψ(y) should be optimized with respect to ψ. There are countless examples
where such simple procedure succeeds in practice (see, e.g., Rasmussen and Williams,
2006; Immer et al., 2021b). We note however that marginal likelihood maximization
for a large number of hyperparameters can suffer from overfitting (Rasmussen and
Williams, 2006; Sebastian et al., 2021). Nevertheless, we do not expect significant
overfitting issues in our setting, as we focus on data that are characterized by a
high level of structure (i.e. images). As we have seen, regular choices for the prior
completely fail to capture the properties of such highly-structured outputs.

The marginal likelihood is obtained by marginalizing out the outputs f and the model
parameters w,

pψ(y) =
∫

p(y | f)pψ(f)d f , (4.6)

where p(y | f) and pψ(f) are given by Eq. 4.3 and Eq. 4.4, respectively. Unfortunately,
in our context it is impossible to carry out this optimization due to the intractability
of Eq. 4.6.

Classic results in the statistics literature draw parallels between maximum likelihood
estimation (MLE) and KL minimization (Akaike, 1973),

arg max
ψ

∫
π(y) log pψ(y)dy = arg min

ψ

∫
π(y) log

π(y)
pψ(y)

dy︸ ︷︷ ︸
KL[π(y) ‖ pψ(y)]

, (4.7)

where π(y) is the true data distribution. This equivalence provides us with an
interesting insight on an alternative view of marginal likelihood optimization as
minimization of the divergence between the true data distribution and the marginal
pψ(y).

This alternative view allows one to obtain a viable optimization strategy that relies
on an empirical estimate of the data distribution π̃(y). This presents additional
challenges however, as the empirical evaluation and optimization of KL divergences
remains a well-known challenging problem (Flam-Shepherd et al., 2017). Although
it is possible to evaluate KL (or any other f -divergence) empirically by leveraging
results from convex analysis (Nguyen et al., 2010), we have opted to substitute KL

66 Chapter 4. Model Selection for Bayesian Autoencoders

with an alternative metric that is more convenient from a computational perspective.
We are inspired by recent works on generative adversarial networks (Arjovsky et al.,
2017; Gulrajani et al., 2017) and Bayesian neural networks (Tran et al., 2022), where it
is shown that the Wasserstein distance can be estimated efficiently using samples only,
even for high-dimensional distributions. We thus employ the Wasserstein distance
as a surrogate for KL divergence, so that we avoid the challenges of empirical KL

estimation.

To summarize: (1) we would like to do prior selection by carrying out type-II MLE; (2)
the MLE objective is analytically intractable but the connection with KL minimization
allows us to (3) swap the divergence with the Wasserstein distance, yielding a practical
framework for choosing priors.

4.4.2 Matching the marginal distribution to the data distribution via Wasser-
stein distance minimization

Given the two probability measures π and pψ, both defined on RD for simplicity, the
p-Wasserstein distance between π and pψ is given by

Wp
p (π, pψ) = inf

γ∈Γ(π,pψ)

∫
‖y− y′‖pγ(y, y′)dydy′ , (4.8)

where Γ(π, pψ) is the set of all possible distributions γ(y, y′) such that the marginals
are π(y) and pψ(y′) (Villani, 2008). While usually analytically unavailable or compu-
tationally intractable, for D = 1 the distance has a simple closed form solution, that
can be easily estimated using samples only (Kolouri et al., 2019).

The distributional sliced-Wasserstein distance (DSWD) takes advantage of this result
by projecting the estimation of distances for high-dimensional distributions into
simpler estimation of multiple distances in one dimension. The projection is done
using the Radon transform R, an operator that maps a generic density function ϕ

defined in RD to the set of its integrals over hyperplanes in RD,

Rϕ(t, θ) :=
∫

ϕ(r)δ(t− r>θ)dr , ∀t ∈ R , ∀θ ∈ SD−1 , (4.9)

where SD−1 is the unit sphere in RD and δ(·) is the Dirac delta (Helgason, 2010).
Using the Radon transform, for a given direction (or slice) θ we can project the two
densities π and pψ into one dimension and we can solve the optimal transport
problem in this projected space. Furthermore, to avoid unnecessary computations,
instead of considering all possible directions in SD−1, DSWD proposes to find the
optimal probability measure of slices σ(θ) on the unit sphere SD−1,

DSWp(π, pψ) := sup
σ∈MC

(
Eσ(θ)W

p
p
(
Rπ(t, θ),Rpψ(t, θ)

))1/p
, (4.10)

4.4. Model Selection for Bayesian Autoencoders via Prior Optimization 67

where, for C > 0, MC is the set of probability measures σ such that Eθ,θ′∼σ

[
θ>θ′

]
≤ C

(a constraint that aims to avoid directions to lie in only one small area). The direct
computation of DSWp in Eq. 4.10 is still challenging but admits an equivalent dual
form,

sup
h∈H

{(
Eσ̄(θ)

[
Wp

p
(
Rπ(t, h(θ)),Rpψ(t, h(θ))

)])1/p
− λCEθ,θ′∼σ̄

[∣∣h(θ)>h(θ′)
∣∣]}+ λCC ,

(4.11)

where σ̄ is a uniform distribution in SD−1,H is the set of functions h : SD−1 → SD−1

and λC is a regularization hyperparameter. The formulation in Eq. 4.11 is obtained by
employing the Lagrangian duality theorem and by reparameterizing σ(θ) as push-
forward transformation of a uniform measure in SD−1 via h. Now, by parameterizing
h using a deep neural network with parameters φ, defined as hφ, Eq. 4.11 becomes
an optimization problem with respect to the network parameters. The final step is to
approximate the analytically intractable expectations with Monte Carlo integration,

max
φ

{[
1
K

K

∑
i=1

[
Wp

p
(
Rπ(t, hφ(θi)),Rpψ(t, hφ(θi))

)]]1/p

− λC

K2

K

∑
i,j=1
|hφ(θi)

>hφ(θj)|
}
+ λCC ,

with θi ∼ σ̄(θ). Finally, we can use stochastic gradient methods to update φ and then
use the resulting optima for the estimation of the original distance. We encourage the
reader to check the detailed explanation of this formulation, including its derivation
and some practical considerations for implementation, available in the Appendix.

4.4.3 Summary

We aim at learning the prior on the BAE parameters by optimizing the marginal pψ(y)
obtained after integrating out the weights from the joint pψ(y, w). The connection
with empirical Bayes and KL minimization suggests that we can find the optimal ψ?

by minimizing the KL between the true data distribution π(y) and the marginal
pψ(y) . However, matching these two distributions is non-trivial due to their high
dimensionality and the unavailability of their densities. To overcome this problem,
we propose a sample-based approach using the distributional sliced 2-Wasserstein
distance (Eq. 4.11) as objective:

ψ? = arg min
ψ

[
DSW2

(
pψ(y), π(y)

)]
. (4.12)

This objective function is flexible and does not require the closed-form of either
pψ(y) or π(y). The only requirement is that we can draw samples from these two
distributions. Note that we can sample from pψ(y), by first computing f after
sampling from pψ(w) and then perturbing the generated f by sampling from the

68 Chapter 4. Model Selection for Bayesian Autoencoders

likelihood p(y | f). For the continuous Bernoulli likelihood this operation can be
implemented by using the reparameterization form that allows to backpropagate
gradients (Loaiza-Ganem and Cunningham, 2019).

4.5 Experiments

Competing approaches. We compare our proposal with a wide selection of methods
from the literature. For autoencoding methods, we choose the vanilla VAE (Kingma
and Welling, 2014), the β-VAE (Higgins et al., 2017) and WAE (Wasserstein AE)
(Tolstikhin et al., 2018). In addition, we consider models with more complex encoders
(VAE + Sylvester flows (Berg et al., 2018)), generators (2-stage VAE (Dai and Wipf,
2019)), and priors (VAE + VampPrior (Tomczak and Welling, 2018)). For CELEBA we
also include a comparison with generative adversarial networks (GANs), with the
vanilla setup of NS-GAN (Goodfellow et al., 2014; Lucic et al., 2018) and the more
recent DiffAugment-GAN (Zhao et al., 2020; Karras et al., 2020). Finally, we also
compare against BAE with the standard N (0, 1) prior. Unless otherwise stated, all
models—including ours—share the same latent dimensionality (K = 50). We defer a
more detailed description of these models and architectures to the Appendix.

Generative process. Differently from VAEs and other methods, deterministic and
Bayesian AEs are not generative models. To generate new samples with BAEs we
employ ex-post density estimation over the learned latent space, by fitting a density
estimator pϑ(z) to {zi = Ep(wenc | y)[fenc(xi; wenc)]}. In this work, we employ a non-
parametric model for density estimation based on Dirichlet process mixture model
(DPMM) (Blei and Jordan, 2006), so that its complexity is automatically adapted to the
data; see also (Bengio et al., 2013a) for alternative ways to turn AEs into generative
models. After estimating pϑ(z), a new sample can be generated by drawing znew

from pϑ(z) and fnew = Ep(wdec | y)[fdec(znew; wdec)].

Evaluation metrics. To evaluate the reconstruction quality, we use the test log-
likelihood (LL), which tells us how likely the test targets are generated by the corre-
sponding model. The predictive log-likelihood is a proper scoring rule that depends
on both the accuracy of predictions and their uncertainty (Gneiting and Raftery, 2007).
To assess the quality of the generated images, instead, we employ the widely used
Fréchet Inception Distance (FID) (Heusel et al., 2017). We note that, as GANs are
not inherently equipped with an explicit likelihood model, we only report their FID

scores. Finally, all our experiments and evaluations are repeated four times, with
different random training splits.

4.5. Experiments 69

MNIST (N = 200) FREY-YALE (N = 500)

Reconstructed Generated Reconstructed Generated

Ground Truth

VAE

F VAE

N (0, 1) BAE

F N (0, 1) BAE

BAE + Optim. prior

Uncertainty

Figure 4.2: Qualitative evaluation for MNIST and YALE. Here, F
indicates using the union of the training data and the data used to
optimize prior to train the model. The last row depicts standard
deviation of reconstructed/generated images estimated by BAE using

the optimized prior.

4.5.1 Analysis of the effect of the prior

To demonstrate the effect of our model selection strategy, we consider scenarios in
the small-data regime where the prior might not be necessarily tuned on the training
set. In this way we are able to impose inductive bias beyond what is available in the
training data. We investigate two cases:

• MNIST (Lecun et al., 1998): We use 100 examples of the 0 digits to tune the prior.
The training set consists of examples of 1-9 digits, whereas the test set contains
10 000 instances of all digits. We aim to demonstrate the ability of our approach
to incorporate prior knowledge about completely unseen data with different
characteristics into the model.
• FREY-YALE (Dai et al., 2015): We use 1 956 examples of FREY faces to optimize the

prior. The training set and test set are comprised of YALE faces. We demonstrate
the benefit of using a different dataset but from the same domain (e.g. face images)
to specify the prior distribution.

Visual inspection. Fig. 4.2 shows some qualitative results (additional images are
available in the Appendix), while Fig. 4.3 shows the convergence of the Wasserstein
distance during prior optimization in our proposal. From a visual inspection we
see that, on MNIST, by encoding knowledge about the “0” digit into the prior, the
BAE can reconstruct this digit fairly well although we only use “1” to “9” digits for
inference (differently from the BAE with standard prior). Similarly, on FREY-YALE,
we see that by encoding knowledge from another dataset in the same domain, the

70 Chapter 4. Model Selection for Bayesian Autoencoders

0 500 1000 1500 2000

0

100

200

Time ≈ 16m27s

Iteration

W
as

se
rs

te
in

di
st

.

mnist

0 500 1000 1500 2000

0

100

200

Time ≈ 18m32s

Iteration

W
as

se
rs

te
in

di
st

.

frey

Figure 4.3: Convergence of the proposed Wasserstein minimization
scheme.

200 500 1000 2000

1700

1800

1900

Training size

mnist - Test LL (↑)

50 100 200 500

600

700

800

Training size

yale - Test LL (↑)

10 20 50 100 10 20 50 100

1600

1700

1800

1900 200 training points

1000 training points

Dimension of latent space

Ablation study on latent dimensionality (MNIST - Test LL)

VAEF β-VAEF BAE + N (0, 1) PriorF BAE + Optim. Prior

Figure 4.4: Test log-likelihood (LL) of MNIST and YALE. Left: test LL
as a function of training size; Right: test LL as a function of latent

dimensionality.

optimized prior can impose a softer constraint compared to using directly this dataset
for inference. In addition, if we use directly the union of FREY and YALE faces for
training (methods denoted with aF), VAE yields images that are similar to FREY

instead of YALE faces, while generated images from BAE with N (0, 1) prior are of
lower quality. This again highlights the advantage of our approach to specifying
an informative prior compared to using that data for training. Another important
benefit of our Bayesian treatment of AEs is that we can quantify the uncertainty
for both reconstructed and generated images. The last row of Fig. 4.2 illustrates
the uncertainty estimate corresponding to the BAE with optimized prior on MNIST

and YALE datasets. Our model exhibits increased uncertainty for semantically and
visually challenging pixels such as the left part of the second “0” digit image in
the MNIST example. We also observe that the uncertainty is greater for generated
images compared to reconstructed images as illustrated in the YALE example. This is
reasonable because the reconstruction process is guided by the input data rather than
synthesizing new data according to a random latent code.

Visualization of inductive bias on MNIST. To have an intuition of the inductive
bias induced by the optimized prior, we visualize a low-dimensional projection of
parameters sampled from the prior and the posterior (Izmailov et al., 2019). As we
see in Fig. 4.5, the hypothesis space induced by the N (0, 1) prior is huge, compared
to where the true solution should lie. Effectively this is another visualization of the

4.5. Experiments 71

famous Bayesian Occam’s razor plot by Mackay (2003), where the model has very
high complexity and poor inductive biases. On the other hand, by considering our
proposal to do model selection, the hypothesis space of the optimized prior is reduced
to regions close to the full posterior. Additional visualizations are available in the
Appendix.

−60 −50 −40 −30

−3

−2

−1

Optim. Prior N (0, 1) Prior Samples from true posterior

Figure 4.5: Visualization in 2D of samples from priors and
posteriors of BAE’s parameters. The setup is the same as

before with MNIST.

Quantitative evaluation. For a quantitative analysis we rely on Fig. 4.4, where we
study the effect on the reconstruction quality of different training sizes (on the left)
and different latent dimensions (on the right). Since we observed that the results
of VAE variants are not significantly different, we only show the results for β-VAE

and we leave the extended results to the Appendix. From this experiment we can
draw important conclusions. The BAE with optimized priors clearly outperforms
the competing methods (and the BAE with standard prior) in the inference task for
all training sizes, with slightly diminishing effect for larger sets, as expected. This
pattern also holds when looking at different latent dimensions (Fig. 4.4, right), where
regardless of the dimensionality of the latent space, BAEs with optimized priors
achieve the best performance.

4.5.2 Reconstruction and generation of CELEBA

We now look at a more challenging benchmark, the CELEBA dataset (Liu et al., 2015).
For our proposal, we use 1 000 examples that are randomly chosen from the original
training set to learn the prior distribution. The test set consists of about 20 000 images.
The goal of this experiment is to evaluate whether sacrificing part of the training
data to specify a good prior is beneficial when compared to using that data for
training the model. Fig. 4.6 shows qualitative results for the competing methods,
their corresponding test LLs and FIDs for different training dataset sizes. In terms
of test log-likelihoods (LLs) (Fig. 4.6, top right), we observe two clear patterns: (i)
that BAE approaches perform considerably better than other methods and (ii) the

72 Chapter 4. Model Selection for Bayesian Autoencoders

Reconstructions Generated Samples

Ground Truth

WAE (Tolstikhin et al., 2018)

VAE (Kingma and Welling, 2014)

β-VAE (Higgins et al., 2017)

VAE + Sylveser Flows (Berg et al., 2018)

VAE + VampPrior (Tomczak and Welling, 2018)

2-Stage VAE (Dai and Wipf, 2019)

BAE + N (0, 1) Prior

BAE + Optim. Prior (Ours)

NS-GAN (Goodfellow et al., 2014)

DiffAugment-GAN (Zhao et al., 2020)

500 1000 2000 4000

6500

7000

Training size

Test log-likelihood (↑)

500 1000 2000 4000

100

200

300

Training size

FID (↓)

Figure 4.6: Qualitative (top) and quantitative evaluation (bottom) on
CELEBA. The markers and bars represent the means and one standard
deviations, respectively. In the (top) figure, the sizes of training data
and the data for optimizing prior are 500 and 1000, respectively. The

higher the log-likelihood (LL) and the lower FID the better.

4.5. Experiments 73

VAE with Sylvester flows performs consistently poor across dataset sizes. This latter
observation indicates that having a more expressive posterior for the encoder is not
helpful when considering the small training sizes used in our experiments. More
importantly, we see that the BAE using the optimized prior significantly outperforms
other methods despite using less data for inference. These results largely agree with
the quality of the reconstructions (first column of images in Fig. 4.6, left) in that BAE

methods provide more visually appealing reconstructions when compared to other
approaches.

We now evaluate the quality of the generated images (second column of images in
Fig. 4.6, left) along with their FID scores (Heusel et al., 2017). Visually, it is clear
that images generated from VAEs (standard, β, Sylvester and WAE) are very poor.
This failure may originate from the fact that the aggregated posterior distribution of
the encoder is not aligned with the prior on the latent space. This problem is more
prominent in the case of small training data, where the encoder is not well-trained.
The VampPrior tackles this problem by explicitly modeling the aggregated posterior,
while 2-stage VAE uses another VAE to estimate the density of the learned latent
space. By reducing the effect of the aggregated posterior mismatch, these strategies
improve the quality of the generated images remarkably. These results are consistent
with their corresponding FID scores (Fig. 4.6, bottom right) where we also see that BAE

using the optimized prior consistently outperforms all variants of VAEs and NS-GAN.
Finally, we see that DiffAugment-GAN, with the exception of using a training size
of 500, yields better FID scores. However, this is not surprising as this model uses
much more complex network architectures (Karras et al., 2020), combined with a
powerful differentiable augmentation scheme. More importantly, it is clear that with
few training samples our method generates more semantically meaningful images
then all other approaches, including DiffAugment-GAN.

The effect of the likelihood. As previously mentioned, in the Bayesian paradigm,
the likelihood represents a modeling choice to be made in addition to the choice of the
prior. Our empirical evaluation was predominantly conducted with the continuous
Bernoulli likelihood. This likelihood maybe not be an ideal choice for colored images
because it biases pixel values to the extremes, which results in saturated images. For
the CELEBA dataset, we additionally consider the truncated Gaussian likelihood
(Burkardt, 2014), which is another valid alternative for [0, 1]-valued data (results
summarized in Fig. 4.7). We observe that indeed the colors in the images generated
by this likelihood are more realistic and less saturated compared to those generated
by the continuous Bernoulli. Still the problem of selecting a good prior is present,
as it can be seen for methods like e.g. VAE. For our proposed approach we haven’t
made strong assumptions on the likelihood (just the ability to sample from it) and
as such it is flexible and not tied to a specific choice. These results show that our
method is not only quantitatively but also qualitatively better than the competing

74 Chapter 4. Model Selection for Bayesian Autoencoders

VAE (FID: 299.73 ± 5.21)

VAE + Sylvester Flows (FID: 238.95 ± 16.95)

VAE + VampPrior (FID: 127.05 ± 6.18)

2-Stage VAE (FID: 97.77 ± 1.01)

BAE with N (0, 1) Prior (FID: 84.11 ± 4.09)

BAE with Optim. Prior (FID: 62.75 ± 3.61)

Figure 4.7: Qualitative and quantitative evaluation of generated sam-
ples with the truncated Gaussian likelihood (Burkardt, 2014). Here, we

use 500 CELEBA samples for inference.

approaches and confirm that the benefits from our framework are independent of the
choice of likelihood. In Appendix, we show more qualitative and numerical results
of reconstruction and generation with the truncated Gaussian likelihood.

4.5.3 Prior adjustment versus posterior tempering

We have shown that the proposed framework for adjusting the prior is compatible
with standard Bayesian practices, as it emulates type-II maximum likelihood. In
other words, the distribution fitting that we induce by means of Wasserstein distance
minimization relates to the marginal output of BAEs, very much in the same spirit
of marginal likelihood maximization. The distribution is fit considering all possible
functions, when marginalized through the likelihood, creating an implicit regulariza-
tion effect. Our scheme does not give more weight to particular training instances,
but it simply restricts the hypothesis space. This is unlike posterior tempering (Zhang
et al., 2018b; Izmailov et al., 2019; Wenzel et al., 2020; Aitchison, 2021; Zeno et al.,
2021), which is commonly defined as pτ(w | y) ∝ p(y |w)1/τ p(w), where τ > 0 is
a temperature value. With τ < 1, tempering is known to improve performance in
the case of small training data and using miss-specified priors, but it corresponds to
artificially sharpening the posterior by over-counting the data τ times.

4.6. Conclusions 75

1000001000010001001021

100 500 1000 5000 10000 50000

0

10

20

Effective num. data points

T
es
t
pr
ed
ic
ti
ve

va
ria

nc
e

Model selection vs posterior tempering

Figure 4.8: Average test predictive variance as a function of
the number of data points used to optimize the prior, and
the temperature (i.e. how many times the data points are

over-counted).

10−5 10−3 0.1 0.5 1

1500

1600

1700

T
es
t
LL

(→
)

Performance at different temperatures τ

bae + N (0, 1) Prior bae + Optim. Prior

Figure 4.9: Test performance for temperature scaling with
different priors. The dotted lines indicate the best perfor-

mance.

To demonstrate the differences with our proposal, we setup a comparison on MNIST.
In the empirical comparison of Fig. 4.8, we consider different temperatures and
different sets of data points used to optimize the prior. As expected, the tempered
posterior quickly collapses on the mode, while the posterior after our treatment
retains a sufficiently constant variance, regardless of the number of data points used.
It is also interesting to notice that with the N (0, 1) prior, the best temperature is
τ = 0.1, while for our approach that optimizes the prior is τ = 1, further confirming
that the model now is well specified (Fig. 4.9).

4.6 Conclusions

In this work, we have reconsidered the Bayesian treatment of autoencoders (AE)
in light of recent advances in Bayesian neural networks. We have addressed the
main challenge of BAEs, so that they can be rendered as viable alternative to gener-
ative models such as VAEs. More specifically, we have found that the main limita-
tion of BAEs lies in the difficulty of specifying meaningful priors in the context of
highly-structured data, which is ubiquitous in modern machine learning applications.
Consequently, we have proposed to specify priors over the autoencoder weights by

76 Chapter 4. Model Selection for Bayesian Autoencoders

means of a novel optimization of prior hyperparameters. Inspired by connections
with marginal likelihood optimization, we derived a practical and efficient optimiza-
tion framework, based on the minimization of the distributional sliced-Wasserstein
distance between the distribution induced by the BAE and the data generating dis-
tribution. The resulting hyperparameter optimization strategy leads to a novel way
to perform model selection for BAEs, and we showed its advantages in an extensive
experimental campaign.

Limitations and ethical concerns. Even if theoretically justified and empirically
verified with extensive experimentation, our proposal for model selection still remains
a proxy to the true marginal likelihood maximization. The DSWD formulation has
nice properties of asymptotic convergence and computational tractability, but it
may represent only one of the possible solutions. At the same time, we stress that
the current literature does not cover this problem of BAEs at all, and we believe
our approach is a considerable step towards the development of practical Bayesian
methods for representation learning in modern applications characterized by large-
scale structured data (including tabular and graph data, which are currently not
covered). At the same time, the accessibility to these models to a wider audience
and different kind of data might help to widespread harmful applications, which is a
concern shared among all generative modeling approaches. An ethical analysis of
the consequences of Bayesian priors in unsupervised learning scenarios is also worth
an in-depth investigation, which goes beyond the scope of this work.

77

Chapter 5

Fully Bayesian Autoencoders with
Latent Sparse Gaussian Processes

In this chapter, we present a fully Bayesian autoencoder model that treats
both local latent variables and global decoder parameters in a Bayesian
fashion. This approach allows for flexible priors and posterior approxima-
tions while keeping the inference costs low. To achieve this, we introduce
an amortized MCMC approach by utilizing an implicit stochastic network
to learn sampling from the posterior over local latent variables. Further-
more, we extend the model by incorporating a Sparse Gaussian Process
prior over the latent space, allowing for a fully Bayesian treatment of
inducing points and kernel hyperparameters and leading to improved
scalability. Additionally, we enable Deep Gaussian Process priors on the
latent space and the handling of missing data. We evaluate our model
on a range of experiments focusing on dynamic representation learn-
ing and generative modeling, demonstrating the strong performance of
our approach in comparison to existing methods that combine Gaussian
Processes and autoencoders.

5.1 Introduction

The problem of learning representations of data that are useful for downstream tasks
is a crucial factor in the success of many machine learning applications (Bengio et al.,
2013b). Among the numerous proposed solutions, modeling approaches that evolved
from autoencoders (AEs) (Cottrell et al., 1989) are particularly appealing, as they do
not require annotated data and have proven effective in unsupervised learning tasks,
such as data compression and generative modeling (Tomczak, 2022; Yang et al., 2022).
AEs are neural networks consisting of an encoder that maps input data to a set of
lower-dimensional latent codes and a decoder that maps the latent codes back to the
observations.

78 Chapter 5. Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes

In applications where data is scarce or uncertainty quantification is crucial, it is
beneficial to treat these models in a Bayesian manner (Mackay, 1992; Neal, 1996;
Wilson and Izmailov, 2020; Izmailov et al., 2021b) by imposing meaningful prior
distributions over both the parameters of the encoder and decoder (Tran et al., 2021;
Miani et al., 2022). A parallel development are variational autoencoders (VAEs)
(Kingma and Welling, 2014; Rezende and Mohamed, 2015) that treat the latent space
of an autoencoder in a Bayesian fashion, enabling scalable inference over a large
number of local (per-data point) latent variables using amortized variational inference.
Note that these models typically treat the encoder and decoder as deterministic
neural networks. In the related works section, we further elaborate on the differences
between several versions of AE models and the way Bayesian inference is carried out.

A critical limitation of standard VAEs is their utilization of factorized priors, which is
inadequate for modeling correlations between latent encodings. However, captur-
ing latent correlations is often necessary to model structured data. For example, in
autonomous driving or medical imaging applications, high-dimensional images are
correlated in time. Spatio-temporal dependencies between samples are also common
in environmental and life sciences datasets. To address this limitation, several works
(Pearce, 2019; Casale et al., 2018) have attempted to introduce Gaussian process
(Gaussian process (GP)) priors over the latent space of VAEs that capture correla-
tions between pairs of latent variables through a kernel function. While GP priors
outperform conventional priors on many tasks, they also introduce computational
challenges such as O(N3) complexity for GP inference, where N is the number of
data instances. Recently, Jazbec et al. (2021) proposed the SVGP-VAE model to tackle
this computational issue by relying on sparse approximations; these summarize the
dataset into a set of so-called inducing points (Quiñonero-Candela and Rasmussen,
2005).

Although the SVGP-VAE model (Jazbec et al., 2021) has achieved promising results,
it has several significant drawbacks. First, similarly to VAEs, SVGP-VAE is strongly
tied to a variational inference (VI) formulation (Jordan et al., 1999; Zhang et al.,
2018a), which can lead to poor approximations due to VI making strong assumptions
on both the factorization and functional form of the posterior. Second, the SVGP-
VAE model follows the common practice in the sparse GP literature of optimizing
the inducing points and kernel hyperparameters based on the marginal likelihood.
However, this approach does not account for uncertainty in the inducing inputs
and hyperparameters. It is well known that this can result in biased estimates and
underestimated predictive uncertainties (Rossi et al., 2021; Lalchand et al., 2022b). In
this work, we propose a novel Sparse Gaussian Process Bayesian Autoencoder (SGP-
BAE) model that addresses these issues by providing scalable and flexible inference
through a fully Bayesian treatment without relying on VI.

5.2. Related Work 79

Contributions. Specifically, first, we develop a fully Bayesian autoencoder (BAE)
model (§ 5.3), where we adopt a Bayesian treatment for both the local (per-data point)
latent variables and the global decoder parameters. This approach differs from VAEs
in that it allows specifying any prior over the latent space while decoupling the model
from the inference. As a result, we can rely on powerful alternatives to VI to carry
out inference, and we adopt stochastic gradient Hamiltonian Monte Carlo (SGHMC)
(Chen et al., 2014) as a scalable solution. To achieve this, we propose an amortized
Markov chain Monte Carlo (MCMC) approach for our Bayesian autoencoder (BAE)
model by using an implicit stochastic network as the encoder to learn to draw samples
from the posterior of local latent variables. Our approach addresses the prohibitively
expensive inference cost induced by the local latent variables and avoids making
strong assumptions on the form of the posterior. Second, when imposing a GP

prior over the latent space, we propose a novel scalable SGP-BAE model (§ 5.4) in
which the inducing points and kernel hyperparameters of the sparse GP prior on
the latent space are treated in a fully Bayesian manner. This model offers attractive
features such as high scalability, richer modeling capability, and improved prediction
quality. Third, we extend the SGP-BAE model to allow one to impose deep GP priors
on the latent space (Damianou and Lawrence, 2013) and to handle missing data.
To the best of our knowledge, this is the first work to consider deep GP priors for
AEs. Finally, we conduct a rigorous evaluation of our SGP-BAE model through a
variety of experiments on dynamic representation learning and generative modeling.
The results demonstrate excellent performance compared to existing methods of
combining GPs and AEs (§ 5.5).

5.2 Related Work

Autoencoders. AEs (Cottrell et al., 1989) are powerful models for representation
learning which operate by projecting data onto a lower-dimensional latent space
through an encoder and by mapping latent representations back into the original
data by means of a decoder. VAEs (Kingma and Welling, 2014; Rezende et al., 2014)
elegantly combine AEs with variational inference enabling the model to generate new
data and allowing for the specification of any prior on the latent space. To improve
the performance of VAEs, recent works have attempted to employ flexible priors
such as mixtures (Dilokthanakul et al., 2016; Tomczak and Welling, 2018; Bauer and
Mnih, 2019), normalizing flows (Chen et al., 2017), nonparametric models such as
Stick-breaking processes (Nalisnick and Smyth, 2017), or Gaussian processes (Casale
et al., 2018).

Recently, Tran et al. (2021) and Miani et al. (2022) explored a Bayesian treatment of
the encoder and decoder parameters in standard AEs, demonstrating superior per-
formance. However, this approach lacks a mechanism to impose priors on the latent
space. In the seminal work on VAE, Kingma and Welling (2014) already explored

80 Chapter 5. Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes

a fully Bayesian treatment of VAEs by introducing a prior on the decoder. Varia-
tional inference is employed to infer the decoder and the latent variables. Daxberger
and Hernández-Lobato (2019) suggested employing SGHMCs for sampling decoder
parameters, but this method uses the evidence lower bound (ELBO) of VAEs as
the sampling objective, which may lead to suboptimal approximations. Following
Glazunov and Zarras (2022) we use the term Bayesian variational autoencoder (BVAE)
to refer to this set of models. To avoid confusion with these models, hereafter, we
use the term Bayesian autoencoders (BAEs) to indicate our proposed approach,
where both the latent variables and decoder are treated in a fully Bayesian way, and
inference uses our amortized SGHMC scheme.

Gaussian process priors for AE models. The earliest attempts to combine AE mod-
els with GPs are the GP prior VAE (GPPVAE) (Casale et al., 2018) and GP-VAE (Pearce,
2019). Both these models lack scalability for generic kernel choices and data types.
GPPVAE is restricted to a specialized GP product kernel and employs a Taylor ap-
proximation for GPs, while GP-VAE relies on exact GP inference. Recently, Fortuin
et al. (2020) and Zhu et al. (2022) propose GP-VAE and Markovian-GPVAE, respec-
tively, that are indeed scalable (linear in N time complexity) by exploiting the Markov
assumption, but they are applicable only on time-series data. Most closely to our
method is the approach of Jazbec et al. (2021) (SVGP-VAE), Ashman et al. (2020)
(SGP-VAE) and Ramchandran et al. (2021), where they utilize inducing point meth-
ods (Titsias, 2009; Hensman et al., 2013) to make GPs scalable. However, all these
methods strongly rely on VAEs and a variational formulation for GPs. In this work,
we take a completely different route, as we aim to treat sparse GPs and AEs in a
fully Bayesian way while enjoying scalability thanks to recent advances in stochastic-
gradient MCMC sampling. Table 5.1 compares our proposed models with relevant
related works.

5.3 Imposing Distributions over the Latent Space of Bayesian
Autoencoders

We are interested in unsupervised learning problems with a high-dimensional dataset
consisting of N data points Y def

= [y1, · · · , yN]
> ∈ RN×P. Each data point has a corre-

sponding low-dimensional auxiliary data entry, summarized as X def
= [x1, · · · , xN]

> ∈
RN×D. For instance, yi could be a video frame and xi the corresponding time stamp.
As another example, consider electronic health record (EHR) data, where the auxiliary
data could include patient covariate information, such as age, height, weight, sex,
and time since remission. Finally, we denote by Z def

= [z1, · · · , zN]
> ∈ RN×C the

low-dimensional latent representation of the data, meaning that each latent variable
zi lives in a C-dimensional latent space. We aim to build a model that is able to (1)

5.3. Imposing Distributions over the Latent Space of Bayesian Autoencoders 81

Table 5.1: A summary of related methods. Here, θ, u, S refer to GP
hyper-parameters, inducing variables and inducing inputs, respec-
tively. N and B are the number of data points and the mini-batch
size, whereas M, H � N are the number of inducing points and
the low-rank matrix factor, respectively. The notation 7 indicates the
nonexistence of a specific feature (column) within a given model (row),
whereas the symbol - denotes that the model is not employed with
a GP prior. References are [a] for Kingma and Welling (2014), [b] for
Sohn et al. (2015), [c] for Casale et al. (2018), [d] for Pearce (2019), [e]
for Fortuin et al. (2020), [f] for Ashman et al. (2020) and [g] for Jazbec

et al. (2021).

Model Scalable
Non i.i.d.

data
Free-form
posterior

GP
complexity

Arbitrary
kernel &
data type

Learnable
GP

Inference
θ, u, S

Ref.

() VAE 3 7 7 - - - - [a]
() CVAE 3 7 7 - - - - [b]
() GPPVAE 3 3 7 O(NH2) 7 7 7 [c]
() GPVAE 7 3 7 O(N3) 3 7 7 [d]
() GP-VAE 3 3 7 O(N) 7 7 7 [e]
() SGP-VAE 3 3 7 O(BM2 + M3) 3 3 7 [f]
() SVGP-VAE 3 3 7 O(BM2 + M3) 3 3 7 [g]

() BAE 3 7 3 - - - - Ours
() GP-BAE 7 3 3 O(N3) 3 7 7 Ours
() SGP-BAE 3 3 3 O(BM2 + M3) 3 3 3 Ours

generate Y based on the auxiliary data X, and (2) provide useful and interpretable
low-dimensional representations of Y .

Model setup. In this work, we consider a model based on AEs, and we aim to
treat this in a fully Bayesian manner. This treatment promises improved predictions,
reliable uncertainty estimates, and increased robustness under data sparsity (Mackay,
1992; Izmailov et al., 2021b). One difficulty in doing so is that the prior distribution
over the latent variables would be determined by the prior over the weights of
the encoder and not a distribution of interest. In many applications, including
the ones considered here, this is undesirable, and the goal is to impose a certain
prior distribution over the latent representation in a similar vein as VAEs and their
variants. Therefore, we propose to treat the entire AE in a fully Bayesian manner
except for the encoder and to design the encoder in such a way that it maps data yi

into corresponding codes zi while allowing these mappings to be compatible with
posterior samples over the latent codes. For the encoder, as we will elaborate on
shortly, we will employ a so-called stochastic inference network to learn to draw
posterior samples of latent variables zi given high-dimensional inputs yi, while for
the decoder and the latent variables we employ scalable MCMC techniques.

Bayesian treatment of the latent space and the decoder. In order to retain a fully
Bayesian treatment of the latent space and the decoder, we impose a prior p(ϕ) over
the decoder’s parameters, ϕ. In addition, another prior p(Z |X; θ) is imposed on the

82 Chapter 5. Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes

(a) BAE.
(b) SGP-BAE.

Figure 5.1: The graphical models of vanilla BAE (a), and the proposed
SGP-BAE with a fully Bayesian sparse GP prior imposed on the latent
space. Here, we treat the decoder’s parameters ϕ in a Bayesian way
while the encoder’s parameters φ are considered deterministically.
The solid lines denote the generative part, whereas the dashed lines
denote the encoding part. The SGP-BAE is treated in a fully Bayesian
manner by imposing priors on the decoder’s parameters ϕ as well as
the GP kernel’s parameters θ, inducing locations s. The cyclic thick

line represents that the latent GP correlates with every latent code.

latent variables. This prior is conditioned on the auxiliary data X and characterized
by a set of hyperparameters θ. For example, one may employ an uninformative
prior such as an isotropic Gaussian commonly used in standard VAEs, but in the
next section we will consider structured priors such as GPs and their deep version
as well. We assume that the observed data Y is fully factorized and conditional on
the latent variables Z and a decoder network with parameters ϕ, i.e., p(Y | Z,ϕ) =

∏N
i=1 p(yi | zi,ϕ). The full joint distribution of the model is as follows:

p(ϕ, Z, Y |X) = p(ϕ)p(Z |X; θ)p(Y | Z,ϕ). (5.1)

We wish to infer the posterior over the latent variables and decoder parameters,
which is given by Bayes’ rule:

p(ϕ, Z |Y , X) =
p(ϕ, Z, Y |X)

p(Y |X)
, (5.2)

where p(Y |X) =
∫

p(ϕ, Z, Y |X)dϕdZ is the marginal likelihood. The generative
process of data samples from this BAE model is illustrated in Fig. 5.1a.

Characterizing the posterior distribution over ϕ, Z is analytically intractable and
requires approximations. Given the success of scalable MCMC techniques to obtain
samples from the posterior of model parameters in deep learning models (Zhang
et al., 2020; Tran et al., 2022), in this work, we propose to follow this practice to obtain
samples from p(ϕ, Z |Y , X). In particular, we employ SGHMC (Chen et al., 2014),
which can scale up to large datasets by relying on noisy unbiased estimates of the
energy function (log-posterior) U(ϕ, Z; X, Y) def

= − log p(ϕ, Z, Y |X) and without the
need to evaluate the energy function over the entire dataset. More precisely, when
the prior over the latent codes is fully factorized, we can approximate this energy

5.3. Imposing Distributions over the Latent Space of Bayesian Autoencoders 83

function using mini-batches of size B as follows:

U(ϕ, Z; X, Y) ≈ Ũ(ϕ, Z; X, Y) = − log p(ϕ)− (5.3)

−N
B ∑

i∈IB

[
log p(zi | xi; θ) + log p(yi | zi,ϕ)

]
where IB is a set of B random indices.

Encoder as a stochastic inference network. SGHMC can be challenging to imple-
ment on probabilistic models with many latent variables due to the high computa-
tional burden of iteratively refining the approximate posterior for each latent variable.
Additionally, it can be difficult to evolve the latent variables for each new test sample.
To address these challenges, we propose using a stochastic neural network as an
inference network to efficiently generate latent codes similar to those generated by
the posterior distribution, inspired by amortized inference techniques (Kingma and
Welling, 2014; Wang and Liu, 2016; Feng et al., 2017; Shi et al., 2019) and MCMC

distillation (Korattikara Balan et al., 2015; Wang et al., 2018; Li et al., 2017).

More specifically, instead of storing every latent code, we use an inference network
zi = fφ(yi; ε) with parameters φ that generates a corresponding latent code zi given
an input yi and a random seed ε. The random seed ε is drawn from a distribution
q(ε) that is easy to sample from, such as a uniform or standard Gaussian distribution.
The inference network fφ serves as an encoder by generating posterior samples of
the latent code zi given the observed input yi. It is essential to note that the encoder
in our model approximates the posterior distribution of latent variables, which is
similar to the approach used in VAEs. However, the primary distinction is that we do
not assume any specific form of the posterior distribution of latent variables zi. Our
encoder is trained to draw posterior samples of latent variables, rather than serving
as a parametric variational distribution.

We incrementally refine the encoder fφ such that its outputs mimic the SGHMC

dynamics. Specifically, after every K iterations of sampling the decoder parameters
and the latent codes using SGHMC, we adjust the encoder parameters φ based on
the following objective:

L ({zi, yi}i∈IB ; φ)
def
= ∑

i∈IB

∥∥∥ fφ(yi; εi)− z(k)i

∥∥∥2

2
, (5.4)

where z(k)i is the k-th posterior sample from SGHMC of the latent variable zi, and it is
used as label to update φ. As the analytic solution of Eq. 5.4 is intractable, we perform
J steps of gradient descent to update φ using an optimizer such as Adam (Kingma
and Ba, 2015). It is worth mentioning that our objective to train the inference network
is a modeling choice. Conditional generative models such as diffusion models (Ho et
al., 2020) or generative adversarial networks (GANs) (Goodfellow et al., 2014) can be

84 Chapter 5. Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes

considered as alternatives. However, we must exercise caution to ensure that our goal
of learning low-dimensional representations of the data is met. In our experiments,
we used a similar network architecture for the inference network as in VAEs for fair
comparisons. The inference procedure for our BAEs is described in Algorithm 3.

