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Résumé

Cette thèse est consacrée à l’étude de certains aspects de la théorie de Littlewood-
Paley-Stein et de celles des martingales dans différents contextes, notamment pour les
fonctions à valeurs vectorielles et non commutatives.

Elle se compose de trois parties. Dans la première, nous établissons une équivalence
ponctuelle entre la g-fonction carrée de Littlewood-Paley-Stein et la fonction carrée de
martingales. Nos arguments reposent sur la construction d’un semi-groupe de diffusion
symétrique spécifique associé à une filtration de martingales. Nous étendons également
cette équivalence aux cas vectoriel et non commutatif. En conséquence, nous déterminons
l’ordre d’une des meilleures constantes dans l’inégalité de Littlewood-Paley-Stein scalaire.

La deuxième partie se concentre sur le scénario à valeurs vectorielles. Nous montrons
l’équivalence entre la norme Lp (1 ≤ p < +∞) entre la q-variante vectorielle de l’intégrale
de Lusin et celle de la g-fonction de Littlewood-Paley-Stein du semi-groupe dont le géné-
rateurs est un opérateur sectoriel satisfaisant à certaines conditions. Les outils principaux
sont les espaces de tente à valeurs vectorielles et la fonction carrée intrinsèque introduite
par Wilson. En particulier, nous obtenons l’ordre optimal de la meilleure constante cor-
respondante de l’inégalité de Littlewood-Paley-Stein dans Lp à valeurs vectorielles dans
un espace de Banach de type q (1 < q ≤ 2) de martingale pour p tendant vers 1.

La dernière partie porte sur la décomposition bilinéaire de la multiplication ponctuelle
des éléments de l’espace de Hardy de martingales H1 et de son espace dual BMO. Cette
décomposition bilinéaire continue est étendue à l’espace de Hardy de martingales Hp

(0 < p < 1) et à son espace dual. Nos décompositions reposent sur les paraproduits de
martingale. En conséquence, nous obtenons des résultats analogues pour les martingales
dyadiques sur les espaces de type homogène grâce à la construction d’un système dyadique.

Mots-clefs
Inégalités de Littlewood-Paley-Stein ; Ordre optimal des meilleurs constants ; Espaces

de Hardy et BMO ; Type et cotype de martingales ; Espaces de tente à valeurs vectorielles ;
Paraproduits de martingales ; Fonction carée intrinsèque ; Espaces de Hardy de Musielak-
Orlicz ; Martingales.

iii





Abstract

This thesis is devoted to the study of certain aspects of Littlewood-Paley-Stein the-
ory and martingale theory in various contexts, particularly for vector-valued and non-
commutative functions.

It is composed of three parts. In the first part, we establish a pointwise equivalence
between the Littlewood-Paley-Stein g-function and the square function of martingales.
Our arguments are based on the construction of a specific symmetric diffusion semigroup
associated with a martingale filtration. We also extend this equivalence to the vector-
valued and noncommutative cases. Consequently, we determine the order of one of the
best constants in the scalar Littlewood-Paley-Stein inequality.

The second part focuses on the vector-valued scenario. We demonstrate the equiv-
alence between the Lp norm (1 ≤ p < ∞) of the q-variant of vector-valued Lusin area
integral and that of the Littlewood-Paley-Stein g-function of the semigroup whose gener-
ator satisfies certain conditions. The main tools used are vector-valued tent spaces and
the intrinsic square function introduced by Wilson. In particular, we obtain the opti-
mal order of the corresponding best constant in the Littlewood-Paley-Stein inequality
in vector-valued Lp spaces where the underlying Banach space is of martingale type q
(1 < q ≤ 2) for p tending to 1.

The final part deals with the bilinear decomposition of pointwise multiplication of
elements in the martingale Hardy space H1 and its dual space BMO. This continuous
bilinear decomposition is extended to the martingale Hardy space Hp (0 < p < 1) and
its dual space. Our decompositions rely on martingale paraproducts. Consequently, we
obtain analogous results for dyadic martingales on spaces of homogeneous type through
the construction of a dyadic system.

Keywords
Littlewood-Paley-Stein inequalities; Optimal order of best constants; Hardy and BMO

spaces; Martingale paraproducts; Martingale type and cotype; Vector-valued tent spaces;
Intrinsic square function; Musielak-Orlicz Hardy space; Martingales.
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Chapter 0

Introduction

The Littlewood-Paley theory was initiated by Littlewood and Paley in the 1930s (cf.
[58, 59, 60]) and its extensions have given rise to important tools in the field of harmonic
analysis. They have been instrumental in the study of Fourier series, Fourier transforms,
and various other mathematical and analytical problems. The development of classical
Littlewood-Paley theory has inspired various other fields in harmonic analysis such as
singular integral theory introduced by Calderón and Zygmund and the investigations of
various Hp spaces (cf. [27, 40, 89]). One remarkable extension of the classical Littlewood-
Paley theory was carried out by Stein who developed the theory considerably, widening its
applicability both in the classical setting involving Rd and in abstract situations involving,
among other things, Lie groups, symmetric diffusion semigroups (or so-called symmetric
Markovian semigroups) and martingales (cf. [87]). The modern version of Littlewood-
Paley theory is nowadays widely called Littlewood-Paley-Stein theory.

Based on the beautiful work of Stein, Cowling [31] presented an elegant alternative
approach to Stein’s theory for symmetric submarkovian semigroups via bounded holo-
morphic functional calculus. The various counterparts of Littlewood-Paley-Stein theory
have been developed during the last thirty years. The noncommutative extension was
studied for maximal function inequalities in [55, 67] and for square function inequalities
in [53]. On the other hand, motivated by the Banach space geometry [82, 83], Xu estab-
lished the vector-valued Littlewood-Paley-Stein theory for Poisson semigroup on the unit
circle in [100], and later with his coauthors, extended this theory to symmetric Markovian
semigroups in [63, 101]. Afterwards, Betancor et al developed this theory in some special
cases which are not Markovian (cf. [9, 11, 10, 7]), such as Schrödinger, Hermite, Laguerre
semigroups etc (see also [1, 6, 8, 46, 48, 75, 90] for related results). In a recent remarkable
paper [102], Xu has investigated for the first time the vector-valued Littlewood-Paley-
Stein inequalities for semigroups of regular contractions

{
e−tL

}
t>0

on Lp(Ω) for a fixed
1 < p < ∞. That is, for a Banach space X of martingale cotype q (2 ≤ q < ∞), he
showed that X is of Lusin cotype q relative to

{
e−t

√
L
}

t>0
. More precisely, there exists a

constant C > 0 such that

∥Gq,
√

L(f)∥p ≤ C∥f∥Lp(X), ∀f ∈ Lp(Ω) ⊗X, (.1)

where

Gq,
√

L(f)(x) =
(∫ ∞

0

∥∥∥t√Le−t
√

L(f)(x)
∥∥∥q

X

dt
t

) 1
q

. (.2)
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INTRODUCTION

More importantly, by deeply exploring holomorphic functional calculus, Fendler’s dilation,
Calderón-Zygmund theory and Wilson’s intrinsic square functions, Xu was able to obtain
the sharp bounds depending on the martingale cotype constant. The derivation of these
sharp bounds enables him to resolve an open problem posed by Naor and Young in [72].
More precisely, let L

√
L

c,q,p(X) be the least constant C in (.1)—the Lusin cotype constant of
X, and Mc,q(X) the martingale cotype q constant of X, he obtained

L
√

L
c,q,p(X) ≲ max

{
p

1
q , p′

}
Mc,q(X) (.3)

with the order max
{
p

1
q , p′

}
being sharp. We refer the reader to Section 1.4 for the

definition of Mc,q(X) and the martingale type constant Mt,q(X).
By duality, the reverse inequality of (.1) also holds under the condition that X is of

martingale type q (1 < q ≤ 2), namely,

∥f − F(f)∥Lp(X) ≤ C∥Gq,
√

L(f)∥p, ∀ f ∈ Lp(Ω) ⊗X. (.4)

Here F is the vector-valued extension of the projection from Lp(Ω) onto the fixed point
space of {e−tL}t>0. Let L

√
L

t,q,p(X) be the least possible constant in (.4), then the resulting
type bounds satisfy

L
√

L
t,q,p(X) ≲ max

{
p, p

′ 1
q′

}
Mt,q(X). (.5)

Nevertheless the order max
{
p, p

′ 1
q′

}
is very likely to be suboptimal as suggested by the

special case when L = ∆—the Laplacian on Rd, q = 2 and X = C. In this case,

Mt,2(C) = 1, and √
p ≲ L

√
∆

t,2,p(C) ≲ p, (.6)

see for instance [103, Theorem 1]. The sharpness of (.6) when p → 1 is essentially equiva-
lent to the fact that the L1(Rd)-norm of the classical g-function controls that of the Lusin
square function, which dominates L1(R)-norm of the function itself. The relation between
the aforementioned quantities involves the deep theory of Hardy and BMO spaces. Other
than this special case, the problem of determining the optimal order of L

√
L

t,q,p(X) in (.5)
has been left open widely even in the case L = ∆ when X is a Banach space of martingale
type q, see e.g. Remark 1.3, Problem 1.8 and Problem 8.4 in the aforementioned paper
[102]. Note also that the optimal order of L

√
L

t,q,p(X) as p → ∞ for a specific semigroup
seems much harder to be determined, and actually the special case L

√
∆

t,2,p(C) remains open
(cf. [103, Problem 5]).

Motivated by all this pioneering work, the first theme of this thesis focuses on the study
of optimal order of the best constants in the Littewood-Paley-Stein inequalities, in the
scalar-valued, vector-valued and noncommutative settings. For the reader’s convenience,
we divide this theme into two parts, where the first part is mainly on the optimal order
of L

√
L

t,q,p(X) as p → ∞ for symmetric diffusion semigroups, and the second focuses on the
case when p → 1 in the vector-valued setting. The first part is a joint work with Hao
Zhang in [104], and the second is a joint work with Guixiang Hong and Hao Zhang still
in progress.
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I. Optimal Lusin type constant as p tending to ∞

Another theme of this thesis concerns the study of martingale paraproducts. This
concept that first emerged in the theory of paradifferential operators (cf. [20]) has become
an important tool in harmonic analysis. For example, Coiffman and Semmes in [25] proved
the celebrate David-Journé T1 theorem (first established in [32]) by dyadic martingale
paraproducts. Later, Nazarov, Treil and Volberg applied dyadic martingale paraproducts
to establish the T1 theorem and the Tb theorem on non-homogeneous spaces in [73],
etc. On the other hand, the dyadic shift representation of singular integral operators (see
for instance, [41, 78, 81, 92]) is an important technique to establish the boundedness of
singular integral operators via martingale transforms. It is noteworthy that Petermichl
determined the sharp weighted bound of Hilbert transform and Riesz transform in [79]
and [80]. The dyadic shift representation was also applied by Hytönen in [52] to fully
resolve the famous A2 conjecture. In these situations, dyadic martingale paraproducts
naturally appear.

We shall adapt the martingale paraproducts to give a bilinear decomposition between
the elements of martingale Hardy spaces and their dual space and we intend to derive
the analogous results on space of homogeneous type from that in the martingale setting.
This will be the main theme of the third part of this thesis. This is a joint work with
Odysseas Bakas, Yujia Zhai and Hao Zhang in [5].

The remaining part of the introduction will be devoted to a detailed discussion on the
background, motivations and main results. After the introduction, we will introduce the
definitions and notation in Chapter 1, and in Chapter 2–5, we will present our work in
detail. The presentation will be separated into three parts, and each is devoted to one of
the topics highlighted above.

I Optimal Lusin type constant as p tending to ∞
This part follows the recent investigation of the Littlewood-Paley-Stein theory carried

out by Xu. In his paper [102], Xu has developed a new powerful method to study the
vector-valued Littlewood-Paley-Stein theory for semigroups. One interesting benefit of
this new method is the fact that it often yields the optimal orders of the relevant best
constants.

Let
{
e−tL

}
t>0

be a symmetric diffusion semigroup on a measure space (Ω,F , µ) and{
e−t

√
L
}

t>0
its subordinated Poisson semigroup defined as follows

e−t
√

L(f) = 1√
π

∫ ∞

0

e−s

√
s
e− t2

4s
L(f) ds.

Then the Littlewood-Paley g-function of f ∈ Lp(Ω) associated with
{
e−t

√
L
}

t>0
defined

in (.2) can be written as (in this case X = C and q = 2)

G2,
√

L(f)(x) =
(∫ ∞

0

∣∣∣t√Le−t
√

L(f)(x)
∣∣∣2 dt

t

) 1
2

. (I.1)
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INTRODUCTION

Stein’s celebrated Littlewood-Paley inequality states that for every 1 < p < ∞ there exist
two positive constants αp and βp such that

α−1
p ∥f − F(f)∥p ≤

∥∥∥G2,
√

L(f)
∥∥∥

p
≤ βp∥f∥p, ∀ f ∈ Lp(Ω),

where F is the projection from Lp(Ω) onto the fixed point subspace of {e−t
√

L}t>0 of Lp(Ω).
We recall the best possible constants αp and βp are denoted as in (.3) and (.5) by taking
X = C and q = 2. For short, we will denote them by L

√
L

c,p and L
√

L
t,p , respectively.

Recall the following estimate given by Xu in the aforementioned paper [102]:

L
√

L
c,p ≲ max

{
p, p′ 1

2
}

and L
√

L
t,p ≲ max

{
p

1
2 , p′

}
.

Moreover, he has shown that the estimate above on L
√

L
c,p is optimal as p → 1 and p → ∞

since it is already so for the classical Poisson semigroup on R.

In this part, we show that Xu’s above estimate on L
√

L
t,p is in fact optimal as p → ∞,

namely, L
√

L
t,p ≳ p as p → ∞. In fact, we will prove the stronger inequality LL

t,p ≳ p as
p → ∞ for a symmetric diffusion semigroup

{
e−tL

}
t>0

.
Our argument relies on the deep relationship between martingale inequalities and

Littlewood-Paley-Stein inequalities inspired by a result of Neveu. In [74], Neveu estab-
lishes a profound link between the martingale theory and the ergodic theory. Indeed,
he shows that Doob’s maximal inequality for martingale can be obtained from Dunford-
Schwartz’s maximal ergodic theorem. We will prove the analogous result for the square
function.

We recall the definition of symmetric diffusion semigroups in Stein’s sense [87, Chapter
3, Section 1].

Definition I.1. Let (Ω,F , µ) be a σ-finite measure space. {Tt}t>0 is called a symmetric
diffusion semigroup on (Ω,F , µ) if {Tt}t>0 satisfies the following conditions:

(a) Tt is a contraction on Lp(Ω) for every 1 ≤ p ≤ ∞;

(b) TtTs = Tt+s for positive t and s;

(c) lim
t→0+

Tt(f) = f in L2(Ω) for every f ∈ L2(Ω);

(d) Tt is positive (i.e. positivity preserving);

(e) Tt is selfadjoint on L2(Ω);

(f) Tt(1) = 1.

It is well-known that such symmetric diffusion semigroup has a unique infinitesimal
generator, denoted by L. Then Tt can be written as Tt = e−tL. There are many important
examples such as the classical heat semigroup {Ht}t<0 (with generator ∆) and classical
Poisson semigroup {Pt}t>0 (with generator

√
∆) on Eulcidean space Rd.

4



I. Optimal Lusin type constant as p tending to ∞

Recall that any symmetric diffusion semigroup {Tt}t>0 is analytic on Lp(Ω) for 1 <
p < ∞ which implies that ∂tTt is well-defined (see [87, Chapter 3, Section 2]). Thus we
can also express the Littlewood-Paley g-function of f associated with {Tt}t>0 as

G2,T(f)(x) =
(∫ ∞

0
|t∂tTt(f)(x)|2 dt

t

) 1
2

,

which will be more applicable to the later computation. We often call G2,T(f) the g-
function for short.

It is a classical fact (see e.g. [63]) that the orthogonal projection F on L2(Ω) onto
the fixed point subspace of {Tt}t>0 extends to a contractive projection on Lp(Ω) for
1 ≤ p ≤ ∞. Then F is also positive and F (Lp(Ω)) is the fixed point subspace of
{Tt}t>0 on Lp(Ω). Recall that Stein’s celebrated extension of the classical Littlewood-
Paley inequality [87] asserts that for every symmetric diffusion semigroup {Tt}t>0 and
every 1 < p < ∞

∥f − F(f)∥Lp(Ω) ≈p ∥G2,T(f)∥Lp(Ω) , ∀ f ∈ Lp(Ω). (I.2)

Stein proves the above inequality (I.2) by virtue of Burkholder-Gundy’s martingale
inequality and complex interpolation. He establishes a close connection between semi-
group theory and martingale theory and studies semigroups through martingale theory
via Rota’s dilation. We will proceed in a reverse way by studying martingales by semi-
groups.

We consider the square function in the martingale setting. Throughout this part of
work we will work with a fixed probability space (Ω,F , µ) and a sequence of σ-algebras

F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · · ⊂ F

such that σ (∪∞
n=1Fn) = F . For a random variable f ∈ L1(Ω,F , µ) and n ∈ N∗, we will

set
En(f) = E (f | Fn) , dEn(f) = En(f) − En−1(f),

where E0 = 0 as convention. The martingale square function of the martingale {En(f)}n≥1
is

S(f) =
( ∞∑

n=1
|dEn(f)|2

) 1
2

.

See [43] for more information on martingale inequalities. We will call S(f) martingale
square function for short.

We introduce the most important operator of the proof associated with martingales.
Given a strictly increasing sequence {an}n≥0 with a0 = 0 and lim

n→∞
an = 1, define

T =
∞∑

n=1
(an − an−1)En. (I.3)

Then T is a positive contraction on Lp(Ω,F , µ) for 1 ≤ p ≤ ∞. In particular, for p = 2,
T is positive and selfadjoint on L2(Ω,F , µ). We use T to produce a symmetric diffusion
semigroup.
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Theorem I.2. If we denote by T t the operator obtained by continuous functional calculus,
then for t > 0

T t =
∞∑

n=1
(1 − an−1)tdEn =

∞∑
n=1

[
(1 − an−1)t − (1 − an)t

]
En, (I.4)

and T t is a positive contraction for any t > 0 on Lp(Ω,F , µ) (1 ≤ p ≤ ∞). Moreover,
{T t}t>0 is a symmetric diffusion semigroup.

The above semigroup {T t}t>0 is exactly our desired semigroup generated by a martin-
gale filtration. Then we select some specific sequence of {an}n≥0 and use this particular
semigroup to obtain the best order of LL

t,p. Below is one of our principal theorem, and it
is the square function analogue of Neveu’s result [74]. Note that F = E1.

Theorem I.3. If an = 1 − e−16n+1 for n ≥ 1, then the semigroup {T t}t>0 defined in
Theorem I.2 satisfies√

7
60 S(f − F(f)) ≤ G2,T (f) ≤

√
23
60 S(f − F(f)), ∀ f ∈ L1(Ω,F , µ). (I.5)

Consequently, for 1 ≤ p ≤ ∞√
7
60 ∥S(f − F(f))∥p ≤ ∥G2,T (f)∥p ≤

√
23
60 ∥S(f − F(f))∥p, ∀ f ∈ Lp(Ω,F , µ).

Remark I.4. The choice of {an}n≥1 is not unique. There are many other sequences of
{an}n≥1 satisfying the above pointwise inequalities with different constants, of course.
Indeed, through appropriate choices of {an}n≥1, the universal constants in inequality
(I.5) can be replaced by 1/2 − ε and 1/2 + ε respectively for any 0 < ε < 1/2.

The following corollary indicates that (I.5) also holds for the subordinated Poisson
semigroups if we take another choice of {an}n≥1.

Corollary I.5. If an = 1 − e−162(n+1) for n ≥ 1, then the subordinated Poisson semigroup
{Pt}t>0 associated with the semigroup {T t}t>0 defined in Theorem I.2 satisfies√

7
60 S(f − F(f)) ≤ G2,P (f) ≤

√
23
60 S(f − F(f)), ∀ f ∈ L1(Ω,F , µ).

Theorem I.3 shows that for any martingale, there exists a symmetric diffusion semi-
group such that their corresponding square functions are equivalent. In this way, we can
use the Littlewood-Paley-Stein inequality (I.2) to show the analogous inequality for the
martingale square function. This means that the Burkholder-Gundy square function in-
equality for martingales can be deduced from the Littlewood-Paley-Stein inequality for
semigroups. Moreover, the optimal constants in the martingale square function inequality
can be applied to the setting of semigroups.

Recently, Xu has shown the vector-valued Littlewood-Paley-Stein inequality for ana-
lytic symmetric diffusion semigroups via holomorphic functional calculus (see [102]). His
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I. Optimal Lusin type constant as p tending to ∞

method is optimal in the sense that it offers the optimal orders of the best constants.
For the martingale cotype case, he shows that the classical Poisson semigroup meets the
optimal orders (see [102, Proposition 8.5]). Unfortunately, the optimal order of the re-
verse Littlewood-Paley-Stein inequality was left unsolved in [102]. In the following, we
will utilize Theorem I.3 to give the optimal order of LL

t,p as p → ∞.

To this end, we recall the following Burkholder-Gundy inequality [23, Theorem 3.1].

Theorem I.6. Let 1 < p < ∞ and p∗ = max {p, p/(p− 1)}. Then

(p∗ − 1)−1 ∥S(f)∥p ≤ ∥f∥p ≤ (p∗ − 1) ∥S(f)∥p.

In particular,
∥f∥p ≥ (p− 1)∥S(f)∥p if 1 < p ≤ 2,
∥f∥p ≤ (p− 1)∥S(f)∥p if 2 ≤ p < ∞.

Moreover, the constant p− 1 is best possible.

Using Theorem I.3 and Theorem I.6, we immediately get the following corollary, which
solves a problem left open by Xu in [102, Remark 1.3].

Corollary I.7. For any symmetric diffusion semigroup {Tt}t>0, and for p ≥ 2

∥f − F(f)∥p ≲ p∥G2,T(f)∥p, ∀ f ∈ Lp(Ω), (I.6)

and p is the optimal order as p → ∞.

Proof of Corollary I.7. Indeed, (I.6) has already been proved in [102, Theorem 8.1]. Then
it suffices to show that p is the optimal order of LT

p , which is an immediate consequence
of Theorem I.3 and Theorem I.6.

Theorem I.3 can be extended to the vector-valued and noncommutative settings. We
first consider the vector-valued case. Given a Banach space X, let Lp(Ω;X) denote the
Lp-space of strongly measurable p-integrable functions from Ω to X. It is a well-known
fact that if T is a positive bounded operator on Lp(Ω) with 1 ≤ p ≤ ∞, then T ⊗ IdX is
bounded on Lp(Ω;X) with the same norm. For notational convenience, throughout this
article, we will denote T ⊗ IdX by T too. Recall that F is the projection from Lp(Ω;X)
onto the fixed point subspace of {Tt}t>0. Thus {Tt}t>0 is also a semigroup of contractions
on Lp(Ω;X) for any Banach space X with F (Lp(Ω;X)) as its fixed point subspace (see
e.g. [63]).

For an X-valued Lp-martingale {En(f)}n≥1, define the corresponding q-variant of the
martingale square function for 1 ≤ q < ∞ as follows

Sq(f) =
( ∞∑

n=1
∥dEn(f)∥q

X

) 1
q

, ∀f ∈ Lp(Ω;X).

Given a strictly increasing sequence {an}n≥0 with a0 = 0 and limn→∞ an = 1 as before,
let T t be defined by (I.3).

7
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Then {T t}t>0 extended to Lp(Ω;X) remains to be a strongly continuous semigroup of
contractions on Lp(Ω;X), and (I.4) remains valid in the X-valued case. Similarly as the
scalar-valued case, the vector-valued g-function of f defined in (.2) can also be written as

Gq,T (f) =
(∫ ∞

0

∥∥∥t∂tT
t(f)

∥∥∥q

X

dt
t

) 1
q

, ∀ f ∈ Lp(Ω;X).

The following theorem is the vector-valued analogue of Theorem I.3:

Theorem I.8. Let X be a Banach space and 1 ≤ p, q < ∞. Then there exist a sequence
{an}n≥0 and two universal positive constants, c and C such that

cSq (f − F(f)) ≤ Gq,T (f) ≤ CSq (f − F(f)) . (I.7)

for any f ∈ Lp(Ω;X).

Similarly, there exists a sequence {an}n≥0 such that (I.7) still holds for the subor-
dinated Poisson semigroups of {T t}t>0. The proof is an analogue of the argument for
Corollary I.5. We leave it to the interested readers. We now turn to the noncommutative
setting. We introduce the definitions of square functions for noncommutative martingales
and noncommutative semigroups.

Let M denote a finite von Neumann algebra equipped with a normal faithful nor-
malized trace τ , and (Mn)n≥1 an increasing filtration of von Neumann subalgebras of
M whose union is w∗-dense in M. For 1 ≤ p ≤ ∞ we denote by Lp(M, τ), or
simply Lp(M) the usual noncommutative Lp-space associated with (M, τ). As usual,
Lp (Mn) = Lp

(
Mn, τ |Mn

)
is naturally identified as a subspace of Lp(M). It is well-

known that there exists a unique normal faithful conditional expectation En from M onto
Mn such that τ ◦ En = τ. Moreover, En extends to a contractive projection from Lp(M)
onto Lp (Mn), for every 1 ≤ p < ∞, which is still denoted by En. Similarly, we denote by
dEn = En − En−1 for n ≥ 1 the martingale difference with E0 = 0 as convention.

A noncommutative martingale with respect to (Mn)n≥1 is a sequence x = (xn)n≥1 in
L1(M) such that

xn = En (xn+1) , ∀n ≥ 1.
The difference sequence of x is (dnx)n≥1, where dnx = xn − xn−1 (with x0 = 0 by con-
vention). Then we define Lp-martingales and bounded Lp-martingales, as usual. In the
sequel, we will fix (M, τ) and (Mn)n≥1 as above and all noncommutative martingales will
be with respect to (Mn)n≥1.

Recall that | · | stands for the usual (right) modulus of operators, i.e. |a| = (a∗a)
1
2 .

Define the column and row square functions respectively for x ∈ L1(M)

Sc(x) =
∑

n≥1
|dnx|2

 1
2

and Sr(x) =
∑

n≥1
|dnx

∗|2
 1

2

.

We refer to [55], [85] and [86] for more information.
Now we provide the definition of noncommtative symmetric diffusion semigroup as

follows.

8



I. Optimal Lusin type constant as p tending to ∞

Definition I.9. Let {Tt}t>0 be a semigroup of operators on M. We say that {Tt}t>0 is
a noncommutative symmetric diffusion semigroup if it satisfies the following conditions:

(a) Each Tt : M → M is a unital, normal and completely positive;

(b) For any x ∈ M,Tt(x) → x in the w∗-topology of M when t → 0+;

(c) Each Tt : M → M is selfadjoint. Namely, for any x, y ∈ M

τ(Tt(x)y) = τ(xTt(y)).

(d) The extension of each Tt : M → M from Lp(M) to Lp(M) for 1 ≤ p < ∞ is
completely contractive.

It is well-known that such a semigroup extends to a semigroup of contractions on
Lp(M) for any 1 ≤ p < ∞, and that {Tt}t>0 is a selfadjoint semigroup on L2(M).
Moreover, {Tt}t>0 is strongly continuous on Lp(M) for any 1 ≤ p < ∞.

Define

G2,T,c(x) =
(∫ ∞

0
|t∂tTt(x)|2 dt

t

) 1
2

and

G2,T,r(x) =
(∫ ∞

0
|t∂tTt(x)∗|2 dt

t

) 1
2

.

We call G2,T,c(x) and G2,T,r(x) the column and row g-functions, respectively. We refer
the reader to [53] for more information.

Given a strictly increasing sequence {an}n≥0 with a0 = 0 and limn→∞ an = 1 as before,
analogously we define the mapping T t (t > 0) as follows

T t =
∞∑

n=1
(1 − an−1)tdEn =

∞∑
n=1

[
(1 − an−1)t − (1 − an)t

]
En. (I.8)

Note that F = E1 as well.

Theorem I.10. If an = 1 − e−16n+1 for n ≥ 1, then {T t}t>0 defined in (I.8) is a noncom-
mutative symmetric diffusion semigroup. Moreover, it satisfies for x ∈ L1(M)√

7
60 Sc(x− F(x)) ≤ G2,T,c(x) ≤

√
23
60 Sc(x− F(x)) (I.9)

and similarly √
7
60 Sr(x− F(x)) ≤ G2,T,r(x) ≤

√
23
60 Sr(x− F(x)). (I.10)

We have the same result as Corollary I.5 in the noncommutative setting. The corre-
sponding proof is similar to that of Corollary I.5 as well. So we omit these details.
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II Optimal Lusin type constant as p tending to 1
In this part, we will determine the optimal order of LL

t,q,p(X) which appeared in (.5)
as p → 1 for a large class of approximation identities {e−tL}t>0 on Rd, and thus answer
the questions mentioned in [102, Remark 1.3 and Problem 1.8]. Moreover, our result will
assert that the Lusin type of X relative to this class of approximation identities implies
the martingale type of X, and thus partially resolve [102, Problem A.1 and Conjecture
A.4].

Let L be a sectorial operator of type α (0 ≤ α < π/2) on L2(Rd), and thus it generates
a holomorphic semigroup e−zL with 0 ≤ |Arg(z)| < π/2−α. One may find these concepts
in Section 3.1. Then it is well-known (see e.g. [102]) that the semigroup {e−tL}t>0 extends
to Lp(Rd;X) (1 ≤ p ≤ ∞) under our assumptions below. The resulting semigroup is still
denoted by {e−tL}t>0 without causing confusion. Partially inspired by [36, Section 6.2.2],
the kind of approximation identity {e−tL}t>0 that we will be interested in the present
paper is assumed to have kernel K(t, x, y) satisfying the following three assumptions:
there exist positive constants 0 < β, γ ≤ 1 and c such that for any t > 0, x, y, h ∈ Rd,

|K(t, x, y)| ≤ ctβ

(t+ |x− y|)d+β
, (II.1)

|K(t, x+ h, y) −K(t, x, y)| + |K(t, x, y + h) −K(t, x, y)| ≤ c|h|γtβ

(t+ |x− y|)d+β+γ
(II.2)

whenever 2|h| ≤ t+ |x− y|, and∫
Rd
K(t, x, y) dx =

∫
Rd
K(t, x, y) dy = 1. (II.3)

Let 1 < q < ∞, the q-variant of Lusin area integral associated with L is defined as
follows: for f ∈ Cc(Rd) ⊗X,

Sq,L(f)(x) =
(∫ ∞

0

∫
|y−x|<t

∥∥∥tLe−tL(f)(y)
∥∥∥q

X

dydt
td+1

) 1
q

.

Recall that the q-variant of g-function associated with L defined in (.2) is

Gq,L(f)(x) =
(∫ ∞

0

∥∥∥tLe−tL(f)(y)
∥∥∥q

X

dt
t

) 1
q

.

Our main result reads as below.

Theorem II.1. Let L be a sectorial operator of type α (0 ≤ α < π/2) on L2(Rd) satisfying
(II.1), (II.2) and (II.3). Let 1 ≤ p < ∞ and 1 < q < ∞. For any Banach space X and
f ∈ Cc(Rd) ⊗X, there holds

p− 1
q ∥Sq,

√
∆(f)∥p ≲γ,β ∥Sq,L(f)∥p ≲γ,β p

1
q ∥Sq,

√
∆(f)∥p, (II.4)

p− 1
q ∥Sq,L(f)∥p ≲γ,β ∥Gq,L(f)∥p ≲γ,β p

1
q ∥Sq,L(f)∥p. (II.5)

Moreover, the orders in both (II.4) and (II.5) are optimal as p → 1.
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When X = C and q = 2, the equivalence (II.4) in the case 1 < p < ∞ without
explicit orders follows from the classical Littlewood-Paley theory which in turn relies
on Calderón-Zygmund theory; while the case p = 1 is deduced from the holomorphic
functional calculus, Calderón-Zygmund theory and the theory of Hardy and BMO spaces
associated with differential operators (cf. [36, Theorem 6.10]). Our estimate (II.4) for
any Banach space X, any 1 ≤ p < ∞ and any 1 < q < ∞ goes much beyond this and
its proof provides a new approach to the mentioned scalar case with optimal orders as
p → 1. Indeed, the arbitrariness of X presents a surprise and usually one expects certain
property of Banach space geometry to be imposed on the square function inequalities.
For the technical side, the arbitrariness of X prevents us from the use of (vector-valued)
Calderón-Zygmund theory. Instead, we will make use of vector-valued Wilson’s intrinsic
square functions as a media to relate ∆ and L, and then exploit the vector-valued tent
space theory such as interpolation, duality as well as atomic decomposition. Even though
both of these two tools have been developed or applied in the literature, they need to
be taken care of in the present setting. For instance, because our L’s are usually not
translation invariant or of scaling structure, we have to introduce Wilson’s intrinsic square
functions via nice functions of two variables satisfying (3.3.1), (3.3.2) and (3.3.3); to avoid
the use of Calderón-Zygmund theory to deal with Wilson’s intrinsic square functions (cf.
[95, 103]), we prove the boundedness of a linear operator K on vector-valued tent spaces
(see Lemma 3.2.5); last but not the least, since our interested X is arbitrary, one cannot
establish the basic theory of vector-valued tent space using Calderón-Zygmund theory as
in [51, 56, 57, 47], and we shall adapt the classical arguments (cf. [26]), see Section 3.2
for details.

After all the preparing work, the equivalence (II.4) will be an immediate consequence
of Theorem 3.3.1, where we collect all the intermediate estimates involving vector-valued
Wilson’s square functions.

Regarding another equivalence (II.5), in the special situation X = C and q = 2 and
L =

√
∆, the equivalence for 1 < p < ∞ without optimal orders comes from the classical

Littlewood-Paley theory while the case p = 1 constitutes one essential part of the famous
real variable theory on Hardy spaces (cf. [38, 39, 40] ); in particular the upper estimate of
(II.5) follows from harmonicity of Poisson integrals or Calderón-Zygmund theory. Again,
the arbitrariness of X excludes the use of vector-valued Calderón-Zygmund theory and
there is an obvious lack of harmonicity related to general L. To surmount these difficulties,
in addition to the application of Theorem 3.3.1—Wilson’s intrinsic square functions, we
will fully develop the duality theory between vector-valued Hardy and BMO type spaces
in Section 3.4; the latter is inspired by Mei’s duality arguments [66] (see also [97, 103]).
In turn, part of the theory of vector-valued Hardy and BMO spaces will be deduced from
vector-valued tent spaces, and the projection πL (see Lemma 3.2.6) will play a key role in
passing from the results about tent spaces to those on Hardy/BMO spaces.

Together with the related results in [63, 75] where the authors showed the Lusin type
q of a Banach space X relative to {e−t

√
∆}t>0 is equivalent to the martingale type q of

X (see Section 3.5), our vector-valued tent space theory and Theorem II.1 imply the
following result, resolving partially [102, Problem 1.8, Problem A.1 and Conjecture A.4]
(see Remark 3.5.4).

Theorem II.2. Let L be a sectorial operator of type α (0 ≤ α < π/2) on L2(Rd) satisfying
(II.1), (II.2) and (II.3). Let 1 < q ≤ 2. The followings are equivalent

11
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(i) X is of martingale type q;

(ii) for all f ∈ Cc(Rd) ⊗X with 1 < p ≤ 2, there holds

∥f∥Lp(X) ≲γ,β ∥Gq,L(f)∥p.

Combining the main result in [75], a much stronger result than Theorem II.2 involving
the case p = 1,∞ will be presented in Corollary 3.5.3.