Algorithm 3: Inference for BAEs with SGHMC

Input: Dataset {X, Y}, mini-batch size B, # SGHMC iterations K, # encoder
interations J

1 Initialize the autoencoder parameters φ and ϕ
2 while ϕ, Z have not converged do
3 Sample a mini-batch of B random indices IB
4 Sample random seed {εi}B

i=1 ∼ q(ε)
5 Initialize the latent codes from the encoder {zi}B

i=1 = fφ({yi}i∈IB , {εi}B
i=1)

6 for K iterations do
7 Compute energy function Ũ using Eq. 5.3
8 Sample from posterior p(ϕ, Z |Y , X): ϕ, {z}B

i=1 ← SGHMC(ϕ, {z}B
i=1;∇ϕ,zŨ)

9 for J iterations do
10 Compute objective function L using Eq. 5.4
11 Update encoder: φ← Optimizer(φ;∇φL)

5.4 Scalable Gaussian Process Prior for Bayesian Autoencoders

In the previous section, we introduced our novel version of a BAE where we imposed
a simple fully-factorized prior over the latent space, such as isotropic Gaussians.
However, in many applications, such priors are incapable of appropriately modeling
the correlation nature of the data. For example, it is sensible to model structured
data evolving over time with a BAE with a prior over the latent space in the form
of a GP with the auxiliary data as input. In this section, we consider precisely
these scenarios by introducing GP priors in the latent space, which allows us to
model sample covariances as a function of the auxiliary data. We then discuss the
scalability issues induced by the use of GP priors, and we propose Sparse Gaussian
Process Bayesian Autoencoders (SGP-BAEs) where we recover scalability thanks to
sparse approximations to GPs (Quiñonero-Candela and Rasmussen, 2005; Rossi et al.,
2021). In this model, we carry out fully Bayesian inference of the decoder, as well as
the inducing inputs and covariance hyperparameters of the sparse GPs, while we
optimize the stochastic inference network implementing the encoder.

5.4.1 Gaussian process prior

We assume C independent latent functions f [1], ..., f [C], which results in each zi being
evaluated at the corresponding xi, i.e., zi =

[
f [1](xi), · · · , f [C](xi)

]
. We assume

5.4. Scalable Gaussian Process Prior for Bayesian Autoencoders 85

that each function is drawn from a zero-mean GP prior with a covariance function
κ(x, x′; θ):

p(Z |X; θ) =
C

∏
c=1
N
(

z[c]1:N | 0, Kxx | θ
)

, (5.5)

where the c-th latent channel of all latent variables, z[c]1:N ∈ RN (the c-th column
of Z), has a correlated Gaussian prior with covariance Kxx | θ ∈ RN×N obtained by
evaluating κ(xi, xj; θ) over all input pairs of X. Here, the latent function values are
informed by all y values according to the covariance of the corresponding auxiliary
input x. One can recover the fully factorized N (0, I) prior on the latent space by
simply setting Kxx | θ = I.

This GP prior over the latent space of BAEs introduces fundamental scalability issues.
First, we have to compute the inverse and log-determinant of the kernel matrix
Kxx | θ, which results in O(N3) time complexity. This is only possible when N is of
moderate size. Second, it is impossible to employ a mini-batching inference method
like SGHMC since the energy function U(ϕ, Z; X, Y) does not decompose as a sum
over all the observations.

5.4.2 Bayesian sparse Gaussian processes

In order to keep the notation uncluttered, we focus on a single channel and suppress
the superscript index c. Given a set of latent function evaluations over the dataset,
f = [f1, · · · , fN]

>, we assume that the latent codes are stochastic realizations based
on f and additive Gaussian noise, i.e.,N (Z | f , σ2I). Sparse GPs (Quiñonero-Candela
and Rasmussen, 2005) are a family of approximate models that address the scalability
problem by introducing a set of M� N inducing points u = (u1, · · · , uM) at corre-
sponding inducing inputs S = {s1, · · · , sM} such that ui = f (si). We assume that
these inducing variables follow the same GP as the original process, resulting in the
following joint prior:

p(f , u) = N
(

0,

[
KXX | θ KXS | θ
KSX | θ KSS | θ

])
, (5.6)

where the covariance matrices KSS | θ and KXS | θ are computed between the elements
in S and {X, S}, respectively.

Fully Bayesian sparse GPs. The fully Bayesian treatment of sparse GPs requires
priors pτ(θ) and pξ(S) over covariance hyperparameters and inducing inputs, re-
spectively, with τ and ξ as prior hyperparameters. With these assumptions, we term
this model as Bayesian sparse Gaussian process autoencoder (SGP-BAE), and the
corresponding generative model is illustrated in Fig. 5.1b.

86 Chapter 5. Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes

By defining Ψ
def
= {ϕ, u, S, θ}, we can rewrite the full joint distribution of parameters

in SGP-BAE:

p(Ψ, f , Z, Y |X) = p(Ψ)︸ ︷︷ ︸
Priors on inducing

inputs & variables, decoder

p(f | u, X, S, θ)p(Z | f ; σ2I)︸ ︷︷ ︸
Sparse GP prior on latent space

p(Y | Z,ϕ)︸ ︷︷ ︸
Likelihood of
observed data

, (5.7)

where p(Ψ) = p(ϕ)pτ(θ)pξ(S)p(u | S, θ). Here, p(u | S, θ) = N (0, KSS | θ), and
p(f | u, X, S, θ) = N (KXS | θK−1

SS | θu, KXX | θ − KXS | θK−1
SS | θKSX | θ). We assume a fac-

torization p(Z | f ; σ2I) = ∏N
i=1 p(zi | fi; σ2) and make no further assumptions about

the other distribution.

Scalable inference objective. We wish to infer the set of variables Ψ and the latent
codes Z. To do so, we have to marginalize out the latent process f from the full joint
distribution above. In particular, we have:

log p(Ψ, Z, Y |X)= log p(Ψ) + log
∫

p(f |Ψ, X)p(Z | f , σ2I)d f + log p(Y | Z,ϕ). (5.8)

This objective should be decomposed over observations to sample from the posterior
over all the latent variables using a scalable method such as SGHMC. As discussed
by Rossi et al. (2021), this can be done effectively by imposing independence in the
conditional distribution (Snelson and Ghahramani, 2005), i.e., by parameterizing
p(f |Ψ, X) = N

(
Kxs | θK−1

ss | θu, diag
[
Kxx | θ − Kxs | θK−1

ss | θKsx | θ
])

. With this approxi-
mation, the log-joint marginal becomes as follows:

log p(Ψ, Z, Y |X) ≈ log p(Ψ) +
N

∑
n=1

{
log Ep(fn |Ψ,X)[p(zn | fn; σ2)] + log p(yn | zn,ϕ)

}
def
= −U(Ψ, Z; X, Y). (5.9)

We can now carry out inference for this SGP-BAE model by plugging a mini-batching
approximation of this energy function into Line 7 and Line 8 of Algorithm 3. By using
this sparse approximation, we reduce the computational complexity of evaluating the
GP prior down to O(BM2), and SGP-BAE can be readily applied to a generic dataset
and arbitrary GP kernel function.

Extension to deep Gaussian processes. We can easily extend SGP-BAE to deep
Gaussian process priors (Damianou and Lawrence, 2013) to model much more com-
plex functions in the latent space of BAEs. To the best of our knowledge, the use of
deep GPs has not been considered in previous work. We assume a deep Gaussian
process prior f (L) ◦ f (L−1) ◦ · · · ◦ f (1), where each f (l) is a GP. Each layer is associated
with a set of kernel hyperparameters θ(l), inducing inputs S(l) and inducing variables
u(l).The set of variables to be inferred is Ψ = {ϕ} ∪ {u(l), S(l), θ(l)}L

l=1. The joint

5.5. Experiments 87

distribution is as follows:

p(Ψ, { f (l)}L
l=1, Z, Y |X) = p(Ψ)

L

∏
l=1

p(f (l) | f (l−1), Ψ)p(Z | f (L); σ2I)︸ ︷︷ ︸
Deep GP prior

p(Y | Z,ϕ), (5.10)

where we omit the dependency on X for notational brevity. To perform inference,
the hidden layers f (l) have to be marginalized and propagated up to the final layer
L (Salimbeni and Deisenroth, 2017). The marginalization can be approximated by
quadrature (Hensman et al., 2015b) or through Monte Carlo sampling (Bonilla et al.,
2019). Detailed derivations of this extension can be found in Appendix C.2.

Extension for missing data. In practice, real-world data may be sparse, with many
missing and few overlapping dimensions across the entire dataset. We can easily
extend SGP-BAE to handle such datasets. We assume that any possible permutation of
observed features is potentially missing, such that each high-dimensional observation
yn = yo

n ∪ yu
n contains a set of observed features yo

n and unobserved features yu
n . The

likelihood term of the inference objective (Eq. 5.9) factorizes across data points and
dimensions, so there is no major modification in this objective, as the summation of
the likelihood term should be done only over the non-missing dimensions, i.e.:

p(Y | Z,ϕ) =
N

∑
n=1

log p(yo
n | zn,ϕ). (5.11)

5.5 Experiments

In this section, we provide empirical evidence that our SGP-BAE outperforms al-
ternatives of combination between GP priors and AE models on synthetic data and
real-world high-dimensional benchmark datasets. Throughout all experiments, un-
less otherwise specified, we use the radial basis function (RBF) kernel with automatic
relevance determination (ARD) with marginal variance and independent lengthscales
λi per feature (MacKay, 1996a). We place a lognormal prior with unit variance and
means equal to 1 and 0.05 for the lengthscales and variance, respectively. Since the
auxiliary data of most of the considered datasets are timestamps, we impose a non-
informative uniform prior on the inducing inputs. We observe that this prior works
well in our experiments. We set the hyperparameters of the number of SGHMC and
optimization steps to J = 30, and K = 50, respectively. The details for all experiments
are available in Appendix C.3.

88 Chapter 5. Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes

Table 5.2: Reconstructions of the latent trajectories of moving ball. In
the first column, frames of each test video are overlayed and shaded
by time. Ground truth trajectories are illustrated in orange, while
predicted trajectories are depicted in blue. We use M = 10 inducing

points for the methods employed with sparse GPs.

GT VIDEO () VAE () GPVAE () SVGP-VAE () BAE () GP-BAE () SGP-BAE

5.5.1 Synthetic moving ball data

We begin our empirical evaluation by considering the moving ball dataset proposed
by Pearce (2019). This dataset comprises grayscale videos showing the movement of a
ball. The two-dimensional trajectory of the ball is simulated from a GP characterized
by an RBF kernel. Our task is to reconstruct the underlying trajectory in the 2D latent
space from the frames in pixel space. Unlike Jazbec et al. (2021), we generate a fixed
number of 35 videos for training and another 35 videos for testing. It is still possible
to perform full GP inference on such a small dataset. For this experiment, we consider
full GP-based methods, such as Gaussian Process Bayesian Autoencoder (GP-BAE)
and GP-VAE (Pearce, 2019), as oracles for the sparse variants. Because the dataset is
quite small, we perform full-batch training/inference.e.

Benefits of moving away from variational inference In this experiment, we show
that, by relaxing strong assumptions on the posterior of latent space and taking
advantage of a powerful scalable MCMC method, BAEs consistently outperform
VAEs. Fig. 5.2 illustrates the performance of the considered methods in terms of root
mean squared error (RMSE). The results show that our GP-BAE model performs
much better than GP-VAE (Pearce, 2019) though both models use the same full GP

priors. In addition, by treating inducing inputs and kernel hyperparameters of sparse
GPs in a Bayesian fashion, SGP-BAE offers a rich modeling capability. This is evident
in the improved performance of SGP-BAE compared to sparse variational Gaussian
process VAE (SVGP-VAE) (Jazbec et al., 2021). SGP-BAE is able to approach the
performance of GP-BAE despite using a small number of inducing points. These
numerical results align with the qualitative evaluation of the reconstructed trajectories
shown in Table 5.2. As expected, the standard BAE and VAE endowed with a N (0, I)
prior on the latent space completely fail to model the trajectories faithfully. In contrast,
GP-BAE and SGP-BAE are able to match them closely. In Appendix C.5, we further

5.5. Experiments 89

5 10 20

20

30

40

Number of inducing points

R
M

SE
(←

)

VAE GPVAE SVGP-VAE BAE GP-BAE SGP-BAE

Figure 5.2: Performance of autoencoder models as a function of the
number of inducing points.

show an ablation study on alternatives of Bayesian treatments for AEs and AE-style
models with GP prior. This study ultimately demonstrates that our proposal offers
superior performance.

Benefits of being fully Bayesian. Our SGP-BAE model has the same advantage as
the SVGP-VAE (Jazbec et al., 2021) in that it allows for an arbitrary GP kernel, and the
kernel hyperparameters and inducing inputs can be inferred jointly during training
or inference. In contrast, other methods either use fixed GP priors (Pearce, 2019) or
employ a two-stage approach (Casale et al., 2018), where the GP hyperparameters
are optimized separately from the AEs. SVGP-VAE optimizes these hyperparameters
using the common practice of maximization of the marginal likelihood, ML-II. This
results in a point estimate of the hyperparameters but may be prone to overfitting,
especially when the training data is small while there are many hyperparameters.
A distinct advantage of SGP-BAE over SVGP-VAE is that it is fully Bayesian for the
GP hyperparameters and inducing points. This not only improves the quality of the
predictions but also offers sensible uncertainty quantification. Fig. 5.3 illustrates the
posterior of the lengthscale. By using a sufficient number of inducing points and
operating in a Bayesian way, SGP-BAE obtains a distribution over lengthscales that
is compatible with observed data. When using too few inducing points, the model
tends to estimate a larger lengthscale. This is expected as the effective lengthscale
of the observed process in the subspace spanned by these few inducing points is
larger. We also observe that the more inducing points are used, the more confident
the posterior over the lengthscale is. Our method also produces a sensible posterior
distribution on the inducing inputs, as shown in Fig. 5.4. The estimated inducing
inputs are evenly spaced over the time dimension, which is reasonable since the
latent trajectories are generated from stationary GPs.

5.5.2 Conditional generation of rotated MNIST

In the next experiment, we consider a large-scale benchmark of conditional generation.
We follow the experimental setup from (Casale et al., 2018; Jazbec et al., 2021), where

90 Chapter 5. Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Posterior of lengthscale [log]

M = 5

M = 10

M = 20

Figure 5.3: The posterior of the lengthscale corresponding to using a
different number of inducing points, M. The red line denotes the true

lengthscale.

0 5 10 15 20 25 30

Posterior of inducing inputs (M = 20)

Figure 5.4: The posterior of the inducing position.

they use a rotated MNIST dataset (N = 4050). İn particular, we are given a set
of images of digit three that have been rotated at different angles in [0, 2π). Our
goal is to generate a new image rotated at an unseen angle. As it is not trivial to
apply full GP for such a large dataset, we omit GP-VAE (Pearce, 2019) and GP-BAE

baselines. We consider the GPPVAE model Casale et al. (2018), which employs a
low-rank approximation for the GP, and the SVGP-VAE model (Jazbec et al., 2021) as
baselines. For both SVGP-VAE and SGP-BAE, we use a number of inducing points
of M = 32 and a mini-batch size of B = 256. We also compare our method with
the Conditional Variational Autoencoder (CVAE) of Sohn et al. (2015), which allows
conditional generation tasks. Following Jazbec et al. (2021), we consider an extension
of the sparse GP model (Hensman et al., 2013), named DEEP-SVIGP, that utilizes
a deep likelihood parameterized by a neural network. As shown in Table 5.3, our
SGP-BAE model generates images that are more visually appealing and most faithful
to the ground truth compared to other approaches.

Table 5.3: Conditionally generated MNIST images. The right most
column depicts the epistemic uncertainty obtained by our SGP-BAE

model.

GT IMAGE DEEP-SVIGP () CVAE () GPPVAE () SVGP-VAE () SGP-BAE () VAR.

5.5. Experiments 91

0 500 1000 1500 2000

−1.5

−1

Wall-clock time (seconds)

T
es

t
M

SE
[lo

g]
(←

)

CVAE SVGP-VAE DEEP-SVIGP SGP-BAE (Ours)

Figure 5.5: Comparison of test mean squared error (MSE) on the ro-
tated MNIST dataset as function of training time.

Table 5.4: Results on the rotated MNIST digit 3 dataset. Here, we
report the mean and standard deviation computed from 4 runs.

MODEL MSE (↓)
() CVAE (Sohn et al., 2015) 0.0819 ± 0.0027
() GPPVAE (Casale et al., 2018) 0.0351 ± 0.0005
() SVGP-VAE (Jazbec et al., 2021) 0.0257 ± 0.0004
() SGP-BAE (OURS) 0.0228 ± 0.0004

DEEP-SVIGP (Jazbec et al., 2021) 0.0236 ± 0.0010

Performance on conditional generation. Table 5.4 presents the quantitative evalu-
ation of the conditionally generated images in terms of MSE. Our SGP-BAE model
clearly outperforms the other competing methods. It is worth noting that DEEP-
SVIGP (Hensman et al., 2013) does not use an amortization mechanism, and its
performance is considered to be an upper bound for that of SVGP-VAE. As dis-
cussed by Jazbec et al. (2021), DEEP-SVIGP can be used for conditional generation
tasks, where the goal is to impose a single GP over the entire dataset, and therefore
amortization is not necessary. However, this model cannot be used in tasks where
inference has to be amortized across multiple GPs, such as learning interpretable data
representations.

Computational efficiency. Similarly to the competing methods that use sparse ap-
proximations such as SVGP-VAE and DEEP-SVIGP, each iteration of GP-BAE involves
the computation of the inverse covariance matrix, resulting in a time complexity of
O(M3). Fig. 5.5 shows the convergence in terms of test MSE for the competing meth-
ods and our SGP-BAE, trained for a fixed training time budget. We omit GPPVAE

(Casale et al., 2018) from this comparison, as reported by Jazbec et al. (2021), which is
significantly slower than the sparse methods. This result demonstrates that SGP-BAE

converges remarkably faster in terms of wall-clock time while achieving better final
predictive performance.

Epistemic uncertainty quantification. Unlike the competing methods, our SGP-
BAE model can capture the epistemic uncertainty of the decoder thanks to the

92 Chapter 5. Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes

0.00
0.39
0.79
1.18
1.57
1.96
2.36
3.14
3.53
3.93
4.32
4.71
5.11
5.50
5.89

Figure 5.6: Visualization of t-SNE embeddings (Maaten and Hinton,
2008) of SGP-BAE latent vectors on the training data of the rotated
MNIST. Each image embedding is colored with respect to its associated

angle. Here, we use a perplexity parameter of 50 for t-SNE.

Table 5.5: A comparison between methods of multi-output GP models
and GP autoencoders on the EEG and JURA datasets.

DATASET METRIC IGP GPAR () SGP-VAE () SGP-BAE DSGP-BAE

EEG
SMSE (↓) 1.70 ± 0.14 0.28 ± 0.00 0.52 ± 0.05 0.22 ± 0.01 0.21 ± 0.01

NLL (↓) 2.59 ± 0.02 1.68 ± 0.01 1.98 ± 0.02 1.96 ± 0.08 2.25 ± 0.13

JURA
MAE (↓) 0.57 ± 0.00 0.42 ± 0.01 0.54 ± 0.01 0.45 ± 0.03 0.44 ± 0.02
NLL (↓) 1563.42 ± 166.55 17.81 ± 1.06 1.02 ± 0.01 0.91 ± 0.04 0.85 ± 0.04

Bayesian treatment and the use of powerful inference methods. This can improve
the quality of uncertainty quantification on reconstructed or generated images. As
shown in the rightmost column of Table 5.3, SGP-BAE can provide sensible epistemic
uncertainty quantification. Our model exhibits increased uncertainty for semantically
and visually challenging pixels, such as the boundaries of the digits.

Latent space visualization. Fig. 5.6 illustrates a two-dimensional t-SNE (Maaten
and Hinton, 2008) visualization of latent vectors (C = 16) for the rotated MNIST data
obtained by our SGP-BAE model. It is evident that the clusters of embeddings are
organized in a structured manner according to the angles they represent. Specifically,
the embeddings of rotated images are arranged in a continuous sequence from 0 to
2π in a clockwise direction.

5.5.3 Missing data imputation

Next, we consider the task of imputing missing data on multi-output spatio-temporal
datasets. We compare our method against Sparse GP-VAE (SGP-VAE) (Ashman et al.,

5.5. Experiments 93

−20

−10

0

10

F2
(v

ol
t)

−20

−10

0

10

F1
(v

ol
t)

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

−20

−10

0

10

Time (second)

FZ
(v

ol
t)

(a) Independent Gaussian Processes (IGP)

−10

0

F2
(v

ol
t)

−15

−10

−5

0

5

F1
(v

ol
t)

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

−15

−10

−5

0

5

Time (second)

FZ
(v

ol
t)

(b) Gaussian Process Autoregressive Model (GPAR)

−10

0

F2
(v

ol
t)

−15

−10

−5

0

5

F1
(v

ol
t)

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

−15

−10

−5

0

Time (second)

FZ
(v

ol
t)

(c) SGP-BAE

Observed values Missing values Predicted mean ± 3 standard deviation

Figure 5.7: Visualization of predictions for missing data of the EEG
dataset. Each panel shows one of the three channels with missing data

(orange crosses) and observed data (black points).

94 Chapter 5. Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes

2020) and multi-output GP methods such as Independent GPs (IGP) and Gaussian
Process Autoregressive Regression (GPAR) (Requeima et al., 2019). Additionally,
we consider the DSGP-BAE model, which is an extension of our SGP-BAE model
endowed with 3-layer deep GP prior. For a fair comparison, we treat partially missing
data as zeros to feed into the inference network (encoder) for SGP-VAE and our SGP-
BAE model. We leave the adoption of partial inference networks (Ashman et al., 2020)
to our model for future work. We follow the experimental setup of Requeima et al.
(2019) and Ashman et al. (2020) and use two standard datasets for this comparison.

Electroencephalogram (EEG). This dataset comprises 256 measurements taken
over one second. Each measurement consists of seven electrodes, FZ and F1-F6,
placed on the patient’s scalp (xn ∈ R1, yn ∈ R7). The goal is to predict the last 100
samples for electrodes FZ, F1, and F2, given that the first 156 samples of FZ, F1, and
F2 and the whole signals of F3-F6 are observed. Performance is measured with the
standardized mean squared error (SMSE) and negative log-likelihood (NLL).

Jura. This is a geospatial dataset consisting of 359 measurements of the topsoil con-
centrations of three metals — Nickel, Zinc, and Cadmium — collected from a region
of Swiss Jura (xn ∈ R2, yn ∈ R3). The dataset is split into a training set comprised of
Nickel and Zinc measurements for all 359 locations and Cadmium measurements for
just 259 locations. The task is to predict the Cadmium measurements at the remaining
100 locations conditioned on the observed training data. Performance is evaluated
with the mean absolute error (MAE) and negative log-likelihood.

Table 5.5 compares the performance of SGP-BAE to the competing methods. As
mentioned in Ashman et al. (2020), GPAR is the state-of-the-art method for these
datasets. We find that our SGP-BAE and DSGP-BAE models perform comparably with
GPAR on the EEG dataset but better on the JURA dataset. A significant advantage of
GP autoencoder methods is that they model P outputs using only C latent GPs, while
GPAR uses P GPs. This can be beneficial when the dimensionality of the data, P, is
very high. Similarly to the previous experiments, SGP-BAE consistently performs
better than variational approximation-based methods such as SGP-VAE (Ashman
et al., 2020). As expected, IGP is the worst-performing method due to its inability
to model the correlations between output variables. For completeness, we show the
predictive mean and uncertainty estimation for the missing values of the EEG datase
in Fig. 5.7.

We find that the utilization of deep Gaussian process (DGP) priors yields only
marginal improvement on the EEG and JURA datasets, as shown in Table 5.5. In
addition, we observe that DSGP-BAE just performs comparably to SGP-BAE on the
moving ball dataset. This can be attributed to the fact that the correlation between the
latent variables of these datasets is sufficiently simple to be modeled using shallow

5.6. Conclusions 95

GPs. For instance, in the experiments conducted on the moving ball dataset, the data
is generated from a GP, following the setup used in the previous work (Pearce, 2019;
Jazbec et al., 2021). Nevertheless, when dealing with more complex datasets, we
believe that the flexibility offered by DGPs can prove beneficial for modeling intricate
patterns (e.g., discontinuities or strong non-stationarities) of the latent process.

5.6 Conclusions

We have introduced our novel SGP-BAE that integrates fully Bayesian sparse GPs
on the latent space of Bayesian autoencoders. Our proposed model is generic, as it
allows an arbitrary GP kernel and deep GPs. The inference for this model is carried
out by a powerful and scalable SGHMC sampler. Through a rigorous experimental
campaign, we have demonstrated the excellent performance of SGP-BAE on a wide
range of representation learning and generative modeling tasks.

Limitations and future works. While our model’s ability to learn disentangled
representations has been demonstrated through empirical evidence, there is a need to
establish a theoretical grounding for the disentanglement of its latent space. Further-
more, it would be useful to study the amortization gap (Cremer et al., 2018; Krishnan
et al., 2018; Marino et al., 2018) of our model. Additionally, exploring more infor-
mative priors for the decoder’s parameters (Tran et al., 2021), beyond the isotropic
Gaussian prior used in this work, is also worthwhile. There are potential avenues for
future research. One of them is the fully Bayesian treatment of the auxiliary data X.
This approach can be beneficial when the auxiliary data is unavailable or contains
missing values. In addition, it would be interesting to apply the model to down-
stream applications where modeling correlations between data points and uncertainty
quantification are required, such as in bioinformatics and climate modeling.

97

Chapter 6

Improving Training of
Likelihood-based Generative
Models with
Data Mollification

Generative models have attracted considerable attention due to their
tremendous success in various domains, such as computer vision where
they are capable to generate impressive realistic-looking images. Likelihood-
based generative models (GMs) are attractive due to the possibility to
generate new data by a single model evaluation. However, they typically
achieve lower sample quality compared to state-of-the-art score-based
diffusion models (DMs). The work presented in this chapter provides a
significant step in the direction of addressing this limitation. The idea is
to borrow one of the strengths of score-based DMs, which is the ability
to perform accurate density estimation in low-density regions and to
address manifold overfitting by means of data mollification. We connect
data mollification through the addition of Gaussian noise to Gaussian
homotopy, which is a well-known technique to improve optimization.
Data mollification can be implemented by adding one line of code in the
optimization loop, and we demonstrate that this provides a boost in gener-
ation quality of likelihood-based GMs, without computational overheads.
We report results on image datasets with popular likelihood-based GMs,
including variants of variational autoencoders and normalizing flows,
showing large improvements in FID score.

6.1 Introduction

GMs have attracted considerable attention recently due to their tremendous suc-
cess in various domains, such as computer vision, graph generation, physics and

98
Chapter 6. Improving Training of Likelihood-based Generative Models with

Data Mollification

reinforcement learning (see e.g., Kingma and Welling, 2019; Kobyzev et al., 2021,
and references therein). Given a set of data points, GMs attempt to characterize
the distribution of such data so that it is then possible to draw new samples from
this. Popular approaches include variational autoencoders (VAEs), normalizing flows
(NFs), generative adversarial networks (GANs), and score-based diffusion models
(DMs).

In general, the goal of any GMs is similar to that of density estimation with the
additional aim to do so by constructing a parametric mapping between an easy-to-
sample-from distribution ps and the desired data distribution pdata. While different
GMs approaches greatly differ in their optimization strategy and formulation, the un-
derlying objectives share some similarity due to their relation to the optimal transport
problem, defined as arg minπ

∫
‖x− y‖2dπ(x, y). Here π is constrained to belong

to the set of joint distributions with marginals ps, pdata, respectively (Genevay et al.,
2017; Liutkus et al., 2019). This unified perspective is explicitly investigated for GANs
and VAEs (Genevay et al., 2017) for example, whereas other works study NFs (Onken
et al., 2021). Similarly, DMs can be connected to Schrodinger Bridges (Chen et al.,
2022), which solve the problem of entropy-regularized optimal transport (Pavon et al.,
2021). Given that extensions of the regularized optimal transport case are available
also for other generative models (Sanjabi et al., 2018; Reshetova et al., 2021), we
should expect that, in principle, any technique should allow generation of samples
with similar quality, provided it is properly tuned. However, this is not true in prac-
tice. The different formulations lead to a variety of properties associated with GMs,
and pros and cons of each formulation can be understood through the so-called GM

tri-lemma (Xiao et al., 2022). The three desirable properties of GMs are high sample
quality, mode coverage, and fast sampling, and it has been argued that such goals are
difficult to be satisfied simultaneously (Xiao et al., 2022) .

The state-of-the-art is currently dominated by score-based DMs, due to their ability
to achieve high sample quality and good mode coverage. However, generating
new samples is computationally expensive due to the need to simulate stochastic
differential equations. Likelihood-based GMs are complementary, in that they achieve
lower sample quality, but sampling requires one model evaluation per sample and it
is therefore extremely fast. While some attempts have been made to bridge the gap
by combining GANs with DMs (Xiao et al., 2022) or training GANs with diffusions
(Wang et al., 2023), these still require careful engineering of architectures and training
schedules. The observation that all GMs share a common underlying objective
indicates that we should look at what makes DMs successful at optimizing their
objective. Then, the question we address in this work is: can we borrow the strengths
of score-based DMs to improve likelihood-based GMs, without paying the price of
costly sample generation?

One distinctive element of score-based DMs is data mollification, which is typically
achieved by adding Gaussian noise (Song and Ermon, 2019) or, in the context of

6.1. Introduction 99

image datasets, by blurring (Rissanen et al., 2023). A large body of evidence points
to the manifold hypothesis (Roweis and Saul, 2000), which states that the intrinsic
dimensionality of image datasets is much lower than the dimensionality of their input.
Density estimation in this context is particularly difficult because of the degeneracy of
the likelihood for any density concentrated on the manifold where data lies (Loaiza-
Ganem et al., 2022b). Under the manifold hypothesis, or even when the target density
is multi-modal, the Lipschitz constant of GMs has to be large, but regularization,
which is necessary for robustness, is antagonist to this objective (Salmona et al., 2022;
Cornish et al., 2020). As we will study in detail in this work, the process of data
mollification gracefully guides the optimization mitigating manifold overfitting and
enabling a desirable tail behavior, yielding accurate density estimation in low-density
regions. In likelihood-based GMs, data mollification corresponds to smoothing
the loss landscape. In the optimization literature, mollification (a.k.a. Gaussian
homotopy or graduated optimization) has been proven to accelerate optimization.
The literature provides results for stochastic non-convex problems (Hazan et al.,
2016), which is the setting we consider here. Another recent work in the same setting
gives some continuity results on the optimum under small increments in the level of
mollification (Gargiani et al., 2020).

Strictly speaking, data mollification in score-based DMs and likelihood-based GMs
are slightly different. In the latter, the amount of noise injected in the data is continu-
ously annealed throughout training. At the beginning, the equivalent loss landscape
seen by the optimizer is much smoother, due to the heavy perturbation of the data,
and a continuous reduction of the noise level allows optimization to be gracefully
guided until the point where the level of noise is zero (Hazan et al., 2016; Gargiani
et al., 2020). DMs, instead, are trained at each step of the optimization process by
considering all noise levels simultaneously, where complex amortization procedures,
such as self-attention (Song et al., 2021), allow the model to efficiently share parame-
ters across different perturbation levels. It is also worth mentioning that score-based
DMs possess another distinctive feature in that they perform gradient-based density
estimation (Song and Ermon, 2019; Hyvärinen, 2005). It has been conjectured that this
can be helpful to avoid manifold overfitting by allowing for the modeling of complex
densities while keeping the Lipschitz constant of score networks low (Salmona et al.,
2022). In this work, we attempt to verify the hypothesis that data mollification is
heavily responsible for the success of score-based DMs. We do so by proposing
data mollification for likelihood-based GMs, and provide theoretical arguments and
experimental evidence that data mollification consistently improves their optimiza-
tion. Crucially, this strategy yields better sample quality and it is extremely easy to
implement, as it requires adding very little code to any existing optimization loop.

We consider a large set of experiments involving VAEs and NFs and some popular
image datasets. These provide a challenging test for likelihood-based GMs due to
the large dimensionality of the input space and to the fact that density estimation

100
Chapter 6. Improving Training of Likelihood-based Generative Models with

Data Mollification

needs to deal with data lying on manifolds. The results show systematic, and in some
cases dramatic, improvements in sample quality, indicating that this is a simple and
effective strategy to improve optimization of likelihood-based GMs models. This
chapter is organized as follows: in § 6.2 we illustrate the challenges associated with
generative modeling when data points lie on a manifold, particularly with density
estimation in low-density regions and manifold overfitting; in § 6.3 we propose
data mollification to address these challenges; § 6.4 reports the experiments with a
discussion of the limitations and the broader impact, while § 6.5 presents related
works, and § 6.6 concludes the chapter.

6.2 Challenges in Training Deep Generative Models

We are interested in unsupervised learning, and in particular on the task of density
estimation. Given a datasetD consisting of N i.i.d samplesD ∆

= {xi}N
i=1 with xi ∈ RD,

we aim to estimate the unknown continuous generating distribution pdata(x). In order
to do so, we introduce a model pθ(x) with parameters θ and attempt to estimate
θ based on the dataset D. A common approach to estimate θ is to maximize the
likelihood of the data, which is equivalent to minimizing the following objective:

L(θ) ∆
= −Epdata(x) [log pθ(x)] . (6.1)

There are several approaches to parameterize the generative model pθ(x). In this
work, we focus on two widely used likelihood-based generative models (GMs), which
are normalizing flows (NFs) (Papamakarios et al., 2021; Kobyzev et al., 2021) and
variational autoencoders (VAEs) (Kingma and Welling, 2014; Rezende and Mohamed,
2015). Although NFs and VAEs are among the most popular deep GMs, they are
characterized by a lower sample quality compared to GANs and score-based DMs.
In this section, we present two major reasons behind this issue by relying on the
manifold hypothesis.

6.2.1 The manifold hypothesis and density estimation in low-density re-
gions

The manifold hypothesis is a fundamental concept in manifold learning (Roweis
and Saul, 2000; Tenenbaum et al., 2000; Bengio et al., 2013b) stating that real-world
high-dimensional data tend to lie on a manifoldM characterized by a much lower
dimensionality compared to the one of the input space (ambient dimensionality)
(Narayanan and Mitter, 2010). This has been verified theoretically and empirically
for many applications and datasets (Ozakin and Gray, 2009; Narayanan and Mitter,
2010; Pope et al., 2021; Tempczyk et al., 2022). For example, Pope et al. (2021)

6.2. Challenges in Training Deep Generative Models 101

Data distribution Estimated distribution

Figure 6.1: Left: Histogram of samples from data distribution pdata(x)
and its true scores ∇x log pdata(x); Right: Histogram of of samples
from the estimated distribution pθ(x) and its scores ∇x log pθ(x). In
the low density regions, the model is unable to capture the true density

and scores.

report extensive evidence that natural image datasets have indeed very low intrinsic
dimension relative to the high number of pixels in the images.

The manifold hypothesis suggests that density estimation in the input space is chal-
lenging and ill-posed. In particular, data points on the manifold should be associated
with high density, while points outside the manifold should be considered as lying
in regions of nearly zero density (Meng et al., 2021). This implies that the target
density in the input space should be characterized by high Lipschitz constants. The
fact that data is scarce in regions of low density makes it difficult to expect that
models can yield accurate density estimation around the tails. These pose significant
challenges for the training of deep GMs (Cornish et al., 2020; Meng et al., 2021; Song
and Ermon, 2019). Recently, diffusion models (Song and Ermon, 2019; Ho et al.,
2020; Song et al., 2021) have demonstrated the ability to mitigate this problem by
gradually transforming a Gaussian distribution, whose support spans the full input
space, into the data distribution. This observation induces us to hypothesize that the
data mollification mechanism in score-based DMs is responsible for superior density
estimation in low-density regions.

To demonstrate the challenges associated with accurate estimation in low-density
regions, we consider a toy experiment where we use a REAL-NVP flow (Dinh et al.,
2017a) to model a two-dimensional mixture of Gaussians, which is a difficult test for
NFs in general. Details on this experiment are provided in the Appendix. Fig. 6.1
depicts the true and estimated densities, and their corresponding scores, which are the
gradient of the log-density function with respect to the data (Hyvärinen, 2005). Note
that the use of “score” here is slightly different from that from traditional statistics
where score usually refers to the gradient of the log-likelihood with respect to model
parameters. As it can be seen in the figure, in regions of low data density, pθ(x)
is completely unable to model the true density and scores. This problem is due to
the lack of data samples in these regions and may be more problematic under the
manifold hypothesis and for high-dimensional data such as images. In § 6.4, we will

102
Chapter 6. Improving Training of Likelihood-based Generative Models with

Data Mollification

demonstrate how it is possible to considerably mitigate this issue by means of data
mollification.

6.2.2 Manifold overfitting

The manifold hypothesis suggests that overfitting on a manifold can occur when the
model pθ(x) assigns an arbitrarily large likelihood in the vicinity of the manifold,
even if the distribution does not accurately capture the true distribution pdata(x) (Dai
and Wipf, 2019; Loaiza-Ganem et al., 2022b). This issue is illustrated in Fig. 2 of
Loaiza-Ganem et al. (2022b) and it will be highlighted in our experiment (§ 6.4.1),
where the true data distribution pdata(x) is supported on a one-dimensional curve
manifoldM in two-dimensional space R2. Even when the model distribution pθ(x)
poorly approximates pdata(x), it may reach a high likelihood value by concentrating
the density around the correct manifoldM. If pθ(x) is flexible enough, any density
defined on M may achieve infinite likelihood and this might be an obstacle for
retrieving pdata(x).

A theoretical formalization of the problem of manifold overfitting appears in (Loaiza-
Ganem et al., 2022b) and it is based on the concept of Riemannian measure (Pennec,
2006). The Riemannian measure on manifolds holds an analogous role to that of
the Lebesgue measure on Euclidean spaces. To begin, we establish the concept of
smoothness for a probability measure on a manifold.
Definition 1. LetM be a finite-dimensional manifold, and p be a probability measure on
M. Let g be a Riemannian metric onM and µ

(g)
M the corresponding Riemannian measure.

We say that p is smooth if p � µ
(g)
M and it admits a continuous density p : M → R>0

with respect to µ
(g)
M .

We now report Theorem 1 from Loaiza-Ganem et al. (2022b) followed by a discussion
on its implications for our work.
Theorem 1. (Loaiza-Ganem et al., 2022b). Let M ⊂ RD be an analytic d-dimensional
embedded submanifold of Rd with d < D, µD is the Lebesgue measure on RD, and p† a
smooth probability measure on M. Then there exists a sequence of probability measures{

p(t)θ

}∞
t=0 on RD such that:

1. p(t)θ → p† as t→ ∞.

2. ∀t ≥ 0, p(t)θ � µD and p(t)θ admits a density p(t)θ : RD → R>0 with respect to µD

such that:

(a) limt→∞ p(t)θ (x) = ∞, ∀x ∈ M.

(b) limt→∞ p(t)θ (x) = 0, ∀x /∈ cl(M), where cl(·) denotes closure in RD.

Theorem 1 holds for any smooth probability measure supported inM. This is an
important point because this includes the desired pdata, provided that this is smooth
too. The key message in Loaiza-Ganem et al. (2022b) is that, a-priori, there is no
reason to expect that for a likelihood-based model to converge to pdata out of all

6.3. Generative Models with Data Mollification 103

the possible p†. Their proof is based on convolving p† with a Gaussian kernel with
variance σ2

t that decreases to zero as t→ ∞, and then verify that the stated properties
of p(t)θ hold. Our analysis, while relying on the same technical tools, is instead
constructive in explaining why the proposed data mollification allows us to avoid
manifold overfitting. The idea is as follows: at time step t = 0, we select the desired
pdata convolved with a Gaussian kernel with a large, but finite, variance σ2(0) as the
target distribution for the optimization. Optimization is performed and p(0)θ targets
this distribution, without any manifold overfitting issues, since the dimensionality
of the corrupted data is non-degenerate. At the second step, the target distribution
is obtained by convolving pdata with the kernel with variance σ2(1) < σ2(0), and
again manifold overfitting is avoided. By iteratively repeating this procedure, we can
reach the point where we are matching a distribution convolved with an arbitrarily
small variance σ2(t), without ever experiencing manifold overfitting. We argue that
when removing the last bit of perturbation, the parametric distribution will match
pdata, without overfitting; this is equivalent to a good initialization method. Under
a different perspective, the annealing procedure introduces a memory effect in the
optimization process which is important for the success of mollification. Indeed,
as mentioned in Loaiza-Ganem et al. (2022b) and verified by ourselves in earlier
investigations, a small constant amount of noise does not provide any particular
benefits over the original scheme.

6.3 Generative Models with Data Mollification

Motivated by the aforementioned problems with density estimation in low-density
regions and manifold overfitting, we propose a simple yet effective approach to
improve likelihood-based GMs. Our method involves mollifying data using Gaussian
noise, gradually reducing its variance, until recovering the original data distribution
pdata(x). This mollification procedure is similar to the reverse process of diffusion
models, where a prior noise distribution is smoothly transformed into the data
distribution (Song and Ermon, 2019; Ho et al., 2020; Song et al., 2021). As already
mentioned, data mollification alleviates the problem of manifold overfitting and it
induces a memory effect in the optimization which improves density estimation in
regions of low density.

Algorithm 4: Gaussian mollification

1 for t← 1, 2, ..., T do
2 x ∼ pdata(x) // Sample training data

3 x̃t = αtx + σtε // Mollify data with αt, σ2
t ← γ(t/T) and ε ∼ N (0, I)

4 θt ← UPDATE(θt−1, x̃t) // Train model

104
Chapter 6. Improving Training of Likelihood-based Generative Models with

Data Mollification

Training Iteration

Figure 6.2: Illustration of Gaussian mollification, where x̃t is the molli-
fied data at iteration t.

Gaussian Mollification. Given that we train the model pθ(x) for T iterations, we
can create a sequence of progressively less smoothed versions of the original data x,
which we refer to as mollified data x̃t. Here, t ranges from t = 0 (the most mollified)
to t = T (the least mollified). For any t ∈ [0, T], the distribution of the mollified data
x̃t, conditioned on x, is given as follows:

q(x̃t | x) = N (x̃t; αtx, σ2
t I), (6.2)

where αt and σ2
t are are positive scalar-valued functions of t. In addition, we define

the signal-to-noise ratio SNR(t) = α2
t /σ2

t . and we assume that it monotonically
increases with t, i.e., SNR(t) ≤ SNR(t + 1) for all t ∈ [0, T − 1]. In other words, the
mollified data x̃t is progressively less smoothed as t increases. In this work, we adopt
the variance-preserving formulation used for diffusion models (Sohl-Dickstein et al.,

2015; Ho et al., 2020; Kingma et al., 2021), where αt =
√

1− σ2
t and σ2

t = γ(t/T).
Here, γ(·) is a monotonically decreasing function from 1 to 0 that controls the rate of
mollification. Intuitively, this procedure involves gradually transforming an identity-
covariance Gaussian distribution into the distribution of the data. Algorithm 4
summarizes the proposed Gaussian mollification procedure, where the red line
indicates a simple additional step required to mollify data compared with vanilla
training using the true data distribution.

Noise schedule. The choice of the noise schedule γ(·) has an impact on the per-
formance of the final model. In this work, we follow common practice in designing
the noise schedule based on the literature of score-based DMs (Nichol and Dhariwal,
2021; Hoogeboom et al., 2023; Chen, 2023). In particular, we adopt a sigmoid schedule
(Jabri et al., 2022), which has recently been shown to be more effective in practice
compared to other choices such as linear (Ho et al., 2020) or cosine schedules (Nichol
and Dhariwal, 2021).

The sigmoid schedule γ(t/T) (Jabri et al., 2022) is defined through the sigmoid
function:

sigmoid
(
− t/T

τ

)
, (6.3)

where τ is a temperature hyper-parameter. This function is then scaled and shifted
to ensure that γ(0) = 1 and γ(1) = 0. We encourage the reader to check the

6.4. Experiments 105

0 0.5 1

0

0.5

1

t/T

σ
2

0 0.5 1

0

10

t/T

lo
g (

SN
R
)

Figure 6.3: Illustration of sigmoid schedule and the corresponding
log(SNR). The temperature values from 0.2 to 0.9 are progressively
shaded, with the lighter shade corresponding to lower temperatures.

implementation of this schedule, available in Appendix. Fig. 6.3 illustrates the
sigmoid schedule and the corresponding log(SNR) with different values of τ. We
use a default temperature of 0.7 as it demonstrates consistently good results in our
experiments.

6.4 Experiments

In this section, we demonstrate emprically the effectiveness of our proposal through
a wide range of experiments on synthetic data and some popular real-world im-
age datasets. The Appendix contains a detailed description of each experiment to
guarantee reproducibility.

6.4.1 2D Synthetic Data Sets

We begin our experimental campaign with two 2D synthetic datasets. The two-
dimensional nature of these datasets allows us to demonstrate the effectiveness of
Gaussian mollification in mitigating the challenges associated with density estimation
in low-density regions and manifold overfitting. Here, we consider pθ(x) to be a
REAL-NVP flow (Dinh et al., 2017a), which comprises five coupling bijections, each
consisting of a two-hidden layer multilayer perceptron (MLP). To assess the capability
of pθ(x) to recover the true data distribution, we use maximum mean discrepancy
(MMD) (Gretton et al., 2012) with a radial basis function (RBF) kernel on a held-out
set. In these experiments, we employ the Gaussian mollification strategy presented
in the previous section and compare the estimated density with the vanilla approach
where we use the original training data without any mollification.

Mixture of Gaussians. First, we consider a target distribution that is a mixture of
two Gaussians, as depicted in Fig. 6.4. As discussed in § 6.2.1, the vanilla training pro-
cedure fails to accurately estimate the true data distribution and scores, particularly
in the low-density regions. The estimated densities and the mollified data during

106
Chapter 6. Improving Training of Likelihood-based Generative Models with

Data Mollification

Iteration 5000 Iteration 20000Iteration 0Estimated distributionTarget distribution

scoresTrue

Figure 6.4: The first column shows the target distribution and the true
scores. The second column depicts the estimated distributions of the
Gaussian mixture model (GMM) , which yield MMD2 of 15.5 and 2.5
for the vanilla (top) and mollification (bottom) training, respectively.
The remaining columns show histogram of samples from the true (top

row) and mollified data (bottom row), and estimated scores.

0 5000 10000 15000 20000

2.3

4.61

Iteration

M
M

D
2

[lo
g]

0 5000 10000 15000 20000

1.15

1.38

Iteration

T
ra

in
in

g
lo

ss
[lo

g]

Vanilla Mollification

Figure 6.5: The learning curves of the GMM experiments.

Target distribution

Figure 6.6: The progression of the estimated densities for the von
Mises distribution from the vanilla (bottom row) and our mollification

(top row) approaches.

6.4. Experiments 107

Table 6.1: FID score on CIFAR10 and CELEBA dataset (lower is better).
The small colored numbers indicate improvement or degration of the

mollification training compared to the vanilla training.

MODEL
CIFAR10 CELEBA

VANILLA
GAUSSIAN

MOLLIFCATION

BLURRING

MOLLIFICATION
VANILLA

GAUSSIAN

MOLLIFICATION

BLURRING

MOLLIFICATOIN

REAL-NVP 131.15 121.75 ↓ 7.17% 120.88 ↓ 7.83% 81.25 79.68 ↓ 1.93% 85.40 ↑ 5.11%

GLOW 74.62 64.87 ↓ 13.07% 66.70 ↓ 10.61% 97.59 70.91 ↓ 27.34% 74.74 ↓ 23.41%

VAE 191.98 155.13 ↓ 19.19% 175.40 ↓ 8.64% 80.19 72.97 ↓ 9.00% 77.29 ↓ 3.62%

VAE-IAF 193.58 156.39 ↓ 19.21% 162.27 ↓ 16.17% 80.34 73.56 ↓ 8.44% 75.67 ↓ 5.81%

IWAE 183.04 146.70 ↓ 19.85% 163.79 ↓ 10.52% 78.25 71.38 ↓ 8.78% 76.45 ↓ 2.30%

β-VAE 112.42 93.90 ↓ 16.47% 101.30 ↓ 9.89% 67.78 64.59 ↓ 4.71% 67.08 ↓ 1.03%

HVAE 172.47 137.84 ↓ 20.08% 147.15 ↓ 14.68% 74.10 72.28 ↓ 2.46% 77.54 ↑ 4.64%

the training are depicted in Fig. 6.4. Initially, the mollification process considers a
simpler coarse-grained version of the target density, which is easy to model. This
is demonstrated by the low training loss at the beginning of the optimization, as
depicted in Fig. 6.5. Subsequently, the method gradually reduces the level of noise
allowing for a progressive refinement of the estimated versions of the target density.
This process uses the solution from one level of mollification as a means to guiding
optimization for the next. As a result, Gaussian mollification facilitates the recovery
of the modes and enables effective density estimation in low-density regions. The
vanilla training procedure, instead, produces a poor estimate of the target density, as
evidenced by the trace-plot of the MMD2 metric in Fig. 6.5 and the visualization of
the scores in Fig. 6.4.

Von Mises distribution. We proceed with an investigation of the von Mises distri-
bution on the unit circle, as depicted in Fig. 6.6, with the aim of highlighting the issue
of manifold overfitting (Loaiza-Ganem et al., 2022b). In this experiment, the data lies
on a one-dimensional manifold embedded in a two-dimensional space. The vanilla
training procedure fails to approximate the target density effectively, as evidenced by
the qualitative results and the substantially high value of MMD2 (≈ 383.44) shown in
Fig. 6.6. In contrast, Gaussian mollification gradually guides the estimated density
towards the target, as depicted in Fig. 6.6, leading to a significantly lower MMD2

(≈ 6.13). Additionally, the mollification approach enables the estimated model not
only to accurately learn the manifold but also to capture the mode of the density
correctly.

6.4.2 Image Experiments

Setup. We evaluate our method on image generation tasks on CIFAR10 (Krizhevsky
and Hinton, 2009) and CELEBA 64 (Liu et al., 2015) datasets, using a diverse set of
likelihood-based GMs. The evaluated models include the vanilla VAE Kingma and
Welling, 2014, the β-VAE (Higgins et al., 2017), and the VAE-IAF (Kingma et al.,

108
Chapter 6. Improving Training of Likelihood-based Generative Models with

Data Mollification

2016) which employs an expressive inverse autoregressive flow for the approximate
posterior. To further obtain flexible approximations of the posterior of latent variables
as well as a tight evidence lower bound (ELBO), we also select the Hamiltonian-VAE

(HVAE) (Caterini et al., 2018) and the importance weighted VAE (IWAE) (Burda et al.,
2016). For flow-based models, we consider the REAL-NVP (Dinh et al., 2017a) and
GLOW (Kingma and Dhariwal, 2018) models in our benchmark. We found that that
further training the model on the original data after the mollification procedure leads
to better performance. Hence, in our approach we apply data mollification during the
first half of the optimization phase, and we continue optimize the model using the
original data in the second half. Nevertheless, to ensure a fair comparison, we adopt
identical settings for the vanilla and the proposed approaches, including random
seed, optimizer, and the total number of iterations.

Blurring mollification. Even though Gaussian mollification is motivated by the
manifold hypothesis, it is not the only way to mollify the data. Indeed, Gaussian
mollification does not take into account certain inductive biases that are inherent in
natural images, including their multi-scale nature. Recently, Rissanen et al. (2023),
Hoogeboom and Salimans (2023), and Daras et al. (2023) have proposed methods
that incorporate these biases in diffusion-type generative models. Their approach
involves stochastically reversing the heat equation, which is a partial differential
equation (PDE) that can be used to erase fine-scale information when applied locally
to the 2D plane of an image. During training, the model first learns the coarse-scale
structure of the data, which is easier to learn, and then gradually learns the finer
details. It is therefore interesting to assess whether this form of data mollification
is effective in the context of this work compared to the Gaussian homotopy. Note,
however, that under the manifold hypothesis, this type of mollification produces the
opposite effect to Gaussian homotopy in that at time t = 0 mollified images lie on a
1D manifold and they are gradually transformed to span the dimension of the data
manifold; more details on blurring mollification can be found in the Appendix.

Image generation. We evaluate the quality of the generated images using the pop-
ular Fréchet Inception Distance (FID) score (Heusel et al., 2017) computed on 50K
samples from the trained model using the pytorch-fid 1 library. The results, reported
in Table 6.1, indicate that the proposed data mollification consistently improves model
performance compared to vanilla training across all datasets and models. Addition-
ally, mollification through blurring, which is in line with recent results from diffusion
models (Rissanen et al., 2023), is less effective than Gaussian mollification, although
it still enhances the vanilla training in most cases. We also show intermediate sam-
ples in Fig. 6.8 illustrating the progression of samples from pure random noise or
completely blurred images to high-quality images. Furthermore, we observe that

1https://github.com/mseitzer/pytorch-fid

https://github.com/mseitzer/pytorch-fid

6.4. Experiments 109

0 50 100 150 200

5.07

5.53

5.99

VAE

Epoch

FI
D

[lo
g]

vae

0 20 40 60 80

4.61

5.76

Epoch

FI
D

[lo
g]

glow

Vanilla Gaussian Mollification Blurring Mollification

Figure 6.7: The progression of FID on CIFAR10 dataset.

Epoch 0 Epoch 10 Epoch 20 Epoch 80

Figure 6.8: Intermediate samples generated from REAL-NVP flows
(Dinh et al., 2017a), which are trained on CELEBA dataset employed

with Gaussian (top row) and blurring mollification (bottom row).

Gaussian mollification leads to faster convergence of the FID score for VAE-based
models, as shown in Fig. 6.7. We provide additional results in the Appendix. As a
final experiment, we consider a recent large-scale VAE model for the CIFAR10 dataset,
which is a deep hierarchical VAE (NVAE) (Vahdat and Kautz, 2020). By applying
Gaussian mollification without introducing any additional complexity, e.g., step-size
annealing, we improve the FID score from 53.64 to 52.26.

Ablation study on noise schedule. We ablate on the choice of noise schedule for
Gaussian mollification. Along with the sigmoid schedule, we also consider the linear
(Ho et al., 2020) and cosine (Nichol and Dhariwal, 2021) schedules, which are also
popular for diffusion models. As shown in Table Table 6.2, our method consistently
outperforms the vanilla approach under all noise schedules. We also observe that the
sigmoid schedule consistently produced good results. Therefore, we chose to use the
sigmoid schedule in all our experiments.

Comparisons with the two-step approach in Loaiza-Ganem et al. (2022b). Mani-
fold overfitting in likelihood-based GMs has been recently analyzed in Loaiza-Ganem

110
Chapter 6. Improving Training of Likelihood-based Generative Models with

Data Mollification

Table 6.2: FID score on CIFAR10 w.r.t. different choices of noise sched-
ule.

MODEL VANILLA SIGMOID COSINE LINEAR

REAL-NVP 191.98 121.75 118.71 123.93
GLOW 74.62 64.87 71.90 74.36

VAE 191.98 155.13 154.71 156.47
β-VAE 112.42 93.90 92.86 93.14

IWAE 183.04 146.70 146.49 149.16

et al. (2022b), which provides a two-step procedure to mitigate the issue. The first step
maps inputs into a low-dimensional space to handle the intrinsic low dimensionality
of the data. This step is then followed by likelihood-based density estimation on the
resulting lower-dimensional representation. This is achieved by means of a general-
ized autoencoder, which relies on a certain set of explicit deep GMs, such as VAEs.
Here, we compare our proposal with this two-step approach; results are reported in
Table 6.3. To ensure a fair comparison, we use the same network architecture for our
VAE and their generalized autoencoder, and we rely on their official implementation
2. Following Loaiza-Ganem et al. (2022b), we consider a variety of density estimators
in the low-dimensional space such as NFs, autoregressive models (ARMs) (Uria et al.,
2013), adversarial variational Bayes (AVB) (Mescheder et al., 2017) and energy-based
models (EBMs) (Du and Mordatch, 2019). We observe that Gaussian mollification
is better or comparable with these variants. In addition, our method is extremely
simple and readily applicable to any likelihood-based GMs without any extra auxilary
models or the need to modify training procedures.

Table 6.3: Comparisons of FID scores on CIFAR10 between mollitica-
tion and two-step methods.

VANILLA VAE
MOLLIFICATION TWO-STEP

VAE+GAUSSIAN VAE + BLURRING VAE+NF VAE+EBM VAE+AVB VAE+ARM

191.98 155.13 175.40 208.80 166.20 153.72 203.32

Limitations. One limitation is that this work focuses exclusively on likelihood-
based GMs and on image data. The improvements in FID score indicate that the
performance boost is generally substantial, but still far from being comparable with
state-of-the-art DMs. While this may give an impression of a low impact, we believe
that this work is important in pointing to one of the successful aspects characterizing
DMs and show how this can be easily integrated in the optimization of likelihood-
based GMs. A second limitation is that, in line with the literature on GMs where
models are extremely costly to train and evaluate, we did not provide error bars
on the results reported in the tables in the experimental section. Having said that,

2https://github.com/layer6ai-labs/two_step_zoo

https://github.com/layer6ai-labs/two_step_zoo

6.5. Related work 111

the improvements reported in the experiments have been shown on a variety of
models and on two popular image datasets. Furthermore, the results are supported
theretically and experimentally by a large literature on Gaussian homotopy.

Broader impact. This work provides an efficient way to improve a class of GMs.
While we focused on images, the proposed method can be applied to other types of
data. Like other works in this literature, the proposed method can have both positive
(e.g., synthesizing new data automatically or anomaly detection) and negative (e.g.,
deep fakes) impacts on society depending on the application.

6.5 Related work

Our work is positioned within the context of improving GMs through the introduc-
tion of noise to the data. One popular approach is the use of denoising autoencoders
(Vincent et al., 2008), which are trained to reconstruct clean data from noisy samples.
Building upon this, Bengio et al., 2014 proposed a framework for modeling a Markov
chain whose stationary distribution approximates the data distribution. In addition,
Vincent, 2011 showed a connection between denoising autoencoders and score match-
ing, which is an objective closely related to recent diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020). More recently, Meng et al., 2021 introduced a two-step
approach to improve autoregressive generative models, where a smoothed version
of the data is first modeled by adding a fixed level of noise, and then the original
data distribution is recovered through an autoregressive denoising model. In a sim-
ilar vein, Loaiza-Ganem et al., 2022a recently attempted to use Tweedie’s formula
(Robbins, 1956) as a denosing step, but surprisingly found that it does not improve
the performance of NFs and VAEs. Our work is distinct from these approaches in
that Gaussian mollification guides the estimated distribution towards the true data
distribution in a progressive manner by means of annealing instead of fixing a noise
level. Moreover, our approach does not require any explicit denoising step, and it can
be applied off-the-shelf to the optimization of any likelihood-based GMs without any
modifications.

6.6 Conclusion

Inspired by the enormous success of score-based DMs, in this work we hypothesized
that data mollification is partially responsible for their impressive performance in
generative modeling tasks. In order to test this hypothesis, we introduced data mol-
lification within the optimization of likelihood-based GMs, focusing in particular
on NFs and VAEs. Data mollification is extremely easy to implement and it has
nice theoretical properties due to its connection with Gaussian homotopy, which

112
Chapter 6. Improving Training of Likelihood-based Generative Models with

Data Mollification

is a well-known technique to improve optimization. We applied this idea to chal-
lenging generative modeling tasks involving imaging data and relatively large-scale
architectures as a means to demonstrate systematic gains in performance in various
conditions and input dimensions. We measured performance in quality of generated
images through the popular FID score. While we are far from closing the gap with
DMs in achieving competing FID score, we are confident that this work will serve as
the basis for future works on performance improvements in state-of-the-art models
mixing DMs and likelihood-based GMs, and in alternative forms of mollification to
improve optimization of state-of-the-art GMs. For example, it would be interesting to
study how to apply data mollification to improve the training of GANs; preliminary
investigations show that the strategy proposed here does not offer significant perfor-
mance improvements, and we believe this is due to the fact that data mollification
does not help in smoothing the adversarial objective. Also, while our study shows
that the data mollification schedule is not critical, it would be interesting to study
whether it is possible to derive optimal mollification schedules, taking inspiration,
e.g., from Iwakiri et al. (2022). We believe it would also be interesting to consider
mixture of likelihood-based GMs to counter problems due to the union of manifolds
hypothesis, whereby the intrinsic dimension changes over the input (Brown et al.,
2023). Finally, it would be interesting to investigate other data, such as 3D point
cloud data (Yang et al., 2019) and extend this work to deal with other tasks, such as
supervised learning.

113

Chapter 7

Final Remarks and Outlooks

So far in this thesis, we have discussed several challenges in Bayesian deep learning
and proposed several solutions to address them. Theses challenges encompass the
intricate task of choosing sensible priors as well as the development of efficient
inference methodologies. In this chapter, we summarize the main contributions of
this thesis and discuss some open questions as well as future research directions.

7.1 Summary of Contributions

This thesis makes contributions that follow four different themes:

• Functional priors for Bayesian neural networks (Chapter 3)

In this chapter, we addressed the challenge of selecting priors for Bayesian
neural networks (BNNs) in supervised-learning settings through a practical and
efficient solution. Our approach involves adopting functional priors, which are
more easily elicited, and aligning neural network parameter priors with these
functional priors. To realize this, we employed Gaussian processes (GPs) as a
powerful tool for defining prior distributions over functions. We introduced
a novel framework to match their priors with the functional priors of BNNs
by minimizing their Wasserstein distance. Rigorous experimentation across
supervised-learning tasks demonstrated compelling empirical support for the
integration of these priors with scalable Markov chain Monte Carlo (MCMC)
sampling, consistently yielding considerable performance enhancements.

Open questions: The main open question is how we can choose the target
stochastic processes to map into BNN. Our proposed framework is general and
supports any stochastic process as long as we can sample from it. In this work,
we mainly considered shallow and hierarchical GPs as the target stochastic
processes. It would be interesting to explore the impact of other stochastic
processes, such as deep Gaussian processs (DGPs) or convolutional GPs (van
der Wilk et al., 2017) on the performance of BNNs.

114 Chapter 7. Final Remarks and Outlooks

• Model selection for Bayesian autoencoders (Chapter 4)

In this chapter, we introduced a novel framework for performing model se-
lection in Bayesian autoencoders via prior optimization. We approached this
by introducing a proxy for type-II maximum likelihood where we replace the
marginal likelihood with the Wasserstein distance between the data distribution
and the one modeled by the Autoencoder a priori. Our approach’s efficacy is
showcased through comprehensive experiments encompassing diverse unsuper-
vised learning tasks such as representation learning and generative modeling for
high-dimensional data, particularly in situations constrained by limited data
availability.

Open questions: Utilizing the marginal likelihood for selecting the prior dis-
tribution stands as a notably principled strategy, although its estimation poses
a considerable difficulty, particularly for BNNs. In this work, we proposed a
powerful and flexible framework to optimize this objective by leveraging the
Wasserstein distance but only focused on unsupervised learning tasks. The
open question is how to extend this framework to BNNs in supervised learning
settings.

• Sparse Gaussian process priors for fully Bayesian autoencoders (Chapter 5)

In this chapter, we introduced a fully Bayesian autoencoder model that extends
the Bayesian treatment to both local latent variables and global decoder pa-
rameters. Our approach involves an amortized MCMC method utilizing an
implicit stochastic network as an encoder. This enables flexible priors and
posterior approximations while maintaining low computational costs for infer-
ence. Additionally, we proposed incorporating sparse Gaussian process priors
over the latent space to capture correlations between latent encodings. Our
approach showcased impressive performance across dynamic representation
and generative modeling tasks, as evident by a wide range of experiments.

Open questions: Although our novel fully Bayesian autoencoder model allows
us to specify any priors on the latent space and the decoder parameters, in
this work, we only employed a simple isotropic Gaussian prior for the decoder
parameters. Exploring more informative priors for the decoder parameters is
worthwhile in future work to further improve the performance of our model.

• Improving training of likelihood-based generative models with data molli-
fication (Chapter 6)

In this chapter, we introduced a simple yet effective technique to improve the
training of likelihood-based generative models through data mollification. This
was inspired by the recent success of diffusion models. A key feature of score-
based diffusion models is to accurately estimate density in low-density regions
and address manifold overfitting by employing data mollification through

7.2. Future Directions 115

the addition of Gaussian noise. Remarkably, data mollification introduces no
additional computational burden and can be seamlessly integrated into any
training loop with just a single line of code. We demonstrated that this simple
technique can significantly facilitate inference and consistently enhances the
sample quality of likelihood-based generative models, including variational
autoencoders (VAEs) and normalizing flows.

Open questions: It would be interesting to study how to apply our data molli-
fication technique to implicit generative models such as generative adversarial
networks (GANs); preliminary investigations show that the strategy proposed
here does not offer significant performance improvements. Moreover, we
adopted some data mollification schedules from diffusion models and demon-
strated their efficacy in enhancing the training of likelihood-based generative
models. Nevertheless, there remains the potential to derive optimal mollifica-
tion schedules tailored specifically to these models.

7.2 Future Directions

One of the main research hypotheses of this thesis is that with appropriate priors,
Bayesian deep learning can offer data-efficiency, accurate and reliable solutions which enable
us to solve many challenging practical problems. In this thesis, we successfully developed
fundamental methods to specify sensible priors for Bayesian deep learning models.
However, inspired by the “no-free-lunch” theorem (Wolpert, 1996), we believe that
there is no universally preferred prior as different tasks require their own inductive
biases. Thus, our next goals are: (1) to develop novel approaches to incorporate
prior knowledge and impose inductive biases into various network architectures
for tasks for which this has yet to be done; and (2) to test these priors on practical
and important applications where high-quality uncertainty estimates and robust
predictions are needed. To this end, we identify two promising research directions,
which we will discuss in the following.

Unsupervised Learning Informative Priors for Bayesian Neural Nets

Deep learning models offer powerful tools to learn from data, but models usually
require a huge amount of labeled data to be successful. This is one of the biggest
obstacles to applying deep learning models in practical settings such as medical
imaging or, in more general, life sciences, where the cost of annotating data is ex-
pensive. Meanwhile, unlabeled data are increasingly available due to advances in
sensor technologies. As a result, the idea of exploiting additional data, e.g., unlabeled
data from the same task, or labeled data from different but related tasks, has been
considered a practical way to reduce the amount of labeled training data required

116 Chapter 7. Final Remarks and Outlooks

to learn a task. This is the main motivation for transfer, meta, semi, self-supervised
learning, and recent foundation models (Bommasani et al., 2021) for a large number
of applications of deep learning in recent years.

Even though the Bayesian framework offers a principled approach to incorporating
prior knowledge into our model, there is still a lack of sound and effective methods to
exploit extra unlabeled data to define informative priors for Bayesian neural networks
for supervised learning tasks. Recently, there have been some attempts to utilize
extra data to specify priors for Bayesian neural networks. For example, Atanov et al.
(2019) firstly train a convolutional neural network (CNN) on related tasks and then
learn a generative model using a VAE for the learned filter weights. This generative
model is then used as a prior for convolutional filters of a Bayesian neural network for
downstream tasks. Meanwhile, Shwartz-Ziv et al. (2022) proposed to use a re-scaled
Bayesian posterior from the first task as a pre-trained prior for the downstream task.
However, these works mainly consider leveraging auxiliary labeled data and are cast
into settings such as domain adaptation or homogeneous transfer learning where
the source and target tasks have similar features and label spaces but differ in their
marginal distributions. Unfortunately, the transfer of these approaches from the
supervised to unsupervised context is not trivial because of the huge amount of
model parameters to fit and the absence of an objective quantity to optimize in this
case.

Inspired by the success of our recent work on Bayesian autoencoders (BAEs) (Tran
et al., 2021), the first future direction is to develop a novel method based on this
model that enables unsupervised learning of informative foundation priors for su-
pervised learning tasks from massive unlabeled data. We demonstrated that, given
a good prior, BAEs outperform variants of VAEs (Kingma and Welling, 2014) in
terms of quality of generated samples but also on representation learning. Thanks to
the distributional sliced Wasserstein distance (Nguyen et al., 2021), we proposed a
principled approach to optimize the prior for this model bypassing computationally
involved procedures and the curse of dimensionality. We also found that the resulting
prior over the parameters of the encoder induces a meaningful and reusable prior
in the latent space. In addition, the main distinction of BAEs from VAEs is that we
impose prior directly on the parameters of the network instead of on the latent space.
Thus the resulting prior for the encoder can be adapted easily to the downstream
supervised tasks. We also endeavor to investigate strategies to constrain the latent
space and refine this prior to impose the inductive bias effectively while retaining
the model’s flexibility for the downstream task. Additionally, it is crucial to validate
this framework not only on standard benchmarks but also in critical applications like
medical image classification and segmentation, where annotated data is scarce and
robust uncertainty estimation is highly desirable.

7.2. Future Directions 117

Informative Priors for Bayesian Graph Neural Networks

Graph data is ubiquitous in the real world, including social networks, traffic networks,
and molecules, to just name a few. Recently, graph neural networks (GNNs) (Kipf
and Welling, 2017) have attracted significant attention in dealing with such data due
to the ability to learn effectively graph representations based on message-passing. In
the last few years, these models have achieved remarkable accuracy in a wide range
of important applications, such as learning dynamics of physical systems, learning
multiagent communications, and protein structure predictions.

Unfortunately, recent works (Teixeira et al., 2019; Wang et al., 2021; Hsu et al., 2022)
reveal that GNNs are not trustworthy, and more importantly, GNNs tend to be
under-confident in their predictions, which is very different from other modern
deep learning models that are often over-confident. Furthermore, state-of-the-art
calibration methods for deep learning models are not able to fix this issue (Teixeira
et al., 2019). There are some recent works have been proposed to tackle this problem
in a post-hoc manner. However, these require leaving out part of the data to perform
post-recalibration, which can be problematic in applications where obtaining labeled
data is difficult or expensive. In addition, Ovadia et al., 2019 showed that post-
hoc calibration gives good results in independent and identically distributed (i.i.d.)
regimes, but it usually fails under even a mild distributional shift of the data.

The first part of the second future research direction aims at revisiting the scalable
Bayesian treatment of Graph Neural Networks and at designing informative priors
for these models, which enable data-efficient learning and reliable uncertainty esti-
mation. Some recent works (Elinas et al., 2020; Hasanzadeh et al., 2020) demonstrate
that Bayesian GGNs are more robust than their deterministic counterpart in dealing
with challenging cases, such as learning in the absence of an input graph and dealing
with highly-effective adversarial perturbations of the graph. However, the literature
on evaluating the uncertainty estimation of Bayesian GNNs and choosing sensible
priors for these models is far from mature. Besides, priors for Bayesian GNNs are still
overlooked and mainly built in an ad-hoc manner (Elinas et al., 2020). There are two
possible steps to solve theses problems. The first step is to perform a comprehensive
evaluation of uncertainty estimation from scalable Bayesian methods for GGNs not
only in i.i.d. regimes but also under dataset shift. The second step is to design
novel topology-aware priors to further increase the robustness and data-efficiency of
Bayesian GNNs by encoding our high-level beliefs on the graph data. For example,
the novel priors should reflect our knowledge of topology factors that influence the
calibration of GNNs (Hsu et al., 2022), such as diversity of node distributions, neigh-
borhood similarity, etc. Another example in the context of modeling of molecules, is
incorporating the belief that molecules are invariant to rotations.

The second part of this research direction is intended to apply Bayesian GNNs en-
dowed with good priors to Bayesian optimization for scientific problems such as

118 Chapter 7. Final Remarks and Outlooks

optimization of chemical properties of molecules. Bayesian opimization (BO) is well-
suited for global optimization of expensive and black-box functions and has been
widely used in many contexts where experiments or simulations can be extremely
costly and time-consuming. The key element of BO is a surrogate model which
captures a distribution over potential functions to incorporate uncertainty in its pre-
diction. GPs are typically chosen as the surrogate model for BO but these models have
several bottlenecks, such as scaling poorly with the number of data points and often
struggling in high dimensional search spaces. BNNs therefore have been proposed as
an alternative to GPs to tackle complex BO tasks with high-dimensional structured
data (Kim et al., 2022). In addition, Wang et al. (2022) recently showed that choosing
a sensible prior over functions plays an important role for BO but only considered the
case of GPs. Our aim, therefore, is to extend our framework for choosing functional
priors (Tran et al., 2022) for BNNs and combine them with novel topology-aware
priors for Bayesian optimization problems on graph data. By imposing sensible
inductive biases on the graph and constraints on the function space, these priors
are expected to significantly facilitate the Bayesian optimization process in terms of
sample efficiency. This is extremely helpful for applications of chemical optimization
such as drug design and material optimization, where the space of synthesizable
molecules is extremely large and complex while the synthesis cost is very large.

119

Appendix A

Appendix for Chapter 3

A.1 A primer on Wasserstein Distance

Given two Borel’s probability measures π(x) and ν(y) defined on the Polish space X and
Y (i.e. any complete separable metric space such as a subset of Rd), the p-Wasserstein
distance is defined as follows

Wp(π, ν) =

(
inf

γ∈Γ(π,ν)

∫
X×Y

D(x, y)pγ(x, y)dxdy
)1/p

, (A.1)

where D(x, y) is a proper distance metric between two points x and y in the space
X × Y and Γ(π, ν) is the set of functionals of all possible joint densities whose
marginals are indeed π and ν.

When the space of x and y coincides (i.e. x, y ∈ X ⊆ Rd), the most used formulation
is the 1-Wasserstein distance with Euclidian norm as distance,

W(π, ν) = inf
γ∈Γ(π,ν)

∫
X×X

‖x− y‖γ(x, y)dxdy , (A.2)

This is also known in the literature as the Earth-Mover distance. Intuitively, here γ

measures how much mass must be transported from x to y in order to transform
the distributions π into the distribution ν. Solving the Wasserstein distance means
computing the minimum mass that needs to be moved. The question “How?” is
answered by looking at the optimal transport plan (not the focus of these notes).

The remaining part of these notes will be dedicated to the proof of the dual formu-
lation for Eq. A.2. It is well known in the literature of optimization that linear pro-
gramming problem with convex constrains admits a dual formulation. Kantorovich
introduced the dual formulation of the Wasserstein distance in 1942.
Theorem 2. On the same setup as before, the Wasserstein distance defined as

W(π, ν) = inf
γ∈Γ(π,ν)

∫
X×X

‖x− y‖γ(x, y)dxdy , (A.3)

120 Appendix A. Appendix for Chapter 3

admits the following dual form

W(π, ν) = sup
‖ f ‖L≤1

∫
X

f (x)π(x)dx−
∫
X

f (y)ν(y)dy (A.4)

where f is a 1-Lipschitz continuous function defined on X → R.

Step 1: Kantorovich duality

First of all we start with the Kantorovich duality, which defines a dual form for the
generic 1-Wasserstein.
Theorem 3. Given a nonnegative measurable function D : X ×X → R, the 1-Wasserstein
is computed as follows,

W(π, ν) = inf
γ∈Γ(π,ν)

∫
D(x, y)γ(x, y)dxdy , (A.5)

The Kantorovich duality proves that this is equal to the following constrained optimization
problem,

W(π, ν) = sup
f ,g

f (x)+g(y)≤D(x,y)

∫
f (x)π(x)dx +

∫
g(y)ν(y)dy . (A.6)

We define ιΓ(γ) the following quantity

ιΓ(γ) = sup
f ,g

[∫
f (x)π(x)dx +

∫
g(y)ν(y)dy−

∫∫
[f (x) + g(y)] γ(x, y)dxdy

]

and we observe that

ιΓ(γ) =

{
0 if γ ∈ Γ(π, ν) ,

+∞ otherwise .

This is true because given the definition of Γ, if γ ∈ Γ(π, ν) then π(x) =
∫

γ(x, y)dy
and ν(y) =

∫
γ(x, y)dx. By substituiting these quantities, it follows that∫

f (x)π(x)dx +
∫

g(y)ν(y)dy =
∫

f (x)
∫

γ(x, y)dydx +
∫

g(y)
∫

γ(x, y)dxdy

=
∫∫

[f (x) + g(y)] γ(x, y)dxdy .

In other cases, f and g can be chosen such that the supremum becomes +∞. Given
this property and the constrain on γ, we can add ιΓ(γ) to the formulation of the

A.1. A primer on Wasserstein Distance 121

Wasserstein distance in Eq. A.3,

W(π, ν) = inf
γ∈Γ(π,ν)

[∫
D(x, y)γ(x, y)dxdy

]
+ ιΓ(γ) =

= inf
γ

[∫
D(x, y)γ(x, y)dxdy + sup

f ,g

[∫
f (x)π(x)dx +

∫
g(y)ν(y)dy− (A.7)

∫∫
[f (x) + g(y)] γ(x, y)dxdy

]]
,

Now, the original integral of the Wasserstein distance does not depend on f and g;
therefore the supremum can be moved in front,

W(π, ν) = inf
γ

sup
f ,g

Υ(γ, (f , g)) (A.8)

Υ(γ, (f , g)) def
=
∫

D(x, y)γ(x, y)dxdy +
∫

f (x)π(x)dx +
∫

g(y)ν(y)dy−∫∫
[f (x) + g(y)] γ(x, y)dxdy

Under certain conditions stated by the minimax theorem, i.e. Υ(γ, (f , g)) is convex-
concave function (Υ is concave for fixed (f , g) while convex for fixed γ), we can swap
the infinum and the supremum and rewrite the definition as follows,

W(π, ν) = sup
f ,g

inf
γ

∫
[D(x, y)− f (x)− g(y)] γ(x, y)dxdy +

∫
f (x)π(x)dx +

∫
g(y)ν(y)dy

Proofs that the hypothesis used for the minimax theorem hold for this case are
presented in Theorem 1.9 of “Topics in Optimal Transport” (Villani, 2003). Focusing
on the infimum part, we can write

inf
γ

∫
[D(x, y)− f (x)− g(y)] γ(x, y)dxdy =

{
0 if f (x) + g(y) ≤ D(x, y) ,

−∞ otherwise .

If the function ζ(x, y) = D(x, y)− (f (x) + g(y)) takes a negative value at some point
(x0, y0), then by choosing γ = λδ(x0, y0) with λ→ +∞ (i.e. a Dirac delta in (x0, y0)),
we see that the infimum is infinite. On the other hand, is ζ(x, y) is nonnegative,
then the infimum is obtained for γ = 0. Finally, this constrains can be added to the
previous conditions making thus recovering the formulation in Eq. A.4.

Step 2: D-Transforms

The next challenge is to find f and g such that we can easily recover the constrain
optimization above. We approach this problem by supposing to have chosen some
f (x). This means that the objective is to find a good g(y) that for all x, y satisfy the

122 Appendix A. Appendix for Chapter 3

condition

f (x) + g(y) ≤ D(x, y) .

The trivial solution is g(y) ≤ D(x, y)− f (x). This must be true for all x, also in the
worst case (when we take the infimum),

g(y) ≤ inf
x
[D(x, y)− f (x)] .

At this point, we observe that for a given f , if we want the supremum in Eq. 5 we
cannot get a better g then taking the equality,

f̄ (y) := inf
x
[D(x, y)− f (x)] .

We therefore have the following formulation of the Wasserstein distance,

W(π, ν) = sup
f

[∫
f (x)π(x)dx +

∫
f̄ (y)ν(y)dy

]

If now we suppose to choose g, by following the same reasoning the best f that we
can get is defined

¯̄f (x) = ḡ(x) := inf
y
[D(x, y)− g(y)] .

If we replace g(y) with Eq. 17 we have yet another recursive definition of the
Wasserstein distance,

W(π, ν) = sup
f

[∫
¯̄f (x)π(x)dx +

∫
f̄ (y)ν(y)dy

]

If we constrain f to be D-concave, then ¯̄f = f .

Step 2.1: Euclidean distance

It’s worth mentioning that this formulation is valid for any nonnegative measurable
function D. For the Euclidian distance this simplify even further.
Theorem 4. When D(x, y) = ‖x− y‖ and f is 1-Lipschitz, f is D-concave if and only if
f̄ = − f

We prove the necessity condition of such result. First of all, we observe that if f is
1-Lipschitz then f̄ is 1-Lipschitz too. This is true because for any given x

f̄x(y) = ‖x− y‖ − f (x)

A.2. Implementation and experimental details 123

is 1-Lipschitz and therefore the infimum of f̄ (y) = infx ‖x− y‖ − f (x) is 1-Lipschitz.
Since f̄ is 1-Lipschitz, for all x and y we have∣∣ f̄ (y)− f̄ (x)

∣∣ ≤ ‖y− x‖
=⇒ − f̄ (x) ≤ ‖x− y‖ − f̄ (y)

Since this is true for all y,

− f̄ (x) ≤ inf
y
‖x− y‖ − f̄ (y)

− f̄ (x) ≤ inf
y
‖x− y‖ − f̄ (y)︸ ︷︷ ︸

¯̄f≡ f

≤ − f̄ (x)

where the right inequality follows by choosing y = x in the infimum. We know that
¯̄f ≡ f . This means that − f̄ (x) must be equal to f (x) for the last equation to hold.

Step 3. Putting everything together

We started our discussion by proving the Kantovich duality, which states that

inf
γ∈Γ(π,ν)

∫
D(x, y)γ(x, y)dxdy = sup

f ,g
f (x)+g(y)≤D(x,y)

∫
f (x)π(x)dx +

∫
g(y)ν(y)dy ,

We then proved that

sup
f ,g

f (x)+g(y)≤D(x,y)

[∫
f (x)π(x)dx +

∫
g(y)ν(y)dy

]
=

= sup
f

f̄=infx D− f

[∫
f (x)π(x)dx +

∫
f̄ (y)ν(y)dy

]
,

Finally, given D(x, y) to be the Euclidean distance, we discussed the shape of f̄ when
we restrict f to be 1-Lipschitz, showing that f̄ = − f . Putting everything together, we
obtain the dual 1-Wasserstein distance in Eq. A.4,

W(π, ν) = sup
‖ f ‖L≤1

∫
f (x)π(x)dx−

∫
f (y)ν(y)dy

A.2 Implementation and experimental details

In this section, we present details on implementation and hyperparameters used
in our experimental campaign. Our implementation is mainly in PyTorch (Paszke

124 Appendix A. Appendix for Chapter 3

et al., 2019). We follow the standard protocol of training, validation and testing.
The hyperparameters are selected according to the negative log-likelihood (NLL)
performance on a validation set, which is created by randomly choosing 20% of
the data points from the training set. We standardize all the input features and the
outputs using the statistics of the training set. Regarding prior optimization, unless
otherwise specified, for the inner loop of Algorithm 2, we use the Adagrad optimizer
(Duchi et al., 2011) with a learning rate of 0.02, a Lipschitz regularization coefficient
λ = 10, and a number of Lipschitz iterations nLipschitz = 200. Whereas, for the outer
loop of Algorithm 2 we use the RMSprop optimizer (Tieleman and Hinton, 2012)
with a learning rate of 0.05 for the experiments on the UCI and BANANA datasets,
and a learning rate of 0.01 for the rest. See Appendix A.3.3 for the progressions of
prior optimization.