III Multiplication between elements in martingale
Hardy spaces and their dual spaces

The pointwise product of a function in the classical Hardy space H1(Rn) and a function
of bounded mean oscillation on Rn need not be in L1(Rn); see e.g. [88, Chapter IV, Section
6.2]. However, using Fefferman’s duality theorem [38] and the fact that the pointwise
product of a BMO-function and a C∞

0 -function is in BMO(Rn), Bonami, Iwaniec, Jones
and Zinsmeister defined in [17] the product f×g of a function f ∈ H1(Rn) and a function
g ∈ BMO(Rn) as a distribution given by

⟨f × g, ϕ⟩ := ⟨g · ϕ, f⟩, ϕ ∈ C∞
0 (Rn), (III.1)

where in the right-hand side of (III.1) the duality between f ∈ H1(Rn) and g · ϕ ∈
BMO(Rn) is employed. Moreover, it is shown in [17] that for any fixed f ∈ H1(Rn)
there exist two linear continuous operators Sf from BMO(Rn) to L1(Rn) and Tf from
BMO(Rn) to a weighted Hardy–Orlicz space such that

f × g = Sf (g) + Tf (g)

for all g ∈ BMO(Rn); see [17, Theorem 1.6].
In [16], using wavelet analysis, Bonami, Grellier and Ky showed that there exist two

bilinear continuous operators S from H1(Rn)×BMO(Rn) to L1(Rn) and T from H1(Rn)×
BMO(Rn) to H log(Rn) such that

f × g = S(f, g) + T (f, g)

for all f ∈ H1(Rn) and for all g ∈ BMO(Rn); see [16, Theorem 1.1]. The Musielak
Hardy–Orlicz space H log(Rn) is defined as the class consisting of all distributions h on Rn

whose grand maximal function Mh satisfies
∫
Rn

|Mh(x)|
log(e+ |x|) + log(e+ |Mh(x)|)dx < ∞

and is smaller than the weighted Hardy–Orlicz space appearing in [17]. The Musielak
Hardy–Orlicz space H log(Rn) is optimal. More specifically, it is sharp when n = 1 (see
[19]) and when n > 1, H log(Rn) is optimal in the sense that the smallest Banach X
containing H log(Rn) has the same dual with H log(Rn), i.e. X∗ ∼= (H log(Rn))∗, and X is
the smallest Banach space containing products (see [15]).
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In addition, continuous bilinear decomposition theorems for products of elements in
Hp(Rn), for 0 < p < 1, and their dual spaces were established in [14].

Using the theory of wavelets on spaces of homogeneous type, which was developed
by Auscher and Hytönen in [3, 2], the aforementioned results have been extended to
spaces of homogeneous type by Liu, Yang and Yuan [61] and Xing, Yang and Liang [99].
More precisely, in [61] and [99], continuous bilinear decompositions for products between
elements in atomic Hardy spaces Hp

at(Ω) (in the sense of Coifman and Weiss [27]) and
their dual spaces were established in the case where p ∈ ( n

n+1 , 1]. Here n is defined as the
dimension of the homogeneous space Ω.

Recently, in [4], a dyadic variant of the aforementioned results of Bonami, Grellier,
and Ky was established; see [4, Theorem 24], which in turn was used to deduce a periodic
version of [16, Theorem 1.1]; see [4, Theorem 28].

Motivated by [4], the first aim of this part is concerned with the study of multiplication
between Hardy spaces and their dual spaces for martingales on a probability space Ω.
More specifically, we study multiplications between functions in the martingale Hardy
space H1(Ω) and its dual space BMO(Ω) as stated in our first result, Theorem III.1.
We also investigate the case 0 < p < 1, namely multiplication between elements in
Hp(Ω) and their dual spaces, the so-called martingale Lipschitz spaces Λ1(αp) with αp :=
1
p

− 1, see Theorem III.2. Since the dual space (Hp(Ω))∗ could be {0} for some irregular
martingales, we choose to consider only regular martingales where every σ−algebra Fk in
the corresponding filtration is generated by countably many atoms.

We would like to mention that Aline Bonami, Yong Jiao, Guangheng Xie, Dachun
Yang, and Dejian Zhou have independently obtained Theorem III.1, and derived from
it interesting applications on the boundedness of operators involving commutators in
[18]. We would like to remark that Theorem III.1 in both works rely heavily on a priori
estimates for functions with finite martingale expansions. Nevertheless, the results for
general martingales which concern limiting arguments are interpreted differently. In [18],
the authors regarded f ·g as a discrete process and in particular, a semi-martingale. They
further provided a neat characterization of the semi-martingale as the sum of a martingale
and a process with bounded variation.

With a different perspective from [18], we view the product f · g as a pointwise limit,
which is indeed a function. Furthermore, the bilinear operators arising from the decom-
position have boundedness properties described in Theorem III.1, where all the target
spaces are complete spaces by definition. In the study of the bilinear operators, we con-
sider Cauchy sequences of functions lying in the target spaces of our interest. This is
because the completion of a space can be identified with equivalence classes of Cauchy
sequences with respect to the appropriate norm. The appearance of sequences of functions
establishes the connection between [18] and our results, whereas the norm also plays a
crucial role for us to clarify the convergence of the Cauchy sequences.

Theorem III.1. Let (Ω,F , P ) be a probability space equipped with the filtration {Fk}k≥1.

1. Suppose that f ∈ H1(Ω) and g ∈ BMO(Ω) have finite martingale expansions. Then
the pointwise multiplication can be decomposed as

f · g = Π1(f, g) + Π2(f, g) + Π3(f, g),

13
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where Π1, Π2 and Π3 are continuous bilinear operators satisfying

Π1 : H1(Ω) ×BMO(Ω) → L1(Ω),
Π2 : H1(Ω) ×BMO(Ω) → H1(Ω),
Π3 : H1(Ω) ×BMO(Ω) → HΦ(Ω).

2. For general f ∈ H1(Ω) and g ∈ BMO(Ω), the above decomposition still holds in the
pointwise sense where Π1 and Π2 are continuous bilinear operators satisfying

Π1 : H1(Ω) ×BMO(Ω) → L1(Ω),
Π2 : H1(Ω) ×BMO(Ω) → H1(Ω).

Here Π3 is the pointwise limit of a sequence which is Cauchy in HΦ(Ω).

In Theorem III.1, HΦ(Ω) is a martingale Hardy–Orlicz space defined in terms of the
growth function Φ(t); see Definition 1.3.16 and (1.3.4) below. We shall refer to the terms
Π2(f, g) and Π3(f, g) as the martingale paraproducts.

Theorem III.1 can be regarded as an extension of [4, Theorem 24] to the general case
of martingales.

For 0 < p < 1, if f ∈ Hp(Ω), g ∈ Λ1(αp) and f0 = g0 = 0, then their product can be
regarded as a continuous linear functional on L∞(Ω) ∩ Λ1(αp). To be more precise, for
any h ∈ L∞(Ω) ∩ Λ1(αp), define

⟨f × g, h⟩ := ⟨h · g, f⟩,

where in the right-hand side the duality between Hp(Ω) and Λ1(αp) is invoked. Note that
h · g belongs to Λ1(αp) since h is a pointwise multiplier on Λ1(αp) (see [71]).

Our following theorem establishes a continuous bilinear decomposition for products
between elements in Hp(Ω) and functions in the dual space Λ1(αp) when 0 < p < 1.

Theorem III.2. Let (Ω,F , P ) be a probability space equipped with the filtration {Fk}k≥1,
where Fk is generated by countably many atoms for any k ≥ 1.

If Hp(Ω) (0 < p < 1) are martingale Hardy spaces, then there exist continuous bilinear
operators Π1 : Hp(Ω) × Λ1(αp) → L1(Ω), Π2 : Hp(Ω) × Λ1(αp) → H1(Ω) and Π3 :
Hp(Ω) × Λ1(αp) → Hp(Ω) such that

f × g = Π1(f, g) + Π2(f, g) + Π3(f, g)

for all f ∈ Hp(Ω) and g ∈ Λ1(αp).

One important property of martingale Hardy spaces which we heavily rely on in the
proof of Theorems III.1 and III.2 is that they admit the atomic decomposition. As a
consequence, estimates for a general element in martingale Hardy spaces can be reduced
to the corresponding estimates on atoms. It is noteworthy that the martingale atomic
decomposition in our setting are defined in the sense of duality (see Definition 4.1.3),
which is different from the one usually defined in the probabilistic setup ([93]) and is
inspired by the definition of atomic Hardy spaces defined on spaces of homogenous type.
We would like to emphasize that the martingale Hardy spaces and the martingale atomic
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Hardy spaces in our definition are complete whereas the martingale Hardy spaces in [93]
are not for 0 < p < 1.

The second part of this topic is method-oriented and aims at applying results in
the martingale setting to spaces of homogeneous type. In particular, we establish the
connection between spaces of homogenous type and its dyadic variant, namely dyadic
martingales on spaces of homogeneous type which are first constructed in [49]. Such
connection extends Mei’s results in [65] and is interesting in its own right.

We further study analogues of Theorems III.1 and III.2 for the case of dyadic martin-
gales on spaces of homogeneous type, and derive from them results for products between
elements in Hardy spaces and those in their duals on spaces of homogeneous type. Com-
pared with the probability setting, the case of spaces of homogeneous type is more difficult
to deal with since backward martingales arise, and the underlying measures on spaces of
homogeneous type may be infinite.

The structure of the thesis is outlined as follows. In Chapter 1, we set down notation
and give some background on holomorphic functional calculus, martingales, spaces of
homogeneous type and geometric properties of Banach spaces. The subsequent contents
of the thesis are divided into three distinct parts, each containing detailed proofs of the
aforementioned results.

The first part of this thesis is presented in Chapter 2. Our focus is on the optimal
Lusin type constant as p → ∞. To achieve this, we establish the pointwise equivalence
of g-functions and martingale square functions. Specially, we present Theorem I.3, Theo-
rem I.8 and Theorem I.10 for scalar-valued, vector-valued and noncommutative settings,
respectively. In Section 2.1, we prove Theorem I.2, Theorem I.3 and Corollary I.5. Sub-
sequently, in Section 2.2 we prove the analogous result, namely Theorem I.8, for the
vector-valued case. Finally, we provide a brief overview of the proof of Theorem I.10.

The second part, detailed in Chapter 3, is dedicated to exploring the optimal Lusin
type constant in vector-valued Littlewood-Paley-Stein inequality as p → 1. In Section
3.1, we outline our primary assumptions and provide definitions of vector-valued tent,
Hardy, and BMO spaces. Following this, Section 3.2 revisits some fundamental properties
of vector-valued tent spaces. Additionally, we introduce two crucial operators, K and πL,
which will serve as key tools in our analysis. In Section 3.3, we extend Wilson’s intrinsic
functions (cf. [95]) to the vector-valued setting. The subsequent Section 3.4 is dedicated
to the proof of Theorem II.1 and Theorem II.2. Finally, in Section 3.5, we derive the
optimal Lusin type constants and the characterization of martingale type.

The third part consists of Chapters 4 and 5, focusing on the multiplication between
elements in martingale Hardy spaces and their dual spaces. Section 4.1 is dedicated
to the elaboration of martingale atomic Hardy spaces and their close relationship with
martingale Hardy spaces, playing a pivotal role in our argument. In section 4.2, we prove
Theorem III.1. Moving on to Section 4.3, we introduce a characterization of martingale
Lipschitz spaces Λ1(αp)—of independent interest (refer to Theorem 4.3.4 and Remark 4.3.5
below)—and subsequently present the proof of Theorem III.2. Chapter 5 concerns spaces
of homogeneous type. For reader convenience, Section 1.5 revisits definitions and facts
concerning Hardy spaces and Lipschitz spaces on spaces of homogeneous type, following
the framework of Coifman and Weiss [27]. In section 5.1, we offer new proofs for certain
results from [27] based on the martingale method and the existence of dyadic martingales
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on homogeneous spaces. In section 5.2, we establish analogues of Theorems III.1 and III.2
for dyadic martingales on spaces of homogeneous type, as seen in Theorem 5.2.7 below.
In the last section of this part, we apply Theorem 5.2.7 to obtain a decomposition of
products of functions in Hardy spaces and their dual spaces on spaces of homogeneous
type.

Throughout this thesis, X is a Banach space and 1 < q < ∞. We denote X∗ the
dual Banach space of X and q′ the Hölder conjugate of q. Additionally, the positive real
interval R+ = (0,∞) is equipped with the measure dt/t without providing additional
explanations. The terms “homogeneous spaces” and “spaces of homogeneous type” will
be used interchangeably.

The following notation is employed: A ≲ B (resp. A ≲ε B) indicates that A ≤ CB
(resp. A ≤ CεB) for some absolute positive constant C (resp. if we want to emphasize
that the constant Cε depends on ε). A ≈ B or A ≈ε B means that these inequalities as
well as their inverses hold. For 1 ≤ p ≤ ∞, we also denote by ∥ · ∥p the norm ∥ · ∥Lp(Rd)
and by ∥ · ∥Lp(X) the norm ∥ · ∥Lp(Rd;X).

16



Chapter 1

Preliminaries

In this chapter, we provide notation and background that will be used in the thesis.

1.1 Notation
We will consider sums and intersections of quasi-normed spaces. For the convenience

of the reader we recall these notions.

Definition 1.1.1. Let (X1, ∥ · ∥X1), (X2, ∥ · ∥X2) be two quasi-normed spaces and let X
be a topological vector space X such that X1, X2 ⊂ X continuously.

1. (X1 ∩X2, ∥ · ∥X1∩X2) is the intersection of X1 and X2, where

∥x∥X1∩X2 := max{∥x∥X1 , ∥x∥X2}

for all x ∈ X1 ∩X2;

2. (X1 +X2, ∥ · ∥X1+X2) is the sum of X1 and X2, where

∥x∥X1+X2 := inf{∥x1∥X1 + ∥x2∥X2 : x = x1 + x2, x1 ∈ X1, x2 ∈ X2}

for all x ∈ X1 +X2.

For convenience, the sum X1 +X2 + · · · +Xn and the intersection X1 ∩X2 ∩ · · · ∩Xn

will also be denoted by ∑n
k=1 Xk and ⋂n

k=1 Xk, respectively.
Note that (X1 ∩X2, ∥·∥X1∩X2) and (X1 +X2, ∥·∥X1+X2) are both quasi-normed spaces.

Moreover, if (X1, ∥ · ∥X1) and (X2, ∥ · ∥X2) are Banach spaces, then (X1 ∩ X2, ∥ · ∥X1∩X2)
and (X1 +X2, ∥ · ∥X1+X2) are both Banach spaces.

1.2 Functional calculus
We briefly introduce some preliminaries around the holomorphic functional calculus

(cf. [64]). Let 0 ≤ α < π. Define the closed sector in the complex plane C as

Sα = {z ∈ C : | arg z| ≤ α} ,

17



Chapter 1. Preliminaries

and S0
α is denoted as the interior of Sα. Let γ > α and denote by H(S0

γ) the space of all
holomorphic functions on S0

γ . Define

H∞(S0
γ) =

{
b ∈ H(S0

γ) : ∥b∥∞ < ∞
}
,

where ∥b∥∞ = sup
{
|b(z)| : z ∈ S0

γ

}
and

Ψ(S0
γ) =

{
ψ ∈ H(S0

γ) : ∃ s > 0 s.t. |ψ(z)| ≤ c|z|s(1 + |z|2s)−1
}
.

A densely defined closed operator L acting on a Banach space Y is called a sectorial
operator of type α if for each γ > α, σ(L) ⊂ Sγ and

sup
{
∥z(zId − L)−1∥B(Y ) : z /∈ Sγ

}
< ∞,

where ∥ · ∥B(Y ) denotes the operator norm and Id the identity operator.
Assume that L is a sectorial operator of type α. Let 0 ≤ α < θ < γ < π and Γ be

the boundary of Sθ oriented in the positive sense. For ψ ∈ Ψ(S0
γ), we define the operator

ψ(L) as
ψ(L) = 1

2πi

∫
Γ
ψ(z)(zId − L)−1 dz.

By Cauchy’s theorem, this integral converges absolutely in B(Y ) and it is clear that the
definition is independent of the choice of θ. For every t > 0, denote by ψt(z) = ψ(tz) for
z ∈ S0

γ , we have ψt ∈ Ψ(S0
γ). Set

h(z) =
∫ ∞

0
ψ(tz) dt

t
, z ∈ S0

γ .

One gets that h is a constant on S0
γ , hence by the convergence lemma (cf. [30, Lemma

2.1]),
h(L)x =

∫ ∞

0
ψ(tL)x dt

t
= cx, x ∈ D(L) ∩ im(L).

By applying a limiting argument, the above identity extends to im(L). In particular, take
ψ(z) = z2e−2z, then ∫ ∞

0
−tLe−tL(−tLe−tL)x dt

t
= 1

4x, x ∈ im(L), (1.2.1)

which will be useful later. We refer the reader to [45] for more information on functional
calculus.

1.3 Martingales
Let (Ω,F , P ) be a fixed probability space. Given a filtration which consists of a

sequence of σ-algebras
F0 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ · · · ⊂ F

such that σ(∪∞
k=0Fk) = F , for a random variable f ∈ L1(Ω,F , P ) and k ∈ N, we set

fk = E (f | Fk) , dkf = fk − fk−1,
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1.3. Martingales

where we adopt the convention that f−1 = 0. We shall also denote fk by Ek(f). A
sequence f = {fk}k≥0 is called a martingale with respect to {Fk}k≥0 if fk = E (fk+1 | Fk)
for every k ≥ 0, and {dkf}k≥1 is called the martingale difference sequence of f = {fk}k≥0.
To simplify notation, we write Lp(Ω) instead of Lp(Ω,F , P ), 0 < p < ∞.

In particular, if f ∈ L1(Ω), then {fk}k≥0 is a martingale induced by f , where fk =
Ek(f) for all k ≥ 0. In this case, we identify f with {fk}k≥0.

Definition 1.3.1. (Regular filtration) A filtration is regular if there exists a constant
C > 0 such that for all k ≥ 1, Fk ∈ Fk, there exists a Gk ∈ Fk−1 satisfying

Fk ⊂ Gk, P (Gk) ≤ C · P (Fk).

In addition, a martingale f = {fk}k≥0 with respect to such a regular filtration is called a
regular martingale.

Remark 1.3.2. Suppose that for a positive random variable f ∈ L1(Ω) the corresponding
martingale {fk}k⩾0 is regular. Then for any k ≥ 1

fk ⩽ A · fk−1,

where A > 0 is a constant that depends only on the constant C of Definition 1.3.1.
See [62] for more information about regular filtrations and martingales.

Definition 1.3.3. Let f = {fk}k≥0 and {dkf}k≥1 be as above, we define:

1. the maximal function
f ∗ := sup

k⩾0
|fk|;

2. the square function

S(f) :=
(

|f0|2 +
∞∑

k=1
|dkf |2

) 1
2

;

3. the conditional square function

s(f) :=
(

|f0|2 +
∞∑

k=1
Ek−1|dkf |2

) 1
2

.

1.3.1 Martingale Hardy, BMO and Lipchitz spaces
There are several types of martingale Hardy spaces, which are defined in terms of

maximal functions, square functions and conditional square functions. For the sake of
convenience, we will assume from now on that f0 = 0.

Definition 1.3.4. For 1 ≤ p < ∞, the martingale Hardy spaces hp(Ω), Hp(Ω), Hp
m(Ω)

are defined as follows

hp(Ω) := {f ∈ L1(Ω) : ∥f∥hp(Ω) := ∥s(f)∥p < ∞},
Hp(Ω) := {f ∈ L1(Ω) : ∥f∥Hp(Ω) := ∥S(f)∥p < ∞},
Hp

m(Ω) := {f ∈ L1(Ω) : ∥f∥Hp
m(Ω) := ∥f ∗∥p < ∞},

respectively.
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Remark 1.3.5. For general martingales, Hp(Ω) = Hp
m(Ω) for 1 ≤ p < ∞ (see [22], [33],

[94]). For regular martingale filtrations, one has Hp(Ω) = hp(Ω) = Hp
m(Ω) for 1 ≤ p < ∞.

The following result is the atomic decomposition of H1(Ω), which follows from the
noncommutative result in [77]. In particular, it reveals the relationship between H1(Ω)
and h1(Ω) and shows that H1(Ω) ̸= h1(Ω) for general martingales.

Theorem 1.3.6. We have H1(Ω) = h1(Ω) + h1
d(Ω), where h1

d denotes the diagonal Hardy
space of martingale differences

h1
d(Ω) :=

{
h ∈ L1(Ω) : ∥h∥h1

d
(Ω) :=

∞∑
k=1

∥dkh∥1 < ∞
}
.

We also provide a definition of the martingale Hardy spaces for 0 < p < 1.

Definition 1.3.7. Let 0 < p < 1, we first introduce the following quasi-norms. For
f ∈ L2(Ω),

∥f∥hp(Ω) := ∥s(f)∥p; ∥f∥Hp(Ω) := ∥S(f)∥p; ∥f∥Hp
m(Ω) := ∥s(f)∥p.

We then define the martingale Hardy spaces hp(Ω), Hp(Ω) and Hp
m(Ω) as the completion

of L2(Ω) under the corresponding quasi-norms ∥·∥hp(Ω), ∥·∥Hp(Ω) and ∥·∥Hp
m(Ω) respectively.

In the current setting where Ω has finite measure, the condition ∥s(f)∥p < ∞ for
0 < p < 1 is automatically satisfied for f ∈ L2(Ω), and similar observations hold true
for Hp(Ω) and Hp

m(Ω). We provide the definitions for hp(Ω), Hp(Ω) and Hp
m(Ω) with

0 < p < 1 in a unified fashion with the general setting described in Section 5.1.
Remark 1.3.8. For regular martingale filtrations, Hp(Ω) = hp(Ω) = Hp

m(Ω) when 0 < p <
1. In particular, for any function f ∈ L2(Ω),

∥S(f)∥p ≈p ∥s(f)∥p ≈p ∥f ∗∥p.

See [93], [94] and [62] for the proof of the above inequality. Since Hp(Ω), hp(Ω) and
Hp

m(Ω) are defined as the completion of L2(Ω) with respect to the appropriate quasi-norm
respectively, one can conclude the equivalence between the aforementioned martingale
Hardy spaces.

We shall now provide the definitions of the martingale BMO and bmo spaces, which
are the dual spaces of H1(Ω) and h1(Ω), respectively (see Theorem 1.3.13 below).

Definition 1.3.9. Assume that f ∈ L2(Ω). Consider the the following semi-norms

∥f∥BMO(Ω) := sup
n⩾1

∥En|f − fn−1|2∥
1
2∞,

and
∥f∥bmo(Ω) := sup

n⩾0
∥En|f − fn|2∥

1
2∞.

It is clear that ∥f∥BMO(Ω) = 0 if and only if f = f0, and similarly ∥f∥bmo(Ω) = 0 if and
only if f = f0.
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We now define the martingale BMO and bmo spaces as follows:

BMO(Ω) := {f ∈ L2(Ω) : ∥f∥BMO(Ω) < ∞,E0f = 0},

and
bmo(Ω) := {f ∈ L2(Ω) : ∥f∥bmo(Ω) < ∞,E0f = 0}

We observe that BMO(Ω) and bmo(Ω) are both Banach spaces.

Remark 1.3.10. We note that another natural definition of BMO(Ω) as a normed space
would be as a quotient space defined by

{f ∈ L2(Ω) : ∥f∥BMO(Ω) < ∞}/KF0 ,

where KF0 := {F0 measurable functions}.
For regular martingales, BMO(Ω) = bmo(Ω). The following result is the so-called

martingale John–Nirenberg inequality and can be found in [43].

Theorem 1.3.11. There exists a sufficiently small constant κ > 0 such that for any
f ∈ BMO(Ω) with ∥f∥BMO(Ω) ≤ κ, we have

E
(
e|f |
)
⩽ 1.

Remark 1.3.12. From the martingale John–Nirenberg inequality, we have for any 1 ≤ p <
∞,

∥f∥BMO(Ω) ≈p sup
n⩾1

∥En|f − fn−1|p∥
1
p
∞.

However, the above John–Nirenberg inequality fails for bmo(Ω) in the general martingale
setting.

For the following duality theorem, see [43], [62], [94].

Theorem 1.3.13. (H1(Ω))∗ = BMO(Ω) and (h1(Ω))∗ = bmo(Ω).

The following proposition, which can be found in [28] and [43], is a consequence of
Theorems 1.3.6 and 1.3.13 and it gives a description of the relationship between BMO(Ω)
and bmo(Ω). In particular, it implies that BMO(Ω) ⫋ bmo(Ω) for general martingales.

Proposition 1.3.14. Assume f is a martingale BMO function. Then

∥f∥BMO(Ω) ≈ ∥f∥bmo(Ω) + sup
k≥1

∥dkf∥∞. (1.3.1)

We shall now recall the definition of martingale Lipschitz spaces.

Definition 1.3.15. For α ∈ (0,∞) and q ∈ [1,∞), the martingale Lipschitz space is
defined by

Λq(α) := (1.3.2){
f ∈ L2(Ω) : ∥f∥Λq(α) = sup

n≥0
sup

A∈Fn

P (A)− 1
q

−α
(∫

A
|f − fn|qdP

) 1
q

< ∞, E0f = 0
}
.

As in case of BMO spaces, Lipschitz spaces can also be defined in terms of quotient spaces.
For αp := 1

p
− 1 > 0, one has (hp(Ω))∗ = Λ2(αp). Furthermore, if the martingale

filtration is regular, one has Λ1(αp) = Λ2(αp); see [93].
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1.3.2 Musielak–Orlicz-type spaces
We shall first recall some definitions and properties of Orlicz-type spaces and Musielak–

Orlicz-type spaces. In what follows, (Ω,F , µ) denotes a σ-finite measure space.
A function Φ : [0,∞) → [0,∞) is called an Orlicz function if it is strictly positive on

(0,∞), non-decreasing, unbounded and Φ(0) = 0. A measurable function Ψ : Ω×[0,∞) →
[0,∞) is called a Musielak–Orlicz function if for all x ∈ Ω, Ψ(x, ·) is an Orlicz function.

The Musielak–Orlicz-type space LΨ(Ω) is the set consisting of all measurable functions
f on Ω such that ∫

Ω
Ψ(x, λ−1|f(x)|) dµ < ∞

for some λ > 0. We equip LΨ(Ω) with the Luxembourg quasi-norm

∥f∥LΨ(Ω) := inf
{
λ > 0 :

∫
Ω

Ψ(x, λ−1|f(x)|) dµ ⩽ 1
}
, f ∈ LΨ(Ω).

Let p ∈ R. A Musielak–Orlicz function is said to be of uniformly lower type (respec-
tively, upper type) p if there exists a positive constant C such that

Ψ(x, st) ⩽ CspΨ(x, t)

for all x ∈ Ω, t ⩾ 0 and s ∈ (0, 1) (respectively, s ∈ [1,∞)). In particular, if Ψ is of
uniformly lower type p with 0 < p < 1 and of uniformly upper type 1 then

Ψ(x, ct) ≈c Ψ(x, t) for all c > 0. (1.3.3)

In the sequel, Ψ(x, t) is always assumed to be of uniformly lower type p with 0 <
p < 1 and of uniformly upper type 1, and to be continuous in the t variable. For more
information on Musielak–Orlicz spaces, we refer the reader to [16] and [105].

We end this subsection with the definition of martingale Musielak–Orlicz Hardy spaces
and the generalized Hölder inequality.

Definition 1.3.16. For f ∈ L1(Ω), we define the quasi-norm of f with respect to Ψ,
described in Section 1.3.2, by

∥f∥HΨ(Ω) := ∥S(f)∥LΨ(Ω).

The martingale Musielak–Orlicz Hardy space HΨ(Ω) is defined as the completion of the
space

HΨ
0 (Ω) := {f ∈ L1(Ω) : ∥f∥HΨ(Ω) < ∞}

under the quasi-norm ∥ · ∥HΨ(Ω).
Moreover, If Ψ is replaced by an Orlicz function Φ, the corresponding Hardy–Orlicz

space HΦ(Ω) is defined in an analogous way.

To obtain the generalized Hölder inequality, we shall introduce a particular Orlicz
space LΦ(Ω), where

Φ(t) := t

log(e+ t) , t ≥ 0. (1.3.4)

Note that Φ is an Orlicz function of uniformly lower type p (0 < p < 1) and upper type
1, which guarantees that the vector space LΦ(Ω) is a quasi-normed space. Note that
L1(Ω) ⊂ LΦ(Ω).
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Remark 1.3.17. Let Φ be as in (1.3.4). It follows from [69] that for any f ∈ L1(Ω) such
that the induced martingale {fk}k≥0 is regular, one has

∥f∥HΦ(Ω) ≈ ∥f∥HΦ
m(Ω) ≈ ∥f∥hΦ(Ω),

where
∥f∥HΦ

m(Ω) := ∥f ∗∥LΦ(Ω) and ∥f∥hΦ(Ω) := ∥s(f)∥LΦ(Ω).

Hence,
HΦ

0 (Ω) = HΦ
m,0(Ω) = hΦ

0 (Ω),

where HΦ
m,0(Ω) := {f ∈ L1(Ω) : ∥f∥HΦ

m(Ω) < ∞} and hΦ
0 (Ω) := {f ∈ L1(Ω) : ∥f∥hΦ(Ω) <

∞}. One thus deduces that

HΦ(Ω) = HΦ
m(Ω) = hΦ(Ω),

where HΦ
m(Ω) denotes the completion of HΦ

m,0(Ω) with respect to ∥ · ∥HΦ
m(Ω) and hΦ(Ω)

denotes the completion of hΦ
0 (Ω) with respect to ∥ · ∥hΦ(Ω).

The following lemma is a variant of [17, Proposition 2.1] in the martingale setting.

Lemma 1.3.18. Let (Ω,F , P ) be a probability space, f ∈ L1(Ω) and g ∈ BMO(Ω). Then
f · g ∈ LΦ(Ω) and

∥f · g∥LΦ(Ω) ≲ ∥f∥1∥g∥BMO(Ω). (1.3.5)

Proof. The proof is similar to the proof of the corresponding Euclidean result and we
shall only outline it here for the convenience of the reader. By [17, Lemma 2.1], one has

st

M + log(e+ st) ≤ et−M + s. (1.3.6)

for all M ≥ 0, s ≥ 0, t ≥ 0.
When ∥f∥1 = 0 or ∥g∥BMO(Ω) = 0, (1.3.5) trivially holds. Assume g ∈ BMO(Ω) with

∥g∥BMO(Ω) > 0 and f ∈ L1(Ω) with ∥f∥1 > 0. Let κ be the constant in Theorem 1.3.11,
M = 0, t = κ|g(x)|

∥g∥BMO(Ω)
and s = |f(x)|

∥f∥1
. Then by Theorem 1.3.11 and (1.3.6), we have

∫
Ω

Φ
(

|f(x) · g(x)|
κ−1∥f∥1∥g∥BMO(Ω)

)
dP ≤

∫
Ω
e

κ|g(x)|
∥g∥BMO(Ω) dP +

∥∥∥∥∥ f

∥f∥1

∥∥∥∥∥
1

≤ 2. (1.3.7)

Hence, from (1.3.3) we conclude

∥f · g∥LΦ(Ω) ≲ κ−1∥f∥1∥g∥BMO(Ω),

which completes the proof of the lemma.

We shall refer to (1.3.5) as the generalized Hölder inequality.
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Chapter 1. Preliminaries

1.4 Geometric properties of Banach space
We define the modulus of convexity and modulus of smoothness of a Banach space X

by (see, e.g. [82])

δX(ε) = inf
{

1 −
∥∥∥∥∥a− b

2

∥∥∥∥∥
X

: a, b ∈ X, ∥a∥X = ∥B∥X = 1, ∥a− b∥X = ε

}
, 0 < ε < 2.

ρX(t) = sup
{

∥a+ tb∥X + ∥a− tb∥X

2 : a, b ∈ X, ∥a∥X = ∥b∥X = 1
}
, t > 0.

X is called q-uniform convex if δX(ε) ≥ cεq for some positive constants c and q; X is
called q-uniform smooth if ρX(t) ≤ ctq for some positive constants c and q. We refer the
reader to [84] for more information.

These geometric properties of Banach space can be characterized by martingale in-
equalities. Recall that X is said to be of martingale cotype q (with 2 ≤ q < ∞) if there
exists a positive constant c such that for every finite X-valued Lq-martingale (fn)n≥0, the
following inequality holds ∑

n≥1
E∥fn − fn−1∥q

X ≤ cq sup
n≥0

E∥fn∥q
X ,

where E denotes the underlying expectation; and the least constant c is called the mar-
tingale cotype constant, denoted by Mc,q(X). While X is said to be of martingale type
q (with 1 < q ≤ 2) if the reverse inequalities holds with c−1 in place of c and the cor-
responding martingale type constant is denoted by Mt,q(X). Pisier’s famous renorming
theorem shows that X is of martingale cotype (respectively, type) q if and only if X
admits an equivalent q-uniform convex (respectively, smooth) norm. We refer the reader
to [82, 83, 84] for more details.

By [63], the one sided Littlewood-Paley-Stein inequality can also describe the under-
lying Banach space X. We define X to be of Lusin cotype q (with 2 ≤ q < ∞) related to{
e−t

√
∆
}

t>0
if there exists a positive constant Cp such that the following inequality holds

(for some 1 < p < ∞),∥∥∥∥∥∥
(∫ ∞

0

∥∥∥t√∆e−t
√

∆(f)(x)
∥∥∥q

X

dt
t

) 1
q

∥∥∥∥∥∥
p

≤ Cp∥f∥Lp(Rd;X), ∀ f ∈ Lp(Rd;X),

X is of Lusin type q(with 1 < q ≤ 2) if the reverse inequality holds. In [63], Martínez et
al showed that X is of Lusin cotype (respectively, type) q if and only if X is q-uniform
convex (respectively, smooth).

1.5 Homogeneous spaces
In this section, we introduce some fundamental concepts and important theorems for

homogeneous spaces, which can be found in [27]. We also refer the reader to the recent
survey [76]. We begin with the definition of homogeneous spaces. Recall that d is a
quasi-metric on Ω if
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1.5. Homogeneous spaces

(1) d(x, y) ≥ 0, ∀x, y ∈ Ω, and d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x), ∀x, y ∈ Ω;

(3) there exists a constant A0 ≥ 1 such that

d(x, y) ⩽ A0(d(x, z) + d(z, y)), ∀x, y, z ∈ Ω. (1.5.1)

Denote by B(x, r) := {y ∈ Ω : d(y, x) < r} the open ball centered at x with radius r.
In this paper, all quasi-metric spaces are assumed to have the doubling property: there
exists a positive integer A1 ∈ N such that for every x ∈ Ω and for every r > 0, the ball
B(x, r) can be covered by at most A1 balls B(xi,

r
2) for some xi ∈ Ω.

Definition 1.5.1. A σ-finite measure space (Ω,F , µ) equipped with a quasi-metric d is
called a homogeneous space if µ is a Borel measure of homogeneous type:

0 < µ (B(x, 2r)) ⩽ 2Cµµ (B(x, r)) < ∞, ∀x ∈ Ω, r > 0, (1.5.2)

where the constant Cµ is independent of x and r.

In [27], Coifman and Weiss defined Hardy spaces on homogeneous spaces by regarding
their elements as linear functionals acting on some appropriate quasi-normed spaces. In
order to state the definition of Coifman and Weiss, we need to introduce the notions of
atoms, BMO and Lipschitz spaces on homogeneous spaces.

Definition 1.5.2. If 0 < p ⩽ 1 ⩽ q ≤ ∞ and p < q, we say that a measurable function
a is a (p, q)-atom if

(1) supp(a) ⊂ B where B is a ball;

(2) ∥a∥q ⩽ (µ(B))
1
q

− 1
p ;

(3)
∫

Ω a dµ =
∫

B a dµ = 0.

Definition 1.5.3. For a locally integrable function f , we define the BMO semi-norm of
f by

∥f∥BMO(µ) := sup
B

1
µ(B)

∫
B

|f − fB| dµ,

where fB := 1
µ(B)

∫
B f dµ and the supremum runs over all balls B.

In order to consider normed spaces, one needs to quotient out the kernel space (the
functions f for which the semi-norm ∥f∥BMO(µ) equal to 0) which is the space of constant
functions and the BMO space is defined by

BMO(µ) := {f ∈ L1
loc(µ) : ∥f∥BMO < ∞}

as a quotient space modulo constant functions.

25



Chapter 1. Preliminaries

Definition 1.5.4. For α > 0, a locally integrable function l is called a Lipschitz function
if

|l(x) − l(y)| ⩽ Cα (µ(B))α for any x, y ∈ Ω and any ball B containing x, y. (1.5.3)

Moreover, we define the semi-norm

∥l∥Lα(µ) := inf{Cα : |l(x) − l(y)| ⩽ Cα (µ(B))α , ∀x, y ∈ B}, (1.5.4)

where the infimum runs over all balls B. We notice that the kernel space is indeed the
space of constant functions. Similarly as the BMO space, we define the Lipschitz space
as a quotient space modulo constant functions:

Lα(µ) := {l ∈ L1
loc(µ) : ∥l∥Lα(µ) < ∞}.

It is well-known that each BMO function can be regarded as a continuous linear
functional on the vector space generated by finite linear combinations of (1, q)-atoms for
1 < q ≤ ∞ (cf. [27]), which gives rise to the following definition of the atomic Hardy
space.

Definition 1.5.5. We define the atomic Hardy space H1,q
at (µ) (1 < q ≤ ∞) as follows:

H1,q
at (µ) :=f ∈ (BMO(µ))∗ : f =

∞∑
j=0

λja
j, where aj is a (1, q)-atom and

∞∑
j=0

|λj| < ∞

 (1.5.5)

endowed with the norm

∥f∥H1,q
at (µ) := inf


∞∑

j=0
|λj| : f =

∞∑
j=0

λja
j, where aj is a (1, q)-atom

 .
Similarly, each Lipschitz function l ∈ Lαp(µ) can be also regarded as a continuous

linear functional of the vector space generated by finite linear combinations of (p, q)-atoms
where 0 < p < 1 ≤ q ≤ ∞ and αp = 1/p− 1 (cf. [27]).

Definition 1.5.6. We define the atomic Hardy spaces Hp,q
at (µ) as follows:

Hp,q
at (µ) :=f ∈

(
Lαp(µ)

)∗
: f =

∞∑
j=0

λja
j, where aj is a (p, q)-atom and

∞∑
j=0

|λj|p < ∞

 (1.5.6)

endowed with the quasi-norm

∥f∥Hp,q
at (µ) := inf


 ∞∑

j=0
|λj|p

 1
p

: f =
∞∑

j=0
λja

j, where aj is a (p, q)-atom

 .
Although the Hardy spaces vary with p and q according to the above definitions, the

following theorem, which can be found in [27], shows that the Hardy spaces actually
depend only on p. Consequently, this enables us to define the Hardy spaces Hp

at(µ) for
0 < p ⩽ 1 to be any one of the spaces Hp,q

at (µ) for 0 < p < q ⩽ ∞, 1 ⩽ q ≤ ∞.
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1.5. Homogeneous spaces

Theorem 1.5.7. Hp,q
at (µ) = Hp,∞

at (µ) whenever 0 < p ≤ 1 ⩽ q ⩽ ∞ and p < q.

We end this section with the following duality theorem obtained in [27].

Theorem 1.5.8. (H1
at(µ))∗ = BMO(µ), and (Hp

at(µ))∗ = Lαp(µ) for 0 < p < 1.

The proofs of Theorem 1.5.7 and Theorem 1.5.8 that appeared in [27] are very techni-
cal. In the following sections, by employing martingale methods, we give very neat proofs
of these facts. Our approach is based on the fact that Hp

at(µ) for 0 < p ≤ 1 is the finite
sum of several dyadic martingale Hardy spaces.
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Chapter 2

Optimal Lusin type constant as p
tending to ∞

This chapter is devoted to the proofs of the main theorems mentioned in Chapter
0, Section I. We prove them separately in the subsequent three sections, addressing the
scalar-valued, vector-valued, and noncommutative cases. Our approach relies on the prop-
erties of the operator associated with a martingale filtration, as outlined in, for instance,
(I.3).

2.1 Proofs of Theorem I.2, Theorem I.3 and Corol-
lary I.5

We will need the following elementary lemmas.

Lemma 2.1.1. If S is a positive injective continuous operator on a Hilbert space H, then
for x ∈ H

lim
t→0+

∥St(x) − x∥ = 0.

Proof. By the spectral decomposition, there exists a resolution of the identity {Eλ}0≤λ≤∥S∥
such that

S =
∫ ∥S∥

0
λdEλ.

Since S is injective, E0 = 0. Hence for x ∈ H

x =
∫

(0,∥S∥]
dEλ(x).

Thus

∥St(x) − x∥2 =
∥∥∥∥∥
∫

(0,∥S∥]
(λt − 1)dEλ(x)

∥∥∥∥∥
2

=
∫

(0,∥S∥]
|λt − 1|2d⟨Eλ(x), x⟩.

By the Lebesgue dominated convergence theorem and the fact that |λt −1| → 0 as t → 0+

for λ ̸= 0, we deduce the desired limit.
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Chapter 2. Optimal Lusin type constant as p tending to ∞

Lemma 2.1.2 (Gershgorin circle theorem). Let A = (ai,j)1≤i,j≤n be a complex n × n
matrix. If λ is an eigenvalue of A, then

λ ∈
n⋃

k=1
D

akk,
n∑

j=1,j ̸=k

|akj|

 ,
where D

(
akk,

n∑
j=1,j ̸=k

|akj|
)

is the closed disc of the complex plane centered at akk with

radius
n∑

j=1,j ̸=k
|akj|.

Proof. Assume that λ is an eigenvalue of A. Then there exists a nonzero vector x =
(x1, · · · , xn) such that Ax = λx. Choose i such that |xi| = max1≤j≤n|xj| > 0. Since

n∑
j=1

aijxj = λxi,

we obtain by the triangle inequality

|λ− aii| =

∣∣∣∣∣∣
n∑

j=1,j ̸=i

aij
xj

xi

∣∣∣∣∣∣ ≤
n∑

j=1,j ̸=i

|aij|,

which implies the desired result.

Proof of Theorem I.2. It is easy to prove the first part of Theorem I.2. Indeed, we can
rewrite T as

T =
∞∑

n=1
(1 − an−1)dEn.

Since
T = lim

n→∞

n∑
k=1

(ak − ak−1)Ek = lim
n→∞

n∑
k=1

(ak − ak−1)
k∑

i=1
dEi

= lim
n→∞

n∑
i=1

dEi

n∑
k=i

(ak − ak−1) = lim
n→∞

n∑
i=1

(an − ai−1)dEi

= lim
n→∞

[
n∑

i=1
(1 − ai−1)dEi − (1 − an)En

]

=
∞∑

n=1
(1 − an−1)dEn.

Then by the continuous functional calculus and dEpdEq = 0 for p ̸= q, we obtain

T t =
∞∑

n=1
(1 − an−1)tdEn, t > 0. (2.1.1)

Hence we conclude that T t is a positive contraction for any t > 0 on Lp(Ω,F , µ) (1 ≤ p ≤
∞). Actually, for t > 0

T t =
∞∑

n=1

[
(1 − an−1)t − (1 − an)t

]
En. (2.1.2)

30



2.1. Proofs of Theorem I.2, Theorem I.3 and Corollary I.5

It suffices to show that {T t}t>0 is a symmetric diffusion semigroup. T t satisfies the
conditions (a) and (d) (see, for instance, Definition I.1) since T t is a positive contraction
on Lp(Ω,F , µ) (1 ≤ p ≤ ∞). The condition (b) is obvious as T t is generated by T via
continuous functional calculus. It remains to prove that T t satisfies the conditions (c),
(e), (f).

For the condition (e), T t is selfadjoint on L2(Ω,F , µ) since all conditional expectations
are selfadjoint. As for the condition (f),

T t(1) =
∞∑

n=1
(1 − an−1)tdEn(1) = (1 − a0)tdE1(1) = 1.

Note that the conditional expectations are projections on L2(Ω,F , µ).
In order to show that the semigroup {T t}t>0 satisfies the condition (c), it suffices

to prove that T is injective on L2(Ω,F , µ) by Lemma 2.1.1. This is because for f ∈
L2(Ω,F , µ)

∥T (f)∥2
2 =

∞∑
n=1

(1 − an−1)2∥dEn(f)∥2
2 (2.1.3)

and

∥f∥2
2 = lim

n→∞
∥En(f)∥2

2 =
∞∑

n=1
∥dEn(f)∥2

2. (2.1.4)

Thus we obtain that ∥T (f)∥2 = 0 if and only if ∥f∥2 = 0, which implies T is injective on
L2(Ω,F , µ).

Remark 2.1.3. From (2.1.3) and (2.1.4), we can also obtain

F(f) = E1(f), f ∈ Lp(Ω,F , µ), 1 ≤ p ≤ ∞.

Note that

S(f − F(f)) =
( ∞∑

n=2
|dEn(f)|2

) 1
2

.

Proof of Theorem I.3. We will calculate the derivative ∂tT
t(f). To simplify our presen-

tation, we assume that f ∈ Lp(Ω,Fn, µ) for a fixed n ≥ 2 since f can be approximated
by a sequence of fn on Lp(Ω,Fn, µ)(1 ≤ p < ∞, n ∈ N∗).

Since f ∈ Lp(Ω,Fn, µ), dEm(f) = 0 if m > n. Then for t > 0

T t(f) =
n∑

k=1
(1 − ak−1)tdEk(f),

which implies

∂tT
t(f) =

n∑
k=1

(1 − ak−1)t ln(1 − ak−1)dEk(f) =
n∑

k=2
(1 − ak−1)t ln(1 − ak−1)dEk(f).
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Chapter 2. Optimal Lusin type constant as p tending to ∞

Hence ∫ ∞

0

∣∣∣t∂tT
t(f)

∣∣∣2 dt
t

=
∫ ∞

0
t
∣∣∣∂tT

t(f)
∣∣∣2 dt

=
∫ ∞

0
t

∣∣∣∣∣
n∑

k=2
(1 − ak−1)t ln(1 − ak−1)dEk(f)

∣∣∣∣∣
2

dt

=
n∑

i,j=2

∫ ∞

0
t(1 − ai−1)t(1 − aj−1)t ln(1 − ai−1) ln(1 − aj−1)dEi(f)dEj(f)dt

=
n∑

i,j=2
ln(1 − ai−1) ln(1 − aj−1)dEi(f)dEj(f)

∫ ∞

0
t(1 − ai−1)t(1 − aj−1)tdt

=
n∑

i,j=2

ln(1 − ai−1) ln(1 − aj−1)
ln2 [(1 − ai−1)(1 − aj−1)]

dEi(f)dEj(f). (2.1.5)

We write yi = − ln(1−ai−1) (i ≥ 2). Then {yi}i≥2 is a strictly increasing positive sequence
which tends to infinity as i → ∞. Let B = (bij)1≤i,j≤n−1 be the real symmetric matrix
given by

bij = yi+1yj+1

(yi+1 + yj+1)2 .

We need to determine the lower and upper bounds of the eigenvalues of B.
Let λ be an eigenvalue of B. By Lemma 2.1.2 we have

λ ∈
n−1⋃
k=1

D

bkk,
n−1∑

j=1,j ̸=k

|bkj|

 .
However bkk = 1

4 and yi = 16i for i ≥ 2, thus for k ̸= j

bkj = yk+1yj+1

(yk+1 + yj+1)2 =
(
yk+1

yj+1
+ yj+1

yk+1
+ 2

)−1

≤ 16−|k−j|.

Thus for every 1 ≤ k ≤ n− 1,
n−1∑

j=1,j ̸=k

|bkj| ≤
n−1∑

j=1,j ̸=k

16−|k−j| ≤ 2
∞∑

i=1
16−i = 2

15 .

We then get
7
60 ≤ λ ≤ 23

60 .

Thus B satisfies (I denoting the identity matrix)
7
60I ≤ B ≤ 23

60I.

Therefore by (2.1.5),
7
60

n∑
k=2

|dEn(f)|2 ≤
∫ ∞

0

∣∣∣t∂tT
t(f)

∣∣∣2 dt
t

≤ 23
60

n∑
k=2

|dEn(f)|2

which implies √
7
60 S(f − F(f)) ≤ G2,T (f) ≤

√
23
60 S(f − F(f)). (2.1.6)
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2.2. Proof of Theorem I.8

Remark 2.1.4. By virtue of the special semigroups induced by martingales in Theorem
I.2 and with the help of Theorem I.3, we get a lower bound of optimal orders of best
constants of Littlewood-Paley-Stein inequality for symmetric diffusion semigroups via
inequalities of martingale square functions. However, to show that this lower bound given
by martingale inequalities is exactly the optimal order of best constants for Littlewood-
Paley-Stein inequality is much more delicate. For more details, see [102].

Proof of Corollary I.5. Firstly, we calculate Pt for t > 0 as follows

Pt = 1√
π

∫ ∞

0

e−s

√
s
T

t2
4s ds

= 1√
π

∫ ∞

0

e−s

√
s

( ∞∑
n=1

(1 − an−1)
t2
4sdEn

)
ds

=
∞∑

n=1

(
1√
π

∫ ∞

0

e−s

√
s

(1 − an−1)
t2
4s ds

)
dEn

=
∞∑

n=1
e−t

√
− ln(1−an−1)dEn

= dE1 +
∞∑

n=2
e−16ntdEn.

Therefore, by Theorem I.3, the desired inequalities are deduced.

2.2 Proof of Theorem I.8
The proof of Theorem I.8 is more complicated than the one of Theorem I.3. In contrast

to Theorem I.3, the choice of the sequence {an}n≥0 is not explicit for Theorem I.8.
To make our proof easier and neater, in the sequel we denote bn = − ln(1 − an) for

convenience. Then b0 = 0 and lim
n→∞

bn = +∞. Let 1 ≤ p, q < ∞. We can also write
Gq,T (f) in the following form

Gq,T (f) =
∫ ∞

0

∥∥∥∥∥
∞∑

k=1
tbke

−tbkdEk+1(f)
∥∥∥∥∥

q

X

dt
t

 1
q

, ∀f ∈ Lp(Ω;X). (2.2.1)

Hence to find a suitable sequence {an}n≥1 that satisfies Theorem I.8, we should search for
the existence of the sequence {bk}k≥0.

Fixing M sufficiently large, we denote

Gq,T,M(f) =
∫ M

0

∥∥∥∥∥
∞∑

k=1
tbke

−tbkdEk+1(f)
∥∥∥∥∥

q

X

dt
t

 1
q

.

Now we are about to prove

Gq,T (f) ≈p,q Sq (f − F(f)) , ∀f ∈ Lp(Ω;X). (2.2.2)

Indeed, we have a stronger result that the constants in (2.2.2) are universal.
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Chapter 2. Optimal Lusin type constant as p tending to ∞

Proof of Theorem I.8. Take a strictly decreasing sequence {tn}n≥0 with lim
n→∞

tn = 0 and
t0 = M , then

Gq,T,M(f) =
 ∞∑

n=1

∫ tn−1

tn

∥∥∥∥∥
∞∑

k=1
tbke

−tbkdEk+1(f)
∥∥∥∥∥

q

X

dt
t

 1
q

.

For n ≥ 1 let

Rn =
∫ tn−1

tn

∥∥∥∥∥
∞∑

k=1
tbke

−tbkdEk+1(f)
∥∥∥∥∥

q

X

dt
t

 1
q

,

and for k ≥ 1

Rn,k =
(∫ tn−1

tn

∥∥∥tbke
−tbkdEk+1(f)

∥∥∥q

X

dt
t

) 1
q

.

Considering the interval (tn, tn−1) equipped with the measure dt
t
, by the triangle inequality,

we get

Rn =
∥∥∥∥∥

∞∑
k=1

tbke
−tbkdEk+1(f)

∥∥∥∥∥
Lq((tn,tn−1), dt

t
;X)

≥

∣∣∣∣∣∣
∥∥∥tbne

−tbndEn+1(f)
∥∥∥

Lq((tn,tn−1), dt
t

;X)
−

 ∑
k ̸=n,k≥1

∥∥∥tbne
−tbndEn+1(f)

∥∥∥
Lq((tn,tn−1), dt

t
;X)

∣∣∣∣∣∣
=

∣∣∣∣∣∣Rn,n −

 ∑
k ̸=n,k≥1

Rn,k

∣∣∣∣∣∣ .
Thus we deduce

GT
q,M(f) =

( ∞∑
n=1

Rq
n

) 1
q

≥

 ∞∑
n=1

∣∣∣∣∣∣Rn,n −

 ∑
k ̸=n,k≥1

Rn,k

∣∣∣∣∣∣
q

1
q

.

To get the desired control, we are concerned with making ∑
k ̸=n,k≥1

Rn,k sufficiently small.

We take lk and mk (k ≥ 1) such that
∫ lk

0
tq−1e−tdt = 1

2q2(k+2) Γ(q),∫ ∞

mk

tq−1e−tdt = 1
2q2(k+2) Γ(q),

where Γ(q) =
∫∞

0 tq−1e−tdt, as q ≥ 1. Denote l0 = m0 = 1. It is easy to verify that
lk < mk (k ≥ 1), lim

k→∞
lk = 0 and lim

k→∞
mk = +∞.

Then {tk}k≥0 and {bk}k≥0 are just defined by the following formulas

t0 = M, b0 = 0,
tkbkq = lk, tk−1bkq = mk, k ≥ 1.
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By elementary calculations, it follows that

tk = M
k∏

j=0

lj
mj

for k ≥ 0,

bk = 1
Mq

k∏
j=1

mj

lj−1
for k ≥ 1 and b0 = 0.

It is obvious that {tk}k≥0 is decreasing, {bk}k≥0 is increasing, and

lim
k→∞

tk = 0, lim
k→∞

bk = ∞.

Then

|Rn,n|q =
∫ tn−1

tn

∥∥∥tbne
−tbndEn+1(f)

∥∥∥q

X

dt
t

=
∫ tn−1bnq

tnbnq
tq−1e−tdt∥dEn+1(f)∥q

X

qq

=
∫ mn

ln
tq−1e−tdt∥dEn+1(f)∥q

X

qq

=
(

1 − 2
2q2(n+2)

) Γ(q)
qq

∥dEn+1(f)∥q
X .

On the other hand, for 1 ≤ k < n,

|Rn,k|q =
∫ tn−1bkq

tnbkq
tq−1e−tdt∥dEk+1(f)∥q

X

qq

≤
∫ tn−1bn−1q

0
tq−1e−tdt∥dEk+1(f)∥q

X

qq

=
∫ ln−1

0
tq−1e−tdt∥dEk+1(f)∥q

X

qq

= Γ(q)
2q2(n+1)qq

∥dEk+1(f)∥q
X .

Similarly, for k > n

|Rn,k|q ≤
∫ ∞

mk

tq−1e−tdt∥dEk+1(f)∥q
X

qq

= Γ(q)
2q2(k+2)qq

∥dEk+1(f)∥q
X .

Let rn, rn,k > 0 be defined as follows

|rn|q =
(

1 − 2
2q2(n+2)

) Γ(q)
qq

∥dEn+1(f)∥q
X ,

|rn,k|q = Γ(q)
2q2(n+1)qq

∥dEk+1(f)∥q
X when n > k ≥ 1,

|rn,k|q = Γ(q)
2q2(k+2)qq

∥dEk+1(f)∥q
X when n < k,

rk,k = 0.
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Chapter 2. Optimal Lusin type constant as p tending to ∞

Denote r := {rn}n≥1, r
(k) := {rn,k}n≥1. We estimate the ℓq−norms of r and r(k). By the

definition of r, we have

∥r∥ℓq =
( ∞∑

n=1

(
1 − 2

2q2(n+2)

) Γ(q)
qq

∥dEn+1(f)∥q
X

) 1
q

≥
((

1 − 2
23q2

) Γ(q)
qq

) 1
q

Sq(f − F(f)).

It remains to estimate
∥∥∥∥∥ ∞∑

k≥1
r(k)

∥∥∥∥∥
ℓq

. We consider the measure space (N2, 2N2
, µ) where

µ ({(n, k)}) =



(
Γ(q)

2q2(n+1)qq

) 1
q

, if 1 ≤ k < n

0 , if k = n(
Γ(q)

2q2(k+2)qq

) 1
q

, if k > n

.

It is very easy to verify that µ is a finite measure. Assume that ν is the counting measure
on N. Define

f : N2 −→ R+

(n, k) 7−→ ∥dEk+1(f)∥X .

Then we deduce by the Hölder inequality∥∥∥∥∥∥
∞∑

k≥1
r(k)

∥∥∥∥∥∥
ℓq

=
( ∞∑

n=1

∣∣∣∣∣
∞∑

k=1
rn,k

∣∣∣∣∣
q) 1

q

=
(∫

n∈N

∣∣∣∣∫
k∈N

f(n, k)dµ
∣∣∣∣q dν

) 1
q

≤
(∫

n∈N

∣∣∣∣∫
k∈N

f(n, k)qdµ
∣∣∣∣ (∫

k∈N
1dµ

)q−1
dν
) 1

q

≤
(∫

n∈N

∫
k∈N

f(n, k)qdµdν
) 1

q

sup
n≥1

(∫
k∈N

1dµ
) q−1

q

.

However, for n ≥ 1

(∫
k∈N

1dµ
) q−1

q

≤

n( Γ(q)
2q2(n+1)qq

) 1
q

+
∑
k>n

(
Γ(q)

2q2(k+2)qq

) 1
q


q−1

q

=
(

Γ(q)
qq

) q−1
q2
 n

2q(n+1) +
∑
k>n

1
2q(k+2)


q−1

q

≤
(1

2

) q−1
q

(
Γ(q)
qq

) q−1
q2

.

Moreover, in the same way

(∫
n∈N

∫
k∈N

f(n, k)qdµdν
) 1

q

=
 ∞∑

k=1

k ( Γ(q)
2q2(k+2)qq

) 1
q

+
∑
n>k

(
Γ(q)

2q2(n+1)qq

) 1
q

 ∥dEk+1(f)∥q
X


1
q

≤
(1

2

) 1
q

(
Γ(q)
qq

) 1
q2

Sq(f − F(f)).
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2.2. Proof of Theorem I.8

Thus we obtain ∥∥∥∥∥∥
∞∑

k≥1
r(k)

∥∥∥∥∥∥
ℓq

≤ 1
2

(
Γ(q)
qq

) 1
q

Sq(f − F(f)).

By the triangle inequality again, then it follows

Gq,T,M(f) ≥

 ∞∑
n=1

∣∣∣∣∣∣Rn,n −

 ∑
k ̸=n,k≥1

Rn,k

∣∣∣∣∣∣
q

1
q

≥

 ∞∑
n=1

∣∣∣∣∣∣rn −

∑
k≥1

rn,k

∣∣∣∣∣∣
q

1
q

=
∥∥∥∥∥r −

( ∞∑
k=1

r(k)
)∥∥∥∥∥

ℓq

≥ ∥r∥ℓq
−
∥∥∥∥∥

∞∑
k=1

r(k)
∥∥∥∥∥

ℓq

≥
((

1 − 2
23q2

) Γ(q)
qq

) 1
q

Sq(f − F(f)) − 1
2

(
Γ(q)
qq

) 1
q

Sq(f − F(f))

≥
(1

2 − 2
23q2

)(Γ(q)
qq

) 1
q

Sq(f − F(f))

≥ 1
4

(
Γ(q)
qq

) 1
q

Sq(f − F(f)).

Since
(

Γ(q)
qq

) 1
q

≳ 1 for all q ≥ 1, it is easy to deduce that

Gq,T (f) ≥ Gq,T,M(f) ≳ Sq(f − F(f)). (2.2.3)

For the reversing inequality, we have by the convexity of norms

Gq,T (f)q =
∫ ∞

0

∥∥∥∥∥
∞∑

k=1
tbke

−tbkdEk+1(f)
∥∥∥∥∥

q

X

dt
t

≤
∫ ∞

0
tq−1

( ∞∑
k=1

bke
−tbk

)q−1 ∞∑
k=1

bke
−tbk ∥dEk+1(f)∥q

X dt.

To this end, we choose a positive number N > 2 such that bk+1/bk = mk+1/lk > N for all
k ≥ 1. Then we have bk ≤ N (N − 1)−1 (bk − bk−1), so

∞∑
k=1

bke
−tbk ≤ N

N − 1
∑
k≥1

∫ bk

bk−1
e−txdx ≤ N

N − 1

∫ ∞

0
e−txdx ≤ N

(N − 1)t .

Then

Gq,T (f)q ≤
(

N

N − 1

)q−1 ∞∑
k=1

[
∥dEk+1(f)∥q

X

∫ ∞

0
bke

−tbkdt
]

≤
(

N

N − 1

)q−1 ∞∑
k=1

∥dEk+1(f)∥q
X

≤
(

N

N − 1

)q−1
Sq(f − F(f))q. (2.2.4)
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Chapter 2. Optimal Lusin type constant as p tending to ∞

Combine (2.2.3) and (2.2.4), and we finally obtain

Sq(f − F(f)) ≈ Gq,T (f). (2.2.5)
This completes the proof.

Recall that a Banach space X is of martingale cotype q (q ≥ 2) if there exists a
positive constant c such that every finite X-valued Lq-martingale {En(f)}n≥1 satisfies the
following inequality

E[Sq(f)q] ≤ cq sup
n≥1

E ∥En(f)∥q
X , (2.2.6)

where E denotes the underlying expectation. See [82] for more information about mar-
tingale cotype. Pisier’s famous renorming theorem asserts that X is of martingale cotype
q iff X admits an equivalent norm that is q-convex. Besides, he also proved that X is of
martingale cotype q iff all X-valued Walsh-Paley martingales satisfy (2.2.6). See [83] for
more details.

Corollary 2.2.1. Assume 2 ≤ q < ∞. If for every symmetric diffusion semigroup {Tt}t>0
and for every 1 < p < ∞ there exists a constant c such that∥∥∥∥∥∥

(∫ ∞

0
∥t∂tTt(f)∥q

X

dt

t

) 1
q

∥∥∥∥∥∥
Lp(Ω)

≤ c∥f∥Lp(Ω;X), ∀f ∈ Lp(Ω;X). (2.2.7)

Then X is of martingale cotype q.

Proof. It is an immediate consequence of Theorem I.8 and the definition of martingale
cotype.

Remark 2.2.2. Corollary 2.2.1 was first shown by Xu in [100, Theorem 3.1]. There he
constructed a highly lacunary Fourier series to show that all Walsh-Paley martingales
satisfied (2.2.6) only by using the Poisson semigroup on the unit disk. Hence, from his
proof, X is martingale cotype q iff the Poisson semigroup satisfies (2.2.7).
Remark 2.2.3. Here we use Theorem I.8 to give an alternative proof of “if” part of [102,
Theorem A] or [63, Theorem 2.1]. However, our proof needs much additional and stronger
conditions on semigroups.
Remark 2.2.4. From Theorem I.8, the best constants of martingale inequalities can be
dominated by the best constants of the Littlewood-Paley-Stein inequality. Accordingly,
we can use martingale inequities to obtain the Littlewood-Paley-Stein inequality, which
is due to Stein [87, Chapter IV.5].

2.3 Proof of Theorem I.10
We end this part with the proof of Theorem I.10. Although it is similar to that of

Theorem III.1, we give some details for reader’s convenience.
Note that for 1 < p < ∞, any noncommutative symmetric diffusion semigroup {Tt}t>0

is analytic. See [53] for details. Then the column and row square functions are well-
defined.
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2.3. Proof of Theorem I.10

Proof of Theorem I.10. At first, we show that {T t}t>0 is a noncommutative symmetric
diffusion semigroup by the same method as Theorem I.2. More precisely, the condition
(a) (see Definition I.9) follows from the fact that all conditional expectations on M are
unital normal and completely positive. As for the condition (b), observe that Tt(x) → x
for x ∈ Mn (∀n ≥ 1) as t → 0+ in the w∗-topology of M, and then use the fact that
∪n≥1Mn is w∗-dense in M.

The condition (c) is due to the fact that all conditional expectations on M are selfad-
joint. The condition (d) follows from the fact that any conditional expectation can extend
to a completely contractive operator from Lp(M) to Lp(M) for 1 ≤ p < ∞. Hence, we
conclude that {T t}t>0 is a noncommutative symmetric diffusion semigroup.

Then it suffices to prove (I.9) and (I.10). Observe that if we have

7
60Sc(x− F(x))2 ≤ G2,T,c(x)2 ≤ 23

60Sc(x− F(x))2, (2.3.1)

then the desired inequality follows immediately since the square root function is operator
increasing. We only need to consider the case where x ∈ Lp(Mn) for a fixed arbitrary
n ∈ N. By the same calculation as (2.1.5), we obtain

G2,T,c(x)2 =
n∑

i,j=2

ln(1 − ai−1) ln(1 − aj−1)
ln2 [(1 − ai−1)(1 − aj−1)]

dix
∗djx.

Since dix
∗, djx and dix

∗djx (2 ≤ i, j ≤ n) are all measurable operators affiliated to M,
they have a common domain denoted by K which is a dense subspace of H.

For any ξ ∈ K,

⟨G2,T,c(x)2(ξ), ξ⟩ =
n∑

i,j=2

ln(1 − ai−1) ln(1 − aj−1)
ln2 [(1 − ai−1)(1 − aj−1)]

⟨dix
∗djx(ξ), ξ⟩

=
n∑

i,j=2

ln(1 − ai−1) ln(1 − aj−1)
ln2 [(1 − ai−1)(1 − aj−1)]

⟨djx(ξ), dix(ξ)⟩,

which implies that

7
60

n∑
i=2

⟨dix(ξ), dix(ξ)⟩ ≤ ⟨G2,T,c(x)2(ξ), ξ⟩ ≤ 23
60

n∑
i=2

⟨dix(ξ), dix(ξ)⟩.

Using the fact that ⟨dix(ξ), dix(ξ)⟩ = ⟨dix
∗dix(ξ), (ξ)⟩, we obtain the desired inequality

(2.3.1). As for the row square function, it can be deduced by the same way.

We introduce the norms in the Hardy spaces of martingales defined in [85] and [86].
Let 1 ≤ p ≤ ∞ and x = (xn)n≥1 be an Lp-martingale. Set, for p ≥ 2

∥x∥Hp = max
{
∥Sc(x)∥p , ∥Sr(x)∥p

}
and for p < 2

∥x∥Hp = inf
{
∥Sc(y)∥p + ∥Sr(z)∥p

}
,

where the infimum runs over all decompositions x = y + z of x as sums of two Lp

martingales.
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Chapter 2. Optimal Lusin type constant as p tending to ∞

Similarly, we introduce the semigroup analogues of these norms. Let ∥ · ∥p,F denote
the p-norm of semigroup square function defined as follows: for x ∈ Lp(M)

∥x∥p,F = max {∥G2,T,c(x)∥p, ∥G2,T,r(x)∥p} if 2 ≤ p < ∞,

and
∥x∥p,F = inf {∥G2,T,c(y)∥p + ∥G2,T,r(z)∥p : x = y + z} if 1 ≤ p < 2.

Note that our definition of ∥x∥p,F is different from that of ∥x∥p,F in [53, Chapter 6] when
1 ≤ p < 2.
Remark 2.3.1. It should be noted that when 1 ≤ p < ∞, we have the same equivalence
for the p-norm of their corresponding square functions like the classical setting for the
noncommutative symmetric diffusion semigroup in Theorem I.10, i.e.√

7
60 ∥x∥Hp ≤ ∥x∥p,F ≤

√
23
60 ∥x∥Hp , ∀x ∈ Lp(M),

which follows from (I.9) and (I.10).

40



Chapter 3

Optimal Lusin type constant as p
tending to 1

In this chapter, we are devoted to the vector-valued Littlewood-Paley theory. First we
provide the main assumptions and a rigorous introduction of vector-valued tent, Hardy
and BMO spaces. Then we recall the basic properties of tent space and give two important
operators K and πL, which will be key tools in our argument. Next, we extend Wilson’s
intrinsic functions (cf. [95]) to the vector-valued setting. In Section 3.4, we prove Theorem
II.1 and Theorem II.2. At last, in Section 3.5, we obtain the optimal Lusin type constants
and the characterization of martingale type.

3.1 Preliminaries

3.1.1 Main assumptions
Throughout this part, we assume L is a sectorial operator of type α (0 ≤ α < π/2)

on L2(Rd) such that the kernels {K(t, x, y)}t>0 of {e−tL}t>0 satisfying assumptions (II.1),
(II.2) and (II.3) with β > 0, 0 < γ ≤ 1. It is well-known that such L generates a
holomorphic semigroup e−zL with 0 ≤ |Arg(z)| < π/2 − α (cf. [45, Chapter 3, 3.2]). Let
{k(t, x, y)}t>0 be the kernels of {−tLe−tL}t>0 and it is easy to see

k(t, x, y) = t∂tK(t, x, y).

The following lemma has been justified in [36, Lemma 6.9]

Lemma 3.1.1. Let L be an operator satisfying (II.1) and (II.2) with β > 0, 0 < γ ≤ 1.
Then

(i) there exist constants 0 < β1 < β, 0 < γ1 < γ and c > 0 such that

|k(t, x, y)| ≤ ctβ1

(t+ |x− y|)d+β1
, (3.1.1)

and

|k(t, x+ h, y) − k(t, x, y)| + |k(t, x, y + h) − k(t, x, y)| ≤ c|h|γ1tβ1

(t+ |x− y|)d+β1+γ1
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whenever 2|h| ≤ t+ |x− y|;
(ii) for α < θ < π/2, there exist positive constants 0 < β2 < β, 0 < γ2 < γ and c > 0

such that for any | arg z| < π/2 − θ,

|K(z, x, y)| ≤ c|z|β2

(|z| + |x− y|)d+β2
(3.1.2)

and

|K(z, x+ h, y) −K(z, x, y)| + |K(z, x, y + h) −K(z, x, y)| ≤ c|h|γ2|z|β2

(|z| + |x− y|)d+β2+γ2

whenever 2|h| ≤ |z| + |x− y|.

Remark 3.1.2. By [29, Lemma 2.5], the estimate (3.1.2) implies that for all k ∈ N, t > 0
and almost everywhere x, y ∈ Rd,

∣∣∣tk∂k
t K(t, x, y)

∣∣∣ ≤ ctβ2

(t+ |x− y|)d+β2
. (3.1.3)

Convention. To simplify the notations, we will write below γ, β instead of γ1, β1 and
γ2, β2 appeared in Lemma 3.1.1, and it should not cause any confusion.

One can verify that each e−tL is a regular operator on Lp(Rd) for 1 ≤ p ≤ ∞ (see
Proposition B.0.1 in Appendix B). Then the semigroup {e−tL}t>0 extends to Lp(Rd;X)
(see e.g. [102]). The resulting semigroup is still denoted by {e−tL}t>0 without causing
confusion. To well define the vector-valued BMO type spaces, we need more notations.
For ε > 0, define

Nε =
{
f ∈ L1

loc(Rd;X) : ∃ c > 0 such that
∫
Rd

∥f(x)∥X

(1 + |x|)d+ε
dx ≤ c

}
,

equipped with norm defined as the infimum of all the possible constant c. Then Nε is a
Banach space (cf. [36]). For a given generator L, let Θ(L) = sup {β2 > 0 : (3.1.2) holds}.
Then we define

N =

NΘ(L), if Θ(L) < ∞;⋃
0<ε<∞ Nε, if Θ(L) = ∞.

It is clear that Lp(Rd;X) ⊂ N for all 1 ≤ p ≤ ∞. Moreover, By the definition of N and
Remark 3.1.2, we know that the operators e−tL and tLe−tL are well-defined on N .

Denote by FL the fixed point space of {e−tL}t>0 on N , namely

FL =
{
f ∈ N : e−tL(f) = f, ∀ t > 0

}
.

It is well-known that FL coincides with the null space of {tLe−tL}t>0, and the resulting
quotient space is defined as NL := N /FL. For 1 ≤ p < ∞, the fixed point subspace of
Lp(Rd;X) is FL ∩ Lp(Rd;X) = {0} (cf. [36, Theorem 6.10], see also Proposition B.0.2
in Appendix B). Then the projection from Lp(Rd;X) to the fixed point subspace for all
1 ≤ p < ∞ is indeed 0. See e.g. [63, 102] for more information on this projection.
Remark 3.1.3. Let L∗ be the adjoint operator of L. Then L∗ is also a sectorial operator
with the kernels of {e−tL∗}t>0 satisfying (II.1), (II.2) and (II.3) (cf. [36, Theorem 6.10]).
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3.1.2 Vector-valued tent, Hardy and BMO spaces
In this subsection, we introduce several spaces including vector-valued tent spaces,

vector-valued Hardy and BMO spaces associated with a generator L.

Vector-valued Tent spaces

We first introduce vector-valued tent spaces. We denote by Rd+1
+ the usual upper half-

space in Rd+1 i.e. Rd×(0,∞). Let Γ(x) = {(y, t) ∈ Rd+1
+ : |y−x| < t} denote the standard

cone with vertex at x. For any closed subset F ⊂ Rd, define R(F ) = ⋃
x∈F Γ(x). If O ⊂ Rd

is an open subset, then the tent over O, denoted by Ô, is given as Ô =
(
R(OC)

)C
.

For any strongly measurable function f : Rd+1
+ → X, we define two operators as

follows:

Aq(f)(x) =
(∫

Γ(x)
∥f(y, t)∥q

X

dydt
td+1

) 1
q

, Cq(f)(x) = sup
x∈B

(
1

|B|

∫
B̂

∥f(y, t)∥q
X

dydt
t

) 1
q

,

where the supremum runs over all balls B in Rd.

Definition 3.1.4. Let 1 ≤ p < ∞ and 1 < q < ∞. The vector-valued tent space
T p

q (Rd+1
+ ;X) is defined as the subspace consisting of all the strongly measurable functions

f : Rd+1
+ → X such that

∥f∥T p
q (X) := ∥Aq(f)∥p < ∞,

and T∞
q (Rd+1

+ ;X) is defined as the subspace of all the strongly measurable functions
g : Rd+1

+ → X such that
∥g∥T ∞

q (X) := ∥Cq(g)∥∞ < ∞.

Let Cc(Rd+1
+ )⊗X be the space of finite linear combinations of elements from Cc(Rd+1

+ )
and X. The following density follows from the standard arguments (see e.g. [47]), and
we omit the details.