A.2.1 Deep Ensemble

Deep Ensemble (Lakshminarayanan et al., 2017) averages the predictions across
networks trained independently starting from different initializations. In our experi-
ments, we use an ensemble of 5 neural networks. Every member of the ensemble is
trained with the L2-regularized objective

L(w) := − 1
N

N

∑
i=1

log p(yi | xi, w) +
λ

2
‖w‖2

2, (A.9)

where N is the size of training data, λ is the weight decay coefficient, log p(yi | xi, w)

is the log likelihood evaluated at the data point (xi, yi). Following Lakshminarayanan
et al. (2017), for regression task, in order to capture predictive uncertainty, we use a
network that outputs the predicted mean µw(x) and variance σ2

w(x). Assume that
the observed value follows a heteroscedastic Gaussian distribution, the log likelihood
is then

log p(yi | xi, w) = −1
2

log σ2
w(xi)−

(yi − µw(xi))
2

2σ2
w(xi)

+ const. (A.10)

For the classification task, the log likelihood is simply the softmax cross-entropy loss.

We use the Adam optimizer (Kingma and Ba, 2015) to train all the networks. For
multilayer perceptrons (MLPs), we use a fixed learning rate 0.01 and total epochs of
50. Whereas convolutional neural networks (CNNs) are trained for 200 epochs. The
learning rate starts from 10−2 and decays to (10−3, 10−4, 10−5) at epochs (50, 100, 150).
The L2 regularization strength is tuned over a grid λ ∈

{
10k | k from -8 to -1

}
.

A.2.2 Likelihoods for BNNs

Similarly to the prior, the likelihood for Bayesian neural networks (BNNs) is a mod-
eling choice. It is a function of the model predictions ŷ and the correct targets

A.2. Implementation and experimental details 125

y. For multi-class C-way classification, the neural network (NN) have C output
units over which a softmax function is applied, hence the network outputs class
probabilities. The likelihood is commonly chosen as a multinomial distribution,
p(D |w) = ∏N

n=1 ∏C
c=1 ŷyn,c

n,c , for C classes, where ŷ ∈ [0, 1] denotes predicted proba-
bility, and yn,c is the true targets.

For regression, one usually models output noise as a zero-mean Gaussian: ε ∼
N (0, σ2

ε), where σ2
ε is the variance of the noise. The likelihood is then the Gaussian

p(D |w) = N (y | ŷ, σ2
ε). Notice that the noise variance σ2

ε is treated as a hyperparam-
eter. We do choose this hyperparameter over the grid σ2

ε ∈
{

5k, 10k | k from -3 to -1
}

.
The optimal values are selected according to the NLL result of the predictive posterior.
Table A.4 and Table A.6 present σ2

ε used in the UCI regression experiments.

Experimental configurations. In all experiments, unless otherwise specified, we
use a momentum coefficient α = 0.01, and a step size ε = 0.01. For the UCI regression
experiments, we sample four independent chains; for each chain, the number of
collected samples after thinning is 30 except for the large dataset (PROTEIN), where a
number of 60 samples is used. The thinning intervals are 2000 and 5000 iterations for
the small and large datasets, respectively. The burn-in period lasts 2000 iterations for
the BOSTON, CONCRETE, ENERGY, WINE datasets, and 5000 iterations for the rest.
For the UCI classification experiments, we also use four chains, in which the number
of burn-in iterations are 2000 for small datasets (EEG, HTRU2, MAGIC, and MOCAP)
and 5000 for large datasets (MINIBOO, LETTER, and DRIVE). We draw 30 samples
for each chain with a thinning interval of 2000 iterations for the small datasets and
5000 iterations for the large datasets. In the experiments with CNNs on CIFAR10,
after a burn-in phase of 10, 000 iterations, we collect 200 samples with a thinning
interval of 10, 000 iterations.

A.2.3 Tempered posterior

We follow the approach of Wenzel et al. (2020) for tempering the posterior as follows

p(w | D) ∝ exp(−U(w)/T), (A.11)

where U(w) = − log p(D |w)− log p(w) is the potential energy, and T is the temper-
ature value. As suggested by Wenzel et al. (2020), we only study the “cold” posterior,
where a temperature T < 1 is used. In this case, we artificially sharpen the posterior
by overcounting the training data by a factor of 1/T and rescaling the prior as p(w)

1
T .

As a result, the posterior distribution is more concentrated around solutions with
high likelihood. In our experiments, we do grid-search over temperature values
T ∈

{
0.5, 0.1, 10−2, 10−3, 10−4}.

126 Appendix A. Appendix for Chapter 3

A.2.4 Details on the sampling scheme for BNN hierarchical priors

As mentioned in § 3.4.2, for the BNN hierarchical priors, we firstly place a Gaussian
prior on the network parameters. For simplicity, let’s consider only the weights in
l-th layer. We have

w(1)
l , ..., w(Nl)

l
i.i.d.∼ N (0, σ2

lw), (A.12)

where w(i)
l is the i-th weight, Nl is the number of weights in layer l. We further place

an Inverse-Gamma prior on the variance:

σ2
lw ∼ Γ−1(αlw , βlw). (A.13)

We aim to generate samples from the posterior p
(

σ2
lw , {w(i)

l }
Nl
i=1 | D

)
. As done by

Chen et al. (2014), the sampling procedure is carried out by alternating the following
steps:

(i) Sample weights from p
(
{w(i)

l }
Nl
i=1 | σ2

lw ,D
)

using the stochastic gradient Hamil-
tonian Monte Carlo (SGHMC) sampler. We sample the weights for K steps
before resampling the variance.

(ii) Sample the variance from p
(

σ2
lw | {w

(i)
l }

Nl
i=1

)
using a Gibbs step.

Assume we observed the weights {w(i)
l }i=1 after the step (i), the posterior for the

variance can be obtained in a closed form as follows

p
(

σ2
lw | {w

(i)
l }

Nl
i=1

)
∝

(
Nl

∏
i=1

p
(

w(i)
l | σ2

lw

))
p
(
σ2

lw | αlw , βlw
)

∝

(
Nl

∏
i=1

(
σ2

lw

)−1/2
exp

{
− 1

2σ2
lw

(
w(i)

l

)2
}) (

σ2
lw

)−αlw−1
exp

{
− 1

σ2
lw

βlw

}

=
(
σ2

lw

)−(αlw+Nl/2)−1
exp

{
− 1

σ2
lw

(
βlw +

1
2

Nl

∑
i=1

(
w(i)

l

)2
)}

∝ Γ−1

(
αlw +

Nl

2
, βlw +

1
2

Nl

∑
i=1

(
w(i)

l

)2
)

. (A.14)

As a default, in our experiments, we set the resampling interval K = 100 except for
the experiment on the 1D synthetic dataset (§ 3.5.1), in which we use K = 20.

A.2.5 MAP estimation with Gaussian prior

For completeness, we describe the maximum-a-posteriori (MAP) estimation for the
case of Gaussian prior used in § 3.6.7. This derives interpretation of the regularization
effect from the prior for deterministic networks. We aim at finding a point estimate

A.2. Implementation and experimental details 127

that maximizes the posterior:

wMAP = arg max
w

p(w | D)

= arg max
w

p(D |w)p(w)

= arg max
w
{log p(D |w) + log p(w)}. (A.15)

If the prior is a Gaussian distribution, p(w) = N (µ, Σ), we have

wMAP = arg max
w

{
log p(D |w)− 1

2
(w− µ)>Σ−1(w− µ)

}
. (A.16)

In our experiments, the prior covariance is set as isotropic, Σ = σ2
priorI, and prior

mean is zero, µ = 0. Thus, we have

wMAP = arg max
w

{
log p(D |w)− 1

2σ2
prior
‖w‖2

2

}
(A.17)

Here, we use the same likelihoods p(D|w) as in Appendix A.2.2.

Regression task. For the Gaussian likelihood p(D |w) = N (y | ŷ, σ2
ε), the MAP

estimation is then

wMAP = arg max
w

{
− 1

2σ2
ε

‖ŷ− y‖2
2 −

1
2σ2

prior
‖w‖2

2

}
. (A.18)

This is equivalent to minimizing the L2-regularized squared-error objective:

wMAP = arg min
w

{
N

∑
n=1

(ŷn − yn)
2 +

σ2
ε

σ2
prior
‖w‖2

2

}
. (A.19)

Here, we can interpret that the term σ2
ε

σ2
prior

controls the regularization strength.

Classification task. For the multinomial likelihood p(D |w) = ∏N
n=1 ∏C

c=1 ŷyn,c
n,c , es-

timating MAP is equivalent to minimizing the L2-regularized cross-entropy objective:

wMAP = arg min
w

{
−

N

∑
n=1

C

∑
c=1

yn,c log(ŷn,c) +
1

2σ2
prior
‖w‖2

2

}
, (A.20)

where 1
σ2

prior
is the regularization coefficient.

128 Appendix A. Appendix for Chapter 3

Layer Dimensions

Conv2D 3× 6× 5× 5
Conv2D 6× 16× 5× 5

Linear-ReLU 400× 120
Linear-ReLU 120× 84

Linear-Softmax 84× 10

Table A.1:
LENET5 archi-

tecture

Layer Dimensions

Conv2D 3× 16× 3× 3

Residual Block

[
3× 3, 16
3× 3, 16

]
× 3

Residual Block

[
3× 3, 32
3× 3, 32

]
× 3

Residual Block

[
3× 3, 64
3× 3, 64

]
× 3

AvgPool 8× 8
Linear-Softmax 64× 10

Table A.2: PRE-
RESNET20 archi-

tecture

Layer Dimensions

Conv2D 3× 32× 3× 3
Conv2D 32× 32× 3× 3
MaxPool 2× 2
Conv2D 32× 64× 3× 3
Conv2D 64× 64× 3× 3
MaxPool 2× 2
Conv2D 64× 128× 3× 3
Conv2D 128× 128× 3× 3
Conv2D 128× 128× 3× 3
MaxPool 2× 2
Conv2D 128× 256× 3× 3
Conv2D 256× 256× 3× 3
Conv2D 256× 256× 3× 3
MaxPool 2× 2
Conv2D 256× 256× 3× 3
Conv2D 256× 256× 3× 3
Conv2D 256× 256× 3× 3
MaxPool 2× 2

Linear-ReLU 256× 256
Linear-ReLU 256× 256

Linear-Softmax 256× 10

Table A.3: VGG16
architecture

A.2.6 Network architectures

As previously mentioned in ??, we employ the NTK parameterization (Jacot et al.,
2018; Lee et al., 2020) for MLPs and CNNs. We initialize the weights wl ∼ N (0, 1)
and bl = 0 for both fully-connected and convolutional layers. Tables A.1 to A.3
show details on the CNNs architectures used in our experimental campaign. These
networks are adapted to the CIFAR10 dataset. The parameters of batch normalization
layers of PRERESNET20 are treated as constants. In particular, we set the scale and
shift parameters to 1 and 0, respectively.

A.2.7 Measuring similarity between GPs and BNNs using maximum mean
discrepancy

In § 3.5.3, we adopted the approach of Matthews et al. (2018) to measure the similarity
between Gaussian processes (GPs) and BNNs using a kernel two-sample test based
on maximum mean discrepancy (MMD) Gretton et al. (2012). The MMD between two

A.2. Implementation and experimental details 129

distributions pgp and pnn is defined as follows

MMD(pgp , pnn) = sup
‖h‖H≤1

[
Epgp [h]−Epnn [h]

]
, (A.21)

whereH denotes a reproducing kernel Hilbert space (RKHS) induced by a character-
istic kernel K. Similarly to the Wasserstein distance, MMD is an integral probability
metric (Müller, 1997). The main difference is the choice of class functions H as we
consider the class of 1-Lipschitz functions for the Wasserstein distance. In fact, under
some mild conditions, these metrics are equivalent.

By considering two stochastic processes pgp and pnn at a finite number of measure-
ment points XM, we can obtain the closed form of MMD as follows

MMD2(pgp , pnn) = E fM, f ′M∼pgp [K(fM, f ′M)] + E fM, f ′M∼pnn [K(fM, f ′M)] (A.22)

− 2E fM∼pgp , f ′M∼pnn [K(fM, f ′M)],

which can be estimated by using samples from pnn and pgp evaluated at XM (Gretton
et al., 2012). For the MMD estimate, we use an radial basis function (RBF) kernel
with a characteristic lengthscale of l =

√
2D, where D is the number of dimensions

of the input features, and 5000 samples from pnn and pgp . The measurement set is
comprised of 500 test points.

A.2.8 Details on the experiments with functional BNNs and empirical
Bayes

In the experiments with fBNN, we keep the same settings as used in Sun et al. (2019)1.
In particular, we use a GP with RBF kernels for small UCI datasets with less than 2000
data points, while a GP with Neural Kernel Network (NKN) kernels is employed for
large UCI datasets.

In the experiments with the empirical Bayes approach (Immer et al., 2021b), following
the Authors’ repository2, we use the Laplace library (Daxberger et al., 2021) for the
implementation. We use the Kronecker-factored Laplace for Hessian approximation.
We follow the same experimental protocol of (Immer et al., 2021b) including the
optimizer, the early stopping scheme and the frequency of updating the prior.

1https://github.com/ssydasheng/FBNN
2https://github.com/AlexImmer/marglik

https://github.com/ssydasheng/FBNN
https://github.com/AlexImmer/marglik

130 Appendix A. Appendix for Chapter 3

A.3 Additional results

A.3.1 Additional results on MAP estimation with GP-induced priors

Fig. A.1 illustrates the comparison between early stopping, and MAP estimation with
the FG and GPi-G priors on the UCI regression datasets. We use the same setup as in
§ 3.6.7. We observe that the predictive performance obtained by MAP with the GPi-G

prior outperforms those of early stopping and MAP with the FG prior in most cases.

A.3.2 Tabular results on the UCI benchmarks

Detailed results on the UCI regression and classification datasets are reported in
Tables A.4 to A.7.

A.3.3 Convergence of Wasserstein optimization

Figs. A.4 to A.6 depict the progressions of Wasserstein optimization in the UCI

regression, UCI classification, and CIFAR10 experiments, respectively.

A.3.4 Additional comparisons with the empirical Bayes approach

We complement the results presented in § 3.6.5 with different scenarios of optimizing
the prior and carrying out the inference. In particular, we evaluate our GPi-G prior
when employed with the scalable Laplace approximation (LA) approach (Immer et al.,
2021a) for inference, refered as “GPi-G prior + LA-GGN”. As shown in Fig. A.2, the
GPi-G prior still outperforms the fixed prior (FG prior). In addition, we consider the
case where the prior optimized on the approximated marginal likelihood (Immer
et al., 2021b) is used together with SGHMC. We denote this approach “LA-MargLik
+ SGHMC”. As it can be seen from the results, this prior is not helpful and even
worse than the fixed prior when employed with the SGHMC. This is reasonable
because the LA-MargLik prior is closely tied with the LA-GGN inference method;
the marginal likelihood is optimized jointly with the approximate posterior, and the
same optimized hyperparameters might not work just as well for a different posterior
approximation.

A.3. Additional results 131

Data set N D σ2
ε Depth FG prior FG+TS GPi-G prior FH prior GPi-H prior Deep Ensemble

BOSTON 506 13 0.1

1 3.124 ± 1.065 3.065 ± 0.964 2.823 ± 0.960 2.949 ± 1.041 2.850 ± 1.007 3.764 ± 1.122
2 3.093 ± 1.001 3.020 ± 0.938 2.835 ± 0.922 2.945 ± 0.996 2.826 ± 0.909 3.688 ± 1.147
4 3.120 ± 0.961 2.975 ± 0.906 2.869 ± 0.881 2.941 ± 0.944 2.931 ± 0.875 3.540 ± 1.166
8 3.228 ± 0.924 2.973 ± 0.849 2.976 ± 0.957 3.078 ± 1.004 3.110 ± 0.950 3.542 ± 1.068

CONCRETE 1030 8 0.1

1 5.442 ± 0.263 5.419 ± 0.250 4.765 ± 0.386 4.930 ± 0.390 4.781 ± 0.443 5.632 ± 0.563
2 5.488 ± 0.253 5.388 ± 0.296 4.801 ± 0.416 5.179 ± 0.280 4.822 ± 0.396 5.226 ± 0.631
4 5.651 ± 0.262 5.326 ± 0.337 5.024 ± 0.321 5.557 ± 0.245 4.946 ± 0.384 5.011 ± 0.560
8 5.839 ± 0.311 5.289 ± 0.365 5.515 ± 0.339 5.757 ± 0.274 5.184 ± 0.315 5.124 ± 0.517

ENERGY 768 8 0.001

1 0.395 ± 0.071 0.392 ± 0.071 0.366 ± 0.080 0.393 ± 0.074 0.370 ± 0.076 2.252 ± 0.241
2 0.389 ± 0.062 0.381 ± 0.068 0.343 ± 0.071 0.439 ± 0.063 0.358 ± 0.071 1.382 ± 0.348
4 0.422 ± 0.051 0.402 ± 0.061 0.396 ± 0.063 0.428 ± 0.061 0.394 ± 0.063 1.049 ± 0.340
8 0.457 ± 0.052 0.418 ± 0.063 0.475 ± 0.056 0.467 ± 0.055 0.437 ± 0.058 1.041 ± 0.323

KIN8NM 8192 8 0.1

1 0.066 ± 0.002 0.066 ± 0.002 0.065 ± 0.002 0.065 ± 0.002 0.065 ± 0.002 0.071 ± 0.004
2 0.066 ± 0.002 0.065 ± 0.002 0.064 ± 0.002 0.065 ± 0.002 0.064 ± 0.002 0.068 ± 0.004
4 0.067 ± 0.002 0.065 ± 0.002 0.065 ± 0.002 0.069 ± 0.002 0.064 ± 0.002 0.070 ± 0.003
8 0.069 ± 0.002 0.065 ± 0.002 0.070 ± 0.002 0.072 ± 0.002 0.065 ± 0.002 0.071 ± 0.003

NAVAL 11934 16 0.001

1 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.004 ± 0.000
2 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.003 ± 0.000
4 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.003 ± 0.000
8 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.004 ± 0.000

POWER 9568 4 0.05

1 4.003 ± 0.162 4.000 ± 0.164 3.897 ± 0.177 4.022 ± 0.159 3.936 ± 0.170 4.008 ± 0.182
2 4.008 ± 0.168 3.999 ± 0.170 3.723 ± 0.183 4.054 ± 0.155 3.823 ± 0.179 3.857 ± 0.191
4 4.064 ± 0.163 4.014 ± 0.165 3.835 ± 0.173 4.163 ± 0.147 3.814 ± 0.177 3.826 ± 0.186
8 4.105 ± 0.160 4.042 ± 0.165 4.062 ± 0.188 4.205 ± 0.149 3.895 ± 0.167 3.854 ± 0.179

PROTEIN 45730 9 0.5

1 4.374 ± 0.019 4.376 ± 0.015 3.922 ± 0.011 3.973 ± 0.019 3.926 ± 0.019 4.376 ± 0.019
2 4.379 ± 0.019 4.330 ± 0.024 3.658 ± 0.021 3.713 ± 0.021 3.644 ± 0.025 4.443 ± 0.020
4 4.509 ± 0.015 4.321 ± 0.019 4.082 ± 0.055 3.976 ± 0.035 3.774 ± 0.021 3.854 ± 0.038
8 4.530 ± 0.020 4.362 ± 0.014 4.593 ± 0.108 4.148 ± 0.031 3.980 ± 0.022 3.997 ± 0.027

WINE 1599 11 0.5

1 0.637 ± 0.042 0.636 ± 0.044 0.618 ± 0.045 0.633 ± 0.044 0.622 ± 0.045 0.612 ± 0.020
2 0.641 ± 0.044 0.641 ± 0.044 0.609 ± 0.046 0.637 ± 0.044 0.613 ± 0.046 0.615 ± 0.025
4 0.650 ± 0.045 0.649 ± 0.046 0.608 ± 0.046 0.637 ± 0.044 0.602 ± 0.048 0.602 ± 0.031
8 0.662 ± 0.049 0.660 ± 0.049 0.632 ± 0.046 0.646 ± 0.046 0.621 ± 0.048 0.609 ± 0.026

Table A.4: Average test root mean squared error (RMSE) on UCI re-
gression datasets (errors are ±1 standard error). Bold results indicate
the best performance. Here, N is the size of dataset, D is the number
of input dimensions, σ2

ε is the noise variance, and Depth is the number
of hidden layers of the MLP.

132 Appendix A. Appendix for Chapter 3

4

4.5

R
M

SE
(←

)

BOSTON

7.5

8

CONCRETE

2.4

2.5

2.6

ENERGY

8.4

8.6

8.8

9

9.2

·10−2
KIN8NM

4.1

4.2

4.3

POWER

4.4

4.6

4.8

PROTEIN

0.63

0.64

0.65

WINE

Early Stopping MAP with FG prior MAP with GPi-G prior (ours)

Figure A.1: Comparison between early stopping and MAP estimations
with respect to the FG and GPi-G priors on the UCI regression datasets.

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

A
cc

ur
ac

y
(→

)

0.8

0.9

1.0

1.1

1.2

lenet5

N
LL

(←
)

0.65

0.70

0.75

0.80

0.85

A
cc

ur
ac

y
(→

)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

preresnet20

N
LL

(←
)

FG prior + Laplace-GGN LA-GGN GPi-G prior + LA-GGN
LA-MargLik + SGHMC FG prior + SGHMC GPi-G prior + SGHMC (ours)

Figure A.2: Comparison with empirical Bayes and functional inference
methods on CIFAR10 dataset.

Data set Classes Ntrain Ntest D FG prior FG+TS GPi-G prior FH prior GPi-H prior Deep Ensemble

EEG 2 10980 4000 14 82.26 ± 7.17 81.63 ± 8.09 94.13 ± 1.96 93.31 ± 3.67 94.69 ± 2.17 89.94 ± 4.98
HTRU2 2 12898 5000 8 97.94 ± 0.23 97.93 ± 0.24 98.03 ± 0.24 98.01 ± 0.20 98.02 ± 0.26 98.01 ± 0.24
MAGIC 2 14020 5000 10 86.95 ± 0.39 87.15 ± 0.34 88.37 ± 0.29 87.65 ± 0.25 88.49 ± 0.26 87.87 ± 0.27
MINIBOO 2 120064 10000 50 90.81 ± 0.22 90.99 ± 0.21 92.74 ± 0.39 93.26 ± 0.28 93.37 ± 0.27 91.42 ± 0.21
LETTER 26 15000 5000 16 90.45 ± 0.41 90.75 ± 0.37 96.90 ± 0.29 97.41 ± 0.26 97.67 ± 0.20 96.46 ± 0.27
DRIVE 11 48509 10000 48 98.55 ± 0.10 98.71 ± 0.09 99.69 ± 0.04 99.71 ± 0.04 99.74 ± 0.05 99.31 ± 0.06
MOCAP 5 68095 10000 37 98.80 ± 0.10 98.98 ± 0.09 99.24 ± 0.10 99.41 ± 0.08 99.49 ± 0.07 99.12 ± 0.09

Table A.5: Average test accuracy (%) on UCI classification datasets
(errors are ±1 standard error). Bold results indicate the best perfor-
mance. Here, Classes is the number of classes, Ntrain, Ntest is the sizes
of training set and test set, respectively; D is the number of input

dimensions.

A.3. Additional results 133

Data set N D σ2
ε Depth FG prior FG+TS GPi-G prior FH prior GPi-H prior Deep Ensemble

BOSTON 506 13 0.1

1 2.558 ± 0.294 2.582 ± 0.365 2.472 ± 0.153 2.498 ± 0.212 2.469 ± 0.160 3.177 ± 1.188
2 2.541 ± 0.251 2.563 ± 0.343 2.475 ± 0.115 2.489 ± 0.196 2.458 ± 0.110 3.249 ± 1.111
4 2.548 ± 0.207 2.542 ± 0.304 2.475 ± 0.095 2.473 ± 0.140 2.486 ± 0.080 3.448 ± 1.483
8 2.581 ± 0.170 2.541 ± 0.259 2.474 ± 0.094 2.496 ± 0.128 2.529 ± 0.083 3.004 ± 0.915

CONCRETE 1030 8 0.1

1 3.104 ± 0.039 3.106 ± 0.048 3.004 ± 0.050 3.027 ± 0.051 3.007 ± 0.057 3.113 ± 0.214
2 3.114 ± 0.037 3.099 ± 0.054 3.028 ± 0.050 3.066 ± 0.036 3.024 ± 0.044 3.065 ± 0.259
4 3.145 ± 0.040 3.091 ± 0.055 3.060 ± 0.037 3.127 ± 0.039 3.056 ± 0.046 3.034 ± 0.251
8 3.184 ± 0.047 3.092 ± 0.058 3.128 ± 0.046 3.169 ± 0.042 3.109 ± 0.037 3.054 ± 0.189

ENERGY 768 8 0.001

1 0.496 ± 0.216 0.496 ± 0.222 0.417 ± 0.227 0.489 ± 0.210 0.425 ± 0.210 2.076 ± 0.500
2 0.471 ± 0.174 0.454 ± 0.196 0.347 ± 0.150 0.648 ± 0.116 0.392 ± 0.180 2.062 ± 1.014
4 0.558 ± 0.145 0.506 ± 0.180 0.478 ± 0.168 0.681 ± 0.080 0.476 ± 0.166 1.935 ± 0.981
8 0.636 ± 0.123 0.585 ± 0.134 0.657 ± 0.154 0.867 ± 0.056 0.562 ± 0.152 1.713 ± 0.736

KIN8NM 8192 8 0.1

1 -1.233 ± 0.018 -1.238 ± 0.017 -1.238 ± 0.015 -1.243 ± 0.016 -1.241 ± 0.015 -1.317 ± 0.061
2 -1.227 ± 0.018 -1.243 ± 0.017 -1.233 ± 0.012 -1.230 ± 0.016 -1.241 ± 0.014 -1.317 ± 0.076
4 -1.201 ± 0.013 -1.235 ± 0.015 -1.219 ± 0.011 -1.180 ± 0.015 -1.223 ± 0.013 -1.256 ± 0.074
8 -1.169 ± 0.015 -1.222 ± 0.014 -1.159 ± 0.020 -1.138 ± 0.015 -1.211 ± 0.013 -1.264 ± 0.070

NAVAL 11934 16 0.001

1 -6.943 ± 0.028 -6.935 ± 0.028 -6.944 ± 0.031 -6.946 ± 0.028 -6.923 ± 0.062 -5.172 ± 0.227
2 -6.410 ± 0.087 -6.373 ± 0.099 -6.430 ± 0.156 -6.429 ± 0.097 -6.397 ± 0.098 -5.248 ± 0.274
4 -6.289 ± 0.079 -6.291 ± 0.064 -6.359 ± 0.063 -6.323 ± 0.043 -6.347 ± 0.051 -5.122 ± 0.259
8 -5.869 ± 0.046 -5.893 ± 0.042 -5.886 ± 0.040 -5.926 ± 0.051 -5.895 ± 0.051 -4.934 ± 0.428

POWER 9568 4 0.05

1 2.807 ± 0.042 2.807 ± 0.043 2.780 ± 0.044 2.812 ± 0.042 2.790 ± 0.043 2.799 ± 0.045
2 2.808 ± 0.043 2.806 ± 0.044 2.738 ± 0.042 2.819 ± 0.040 2.761 ± 0.043 2.754 ± 0.053
4 2.821 ± 0.039 2.809 ± 0.042 2.766 ± 0.040 2.844 ± 0.035 2.762 ± 0.041 2.738 ± 0.059
8 2.833 ± 0.036 2.817 ± 0.040 2.821 ± 0.043 2.857 ± 0.032 2.783 ± 0.038 2.753 ± 0.037

PROTEIN 45730 9 0.5

1 2.894 ± 0.004 2.894 ± 0.003 2.798 ± 0.002 2.809 ± 0.003 2.799 ± 0.004 2.753 ± 0.009
2 2.892 ± 0.004 2.881 ± 0.005 2.752 ± 0.004 2.760 ± 0.004 2.748 ± 0.004 2.796 ± 0.016
4 2.916 ± 0.003 2.875 ± 0.004 2.825 ± 0.011 2.801 ± 0.007 2.764 ± 0.004 2.606 ± 0.039
8 2.919 ± 0.004 2.883 ± 0.003 2.933 ± 0.025 2.838 ± 0.006 2.802 ± 0.004 2.658 ± 0.013

WINE 1599 11 0.5

1 0.973 ± 0.080 0.983 ± 0.090 0.929 ± 0.067 0.962 ± 0.079 0.936 ± 0.069 1.008 ± 0.162
2 0.983 ± 0.082 0.990 ± 0.087 0.915 ± 0.063 0.974 ± 0.082 0.922 ± 0.067 1.081 ± 0.193
4 0.999 ± 0.085 1.004 ± 0.090 0.915 ± 0.064 0.973 ± 0.081 0.908 ± 0.064 1.774 ± 0.468
8 1.016 ± 0.093 1.023 ± 0.095 0.953 ± 0.075 0.988 ± 0.084 0.938 ± 0.072 0.927 ± 0.100

Table A.6: Average test NLL in nats on UCI regression datasets (errors
are ±1 standard error). Bold results indicate the best performance.
Here, N is the size of dataset, D is the number of input dimensions, σ2

ε
is the noise variance, and Depth is the number of hidden layers of the

MLP.

A.3.5 Additional results with full-batch Hamiltonian Monte Carlo

Table A.8 shows a comparison between full-batch Hamiltonian Monte Carlo (HMC)
and SGHMC using the FG and our GPi-G priors on small UCI regression datasets. We
use the no-u-turn sampler (NUTS) extension (Hoffman and Gelman, 2014) of HMC

with the NumPyro’s implementation (Phan et al., 2019). NUTS adaptively sets the
trajectory length of HMC, which along with the adaptation of the mass matrix and the
step size. We have simulated 4 chains with a burn-in phase of 200 iterations and 200
collected samples for each chain. We see that SGHMC performs remarkably similar
to a carefully tuned HMC algorithm, despite the discretization error.

A.3.6 Additional discussion on the optimization of Wasserstein distance

In the Algorithm 2, we have opted to separate the two optimization procedures for
the Lipschitz function φθ and the Wasserstein distance. We acknowledge that the
two could have been optimized jointly in a single loop, as Eq. 3.7 defines a minimax
problem. However, our choice allows φθ to be stabilized before a single Wasserstein
minimization step takes place. In fact, this is a common trick to make convergence
more stable (see e.g., the original Goodfellow et al. (2014) paper, which suggests to

134 Appendix A. Appendix for Chapter 3

Data set Classes Ntrain Ntest D FG prior FG+TS GPi-G prior FH prior GPi-H prior Deep Ensemble

EEG 2 10980 4000 14 0.404 ± 0.120 0.406 ± 0.129 0.179 ± 0.046 0.179 ± 0.075 0.150 ± 0.053 0.240 ± 0.097
HTRU2 2 12898 5000 8 0.071 ± 0.007 0.072 ± 0.007 0.066 ± 0.008 0.068 ± 0.007 0.066 ± 0.008 0.067 ± 0.008
MAGIC 2 14020 5000 10 0.316 ± 0.006 0.312 ± 0.005 0.286 ± 0.005 0.298 ± 0.004 0.284 ± 0.005 0.294 ± 0.005
MINIBOO 2 120064 10000 50 0.218 ± 0.004 0.215 ± 0.004 0.179 ± 0.007 0.168 ± 0.004 0.165 ± 0.004 0.207 ± 0.004
LETTER 26 15000 5000 16 0.445 ± 0.008 0.409 ± 0.008 0.166 ± 0.006 0.128 ± 0.005 0.115 ± 0.005 0.147 ± 0.006
DRIVE 11 48509 10000 48 0.098 ± 0.002 0.088 ± 0.002 0.028 ± 0.001 0.023 ± 0.001 0.022 ± 0.001 0.049 ± 0.002
MOCAP 5 68095 10000 37 0.060 ± 0.002 0.050 ± 0.002 0.032 ± 0.002 0.027 ± 0.001 0.021 ± 0.001 0.040 ± 0.002

Table A.7: Average test NLL in nats on UCI classification datasets
(errors are ±1 standard error). Bold results indicate the best perfor-
mance. Here, Classes is the number of classes; the Ntrain, Ntest is the
sizes of training set and test set, respectively; D is the number of input

dimensions.

FG prior GPi-G prior
Data set σ2

ε HMC SGHMC HMC SGHMC

BOSTON 0.1 3.065 ± 1.006 3.093 ± 1.001 2.821 ± 0.907 2.835 ± 0.922
CONCRETE 0.1 5.369 ± 0.294 5.488 ± 0.253 4.715 ± 0.431 4.801 ± 0.416
ENERGY 0.001 0.386 ± 0.064 0.389 ± 0.062 0.339 ± 0.075 0.343 ± 0.071
POWER 0.05 3.931 ± 0.165 4.008 ± 0.168 3.438 ± 0.201 3.723 ± 0.183
WINE 0.5 0.637 ± 0.043 0.641 ± 0.044 0.606 ± 0.046 0.609 ± 0.046

Table A.8: Average test RMSE results of full-batch HMC and SGHMC
on UCI regression datasets (errors are ±1 standard error). We use a
MLP with two hidden layers of 100 neurons. σ2

ε is the noise variance.

allow more training of the discriminator for each step of the generator). Fig. A.3
illustrates the convergence behavior of these two algorithmic choices measured by
the squared MMD between the target GP prior and the optimized BNN prior on the
UCI regression datasets (see Appendix A.2.7 for the experimental protocol). Our
optimization strategy demonstrates a much more stable convergence compared to
the joint optimization approach.

0 500 1000

0.00

0.02

0.04

0.06

·10−2

M
M

D
2 (

p n
n

,p
gp

) BOSTON

0 500 1000

0.00

0.02

0.04

0.06

·10−2 CONCRETE

0 500 1000

0.00

0.02

0.04

·10−2 ENERGY

0 500 1000

0.00

0.02

0.04

0.06 ·10−2

M
M

D
2 (

p n
n

,p
gp

) KIN8NM

0 500 1000

0.00

0.02

0.04

0.06
·10−2

Iteration

POWER

0 500 1000

0.00

0.02

0.04

0.06

0.08
·10−2 WINE

Figure A.3: Comparison between strategies to optimize the Lipschitz
function and the Wasserstein distance: () our strategy of separating
these two operations; and () the strategy of joint optimization.
Here, the convergence is measured by the squared MMD between the

target GP prior and the optimized BNN prior.

A.3. Additional results 135

0 50 100 150 200
0

5

10

15

20
BOSTON

0 50 100 150 200
0

5

10

15

20
CONCRETE

0 50 100 150 200
0

5

10

15

20
ENERGY

0 50 100 150 200
0

5

10

15

20
KIN8NM

0 50 100 150 200
0

10

20

NAVAL

0 50 100 150 200
0

5

10

15

20
POWER

0 50 100 150 200
0

5

10

15

20
PROTEIN

0 50 100 150 200
0

5

10

15

20
WINE

Iteration

W
1(

p n
n

,p
gp

)

(a) GPi-G prior

0 100 200 300

0

5

10

15
BOSTON

0 100 200 300

0

5

10

15

20
CONCRETE

0 100 200 300

0

5

10

15

20
ENERGY

0 100 200 300

0

5

10

15
KIN8NM

0 100 200 300

0

5

10

15
NAVAL

0 100 200 300

0

5

10

15

20
POWER

0 100 200 300

0

10

20

30
PROTEIN

0 100 200 300
0

20

40

60

WINE

Iteration

W
1(

p n
n

,p
gp

)

(b) GPi-H prior

0 100 200 300 400 500
0

5

10

15

20
BOSTON

0 100 200 300 400 500

0

5

10

15
CONCRETE

0 100 200 300 400 500

0

5

10

15
ENERGY

0 100 200 300 400 500

0

5

10

15
KIN8NM

0 100 200 300 400 500
0

5

10

15

20
NAVAL

0 100 200 300 400 500

0

5

10

15
POWER

0 100 200 300 400 500
0

10

20

30
PROTEIN

0 100 200 300 400 500
0

5

10

15

20
WINE

Iteration

W
1(

p n
n

,p
gp

)

(c) GPi-NF prior

Figure A.4: Convergence of Wasserstein optimization for two-layer
MLP on the UCI regression datasets.

136 Appendix A. Appendix for Chapter 3

0 500 1000 1500 2000
0

100

200

300

400
DRIVE

0 500 1000 1500 2000

0

20

40

60
EEG

0 500 1000 1500 2000
0

50

100
HTRU2

0 500 1000 1500 2000
0

200

400

600

LETTER

0 500 1000 1500 2000
0

50

100
MAGIC

0 500 1000 1500 2000
0

50

100
MINIBOO

0 500 1000 1500 2000

0

50

100

150
MOCAP

Iteration

W
1(

p n
n

,p
gp

)

(a) GPi-G prior

0 500 1000 1500 2000
0

100

200

300
DRIVE

0 500 1000 1500 2000

0

25

EEG

0 500 1000 1500 2000

0

25

HTRU2

0 500 1000 1500 2000

0

250

LETTER

0 500 1000 1500 2000

0

25

MAGIC

0 500 1000 1500 2000

0

25

MINIBOO

0 500 1000 1500 2000

0

50

MOCAP

Iteration

W
1(

p n
n

,p
gp

)

(b) GPi-H prior

Figure A.5: Convergence of Wasserstein optimization for two-layer
MLP on the UCI classification datasets.

0 100 200 300 400 500

0

20

40

60

lenet5

0 100 200 300 400 500

0

20

40

60
vgg16

0 100 200 300 400 500

0

50

100

150
preresnet20

Iteration

W
1
(p
n
n
,p
g
p
)

(a) GPi-G prior

0 100 200 300 400 500

0

20

40

60

LENET5

0 100 200 300 400 500

0

20

40

60
VGG16

0 100 200 300 400 500

0

50

100

150
PRERESNET20

Iteration

W
1(

p n
n

,p
gp

)

(b) GPi-H prior

Figure A.6: Convergence of Wasserstein optimization for CNN on the
CIFAR10 dataset.

137

Appendix B

Appendix for Chapter 4

B.1 Derivation of Distributional Sliced-Wasserstein Distance

In this section, we review some key results on the Wasserstein distance. Given
two probability measures π, ρ, both defined on RD for simplicity, the p-Wasserstein
distance between π and ρ is given by

Wp
p (π, ρ) = inf

γ∈Γ(π,ρ)

∫
‖x− y‖pγ(x, y)dxdy , (B.1)

where Γ(π, ρ) is the set of all possible distributions γ(x, y) such that the marginals
are π(x) and ρ(y) (Villani, 2008). While usually analytically unavailable, for D = 1
the distance has the following closed form solution,

Wp
p (π, ρ) =

∫ 1

0
|F−1

π (z)− F−1
ρ (z)|pdz , (B.2)

where Fπ and Fρ are the cumulative density functions (CDFs) of π and ρ, respectively.

B.1.1 (Distributional) sliced-Wasserstein distance

The main idea underlying the distributional sliced-Wasserstein distance (DSWD) is
to project the challenging estimation of distances for high-dimensional distributions
into simpler estimation of multiple distances in one dimension, which all have closed-
form solution (Eq. B.2). The projection is done using the Radon transform R, an
operator that maps a density function ϕ defined in RD to the set of its integrals over
hyperplanes in RD,

Rϕ(t, θ) :=
∫

ϕ(z)δ(t− z>θ)dz , ∀t ∈ R , ∀θ ∈ SD−1 , (B.3)

where SD−1 is the unit sphere in RD and δ(·) is the Dirac delta (Helgason, 2010).
Using the Radon transform, for a given θ we can project the two densities π and ρ

138 Appendix B. Appendix for Chapter 4

into one dimension,

Wp
p (π, ρ) =

∫
SD−1

Wp
p (Rπ(t, θ),Rρ(t, θ))dθ ≈ 1

K

K

∑
i=1

Wp
p
(
Rπ(t, θi),Rρ(t, θi)

)
,

(B.4)

where the approximation comes from using Monte-Carlo integration by sampling
θi uniformly in SD−1 (Bonneel et al., 2015). While having significant computational
advantages, this approach might require to draw many unimportant projections that
are computationally exhausting and that provide a minimal improvement on the
overall distance approximation.

The distributional sliced-Wasserstein distance (DSW) (Nguyen et al., 2021) solves this
issue by finding the optimal probability measure of slices σ(θ) on the unit sphere
SD−1 and it’s defined as follows,

DSWp(π, ρ; C) := sup
σ∈MC

(
Eσ(θ)W

p
p
(
Rπ(t, θ),Rρ(t, θ)

))1/p

, (B.5)

where, for C > 0, MC is the set of probability measures σ such that Eθ,θ′∼σ

[
θ>θ′

]
≤ C

(a constraint that aims to avoid directions to lie in only one small area). Critically, the
definition of DSWD in Eq. B.5 does not suffer from the curse of dimensionality, indeed
Nguyen et al. (2021) showed that the statistical error of this estimation scales down
with CD · n−

1
2 , where CD is a constant depending on dimension D. Furthermore,

while generally we have that DSWp(π, ρ) ≤ Wp(π, ρ), it can be proved that under
mild assumptions on C, the two distances are topological equivalent, i.e. converging
in distribution on DSWp implies the convergence on Wp see Theorem 2 in Nguyen
et al., 2021.

The direct computation of DSWp in Eq. B.5 is still challenging but it admits an
equivalent dual form,

sup
h∈H

{(
Eσ̄(θ)

[
Wp

p
(
Rπ(t, h(θ)),Rρ(t, h(θ))

)])1/p
− λCEθ,θ′∼σ̄

[∣∣h(θ)>h(θ′)
∣∣]}+ λCC ,

(B.6)

where σ̄ is a uniform distribution in SD−1,H is a class of all Borel measurable functions
SD−1 → SD−1 and λC is a regularization hyperparameter. The formulation in Eq. B.6
is obtained by employing the Lagrangian duality theorem and by reparameterizing
σ(θ) as push-forward transformation of a uniform measure in SD−1 via h. Now, by
parameterizing h using a deep neural network1 with parameters φ, defined as hφ,
Eq. B.6 becomes an optimization problem with respect to the network parameters.
The final step is to approximate the analytically intractable expectations with Monte

1We use a single multi layer perceptron (MLP) layer with normalized output as the h function.