Lemma 3.1.5. Let X be a Banach space and 1 < q < ∞. Then Cc(Rd+1
+ ) ⊗ X is norm

dense in T p
q (Rd+1

+ ;X) for 1 ≤ p < ∞, and weak-∗ dense in
(
T 1

q′(Rd+1
+ ;X∗)

)∗
.

Vector-valued Hardy spaces

Given a function f ∈ NL, the q-variant of Lusin area integral function of f associated
with L is defined by

Sq,L(f)(x) =
(∫

Γ(x)
∥tLe−tL(f)(y)∥q

X

dydt
td+1

) 1
q

;

and the q-variant of Littlewood-Paley g-function is defined by

Gq,L(f)(x) =
(∫ ∞

0
∥tLe−tL(f)(x)∥q

X

dt
t

) 1
q

.

43
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Definition 3.1.6. Let 1 ≤ p < ∞ and 1 < q < ∞. We define the vector-valued Hardy
space Hp

q,L(Rd;X) associated with L as

Hp
q,L(Rd;X) =

{
f ∈ NL : Sq,L(f) ∈ Lp(Rd)

}
,

equipped with the norm
∥f∥Hp

q,L(X) = ∥Sq,L(f)∥p.

It can be verified that Hp
q,L(Rd;X) is a Banach space from the definition of NL.

The space Hp
q,L(Rd;X) has deep connection with the vector-valued tent space, namely,

a strongly measurable function f ∈ NL belongs to Hp
q,L(Rd;X) if and only if Q(f) ∈

T p
q (Rd+1

+ ;X) where Q(f)(x, t) = −tLe−tL(f)(x). Moreover,

∥f∥Hp
q,L(X) = ∥Q(f)∥T p

q (X).

Vector-valued BMO spaces

Definition 3.1.7. Let 1 ≤ p ≤ ∞ and 1 < q < ∞. We define the vector-valued BMO
space BMOp

q,L(Rd;X) associated with L as

BMOp
q,L(Rd;X) = {f ∈ NL : ∥Cq(Q(f))∥p < ∞}

equipped with the norm
∥f∥BMOp

q,L(X) = ∥Cq(Q(f))∥p.

In particular, for p = ∞, we denote it by BMOq,L(Rd;X) for short.

It can be verified that BMOp
q,L(Rd;X) equipped the the norm ∥ · ∥BMOp

q,L(X) is a
Banach space from the definition of NL.

The vector-valued Hardy and BMO spaces enjoy the similar relationship as the scalar-
valued ones (see e.g. [26]). We collect them below with a brief explanation.

Lemma 3.1.8. Let X be any fixed Banach space and 1 < q < ∞. One has for f ∈
Cc(Rd+1

+ ) ⊗X,

∥Cq(f)∥p ≲

(
p

p− q

) 1
q

∥Aq(f)∥p, q < p ≤ ∞, (3.1.4)

and
∥Aq(f)∥p ≲ q

p
q ∥Cq(f)∥p, 1 ≤ p < ∞. (3.1.5)

Therefore, we have for 1 ≤ p ≤ q,

BMOp
q,L(Rd;X) ⊂ Hp

q,L(Rd;X)

and for q < p < ∞,
Hp

q,L(Rd;X) = BMOp
q,L(Rd;X)

with equivalent norms.
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Proof. Given an X-valued function f defined on Rd+1
+ , we consider the scalar-valued

function f̃(x, t) = ∥f(x, t)∥X . Then one may apply (3.1.4) and (3.1.5) in the case X = C
for f̃ (see e.g. [26, Theorem 3]) to obtain (3.1.4) and (3.1.5) for general X. Thus by using
the operator Q, for any f ∈ BMOp

q,L(Rd;X) (1 ≤ p ≤ q), we get

∥f∥Hp
q,L(X) = ∥Aq(Q(f))∥p ≲ q

p
q ∥Cq(Q(f))∥p = ∥f∥BMOp

q,L(X),

and the same argument holds for q < p < ∞.

Remark 3.1.9. In particular, BMOq,L(Rd;X) is closely related to the Carleson measure.
Recall that a scalar-valued measure µ defined on Rd+1

+ is a Carleson measure if there exists
a constant c such that for all balls B in Rd,

|µ(B̂)| ≤ c|B|,

where B̂ is the tent over B. The norm is defined as

∥µ∥c = sup
B

|B|−1|µ(B̂)|,

where the supremum runs over all the balls in Rd.
For a vector-valued function f ∈ NL, we define a measure µq,f as

µq,f (x, t) = ∥Q(f)(x, t)∥q
Xdxdt

t
.

Then f belongs to BMOq,L(Rd;X) if and only if µq,f is a Carleson measure, and moreover

∥f∥BMOq,L(X) = ∥µq,f∥
1
q
c .

3.2 Theory of vector-valued tent spaces and two key
linear operators

In this section, we will first present the basic theory of vector-valued tent spaces such
as interpolation, duality and atomic decomposition, and then introduce two important
linear operators K and πL which enable us to exploit the basic theory of tent spaces to
investigate in later sections vector-valued Wilson’s square functions and Theorem II.1.

Note that if the underlying Banach space X has some geometric property such as
UMD, then the vector-valued tent space theory have been established in the literature
[51, 56, 57]. In the present paper, we observe that the theory of vector-valued tent space
holds for any Banach space; and this is quite essential for the applications in the present
paper.

3.2.1 Basic theory of vector-valued tent spaces
We begin this subsection by providing a concise overview of interpolation theory in

the context of vector-valued tent spaces.
To apply the theory of vector-valued tent spaces, we will need the atomic decomposi-

tion of T 1
q (Rd+1

+ ;X). Recall that a strongly measurable function a : Rd+1
+ → X is called

an (X, q)-atom if
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1. supp a ⊂ B̂ where B is a ball in Rd;

2.
(∫

Rd+1
+

∥a(x, t)∥q
X

dxdt
t

) 1
q

≤ |B|
1
q

−1.

Lemma 3.2.1. Let X be any fixed Banach space and 1 < q < ∞. For each f ∈
T 1

q (Rd+1
+ ;X), there exists a sequence of complex numbers {λk}k≥1 and (X, q)-atoms ak

such that
f =

∑
k≥1

λkak, ∥f∥T 1
q (X) ≈

∑
k≥1

|λk|.

Proof. Let a be an (X, q)-atom and supp a ⊂ B̂ where B = B(cB, rB) with center cB and
radius rB. If Γ(x) ∩ B̂ ̸= ∅, there exists (y, t) ∈ Γ(x) ∩ B̂. Then we have |x − cB| ≤
|x− y| + |y − cB| < t+ rB < 2rB. By Hölder’s inequality and Fubini’s theorem,

∥a∥T 1
q (X) =

∫
2B

(∫
Γ(x)

∥a(y, t)∥q
X

dydt
td+1

) 1
q

dx ≲ |2B|1− 1
q

(∫
Rd+1

+

∥a(y, t)∥q
X

dydt
t

) 1
q

≲ 1.

Therefore any (X, q)-atom belongs to T 1
q (Rd+1

+ ;X).
Let 0 < λ < 1/2. We define two sequences of open sets {Ok}k∈Z and {O∗

k}k∈Z as

Ok =
{
x ∈ Rd : Aq(f)(x) > 2k

}
, O∗

k =
{
x ∈ Rd : M(1Ok

)(x) > 1 − λ
}
,

where M(1Ok
) is the centered Hardy-Littlewood maximal function. It is clear that both

Ok and O∗
k have finite measure. Additionally, the following properties hold: Ok+1 ⊂ Ok,

O∗
k+1 ⊂ O∗

k and |O∗
k| ≤ Cλ|Ok| (see e.g. [26]).

We follow a similar construction as in [56]. The Vitali covering lemma and [57, Lemma
4.2] assert that for each O∗

k, there exist disjoint balls Bj
k ⊂ O∗

k (j ≥ 1) such that

Ô∗
k ⊂

⋃
j≥1

5̂Bj

k,
∑
j≥1

|Bj
k| ≤ |O∗

k|.

With this setup, we proceed to define a family of functions χj
k by the partition of unity:

0 ≤ χj
k ≤ 1,

∑
j≥1

χj
k = 1 on Ô∗

k and suppχj
k ⊂ 5̂Bj

k.

Therefore
f =

∑
k∈Z

fk =
∑
k∈Z

∑
j≥1

χj
kfk =

∑
k∈Z

∑
j≥1

λj
ka

j
k,

where

fk = f1
Ô∗

k
\Ô∗

k+1
, λj

k = |5Bj
k|

1
q′

(∫
5Bj

k

Aq(fk)q(x) dx
) 1

q

, aj
k = χj

kfk

λj
k

. (3.2.1)

Now we only need to show that each aj
k is an (X, q)-atom and∑

k∈Z

∑
j≥1

|λj
k| ≲ ∥f∥T 1

q (X).
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It is clear that supp aj
k ⊂ 5̂Bj

k. Furthermore,

∥a∥q

Lq(Rd+1
+ ;X) ≤ |5Bj

k|1−q∥Aq(fk)15Bj
k
∥−q

q

(∫
5̂B

j

k

∥fk(y, t)∥q
X

dydt
t

)

≤ |5Bj
k|1−q∥Aq(fk)15Bj

k
∥−q

q

(∫
5Bj

k

(Aq(fk)(x))q dx
)

= |5Bj
k|1−q.

Hence each aj
k is an (X, q)-atom.

According to [26, Lemma 5], it is known that Aq(fk) is supported in O∗
k \ Ok+1, then

we deduce that Aq(fk)(x) ≤ 2k+1 by definition. Thus
∑
k∈Z

∑
j≥1

|λj
k| ≤

∑
k∈Z

∑
j≥1

|5Bj
k|

1
q′ 2k+1|5Bj

k|
1
q ≤

∑
k∈Z

2k+1|O∗
k| ≤

∑
k∈Z

2k+1Cλ|Ok|.

However, Aq(f)(x) > 2(k+m) on Ok+m, then

2k|Ok| =
∫

Ok

2k dx =
∞∑

m=0

∫
Ok+m\Ok+m+1

2k dx ≤
∞∑

m=0
2−m

∫
Ok+m\Ok+m+1

Aq(f)(x) dx.

Hence

∑
k∈Z

2k+1Cλ|Ok| ≤
∞∑

m=0

∑
k∈Z

2−m+1Cλ

∫
Ok+m\Ok+m+1

Aq(f)(x) dx ≲ ∥f∥T 1
q (X).

We complete the proof.

Remark 3.2.2. From the atomic decomposition of T 1
q (Rd+1

1 ;X)—Lemma 3.2.1, one may
conclude a molecule decomposition of the corresponding Hardy space. This might have
further applications, and we include it in Appendix A.

The following lemma is the complex interpolation theory of vector-valued tent spaces.

Lemma 3.2.3. Let X be any fixed Banach space, 1 < q < ∞ and 1 ≤ p1 < p < p2 < ∞
such that 1/p = (1 − θ)/p1 + θ/p2 with 0 ≤ θ ≤ 1. Then

[T p1
q (Rd+1

+ ;X), T p2
q (Rd+1

+ ;X)]θ = T p
q (Rd+1

+ ;X),

with equivalent norms, where [·, ·]θ is the complex interpolation space. More precisely, for
f ∈ Cc(Rd+1

+ ) ⊗X, one has

∥f∥T p
q (X) ≲ ∥f∥[T p1

q (Rd+1
+ ;X),T p2

q (Rd+1
+ ;X)]θ ≲ p

1
q ∥f∥T p

q (X).

Proof. Denote by E the Banach space Lq(Rd+1
+ ;X) equipped with the measure dxdt/td+1.

At the beginning of the proof, we introduce two important operators, which allow us
immerse T p

q (Rd+1
+ ;X) into Lp(Rd;E). Let f ∈ T p

q (Rd+1
+ ;X), we define an operator as

follows
i(f)(x, y, t) = 1Γ(x)(y, t)f(y, t).
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Then it is clear that ∥i(f)∥Lp(E) = ∥f∥T p
q (X). Denote by T̃ p

q the range of the operator i.
Now we introduce another operator N given by

N(f)(x, y, t) = 1Γ(x)(y, t)
1

wdtd

∫
|z−y|<t

f(z, y, t) dz,

where wd is the volume of the d-dimensional unit ball. It is known that N is a continuous
projection from Lp(Rd;E) onto itself with range T̃ p

q for 1 < p < ∞ (cf. [47]). Consider
the maximal operator

M1(f)(x, y, t) = sup
x∈B

1
|B|

∫
B

∥f(z, y, t)∥X dz.

It is known from the maximal inequalities (see e.g. [88, Chapter II]) that M1 is bounded
on Lp

(
Rd;Lq(Rd+1; dydt/td+1)

)
for 1 < p < ∞; in particular, we view ∥f∥X as a scalar-

valued function in Lp
(
Rd;Lq(Rd+1; dydt/td+1)

)
, then

∥M1(f)∥Lp(Rd;Lq(Rd+1
+ , dydt

td+1 )) = ∥M1(∥f∥X)∥Lp(Rd;Lq(Rd+1
+ , dydt

td+1 )) ≲ p
1
q ∥f∥Lp(E), q ≤ p < ∞.

Then we deduce from the definition of N that

∥N(f)(x, y, t)∥X ≤ 1Γ(x)(y, t)
1

|B(y, t)|

∫
B(y,t)

∥f(z, y, t)∥X dz ≤ M1(f)(x, y, t).

Therefore

∥N(f)∥Lp(E) ≤ ∥M1(f)∥Lp(Rd;Lq(Rd+1
+ ; dydt

td+1 )) ≲ p
1
q ∥f∥Lp(E), q ≤ p < ∞.

We denote by F the Banach space Lq′(Rd+1
+ ;X∗) equipped with the measure dxdt/td+1.

Then it is clear that F ⊂ E∗ and F is norming for E. For 1 < p < q, we have

∥N(f)∥Lp(E) = sup
g

∣∣∣∣∣
∫
Rd

∫
Rd+1

+

⟨N(f)(x, y, t), g(x, y, t)⟩X×X∗
dydt
td+1 dx

∣∣∣∣∣
= sup

g

∣∣∣∣∣
∫
Rd

∫
Rd+1

+

⟨f(x, y, t), N(g)(x, y, t)⟩X×X∗
dydt
td+1 dx

∣∣∣∣∣
≤ ∥f∥Lp(E)∥N(g)∥Lp′ (F ) ≲ p

′ 1
q′ ∥f∥Lp(E)∥g∥Lp′ (F ),

where the supremum is taken over all g in the unit ball of Lp′(Rd;F ). We conclude

∥N(f)∥Lp(E) ≲ max
{
p

1
q , p

′ 1
q′

}
∥f∥Lp(E), 1 < p < ∞. (3.2.2)

Now we turn to the interpolation theory. The proof of the case 1 < p1 < p2 < ∞
follows from [47] by virtue of the immersion i and projection N .

For p1 = 1, we adapt the classical argument as in [26, Lemma 4, Lemma 5]. Since
the immersion i is an isometry, the exactness of the exponent θ of complex interpolation
functor reads that

∥i(f)∥[L1(Rd;E),Lp2 (Rd;E)]θ

≤ ∥i∥1−θ

T 1
q (Rd+1

+ ;X)→L1(Rd;E)∥i∥
θ
T

p2
q (Rd+1

+ ;X)→Lp2 (Rd;E)∥f∥[T 1
q (Rd+1

+ ;X),T p2
q (Rd+1

+ ;X)]θ

≤ ∥f∥[T 1
q (Rd+1

+ ;X),T p2
q (Rd+1

+ ;X)]θ .
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By the interpolation theory of vector-valued Lp spaces, (see e.g. [13]), we have

∥i(f)∥[L1(Rd;E),Lp2 (Rd;E)]θ = ∥i(f)∥Lp(E) = ∥f∥T p
q (X).

Thus
∥f∥T p

q (X) ≤ ∥f∥[T 1
q (Rd+1

+ ;X),T p2
q (Rd+1

+ ;X)]θ .

For the reverse direction, let f ∈ T p
q (Rd+1

+ ;X) and ∥f∥T p
q (X) = 1. We define the

interpolation functor F as
F (z) =

∑
k∈Z

2k(α(z)p−1)fk,

where α(z) = 1 − z + z/p2 and fk is defined in (3.2.1). We have F (θ) = f . Then the
proof is indeed the same as in [26, Lemma 5], we omit the details.

We now provide a characterization of T p
q (Rd+1

+ ;X)-norm. It belongs to the norming
subspace theory of vector-valued Lp-spaces, see e.g. [35, Chapter II, Section 4]. The proof
is in spirit the same as the scalar-valued case (cf. [47, Theorem 2.4] and [26, Theorem 1],
but we include a proof here to provide explicit orders for later applications.

Let (Ω,F , µ) be a measure space. Recall that a Banach space X has the Radon-
Nikodým property with respect to (Ω,F , µ) if for each µ-continuous vector-valued measure
ν : F → X of bounded variation, there exists g ∈ L1(Ω;X) with respect to the measure
µ such that

ν(E) =
∫

E
g dµ, ∀E ∈ F .

In the following context, we call a Banach space has the Radon-Nikodým property for
short when there is no ambiguity. We refer readers to [34, Chapter III] for more details.

Lemma 3.2.4. Let X be any fixed Banach space and 1 < q < ∞. The space T p′

q′ (Rd+1
+ ;X∗)

is isomorphically identified as a subspace of the dual space of T p
q (Rd+1

+ ;X). Moreover, it
is norming for T p

q (Rd+1
+ ;X) in the following sense,

∥f∥T p
q (X) ≲ max

{
p

1
q , p

′ 1
q′

}
sup

g

∣∣∣∣∣
∫
Rd+1

+

⟨f(x, t), g(x, t)⟩X×X∗
dxdt
t

∣∣∣∣∣ 1 < p < ∞, (3.2.3)

where the supremum is taken over all g ∈ Cc(Rd+1
+ ) ⊗ X∗ such that ∥Aq′(g)∥p′ ≤ 1; and

similarly,

∥f∥T p
q (X) ≲

(
p(q − 1)
q − p

) 1
q′

sup
g

∣∣∣∣∣
∫
Rd+1

+

⟨f(x, t), g(x, t)⟩X×X∗
dxdt
t

∣∣∣∣∣ 1 ≤ p < q, (3.2.4)

where the supremum is taken over all g ∈ Cc(Rd+1
+ ) ⊗ X∗ such that ∥Cq′(g)∥p′ ≤ 1.

Furthermore, if X∗ has the Radon-Nikodým property, then

T p′

q′ (Rd+1
+ ;X∗) =

(
T p

q (Rd+1
+ ;X)

)∗
, 1 ≤ p < ∞.

Proof. We adopt the notation used in the proof of Lemma 3.2.3. We first prove the
estimate (3.2.3).
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For any g ∈ Cc(Rd+1
+ ) ⊗X∗ and f ∈ T p

q (Rd+1
+ ;X), we denote by

g(f) =
∫
Rd+1

+

⟨f(x, t), g(x, t)⟩X×X∗
dxdt
t

.

Thus we have

|g(f)| =
∣∣∣∣∣
∫
Rd+1

+

〈
f(y, t), g(y, t)

(
w−1

d

∫
|x−y|<t

1 dx
)〉

X×X∗

dydt
td+1

∣∣∣∣∣
= w−1

d

∣∣∣∣∣
∫
Rd

∫
Rd+1

+

⟨i(f)(x, y, t), i(g)(x, y, t)⟩X×X∗
dydt
td+1 dx

∣∣∣∣∣ .
(3.2.5)

Since i(f) ∈ T̃ p
q , we have N(i(f)) = i(f). Then we deduce that

∥f∥T p
q (X) = ∥i(f)∥Lp(E) = sup

g

∣∣∣∣∣
∫
Rd

∫
Rd+1

+

⟨i(f)(x, y, t), g(x, y, t)⟩X×X∗
dydt
td+1 dx

∣∣∣∣∣
= sup

g

∣∣∣∣∣
∫
Rd

∫
Rd+1

+

⟨N(i(f))(x, y, t), g(x, y, t)⟩X×X∗
dydt
td+1 dx

∣∣∣∣∣
= sup

g

∣∣∣∣∣
∫
Rd

∫
Rd+1

+

⟨i(f)(x, y, t), N(g)(x, y, t)⟩X×X∗
dydt
td+1 dx

∣∣∣∣∣
(3.2.6)

where the supremum is taken over all g in the unit ball of Lp′(Rd;F ). Notice that N(g) =
i (i−1(N(g))) and by (3.2.2)

∥i−1(N(g))∥
T p′

q′ (X∗) = ∥N(g)∥Lp′ (F ) ≲ max
{
p

1
q , p′ 1

q′

}
∥g∥Lp′ (F ).

Consequently, combining (3.2.5) and (3.2.6), we obtain

∥f∥T p
q (X) ≲ max

{
p

1
q , p′ 1

q′

}
sup

g
|g(f)|, 1 < p < ∞,

where the supremum is taken over all g ∈ Cc(Rd+1
+ ) ⊗X∗ such that ∥Aq′(g)∥p′ ≤ 1. Here

we adapt a limiting argument. Since the unit ball of Cc(Rd+1
+ ) ⊗ X∗ is contained in the

unit ball of T p′

q′ (Rd+1
+ ;X∗), and its closure contains the unit sphere, then we obtain that

the unit ball of Cc(Rd+1
+ ) ⊗X∗ is still norming for T p

q (Rd+1
+ ;X).

Now we deal with the estimate (3.2.4) in the case 1 < p < q. Let g ∈ Lp′(Rd;F ). By
definition we have

∥i−1(N(g))(y, t)∥q′

X∗ ≤
(

1
|B(y, t)|

∫
B(y,t)

∥g(z, y, t)∥X∗ dz
)q′

≤ 1
|B(y, t)|

∫
|z−y|<t

∥g(z, y, t)∥q′

X∗ dz.

For a ball B in Rd, we observe∫
B̂

∥i−1(N(g))(y, t)∥q′

X∗
dydt
t

≲
∫

B̂

∫
|z−y|<t

∥g(z, y, t)∥q′

X∗ dzdydt
td+1

≤
∫

2B

∫
Rd+1

+

∥1
B̂

(y, t)g(z, y, t)∥q′

X∗
dydt
td+1 dz

=
∫

2B
Hq′(z) dz,
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where

H(z) =
(∫

Rd+1
+

∥1
B̂

(y, t)g(z, y, t)∥q′

X∗
dydt
td+1

) 1
q′

.

Then we have
Cq′

[
i−1(N(g))

]
(x) ≲

(
M(Hq′)(x)

) 1
q′
,

where M is the Hardy-Littlewood maximal operator. Therefore when q′ < p′ ≤ ∞, we
obtain

∥Cq′

[
i−1(N(g))

]
∥p′ ≲ ∥M(Hq′)

1
q′ ∥p′ ≲

(
p(q − 1)
q − p

) 1
q′

∥H∥p′ ≤
(
p(q − 1)
q − p

) 1
q′

∥g∥Lp′ (F ).

Thus we observe

∥f∥T p
q (X) ≲

(
p(q − 1)
q − p

) 1
q′

sup
g

|g(f)|, 1 < p < q,

with the supremum being taken over all g ∈ Cc(Rd+1
+ ) ⊗X∗ such that ∥Cq′(g)∥p′ ≤ 1.

For the endpoint case p = 1 of (3.2.4), because of the failure of vector-valued Calderón-
Zygmund theory, the above arguments adapted from [47, Theorem 2.4] do not work any
more. Instead, one may exploit the classical arguments in [26, Theorem 1] and utilize the
atomic decomposition of T 1

q (Rd+1
+ ;X), we leave the details to the interested reader.

When the Banach space X∗ has the Radon-Nikodým property, one gets F = E∗ (cf.
e.g. [50, Theorem 1.3.10]). Then the duality follows from then an analogous argument
in [47] for 1 < p < ∞. Again, the duality in the case p = 1 can be deduced as in the
scalar-valued case [26, Theorem 1], and we leave the details to the interested reader.

3.2.2 The two linear operators K and πL

Let K : Rd+1
+ × Rd+1

+ → R be a reasonable real-valued function such that for f ∈
Cc(Rd+1

+ ) ⊗X, the linear operator K is well defined as below,

K(f)(x, t) :=
∫
Rd+1

+

Kt,s(x, y)f(y, s) dyds
s

.

Lemma 3.2.5. Let X be any fixed Banach space and 1 < q < ∞. Assume that the kernel
Kt,s(x, y) satisfies the following estimation: there exist positive constants κ, ε, C such
that

|Kt,s(x, y)| ≤
C min

{
s
t
, t

s

}ε
min

{
1
t
, 1

s

}d

(
1 + min

{
1
t
, 1

s

}
|x− y|

)d+κ . (3.2.7)

Then the linear operator K initially defined on Cc(Rd+1
+ ) ⊗X extends to a bounded linear

operator on T p
q (Rd+1

+ ;X) for 1 ≤ p < ∞. More precisely,

∥K(f)∥T p
q (X) ≲ε,κ p

1
q ∥f∥T p

q (X), ∀ f ∈ T p
q (Rd+1

+ ;X), 1 ≤ p < ∞.

Furthermore, for any f ∈ Cc(Rd+1
+ ) ⊗X, we have

∥Cq (K(f)) ∥p ≲ε,κ ∥Cq(f)∥p, 1 ≤ p ≤ ∞.
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Proof. Fix f ∈ Cc(Rd+1
+ ) ⊗ X. Without loss of generality, we can assume κ < ε from

(3.2.7). We first deal with the case p = q. By Hölder’s inequality, we have
∫
Rd+1

+

∥K(f)(x, t)∥q
X

dydt
t

=
∫
Rd+1

+

∥∥∥∥∥
∫
Rd+1

+

Kt,s(y, w)f(w, s) dwds
s

∥∥∥∥∥
q

X

dydt
t

≤
∫
Rd+1

+

(∫
Rd+1

+

|Kt,s(y, w)| dwds
s

) q
q′

·
(∫

Rd+1
+

|Kt,s(y, w)|∥f(w, s)∥q
X

dwds
s

)
dydt
t
.

We obtain that∫ ∞

0

∫
Rd

|Kt,s(y, w)| dwds
s

≤
∫ t

0

∫
Rd

Csεt−εt−d

(1 + t−1|y − w|)d+κ

dwds
s

+
∫ ∞

t

∫
Rd

Ctεs−εs−d

(1 + s−1|y − w|)d+κ

dwds
s

≲ε,κ

∫
Rd

Ct−d

(1 + t−1|y − w|)d+κ dw +
∫ ∞

t
tεs−ε−1 ds

≲ε,κ 1.

It is clear that in the assumption of Kt,s(y, w), (w, s) plays the same role as (y, t). Thus

∥K(f)∥q

Lq(Rd+1
+ ;X) ≲ε,κ

∫
Rd+1

+

∥f(w, s)∥q
X

dwds
s

= ∥f∥q

Lq(Rd+1
+ ;X). (3.2.8)

Then the case p = q is done since ∥f∥T q
q (X) ≈ ∥f∥Lq(Rd+1

+ ;X). Moreover, from the proof we
observe that K is always bounded on Lp(Rd+1

+ ;X) for 1 ≤ p ≤ ∞.
For 1 ≤ p < q, by the interpolation—Lemma 3.2.3, it suffices to show the case p = 1.

By the atomic decomposition—Lemma 3.2.1, It suffices to show that

∥K(a)∥T 1
q (X) ≲ε,κ 1, (3.2.9)

where a is an (X, q)-atom with supp(a) ⊂ B̂ and B = B(cB, rB). One can write

∥Aq[K(a)]∥1 =
∫

4B
Aq[K(a)](x) dx+

∫
(4B)C

Aq[K(a)](x) dx

= I + II.

From (3.2.8) we obtain

∥Aq[K(a)]∥q
q ≲ε,κ

∫
Rd+1

+

∥a(w, s)∥q
X

dwds
s

≤ |B|1−q. (3.2.10)

Then we can estimate the term I:

I ≤ |4B|
1
q′ ∥Aq[K(a)]∥q ≲ε,κ 1. (3.2.11)
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Now we handle the second term II. By Hölder’s inequality, we observe

(Aq[K(a)](x))q ≤
∫ ∞

0

∫
|y−x|<t

(∫
B̂

|Kt,s(y, w)|q′ dwds
s

) q
q′

·
(∫

B̂
∥a(w, s)∥q

X

dwds
s

)
dydt
td+1

≲ |B|1−q
∫ ∞

0

∫
|y−x|<t

(∫
B̂

|Kt,s(y, w)|q′ dwds
s

) q
q′ dydt
td+1

= |B|1−q
∫ rB

0

∫
|y−x|<t

(∫
B̂

|Kt,s(y, w)|q′ dwds
s

) q
q′ dydt
td+1

+ |B|1−q
∫ ∞

rB

∫
|y−x|<t

(∫
B̂

|Kt,s(y, w)|q′ dwds
s

) q
q′ dydt
td+1

=: J1 + J2.

When x ∈ (4B)C , w ∈ B, we have

rB < |x− w| ≤ |x− y| + |y − w| < t+ |y − w|,

hence

|x− cB| ≤ |x− w| + |w − cB| < 2(t+ |y − w|) ≤ 2(max {t, s} + |y − w|).

Therefore we observe from (3.2.7) that

|Kt,s(y, w)| ≲ε,κ

min
{

s
t
, t

s

}ε
min

{
1
t
, 1

s

}d

(max {t, s} + |y − w|)d+κ min
{

1
t
, 1

s

}d+κ

≲ε,κ

min
{

s
t
, t

s

}ε
min

{
1
t
, 1

s

}−κ

|x− cB|d+κ
= min {sεtκ−ε, tεsκ−ε}

|x− cB|d+κ
.

Then

J1 ≲ε,κ
|B|1−q|B|

q
q′

|x− cB|q(d+κ)

∫ rB

0

(∫ rB

0
min

{
sq′εtq

′(κ−ε), tq
′εsq′(κ−ε)

} ds
s

) q
q′ dt

t

= 1
|x− cB|q(d+κ)

∫ rB

0

(∫ t

0
tq

′(κ−ε)sq′ε ds
s

+
∫ rB

t
sq′(κ−ε)tq

′ε ds
s

) q
q′ dt
t

≲ε,κ
rqκ

B

|x− cB|q(d+κ) .

For J2, since t ≥ rB ≥ s, and |x− cB| < 2(t+ |y − w|),

J2 ≲ε,κ
|B|1−q|B|

q
q′

|x− cB|q(d+κ)

∫ ∞

rB

(∫ rB

0
sq′εtq

′(κ−ε) ds
s

) q
q′ dt

t

≲ε,κ
rqκ

B

|x− cB|q(d+κ) .

Thus
Aq[K(a)](x) ≲ε,κ

rκ
B

|x− cB|d+κ
, x ∈ (4B)C .
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Since∫
(4B)C

rκ
B

|x− cB|d+κ
dx =

∞∑
m=2

∫
2m+1B\2mB

rκ
B

|x− cB|d+κ
dx ≤

∞∑
m=2

∫
2m+1B

rκ
B

2m(d+κ)rd+κ
B

dx

≲
∞∑

m=2

(2m+1rB)d

2m(d+κ)rd
B

≲
∞∑

m=2
2−mκ ≲κ 1,

we obtain
II ≲ε,κ 1. (3.2.12)

For the case q < p < +∞, we denote by K∗ the adjoint operator. It is clear that the
kernel of K∗ has the same estimation as that of K. For f ∈ Cc(Rd+1

+ )⊗X, we obtain from
Lemma 3.2.4 that

∥K(f)∥T p
q (X) ≲ p

1
q sup

g

∣∣∣∣∣
∫
Rd+1

+

⟨K(f)(x, t), g(x, t)⟩X×X∗
dxdt
t

∣∣∣∣∣
= p

1
q sup

g

∣∣∣∣∣
∫
Rd+1

+

⟨f(x, t),K∗(g)(x, t)⟩X×X∗
dxdt
t

∣∣∣∣∣
≤ p

1
q ∥f∥T p

q (X)∥K∗(g)∥
T p′

q′ (X∗) ≲ p
1
q ∥f∥T p

q (X),

where the supremum is taken over all g ∈ Cc(Rd+1
+ ) ⊗ X such that ∥Aq′(g)∥p′ ≤ 1.

Consequently, we observe that K extends to a bounded linear operator on T p
q (Rd+1

+ ;X)
for 1 ≤ p < ∞. More precisely,

∥K(f)∥T p
q (X) ≲ε,κ p

1
q ∥f∥T p

q (X), ∀ f ∈ T p
q (Rd+1

+ ;X).

Now we prove the second assertion of this lemma. Fix f ∈ Cc(Rd+1
+ ) ⊗X, take a ball

B in Rd, we can write
(∫

B̂
∥K(f)(x, t)∥q

X

dxdt
t

) 1
q

= sup
g

∣∣∣∣∣
∫

B̂
⟨K(f)(x, t), g(x, t)⟩X×X∗

dxdt
t

∣∣∣∣∣
= sup

g

∣∣∣∣∣
∫

B̂
⟨f(x, t),K∗(g)(x, t)⟩X×X∗

dxdt
t

∣∣∣∣∣
≤ sup

g
∥K∗(g)∥

Lq′ (B̂;X∗)

(∫
B̂

∥f(x, t)∥q
X

dxdt
t

) 1
q

,

where the supremum is taken over all g in the unit ball of Lq′(B̂;X∗). From (3.2.8) we
know that

∥K∗(g)∥Lq′ (Rd+1
+ ;X∗) ≲ε,κ ∥g∥

Lq′ (B̂;X∗).

Thus for any x ∈ Rd,

(Cq [K(f)] (x))q = sup
x∈B

1
|B|

∫
B̂

∥K(f)(x, t)∥q
X

dxdt
t

≲ε,κ sup
x∈B

1
|B|

∫
B̂

∥f(x, t)∥q
X

dxdt
t

= (Cq(f)(x))q .

54



3.2. Theory of vector-valued tent spaces and two key linear operators

Therefore we obtain

∥Cq [K(f)] ∥p ≲ε,κ ∥Cq (f) ∥p, 1 ≤ p ≤ ∞.

The proof is completed.

Now we come to the second important linear operator, which will relate the tent space
T p

q (Rd+1
+ ;X) to the Hardy space Hp

q,L(Rd;X).
Recall the operator Q(f)(x, t) = −tLe−tL(f)(x). Define the operator πL acting on

Cc(Rd+1
+ ) ⊗X as

πL(f)(x) =
∫ ∞

0
Q(f(·, t))(x, t) dt

t
, ∀x ∈ Rd.

It is easy to verify that πL is well-defined. The following lemma asserts that πL extends
to a bounded linear operator from T p

q (Rd+1
+ ;X) to Hp

q,L(Rd;X). We will denote it by πL

as well.

Lemma 3.2.6. Let X be any fixed Banach space and 1 < q < ∞. The operator πL

initially defined on Cc(Rd+1
+ ) ⊗X extends to a bounded linear operator from T p

q (Rd+1
+ ;X)

to Hp
q,L(Rd;X) for 1 ≤ p < ∞. More precisely,

∥πL(f)∥Hp
q,L(X) ≲β p

1
q ∥f∥T p

q (X), ∀ f ∈ T p
q (Rd+1

+ ;X), 1 ≤ p < ∞.

Furthermore, for any f ∈ Cc(Rd+1
+ ) ⊗X, we have

∥πL(f)∥BMOp
q,L(X) ≲β ∥Cq(f)∥p, 1 ≤ p ≤ ∞.

Proof. Let f ∈ Cc(Rd+1
+ ) ⊗X. Recall that k(t, x, y) is the kernel of the operator Q, then

Q[πL(f)](x, t) =
∫
Rd
k(t, y, z)πL(f)(z) dz

=
∫
Rd
k(t, y, z)

(∫
Rd+1

+

k(s, z, w)f(w, s) dwds
s

)
dz

=
∫
Rd+1

+

(∫
Rd
k(t, y, z)k(s, z, w) dz

)
f(w, s) dwds

s
.

(3.2.13)

We denote by
Φt,s(y, w) =

∫
Rd
k(t, y, z)k(s, z, w) dz.

Note that k(t, ·, ·) is the kernel of the operator Q = −te−tL, thus Φt,s(·, ·) is the kernel
of −tLe−tL ◦ (−sLe−sL) = tsL2e−(t+s)L. On the other hand, ∂2

r (e−rL)|r=t+s = L2e−(t+s)L

which has the kernel ∂2
rK(r, ·, ·)|r=t+s. Then by (3.1.3), we obtain

|Φt,s(y, w)| ≲d,β
ts

(t+ s)2−β(t+ s+ |y − w|)d+β
≲β

min
{

s
t
, t

s

}
min

{
1
t
, 1

s

}d

(
1 + min

{
1
t
, 1

s

}
|x− y|

)d+β .

Denote by

P = 4Q ◦ πL. (3.2.14)
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From Lemma 3.2.5, we conclude that P initially defined on Cc(Rd+1
+ ) ⊗ X extends to a

bounded linear operator on T p
q (Rd+1

+ ;X). Moreover,

∥P(f)∥T p
q (X) ≲β p

1
q ∥f∥T p

q (X) .

Therefore
∥πL(f)∥Hp

q,L(X) = 4−1∥P(f)∥T p
q (X) ≲β p

1
q ∥f∥T p

q (X),

which is the desired assertion.
For the second part, we obtain the desired assertion from Lemma 3.2.5 immediately.

Remark 3.2.7. One can verify that P ◦ P = P , thus P serves as a projection from
T p

q (Rd+1
+ ;X) onto itself. Indeed, we can also obtain this lemma under the assumption

that L is a sectotrial operator satisfying only (3.1.2).

3.3 vector-valued intrinsic square functions
In this section, we begin with the introduction of vector-valued intrinsic square func-

tions, originally presented by Wilson in [96] in the case of convolution operators. We
then proceed to compare them with the q-variant of Lusin area integral associated with
a generator L.

Recall that L is assumed to be a sectorial operator of type α (0 ≤ α < π/2) satisfying
assumptions (II.1), (II.2) and (II.3) with β > 0, 0 < γ ≤ 1. Define Hγ,β as the family of
functions φ : Rd × Rd → R such that

|φ(x, y)| ≤ 1
(1 + |x− y|)d+β

, (3.3.1)

|φ(x+ h, y) − φ(x, y)| + |φ(x, y + h) − φ(x, y)| ≤ |h|γ

(1 + |x− y|)d+β+γ
(3.3.2)

whenever 2|h| ≤ 1 + |x− y| and∫
Rd
φ(x, y) dx =

∫
Rd
φ(x, y) dy = 0. (3.3.3)

For φ ∈ Hγ,β, define φt(x, y) = t−dφ(t−1x, t−1y).
Let f ∈ Cc(Rd) ⊗X. We define

Aγ,β(f)(x, t) = sup
φ∈Hγ,β

∥∥∥∥∫
Rd
φt(x, y)f(y) dy

∥∥∥∥
X
, ∀ (x, t) ∈ Rd+1

+ .

Then the intrinsic square functions of f are defined as

Sq,γ,β(f)(x) =
(∫

Γ(x)
(Aγ,β(f)(y, t))q dydt

td+1

) 1
q

,

and

Gq,γ,β(f)(x) =
(∫ ∞

0
(Aγ,β(f)(x, t))q dt

t

) 1
q

.
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Theorem 3.3.1. Let X be any fixed Banach space, 1 < q < ∞ and 1 ≤ p < ∞. Let L be
any fixed sectorial operator L satisfying (II.1), (II.2) and (II.3). For any f ∈ Cc(Rd)⊗X,
we have

Sq,γ,β(f)(x) ≈γ,β Gq,γ,β(f)(x), (3.3.4)

Sq,L(f)(x) ≲ Sq,γ,β(f)(x), Gq,L(f)(x) ≲ Gq,γ,β(f)(x), (3.3.5)

and

∥Sq,γ,β(f)∥p ≲γ,β p
1
q ∥Sq,L(f)∥p. (3.3.6)

Remark 3.3.2. The following g-function version of (3.3.6) holds also

∥Gq,γ,β(f)∥p ≲γ,β p
2
q ∥Gq,L(f)∥p. (3.3.7)

But its proof is much more involved and depends in turn on Theorem II.1 that will be
concluded in the next section.

As in the classical case [95], the assertions (3.3.4) and (3.3.5) can be deduced easily
from the following facts on Hγ,β.
Lemma 3.3.3. Let φ ∈ Hγ,β. The following properties hold:

(i) if t ≥ 1, then t−d−γφt ∈ Hγ,β;
(ii) if |z| ≤ 1, t ≥ 1, then (2t)−d−γ−β

(
φ(z)

)
t

∈ Hγ,β, where φ(z)(x, y) = φ(x− z, y).

Proof. The proof is similar to the case of Wilson [95], while the present setting is non-
convolutive, let us give the sketch. The claim (i) is easy by definition. For the claim (ii),
notice that

2−1(1 + |x− y|) ≤ 1 + |(x− z) − y| ≤ 2(1 + |x− y|).
By definition, we have

|φ(z)(x, y)| = |φ(x− z, y)| ≤ 1
(1 + |(x− z) − y|)d+β

≤ 2d+β

(1 + |x− y|)d+β
.

and
|φ(z)(x+ h, y) − φ(z)(x, y)| = |φ(x− z + h, y) − φ(x− z, y)|

≤ |h|γ

(1 + |(x− z) − y|)d+β+γ

≤ 2d+β+γ|h|γ

(1 + |x− y|)d+β+γ
.

The same Hölder continuity estimation holds for the variable y. Thus we obtain that
2−d−β−γφ(z) ∈ Hγ,β. Then the claim (ii) follows from the claim (i).

With Lemma 3.3.3, the assertions (3.3.4) and (3.3.5) will follow easily. The most
challenging part of Theorem 3.3.4 lies in (3.3.6). In addition to the interpolation and
duality theory on the (vector-valued) tent space that have been built in Section 3.2, the
following pointwise estimate is another technical part in the proof of estimate (3.3.6).

Recall that k(t, x, y) is the kernel of the operator Q. Let θ ∈ Hγ,β, define

Lθ
t,s(y, w) =

∫
Rd
θt(y, z)k(s, z, w) dz.
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Lemma 3.3.4. Let ν = 2−1 min {γ, β} and ζ = (d+ 2−1β)(d+ β)−1, then

sup
θ∈Hγ,β

|Lθ
t,s(y, w)| ≲γ,β

min
{

s
t
, t

s

}(1−ζ)ν
min

{
1
t
, 1

s

}d

(
1 + min

{
1
t
, 1

s

}
|y − w|

)d+ 1
2 β
.

Proof. To estimate the kernel Lθ
t,s(y, w), we follow a similar argument presented in [44,

Chapter 8, 8.6.3].
Let θ ∈ Hγ,β, we have

|θt(y, z)| ≤ t−d

(1 + t−1|y − z|)d+β
, ∀ y, z ∈ Rd, t > 0. (3.3.8)

For 2|z − z′| < t+ |y − z|, we have t−1|z − z′| < 1 + t−1|y − z|, then

|θt(y, z) − θt(y, z′)| ≤ t−d−γ|z − z′|γ

(1 + t−1|y − z|)d+β+γ
≤

min
{
(t−1|z − z′|)γ, (1 + t−1|y − z|)γ

}
td(1 + t−1|y − z|)d+β+γ

≲
min {1, (t−1|z − z′|)γ}

td
.

For 2|z − z′| ≥ t+ |y − z|, we have t−1|z − z′| ≥ 1/2, then

|θt(y, z) − θt(y, z′)| ≤ |θt(y, z)| + |θt(y, z′)| ≤ 2t−d ≲
min {1, (t−1|z − z′|)γ}

td
.

Hence

|θt(y, z) − θt(y, z′)| ≲ min {1, (t−1|z − z′|)γ}
td

, ∀ y, z, z′ ∈ Rd, t > 0.

On the other hand, Lemma 3.1.1 asserts that there exists a positive constant Ck such
that C−1

k (k(s, ·, ·))s−1 ∈ Hγ,β (see also the Convention afterwards). Thus, one gets for all
w, z, z′ ∈ Rd, s > 0,

|k(s, z, w)| ≲ Cks
−d

(1 + s−1|z − w|)d+β
, |k(s, z, w) − k(s, z′, w)| ≲ Ck min {1, (s−1|z − z′|)γ}

sd
.

Now we start to deal with the kernel Lθ
t,s(y, w). By symmetry, it suffices to handle the

case s ≤ t. First we observe the following estimate,∫
Rd

s−d min {1, (t−1|u|)γ}
(1 + s−1|u|)d+β

du =
∫

|u|<t

s−d(t−1|u|)γ

(1 + s−1|u|)d+β
du+

∫
|u|>t

s−d

(1 + s−1|u|)d+β
du

≤
∫

|v|<t/s

(
s

t

)γ |v|γ

(1 + |v|)d+β
dv +

∫
|u|>t

sβ|u|−d−β du

=: J1 + J2

Taking ν = 2−1 min {γ, β}, and we have |v|γ < (t/s)γ−ν |v|ν . Then we obtain

J1 ≤
(
s

t

)ν ∫
Rd

|v|ν

(1 + |v|)d+β
dv ≲γ,β

(
s

t

)ν

.
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For J2, we have
J2 ≲

∫ ∞

t
sβr−β−1 dr ≲β

(
s

t

)β

≤
(
s

t

)ν

.

Thus for s ≤ t, by the vanishing property (3.3.3) of k(s, ·, w), one gets

|Lθ
t,s(y, w)| ≤

∣∣∣∣∫
Rd

[θt(y, z) − θt(y, w)] k(s, z, w) dz
∣∣∣∣

≤ Ck

∫
Rd

min {1, (t−1|z − w|)γ}
td

s−d

(1 + s−1|z − w|) dz

≲γ,β t
−d
(
s

t

)ν

≤ min
{1
t
,
1
s

}d

min
{
s

t
,
t

s

}ν

.

On the other hand,

|Lθ
t,s(y, w)| ≤

∫
Rd

|θt(y, z)||k(s, z, w)| dz ≲β

min
{

1
t
, 1

s

}d

(
1 + min

{
1
t
, 1

s

}
|y − w|

)d+β .

Let ζ = (d+ 2−1β)(d+ β)−1, we then get

|Lθ
t,s(y, w)| = |Lθ

t,s(y, w)|1−ζ |Lθ
t,s(y, w)|ζ ≲γ,β

min
{

s
t
, t

s

}(1−ζ)ν
min

{
1
t
, 1

s

}d

(
1 + min

{
1
t
, 1

s

}
|y − w|

)d+ 1
2 β
.

It is clear that the estimation of Lθ
t,s(y, w) is independent of the choice of θ, and thus the

desired estimate is obtained.

Now let us prove Theorem 3.3.1.

Proof. The pointwise estimate (3.3.4) follows from Lemma 3.3.3 (ii). Indeed, for |x−y| <
t, let w = (x− y)/t; then for any φ ∈ Hγ,β, we have 2−d−β−γφ(w) ∈ Hγ,β. Hence

Aγ,β(f)(x, t) = sup
φ∈Hγ,β

∥∥∥∥∫
Rd
φt(x, z)f(z) dz

∥∥∥∥
X

≤ 2d+β+γ sup
φ(w)∈Hγ,β

∥∥∥∥∫
Rd

(
φ(w)

)
t
(x, z)f(z) dz

∥∥∥∥
X

= 2d+β+γAγ,β(f)(y, t).

Exchanging x and y and taking −w in place of w, the reverse inequality is also true. Then
(3.3.4) follows immediately.

Now we turn to the pointwise estimates (3.3.5). Lemma 3.1.1 asserts that there ex-
ists a positive constant Ck such that C−1

k (k(t, ·, ·))t−1 ∈ Hγ,β (see also the Convention
afterwards). Consequently, for all x ∈ Rd, t > 0, we have

∥Q(f)(x, t)∥X =
∥∥∥∥∫

Rd
k(t, x, y)f(y) dy

∥∥∥∥
X

= Ck

∥∥∥∥∫
Rd

(
C−1

k (k(t, x, y))t−1

)
t
f(y) dy

∥∥∥∥
X

≤ Ck sup
φ∈Hγ,β

∥∥∥∥∫
Rd
φt(x, y)f(y) dy

∥∥∥∥
X

= CkAγ,β(f)(x, t). (3.3.9)
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Then the estimates (3.3.5) follows trivially.
Below we explain the proof of (3.3.6). Let h ∈ Cc(Rd+1

+ ) ⊗X, we have

Aγ,β[πL(h)](y, t) = sup
θ∈Hγ,β

∥∥∥∥∥
∫
Rd
θt(y, z)

(∫
Rd+1

+

k(s, z, w)h(w, s) dwds
s

)
dz
∥∥∥∥∥

X

= sup
θ∈Hγ,β

∥∥∥∥∥
∫
Rd+1

+

(∫
Rd
θt(y, z)k(s, z, w) dz

)
h(w, s) dwds

s

∥∥∥∥∥
X

= sup
θ∈Hγ,β

∥∥∥∥∥
∫
Rd+1

+

Lθ
t,s(y, w)h(w, s) dwds

s

∥∥∥∥∥
X

≤
∫
Rd+1

+

(
sup

θ∈Hγ,β

|Lθ
t,s(y, w)|

)
∥h(w, s)∥X

dwds
s

=: L(∥h∥X)(y, t),

where the linear operator L has the kernel

Lt,s(y, w) = sup
θ∈Hγ,β

|Lθ
t,s(y, w)|.

Then by Lemma 3.3.4 and Lemma 3.2.5 in the case X = C, one obtaines

∥L(∥h∥X)∥T p
q (C) ≲γ,β p

1
q ∥∥h∥X∥T p

q (C) = p
1
q ∥h∥T p

q (X), 1 ≤ p < ∞.

Therefore
∥Aγ,β[πL(h)]∥T p

q (C) ≲γ,β p
1
q ∥h∥T p

q (X), 1 ≤ p < ∞.

Let f ∈ Cc(Rd)⊗X, then we have Q(f) ∈ T p
q (Rd+1

+ ;X); moreover from the formula (1.2.1)
and Remark ??, the following Calderón identity holds

f = 4
∫ ∞

0
Q [Q(f)(·, t)] (·, t) dt

t
. (3.3.10)

Therefore, one has that for 1 ≤ p < ∞,

∥Sq,γ,β(f)∥p = ∥Aγ,β(f)∥T p
q (C) = 4∥Aγ,β [πL(Q(f))] ∥T p

q (C)

≲γ,β p
1
q ∥Q(f)∥T p

q (X) = p
1
q ∥Sq,L(f)∥p,

which is the desired inequality.

Remark 3.3.5. For any f ∈ Cc(Rd) ⊗X, by Lemma 3.2.5, we also obtain

∥Aγ,β(f)∥T ∞
q (C) = 4∥Aγ,β [πL(Q(f))] ∥T ∞

q (C) ≲γ,β ∥Q(f)∥T ∞
q (X) = ∥f∥BMOq,L(X).

Together with the pointwise estimate (3.3.9), one gets the BMO–version of Theorem II.1:
Let L be a generator as in Theorem II.1, then

∥f∥BMOq,L(X) ≈γ,β ∥f∥BMO
q,

√
∆(X). (3.3.11)
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3.4 Proof of the main Theorem
As pointed out in the introduction, the equivalence (II.4) in Theorem II.1 is an easy

consequence of Theorem 3.3.1; but for another equivalence (II.5), we need to develop fully
Mei’s duality arguments between vector-valued Hardy and BMO type spaces [66]. This
will be accomplished in the present section by combining the theory of vector-valued tent
spaces and vector-valued Wilson’s square functions—Theorem 3.3.1.

First of all, based on the duality between tent spaces—Lemma 3.2.4, the boundedness
of the projection πL—Lemma 3.2.6—yields the following vector-valued Fefferman-Stein
duality theorem.

Theorem 3.4.1. Let X be any fixed Banach space and 1 < q < ∞. Let L be as in
Theorem II.1. Both the spaces BMOp′

q′,L∗(Rd;X∗) and Hp′

q′,L∗(Rd;X∗) are isomorphically
identified as subspaces of the dual space of Hp

q,L(Rd;X). Moreover, they are norming for
Hp

q,L(Rd;X) in the following sense,

∥f∥Hp
q,L

≲β max
{
p

1
q p

′ 1
q′ , p

′ 2
q′

}
sup

g

∣∣∣∣∫
Rd

⟨f(x), g(x)⟩X×X∗ dx
∣∣∣∣ , 1 < p < ∞,

where the supremum is taken over all g ∈ Cc(Rd) ⊗ X∗ such that ∥g∥
Hp′

q′,L∗ (X∗) ≤ 1, and
similarly,

∥f∥Hp
q,L

≲β

(
p(q − 1)
q − p

) 1
q′

sup
g

∣∣∣∣∫
Rd

⟨f(x), g(x)⟩X×X∗ dx
∣∣∣∣ , 1 ≤ p < q,

where the supremum is taken over all g ∈ Cc(Rd) ⊗ X∗ such that ∥g∥
BMOp′

q′,L∗ (X∗) ≤ 1.
Furthermore, if X∗ has the Radon-Nikodým property. Then

BMOp′

q′,L∗(X∗) =
(
Hp

q,L(Rd;X)
)∗
, 1 ≤ p < q;

Hp′

q′,L∗(X∗) =
(
Hp

q,L(Rd;X)
)∗
, 1 < p < ∞.

Remark 3.4.2. Indeed, we can also obtain this duality theorem under the assumption that
L is a sectotrial operator satisfying only (3.1.2), see Remark 3.2.7.

The more essential auxiliary result is the following duality property, which is inspired
by [66, Theorem 2.4] (see also [97, 103]).

Proposition 3.4.3. Let X be any fixed Banach space and 1 ≤ p < q. Let L be any fixed
sectorial operator satisfying (II.1), (II.2) and (II.3). Then for any f ∈ Cc(Rd) ⊗ X and
g ∈ Cc(Rd) ⊗X∗, one has∣∣∣∣∫

Rd
⟨f(x), g(x)⟩X×X∗ dx

∣∣∣∣ ≲γ,β ∥Gq,L(f)∥
p
q
p ∥Sq,L(f)∥

1− p
q

p ∥g∥
BMOp′

q′,L∗ (X∗). (3.4.1)

Proof. Fixing f ∈ Cc(Rd) ⊗ X and g ∈ Cc(Rd) ⊗ X∗, we consider truncated versions of
Gq,L(f)(x) as follows:

G(x, t) :=
(∫ ∞

t
∥Q(f)(x, s)∥q

X

dxds

s

) 1
q

, x ∈ Rd, t > 0.
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By approximation, we can assume that G(x, t) is strictly positive. The operator −tL∗e−tL∗

is denoted by Q∗. By the Calderón identity—(3.3.10), we have∣∣∣∣∫
Rd

⟨f(x), g(x)⟩X×X∗ dx
∣∣∣∣ = 4

∣∣∣∣∣
∫
Rd+1

+

⟨Q(f)(x, t),Q∗(g)(x, t)⟩X×X∗
dxdt
t

∣∣∣∣∣
= 4

∣∣∣∣∣
∫
Rd+1

+

〈
G

p−q
q (x, t)Q(f)(x, t), G

q−p
q (x, t)Q∗(g)(x, t)

〉
X×X∗

dxdt
t

∣∣∣∣∣
≲

(∫
Rd+1

+

Gp−q(x, t)∥Q(f)(x, t)∥q
X

dxdt
t

) 1
q

·
(∫

Rd+1
+

G
q−p
q−1 (x, t)∥Q∗(g)(x, t)∥q′

X∗
dxdt
t

) 1
q′

= I · II.

The term I is estimated as below,

Iq = −
∫
Rd

∫ ∞

0
Gp−q(x, t)∂t (Gq(x, t)) dtdx

= −q
∫
Rd

∫ ∞

0
Gp−1(x, t)∂tG(x, t) dtdx

≤ −q
∫
Rd

∫ ∞

0
Gp−1(x, 0)∂tG(x, t) dtdx

= q
∫
Rd
Gp(x, 0) dtdx = q∥Gq,L(f)∥p

p,

since G(x, t) is decreasing in t, and G(x, 0) = Gq,L(f)(x).
For the term II, we introduce two more variants of Sq,γ,β(f) (cf. [103]). The first is

defined similarly to G(·, t):

S(x, t) =
(∫ ∞

t

∫
|y−x|<s− t

2

(Aγ,β(f)(y, s))q dyds
sd+1

) 1
q

, x ∈ Rd, t > 0.

To introduce the second one, let Dk be the family of dyadic cubes in Rd of side length
2−k, that is,

Dk =

2−k
d∏

j=1
[mj,mj + 1) : mj ∈ Z, k ∈ Z

 .
Denote cQ as the center of a cube Q. Then, we define

S(x, k) =
(∫ ∞

√
d2−k

∫
|y−cQ|<s

(Aγ,β(f)(y, s))q dyds
sd+1

) 1
q

, if x ∈ Q ∈ Dk, k ∈ Z.

By definition, we have the following properties,

(i) S(·, k) is increasing in k,

(ii) S(·, k) is constant on every cube Q ∈ Dk,

(iii) S(x,−∞) = 0 and S(x,∞) = S(x, 0) = Sq,γ,β(f)(x).
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If s ≥ t ≥
√
d2−k and x ∈ Q ∈ Dk, then B(x, s − t

2) ⊂ B(cQ, s), where B(x, t) denotes
the ball with center x and radius t. This implies

S(x, t) ≤ S(x, k), x ∈ Q ∈ Dk whenever t ≥
√
d2−k.

Using (3.3.4) and (3.3.5) we have
Gq,L(f)(x) ≲ Gq,γ,β(f)(x) ≈γ,β Sq,γ,β(f)(x),

and similarly,
G(x, t) ≲γ,β S(x, t). (3.4.2)

Now we proceed to estimate the term B based on these observations. Applying (3.4.2) to
II, we have

IIq′
≲γ,β

∫
Rd+1

+

S
q−p
q−1 (x, t)∥Q∗(g)(x, t)∥q′

X∗
dxdt
t

=
∞∑

k=−∞

∑
Q∈Dk

∫
Q

∫ √
d2−k+1

√
d2−k

S
q−p
q−1 (x, t)∥Q∗(g)(x, t)∥q′

X∗
dt
t

dx

≤
∞∑

k=−∞

∑
Q∈Dk

∫
Q

∫ √
d2−k+1

√
d2−k

S
q−p
q−1 (x, k)∥Q∗(g)(x, t)∥q′

X∗
dt
t

dx

=
∫
Rd

∞∑
k=−∞

k∑
j=−∞

D(x, j)
∫ √

d2−k+1

√
d2−k

∥Q∗(g)(x, t)∥q′

X∗
dt
t

dx

where D(x, j) = S
q−p
q−1 (x, j) − S

q−p
q−1 (x, j − 1). Then D(x, j) is constant on every cube

Q ∈ Dj. Thus

IIq′
≲γ,β

∫
Rd

∞∑
j=−∞

D(x, j)
 ∞∑

k=j

∫ √
d2−k+1

√
d2−k

∥Q∗(g)(x, t)∥q′

X∗
dt
t

 dx

=
∞∑

j=−∞

∑
Q∈Dj

∫
Q
D(x, j)

∫ √
d2−j+1

0
∥Q∗(g)(x, t)∥q′

X∗
dt
t

dx

=
∞∑

j=−∞

∑
Q∈Dj

D(x, j)1Q(x)
∫

Q

∫ 2
√

dℓ(Q)

0
∥Q∗(g)(x, t)∥q′

X∗
dt
t

dx,

where ℓ(Q) denotes the length of Q. There exists a ball B such that Q ⊂ B, Q ×
(0, 2

√
dℓ(Q)] ⊂ B̂ and |B| ≲ |Q|. Then we deduce that∫

Q

∫ 2
√

dℓ(Q)

0
∥Q∗(g)(x, t)∥q′

X∗
dt
t

dx ≤ inf
y∈B

{Cq′ [Q∗(g)] (y)}q′
|B| ≲ inf

y∈Q
{Cq′ [Q∗(g)] (y)}q′

|Q|.

Therefore

IIq′
≲γ,β

∞∑
j=−∞

∑
Q∈Dj

D(x, j)1Q(x) inf
y∈Q

{Cq′ [Q∗(g)] (y)}q′
|Q|

≤
∞∑

j=−∞

∑
Q∈Dj

∫
Q
D(x, j) (Cq′ [Q∗(g)] (x))q′

dx ≤
∫
Rd

∞∑
j=−∞

D(x, j) (Cq′ [Q∗(g)] (x))q′
dx

=
∫
Rd

S
q−p
q−1 (x,∞) (Cq′ [Q∗(g)] (x))q′

dx = ∥S
q−p
q−1
q,γ,β(f)∥r

∥∥∥(Cq′ [Q∗(g)])q′∥∥∥
r′

= ∥Sq,γ,β(f)∥
q−p
q−1
p ∥Cq′ [Q∗(g)] ∥q′

p′ ,
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Chapter 3. Optimal Lusin type constant as p tending to 1

where 1/r = 1 − q′/p′ = (q − p)/(qp− p).
Combining the estimates of I and II with Theorem 3.3.1, we get the desired assertion.

Finally, we arrive at the proof of our main theorem.

Proof of Theorm II.1. The first part (II.4) of Theorem II.1 is a consequence of Theorem
3.3.1. Indeed, suppose L be a generator such that the kernels of the generating semigroup
satisfy (II.1) , (II.2) and (II.3) with 0 < β, γ ≤ 1, then the classical Poisson semigroup
generated by

√
∆ satisfy obviously the same assumptions. Then

∥Sq,L(f)∥p ≲ ∥Sq,γ,β(f)∥p ≲γ,β p
1
q ∥Sq,

√
∆(f)∥p, 1 ≤ p < ∞.

Similarly we obtain

∥Sq,
√

∆(f)∥p ≲γ,β p
1
q ∥Sq,L(f)∥p, 1 ≤ p < ∞.

As for another part (II.5), one side is easy by Theorem 3.3.1,

∥Gq,L(f)∥p ≲ ∥Gq,γ,β(f)∥p ≈γ,β ∥Sq,γ,β(f)∥p ≲γ,β p
1
q ∥Sq,L(f)∥p, 1 ≤ p < ∞.

For the reverse direction, by Theorem 3.4.1 and Proposition 3.4.3, we have for 1 ≤ p <
(1 + q)/2,

∥f∥Hp
q,L(X) ≲

(
p(q − 1)
q − p

) 1
q′

sup
g

∣∣∣∣∫
Rd

⟨f(x), g(x)⟩X×X∗ dx
∣∣∣∣

≲γ,β sup
g

∥Gq,L(f)∥
p
q
p ∥Sq,L(f)∥

1− p
q

p ∥g∥
BMOp′

q′,L∗ (X∗)

≲γ,β ∥Gq,L(f)∥
p
q
p ∥Sq,L(f)∥

1− p
q

p ,

where the supremum is taken over all g ∈ Cc(Rd) ⊗X∗ such that its BMOp′

q′,L∗(X∗)-norm
is not more than 1. Hence

∥Sq,L(f)∥p ≲γ,β ∥Gq,L(f)∥p, 1 ≤ p <
1 + q

2 .

Now we deal with the case (1 + q)/2 ≤ p < ∞. Let f ∈ Cc(Rd) ⊗ X, we deduce from
Theorem 3.4.1 that

∥f∥Hp
q,L(X) ≲ max

{
p

′ 1
q′ p

1
q , p

′ 2
q′

}
sup

h

∣∣∣∣∫
Rd

⟨f(x), h(x)⟩X×X∗ dx
∣∣∣∣

≲ p
1
q sup

h

∣∣∣∣∣
∫
Rd+1

+

⟨Q(f)(x, t),Q∗(h)(x, t)⟩X×X∗
dxdt
t

∣∣∣∣∣
≲ p

1
q sup

h
∥Gq,L(f)∥p∥Gq′,L∗(h)∥p′

≲γ,β p
1
q p

′ 1
q′ sup

h
∥Gq,L(f)∥p∥Sq′,L∗(h)∥p′

≲ p
1
q ∥Gq,L(f)∥p,

where the supremum is taken over all h ∈ Cc(Rd) ⊗ X∗ such that its Hp′

q′,L∗(X∗)-norm is
not more than 1.
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Combining the estimations above we conclude that

p− 1
q ∥Sq,L(f)∥p ≲γ,β ∥Gq,L(f)∥p ≲γ,β p

1
q ∥Sq,L(f)∥p, 1 ≤ p < ∞.

We complete the proof.

3.5 Applications
In this section, we first recall the previous related results in [75, 63]. These, together

with the tent space theory and Theorem II.1, will enable us to obtain the optimal Lusin
type constants and the characterization of martingale type. In particular, this resolves
partially Problem 1.8, Problem A.1 and Conjecture A.4 in the recent paper due to Xu
[102].

Some notions or notations need to be presented. We first introduce the vector-valued
atomic Hardy space H1

at(Rd;X). A measurable function a ∈ L∞(Rd;X) is called an
X-valued atom if

supp(a) ⊂ B,
∫
Rd
a(x) dx = 0, ∥a∥L∞(X) ≤ |B|−1,

where B is a ball in Rd. The atomic Hardy space H1
at(Rd;X) is defined as the function

space consisting of all functions f which admits an expression of the form

f =
∞∑

j=1
λjaj,

∞∑
j=1

|λj| < ∞,

where aj is an X-valued atom. The norm of H1
at(Rd;X) is defined as

∥f∥H1
at(X) = inf


∞∑

j=1
|λj| : f(x) =

∞∑
j=1

λjaj(x)

 .
This is a Banach space.

The BMO space BMO(Rd;X) is defined as the space of all f ∈ L1
loc(Rd;X) equipped

with the semi-norm

∥f∥BMO(X) = sup
B

1
|B|

∫
B

∥f − fB∥X dx < ∞,

where the supremum runs over all the balls in Rd and fB represents the average of f over
B. BMO(Rd;X) is a Banach space modulo constants.

It is well-known that BMO(Rd;X∗) is isomorphically identified as a subspace of the
dual space of H1

at(Rd;X) (cf. [21]) and it is norming for H1
at(Rd;X) in the following sense

∥f∥H1
at(X) ≈ sup

{
| ⟨f, g⟩ | : g ∈ BMO(Rd;X∗), ∥g∥BMO(X) ≤ 1

}
with universal constants. Furthermore, if the Banach space X∗ has the Radon-Nikodým
property, then (cf. [12])

(H1
at(Rd;X))∗ = BMO(Rd;X∗), (3.5.1)
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with equivalent norms.
We recall the definitions of martingale type and cotype mentioned in Section 1.4. X

is of martingale cotype q (with 2 ≤ q < ∞) if there exists a positive constant c such that
every finite X-valued Lq-martingale (fn)n≥0, the following inequality holds∑

n≥1
E∥fn − fn−1∥q

X ≤ cq sup
n≥0

E∥fn∥q
X ,

where E denotes the underlying expectation; and the least constant c is called the martin-
gale cotype constant, denoted as Mc,q(X). While X is said to be of martingale type q (with
1 < q ≤ 2) if the reverse inequalities holds with c−1 in place of c and the corresponding
martingale type constant is denoted by Mt,q(X).

Let X be a Banach space and 1 < q ≤ 2. The authors in [63] showed that the assertion
that X is of martingale type q is equivalent to the one that for any 1 < p < ∞, there
exists a constant cp such that for any f ∈ Cc(Rd) ⊗X,

∥f∥Lp(X) ≤ cp∥Sq,
√

∆(f)∥p. (3.5.2)

Later on, in [75] the authors investigated the relationships between H1
at(Rd;X) and

H1
q,

√
∆(Rd;X) as well as the ones between BMO(Rd;X) and BMOq,

√
∆(Rd;X), and pro-

vided insights into the geometric properties of the underlying Banach space X.

Theorem 3.5.1. Let X be a Banach space and 1 < q ≤ 2. The followings are equivalent

(i) X is of martingale type q;

(ii) there exists a constant c such that for any f ∈ Cc(Rd) ⊗X,

∥f∥H1
at(X) ≲ ∥Sq,

√
∆(f)∥1;

(iii) there exist a constant c such that for any f ∈ Cc(Rd) ⊗X,

∥f∥BMO(X) ≲ ∥f∥BMO
q,

√
∆(X).

The following theorem follows from the interpolation theory between vector-valued
tent spaces—Lemma 3.2.3—and the boundedness of the projection πL—Lemma 3.2.6.
See for instance the general interpolation theory of complemented subspaces (cf. [91,
Section 1.17]), and we omit the details.

Theorem 3.5.2. Let X be any fixed Banach space, 1 < q < ∞ and 1 ≤ p1 < p < p2 < ∞
such that 1/p = (1 − θ)/p1 + θ/p2 with 0 ≤ θ ≤ 1. Let L be as in Theorem II.1. Then

[Hp1
q,L(Rd;X), Hp2

q,L(Rd;X)]θ = Hp
q,L(Rd;X),

with equivalent norms, where [·, ·]θ is the complex interpolation space. More precisely, for
f ∈ Cc(Rd) ⊗X, one has

∥f∥Hp
q,L(X) ≲ ∥f∥[Hp1

q,L(Rd;X),Hp2
q,L(Rd;X)]θ ≲ p

2
q ∥f∥Hp

q,L(X).

Now we are at the position to give the applications.
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3.5. Applications

Corollary 3.5.3. Let X be a Banach space and 1 < q ≤ 2. Let L be as in Theorem II.1.
The followings are equivalent

(i) X is of martingale type q;

(ii) for any f ∈ Cc(Rd) ⊗X,

∥f∥H1
at(X) ≲γ,β ∥Gq,L(f)∥1;

(iii) for any 1 < p < ∞ and f ∈ Cc(Rd) ⊗X,

∥f∥Lp(X) ≲γ,β p∥Gq,L(f)∥p;

(iv) for any f ∈ Cc(Rd) ⊗X,

∥f∥BMO(X) ≲γ,β ∥f∥BMOq,L(X).

Proof. (i)⇔(ii). This follows immediately from Theorem II.1 and Theorem 3.5.1.
(iii)⇒(i). This is deduced from Theorem II.1 and (3.5.2).
(i)⇒(iii). In the case 1 < p < q, by Theorem II.1, it suffices to show that

∥f∥Lp(X) ≲ ∥Sq,
√

∆∥p. (3.5.3)

Keeping in mind (3.5.2) and Theorem 3.5.1 (ii), we consider

[H1
q,

√
∆(Rd;X), Hq

q,
√

∆(Rd;X)]θ ⊂ [H1
at(Rd;X), Lq(Rd;X)]θ;

then combining Theorem 3.5.2 with the interpolation between H1
at(Rd;X) and Lq(Rd;X)

(cf. [13, Theorem A]), one gets for any f ∈ Cc(Rd) ⊗X, 1/p = 1 − θ + θ/q,

∥f∥Lp(X) ≲ ∥f∥[H1
at(Rd;X),Lq(Rd;X)]θ ≲ ∥f∥[H1

q,
√

∆
(Rd;X),Hq

q,
√

∆
(Rd;X)]θ ≲ ∥f∥Hp

q,
√

∆
(X).

This is the desired (3.5.3). Combining it with the related result for q ≤ p < ∞ in [102],
we conclude

∥f∥Lp(X) ≲γ,β p∥Gq,L(f)∥p, 1 < p < ∞.

(i)⇔(iv). This follows from Remark 3.3.5 and Theorem 3.5.1 (iii).

Remark 3.5.4. (1). Taking L =
√

∆ in the assertion (iii), we get

L
√

∆
t,q,p(X) ≲ pMt,q(X), 1 < p < ∞,

where the order is optimal as p tends to 1. This solves partially [102, Problem 1.8].
(2). The implication (iii)→(i) says that a Banach space X which is of Lusin type q

relative to {e−tL}t>0 implies the martingale type q for a large class of generators L. This
answers partially [102, Problem A.1 and Conjecture A.4].
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Chapter 4

Bilinear decompositions on
probability spaces

In this chapter, we first show the equivalence of different atomic Hardy spaces. Then
we prove Theorem III.1. Next, we will present a characterization of martingale Lipschitz
spaces Λ1(αp), which is needed to show Theorem III.2 (see Theorem 4.3.4 below). At last,
we will prove Theorem III.2. Our method is mainly based on the atomic decomposition.

4.1 Atomic decomposition of Hardy spaces
An important aspect of martingale Hardy spaces is that they admit atomic decom-

positions. In this section we present atomic decompositions for several types of Hardy
spaces and we then explain how they are related to each other and to the Hardy spaces
defined in the previous section. The definition of atoms in the martingale setting is given
below.

Definition 4.1.1. A random variable a : Ω → C is called a martingale simple (p, q)-atom
(0 < p ≤ 1, 1 ≤ q ≤ ∞) if there exist k ∈ N and A ∈ Fk such that

1. Ek(a) = 0;

2. supp(a) ⊂ A;

3. ∥a∥q ≤ P (A)
1
q

− 1
p ,

where 1
q

:= 0 when q = ∞ as convention.

Definition 4.1.2. We first define the space of functions which admit pointwise atomic
decompositions by

H1,2
at (Ω) :=

f ∈ L1(Ω) : f =
∞∑

j=0
λja

j a.e.,

where aj is a simple (1, 2)-atom and
∞∑

j=0
|λj| < ∞

.
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For f ∈ H1,2
at (Ω), we define the norm

∥f∥H1,2
at (Ω) := inf


∞∑

j=0
|λj| : f =

∞∑
j=0

λja
j a.e., where aj is a simple (1, 2)-atom

 .
It is well-known that h1(Ω) = H1,2

at (Ω) with equivalent norms by a similar argument
in [93] and [94], see also [28]. Furthermore, if the martingale filtration is regular, we can
obtain the same result by taking simple (1, q)-atoms (1 < q ≤ ∞) in place of simple
(1, 2)-atoms as well.