B.2. Numerical Implementation of Sliced-Wasserstein Distance 139

Carlo integration,

DSWp(π, ρ) ≈

max
φ

{[
1
K

K

∑
i=1

[
Wp

p
(
Rπ(t, hφ(θi)),Rρ(t, hφ(θi))

)]]1/p

− λC

K2

K

∑
i,j=1
|hφ(θi)

>hφ(θj)|+ λCC

}
,

(B.7)

where θi are uniform samples from the unit sphere SD−1 and ∀t ∈ R. Finally, we can
use stochastic gradient methods to update φ and then use the resulting optima for
the estimation of the original distance.

B.2 Numerical Implementation of Sliced-Wasserstein Distance

B.2.1 Wasserstein distance between two empirical 1D distributions

The Wasserstein distance between two one-dimensional distributions π and ρ is
defined as in Eq. B.2. The integral in this equation can be numerically estimated by
using the midpoint Riemann sum:

∫ 1

0
|F−1

π (z)− F−1
ρ (z)|pdz ≈ 1

M

M

∑
m=1
|F−1

π (zm)− F−1
ρ (zm)|p, (B.8)

where zm = 2m−1
M , M is the number of points used to approximate the integral. If we

only have samples from the distributions, xm ∼ π and ym ∼ ρ, we can obtain the
empirical densities as follows

π(x) ≈ πM(x) =
1
M

M

∑
m=1

δ(x− xm), (B.9)

ρ(y) ≈ ρM(y) =
1
M

M

∑
m=1

δ(y− ym), (B.10)

where δ is the Dirac delta function. The corresponding empirical cumulative density
functions are

Fπ(z) ≈ Fπ,M(z) =
1
M

M

∑
m=1

u(z− xm), (B.11)

Fρ(z) ≈ Fρ,M(z) =
1
M

M

∑
m=1

u(z− ym), (B.12)

where M is the number of samples, u(·) is the step function.

Calculating the Wasserstein distance with the empirical distribution function is com-
putationally attractive. To do that, we first sort xms in an ascending order, such that

140 Appendix B. Appendix for Chapter 4

xi[m] ≤ xi[m+1], where i[m] is the index of the sorted xms. It is straightforward to show
that F−1

π,M(zm) = xi[m]. Thus, the Wasserstein distance can be approximated as follows

Wp
p (π, ρ) ≈ 1

M

M

∑
m=1
|xi[m] − yj[m]|p. (B.13)

B.2.2 Slicing empirical distribution

According to the equation Eq. B.3, the marginal densities (i.e. slices) of the distribution
π can be obtained as follows

Rπ(t, θ) =
∫

π(x)δ(t− x>θ)dx, ∀t ∈ R. (B.14)

Because, in practice, only samples from the distributions are available we aim to calcu-
late a Radon slice of the empirical distribution of M samples πM = 1

M ∑M
m=1 δ(x− xm):

Rπ(t, θ) ≈ 1
M

M

∑
m=1

∫
δ(x− xm)δ(t− x>θ)dx (B.15)

=
1
M

M

∑
m=1

δ(t− x>mθ). (B.16)

By using the approximation in Eq. B.16 and the empirical implementation of 1D
Wasserstein distance (Eq. B.13), we are able to compute a proxy to the original
distance in Eq. B.5.

B.3 Pseudocode of Prior Optimization Procedure

Algorithm 5 desribes the procedure of prior optimization for Bayesian autoencoders
(BAEs).

B.4 PCA of the SGD Trajectory

Inspired by Izmailov et al. (2019), we use the subspace spanned by the SGD trajectory
to visualize neural network’s parameters in a low-dimensional space. This subspace
is cheap to construct and can capture many of the sharp directions of the loss surface
(Izmailov et al., 2019; Li et al., 2018; Maddox et al., 2019). More specifically, we
perform SGD starting from a MAP solution with a constant learning rate. Here, the
loss function is the negative log joint likelihood of the BAE:

L(w) = − N
M

M

∑
i=1

log p(yi |w)− log p(w), (B.17)

B.4. PCA of the SGD Trajectory 141

Algorithm 5: Prior Optimization
Input: Empirical distribution π̃(y); prior over parameters pψ(w); number of

prior samples NS; mini-batch size NB; number of random projections K;
regularization coefficient λC.

Output: The optimized prior’s parameters ψ
1 while ψ has not converged do
2 Sample x def

= y = {yi}NB
i=1 from π̃(y) // Sample input data

3 SampleW = {wi}NS
i=1 from pψ(w) // Sample parameters from the prior

4 foreach wi ∈ W do
/* Following steps are performed in a batch manner */

5 fi = (fdec ◦ fenc)(x) // Compute the functional outputs from Autoencoder

6 Sample ỹi from p(y | fi) // Sample from the likelihood

7 Gather samples ỹ = ∪{ỹi}Ns
i=1

8 L = DSW2(y, ỹ; K, λC) // Compute the DSW2 distance using Eq. B.7

9 ψ← Optimizer(ψ,∇ψL) // Update prior’s parameters

10 Return: ψ

where M is the mini-batch size and N is the size of training data. We store the
deviations ai = w−wi for the last M epochs, where w is the running average of
the first moment, M is determined by the amount of memory we can use. Then we
perform PCA based on randomized SVD (Halko et al., 2011) on the matrix A com-
prised of vectors a1, ..., aM to construct the subspace. The procedure is summarized
in Algorithm 6.

Algorithm 6: Subspace construction with PCA
Input: Pretrained paremeters wMAP; learning rate η; number of steps τ;

momentum update frequency c; maximum number of columns M in
deviation matrix A.

Output: Shift vector w; projection matrix P for subspace.
1 w← wMAP // Initialize mean

2 for i← 1, 2, ..., T do
3 wi ← wi−1 − η∇wL(wi−1) // Perform SGD update

4 if MOD(i, c) = 0 then
5 n← i/c // Number of models

6 w← nw+wi
n+1 // Update mean

7 if NUM_COLS(A) = M then
8 REMOVE_COL(A[:, 1])

9 APPEND_COL(A, wi −w) // Store deviation

10 U, S, V> ← SVD(A) // Perform truncated SVD

11 Return: w, P = SV>

142 Appendix B. Appendix for Chapter 4

B.5 Additional Details on Experimental Settings

B.5.1 Experimental environment

In our experiments, we use 4 workstations, which have the following specifications:

• GPU: NVIDIA Tesla P100 PCIe 16 GB.

• CPU: Intel(R) Xeon(R) (4 cores) @ 2.30GHz.

• Memory: 25.5 GiB (DDR3).

B.5.2 Preprocessing data

• MNIST (Lecun et al., 1998): The dataset is publicly available at http://yann.
lecun.com/exdb/mnist. We keep the original resolution of 1× 28× 28 of the
MNIST dataset.

• FREY-YALE (Dai et al., 2015): The FREY and YALE datasets are publicly availaibe
at http://cs.nyu.edu/~roweis/data.html and http://vision.ucsd.edu/extyaleb/

CroppedYaleBZip, respectivey. All the images of FREY and YALE datasets are
resized to the 1× 28× 28 resolution.

• CELEBA (Liu et al., 2015): The dataset is publicly available at http://mmlab.
ie.cuhk.edu.hk/projects/CelebA.html. According to (Dinh et al., 2017b), we
pre-process CELEBA images by first taking a 148× 148 center crop and then
resizing to the 3× 64× 64 resolution.

B.5.3 Network architectures

In our experiments, we use convolutional networks for modeling both encoders and
decoders. For a fair comparison, we employ the same network architecture for all
models. The network’s parameters are initialized by using the default scheme in
PyTorch (Paszke et al., 2019).

Table B.1 shows details on the network architectures used in our experimental cam-
paign.

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://cs.nyu.edu/~roweis/data.html
http://vision.ucsd.edu/extyaleb/CroppedYaleBZip
http://vision.ucsd.edu/extyaleb/CroppedYaleBZip
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

B.5. Additional Details on Experimental Settings 143

MNIST FREY-YALE CELEBA

ENCODER: x ∈ R1×28×28

→ CONV32 → LEAKYRELU
→ CONV64 → LEAKYRELU
→ CONV64 → LEAKYRELU
→ CONV128 → LEAKYRELU
→ FLATTEN → FC50×M

x ∈ R1×28×28

→ CONV64 → LEAKYRELU
→ CONV128 → LEAKYRELU
→ CONV128 → LEAKYRELU
→ CONV256 → LEAKYRELU
→ FLATTEN → FC50×M

x ∈ R3×64×64

→ CONV64 → LEAKYRELU
→ CONV128 → LEAKYRELU
→ CONV256 → LEAKYRELU
→ CONV512 → LEAKYRELU
→ FLATTEN → FC50×M

DECODER: z ∈ R50 → FC7×7×128

→ LEAKYRELU
→ CONVT128 → LEAKYRELU
→ CONVT64 → LEAKYRELU
→ CONVT64 → LEAKYRELU
→ CONVT1 → SIGMOID

z ∈ R50 → FC7×7×256

→ LEAKYRELU
→ CONVT256 → LEAKYRELU
→ CONVT128 → LEAKYRELU
→ CONVT128 → LEAKYRELU
→ CONVT1 → SIGMOID

z ∈ R50 → FC8×8×512

→ LEAKYRELU
→ CONVT512 → LEAKYRELU
→ CONVT256 → LEAKYRELU
→ CONVT128 → LEAKYRELU
→ CONVT1 → SIGMOID

Table B.1: Convolutional Encoder-Decoder architectures. CONVn de-
notes a convolutional layer with n filters, whereas FCn represents a
fully-connected layer with n units. All convolutions CONVn and trans-
posed convolutions CONVTn have a filter size of 4×4 for MNIST and
FREY-YALE and 5×5 for CELEBA. M = 1 for all models except for the
variational autoencoders (VAEs) which have M = 2 as the encoder

has to yield both mean and variance for each input.

B.5.4 Prior optimiziation

As done by Nguyen et al. (2021), we use a single-layer multilayer perceptron (MLP),
hφ, to represent the Borel measurable function in the dual form of DSWD (Eq. B.7). At
each iteration of Algorithm 5, to find a local maxima, we optimize hφ for 30 epochs
by using an Adam optimizer (Kingma and Ba, 2015) with a learning rate of 0.0005.
We use another Adam optimizer with a learning rate of 0.001 to update the prior’s
parameters. We use a mini-batch size of NB = 64 and then generate Ns = 32 prior
samples given each data point. By default, we use K = 1000 random projections
with a regularization coefficient λC = 100 to estimate the 2-Wasserstein distance.
The convergences of prior optimization on MNIST, FREY and CELEBA datasets are
illustrated in Fig. B.8.

B.5.5 SGHMC hyperparameters

In Table B.2 we report the hyperparameters used in the experiments on MNIST, YALE

and CELEBA datasets. As seen, we always use a fixed step size of 0.003, a momentum
coefficient of 0.05, and a mini-batch size of 64. The number of collected samples
after thinning is 32. The number of burn-in iterations and the thinning interval are
increased according to the size of the training set.

144 Appendix B. Appendix for Chapter 4

MNIST YALE CELEBA

TRAINING SIZE 200 500 1000 2000 50 100 200 500 500 1000 2000 4000

MINI-BATCH SIZE 64 64 64 64 64 64 64 64 64 64 64 64
STEP SIZE (10−3) 3 3 3 3 3 3 3 3 3 3 3 3
MOMENTUM (10−2) 5 5 5 5 5 5 5 5 5 5 5 5
NUM. BURN-IN STEPS (103) 6 6 6 6 6 6 6 6 6 20 20 20
NUM. SAMPLES 32 32 32 32 32 32 32 32 32 32 32 32
THINNING INTERVAL (103) 1 1 1 2 1 1 1 1 1 2 3 5

Table B.2: stochastic gradient Hamiltonian Monte Carlo (SGHMC) hy-
perparameters used in the experiments on MNIST, YALE and CELEBA

datasets.

B.5.6 Competing approaches

• VAE (Kingma and Welling, 2014): The vanilla VAE model employed with a
Gaussian encoder and a standard Gaussian prior on the latent space.

• β-VAE (Higgins et al., 2017): The Kullback-Leibler (KL) term in the VAE’s
objective is weighted by β = 0.1 to reduce the effect of the prior. This helps
to avoid the over-regularization problem of VAEs and improve reconstruction
quality.

• VAE + Sylvester Flows (Berg et al., 2018): One of the state-of-the-art normaliz-
ing flows for the encoder of VAEs, which has richer expressiveness than VAE’s
post-Gaussian encoder. As employed in Berg et al. (2018), we use Orthogonal
Sylvester flows with 4 transformations and 32 orthogonal vectors.

• VAE + VampPrior (Tomczak and Welling, 2018): A flexible prior for VAEs,
which is a mixture of variational posteriors conditioned on learnable pseudo-
observations. This allows the variational posterior to learn more a potential
latent representation. Due to using small training data, we use 100 train-
able pseudo-observations in our experiments. We found that increasing more
pseudo-observations may hurt the predictive performance because of overfit-
ting.

• 2-Stage VAE (Dai and Wipf, 2019): A simple and practical method to improve
the quality of generated images from VAEs by performing a form of ex-post
density estimation via a second VAE. As employed in Dai and Wipf (2019), for
the second-stage VAE, we use a MLP having three 1024-dimensional hidden
layers with ReLU activation function.

• WAE (Tolstikhin et al., 2018) Wasserstein Autoencoder: This model is an alter-
native of VAEs. By reformulating the objective function as an optimal transport
(OT) problem, Wasserstein autoencoder (WAE) regularizes the averaged en-
coding distribution instead of each data point. This encourages the encoded
training distribution to match the prior while still allowing to learn significant

B.5. Additional Details on Experimental Settings 145

information from the data. As suggested in Tolstikhin et al. (2018), we use WAE-
MMD with the inverse multiquadratics kernel and a regularization coefficient
λ = 10 due to its stability compared to WAE-GAN. We impose the standard
Gaussian prior on the latent space.

• NS-GAN (Goodfellow et al., 2014): a standard generative adversarial network
(GAN) with the non-saturating loss, which has been shown to be robust to the
choice of hyperparameters on CELEBA (Lucic et al., 2018). For a fair comparison,
we reuse the encoder and decoder architectures for the discriminator and
generator, respectively.

• DiffAugment-GAN (Zhao et al., 2020): a more complex architecture (STYLEGAN2,
see Karras et al., 2020) combined with a powerful differentiable augmentation
scheme, specifically developed for low data regimes. We refer to the original
work of Zhao et al. (2020) and the implementation in https://github.com/

mit-han-lab/data-efficient-gans for additional details on the network ar-
chitecture. We use the same latent size of 50, a maximum of 64 feature maps,
and all available augmentations (color, cutout and translation). The remaining
parameters are left at default value.

All autoencoder models are trained for 200 epochs with an Adam optimizer (Kingma
and Ba, 2015) using the default hyperparameters in PyTorch, i.e. learning rate = 0.001,
β1 = 0.9, β2 = 0.999. The NS-GAN is trained for 200 epochs with a learning rate
of 0.0002. The DiffAugment-GAN is trained with learning rate of 0.001 for 1 million
steps (expect for the case of 4 000 training samples, which was extended for 2 millions
steps).

B.5.7 Performance evaluation

Test log-likelihood. To evaluate the reconstruction quality, we use the mean pre-
dictive log-likelihood evaluated over the test set. This metric tells us how probable it
is that the test targets were generated using the test inputs and our model. Notice
that for the case of autoencoder models, the test targets are exactly the test inputs.
The predictive likelihood is a proper scoring rule (Gneiting and Raftery, 2007) that
depends on both the accuracy of predictions and their uncertainty.

For BAE, as done in the literature of Bayesian neural networks (BNNs) (Izmailov
et al., 2021b; Osawa et al., 2019b), we can estimate the predictive likelihood for an
unseen data point, y∗, as follows

Ep(w | y)[p(y
∗ |w)] ≈ 1

M

M

∑
i=1

p(y∗ |wi), wi ∼ p(w | y),

where wi is a sample from the posterior p(w | y) obtained from the SGHMC sampler.

https://github.com/mit-han-lab/data-efficient-gans
https://github.com/mit-han-lab/data-efficient-gans

146 Appendix B. Appendix for Chapter 4

For VAEs, because the randomness comes from the latent code not the network’s
parameters, we can use MC approximation to estimate the predictive likelihood as
follows

Eq(z | x∗)[p(y
∗ | z)] ≈ 1

N

N

∑
i=1

p(y∗ | zi), zi ∼ q(z | x∗),

where x∗ def
= y∗, and q(z | x∗) is the amortized approximate posterior. In our experi-

ments, we use N = 200.

For completeness, we also report the test marginal log-likelihood p(y) of VAEs, which
is estimated by the importance weighted sampling (IWAE) method (Burda et al., 2016).
More specifically,

IWAE = log
(

1
K

K

∑
i=1

p(y∗, zi)

q(zi | x∗)

)
, zi ∼ q(z | x∗).

It can be shown that IWAE lower bounds log p(y∗) and can be arbitrarily close to the
target as the number of samples K grows. We use K = 1000 in the experiments. The
full results of test marginal log-likelihood are reported in Tables ??, ?? and ??.

FID score. To assess the quality of the generated images, we employed the widely
used Fréchet Inception Distance (Heusel et al., 2017). This metric is the Fréchet
distance between two multivariate Gaussians, the generated samples and real data
samples are compared through their distribution statistics:

FID = ‖µreal − µgen‖2 + Tr(Σreal + Σgen − 2
√

ΣrealΣgen). (B.18)

Two distribution samples are calculated from the 2048-dimensional activations of
pool3 layer of Inception-v3 network 2. In our experiments, the statistics of generated
and real data are computed over 10000 generated images and test data, respectively.

B.6 Additional Results of Comparison with Temperature Scal-
ing

In Bayesian deep learning, temperature scaling is a practical technique to improve
predictive performance (Zhang et al., 2018b; Izmailov et al., 2019; Wenzel et al., 2020).
There are two main approaches to tempering the posterior, namely (1) partial tempering
and (2) full tempering (Aitchison, 2021; Zeno et al., 2021). In this section, we investigate
rigorously the posteriors induced by the N (0, 1) prior and optimized prior under
different tempering settings. We use the same setup of MNIST as in the main paper,

2We use the original TensorFlow implementation of FID score which is available at https://github.
com/bioinf-jku/TTUR.

https://github.com/bioinf-jku/TTUR.
https://github.com/bioinf-jku/TTUR.

B.6. Additional Results of Comparison with Temperature Scaling 147

with 200 examples for inference. For the optimized prior, we use 100 training samples
for learning prior. For the N (0, 1) prior, we use the union of 200 training samples
and the data used to optimized prior for training.

B.6.1 Partial tempering

The partially tempered posterior is defined as follows Izmailov et al. (2019) and Wilson
and Izmailov (2020)

pτpartial(w | y) ∝ p(y |w)︸ ︷︷ ︸
likelihood

1/τ p(w)︸ ︷︷ ︸
prior

,

where τ > 0 is a temperature value. This parameter controls how the prior and
likelihood interact in the posterior. When τ = 1 the true posterior is recovered, and
as τ becomes large, the tempered posterior approaches the prior. In the case of small
training data and using a misspecified prior such as N (0, 1), we would use a small
temperature value (e.g. τ < 1) to reduce the effect of the prior. This corresponds to
artificially sharpening the posterior by overcounting the data by a factor of τ.

Fig. B.1a shows the test log-likelihood (LL) on MNIST for BAE with N (0, 1) prior
and different temperature values. As expected, the predictive performance of the
posterior obtained via low temperatures τ < 1 is much better than those at high
temperatures τ > 1. However, cooling the posterior only shows slight improvement
compared to the true posterior induced from the optimized prior. In addition, in case
τ > 1, where the influence of the posterior becomes stronger, the tempered posterior
w.r.t. the optimized prior is significantly better than using the N (0, 1) prior. This
again shows clearly that N (0, 1) is a poor prior for a deep BAE.

Fig. B.2a illustrates samples from priors and posteriors in a low-dimensional space.
We also consider the posterior obtained from the entire training data and the N (0, 1)
prior as “oracle” posterior. In this case, the choice of the prior does not strongly
affect the posterior as this is dominated by the likelihood. It can be seen that, for
high-temperature values τ > 1, the warm posteriors w.r.t. N (0, 1) prior are stretched
out as the prior effect is too strong. These posteriors are mismatched with the “oracle”
posterior as further confirmed by very low test log-likelihood. Meanwhile, due
to the good inductive bias from the optimized prior, the corresponding tempered
posterior is still located in regions nearby the “oracle” posterior. For low temperature
values τ < 1, the cold posteriors are more concentrated by overcounting evidence.
However, if we use a very small temperature (e.g. τ = 10−5), the resulting posterior
overly concentrates around the maximum likelihood estimation (MLE), becoming too
constrained by the training data.

148 Appendix B. Appendix for Chapter 4

10−5 0.1 1 10 104

500

1000

1500

Temperature τ

Lo
g-

lik
el

ih
oo

d
(→

)

10−5 10−3 0.1 0.5 1

1500

1600

1700

1800

τ ≤ 1

(a) Partial tempering.

10−5 10−3 0.1 1 5 10

500

1000

1500

Temperature τ

Lo
g-

lik
el

ih
oo

d
(→

)

10−5 10−3 0.1 0.5 1

1500

1600

1700

1800

τ ≤ 1

(b) Full tempering.

bae + N (0, 1) Prior bae + Optim. Prior

Figure B.1: Test LL as a function of temperature on MNIST using BAE
with N (0, 1) prior. The dotted lines indicate the best performance of

LL.

B.6.2 Full tempering

For the fully tempered posterior, instead of scaling the likelihood term only, we scale
the whole posterior as follows

pτfull(w | y) ∝
(

p(y |w)︸ ︷︷ ︸
likelihood

p(w)︸ ︷︷ ︸
prior

)1/τ.

The only difference between partial and full tempering is whether we scale the prior.
If we place Gaussian priors on the parameters, this scaling can be absorbed into the
prior variance, σ2

full = σ2
partial/τ.

Recently, Wenzel et al. (2020) argues that BNNs require a cold posterior, where a τ < 1
is employed, to obtain a good performance. However, we hypothesize that the cold
posterior effect may originate from using a poor prior. In this case, as shown in Fig. B.1b,
the results of full tempering are similar to those of partial tempering. Cooling the
posterior only helps to increase slightly predictive performance for N (0, 1) prior. We
also observe that the Markov chain Monte Carlo (MCMC) sampling is not converged
if a very large τ is employed, thus we only consider small values of τ (e.g. τ ∈ {5, 10}).
In these cases, as depicted in Fig. B.2b, the samples from the posterior may be outside
of the hypothesis space of the optimized prior.

In sum, the true posterior induced from our optimized prior is remarkably better
than any types of tempered posteriors. These results suggest that, in the small-data
regime, we should choose carefully a more sensible prior rather than simply using a
vague prior and overcounting the data.

B.6. Additional Results of Comparison with Temperature Scaling 149

τ = 104 τ = 103 τ = 102

τ = 10 τ = 5 τ = 1

τ = 0.5 τ = 0.1 τ = 10−2

τ = 10−3 τ = 10−4 τ = 10−5

(a) Partial tempering.

τ = 10 τ = 5 τ = 1

τ = 0.5 τ = 0.1 τ = 10−2

τ = 10−3 τ = 10−4 τ = 10−5

(b) Full tempering.

Optim. Prior Posterior (Optim. Prior + �)
N (0, 1) Prior Posterior (N (0, 1) Prior + F) Posterior (N (0, 1) Prior + �)

Figure B.2: Visualization of samples from priors and posteriors of
BAE’s parameters in the plane spanned by eigenvectors of the SGD
trajectory. � indicates using 200 samples for training; F indicates
using the union of these samples and 100 samples used for learning
the prior; � denotes using all 60000 training samples. Here, τ is the
temperature value used for the � and F cases. All plots are produced

using convolutional BAE on MNIST.

150 Appendix B. Appendix for Chapter 4

B.7 Ablation Studies

B.7.1 Additional results of ablation study on the size of the dataset to
optimize priors

In this experiment, we demonstrate that we can obtain a sensible result by using a
small number of training instances to optimize the prior. Here, we use a set of 200
samples of 0-9 digits for inference, and another dataset also consisting of 0-9 digits for
optimizing the prior. Fig. B.4 shows the predictive performance and samples from the
posterior. We observe that the performance gain by using more data is not significant.
We can achieve sensible results by using only about 10-50 samples for each class. In
addition, as illustrated in the low-dimensional space (Fig. B.4), the hypothesis space
of the prior is not collapsed as we increase the size of the dataset used to optimize
the prior. As a result, the predictive posterior is also not concentrated to the MLE

solutions as further demonstrated in Fig. B.3. This behavior is very different from
overcounting the data by using temperature scaling, where the posterior becomes
more concentrated as the temperature is decreased. This again demonstrates the
practicality of our proposed method in the small-data regime.

102 5 · 102 103 5 · 103 104 5 · 104

0

10

20

Num. data points |M|

A
vg

.
va

ria
nc

e

Optimizing Prior

(a)

10−5 10−4 10−3 10−2 10−1 0.5 1

0

10

20

Temperature τ

A
vg

.
va

ria
nc

e

Tempering Posterior

(b)

Figure B.3: The average predictive variance computed over test data
points as a function of (a) the number of data points used to optimize
prior, and (b) the temperature used for cooling the posterior. Here,
we use 200 data points from MNIST dataset for inference. In figure
(a), we use the optimized prior and consider the true poserior without
any tempering. In figure (b), we use the standard Gaussian prior and

employ partial tempering for the posterior.

B.7.2 Effect of the dimensionality of latent space

Fig. B.5 illustrates the predictive performance of VAEs and BAEs in terms test LL

on MNIST for different size of the latent space and training size. It is clear that
BAEs with optimized prior consistently outperforms other competitors across all
dimensionalities of the latent space and training sizes.

B.7. Ablation Studies 151

0 1000 2000 3000

0

50

100

150

200

Iteration

W
a
ss
er
st
ei
n
d
is
t.

|M| = 100
|M| = 100; LL = 1721.3

0 1000 2000 3000

0

50

100

150

200

Iteration

W
a
ss
er
st
ei
n
d
is
t.

|M| = 500
|M| = 500; LL = 1760.1

0 1000 2000 3000

0

50

100

150

200

Iteration

W
a
ss
er
st
ei
n
d
is
t.

|M| = 1000 |M| = 1000; LL = 1778.4

0 1000 2000 3000

0

50

100

150

200

Iteration

W
a
ss
er
st
ei
n
d
is
t.

|M| = 5000 |M| = 5000; LL = 1807.2

0 1000 2000 3000

0

50

100

150

200

Iteration

W
a
ss
er
st
ei
n
d
is
t.

|M| = 10000 |M| = 10000; LL = 1813.2

0 1000 2000 3000

0

50

100

150

200

Iteration

W
a
ss
er
st
ei
n
d
is
t.

|M| = 50000 |M| = 50000; LL = 1821.1

Optim. Prior Posterior (Optim. Prior + �) Posterior (N (0, 1) Prior + �)

Figure B.4: Visualization of convergence Wasserstein optimization,
and samples from priors and posteriors of BAE’s parameters in the
plane spanned by eigenvectors of the SGD trajectory corresponding
to the first and second largest eigenvalues. Here, |M| is the size of
dataset used for optimizing the prior; � indicates using 200 training
samples for inference; � denotes using all 60000 training samples
for inference; LL denotes the test log-likelihood performance of the
posterior w.r.t. the optimized prior. All plots are produced using

convolutional BAE on MNIST.

152 Appendix B. Appendix for Chapter 4

10 20 50 100 10 20 50 100 10 20 50 100 10 20 50 100

1600

1700

1800

1900

Dimension of latent space

T
es

t
lo

g-
lik

el
ih

oo
d

(→
)

200 500 1000 2000

1600

1700

1800

1900

Training size

WAE VAE β-VAE
VAE + Sylvester Flows VAE + Vamp Prior
BAE + N (0, 1) Prior BAE + Optim. Prior

Figure B.5: Ablation study on the test log-likelihood on MNIST dataset
for different sizes of the latent space and training sizes.

B.7.3 Visualizing 2-dimensional latent space

We run several experiments with a low latent space (K = 2) to test the efficacy of
VAEs and BAEs as dimensionality reduction techniques. Fig. B.6 shows the results,
where each color represents an MNIST digit. As seen, BAE with optimized prior
produces a more well-defined class structure in comparision with other methods.

We also consider the 2D latent space to visualize that ex-post density estimation with
Dirichlet process mixture model (DPMM) helps to reduce the mismatch between the
aggregated posterior and the prior. As can be seen from Fig. B.7, there are large
mismatches between aggregated posterior of VAEs and the N (0, 1) prior. We can
reduce this problem by using a more expressive prior like VampPrior, or performing
ex-post density estimation with a second VAE. For BAEs, it is clear that the flexible
DPMM estimator effectively fixes the mismatch and this results in better sample
quality as reported in the main paper.

B.7. Ablation Studies 153

Figure B.6: Visualization of 2D latent spaces of variants of autoen-
coders on MNIST test set where each color represents a digit classs.
We consider only 5 classes for easier visualization and comparison.
All models are trained on 1000 training samples from MNIST dataset.

Figure B.7: Diffrent priors and density estimations on the 2-
dimensional latent space of VAEs and BAEs. All models are trained
on 1000 training samples from MNIST dataset. The gray points are
test set samples while the red ones are samples from priors / density
estimators. Here, we employ the isotropic Gaussian prior on the latent
space of WAE, VAE, β-VAE and VAE with Sylveser Flows. The Vamp-
Prior is learned to explicitly model the aggregated posterior while
2-Stage VAE uses another VAE to estimate the density of the learned
latent space. Meanwhile, for BAEs, we use DPMMs for ex-post density

estimation.

154 Appendix B. Appendix for Chapter 4

B.8 Additional Results

B.8.1 Convergence of Wasserstein optimization

Fig. B.8 depicts the progressions of Wasserstein optimization in the MNIST, FREY-
YALE and CELEBA experiments.

0 500 1000 1500 2000

0

100

200

Time ≈ 16m27s

Iteration

W
as

se
rs

te
in

di
st

.

mnist

0 500 1000 1500 2000

0

100

200

Time ≈ 18m32s

Iteration

frey

0 500 1000 1500 2000

0

100

200

300

Time ≈ 2h 27m

Iteration

celeba

Figure B.8: Convergence of Wasserstein optimization. The shaded
areas represent the standard deviation computed over 4 random data

splits.

B.8.2 Tabulated results

Detailed results on MNIST, YALE and CELEBA datasets are reported from Table B.3
to Table B.9.

LOG LIKELIHOOD (↑)
TRAINING SIZE 200 500 1000 2000

WAE 1590.0 (11.0) 1732.7 (19.2) 1809.5 (11.1) 1857.4 (4.8)
FWAE 1675.2 (10.6) 1779.6 (10.2) 1839.3 (6.1) 1871.1 (3.1)

VAE 1635.1 (8.0) 1744.6 (4.5) 1805.5 (4.8) 1847.1 (3.7)
F VAE 1697.0 (9.9) 1776.2 (6.8) 1829.5 (2.8) 1849.9 (4.4)

β-VAE 1626.2 (10.3) 1749.7 (9.2) 1812.8 (3.8) 1862.3 (4.9)
F β-VAE 1698.2 (8.0) 1780.2 (9.3) 1841.2 (3.4) 1871.9 (4.4)

VAE + SYLVESER FLOWS 1635.4 (6.1) 1743.5 (1.5) 1799.1 (5.5) 1836.3 (7.2)
F VAE + SYLVESER FLOWS 1711.4 (3.0) 1781.0 (2.9) 1816.7 (6.2) 1848.1 (6.5)

VAE + VAMPPRIOR 1543.0 (12.6) 1669.9 (22.0) 1756.8 (2.6) 1818.6 (3.6)
F VAE + VAMPPRIOR 1609.6 (14.4) 1732.1 (14.2) 1798.1 (5.4) 1839.3 (4.0)

BAE + N (0, 1) PRIOR 1609.0 (10.6) 1761.0 (9.1) 1837.6 (18.4) 1827.9 (5.7)
F BAE + N (0, 1) PRIOR 1681.2 (24.5) 1798.6 (22.8) 1827.0 (35.9) 1842.2 (37.4)

BAE + OPTIM. PRIOR (OURS) 1743.5 (12.0) 1845.1 (1.2) 1879.1 (6.3) 1906.8 (1.1)

Table B.3: Evaluation of all methods in terms of test log-likelihood
(the higher, the better) on MNIST. The parentheses are the standard
deviations. F indicates that we use the union of the training data and

the data used to optimize prior to train the model.

B.8. Additional Results 155

LOG LIKELIHOOD (↑)
TRAINING SIZE 50 100 200 500

WAE 689.7 (10.4) 724.8 (4.4) 754.5 (3.9) 787.0 (0.7)
FWAE 718.4 (0.9) 740.6 (4.6) 765.7 (2.2) 794.3 (1.6)

VAE 692.3 (8.4) 723.5 (2.8) 738.4 (3.2) 774.1 (1.3)
F VAE 701.2 (5.9) 728.2 (3.5) 749.4 (2.0) 774.8 (2.1)

β-VAE 707.1 (5.7) 733.8 (8.5) 761.1 (3.4) 791.8 (0.7)
F β-VAE 712.1 (7.6) 737.8 (4.7) 763.4 (1.3) 790.8 (1.5)

VAE + SYLVESTER FLOWS 705.4 (4.8) 729.3 (4.4) 738.2 (1.6) 766.8 (0.9)
F VAE + SYLVESTER FLOWS 682.1 (11.7) 716.3 (4.3) 739.6 (2.1) 765.3 (1.2)

VAE + VAMPPRIOR 690.0 (6.9) 722.8 (1.9) 740.6 (1.8) 766.8 (2.7)
F VAE + VAMPPRIOR 691.7 (6.1) 716.9 (4.7) 737.8 (5.3) 764.2 (2.2)

BAE + N (0, 1) PRIOR 426.1 (27.6) 668.8 (12.8) 724.9 (21.2) 775.5 (4.6)
F BAE + N (0, 1) PRIOR 388.0 (13.6) 570.4 (9.1) 688.2 (5.1) 752.5 (1.0)

BAE + OPTIM. PRIOR (OURS) 730.3 (3.0) 754.3 (3.1) 771.6 (3.0) 793.5 (2.0)

Table B.4: Evaluation of all methods in terms of test log-likelihood
(the higher, the better) on YALE. The same interpretation as Table B.3.

LOG LIKELIHOOD (↑)
TRAINING SIZE 500 1000 2000 4000

WAE 5732.6 (35.3) 6266.4 (73.4) 6703.6 (24.9) 6928.3 (32.5)
FWAE 6509.7 (49.2) 6659.8 (30.4) 6864.0 (23.7) 7021.6 (24.3)

VAE 5914.2 (78.3) 6406.4 (39.6) 6683.6 (87.5) 6976.4 (11.9)
F VAE 6460.1 (33.7) 6694.1 (63.1) 6831.8 (97.2) 7039.5 (36.5)

β-VAE 5710.2 (49.0) 6192.5 (91.9) 6640.6 (139.4) 7000.9 (7.9)
F β-VAE 6445.3 (94.0) 6654.6 (44.5) 6859.0 (39.8) 7007.7 (86.3)

VAE + SYLVESTER FLOWS 5481.6 (108.4) 5984.2 (37.4) 6415.5 (33.5) 6699.9 (46.9)
F VAE + SYLVESTER FLOWS 6241.3 (149.2) 6437.2 (58.2) 6519.9 (88.5) 6831.5 (121.2)

VAE + VAMPPRIOR 5776.6 (95.9) 6242.2 (92.2) 6691.5 (24.4) 6999.7 (15.9)
F VAE + VAMPPRIOR 6531.7 (61.5) 6591.6 (97.4) 6868.3 (27.8) 6990.7 (37.3)

2-STAGE VAE 5914.2 (78.3) 6406.4 (39.6) 6683.6 (87.5) 6976.4 (11.9)
F 2-STAGE VAE 6460.1 (33.7) 6694.1 (63.1) 6831.8 (97.2) 7039.5 (36.5)

BAE + N (0, 1) PRIOR 5581.9 (70.8) 6273.3 (54.2) 6848.3 (15.1) 7154.5 (15.6)
F BAE + N (0, 1) PRIOR 6574.1 (46.6) 6826.5 (31.0) 7038.3 (17.8) 7223.1 (13.2)

BAE + OPTIM. PRIOR (OURS) 6781.3 (32.4) 7065.8 (15.0) 7244.7 (8.7) 7370.0 (13.2)

Table B.5: Evaluation of all methods in terms of test log-likelihood
(the higher, the better) on CELEBA. The same interpretation as Table B.3.

156 Appendix B. Appendix for Chapter 4

FID (↓)
TRAINING SIZE 500 1000 2000 4000

WAE 342.14 (19.02) 309.79 (12.58) 275.10 (8.71) 253.06 (5.52)
FWAE 294.26 (8.41) 276.24 (10.49) 261.64 (6.08) 246.92 (3.28)

VAE 271.70 (5.12) 240.69 (3.44) 230.61 (7.05) 209.08 (6.28)
F VAE 248.18 (12.20) 237.29 (12.48) 231.50 (14.17) 206.92 (9.91)

β-VAE 323.00 (10.88) 295.54 (12.45) 276.71 (15.61) 250.61 (5.30)
F β-VAE 285.81 (5.58) 277.44 (12.97) 271.82 (6.69) 262.72 (17.92)

VAE + SYLVESTER FLOWS 221.71 (10.50) 214.94 (12.01) 207.86 (9.93) 198.94 (10.10)
F VAE + SYLVESTER FLOWS 210.24 (3.48) 215.00 (5.79) 204.42 (11.86) 179.26 (49.53)

VAE + VAMPPRIOR 144.41 (16.61) 131.02 (2.22) 112.82 (4.05) 96.20 (2.79)
F VAE + VAMPPRIOR 120.02 (8.62) 120.23 (7.16) 102.67 (7.61) 95.95 (4.86)

2-STAGE VAE 78.23 (2.56) 69.37 (2.39) 67.69 (1.55) 74.47 (4.52)
F 2-STAGE VAE 72.21 (3.05) 69.25 (3.32) 72.64 (4.62) 84.95 (3.91)

NS-GAN 252.33 (27.03) 171.18 (15.51) 205.05 (97.46) 128.29 (3.81)
F NS-GAN 151.28 (2.27) 150.74 (4.39) 137.64 (4.14) 139.43 (8.77)

F DIFFAUGMENT-GAN 66.09 (0.27) 58.76 (0.17) 50.22 (2.62) 45.14 (0.13)

BAE + N (0, 1) PRIOR 89.36 (4.56) 81.31 (2.50) 72.50 (1.37) 71.85 (0.17)
F BAE + N (0, 1) PRIOR 86.03 (3.53) 75.86 (0.45) 71.21 (1.41) 70.72 (0.39)

BAE + OPTIM. PRIOR (OURS) 68.59 (3.08) 66.11 (0.96) 68.34 (0.86) 67.18 (0.80)

Table B.6: Evaluation of all methods in terms of FID (the lower, the
better) on CELEBA. The same interpretation as Table B.3.

LOG MARGINAL LIKELIHOOD (↑)
TRAINING SIZE 200 500 1000 2000

VAE 1648.2 (10.1) 1744.0 (5.6) 1795.1 (2.6) 1829.7 (2.5)
F VAE 1702.4 (8.9) 1771.0 (6.7) 1816.2 (4.6) 1832.2 (4.8)

β-VAE 1497.1 (12.5) 1625.9 (7.7) 1687.3 (3.8) 1734.4 (4.2)
F β-VAE 1570.1 (7.8) 1655.7 (7.9) 1715.2 (2.9) 1747.1 (5.6)

VAE + SYLVESTER FLOWS 1627.0 (6.9) 1709.8 (1.8) 1755.4 (4.6) 1783.3 (5.5)
F VAE + SYLVESTER FLOWS 1688.0 (3.2) 1741.8 (2.5) 1771.4 (3.2) 1794.8 (5.0)

VAE + VAMPPRIOR 1545.6 (10.5) 1681.7 (20.2) 1758.4 (4.1) 1810.7 (2.2)
F VAE + VAMPPRIOR 1616.3 (15.3) 1737.5 (11.4) 1795.6 (4.8) 1829.1 (2.6)

Table B.7: Evaluation of all methods in terms of test log marginal
likelihood of VAE models (the higher, the better) on MNIST. The same

interpretation as Table B.3.

B.8. Additional Results 157

LOG MARGINAL LIKELIHOOD (↑)
TRAINING SIZE 50 100 200 500

VAE 693.8 (7.8) 720.8 (3.4) 734.5 (2.8) 767.2 (0.6)
F VAE 704.2 (5.6) 723.7 (3.1) 742.4 (1.9) 765.1 (1.2)

β-VAE 628.1 (2.7) 655.2 (9.9) 683.0 (3.9) 712.5 (1.6)
F β-VAE 658.5 (13.4) 683.9 (5.4) 707.2 (2.7) 731.5 (2.3)

VAE + SYLVESTER FLOWS 668.6 (5.2) 686.5 (3.4) 695.1 (1.5) 718.0 (0.8)
F VAE + SYLVESTER FLOWS 655.6 (4.9) 677.2 (3.8) 695.7 (0.7) 717.2 (0.7)

VAE + VAMPPRIOR 672.7 (7.9) 697.4 (6.8) 733.4 (3.2) 759.0 (1.2)
F VAE + VAMPPRIOR 703.9 (4.2) 721.5 (4.0) 736.8 (4.1) 760.0 (2.2)

Table B.8: Evaluation of all methods in terms of test log marginal
likelihood (the higher, the better) of VAE models on YALE. The same

interpretation as Table B.3.