The following definition for martingale atomic Hardy spaces is inspired by the atomic
Hardy space on homogeneous space (e.g. [27]).

Definition 4.1.3. We define the following martingale atomic Hardy spaces in the sense
of duality.

H1,2
at (Ω) :=

f ∈ (bmo(Ω))∗ : f =
∞∑

j=0
λja

j,

where aj is a simple (1, 2)-atom and
∞∑

j=0
|λj| < ∞

 (4.1.1)

and for 0 < p < 1,

Hp,2
at (Ω) :=

f ∈ (Λ2(αp))∗ : f =
∞∑

j=0
λja

j,

where aj is a simple (p, 2)-atom and
∞∑

j=0
|λj|p < ∞

. (4.1.2)

The corresponding norm is identified by (0 < p ≤ 1):

∥f∥Hp,2
at (Ω) := inf


 ∞∑

j=0
|λj|p

 1
p

: f =
∞∑

j=0
λja

j, where aj is a simple (p, 2)-atom

 .
Here f =

∞∑
j=0

λja
j is in terms of w∗-topology.

One important property of the martingale atomic Hardy spaces is the completeness,
for which we will provide a proof.

Lemma 4.1.4. For 0 < p < 1, Hp,2
at (Ω) is complete with respect to the quasi-norm

∥ · ∥Hp,2
at (Ω), and H1,2

at (Ω) is a complete normed space.

Proof. Let (fn)n≥1 be any Cauchy sequence in Hp,2
at (Ω). Then there exists a strictly

increasing sequence (nk)k≥1 ⊂ N such that

∥fnk+1 − fnk∥Hp,2
at (Ω) <

1
2k
.
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4.1. Atomic decomposition of Hardy spaces

Since fnk+1 − fnk ∈ Hp,2
at (Ω), there exist ak,j which are (p, 2)-atoms and (µk,j)j≥0 ∈ ℓp

such that
fnk+1 − fnk =

∞∑
j=0

µk,jak,j

with

∥fnk+1 − fnk∥Hp,2
at (Ω) ≈p

 ∞∑
j=0

|µk,j|p
 1

p

.

Note that f :=
∞∑

k=1

∞∑
j=0

µk,jak,j ∈ Hp,2
at (Ω) since

∞∑
k=1

∞∑
j=0

|µk,j|p < ∞.

Also, one has

∥fnk − f∥Hp,2
at (Ω) =

∥∥∥∥∥∥
∞∑

i=k

∞∑
j=0

µi,jai,j

∥∥∥∥∥∥
Hp,2

at (Ω)

≤

 ∞∑
i=k

∞∑
j=0

|µi,j|p
 1

p

≲

( ∞∑
i=k

1
2ip

) 1
p

.

This implies that (fn)n≥1 converges to f in Hp,2
at (Ω) and we conclude that Hp,2

at (Ω) is
complete.

We would like to remark that the martingale Hardy spaces hp(Ω) and the martingale
atomic Hardy spaces Hp,2

at (Ω) are defined differently from those defined in [93] where
martingale sequences are concerned. It is proved in [93] that martingale Hardy spaces
and the atomic martingale Hardy spaces defined for martingale sequences can be identified
with each other when 0 < p ≤ 1.

We will show that with our definition, the martingale Hardy spaces hp(Ω) can be
identified with the martingale atomic Hardy spaces Hp,2

at (Ω) as well. As a consequence,
we will also see that the two definitions of martingale Hardy spaces H1,2

at (Ω) and H1,2
at (Ω)

coincide.

Proposition 4.1.5. For 0 < p ≤ 1, hp(Ω) = Hp,2
at (Ω).

Proof. We will show that there exists a bijection between Hp,2
at (Ω) and hp(Ω) with equiv-

alent norms.
We will first elaborate on how to define the map from a dense subspace of hp(Ω),

namely L2(Ω) endowed with the quasi-norm ∥ · ∥hp(Ω), to Hp,2
at (Ω).

If f ∈ L2(Ω) and 0 < p < 1, then by atomic decomposition in [94, Theorem 2.5], there
exist ak which are simple (p, 2)-atoms and (µk)k≥0 ∈ ℓp such that

∞∑
k=0

µkEn(ak) = fn a.e. for all n.

Furthermore, the following inequality holds:

∥f∥hp(Ω) ≈p

( ∞∑
k=0

|µk|p
)1/p

.
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Let g ∈ Λ2(αp), then g induces a continuous linear functional on
(
L2(Ω), ∥ · ∥hp(Ω)

)
defined by

φg(f) = E
( ∞∑

n=1
dnfdng

)
for all f ∈ L2(Ω).

Indeed, one can show that for 0 < p < 1, if f ∈ L2(Ω) and g ∈ Λ2(αp), then

E
( ∞∑

n=1
|dnfdng|

)
≲p ∥f∥hp(Ω)∥g∥Λ2(αp).

See [62, Theorem 2.8.2].
Next, note that

fn =
∞∑

k=0
µkEn(ak)

also converges in hp(Ω). Thus

φf (g) := lim
m→∞

m∑
n=0

E(dnfdng) = lim
m→∞

E(fmgm) = lim
m→∞

E(fmg)

= lim
m→∞

E(
∞∑

k=0
µkEm(ak) · g) = lim

m→∞

∞∑
k=0

µkE(Em(ak) · g).

Note that
∞∑

k=0
|µk| · |E(ak · g)| ≲ ∥g∥Λ2(αp)

( ∞∑
k=0

|µk|p
) 1

p

≈p ∥f∥hp(Ω)∥g∥Λ2(αp).

Therefore we can exchange the limit and sum so as to obtain

φf (g) =
∞∑

k=0
µk lim

n→∞
E(Ena

k · g) =
∞∑

k=0
µkE(ak · g) for all g ∈ Λ2(αp).

Thus we conclude that φf admits an atomic decomposition in the sense of duality. More-
over,

∥φf∥ ≈p ∥f∥hp(Ω) ≈p

( ∞∑
k=0

|µk|p
)1/p

,

which indicates that the map from
(
L2(Ω), ∥ · ∥hp(Ω)

)
to Hp,2

at (Ω) is injective.
Now due to Lemma 4.1.4, the map defined on

(
L2(Ω), ∥ · ∥hp(Ω)

)
can be extended to

hp(Ω). More precisely, for any f ∈ hp(Ω),

φf (g) := lim
m→∞

φfm(g), ∀ g ∈ Λ2(αp),

where (fm)m≥1 is a sequence of L2 functions that are Cauchy with respect to the quasi-
norm ∥ · ∥hp(Ω). We notice that (φfm)m≥1 is a Cauchy sequence in Hp,2

at (Ω) since

∥φfm − φfn∥Hp,2
at (Ω) = ∥φfm−fn∥Hp,2

at (Ω) ≈p ∥fm − fn∥hp(Ω),

which goes to 0 as m,n → ∞. Lemma 4.1.4 thus implies that φf ∈ Hp,2
at (Ω). It is not

difficult to verify that the extended map is also injective.
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We have shown that the map from hp(Ω) to Hp,2
at (Ω) is well-defined and injective. The

case for p = 1 follows from a similar argument where we use bmo(Ω) instead of Λ2(αp).
We omit the details.

To show that the map is also surjective, we claim that for any φ ∈ Hp,2
at (Ω), there

exists f ∈ hp(Ω), such that φ = φf . We only give the proof for 0 < p < 1 and the case
p = 1 can be derived similarly.

For any φ ∈ (Λ2(αp))∗, one has by definition that φ =
∞∑

j=0
µja

j in the weak sense where

all aj are (p, 2)-atoms and (µj)j≥0 ∈ ℓp. Define a sequence of L2 functions (fk)k≥1 by

fk =
k∑

j=0
µja

j.

Then for all n > m ≥ 0,

∥fn − fm∥hp(Ω) ≤

 n∑
j=m+1

|µj|p
 1

p

.

Furthermore, the Cauchy sequence (fk)k≥1 can be identified with an element f ∈ hp(Ω)
such that fk → f in hp(Ω). Recall that for a general element in f ∈ hp(Ω), the map is
defined by

φf (g) = lim
k→∞

φfk(g) =
∞∑

j=0
µjE(aj · g),

for any g ∈ Λ2(αp), where (fk)k≥1 is the (equivalence class of) Cauchy sequences (fk)k≥1 ⊂
L2(Ω) that is Cauchy with respect to ∥·∥hp(Ω). This completes the proof of the proposition.

Remark 4.1.6. From the proof of Proposition 4.1.5, we see that when 0 < p ≤ 1, for any
f ∈ Hp,2

at (Ω),
∥f∥Hp,2

at (Ω) ≈p ∥f∥(Λ2(αp))∗ .

Remark 4.1.7. Since h1(Ω) = H1,2
at (Ω), by Proposition 4.1.5, we conclude that H1,2

at (Ω) =
H1,2

at (Ω) with equivalent norms.
Remark 4.1.8. Assume that the martingale filtration is regular. Let 0 < p ≤ 1 and
1 < q ≤ ∞. If f =

∞∑
j=0

λja
j where each aj is a simple (p, q)-atom and (λj)j≥0 ∈ ℓp, then

f ∈ (bmo(Ω))∗ for p = 1, and f ∈ (Λ2(αp))∗ for 0 < p < 1. Hence we can define Hp,q
at (Ω)

by virtue of (p, q)-atoms as in Definition 4.1.3. Moreover, in this case, hp(Ω) = Hp,q
at (Ω).

4.2 Bilinear decompositions on H1(Ω) ×BMO(Ω)
In this section we prove Theorem III.1. Let (Ω,F , P ) be a fixed probability space and

let f ∈ H1(Ω), g ∈ BMO(Ω). We will briefly describe the strategy of the proof. If we
assume that f and g have finite martingale expansions, then we may write their pointwise
product f · g as follows

f · g = Π1(f, g) + Π2(f, g) + Π3(f, g), (4.2.1)
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where

Π1(f, g) :=
∞∑

k=1
dkfdkg, Π2(f, g) :=

∞∑
k=1

fk−1dkg and Π3(f, g) :=
∞∑

k=1
gk−1dkf.

We will mainly focus on proving the boundedness property for each operator arising
in the decomposition for f ∈ H1(Ω) and g ∈ BMO(Ω) with finite martingale expan-
sions. To do so, we shall make use of the atomic decomposition of H1(Ω). In Section
4.2.4, we present a direct way to deal with Π3(f, g), which avoids the use of the atomic
decomposition.

We will now first elaborate on how to use a limiting argument to reduce the estimates
to functions with finite martingale expansions. For any f ∈ H1(Ω) and g ∈ BMO(Ω),

f · g := lim
n→∞

fn · gn = lim
n→∞

Π1(fn, gn) + lim
n→∞

Π2(fn, gn) + lim
n→∞

Π3(fn, gn),

where fn := En(f) and gn := En(g) for each n ∈ N. Here the limits denote the point-
wise limits, and are well-defined on the product space H1(Ω) × BMO(Ω). In particular,
(Π1(fn, gn))n is absolutely convergent almost everywhere:

n∑
k=1

|dkfdkg| ≤
( ∞∑

k=1
|dkf |2

) 1
2
( ∞∑

k=1
|dkg|2

) 1
2

≤ S(f) · S(g).

The boundedness of Π1 for general functions can be derived by Fatou’s lemma and the
corresponding estimate for functions with finite martingale expansions showed in Section
4.2.1:

∥ lim
n→∞

Π1(fn, gn)∥1 ≤ lim
n→∞

∥Π1(fn, gn)∥1 ≲ ∥f∥H1(Ω)∥g∥BMO(Ω).

For the sequence (Π2(fn, gn))n≥1, its pointwise limit is indeed the limit of the sequence
under the norm ∥·∥H1(Ω) thanks to the characterization of H1(Ω) in terms of the maximal
function as described in Remark 1.3.5. The boundedness of Π2 thus follows from the
estimate for functions with finite martingale expansions, which is proved in Section 4.2.2.

As imposed by the decomposition, we claim that Π3(f, g) is the pointwise limit of the
Cauchy sequence (Π3(fn, gn))n≥1 in HΦ(Ω). To show that Π3(fn, gn) ∈ HΦ(Ω) for each
n ∈ N, it suffices to show that Π3(fn, gn) can be identified with a Cauchy sequence of
functions in L1(Ω) with respect to ∥ · ∥HΦ(Ω), due to the definition of HΦ(Ω) which is
defined as the completion under the quasi-norm ∥ · ∥HΦ(Ω) of the space

HΦ
0 (Ω) := {f ∈ L1(Ω) : ∥f∥HΦ(Ω) < ∞}.

Since functions in L2(Ω) with f0 = 0 form a dense subspace of H1(Ω), there exist
Cauchy sequences (fk)k≥1 ⊂ L2(Ω) converging to f in H1(Ω). Section 4.2.3 and Section
4.2.4 will be devoted to proving the boundedness of Π3 restricted on L2

fin(Ω) × BMO(Ω)
where

L2
fin(Ω) := {f ∈ L2(Ω) : f has finite martingale expansion, f0 = 0}. (4.2.2)

It follows from the bilinearity and boundedness of Π3 on L2
fin(Ω) ×BMO(Ω) that(

Π3
(
(fk)n, gn

))
k≥1

⊂ L1(Ω)
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is a Cauchy sequence with respect to ∥·∥HΦ(Ω). Moreover, one can verify that (Π3(fn, gn))n≥1
is a Cauchy sequence in HΦ(Ω) by showing

lim
k→∞

∥Π3((fk)n, gn) − Π3((fk)m, gm)∥HΦ(Ω) → 0 as n,m → ∞.

Let Π̃3(f, g) denote the limit of the Cauchy sequence (Π3(fn, gn))n≥1 under the quasi-
norm ∥ · ∥HΦ(Ω). One has from the boundedness of Π3 on functions with finite martingale
expansions that

∥Π̃3(f, g)∥HΦ(Ω) = lim
n→∞

∥Π3(fn, gn)∥HΦ(Ω) ≲ ∥f∥H1(Ω)∥g∥BMO(Ω).

It remains an open and interesting question how to compare the limit Π̃3(f, g) with
the pointwise limit Π3(f, g) of the sequence (Π3(fn, gn))n≥1.
Remark 4.2.1. Let 0 < p < 1 be fixed, by definition of LΦ(Ω), we have for any f ∈ LΦ(Ω)
and ∥f∥LΦ(Ω) = 1,∫

Ω
|f |p dµ =

∫
{|f |≤1}

|f |p dµ+
∫

{|f |≥1}
|f |p dµ

≤
(∫

{|f |≤1}

|f |
log(e+ |f |) dµ

)p

·
(∫

{|f |≤1}
log(e+ |f |) dµ

)1−p

+
∫

{|f |≥1}

|f |
|f |1−p

dµ

≲

(∫
{|f |≤1}

|f |
log(e+ |f |) dµ

)p

+
∫

{|f |≥1}

|f |
log(e+ |f |) dµ.

However, from ∥f∥LΦ(Ω) = 1 we know that
∫

Ω

|f |
log(e+ |f |) dµ ≤ 1.

Hence
∥f∥p

p ≲

(∫
{|f |≤1}

|f |
log(e+ |f |) dµ

)p

+
∫

{|f |≥1}

|f |
log(e+ |f |) dµ ≲ 1.

Thus LΦ(Ω) continuously embeds into Lp(Ω). Moreover, we can also identify HΦ(Ω) as a
complete subspace of Lp(Ω).

On the other hand, note that H1(Ω) continuously embeds into L1(Ω), and BMO(Ω)
continuously embeds into L2(Ω), thus we observe that

Π3(fn, gn) = fngn − Π1(fn, gn) − Π2(fn, gn)

also forms a Cauchy sequence in L 2
3 (Ω). By Fatou’s Lemma we obtain that the L 2

3 -norm
limit of (Π3(fn, gn))n≥1 and Π3(f, g) coincide. As shown above, HΦ(Ω) continuously
embeds into L 2

3 (Ω), then we obtain that Π̃3(f, g) and Π3(f, g) coincide in L
2
3 (Ω).

Proof of Theorem III.1. Thanks to the comments above, we will assume that f ∈ H1(Ω)
and g ∈ BMO(Ω) have finite martingale expansions. By Theorem 1.3.6, there exist two
functions fh and fd such that f = fh + fd and

∥f∥H1(Ω) ≈ ∥fh∥h1(Ω) + ∥fd∥hd
1(Ω), (4.2.3)
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where fh ∈ h1(Ω) and fd ∈ h1
d(Ω). For such decomposition of f , since fh ∈ h1(Ω), there

exist (λj)j≥0 ∈ ℓ1 and simple (1, 2)-atoms {aj}j≥0 such that

(fh)n =
∞∑

j=0
λjEn(aj) a.e. for all n ∈ N, and ∥fh∥h1(Ω) ≈

∞∑
j=0

|λj|, (4.2.4)

where we assume supp(aj) ⊂ Anj
and Anj

∈ Fnj
with P (Anj

) > 0 for j ≥ 1. Then

dnf
h =

∞∑
j=0

λjdna
j, ∀n ∈ N. (4.2.5)

4.2.1 Estimates for Π1(fh, g) and Π1(fd, g)
We are going to show that Π1 is a bounded bilinear operator from H1(Ω)×BMO(Ω) to

L1(Ω) with input functions having finite martingale expansions. In fact, the boundedness
of Π1 follows naturally from the duality between H1(Ω) and BMO(Ω), i.e. Theorem 1.3.13
(see [43]). For the reader’s convenience, we give a proof based on atomic decompositions.

We first focus on Π1(fh, g), which can further be decomposed into atoms as described
in (4.2.4). Note that from (4.2.5)

∥dkfdkg∥1 =

∥∥∥∥∥∥
∞∑

j=0
λjdka

jdkg

∥∥∥∥∥∥
1

≤
∞∑

j=0
|λj|

∥∥∥dka
jdkg

∥∥∥
1
.

This implies that∥∥∥Π1(fh, g)
∥∥∥

1
≤

∞∑
k=1

∥dkfdkg∥1 ≤
∞∑

j=0
|λj|

∞∑
k=1

∥∥∥dka
jdkg

∥∥∥
1
. (4.2.6)

It thus suffices to consider the boundedness of
∞∑

k=1

∥∥∥dka
jdkg

∥∥∥
1
,

which can further be localized as dka
j = 1Anj

dka
j when k ≥ nj + 1 since Anj

∈ Fnj
,

namely
∞∑

k=1

∥∥∥dka
jdkg

∥∥∥
1

=
∞∑

k=nj+1

∥∥∥1Anj
dka

jdkg
∥∥∥

1
= E

 ∞∑
k=nj+1

∣∣∣1Anj
dka

jdkg
∣∣∣
 .

Now, by applying the Cauchy-Schwarz inequality, we derive the estimate

E

 ∞∑
k=nj+1

∣∣∣1Anj
dka

jdkg
∣∣∣
 ≤

E
 ∞∑

k=nj+1
|dka

j|2
 1

2
E

 ∞∑
k=nj+1

1Anj
|dkg|2

 1
2

≤ ∥aj∥2

EEnj

 ∞∑
k=nj+1

1Anj
|dkg|2

 1
2

≤ P (Anj
)− 1

2

E
1Anj

Enj

 ∞∑
k=nj+1

|dkg|2
 1

2

≤ P (Anj
)− 1

2 ∥g∥bmo(Ω)P (Anj
) 1

2
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where the fourth inequality follows from the definition of the atom. Hence, we deduce
from the definition of the bmo−norm that

∞∑
k=1

∥∥∥dka
jdkg

∥∥∥
1

≤ ∥g∥bmo(Ω). (4.2.7)

By using (4.2.7) and (4.2.6), we have by Theorem 1.3.14

∥Π1(f, g)∥1 ≤
∞∑

j=0
|λj|∥g∥bmo(Ω) +

∥∥∥∥∥
∞∑

k=1
dkf

ddkg

∥∥∥∥∥
1

≲ ∥fh∥h1∥g∥bmo(Ω) +
(

sup
k≥1

∥dkg∥∞

)( ∞∑
k=1

∥dkf
d∥1

)

≲
(
∥fh∥h1(Ω) + ∥fd∥hd

1(Ω)

)
∥g∥BMO(Ω).

This implies from (4.2.3) that
∥Π1(f, g)∥1 ≲ ∥f∥H1(Ω)∥g∥BMO(Ω). (4.2.8)

4.2.2 Estimates for Π2(fh, g) and Π2(fd, g)
We are going to show that Π2 is a bounded bilinear operator from H1(Ω) ×BMO(Ω)

to H1(Ω) with input functions having finite martingale expansions. Note that from (4.2.4)

S(Π2(fh, g)) =
( ∞∑

k=1
|fk−1dkg|2

) 1
2

=

 ∞∑
k=1

∣∣∣∣∣∣
∞∑

j=0
λjEk−1(aj)dkg

∣∣∣∣∣∣
2


1
2

≤
∞∑

j=0
|λj|

( ∞∑
k=1

∣∣∣Ek−1(aj)dkg
∣∣∣2) 1

2

=
∞∑

j=0
|λj|S(Π2(aj, g)). (4.2.9)

Arguing as in section 4.2.1, we perform the localization on each term

Π2(aj, g) =
∞∑

k=1
aj

k−1dkg =
∞∑

k=nj+2
1Anj

aj
k−1dkg.

It is easy to verify that
dk(Π2(aj, g)) = aj

k−1dkg, k ≥ nj + 2 and dk(Π2(aj, g)) = 0, 1 ≤ k ≤ nj + 1.
We consider the corresponding square function

S
(
Π2(aj, g)

)
=
 ∞∑

k=nj+2

(
|aj

k−1|21Anj
|dkg|2

) 1
2

≤ |(aj)∗|

 ∞∑
k=nj+2

1Anj

(
|dkg|2

) 1
2

.

Then by invoking the Cauchy-Schwarz inequality, we have that

∥Π2(aj, g)∥H1(Ω) = E
[
S
(
Π2(aj, g)

)]
≤ ∥(aj)∗∥2

E
 ∞∑

k=nj+2
1Anj

(|dkg|2)
 1

2

≤ ∥aj∥2

E
1Anj

Enj

 ∞∑
k=nj+2

|dkg|2
 1

2

≤ P (Anj
)− 1

2 ∥g∥BMO(Ω)P (Anj
) 1

2
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and hence,
∥Π2(aj, g)∥H1(Ω) ≤ ∥g∥BMO(Ω). (4.2.10)

Similarly, by Theorem 1.3.14

∥∥∥Π2(fd, g)
∥∥∥

H1(Ω)
= E

[
S

(
Π2(

∞∑
m=1

dmf
d, g)

)]
≤

∞∑
m=1

E
[
S
(
Π2(dmf

d, g)
)]

=
∞∑

m=1
E

Em

 ∞∑
k=m+1

|dmf
d|2|dkg|2

 1
2


=
∞∑

m=1
E

|dmf
d|Em

 ∞∑
k=m+1

|dkg|2
 1

2


≤
∞∑

m=1

∥dmf
d∥1

∥∥∥∥∥∥Em

 ∞∑
k=m+1

|dkg|2
∥∥∥∥∥∥

1
2

∞


and hence, ∥∥∥Π2(fd, g)

∥∥∥
H1(Ω)

≤ ∥fd∥h1
d
(Ω)∥g∥BMO(Ω). (4.2.11)

By using (4.2.9), (4.2.11) and (4.2.10), we have by Theorem 1.3.6

∥Π2(f, g)∥H1(Ω) ≤
∥∥∥Π2(fh, g)

∥∥∥
H1(Ω)

+
∥∥∥Π2(fd, g)

∥∥∥
H1(Ω)

≤
∞∑

j=0
|λj|∥g∥BMO(Ω) + ∥fd∥hd

1(Ω)∥g∥BMO(Ω)

≲
(
∥fh∥h1(Ω) + ∥fd∥h1

d
(Ω)

)
∥g∥BMO(Ω).

This implies from (4.2.3) that

∥Π2(f, g)∥H1(Ω) ≲ ∥f∥H1(Ω)∥g∥BMO(Ω). (4.2.12)

4.2.3 Estimates for Π3(fh, g) and Π3(fd, g)
We are going to show that Π3 is a bilinear operator with the boundedness property

Π3 :
(
L2

fin(Ω), ∥ · ∥H1(Ω)
)

×BMO(Ω) → HΦ(Ω)

so that it extends to H1(Ω) × BMO(Ω) → HΦ(Ω) because L2
fin(Ω) is dense in H1(Ω).

The treatment relies on the atomic decomposition, while in the next subsection we will
present a direct proof without invoking the atomic decomposition. Though the latter
appears to be shorter, the former is worth a detailed presentation because it is consistent
with the argument for Π1 and Π2, and is also more compatible to dyadic martingales on
homogeneous spaces discussed in Section 5.2.
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To this end, we first deal with Π3(fh, g). Note that

S(Π3(fh, g)) =
( ∞∑

k=1
|gk−1dkf |2

) 1
2

=

 ∞∑
k=1

∣∣∣∣∣∣
∞∑

j=0
λjgk−1dka

j

∣∣∣∣∣∣
2


1
2

≤
∞∑

j=0
|λj|

( ∞∑
k=1

∣∣∣gk−1dka
j
∣∣∣2) 1

2

=
∞∑

j=0
|λj|

 ∞∑
k=nj+1

|gk−1|2|dka
j|2
 1

2

≤
∞∑

j=0
|λj|

 ∞∑
k=nj+1

|gk−1 − gnj
|2|dka

j|2
 1

2

+
∞∑

j=0
|λj||gnj

|S(aj)

=: I1 + I2.

It thus suffices to handle I1 and I2. For I1, we have

E(I1) ≤
∞∑

j=0
|λj|E

 ∞∑
k=nj+1

1Anj
|gk−1 − gnj

|2|dka
j|2
 1

2

≤
∞∑

j=0
|λj|

E
 ∞∑

k=nj+1
1Anj

|gk−1 − g|2|dka
j|2
 1

2

+ E

 ∞∑
k=nj+1

1Anj
|g − gnj

|2|dka
j|2
 1

2


≤
∞∑

j=0
|λj|

P (Anj
) 1

2

E
 ∞∑

k=nj+1
|gk−1 − g|2|dka

j|2
 1

2

+ E
(
1Anj

|g − gnj
|S(aj)

)
≤

∞∑
j=0

|λj|

P (Anj
) 1

2

E
 ∞∑

k=nj+1
|dka

j|2Ek(|gk−1 − g|2)
 1

2

+ ∥aj∥2P (Anj
) 1

2 ∥g∥BMO(Ω)


≤ 2

∞∑
j=0

|λj|P (Anj
) 1

2 ∥g∥BMO(Ω)∥aj∥2

and so,
E(I1) ≲ ∥fh∥h1(Ω)∥g∥BMO(Ω). (4.2.13)

Next, we obtain an estimate for I2. To this end, notice that

I2 ≤

 ∞∑
j=0

1Anj
|λj|S(aj)

 · |g| +
∞∑

j=0
|λj|1Anj

|gnj
− g|S(aj)

=: I3 + I4.

Since aj is a simple (1, 2)-atom, we have ∥1Anj
S(aj)∥1 ≤ 1 and∥∥∥∥∥∥

∞∑
j=0

1Anj
|λj|S(aj)

∥∥∥∥∥∥
1

≤
∞∑

j=0
|λj| ≲ ∥fh∥h1(Ω).

By Lemma 1.3.18, we have

∥I3∥LΦ(Ω) ≲

∥∥∥∥∥∥
∞∑

j=0
1Anj

|λj|S(aj)

∥∥∥∥∥∥
1

∥g∥BMO(Ω) ≲ ∥fh∥h1(Ω)∥g∥BMO(Ω). (4.2.14)
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The following estimate is implicit in the proof of (4.2.13):

E(I4) ≤
∞∑

j=0
|λj|P (Anj

) 1
2 ∥g∥BMO(Ω)∥aj∥2 ≲ ∥fh∥h1(Ω)∥g∥BMO(Ω). (4.2.15)

By combining (4.2.14) and (4.2.15), we deduce that

∥I2∥LΦ(Ω) ≲ ∥fh∥h1(Ω)∥g∥BMO(Ω). (4.2.16)

In conclusion, by (4.2.13) and (4.2.16) we get

∥Π3(fh, g)∥HΦ(Ω) ≲ ∥fh∥h1(Ω)∥g∥BMO(Ω). (4.2.17)

It remains to deal with Π3(fd, g). Note that

S(Π3(fd, g)) =
( ∞∑

k=1
|gk−1|2|dkf

d|2
) 1

2

≤
∞∑

k=1
|gk−1||dkf

d|

≤
∞∑

k=1
|gk−1 − g||dkf

d| + |g|
( ∞∑

k=1
|dkf

d|
)
.

By Lemma 1.3.18,∥∥∥∥∥g
( ∞∑

k=1
|dkf

d|
)∥∥∥∥∥

LΦ(Ω)
≲

( ∞∑
k=1

∥dkf
d∥1

)
∥g∥BMO(Ω) = ∥fd∥h1

d
(Ω)∥g∥BMO(Ω). (4.2.18)

For the remaining term, we have

E
( ∞∑

k=1
|gk−1 − g||dkf

d|
)

= E
( ∞∑

k=1
|dkf

d|Ek|gk−1 − g|
)

≤ ∥g∥BMO(Ω)

( ∞∑
k=1

∥dkf
d∥1

)

and so
E
( ∞∑

k=1
|gk−1 − g||dkf

d|
)

≤ ∥fd∥h1
d
(Ω)∥g∥BMO(Ω). (4.2.19)

Hence, by (4.2.18) and (4.2.19), we get

∥Π3(fd, g)∥HΦ(Ω) ≲ ∥fd∥h1
d
(Ω)∥g∥BMO(Ω). (4.2.20)

By (4.2.17) and (4.2.20), we obtain

∥Π3(f, g)∥HΦ(Ω) ≲
(
∥fh∥h1(Ω) + ∥fd∥h1

d
(Ω)

)
∥g∥BMO(Ω).

Thus we conclude from (4.2.3) that

∥Π3(f, g)∥HΦ(Ω) ≲ ∥f∥H1(Ω)∥g∥BMO(Ω). (4.2.21)

This completes the proof of Theorem III.1
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4.2.4 Another method for handling Π3(f, g)
In this section we present a different method for dealing with Π3(f, g), which is much

neater and simpler than the one presented above. The proof relies on the following
theorem which has been shown in [43].

Theorem 4.2.2. If g ∈ BMO(Ω) with g0 = 0, then (g∗)0 ≲ ∥g∥BMO(Ω) and g∗ ∈
BMO(Ω). Moreover, ∥g∗∥BMO(Ω) ≲ ∥g∥BMO(Ω).

We begin with a pointwise estimate for S(Π3(f, g)). Towards this aim, note that
dk(Π3(f, g)) = gk−1dkf , which implies that

S(Π3(f, g)) =
( ∞∑

k=1
|gk−1|2|dkf |2

) 1
2

≤ |g∗|S(f) ≤ J1 + J2,

where
J1 := |g∗ − (g∗)0|S(f) and J2 := S(f)∥g∥BMO(Ω).

Clearly,
∥J2∥LΦ(Ω) ≲ ∥J2∥1 ≲ ∥f∥H1(Ω)∥g∥BMO(Ω). (4.2.22)

By Theorem 4.2.2 and Lemma 1.3.18, we deduce that

∥J1∥LΦ(Ω) ≲ ∥g∗∥BMO(Ω)∥S(f)∥1 ≲ ∥f∥H1(Ω)∥g∥BMO(Ω). (4.2.23)

Recall that S(Π3(f, g)) ≤ J1 + J2. By combining (4.2.22) with (4.2.23), we conclude that

∥Π3(f, g)∥HΦ(Ω) = ∥S(Π3(f, g))∥LΦ(Ω) ≲ ∥f∥H1(Ω)∥g∥BMO(Ω),

as desired.

4.3 Bilinear decompositions on Hp(Ω) × Λ1(αp) for 0 <
p < 1

In this section, we give a proof of Theorem III.2. Arguing as in the proof of Theorem
III.1, it suffices to establish appropriate estimates for the bilinear operators Π1, Π2 and
Π3.

Let (Ω,F , P ) be a fixed probability space. If we consider the filtration F0 = {∅,Ω}
and Fk = F for all k ≥ 1, then Hp(Ω) = Lp(Ω) for 0 < p < ∞. It is well-known that
(Lp(Ω))∗ ̸= {0} if and only if the probability space (Ω,F , P ) contains at least one atom
with non-zero measure when 0 < p < 1. This means that (Hp(Ω))∗ = {0} may occur.
Therefore, we choose to deal with regular martingales where every Fk is generated by
countably many atoms.

To prove Theorem III.2, we start with the following lemma, which holds for general
martingales that are not necessarily regular. Its proof is based on Doob’s maximal in-
equality combined with the fact that on a probability space if a sublinear operator is of
weak-type (1, 1) then it maps L1(Ω) to Lp(Ω) for p ∈ (0, 1). This shall be familiar to the
experts in the area, but we will enclose the proof here for the sake of completeness.
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Lemma 4.3.1. For any 0 < p < 1, we have

∥f∥Hp
m(Ω) ≤

( 1
1 − p

) 1
p ∥f∥1

for all f ∈ L1(Ω). In particular, L1(Ω) can be regarded as a subspace of Hp
m(Ω).

Proof. By Doob’s maximal inequality, for any f ∈ L1(Ω) and for any λ > 0 we have

P (f ∗ > λ) ≤ 1
λ

∫
{f∗>λ}

|f |dP. (4.3.1)

Without loss of generality, we may assume ∥f∥1 ≤ 1. Then

∥f ∗∥p
p =

∫
Ω

|f ∗|pdP = p
∫ ∞

0
P (|f ∗| > λ)λp−1dλ

= p
∫ 1

0
P (f ∗ > λ)λp−1dλ+ p

∫ ∞

1
P (f ∗ > λ)λp−1dλ

≤ p
∫ 1

0
λp−1dλ+ p

∫ ∞

1

1
λ

(∫
{f∗>λ}

|f |dP
)
λp−1dλ

= 1 + p
∫

{f∗>1}
|f |
(∫ f∗

1
λp−2dλ

)
dP

= 1 + p

1 − p

∫
{f∗>1}

|f |
(
1 − |f ∗|p−1

)
dP

≤ 1 + p

1 − p

∫
{f∗>1}

|f |dP ≤ 1
1 − p

.

This implies that for any f ∈ L1(Ω), one has the desired result.

For regular martingales, L1(Ω) can be regarded as a subspace of Hp
m(Ω) = Hp(Ω) =

hp(Ω). In what follows, the martingales are always assumed to be regular and every Fk

is generated by countable atoms.

Corollary 4.3.2. For 0 < p < 1 and 1 ≤ q ≤ ∞, Hp(Ω) = Hp,q
at (Ω).

Proof. By considering the aforementioned atomic decomposition of Hp(Ω) and Definition
4.1.2, we have Hp(Ω) = Hp,∞

at (Ω). It is easy to see Hp,∞
at (Ω) ⊂ Hp,q

at (Ω) ⊂ Hp,1
at (Ω). It thus

suffices to show that Hp,1
at (Ω) ⊂ Hp(Ω). By Lemma 4.3.1, if a is a simple (p, 1)-atom, then

∥a∥Hp(Ω) ≲p ∥a∥1,

which implies that a ∈ Hp(Ω). Hence, Hp,1
at (Ω) ⊂ Hp(Ω) and so, Hp(Ω) = Hp,q

at (Ω).

4.3.1 Characterization of martingale Lipschitz spaces
In this subsection, we give a characterization of martingale Lipschitz spaces that ap-

pears to be useful in our argument.
Recall the definition of martingale Lipschitz spaces mentioned in (1.3.2). The following

result is classical and had been obtained by Meyers in [68] using the definition of Λ1(αp).
Here we provide a proof based on Lemma 4.3.1 and duality.
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Corollary 4.3.3. For any g ∈ Λ1(αp) with g0 = 0, we have ∥g∥∞ ≲p ∥g∥Λ1(αp).

Proof. By duality and Lemma 4.3.1, for any f ∈ L2(Ω) which is a dense subspace of
L1(Ω),

|E
(
fg
)
| ≲p ∥f∥Hp∥g∥Λ1(αp) ≲p ∥f∥1∥g∥Λ1(αp).

The above estimate together with the fact
(
L1
(
Ω))∗ = L∞(Ω) yields

∥g∥∞ ≲p ∥g∥Λ1(αp),

which finishes the proof.

By virtue of Corollary 4.3.3, we have the following property of martingale Lipschitz
spaces.

Theorem 4.3.4. If g ∈ Λ1(αp), we have ∥1A · |g − gn|∥∞ ≲p P (A)αp∥g∥Λ1(αp), for any
n ∈ N and any A ∈ Fn.

Proof. Note that when P (A) = 0, the desired result holds trivially. Fix n ∈ N and A ∈ Fn

with P (A) ̸= 0. For k ≥ 0, let FA
k := {B ∈ Fk+n : B ⊂ A}. Note that the union FA of

all FA
k is exactly {B ∈ F|B ⊂ A}. Hence, if we define

PA(B) := P (B)
P (A) (B ∈ FA)

then (A,FA, PA) is a probability space. Note that for any g ∈ L1(A,FA, PA) one has

E(g|FA
k ) = 1A · E(g|Fk+n).

Denote E(·|FA
k ) by EA

k . It is easy to verify {EA
k (g)}k≥0 is also a regular martingale on

(A,FA, PA). If g ∈ Λ1(αp), then for B ∈ FA
k with P (B) ̸= 0,

PA(B)−1−αp

(∫
B

|g − EA
k (g)|dPA

)
= P (A)αp

(
P (B)−1−αp

(∫
B

|g − gk+n|dP
))

≤ P (A)αp∥g∥Λ1(αp)

which, by Corollary 4.3.3, implies that

∥1A · |g − gn|∥∞ = ∥1A · |g − EA
0 (g)|∥∞ ≲p P (A)αp∥g∥Λ1(αp).

This completes the proof of the theorem.

Remark 4.3.5. By Theorem 4.3.4 and (1.3.2), we conclude that for g ∈ Λ1(αp) we have
the characterization

∥g∥Λ1(αp) ≈p sup
n≥0

sup
A∈Fn

P (A)−αp∥1A · |g − gn|∥∞. (4.3.2)

Remark 4.3.6. By Remark 4.3.5, we see for q ∈ [1,∞)

Λ1(αp) = Λq(αp).
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4.3.2 Proof of Theorem III.2
We first note that L2

fin(Ω) defined by (4.2.2) is dense in (L2(Ω), ∥ · ∥Hp(Ω)) and hence,
L2

fin(Ω) can be regarded as a dense subspace of Hp(Ω). Recall that for any f ∈ Hp(Ω) and
g ∈ Λ1(αp), the product f×g is defined in the sense of duality: for any h ∈ L∞(Ω)∩Λ1(αp),

⟨f × g, h⟩ := ⟨h · g, f⟩.

It follows from the definition of Hp(Ω) and the duality between Hp(Ω) and Λ1(αp) that for
any (equivalence class) f ∈ Hp(Ω) and for any (Cauchy) sequence of functions (fm)m≥1
in L2

fin(Ω) that corresponding to f one has

⟨h · g, f⟩ = lim
m→∞

⟨h · g, fm⟩.

Consider a function fm in the sequence (fm)m≥1, with (fm)m≥1 being in the equivalent
class of f . For n ∈ N, we write

⟨h · g, fm⟩ = ⟨h · g, fm − (fm)n⟩ + ⟨h · (g − gn), (fm)n⟩ + ⟨h · gn, (fm)n⟩.

Since h is a pointwise multiplier of Λ1(αp) (cf. [71]), it follows that

lim
n→∞

|⟨h · g, (fm) − (fm)n⟩| = 0 and lim
n→∞

|⟨h · (g − gn), (fm)n⟩| = 0.

Recall that in our setting (fm)0 = g0 = 0. Hence

⟨h · g, fm⟩ = lim
n→∞

⟨h · gn, (fm)n⟩ = lim
n→∞

⟨h ·
n∑

k=1
dkg,

n∑
k=1

dkf
m⟩

By employing the estimates proved in Subsections 4.3.2 and 4.3.2 below, it follows that
that the limits

lim
n→∞

n∑
k=1

⟨h · dkg, dkf
m⟩, lim

n→∞

n∑
k=1

⟨h · dkg, (fm)k−1⟩, lim
n→∞

n∑
k=1

⟨h · gk−1, dkf
m⟩

exist and hence,

⟨h · g, fm⟩ = lim
n→∞

n∑
k=1

⟨h · dkg, dkf
m⟩ + lim

n→∞

n∑
k=1

⟨h · dkg, (fm)k−1⟩ + lim
n→∞

n∑
k=1

⟨h · gk−1, dkf
m⟩.

Since (fm)m≥1 is Cauchy with respect to the Hp-norm, by appealing again to the estimates
of Subsections 4.3.2 and 4.3.2 that the limits

lim
m→∞

lim
n→∞

n∑
k=1

⟨h·dkg, dkf
m⟩, lim

m→∞
lim

n→∞

n∑
k=1

⟨h·dkg, (fm)k−1⟩, lim
m→∞

lim
n→∞

n∑
k=1

⟨h·gk−1, dkf
m⟩

exist. We may thus set

⟨Π1(f, g), h⟩ := lim
m→∞

lim
n→∞

n∑
k=1

⟨h · dkg, dkf
m⟩ = lim

m→∞
lim

n→∞

n∑
k=1

⟨h, dkgdkf
m⟩,

⟨Π2(f, g), h⟩ := lim
m→∞

lim
n→∞

n∑
k=1

⟨h · dkg(fm)k−1⟩ = lim
m→∞

lim
n→∞

n∑
k=1

⟨h, dkg(fm)k−1⟩,
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and

⟨Π3(f, g), h⟩ := lim
m→∞

lim
n→∞

n∑
k=1

⟨h · gk−1, dkf
m⟩ = lim

m→∞
lim

n→∞

n∑
k=1

⟨h, gk−1dkf
m⟩.

Note that, by appealing again to the estimates in Subsections 4.3.2 and 4.3.2, one
can show that the value of ⟨Πi(f, g), h⟩, i = 1, 2, 3, is independent of the choice of the
sequence in L2

fin(Ω) that corresponding to f .
It thus suffices to prove the boundedness of the bilinear operators Π1, Π2 and Π3

restricted on
(
L2

fin(Ω), ∥ · ∥Hp(Ω)
)

× Λ1(αp). Moreover, if f ∈ L2
fin(Ω) and g ∈ Λ1(αp), then

f × g = Π1(f, g) + Π3(f, g) + Π3(f, g) =
∞∑

k=1
dkgdkf +

∞∑
k=1

dkgfk−1 +
∞∑

k=1
gk−1dkf

in the sense of duality from the above calculation. Hence, when we restrict ourselves to
the case L2

fin(Ω) × Λ1(αp), the above product becomes the usual multiplication between
measurable functions and Π1, Π2 and Π3 coincide with the corresponding operators in the
p = 1 case.

As in the proof of Theorem III.1, we divide the proof into three parts.

Estimates for Π1(f, g) and Π3(f, g)

The boundedness of Π1 from Hp(Ω)×Λ1(αp) to L1(Ω) follows directly from the duality
between Hp(Ω) and Λ1(αp). We include the sketch of the proof here for the sake of
completeness. Similarly as the argument in Section 4.2.1, it suffices to consider the case
where f = a where a is a simple (p, 2)-atom with the support A ∈ Fn and P (A) > 0.
Then dka = 1Adka when k ≥ n+ 1.

By applying the Cauchy-Schwarz inequality, we derive the estimate

∥Π1(a, g)∥1 = E

∣∣∣∣∣∣
∞∑

k=n+1
1Adkadkg

∣∣∣∣∣∣


≤

E
 ∞∑

k=n+1
|dka|2

 1
2
E

 ∞∑
k=n+1

1A|dkg|2
 1

2

≤ ∥a∥2

EEn

 ∞∑
k=n+1

1A|dkg|2
 1

2

≤ P (A)
1
2 − 1

p

E
1AEn

 ∞∑
k=n+1

|dkg|2
 1

2

= P (A)
1
2 − 1

p

(
E
(
1AEn

(
|g − gn|2

))) 1
2

≤ P (A)
1
2 − 1

pP (A) 1
2 +αp∥g∥Λ2(αp) = ∥g∥Λ2(αp) ≲p ∥g∥Λ1(αp)

where the fourth inequality follows from the definition of the atom.
If f ∈ L2

fin(Ω), then it admits an atomic decomposition, namely, there exist aj which
are simple (p, 2)-atoms and (λj)j≥0 ∈ ℓp such that,

fn =
∞∑

j=0
λjEn(aj), a.e. for all n ∈ N,

and

∥f∥Hp(Ω) ≈p

 ∞∑
j=1

|λj|p
 1

p

.
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We have
Π1(fn, gn) =

n∑
k=1

dkgdkf =
∞∑

j=0
λj

n∑
k=1

dkgdka
j =

∞∑
j=0

λjΠ1(aj, g).

Thus

∥Π1(f, g)∥1 ≤
∞∑

j=0
|λj|∥Π1(aj, g)∥1 ≲p ∥g∥Λ1(αp)

 ∞∑
j=1

|λj|p
 1

p

≈p ∥f∥Hp(Ω)∥g∥Λ1(αp).

We shall also prove that Π3 is a bounded bilinear operator from Hp(Ω) × Λ1(αp) to
Hp(Ω). Without loss of generality, we consider f ∈ L2

fin ⊂ Hp(Ω). Note that

S(Π3(f, g))2 =
∞∑

k=1
|gk−1|2|dkf |2 ≤ (g∗)2S(f)2. (4.3.3)

Hence we conclude from Corollary 4.3.3 and the L∞ boundedness of the maximal function
(see. e.g. [43, Lemma I.4.2]) that

∥Π3(f, g)∥p
Hp(Ω) ≲ ∥g∗∥p

∞E(S(f)p) ≤ ∥g∥p
∞∥f∥p

Hp(Ω) ≲p ∥f∥p
Hp(Ω)∥g∥

p
Λ1(αp), (4.3.4)

as desired.

Estimates for Π2(f, g).

To show that Π2 is a bounded bilinear operator from Hp(Ω) × Λ1(αp) to H1(Ω), it
suffices to show the boundedness restricted on the dense subspace L2

fin(Ω).
By a similar argument in Section 4.3.2, one can show that it suffices to focus on Π2

acting on atoms. In particular,

S(Π2(aj, g)) =
 ∞∑

k=nj+1
1Anj

|aj
k−1|2|dkg|2

 1
2

≤ |(aj)∗|

 ∞∑
k=nj+1

1Anj
|dkg|2

 1
2

. (4.3.5)

Hence,

E
[
S(Π2(aj, g))

]
≤ ∥(aj)∗∥∞

E
1Anj

∞∑
k=nj+1

|dkg|2
 1

2


≤ ∥aj∥∞

P (Anj
)
E ∞∑

k=nj+1
|dkg|2

 1
2

≤ P (Anj
)− 1

p

(
P (Anj

)∥g∥2
Λ2(αp)P (Anj

)1+2αp

) 1
2

= ∥g∥Λ2(αp)P (Anj
)− 1

pP (Anj
)1+αp

≤ ∥g∥Λ2(αp) ≲p ∥g∥Λ1(αp),

where the last inequality follows from the condition that αp = 1/p − 1. Follow a similar
argument of the estimate of Π1(f, g), as a consequence of the above estimates, we have
that

∥Π2(f, g)∥p
H1(Ω) ≤

∞∑
j=1

|λj|p
[
ES(Π2(aj, g))

]p
≲p ∥f∥p

Hp(Ω)∥g∥
p
Λ1(αp). (4.3.6)

This completes the proof of the theorem.
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Chapter 5

Bilinear decompositions on
homogeneous spaces

This chapter is devoted to extending Theorem III.1 and Theorem III.2 to spaces of
homogeneous type. Our approach is on the basis of the existence of dyadic systems on
spaces of homogeneous type developed by Hytönen and Kairema in [49]. We also show
that Hp

at(µ) for 0 < p ≤ 1 is some finite sum of several dyadic martingale Hardy spaces
on homogeneous spaces.

5.1 Dyadic systems on homogeneous spaces

In this section, we start with introducing dyadic systems on homogeneous spaces,
which first appeared in the work of Hytönen and Kairema [49]. With the help of these
dyadic structures, we then show that Hp

at(µ) is exactly the finite sum of martingale Hardy
spaces associated with some adjacent dyadic martingales, which extends Mei’s result [65]
to homogeneous spaces.

The following theorem concerning the existence of dyadic structures is due to Hytönen
and Kairema [49].

Theorem 5.1.1. Let Ω be a homogeneous space. Suppose that the constants 0 < c0 ≤
C0 < ∞ and δ ∈ (0, 1) satisfy

12A3
0C0δ ≤ c0,

where A0 is specified in the definition of quasi-metric, see (1.5.1).
Given a set of reference points {zk

α}α, α ∈ Ak (an index set), for every k ∈ Z, with
the properties that

d(zk
α, z

k
β) ≥ c0δ

k, (α ̸= β) min
α
d(x, zk

α) < C0δ
k, for all x ∈ Ω,

one can construct families of sets Q̃k
α ⊆ Qk

α ⊆ Q̄k
α, called open, half-open and closed dyadic
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cubes respectively, such that:

Q̃k
α and Q̄k

αare the interior and closure of Qk
α; (5.1.1)

if k ≤ l, then either Ql
β ⊆ Qk

α or Ql
β ∩Qk

α = ∅; (5.1.2)
X =

⋃
α

Qk
α (disjoint union) for all k ∈ Z; (5.1.3)

B(zk
α, c1δ

k) ⊆ Qk
α ⊆ B(zk

α, C1δ
k) =: B(Qk

α),
where c1 = (3A2

0)−1c0 and C1 = 2A0C0; (5.1.4)
if k ≤ l and Ql

β ⊆ Qk
α, then B(Ql

β) ⊆ B(Qk
α). (5.1.5)

The open and closed cubes Q̃k
α and Q̄k

α depend only on the points zl
β for l ≥ k. The half-

open cubes Qk
α depend on zl

β for l ≥ min(k, k0), where k0 ∈ Z is a preassigned number
entering the construction.

It is obvious that the construction of the above dyadic systems is not unique, and
it depends on the set of the reference points {zk

α}α. We denote this dyadic system by
D = {Qk

α}k,α. Let Fk = σ({Qk
α}α) be the σ-algebra generated by {Qk

α}α. Then it is clear
that

· · · ⊂ Fk−1 ⊂ Fk ⊂ · · · ,

which implies that {Fk}k∈Z is a filtration generated by atoms. Let F = σ(∪k∈ZFk). Note
that each Qk

α is an atom of Fk.
Remark 5.1.2. The standard dyadic grid on the real line is a dyadic system given by

Fk = {[2−km, 2−k(m+ 1)) : m ∈ Z} for all k ∈ Z.

Similarly, an example of a dyadic system on Rn is given by the family of standard dyadic
cubes in Rn.

The following theorem ensures that there exist enough dyadic cubes to cover all balls
on homogeneous spaces, which can be found in [49].

Theorem 5.1.3. Given a set of reference points {zk
α}, k ∈ Z, α ∈ Ak, suppose that there

exists constant δ ∈ (0, 1) that satisfies 96A6
0δ ≤ 1. Then there exists a finite collection of

families D t, t = 1, 2, · · · , K = K(A0, A1, δ) < ∞, where each D t is a collection of dyadic
cubes, associated to dyadic points {zk

α}, k ∈ Z, α ∈ Ak, with the properties (5.1.1)-(5.1.5)
in Theorem 5.1.1.

In addition, the following property is satisfied:

for every B(x, r) ⊆ Ω, there exist t and Q ∈ D t such that
B(x, r) ⊆ Q and diam(Q) ≤ Cr. (5.1.6)

The constant C < ∞ in (5.1.6) only depends on the quasi-metric constant A0 and the
parameter δ.

We will provide the definition of the martingale BMO and Lipschitz spaces with respect
to the dyadic system D , which can be perceived as the dyadic variants of the BMO and
Lipschitz spaces introduced in Definition 1.5.3 and 1.5.4.
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Definition 5.1.4. For 0 < p < 1, q = 1 or 2 and αp = 1/p− 1, define

BMOD(µ) :=
{
f ∈ L1

loc(Ω, µ) : ∥f∥BMOD(µ) := sup
Q∈D

1
µ(Q)

∫
Q

|f − fQ| dµ < ∞
}
,

ΛD
q (αp) :=

{
f ∈ L1

loc(Ω, µ) : ∥f∥ΛD
q (αp) := sup

Q∈D
µ(Q)− 1

q
−αp

(∫
Q

|f − fQ|q dµ
) 1

q

< ∞
}
,

as quotient spaces modulo constant functions.

Note that ΛD
1 (αp) = ΛD

2 (αp), for which we will provide a brief explanation, and more
details can be found in [93, Corollary 1]. One first observes that ΛD

2 (αp) ⊂ ΛD
1 (αp) by

Hölder’s inequality. For the reverse direction, for any f ∈ ΛD
1 (αp) and a cube Q ∈ D . By

the case of probability space, we obtain

µ(Q)− 1
2 −αp

(∫
Q

|f − fQ|2 dµ
) 1

2
≤ sup

R⊂Q∈D
µ(R)− 1

2 −αp

(∫
R

|f − fR|2 dµ
) 1

2

≲p sup
R⊂Q∈D

µ(R)−1−αp

∫
R

|f − fR| dµ ≤ ∥f∥ΛD
1 (αp).

This inequality holds independent of Q. Thus we obtain

∥f∥ΛD
2 (αp) ≲ ∥f∥ΛD

1 (αp).

Therefore ΛD
1 (αp) ⊂ ΛD

2 (αp).
The martingale BMO and Lipschitz spaces are closely related to the BMO and Lips-

chitz spaces (Definitions 1.5.3 and 1.5.4). In particular, the following theorem is proved
in [49], which is an extension of a result due to Mei [65]:

BMO(µ) =
K⋂

t=1
BMODt(µ). (5.1.7)

We will now establish an analogous result for Lαp(µ) (0 < p < 1).

Theorem 5.1.5. Let 0 < p < 1,

Lαp(µ) =
K⋂

t=1
ΛDt

2 (αp).

Proof. By Theorem 5.1.1, for any Q ∈ D t (and t = 1, 2, · · · , K), there exists a ball B
such that Q ⊂ B and µ(B) ≲ µ(Q). If f ∈ Lαp(µ), then for any x, y ∈ Q, we have

|f(x) − f(y)| ≤ ∥f∥Lαp (µ)µ(B)αp ≲ ∥f∥Lαp (µ)µ(Q)αp .

We thus have

∥f∥ΛDt
2 (αp) ≤ sup

Q∈Dt

µ(Q)− 1
2 −αp

(
µ(Q)−2

∫
Q

(∫
Q

|f(x) − f(y)| dµ(y)
)2

dµ(x)
) 1

2

≤ sup
Q∈Dt

µ(Q)− 1
2 −αp

(∫
Q

∥f∥2
Lαp (µ)µ (Q)2αp dµ

) 1
2

≲ ∥f∥Lαp (µ),
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which yields

Lαp(µ) ⊂
K⋂

t=1
ΛDt

2 (αp). (5.1.8)

Conversely, let f ∈
K⋂

t=1
ΛDt

2 (αp). By Theorem 4.3.4, for Q ∈ D t,

|f(x) − fQ| ≲ µ(Q)αp∥f∥ΛDt
2 (αp) ∀x ∈ Q,

which implies that for any x, y ∈ Q,

|f(x) − f(y)| ≲ µ(Q)αp∥f∥ΛDt
2 (αp). (5.1.9)

By Theorem 5.1.3, for any ball B ⊂ Ω, there exist t and Q ∈ D t such that B ⊂ Q and
µ(Q) ≲ µ(B). Then for any x, y ∈ B, by (5.1.9)

|f(x) − f(y)| ≲ µ(B)αp∥f∥ΛDt
2 (αp).

Thus
∥f∥Lαp (µ) ≲

K∑
t=1

∥f∥ΛDt
2 (αp),

which implies
K⋂

t=1
ΛDt

2 (αp) ⊂ Lαp(µ). (5.1.10)

The theorem follows from (5.1.8) and (5.1.10).

As in the probabilistic setting, one can also provide the definition of different martin-
gale Hardy spaces defined on homogeneous spaces. For f ∈ L1

loc(Ω,F , µ), the martingale
maximal function, the square function and the conditional square function of f associated
with (Fk)k∈Z are defined by

f ∗ := max
k∈Z

|fk|, S(f) :=
∑

k∈Z
|dkf |2

 1
2

and s(f) :=
∑

k∈Z
Ek−1|dkf |2

 1
2

,

respectively.
Definition 5.1.6. Let 0 < p ≤ 1. We first define

Hp
m,D ,0(µ) := {f ∈ L1(Ω) : f ∗ ∈ Lp(Ω)}.

For f ∈ Hp
m,D ,0(µ), we define the quasi-norm

∥f∥Hp
m,D(µ) := ∥f ∗∥p.

The martingale Hardy space Hp
m,D(µ) is defined as the completion of Hp

m,D ,0(µ) with
respect to the quasi-norm ∥ · ∥Hp

m,D(µ).
Similarly, we define Hp

D(µ) and hp
D(µ) by the square functions and the conditional

square functions respectively, with the additional assumption that

lim
n→−∞

∫
Ω

sup
k≤n

|fk|p dµ = 0. (5.1.11)

From (5.1.11), we have
lim

n→−∞
sup
k≤n

|fk| = 0.
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One natural question is whether the martingale Hardy spaces defined on homogeneous
spaces admit atomic decompositions, to which we will provide a positive answer.

Definition 5.1.7. If 0 < p ≤ 1 ≤ q ≤ ∞ and p < q, we say that a measurable function a
is a simple (p, q)-atom with respect to the dyadic system D (abbreviated as dyadic simple
(p, q)-atom if the underlying dyadic system is fixed) if

(1) supp(a) ⊂ Q where Q ∈ D is a dyadic cube;

(2) ∥a∥q ≤ (µ(B))
1
q

− 1
p ;

(3)
∫

Ω a dµ =
∫

Q a dµ = 0.

Definition 5.1.8. We define the martingale atomic Hardy spaces Hp,q
at,D(µ) (0 < p < 1 ≤

q ≤ ∞ or p = 1, 1 < q ≤ ∞) analogous to Definition 1.5.5 and 1.5.6, namely,

H1,q
at,D(µ) :=

f ∈
(
BMOD(µ)

)∗
: f =

∞∑
j=0

λja
j,

where aj is a simple (1, q)-atom and
∞∑

j=0
|λj| < ∞

 (5.1.12)

where f =
∞∑

j=0
λja

j is in terms of w∗-topology. And for 0 < p < 1,

Hp,q
at,D(µ) :=

f ∈
(
ΛD

2 (αp)
)∗

: f =
∞∑

j=0
λja

j,

where aj is a simple (p, q)-atom and
∞∑

j=0
|λj|p < ∞

 (5.1.13)

where f =
∞∑

j=0
λja

j is in terms of w∗-topology. The norm is identified as for 0 < p ≤ 1,

∥f∥Hp,q
at,D

= inf


 ∞∑

j=0
|λj|p

 1
p

: f =
∞∑

j=0
λja

j, where aj is a simple (p, q)-atom

 .
Remark 5.1.9. Since every dyadic simple (p, q)-atom is locally supported, by Corollary
4.3.2, we conclude that for 0 < p < 1 ≤ q ≤ ∞ or p = 1, 1 < q ≤ ∞

Hp,q
at,D(µ) = Hp,∞

at,D(µ).

Thus we are only concerned with Hp
at,D(µ) := Hp,∞

at,D(µ).
The following proposition states that the martingale Hardy spaces introduced in Def-

inition 5.1.6 admit atomic decompositions.

Proposition 5.1.10. For 0 < p ≤ 1, the martingale Hardy spaces defined above are
mutually equivalent. Namely, Hp

D(µ) = Hp
m,D(µ) = hp

D(µ) = Hp
at,D(µ).
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Proof. Let p ∈ (0, 1] be fixed. First, we show Hp
D(µ) = Hp

m,D(µ). Suppose that f ∈
Hp

m,D(µ). Then for any n > 0, by a well-known inequality of Burkholder–Davis–Gundy,

∫
Ω

|f−n|2 +
n∑

k=−n+1
|dkf |2


p
2

dµ ≲
∫

Ω
sup

−n≤k≤n
|fk|p dµ ≲

∫
Ω

|f ∗|p dµ.

Now by letting n → ∞ and by Fatou’s lemma, we conclude that

∥S(f)∥p ≲ ∥f ∗∥p.

Thus Hp
m,D(µ) ⊂ Hp

D(µ).
Conversely, if f ∈ Hp

D(µ), then for n > 0,

∫
Ω

sup
−n≤k≤n

|fk|p dµ ≲
∫

Ω

|f−n|2 +
n∑

k=−n+1
|dkf |2


p
2

dµ,

and hence ∫
Ω

sup
−n≤k≤n

|fk|p dµ ≲
∫

Ω
sup

k≤−n
|fk|p dµ+

∫
Ω

|S(f)|p dµ < ∞. (5.1.14)

Then by letting n → ∞ and applying Fatou’s lemma, we obtain ∥f ∗∥p < ∞ and

∥f ∗∥p ≲ ∥S(f)∥p.

Therefore, Hp
D(µ) ⊂ Hp

m,D(µ) and Hp
m,D(µ) = Hp

D(µ).
One shows Hp

m,D(µ) = hp
D(µ) in a completely analogous way. To show hp

D(µ) =
Hp

at,D(µ), it suffices to show that if f ∈ L1
loc(Ω) ∩ hp

D(µ), then f ∈ Hp
at,D(µ). One can

mimic the standard way in the proof of [94, Theorem 2.5] to show that, and we omit the
details.

We now describe the duality between martingale atomic Hardy spaces and martingale
BMO and Lipschitz spaces, namely(

H1
at,D(µ)

)∗
= BMOD(µ), (5.1.15)

and for 0 < p < 1, (
Hp

at,D(µ)
)∗

= ΛD
q (αp). (5.1.16)

We will provide a sketch of the proof for the duality between H1
at,D(µ) and BMOD(µ).

The case p < 1 follows an analogous strategy. More details can be found in the argument
for Theorem 4 in [93]. By definition of H1

at,D(µ), we know that any function g ∈ BMOD(µ)
induces a linear functional on H1

at,D(µ). In turn, let ℓ be a linear functional on H1
at,D(µ),

the norm is denoted by ∥ℓ∥. Let Qn ∈ F−n be a finite union of cubes. Recall that
BMO(Qn) is the martingale BMO space in the Definition 1.3.9. Denote by

H1
at(Qn) =

{
f ∈ H1

at,D(µ) : supp f ⊂ Qn

}
.

For any f ∈ H1
at,D(µ) supported in Qn, and En(f) = 0. We know that f ∈ H1

at(Qn). Then
we obtain from the probability case that there exists a function g ∈ BMO(Qn) such that

ℓ(f) =
∫

Qn

f1Qng dµ =
∫

Ω
fg1Qn dµ. (5.1.17)
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Moreover, we have ∥g1Qn∥BMO(Qn) ≲ ∥ℓ∥. The function g is uniquely determined up to
a constant. We follow an analogous argument of [27, Section 3]. Let {Qn}n≥1 be an
increasing sequence where Qn ∈ F−n such that 1Qn converges to 1 pointwisely. Then we
obtain a function gn = g on each cube Qn such that (5.1.17) holds. Thus the condition
E1 (g1Q1) = 0 gives a function g such that (5.1.17) holds for each cube Q in D . Moreover,

1
µ(Q)

∫
Q

|g − gQ| dµ ≤ ∥g1Q∥BMO(Q) ≲ ∥ℓ∥.

Thus we conclude g ∈ BMOD(µ), which implies the linear functional ℓ can be expressed
as a function in BMOD(µ).

By virtue of Proposition 5.1.10 and Theorem 5.1.3, we have the following theorem,
which reveals the relation between atomic Hardy spaces and martingale (atomic) Hardy
spaces and extends Mei’s result in [65].

Theorem 5.1.11. For 0 < p ≤ 1, we have

Hp
at(µ) =

K∑
t=1

Hp
at,Dt(µ) =

K∑
t=1

Hp
Dt(µ) =

K∑
t=1

Hp
m,Dt(µ) =

K∑
t=1

hp
Dt(µ). (5.1.18)

Proof. Let p ∈ (0, 1] be fixed. In view of Proposition 5.1.10, it suffices to show Hp
at(µ) =

K∑
t=1

Hp
at,Dt(µ). We prove it via comparing the atoms. Let a be a (p,∞)-atom in Hp

at(µ).
Then there exists a ball B such that

supp(a) ⊂ B, ∥a∥∞ ≤ (µ(B))− 1
p ,

∫
B
a(x) dµ = 0.

By Theorem 5.1.3, there exist t and a cubeQ ∈ D t such thatB ⊂ Q, and µ(Q) ≲ µ(B).
Then

supp(a) ⊂ B ⊂ Q, ∥a∥∞ ≤ (µ(B))− 1
p ≲ (µ(Q))− 1

p ,
∫

Q
a dµ = 0,

which implies that a is a constant multiple of a simple (p,∞)-atom in Hp
at,Dt(µ).

Now we derive the desired result from atoms. We only prove the case 0 < p < 1 while
the case p = 1 follows a similar argument. By definition, for any f ∈ Hp

at(µ), there exists
a sequence of real numbers {λj}j≥0 and (p,∞)-atoms aj such that for any reasonable
g ∈ Lαp(µ),

⟨f, g⟩ =
∞∑

j=0
λj⟨aj, g⟩. (5.1.19)

It is clear that this series is absolutely convergent.
The aforementioned result shows that we can separate the set of atoms {aj} into K

parts, the t-th part is denoted by
{
at

nj

}
. Each part

{
at

nj

}
only consists of simple (p,∞)-

atoms associated with dyadic system D t (1 ≤ t ≤ K) respectively. Then we define the
following functions

f t =
∞∑

j=0
λt

nj
at

nj
, t = 1, 2, · · · , K.
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The series converges w∗ in
(
ΛDt

2 (αp)
)∗

, respectively. Here λt
nj

is the coefficient accompa-
nying with the atom at

nj
in (5.1.19). Then we can rearrange the series in (5.1.19). We

obtain
⟨f, g⟩ =

K∑
t=1

∞∑
j=0

λt
nj

⟨at
nj
, g⟩ =

K∑
t=1

⟨f t, g⟩,

since g ∈ ΛDt

2 (αp) for all 1 ≤ t ≤ K due to Theorem 5.1.5. Moreover,

∥f∥Hp
at(µ) ≈

 ∞∑
j=0

|λj|p
 1

p

≈
K∑

t=1

 ∞∑
j=0

|λt
nj

|p
 1

p

≈
K∑

t=1
∥f t∥Hp

at,Dt (µ).

Thus we conclude
Hp

at(µ) ⊂
K∑

t=1
Hp

at,Dt(µ). (5.1.20)

For any t = 1, 2, · · · , K and for any given simple (p,∞)-atom b in Hp
at,Dt(µ), there

exists Q ∈ D t such that

supp(b) ⊂ Q, ∥b∥∞ ≤ (µ(Q))− 1
p ,

∫
Q
b dµ = 0.

By Theorem 5.1.1, there exists a ball B such that Q ⊂ B and µ(Q) ≳ µ(B). Hence

supp(b) ⊂ Q ⊂ B, ∥b∥∞ ≤ (µ(Q))− 1
p ≲ (µ(B))− 1

p ,
∫

B
b dµ = 0,

which implies that a multiple of b is also a (p,∞)-atom in Hp
at(µ). Thus by applying a

similar argument as before, we conclude

K∑
t=1

Hp
at,Dt(µ) ⊂ Hp

at(µ). (5.1.21)

We combine (5.1.20) and (5.1.21) to complete the proof of the theorem.

Remark 5.1.12. Theorem 1.5.7 follows immediately from Corollary 4.3.2, Proposition
5.1.10 and Theorem 5.1.11, which provides an alternative approach to the original proof
by Coifman and Weiss in [27].
Remark 5.1.13. Theorem 5.1.11 and Theorem 5.1.5 give a different proof of Theorem 1.5.8
originally established by Coifman and Weiss [27]:

(Hp
at(µ))∗ =

(
K∑

t=1
Hp

at,Dt(µ)
)∗

=
K⋂

t=1
(Hp

at,Dt(µ))∗ =
K⋂

t=1
ΛDt

2 (αp) = Lαp(µ).

5.2 Bilinear decompositions for dyadic martingales
on homogeneous spaces

In this section, we focus on bilinear decompositions arising in the study of products
between elements in spaces of dyadic martingales on homogeneous spaces introduced in

94



5.2. Bilinear decompositions for dyadic martingales on homogeneous spaces

the previous section. In the setting of homogeneous spaces, due to their quasi-metrics and
measures, the dyadic martingales behave worse than martingales in probability spaces and
the underlying analysis is more intricate.

In Section 5.2.1 we prove appropriate generalized Hölder-type inequalities on homoge-
neous spaces (see Lemmas 5.2.2 and 5.2.4 below). We then introduce a class of pointwise
multipliers of ΛD

1,+(αp) and BMOD
+(µ); see Theorem 5.2.5 below. Using Theorem 5.2.5,

we define products between dyadic martingale Hardy spaces on homogeneous spaces and
their duals and finally, in Section 5.2.2 we establish analogues of the results of Sections
4.2 and 4.3 in the setting of homogeneous spaces.

5.2.1 A generalized Hölder-type inequality
Let 0 < p ≤ 1 and D be a dyadic system constructed as in Theorem 5.1.1. The

martingale Musielak–Orlicz Hardy spaces HΨp

D (µ) consist of all measurable functions f
on (Ω,F , µ) such that s(f) ∈ LΨp(Ω) where O ∈ Ω is a fixed point, and

Ψ1(x, t) := t

log (e+ d(x,O)) + log(e+ t) ,

Ψp(x, t) := t

1 + {t[1 + µ(B(O, d(x,O)))]}1−p (0 < p < 1).

Note that LΨp(Ω) is a quasi-normed space.
Let M := (Cµ + 1) log (e+ d(x,O)). By (1.3.6) we obtain

Ψ1(x, st) ≲ (e+ d(x,O))−(Cµ+1)et + s ≲ w(x)et + s, for all x ∈ Ω, s, t > 0, (5.2.1)

where w : Ω → R+ is a weight function with

w(x) ≲ min
{
1, d(x,O)−(Cµ+1)

}
. (5.2.2)

Let Q0 ∈ F0 be the dyadic cube such that O ∈ Q0. For g ∈ BMOD(µ), define

∥g∥BMOD
+ (µ) := sup

α∈A0

|gQ0
α

− gQ0 |
log (e+ d(z0

α, O)) + |gQ0| + ∥g∥BMOD(µ),

where Q0
α ∈ F0 is a dyadic cube with its center z0

α and A0 is the index set in Theorem 5.1.1.
Denote by BMOD

+(µ) the space consisting of all g ∈ BMOD(µ) such that ∥g∥BMOD
+ (µ) <

∞. It is not difficult to verify that ∥ · ∥BMOD
+ (µ) is a norm on BMOD

+(µ).
Remark 5.2.1. Note that if g ∈ BMO(µ), then g ∈ BMOD

+(µ). Moreover,

∥g∥BMOD
+ (µ) ≲ ∥g∥BMO(µ) + |gQ0|.

The proof is similar to the Euclidean setting, and we will sketch the proof. For
Q0 ∈ F0, there exists a ball B1 such that Q0 ⊂ B1 and |B1| ≲ |Q0|. Similar construction
can be performed with respect to Q0

α, and we will denote the corresponding ball by B2.
Therefore we have |gQ0

α
− gQ0| ≈ |gB2 − gB1 |. Moreover, we can normalize the radius of

B1 and B2 to be 1. Denote by d = d(z0
α, O). Then there exists a ball B with radius 2d

such that B1, B2 ⊂ B and

|gB2 − gB1| ≤ |gB2 − gB| + |gB − gB1| ≲ (1 + log d)∥g∥BMO(µ).

Combining this inequality into the definition of BMOD
+(µ), we obtain the desired result.
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We now introduce the following generalized Hölder inequality for L1(Ω,F , µ) and
BMOD

+(µ).

Lemma 5.2.2. If f ∈ L1(Ω,F , µ) and g ∈ BMOD
+(µ), then f · g ∈ LΨ1(Ω). Moreover,

∥fg∥LΨ1 (Ω) ≲ ∥f∥1∥g∥BMOD
+ (µ). (5.2.3)

Proof. Without loss of generality, assume ∥f∥1 ≤ 1, ∥g∥BMOD
+ (µ) ≤ 1 and gQ0 = 0. It

suffices to show that ∫
Ω

Ψ1(x, |f(x)g(x)|) dµ ≲ 1.

Let Sk := B(O,C0δ
k) \ B(O,C0δ

k+1) for k < 0 and S0 := B(O,C0), where δ ∈ (0, 1)
is the constant in Theorem 5.1.1. Then for each k ≤ 0, there exists a finite index subset
Bk ⊂ A0 such that B(O,C0δ

k) ⊂ ⋃
α∈Bk

Q0
α (where Q0

α ∈ F0) and

∑
α∈Bk

µ
(
Q0

α

)
= µ

 ⋃
α∈Bk

Q0
α

 ≤ µ
(
B(O, 2A0C0δ

k)
)
≲ δCµk.