LOG MARGINAL LIKELIHOOD (↑)
TRAINING SIZE 500 1000 2000 4000

VAE 5973.4 (66.7) 6416.6 (36.6) 6673.7 (82.6) 6943.4 (8.7)
F VAE 6470.0 (30.7) 6676.7 (57.4) 6807.6 (89.3) 7001.2 (37.5)

β-VAE 5496.0 (52.9) 6007.8 (89.8) 6457.8 (147.2) 6820.1 (7.4)
F β-VAE 6294.4 (98.1) 6472.2 (46.1) 6680.5 (42.8) 6844.6 (93.9)

VAE + SYLVESTER FLOWS 5545.8 (97.8) 5988.2 (40.9) 6387.9 (37.8) 6649.9 (47.1)
F VAE + SYLVESTER FLOWS 6226.9 (140.3) 6406.2 (53.7) 6485.3 (85.4) 6787.9 (126.9)

VAE + VAMPPRIOR 5842.2 (82.8) 6273.8 (86.3) 6682.6 (16.8) 6984.6 (7.4)
F VAE + VAMPPRIOR 6538.3 (62.4) 6595.9 (93.8) 6852.3 (18.6) 6966.1 (28.0)

Table B.9: Evaluation of all methods in terms of test log marginal
likelihood (the higher, the better) of VAE models on CELEBA. The same

interpretation as Table B.3.

158 Appendix B. Appendix for Chapter 4

LOG LIKELIHOOD (↑)
TRAINING SIZE 500 1000 2000 4000

WAE 7418.8 (123.3) 8342.0 (73.8) 8840.3 (26.7) 9230.2 (0.0)
FWAE 8644.3 (72.7) 8889.5 (58.5) 9033.6 (97.5) 9257.9 (68.2)

VAE 7575.3 (60.1) 8343.9 (42.3) 8817.6 (124.7) 9251.8 (23.9)
F VAE 8608.2 (15.8) 8855.1 (65.7) 9079.7 (50.0) 9276.7 (12.2)

β-VAE 7632.0 (115.3) 8220.7 (161.7) 8910.7 (33.9) 9305.2 (14.2)
F β-VAE 8647.3 (30.1) 8768.6 (60.4) 9132.0 (22.1) 9290.8 (87.5)

VAE + SYLVESTER FLOWS 6976.7 (162.5) 7898.8 (106.1) 8430.5 (58.6) 8939.1 (53.5)
F VAE + SYLVESTER FLOWS 8240.8 (45.2) 8446.7 (40.6) 8700.4 (65.6) 9045.1 (48.8)

VAE + VAMPPRIOR 7447.5 (77.9) 8251.2 (39.5) 8775.4 (40.9) 9261.8 (14.0)
F VAE + VAMPPRIOR 8466.2 (50.7) 8814.3 (61.2) 9069.2 (41.1) 9355.3 (9.5)

2-STAGE VAE 7575.3 (60.1) 8343.9 (42.3) 8817.6 (124.7) 9251.8 (23.9)
F 2-STAGE VAE 8608.2 (15.8) 8855.1 (65.7) 9079.7 (50.0) 9276.7 (12.2)

BAE + N (0, 1) PRIOR 7097.4 (75.0) 8299.5 (7.6) 9009.8 (11.4) 9326.9 (8.4)
F BAE + N (0, 1) PRIOR 8562.8 (43.8) 8770.5 (158.6) 9219.2 (9.2) 9380.2 (97.2)

BAE + OPTIM. PRIOR (OURS) 8975.1 (32.4) 9244.3 (15.2) 9424.8 (7.2) 9629.5 (3.9)

Table B.10: Evaluation of all methods in terms of test log-likelihood
(the higher, the better) on CELEBA. Here, all models are employ with
the truncated Gaussian likelihood. The same interpretation as Table B.5.

FID (↓)
TRAINING SIZE 500 1000 2000 4000

WAE 328.85 (17.16) 296.43 (7.93) 291.25 (12.45) 247.82 (0.00)
FWAE 287.16 (22.87) 273.54 (6.44) 279.81 (17.56) 255.96 (13.60)

VAE 299.73 (5.21) 271.97 (5.50) 248.95 (13.13) 235.11 (6.48)
F VAE 255.93 (12.86) 256.20 (4.28) 242.79 (9.26) 231.78 (7.74)

β-VAE 334.00 (9.85) 322.93 (14.36) 295.70 (7.74) 283.72 (4.58)
F β-VAE 307.30 (9.06) 301.14 (8.67) 286.14 (7.51) 276.94 (9.99)

VAE + SYLVESTER FLOWS 238.95 (16.95) 239.26 (19.51) 229.78 (8.82) 217.97 (9.79)
F VAE + SYLVESTER FLOWS 231.82 (9.54) 243.18 (2.56) 221.53 (5.51) 206.25 (6.18)

VAE + VAMPPRIOR 127.05 (6.18) 126.32 (4.19) 105.52 (3.60) 97.56 (1.08)
F VAE + VAMPPRIOR 110.61 (1.29) 113.03 (1.67) 101.26 (3.58) 88.87 (1.50)

2-STAGE VAE 97.77 (1.01) 92.52 (2.81) 95.63 (3.19) 101.73 (5.24)
F 2-STAGE VAE 90.01 (11.92) 95.29 (6.39) 100.32 (2.41) 105.47 (3.99)

BAE + N (0, 1) PRIOR 84.11 (4.09) 72.54 (2.21) 67.87 (0.61) 67.00 (0.44)
F BAE + N (0, 1) PRIOR 78.06 (1.42) 78.13 (6.90) 66.55 (0.87) 70.47 (6.95)

BAE + OPTIM. PRIOR (OURS) 62.75 (3.61) 62.42 (1.20) 62.17 (0.89) 58.84 (1.26)

Table B.11: Evaluation of all methods in terms of FID (the lower, the
better) on CELEBA. Here, all models are employed with the truncated

Gaussian likelihood. The same interpretation as Table B.6.

B.8.3 More qualitative results

B.8. Additional Results 159

Figure B.9: Qualitative evaluation for sample quality for autoencoders
and GANs on CELEBA. Here, we use 500 samples for training/infer-

ence.

(a) WAE (b) VAE (c) β-VAE

(d) VAE + Sylvester Flows (e) VAE + VampPrior (f) 2Stage-VAE

(g) NS-GAN (h) StyleGAN2 (i) BAE + N (0, 1) Prior

(j) BAE + Optim. Prior (Ours)

160 Appendix B. Appendix for Chapter 4

Figure B.10: Qualitative evaluation for sample quality for autoen-
coders with the truncated Gaussian likelihood on CELEBA. Here, we use

500 samples for training/inference.

(a) WAE (b) VAE (c) β-VAE

(d) VAE + Sylvester Flows (e) VAE + VampPrior (f) 2Stage-VAE

(g) BAE + N (0, 1). Prior (h) BAE + Optim. Prior

B.8. Additional Results 161

CELEBA - RECONSTRUCTIONS

GROUND TRUTH

FWAE

F VAE

F β-VAE

F VAE + SYLVESTER FLOWS

F VAE + VAMPPRIOR

F 2-STAGE VAE

F BAE + N (0, 1) PRIOR

BAE + OPTIM. PRIOR (OURS)

Table B.12: Qualitative evaluation for reconstructed samples on
CELEBA. F indicates that we use the union of the training data and
the data used to optimize prior to train the model. Here, the training

size is 1000.

CELEBA - RECONSTRUCTIONS

GROUND TRUTH

FWAE

F VAE

F β-VAE

F VAE + SYLVESTER FLOWS

F VAE + VAMPPRIOR

F 2-STAGE VAE

F BAE + N (0, 1) PRIOR

BAE + OPTIM. PRIOR (OURS)

Table B.13: Qualitative evaluation for reconstructed samples on
CELEBA with the truncated Gaussian likelihood. F indicates that we use
the union of the training data and the data used to optimize prior to

train the model. Here, the training size is 1000.

162 Appendix B. Appendix for Chapter 4

MNIST - RECONSTRUCTIONS

GROUND TRUTH

WAE

FWAE

VAE

F VAE

β-VAE

F β-VAE

VAE + SYLVESTER FLOWS

F VAE + SYLVESTER FLOWS

VAE + VAMPPRIOR

F VAE + VAMPPRIOR

2-STAGE VAE

F 2-STAGE VAE

BAE + N (0, 1) PRIOR

F BAE + N (0, 1) PRIOR

BAE + OPTIM. PRIOR (OURS)

Table B.14: Qualitative evaluation for reconstructed samples on
MNIST. F indicates that we use the union of the training data and the
data used to optimize prior to train the model. Here, the training size

is 200.

B.8. Additional Results 163

MNIST - GENERATED SAMPLES

WAE

FWAE

VAE

F VAE

β-VAE

F β-VAE

VAE + SYLVESTER FLOWS

F VAE + SYLVESTER FLOWS

VAE + VAMPPRIOR

F VAE + VAMPPRIOR

2-STAGE VAE

F 2-STAGE VAE

BAE + N (0, 1) PRIOR

F BAE + N (0, 1) PRIOR

BAE + OPTIM. PRIOR (OURS)

Table B.15: Qualitative evaluation for generated samples on MNIST.
F indicates that we use the union of the training data and the data
used to optimize prior to train the model. Here, the training size is

200.

164 Appendix B. Appendix for Chapter 4

YALE - RECONSTRUCTIONS

GROUND TRUTH

WAE

FWAE

VAE

F VAE

β-VAE

F β-VAE

VAE + SYLVESTER FLOWS

F VAE + SYLVESTER FLOWS

VAE + VAMPPRIOR

F VAE + VAMPPRIOR

2-STAGE VAE

F 2-STAGE VAE

BAE + N (0, 1) PRIOR

F BAE + N (0, 1) PRIOR

BAE + OPTIM. PRIOR (OURS)

Table B.16: Qualitative evaluation for reconstructed samples on YALE.
F indicates that we use the union of the training data and the data
used to optimize prior to train the model. Here, the training size is

500.

B.8. Additional Results 165

YALE - GENERATED SAMPLES

WAE

FWAE

VAE

F VAE

β-VAE

F β-VAE

VAE + SYLVESTER FLOWS

F VAE + SYLVESTER FLOWS

VAE + VAMPPRIOR

F VAE + VAMPPRIOR

2-STAGE VAE

F 2-STAGE VAE

BAE + N (0, 1) PRIOR

F BAE + N (0, 1) PRIOR

BAE + OPTIM. PRIOR (OURS)

Table B.17: Qualitative evaluation for generated samples on YALE. F
indicates that we use the union of the training data and the data used

to optimize prior to train the model. Here, the training size is 500.

167

Appendix C

Appendix for Chapter 5

C.1 A Taxonomy of Latent Variable Models

By considering the characteristics of the prior distribution on latent variables, the
likelihood function, input dependencies, and Bayesian treatments, we can draw con-
nections between our proposed models and other latent variable models. Fig. C.1
summarizes these relationships. Here, we assume an isotropic Gaussian likelihood
with precision β for the high-dimensional observed data yn as used in our experi-
ments.

Probabilistic principal component analysis (PCA) (Bishop, 2006) is a simple latent
variable model that imposes an isotropic Gaussian prior over the latent space and lin-
ear mapping from the latent variables to the observed data. variational autoencoders
(VAEs) (Kingma and Welling, 2014; Rezende et al., 2014) build upon this by introduc-
ing a nonlinear parametric mapping to the observed data, while Gaussian process
latent variable models (GPLVMs) utilize a nonparametric Gaussian process (GP) map-
ping. Recently, Lalchand et al. (2022a) extended GPLVMs in a fully Bayesian manner
using stochastic variational inference (VI). Conditional Variational Autoencoder
(CVAE) (Sohn et al., 2015) is an extension of VAEs that utilizes an input-dependent
prior in the latent space for conditional generation tasks. However, this model does
not account for correlations between latent representations. Gaussian Process VAEs
(Casale et al., 2018; Pearce, 2019; Jazbec et al., 2021) overcome this problem by im-
posing GP priors on the latent space. Our model, Sparse Gaussian Process Bayesian
Autoencoder (SGP-BAE), further enhances the modeling capabilities of these models
by using a fully Bayesian approach for the latent variables, decoder, and GP hyperpa-
rameters in a fully Bayesian manner, and decoupling the model from the variational
inference formulation.

Latent neural processes (Garnelo et al., 2018) can be seen as an extension of CVAE.
However, this model follows a meta-learning approach and splits the data into a

context set,
{

x[C]n , y[C]
n

}NC

n=1
, and a target set,

{
x[T]n , y[T]

n

}NT

n=1
. This model uses a global

latent variable z to capture the global properties of the context data. The likelihood is
conditioned on both new target input x[T]n and the global latent variable z.

168 Appendix C. Appendix for Chapter 5

Figure C.1: Connections between our proposed models and other
latent variables models. References are [a] for Bishop (2006), [b]
for Lawrence (2005), [c] for Damianou and Lawrence (2013), [d] for
Kingma and Welling (2014) and Rezende et al. (2014), [e] for Sohn et al.
(2015), [f] for Casale et al. (2018), Pearce (2019), and Jazbec et al. (2021),
[g] for Garnelo et al. (2018), and [h] for this work and Kingma and

Welling (2014) and Daxberger and Hernández-Lobato (2019).

C.2 Details of the Scalable Sampling Objective for Sparse
Gaussian Processes

GPs (Rasmussen and Williams, 2006) are one of the main workhorses of Bayesian non-
parametric statistics and machine learning, as they provide a flexible and powerful
tool for imposing a prior distribution over functions:

f (x) ∼ GP(m(x), κ(x, x′; θ)), (C.1)

where f (x) : RD → R maps D-dimensional inputs into one-dimensional outputs.
GPs are fully characterized by their mean and their covariance:

E[f (x)] = m(x), cov[f (x), f (x′)] = κ(x, x′; θ), (C.2)

where m : RD → R is the mean and k : RD ×RD → R is the kernel function with
hyperparameters θ. GPs indeed can be viewed as an extension of a multivariate
Gaussian distribution to infinitely many dimensions. For any fixed set of inputs
X ∈ RN×D, the realizations of functions with a GP prior at these inputs, denoted by

C.2. Details of the Scalable Sampling Objective for Sparse Gaussian Processes 169

f ∈ RN , follow the Gaussian distribution:

p(f) = N (0, Kxx | θ). (C.3)

Here, we assume a zero-mean GP prior and KXX | θ is the covariance matrix obtained
by evaluating κ(x, x′; θ) over all input pairs xi, xj (we will drop the explicit parame-
terization on θ for the sake of notation). From now on, in order to keep the notation
uncluttered, we focus on a single channel of latent space of autoencoders (AEs).
We assume that the latent codes Z are stochastic realizations based on f and addi-
tive Gaussian noise i.e. Z | f ∼ N (f , σ2I). We further assume a full factorization
p(Z | f ; σ2I) = ∏N

n=1 p(zn | fn; σ2).

Though GPs provide an elegant mechanism to handle uncertainties, their compu-
tational complexity grows cubically with the number of inputs, i.e. O(N3). This
problem is commonly tackled by sparse GPs, which are a family of approximate
models that address the scalability issue by introducing a set of M inducing variables
u = (u1, ..., uM)> ∈ RM×1 at the corresponding inducing inputs S = [s>1 , ..., s>M]> ∈
RM×D with um ≡ f (sm). The inducing points S can be interpreted as a compressed
version of the training data where the number of inducing points M acts as a trade-off
parameter between the goodness of the approximation and scalability. The inducing
variables are assumed to be drawn from the same GP as the original process, i.e.:

p(f , u) = p(u)p(f | u), with (C.4)

p(u) = N (0, Kss), (C.5)

p(f | u) = N (KxsK−1
ss u, Kxx − KxsK−1

ss Ksx), (C.6)

where the covariance matrices Kss, Kxs are computed between the elements in S and
{X, S}, respectively, and Ksx = K>sx.

There is a line of works using variational techniques for sparse GPs priors for VAEs
(Jazbec et al., 2021; Ashman et al., 2020). More specifically, they rely on the variational
framework proposed by Titsias (2009) and Hensman et al. (2013), enabling the use of
GP priors on very large datasets. However, the posterior of the inducing variables
u under this framework involves constraining to have a parametric form (usually a
Gaussian).

In this work, we take a different route as we treat the inducing variables u, inducing
inputs S as well as the kernel hyperparameters θ in a fully Bayesian way. As dis-
cussed in the main paper, we wish to infer these variables together with the decoder
parameters and the latent codes by using a powerful and scalable stochastic gradient
Hamiltonian Monte Carlo (SGHMC) (Chen et al., 2014) sampler. To do so, the sam-
pling objective Eq. 5.8 should be decomposed over all data points. The main obstacle
is the joint distribution p(Z, u | θ) = Ep(f | u)[p(Z | f ; σ2I)], which has a complicated
form due to the expectation under the conditional p(f | u). As discussed by Rossi et al.

170 Appendix C. Appendix for Chapter 5

(2021), this problem can be solved effectively by the fully independent training con-
ditionals (FITC; see Quiñonero-Candela and Rasmussen, 2005), i.e., parameterizing
p(f | u) as follows:

p(f | u) ≈ N (f ; KxsK−1
ss u, diag[Kxx − KxsK−1

ss Ksx]) (C.7)

=
N

∏
n=1

p(fn | u) =
N

∏
n=1
N (fn; µ̃n, σ̃2

n), (C.8)

where

µ̃n = κ(xn, S)K−1
ss u, (C.9)

σ̃2
n = κ(xn, xn)− κ(xn, S)K−1

ss κ(S, xn). (C.10)

We then can decompose the log-joint distribution over all data points as follows:

log p(Z, u | θ) = log Ep(f | u,θ)[p(z | f ; σ2I)] (C.11)

= log
∫

p(f | u, θ)p(Z | f , σ2I)d f (C.12)

= log
∫ N

∏
n=1

p(zn | fn; σ2)p(fn | u, θ)d f1...d fn (C.13)

= log
N

∏
n=1

∫
N (zn; fn, σ2)N (fn; µ̃n, σ̃2

n)d fn (C.14)

= log
N

∏
n=1
N (zn; µ̃n, σ̃2

n + σ2) (C.15)

=
N

∑
n=1

logN (zn; µ̃n, σ̃2
n + σ2), (C.16)

where µ̃n, σ̃2
n are given by Eq. C.9 and Eq. C.10, respectively.

In this work, we adopt the approach proposed by Hensman et al. (2015a), which in-
volves sampling the hyperparameters θ and u jointly. To achieve sampling efficiency,
a whitening representation is utilized, where the inducing variables are reparame-
terized as u = Lssν, with Kss = LssL>ss. Subsequently, the sampling process involves
obtaining samples from the joint posterior distribution over ν and θ.

C.3 Details of the Extension to deep Gaussian Processes

We assume a deep Gaussian process prior f (L) ◦ f (L−1) ◦ · · · ◦ f (1) (Damianou and
Lawrence, 2013), where each f (l) is a GP. For the sake of notation, we use Ψ(l) to
indicate the set of kernel hyperparameters and inducing inputs of the l-th layer and

f (0) as the input X. We additionally denote Ψ = {ϕ} ∪
{

u(l), Ψ(l)
}L

l=1
, where ϕ is the

decoder’s parameters.

C.4. Experimental Details 171

The full joint distribution is as follows:

p
(

Ψ, { f (l)}L
l=1, Z, Y

∣∣∣X
)
= p(Ψ)

L

∏
l=1

p
(

f (l) | f (l−1), Ψ
)

p
(

Z
∣∣∣ f (L); σ2I

)
︸ ︷︷ ︸

Deep GP prior

p(Y | Z,ϕ).

(C.17)

Here we omit the dependency on X for notational brevity.

We wish to infer the posterior over Ψ and the latent variables Z. To do this, the hidden
layers f (l) have to be marginalized and propagated up to the final layer L (Salimbeni
and Deisenroth, 2017). In particular, the log posterior is as follows:

log p(Ψ, Z |Y , X) = log p(Ψ) + log E
p
(
{ f (l)}L

l=1

∣∣∣{u(l),Ψ(l)}L
l=1

)p
(

Z
∣∣∣ f (L); σ2I

)
+

+ log p(Y | Z,ϕ)− log C, (C.18)

where C is a normalizing constant.

The above posterior is intractable, but we have obtained the form of its (un-normalized)
log-joint, from which we can sample using the Hamiltonian Monte Carlo (HMC)
method. Unfortunately, the expectation term is intractable, but we can estimate it
using Monte Carlo sampling as follows:

log E
p
(
{ f (l)}L

l=1

∣∣∣{u(l),Ψ(l)}L
l=1

)p
(

Z
∣∣∣ f (L); σ2I

)
≈

≈ log E
p
(
{ f (l)}L

l=2

∣∣∣ f̃ (1),{u(l),Ψ(l)}L
l=2

)p
(

Z
∣∣∣ f (L); σ2I

)
, f̃ (1) ∼ p

(
f (1)

∣∣∣ u(1), Ψ(1), f (0)
)

,

≈ log E
p
(
{ f (l)}L

l=3

∣∣∣ f̃ (2),{u(l),Ψ(l)}L
l=3

)p
(

Z
∣∣∣ f (L); σ2I

)
, f̃ (2) ∼ p

(
f (2)

∣∣∣ u(2), Ψ(2), f̃ (1)
)

,

≈ . . .

≈ log Ep(f (L) | f̃ (L−1),u(L),Ψ(L))p
(

Z
∣∣∣ f (L); σ2I

)
, f̃ (L−1) ∼ p

(
f L−1

∣∣∣u(L−1), Ψ(L−1), f̃ (L−2)
)

,

=
N

∑
n=1

log Ep(f L
n | f̃ L−1

n ,u(L),Ψ(L))p
(

zn

∣∣∣ f (L)
n ; σ2

)
(C.19)

Notice that each step of the approximation is unbiased due to the layer-wise factoriza-
tion of the joint distribution (Eq. C.17). We can obtain a closed form of the last-layer
expectation as zn | f (L)

n is a Gaussian. In the case of using a different distribution, this
expectation can be approximated using quadrature (Hensman et al., 2015b).

C.4 Experimental Details

In this section, we present details on implementation and hyperparameters used in
our experimental campaign. All experiments were conducted on a server equipped

172 Appendix C. Appendix for Chapter 5

with a Tesla T4 GPU having 16 GB RAM. Throughout all experiments, unless other-
wise stated, we impose an isotropic Gaussian prior over the decoder parameters. We
use the radial basis function (RBF) kernel with automatic relevance determination
(ARD) with marginal variance and independent lengthscales λi per feature (MacKay,
1996a). We place a lognormal prior with unit variance and means equal to 1 and 0.05
for the lengthscales and variance, respectively. Since the auxiliary data of most of the
considered datasets are timestamps, we impose a non-informative uniform prior on
the inducing inputs. We observe that this prior works well in our experiments. The
lengthscales are initialized to 1, whereas the inducing points are initialized by a k-
means algorithm as commonly used in practice (Hensman et al., 2015b). For inference,
we use an adaptive version of SGHMC (Springenberg et al., 2016) in which the hyper-
parameters are automatically tuned during a burn-in phase. The hyperparameters
are tuned according to the performance on the validation set.

The random seed for the stochastic inference network is drawn from an isotropic
Gaussian distribution, i.e. q(ε) = N (0, I). In case the encoder is a multilayer
perceptron (MLP), we concatenate the random seeds and the input into a long vector.
The dimension of the random seeds is the same as that of the input. If the encoder is
a convolutional neural network, we spatially stack the random seeds and the input.
We use an Adam optimizer (Kingma and Ba, 2015) with a learning rate of 0.001
for optimizing the encoder network. Unless otherwise specified, we set the default
hyperparameters of the number of SGHMC and encoder optimization steps J = 30,
and K = 50, respectively.

C.4.1 Moving ball experiment

We use the same network architectures as in Jazbec et al. (2021) and Pearce (2019).
We follow the data generation procedure of Jazbec et al. (2021), in which a squared-
exponential GP kernel with a lengthscale l = 2 was used. Notice that, unlike Jazbec et
al. (2021), we generate a fixed number of 35 videos for training and another 35 videos
for testing rather than generating new training videos at each iteration, regardless
of the fact that tens of thousands of iterations are performed. This new setting is
more realistic and is designed to show the data efficiency of the considered methods.
The number of frames in each video is 30. The dimension of each frame is 32× 32.
Table C.1 presents the default hyperparameters used for our SGP-BAE and Gaussian
Process Bayesian Autoencoder (GP-BAE) models. For the competing methods, we
follow the setups specified in Jazbec et al. (2021).

C.4.2 Rotated MNIST experiment

For the rotated MNIST experiment, we follow the same setup as in Jazbec et al. (2021)
and Casale et al. (2018). In particular, we use the GP kernel proposed by Casale et al.

C.5. Additional Results 173

(2018) and a neural network consisting of three convolutional layers followed by a
fully connected layer in the encoder and vice-versa in the decoder. The details of
hyperparameters used for our models are presented in Table C.2. For the competing
methods, we refer to Jazbec et al. (2021).

C.4.3 Missing imputation experiment

We follow the experimental setting in Ashman et al. (2020), in which squared exponen-
tial GP kernels are used. Notice that, to ensure a fair comparison, we handle partially
missing data by treating it as zero and feeding it into the inference network (encoder)
for SGP-VAE (Ashman et al., 2020) and our SGP-BAE model. This is because it is
not trivial to adapt partial inference networks (Ashman et al., 2020) to our stochastic
inference network, and we leave this for future work. Table C.3 and Table C.4 show
the default hyperparameters used for our models. For multi-output GP baselines, we
refer to Requeima et al. (2019).

C.5 Additional Results

C.5.1 Ablation study on Bayesian treatments of autoencoders

There are several approaches to treating autoencoder models in a fully Bayesian
manner. In fact, in Appendix E of the seminal paper on VAE, Kingma and Welling
(2014) had already considered a fully Bayesian treatment of VAEs by introducing a
prior on the decoder. VI is employed to infer the decoder and the latent variables.
Daxberger and Hernández-Lobato (2019) suggested employing SGHMC for sampling
decoder parameters, but they use the evidence lower bound (ELBO) of the marginal
likelihood of VAE as the objective for sampling. This may result in suboptimal
approximations. In contrast, our proposed approach entails direct sampling from
the posterior of the decoder and latent variables. In order to differentiate our model
from these approaches, we name them as Bayesian variational autoencoders (BVAEs),
following the terminology used by Glazunov and Zarras (2022). In particular, we
consider the VI (Kingma and Welling, 2014) and SGHMC approaches (Daxberger and
Hernández-Lobato, 2019) to treat the decoder of VAEs in a Bayesian manner. These
approaches are hereafter referred to as BVAE-VI and BVAE-SGHMC, respectively.

In this section, with the aim of thoroughly disentangling the factors contributing to the
superior performance of our proposed models, we present a comprehensive ablation
study on these Bayesian treatments of AEs and AE-style models with GP priors.
Based on this set of experiments, we identified three key factors that contribute
to the improved performance of our proposed models. These factors are: (i) the
new amortized SGHMC scheme for inference of the latent variables Z; (ii) treating

174 Appendix C. Appendix for Chapter 5

Table C.1: Parameter settings for the moving ball experiment.

PARAMETER VALUE

NUM. OF FEEDFORWARD LAYERS IN ENCODER 2
NUM. OF FEEDFORWARD LAYERS IN DECODER 2
WIDTH OF A HIDDEN FEEDFORWARD LAYER 500
DIMENSIONALITY OF LATENT SPACE 2
ACTIVATION FUNCTION TANH

NUM. OF INDUCING POINTS 10
MINI-BATCH SIZE FULL
STEP SIZE 0.005
MOMENTUM 0.05
NUM. OF BURN-IN STEPS 1500
NUM. OF SAMPLES 100
THINNING INTERVAL 400

Table C.2: Parameter settings for the rotated MNIST experi-
ment.

PARAMETER VALUE

NUM. OF CONV. LAYERS IN ENCODER 3
NUM. OF CONV. LAYERS IN DECODER 3
NUM. OF FILTERS PER CONV. CHANNEL 8
FILTER SIZE 3× 3
NUM. OF FEEDFORWARD LAYERS IN ENCODER 1
NUM. OF FEEDFORWARD LAYERS IN DECODER 1
ACTIVATION FUNCTION ELU
DIMENSIONALITY OF LATENT SPACE 16

NUM. OF INDUCING POINTS 32
MINI-BATCH SIZE 512
STEP SIZE 0.01
MOMENTUM 0.01
NUM. OF BURN-IN STEPS 1500
NUM. OF SAMPLES 200
THINNING INTERVAL 800

the decoder in a Bayesian manner and using SGHMC for inference properly; (iii)
employing a full Bayesian sparse GP prior on the latent variables and using SGHMC

for inference. To evaluate the impact of each factor, we evaluate different modeling
and inference choices of the decoder, latent variables, and GP prior. As shown in
Fig. C.2, the results further demonstrate that our proposal in fact offers the best
performance.

Regarding (i), we consider baselines in which the decoder in our models, BAE, GP-
BAE, and SGP-BAE, are treated in a non-Bayesian way. In the figure, we name these
baselines as BAE-NonBayesDec, GP-BAE-NonBayesDec, SGP-BAE-NonBayesDec,
respectively. The results of these new models are slightly worse than the original ones.
However, they are still significantly better than variational-based models. Moreover,

C.5. Additional Results 175

Table C.3: Parameter settings for the JURA experiment.

PARAMETER VALUE

NUM. OF FEEDFORWARD LAYERS IN ENCODER 1
NUM. OF FEEDFORWARD LAYERS IN DECODER 2
WIDTH OF A HIDDEN ENCODER LAYER 20
WIDTH OF A HIDDEN DECODER LAYER 5
DIMENSIONALITY OF LATENT SPACE 2
ACTIVATION FUNCTION RELU

NUM. OF INDUCING POINTS 128
MINI-BATCH SIZE 100
STEP SIZE 0.002
MOMENTUM 0.05
NUM. OF BURN-IN STEPS 1500
NUM. OF SAMPLES 50
THINNING INTERVAL 180

Table C.4: Parameter settings for the EEG experiment.

PARAMETER VALUE

NUM. OF FEEDFORWARD LAYERS IN ENCODER 1
NUM. OF FEEDFORWARD LAYERS IN DECODER 2
WIDTH OF A HIDDEN ENCODER LAYER 20
WIDTH OF A HIDDEN DECODER LAYER 5
DIMENSIONALITY OF LATENT SPACE 3
ACTIVATION FUNCTION RELU

NUM. OF INDUCING POINTS 128
MINI-BATCH SIZE 100
STEP SIZE 0.003
MOMENTUM 0.05
NUM. OF BURN-IN STEPS 1500
NUM. OF SAMPLES 50
THINNING INTERVAL 180

this also implies the benefit to treat the decoder Bayesian properly (ii).

For (ii), we additionally consider Bayesian VAEs, such as BVAE-VI and BVAE-SGHMC.
We find that the Bayesian treatment of the decoder of VAEs is not clearly helpful, even
when using SGHMC for the decoder. This is because BVAE-SGHMC still relies on the
ELBO as the sampling objective. In contrast, in our models, we sample the decoder
directly from the posterior. This is aligned with the recent success of SGHMC on
modern Bayesian neural networks (Tran et al., 2022; Izmailov et al., 2021b). Moreover,
our models jointly sample all parameters at once, which avoids the inefficiency of
iterative switching between optimizing the inference network using VI and sampling
the decoder.

To verify (iii), we evaluate our model SGP-BAE in the case where the sparse GP is
not treated in a fully Bayesian way. The inducing points and kernel parameters are

176 Appendix C. Appendix for Chapter 5

0 50 100 150 200

0.6

0.8

1

1.2

0.5 1 1.5
0

1

2

3

4

0 50 100 150 200

0.8

1

1.2

0.60.8 1 1.21.4
0

2

4

0 50 100 150 200

0

0.2

0.4

0.6

0 0.5 1
0

1

2

3

0 50 100 150 200

0

0.2

0.4

0.6

0.8

0 0.5 1
0

1

2

3

Figure C.3: Trace plots for four test points on the rotated MNIST
dataset. Here, we simulate 4 chains with 200 samples for each.

optimized using the objective of Titsias (2009). In Fig. C.2, we term this baseline as
SGP-BAE-NonBayesGP. We observe that this model performs much worse than our
SGP-BAE model.

5 10 20

20

30

40

Number of inducing points

R
M

SE
(←

)

Model Decoder Latent variables GP prior

VAE Non-Bayesian VI None
BVAE-VI VI VI None
BAE-SGHMC SGHMC VI None
BAE SGHMC SGHMC None
BAE-NonBayesDec None SGHMC None

GP-VAE None VI Full GP (Fixed)
GP-BVAE-VI SGHMC VI Full GP (Fixed)
GP-BVAE-SGHMC SGHMC VI Full GP (Fixed)
GP-BAE SGHMC SGHMC Full GP (Fixed)
GP-BAE-NonBayesDec Non-Bayesian SGHMC Full GP (Fixed)

SVGP-VAE Non-Bayesian VI Sparse GP (VI)
SVGP-BVAE-VI VI VI Sparse GP (VI)
SVGP-BVAE-SGHMC SGHMC VI Sparse GP (VI)
SGP-BAE SGHMC SGHMC Bayes. sparse GP (SGHMC)
SGP-BAE-NonBayesDec Non-Bayesian SGHMC Bayes. sparse GP (SGHMC)
SGP-BAE-NonBayesGP SGHMC SGHMC Sparse GP (VI)

Figure C.2: An ablation study on different Bayesian treatments of
AE models and AE-style models with GP priors on the moving ball

dataset.

C.5.2 Convergence of SGHMC

We follow the common practice of using the R̂ potential scale-reduction diagnostic
(Gelman and Rubin, 1992) to assess the convergence of Markov chain Monte Carlo
(MCMC) on Bayesian neural networks (BNNs) Izmailov et al. (2021b) and Tran et al.
(2022). Given two or more chains, R̂ estimates the ratio between the chain variance
and the average within-chain variance. For the large-scale MNIST experiment, we
compute the R̂ statistics on the predictive posterior over four independent chains and
obtain a median value of less than 1.1, which suggests good convergence Izmailov
et al. (2021b). In addition, we present trace plots of the predictive posterior in Fig. C.3,
which also support the conclusion of good mixing.

177

Appendix D

Appendix for Chapter 6

D.1 A Primer on Normalizing Flows and VAEs

Given a dataset D consisting of N i.i.d samples D ∆
= {xi}N

i=1 with xi ∈ RD, we aim at
estimating the unknown continuous generating distribution pdata(x). In order to do
so, we introduce a model pθ(x) with parameters θ and attempt to estimate θ based
on the dataset D. A common approach to estimate θ is to maximize the likelihood of
the data, which is equivalent to minimizing the following objective:

L(θ) ∆
= −Epdata(x) [log pθ(x)] . (D.1)

Optimization for this objective can be done through a stochastic gradient descent
algorithm using minibatches of samples from pdata(x).

D.1.1 Normalizing flows

In flow-based generative models (Papamakarios et al., 2021; Kobyzev et al., 2021), the
generative process is defined as:

z ∼ pφ(z); x = fψ(z), (D.2)

where z ∈ RD is a latent variable, and pφ(z) is a tractable base distribution with pa-
rameters φ, such as an isotropic multivariate Gaussian. The function fψ : RD → RD

is invertible, such that given any input vector x we have z = f−1
ψ (x). A normalizing

flow (NF) (Rezende and Mohamed, 2015) defines a sequence of invertible transforma-
tions f = f1 ◦ f2 ◦ · · · fK, such that the relationship between x and z can be written
as:

x
f1←→ h1

f2←→ h2 · · ·
fK←→ z, (D.3)

where hk = f−1
k (hk−1; ψk) and ψk are the parameters of the transformation fk. For the

sake of simplicity, we define h0
∆
= x and hK

∆
= z. The likelihood of the model given a

178 Appendix D. Appendix for Chapter 6

data point can be computed analytically using the change of variables as follows:

log pθ(x) = log pφ(z) + log |det(∂z/∂x)| (D.4)

= log pφ(z) +
K

∑
k=1

log |det(∂hk/∂hk−1)| , (D.5)

where log |det(∂hk/∂hk−1)| is the logarithm of absolute value of the determinant of
the Jacobian matrix ∂hk/∂hk−1. This term accounts for the change of measure when
going from hk−1 to hk using the transformation fk. The resulting NF model is then
characterized by the set of parameters θ = {φ} ∪ {ψk}K

k=1, which can be estimated
using the maximum likelihood estimation (MLE) objective Eq. D.1.

Though NFs allow for exact likelihood computation, they require fk to be invertible
and to have a tractable inverse and Jacobian determinant. This restricts the flexibility
to certain transformations that can be used within NFs see e.g., Papamakarios et al.,
2021; Kobyzev et al., 2021, and references therein, such as affine coupling (Dinh et al.,
2015; Dinh et al., 2017a), invertible convolution (Kingma and Dhariwal, 2018), spline
(Durkan et al., 2019; Dolatabadi et al., 2020), or inverse autoregressive transformations
(Kingma et al., 2016).

D.1.2 Variational autoencoders

variational autoencoders (VAEs) (Kingma and Welling, 2014; Rezende and Mohamed,
2015) introduce a low-dimensional latent variable z ∈ RP, with P � D, to the
generative process as follows:

z ∼ p(z); x ∼ pθ(x | z). (D.6)

Here, p(z) is a tractable prior distribution over the latent variables z, and pθ(x | z),
which is also known as a decoder, is usually implemented by a flexible neural network
parameterized by θ. Different from NFs, VAEs employ a stochastic transformation
pθ(x | z) to map z to x. Indeed, NFs can be viewed as VAEs where the decoder and
encoder are modelled by Dirac deltas pθ(x | z) = δ

(
fθ(x)

)
and qφ(z | x) = δ

(
f−1

θ (x)
)

respectively, using a restricted family of transformations fθ.

The marginal likelihood of VAEs is intractable and given by:

pθ(x) =
∫

pθ(x | z)p(z)dz. (D.7)

A variational lower bound on ther marginal likelihood can be obtained by introducing

D.2. Details on Blurring Mollification 179

a variational distribution qφ(z | x), with parameters φ, which acts as an approxima-
tion to the the unknown posterior p(z | x):

log pθ(x) ≥ Eqφ(z | x)[log pθ(x | z)]− KL
[
qφ(z | x) ‖ p(z)

]︸ ︷︷ ︸
LELBO(θ,φ)

, (D.8)

where, LELBO(θ, φ) is known as the evidence lower bound (ELBO), and the expecta-
tion can be approximated by using Monte Carlo samples from qφ(z | x). This objective
can be optimized with stochastic optimization w.r.t. parameters θ and φ in place of
Eq. D.1.

To tighten the gap between the ELBO and the true marginal likelihood, VAEs can
be employed with an expressive form of the approximate posterior qφ(z | x) such as
importance weighted sampling (Burda et al., 2016) or normalizing flows (Kingma et
al., 2016; Berg et al., 2018). In addition, to avoid the over regularization offect induced
by the prior p(z), one can utilize a flexible prior such as multi-modal distributions
(Dilokthanakul et al., 2016; Tomczak and Welling, 2018), hierarchical forms (Sø nderby
et al., 2016; Klushyn et al., 2019), or simply reweighing the KL divergence term in the
ELBO (Higgins et al., 2017).

D.2 Details on Blurring Mollification

Recently, Rissanen et al. (2023), Hoogeboom and Salimans (2023), and Daras et al.
(2023) have proposed appproaches to destroy information of images using blurring
operations for diffusion-type generative models. Their approach involves stochasti-
cally reversing the heat equation, which is a partial differential equation (PDE) that
can be used to erase fine-scale information when applied locally to the 2D plane of an
image. In particular, the Laplace PDE for heat diffusions is as follows:

∂

∂t
x̃(i, j, t) = ∆x̃(i, j, t), (D.9)

where we consider the initial state of the system to be x, the true image data. This
PDE can be effectively solved by employing a diagonal matrix within the frequency
domain of the cosine transform, provided that the signal is discretized onto a grid.
The solution to this equation at time t can be effectively computed by:

x̃t = Atx = V DtV>x, (D.10)

Here, V> and V denote the discrete cosine transformation (DCT) and inverse DCT,
respectively; the diagonal matrix Dt is the exponent of a weighting matrix for fre-
quencies Λ so that Dt = exp(Λt). We refer the reader to Appendix A of Rissanen
et al. (2023) for the specific definition of Λ. We can evaluate Eq. D.10 in the Fourier
domain, which is fast to compute, as the DCT and inverse DCT require O(N log N)

180 Appendix D. Appendix for Chapter 6

operations. The equivalent form of Eq. D.10 in the Fourier domain is as follows:

ũt = exp(Λt)u, (D.11)

where u = V>x = DCT(x). As Λ is a diagonal matrix, the above Fourier-space
model is fast to evaluate. A Python implementation of this blurring mollification is
presented in Algorithm 7.

We follow Rissanen et al. (2023) to set the schedule for the blurring mollification. In
particular, we use a logarithmic spacing for the time steps tk, where t0 = σ2

B,max/2 and
tT = σ2

B,min/2 = 0.52/2, corresponding to sub-pixel-size blurring. Here, σ2
B,max is the

effective lengthscale-scale of blurring at the beginning of the mollification process.
Following Rissanen et al. (2023), we set this to half the width of the image.

Algorithm 7: Python code for blurring mollification

1 import numpy as np
2 from scipy.fftpack import dct , idct
3
4 def blurring_mollify(x, t):
5 # Assuming the image u is an (KxK) numpy array
6 K = x.shape [-1]
7 freqs = np.pi*np.linspace(0,K-1,K)/K
8 frequencies_squared = freqs[:,None]**2 + freqs[None ,:]**2
9 x_proj = dct(u, axis=0, norm=’ortho’)

10 x_proj = dct(x_proj , axis=1, norm=’ortho’)
11 x_proj = np.exp(-frequencies_squared * t) * x_proj
12 x_mollified = idct(x_proj , axis=0, norm=’ortho’)
13 x_mollified = idct(x_mollified , axis=1, norm=’ortho ’)
14 return x_mollified

D.3 Implementation of Noise Schedules

Algorithm 8 shows the Python code for the noise schedules used in this work. For
the sigmoid schedule, following Chen (2023), we set the default values of start and
end to 0 and 3, respectively.

D.4 Experimental Details

D.4.1 Datasets

Synthetic datasets.

• Mixture of Gaussians: We consider a mixture of two Gaussians with means µk =

(2 sin(πk), 2 cos(πk)) and covariance matrices Σk = σ2I, where σ = 2
3 sin(π/2).

We generate 10K samples for training and 10K samples for testing from this
distribution.

D.4. Experimental Details 181

Algorithm 8: Python code for noise schedules

1 import numpy as np
2
3 def sigmoid(x):
4 # Sigmoid function.
5 return 1 / (1 + np.exp(-x))
6
7 def sigmoid_schedule(t, T, tau=0.7, start=0, end=3, clip_min =1e-9):
8 # A scheduling function based on sigmoid function with a temperature tau.
9 v_start = sigmoid(start / tau)

10 v_end = sigmoid(end / tau)
11 return (v_end - sigmoid ((t/T * (end - start) + start) / tau)) / (v_end -

v_start)
12
13 def linear_schedule(t, T):
14 # A scheduling function based on linear function.
15 return 1 - t/T
16
17 def cosine_schedule(t, T, ns=0.0002 , ds =0.00025):
18 # A scheduling function based on cosine function.
19 return np.cos(((t/T + ns) / (1 + ds)) * np.pi / 2)**2

• Von Mises distribution: We use a von Mises distribution with parameters κ = 1,
and then transform to Cartesian coordinates to obtain a distribution on the
unit circle in R2. We generate 10K training samples and 10K testing from this
distribution.

Image datasets. We consider two image datasets including CIFAR10 (Krizhevsky
and Hinton, 2009) and CELEBA (Liu et al., 2015). These datasets are publicly avail-
able and widely used in the literature of generative models. We use the official
train/val/test splits for both datasets. The resolution of CIFAR10 is 3× 32× 32. For
CELEBA, we pre-process images by first taking a 148× 148 center crop and then
resizing to the 3× 64× 64 resolution.

D.4.2 Software and computational resources

We use NVIDIA P100 and A100 GPUs for the experiments, with 16GB and 80GB
of memory respectively. All models are trained on a single GPU except for the
experiments with NVAE model (Vahdat and Kautz, 2020), where we employ two
A100 GPUs. We use PyTorch (paszke2019pytorch) for the implementation of the
models and the experiments. Our experiments with VAEs and NFs are relied on
the pythae (Chadebec et al., 2022) and normflows (Stimper et al., 2023) libraries,
respectively.

182 Appendix D. Appendix for Chapter 6

D.4.3 Training details

Toy examples.

In the experiments on synthetic datasets, we use a REAL-NVP flow (Dinh et al., 2017a)
with 5 affine coupling layers consisting of 2 hidden layers of 64 units each. We train
the model for 20000 itereations using an Adam optimizer (Kingma and Ba, 2015) with
a learning rate of 5 · 10−4 and a mini-batch size of 256.

Imaging experiments.

REAL-NVP. We use the multi-scale architecture with deep convolutional residual
networks in the coupling layers as described in Dinh et al., 2017a. For the CIFAR10
dataset, we use 4 residual blocks with 32 hidden feature maps for the first coupling
layers with checkerboard masking. For the CELEBA dataset, 2 resdiual blocks are
employed. We use an Adam optimizer (Kingma and Ba, 2015) with a learning rate
of 10−3 and a mini-batch size of 64. We train the model for 100 and 80 epochs on
the CIFAR10 and CELEBA datasets, respectively. For the mollification training, we
perturb the data for 50 and 40 epochs for CIFAR10 and CELEBA, respectively.

GLOW. We use a multi-scale architecture as described in Kingma and Dhariwal,
2018. The architecture has a depth level of K = 20, and a number of levels L = 3. We
use the AdaMax (Kingma and Ba, 2015) optimizer with a learning rate of 3 · 10−4 and
a mini-batch size of 64. We train the model for 80 and 40 epochs on the CIFAR10 and
CELEBA datasets, respectively. For the mollification training, we perturb the data for
50 and 20 epochs for CIFAR10 and CELEBA, respectively.

Table D.1: Neural network architectures used for VAEs in our experi-
ments. Here, CONV(n,s,p) and CONVT(n,s,p) respectively denotes convolu-
tional layer and transposed convolutional layers with n filters, a stride
of s and a padding of p, whereas FCn represents a fully-connected

layer with n units, and BN denotes a batch-normalization layer.

CIFAR10 CELEBA

ENCODER: x ∈ R3×32×32

→ CONV(128,4,2) → BN → RELU
→ CONV(256,4,2) → BN → RELU
→ CONV(512,4,2) → BN → RELU
→ CONV(1024,4,2) → BN → RELU
→ FLATTEN → FC256×2

x ∈ R3×64×64

→ CONV(128,4,2) → BN → RELU
→ CONV(256,4,2) → BN → RELU
→ CONV(512,4,2) → BN → RELU
→ CONV(1024,4,2) → BN → RELU
→ FLATTEN → FC256×2

DECODER: z ∈ R256 → FC8×8×1024

→ CONVT(512,4,2) → BN → RELU
→ CONVT(256,4,2) → BN → RELU
→ CONVT(3,4,1)

z ∈ R256 → FC8×8×1024

→ CONVT(512,5,2) → BN → RELU
→ CONVT(256,5,2) → BN → RELU
→ CONVT(128,5,2) → BN → RELU
→ CONVT(3,4,1)

D.5. Addtional Results 183

VAEs. We use convolutional networks for both the encoder and decoder of VAEs
(Kingma and Welling, 2014; Rezende et al., 2014). Table D.1 shows the details of
the network architectures. We use an Adam optimizer (Kingma and Ba, 2015) with
a learning rate of 3 · 10−4 and a mini-batch size of 128. We train the model for
200 and 100 epochs on the CIFAR10 and CELEBA datasets, respectively. For the
mollification training, we perturb the data for 100 and 50 epochs for CIFAR10 and
CELEBA, respectively. The addtional details of the variants of VAEs are as follows:

• VAE-IAF (Kingma et al., 2016): We use a 3-layer MADE (Germain et al., 2015)
with 128 hidden units and RELU activation for each layer and stack 2 blocks of
Masked Autoregressive Flow to create the flow for approximating the posterior.

• β-VAE (Higgins et al., 2017): We use a coefficient of β = 0.1 for the Kullback-
Leibler (KL) term in the ELBO objective.

• IWAE (Burda et al., 2016): We use a number of importance samples of K = 5.

• HVAE (Caterini et al., 2018): We set the number of leapfrog steps to used in the
integrator to 1. The leapfrog step size is adaptive with an initial value of 0.001

NVAE. We use the default network architecture as described in Vahdat and Kautz,
2020. We train the model on the CIFAR10 for 300 epochs with an AdaMax optimizer
(Kingma and Ba, 2015) with a learning rate of 10−3 and a mini-batch size of 200. For
the mollification training, we perturb the data for first 150 epochs.

D.5 Addtional Results

Table D.2 and Table D.3 illustrate uncurated samples from the trained models. Fig. D.1
and Fig. D.2 show the progression of FID scores during training on the CIFAR10 and
CELEBA datasets, respectively.

184 Appendix D. Appendix for Chapter 6

Table D.2: Uncurated samples from the models trained on the CI-
FAR10 dataset.

VANILLA GAUSS. MOLLIFICATION BLUR. MOLLIFICATION

REAL-NVP

GLOW

VAE

VAE-IAF

IWAE

β-VAE

HVAE

D.5. Addtional Results 185

Table D.3: Uncurated samples from the models trained on the CELEBA
dataset.

VANILLA GAUSS. MOLLIFICATION BLUR. MOLLIFICATION

REAL-NVP

GLOW

VAE

VAE-IAF

IWAE

β-VAE

HVAE

186 Appendix D. Appendix for Chapter 6

0 50 100 150 200

5.07

5.53

5.99

Epoch

FI
D

[lo
g]

(←
)

VAE

0 50 100 150 200

4.61

5.07

5.53

5.99

Epoch

FI
D

[lo
g]

(←
)

β-VAE

0 50 100 150 200

5.07

5.53

5.99

Epoch

FI
D

[lo
g]

(←
)

IWAE

0 50 100 150 200

5.07

5.53

5.99

Epoch

FI
D

[lo
g]

(←
)

VAE-IAF

0 50 100 150 200

5.07

5.53

5.99

Epoch

FI
D

[lo
g]

(←
)

HVAE

0 20 40 60 80

4.61

5.76

Epoch

FI
D

[lo
g]

(←
)

GLOW

Figure D.1: The progression of FID scores during training on the
CIFAR10 dataset.

20 40 60 80 100

4.61

5.76

Epoch

FI
D

[lo
g]

(←
)

VAE

20 40 60 80 100

4.61

5.76

Epoch

FI
D

[lo
g]

(←
)

β-VAE

20 40 60 80 100

4.61

5.76

Epoch

FI
D

[lo
g]

(←
)

IWAE

20 40 60 80 100

4.61

5.76

Epoch

FI
D

[lo
g]

(←
)

VAE-IAF

20 40 60 80 100

4.61

5.76

Epoch

FI
D

[lo
g]

(←
)

HVAE

10 20 30 40

4.61

5.76

Epoch

FI
D

[lo
g]

(←
)

GLOW

Figure D.2: The progression of FID scores during training on the
CELEBA dataset.

187

Bibliography

Aitchison, Laurence (2021). “A Statistical Theory of Cold Posteriors in Deep Neural
Networks”. In: International Conference on Learning Representations.

Akaike, H (1973). “Information Theory and an Extension of the Maximum Likelihood
Principle”. In: 2nd International Symposium on Information Theory, 1973. Publishing
House of the Hungarian Academy of Sciences, pp. 268–281.

Ambrogioni, Luca, Umut Güçlü, Yağmur Güçlütürk, Max Hinne, Marcel A. J. van
Gerven, and Eric Maris (2018). “Wasserstein Variational Inference”. In: Advances in
Neural Information Processing Systems. Vol. 31. Curran Associates, Inc.

Amit, Ron and Ron Meir (2018). “Meta-Learning by Adjusting Priors Based on Ex-
tended PAC-Bayes Theory”. In: Proceedings of the 35th International Conference on
Machine Learning, ICML 2018. Vol. 80. Proceedings of Machine Learning Research.
Stockholmsmässan, Stockholm, Sweden: PMLR, pp. 205–214.

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and
Dan Mané (2016). “Concrete Poblems in AI Safety”. In: arXiv preprint arXiv:1606.06565.

Antoran, Javier, Umang Bhatt, Tameem Adel, Adrian Weller, and José Miguel Hernández-
Lobato (2021). “Getting a CLUE: A Method for Explaining Uncertainty Estimates”.
In: International Conference on Learning Representations.

Arjovsky, Martín, Soumith Chintala, and Léon Bottou (2017). “Wasserstein Generative
Adversarial Networks”. In: Proceedings of the 34th International Conference on Machine
Learning, ICML 2017. Vol. 70. Proceedings of Machine Learning Research. Sydney,
NSW, Australia: PMLR, pp. 214–223.

Ashman, Matthew, Jonathan So, Will Tebbutt, Vincent Fortuin, Michael Pearce, and
Richard E Turner (2020). “Sparse Gaussian Process Variational Autoencoders”. In:
arXiv preprint arXiv:2010.10177.

Ashukha, Arsenii, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov (2020).
“Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning”.
In: International Conference on Learning Representations.

Atanov, Andrei, Arsenii Ashukha, Kirill Struminsky, Dmitriy Vetrov, and Max Welling
(2019). “The Deep Weight Prior”. In: International Conference on Learning Representa-
tions.

188 Bibliography

Baldi, Pierre and Kurt Hornik (1989). “Neural Networks and Principal Component
Analysis: Learning from Examples Without Local Minima”. In: Neural networks 2.1,
pp. 53–58.

Bauer, Matthias and Andriy Mnih (2019). “Resampled Priors for Variational Autoen-
coders”. In: The 22nd International Conference on Artificial Intelligence and Statistics,
AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan. Vol. 89. Proceedings of Ma-
chine Learning Research. PMLR, pp. 66–75.

Bengio, Yoshua, Li Yao, Guillaume Alain, and Pascal Vincent (2013a). “Generalized
Denoising Auto-Encoders as Generative Models”. In: Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems
2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United
States, pp. 899–907.

Bengio, Yoshua, Aaron Courville, and Pascal Vincent (2013b). “Representation Learn-
ing: A Review and New Perspectives”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 35.8, pp. 1798–1828.

Bengio, Yoshua, Eric Laufer, Guillaume Alain, and Jason Yosinski (2014). “Deep
Generative Stochastic Networks Trainable by Backprop”. In: Proceedings of the
31st International Conference on Machine Learning. Vol. 32. Proceedings of Machine
Learning Research 2. Bejing, China: PMLR, pp. 226–234.

Berg, Rianne van den, Leonard Hasenclever, Jakub M. Tomczak, and Max Welling
(2018). “Sylvester Normalizing Flows for Variational Inference”. In: Proceedings
of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI 2018,
Monterey, California, USA, August 6-10, 2018. AUAI Press, pp. 393–402.

Bishop, Christopher M. (2006). Pattern recognition and machine learning. 1st ed. 2006.
Corr. 2nd printing 2011. Springer.

Blei, David M. and Michael I. Jordan (2006). “Variational Inference for Dirichlet
Process Mixtures”. In: Bayesian Analysis 1.1, pp. 121 –143. DOI: 10.1214/06-BA104.

Blei, David M, Alp Kucukelbir, and Jon D McAuliffe (2017). “Variational Inference: A
Review for Statisticians”. In: Journal of the American statistical Association 112.518,
pp. 859–877.

Blundell, Charles, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra (2015).
“Weight Uncertainty in Neural Network”. In: Proceedings of the 32nd International
Conference on Machine Learning. Vol. 37. Proceedings of Machine Learning Research.
Lille, France: PMLR, pp. 1613–1622.

Böhm, Vanessa and Uroš Seljak (2020). “Probabilistic Auto-Encoder”. In: arXiv preprint
arXiv:2006.05479.

Bommasani, Rishi, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney
von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill,

https://doi.org/10.1214/06-BA104

Bibliography 189

et al. (2021). “On the Opportunities and Risks of Foundation Models”. In: arXiv
preprint arXiv:2108.07258.

Bonilla, Edwin V., Karl Krauth, and Amir Dezfouli (2019). “Generic Inference in
Latent Gaussian Process Models”. In: Journal of Machine Learning Research 20.117,
pp. 1–63.

Bonneel, Nicolas, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister (2015). “Sliced
and Radon Wasserstein Barycenters of Measures”. In: Journal of Mathematical Imag-
ing and Vision 51.1, pp. 22–45.

Briol, François-Xavier, Chris J. Oates, Mark Girolami, Michael A. Osborne, and Dino
Sejdinovic (2019). “Probabilistic Integration: A Role in Statistical Computation?” In:
Statistical Science 34.1, pp. 1–22.

Brown, Bradley CA, Anthony L. Caterini, Brendan Leigh Ross, Jesse C Cresswell, and
Gabriel Loaiza-Ganem (2023). “Verifying the Union of Manifolds Hypothesis for
Image Data”. In: International Conference on Learning Representations.

Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei (2020). “Language Models are Few-Shot Learners”. In: Advances in Neural
Information Processing Systems. Vol. 33. Curran Associates, Inc., pp. 1877–1901.

Burda, Yuri, Roger B. Grosse, and Ruslan Salakhutdinov (2016). “Importance Weighted
Autoencoders”. In: International Conference on Learning Representations.

Burkardt, John (2014). “The Truncated Normal Distribution”. In: Department of Scien-
tific Computing Website, Florida State University, pp. 1–35.

Carbone, Ginevra, Matthew Wicker, Luca Laurenti, Andrea Patane, Luca Borto-
lussi, and Guido Sanguinetti (2020). “Robustness of Bayesian Neural Networks
to Gradient-Based Attacks”. In: Advances in Neural Information Processing Systems.
Vol. 33. Curran Associates, Inc., pp. 15602–15613.

Casale, Francesco Paolo, Adrian Dalca, Luca Saglietti, Jennifer Listgarten, and Nicolo
Fusi (2018). “Gaussian Process Prior Variational Autoencoders”. In: Advances in
Neural Information Processing Systems. Vol. 31. Curran Associates, Inc.

Caterini, Anthony L, Arnaud Doucet, and Dino Sejdinovic (2018). “Hamiltonian
Variational Auto-Encoder”. In: Advances in Neural Information Processing Systems.
Vol. 31. Curran Associates, Inc.

Chadebec, Clément, Louis Vincent, and Stephanie Allassonniere (2022). “Pythae:
Unifying Generative Autoencoders in Python - A Benchmarking Use Case”. In:

190 Bibliography

Advances in Neural Information Processing Systems. Ed. by S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh. Vol. 35. Curran Associates, Inc.,
pp. 21575–21589.

Chen, Tianqi, Emily Fox, and Carlos Guestrin (2014). “Stochastic Gradient Hamil-
tonian Monte Carlo”. In: Proceedings of the 31st International Conference on Machine
Learning, ICML 2014. Proceedings of Machine Learning Research. Bejing, China:
PMLR, pp. 1683–1691.

Chen, Tianrong, Guan-Horng Liu, and Evangelos Theodorou (2022). “Likelihood
Training of Schrödinger Bridge using Forward-Backward SDEs Theory”. In: Inter-
national Conference on Learning Representations.

Chen, Ting (2023). “On the Importance of Noise Scheduling for Diffusion Models”.
In: arXiv preprint arXiv:2301.10972.

Chen, Xi, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schul-
man, Ilya Sutskever, and Pieter Abbeel (2017). “Variational Lossy Autoencoder”.
In: International Conference on Learning Representations.

Cockayne, Jon, Chris J. Oates, Ilse C.F. Ipsen, and Mark Girolami (2019). “A Bayesian
Conjugate Gradient Method (with Discussion)”. In: Bayesian Analysis 14.3, pp. 937–
1012.

Cornish, Rob, Anthony Caterini, George Deligiannidis, and Arnaud Doucet (2020).
“Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows”.
In: Proceedings of the 37th International Conference on Machine Learning. Vol. 119.
Proceedings of Machine Learning Research. PMLR, pp. 2133–2143.

Cottrell, Garrison W., Paul Munro, and David Zipser (1989). “Image Compression by
Back Propagation: A Demonstration of Extensional Programming”. In: Models of
Cognition, pp. 208–240.

Cremer, Chris, Xuechen Li, and David Duvenaud (2018). “Inference Suboptimality in
Variational Autoencoders”. In: International Conference on Learning Representations.

Dai, Bin and David Wipf (2019). “Diagnosing and Enhancing VAE Models”. In:
International Conference on Learning Representations.

Dai, Zhenwen, Andreas C. Damianou, Javier González, and Neil D. Lawrence (2015).
“Variational Auto-encoded Deep Gaussian Processes”. In: International Conference
on Learning Representations.

Damianou, Andreas and Neil D. Lawrence (2013). “Deep Gaussian Processes”. In:
Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statis-
tics. Vol. 31. Proceedings of Machine Learning Research. Scottsdale, Arizona, USA:
PMLR, pp. 207–215.

Bibliography 191

Dangel, Felix, Frederik Kunstner, and Philipp Hennig (2020). “BackPACK: Packing
more into Backprop”. In: International Conference on Learning Representations.

Daras, Giannis, Mauricio Delbracio, Hossein Talebi, Alex Dimakis, and Peyman
Milanfar (2023). “Soft Diffusion: Score Matching with General Corruptions”. In:
Transactions on Machine Learning Research. ISSN: 2835-8856.

Daxberger, Erik A. and José Miguel Hernández-Lobato (2019). “Bayesian Variational
Autoencoders for Unsupervised Out-of-Distribution Detection”. In: arXiv preprint
arXiv:1912.05651.

Daxberger, Erik A., Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, M.
Bauer, and Philipp Hennig (2021). “Laplace Redux – Effortless Bayesian Deep
Learning”. In: Advances in Neural Information Processing Systems. Vol. 34. Curran
Associates, Inc., pp. 20089–20103.

Delattre, Sylvain and Nicolas Fournier (2017). “On the Kozachenko–Leonenko en-
tropy estimator”. In: Journal of Statistical Planning and Inference 185, pp. 69–93.

Der Kiureghian, Armen and Ove Ditlevsen (2009). “Aleatory or Epistemic? Does It
Matter?” In: Structural Safety 31.2, pp. 105–112.

Dhariwal, Prafulla and Alexander Nichol (2021). “Diffusion Models Beat GANs on
Image Synthesis”. In: Advances in Neural Information Processing Systems. Vol. 34.
Curran Associates, Inc., pp. 8780–8794.

Dieng, Adji Bousso, Dustin Tran, Rajesh Ranganath, John Paisley, and David Blei
(2017). “Variational Inference via χ Upper Bound Minimization”. In: Advances in
Neural Information Processing Systems. Vol. 30. Curran Associates, Inc.

Dilokthanakul, Nat, Pedro AM Mediano, Marta Garnelo, Matthew CH Lee, Hugh
Salimbeni, Kai Arulkumaran, and Murray Shanahan (2016). “Deep unsupervised
Clustering with Gaussian Mixture Variational Autoencoders”. In: arXiv preprint
arXiv:1611.02648.

Dinh, Laurent, David Krueger, and Yoshua Bengio (2015). “NICE: Non-linear Inde-
pendent Components Estimation”. In: International Conference on Learning Represen-
tations.

Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio (2017a). “Density Estimation
Using Real NVP”. In: International Conference on Learning Representations.

Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio (2017b). “Density Estimation
Using Real NVP”. In: International Conference on Learning Representations.

Dolatabadi, Hadi Mohaghegh, Sarah Erfani, and Christopher Leckie (2020). “Invert-
ible Generative Modeling using Linear Rational Splines”. In: Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics. Vol. 108.
Proceedings of Machine Learning Research. PMLR, pp. 4236–4246.

192 Bibliography

Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby (2021). “An Image is Worth 16x16
Words: Transformers for Image Recognition at Scale”. In: International Conference on
Learning Representations.

Du, Yilun and Igor Mordatch (2019). “Implicit Generation and Modeling with Energy
Based Models”. In: Advances in Neural Information Processing Systems. Vol. 32. Curran
Associates, Inc.

Dua, Dheeru and Casey Graff (2017). UCI Machine Learning Repository.

Duane, Simon, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth (1987). “Hy-
brid Monte Carlo”. In: Physics Letters B 195.2, pp. 216 –222.

Duchi, John, Elad Hazan, and Yoram Singer (2011). “Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization”. In: Journal of Machine Learning
Research 12.61, pp. 2121–2159.

Durkan, Conor, Artur Bekasov, Iain Murray, and George Papamakarios (2019). “Neu-
ral Spline Flows”. In: Advances in Neural Information Processing Systems. Vol. 32.
Curran Associates, Inc.

Duvenaud, David (2014). “Automatic Model Construction with Gaussian Processes”.
PhD thesis. University of Cambridge.

Duvenaud, David, Oren Rippel, Ryan Adams, and Zoubin Ghahramani (2014).
“Avoiding pathologies in very deep networks”. In: Proceedings of the 17th Inter-
national Conference on Artificial Intelligence and Statistics. Vol. 33. Proceedings of
Machine Learning Research. Reykjavik, Iceland: PMLR, pp. 202–210.

Elinas, Pantelis, Edwin V Bonilla, and Louis Tiao (2020). “Variational Inference for
Graph Convolutional Networks in the Absence of Graph Data and Adversarial
Settings”. In: Advances in Neural Information Processing Systems. Vol. 33. Curran
Associates, Inc., pp. 18648–18660.

Feng, Yihao, Dilin Wang, and Qiang Liu (2017). “Learning to Draw Samples with
Amortized Stein Variational Gradient Descent”. In: Proceedings of the Thirty-Third
Conference on Uncertainty in Artificial Intelligence, UAI 2017, Sydney, Australia, August
11-15, 2017. AUAI Press.

Flam-Shepherd, Daniel, James Requeima, and David Duvenaud (2017). “Mapping
Gaussian Process Priors to Bayesian Neural Networks”. In: NeurIPS workshop on
Bayesian Deep Learning.

– (2018). “Characterizing and Warping the Function space of Bayesian Neural Net-
works”. In: NeurIPS workshop on Bayesian Deep Learning.

Bibliography 193

Fortuin, Vincent (2022). “Priors in Bayesian Deep Learning: A Review”. In: Interna-
tional Statistical Review 90.3, pp. 563–591.

Fortuin, Vincent, Dmitry Baranchuk, Gunnar Raetsch, and Stephan Mandt (2020).
“GP-VAE: Deep Probabilistic Time Series Imputation”. In: Proceedings of the Twenty
Third International Conference on Artificial Intelligence and Statistics. Vol. 108. Proceed-
ings of Machine Learning Research. PMLR, pp. 1651–1661.

Gal, Yarin (2016). “Uncertainty in Deep Learning”. In: PhD Thesis, University of Cam-
bridge.

Gal, Yarin and Zoubin Ghahramani (2016). “Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning”. In: Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016. Vol. 48. Proceedings of
Machine Learning Research. New York City, NY, USA: JMLR, pp. 1050–1059.

Gargiani, Matilde, Andrea Zanelli, Quoc Tran-Dinh, Moritz Diehl, and Frank Hutter
(2020). “Convergence Analysis of Homotopy-SGD for Non-convex Optimization”.
In: arXiv preprint arXiv:2011.10298.

Garnelo, Marta, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende,
SM Eslami, and Yee Whye Teh (2018). “Neural Processes”. In: arXiv preprint arXiv:1807.01622.

Gelman, Andrew and Donald B. Rubin (1992). “Inference from Iterative Simulation
using Multiple Sequences”. In: Statistical Science 7.4, pp. 457–472.

Genevay, Aude, Gabriel Peyré, and Marco Cuturi (2017). “GAN and VAE from an
Optimal Transport Point of View”. In: arXiv preprint arXiv:1706.01807.

Germain, Mathieu, Karol Gregor, Iain Murray, and Hugo Larochelle (2015). “MADE:
Masked Autoencoder for Distribution Estimation”. In: Proceedings of the 32nd Inter-
national Conference on Machine Learning. Vol. 37. Proceedings of Machine Learning
Research. Lille, France: PMLR, pp. 881–889.

Ghahramani, Zoubin (2015). “Probabilistic Machine Learning and Artificial Intelli-
gence”. In: Nature 521.7553, pp. 452–459.

Ghosh, Partha, Mehdi S. M. Sajjadi, Antonio Vergari, Michael Black, and Bernhard
Scholkopf (2020). “From Variational to Deterministic Autoencoders”. In: Interna-
tional Conference on Learning Representations.

Glazunov, Misha and Apostolis Zarras (2022). “Do Bayesian Variational Autoencoders
Know What They Don’t Know?” In: Proceedings of the Thirty-Eighth Conference on
Uncertainty in Artificial Intelligence. Vol. 180. Proceedings of Machine Learning
Research. PMLR, pp. 718–727.

Gneiting, Tilmann and Adrian E Raftery (2007). “Strictly Proper Scoring Rules, Pre-
diction, and Estimation”. In: Journal of the American statistical Association 102.477,
pp. 359–378.

194 Bibliography

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio (2014). “Generative Adversar-
ial Nets”. In: Advances in Neural Information Processing Systems. Vol. 27. Curran
Associates, Inc., pp. 2672–2680.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT
Press.

Graves, Alex (2011). “Practical Variational Inference for Neural Networks”. In: Ad-
vances in Neural Information Processing Systems. Vol. 24. Curran Associates, Inc.,
pp. 2348–2356.

Gretton, Arthur, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and
Alexander J. Smola (2012). “A Kernel Two-Sample Test”. In: Journal of Machine
Learning Research 13, pp. 723–773.

Grigorescu, Sorin, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu (2020). “A
Survey of Deep Learning Techniques for Autonomous Driving”. In: Journal of Field
Robotics 37.3, pp. 362–386.

Grover, Aditya, Manik Dhar, and Stefano Ermon (2018). “Flow-GAN: Combining
Maximum Likelihood and Adversarial Learning in Generative Models”. In: Pro-
ceedings of the 32nd Conference on Artificial Intelligence, AAAI 2018. New Orleans,
Louisiana, USA: AAAI Press, pp. 3069–3076.

Gulrajani, Ishaan, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville (2017). “Improved Training of Wasserstein GANs”. In: Advances in Neural
Information Processing Systems. Vol. 30. Curran Associates, Inc., pp. 5767–5777.

Guo, Chuan, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger (2017). “On Calibration
of Modern Neural Networks”. In: Proceedings of the 34th International Conference
on Machine Learning. Vol. 70. Proceedings of Machine Learning Research. PMLR,
pp. 1321–1330.

Ha, David, Andrew M. Dai, and Quoc V. Le (2017). “HyperNetworks”. In: International
Conference on Learning Representations.

Hafner, Danijar, Dustin Tran, Timothy P. Lillicrap, Alex Irpan, and James Davidson
(2019). “Noise Contrastive Priors for Functional Uncertainty”. In: Proceedings of
the 35h Conference on Uncertainty in Artificial Intelligence, UAI 2019. Tel Aviv, Israel:
AUAI Press, p. 332.

Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp (2011). “Finding Structure
with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix
Decompositions”. In: SIAM Rev. 53.2, pp. 217–288. DOI: 10.1137/090771806.

Hasanzadeh, Arman, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick
Duffield, Krishna Narayanan, and Xiaoning Qian (2020). “Bayesian Graph Neural

https://doi.org/10.1137/090771806

Bibliography 195

Networks with Adaptive Connection Sampling”. In: Proceedings of the 37th Interna-
tional Conference on Machine Learning. Vol. 119. Proceedings of Machine Learning
Research. PMLR, pp. 4094–4104.

Hazan, Elad, Kfir Yehuda Levy, and Shai Shalev-Shwartz (2016). “On Graduated
Optimization for Stochastic Non-Convex Problems”. In: Proceedings of The 33rd In-
ternational Conference on Machine Learning. Vol. 48. Proceedings of Machine Learning
Research. New York, New York, USA: PMLR, pp. 1833–1841.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). “Identity Mappings
in Deep Residual Networks”. In: Proceeding of the 14th European Conference on Com-
puter Vision. Vol. 9908 (Part IV). Lecture Notes in Computer Science. Amsterdam,
The Netherlands: Springer, pp. 630–645.

Heek, Jonathan and Nal Kalchbrenner (2019). “Bayesian Inference for Large Scale
Image Classification”. In: arXiv preprint arXiv:1908.03491.

Hein, Matthias, Maksym Andriushchenko, and Julian Bitterwolf (2019). “Why ReLU
Networks Yield High-confidence Predictions Far Away from the Training Data and
How to Mitigate the Problem”. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision
Foundation / IEEE, pp. 41–50.

Helgason, Sigurdur (2010). Integral Geometry and Radon Transforms. Springer Science &
Business Media.

Hendrycks, Dan and Thomas Dietterich (2019). “Benchmarking Neural Network
Robustness to Common Corruptions and Perturbations”. In: International Conference
on Learning Representations.

Hensman, James, Nicolò Fusi, and Neil D. Lawrence (2013). “Gaussian Processes for
Big Data”. In: Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial
Intelligence. UAI’13. Bellevue, WA: AUAI Press, 282–290.

Hensman, James, Alexander G Matthews, Maurizio Filippone, and Zoubin Ghahra-
mani (2015a). “MCMC for Variationally Sparse Gaussian Processes”. In: Advances
in Neural Information Processing Systems. Vol. 28. Curran Associates, Inc.

Hensman, James, Alexander G. de G. Matthews, and Zoubin Ghahramani (2015b).
“Scalable Variational Gaussian Process Classification”. In: Proceedings of the Eigh-
teenth International Conference on Artificial Intelligence and Statistics, AISTATS 2015,
San Diego, California, USA, May 9-12, 2015. Vol. 38. JMLR Workshop and Conference
Proceedings. JMLR.org.

Heusel, Martin, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter (2017). “GANs Trained by a Two Time-Scale Update Rule Converge to a
Local Nash Equilibrium”. In: Advances in Neural Information Processing Systems 30:

196 Bibliography

Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pp. 6626–6637.

Higgins, Irina, Loïc Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner (2017). “beta-VAE: Learning
Basic Visual Concepts with a Constrained Variational Framework”. In: International
Conference on Learning Representations.

Hinton, Geoffrey E and Ruslan R Salakhutdinov (2006). “Reducing the Dimensionality
of Data with Neural Networks”. In: Science 313.5786, pp. 504–507.

Ho, Jonathan, Ajay Jain, and Pieter Abbeel (2020). “Denoising Diffusion Probabilistic
Models”. In: Advances in Neural Information Processing Systems. Vol. 33. Curran
Associates, Inc., pp. 6840–6851.

Hoffman, Matthew D. and Andrew Gelman (2014). “The No-U-turn Sampler: Adap-
tively Setting Path Lengths in Hamiltonian Monte Carlo”. In: Journal of Machine
Learning Research 15.1, pp. 1593–1623.

Hoogeboom, Emiel and Tim Salimans (2023). “Blurring Diffusion Models”. In: Inter-
national Conference on Learning Representations.

Hoogeboom, Emiel, Jonathan Heek, and Tim Salimans (2023). “simple diffusion: End-
to-end Diffusion for High Resolution Images”. In: arXiv preprint arXiv:2301.11093.

Houlsby, Neil, Ferenc Huszar, Zoubin Ghahramani, and Jose Hernández-lobato (2012).
“Collaborative Gaussian Processes for Preference Learning”. In: Advances in Neural
Information Processing Systems. Vol. 25. Curran Associates, Inc., pp. 2096–2104.

Hsu, Hans Hao-Hsun, Yuesong Shen, Christian Tomani, and Daniel Cremers (2022).
“What Makes Graph Neural Networks Miscalibrated?” In: Advances in Neural
Information Processing Systems. Vol. 35.

Huszár, Ferenc (2017). “Variational Inference using Implicit Distributions”. In: arXiv
preprint arXiv:1702.08235.

Hyvärinen, Aapo (2005). “Estimation of Non-Normalized Statistical Models by Score
Matching”. In: Journal of Machine Learning Research 6.24, pp. 695–709.

Immer, Alexander, Maciej Korzepa, and Matthias Bauer (2021a). “Improving Predic-
tions of Bayesian Neural Nets via Local Linearization”. In: Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics. Vol. 130. Proceedings
of Machine Learning Research. PMLR, pp. 703–711.

Immer, Alexander, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, and Moham-
mad Emtiyaz Khan (2021b). “Scalable Marginal Likelihood Estimation for Model
Selection in Deep Learning”. In: Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event. Vol. 139. Proceedings
of Machine Learning Research. PMLR, pp. 4563–4573.

Bibliography 197

Immer, Alexander, Tycho van der Ouderaa, Gunnar Rätsch, Vincent Fortuin, and
Mark van der Wilk (2022). “Invariance Learning in Deep Neural Networks with Dif-
ferentiable Laplace Approximations”. In: Advances in Neural Information Processing
Systems. Vol. 35. Curran Associates, Inc., pp. 12449–12463.

Iwakiri, Hidenori, Yuhang Wang, Shinji Ito, and Akiko Takeda (2022). “Single Loop
Gaussian Homotopy Method for Non-convex Optimization”. In: Advances in Neural
Information Processing Systems. Vol. 35. Curran Associates, Inc., pp. 7065–7076.

Izmailov, Pavel, Wesley Maddox, Polina Kirichenko, Timur Garipov, Dmitry P. Vetrov,
and Andrew Gordon Wilson (2019). “Subspace Inference for Bayesian Deep Learn-
ing”. In: Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelli-
gence, UAI 2019, Tel Aviv, Israel, July 22-25, 2019. Vol. 115. Proceedings of Machine
Learning Research. AUAI Press, pp. 1169–1179.

Izmailov, Pavel, Patrick Nicholson, Sanae Lotfi, and Andrew G Wilson (2021a). “Dan-
gers of Bayesian Model Averaging under Covariate Shift”. In: Advances in Neural
Information Processing Systems. Vol. 34. Curran Associates, Inc., pp. 3309–3322.

Izmailov, Pavel, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon
Wilson (2021b). “What Are Bayesian Neural Network Posteriors Really Like?”
In: Proceedings of the 38th International Conference on Machine Learning. Vol. 139.
Proceedings of Machine Learning Research. PMLR, pp. 4629–4640.

Jabri, Allan, David Fleet, and Ting Chen (2022). “Scalable Adaptive Computation for
Iterative Generation”. In: arXiv preprint arXiv:2212.11972.

Jacot, Arthur, Franck Gabriel, and Clement Hongler (2018). “Neural Tangent Kernel:
Convergence and Generalization in Neural Networks”. In: Advances in Neural
Information Processing Systems. Vol. 31. Curran Associates, Inc., pp. 8571–8580.

Jankowiak, Martin and Fritz Obermeyer (2018). “Pathwise Derivatives Beyond the
Reparameterization Trick”. In: Proceedings of the 35th International Conference on
Machine Learning, ICML 2018. Vol. 80. Proceedings of Machine Learning Research.
Stockholmsmässan, Stockholm, Sweden: PMLR, pp. 2240–2249.

Jazbec, Metod, Matt Ashman, Vincent Fortuin, Michael Pearce, Stephan Mandt, and
Gunnar Rätsch (2021). “ Scalable Gaussian Process Variational Autoencoders ”. In:
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics.
Vol. 130. Proceedings of Machine Learning Research. PMLR, pp. 3511–3519.

Jeffreys, Harold (1946). “An Invariant Form for the Prior Probability in Estimation
Problems”. In: Proceedings of the Royal Society of London. Series A. Mathematical and
Physical Sciences 186.1007, pp. 453–461.

Jordan, Michael I, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul
(1999). “An Introduction to Variational Methods for Graphical Models”. In: Machine
learning 37.2, pp. 183–233.

198 Bibliography

Kantorovich, Leonid Vitaliyevich (1942). “On the transfer of masses”. In: Doklady
Akademii Nauk SSSR 37, pp. 227–229.

– (1948). “On a problem of Monge”. In: Uspekhi Matematicheskikh Nauk 3, pp. 225–226.

Karaletsos, Theofanis and Thang D. Bui (2020). “Hierarchical Gaussian Process Priors
for Bayesian Neural Network Weights”. In: Advances in Neural Information Processing
Systems. Vol. 33. Curran Associates, Inc., pp. 17141–17152.

Karras, Tero, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo
Aila (2020). “Analyzing and Improving the Image Quality of StyleGAN”. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle,
WA, USA, June 13-19, 2020. IEEE, pp. 8107–8116. DOI: 10.1109/CVPR42600.2020.
00813.

Kass, Robert E and Adrian E Raftery (1995). “Bayes Factors”. In: Journal of the american
statistical association 90.430, pp. 773–795.

Kendall, Alex and Yarin Gal (2017). “What Uncertainties Do We Need in Bayesian
Deep Learning for Computer Vision?” In: Advances in Neural Information Processing
Systems. Vol. 30. Curran Associates, Inc., pp. 5574–5584.

Khan, Mohammad Emtiyaz E, Alexander Immer, Ehsan Abedi, and Maciej Korzepa
(2019). “Approximate Inference Turns Deep Networks into Gaussian Processes”. In:
Advances in Neural Information Processing Systems. Vol. 32. Curran Associates, Inc.

Kim, Samuel, Peter Y Lu, Charlotte Loh, Jamie Smith, Jasper Snoek, and Marin
Soljacic (2022). “Deep Learning for Bayesian Optimization of Scientific Problems
with High-Dimensional Structure”. In: Transactions on Machine Learning Research.

Kingma, Diederik, Tim Salimans, Ben Poole, and Jonathan Ho (2021). “Variational
Diffusion Models”. In: Advances in Neural Information Processing Systems. Vol. 34.
Curran Associates, Inc., pp. 21696–21707.

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for Stochastic Opti-
mization”. In: International Conference on Learning Representations.

Kingma, Diederik P. and Max Welling (2014). “Auto-Encoding Variational Bayes”. In:
International Conference on Learning Representations.

– (2019). “An Introduction to Variational Autoencoders”. In: Foundations and Trends
in Machine Learning 12.4, pp. 307–392.

Kingma, Durk P and Prafulla Dhariwal (2018). “Glow: Generative Flow with Invert-
ible 1x1 Convolutions”. In: Advances in Neural Information Processing Systems. Vol. 31.
Curran Associates, Inc.

Kingma, Durk P, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max
Welling (2016). “Improved Variational Inference with Inverse Autoregressive Flow”.

https://doi.org/10.1109/CVPR42600.2020.00813
https://doi.org/10.1109/CVPR42600.2020.00813

Bibliography 199

In: Advances in Neural Information Processing Systems. Vol. 29. Curran Associates,
Inc., pp. 4743–4751.

Kipf, Thomas N. and Max Welling (2017). “Semi-Supervised Classification with Graph
Convolutional Networks”. In: International Conference on Learning Representations.

Kirillov, Alexander, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al.
(2023). “Segment Anything”. In: arXiv preprint arXiv:2304.02643.

Klushyn, Alexej, Nutan Chen, Richard Kurle, Botond Cseke, and Patrick van der
Smagt (2019). “Learning Hierarchical Priors in VAEs”. In: Advances in Neural Infor-
mation Processing Systems. Vol. 32. Curran Associates, Inc.

Kobyzev, Ivan, Simon J. D. Prince, and Marcus A. Brubaker (2021). “Normalizing
Flows: An Introduction and Review of Current Methods”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 43.11, pp. 3964–3979.