Let s = ν−1|f(x)|, t = ν|g(x)| in (5.2.1). One has
∫

Ω
Ψ1(x, |f(x)g(x)|) dµ =

0∑
k=−∞

∑
α∈Bk

∫
Sk∩Q0

α

Ψ1(x, |f(x)g(x)|) dµ

≲
0∑

k=−∞

∑
α∈Bk

∫
Sk∩Q0

α

w(x)eν|g(x)| dµ+ ν−1∥f∥1.

Therefore, ∫
Ω

Ψ1(x, |f(x)g(x)|) dµ ≲ T1 + ν−1∥f∥1, (5.2.4)

where
T1 :=

0∑
k=−∞

∑
α∈Bk

∫
Sk∩Q0

α

w(x)eν

∣∣∣g(x)−g
Q0

α

∣∣∣
e

ν

∣∣∣gQ0
α

∣∣∣ dµ.
Let ν := min{κ,1}

2 > 0 (where κ is defined in Theorem 1.3.11). By (5.2.2) and Theorem
4.3.1, one has

T1 ≲
0∑

k=−∞

∑
α∈Bk

µ(Q0
α) (e+ d(z0

α, O))
1
2

δ(k+1)(Cµ+1)

≲
0∑

k=−∞

∑
α∈Bk

µ(Q0
α)δ k

2

δ(k+1)(Cµ+1) ≲
0∑

k=−∞

δCµkδ
k
2

δCµk+k

≲
0∑

k=−∞
δ− 1

2 k,

and hence
T1 ≲ 1. (5.2.5)

We combine (5.2.4), (5.2.5) and the fact that ν−1∥f∥1 ≲ 1, and the proof is complete.
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We consider the case 0 < p < 1. Define

∥g∥ΛD
1,+(αp) := sup

α∈A0

|gQ0
α

− gQ0|
1 + µ {B (O, d(z0

α, O))}αp
+ |gQ0| + ∥g∥ΛD

1 (αp),

Denote by ΛD
1,+(αp) the space consisting of all g ∈ ΛD

1 (αp) such that ∥g∥ΛD
1,+(αp) < ∞. It

is easy to verify that ∥ · ∥ΛD
1,+(αp) is a norm on ΛD

1,+(αp).

Remark 5.2.3. If we consider the dyadic martingales on Rn, by taking appropriate cubes
Q0 one can show that if g ∈ ΛD

1 (αp), then g ∈ ΛD
1,+(αp). Note that if g ∈ Lαp(µ), then

g ∈ ΛD
1,+(αp). Moreover,

∥g∥ΛD
1,+(αp) ≲ ∥g∥Lαp (µ) + |gQ0|.

The proof is similar to the case of BMOD
+(µ) (see Remark 5.2.1). We omit the details.

Next we present a generalized Hölder inequality for Lp(Ω,F , µ) and ΛD
1,+(αp) for 0 <

p < 1.

Lemma 5.2.4. If f ∈ Lp(Ω,F , µ) and g ∈ ΛD
1,+(αp) for 0 < p < 1, then f · g ∈ LΨp(µ).

Moreover,
∥fg∥LΨp (Ω) ≲ ∥f∥p∥g∥ΛD

1,+(αp). (5.2.6)

Proof. Without loss of generality, assume ∥f∥p ≤ 1, ∥g∥ΛD
1,+(αp) ≤ 1 and gQ0 = 0. It

suffices to show that ∫
Ω

Ψp(x, |f(x)g(x)|) dµ ≲ 1.

Take the same family of sets {Sk}k≤0 as above. From Theorem 4.3.4, we know that
for x ∈ Q0

α,

|g(x)| = |g(x) − gQ0| ≤
∣∣∣g(x) − gQ0

α

∣∣∣+ ∣∣∣gQ0
α

− gQ0

∣∣∣
≤
(
µ(Q0

α)
)αp + µ

{
B
(
O, d(z0

α, O)
)}αp + 1

≲ µ
(
B(O, 2A0C0δ

k)
)αp + 1.

Therefore
∫

Ω
Ψp(x, |f(x)g(x)|) dµ =

0∑
k=−∞

∑
α∈Bk

∫
Sk∩Q0

α

|g(x)||f(x)|
1 + {|g(x)||f(x)| [1 + µ (B(O, d(x,O))]}1−p dµ

≲
0∑

k=−∞

∑
α∈Bk

∫
Sk∩Q0

α

|g(x)|p|f(x)|p

1 + µ (B(O, d(x,O))1−p dµ

≲
0∑

k=−∞

∑
α∈Bk

∫
Sk∩Q0

α

µ
(
B(O, 2A0C0δ

k)
)αpp

+ 1
{1 + µ (B(O,C0δk+1)}1−p |f(x)|p dµ

≲ 1,

which finishes the proof.
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We are now about to present the analogues of the results in Sections 4.2 and 4.3
concerning bilinear decompositions for dyadic martingales on homogeneous spaces. We
first need to define the product between martingale Hardy spaces and their dual spaces
first. As in the probability setting, we regard the product in the sense of distribution as
follows: for 0 < p < 1,

⟨f × g, h⟩ := ⟨h · g, f⟩, f ∈ Hp
at,D(µ), g ∈ ΛD

1,+(αp),

where h is a test function such that h · g is in ΛD
1,+(αp). For p = 1, we may define the

product between H1
at,D(µ) and BMOD

+(µ) analogously. To this end, we need to introduce
some pointwise multipliers of ΛD

1,+(αp) and BMOD
+(µ).

Denote the space of test functions by H(αp) (0 < p ≤ 1), and a measurable function
h is a test function if it satisfies the following properties:

|h(x)| ≲ 1
(1 + µ(B(O, d(x,O)))αp) log(e+ d(x,O)) , ∀x ∈ Ω, (5.2.7)

and

|h(y) − h(z)| ≲ µ(B)αp

(1 + µ[B(O, 1 + r + d(cB, O))]αp) log(e+ r + d(cB, O)) (5.2.8)

whenever y, z are both contained in a ball B with center cB and radius r ≤ d(cB ,O)
2A0

+ 1.
It is obvious that H(αp) ⊂ L∞(Ω). The following theorem shows that if h ∈ H(αp),

then h is a pointwise multiplier of ΛD
1,+(αp).

Theorem 5.2.5. For 0 < p < 1 and any dyadic system D , H(αp) is a space of pointwise
multipliers of ΛD

1,+(αp). For p = 1, H(0) is a space of pointwise multipliers of BMOD
+(µ).

More precisely, for any g ∈ ΛD
1,+(αp) and h ∈ H(αp), we have

∥g · h∥ΛD
1,+(αp) ≲ ∥g∥ΛD

1,+(αp)

(
∥h∥L∞(Ω) + 1

)
,

and for any g ∈ BMOD
+(µ) and h ∈ H(0), we have

∥g · h∥BMOD
+ (µ) ≲ ∥g∥BMOD

+ (µ)

(
∥h∥L∞(Ω) + 1

)
.

Proof. First, we consider the case 0 < p < 1. Assume that g ∈ ΛD
1,+(αp) and h ∈ H(αp).

According to [70], it suffices to show that

sup
Q

|gQ|
µ(Q)αp+1

(∫
Q

|h(x) − hQ| dx
)
< ∞, (5.2.9)

where Q runs over all dyadic cubes in D .
If Q ⊂ Q0

β for some β ∈ A0, there exists a collection of cubes Q = Q0 ⊂ Q1 ⊂ · · · ⊂
QN = Q0

β such that there exists a universal constant 0 < δ
′
< 1 with µ(Qk−1) ≤ δ

′
µ(Qk).

Hence

|gQ − gQ0
β
| ≤

N∑
k=1

|gQk
− gQk−1| ≲

N∑
k=1

µ(Qk)αp∥g∥ΛD
1,+(αp)

≲ ∥g∥ΛD
1,+(αp)

N∑
k=1

∫ µ(Qk)

µ(Qk−1)
tαp−1dt

≲ µ(Q0
β)αp∥g∥ΛD

1,+(αp).
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Similarly, if Q0
β ⊂ Q, we have

|gQ − gQ0
β
| ≲ µ(Q)αp∥g∥ΛD

1,+(αp).

By Theorem 5.1.1, there exists a ball B, with center cB and radius r, such that Q ⊂ B
and µ(B) ≲ µ(Q).

If Q0
β ⊂ Q and r > d(O,cB)

2A0
+ 1, for any x ∈ B(O, r), we have d(cB, x) ≤ A0(d(cB, O) +

d(O, x)) < (2A2
0 + A0)r. Then µ(Q) ≳ µ(B) ≳ C

−(2A2
0+A0)

µ µ (B(O, r)) ≳ 1. Similarly, we
also have d(z0

β, O) < (2A2
0 + A0)r and µ

{
B
(
O, d(z0

β, O)
)}

≲ µ(B) ≲ µ(Q). Thus

|gQ|
µ(Q)αp+1

(∫
Q

|h(x) − hQ| dx
)
≲

|gQ − gQ0
β
| + |gQ0

β
− gQ0 | + |gQ0 |

µ(Q)αp
· ∥h∥L∞(Ω)

≲
µ(Q)αp + µ

{
B
(
O, d(z0

β, O)
)}αp + 1

µ(Q)αp
· ∥g∥ΛD

1,+(αp)∥h∥L∞(Ω)

≲ ∥g∥ΛD
1,+(αp)∥h∥L∞(Ω).

If Q0
β ⊂ Q and r ≤ d(O,cB)

2A0
+ 1, for any x ∈ B, we have d(x,O) ≤ A0(d(O, cB) + r),

then µ(Q) ≲ µ (B(O,A0(d(O, cB) + r)). Thus

|gQ|
µ(Q)αp+1

(∫
Q

|h(x) − hQ| dx
)
≲

|gQ − gQ0
β
| + |gQ0

β
− gQ0| + |gQ0|

µ(Q)αp+1

· µ(B)αp+1

(1 + µ[B(O, 1 + r + d(O, cB))])αp

≲

(
µ(Q)αp + µ

{
B
(
O, d(z0

β, O)
)}αp + 1

)
∥g∥ΛD

1,+(αp)

(1 + µ[B(O, 1 + r + d(O, cB))])αp

≲ ∥g∥ΛD
1,+(αp).

If Q ⊂ Q0
β, from Theorem 5.1.1, we can choose C0 sufficiently small such that C1 =

2A0C0 ≤ 1, then r ≤ C1 ≤ d(cB ,O)
2A0

+ 1. For any x ∈ Q0
β, we have d(O, x) ≤ A0(d(O, z0

β) +
C1). Then

µ(Q0
β) ≲ µ

{
B
(
O,A0(d(O, z0

β) + C1)
)}
.

By a calculation similar to the one presented above, we get the desired result.
Combining the above estimates, we finish our proof for 0 < p < 1. The case for p = 1

is similar.

Remark 5.2.6. Note that Theorem 5.2.5 holds for any dyadic system. Then from Theorem
5.1.5 and (5.1.7), we conclude that H(αp) is a space of pointwise multipliers of Lαp(µ)
and H(0) is a space of pointwise multipliers of BMO(µ).

5.2.2 Bilinear decompositions
We now state the theorem concerning bilinear decompositions for dyadic martingales

on homogenous spaces.
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Chapter 5. Bilinear decompositions on homogeneous spaces

Theorem 5.2.7. (1) There exist continuous bilinear operators Π1 : H1
D(µ)×BMOD

+(µ) →
L1(Ω), Π2 : H1

D(µ) ×BMOD
+(µ) → H1

D(µ) and Π3 : H1
D(µ) ×BMOD

+(µ) → HΨ1
D (µ) such

that
f × g = Π1(f, g) + Π2(f, g) + Π3(f, g)

for all f ∈ H1
D(µ) and g ∈ BMOD

+(µ).
(2) Let 0 < p < 1. There exist continuous bilinear operators Π1 : Hp

D(µ) × ΛD
1,+(αp) →

L1(Ω), Π2 : Hp
D(µ) × ΛD

1,+(αp) → H1
D(µ) and Π3 : Hp

D(µ) × ΛD
1,+(αp) → H

Ψp

D (µ) such that

f × g = Π1(f, g) + Π2(f, g) + Π3(f, g)

for all f ∈ Hp
D(µ) and g ∈ ΛD

1,+(αp).

Denote by Hp
D ,fin(µ) (0 < p ≤ 1) the linear space consisting of all functions which can

be written as a finite sum of simple (p,∞)-atoms. Thus if f ∈ Hp
D ,fin(µ), f is locally

supported, f ∈ L1(Ω) ∩ L∞(Ω) and
∫

Ω f dµ = 0. Note that Hp
D ,fin(µ) is dense in Hp

D(µ)
with respect to the norm ∥ · ∥Hp

D(µ).
By the argument detailed in Section 4.3.2, we shall only consider the case where

f ∈ Hp
D ,fin(µ). Then the product f×g as a distribution is given by the usual multiplication

f · g ∈ L1(Ω), and we can write

f · g = Π1(f, g) + Π2(f, g) + Π3(f, g), (5.2.10)

where

Π1(f, g) :=
∞∑

k=1
dkfdkg, Π2(f, g) :=

∞∑
k=1

fk−1dkg and Π3(f, g) :=
∞∑

k=1
gk−1dkf.

Proof. For Π1 and Π2, we can argue as in the corresponding part of the proof of Theorem
III.1. As for Π3, we can also argue as in the corresponding part of the proof Theorem
III.1 using atomic decompositions, where in the homogeneous setting one needs to apply
Lemma 5.2.2 and Lemma 5.2.4. We omit the details.

We would like to remark the simplified proof in Section 4.2.4 fails because Theorem
4.2.2 is no longer valid when g∗ ≡ ∞.
Remark 5.2.8. For Π1 and Π2, the condition H1

D(µ) × BMOD
+(µ) and Hp

D(µ) × ΛD
1,+(αp)

can be in fact replaced by H1
D(µ) ×BMOD(µ) and Hp

D(µ) × ΛD
1 (αp), respectively.

5.3 Applications to Homogeneous spaces
In the first part of this section we show that HΨp

D (µ) admits an atomic decompo-
sition for 0 < p < 1, which allows us to integrate several adjacent dyadic systems on
homogeneous spaces.

For a given dyadic system D on Ω, we define the dyadic HΨp

at,D -atom as follows.

Definition 5.3.1. Let 0 < p ≤ 1. A measurable function a is said to be an HΨp

at,D -atom if

(i) supp(a) ⊂ Q where Q ∈ D is a cube;
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(ii)
∫

Ω a dµ = 0;

(iii) ∥a∥∞ ≤ ∥1Q∥−1
LΨp (Ω).

The atomic dyadic martingale Musielak–Orlicz Hardy spaces HΨp

at,D(µ) are defined in
a way analogous to Definition 1.5.5 and 1.5.6. We first introduce the space BMOD

Ψp
(µ),

which is a subspace of continuous linear functionals on finite sums of atoms.

Definition 5.3.2. Let D denote a dyadic system. For a locally integrable function g, we
define the semi-norm

∥g∥BMOD
Ψp

(µ) := sup
k∈Z

sup
Q∈Fk

1
∥1Q∥LΨp (Ω)

∫
Q

|g(x) − gk(x)| dx.

We define the space BMOD
Ψp

(µ) associated with a dyadic system D by

BMOD
Ψp

(µ) := {g ∈ L1
loc(µ) : ∥g∥BMOD

Ψp
(µ) < ∞}

as a quotient space modulo constant functions.

Definition 5.3.3. Let 0 < p ≤ 1. We define the atomic Musielak–Orlicz martingale
Hardy spaces HΨp

at,D(µ) as follows:

H
Ψp

at,D(µ) :=

f ∈
(
BMOD

Ψp
(µ)

)∗
: f =

∞∑
i=0

λiai,

where ai is an H
Ψp

at,D(µ)-atom supported on a cube Qi.

,
where f =

∞∑
i=0

λiai is in terms of w∗-topology and

∞∑
i=0

∫
Qi

Ψp(x, |λi|∥ai∥∞) dµ < ∞.

Moreover,

∥f∥
H

Ψp
at,D(µ) := inf

{
ρ > 0 :

∞∑
i=0

∫
Qi

Ψp(x, ρ−1|λi|∥ai∥∞) dµ ≤ 1
}
.

Arguing as in [98], one can show that for 0 < p < 1

H
Ψp

D (µ) = H
Ψp

at,D(µ). (5.3.1)

We shall now introduce the atomic Musielak–Orlicz Hardy spaces H
Ψp

at (µ) on the
homogeneous space Ω. First, we present the definition of atoms for HΨp

at (µ).

Definition 5.3.4. A measurable function a(x) is said to be an H
Ψp

at (µ)-atom if

(i) supp(a) ⊂ B where B ⊂ Ω is a ball;

101



Chapter 5. Bilinear decompositions on homogeneous spaces

(ii)
∫

Ω a dµ = 0;

(iii) ∥a∥∞ ≤ ∥1B∥−1
LΨp (Ω).

Definition 5.3.5. For a locally integrable function g, we define the semi-norm

∥g∥BMOΨp (µ) := sup
B

1
∥1B∥LΨp (Ω)

∫
B

|g(x) − gB| dx.

where B runs over all balls in Ω. We now define the space BMOΨp(µ) by

BMOΨp(µ) := {f ∈ L1
loc(µ) : ∥g∥BMOΨp (µ) < ∞}

as a quotient space modulo constant functions.

Definition 5.3.6. Let 0 < p ≤ 1. The atomic Musielak–Orlicz Hardy spaces HΨp

at (µ) are
defined as follows:

H
Ψp

at (µ) :=

f ∈
(
BMOΨp(µ)

)∗
: f =

∞∑
i=0

λiai,

where ai is an H
Ψp

at (µ)-atom supported on a ball Bi

,
where f =

∞∑
i=0

λiai is in terms of w∗-topology and

∞∑
i=0

∫
Bi

Ψp(x, |λi|∥ai∥∞) dµ < ∞.

Moreover,

∥f∥
H

Ψp
at (µ) := inf

{
ρ > 0 :

∞∑
i=0

∫
Bi

Ψp(x, ρ−1|λi|∥ai∥∞) dµ ≤ 1
}
.

Let D t (1 ≤ t ≤ K) be the adjacent systems of Theorem 5.1.3. By arguing as in the
proof of Theorem 5.1.11, we have the following:

Lemma 5.3.7. For 0 < p < 1, HΨp

at (µ) = H
Ψp

at,D1(µ) +H
Ψp

at,D2(µ) + · · · +H
Ψp

at,DK(µ).

Proof. It suffices to show that any dyadic HΨp

Dt -atom a is a constant multiple of an HΨp(µ)-
atom, and any HΨp(µ)-atom b is a constant multiple of a dyadic HΨp

Dt -atom.
If B := B(x0, r), then denote the ball B(x0, Dr) by DB for D ≥ 1. Denote d :=

d(x0, O). In what follows, C(D, p,A0, Cµ) denotes a constant that depends on D, p,A0, Cµ

and may differ from line to line. We first show that if∫
B

1
1 + [1 + µ(B(O, d(x,O)))]1−p

dµ(x) = 1,

then ∫
DB

1
1 + [1 + µ(B(O, d(x,O)))]1−p

dµ(x) ≤ C(D, p,A0, Cµ). (5.3.2)
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Notice that

1 =
∫

B

1
1 + [1 + µ(B(O, d(x,O)))]1−p

dµ(x)

≥ µ(B)
sup
x∈B

{1 + [1 + µ(B(O, d(x,O)))]1−p}

≥ µ(B)
1 + [1 + µ(B(O,A0(d+ r)))]1−p

,

which implies
µ(B) ≤ 1 + [1 + µ(B(O,A0(d+ r)))]1−p.

If d ≤ 2A0Dr, we have

µ(B) ≤ 1 + [1 + µ(B(O,A0(2A0D + 1)r))]1−p

≤ 1 + {1 + µ[B(x0, A0(A0 + 1)(2A0D + 1)r)]}1−p

≤ 1 +
{
1 + [A0(A0 + 1)(2A0D + 1)]Cµ µ(B)

}1−p
,

and thus µ(B) ≤ C(D, p,A0, Cµ). Then∫
DB

1
1 + [1 + µ(B(O, d(x,O)))]1−p

dµ(x) ≤ µ(DB) ≤ C(D, p,A0, Cµ). (5.3.3)

If d > 2A0Dr, then∫
DB

1
1 + [1 + µ(B(O, d(x,O)))]1−p

dµ(x)

≤ µ(DB)
inf

x∈DB
{1 + [1 + µ(B(O, d(x,O)))]1−p}

≤ DCµµ(B)
1 + [1 + µ(B(O, d/A0 −Dr))]1−p

,

≤ DCµ {1 + µ[B (O, [A0 + 1/(2D)]d)]}1−p +DCµ

1 + {1 + µ[B(O, d/(2A0))]}1−p

≤
DCµ

{
1 + [(2A0 + 1/D)A0]Cµ µ[B(O, d/(2A0))]

}1−p

1 + {1 + µ[B(O, d/(2A0))]}1−p +DCµ .

Hence ∫
DB

1
1 + [1 + µ(B(O, d(x,O)))]1−p

dµ(x) ≤ C(D, p,A0, Cµ) (5.3.4)

Combining (5.3.3) with (5.3.4), we get (5.3.2).
Assume a is an HΨp(µ)-atom supported on B. By Theorem 5.1.3, there exist t and a

cube Q ∈ D t such that B ⊂ Q and diam(Q) ≤ Cr, hence B ⊂ Q ⊂ CB.
Note that supp(a) ⊂ Q,

∫
Q a(x) dµ(x) = 0 and

∥1Q∥LΨp (µ) ≤ ∥1CB∥LΨp (µ) ≤ C(C, p,A0, Cµ)∥1B∥LΨp (µ),
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which follows from (5.3.2). Thus

∥a∥∞ ≤ ∥1B∥−1
LΨp (µ) ≲ ∥1Q∥−1

LΨp (µ),

which implies a is a multiple of dyadic HΨp

Dt -atom supported on Q.
For any t = 1, 2 · · · , K, assume b is a dyadic HΨp

Dt -atom supported on Qk
β. By Theorem

5.1.1, there exists two balls such that B(zk
β, c1δ

k) ⊂ Qk
β ⊂ B(zk

β, C1δ
k).

Thus supp(b) ⊂ B(zk
β, C1δ

k),
∫

B(zk
β

,C1δk) b(x) dµ(x) = 0 and

∥1B(zk
β

,C1δk)∥LΨp (µ) ≤ C
(
C1

c1
, p, A0, Cµ

)
∥1B(zk

β
,c1δk)∥LΨp (µ) ≲ ∥1Qk

β
∥LΨp (µ),

which follows from (5.3.2). Therefore,

∥b∥∞ ≤ ∥1Qk
β
∥−1

LΨp (µ) ≲ ∥1B(zk
β

,C1δk)∥−1
LΨp (µ),

which implies b is a multiple of dyadic HΨp-atom supported on B(zk
β, C1δ

k).

Remark 5.3.8. In [42], Fu, Ma and Yang defined another kind of Musielak–Orlicz Hardy
spaces by grand maximal function and they also proved that these Musielak–Orlicz
Hardy spaces are equivalent to H

Ψp

at (µ) with respect to the corresponding norms when
p ∈ ( Cµ

Cµ+1 , 1].

Let B1 := B(O, 1). Define

∥g∥BMO+(µ) := |gB1| + ∥g∥BMO(µ), for g ∈ BMO(µ),

and
∥g∥L+,α(µ) := |gB1| + ∥g∥Lαp (µ), for g ∈ Lαp(µ).

Thus ∥ · ∥BMO+(µ) and ∥ · ∥L+,αp (µ) are quasi-norms on BMO(µ) and Lαp(µ), respectively.

Theorem 5.3.9. Let 0 < p < 1 and f ∈ Hp
at(µ). There exist three linear continuous

operators Πf
1 : Lαp(µ) → L1(Ω), Πf

2 : Lαp(µ) → H1
at(µ) and Πf

3 : Lαp(µ) → H
Ψp

at (µ) such
that

f · g = Πf
1(g) + Πf

2(g) + Πf
3(g) for all g ∈ Lαp(µ),

where Lαp(µ) is endowed with the quasi-norm ∥ · ∥L+,αp (µ).

Proof. Let f ∈ Hp
at(µ). By Theorem 5.1.11 there exist f t ∈ Hp

Dt(µ) (t = 1, 2, · · · , K) such
that f = f 1 + f 2 + · · · + fK , and

K∑
t=1

∥f t∥Hp

Dt (µ) ≈ ∥f∥Hp
at(µ).

Define Πf
i (g) :=

K∑
t=1

Πi(f t, g) for i = 1, 2, 3 and g ∈ Lαp(µ) (Πi defined as in Theorem
5.2.7). Then

f · g = Πf
1(g) + Πf

2(g) + Πf
3(g).
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By Theorem 5.2.7, Theorem 5.1.11 and Lemma 5.3.7, we have

∥Πf
1(g)∥1 ≲

K∑
t=1

∥Π1(f t, g)∥1 ≲
K∑

t=1
∥f t∥Hp

Dt (µ)∥g∥ΛDt
1,+(αp) ≲ ∥f∥Hp

at(µ)∥g∥L+,αp (µ),

∥Πf
2(g)∥H1

at(µ) ≲
K∑

t=1
∥Π2(f t, g)∥H1

Dt (µ) ≲
K∑

t=1
∥f t∥Hp

Dt (µ)∥g∥ΛDt
1,+(αp) ≲ ∥f∥Hp

at(µ)∥g∥L+,αp (µ),

∥Πf
3(g)∥

H
Ψp
at (µ) ≲

K∑
t=1

∥Π3(f t, g)∥
H

Ψp

Dt (µ) ≲
K∑

t=1
∥f t∥Hp

Dt (µ)∥g∥ΛDt
1,+(αp) ≲ ∥f∥Hp

at(µ)∥g∥L+,αp (µ).

which finishes the proof.

Remark 5.3.10. If the homogeneous space (Ω, µ) satisfies the reverse doubling condition,
then Lemma 5.3.7 holds for p = 1. Then we conclude the following.

Let f ∈ H1
at(µ). There exist three linear continuous operators Πf

1 : BMO(µ) → L1(Ω),
Πf

2 : BMO(µ) → H1
at(µ) and Πf

3 : BMO(µ) → HΨ1
at (µ) such that

f · g = Πf
1(g) + Πf

2(g) + Πf
3(g) for all g ∈ BMO(µ),

where BMO(µ) is endowed with the norm ∥ · ∥BMO+(µ).
At this point, we would like to mention that in the setting of Theorem 5.3.9 the

corresponding bilinear decomposition is established in [61].
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Appendix A: Molecule
decomposition

From the atomic decomposition of T 1
q (Rd+1

+ ;X), we derive the following molecular
decomposition for H1

q,L(Rd;X) for any Banach space X, which might have further appli-
cations.

Theorem A.0.1. Let X be any fixed Banach space and 1 < q < ∞. For any f ∈
H1

q,L(Rd;X), there exist a sequence of complex numbers {λj}j≥1 and corresponding molecules
αj = πL(aj) with aj(x, t) being an (X, q)-atom such that

f =
∑
j≥1

λjαj, ∥f∥H1
q,L(X) ≈

∑
j≥1

|λj|.

Proof. Let f ∈ H1
q,L(Rd;X). It follows that Q(f) ∈ T 1

q (Rd+1
+ ;X). Hence Q(f) admits an

atomic decomposition by Lemma 3.2.1. More precisely, there exist a sequence of complex
numbers {cj}j≥1 and (X, q)-atoms aj such that

Q(f) =
∞∑

j=1
cjaj, ∥f∥H1

q,L(X) = ∥Q(f)∥T 1
q (X) ≈

∞∑
j=1

|cj|.

Then by Lemma 3.2.6, it follows that πL(aj) = αj ∈ H1
q,L(Rd;X) for all j ≥ 1. Recall

below the Calderón identity—(3.3.10),

f(x) = 4
∫ ∞

0
Q[Q(f)(·, t)](x, t) dt

t
.

This further deduce that

f(x) = 4
∞∑

j=1
cj

∫ ∞

0
Q[aj(·, t)](x, t))

dt
t

= 4
∞∑

j=1
cjαj(x),

and thus we obtain the desired molecular decomposition.
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Appendix B: Clarifications

We clarify some facts in Section 3.1. Recall that a regular operator T on Lp(Rd) is
regular if there exists a constant c such that

∥ sup
k
T (fk)∥p ≤ c

∥∥∥ sup
k

|fk|
∥∥∥

p
.

for any finite sequence {fk}k≥1 ⊂ Lp(Rd). The least possible constant c is defined as the
regular norm.

Let L be a sectorial operator satisfying (3.1.2). We have the following propositions.
Proposition B.0.1. Let 1 ≤ p ≤ ∞. For any t > 0, e−tL is a regular operator on Lp(Rd),
whose regular norm is dominated by a universal constant.
Proof. Let 1 ≤ p < ∞. Now we verify that e−tL is a regular operator on Lp(Rd). Note
that

∥ sup
k
e−tL(fk)∥p

p =
∫
Rd

∣∣∣∣∣sup
k

∫
Rd
K(t, x, y)fk(y) dy

∣∣∣∣∣
p

dx

≤
∫
Rd

[∫
Rd

|K(t, x, y)|
(

sup
k

|fk(y)|
)

dy
]p

dx

≤ cp
∫
Rd

[∫
Rd

t−d

(1 + t−1|x− y|)d+β

(
sup

k
|fk(y)|

)
dy
]p

dx

≲β c
p
∫
Rd

[∫
Rd

t−d

(1 + t−1|x− y|)d+β

(
sup

k
|fk(y)|

)p

dy
]

dx

≲β c
p
∫
Rd

(
sup

k
|fk(y)|

)p

dy = cp
∥∥∥ sup

k
|fk|

∥∥∥p

p
.

This argument also holds for p = ∞.

Denote by Fp
L the fixed point subspace of

{
e−tL

}
t>0

on Lp(Rd), namely,

Fp
L =

{
f ∈ Lp(Rd) : e−tL(f) = f, ∀ t > 0

}
.

Proposition B.0.2. Let 1 ≤ p < ∞, then Fp
L = {0}.

Proof. We provide the sketch of the proof. For f ∈ Lp(Rd), note that∣∣∣∣∫
Rd
K(t, x, y)f(y) dy

∣∣∣∣ ≤
∫
Rd

|f(y)|t−d

(1 + t−1|x− y|)d+β
dy

≤ ∥f∥p

(∫
Rd

t−p′d

(1 + t−1|x− y|)p′(d+β) dy
) 1

p′

≲β t
− d

p ∥f∥p.
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Thus the limit
lim
t→∞

e−tL(f)(x) = lim
t→∞

∫
Rd
K(t, x, y)f(y) dy

exists and
lim
t→∞

e−tL(f)(x) = 0, ∀x ∈ Rd.

For 1 ≤ p < ∞, it is easy to check that

Fp
L =

{
f̃ : f ∈ Lp(Rd), f̃(x) = lim

t→∞
e−tL(f)(x)

}
.

Thus we obtain that the fixed point subspace of Lp(Rd) is indeed zero space by the above
argument.
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Appendix C: Open problems

C.1: Problems on vecor-valued LPS
Problem C.0.1. It remains open to determine the optimal order of L

√
∆

t,q,p(X) as p → ∞.

Problem C.0.2. The characterization of BMO space by semigroups generated by op-
erators satisfying (II.1), (II.2) and (II.3). We wish to define BMO similarly to [54, 24],
namely by

∥f∥BMO := sup
t

∥e−tL|f − e−tL(f)|2∥
1
2∞.

Can we establish the analogous duality between this BMO space and the Hardy space
H1 defined by the Littlewood-Paley g-function? Furthermore, is it possible to extend this
characterization to vector-valued case?

Problem C.0.3. In Theorem II.1, we need to assume that the sectorial operator L
satisfying (II.1), (II.2) and (II.3). Can we remove or weaken the assumption (II.3)?
Namely, is Theorem II.1 valid for submarkovian semigroups?

Problem C.0.4. In [37], Eskenazis, Mendel and Naor study the coarse embedding the-
ory by metric space-valued martingale inequalities, it is thus naturally to consider the
corresponding Littlewood-Paley-Stein theory in metric space for both scalar and vector
valued functions..

C.2: Problems on continuous bilinear decompositions
Problem C.0.5. Let Ω be a probability space. Do we have a continuous bilinear decom-
position of pointwise multiplication between h1(Ω) and bmo(Ω)?

Problem C.0.6. Let Ω be a homogeneous space and n its dimension. Are there contin-
uous bilinear decompositions of multiplication between atomic Hardy spaces Hp

at(Ω) and
their duals for 0 < p < n/(n+ 1)?
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Résumé :
Cette thèse est consacrée à l’étude de certains aspects de la théorie de Littlewood-Paley-Stein

et de celles des martingales dans différents contextes, notamment pour les fonctions à valeurs
vectorielles et non commutatives.

Elle se compose de trois parties. Dans la première, nous établissons une équivalence ponc-
tuelle entre la g-fonction carrée de Littlewood-Paley-Stein et la fonction carrée de martingales.
Nos arguments reposent sur la construction d’un semi-groupe de diffusion symétrique spéci-
fique associé à une filtration de martingales. Nous étendons également cette équivalence aux
cas vectoriel et non commutatif. En conséquence, nous déterminons l’ordre d’une des meilleures
constantes dans l’inégalité de Littlewood-Paley-Stein scalaire.

La deuxième partie se concentre sur le scénario à valeurs vectorielles. Nous montrons l’équi-
valence entre la norme Lp (1 ≤ p < +∞) entre la q-variante vectorielle de l’intégrale de Lusin et
celle de la g-fonction de Littlewood-Paley-Stein du semi-groupe dont le générateurs est un opé-
rateur sectoriel satisfaisant à certaines conditions. Les outils principaux sont les espaces de tente
à valeurs vectorielles et la fonction carrée intrinsèque introduite par Wilson. En particulier, nous
obtenons l’ordre optimal de la meilleure constante correspondante de l’inégalité de Littlewood-
Paley-Stein dans Lp à valeurs vectorielles dans un espace de Banach de type q (1 < q ≤ 2) de
martingale pour p tendant vers 1.

La dernière partie porte sur la décomposition bilinéaire de la multiplication ponctuelle des
éléments de l’espace de Hardy de martingales H1 et de son espace dual BMO. Cette décompo-
sition bilinéaire continue est étendue à l’espace de Hardy de martingales Hp (0 < p < 1) et à son
espace dual. Nos décompositions reposent sur les paraproduits de martingale. En conséquence,
nous obtenons des résultats analogues pour les martingales dyadiques sur les espaces de type
homogène grâce à la construction d’un système dyadique.

Mots-clés : Inégalités de Littlewood-Paley-Stein ; Ordre optimal des meilleurs constants ;

Espaces de Hardy et BMO ; Type et cotype de martingales ; Espaces de tente à valeurs vecto-
rielles ; Paraproduits de martingales ; Fonction carée intrinsèque ; Espaces de Hardy de Musielak-
Orlicz ; Martingales.
Abstract:

This thesis is devoted to the study of certain aspects of Littlewood-Paley-Stein theory and
martingale theory in various contexts, particularly for vector-valued and non-commutative func-
tions.

It is composed of three parts. In the first part, we establish a pointwise equivalence between
the Littlewood-Paley-Stein g-function and the square function of martingales. Our arguments
are based on the construction of a specific symmetric diffusion semigroup associated with a
martingale filtration. We also extend this equivalence to the vector-valued and noncommutative
cases. Consequently, we determine the order of one of the best constants in the scalar Littlewood-
Paley-Stein inequality.

The second part focuses on the vector-valued scenario. We demonstrate the equivalence
between the Lp norm (1 ≤ p < ∞) of the q-variant of vector-valued Lusin area integral and
that of the Littlewood-Paley-Stein g-function of the semigroup whose generator satisfies certain
conditions. The main tools used are vector-valued tent spaces and the intrinsic square function
introduced by Wilson. In particular, we obtain the optimal order of the corresponding best con-
stant in the Littlewood-Paley-Stein inequality in vector-valued Lp spaces where the underlying
Banach space is of martingale type q (1 < q ≤ 2) for p tending to 1.

The final part deals with the bilinear decomposition of pointwise multiplication of elements
in the martingale Hardy space H1 and its dual space BMO. This continuous bilinear decom-
position is extended to the martingale Hardy space Hp (0 < p < 1) and its dual space. Our
decompositions rely on martingale paraproducts. Consequently, we obtain analogous results for



dyadic martingales on spaces of homogeneous type through the construction of a dyadic system.
Keywords : Littlewood-Paley-Stein inequalities; Optimal order of best constants; Hardy

and BMO spaces; Martingale paraproducts; Martingale type and cotype; Vector-valued tent
spaces; Intrinsic square function; Musielak-Orlicz Hardy space; Martingales.
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