Koh, Pang Wei and Percy Liang (2017). “Understanding Black-box Predictions via
Influence Functions”. In: Proceedings of the 34th International Conference on Machine
Learning. Vol. 70. Proceedings of Machine Learning Research. PMLR, pp. 1885–1894.

Kolouri, Soheil, Kimia Nadjahi, Umut Simsekli, Roland Badeau, and Gustavo K.
Rohde (2019). “Generalized Sliced Wasserstein Distances”. In: Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 261–272.

Korattikara Balan, Anoop, Vivek Rathod, Kevin P Murphy, and Max Welling (2015).
“Bayesian Dark Knowledge”. In: Advances in Neural Information Processing Systems.
Vol. 28. Curran Associates, Inc.

Krishnan, Rahul, Dawen Liang, and Matthew Hoffman (2018). “On the Challenges of
Learning with Inference Networks on Sparse, High-dimensional Data”. In: Proceed-
ings of the Twenty-First International Conference on Artificial Intelligence and Statistics.
Ed. by Amos Storkey and Fernando Perez-Cruz. Vol. 84. Proceedings of Machine
Learning Research. PMLR, pp. 143–151.

Krizhevsky, A. and G. Hinton (2009). “Learning multiple layers of features from tiny
images”. In: Master’s thesis, Department of Computer Science, University of Toronto.

Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell (2017). “Simple
and Scalable Predictive Uncertainty Estimation using Deep Ensembles”. In: Ad-
vances in Neural Information Processing Systems. Vol. 30. Curran Associates, Inc.,
pp. 6402–6413.

Lalchand, Vidhi, Aditya Ravuri, and Neil D. Lawrence (2022a). “ Generalised GPLVM
with Stochastic Variational Inference ”. In: Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics. Vol. 151. Proceedings of Machine
Learning Research. PMLR, pp. 7841–7864.

200 Bibliography

Lalchand, Vidhi, Wessel Bruinsma, David Burt, and Carl Edward Rasmussen (2022b).
“Sparse Gaussian Process Hyperparameters: Optimize or Integrate?” In: Advances
in Neural Information Processing Systems. Vol. 35. Curran Associates, Inc., pp. 16612–
16623.

Lawrence, Neil D. (2005). “Probabilistic Non-linear Principal Component Analysis
with Gaussian Process Latent Variable Models”. In: Journal of Machine Learning
Research 6, pp. 1783–1816.

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). “Gradient-Based Learning
Applied to Document Recognition”. In: Proceedings of the IEEE 86.11, pp. 2278–2324.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In: Nature
521.7553, pp. 436–444.

Lee, Jaehoon, Samuel S. Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao,
Roman Novak, and Jascha Sohl-Dickstein (2020). “Finite Versus Infinite Neural Net-
works: an Empirical Study”. In: Advances in Neural Information Processing Systems.
Vol. 33, pp. 15156–15172.

Lee, Kimin, Honglak Lee, Kibok Lee, and Jinwoo Shin (2018). “Training Confidence-
calibrated Classifiers for Detecting Out-of-Distribution Samples”. In: International
Conference on Learning Representations.

Li, Hao, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein (2018). “Vi-
sualizing the Loss Landscape of Neural Nets”. In: Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 6391–6401.

Li, Yingzhen and Richard E Turner (2016). “Rényi Divergence Variational Inference”.
In: Advances in Neural Information Processing Systems. Vol. 29. Curran Associates,
Inc.

Li, Yingzhen, Richard E Turner, and Qiang Liu (2017). “Approximate Inference with
Amortised MCMC”. In: arXiv preprint arXiv:1702.08343.

Litjens, Geert, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio,
Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram Van
Ginneken, and Clara I Sánchez (2017). “A Survey on Deep Learning in Medical
Image Analysis”. In: Medical image analysis 42, pp. 60–88.

Liu, H., Y. S. Ong, X. Shen, and J. Cai (2020). “When Gaussian Process Meets Big Data:
A Review of Scalable GPs”. In: IEEE Transactions on Neural Networks and Learning
Systems 31.11, pp. 4405–4423.

Liu, Qiang and Dilin Wang (2016). “Stein Variational Gradient Descent: A General Pur-
pose Bayesian Inference Algorithm”. In: Advances in Neural Information Processing
Systems. Vol. 29. Curran Associates, Inc., pp. 2378–2386.

Bibliography 201

Liu, Ziwei, Ping Luo, Xiaogang Wang, and Xiaoou Tang (2015). “Deep Learning Face
Attributes in the Wild”. In: 2015 IEEE International Conference on Computer Vision,
ICCV 2015, Santiago, Chile, December 7-13, 2015. IEEE Computer Society, pp. 3730–
3738. DOI: 10.1109/ICCV.2015.425.

Liutkus, Antoine, Umut Simsekli, Szymon Majewski, Alain Durmus, and Fabian-
Robert Stöter (2019). “Sliced-Wasserstein Flows: Nonparametric Generative Model-
ing via Optimal Transport and Diffusions”. In: Proceedings of the 36th International
Conference on Machine Learning. Vol. 97. Proceedings of Machine Learning Research.
PMLR, pp. 4104–4113.

Loaiza-Ganem, Gabriel and John P. Cunningham (2019). “The Continuous Bernoulli:
Fixing a Pervasive Error in Variational Autoencoders”. In: Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 13266–
13276.

Loaiza-Ganem, Gabriel, Brendan Leigh Ross, Luhuan Wu, John P Cunningham, Jesse
C Cresswell, and Anthony L Caterini (2022a). “Denoising Deep Generative Models”.
In: I Can’t Believe It’s Not Better Workshop at NeurIPS 2022.

Loaiza-Ganem, Gabriel, Brendan Leigh Ross, Jesse C Cresswell, and Anthony L.
Caterini (2022b). “Diagnosing and Fixing Manifold Overfitting in Deep Generative
Models”. In: Transactions on Machine Learning Research. ISSN: 2835-8856.

Lotfi, Sanae, Pavel Izmailov, Gregory Benton, Micah Goldblum, and Andrew Gordon
Wilson (2022). “Bayesian Model Selection, the Marginal Likelihood, and Gener-
alization”. In: Proceedings of the 39th International Conference on Machine Learning.
Vol. 162. Proceedings of Machine Learning Research. PMLR, pp. 14223–14247.

Louizos, Christos and Max Welling (2017). “Multiplicative Normalizing Flows for
Variational Bayesian Neural Networks”. In: Proceedings of the 34th International Con-
ference on Machine Learning, ICML 2017. Vol. 70. Proceedings of Machine Learning
Research. International Convention Centre, Sydney, Australia: PMLR, pp. 2218–
2227.

Lucic, Mario, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet
(2018). “Are GANs Created Equal? A Large-Scale Study”. In: Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 698–707.

Ma, Chao, Yingzhen Li, and Jose Miguel Hernandez-Lobato (2019). “Variational
Implicit Processes”. In: Proceedings of the 36th International Conference on Machine
Learning. Vol. 97. Proceedings of Machine Learning Research. PMLR, pp. 4222–4233.

Maaten, Laurens van der and Geoffrey Hinton (2008). “Visualizing Data using t-SNE”.
In: Journal of Machine Learning Research 9.86, pp. 2579–2605.

https://doi.org/10.1109/ICCV.2015.425

202 Bibliography

Mackay, David J. C. (2003). Information Theory, Inference and Learning Algorithms. First
Edition. Cambridge University Press.

MacKay, David JC (1992). “Information-based objective functions for active data
selection”. In: Neural computation 4.4, pp. 590–604.

– (1995). “Probable Networks and Plausible Predictions - a Review of Practical
Bayesian Methods for Supervised Neural Networks”. In: Network: Computation
in Neural Systems 6.3, pp. 469–505.

– (1996a). “Bayesian Methods for Backpropagation Networks”. In: Models of neural
networks III. Springer, pp. 211–254.

– (1996b). “Bayesian non-linear modeling for the prediction competition”. In: Maxi-
mum Entropy and Bayesian Methods. Springer, pp. 221–234.

MacKay, David JC and Mark N Gibbs (1999). “Density Networks”. In: Statistics and
Neural Networks: Advances at the Interface, pp. 129–144.

Mackay, David John Cameron (1992). “Bayesian Methods for Adaptive Models”. UMI
Order No. GAX92-32200. PhD thesis. USA: California Institute of Technology.

Maddox, Wesley J., Pavel Izmailov, Timur Garipov, Dmitry P. Vetrov, and Andrew
Gordon Wilson (2019). “A Simple Baseline for Bayesian Uncertainty in Deep Learn-
ing”. In: Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pp. 13132–13143.

Marcus, Gary (2018). “Deep Learning: A Critical Appraisal”. In: arXiv preprint arXiv:1801.00631.

Marino, Joe, Yisong Yue, and Stephan Mandt (2018). “Iterative Amortized Inference”.
In: International Conference on Machine Learning. PMLR, pp. 3403–3412.

Matsubara, Takuo, Chris J. Oates, and François-Xavier Briol (2021). “The Ridgelet
Prior: A Covariance Function Approach to Prior Specification for Bayesian Neural
Networks”. In: Journal of Machine Learning Research 22.157, pp. 1–57.

Matthews, Alexander, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin
Ghahramani (2018). “Gaussian Process Behaviour in Wide Deep Neural Networks”.
In: International Conference on Learning Representations.

Meng, Chenlin, Jiaming Song, Yang Song, Shengjia Zhao, and Stefano Ermon (2021).
“Improved Autoregressive Modeling with Distribution Smoothing”. In: International
Conference on Learning Representations.

Mescheder, Lars, Sebastian Nowozin, and Andreas Geiger (2017). “Adversarial Vari-
ational Bayes: Unifying Variational Autoencoders and Generative Adversarial
Networks”. In: Proceedings of the 34th International Conference on Machine Learning.
Vol. 70. Proceedings of Machine Learning Research. PMLR, pp. 2391–2400.

Bibliography 203

Miani, Marco, Frederik Warburg, Pablo Moreno-Muñoz, Nicki Skafte, and Sø ren
Hauberg (2022). “Laplacian Autoencoders for Learning Stochastic Representations”.
In: Advances in Neural Information Processing Systems. Vol. 35. Curran Associates,
Inc., pp. 21059–21072.

Mikkola, Petrus, Osvaldo A. Martin, Suyog Chandramouli, Marcelo Hartmann, Oriol
Abril Pla, Owen Thomas, Henri Pesonen, Jukka Corander, Aki Vehtari, Samuel
Kaski, Paul-Christian Bürkner, and Arto Klami (2023). “Prior Knowledge Elicitation:
The Past, Present, and Future”. In: Bayesian Analysis, pp. 1 –33.

Minderer, Matthias, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai,
Neil Houlsby, Dustin Tran, and Mario Lucic (2021). “Revisiting the Calibration of
Modern Neural Networks”. In: Advances in Neural Information Processing Systems.
Vol. 34. Curran Associates, Inc., pp. 15682–15694.

Močkus, J. (1975). “On Bayesian Methods for Seeking the Extremum”. In: Optimization
Techniques IFIP Technical Conference Novosibirsk. Springer Berlin Heidelberg, pp. 400–
404.

Montavon, Grégoire, Wojciech Samek, and Klaus-Robert Müller (2018). “Methods
for Interpreting and Understanding Deep Neural Networks”. In: Digital signal
processing 73, pp. 1–15.

Moosavi-Dezfooli, Seyed-Mohsen, Alhussein Fawzi, and Pascal Frossard (2016).
“DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks”. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las
Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, pp. 2574–2582.

Müller, Alfred (1997). “Integral Probability Metrics and Their Generating Classes of
Functions”. In: Advances in Applied Probability 29.2, pp. 429–443.

Murray, Iain and Zoubin Ghahramani (2005). A Note on the Evidence and Bayesian
Occam’s Razor. Tech. rep. GCNU-TR 2005-003. Gatsby Computational Neuroscience
Unit, University College London.

Nalisnick, Eric T. (2018). “On Priors for Bayesian Neural Networks”. PhD thesis.
University of California, Irvine, USA.

Nalisnick, Eric T. and Padhraic Smyth (2017). “Stick-Breaking Variational Autoen-
coders”. In: International Conference on Learning Representations.

Nalisnick, Eric T., Jonathan Gordon, and José Miguel Hernández-Lobato (2021a).
“Predictive Complexity Priors”. In: vol. 130. Proceedings of Machine Learning
Research. PMLR, pp. 694–702.

– (2021b). “Predictive Complexity Priors”. In: The 24th International Conference on
Artificial Intelligence and Statistics, AISTATS 2021, April 13-15, 2021, Virtual Event.
Vol. 130. Proceedings of Machine Learning Research. PMLR, pp. 694–702.

204 Bibliography

Narayanan, Hariharan and Sanjoy Mitter (2010). “Sample Complexity of Testing the
Manifold Hypothesis”. In: Advances in Neural Information Processing Systems. Vol. 23.
Curran Associates, Inc.

Neal, Radford M. (1996). Bayesian Learning for Neural Networks (Lecture Notes in Statis-
tics). 1st ed. Springer.

– (2011). “MCMC Using Hamiltonian Dynamics”. In: Handbook of Markov Chain Monte
Carlo. CRC Press. Chap. 5.

Nguyen, Khai, Nhat Ho, Tung Pham, and Hung Bui (2021). “Distributional Sliced-
Wasserstein and Applications to Generative Modeling”. In: International Conference
on Learning Representations.

Nguyen, XuanLong, Martin J. Wainwright, and Michael I. Jordan (2010). “Estimating
Divergence Functionals and the Likelihood Ratio by Convex Risk Minimization”.
In: IEEE Transactions on Information Theory 56.11, pp. 5847–5861.

Nichol, Alexander Quinn and Prafulla Dhariwal (2021). “Improved Denoising Dif-
fusion Probabilistic Models”. In: Proceedings of the 38th International Conference on
Machine Learning. Vol. 139. Proceedings of Machine Learning Research. PMLR,
pp. 8162–8171.

Nogueira, Fernando (2014). Bayesian Optimization: Open source constrained global opti-
mization tool for Python. URL: https://github.com/fmfn/BayesianOptimization.

O’Hagan, A. (1991). “Bayes–Hermite quadrature”. In: Journal of Statistical Planning
and Inference 29.3, pp. 245 –260.

Onken, Derek, Samy Wu Fung, Xingjian Li, and Lars Ruthotto (2021). “OT-Flow:
Fast and Accurate Continuous Normalizing Flows via Optimal Transport”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 10, pp. 9223–9232.

Osawa, Kazuki, Siddharth Swaroop, Mohammad Emtiyaz Khan, Anirudh Jain, Runa
Eschenhagen, Richard E. Turner, and Rio Yokota (2019b). “Practical Deep Learning
with Bayesian Principles”. In: Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pp. 4289–4301.

Osawa, Kazuki, Siddharth Swaroop, Mohammad Emtiyaz E Khan, Anirudh Jain,
Runa Eschenhagen, Richard E Turner, and Rio Yokota (2019a). “Practical Deep
Learning with Bayesian Principles”. In: Advances in Neural Information Processing
Systems. Vol. 32. Curran Associates, Inc., pp. 4287–4299.

Ovadia, Yaniv, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin,
Joshua Dillon, Balaji Lakshminarayanan, and Jasper Snoek (2019). “Can You Trust
Your Model’s Uncertainty? Evaluating Predictive Uncertainty under Dataset Shift”.
In: Advances in Neural Information Processing Systems. Vol. 32. Curran Associates,
Inc., pp. 13991–14002.

https://github.com/fmfn/BayesianOptimization

Bibliography 205

Ozakin, Arkadas and Alexander Gray (2009). “Submanifold Density Estimation”. In:
Advances in Neural Information Processing Systems. Vol. 22. Curran Associates, Inc.

Papamakarios, George, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed,
and Balaji Lakshminarayanan (2021). “Normalizing Flows for Probabilistic Model-
ing and Inference”. In: Journal of Machine Learning Research 22.57, pp. 1–64.

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala (2019). “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: Advances in Neural Information Processing Systems. Vol. 32. Curran
Associates, Inc., pp. 8026–8037.

Pavon, Michele, Giulio Trigila, and Esteban G Tabak (2021). “The Data-Driven Schrödinger
Bridge”. In: Communications on Pure and Applied Mathematics 74.7, pp. 1545–1573.

Pearce, Michael (2019). “The Gaussian Process Prior VAE for Interpretable Latent
Dynamics from Pixels”. In: Symposium on Advances in Approximate Bayesian Infer-
ence, AABI 2019, Vancouver, BC, Canada, December 8, 2019. Vol. 118. Proceedings of
Machine Learning Research. PMLR, pp. 1–12.

Pearce, Tim, Russell Tsuchida, Mohamed Zaki, Alexandra Brintrup, and Andy Neely
(2019). “Expressive Priors in Bayesian Neural Networks: Kernel Combinations and
Periodic Functions”. In: Proceedings of the 35th Conference on Uncertainty in Artificial
Intelligence, UAI 2019. Tel Aviv, Israel: AUAI Press, p. 25.

Pennec, Xavier (2006). “Intrinsic Statistics on Riemannian Manifolds: Basic Tools
for Geometric Measurements”. In: Journal of Mathematical Imaging and Vision 25,
pp. 127–154.

Phan, Du, Neeraj Pradhan, and Martin Jankowiak (2019). “Composable Effects for
Flexible and Accelerated Probabilistic Programming in NumPyro”. In: arXiv:1912.11554.

Pope, Phil, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein
(2021). “The Intrinsic Dimension of Images and Its Impact on Learning”. In: Inter-
national Conference on Learning Representations.

Quiñonero-Candela, Joaquin and Carl Edward Rasmussen (2005). “A Unifying View
of Sparse Approximate Gaussian Process Regression”. In: Journal of Machine Learn-
ing Research 6.65, pp. 1939–1959.

Radford, Alec, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever (2021). “Learning Transferable Visual Models From
Natural Language Supervision”. In: Proceedings of the 38th International Conference

206 Bibliography

on Machine Learning. Vol. 139. Proceedings of Machine Learning Research. PMLR,
pp. 8748–8763.

Ramchandran, Siddharth, Gleb Tikhonov, Kalle Kujanpää, Miika Koskinen, and
Harri Lähdesmäki (2021). “ Longitudinal Variational Autoencoder ”. In: Proceedings
of The 24th International Conference on Artificial Intelligence and Statistics. Vol. 130.
Proceedings of Machine Learning Research. PMLR, pp. 3898–3906.

Rasmussen, Carl E. and Christopher Williams (2006). Gaussian Processes for Machine
Learning. MIT Press.

Rasmussen, Carl Edward and Zoubin Ghahramani (2002). “Bayesian Monte Carlo”.
In: Advances in Neural Information Processing Systems. Vol. 15. MIT Press, pp. 489–496.

Requeima, James, William Tebbutt, Wessel Bruinsma, and Richard E. Turner (2019).
“The Gaussian Process Autoregressive Regression Model (GPAR)”. In: Proceedings
of the Twenty-Second International Conference on Artificial Intelligence and Statistics.
Vol. 89. Proceedings of Machine Learning Research. PMLR, pp. 1860–1869.

Reshetova, Daria, Yikun Bai, Xiugang Wu, and Ayfer Özgür (2021). “Understand-
ing Entropic Regularization in GANs”. In: 2021 IEEE International Symposium on
Information Theory (ISIT). IEEE, pp. 825–830.

Rezende, Danilo and Shakir Mohamed (2015). “Variational Inference with Normaliz-
ing Flows”. In: Proceedings of the 32nd International Conference on Machine Learning,
ICML 2015. Vol. 37. Proceedings of Machine Learning Research. Lille, France: PMLR,
pp. 1530–1538.

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). “Stochastic
Backpropagation and Approximate Inference in Deep Generative Models”. In:
Proceedings of the 31th International Conference on Machine Learning, ICML 2014.
Vol. 32. Proceeding of Machine Learning Research. Beijing, China: PMLR, pp. 1278–
1286.

Rissanen, Severi, Markus Heinonen, and Arno Solin (2023). “Generative Modelling
with Inverse Heat Dissipation”. In: International Conference on Learning Representa-
tions.

Robbins, Herbert (1956). “An Empirical Bayes Approach to Statistics”. In: Proceedings
of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, 1956. Vol. 1,
pp. 157–163.

Rossi, Simone, Pietro Michiardi, and Maurizio Filippone (2019). “Good Initializations
of Variational Bayes for Deep Models”. In: Proceedings of the 36th International Con-
ference on Machine Learning, ICML 2019. Vol. 97. Proceedings of Machine Learning
Research. Long Beach, California, USA: PMLR, pp. 5487–5497.

Bibliography 207

Rossi, Simone, Sebastien Marmin, and Maurizio Filippone (2020). “Walsh-Hadamard
Variational Inference for Bayesian Deep Learning”. In: Advances in Neural Informa-
tion Processing Systems. Vol. 33, pp. 9674–9686.

Rossi, Simone, Markus Heinonen, Edwin Bonilla, Zheyang Shen, and Maurizio Fil-
ippone (2021). “ Sparse Gaussian Processes Revisited: Bayesian Approaches to
Inducing-Variable Approximations ”. In: Proceedings of The 24th International Confer-
ence on Artificial Intelligence and Statistics. Vol. 130. Proceedings of Machine Learning
Research. PMLR, pp. 1837–1845.

Roweis, Sam T and Lawrence K Saul (2000). “Nonlinear Dimensionality Reduction
by Locally Linear Embedding”. In: Science 290.5500, pp. 2323–2326.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1986). “Learning
representations by back-propagating errors”. In: Nature 323.6088, pp. 533–536.

Salimbeni, Hugh and Marc Deisenroth (2017). “Doubly Stochastic Variational Infer-
ence for Deep Gaussian Processes”. In: Advances in Neural Information Processing
Systems. Vol. 30. Curran Associates, Inc.

Salmona, Antoine, Valentin De Bortoli, Julie Delon, and Agnes Desolneux (2022).
“Can Push-forward Generative Models Fit Multimodal Distributions?” In: Advances
in Neural Information Processing Systems. Vol. 35. Curran Associates, Inc., pp. 10766–
10779.

Sanjabi, Maziar, Jimmy Ba, Meisam Razaviyayn, and Jason D Lee (2018). “On the Con-
vergence and Robustness of Training GANs with Regularized Optimal Transport”.
In: Advances in Neural Information Processing Systems. Vol. 31. Curran Associates,
Inc.

Sebastian, W. Ober, Carl E. Rasmussen, and Mark van der Wilk (2021). “The Promises
and Pitfalls of Deep Kernel Learning”. In: Proceedings of the 37th Conference on
Uncertainty in Artificial Intelligence, UAI 2021, July 27-30, 2021, Virtual Event.

Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra (2017). “Grad-CAM: Visual Explanations from
Deep Networks via Gradient-Based Localization”. In: IEEE International Conference
on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer
Society, pp. 618–626.

Settles, Burr (2009). Active learning literature survey. Tech. rep. University of Wisconsin-
Madison Department of Computer Sciences.

Shi, Jiaxin, Shengyang Sun, and Jun Zhu (2018). “A Spectral Approach to Gradient
Estimation for Implicit Distributions”. In: Proceedings of the 35th International Con-
ference on Machine Learning. Vol. 80. Proceedings of Machine Learning Research.
PMLR, pp. 4644–4653.

208 Bibliography

Shi, Jiaxin, Mohammad Emtiyaz Khan, and Jun Zhu (2019). “Scalable Training of
Inference Networks for Gaussian-Process Models”. In: Proceedings of the 36th Inter-
national Conference on Machine Learning. Vol. 97. Proceedings of Machine Learning
Research. PMLR, pp. 5758–5768.

Shwartz-Ziv, Ravid, Micah Goldblum, Hossein Souri, Sanyam Kapoor, Chen Zhu,
Yann LeCun, and Andrew G Wilson (2022). “Pre-Train Your Loss: Easy Bayesian
Transfer Learning with Informative Priors”. In: Advances in Neural Information
Processing Systems. Vol. 35. Curran Associates, Inc., pp. 27706–27715.

Shwartz-Ziv, Ravid, Micah Goldblum, Hossein Souri, Sanyam Kapoor, Chen Zhu,
Yann LeCun, and Andrew Gordon Wilson (2022). “Pre-Train Your Loss: Easy
Bayesian Transfer Learning with Informative Priors”. In: Advances in Neural Infor-
mation Processing Systems. Vol. 35.

Simonyan, Karen and Andrew Zisserman (2014). “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: arXiv preprint arXiv:1409.1556.

Skafte, Nicki, Martin Jorgensen, and Soren Hauberg (2019). “Reliable training and
estimation of variance networks”. In: Advances in Neural Information Processing
Systems. Vol. 32. Curran Associates, Inc., pp. 6326–6336.

Snelson, Edward and Zoubin Ghahramani (2005). “Sparse Gaussian Processes using
Pseudo-inputs”. In: Advances in Neural Information Processing Systems. Vol. 18. MIT
Press.

Snoek, Jasper, Hugo Larochelle, and Ryan P Adams (2012). “Practical Bayesian Op-
timization of Machine Learning Algorithms”. In: Advances in Neural Information
Processing Systems. Vol. 25. Curran Associates, Inc.

Sø nderby, Casper Kaae, Tapani Raiko, Lars Maalø e, Søren Kaae Sø nderby, and
Ole Winther (2016). “Ladder Variational Autoencoders”. In: Advances in Neural
Information Processing Systems. Vol. 29. Curran Associates, Inc.

Sohl-Dickstein, Jascha, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli (2015).
“Deep Unsupervised Learning using Nonequilibrium Thermodynamics”. In: Pro-
ceedings of the 32nd International Conference on Machine Learning. Vol. 37. Proceedings
of Machine Learning Research. Lille, France: PMLR, pp. 2256–2265.

Sohn, Kihyuk, Honglak Lee, and Xinchen Yan (2015). “Learning Structured Output
Representation using Deep Conditional Generative Models”. In: Advances in Neural
Information Processing Systems. Vol. 28. Curran Associates, Inc.

Song, Yang and Stefano Ermon (2019). “Generative Modeling by Estimating Gradients
of the Data Distribution”. In: Advances in Neural Information Processing Systems.
Vol. 32. Curran Associates, Inc.

Bibliography 209

Song, Yang, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Er-
mon, and Ben Poole (2021). “Score-Based Generative Modeling through Stochastic
Differential Equations”. In: International Conference on Learning Representations.

Springenberg, Jost Tobias, Aaron Klein, Stefan Falkner, and Frank Hutter (2016).
“Bayesian Optimization with Robust Bayesian Neural Networks”. In: Advances in
Neural Information Processing Systems. Vol. 29. Curran Associates, Inc., pp. 4134–
4142.

Srinivas, Niranjan, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger (2010).
“Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental
Design”. In: Proceedings of the 27th International Conference on Machine Learning,
ICML 2010. Haifa, Israel: Omnipress, pp. 1015–1022.

Stimper, Vincent, David Liu, Andrew Campbell, Vincent Berenz, Lukas Ryll, Bernhard
Schölkopf, and José Miguel Hernández-Lobato (2023). “normflows: A PyTorch
Package for Normalizing Flows”. In: arXiv preprint arXiv:2302.12014.

Sun, Shengyang, Guodong Zhang, Jiaxin Shi, and Roger Grosse (2019). “Functional
Variational Bayesian Neural Networks”. In: International Conference on Learning
Representations.

Teixeira, Leonardo, Brian Jalaian, and Bruno Ribeiro (2019). “Are Graph Neural
Networks Miscalibrated?” In: ICML Workshop on Learning and Reasoning with Graph-
Structured.

Tempczyk, Piotr, Rafał Michaluk, Lukasz Garncarek, Przemysław Spurek, Jacek
Tabor, and Adam Golinski (2022). “LIDL: Local Intrinsic Dimension Estimation
Using Approximate Likelihood”. In: Proceedings of the 39th International Conference
on Machine Learning. Vol. 162. Proceedings of Machine Learning Research. PMLR,
pp. 21205–21231.

Tenenbaum, Joshua B, Vin de Silva, and John C Langford (2000). “A Global Geo-
metric Framework for Nonlinear Dimensionality Reduction”. In: Science 290.5500,
pp. 2319–2323.

Tieleman, T. and G. Hinton (2012). Lecture 6.5—RmsProp: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for Machine
Learning.

Tishby, Levin, and Solla (1989). “Consistent Inference of Probabilities in Layered
Networks: Predictions and Generalizations”. In: International Joint Conference on
Neural Networks, 403–409 vol.2.

Titsias, Michalis (2009). “Variational Learning of Inducing Variables in Sparse Gaus-
sian Processes”. In: Proceedings of the Twelth International Conference on Artificial
Intelligence and Statistics. Vol. 5. Proceedings of Machine Learning Research. Hilton
Clearwater Beach Resort, Clearwater Beach, Florida USA: PMLR, pp. 567–574.

210 Bibliography

Titsias, Michalis K. and Francisco Ruiz (2019). “Unbiased Implicit Variational In-
ference”. In: Proceedings of the Twenty-Second International Conference on Artificial
Intelligence and Statistics. Vol. 89. Proceedings of Machine Learning Research. PMLR,
pp. 167–176.

Tolstikhin, Ilya, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf (2018).
“Wasserstein Auto-Encoders”. In: International Conference on Learning Representa-
tions.

Tomczak, Jakub M (2022). “Deep Generative Modeling”. In: Deep Generative Modeling.
Springer, pp. 1–12.

Tomczak, Jakub M. and Max Welling (2018). “VAE with a VampPrior”. In: International
Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa
Blanca, Lanzarote, Canary Islands, Spain. Vol. 84. Proceedings of Machine Learning
Research. PMLR, pp. 1214–1223.

Tran, Ba-Hien, Simone Rossi, Dimitrios Milios, Pietro Michiardi, Edwin V Bonilla,
and Maurizio Filippone (2021). “Model Selection for Bayesian Autoencoders”. In:
Advances in Neural Information Processing Systems. Vol. 34. Curran Associates, Inc.,
pp. 19730–19742.

Tran, Ba-Hien, Simone Rossi, Dimitrios Milios, and Maurizio Filippone (2022). “All
You Need is a Good Functional Prior for Bayesian Deep Learning”. In: Journal of
Machine Learning Research 23.74, pp. 1–56.

Trinh, Trung Q, Markus Heinonen, Luigi Acerbi, and Samuel Kaski (2022). “Tackling
Covariate Shift with Node-based Bayesian Neural Networks”. In: Proceedings of the
39th International Conference on Machine Learning. Vol. 162. Proceedings of Machine
Learning Research. PMLR, pp. 21751–21775.

Uria, Benigno, Iain Murray, and Hugo Larochelle (2013). “RNADE: The Real-valued
Neural autoregressive Density-estimator”. In: Advances in Neural Information Pro-
cessing Systems. Vol. 26. Curran Associates, Inc.

Vahdat, Arash and Jan Kautz (2020). “NVAE: A Deep Hierarchical Variational Au-
toencoder”. In: Advances in Neural Information Processing Systems. Vol. 33. Curran
Associates, Inc., pp. 19667–19679.

van der Wilk, Mark, Carl Edward Rasmussen, and James Hensman (2017). “Convolu-
tional Gaussian Processes”. In: Advances in Neural Information Processing Systems.
Vol. 30. Curran Associates, Inc.

van der Wilk, Mark, Matthias Bauer, ST John, and James Hensman (2018). “Learning
Invariances using the Marginal Likelihood”. In: Advances in Neural Information
Processing Systems. Vol. 31. Curran Associates, Inc.

Villani, C. (2003). Topics in Optimal Transportation. Graduate studies in mathematics.
American Mathematical Society.

Bibliography 211

Villani, Cédric (2008). Optimal Transport: Old and New. Vol. 338. Springer Science &
Business Media.

Vincent, Pascal (2011). “A Connection Between Score Matching and Denoising Au-
toencoders”. In: Neural Computation 23, pp. 1661–1674.

Vincent, Pascal, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol
(2008). “Extracting and Composing Robust Features with Denoising Autoencoders”.
In: Proceedings of the 25th International Conference on Machine Learning. Helsinki,
Finland, pp. 1096–1103.

Wan, Neng, Dapeng Li, and Naira Hovakimyan (2020). “f-Divergence Variational
Inference”. In: Advances in Neural Information Processing Systems. Vol. 33. Curran
Associates, Inc., pp. 17370–17379.

Wang, Dilin and Qiang Liu (2016). “Learning to Draw Samples: With Applica-
tion to Amortized MLE for Generative Adversarial Learning”. In: arXiv preprint
arXiv:1611.01722.

Wang, Kuan-Chieh, Paul Vicol, James Lucas, Li Gu, Roger Grosse, and Richard Zemel
(2018). “Adversarial Distillation of Bayesian Neural Network Posteriors”. In: Pro-
ceedings of the 35th International Conference on Machine Learning. Vol. 80. Proceedings
of Machine Learning Research. PMLR, pp. 5190–5199.

Wang, Xiao, Hongrui Liu, Chuan Shi, and Cheng Yang (2021). “Be Confident! Towards
Trustworthy Graph Neural Networks via Confidence Calibration”. In: Advances in
Neural Information Processing Systems. Vol. 34. Curran Associates, Inc., pp. 23768–
23779.

Wang, Zhendong, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan
Zhou (2023). “Diffusion-GAN: Training GANs with Diffusion”. In: International
Conference on Learning Representations.

Wang, Zi, George E. Dahl, Kevin Swersky, Chansoo Lee, Zelda Mariet, Zachary Nado,
Justin Gilmer, Jasper Snoek, and Zoubin Ghahramani (2022). “Pre-training Helps
Bayesian Optimization Too”. In: ICML Workshop on Adaptive Experimental Design
and Active Learning in the Real World.

Wenzel, Florian, Kevin Roth, Bastiaan S. Veeling, Jakub Świa̧tkowski, Linh Tran,
Stephan Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian
Nowozin (2020). “How Good is the Bayes Posterior in Deep Neural Networks
Really?” In: Proceeding of the 37th International Conference on Machine Learning, ICML
2020. Virtual.

Wilson, Andrew G and Pavel Izmailov (2020). “Bayesian Deep Learning and a Proba-
bilistic Perspective of Generalization”. In: Advances in Neural Information Processing
Systems. Vol. 33. Curran Associates, Inc., pp. 4697–4708.

212 Bibliography

Wolpert, David H (1996). “The Lack of a Priori Distinctions Between Learning Algo-
rithms”. In: Neural computation 8.7, pp. 1341–1390.

Xiao, Zhisheng, Karsten Kreis, and Arash Vahdat (2022). “Tackling the Generative
Learning Trilemma with Denoising Diffusion GANs”. In: International Conference
on Learning Representations.

Yang, Wanqian, Lars Lorch, Moritz A. Graule, Srivatsan Srinivasan, Anirudh Suresh,
Jiayu Yao, Melanie F. Pradier, and Finale Doshi-velez (2019). “Output-Constrained
Bayesian Neural Networks”. In: ICML workshop on Uncertainty & Robustness in Deep
Learning.

Yang, Wanqian, Lars Lorch, Moritz A. Graule, Himabindu Lakkaraju, and Finale
Doshi-Velez (2020). “Incorporating Interpretable Output Constraints in Bayesian
Neural Networks”. In: Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.

Yang, Yibo, Stephan Mandt, and Lucas Theis (2022). “An Introduction to Neural Data
Compression”. In: arXiv preprint arXiv:2202.06533.

Yao, Yuan, Lorenzo Rosasco, and Andrea Caponnetto (2007). “On Early Stopping in
Gradient Descent Learning”. In: Constructive Approximation 26.2, pp. 289–315.

Zeno, Chen, Itay Golan, Ari Pakman, and Daniel Soudry (2021). “Why Cold Poste-
riors? On the Suboptimal Generalization of Optimal Bayes Estimates”. In: Third
Symposium on Advances in Approximate Bayesian Inference.

Zhang, Cheng, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt (2018a).
“Advances in Variational Inference”. In: IEEE transactions on pattern analysis and
machine intelligence 41.8, pp. 2008–2026.

Zhang, Guodong, Shengyang Sun, David Duvenaud, and Roger B. Grosse (2018b).
“Noisy Natural Gradient as Variational Inference”. In: Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018. Vol. 80. Proceedings of Machine Learning Research. PMLR,
pp. 5847–5856.

Zhang, Hao, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel Ni, and
Heung-Yeung Shum (2023). “DINO: DETR with Improved DeNoising Anchor
Boxes for End-to-End Object Detection”. In: International Conference on Learning
Representations.

Zhang, Ruqi, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon
Wilson (2020). “Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning”.
In: International Conference on Learning Representations.

Zhao, Shengyu, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han (2020). “Differentiable
Augmentation for Data-Efficient GAN Training”. In: Advances in Neural Information

Bibliography 213

Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Zhu, Harrison, Carles Balsells Rodas, and Yingzhen Li (2022). “Markovian Gaussian
Process Variational Autoencoders”. In: arXiv preprint arXiv:2207.05543.

	Abstract
	Acknowledgements
	Introduction
	The Undeniable Success of Deep Learning
	But are Deep Learning Models Really That Good?
	The Promises of Bayesian Deep Learning
	Challenges for Bayesian Deep Learning
	Outline and Contributions of the Thesis

	Probabilistic Methods for Machine Learning
	A Refresher on Probabilistic Machine Learning
	Bayesian Neural Networks
	Deep neural networks
	Bayesian treatment for deep neural networks

	Common Approximation Inference Methods for Bayesian Neural Networks
	Laplace approximation
	Variational inference
	Markov chain Monte Carlo

	Gaussian Processes

	Functional Priors for Bayesian Neural Networks
	Introduction
	Related Work
	Preliminaries
	Gaussian process priors
	Wasserstein distance

	Imposing Gaussian Process Priors on Bayesian Neural Networks
	Wasserstein distance optimization
	Prior parameterization for neural networks
	Algorithm and complexity

	Examples and Practical Considerations
	Visualization on a 1D regression synthetic dataset
	The effects of the GP prior on the BNN posterior
	Wasserstein distance vs KL divergence

	Experimental Evaluation
	Baselines
	UCI regression benchmark
	UCI classification benchmark
	Bayesian convolutional neural networks for image classification
	Optimizing priors with data: cross-validation and empirical Bayes
	Active learning
	Maximum-a-posteriori (MAP) estimation with GP-induced prior

	Conclusions

	Model Selection for Bayesian Autoencoders
	Introduction
	Related work
	Preliminaries on Bayesian Autoencoders
	Model Selection for Bayesian Autoencoders via Prior Optimization
	Another route for Bayesian Occam's razor
	Matching the marginal distribution to the data distribution via Wasserstein distance minimization
	Summary

	Experiments
	Analysis of the effect of the prior
	Reconstruction and generation of CELEBA
	Prior adjustment versus posterior tempering

	Conclusions

	Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
	Introduction
	Related Work
	Imposing Distributions over the Latent Space of Bayesian Autoencoders
	Scalable Gaussian Process Prior for Bayesian Autoencoders
	Gaussian process prior
	Bayesian sparse Gaussian processes

	Experiments
	Synthetic moving ball data
	Conditional generation of rotated MNIST
	Missing data imputation

	Conclusions

	 Improving Training of Likelihood-based Generative Models with Data Mollification
	Introduction
	Challenges in Training Deep Generative Models
	The manifold hypothesis and density estimation in low-density regions
	Manifold overfitting

	Generative Models with Data Mollification
	Experiments
	2D Synthetic Data Sets
	Image Experiments

	Related work
	Conclusion

	Final Remarks and Outlooks
	Summary of Contributions
	Future Directions

	Appendix for BNNChap:bnn
	A primer on Wasserstein Distance
	Implementation and experimental details
	Deep Ensemble
	Likelihoods for BNNs
	Tempered posterior
	Details on the sampling scheme for BNN hierarchical priors
	MAP estimation with Gaussian prior
	Network architectures
	Measuring similarity between GPs and BNNs using maximum mean discrepancy
	Details on the experiments with functional BNNs and empirical Bayes

	Additional results
	Additional results on MAP estimation with GP-induced priors
	Tabular results on the UCI benchmarks
	Convergence of Wasserstein optimization
	Additional comparisons with the empirical Bayes approach
	Additional results with full-batch Hamiltonian Monte Carlo
	Additional discussion on the optimization of Wasserstein distance

	Appendix for Chap:bae
	Derivation of Distributional Sliced-Wasserstein Distance
	(Distributional) sliced-Wasserstein distance

	Numerical Implementation of Sliced-Wasserstein Distance
	Wasserstein distance between two empirical 1D distributions
	Slicing empirical distribution

	Pseudocode of Prior Optimization Procedure
	PCA of the SGD Trajectory
	Additional Details on Experimental Settings
	Experimental environment
	Preprocessing data
	Network architectures
	Prior optimiziation
	SGHMC hyperparameters
	Competing approaches
	Performance evaluation

	Additional Results of Comparison with Temperature Scaling
	Partial tempering
	Full tempering

	Ablation Studies
	Additional results of ablation study on the size of the dataset to optimize priors
	Effect of the dimensionality of latent space
	Visualizing 2-dimensional latent space

	Additional Results
	Convergence of Wasserstein optimization
	Tabulated results
	More qualitative results

	Appendix for Chap:sgpbae
	A Taxonomy of Latent Variable Models
	Details of the Scalable Sampling Objective for Sparse Gaussian Processes
	Details of the Extension to deep Gaussian Processes
	Experimental Details
	Moving ball experiment
	Rotated MNIST experiment
	Missing imputation experiment

	Additional Results
	Ablation study on Bayesian treatments of autoencoders
	Convergence of SGHMC

	Appendix for Chap:mollification
	A Primer on Normalizing Flows and VAEs
	Normalizing flows
	Variational autoencoders

	Details on Blurring Mollification
	Implementation of Noise Schedules
	Experimental Details
	Datasets
	Software and computational resources
	Training details

	Addtional Results

	Bibliography

